

LogoWorks
Challenging Programs in Logo

Edited by

Cynthia Solomon, Margaret Minsky, and Brian Harvey

McGRAW-HILL BOOK COMPANY

New York, St. Louis, San Francisco, Auckland

Bogota, Hamburg, Johannesburg, London, Madrid

Mexico, Montreal, New Delhi, Panama, Paris

Sao Paulo, Singapore, Sydney, Tokyo, Toronto

Disclaimer of warranties and limitation of liabilities

The authors have taken due care in preparing this book and the programs in it, including
research, development, and testing, to ascertain their effectiveness. The authors and publish-
ers make no expressed or implied warranty of any kind with regard to these programs nor the
supplementary documentation in this book. In no event shall the authors or publishers be
liable for incidental or consequential damages in connection with or arising out of the furnish-
ing, performance, or use of any of these programs.

Designed by C. Linda Dingier
Interior art by Kim Llewellyn

The names of all computer programs and computers included herein are registered trade-
marks of their makers.

Copyright © 1986 by McGraw-Hill, Inc.

All rights reserved. Printed in the United States of America. Except as permitted under the
United States Copyright Act of1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

1234567890 EDW/EDW 89876

Library of Congress Cataloging in Publication Data
Main entry under title:

Logo Works : challenging programs in Logo.

Includes index.

1. LOGO (Computer program language) 2. Computer programs. I. Solomon, Cynthia. II.
Minsky, Margaret. 111. Harvey, Brian, date. IV. Title: Logo Works.
QA76.73. L63L635 1986 005.36'2 85-14976
ISBN 0-07-042425-X

Two disks with all of the programs in this book, ready to run in Atari Logo, are
available. Any Atari Computer that has a disk drive can run these disks, as long
as you have Atari Logo. For information write

Computer Science Editor
Professional & Reference Division — 26
McGraw-Hill Book Company
1221 Avenue of the Americas
New York, NY 10020

Contents

Preface

Contributors

Introduction

Acknowledgments

1. Wordplay

Sengen: A Sentence Generator 1
Argue 6
Animal Game 11
Dictionary 21
Hangman 27
Math: A Sentence Generator 39
Number Speller 46
Drawing Letters 50
Mail 58
Wordscram 67
Madlibs™ 74

2. Stories

Exercise 80
Cartoon 87
Jack and Jill 104
Rocket 124

3. Games

Boxgame 133
Pacgame 140
Blaster 151
Alien 160
Adventure 172
Dungeon 191

vii Turtle Race 206
xiii Four-Corner Problem 210

x v Towards and Arctan 212
Gongram: Making Complex Polygon

< V U Designs 214
Polycirc 222

1 Animating Line Drawings 227

5. Music 2 3 0

Melodies 230
Ear Training 239
Sound Effects 242
Naming Notes 251

6. Programming Ideas 2 5 8

Adding Numbers 258
Fill 267
Savepict and Loadpict 282

8 0 Display Workspace Manager 292
A Logo Interpreter 302
Map 322
Mergesort 331
Bestline 337
Lines and Mirrors 347

Appendix: Special Features of Atari
Logo 3 6 2

Turtle Graphics 362
Turtles and Their Shapes 366
Sounds and Music 371
Demons, Turtle Collisions, and Other

Events 376

4. Turtle Geometry 2 0 6 Index 381

List of Contributors

Max Behensky W. Daniel Hillis

Jeanry Chandler Julie Minsky

Susan Cotten Margaret Minsky

James Davis Marvin Minsky

Lisa Delpit Toby Mintz

Annette Dula Keith Sharman

Gregory Gargarian Cynthia Solomon

Michael Grandfield Erric Solomon

Brian Harvey William Weinreb

Edward Hardebeck Lauren Young

Introduction

LogoWorks: Challenging Prograinsdn Logo is for beginning and advanced
Logo programmers who want suggestions of things to do that go beyond an
introductory level. The projects touch on diverse areas of interest: from
graphics and video games to word games, language extensions, and devel-
opment of new languages. Each project is intended for your exploration and
to suggest other worlds you can build yourself.

We think this book will draw attention to Logo as a general-purpose
programming language as well as a powerful tool for thinking. LogoWorks
demonstrates that Logo is not only good for young children, but also pro-
vides people of all ages with compelling and challenging worlds to explore.

We have tried to show a diversity of projects and programming styles
as well as ways of talking about the projects. The descriptions of the various
projects vary in their details and their points of view. To help in meeting
our goal, we encouraged many people to contribute to the book. This
eventually presented us with a problem: we did not want to obscure the
individual personalities represented in each of the projects. We see this as
an important and necessary element in the rich development of Logo
computer cultures. On the other hand, we wanted to maintain a consistency
in the quality of each project. To do this, a group of us met to discuss each
project that was submitted to us for inclusion in the book. The core group
consisted of Margaret Minsky, Cynthia Solomon, Brian Harvey, Michael
Grandfield, Lauren Young, and Susan Cotten. Again, within this group
there was a wide range of interests and expertise as well as personal prefer-
ences. We think this diversity has enriched the book.

Many of the projects reflect the personal interests of their creators. For
example, Michael Grandfield is a dancer and has a fascination with body
movements that influenced the leaping figures in Jack and Jill. Brian Har-
vey, an educator and systems programmer, has contributed several pro-
jects, for instance, Drawing Letters, which draws upon interesting ideas in
computer science and shows clever ways of expressing them. Susan Cotten,
Lauren Young, and Annette Dula are recent Logo enthusiasts, and their
projects reflect both their enthusiasms and their more recent experimenta-
tions with Logo.

Some Advice About Using Logo Works

The chapter divisions are intended as a rough guide to the projects. In each
chapter there is a common theme. Nevertheless, many projects overlap
chapter boundaries thematically. For example, Animal Game is in the

XVI I N T R O D U C T I O N

"Wordplay" chapter, but it is also a game. Jack and Jill is in the "Stories"
chapter, but it is also an example of turtle geometry. Furthermore, although
we have not grouped the material within a chapter into levels of difficulty,
there is a natural tendency to put content of particular interest for begin-
ners toward the start of each chapter.

We assume that you are already comfortable with the elements of Logo
and are looking for new challenges. Thus we expect that you have gone
through the Introduction to Programming Through Turtle Graphics, which
is part of the Atari Logo package.

For those of you familiar with Logo, but not aware of the special
features Atari computers bring to the language, a chapter at the end of the
book highlights special features of Atari Logo. These include four dynamic
turtles, sound generation, demons, and detection of events like one turtle
bumping into another or a turtle colliding with a line drawn on the screen.
These features, unique to the Atari computers, are fully explored in many
projects throughout this book.

We anticipate that you will want to use many of the projects without
looking at the detailed explanations of how they were made. For this reason
we have included complete program listings at the end of each project.

Using the Projects

There are several ways you can use the projects in this book.

• You can use a project as it appears. For example, some of the projects
are games that you can play without having to do any Logo program-
ming yourself.

• You can start with one of these projects and add to it. Some sections
have explicit suggestions for ways the project might be extended;
others do not. In either case, we expect you will think of your own
improvements.

• A project in this book may spark an idea for a completely new project
of your own.

• Some of the projects in this book are utility procedures, which can
be used as part of a larger project. (See, for example, Towards and
Arctan). You may find these procedures useful in your own projects,
even if you don't understand how the procedures themselves work.

The projects in this book are written in Atari Logo. If you have another
version of Logo, you will find that most of the projects are easy to adapt to your
system; others depend on special features of Atari Logo and will need more
effort to adapt.

Acknowledgments

Although a book of this sort has been in the planning stages for several
years, this particular book owes its flavor to the fact that we were part of
Atari Cambridge Research, and so Atari Logo became a focus for us. Some
of the programs were adapted for the Atari computer from previous work,
and others were developed to help debug Atari Logo. Some were devel-
oped while working with kids, and others were developed by kids for their
own pleasure.

One of the joys of creating this book was that new and old friends
contributed their programming projects. Their contributions reflect not
only different programming styles, but also different ways of talking about
the process of translating ideas into working programs. The list of these
contributors can be found in a separate section of the book. At the begin-
ning of each project, credit is given to the people who worked on it. We
thank them collectively and individually.

We thank Atari Cambridge researchers Max Behensky, Susan Cotten,
Jim Davis, Lisa Delpit, Annette Dula, Greg Gargarian, Michael Grandfield,
Ed Hardebeck, Henry Minsky, Julie Minsky, and Lauren Young. We thank
Jeanry Chandler and Toby Mintz, who were high school students; Danny
Hillis, whose involvement with Logo dates from his undergraduate years at
the MIT Logo Laboratory, and who is now a researcher at Thinking Ma-
chines Corporation; Keith Sharman, who is a programmer and Logo
teacher in Alberta, Canada; Erric Solomon, who teaches Logo in the San
Francisco Bay area; and Billy Weinreb, who was an undergraduate at
Wesleyan.

We would also like to thank Pam Davis, who cheerfully organized and
kept track of our various versions of the manuscript, and Susan Cotten, who
was fantastic at keeping our diskettes up to date. Michael Grandfield and Erric
Solomon not only generated beautiful pictures, but worked hard at capturing
those images on film. We are particularly grateful to Peter Cann for his special
ability to connect Logo to any outside device we needed. Special thanks to
Greg Gargarian for his continual support in the life of this book and in our
research in developing Logo worlds.

We thank the other members of Atari Cambridge Research for their
support: James Russell Davis, Gary Drescher, Mark Gross, Ken Haase,
Steven Hain, Jay Jones, Susan Kroon, David Levitt, Dan Melnechuk, Bill St.
Clair, Nancy Smith, and Tom Trobaugh.

To those whose contributions are not apparent, like Dan Suttin and his

xviii A C K N O W L E D G M E N T S

kids at the Cambridge Montessori School and Paul Goldenberg and others
from Lincoln-Sudbury Regional High School, thank you for your energy
and activities in developing Logo environments.

We have been very fortunate in receiving comments on early drafts
from enthusiasts like Gary Dreyfoos, Mary Jo Moore, and Jon Solomon.

This book has benefited greatly from the editorial guidance of Jane Isav,
formerly of Harper & Row, Publishers. We are also indebted to Steve Gutv at
McGraw-Hill.

We give special thanks to Michael Grandfield for taking all the pho-
tographs used in this book and for his rendering of Gongram, which appears on
the cover. He prepared this design in Object-LISP using the computing fa-
cility of LISP Machines, Inc.

We thank Brian Silverman of Logo Computer Systems for his clever
implementation of Atari Logo. We also thank Hal Abelson and members of the
MIT Logo community for their continuing conversations.

We are grateful to many people who were part of Atari Sunnyvale
Research. We especially thank Alan Kay for his enthusiastic support.

Preface

Adults worry a lot these days. They worry especially about how to make
other people learn more about computers. They want to make us all "com-
puter-literate." "Literacy" means both reading and writing, but most books
and courses about computers only tell you about writing programs. Worse,
they only tell about commands and instructions and programming-lan-
guage grammar rules. They hardly ever give examples. But real languages
are more than words and grammar rules. There's also literature—what
people use the language for. No one ever learns a language from being told
its grammar rules. We always start with stories about things that interest us.
This book tells some good stories—in Logo.

The trouble is, people often try to explain computers the same ways
they explain ordinary things—the way they teach arithmetic by making you
learn "tables" for adding and multiplying. So they start explaining comput-
ers by telling you how to make them add two numbers. Then they tell you
how to make the computer add up a lot of numbers. The trouble is, that's
boring. For one thing, most of us already hate adding up numbers. Besides,
it's not a very interesting story.

You can't blame teachers for trying to make numbers interesting. But
—let's face it—numbers by themselves don't have much character. In fact,
that's the real reason mathematicians like them. They find something magi-
cal about things that have no interesting qualities at all. That sounds like a
paradox. Yet, when you think about it, that's exactly why we can use num-
bers in so many different ways! Why is it that we get the same kind of result
when we count different kinds of things—whether we're counting flowers
or trees or cars or dinosaurs? Why do we always end up the same—with a
number? That's the magic of arithmetic. It wipes away all fine details. It
strips things of their character. The qualities of what you count disappear
without a trace.

Programs do the opposite. They make things come to be, where noth-
ing ever was before. Some people find a new experience in this, a feeling
of freedom, a power to do anything you want. Not just a lot—but anything.
I don't mean like getting what you want by just wishing. I don't mean like
having a faster-than-light spaceship, or a time machine. I mean like giving
a child enough kindergarten blocks to build a full-sized city without ever
running out of them. You still have to decide what to do with the blocks.
But there aren't any outside obstacles. The only limits are within yourself.

Myself, I first had that experience before I went to school. There
weren't any Logos yet, but we had toy construction sets. One was called
Tinker Toy™. To build with TinkerToy you only need two kinds of parts—
just sticks and spools. Spools are little wooden wheels. Each has one hole

V U l P R E F A C E

through the middle and eight holes drilled into the rim. Sticks are just
round sticks of various lengths, which you can push into the spool holes.
They have little slits cut in their ends, which make them hold tight when
they're pressed into the holes.

What's strange is that those spools and sticks are enough to make
anything. Some spools are drilled with larger holes, so sticks pushed through
those holes can turn. You can make towers, bridges, cars, bulldozers. Wind-
mills. Giant animals. You can put wheels on your cars and make bearings
for pulleys and gears to make them do more interesting things. You have
to make the gears yourself: just stick eight sticks into a spool. They work,
though not too well, and always go click-click-click when they turn.

The sticks are cut to several lengths. One series of lengths come in the
ratios one, two, four, and eight. The other lengths are cut so that they fit
across the diagonals of squares made from the first series of sticks. The
amazing thing is that you can also use the first kind as diagonals for squares
made with the other kind of sticks, like this:

o==o==o=====o=====o

The secret is in finding out how much can come from so few kinds of
parts. Once, when still a small child, I got quite a reputation. My family was
visiting somewhere and I built a TinkerToy tower in the hotel lobby. I can't
recall how high it was, but it must have been very high. To me it was just
making triangles and cubes, and putting them together. But the grownups
were terribly impressed that anyone so small could build anything so big.
And I learned something too—that some adults just didn't understand how
you can build whatever you want, so long as you don't run out of sticks and
spools. And only just this minute while I'm writing this, I realize what all
that meant. Those adults simply weren't spool-stick-literate!

When my friend Seymour Papert first invented Logo, I had the same
experience again. Logo has some things like sticks: we call them

 And Logo also has its spools: we call them I
recognized old building friends at once. Making Logo programs is a lot like

P R E F A C E IX

building with construction toys—but it's even better. You can make draw-
ings of things and structures, but you can make procedures too. You can
make them use words. You can make things change their forms. And you
can make them interact: just give them each procedures which can change
the values of the other ones. As toys, those programs have their faults: you
can't take Logo cars outside and roll them down a real hill—but, in ex-
change, their parts don't get loose and fall out and get lost. And the basic
experience is still there: to see how simple things can interact to make more
wonderful things.

Logo started many years ago; several writers of this book were chil-
dren, and among the first to find new things to do with it. I'm very pleased
to write this introduction now, recalling what a great adventure this has
been and knowing, too, that it has just begun.

There were other good construction toys, like Erector™ sets and Mec-
cano. They had many kinds of parts, but the basic ones are metal strips with
many holes and different kinds of angle brackets. You got a million little
screws and nuts to put them together with, and long steel shafts, which fit
through the holes just loose enough to turn. And there are gears and pulleys
to attach to the metal shafts, so you can make complicated things that really
work.

When I was older, I built one of the very first modern, remote-con-
trolled robots, using parts of a Number 10 Meccano set and ideas invented
at MIT's first computer research laboratory in the 1940s. And, speaking of
building computers, some of the people in this book once built a real,
honest-to-goodness computer out of nothing but TinkerToy parts. A group
including Danny Hillis, Brian Silverman, and Ed Hardebeck built a ma-
chine of TinkerToy parts to play the game tic-tac-toe. It actually worked
and is now in a museum in Arkansas. It was made of spools and sticks. They
also used some string and, since the truth must be told, they hammered in
some little brass nails to keep the sticks from falling out. It took about 100
sets and was too big to fit in your room.

The golden age of construction sets came to its end in the 1960s. Most
newer sets have changed to using gross, shabby, plastic parts, too bulky to
make fine machinery. Meccano went out of business. That made me very-
sad. You can still buy Erector, but insist on the metal versions. Today the
most popular construction set seems to be LEGO™—a set of little plastic
bricks that snap together. LEGO, too, is like Logo—except that you only
get 90. It is probably easier for children, at first, but it spans a
less interesting universe and doesn't quite give that sense of being able to
build "anything." Another new construction toy is FischerTechnik™,
which has good strong parts and fasteners. It is so well made that engineers
can use it. But because it has so many different kinds of parts, it doesn't
quite give you that Logolike sense of being able to build your own imagi-
nary world.

About the time that building toys went out of style, so did many other
things that clever kids could do. Cars got too hard to take apart—and radios,
impossible. No one learned to build much any more, except to snap to-
gether useless plastic toys. And no one seemed to notice this, since sports
and drugs and television crime came just in time. Perhaps computers can
help bring us back.

VUl P R E F A C E

After you've built something with your construction set, you have to
take it all apart again—or you won't have enough parts for the next project.
With programs, you can keep them on your disk and later get them out and
build them into bigger ones. This year, you might run out of memory—but
that won't be a problem for your children, because memory will soon be
very cheap. What's more, you can share your programs with your friends
—and still have them yourself! No emperor of ancient times could even
dream of that much wealth. Still, many adults just don't have words to talk
about such things—and maybe, no procedures in their heads to help them
think of them. They just do not know what to think when little kids con-
verse about "representations" and "simulations" and "recursive proce-
dures." Be tolerant. Adults have enough problems of their own.

To understand what computers are, and what they do, you shouldn't
listen to what people say about those "bits" and "bytes" and binary deci-
sions. I don't mean that it isn't true. Computers are indeed mostly made of
little two-way switches. But everyone who tells you this is what you need
to understand them is simply wrong. It's just as true that houses can be
made from sticks and stones—but that won't tell you much about architec-
ture. It's just as true that animals are mostly made of hydrogen, carbon,
oxygen, and nitrogen—but that won't tell you much about biology.

A Martian szneech once mindlinked me; it wanted to know what
literature was. (It seems they're far behind the times and haven't even
got to that.) I told it how we make sentences by putting words to-
gether, and words by putting letters together, and how we put bigger
spaces between words so that you can tell where they start and stop.
"Aha," it said, "but what about the letters?" I explained that all you
need are little dots since, if you have enough of them, you can make
anything.

The next time, it called to ask what tigers were. (Apparently, they
haven't even got to vertebrates.) I explained that tigers were mostly
made of hydrogen and oxygen. "Aha," it said, "I wondered why they
burned so bright."

The last time it called, it had to know about computers. I told it
all about bits and binary decisions. "Aha," it said, "I understand."

You really need two other facts to understand what computations do. Here's
the first one.

Computer programs are societies. Making a big computer program is
putting together little programs.

To make a good program, you build a larger process out of smaller ones.
I suppose you could truthfully say that sculptors make large shapes from
stuck-together grains of clay. But that shows what's wrong with the bits-
and-bytes approach. No sculptor or scientist or programmer ever thinks
that way. An architect first thinks of shapes and forms, then walls and floors,
and only last about how those will be made.

Here is the other thing most people don't know. It doesn't matter very
much what you start with! Even if we start with different kinds of comput-
ers, with different kinds of parts inside—still, they mostly can be made to
do the same things, when seen from the outside. You can build a windmill

P R E F A C E XI

with either wooden sticks or metal beams. When you look closely, each part
will be quite different. But windmills will have a base, a tower, and a
propeller. The same with computers:

Any computer can be prograrmned to do anything that any other
computer can do—or that any other kind of "society of processes" can do.

Most people find this unbelievable. But later in this book you'll find a
hard project called "A Logo Interpreter" that shows how to make one type
of Logo computer act like a different kind of Logo computer. The way to
do this was first discovered by an English scientist named Alan Turing. First
he asked what a computer is—and realized that the only important thing
about a computer X is the set of laws that make its parts change their states.
Except for that, it doesn't matter how parts are made. Then Turing asked
what programs are, and realized: a program is a certain way to fix some set
of X's states. This, then, will prearrange the way that X's other states will
later change.

Next, Turing thought, suppose you wanted a different kind of com-
puter, Y. Then make a program for X that will make the rest of X's states
act just like Y's. Once that's done, X's behavior will look exactly like Y's—
to anyone watching from outside. A programmer might say that X is "simu-
lating Y." Of course, you have to pay a price for this: it won't work at all
unless X has enough memory to hold a description of Y. And if X and Y are
very different, then the simulated programs will run very slowly. But aside
from that, Turing showed, any kind of computer can be programmed to
simulate any other kind! That is why we can write special programs to make
the same Logo programs run on all the different computers in the world.

In fact, every Logo system uses just such a program, to make the
underlying computer act like a Logo computer. The one for Atari Logo was
written by Brian Silverman and his friends. I'm sorry you can't examine it;
the trouble is that it's not written in Logo but in a different language buried
deep inside your machine. But it's there, hiding out of sight, making your
computer simulate a Logo computer. The strange thing is that Alan Turing
figured out how to do such things fifty years ago, in 1936, long before
computers were even invented! How could he do that? He simulated them
inside his head.

There's something "universal" about how big things don't depend so
much on what's inside their little parts. This must be the secret of those
magical experiences I had, first with those construction sets and, later, with
languages like Logo. What matters is how the parts affect each other—not
what they are themselves. That's why it doesn't matter much if one makes
houses out of boards or bricks. Similarly, it probably won't matter if aliens
from outer space have bones of gold instead of bones of stone, like ours.
People who don't appreciate how simple things can grow into entire worlds
are missing something important. They find it hard to understand science,
because they find it hard to see how all the different things we know could
be made of just a few kinds of atoms. They find it hard to understand
evolution because they find it hard to see how different things like birds and
bees and bears could come from boring, lifeless chemicals—by testing tril-
lions of procedures. The trick, of course, is that it s done by many steps, each
using procedures that have been debugged already, in the same way, but
on smaller scales.

VUl
P R E F A C E

Why don't our teachers tell us that computers have such glorious con-
cerns? Because most adults still believe the only things computers do are
big, fast, stupid calculations of arithmetic. Besides, our teachers have too
many other things to learn and teach: how to build computers, how to make
languages for programming them, and how to train programmers to use
those languages. And so those dreary practicalities of billion-dollar indus-
tries crowd out our dreams and fantasies of building giant mind-machines.

