TELVTR ELTA

Cynthia Solomon
Margaret Minsky
Brian Harvey

Y
¥/
@

Challenging Programs in Logo

LogoWorks

Challengmg Programs in Logo

Edited by

Cynthia Solomon, Margaret Minsky, and Brian Harvey

McGRAW-HILL BOOK COMPANY
New York, St. Louis, San Francisco, Auckland
Bogotd, Hamburg, Johannesburg, London, Madrid
Mexico, Montreal, New Delhi, Panama, Paris

Sao Paulo, Singapore, Sydney, Tokvo, Toronto

Disclaimer of warranties and limitation of liabilities

The authors have taken due care in preparing this book and the programs in it, including
research, development, and testing, to ascertain their effectiveness. The authors and publish-
ers make no expressed or implied warranty of any kind with regard to these programs nor the
supplementary documentation in this book. In no event shall the authors or publishers be
liable for incidental or consequential damages in connection with or arising out of the furnish-
ing, performance, or use of any of these programs.

Designed by C. Linda Dingler
Interior art by Kim Llewellyn

The names of all computer programs and computers included herein are registered trade-
marks of their makers.

Copyright © 19586 by McGraw-Hill, Inc.

All rights reserved. Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

1234567890 EDW/EDW 89876
ISBN DO-07-042425-X

Library of Congress Cataloging in Publication Data
Main entry under title:

LogoWorks : challenging programs in Logo.

Includes index.

1. LOGO (Computer program language) 2. Computer programs. 1. Solomon, Cynthia. IL
Minsky, Margaret. IIl. Harvey, Brian, date. IV. Title: Logo Works.
QA76.73, L63L635 1986 005.36'2 85-14976
ISBN 0-07-042425-X

Two disks with all of the programs in this book, ready to run in Atari Logo, are
available. Any Atari Computer that has a disk drive can run these disks, as long
as you have Atari Logo. For information write

Computer Science Editor

Professional & Reference Division—26
McGraw-Hill Book Company

1221 Avenue of the Americas

New York, NY 10020

Contents

Preface vii
Contributors Xiii
Introduction XV
Acknowledgments xvii
1. Wordplay 1
Sengen: A Sentence Generator 1
Argue 6

Animal Game 11

Dictionary 21

Hangman 27

Math: A Sentence Generator 39
Number Speller 46

Drawing Letters 50

Mail 58

Wordscram 67

Madlibs™ 74

2. Stories 80

Exercise 80
Cartoon 87
Jack and Jill 104
Rocket 124

3. Games 133

Boxgame 133
Pacgame 140
Blaster 151
Alien 160
Adventure 172
Dungeon 191

4. Turtle Geometry 206

Turtle Race 206

Four-Corner Problem 210

Towards and Arctan 212

Gongram: Making Complex Polygon
Designs 214

Polycire 222

Animating Line Drawings 227

5. Music

Melodies 230

Ear Training 239
Sound Effects 242
Naming Notes 251

6. Programming Ideas

Adding Numbers 258

Fill 267

Savepict and Loadpict 282
Display Workspace Manager 292
A Logo Interpreter 302

Map 322

Mergesort 331

Bestline 337

Lines and Mirrors 347

Appendix: Special Features of Atari
Logo

Turtle Graphics 362

Turtles and Their Shapes 366

Sounds and Music 371

Demons, Turtle Collisions, and Other
Events 376

Index

230

258

362

351

List of Contributors

Max Behensky
Jeanry Chandler
Susan Cotten
James Davis

Lisa Delpit
Annette Dula
Gregory Gargarian
Michael Grandfield
Brian Harvey

Edward Hardebeck

W. Daniel Hillis
Julie Minsky
Margaret Minsky
Marvin Minsky
Toby Mintz
Keith Sharman
Cynthia Solomon
Erric Solomon
William Weinreb

Lauren Young

Introduction

LogoWorks: Challenging Programsin Logo is for beginning and advanced
Logo programmers who want suggestions of things to do that go beyond an
introductory level. The projects touch on diverse areas of interest: from
graphics and video games to word games, language extensions, and devel-
opment of new languages. Each project is intended for your exploration and
to suggest other worlds you can build yourself.

We think this book will draw attention to Logo as a general-purpose
programming language as well as a powerful tool for thinking. LogoWorks
demonstrates that Logo is not only good for young children, but also pro-
vides people of all ages with compelling and challenging worlds to explore.

We have tried to show a diversity of projects and programming styles
as well as ways of talking about the projects. The descriptions of the various
projects vary in their details and their points of view. To help in meeting
our goal, we encouraged many people to contribute to the book. This
eventually presented us with a problem: we did not want to obscure the
individual personalities represented in each of the projects. We see this as
an important and necessary element in the rich development of Logo
computer cultures. On the other hand, we wanted to maintain a consistency
in the quality of each project. To do this, a group of us met to discuss each
project that was submitted to us for inclusion in the book. The core group
consisted of Margaret Minsky, Cynthia Solomon, Brian Harvey, Michael
Grandfield, Lauren Young, and Susan Cotten. Again, within this group
there was a wide range of interests and expertise as well as personal prefer-
ences. We think this diversity has enriched the book.

Many of the projects reflect the personal interests of their creators. For
example, Michael Grandfield is a dancer and has a fascination with body
movements that influenced the leaping figures in Jack and Jill. Brian Har-
vey, an educator and systems programmer, has contributed several pro-
jects, for instance, Drawing Letters, which draws upon interesting ideas in
computer science and shows clever ways of expressing them. Susan Cotten,
Lauren Young, and Annette Dula are recent Logo enthusiasts, and their
projects reflect both their enthusiasms and their more recent experimenta-
tions with Logo.

Some Advice About Using LogoWorks

The chapter divisions are intended as a rough guide to the projects. In each
chapter there is a common theme. Nevertheless, many projects overlap
chapter boundaries thematically. For example, Animal Game is in the

xvi

INTRODUCTION

“Wordplay” chapter, but it is also a game. Jack and Jill is in the “Stories”
chapter, but it is also an example of turtle geometry. Furthermore, although
we have not grouped the material within a chapter into levels of difficulty,
there is a natural tendency to put content of particular interest for begin-
ners toward the start of each chapter.

We assume that you are already comfortable with the elements of Logo
and are looking for new challenges. Thus we expect that you have gone
through the Introduction to Programming Through Turtle Graphics, which
is part of the Atari Logo package.

For those of you familiar with Logo, but not aware of the special
features Atari computers bring to the language, a chapter at the end of the
book highlights special features of Atari Logo. These include four dynamic
turtles, sound generation, demons, and detection of events like one turtle
bumping into another or a turtle colliding with a line drawn on the screen.
These features, unique to the Atari computers, are fully explored in many
projects throughout this book.

We anticipate that you will want to use many of the projects without
looking at the detailed explanations of how they were made. For this reason
we have included complete program listings at the end of each project.

Using the Projects

There are several ways you can use the projects in this book.

* You can use a project as it appears. For example, some of the projects
are games that you can play without having to do any Logo program-
ming yourself.

* You can start with one of these projects and add to it. Some sections
have explicit suggestions for ways the project might be extended;
others do not. In either case, we expect you will think of your own
improvements,

* A project in this book may spark an idea for a completely new project
of your own.

* Some of the projects in this book are utility procedures, which can
be used as part of a larger project. (See, for example, Towards and
Arctan). You may find these procedures useful in your own projects,
even if vou don’t understand how the procedures themselves work.

The projects in this book are written in Atari Logo. If you have another
version of Logo, vou will find that most of the projects are easy to adapt to your
svstem; others depend on special features of Atari Logo and will need more
effort to adapt.

Acknowledgments

Although a book of this sort has been in the planning stages for several
years, this particular book owes its flavor to the fact that we were part of
Atari Cambridge Research, and so Atari Logo became a focus for us. Some
of the programs were adapted for the Atari computer from previous work,
and others were developed to help debug Atari Logo. Some were devel-
oped while working with kids, and others were developed by kids for their
own pleasure.

One of the joys of creating this book was that new and old friends
contributed their programming projects. Their contributions reflect not
only different programming styles, but also different ways of talking about
the process of translating ideas into working programs. The list of these
contributors can be found in a separate section of the book. At the begin-
ning of each project, credit is given to the people who worked on it. We
thank them collectively and individually.

We thank Atari Cambridge researchers Max Behensky, Susan Cotten,
Jim Davis, Lisa Delpit, Annette Dula, Greg Gargarian, Michael Grandfield,
I.d Hardebeck, Henry Minsky, Julie Minsky, and Lauren Young. We thank
Jeanry Chandler and Toby Mintz, who were high school students; Danny
Hillis, whose involvement with Logo dates from his undergraduate vears at
the MIT Logo Laboratory, and who is now a researcher at Thinking Ma-
chines Corporation; Keith Sharman, who is a programmer and Logo
teacher in Alberta, Canada: Erric Solomon, who teaches Logo in the San
Francisco Bay area; and Billy Weinreb, who was an undergraduate at
Wesleyan,

We would also like to thank Pam Davis, who cheerfully organized and
kept track of our various versions of the manuscript, and Susan Cotten, who
was fantastic at keeping our diskettes up to date. Michael Grandfield and Erric
Solomon not only generated beautiful pictures, but worked hard at capturing
those images on film. We are particularly grateful to Peter Cann for his special
ability to connect Logo to any outside device we needed. Special thanks to
Greg Gargarian for his continual support in the life of this book and in our
research in developing Logo worlds.

We thank the other members of Atari Cambridge Research for their
support: James Russell Davis, Gary Drescher, Mark Gross, Ken Haase,
Steven Hain, Jay Jones, Susan Kroon, David Levitt, Dan Melnechuk, Bill St.
Clair, Nancy Smith, and Tom Trobaugh.

To those whose contributions are not apparent, like Dan Suttin and his

xviii

ACKNOWLEDGMENTS

kids at the Cambridge Montessori School and Paul Goldenberg and others
from Lincoln-Sudbury Regional High School, thank you for your energy
and activities in developing Logo environments.

We have been very fortunate in receiving comments on early drafts
from enthusiasts like Gary Dreyfoos, Mary Jo Moore, and Jon Solomon.

This book has benefited greatly from the editorial guidance of Jane Isay,
formerly of Harper & Row, Publishers. We are also indebted to Steve Guty at
McGraw-Hill,

We give special thanks to Michael Grandfield for taking all the pho-
tographs used in this book and for his rendering of Gongram, which appears on
the cover. He prepared this design in Object-LISP using the computing fa-
cility of LISP Machines, Inc.

We thank Brian Silverman of Logo Computer Systems for his clever
implementation of Atari Logo. We also thank Hal Abelson and members of the
MIT Logo community for their continuing conversations.

We are grateful to many people who were part of Atari Sunnyvale
Research. We especially thank Alan Kay for his enthusiastic support.

Preface

Adults worry a lot these days. They worry especially about how to make
other people learn more about computers. They want to make us all “com-
puter-literate.” “Literacy” means both reading and writing, but most books
and courses about computers only tell you about writing programs. Worse,
they only tell about commands and instructions and programming-lan-
guage grammar rules. They hardly ever give examples. But real languages
are more than words and grammar rules. There’s also literature—what
people use the language for. No one ever learns a language from being told
its grammar rules. We always start with stories about things that interest us.
This book tells some good stories—in Logo.

The trouble is, people often try to explain computers the same ways
they explain ordinary things—the way they teach arithmetic by making you
learn “tables” for adding and multiplying. So they start explaining comput-
ers by telling you how to make them add two numbers. Then they tell you
how to make the computer add up a lot of numbers. The trouble is, that’s
boring. For one thing, most of us already hate adding up numbers. Besides,
it's not a very interesting story.

You can’t blame teachers for trying to make numbers interesting. But
—let’s face it—numbers by themselves don’t have much character. In fact,
that's the real reason mathematicians like them. They find something magi-
cal about things that have no interesting qualities at all. That sounds like a
paradox. Yet, when you think about it, that's exactly why we can use num-
bers in so many different ways! Why is it that we get the same kind of result
when we count different kinds of things—whether we're counting flowers
or trees or cars or dinosaurs? Why do we always end up the same—with a
number? That's the magic of arithmetic. It wipes away all fine details. It
strips things of their character. The qualities of what you count disappear
without a trace.

Programs do the opposite. They make things come to be, where noth-
ing ever was before. Some people find a new experience in this, a feeling
of freedom, a power to do anything you want. Not just a lot—but anything.
I don’t mean like getting what you want by just wishing. I don’t mean like
having a faster-than-light spaceship, or a time machine. | mean like giving
a child enough kindergarten blocks to build a full-sized city without ever
running out of them. You still have to decide what to do with the blocks.
But there aren’t any outside obstacles. The only limits are within yourself.

Myself, 1 first had that experience before 1 went to school. There
weren't any Logos yet, but we had toy construction sets. One was called
TinkerToy™. To build with TinkerToy you only need two kinds of parts—
just sticks and spools. Spools are little wooden wheels. Each has one hole

viii

PREFACE

through the middle and eight holes drilled into the rim. Sticks are just
round sticks of various lengths, which you can push into the spool holes.
They have little slits cut in their ends, which make them hold tight when
they're pressed into the holes.

i |

z 4 NaZL | N L
| P AN | /0
' >4 i 4
7)

What's strange is that those spools and sticks are enough to make
anything. Some spools are drilled with larger holes, so sticks pushed through
those holes can turn. You can make towers, bridges, cars, bulldozers. Wind-
mills. Giant animals. You can put wheels on your cars and make bearings
for pulleys and gears to make them do more interesting things. You have
to make the gears yourself: just stick eight sticks into a spool. They work,
though not too well, and always go click-click-click when they turn.

The sticks are cut to several lengths. One series of lengths come in the
ratios one, two, four, and eight. The other lengths are cut so that they fit
across the diagonals of squares made from the first series of sticks. The
amazing thing is that you can also use the first kind as diagonals for squares
made with the other kind of sticks, like this:

EN 2 2N i
i N | b & N i
Y W b, | X 4
\ 7/ i W 2 Wird

The secret is in finding out how much can come from so few kinds of
parts. Once, when still a small child, I got quite a reputation. My family was
visiting somewhere and I built a TinkerToy tower in the hotel lobby. I can’t
recall how high it was, but it must have been very high. To me it was just
making triangles and cubes, and putting them together. But the grownups
were terribly impressed that anyone so small could build anything so big.
And I learned something too—that some adults just didn’t understand how
vou can build whatever you want, so long as you don’t run out of sticks and
spools. And only just this minute while I'm writing this, I realize what all
that meant. Those adults simply weren't spool-stick-literate!

When my friend Seymour Papert first invented Logo, I had the same
experience again. Logo has some things like sticks: we call them FORWARD
'LENGTH. And Logo also has its spools: we call them RIGHT :ANGLE. I
recognized old building friends at once. Making Logo programs is a lot like

PREFACE

building with construction toys—but it's even better. You can make draw-
ings of things and structures, but you can make procedures too. You can
make them use words. You can make things change their forms. And you
can make them interact: just give them each procedures which can change
the values of the other ones. As toys, those programs have their faults: you
can't take Logo cars outside and roll them down a real hill—but, in ex-
change, their parts don't get loose and fall out and get lost. And the basic
experience is still there: to see how simple things can interact to make more
wonderful things.

Logo started many years ago; several writers of this book were chil-
dren, and among the first to find new things to do with it. I'm very pleased
to write this introduction now, recalling what a great adventure this has
been and knowing, too, that it has just begun.

There were other good construction toys, like Erector™ sets and Mec-
cano. They had many kinds of parts, but the basic ones are metal strips with
many holes and different kinds of angle brackets. You got a million little
screws and nuts to put them together with, and long steel shafts, which fit
through the holes just loose enough to turn. And there are gears and pulleys
to attach to the metal shafts, so you can make complicated things that really
work.

When I was older, I built one of the very first modern, remote-con-
trolled robots, using parts of a Number 10 Meccano set and ideas invented
at MIT's first computer research laboratory in the 1940s. And, speaking of
building computers, some of the people in this book once built a real,
honest-to-goodness computer out of nothing but TinkerToy parts. A group
including Danny Hillis, Brian Silverman, and Ed Hardebeck built a ma-
chine of TinkerToy parts to play the game tic-tac-toe. It actually worked
and is now in a museum in Arkansas. It was made of spools and sticks. They
also used some string and, since the truth must be told, they hammered in
some little brass nails to keep the sticks from falling out. It took about 100
sets and was too big to fit in your room.

The golden age of construction sets came to its end in the 1960s. Most
newer sets have changed to using gross, shabby, plastic parts, too bulky to
make fine machinery. Meccano went out of business. That made me very
sad. You can still buy Erector, but insist on the metal versions. Today the
most popular construction set seems to be LEGO™—a set of little plastic
bricks that snap together. LEGO, too, is like Logo—except that you only
get RIGHT 90. It is probably easier for children, at first, but it spans a
less interesting universe and doesn't quite give that sense of being able to
build “anything.” Another new construction toy is FischerTechnik™,
which has good strong parts and fasteners. It is so well made that engineers
can use it. But because it has so many different kinds of parts, it doesn't
quite give you that Logolike sense of being able to build your own imagi-
nary world.

About the time that building toys went out of style, so did many other
things that clever kids could do. Cars got too hard to take apart—and radios,
impossible. No one learned to build much any more, except to snap to-
gether useless plastic toys. And no one seemed to notice this, since sports
and drugs and television crime came just in time. Perhaps computers can
help bring us back.

PREFACE

After you've built something with your construction set, you have to
take it all apart again—or you won't have enough parts for the next project.
With programs, you can keep them on your disk and later get them out and
build them into bigger ones. This year, you might run out of memory—but
that won't be a problem for your children, because memory will soon be
very cheap. What’s more, you can share your programs with your friends
—and still have them yourself! No emperor of ancient times could even
dream of that much wealth. Still, many adults just don’t have words to talk
about such things—and maybe, no procedures in their heads to help them
think of them. They just do not know what to think when little kids con-
verse about “representations” and “simulations” and “recursive proce-
dures.” Be tolerant. Adults have enough problems of their own.

To understand what computers are, and what they do, you shouldn’t
listen to what people say about those “bits” and “bytes” and binary deci-
sions. I don’t mean that it isn’t true. Computers are indeed mostly made of
little two-way switches. But everyone who tells you this is what you need
to understand them is simply wrong. It’s just as true that houses can be
made from sticks and stones—but that won’t tell you much about architec-
ture. It’s just as true that animals are mostly made of hydrogen, carbon,
oxygen, and nitrogen—but that won't tell you much about biology.

A Martian szneech once mindlinked me; it wanted to know what
literature was. (It seems they're far behind the times and haven’t even
got to that.) I told it how we make sentences by putting words to-
gether, and words by putting letters together, and how we put bigger
spaces between words so that you can tell where they start and stop.
“Aha,” it said, “but what about the letters?” I explained that all you
need are little dots since, if you have enough of them, you can make
anything.

The next time, it called to ask what tigers were. (Apparently, they
haven't even got to vertebrates.) I explained that tigers were mostly
made of hydrogen and oxygen. “Aha,” it said, “I wondered why they
burned so bright.”

The last time it called, it had to know about computers. I told it
all about bits and binary decisions. “Aha,” it said, “I understand.”

You really need two other facts to understand what computations do. Here's
the first one.

Computer programs are societies. Making a big computer program is
putting together little programs.

To make a good program, you build a larger process out of smaller ones.
I suppose you could truthfully say that sculptors make large shapes from
stuck-together grains of clay. But that shows what’s wrong with the bits-
and-bytes approach. No sculptor or scientist or programmer ever thinks
that way. An architect first thinks of shapes and forms, then walls and floors,
and only last about how those will be made.

Here is the other thing most people don’t know. It doesn’t matter very
much what you start with! Even if we start with different kinds of comput-
ers, with different kinds of parts inside—still, they mostly can be made to
do the same things, when seen from the outside. You can build a windmill

PREFACE

with either wooden sticks or metal beams. When you look closely, each part
will be quite different. But windmills will have a base, a tower, and a
propeller. The same with computers:

Any computer can be programmed to do anything that any other
computer can do—or that any other kind of “society of processes” can do.

Most people find this unbelievable. But later in this book you'll find a
hard project called “A Logo Interpreter” that shows how to make one type
of Logo computer act like a different kind of Logo computer. The way to
do this was first discovered by an English scientist named Alan Turing. First
he asked what a computer is—and realized that the only important thing
about a computer X is the set of laws that make its parts change their states.
Except for that, it doesn’t matter how parts are made. Then Turing asked
what programs are, and realized: a program is a certain way to fix some set
of X's states. This, then, will prearrange the way that X's other states will
later change.

Next, Turing thought, suppose you wanted a different kind of com-
puter, Y. Then make a program for X that will make the rest of X's states
act just like Y’s. Once that’s done, X's behavior will look exactly like Y's—
to anyone watching from outside. A programmer might say that X is “simu-
lating Y. Of course, you have to pay a price for this: it won't work at all
unless X has enough memory to hold a description of Y. And if X and Y are
very different, then the simulated programs will run very slowly. But aside
from that, Turing showed, any kind of computer can be programmed to
simulate any other kind! That is why we can write special programs to make
the same Logo programs run on all the different computers in the world.

In fact, every Logo system uses just such a program, to make the
underlying computer act like a Logo computer. The one for Atari Logo was
written by Brian Silverman and his friends. I'm sorry you can’t examine it:
the trouble is that it's not written in Logo but in a different language buried
deep inside your machine. But it’s there, hiding out of sight, making your
computer simulate a Logo computer. The strange thing is that Alan Turing
figured out how to do such things fifty years ago, in 1936, long before
computers were even invented! How could he do that? He simulated them
inside his head.

There's something “universal” about how big things don’t depend so
much on what's inside their little parts. This must be the secret of those
magical experiences I had, first with those construction sets and, later, with
languages like Logo. What matters is how the parts affect each other—not
what they are themselves. That's why it doesn’t matter much if one makes
houses out of boards or bricks. Similarly, it probably won’t matter if aliens
from outer space have bones of gold instead of bones of stone, like ours.
People who don’t appreciate how simple things can grow into entire worlds
are missing something important. They find it hard to understand science,
because they find it hard to see how all the different things we know could
be made of just a few kinds of atoms. They find it hard to understand
evolution because they find it hard to see how different things like birds and
bees and bears could come from boring, lifeless chemicals—by testing tril-
lions of procedures. The trick, of course, is that it's done by many steps, each
using procedures that have been debugged already, in the same way, but
on smaller scales,

xi

xii

PREFACE

Why don't our teachers tell us that computers have such glorious con-
cerns? Because most adults still believe the only things computers do are
big, fast, stupid calculations of arithmetic. Besides, our teachers have too
many other things to learn and teach: how to build computers, how to make
languages for programming them, and how to train programmers to use
those languages. And so those dreary practicalities of billion-dollar indus-
tries crowd out our dreams and fantasies of building giant mind-machines.

Marcin Minsky

1

Wordplay

Sengen: A Sentence Generator

SENGEN makes up English sentences similar to the following ones:

PECULIAR BIRDS HATE JUMPING DOGS

FAT WORMS HATE PECULIAR WORMS

RED GUINEA PIGS TRIP FUZZY WUZZY DONKEYS
FAT GEESE BITE JUMPING CATS

One of the questions you might ask is this: Does SENGEN make up sentences
the way we do or the way we did when we first learned to talk or write?
Another question you might ask is: What relationship does SENGEN have to
understanding grammar? The first question is open to research and specula-
tion. The second might be an easier one to answer. Often when I first
discuss this project with children, they do not relate the programming
process to the learning of grammar. Later as they use their programs, the
children frequently exclaim: “So this is why they call words nouns and
verbs!” They also begin to appreciate formal systems. Studying grammar by
generating sentences that obey certain rules requires the programmer to
become aware of rules as well as of their exceptions.

Since this program seems to make sensible sentences without knowing
very much about grammar, children often develop an appreciation for
cleverness. For example, SENGEN doesn’t know that some words are singu-
lar and some are plural or that singular subjects should be matched with
singular verbs; it does not know about verb tenses or pronomial relations.
Its apparent intelligence comes from the programmer’s choice of words and
categories.

In the following examples, the nouns and verbs are all plurals and the
verbs are all in the present tense.

SENGEN builds sentences from vocabulary lists of nouns, verbs, adjec-
tives, connectives, and so on. It then assembles its selections according to
some rule of grammar.

Making the Program

One strategy in making a program might be to concentrate on developing
a random sentence generator that outputs only a verb. For example:

Go.
Run.

By Cynthia Solomon.

WORDPLAY

To do this a procedure is needed to blindly (randomly) pick out a selection
from a list of possibilities.

Let’s make up a list of verbs and then make a procedure to select a
word from the list. In this example, the procedure VERBS outputs the vocab-
ulary list.

T0 VERBS
OP [EAT SCARE LOVE HATE [LAUGH AT] TRIP BITE]
END

Whenever VERES is called, it outputs that list.

PR VERBS
EAT SCARE LOVE HATE [LAUGH AT] TRIP BITE

PR FIRST VERBS
EAT

PR LAST BL VERBS
TRIP

What we now want is a procedure that will randomly choose one of the
itemns in this list. Here is the plan for this task: use a number obtained from
RANDOM to point to an item in the given list of choices. Then get that item
from the list. P1CK does this and outputs the selection.

TO PICK :LIST
OP SELECT RANDOM COUNT :LIST :LIST
END

PICK’s input is a vocabulary list. P1CK calls SELECT, giving it the list and a
number indicating which item in the list SELECT is to output.

There is a slight problem. RANDOM outputs a number from 0 up to but
not including its input number. Thus its output in PICK is always one less
than the length of the list. We can fix that by adding 1 to RANDOM’s output.

TO PICK :LIST
OP SELECT 1 + RANDOM COUNT :LIST :LIST
END

SELECT carries out its job recursively. When its input number is one, it
outputs the first item from its input list. Otherwise, SELECT subtracts one
from its input number and takes away the first item from its input list and
continues the process until the item is found.

Here is what SELECT looks like.

TO SELECT :ITEM :LIST

IF :ITEM = 1 [OP FIRST :LIST]
OP SELECT :ITEM - 1 BF :LIST
END

Now we can try PICK.

PR PICK VERBS
SCARE

PR PICK VERBS
EAT

SENGEN: A SENTENCE GENERATOR

We could try it on different lists:

PR PICK (1 2 3 4]
3

PR PICK [A B C D]
A

PICK seems to work.
Let’s make a procedure that outputs just a verb.

TO VERB
OP PICK VERBS
END

PR VERB
BITE

Now we can move on to building a sentence by first making a one-word
sentence.

T0 SEN
PR VERB
SEN
END

SEN
LAUGH AT
SCARE
LAUGH AT
EAT

and so on.

Our attempt at making a one-word sentence fails because of the verbs
in the verb list. Only EAT can be used without an object. So if we want to
make grammatical one-word sentences, we have to restrict our choice of
verbs.

Now let's make a sentence with a subject and an object. Let’s follow
the pattern already set up for verbs and make two operations NOUNS and
NOUN. NOUNS outputs a list of nouns.

TO NOUNS

0P [BOYS [DOGS AND CATS] PUPPIES [SIAMESE FIGHTING FISH]
GEESE BIRDS GIRLS [GUINEA PIGSI[MICE AND GERBILS] WORMS
TEACHERS DONKEYS CLOWNS [BASEBALL PLAYERS]]

END

NOUN outputs one of the items from NOUNS.

TO NOUN
0P PICK NOUNS
END

PR NOUN
CLOWNS

WORDPLAY

All we need to do to make a sentence is the following:

PR (SE NOUN VERB NOUN)
SIAMESE FIGHTING FISH SCARE BOYS

Imagine we had miscategorized the vocabulary and NOUNS could output a
list like

RED LAUGHING TORTOQISE BOY
We might then get sentences like

RED SCARE LAUGHING
BOY EAT TORTOISE

This kind of bug is typical of the kind people run into when they first
do this project. Usually, when people confront their bugs, they begin to
appreciate rules of grammar and the fantastic power we derive from
categorizing words.

We can now make a procedure that outputs a sentence.

T0 SEN
0P (SE NOUN VERB NOUN)
END

PR SEN
BASEBALL PLAYERS EAT DONKEYS

SENGEN can print this output and continue the process.

TO SENGEN
PR SEN
PR
SENGEN
END

Extensions
One extension is to add adjectives to the sentences.

TO ADJECTIVES
OP [RED FAT [FUZZY WUZZY] PECULIAR JUMPING]
END

TO ADJECTIVE
0P PICK ADJECTIVES
END

Edit SEN.
TO SEN

PR (SE ADJECTIVE NOUN VERB NOUN)
END

SENGEN: A SENTENCE GENERATOR

The sentences are getting more complicated, so it is time to introduce
additional categories like NOUNPHRASE and VERBPHRASE. For example:

TO NOUNPHRASE
OP (SE ADJECTIVE NOUN)
END

TO VERBPHRASE
0P (SE VERB NOUN)
END

T0 SEN
0P (SE NOUNPHRASE VERBPHRASE)
END

Another possibility is to link two simple sentences by using connectives:

TO CONNECTS
0P [BUT AND [EVEN THOUGHI1
END

TO CONNECT
OP PICK CONNECTS
END

Finally, you change SENGEN to include the new sentence:

TO SENGEN

PR (SE SEN CONNECT SEN)
PR (]

SENGEN

END

SENGEN
FAT DOGS HATE DONKEYS EVEN THOUGH
JUMPING BASEBALL PLAYERS SCARE BOYS

RED CATS EAT WORMS EVEN THOUGH
FUNNY BUNNY BASEBALL PLAYERS LOVE BOYS

FAT MICE AND GERBILS SCARE TEACHERS
AND FAT CLOWNS BITE MICE AND GERBILS

PROGRAM LISTING

TO SENGEN TO CONNECTS
PR (SE SEN CONNECT SEN) OP [BUT AND [EVEN THOUGHII
PR [1 END
SENGEN
END TO CONNECT
0P PICK CONNECTS
T0 SEN END
0P (SE NOUNPHRASE VERBPHRASE)
END TO NOUNPHRASE

OP (SE ADJECTIVE NOUN)
END

6 WORDPLAY

T0 NOUN
0P PICK NOUNS
END

TO NOUNS

0P [BOYS [DOGS AND CATS] PUPPIES »
[SIAMESE FIGHTING FISH] GEESE »
BIRDS GIRLS [(GUINEA PIGS]I[MICE »
AND GERBILS] WORMS TEACHERS »
DONKEYS CLOWNS [BASEBALL »

TO ADJECTIVE
0P PICK ADJECTIVES
END

T0 ADJECTIVES

OP [RED FAT [FUZZY WUZZY] PECULIAR »
JUMPING]

END

T0 VERBPHRASE

PLAYERS]] 0P (SE VERB NOUN)
END END
T0 VERB TO PICK :LIST
OP PICK VERBS OP SELECT 1 + RANDOM COUNT :LIST :LIST
END END
T0 VERBS TO SELECT :ITEM :LIST
OP [EAT SCARE LOVE HATE [LAUGH AT] » IF :ITEM = 1 [OP FIRST :LIST]
OP SELECT :ITEM - 1 BF :LIST
END END

Argue

ARGUE carries on a dialogue with you. When you run ARGUE, it expects you
to type a statement in the form 1 LOVE LEMONS or I HATE DOGS.
ARGUE comes back with contrary statements. For example, if you make the
statement 1 HATE DOGS, the program types

I LOVE DOGS
I HATE CATS

If it doesn’t already know the opposite of a word, it asks you. For example,
if you type 1 LOVE LEMONS and ARGUE does not know the opposite of
LEMONS, it types

I HATE LEMONS
WHAT IS THE OPPOSITE OF LEMONS?

If you tell it ORANGES, it will type
I LOVE ORANGES

Here is a sample dialogue.

Program by Danny Hillis; write-up by Margaret Minsky.

ARGUE

ARGUE

-->I LOVE SALT
I HATE SALT

I LOVE PEPPER

-->1 HATE CATS
I LOVE CATS
I HATE DOGS

-->1 HATE DOGS
I LOVE DOGS
I HATE CATS

-=>1 LOVE LEMONS

I HATE LEMONS

WHAT IS THE OPPOSITE OF LEMONS?ORANGES
I LOVE ORANGES

-

ArRGUE Can Reply to Your Statements

When you run ARGUE, it types an arrow to let you know that it is ready for
you to type your statement, then calls ARGUEWI TH. ARGUEWI TH is given the
statement you type as its input. ARGUE is recursive so this process continues.

T0 ARGUE

TYPE [\-\-\>]
ARGUEWITH RL
ARGUE

END

ARGUEWITH prints two responses to vour statement. First, it turns
around your statement; if you say that you love something, ARGUEWI TH says
that it hates it, and if you say you hate something, ARGUEWI TH says that it
loves it. Second, it makes a statement about the opposite of the object you
mentioned.

T0 ARGUEWITH :STATEMENT

PRINT (SE “I LOVE.HATE SECOND :STATEMENT LAST :STATEMENT)
PRINT (SE “I SECOND :STATEMENT OPPOSITE LAST :STATEMENT)
END

The procedure LOVE .HATE sees whether its input is “LOVE or "HATE
and outputs the other one.

TO LOVE.HATE :WORD

IF :WORD = "LOVE [OP "HATE]
IF :WORD = "HATE [OP "LOVE]
END

WORDPLAY

The ARGUEWITH procedure works only with statements in the form I
LOVE something or 1 HATE something because it assumes that the sec-
ond word in your statement is LOVE or HATE and that the last word in your
statement is something whose opposite it can find.

ARGUEWITH uses SECOND to grab the second word in a sentence.

TO SECOND :LIST
0P FIRST BF :LIST
END

The 0PP0S ! TE procedure is the real guts of the ARGUE program. It takes
a word as its input and outputs the opposite of that word.

The Program Keeps Track of Opposites

How does the program know that pepper is the opposite of salt? Somehow,
the ARGUE program has to have this information stored. We use variables
to hold this information. For example, : SALT is PEPPER, :CATS is DOGS.
This is how we have chosen to store the facts the program “knows.” We call
this a data base. You can look at the data base for the ARGUE program by
looking at all the variables in the workspace. Try:

PONS

MAKE “PEPPER “SALT
MAKE “SALT "PEPPER
MAKE “DOGS "CATS
MAKE “CATS “DOGS
MAKE "LIFE “MARRIAGE
MAKE “MARRIAGE “LIFE
MAKE “DARK "LIGHT
MAKE "LIGHT “DARK

These variables are loaded into the workspace with the ARGUE pro-
gram.*
To find out the opposite of something, for example DARK, we can say

PR :DARK
LIGHT

or

PR THING “DARK
LIGHT

What if we want to find out the opposite of L1 GHT? There is no easy way
to find out it is DARK unless we have another variable named LIGHT,
with value DARK. So we can say

PR THING “LIGHT
DARK

We have set up a convention in our data base that we always put in both
parts of a pair. That way, we don’t end up in the funny situation where it

*If you type in the procedures and there are no variables in the workspace, ARGUE will
create these variables when it asks you for the opposites of things.

ARGUE

is easy to find out that the opposite of ROUGH is SMOOTH, but impossible to
find out what the opposite of SMO0TH is. Our mental concept of opposite is
that it “goes both ways,” so we make our data base reflect that.

How the orr0s1Te Procedure Works

With this kind of data base we can write a procedure to output the opposite
of something. Here is a possible first version of the 0PP0SITE procedure:

T0 OPPOSITE :0BJECT
OP THING :0BJECT
END

This is a good example of needing to use THING rather than dots(:). The
word of which 0PPOSITE is trying to find the value is whatever : 0BJECT is.
For example, if : 0BJECT is the word SALT, then the program is trying to
find : SALT. It must do this indirectly by using THING :0BJECT.

This first version of 0PPOSITE has a problem. It only works for words
that are already in the data base. If you make a statement like | LOVE
SUNSETS and there is no variable named SUNSETS, then this OPPOSITE
procedure will get an error. To solve this problem, we use NAMEP to check
for the existence of a variable named by :08JECT. In this example
:0BJECT is the word SUNSETS; the program checks whether there is already
a variable named SUNSETS. If there isn't, you'd like the program to learn
the opposite of SUNSETS and put it in the data base. Then it can go ahead
and argue with you about sunsets. The procedure LEARNOPP does this.
0PPOSITE calls LEARNOPP when it needs to.

TO OPPOSITE :0BJECT

IF NAMEP :0BJECT [OP THING :0BJECT]

PRINT (SE [WHAT IS THE OPPOSITE OF] :0BJECT “?)
LEARNOPP :0BJECT FIRST RL

OP THING :0BJECT

END

TO LEARNOPP :0BJECT :0PP
MAKE :0BJECT :0PP

MAKE :0PP :0BJECT

END

When 0PPOSITE tries to find the opposite of a word that is not in the
data base, it asks the user for the opposite. After the user types the opposite,
0PPOSITE passes both the problem word and its opposite to LEARNOPP.
LEARNOPP puts that pair of words in the data base.

Now arcue Can Argue Pretty Well

So ARGUE can keep going as it adds new words to its data base.

10

WORDPLAY

ARGUE

-->1 HATE PEPPER

I LOVE PEPPER

I HATE SALT

-=>1 LOVE SUNSETS
I HATE SUNSETS
WHAT IS THE OPPOSITE OF SUNSETS?SUNRISES
1 LOVE SUNRISES
-=>1 LOVE SUNRISES
1 HATE SUNRISES

I LOVE SUNSETS

and so on.
If we look at the data base after this, we can see what has been added.

PONS

MAKE "SUNRISES “SUNSETS
MAKE "SUNSETS "“SUNRISES
MAKE “PEPPER “SALT

and so on.
In order for the program to “remember” this data base, these variables
must be saved by SAVEing this workspace on a diskette.

SUGGESTIONS

The ARGUE program assumes that the sentences you type in are going
to be exactly in the form

1 LOVE something

or

1 HATE something

If they are not, an error occurs and the program stops. You could improve
the program so that it checks for the right kinds of sentences and asks you
to retype them if there are problems.

Maybe it could know about more emotion words such as DESIRE,
LIKE, DISLIKE, DESPISE, DETEST.

If you try:

1 LOVE GREEN PEAS

the program will say:

I HATE PEAS

and ask you for the opposite of PEAS. It will ignore the GREEN. You might

make a better arguing program that tries to figure out if there is an adjec-
tive and finds its opposite, so it would do something sensible like

ARGUE

-->1 LOVE GREEN PEAS
I HATE GREEN PEAS

I LOVE RED PEAS

ANIMAL GAME 11
ARGUE doesn’t have any mechanism for dealing with single objects
described by more than one word, like 1CE CREAM. Perhaps a special
way to type these in might be added.
You might want to look at the Madlibs and Sengen projects for more
ideas that have to do with taking apart and putting together sentences. You
might want to look at the Animal Game project for an example of a program
with a different kind of data base that also appears to learn some simple
things.
PROGRAM LISTING
TO ARGUE TO OPPOSITE :0BJECT
TYPE [\=\-\>] [F NAMEP :0BJECT [OP THING :0BJECT]
ARGUEWITH RL PRINT (SE [WHAT IS THE OPPOSITE OF1 »
ARGUE :0BJECT 7)
END LEARNOPP :0BJECT FIRST RL
OP THING :0BJECT
TO ARGUEWITH :STATEMENT END
PRINT (SE "I LOVE.HATE SECOND »
:STATEMENT LAST :STATEMENT) TO LEARNOPP :0BJECT
PRINT (SE “I SECOND :STATEMENT » MAKE :0BJECT :0PP
OPPOSITE LAST :STATEMENT) MAKE :0PP :0BJECT
END END
TO LOVE.HATE :WORD MAKE "PEPPER "SALT
IF :WORD = "LOVE [0OP "HATE] MAKE "SALT "“PEPPER
[F :WORD = “HATE [0P “LOVE] MAKE “DOGS "CATS
END MAKE "“CATS "DOGS
MAKE "LIFE "MARRIAGE
TO SECOND :LIST MAKE “MARRIAGE “LIFE
OP FIRST BF :LIST MAKE “DARK "LIGHT
END MAKE “LIGHT “DARK

MAKE “SUNRISES “SUNSETS
MAKE “SUNSETS "SUNRISES

Animal Game

The animal game is a little like twenty questions: you think of an animal,
and the game tries to guess it by asking yes-or-no questions.*

What makes the game interesting is that it learns new animals. When
it can’t guess your animal, it asks you to teach it the animal and its distin-
guishing characteristic. By learning new questions and new animals, the
game gets “smarter.”

*This unimal game is & popular computer game. It first appeared about ten years ago.
Since then many people have implemented it in various computer languages. This Logo
program was inspired by Bernard Greenberg's unpublished LISP textbook.

By William Weinreb.

12

WORDPLAY

Here’s a sample dialogue between the computer and a person playing
the animal game. Everything the user types is boldface.

7ANIMALGAME

PICK AN ANIMAL, ANY ANIMAL The player's secret animal is
IS IT FURRY? “dog.”

YES

HERE'S MY GUESS: IS IT A CAT?

NO

I GIVE UP. WHAT IS IT?

A DOG

PLEASE TYPE IN A QUESTION Here’s where the game gets
WHOSE ANSWER IS 'YES' FOR A DOG smarter.

AND "NO" FOR A CAT
DOES IT BARK?
DO YOU WANT TO PLAY AGAIN?

YES

PICK AN ANIMAL, ANY ANIMAL The player’s secret animal is
IS IT FURRY? “dog™ again.

MAYBE

PLEASE ANSWER YES OR NO

[S IT FURRY?

YES

DOES IT BARK? Here's where the game asks
YES the question it just learned!
HERE 'S MY GUESS: IS IT A DOG?

YES

I WIN!

I WIN!

DO YOU WANT TO PLAY AGAIN?

NO

2

Knowledge Grows on Trees

Below is a diagram of the knowledge the game might have after someone
has played it a few times. We call the diagram a tree, because it looks
something like an upside-down tree.

IS IT FURRY?

YES NO

DOES IT BARK? FROG

YES/W
DOG

CAT

The tree is made of questions and animal names. Each question has a
“yes branch™ and a “no branch.” Each branch either leads to a question or
ends at an animal name.

By drawing what the game knows in the form of a tree, we can get a
more vivid picture of how the game works. For example, we can think of
the game as exploring the tree from its top. It always starts at the IS

ANIMAL GAME

IT FURRY? question. Its goal is to climb down the branches to an ani-
mal name. The animal it finally reaches is the one it guesses.

Let’s play an imaginary game and trace the game’s progress on the
tree. Our secret animal is “mouse.”

The game’s first question is always the question at the tree’s top: 1§
[T FURRY? Since a mouse is furry, we answer ves.

The game follows IS IT FURRY?'s yes branch to the DOES IT
BARK? question. From DOES 1T BARK?, the game can descend to either
of the furry animals, DOG or CAT, but it can no longer reach the unfurry
animal, FROG. By descending IS IT FURRY?’s yes branch, the game has
narrowed down its possible guesses to furry animals.

The game now asks the question DOES 1T BARK?. A mouse does not
bark, so we answer no.

The game follows DOES 1T BARK?'s no branch to the animal name
CAT. When the game reaches an animal name, it guesses that animal. Here,
of course, the game's guess is wrong. To improve its chances of guessing
right the next time, the game learns the player’s secret animal. Before we
look at the learning process, let’s examine how the game represents its
knowledge as lists.

Making Trees with Logo Lists

Consider the very simple tree below. Here we represent it as a list.

((IS IT FURRY?] CAT FROGI

The tree is a list of three elements: a question, the question’s yes
branch, and the question’s no branch. In this case, the question is (1S
IT FURRY?1, its yes branch is CAT, and its no branch is FROG.

Both branches of the left tree below are animal names. Sometimes, as
we've seen, a branch does not lead directly to an animal name but to
another question that has its own two branches; it leads, that is. to another
tree or subtree.

For example, look now at the slightly more complicated tree. Here it
is represented as a list.

[[IS IT FURRY?] [[DOES IT BARK?] DOG CAT] FROG]

This slightly more complicated tree is also a list of three elements: a
question, its yes branch, and its no branch. The question is [IS [T
FURRY?]; its yes branch is the subtree [[DOES 1T BARK?]1 CAT DO0G):
its no branch is the animal name FROG.

IS IT FURRY? IS IT FURRY?

YES NO y y

CAT FROG DOES IT BARK? FROG

DOG

CAT

13

14

WORDPLAY
Examining Trees

We can write procedures that look at each of a tree's three parts.
Sometimes we want to look at a subtree of a tree. Since a subtree is itself
a tree, these procedures work on subtrees too. The procedures all expect
a list of three elements as input.

TO QUESTION :TREE
OP FIRST :TREE
END

TO YES.BRANCH :TREE
0P FIRST BF :TREE
END

TO NO.BRANCH :TREE
0P FIRST BF BF :TREE
END

Here’s an example of how they work.

?MAKE ‘SAMPLE ([IS IT FURRY?] [[DOES
IT BARK?] DOG CAT] FROG]

?SHOW QUESTION :SAMPLE

[1S IT FURRY?]

?SHOW YES.BRANCH :SAMPLE

[[DOES IT BARK?] DOG CAT]

?SHOW NO.BRANCH :SAMPLE

FROG

?SHOW NO.BRANCH YES.BRANCH :SAMPLE

CAT

?PR COUNT :SAMPLE

3

?PR COUNT YES.BRANCH :SAMPLE

3

Exploring the Game’s Knowledge

The animal game’s first task is to begin at the tree’s top and follow
branches to a guess. The procedure that does this is called EXPLORE.

TO EXPLORE :TREE
IF WORDP :TREE [FINISH.UP :TREE STOP]
[F YESP QUESTION :TREE
[EXPLORE YES.BRANCH :TREE]
[EXPLORE NO.BRANCH :TREE]
END

The first line, [F WORDP :TREE [FINISH.UP :TREE STOPI], means
that if : TREE is a word—that is, an animal name—EXPLORE calls FINISH . UP
with the animal name as input and STOPs. If - TREE is not a word, it’s a
subtree, so EXPLORE follows either its yes branch or its no branch.

ANIMAL GAME

Here are two paths EXPLORE can take if its first input is [[IS IT
FURRY?) [[DOES IT BARK?] DOG CAT] FROG):
EXPLORE ([[IS IT FURRY?] [[DOES IT BARK?] DOG CAT]l FROG]
The player answers “yes” to IS 1T FURRY?
EXPLORE [IDOES IT BARK?] DOG CAT]
The player answers “no” to DOES 1T BARK?
EXPLORE "CAT
EXPLORE calls FINISH.UP with CAT as input and STOPs
EXPLORE STOPs
EXPLORE STOPs
EXPLORE ([IS IT FURRY?] [IDOES IT BARK?] DOG CAT] FROG]
The player answers “no” to IS 1T FURRY?
EXPLORE "FROG
EXPLORE calls FINISH. UP with FROG as input and STOPs
EXPLORE STOPs

No matter what path EXPLORE takes, it always ends at an animal name,
which it passes to FINISH. UP.

Guessing and Learning

Guessing

When EXPLORE calls FINISH.UP, the game is ready to guess that
FINISH.UP’s input (:BEAST) is your animal. FINISH.UP calls GUESS to do
the actual guessing. If GUESS outputs TRUE, the game's guess is right, and
BRAG is called. If GUESS outputs FALSE, the game’s guess is wrong, and
LEARN is called.

TO FINISH.UP :BEAST
IF GUESS :BEAST [BRAG] [LEARN :BEAST (] [1]
END

TO GUESS :BEAST
OP YESP (SE [IS IT] A.OR.AN :BEAST (?])
END

TO BRAG

PR (I WIN!]
PR [1 WIN!]
END

Learning
LEARN Adds to the Game’s Knowledge

How does the animal game get smarter? Let's review the imaginary
game we played earlier. Our secret animal was “mouse,” and the game
guessed CAT. Obviously, if the game had guessed “mouse” instead of CAT,
it would have won. We might want to change the game so that, from now
on, it will guess MOUSE whenever it would have guessed CAT.

15

16

WORDPLAY

Look at the tree below. To make the game guess MOUSE instead of
CAT, we could remove CAT (the wrong guess) from the tree and put MOUSE
(the right guess) in its place.

IS IT FURRY? IS IT FURRY?
DOES IT BARK? FROG ——> DOES IT BARK?
/ \ YV \
CAT MOUSE

Has the game learned? Not really. We've added a new animal to its
knowledge, but we've also subtracted one.

If we want the game’s knowledge to include both MOUSE and CAT, we
must teach the game a new question, such as CAN 1T LIVE IN THE
WALL? We also teach it that if a player answers “yes” to the new question,
it should guess MOUSE, and if a player answers “no,” it should guess CAT.

The next tree shows the result of adding a new animal and a new
question to the game’s tree. Instead of replacing CAT with MOUSE, we re-
place CAT with a new subtree. The subtree—like all trees—consists of a
question ([CAN IT LIVE IN THE WALL?]), a yes branch (MOUSE), and a
no branch (CAT).

IS IT FURRY? IS IT FURRY?
DOES IT BARK? > DOES IT BARK?
YE / \ YI/ \
CAT CANITLIVE
IN THE WALL?
vr-:y wo
MOUSE CAT

Building a New Subtree

GET.RIGHT.GUESS and GET.NEW.QUESTION get parts for a new sub-
tree.

TO GET.RIGHT.GUESS

PR [1 GIVE UP. WHAT IS I1T?]
OP LAST RL

END

TO GET.NEW.QUESTION

PR [PLEASE TYPE IN A NEW QUESTION]

(PR [WHOSE ANSWER IS 'YES' FOR] :RIGHT,GUESS)
(PR [AND 'NO’ FOR] :WRONG.GUESS)

0P RL

END

ANIMAL GAME

Adding to the Game’s “Tree of Knowledge”

The game’s entire “tree of knowledge" is stored in the global variable
BIGTREE. For the game to get smarter, the new subtree must be added to
:BIGTREE. LEARN and ALTER are the main procedures that do this. ALTER
uses 3L1ST, which outputs a list of its three inputs.

TO LEARN :WRONG.GUESS :RIGHT.GUESS :NEW.QUESTION
MAKE “RIGHT.GUESS GET.RIGHT.GUESS
MAKE “NEW.QUESTION GET.NEW.QUESTION
MAKE “BIGTREE ALTER
:BIGTREE
:NEW.QUESTION
:RIGHT.GUESS
:WRONG.GUESS
END

TO ALTER :TREE :NEW.QUESTION :RIGHT.GUESS :WRONG.GUESS
IF :TREE = :WRONG.GUESS
[OP 3LIST :NEW.QUESTION :RIGHT.GUESS :WRONG.GUESS]
IF WORDP :TREE
[OP :TREE]
OP 3LIST (QUESTION :TREE)
(ALTER YES.BRANCH :TREE :NEW.QUESTION
‘RIGHT.GUESS :WRONG.GUESS)
(ALTER NO.BRANCH :TREE :NEW.QUESTION
:RIGHT.GUESS :WRONG.GUESS))
END

Let’s recall how LEARN is called. EXPLORE climbs down to an animal
name and passes the animal to FINISH. UP. FINISH. UP calls GUESS to guess
the animal. If the guess is right, BRAG is called. If the guess is wrong, LEARN
is called.

LEARN has three inputs. When it is called, : WRONG . GUESS is the animal
the game guessed, and : RIGHT . GUESS and : NEW. QUEST 1 ON are empty lists.

LEARN calls GET.RIGHT.GUESS to get the player’s secret animal and
stores this animal in :RIGHT . GUESS. It calls GET. NEW.QUESTION to get the
player’s new yes-or-no question and stores it in :NEW.QUESTION, Then
LEARN makes BIGTREE the output from ALTER.

} ALTER’s four inputs are the game’s current “tree of knowledge ™ and the
three parts for the new subtree. ALTER looks through the game's current
tree, finds the animal the game guessed, and replaces this wrong guess with
the new subtree. It then outputs a new, enlarged “tree of knowledge™ to
LEARN.

Here’s a sample set of inputs to ALTER.

: TREE [[IS IT FURRY?]
DOES IT BARK?] DOG CAT] FROG)

:NEW.QUESTON [CAN IT LIVE IN THE WALL?]
:RIGHT.GUESS MOUSE

:WRONG . GUESS CAT

17

18

WORDPLAY

The following display traces how ALTER works with the preceding
inputs. The only input traced is : TREE, since the other inputs are the same
each time ALTER is called recursively.

ALTER [LIS IT FURRY?] [[DOES IT BARK?] DOG CAT] FROG]
ALTER [[DOES IT BARK?1 DOG CAT]
ALTER "“DOG
ALTER outputs “DOG
ALTER "“CAT
ALTER outputs [[CAN IT LIVE IN THE WALL?] MOUSE CAT]
ALTER outputs [[DOES 1T BARK?1 DOG [[CAN
IT LIVE...?] MOUSE CAT]]
ALTER "FROG
ALTER outputs "FROG
ALTER outputs [[IS IT FURRY?] [[DOES IT BARK?] DOG [[CAN
IT LIVE...?] MOUSE CAT] FROG]

Starting the Game

You begin each session with the animal game by typing ANIMALGAME. This
procedure checks whether the game knows anything yet. If no variable
named :BIGTREE exists in your workspace, the game knows no questions
or animals, so MAKETREE creates a “tree of knowledge” and puts it in
:BIGTREE.
PLAY prompts you to think of a secret animal; calls EXPLORE with
BIGTREE as input; and, when the game is over, asks if you'd like to play
again.

TO ANIMALGAME

IF NOT NAMEP "BIGTREE [MAKETREE]
PLAY

END

TO MAKETREE
MAKE “BIGTREE [[IS IT FURRY?] CAT FROG]
END

T0 PLAY

PR (]

PR [PICK AN ANIMAL, ANY ANIMAL]

EXPLORE :BIGTREE

IF YESP [DO YOU WANT TO PLAY AGAIN?] [PLAY]
END

Remember that every time you play the animal game and it loses,
{BIGTREE gets “bigger.” And the bigger the game’s “tree of knowledge,”
the smarter the game appears to be.

Since : BIGTREE is a global variable, it remains in your workspace after
you've finished a session with the animal game (that is, after you answer
“no” to the game’s question, DO YOU WANT TO PLAY AGAIN?). If you
save this workspace, : BIGTREE will be saved as well. At another session, you
could make the game’s knowledge even bigger.

ANIMAL GAME

If you ever want to erase the game’s knowledge, stop playing the game
and call MAKETREE. MAKE TREE causes the game to forget everything it has
ever learned.

Other Procedures Used by the Game

All these procedures were mentioned earlier but we did not look at how
they work.

The input to A.0R.AN should be an animal name. Its output is the
animal name preceded by an appropriate article—either "a” or “an.”

TO A.OR.AN :ANIMAL

IF MEMBERP FIRST :ANIMAL [A E I O U] [OP SE "AN :ANIMAL)
0P SE "A :ANIMAL

END

YESP and COMPLAIN get a yes-or-no answer to a question. The question
is the input to YESP.

TO YESP :QUESTION

PR :QUESTION

MAKE “ANS RL

IF NOT OR (EQUALP :ANS [YES]) (EQUALP :ANS [NOI1)
[COMPLAIN OP YESP :QUESTION]

OP EQUALP :ANS [YES]

END

TO COMPLAIN
PR [PLEASE ANSWER YES OR NOI
END

Here’s an example. .

?PR YESP [IS IT FURRY?]
IS IT FURRY?

SORT OF

PLEASE ANSWER YES OR NO
IS IT FURRY?

YES

TRUE
?

3LIST outputs a list of its three inputs.

TO 3LIST :ONE :TWO :THREE
OP FPUT :ONE FPUT :TWO FPUT :THREE [)
END

SUGGESTIONS

You can play this game with exotic animal names such as armadillo,
gnu, gazelle, iguana. You could even use fantastic animals like centaurs or
pushme-pullyous. Some people say that it's most fun to play it with the
names of your friends!

19

20 WORDPLAY

PROGRAM LISTING

T0 QUESTION :TREE
OP FIRST :TREE
END

TO YES.BRANCH :TREE
0P FIRST BF :TREE
END

TO NO.BRANCH :TREE
OP FIRST BF BF :TREE
END

TO EXPLORE :TREE

IF WORDP :TREE [FINISH.UP :TREE STOP]

IF YESP QUESTION :TREE [EXPLORE »
YES,BRANCH :TREE] [EXPLORE »
NO.BRANCH :TREE]

END

TO FINISH.UP :BEAST

1F GUESS :BEAST [BRAG] [LEARN :BEAST »

1 1]
END

TO GUESS :BEAST

OP YESP (SE [IS IT] A.OR.AN :BEAST »
[?1)

END

T0 BRAG

PR [I WIN!]
PR [1 WIN!]
END

TO GET.RIGHT.GUESS

PR [I GIVE UP., WHAT 1S 17?]
0P LAST RL

END

TO GET.NEW.QUESTION

PR [PLEASE TYPE IN A NEW QUESTION]

(PR [WHOSE ANSWER IS 'YES' FOR] »
:RIGHT.GUESS)

(PR [AND 'NO’' FOR] :WRONG.GUESS)

0P RL

END

TO LEARN :WRONG.GUESS :RIGHT.GUESS »
:NEW.QUESTION

MAKE "RIGHT.GUESS GET.RIGHT.GUESS

MAKE "NEW.QUESTION GET.NEW.QUESTION

MAKE “BIGTREE ALTER :BIGTREE »
:NEW.QUESTION :RIGHT.GUESS »
:WRONG . GUESS

END

TO ALTER :TREE :NEW.QUESTION »
:RIGHT .GUESS :WRONG.GUESS

IF :TREE = :WRONG.GUESS [OP 3LIST »
:NEW.QUESTION :RIGHT.GUESS »
:WRONG . GUESS]

[F WORDP :TREE [OP :TREE]

OP 3LIST (QUESTION :TREE) (ALTER »
YES.BRANCH :TREE :NEW.QUESTION »

:RIGHT.GUESS :WRONG.GUESS) (ALTER »

NO.BRANCH :TREE :NEW.QUESTICN »
:RIGHT .GUESS :WRONG.GUESS)}
END

TO ANIMALGAME

IF NOT NAMEP "BIGTREE [MAKETREE]
PLAY

END

TO MAKETREE

MAKE "BIGTREE [[IS IT FURRY?] CAT »
FROG]

END

TO PLAY

PR (]

PR [PICK AN ANIMAL, ANY ANIMAL)

EXPLORE :BIGTREE

IF YESP [DO YOU WANT TO PLAY AGAIN?] »
[PLAY]

END

TO A.OR.AN :ANIMAL

IF MEMBERP FIRST :ANIMAL [AE 1 0 U] »
[OP SE "AN :ANIMALI

0P SE "A ;ANIMAL

END

DICTIONARY 21

TO YESP :QUESTION TO COMPLAIN
PR :QUESTION PR [PLEASE ANSWER YES OR NO)
MAKE "ANS RL END
[F NOT OR (EQUALP :ANS [YES]) (EQUALP »

;ANS [NO1) [COMPLAIN QP YESP » TO 3LIST :ONE :TWO :THREE

;QUESTION] OP FPUT :ONE FPUT :TWO FPUT :THREE [1]
OP EQUALP :ANS [YES] END
END

MAKE “BIGTREE [(IS IT FURRY?1 CAT »
FROG]
- .
Dictionary

The idea for this project came about while I was hiking with some friends.
During our climb up the mountain, we tried to stump each other by asking
the meaning of unusual words. I began to think about developing a diction-
ary project using Logo.

I wanted to be able to do several things with my dictionary:

* Add a new word and its definition.
* Print the definition of a word.

* Remove a word and its definition.
* Print the entire dictionary.

The Dictionary

My first task was to decide how to store the words. I decided that the
dictionary would be a list of entries. Each entry would be a list composed
of a word and its definition. Here are two examples.

[ICE [FROZEN WATERI]

or

[HAT [COVERING FOR HEADI]

I named the dictionary ENTRY . LIST. Here's how I created it.

MAKE "ENTRY.LIST [[EGREGIOUS [CONSPICUOUSLY BAD]]
[PROSY [COMMONPLACEI]
[AUTO-DA-FE [BURNING OF A HERETIC]]]

Using the Dictionary

When you type DICTIONARY, the following is printed on your screen:

By Susan Cotten.

WORDPLAY

WELCOME TO THE DICTIONARY.

HERE ARE THE COMMANDS:

TYPE A - TO ADD NEW ENTRY

TYPE D - TO PRINT DEFINITION OF WORD
TYPE P - TO PRINT DICTIONARY

TYPE Q - TO QUIT

TYPE R - TO REMOVE ENTRY

TYPE ? — TO PRINT COMMANDS

TYPE COMMAND.
>

DICTIONARY calls INIT, which checks to see if you already have a
dictionary. If you do not, INIT creates one.

TO DICTIONARY

INIT

PR [WELCOME TO THE DICTIONARY.]
PR [1

PR [HERE ARE THE COMMANDS:1
DO.CHOICE "?

END

TO INIT
CT 1S
IF NOT NAMEP "ENTRY.LIST [MAKE "ENTRY.LIST
[[EGREGIOUS [CONSPICUOUSLY BAD]]
[PROSY [COMMONPLACE]]
[([AUTO-DA-FE] [BURNING OF A HERETICI11]
END

DO . CHOICE has the job of figuring out whether the character you type
matches one of the expected commands. If there is no match or if you type
7, DO. CHOICE prints the list of possible choices.

TO DO.CHOICE :LTR

PR (1]

[F EQUALP "“A :LTR [ADD.ENTRY]

IF EQUALP “D :LTR [PRINT.DEFINITION]
IF EQUALP “P :LTR [PRINT.DICTIONARY]
IF EQUALP "Q :LTR [STOP]

IF EQUALP "R :LTR [REMOVE.ENTRY]

IF NOT MEMBERP :LTR [A D P Q R] [PRINT.CHOICES]
PR (]

PR [TYPE COMMAND.]

TYPE ">

MAKE “LTR RC

PR :LTR

DO.CHOICE :LTR

END

DICTIONARY

TO PRINT.CHOICES

PR [TYPE A - TO ADD NEW ENTRY]

PR [TYPE D - TO PRINT DEFINITION OF WORD]
PR [TYPE P - TO PRINT DICTIONARY]

PR [TYPE Q - TO QUIT]

PR [TYPE R - TO REMOVE ENTRY]

PR [TYPE ? - TO PRINT COMMANDS]

END

Adding a New Word and Definition

To add a word, you type A while running D1CTI0NARY. Here's an example
of what happens.

TYPE NEW WORD.

FLUMP

TYPE DEFINITION OF NEW WORD.
DROP OR MOVE HEAVILY

TYPE COMMAND
>

If you try to add a word that is already in the dictionary, this happens:

TYPE NEW WORD
EGREGIOUS
EGREGIOUS IS ALREADY IN DICTIONARY.

ADD _ENTRY is the procedure that lets you add a new entry to the
dictionary.

TO ADD.ENTRY

PR [TYPE NEW WORD.]
ADD.ENTRY1 FIRST RL
END

ADD .ENTRYL calls GET ENTRY to see if the word you want to add is
already in the dictionary. If the word is not in the dictionary, then the word
and its definition become a new entry.

TO ADD.ENTRY1 :WRD
IF NOT EMPTYP GET.ENTRY :WRD :ENTRY.LIST
[PR SE :WRD [IS ALREADY IN DICTIONARY.] STOP]
PR [TYPE DEFINITION OF NEW WORD.]
MAKE .ENTRY LIST :WRD RL
END

GET.ENTRY has the task of finding an entry in the dictionary. It does this
by attempting to match an input word with the first word in each entry.

TO GET.ENTRY :WRD :LST

IF EMPTYP :LST [OP (1]

IF EQUALP :WRD FIRST FIRST :LST [OP FIRST :LST]
0P GET.ENTRY :WRD BF :LST

END

23

WORDPLAY

MAKE ENTRY adds a new entry to the dictionary.

TO MAKE.ENTRY :NEW.ENTRY
MAKE “ENTRY.LIST FPUT :NEW.ENTRY :ENTRY.LIST
END

Printing the Definition of a Word

This is what happens when you type 0.

TYPE WORD WHOSE DEFINITION
YOU WANT PRINTED.
EGREGIOUS

[CONSPICUOUSLY BADI

PRINT .DEFINITION calls PRINT .DEF1 to print out the definition of a
word.

TO PRINT.DEFINITION

PR [TYPE WORD WHOSE DEFINITION]
PR [YOU WANT PRINTED.]
PRINT.DEF1 FIRST RL

END

TO PRINT.DEF1 :WRD
PRINT.DEF2 :WRD GET.ENTRY :WRD :ENTRY.LIST
END

PRINT.DEF1 then calls PRINT DEF2 with the word to be defined
and its entry in the dictionary. If the entry is in the dictionary,
PRINT.DEF2 prints the definition.

TO PRINT.DEF2 :WRD :LST

IF EMPTYP :LST [PR SE :WRD [IS NOT IN DICTIONARY.] STOP]
PR BF :LST

END

Removing an Entry from the Dictionary

To remove an entry, you type R. Here is an example.

TYPE WORD
YOU WANT TO REMOVE.
FLUMP

REMOVE .ENTRY uses REMOVE to output a dictionary, minus the un-
wanted entry.

TO REMOVE.ENTRY

PR [TYPE WORD]

PR [YOU WANT TO REMOVE.]

MAKE "ENTRY.LIST REMOVE FIRST RL :ENTRY.LIST
END

DICTIONARY

TO REMOVE :WRD :LST

IF EMPTYP :LST [PR SE :WRD [IS NOT IN DICTIONARY.] OP [1]
IF EQUALP :WRD FIRST FIRST :LST [OP BF :LST]

OP FPUT FIRST :LST REMOVE :WRD BF :LST

END

Printing the Dictionary

Here's what happens when you type P. I've added some words that I
thought were interesting to the dictionary.

IMPUISSANT
[WEAK; IMPOTENTI

ACCRETIVE
[ADDING IN GROWTH]

DENTILOQUY
[THE ACT OR HABIT OF SPEAKING WITH TEETH CLOSED)

CENOSITY
[FILTHINESS; SQUALOR]

DELIQUESCE
[TO MELT AWAY]

FETOR
[STRONG OFFENSIVE SMELL]

BRUMAL
[INDICATIVE OF OR OCCURRING IN WINTER]

**TYPE ANY CHARACTER
TO SEE MORE**

Note: At this point you press any key to see the next seven (or remain-
ing) entries.

EGREGIOUS
[CONSPICUOQUSLY BAD]

PROSY
[COMMONPLACE]

AUTO - DA - FE
[BURNING OF A HERETIC]

The procedures PRINT .DICTIONARY, FORMAT, and PRINT . ENTRY work
together to print ENTRY . LIST in an easy-to-read format. There is room on
the screen for seven entries. FORMAT counts the number of entries. When
the screen is full, FORMAT pauses and waits until you type any character
before printing the next seven or remaining entries.

26 WORDPLAY

TO PRINT.DICTIONARY
FORMAT @ :ENTRY.LIST

END

TO FORMAT
IF EMPTYP
IF :CTR =

:LST ([STOP]

[PR [**TYPE ANY CHARACTER]
PR [TO SEE MORE**] PR RC]

PRINT.ENTRY FIRST
:CTR = 7 [11 [:CTR + 1] BF :LST

FORMAT IF
END

(LST

TO PRINT.ENTRY :ENTRY

PR FIRST :ENTRY
PR BF :ENTRY

PR (]
END

PROGRAM LISTING

TO DICTIONARY

INIT

PR [WELCOME TO THE DICTIONARY.]
PR []

PR [HERE ARE THE COMMANDS:]
DO.CHOICE "?

END

TO INIT

CT TS

IF NOT NAMEP "ENTRY.LIST [MAKE »
"ENTRY.LIST [LEGREGIOUS »
[CONSPICUOUSLY BAD1] [PROSY
[COMMONPLACE]] [[AUTO-DA-FE1 »
[BURNING OF A HERETICI1111]

END

T0 DO.CHOICE :LTR

PR (]

IF EQUALP "A :LTR [ADD.ENTRY]

IF EQUALP “D :LTR [PRINT.DEFINITION]

IF EQUALP “P :LTR [PRINT.DICTIONARY]

IF EQUALP “Q :LTR [STOPI]

IF EQUALP “R :LTR [REMOVE.ENTRY]

IF NOT MEMBERP :LTR [A D P Q R] »
[PRINT.CHOICES]

PR [1

PR [TYPE COMMAND.)

TYPE ">

MAKE “LTR RC

PR :LTR

DO.CHOICE :LTR

END

TO PRINT.CHOICES
PR [TYPE A - TO ADD NEW ENTRY]

PR [TYPE D - TO PRINT DEFINITION OF »
WORD]

PR [TYPE P = TO PRINT DICTIONARY]

PR [TYPE Q - TO QUIT]

PR [TYPE R - TO REMOVE ENTRY]

PR [TYPE ? - TO PRINT COMMANDS]
END

TO ADD.ENTRY

PR [TYPE NEW WORD.]
ADD.ENTRY1 FIRST RL
END

TO ADD.ENTRY1 :WRD

IF NOT EMPTYP GET.ENTRY :WRD »
:ENTRY.LIST (PR SE :WRD [IS »
ALREADY IN DICTIONARY.] STOP]

PR [TYPE DEFINITION OF NEW WORD.]

MAKE .ENTRY LIST :WRD RL

END

TO GET.ENTRY :WRD :LST

IF EMPTYP :LST [OP [1]

IF EQUALP :WRD FIRST FIRST :LST [OP »
FIRST :LST]

OP GET.ENTRY :WRD BF :LST

END

HANGMAN 27

TO MAKE.ENTRY :NEW.ENTRY TO PRINT.DICTIONARY
MAKE “ENTRY.LIST FPUT :NEW.ENTRY » FORMAT @ :ENTRY.LIST
:ENTRY.LIST END
END
TO FORMAT :CTR :LST
TO PRINT.DEFINITION [F EMPTYP :LST [STOP]
PR [TYPE WORD WHOSE DEFINITION] [F :CTR = 7 [PR [**TYPE ANY CHARACTER] »
PR [YOU WANT PRINTED.] PR (TO SEE MORE**] PR RC)
PRINT.DEF1 FIRST RL PRINT.ENTRY FIRST :LST
END FORMAT IF :CTR = 7 [1) [:CTR + 1] BF »
:LST
TO PRINT.DEF1 :WRD END
PRINT.DEF2 :WRD GET.ENTRY :WRD »
:ENTRY.LIST TO PRINT.ENTRY :ENTRY
END PR FIRST :ENTRY
PR BF :ENTRY
TO PRINT.DEF2 :WRD :LST PR (]
IF EMPTYP :LST [PR SE :WRD [IS NOT IN » END
DICTIONARY.] STOP]
PR BF :LST MAKE "ENTRY.LIST [[IMPUISSANT ([WEAK; »
END IMPOTENT]] [ACCRETIVE [ADDING IN »
GROWTH]] (DENTILOQUY [THE ACT OR »
TO REMOVE.ENTRY HABIT OF SPEAKING WITH TEETH »
PR [TYPE WORD) CLOSED)] [CENOSITY [FILTHINESS; »
PR [YOU WANT TO REMOVE.] SQUALOR]] [DELIQUESCE [TO MELT »
MAKE "ENTRY.LIST REMOVE FIRST RL » AWAY1] [FETOR [STRONG OFFENSIVE »
(ENTRY.LIST SMELL]] (BRUMAL [INDICATIVE OF OR »
END OCCURRING IN WINTER]] [EGREGIOUS »
[CONSPICUOUSLY BAD]] [PROSY »
TO REMOVE :WRD :LST [COMMONPLACE]] [[AUTO - DA - FE]l »
IF EMPTYP :LST [PR SE :WRD [IS NOT IN » [BURNING OF A HERETIC]]]

DICTIONARY.] OP [11]
IF EQUALP :WRD FIRST FIRST :LST [OP BF »
:LST]
OP FPUT FIRST :LST REMOVE :WRD BF :LST
END

Hangman

HANGMAN is based on the popular two-person pencil-and-paper game in
which one player thinks up a secret word and the other player tries to
discover what the word is by guessing what letters are in the word. A
gallows is drawn, and for each incorrect guess, part of a stick figure is added
to the drawing. The player who is guessing wins the game by guessing the
entire word before the stick figure is completed.

By Brian Harvey.

WORDPLAY

In this version, the program chooses the secret word and you do the
guessing. At each turn, you can guess either a single letter or the entire
word. |

Here is a picture of a game in progress.

AL
GUESSES: ETADI
YOUR GUESS?

The secret word is shown as ~A--E-. This means that it has six letters, two
of which have been guessed. You have made five guesses. A and E were
correct. The others, T, 0, and I, were wrong. Because of these three wrong
guesses, the program has drawn the head, neck, and body of the person
being hanged. If you make more wrong guesses, the program will draw the
person’s arms and legs.

I like this program because it combines text processing with graphics.
The top-level procedure divides the program into two parts: setting up and
playing the game.

T0 HANGMAN
SETUP

PLAY

END

Setting Up

SETUP has two jobs: it gives initial values to certain variables, including the
secret word, and it draws the gallows.

TO SETUP

MAKE “MYWORD PICKWORD
MAKE “GUESSES [1]

MAKE “WON "“FALSE

MAKE “SPACES “

REPEAT 18 [MAKE "SPACES WORD :SPACES CHAR 32]
MAKE “GOTTEN @

MAKE “TRIES 7

CT

GALLOWS

END

SETUP uses two main subprocedures, one to pick the secret word and one
to draw the gallows. PICKWORD outputs the secret word, which SETUP
remembers in the global variable MYWORD. To choose the word from a list
of possible words, PICXWORD uses the procedures PICK and [TEM, which
appear as examples in the Atari Logo Reference Manual.

TO PICKWORD

OP PICK [POTSTICKER COMPUTER IRAQ GAZEBO THRUSH STYLE FOILED
SWARM ZEBRA AWFUL WILY YELLOW BARKED ST0IC]

END

HANGMAN

GALLOWS positions a turtle for drawing the gallows, sets the pen down,
and uses GALL1 to do the actual drawing. The reason to make GALL1 a
subprocedure is that it will be used again, with the eraser down, to erase
the gallows if you win by guessing the word.

TO GALLOWS

TELL [0 1 2 3]

CS HT

TELL @

PU SETPOS [-40 -60]
RT 99

PD

GALL1

END

TO GALLL
FD 80

BK 40

LT 90

FD 170
RT 9¢

FD 6@

RT 99

FD 20
END

Variables Created by se1up

The variable MYWORD is one of several that are used throughout the hang-
man program to keep track of the progress of the game. For example, the
program must remember what letters have been guessed and how many
wrong guesses are allowed before you lose. Several of these variables are
given their initial values by SETUP.

MYWORD The secret word.

GUESSES A list of the letters you have guessed.

WON TRUE if you win by guessing the word or the last missing
letter in it.

SPACES A word of eighteen spaces, which is typed to erase messages
from the program in the text part of the screen.

GOTTEN The number of letters in the secret word that you have

guessed correctly. (If a letter occurs more than once in the
secret word, the number of letters guessed correctly may be
more than the number of correct guesses you have made,
because one correct guess may reveal several letters in the
word.)

TRIES The number of incorrect guesses remaining before you lose.

Playing the Game

The central part of the hangman program is the procedure PLAY and its
subprocedure GETGUESS, which is called each time you make a guess.

WORDPLAY

TO PLAY

IF :TRIES=@¢ [LOSE STOPI]
GETGUESS

IF :WON [SETCURSOR [@ 23] STOP]
PLAY

END

T0 GETGUESS

DISPLAY

MAKE “GUESS FIRST RL

CLEARMESSAGE

IF (COUNT :GUESS) > 1 [TESTWORD STOP]

IF MEMBERP :GUESS :GUESSES [ALREADY GETGUESS STOP]

MAKE “GUESSES SE :GUESSES :GUESS

IF MEMP :GUESS :MYWORD [FIXGOT :GUESS :MYWORD] [BADTRY]
IF EQUALP :GOTTEN COUNT :MYWORD [WIN]

END

PLAY calls GETGUESS repeatedly, checking between times to see if you've
won (the variable WON made TRUE) or lost (no more TRIES left). GETGUESS
uses several subprocedures to display the current state of the game, read
a guess from the keyboard, and test the guess. A guess can be either a single
letter or the entire word. These cases are distinguished by checking the
COUNT of the guess; if it's more than one letter, the procedure TESTWORD is
used to compare the guess to the secret word. Otherwise, the program
checks if you have already guessed the letter; if not, it checks to see if the
guessed letter is actually in the word. If the letter is in the word, FIXGOT
is called to update the number of letters correctly guessed. If not, BADTRY
draws another piece of the body under the gallows.

Keeping Track of the Text Screen

The text part of the screen in the middle of a game might look like this:

-A-E-- YOU GUESSED THAT!
GUESSES: E T A
YOUR GUESS? _

In the top left corner is the display of the secret word, with some letters
already guessed and the others indicated by hyphens. In the top right
corner is the message area. You have just repeated a guess already made,
and the program has complained about it. The next line shows the list of
letters already guessed. The third line invites you to make another guess,
and the cursor is positioned for reading that guess.

The message area is maintained by the procedure SAY. Two subproce-
dures of GETGUESS show simple examples of how SAY is used:

TO SAY :STUFF
SETCURSOR [19 201
TYPE :STUFF

END

HANGMAN

TO ALREADY
SAY [YOU GUESSED THAT!]
END

T0 CLEARMESSAGE
SAY :SPACES
END

(The underlining in this listing represents inverse-video characters on the
screen.) The CLEARMESSAGE procedure types spaces into the message
area, erasing any leftover messages. The procedure ALREADY is called by
GETGUESS if you repeat a previous guess.

The rest of the text screen, apart from the message area, is maintained
by the DISPLAY procedure:

TO DISPLAY
SETCURSOR (0 20)
DISWORD :MYWORD
SETCURSOR [0 21]
TYPE "GUESSES:
SETCURSOR [9 21]
TYPE :GUESSES
SETCURSOR [@ 22]
TYPE [YOUR GUESS?]
SETCURSOR [12 221
END

For each letter of the secret word, DISWORD looks in the list of letters
already guessed. If this letter has been guessed, DISWORD types it. If not,
D1SWORD types a hyphen.

TO DISWORD :WORD

IF EMPTYP :WORD (STOP]

IF MEMBERP FIRST :WORD :GUESSES [TYPE FIRST :WORD] [TYPE "-]
DISWORD BF :WORD

END

When You Guess a Letter

When you guess a letter (that hasn't been guessed already), GETGUESS calls
either FIXGOT or BADTRY depending on whether the guess is correct or
incorrect. To test the correctness of the guess, GETGUESS uses MEMP, which
is like the primitive MEMBERP except that it checks whether a letter is an
element of a word, instead of whether a word is an element of a list.

T0 MEMP :LETTER :WORD

IF EMPTYP :WORD [OP "FALSE]

IF EQUALP :LETTER FIRST :WORD [OP "TRUE]
0P MEMP :LETTER BF :WORD

END

(Actually, MEMP would work equally well testing for membership in a list,
like MEMBERP, but we need it only to check for membership in a word.)
If the guess is correct, the task of FIXGOT is to calculate a new value

31

32

-l

N

WORDPLAY

for the variable GOTTEN, which counts the number of correctly guessed
letters in the secret word. We can't just add 1 to GOTTEN, because the letter
you guessed may appear more than once in the secret word. For example,
if the secret word is “thrush” and you guess H, FIXGOT must add 2 to
GOTTEN. So FIXGOT must examine each letter of the secret word.

TO FIXGOT :GUESS :WORD

IF EMPTYP :WORD [STOP)

IF EQUALP :GUESS FIRST :WORD [MAKE "GOTTEN :GOTTEN+1]
FIXGOT :GUESS BF :WORD

END

Note that FI1XGOT does not actually display the newly guessed letters on the
screen. This will be done by DISPLAY the next time through GETGUESS.

What Happens on a Wrong Guess

If the guess is incorrect, BADTRY is called to count down the number of turns
until you lose and to draw part of the body under the gallows:

TO BADTRY

RUN SE WORD "DRAW :TRIES []
MAKE “TRIES :TRIES-1

END

The RUN command is used to select a subprocedure to draw the appropriate
part of the body, based on the number of tries remaining. For example, the
variable TRIES is initially 7, and the procedure DRAW7 draws a head. DRAWe
draws the neck, DRAWS the torso, DRAW4 and DRAW3 the arms, and DRAW2 and
DRAW1 the legs:

TO DRAW?

PU

SETPOS (60 90]

SETH 105

PD

REPEAT 12 [FD & RT 301
RT 75

END

TO DRAWe

PU

SETPOS [60 66]
SETH 180

PD

FD 10

END

TO DRAWS

PU

SETPOS [40 561

SETH 99

PD

REPEAT 2 [FD 40 RT 99 FD 68 RT 901
END

TO DRAW4

PU

SETPOS (40 49)
SETH -45

PD

ARM

END

TO DRAW3

PU

SETPOS [80 40]
SETH 45

PD

ARM

END

T0 ARM
FD 3¢
BK 14
LT 25
FD 14
BK 14
RT 59
FD 14
END

TO DRAW2

PU

SETPOS (52 -4]
SETH 180

PD

FD 30

RT 90

FD 8

END

TO DRAW1

PU

SETPOS [68 -4]
SETH 189

PD

FD 39

LT 9¢

FD 8

END

HANGMAN

None of the procedures DRAW1, DRAWZ, and so forth, assume that the turtle
is at any particular position. This is because if you win, the program will
erase the gallows and then finish drawing in the body, so any of these

(A Y
1 U
\'l
)
S remdlaa
Lk
! |
I |
! |
!]
-~
‘ \
_._l -
| SO,
é‘\ r-— [0
Y v
1 |
] |
1 |
Il
e
)
\‘;
N iy T ,”
N /

7’

jm=——f=
lmm e g =t

| I
r—-;

33

34

WORDPLAY

procedures might be called with the turtle at the end of the gallows, rather
than at the end of the previous body part.

When You Guess a Word

We have looked at the procedures that deal with a guess of a single letter.
You may also guess the entire word; if so, the GETGUESS procedure calls
TESTWORD.

TO TESTWORD
IF EQUALP :GUESS :MYWORD [WIN] [SAY [NOPE!] BADTRY]
END

An incorrect guess of the entire word is handled by BADTRY, just like an
incorrect guess of a letter. But if you guess the entire word correctly, there
is no need to call F1XG0OT. We can simply call WIN, because you have won
the game.

When You Lose the Game

We have now looked at all the procedures involved in playing the game,
up to the point of winning or losing. The case of losing is easier to under-
stand. You lose by running out of tries. This means that the entire body has
already been drawn.

T0 LOSE

SAY [YOU LOSE!! SORRY.]
SETCURSOR [o 28]

TYPE :MYWORD

SETCURSOR [0 23]

EYES

FROWN

END

TO EYES
PU
SETPOS [52 82]
SETH 90
PD

FD 4

PU

FD 6

PD

FD 4
END

TO FROWN

PU

SETPOS [66 72]
SETH -9

MOUTH

END

HANGMAN

TO MOUTH

PD

LT 18

REPEAT 8 [FD 2 LT 18]
END

The program tells you what the secret word was, moves the cursor down
to the last screen line, and fills in the already-drawn head with a frowning
face. When the program stops, Logo will print its prompt on the last line
without obscuring what is written in the text area. (LOSE is called only by
PLAY, which then stops, returning to HANGMAN, which stops. So when L0OSE
stops, the entire program is done.)

When You Win the Game

What if you win? In this case, the body is not yet entirely drawn. We want
to erase the gallows, finish drawing the body, notify the winner, and stop
the program.