Marvin Minsky

1
Wordplay

Sengen: A Sentence Generator

SENGEN makes up English sentences similar to the following ones:

One of the questions you might ask is this: Does SENGEN make up sentences
the way we do or the way we did when we first learned to talk or write?
Another question you might ask is: What relationship does have to
understanding grammar? The first question is open to research and specula-
tion. The second might be an easier one to answer. Often when I first
discuss this project with children, they do not relate the programming
process to the learning of grammar. Later as they use their programs, the
children frequently exclaim: "So this is why they call words nouns and
verbs!" They also begin to appreciate formal systems. Studying grammar by
generating sentences that obey certain rules requires the programmer to
become aware of rules as well as of their exceptions.

Since this program seems to make sensible sentences without knowing
very much about grammar, children often develop an appreciation for
cleverness. For example, SENGEN doesn't know that some words are singu-
lar and some are plural or that singular subjects should be matched with
singular verbs; it does not know about verb tenses or pronomial relations.
Its apparent intelligence comes from the programmer's choice of words and
categories.

In the following examples, the nouns and verbs are all plurals and the
verbs are all in the present tense.

SENGEN builds sentences from vocabulary lists of nouns, verbs, adjec-
tives, connectives, and so on. It then assembles its selections according to
some rule of grammar.

Making the Program

One strategy in making a program might be to concentrate on developing
a random sentence generator that outputs only a verb. For example:

By Cynthia Solomon.

2 W O R D P L A Y

To do this a procedure is needed to blindly (randomly) pick out a selection
from a list of possibilities.

Let's make up a list of verbs and then make a procedure to select a
word from the list. In this example, the procedure outputs the vocab-
ulary list.

Whenever is called, it outputs that list.

What we now want is a procedure that will randomly choose one of the
items in this list. Here is the plan for this task: use a number obtained from

 to point to an item in the given list of choices. Then get that item
from the list. PICK does this and outputs the selection.

There is a slight problem. outputs a number from 0 up to but
not including its input number. Thus its output in is always one less
than the length of the list. We can fix that by adding 1 to 'S output.

 carries out its job recursively. When its input number is one, it
outputs the first item from its input list. Otherwise, subtracts one
from its input number and takes away the first item from its input list and
continues the process until the item is found.

Here is what looks like.

Now we can try

S E N G E N : A S E N T E N C E G E N E R A T O R

We could try it on different lists:

PICK seems to work.
Let's make a procedure that outputs just a verb.

Now we can move on to building a sentence by first making a one-word
sentence.

and so on.
Our attempt at making a one-word sentence fails because of the verbs

in the verb list. Only can be used without an object. So if we want to
make grammatical one-word sentences, we have to restrict our choice of
verbs.

Now let's make a sentence with a subject and an object. Let's follow
the pattern already set up for verbs and make two operations and

 outputs a list of nouns.

4 W O R D P L A Y

All we need to do to make a sentence is the following:

Imagine we had miscategorized the vocabulary and NOUNS could output a
list like

We might then get sentences like

This kind of bug is typical of the kind people run into when they first
do this project. Usually, when people confront their bugs, they begin to
appreciate rules of grammar and the fantastic power we derive from
categorizing words.

We can now make a procedure that outputs a sentence.

Extensions

One extension is to add adjectives to the sentences.

Edit

S E N G E N : A S E N T E N C E G E N E R A T O R

The sentences are getting more complicated, so it is time to introduce
additional categories like and For example:

Another possibility is to link two simple sentences by using connectives:

Finally, you change to include the new sentence:

PROGRAM LISTING

6 W O R D P L A Y

Argue

 carries on a dialogue with you. When you run it expects you
to type a s ta tement in the form or

 comes back with contrary statements. For example, if you make the
statement the program types

If it doesn't already know the opposite of a word, it asks you. For example,
if you type and does not know the opposite of

 it types

If you tell it it will type

Here is a sample dialogue.

Program by Danny Hillis; write-up by Margaret Minsky.

A R G U E 7

— >

 Can Reply to Your Statements

When you run it types an arrow to let you know that it is ready for
you to type your statement, then calls is given the
statement you type as its input. is recursive so this process continues.

 prints two responses to your statement. First, it turns
around your statement; if you say that you love something, says
that it hates it, and if you say you hate something, says that it
loves it. Second, it makes a statement about the opposite of the object you
mentioned.

The procedure sees whether its input is or
and outputs the other one.

8 W O R D P L A Y

 something something

The Program Keeps Track of Opposites

How does the program know that pepper is the opposite of salt? Somehow,
the program has to have this information stored. We use variables
to hold this information. For example, : is is
This is how we have chosen to store the facts the program "knows." We call
this a data base. You can look at the data base for the program by
looking at all the variables in the workspace. Try:

These variables are loaded into the workspace with the pro-
gram.*

To find out the opposite of something, for example we can say

or

What if we want to find out the opposite of There is no easy way
to find out it is unless we have another variable named
with value So we can say

We have set up a convention in our data base that we always put in both
parts of a pair. That way, we don't end up in the funny situation where it

*If you type in the procedures and there are no variables in the workspace, ARGUE will
create these variables when it asks you for the opposites of things.

A R G U E 9

is easy to find out that the opposite of is but impossible to
find out what the opposite of is. Our mental concept of opposite is
that it "goes both ways," so we make our data base reflect that.

How the Procedure Works

With this kind of data base we can write a procedure to output the opposite
of something. Here is a possible first version of the procedure:

This is a good example of needing to use rather than dots(:). The
word of which is trying to find the value is whatever : is.
For example, if : is the word then the program is trying to
find : It must do this indirectly by using

This first version of has a problem. It only works for words
that are already in the data base. If you make a statement like

 and there is no variable named then this
procedure will get an error. To solve this problem, we use to check
for the existence of a variable named by : In this example

 is the word the program checks whether there is already
a variable named If there isn't, you'd like the program to learn
the opposite of and put it in the data base. Then it can go ahead
and argue with you about sunsets. The procedure does this.

 calls when it needs to.

When tries to find the opposite of a word that is not in the
data base, it asks the user for the opposite. After the user types the opposite,

 passes both the problem word and its opposite to
 puts that pair of words in the data base.

Now Can Argue Pretty Well

So can keep going as it adds new words to its data base.

30 W O R D P L A Y

and so on.

If we look at the data base after this, we can see what has been added.

and so on.
In order for the program to "remember" this data base, these variables

must be saved by SAVEing this workspace on a diskette.

SUGGESTIONS

The program assumes that the sentences you type in are going
to be exactly in the form

or

If they are not, an error occurs and the program stops. You could improve
the program so that it checks for the right kinds of sentences and asks you
to retype them if there are problems.

Maybe it could know about more emotion words such as

If you try:

the program will say:

and ask you for the opposite of It will ignore the You might
make a better arguing program that tries to figure out if there is an adjec-
tive and finds its opposite, so it would do something sensible like

A N I M A L G A M E 1 1

 doesn't have any mechanism for dealing with single objects
described by more than one word, like Perhaps a special
way to type these in might be added.

You might want to look at the Madlibs and Sengen projects for more
ideas that have to do with taking apart and putting together sentences. You
might want to look at the Animal Game project for an example of a program
with a different kind of data base that also appears to learn some simple
things.

PROGRAM LISTING

Animal Game

The animal game is a little like twenty questions: you think of an animal,
and the game tries to guess it by asking yes-or-no questions.*

What makes the game interesting is that it learns new animals. When
it can't guess your animal, it asks you to teach it the animal and its distin-
guishing characteristic. By learning new questions and new animals, the
game gets "smarter."

*This animal game is a popular computer game. It first appeared about ten years ago.
Since then many people have implemented it in various computer languages. This Logo
program was inspired by Bernard Greenberg's unpublished LISP textbook.

By William Weinreb.

32 W O R D P L A Y

Here's a sample dialogue between the computer and a person playing
the animal game. Everything the user types is boldface.

The player's secret animal is
"dog."

Here's where the game gets
smarter.

The player's secret animal is
"dog" again.

Here's where the game asks
the question it just learned!

Knowledge Grows on Trees

Below is a diagram of the knowledge the game might have after someone
has played it a few times. We call the diagram a tree, because it looks
something like an upside-down tree.

IS IT FURRY?

FROG

CAT

The tree is made of questions and animal names. Each question has a
"yes branch" and a "no branch." Each branch either leads to a question or
ends at an animal name.

By drawing what the game knows in the form of a tree, we can get a
more vivid picture of how the game works. For example, we can think of
the game as exploring the tree from its top. It always starts at the IS

ANIMAL GAME 13

IT FURRY? question. Its goal is to climb down the branches to an ani-
mal name. The animal it finally reaches is the one it guesses.

Let's play an imaginary game and trace the game's progress on the
tree. Our secret animal is "mouse."

The game's first question is always the question at the tree's top:
IT FURRY? Since a mouse is furry, we answer yes.

The game follows ?'s yes branch to the
 question. From the game can descend to either

of the furry animals, or but it can no longer reach the unfurry
animal, By descending ?'s yes branch, the game has
narrowed down its possible guesses to furry animals.

The game now asks the question mouse does not
bark, so we answer no.

The game follows 's no branch to the animal name
CAT. When the game reaches an animal name, it guesses that animal. Here,
of course, the game's guess is wrong. To improve its chances of guessing
right the next time, the game learns the player's secret animal. Before we
look at the learning process, let's examine how the game represents its
knowledge as lists.

Making Trees with Logo Lists

Consider the very simple tree below. Here we represent it as a list.

The tree is a list of three elements: a question, the question's yes
branch, and the question's no branch. In this case, the question is CIS

 its yes branch is and its no branch is
Both branches of the left tree below are animal names. Sometimes, as

we've seen, a branch does not lead directly to an animal name but to
another question that has its own two branches; it leads, that is, to another
tree or subtree.

For example, look now at the slightly more complicated tree. Here it
is represented as a list.

This slightly more complicated tree is also a list of three elements: a
question, its yes branch, and its no branch. The question is [IS IT

 its yes branch is the subtree
its no branch is the animal name

IS IT FURRY? IS IT FURRY?

CAT FROG DOES IT BARK? FROG

DOG CAT

34 W O R D P L A Y

Examining Trees

We can write procedures that look at each of a tree's three parts.
Sometimes we want to look at a subtree of a tree. Since a subtree is itself
a tree, these procedures work on subtrees too. The procedures all expect
a list of three elements as input.

Here's an example of how they work.

Exploring the Game's Knowledge

A N I M A L G A M E 35

Guessing and Learning

Guessing

 I f
 I f

Learning

 Adds to the Game's Knowledge

How does the animal game get smarter? Let's review the imaginary
game we played earlier. Our secret animal was "mouse," and the game
guessed Obviously, if the game had guessed "mouse" instead of
it would have won. We might want to change the game so that, from now
on, it will guess whenever it would have guessed

36 W O R D P L A Y

Look at the tree below. To make the game guess instead of
 we could remove (the wrong guess) from the tree and put

(the right guess) in its place.

IS IT FURRY? IS IT FURRY?

DOES IT BARK?

YES 3

FROG DOES IT BARK?

YES, NO

FROG

DOG CAT DOG MOUSE

Has the game learned? Not really. We've added a new animal to its
knowledge, but we've also subtracted one.

If we want the game's knowledge to include both and we
must teach the game a new question, such as

 We also teach it that if a player answers "yes" to the new question,
it should guess and if a player answers "no," it should guess

The next tree shows the result of adding a new animal and a new
question to the game's tree. Instead of replacing with we re-
place with a new subtree. The subtree—like all trees—consists of a
question]), a yes branch and a
no branch

IS IT FURRY? IS IT FURRY?

FROG FROG

Building a New Subtree

 and get parts for a new sub-

tree.

A N I M A L G A M E 37

Adding to the Game's "Tree of Knowledge"

The game's entire "tree of knowledge" is stored in the global variable
 For the game to get smarter, the new subtree must be added to

 and are the main procedures that do this.
uses which outputs a list of its three inputs.

Let's recall how is called. climbs down to an animal
name and passes the animal to calls to guess
the animal. If the guess is right, is called. If the guess is wrong,
is called.

 has three inputs. When it is called, : is the animal
the game guessed, and : and : are empty lists.

 calls to get the player's secret animal and
stores this animal in : It calls to get the
player's new yes-or-no question and stores it in : Then

 makes the output from
's four inputs are the game's current "tree of knowledge" and the

three parts for the new subtree. looks through the game's current
tree, finds the animal the game guessed, and replaces this wrong guess with
the new subtree. It then outputs a new, enlarged "tree of knowledge" to

Here's a sample set of inputs to

38 W O R D P L A Y

Starting the Game

ANIMAL GAME 39

If you ever want to erase the game's knowledge, stop playing the game
and call causes the game to forget everything it has
ever learned.

Other Procedures Used by the Game

All these procedures were mentioned earlier but we did not look at how
they work.

The input to should be an animal name. Its output is the
animal name preceded by an appropriate article—either "a" or "an."

 and get a yes-or-no answer to a question. The question
is the input to

Here's an example.

?

SUGGESTIONS

You can play this game with exotic animal names such as armadillo,
gnu, gazelle, iguana. You could even use fantastic animals like centaurs or
pushme-pullyous. Some people say that it's most fun to play it with the
names of your friends!

2 0 W O R D P L A Y

PROGRAM LISTING

•

D I C T I O N A R Y 21

Dictionary

The idea for this project came about while I was hiking with some friends.
During our climb up the mountain, we tried to stump each other by asking
the meaning of unusual words. I began to think about developing a diction-
ary project using Logo.

I wanted to be able to do several things with my dictionary:

• Add a new word and its definition.
• Print the definition of a word.
• Remove a word and its definition.
• Print the entire dictionary.

The Dictionary

My first task was to decide how to store the words. I decided that the
dictionary would be a list of entries. Each entry would be a list composed
of a word and its definition. Here are two examples.

or

I named the dictionary Here's how I created it.

Using the Dictionary

When you type the following is printed on your screen:

By Susan Cotten.

42 W O R D P L A Y

? -

>

 calls which checks to see if you already have a
dictionary. If you do not, creates one.

 has the job of figuring out whether the character you type
matches one of the expected commands. If there is no match or if you type

 prints the list of possible choices.

D I C T I O N A R Y 43

Adding a New Word and Definition

To add a word, you type while running Here's an example
of what happens.

>

If you try to add a word that is already in the dictionary, this happens:

 is the procedure that lets you add a new entry to the
dictionary.

 calls to see if the word you want to add is
already in the dictionary. If the word is not in the dictionary, then the word
and its definition become a new entry.

 has the task of finding an entry in the dictionary. It does this
by attempting to match an input word with the first word in each entry.

44 W O R D P L A Y

Printing the Definition of a Word

This is what happens when you type D.

EGREGIOUS

 then calls with the word to be defined
and its entry in the dictionary. If the entry is in the dictionary,

 prints the definition.

Removing an Entry from the Dictionary

To remove an entry, you type R. Here is an example.

FLUMP

 uses to output a dictionary, minus the un-
wanted entry.

D I C T I O N A R Y 45

Printing the Dictionary

Here's what happens when you type I've added some words that I
thought were interesting to the dictionary.

Note: At this point you press any key to see the next seven (or remain-
ing) entries.

T h e procedures and work
together to print in an easy-to-read format. There is room on
the screen for seven entries. counts the number of entries. When
the screen is full, pauses and waits until you type any character
before printing the next seven or remaining entries.

26 W O R D P L A Y

PROGRAM LISTING

[]

H A N G M A N 27

Hangman

 is based on the popular two-person pencil-and-paper game in
which one player thinks up a secret word and the other player tries to
discover what the word is by guessing what letters are in the word. A
gallows is drawn, and for each incorrect guess, part of a stick figure is added
to the drawing. The player who is guessing wins the game by guessing the
entire word before the stick figure is completed.

By Brian Harvey.

48 W O R D P L A Y

In this version, the program chooses the secret word and you do the
guessing. At each turn, you can guess either a single letter or the entire
word.

The secret word is shown as -A—E-. This means that it has six letters, two
of which have been guessed. You have made five guesses. and were
correct. The others, and were wrong. Because of these three wrong
guesses, the program has drawn the head, neck, and body of the person
being hanged. If you make more wrong guesses, the program will draw the
person's arms and legs.

I like this program because it combines text processing with graphics.
The top-level procedure divides the program into two parts: setting up and
playing the game.

Setting Up

 uses two main subprocedures, one to pick the secret word and one
to draw the gallows. outputs the secret word, which
remembers in the global variable To choose the word from a list
of possible words, uses the procedures and which
appear as examples in the Atari Logo Reference Manual.

Here is a picture of a game in progress.

- A - - E -
GUESSES: E T AO I
YOUR GUESS?

HANGMAN 49

Variables Created by

The variable is one of several that are used throughout the hang-
man program to keep track of the progress of the game. For example, the
program must remember what letters have been guessed and how many
wrong guesses are allowed before you lose. Several of these variables are
given their initial values by

 The secret word.
 A

SPACES A word of eighteen spaces, which is typed to erase messages
from the program in the text part of the screen.

 The number of letters in the secret word that you have
guessed correctly. (If a letter occurs more than once in the
secret word, the number of letters guessed correctly may be
more than the number of correct guesses you have made,
because one correct guess may reveal several letters in the
word.)

Playing the Game

50 W O R D P L A Y

 calls repeatedly, checking between times to see if you've
won (the variable made or lost (no more left).
uses several subprocedures to display the current state of the game, read
a guess from the keyboard, and test the guess. A guess can be either a single
letter or the entire word. These cases are distinguished by checking the

 of the guess; if it's more than one letter, the procedure is
used to compare the guess to the secret word. Otherwise, the program
checks if you have already guessed the letter; if not, it checks to see if the
guessed letter is actually in the word. If the letter is in the word,
is called to update the number of letters correctly guessed. If not,
draws another piece of the body under the gallows.

Keeping Track of the Text Screen

The text part of the screen in the middle of a game might look like this:

In the top left corner is the display of the secret word, with some letters
already guessed and the others indicated by hyphens. In the top right
corner is the message area. You have just repeated a guess already made,
and the program has complained about it. The next line shows the list of
letters already guessed. The third line invites you to make another guess,
and the cursor is positioned for reading that guess.

The message area is maintained by the procedure SAY. Two subproce-
dures of show simple examples of how is used:

HANGMAN 51

(The underlining in this listing represents inverse-video characters on the
screen.) The procedure types spaces into the message
area, erasing any leftover messages. The procedure is called by

 if you repeat a previous guess.
The rest of the text screen, apart from the message area, is maintained

by the procedure:

For each letter of the secret word, looks in the list of letters
already guessed. If this letter has been guessed, types it. If not,

 types a hyphen.

When You Guess a Letter

When you guess a letter (that hasn't been guessed already), calls
either or depending on whether the guess is correct or
incorrect. To test the correctness of the guess, uses which
is like the primitive except that it checks whether a letter is an
element of a word, instead of whether a word is an element of a list.

(Actually, would work equally well testing for membership in a list,
like but we need it only to check for membership in a word.)

If the guess is correct, the task of is to calculate a new value

52 W O R D P L A Y

for the variable which counts the number of correctly guessed
letters in the secret word. We can't just add 1 to because the letter
you guessed may appear more than once in the secret word. For example,
if the secret word is "thrush" and you guess must add 2 to

 So must examine each letter of the secret word.

Note that does not actually display the newly guessed letters on the
screen. This will be done by the next time through

What Happens on a Wrong Guess

If the guess is incorrect, is called to count down the number of turns
until you lose and to draw part of the body under the gallows:

The command is used to select a subprocedure to draw the appropriate
part of the body, based on the number of tries remaining. For example, the
variable is initially 7, and the procedure draws a head.
draws the neck, the torso, and the arms, and and

 the legs:

HANGMAN 53

54 W O R D P L A Y

procedures might be called with the turtle at the end of the gallows, rather
than at the end of the previous body part.

When You Guess a Word

We have looked at the procedures that deal with a guess of a single letter.
You may also guess the entire word; if so, the procedure calls

An incorrect guess of the entire word is handled by just like an
incorrect guess of a letter. But if you guess the entire word correctly, there
is no need to call We can simply call because you have won
the game.

When You Lose the Game

We have now looked at all the procedures involved in playing the game,
up to the point of winning or losing. The case of losing is easier to under-
stand. You lose by running out of tries. This means that the entire body has
already been drawn.

H A N G M A N 35

The program tells you what the secret word was, moves the cursor down
to the last screen line, and fills in the already-drawn head with a frowning
face. When the program stops, Logo will print its prompt on the last line
without obscuring what is written in the text area. is called only by

 which then stops, returning to which stops. So when
stops, the entire program is done.)

When You Win the Game

What if you win? In this case, the body is not yet entirely drawn. We want
to erase the gallows, finish drawing the body, notify the winner, and stop
the program.

36 W O R D P L A Y

Utilities

PROGRAM LISTING

H A N G M A N 3 7

3 8 W O R D P L A Y

MATH: A SENTENCE GENERATOR

Math: A Sentence Generator

When we think of computers making up sentences, we most often think of
them making up English or French sentences. We rarely think of them
making up math sentences. This project is about developing a math sen-
tence generator. It is set in the context of developing an interactive pro-
gram. A sentence is made up in the form and the user is
asked

The first example involves only addition sentences. Then the program
is modified to include multiplication, subtraction, and division. Later the
program is changed once more to vary the form of the math sentences and
keep track of the number of times the user responds to the same question.

I boldface what the user types.

As the example shows, makes addition sentences of the form
 and not of the form Later we will change so

that it uses both forms.
 randomly chooses two of the integers to be used in the math

sentence. then presents the addition problem and checks on your
answer. The numbers chooses are less than ten, but you can easily
adjust the procedure and make the numbers larger.

In the addition sentences, the value of is : which is the second
input to The sum of the two inputs is computed

There are different ways to expand this program. You could design the

By Cynthia Solomon.

60 W O R D P L A Y

program so that it gives you three chances to get the answer right. You
could expand the program so that it gives you problems in subtraction,
division, and multiplication. You could make it keep track of the number
of problems you do and the number you respond correctly to. You might
decide to help the user. Some of these suggestions are explored in the next
section.

Making Subtract, Multiply, and Divide

One way to extend is to make three more procedures,
 and

Try these procedures to see if there are any bugs. Modifying is
a good way to try these new procedures.

MATH: A S E N T E N C E G E N E R A T O R

What do you think? The program seems to work, but there are some
possible problems. For example, in the subtraction sentences might have
a negative value. Perhaps you want to use this program without negative
numbers for answers. We can adjust so that the value of is
always positive.