TO WIN

SETCURSOR [0 20]
DISWORD :MYWORD
SAY [YOU WiNn!'!!]
MAKE “WON “TRUE
UNGALL

FINISH :TRIES
EYES

SMILE

END

TO UNGALL

PU

SETPOS [-49 -60]
SETH 90

PE

GALLL

END

TO FINISH :NUM

IF :NUM=0 [STOP]

RUN SE WORD “DRAW :NUM []
FINISH :NUM-1

END

TO SMILE

PU

SETPOS [54 76l
SETH 171
MOUTH

END

UNGALL is like GALLOWS except that it draws the gallows in PE (penerase).
FINISH calls each of the yet-undone drawing procedures (DRAW1, etc.) to

11

36 WORDPLAY
finish drawing the body. And SMI1LE draws the same mouth as FROWN, but
right-side up.

Unlike LOSE, the WIN procedure can be called from two places in the
program: TESTWORD and GETGUESS. Because these places are deeper in the
chain of subprocedures, we must set the variable WON so that the PLAY
procedure can test it, to know when to stop the game program.
Utilities
To complete the listing of procedures used in this project, here are the
utility procedures P1CK and [TEM:

TO PICK :LIST
0P ITEM (1 + RANDOM COUNT :LIST) :LIST
END
TO ITEM :N :LIST
IF :N=1 [OP FIRST :LIST]
OP ITEM :N-1 BF :LIST
END
PROGRAM LISTING
TO HANGMAN 70 GALLL
SETUP FD 890
PLAY BK 49
END LT 90
FD 170
TO SETUP RT 99
MAKE “MYWORD PICKWORD FD 60
MAKE "GUESSES [] RT 92
MAKE “WON "FALSE FD 29
MAKE "“SPACES " END
REPEAT 18 [MAKE "SPACES WORD :SPACES »
CHAR 321 TO PLAY
MAKE "“GOTTEN @ IF :TRIES=0 [LOSE STOP)
MAKE "TRIES 7 GETGUESS
CcT IF :WON [SETCURSOR [® 23] STOP]
GALLOWS PLAY
END END
TO GALLOWS T0 GETGUESS
TELL [0 1 2 3] DISPLAY
CS HT MAKE “GUESS FIRST RL
TELL © CLEARMESSAGE
PU SETPOS [-40 -60] IF (COUNT :GUESS) > 1 [TESTWORD STOP]
RT 990 IF MEMBERP :GUESS :GUESSES [ALREADY »
PD GETGUESS STOP]
GALLL MAKE "GUESSES SE :GUESSES :GUESS
END IF MEMP :GUESS :MYWORD [FIXGOT

:MYWORD] [BADTRY]
I[F EQUALP :GOTTEN COUNT

END

:MYWORD [WIN]

HANGMAN

TO PICKWORD MAKE “TRIES :TRIES-1
0P PICK [POTSTICKER COMPUTER IRAQ » END
GAZEBO THRUSH STYLE FOILED SWARM »
ZEBRA AWFUL WILY YELLOW BARKED » T0 DRAW7
STOIC) PU
END SETPOS [60 90)
SETH 105
TO SAY :STUFF PD
SETCURSOR [19 20) REPEAT 12 [FD 6 RT 301
TYPE :STUFF RT 75
END END
TO ALREADY
SAY [YOU GUESSED THAT!) T0 -DRAW6
END PY
SETPOS (60 66)
TO CLEARMESSAGE SETH 189
SAY :SPACES PO
ol FD 10
END
T0 DISPLAY
SETCURSOR [0 28] TO DRAWS
DISWORD :MYWORD pU
SETCURSOR [0 211 SETPOS [40 56]
TYPE "GUESSES: SETH 90
SETCURSOR [9 21) PD
TYPE :GUESSES REPEAT 2 [FD 40 RT 98 FD 60 RT 90]
SETCURSOR [0 221 END
TYPE [YOUR GUESS?]
SETCURSOR [12 221 TO DRAW4
END By
SETPOS (40 40]
TO DISWORD :WORD SETH -45
IF EMPTYP :WORD [STOP] PD
IF MEMBERP FIRST :WORD :GUESSES [TYPE » AN
FIRST :WORD] [TYPE “-] END
DISWORD BF :WORD
END TO DRAW3
TO MEMP :LETTER :WORD Py
IF EMPTYP :WORD [OP "FALSE] §§1:°§5(8° 401
IF EQUALP :LETTER FIRST :WORD [OP »
“TRUE] PO
0P MEMP :LETTER BF :WORD ARM
Sin END
TO FIXGOT :GUESS :WORD TO ARM
IF EMPTYP :WORD [STOP] FD 30
If EQUALP :GUESS FIRST :WORD [MAKE » BK 14
“GOTTEN :GOTTEN+1] LT 25
FIXGOT :GUESS BF :WORD FD 14
END BK 14
RT 50
T0 BADTRY FD 14

RUN SE WORD "DRAW :TRIES [1] END

38 WORDPLAY

TO DRAW2

PU

SETPOS [52 -4]
SETH 180

PD

FD 30

RT 90

FD 8

END

TO DRAW1

PU

SETPOS (68 -4]
SETH 180

PD

FD 39

LT 99

FD 8

END

TO TESTWORD
IF EQUALP :GUESS :MYWORD [WIN] [SAY »
[NOPE!] BADTRY]

END
T0 LOSE
SAY [YOU LOSE!! SORRY.]

SETCURSOR [0 20]
TYPE :MYWORD
SETCURSOR [0 23]
EYES

FROWN

END

TO EYES
PU
SETPOS [52 821
SETH 99
PD

FD 4

PU

FD 6

PD

FD 4
END

TO FROWN

PU

SETPOS [66 72]
SETH -9

MOUTH

END

TO MOUTH

PD

LT 18

REPEAT 8 [FD 2 LT 18]
END

T0 WIN

SETCURSOR [0 20]
DISWORD :MYWORD
SAY [YOU WIN!!'!]
MAKE “WON “TRUE
UNGALL

FINISH :TRIES
EYES

SMILE

END

TO UNGALL

PU

SETPOS [-490 -60]
SETH 99

PE

GALL1

END

TO FINISH :NUM

IF :NUM=0 [STOP]

RUN SE WORD "DRAW :NUM []
FINISH :NUM-1

END

T0 SMILE

PU

SETPOS [54 76]
SETH 171
MOUTH

END

T0 PICK :LIST
OP ITEM (1 + RANDOM COUNT :LIST)
END

TO ITEM :N :LIST

IF :N=1 [OP FIRST :LIST]
OP ITEM :N-1 BF :LIST
END

:LIST

MATH: A SENTENCE GENERATOR

Math: A Sentence Generator

When we think of computers making up sentences, we most often think of
them making up English or French sentences. We rarely think of them
making up math sentences. This project is about developing a math sen-
tence generator. It is set in the context of developing an interactive pro-
gram. A sentence is made up in the form 3 + X = 5 and the user is
asked WHAT 1S X2,

The first example involves only addition sentences. Then the program
is modified to include multiplication, subtraction, and division. Later the
program is changed once more to vary the form of the math sentences and
keep track of the number of times the user responds to the same question.

I boldface what the user types.

?MATH

6 + X =7
WHAT IS X7 1
RIGHT
7+ X =16
WHAT IS X? 5§
NOPE, X IS 9
7+X =19
WHAT IS X? 3
RIGHT

As the example shows, MATH makes addition sentences of the form 2 +
X = 3 and not of the form X + 2 = 3. Later we will change MATH so
that it uses both forms.

MATH randomly chooses two of the integers to be used in the math
sentence. ADD then presents the addition problem and checks on your
answer. The numbers MATH chooses are less than ten, but you can easily
adjust the procedure and make the numbers larger.

TO MATH

ADD RANDOM 10 RANDOM 10
PR []

MATH

END

TO ADD :NUM1 :NUM2

PR (SE :NUM1 [+ X =] :NUM1 + :NUM2)
TYPE SE [WHAT IS Xx?1 *

[F :NUM2 = FIRST RL [PR [RIGHT] STOP]
PR SE [NOPE, X IS1 :NUM2

END

In the addition sentences, the value of x is : NUM2, which is the second
input to ADD. The sum of the two inputs is computed by ADD.
There are different ways to expand this program. You could design the

By Cynthia Solomon,

39

WORDPLAY

program so that it gives you three chances to get the answer right. You
could expand the program so that it gives you problems in subtraction,
division, and multiplication. You could make it keep track of the number
of problems you do and the number you respond correctly to. You might
decide to help the user. Some of these suggestions are explored in the next
section.

Making wa1v Subtract, Multiply, and Divide

One way to extend MATH is to make three more procedures, SUBTRACT,
MULTIPLY, and DIVIDE.

TO SUBTRACT :NUM1 :NUM2

PR (SE :NUM1 [- X =] :NUM1 - :NUM2)
TYPE SE [WHAT IS X71 *

IF :NUM2 = FIRST RL [PR [RIGHT] STOP]
PR SE [NOPE, X IS] :NUM2

END

TO MULTIPLY :NUM1 :NUM2

PR (SE :NUM1 [* X =1 :NUM1 * :NUM2)
TYPE SE [WHAT IS X?1 ”

IF :NUM2 = FIRST RL [PR [RIGHT] STOP]
PR SE [NOPE, X IS] :NUM2

END

TO DIVIDE :NUM1 :NUM2

PR (SE :NUM1 [/ X =1 :NUM1 / :NUM2)
TYPE SE [WHAT IS X?1 "

IF :NUM2 = FIRST RL [PR [RIGHT] STOP]
PR SE [NOPE, X IS] :NUM2

END

Try these procedures to see if there are any bugs. Modifying MATH is
a good way to try these new procedures.

TO MATH

ADD RANDOM 19 RANDOM 10
SUBTRACT RANDOM 10 RANDOM 10
MULTIPLY RANDOM 10 RANDOM 19
DIVIDE RANDOM 19 RANDOM 10

PR [

MATH

END

MATH

44X =7 6 * X =18
WHAT 1S X? 3 WHAT 1S X? 3
RIGHT RIGHT

Foa @ § 3/ Xx=1
WHAT 1S X7 1 WHAT 1S X? 3

NOPE, X IS -1 RIGHT

MATH: A SENTENCE GENERATOR

What do you think? The program seems to work, but there are some
possible problems. For example, in the subtraction sentences X might have
a negative value. Perhaps you want to use this program without negative
numbers for answers. We can adjust SUBTRACT so that the value of X is
always positive.

Notice that the sentences are of the form 3 — X = 2. The form X
— 3 = 4 might be easier to solve, and so you might want to make sent-
ences in that form.

There is a potential bug with multiplication and division. For example,
division by 0 will cause Logo to stop the program and print out an error
message. Attempts to divide by 0 must be prevented. One way to make sure
of this is to add one to the random number used as DIVIDE’s second input.
Multiplication by 0 can cause a different sort of problem when you try to
figure out what 0 * X is.

Although the preceding examples do not show X being a fractional
number like .5, it is possible. You might want to guard against that happen-
ing. Since the sentences are generated by the program, we can make sure
that the computation is performed so that X is always a whole number.

In the next section MATH is extended to include some of these ideas. The
procedures are rewritten. A new procedure is introduced called ANSWER. Tt
is used by ADD, MULTIPLY, SUBTRACT, and DIVIDE to print out the sentence
and get the user’s response to what X is.

Extending waTH

In this section, the first extensions to MATH guard against multiplication or
division by 0 and give the user three chances to figure out what x is. All
math sentences are still written in the form 3 + X = 5 and expect
integer answers. The program generates two random numbers and then
computes a third. Here is an example of the program in action.

MATH

HERE ARE SOME MATH PROBLEMS.
g + X =13

WHAT [S X?

Now if you type 5, Logo responds:

RIGHT ON

If you type anything else, Logo responds:
TRY AGAIN

8 + X =13
WHAT IS X7

You are given three tries to get the answer. If you are still wrong, Logo
responds:

NOPE, X IS 5

41

42

WORDPLAY

MATH has MATH1 present sentences in subtraction, multiplication, and
division as well as addition.

TO MATH

TS

cT

PR [HERE ARE SOME MATH PROBLEMS.]
MATH1

END

TO MATH1

ADD RANDOM 11 RANDOM 11

SUBTRACT RANDOM 11 RANDOM 11
MULTIPLY 1 + RANDOM 10 1 + RANDOM 10
DIVIDE 1 + RANDOM 12 1 + RANDOM 190
PR [] WAIT 60

MATH1

END

After ADD computes :RESULT, ANSWER takes over the job of printing out
the sentence and checking the user's response.

TO ADD :NUM1 :NUM2

MAKE “RESULT :NUM1 + :NUM2
ANSWER [+ X =] 1

END

ADD gives ANSWER the form [+ X =1 as its first input. The second input
represents the number of times the user responds to the question WHAT
IS X7. :NUM1, :NUM2, and :RESULT are used by ANSWER’s subprocedures
ANSWER1 and GETINP. The variables are not given as inputs to ANSWER or
its subprocedures. As far as these procedures are concerned, these are
global variables. The value of X is still :NUM2.

ANSWER prints the mathematical sentence with the help of ANSWER1.
After the sentence is printed, ANSWER asks for the value of X. It then turns
the job over to GETINP along with the user’s response.

TO ANSWER :PHRASE :TIMES
PR [1]

ANSWER1 :PHRASE

TYPE SE [WHAT IS X?] "\ \
GETINP RL

END

TO ANSWER1 :PHRASE
PR (SE :NUM1 :PHRASE :RESULT)
END

(. is the way to quote special characters like space. ANSWER prints two
spaces after the question mark.) GETINP plays an important role. It deter-
mines what to do next. If : INP is empty, GETINP assumes this is the user’s
signal to do something else and so calls MATH1. If : INP is not the same as
:NUM2, then GETINP calls ANSWER adding 1 to : TIMES, unless this is the
user’s third try. On the third try GETIN? gives the answer.

MATH: A SENTENCE GENERATOR

TO GETINP :INP

IF EMPTYP :INP [MATH1 STOP]

IF :NUM2 = FIRST :INP [PR [RIGHT ON] STOP]

IF :TIMES = 3 [PR SE [NOPE, X IS) :NUM2 STOP]
PR [TRY AGAIN]

ANSWER :PHRASE :TIMES + 1

END

The MULTIPLY procedure is similar to ADD in structure.

TO MULTIPLY :NUM1 :NUM2
MAKE "RESULT :NUM1 * :NUM2
ANSWER [* X =] 1

END

A couple of tricks are used here so that ANSWER will work for
MULTIPLY, DIVIDE, and SUBTRACT. :NUM2 is always the value of X. : NUMI
is always on the left side of the equals sign and :RESULT is always on the
right of the equals sign. What does change is which of these numbers are
inputs to a procedure and which are computed in the procedure. For
example, SUBTRACT computes the value of NUM1 while :RESULT and : NUM2
are inputs. But the value of X is still : NUM2.

TO SUBTRACT :RESULT :NUM2
MAKE “NUM1 :RESULT + :NUM2
ANSWER [- X =] 1

END

DIVIDE makes sure that the value of X is always an integer by shifting
the role of its first input, which becomes :RESULT. DIVIDE is given
RESULT and computes : NUM1.

TO DIVIDE :RESULT :NUM2
MAKE “NUM1 :RESULT * :NUM2
ANSWER [/ X =1 1

END

Extensions

There are many modifications you might want to make to this kind of
program. The modification I chose is to allow sentences to be in either of
two forms.

=5

+
+ =5

3 X
X 3
The changed procedures follow. Notice that the decision as to which form
to use is based on whether RANDOM 2 outputs 0 or 1.

TO ADD :NUM1 :NUM2

MAKE “RESULT :NUM1 + :NUM2

IF @ = RANDOM 2 [ANSWER [X +]1 @ STOP)
ANSWER [+ X =1 1

END

WORDPLAY

TO MULTIPLY :NUM1 :NUM2

MAKE “RESULT :NUM1 * :NUM2

IF @ = RANDOM 2 [ANSWER [X *1 @ STOP]
ANSWER [* X =1 1

END

The new forms for ADD and MULTIPLY are

X+3=25
b AR HE 2]

where the value of X is still : NUM2.

When SUBTRACT generates a sentence in the form 6 - X = 2, its
inputs, : RESULT and : NUM2, are added together to be : NUM1. In the exam-
ple6 — X = 2, :NUM1is 6 and :RESULT is 2.

When the sentence is in the form X — 4 = 2, then SUB2 computes
:NUM2 by adding the inputs :RESULT and :NUM1. In this case :RESULT is
2 and : NUM1 is 4.

TO SUBTRACT :RESULT :NUM2

IF @ = RANDOM 2 [SUB2 :RESULT :NUM2 STOP]
MAKE “NUM1 :RESULT + :NUM2

ANSWER [~ X =] 1

END

TO SUB2 :RESULT :NUM1

MAKE "NUM2 :RESULT + :NUM1
ANSWER (X -1 1

END

DIVIDE computes :NUM1 as :RESULT * :NUM2 when the form is
6 / X = 2. DIVIDE computes :NUM2 as :NUM1 * :RESULT when the
formisX / 3 = 2.

TO DIVIDE :RESULT :NUM2

IF @ = RANDOM 2 [DIV2 :RESULT :NUM2 STOP]
MAKE “NUM1 :RESULT * :NUM2

ANSWER [/ X =] 1

END

TO DIV2 :RESULT :NUM1

MAKE "NUM2 :RESULT * :NUM1
ANSWER [X /1 1

END

ANSWER needed to be changed as well.

TO ANSWER :PHRASE :TIMES

PR [1

IF “X = FIRST :PHRASE [ANSWER2 :PHRASE] [ANSWER1 :PHRASE]
TYPE SE [WHAT IS X?] "\ \

GETINP RL

END

TO ANSWER1 :PHRASE
PR (SE :NUM1 :PHRASE :RESULT)
END

TO ANSWER2 :PHRASE
PR (SE :PHRASE :NUM1 "= :RESULT)
END

MATH: A SENTENCE GENERATOR

45

PROGRAM LISTING

TO MATH

TS

cT

PR [HERE ARE SOME MATH PROBLEMS.]
MATH1

END

T0 MATHI

ADD RANDOM 11 RANDOM 11

SUBTRACT RANDOM 11 RANDOM 11
MULTIPLY 1 + RANDOM 10 1 + RANDOM 10
DIVIDE 1 + RANDOM 10 1 + RANDOM 19
PR [1 WAIT 6@

MATH1

END

TO ADD :NUM1 :NUM2

MAKE “RESULT :NUM1 + :NUM2

IF @ = RANDOM 2 [ANSWER [X +] @ STOP]
ANSWER [+ X =] 1

END

TO MULTIPLY :NUM1 :NUM2

MAKE “RESULT :NUM1 * :NUM2

IF © = RANDOM 2 [ANSWER [X *1 @ STOPI]
ANSWER [* X =] 1

END

TO SUBTRACT :RESULT :NUM2

IF @ = RANDOM 2 [SUB2 :RESULT :NUM2 »
STOP]

MAKE “NUM1 :RESULT + :NUM2

ANSWER [- X =11

END

TO SUB2 :RESULT :NUM1

MAKE “NUM2 :RESULT + :NUM1
ANSWER [X -1 1

END

TO DIVIDE :RESULT :NUM2

I[F @ = RANDOM 2 [DIV2

STOP]

MAKE “NUM1 :RESULT * :NUM2

ANSWER [/ X =]
END

1

TO DIV2 :RESULT :NUM1
MAKE “NUM2 :RESULT * :NUM1

ANSWER [X /1 1
END

TO ANSWER :PHRASE :TIMES

PR 1
IF “X = FIRST

:PHRASE] [ANSWER1

:RESULT :NUM2 »

:PHRASE [ANSWER2 »

TYPE SE [WHAT IS X?1 "\ \

GETINP RL
END

TO ANSWER1 :PHRASE
PR (SE :NUM1 :PHRASE :RESULT)

END

TO ANSWER2 :PHRASE
:NUM1 “= :RESULT)

PR (SE :PHRASE
END

TO GETINP™: INP

IF EMPTYP :INP [MATH1 STOP]
IF :NUM2 = FIRST

STOP]

IF :TIMES = 3 [PR SE [NOPE,

:NUM2 STOP]

PR [TRY AGAINI]
ANSWER :PHRASE
END

:TIMES + 1

:PHRASE]

X 18] e

:INP [PR [RIGHT ON1 »

46

WORDPLAY

Number Speller

?PRINT SPELL 1427
ONE THOUSAND FOUR HUNDRED TWENTY SEVEN

?

This program takes a whole number as input and outputs the number
spelled out in words.

The general idea is to divide the number into groups of three digits.
For example, the number 1234567890 is 1 billion, 234 million, 567 thou-
sand, 890. For each such group we must spell out its three-digit number and
also find the word (like “million") that indicates the position of that group
in the entire number.

Spelling a Group of Three

Let’s start by writing a procedure, SPELL . GROUP, that spells out a number
of up to three digits.

TO SPELL.GROUP :GROUP
IF :GROUP>99 [OUTPUT (SE DIGIT FIRST :GROUP “HUNDRED
SPELL.GROUP BF :GROUP)]
IF 3=COUNT :GROUP [MAKE "GROUP BF :GROUP]
IF AND :GROUP>10 :GROUP<29 [QUTPUT TEEN :GROUP-10]
OUTPUT SE (IF :GROUP>9 [TENS FIRST :GROUP] [[11)
(IF @<LAST :GROUP [DIGIT LAST :GROUP] ([1))}
END

?PRINT SPELL.GROUP 425

FOUR HUNDRED TWENTY FIVE
2

Subprocedures DIGIT, TEEN, and TENS select words corresponding to
a particular digit in different positions. DIGIT selects words like “three”;
TEEN words like “thirteen™; and TENS words like “thirty.”

The first instruction in SPELL.GROUP deals with a nonzero hundreds
digit of the group, if any. Next, a possible leading zero is eliminated from
the group. Then the procedure recognizes the special case of a number
greater than ten and less than twenty. These numbers are special because
they are represented all in one word, like “thirteen.” Other two-digit num-
bers are represented by one word for the tens digit and one for the ones
digit, like “eighty seven.” If the number isn’t a teen, the procedure then
deals with its tens digit and its ones digit separately.

A trick used in SPELL GROUP looks like this:

IF predicate [expression 1 [[1]

Here is an example:

IF :GROUP>9 [TENS FIRST :GROUP] [[]]

By Brian Harvey.

NUMBER SPELLER

If the predicate tested by 1F is FALSE, the value of this expression is the
empty list ([1), so it contributes nothing to the final result when combined
with other things using SE.

SPELL.GROUP outputs the empty list, not the word ZERO, if its input is
0. This is okay because we want to say “zero” only if the entire number
we're spelling is), not just one group. (Remember that the reason we wrote
SPELL.GROUP for numbers up to three digits is that groups of three are the
building blocks of larger numbers.) For example, the number 1000234 is
spelled “one million two hundred thirty four,” not “one million zero thou-
sand two hundred thirty four.” We'll have to remember to notice, later on,
if the entire number we're spelling is 0.

Here are the procedures that select the words for each digit.

T0 TENS :DIG

OUTPUT ITEM :DIG [TEN TWENTY THIRTY FORTY FIFTY
SIXTY SEVENTY EIGHTY NINETY]

END

TO TEEN :DIG

OUTPUT ITEM :DIG [ELEVEN TWELVE THIRTEEN FOURTEEN FIFTEEN
SIXTEEN SEVENTEEN EIGHTEEN NINETEEN]

END

T0 DIGIT :DIG

OUTPUT ITEM :DIG [ONE TWO THREE FOUR FIVE SIX SEVEN
EIGHT NINE]

END

These use the common subprocedure [TEM.

TO ITEM :NUM :STUFF

IF :NUM=1 [OP FIRST :STUFF)
OP ITEM :NUM-1 BF :STUFF
END

Spelling a Large Number

Now we have to divide a large number into groups of three, so that we can
use SPELL.GROUP on each of the triads. One complication is that in dealing
with very large numbers, we can’t rely on Logo's arithmetic operations,
because if we do, the numbers will be rounded off. Logo ordinarily handles
numbers only up to ten digits without rounding. We'll use Logo’s word-
manipulation operations. For example, if we're spelling out the number
12345 and want to find the rightmost group, we’ll do something like this:

NUMBER 512345
J I

H 4
(WORD I(LAST BL BL.NUMBERII IJAST BL:NUMBET,II [:lAST:-\UMBER’_I
= |
T,

output is 345

In other words, we must treat a large number as a word that happens to
be composed of digits instead of letters.

Note: In order to convince Logo not to round off numbers longer than
ten digits, you have to type them in with a quotation mark like this:

PRINT SPELL "1234567890987654321

47

48

WORDPLAY

We can work up from SPELL . GROUP. One thing we need is a procedure
to combine a spelled-out group with the name of its place in the complete
number (thousand, million, etc.):

T0 TRIAD ;GROUP :PLACE

IF :GROUP>® [OP SE SPELL.GROUP :GROUP :PLACE]
opP (]

END

The test for : GROUP > 0 is there to deal with cases like 1000234, where the
entire thousands group should be omitted.

At this point, it's important to decide whether we are working on the
number from left to right or from right to left. The most obvious thing is
probably left to right, because that's the way we actually read numbers,
starting with the leftmost group. That's the approach I took the first time
I wrote this program. But it turns out to be much simpler to write the
program if we start from the right. There are two reasons for this.

The first reason is this: suppose you see a long number like 123,456,
234,345,567,678,346,765,654,987. What is the name of the place associated
with the leftmost group? To answer that question you have to count the
groups, starting from the right. The 987 group is the ones group, the 654
group is the thousands group, the 765 group is the millions group, and so
on. So in a sense we have to start from the right in order to know what to
do with the 123 group on the left. The second reason is related to the first.
Sometimes numbers are written with commas separating the groups. But
in Logo we don’t use commas inside numbers this way. Suppose you see a
number like 1234567890987654321. What is the leftmost group? You might
guess 123, but that would be true only if the number of digits in the entire
number were a multiple of three. Actually, this number is 1 quintillion 234
quadrillion and so on. In order to know the number of digits in the leftmost
group, we have to count off by threes from the right.

Working from right to left, the overall pattern of the program will be
more or less like the following. I've written this in lower case to emphasize
that it isn't a completed Logo procedure.

to spell.number :number
op se (spell.number butlast3 :number) (triad last3 :number)
end

Two things are missing from this partially written procedure. First,
there is no stop rule to tell the procedure when it has reached the end (the
leftmost end, that is) of the number. Second, we haven’t provided for the
place-name input to TR1AD. The solution to the first problem is that when
the number of digits in the number we're spelling is three or fewer, we're
down to the last group. The solution to the second problem involves provid-
ing a list of group place names as another input to this partly written
procedure. Putting these things together results in two procedures.

TO SPELL :NUMBER

IF :NUMBER=¢ (OP [ZERO]]

OP SPELL1 :NUMBER ([[] THOUSAND MILLION BILLION TRILLION
QUADRILLION QUINTILLIONI

END

NUMBER SPELLER 49

TO SPELL1 :NUMBER :PLACES
IF (COUNT :NUMBER)<4 (OP TRIAD :NUMBER FIRST :PLACES]
OP SE (SPELL1 BUTLAST3 :NUMBER BF :PLACES)

(TRIAD LAST3 :NUMBER FIRST :PLACES)
END
The top-level procedure, SPELL, recognizes the special case of the number
0. In its subprocedure SPELL1, two auxiliary procedures are used that we
haven't written yet. LAST3 and BUTLAST3 are operations like LAST and
BUTLAST, but they output (all but) the last three letters of a word instead
of (all but) the last one. Here they are:
TO LAST3 :WORD
OP (WORD (LAST BL BL :WORD) (LAST BL :WORD) (LAST :WORD))
END
TO BUTLAST3 :WORD
OP BL BL BL :WORD
END
SUGGESTIONS

* What do you have to do to make this program spell out numbers in
a language other than English? The main thing, of course, is to
change the lists of words in SPELL, DIGIT, TENS, and TEEN. But what
structural differences are there in different languages? For example,
in French there are no special names for 70 and 90. Instead, numbers
are added to the names for 60 and 80. That is, 70 is “soixante-dix,”
or “sixty-ten’’; 73 is “soixante-treize” or “sixty-thirteen.” (This is true
of French as spoken in France; the dialect of French spoken in
Belgium does have special words for 70 and 90!)

* Can you modify the program to spell out numbers including a deci-
mal fraction, so SPELL 3.14 will output [THREE AND FOURTEEN
ONE-HUNDREDTHS]? What about exponential notation, so that SPELL
4E3 will output [FOUR THOUSANDI?

* What about translating to or from Roman numerals? In what ways
would a program to do that be similar to this one? How would it be
different?

- What about translating backward? That is, write a program that will
accept a list of words representing a number and output the number.

PROGRAM LISTING
T0 SPELL.GROUP :GROUP :GROUP)Y [[11) (IF @<LAST :GROUP »
IF :GROUP>99 [OUTPUT (SE DIGIT FIRST » [DIGIT LAST :GROUP] [[11)
:GROUP "HUNDRED SPELL.GROUP BF » END
:GROUP)]
IF 3=COUNT :GROUP [MAKE "“GROUP BF » TO TENS :DIG
:GROUP] OQUTPUT ITEM :DIG [TEN TWENTY THIRTY »

IF AND :GROUP>10 :GROUP<20 [OUTPUT »
TEEN :GROUP-10] NINETY]
OUTPUT SE (IF :GROUP>9 ([TENS FIRST » END

FORTY FIFTY SIXTY SEVENTY EIGHTY »

50

TO TEEN :DIG

OUTPUT ITEM :DIG [ELEVEN TWELVE »

END

WORDPLAY

TO SPELL :NUMBER
IF :NUMBER=0 [OP [ZERO]]

THIRTEEN FOURTEEN FIFTEEN SIXTEEN » OP SPELL1 :NUMBER [[] THOUSAND MILLION »

SEVENTEEN EIGHTEEN NINETEEN)

T0 DIGIT :DIG
QUTPUT ITEM :DIG [ONE TWO THREE FOUR » TO SPELL1 :NUMBER :PLACES
FIVE SIX SEVEN
EIGHT NINE]

END

TO ITEM :NUM :STUFF

IF :NUM=1 [OP FIRST

0P ITEM :NUM-1 BF :STUFF

END

BILLION TRILLION QUADRILLION »
QUINTILLION]
END

[F (COUNT :NUMBER)<4 [OP TRIAD :NUMBER »
FIRST :PLACES]

OP SE (SPELL1 BUTLAST3 :NUMBER BF »
:PLACES) (TRIAD LAST3 :NUMBER »
FIRST :PLACES)

:STUFF1] END

TO LAST3 :WORD
OP (WORD (LAST BL BL :WORD) (LAST BL »

TO TRIAD :GROUP :PLACE :WORD) (LAST :WORD))
IF :GROUP>® [OP SE SPELL.GROUP :GROUP » END
:PLACE]
0P I[1 TO BUTLAST3 :WORD
END OP BL BL BL :WORD

END

Drawing Letters

This project lets the turtle draw letters using a multiple-segment system
like that of digital watches. It illustrates Logo's list processing capability and
the use of RUN with program-generated Logo instructions. That is, instead
of just carrying out procedures that were written ahead of time, this pro-
gram actually assembles lists of Logo instructions and then carries out those
instructions to draw the letters.

Drawing Letters in Segments

Digital watches, which only have to display digits, generally use a seven-
segment system.

Seven-segment display for digits

By Brian Harvey

DRAWING LETTERS

To display all the letters of the alphabet, I chose to use a twenty-
segment system, illustrated below.

3 12
1 3 %
4 5 13 14
6 15
1"
2 20
7 8 16 17
9 18

2 IANC LT LAT Tl R
Rk [[O I " O

l

I_
i
{— I

T | N O 7 I | | O AV V4
ML X N7 | LNAIANN T 2

Twenty-segment display for letters

Of course, it would be possible to write a separate procedure for each
letter, giving explicit turtle motion commands to shape the letter precisely.
The advantage of the segment idea is that it makes it possible to write a
single program, then design the individual letters very quickly. For exam-
ple, after I had finished the letters of the alphabet, it was very easy for me
to add the ten digits, even though 1 hadn’t planned for them initially.

i 7 24 0. 71000
XL T 2007 71

Twenty-segment digits

I could have written twenty procedures, one for each segment. Each
would start from a “base” position, move the turtle to one end of the ;
segment, draw the segment, and return to the base position. Then each
letter could be described as a list of numbers, identifying the segments that

are used to draw the letter. Instead, I chose to try to find some regularities
in the way the segments are arranged. I divided the twenty segments into 2 4
five groups of four each. In each group, the segments can be drawn in a
single continuous path, without drawing any segment twice. (I would have

5
liked to be able to draw the entire group of twenty segments continuously

without duplication, but that’s impossible.) Four of my five groups are s of four each
identical in shape; the fifth is special.
The five groups are numbered in a specific order. Within a group, the
segments are also numbered in a specific order: this is shown in the next
figure. The program is written so that it draws segments in this order. That
is, to draw a letter, the program first draws the four segments that make up
the arrow-shaped group in the top left corner. Then the program goes on

51

Dividing twenty segments into five

52 WORDPLAY

3 to the second group, the arrow-shaped one at the bottom left, and so on.
: Within each group, the program first draws segment 1, then 2, 3, and 4.
Not all segments are used in every letter, of course. Therefore, the
N turtle lifts its pen while tracing some of the segments. For example, con-
sider this representation of the letter A.

MAKE “A [[PU PD] (PD PU PD] [PU PU PU PD]

’ (PU PU PD] [PU PUPDI1]
The variable A contains a list of five lists. Each of these smaller lists corre-
1 2 sponds to one of the five groups of segments. The first sublist is [2U PD];

this means that the turtle’s pen should be up during the first segment and
down during the second segment. (There could be up to four words in each
sublist. In this case, since there are only two words, the program will stop
tracing the first group of segments after the second segment in the group.)
This figure shows how the program draws the letter A; compare it to the
list just given.

Order of segments within a group

The Letter-Drawing Procedures

The procedure LETTER draws a letter. It takes two inputs. The first is a list

like the one stored in the variable A; the second is a position, that is, a list

— == py Of two numbers. The letter described by the list is drawn at the position.

-ro (Actually it is the lower left corner of the letter that is at the given position.)

For example, if we have defined the variable A as just given, we could say
LETTER :A [0 0]

Here is the procedure:
TO LETTER :LET :POS
SEGMENTS :LET [[[@ 24] ARROW] [[@ 121 ARROW]
[[9 241 ARROW] [[9 121 ARROW] [[@ ©) FINISH]I 1 :POS

Drawing an A

END

The LETTER procedure uses a subprocedure SEGMENTS. The second
input to SEGMENTS is a list that describes the overall layout of the groups
of segments. Like the letter descriptions, it is a list containing five lists. But
each of the five lists has only two elements: the starting position of the group
of segments and the name of a procedure to draw the group of segments.
This procedure is called ARROW for the first four groups and FINISH for the
fifth group. The “position” of the beginning of the segment group is actually
relative to the position of the letter as a whole, not an absolute screen
position. For example, if the position of the letter is [23 47) and the
relative position of the third segment group is (9 24], then the actual
screen position for that group is (32 71].

[024) 924 [23n [3271) = [2347) + [924]
4 'y

- [912) - (32
w012 [{2359) 1 e

0o}
[(2347)
Starting points of segments in Starting points of segments for a

relative coordinates letter drawn at P05=[23 47]

DRAWING LETTERS

To know why the position numbers are what they are, you must know
that I chose to base the segment lengths on a 3-4-5 right triangle. The
horizontal segments are 9 turtle steps long, the vertical ones 12 steps long,
and the diagonal ones 15 steps long. This conveniently makes all the
FORWARD commands use whole-number inputs. It is also a reasonable shape
for the overall letters.

The procedure SEGMENTS has three inputs. The third is the position of
the letter. The first two are both five-element lists of lists. One is a letter
description; the other is the overall layout description. The job of
SEGMENTS is to match each element of the letter with the corresponding
element of the description. It invokes the subprocedure SEGMENT with
these sublists as inputs:

TO SEGMENTS :LET :TEMPLATE :POS
IF EMPTYP :LET [STOP]
IF NOT EMPTYP FIRST :LET
[SEGMENT FIRST :LET FIRST :TEMPLATE :POS]
SEGMENTS BF :LET BF :TEMPLATE :POS
END

Let’s see how this works with a particular example. Suppose we ask
Logo to draw the letter A with this instruction:

LETTER :A [23 47]
This ends up invoking SEGMENTS this way:

SEGMENTS ((PU PD] (PD PU PD] (PU PU PU PD]
(PU PU PD] (PU PU PD]]
[([0 241 ARROW] ([0 12] ARROW]
[[9 241 ARROW] [[9 12] ARROW] [[® 2] FINISHI 1]
[23 471

Then SEGMENTS invokes SEGMENT five times.

SEGMENT [PU PD] [[® 241 ARROW] [23 47]
SEGMENT [PD PU PD] [[@ 12] ARROW] [23 47]
SEGMENT [PU PU PU PD] [[9 241 ARROW] [23 47]
SEGMENT (PU PU PD) [[9 12] ARROW] [23 47]
SEGMENT (PU PU PD] [[@ @) FINISH] [23 47]

Each element of the list that is specific to the letter A (for example, (PU
PD]1) is matched with an element of the list that describes the layout of
letters in general (for example, [[0 241 ARROWI).

Drawing Each Segment Group

Remember that each sublist of the template (the overall layout description)
has two pieces: the relative position of the group and the name of the
procedure that draws the group. SEGMENT first has to position the turtle,
then invoke the correct procedure. To position the turtle, SEGMENT uses a
subprocedure called ADDPOS, which adds two position lists just as we did a
few paragraphs ago. Then it uses the RUN command to invoke the procedure
ARROW or FINISH, as the case may be. These procedures take the letter

53

WORDPLAY

description sublist as input, so the procedure name must be linked with that
list to form the Logo instruction for RUN.

TO SEGMENT :LETPART :TEMPPART :POS
PU

SETPOS ADDPOS :POS FIRST :TEMPPART
RUN LIST LAST :TEMPPART :LETPART
END

For example, the first use of SEGMENT in drawing the letter A in our
example is

SEGMENT (PU PD] [[0 24] ARROW] [23 47]
This is equivalent to the following Logo instructions.

PU
SETPOS ADDPOS [23 47] [0 24]
RUN LIST "ARROW [PU PDI

This is, in turn, equivalent to

PU
SETPOS [23 71]
ARROW [PU PD]

The tricky (but exciting!) thing to understand here is that the instruction
ARROW [PU PD] doesn’t actually appear in any Logo procedure in this
program. Instead, this instruction is put together as the program is run.
SEGMENT combines the word ARROW (which it found in the template list)
with the list [PU PD] (which it found in the letter description list) into
one big list. It then uses the RUN command to interpret that list as a Logo
instruction. We'll use the same trick again later.

The procedures ARROW and FINISH have to follow a certain path, set-
ting the turtle’s pen up or down between steps as specified in the letter
deseription. They use a common subprocedure DRAW, which knows how to
do that. One of the inputs to DRAW is the letter description sublist with the
PU and PO commands; the other input is a list of four Logo instruction lists,
one for each segment of the group.

TO ARROW :PENS

DRAW :PENS [[SETH 180 FD 121 [LT 143.13 FD 15]
[LT 126.87 FD 91 [LT 126.87 FD 1511

END

TO FINISH :PENS
DRAW :PENS [[SETH 9@ FD 91 [FD 91 [LT 90 FD 121 [FD 121]
END

TO DRAW :PENS :CMDS

IF EMPTYP :PENS [STOPI]

RUN FPUT FIRST :PENS FIRST :CMDS
DRAW BF :PENS BF :CMDS

END

DRAWING LETTERS

Here is how this works out in our example with the letter A. The five
invocations of SEGMENT listed earlier result in four invocations of ARROW and
one of FINISH,

ARROW [PU PD]

ARROW (PD PU PD]

ARROW [PU PU PU PD]

ARROW [PU PU PD] -
FINISH [PU PU PDI

We'll look at the first invocation of ARROW in more detail. ARROW invokes
DRAW like this:

DRAW [PU PD] [[SETH 180 FD 121 (LT 143.13 FD 15]
[LT 126.87 FD 91 [LT 126.87 FD 15]]

Just as SEGMENTS paired elements of its list inputs, so does DRAW. It ends up
executing these Logo instructions:

RUN FPUT "PU [SETH 180 FD 121
RUN FPUT "PD [LT 143.13 FD 151

There might have been up to four of these RUN instructions, because there
are four segments in an ARROW group, but in this case there were only two
pen commands in the input list : PENS. If we look at what the RUN instruc-
tions actually do in this example, we see that the final effect is just as if the
procedure contained these instructions:

PU SETH 180 FD 12
PD LT 143.13 FD 15

This is a straightforward series of turtle graphics commands. Again, though,
it's important to understand that that series of commands is not actually
part of any procedure. Instead, the commands were generated by the DRAW
procedure by putting together pieces of its inputs.

Final Details

Here is ADDPOS, the subprocedure of SEGMENT that turns the relative posi-
tion of a segment group into an absolute position:

TO ADDPOS :POS1 :POS2

OUTPUT LIST (FIRST :POS1)+FIRST :P0S2
(LAST :POS1)+LAST :POS2

END

Finally, the procedure SAY takes an entire word as input and draws the
letters in that word one by one. It's used like this:

SAY “HELLO [@ 0]
and here it is.

TO SAY :WORD :POS

IF EMPTYP :WORD [STOP]

LETTER THING FIRST :WORD :POS
SAY BF :WORD ADDPOS :POS [24 9]
END

55

WORDPLAY

Here are the definitions for my letters:

MAKE
MAKE

MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE

MAKE
MAKE

MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE

SUGG

“A [[PU PD]) [(PD PU PD] [PU PU PU PD]

[PU PU PD] [PU PU PDI]]
“8 [[PD PU PD] [PD PU PD]1 [PU PD PD]

[PU PU PU PD1 [PD PDI1]
“C [[PU PD1 [PU PU PU PD] [PU PU PD] [] [PU PD]]
"D [(PD PU PD] ([PD] (PU PU PU PD] [PU PD]) ([PDI]
"t [[PD PU PD]1 [PD PU PD] [PU PU PD] (1 [PD PD]1]
“F [[PD PU PD] [PD PU PD] [PU PU PD] (1]
"G [LPD PU PD] [PD1 [PU PU PD] [PU PU PD] [PD PD PD]]
“H [IPD] [PD PU PD] [1 [PU PU PD] [PU PU PD PD]]
“1 [C[PU PU PD] [1 [PD PU PD] [PD] [PD PD]]
“J [[PU PU PD] (] (PD PU PD] (PD] (PD]]
“K [[PD] (PD PU PD] [PU PD] [PU PU PU PD1]
“L (CPD] (PD1 [1 [1 [PD PDI]
“M [[PD PU PU PD] [PD] [PU PD] [] [PU PU PD PD]]
“N [[PD PU PU PD] [PD] [1 [PU PU PU PD] [PU PU PD PDI]
"0 [[PD PU PD] [PD] (PU PU PD] []1 [PD PD PD PD1]
“P [[PD PU PD] ([PD PU PD] [PU PU PD]

[PU PU PD] [PU PU PU PD]]
“Q [[PD PU PD] [PD]

[(PU PU PD] [PU PD PU PD] [PD PU PU PD]]
“R [[PD PU PD]) [PD PU PD] [(PU PU PD]

[PU PU PD PD] [PU PU PU PDI]
“S [[PU PD] [PU PU PD] [PU PU PD] [PU PD PD] ([PD]]
“T [(PU PU PD]) [] [PD PU PD] [PD]1]
“U [[PD] [PD] (] (] [PD PD PD PD1]
"V [[(PD) [PU PU PU PD] [1 [PU PD] [PU PU PU PD]]
“W [[PD] [PD PD] [1 [PU PU PU PD] (PU PU PD PD]]
“X [[PU PU PU PD] [PU PD] [PU PD) [PU PU PU PDI]
“Y ([PU PU PU PD] (1 (PU PD] [PD]]
“Z ([PU PU PD] [PU PD] [PU PD PD] [] (PD PD]]

ESTIONS

Make up descriptions for the twenty-segment digits shown near the
beginning of this write-up.

The letter L is described very efficiently by this scheme; the turtle
takes no unnecessary steps to draw it. The letter A, on the other
hand, is not very efficiently described. Each PU in its description
represents a step that the turtle takes without drawing anything; to
draw six strokes, the turtle travels over fifteen segments. Can you
work out a way to group the segments that makes more letters more
efficient? (I don’t have any secret answer to this; I haven't tried it
myself.)

Modify the procedures so that the size of the letters can be varied.
You could have an input called S1Z£ and use 3*: S1ZE for the hori-
zontal segments, and so forth.

Modify the procedures so that the aspect ratio of the letters (the ratio
of the vertical segment length to the horizontal segment length) is
variable. This is much harder; in general, it requires using trigonom-
etry.

Make up descriptions for lower-case letters. This may require chang-
ing the whole arrangement of segments, since some lower-case let-

DRAWING LETTERS

ters have descenders. That is, they extend below the baseline of the
capital letters. These letters are g, j, p, g, and y. Manufacturers of
computer terminals don’t always use descenders for lower-case let-
ters. Some avoid it by printing those letters higher than they should
be; others just use SMALL CAPITALS instead of lower case.

* Without changing the letter descriptions, change the shapes embod-
ied in the procedures ARROW and FINAL. See if you can invent an

interesting new alphabet this way.

Modify the procedures so that you can write words at an angle, not

just horizontally across the screen.

57

PROGRAM LISTING

TO LETTER :LET :POS
SEGMENTS :LET [[[0 241 ARROW] ([® 12] »

TO SAY :WORD :POS
IF EMPTYP :WORD [STOP]

SAY BF :WORD ADDPOS :POS [24 @)

“A [[PU PD] [PD PU PD] (PU PU PU »
PD] [PU PU PD] (PU PU PD]1]

“8 [[PD PU PD] (PD PU PD] [PU PD »
PD) [PU PU PU PD] [PD PDI]

“C C[[PU PD] [PU PU PU PD] [(PU PU »
PD1 [1 [PU PDI]]

“D [I[PD PU PD] [PD] (PU PU PU PD] »
[PU PD] (PD]]

“E ([PD PU PD] [PD PU PD] [PU PU »
PD] (1 (PD PD]]

“F ((PD PU PD] [PD PU PD] [PU PU »
PD1 (11

“G [(PD PU PD] (PD] (PU PU PD1 »
[(PU PU PD] [PD PD PD11

“H [[PD) [PD PU PD] (] [PU PU PD]
[PU PU PD PD]]

“1 [(PU PU PD] (1 (PD PU PD] [PD] »
(PD PDI]

v

ARROW] [[9 241 ARROW] [[9 12] » LETTER THING FIRST :WORD :POS
ARROW] ([[® @] FINISH] 1 :POS
END END
TO SEGMENTS :LET :TEMPLATE :POS MAKE
IF EMPTYP :LET [STOP]
IF NOT EMPTYP FIRST :LET [SEGMENT » MAKE
FIRST :LET FIRST :TEMPLATE :POS]
SEGMENTS BF :LET BF :TEMPLATE :POS MAKE
END
MAKE
TO SEGMENT :LETPART :TEMPPART :POS
PU MAKE
SETPOS ADDPOS :POS FIRST :TEMPPART
RUN LIST LAST :TEMPPART :LETPART MAKE
END
MAKE
TO ARROW :PENS
DRAW :PENS [[SETH 188 FD 121 [LT » MAKE
143.13 FD 151 [LT 126.87 FD 91 »
[LT 126.87 FD 1511 MAKE
END
MAKE

TO FINISH :PENS
DRAW :PENS [[SETH 99 FD 91 [FD 9] [LT » MAKE

90 FD 121 [FD 12]]

END MAKE
MAKE
TO DRAW :PENS :CMDS
[F EMPTYP :PENS [STOP] MAKE
RUN FPUT FIRST :PENS FIRST :CMDS
DRAW BF :PENS BF :CMDS MAKE
END
MAKE

TO ADDPOS :POS1 :POS2
QUTPUT LIST (FIRST :POS1)+FIRST :P0S2 » MAKE

END

(LAST :POS1)+LAST :POS2

“J [(PU PU PD] [1 [PD PU PD] [PD] »
[PD11

“K [I[PD] [PD PU PD] [PU PD] (PU »
PU PU PD]]

"L [CPD] [PD] [1 [1 [PD PDI1]

“M [(PD PU PU PD] [PD]1 [PU PD] [] »
[PU PU PD PD]1]

“N [[PD PU PU PD] [PD] [1 [PU PU »
PU PD] [PU PU PD PD11

“0 [((PD PU PD] [PD] [PU PU PD] [1 »
[PD PD PD PDI]

“P [LPD PU PD] [PD PU PD] (PU PU »
PD] [PU PU PD1 [PU PU PU PD]]

“Q [I[PD PU PD] ([(PD] [PU PU PD] »
(PU PD PU PD]1 [PD PU PU PD]]

58

MAKE

MAKE

MAKE

MAKE

MAKE

WORDPLAY

"R [(PD PU PD] [PD PU PD] [PU PU » (PU PU PU PD1]

PD] [PU PU PD PD] [PU PU PU PD]) MAKE “W [(PD] [PD PD] [] [PU PU PU PD] »
"S [[(PU PD] (PU PU PD] [PU PU PD] » (PU PU PD PD]]

[(PU PD PD] [PD]] MAKE “X [[PU PU PU PD] [PU PD] [PU PD] »
“T [(CPU PU PD] [] [PD PU PD] » [PU PU PU PD]]

(PD]] MAKE "Y [[PU PU PU PD] []1 [PU PD] »

“U ([PD] [PD] (] () (PD PD PD » [(PD]1]

PD]1] MAKE “Z [[PU PU PD] [PU PD]) (PU PD PD] »

“V ([PD] [PU PU PU PD] [] [PU PD]1 » [1 [PD PD1]

Mail

When 1 was a kid in school, my friends and I liked passing notes to each
other. It was reflection on this experience that inspired me to write a mail
program. In those olden days, the suspense was great as we waited to see
if we could send messages from one side of the room to another without
getting caught. With this modern method of letting Logo be the mail
carrier, students today find different pleasures.

Using the Program

Since Logo has no mail system of its own, I decided to build one. The
essential actions are sending and receiving mail. This project is just one
example of an electronic mail system. :em.

The program assumes that you have a disk on which daily mail can be
saved. For convenience, you should reserve one diskette specifically to hold
the mes#ges and the mail program.* To start the program, type MAIL. You
will get a screen that looks like this:

------- naIL - - - - - - -

S SEND HMAIL

R TO READ YOUR HAaIL

A TO READ ALL HMAIL
TYPE X TO EXIT

o

-]

TO SAVE ON DISK

TO REINITIALIZE
THE LIST OF MESSAGES

4&

*You may also change the mail program so that you can use a cassette recorder. Then
vou would save to the cassette instead of to the disk.

By Annette Dula,

MAIL

Sending Mail

If you want to send mail, type S.

HHO IS THE MESSAGE FOR?

JLAUREN

HHO IS THE MESSAGE FROM?

JCYNTHIA

BEGIN TYPING YOUR MESSAGE.

PRESS RETURN AFTER EACH TYPED LINE.
PE . ON A SEPARATE LINE TO END.

)FOR HHAT CRIME HERE SOCCO AND

JUANZETTI PUT TO DEAT

2.
SEND IT? C ¥ OR N)

AL ——

First you are asked who the message is for. A prompt (>) appears, and
you type in the name of the person to whom you want to send mail. You
are then asked who the message is from, and you type in your name. Next
you receive instructions. After you type in your message, you are asked if
you really want to send it. If you do, you are informed that the message is
in the mailbox.

Reading Your Mail
To read your mail, type R.

You are asked to type in your name. Once you do, your messages

appear on the screen.

TYPE YOUR NAME TO SEE YOUR MESSAGE":
JLAUREN

LAUREN, HERE ARE YOUR MESSAGES!' ‘!

T0: LAUREN
FOR HWHAT CRIME HERE SQCCO AND
VANZETTI PUT TO DEAT
FROM: CYNTHIA

DELETE MESSAGE? (Y OR N)

WORDPLAY

After reading each message, you are asked if you want to delete it. If
you type Y, that message is deleted.

Reading All the Mail

If for some reason you want to read all the messages that have been
written, type A.

READING ALL MESSAGES

%#T0: LAUR
FOR _HWHAT CRI.‘ HERE SQCCO AND
VANZETTI PUT TO DEATH

FROM: CYNTHIA

SEE MORE MESSAGES? (Y OR N)
% %#70: CYNTHIA

HOM ABOUT GIUING A TALK TO MY
CLASS l!lﬂ' HED pay

FROM: SUSA

SEE MORE lﬁ%SﬁGES" CY OR N
#* %70: BOOKER

S0 YOU THINK IT IS ELITIST 7O
EPUCATE THE MOST TALENTED FOR
LEADERSHIP

FROM: MW.E.B.

SEE MORE MESSAGES? (Y OR N)

After each message, you are asked if you want to see more messages.
If you type Y, you see another message, otherwise you exit from reading all
messages.

Other Commands

Q0 Automatically saves all messages on the diskette. You are asked if the
mail disk is in the drive. If you type Y, the program and all messages
are saved on diskette; otherwise the program stops.

X Stops the program.

Deletes all messages.

Structure of the Mail Program

The Data Base

All the messages are organized into one list named ALL .MESSAGES. For
example, :ALL MESSAGES might look like this:

[L[LTO: JRD] [WHO GOT THE VOTE FIRST: BLACKS OR] [WOMEN]
[FROM: DAVE]]

[[TO: LAUREN) [FOR WHAT CRIME WERE SACCO AND]
[VANZETTI PUT TO DEATH1 [FROM: CYNTHIAJ]]

MAIL

([TO: LISAJIDID THEY EVER DECIDE WHETHER]
[BLACK ENGLISH IS A LANGUAGE OR A DIALECT?]
[FROM: MARGARETI]]

([TO: JAN] [I HEARD THAT THE BLUEBERRY CROP INJ]
[MAINE WILL BE GREAT THIS YEAR.]

[BECAUSE OF THE ACID RAIN.]
(DO YOU BELIEVE IT 7] [FROM: TOM])

[(TO: BOOKER] (DO YOU AGREE WITH ME THAT THE)
[TALENTED TENTH SHOULD RECEIVE)

[EDUCATION FOR LEADERSHIP] [FROM: W.E.B.11]

Each message is itself a list of lists.
The first message in this example is

[L[TO: JRD]

[WHO GOT THE VOTE FIRST: BLACKS OR]
[WOMEN]

[FROM: DAVE]]

This message contains four sublists:

The first is (TO: JRDI.

The second is [WHO GOT THE VOTE FIRST: BLACKS OR1.
The third is (WOMEN],

The last is [FROM. DAVE].

The word 70 and the receiver’s name make up the first list in each
message, while the word FROM and the sender’s name make up the last list
in the message.

The Main Procedure

MATL is the main procedure of the program. It displays the help text,
gets a character command from the user, and checks to see if the command
is valid. If it is, it calls the appropriate procedures to carry out the actions.
These procedures are SEND.MAIL, MY.MESSAGES, READ.ALL MAIL,
REMOVE . ALL .MESSAGES, and DISK.DUMP

T0O MAIL

HELP

MAKE “CHAR RC

IF NOT MEMBERP :CHAR [R S A X Q #) (PR [] PR
[1!INOT A COMMAND.]]

IF :CHAR = "R [MY . MESSAGES]

IF :CHAR = "S [SEND.MAIL]

IF :CHAR = "A [READ.ALL.MAIL]

IF :CHAR = "X [STOP]

IF :CHAR = "“Q [DISK.DUMP STOP]

IF :CHAR = "# [REMOVE.ALL _MESSAGES]

PR []

MATIL

END

HELP puts the menu of possible actions on the text screen.

61

62

WORDPLAY

TO HELP

WAIT 50

CcT

PRy [=ve it = MATIL et]
PR (1

PR [TYPE S TO SEND A MESSAGE]
PR [1

PR [TYPE R TO READ YOUR MAIL]
PR [1]

PR [TYPE A TO READ ALL MAILI
PR (]

PR [TYPE X TO EXIT]

PR (1

PR [TYPE Q TO SAVE ON DISK]
PR []

PR [TYPE # TO REINITIALIZE]
SETCURSOR [7 13]

PR [THE LIST OF MESSAGES]

END

Sending Mail

SEND.MAIL is the main procedure for sending mail. First it asks for the
name of the person who is to receive the message. It then asks for your
name (the sender). You are then given instructions for typing the message.
Finally you are given a chance to change your mind about sending it. If you
decide that you want to send it, the message is included in the list of all
messages.

TO SEND.MAIL

CcT

PR [1

PR [WHO IS THE MESSAGE FOR?]

MAKE “ANS RECEIVER'S.NAME

PR [WHO IS THE MESSAGE FROM?]

MAKE “FROM SENDER’S.NAME

PR [BEGIN TYPING YOUR MESSAGE.]

PR [PRESS RETURN AFTER EACH TYPED LINE.]

PR [TYPE . ON A SEPARATE LINE TO END.]

MAKE “PRESENT.MESSAGE SE FPUT :ANS GET.MESSAGE
[1 LPUT :FROM [)

PR [SEND IT? (Y OR N)]

IF EMPTYP :PRESENT.MESSAGE [STOP]

ADD . THE .MESSAGE :PRESENT.MESSAGE

PR [1

PR E* & * " IT4S - INSTHE MATLBOX & *o®2]
PR []

END

SEND .MAIL uses four subprocedures: RECEIVER'S.NAME,
SENDER 'S .NAME, GET.MESSAGE, and ADD. THE . MESSAGE

MAIL

RECEIVER’S.NAME outputs a sentence of the word 70: and the name
of the person who is to receive the message. SENDER’S. NAME works simi-
larly.

TO RECEIVER'S.NAME
TYPE ">

OP SE “T0: RL

END

TO SENDER’S.NAME
TYPE ">

0P SE "FROM: RL
END

GET.MESSAGE lets you type in a message, line by line. A **.” typed on
a separate line signals the completion of the message.

TO GET.MESSAGE :MSG

TYPE ">

MAKE “EACH.LINE RL

IF :EACH.LINE = [.] [OP :MSG)

0P GET.MESSAGE LPUT :EACH.LINE :MSG
END

In ADD.THE MESSAGE, the typed message is added to
:ALL .MESSAGES.

TO ADD.THE .MESSAGE :PRESENT.MESSAGE
MAKE “ALL.MESSAGES FPUT :PRESENT.MESSAGE :ALL.MESSAGES
END

Reading Your Mail

MY .MESSAGES is the main procedure for reading your own messages.
It gets your name and checks to see if you have any mail by calling
CHECK .MY .MESSAGES.

TO MY.MESSAGES

CT

IF EMPTYP :ALL.MESSAGES [STOP]

PR [TYPE YOUR NAME TO SEE YOUR MESSAGES]

TYPE “>

MAKE “ANS RL

IF EMPTYP :ANS [MY.MESSAGES STOP]

PR [1

PR SE WORD FIRST :ANS ", [HERE ARE YOUR MESSAGES!!!]
PR [1

CHECK.MY.MESSAGES :ANS :ALL.MESSAGES @

END

CHECK . MY .MESSAGES checks each message in : LIST to see if it is for
you. CHECK . MY .MESSAGES takes three inputs. The first is : WH0, the name of
the person (you) whose mail it is looking for. The second, : L157, is the list
of messages. The third, : COUNTER, is a message counter that is needed if you
should decide to delete a message.

WORDPLAY

T0 CHECK.MY.MESSAGES :WHO :LIST :COUNTER

PR []

IF EMPTYP :LIST [PR [* * * * * * THAT'S IT * * = * * *]
STOP]

IF EQUALP FIRST :WHO FIRST BF FIRST FIRST :LIST
[PRINT.AND.DELETE FIRST :LIST :COUNTER]

PR (1

PR (]

CHECK.MY.MESSAGES :WHO BF :LIST (1 + :COUNTER)

END

CHECK .MY .MESSAGES calls PRINT.AND . DELETE, which prints a mes-
sage and asks if you want to delete it.

TO PRINT.AND.DELETE :MESSAGE :COUNTER

PRINT.MESSAGE :MESSAGE

PR [1

TYPE [DELETE MESSAGE? (Y OR N)]

IF RC = “Y [MAKE “ALL.MESSAGES DELETE :COUNTER :ALL.MESSAGES

END

PRINT.AND.DELETE uses PRINT MESSAGE and DELETE.
PRINT .MESSAGE prints a single message, consisting of the receiver’s
name, then the message, and finally the sender’s name.

TO0 PRINT.MESSAGE :MSG
IF EMPTYP :MSG [STOP]
PR FIRST :MSG
PRINT.MESSAGE BF :MSG
END

TO DELETE :N :LIST

IF EMPTYP :LIST [OP [1]

IF :N =9 [OP BF :LIST)

OP FPUT FIRST :LIST DELETE :N - 1 BF :LIST
END

Reading All the Mail

The main procedure for reading all the mail is READ . ALL .MAIL; it calls
the message-printing procedure, PRINT . ALL MESSAGES,

TO READ.ALL.MAIL

cT

PR [READING ALL MESSAGES]
PRINT.ALL.MESSAGES :ALL.MESSAGES
END

PRINT.ALL.MESSAGES prints each message and asks you if you want to
see more messages.

MAIL

TO PRINT.ALL.MESSAGES :ALL

PR (]

IF EMPTYP :ALL [PR [* * * * * NO MORE MESSAGES * * * * *]
STOP)

TYPE [* %]

PRINT .MESSAGE FIRST :ALL

TYPE [READ MORE MESSAGES? (Y OR N)J

IF RC = "N [PR [1 PR [* * * YOU EXITED MAIL READER * * *]
STOP]

PRINT.ALL.MESSAGES BF :-ALL

END

TO PRINT.MESSAGE :MSG
IF EMPTYP :MSG [STOP)
PR FIRST :MSG
PRINT.MESSAGE BF :MSG
END

Saving on the Diskette

DISK.DUMP saves on the disk. First it reminds you to put the disk in the
drive.*

TO DISK.DUMP

PR []

PR 11

PR (]

PR [IS THE DISK IN THE DRIVE???2?2 (Y OR N))
IF RC = "Y [SAVE "D:MAIL]

END

Reinitializing the List of Messages

REMOVE ALL.MESSAGES clears all messages from the list of messages.

T0 REMOVE.ALL.MESSAGES
MAKE "ALL .MESSAGES (]

END
PROGRAM LISTING

TO MATL IF :CHAR = "“Q [DISK.DUMP STOP]
HELP IF :CHAR = "# [REMOVE. ALL.MESSAGES)
MAKE “CHAR RC PR [1]
IF NOT MEMBERP :CHAR [R S A X Q #] [PR » MATL

[PR [!!INOT A COMMAND.J]] END
IF :CHAR = "R [MY.MESSAGES)
IF :CHAR = "S [SEND.MAIL) TO REMOVE.ALL.MESSAGES
IF :CHAR = "A [READ.ALL.MAIL] MAKE "ALL.MESSAGES (]
IF :CHAR = "X [STOP] END

*1f you are using a cassette instead of a diskette, you must change the last instruction in
DISK._DUMP so that it saves to a cassette: IF RC = *Y [SAVE "C:)

66 WORDPLAY

TO HELP TO GET.MESSAGE :MSG
WAIT 59 TYPE “>
CcT MAKE "“EACH.LINE RL
R = = = MAIL:= =i = 1 IF :EACH.LINE = [.] [OP :MSG]
PR [] OP GET.MESSAGE LPUT :EACH.LINE :MSG
PR [TYPE S TO SEND A MESSAGE] END
PR []
PR [TYPE R TO READ YOUR MAIL] TO ADD.THE.MESSAGE :PRESENT.MESSAGE
PR [1 MAKE “ALL.MESSAGES FPUT »
PR L[TYPE A TO READ ALL MAIL] ;PRESENT.MESSAGE :ALL.MESSAGES
PR [1 END
PR [TYPE X TQ EXITI]
PR [1 TO MY.MESSAGES
PR [TYPE Q TO SAVE ON DISK] cT
PR [1] IF EMPTYP :ALL.MESSAGES [STOP]
PR [TYPE # TO REINITIALIZE] PR [TYPE YOUR NAME TO SEE YOUR »
SETCURSOR [7 13] MESSAGES]
PR [THE LIST OF MESSAGES] TYeE: ">
END MAKE "ANS RL
IF EMPTYP :ANS [MY.MESSAGES STOP]
TO SEND.MAIL PR []
cT PR SE WORD FIRST :ANS ", [HERE ARE »
PR [] YOUR MESSAGES!!!]
PR [WHO IS THE MESSAGE FOR?) PR []
MAKE “ANS RECEIVER'S.NAME CHECK .MY.MESSAGES :ANS :ALL.MESSAGES 0
PR [WHO IS THE MESSAGE FROM?) END
MAKE “FROM SENDER’S.NAME
PR [BEGIN TYPING YOUR MESSAGE.] TO CHECK.MY MESSAGES :WHO :LIST »
PR [PRESS RETURN AFTER EACH TYPED » :COUNTER
LINE.] PR [1
PR [TYPE . ON A SEPARATE LINE TO END.] IFEMPTYR S LIST IPR [% %re ey
MAKE "PRESENT.MESSAGE SE FPUT :ANS » THATESALT # & & & « 93 STOP]
GET.MESSAGE [] LPUT :FROM I[1 IF EQUALP FIRST :WHO FIRST BF FIRST »
PR [SEND IT? (Y OR N)] FIRST :LIST [PRINT.AND.DELETE »
IF RC = "N [PR [!!!!IMESSAGE » FIRST :LIST :COUNTERI]
DELETED!!!!!]1 WAIT 50 STOP] PR (]
[F EMPTYP :PRESENT.MESSAGE [STOP] PR (]
ADD. THE .MESSAGE :PRESENT.MESSAGE CHECK.MY.MESSAGES :WHO BF :LIST (1 + »
PR [1 :COUNTER)
PR [* * * * IT'S IN THE MAILBOX * * * » END
*l
PR [1 TO PRINT.AND.DELETE :MESSAGE :COUNTER
END PRINT .MESSAGE :MESSAGE
PR (]
TO RECEIVER'S.NAME TYPE [DELETE MESSAGE? (Y OR N)]
TYPE “> IF RC = “Y [MAKE “ALL.MESSAGES DELETE »
0P SE “TO: RL :COUNTER :ALL.MESSAGES PR []1 PR »
END [!!!1IMESSAGE DELETED!!!!!]]
END

TO SENDER’S.NAME
TYPE ">

0P SE “FROM: RL
END

TO DELETE :N :LIST

IF EMPTYP :LIST [OP [1)

IF :N =@ [OP BF :LIST]

OP FPUT FIRST :LIST DELETE :N - 1 BF »
(LIST

END

TO READ.ALL.MAIL

cT

PR [READING ALL MESSAGES]
PRINT.ALL.MESSAGES :ALL.MESSAGES
END

TO PRINT.ALL.MESSAGES :ALL
PR [1]

[F EMPTYP :ALL [PR [* * * * * NO MORE »

MESSSAGES * * * * *] STOP]
TYPE [* *]
PRINT.MESSAGE FIRST :ALL
TYPE [READ MORE MESSAGES? (Y OR N)J
IF RC = “N [PR [1 PR [* * * YOU »
EXITED MAIL READER * * *]1 STOP]
PRINT.ALL.MESSAGES BF :ALL
END

TO PRINT.MESSAGE :MSG
IF EMPTYP :MSG [STOP]
PR FIRST :MSG

PRINT .MESSAGE BF :MSG
END

WORDSCRAM 67

T0
PR
PR
PR
PR

IF

END

DISK.DUMP

[]

[]

]

(IS THE DISK IN THE DRIVE??722? (Y »
OR N1

RC = "Y [SAVE "“D:MAIL]

MAKE “ALL.MESSAGES [[[TO: LAUREN] [FOR »

WHAT CRIME WERE SACCO AND] »
[VANZETTI PUT TO DEATH?] [FROM: »
CYNTHIA]] [[TO: CYNTHIA] [HOW »
ABOUT GIVING A TALK TO MY) [CLASS
NEXT WEDNESDAY1 [FROM: SUSAN]] »
((TO0: BOOKER] [SO YOU THINK IT IS »
ELITIST TOl [EDUCATE THE MOST »
TALENTED FOR] [LEADERSHIP] [(FROM: »
W.E.B.J]1 [[TO: LAUREN] [I HEARD »
THAT THE BLUEBERRY) [CROP IN »
MAINE WILL BE GREAT] [NEXT YEAR »
BECAUSE OF THE ACID RAIN.) [FROM: »
TOMI] [[TO: TO LISA] (IS BLACK »
ENGLISH CONSIDERED] [A LANGUAGE »
OR A DIALECT?] [FROM: MARGARETI1 »
[[TO: JRD] [WHO GOT THE VOTE »
FIRST] [BLACKS OR WOMEN?] [FROM: »
DAVE]]]

Wordscram

A Word Guessing Game

WORDSCRAM picks a word, scrambles the letters, and shows you the scram-
bled version of the word. Your job is to guess the word. (In this sample game,
the word is chosen from a list of thirty or forty technical Logo terms.)
WORDSCRAM helps you by showing which letters in your guess are in the
correct spot. You can also type HINT if you need a hint, or HELP if you want

to give up. Here is a sample of WORDSCRAM in action.

By Keith Sharman.

WORDPLAY

7WORDSCRAM

WELCOME TO WORDSCRAM !

DO YOU WANT INSTRUCTIONS ? N
THINKING. . ..

OK. HERE IS YOUR SCRAMBLED WORD:
RSNRUCQE!

WHAT'S YOUR GUESS ?
RE Two letters correct.

WHAT'S YOUR GUESS ?
RE

WHAT'S YOUR GUESS ?

HINT Get a hint.
WELL...0K...TRY REC Computer responds.
WHAT’S YOUR GUESS 7

RECUSR S and R not correct.
L 7 ?

WHAT'S YOUR GUESS ?
RECURSION

DOING GREAT ! Cot it!
DO YOU WANT ANOTHER WORD ? Y
THINKING. . .

0K. HERE IS YOUR SCRAMBLED WORD:
PUUTOT

WHAT'S YOUR GUESS ?
HELP I give up.

THE WORD WAS QUTPUT
DO YOU WANT ANOTHER WORD 7 N

Program ends.

Scrambling a Word

The heart of WORDSCRAM is SCRAMBLE. It takes a word as input and outputs
a scrambled version of it, The strategy goes something like this. Let's say
the word to scramble is “draw.”

1. Pick a letter from the word at random.

2. To make sure that the letter does not get picked again, remove it
from the word.

3. Join the letter just picked to the result of scrambling the remaining
letters of the word. Continue until there are no more letters left.

Using the word “draw™ as an example, we might get this result:

WORDSCRAM 69

SCRAMBLE "DRAW
W + SCRAMBLE "DRA
R + SCRAMBLE “DA
A + SCRAMBLE "D
D + SCRAMBLE “

The assembled word is “wrad.”

SCRAMBLE picks a letter from the word, then uses that letter in two
ways: it removes the letter from the word (to get the input for the recursive
invocation of SCRAMBLE), and it sticks the same letter back onto the begin-
ning of the scrambled word. To make this work, after SCRAMBLE picks a
letter, it invokes a subprocedure, SCRAMBLE 1 whose second input is the
letter to remove from the word.

TO SCRAMBLE :WORD

IF EMPTYP :WORD [OP "]

OP SCRAMBLE1l :WORD RANPICK :WORD
END

TO SCRAMBLE1 :WORD :LETTER
OP WORD :LETTER (SCRAMBLE REMOVE :LETTER :WORD)
END

Here is how SCRAMBLE and SCRAMBLE1 interact, in the same example
we looked at before.

SCRAMBLE "DRAW
SCRAMBLE1 "DRAW "W
SCRAMBLE "“DRA
SCRAMBLE1 “DRA “R
SCRAMBLE “DA
SCRAMBLEL "DA "A
SCRAMBLE “D
SCRAMBLE1 “D "D
SCRAMBLE *
SCRAMBLE outputs “
SCRAMBLE1 outputs “D whichis WORD “D ”
SCRAMBLE outputs "D
SCRAMBLE1 outputs “AD whichis WORD “A “D
SCRAMBLE outputs “AD
SCRAMBLE1 outputs “RAD whichis WORD "R "AD
SCRAMBLE outputs “RAD
SCRAMBLE1 outputs "WRAD whichis WORD “W “RAD
SCRAMBLE outputs “"WRAD

Removing a Letter from a Word

REMOVE takes two inputs, a letter and a word. It compares the input letter
with each letter of the input word. When it finds a matching letter, it
outputs the word with that letter removed.

70

WORDPLAY

7PRINT REMOVE “U "RECURSION

RECRSION
?

REMOVE works by comparing the input letter with the first letter of the input
word. If they match, then the BUTFIRST of the word is the output we want.
Otherwise, the output is formed by joining the first letter of the input word
with the result of REMOVEing the input letter from the rest of the word.

TO REMOVE :LETTER :WORD

IF :LETTER=FIRST :WORD [OP BF :WORD] Send back the rest.
0P WORD FIRST :WORD REMOVE :LETTER BF :WORD
END

Here is how the preceding example (using RECURSION as the word) hap-
pens.

REMOVE “U “RECURSION
REMOVE “U “"ECURSION
REMOVE “U “CURSION
REMOVE “U “URSION
REMOVE outputs “RSION
REMOVE outputs “CRSION whichis WORD “C “RSION
REMOVE outputs “ECRSION whichis WORD “E “CRSION
REMOVE outputs “RECRSION whichis WORD “R “ECRSION

The remaining procedures in this program are straightforward and
won't be explained in detail. You can look at the program listing to see what
they are.

SUGGESTIONS
Here are a few ideas for changing WORDSCRAM.

* Change the list of words it knows.

* Tell the player how many guesses it took to get the word.

After the player guesses the word, ask if she or he would like to see

the definition of the word. Since WORDSCRAM’s words are technical

Logo terms, this would be an interesting way to learn about Logo.

* Add some new messages.

* Do some psychology experiments. Some words look very strange
when scrambled. Does this “strangeness” vary from person to per-
son? Some people are better at unscrambling words than others.
Why? What sort of strategy do you apply to unserambling a word?
Does it resemble other problem-solving strategies vou use?

WORDSCRAM

71

PROGRAM LISTING

TO WORDSCRAM

TS

CT

PR [WELCOME TO WORDSCRAM !1

PR []

PR [DO YOU WANT THE INSTRUCTIONS ?)

IF GETANSWER RC [INSTRUCTIONS] [PR []1]
PLAYGAME WIN.MESSAGES GETWORDS

END

SEE IF THE USER WANTS INSTRUCTIONS

TO GETANSWER :ANS

IF :ANS = "Y [TYPE "YES. OP “TRUE]
IF :ANS = "N [TYPE “NO. OP "FALSE]
PR [PLEASE ANSWER WITH Y OR N]

0P GETANSWER RC

END

TO INSTRUCTIONS

TS CT

PR (SE [FROM A LIST OF] COUNT GETWORDS [LOGC WORDS, THE])
PR [COMPUTER WILL PICK ONE AT RANDOM AND]
PR [SCRAMBLE IT FOR YOU. YOUR JOB IS]

PR [TO UNSCRAMBLE IT.]

PR (]

PR [IT IS NOT NECESSARY TO GUESS THE WORD]
PR [ON THE FIRST TRY. THE COMPUTER WILL]
PR [TELL YOU WHICH LETTERS YOU HAVE IN]
PR [THE RIGHT POSITION BY PRINTING Al

PR [STAR UNDER EACH CORRECT LETTER. Al

PR [LETTER IN THE WRONG POSITION WILL]

PR [HAVE A ? UNDER IT.]

PR (1

PR [IF YOU ARE REALLY STUCK, TYPE HINT]
PR [FOR A HINT OR HELP TO SEE THE WORD.]
PR (1

PR [GOOD LUCK.]

PR [1

TYPE [PRESS ANY KEY TO START...]

MAKE "DUMMY RC

END

STARTING THE GAME PLAY

TO PLAYGAME :WIN MESSAGES :WORDS

CcT

PR [THINKING ...]

PLAYGAME1 RANPICK :WORDS

IF ANOTHER? [PLAYGAME :WIN.MESSAGES :WORDS] [PR []1]
END

72 WORDPLAY

TO PLAYGAME1 :WORD

MAKE “SCRAMBLED SCRAMBLE :WORD

PR []

PR [0K. HERE IS YOUR SCRAMBLED WORD:]
PR :SCRAMBLED

MAKE “TOO.MANY.HINTS "FALSE

MAKE “GUESSED.WORDS SE FIRST :WORD (]
GET

END

SCRAMBLING THE WORD

TO SCRAMBLE :WORD

IF :WORD = " [OP "]

0P SCRAMBLE1 :WORD RANPICK :WORD
END

TO SCRAMBLE1 :WORD :LETTER
OP WORD :LETTER (SCRAMBLE REMOVE :LETTER :WORD }
END

TO REMOVE :LETTER :WORD

IF :LETTER = FIRST :WORD [QUTPUT BF :WORD]
OUTPUT WORD FIRST :WORD REMOVE :LETTER BF :WORD
END

GETTING THE USER'S GUESS

TO GET

PR []

PR [WHAT'S YOUR GUESS ?1

IF (NOT (ROW < 23)) [REFRESH.SCREEN]
GETGUESS FIRST RL

END

TO ROW
0P .EXAMINE 171
END

TO REFRESH.SCREEN
SAVE . CURSOR
REDISPLAY
RESTORE.CURSOR
END

TO GETGUESS :GUESS

IF EMPTYP :GUESS [OP GETGUESS FIRST RL]

IF :GUESS = "HELP [SHOW.WORD STOP]

IF :GUESS = “HINT [HINT LAST :GUESSED.WORDS GET STOP]

ADDGUESS :GUESS COMPARE :GUESS :WORD

IF :GUESS = :WORD [PR []1 PR RANPICK :WIN.MESSAGES »
STOP] [GET]

END

WORDSCRAM

CHECK THE GUESS FOR CORRECT AND INCORRECT LETTERS

TO ADDGUESS :GUESS

MAKE “GUESSED.WORDS LPUT :GUESS :GUESSED.WORDS
END

TO COMPARE :GUESS :CORRECT
IF ¢ OR (:GUESS = ")} (:CORRECT = ")) [PR [] STOP]
IF ¢ C FIRST :GUESS) = (FIRST :CORRECT)) >
[TYPE [*1]1 [TYPE (?]]
COMPARE BF :GUESS BF :CORRECT
END

HINT AND HELP

TO HINT :G

IF ¢ OR (:G = BL :WORD > (:G = (BL BL :WORD))) >
(MAKE "TOO.MANY.HINTS “TRUE]

IF :TOO.MANY . HINTS [PR [YOU DON'T NEED A HINT!) >
PR [THINK SOME MORE.] STOP]

TYPE [WELL]

DODOTS (1 + RANDOM 7)

TYPE [0K]

DODOTS (1 + RANDOM 5)

PR SE [TRY] HINTWORD1 :G :WORD

END

TO HINTWORD1 :W1 :W2

IF EMPTYP :W2 [OP [1]]

IF EMPTYP :W1 [OP FIRST :W2)

IF NOT EQUALP FIRST :Wl FIRST :W2 [OP FIRST :W2]
OP WORD FIRST :W2 HINTWORD1 BF :W1 BF :W2

END

TO DODOTS :N

IF :N =9 [STOP]
WAIT 5

TYPE [.]

DODOTS :N -1
END

TO SHOW.WORD

PR []

PR SE [THE WORD WAS] :WORD
END

MISCELLANEOUS PROCEDURES

TO ITEM :N :0BJECT

I[F :N =1 [OUTPUT FIRST :0BJECT]
QUTPUT ITEM :N - 1 BF :0BJECT
END

73

74 WORDPLAY

TO RESTORE.CURSOR
SETCURSOR :CURSOR
END

TO REDISPLAY

SETCURSOR (¢ 0]

PR [THINKING.....]

PR [1]

PR [OK. HERE IS YOUR SCRAMBLED WORD:]
PR :SCRAMBLED

PR (]

END

TO SAVE.CURSOR

PR (]

MAKE "“CURSOR LIST (.EXAMINE 172) - 1 (.EXAMINE 171) -1
END

TO ANOTHER?

PR [

PR [DO YOU WANT ANOTHER WORD 7]
0P GETANSWER RC

END

TO RANPICK :L
OP ITEM (1 + RANDOM COUNT :L) :L
END

TO GETWORDS

OP [CATALOG TURTLE FORWARD BACK LEFT RIGHT PROCEDURE >
INPUT RECURSION SETBG CIRCLE SQUARE LOGO GRAPHICS >
EDIT REPEAT POTS DEFINE COUNT HEADING MEMBERP NODES >
PADDLE DYNATURTLE INSTANT BUTFIRST PENDOWN PENUP >
PRODUCT RANDOM SETCURSOR SETPC WINDOW TOUCHING MAKE >
BUTLAST OUTPUT HIDETURTLE SQRT]

END

TO WIN.MESSAGES

OP [[HEY, YOU'RE PRETTY SMART] [WHAT A FLUKE!] >
[WE ALL GET LUCKY ONCE IN A WHILE!] >
[A GOLD STAR FOR YOU] [1 POINT FOR YOU!] >
[DOING GREAT!!] [KEEP UP THE GOOD WORK...1]

END

Madlibs™

This project plays the game of Madlibs.* The program asks for words or
phrases with which to fill in the blanks in an already-prepared story. Then
it prints the resulting story.

**Madlibs" is a trademark of Price/Stern/Sloan.

By Brian Harvey; story template by Susan Cotten.

MADLIBS

Here is an example of a story to be used with the program.

AT " WAS ING DOWN THE
time of day person way to move
STREET. SPOTTED A DIGGING IN A
person animal
GARBAGE CAN ACROSS THE STREET. BEGAN TO
person

IN THE OPPOSITE DIRECTION BUT IT WAS TOO LATE.
way to move

THE SAW . 1T BEGAN TO CHASE
animal person

TRIPPED AND FELL. THE

person person

CAME UP BESIDE AND BEGAN TO WAG ITS
animal person
X REALIZED THERE WAS NOTHING TO
body part person
FEAR. REACHED QUT AND PATTED THE
person animal

Here is what happens when you use the program with this story.

7MADLIB :STORY1

TELL ME A TIME OF DAY

DUSK

TELL ME A PERSON’S NAME

URSULA

TELL ME A WAY T0 MOVE

Jump

TELL ME AN ANIMAL YOU FEAR

RAT

TELL ME A BODY PART

TOE

AT DUSK, URSULA WAS JUMPING DOWN THE STREET.

URSULA SPOTTED A RAT DIGGING IN A GARBAGE CAN ACROSS
THE STREET. URSULA BEGAN TO JUMP [N THE OPPOSITE
DIRECTION BUT [T WAS TOO LATE. THE RAT SAW URSULA. IT
BEGAN TO CHASE URSULA. URSULA TRIPPED AND FELL. THE
RAT CAME UP BESIDE URSULA AND BEGAN TO WAG ITS TOE.
URSULA REALIZED THAT THERE WAS NOTHING TO FEAR. URSULA

REACHED OUT AND PATTED THE RAT.
?

75

WORDPLAY

How a Story Is Represented

A story is represented as a list that contains words and lists (which we'll refer
to as sublists). The sublists are the blanks of the story. Here is the list that
represents the preceding example.

MAKE “STORY1 [AT * [HOUR TIME OF DAY]

, [PERSON PERSON'S NAME]

WAS * [MOTION WAY TO MOVE] ING DOWN THE STREET. [PERSON]
SPOTTED A [ANIMAL ANIMAL YOU FEAR) DIGGING IN A GARBAGE CAN
ACROSS THE STREET. [PERSON] BEGAN TO [MOTION] IN THE
OPPOSITE DIRECTION BUT IT WAS TOO LATE. THE [ANIMAL] SAW

* [PERSON] . IT BEGAN TO CHASE * [PERSON] . [PERSON] TRIPPED
AND FELL. THE [ANIMAL] CAME UP BESIDE [(PERSON] AND BEGAN

TO WAG ITS * [ANATOMY BODY PART] . [PERSON] REALIZED THERE
WAS NOTHING TO FEAR. [PERSON] REACHED OUT AND PATTED

THE * [ANIMAL] .]

Each word or phrase that the user types to replace a blank is given a
name, so that the program is able to remember it. The named phrase can
be used to fill more than one blank. The sublist

[MOTION WAY TO MOVE]
signals the program to type
TELL ME A WAY T0 MOVE

and to give what the user types the name MOTION. Later the sublist
[MOT10N] appears in :STORY1 without the prompting phrase WAY T0
MOVE. This signals the program to fill the blank with the word or phrase
named MOTION, without asking for a new motion.

The Procedures

The top-level procedure is MADL18.

TO MADLIB :STORY
PRINT FILL.IN :STORY
END

MADLIB invokes FILL . IN and prints its output, which is a story list with the
blanks filled in.

The job of FILL . INis to go through the story list, one element at a time.
If an element is a word, that word itself should be part of the output. If the
element is a list, it has to fill a blank. Here is the procedure.

T0 FILL.IN :STORY
[F EMPTYP :STORY [OP [1]]
[F WORDP FIRST :STORY
[OP FPUT FIRST :STORY FILL.IN BF :STORY]
[F NOT EMPTYP BF FIRST :STORY [FILL.BLANK FIRST :STORY]
OP SE THING FIRST FIRST :STORY FILL.IN BF :STORY
END

MADLIBS

This procedure has the overall structure of a recursive operation that
does something to every element of a list.

The first instruction is the end test for the input list being empty.

The next line checks for the case in which the first element of the list
is a word. In that case, we want to put the word itself in the output.