Notice that the sentences are of the form The form
 might be easier to solve, and so you might want to make sent-

ences in that form.
There is a potential bug with multiplication and division. For example,

division by 0 will cause Logo to stop the program and print out an error
message. Attempts to divide by 0 must be prevented. One way to make sure
of this is to add one to the random number used as 's second input.
Multiplication by 0 can cause a different sort of problem when you try to
figure out what is.

Although the preceding examples do not show being a fractional
number like .5, it is possible. You might want to guard against that happen-
ing. Since the sentences are generated by the program, we can make sure
that the computation is performed so that is always a whole number.

In the next section is extended to include some of these ideas. The
procedures are rewritten. new procedure is introduced called It
is used by and to print out the sentence
and get the user's response to what is.

Extending

In this section, the first extensions to guard against multiplication or
division by 0 and give the user three chances to figure out what is. All
math sentences are still written in the form and expect
integer answers. The program generates two random numbers and then
computes a third. Here is an example of the program in action.

Now you type Logo responds:

If you type anything else, Logo responds:

You are given three tries to get the answer. If you are still wrong, Logo
responds:

62 W O R D P L A Y

 has present sentences in subtraction, multiplication, and
division as well as addition.

After computes : takes over the job of printing out
the sentence and checking the user's response.

 gives the form [=] as its first input. The second input
represents the number of times the user responds to the question

 and : are used by 'S subprocedures

 and The variables are not given as inputs to or
its subprocedures. As far as these procedures are concerned, these are
global variables. The value of is still :

 prints the mathematical sentence with the help of
After the sentence is printed, asks for the value of It then turns
the job over to along with the user's response.

(\ is the way to quote special characters like space. prints two
spaces after the question mark.) plays an important role. It deter-
mines what to do next. If : is empty, assumes this is the user's
signal to do something else and so calls If : is not the same as

 then calls adding 1 to : unless this is the
user's third try. On the third try gives the answer.

M A T H : A S E N T E N C E G E N E R A T O R 63

The procedure is similar to in structure.

A couple of tricks are used here so that will work for
 and is always t h e value of

is always on the left side of the equals sign and : is always on the
right of the equals sign. What does change is which of these numbers are
inputs to a procedure and which are computed in the procedure. For
example, computes the value of while : and :
are inputs. But the value of is still :

Extensions

There are many modifications you might want to make to this kind of
program. The modification I chose is to allow sentences to be in either of
two forms.

The changed procedures follow. Notice that the decision as to which form
to use is based on whether outputs or

64 W O R D P L A Y

The new forms for and are

When generates a sentence in the form its
inputs, : and : are added together to be : In the exam-
ple is and : is

When the sentence is in the form then computes
 by adding the inputs : and : In this case : is

 and : is

M A T H : A S E N T E N C E G E N E R A T O R 4 5

PROGRAM LISTING

W O R D P L A Y

Number Speller

This program takes a whole number as input and outputs the number
spelled out in words.

The general idea is to divide the number into groups of three digits.
For example, the number 1234567890 is 1 billion, 234 million, 567 thou-
sand, 890. For each such group we must spell out its three-digit number and
also find the word (like "million") that indicates the position of that group
in the entire number.

Spelling a Group of Three

Let's start by writing a procedure, that spells out a number
of up to three digits.

?

Subprocedures and select words corresponding to
a particular digit in different positions. DIGIT selects words like "three";

 words like "thirteen"; and words like "thirty."
The first instruction in deals with a nonzero hundreds

digit of the group, if any. Next, a possible leading zero is eliminated from
the group. Then the procedure recognizes the special case of a number
greater than ten and less than twenty. These numbers are special because
they are represented all in one word, like "thirteen." Other two-digit num-
ber's are represented by one word for the tens digit and one for the ones
digit, like "eighty seven." If the number isn't a teen, the procedure then
deals with its tens digit and its ones digit separately.

A trick used in looks like this:

Here is an example:

By Brian Harvey.

N U M B E R S P E L L E R 67

If the predicate tested by is the value of this expression is the
empty list (11), so it contributes nothing to the final result when combined
with other things using

 outputs the empty list, not the word if its input is
0. This is okay because we want to say "zero" only if the entire number
we're spelling is 0, not just one group. (Remember that the reason we wrote

 for numbers up to three digits is that groups of three are the
building blocks of larger numbers.) For example, the number 1000234 is
spelled "one million two hundred thirty four," not "one million zero thou-
sand two hundred thirty four." We'll have to remember to notice, later on,
if the entire number we're spelling is 0.

Here are the procedures that select the words for each digit.

These use the common subprocedure

Spelling a Large Number

Now we have to divide a large number into groups of three, so that we can
use on each of the triads. One complication is that in dealing
with very large numbers, we can't rely on Logo's arithmetic operations,
because if we do, the numbers will be rounded off. Logo ordinarily handles
numbers only up to ten digits without rounding. We'll use Logo's word-
manipulation operations. For example, if we're spelling out the number
12345 and want to find the rightmost group, we'll do something like this:

rNUMBER is 12345

In other words, we must treat a large number as a word that happens to
be composed of digits instead of letters.

Note: In order to convince Logo not to round off numbers longer than
ten digits, you have to type them in with a quotation mark like this:

68 W O R D P L A Y

We can work up from One thing we need is a procedure
to combine a spelled-out group with the name of its place in the complete
number (thousand, million, etc.):

The test for : is there to deal with cases like 1000234, where the
entire thousands group should be omitted.

At this point, it's important to decide whether we are working on the
number from left to right or from right to left. The most obvious thing is
probably left to right, because that's the way we actually read numbers,
starting with the leftmost group. That's the approach I took the first time
I wrote this program. But it turns out to be much simpler to write the
program if we start from the right. There are two reasons for this.

The first reason is this: suppose you see a long number like 123,456,-
234,345,567,678,346,765,654,987. What is the name of the place associated
with the leftmost group? To answer that question you have to count the
groups, starting from the right. The 987 group is the ones group, the 654
group is the thousands group, the 765 group is the millions group, and so
on. So in a sense we have to start from the right in order to know what to
do with the 123 group on the left. The second reason is related to the first.
Sometimes numbers are written with commas separating the groups. But
in Logo we don't use commas inside numbers this way. Suppose you see a
number like 1234567890987654321. What is the leftmost group? You might
guess 123, but that would be true only if the number of digits in the entire
number were a multiple of three. Actually, this number is 1 quintillion 234
quadrillion and so on. In order to know the number of digits in the leftmost
group, we have to count off by threes from the right.

Working from right to left, the overall pattern of the program will be
more or less like the following. I've written this in lower case to emphasize
that it isn't a completed Logo procedure.

Two things are missing from this partially written procedure. First,
there is no stop rule to tell the procedure when it has reached the end (the
leftmost end, that is) of the number. Second, we haven't provided for the
place-name input to The solution to the first problem is that when
the number of digits in the number we're spelling is three or fewer, we're
down to the last group. The solution to the second problem involves provid-
ing a list of group place names as another input to this partly written
procedure. Putting these things together results in two procedures.

N U M B E R S P E L L E R 49

The top-level procedure, SPELL, recognizes the special case of the number
0. In its subprocedure 1, two auxiliary procedures are used that we
haven't written yet. and are operations like and

 but they output (all but) the last three letters of a word instead
of (all but) the last one. Here they are:

SUGGESTIONS
• What do you have to do to make this program spell out numbers in

a language other than English? The main thing, of course, is to
change the lists of words in and But what
structural differences are there in different languages? For example,
in French there are no special names for 70 and 90. Instead, numbers
are added to the names for 60 and 80. That is, 70 is "soixante-dix,"
or "sixty-ten"; 73 is "soixante-treize" or "sixty-thirteen." (This is true
of French as spoken in France; the dialect of French spoken in
Belgium does have special words for 70 and 90!)

• Can you modify the program to spell out numbers including a deci-
mal fraction, so will output

 What about exponential notation, so that
 will output

• What about translating to or from Roman numerals? In what ways
would a program to do that be similar to this one? How would it be
different?

• What about translating backward? That is, write a program that will
accept a list of words representing a number and output the number.

PROGRAM LISTING

50 W O R D P L A Y

Drawing Letters

This project lets the turtle draw letters using a multiple-segment system
like that of digital watches. It illustrates Logo's list processing capability and
the use of with program-generated Logo instructions. That is, instead
of just carrying out procedures that were written ahead of time, this pro-
gram actually assembles lists of Logo instructions and then carries out those
instructions to draw the letters.

Drawing Letters in Segments

Digital watches, which only have to display digits, generally use a seven-
segment system.

3

I l I J J U L L IUU
I J II J I J I J I I J I

Seven-segment display digits

By Brian Harvey

D R A W I N G L E T T E R S 5 1

To display all the letters of the alphabet, I chose to use a twenty-
segment system, illustrated below.

3 12

A // \ I I I
/ I I I I

/ \

IX _ J I I /
X _ x V I A

Twenty-segment display for letters

/ X /
X / _ _ / _

/ / / / i r ' / r

\ /

Z_

Of course, it would be possible to write a separate procedure for each
letter, giving explicit turtle motion commands to shape the letter precisely.
The advantage of the segment idea is that it makes it possible to write a
single program, then design the individual letters very quickly. For exam-
ple, after I had finished the letters of the alphabet, it was very easy for me
to add the ten digits, even though I hadn't planned for them initially.

Twenty-segment digits

I could have written twenty procedures, one for each segment. Each
would start from a "base" position, move the turtle to one end of the
segment, draw the segment, and return to the base position. Then each
letter could be described as a list of numbers, identifying the segments that
are used to draw the letter. Instead, I chose to try to find some regularities
in the way the segments are arranged. I divided the twenty segments into
five groups of four each. In each group, the segments can be drawn in a
single continuous path, without drawing any segment twice. (I would have
liked to be able to draw the entire group of twenty segments continuously
without duplication, but that's impossible.) Four of my five groups are
identical in shape; the fifth is special.

The five groups are numbered in a specific order. Within a group, the
segments are also numbered in a specific order; this is shown in the next
figure. The program is written so that it draws segments in this order. That
is, to draw a letter, the program first draws the four segments that make up
the arrow-shaped group in the top left corner. Then the program goes on

Dividing twenty segments into five
sets of four each

5 2 W O R D P L A Y

2 / \ 4

Order of segments within a group

Drawing an A

to the second group, the arrow-shaped one at the bottom left, and so on.
Within each group, the program first draws segment 1, then 2, 3, and 4.

Not all segments are used in every letter, of course. Therefore, the
turtle lifts its pen while tracing some of the segments. For example, con-
sider this representation of the letter A.

The variable contains a list of five lists. Each of these smaller lists corre-
sponds to one of the five groups of segments. The first sublist is
this means that the turtle's pen should be up during the first segment and
down during the second segment. (There could be up to four words in each
sublist. In this case, since there are only two words, the program will stop
tracing the first group of segments after the second segment in the group.)
This figure shows how the program draws the letter A; compare it to the
list just given.

The Letter-Drawing Procedures

The procedure draws a letter. It takes two inputs. The first is a list
like the one stored in the variable the second is a position, that is, a list
of two numbers. The letter described by the list is drawn at the position.
(Actually it is the lower left corner of the letter that is at the given position.)
For example, if we have defined the variable as just given, we could say

Here is the procedure:

The procedure uses a subprocedure The second
input to is a list that describes the overall layout of the groups
of segments. Like the letter descriptions, it is a list containing five lists. But
each of the five lists has only two elements: the starting position of the group
of segments and the name of a procedure to draw the group of segments.
This procedure is called for the first four groups and for the
fifth group. The "position" of the beginning of the segment group is actually
relative to the position of the letter as a whole, not an absolute screen
position. For example, if the position of the letter is [23 47] and the
relative position of the third segment group is then the actual
screen position for that group is

[0 24] [9 24] [23 71] [32 71] = [23 47] + [9 24]

[012]
[912]

[23 59]
[32 59]

Starting points of segments in
relative coordinates

[23 47]
Starting points of segments for a
letter drawn at P 0 S = [23 4 7]

D R A W I N G L E T T E R S 73

To know why the position numbers are what they are, you must know
that I chose to base the segment lengths on a 3-4-5 right triangle. The
horizontal segments are 9 turtle steps long, the vertical ones 12 steps long,
and the diagonal ones 15 steps long. This conveniently makes all the

 commands use whole-number inputs. It is also a reasonable shape
for the overall letters.

The procedure has three inputs. The third is the position of
the letter. The first two are both five-element lists of lists. One is a letter
description; the other is the overall layout description. The job of

 is to match each element of the letter with the corresponding
element of the description. It invokes the subprocedure with
these sublists as inputs:

Let's see how this works with a particular example. Suppose we ask
Logo to draw the letter A with this instruction:

This ends up invoking this way:

Then invokes five times.

Each element of the list that is specific to the letter A (for example,
 is matched with an element of the list that describes the layout of

letters in general (for example, [[

Drawing Each Segment Group

Remember that each sublist of the template (the overall layout description)
has two pieces: the relative position of the group and the name of the
procedure that draws the group. first has to position the turtle,
then invoke the correct procedure. To position the turtle, uses a
subprocedure called which adds two position lists just as we did a
few paragraphs ago. Then it uses the command to invoke the procedure

 or as the case may be. These procedures take the letter

74 W O R D P L A Y

description sublist as input, so the procedure name must be linked with that
list to form the Logo instruction for RUN.

For example, the first use of in drawing the letter A in our
example is

This is equivalent to the following Logo instructions.

This is, in turn, equivalent to

The tricky (but exciting!) thing to understand here is that the instruction
 doesn't actually appear in any Logo procedure in this

program. Instead, this instruction is put together as the program is run.
 combines the word (which it found in the template list)

with the list (which it found in the letter description list) into
one big list. It then uses the command to interpret that list as a Logo
instruction. We'll use the same trick again later.

The procedures and have to follow a certain path, set-
ting the turtle's pen up or down between steps as specified in the letter
description. They use a common subprocedure which knows how to
do that. One of the inputs to is the letter description sublist with the
PU and PD commands; the other input is a list of four Logo instruction lists,
one for each segment of the group.

D R A W I N G L E T T E R S 75

Here is how this works out in our example with the letter A. The five
invocations of listed earlier result in four invocations of and
one of

We'll look at the first invocation of in more detail. invokes
 like this:

Just as paired elements of its list inputs, so does It ends up
executing these Logo instructions:

There might have been up to four of these RUN instructions, because there
are four segments in an group, but in this case there were only two
pen commands in the input list : If we look at what the instruc-
tions actually do in this example, we see that the final effect is just as if the
procedure contained these instructions:

This is a straightforward series of turtle graphics commands. Again, though,
it's important to understand that that series of commands is not actually
part of any procedure. Instead, the commands were generated by the
procedure by putting together pieces of its inputs.

Final Details

Here is the subprocedure of that turns the relative posi-
tion of a segment group into an absolute position:

Finally, the procedure takes an entire word as input and draws the
letters in that word one by one. It's used like this:

and here it is.

76 W O R D P L A Y

Here are the definitions for my letters:

SUGGESTIONS
• Make up descriptions for the twenty-segment digits shown near the

beginning of this write-up.
• The letter L is described very efficiently by this scheme; the turtle

takes no unnecessary steps to draw it. The letter A, on the other
hand, is not very efficiently described. Each in its description
represents a step that the turtle takes without drawing anything; to
draw six strokes, the turtle travels over fifteen segments. Can you
work out a way to group the segments that makes more letters more
efficient? (I don't have any secret answer to this; I haven't tried it
myself.)

• Modify the procedures so that the size of the letters can be varied.
You could have an input called and use for the hori-
zontal segments, and so forth.

• Modify the procedures so that the aspect ratio of the letters (the ratio
of the vertical segment length to the horizontal segment length) is
variable. This is much harder; in general, it requires using trigonom-
etry.

• Make up descriptions for lower-case letters. This may require chang-
ing the whole arrangement of segments, since some lower-case let-

D R A W I N G L E T T E R S 5 7

ters have descenders. That is, they extend below the baseline of the
capital letters. These letters are g, j, p, q, and y. Manufacturers of
computer terminals don't always use descenders for lower-case let-
ters. Some avoid it by printing those letters higher than they should
be; others just use SMALL CAPITALS instead of lower case.
Without changing the letter descriptions, change the shapes embod-
ied in the procedures and See if you can invent an
interesting new alphabet this way.
Modify the procedures so that you can write words at an angle, not
just horizontally across the screen.

LISTING

5 8 W O R D P L A Y

Mail

When I was a kid in school, my friends and I liked passing notes to each
other. It was reflection on this experience that inspired me to write a mail
program. In those olden days, the suspense was great as we waited to see
if we could send messages from one side of the room to another without
getting caught. With this modern method of letting Logo be the mail
carrier, students today find different pleasures.

Using the Program

Since Logo has no mail system of its own, I decided to build one. The
essential actions are sending and receiving mail. This project is just one
example of an electronic mail system, rem.

The program assumes that you have a disk on which daily mail can be
saved. For convenience, you should reserve one diskette specifically to hold
the mes^lges and the mail program.* To start the program, type You
will get a screen that looks like this:

* You may also change the mail program so that you can use a cassette recorder. Then
you would save to the cassette instead of to the disk.

By Annette Dula.

M A I L 59

Sending Mail

If you want to send mail, type S.

> .

First you are asked who the message is for. A prompt (>) appears, and
you type in the name of the person to whom you want to send mail. You
are then asked who the message is from, and you type in your name. Next
you receive instructions. After you type in your message, you are asked if
you really want to send it. If you do, you are informed that the message is
in the mailbox.

Reading Your Mail

To read your mail, type R.
You are asked to type in your name. Once you do, your messages

appear on the screen.

80 W O R D P L A Y

After reading each message, you are asked if you want to delete it. If
you type that message is deleted.

Reading All the Mail

If for some reason you want to read all the messages that have been
written, type A.

After each message, you are asked if you want to see more messages.
If you type you see another message, otherwise you exit from reading all
messages.

Other Commands

 Automatically saves all messages on the diskette. You are asked if the
mail disk is in the drive. If you type the program and all messages
are saved on diskette; otherwise the program stops.

 Stops the program.
Deletes all messages.

Structure of the Mail Program

The Data Base

All the messages are organized into one list named For
example, : might look like this:

M A I L

Each message is itself a list of lists.
The first message in this example is

This message contains four sublists:

The first is
T h e second is
The third is
T h e last is

The word and the receiver's name make up the first list in each
message, while the word and the sender's name make up the last list
in the message.

The Main Procedure

 is the main procedure of the program. It displays the help text,
gets a character command from the user, and checks to see if the command
is valid. If it is, it calls the appropriate procedures to carry out the actions.
These procedures are

 and

 puts the menu of possible actions on the text screen.

82 W O R D P L A Y

Sending Mail

 is the main procedure for sending mail. First it asks for the
name of the person who is to receive the message. It then asks for your
name (the sender). You are then given instructions for typing the message.
Finally you are given a chance to change your mind about sending it. If you
decide that you want to send it, the message is included in the list of all
messages.

 uses four subprocedures:
 and

M A I L

 A "

Reading Your Mail

84 W O R D P L A Y

Reading All the Mail

M A I L 65

Saving on the Diskette

 saves on the disk. First it reminds you to put the disk in the
drive.*

Reinitializing the List of Messages

 clears all messages from the list of messages.

PROGRAM LISTING

*If you are using a cassette instead of a diskette, you must change the last instruction in
DISK. DUMP so that it saves to a cassette: IF RC = "Y [SAVE " C : l

66 W O R D P L A Y

[]
[* » » * « • •

W O R D S C R A M 67

Wordscram

A Word Guessing Game

 picks a word, scrambles the letters, and shows you the scram-
bled version of the word. Your job is to guess the word. (In this sample game,
the word is chosen from a list of thirty or forty technical Logo terms.)

 helps you by showing which letters in your guess are in the
correct spot. You can also type if you need a hint, or if you want
to give up. Here is a sample of in action.

By Keith Sharman.

88 W O R D P L A Y

RE Two letters correct.

Get a hint.
Computer responds.

 and not correct.

 ! Got it!
 ? Y

 give

Program ends.

Scrambling a Word

The heart of is It takes a word as input and outputs
a scrambled version of it. The strategy goes something like this. Let's say
the word to scramble is "draw."

1. Pick a letter from the word at random.
2. To make sure that the letter does not get picked again, remove it

from the word.
3. Join the letter just picked to the result of scrambling the remaining

letters of the word. Continue until there are no more letters left.

Using the word "draw" as an example, we might get this result:

WORDSCRAM 89

The assembled word is "wrad."
 picks a letter from the word, then uses that letter in two

ways: it removes the letter from the word (to get the input for the recursive
invocation of and it sticks the same letter back onto the begin-
ning of the scrambled word. To make this work, after picks a
letter, it invokes a subprocedure, 1 ,whose second input is the
letter to remove from the word.

Here is how and 1 interact, in the same example
we looked at before.

Removing a Letter from a Word

 takes two inputs, a letter and a word. It compares the input letter
with each letter of the input word. When it finds a matching letter, it
outputs the word with that letter removed.

90 W O R D P L A Y

1

REMOVE works by comparing the input letter with the first letter of the input
word. If they match, then the BUTFIRSTof the word is the output we want.
Otherwise, the output is formed by joining the first letter of the input word
with the result of REMOVEing the input letter from the rest of the word.

TO REMOVE :LETTER :W0RD
IF : LETTER = FTRST :W0RD [OP BF :W0RD] Send back the rest.

Here is how the preceding example (using RECURSION as the word) hap-
pens.

The remaining procedures in this program are straightforward and
won't be explained in detail. You can look at the program listing to see what
they are.

SUGGESTIONS

Here are a few ideas for changing WORDS CRAM.

• Change the list of words it knows.
• Tell the player how many guesses it took to get the word.
• After the player guesses the word, ask if she or he would like to see

the definition of the word. Since WORDSCRAM's words are technical
Logo terms, this would be an interesting way to learn about Logo.

• Add some new messages.
• Do some psychology experiments. Some words look very strange

when scrambled. Does this "strangeness" vary from person to per-
son? Some people are better at unscrambling words than others.
Why? What sort of strategy do you apply to unscrambling a word?
Does it resemble other problem-solving strategies you use?