If the first element isn’t a word, it's a blank to be filled. There are two
cases. If the list contains more than one word, like [MOTION WAY T0
MOVE], that means that the user must be asked for a WAY T0 MOVE to fill
the blank. The name for what the user types is the first word of the list,
MOTION. FILL.BLANK handles this interaction.

?SHOW FILL.IN [[MOTION WAY TO MOVE] QUICKLY! 1
TELL ME A WAY TO MOVE
PERAMBULATE

[PERAMBULATE QUICKLY!]
?

If the first element is a list that has only one word, like [MOTI0N], then
we use the word or phrase that was remembered under that name.

?SHOW FILL.IN [HELLO, [PERSON NAME];HOW IS [PERSON] TODAY?]
TELL ME A NAME
JONATHAN

[HELLO, JONATHAN ; HOW IS JONATHAN TODAY?]
?

The last line of FILL IN provides the output for both kinds of sublists.

Filling Blanks by Asking Questions

FILL.BLANK has two tasks: it asks the user for a word or phrase, and it gives
what the user types a name.

TO FILL.BLANK :BLANK

PR SE [TELL ME] ARTICLE BF :BLANK
MAKE FIRST :BLANK RL

END

By the way, this is a good example of the use of MAKE with a first input that
is not a quoted word. The name of the variable we want to set is part of the
story list and does not appear in the text of the procedure.

An elegant detail of FILL.BLANK is that it figures out whether to use
A or AN in prompting for a word or phrase. Here is the subprocedure that
does the figuring.

TO ARTICLE :PROMPT

IF VOWELP FIRST FIRST :PROMPT [OP SE "AN :PROMPT]
0P SE "A :PROMPT

END

TO VOWELP :LETTER
0P MEMBERP :LETTER [A E I 0 U]
END

78

WORDPLAY

Handling Punctuation

If a blank to be filled is the last thing in a sentence in the story, there is the
problem of putting a punctuation mark at the end, without making it a
separate word. For example, in our story we have a sentence that ends

SAW [PERSON]

If the variable PERSON contains the word URSULA, we'd like the finished
story to end

SAW URSULA,
But if we don't treat this as a special case, the period will be a word by itself:
SAW URSULA .

The solution I chose is to use an asterisk in the story to mean “take the
next two elements in the list and combine them as one word.” That’s a slight
simplification, though, because the next element may be an entire phrase,
and only the last word of the phrase can be combined with the punctuation
character that follows. The procedure that does the combining is this.

TO PUNCTUATE :STUFF :PUNCT

IF WORDP :STUFF [OP WORD :STUFF :PUNCT]
OP SE BL :STUFF WORD LAST :STUFF :PUNCT
END

Here is a revised version of FILL. IN that uses PUNCTUATE.

TO FILL.IN :STORY

IF EMPTYP :STORY (0P [1]

IF EQUALP FIRST :STORY “* [OP SE (PUNCTUATE FILL.IN
(FPUT FIRST BF :STORY [1) FIRST BF BF :STORY)
FILL.IN BF BF BF :STORY]

IF WORDP FIRST :STORY

{OP FPUT FIRST :STORY FILL.IN BF :STORY]

IF NOT EMPTYP BF FIRST :STORY [FILL.BLANK FIRST :STORY]

OP SE THING FIRST FIRST :STORY FILL.IN BF :STORY

END

PROGRAM LISTING

TO MADLIB :STORY
PRINT FILL.IN :STORY
END

TO FILL.IN :STORY
IF EMPTYP :STORY [0P [1]
IF EQUALP FIRST :STORY "*

[(FILL.BLANK FIRST :STORY]

OP SE THING FIRST FIRST :STORY FILL.IN »
BF :STORY

END

TO FILL.BLANK :BLANK
[OP SE » PR SE [TELL ME) ARTICLE BF :BLANK

(PUNCTUATE FILL.IN (FPUT FIRST BF » MAKE FIRST :BLANK RL

:STORY (1) FIRST BF BF :STORY) » END
FILL.IN BF BF BF :STORY]
1F WORDP FIRST :STORY [OP FPUT FIRST » TO VOWELP :LETTER
:STORY FILL.IN BF :STORY] 0P MEMBERP :LETTER [A E I 0 U]

IF NOT EMPTYP BF FIRST :STORY » END

TO ARTICLE :PROMPT

IF VOWELP FIRST FIRST :PROMPT [OP SE »
“AN :PROMPT]

0P SE "A :PROMPT

END

TO PUNCTUATE :STUFF :PUNCT

IF WORDP :STUFF [OP WORD :STUFF »
:PUNCT]

QP SE BL :STUFF WORD LAST :STUFF »
:PUNCT

END

MAKE “STORY1 [AT * [HOUR TIME OF DAY] »
, [PERSON PERSON'S NAME] WAS * »

MADLIBS

[MOTION WAY TO MOVE] ING DOWN THE »
STREET. [PERSON] SPOTTED A »
[(ANIMAL ANIMAL YOU FEAR] DIGGING »
IN A GARBAGE CAN ACROSS THE »
STREET. [PERSON] BEGAN T0 »
[MOTION] IN THE OPPOSITE »
DIRECTION BUT IT WAS TOO LATE. »
THE [ANIMAL] SAW * [PERSON] IT »
BEGAN TO CHASE * [PERSON] . »
[PERSON] TRIPPED AND FELL. THE »
[ANIMAL] CAME UP BESIDE [PERSON] »
AND BEGAN TO WAG ITS * [ANATOMY »
BODY PART]) . [PERSON] REALIZED »
THERE WAS NOTHING TO FEAR. »
[(PERSON] REACHED OUT AND PATTED »
THE * [ANIMAL] .1

79

2

Stories

Exercise

In this project you watch a stick figure go through exercises consisting of
jumping jacks and jumping on a trampoline. In the end, the figure collapses
from exhaustion.

A K

The idea for this animated story came about when I was playing with
the shape editor. I wanted a stick figure to perform a jumping jack. I divided
the jumping jack exercise into two parts. In the first part, the figure has its
arms extended upward and legs apart; in the second part, the figure has its
arms at its side and legs together. I designed the following two shapes in
the shape editor to represent these stances.

Next I wrote a short procedure to see what these shapes would look like
when put together.

TO TEST
SETSH 1
WAIT 5
SETSH 2
WAIT 5
TEST
END

By Susan Cotten.

EXERCISE

The movement was jerky. I made a third shape, which had its arms
extended downward and its legs apart. I added this shape to TEST. The
three shapes, interspersed with WA1T, made for a fairly smooth jumping
jack.

Here is the sequence of shapes that I use for the jumping jack.

P AR

I began to think of other things I could do with my figure. What about
jumping on a trampoline? I sketched a trampoline. I saw that the trampo-
line bed could be drawn using two arcs. After I'd figured out how to draw
the trampoline, I put the first stick figure in the sequence on it and wrote
a procedure to make the figure jump up and down on the trampoline. I also
added a 7007 that sounded a boing whenever the figure bounced on the
trampoline.

I then made a shape for the turtle to wear while getting up on the
trampoline.

What next? I recalled how 1 felt after a good workout. It might be
interesting to make the figure collapse on the floor. The figure would begin
this sequence standing upright, then would bend over and collapse.

Here are the shapes.

T A

I hadn't yet written the procedures to connect the exercises, but my
general plan was to have the figure walk from sequence to sequence. These
are the three shapes that I used for the walking motion.

AR

81

82

STORIES

I used nine shapes in my story. I named these shapes FIGUREL,
F1GURE2, and so forth. The shapes as seen in the editor and the list of
numbers describing them are printed at the end of this write-up.

Putting It All Together

Here are the procedures that make up EXERCISE. They are listed in order
of use.
The top-level procedure in this program is EXERCISE.

TO EXERCISE

SETUP

JUMPING. JACKS

MOVE . TO. TRAMPOLINE
JUMPING.ON. TRAMPOLINE
GET.OFF . TRAMPOLINE
COLLAPSE

END

SETUP readies the screen and turtle for the first exercise sequence.

TO SETUP

TELL ©

CS HT FS

SETBG 72
READY . SHAPES

DRAW. TRAMPOLINE
READY . JUMPING.JACKS
END

READY . SHAPES takes care of putting the shapes into the shape table.

TO READY.SHAPES
PUTSH 1 :FIGUREl

PUTSH 2 :FIGURE2
PUTSH 3 :FIGURE3
PUTSH 4 :FIGURE4
PUTSH 5 :FIGURES
PUTSH 6 :FIGURE®
PUTSH 7 :FIGURE?
PUTSH 8 :FIGURES
PUTSH 9 :FIGURE9
END

DRAW. TRAMPOL I NE draws the trampoline in the middle of the screen.

TO ORAW.TRAMPOLINE
SETPN @

SETPC 0 37
TRAMP . BED
TRAMP . LEGS

END

EXERCISE

TO TRAMP.BED
PD

RT 45

ARCR 8 5

RT 99

ARCR 8 5
SETH o

END

TO ARCR :STEPS :TIMES
REPEAT :TIMES [RT 9 FD :STEPS RT 9]
END

TO TRAMP.LEGS
FRONT. LEG

SETPOS [8.67 =-5]
BACK.LEG

SETPOS [28.67 -5]
BACK.LEG

SETPOS [36.67 01
FRONT. LEG

END

TO FRONT.LEG
PD

BK 8

FD 8

PU

END

T0 BACK.LEG
PD

BK 3

FD 3

PU

END

READY.JUMPING.JACKS moves the turtle over to the left side of the
screen and sets its shape for the first exercise.

TO READY.JUMPING.JACKS
PU SETPOS [-60 01 PD
SETSH 3 SETC 7 ST

END

The figure performs six jumping jacks. Whenever the figure touches
the ground, Logo makes a sound, a T00T. At the end of this exercise, the
turtle sets its shape to the standing figure.

TO JUMPING.JACKS

REPEAT & [JUMPING.JACKS1]
SETSH 3

END

STORIES

TO JUMPING.JACKS1

SETSH 3 WAIT 29

SETSH 2 TOOT 0 80 10 5 WAIT 20
SETSH 1 WAIT 2@

END

MOVE . TO. TRAMPOL I NE takes care of moving the turtle over to and then
up on the trampoline.

TO MOVE.TO.TRAMPOLINE
WALK 19

SETSH 7

SETH 45 FD 12

SETH 99 FD 20

SETH @ BK 2

SETSH 3

END

The input to WALK tells it how far to move, that is, how many times to
repeat USE. SHAPES WALK.

TO WALK :DISTANCE

PU SETH 90

REPEAT :DISTANCE [USE.SHAPES.WALK]
END

TO USE.SHAPES.WALK

SETSH 4 WAIT 5 FD 5

SETSH & WAIT 5

SETSH 5 WAIT 5

SETSH 6 TOOT @ 200 15 2 WAIT 5
END

The figure is now standing on the trampoline.
JUMPING. ON. TRAMPOL I NE makes the figure jump up and down by running
JUMP fifteen times.

TO JUMPING.ON.TRAMPOLINE
REPEAT 15 [JUMP]
END

T0 JUMP

FD 15 WAIT 2

BK 15 WAIT 190

TOOT @ 80 10 5 WAIT 12
END

At this point the figure is through exercising. GET.0FF . TRAMPOLINE
moves the figure down off the trampoline and then walks it a short distance.

TO GET.OFF.TRAMPOLINE
WALK 3

SETH @

BK 1@

WALK 5

END

EXERCISE

The figure stops and lets out a musical sigh as it collapses on the floor.
COLLAPSE relies on SIGH to do the work. SIGH is given a pitch to play and

a list of shapes.

TO COLLAPSE
WAIT 35

SIGH 150 [3 3 3888 99 9 9 9]

END

TO SIGH :NOTE :LIST

IF EMPTYP :LIST [STOP]
SETSH FIRST :LIST

TOOT © :NOTE 15 5
WAIT 5

SIGH :NOTE - 8 BF :LIST

END

PROGRAM LISTING

TO0 EXERCISE

SETUP

JUMPING. JACKS

MOVE . T0. TRAMPOL INE
JUMPING.ON. TRAMPOLINE
GET.OFF. TRAMPOLINE
COLLAPSE

END

TO SETUP

TELL ©

CS HT FS

SETBG 72
READY . SHAPES

DRAW. TRAMPOLINE
READY.JUMPING. JACKS
END

TO READY.SHAPES
PUTSH 1 :FIGUREL
PUTSH 2 :FIGURE2

PUTSH 3 :FIGURE3
PUTSH 4 :FIGURE4
PUTSH 5 :FIGURES
PUTSH & :FIGURE®
PUTSH 7 :FIGURE?7
PUTSH 8 :FIGURES
PUTSH 9 :FIGURE9

END

TO DRAW. TRAMPOLINE
SETPN @

SETPC @ 37

TRAMP .BED
TRAMP , LEGS

END

TO TRAMP.BED
PD

RT 45

ARCR 8 5

RT 90

ARCR 8 5
SETH @

END

TO ARCR :STEPS :TIMES
REPEAT :TIMES [RT 9 FD :STEPS RT 9]
END

T0 TRAMP.LEGS
FRONT.LEG

SETPOS [8.67 -5]
BACK.LEG

SETPOS [28.67 -51]
BACK.LEG

SETPOS [36.67 0]
FRONT.LEG

END

86 STORIES

TO FRONT.LEG TO JUMPING.ON.TRAMPOLINE
PD REPEAT 15 [JUMP]
BK 8 END
FD 8
PU TO JUMmP
END FD 15 WAIT 2
BK 15 WAIT 10
TO BACK.LEG TOOT @ 80 10 5 WAIT 12
PD END
BK 3
FD 3 TO GET.OFF,TRAMPOLINE
PU WALK 3
END SETH ©
BK 190
TO READY.JUMPING.JACKS WALK 5
PU SETPOS [-60 01 PD END
SETSH 3 SETC 7 ST
END TO COLLAPSE
WAIT 35
TO JUMPING.JACKS SIGH 150 [3 3 38889999 9]
REPEAT 6 [(JUMPING.JACKS1] END
SETSH 3
END TO SIGH :NOTE :LIST
IF EMPTYP :LIST [STOP]
T0 JUMPING.JACKS1 SETSH FIRST :LIST
SETSH 3 WAIT 20 TOOT @ :NOTE 15 5
SETSH 2 TOOT @ 80 10 5 WAIT 29 WAIT 5
SETSH 1 WAIT 20 SIGH :NOTE - 8 BF :LIST
END END

TO MOVE.TO.TRAMPOLINE

WALK 190
SETSH 7 MAKE "FIGURES (0 0 @ 0 0 0 2 2 0 0 @ »
SETH 45 FD 12 128 198 166 190 1]
SETH 99 FD 20 MAKE “FIGURES [0 0 @ ¢ © 0 28 28 28 28 »
SETH @ BK 2 54 54 54 54 20 20)
SETSH 3 MAKE “FIGURE7 [0 28 20 28 8 24 49 61 »
END 10 12 16 16 16 16 16 16]

MAKE "FIGURE6 [0 28 20 28 8 24 40 56 »
TO WALK :DISTANCE 12 8 20 20 18 18 18 0]
PU SETH 990 MAKE “FIGURES [0 28 20 28 8 24 40 60 8 »
REPEAT :DISTANCE [USE.SHAPES.WALK] 8 20 20 20 20 20 @)
END MAKE "FIGURE4 [0 28 20 28 8 24 40 60 8 »

12 18 18 18 34 34 0]

TO USE.SHAPES.WALK MAKE "FIGURE3 [0 56 4@ 56 16 56 56 56 »
SETSH 4 WAIT 5 FD 5 56 16 40 40 40 40 40 40]
SETSH 6 WAIT 5 MAKE “FIGURE2 [0 56 40 56 146 84 56 16 »
SETSH 5 WAIT 5 16 16 40 68 130 ¢ ¢ 0]
SETSH 6 TOOT © 200 15 2 WAIT 5 MAKE “FIGURELl [@ 56 4@ 56 16 56 84 146 »

END 16 40 68 130 0 ¢ ¢ 0)

CARTOON

SHAPES
1] - q]
‘ 1
- 1
- = 11
| =1 N | 1
T - ! 1
- {
i
| B
st) =5 1
FIGURE]L FIGURE2
y T S ™ I
i] I f i | |
{ T * ‘0‘—-' il
11
EE - 1 |
- I - i {
- - T
T)
t I - I
- = _* ;
- - ol J : = E - =
FIGURE® FIGURE? FIGURES FIGURES

Cartoon

In CARTOON a bird flies around chirping, flapping its wings, and fertilizing
the world. Eventually it settles on a mountaintop and lays an egg, where-
upon the bird flies off forever. The egg hatches into a little bird, which also
flies away.

This project is one that I developed over a long period of time. I started
out wanting to explore graphics and dynamics with turtles. As I began to
sketch out ideas in the shape editor, I stumbled onto a design that looked
like a bird's head and upper body. I used a cartooning technique of drawing
in outline a side view of the bird. As soon as the bird emerged as the central
character, the rest of the project began to suggest itself. The overall goal
became clear: to make a bird and then make it fly.

In the following discussion I try to convey the process I went through
in developing this project. If you want to look at the completed program,
turn to the listing at the end.

By Erric Solomon.

87
tm =n B
=
+— -
—
=R |
.
]
+ - - -
-
—— 13
— -
= =1
T M
- -
FIGURES

STORIES

1
| 1
NN RN " RN RN TN N TN N T VN TN

—

Making the Bird

Making the bird was a long process of sketching the parts in the shape editor
and then testing them out in relation to the other parts. I used one shape
for the bird’s head and the top of its body and another shape for the bottom
of the body and the legs. I also used a separate shape for the wing. Since
I decided on a side view, only one wing was needed. I put the first wing
shape in shape 3 and used shape 1 for the top of the bird and shape 2 for
the bottom of the bird. I chose a yellowish color for the outline of the bird
and picked a purple shade for the wing, which I made as a solid figure.
Here is the way these shapes look in the shape editor.

T [1

I
[

I named the shapes TOPBIRD, BOTTOMBIRD, and WING1.

MAKE "TOPBIRD GETSH 1
MAKE “BOTTOMBIRD GETSH 2
MAKE “WING1 GETSH 3

I set up the bird giving each of the three turtles a shape and a position.
These instructions make up the procedure BIRD,

CARTOON

TO BIRD

PUTSH 1 :TOPBIRD

PUTSH 2 :BOTTOMBIRD

PUTSH 3 :WING1

TELL © SETPOS (-9 -10] SETSH 3 SETC 53
TELL 1 SETPOS [0 9] SETSH 1 SETC 12
TELL 2 SETY =15 SETSH 2 SETC 12

TELL [0 1 2] ST

END

Turtle 0 is -WING1 (shape 3), turtle 1 is - TOPBIRD (shape 1), and turtle 2 is
:BOTTOMBIRD (shape 2).

I used a trick here; turtle 0 assumes the role of the wing so that it is
visible over the bird’s body. (Lower-numbered turtles cover higher-num-
bered ones.)

Animating the Bird

I thought I would make several wing shapes to represent different flapping
positions. Making the wings took a lot of experimentation; I made several
until T had three that were satisfactory. Here are those three shapes.

I
|

X g 1
WING2 WING3 WING4

[wrote MOVEWING to change the wing by putting new shapes in slot 3
as they were needed for the animation. The input to MOVEWING indicates
how long Logo waits before the shape is changed.

TO MOVEWING :DELAY
PUTSH 3 :WING1 WAIT :DELAY

PUTSH 3 :WING4 WAIT :DELAY
PUTSH 3 :WING3 WAIT :DELAY
PUTSH 3 :WING2 WAIT :DELAY
PUTSH 3 :WING3 WAIT :DELAY
PUTSH 3 :WING4 WAIT :DELAY

END

89

90

STORIES

At first I was going to put all the wings in the shape table at the same
time, but I had made so many shapes I exhausted the shape table slots.
Instead I used only slot 3.

I coordinated the speed the bird travels with its wing movement and
finally settled on the following:

BIRD
SETH 990 SETSP 5
REPEAT 30 [MOVEWING 51

Although I was pleased with the way the wings looked, I didn't like the
bird’s legs. I wanted them to curl up for flying. So I drew a new bird bottom
with the legs up, which I referred to as LEGGSUP.

11

-

4

LEGGSUP
The Scenery

The bird needed a place to fly from, so I made a mountain. In the process
I decided to add clumps of grass at the bottom of the mountain.

TO MOUNTAIN
PU SETPOS [-65 -90]
PD SETPOS [-35 37]

RT 90 FD 70
SETPOS [65 -90]
END

The grass was made in clumps.

|
W\PJ\#W\V\#\P\P\U\PQ'

‘

CARTOON

TO GRASS

SETH -6 FD 5 BK 5
RT 30 FD 8 BK 8

RT 30 FD 10 BK 19
RT 30 FD 8 BK 8

RT 30 FD 5 BK 5
END

I used all four turtles to draw the grass so that this drawing takes place
faster.

TO DRAWGRASS

TELL [0 1 2 3] SETPN 0 PU

ASK @ [SETPOS [-110 -90])

ASK 1 [SETPOS [-90 -90])

ASK 2 [SETPOS [-7¢ -90]]

ASK 3 [SETPOS (-50 -901]

REPEAT 3 [PD GRASS SETH 9@ PU FD 801
END

I then changed BIRD so that the bird perched on the mountaintop.

|

1

|
*WJ*WW*\#\PU\V*

T0 BIRD

PUTSH 1 :TOPBIRD

PUTSH 2 :BOTTOMBIRD

PUTSH 3 :WING1

TELL @ SETPOS (-9 -10] SETSH 3 SETC 53
TELL 1 SETPOS [0 @1 SETSH 1 SETC 12
TELL 2 SETY -15 SETSH 2 SETC 12

TELL (9 1 2]

EACH [SETPOS SE XCOR - 20 YCOR + 651
ST

END

92

STORIES

Making the Bird Fly

After getting the bird to sit on the mountain, I wanted it to take off, fly
around, and then land. To produce the animated portion of the story, I
anticipated needing several procedures like TAKEOFF, FLAP, and
LANDING.

TAKEOQFF adjusts the bird’s heading and speed for its ascent and leveling
off. In the process the bird’s legs are raised and its wing flaps.

o ——
7

5— ———A

10 TAKEOFF
PUTSH 2 :LEGGSUP
SETH 45

SETSP 5 FLAPFLAP 5 5
SETSP 10 SETH 67
FLAPFLAP 10 5

SETH 90

END

FLAPFLAP calls MOVEWING.

TO FLAPFLAP :TIMES :DELAY
REPEAT :TIMES [MOVEWING :DELAYI
END

(Note that the bigger :DELAY is, the slower the wing flaps.)

CARTOON
Assembling caRTOON
I put all these instructions into a procedure.

T0 CARTOON

TELL (@ 1 2 3] HT CS FS
SETBG 0 SETPN @ SETPC @ ¢
MOUNTAIN

DRAWGRASS

BIRD

TAKEOQFF

END

Landing the Bird

Once | got the bird to take off, I wanted to make it land. I had to figure out
a way to invoke the landing process and then coordinate the bird’s heading
so that it would land on the mountain. I also had to find a way to stop the
bird once it reached the mountaintop.

An obvious way to stop the bird once it landed on the mountain was
to set up a demon to watch for turtle 2 colliding with the mountaintop
drawn by pen 0. A much harder problem was figuring out how to start the
descent. I wanted to use a demon, but I wasn’t sure how. I finally happened
upon a technique that I found extremely useful in other parts of this project,
I made a wall in the sky by drawing a vertical line above the mountain in
the background color. Turtle 2 would inevitably collide with this line. I set
up a demon to watch for this event and then invoke the landing.

| 1
NN RN T RN VRN RN N RN T T VN TN

;ﬂ—d

SET .MARKS draws the line. I put SET .MARKS in CARTOON directly after
MOUNTAIN draws the mountain using turtle 0 with pen 0. This mark is drawn
by turtle 0 with pen 1.

STORIES

TO SET.MARKS

SETPN 1 SETPC 1 BG
PU SETPOS [-55 100]
PD SETY 120 PU

END

I put the WHEN instruction in CARTOON immediately following DRAWGRASS.
WHEN OVER 2 1 [LANDING]

LANDING changes the bird’s flight direction and sets up a demon to look for
a collision between the bird and the mountain.

TO LANDING

TELL [0 1 2 3] SETH 130

PUTSH 3 :WING1

WHEN OVER 2 © [PUTSH 2 :BOTTOMBIRD SETSP @]
END

Fertilizing the World

While birds fly around they also drop sprinklings of digested matter. This
bird is no different. I designed TURD and put it in shape 4.

I wanted TURD to suddenly appear and fall to the ground as the bird
continues its flight. I used turtle 3 for this role. Turtle 3 would travel with
turtle 2, but invisibly. To camouflage turtle 3, I set its color to the back-
ground color until the proper moment. I changed BIRD:

TO BIRD

PUTSH 1 :TOPBIRD

PUTSH 2 :BOTTOMBIRD

PUTSH 3 :WING1

PUTSH 4 :TURD

TELL @ SETPOS [-9 -10] SETSH 3 SETC 53
TELL 1 SETPOS [@ ©) SETSH 1 SETC 12
TELL 2 SETY -15 SETSH 2 SETC 12

TELL 3 SETPOS [-9 -15) SETSH 4 SETC BG
TELL [0 1 2 3]

EACH [SETPOS SE XCOR - 20 YCOR + 651
ST

END

Here is the path I planned for the fertilizer.

TELL 3 SETH 180 SETC 7
SETSP 25 ST

CARTOON

I made one addition; I added sound effects to attract the viewer's attention.
I then redirected the turtle commands to the bird turtles.

TOOT 1 30 7 29
TELL [0 1 2]

I put these instructions in a new procedure called DROP . TURD.
I had to face a couple of problems: when would the bird release the
fertilizer and how would turtle 3 know when it hit the ground and so stop?
I concentrated on how to activate DROP . TURD, I wanted the bird to take
off and fly for a while before its musical gift descended to earth. The bird
would perform this feat after crossing the screen once.

\

W W\PW\#\PW\“\&'W

e —

I used the same technique I used for LANDING, To do this, I drew an invisible
wall on the screen running vertically at the place where | wanted turtle 3
to begin its visible descent. I used pen 2 to draw the line. The pencolor was
the same as the background color; it was invisible to the viewer, but not to
a turtle or a demon. I changed SET MARKS.

TO SET.MARKS

TELL ©

SETPN 1 SETPC 1 BG
PU SETPOS [-55 100]
PD SETY 120 PU
SETPN 2 SETPC 2 BG
SETPOS [-50 1001
PD SETY 120 PU

END

I set up a demon to watch for turtle 2 (: LEGGSUP) colliding with this
line.

WHEN OVER 2 2 [DROP.TURD]

95

STORIES

I had another problem. When does this demon get activated?.I wanted this
event to happen before the bird starts its landing.

I changed the WHEN instruction so that the demon invokes
DROPANDLAND instead of DROP. TURD.

WHEN OVER 2 2 [DROPANDLAND]

DROPANDLAND dismisses the currently active demon, runs DROP . TURD, and
sets up a new demon to invoke LANDING.

TO DROPANDLAND

WHEN OVER 2 2 []
DROP.TURD

WHEN OVER 2 1 [LANDING]
END

I used the same trick for making turtle 3 as TURD disappear. This time
I drew an invisible line at the bottom of the mountain in the background
color. Since the visible scenery was drawn with pen 0, I decided to use pen
2 for the line drawn in the background color.

SETPN 2 SETPC 2 BG
PU SETPOS [119 -90)
PD SETX -118 PU

I added these instructions to SET.MARKS.

I set up a demon to watch for the collision between turtle 3 and pen
line 2. The demon invokes a procedure to make the turtle vanish.

Now DROP . TURD looks like this:

TO DROP.TURD

WHEN OVER 3 2 [DISAPPEARI]
TELL 3 SETH 189 SETC 7
SETSP 25 ST

TOOT 1 39 7 20

TELL [0 1 2]

END

TO DISAPPEAR

ASK 3 [SETSP 9§ HT]
WHEN OVER 3 2 []
END

cartoon Updated

TO CARTOON

TELL (@ 1 2 31 HT CS FS
SETBG @ SETPN @ SETPC 0 6
MOUNTAIN

SET.MARKS

DRAWGRASS

WHEN OVER 2 2 [DROPANDLAND]
RECYCLE

BIRD

TAKEOFF

END

CARTOON

Additional Sound Effects and Graphics

Iliked the sound effectsin DROP . TURD and decided that the bird should sing
before taking off in flight. To do this the bird needed u tune.

TO SONG

TOOT @ 1000 7 7
TOOT @ 1100 7 7
TOOT @ 1150 7 7
TOOT 0 1050 7 7
END

When birds sing, they open and close their mouths. This action required
another shape for the bird.

W WW\PWWW\U\PQ'

—

I refer to this shape as TOPBIRD2. SING alternates TOPBIRD with TOPBIRD2
as it calls SONG.

TO SING :TIMES

REPEAT :TIMES [PUTSH 1 :TOPBIRD2 SONG
PUTSH 1 :TOPBIRD WAIT 20 + RANDOM 39]

END

FLY incorporated SING with the bird in flight.

T0 FLY

TELL (@ 1 2 3)

WAIT 60 SING 5 WAIT 60
TAKEOFF SETSP 15

FLAP 7

WAIT 30 SING 5 WAIT 3¢
END

98

STORIES

FLY uses TAKEOFF and also FLAP. FLAP stops when the bird lands on the
mountain.

TO FLAP :DELAY
MOVEWING :DELAY

IF COND OVER 2 @ [STOPI
FLAP :DELAY

END

I put FLY in CARTOON in place of TAKEOFF.

More Frills

The bird lays an egg and flies away. The egg hatches and a little bird flies
off. First I made a little bird. This bird fits in one turtle shape.

LITTLEBIRD1

Since I had already made one bird fly, this one was not a problem. I made
a total of four shapes for this little bird to show it in various stages of flight.

LITTLEBIRD3 LITTLEBIRD4

[used the same technique for this animation as I did for the wing flapping
for the big bird.

T0 FLIP
PUTSH 4 :LITTLEBIRD1 WAIT 19

PUTSH 4 :LITTLEBIRD2 WAIT 19
PUTSH 4 :LITTLEBIRD3 WAIT 19
PUTSH 4 :LITTLEBIRD4 WAIT 8.5
PUTSH 4 :LITTLEBIRD3 WAIT 19
PUTSH 4 :LITTLEBIRD2 WAIT 19

END

CARTOON

The bird shapes are put in shape 4 in the shape table. Turtle 3 would now
be the little bird.*
FLYOFF makes the little bird fly away.

TO FLYOFF
TELL 3 SETH 45

SETSP 5 WING 3

SETSP 10 SETH 67 WING 5
SETH 99

WING 5 HT

END

TO WING :TIMES
REPEAT :TIMES [FLIP]
END

Hatching the Egg

Turtle 3 eventually is changed from an egg to a bird. The egg hatching
process consisted of designing shapes and playing around with how they
interact with one another.

I drew the egg shape and five more shapes to depict the hatching
process.

EGG
e
— —

H
1
=
=
B
HATCH3

HATCH3 and : HATCHS are fragments of the top and the bottom of the egg.
Having these two shapes superimposed on the more complete shapes of
HATCH4 and - LITTLEBIRD1 enhances the hatching animation. It simplifies
the pictures I had to draw. This superimposition happens by having turtle

*Notice that the delay for {LITTLEBIRDA is shorter than the other delays. 1 did this
because the wing in that shape is clipped. It extends beyond the shape’s dimensions, With the
shorter delay you don’t notice the missing wing part, but you do get an uninterrupted sense
of a Halppulu motion

99

100 STORIES

0 assume these fragments. The shape assumed by turtle 3 shows as well as
the added details offered by turtle 0. In fact, this is a frill. Even without
turtle 0's participation, the hatching scenerio is quite acceptable.

TO HATCH

TELL © SET.EGG

SETSH 1

PUTSH 4 :EGG WAIT 39
PUTSH 4 :HATCH1 WAIT 30
PUTSH 4 :HATCH2 WAIT 30
PUTSH 1 :HATCH3 WAIT 30
ST

PUTSH 4 :HATCH4 WAIT 50
HT

PUTSH 1 :HATCHS WAIT 5¢
ST

PUTSH 4 :LITTLEBIRDI WAIT 5¢
HT

END

The following instructions prepare for HATCH.

CARTOON

TELL 3 SETSP o
SETPOS [-7 48]

SETC 7

PUTSH 4 :EGG ST

TELL [0 1 2] TAKEOFF
FLAPFLAP 1 15 HT

Then
HATCH

As a final touch I added a title at the beginning and one at the end.
These procedures and shapes are included in the following listing.

l TO BIRDS.SIGN
TELL [® 1 2 3] HT

PU SETH 9¢
SETPOS [-30 50]
THE ASK © [SETSH 1]
RDS PUTSH 1 :B
1 ASK 1 [FD 15 SETSH 2]
1 PUTSH 2 :1
/ \ ASK 2 [FD 30 SETSH 3]

| PUTSH 3 :R
Y ASK 3 [FD 45 SETSH 4]

Y PUTSH 4 :D

! TELL :ALL SETC BG ST
Wy WW\¥¢¢¢|\UWW SETC 56 ST
WAIT 20

REPEAT 4 [SETC COLOR + 1 WAIT 20]
e £

TO THEEND.SIGN

TELL [0 1 2 3] HT

PU SETH 99

SETPOS [-30 50]

ASK © [SETSH 1]

PUTSH 1 :E

ASK 1 [FD 15 SETSH 2]

PUTSH 2 :N

ASK 2 [FD 3¢ SETSH 3]

PUTSH 3 :T

ASK 3 [FD 50 SETSH 4]

PUTSH 4 :LITTLEBIRD1

SETC BG ST

SETC 88 WAIT 29

REPEAT 4 [SETC COLOR + 1 WAIT
SETBG 74 SETPC 1 74 SETPC 2 74
WAIT 60

END

1NN

291

|

CARTOON

101

THE ;r
EMD %
! \
l' |'l
! \
| %

|
W\#JWWW\#W\J\‘

—

"www

4*1-llllllli

11

|
T

I put all these new instructions into CARTOON and made a new procedure

EGG,

SET

T0 SET.EGG

SETSP @ SETPOS [-7 48]
SETC 7

END

Some other nice project ideas for these birds are to make them walk, make
one of them find a worm and then fly off, make different background

scenery, and so on.

102 STORIES

PROGRAM LISTING

T0 CARTOON TO0 GRASS
RECYCLE SETH -60 FD 5 BK 5
TELL [® 1 2 3] HT CS FS RT 30 FD 8 BK 8
SETBG @ SETPN © SETPC ¢ 6 RT 30 FD 10 BK 19
MOUNTAIN RT 30 FD 8 BK 8
SET.MARKS RT 30 FD 5 BK 5
DRAWGRASS END
WHEN OVER 2 2 [DROPANDLAND]
BIRDS.SIGN RECYCLE TO BIRDS.SIGN
WAIT 6@ TELL [0 1 2 31 HT
BIRD PU SETH 90
FLY SETPOS [-30 501
ASK 3 [SET.EGG PUTSH 4 :EGG ST] ASK © [SETSH 11
TELL [@ 1 2] TAKEOFF PUTSH 1 :B
FLAPFLAP 1 15 HT ASK 1 [FD 15 SETSH 2]
HATCH WAIT 30 PUTSH 2 :1
ASK 3 [FLYOFF) ASK 2 [FD 39 SETSH 3)
TELL [0 1 2 3) SETSP @ PUTSH 3 R
THEEND.SIGN ASK 3 [FD 45 SETSH 4)
END PUTSH 4 :D
SETC: 56 ST
TO MOUNTAIN WAIT 20
PU SETPOS [-65 -98) REPEAT 4 [SETC COLOR + 1 WAIT 20)
PD SETPOS [-35 37] END
RT 9@ FD 70
SETPOS [65 -90) TO BIRD
END PUTSH 1 :TOPBIRD
PUTSH 2 :BOTTOMBIRD
TO SET.MARKS PUTSH 3 :WING1
TELL © PUTSH 4 :TURD
SETPN 1 SETPC 1 BG TELL @ SETPOS [-9 -10] SETSH 3 SETC 53
PU SETPOS [-55 100] TELL 1 SETPOS [® @) SETSH 1 SETC 12
PD SETY 128 PU TELL 2 SETY -15 SETSH 2 SETC 12
SETPN 2 SETPC 2 BG TELL 3 SETPOS (-9 -151 SETSH 4 SETC »
SETPOS [-50 109) BG
PD SETY 120 PU TELL [0 1 2 3)
SETPOS [110 -99] EACH [SETPOS SE XCOR - 2@ YCOR + 65]
PD SETX -119 PU ST
END END
TO DRAWGRASS TO DROPANDLAND
TELL (@ 1 2 3] SETPN 0 PU WHEN OVER 2 2 []
ASK @ [SETPOS [-110 -901) DROP . TURD
ASK 1 [SETPOS [-90 -90]] WHEN OVER 2 1 [LANDING]
ASK 2 [SETPOS [-70 -90]] END
ASK 3 [SETPOS [-50 -901]
REPEAT 3 [PD GRASS SETH 90 PU FD 80) TO DROP.TURD
END WHEN OVER 3 2 [DISAPPEAR]
TELL 3 SETH 189 SETC 7
SETSP 25 ST
TOOT 1 30 7 20
TELL [0 1 2]

END

TO DISAPPEAR

ASK 3 [SETSP @ HT]
WHEN OVER 3 2 []
END

TO LANDING
TELL (@ 1 2 3] SETH 130
PUTSH 3 :WING1

WHEN OVER 2 @ [PUTSH 2 :BOTTOMBIRD »

SETSP 91
END

T0 TAKEOFF

PUTSH 2 :LEGGSUP
SETH 45

SETSP 5 FLAPFLAP 5 5
SETSP 19 SETH 67
FLAPFLAP 19 5

SETH 90

SING 1

END

TO FLY

TELL [0 1 2 3]

WAIT 68 SING 5 WAIT 60
TAKEOFF SETSP 15

FLAP 7

WAIT 30 SING 5 WAIT 30
END

TO FLAPFLAP :TIMES :SPEED
REPEAT :TIMES [MOVEWING :SPEED]

END

TO MOVEWING :SPEED

PUTSH 3 :WING1 WAIT :SPEED
PUTSH 3 :WING4 WAIT :SPEED
PUTSH 3 :WING3 WAIT :SPEED
PUTSH 3 :WING2 WAIT :SPEED
PUTSH 3 :WING3 WAIT :SPEED
PUTSH 3 :WING4 WAIT :SPEED
END

T0 FLYOFF

SETH 45

SETSP 5 WING 3
SETSP 10 SETH 67 WING 5

SETH 90

WING 5 SONG HT

END

TO WING :

REPEAT :TIMES [FLIP]

END

TIMES

CARTOON

TO FLAP :SPEED
MOVEWING :SPEED
[F COND OVER 2 @ (STOP)

FLAP :SPEED

END

TO FLIP

PUTSH 4 :LITTLEBIRD1 WAIT 10
PUTSH 4 :LITTLEBIRD2 WAIT 19
PUTSH 4 :LITTLEBIRD3 WAIT 1@
PUTSH 4 :LITTLEBIRD4 WAIT 8.5
PUTSH 4 :LITTLEBIRD3 WAIT 1@
PUTSH 4 :LITTLEBIRD2 WAIT 19
END

TO SET.EGG

SETSP @ SETPOS [-7 48]

SETC 7

END

TO HATCH

TELL (@ 1 2 3] SET.EGG

PUTSH 4 :EGG SETSH 1 WAIT 39
PUTSH 4 :HATCH1 WAIT 39
PUTSH 4 :HATCH2 WAIT 39
PUTSH 1 :HATCH3 WAIT 30

TELL @ ST

PUTSH 4 :HATCH4 WAIT 50

HT

PUTSH 1 :HATCHS5 WAIT 50

ST

PUTSH 4 :LITTLEBIRD1 WAIT 50
HT

END

TO THEEND.SIGN

TELL (@ 1 2 3] HT

PU SETH 9¢

SETPOS (-390 50]

ASK ® [SETSH 1)

PUTSH 1 :E

ASK 1 [FD 15 SETSH 21

PUTSH 2 :N

ASK 2 [FD 39 SETSH 3]

PUTSH 3 T

ASK 3 [FD 50 SETSH 4)

PUTSH 4 :LITTLEBIRD1

SETC BG ST

SETC 88 WAIT 20

REPEAT 4 [SETC COLOR + 1 WAIT 291
SETBG 74 SETPC 1 74 SETPC 2 74
WAIT 60

END

103

104 STORIES
TO SING :TIMES 129 129 129 126 34 34 42 164 72 »
REPEAT :TIMES [PUTSH 1 :TOPBIRD2 SONG » 128)
PUTSH 1 :TOPBIRD WAIT 20 + RANDOM » MAKE “TURD [0 @ ¢ 2 0 0 4 0 20080 »
30l 000
END MAKE "TOPBIRD [56 68 188 148 156 135 »
69 57 68 130 129 129 129 129 129 »
T0 SONG 129]
TOOT @ 1000 7 7 MAKE “BOTTOMBIRD [129 129 129 129 129 »
TOOT @ 11090 7 7 129 129 129 129 126 34 34 34 34 »
TOOT @ 1150 7 7 34 85)
TOOT @ 1985¢ 7 7 MAKE "EGG [24 60 6@ 126 126 126 255 »
END 255 255 126 126 126 60 60 24 9]
MAKE “WING2 [15 63 127 248 224 128 0 0 »
MAKE “TOPBIRD2 [48 72 153 179 151 132 » 0000000 0]
68 56 68 130 129 129 129 129 129 » MAKE “WING3 [15 31 62 120 112 224 192 »
1291 128 0000000 0]
MAKE “LITTLEBIRD4 [56 92 76 71 69 120 » MAKE “WING4 [7 15 15 30 60 56 112 96 »
252 242 97 33 33 34 60 36 36 106] 64 00000 QO]
MAKE “LITTLEBIRD3 [56 92 76 71 69 56 » MAKE "WING1 [3 7 15 15 31 3@ 30 62 60 »
124 242 193 161 161 34 60 36 36 » 56 48 32 0 0 0 0]
1961 MAKE “D [0 @ @ 0 0 @ @ 15 16 144 144 »
MAKE “LITTLEBIRD2 [56 92 76 71 69 56 » 142 129 129 1 30)
124 122 249 225 193 34 60 36 36 » MAKE “R [248 128 224 128 248 0 @ 142 »
1861 73 72 72 136 72 72 73 78]
MAKE “HATCHS (@ ¢ 0 0 0 @ @ 182 223 44 » MAKE “1 (136 136 248 136 136 0 0 231 »
124 990 52 20 0 @] 132 132 132 135 132 132 132 228]
MAKE “HATCH4 (56 68 92 76 71 133 130 » MAKE “B [248 32 32 32 32 @ 0 243 136 »
255 255 126 126 126 60 60 36 106) 136 136 240 136 136 136 243]
MAKE "“HATCH3 [24 490 60 88 62 119 218 0 » MAKE “LITTLEBIRD1 [56 92 76 71 69 56 »
eeoo00 0 0] 124 122 121 113 225 194 690 36 36 »
MAKE “HATCH2 [24 490 60 88 62 119¢ 218 » 106]
255 255 255 126 126 126 60 36 » MAKE “T [6® 32 56 32 32 60 0 @ 60 34 »
106) 34 34 34 34 34 60)
MAKE “HATCH1 [24 60 69 126 126 126 255 » MAKE “N [36 36 60 36 36 36 0 @ 34 50 »
255 255 126 126 126 60 69 36 » 42 42 38 34 34 34]
106] MAKE "E [62 8 8 8 8 8 0@ @ 62 32 32 56 »
MAKE “LEGGSUP [129 129 129 129 129 129 » 32 32 32 62)

Jack and Jill

This animated story plays freely with two nursery rhymes I knew by heart
when I was very young. The rhymes are “The House That Jack Built” and
“Jack and Jill.” T did not try to retell either of them in any literal sense.
Instead, T wanted the story to have in it some of my feelings for these
memories of childhood. I wanted the animation to be lively, humorous, and
whimsical. I let the story turn on graphics and animation features, and
concentrated on how the animation felt.

I built this story from a number of smaller projects 1 had written. |
never planned these small projects as parts of a single animated feature, but

By Michael Grandfield.

JACK AND JILL
I realized at some point that they could be used in this way. This write-up
describes how the parts were made; it does not offer a description of the

final animated story. However, a computer listing of the program is pro-
vided at the end of this write-up.

Building a House

Here is a house. Drawing it was the beginning of this whole project.

- T

L\
[0

—

The funny thing about a picture of a house is that it doesn't let you
know anything about how it was drawn. A nice thing about animation is that
you can make the way the house is drawn an important, interesting process;
and that is what the project was about.

One way to draw this house would be to write individual procedures
for each of the shapes that are in the design. The house needs three shapes:
a square for the house; a rectangle for the garage, the doors, and the
windows; and a triangle for the roofs. Once these procedures are written,
you can put together a procedure that uses them all to draw a house.

TO DRAW.HOUSE
HOUSE

GARAGE
WINDOWS

ROOFS

END

This is a fine way for one turtle to make a drawing. But I wanted to try
something different. I chose to play with having all four turtles cooperate
in drawing the house. They became the JackBuilt Construction Company.

The tricky part of this project was making all the turtles draw different
parts of the house at the same time. Here are a series of examples that
illustrate the problem and how I decided to solve it.

In this illustration, all of the turtles are visible and placed apart from
one other.

105

106 STORIES

K K B X

First, let’s give the turtles something to do all at once.

TELL [® 1 2 3) FD 59

i

Next, the turtles can simultaneously draw the same figure.

SQUARE

Now let's have the turtles each do something different.

TELL [® 1 2 3) EACH [FD WHO * 20)

s BT

JACK AND JILL 107

This command is very different. The turtles are moving one after an-
other in very rapid succession. Yet as long as the instruction given to each
turtle is not too long, they will appear to be moving all at once.

This is the key to the project.

The turtles can appear to be drawing a house simultaneously if each
instruction to the turtles is pretty short. The procedure needs to explicitly
tell each of them to draw each single line. The way I thought about this was
to give each turtle at the job site its own work to do. One turtle laid the
foundation, another put up walls, another built roofs, and the last made
doors and windows. Each turtle had a list of things to do. When each had
finished the first item on its list, they all went on to the next item.

MAKE "“CARPENTER® [[SETPOS (30 20] SETH 90 PD]
[FD 1290 SETY 21]

[BK 120 SETY 221 (FD 120 SETY 23]

[BK 120 SETY 241 [FD 120 PU]

[SETPOS [7¢ 85) SETH 99 PD FD 80 PU HOME]]
MAKE “CARPENTER1 [[SETPOS (158 25) PD SETH @1 ([FD 601

[LT 60 FD 46 PU]

[SETPOS [135 6@) SETH 270 PD] ([(WIN PU]

[SETPOS [140 39) PD DOOR] [PU HOME]]
MAKE “CARPENTER2 [[SETPOS (30 25] SETH @ PD] [FD 490]

[RT 30 FD 401 [RT 120 FD 48]

[RT 120 FD 49 PU]

[SETPOS [35 25] SETH 9 PD]

[REPEAT 2 [FD 35 RT 90 FD 30 RT 9¢)

PU HOMEI]
MAKE “CARPENTER3 [[SETPOS [70 251 SETH 0 PD] (FD 60l

[RT 60 FD 46 PU]

[SETPOS (85 801 SETH 90 PD] [WIN PU]

[SETPOS (85 551 PD BAY]l [PU HOME]]

It is important that each of these lists have the same number of items.
Also, these lists call three short procedures to draw the door and windows.
Here they are.

T0 DOOR
REPEAT 2 [FD 30 RT 90 FD 15 RT 90]
END

TO WIN
REPEAT 4 [FD 20 RT 9¢]
END

TO BAY
REPEAT 2 [FD 2@ RT 90 FD 30 RT 92)
END

Here's a procedure that can use the CARPENTER variables to draw a house.

TO BUILD.HOUSE

TELL (0 1 2 3] PU

BUILD.HOUSEl :CARPENTER® :CARPENTER1 :CARPENTER2 :CARPENTER3
END

108

STORIES

BUILD.HOUSE uses BUILD.HOUSEL.

TO BUILD.HOUSE1 :LIST@ :LIST1 :LIST2 :LIST3

[F EMPTYP :LIST® [STOP]

EACH [RUN FIRST THING WORD "LIST WHO TOOT @ 249 15 2]
BUILD.HOUSEl BF :LIST® BF :LIST1 BF :LIST2 BF :LIST3
END

Getting to the Job Site

Here is the second project. It's about carpenters and their truck.

It seemed important that the turtles look like carpenters and that they
arrive at the job site in some believable way. I decided that driving up in
a truck was the right thing to do. Here are the shapes for the carpenters
and the truck. The listings for these shapes are provided at the end of this
section.

As you can see, | decided to use only two shapes for the truck.

It didn’t take long for me to discover that I had a bit of a problem. The
turtles that carried the truck shapes had to become carpenters as soon as
the truck arrived at the job site! This meant that the truck would disappear.
I decided to solve this problem by having the carpenters drive up as the
truck, rather than in the truck. When the truck arrived, it would be trans-
formed into the carpenters. When the house was finished, the carpenters
would transform back into the truck.

Here are the shapes I made for the transformation.

And here’s what that transformation looked like on the screen.

JACK AND JILL

The interesting part of this project was making the shapes and making
the animation work effectively.
Here are the procedures.

TO SETUP

PUTSH 1 :SHAPE1
PUTSH 2 :SHAPE2
PUTSH 3 :SHAPE3
PUTSH 4 :SHAPE4

PUTSH 5 :SHAPES
PUTSH 6 :SHAPE®&
PUTSH 7 :SHAPE?7
MAKE “CARPENTER 1
MAKE "REAR 2

MAKE “FRONT 3

END

TO ENTER.TRUCK

TELL [0 1]

PU SETPOS [-155 20] SETH 99

ASK @ [SETSH :REAR]

ASK 1 [SETSH :FRONT FD 151

ST

REPEAT 80 [(FD 2 TOOT 0 20 15 2]
END

Remember, TELL [0 11 is still in effect.

TO TRANSFORM

ASK 2 [SETPOS ASK @ [POS]]

ASK 3 [SETPOS ASK 1 [POS]]

EACH [SETSH SUM WHO 51

ASK [2 3] [SETSH 3 ST WAIT 30 SETSH 4]
ASK ® [BKX 15]

ASK 1 [FD 15]

RT 90 FD 8
SETSH 3 WAIT 30 SETSH 4
END

Now the carpenters are ready to BUILD HOUSE. When they have
finished the job, they turn back into their truck and go home.

109

110 STORIES

TO TRANSFORM.BACK

SETH 90

EACH [SETPOS LIST SUM 12 WHO * 39 15]

ASK 2 [SETPOS LIST SUM 8 ASK © [XCOR]) 15]
ASK 3 [SETPOS LIST SUM -8 ASK 1 [XCOR] 15]
EACH [SETSH SUM WHO 51

ASK @ [FD 8]

ASK 1 [BK 8]

ASK [2 3] [WAIT 3¢ SETSH 4 WAIT 30 SETSH 3 WAIT 30 HT]
EACH [SETSH SUM 1 WHO]

END

TO EXIT

REPEAT 62 [FD 2 TOOT o 20 15 2]
ASK 1 [HT]

REPEAT 8 [FD 2 TOOT @ 20 15 2]
HT

END

Here are the listings for the shapes. They are listed in the same order
as they appeared in this section.

MAKE "“SHAPE1l [24 24 24 24 9 28 26 26 26

24 36 36 68 68 132 132]
MAKE "SHAPE2 (@ ¢ © 0 @ & 255 255

255 255 255 255 255 255 96 96)
MAKE “SHAPE3 [® @ © 0 @ 0 224 224

239 239 255 255 255 255 182 102]
MAKE “SHAPE4 [0 @ 2 0 0 @ @ @ 0 @ @ 255 255 255 96 96]
MAKE “SHAPES (9 @ © 0 0 9 @ @ ©0 @ @ 239 255 255 192 102]
MAKE “SHAPE6 (9 @ © 0 32 16 139 135 255 255 0 0 @ @ @ 0]
MAKE “SHAPE7 [35 19 11 7 & 142 254 12 136 240 0 0 0 0 2 0]

Jack and Jill

This is the third project. It's about animating figures.

I wanted to animate Jack leaping up a hill, meeting Jill, and then Jack
and Jill leaping down the hill. I decided to forget about “Jack fell down and
broke his crown/And Jill came tumbling after.” Getting them to leap
without falling down was enough to do. I decided, however, that Jack
should be a bit clumsy. He would always bump into things before leaping
over them.

Here are the leaping shapes, The listings appear in order at the end of
this section,

o me e ke &

JACK AND JILL

Jack, agile fellow that he is, sets off leaping up the hill. At the first
opportunity, he bumps into the rise in the hill. He is saved from a fall by
his guardian demon. Every time Jack stubs his toe, this demon stops him
and gets him to back up a bit. Here's the demon.

WHEN OVER @ @ [SETSP @ BK 5]

Now let’s look at the procedures that bring this animation to life.
JACK . AND.JILL is the main procedure.

TO JACK.AND.JILL
TELL © HT

ASK [1 2 3] [HT]
DRAW.HILL

SETUP
UP.THE.HILL
DOWN.THE .HILL
END

TO DRAW.HILL

PU SETPOS [-155 -5@8] SETH 90 PD

REPEAT 3 [FD 40 LT 60 FD 30 RT 129 FD 5 SETH 901
FD 40 PU

END

SETUP activates the demon and places Jack and Jill.

TO SETUP

PUTSH 1 :SHAPE1l
PUTSH 2 :SHAPE2
PUTSH 3 :SHAPE3
PUTSH 4 :SHAPE4
PUTSH 5 :SHAPES
PUTSH 6 :SHAPE®

PUTSH 7 :SHAPE7

MAKE “JACK @

MAKE "JILL 1

MAKE “LEAP.UP [1 2 3 4 5 6]

MAKE “LEAP.DN (6 5 4 3 2 1]

TELL :JACK PU SETPOS [-150 -38) SETH 99 SETSH 1 SETC 7 ST
ASK :JILL [PU SETPOS [52 28] SETH 279 SETSH 1 SETC 7 STI]
WHEN OVER @ @ [SETSP ® BK 5 MAKE "FREQ 200]

END

UP.THE.HILL animates Jack’s ascent.

111

112 STORIES

TO UP.THE.HILL
SETSP 10

ANIMATE :LEAP, UP
SETSP ¢

END

ANIMATE stops only when Jack has reached the top of the hill. Until
then, it repeatedly invokes ANIMATEL,

TO ANIMATE :SHAPES

IF OR XCOR > 50 XCOR < -155 [STOP]
ANIMATEL :SHAPES

ANIMATE :SHAPES

END

ANIMATEL does all the work.

TO ANIMATEl :SHAPES

IF EMPTYP :SHAPES [STOP]
IF SPEED = @ [PICK.JUMP]
SETSH FIRST :SHAPES

TOOT @ 440 192 1

ANIMATEY BF :SHAPES

END

Here's the procedure that is invoked when the collision demon has
stopped Jack.

T0 PICK.JUMP
IF WHO = @ [JUMP.UP] [JUMP.DOWN]
END

JUMP . UP is invoked to get Jack up the hill.

TO JUMP.UP

SETSH 3 SETH 30

REPEAT 16 [TOOT 1 :FREQ 15 2 FD 2 MAKE “FREQ :FREQ + 200]
SETSH 4 SETH 99

REPEAT 8 [FD 2]

SETSH 1 SETH 150

REPEAT 6 [TOOT @ :FREQ 15 2 FD 1 MAKE "FREQ :FREQ - 400]
SETH 90 SETSP 10

END

JUMP . DOWN is invoked to get Jack and Jill down the hill.

TO JUMP.DOWN

WAIT 5

SETH 339 SETSH 3

REPEAT 7 (T00T @ :FREQ 15 2 FD 1 MAKE "FREQ :FREQ + 600]
SETH 279 SETSH 4

REPEAT 15 [FD 2]

SETH 219 SETSH 1

REPEAT 14 [TOOT 1 :FREQ 15 2 FD 2 MAKE "FREQ :FREQ - 200]
SETH 270 SETSP 19

END

Now Jack and Jill can leap down the hill.

TO DOWN.THE.HILL

TELL LIST :JACK :JILL

ASK :JACK [SETPOS (43 28]1]
SETH 270 SETSP 10

ANIMATE :LEAP.DN

SETSP ¢

END

Here are the listings for the shapes.

MAKE “SHAPELl [24 24 24 24 0 28

JACK AND JILL

26 25 24 24 36 36 36 36 36 36l

MAKE “SHAPE2 [24 24 24 24 9 31

24 24 24 24 39 32 32 32 32 32]

MAKE “SHAPE3 [24 24 24 25 2 28

27 24 25 26 36 32 64 64 128 128]
MAKE "SHAPE4 [24 24 24 25 2 28 27 24 24 24 231 0 0 0 0 0]
MAKE “SHAPES [24 24 24 24 @ 27 28 26 25 24 228 2 1 0 0 9]
MAKE “SHAPE6 [24 24 24 24 0 24 28 26 25 24 36 68 130 2 1 1]

Setting the Scene

This is the fourth project. It's about drawing scenery and choosing colors

that complement one another.

I wanted to learn about how to write programs for scenery. So I drew
lots of different scenes and I learned some very useful techniques that make
drawing faster and easier. Here is the scenery I use in Jack and Jill.

SET.SCENE is the main procedure.

TO SET.SCENE
SETUP

GRASS

ROAD

HILL

TREES

END

113

114

STORIES

SETUP is the setup procedure.

T0O SETUP
SETBG 80
SETPC 0 7
SETPC 1 4
SETPC 2 61
FS

TELL © HT
END

In this scene I wanted to fill in a large area of the screen with a single
color. This can be a slow process. Here is a technique for overcoming this
difficulty.

TO GRASS

SETPN © SETH 90

PU SETPOS [-160 -105] PD
FD 329

SETH 89.6

REPEAT 2 [FD 77001

SETH 990

FD 329

PU

END

GRASS assumnes that the screen is in WRAP. It begins at the bottom of the
screen and draws a single line across the screen. Then the interesting part
happens. The turtle is turned 0.4 degrees and is instructed to go forward
many steps. Try this out.

Now let’s look at the rest of SETSCENE1L.

T0 SET.SCENEL
SETUP

GRASS

ROAD

HILL

TREES

END

ROAD works in exactly the same way as GRASS.

TO ROAD

SETPN 1 SETH 27¢

PU SETPOS [160 3] PD
FD 320

SETH 270.4

FD 2750

SETH 270

FD 320

PU

END

JACK AND JILL

HILL invokes HILL1 to draw the several levels of the hill.

T0 HILL

SETPN 2 SETH @

PU SETPOS [-158 -54] PD
HILL1 @ -135

HILL1 @ -85

HILLL @ =35

HILL1 @ 15

PU

END

This particular hill was made with fearless Jack in mind.

TO HILL1 :A :X
IF :A = 7 [STOP]
SETX :X + :A
SETY SUM YCOR 1
SETX -158

SETY SUM YCOR 1
HILL1I :A + 1 :X
END

I decided to add trees to this scene, and I remembered the cover
illustration from Harold Abelson and Andrea DiSessa’s Turtle Geometry
(Cambridge, Mass: MIT Press, 1981).

TO TREES

SETPN @ SETH 0

PU SETPOS [-99 22] PD
BRANCH 30 5

PU SETPOS [-25 221 PD
LBRANCH 190 20 5

PU

END

Here are the four procedures from Turtle Geometry.

TO RBRANCH :LENGTH :ANGLE :NUM
FD :LENGTH

NODE :LENGTH :ANGLE :NUM

BK :LENGTH

END

TO LBRANCH :LENGTH :ANGLE :NUM
FD 2 * :LENGTH

NODE :LENGTH :ANGLE :NUM

BK 2 * :LENGTH

END

TO NODE :LEN :ANG :TIMES

IF :TIMES = @ [STOP]

LT :ANGLE

LBRANCH :LEN :ANG :TIMES - 1
RT 2 * :ANGLE

RBRANCH :LEN :ANG :TIMES - 1
LT :ANGLE

END

115

116

STORIES

TO BRANCH :LENGTH :TIMES
IF :TIMES = ¢ [STOP]

FD :LENGTH

LT 45

BRANCH :LENGTH / 2 :TIMES - 1
RT 90

BRANCH :LENGTH / 2 :TIMES - 1
LT 45

BK :LENGTH

END

The Whole Ball of Wax

I realized, while I was making up a diskette with all of my projects on it,
that I had all of the pieces I needed to make a long animated cartoon. Jack
and Jill could become an opus.

Here’s the storyline. The JackBuilt Construction Company drives down
a tree-lined road that runs along the crest of a terraced hillside. Their truck
stops at a house site and the carpenters build a home for Jack and Jill. When
the house is built and the carpenters are gone, Jill appears in the doorway
and waits for Jack to leap up the hill. Jack sees Jill waiting but rings the
doorbell anyway, and Jill comes out. Together they leap off down the road,
magically transforming themselves into birds as they leap. The two beauti-
ful birds fly off through the trees, and the story ends.

Animating the birds was the finishing touch to this story. I love magic,
and 1 feel that all children’s stories should have some magic in them. I
decided to transform Jack and Jill into birds in midleap and have them fly
away. This transformation delights your eye and surprises your expectations
for the story. It’s magic.

Here are the shapes I designed for this transformation sequence. Jack
and Jill are traveling from right to left across the screen, so this sequence
is also displayed here from right to left. The listings appear in order at the
end of this section.

iy il

The transformation begins with both figures carrying a leaping shape.
BECOME . BIRDS accomplishes the actual transformation.

TO BECOME .BIRDS
SETSH 1

SETC 46

WAIT 3

PUTSH 1 :BECOME.B1

JACK AND JILL

SETH 300

WAIT 3

PUTSH 1 :BECOME.B2
SETSP 20

WAIT 3

PUTSH 1 :BECOME.B3
WAIT 3

PUTSH 1 :BECOME.B4
END

Notice that throughout the transformation the figures are carrying
shape 1. I decided to use PUTSH to change shape 1 several times.

FLY is the final procedure in the story. It animates the birds and syn-
chronizes the sounds they make as they fly away.

TO0 FLY

EACH [IF XCOR < -15@ [STOP1]

PUTSH 1 :FLY1

EACH [TOOT WHO SUM WHO 1 * 1760 10 31
PUTSH 1 :FLY2

EACH [TOOT WHO SUM WHO 1 * 1760 10 31
PUTSH 1 :FLY3

EACH [TOOT WHO SUM WHO 1 * 1760 10 31
FLY

END

Here are the shapes.

MAKE “BECOME.B1 [24 24 24 152 64 56 216 24
152 88 36 4 2 2 1 1]
MAKE “BECOME.B2 [@ © 24 152 66 60 24 24 152 90 36 4 2 2 0 0]
MAKE “BECOME.B3 [0 0 © 129 66 68 24 24 153 90 36 0 @ 0 0 0]
MAKE “BECOME.B4 [0 © ® 129 66 36 153 90 60 ¢ 2 0 0 @ © 0]
MAKE “FLYL [0 @ 0 129 90 102 60 60 24 0 0 @ 2 ¢ 0 0]
MAKE "FLY2 [0 @ © © 24 36 60 60 24 0 0 2 0 0 0 2]
MAKE "FLY3 [0 @ © © 24 36 60 60 90 165 0 0 0 @ 0 0]

117

PROGRAM LISTING

This program is divided into five files. You only need to load the first
file D JACK; the others are loaded by the program at the appropriate times.

D:JACK
The main procedure is JACK.

TO JACK TO SETUP
SETUP LOAD.SHAPES 1
SET.SCENE SETBG 80
ERALL SETPC @ 7
LOAD "D:JACK1 SETPC 1 4

CT SS SETPC 2 61

PR LTYPE “C” TO CONTINUE] SET.DRIVE

END FS

ASK [@ 1 2 31 [PU HT SETC 391

END

118 STORIES

TO LOAD.SHAPES :NUM

IF :NUM > 15 (STOP]

PUTSH :NUM THING WORD “SHAPE :NUM
ERN WORD “SHAPE :NUM

LOAD. SHAPES :NUM + 1

END

TO SET.DRIVE

TS CT

SETCURSOR [4 10]

PR [INSERT DEMO DISK IN DRIVE #1,]
SETCURSOR [10 11]

PR [THEN PRESS RETURN]

IF NOT RC = CHAR 155 [SET.DRIVE]
END

TO SET.SCENE
TELL ¢

GRASS

ROAD

HILL

TREES

END

TO GRASS

SETPN @ SETH 90

PU SETPOS [-169 -105] PD
FD 320

SETH 89.6

REPEAT 2 [FD 7700]

SETH 9@

FD 320

PU

END

T0O ROAD

SETPN 1 SETH 27¢

PU SETPOS (160 3] PD
FD 320

SETH 270.4
FD 2750
SETH 27¢
FD 329

PU

END

TO HILL

SETPN 2 SETH @

PU SETPOS [-158 -541 PD
HILL1 @ -135

HILL1 © -85

HILL1 © =35

HILL1 © 15

PU

END

TO HILLYI :A :X
IF :A = 7 [STOP]
SETX :X + :A
SETY SUM YCOR 1
SETX =158

SETY SUM YCOR 1
HILL1 :A + 1 :X
END

70 TREES

SETPN @ SETH @

PU SETPOS [-90 221 PD
BRANCH 30 5

PU SETPOS [-25 22] PD
LBRANCH 10 20 5

PU

END

TO RBRANCH :LENGTH :ANGLE :NUM
FD :LENGTH

NODE :LENGTH :ANGLE :NUM

BK :LENGTH

END

TO LBRANCH :LENGTH :ANGLE :NUM
FD 2 * :LENGTH

NODE :LENGTH :ANGLE :NUM

BK 2 * :LENGTH

END

TO NODE :LEN :ANG :TIMES

IF :TIMES = @ [STOP]

LT :ANGLE

LBRANCH :LEN :ANG :TIMES - 1
RT 2 * :ANGLE

RBRANCH :LEN :ANG :TIMES - 1
LT :ANGLE

END

TO BRANCH :LENGTH :TIMES

IF :TIMES = ® [STOP]

FD :LENGTH

LT 45

BRANCH :LENGTH / 2 :TIMES - 1
RT 99

BRANCH :LENGTH / 2 :TIMES - 1
LT 45

BK :LENGTH

END

MAKE “SHAPEL [® @ 0 @ @ @ 255 255 255 »

255 255 255 255 255 96 961

MAKE "“SHAPE2 [® © 0 @ © © 224 224 239 »

239 255 255 255 255 102 1021

JACK AND JILL 119

MAKE “SHAPE3 [® 0 0 @ 32 16 139 135 » MAKE "SHAPE1® [24 24 24 152 64 56 216 »
255 255 0 0 0 0 @ 0] 24 152 88 36 4 2 2 1 1)

MAKE “SHAPE4 [35 19 11 7 6 142 254 12 » MAKE “SHAPE11l [24 24 24 152 64 56 216 »
136 240 2 0 0 0 0 0] 24 24 24 231 0 0 0 0 @)

MAKE “SHAPES [0 0 0 0 0 0 0 0 0 0 @ » MAKE "SHAPE12 [24 24 24 24 @ 216 56 88 »
255 255 255 96 96] 152 24 39 64 128 0 0 @)

MAKE “SHAPE6 [0 0 0 0 @ 0 0 0 0 0 0 » MAKE “SHAPE13 [24 24 24 0 36 24 24 24 »
239 255 255 102 192] 24 36 36 66 66 129 129 129]

MAKE "“SHAPE7 (24 24 24 24 0 28 26 26 » MAKE “SHAPE14 [24 24 24 24 0 24 S6 88 »
26 24 36 36 68 68 132 132] 152 24 36 34 65 64 128 128]

MAKE "“SHAPE8 [24 24 24 24 @ 56 B8 152 » MAKE “SHAPE15 [24 24 153 90 36 24 24 »
24 24 36 36 36 36 36 36] 24 24 24 36 36 66 66 129 129)

MAKE "SHAPE9 (24 24 24 24 @ 248 24 24 »
24 24 228 4 4 4 4 4]

|

== = , o o
.‘7‘_‘A47~r—‘<>< ’e l I »1
-
: D N N N N B
= [e e o
L 1
] o4 L
%”] - t |
2 A e i =
SHAF SHAPE4 SHAPES
SHAPEL SHAPE?2 SHAPE3 SHAPE

——FF 1 »]
e = =1~
d ;- —+
. -
SHAPESR SHAPES
. 1 T
=} I = =1
- f T —1 =
| —1—1 — =
—4-—e—t b - 1—
1 4 t - ! S
—
Lol a 1 I § 1)|
) 3 P O S _q r} L Lok 1 | B

SHAPE11 SHAPE12 SHAPE13 SHAPE1S

120 STORIES

D:JACK1

0 C

ER “C

FS

LOAD "D:JACK2

ASK [0 1 2 3] [PU HT]
TELL [0 11

ENTER. TRUCK

RECYCLE

TRANSFORM
FIRST.CLEANUP

TELL [0 1 2 3]
BUILD.HOUSE

TELL [0 1]
REFORM.AND.EXIT.TRUCK
SECOND.CLEANUP
JACK.AND.JILL
AFTERMATH

END

TO TRANSFORM

ASK 2 [SETPOS ASK @ [P0S]]

ASK 3 [SETPOS ASK 1 [POS]]

EACH [SETSH SUM WHO 5]

ASK [2 3] [SETSH 3 ST WAIT 3¢ SETSH 4]
ASK @ [BK 15]

ASK 1 [FD 15]

RT 90 FD 8

ASK [0 1] [SETSH 3 WAIT 39 SETSH 4]
END

TO ENTER.TRUCK

SETH 90

SETPOS [-155 2¢]

ASK 1 [FD 151

EACH [SETSH WHO + 1]

ST

REPEAT 80 (FD 2 TOOT @ 2@ 15 2]
END

TO FIRST.CLEANUP

ER “FIRST.CLEANUP

ER [ENTER.TRUCK TRANSFORM]
RECYCLE

END

TO REFORM.AND.EXIT.TRUCK
SETH 99
EACH [SETPOS LIST SUM 12 WHO * 390 15]

ASK 2 [SETPOS LIST SUM 8 ASK 0 [XCOR] »

151

ASK 3 [SETPOS LIST SUM -8 ASK 1 [XCOR1 »

151

EACH [SETSH SUM WHO 5]

ASK ¢ (FD 8)

ASK 1 [BK 8]

ASK [2 3] [WAIT 30 SETSH 4 WAIT 3¢ »
SETSH 3 WAIT 39 HT]

EACH [SETSH SUM 1 WHO1

RECYCLE

REPEAT 62 [FD 2 TOOT ¢ 2¢ 15 2]

ASK 1 [HT]

REPEAT 8 [FD 2 TOOT @ 20 15 21

HT

END

TO BUILD.HOUSE

SETSH 14

SETPN 2

BUILD :CARP® :CARP1 :CARP2 ;CARP3
BUILD :CARP1® :CARP11 :CARP12 :CARP13
PU

WAIT 30

END

TO SECOND.CLEANUP

ER “SECOND.CLEANUP

ACTIVATE [1 2 3 4 5 6] 65

ERN [CARP® CARP1 CARP2 CARP3 CARP10 »
CARP11 CARP12 CARP13]

ER [BUILD.HOUSE BUILD DOOR BAY WIN »
REFORM._AND.EXIT.TRUCK ACTIVATE]

RECYCLE

END

TO JACK.AND.JILL
ER "JACK.AND.JILL
SETUP.JJ
UP.THE.HILL
DOOR.BELL

TELL [@ 1]

DOWN. THE.HILL?
BECOME.BIRDS

FLY

ASK [® 1) [HT SETSP 0]
END

TO AFTERMATH

TELL 0 ASK [0 1 2 3] [SETPOS [0 2]]

ERALL

LOAD “D:JACK3

LOAD “D:JACK4

CT SS

PR [TYPE "RERUN" TOQ SEE THIS DEMO »
AGAIN]

PR [TYPE "RESET” TO STOP THIS DEMO]

END

TO BUIL
IF EMPT

EACH [(RUN FIRST (THING WORD "N WHO)
TOOT © 240 15 2]
F :N@ BF :N1 BF :N2 BF

BUILD B
END

TO ACTIVATE :LIST :N1

IF EMPT
PUTSH F

ACTIVAT
END

TO DOOR

REPEAT 2 [FD 25 RT 90 FD 2@ RT 901

END

T0 BAY

REPEAT 2 [FD 15 RT 9¢ FD 30 RT 901

END

TO WIN

REPEAT 2 [FD 15 RT 99 FD 20 RT 90]

END

T0 SETU
ER "SET

WHEN © [JUMP.OVER.RT]

D :N® :N1 :N2
YP :N® [STOP]

‘N3

YP :LIST [STOP]

IRST :LIST THING CHAR :N1
ERN WORD " CHAR :N1
E BF :LIST SUM 1 :N1

P.JJ
ue.JJ

MAKE “NUM 1

TELL 0
SETPOS

[-155 -38]

SETH 90 SETSH 1 SETC 7

ASK 1 [SETPOS [92 35) SETH 270 SETSH 8 »

SE

TC 7 ST1

ASK 2 [SETPOS [127 6511
ASK 3 [SETPOS (127 35]]

ST
RECYCLE
END

T0 UP.T
SETSP 1
ANIMATE
SETY 22
END

TO DOCR
ER "D0OO
T00T @
T00T @
T00T @
TOOT @
ER (UP,

HE . HILL
?
17

.BELL
R.BELL
449 5 15 TOOT
660 5 15 TOOT
449 5 15 TOOT
880 5 60 TOOT

THE.HILL JUMP.

1 660 5 15
1 888 5 15
1 660 5 15
1 1320 5 60
OVER.RT]

‘N3

JACK AND JILL

WHEN 0 (]
RECYCLE
END

TO DOWN.THE.HILL?
PUTSH 1 GETSH 9
SETY 10 SETH 280
SETSP 10

ANIMATE 8 14

END

TO BECOME.BIRDS
SETC 4e
SETSH 1
WAIT 5
PUTSH 1 :AA
SETH 300
WAIT 3
PUTSH 1 :BB
SETSP 20
WAIT 3
PUTSH 1 :CC
WAIT 5
PUTSH 1 :0DD
END

TO FLY
EACH [IF XCOR < -150 [STOP1]
PUTSH 1 :FF

EACH [TOOT WHO SUM WHO 1 * 1760 10 3]

PUTSH 1 :EE

EACH [TOOT WHO SUM WHO 1 * 1760 10 3]

PUTSH 1 :GG

EACH [TOOT WHO SUM WHO 1 * 1760 10 3]

FLY
END

TO JUMP.OVER.RT
SETSP o

BK 5

SETSH 3 SETH 20
RAMP 200 3000 200
SETSH 4 SETH 99
REPEAT 7 [FD 2]
SETSH 15 SETH 150
RAMP 3000 400 400
SETH 990

SETSP 10

END

TO ANIMATE :FIRST :LAST

121

IF XCOR > 990 [SETSP @ SETH 270 SETX 80 »

STOP]
I[F YCOR > 25 [STOP]

122

STORIES

IF :FIRST > :LAST [MAKE "FIRST

SETSH

6]

:F

IRST

TOOT @ 449 10 1
ANIMATE

END

;FIRST + 1 :LAST

TO RAMP :S :F :R

IF :F < :S [REPEAT (:S -
[TOOT 1 :S 15 2 FD 2
:R1]

IF :S < :F [REPEAT (:F =
[TOOT 1 :S 15 2 FD 2
‘R1]

END

TO REFORM

SETH 9¢

:F

MAKE “S :S = »

)

1LAST = »

/

28y 1

MAKE “S :S + »

‘R

'R

>

»

EACH [SETPOS LIST SUM 12 WHO * 30 15]

ASK 2 [SETPOS LIST SUM 8 ASK @ [XCORI »

ASK 3 [SETPOS LIST SUM -8 ASK 1 [XCOR] »

151

15]

EACH [SETSH SUM WHO 51

D:JACK2

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

“A
36
“B
39
e
36
“D
231
“E
228
o
36

“AA [24 24 24 152 64 56 216 24 »

152

“BB [0 0 24 152 66 60 24 24 152 »

99

“CC [0 0 @ 129 66 60 24 24 153 90 »

36

“DD
00
"EE
00
“FF
00

[24 24 24 24 0 28
36 36 36 36 36]
[24 24 24 24 0 31
32 32 32 32 321
[24 24 24 25 2 28
32 64 64 128 1281
[24 24 24 25 2 28
0000 0]
[24 24 24 24 0 27
2100 02)
[24 24 24 24 0 24
68 1390 2 1 11

88 36 4 221 1]

36 4220 0]

0000 0]

[0 0 @ 129 66 36 153 90 60 0 »

000 0)

[0 0 @ 129 90 102 60 60 24 0 »

020 0]

[0 000 24 36 60 60 24 0 0 2 »

o 0]

26

24

27

27

28

28

25

24

24

24

26

24

24

25

24

25

24

24

26

24

24

26 25 24

ASK ©
ASK 1
ASK [
EACH
REPEA
END

MAKE
MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

MAKE

(FD 8]
[BK 8]
2 3] [WAIT 30 SETSH 4 WAIT 30 »
SETSH 3 WAIT 30 HT]
[SETSH SUM 1 WHO]
T 80 [FD 2 TOOT @ 20 15 2]

“NUM 1
“DD [0 0 @ 129 66 36 153 90 60 0 »
20000 0]

“CC [0 0 © 129 66 60 24 24 153 90 »
36 2000 0)

“BB [@ @ 24 152 66 60 24 24 152 »
99 36 4 2 2 0 0]

“AA [24 24 24 152 64 56 216 24 »
152 88 36 4 2 2 1 1]

“"GG [0 0 © 24 36 60 60 90 165 0 »
0000 0]

“EE [0 0 0 129 90 102 60 60 24 0 »
20000 0]

“FF [0 0 @ @ 24 36 60 60 24 0 0 0 »
200 0]

"GG [0 0 @ © 24 36 60 60 92 165 2 »
2000 2]

“CARP® [[SETPOS [30 251 PD SETH »
9¢] (FD 120) [SETY 24 RT 180 FD »
1201 [SETY 23 RT 189 FD 12011
“CARP1 [[SETPOS [150 25] PD SETH »
0] (FD 60) [LT 6@ FD 46 PU]l »
[SETPOS (135 6@) SETH 270 PD]]
“CARP2 [[SETPOS [32 25] PD SETH »
@1 [FD 491 [RT 30 FD 40] [RT 120 »
FD 4011

“CARP3 [[SETPOS (79 25) PD SETH »
@1 [FD 601 [RT 60 FD 46 PUl »
[SETPOS [85 89) SETH 99 PD1]
"CARP1® [[SETY 22 RT 180 FD 120 »
PU] (SETPOS [70 851 SETH 9¢ PD FD »
8011

“CARP11 [[WIN PU] [SETPOS [149 »
39] PD DOOR]]

“CARP12 [[RT 120 FD 49 PUl »
[SETPOS (35 25] SETH 0 PD REPEAT »
2 [FD 35 RT 90 FD 30 RT 90111
“CARP13 [IWIN PU) [SETPOS [85 551 »
PD BAY1]

JACK AND JILL 123
1 -] - T = . — 7
. 1 =k = == = E =1
1 - ; = o = -
1 =t] = : —
H] [‘ - ———
= : r | % T
= C = ! = = S = e T HHH
A B ¢ b) E
=
1 11 1
- t —
[=
B O o I O O |
1
= e e -
F oD
=k 1 1 |
o 1
{ 7 | 1
i =]
i = B o it 1 0 e o 1
EE FF GG
D:JACK3
TO RESET LOAD “D:JACK1
ERALL ACTIVATE [1 2 3 4 5 6] 65
WRAP TELL [0 1 2 3)
SETBG 74 BUILD.HOUSE
ASK (@ 1 2 3) [SETC 7 SETSH @ CS PD] ERNS
TELL © TELL ¢
END ASK [@ 1 2 3) [SETSP @ HT SETC 22 PU »
HOME]
TO RERUN RECYCLE
ER "RERUN c
FS END

124 STORIES

MAKE "“CARP® [(SETPOS (39 251 PE SETH » MAKE “CARP2 [[SETPOS [30 251 PE SETH »
90] [FD 120) ([SETY 24 RT 180 FD » @] (FD 42] [RT 30 FD 401 ([RT 120 »
1201 [SETY 23 RT 180 FD 120]] FD 4011]

MAKE "CARP1 [[SETPOS [15@ 25] PE SETH » MAKE “CARP3 [[SETPOS [70 25] PE SETH »
01 L[FD 601 [LT 6@ FD 46 PU] » 0] (FD 6@) [RT 60 FD 46 PU] »
[SETPOS [135 6@) SETH 270 PE]] [SETPOS (85 801 SETH 990 PE]]

D:JACK4

MAKE “CARP1® [([SETY 22 RT 180 FD 129 » 255 255 255 255 96 96]

PU) (SETPOS [7¢ 851 SETH 90 PE FD » MAKE “B [0 @ @ 0 0 @ 224 224 239 239 »
8911 255 255 255 255 102 1921

MAKE "“CARP11 [[WIN PU]l [SETPOS [140 » MAKE “C [0 @ @ © 32 16 139 135 255 255 »
391 PE DOORI] 22000 0]

MAKE “CARP12 [[RT 120 FD 4@ PU] » MAKE “D [35 19 11 7 6 142 254 12 136 »
[SETPOS [35 25) SETH @ PE REPEAT » 240 0000 0 0]

2 [FD 35 RT 90 FD 30 RT 9011] MAKE "E [0 0 0 0 0 2 0 020 0 255 255 »

MAKE “CARP13 [[WIN PU] [SETPOS [85 55] » 255 96 961
PE BAY]) MAKE “F [0 0 0 0 0 0 0 0 @ @ @ 239 255 »

MAKE “A [0 0 @ 0 0 © 255 255 255 255 » 255 102 192]

The six shapes : A through :F in this file (D: JACK4) are the same as the
shapes : SHAPE1 through : SHAPE® in the file D: JACK.

Rocket

ROCKET creates an outer-space scenario. Imagine that you're standing on
Demos, a mythical planet orbiting somewhere in the galaxy. Views of Mars,
Saturn, a few stars, and some mountains surround you. A rocketship appears
and blasts off with musical fanfare. After traveling halfway up the screen,
the ship’s crew realizes that it has forgotten the pilot and returns to the
original take-off site. The pilot races across the screen and boards the ship.
The rocketship takes off again, amid blast-off sounds and color flashes, and
heads due north. As the ship travels through space, the view of the moun-
tains disappears and is replaced by a couple of stars. Soon one of the moons
orbiting Mars is in view, as well as a mysterious green planet moving west.
Eventually the rocketship and green planet collide, and a message appears
on the screen that tells you the crew has reached a planet they wish to
explore and your adventure is over, and bids you farewell.

Overview

This discussion presents an overview of how the program works and de-
scribes the process I went through in designing it. Few of the procedures

By Lauren Young.

ROCKET

—--'-\
V. o
)

¥ ¥
h— tna

are listed within the discussion. They are all listed at the end of this write-
up.

The Rocket

This whole project began with a lone rocketship I had designed, traveling
up the screen. Before it took off on a flight through the galaxy, I added fire
to it. That is, I designed a shape that I put beneath the rocketship; it looks
like fire emerging from the ship. The shapes are in slots 2 and 3.

Turtle 1 carries the shape of the rocketship; turtle 2 carries that of the fire.
SET.SHIP sets turtles 1 and 2 near the bottom of the screen, one above the
other.

T0 SET.SHIP
TELL [1 2]
PU

ASK 1 [SETSH 2 SETPOS [@® -90] SETC 7]
ASK 2 [SETSH 3 SETPOS [-119] SETC 32)
ST FS

END

The Background Scenery

Saturn, Mars, Stars, and Mountains

I wanted something interesting and colorful, but what? I thought about
what one might see on a voyage through the galaxy—a planet! That's where
I began. When 1 finished, 1 had written procedures for two planets,
Mars and Saturn, three stars, and some mountains: PLANET MARS,
PLANET.SATURN, STARS, and MOUNTAINS.

STORIES

I picked Mars because its name is short. This was important because I
wanted to draw the planet’s name within the outline of the planet. I de-
signed the letters M, A, R, and S and the procedure MARS that puts the
letters inside a semicircle on the screen. PLANE T .MARS is the procedure that
connects these procedures.

I wanted to include a familiar and smaller—seemingly more distant—
planet in the upper-right quadrant of the screen. Saturn was an easy choice
from among the planets because of its ring.