W O R D S C R A M 7 1

PROGRAM LISTING

SEE IF THE USER WANTS INSTRUCTIONS

STARTING THE GAME PLAY

72 W O R D P L A Y

SCRAMBLING THE WORD

GETTING THE USER 'S GUESS

WORDSCRAM 93

CHECK THE GUESS FOR CORRECT AND INCORRECT LETTERS

TO ADDGUESS :GUESS
MAKE "GUESSED.WORDS LPUT :GUESS :GUESSED.WORDS
END

TO COMPARE :GUESS :C0RRECT
IF (OR (:GUESS = ") (:C0RRECT = ")) [PR [] STOP]
IF ((FIRST :GUESS) = (FIRST :C0RRECT)) •

[TYPE [*]] [TYPE [?]]
COMPARE BF :GUESS BF :CORRECT
END

HINT AND HELP

IF (

MISCELLANEOUS PROCEDURES

7 4 W O R D P L A Y

.]

Madlibs™

This project plays the game of Madlibs.* The program asks for words or
phrases with which to fill in the blanks in an already-prepared story. Then
it prints the resulting story.

*"Madlibs" is a trademark of Price/Stern/Sloan.

By Brian Harvey; story template by Susan Cotten.

M A D L I B S 75

Here is an example of a story to be used with the program.

t i m e o f d a y p e r s o n way t o m o v e

p e r s o n an i m a 1

p e r s o n

way t o m o v e

a n i m a l p e r s o n

p e r s o n p e r s o n

a n i m a l p e r s o n

b o d y p a r t p e r s o n

p e r s o n a n i m a l

Here is what happens when you use the program with this story.

7MADLIB :ST0RY1

DUSK

URSULA

JUMP

RAT

96 W O R D P L A Y

How a Story Is Represented

 story is represented as a list that contains words and lists (which we'll refer
to as sublists). The sublists are the blanks of the story. Here is the list that
represents the preceding example.

Each word or phrase that the user types to replace a blank is given a
name, so that the program is able to remember it. The named phrase can
be used to fill more than one blank. The sublist

signals the program to type

and to give what the user types the name Later the sublist
 appears in : without the prompting phrase

 This signals the program to fill the blank with the word or phrase
named without asking for a new motion.

The Procedures

The top-level procedure is

 invokes and prints its output, which is a story list with the
blanks filled in.

The job of is to go through the story list, one element at a time.
If an element is a word, that word itself should be part of the output. If the
element is a list, it has to fill a blank. Here is the procedure.

M A D L I B S 97

This procedure has the overall structure of a recursive operation that
does something to every element of a list.

The first instruction is the end test for the input list being empty.
The next line checks for the case in which the first element of the list

is a word. In that case, we want to put the word itself in the output.
If the first element isn't a word, it's a blank to be filled. There are two

cases. If the list contains more than one word, like
 that means that the user must be asked for a to fill

the blank. The name for what the user types is the first word of the list,
 handles this interaction.

?

If the first element is a list that has only one word, like I , then
we use the word or phrase that was remembered under that name.

?

The last line of provides the output for both kinds of sublists.

Filling Blanks by Asking Questions

 has two tasks: it asks the user for a word or phrase, and it gives
what the user types a name.

By the way, this is a good example of the use of with a first input that
is not a quoted word. The name of the variable we want to set is part of the
story list and does not appear in the text of the procedure.

An elegant detail of is that it figures out whether to use
 or in prompting for a word or phrase. Here is the subprocedure that

does the figuring.

7 8 W O R D P L A Y

Handling Punctuation

If a blank to be filled is the last thing in a sentence in the story, there is the
problem of putting a punctuation mark at the end, without making it a
separate word. For example, in our story we have a sentence that ends

If the variable contains the word we'd like the finished
story to end

But if we don't treat this as a special case, the period will be a word by itself:

The solution I chose is to use an asterisk in the story to mean "take the
next two elements in the list and combine them as one word." That's a slight
simplification, though, because the next element may be an entire phrase,
and only the last word of the phrase can be combined with the punctuation
character that follows. The procedure that does the combining is this.

Here is a revised version of that uses

PROGRAM LISTING

M A D L I B S 99

2
Stories

Exercise

In this project you watch a stick figure go through exercises consisting of
jumping jacks and jumping on a trampoline. In the end, the figure collapses
from exhaustion.

The idea for this animated story came about when I was playing with
the shape editor. I wanted a stick figure to perform ajumping jack. I divided
the jumping jack exercise into two parts. In the first part, the figure has its
arms extended upward and legs apart; in the second part, the figure has its
arms at its side and legs together. I designed the following two shapes in
the shape editor to represent these stances.

Next I wrote a short procedure to see what these shapes would look like
when put together.

E X E R C I S E 8 1

The movement was jerky. I made a third shape, which had its arms
extended downward and its legs apart. I added this shape to The
three shapes, interspersed with made for a fairly smooth jumping
jack.

Here is the sequence of shapes that I use for the jumping jack.

o 0 o

A
I began to think of other things I could do with my figure. What about

jumping on a trampoline? I sketched a trampoline. I saw that the trampo-
line bed could be drawn using two arcs. After I'd figured out how to draw
the trampoline, I put the first stick figure in the sequence on it and wrote
a procedure to make the figure jump up and down on the trampoline. I also
added a that sounded a boing whenever the figure bounced on the
trampoline.

I then made a shape for the turtle to wear while getting up on the
trampoline.

What next? I recalled how I felt after a good workout. It might be
interesting to make the figure collapse on the floor. The figure would begin
this sequence standing upright, then would bend over and collapse.

Here are the shapes.

O

I hadn't yet written the procedures to connect the exercises, but my
general plan was to have the figure walk from sequence to sequence. These
are the three shapes that I used for the walking motion.

o o o

h A r\

102 S T O R I E S

I used nine shapes in my story. I named these shapes FIGUREl,
FIGURE2, and so forth. The shapes as seen in the editor and the list of
numbers describing them are printed at the end of this write-up.

Putting It All Together

E X E R C I S E 103

 moves the turtle over to the left side of the
screen and sets its shape for the first exercise.

The figure performs six jumping jacks. Whenever the figure touches
the ground, Logo makes a sound, a At the end of this exercise, the
turtle sets its shape to the standing figure.

84 S T O R I E S

O

The input to tells it how far to move, that is, how many times to
repeat

O

O

h

The figure is now standing on the trampoline.
 makes the figure jump up and down by running

 fifteen times.

At this point the figure is through exercising.
moves the figure down off the trampoline and then walks it a short distance.

E X E R C I S E 85

The figure stops and lets out a musical sigh as it collapses on the floor.
 relies on to do the work. is given a pitch to play and

a list of shapes.

PROGRAM LISTING

 2 : F I 2

86 S T O R I E S

10 12 16 16 16 16 16 1 6]

12 8 20 20 18 18 18 0]

8 20 20 20 20 20 0]

C A R T O O N

SHAPES

Cartoon
InCARTOONa bird flies around chirping, flapping its wings, and fertilizing
the world. Eventually it settles on a mountaintop and lays an egg, where-
upon the bird flies off forever. The egg hatches into a little bird, which also
flies away.

This project is one that I developed over a long period of time. I started
out wanting to explore graphics and dynamics with turtles. As I began to
sketch out ideas in the shape editor, I stumbled onto a design that looked
like a bird's head and upper body. I used a cartooning technique of drawing
in outline a side view of the bird. As soon as the bird emerged as the central
character, the rest of the project began to suggest itself. The overall goal
became clear: to make a bird and then make it fly.

In the following discussion I try to convey the process I went through
in developing this project. If you want to look at the completed program,
turn to the listing at the end.

By E r r i c Solomon.

108 S T O R I E S

Making the Bird

Making the bird was a long process of sketching the parts in the shape editor
and then testing them out in relation to the other parts. I used one shape
for the bird's head and the top of its body and another shape for the bottom
of the body and the legs. I also used a separate shape for the wing. Since
I decided on a side view, only one wing was needed. I put the first wing
shape in shape 3 and used shape 1 for the top of the bird and shape 2 for
the bottom of the bird. I chose a yellowish color for the outline of the bird
and picked a purple shade for the wing, which I made as a solid figure.

Here is the way these shapes look in the shape editor.

I named the shapes and

I set up the bird giving each of the three turtles a shape and a position.
These instructions make up the procedure

C A R T O O N

3

f

Turtle 0 is (shape 3), turtle 1 is : (shape 1), and turtle 2 is
 (shape 2).

I used a trick here; turtle 0 assumes the role of the wing so that it is
visible over the bird's body. (Lower-numbered turtles cover higher-num-
bered ones.)

Animating the Bird

I thought I would make several wing shapes to represent different flapping
positions. Making the wings took a lot of experimentation; I made several
until I had three that were satisfactory. Here are those three shapes.

:WII\IG2 : WI l\IG3 :WING4

I wrote to change the wing by putting new shapes in slot 3
as they were needed for the animation. The input to indicates
how long Logo waits before the shape is changed.

90 S T O R I E S

At first I was going to put all the wings in the shape table at the same
time, but I had made so many shapes I exhausted the shape table slots.
Instead I used only slot 3.

I coordinated the speed the bird travels with its wing movement and
finally settled on the following:

Although I was pleased with the way the wings looked, I didn't like the
bird's legs. I wanted them to curl up for flying. So I drew a new bird bottom
with the legs up, which I referred to as•

:LEGGSUP

The Scenery

The bird needed a place to fly from, so I made a mountain. In the process
I decided to add clumps of grass at the bottom of the mountain.

The grass was made in clumps.

f

C A R T O O N

112 S T O R I E S

Making the Bird Fly

After getting the bird to sit on the mountain, I wanted it to take off, fly
around, and then land. To produce the animated portion of the story, I
anticipated needing several procedures like and

TAKEOFF adjusts the bird's heading and speed for its ascent and leveling
off. In the process the bird's legs are raised and its wing flaps.

 calls

(Note that the bigger : is, the slower the wing flaps.)

C A R T O O N

Assembling

I put all these instructions into a procedure.

Landing the Bird

Once I got the bird to take off, I wanted to make it land. I had to figure out
a way to invoke the landing process and then coordinate the bird's heading
so that it would land on the mountain. I also had to find a way to stop the
bird once it reached the mountaintop.

An obvious way to stop the bird once it landed on the mountain was
to set up a demon to watch for turtle 2 colliding with the mountaintop
drawn by pen 0. A much harder problem was figuring out how to start the
descent. I wanted to use a demon, but I wasn't sure how. I finally happened
upon a technique that I found extremely useful in other parts of this project.
I made a wall in the sky by drawing a vertical line above the mountain in
the background color. Turtle 2 would inevitably collide with this line. I set
up a demon to watch for this event and then invoke the landing.

 draws the line. I put in directly after
 draws the mountain using turtle 0 with pen 0. This mark is drawn

by turtle 0 with pen 1.

114 S T O R I E S

Fertilizing the World

While birds fly around they also drop sprinklings of digested matter. This
bird is no different. I designed and put it in shape 4.

I wanted to suddenly appear and fall to the ground as the bird
continues its flight. I used turtle 3 for this role. Turtle 3 would travel with
turtle 2, but invisibly. To camouflage turtle 3, I set its color to the back-
ground color until the proper moment. I changed

Here is the path I planned for the fertilizer.

C A R T O O N

I made one addition; I added sound effects to attract the viewer's attention.
I then redirected the turtle commands to the bird turtles.

I put these instructions in a new procedure called
I had to face a couple of problems: when would the bird release the

fertilizer and how would turtle 3 know when it hit the ground and so stop?
I concentrated on how to activate I wanted the bird to take

off and fly for a while before its musical gift descended to earth. The bird
would perform this feat after crossing the screen once.

I used the same technique I used for LAND I NG. To do this, I drew an invisible
wall on the screen running vertically at the place where I wanted turtle 3
to begin its visible descent. I used pen 2 to draw the line. The pencolor was
the same as the background color; it was invisible to the viewer, but not to
a turtle or a demon. I changed SET .MARKS.

I set up a demon to watch for turtle 2 (: LEGGSUP) colliding with this
line.

116 S T O R I E S

I had another problem. When does this demon get activated? J wanted this
event to happen before the bird starts its landing.

I changed the instruction so that the demon invokes
 instead of

 dismisses the currently active demon, runs and
sets up a new demon to invoke

 used the same trick for making turtle as disappear. This time
1 drew an invisible line at the bottom of the mountain in the background
color. Since the visible scenery was drawn with pen 0,1 decided to use pen
2 for the line drawn in the background color.

I added these instructions to
I set up a demon to watch for the collision between turtle 3 and pen

line 2. The demon invokes a procedure to make the turtle vanish.
Now looks like this:

 Updated

C A R T O O N

Additional Sound Effects and Graphics

I liked the sound effects in and decided that the bird should sing
before taking off in flight. To do this the bird needed a tune.

When birds sing, they open and close their mouths. This action required
another shape for the bird.

118 S T O R I E S

More Frills

The bird lays an egg and flies away. The egg hatches and a little bird flies
off. First I made a little bird. This bird fits in one turtle shape.

: L I T T L E B I R D l

Since I had already made one bird fly, this one was not a problem. I made
a total of four shapes for this little bird to show it in various stages of flight.

I used the same technique for this animation as I did for the wing flapping
for the big bird.

C A R T O O N

The bird shapes are put in shape 4 in the shape table. Turtle 3 would now
be the little bird.*

Hatching the Egg

Turtle 3 eventually is changed from an egg to a bird. The egg hatching
process consisted of designing shapes and playing around with how they
interact with one another.

I drew the egg shape and five more shapes to depict the hatching
process.

:HATCH3 :HATCH4 :HATCH5

 and : are fragments of the top and the bottom of the egg.
Having these two shapes superimposed on the more complete shapes of

 and : enhances the hatching animation. It simplifies
the pictures I had to draw. This superimposition happens by having turtle

*Notice that the delay for : L ITTLEBIRD4 is shorter than the other delays. I did this
because the wing in that shape is clipped. It extends beyond the shape's dimensions. With the
shorter delay you don't notice the missing wing part, but you do get an uninterrupted sense
of a flapping motion.

120 S T O R I E S

 21

I \

C A R T O O N

f
E N D &

102 S T O R I E S

PROGRAM LISTING

C A R T O O N

104 S T O R I E S

1 0 6]

1 0 6]

0 0 0 0 0 0 0 0]

1 0 6]

1 0 6]

0 0 0]

0 0 0 0 0 0 0 0]

1 0 6]

Jack and Jill

This animated story plays freely with two nursery rhymes I knew by heart
when I was very young. The rhymes are "The House That Jack Built" and
"Jack and Jill." I did not try to retell either of them in any literal sense.
Instead, I wanted the story to have in it some of my feelings for these
memories of childhood. I wanted the animation to be lively, humorous, and
whimsical. I let the story turn on graphics and animation features, and
concentrated on how the animation felt.

I built this story from a number of smaller projects I had written. I
never planned these small projects as parts of a single animated feature, but

By Michael Grandfield.

J A C K A N D J I L L 105

I realized at some point that they could be used in this way. This write-up
describes how the parts were made; it does not offer a description of the
final animated story. However, a computer listing of the program is pro-
vided at the end of this write-up.

Building a House

Here is a house. Drawing it was the beginning of this whole project.

The funny thing about a picture of a house is that it doesn't let you
know anything about how it was drawn. A nice thing about animation is that
you can make the way the house is drawn an important, interesting process;
and that is what the project was about.

One way to draw this house would be to write individual procedures
for each of the shapes that are in the design. The house needs three shapes:
a square for the house; a rectangle for the garage, the doors, and the
windows; and a triangle for the roofs. Once these procedures are written,
you can put together a procedure that uses them all to draw a house.

This is a fine way for one turtle to make a drawing. But I wanted to try
something different. I chose to play with having all four turtles cooperate
in drawing the house. They became the JackBuilt Construction Company.

The tricky part of this project was making all the turtles draw different
parts of the house at the same time. Here are a series of examples that
illustrate the problem and how I decided to solve it.

In this illustration, all of the turtles are visible and placed apart from
one other.

126 S T O R I E S

First, let's give the turtles something to do all at once.

Next, the turtles can simultaneously draw the same figure.

Now let's have the turtles each do something different.

J A C K AND J I L L 107

This command is very different. The turtles are moving one after an-
other in very rapid succession. Yet as long as the instruction given to each
turtle is not too long, they will appear to be moving all at once.

This is the key to the project.
The turtles can appear to be drawing a house simultaneously if each

instruction to the turtles is pretty short. The procedure needs to explicitly
tell each of them to draw each single line. The way I thought about this was
to give each turtle at the job site its own work to do. One turtle laid the
foundation, another put up walls, another built roofs, and the last made
doors and windows. Each turtle had a list of things to do. When each had
finished the first item on its list, they all went on to the next item.

It is important that each of these lists have the same number of items.
Also, these lists call three short procedures to draw the door and windows.
Here they are.

Here's a procedure that can use the variables to draw a house.

1 0 8 S T O R I E S

Getting to the Job Site

Here is the second project. It's about carpenters and their truck.
It seemed important that the turtles look like carpenters and that they

arrive at the job site in some believable way. I decided that driving up in
a truck was the right thing to do. Here are the shapes for the carpenters
and the truck. The listings for these shapes are provided at the end of this
section.

As you can see, I decided to use only two shapes for the truck.
It didn't take long for me to discover that I had a bit of a problem. The

turtles that carried the truck shapes had to become carpenters as soon as
the truck arrived at the job site! This meant that the truck would disappear.
I decided to solve this problem by having the carpenters drive up as the
truck, rather than in the truck. When the truck arrived, it would be trans-
formed into the carpenters. When the house was finished, the carpenters
would transform back into the truck.

Here are the shapes I made for the transformation.

And here's what that transformation looked like on the screen.

J A C K AND J I L L 1 0 9

The interesting part of this project was making the shapes and making
the animation work effectively.

Here are the procedures.

Remember, is still in effect.

Now the carpenters are ready to When they have
finished the job, they turn back into their truck and go home.

110 S T O R I E S

•

Here are the listings for the shapes. They are listed in the same order
as they appeared in this section.

Jack and Jill

This is the third project. It's about animating figures.
I wanted to animate Jack leaping up a hill, meeting Jill, and then Jack

and Jill leaping down the hill. I decided to forget about "Jack fell down and
broke his crown/Arid Jill came tumbling after." Getting them to leap
without falling down was enough to do. I decided, however, that Jack
should be a bit clumsy. He would always bump into things before leaping
over them.

Here are the leaping shapes. The listings appear in order at the end of
this section.

J A C K AND J I L L 111

opportunity, he bumps into the rise in the hill. He is saved from a fall by
his guardian demon. Every time Jack stubs his toe, this demon stops him
and gets him to back up a bit. Here's the demon.

Now let's look at the procedures that bring this animation to life.
 is the main procedure.

 activates the demon and places Jack and Jill.

 animates Jack's ascent.

112 S T O R I E S

 stops only when Jack has reached the top of the hill. Until
then, it repeatedly invokes

Here's the procedure that is invoked when the collision demon has
stopped Jack.

 is invoked to get Jack up the hill.

 is invoked to get Jack and Jill down the hill.

J A C K AND J I L L 113

Now Jack and Jill can leap down the hill.

Here are the listings for the shapes.

Setting the Scene

This is the fourth project. It's about drawing scenery and choosing colors
that complement one another.

I wanted to learn about how to write programs for scenery. So I drew
lots of different scenes and I learned some very useful techniques that make
drawing faster and easier. Here is the scenery I use in Jack and Jill.

 is the main procedure.

114 S T O R I E S

SETUP is the setup procedure.

In this scene I wanted to fill in a large area of the screen with a single
color. This can be a slow process. Here is a technique for overcoming this
difficulty.

 assumes that the screen is in It begins at the bottom of the
screen and draws a single line across the screen. Then the interesting part
happens. The turtle is turned 0.4 degrees and is instructed to go forward
many steps. Try this out.

J A C K AND J I L L 115

 invokes to draw the several levels of the hill.

This particular hill was made with fearless Jack in mind.

I decided to add trees to this scene, and I remembered the cover
illustration from Harold Abelson and Andrea DiSessa's Turtle Geometry
(Cambridge, Mass: MIT Press, 1981).

Here are the four procedures from Turtle Geometry.

S T O R I E S

The Whole Ball of Wax

I realized, while I was making up a diskette with all of my projects on it,
that I had all of the pieces I needed to make a long animated cartoon. Jack
and Jill could become an opus.

Here's the storyline. The JackBuilt Construction Company drives down
a tree-lined road that runs along the crest of a terraced hillside. Their truck
stops at a house site and the carpenters build a home for Jack and Jill. When
the house is built and the carpenters are gone, Jill appears in the doorway
and waits for Jack to leap up the hill. Jack sees Jill waiting but rings the
doorbell anyway, and Jill comes out. Together they leap olf down the road,
magically transforming themselves into birds as they leap. The two beauti-
ful birds fly off through the trees, and the story ends.

Animating the birds was the finishing touch to this story. I love magic,
and I feel that all children's stories should have some magic in them. I
decided to transform Jack and Jill into birds in midleap and have them fly
away. This transformation delights your eye and surprises your expectations
for the story. It's magic.

Here are the shapes I designed for this transformation sequence. Jack
and Jill are traveling from right to left across the screen, so this sequence
is also displayed here from right to left. The listings appear in order at the
end of this section.

* A

The transformation begins with both figures carrying a leaping shape.
 accomplishes the actual transformation.

J A C K AND J I L L 1 1 7

Notice that throughout the transformation the figures are carrying
shape 1. I decided to use to change shape 1 several times.

 is the final procedure in the story. It animates the birds and syn-
chronizes the sounds they make as they fly away.

Here are the shapes.

This program is divided into five files. You only need to load the first
file the others are loaded by the program at the appropriate times.

PROGRAM LISTING

The main procedure is JACK.