What is a galaxy without stars? The procedure STARS tells turtles 0, 1,
and 2 to each draw a star.

I was satisfied with the upper half of the screen, filled with two planets
and three stars. The bottom half was still bare and needed a landscape.
I thought about mountains and decided to adapt two procedures,
MOUNTAINS and SUBMOUNTAIN, from the Atari Logo Reference Manual. *

Putting It Together

BACKGROUND. SCENE sets up the entire scene.

TO BACKGROUND.SCENE
TELL @

SETBG 72

PLANET .MARS

STARS

PLANET.SATURN

: MOUNTAINS
END

Ready, Set, Action!

! Now, for some more action! I wanted to try animating a person walking
PERSON. 1 across the bottom of the screen. Susan Cotten’s Exercise project gave me
some ideas, and | started experimenting. I designed three shapes
(PERSON. 1, PERSON . 2, and PERSON. 3), each with the same head and torso,
but with arms and legs in different stances. As in Exercise, I also wanted
footprint sounds with each step the person took. The pilot appears to run
by having turtle 0 rapidly change its shape to PERSON_2, PERSON. 3, and
PERSON. 1.

Launching the Rocketship

PERSON. 2 BLAST . OFF sets the rocketship in motion. I put in a few sound effects
to jazz up the takeoff. About midscreen, the rocketship stops and a message

from the ship’s crew is printed:

WAIT!!! WE FORGOT THE PILOT,

180!

The rocketship reverses its direction and returns to its blast-off site and
stops. The pilot races across the bottom of the screen and boards the rocket-
ship. When turtle 0 (the pilot) and turtle 2 (the fire on the rocketship) touch,

[

- *The original version of these procedures is on p. 124 of the manual.
:PERSON.3

ROCKET

the pilot disappears (HT).

BLAST.0FF2 makes the rocketship take off again. There are take-off
sounds and changing background colors; the mountains disappear. The
rocketship is on its way. As the rocket continues to travel in space, two more
stars are drawn. A message, “GOODBYE ALL!!,” is printed on the screen.

Traveling in Space

As the ship travels past Saturn and Mars, a moon that belongs to Mars
begins to orbit across the screen. I set up a green planet to orbit in the
opposite direction.

When the green planet (turtle 0) and the rocketship (turtle 1) touch,
HIT.GREEN.PLANET is called. This procedure makes a siren sound
(HIT.SOUND) and prints out a few messages:

WOw!!! THIS LOOKS LIKE A GOOD
PLACE TO EXPLORE. LET'S STOP

THIS IS THE END OF OUR ADVENTURE.
IT WAS GOOD HAVING YOU ABOARD.
COME BACK AGAIN SOMETIME.

SO LONG.

TAKE .OFF . ACT10N is the procedure that runs most of the action in the
story.

TO TAKE.OFF.ACTION
SET.SHIP

RECYCLE

BLAST.OFF
GET.PILOT
BLAST.OFF2
MOON.PLANET
FLIGHT.SOUND

END

Conversation with the User

To involve you, the user, in a personal way, I added the procedure
CONVERSATI0N. While this is one of the first procedures run in ROCKET, it
was one of the last added to the project. At the start of ROCKET, Logo prints
out:

HI THERE.
WHAT'S YOUR NAME?

Logo waits for you to type in something. If you type ROXANNE, for
example, it will respond:
WELCOME TO DEMOS, ROXANNE

PLEASE WAIT A MINUTE WHILE
I DRAW THE PLANETS AND THE STARS

PLANET

127

128

STORIES

The name you type in at the beginning of the program is remembered
throughout. I edited HI T .GREEN. PLANET, one of the procedures used near
the end of the story, so that its last statements refers to you by name.

Rocket

ROCKET is the top-level procedure.

TO ROCKET

SET.UP
CONVERSATION
BACKGROUND. SCENE
TAKE.OFF .ACTION
CLEAN.UP

END

Setting Up and Cleaning Up

SET.UP puts the shapes into the slots in the shape memory and changes the
turtles appropriately. SET.UP also tells Logo to change the background
color to black (SETBG 0) and to clear the screen. As I also wanted to
leave the turtles in their start-up state, I wrote CLEAN.UP.

PROGRAM LISTING

TO PLANET.MARS
HT

SETPC ¢ 21
DRAW.MARS

MARS
HOME . AGAIN

END

TO DRAW.MARS

PU

SETPOS [-155 1201

SETH 99

PD

REPEAT 18 [FD 1@ RT 10)
END

TO MARS

PU

SETPOS (-145 85]
SETH @

PD

M

PU

BK 18

PD

A

PU

BK 18
PD

R

PU

BK 22
PD

S
HOME . AGAIN
END

TO HOME .AGAIN
PU

HOME

PD

END

T0OM
FD 12
RT 135
FD 8
LT 90
FD 8
RT 135
FD 12

PU

BK 12
LT 135
BK 8
RT 90
BK 8
LT 135
BK 12
END

T0 A
FD 12
RT 9¢
FD 8
RT 9¢
FD 12
BK &
RT 90
FD 8
PU

LT 99
FD 6
RT 180
END

TO R
FD 12
RT 90
FD 8
RT 99
FD 6
RT 99
FD 8
LT 135
FD 12
PU

BK 12
RT 45
FD 6
RT 180
END

T0
FD
BK
RT
FD
LT
FD
LT
FD
RT
FD 8

RT 9¢

O 0 O ® O O NN W,
- =] -

ROCKET 129

FD 8
RT 90
FD 2
END

TO STARS

TELL [0 1 2]

SETPN 0

ASK @ [SETPLACE (120 9011
ASK 1 [SETPLACE [120 60])
ASK 2 [SETPLACE [-80 10¢])
STAR

HOME . AGAIN

END

TO STAR
REPEAT 9 [FD 8 BK 8 RT 491
END

TO SETPLACE :STAR
PU

SETPOS :STAR

PD

END

TO PLANET.SATURN
TELL @

SETPLACE (50 60]
SATURN

SETRING

RING

HOME . AGAIN

END

TO SATURN

SETPN 2

SETPC 2 52

REPEAT 18 [FD 6 RT 20]
END

TO SETRING

RT 180

REPEAT 6 [FD 1 LT 18]
RT 180

FD 8

END

T0 RING

REPEAT 10 [FD 1 LT 18]
FD 45

REPEAT 10 (FD 1 LT 18]
FD 5

END

130 STORIES

TO MOUNTAINS
TELL @

FS

PU

SETPOS [-158 -601
PD

RT 45

SETPN 1
SETPC 1 32
SUBMOUNTAIN
END

TO SUBMOUNTAIN
FD 1@ + RANDOM 15

IF OR YCOR > 50 YCOR < @ [SETH 180 - »

HEADING]
IF XCOR > 155 [HOME.AGAIN STOP]
SUBMOUNTAIN
END

TO BACKGROUND.SCENE
TELL ©

SETBG 72

PLANET .MARS

STARS

PLANET . SATURN
MOUNTAINS

END

T0 GET.PILOT

TELL ©

SETC 20

PU

SETPOS [155 -95]

ST

SETH 27¢

WHEN TOUCHING © 2 [HT]
WHEN TOUCHING 0 2 []
REPEAT 190 [WALK]

HT

END

TO WALK
SETSH 5
WALK . SOUND
SETSH 6
WALK . SOUND
SETSH 1
WALK.SOUND
END

TO WALK.SOUND
TOOT 1 200 15 2
WAIT 5

FD 5

END

TO BLAST.OFF
BLAST.OFF.UP
BLAST.OFF.DOWN
END

TO BLAST.OFF.UP
WALT 60

SETSP 20
SOUND.UP 50
SETSP @

WAIT 29

CT SS

PR [WAIT!!! WE FORGOT THE PILOT.]
WAIT 100

FS

END

TO SOUND.UP :FREQ

TOOT 1 :FREQ 10 19

IF :FREQ > 1700 [STOP]
SOUND.UP :FREQ + 5@
END

TO BLAST.OFF.DOWN
SETSP -2¢
SOUND.DOWN 1700
SETSP @

END

TO SOUND.DOWN :FREQ
TOOT 1 :FREQ 10 10

IF :FREQ = 50 [STOP]
SOUND.DOWN :FREQ - 50
END

TO BLAST.OFF2
RECYCLE

TAKE . OFF
BLAST.SOUND
FLASH.COLOR
MOUNTAINS.DISAPPEAR
GOODBYE

MORE . STARS

END

T0 TAKE.OFF
TELL 1 2]
ST

WAIT 189
SETSP 21
END

TO BLAST.SOUND
REPEAT 10 [SOUND.OFF]
END

TO SOUND.OFF
TOOT © 50 19 3
WAIT 5

TOOT @ 55 10 3
WAIT 5

END

TO FLASH.COLOR

WAIT 69

REPEAT 30 [SETBG RANDOM 128 WAIT 2]
SETBG ¢

WAIT 180

END

TO MOUNTAINS.DISAPPEAR
SETPC 1 0

SETSP 39

END

TO GOODBYE

CT SS

PR [GOODBYE ALL!!]
WAIT 60

FS

END

TO MORE.STARS
TELL 3

PU

SETPLACE [-90 -99]
PD

STAR

PU

SETPLACE [75 -75]
PD

STAR

PU

END

TO MOON.PLANET
PU

MOON . MARS
GREEN.PLANET
END

TO MOON.MARS
TELL 3

PU

SETPOS [-155 70]
ST

ROCKET

RT 90
SETSH 4
SETC 7
SETSP 5
END

TO GREEN.PLANET
TELL @
SETSH 7

WHEN TOUCHING @ 1 [HIT.GREEN.PLANET »

STOP]
SETPOS (107 @1
SETH 270
SETC 99
SETSP 5
ST
END

TO HIT.GREEN.PLANET

HIT.SOUND

CT SS

TELL [0 1 2] SETSP @

PR [WOW!!! THIS LOOKS LIKE A GOOD]

PR [PLACE TO EXPLORE. LET’'S STOP.]
WAIT 480 CT

131

PR [THIS IS THE END OF QUR ADVENTURE.]

PR [IT WAS GOOD HAVING YOU ABOARD]
PR (SE :NAME [.1)

PR [COME BACK AGAIN SOMETIME.]
WAIT 549

FS

WAIT 189

CT SS

PR (SE [SO LONG,1 :NAME)

END

TO HIT.SOUND
REPEAT 4 [NOISE]
END

TO NOISE

TOOT © 1000 10 20
WAIT 19

TOOT 1 200 10 20
WAIT 190

END

TO TAKE.OFF.ACTION
SET.SHIP

RECYCLE

BLAST.OFF
GET.PILOT
BLAST.OFF2
MOON.PLANET
FLIGHT.SOQUND

END

132 STORIES

TO FLIGHT.SOUND
REPEAT 35 [BEATI
END

T0 BEAT

TOOT © 100 10 3
WAIT 29

TOOT 1 110 10 3
WAIT 29

END

TO CONVERSATION

CT SS

PR [HI THERE.]

PR [WHAT'S YOUR NAME?]

MAKE "NAME RL

CcT

PR (SE [WELCOME TO DEMOS,] :NAME)
PR [PLEASE WAIT A MINUTE WHILE]

PR [I DRAW THE PLANETS AND THE STARS.]

END

T0 SET.UP
SETBG ¢
PUTSHAPES
TELL @
SETPN @
SETPC 9 21
SETSHAPES
cs

END

TO PUTSHAPES
PUTSH 1 :PERSON.1

PUTSH 2 :ROCKET
PUTSH 3 :FIRE
PUTSH 4 :MOON
PUTSH 5 :PERSON.2
PUTSH & :PERSON.3
PUTSH 7 :PLANET
END

TO SETSHAPES

ASK [@® 1 2 3] [EACH [SETSH WHO + 1 HT »

SETSP 811
END

TO SET.SHIP
TELL [1 2]
PU

ASK 1 [SETPOS [® -90] SETC 71
ASK 2 [SETPOS [0 -118] SETC 321

ST FS

END

TO ROCKET

SET.UP
CONVERSATION
BACKGROUND . SCENE
TAKE.OFF.ACTION

CLEAN.UP

END

TO CLEAN.UP

TELL [P 1 2 3]

SETBG @ SETC 7

CS HT

SETSH @

TELL © ST

SETBG 74

CT SS

END

MAKE “ROCKET [16 16 56 56 254 124 124 »
56 56 56 124 254 254 254 198 198]

MAKE “FIRE [56 40 254 214 214 214 @ »
¢eoo000Q00 0]

MAKE "PERSON.1 [24 62 20 62 164 188 »
136 126 9 8 62 34 33 65 65 193]

MAKE "PERSON.2 [24 60 20 60 36 188 136 »
255 9 29 36 36 36 36 36 108]

MAKE “PERSON.3 [24 60 20 60 36 60 8 56 »
76 26 41 40 490 72 72 216l

MAKE “MOON [0 24 62 6 77 7 7 135 »
135 135 207 254 124 56 0)

MAKE “PLANET (@ @ 60 36 126 66 255 129 »

255 255 129 255 129 126 36 24)

3

Games

Boxgame

When you type BOXGAME, two square boxes are put on the screen. They are
the targets. A turtle appears in the center of the screen. The goal of the
game is to put the turtle inside each box. After you put the turtle inside a
box, the box vanishes. BOXGAME gives you experience moving and turning
the turtle.

After BOXGAME sets up the boxes and the turtle, it activates demons to
watch for the turtle crossing over the lines of the boxes. Then the procedure
stops, and you take over and control the turtle directly using commands like
FD, BK, LT, or RT. When one of the turtles collides with a line, a
demon invokes instructions that make the box disappear.

BOXGAME can be modified so that you control the turtle in different
ways. You might want to use special commands, like F for FD 10 and R
for RT 15. You might prefer to use a joystick to control the turtle.

In the following discussion I begin by showing how BOXGAME was con-
structed so that you use Logo primitives like FD and RT. I also show how to
introduce new commands like F and R to the game. Lisa Delpit then de-
scribes her version of BOXGAME, which she made for some young children

By Cynthia Solomon.

134

GAMES

she was working with. I later describe how to change BOXGAME so that you
control the turtle with a joystick in port 1. Then I add more frills to the
joystick version.

The Procedures

BOXGAME sets up turtle 0 and then turns the rest of the job over to SETUP.
The player is in direct control of the turtle.

TO BOXGAME

TELL [® 1 2 3] HT

TELL @ SETSH 0 ST

SETUP

PR [NOW PUT THE TURTLE IN EACH BOX]
END

SETUP calls SETBOXES to put the two targets on the screen and then
alerts the demons to watch for turtle 0 crossing over lines drawn by pens
0 or 1. When either event happens, the pen color is changed to the back-
ground color and thus the box becomes invisible.

TO SETUP

Cs PU

SETBOXES

WHEN OVER @ @ [SETPC 0 BG)
WHEN OVER @ 1 [SETPC 1 BG]
SETPN 2 SETPC 2 24

END

The boxes are drawn in different colors. Their positions are chosen at ran-
dom and are likely to be different each time the game is played.

TO SETBOXES

SETPN @ SETPC @ 7
DRAWBOX RANDOM 99
SETPN 1 SETPC 1 100
DRAWBOX @ — RANDOM 90
END

SETBOXES uses DRAWBOX to put a box on the screen.

TO DRAWBOX :ANGLE
PU SETH :ANGLE

FD RANDOM 1090
SETH @ PD

BOX 20

PU HOME

END

TO BOX :SIDE
REPEAT 4 (FD :SIDE RT 90]
END

This kind of game can be fun for a while. But it can also be hard work
for very young children! Thus you might want to add procedures that will

BOXGAME 135

let the user type in single-key commands for controlling the turtle. For
example, when the user types F, the turtle moves forward twenty units.

T0 F T0 B TO L TO R
FD 29 BK 20 LT 1% RT 15
END END END END

Bye-Bye Boxes

(A Modification of Boxgame)

I used Cynthia’s BOXGAME with a group of five-year-olds to help them in
their left-right orientation, and they loved it. But while they improved their
ability to direct the turtle when the turtle’s direction was at HEADING 0
(that is, when the turtle’s left and right were the same as their left and right),
they were still thoroughly confused when the turtle was headed in any
other direction. To help solve this problem I modified B0XGAME so that the
squares appear in any of eight directions (0, 45, 90, 135, 180, 235, 270, or
315) on the screen at different distances from the center. I also set the turtle
up in the center of the screen, but now facing in one of the eight directions.
I added sound effects too, partially because I thought the kids would find
it interesting but mostly because I enjoy playing with T00T. The children
came up with the catchy name.

The procedures are almost the same as those for BOXGAME, with the
additions of GE TTURN, which generates the number for the turtle’s heading,
and DEC.SOUND and INC.SOUND, which add the sound effects.

The Procedures

I will point out where I made changes to B0XGAME. BYEBYE is like BOXGAME
except that it calls SETUP . BYE.

TO BYEBYE

TELL [0 1 2 3] HT
TELL @ SETSH O ST
SETUP.BYE

PR [NOW PUT THE TURTLE IN EACH BOX] D

END
O

i

!l'au PUT THE TURTLE IN EACH BOX

S e

By Lisa Delpit.

136

GAMES

In SETUP.BYE, I add sound to the instructions for the demons.

TO SETUP.BYE

CS PU

SETBOXES.BYE

WHEN OVER @ ® [SETPC @ BG DEC.SOUND 35¢0]
WHEN OVER @ 1 [SETPC 1 BG DEC.SOUND 3500)
SETPN 2 SETPC 2 24

END

I changed the colors of the squares in SETBOXES . BYE.

TO SETBOXES.BYE
SETPN @ SETPC @ 7
DRAWBOX.BYE

SETPN 1 SETPC 1 100
DRAWBOX .BYE

END

DRAWBOX . BYE sets up the turtle for drawing each box at an angle that
is a multiple of 45 and at a distance of 25 to 70 steps from the center. This
distance is not far enough away to be hidden behind the text at the bottom
of the screen. DRAWBOX . BYE, then, turns the turtle to a heading that is a
multiple of 45, and the game begins.

TO DRAWBOX.BYE

PU

SETH GETTURN

FD 25 + RANDOM 45
SETH @ PD
INC.SOUND 3000
BOX 20

PU HOME

END

1 wrote GETTURN so that it outputs one of eight possible numbers, all
multiples of 45.

TO GETTURN
OP 45 * RANDOM 8
END

A sound of increasing frequency accompanies the drawing of the box.
A sound of decreasing frequency accompanies the disappearance of the
box.

TO INC.SOUND :FRE

IF :FRE > 3500 [TOOT 1 4000 8 3 STOPI]
TOOT 1 :FRE 6 3

INC.SOUND :FRE + 100

END

TO DEC.SOUND :FRE

IF :FRE < 3000 (TOOT 1 1000 8 3 STOPJ
TOOT 1 :FRE 6 3

DEC.SOUND :FRE - 100

END

BOXGAME

The following three procedures are unchanged.

T0 BOX :X
REPEAT 4 [FD :X RT 99]
END

T0 F
FD 29
END

T0 B
BK 20
END

The next procedures are changed so that the turtle turns 45 degrees.

TO R
RT 45
END

T0 L
LT 45
END

Back to Boxgame

Using a Joystick

Another variation of this game is to attach a joystick to the computer and
use the joystick to control the turtle. In the next example, pressing the
joystick button moves the turtle forward five steps. The joystick moved to
the left turns the turtle left 15 degrees; the joystick moved to the right turns
the turtle right 15 degrees. To do this 80XGAME has to be changed and a
couple of new procedures have to be written for the joystick.

TO JOYGAME

CT SS

TELL [® 1 2 3] HT

TELL @ SETSH @ ST

SETUP

PR [THE JOYSTICK TURNS THE TURTLE]
PR [THE BUTTON MOVES THE TURTLE]

PR [NOW PUT THE TURTLE IN EACH BOX]
JOYREAD

END

TO JOYREAD

IF JOYB @ [FD 5 1

IF EQUALP PC © PC 1 [STOP]
JOYRD JOY @

JOYREAD

END

137

138 GAMES

T0 JOYRD
IF :STICK
IF :STICK
END

;STICK

6 [LT 151
2 [RT 151

Extending J0YGAME

JOYGAME will set the turtle’s speed. I use a speed of 100, but you might want
to change this. This time when the turtle goes over a pen line, the back-
ground changes color. Finally, the game starts up again.

JOYGAME needs to be changed. I also want to change the setting-up
procedure. Let’s rename the new versions of these procedures.

TO NEWGAME

CT SS

TELL [@ 1 2 3] HT
TELL ® SETSH © ST

SETJOY
SETSP 100

PR [THE JOYSTICK TURNS THE TURTLE]
PR [THE BUTTON MOVES THE TURTLE]
PR [NOW PUT THE TURTLE IN EACH BOX]

JOYREAD
NEWGAME
END

T0 SETJOY
CS PU
SETBOXES

WHEN OVER 0 © [FLASH BG SETPC @ BG]
WHEN OVER @ 1 [FLASH BG SETPC 1 BG]
SETPN 2 SETPC 2 24

END

Here is the new procedure.

TO FLASH :BG
REPEAT & [SETBG RANDOM 108 WAIT 5]

SETBG :BG
END

PROGRAM LISTING

T0 BOXGAME

TELL [0 1 2 3] HT

TELL @ SETSH @ ST

SETUP

PR [NOW PUT THE TURTLE IN EACH BOX]
END

TO SETUP
CS PU

SETBOXES

WHEN OVER 0 @ [SETPC ¢ BG]
WHEN OVER @ 1 [SETPC 1 BG]
SETPN 2 SETPC 2 24

END

T0 BOX :SIDE

REPEAT 4 [FD :SIDE RT 991
END

TO SETBOXES

SETPN @ SETPC @ 7
DRAWBOX RANDOM 99
SETPN 1 SETPC 1 1900
DRAWBOX © - RANDOM 90
END

TO DRAWBOX :ANGLE
PU SETH :ANGLE

FD RANDOM 190
SETH 0 PD

BOX 20

PU HOME

END

TO BYEBYE

TELL [0 1 2 3] HT

TELL @ SETSH 0 ST

SETUP.BYE

PR [NOW PUT THE TURTLE IN EACH BOX]
END

TO SETUP.BYE

CS PU

SETBOXES

WHEN OVER © @ [SETPC 0 BG DEC.SOUND »
35001

WHEN OVER @ 1 [SETPC 1 BG DEC.SOUND »
35001

SETPN 2 SETPC 2 24

END

TO SETBOXES.BYE
SETPN @ SETPC @ 7
DRAWBOX .BYE

SETPN 1 SETPC 1 100
DRAWBOX . BYE

END)

TO DRAWBOX.BYE

PU

SETH GETTURN

FD 25 + RANDOM 45
SETH ¢ PD
INC.SOUND 3000
BOX 290

PU HOME

END

TO GETTURN
0P 45 * RANDOM 8
END

TO INC.SOUND :FRE

BOXGAME

IF :FRE > 3500 (TOOT 1 4900 8 3 STOP]
TOOT 1 :FRE 6 3

INC.SOUND :FRE + 100

END

TO DEC.SOUND :FRE

[F :FRE < 3080 [T00T 1 1000 8 3 STOP]
TOOT 1 :FRE 6 3

DEC.SOUND :FRE - 190

END

TO F
FD 20
END

T0 B
BK 20
END

TO R
RT 45
END

T0 L
LT 45
END

T0 JOYGAME

CT SS

TELL (# 1 2 3] HT

TELL © SETSH @ ST

SETUP

PR [THE JOYSTICK TURNS THE TURTLE]
PR [THE BUTTON MOVES THE TURTLE]

PR [NOW PUT THE TURTLE IN EACH BOX]
JOYREAD

END

TO JOYREAD

IF JOYB @ [FD 5 1

IF EQUALP PC @ PC 1 [STOP]
JOYRD JOY @

JOYREAD

END

TO JOYRD :STICK

IF :STICK = 6 [LT 151
IF :STICK 2 [RT 151
END

TO NEWGAME

CT SS

TELL (@ 1 2 31 HT
TELL @ SETSH @ ST

139

140 GAMES

SETJOY

SETSP 100

PR [THE JOYSTICK TURNS THE TURTLE]
PR [NOW PUT THE TURTLE IN EACH BOX]
JOYREAD . NEW

NEWGAME

END

T0 JOYREAD.NEW

IF EQUALP PC @ PC 1
JOYRD JOY @

JOYREAD . NEW

END

[STOP]

TO SETJOY
¢S pPU
SETBOXES

WHEN OVER @ @ [FLASH BG SETPC @ BG)
WHEN OVER 0 1

[FLASH BG SETPC 1 BGI
SETPN 2 SETPC 2 24
END

TO FLASH :BG

REPEAT & [SETBG RANDOM 109 WAIT 51
SETBG :BG

END

Pacgame

PACGAME was inspired by PAC-MAN™ and designed as a learning tool for
beginners. You play the game by using turtle commands to move the gob-
bling pacman around the game board. The game’s special effects and fea-
tures are activated entirely by demons. Thus a player types all commands
directly to Logo and demons take care of the game’s actions.

Here are the rules | decided on for PACGAME.

* The game is played on a game board. There is a pacman and three
targets. Unlike PAC-MAN's ghosts, the targets in PACGAME are sta-

tionary.

Once play begins, it continues until all three targets are gobbled.
Iach target is worth 10,000 points and explodes when it is gobbled.
All turns need to be multiples of 90 degrees because the pacman can

gobble in only four directions. If any other turn is made, the pacman
will change back into a turtle and complain.

PAC-MAN is a trademark of Bally Midway Manufacturing Company

By Michael Grandfield

PACGAME

In addition to the rules, the pacman bounces back onto the game board
whenever it goes out of bounds.

I'd like to present PACGAME by showing the playing pieces and game
board I designed and talking about the demons that bring the game to life.

The Playing Pieces and the Game Board
Let’s look at these one at a time.
The Pacman
I wanted to make a pacman that could gobble and also behave like a

turtle. It took two shapes to animate the pacman, one for an open mouth
and one for a closed mouth.

[T

|

11
% | S 550 ! A 7 |
E3 SHAPE4

(ﬂ’—u—

|
1
HAP

Animating the pacran without limiting its turtle capabilities or inter-
fering with typing in a new command was a problem. However, I found an
effective solution by using the once-per-second demon. Here it is.

WHEN 7 [SETSH 1 WAIT 3@ SETSH 2]

This demon runs the instruction list (SETSH 1 WAIT 30 SETSH 2]
once every second. This makes the animation continue steadily until the
demon is halted.

Next I decided that the pacman should be able to gobble in four differ-
ent directions (up, down, right, and left) and made six more pacman shapes.

141

Il I I

| I I
. 11

I

I

111

I SR | ===l

|
I T [LIL }ﬁl] S P | 11
SHAPE1 SHAPE 2 SHAPES SHAPE® SHAPET

Later I explain how the pacman chooses the pair of shapes that corre-
sponds to its heading.

The Targets

Next I designed a target. The design I settled on has a distinct outline
to make it easy to see how far the pacman is from hitting it. It also has a
sinister face.

142

GAMES

I wanted this target to explode as it was being gobbled, so I made this
sequence of shapes.

SHAPE12

HAPES SHAPE1O

In the game, three turtles are targets. Collision-detection demons tell
when a target has been hit. Here'’s an example.

WHEN TOUCHING © 1 [EXPLODE 11

-

SHAPE13

EXPLODE gives the turtle representing the target each of the explosion
shapes in quick succession and also changes the turtle’s color with each
change of shape.

Later I added new instructions for these demons, in order to score the
game and congratulate the player.

The Game Board

Originally the game board was a thin outline. It looked like this.

e —

TR I L

There was a problem with this approach. I wanted a demon to detect
any collision between the pacman and a border of the game board. Also,
I wanted to keep the pacman in bounds by having it bounce back from a
collision. I discovered that these borders were too thin. The demon often

PACGAME

—

failed to detect a collision. My solution was to make the game board have
very thick borders.

Here is the procedure that draws the game board. Notice that I used
two pens of different colors to draw the board.

TO DRAW.BOARD

SETPC 9 22

SETPC 1 26

TELL ® SETPN @ PU HT

SETPOS [-168 120] PD SETH 99

REPEAT 19 [FD 320 SETY YCOR - 1)

REPEAT 49 [(FD 2390 SETPN 1 FD 78 SETPN @ FD 20 SETY YCOR - 1]

REPEAT 60 [FD 290 SETPN 1 FD 280 SETPN @ FD 20 SETY YCOR - 1]

FD 20 SETPN 1 FD 280 SETPN @ FD 29

REPEAT 34 [FD 20 SETPN 1 FD 70 SETPN @ FD 58 SETPN 1 FD 30
SETPN @ FD 142 SETY YCOR - 1]

REPEAT 30 [FD 20 SETPN 1 FD 70 SETPN @ FD 230 SETY YCOR - 1]

REPEAT 15 [FD 320 SETY YCOR - 1]

PU

SETPOS [-105 -28]1 SETH @ PD

FD 60 RT 99 FD 210 LT 90 FD 35

PU

END

Bringing the Game to Life

The main procedure is PACGAME. It calls SETUP and PLAY

T0 PACGAME
SETUP

PLAY

END

Setting Up

SETUP clears all graphics and text from the screen, and calls
PUT.SHAPES and DRAW.BOARD.

143

144

GAMES

TO SETUP

CS SS CT
PUT.SHAPES 1
SETUP.VARS
DRAW. BOARD
END

PUT . SHAPES puts all the shapes, which are stored as lists of numbers,
into the shape slots. It also erases the variables that contained the lists. (I
guess I always like to free up as much of the workspace as I can.)

TO PUT.SHAPES :NUM

IF :NUM > 15 [STOP]

PUTSH :NUM THING WORD “SHAPE :NUM
ERN WORD "SHAPE :NUM

PUT.SHAPES :NUM + 1

END

SETUP.VARS sets up variables that the program uses.

TO SETUP.VARS

MAKE "“270 7

MAKE "189 5

MAKE "9¢ 3

MAKE "0 1

MAKE "“POS3 [-95 -401
MAKE "“P0S2 [-130 55]
MAKE "“POS1 [116 190]
MAKE "PURPLE 79
MAKE “PACMAN 0

MAKE “BLACK @

MAKE “TARGET 9

END

You have already seen DRAW.BOARD in the description of the game
pieces.

The Play

The procedure PLAY calls two setup procedures, SET.PIECES and
SET.DEMONS. Once these procedures have been run, the game begins.

TO PLAY
SET.PIECES
SET.DEMONS
END

SET.PIECES sets the score to 0 and places the pacman and the targets
on the gameboard in the correct positions to begin the game. It also creates
the variable PAC.POSITION.

During the game PAC.POSITION is given the value of the pac-
man'’s current position, This value changes at regular intervals, provided
that the pacman remains in bounds. If the pacman goes out of bounds

PACGAME

PAC.POSITION is not given a new value, so the pacman can bounce back
to the position that is the value of PAC POSITION.

TO SET.PIECES

MAKE "“SCORE @

TELL @ HT HOME SETC 44

ASK [1 2 3] [HT PU SETC 7 SETSH :TARGET]

ASK [1 2 31 [EACH [SETPOS THING WORD "POS WHO] STI
CT ST

MAKE “PAC.POSITION POS

END

SET.DEMONS creates demons. These demons animate the pacman and
detect collisions. The procedures that these demons call are the guts of the
game.

TO SET.DEMONS

WHEN 7 [IF MEMBERP HEADING [0 90 182 270]
[ANIMATE . PACMAN]
[REVEAL.TURTLE]]

WHEN OVER @ © [STAY.IN.BOUNDS]

WHEN TOUCHING @ 1 [BULLSEYE 1]

WHEN TOUCHING © 2 [BULLSEYE 2]

WHEN TOUCHING © 3 [BULLSEYE 3]

END

Procedures Called by the Demons

Animating the Pacman

You can see that I have changed the instructions for the once-per-
second demon (7) from the earlier example. The demon checks to see if the
pacman has heading 0, 90, 180, or 270. If so, it animates the pacman;
otherwise it reveals the original turtle shape. As you will see, this demon
is able to do several different jobs neatly.

The procedure ANIMATE . PACMAN uses two interesting programming
tricks.

TO ANIMATE.PACMAN

SETSH THING HEADING
WAIT 10

UPDATE

SETSH 1 + THING HEADING
END

The first trick is that I have given each shape a variable name that is
the same as the heading associated with the shape. For example, the shape
that gobbles upward is used when the turtle has a heading of 0, and is given
the name "0. The variable for this shape is created by the instruction

MAKE "9 1

145

146

GAMES
Now if I type
PR :0
or
PR THING 0

Logo will respond

1

If the pacman’s heading is 0, I can also type
SETSH THING HEADING

and Logo will respond as if I had typed
SETSH 1

The second trick is that I decided to use the bit of time between shape
changes to call the procedure UPDATE. This procedure checks to see if the
pacman is still in bounds. If so, UPDATE gives a new value to the variable
PAC.POSITION.

T0 UPDATE
IF COND OVER @ 1 [MAKE “PAC.POSITION POS]
END

To sum up, ANIMATE . PACMAN changes the shape of the pacman to
correspond to its heading, animates its gobbling, and calls UPDATE.

Here is the procedure REVEAL. TURTLE. It is called whenever a turn
that is not a multiple of 90 degrees is made.

TO REVEAL.TURTLE

SETSH @

SETCURSOR [0 19]

TYPE [\ FIX HEADING TO GET BACK IN THE GAME\ 1]
END

REVEAL . TURTLE makes it clear when a turn is not within the rules by
showing the turtle shape and protects the game from crashing by allowing
the pacman to respond to any turning instruction.

Staying in Bounds

STAY.IN.BOUNDS is called whenever the pacman bumps into a bound-
ary of the board. It makes a bumping sound, sends the pacman back to
:PAC.POSITION, and complains OUCH! ! !.

TO STAY.IN.BOUNDS

TOOT 0 109 7 15

TOOT 1 209 7 15

SETPOS :PAC.POSITION

PR [] PR “OUCH!!! PR []
END

PACGAME 147

Gobbling the Targets

BULLSEVYE is called whenever the pacman hits a target. It temporarily
stops the gobbling animation by halting the once-per-second demon and
lets you know that the pacman has hit a target by changing the pacman’s
color. Next BULLSEYE updates the score and tells the gobbled target to
explode. It also offers some congratulations and prints your score on the
screen. Finally BULLSEYE checks the score to see whether to continue the
game or declare a victory.

TO BULLSEYE :WHICH.TARGET

WHEN 7 [] SETC :BLACK

ADD.TO.SCORE

EXPLODE :WHICH.TARGET

(PR :SCORE [TO BE EXACTI])

WAIT 90

IF NOT :SCORE = 30000 [ON.WITH.THE.GAME] ([VICTORY]
END

TO ADD.TO.SCORE

MAKE “SCORE 10000 + :SCORE

CT PR [BOINK!!! WOWIEE!!!]

PR [SCORE LOTS OF POINTS FOR YOU!]
PR []

END

The procedure EXPLODE animates the explosion by calling EXPLODE1.

TO EXPLODE :TARGET

ASK :TARGET [EXPLODE1 [9 10 11 12 13 12 13 12 13 12]
[22 31 55 79 55 79 55 79 55 7]
HT HOME]

END

TO EXPLODE1 :SHAPES :COLORS

IF EMPTYP :SHAPES (STOP]

TOOT @ 20 10 7 TOOT 1 25 10 6
SETSH FIRST :SHAPES

SETC FIRST :COLORS

EXPLODE1 BF :SHAPES BF :COLORS
END

The tricky part of EXPLODE1 was synchronizing sound and animation.
I use both voices to emit a sound before each shape and color change. Thus
I use two T00T commands. The shape and color changes begin before the
sound dies away, so all three events happen together.

On with the Game

ON_.WITH. THE . GAME continues the game after a target has been gob-
bled. It resets the pacman’s color and resets the once-per-second demon.

148

GAMES

TO ON.WITH.THE.GAME

TELL :PACMAN SETC :PURPLE

WHEN 7 [IF MEMBERP HEADING [® 92 180 27¢@]
[ANIMATE . PACMAN]
[REVEAL.TURTLE]]

END

Winning the Game

VICTORY is called only when the score has reached 30,000. It celebrates
winning the game by playing a rousing fanfare and flashing the background
color in time to the music.

T0 VICTORY

RECYCLE

TELL ¢

cT

PR [THE WINNER, AND STILL CHAMP!]
FANFARE

WAIT 180

PR [DO YOU WANT TO PLAY AGAIN?]
END

FANFARE calls FANFARE 1, which plays some rousing music to celebrate.

TO FANFARE

FANFAREL 55 110 39 40 7040
FANFAREL 35 7@ 31 48 70490
FANFARE1 38 68 23 56 70490
FANFARE1 25 5@ 15 64 7049
FANFARE1 3@ 5@ 78 71 76890
FANFARE1 120 200 63 56 7680
SETPC 0 22

SETPC 1 28

SETBG 64

SETENV 0 15 SETENV 1 15
TOOT @ 240 15 240 TOOT 1 400 15 249
END

FANFARE 1 invokes T0OT for both voices, then changes the color of the
game board and the background. Each time FANFARE1 repeats, the notes
increase an octave in pitch, until the : HIGHFREQ limit is reached.

TO FANFARE1 :FREQ® :FREQ1 :PENCOLOR
:SCREENCOLOR :HIGHFREQ

IF :FREQ® > 7040 [STOP]

TOOT @ :FREQ® 15 19 TOOT 1 :FREQl 15 7

SETPC @ :PENCOLOR

SETPC 1 :PENCOLOR + 4

SETBG :SCREENCOLOR

FANFARELl :FREQO * 2 :FREQl * 2
:PENCOLOR - 1 :SCREENCOLOR + 1
:HIGHFREQ

END

PACGAME 149

When FANFAREL has been called for the final time, the game board is
returned to its original colors.

Finally VICTORY asks DO YOU WANT T0 PLAY AGAIN?. Here are the
procedures, YES and NO, that are called by your response.

TO YES
PLAY
END

NO reinitializes Logo and clears the workspace.

TO NO

SETBG 74

SETPC 0 22

TELL [® 1 2 3] SETSH @ CT
TELL @ HOME ST SETPN @

ERALL
RECYCLE
END
PROGRAM LISTING
TO PACGAME TO DRAW.BOARD
SETUP SETPC @ 22
PLAY SETPC 1 26
END TELL 0 SETPN © PU HT
SETPOS [-16@ 1201 PD SETH 9@
T0 SETUP REPEAT 1@ [FD 320 SETY YCOR - 1]
CS SS CT REPEAT 40 [FD 230 SETPN 1L FD 70 SETPN »
PUT.SHAPES 1 © FD 20 SETY YCOR - 1]
SETUP.VARS REPEAT 60 [FD 2@ SETPN 1 FD 289 SETPN »
DRAW.BOARD @ FD 20 SETY YCOR - 1]
END FD 20 SETPN 1 FD 280 SETPN 0 FD 20
REPEAT 34 [FD 20 SETPN 1 FD 7@ SETPN 0 »
TO PUT.SHAPES :NUM FD 58 SETPN 1 FD 30 SETPN 0 FD 142 »
IF :NUM > 15 [STOP] SETY YCOR - 11
PUTSH :NUM THING WORD “SHAPE :NUM REPEAT 30 (FD 2@ SETPN 1 FD 7¢ SETPN @ »
ERN WORD “SHAPE :NUM FD 239 SETY YCOR - 1]
PUT.SHAPES :NUM + 1 REPEAT 15 [FD 320 SETY YCOR - 1]
END PU
SETPOS (-105 -20]1 SETH @ PD
TO SETUP.VARS FD 60 RT 90 FD 210 LT 90 FD 35
MAKE “270 7 PU
MAKE “180 5 END
MAKE “90 3
MAKE “0@ 1
MAKE “P0S3 [-95 -49] TO PLAY
MAKE "“P0S2 [-130 551 SET.PIECES
MAKE “POS1 [116 100] SET.DEMONS
MAKE "“PURPLE 70 END
MAKE "PACMAN 0
MAKE "“BLACK @ TO SET.PIECES
MAKE “TARGET 9 MAKE "“SCORE @

END

150 GAMES

TELL @ HT HOME SETC 44 TO ADD.TO.SCORE
ASK [1 2 3] [HT PU SETC 7 SETSH » MAKE “SCORE 10009 + :SCORE
: TARGET] CT PR [BOINK!!! WOWIEE!!!]
ASK [1 2 3] [EACH [SETPOS THING WORD » PR [SCORE LOTS OF POINTS FOR YOU!]
"P0OS WHO] STI PR (]
CT ST END
MAKE "“PAC.POSITION POS
END TO EXPLODE :TARGET
ASK :TARGET [EXPLODE1l (9 10 11 12 13 »
TO SET.DEMONS 12:13:12.:13 12) {22 31 55°79 55 %
WHEN 7 [IF MEMBERP HEADING (¢ 92 180 » 79 55 79 55 7] HT HOME]
270] [(ANIMATE.PACMAN] » END
[REVEAL . TURTLE]]
WHEN OVER @ @ [STAY.IN.BOUNDS] TO EXPLODE1 :SHAPES :COLORS
WHEN TOUCHING @ 1 [BULLSEYE 1] IF EMPTYP :SHAPES ([STOP)
WHEN TOUCHING @ 2 [BULLSEYE 2] TOOT @ 20 10 7 TOOT 1 25 10 6
WHEN TOUCHING @ 3 [BULLSEYE 3] SETSH FIRST :SHAPES
END SETC FIRST :COLORS
EXPLODE1 BF :SHAPES BF :COLORS
TO ANIMATE .PACMAN END
SETSH THING HEADING
WAIT 10 TO ON.WITH. THE . GAME
UPDATE TELL :PACMAN SETC :PURPLE
SETSH 1 + THING HEADING WHEN 7 [IF MEMBERP HEADING [0 90 180 »
END 270] [ANIMATE.PACMAN] »
[REVEAL.TURTLE]]
TO UPDATE END
IF COND OVER © 1 [MAKE "PAC.POSITION »
POS] TO VICTORY
END RECYCLE
TELL ©
TO REVEAL.TURTLE cT
SETSH @ PR [THE WINNER, AND STILL CHAMP!]
SETCURSOR [0 191 FANFARE
TYPE [\ FIX HEADING TO GET BACK IN THE » WAIT 180
GAME\] PR [DO YOU WANT TO PLAY AGAIN?]
END END
TO STAY.IN.BOUNDS TO FANFARE
TOOT @ 100 7 15 FANFAREL 55 110 39 40 7040
TOOT 1 200 7 15 FANFAREL 35 70 31 48 7049
SETPOS :PAC.POSITION FANFAREL 30 60 23 56 7049
PR [J PR "QUCH!!! PR [] FANFARE1 25 50 15 64 7040
END FANFAREL 30 50 78 71 7689
FANFARE1 129 200 63 56 7689
TO BULLSEYE :WHICH.TARGET SETPC 0 22
WHEN 7 [1 SETC :BLACK SETPC 1 26
ADD.TO.SCORE SETBG 64
EXPLODE :WHICH.TARGET SETENV @ 15 SETENV 1 15
(PR :SCORE [TO BE EXACT]) TOOT @ 24¢ 15 240 TOOT 1 408 15 249
WAIT 90 END
IF NOT :SCORE = 30000 »
[ON.WITH. THE.GAME] [VICTORY] TO FANFARE1 :FREQ® :FREQ1 :PENCOLOR »

END :SCREENCOLOR :HIGHFREQ

BLASTER 151

IF :FREQ® > 7040 (STOP] MAKE “SHAPE13 (129 66 36 153 90 36 90 »
TOOT ® :FREQ® 15 10 TOOT 1 :FREQ1l 15 7 129 129 90 36 99 153 36 66 129]
SETPC @ :PENCOLOR MAKE “SHAPE12 [0 0 © 153 90 36 99 153 »
SETPC 1 :PENCOLOR + 4 153 99 36 90 153 0 @ 0]
SETBG :SCREENCOLOR MAKE "SHAPE1l [0 @ @ © 24 60 102 219 »
FANFARE1 :FREQ® * 2 :FREQ1l * 2 » 219 102 60 24 2 0 0 0]
:PENCOLOR - 1 :SCREENCOLOR + 1 » MAKE “SHAPE1Q [0 0 @ © 0 60 990 1902 102 »
:HIGHFREQ 90 60 0 0 © 0 01
END MAKE "“SHAPE9 [255 129 129 129 129 129 »
165 129 153 129 189 129 129 129 »
TO YES 129 2551
PLAY MAKE “SHAPEB [0 0 0 ® 28 62 62 127 7 »
END 127 62 62 28 ® © 0]
MAKE "“SHAPE7 [0 0 @ © 28 62 62 15 7 15 »
TO NO 62 62 28 0 0 @)
SETBG 74 MAKE “SHAPE6 [0 @ @ © 0 0 56 124 254 »
SETPC 0 22 238 238 108 490 0 0 91
TELL [0 1 2 3) SETSH 0 CT MAKE “SHAPES [0 @ @ 0 0 @ 56 124 254 »
TELL © HOME ST SETPN 0 238 198 198 132 ¢ 0 @)
ERALL MAKE "“SHAPE4 [0 @ @ 0 56 124 124 254 »
RECYCLE 224 254 124 124 56 0 0 9]
END MAKE “SHAPE3 [0 @ 0 0 56 124 124 240 »

224 249 124 124 56 0 0 0]
MAKE “SHAPE1S [0 0 0 0 0 0 D 0D 0 QOO » MAKE “SHAPE2 [0 © 0 @ 40 108 238 238 »

000 0] 254 124 56 0 0 @ 0 0]
MAKE “SHAPE14 [0 0 0 0 0 9 2 02 0O 0 @ 0 » MAKE “SHAPE1 [0 © @ © 130 198 198 238 »
200 0) 254 124 56 0 0 0 0 0]
Blaster

That's your spaceship in the middle of the screen. You can steer with the
joystick and fire lasers at the three enemy ships that surround you. You get
points for hitting their ships. If an enemy ship collides with you, you lose
a life. The game ends when you've lost five lives.

4

——

By Brian Harvey.

152 GAMES

Turtle 0 represents your ship. It never moves from the center of the
screen, but it can turn in different directions depending on the position of
the joystick. It has eight possible shapes, each representing the ship facing
one of the eight possible directions.

T ==l
1
! =
be ——{ +
=
—
- -
‘ |
= [
SHIP1 SHIP3
- I S BRS = |
| 1 1
14 T 1 1
] 1 -
= mas =1
= 1
1
- e
SHIPs SHIP6 SHIF3

Turtles 1, 2, and 3 are the bad guys. They move at random speeds.

Their direction is always more or less toward you, but not necessarily di-
rectly toward you. They have only one shape.
You shoot by pressing the joystick button. This makes a red line appear for
a moment, pointing in the direction the ship is facing. If this line hits one
of the enemy ships, you score a point. Demons are used to detect the shot
hitting an enemy.

- BADGUY

= - s

! 4

L - R

BLASTER 153

Demons are also used to detect one of the enemy ships colliding with
your ship. (The enemy ships don't fire at you; they have no weapons. All
they can do is collide with you. Shame on you for firing at unarmed ships!)
In the picture below, your ship has blown up because an enemy ship hit you.

M I

¢

I

i 330 |
| Ol

BLOWUP

LIVES:3 POINTS:14

To start the game, run the procedure BLASTER. It has two subproce-
dures, one to set up the screen and the other to play the game. The inputs
to PLAY .BLASTER are the number of lives you're allowed and the number
of points you start with.

T0 BLASTER
SETUP.BLASTER
PLAY .BLASTER 5 @
END

Setting Up

The setup procedure sets colors and shapes, positions the turtles, and uses
the PX command to set turtle 0 (your ship) in penreverse so that when you
shoot, it can display and then erase the blast by retracing the line. Here is
SETUP.BLASTER and its subprocedures.

TO SETUP.BLASTER

CcT

SETBG @

SETPC 0 40

PUTSHAPES 1 [SHIP1 SHIP2 SHIP3 SHIP4 SHIPS
SHIP6 SHIP7 SHIP8 BADGUY BLOWUP]

MAKE "ENEMIES [1 2 3]

SETUP.ENEMIES

SETUP.PLAYER

END

PUTSHAPES takes two inputs. The first input is the starting shape num-
ber. The second is a list of names containing shapes (in the list form output

154

GAMES

by GETSH). It uses PUTSH to copy those shapes into Logo’s shape slots. In
effect, this procedure replaces what would otherwise be ten individual
PUTSH instructions.

TO PUTSHAPES :NUMBER :LIST

IF EMPTYP :LIST [STOP]

PUTSH :NUMBER THING FIRST :LIST
PUTSHAPES :NUMBER+1 BF :LIST
END

SETUP.ENEMIES sets the shape and color of the enemy ships.

TO SETUP.ENEMIES
TELL :ENEMIES

HT

SETSH 9

SETC 74

PU

END

SETUP. PLAYER sets the shape and color of your ship, and tells the turtle
to penreverse, as explained earlier.

TO SETUP.PLAYER
TELL @

ST

SETSH 1

SETC 7

cs

PX

END

Playing the Game

The main job of PLAY BLASTER is to set up several demons. There is one
for the joystick button, to fire a shot; three for the enemy ships colliding
with pen 0, when you shoot them; three for the enemy ships colliding with
turtle 0, when they hit you; and one for the joystick, to steer your ship. The
procedure also puts the enemy ships in random positions, prints the initial
score, and invokes BLASTER . LOOP to play the game.

Two variables are used throughout this part of the program to keep
track of scoring. These variables are the two inputs to PLAY . BLASTER, called
LIVES and POINTS.

LIVES The number of times an enemy ship can ram your ship before
the game is over,

POINTS The number of times you've hit an enemy ship. This is your
score.

Here are PLAY . BLASTER and its subprocedures.

TO PLAY.BLASTER :LIVES :POINTS
SETUP.DEMONS
TELL :ENEMIES

BLASTER 155

EACH [SETPOS RANDOM.POS]
SHOW. SCORE

ST

BLASTER.LOOP

END

SETUP . DEMONS starts the demons for the joystick button (firing), turtle-
pen collisions (you shooting an enemy), turtle-turtle collisions (an enemy
ramming you), and the joystick (steering).

TO SETUP.DEMONS

WHEN 3 [ASK ® [FIRE]]

WHEN OVER 1 © [ASK 1 [EXPLODE]]
WHEN OVER 2 © [ASK 2 [EXPLODE]]
WHEN OVER 3 © [ASK 3 [EXPLODE]]
WHEN TOUCHING © 1 [ASK @ [DIE 111
WHEN TOUCHING © 2 [ASK @ [DIE 211
WHEN TOUCHING @ 3 [ASK @ [DIE 31]]
WHEN 15 [ASK @ [STEER JOY 0]]

END

When nothing special is happening, the program spends most of its
time in BLASTER . LOOP. It checks to see if you've run out of lives, in which
case the game ends. Otherwise, it steers the enemy ships, shows the score,
and continues. The ships are steered within 30 degrees of the direction
toward you, so they tend to get closer to you but don't always move straight
to you. (Their heading is chosen using the TOWARDS procedure, which is in
the Towards and Arctan project.)

TO BLASTER.LOOP

IF :LIVES<1 [CS TS STOP]

EACH [SETH (TOWARDS [@® @1)+(RANDOM 60)-30
SETSP 30+RANDOM 150 WAIT RANDOM 30]

SHOW. SCORE

BLASTER.LOOP

END

When you move the joystick, a demon invokes the STEER procedure
with turtle 0 active. The demon wakes up whenever the joystick is moved,
including when it is returned to the center position. In that case, the input
to STEER is —1 and nothing is done. Otherwise, we have to change the
turtle’s heading (so it can fire properly) and its shape.

TO STEER :WHERE

IF :WHERE<® [STOP]
SETH 45" :WHERE
SETSH 14:WHERE

END

When you push the joystick button, a demon invokes the FIRE proce-
dure with turtle 0 active. This procedure draws and then erases a line
representing your shot. It hides the turtle while drawing so that the ship
doesn’t appear to move.

156

GAMES

TO FIRE
HT

FD 89
BK 8¢
ST

END

When your shot hits an enemy ship, a collision demon invokes the
EXPLODE procedure, using ASK to make the turtle representing that ship
become the current turtle. This procedure changes this turtle to an explo-
sion shape, blinks it on and off, makes a noise, and then repositions the
enemy ship somewhere else at random on the screen. It also adds one to
your score.

TO EXPLODE

SETSH 10

TOOT @ 14 15 60

TOOT 1 16 15 60

REPEAT 5 [HT WAIT 2 ST WAIT 2]
HT

SETPOS RANDOM.POS
SETSH 9

ST

MAKE “POINTS :POINTS+1
END

When an enemy ship hits your ship, a collision demon invokes the D1E
procedure with turtle 0 active. The turtle number of the ship that hit you
is an input to the procedure. That ship is moved to a random position, your
ship explodes, the game stops for a second, and the count of how many lives
remain is reduced by one. When your ship reappears, its shape is chosen
to match its heading.

TO DIE :KILLER

ASK :KILLER [SETPOS RANDOM.POS]
SETSH 1¢

TOOT @ 25 15 60

TOOT 1 27 15 60

REPEAT 5 [HT WAIT 2 ST WAIT 2]

HT

WAIT 60

SETSH 1+INT (HEADING/45)
ST

MAKE “LIVES :LIVES-1

END

Every so often, the BLASTER.LOOP procedure calls SHOW.SCORE to
update the display of how many lives remain and how many points you've
earned. This isn’t done instantly when you get a point or lose a life, because
it would slow down the play of the game. Because of this, you might some-
times get an extra (bonus) life if BLASTER. LOOP doesn’t notice your death
soon enough. That’s why the procedure checks for a negative number of
lives remaining and displays it as zero.

BLASTER

TO SHOW.SCORE

IF :LIVES<® [MAKE "LIVES @]
SETCURSOR [3 22]

TYPE SE “LIVES: :LIVES
SETCURSOR [29 221

PRINT SE “POINTS: :POINTS
END

RANDOM . POS is the utility procedure that outputs a random position on
the screen for use with SETPOS.

TO RANDOM.POS
OUTPUT LIST RANDOM 320 RANDOM 240
END

Shapes

Here are the shapes.

MAKE “SHIP1 [24 24 24 24 24 60 60 60

60 60 60 126 126 126 255 255]
MAKE “SHIP2 [0 @ @ @ 1 3 206 124 60 28 24 12 4 0 0 9]
MAKE "“SHIP3 [0 @ ® @ 128 224 248 255

255 248 224 128 9 @ ¢ 0]
MAKE “SHIP4 [0 0 © 4 12 24 28 60 124 206 3 1 0 0 9 0]
MAKE "SHIP5 [255 255 126 126 126 60

60 60 60 60 60 24 24 24 24 24)]
MAKE “SHIP6 [0 @ @ 32 48 24 56 60 62 115 192 128 ¢ 0 ¢ 0]
MAKE “SHIP7 [9 0 @ ®# 1 7 31 255 255 31 7 10 0 0 0]
MAKE “SHIP8 [0 0 © © 128 192 115 62 60 56 24 48 32 0 0 0]
MAKE "BADGUY [129 129 129 129 129 129 153 255

255 153 129 129 129 129 129 129]
MAKE "BLOWUP [128 192 96 32 1 3 230 228

0 0 128 199 103 32 0 0]

Notice that SH1P4 to SHIP8 are simply mirror images of the first three
ship shapes. For example, SH1P4 is the same as SHIP2 but reflected around
a horizontal axis. SHIP8 is the same shape, but reflected arounda vertical
axis. These relationships can be seen in the lists of numbers representing
the shape. For example, the list representing SH1P4 is the same as the list
for SHIP2, but with the numbers in reverse order. (The relationship be-
tween a shape and its vertical-axis reflection is more complicated.) I actually
only made the first three ship shapes in the shape editor; I created the
others by calculating the appropriate numbers.

158 GAMES
SUGGESTIONS

* Make the enemy ships fire back instead of just ramming you.

* The game hasn't been “playtuned.” Should it be easier or harder?
For example, the enemy ships move within 30 degrees of your direc-
tion. If that number were smaller, they’d hit you more often. The
range of speeds could be changed too.

* You could start with a limited number of shots available. On the
other hand, there could be a limit to the number of enemy ships that
appear. (As it is, there is no way to “win” the game by destroying all
the enemies.)

* You could add nice touches like stars in the background (remember
to use a different pen for the stars and for the shots!) and sound effects
between hits.

* It would be good to be able to move your own ship as well as steer
it. This would require some way to indicate “thrust”; you could add
a second joystick, or use the keyboard.

PROGRAM LISTING
The procedures from the Towards and Arctan project (p. 212) are also used in this program,
TO BLASTER TO SETUP.PLAYER
SETUP.BLASTER TELL ©
PLAY.BLASTER 5 @ ST
END SETSH 1
SETC 7
TO SETUP.BLASTER CS
cT PX
SETBG @ END
SETPC 0 490
PUTSHAPES 1 [SHIP1 SHIP2 SHIP3 SHIP4 » TO PLAY.BLASTER :LIVES :POINTS
SHIPS SHIP& SHIP7 SHIP8 BADGUY » SETUP.DEMONS

BLOWUP]
MAKE "ENEMIES [1 2 3]
SETUP.ENEMIES
SETUP.PLAYER
END

TO PUTSHAPES :NUMBER :LIST

IF EMPTYP :LIST (STOP]

PUTSH :NUMBER THING FIRST :LIST

PUTSHAPES :NUMBER+1 BF
END

TO SETUP,.ENEMIES
TELL :ENEMIES

HT

SETSH 9

SETC 74

PU

END

:LIST

TELL :ENEMIES

EACH [SETPOS RANDOM.POS]
SHOW. SCORE

ST

BLASTER.LOOP

END

TO SETUP.DEMONS

WHEN 3 [ASK @ [FIRE]]

WHEN OVER 1 0 [ASK 1 [EXPLODEI]]
WHEN OVER 2 0 [ASK 2 [EXPLODE]]
WHEN OVER 3 © [ASK 3 [EXPLODE]]
WHEN TOUCHING ® 1 [ASK o [DIE 111
WHEN TOUCHING 0 2 [ASK @ [DIE 211
WHEN TOUCHING 0 3 [ASK @ [DIE 311
WHEN 15 [ASK @ [STEER JOY 011

END

TO BLASTER.LOOP

IF :LIVES<1 [CS TS STOP]

EACH [SETH (TOWARDS (@ @1)+(RANDOM »
60)-30 SETSP 30+RANDOM 159 WAIT »
RANDOM 391

SHOW. SCORE

BLASTER.LOOP

END

TO STEER :WHERE

IF :WHERE<® [STOP]
SETH 45 :WHERE
SETSH 1+:WHERE
END

T0 FIRE
HT

FD 80
BK 80
ST

END

TO EXPLODE

SETSH 10

TOOT @ 14 15 60

TOOT 1 16 15 60

REPEAT 5 [HT WAIT 2 ST WAIT 2]
HT

SETPOS RANDOM.POS
SETSH 9

ST

MAKE “POINTS :POINTS+1
END

TO DIE :KILLER

ASK :KILLER [SETPOS RANDOM.POS]
SETSH 19

TOOT @ 25 15 6@

TOOT 1 27 15 6@

REPEAT 5 [HT WAIT 2 ST WAIT 21
HT

WAIT 60

SETSH 1+INT (HEADING/45)

ST

MAKE “LIVES :LIVES-1

END

BLASTER 159

TO SHOW.SCORE

IF :LIVES<® [MAKE “LIVES @]
SETCURSOR [3 22]

TYPE SE "LIVES: :LIVES
SETCURSOR [20 22]

PRINT SE “POINTS: :POINTS
END

TO RANDOM.POS
OUTPUT LIST RANDOM 320 RANDOM 249
END

MAKE “SHIP1 [24 24 24 24 24 60 60 60 »
60 60 60 126 126 126 255 255]

MAKE “SHIP2 [0 © 0 0 1 3 206 124 60 28 »
24 12 4 0 0 0)

MAKE “SHIP3 [® @ © @ 128 224 248 255 »
255 248 224 128 0 0 0 9]

MAKE “SHIP4 [0 0 0 4 12 24 28 60 124 »
206 31900 0 0)

MAKE "SHIPS [255 255 126 126 126 60 60 »
60 60 60 60 24 24 24 24 24)

MAKE “SHIP6 [0 ® @ 32 48 24 56 60 62 »
115 192 128 @ 0 0 0]

MAKE “SHIP7 [0 0 @ @ 1 7 31 255 255 31 »
71000 0)

MAKE “SHIP8 [0 0 @ @ 128 192 115 62 60 »
56 24 48 32 0 0 0]

MAKE “BADGUY [129 129 129 129 129 129 »
153 255 255 153 129 129 129 129 »
129 129)

MAKE “BLOWUP [128 192 96 32 1 3 230 »
228 0 © 128 199 103 32 0 0)

160 GAMES

Alien

l—;-]

——

Here is a description of this program by its author, Jeanry Chandler.

Alien is basically a Space Invaders-type game. All you need to play
is a deft hand, and possibly a severe case of xenophobia. You control
a sturdy defender tank with a joystick; you launch your deadly cruise
missiles by (you guessed it) pressing the joystick button.

The alien craft, intent upon landing, will slip ever downward
while avoiding your missiles and dropping its own neutro-destroyer
bombs. If the alien lands, you are in serious trouble indeed. Two little
green creatures will emerge and try to plant a bomb on your tank. You
can attempt to shoot the little pests, but your gun has jammed and you
can only shoot in one direction, so you have to shoot one quickly and
then use the magic of Logoland to wrap and face the other. This, of
course, is nearly impossible.

In this write-up I talk about the overall structure of the program and
the decisions made about how it keeps track of things; I do not cover all the
procedures in detail.

This game is in two parts. If you manage to shoot the alien helicopter
before it lands, you don’t play the second part. I have organized the pro-
gram so that the two parts have the same structure.

Before proceeding further, you may want to play Alien. To begin the
game, run START. You are the defender, controlling your maneuverable
tank with the joystick plugged into port 1. You can switch the direction you
are moving with the joystick and fire missiles at the alien helicopter with
the joystick button.

Program by Jeanry Chandler; write-up by Margaret Minsky.

ALIEN

Structure of the First Part of the Game

In their roles as alien, missile, bomb, and defender, the turtles are given
their positions, headings, states, shapes, and colors. Demons are created to
watch for certain game conditions and then call procedures that keep score,
create explosions, and set variables. Those variables are:

SCORE The score.

WIN TRUE if something has happened that means the player has
won the game.

LOSE TRUE if something has happened that means the player has
lost the game and thus has been annihilated.
MISSILE Used to tell if a missile can be launched. Its value is 1 if the

defender’s missile is in the air, 0 if not. The rule is that the
defender cannot launch a missile while the previous one is
still in the air. When the missile gets to the top of the screen,
it disappears and :MISSILE is reset to 0.

80MB Used to tell when to drop a bomb. After the alien drops a
bomb, :B0MB becomes 1. This is used to prevent another
from being dropped. When the bomb hits a target or the
ground, : BOMB is reset to 0 to reenable launching.

It is a good idea to know the roles played by the four turtles.

Defender (the player)

Alien

Bomb (alien’s neutro-destroyer bomb)
Missile (defender’s missile)

w o - o

Naming Conventions

Most procedures that deal with the alien have A in them; those that deal
with the defender have D. The procedures that deal with the missile gener-
ally have MISSILE in their names, and the ones that deal with the alien’s
bomb have BOMB in theirs. The variables that have to do with the weapons
are :MISSILE and :BOMB.

Setting Up

At the start of the game, SETUP initializes the turtle shapes and the
game variables. Then it calls SETUP . DEMONS to create all the demons that
are used in the game. SETUP then calls ASETUP and DSETUP to initialize the
alien’s and defender's positions, headings, colors, and speeds.

161

162

GAMES

TO SETUP

CT CS

SETUPSHAPES

TELL [®# 1 2 31 HOME HT PU
TELL (1 @] ST PU
MAKE “BOMB ¢

MAKE “MISSILE ©
MAKE “SCORE @
MAKE “WIN "FALSE
MAKE “LOSE "FALSE
SETUP.DEMONS
DSETUP

ASETUP

TELL @

END

TO ASETUP

TELL 1

SETSH 1 SETSP 70 SETH 99
SETPOS (2 100)

SETSH 3 SETSP 65 SETH 270
ASK 2 [SETC 44]

END

TO DSETUP

TELL © SETPOS [9 -55]

SETPN @

RT 90 PD FD 300 PU RT 90 FD 5 RT 90 PD FD 300 PU
SETPOS [0 -431

SETSP 75

END

Setting Up Demons and Demon Instruction Conventions

One of the demons that SETUP . DEMONS creates carries out its instruc-
tions every time the joystick position changes. (It is created by the line WHEN
15 [DMOVE]). The demon instructions call the procedure DMOVE to let
the joystick control the defender’s motion.

TO SETUP.DEMONS
WHEN 15 [DMOVE]
MISSILE.DEMONS
BOMB . DEMONS

END

TO DMOVE

IF MEMBERP JOY © [1 2 3] [ASK @ [SETH 9011
IF MEMBERP JOY 0 [5 6 7] [ASK @ [SETH 27011
END

The MISSILE.DEMONS and BOMB.DEMONS procedures create demons
for actions having to do with the missile and bomb. For example:

WHEN TOUCHING 2 3 (SCORE 20 EXPLODE.BOMB.MISSILE]

ALIEN

is a line in MISSILE . DEMONS that creates a demon. This demon waits for a
collision between the defender’s missile and the alien’s bomb. This demon’s
instructions make the missile explode, thus neutralizing the bomb and
protecting the defender from it. SCORE 20 gives the player points for
having the good aim to hit the bomb. EXPLODE . 80MB . MISSILE makes the
explosion graphics and sounds and sets :MI1SSILE and : 80MB to zero. This
lets the game know that the missile and bomb have been destroyed.

MISSILE . DEMONS also creates a demon that waits for the joystick but-
ton to be pressed. When the button is pressed, a missile is fired.

TO MISSILE.DEMONS
WHEN 3 [IF :MISSILE < 1 [MISSILE]]
WHEN TOUCHING 2 3 [SCORE 20 EXPLODE.BOMB.MISSILE]
WHEN TOUCHING 3 1

[EXPLODE .MISSILE.A SCORE 50 MAKE "WIN “TRUE]
WHEN OVER 3 ® [MAKE "MISSILE @ ASK 3 [HT]]
END

TO EXPLODE.BOMB.MISSILE
ASK 3 [HT]

ASK 2 [SETSP 101

ASK 2 [SETSH 6]

REPEAT 20 (T00T @ 14 10 2]

ASK 2 [HT]

MAKE “BOMB @
MAKE "MISSILE @
END

The other explosion procedures are named for the things that cause
each explosion. For example, the procedure that is invoked when the mis-
sile hits the alien is named EXPLODE .MI1SS1LE . A. Remember that when this
happens, the player wins the game. The same demon instructions that call
EXPLODE.MISSILE.A also include MAKE "WIN “TRUE.

In this program, the demon instructions conventionally include a call
to SCORE and a call to the appropriate explosion procedure. They also set
‘WIN or : LOSE if the game has been won or lost. For example, if the bomb
hits the defender, the player has lost the game. The instructions run by the
demon created for the collision between the bomb and the defender in-
clude the appropriate explosion procedure and also MAKE “LOSE “TRUE.
This means you can systematically review all the conditions for winning and
losing the game by reading through the demon setup procedures.

The Game Actions

The main loop is I NVADE. It stops only if the game has been won or lost.
Either this happens in the first part of the game, or the alien helicopter
survives to land and INVADE calls LAND. If INVADE calls LAND, then
INVADE stops when the second part of the game is finished.

163

164

Shape 8
MISSILE = 0
MISSILE + 8

11T

8

Shape 9
MISSILE = 1
MISSILE + B

= 9

GAMES

T0 INVADE

[F :WIN [WIN STOP]

IF :LOSE [LOSE STOP]

TELL ©

SETSH :MISSILE + 8

BLADE

TELL 1

IF (RANDOM 10) < 8 [SETY YCOR - 12]
IF YCOR < -45 [LAND STOP)

[F EQUALP RANDOM 3 1 [AMOVE]
IF EQUALP :BOMB © [(BOMB]
BLADE

INVADE

END

INVADE calls most of the procedures that perform actions in the game.
It does not call DMOVE or the explosion procedures; they are called by
demons.

INVADE first checks :WIN and : LOSE to see if the end of the game has
been signaled. If so, INVADE calls an appropriate procedure and stops. If not,
INVADE updates the shape of the defender according to what is happening
with the missile. It uses a trick with the shape numbers.

The trick is that INVADE uses :MISSILE to choose which shape to give
the defender. :MISSILE gets changed by demon instructions. It is set to 1
when the missile is launched. This happens when the joystick button is
pushed.® (See MISSILE . DEMONS.) When the missile hits something, or when
it gets to the top of the screen, :MISSILE is set to 0 and the missile disap-
pears. Demon instructions take care of this. While the missile is flying on
the screen and ‘MISSILE is 1, INVADE gives the defender shape 9. When
the missile is gone and -MISSILE is 0, INVADE gives the defender the
ready-to-launch shape 8.

INVADE then calls BLADE, which makes the alien helicopter’s rotor seem
to turn by changing its shape. It also makes some sound effects to accom-
pany the animation.

TO BLADE

TELL 1

SETSH 3

TOOT @ 8@ 12 1
WAIT 5

SETSH 10

TOOT @ 890 12 1
WAIT 5

SETSH 11

TOOT @ 89 12 1
WAIT 5

TELL @

END

INVADE makes the alien drop closer to the ground 80 percent of the
time. It uses (RANDOM 10) < 8 to decide whether to drop the alien.

**The MISSILE procedure fires the missile up and in the same general direction as the
defender is traveling. It uses the ADJUST procedure to decide on the heading of the missile,

ALIEN

INVADE checks whether the alien has reached ground level. If it has,
INVADE calls LAND, the second part of the game. Otherwise, INVADE may
call AMOVE to make the alien change direction toward the defender. It uses
(RANDOM 3) = 1 to do this one third of the time.

TO AMOVE
IF XCOR > (ASK @ [XCOR]) [SETH 90] [SETH 270]
END

Next INVADE checks if the bomb is on the screen. If it is not, INVADE
calls BOM8 to launch one. BOMB aims the bomb at the defender using
TOWARDS.*

TO BOMB

MAKE “BOMB 1

TELL 2

SETPOS ASK 1 [POS]

PU SETSH 5 POINT.AT.D SETSP 8@ ST
END

Last, INVADE calls BLADE again to create more animation of the alien,
and then calls itself to continue the game process.

Winning and Losing

The WIN and LOSE procedures print the score and either a congratula-
tory or a gloomy message.

The Second Part of the Game

If the alien craft survives your attacks and reaches ground level, LAND is
called. LAND controls all the action that happens at ground level. Since this
part of the game has a similar structure to the first part, the programs look
similar. Some of the same shapes are used. There is still a defender (with
the same shape), two aliens (with animated walking shapes), and a bullet for
the defender to shoot.

The turtles’ new assignments are

Defender (the player)
Green alien walker
Green alien walker
Bullet (the player’s)

wN o~ o

Since there are two alien walkers, and you have to shoot both of them
to win the game, there is a new game variable AWCOUNT. :AWCOUNT is the
number of aliens still alive. This lets the game know when you have shot
an alien, and whether it is the last one.

LAND corresponds to START. It calls SETUP . LAND, which cancels all the
demons created in the first part of the game and sets up the new shapes and
turtle states. Then it calls SETUP . LAND . DEMONS, which creates the demons
used in this part of the game. For example, the line WHEN 15 [DMOVE]
in SETUP.LAND. DEMONS creates a demon that lets the joystick control the
defender’s motion.

*TOWARDS is described in Brian Harvey’s project, Towards and Arctan.

165

166

GAMES

TO LAND
SETUP.LAND
SETUP.LAND.DEMONS
WALK

END

TO SETUP.LAND
CANCEL .DEMONS
TELL [1 2]

SETC 2¢

SETSH 13

SETY -43

SETSP 70

ST

TELL 1 SETH 27¢
TELL 2 SETH 90
MAKE “AWCOUNT 2
END

TO CANCEL.DEMONS
ASK 2 [HT CS]
END

TO SETUP.LAND.DEMONS

WHEN 15 [DMOVE]

WHEN TOUCHING 1 @ [EXPLODE.AW.D MAKE “LOSE "TRUE]
WHEN TOUCHING 2 @ [EXPLODE.AW.D MAKE "LOSE "TRUE]
WHEN TOUCHING 1 3 [EXPLODE.BULLET.AW 1]

WHEN TOUCHING 2 3 [EXPLODE.BULLET.AW 2]

END

There is a new set of explosion procedures for this part of the game.
It is possible that some of the explosion procedures from the invaders part
of the game could have been reused; they might have had appropriate
actions for the turtles’ new roles. I decided that it would be clearer to have
a new set of procedures with names that go with the new roles: AW for green
alien walker and BULLET for the bullet.

The WALK procedure corresponds to INVADE in the first part of the
game. WALK controls most of the game actions. The sequence of SETSH
13, 7007, and SETSH 12 creates the walking animation for turtles 1 and
2, the alien walkers. This sequence corresponds to BLADE in the first part
of the game, which creates the helicopter blade animation. FIRE fires the
bullet if the joystick button is pressed. It corresponds to M1 SSILE in the first
part of the game. (I don’t know why I put it in WALK instead of creating a
demon to do it with WHEN 3 [(FIRE].) Winning and losing the game
happen exactly as in INVADE. WALK is recursive to keep the game process
going.

TO WALK

IF :WIN [WIN STOP]
IF :LOSE [LOSE STOP)
IF JOYB © (FIRE)
TELL (1 2]

SETSH 13

ALIEN

TOOT 0 3900 8 4
SETSH 12

WALK

END

Note that there is nothing corresponding to the MISS1LE or BOMB varia-
bles in this part of the game. The BULLET keeps going once it is fired. One
bullet has to hit both alien walkers for the game to be won.

SUGGESTIONS

Jeanry suggests that you change the shapes that the turtles carry to
make a different game. You might make a flying saucer blinking its landing
lights instead of a helicopter spinning its blades.

A very different kind of game could be created with this type of pro-
gramming. One idea is to replace the defender shooting destructive missiles
with a ground launching platform trying to send recharge fuel eylinders to
a disabled spaceship. The fuel could enable the spaceship to turn on its
brakes and land safely instead of crashing. You could even make the joystick
control the refueled spaceship, so that the new challenge is to land the ship.

You can use some of Alien’s techniques—sound effects, controlling
turtles with the joystick, simple game play—in projects completely of your
own imagination.

167

PROGRAM LISTING

THE FIRST PART OF THE CGAME

TO START TO INVADE
SETUP IF :WIN [WIN STOP]
INVADE IF :LOSE [LOSE STOP]
END TELL @
SETSH :MISSILE + 8
TO SETUP BLADE
CT CS TELL 1
SETUPSHAPES IF (RANDOM 19) < 8 [SETY YCOR - 12]

TELL [0 1 2 3] HOME HT PU
TELL [1 @] ST PU
MAKE "BOMB @

MAKE "MISSILE 0
MAKE "“SCORE 9
MAKE "WIN "FALSE
MAKE "LOSE "FALSE
SETUP,DEMONS
DSETUP

ASETUP

TELL 0

END

IF YCOR < -45 [LAND STOP]

1F EQUALP RANDOM 3 1 [AMOVE]
IF EQUALP :B80MB © [BOMB]
BLADE

INVADE

END

168 GAMES

DEMONS

T0 SETUP.DEMONS
WHEN 15 [DMOVE]
MISSILE.DEMONS
BOMB . DEMONS

END

TO BOMB.DEMONS

WHEN TOUCHING 2 @ [EXPLODE.BOMB.D MAKE »

“LOSE "TRUE]
WHEN OVER 2 @ (EXPLODE.BOMBI
END

TO MISSILE.DEMONS
WHEN 3 [IF :MISSILE < 1 [MISSILE]]

WHEN TOUCHING 3 1 [EXPLODE.MISSILE.A »

SCORE 50 MAKE "WIN “TRUE]

WHEN OVER 3 @ [MAKE “MISSILE @ ASK 3 »

[HT11]
END

SETUP FOR THE ALIEN AND DEFENDER

TO ASETUP

TELL 1

SETSH 1 SETSP 70 SETH 99
SETPOS [0 100]

SETSH 3 SETSP 65 SETH 270
ASK 2 [SETC 44]

END

TO DSETUP
TELL @ SETPOS [® -55]
SETPN 0

RT 90 PD FD 300 PU RT 90 FD 5 RT 92 PD »

FD 300 PU
SETPOS [0 -43]
SETSP 75
END

GAME ACTIONS

T0 BLADE

TELL 1

SETSH 3

TOOT ¢ 80 12 1
WAIT 5

SETSH 10

TOOT 0 82 12 1
WAIT 5

SETSH 11

TO0T @ 80 12 1

WAIT

5

TELL ©

END

TO DMOVE
IF MEMBERP JOY 0 [1 2 3] [ASK ¢ [SETH »

501)

IF MEMBERP JOY @ [5 6 7] [ASK 0 [SETH »

END

2701]

T0 AMOVE
IF XCOR > (ASK 0 [XCOR]) [SETH 901 »

END

[SETH 2701

TC BOMB

MAKE
TELL

"BOMB 1
2

SETPOS ASK 1 [POS]
PU SETSH 5 POINT.AT.D SETSP 8@ ST

END

TO POINT.AT.D

SETH
END

TOWARDS ASK @ [POS]

TO MISSILE

MAKE

“MISSILE 1

ASK © [SETSH 2]
ASK 3 [SETSH 4 SETX (ASK ¢ [XCOR]) »

END

SETY -35 PU SETH (ADJUST (ASK @ »
[HEADING])) SETSP 95 ST]

TO ADJUST :HEADING
IF :HEADING = 9¢ [OP 751 [OP 285]

END

T0 LOSE
PR [YOU HAVE BEEN ANNIHILATED !!!]

TELL
END

[0 12 3]1CS

TO WIN
PR [YOU WIN!!I!!]

TELL
END

[0 1 2 3] CS

EXPLOSIONS, SCORING, AND WINNING/LOSING

TO EXPLODE.BOMB

ASK 2 [SETSH 6]

REPEAT 2 [TOOT @ 20 15 51
MAKE "BOMB ©

END

TO EXPLODE.BOMB.MISSILE
ASK 3 [HT]

ASK 2 [SETSP 101

ASK 2 [SETSH 6]

REPEAT 20 (T00T @& 14 10 2]
ASK 2 [HT]

MAKE “BOMB @

MAKE “MISSILE @

END

TO EXPLODE.MISSILE.A

TELL 3 HT

TELL 1 SETSH 7 SETSP 5
REPEAT 20 (TOOT 0 420 15 101
TELL 1 HT

END

TO EXPLODE.BOMB.D

TELL 2 HT

TELL @ SETSH 7 SETSP 5
REPEAT 490 [T00T @ 30 15 5]
TELL @ HT

END

SCORING PROCEDURES USED IN BOTH
PARTS OF THE GAME

TO SCORE :S

MAKE “SCORE :SCORE + :S
PRINT SCORE

END

TO PRINT,SCORE
PR SE [GOOD SHOT YOUR SCORE IS] :SCORE
END

THE SECOND PART OF THE GAME

TO LAND

SETUP. LAND
SETUP.LAND.DEMONS
WALK

END

ALIEN 169

TO SETUP.LAND
CANCEL . DEMONS
TELL (1 2]

SETC 29

SETSH 13

SETY -43

SETSP 70

ST

TELL 1 SETH 270
TELL 2 SETH 99
MAKE “AWCOUNT 2
END

DEMONS

TO CANCEL.DEMONS
ASK 2 [HT CS]
END

TO SETUP.LAND.DEMONS

WHEN 15 [DMOVE]

WHEN TOUCHING 1 @ [EXPLODE.AW.D MAKE »
"LOSE "TRUE]

WHEN TOUCHING 2 @ [EXPLODE.AW.D MAKE »
“LOSE "TRUE]

WHEN TOUCHING 1 3 (EXPLODE.BULLET.AW »
1]

WHEN TOUCHING 2 3 [EXPLODE.BULLET.AW2)

END

GCAME ACTIONS

TO WALK

IF :WIN [WIN STOP]
[F :LOSE [LOSE STOP]
[F JOYB © [FIRE]
TELL [1 2]

SETSH 13

TOOT @ 309 8 4
SETSH 12

WALK

END

T0 FIRE

TELL 3

SETSH 14

SETH 270

ST SETSP 150 SETX ASK ® [XCOR] SETY »
-44

END

170 GAMES

EXPLOSIONS, SCORING, AND WINNING/LOSING MAKE “ALIEN GETSH 3
MAKE “MISSILESHAPE GETSH 4

70 EXPLODE .Aw.D MAKE “BOMBSHAPE GETSH 5
TELL @ SETSH 7 SETSP S MAKE “EXPLOSION1 GETSH 6
REPEAT 40 [T00T @ 3@ 15 5)

MAKE "EXPLOSION2 GETSH 7
MAKE "DEFENDER2 GETSH 8
MAKE "DEFENDER3 GETSH 9
MAKE "ALIEN2 GETSH 1@
MAKE "ALIEN3 GETSH 11
MAKE "MAN1 GETSH 12

MAKE “MAN2 GETSH 13

HT
END

TO EXPLODE.BULLET.AW :ALIEN
MAKE “AWCOUNT :AWCOUNT - 1
EXPLODE.B.AW :ALIEN

SCORE 30 "

MAKE “BULLET GETSH 14
IF :AWCOUNT = @ [MAKE "WIN "TRUE] END
END

MAKE “BULLET [0 0 0 0 0 0 0 24 24 0 0 »
90000

MAKE “MAN2 [20 8 24 16 24 16 24 60 90 »
24 24 16 16 16 40 9]

MAKE “MAN1 (49 16 24 16 24 16 24 24 24 »
24 24 16 16 16 16 0]

MAKE “ALIEN3 [126 24 24 126 255 45 255 »
45 255 255 90 90 90 153 60 0]
SETUPSHAPES, SAVE . SHAPES, AND SHAPES MAKE “ALIEN2 [255 24 24 69 255 75 255 »

75 255 255 90 90 90 153 60 0]
kgl R MAKE “DEFENDER3 (0 0 0 0 © 60 254 126 »
X 126 129 42 128 103 239 1 84)

TO EXPLODE.B.AW :A

ASK 3 [HT]

ASK :A [SETSH 7 SETSP 5]
REPEAT 10 [TOOT @ 429 15 10]
ASK :A [HT]

END

PUTSH 2 :DEFENDER1 MAKE “DEFENDER2 [@ 0 8 28 28 60 254 »
:3:3: : j;;;E?LESHAPE 126 126 129 42 128 103 230 1 84]

: MAKE “EXPLOSION2 [84 17 128 85 58 20 »
PUTSH 5 : BOMBSHAPE 189 16 168 90 145 33 12 64 138 »
PUTSH 6 :EXPLOSIONI e
PUTSH 7 :EXPLOSION2 3
v R MAKE “EXPLOSION1 [@ @ 20 80 4 48 26 56 »

84 26 32800 0 0]

MAKE “BOMBSHAPE [0 0 @ @ 0 @ 94 127 »
127 94 0 0 0 0 0 @1

MAKE “MISSILESHAPE [® 16 16 16 56 56 »
56 56 56 56 124 124 84 0 40 16]

MAKE “ALIEN [60 24 24 126 255 165 255 »
165 255 255 90 9@ 90 153 60 0]

MAKE “DEFENDER1 [0 @ @ © 0 28 254 126 »
126 129 84 1 230 103 128 42])

MAKE "DEFENDER [0 0 8 28 28 60 254 126 »
126 129 84 1 230 103 128 42)

PUTSH 9 :DEFENDER3
PUTSH 19 :ALIEN2
PUTSH 11 :ALIEN3
PUTSH 12 :MAN1
PUTSH 13 :MAN2
PUTSH 14 :BULLET
END

TO SAVE.SHAPES
MAKE “DEFENDER GETSH 1
MAKE "DEFENDER1 GETSH 2

ALIEN 171

i
SHAPES
== T U5]
' . C |]
f
= -
! Sl =l 5
t o
I
- I - -
== c o= e = !
MAN1 MAN2 ALIEN ALIEN
slot 12 slot 13 slot 3 slot 10

— —
i_ =
: L | N T =
DEFENDER DEFENDER1 DEFENDER?2 DEFENDER3 EXPLOSIONI
slot 1 slot 2 slot 8 slot 9 slot 6

I | - T of) B M 857 G
‘1 | £33 § { 1
I T I I
iF I] - I
| - 1 =
- . ! u =
e - i]
|
C |
i B | I o B P 1 5
MISSILESHAPE BOMBSHAPE BULLET

slot 4 slot 5 slot 14

172

GAMES

Adventure

Adventure is one of a class of hundreds, if not thousands, of games inspired
by Crowther and Woods's classic FORTRAN program. You play an adven-
ture game by exploring a simulated world, and usually you win points for
finding objects, solving riddles, or killing monsters. This version, however,
awards no points.