118 S T O R I E S

J A C K AND J I L L 119

 [0 0 0 0

:SHAPE 1

:SHAPE6

:SHAPE 11

:SHAPE2 :SHAPE3 :SHAPE4 :SHAPE5

u n
:SHAPE 7 :SHAPE8 :SHAPE9 :SHAPE10

:SHAPE 12 :SHAPE 13 :SHAPE 14 :SHAPE 1 5

120 S T O R I E S

J A C K AND J I L L 141

122 S T O R I E S

0 0 0 0 0 0]

0 0 0 0 0]

0 0 0 0 0 0]

0 0 0 0]

2 2 8 2 1 0 0 0]

0 0 0 0 0 0]

0 0 0 0 0 0]

0 0 0 0]

0 0 0 0 0]

8 0]]

J A C K AND J I L L 123

: EE : FF : GG

124 S T O R I E S

D : J A C K 4

8 0]]

0 0 0 0 0 0]

The six shapes through :F in this file are the same as the
shapes : through in the file

Rocket

 creates an outer-space scenario. Imagine that you're standing on
Demos, a mythical planet orbiting somewhere in the galaxy. Views of Mars,
Saturn, a few stars, and some mountains surround you. A rocketship appears
and blasts off with musical fanfare. After traveling halfway up the screen,
the ship's crew realizes that it has forgotten the pilot and returns to the
original take-off site. The pilot races across the screen and boards the ship.
The rocketship takes off again, amid blast-off sounds and color flashes, and
heads due north. As the ship travels through space, the view of the moun-
tains disappears and is replaced by a couple of stars. Soon one of the moons
orbiting Mars is in view, as well as a mysterious green planet moving west.
Eventually the rocketship and green planet collide, and a message appears
on the screen that tells you the crew has reached a planet they wish to
explore and your adventure is over, and bids you farewell.

Overview

This discussion presents an overview of how the program works and de-
scribes the process I went through in designing it. Few of the procedures

By Lauren Young.

R O C K E T 125

 *
0 j #

$
* #

are listed within the discussion. They are all listed at the end of this write-
up.

The Rocket

This whole project began with a lone rocketship I had designed, traveling
up the screen. Before it took off on a flight through the galaxy, I added fire
to it. That is, I designed a shape that I put beneath the rocketship; it looks
like fire emerging from the ship. The shapes are in slots 2 and 3.
Turtle 1 carries the shape of the rocketship; turtle 2 carries that of the fire.

 sets turtles 1 and 2 near the bottom of the screen, one above the
other.

ROCKET

: FIRE

The Background Scenery

Saturn, Mars, Stars, and Mountains

I wanted something interesting and colorful, but what? I thought about
what one might see on a voyage through the.galaxy—a planet! That's where
I began. When I finished, I had written procedures for two planets,
Mars and Saturn, three stars, and some mountains:

and

S T O R I E S

I picked Mars because its name is short. This was important because I
wanted to draw the planet's name within the outline of the planet. I de-
signed the letters M, A, R, and S and the procedure that puts the
letters inside a semicircle on the screen. is the procedure that
connects these procedures.

I wanted to include a familiar and smaller—seemingly more distant—
planet in the upper-right quadrant of the screen. Saturn was an easy choice
from among the planets because of its ring.

What is a galaxy without stars? The procedure tells turtles 0, 1,
and 2 to each draw a star.

I was satisfied with the upper half of the screen, filled with two planets
and three stars. The bottom half was still bare and needed a landscape.
I thought about mountains and decided to adapt two procedures,

 and from the Atari Logo Reference Manual. *

Putting It Together

Ready, Set, Action!

Now, for some more action! I wanted to try animating a person walking
across the bottom of the screen. Susan Cotten's Exercise project gave me
some ideas, and I started experimenting. I designed three shapes

 and each with the same head and torso,
but with arms and legs in different stances. As in Exercise, I also wanted
footprint sounds with each step the person took. The pilot appears to run
by having turtle 0 rapidly change its shape to 3, and

Launching the Rocketship

The rocketship reverses its direction and returns to its blast-off site and
stops. The pilot races across the bottom of the screen and boards the rocket-
ship. When turtle 0 (the pilot) and turtle 2 (the fire on the rocketship) touch,

*The original version of these procedures is on p. 124 of the manual.

R O C K E T

 makes the rocketship take off again. There are take-off

sounds and changing background colors; the mountains disappear. The

rocketship is on its way. As the rocket continues to travel in space, two more

stars are drawn. A message, ! , " is printed on the screen.

Traveling in Space

As the ship travels past Saturn and Mars, a moon that belongs to Mars

begins to orbit across the screen. I set up a green planet to orbit in the

opposite direction.

When the green planet (turtle 0) and the rocketship (turtle 1) touch,

 is called. This procedure makes a siren sound

 and prints out a few messages:

 is the procedure that runs most of the action in the

story.

Conversation with the User

To involve you, the user, in a personal way, I added the procedure

 While this is one of the first procedures run in it

was one of the last added to the project. At the start of Logo prints

out:

Logo waits for you to type in something. If you type for

example, it will respond:

128 S T O R I E S

Rocket

Setting Up and Cleaning Up

PROGRAM LISTING

R O C K E T 129

 P U

130 S T O R I E S

R O C K E T

132 S T O R I E S

0 0 0 0 0 0 0 0 0]

3
Games

Boxgame

When you type BOXGAME, two square boxes are put on the screen. They are
the targets. A turtle appears in the center of the screen. The goal of the
game is to put the turtle inside each box. After you put the turtle inside a
box, the box vanishes. BOXGAME gives you experience moving and turning
the turtle.

• •

After sets up the boxes and the turtle, it activates demons to
watch for the turtle crossing over the lines of the boxes. Then the procedure
stops, and you take over and control the turtle directly using commands like

 or When one of the turtles collides with a line, a
demon invokes instructions that make the box disappear.

 can be modified so that you control the turtle in different
ways. You might want to use special commands, like for and
for You might prefer to use a joystick to control the turtle.

In the following discussion I begin by showing how was con-
structed so that you use Logo primitives like FD and RT. I also show how to
introduce new commands like and to the game. Lisa Delpit then de-
scribes her version of which she made for some young children

By Cynthia Solomon.

134 GAMES

she was working with. I later describe how to change so that you
control the turtle with a joystick in port 1. Then I add more frills to the
joystick version.

The Procedures

 sets up turtle 0 and then turns the rest of the job over to
The player is in direct control of the turtle.

 calls to put the two targets on the screen and then
alerts the demons to watch for turtle 0 crossing over lines drawn by pens
0 or 1. When either event happens, the pen color is changed to the back-
ground color and thus the box becomes invisible.

The boxes are drawn in different colors. Their positions are chosen at ran-
dom and are likely to be different each time the game is played.

This kind of game can be fun for a while. But it can also be hard work
for very young children! Thus you might want to add procedures that will

B O X G A M E 135

let the user type in single-key commands for controlling the turtle. For
example, when the user types F, the turtle moves forward twenty units.

Bye-Bye Boxes

(A Modification of Boxgame)
I used Cynthia's with a group of five-year-olds to help them in
their left-right orientation, and they loved it. But while they improved their
ability to direct the turtle when the turtle's direction was at
(that is, when the turtle's left and right were the same as their left and right),
they were still thoroughly confused when the turtle was headed in any
other direction. To help solve this problem I modified so that the
squares appear in any of eight directions (0, 45, 90, 135, 180, 235, 270, or
315) on the screen at different distances from the center. I also set the turtle
up in the center of the screen, but now facing in one of the eight directions.
I added sound effects too, partially because I thought the kids would find
it interesting but mostly because I enjoy playing with The children
came up with the catchy name.

The procedures are almost the same as those for with the
additions of which generates the number for the turtle's heading,
and and which add the sound effects.

The Procedures

I will point out where I made changes to is like
except that it calls

By Lisa Delpit.

136 GAMES

In I add sound to the instructions for the demons.

 sets up the turtle for drawing each box at an angle that
is a multiple of 45 and at a distance of 25 to 70 steps from the center. This
distance is not far enough away to be hidden behind the text at the bottom
of the screen. then, turns the turtle to a heading that is a
multiple of 45, and the game begins.

I wrote GETTURN so that it outputs one of eight possible numbers, all

multiples of 45.

A sound of increasing frequency accompanies the drawing of the box.
A sound of decreasing frequency accompanies the disappearance of the
box.

B O X G A M E 137

The following three procedures are unchanged.

The next procedures are changed so that the turtle turns 45 degrees.

Back to Boxgame

Using a Joystick

Another variation of this game is to attach a joystick to the computer and
use the joystick to control the turtle. In the next example, pressing the
joystick button moves the turtle forward five steps. The joystick moved to
the left turns the turtle left 15 degrees; the joystick moved to the right turns
the turtle right 15 degrees. To do this has to be changed and a
couple of new procedures have to be written for the joystick.

138 G A M E S

Extending

 will set the turtle's speed. I use a speed of 100, but you might want
to change this. This time when the turtle goes over a pen line, the back-
ground changes color. Finally, the game starts up again.

 needs to be changed. I also want to change the setting-up
procedure. Let's rename the new versions of these procedures.

Here is the new procedure.

PROGRAM LISTING

B O X G A M E 139

1 4 0 GAMES

Pacgame

 was inspired by PAC-MAN™ and designed as a learning tool for
beginners. You play the game by using turtle commands to move the gob-
bling pacman around the game board. The game's special effects and fea-
tures are activated entirely by demons. Thus a player types all commands
directly to Logo and demons take care of the game's actions.

Here are the rules I decided on for

• The game is played on a game board. There is a pacman and three
targets. Unlike PAC-MAN's ghosts, the targets in are sta-
tionary.

• Once play begins, it continues until all three targets are gobbled.
• Each target is worth 10,000 points and explodes when it is gobbled.
• All turns need to be multiples of 90 degrees because the pacman can

gobble in only four directions. If any other turn is made, the pacman
will change back into a turtle and complain.

PAC-MAN is a trademark of Bally Midway Manufacturing Company

By Michael Grandfield.

P A C G A M E

In addition to the rules, the pacman bounces back onto the game board
whenever it goes out of bounds.

I

The Playing Pieces and the Game Board

Let's look at these one at a time.

The Pacman

I wanted to make a pacman that could gobble and also behave like a
turtle. It took two shapes to animate the pacman, one for an open mouth
and one for a closed mouth.

: SHAPE3 :SHAPE4

Animating the pacman without limiting its turtle capabilities or inter-
fering with typing in a new command was a problem. However, I found an
effective solution by using the once-per-second demon. Here it is.

This demon runs the instruction list
once every second. This makes the animation continue steadily until the
demon is halted.

Next I decided that the pacman should be able to gobble in four differ-
ent directions (up, down, right, and left) and made six more pacman shapes.

:SHAPE 1 :SHAPE 2 :SHAPE5 :SHAPEfe :SHAPE7

Later I explain how the pacman chooses the pair of shapes that corre-
sponds to its heading.

The Targets

Next I designed a target. The design I settled on has a distinct outline
to make it easy to see how far the pacman is from hitting it. It also has a
sinister face.

142 GAMES

I wanted this target to explode as it was being gobbled, so I made this
sequence of shapes.

:SHAPE 9 :SHAPE 10 :SHAPE11 :SHAPE12

In the game, three turtles are targets. Collision-detection demons tell
when a target has been hit. Here's an example.

:SHAPE 13

 gives the turtle representing the target each of the explosion
shapes in quick succession and also changes the turtle's color with each
change of shape.

Later I added new instructions for these demons, in order to score the
game and congratulate the player.

The Game Board

Originally the game board was a thin outline. It looked like this.

There was a problem with this approach. I wanted a demon to detect
any collision between the pacman and a border of the game board. Also,
I wanted to keep the pacman in bounds by having it bounce back from a
collision. I discovered that these borders were too thin. The demon often

BOXGAME 143

failed to detect a collision. My solution was to make the game board have
very thick borders.

Here is the procedure that draws the game board. Notice that I used
two pens of different colors to draw the board.

Bringing the Game to Life

The main procedure is It calls and

Setting Up

 clears all graphics and text from the screen, and calls
 and

144 GAMES

 puts all the shapes, which are stored as lists of numbers,
into the shape slots. It also erases the variables that contained the lists. (I
guess I always like to free up as much of the workspace as I can.)

 sets up variables that the program uses.

You have already seen in the description of the game
pieces.

The Play

The procedure calls two setup procedures, and
 Once these procedures have been run, the game begins.

 sets the score to and places the pacman and the targets
on the gameboard in the correct positions to begin the game. It also creates
the variable

During the game is given the value of the pac-
man's current position. This value changes at regular intervals, provided
that the pacman remains in bounds. If the pacman goes out of bounds

P A C G A M E

 is not given a new value, so the pacman can bounce back
to the position that is the value of

 creates demons. These demons animate the pacman and
detect collisions. The procedures that these demons call are the guts of the
game.

Procedures Called by the Demons

You can see that I have changed the instructions for the once-per-
second demon from the earlier example. The demon checks to see if the
pacman has heading or If so, it animates the pacman;
otherwise it reveals the original turtle shape. As you will see, this demon
is able to do several different jobs neatly.

The procedure uses two interesting programming
tricks.

The first trick is that I have given each shape a variable name that is
the same as the heading associated with the shape. For example, the shape
that gobbles upward is used when the turtle has a heading of 0, and is given
the name "0. The variable for this shape is created by the instruction

146 GAMES

Now if I type

or

Logo will respond

If the pacman's heading is 0, I can also type

and Logo will respond as if I had typed

The second trick is that I decided to use the bit of time between shape
changes to call the procedure This procedure checks to see if the
pacman is still in bounds. If so, gives a new value to the variable

To sum up, changes the shape of the pacman to
correspond to its heading, animates its gobbling, and calls

Here is the procedure It is called whenever a turn
that is not a multiple of 90 degrees is made.

 makes it clear when a turn is not within the rules by
showing the turtle shape and protects the game from crashing by allowing
the pacman to respond to any turning instruction.

Staying in Bounds

 is called whenever the pacman bumps into a bound-
ary of the board. It makes a bumping sound, sends the pacman back to

 and complains

BOXGAME 147

Gobbling the Targets

 is called whenever the pacman hits a target. It temporarily
stops the gobbling animation by halting the once-per-second demon and
lets you know that the pacman has hit a target by changing the pacman's
color. Next updates the score and tells the gobbled target to
explode. It also offers some congratulations and prints your score on the
screen. Finally checks the score to see whether to continue the
game or declare a victory.

The procedure animates the explosion by calling

The tricky part was synchronizing sound and animation.
I use both voices to emit a sound before each shape and color change. Thus
I use two commands. The shape and color changes begin before the
sound dies away, so all three events happen together.

On with the Game

 continues the game after a target has been gob-
bled. It resets the pacman's color and resets the once-per-second demon.

148 GAMES

Winning the Game

 30 ,000 .

BOXGAME 149

PROGRAM LISTING

[116 100]

 91

150 GAMES

B L A S T E R 151

0 0 0 0]

0 0 0 0]

62 62 28 0 0 0]

H

H

H

Blaster

That's your spaceship in the middle of the screen. You can steer with the
joystick and fire lasers at the three enemy ships that surround you. You get
points for hitting their ships. If an enemy ship collides with you, you lose
a life. The game ends when you've lost five lives.

By Brian Harvey.

GAMES

Turtle 0 represents your ship. It never moves from the center of the
screen, but it can turn in different directions depending on the position of
the joystick. It has eight possible shapes, each representing the ship facing
one of the eight possible directions.

:SHIP 3

•
Turtles 1, 2, and 3 are the bad guys. They move at random speeds.

Their direction is always more or less toward you, but not necessarily di-
rectly toward you. They have only one shape.
You shoot by pressing the joystick button. This makes a red line appear for
a moment, pointing in the direction the ship is facing. If this line hits one
of the enemy ships, you score a point. Demons are used to detect the shot
hitting an enemy.

B L A S T E R

Demons are also used to detect one of the enemy ships colliding with
your ship. (The enemy ships don't fire at you; they have no weapons. All
they can do is collide with you. Shame on you for firing at unarmed ships!)
In the picture below, your ship has blown up because an enemy ship hit you.

H
H

HU

L I V E S : 3 POI NTS:14

To start the game, run the procedure It has two subproce-
dures, one to set up the screen and the other to play the game. The inputs
to are the number of lives you're allowed and the number
of points you start with.

Setting Up

The setup procedure sets colors and shapes, positions the turtles, and uses
the PX command to set turtle 0 (your ship) in penreverse so that when you
shoot, it can display and then erase the blast by retracing the line. Here is

 and its subprocedures.

 takes two inputs. The first input is the starting shape num-
ber. The second is a list of names containing shapes (in the list form output

154 GAMES

by It uses to copy those shapes into Logo's shape slots. In
effect, this procedure replaces what would otherwise be ten individual

 instructions.

 sets the shape and color of the enemy ships.

 sets the shape and color of your ship, and tells the turtle
to penreverse, as explained earlier.

Playing the Game

The main job of is to set up several demons. There is one
for the joystick button, to fire a shot; three for the enemy ships colliding
with pen 0, when you shoot them; three for the enemy ships colliding with
turtle 0, when they hit you; and one for the joystick, to steer your ship. The
procedure also puts the enemy ships in random positions, prints the initial
score, and invokes to play the game.

Two variables are used throughout this part of the program to keep
track of scoring. These variables are the two inputs to called

 and

LIVES The number of times an enemy ship can ram your ship before
the game is over.

 The number of times you've hit an enemy ship. This is your
score.

Here are and its subprocedures.

B L A S T E R

 starts the demons for the joystick button (firing), turtle-
pen collisions (you shooting an enemy), turtle-turtle collisions (an enemy
ramming you), and the joystick (steering).

When nothing special is happening, the program spends most of its
time in It checks to see if you've run out of lives, in which
case the game ends. Otherwise, it steers the enemy ships, shows the score,
and continues. The ships are steered within 30 degrees of the direction
toward you, so they tend to get closer to you but don't always move straight
to you. (Their heading is chosen using the procedure, which is in
the Towards and Arctan project.)

When you move the joystick, a demon invokes the STEER procedure
with turtle 0 active. The demon wakes up whenever the joystick is moved,
including when it is returned to the center position. In that case, the input
to is —1 and nothing is done. Otherwise, we have to change the
turtle's heading (so it can fire properly) and its shape.

When you push the joystick button, a d^mon invokes the proce-
dure with turtle 0 active. This procedure draws and then erases a line
representing your shot. It hides the turtle while drawing so that the ship
doesn't appear to move.

156 GAMES

When your shot hits an enemy ship, a collision demon invokes the
 procedure, using to make the turtle representing that ship

become the current turtle. This procedure changes this turtle to an explo-
sion shape, blinks it on and off, makes a noise, and then repositions the
enemy ship somewhere else at random on the screen. It also adds one to
your score.

When an enemy ship hits your ship, a collision demon invokes the DIE
procedure with turtle 0 active. The turtle number of the ship that hit you
is an input to the procedure. That ship is moved to a random position, your
ship explodes, the game stops for a second, and the count of how many lives
remain is reduced by one. When your ship reappears, its shape is chosen
to match its heading.

Every so often, the procedure calls to
update the display of how many lives remain and how many points you've
earned. This isn't done instantly when you get a point or lose a life, because
it would slow down the play of the game. Because of this, you might some-
times get an extra (bonus) life if doesn't notice your death
soon enough. That's why the procedure checks for a negative number of
lives remaining and displays it as zero.

B L A S T E R

Shapes

%

:SHIP4

158 GAMES

SUGGESTIONS
• Make the enemy ships fire back instead of just ramming you.
• The game hasn't been "playtuned." Should it be easier or harder?

For example, the enemy ships move within 30 degrees of your direc-
tion. If that number were smaller, they'd hit you more often. The
range of speeds could be changed too.

• You could start with a limited number of shots available. On the
other hand, there could be a limit to the number of enemy ships that
appear. (As it is, there is no way to "win" the game by destroying all
the enemies.)

• You could add nice touches like stars in the background (remember
to use a different pen for the stars and for the shots!) and sound effects
between hits.

• It would be good to be able to move your own ship as well as steer
it. This would require some way to indicate "thrust"; you could add
a second joystick, or use the keyboard.

PROGRAM LISTING

The procedures from the Towards and Arctan project (p. 212) are also used in this program.

B L A S T E R 159

160 G A M E S

Alien

Here is a description of this program by its author, Jeanry Chandler.

Alien is basically a Space Invaders- type game. All you need to play

is a deft hand, and possibly a severe case of xenophobia. You control

a sturdy defender tank with a joystick; you launch your deadly cruise

missiles by (you guessed it) pressing the joystick button.

T h e alien craft, intent upon landing, will slip ever downward

while avoiding your missiles and dropping its own neutro-destroyer

bombs. I f the alien lands, you are in serious trouble indeed. T w o little

green creatures will e m e r g e and try to plant a b o m b on your tank. You

can at tempt to shoot the little pests, but your gun has j a m m e d and you

can only shoot in one direction, so you have to shoot one quickly and

then use the magic of Logoland to wrap and face the other. This, of

course, is nearly impossible.

In this write-up I talk about the overall structure of the program and
the decisions made about how it keeps track of things; I do not cover all the
procedures in detail.

This game is in two parts. If you manage to shoot the alien helicopter
before it lands, you don't play the second part. I have organized the pro-
gram so that the two parts have the same structure.

Before proceeding further, you may want to play Alien. To begin the
game, run START. You are the defender, controlling your maneuverable
tank with the joystick plugged into port 1. You can switch the direction you
are moving with the joystick and fire missiles at the alien helicopter with
the joystick button.

Program by Jeanry Chandler; write-up by Margaret Minsky.

A L I E N 161

Structure of the First Part of the Game

Naming Conventions

Setting Up

162 G A M E S

Setting Up Demons and Demon Instruction Conventions

One of the demons that creates carries out its instruc-
tions every time the joystick position changes. (It is created by the line

 The demon instructions call the procedure to let
the joystick control the defender's motion.

The and procedures create demons
for actions having to do with the missile and bomb. For example:

A L I E N 163

is a line in that creates a demon. This demon waits for a
collision between the defender's missile and the alien's bomb. This demon's
instructions make the missile explode, thus neutralizing the bomb and
protecting the defender from it. gives the player points for
having the good aim to hit the bomb. makes the
explosion graphics and sounds and sets : and : to zero. This
lets the game know that the missile and bomb have been destroyed.

 also creates a demon that waits for the joystick but-
ton to be pressed. When the button is pressed, a missile is fired.

The other explosion procedures are named for the things that cause
each explosion. For example, the procedure that is invoked when the mis-
sile hits the alien is named Remember that when this
happens, the player wins the game. The same demon instructions that call

 also include

In this program, the demon instructions conventionally include a call
to and a call to the appropriate explosion procedure. They also set

 or : if the game has been won or lost. For example, if the bomb
hits the defender, the player has lost the game. The instructions run by the
demon created for the collision between the bomb and the defender in-
clude the appropriate explosion procedure and also
This means you can systematically review all the conditions for winning and
losing the game by reading through the demon setup procedures.

The Game Actions

The main loop is It stops only if the game has been won or lost.
Either this happens in the first part of the game, or the alien helicopter
survives to land and calls If calls then

 stops when the second part of the game is finished.

GAMES

 calls most of the procedures that perform actions in the game.
It does not call or the explosion procedures; they are called by
demons.

 first checks : and : to see if the end of the game has
been signaled. If so, calls an appropriate procedure and stops. If not,

 updates the shape of the defender according to what is happening
with the missile. It uses a trick with the shape numbers.

The trick is that uses : to choose which shape to give
the defender. : gets changed by demon instructions. It is set to 1
when the missile is launched. This happens when the joystick button is
pushed.* (See When the missile hits something, or when
it gets to the top of the screen, : MI SS I LE is set to 0 and the missile disap-
pears. Demon instructions take care of this. While the missile is flying on
the screen and is 1, gives the defender shape 9. When
the missile is gone and : is 0, gives the defender the
ready-to-launch shape 8.

 then calls which makes the alien helicopter's rotor seem
to turn by changing its shape. It also makes some sound effects to accom-
pany the animation.

 makes the alien drop closer to the ground 80 percent of the
time. It uses to decide whether to drop the alien.

' *The MISSILE procedure fires the missile up and in the same general direction as the
defender is traveling. It uses the ADJUST procedure to decide on the heading of the missile.

A L I E N 165

 checks whether the alien has reached ground level. If it has,
 calls the second part of the game. Otherwise, may

call to make the alien change direction toward the defender. It uses
 to do this one third of the time.

Next checks if the bomb is on the screen. If it is not,
calls to launch one. aims the bomb at the defender using

Last, calls again to create more animation of the alien,
and then calls itself to continue the game process.

Winning and Losing

The and procedures print the score and either a congratula-
tory or a gloomy message.

The Second Part of the Game

If the alien craft survives your attacks and reaches ground level, is
called. LAND controls all the action that happens at ground level. Since this
part of the game has a similar structure to the first part, the programs look
similar. Some of the same shapes are used. There is still a defender (with
the same shape), two aliens (with animated walking shapes), and a bullet for
the defender to shoot.

The turtles' new assignments are

0 Defender (the player)
1 Green alien walker
2 Green alien walker
3 Bullet (the player's)

Since there are two alien walkers, and you have to shoot both of them
to win the game, there is a new game variable is the
number of aliens still alive. This lets the game know when you have shot
an alien, and whether it is the last one.

 corresponds to It calls which cancels all the
demons created in the first part of the game and sets up the new shapes and
turtle states. Then it calls which creates the demons
used in this part of the game. For example, the line
in creates a demon that lets the joystick control the
defender's motion.

*T0WARDS is described in Brian Harvey's project, Towards and Arctan.

166 GAMES

A L I E N 167

Note that there is nothing corresponding to the or varia-
bles in this part of the game. The keeps going once it is fired. One
bullet has to hit both alien walkers for the game to be won.

SUGGESTIONS

Jeanry suggests that you change the shapes that the turtles carry to
make a different game. You might make a flying saucer blinking its landing
lights instead of a helicopter spinning its blades.

A very different kind of game could be created with this type of pro-
gramming. One idea is to replace the defender shooting destructive missiles
with a ground launching platform trying to send recharge fuel cylinders to
a disabled spaceship. The fuel could enable the spaceship to turn on its
brakes and land safely instead of crashing. You could even make the joystick
control the refueled spaceship, so that the new challenge is to land the ship.

You can use some of Alien's techniques—sound effects, controlling
turtles with the joystick, simple game play—in projects completely of your
own imagination.

PROGRAM LISTING

THE FIRST PART OF THE GAME

- 1 2]

1 6 8 GAMES

DEMONS

SETUP FOR THE ALIEN AND DEFENDER

GAME ACTIONS

A L I E N 169

EXPLOSIONS, SCORING, AND WINNING/LOSING

DEMONS

SCORING PROCEDURES USED IN ROTH
PARTS OF THE GAME

THE SECOND PART OF THE GAME

GAME ACTIONS

170 GAMES

EXPLOSIONS, SCORING, AND WINNING/LOSING

 AND SHAPES

 "MISSI

0 0 0 0 0]

 [0 0 0 0 0 0

A L I E N 171

SHAPES

: MAIM 1

slot 12
: MAN2

slot 13
:ALIEN

slot 3

:ALIEN2

slot 10

: DEFENDER

slot 1

: DEFENDER1

slot 2

:DEFENDER2

slot 8
:DEFENDER3

slot 9

:EXPLOSI ONI

slot 6

:EXP LOS I 0I\I2 :MISSILESHAPE :BOMBSHAPE :BULLET

s] o t 7 slot 4 slot 5 slot 14

172 G A M E S

Adventure

Adventure is one of a class of hundreds, if not thousands, of games inspired
by Crowther and Woods's classic FORTRAN program. You play an adven-
ture game by exploring a simulated world, and usually you win points for
finding objects, solving riddles, or killing monsters. This version, however,
awards no points.

There are three aspects to an adventure program:

• Language understanding. The program must recognize commands
that you give in a simple language.

• Simulation. The program executes your commands.
• Language production. The program tells you the results.

As you read on you'll find out how my program does all three of these
things.

This adventure is smaller than most because of Logo's space limitations.
Other microcomputer adventures are usually written in assembly language
and also use a disk to store more information. On the other hand, this
version was easy to write and is easy to modify and extend.

Adventure Programs Understand a Simple Language

When you play Adventure you give the computer commands in the Adven-
ture language, just as when you use Logo you use the Logo language.
Adventure is a program written in Logo that understands the Adventure
language.*

Sentences in this language are in one of three forms:

verb Just a verb. The verb is one of these: or

verb noun A verb followed by a noun, for example, Verbs
a r e o r N o u n s a r e o b j e c t s

you find while playing the game,
direction The implied verb is and the direction must be one of

 o r

Most of the verbs have the same meaning as their English counterpart.
(You can find out more by using them.)

The syntax rules of the language are simple and strict. Each verb is in
one of two classes: either it must always be followed by a noun
KEY), or it must never be used with a noun. The program won't understand
what you mean if you supply an object to a verb that doesn't expect one
(for example, or if you omit a necessary noun.

"Logo, the program that interprets the Logo language, is itself a program, written in the
machine language of the microcomputer. For more on this subject, see the preface and Logo
Interpreter project in this book.

By James Davis.

A D V E N T U R E 193

Using the Program

To use the program, invoke the top-level procedure
The program describes the area you're in, then prompts you (with

a <) for a sentence.

>

You type in a sentence telling the program what to do. If it understands
you it does what you typed; otherwise it complains. If your action takes you
to a new place, the program describes the new place. After telling you the
consequences of your action, the program is ready for another command.

>

If you move north, you'll find yourself at the foot of a cliff, with a door
leading in. But to open the door you'll have to explore the forest further.
Be careful not to get lost; in Adventure it isn't always true that if you travel
east to get from one place to another that traveling west will get you back
where you were.

You can get a list of every word the program knows by typing ?.
You should probably play the game before reading further, because it

is easier to understand the program if you've used it and because the game
is much more fun if you don't know what to expect.

An Adventure Program Simulates a World

The program uses Logo words to represent the places and objects in the
simulated world. The word represents the crowbar you'll find in
the guard room. The word represents that guard room. There is one
word for every place or object in the simulated world.

Objects and rooms in the simulation have different attributes (for ex-
ample, weight). Each word has a list of all attributes of the thing it repre-
sents. A list of attributes is called a property list. *

*This terminology comes from the programming language LISP. Some procedures in this
project are tools for working with property lists: PPROP, GPROP, HASPROP, and PROPTRUE?.

174 GAMES

The Locales of the World Are Linked Rooms

Exploring in Adventure means moving from place to place and discovering
objects in those places. The program thinks of all locales in the game (indoor
rooms, the forest, stairways) as rooms. Each room is connected to at least
one other room. You can move from one room to any connecting room—
provided there's nothing preventing you from leaving, such as a shut door.

In Adventure there are six possible directions you can move: north,
east, south, west, up, and down. Each room can have as many as six neigh-
bors, one in each direction. This map shows how rooms are connected.

The rooms in Adventure and the
connections between them

HALL

u

t
STAIRS

u

t

ANTE

s

DOCK
u

LADDER

GUARD

(DOOR 1)

t

Each room is represented by a Logo word. Each word has an EXITS
property that holds a list of six items, one for each possible exit direction
from the room. Each item is the empty list if there is no exit in that
direction; otherwise it is the word for the connecting room. Items in the

A D V E N T U R E 175

 list appear in the order in which the direction options are presented:
north, east, south, west, up, and down.

For example:

makes the room have just two exits. (This makes sense, because we
usually go up or down stairs, and there are exits at the top and bottom.) The
up exit leads to the down exit to (Actually, the exits lead to the
rooms these words represent.)

I defined six variables to hold the positions of the exits in the exit list.

Then I defined an operation that outputs the nth element of a
list. This made it possible for me to extract the exit from a room for any
direction. For example, I can get the up exit from with the follow-
ing instruction:

The room exits are set up by INIT For a description, look at the
listing at the end of this write-up.

Doors Were Hard to Add

In the outside world, nothing stops you from moving across open ground.
But if you're in a building, there may be doors that stop you from getting
into a room.* If a door is shut you must open it to get through, and if it is
locked you must unlock it with a key before you can open it.

Doors are important in the real world, so I wanted to have doors in my
program too. Doors were the most difficult part of the program to write. I
tried a few different schemes before settling on one.

A door is a kind of exit from a room, but it isn't a destination in its own
right. You may leave a room through a door, but you don't stay in the door.
You go to the room on the other side.

Since doors are a type of exit, I decided that doors could go in the EXITS
list just as rooms could. So I needed a predicate (DOORP) to distinguish doors
from rooms, since both could be in the list. As you read on you'll discover
other consequences of this decision.

*The word "indoors" is a reminder that one important thing about buildings is that they
have doors, at least in most Western cultures.

176 GAMES

You Leave a Room Through an Exit

When you move in a given direction, the program invokes the procedure
 Its input is a number telling which way you want to move. (North is

1, east is 2, and so forth.)

The global variable holds the word representing the current
room. I used a global variable because I knew I'd refer to it in many places
in the program, and it would have been a bother to pass it as an input to
all the procedures that need it.*

If the exit is a door, the program uses if the exit is a room,
the program uses to put you in the new room.

 sets the global variable to the new room and describes
the locale.

Doors Are Tricky

The program knows which rooms are on both sides of any door because
doors have properties just as rooms do. In a way, the program uses
doors as if they were small rooms that you move through automatically. If
leaving a room to the east takes you to an (open) door, you will go through
the door to whatever is to the east of the door.

 word that stands for a door has a property on its property list.
The value of its property is The predicate checks this
property:

 door also has a property that is only if the door is shut;

*There are a few other global variables in the program. Almost all of them have names
beginning with a sharp sign ("#") to distinguish them from procedure inputs. All global
variables are set up by INI TVARS at the start of the program.

A D V E N T U R E 177

a property that is only if the door is locked; and a
property that is the word representing the key that can unlock the door.

The procedure tries to move you though a door in a certain
direction. If the door is open, it finds the connected room by looking in the

 list for the door.

The adventure program in this project has only one door but
I designed it so that I could add more doors.

Adventure Programs Produce Language

The program prints descriptions of rooms and objects, tells you the results
of things you do, and sometimes complains if you try something impossible.
All the messages it prints are in fairly normal English.

The program describes what you'd see if you were really in the simu-
lated world. When you enter a room or give the LOOK command, the pro-
gram describes the room. When you give the command, the
program describes whatever you're carrying. When you give the

 command, the program describes an object in more detail (some-
times).

Every object or room has a property. For an object, this
property is a noun phrase describing the object (for example,

 For a room, this property is a prepositional phrase describing your
relation to the room (for example,

 The descriptions are in different forms because the descriptions
are used in different ways. room description is for telling you where you
are (in a room, on a ladder, at a computer terminal) and the object descrip-
tions are for saying what a thing is.

 describes the room you're in.

The value of the property of a room is a list of the words for
the objects in that room. If you look at (in the full listing), you'll
see how I set up the initial contents of each room.

*The descriptions include the correct article (A or AN) for the word. I could have written
a program to choose (checking whether the first letter is a vowel), but it would have taken up
extra space and cost some extra time to execute. If there were seven hundred items instead
of seven, I would have written the procedure, because it requires less space and less work to
write it than to include an article in each of seven hundred descriptions.

178 GAMES

 gets each object's description from its property.
It prints out the objects' descriptions, one after the other, all on the same
line.

There are separate procedures for listing exits and doors because I
thought it looked better to list them separately. lists the directions
in which you can leave a room, and lists the doors of the room.
These procedures are similar.

The variable holds a list of the names of all directions in the
same order as they appear in the exit list. PREXITS looks at the first direction
name in and the first exit in the T list. Since the names and
the exits are in the same order, it can tell what name to use for the direction
of the exit. It maintains this one-to-one correspondence as it checks each
item of the lists. An item is an exit if it is not empty and not a door.

 differs from because it checks for doors instead of
exits and tells you about the doors.

A D V E N T U R E 179

The Syntax and Semantics of the Adventure Language

The first thing the program has to do to understand your sentence is to
decide what type of word (noun, verb) each word in the sentence is. My
program uses a very simple scheme: If the sentence is one word long, the
first word must be a verb or a direction. If it is two words long, the first word
must be a verb and the second a noun.

The procedure takes one input, a sentence.

One-word and two-word sentences are handled by separate proce-
dures. Anything else is an error.

I f you type finds the word in and
knows you want to move in that direction. Each direction word has a value
that is a number from 1 to 6 (an index into the EXITS list for the current
room). The procedure uses to get the value of the direction word,
and gives that as the input to the procedure.

Next the program looks at what the words mean. The "meaning" of a
verb is given by a Logo procedure that carries out an action. For every verb
in the language there is a Logo procedure. Conveniently, the Logo proce-
dure has the same name as the verb.

The global variable is a list of all single-word verbs.

If your single-word sentence is in I use to run the verb
procedure. wants a list as input, not a word, so I use to make a list
containing only the verb.

 interprets two word sentences. Like it checks whether
the first word is a member of a list of verbs:

and runs a Logo procedure for the verb.

180 GAMES

Each verb procedure takes one input, a noun. The noun is the second
word in the sentence.

If you type the two-word sentence the program inter-
prets the sentence by invoking the procedure (the verb) with the
word WINE (the noun) as its input. In other words, the program carries out
the Logo instruction

That's why, in making the input list for RUN, I add the quote character
(") in front of the noun. Otherwise Logo would try to run the instruction

which is wrong.

Verbs in One-word Sentences

The simplest verb is ?, which just prints the names of all verbs that the
interpreter knows. It exists so you won't have to remember the names.

The verb takes an inventory of objects you've picked up.
The global variable holds the list of objects. The procedure
DESCRIBE (explained earlier) prints the actual description.

The verb LOOK is called to describe a room when you enter it.

Verbs with Objects

Nouns refer to objects in the simulated world. The program has to deter-
mine what a noun means. A sentence like "take rope" means that the user
wants to pick up the rope. Somehow the program has to translate the word
"rope" to the word the program uses to represent the rope.

My program has an extremely simple solution. The word the program
uses is the same as the word in the Adventure language. That is why I had
to be careful choosing names for the words I used in the program. They had
to be the same as the words I thought users would use in their sentences.

A D V E N T U R E 201

Objects in Your Inventory or Locale

The Verb

Like all verbs with objects, first checks whether or not the object
you mention is present by using

An object is present if it's either in your inventory or lying loose in the
room.

*This solution has drawbacks. First, the user must spell the word exactly as 1 do and must
not use synonyms. There are other drawbacks as well, but 1 11 save them for later.

T put this feature in, even though there are 110 earrvable containers in the game, because
it seemed elegant, and I might want to add containers later.

'ABSENT combines two actions in one procedure. It is a predicate, the opposite of
PRESENTP, and it also prints a message if the object is absent.

This extra action restricts the usefulness of ABSENT. It should only be called by a verb
procedure, because otherwise it is not appropriate to print the message. Usually it's a bad idea
to combine functions like this, but I did it after I discovered that only verb procedures used
ABSENT and that each of them printed the same message if the object was absent. I combined
the test and the message into one procedure to save space.

182 G A M E S

If an object is absent, the program just says so. The program deliber-
ately doesn't distinguish between objects that exist somewhere but aren't
nearby and objects that don't exist. If the object contains something,

 tells you about it. That's the only detail that ever gives.

The and Verbs Change Your Inventory

The program has to be more careful than This is because
there are many reasons that might prevent you from taking an object.

• It might not be there.
• You might already have it.
• It might be too heavy.
• It might be impossible to carry.
• Your arms could be full.

The program checks for each of these, making an appropriate com-
plaint. If nothing prevents it, the object is added to your inventory and
removed from the contents of the room.

When I wrote this procedure I had to decide how to represent the
mobility of objects. I could have given everything a property and
compared that with a variable, but I rejected that as too much
work. All I wanted was to prevent clearly impossible requests, such as
picking up trees. For my purposes, objects are either heavy or not, so this
suggested a property that was only if the object was liftable.

I chose to give heavy objects an property of instead
of giving light objects a ? property because I knew I could save some
space that way. I knew there would be only a few heavy objects and many
light ones, and if I wrote my programs to assume that an object was light
unless explicitly marked heavy I could avoid storing all the
properties that were

A D V E N T U R E 183

The Game Program

184 G A M E S

. They are in the

earlier.

 Unlocks a

Although it may not appear so at first, it's a little difficult for the program
to understand because it's hard to tell what object the word

 refers to. Remember, I wanted it to be possible for there to be many
doors.

The verb first ensures that you asked to unlock a The
program then uses to try to find a door. If there is one,
looks at its property to be sure that you have the key that unlocks it:

Unlocking a door also opens it automatically; you don't need to
a door after you it.*

The procedure looks at every item in the list of the
current room until it finds one that is a door, and outputs it. This door is
assumed to be the object referred to by in the sentence

*I didn't have enough space for a verb OPEN, and requiring you to OPEN the door slows
the game down to no purpose, anyway.

A D V E N T U R E 185

DRI NKing Ends the Game

If you've played the game, you know the unfortunate effects of drinking
wine.

The verb is a little strange. It checks that you are drinking a
liquid that is present, but then it makes two assumptions: that you are
drinking wine and that you are drinking by the river. The program tells you
the deadly result by setting the global variable to a sentence.

 notices, and ends the game.
The two assumptions are used in at least two ways. The first is that the

message uses the words "wine" and "river" explicitly, and also says that the
result is drunkeness. The second use of the assumption is that the result only
is possible if you are by the river.

The assumption that you drank wine must be true because the only
liquid in the game is wine. The assumption of locale is safe because the only
wine in the game is in the barrel, and you can't move the barrel.

It is not a good thing to make assumptions like these in writing pro-
grams because it makes it hard to extend the program. (If I had added other
liquids, I would have had to add an property to to
distinguish it from safer liquids.) I did it to save space, but I'm not proud
of it.

You Can Change This Adventure in Many Ways

The easiest thing to do is to add new rooms. All you need to do is change
the property assignments in Make sure that you provide some
path from every room to every other room.

You can add new doors in the same way as you add rooms. But it's hard
to add a new key, for reasons I'll explain. So when making new doors, either
they should not be locked or they should use the same key.

If you want to make a one-way exit from one room to another, do not
include the first room in the of the second. (You can also make
one-way doors.)

It's also easy to put new objects into the game. All the objects are
created by

186 GAMES

You add new verbs by writing the procedure and modifying the list
 or But new verbs or objects may need some new proper-

ties. For example, if you added the verb you'd want to give edible
objects a property of and have check it.

It might be fun to make a type of door that only opens after you take
some action such as saying a password, or pressing a button.

Your verbs can end the game at any time by setting
It's easy to debug changes to Adventure. You can stop the program

with the BREAK key, look at things, fix them, then resume with LOOP.
(This is also a good way to cheat.)

Some Problems with My Program

The scheme I use for semantics is not very good. The nouns you type must
be the same words as those used by the program. That is why it would be
hard to add another key (for example, a brass one). What Logo word would
you use to represent it? You can't use KEY, because that word already stands
for a different key, the iron one in the forest. When you type
the program looks for the word spelled "k-e-y". Suppose you use
The description of the new key would be and the user
would try to refer to it with the word used in the description, namely KEY.
The user would have no way to know that the "right" word is really
and even if the program printed out that word, it wouldn't be much like
English. Can you imagine "You see a brass keyl"?

For the same reason, there cannot be a second sword, or crowbar, or
any such thing. The problem is most acute with keys, though, because that
means that one key must be able to unlock all doors.

Note that this is not a problem for rooms, because the user never refers
to a room in any way. It is also not much of a problem for verbs, because
it would be easy to give each verb a property holding the name of a Logo
procedure to run. Then verbs would not have to have the same name as the
procedure that defines them.

One possible fix to this would be to give each item a property for what
"kind" of thing it is.

Then a reference to a "key" could be interpreted as meaning any
object that was a key. This is similar to the way doors are identified by

Another possible solution would be to give the noun a property list
of all the program words that are a "kind of ' key.

There would still be problems with ambiguity. There might be two
keys in the area. There is no way at present for the program to ask the user
to say which key was meant. (This is a problem with as well. It
takes the first door.) Perhaps the program could ask:

A D V E N T U R E 207

Another problem is that room descriptions sometimes refer to things
that the user might mention. For example, the description of the dock
mentions an underground stream. People often try to drink the water, but
the program doesn't even know there is a "stream" nearby, much less that
a stream holds "water." The word "stream" is contained inside the descrip-
tion, and the program has no way to use it other than by printing it.

If scenes were described by properties, descriptions could perhaps be
built from them, and the program would have access to the properties of
the room. But generating good English from a set of properties is a difficult
problem.

Some Adventuresome Improvements

There are many possible improvements to this game, some easy, others
more difficult.

Writing programs that understand and produce natural language is a
challenge for hundreds of researchers throughout the world. In a small way,
Adventure is a part of this research.

First, you could fix the problems I just mentioned. But there is even
more to do.

Consider a dialogue like

The program could use context to figure out what the word "it" means.
Or suppose you're carrying a baseball bat and a rock and are attacked

by a vampire bat. The word "bat" in means the vampire bat,
not the baseball bat.

It would also be very nice to have a richer syntax than the simple verb
and noun scheme used here.

Many adventure games have autonomous characters. Usually they are
your foes. It would be a fine challenge to add them to this game. Characters
should move from room to room on their own, and sometimes the player
should encounter them. The results need not always be woeful.

More complexly structured worlds are possible. The objects in my
world are mostly decorative—there is nothing to pry with the crowbar,
nowhere to climb with the rope.