There are three aspects to an adventure program:

+ Language understanding. The program must recognize commands
that you give in a simple language.

*+ Simulation. The program executes your commands.

+ Language production. The program tells you the results.

As you read on you'll find out how my program does all three of these
things.

This adventure is smaller than most because of Logo's space limitations.
Other microcomputer adventures are usually written in assembly language
and also use a disk to store more information. On the other hand, this
version was easy to write and is easy to modify and extend.

Adventure Programs Understand a Simple Language

When you play Adventure you give the computer commands in the Adven-
ture language, just as when you use Logo you use the Logo language.
Adventure is a program written in Logo that understands the Adventure
language.*

Sentences in this language are in one of three forms:

verb Just a verb. The verb is one of these: LO0OK, INVENTORY, or
?

verb noun A verb followed by a noun, for example, TAKE KEY. Verbs
are TAKE, DROP, EXAMINE, UNLOCK, or DRINK. Nouns are objects
you find while playing the game.

direction The implied verb is MOVE, and the direction must be one of
NORTH, EAST, SOUTH, WEST, UP or DOWN.

Most of the verbs have the same meaning as their English counterpart.
(You can find out more by using them.)

The syntax rules of the language are simple and strict. Each verb is in
one of two classes: either it must always be followed by a noun (TAKE
KEY), or it must never be used with a noun. The program won’t understand
what you mean if you supply an object to a verb that doesn't expect one
(for example, LOOK NORTH) or if you omit a necessary noun.

*Logo, the program that interprets the Logo language, is itself a program, written in the
machine language of the microcomputer, For more on this subject, see the preface and Logo
Interpreter project in this book.

By James Davis.

ADVENTURE
Using the Program

To use the program, invoke the top-level procedure ADVENTURE,
The program describes the area you're in, then prompts you (with
a <) for a sentence.

YOU ARE IN A FOREST

YOU SEE ASH AND BIRCH TREES
YOU CAN GO NORTH

YOU CAN GO EAST

YOU CAN GO SOUTH

YOU CAN GO WEST

>

You type in a sentence telling the program what to do. If it understands
you it does what you typed; otherwise it complains. If your action takes you
to a new place, the program describes the new place. After telling you the
consequences of your action, the program is ready for another command.

>NORTH

YOU ARE AT THE BASE OF A CLIFF

YOU SEE ASH AND BIRCH TREES

YOU CAN GO SOUTH

YOU CAN GO WEST

A CLOSED STOUT IRON DOOR LEADS NORTH
>

If you move north, you'll find yourself at the foot of a cliff, with a door
leading in. But to open the door you'll have to explore the forest further.
Be careful not to get lost; in Adventure it isn’t always true that if you travel
east to get from one place to another that traveling west will get you back
where you were.

You can get a list of every word the program knows by typing ?.

You should probably play the game before reading further, because it
is easier to understand the program if you’ve used it and because the game
is much more fun if you don’t know what to expect.

An Adventure Program Simulates a World

The program uses Logo words to represent the places and objects in the
simulated world. The word CROWBAR represents the crowbar you'll find in
the guard room. The word GUARD represents that guard room. There is one
word for every place or object in the simulated world.

Objects and rooms in the simulation have different attributes (for ex-
ample, weight). Each word has a list of all attributes of the thing it repre-
sents. A list of attributes is called a property list.*

*This terminology comes from the programming language LISP. Some procedures in this
project are tools for working with property lists: PPROP, GPROP, HASPROP, and PROPTRUE?.

173

174

GAMES
The Locales of the World Are Linked Rooms

Exploring in Adventure means moving from place to place and discovering
objects in those places. The program thinks of all locales in the game (indoor
rooms, the forest, stairways) as rooms. Each room is connected to at least
one other room. You can move from one room to any connecting room—
provided there’s nothing preventing you from leaving, such as a shut door.
In Adventure there are six possible directions you can move: north,
east, south, west, up, and down. Each room can have as many as six neigh-
bors, one in each direction. This map shows how rooms are connected.

The rooms in Adventure and the DOCK
connections between them v
+
t
o
[
HALL ——— LADDER
-—W
u
{
t
[+]
STAIRS
u
'
t
2 E—»
ANTE ————— GUARD
-—wW
s
t
(DOOR 1)
t
N
CLIFF
t
w i

Each room is represented by a Logo word. Each word has an EXITS
property that holds a list of six items, one for each possible exit direction
from the room. Each item is the empty list if there is no exit in that
direction; otherwise it is the word for the connecting room. Items in the

ADVENTURE

EXITS list appear in the order in which the direction options are presented:
north, east, south, west, up, and down.
For example:

PPROP "STAIRS "EXITS [[] [] [] [] ANTE HALL]

makes the room STAIRS have just two exits. (This makes sense, because we
usually go up or down stairs, and there are exits at the top and bottom.) The
up exit leads to ANTE, the down exit to HALL. (Actually, the exits lead to the
rooms these words represent.)

I defined six variables to hold the positions of the exits in the exit list.

MAKE “NORTH 1

MAKE "EAST 2
MAKE “SOUTH 3
MAKE "WEST 4
MAKE “UP 5

MAKE “DOWN 6

Then I defined 1 TEM, an operation that outputs the nth element of a
list. This made it possible for me to extract the exit from a room for any
direction. For example, I can get the up exit from STAIRS with the follow-
ing instruction:

PR ITEM :UP GPROP "STAIRS "EXITS
ANTE

PR FIRST BF BF BF BF GPROP "STAIRS “EXITS

The room exits are set up by INITROOMS. For a description, look at the
listing at the end of this write-up.

Doors Were Hard to Add

In the outside world, nothing stops you from moving across open ground.
But if you're in a building, there may be doors that stop you from getting
into a room.* If a door is shut you must open it to get through, and if it is
locked you must unlock it with a key before you can open it.

Doors are important in the real world, so I wanted to have doors in my
program too. Doors were the most difficult part of the program to write. I
tried a few different schemes before settling on one.

A door is a kind of exit from a room, but it isn’t a destination in its own
right. You may leave a room through a door, but you don’t stay in the door.
You go to the room on the other side.

Since doors are a type of exit, I decided that doors could go in the EXI1 TS
list just as rooms could. So I needed a predicate (D00RP) to distinguish doors
from rooms, since both could be in the list. As you read on you’ll discover
other consequences of this decision.

*The word “indoors"” is a reminder that one important thing about buildings is that they
have doors, at least in most Western cultures,

175

176

GAMES

You Leave a Room Through an Exit

When you move in a given direction, the program invokes the procedure
MOVE. Its input is a number telling which way you want to move. (North is
1, east is 2, and so forth.)

TO MOVE :DIR
MOVE1l :DIR (ITEM :DIR GPROP :#ROOM "EXITS)
END

TO MOVE1l :DIR :THERE

IF EMPTYP :THERE [PR [YOU CAN'T GO THAT WAY!] STOP]
IF DOORP :THERE [TRYDOOR :THERE :DIR] [GOROOM :THERE]
END

The global variable #R00M holds the word representing the current
room. I used a global variable because I knew I'd refer to it in many places
in the program, and it would have been a bother to pass it as an input to
all the procedures that need it.*

MOVE outputs an empty list if there is no exit; otherwise it outputs the
word for the room or door in that direction.

If the exit is a door, the program uses TRYDOOR; if the exit is a room,
the program uses GOROOM to put you in the new room.

T0 GOROOM :NEW
MAKE "#ROOM :NEW
LOOK

END

GOROOM sets the global variable #R00M to the new room and describes
the locale.

Doors Are Tricky

The program knows which rooms are on both sides of any door because
doors have EX1TS properties just as rooms do. In a way, the program uses
doors as if they were small rooms that you move through automatically. If
leaving a room to the east takes you to an (open) door, you will go through
the door to whatever is to the east of the door.

A word that stands for a door has a DOOR property on its property list.
The value of its DOOR property is TRUE. The DOORP predicate checks this
property:

T0O DOORP :0BJ
OP PROPTRUE? :0BJ “DOOR
END

A door also has a SHUT? property that is TRUE only if the door is shut;

*There are a few other global variables in the program. Almost all of them have names
beginning with a sharp sign ("#") to distinguish them from procedure inputs. All global
variables are set up by INITVARS at the start of the program,

ADVENTURE

a LOCKED? property that is TRUE only if the door is locked; and a KEY
property that is the word representing the key that can unlock the door.

The procedure TRYDOOR tries to move you though a door in a certain
direction, If the door is open, it finds the connected room by looking in the
EXITS list for the door.

TO TRYDOOR :DOOR :DIR

IF GPROP :DOOR “SHUT? [PR [THE DOOR IS SHUT] STOP]
GOROOM ITEM :DIR GPROP :DOOR "EXITS

END

The adventure program in this project has only one door (D00R1), but
I designed it so that I could add more doors.

Adventure Programs Produce Language

The program prints descriptions of rooms and objects, tells you the results
of things you do, and sometimes complains if you try something impossible.
All the messages it prints are in fairly normal English.

The program describes what you'd see if you were really in the simu-
lated world. When you enter a room or give the LOOK command, the pro-
gram describes the room. When you give the INVENTORY command, the
program describes whatever you're carrying. When you give the
EXAMINE command, the program describes an object in more detail (some-
times).

Every object or room has a DESCRIPT property. For an object, this
property is a noun phrase describing the object (for example, A DULL
SWORD).* For a room, this property is a prepositional phrase describing your
relation to the room (for example, IN A TWISTY MAZE OF LITTLE
PASSAGES). The descriptions are in different forms because the descriptions
are used in different ways. A room description is for telling you where you
are (in aroom, on aladder, at a computer terminal) and the object descrip-
tions are for saying what a thing is.

LOOK describes the room you're in.

T0 LOOK
(PR [YOU ARE] GPROP :#ROOM "DESCRIPT)
IF NOT EMPTYP GPROP :#ROOM "CONTAINS
[TYPE [YOU SEE] DESCRIBE GPROP :#ROOM "CONTAINS]
PREXITS
PRDOORS
END

The value of the CONTAINS property of a room is a list of the words for
the objects in that room. If you look at IN1TROOMS (in the full listing), vou'll
see how I set up the initial contents of each room.

DESCRIBE prints the descriptions of a list of objects:

*The descriptions include the correct article (A or AN) for the word. I could have written
a program to choose (checking whether the first letter is a vowel), but it would have taken up
extra space and cost some extra time to execute, If there were seven hundred items instead
of seven, 1 would have written the procedure, because it requires less space and less work to
write it than to include an article in each of seven hundred descriptions.

177

178

GAMES

TO DESCRIBE :LIST

IF EMPTYP :LIST [PR [] STOP]
TYPE "\

TYPE GPROP FIRST :LIST "DESCRIPT
IF NOT EMPTYP BF :LIST [TYPE ",]
DESCRIBE BF :LIST

END

DESCRIBE gets each object’s description from its DESCRIPT property.
It prints out the objects’ descriptions, one after the other, all on the same
line.

There are separate procedures for listing exits and doors because 1
thought it looked better to list them separately. PREX1TS lists the directions
in which you can leave a room, and PRDOORS lists the doors of the room.
These procedures are similar.

TO PREXITS
PREXITS1 :#DIRNAMES GPROP :#ROOM "EXITS
END

TO PREXITS1 :DIRS :EXITS

[F EMPTYP :DIRS (STOP]

PREXIT FIRST :DIRS FIRST :EXITS
PREXITS1 BF :DIRS BF :EXITS

END

The variable #D1RNAME S holds a list of the names of all directions in the
same order as they appear in the exit list. PREXI TS looks at the first direction
name in #DIRNAMES and the first exit in the EX 1 TS list. Since the names and
the exits are in the same order, it can tell what name to use for the direction
of the exit. It maintains this one-to-one correspondence as it checks each
item of the lists. An item is an exit if it is not empty and not a door.

TO PREXIT :DIRECTION :0UT
IF EMPTYP :QUT [STOP]

IF DOORP :0UT [STOP]

PR [YOU CAN GO] :DIRECTION
END

PRDOORS differs from PREXITS because it checks for doors instead of
exits and tells you about the doors.

T0 PRDOORS
PRDOORS1 :#DIRNAMES GPPROP :#ROOM "EXITS
END

T0 PRDOORS1 :DIRS :DOORS

IF EMPTYP :DIRS [STOP]

PRDOOR FIRST :DIRS FIRST :DOORS
PRDOORS1 BF :DIRS BF :DOORS

END

ADVENTURE

TO PRDOOR :DIRECTION :DOOR

IF EMPTYP :DOOR [STOP]

IF NOT DOORP :DOOR [STOP]

(PR IF GPROP :DOOR “SHUT? [[A CLOSED]] [[AN OPEN]]
GPROP :DOOR "DESCRIPT [LEADS] :DIRECTION)

END

The Syntax and Semantics of the Adventure Language

The first thing the program has to do to understand your sentence is to
decide what type of word (noun, verb) each word in the sentence is. My
program uses a very simple scheme: If the sentence is one word long, the
first word must be a verb or a direction. If it is two words long, the first word
must be a verb and the second a noun.

The procedure INTERPRET takes one input, a sentence.

TO INTERPRET :COM

IF (COUNT :COM) = 1 [INTER1 FIRST :COM STOP]

IF (COUNT :COM) = 2 [INTER2 FIRST :COM LAST :COM STOP]
PR [1 KNOW ONLY ONE WORD AND TWO WORD SENTENCES.]

END

One-word and two-word sentences are handled by separate proce-
dures. Anything else is an error.

TO INTER1 :VERB

IF MEMBERP :VERB :#DIRNAMES [MOVE THING :VERB STOP]
IF MEMBERP :VERB :#VERBS1 [RUN (SE :VERB []) STOP]
PR [I DONT UNDERSTAND]

END

If you type NORTH, INTER1 finds the word NORTH in #DIRNAMES and
knows you want to move in that direction. Each direction word has a value
that is a number from 1 to 6 (an index into the EXITS list for the current
room). The procedure uses THING to get the value of the direction word,
and gives that as the input to the MOVE procedure.

Next the program looks at what the words mean. The “meaning” of a
verb is given by a Logo procedure that carries out an action. For every verb
in the language there is a Logo procedure. Conveniently, the Logo proce-
dure has the same name as the verb.

The global variable #VERBS1 is a list of all single-word verbs.

MAKE “#VERBS1 [? LOOK INVENTORY]

If your single-word sentence is in #VERBS1, I use RUN to run the verb
procedure. RUN wants a list as input, not a word, so I use SE to make a list
containing only the verb.

INTER2 interprets two word sentences. Like INTER1, it checks whether
the first word is a member of a list of verbs:

MAKE “#VERBS2 [TAKE DROP UNLOCK EXAMINE DRINK]

and runs a Logo procedure for the verb.

179

GAMES

TO INTER2 :VERB :NOUN
IF MEMBERP :VERB :#VERBS2
(RUN LIST :VERB WORD “" :NOUN STOP]
PR [1 DONT UNDERSTAND]
END

Each verb procedure takes one input, a noun. The noun is the second
word in the sentence.

If you type the two-word sentence DRINK WINE, the program inter-
prets the sentence by invoking the procedure DRINK (the verb) with the
word WINE (the noun) as its input. In other words, the program carries out
the Logo instruction

DRINK “WINE

That's why, in making the input list for RUN, I add the quote character
(") in front of the noun. Otherwise Logo would try to run the instruction

DRINK WINE

which is wrong.

Verbs in One-word Sentences

The simplest verb is ?, which just prints the names of all verbs that the
interpreter knows. It exists so you won't have to remember the names.

10 ?

PR :#VERBS1
PR :#VERBS2
PR :#DIRNAMES
END

The verb INVENTORY takes an inventory of objects you've picked up.
The global variable #INVENTORY holds the list of objects. The procedure
DESCRIBE (explained earlier) prints the actual description.

TO INVENTORY

TYPE [YOU'RE CARRYING]

IF EMPTYP :#INVENTORY [PR “\ NOTHING] [DESCRIBE :#INVENTORY]
END

The verb LO0K is called to describe a room when you enter it.

Verbs with Objects

Nouns refer to objects in the simulated world. The program has to deter-
mine what a noun means. A sentence like “take rope” means that the user
wants to pick up the rope. Somehow the program has to translate the word
“rope” to the word the program uses to represent the rope.

My program has an extremely simple solution. The word the program
uses is the same as the word in the Adventure language. That is why I had
to be careful choosing names for the words I used in the program. They had
to be the same as the words I thought users would use in their sentences.

ADVENTURE

So if you say “take rope” the word “rope” can only mean the piece of rope
that the word ROPE represents.*

Objects in Your Inventory or Locale

The predicate CARRY INGP tests whether you've got an object with you. You
do if it’s in your inventory, or if it is contained within an object in your
inventory. (For example, if you're carrying a satchel and there is a blow-
torch in the satchel, then CARRYINGP * BLOWTORCH outputs TRUE.'

TO CARRYINGP :0BJ
OP WITHIN :#INVENTORY :08J
END

The predicate INROOMP tests whether an object is somewhere in the room.

TO INROOMP :0BJ
0P WITHIN GPROP :#ROOM “CONTAINS :0BJ
END

WITHIN checks for an object either in a list or contained in an object
in that list.

TO WITHIN :LIST :THING

IF EMPTYP :LIST [OP "FALSE]

IF EQUALP :THING FIRST :LIST [OP "TRUE]

IF WITHIN :THING (GPROP FIRST :LIST "CONTAINS) [OP "“TRUE]
OP WITHIN BF :LIST :THING

END

The examine Verb

Like all verbs with objects, EXAMINE first checks whether or not the object
vou mention is present by using ABSENT.*

TO ABSENT :08J

IF PRESENTP :0BJ [OP "FALSE]
PR [I DONT SEE [T HERE]

0P “TRUE

END

An object is present if it’s either in your inventory or lying loose in the
room.

*This solution has drawbacks. First, the user must spell the word exactly as I do and must
not use synonvims. There are other drawbacks as well, but I'll save them for later.

T put this feature in. even though there are no carrvable containers in the game, becanse
it scemed elegant. and I might want to add containers later.

‘ABSENT combines two actions in one procedure. It is a predicate, the opposite of
PRESENTP, and it also prints a message if the object is absent.

This extra action restricts the usefulness of ABSENT. It should only be called by a verb
procedure, because otherwise it is not appropriate to print the message. Usually it’s a bad idea
to combine functions like this, but I did it after I discovered that only verb procedures used
ABSENT and that each of them printed the same message if the object was absent, I combined
the test and the message into one procedure to save space,

181

182

GAMES

TO PRESENTP :0BJ
OP OR CARRYINGP :0BJ INROOMP :0BJ
END

If an object is absent, the program just says so. The program deliber-
ately doesn't distinguish between objects that exist somewhere but aren’t
nearby and objects that dont exist. If the object contains something,
EXAMINE tells you about it. That's the only detail that EXAMINE ever gives.

TO EXAMINE :0BJ

IF ABSENT :0BJ ([STOP]

IF EMPTYP GPROP :0BJ "CONTAINS [STOP]

TYPE (1T HOLDS] DESCRIBE GPROP :0BJ "CONTAINS
END

The 14kt and vrop Verbs Change Your Inventory

The TAKE program has to be more careful than EXAMINE. This is because
there are many reasons that might prevent you from taking an object.

* It might not be there.

* You might already have it.

* It might be too heavy.

* It might be impossible to carry.
* Your arms could be full.

The program checks for each of these, making an appropriate com-
plaint. If nothing prevents it, the object is added to your inventory and
removed from the contents of the room.

TO TAKE :08BJ

IF ABSENT :0BJ [STOP]

IF CARRYINGP :0BJ [PR [YOU ALREADY HAVE IT!] STOP]

IF PROPTRUE? :0BJ “IMMOBILE? [PR [IT'S TOO HEAVY] STOP]

IF PROPTRUE? :0BJ "LIQUID? [PR [NO CONTAINER] STOPI]

IF (COUNT :#INVENTORY) > 2 [PR [YOUR BAG IS FULL!] STOPI]
MAKE "#INVENTORY FPUT :0BJ :#INVENTORY

PPROP :;#ROOM “CONTAINS (REMOVE :0BJ GPROP :#ROOM "CONTAINS)
END

When | wrote this procedure I had to decide how to represent the
mobility of objects. I could have given everything a WE1GHT property and
compared that with a STRENGTH variable, but I rejected that as too much
work. All I wanted was to prevent clearly impossible requests, such as
picking up trees. For my purposes, objects are either heavy or not, so this
suggested a property that was TRUE only if the object was liftable.

I chose to give heavy objects an IMMOBILE? property of TRUE instead
of giving light objects aMOBI LE ? property because | knew I could save some
space that way. I knew there would be only a few heavy objects and many
light ones, and if I wrote my programs to assume that an object was light
unless explicitly marked heavy I could avoid storing all the IMMOBILE?
properties that were FALSE.

ADVENTURE

To make this assumption easier to program, I wrote the predicate
PROPTRUE?, which outputs TRUE only if the value of the property is TRUE.
If an object doesn’t have any value for a certain property, then GPROP
outputs the empty list. The empty list isn't TRUE or FALSE, so I can't use
GPROP directly in an IF,

TO PROPTRUE? :0BJ :PROP
0P (GPROP :0BJ :PROP) = “TRUE
END

I used the same kind of reasoning in defining the LIQUID? property.
Most objects are dry.

It took a lot of thought to save a little space. Fortunately, the program
is only a little harder to understand as a result. It would be foolish to make
the program very complex just to save a little space.

DROP is the opposite of TAKE, but has to check only whether you are
carrying the object.

TO DROP :08J

IF NOT CARRYINGP :08J [PR [YOU'RE NOT CARRYING IT!] STOP]
MAKE “#INVENTORY REMOVE :0BJ :#INVENTORY

PPROP :#ROOM “CONTAINS (FPUT :0BJ GPROP :#ROOM “CONTAINS)
END

REMOVE takes as inputs a list and an item in the list and outputs the list
with the item removed.

TO REMOVE :THING :LIST

IF EMPTYP :LIST [OP (1]

IF :THING = FIRST :LIST [OP BF :LISTI]

OP FPUT FIRST :LIST REMOVE :THING BF :LIST
END

The Game Program

Before showing you the rest of the verbs, I'd like to show you the top-level
game loop. You start the program with ADVENTURE.

TO ADVENTURE
INIT

LOOK
GAMELOOP

END

INIT initializes everything.

TO INIT
INITVARS
INITOBJS
INITROOMS
END

INITVARS initializes all global variables, INIT0BJS initializes all ob-
jects, and INITROOMS initializes all rooms. I won't include their definitions

183

184

GAMES

here because they are just long lists of MAKEs and PPROPs. They are in the
listing at the end of this write-up.

LOOK describes the room you're in. It was explained earlier.

The game loop is GAMELOOP:

TO GAMELOOP

INTERPRET GETINPUT

IF NOT EMPTYP :#RESULT [PR :#RESULT STOP]
GAMELOOP

END

GETINPUT prompts for a sentence and returns it.

TO GETINPUT
TYPE ">

0P RL

END

The game loop runs until the variable #RESULT becomes nonempty.
Any verb can end the game by putting a message about the result of the
game into that variable.

Now we’ll look at the last two verbs.

unLock Unlocks a poor

Although it may not appear so at first, it’s a little difficult for the program
to understand UNLOCK DOOR because it’s hard to tell what object the word
DOOR refers to. Remember, I wanted it to be possible for there to be many
doors.

The UNLOCK verb first ensures that you asked to unlock a DOOR. The
program then uses GETDOOR to try to find a door. If there is one, UNLOCK
looks at its KEY property to be sure that you have the key that unlocks it:

TO UNLOCK :0BJ

IF NOT EQUALP :08J "DOOR [PR [I1 CANT UNLOCK THAT) STOP]
MAKE “0BJ GETDOOR (GPROP :#ROOM “EXITS)

IF EMPTYP :08J [PR [NOTHING UNLOCKABLE HERE] STOP]

IF NOT CARRYINGP GPROP :0BJ “KEY [PR [YOU CAN’T) STOP]
PPROP :0BJ “LOCKED? "FALSE

PPROP :0BJ "“SHUT? "FALSE

END

Unlocking a door also opens it automatically; you don't need to 0PEN
a door after you UNLOCK it.*

The procedure GETDOOR looks at every item in the EXITS list of the
current room until it finds one that is a door, and outputs it. This door is
assumed to be the object referred to by “DO0R™ in the sentence “UNLOCK
DOOR™,

TO GETDOOR :EXITS
IF EMPTYP :EXITS [OP [1]

*I didn’t have enough space for a verb 0PEN, and requiring you to OPEN the door slows
the game down to no purpose, anyway.

ADVENTURE

IF DOORP FIRST :EXITS (OP FIRST :EXITS]
OP GETDOOR BF :EXITS
END

ORINKing Ends the Game

If you've played the game, you know the unfortunate effects of drinking
wine.

TO DRINK :0BJ

IF ABSENT :08J [STOP]

IF NOT PROPTRUE? :0BJ "LIQUID? [PR [NOT A LIQUID!] STOP]

PR [YOU DRINK THE WINE...]

WAIT 10

PR [IT'S DELICIOUS...] WAIT 10

PR [AND VERY POTENT. YOU GET DRUNK, AND FALL IN THE RIVER.]
MAKE "“#RESULT [YOU DROWNED]

END

The DRINK verb is a little strange. It checks that you are drinking a
liquid that is present, but then it makes two assumptions: that you are
drinking wine and that you are drinking by the river. The program tells you
the deadly result by setting the global variable #RESULT to a sentence.
GAMELOOP notices, and ends the game.

The two assumptions are used in at least two ways. The first is that the
message uses the words “wine” and “river” explicitly, and also says that the
result is drunkeness. The second use of the assumption is that the result only
is possible if you are by the river.

The assumption that you drank wine must be true because the only
liquid in the game is wine. The assumption of locale is safe because the only
wine in the game is in the barrel, and you can’t move the barrel.

It is not a good thing to make assumptions like these in writing pro-
grams because it makes it hard to extend the program. (If [had added other
liquids, I would have had to add an INTOXICATING? property to WINE to
distinguish it from safer liquids.) I did it to save space, but I'm not proud
of it.

You Can Change This Adventure in Many Ways

The easiest thing to do is to add new rooms. All you need to do is change
the property assignments in INITROOMS. Make sure that you provide some
path from every room to every other room.

You can add new doors in the same way as you add rooms. But it’s hard
to add a new key, for reasons I'll explain. So when making new doors, either
they should not be locked or they should use the same key.

If you want to make a one-way exit from one room to another, do not
include the first room in the EXITS of the second. (You can also make
one-way doors.)

It's also easy to put new objects into the game. All the objects are
created by INITOBJS,

186

GAMES

You add new verbs by writing the procedure and modifying the list
#VERBS1 or #VERBS2. But new verbs or objects may need some new proper-
ties. For example, if you added the verb EAT you'd want to give edible
objects a FOOD? property of TRUE, and have EAT check it.

It might be fun to make a type of door that only opens after you take
some action such as saying a password, or pressing a button.

Your verbs can end the game at any time by setting #RESULT.

It'’s easy to debug changes to Adventure. You can stop the program
with the BREAK key, look at things, fix them, then resume with GAMELOOP.
(This is also a good way to cheat.)

Some Problems with My Program

The scheme I use for semantics is not very good. The nouns you type must
be the same words as those used by the program. That is why it would be
hard to add another key (for example, a brass one). What Logo word would
you use to represent it? You can't use KEY, because that word already stands
for a different key, the iron one in the forest. When you type TAKE KEY
the program looks for the word spelled “k-e-y”. Suppose you use KEY1.
The description of the new key would be [A BRASS KEY], and the user
would try to refer to it with the word used in the description, namely KEY.
The user would have no way to know that the “right” word is really KEY1,
and even if the program printed out that word, it wouldn’t be much like
English. Can you imagine “You see a brass keyl™?

For the same reason, there cannot be a second sword, or crowbar, or
any such thing. The problem is most acute with keys, though, because that
means that one key must be able to unlock all doors.

Note that this is not a problem for rooms, because the user never refers
to a room in any way. It is also not much of a problem for verbs, because
it would be easy to give each verb a property holding the name of a Logo
procedure to run. Then verbs would not have to have the same name as the
procedure that defines them.

One possible fix to this would be to give each item a property for what
“kind"” of thing it is.

PPROP “KEY "KIND "KEY
PPROP "KEY1 "KIND "KEY

Then a reference to a “key” could be interpreted as meaning any
object that was a key. This is similar to the way doors are identified by
GETDOOR.

Another possible solution would be to give the noun KEY a property list
of all the program words that are a “kind of” key.

There would still be problems with ambiguity. There might be two
keys in the area. There is no way at present for the program to ask the user
to say which key was meant. (This is a problem with GETDOOR as well. Tt
takes the first door.) Perhaps the program could ask:

>TAKE KEY
DO YOU MEAN THE BRASS KEY, OR THE IRON KEY? BRASS
0K

ADVENTURE

Another problem is that room descriptions sometimes refer to things
that the user might mention. For example, the description of the dock
mentions an underground stream. People often try to drink the water, but
the program doesn’t even know there is a “stream” nearby, much less that
a stream holds “water.” The word “stream” is contained inside the descrip-
tion, and the program has no way to use it other than by printing it.

If scenes were described by properties, descriptions could perhaps be
built from them, and the program would have access to the properties of
the room. But generating good English from a set of properties is a difficult
problem.

Some Adventuresome Improvements

There are many possible improvements to this game, some easy, others
more difficult.

Writing programs that understand and produce natural language is a
challenge for hundreds of researchers throughout the world. In a small way,
Adventure is a part of this research.

First, you could fix the problems I just mentioned. But there is even
more to do.

Consider a dialogue like

YOU ARE IN A FOOD STORE
YOU SEE A GREEN CHEESE
>TAKE IT

The program could use context to figure out what the word “it” means.

Or suppose you're carrying a baseball bat and a rock and are attacked
by a vampire bat. The word “bat” in HIT BAT means the vampire bat,
not the baseball bat.

It would also be very nice to have a richer syntax than the simple verb
and noun scheme used here.

Many adventure games have autonomous characters. Usually they are
your foes. It would be a fine challenge to add them to this game. Characters
should move from room to room on their own, and sometimes the player
should encounter them. The results need not always be woeful.

More complexly structured worlds are possible. The objects in my
world are mostly decorative—there is nothing to pry with the crowbar,
nowhere to climb with the rope.

If the Adventure language was extended such that you could use it to
program, then you could teach a turtle how to explore, send it in to danger-
ous areas, and have it carry back things for you.

Writing good adventure programs is an art and a game of its own. Now
that you've explored the simulated world of Adventure, perhaps it’s time
for you to begin exploring Adventure itself.

187

188 GAMES

PROGRAM LISTING

TO ADVENTURE TO MOVEL :DIR :THERE
INIT IF EMPTYP :THERE [PR [YOU CAN'T GO »
LOOK THAT WAY!] STOP]
GAMELOOP IF DOORP :THERE [TRYDOOR :THERE :DIR] »
END [GOROOM :THERE]
END
TO INIT
INITVARS TO DOORP :0BJ
INITOBJS IF EMPTYP :0BJ [OP “FALSE]
INITROOMS OP PROPTRUE? :0BJ "DOOR?
END END
TO GAMELOOP TO GOROOM :NEW
INTERPRET GETINPUT MAKE "#ROOM :NEW
IF NOT EMPTYP :#RESULT [PR :#RESULT » LOOK
STOP) END
GAMELOOP
END TO LOOK
(PR [YOU ARE] GPROP :#ROOM "DESCRIPT »
T0 GETINPUT)
TYPE "> IF NOT EMPTYP GPROP :#ROOM “CONTAINS »
0P RL [TYPE [YOU SEE] DESCRIBE GPROP »
END :#ROOM "CONTAINS]
PREXITS
TO INTERPRET :COM PRDOORS
IF (COUNT :COM) = 1 [INTER1 FIRST » END
:COM STOP]
IF (COUNT :COM) = 2 [INTER2 FIRST » TO DESCRIBE :LIST
:COM LAST :COM STOP] IF EMPTYP :LIST [PR []1 STOP]
PR [1 KNOW ONLY ONE WORD AND TWO WORD » TYPE "\
SENTENCES.] TYPE GPROP FIRST :LIST "DESCRIPT
END IF NOT EMPTYP BF :LIST [TYPE ",]
DESCRIBE BF :LIST
TO INTER1 :VERB END
IF MEMBERP :VERB :#DIRNAMES [MOVE »
THING :VERB STOP] TO PREXITS
IF MEMBERP :VERB :#VERBS1 [RUN SE » PREXITS1 :#DIRNAMES GPROP :#ROOM »
:VERB []1 STOP] "EXITS
PR [1 DONT UNDERSTAND] END
END
TO PREXITS1 :DIRS :EXITS
TO INTER2 :VERB :NOUN IF EMPTYP :DIRS [STOP]
IF MEMBERP :VERB :#VERBS2 [RUN LIST » PREXIT FIRST :DIRS FIRST :EXITS
:VERB WORD “" :NOUN STOP] PREXITS1 BF :DIRS BF :EXITS
PR [I DONT UNDERSTAND] END
END
TO PREXIT :DIRECTION :0UT
TO MOVE :DIR IF EMPTYP :0UT [STOP]
MOVELl :DIR (ITEM :DIR GPROP :#ROOM » IF DOORP :QUT ([STOP]
“EXITS) (PR [YOU CAN GO] :DIRECTION)

END END

ADVENTURE 189

TO PRDOORS TO ABSENT :0BJ
PRDOORS1 :#DIRNAMES GPROP :#ROOM » IF PRESENTP :0BJ [OP "FALSE]
"EXITS PR [I DONT SEE 1T HERE]
END 0P "TRUE
END
T0 PRDOORS1 :DIRS :DOORS
IF EMPTYP :DIRS [STOP] TO PRESENTP :0BJ
PRDOOR FIRST :DIRS FIRST :DOORS OP OR CARRYINGP :0BJ INROOMP :08J
PRDOORS1 BF :DIRS BF :DOORS END
END
TO WITHIN :LIST :THING
TO PRDOOR :DIRECTION :DOOR IF EMPTYP :LIST [OP "FALSE]
IF NOT DOORP :DOOR [STOP] IF EQUALP :THING FIRST :LIST [OP »
{ PR IF PROPTRUE? :DOOR "SHUT? [[A » “TRUE]
CLOSED]] ([AN OPEN]] GPROP :DOOR » IF WITHIN (GPROP FIRST :LIST »
“DESCRIPT [LEADS] :DIRECTION) “CONTAINS) :THING [OP "TRUE]
END OP WITHIN BF :LIST :THING
END
TO TRYDOOR :DOOR :DIR
IF GPROP :DOOR "“SHUT? [PR [THE DOOR IS » TO INROOMP :0BJ
SHUT] STOP] OP WITHIN GPROP :#ROOM "CONTAINS :08BJ
GOROOM ITEM :DIR GPROP :DOOR "EXITS END
END
TO DROP :08BJ
T0 ? IF NOT CARRYINGP :0BJ [PR [YOUR NOT »
PR :#VERBS1 CARRYING IT!] STOP]
PR :#VERBS2 MAKE “#INVENTORY REMOVE :08J »
PR :#DIRNAMES :#INVENTORY
END PPROP :#ROOM "“CONTAINS (FPUT :0BJ »
GPROP :#ROOM “CONTAINS)
TO INVENTORY END
TYPE [YOU'RE CARRYING]
IF EMPTYP :#INVENTORY [PR “\ NOTHING] » TO EXAMINE :0BJ
[DESCRIBE :#INVENTORY] IF ABSENT :08BJ [STOP]
END IF EMPTYP GPROP :0BJ “CONTAINS [STOP]
TYPE [IT HOLDS] DESCRIBE GPROP :0BJ »
TO TAKE :0BJ “CONTAINS
IF ABSENT :08J [STOP] END
IF CARRYINGP :0BJ [PR [YOU ALREADY »
HAVE IT!] STOP] TO UNLOCK :08BJ
IF PROPTRUE? :0BJ “IMMOBILE? [PR [ITS » IF NOT EQUALP :0BJ "DOOR [PR [I CANT »
TOO HEAVY] STOP] UNLOCK THAT] STOP]
IF PROPTRUE? :0BJ “LIQUID? [PR [NO » MAKE “0BJ GETDOOR (GPROP :#ROOM »
CONTAINER] STOP) "EXITS)
IF (COUNT :#INVENTORY) > 2 [PR [YOUR » IF EMPTYP :0BJ [PR [NOTHING UNLOCKABLE »
BAG IS FULL!] STOP] HERE] STOP]
MAKE “#INVENTORY FPUT :0BJ :#INVENTORY IF NOT CARRYINGP GPROP :0BJ “KEY [PR »
PPROP :#ROOM “CONTAINS (REMOVE :0BJ » [YOU CAN'T] STOP)
GPROP :#ROOM “CONTAINS) PPROP :0BJ "LOCKED? "FALSE
END PPROP :0BJ “SHUT? "FALSE
END

TO CARRYINGP :08BJ
OP WITHIN :#INVENTORY :08J
END

190 GAMES

TO GETDOOR :EXITS TO INITROOMS
IF EMPTYP :EXITS (OP (1] PPROP “ANTE “EXITS [[] GUARD DOOR1 [1 »
IF DOORP FIRST :EXITS [OP FIRST » [1 STAIRS]
EXITS] PPROP "ANTE "DESCRIPT [IN THE ANTEROOM »
OP GETDOOR BF :EXITS OF THE FORT)
END PPROP "STAIRS “EXITS [(] (1 [1 [) ANTE »
HALL)
TO DRINK :08J PPROP "STAIRS “DESCRIPT [ON SOME »
IF ABSENT :0BJ [STOP) STAIRS]
IF NOT PROPTRUE? :08J "LIQUID? [PR » PPROP “LADD "EXITS () [1 (] HALL [»
[NOT A LIQUID!]) STOP) DOCK]
PR [YOU DRINK THE WINE...] PPROP “LADD "DESCRIPT [AT THE TOP OF A »
WAIT 10 LADDER]
PR [IT'S DELICIOUS...] WAIT 10 PPROP "DOOR1 “EXITS [ANTE [1 FOREST [1 »
PR [AND VERY POTENT. YOU GET DRUNK, » SIS)!
AND FALL IN THE RIVER.] PPROP "DOOR1 “DESCRIPT [STOUT IRON »
MAKE “#RESULT (YOU DROWNED) DOOR]
END PPROP "DOOR1 “KEY "KEY
PPROP “DOOR1 “DOOR? “TRUE
T0 INITVARS PPROP “DOOR1 “LOCKED? “TRUE
MAKE “NORTH 1 PPROP “DOOR1 “SHUT? “TRUE
MAKE “EAST 2 PPROP “DOCK “EXITS [[] [1 [1 [] LADD »
MAKE “SOUTH 3 (11
MAKE “WEST 4 PPROP "DOCK "DESCRIPT [ON A STONE »
MAKE “UP 5 DOCK, BESIDE AN UNDERGROUND »
MAKE “DOWN 6 STREAM]
MAKE “#DIRNAMES [NORTH EAST SOUTH WEST » PPROP “DOCK "CONTAINS [BARREL]
UP DOWN] PPROP “HALL "EXITS [[] LADD [] [) »
MAKE “#VERBS1 [? LOOK INVENTORY] STAIRS (1]
MAKE “#VERBS2 [TAKE DROP UNLOCK » PPROP "HALL "DESCRIPT [IN A HIGH, »
EXAMINE DRINK] NARROW HALL]
MAKE “#INVENTORY (] PPROP “HALL “CONTAINS [ROPE]
MAKE “#ROOM "FOREST PPROP “GUARD “EXITS [() [] [) ANTE (] »
MAKE “#RESULT [} (1
END PPROP “GUARD “DESCRIPT [IN AN OLD »
GUARD ROOM]
TO INITOBJS PPROP “GUARD “CONTAINS [CROWBAR SWORD]
PPROP “SWORD “DESCRIPT [A DULL SWORDI PPROP “CLIFF “EXITS [DOOR1 [1 FOREST »
PPROP “CROWBAR “DESCRIPT [A SEARS » F1 01 [1)
CROWBAR] PPROP “CLIFF "DESCRIPT [AT THE BASE OF »
PPROP "ROPE “DESCRIPT [A COIL OF HEMP » A CLIFF]
ROPE) PPROP “CLIFF “CONTAINS [TREES]
PPROP "KEY "DESCRIPT [AN IRON KEY] PPROP “FOREST "EXITS [CLIFF FOREST »
PPROP "TREES "DESCRIPT [ASH AND BIRCH » FOREST F1 [1 (1)
TREES] PPROP “FOREST “DESCRIPT (IN A FOREST]
PPROP “TREES “IMMOBILE? “TRUE PPROP “FOREST “CONTAINS [TREES)
PPROP “WINE “DESCRIPT [TASTY WINE] PPROP “F1 "EXITS [CLIFF FOREST F1 F1 »
PPROP “WINE "LIQUID? "TRUE [SISD!
PPROP “BARREL “DESCRIPT [AN OAKEN » PPROP “F1 "DESCRIPT [IN A FOREST]
BARREL) PPROP "F1 "CONTAINS [TREES KEY]
PPROP “BARREL “CONTAINS [WINE] END

PPROP “BARREL “IMMOBILE? "TRUE
END

DUNGEON 191

TO REMOVE :THING :LIST IF :PROP = FIRST :PLIST [OP FPUT :PROP »
IF EMPTYP :LIST [OP (1] FPUT :VALUE BF BF :PLIST)
IF :THING = FIRST :LIST [OP BF :LIST) OP FPUT FIRST :PLIST FPUT FIRST BF »
OP FPUT FIRST :LIST REMOVE :THING BF » :PLIST PPROP1 BF BF :PLIST :PROP »

:LIST :VALUE
END END
TO ITEM :N :LIST TO GPROP :NAME :PROP
IF :N = 1 [OP FIRST :LIST] IF NOT NAMEP :NAME [OP []]
OP ITEM :N - 1 BF :LIST OP GPROP1 :PROP THING :NAME
END END

TO GPROP1 :PROP :PLIST

TO PPROP :NAME :PROP :VALUE IF EMPTYP :PLIST [OP [1]
IF NOT NAMEP :NAME [MAKE :NAME (1) IF :PROP = FIRST :PLIST [OP FIRST BF »
MAKE :NAME PPROP1 THING :NAME :PROP » SPLIST]

:VALUE OP GPROP1 :PROP BF BF :PLIST
END END
TO PPROP1 :PLIST :PROP :VALUE TO PROPTRUE? :0BJ :PROP
IF EMPTYP :PLIST [OP LIST :PROP » OP (GPROP :0BJ :PROP) = "TRUE

:VALUE) END

Dungeon

Here's what the original author of this game, Jeanry Chandler, has to say
about it.

Dungeon has all of the virtues of an adventure game and more.
Not only can you play the part of the dauntless adventurer, exploring
the dungeons in search of wonder and magic and fabulous treasures.
You can also play the part of the all powerful dungeonmaster: laying
the traps, preparing the monsters, and, of course, placing the treasure.

When you start DUNGEON, you are given the first level of the
dungeon, four rooms of treasures, and traps, monsters, and money. The
adventurer who enters this perilous palace can expect to face such
horrific monsters as the nimble kobold, the mighty troll, and, worst of
all, the fearsome man-eating Logo turtle!

But monsters are not the only inhabitants of the dreaded dungeon.
As reward for defeating or avoiding those grumpy gargantuans, that
same adventurer can fill his pockets with gold, jewels, magical potions,
wands, enchanted swords, armor, and much more.

The successful adventurer who gains enough experience points
could find himself going up a level of skill, thereby gaining fighting
ability and strength.

After a period of blissful adventure, however, the aspiring adven-

Program by Jeanry Chandler; write-up by Margaret Minsky.

192

CAMES

turer will grow weary of the limits of my own possibly limited imagina-
tion. And this is where the dungeonmaster and the truly original facet
of the game come into play.

The adventurer, or a friend, can become the dungeonmaster and
design a new level filled with treasures and trolls. To start out, the
dungeonmaster might simply make new rooms. Later he could design
new shapes for monsters, new treasures, traps, and tricks for the ad-
venturer to face.

More explanation would be detrimental to your understanding of
the program. You must experience it to learn more!

As Jeanry says, there are two ways to enjoy Dungeon. One is to be the
adventurer in his dungeon, and the other is to add to Jeanry’s dungeon or
to create your own with his tools. He's right, too, that you must experience
it to understand it. So try it!

To start the game, type:

START

Playing the Dungeon Game
START begins the game. You control an adventuring player with a joystick

in port 1.* You can move the adventurer with the joystick to avoid or
confront monsters, to go through doors, and to get the contents of chests.

r —
€ %

Iasne IS @ GREAT BEIG TROLL HERE'
As in other adventure games, there are some commands you can type.

| stands for inventory, D for drink, and W for wave wand. You must press
RETURN after your commands.

*Remember that in Atari Logo, the joystick is referenced by JOY 0 when it is in
port 1 of the Atari.

DUNGEON

An Overview

The following sections present an overview of how this program works as
the game is played and of how to modify the dungeon rooms and create
your own dungeon. Then there are some suggestions for modifying and
improving this program in more radical ways.

All of the procedures are listed at the end of this write-up. You may
want to look at some of them as you read about them.

Rooms

Each room is represented by a single procedure (for example, ROOM1,
ROOM2) that prints messages about what is in the room and makes turtles
into monsters and treasure chests, Turtle 0 is the player, turtle 1 is usually
a monster, and turtle 2 is usually a treasure chest.

MAKEROOM is called as a subprocedure from all rooms. It does stuff that
needs to be done for each room: it draws walls and doors, sets variables with
the dimensions of the room, and creates some demons. Two of the demons
that it creates are those that waif for a collision between the player and the
monster and between the player and a treasure chest. It also creates a
demon that lets you control the player with the joystick and demons that
keep the player and monster from drifting through the walls of the room.

The rest of the instructions in each room procedure customize the
room. For example, look at ROOM2 in which turtle 2 is a chest and turtle 1
is a kind of monster called a kobold.

TO ROOM2

PR [THERE IS A BIG CHEST HERE]

PR [THERE IS A CUTE KOBOLD HERE]

RT 180

MAKEROOM 2¢0 90 [IN ROOM3] [E ROOM11]
PU

HOME FD 50

SETSP 20

SET.MONSTER 3 [-20 25] 270 Give monster kobold shape.
MAKE "MHITP 2

ASK 1 [SETSP 22]

ASK 2 [PU FD 39 LT 90 FD 25 STI

END

Walls and Doors

The walls and doors are set up for each room by the MAKEROOM proce-
dure. The walls are drawn with pen 0 and the doors with pen 1 and pen
2. A room can have up to two doors.

The SETUP.DEMONS subprocedure of MAKEROOM creates a demon that
waits for the player (turtle 0) to bump into a wall; the demon calls a proce-
dure that makes the player bounce back. The condition for this demon is

193

194

GAMES

OVER 0 0. Demons are also created to make the monster bounce off the
walls and doors. The monster is not allowed to go through doors.

The DOOR . SIDE subprocedure of MAKEROOM creates demons that wait
for the player to bump into a door. These demons use conditions OVER
0 1 or OVER 0 2 to detect this. When the player bumps into a door, the
player is moved into the adjoining room. The way this works is that the
demon for that door calls the procedure that represents the adjoining room.

N N
+
g}
w - ! E
I]
| ——
w
s s

ROOM1 with connection W to ROOM2

The demon for this situation is created by DOOR.SI1DE using

WHEN OVER @ 1 [ROOM2]

The Most Common Actions, FIGHT and CHEST

The SETUP.DEMONS procedure, called by MAKEROOM, creates the de-
mons that wait for the player-monster and player-treasure chest collisions.

The demon that awaits collisions between the player and the monster
is created using the instruction WHEN TOUCHING 0 1 (FIGHTI]. Turtle 0
is the player and turtle 1 is a monster. When they collide, the demon calls
the procedure FIGHT, which causes the two turtles to “fight.” They swing
at one another. The program considers the strengths and magical aids of the
two combatants and determines if either one is hit. As the combatants
continue to receive blows, they accumulate “hit points.” If either sustains
too much damage, it dies.

The demon that awaits collisions between the player and the treasure
chest is created using the instruction WHEN TOUCHING 0 2 [CHESTI].
Turtle 2 is a treasure chest. If the player collides with turtle 2, the demon
calls CHEST. The procedure CHEST determines what treasures the chest
contains and rewards the player with those treasures. Usually a treasure is
given to the player by changing the value of a global variable such as : GOLD
or :ARMOR.

Procedural and Demon-Based Representation

In this program, the only way to figure out all the details is to look at
all the procedures. You might say that the program itself “figures it out as
it goes along.” You might contrast this with Jim Davis's Adventure game.
Jim's program has global structures that contain information about his dun-

DUNGEON

geon. For example, it has a list of all rooms. In Dungeon, almost all informa-
tion is in the room procedures.

Programmer as Dungeonmaster: How to Create New and
Better Dungeons

In this section I will discuss three kinds of changes to the Dungeon game.
You can create new monsters, treasures, and whole rooms to put them in.
You can create a new dungeon to replace Jeanry’s. You can make changes
to the workings of the game program itself to improve and change the
game.

Creating New Rooms, Monsters, and Treasures

Looking at the room procedures (R00M1, ROOM2, and so forth) will help
you figure out how to make new rooms. You could make your very own
completely new dungeon, or you could add rooms to the existing one.
Remember that when you add a room, you might want to change some of
the old rooms so that they connect to your new room. You might want to
change the W procedure so that the wand can magically teleport the player
into your new room.

You may have noticed that Jeanry's doors are fwo-way. That is, if a door
leads west from ROOM1 to ROOM2, then there is a door that leads east from
ROOM2 to ROOM1. Jeanry has made all of his doors match up. You might want
to make all your doors match up too, or you could make some doors be
one-way only. You could make some interesting and confusing dungeons
this way.

The MAKEROOM procedure sets : ROOMLENGTH and :ROOMHEIGHT to be
the length and height of the room. You can use these to position turtles or
drawings in the rooms.

Here's an example of a new room I created.

TO ROOMS

PR [THIS IS MARGARET'S ROOM]

PR [BEWARE THE TROLL HERE]

PR [THERE IS A MYSTERIOUS ANCIENT CHEST HERE]
MAKEROOM 109 120 [[W ROOM4] [S ROOM2]]

PU

HOME

SETPOS SE (:ROOMLENGTH / 2) - 50 :ROOMHEIGHT / 2 Player in middle of room.

SETH 45
SETSP 20

SET.MONSTER 2 SE :ROOMLENGTH - 80 :ROOMHEIGHT - 25 300 Troll in corner.

MAKE “MNSTR 1

ASK 1 [SETSP 221

ASK 2 [PU SETPOS SE :ROOMLENGTH - 9@ 25 ST]
END

This new room has a door leading west to R0OM4 and a door leading
south to ROOM2. To make it possible for the player to get to this room, I put
a door in ROOM4 leading east to ROOMS. To do this I changed a line in ROOM4
from

195

196

GAMES
MAKEROOM 100 100 [[S ROOM31]

to

MAKEROOM 100 100 [[S ROOM3] [E ROOM5]]

I also changed a line in W from

IF EQUALP :WAND 2 [PR [YOU ARE TELEPORTED TO A NEW LOCATION]
RUN FPUT WORD “ROOM 1 + RANDOM 4 [1]

to

IF EQUALP :WAND 2 [PR [YOU ARE TELEPORTED TO A NEW LOCATION)
RUN FPUT WORD "ROOM 1 + RANDOM 5 [11]

To add a new kind of monster, you might want to make a new shape
for it. You could add it to an old or new room, using the SET.MONSTER
procedure. (You will probably want to add instructions about your monster
shape in the START and SAVESH procedures.)

You can add new kinds of treasure. You must put your new kind of
treasure in the CHEST procedure so it can be “in” the treasure chest. Then
you must create a procedure to be run when your new treasure is found.
If you want to represent your kind of treasure as a variable with a point
value (like GOLD or WAND), you should initialize it in the START procedure.

Making a New Dungeon

Jeanry has left an opening in the program for you to add a complete
new dungeon.

When you are playing the game and get to the stairs (in ROOM4), the
program asks if you want to go down. If you answer Y, then the program
types a message saying that you cannot go down to the lower dungeon
unless you create it.

TO STAIRS

PR [DO YOU WISH TO GO DOWN?]

KEY "Y

PRINT [YOU CAN ONLY GO TO THE LOWER DUNGEON]
PRINT [IF YOU CREATE IT!]

END

Let’s say you create several new rooms that connect to each other but
do not connect to Jeanry's original four rooms. For example, let’s say you
make ROOMé, ROOM7, ROOMS8, and ROOMS.

Then you could change STAIRS to

TO STAIRS

PR [DO YOU WISH TO GO DOWN?]
KEY "Y

ROOM7

END

DUNGEON

Then STAIRS would plunk the player right into your dungeon,

If you need more Logo workspace for your new dungeon, you could put
your new room procedures in a separate file, for example
D: LOWERDUNGEON. Then you could have STAIRS erase Jeanry's dungeon and
load in yours. For example:

TO STAIRS

PR (DO YOU WISH TO GO DOWN?]
KEY "Y

ER [ROOM1 ROOM2 ROOM3 ROOM4]
LOAD “D:LOWERDUNGEON

ROOM?

END

Improving and Changing the Dungeon Program

Right now there is only one kind of chest. It can contain any of the kinds
of treasure in the game. You could change the game so that there are
several kinds of chests with different kinds of treasures in them,

You could make a player who had certain treasures or lots of experi-
ence points become more powerful. For example, the player could bribe
monsters to go away if he had enough gold. Or the player could be unable
to see certain treasure chests unless he found some magic glasses. The
Dungeon game could allow the player to go to the lower level only if he
had accumulated enough experience points. Here's a way to implement
that last suggestion.

TO STAIRS
PR [DO YOU WISH TO GO DOWN?]
KEY Y
IF ((5 * :LEVEL) + :EXPERIENCE) > 18 [GO.DOWN]
[PRINT [YOU MUST BE WISER TO ENTER THE LOWER DUNGEONI]
END

TO GO.DOWN

ER [ROOM1 ROOM2 ROOM3 ROOM4]
LOAD “D:LOWERDUNGEON

ROOM?

END

You could create more typed commands similar to I, W, and D.

You could make the game smart about what direction you are going
when you go through doors.

You could introduce global data structures to keep track of objects. This
way the game could know when a monster in a particular room is dead and
not display it again when you return to that room.

197

198 GAMES

PROGRAM LISTING

SETTING UP

TO START
PUTSH 1

PUTSH
PUTSH

:PLAYER
:TROLL
:KOBOLD
PUTSH : CHEST
PUTSH : THRUST
PUTSH 6 :STAIRS
MAKE "PHITP @

MAKE "MHITP @

MAKE "GOLD 1

MAKE “EXPERIENCE 1
MAKE “SWORD @

MAKE “MNSTR @

MAKE “POTION @
MAKE “WAND ¢

MAKE “LEVEL @

MAKE “ARMOR @

ASK [@ 1 2 3] [PU HOME HT]
TELL @

ROOM1

END

woe W

MAKEROOM, THE GENERAL ROOM MAKER

TO MAKEROOM :LEN :HGT :DOORS
CS HT

ASK [1 2 3] [HT]

HOME LT 90 FD 58 RT 99
SIDE :HGT :DOORS "W 1
SIDE :LEN :DOORS “N 1
SIDE :HGT :DOORS “E 1
SIDE :LEN :DOORS "S 1
DIMENSIONS :LEN :HGT
SETUP.DEMONS

PU ST

END

TO DIMENSIONS :LEN :HGT
MAKE “ROOMLENGTH :LEN
MAKE “ROOMHEIGHT :HGT
END

TO SETUP.DEMONS

WHEN OVER @ @ [BK 10]

WHEN TOUCHING @ 1 [(FIGHT]

WHEN TOUCHING @ 2 [CHEST]

WHEN 15 [MOVEPLAYER JOY 0]

WHEN OVER 1 @ [ASK 1 [BK 5 MOVE]]
WHEN OVER 1 1 [ASK 1 [BK 5 MOVE]]
WHEN OVER 1 2 [ASK 1 [BK 5 MOVE]]
END

:PHITP is hit points against player.
:MHITP is hit points against monster.

MAKEROOM assumes WHO is 0.

For when the player hits solid part of a wall.
Turtle 1 is usually a monster.
Turtle 2 is usually a treasure chest.

DUNGEON

STUFF USED BY MAKEROOM TO DRAW WALLS AND DOORS

TO SIDE :LEN :DOORS :WALL :PEN

IF EMPTYP :DOORS [SOLID.SIDE :LEN STOP]

IF EQUALP :WALL FIRST FIRST :DOORS >
[DOOR.SIDE :LEN FIRST :DOORS :PEN STOP]

SIDE :LEN BF :DOORS :WALL :PEN + 1

END

TO SOLID.SIDE :LEN
PD

FD :LEN BK :LEN
RT 99

PU

FD 5

LT 99

PD

FD :LEN

RT 90

END

TO DOOR.SIDE :LEN :DOOR :PEN
PD

DOOR.LINE :LEN :PEN

PU

BK :LEN

RT 90

FD 5

LT 9¢

PD

DOOR.LINE :LEN :PEN

RT 90

WHEN OVER ® :PEN BF :DOOR
END

TO DOOR.LINE :LEN :PEN
FD { :LEN:==2¢:1 [2
SETPN :PEN

FD 29

SETPN @

FD (:LEN - 20) / 2
END

INDIVIDUAL ROOMS

TO ROOM1

PR [THERE IS A GREAT BIG TROLL HERE!]
TELL ©

SETSH 1

PD

MAKEROOM 150 8¢ [[W ROOM2])

HT

PU HOME FD 30 RT 90 FD 2@ ST

SETSP 20

199

200 GAMES

SET.MONSTER 2 [-35 401 99 Give monster troll shape.
MAKE “MNSTR 2
END

T0 ROOM2

PR [THERE IS A BIG CHEST HERE]

PR [THERE IS A CUTE KOBOLD HERE]

RT 180

MAKEROOM 209 90 [[N ROOM3] [E ROOM1]]

SETSH 1

HOME FD 50

SETSP 2¢

SET.MONSTER 3 [-20 251 27¢ Give monster kobold shape.
ASK 1 [SETSP 22] This is the chest.
ASK 2 [PU SETPOS [-25 30) ST]

END

TO ROOM3

MAKEROOM 20 100 [IN ROOM4] [S ROOM21]
SETSH 1

SETPOS [-4¢ 30)

SETSP 20

END

TO ROOM4
PRINT [THERE ARE STAIRS DOWN HERE]
PRINT [THERE IS A FEROCIQUS MAN EATING >
GIANT LOGO TURTLE HERE]
PRINT [THERE IS A GREAT BIG BRONZE BOUND CHEST HERE]

MAKEROOM 10¢ 120 [[S ROOM31] Give monster turtle shape.
SET.MONSTER @ [-20 501 189 This is the chest.
ASK 2 [ST PU SETSH 4 SETPOS [-3¢ 70]] This is the stairs shape

ASK 3 [ST PU SETSH & SETPOS (20 20]]
WHEN TOUCHING @ 3 [STAIRS]

WHEN OVER 1 @ [ASK 1 [BK 911

SETSH 1

SETPOS [-10 30]

SETSP 20

END

ACTIONS THAT HAPPEN IN THE DUNGEON

T0 MOVEPLAYER :JOY
IF :JOY < @ [STOP]
SETH 45 * :JOY

ASK 1 [MOVE]

END

TO FIGHT

SETSH 5

PR [YOU SWING...]

IF EQUALP RANDOM 3 1 [MHIT]
SETSH 1

PR [IT ATTACKS...]

DUNGEON

[F EQUALP RANDOM 3 1 [PHIT :MNSTR]
ASK 1 [BK 19]

BK 15

ASK 1 [MOVE]

END

TO CHEST

PR [CREAK,]

PR [(THE CHEST OPENS)]

IF EQUALP RANDOM 5 1 [TRAP]

IF EQUALP RANDOM 3 1 [GOLD]
IF EQUALP RANDOM 3 1 [GOLD]
IF EQUALP RANDOM 3 1 ([GOLD]
IF EQUALP RANDOM 3 1 [GOLD]
IF EQUALP RANDOM 2 1 [POTION]
IF EQUALP RANDOM 3 1 [JEWEL]
IF EQUALP RANDOM 3 1 [SWORDI]
IF EQUALP RANDOM 3 1 [WAND]
IF EQUALP RANDOM 2 1 [ARMOR]
ASK 2 [HT]

END

TO STAIRS

PR [DO YOU WISH TO GO DOWN?]

IF NOT KEY "Y (BK 5 STOP)

PRINT [YOU CAN ONLY GO TO THE LOWER DUNGEON]
PRINT [IF YOU CREATE IT!]

ASK 3 [HT]

END

TO KEY :K
0P EQUALP RC :K
END

ACTIONS THAT HAPPEN BECAUSE OF GETTING TREASURES

TO TRAP

PR [YOU HIT A TRAP!]
PHIT 1

END

TO GOLD

PRINT "GOLD!

ADD "GOLD 5

ADD “EXPERIENCE 1

IF :EXPERIENCE > 20 [LEVEL]
END

TO POTION

PR [A POTION!]

MAKE "“POTION 1 + RANDOM 4
END

201

202 GAMES

TO JEWEL

PRINT “JEWEL!!

ADD "“GOLD 50

ADD "EXPERIENCE 5

IF :EXPERIENCE > 20 [LEVEL]
END

T0 SWORD

PR [A FINE ELFBLADE,WORTHY OF YOUR SKILL]
ADD “SWORD RANDOM 4

END

TO WAND
MAKE “WAND 1 + RANDOM 3
END

TO ARMOR
MAKE “ARMOR 1 + RANDOM 4
END

TO LEVEL

ADD "LEVEL 1

PR (SE [YOU NOW HAVE] :LEVEL [LEVELS OF EXPERIENCE])
MAKE "EXPERIENCE ©

END

FIGHTING

TO MHIT

PRINT "CRUNCH!

ADD “MHITP 1 + RANDOM 3

ADD “MHITP :SWORD

IF :MHITP > 5 [MDEAD]

ASK 1 [SETSP SUM SPEED 11 Monster is mad after hit, gets faster.
END

TO MDEAD

PR [YOU KILLED THE MONSTER]

ADD "EXPERIENCE 5 + :MNSTR

IF :EXPERIENCE > 20 [LEVEL]

MAKE "MHITP @

ASK 1 [SETSH & TOOT @ 255 5 2@ HT]
END

TO PHIT :STRENGTH

PRINT “QUCH

ADD "PHITP 1 + RANDOM 2
ADD "PHITP :STRENGTH

IF :PHITP > 10 [PDEAD]
END

TO PDEAD
PR [THOU ART SLAIN!]

DUNGEON

TOOT @ 255 1 19
ASK [@ 1 2 3] [CS HT]
END

I FOR INVENTORY

T0 1

TYPE “GOLD PR :GOLD

TYPE “LEVEL PR :LEVEL

TYPE “EXPERIENCE PR :EXPERIENCE
TYPE [HIT POINTS] PR :PHITP

IF :SWORD > @ [PR "ELFBLADE]

IF :WAND > @ [PR "WANDI]

IF :POTION > @ [PR "POTION]

IF :ARMOR > ©® [PR [MAGICAL CHAINMAIL]]
PR [LEATHER JERKIN]

PR [SACK]

PR [MACE]

END

D FOR DRINK

T0 D

IF EQUALP :POTION © (PR [YOU HAVE NO POTION TO DRINK] STOP]
PR [YOU DRINK THE LIQUID]

IF EQUALP :POTION 1 [HPOTION MAKE "POTION @]

IF EQUALP :POTION 2 [SPOTION MAKE "POTION 2]

IF EQUALP :POTION 3 [HPOTION MAKE "POTION 0]

IF EQUALP :POTION 4 ([PPOTION]

END

POTIONS AND WHAT THEY DO

TO PPOTION

PR [YUCK! YOUR STOMACH WILL NEVER FORGIVE YOU >
FOR PUTTING THIS FOUL EXCREMENT IN IT]

PHIT @

END

TO SPOTION

ADD “STR 1

PR [YOU QUAFF THE FLUID AND YOUR MUSCLES BULGE!]
END

TO HPOTION

ADD “H -3

PRINT [YOU FEEL HEALED, TIS A FINE ELIXIR YOU HAVE QUAFFED!]
END

204 GAMES

W FOR WAVE WAND

T0 W

IF EQUALP :WAND @ [STOP]

IF EQUALP :WAND 1 [PR [A BOLT OF LIGHTNING >

STREAKS FROM YOUR HAND...] MHIT]

IF EQUALP :WAND 2 (PR [YOU ARE TELEPORTED TO A NEW >
LOCATION] RUN FPUT WORD “ROOM 1 + RANDOM 4 (1]

IF EQUALP :WAND 3 (PR [THE WAND EXPLODES IN YOUR HAND!] >
PHIT 2]

END

SETTING UP PARTICULAR MONSTERS

TO SET.MONSTER :SHAPE :POS :HEADING
ASK 1 [SETSP 10 PU SETSH :SHAPE >

SETPOS :POS SETH :HEADING ST]
END

AIMING THE MONSTER TOWARD THE PLAYER

This procedure points the monster toward the quadrant the player is
in.

T0 MOVE

MAKE “XPLAYER ASK ©® [XCORI

MAKE "YPLAYER ASK @ [YCORI

TELL 1

SETH 45

IF :YPLAYER < YCOR [SETH 1351]

IF :XPLAYER < XCOR [IF :YPLAYER < YCOR >
[SETH 225) [SETH 3151]

TELL ¢

END

UTILITIES

TO ADD :VAR :NUM
MAKE :VAR :NUM + THING :VAR
END

TO SAVESH

MAKE “PLAYER GETSH 1
MAKE “TROLL GETSH 2
MAKE “KOBOLD GETSH 3
MAKE “CHEST GETSH 4
MAKE “THRUST GETSH 5
MAKE “STAIRS GETSH 6
END

MAKE

MAKE

MAKE

MAKE

MAKE
MAKE

DUNGEON

“THRUST [0 @ 12 13 13 37 255 44
12 12 12 12 69 36 39 101]
“TROLL [12 11 28 63 60 120 126 122
129 120 56 48 16 16 16 24]
"PLAYER [0 64 88 88 88 72 254 99
26 26 24 56 40 44 36 1001
“KOBOLD [128 128 152 184 184 136 152 248
152 24 24 8 8 8 8 24]
“STAIRS [255 0 255 ® 126 @ 126 0 60 ® 60 0 24 @ 24 @]
“CHEST [0 © © 255 189 189 189 189
189 189 165 189 255 @ ¢ 0]

SHAPES

:STAIRS
slot 6
) PR I | =
2
5 [
| 1 1)
KOBOLD TROLL

slot 3 slot 2

T
|
T

THRUST
slot 5

4

Turtle Geometry

Turtle Race

RACE shows four turtles racing from the left side of the screen to the right
side. The winning turtle changes color. The background also changes color,
to emphasize that someone has won the race. Here is a race in progress.

RACE . FROM does the real work by running first SETUP . RACE and then
RUN.RACE, In other words, the program is divided into a setup part and an
action part. The job of SETUP. RACE is to draw the racecourse and to assign
colors and positions to the turtles. The job of RUN.RACE is to run the race.

T0 RACE
RACE.FROM -129 129
END

The motion of the turtles is controlled by repeated use of the FORWARD
command, not by using the dynamic (speed) ability of the turtles.

RACE is the top-level procedure. It knows where the left and right edges
of the screen are and gives that information to RACE . FROM,

By Brian Harvey, with modifications by Jim Davis.

TURTLE RACE

TO RACE.FROM :START :FINISH
SETUP.RACE

RUN.RACE

END

START and FINISH contain the x coordinates of the starting and ending
positions. This information is used to set the turtles up at the start of the race
and to find the winner.

Setting Up

SETUP .RACE has two tasks to do: set up the racecourse and prepare the four
turtles as racers. It has one subprocedure to do each task. It hides the turtles
when it starts, to avoid clutter during the setup.

TO SETUP.RACE
TELL [9 1 2 3]
HT
DRAW.RACETRACK
SETUP.RACERS
END

DRAW.RACETRACK is the procedure in charge of setting up the race-
course. This involves cleaning up the screen and setting its color, and then
drawing the finish line.

TO DRAW.RACETRACK

SETBG 86

FS

CS

ASK @ [DRAW.FINISHLINE]
END

DRAW.FINISHLINE draws a vertical line near the right edge of the
screen.

TO DRAW.FINISHLINE

PU

SETPOS LIST :FINISH 80
SETPN 1

SETPC 1 105

PD

BK 19¢

PU

END

SETUP .RACERS positions the four turtles at the starting point of the
race, near the left edge of the screen. Some things are the same for all the
turtles, like the RT 90 to point them toward the finish line. But two
things are different for each turtle: the vertical position and the color.
SETUP.RACERS uses the primitive command EACH to tell Logo to set these
two properties for each turtle separately. In the instructions given as inputs
to EACH, the particular value used for each turtle depends on the turtle
number, represented by the primitive operation WHO. For example, the

TURTLE GEOMETRY

SETC instruction will give turtle 0 color 11 (11416 # 0), turtle 1 color 27
(11416+ 1), and so on.

TO SETUP.RACERS

PU

EACH [SETPOS LIST :START WHO*40-88) Vertical position different
RT 99 for each turtle.
EACH [SETC 11+16*WHO] Each turtle has different hue
ST but same intensity.
SETPN 2

SETPC © 990

PD

END

The result of running SETUP.RACE is shown here.

B T

* ¥ %

»

et e

Running the Race

The race itself is handled by RUN.RACE, which moves the turtles one at a
time until there is a winner. The command EACH is used to accomplish this
one-at-a-time motion.

After each turtle moves, the operation WONP checks whether or not the
turtle that moved has reached :FINISH and thus has won the race. If so,
the procedure SHOW. WINNER is called to congratulate the winning turtle by
changing its color. If there is no winner, the race continues.

T0 RUN.RACE

EACH [MOVE1 IF WONP [SHOW.WINNER STOP]]
RUN.RACE

END

MOVEL is invoked for each turtle in turn. It moves the turtle a small
random amount. The distances are small, so repeating this procedure over

TURTLE RACE

and over will give a fairly smooth effect. The distances are random so that
the race is different each time the program is run.

T0 MOVEL
FD 6+RANDOM 22
END

WONP checks the current turtle’s position to see if it’s past the finish line.
If so, it outputs TRUE; otherwise, FALSE.

TO WONP
OP XCOR > :FINISH
END

SHOW.WINNER just changes the color of the winning turtle and the
background color, to indicate that the race is over.

TO SHOW.WINNER
SETC 7

SETBG 84

END

This is the end of a race.

= e

&—#

SUGGESTIONS

This race is unfair; lower-numbered turtles have a greater chance of
winning, because they move first. Here's one way to fix it: judge the winner
only when each turtle has had a chance to move. Then the operation
WINNER would output a list of all winners. This is more egalitarian. Each
could be bestowed an award.

How about a musical fanfare at the end?

On the other hand, if you like unfair races, perhaps the winning turtle
should eat the other turtles, plunder their homelands, and so forth.

210 TURTLE GEOMETRY

PROGRAM LISTING

T0 RACE
RACE.FROM -129 120
END

TO RACE.FROM :START :FINISH
SETUP.RACE

RUN.RACE

END

T0 SETUP.RACE
TELL [0 1 2 3]
HT
DRAW.RACETRACK
SETUP .RACERS
END

TO DRAW.RACETRACK
SETBG 86

FS

cs

ASK 0 (DRAW.FINISHLINE]
END

TO DRAW.FINISHLINE

PU

SETPOS LIST :FINISH 89
SETPN 1

SETPC 1 105

PD

BK 190

PU

END

TO SETUP.RACERS

PU

EACH [SETPOS LIST :START WHO*49-89]
RT 90

EACH [SETC 11+16*WHO]

ST

SETPN 0

SETPC 0 90

PD

END

T0 RUN.RACE

EACH [MOVEL IF WONP [SHOW.WINNER »
STOP1]

RUN.RACE

END

TO MOVE1
FD 6+RANDOM 20
END

TO WONP
OP XCOR > :FINISH
END

TO SHOW.WINNER
SETC 7
SETBG 84

Four-Corner Problem

Here is a famous math problem: There are four ants, each at one corner of
a square. Each ant faces the next one. They all start walking at the same
time. As they walk, each ant turns so that it continues to face the same ant
it was facing at the beginning. How far do the ants walk before they all meet

at the center of the square?

This Logo program doesn't tell you how far they walk, but it does draw
a picture to act out the problem. The only difference is that in this version

of the problem we use turtles instead of ants.

By Brian Harvey.

FOUR-CORNER PROBLEM 211

.
e
—

e

M

PROGRAM LISTING

This project uses the TOWARDS procedure, which is shown later on in this chapter.

TO FOUR

TELL [0 1 2 3]

CT CS ST SETSH @ PU FS

ASK © [SETPOS [-80 -801]

ASK 1 [SETPOS (-8¢ 8011

ASK 2 [SETPOS [80 8011

ASK 3 [SETPOS (80 -801]

PD

ASK © [SETH @ REPEAT 4 [FD 160 RT 9011
WAIT 60 SS

PR [EACH TURTLE KEEPS FACING THE NEXT]
PR [ONE AS THEY ALL MOVE FORWARD.]

WAIT 300
FS
FOUR.LOOP
END

TO FOUR.LOOP

EACH [SETH TOWARDS ASK REMAINDER (WHO+1) 4
[POS]] FD 10

IF COND TOUCHING © 1 [STOP]

FOUR.LOOP

END

212 TURTLE CGEOMETRY

Towards and Arctan

TOWARDS is an operation that tells you how to turn the turtle to get it
pointing toward a particular position. It takes one input, which is the posi-
tion toward which you want to turn the turtle (in the form of a list of two
coordinates). It outputs the heading to which the turtle should be turned
in order to be facing from its current position to the input position. Here
is an example. Start out with a clear screen with one dot in the middle.

()

PD

FD 0

PU

SETPOS [63 27]

At this point, the turtle is facing north.

—

SETH TOWARDS [0 9]

The turtle is now facing the dot we drew at the center of the screen.

This project is based on “Three Computer Mathematics Projects” by Hal Abelson, MIT Logo
Laboratory Working Paper No. 16, June 20, 1974; write-up by Brian Hurvey. 3

TOWARDS AND ARCTAN

TOWARDS is defined in terms of the second tool in this package, the
ARCTAN procedure. ARCTAN takes a number as input and gives as output the
arctangent (in degrees) of that number. The procedure uses an approxima-
tion that is good to within about one degree, close enough for graphics!

For those who have studied trigonometry: the TOWARDS procedure
computes the differences between the x and y coordinates of the input
position and those of the turtle’s position, then takes the arctangent of
Ay/Ax. The output from ARCTAN is the correct heading, except that atten-
tion must be paid to the positive or negative direction of the two differ-
ences. (If you haven't studied trig, don’t worry about it. You can use
TOWARDS without understanding its inner workings.)

213

PROGRAM LISTING

TO TOWARDS :POS TO TOWARDS3 :DX :DY :ANG
OP TOWARDS1 (FIRST :POS)-XCOR (LAST » IF :DY<0 [MAKE "ANG 180-
:P0OS)-YCOR [F :DX<0 [MAKE "ANG 360-
END 0P :ANG
END

TO TOWARDS1 :DX :DY
0P TOWARDS3 :DX :DY TOWARDS2 ABS :DX » TO ARCTAN :X

ABS :DY 0P 57.3*ARCTAN.RAD :X
END END
TO TOWARDS2 :DX :DY TO ARCTAN.RAD :X
IF :DX=0 [OP 0] IF :X>1 [(OP 1.571-ARCTAN
IF :DY=0 [OP 90] 0P :X/(140.28°:X*:X)
0P ARCTAN (:DX/:DY) END
END

TO ABS :X

0P IF :X<0 [(-:X] [:X]
END

:ANG]
:ANG]

.RAD (1/:X)]

TURTLE GEOMETRY

Gongram:

Making Complex Polygon Designs

GONGRAM makes designs like the ones shown below.

To make the first design, type:
GONGRAM 14 110 149 160 28 23 0
To make the second one, type:
GONGRAM 19 119 135 45 23 45 77

It takes a long time to make a gongram design since the turtle must draw
many lines.

GONGRAM uses a variation of POLY, a procedure that makes a turtle draw
polygons of different sizes and shapes. (See Atari Logo Introduction to
Programming Through Turtle Graphics, p. 138, for a discussion of this
procedure.)

TO POLY :SIDE :ANGLE
POLY1 :SIDE :ANGLE HEADING
END

TO POLY1 :SIDE :ANGLE :START
FD :SIDE

RT :ANGLE

I[F HEADING = :START [STOP]
POLY1 :SIDE :ANGLE :START
END

By Erric Solomon.

GONGRAM: MAKING COMPLEX POLYGON DESIGNS

For example, POLY 50 90 draws a square of side length 50; POLY 50
144 draws a five-pointed star of side length 50.

—

‘

SUNNEE)~ —

To help in understanding how a gongram design is made, imagine that
you are directly above a layer cake.

SIDE VIEW

-

TOP VIEW

Each layer is slightly smaller than the one below it. Each layer of the cake
is transparent, except when we draw on it. At the edge of the bottom layer,
which we'll call the first layer, a pentagon is drawn.

layer 1

layer 3

layer 2

215

216

TURTLE GEOMETRY

edge of
first layer

base of
2nd loyer

v
Also drawn on the first layer is a smaller pentagon. It digs into the circle
formed by the base of the layer above. (The second layer’s base rests on the

surface of layer 1.) The area between the two is filled in.

INC
‘RAD

The result is a thick POLY shape. In a similar fashion we draw two five-
pointed stars and fill the area between them in another color, sharing
vertices with the pentagon.

{ANGLE 2

GONGRAM: MAKING COMPLEX POLYGON DESIGNS

Notice that part of the pentagon is covered by the star. Now we move
to the next layer. On the second layer we draw two new pentagons, one at
the edge of the second layer, the next one inscribed into the circle formed
by the base of the third layer. And as before, we fill in the area between

them in a third color.

Notice that the view of parts of the star has been obstructed. Two new
stars are inscribed in a similar manner, but instead of filling the area be-
tween them with a color, we rub an eraser over the area between the stars.

We skip over layer three, and at layer four we pretend that it is the

bottom layer and repeat the process.

Of course, we didn’t have to use a pentagon or a star. We could have

chosen two other P0LY-generated shapes. We could choose other colors.
Here is the completed design.

217

218

TURTLE GEOMETRY

GONGRAM 19 119 72 144 30 62 192

Making a Filled-in oLy

Why not just use POLY several times, with a slightly different first input each
time? That would produce several polygons of the same shape but slightly
different sizes, one inside the other. For example, we could try this proce-
dure:

TO THICK.POLY :SIDE :ANGLE :THICKNESS

IF :THICKNESS=0 [STOP]

POLY :SIDE :ANGLE

THICK.POLY :SIDE - 1 :ANGLE :THICKNESS - 1
END

The trouble is that this procedure doesn’t equally thicken all the sides.
Exaggerated view Screen view

b\

We could try to solve this problem by moving the turtle in toward the
center of the polygon a little before drawing the next polygon. But it’s a bit

TUATLE
STARTS HERE

GONGRAM: MAKING COMPLEX POLYGON DESIGNS

complicated to figure out exactly how far to move the turtle, and in what
direction, between POLYs,

The fundamental problem is that the successive POLYs are “anchored”
to one vertex of the polygon, the one where the turtle starts. That vertex
is at the same place on the screen for all the POLYs we draw. It would be
better if we could anchor the polygons to a common center rather than to
a common verfex.

This is how I approached the problem. First I noted that all the vertices
of a POLY design are equidistant from the center of the design. Therefore,
all the vertices of the POLY are points on the same circle, and each side of
the design is a chord of the circle. Since : S1DE remains constant, each chord
is the same length. It is possible, then, to inscribe a POLY into a circle by
specifying the radius of the circle and the angle of the POLY design. If you
inscribe a series of POLYs into concentric circles, then you get a thick or
“filled-in" POLY.

I then wrote a different POLY and called it POLYGON. It places the turtle
at points around a circle using the center of the screen as the center of the
circle. As the turtle moves from point to point, the pen traces a line along
each chord.

TO POLYGON :RADIUS :ANGLE

PU

SETPOS LIST :RADIUS * SIN HEADING :RADIUS * COS HEADING
PD

POLYGON1 :RADIUS :ANGLE HEADING

END

TO POLYGON1 :RADIUS :ANGLE :START

RT :ANGLE

SETPOS LIST :RADIUS * SIN HEADING :RADIUS * COS HEADING
IF HEADING = :START ([STOP]

POLYGON1 :RADIUS :ANGLE :START

END

Another way to look at this procedure is to think of the turtle sitting
in the middle of a circle. Each time the turtle turns, it points to a new vertex
on the circle. If the turtle makes 90-degree turns each time, it will point to
four distinct vertices. If the turtle turns 144 degrees each time, it will point

219

220

TURTLE GEOMETRY

to five distinct vertices. These vertices could be connected in several differ-
ent ways. The order in which the turtle points to them is the order in which
they will be connected.

In the earlier version of POLY, the turtle always faces in the direction
of the next side to be drawn. After it draws each side, the RIGHT turn points
the turtle so that the next FORWARD will draw the next side.

In the new version, the turtle does not face in the direction of the next
side. That's why the sides are drawn using SETPOS instead of FORWARD; we
tell Logo where the next vertex is, instead of telling it the distance and
direction. But the turtle’s heading is still important in this version of POLY.
It is always the heading that a turtle in the center of the polygon would face
in order to point to the next vertex. To see how this works, watch a version
of POLYGON where two turtles are visible. Turtle 0 will actually draw the
polygon; turtle 1 will sit in the center of the screen, but will keep turning
to retain the same heading as turtle 0.

TO VIEWPOLYGON :RADIUS :ANGLE

TELL [® 1] ST

PU

ASK @ SETPOS LIST :RADIUS*SIN HEADING :RADIUS*COS HEADING]
PD

VIEWPOLYGON1 :RADIUS :ANGLE HEADING

END

TO VIEWPOLYGON1 :RADIUS :ANGLE :START

RT :ANGLE

ASK ® [SETPOS LIST :RADIUS*SIN HEADING :RADIUS*COS HEADING]
IF HEADING = :START [STOP]

VIEWPOLYGON1 :RADIUS :ANGLE :START

END

Now that we've made a POLYGON that inscribes the design into a circle,
a POLY.FILL is possible.

GONGRAM: MAKING COMPLEX POLYGON DESIGNS

TO POLY.FILL :RADIUS :ANGLE
IF :RADIUS = 9 [STOP]
POLYGON :RADIUS :ANGLE
POLY.FILL :RADIUS - 1 :ANGLE
END

But we want to make a POLY. FILL that will make a POLYGON of any
thickness.

TO POLY.FILL :HI :LO :ANGLE
POLYGON :HI :ANGLE

IF NOT :HI > :LO [STOP]
POLY.FILL :HI - 1 :LO :ANGLE
END

And now GONGRAM:

TO GONGRAM :INC :RAD :ANGLEl :ANGLE2 :PC1 :PC2 :PC3
IF :RAD < 31 ([STOP]

SETPC 1 :PC1

TELL @ SETPN 1

POLY.FILL :RAD :RAD-.- :INC :ANGLE1

SETPC 2 :PC2 SETPN 2

POLY.FILL :RAD :RAD - :INC :ANGLE2

SETPC ® :PC3 SETPN @

POLY.FILL :RAD - :INC :RAD - 2 * :INC :ANGLE1

ERASE .POLY.FILL :RAD - :INC :RAD - 2 * :INC :ANGLE2
GONGRAM :INC :RAD - 3 * :INC :ANGLE1l :ANGLE2 :PCl :PC2 :PC3
END

GONGRAM takes seven inputs.

:INC The distance between the edge of a layer and the base of the
layer on top of it.
:RAD The radius of the largest layer.

:ANGLE1 An angle that dictates the shape of one of the polygons in-
scribed on the cake. In our example it is 72 (the pentagon).

:ANGLE2 An angle that dictates the shape of one of the polygons in-
scribed on the cake. In our example it is 144 for the star.

:PC1 The pen color for pen 1. In this example it is 30 for red.
:PC2 The pen color for pen 2. In this example it is 62 for blue.
PC3 The pen color for pen 0. In this example it is 102 for green.

ERASE . POLY.FILL is the only procedure I haven't mentioned. It is just
like POLY . FILL except that it calls ERASE . POLY. ERASE.POLY is just like
POLYGON except that it puts the pen into eraser, or PE, mode.

Here are some nice examples of GONGRAM.

GONGRAM 10 110 135 45 23 45 77
GONGRAM 15 110 90 135 23 45 77
GONGRAM 14 110 149 160 28 23 0
GONGRAM 12 110 90 120 45 60 23
GONGRAM 5 110 49 -1000 23 0 45
GONGRAM 15 110 60 129 6@ 45 23
GONGRAM 15 119 120 69 45 23 77

Note: Some of these take a very long time to draw.

221

222 TURTLE GEOMETRY

PROGRAM LISTING

TO GONGRAM :INC :RAD :ANGLEl :ANGLE2 » PD

:PC1 :PC2 :PC3 POLYGON1 :RADIUS :ANGLE HEADING
IF :RAD < 31 (STOP] END
SETPC 1 :PC1
TELL @ SETPN 1 TO POLYGONL :RADIUS :ANGLE :START
POLY.FILL :RAD :RAD - :INC :ANGLE1 RT :ANGLE
SETPC 2 :PC2 SETPN 2 SETPOS LIST :RADIUS * SIN HEADING »
POLY.FILL :RAD :RAD - :INC :ANGLE2 :RADIUS * COS HEADING
SETPC @ :PC3 SETPN @ IF HEADING = :START [STOP]
POLY.FILL :RAD - :INC :RAD - 2 * :INC » POLYGON1 :RADIUS :ANGLE :START
:ANGLE1 END
ERASE.POLY.FILL :RAD - :INC :RAD - 2 * »
:INC :ANGLE2 TO ERASE.POLY.FILL :HI :LO :ANGLE
GONGRAM :INC :RAD - 3 * :INC :ANGLELl » IF NOT :HI > :LO [STOP]
:ANGLE2 :PC1 :PC2 :PC3 ERASE.POLY :LO :ANGLE
END ERASE.POLY.FILL :HI :LO + 1 :ANGLE
END
TO POLY.FILL :HI :LO :ANGLE
POLYGON :HI :ANGLE TO ERASE.POLY :RADIUS :ANGLE
IF NOT :HI > :LO [STOP] PU SETPOS LIST :RADIUS * SIN HEADING »
POLY.FILL :HI - 1 :L0 :ANGLE :RADIUS * COS HEADING
END PE
RT :ANGLE
TO POLYGON :RADIUS :ANGLE POLYGON ;RADIUS :ANGLE
PU END

SETPOS LIST :RADIUS * SIN HEADING »
:RADIUS * COS HEADING

Polycirc

POLYCIRC makes designs by drawing polygons or lines around the circum-
ference of an imaginary circle. As the turtle walks around the circumfer-
ence, its heading changes as well as its position. Thus the polygons are
drawn at different angles.

POLYCIRC 35 90 10 80 1

By Erric Solomon.

POLYCIRC

oo

POLYCIRC takes five inputs: : SIZE, : ANGLE, : INC, :RAD, : TIMES. POLYCIRC
calls two procedures: POLY and NEXTPEN.

TO POLYCIRC :SIZE :ANGLE :INC :RAD :TIMES

RT :INC / :TIMES

PU SETPOS LIST (:RAD * COS :TIMES * HEADING)
(:RAD * SIN :TIMES * HEADING)

PD

NEXTPEN

POLY :SIZE :ANGLE

IF HEADING = 9 [STOP]

POLYCIRC :SIZE :ANGLE :INC :RAD :TIMES

END

POLY draws polygons.

TO POLY :SIZE :ANGLE
POLY1 :SIZE :ANGLE HEADING
END

TO POLY1l :SIZE :ANGLE :HEAD
RT :ANGLE

FD :SIZE

IF HEADING = :HEAD [STOP]
POLY1 :SIZE :ANGLE :HEAD
END

NEXTPEN changes the pen each time it is called.
TO NEXTPEN

IF PN = 2 [SETPN @] [SETPN PN + 1]
END

223

224

TURTLE GEOMETRY

Try:
POLYCIRC 35 189 19 80 1

Notice that this POLYCIRC is similar to the one in the first example, except
that it draws a spoke instead of a square.
The following diagram might help you in understanding POLYCIRC.

h [

Turtle will start here in the figure.

Two circles are implicit in the figure. One is stationary and has its center
in the center of the screen. The other can be thought of as a rolling wheel
whose center is always found on the circumference of the stationary circle.
This wheel has just one spoke. As the wheel rolls along the circumference
of the central circle, this spoke turns. In the figure, the wheel turns one full
revolution for every trip around the circle. At the same time, a trace of the
spoke is left every 10 degrees around the circle.

To help you understand how the program works, you can make the
central circle visible and then watch the spokes being drawn. First draw the
central circle this way:

POLYCIRC 2 180 2 50 1
Then type the following to see the spokes being drawn around it.
POLYCIRC 5¢ 189 19 50 1

POLYCIRC 225

We have used spokes in this example for their visual clarity, to help you
understand how the program places polygons around a circle. A spoke is
simply a POLY using an angle of 180 degrees. To draw other kinds of poly-
gons, use a different angle. For example, the square POLYCIRC at the begin-
ning of this section was drawn using an angle of 90 degrees.

Several inputs or parameters of the design can be varied.

:S1ZE, the first input, is the radius of the rolling wheel and thus the length
of each side of the polygon.

POLYCIRC 12 180 10 60 1 POLYCIRC 60 180 10 60 1

POLYCIRC 3¢ 180 10 €9 1

: ANGLE, the second input, is the angle that determines the shape of the
polygon. If : ANGLE is 180, just a spoke is drawn.

POLYCIRC 30 180 10 69 1 POLYCIRC 30 90 10 60 1 POLYCIRC 30 120 10 69 1

INC, the third input, is inversely related to the density of the polygons.

POLYCIRC 30 18¢ 19 60 1 POLYCIRC 390 180 20 60 1 POLYCIRC 30 180 5 60 1

226 TURTLE GEOMETRY

:RAD, the fourth input, is the radius of the center circle.

, 2
|

POLYCIRC 30 180 10 68 1 POLYCIRC 30 180 10 15 1 POLYCIRC 3¢ 180 10 39 1

: TIMES, the fifth input, is the number of rotations of the wheel around its
own center for each revolution it makes around the central circle. (For
example, for each revolution of the earth around the sun, it makes 365
rotations, more or less.)*

POLYCIRC 30 180 10 60 1 POLYCIRC 30 180 10 60 2 POLYCIRC 30 182 10 60 3

Other inputs for POLYCIRC that you might try are:

POLYCIRC 30 128 5 99 2 POLYCIRC 3¢ 120 10 80 -1 POLYCIRC 100 189 19 o 1

*This input can never be zero.

ANIMATING LINE DRAWINGS

227

PROGRAM LISTING

TO POLYCIRC :SIZE :ANGLE :INC :RAD » TO POLY :SIZE :ANGLE
: TIMES POLY1l :SIZE :ANGLE HEADING
RT :INC / :TIMES END
PU SETPOS LIST (:RAD « COS :TIMES « »
HEADING) (:RAD + SIN :TIMES ¢ » TO POLY1 :SIZE :ANGLE :HEAD
HEADING) RT :ANGLE
PD FD :SIZE
NEXTPEN IF HEADING = :HEAD ([STOP)
POLY :SIZE :ANGLE POLY1 :SIZE :ANGLE :HEAD
IF HEADING = @ [STOPI] END
POLYCIRC :SIZE :ANGLE :INC :RAD :TIMES
END TO NEXTPEN

IF PN = 2 [SETPN @] [SETPN PN + 1]

END

Animating Line Drawings

In Atari Logo you can change the color of lines already drawn on the screen.
This feature can be used to animate drawings. I will give three examples.
In each of them all three pens are used to make a drawing. Then the
drawings are transformed from static to moving pictures. This is done by
changing pen colors.

The first example is of spinning spokes. The other two examples show
how color changes affect designs made by GONGRAM and POLYCIRC, pro-
grams that are described in other sections of this book.

Spinning Spokes

STAR draws 36 lines as if they were spokes of a wheel. As it draws lines, the
turtle switches from pen 0, to pen 1, to pen 2, to pen 0, and so on until all
the spokes are drawn. STAR puts the background’s color in pens 1 and 2 so
that their lines are not visible to the user while the design is being made.
Lines drawn by pen 0 are visible; thus every third spoke is displayed on the
screen.

After it draws each spoke, STAR calls NEXTPEN, which changes the pen.

By Erric Solomon,

228

TURTLE GEOMETRY

T0 STAR

SETPC @ 50

SETPC 1 BG

SETPC 2 BG

REPEAT 36 [FD 109 BK 1@0 RT 1@ NEXTPEN]
END

TO NEXTPEN
IF PN = 2 [SETPN @] [SETPN PN + 1]
END

Now try:
CYCLE 209 5

CYCLE animates the picture; it displays spoke after spoke by changing the
pen colors. The first input to CYCLE is the number of times the animation
will be repeated. The second input controls the delay (in sixtieths of a
second) between shifts of pen colors. You can think of this time delay as the
length of time between frames in the animation.

TO CYCLE :TIMES :DELAY
REPEAT :TIMES [CYC PC 1 :DELAY]
END

TO CYC :PC :DELAY
SETPC 1 PC @
SETPC 0 PC 2
SETPC 2 :PC

WAIT :DELAY

END

The basic idea in this example is that two pens are always “hidden,” but
CYCLE keeps changing which two are hidden. Lines drawn by pen 1 change
to the color previously assumed by lines drawn by pen 0. Pen 0’s lines
change to the color in pen 2. Lines drawn by pen 2 change to the color that
used to be in pen 1. This color is given to CYC as an input.

Color Change with Gongram and Polycirc

CYCLE can work its magic in other situations as well. Let’s try it with
GONGRAM. In this example, all three pens have visible colors. (The last three
inputs to GONGRAM are the colors for the pens.) Now run CYCLE and watch
the result of this color shift.

GONGRAM 15 129 72 144 43 77 22
CYCLE 209 5

The following creates the same gongram pattern, but with two pens in
the background color.

GONGRAM 15 13@ 72 144 43 BG BG
CYCLE 209 5

ANIMATING LINE DRAWINGS

POLYCIRC is also animated by color shifting. Try this:

SETPC 1 BG
SETPC 2 BG
SETPC @ 55
POLYCIRC 35 90 19 80 1
CYCLE 300 5

You should see squares moving around in an elliptical path.

229

PROGRAM LISTING

For a listing of GONGRAM, see page 222; for POLYCIRC, see page 227.

TO STAR

SETPC @ 50

SETPC 1 BG

SETPC 2 BG

REPEAT 36 [FD 100 BK 100 RT 10 »
NEXTPEN]

END

TO NEXTPEN
IF PN = 2 [SETPN 0] [SETPN PN + 1]
END

TO CYCLE :TIMES :DELAY
REPEAT :TIMES (CYC PC 1

END

TO CYC :PC :DELAY
SETPC 1 PC @
SETPC 0 PC 2
SETPC. 2 :PC

WALT
END

:DELAY

:DELAY]

D

Music

Melodies

This section uses Atari Logo to make tunes, to combine them to make
bigger ones, and to manipulate melodic elements by playing them back-
ward and transposing them upward and downward. The section concludes
with a pitch and rhythm sequencer.

Playing a Tune

TUNE lets you play single-voice melodies. It takes two inputs, a list of
notes to play and a duration, and plays each note in the list with that
duration.

TO TUNE ;LIST :DUR
IF EMPTYP :LIST [STOP]
IF (FIRST :LIST)="R [TOOT @ 15000 © :DUR]
[TOOT @ PITCH FIRST :LIST 15 :DURI
TUNE BUTFIRST :LIST :DUR
END

The notes are represented as positive or negative integers. The letter
R in a list is interpreted as silence (that is, a rest).
Try the following melody. Type:

SETENV 0 1
TUNE [1188190198R6655331R] 30

The melody you just played is “Twinkle, Twinkle Little Star.” The ampli-
tude (loudness) of each of the notes of the melody cannot change.

Duration Using TUNE

TUNE gives the same duration to each note in the list. You might try different
durations with the same list of notes. For example:

By Greg Gargarian.

MELODIES 231

TUNE [1 3 5 1] 49 — —
) f t
or
n 1 1
TUNE [13 5 1] 29 &g—a:#:,——
S, =

The difference in these two melodies is that the first is played twice as fast
as the second.

Numeric Pitch Representation in TUNE

Here's how to translate between musical notations. Beneath each note is
the letter for the note as well as the number that TUNE uses for that note.

e

D)
A=1 Ab=2 B=3 C=4 C#=5 D=6 D$=7 E=8 F=9 F#=10 G=11 G#=12 andso forth.

The following is a melody using this notation. You see the traditional
music notation for “Twinkle, Twinkle Little Star” along with the traditional
note names. Underneath is the list of numbers TUNE uses to reproduce that
melody.

A A E E M ® BE R D D ¢ ¢ B B A R
i 1 8 B 10 106 8 R & 6

As we mentioned earlier, R is interpreted as a rest. What TUNE really
does when it sees an R is make the frequency of the note so high that you
can’t hear it! (That’s what the high frequency of 15,000 is doing in TUNE.)

Putting Melodies Together

You can give a list of notes a name. For example:

MAKE "TWINKLE1 ([1 188 10 10 8R 6 655 3 3 1R]
Now type:

TUNE :TWINKLE1l 30

You can put different melodies together. Here we will stay with “Twin-
kle, Twinkle” and make another list of notes as a continuation of the mel-
ody. Let’s give it the name TWINKLEZ2.

232

MUSIC

MAKE “TWINKLE2 [8 8 6 6 5 5 3 R]

Now type:

TUNE :TWINKLE2 39

Because this part of the melody is normally repeated, it's exactly half as long
as TWINKLE1! You can use the REPEAT command to play it twice. Type:

REPEAT 2 [TUNE :TWINKLE2 3@]

The SONG procedure combines TWINKLE1 and TWINKLEZ2 to make the
entire melody.

TO SONG :DURATION

TUNE :TWINKLE1l :DURATION

REPEAT 2 [TUNE :TWINKLE2 :DURATIONI]
TUNE :TWINKLE1l :DURATION

END

To hear it, type:

SONG 39

The tempo of SONG (that is, the rate at which the notes follow each
other) is determined by its duration input. To play SONG at a faster tempo,

type:

SONG 20

How 1une Works

TUNE goes through its list of notes, one element at a time, and plays each
note at the duration you specified. TUNE calls T00T for each note.

PITCH converts each note number in the notes list to its corresponding
frequency. P1TCH uses P1TCH1 to help.

TO PITCH :NOTENUMB
OP PITCH1 :NOTENUMB 220
END

TO PITCH1 :NOTENUMB :BASE

IF :NOTENUMB = @ [OP INT :BASE]

IF :NOTENUMB > 12 [OP PITCH1 :NOTENUMB-12 :BASE"*2]

I[F :NOTENUMB < @ [OP PITCH1 :NOTENUMB+12 :BASE/2]
[OP PITCH1 :NOTENUMB - 1 :BASE®1.0595]

END

The note in this program is A at frequency 220. The A an octave above
it has a frequency of 440. In fact, frequencies of notes an octave apart are

MELODIES

always related to each other in this way: going an octavehigher doubles the
frequency, going an octave lower halves the frequency. The variable : BASE
is doubled or halved to perform this octave-changing function.

There are twelve chromatic steps in an octave. Therefore, the fre-
quency of each note in the scale is the twelfth root of two higher than the
next. Multiplying a note by 1.0595 gets the next note in the scale. The
chromatic steps in between the octaves are determined by multiplying
:BASE by 1.0595 n times, where n is the number of chromatic steps.

TUNE's note numbers start at a frequency of 220. That A is 1, and all
the notes in the scale go up or down from there.

Symmetry in Melodies

One way to listen to the characteristics of a melody is to hear it backward.
(This is similar to the kind of analysis sometimes done in a painting class.
People will often look at a painting sideways or upside down in order to
concentrate on the shapes and colors rather than the figures themselves.)

TO REVERSE :LIST

IF EMPTYP :LIST [OP []]

OP FPUT LAST :LIST REVERSE BL :LIST
END

You use REVERSE to put a list of notes in reverse order. Try it by typing:
PRINT REVERSE [1 3 5 6]

You should get:
6531

as your result. You can compare the sound of a list of notes forward and
backward using TUNE with and without REVERSE. Type and listen to the
following:

TUNE [1 3 5 6] 39

To hear the reverse of it, type:

TUNE REVERSE [1 3 5 6] 39
Also try:

TUNE :TWINKLE1 39
TUNE REVERSE :TWINKLE1l 39

You can use REVERSE to build a symmetrical melody from a short one.
The procedure MUSIC.MIRROR takes a list of notes and plays it in the given
order, then plays it in reverse order. (By the way, this reversing process is
usually called taking the retrograde of the phrase.)

TO MUSIC.MIRROR :LIST :DUR
TUNE :LIST :DUR

TUNE REVERSE :LIST :DUR
END

233

MUSIC

Listen to the following examples, the first using our four-note phrase
and the second using the tune list : TWINKLE1.

MUSIC.MIRROR [1 3 5 6] 30
MUSIC.MIRROR :TWINKLE1l 39

In the next example, we construct a substantial melody with only two
four-note phrases. We use the same four notes played before and make up
another melody. Type the following:

;#.E MAKE “TUNE1 [1 3 5 6]

MAKE “TUNE2 [1 5 8 8]

Now we put these two melodies together in the procedure SONG1.

TO SONG1
REPEAT 2 [MUSIC.MIRROR :TUNE1l 35 MUSIC.MIRROR :TUNE2 35]
END

Play it by typing:
SONG1

With eight notes we have been able to construct a twenty-four-note
song! Try other melodies of your own design.

Transposing a Melody

A melody has a certain shape or contour that can be preserved regardless
of the pitch at which the melody starts. If you add or subtract a musical step
(or several steps) from each note in a melody, you don’t change its overall
shape. This process of raising or lowering all the notes equally is called
transposing.

Transposing Up

TRANSPOSE .UP transposes all the notes of a phrase up. TRANSPOSE.UP
works by adding its second input to each of the numbers in its input list.
Try:

TUNE TRANSPOSE.UP [1 3 5 6] 2 30
This is equivalent to typing:

TUNE [3 5 7 8] 30

TO TRANSPOSE.UP :LIST :INT

IF EMPTYP :LIST [OP [1]]

0P FPUT (FIRST :LIST) + :INT TRANSPOSE.UP BF :LIST :INT
END

MELODIES

Listen to the difference between the list, before and after it has been
transposed up.

Type:

TUNE (1 3 5 6] 39 E e “

e
and then
N 3
TUNE TRANSPOSE.UP [1 3 5 61 2 39 @.—_ﬁlzii
D)

An Effect Using TRANSPOSE . UP

CLIMB and CLIMBING use TRANSPOSE.UP to create the effect of a tune
climbing. CLIMBING takes a list of notes as its first input and transposes it
up step by step as many times as you want. The number of steps is CLIMB’s
second input.

Try:

CLIMB :TUNE1l 3
CLIMB :TUNE2 7
CLIMB :TUNE3 5

TO CLIMB :NOTELIST :TIMES
CLIMBING :NOTELIST :TIMES @
END

T0 CLIMBING :NOTELIST :TIMES :UP
IF :TIMES = :UP ([STOP]

TUNE TRANSPOSE.UP :NOTELIST :UP 35
CLIMBING :NOTELIST :TIMES :UP+1
END

Transposing Down

TRANSPOSE . DOWN is similar to TRANSPOSE . UP except that the melody is
transposed down.

TO TRANSPOSE.DOWN :LIST :INT
IF EMPTYP :LIST [OP ([])

OP FPUT (FIRST :LIST) - :INT TRANSPOSE.DOWN BF :LIST :INT
END

Type:
MAKE “TUNE3 (5 8 6 5]

Then listen to each of the following:
TUNE :TUNE3 30

TUNE TRANSPOSE.DOWN :TUNE3 1 30
TUNE TRANSPOSE.DOWN :TUNE3 3 30

235

236

SEQUENCER (6

SETENV 0 1

MUSIC

A Single-Voice Music Sequencer

A music sequencer is an instrument that will repeat a sequence of notes for
an indefinite period of time. We can make one by modifying TUNE.

TO SEQUENCER :LIST :DUR
IF EMPTYP :LIST [STOP]
IF (FIRST :LIST) = "R [TOOT 0 15008 15 :DUR]
[TOOT @ PITCH FIRST :LIST 15 :DUR]
SEQUENCER (SE BUTFIRST :LIST FIRST :LIST) :DUR
END

Type:
0N

5311 39 Wﬁ:

D)

Press BREAK to stop.

The big difference between TUNE and SEQUENCER is that SEQUENCER
repeats your tune over and over. It won't stop until you press BREAK. In
TUNE, the first note is played, then removed on the recursive call.

Short Durations

If the duration of the notes gets very short, you may want to change the
“envelope” of the voice—that is, the rate at which the sound goes to silence
(or decays) after its duration has been expended. This prevents a note from
“spilling” into the next note.

SETENV’s first input determines the voice. Since we’re using voice 0 in
SEQUENCER, the first input to SETENV should be 0. It’s the second input to
SETENV that determines the decaying time for the note. Try SETENV 0
1, which is a quick decay.

Type:

SETENV 0 1
SEQUENCER [6 5 3 1] 39

Try other values. To restore SETENV values, type:
SETENV 0 @
A Single-Voice Rhythm Sequencer

RHYTHM. SEQ is a single-voice rhythm sequencer that makes bongolike
sounds. This procedure expects its list of notes to include only the letters
H,M, and L (for high, medium, and /ow) and R (for rest). Type the following
two lines and listen to the result, pressing BREAK to stop.

RHYTHM.SEQ [H M L L H] 19 {}JJIIJJJ| |JJJ||
L

MELODIES

Press BREAK to stop.
The second input is the duration for each of the notes in the list.

TO RHYTHM.SEQ :LIST1 :DUR

IF EMPTYP :LIST1 [STOPI

IF EQUALP FIRST :LIST1 “R [TOOT ©® 15000 © :DUR]
[TOOT @ BONGO FIRST :LIST1 15 :DUR]

RHYTHM.SEQ (SE BUTFIRST :LIST1 FIRST :LIST1) :DUR

END

Traditionally speaking, rhythm usually implies periodic or repeating
patterns. The list of elements that you have given RHYTHM. SEQ becomes
such a pattern as it continues to repeat. For example, type:

RHYTHM.SEQ [L M H R R] 29

This is a five-beat pattern that gets its rhythm from the sequencing
action alone.

A second way to produce rhythmic patterns is to use rests in different
ways. Since RHY THM. SEQ doesn’t have many notes, you can concentrate on
how far apart to space them in time. For example, type:

RHYTHM.SEQ [L R M H R ML R MHI 20

This has an internal feeling of three (waltzlike), yet it is a ten-beat
pattern. Both rhythms seem to coexist.

A third way in which to construct patterns is with the low, medium, and
high pitches. They can be used to either reinforce the existing patterns or
they can serve as counterpoint to them. For example, type:

RHYTHM.SEQ (LM H R LMH L R H] 20
H

e

This rhythm reinforces the patterns of the previous ten-beat pattern by
repeating the low-medium-high sequence almost three times (there’s a rest
in the middle of one of them) and by adding an additional rest between one
of these repetitions to get the ten-beat phrase. Try the previous rhythmic
sequences at a faster tempo by typing:

RHYTHM.SEQ (LR M H R ML R MH] 19
RHYTHM.SEQ (LM HR L MH L R H] 19

How ruYTHM. sEq Works

RHYTHM. SEQ was designed by modifying SEQUENCER. The most conspicuous
difference is that RHYTHM. SEQ uses a procedure called BONGO instead of
PITCH to produce the T00T frequencies.

TO BONGO :NOTE

IF :NOTE “L [OP (59 + RANDOM 3)]

IF :NOTE “M [OP (74 + RANDOM 3)]

IF :NOTE = “H [OP (87 + RANDOM 3)] [OP 150001
END

237

238 MUSIC

BONGO interprets L, M, and H for RHYTHM. SEQ. It interprets R (and any
other character) as a rest by outputting (0P) an inaudible frequency of
15,000

As in SEQUENCER, if the rhythm is very fast, the second input to SETENV
should be very small so that there is separation between notes.

Notice that the frequencies for L, M, and H are small numbers and, thus,
relatively low notes. These frequencies will change slightly each time de-
pending on the tiny RANDOM values that are added to them. This has been
done to make the sounds more bongolike and less, for example, pianolike
—that is, less “pitchy.”

PROGRAM LISTING

TO TUNE :LIST :DUR TO SONG1
IF EMPTYP :LIST [STOP] REPEAT 2 [MUSIC.MIRROR :TUNEl 35 »
IF (FIRST :LIST)="R [TOOT 0 15000 @ » MUSIC.MIRROR :TUNE2 35]
:DUR] [TOOT @ PITCH FIRST :LIST » END
15 :DUR]
TUNE BUTFIRST :LIST :DUR TO TRANSPOSE, UP :LIST :INT
END IF EMPTYP :LIST (OP [1]]
OP FPUT (FIRST :LIST) + :INT »
TO SONG :DURATION TRANSPOSE.UP BF :LIST :INT
TUNE :TWINKLE1 :DURATION END
REPEAT 2 [TUNE :TWINKLE2 :DURATION]
TUNE :TWINKLE1 :DURATION T0 CLIMB :NOTELIST :TIMES
END CLIMBING :NOTELIST :TIMES o
END
TO PITCH :NOTENUMB
OP PITCHL :NOTENUMB 229 TO CLIMBING :NOTELIST :TIMES :UP
END IF :TIMES = :UP [STOP]
TUNE TRANSPOSE.UP :NOTELIST :UP 35
TO PITCH1 :NOTENUMB :BASE CLIMBING :NOTELIST :TIMES :UP+1
IF :NOTENUMB = @ [(OP INT :BASE] END
IF :NOTENUMB > 12 (OP PITCH1 »
:NOTENUMB-12 :BASE*2] TO TRANSPOSE.DOWN :LIST :INT
IF :NOTENUMB < © [OP PITCHLI » IF EMPTYP :LIST [OP []]
:NOTENUMB+12 :BASE/2] [OP PITCH1 » OP FPUT (FIRST :LIST) = :INT »
:NOTENUMB - 1 :BASE*1.0595] TRANSPOSE .DOWN BF :LIST :INT
END END
TO REVERSE :LIST TO SEQUENCER :LIST :DUR
IF EMPTYP :LIST [OP [1] IF EMPTYP :LIST (STOP]
OP FPUT LAST :LIST REVERSE BL :LIST IF (FIRST :LIST) = "R [(TOOT 9 15000 15 »
END :DUR] [TOOT @ PITCH FIRST :LIST »
15 :DUR]
TO MUSIC.MIRROR :LIST :DUR SEQUENCER (SE BUTFIRST :LIST FIRST »
TUNE :LIST :DUR :LIST) :DUR
TUNE REVERSE :LIST :DUR END

END

EAR TRAINING 239

TO RHYTHM.SEQ :LIST1 :DUR TO BONGO :NOTE

IF EMPTYP :LIST1 [STOP] IF :NOTE = “L [OP (59 + RANDOM 3)1]

IF EQUALP FIRST :LIST1 "R [TOOT @ » IF :NOTE = “M [OP (74 + RANDOM 3)]
15000 ® :DUR] [TOOT @ BONGO FIRST » IF :NOTE = “H [OP (87 + RANDOM 3)] [QOP »
:LIST1 15 :DUR] 150001

RHYTHM.SEQ (SE BUTFIRST :LIST1 FIRST » END
:LIST1) :DUR

END

Ear Training

This project is an interactive music tutorial in ear training. It gives you the
opportunity to listen to musical intervals and learn to recognize them.

How to Use the Ear Training Tutorial

The program picks two notes at random to construct a musical interval.
Your task is to hear the interval and to select what you think it is. The
program will tell you if you are right or give you the correct answer.

The program selects intervals within roughly one octave. They are
shown here in traditional musical notation, with a written description, and
with the abbreviated notation this program uses.

0
.- I
e —ew—— o
minor second major second minor third major third
MINOR 2 MAIJOR 2 MINOR 3 MAJOR 3
0N
é be = . T —
. — B — [=
- perfect fourth augmented fourth perfect fifth minor sixth
PERF. 4 AUG. 4 PERF. 5 MINOR 6
0 ~ — 1 e O ——
% = —— =
major sixth minor seventh major seventh octave
MAJOR 6 MINOR 7 MAJOR 7 OCTAVE

By Greg Gargarian.

MUSIC

Running the Program

Those of you who feel bold can run the tutorial without reading this section.
Type:
EAR.TRAINING

The following is a step-by-step description of how to use the program.
The program prints out the following instructions.

THIS PROGRAM PLAYS A NOTE

THEN ANOTHER. ..

...AND ASKS YOU FOR THE PITCH-
INTERVAL BETWEEN THEM.

FOR EXAMPLE, IF THE FIRST NOTE IS:

(a sound here)

AND THE SECOND IS:

(a sound here)

THE INTERVAL BETWEEN THEM IS A PERF.4

THE POSSIBLE INTERVALS ARE:

MINOR.2 MAJOR.2 MINOR.3
MAJOR.3 PERF.4 AUG.4
PERF.5 MINOR.& MAJOR.6
MINOR.7 MAJOR.7 OCTAVE
MINOR.9 MAJOR.9 MINOR.190
MAJOR. 10

HERE WE GO

Then the program gives you two notes and states:

TYPE ? AND RETURN FOR THE INTERVAL,
GIVE YOUR OWN ANSWER OR
PRESS RETURN FOR ANOTHER HEARING

Let's say you type:
MAJOR. 6
There are two possibilities: either you are right, in which case it re-

sponds:
TRUE

or you are wrong, in which case it responds:
FALSE. THE RIGHT ANSWER IS: whatever
If you had typed ? and RETURN the program would have informed

you of the interval you had just heard.
The program then gives you instructions.

EAR TRAINING 241

PRESS RETURN TO CONTINUE, OR
ANY CHARACTER AND RETURN TO STOP.

Pressing RETURN gives you a new interval. If, when you hear an
interval, you are not sure of the answer, you may listen a second time. When
the program states:
TYPE ? AND RETURN FOR THE INTERVAL,
GIVE YOUR OWN ANSWER OR
PRESS RETURN FOR ANOTHER HEARING
pressing RETURN causes the same interval to be repeated, this time with
the notes played together as well as one after the other.

PROGRAM LISTING
TO EAR.TRAINING PRINT (]
CT WAIT 189
PRINT [THIS PROGRAM PLAYS A NOTE,]) EAR.TRAINING2
WAIT 60 END
PRINT [THEN ANOTHER...]
WAIT 120 TO EAR.TRAINING2
PRINT [...AND ASKS YOU FOR THE PITCH-] CcT
PRINT [INTERVAL BETWEEN THEM.] PRINT [IF THE FIRST NOTE 1S:]
WAIT 189 MAKE "BASE (RANDOM &) + 1
PRINT [] WAIT 30
PRINT [] TOOT @ PITCH :BASE 15 60
PRINT [FOR EXAMPLE, IF THE FIRST NOTE » WAIT 129
I5:] PRINT [AND THE SECOND 1S:1]
T00T @ PITCH 2 15 6@ MAKE “INTERVAL (RANDOM 16) + 1
WAIT 120 WAIT 30
PRINT [AND THE SECOND [S:] TOOT @ PITCH :BASE + :INTERVAL 15 60
WAIT 60 WAIT 60
TOOT @ PITCH 7 15 60 PRINT []
WAIT 180 PRINT [TYPE ? AND RETURN FOR THE »
PRINT [THE INTERVAL BETWEEN THEM IS A » INTERVAL,]
PERF.4] PRINT [GIVE YOUR OWN ANSWER OR]

WAIT 100 PRINT [PRESS RETURN FOR ANOTHER »
PRINT [] HEARING.]
PRINT [] CHECK.ANSWER :BASE :INTERVAL RL
PRINT [THE POSSIBLE INTERVALS ARE:) TRY.AGAIN
PRINT [] END
PRINT [MINOR.2 MAJOR.2 MINOR.3]
PRINT [MAJOR.3 PERF.4 AUG.4] TO CHECK.ANSWER :BASE :INTERVAL :ANS
PRINT [PERF.5 MINOR.6 MAJOR.6] IF EMPTYP :ANS (ANOTHER.HEARING :BASE »
PRINT [MINOR.7 MAJOR.7 OCTAVE] :INTERVAL STOP]
PRINT [MINOR.9 MAJOR.9 MINOR.10] IF (FIRST :ANS) = “? [PRINT (SE [THIS »

PRINT [MAJOR.10]
WAIT 249

PRINT []

PRINT [HERE WE GO]

INTERVAL IS Al INTERVALS »

:INTERVAL) WAIT 68) [CHECKLIST »

:INTERVAL FIRST :ANS]
END

242 MUSIC

TO CHECKLIST :INTERVAL :ANS TOOT 1 PITCH :BASE + :INTERVAL 15 90
IF (INTERVALS :INTERVAL) = :ANS [PRINT » PRINT []
TRUE] [PRINT (SE [(FALSE. THE » PRINT [TYPE ? AND RETURN FOR THE »
RIGHT ANSWER IS:]1 INTERVALS » INTERVAL,]
: INTERVAL] PRINT [GIVE YOUR OWN ANSWER OR])
WAIT 60 PRINT [PRESS RETURN FOR ANOTHER »
END HEARING.]
CHECK.ANSWER :BASE :INTERVAL RL
TO INTERVALS :NUMBER END
0P ITEM :NUMBER [MINOR.2 MAJOR.2 »
MINOR.3 MAJOR.3 PERF.4 AUG.4 » TO TRY.AGAIN
PERF.5 MINOR.6 MAJOR.6 MINOR.7 » PRINT []
MAJOR.7 OCTAVE MINOR.9 MAJOR.9 » PRINT [PRESS RETURN TO CONTINUE, OR]
MINOR.10 MAJOR.1@] PRINT [ANY CHARACTER AND RETURN TO »
END STOP.]
IF EMPTYP RL [EAR.TRAINING2]
TO ITEM :NUM :LIST END
IF :NUM=1 [OP FIRST :LIST]
OP ITEM :NUM-1 BF :LIST TO PITCH :NOTENUMB
END OP PITCH1I :NOTENUMB 220
END
TO ANOTHER.HEARING :BASE :INTERVAL
PRINT (1
PRINT [TOGETHER, THE NOTES ARE:] TO PITCH1 :NOTENUMB :BASE
WAIT 60 IF :NOTENUMB = @ [OP INT :BASE]
TOOT @ PITCH :BASE 15 120 IF :NOTENUMB > 12 [OP PITCH1 »
TOOT 1 PITCH :BASE + :INTERVAL 15 990 :NOTENUMB-12 :BASE*2]
WAIT 120 IF :NOTENUMB < © [OP PITCH1 »
PRINT [AGAIN, THE FIRST NOTE 1S:] :NOTENUMB+12 :BASE/2] [OP PITCH1 »
TOOT @ PITCH :BASE 15 129 :NOTENUMB - 1 :BASE*1.0595]
PRINT [AND THE SECOND:] END

Sound Effects

This write-up presents a palette of sound effects to give you ideas for using
sound in your own projects. We've kept our discussion brief. Instead, we ask
you to use your ears. Some of these sound effects are new, others are taken
from projects found elsewhere in this book. You might want to try them out
and use those effects you like in your own projects, either as they are or in
modified form. The procedures in this collection use the Atari Logo music
primitives TO0T and SETENV.

A European Ambulance Siren

Typing the following lines results in a European ambulance sound.

By Greg Gargarian and Margaret Minsky; with contributions by Max Behensky.

SOUND EFFECTS

SETENV 0 19
REPEAT 19 ([TOOT @ 267 15 49 TOOT @ 200 15 391)

Advancing and Retreating Sounds

The procedures ADVANCE and RETREAT make sounds like something is rush-
ing toward you or retreating from you. When sound sources advance to-
ward you, you hear their pitch rising slightly and their volume increasing.
When they retreat, you hear a falling pitch and decreasing volume. That
is what these procedures try to do.

ADVANCE and RETREAT take two inputs. The first is a starting pitch for
their sound and the second is FAST or SLOW for the speed of the advance
or retreat. These procedures make sounds in both voice 0 and voice 1.

Here are the procedures for ADVANCE.

TO ADVANCE :PCH :DURATION

IF :DURATION = “FAST [ADVANCE1l :PCH 1]
IF :DURATION = "SLOW [ADVANCE2 :PCH 5]
END

TO ADVANCE1l :PCH :AMP

IF :AMP > 15 [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*1.91 :AMP 5
ADVANCE1 :PCH*1.01 :AMP + 3
END

TO ADVANCE2 :PCH :AMP

IF :AMP > 15 [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*1.81 :AMP 5
ADVANCE2 :PCH*1.01 :AMP + 1
END

Try:

SETENV @ 1
ADVANCE 449 "SLOW
ADVANCE 449 “FAST

Here are the procedures for RETREAT.

TO RETREAT :PCH :DURATION

IF :DURATION = "FAST [RETREAT1 :PCH 15]
IF :DURATION = “SLOW [RETREAT2 :PCH 15]
END

TO RETREAT1 :PCH :AMP

IF :AMP < @ [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*.99 :AMP 5
RETREAT1 :PCH*®*.99 :AMP - 3
END

243

244

MUSIC

TO RETREAT2 :PCH :AMP

IF :AMP < @ [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*®*.99 :AMP 5
RETREAT2 :PCH*®*.99 :AMP - 1
END

Try:

RETREAT 440 "FAST
RETREAT 440 “SLOW

You might want to try some other inputs.

ADVANCE 1009 “FAST
ADVANCE 100 “SLOW
RETREAT 209 "SLOW

You can try putting them together.
REPEAT 10 [ADVANCE 2@Q“SLOW RETREAT 219 "FAST WAIT 10]
This one sounds like a monster snoring.

REPEAT 5 [ADVANCE 99 “FAST RETREAT 95 “SLOW WAIT 10]

Making Sliding Sounds: Glissandi

The RAMP procedure makes a sound that slides “smoothly” from a starting
pitch to an ending pitch.

TO RAMP :START :FINISH :RATE

IF :FINISH < :START [REPEAT (:START-:FINISH)/ :RATE
[TOOT 1 :START 15 2 MAKE “START :START - :RATEI]]

IF :START < :FINISH [REPEAT (:FINISH-:START)/ :RATE
[TOOT 1 :START 15 2 MAKE “START :START + :RATE]]

END

Try:

RAMP 400 1000 20
RAMP 1000 409 20
RAMP 300 500 70
RAMP 100 800 40

You get the idea. The first input is the starting frequency, the second
is the ending frequency, and the third determines the rate of the slide. The
bigger the third input, the faster the slide.

Try:

RAMP 500 700 4
RAMP 500 700 49

SOUND EFFECTS
This one makes a “whooping™ sound:

REPEAT 5 [RAMP 409 809 49)

A Motorcycle Sound

MOTORCYCLE uses RAMP to make the motorcycle warm up and ADVANCE and
RETREAT to make it drive away.

TO MOTORCYCLE

REPEAT 10 [RAMP 25 120 (RANDOM 18)+1]
ADVANCE 50 “SLOW

RETREAT 50 “SLOW

END

A More Continuous Sliding for an Ambulance Siren

RAMP 2 is a more complicated procedure that makes a more continuous slide.
It can be used to make the sound of an ambulance siren.

TO RAMP2 :START :FINISH :RATE
IF :FINISH < :START

[DOWN :START :FINISH :RATE TOOT @ :FINISH 12 6]
IF :FINISH > :START

[UP :START :FINISH :RATE TOOT @ :FINISH 12 6]
END

T0: e 28 :F :R
REPEAT (:F - :S) [/ :R

[TOOT 1 :S 15 4 WAIT 1 TOOT @ :S 12 4 MAKE “S :S + :RI
END

TO DOWN :S :F :R
REPEAT (:S - :F) [/ :R

[TOOT 1 :S 15 4 WAIT 1 TOOT @ :S 12 4 MAKE “S :S - :R]
END

Try:

REPEAT 10 [RAMP2 1209 1609 25 RAMP 1609 1209 25)

A Spaceship Sound

DEPARTURE uses RAMP in voice 1 and holds the starting pitch of the RAMP in
voice 0.

TO DEPARTURE :FIRST :LAST :RATE

IF 255 < (ABS (:FIRST-:LAST)/:RATE)=2 [TOOT @ :FIRST 12 255]
[TOOT @ :FIRST 12 (ABS (:FIRST-:LAST)/:RATE)*2]

RAMP :FIRST :LAST :RATE

END

245

246

MUSIC

TO ABS :NUM
IF :NUM < @ [OP —:NUM] [OP :NUM]
END

Try DEPARTURE:

SETENV ¢ 8
SETENV 1 8
DEPARTURE 209 50 5
DEPARTURE 509 50 19

For a zigzag sound, try the following:
REPEAT 2 [DEPARTURE 10¢@ 509 2@ DEPARTURE 500 1090 20)
For a spaceshiplike sound, try:

TO SPACE.SHIP :NUM
REPEAT :NUM [DEPARTURE 1500 2000 29)
END

Try:
SPACE.SHIP 5
or

SPACE.SHIP 2

A Boing-ng-ng Sound

BOING works best in the low register . . . boings usually do!
BOING's first input is the frequency of the boing and the second input
is the duration (in sixtieths of a second).

T0O BOING :FR :DUR

SETENV @ 0

SETENV 1 @

IF :DUR > 10@ [BOING1 15 1.5 :FR :FR/20¢ (:DUR/10) STOP]
BOINGl 15 3 :FR :FR/2® (:DUR/5)

END

TO BOING1 :AMP :INC :FR :FR1 :DUR

IF :AMP < 1 [STOP]

TOOT @ :FR :AMP :DUR

TOOT 1 :FR - (:FR / 40) :AMP :DUR

BOING1 :AMP - :INC :INC (:FR + :FR1) :FR1 :DUR
END

Try:

BOING 209 49
REPEAT 5 [BOING 5@ 30]

SOUND EFFECTS
Trills and Thrills

The TRILL procedure plays a “trill” (a sound made up of alternating
sounds). TRILL's first input is a frequency, the second input the interval, and
the third is the number of times to alternate.

TO TRILL :FREQ :STEPSIZE :TIMES
REPEAT :TIMES [TOOT © :FREQ 15 5

TOOT @ :FREQ*STEPVALUE :STEPSIZE 15 5]
END

TO STEPVALUE :STEP

IF :STEP<2 [0P 1.0595]
IF :STEP=2 [OP 1.1225]
IF :STEP=3 [OP 1.1893]
IF :STEP=4 [OP 1.261
IF :STEP=5 [0P 1.335]
IF :STEP=6 [OP 1.4145]
IF :STEP=7 [OP 1.4987]
IF :STEP=8 [OP 1.5878]
IF :STEP=9 [OP 1.6823]
IF :STEP=19 [0P 1.7824)
IF :STEP=11 [0P 1.888]
IF :STEP=12 [0P 2]

OP 2*STEPVALUE :STEP-12
END

Try:

TRILL 400 3 4
TRILL 499 3 8
TRILL 209 3 8
028
918

TRILL 20

More with Trill

AGITATION is a procedure that uses TRILL to make trills of decreasing
stepsize.

TO AGITATION :FREQ :NUMB

IF :NUMB < 1 [TOOT @ :FREQ 5 30 STOP]
TRILL :FREQ :NUMB 4

AGITATION :FREQ :NUMB-1

END

Try:

AGITATION 209 4

AGITATION 1000 8

AGITATION 660 48

REPEAT 3 [AGITATION 5¢ 4]
REPEAT 2 [AGITATION 2090 3]

247

MUSIC

Bird Sounds

BIRDSONG amd BIRDSONG1 are two different kinds of bird sounds.
BIRDSONG uses RAMP to make a short and upward-gliding sound at a high
frequency.

TO BIRDSONG

RAMP 1019 1070 10
WAIT (RANDOM 18)+1
END

TO BIRDSONG!

TRILL 1200 2 1
TRILL 1010 2 1
WAIT (RANDOM 10)+1
TRILL 1133 1 1
TRILL 801 2 1

WAIT (RANDOM 10)+1
END

Try:
BIRDSONG

BIRDSONG1 uses several short calls of TRILL to make a nervous-jumping
bird sound.
Try:

BIRDSONG1
Bird Music

BIRDS makes a birdlike song using BIRDSONG and BIRDSONG1. To create
variety BIRDSONG and BIRDSONG1 are played alternately, each a random
number of times.

T0 BIRDS

REPEAT (RANDOM 3)+1 [BIRDSONG]
WAIT (RANDOM 12)+1

REPEAT (RANDOM 3)+1 [BIRDSONG1]
WAIT (RANDOM 12)+1

BIRDS

END

Listen to it by typing:
BIRDS
Press the BREAK key to stop!

Sound for Jack and Jill

FANFARE is the music finale to the Jack and Jill project found in this book.

SOUND EFFECTS

TO FANFARE

FANFARE1 55 110 70490

FANFARE1 35 70 7049

FANFAREL 30 60 7040

FANFAREL1 25 50 7040

FANFAREL 30 50 7680

FANFARE1 120 200 76890

SETENV @ 15 SETENV 1 15

TOOT © 240 15 249 TOOT 1 400 15 249
END

TO FANFARE1l :FRO :FR1 :HIGHFR

IF :FR® > :HIGHFR [STOP]

TOOT @ :FR® 15 1@ TOOT 1 :FR1 15 7
FANFARE1 :FR@*2 :FR1*2 :HIGHFR

END

Try:
FANFARE
Since FANFARE does SETENVs, you might want to restore by saying:

SETENV 0 0
SETENV 1 @

Playing with se1env and Amplitudes

BOUNCE makes a ping-ponglike bouncing sound.
BOUNCE's.input is for the frequency. As the BOUNCE note gets faster, its
amplitude gets quieter and, near the end, its envelope gets shorter.

TO BOUNCE :FREQ
SETENV 0 1

BOUNCE1 :FREQ 15 40
END

Try:

BOUNCE 449
BOUNCE 100
REPEAT 5 [BOUNCE (RANDOM 490)+199]

You can shorten the longer durations of the bounce by lowering the
duration input to BOUNCE1 (that is, by changing 40 to a smaller number).

TO BOUNCE1 :FREQ :AMP :DUR

IF :AMP < 1 [MAKE "AMP ABS :AMP]

IF :DUR < 1 [FASTBOUNCE :FREQ STOP]
TOOT © :FREQ :AMP 10

WAIT :DUR

BOUNCEl :FREQ :AMP-1 :DUR-(15-:AMP)
END

249

MUSIC

You can shorten the tail of the bounce by lowering the input to REPEAT
in FASTBOUNCE,

TO FASTBOUNCE :FREQ

SETENV 0 ©

REPEAT 10 [TOOT @ :FREQ 2 5 WAIT 5]
END

An Echo Effect

ECHO is similar to BOUNCE, but ECHO doesn’t get faster as it gets quieter. It
uses SETENV to gradually change the decay of the repeating notes and
RANDOM to produce the frequency, starting envelope, and pulsing rate of the
echoed note.

TO ECHO

ENDING (RANDOM 80@)+50 RANDOM 7 (RANDOM 15)+8
ECHO

END

TO ENDING :FR :DECAY :RATE

IF :DECAY=0 [ENDING1 :FR 15 :RATE STOP]
SETENV 0 :DECAY

TOOT @ :FR 15 :RATE

ENDING :FR :DECAY-1 :RATE

END

TO ENDING1 :FR :AMP :RATE
IF :AMP=p [STOP]
TOOT © :FR :AMP :RATE

ENDINGI :FR :AMP-1 :RATE
END

Try:

ENDING 400 2 25
ENDING 100 1 19

Now type:
ECHO

Press BREAK to stop!

NAMING NOTES

Naming Notes

In the Melodies project, notes are represented by numbers that are later
converted to appropriate frequencies. It takes time to do this for each note.
If you want to play notes very rapidly one after the other, you can use
another technique described in this project. The idea is to precompute the
frequencies that correspond to the notes. In this project, we do this by
giving names to these frequencies. The names we chose in this project come
from traditional music notation, for example A#4, which represents the
A-sharp in the fourth octave of piano pitches. We might make this a name
by doing

MAKE “A#4 466

Thereafter (as in the Argue program) you can use THING to refer
quickly to the frequency of a note. For example, if :NOTE is A#4, then
THING :NOTE is 466. Using this scheme, your music procedures would
contain lines like

TOOT @ THING :NOTE 15 29

You might have to name a lot of notes. This means there will be a lot
of variables, and they will use up quite a bit of Logo's workspace. Sometimes
it is worth it.

This project shows a program that automatically creates note names
like A#4 and figures out the right frequencies. It does this for several oc-
taves.*

Naming Notes

This program uses the naming technique just described to allow fast sym-
bolic access to musical notes. The names follow a convention similar to
standard music notation where, for example, G3 would be the name for G
in the third piano octave.

Some examples:

MAKE "G3 392
MAKE "G#3 415

MAKE "A4 4490
MAKE "A#4 466
MAKE "B4 493

Since we want to have names like these for many notes, we create
procedures that automatically calculate and name frequencies.

*It is nice to use names like A#4, but the same technique can work with numbers (or
anything else) as the names of variables for the notes. The main advantage of this project’s
technique is the use of variables for fast access to precomputed values. You could, for example,
do MAXE 38 466 to give the name 38 to the frequency 466.

By Max Behensky and Margaret Minsky,

251

252

MUSIC

Procedures for Naming Notes

NAMENOTES calls NAMEOCTAVES, which calls NAMEOCTAVE, to name the
notes in each octave. NAMENOTES also names the special “note” R so that it
represents a rest.

TO NAMENOTES

MAKE "R 15000

NAMEOCTAVES [A A# B C C# D D# E F F# G G#] 1 55
END

NAMEOCTAVES takes three inputs: a list of prefixes for the names of notes
(LA A# B C C# D D# E F F# G G#1), the starting suffix that is the
number of the lowest octave for which names are to be created, and the
frequency of the lowest pitch in that octave (the A of that octave).

TO NAMEOCTAVES :NAMES :0CTAVE :STARTFREQ

IF :0CTAVE > 8 [STOP]

NAMEOCTAVE :NAMES :0CTAVE :STARTFREQ
NAMEOCTAVES :NAMES :OCTAVE + 1 :STARTFREQ * 2
END

NAMEOCTAVES calls NAMEOCTAVE to make the variables for each octave.
Each note name is created (in NAMEOCTAVE) by making a new word out of
the appropriate prefix and the octave number. Then NAMEOCTAVES updates
the octave number and the lowest frequency for the next octave. This
continues until eight octaves of pitches have been named.

In NAMEOCTAVE the twelfth root of two is used in the following formula
to compute the frequency of a note one half-step above another.

(frequency of a note) X (twelfth root of 2) = (frequency of next note)

TO NAMEOCTAVE :NAMES :QCTAVE :FREQ

IF EMPTYP :NAMES [STOP]

MAKE (WORD FIRST :NAMES :0CTAVE) :FREQ
NAMEOCTAVE BF :NAMES :0CTAVE :FREQ * 1.0595631
END

Playing Melodies with Named Notes

Run NAMENOTES to create the note variables. Now you can use a procedure
such as PLAYTUNE to play a melody.

TO PLAYTUNE :LIST

IF EMPTYP :LIST [STOP]

TOOT @ THING FIRST :LIST 15 15
PLAYTUNE BF :LIST

END

You can use PLAYTUNE like this:

PLAYTUNE [A2 A#2 B2 C2 C#2 D2 D#2 E2 F2 F#2 G2 G#2 A3]

You could name lists that represent phrases of songs and play them
with PLAYTUNE. Here are some examples.

NAMING NOTES

MAKE “SCALE [C2 D2 E2 F2 G2 A3 B3 (3]

MAKE “SCALE2 [C3 D3 E3 F3 G3 A4 B4 C4)

MAKE “TWINKLE [C2 C2 G2 G2 A3 A3 G2 R
F2 F2 E2 E2 D2 D2 C2 RI

MAKE "FOLK (D4 C#4 D4 D4 D3 D3 F#3 F#3
A4 A4 B4 A4 B4 C#4 D4 D4)

PLAYTUNE :TWINKLE

For more ideas about what you can do with melodies and rhythms, see
the Melodies project.
Making Turtles Move to Your Song

Here’s a program that makes a turtle show the “ups and downs™ of your
song. You can use it by trying the procedure TURTLESONG with a list of notes
as its input. For example, try

TURTLESONG :TWINKLE

*III' ERENE T

z‘URTLESONG : THINKLE

Here are the procedures.

T0 TURTLESONG :LIST
SETUP.TURTLE

SONG :LIST

END

TO SETUP.TURTLE

cS

TELL @

PU LT 90 FD 150 RT 9@ BK 60 PD
ST

SETPN @

SETPC 9 40

END

253

254

MUSIC

TO SONG :LIST

IF EMPTYP :LIST [STOP]

MAKE "“NOTE FIRST :LIST

IF :NOTE = "R [TOOT @ THING :NOTE 15 40] [JUMP THING :NOTE)
PU RT 90 FD 20 LT 99 PD

SONG BF :LIST

END

T0 JUMP :FREQ

MAKE “INT (:FREQ - 109) / 3
FD :INT

TOOT @ :FREQ 15 49

WAIT 15

RT 180

FD :INT

RT 189

END

These procedures draw lines on the screen whose lengths represent
pitches. They fit best for notes in the range from :A2(110) to :D4(640).
Using the Atari Keyboard as a Music Keyboard

MUSIC is another example of using the precomputed notes; it makes the
Atari keyboard act like a music keyboard. Start it up by typing

MUSIC
The program takes a while to set itself up, then it types
READY

Now you can play music by pressing keys. Notes are assigned to the
keys according to a layout that is like that of a piano keyboard:

TAB
CTRL

SHIFT

0o

? G6 4 87 b C9 4 %l INSERT 'éf‘:CEKrSs
E F G A B C D E
E R i Y u | (0] P
3 AELE 3 |E
D E F G A 8 C D
X C ' B N M ’ .

NAMING NOTES

In order to make the layout similar to that of a piano, some of the keys
do not play any note. Reminder: Take care not to press the Atari (/) key.

The Music Keyboard Procedures

MUSIC also creates variables for fast reference. It creates variables
whose names are names of Atari keyboard keys (for example Z, X, C) and
whose values are names of notes. This is done by ASSIGNKEYS. For exam=
ple, : S becomes C#3.

MUSIC then calls KEYBOARD. KEYBOARD waits for you to press keys. It
converts the name of the key you pressed to the name of a note and calls
NOTE to play it. NOTE converts the name of the note to a frequency and calls
the Logo primitive T00T to make the sound.

There are a couple of fine points in this program. The length of time
each note sounds is controlled by the global variable : DURATION, which is
set up in the MUSIC procedure and by the SETENV commands in the proce-
dure TEMPO. Also, the VOICE input to KEYBOARD makes it possible for you
to press two keys in quick succession and hear both notes. The KEYBOARD
procedure calls itself alternating between 0 and 1 as values for : VO 1CE. This
allows the program to alternate the playing of notes between the Atari
sound hardware voices 0 and 1. Thus one note keeps sounding in one voice
while the program starts a second note sounding in the other voice.

Reminder: After using the MUSIC program, you may want to restore
the music envelope decay to its initial state by saying SETENV 0 0 and
SETENV 1 0.

TO MUSIC
ASSIGNKEYS [[Z C3] [X D3] [C €3] [V F3] (B G3] [N A4l [M B4l
[, C4] [. D4) [/ EA4)]

ASSIGNKEYS [(S C#3] [D D#3] [G F#3] [H G#3] [J A#4]
[L C#4] [; D#41]

ASSIGNKEYS [[Q C4] [W D41 [E E4] [R F41 [T G41 [Y A5] (U B5]
[I €51 [0 D51 [P E51]

ASSIGNKEYS [[2 C#4] [3 D#4] [5 F#4] [6 G#4] (7 A#5)
[9 C#5]) [0 D#5]]

MAKE "DURATION 29

TEMPO :DURATION

PR [READY]

KEYBOARD 0

END

TO ASSIGNKEYS :KEYNOTEPAIRS

IF EMPTYP :KEYNOTEPAIRS [STOP]

MAKE FIRST FIRST :KEYNOTEPAIRS LAST FIRST :KEYNOTEPAIRS
ASSIGNKEYS BF :KEYNOTEPAIRS

END

TO TEMPO :N
SETENV © :N / 10
SETENV 1 :N / 10
END

256 MUSIC

T0 KEYBOARD :VOICE

MAKE "TEMP RC

[F NAMEP

KEYBOARD 1 -

END

:TEMP [NOTE :VOICE THING :TEMP]

:VOICE

TO NOTE :VOICE :NOTE

T00T
END

:VOICE THING :NOTE 15

:DURATION

PROGRAM LISTING

TO NAMENOTES
MAKE "R 15000

NAMEOCTAVES [A A# B C C# D D# EF F# G »

G#] 1 55
END

TO NAMEOCTAVES :NAMES :0CTAVE »
:STARTFREQ

IF :0CTAVE > 8 ([STOP]

NAMEOCTAVE :NAMES :OCTAVE :STARTFREQ

NAMEOCTAVES :NAMES :OCTAVE + 1 »
:STARTFREQ * 2

END

TO NAMEQOCTAVE :NAMES :0CTAVE

IF EMPTYP :NAMES ([STOPI

MAKE (WORD FIRST :NAMES :0CTAVE) »
:FREQ

NAMEQCTAVE BF
1.0595631

:FREQ

:NAMES :0CTAVE :FREQ *

END

TO PLAYTUNE :LIST

IF EMPTYP :LIST [STOP)

TOOT @ THING FIRST :LIST 15 15
PLAYTUNE BF :LIST

END

TO TURTLESONG :LIST
SETUP.TURTLE

SONG :LIST

END

TO SETUP,TURTLE

cs

TELL @

PU LT 9@ FD 150 RT 99 BK 60 PD
ST

SETPN o

SETPC 2 49

END

>

TO SONG :LIST

IF EMPTYP :LIST (STOP]

MAKE "“NOTE FIRST :LIST

IF :NOTE = "R [TOOT @ THING :NOTE 15 »
401 [JUMP THING :NOTE)

PU RT 90 FD 20 LT 90 PD

SONG BF :LIST

END

T0 JUMP :FREQ

MAKE “INT (:FREQ - 100) / 3
FD :INT

TOOT @ :FREQ 15 4¢

WAIT 15

RT 189

FD :INT

RT 180

END

TO MUSIC

ASSIGNKEYS [[Z €3] (X D3] [C E3] [V »
F3] [B G3] [N A4] [M B41 [, C4] »
[. D4) [/ E4]]

ASSIGNKEYS [[S C#3] (D D#3]1 [G F#3) [H »
G#3]1 [J A#4] [L C#4] [; D#4])

ASSIGNKEYS [[Q C4] [w D4) [E E4] [R »
Fal [T G4) [Y ASI [U BS51 (I C5]1 »
[0 D51 (P E5)]

ASSIGNKEYS [[2 C#4] (3 D#4] [5 Fedl [6 »
G#41 [7 A#5) [9 C#5]1 [@ D#51]

MAKE “DURATION 20

TEMPO :DURATION

PR [READY]

KEYBOARD @

END

TO ASSIGNKEYS :KEYNOTEPAIRS

IF EMPTYP :KEYNOTEPAIRS [STOP]

MAKE FIRST FIRST :KEYNOTEPAIRS LAST »
FIRST :KEYNOTEPAIRS

ASSIGNKEYS BF :KEYNOTEPAIRS

END

TO TEMPO :N
SETENV @ :N /
SETENV 1 :N /
END

19
10

TO KEYBOARD :VOICE

MAKE "TEMP RC

IF NAMEP :TEMP [NOTE :VOICE THING »

: TEMP]
KEYBOARD 1 -
END

:VOICE

NAMING NOTES 257

TO NOTE :VOICE :NOTE
TOOT :VOICE THING :NOTE 15 :DURATION
END

MAKE “SCALE [C2 D2 E2 F2 G2 A3 B3 (3]

MAKE “SCALE2 [C3 D3 E3 F3 G3 A4 B4 (4]

MAKE “TWINKLE (C2 C2 G2 G2 A3 A3 G2 R »
F2 F2 E2 E2 D2 D2 C2 R]

MAKE “FOLK [D4 C#4 D4 D4 D3 D3 F#3 F#3 »
A4 A4 B4 A4 B4 C#4 D4 D4)

6

Programming Ideas

Adding Numbers

This section is about how to think and talk about the process of making a
program. I developed the general approach while introducing elementary
school children to computation. But the ideas that are good for children are
good for other beginners, and perhaps for some experienced programmers.
Variants of the example used here have been used with seventh graders,
with college undergraduates, and with teachers. They illustrate a style of
programming project, a style of programming language, and a meta-lan-
guage or style of talking about programming as well as doing it. There is
no suggestion that this style is uniquely correct. My message is on a different
plane; I mean to assert the importance of paying more attention in the
pedagogy of computation to such questions of style.

The problem is very recursive. I want to talk about programming, but
I need to invent a way to talk about talking about programming! One way
would be to give extracts from real dialog. But this is too cumbersome.
Instead I shall condense real dialog into a kind of monolog about developing
a program. The monolog gives an impression of one way I know how to
think about developing a program. There is nothing very original about this
way of thinking. The point I am making is about the technique of getting
it out of our heads and into the pedagogy of teaching beginners.

In the discussion I carry with me a computational model in which there
are little people, agents, experts in the computer that I can call on to help
in thinking about the flow of my program, and, thus, in debugging my
program. Keeping this model in mind helps me articulate what jobs need
to be done and what procedures I need to get those jobs done. It also helps
me figure out how these procedures interact with one another, how they
report back what they have found out or constructed. Furthermore, as 1
debug my program and its individual procedures I talk again to these little
people and get them to act out each procedure step by step, instruction by
instruction.

The Project

We pretend the computer is ignorant of arithmetic and create an operation
that will add two integers. No Logo arithmetic operations may be used. An
apparent exception might seem to be EQUALP (=), but it is used to compare

By Cynthia Solomon.

ADDING NUMBERS

whether two Logo words or letters are the same. (It is an identity operator.)
So +, <, >, COUNT, *, /, and REMAINDER are prohibited. Two implications
arise from posing this project. One is that an addition operation can be
decomposed into smaller procedures. The other is that numbers are really
just words asked to play special roles.

This project generates interesting discussions. It really frees one’s
thinking about numbers and operations and primitiveness. It is true that
arithmetic is a very necessary part of any computer’s hardware, but the
hardware is made up of “logical units” that are based on the same ideas we
will investigate. How do computers really add? It’s in their hardware. It's
built into the system. It’s hardwired. Is addition “hardwired” into our sys-
tem? Are we like computers and so if a wire is loose we can't do it? What
about addition among children? Is it really a built-in capacity, or are there
pieces of knowledge that are acquired? Maybe we are so familiar with
addition that we forget its components. In fact, addition must rely on lots
of procedures.

Let’s look at this project. Try to situate this particular task into a famil-
iar environment. We have to imagine that there are no arithmetic operators
available to us and that there are no arithmetic experts already existing in
Logo. We want to make up an addition operation so that we can say

PRINT ADD 16 532
and the computer will say
548

Yes, addition is a familiar operation and it’s easy for us to hand-simulate its
job. But what if we had to tell a little person in the computer how to add?
Where do we start? We might ask ourselves if we know of a similar experi-
ence. What we have to do is “teach the computer” to add—just as we might
teach a person! Well, now, teachers teach kids to add; we were once those
kids. How did we learn—can we give ourselves some tips? (But I thought
it was hardwired and teacher just . . .)

At this point in past discussions two suggestions emerge. Teachers say
we have to teach the computer the “number facts” and computerists say
we have to build a 10 x 10 table. Great, I say, a beginning. I ask teachers
how we teach the number facts and what are they and how many of them
there are. I ask computerists if a 10 X 10 table is large enough and how we
organize it. The teachers will face these issues too. After all, making a table
is a way of “teaching” number facts.

What kind of table and what are number facts? A table of the sums of
the first 100 numbers is very limited, and building a larger table is still very
limited. Is that what I have in my head? Isn’t there a key idea or two that
I could build on without exhausting the computer’s memory?

Do children learn “number facts” like 16 + 20 = 36 as a primitive
notion, or is there a more fundamental idea underlying it all? What do kids
learn about numbers? They learn their relationship to each other. They
learn to order them. Sesame Street teaches kids to count from 1 to 20. Kids
learn to recognize the digits and their order. They learn that one is the
name of 1 and eleven is the name of 11 and one hundred eleven is the name
of 111. They learn that 11 is different from 2; they learn that 10 has been
added to 1. But there is another way of discussing that change. Let's say 1

260

PROGRAMMING IDEAS

is a special word. We can create a new word by putting it together with
another. So WORD 1 1 is 11, or eleven. Concatenating is a way of chang-
ing numbers.

Let’s return to learning to recognize digits and ordering them. That
indeed is what we have to tell the computer and build upon. You might say
we want to teach the computer to count. On the other hand, it does us no
good to see the computer spew out numbers from 1 to 500. We want the
computer to know how to count. Think of what's involved in counting. How
many symbols are there? In one sense there are ten,01234567 8 9; but
there are many constructions like 13 or 444; then there are also funny
changes such as from 9 to 10, from 19 to 20, from 29 to 30, and so forth.

We want to teach the computer that 7 comes after 6 and 10 follows 9
and so on. Some of it is tricky. But look, the only elements used in a base-10
number system are 0 1 23456 7 8 9. If kids learn how to use those ten
symbols in thousands of different ways, surely we can teach the computer.
There must be some rules that specify what to do to produce the “next
number in sequence.”

That's what we have to do. That is our plan of attack. Tell the computer
what the basic elements (our data base) are. Then develop rules of behavior
so that we can make the computer give us our number plus 1, that is, the
next number. If the computer can do that, it knows how to count.

What is knowing how to count? Here’s a computerist model: There is
“in the head” a collection of little people, experts capable of doing a whole
bunch of things like spewing numbers out, but also capable of conceiving
questions like what comes after this or before that. The computer, like
children, learns to recognize the digits, how to order them, and then how
to use them to make other numbers.

Okay, let's make a procedure that knows about digits. For example, if
it receives the input 3, it will output 4. It will add 1 (in some mysterious way)
to its input.

ADDL 3 ---> 4
ADD1 7 ---> 8

We Make ao01

There are a couple of ways (at least) to do this. People who suggested
“teaching number facts” or making tables, of course, had the right idea.
There are different ways of constructing tables. For example:

TO DIGITTABLE :DIGIT
[F :DIGIT = @ [OP 1]

IF :DIGIT = 1 [0OP 2]
IF :DIGIT = 2 [OP 3]
IF :DIGIT = 3 (OP 4]
IF :DIGIT = 4 [OP 5]
IF :DIGIT = 5 [OP 6]
IF :DIGIT = & [OP 7]
IF :DIGIT = 7 [OP 8]
IF :DIGIT = 8 [OP 9]
IF :DIGIT = 9 [OP 10]

END

ADDING NUMBERS

We can also look at the ordered list of digits [0 1 23 456 7 8 9] as another
representation that has the same effect if we have a NEXT type of operation.

NEXT @ [0 1 234567889] -—>1
NEXT will output the next element in the list after the one specified.

TO ADD1 :DIGIT
OP NEXT :DIGIT [0 1 2 3 456 7 8 9]
END

Why do I suggest this way? It is a more general method. This process will
work for any base; all that needs to be changed are the elements of the list!

We Design NexT

NEXT must supply ADD1 with a word. ADD1 will then send the word out as
its answer. From the example of NEXT at work, we see that NEXT is given
two inputs, a word like 0 and a list of words. NEXT tells its helpers to look
for the word in the list. They send back the word following it in the list.

IF :WD = FIRST :LIST [OP FIRST BF :LIST]

If :WD doesn’t match with :LIST's first word, one of NEXT’s helpers just
crosses the first word off the list and turns the job over to someone else.

OP NEXT :WD BUTFIRST :LIST
Check this procedure out.

TO NEXT :WD :LIST

IF :WD = FIRST :LIST [OP FIRST BF :LIST]
OP NEXT :WD BF :LIST

END

Notice there is a potential bug. What if :WD isnotin : L1ST? Let's remember
the bug, but postpone dealing with it for the moment.

Let’s try ADD1 now. Give it a thorough testing. You could exhaustively
try each digit because there are only ten. Another strategy is to choose
extremes like 0 and 9.

PR ADD1 @
;R ADDI 1
:R ADD1 2
:R ADD1 3

PR ADD1 9
FIRST DOESN'T LIKE [J AS INPUT IN NEXT

261

262

PROGRAMMING IDEAS

It’s logical that there is a bug. After all, 9 is the last element of the list. So
there is more work to be done; we have to teach ADD1 that 9 + 1 = 10.

ADD1 will work on any number that doesn’t end in 9 if we make one
small change! Look, all numbers not ending in 9 behave like digits when
you add 1 to them.

123 —--> 124
13 -—-> 14

The only digit that changes is the LAST, so ADD1 merely makes up a new
word by replacing LAST :DIGIT with NEXT LAST :DIGIT. Let’s be op-
portunistic—seize the chance, change ADD1 and call its input NUMBER.

TO ADD1 :NUMBER

op wono] BL :NUMBER]
NEXT[LAST :NUMBER[I® 1 2 3 456 7 8 9]

END
Now we trace through this procedure using the little person metaphor.
As a reminder, I draw a stick figure.
PR ADD1 173 --->[174]

\ 1

:NUMBER 1S [17B]

LNEXT3[0123456789]J

OP WORD

(So we thought ADD1 was only good for nine inputs. Suddenly we see it's
good for how many—millions? infinitely many? nine-tenths of all the num-
bers?)

Now ADD1 works on all numbers that don’t end in 9. Would it work if
we pretend 10 is a digit and add it to the list given NEXT—that is,
[01 23456789 10)?Then

PR ADD1 9
10

ADDING NUMBERS

but

PR ADD1 19
110

instead of 20!

So putting 10 in the list did not really help. This nines bug is not cured
so quickly. This issue is really about what to do with the “carry” when
adding numbers. If a number is 9 then the answer is 10, but if a number
ends in 9 we want to carry one to add it to the next digit of the number.
Now, how can wishful thinking help? How can we make use of what we just
did? Let’s see how we do it. Try 179:

179 + 1 -—-> 180

We turn the 9 into a 0 and add the 1 to the 17. We get 18 . . . and don't
forget to glue the 18 and the 0 back together.

Make a special check for LAST :NUMBER being 9. Then replace the
9 by 0 and ADD1 to BL :NUMBER.

IF 9 = LAST :NUMBER [OP WORD ADD1 BL :NUMBER 01

So

TO ADD1 :NUMBER

IF 9 = LAST :NUMBER [OP WORD ADDl BL :NUMBER @]

OP WORD BL :NUMBER NEXT LAST :NUMBER [® 1 2 3 4 56 7 8 9]
END

Now we try ADD1 with “little people.”

PRINT ADD1 9

ADD1 9

:NUMBER IS 9

.
| ADD1 BF 9

IF 9 = 9 [OP WORD 0]

bt BE:9:===> "

263

PROGRAMMING IDEAS

We can fix this bug by making another special test
IF 9 = :NUMBER [0OP 191

as the first instruction in ADD1. Now

PR ADD1 179
180

and

PR ADD1 9999
10000

What luck! Perhaps you thought that the first 9 on the left would give
trouble. But we lucked out (or were super smart!).

Adding Two Numbers

Now that we can add 1 to any number, we can really add any number to
any other.

It’s simple if we think of the kinds of procedures we know about. Some
procedures operate on their inputs until they are empty or until a thing has
been found. Other procedures do a job for a specified number of times. We
can think of the next stage in our project as adding one to an input for a
declared number of times.

6 + 4 is ADD1 ADD1 ADD1 ADDl 6.

Typically, counter procedures count down to 0 and then they know the job
is done. But they use subtraction, and we are trying to invent addition
without using any of Logo’s built-in arithmetic operations. We can teach the
computer to subtract one.

If we had a SUB1 procedure, then

TO ADDUP :NUM1 :NUM2

IF :NUM2 = 0 [0OP :NUM1]

0P ADD1 ADDUP :NUM1 SUB1 :NUM2
END

Making a procedure for subtracting 1 is really easy because we have
already thrashed through the difficulties encountered in ADD1. How can we
use what we know about ADD1 to describe a SUB1? Let's look at a concrete
situation.

PR SUB1 2
1
PR SUB1 9
8
PR SUB1 1
[

ADDING NUMBERS

Can SUB1 use NEXT?

If we want NEXT 1 [. . .] to be 0, how should the list be ordered?
If we leave the list as [0 1 2. . .91, then'NEXT 1 would output 2. It
should output 0. Reverse the list. Then NEXT 1 [9 8 7 &6 5 4 3 2 1
0] outputs 0.

So

TO SUB1 :NUMBER
OP WORD BL :NUMBER NEXT LAST :NUMBER (9 8 7 6 5 4 3 2 1 9]
END

Try SUB1.

It works! As long as the numbers don’t end in what? Nine is okay. Why?
The digit that is the LAST position of the list given to NEXT is the problem
digit. That is when a “carry” or a “borrow" takes place. So SUB1 must take
special measures when LAST : NUMBER is 0.

TO SUB1 :NUMBER

IF @ = LAST :NUMBER [OP WORD SUB1 BL :NUMBER 9]

OP WORD BL :NUMBER NEXT LAST :NUMBER [9 8 7 6 5 4 3 2 1 0]
END

Now ADDUP works but very slowly and sometimes it needs too many people
to complete the job. Look, ADDUP 9999 9999 requires 9999 little peo-
ple.

Is there a shortcut? Yes. Let's treat the numbers as words and add the
LAST digit of each number to ADDUP until : N1 and :N2 have been added
together.

TO ADD :N1 :N2

IF EMPTYP BL :N1 [OP ADDUP :N2 :N1l

IF EMPTYP BL :N2 [OP ADDUP :N1 :N2]

OP WORD ADD BL :Nl BL :N2 ADDUP LAST :N1 LAST :N2
END

This is ideal but won’t work very often. Do you know when it works?

PR ADD 34 21

55

PR ADD 2468 321
2789

but

PR ADD 19 19
218

The carry bug has to be dealt with. How can ADD tell if there is a carry? A
carry means that ADDUP will send back two digits (1 and something). That
makes it easy. ADD needs to test whether the result from ADDUP is one or
two digits long. ADD uses ADDIT to help and now looks like:

266

PROGRAMMING IDEAS

TO ADD :N1 :N2

IF EMPTYP BL :N1 [OP ADDUP :N2 :N11]

IF EMPTYP BL :N2 [OP ADDUP :N1 :N2]

OP ADDIT ADDUP LAST :N1 LAST :N2 BL :N1 BL :N2
END

TO ADDIT :SUM :N1 :N2

IF EMPTYP BF :SUM [OP WORD ADD :Nl :N2 :SUM]
OP WORD ADD :N1 ADD1 :N2 BF :SUM

END

In some sense this project is completed. We have constructed an addition
operation, and it works on positive integers. There are many extensions we
could pursue. For example, handling negative numbers would probably
necessitate making a subtract operation.

EXTENSIONS

In discussing setting up the table at the start, I mentioned the possibil-
ity of generalizing this scheme so that the operation would add numbers of
other bases. What about fractions or decimals? But what about looking at
a more general question? There are many arithmetic operations like
MULTIPLY, DIVIDE, EXPONENTIATION, REMAINDER, BASE, CONVERSION,
FACTORIAL. There are also others, like the Logo operation COUNT that
outputs the length of a word or a list, and the predicates > (greater) and <
(less). Any of these could be implemented as extensions to this project.

Although we might be able to write procedures to perform many of
these operations, the process would probably be uncomfortably slow. This
leads to the question: Are there some arithmetic operations that we
couldn’t define without special hardware or without special software? What
operations are primitive? Imagine writing WORD or LIST or FIRST or
BUTFIRST. What would be required? Is the derivation too clumsy? The
answers to these questions will undoubtedly change as the contexts in
which they arise change.

PROGRAM LISTING

TO ADD :N1 :N2

IF EMPTYP BL :N1 [OP ADDUP

IF EMPTYP BL :N2 [OP ADDUP

OP ADDIT ADDUP LAST :N1 LA
:N1 BL :N2

END

TO ADDIT :SUM :N1 :N2

IF EMPTYP BF :SUM [OP WORD
: SUM]

OP WORD ADD :N1 ADD1 :N2 B

END

TO ADDUP :NUM1 :NUM2

:N2 :N1] I[F :NUM2 = ¢ [OP :NUM1]
(N1 :N2] 0P ADD1 ADDUP :NUM1 SUB1 :NUM2
ST :N2 BL » END

TO ADD1 :NUMBER
IF 9 = :NUMBER [OP 10]
IF 9 = LAST :NUMBER [OP WORD ADD1 BL »

ADD :N1 :N2 » :NUMBER 0]

0P WORD BL :NUMBER NEXT LAST :NUMBER »
F :SUM [012345¢67829]

END

FILL

:NUMBER [OP WORD SUB1 BL »

TO NEXT :WD :LIST TO SUB1 :NUMBER
IF :WD = FIRST :LIST [OP FIRST BF » IF @ = LAST
:LIST] :NUMBER 9]
OP NEXT :WD BF :LIST OP WORD BL :NUMBER NEXT LAST
END (987654321 09)
END

:NUMBER »

267

Fill

FILL is a program to fill in solid areas on the graphics screen.

Before

Figure 1

—

After

To use FILL, position the turtle inside the area you want to fill. Then type
the command FILL with no inputs. The area the program will fill is
bounded by lines drawn with any pen.* For example, try this:

CS

REPEAT 4 [FD 80 RT 90]
PU

SETPOS [22 201

FILL

*If the screen dot at the turtle’s position was already drawn with one of the pens, then
FILL treats that pen as the background color for filling. So if you have a filled-in area on the
screen, you can draw a picture within that arca and fill the inside of the picture using another

color

By Brian Harvey

PROGRAMMING IDEAS

to draw a solid, filled-in square. The SETPOS instruction is necessary to
position the turtle inside the square, rather than on its edge, before using
FILL.

Note: If you have a 16K Atari computer, you should use the number
8192 instead of 16384 in procedure POSADDR.

How It Works: Overview

Figure 2 shows a sort of eccentric doughnut with the turtle positioned
between the two circles, so that the doughnut shape will be filled. The
program begins by filling horizontally from the turtle’s initial position, in
both directions (figure 3). It remembers how far it got, to set left and right
limits for what comes later. Then it starts moving up (figure 4), filling
horizontally at each level.

Figure 2 Figure 3 Figure 4

But when a newly filled line extends beyond the previous line (as illustrated
by the left edge of the filled area in figure 4), the program also checks for
an unfilled space below the new horizontal stretch. If it finds one, it starts
filling downward in that new area (figure 5). This search for new areas works
from left to right on each line, so (figure 6) the program continues moving
downward below the inner hole until it reaches the bottom (figure 7).

Figure 5 Figure 6 Figure 7

FILL

Then it starts moving up into the newly discovered area to the right of the
hole (figure 8), and when that area is filled, the program continues its
interrupted upward filling of the top area (figure 9). The final result is shown
in figure 10.

i i 0
Figure 8 Figure 9 Figive X

Screen Coordinates and Turtle Steps

The graphics screen consists of about 15,000 small dots, in a rectangular
array of 96 rows and 160 columns. Logo draws lines on the screen by
“turning on” some of these dots. To fill an area, we must also turn on dots
in this array.*

When you use the FORWARD command, the distance measured in “turtle
steps” is not the same as the number of screen dots (or pixels) through
which the turtle passes. There are two reasons for this difference. The first
reason is that the distance between two vertically adjacent pixels is greater
than the distance between two horizontally adjacent pixels. If Logo mea-
sured distances in pixels, squares would come out looking like tall rectan-
gles. Instead, Logo uses the aspect ratio (the ratio of a horizontal pixel
distance to a vertical pixel distance) as a scale factor for vertical turtle steps.
The second reason is that both vertical and horizontal turtle steps are scaled
by a factor of two, so that 100 turtle steps is a reasonable distance on the
screen.

The reason this scaling of distances is important for the FILL project
is that we’re going to have to think in terms of pixels, not in terms of turtle
steps. Remember that the overall task of the program is to move along the
screen looking for the border of the region we want to fill. In other words,
the program must look at a position on the screen to see if that position is
in the background color. If so, the program should fill in that position and
move on to the next. Suppose we wrote the program in terms of turtle steps.
(We'd then use FORWARD 1 to move from one position to the next.)
Since a turtle step is smaller than the distance between pixels, two consecu-
tive turtle positions will often occupy the same pixel on the screen! After
filling in the first position, we'd move on to the next position and think we’d

*For more details about the screen array, see the Savepict and Loadpict project.

270

PROGRAMMING IDEAS

hit the border, because the screen dot would no longer be in the back-
ground color.

The approach I took in writing FILL is to think about positions in terms
of screen pixel coordinates, rather than turtle coordinates. The top-level
procedure FILL computes the pixel coordinates corresponding to the tur-
tle’s position, and those pixel coordinates are used as inputs to the lower-
level procedures which do the real work. Figure 11 shows the screen coor-
dinate system used in FILL. The origin of this system (the point with
horizontal and vertical coordinates zero) is in the top left corner of the
screen. XCOR (the horizontal coordinate) gets bigger as you move to the
right. YCOR (the vertical coordinate) gets bigger as you move down the
screen; compare this with Logo’s turtle-step YCOR, which gets bigger as you
move up the screen.

« [00) [1590]
—_— =
yl

X
* [095] [15995] «

Figure 11

Because F I LL uses screen coordinates instead of turtle coordinates, we can’t
use the usual Logo graphics procedures like FORWARD or XCOR. Instead, we
have to write our own tools for examining and modifying screen pixels. Two
important procedures in this project are COLOR. AT, which examines the
color of a pixel, and 00T, which fills in a pixel.

One final point about the screen array is that each byte of computer
memory contains the color information for four pixels. Logo's - EXAMINE
procedure lets us look at an entire byte at a time, not just one pixel. There-
fore, the program is more efficient if we can design it to examine four pixels
at once. You'll see how we do that when we get to the description of the
FILL.RAY procedure.

Initialization

Procedures FILL, FILL1, and FILL2 are invoked just once each time you
use FILL. They set up certain information that is needed throughout the
program. Here are the procedures, followed by a list of their important
variables.

TO FILL

IF NOT NAMEP “SCRUNCH [MAKE “SCRUNCH 0.8]

PU

FILL1 79+INT (XCOR/2) 48-(INT (YCOR":SCRUNCH/2))
I[F (PEN="PE) [@] [PN + 1]

END

TO FILLY :XCOR :YCOR :PEN
FILL2 COLOR.AT :XCOR :YCOR ¢ 0
END

FILL

TO FILL2 :BG :BGBYTE :PENBYTE
MAKE "BGBYTE 85*:BG

MAKE "PENBYTE 85°*:PEN
FILL.BOTH FILL.LINE @ @

END

SCRUNCH The aspect ratio. This ratio is 0.8 unless you have changed it
by using Logo's . SETSCR command. There is no direct way
for FILL to find out the current aspect ratio, so it simply
assumes a value of 0.8 unless you provide a different value in
the global variable named SCRUNCH before you use FILL.
This information is used in the procedure FILL to help con-
vert the current turtle position into screen pixel coordinates.

XCOR The turtle’s current horizontal position, in pixels. Note that
the variable XCOR is different from the Logo procedure
named XCOR, which operates in turtle steps. Note also that
the name XCOR is used for other variables in several sub-
procedures to hold local position information.

YCOR The turtle’s current vertical position, in pixels. The same
notes apply as for XCOR.

PEN The pen we should use for filling. Since one of the possibili-
ties is to fill by erasing (setting pixels to the background
color), we don't use exactly the same numbers that Logo uses
for pens. Instead, Logo’s pens 0 to 2 are represented in this
variable with the numbers 1 to 3, while the number 0 repre-
sents the background color. We use the background color if
the turtle is in penerase (PE) when you give the FILL com-
mand. Representing the background as 0 and the three pens
as 1 to 3 is convenient in this program, because those num-
bers are the ones that are actually stored in the screen mem-
ory in the Atari computer.