If the Adventure language was extended such that you could use it to
program, then you could teach a turtle how to explore, send it in to danger-
ous areas, and have it carry back things for you.

Writing good adventure programs is an art and a game of its own. Now
that you've explored the simulated world of Adventure, perhaps it's time
for you to begin exploring Adventure itself.

188 GAMES

PROGRAM LISTING

SE •

A D V E N T U R E 189

190 GAMES

D U N G E O N 191

Dungeon

Program by Jeanry Chandler; write-up by Margaret Minsky.

192 GAMES

As Jeanry says, there are two ways to enjoy Dungeon. One is to be the
adventurer in his dungeon, and the other is to add to Jeanry's dungeon or
to create your own with his tools. He's right, too, that you must experience
it to understand it. So try it!

To start the game, type:

Playing the Dungeon Game

 begins the game. You control an adventuring player with a joystick
in port 1.* You can move the adventurer with the joystick to avoid or
confront monsters, to go through doors, and to get the contents of chests.

As in other adventure games, there are some commands you can type.
 stands for inventory, for drink, and for wave wand. You must press

 after your commands.

•Remember that in Atari Logo, the joystick is referenced by JOY 0 when it is in
port 1 of the Atari.

D U N G E O N 193

An Overview

The following sections present an overview of how this program works as
the game is played and of how to modify the dungeon rooms and create
your own dungeon. Then there are some suggestions for modifying and
improving this program in more radical ways.

All of the procedures are listed at the end of this write-up. You may
want to look at some of them as you read about them.

Rooms

Each room is represented by a single procedure (for example,
 that prints messages about what is in the room and makes turtles

into monsters and treasure chests. Turtle 0 is the player, turtle 1 is usually
a monster, and turtle 2 is usually a treasure chest.

 is called as a subprocedure from all rooms. It does stuff that
needs to be done for each room: it draws walls and doors, sets variables with
the dimensions of the room, and creates some demons. Two of the demons
that it creates are those that wait for a collision between the player and the
monster and between the player and a treasure chest. It also creates a
demon that lets you control the player with the joystick and demons that
keep the player and monster from drifting through the walls of the room.

The rest of the instructions in each room procedure customize the
room. For example, look at 2 in which turtle 2 is a chest and turtle 1
is a kind of monster called a kobold.

 Give monster kobold shape.

Walls and Doors

The walls and doors are set up for each room by the proce-
dure. The walls are drawn with pen 0 and the doors with pen 1 and pen
2. A room can have up to two doors.

The subprocedure of creates a demon that
waits for the player (turtle 0) to bump into a wall; the demon calls a proce-
dure that makes the player bounce back. The condition for this demon is

194 GAMES

 Demons are also created to make the monster bounce off the
walls and doors. The monster is not allowed to go through doors.

The subprocedure of creates demons that wait
for the player to bump into a door. These demons use conditions

 or to detect this. When the player bumps into a door, the
player is moved into the adjoining room. The way this works is that the
demon for that door calls the procedure that represents the adjoining room.

N N

E

R00M1 with connection W to ROOM2

The demon for this situation is created by using

The Most Common Actions, and

The procedure, called by creates the de-
mons that wait for the player-monster and player-treasure chest collisions.

The demon that awaits collisions between the player and the monster
is created using the instruction 1 . Turtle 0
is the player and turtle 1 is a monster. When they collide, the demon calls
the procedure which causes the two turtles to "fight." They swing
at one another. The program considers the strengths and magical aids of the
two combatants and determines if either one is hit. As the combatants
continue to receive blows, they accumulate "hit points." If either sustains
too much damage, it dies.

The demon that awaits collisions between the player and the treasure
chest is created using the instruction
Turtle 2 is a treasure chest. If the player collides with turtle 2, the demon
calls The procedure determines what treasures the chest
contains and rewards the player with those treasures. Usually a treasure is
given to the player by changing the value of a global variable such as :
or :

Procedural and Demon-Based Representation

In this program, the only way to figure out all the details is to look at
all the procedures. You might say that the program itself "figures it out as
it goes along." You might contrast this with Jim Davis's Adventure game.
Jim's program has global structures that contain information about his dun-

D U N G E O N 195

geon. For example, it has a list of all rooms. In Dungeon, almost all informa-
tion is in the room procedures.

Programmer as Dungeonmaster: How to Create New and
Better Dungeons

In this section I will discuss three kinds of changes to the Dungeon game.
You can create new monsters, treasures, and whole rooms to put them in.
You can create a new dungeon to replace Jeanry's. You can make changes
to the workings of the game program itself to improve and change the
game.

Creating New Rooms, Monsters, and Treasures

Looking at the room procedures and so forth) will help
you figure out how to make new rooms. You could make your very own
completely new dungeon, or you could add rooms to the existing one.
Remember that when you add a room, you might want to change some of
the old rooms so that they connect to your new room. You might want to
change the procedure so that the wand can magically teleport the player
into your new room.

You may have noticed that Jeanry's doors are two-way. That is, if a door
leads west from to then there is a door that leads east from

 to Jeanry has made all of his doors match up. You might want
to make all your doors match up too, or you could make some doors be
one-way only. You could make some interesting and confusing dungeons
this way.

Here's an example of a new room I created.

This new room has a door leading west to and a door leading
south to To make it possible for the player to get to this room, I put
a door in leading east to To do this I changed a line in
from

196 GAMES

to

to

To add a new kind of monster, you might want to make a new shape
for it. You could add it to an old or new room, using the
procedure. (You will probably want to add instructions about your monster
shape in the and procedures.)

You can add new kinds of treasure. You must put your new kind of
treasure in the CHEST procedure so it can be "in" the treasure chest. Then
you must create a procedure to be run when your new treasure is found.
If you want to represent your kind of treasure as a variable with a point
value (like or you should initialize it in the procedure.

Making a New Dungeon

Jeanry has left an opening in the program for you to add a complete
new dungeon.

When you are playing the game and get to the stairs (in the
program asks if you want to go down. If you answer then the program
types a message saying that you cannot go down to the lower dungeon
unless you create it.

Let's say you create several new rooms that connect to each other but
do not connect to Jeanry's original four rooms. For example, let's say you
make and

Then you could change to

D U N G E O N 197

Then would plunk the player right into your dungeon.
If you need more Logo workspace for your new dungeon, you could put

your new room procedures in a separate file, for example
 Then you could have erase Jeanry's dungeon and

load in yours. For example:

Improving and Changing the Dungeon Program

Right now there is only one kind of chest. It can contain any of the kinds
of treasure in the game. You could change the game so that there are
several kinds of chests with different kinds of treasures in them.

You could make a player who had certain treasures or lots of experi-
ence points become more powerful. For example, the player could bribe
monsters to go away if he had enough gold. Or the player could be unable
to see certain treasure chests unless he found some magic glasses. The
Dungeon game could allow the player to go to the lower level only if he
had accumulated enough experience points. Here's a way to implement
that last suggestion.

You could create more typed commands similar to and
You could make the game smart about what direction you are going

when you go through doors.
You could introduce global data structures to keep track of objects. This

way the game could know when a monster in a particular room is dead and
not display it again when you return to that room.

198 GAMES

PROGRAM LISTING

SETTING VP

MAKEROOM, THE GENERAL ROOM MAKER

For when the player hits solid part of a wall.
Turtle 1 is usually a monster.

Turtle 2 is usually a treasure chest.

D U N G E O N 199

STUFF USED BY MAKEROOM TO DRA W WALLS AND DOORS

INDIVIDUAL ROOMS

200 GAMES

 Give monster shape.

Give monster kobold shape.
This is the chest.

Give monster turtle shape.
This is the chest.

This is the stairs shape.

ACTIONS THAT HAPPEN IN THE DUNGEON

D U N G E O N 201

ACTIONS THAT HAPPEN BECAUSE OF GETTING TREASURES

202 GAMES

FIGHTING

D U N G E O N 203

I FOR INVENTORY

D FOR DRINK

POTIONS AND WHAT THEY DO

204 GAMES

W FOR WA VE WAND

SETTING UP PARTICULAR MONSTERS

AIMING THE MONSTER TOWARD THE PLAYER

UTILITIES

D U N G E O N 205

SHAPES

:CHEST

slot 4

:STAIRS

slot 6
: THRUST

slot 5

:KOBOLD

slot 3

:TROLL

slot 2

:PLAYER

slot 1

Turtle Geometry

Turtle Race

 shows four turtles racing from the left side of the screen to the right
side. The winning turtle changes color. The background also changes color,
to emphasize that someone has won the race. Here is a race in progress.

 does the real work by running first and then
 In other words, the program is divided into a setup part and an

action part. The job of is to draw the racecourse and to assign
colors and positions to the turtles. The job of is to run the race.

The motion of the turtles is controlled by repeated use of the
command, not by using the dynamic (speed) ability of the turtles.

 is the top-level procedure. It knows where the left and right edges
of the screen are and gives that information to

By Brian Harvey, with modifications by Jim Davis.

T U R T L E R A C E 207

 and contain the x coordinates of the starting and ending
positions. This information is used to set the turtles up at the start of the race
and to find the winner.

Setting Up

 has two tasks to do: set up the racecourse and prepare the four
turtles as racers. It has one subprocedure to do each task. It hides the turtles
when it starts, to avoid clutter during the setup.

 is the procedure in charge of setting up the race-
course. This involves cleaning up the screen and setting its color, and then
drawing the finish line.

 draws a vertical line near the right edge of the
screen.

 positions the four turtles at the starting point of the
race, near the left edge of the screen. Some things are the same for all the
turtles, like the to point them toward the finish line. But two
things are different for each turtle: the vertical position and the color.

 uses the primitive command to tell Logo to set these
two properties for each turtle separately. In the instructions given as inputs
to the particular value used for each turtle depends on the turtle
number, represented by the primitive operation For example, the

208 T U R T L E G E O M E T R Y

SETC instruction will give turtle 0 color 11 turtle 1 color 27
(1 1 + 1 6 * 1), and so on.

 Vert ical position different
 for each turtle.

 Each turtle has different hue
ST but same intensity.

The result of running is shown here.

*
*
*
*

Running the Race

The race itself is handled by which moves the turtles one at a
time until there is a winner. The command EACH is used to accomplish this
one-at-a-time motion.

After each turtle moves, the operation checks whether or not the
turtle that moved has reached : and thus has won the race. If so,
the procedure is called to congratulate the winning turtle by
changing its color. If there is no winner, the race continues.

 is invoked for each turtle in turn. It moves the turtle a small
random amount. The distances are small, so repeating this procedure over

T U R T L E R A C E 209

and over will give a fairly smooth effect. The distances are random so that
the race is different each time the program is run.

 checks the current turtle's position to see if it's past the finish line.
If so, it outputs otherwise,

 just changes the color of the winning turtle and the
background color, to indicate that the race is over.

This is the end of a race.

SUGGESTIONS

This race is unfair; lower-numbered turtles have a greater chance of
winning, because they move first. Here's one way to fix it: judge the winner
only when each turtle has had a chance to move. Then the operation

 would output a list of all winners. This is more egalitarian. Each
could be bestowed an award.

How about a musical fanfare at the end?
On the other hand, if you like unfair races, perhaps the winning turtle

should eat the other turtles, plunder their homelands, and so forth.

210 T U R T L E G E O M E T R Y

PROGRAM LISTING

Four-Corner Problem

Here is a famous math problem: There are four ants, each at one corner of
a square. Each ant faces the next one. They all start walking at the same
time. As they walk, each ant turns so that it continues to face the same ant
it was facing at the beginning. How far do the ants walk before they all meet
at the center of the square?

This Logo program doesn't tell you how far they walk, but it does draw
a picture to act out the problem. The only difference is that in this version
of the problem we use turtles instead of ants.

By Brian Harvey.

F O U R - C O R N E R P R O B L E M 211

PROGRAM LISTING

This project uses the procedure, which is shown later on in this chapter.

2 1 2 T U R T L E G E O M E T R Y

Towards and Arctan

 is an operation that tells you how to turn the turtle to get it
pointing toward a particular position. It takes one input, which is the posi-
tion toward which you want to turn the turtle (in the form of a list of two
coordinates). It outputs the heading to which the turtle should be turned
in order to be facing from its current position to the input position. Here
is an example. Start out with a clear screen with one dot in the middle.

At this point, the turtle is facing north.

The turtle is now facing the dot we drew at the center of the screen.

This project is based on "Three Computer Mathematics Projects" by Hal Abelson, MIT Logo
Laboratory Working Paper No. 16, June 20, 1974; write-up by Brian Harvey.

T O W A R D S AND A R C T A N 213

 is defined in terms of the second tool in this package, the
 procedure. takes a number as input and gives as output the

arctangent (in degrees) of that number. The procedure uses an approxima-
tion that is good to within about one degree, close enough for graphics!

For those who have studied trigonometry: the procedure
computes the differences between the x and y coordinates of the input
position and those of the turtle's position, then takes the arctangent of
Ay/Ax. The output from is the correct heading, except that atten-
tion must be paid to the positive or negative direction of the two differ-
ences. (If you haven't studied trig, don't worry about it. You can use

 without understanding its inner workings.)

PROGRAM LISTING

214 T U R T L E G E O M E T R Y

Gongram:
Making Complex Polygon Designs

To make the first design, type:

To make the second one, type:

It takes a long time to make a gongram design since the turtle must draw
many lines.

 uses a variation of Y, a procedure that makes a turtle draw
polygons of different sizes and shapes. (See Atari Logo Introduction to
Programming Through Turtle Graphics, p. 138, for a discussion of this
procedure.)

By Erric Solomon.

GONGRAM: MAKING

For example, draws a
 draws a five-pointed star of side

C O M P L E X P O L Y G O N D E S I G N S 235

square of side length 50; POLY
length 50.

SIDE VIEW T 0 P V I E W

Each layer is slightly smaller than the one below it. Each layer of the cake
is transparent, except when we draw on it. At the edge of the bottom layer,
which we'll call the first layer, a pentagon is drawn.

To help in understanding how a gongram design is made, imagine that
you are directly above a layer cake.

216 T U R T L E G E O M E T R Y

Also drawn on the first layer is a smaller pentagon. It digs into the circle
formed by the base of the layer above. (The second layer's base rests on the
surface of layer 1.) The area between the two is filled in.

The result is a thick POLY shape. In a similar fashion we draw two five-
pointed stars and fill the area between them in another color, sharing

GONGRAM: MAKING C O M P L E X P O L Y G O N D E S I G N S 217

Notice that part of the pentagon is covered by the star. Now we move
to the next layer. On the second layer we draw two new pentagons, one at
the edge of the second layer, the next one inscribed into the circle formed
by the base of the third layer. And as before, we fill in the area between
them in a third color.

Notice that the view of parts of the star has been obstructed. Two new
stars are inscribed in a similar manner, but instead of filling the area be-
tween them with a color, we rub an eraser over the area between the stars.

We skip over layer three, and at layer four we pretend that it is the
bottom layer and repeat the process.

Of course, we didn't have to use a pentagon or a star. We could have
chosen two other -generated shapes. We could choose other colors.

Here is the completed design.

218 T U R T L E G E O M E T R Y

Making a Filled-in

Why not just use several times, with a slightly different first input each
time? That would produce several polygons of the same shape but slightly
different sizes, one inside the other. For example, we could try this proce-
dure:

The trouble is that this procedure doesn't equally thicken all the sides.
Exaggerated view

* TURTLE
STARTS HERE

We could try to solve this problem by moving the turtle in toward the
center of the polygon a little before drawing the next polygon. But it's a bit

GONGRAM: MAKIN G C O M P L E X P O L Y G O N D E S I G N S 219

 center

 vertex.

240 T U R T L E G E O M E T R Y

to five distinct vertices. These vertices could be connected in several differ-
ent ways. The order in which the turtle points to them is the order in which
they will be connected.

In the earlier version of the turtle always faces in the direction
of the next side to be drawn. After it draws each side, the RIGHT turn points
the turtle so that the next will draw the next side.

In the new version, the turtle does not face in the direction of the next
side. That's why the sides are drawn using instead of we
tell Logo where the next vertex is, instead of telling it the distance and
direction. But the turtle's heading is still important in this version of
It is always the heading that a turtle in the center of the polygon would face
in order to point to the next vertex. To see how this works, watch a version
of where two turtles are visible. Turtle 0 will actually draw the
polygon; turtle 1 will sit in the center of the screen, but will keep turning
to retain the same heading as turtle 0.

Now that we've made a that inscribes the design into a circle,
a is possible.

GONGRAM: MAKING C O M P L E X P O L Y G O N D E S I G N S 221

But we want to make a that will make a of any
thickness.

And now

 The distance between the edge of a layer and the base of the
layer on top of it.

 The radius of the largest layer.
 An angle that dictates the shape of one of the polygons in-

scribed on the cake. In our example it is 72 (the pentagon).
 An angle that dictates the shape of one of the polygons in-

scribed on the cake. In our example it is 144 for the star.
:PCl The pen color for pen 1. In this example it is 30 for red.

 The pen color for pen 2. In this example it is 62 for blue.
 The pen color for pen 0. In this example it is 102 for green.

 is the only procedure haven't mentioned. is just
like except that it calls is just like

 except that it puts the pen into eraser, or mode.
Here are some nice examples of

 Some of these take a very long time to draw.

222 T U R T L E G E O M E T R Y

PROGRAM LISTING

Polycirc

 makes designs by drawing polygons or lines around the circum-
ference of an imaginary circle. As the turtle walks around the circumfer-
ence, its heading changes as well as its position. Thus the polygons are
drawn at different angles.

By Erric Solomon.

244 T U R T L E G E O M E T R Y

P O L Y C I R C 225

We have used spokes in this example for their visual clarity, to help you
understand how the program places polygons around a circle. A spoke is
simply a using an angle of 180 degrees. To draw other kinds of poly-
gons, use a different angle. For example, the square at the begin-
ning of this section was drawn using an angle of 90 degrees.

Several inputs or parameters of the design can be varied.

 the second input, is the angle that determines the shape of the
polygon. If : is 180, just a spoke is drawn.

226 T U R T L E G E O M E T R Y

"This input can never be zero.

A N I M A T I N G L I N E D R A W I N G S 227

PROGRAM LISTING

Animating Line Drawings

In Atari Logo you can change the color of lines already drawn on the screen.
This feature can be used to animate drawings. I will give three examples.
In each of them all three pens are used to make a drawing. Then the
drawings are transformed from static to moving pictures. This is done by
changing pen colors.

The first example is of spinning spokes. The other two examples show
how color changes affect designs made by GONGRAM and POLYCIRC, pro-
grams that are described in other sections of this book.

Spinning Spokes

STAR draws 36 lines as if they were spokes of a wheel. As it draws lines, the
turtle switches from pen 0, to pen 1, to pen 2, to pen 0, and so on until all
the spokes are drawn. STAR puts the background's color in pens 1 and 2 so
that their lines are not visible to the user while the design is being made.
Lines drawn by pen 0 are visible; thus every third spoke is displayed on the
screen.

After it draws each spoke, STAR calls NEXTPEN, which changes the pen.

By Erric Solomon.

228 T U R T L E G E O M E T R Y

Now try:

 animates the picture; it displays spoke after spoke by changing the
pen colors. The first input to is the number of times the animation
will be repeated. The second input controls the delay (in sixtieths of a
second) between shifts of pen colors. You can think of this time delay as the
length of time between frames in the animation.

The basic idea in this example is that two pens are always "hidden," but
CYCLE keeps changing which two are hidden. Lines drawn by pen 1 change
to the color previously assumed by lines drawn by pen 0. Pen 0's lines
change to the color in pen 2. Lines drawn by pen 2 change to the color that
used to be in pen 1. This color is given to as an input.

Color Change with Gongram and Polycirc

 can work its magic in other situations as well. Let's try it with
 In this example, all three pens have visible colors. (The last three

inputs to are the colors for the pens.) Now run and watch
the result of this color shift.

The following creates the same gongram pattern, but with two pens in
the background color.

ANIMATING L I N E DRAWINGS 229

 is also animated by color shifting. Try this:

You should see squares moving around in an elliptical path.

For a listing of see page 222; for see page 227.

PROGRAM LISTING

Music

Melodies

This section uses Atari Logo to make tunes, to combine them to make
bigger ones, and to manipulate melodic elements by playing them back-
ward and transposing them upward and downward. The section concludes
with a pitch and rhythm sequencer.

Playing a Tune

 lets you play single-voice melodies. It takes two inputs, a list
notes to play and a duration, and plays each note in the list with that
duration.

The notes are represented as positive or negative integers. The letter
R in a list is interpreted as silence (that is, a rest).

Try the following melody. Type:

The melody you just played is "Twinkle, Twinkle Little Star." The ampli-
tude (loudness) of each of the notes of the melody cannot change.

Duration Using

TUNE gives the same duration to each note in the list. You might try different
durations with the same list of notes. For example:

By Greg Gargarian.

or

The difference in these two melodies is that the first is played twice as fast
as the second.

Numeric Pitch Representation in

Here's how to translate between musical notations. Beneath each note is
the letter for the note as well as the number that uses for that note.

MELODIES 231

I J r T J

i m

i
 c t =

The following is a melody using this notation. You see the traditional
music notation for "Twinkle, Twinkle Little Star" along with the traditional
note names. Underneath is the list of numbers TUNE uses to reproduce that
melody.

3 = 9 - f — 1—-— » 0 m » m m -
J « — " —

i

As we mentioned earlier, is interpreted as a rest. What really
does when it sees an is make the frequency of the note so high that you
can't hear it! (That's what the high frequency of 15,000 is doing in

Putting Melodies Together

You can give a list of notes a name. For example:

Now type:

You can put different melodies together. Here we will stay with "Twin-
kle, Twinkle" and make another list of notes as a continuation of the mel-
ody. Let's give it the name

MUSIC

Now type:

Because this part of the melody is normally repeated, it's exactly half as long
as You can use the command to play it twice. Type:

The procedure combines and to make the
entire melody.

To hear it, type:

The tempo of (that is, the rate at which the notes follow each
other) is determined by its duration input. To play at a faster tempo,
type:

How Works

 goes through its list of notes, one element at a time, and plays each
note at the duration you specified. calls for each note.

PITCH converts each note number in the notes list to its corresponding
frequency. PITCH uses PITCHl to help.

The note in this program is A at frequency 220. The A an octave above
it has a frequency of 440. In fact, frequencies of notes an octave apart are

M E L O D I E S 233

always related to each other in this way: going an octave<higher doubles the
frequency, going an octave lower halves the frequency. The variable : BASE
is doubled or halved to perform this octave-changing function.