BG The pen number that is the background of the region we
should fill. This is not necessarily the background color of the
screen. When you give the FILL command, FILL1 uses sub-
procedure COLOR . AT to find out whether the particular pixel
at the turtle’s position is in the background color or in one
of the three pens. Whichever is true of that pixel, the corre-
sponding color is what we look for to determine the region
we're supposed to fill. The value of 86 is coded like that of
PEN: 0 for background, 1 to 3 for the three pens.

BGBYTE FILL2 sets this variable to the value of BG multiplied by 85.
This has the effect of reproducing the value of 8G four times
in a byte.* A memory byte that contains this number repre-
sents four consecutive 8G-colored pixels.

PENBYTE This is PEN reproduced four times in a byte, and it represents
four consecutive PEN-colored pixels.

*If you understand how numbers are represented in binary in the computer’s memory,
you'll want to know that 85 is 01010101 binary. Multiplying a two-bit code (the possible values
are 0 to 3) by this number has the desired effect of reproducing it four times in the eight-bit
byte. If you don’t know about binary representation, don’t worry about it.

271

272

PROGRAMMING IDEAS

There is a trick in the way FILL1 calls FILL2. FILL2 has three inputs,
named BG, BGBYTE, and PENBYTE. FILL1 provides the real value for the first
input (8G), but it uses zero as the values for the others.

FILL2 (COLOR.AT :XCOR :YCOR) @ @

FILL2 starts by assigning new values to these input variables. The reason
for this trick is to make BGBYTE and PENBYTE local variables of FILL2
instead of global variables. Using local variables avoids leaving clutter
around when FILL is finished. Actually, the use of local variables isn’t
terribly important in this particular example, but the same trick is used in
some procedures we'll see later (most notably FILL.UP1) where it really is
essential.
F1LL2 begins the real work of filling an area with the instruction

FILL.BOTH FILL.LINE 0 @

FILL.LINE fills horizontally, on the line where the turtle is when you give
the FILL command. Then FILL.BOTH uses information output by
FILL.LINE to handle the vertical part of the filling. We'll discuss these
procedures in more detail in the following sections.

Filling a Line
Here is the definition of FILL.LINE.

TO FILL.LINE :LEFT :RIGHT

MAKE "“LEFT FILL.RAY :XCOR :YCOR (-1)
MAKE “RIGHT FILL.RAY :XCOR+1 :YCOR 1
0P (SE :YCOR :LEFT :RIGHT)

END

This procedure uses the same trick as FILL2 to create local variables LEFT
and RIGHT. Although they're defined as inputs to FILL.LINE, these varia-
bles really get their values within FILL. LINE itself.

Most Logo procedures are either commands, which do something visi-
ble like move a turtle, or operations, which have no visible effect but
instead output a value, like the arithmetic operations. FILL . LINE has both
an effect and an output. Its effect is to fill the line on which the turtle starts.
(Turn back to figure 3 to see FILL.LINE at work.) Its output is a list of
coordinates, indicating how far to the left and right it was able to fill.

The turtle starts out somewhere in the middle of the area we want to
fill. To fill the line containing the turtle’s position, we have to start from that
position and fill both to the left and to the right. FILL.LINE invokes
FILL.RAY twice, first to fill toward the left and then to fill toward the right.
FILL.RAY knows which direction to use because of its third input, which
is —1 to fill leftward or 1 to fill rightward.

FILL
Filling in One Direction

FILL.RAY does all of the actual filling in of dots in the entire FILL program.
The other procedures simply figure out where to tell FILL.RAY to go to
work.

Because of the importance of F1LL.RAY, I put a lot of effort into trying
to make it fast. Unfortunately, the cost of speed is complexity. Let’s start by
examining a version of FILL . RAY that doesn't yet have all of the efficiency
features added.

TO FILL.RAY :XCOR :YCOR :DELTA

IF EDGE :XCOR :YCOR [OP :XCOR-:DELTA]
DOT :XCOR :YCOR

OP FILL.RAY :XCOR+:DELTA :YCOR :DELTA
END

FILL.RAY has three inputs. The first two are the horizontal (x) and vertical
(y) screen coordinates of the pixel at which we want to start filling. The
third input tells FILL.RAY the direction in which to fill.*

The strategy of FILL . RAY is this:

1. Look at a pixel to see if it's in our background color.t

2. If it’s not in our background color, it is a border for the area we're
filling. Output the x coordinate of the last pixel we actually filled—
the one before this one.

3. If it is in our background color, fill it and move on to the next pixel
in the desired direction, left or right.

To implement this strategy, F1LL.RAY uses two subprocedures. The first,
EDGE, is a predicate that outputs TRUE if the pixel it examines is in something
other than the background color. The second subprocedure, DOT, fills in the
pixel at the coordinates you give it as inputs. We'll look at those procedures
later. For now, the important point is to understand how they're used by
FILL,RAY.

Filling Vertically

We have seen how the FILL program fills one horizontal line, the one
containing the turtle’s position. What remains is to fill more lines, above and
below that first one. This task is entrusted to FI1LL.BOTH.

TO FILL.BOTH :RANGE
FILL.UP :RANGE (-1)
FILL.UP :RANGE 1
END

*The word delta is the name of a Greek letter (A) that is often used in mathematics to
represent a change in something, In this case, : DELTA is added to : XCOR each time a dot is
filled in. If : DELTA is positive, the new x coordinate is to the right of the old one. If DELTA
is negative, the new coordinate is to the left.

As explained earlier, this may or may not be the background color of the screen.

273

274

PROGRAMMING IDEAS

The name FILL.BOTH indicates that it must fill both above and below the
line we've already filled. Just as FILL.LINE invokes FILL.RAY twice,
FILL.BOTH invokes a subprocedure called FILL.UP twice.

FILL.BOTH, you'll remember, is invoked by FILL2. The input to
FILL.BOTH is the output from FILL.LINE. This output is a list of three
numbers: the vertical (y) coordinate of the line we’ve filled, and the left-
most and rightmost horizontal (x) coordinates of the line.* See figure 12 for
a pictorial representation of this information.

i
i Nl ine !
>/ :
Xcor : |
" fgh o
xcor e

Figure 12

FILL.BOTH gives two inputs to FILL . UP. The first input is the range list.
The second input tells FILL . UP the direction (up or down) in which to fill.
This second input is either 1 or —1, just like the similar direction input to
FILL.RAY.

Here is the definition of FILL.UP.

TO FILL.UP :RANGE :DELTA
FILL.UP1 (:DELTA+FIRST :RANGE}

FIRST BF :RANGE LAST :RANGE :DELTA 0 @
END

All it does is to invoke FILL . UP1, with six inputs. The first three inputs are
the three members of the range list, except that the vertical coordinate is
offset by one. (The reason is this: the range list output by FILL.LINE con-
tains the vertical coordinate of the line it just filled. We now want to fill a
new line, just above or just below that line. The first input to FILL.UP1 is
the vertical coordinate of the line we should fill next.) The fourth input to
FILL.UP1 is the direction indicator, 1 or —1. The fifth and sixth inputs are
given as zero. They’re really used as local variables within FILL.UP1.

The Smart Procedure

FILL.UP1 really contains all the geometric knowledge of this program.
FILL.UP1 has to know how to fill an area above or below a given line. This
task would be very easy if areas were always pleasantly shaped. In fact,
though, the filling job may have to “double back” because of irregularities
in the area we're filling. This complication is illustrated in figures 4 and 5

*If you want to be picky, of course, what we've filled is a line segment, not a line.

FILL

(reproduced here). In figure 4, we are filling upward. This process continues
straightforwardly until we get above the “hole” in the center of the region.
At that point, the program is able to extend the filled area farther to the
left. It then discovers a new, unfilled region below the new line. Figure 5
shows that the program has reversed its direction; it’s filling downward to
take care of the area to the left of the central hole.

R

Figure 4

The strategy of F1LL . UP1 is quite complicated, but it’s made up of two
kinds of parts: using FILL.RAY, and using FILL.UP1 recursively.

1. Use FILL.RAY to fill at the current vertical position.

2. Compare the horizontal extent of FILL . RAY’s work to the horizontal
extent of the previous line.

3. If we've gone farther on this line than on the previous line, invoke
FILL.UP1 recursively to deal with the area newly exposed.

4. Also invoke FI1LL.UP1 recursively to continue with the same region
we were already filling.

Since the procedure is complicated, we'll show its definition with the in-
struction lines numbered. In the discussion that follows we’ll refer to partic-
ular lines by number.

() TO FILL.UP1 :YCOR :LEFT :RIGHT :DELTA :NEWL :NEWR
(2] MAKE “NEWL FILL.RAY *:LEFT :YCOR (-1)
(8] IF :NEWL<:LEFT

[FILL.UP1 :YCOR-:DELTA :NEWL :LEFT (-:DELTA) 1 0]
[4] MAKE "NEWR

IF :NEWL>:RIGHT [:NEWL-1] [FILL.RAY :LEFT+1 :YCOR 1]
5] IF :NEWL<:NEWR+1

[FILL.UP1 :YCOR+:DELTA :NEWL :NEWR :DELTA 2 0]
[6) IF :NEWR>:RIGHT

[FILL.UP1 :YCOR-:DELTA :RIGHT :NEWR (-:DELTA) 3 @]
(7] MAKE "NEWL FIND.BG :NEWR :YCOR :RIGHT
(8) IF WORDP :NEWL [FILL.UP1 :YCOR :NEWL :RIGHT :DELTA 4 0]
9] END

Figure 5

275

276

PROGRAMMING IDEAS

Refer to figure 13 for a picture of what happens in FILL UP1’s work.
The solid horizontal line in that picture was filled earlier, either by
FILL.LINE or by the previous invocation of FILL . UP1. The dashed horizon-
tal line above is the one that will be filled by the current invocation of
FILL.UPL.

INEWL NEWR

)

previously filled line

Figure 13
Here is a list of the variables used in FILL.UPL.

YCOR The vertical coordinate of the dashed line, the one being filled
by this invocation of FILL.UPL.

LEFT The leftmost horizontal coordinate of the solid line, the one
previously filled.

RIGHT The rightmost horizontal coordinate of the solid, previously
filled line.

DELTA The direction indicator. Its value will be 1 if the new (dashed)
line is above the old (solid) line, or —1 if the new line is below
the old line.

NEWL The leftmost horizontal coordinate of the new (dashed) line.

NEWR The rightmost horizontal coordinate of the new line.

Each invocation of FILL . UP1 actually fills only one line. This filling is
done by using FILL.RAY twice, on lines 2 and 4 of the procedure. Line 2
fills to the left of : LEFT, and line 4 fills to the right of : LEFT. The variables
NEWL and NEWR are given as values the x coordinates of the endpoints of the
newly filled line.

When we're filling vertically, the most obvious thing is that after filling
one line, we must continue filling vertically in the same direction. Referring
to figure 13, after filling the dashed line we must continue upward, filling
region 2 in the figure. (Of course, we don’t know yet what the exact shape
of that region will be. In the figure, it's shown as extending straight up, but
the edges might really be curved.) This continuation in the same vertical
direction is done in line 5 of the procedure.

How do we know when to stop? The answer is that if on this level we
didn’t manage to fill anything (because we ran into borders right away),
then we shouldn't continue to the next level up. That's why line 5 compares
“NEWL to :NEWR, If they're equal, we didn't fill anything on this level.

FILL

There are two possible cases of “doubling back™: one if the newly filled
line extends farther to the left than the old line, and one if the new line
extends farther to the right. In figure 13, both of these situations have
arisen.

We know that the new line has extended farther to the left than the
old line if :NEWL is less than : LEFT. This is the situation at the transition
from figure 4 to figure 5, which we've discussed earlier. Line 3 of the
procedure checks for this situation. If the condition is met, then FILL . UP1
is recursively invoked to fill what is labeled region 1 in figure 13.

Similarly, we must double back on the right (into region 3 of figure 13)
if : NEWR is greater than :RIGHT. Line 6 of FILL . UP1 takes care of this case.
An example of this situation is at the transition between figure 7 and figure
8 (reproduced here). In figures 6 and 7, the program was filling downward.
When the lower boundary of the region is reached, in figure 7, the program
doubles back and starts filling upward in figure 8.

Figure 6 Figure 7 Figure §

By the way, the doubling back into region 1 happens before the continued
filling of region 2. But the doubling back into region 3 happens after region
2 is filled. That's because lines 3, 5, and 6 happen to be in the order they
are. Ifline 3 were moved below line 5, the program would always complete
one direction of filling before starting in the other direction.

There is one more complication in FILL.UP1. The line that is filled in
lines 2 and 4 of the procedure extends to both sides of : LEFT, the leftmost
end of the previously filled line. Suppose that a border is reached above the
old line, before its rightmost end. This situation is shown in figure 14. Since
we want to fill all of the area above the previously filled line, it's not enough
to fill the area above the dashed line in the figure. We must also fill what
is labeled as region 4.

another line which was
already visible

:NEWL NEWR

LEFT \ ; RIGHT

previously filled line

Figure 14

-1

278

PROGRAMMING IDEAS

How do we know when this situation arises? First of all, : NEWR must be
less than :RIGHT. Second, if we look to the right of :NEWR, we must find
another patch of background color before reaching : R1GHT. This search is
conducted by FIND.BG, which is used on line 7 of FILL.UP1. FIND.BG
outputs the empty list if it does not find a suitable background pixel. If it
does find one, FIND. BG outputs the x coordinate of that pixel. This coordi-
nate is the left edge of region 4. Line 8of FILL . UP1 checks tosee if FIND . BG
found a background pixel. If so, it invokes FILL . UP1 once more to fill
region 4.

Examining a Screen Pixel

The real core of this program is the strategy F1LL.UP1 uses to explore the
nooks and crannies of irregular shapes. What remains for us to consider are
the utility procedures that actually manipulate individual pixels. For exam-
ple, FILL.RAY relies on EDGE to find out whether a particular pixel is a
border of the area.

TO EDGE :XCOR :YCOR
0P NOT EQUALP :BG COLOR.AT :XCOR :YCOR
END

TO COLOR.AT :XCOR :YCOR
OP PIXEL (.EXAMINE POSADDR :XCOR :YCOR) REMAINDER :XCOR 4
END

TO POSADDR :XCOR :YCOR
OP 16384 + 40+:YCOR + INT (:XCOR/4)

Use 8192 instead of 16384 for 16K Atari.
END

TO PIXEL :BYTE :XCOR

IF :XCOR=p [OP INT (:BYTE/64)]

IF :XCOR=1 [OP REMAINDER INT (:BYTE/1l6) 4]
IF :XCOR=2 [OP REMAINDER INT (:BYTE/4) 4]
OP REMAINDER :BYTE 4

END

EDGE compares the color* of a particular pixel with our background
color. It outputs TRUE if the two are different. That is, EDGE outputs TRUE
if the pixel it’s examining is on an edge of the area we're filling.

COLOR. AT outputs the color status of a pixel. Remember that each byte
of screen memory contains this information for four pixels. So COLOR. AT
must read a byte of screen memory and extract from that byte the particu-
lar pixel we're interested in.

POSADDR translates from the x and y coordinates of a pixel to the byte
address in screen memory that contains that pixel. If you want to know
about how these addresses are calculated, read the Savepict and Loadpict
project.

*Actually, not the color number, but the pen number, in the form discussed earlier in
the description of the PEN and BG variables.

FILL 279

PIXEL extracts one pixel from a byte. It takes two inputs. The first input
is a byte of screen memory. The second input is a number from 0 to 3,
specifying which pixel we want within that byte.

Filling One Pixel

FILL.RAY uses the procedure DOT to fill each pixel. DOT takes the coordi-
nates of the pixel as inputs. Here it is.

TO DOT :XCOR :YCOR
DOTA POSADDR :XCOR :YCOR
END

TO DOTA :ADDR
RUN SE (WORD "DOT REMAINDER :XCOR 4) .EXAMINE :ADDR
END

TO DOT® :BYTE
.DEPOSIT :ADDR SUM (REMAINDER :BYTE 64) 64s+:PEN
END

TO DOT1 :BYTE

.DEPOSIT :ADDR (SUM (64«INT (:BYTE/64))
(16+:PEN) (REMAINDER :BYTE 16))

END

TO DOT2 :BYTE

.DEPOSIT :ADDR (SUM (16*INT (:BYTE/1l6))
(4+:PEN) (REMAINDER :BYTE 4))

END

TO DOT3 :BYTE
.DEPOSIT :ADDR SUM (4+INT (:BYTE/4)) :PEN
END

DOT must change the color of one pixel in a byte, leaving the other
three pixels of that byte unchanged. Since Logo’s . DEP0SIT command can
only change an entire byte of memory at once, DOT has to combine the new
color of one pixel with the old colors of the three other pixels. Precisely how
to do this depends on which pixel in the byte we want to change, so DOT
has a subprocedure for each possibility. These subprocedures are named
D0T0 through DOT3.

Making FiLL.RAY More Efficient

Earlier we looked at a simplified version of FILL.RAY, which examines and
fills one pixel at a time. It's faster if we can examine an entire byte full of
pixels at once. Here is the modified F1LL .RAY, which does that, along with
some new subprocedures,

PROGRAMMING IDEAS

TO FILL.RAY :XCOR :YCOR :DELTA
IF BYTEPOS :XCOR :DELTA
[IF :BGBYTE=.EXAMINE POSADDR. :XCOR :YCOR
[OP FILL.CHUNK :XCOR :YCOR
POSADDR :XCOR :YCOR :DELTA] 1

IF EDGE :XCOR :YCOR [OP :XCOR-:DELTA]
DOT :XCOR :YCOR
OP FILL.RAY :XCOR+:DELTA :YCOR :DELTA
END

TO FILL.CHUNK :XCOR :YCOR :ADDR :DELTA
.DEPOSIT :ADDR :PENBYTE
IF :BGBYTE=.EXAMINE :ADDR+:DELTA
[OP FILL.CHUNK :XCOR+4+:DELTA :YCOR
:ADDR+:DELTA :DELTA)
OP FILL.RAY :XCOR+4+:DELTA :YCOR :DELTA
END

TO BYTEPOS :XCOR :DELTA

IF :DELTA>0 [OP ¢=REMAINDER :XCOR 4]
0P 3=REMAINDER :XCOR 4

END

FILL.RAY can only examine a complete byte of four pixels if the pixel
it's ready to examine next is the first one in a byte. The predicate BYTEPOS
outputs TRUE if that is the case. If not, F1LL . RAY does the same things it did
in the simpler version.

If BYTEPOS is TRUE, FILL.RAY examines the entire byte containing the
pixel of interest. If that byte contains four pixels all in background color, we
can fill all four at once. The variable BGBYTE contains the byte value that
represents four background pixels.

If FILL.RAY does find a byte full of background pixels, it uses
FILL.CHUNK to fill all four at once. FILL.CHUNK then examines the next
byte to see if it, too, contains four background pixels. Once FILL. CHUNK
reaches a byte that is not entirely background, it reverts to the use of
FILL.RAY to check individual pixels.

Finding Region 4

The procedure F IND . BG, which is used to detect the appearance of a fourth
region to fill, is very much like FILL.RAY, with two exceptions. First,
FIND.BG passes over nonbackground pixels and stops when it reaches a
background pixel. Second, FIND.BG just examines the pixels, whereas
FILL.RAY fills them also.

TO FIND.BG :XCOR :YCOR :LIMIT
IF :XCOR>:LIMIT (OP []]
IF BYTEPOS :XCOR 1
[IF :PENBYTE=_EXAMINE POSADDR :XCOR :YCOR
[OP FIND.BG :XCOR+4 :YCOR :LIMIT] 1]
IF NOT EDGE :XCOR :YCOR [OP :XCOR]
0P FIND.BG :XCOR+1 :YCOR :LIMIT
END

FILL 281

PROGRAM LISTING

TO FILL

IF NOT NAMEP "SCRUNCH [MAKE "SCRUNCH »
0.8]

PU

FILL1 79+INT (XCOR/2) 48-(INT »
(YCOR=+:SCRUNCH/2)) IF (PEN="PE) »
[0] [PN + 1]

END”

TO FILL1 :XCOR :YCOR :PEN
FILL2 COLOR.AT :XCOR :YCOR @ @
END

TO FILL2 :BG :BGBYTE :PENBYTE
MAKE "BGBYTE 85+:BG

MAKE “PENBYTE 85+:PEN
FILL.BOTH FILL.LINE @ ©

END

TO FILL.LINE :LEFT :RIGHT

MAKE “LEFT FILL.RAY :XCOR :YCOR (-1)
MAKE “RIGHT FILL.RAY :XCOR+1 :YCOR 1
OP (SE :YCOR :LEFT :RIGHT)

END

TO FILL.BOTH :RANGE
FILL.UP :RANGE (-1)
FILL.UP :RANGE 1
END

TO FILL.UP :RANGE :DELTA

FILL.UP1 (:DELTA+FIRST :RANGE) FIRST »
BF :RANGE LAST :RANGE :DELTA 0 0

END

TO FILL.UP1 :YCOR :LEFT :RIGHT :DELTA »
:NEWL :NEWR

MAKE "NEWL FILL.RAY :LEFT :YCOR (-1)

IF :NEWL<:LEFT [FILL.UP1 :YCOR-:DELTA »
‘NEWL :LEFT (-:DELTA) 1 0]

MAKE “NEWR IF :NEWL>:RIGHT [:NEWL-11 »
[FILL.RAY :LEFT+1 :YCOR 11

IF :NEWL<:NEWR+1 [FILL.UP1 »
:YCOR+:DELTA :NEWL :NEWR :DELTA 2 »
0l

IF :NEWR>:RIGHT (FILL.UP1 :YCOR-:DELTA »
:RIGHT :NEWR (-:DELTA) 3 @]

MAKE “NEWL FIND.BG :NEWR :YCOR :RIGHT

IF WORDP :NEWL [FILL.UP1 :YCOR :NEWL »
:RIGHT :DELTA 4 9]

END

TO EDGE :XCOR :YCOR
0P NOT EQUALP :BG COLOR.AT :XCOR :YCOR
END

TO COLOR.AT :XCOR :YCOR

0P PIXEL (.EXAMINE POSADDR :XCOR »
:YCOR) REMAINDER :XCOR 4

END

TO POSADDR :XCOR :YCOR
0P 16384 + 40+:YCOR + INT (:XCOR/4)
END

TO PIXEL :BYTE :XCOR

IF :XCOR=0 [OP INT (:BYTE/64)]

IF :XCOR=1 [OP REMAINDER INT »
(:BYTE/l6) 4]

IF :XCOR=2 [OP REMAINDER INT (:BYTE/4) »
4]

0P REMAINDER :BYTE 4

END

TO DOT :XCOR :YCOR
DOTA POSADDR :XCOR :YCOR
END

TO DOTA :ADDR

RUN SE (WORD "DOT REMAINDER :XCOR 4) »
-EXAMINE :ADDR

END

TO DOT@® :BYTE

_DEPOSIT :ADDR SUM (REMAINDER :BYTE »
64) b4+ PEN

END

TO DOT1 :BYTE

.DEPOSIT :ADDR (SUM (64+INT »
(:BYTE/64)) (16+:PEN) (REMAINDER »
:BYTE 16))

END

TO DOT2 :BYTE

.DEPOSIT :ADDR (SUM (16+INT »
(:BYTE/16)) (4+:PEN) (REMAINDER »
:BYTE 4))

END

TO DOT3 :BYTE

.DEPOSIT :ADDR SUM (4«INT (:BYTE/4)) »
:PEN

END

282 PROGRAMMING IDEAS

TO FILL.RAY :XCOR :YCOR :DELTA TO BYTEPOS :XCOR :DELTA

IF BYTEPOS :XCOR :DELTA [IF » IF :DELTA>® [OP ®=REMAINDER :XCOR 4]
:BGBYTE=_.EXAMINE POSADDR :XCOR » 0P 3=REMAINDER :XCOR 4
:YCOR [OP FILL.CHUNK :XCOR :YCOR » END
POSADDR :XCOR :YCOR :DELTA] 1

IF EDGE :XCOR :YCOR [OP :XCOR-:DELTA] TO FIND.BG :XCOR :YCOR :LIMIT

DOT :XCOR :YCOR IF :XCOR>:LIMIT [OP []]

OP FILL.RAY :XCOR+:DELTA :YCOR :DELTA IF BYTEPOS :XCOR 1 [IF »

END :PENBYTE=_EXAMINE POSADDR :XCOR »

:YCOR [OP FIND.BG :XCOR+4 :YCOR »

TO FILL.CHUNK :XCOR :YCOR :ADDR :DELTA :LIMIT])

.DEPOSIT :ADDR :PENBYTE IF NOT EDGE :XCOR :YCOR [OP :XCOR]

IF :BGBYTE=.EXAMINE :ADDR+:DELTA [OP » OP FIND.BG :XCOR+1 :YCOR :LIMIT
FILL.CHUNK :XCOR+4+:DELTA :YCOR » END

:ADDR+:DELTA :DELTA]

OP FILL.RAY :XCOR+44+:DELTA :YCOR »

END

:DELTA

Savepict and Loadpict

When you've drawn a complicated picture, it's useful to be able to save the
picture itself in a disk file, so that you can later restore it to the screen
without going through the procedures that drew the picture again. For
example, suppose you're writing a video adventure game in which charac-
ters in the story are drawn against a backdrop showing a forest, dungeon,
or whatever. The backdrop could be saved as a picture file and then loaded
onto the screen for each scene before drawing in the actors.

In this project, you'll see three different sets of Logo programs for
saving and loading pictures. The three versions differ in how fast they can
load a picture and also differ somewhat in flexibility. The last version, for
example, allows a small picture to be “stamped” on the screen in different
positions. One thing to learn from this project is how using different data
representations can affect the efficiency of a program.

There are two ways to approach this project. If you just want to use
these procedures as a tool to save and load pictures for some other project
of your own, you don't have to understand some of the details explained
here about how pictures are stored. On the other hand, by studying how
the project works, you can learn about the important idea of data represen-
tation.

Note: If you have a 16K Atari computer, you should use the number
8192 instead of 16384 in procedures SAVEPICT, LOADPICT, and PICTLOC.
(P1CTLOC appears only in the third version of the project.) With a 16K
machine, you don’t have a disk drive, but you could save pictures on cas-
sette.

By Brian Harvey.

SAVEPICT AND LOADPICT

How a Picture Is Stored

In order to save and load pictures, we have to know something about how
a picture is represented in the Atari computer. In this project we are
concerned only with the pictures drawn with pens, not with the turtle
shapes. The lines you draw are represented as a pattern of dots (called pixels)
on the screen. There are 96 rows and 160 columns of dots on the screen:

f 160 1

Screen pixels

The reason that a diagonal line comes out jagged on the screen is that
it isn’t actually drawn as a smooth line, but simply by filling in certain dots
on the screen. Each pixel can be in one of four conditions: it can be empty
(that is, it can be in the background color) or it can be filled in with one of
the three possible pens.

By the way, the length of a “turtle step™ is not the same as the distance
between pixels. That is, when you type the command FORWARD 100 the
turtle does not move 100 pixels on the screen. How many pixels it actually
does move depends on the direction. If you're moving horizontally (head-
ing 90, for example), then FORWARD 100 moves through 50 pixels. If
you’re moving vertically, the distance depends on the aspect ratio, which
is controlled by the .SETSCR command. The usual aspect ratio is 0.8, in
which case FORWARD 100 moves 40 pixels (50 times 0.8). In this project,
since we're interested in saving a picture that is already on the screen
rather than drawing a picture with turtle commands, we have to think in
terms of pixels, not in terms of turtle steps.

I said that each pixel can be in any of four conditions (background or
three pens). Therefore, each pixel can be represented in the computer’s
memory using two bits, or binary digits. Each bit can be either zero or one.
The four conditions are represented this way:

0 0 background
01 pen 0
10 penl
11 pen2

Memory is grouped into bytes of eight bits. So each byte represents four
pixels. There are 96 times 160, or 15,360, pixels altogether on the screen.
The memory required is one fourth of that, or 3840 bytes. It happens that
the first byte of Logo's screen memory is at memory location number
16384. So the picture memory is arranged something like this:

283

284

PROGRAMMING IDEAS

i
16424
scneal ______LERNNENNEND
sEEEEEEEEEES
SEEEEEEEEEEES
SEEEEESERERERSE
EEEEEEEEEEEN

Picture memory
Characters (letters, digits, spaces, and so on) are represented in the
computer’s memory by a number that is stored in one byte. For example,
the letter A is represented by a byte containing the number 65. Most of the
time you don’t have to worry about this, but if you remember this fact, it’ll
help you understand the process of storing information in disk files.

Representing the Screen in a Disk File

The most straightforward way to represent a screen picture in a disk file is
simply to write each of the 3840 bytes into the file. To find out what is in
each byte, we use the . EXAMINE operation, which outputs a number repre-
senting the byte at whatever memory location is used as its input. For
example:

PRINT .EXAMINE 16384

will print the number in the first byte of Logo’s screen memory. This byte
represents the first four pixels in the upper left corner of the screen. (For
Atari computers with 16K of RAM, the first byte of screen memory is in
location 8192 instead of 16384.)

It would be possible to save a picture in a file, then, with a program like
this:

TO SAVEPICT :FILE
SETWRITE :FILE
SAVEPICT1 16384 3840
SETWRITE (]

END

TO SAVEPICT1 :LOC :NUM
IF :NUM=@ [STOP]

PRINT .EXAMINE :LOC
SAVEPICT1 :LOC+1 :NUM-1
END

Each byte of the picture memory would be represented in the file by a line
containing the digits in the number in that byte. That is, if a particular byte
happened to contain the number 125, that byte would be stored in the file
as the three digits 1, 2, 5, just as it is typed on the screen by a PRINT
command. Each digit takes up one byte in the file. Therefore, using this
scheme, it takes three bytes in the file to represent one byte in the picture!

SAVEPICT AND LOADPICT

(Actually, another byte is used to represent the end-of-line code.) This leads
to very large files.

Instead, it would be better to use only one byte in the file to represent
each byte in the picture. This can be done by using the operation CHAR. This
procedure takes a number as its input and outputs the single character that
corresponds to that number. For example, CHAR 65 outputs the letter A.
Using this procedure, we can write the program as follows:

Savepict/Loadpict, Version 1

TO SAVEPICT :FILE
SETWRITE :FILE
SAVEPICT1 16384 3849
SETWRITE []

END

TO SAVEPICT1 :LOC :NUM
IF :NUM=0 [STOP]

TYPE CHAR .EXAMINE :LOC
SAVEPICT1 :LOC+1 :NUM-1
END

TO LOADPICT :FILE
SETREAD :FILE
LOADPICT1 16384 38490
SETREAD []

END

TO LOADPICT1 :LOC :NUM
IF :NUM=9 [STOP]
.DEPOSIT :LOC ASCII RC
LOADPICT1 :LOC+1 :NUM-1
END

To use the SAVEP1CT procedure, you first draw a picture on the screen
using the usual turtle commands. Then you say

SAVEPICT "D:PICTFILE

or whatever you want to name the file. The program writes 3840 bytes into
this file. Later, you can restore the picture to the screen by typing

LOADPICT "“D:PICTFILE

The operation ASCII, which is used in LOADPICTL, is the inverse of
CHAR. It takes a single character as input and outputs the number that
represents that character. So ASCI1 “A outputs 65.

Experiment with these procedures. You'll find that both saving and
loading pictures are quite slow. This is because the procedures SAVEPICT1
and LOADPICT1 are invoked 3840 times, once for each byte of screen mem-
ory, even if nothing is drawn in that part of the screen. Also, the files written
by this version of SAVEPICT are rather large (3840 bytes), so you can't fit
very many on a diskette.

285

286

PROGRAMMING IDEAS
Sparse Data Representations

A typical turtle graphics picture is sparse. This means that most of the pixels
on the screen are unused (background color), which means that most of the
bytes of picture memory are zero. It seems silly to write a file that is mostly
full of zeros. By using a cleverer representation of the picture, we can write
smaller files and make the loading of a picture file much faster.

The idea is this: as we look through the picture memory, we'll find a
bunch of zero bytes, and then a nonzero one, and then a bunch more zero
bytes, and so on. To make this more specific, consider this sample fragment
of a picture memory:

0200000 0O0O230000470009000015

In the first version of the program, we'd represent these twenty-four bytes
of screen memory as twenty-four bytes in the file. But instead, we can think
of this as 9 zeros, 23, 4 zeros, 47, 8 zeros, 15. We could store this information
in a file in this form:

9 23 4 47 8 15

In other words, we have decided that odd-numbered bytes in the file repre-
sent how many consecutive zero bytes are in the picture, while even-
numbered bytes represent actual picture data. By representing the picture
in this way, we've reduced twenty-four bytes of picture to six bytes in the
file. We’ll find that it is also much faster to load a picture stored in this form.

In practice, there may be several hundred consecutive zero bytes in a
picture. This poses a slight problem: the largest number that can be repre-
sented in a single byte is 255. Therefore, if there are more than that many
consecutive zeros, the new SAVEPICT procedure writes the sequence 255
0 in the file for each group of 256 zeros.

A second minor detail is that there must be a way for LOADPICT to know
when the end of the file has been reached. This isn’t a problem in the first
version of the program because there all picture files are the same length,
3840 bytes. But in the new version, the length of the file depends on the
number of pixels that are drawn in a nonbackground color. To solve this
problem, SAVEPICT writes the sequence 0 0 at the end of the file. This
sequence can't be part of real picture data.

Savepict/Loadpict, Version 2

TO SAVEPICT :FILE
SETWRITE :FILE
SAVEPICT1 16384 3840 0
REPEAT 2 [TYPE CHAR 0]
SETWRITE [1

END

TO SAVEPICT1 :LOC :NUM :NULL

IF :NUM=p [STOP]

SAVEPICT1 :LOC+1 :NUM-1 SAVEPICT2 .EXAMINE :LOC :NULL
END

SAVEPICT AND LOADPICT

TO SAVEPICT2 :BYTE :NULL

IF AND :BYTE=0 :NULL<255 [OP :NULL+1]
TYPE CHAR :NULL

TYPE CHAR :BYTE

0P o

END

TO LOADPICT :FILE

SETREAD :FILE

LOADPICT1 16384 ASCII RC ASCII RC
SETREAD [1]

END

TO LOADPICT1 :LOC :NULL :BYTE

IF AND :BYTE=0 :NULL=0 [STOP]

.DEPOSIT :LOC+:NULL :BYTE

LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII RC
END

Experiment with this version of the program. You'll notice that
SAVEPICT isn’t any faster, but LOADPICT is usually very much faster. The
reason is that SAVEPICT must still examine every byte of picture memory,
because it doesn’t know ahead of time where you've drawn lines. But
LOADPICT only has to deposit information into the bytes in picture memory
that actually correspond to lines in the saved picture file.

Snapshots

In the second version, LOADPICT doesn’t change the parts of picture mem-
ory that aren’t used in the picture file you're loading. This suggests that it
should be possible to merge two pictures. (In the first version, loading a
picture file completely replaced whatever might have been on the screen
before you invoked LOADPICT.) Try drawing a picture, saving it with
SAVEPICT, clearing the screen, drawing another picture, and then using
LOADPICT to restore the first picture. Make sure that the two pictures aren’t
in exactly the same part of the screen, so you can see whether the old
picture remains intact.

What you'll find is that this merging of two pictures works pretty well,
but not perfectly. The problem comes up if the two pictures use pixels that
are right next to each other, so that a pixel in one picture is part of the same
byte of memory as a pixel of the other picture. (Remember that each byte
contains four pixels.) Loading a new number into that byte eliminates the
pixel that used to be there. Still, this technique works perfectly if the two
pictures are widely separated, and it works pretty well in most cases.

It would be handy to take advantage of this merging capability by using
a picture file as a kind of rubber stamp that could be drawn in different
positions on the screen. The scheme is this: you draw a small picture near
the center of the screen. Then you use a version of SAVEPICT to make a
“snapshot” of this picture. You can then use a version of LOADPICT to
“stamp” the saved picture anywhere on the screen, depending on the turtle
position.

287

PROGRAMMING IDEAS

To make this work, the picture file must include information about
where the turtle was when the picture was taken. SAVEPICT must be
modified to write this information in the file. Then LOADPICT must be
modified to compare the current position of the turtle to the one stored in
the file. If the two positions are different, the picture should be loaded into
a different part of the screen memory.

This third version of the program is quite a bit more complicated than
the others. The main reason for this is that it has to deal with the difference
between pixels and turtle steps. To know where to “stamp” the saved
picture in memory, we have to think in terms of pixels. But Logo tells us
the turtle’s position in turtle steps. This position has to be rounded off to the
nearest pixel. Also, as explained earlier, the conversion between steps and
pixels depends on the aspect ratio. There is no easy way for a Logo proce-
dure to find out what this ratio is. The solution used in this program is that
it looks for a variable named SCRUNCH in the workspace. If there is such a
variable, its value should be the aspect ratio. If not, the standard value of
0.8 is assumed.

Another complication is that if the picture is being loaded into a posi-
tion that is different from where it came from, part of the picture may
extend beyond the edge of the screen. The procedure PUTBYTE in the
following program is used like . DEPOSIT, but it checks to be sure that you
are trying to deposit into the part of memory that contains the picture.

Savepict/Loadpict, Version 3

T0 SAVEPICT :FILE

[F NOT NAMEP “SCRUNCH [MAKE “SCRUNCH 0.8]
SETWRITE :FILE

TYPE CHAR (XCOR+160)/2

TYPE CHAR (120-YCOR)*:SCRUNCH/2

SAVEPICT1 16384 3840 0

REPEAT 2 [TYPE CHAR @]

SETWRITE [1

END

TO SAVEPICT1 :LOC :NUM :NULL

IF :NUM=p ([STOP]

SAVEPICT1 :LOC+1 :NUM-1 SAVEPICT2 .EXAMINE :LOC :NULL
END

TO SAVEPICT2 :BYTE :NULL

IF AND :BYTE=@ :NULL<255 [OP :NULL+1)
TYPE CHAR :NULL

TYPE CHAR :BYTE

0P 0

END

TO LOADPICT :FILE

IF NOT NAMEP “SCRUNCH [MAKE “SCRUNCH ©.8]
SETREAD :FILE

LOADPICT1 PICTLOC ASCII RC ASCII RC
SETREAD []

END

SAVEPICT AND LOADPICT

TO LOADPICT1 :LOC :NULL :BYTE

IF AND :BYTE=0 :NULL=¢ [STOP]

PUTBYTE :LOC+:NULL :BYTE

LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII RC
END

TO PICTLOC
OP 16384+((XDIFF ASCIT RC)+160+YDIFF ASCII RC)/4
END

TO PUTBYTE :LOC :BYTE
IF (AND :LOC>16383 :L0C<2@224 :BYTE>®) [.DEPOSIT :LOC :BYTE]
END

Note: If you have a 16K Atari computer, you should use the following:
IF (AND :LOC>8191 :LOC<12@32 :BTYE>0) [.DEPOSIT :LOC :BYTE]

TO XDIFF :XLOC
OP INT (XCOR+le@)/2-:XLOC
END

TO YDIFF :YLOC
OP INT (128-YCOR)+:SCRUNCH/2-:YLOC
END

To experiment with this program, try something like this:

cs

REPEAT 4 (FD 40 RT 99]
SAVEPICT "D:SQSNAP

PU

SETPOS [80 601
LOADPICT "D:SQSNAP
SETPOS [-70 29)
LOADPICT "D:SQSNAP

In practice, you wouldn’t bother making a snapshot of something as simple
as a square, because it's easier to draw another square than to load it from
a disk file. But if you draw more complicated pictures, in multiple colors,
this technique can really be worthwhile.

Suggestion: Run-Length Encoding

What if you filled in the screen completely with some pen color and tried
to save that in a picture file? Using the first version of the program, of
course, it doesn’t matter what's on the screen; the file ends up with 3840
data bytes. But with the two later versions, something else happens. The
picture memory is completely filled with bytes that represent the same
number, but not zero. For example, if you fill the screen with pen 0, the
picture memory will be

85 85 85 85 85

PROGRAMMING IDEAS

In the sparse encoding scheme we've been using, this is thought of this way:
0 zero bytes, 85, 0 zero bytes, 85, and so on. What ends up in the picture
file is

© 85 0 85 0 85 0 85 0 85 ...

The picture file is twice as big as the screen memory! This isn’t a very good
result. The smart LOADPICT will be slower for this picture than the stupid
one. A sparse representation only works well if the picture is, in fact, sparse.

This is an extreme, unlikely example. But it isn’t unlikely for part of the
screen to be filled in solidly. For example, if you're drawing a picture of a
farm, the background might be blue to represent the sky, and there might
be a large solid green area at the bottom of the screen to represent grass.

Still, although that green area isn’t empty, it is uniform. The bytes
representing that area in screen memory are mostly all the same, even if
not all zero. We could use a slightly more complicated data representation
called run-length encoding, which would handle this case well. Here's how
it works. Instead of a two-byte sequence representing the number of zero
bytes and then the value of a data byte, we can use a sequence representing
the value of a data byte and the number of consecutive bytes containing
that value. For example, suppose the screen memory looks like this:

85 858585851 0009000 43 85 85 85 85

We would represent that in the picture file this way:
85 51107 43 1 85 4

In this example, the version in the file is only a little smaller than the screen
memory. But in real situations, the run lengths would often be several
hundred bytes, not just five or seven.

This run-length technique is often used in serious computer graphics
work. It’s especially efficient for black-and-white pictures, because there
are only two possible values for the data. You can just alternate them and
leave them out of the file. You only store the run lengths. That is, the
odd-numbered bytes of the file would contain the numbers of consecutive
black pixels and the even-numbered bytes would contain the numbers of
consecutive white pixels.

On the other hand, for a color picture that really is sparse, the represen-
tation we've been using is somewhat more efficient than the run-length
representation. The moral is that before you choose a data representation
for any problem, you should think hard about different possibilities!

PROGRAM LISTING

VERSION 1

T0 SAVEPICT :FILE
SETWRITE :FILE
SAVEPICT1 16384 3840
SETWRITE (]

END

TO SAVEPICT1 :LOC :NUM
IF :NUM=p [STOP]

TYPE CHAR .EXAMINE :LOC
SAVEPICT1 :LOC+1 :NUM-1
END

SAVEPICT AND LOADPICT 291

TO LOADPICT :FILE
SETREAD :FILE
LOADPICT1 16384 3840
SETREAD []

END

TO LOADPICT1 :LOC :NUM
IF :NUM=0 [STOP]
.DEPOSIT :LOC ASCII RC
LOADPICT1 :LOC+1 :NUM-1
END

VERSION 2

TO SAVEPICT :FILE
SETWRITE :FILE
SAVEPICT1 16384 3840 0
REPEAT 2 [TYPE CHAR 0]
SETWRITE [1

END

T0 SAVEPICT1 :LOC :NUM :NULL

IF :NUM=¢ (STOP]

SAVEPICT1 :LOC+1 :NUM-1 SAVEPICT2 »
.EXAMINE :LOC :NULL

END

TO SAVEPICT2 :BYTE :NULL

IF AND :BYTE=0 :NULL<255 [OP :NULL+1]
TYPE CHAR :NULL

TYPE CHAR :BYTE

0P 9

END

TO LOADPICT :FILE

SETREAD :FILE

LOADPICT1 16384 ASCII RC ASCII RC
SETREAD [1

END

TO LOADPICT1 :LOC :NULL :BYTE

IF AND :BYTE=0 :NULL=0 [STOP]

.DEPOSIT :LOC+:NULL :BYTE

LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII »
RC

END

VERSION 3

TO SAVEPICT :FILE
IF NOT NAMEP “SCRUNCH [MAKE “SCRUNCH »

0.8)
SETWRITE :FILE
TYPE CHAR (XCOR+160)/2
TYPE CHAR (120-YCOR)*:SCRUNCH/2
SAVEPICT1 16384 38490 @
REPEAT 2 [TYPE CHAR 0]
SETWRITE []
END

TO SAVEPICT1 :LOC :NUM :NULL

IF :NUM=0 [STOP]

SAVEPICT1 :LOC+1 :NUM-1 SAVEPICT2 »
.EXAMINE :LOC :NULL

END

TO SAVEPICT2 :BYTE :NULL

IF AND :BYTE=@ :NULL<255 [OP :NULL+1]
TYPE CHAR :NULL

TYPE CHAR :BYTE

oP o

END

TO LOADPICT :FILE

IF NOT NAMEP "“SCRUNCH [MAKE “SCRUNCH »
0.8]

SETREAD :FILE

LOADPICT1 PICTLOC ASCII RC ASCII RC

SETREAD []

END

TO LOADPICT1 :LOC :NULL :BYTE

IF AND :BYTE=0 :NULL=0 [STOP]

PUTBYTE :LOC+:NULL :BYTE

LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII »
RC

END

TO PICTLOC

0P 16384+((XDIFF ASCII RC)+160*YDIFF »
ASCIT RC)/4

END

TO PUTBYTE :LOC :BYTE

IF (AND :L0C>16383 :L0C<20224 :BYTE>Q) »
[.DEPOSIT :LOC :BYTE)

END

TO XDIFF :XLOC
OP INT (XCOR+16®)/2-:XLOC
END

TO YDIFF :YLOC
OP INT (120-YCOR)*:SCRUNCH/2-:YLOC
END

PROGRAMMING IDEAS

Display Workspace Manager

2aBs SETUP.BLASTER

ARCTANMN SETUP.DEMONS

ARCTAN.RAD SETUP.ENEMIES

BLASTER SETUP.PLAYER

BLASTER.LOOP SHOW.SCORE
DIE STEER

EXPLODE TOHARDS

FIRE TOHARDS1

PLAY.BLASTER TOHARDS2

PUTSHAPES TOHARDS3

RANDOM.POS

l?? E %ﬁ Ekno!:anxs
HZIHATYN TO TOGGLE MARK

The Display Workspace Manager (DWM) is a tool that helps you manage
projects that involve large numbers of procedures. The program lists all
your procedures on the screen. You can move a pointer around, marking
particular procedures. Then you can edit, erase, print, or save the marked
procedures.

DwWM divides the screen into two parts. The top part is used to list the
names of procedures. The bottom few lines remind you of the commands
you can type to DWM. (For example, you can type ER to erase procedures.)

In the figure above, DWM is being used to examine Blaster, a project in
this book. The arrow points to the word STEER on the screen. STEER is the
name of one of the procedures in Blaster. The pointer arrow can be moved
from one procedure name to another by using the arrow keys on the Atari

keyboard.
aBs SETUP.BLASTER
ARCTAN SETUP.DEMONS
ARCTAN.RAD SETUP.ENEMIES
BLASTER SETUP.PLAYER
BLASTER.LOOP SHOMW. SCORE
DIE OSTEER
EXPLODE TOHARDS
FIRE TOHARDS1
PLAY.BLASTER TOHARDS2
PUTSHAPES TOHARDS3I
RANDOM.POS
_____ m - - - -
D088 RuIT I%SE &Roﬁaaxs
ST TO TOGGLE MaR

By Brian Harvey.

DISPLAY WORKSPACE MANAGER 293

In the next figure, the user has typed the PO command to DWM. DWM's
PO command tells it to print out the definition of the procedure at which
the arrow points, in this case STEER.

T0 SIEER :?ﬂER(

TYPE A SPACE HWHEN READ

L_ e

In the following figure, seven procedures have been marked with as-
terisks on the screen.

*aBS SETUP .BLGSTER
*ARCTAN SETUP . DEMONS
#ARCTAN.RAD SETUP .ENEMIES
BLASTER SETUP.PLAYER
BLASTER.LOOP SHOMW.SCORE
DIE STEER

EXPLODE #TOHARDS

FIRE #TOHARDS1
PLAY.BLASTER #*TOHARDS2
PUTSHAPES LTOHARDSI
RANDOM.POS

e IR P O] D :/

lr 181 ase acno\‘anxs
2T 1o Toc GL Mar

In the next figure the user has typed the command ER, which means
to erase all the marked procedures. DWM has printed “Really erase 7 proce-

PROGRAMMING IDEAS

dures?” on the bottom line of the screen. It asks this question to make it
harder for someone to erase many procedures accidentally.

*AaB5S SETUP.BLASTER

#ARCTAN SETUP.DEMONS
#ARCTAN.RAD SETUP.ENEMIES
BLASTER SETUP.PLAYER

BLASTER.LOOP SHOMW.SCORE

DIE STEER
EXPLODE *TOWARD S
FIRE *TOMARDS1
PLAY. ausun *%TOMARDS2
PUTSHA GTOHARDS3
lmwon POS

AT B o
“A
REGLLY ERASENFAIPROCEDURES?

In the next figure, the user has typed Y for yes, and OWM has erased the
marked procedures. It now displays a shorter list of the remaining proce-

dures.
DBLASTER

BLQSIER LoOP

IE
ENPLODE
FIRE
PLAY.BLASTER
PUTSHAPES
RANDOM.POS
SETUP.BLASTER
SETUP.DEMONS
SETUP,ENEMIES
SETUP.PLAYER
SHOMW.SCORE
STEER

B

- - - - o] Sisi
+ L DS] QSF FHERDIARKS
0 BAR TOGGLE HQPK

i e

This is a large project. I won't attempt a complete explanation of every
detail of the program. Instead, I'll indicate the most important parts to
understand.

U

nQn
-
O

Creating the List of Procedures

In order for DWM to work, it must have a list of the names of all the proce-
dures in your project. This list must be in a global variable named

DISPLAY WORKSPACE MANAGER

ALL.PROCEDURES. If this list doesn’t already exist, the first thing DWM does
is to call DWM. PROCLIST to create the list. This automatic creation of the list
requires a disk drive with a writeable disk in it! DWM.PROCLIST works by
doing a POTS command while writing to the disk, then rereading the results
to find the names of your procedures. When the list is created automatically,
it is sorted alphabetically. The sorting process is quite slow, because it’s
done simply rather than cleverly. (Read the Mergesort project for another
sorting technique.) The automatically generated list omits all procedures
whose names start “DWM” so that the procedures in the DWM program itself
won’t clutter up your list.

If you want to save time when starting up DWM, or if you want the
procedures in your project listed in some order other than alphabetical, you
can create the variable ALL . PROCEDURES yourself and make it part of the
workspace file.

How ow Arranges the Display

Once the list of procedures exists, DWM lists them on the screen. This is done
by two main procedures, DWM. S1ZE .MENU and DWM. DRAW . MENU. The first of
these figures out how the names should be arranged on the screen, given
the number of procedures you have in your list. The more procedures, the
more columns on the screen will be required to list them all. The more
columns, the less wide each column can be. This limits the length of a
procedure name that can be displayed. Therefore, the program uses the
smallest number of columns that will fit your list. Then the DWM. DRAW . MENU
procedure uses this information to draw the display.

If the name of a procedure is too long to fit in a screen column, an
inverse video plus sign (+) is shown at the end of the truncated name.

Reading ows Commands

The procedure DWM.MAIN.LOOP reads and processes the commands you
type to the program. Commands are either one or two characters long.
Here is a list of the commands.

arrows Move the pointer up, down, left, or right. You can type the
arrow keys either with or without the CTRL key held down.

space bar Mark the procedure where the pointer is, if it's not marked
already, or unmark it if it is. An asterisk is displayed next to
the name of marked procedures.

ED Edit the marked procedures in the Logo editor.

ER Erase all the marked procedures. This command first tells you
how many procedures are marked and insists that you type
Y to confirm that you really want to erase the procedures.

PO Print out on the screen the single procedure whose name is
pointed to by the arrow.

R List all marked procedures on the printer.

D: Save all marked procedures on the disk. This command

prompts for a filename to be used for the saved procedures.
Notice that these save files do not contain the values of varia-

295

PROGRAMMING IDEAS

bles! But the procedures in them can be loaded with the LOAD

command.
™ Zero Marks. Unmark all procedures.
Q Quit. Exits from DWM.

If there are no marked procedures, the commands that normally apply
to marked procedures apply instead to all procedures in the display. Be
careful about erasing!

Possible Extensions

DWM takes up just under 2000 nodes, somewhat more than half the available
space. This limits the size of the programs you can use it on. (This is particu-
larly unfortunate since it’s the big projects that most need this sort of help.)

If there were space, this project could be the basis for implementing
workspace management tools like PACKAGE and BURY, which are found in
some other versions of Logo. The technique would be to have several lists
of procedures instead of just one ALL.PROCEDURES list.

PROGRAM LISTING

In the program listing that follows, characters that are underlined
represent inverse-video characters on the Atari.

T0 DWM™
DWM.1 [1 [1) 01 1 [
END

TO DWM.1 :PROCS :COLUMNS :CHARS :ROWS :TABS :MARKED
IF NOT NAMEP “ALL.PROCEDURES [DWM.PROCLIST]

DWM. S1ZE.MENU

DWM. DRAW.MENU

SETCURSOR [0 0]

DWM. SHOW. CURSOR 1

DWM.MAIN.LOOP RC @ 1 1

END

CREATING THE ALL . PROCEDURES LIST

TO DWM.PROCLIST

PR [ONE MOMENT, I'M LISTING...]
SETWRITE “D:DWM.TMP

POTS

SETWRITE (]

SETREAD “D:DWM.TMP

PR [HANG ON A BIT LONGER...]
MAKE “ALL.PROCEDURES [1
DWM.READ.TITLE RL

SETREAD []

ERF “D:DwWM,TMP

END

DISPLAY WORKSPACE MANAGER

TO DWM.READ.TITLE :LINE

[F EMPTYP :LINE [STOP]
DWM.READ.TITLE1l FIRST BF :LINE
DWM.READ.TITLE RL

END

TO DWM.READ.TITLE1l :NAME

IF EQUALP "DWM DWM.FIRSTPART :NAME 3 [STOP]

MAKE "ALL.PROCEDURES DWM.INSERT :NAME :ALL.PROCEDURES
END

TO OWM.INSERT :WORD :LIST

IF EMPTYP :LIST [OP FPUT :WORD [1]

IF DWM.BEFORE :WORD FIRST :LIST [OP FPUT :WORD :LIST]
OP FPUT FIRST :LIST DWM.INSERT :WORD BF :LIST

END

TO DWM.BEFORE :NEW :0LD

IF EMPTYP :NEW [OP “TRUE]

IF EMPTYP :0LD [OP "FALSE]

IF (ASCII FIRST :NEW) < (ASCII FIRST :0LD) [OP "TRUEI]
IF (ASCII FIRST :NEW) > (ASCIT FIRST :0LD) [OP "FALSE]
0P DWM.BEFORE BF :NEW BF :0LD

END

TO DWM.FIRSTPART :WORD :NUM

IF EMPTYP :WORD ([OP "]

IF EQUALP :NUM 1 [OP FIRST :WORD]

OP WORD FIRST :WORD DWM.FIRSTPART BF :WORD :NUM-1
END

PRINTING THE MENU

TO DWM.SIZE.MENU

MAKE “PROCS COUNT :ALL.PROCEDURES

MAKE “COLUMNS 1+INT ((:PROCS-1)/29)

MAKE “CHARS (INT 37/:COLUMNS)-2

MAKE “ROWS 14INT ((:PROCS-1)/:COLUMNS)

MAKE “TABS DWM.SIZE.TABS 1 :CHARS+2 :COLUMNS
END

TO DWM.SIZE.TABS :COL ;CHARS :COLS

IF :COLS = ¢ [OP [99]1]

OP FPUT :COL DWM.SIZE.TABS :COL+:CHARS :CHARS :COLS-1
END

TO DwWM.DRAW.MENU

TS CT

DWM.DRAW.M1 :ALL.PROCEDURES © 1 BF :TABS 1

SETCURSOR (9 20)

PRI[-=-~-~—- POP: D: == - -~]

(PR CHAR 156 CHAR 157 CHAR 158 CHAR 159 >
[QUIT EDIT ERASE ZEROMARKS])

PR [SPACE BAR TO TOGGLE MARK]

END

297

PROGRAMMING IDEAS

TO DWM.DRAW.M1 :PROCS :ROW :COL :TABS :INDEX
IF EMPTYP :PROCS [STOP]
IF MEMBERP :INDEX :MARKED [DWM.STARI]
SETCURSOR LIST :COL :ROW
TYPE DWM.SHORT FIRST :PROCS :CHARS
IF EQUALP :ROW :ROWS-1 >
[DWM.DRAW.M1 BF :PROCS B
© FIRST :TABS BF :TABS :INDEX+1] >
[DWM.DRAW.M1 BF :PROCS :ROW+1 :COL :TABS :INDEX+1]
END

TO DWM.STAR

SETCURSOR LIST :COL-1 :ROW
TYPE .+

END

TO DWM.SHORT :NAME :CHARS

IF (COUNT :NAME)<(:CHARS+1) [OP :NAME]
OP DWM.SHORT1 :NAME :CHARS

END

TO DWM.SHORT1 :NAME :CHARS

[F :CHARS=1 [OP CHAR 171]

OP WORD FIRST :NAME DWM.SHORT BF :NAME :CHARS-1
END

READING COMMANDS FROM THE KEYBOARD

TO DWM.MAIN.LOOP :CMD :ROW :COL :INDEX
DWM.SET.CURSOR
IF :CMD = "- [DWM.UP]
IF :CMD = CHAR 28 [DWM.UP]
IF :CMD = “= [DWM.DOWN]
IF :CMD = CHAR 29 [DWM.DOWN]
IF :CMD = "+ [DWM, LEFT]
IF :CMD = CHAR 39 [DWM.LEFT]
IF :CMD = "+ [DWM.RIGHT]
[F :CMD = CHAR 31 [DWM.RIGHT]
[F :CMD = CHAR 32 [DWM.TOGGLE.MARK]
IF :CMD = "E [DWM.CMD.2 “E [[D DWM.EDIT] [R DWM.ERASE11]
IF :CMD = “Z [DWM.CMD.2 “Z [IM DWM.FLUSH.MARKS11]
IF :CMD = "P >
[DWM.CMD.2 “P ([0 DWM.PRINTOUT] [: DWM.PRINTER11]
IF :CMD = “D [DWM.CMD.2 "D [[: DWM.DISKSAVE (1111
IF :CMD = "Q [SETCURSOR [® 23] STOP]
DWM_.HIDE.CURSOR
SETCURSOR LIST (DWM.ITEM :COL :TABS)-1 :ROW
MAKE “INDEX (:COL-1)+:ROWS+:ROW+1
DWM. SHOW.CURSOR : INDEX
DWM.MAIN.LOOP RC :ROW :COL :INDEX
END

TO DWM.ITEM :NUM :LIST

IF :NUM=1 [OP FIRST :LIST]
OP DWM.ITEM :NUM-1 BF :LIST
END

DISPLAY WORKSPACE MANAGER

TO DWM.CMD.2 :LETTER :LIST
OWM.PROMPT :LETTER
DWM.CMD.21 RC :LIST
DWM.SET.CURSOR

END

TO DWM.CMD.21 :CHAR :LIST

DWM.PROMPT CHAR 32

IF EMPTYP :LIST [TOOT 0 400 10 10 STOPI]

IF EQUALP :CHAR FIRST FIRST :LIST [RUN BF FIRST :LIST STOP]
DWM.CMD.21 :CHAR BF :LIST

END

TO DWM.PROMPT :LETTER
SETCURSOR [9 23]

TYPE :LETTER

END

TO DWM.SHOW.CURSOR :INDEX
TYPE CHAR IF MEMBERP :INDEX :MARKED [170] [159)
END

TO DWM.HIDE.CURSOR
TYPE CHAR IF MEMBERP :INDEX :MARKED [42] [32]
END

TO DWM.SET.CURSOR
SETCURSOR LIST (DWM.ITEM :COL :TABS)-1 :ROW
END

MOVING THE POINTER

TO DWM.RIGHT

IF (:COL*:ROWS+:ROW+1) > :PROCS [TOOT @ 490 10 10 STOP]
MAKE “COL :COL+1

END

TO DWM.LEFT

IF :COL=1 [TOOT @ 400 10 10 STOP]
MAKE “COL :COL-1

END

TO DWM.DOWN

IF :INDEX+1 > :PROCS [TOOT @ 409 10 10 STOP]
IF :ROWS > :ROW+1 [MAKE "ROW :ROW+1 STOP]
MAKE “ROW @

MAKE “COL :COL+1

END

TO DWM.UP

IF :ROW>@ [MAKE “ROW :ROW-1 STOP]
IF :COL=1 [TOOT @ 400 1¢ 1@ STOP]
MAKE “ROW :ROWS-1

MAKE “COL :COL-1

END

PROGRAMMING IDEAS

SETTING AND CLEARING MARKS

TO DWM.TOGGLE.MARK
IF MEMBERP :INDEX :MARKED [DWM.UNMARK] [DWM.MARK]
END

TO DWM.MARK
MAKE “MARKED FPUT :INDEX :MARKED
END

TO DWM.UNMARK
MAKE “MARKED DWM.REMOVE :INDEX :MARKED
END

TO DWM.REMOVE :THING :LIST

IF EMPTYP :LIST [OP [1]

IF EQUALP :THING FIRST :LIST [OP BF :LIST]

OP FPUT FIRST :LIST DWM.REMOVE :THING BF :LIST
END

TO DWM.FLUSH.MARKS
MAKE "MARKED []
DWM . DRAW. MENU

END

EDIT

TO DWM.EDIT

EDIT DWM.MARKLIST
DWM. DRAW.MENU

END

TO DWM.MARKLIST

IF EMPTYP :MARKED [OP :ALL.PROCEDURES]
OP DWM.MARKLIST1 :ALL.PROCEDURES 1

END

TO DWM.MARKLISTI :LIST :NUM

IF EMPTYP :LIST [OP [1]

IF MEMBERP :NUM :MARKED [OP FPUT FIRST :LIST >
DWM.MARKLIST1 BF :LIST :NUM+1]

OP DWM MARKLIST1 BF :LIST :NUM+1

END

PRINTOUT

TO DWM.PRINTOUT

cT

PO DWM.ITEM :INDEX :ALL.PROCEDURES
TYPE (IYPE A SPACE WHEN READY]
DWM. IGNORE RC

DWM. DRAW.MENU

END

TO DWM.IGNORE :CHAR
END

DISPLAY WORKSPACE MANAGER

ERASE

TO DWM.ERASE

DWM.PROMPT (SE [REALLY ERASE] >
COUNT DWM.MARKLIST [PROCEDURES?])

IF NOT EQUALP RC “Y [DWM.CLEAR.PROMPT STOP]

DWM.CLEAR.PROMPT

ERASE DWM.MARKLIST

DWM.ERASE1 DWM.MARKLIST

MAKE “MARKED []

DWM. SIZE .MENU

DWM. DRAW.MENU

MAKE “ROW @

MAKE “COL 1

END

TO DWM.ERASE1 :LIST

IF EMPTYP :LIST (STOP]

MAKE “ALL.PROCEDURES DWM.REMOVE FIRST :LIST
DWM.ERASE1 BF :LIST

END

TO DWM.CLEAR.PROMPT
DWM.PROMPT CHAR 32
REPEAT 35 [TYPE CHAR 32]
END

SAVETOD: ORP:

TO DWM.DISKSAVE :FILE
DWM.PROMPT “FILE:

MAKE "FILE FIRST RL

CcT

SETWRITE WORD “D: :FILE
DWM.SAVE DWM.MARKLIST
SETWRITE (]

DWM. DRAW. MENU

END

TO DWM.PRINTER

cT

SETWRITE "P:

DWM.SAVE DWM.MARKLIST
SETWRITE []

DWM. DRAW.MENU

END

TO DWM.SAVE :LIST

IF EMPTYP :LIST [STOP]
PO FIRST :LIST
DWM.SAVE BF :LIST

END

:ALL.PROCEDURES

301

302

PROGRAMMING IDEAS
A Logo Interpreter

Introduction

Suppose you were marooned on a desert island, with only your Atari and
an assembler/editor cartridge. If you wanted to use Logo, you would have
to write it yourself. How would you go about writing a computer language?
You would have to write a program that runs the language. It is possible to
write such a program, with some simplifications, in Logo itself.

Logo is an interpreted language. When you run your programs, Logo
reads through them one instruction line at a time and executes each instruc-
tion in the line before proceeding to the next line. This is called interpreting
a program.

Once you grasp the basic principles of interpreter design and opera-
tion, you could write an interpreter for any computer language, not just
Logo. And you could write your interpreter in another language, like as-
sembly language.

This project is about writing an interpreter for Logo in Atari Logo.
We'll call this interpreter MLogo(for micro-Logo), to distinguish it from
Atari Logo, which is an interpreter written in Atari machine language.

How to Use MLogo

To use M Logo, first initialize it (INIT), then start it (L0GO).

MLogo will prompt you for input with a ? in inverse video.

MLogo has fewer primitives than Atari Logo; among them are some list
and arithmetic operations and some turtle commands.

2PRINT SUM 3 4

7

2PRINT FIRST BF "WALLABEE
A

2FD 109

?

You can write procedures in MLogo.

2T0 POLY :SIDE :ANGLE
>FD :SIDE

>RT :ANGLE

>POLY :SIDE :ANGLE
>END

POLY DEFINED

MLogo is different from Atari Logo in some ways. MLogo doesn’t care
whether a line outputs or not. If you type:

SUM 3 4

51) Ji;n Davis and Ed Hardebeck. An earlier version of this project was written by Henry
Minsky.

A LOGO INTERPRETER

the value 7 is just ignored. In Atari Logo you would get the error message:

YOU DON'T SAY WHAT TO DO WITH 7

MLogo doesn’t have the STOP primitive. Every line of a user procedure
is executed. It also doesn’t have 0P. The value of a user procedure is the
value of the last line in it.

2T0 GREET :WHO

>SE "HELLO :WHO
>END

GREET DEFINED

2PRINT GREET "ARTHUR
HELLO ARTHUR

If you typed this to Atari Logo, you'd get an error:
YOU DON'T SAY WHAT TO DO WITH [HELLO ARTHUR] IN GREET

Another difference is that all variables start with the empty list as their
value,

2SHOW :NOVAL
0

In Atari Logo, you'd get an error.
NOVAL HAS NO VALUE

If you try to use an undefined procedure in MLogo, you get a mysteri-
ous error message, then MLogo “crashes.”

2ZIPPER 3
$ZIPPER HAS NO VALUE IN FSYMEVAL

After MLogo crashes, you are once again talking to Atari Logo. You must
restart MLogo.

You may notice other differences as well. The reason for these differ-
ences is that it's difficult to implement Logo completely.

Now that you've had a chance to use MLogo and know what it does,
we'll explain how it does it: The discussion, however, omits many details
about interpreters.* Throughout this explanation we use the technical
terms usually used by Logo implementors for describing Logo interpreters.

Interpretation Happens a Line at a Time
The structure of MLogo resembles that of Atari Logo. The normal action
of Logo is to repeatedly type a prompt (?), read a line from the keyboard,

*For more information see Structure and Interpretation of Computer Programs by Ger-
ald J. Sussman and Harold Abelson, MIT Press and McGraw-Hill, 1984,

303

PROGRAMMING IDEAS

and evaluate it. The top-level loop of MLogo is:

TO LOGOLOOP

IGNORE EVLINE GET.LINE
LOGOLOOP

END

The output of GET. LINE is a list of what the user typed.

EVLINE accepts a line as its input and carries out whatever instructions
the line contains (for example, moves the turtle, prints a sentence, and so
on).

TO EVLINE :LINE
OP EVLINEL "$NOVALUE
END

TO EVLINEL :VALUE

IF EMPTYP :LINE [OP :VALUE]
OP EVLINE1 EVAL NEXT.ITEM
END

EVLINE1 does the actual evaluation of the instructions of a line. The
easiest way to understand it is to look first at its last line.

The operation NEXT.1TEM removes the first item from the variable
L INE and outputs it. Each call to NEXT . 1 TEM removes one item and outputs
it. In this way each item is inspected in turn.

TO NEXT.ITEM
OP NEXT.ITEM1 FIRST :LINE
END

TO NEXT.ITEMY :FIRST
MAKE “LINE BF :LINE
OP :FIRST

END

EVAL takes an item, decides what kind of thing it is, and evaluates it to
get its value. The value output from this call to EVAL is the input to EVLINE1
when it recurses. If there’s nothing left on the line, this is the value to
output. Otherwise, there’s another instruction on the line.

When EVLINE calls EVLINE1, none of the line has been evaluated. If it
should turn out that the line has no instructions (a blank line), then there
is no value to output. $NOVALUE is just a default value.

Here's an example of how this recursion works. Suppose you type

FD 6@ RT 90

to MLogo. LOGOLOOP calls EVLINE with the list [FD 60 RT 90] as input.
NEXT.ITEM outputs FD, and :LINE is [60 RT 90]. FD is passed to EVAL
for evaluation.

In evaluating 7D, the number 60 would be removed from the line (it
is an input to FD). When EVAL stops, the value of :LINE is [RT 90].
Since this is not an empty list, evaluation would continue.

A LOGO INTERPRETER
The Rules of eval

The value of an item is determined by these rules.

* The value of a list is just the list.

* The value of a number is just the number.

* The value of a quoted word is the word itself without the quote.

* The value of a word prefaced with a colon (called “dots”) is the value
of the variable.

* Otherwise the word is the name of a procedure to call. Inputs to the
procedure appear after the name of the procedure.

EVAL looks at an item to see what type it is, then carries out the
appropriate rule.

How evaL Carries Out Its Rules

TO EVAL :ITEM

IF LISTP ;ITEM (OUTPUT :1TEM]

IF NUMBERP :ITEM [OQUTPUT :ITEM]

IF QUOTED? :ITEM [OUTPUT UNQUOTE :ITEM]

IF DOTTED? :ITEM [OQUTPUT GET.VARIABLE.VALUE UNDOT :ITEMI]
OUTPUT EVAL.CALL FSYMEVAL :ITEM

END

EVAL's first test is for a list. If the item isn't a list, it must be a word. The
remaining tests all assume the item is some kind of word and don’t include
WORDP as part of the test.

The predicate QUOTED? tests whether its input is a quoted word.

TO QUOTED? :WORD
OUTPUT EQUALP FIRST :WORD ""
END

The operation UNQUOTE removes the quote and outputs the word.

TO UNQUOTE :WORD
OUTPUT BF :WORD
END

In Logo a colon (“dots™) before a word is a request for the value of a
variable. The predicate DOTTED? checks this case.

T0 DOTTED? :WORD
OUTPUT EQUALP FIRST :WORD “:
END

The procedure UNDOT outputs the word with the dots removed.
TO UNDOT :WORD

QUTPUT BF :WORD
END

GET.VARIABLE.VALUE outputs the value of a variable.

PROGRAMMING IDEAS

TO GET.VARIABLE.VALUE :WORD

IF BOUND? :WORD [OUTPUT SYMEVAL :WORDI
OUTPUT (1

END

The predicate BOUND? checks whether the word has been assigned a
value. If it has one, SYMEVAL outputs it, otherwise the value is [1. We'll
explain more about this later on.

Evaluating a Procedure Call

To evaluate a procedure call, we have to know some things about the
procedure being called, such as how many inputs it has and whether it's a
primitive or a user procedure. Information about a procedure is kept in the
definition of the procedure. We'll describe definitions in detail later. For
now, we'll just say that the operation FSYMEVAL outputs the definition and
leave it at that.

When EVAL wishes to evaluate a procedure, it passes the definition of
the procedure to EVAL.CALL.

TO EVAL.CALL :DEFINITION
OP APPLY :DEFINITION EVAL.ARGS NARGS :DEFINITION
END

APPLY actually runs the procedure. It takes two inputs. The first is the
definition of a procedure, the second is a list of values for the inputs. It
causes the procedure to “do its thing,” whatever that is, and APPLY outputs
whatever the procedure outputs.

Before we can run the procedure, we have to get the values of its
inputs. We usually refer to inputs as arguments (or args, for short).

The operation NARGS outputs the number of arguments this procedure
expects. NARGS extracts this from the definition. (We’'ll see NARGS later.) This
number is the input to EVAL . ARGS. EVAL . ARGS takes these inputs from the
line being evaluated and evaluates each one, returning a list of the values.

To simplify MLogo, everything outputs. If commands were allowed in
MLogo, as they are in Atari Logo, EVAL.CALL would have to know if an
output was expected and make the proper complaint if an output was
missing or an unexpected output showed up.

Inputs Require Recursive Evaluation

TO EVAL.ARGS :NARGS

[F EQUALP :NARGS 0 (OP (1]

OUTPUT FPUT EVAL NEXT.ITEM EVAL.ARGS :NARGS - 1
END

EVAL.ARGS calls NEXT.ITEM to get the next item in the line being
evaluated and makes a recursive call to EVAL to evaluate this item.
Here's an example. Suppose we type:

A LOGO INTERPRETER

MAKE “DOGS 3
PRINT :DOGS

to MLogo. Our example begins after the MAXE, when evaluating the call to

PRINT.

EVLINE gets [PRINT :DOGS].

NEXT.ITEM outputs PRINT.

EVAL gets PRINT and decides it’s the first word of a procedure call,
so it calls EVAL . CALL with the definition.

EVAL.CALL calls NARGS to get the number of arguments that PRINT
wants, and passes this to EVAL . ARGS.

EVAL.ARGS gets 1 as input, so it calls NEXT.1TEM, which outputs
:DOGS. EVAL . ARGS calls EVAL to evaluate it.

EVAL gets :DOGS as input. This is a dotted word so
GET.VARIABLE.VALUE is called with :DOGS. It outputs the value
DOGS, which is 3. EVAL outputs 3.

EVAL . ARGS recurses. :NARGS - 1 is 0.

EVAL . ARGS is called with 0, so it outputs the empty list.

EVAL.ARGS outputs FPUT 3 [1] to EVAL.CALL.

EVAL.CALL calls APPLY with the definition and the list of values
returned by EVAL . ARGS, in this case [3].

APPLY invokes PRINT with an input of 3. Whatever APPLY outputs is
what EVAL . CALL outputs.

EVAL.CALL returns to EVAL, which returns to EVLINEL.

Before we show how APPLY works, we'll give some details of procedure
definitions.

Procedure Definitions

Both primitives and user procedures have definitions. Their definitions
have some features in common and some differences.

In the remainder of this discussion, we refer to a primitive as an sfun
(System FUNction), pronounced “ess-fun.” Likewise we refer to a user
procedure as a ufun (User FUNction), pronounced “you-fun.” These are the
terms usually used by Logo implementors.

Procedure definitions are kept in lists.

The first item in the list is the word SFUN or UFUN. The predicate SFUN?
distinguishes sfuns from ufuns by inspecting this item.

TO SFUN? :DEFINITION

0P EQUALP FIRST :DEFINITION “SFUN
END

The second item is the number of inputs the procedure expects (this
may be zero). The operation NARGS outputs this number.

TO NARGS :DEFINITION
0P FIRST BF :DEFINITION
END

The remaining items of the list differ for the two types of procedures.
We'll show you the rest of an sfun definition now and take up ufuns later.

308

PROGRAMMING IDEAS

The third and final item in an sfun definition is the name of the Atari
Logo procedure that implements the MLogo primitive.
The operation SFUN.FUNC outputs this procedure.

TO SFUN.FUNC :DEFINITION
OUTPUT FIRST BF BF :DEFINITION
END

If you print the names in the Logo workspace, you'll see definitions for
all the MLogo primitives. All the definitions are in words beginning
with $.

7SHOW :$PRINT

[SFUN 1 %PRINT]

7SHOW NARGS :$PRINT

1

7SHOW SFUN.FUNC :S$PRINT
%PRINT

7SHOW :$SUM

[SFUN 2 SUM]

Sometimes an MLogo primitive is implemented directly by an Atari
Logo primitive (for example, SUM), and sometimes by a procedure (¥PRINT).
The operation MAKE . SFUN . DEF makes a definition for an sfun.

TO MAKE.SFUN.DEF :NARGS :FUNC
QUTPUT (SE “SFUN :NARGS :FUNC)
END

Now we can finish discussing the evaluation of a procedure call.

appLy Evaluates a Procedure Call

The first input to APPLY is the definition of a procedure to evaluate. The
second input is a list of input values for that procedure. Sfuns and ufuns are
evaluated differently.

TO APPLY :DEFINITION :VALUES

IF SFUN? :DEFINITION [OP APPLY.SFUN :DEFINITION :VALUES]
OP APPLY.UFUN :DEFINITION :VALUES

END

The command APPLY . SFUN applies an sfun to its inputs by building a
list as input for RUN.

TO APPLY.SFUN :DEF :VALUES
OUTPUT RUN SE SFUN.FUNC :DEF (QUOTIFY :VALUES)
END

Suppose you typed the following to MLogo:

MAKE "WHO "LOWELL
PRINT :WHO

A LOGO INTERPRETER

While evaluating the call to PRINT, APPLY . SFUN would get the inputs [SFUN
1 %PRINT) (the definition of PRINT) and LOWELL (the value of the vari-
able WHO).

Recall that SFUN.FUNC outputs the procedure that implements the
sfun. In our example it will output %PRINT.

APPLY.SFUN would call RUN with the input [%PRINT “LOWELLI. RUN
would call ¥PRINT on behalf of MLogo and output whatever it output.

Here's the MLogo sfun PRINT.

TO %PRINT :ARG

PRINT :ARG
OUTPUT :ARG
END

The operation QUOTIFY puts a quote in front of words that need it.

TO QUOTIFY :VALS

IF EMPTYP :VALS [OUTPUT (1]

OUTPUT FPUT QUOTIFY1 FIRST :VALS QUOTIFY BF :VALS
END

TO QUOTIFY1l :VAL

IF NUMBERP :VAL [OP :VAL]

IF WORDP :VAL [OP WORD "" :VALI]
QUTPUT :VAL

END

Variable Values

The values of MLogo variables are stored in Atari Logo variables with
slightly “funny” names. (This is useful for learning about how MLogo works.
You can stop it and print out names. You can easily spot all MLogo variables
by their names.)

The operation VSYM makes these names by adding a # to the front of
the name. (The name VSYM stands for Variable SYMbol.)

TO VSYM :WORD
OP WORD “# :WORD
END

The command SET sets the value of an MLogo word, and SYMEVAL gets
the value of an MLogo word. They both use VSYM to get the name of the
word to use. VSYM translates from an MLogo name to an Atari Logo name.

TO SET :SYM :VAL
MAKE VSYM :SYM :VAL
END

TO SYMEVAL :SYM
OP THING VSYM :SYM
END

309

310

PROGRAMMING IDEAS

The predicate BOUND? tells whether there is a value for the word.

TO BOUND? :WORD
0P NAMEP VSYM :WORD
END

A second reason to use “funny” names for MLogo variables is that
otherwise an MLogo user might set a variable with the same name as one
used in the MLogo program itself. The results would be very strange.
Adding the character guarantees that the names will never be the same.

Using a scheme like the one for variables, the definition of a procedure
is kept in a variable whose name is the name of the procedure with a “s”
prefix. The operation F SYM (Function SYMbol) outputs the Logo variable for
the definition of the MLogo procedure.

TO FSYM :WORD
OP WORD “$:WORD
END

The command FSET sets the definition of a procedure, and the opera-
tion FSYMEVAL outputs the definition of a procedure.

TO FSET :SYMBOL :DEF
MAKE FSYM :SYMBOL :DEF
END

TO FSYMEVAL :NAME
OUTPUT THING FSYM :NAME
END

How Sfuns Are Defined

The primitives we implemented are all very similar to familiar Logo primi-
tives. In some cases we could call Logo primitives directly. But because
every MLogo sfun must output, we had to write small Atari Logo proce-
dures for those that don't output. These procedures call the sfun, then
output a value. The value may just be TRUE.

TO %PRINT :ARG

PRINT :ARG
OUTPUT :ARG
END

TO %MAKE :SYM :VAL
SET.VARIABLE.VALUE :SYM :VAL
OUTPUT :VAL

END

TO %FD :N
FD :N

0P "TRUE
END

A LOGO INTERPRETER

DEF . SEUN defines an sfun, that is, it associates the name of an sfun with
the definition.

TO DEF.SFUN :NAME :NARGS :FUNC
FSET :NAME MAKE.SFUN.DEF :NARGS :FUNC
END

All sfun procedures’ names begin with a percent sign to distinguish
them from procedures that are part of MLogo itself. This makes it easy to
spot all the MLogo sfuns in the workspace (except those implemented
directly by Atari Logo primitives).

Ufun Definitions Include Arglist and Body

Like sfuns, ufuns have a definition, but the definition is slightly different.
A user procedure consists of an arglist and a body. The arglist is a list of
the input variables for the ufun. The body is a list of the lines of the
procedure. Like sfuns, ufun definitions are lists.

If we had defined SQUARE by

TO SQUARE :N
PRINT :N
PRODUCT :N :N
END

.. . then the definition would be

7SHOW FSYMEVAL “SQUARE
[UFUN 1 [N] [CPRINT :NJ[PRODUCT :N :N]1]

The arglist is [N], the body is [[PRINT :N1 [PRODUCT :N :N11J.
Remember that MLogo ufun definitions are stored by the interpreter as
Atari Logo variables, not as Atari Logo procedures.

The operation MAKE . UFUN . DEF makes a definition for a ufun. The oper-
ation UFUN . ARGL1ST outputs the arglist from the definition, and the opera-
tion UFUN.BODY extracts the ufun body from the definition.

TO MAKE.UFUN.DEF :ARGS :BODY
OP (SE “UFUN COUNT :ARGS LIST :ARGS :BODY)
END

T0O UFUN.ARGLIST :DEFINITION
OUTPUT FIRST BF BF :DEFINITION
END

TO UFUN.BODY :DEFINITION
QUTPUT FIRST BF BF BF :DEFINITION
END

311

312

PROGRAMMING IDEAS

Evaluating a Ufun Means Evaluating
the Lines of Its Body

An sfun is a primitive, but a ufun body is a collection of lines, each requiring
evaluation itself.

TO EVAL.BODY :LINES
OP EVAL.BODY1 "$NOVALUE :LINES
END

TO EVAL.BODY1 :VALUE :LINES

IF EMPTYP :LINES [OP :VALUE]

OP EVAL.BODY1 EVLINE FIRST :LINES BF :LINES
END

EVAL.BODY1 does the actual evaluation of the lines of the body. The
value of the ufun is the value of the last line evaluated.

EVAL .BODY1 recurses in the same way EVLINE does. To understand it,
look at the recursive call first. Each time EVAL . BODY1 recurses its first input
is the value from evaluating the previous line. When the last line is evalu-
ated, this is the value to output.

When EVAL.BODY1 is first called (from EVAL.BODY), it is passed
$NOVALUE as a first input. When first called, EVAL . BODY1 has yet to evaluate
a line, so there is no value to output from the ufun. If the ufun body is
empty, then $NOVALUE is output. Otherwise there is at least one line to
evaluate. EVAL . BODY1 evaluates the first line in the body, and recurses with
this value and the remainder of the lines.

Ufuns Have Inputs with Names

Ufuns can have inputs. The title line (and therefore the arglist) of a ufun lists
a set of variables that hold the inputs to the ufun. While a ufun is being
evaluated, it can find its inputs in these variables.

For example, if you have the procedure:

TO GREET :WHO
PRINT SE "HELLO :WHO
END

and you type:

GREET "PHIL

Logo (either Atari Logo or MLogo) responds:
HELLO PHIL

Logo acts as if the value of :WHO had been set by MAKE before any of
the instructions were evaluated. The effect is like what you could get by

IMAKE "WHO " PHIL
?PRINT SE "HELLO :PHIL

A LOGO INTERPRETER

The difference is that after the ufun GREET is finished, the variable wH0
has the same value it had before. Try it yourself if you don’t already know
this.

?MAKE "WHO [BAKED HAM]
?GREET “BOB

HELLO BOB

?SHOW :WHO

[BAKED HAM]

?MAKE "WHO “BOB

?PRINT SE "HELLO :WHO
HELLO B0B

?SHOW :WHO

808

Before EVAL . B0DY can do its work, the previous values of certain varia-
bles must be saved before those variables receive new values. The input
variables hold their values only for the duration of evaluation of the ufun,
and then they have their old values restored.

The process of setting and restoring of values is referred to as binding
the variables. Making binding work properly is one of the most difficult
parts of writing an interpreter.

APPLY . UFUN is called by APPLY to evaluate a ufun. See APPLY . SFUN for
comparison.

TO APPLY.UFUN :DEF :VALUES

BIND.ARGS UFUN.ARGLIST :DEF :VALUES
0P CLEANUP EVAL.BODY UFUN.BODY :DEF
END

BIND.ARGS saves the old values of variables in the arglist, then sets the
new values.

EVAL.BODY evaluates the forms of the body and outputs a value.

CLEANUP restores variables to their previous values. It outputs the value
of the ufun.

How Binding Is Implemented

BIND.ARGS does two things. It saves old values and it sets new ones. It
cooperates with CLEANUP, which restores the old values. These two proce-
dures cooperate through the global variable BIND . STACK, which is where
BIND.ARGS saves the values and CLEANUP finds them.

TO BIND.ARGS :ARGLIST :VALUES

PUSH “BIND.STACK BIND.FRAME :ARGLIST
SET.ARGS :ARGLIST :VALUES

END

The saved values are referred to collectively as a bind frame. The
operation BIND . FRAME builds a bind frame for the variables in the arglist.
BIND_ ARGS uses PUSH to save this frame in the shared variable
BIND.STACK, then calls SET.ARGS to set the new values.

313

314

PROGRAMMING IDEAS

TO SET.ARGS :NAMES :VALUES

IF EMPTYP :NAMES [STOP]

SET FIRST :NAMES FIRST :VALUES
SET.ARGS BF :NAMES BF :VALUES
END

SET.ARGS simply recurses through the argument list and the values.
There is a one-to-one correspondence between the argument list and the
values list. For each input there is a value.

After a ufun is evaluated it outputs a value, and this is the value that
APPLY . UFUN should output as the value of the ufun it was asked to apply.
But first the bound variables must be unbound. This is the purpose of
CLEANUP.

TO CLEANUP :VALUE
UNBIND

0P :VALUE

END

CLEANUP’s input is the output of the ufun. It holds onto this value while
UNBIND undoes the binding, then returns the held value. UNBIND is ex-
plained later.

A bind frame enables the interpreter to restore the values of the input
variables of a single ufun call. But a ufun can call other ufuns. We need one
bind frame for each ufun call. There will be as many bind frames as the
depth of calling. Bind frames are created as calls occur and cleaned up as
the call returns. The most recently added frame is always the one to clean
up.

We need to keep track of all these bind frames and ensure we bind and
unbind in the same order calls and returns are made. To do this, we use a
stack.

The Concept of a Stack

A stack is a method of arranging data. You can think of it as a pile of papers
on a desk. Only the topmost sheet is visible (if the stack is neat) because it
covers the others. If you add another sheet to the pile, it becomes the
topmost. You can only touch the top sheet. If you remove it, a new top sheet
is exposed.

This order of accessing is sometimes referred to as “Last In, First Out,”
because the last item added to the stack is the first one that can be removed.

Stacks Are Implemented by Lists

Most computers have machine instructions to implement stacks. But since
we wrote MLogo in Logo and not in machine language, we had to imple-
ment stacks. We decided to use Logo lists to hold stacks, and to put the top
of the stack at the front of the list so that we could use FIRST to get the top
item on the stack and FPUT to add a new one.

PUSH puts something on the top of a stack. It takes two inputs. The first
is the name of the word containing the stack, the second is the item to add
to the stack.

A LOGO INTERPRETER

TO PUSH :STACK :ITEM
MAKE :STACK FPUT :ITEM THING :STACK
END

PUSH makes a new list by adding the item to the old contents of the
stack. This new list is assigned to the variable holding the stack.

The operation POP outputs the top value on the stack. This value is
removed from the stack.

TO POP :STACK
OP POP1 :STACK THING :STACK
END

TO POP1 :STACK :LIST
MAKE :STACK BF :LIST
OP FIRST :LIST

END

The input to the operation P0? is the variable holding the stack. THING
of this variable outputs its value—the list holding the stack. The first item
in the list is the item to output. Before outputting it, POP1 sets the stack
variable to hold the BF of the list, thus removing the top item from the stack.

This example shows how stacks work.

?MAKE “STACK [1]
?PUSH “STACK 9
?SHOW :STACK
(91

?PUSH "STACK 5
?PUSH “STACK 2
7SHOW :STACK

[2 5 9]

?PRINT POP “STACK
2

2SHOW :STACK

(5 9]

Bind Frame in Detail

A bind frame is a list of bindings. Each binding is a list of a name and a value.
The name is the name of a variable that must be saved, and the value is the
value it had at the time it was saved.

A typical bind frame might be

[[A 3](NAME [JAMES ALLEN]]]

This bind frame is holding two variable bindings, for A and NAME,
BIND.FRAME makes a bind frame. Its input is the argument list of a
ufun. Each input is a variable whose value must be saved.

TO BIND.FRAME :ARGLIST

IF EMPTYP :ARGLIST (OP []]

OP FPUT BIND.ARG FIRST :ARGLIST BIND.FRAME BF :ARGLIST
END

315

316

PROGRAMMING IDEAS

BIND. FRAME recurses through the list, collecting one binding for each
variable. The operation BIND . ARG makes a binding for a variable. It outputs
a list of the variable name and the current value of the variable.

TO BIND.ARG :NAME
OP LIST :NAME GET.VARIABLE.VALUE :NAME
END

UNBIND pops a single frame off the stack and passes it to UNBIND . ARGS,
which acts like BIND. FRAME in reverse, restoring each saved value in the
frame.

TO UNBIND
UNBIND.ARGS POP “BIND.STACK
END

TO UNBIND.ARGS :FRAME
IF EMPTYP :FRAME (STOP]
UNBIND.ARG FIRST :FRAME
UNBIND.ARGS BF :FRAME
END

TO UNBIND.ARG :PAIR
SET FIRST :PAIR FIRST BF :PAIR
END

The interpreter’s top-level procedure, L0GO, initializes BIND . STACK to
hold an empty list.

T0 LOGO

MAKE "“BIND.STACK []
LOGOLOOP

END

The Sfun 10 Is Harder Than Others

In Logo the primitive T0 treats its inputs differently from all other sfuns.
It does not evaluate them. The first input to 70 is the name of the procedure
to define. The rest of the inputs are the names of the inputs of the procedure
being defined. These are written with dots to remind you that they are the
inputs.

2T0 SQUARE :A
>PRODUCT :A :A
>END

SQUARE DEFINED

T0 manages the trick of not evaluating its inputs by lying to the evalua-
tor about its number of inputs. It says it takes none but then goes and takes
them off LINE (where the current line is kept) by itself. EVAL . ARGS evalu-
ates the arguments as it collects them. This trick also lets T0 take as many
arguments as are present on the line.

The 70 definition is:

A LOGO INTERPRETER
[SFUN 0 %701

The procedures that implement it are

T0 %70
OP TOl NEXT.ITEM GATHER.ARGS
END

TO TO1 :NAME :ARGLIST

DEF.UFUN :NAME :ARGLIST READ.BODY
PRINT (SE :NAME "“DEFINED)

0P "TRUE

END

The GATHER.ARGS operation pops the input names directly off LINE
and removes the dots.

TO GATHER.ARGS

IF EMPTYP :LINE [OP [1]

0P FPUT UNDOT NEXT.ITEM GATHER.ARGS
END

DEF . UFUN takes as inputs the name of the procedure to define, a list of
its arguments, and its body, which is a list of the lines that make up the
procedure.

TO DEF.UFUN :NAME :ARGS :BODY
FSET :NAME MAKE.UFUN.DEF :ARGS :BODY
END

MAKE . UFUN . DEF makes the actual definition. We have already seen it.
READ.BODY reads an entire ufun body, prompting with > before read-
ing each line.

T0 READ.BODY
OP READ.BODY1 READ.LINE
END

TO READ.BODY1 :LINE

IF EQUALP :LINE [END] (OP []]

OP FPUT :LINE READ.BODY1l READ.LINE
END

READ . BODY1 recurses, reading a line each time, until it gets a line END.

Reading Things You Type

Both 70 and the LOGOLOOP need to get typein from the user. They don’t
want empty lines as input. Each has its own prompt character. They can
both share INPUT.LINE.

TO GET.LINE
OP INPUT.LINE *2
END

317

318

PROGRAMMING IDEAS

TC READ.LINE
0P INPUT.LINE ">
END

TO INPUT.LINE :PROMPT
TYPE :PROMPT

OP INPUT.LINEl RL

END

TO INPUT.LINE1 :INPUT

IF NOT EMPTYP :INPUT (OP :INPUT]
OP INPUT.LINE :PROMPT

END

INPUT.LINE] recurses until the user types a line that isn’t empty.

Some Improvements

Here are some modifications to MLogo to make it more like Atari Logo. We
didn’t include them in MLogo because we wanted to keep it simple to
explain. If you want to have these extra features, you can type in the
following procedures.

First, a synonym for PRINT,

DEF.SFUN “PR 1 "“%PRINT
Here's the sfun PO:

TO %P0 :NAME

TYPE SE “TO :NAME

PO.ARGS UFUN.ARGLIST FSYMEVAL :NAME
PO.BODY UFUN.BODY FSYMEVAL :NAME

0P :NAME

END

TO PO.ARGS :ARGLIST

[F EMPTYP :ARGLIST (PRINT [] STOP]
TYPE "\

TYRE: %«

TYPE FIRST :ARGLIST

PO.ARGS BF :ARGLIST

END

T0 PO.BODY :LINES

IF EMPTYP :LINES (PR "END STOP]
PRINT FIRST :LINES

P0O.BODY BF :LINES

END

PO is by far the longest sfun yet, because there is no useful Atari Logo
primitive for it. The Atari Logo primitive PO prints out Atari Logo user
procedures, which are not stored like MLogo user procedures.

The procedure PO.ARGS prints each word in the argument list,

A LOGO INTERPRETER

preceded by a space and a colon. (In the second line of P0 . ARGS, a space
appears after the backslash even though you can't tell from this listing.)
To add 0P to MLogo we have to change EVAL .BODY and EVAL . BODY1.
As is, each line is always evaluated. By adding a flag variable 0P? we can
cause evaluation to stop.
Here's the sfun 0P.

TO %0P :VALUE
MAKE "OP :VALUE
MAKE “OP? "TRUE
0P "TRUE

END

DEF.SFUN "“OP 1 "%0P

The input to 0P is the value to output. This value is stored in the
variable 0P for reference by the evaluator. %0P sets the flag 0P?, which
causes the evaluation of the body to stop.

We have to modify the evaluator to check these flags.

TO EVAL.BODY :LINES
OP EVAL.BODY1 :LINES "FALSE
END

TO EVAL.BODY1 :LINES :0P?

IF EMPTYP :LINES [OP "$NOVALUE]
IGNORE EVLINE FIRST :LINES

IF :0P? [OP :0P]

OP EVAL.BODY1 BF :LINES "FALSE

319

PROGRAM LISTING

TO LOGO TO NEXT.ITEM1 :FIRST

MAKE "BIND.STACK [] MAKE “LINE BF :LINE

LoGoLoOP OP :FIRST

END END

TO LOGOLOOP TO EVAL :ITEM

IGNORE EVLINE GET.LINE IF LISTP :ITEM [OUTPUT :ITEM]

LOGOLOOP IF NUMBERP :ITEM [OUTPUT :ITEMI]

END IF QUOTED? :ITEM [OUTPUT UNQUOTE »

: 1TEM]

TO EVLINE :LINE IF DOTTED? :ITEM [OUTPUT »

0P EVLINE1 “$SNOVALUE GET.VARIABLE.VALUE UNDOT :ITEM]

END OUTPUT EVAL.CALL FSYMEVAL :ITEM
END

TO EVLINE1 :VALUE

IF EMPTYP :LINE [OP :VALUE) TO QUOTED? :WORD

OP EVLINE1l EVAL NEXT.ITEM OUTPUT EQUALP FIRST :WORD "*

END END

TO NEXT.ITEM TO UNQUOTE :WORD

OP NEXT.ITEM1 FIRST :LINE OUTPUT BF :WORD

END END

320 PROGRAMMING IDEAS

TO DOTTED? :WORD TO SFUN? :DEFINITION
OUTPUT EQUALP FIRST :WORD “: OP EQUALP FIRST :DEFINITION “SFUN
END END
TO UNDOT :WORD TO NARGS :DEFINITION
QUTPUT BF :WORD OP FIRST BF :DEFINITION
END END
TO GET.VARIABLE.VALUE :WORD TO SFUN.FUNC :DEFINITION
IF BOUND? :WORD [OUTPUT SYMEVAL :WORD] QUTPUT FIRST BF BF :DEFINITION
OUTPUT () END
END
TO UFUN.ARGLIST :DEFINITION
TO VSYM :WORD QUTPUT FIRST BF BF :DEFINITION
OP WORD "# :WORD END
END
TO UFUN.BODY :DEFINITION
TO SET :SYM :VAL OUTPUT FIRST BF BF BF :DEFINITION
MAKE VSYM :SYM :VAL END
END
TO SYMEVAL :SYM TO APPLY :DEFINITION :VALUES
0P THING VSYM :SYM IF SFUN? :DEFINITION [OP APPLY.SFUN »
END :DEFINITION :VALUES]
OP APPLY.UFUN :DEFINITION :VALUES
TO BOUND? :WORD END
0P NAMEP VSYM :WORD
END TO APPLY.SFUN :DEF :VALUES
OUTPUT RUN SE SFUN.FUNC :DEF (QUOTIFY »
T0 FSYM :WORD :VALUES)
OP WORD "$:WORD END
END
TO QUOTIFY :VALS
TO FSYMEVAL :NAME IF EMPTYP :VALS [OUTPUT (1]
OQUTPUT THING FSYM :NAME OUTPUT FPUT QUOTIFY1 FIRST :VALS »
END QUOTIFY BF :VALS
END
TO FSET ;SYMBOL :DEF
MAKE FSYM :SYMBOL :DEF TO QUOTIFY1 :VAL
END IF NUMBERP :VAL [OP :VALI
IF WORDP :VAL [OP WORD “" :VAL]
TO EVAL.CALL :DEFINITION OUTPUT :VAL
0P APPLY :DEFINITION EVAL.ARGS NARGS » END
:DEFINITION
END
TO EVAL.ARGS :NARGS
TO MAKE.SFUN.DEF :NARGS :FUNC IF EQUALP :NARGS @ [OP (1]
OUTPUT (SE "SFUN :NARGS :FUNC) OUTPUT FPUT EVAL NEXT.ITEM EVAL.ARGS »
END :NARGS - 1
END

TO MAKE.UFUN.DEF :ARGS :BODY
0P (SE "UFUN COUNT :ARGS LIST :ARGS »
:BODY) TO APPLY.UFUN :DEF :VALUES
END BIND.ARGS UFUN.ARGLIST :DEF :VALUES
OP CLEANUP EVAL.BODY UFUN.BODY :DEF
END

A LOGO INTERPRETER

TO BIND.ARGS :ARGLIST :VALUES

PUSH “BIND.STACK BIND.FRAME :ARGLIST
SET.ARGS :ARGLIST :VALUES

END

TO SET.ARGS :NAMES :VALUES

IF EMPTYP :NAMES [STOP]

SET FIRST :NAMES FIRST :VALUES
SET.ARGS BF :NAMES BF :VALUES
END

TO CLEANUP :VALUE
UNBIND

0P :VALUE

END

TO BIND.FRAME :ARGLIST

IF EMPTYP :ARGLIST ([OP []]

OP FPUT BIND.ARG FIRST :ARGLIST »
BIND.FRAME BF :ARGLIST

END

TO BIND.ARG :NAME
OP LIST :NAME GET.VARIABLE.VALUE :NAME
END

TO UNBIND
UNBIND.ARGS POP “BIND.STACK
END

TO UNBIND.ARGS :FRAME
IF EMPTYP :FRAME [STOP]
UNBIND.ARG FIRST :FRAME
UNBIND.ARGS BF :FRAME
END

TO UNBIND.ARG :PAIR
SET FIRST :PAIR FIRST BF :PAIR
END

TO EVAL.BODY :LINES
OP EVAL.BODY1 "$NOVALUE :LINES
END

TO EVAL.BODY1 :VALUE :LINES

IF EMPTYP :LINES [OP :VALUE]

0P EVAL.BODY1 EVLINE FIRST :LINES BF »
:LINES

END

TO %PRINT :ARG
PRINT :ARG
QUTPUT :ARG
END

TO %IF :PRED :Cl1 :C2

IF :PRED [OP EVLINE :C1] [OP EVLINE »
:C21]

END

TO %MAKE :SYM :VAL
SET :SYM :VAL
OUTPUT :VAL

END

TO %FD :N
FD :N OP "TRUE
END

TO %RT :N
RT :N OP "TRUE
END

T0 %CS
CS OP "TRUE
END

TO %70
OP TO1 NEXT.ITEM GATHER.ARGS
END

TO TO1 :NAME :ARGLIST

DEF.UFUN :NAME :ARGLIST READ.BODY
PRINT (SE :NAME "DEFINED)

0P “TRUE

END

TC GATHER.ARGS

IF EMPTYP :LINE [OP []]

0P FPUT UNDOT NEXT.ITEM GATHER.ARGS
END

TO DEF.SFUN :NAME :NARGS :FUNC
FSET :NAME MAKE.SFUN.DEF :NARGS :FUNC
END

TO DEF.UFUN :NAME :ARGS :BODY
FSET :NAME MAKE.UFUN.DEF :ARGS :BODY
END

TO INIT
INITPRIMS
END

TO DEF.SSFUN :NAME :NARGS
DEF.SFUN :NAME :NARGS :NAME
END

321

322

TO INITPRIMS

PROGRAMMING IDEAS

TO READ.LINE

DEF.SSFUN "SUM 2 OP INPUT.LINE

DEF.SSFUN “PRODUCT 2 END

DEF.SSFUN "EMPTYP 1

DEF.SSFUN "EQUALP 2 TO INPUT.LINE

DEF,.SSFUN "LIST 2 TYPE :PROMPT

DEF.SSFUN "FIRST 1 OP INPUT.LINEL

DEF,SSFUN "BF 1 END

DEF.SSFUN "SE 2

DEF.SSFUN "WORD 2 TO INPUT.LINE1

DEF.SFUN “RT 1 "%RT IF NOT EMPTYP

DEF.SFUN "FD 1 "%FD 0P INPUT.LINE

DEF.SFUN “CS @ "%CS END

DEF.SFUN "THING 1 “GET.VARIABLE.VALUE

DEF.SFUN "MAKE 2 "%MAKE TO PUSH :STACK

DEF.SFUN “PRINT 1 "%PRINT MAKE :STACK FP

DEF.SFUN "IF 3 "%IF END

DEF.SFUN "TO © "%T0

END TO POP :STACK
0P POP1 :STACK

TO READ.BODY END

0P READ.BODY1 READ.LINE

END TO POP1 :STACK
MAKE :STACK BF

TO READ.BODY1l :LINE OP FIRST :LIST

IF EQUALP :LINE [END] (OP []] END

OP FPUT :LINE READ.BODY1l READ.LINE

END TO IGNORE :X
END

TO GET.LINE

OP INPUT.LINE "2

END

2

:PROMPT
RL
:INPUT

:INPUT [OP
:PROMPT

:INPUT]

:ITEM
UT :ITEM THING :STACK

THING :STACK

©% LTST
LIS

Map

Have you ever written a procedure like

TO LINEPRINT :LIST

IF EMPTYP :LIST [STOP]
PRINT FIRST :LIST
LINEPRINT BF :LIST

END

By Brian Harvey.

this:

MAP
Or like this:

TO TUNE :NOTES

IF EMPTYP :NOTES [STOP]
TOOT @ FIRST :NOTES 15 3¢
TUNE BF :NOTES

END

Or like this:

TO FLASH :COLORS

IF EMPTYP :COLORS [STOP]
WAIT 60

SETBG FIRST :COLORS
FLASH BF :COLORS

END

All of these procedures have a common pattern. They go through a list,
doing something with each member of the list, and then stop when they get
to the end of the list. The procedures differ in what they do with the
members of their input list. In one case it’s a list of things to print; in the
second it’s a list of frequencies of musical notes; in the third it's a list of color
numbers. But they all share this structure:

TO procedure.name :LIST
IF EMPTYP :LIST [STOP]
do.something.with FIRST :LIST

procedure.name BF :LIST
END

You can think of this skeleton procedure as a template for many proce-
dures that do similar work for you.

Mapping Commands

You can write a single procedure that does all these things. What's special
about it is that it is a general tool that can apply any procedure to each
member of a list. This general process is called mapping the procedure over
the list, so we call this general procedure MAP. Here are some examples.

?MAP [PRINT] [VANILLA CHOCOLATE GINGER LEMON]
VANILLA

CHOCOLATE

GINGER

LEMON
?

?MAP [PRINT FIRST] [VANILLA CHOCOLATE GINGER LEMON]
v

(L I i > 2]

323

324

PROGRAMMING IDEAS

?MAP [TYPE FIRST] [EVERY GOOD BOY DOES FINE]
EGBDF?

The first example of using MAP is equivalent to the procedure LINEPRINT
with which we started this discussion. The first input to MAP says what you
want to do to each member of the input list (in this example, PRINT it). The
second input is the list over which you are mapping. So the instruction

MAP [PRINT] [THIS IS A LIST]
is equivalent to
LINEPRINT [THIS IS A LIST]

Here are the procedure definitions.

TO MAP :TEMPLATE :LIST

IF EMPTYP :LIST (STOP]

RUN LPUT QUOTED FIRST :LIST :TEMPLATE
MAP :TEMPLATE BF :LIST

END

TO QUOTED :THING

IF LISTP :THING [OP :THING]
0P WORD " :THING

END

You can use MAP with more complicated instructions than just PRINT,
In the second example, the first input to MAP is the list [PRINT FIRSTI.
This example works as if we'd written a special procedure like this:

TO FIRST.PRINT :LIST
IF EMPTYP :LIST [STOP]

PRINT FIRST FIRST :LIST
FIRST.PRINT BF :LIST

END

We can use MAP to obtain the same effect as the FLASH procedure we
showed earlier.

MAP [WAIT 6@ SETBG] [@ 88 74 7]

To get the same effect as our TUNE procedure, we have to work a little
harder. The problem is that the frequency input to T00T comes in the
middle of the instruction, like this:

TOOT @ FIRST :NOTES 15 30

MAP expects to put each member of the list at the end of an instruction, not
in the middle. What we have to do is write an auxiliary procedure that takes
the frequency as a single input:

TO NOTE :FREQ
TOOT @ :FREQ 15 3¢
END

MAP
Now we can use MAP to get the same effect as TUNE:

MAP [NOTE] (449 880 220 440)

How It Works

What makes it possible for MAP to be a general-purpose tool instead of a
procedure for a specific purpose is its use of Logo’s RUN command. This
replaces the specific commands like PRINT or T00T or SETBG in the earlier
examples. The input to RUN is a Logo instruction that is assembled out of
two parts: the template, which is the first input to MAP, and one member
of the list, which is MAP’s second input.

Let’s look at an example. If we say

MAP [PRINT] (VANILLA CHOCOLATE GINGER LEMON]
then MAP has to carry out these four instructions:

PRINT “VANILLA
PRINT “CHOCOLATE
PRINT "“GINGER
PRINT “LEMON

Each of these four instructions is made by combining the template [PRINT]
with one member of [VANILLA CHOCOLATE GINGER LEMON]. The com-
bination is made using LPUT, which adds the list member at the end of the
template. For example, the expression

LPUT ""VANILLA (PRINT]

outputs the list

[PRINT “VANILLA]

The procedure MAP itself has much the same pattern as the examples
at the beginning of this discussion. The first instruction inside MAP is the
IF EMPTYP stop rule; the last instruction is the recursive use of MAP with
the BUTFIRST of the input list. Compare MAP with LINEPRINT, for example:

TO LINEPRINT :LIST

IF EMPTYP :LIST [STOP]
PRINT FIRST :LIST
LINEPRINT BF :LIST

END

TO MAP :TEMPLATE :LIST

IF EMPTYP :LIST [STOP]

RUN LPUT QUOTED FIRST :LIST :TEMPLATE
MAP :TEMPLATE BF :LIST

END

325

326

PROGRAMMING IDEAS

One possibly confusing detail in MAP has to do with quotation marks.
Notice that if you want Logo to print the word VANILLA, you can't say

PRINT VANILLA Wrong!
but must quote the input to PRINT:
PRINT “VANILLA

To assemble this instruction, the first input to LPUT must be the word
“VANI LLA, including the quotation mark as part of the word. The procedure
QUOTED is used by MAP to supply the needed quotation marks.

Mapping Operations

So far, the templates we've used have been commands. That is, they have
been Logo procedures that do something external, like print something,
make a sound, or change the color of the screen. An even more powerful
facility is to map operations over a list, producing (outputting) a new list of
the results. Perhaps an example will make this clearer.

7SHOW MAP.LIST [FIRST] [THIS IS A LIST]

[(T1 ALl
?

?SHOW MAP.LIST [SQRT] [1 2 3 4]

[1 1.414214 1.732051 2]
?

Like MAP, MAP.LIST generalizes a common pattern of Logo proce-
dures. The examples here could have been written as special-purpose
procedures this way:

TO EVERY.FIRST :LIST

IF EMPTYP :LIST [OP [1]]

OP FPUT (FIRST FIRST :LIST) (EVERY.FIRST BF :LIST)
END

TO EVERY.SQRT :LIST

IF EMPTYP :LIST (0P []]

OP FPUT (SQRT FIRST :LIST) (EVERY.SQRT BF :LIST)
END

MAP . LIST is an operation. Its output is a list of the same length as its
second input. Each member of the output list is the result of applying the
template to a member of the input list.

MAP
MAP . LIST itself follows the same pattern it generalizes.

TO MAP.LIST :TEMPLATE :LIST

IF EMPTYP :LIST [OP [1]

0P FPUT (RUN LPUT QUOTED FIRST :LIST :TEMPLATE)
(MAP.LIST :TEMPLATE BF :LIST)

END

Here the first input to FPUT is the same expression that was used to assemble
the instructions in MAP.

An example of using MAP. LIST to apply a procedure to each word of
a sentence is this program to translate a sentence into Pig Latin.

TO PIGLATIN :WORD

[F MEMBERP FIRST :WORD [A E I 0 U Y] [OP WORD :WORD "AY]
0P PIGLATIN WORD BF :WORD FIRST :WORD

END

?PRINT PIGLATIN "HELLO

ELLOHAY

7PRINT MAP.LIST [PIGLATIN] [THIS IS GREEK TO ME]
[STHAY ISAY EEKGRAY OTAY EMAY

?

Mapping Over Words

In Logo, we can assemble letters into words, just as we can assemble words
into lists. We can extend the idea of mapping to apply a procedure to each
letter of a word.

TO MAP.WORD :TEMPLATE :WORD

IF EMPTYP :WORD [OP "]

OP WORD (RUN LPUT QUOTED FIRST :WORD :TEMPLATE)
(MAP .WORD :TEMPLATE BF :WORD)

END

MAP .WORD is the same as MAP . L1 ST, except that it uses WORD instead of FPUT
as the combining operation, and it builds onto an empty word instead of an
empty list.

Here is an example of how to use MAP . WORD. Suppose you want to print
a word in inverse video (black on white). On the Atari computer, to print
any character in inverse video, you must add 128 to the code that repre-
sents that character.

7PRINT MAP.WORD [CHAR 128+ASCII] 'HELLO

HELLO

?

327

328

PROGRAMMING IDEAS

If we put this into a procedure, we can print an entire sentence with each
word inverted by combining MAP .WORD and MAP . LIST.

TO INVERT :WORD
0P MAP.WORD [CHAR 128+ASCII] :WORD
END

?PRINT MAP.LIST [INVERT] [THIS IS A TEST.]

J— B

VVVVVIVID D3

9

?PR MAP.LIST C(INVERT)[THIS IS & TEST)+
B

R R R R T Ry
-

List Reduction

There is one more way in which an operation can be applied to the mem-
bers of a list. Consider an operation with two inputs, like SUM or PRODUCT.
It is often convenient to be able to add up all the numbers in a list, or
multiply them together. Of course, as in the earlier situations, we could
write special-purpose procedures.

TO ADD :LIST

IF EMPTYP :LIST [OP @]

OP SUM (FIRST :LIST) (ADD BF :LIST)
END

TO MULTIPLY :LIST
IF EMPTYP :LIST (OP 1]
OP PRODUCT (FIRST :LIST) (MULTIPLY BF :LIST)

?PR ADD [1 2 3 4]
19
?PR MULTIPLY [1 2 3 4]

24
?

What we'd like to do is produce a general tool for these situations.

?PR REDUCE [SUM] [1 2 3 4]
10

MAP

?PR REDUCE [PRODUCT] [1 2 3 4]

24
?

There is one slight complication that prevents REDUCE from following
exactly the pattern of ADD and MULTIPLY. The problem is that each of those
procedures knows about the identity element for the corresponding opera-
tion. The identity element is the value to start with when the input list is
empty: 0 for SUM, 1 for PRODUCT. To make REDUCE a general tool, we want
to avoid building this kind of information into it. The solution is to apply
REDUCE recursively only down to the point where there are two members
remaining in the input list, then just apply the template to those two. The
resulting procedure is a little messy, but if you go through it carefully you'll
see that it's really much like the mapping procedures we've used before.

TO REDUCE :TEMPLATE :LIST
IF EMPTYP BF :LIST [OP FIRST :LIST]
IF EMPTYP BF BF :LIST [OP RUN SE :TEMPLATE
LIST (QUOTED FIRST :LIST) (QUOTED FIRST BF :LIST)]
OP RUN SE :TEMPLATE LIST (QUOTED FIRST :LIST)
(QUOTED REDUCE :TEMPLATE BF :LIST)
END

Here are more examples of how REDUCE can be used.

?PRINT REDUCE [WORD] [A B C DI

ABCD
?

TO REVERSE :LIST
OP REDUCE [LPUT] LPUT [1 :LIST
END

?SHOW REVERSE [A B C D]
(D CB Al

2

SUGGESTIONS
* You could modify these procedures so that the list members could
be inserted anywhere in the template, instead of only at the end. For
example, the music example that earlier required writing an auxil-
iary procedure NOTE could instead be written

MAP [TOOT @ ? 15 30) [449 880 220 440]

where the question mark indicates the position in the template into
which the members of the input list are placed.

* The general name for doing something over and over is iteration.
Mapping is a particular kind of iteration, based on using the mem-
bers of a list, one after the other. Other kinds of iteration can also be

329

PROGRAMMING IDEAS

invented using the RUN primitive. For example, here is an iteration
procedure that tests a predicate to control the repetition.

TO WHILE :PREDICATE :COMMAND
IF NOT RUN :PREDICATE (STOP]
RUN : COMMAND

WHILE :PREDICATE :COMMAND
END

7CS
?WHILE [HEADING < 271 [FD 19 RT 10]

?

You might try to write a procedure to create numeric iteration.

?STEP “NUM 3 7 [PRINT :NUM ° :NUMI]
9
16
25
36

49
?

* Use MAP .WORD and MAP . L1ST to implement a substitution cipher. A
cipher is a technique for protecting secret messages by transforming
each letter into some other form. (Ciphers are sometimes called
codes, but, strictly speaking, a code is a technique that transforms a
word by looking it up in a dictionary, rather than by manipulating
it letter by letter. A foreign language is like a code.) Write a proce-
dure that takes a single letter as input and outputs some secret
representation of the input letter. Then you can encipher a word by
applying MAP . WORD to it, and you can encipher a sentence by apply-
ing MAP _L1ST to encipher each word. The example of inverse video
works like a cipher, although of course the result isn't very secret.

* MAP.LIST uses FPUT to accumulate the results for each member of
the input list, and MAP WORD uses WORD to accumulate its results.
Logo has other accumulating operations: SE, L1ST, and LPUT. Try
writing versions of MAP . L1ST that use each of these. Are any of them
useful?

* Here is a tricky example.

TO FLATTEN :LIST

IF WORDP :LIST [OP :LIST]

OP REDUCE [SE] MAP.LIST [FLATTEN] :LIST
END

?SHOW FLATTEN [[THIS IS] [A [LIST11]

[THIS IS A LIST]
?

FLATTEN combines iteration over a list, list reduction, and recursion,
since the template input to MAP. L1ST uses FLATTEN itself. The pro-
cedure converts any list into a flat list, one that has only words as

MERGESORT

members. Can you see why both REDUCE and MAP.LIST must be
used? Compare the result of FLATTEN to these:

SHOW REDUCE [SE] [[THIS IS] [A (LIST1]]
SHOW MAP.LIST [FLATTEN] ([THIS IS] [A [LIST11]

331

PROGRAM LISTING

TO MAP :TEMPLATE :LIST TO MAP.WORD

:TEMPLATE :WORD

IF EMPTYP :LIST [STOP] IF EMPTYP :WORD [OP "]
RUN LPUT QUOTED FIRST :LIST :TEMPLATE OP WORD (RUN LPUT QUOTED FIRST :WORD »
MAP :TEMPLATE BF :LIST :TEMPLATE) (MAP.WORD :TEMPLATE BF »
END :WORD)
END
TO QUOTED :THING
IF LISTP :THING [OP :THING] TO REDUCE :TEMPLATE :LIST
0P WORD "" :THING IF EMPTYP BF :LIST [OP FIRST :LIST]
END IF EMPTYP BF BF :LIST [OP RUN SE »
:TEMPLATE LIST (QUOTED FIRST »
TO MAP.LIST :TEMPLATE :LIST :LIST) (QUOTED FIRST BF :LIST)]
IF EMPTYP :LIST [OP [1] OP RUN SE :TEMPLATE LIST (QUOTED FIRST »

0P FPUT (RUN LPUT QUOTED FIRST
:TEMPLATE) (MAP.LIST
:LIST)

(LIST »

:TEMPLATE BF » BF :LIST)
END

END

:LIST) (QUOTED REDUCE

:TEMPLATE »

Mergesort

People often want to use computers to sort information of various kinds.
For example, you may want to list your friends’ addresses in alphabetical
order, or you may want the same information arranged in order of their
birthdays to remind you when to send cards. Programmers have invented
many different techniques to solve the sorting problem. Generally, the
methods that are easy to understand tend to run slowly, while the faster
methods are rather complicated. Here is a method that is medium-fast and
medium-tricky. Its name is mergesort.

In Logo, we'll represent the information we want to sort as a list of
items. The general strategy is this:

1. Divide the list into two smaller parts.
2. Sort each part separately.
3. Merge the two sorted lists into one big sorted list.

This may not seem like much of a strategy, because we are still left with the
problem of sorting the smaller lists in the second step. But the clever part

Program by Danny Hillis; write-up by Brian Harvey.

332

PROGRAMMING IDEAS

is that if we keep applying the strategy to the smaller lists, eventually we
get lists with just one member, and we can simply declare these lists sorted.

Here's a specific example. To make it easy to read, we'll sort a list of
numbers in size order. Start with this list:

[14 3 27 1 19 5]
Divide it into two smaller lists.
[14 3 27] [1 10 5]

Now sort the first of the smaller lists. To do that, divide it into two smaller
lists.

[14 3] [27]
Now sort the first of these lists, again by dividing it into two smaller lists.
[14) [3]

Each of these lists has only one member, so each is already sorted. Now we
merge them to get

(3 14]

Now we can merge this list with its “partner,” which is the list [271. The
result is

[3 14 271

The next step is to sort the “partner” of this list, namely the list (1 10
51. This also involves dividing it into smaller lists, as before. To make this
example shorter, we’ll skip the steps of sorting the list (1 10 5]. Finally
we are left with two sorted lists:

[3 14 27] [1 5 10]
The last step is to merge these:

[1 3510 14 27]

Dividing a List into Two Parts

The first step in the sorting process is to divide a list into two parts. To do
that, we can use procedures FIRST.PART and LAST . PART.

TO FIRST.PART :LIST
OP FIRST.N (INT (COUNT :LIST)/2) :LIST
END

TO FIRST.N :NUMBER :LIST

IF :NUMBER=9 [OP :LIST]

OP FIRST.N :NUMBER-1 BL :LIST
END

TO LAST.PART :LIST
OP LAST.N (INT (1+COUNT :LIST)/2) :LIST
END

MERGESORT

TO LAST.N :NUMBER :LIST

[F :NUMBER=@ [OP :LIST]

OP LAST.N :NUMBER-1 BF :LIST
END

You may notice that LAST.PART refers to 1 + COUNT :LIST in-
stead of COUNT :LIST. The reason for this difference is that if the input
list has an odd number of members, we must divide the list into two pieces
that differ in length by one. For example, if the input list has five members,
FIRST.PART will output the first three members of the list and LAST . PART
will output the last two members.

?SHOW FIRST.PART [14 3 27 1 1¢]
[14 3 27]
?SHOW LAST,PART [14 3 27 1 19]

[1 10])
?

Merging Two Ordered Lists

The last step of the sorting procedure is to merge two lists. The MERGE
procedure assumes that each of the two lists is already in the correct order.
MERGE takes two inputs, namely, the two lists.

MERGE compares the first member of one input list with the first mem-
ber of the other list. One of these becomes the first member of the final
merged list; MERGE is applied recursively to the remaining members of the
input lists.

TO MERGE :A :B
IF EMPTYP :A [OP :B]
IF EMPTYP :B [0P :A)
IF COMPARE FIRST :A FIRST :B
[OP FPUT FIRST :A MERGE BF :A :B]
OP FPUT FIRST :B MERGE :A BF :B
END

MERGE uses a subprocedure, COMPARE, which tells whether one item
should come before or after another. COMPARE takes two inputs. It outputs
the word TRUE if the first input comes before the second input, or FALSE
otherwise.

You can write different versions of COMPARE depending on what order-
ing you want to use for your sorted lists. If you are sorting numbers by size,
as in the earlier example, you can use this version:

TO COMPARE :A :B
OUTPUT :A < :B
END

If you want to sort words alphabetically, or use some other ordering,
you need a more complicated version of COMPARE. We'll show an example
later.

333

PROGRAMMING IDEAS

Putting It All Together

We've written the easy parts of this sorting method. The hard part is putting
it all together. The main procedure SORT does this. It takes one input, which
must be a list. It outputs the same list, but with its members in sorted order.

TO SORT :A

IF EMPTYP :A [OP []]

IF EMPTYP BF :A [OP :A]

OP MERGE (SORT FIRST.PART :A) (SORT LAST.PART :A)
END

If the input list is empty, or has only one member, then the list is
already sorted. SORT outputs the list unchanged. For larger lists, SORT goes
through the steps we described at the beginning.

1. It uses FIRST . PART and LAST.PART to divide the list in two.
2. It uses SORT to sort each of these smaller lists.
3. It uses MERGE to combine the resulting ordered lists.

Alphabetical Order

Sometimes we want to deal with information composed of words or sen-
tences, rather than numbers. Here are procedures to alphabetize lists of
words.

TO COLLATE.BEFORE :A :B

IF EMPTYP :A [OP “TRUE]

IF EMPTYP :B [OP "FALSE]

IF COLLATE.BEFORE.WORD FIRST :A FIRST :B [OP "TRUE]
IF NOT EQUALP FIRST :A FIRST :B [0P “FALSE]

OP COLLATE.BEFORE BF :A BF :B

END

TO COLLATE.BEFORE.WORD :A :B

IF EMPTYP :A [OP “TRUE]

IF EMPTYP :B [OP “FALSE]

IF (ASCII FIRST :A) < (ASCII FIRST :B) [0OP “TRUE]
IF NOT EQUALP FIRST :A FIRST :B [0OP “FALSE]

0P COLLATE.BEFORE.WORD BF :A BF :B

END

COLLATE . BEFORE takes two inputs. Each input is a sentence (in other
words, a list of words). It outputs the word TRUE if the first input comes
before the second alphabetically.

COLLATE.BEFORE .WORD is similar to COLLATE . BEFORE, except that its
two inputs are single words instead of lists of words.

An Example

Here is a list of the greatest songs of all time.

MERGESORT

MAKE "RECORDS [
[[SHE LOVES YOU] [BEATLESI]]
[[SHE'S NOT THERE] [ZOMBIES]]
[[WATERLOO SUNSET] [KINKS1]
[LFLYING ON THE GROUND IS WRONG]
[BUFFALO SPRINGFIELDI]
[(MY GENERATION] [WHO01])

(To type in a long list like this, you have to use the Logo editor. When
you are typing directly to the ? prompt in Atari Logo, there is a limit to how
long a line you can type.)

This list contains five items. Each item is itself a list with two members,
the title and artist of a record. This is a simple example of a data structure.
That is, instead of having a list of words or a list of numbers, we have a list
of more complicated things, each of which is itself made up of smaller parts.

Suppose we want to sort these songs by title. We can define a COMPARE
procedure to do that.

TO COMPARE :A :B
OP COLLATE.BEFORE FIRST :A FIRST :B
END

The FIRST of each song is a list containing its title, so this version of COMPARE
sees which title comes first alphabetically.

?SHOW SORT :RECORDS
[CLFLYING ON THE GROUND IS WRONG] [BU->
FFALO SPRINGFIELD1] [[MY GENERATION] ->
[WHO1] [I[SHE LOVES YOU) [BEATLES]) [([->
SHE'S NOT THERE] [ZOMBIES]] [[WATERLO->
0 SUNSET] [KINKS1]1

?

We can make this prettier by using a formatting procedure to print
each record on a separate line.

TO FORMAT :LIST

IF EMPTYP :LIST [STOP]

PRINT SE "TITLE: FIRST FIRST :LIST
PRINT SE "...ARTIST: LAST FIRST :LIST
FORMAT BF :LIST

END

?FORMAT SORT :RECORDS

TITLE: FLYING ON THE GROUND IS WRONG
...ARTIST: BUFFALO SPRINGFIELD
TITLE: MY GENERATION

.. .ARTIST: WHO

TITLE: SHE LOVES YOU

... ARTIST: BEATLES

TITLE: SHE'S NOT THERE

...ARTIST: ZOMBIES

TITLE: WATERLOO SUNSET

... ARTIST: KINKS
?

335

336

PROGRAMMING IDEAS

Now suppose we want to sort the same list of records, this time by artist.
To do this, we replace the COMPARE procedure with one that uses the LAST
of each item instead of the FIRST.

TO COMPARE :A :B
0P COLLATE.BEFORE LAST :A LAST :B
END

The LAST of each song is a list containing the name of the group that
performed it.

?FORMAT SORT :RECORDS

TITLE: SHE LOVES YOU
...ARTIST: BEATLES

TITLE: FLYING ON THE GROUND IS WRONG
...ARTIST: BUFFALO SPRINGFIELD
TITLE: WATERLOO SUNSET

.. .ARTIST: KINKS

TITLE: MY GENERATION

.. .ARTIST: WHO

TITLE: SHE'S NOT THERE

... ARTIST: ZOMBIES

?

SUGGESTIONS

If you are interested in learning about other ways to write sorting
programs, the standard reference book on this subject is Sorting and
Searching, volume 3 of The Art of Computer Programming, by Donald E.
Knuth (Reading, Mass.: Addison-Wesley, 1973).

PROGRAM LISTING

TO FIRST.PART :LIST
0P FIRST.N (INT (COUNT
END

TO FIRST.N :NUMBER :LIST
IF :NUMBER=9 [OP :LIST]

0P FIRST.N :NUMBER-1 BL

END

TO LAST.PART :LIST

OP LAST.N (INT (1+COUNT
:LIST

END

:LIST)/2)

Note: There are three different versions of COMPARE in the write-up.
The one here is the first version. COMPARE 2 and COMPARE 3 are the other two
versions and can be substituted for COMPARE in MERGE.

TO LAST.N :NUMBER :LIST

(LIST IF :NUMBER=p [OP :LIST]
0P LAST.N :NUMBER-1 BF
END

(LIST

T0 MERGE :A :B

(LIST IF EMPTYP :A [OP :B]
IF EMPTYP :B (OP :A]
IF COMPARE FIRST :A FIRST :B [OP FPUT »
FIRST :A MERGE BF :A :B]
:LISTY/2) » 0P FPUT FIRST :B MERGE :A BF :B

END

BESTLINE 337

TO COMPARE :A :B IF NOT EQUALP FIRST :A FIRST :B [OP »
QUTPUT :A < :B "FALSE]
END OP COLLATE.BEFORE.WORD BF :A BF :B
END
TO SORT :A
IF EMPTYP :A [OP [11] TO COMPARE2 :A :B
IF EMPTYP BF :A [0P :A) OP COLLATE.BEFORE FIRST :A FIRST :B
OP MERGE (SORT FIRST.PART :A) (SORT » END
LAST.PART :A)
END TO FORMAT :LIST
IF EMPTYP :LIST ([STOP)
TO COLLATE.BEFORE :A :B PRINT SE “TITLE: FIRST FIRST :LIST
IF EMPTYP :A [0OP “TRUE] PRINT SE “.._ARTIST: LAST FIRST :LIST
IF EMPTYP :B [OP "“FALSE] FORMAT BF :LIST
IF COLLATE.BEFORE.WORD FIRST :A FIRST » END
:B [0P "TRUE)
IF NOT EQUALP FIRST :A FIRST :B [OP » TO COMPARE3 :A :B
“FALSE] OP COLLATE.BEFORE LAST :A LAST :B
OP COLLATE.BEFORE BF :A BF :B END
END
MAKE “RECORDS [[[SHE LOVES YOU] »
TO COLLATE.BEFORE.WORD :A :B [BEATLES]] [[SHE'S NOT THERE] »
IF EMPTYP :A [0P "TRUE] [ZOMBIES]) [[WATERLOOQ SUNSET] »
IF EMPTYP :B [0P "FALSE) [KINKS]] (CFLYING ON THE GROUND »
IF (ASCII FIRST :A) < (ASCI! FIRST :B) » IS WRONG] [BUFFALO SPRINGFIELDII »
[OP "TRUE] [[MY GENERATION] [WHOJ]))
.
Bestline

Bestline is a Logo project that draws the “best-fitting” straight line on a
Cartesian graph of some data points. It is a strategy commonly used among
scientists to predict the value of some quantity based on another.

An Example: A Scientific Experiment

I got the idea for this project while helping a friend interpret data from a
laboratory experiment. The purpose of the experiment was to find the
concentration of antibodies in each of a large number of test tubes. This is
done by adding radioactive iodine to the antibodies. A certain amount of
the iodine bonds to the antibody and the rest is removed. The concentration
of antibodies can be determined by measuring how much iodine bonded
to them. Since the iodine is radioactive, you can run it through a machine
that measures how much radiation is emitted by each test tube. In this
experiment, the radiation (rad) counts were collected and processed by a
computer in my friend’s lab. I thought I could write a Logo program that
could generate a “best-fit” line for this data and for samples of other data.

By Julie Minsky.
*In statistics, this kind of plot is called a scattergram.

338

PROGRAMMING IDEAS

Making a Graph of the Data

In the antibody experiment, we take samples of known antibody concentra-
tions, measure their radiation counts, and plot them on a graph. For each
known concentration, we plot the corresponding radiation count.* When
we plot all the points, we might see:

2400+
.
20004 .
g E 1600 + L }
co
g8 ’
§ 1200 4 .
3a
.
800 . .
400 1 .
3 e 4 4 4
+ + + + t
5 1.0 15 20 25

radiation count (rads)

We can use this plot for looking at the data from our samples of known
concentrations. How can we use this data to estimate the unknown concen-
trations of our experimental samples?

We know that for this kind of experiment, the radiation count of a
sample s proportional to the concentration of antibodies in it. That is, when
we double the concentration, the radiation emitted will be doubled. This
relationship suggests that the graph of radiation versus concentration is a
line. We need to find a line on which we can look up an estimate of the
concentration of a sample once we have experimentally found its radiation
count.

Looking Things Up on a Graph

| B

§E
2= .
2 —— — & — — — — — %
= =
g..

1200 1 .
1

&

&

radiation count (rads)

Let’s look at the graph above. It shows a regression line plotted for the data
points in this experiment.* Once we know how much radiation is emitted,

*The “best-fitting™ line through a sample of data points is called a “least squares,” or
regression, line and is calculated from the data points,

BESTLINE

we can estimate the concentration of antibodies present. For example, if
the radiation count is 2, then the concentration is estimated to be 1600
picograms/ml.

This line was already calculated for this particular experiment; some-
one plotted the data points and determined the line. Different samples of
data generate different graphs and regression lines.

For example, a realtor selling office space might want to know how
much to charge for a 1700-square-foot building. Let’s say the realtor called
other realtors who sold office space in the same community and asked them
how much they charged for buildings of different square footages. A helpful
graph would be price plotted against square footage. While the realtor
might consider other factors in setting the price (for example, property
location, condition of the building), she is able to estimate the market price
for the office space.

$480,000 4
4200004

360,0001 .

e $)

200004 € — — K — e — = — — =,
180,000 4+ .

1 S-S~

+ }
500 1000 1500

E
g

area
(square feet)
Possible Lines

Many different lines might be drawn through the known sample points.
How can we find a line that goes through all the measured points and makes
sense for our data?

Since this is a real-world experiment, the sample points don’t all lie
exactly on a straight line. We could draw lots of lines near these data points.
We would like to find the one line that goes as close as possible to all of
them.

24001

concentration
(picograms mi)
g

radiation count (rads)

339

340

PROGRAMMING IDEAS

Moving the line closer to some points will increase its distance from
others. Some of the lines fit the data so poorly that we wouldn’t even
consider them. Others would seem to be pretty good fits to the data. We
need to find a way of determining the line with the best fit, the line that
comes closest to all the points. How can we choose which line is the best
fit?

A Technique for Finding the Best Line

There are two things you need to know to plot a line: its slope (m) and its
y-intercept (b). The standard equation for a line is

y=mx+ b

Once you know m and b, you can use the equation to find the y
coordinate for any x.

A method usually used to find the best-fit line is called “least squares.”
The least squares line is that which minimizes the sum of the squares of the
vertical distances between the line and the data points. It is a neat way of
solving the problem when the real-world data points are not exactly on the
line (this is usually called minimizing the error). Let’s look at the following
graph.

concentration
(picograms/ml)
3

5 10 15 20 25
radiation count (rads)

Not all the data points fall on the regression line. The amount of “error”
of the regression line is the sum of the squares of the vertical distance of
each point from the line. If all the data points fall on the best-fit line the
error would be 0. This is the ideal; most real-world data do not behave so
neatly. The method of least squares is used to calculate a line that minimizes
the error.

Given a set of points, you can find the best-fit least squares line by
solving two equations: one to calculate the slope of the best-fit line and one
to calculate its y-intercept.

In our experiment, we have the x and y coordinates of N points. We
can use the coordinates and these two equations to find m and b:

BESTLINE

— NZIxy — 3x
NZx? — (Zx)?
Sy — mix
b==22_"_"=2"

N

The Greek letter sigma, X, is called summation notation; it means that
you add a set of numbers. £x means add up all the x coordinates from the
set of points. £2xy means you should multiply the x and y coordinates of
each point and add up all the products.

Using the Program

Here is an example of how to use BESTLINE. The text that is boldface is what
you type. Say your points are (28, 39), (25, 10), (140, 72), and (5, 2).

BESTLINE
PLEASE TYPE YOUR POINTS: X Y X Y ...
28 39 25 10 149 72 5 2

Before plotting the line, BESTLINE prints:

SLOPE = 0.4756966082
Y-INTERCEPT = 7.203018

Y = 0.4756966882 X + 7.203018
PRESS ANY KEY TO CONTINUE

When BESTLINE continues, it plots your points and draws the line that
best fits them.

e —
o

f;.,r"

POINTS PLOTTED.
3“:' 0.4782297879 X ¢+ 6.95806825
28

At the bottom of the screen BESTLINE prints:

ALL POINTS PLOTTED.
THE X FOR 2 = -10.93768151
THE X FOR 72 = 136.214933

341

342

PROGRAMMING IDEAS

To find the y coordinate on the best (fit line for a certain x-100, for
example) type:

SOLVE.Y 190
THE Y FOR 100 = 54.77267882

Similarly, you can use a procedure called SOLVE . X to find the x value
for a certain y.

How the Program Works

Overview

BESTLINE is the top-level procedure. It sets up a global variable,
POINTLIST, to contain the list of points the user types in. The list of x and
y coordinates the user types is converted into a list of lists by PAIRUP. Each
sublist contains the x and y coordinates for each point. In our example,
:POINTLIST is [[28 39) [25 10) [140 72] [5 2]). BESTLINE calls
LINE.EQUATION to find the slope and the y-intercept of the line that best
fits these points. BESTLINE then calls PLOTLINE to plot the points and draw
the best-fit line.

TO BESTLINE

HT TS CT

PR [PLEASE TYPE YOUR POINTS: X Y X Y ...]
MAKE “POINTLIST PAIRUP RL

LINE.EQUATION :POINTLIST

PR [PRESS ANY KEY TO CONTINUE]

IGNORE RC

WINDOW

PLOTLINE :POINTLIST

END

TO IGNORE :THING
END

LINE.EQUATION creates two global variables, M and 8. :M is the slope
of the line and is computed by LEAST.SQUARES.SLOPE. :B is the y-
intercept and is computed by YINTERCEPT.

TO LINE.EQUATION :POINTLIST

MAKE “M LEAST.SQUARES.SLOPE :POINTLIST
PR SE [SLOPE IS]1 :M

MAKE “B YINTERCEPT :POINTLIST

PR SE [Y\-INTERCEPT =] :B

PR (SE LY =] :M [X +] :B)

END

TO LEAST.SQUARES.SLOPE :POINTS
MAKE “SUMX BIGE :POINTS "JUSTX
OP ((COUNT :POINTS) * (BIGE :POINTS "XTIMESY)
- (:SUMX * BIGE :POINTS "JUSTY))
/¢ (COUNT :POINTS) * (BIGE :POINTS “XSQUARED)
= (:SUMX * :SUMX))
END

BESTLINE

TO YINTERCEPT :POINTS
OP (((BIGE :POINTS “JUSTY)

- (:M * BIGE :POINTS "JUSTX)) / COUNT :POINTS)
END

Both LEAST.SQUARES.SLOPE and YINTERCEPT rely on a collection of
procedures used by BIGE.

BIGE

BIGE takes two inputs, a list of points and the name of another proce-
dure. It sums the result of applying that procedure to each point in the list.*
(This procedure is called B1GE, pronounced “big-ee,” because the Greek
letter £, used as the summation symbol, looks like an upper-case “E."” For
example, if you type BIGE :POINTS “JUSTX, JUSTX will extract just
the x coordinate from each point in the list and B1GE will end up adding
up just the x's! BIGE :POINTS “XTIMESY adds up the products of the x
and y coordinates for each point. The procedures used with BIGE in the
formulas are JUSTX, JUSTY, XTIMESY, and XSQUARED.

TO BIGE :LIST :PROC

IF EMPTYP :LIST [OP @]

OP (SUM (RUN LIST :PROC FIRST :LIST)
BIGE BF :LIST :PROC)

END

TO JUSTX :POINT
OP FIRST :POINT
END

TO JUSTY :POINT
OP FIRST BF :POINT
END

TO XTIMESY :POINT
OP (JUSTX :POINT) * (JUSTY :POINT)
END

TO XSQUARED :POINT
0P (JUSTX :POINT) * (JUSTX :POINT)
END

Graphing

After the equation of the best-fit line is determined, PLOTLINE plots
your points and the line. PLOTLINE first uses PLOT . POINTS to draw your
points.

*BIGE is a mapping procedure. See Brian Harvey'’s Map project (p.322) for more about
mapping. .

343

PROGRAMMING IDEAS

TO PLOTLINE :LIST

SS

PLOT.AXES

PLOT.POINTS :LIST

WAIT 60

RANGE :LIST

IF :M = @ [PLOT.HORIZ STOP]

PU

SETPOS LIST XVALUE :MINY :MINY
PD

SETPOS LIST XVALUE :MAXY :MAXY
PRINT (SE LY =1 :M [X + 1 :B)
END

TO PLOT.AXES

MAKE “PN PN

IF :PN = 2 [SETPN 0] [SETPN PN + 1]
SETPC PN @

PU SETPOS [-150 @]

PD SETPOS [150 9]

PU SETPOS [0 -119]

PD SETPOS [@ 110]

PU SETPN :PN HOME

END

TO PLOT.POINTS :LIST
IF EMPTYP :LIST [PR [ALL POINTS PLOTTED.] STOP]

PU

SETPOS FIRST :LIST
PD FD ©

PLOT.POINTS BF :LIST
END

TO SOLVE.Y :X
PR (SE [THE Y FOR]) :X "= (:M * :X + :B))
END

TO SOLVE.X :Y
IF :M = @ [PRINT [NO SOLUTION, M=p] STOP]
PRINT (SE [THE X FOR] :Y "= XVALUE :Y)

END

TO XVALUE :Y

OP (:Y - :B) / :M
END

PLOTLINE then draws the best-fit line. If the slope (:M) is 0, then
PLOT.HORIZ draws the line. The procedure RANGE finds the smallest and
largest x and y coordinates for your set of points. SOLVE . X finds the best-fit
line’s x coordinate for the minimum y and maximum y computed by RANGE.
These are the procedures for finding and plotting the endpoints of the
best-fit line.

BESTLINE

TO RANGE :PLIST

MAKE “MINX LEAST.NUM XLIST :PLIST
MAKE “MINY LEAST.NUM YLIST :PLIST
MAKE “MAXX GREATEST.NUM XLIST :PLIST
MAKE “MAXY GREATEST.NUM YLIST :PLIST
END

TO LEAST.NUM :NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST :NUMS) < (FIRST BF :NUMS)
[OP LEAST.NUM SE BF BF :NUMS FIRST :NUMS]
OP LEAST.NUM BF :NUMS
END

TO GREATEST.NUM :NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST BF :NUMS) > FIRST :NUMS

[OP GREATEST.NUM BF :NUMS]
OP GREATEST.NUM SE BF BF :NUMS FIRST :NUMS
END

TO XLIST :POINTLIST

[F EMPTYP :POINTLIST [OP [1]

OP FPUT JUSTX FIRST :POINTLIST XLIST BF :POINTLIST
END

TO YLIST :POINTLIST

IF EMPTYP :POINTLIST ([OP [1]

OP FPUT JUSTY FIRST :POINTLIST YLIST BF :POINTLIST
END

PLOT.HORIZ is used in the special case when the slope of the line is 0.

TO PLOT.HORIZ

PU SETPOS LIST :MINX :B
PD SETPOS LIST :MAXX :B
END

PAIRUP and PAIRS are used by BESTLINE to convert a list of coordi-
nates typed by the user into a list of points that the program can use.

TO PAIRUP :LIST

IF 1 = REMAINDER COUNT :LIST 2 [MAKE “LIST BL :LIST]
OP PAIRS :LIST

END

TO PAIRS :LIST

IF EMPTYP :LIST [OP []]

0P FPUT SE FIRST :LIST FIRST BF :LIST PAIRS BF BF :LIST
END

346 PROGRAMMING IDEAS

PROGRAM LISTING

TO BESTLINE

HT TS CT

PR [PLEASE TYPE YOUR POINTS: X Y X Y »
B

MAKE “POINTLIST PAIRUP RL

LINE.EQUATION :POINTLIST

PR [PRESS ANY KEY TO CONTINUE]

IGNORE RC

WINDOW

PLOTLINE :POINTLIST

END

TO IGNORE :THING
END

TO LINE.EQUATION :POINTLIST

MAKE “M LEAST.SQUARES.SLOPE :POINTLIST
PR SE [SLOPE IS] :M

MAKE "B YINTERCEPT :POINTLIST

PR SE [Y\-INTERCEPT =] :B

PR (SE [Y =] :M [X +] :B)

END

TO LEAST.SQUARES.SLOPE :POINTS

MAKE “SUMX BIGE :POINTS “JUSTX

OP ((COUNT :POINTS) * (BIGE »
:POINTS “XTIMESY) - (:SUMX * »
BIGE :POINTS “JUSTY)) / ((»

COUNT :POINTS) * (BIGE :POINTS »

“XSQUARED) - (:SUMX * :SUMX))
END

TO YINTERCEPT :POINTS

OP (((BIGE :POINTS "JUSTY) - (:M »
* BIGE :POINTS “JUSTX)) / COUNT »

:POINTS)
END

TO BIGE :LIST :PROC
IF EMPTYP :LIST (OP 0]

OP (SUM (RUN LIST :PROC FIRST :LIST »

) BIGE BF :LIST :PROC)
END

TO JUSTX :POINT
OP FIRST :POINT
END

TO JUSTY :POINT
OP FIRST BF :POINT
END

TO XTIMESY :POINT
0P (JUSTX :POINT) * (JUSTY :POINT)
END

TO XSQUARED :POINT
OP (JUSTX :POINT) * (JUSTX :POINT)
END

TO PLOTLINE :LIST

SS

PLOT.AXES

PLOT.POINTS :LIST

WAIT 60

RANGE :LIST

IF :M = © [PLOT.HORIZ STOP]

PU

SETPOS LIST XVALUE :MINY :MINY
PD

SETPOS LIST XVALUE :MAXY :MAXY
PRINT (SE [Y =1 :M [X + 1 :B)
END

TO PLOT.AXES

MAKE “PN PN

IF :PN = 2 [SETPN 0] [SETPN PN + 1]
SETPC PN 0

PU SETPOS [-15¢ @]

PD SETPOS [15¢ 0]

PU SETPOS [0 -110]

PD SETPOS (0 1191

PU SETPN :PN HOME

END

TO PLOT.POINTS :LIST
IF EMPTYP :LIST [PR [ALL POINTS »
PLOTTED.1 STOP]

PU

SETPOS FIRST :LIST
PD FD 9@

PLOT.POINTS BF :LIST
END

TO SOLVE.Y :X
PR (SE [THE Y FOR] :X “= (:M * :X + »

:B))
END

TO SOLVE.X :Y

IF :M = @ [PRINT [NO SOLUTION, M=9] »
STOP]

PRINT (SE [THE X FOR] :Y "= XVALUE :Y)

END

LINES AND MIRRORS 347
TO XVALUE :Y TO XLIST :POINTLIST
QR L= :BI M IF EMPTYP :POINTLIST [OP (1]
END 0P FPUT JUSTX FIRST :POINTLIST XLIST »
BF :POINTLIST
TO RANGE :PLIST END
MAKE “MINX LEAST.NUM XLIST :PLIST
MAKE "MINY LEAST.NUM YLIST :PLIST TO YLIST :POINTLIST
MAKE “MAXX GREATEST.NUM XLIST :PLIST IF EMPTYP :POINTLIST [OP (1]
MAKE “MAXY GREATEST.NUM YLIST :PLIST OP FPUT JUSTY FIRST :POINTLIST YLIST »
END BF :POINTLIST
END

TO LEAST.NUM :NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS] TO PLOT.HORIZ
IF (FIRST :NUMS) < (FIRST BF :NUMS » PU SETPOS LIST :MINX :B

) [OP LEAST.NUM SE BF BF :NUMS » PD SETPOS LIST :MAXX :B

FIRST :NUMS] END
0P LEAST.NUM BF :NUMS
END TO PAIRUP :LIST

IF 1 = REMAINDER COUNT :LIST 2 [MAKE »

TO GREATEST.NUM :NUMS “LIST BL :LIST]
IF EMPTYP BF :NUMS [OP FIRST :NUMS] OP PAIRS :LIST
IF (FIRST BF :NUMS) > FIRST :NUMS » END

[OP GREATEST.NUM BF :NUMS]
OP GREATEST.NUM SE BF BF :NUMS FIRST » TO PAIRS :LIST

: NUMS [F EMPTYP :LIST [OP [1]
END OP FPUT SE FIRST :LIST FIRST BF :LIST »

PAIRS BF BF
END

:LIST

Lines and Mirrors

This program was designed to simulate a beam of light bouncing off mirrors
or a ball bouncing off walls. The user enters the coordinates of endpoints
of lines. The program then draws the lines and starts the turtle going in a
random direction. When the turtle hits one of those lines, it will bounce off
at the same angle at which it came in. The turtle draws its path as it goes.
You can think of the turtle’s path as a beam of light and the lines as mirrors.

In this write-up there are three main sections: first, how the program
calculates the angle at which the turtle should bounce after hitting a line;
second, how the information about the lines is remembered; and third, the
detailed structure of the program.

By Toby Mintz.

348

PROGRAMMING IDEAS

—

|

/\‘_‘

i\

—

Bouncing Off a Line

What Is a Line?

ol

You probably know that two points determine a line, as in the following

illustration.

Another way to determine a line is by its slope (m) and y-intercept (b). The
slope is the steepness of the line. In the following figure the line on the right
rises twice as fast as the line on the left.

Slope =1

-
-
-

LINES AND MIRRORS
There may be many different lines with the same slope. A way to

distinguish these lines is by their y-intercept. The y-intercept is the point
at which the line crosses the y axis.

Y~Intercept 6

—

Y-intercept -1

Calculating the Turning Angle

For our purposes we need a representation that tells us where the line
is and what its orientation is. (The orientation is particularly important
because the problem we are trying to solve is about directions of motion.)
These aspects of lines are reminiscent of the major components of the state
of a turtle: position and heading. This suggests that the best way to repre-
sent the orientation of a line is by the heading that a turtle would take to
draw it.

It is important for us to know the heading of a line in order to figure
out how the turtle should bounce off it. The angle at which the turtle comes
in (angle of incidence) should be the same as the angle at which it bounces
out (angle of reflection).

A A

The angle of incidence is the amount the turtle must turn to get from its
initial heading to the heading of the line.

LA

349

PROGRAMMING IDEAS

So we get
(line’s heading) — (turtle’s heading)
as the angle of incidence. The angle of reflection should also be
(line’s heading) — (turtle’s heading)
The total amount through which the turtle turns is therefore
2 x |(line’s heading) — (turtle’s heading)|

A A

Figuring Out the Heading

In fact, we are not given the heading or the position of a line. All we
are given are its two endpoints. With the two endpoints we can figure out
the slope. Then we can use the ARCTAN procedure, described in the To-
wards and Arctan project, to figure out the heading. The procedure to
figure out the heading is as follows.

TO FIGH :LINE

IF ¢ DX :LINE) = 0 [OP 0]
OP 99 - ARCTAN SLOPE :LINE
END

(It is 90-ARCTAN because Logo headings are clockwise from north, not
counterclockwise from east as in algebra.)

Figuring Out the Slope

The slope is the difference between the y coordinates of any two points
on the line divided by the difference between the x coordinates of those
points (Ay /Ax, where A stands for “difference in”).

+

g +
2
1
PYEeET LT
—y +—t e

gt ——

b 2 +*r 2

-+

4

Slope = 1 i Slope = Y2

LINES AND MIRRORS

Traditionally, a line is represented by the equation y = mx + b. Given
m and b, we can tell whether a particular point is on a particular line. For
example, if

YCOR = (m X XCOR) + b
then we know that the turtle’s position is on the line.

mof line = % (%°3)+1=6
s 4 bof line = 1 So the point is
L YCOR = 6 on the line.
X XCOR =3

We use Ay / Ax to figure out the slope. But if the line is vertical (the two
x coordinates are the same), then the slope is infinite, so the procedure to
figure out the slope has to treat that case in a special way. The procedures
to figure out the slope (m) and y-intercept (b) of the line are as follows.

T0O FIGM :LINE
IF (DX :LINE) = 0 [OP [)] [OP SLOPE :LINE]
END

TO SLOPE :LINE
OP (DY :LINE) / DX :LINE
END

TO DY :LINE
OP (LAST POINT1 :LINE) - (LAST POINT2 :LINE)
END

TO DX :LINE
OP (FIRST POINTL :LINE) - (FIRST POINT2 :LINE)
END

T0 FIGB :LINE

IF (M :LINE) = [1 (OP (]]

0P (LAST POINT1 :LINE) = ((M :LINE) * (FIRST POINT1 :LINE))
END

Information We Need About a Line

What information does this program need about a line?
It needs the heading for use in calculating the turning angle when the
turtle hits the line.

351

352

PROGRAMMING IDEAS

It uses slope and y-intercept to figure out if a position is on a line, with
the equation y = mx + b.

It also needs the endpoints. Why? So far we have been talking about
lines, which are infinitely long. Really the program has to deal with line
segments, which have two endpoints.

So we finally need five pieces of information to represent a line seg-
ment: two endpoints, heading, slope, and y-intercept.

Storing the Lines

What Each Line Looks Like

The only thing that the user gives the program is the endpoints of lines.
From this the slope, heading, and y-intercept are figured out. The program
has to have a way of storing all this information in some kind of organized
structure. It stores the five pieces of information about the line in a list of
the following format:

[[x1 y1] [x2 y2] slope heading y-intercept]
Here is a sample line and the list that represents it.

([0 1) [2 5] 2 26.5651 1]

L
=

Retrieving Information About Lines

Throughout the program we need to recall information about lines. We
could do it in a messy way. For example, to retrieve the slope of a line we
could say

FIRST BF BF :LINE

The program would get very ugly and confusing if we used that approach.
A much clearer and neater way is to have a procedure that extracts one
piece of information about a line. So we could say M :LINE to retrieve
the slope, or POINT2 :LINE to retrieve the coordinates of the second
endpoint. By using these procedures, other parts of the program do not
have to know the detailed structure of a line list. The procedures also make

LINES AND MIRRORS

the program much easier to read and understand. Here are the information
retrieving procedures.

TO POINT1 :LINE
OP ITEM 1 :LINE
END

TO POINT2 :LINE
OP ITEM 2 :LINE

END

TO M :LINE

OP ITEM 3 :LINE
END

TO D :LINE

0P ITEM 4 :LINE
END

T0 B :LINE

OP ITEM 5 :LINE
END

TO ITEM :INUM ;LIST

IF :INUM = 1 [OP FIRST :LIST]

OP ITEM :INUM - 1 BUTFIRST :LIST
END

The List of Lines

Since the program has to keep track of a lot of lines, it stores them all
in a list called LINES. The elements of : LINES are themselves lists, each
representing a line. For example, the border lines and the line shown
earlier would be represented as follows:

[[[-158 -119] [-158 120] (] ¢ ()]
(161 -119) [161 1201 (1 0 [1]
[[-158 120) [161 120] 0 90 120]
[[-158 -119] [161 -119] @ 9¢ -119]
(e 11 [2 5] 2 26.5651 1]]

+
4

4+
~
.

.

PROGRAMMING IDEAS

Program Structure

The top-level procedure is BOUNCE. It has four tasks. First it creates the list
of lines. Then it sets up the initial position and shape of the turtle. The third
task is to draw the lines in the list. Finally it starts the turtle moving and
prepares to turn the turtle when it bounces off a wall. There is a subproce-
dure for each of these tasks.

TO BOUNCE
LEARN.LINES
SETUP.GRAPHICS
DRAW.LINES
START.TURTLE
END

Creating the List of Lines

When the program starts up, LEARN. LINES creates the list of lines. It
calls INFO, to remember the lines which the user enters. It also calls
BORDER, which remembers the border lines.

TO LEARN.LINES
MAKE “LINES []
INFO

BORDER

END

INFO lets the user enter lines. It calls GETLINE to get each line and calls
REMEMBER to add each line to the list : LINES.

TO INFO

REMEMBER GETLINE

PRINT [ANOTHER LINE?]

IF EQUALP RL [YES) [INFO]
END

GETLINE asks the user to type in the endpoints of a line segment. It calls
F1GLINE to calculate the other information about the line. The output from
GETLINE is the list representing the line.

TO GETLINE

TYPE [X AND Y OF FIRST POINT?]
MAKE “FP RL

TYPE [X AND Y OF SECOND POINT?])
MAKE “SP RL

MAKE “LINE LIST :FP :SP

OP FIGLINE :LINE

END

FIGLINE takes the endpoints of a line segment as its input. It calls
F1GM, F1GH, and F I GB to compute the slope, heading, and y-intercept of the
line.

LINES AND MIRRORS

TO FIGLINE :LINE

MAKE “LINE LPUT FIGM :LINE :LINE
MAKE “LINE LPUT FIGH :LINE :LINE
MAKE “LINE LPUT FIGB :LINE :LINE
0P :LINE

END

REMEMBER adds a line to the list of lines (: LINES).

TO REMEMBER :LINE
MAKE "LINES FPUT :LINE :LINES
END

BORDER remembers the four lines making up the border of the screen.

TO BORDER

REMEMBER FIGLINE [([-158 -1191 [-158 120]]
REMEMBER FIGLINE [[161 -119] [161 120]]
REMEMBER FIGLINE [[-158 129] [lel 1201]
REMEMBER FIGLINE [(-158 -119] [lé6l -1191]
END

Setting Up Graphics

SETUP.GRAPHICS selects turtle 0 and changes its shape. We don’t use
the normal turtle shape because later on we will need to know the precise
position of the turtle. The normal turtle shape is big enough that its edges
are at a very different position from the position of the center, which XCOR
and YCOR output. Instead, we use a small square dot shape.

TO SETUP.GRAPHICS
ASK [1 2 3] [HT]
TELL ©

PUTSH 1 :SHAPE1
SETSH 1

Cs

ST

FS

END

MAKE “SHAPE1 [0 0 @ © 0 0 60 60 60 60 0 2 0 0 0 9]

Drawing the Lines

DRAW.LINES draws the lines in :LINES on the screen. The lines are
drawn with pen 1. Later, when the turtle is moving, its trajectory is drawn
with pen 0. Using a different pen for the walls allows the demon to notice
collisions with the walls and not notice collisions between the turtle and its
own earlier path.

TO DRAW.LINES
SETPN 1

DRAW :LINES
END

1

[T

355

PROGRAMMING IDEAS

TO DRAW :LIST

IF EMPTYP :LIST [STOP]

PU

SETPOS POINT1 FIRST :LIST
PD

SETPOS POINT2 FIRST :LIST
DRAW BUTFIRST :LIST

END

Starting the Turtle

START.TURTLE positions the turtle in the center of the screen, points
it in a randomly chosen direction, and starts it moving. It also creates the
demon that waits for collisions with lines. Finally, START. TURTLE calls
L00P, which is explained next.

TO START.TURTLE

SETPN ©

PU

SETPOS [0 0]

PD

SETH RANDOM 360

SETSP 2¢

WHEN OVER @ 1 [SETSP 0 WHEN OVER @ 1 ([]]
LOOP

END

Knowing When a Line Is Hit

While the turtle is moving, L00P continually checks if it has hit a line.
LOOP knows the turtle has hit a line when its speed becomes zero.

TO LOOP

IF SPEED = 0 [NEWHEAD]
LoorP

END

How does the speed become zero? There is a demon, created by
START . TURTLE, whose instructions include SETSP 0.

WHEN OVER @ 1 [SETSP @ WHEN OVER @ 1 [1]

Setting the turtle’s speed to zero is a convenient way for the demon to signal
to LOOP that the turtle has hit a line. We could have changed something else
as the signal, but we had to stop the turtle anyway. Otherwise the turtle
would go through the line. Using the speed as the signal solves two prob-
lems at once.

When the speed is zero, LOOP calls NEWHEAD to figure out which line was
hit and how much the turtle should turn.

LINES AND MIRRORS

Which Line Is Being Hit?

When a line is hit, NEWHEAD calls SEARCH to go through the list of lines,
finding the one that was hit. Then NEWHEAD uses that line as the input to
FIGTURN, which figures out how much the turtle should turn. Finally,
NEWHEAD restarts the turtle and the demon.

TO NEWHEAD

MAKE “L SEARCH :LINES

IF NOT EMPTYP :L [RIGHT FIGTURN :L]
SETSP 20

WHEN OVER @ 1 [SETSP @ WHEN OVER @ 1 [1]
END

SEARCH goes through the list of lines, looking for the one the turtle hit.
It calls the predicate CHECK for each line in the list. If CHECK outputs TRUE,
SEARCH outputs the line that has been found.

TO SEARCH :LINES

IF EMPTYP :LINES [OP [1]

IF CHECK FIRST :LINES [OP FIRST :LINES]
0P SEARCH BF :LINES

END

How to Check a Line

The straightforward way to check if the turtle hit a certain line is to use
the equation y = mx + b, substituting the XCOR and YCOR of the turtle for
x and y. If the equation holds true, then the turtle hit that line.

TO CHECK1 :LINE
0P YCOR = SOLVE :LINE XCOR
END

TO SOLVE :LINE :X
OP ((M :LINE) * :X) + B :LINE
END

There are three problems. The first problem has to do with the fact that
we are using line segments and not lines. Look at the following picture.

357

PROGRAMMING IDEAS

The turtle has hit line segment #1. The turtle’s coordinates satisfy the
equation y = mx + b for the line containing that segment. The turtle has
not hit line segment #2. However, the line containing that segment
happens to pass through the turtle’s position. Therefore, the equation
y = mx + b for that line is also satisfied. CHECK must also check to see if
the turtle is between the two endpoints of the line segment.

TO CHECK2 :LINE

IF NOT BETWEEN XCOR (FIRST POINT1 :LINE)
(FIRST POINT2 :LINE) [OP FALSE]

0P YCOR = SOLVE :LINE XCOR

END

TO BETWEEN :THING :LIMIT1 :LIMIT2
[F :LIMIT1 > :LIMIT2 [OP AND (GE :LIMIT1 :THING)
(GE :THING :LIMIT2)]
[OP AND (GE :LIMIT2 :THING) (GE :THING :LIMIT1)]

END

TO GE :A :B
0P NOT :A < :B
END

The second problem is that the turtle isn't actually one point; it is
slightly bigger. This means that when the edge of the turtle hits a line, the
turtle’s coordinates won't match up exactly with the line’s, because the
turtle’s coordinates are those of its center, not those of its edge. In this
program the turtle has a square shape. If its YCOR is within seven units of
the line’s y value for the turtle’s XCOR, we consider the turtle to be on the
line. The number seven worked out best experimentally. Larger numbers
lead to false hits. Smaller ones lead to not finding any hits at all. Our updated
version of CHECK looks like this.

TO CHECK3 :LINE

IF NOT BETWEEN XCOR (FIRST POINT1 :LINE)
(FIRST POINT2 :LINE) (OP FALSE]

OP (ABS (SOLVE :LINE XCOR) - YCOR) < 7

END

TO ABS :NUMBER
OP IF :NUMBER < @ [- :NUMBER] [:NUMBER)
END

The last problem is that vertical lines have an infinite slope (Ax is zero
in Ay /Ax). SOLVE won't work for a vertical line, because it needs a numeric
slope. Also, we can’t check to see if the turtle is between the x values of the
endpoints of the line, because the x values are the same; there is no “be-

LINES AND MIRRORS

tween.”™* So, for a vertical segment, we have to see if the YCOR of the turtle
is between the y values of the two endpoints.

Instead of calling SOLVE, we'see if the XCOR of the turtle is within seven
units of the x value of one of the endpoints. Our final version of CHECK looks
like this.

TO CHECK :LINE
OP IF EMPTYP M :LINE [CHECK.VERT :LINE] [CHECK.SLANT :LINE]
END

TO CHECK.SLANT :LINE

IF NOT BETWEEN XCOR (FIRST POINT1 :LINE)
(FIRST POINT2 :LINE) [OP "FALSE]

0P (ABS (SOLVE :LINE XCOR) - YCOR) < 7

END

TO CHECK.VERT :LINE

IF NOT BETWEEN YCOR (LAST POINT1 :LINE)
(LAST POINT2 :LINE) [OP "FALSE]

OP (ABS XCOR - FIRST POINT1 :LINE) < 7

END

Turning the Turtle

Once NEWHEAD knows which line was hit, it can figure out how much
to turn the turtle. The turtle’s original heading is provided by the primitive
procedure HEADING. The heading of the line is provided by

D :LINE

Recall that the angle through which the turtle should turn is therefore
2 « ((D :LINE) - HEADING)

NEWHEAD calls FIGTURN to figure out how much the turtle should turn:

TO FIGTURN :L
OP 2 «+ ((D :L) - HEADING)
END

*This is not exactly true, If the turtle’s XCOR is equal to the x values of the line, then in
a sense the turtle is between the x values. This doesn’t mean the turtle is on the line segment.
The problem is that for a vertical line segment, the turtle's YCOR might not be between the
y values of the endpoints of the line segment, even though the XCOR is in the right range. For
diagonal lines, if one coordinate is in range, the other must also be in range,

359

360 PROGRAMMING IDEAS

PROGRAM LISTING

TO FIGH :LINE OP ITEM :INUM - 1 BUTFIRST :LIST
IF (DX :LINE) = @ [OP 0] END
OP 90 - ARCTAN SLOPE :LINE
END T0 BOUNCE
LEARN.LINES
TO FIGM :LINE SETUP.GRAPHICS
IF ¢ DX :LINE) = 0 (OP []] [OP SLOPE » DRAW.LINES
:LINE] START.TURTLE
END END
TO SLOPE :LINE TO LEARN.LINES
OP (DY :LINE) / DX :LINE MAKE "LINES []
END INFO
BORDER
TO DY :LINE END
OP (LAST POINT1 :LINE) = (LAST »
POINT2 :LINE) TO INFO
END REMEMBER GETLINE
PRINT [ANOTHER LINE?]
TO DX :LINE IF EQUALP RL [YES] [INFO]
OP (FIRST POINT1 :LINE) = (FIRST » END
POINT2 :LINE)
END TO GETLINE
TYPE [X AND Y OF FIRST POINT?]
TO FIGB :LINE MAKE “FP RL
IF (M :LINE) = [] (OP (1] TYPE [X AND Y OF SECOND POINT?]
OP (LAST POINT1 :LINE) = ((M :LINE) » MAKE “SP RL
* (FIRST POINT1 :LINE))} MAKE “LINE LIST :FP :SP
END OP FIGLINE :LINE
END
TO POINT1 :LINE
OP ITEM 1 :LINE TO FIGLINE :LINE
END MAKE “LINE LPUT FIGM :LINE :LINE
MAKE “LINE LPUT FIGH :LINE :LINE
TO POINT2 :LINE MAKE "LINE LPUT FIGB :LINE :LINE
OP ITEM 2 :LINE 0P :LINE
END END
TO M :LINE TO REMEMBER :LINE
OP ITEM 3 :LINE MAKE “LINES FPUT :LINE :LINES
END END
TO D :LINE TO BORDER
OP ITEM 4 :LINE REMEMBER FIGLINE [[-158 -119] [-158 »
END 12011
REMEMBER FIGLINE [[161 -119] [161 »
TO B :LINE 12011
OP ITEM 5 :LINE REMEMBER FIGLINE [[-158 1201 [161 »
END 12¢1]
REMEMBER FIGLINE [[-158 -119] [161 »
TO ITEM :INUM :LIST -119]1)

IF :INUM = 1 [OP FIRST :LIST] END

TO SETUP.GRAPHICS
ASK [1 2 31 [HT]
TELL o

PUTSH 1 :SHAPE1
SETSH 1

cs

ST

)

END

TO DRAW.LINES
SETPN 1

DRAW :LINES
END

TO DRAW :LIST

IF EMPTYP :LIST [STOP]

PU

SETPOS POINT1 FIRST :LIST
PD

SETPOS POINT2 FIRST :LIST
DRAW BUTFIRST :LIST

END

TO START.TURTLE
SETPN ©

PU

SETPOS (9 91

PD

SETH RANDOM 360
SETSP 20

WHEN OVER @ .1 [SETSP @ WHEN OVER 0 1 »

(1]
Loop
END

TO LOOP

IF SPEED = @ [NEWHEAD]
LooP

END

TO NEWHEAD
MAKE "L SEARCH :LINES

IF NOT EMPTYP :L [RIGHT FIGTURN :

SETSP 20

WHEN OVER @ 1 [SETSP @ WHEN OVER @ 1 »

[11
END

TO SEARCH :LINES
IF EMPTYP :LINES [OP [1]

IF CHECK FIRST :LINES [OP FIRST »

:LINES)
0P SEARCH BF :LINES
END

LINES AND MIRRORS

TO SOLVE :LINE :X
0P ((M :LINE)
END

TO BETWEEN :THING

END

TO GE :A :B

OP NOT :A < :B
END

TO ABS :NUMBER

OP [F :NUMBER < 9@
[:NUMBER)

END

TO CHECK :LINE

*:X)+8B

361

:LINE

:LIMITY :LIMIT2

IF :LIMITLI > :LIMIT2 [OP AND (GE »
(LIMITL :THING) (GE
(LIMIT2)] [OP AND (GE :LIMIT2 »
:THING) (GE :THING :LIMIT1)]

:THING »

[- :NUMBER] »

OP IF EMPTYP M :LINE [CHECK.VERT »

:LINE] [CHECK.SLANT

END

TO CHECK.SLANT :LINE
IF NOT BETWEEN XCOR (FIRST POINTL »
:LINE)} (FIRST POINT2

[OP "FALSE]
OP (ABS (SOLVE
<7

END

:LINE XCOR

TO CHECK.VERT :LINE
IF NOT BETWEEN YCOR (LAST POINTL »
:LINE) (LAST POINT2

“FALSE]

:LINE]

:LINE) »

) = YCOR) »

:LINE) (OP »

0P (ABS XCOR - FIRST POINT1 :LINE) < »

7
END

TO FIGTURN :L

OP 2 * ((D :L) - HEADING)

END

TO ARCTAN :X

0P 57.3*ARCTAN.RAD :X

END

TO ARCTAN.RAD :X

[F :X>1 [OP 1.571-ARCTAN.RAD (1/:X)]

OP :X/(1+9.28*:X"*
END

9]

MAKE “SHAPE1 [0 0 0 © © 0 60 62 60 60 »

200009 0]