There are twelve chromatic steps in an octave. Therefore, the fre-
quency of each note in the scale is the twelfth root of two higher than the
next. Multiplying a note by 1.0595 gets the next note in the scale. The
chromatic steps in between the octaves are determined by multiplying
: BASE by 1.0595 n times, where n is the number of chromatic steps.

's note numbers start at a frequency of 220. That A is 1, and all
the notes in the scale go up or down from there.

Symmetry in Melodies

One way to listen to the characteristics of a melody is to hear it backward.
(This is similar to the kind of analysis sometimes done in a painting class.
People will often look at a painting sideways or upside down in order to
concentrate on the shapes and colors rather than the figures themselves.)

You use to put list of notes in reverse order. Try it by typing:

You should get:

as your result. You can compare the sound of a list of notes forward and
backward using with and without Type and listen to the
following:

To hear the reverse of it, type:

Also try:

You can use to build a symmetrical melody from a short one.
The procedure takes a list of notes and plays it in the given
order, then plays it in reverse order. (By the way, this reversing process is
usually called taking the retrograde of the phrase.)

234 MUSIC

Listen to the following examples, the first using our four-note phrase
and the second using the tune list :

In the next example, we construct a substantial melody with only two
four-note phrases. We use the same four notes played before and make up
another melody. Type the following:

Now we put these two melodies together in the procedure

Play it by typing:

With eight notes we have been able to construct a twenty-four-note
song! Try other melodies of your own design.

Transposing a Melody

A melody has a certain shape or contour that can be preserved regardless
of the pitch at which the melody starts. If you add or subtract a musical step
(or several steps) from each note in a melody, you don't change its overall
shape. This process of raising or lowering all the notes equally is called
transposing.

Transposing Up

 transposes all the notes of a phrase up.
works by adding its second input to each of the numbers in its input list.

Try:

This is equivalent to typing:

M E L O D I E S 235

Listen to the difference between the list, before and after it has been
transposed up.

Type:

and then

An Effect Using

 and use to create the effect of a tune
climbing. takes a list of notes as its first input and transposes it
up step by step as many times as you want. The number of steps is 's
second input.

Try:

Transposing Down

 is similar to except that the melody is
transposed down.

Type:

Then listen to each of the following:

236 MUSIC

A Single- Voice Music Sequencer

A music sequencer is an instrument that will repeat a sequence of notes for
an indefinite period of time. We can make one by modifying

Type:

m
Press BREAK to stop.
T h e big difference between and is that

repeats your tune over and over. It won't stop until you press BREAK. In
 the first note is played, then removed on the recursive call.

Short Durations

If the duration of the notes gets very short, you may want to change the
"envelope" of the voice—that is, the rate at which the sound goes to silence
(or decays) after its duration has been expended. This prevents a note from
"spilling" into the next note.

's first input determines the voice. Since we're using voice 0 in
 the first input to should be 0. It's the second input to

 that determines the decaying time for the note. Try
1, which is a quick decay.

Type:

Try other values. To restore values, type:

A Single-Voice Rhythm Sequencer

 is a single-voice rhythm sequencer that makes bongolike
sounds. This procedure expects its list of notes to include only the letters

 and (for high, medium, and /ow) and (for rest). Type the following
two lines and listen to the result, pressing BREAK to stop.

H
M-
L

1 I

M E L O D I E S 2 3 7

Press BREAK to stop.

The second input is the duration for each of the notes in the list.

Traditionally speaking, rhythm usually implies periodic or repeating
patterns. The list of elements that you have given becomes
such a pattern as it continues to repeat. For example, type:

This is a five-beat pattern that gets its rhythm from the sequencing
action alone.

A second way to produce rhythmic patterns is to use rests in different
ways. Since RHYTHM . SEQ doesn't have many notes, you can concentrate on
how far apart to space them in time. For example, type:

This has an internal feeling of three (waltzlike), yet it is a ten-beat
pattern. Both rhythms seem to coexist.

A third way in which to construct patterns is with the low, medium, and
high pitches. They can be used to either reinforce the existing patterns or
they can serve as counterpoint to them. For example, type:

H
M-
L

J 3 1 i m

This rhythm reinforces the patterns of the previous ten-beat pattern by
repeating the low-medium-high sequence almost three times (there's a rest
in the middle of one of them) and by adding an additional rest between one
of these repetitions to get the ten-beat phrase. Try the previous rhythmic
sequences at a faster tempo by typing:

 [L

HOW Works

 was designed by modifying The most conspicuous
difference is that uses a procedure called instead of

 to produce the frequencies.

+
+
+

238 M U S I C

15,000.

PROGRAM LISTING

 [J]

E A R T R A I N I N G 239

+
+
+

Ear Training

How to Use the Ear Training Tutorial

m 9m

9+ \>0
m ~

 6

By Greg Gargarian.

240 M U S I C

Running the Program

Those of you who feel bold can run the tutorial without reading this section.
Type:

The following is a step-by-step description of how to use the program.
The program prints out the following instructions.

(a sound here)

(a sound here)

Then the program gives you two notes and states:

Let's say you type:

MAJOR.6

There are two possibilities: either you are right, in which case it re-
sponds:

or you are wrong, in which case it responds:

If you had typed ? and RETURN the program would have informed
you of the interval you had just heard.

The program then gives you instructions.

E A R T R A I N I N G 241

Pressing RETURN gives you a new interval. If, when you hear an
interval, you are not sure of the answer, you may listen a second time. When
the program states:

pressing RETURN causes the same interval to be repeated, this time with
the notes played together as well as one after the other.

PROGRAM LISTING

[]
[]

[]
[]

[]

[]

242 M U S I C

Sound Effects

This write-up presents a palette of sound effects to give you ideas for using
sound in your own projects. We've kept our discussion brief. Instead, we ask
you to use your ears. Some of these sound effects are new, others are taken
from projects found elsewhere in this book. You might want to try them out
and use those effects you like in your own projects, either as they are or in
modified form. The procedures in this collection use the Atari Logo music
primitives and

A European Ambulance Siren

Typing the following lines results in a European ambulance sound.

By Greg Gargarian and Margaret Minsky; with contributions by Max Behensky.

SOUND E F F E C T S 243

Advancing and Retreating Sounds

The procedures and make sounds like something is rush-
ing toward you or retreating from you. When sound sources advance to-
ward you, you hear their pitch rising slightly and their volume increasing.
When they retreat, you hear a falling pitch and decreasing volume. That
is what these procedures try to do.

 and take two inputs. The first is a starting pitch for
their sound and the second is or for the speed of the advance
or retreat. These procedures make sounds in both voice 0 and voice 1.

Here are the procedures for

Try:

Here are the procedures for

244 MUSIC

Try:

You might want to try some other inputs.

You can try putting them together.

This one sounds like a monster snoring.

Making Sliding Sounds: Glissandi

The procedure makes a sound that slides "smoothly" from a starting
pitch to an ending pitch.

Try:

You get the idea. The first input is the starting frequency, the second
is the ending frequency, and the third determines the rate of the slide. The
bigger the third input, the faster the slide.

Try:

SOUND E F F E C T S 245

A Motorcycle Sound

A More Continuous Sliding for an Ambulance Siren

 :S

 :S :S "S :S

A Spaceship Sound

246 MUSIC

For a zigzag sound, try the following:

For a spaceshiplike sound, try:

Try:

A Boing-ng-ng Sound

BOING works best in the low register . . . boings usually do!
BO I NG's first input is the frequency of the boing and the second input

is the duration (in sixtieths of a second).

Try:

SOUND E F F E C T S 247

Trills and Thrills

More with Trill

248 MUSIC

Bird Sounds

 and are two different kinds of bird sounds.
 uses to make a short and upward-gliding sound at a high

frequency.

Try:

Try:

Bird Music

 makes a birdlike song using and To create
variety and are played alternately, each a random
number of times.

Listen to it by typing:

Press the BREAK key to stop!

Sound for Jack and Jill

 is the music finale to the Jack and Jill project found in this book.

SOUND E F F E C T S 249

Try:

Since does you might want to restore by saying:

Playing with and Amplitudes

'S input is for the frequency. As the note gets faster, its
amplitude gets quieter and, near the end, its envelope gets shorter.

Try:

You can shorten the longer durations of the bounce by lowering the
duration input to (that is, by changing to a smaller number).

250 MUSIC

An Echo Effect

 is similar to but doesn't get faster as it gets quieter. It
uses to gradually change the decay of the repeating notes and

 to produce the frequency, starting envelope, and pulsing rate of the
echoed note.

Try:

Now type:

Press BREAK to stop!

N A M I N G N O T E S 2 5 1

Naming Notes

In the Melodies project, notes are represented by numbers that are later
converted to appropriate frequencies. It takes time to do this for each note.
If you want to play notes very rapidly one after the other, you can use
another technique described in this project. The idea is to precompute the
frequencies that correspond to the notes. In this project, we do this by
giving names to these frequencies. The names we chose in this project come
from traditional music notation, for example A#4, which represents the
A-sharp in the fourth octave of piano pitches. We might make this a name
by doing

Thereafter (as in the Argue program) you can use THING to refer
quickly to the frequency of a note. For example, if : is then

 is Using this scheme, your music procedures would
contain lines like

You might have to name a lot of notes. This means there will be a lot
of variables, and they will use up quite a bit of Logo's workspace. Sometimes
it is worth it.

This project shows a program that automatically creates note names
like and figures out the right frequencies. It does this for several oc-
taves.*

Naming Notes

This program uses the naming technique just described to allow fast sym-
bolic access to musical notes. The names follow a convention similar to
standard music notation where, for example, would be the name for G
in the third piano octave.

Some examples:

Since we want to have names like these for many notes, we create
procedures that automatically calculate and name frequencies.

*It is nice to use names like A#4, but the same technique can work with numbers (or
anything else) as the names of variables for the notes. The main advantage of this project's
technique is the use of variables for fast access to precomputed values. You could, for example,
do MAKE 38 466 to give the name 38 to the frequency 4 6 6.

By Max Behensky and Margaret Minsky.

252 M U S I C

Procedures for Naming Notes

 calls to make the variables for each octave.
Each note name is created (in by making a new word out of
the appropriate prefix and the octave number. Then updates
the octave number and the lowest frequency for the next octave. This
continues until eight octaves of pitches have been named.

In the twelfth root of two is used in the following formula
to compute the frequency of a note one half-step above another.

(frequency of a note) twelfth root of 2) = (frequency of next note)

Playing Melodies with Named Notes

Run to create the note variables. Now you can use a procedure
such as to play a melody.

You could name lists that represent phrases of songs and play them
with Here are some examples.

NAMING N O T E S 253

For more ideas about what you can do with melodies and rhythms, see
the Melodies project.

Making Turtles Move to Your Song

Here's a program that makes a turtle show the "ups and downs" of your
song. You can use it by trying the procedure with a list of notes
as its input. For example, try

Here are the procedures.

254 MUSIC

These procedures draw lines on the screen whose lengths represent
pitches. They fit best for notes in the range from : (110) to : (640).

Using the Atari Keyboard as a Music Keyboard

 is another example of using the precomputed notes; it makes the
Atari keyboard act like a music keyboard. Start it up by typing

The program takes a while to set itself up, then it types

Now you can play music by pressing keys. Notes are assigned to the
keys according to a layout that is like that of a piano keyboard:

TAB

INSERT DELETE
1 BACKS I

D E F G A B C D E

W E T Y 1 0 P

1 |fl 1 1 |a 1B
c D E F G A B C D

Z X c V M AI SHIFT

N A M I N G N O T E S 255

In order to make the layout similar to that of a piano, some of the keys
do not play any note. Reminder: Take care not to press the Atari (/|\) key.

The Music Keyboard Procedures

 also creates variables for fast reference. It creates variables
whose names are names of Atari keyboard keys (for example and
whose values are names of notes. This is done by For exam-
ple, : becomes

 then calls waits for you to press keys. It
converts the name of the key you pressed to the name of a note and calls

 to play it. converts the name of the note to a frequency and calls
the Logo primitive to make the sound.

There are a couple of fine points in this program. The length of time
each note sounds is controlled by the global variable : which is
set up in the procedure and by the commands in the proce-
dure Also, the input to makes it possible for you
to press two keys in quick succession and hear both notes. The
procedure calls itself alternating between 0 and 1 as values for : This
allows the program to alternate the playing of notes between the Atari
sound hardware voices 0 and 1. Thus one note keeps sounding in one voice
while the program starts a second note sounding in the other voice.

Reminder: After using the program, you may want to restore
the music envelope decay to its initial state by saying and

256 M U S I C

PROGRAM LISTING

N A M I N G N O T E S 257

6
Programming Ideas

Adding Numbers

This section is about how to think and talk about the process of making a
program. I developed the general approach while introducing elementary
school children to computation. But the ideas that are good for children are
good for other beginners, and perhaps for some experienced programmers.
Variants of the example used here have been used with seventh graders,
with college undergraduates, and with teachers. They illustrate a style of
programming project, a style of programming language, and a metalan-
guage or style of talking about programming as well as doing it. There is
no suggestion that this style is uniquely correct. My message is on a different
plane; I mean to assert the importance of paying more attention in the
pedagogy of computation to such questions of style.

The problem is very recursive. I want to talk about programming, but
I need to invent a way to talk about talking about programming! One way
would be to give extracts from real dialog. But this is too cumbersome.
Instead I shall condense real dialog into a kind of monolog about developing
a program. The monolog gives an impression of one way I know how to
think about developing a program. There is nothing very original about this
way of thinking. The point I am making is about the technique of getting
it out of our heads and into the pedagogy of teaching beginners.

In the discussion I carry with me a computational model in which there
are little people, agents, experts in the computer that I can call on to help
in thinking about the flow of my program, and, thus, in debugging my
program. Keeping this model in mind helps me articulate what jobs need
to be done and what procedures I need to get those jobs done. It also helps
me figure out how these procedures interact with one another, how they
report back what they have found out or constructed. Furthermore, as I
debug my program and its individual procedures I talk again to these little
people and get them to act out each procedure step by step, instruction by
instruction.

The Project

We pretend the computer is ignorant of arithmetic and create an operation
that will add two integers. No Logo arithmetic operations may be used. An
apparent exception might seem to be EQUALP (=), but it is used to compare

By Cynthia Solomon.

A D D I N G N U M B E R S 259

whether two Logo words or letters are the same. (It is an identity operator.)
So + *, /, and are prohibited. Two implications
arise from posing this project. One is that an addition operation can be
decomposed into smaller procedures. The other is that numbers are really
just words asked to play special roles.

This project generates interesting discussions. It really frees one's
thinking about numbers and operations and primitiveness. It is true that
arithmetic is a very necessary part of any computer's hardware, but the
hardware is made up of "logical units" that are based on the same ideas we
will investigate. How do computers really add? It's in their hardware. It's
built into the system. It's hardwired. Is addition "hardwired" into our sys-
tem? Are we like computers and so if a wire is loose we can't do it? What
about addition among children? Is it really a built-in capacity, or are there
pieces of knowledge that are acquired? Maybe we are so familiar with
addition that we forget its components. In fact, addition must rely on lots
of procedures.

Let's look at this project. Try to situate this particular task into a famil-
iar environment. We have to imagine that there are no arithmetic operators
available to us and that there are no arithmetic experts already existing in
Logo. We want to make up an addition operation so that we can say

and the computer will say

Yes, addition is a familiar operation and it's easy for us to hand-simulate its
job. But what if we had to tell a little person in the computer how to add?
Where do we start? We might ask ourselves if we know of a similar experi-
ence. What we have to do is "teach the computer" to add—just as we might
teach a person! Well, now, teachers teach kids to add; we were once those
kids. How did we learn—can we give ourselves some tips? (But I thought
it was hardwired and teacher just . . .)

At this point in past discussions two suggestions emerge. Teachers say
we have to teach the computer the "number facts" and computerists say
we have to build a 10 10 table. Great, I say, a beginning. I ask teachers
how we teach the number facts and what are they and how many of them
there are. I ask computerists if a 10 X 10 table is large enough and how we
organize it. The teachers will face these issues too. After all, making a table
is a way of "teaching" number facts.

What kind of table and what are number facts? A table of the sums of
the first 100 numbers is very limited, and building a larger table is still very
limited. Is that what I have in my head? Isn't there a key idea or two that
I could build on without exhausting the computer's memory?

Do children learn "number facts" like 16 + 20 = 36 as a primitive
notion, or is there a more fundamental idea underlying it all? What do kids
learn about numbers? They learn their relationship to each other. They
learn to order them. Sesame Street teaches kids to count from 1 to 20. Kids
learn to recognize the digits and their order. They learn that one is the
name of 1 and eleven is the name of 11 and one hundred eleven is the name
of 111. They learn that 11 is different from 2; they learn that 10 has been
added to 1. But there is another way of discussing that change. Let's say 1

260 P R O G R A M M I N G I D E A S

is a special word. We can create a new word by putting it together with
another. So is or eleven. Concatenating is a way of chang-
ing numbers.

Let's return to learning to recognize digits and ordering them. That
indeed is what we have to tell the computer and build upon. You might say
we want to teach the computer to count. On the other hand, it does us no
good to see the computer spew out numbers from 1 to 500. We want the
computer to know how to count. Think of what's involved in counting. How
many symbols are there? In one sense there are ten, 0 1 2 3 4 5 6 7 8 9; but
there are many constructions like 13 or 444; then there are also funny
changes such as from 9 to 10, from 19 to 20, from 29 to 30, and so forth.

We want to teach the computer that 7 comes after 6 and 10 follows 9
and so on. Some of it is tricky. But look, the only elements used in a base-10
number system are 0 1 2 3 4 5 6 7 8 9 . If kids learn how to use those ten
symbols in thousands of different ways, surely we can teach the computer.
There must be some rules that specify what to do to produce the "next
number in sequence."

That's what we have to do. That is our plan of attack. Tell the computer
what the basic elements (our data base) are. Then develop rules of behavior
so that we can make the computer give us our number plus 1, that is, the
next number. If the computer can do that, it knows how to count.

What is knowing how to count? Here's a computerist model: There is
"in the head" a collection of little people, experts capable of doing a whole
bunch of things like spewing numbers out, but also capable of conceiving
questions like what comes after this or before that. The computer, like
children, learns to recognize the digits, how to order them, and then how
to use them to make other numbers.

Okay, let's make a procedure that knows about digits. For example, if
it receives the input 3, it will output 4. It will add 1 (in some mysterious way)
to its input.

We Make

There are a couple of ways (at least) to do this. People who suggested
"teaching number facts" or making tables, of course, had the right idea.
There are different ways of constructing tables. For example:

=

=

=

=

=

=

=

=

=

=

A D D I N G N U M B E R S 261

We can also look at the ordered list of digits [0 1 2 3 4 5 6 7 8 9] as another
representation that has the same effect if we have a type of operation.

NEXT will output the next element in the list after the one specified.

Why do I suggest this way? It is a more general method. This process will
work for any base; all that needs to be changed are the elements of the list!

We Design

 must supply with a word. will then send the word out as
its answer. From the example of at work, we see that is given
two inputs, a word like and a list of words. tells its helpers to look
for the word in the list. They send back the word following it in the list.

If : doesn't match with : 's first word, one of 's helpers just
crosses the first word off the list and turns the job over to someone else.

Check this procedure out.

Notice there is a potential bug. What if : is not in : Let's remember
the bug, but postpone dealing with it for the moment.

Let's try now. Give it a thorough testing. You could exhaustively
try each digit because there are only ten. Another strategy is to choose
extremes like 0 and 9.

2

262 PROGRAMMING I D E A S

It's logical that there is a bug. After all, is the last element of the list. So
there is more work to be done; we have to teach that

 will work on any number that doesn't end in if we make one
small change! Look, all numbers not ending in 9 behave like digits when
you add 1 to them.

The only digit that changes is the so merely makes up a new
word by replacing with Let 's be op-
portunistic—seize the chance, change and call its input

Now we trace through this procedure using the little person metaphor.
As a reminder, I draw a stick figure.

(So we thought was only good for nine inputs. Suddenly we see it's
good for how many—millions? infinitely many? nine-tenths of all the num-
bers?)

Now works on all numbers that don't end in Would it work if
we pretend 10 is a digit and add it to the list given —that is,

 Then

1 0

A D D I N G N U M B E R S 263

110

instead of 2 0!
So putting 10 in the list did not really help. This nines bug is not cured

so quickly. This issue is really about what to do with the "carry" when
adding numbers. If a number is then the answer is but if a number
ends in we want to carry one to add it to the next digit of the number.
Now, how can wishful thinking help? How can we make use of what we just
did? Let's see how we do it. Try 17 9:

We turn the 9 into a 0 and add the 1 to the 17. We get 18 . . . and don't
forget to glue the 18 and the 0 back together.

Make a special check for being Then replace the
 by and to

So

\ o

A

0]

264 PROGRAMMING I D E A S

We can fix this bug by making another special test

as the first instruction in A DDI. Now

180

and

1 0 0 0 0

What luck! Perhaps you thought that the first on the left would give
trouble. But we lucked out (or were super smart!).

Adding Two Numbers

Now that we can add 1 to any number, we can really add any number to
any other.

It's simple if we think of the kinds of procedures we know about. Some
procedures operate on their inputs until they are empty or until a thing has
been found. Other procedures do a job for a specified number of times. We
can think of the next stage in our project as adding one to an input for a
declared number of times.

Typically, counter procedures count down to 0 and then they know the job
is done. But they use subtraction, and we are trying to invent addition
without using any of Logo's built-in arithmetic operations. We can teach the
computer to subtract one.

If we had a procedure, then

Making a procedure for subtracting 1 is really easy because we have
already thrashed through the difficulties encountered in How can we
use what we know about to describe a Let's look at a concrete
situation.

8

0

A D D I N G N U M B E R S 265

Can 1 use
If we want NEXT 1 [. . .] to be 0, how should the list be ordered?

If we leave the list as then would output It
should output Reverse the list. Then
0] outputs 0.

So

Try
It works! As long as the numbers don't end in what? Nine is okay. Why?

The digit that is the position of the list given to is the problem
digit. That is when a "carry" or a "borrow" takes place. So 1 must take
special measures when

Now works but very slowly and sometimes it needs too many people
to complete the job. Look, requires little peo-
ple.

Is there a shortcut? Yes. Let's treat the numbers as words and add the
 digit of each number to until : and : have been added

together.

This is ideal but won't work very often. Do you know when it works?

but

2 1 8

The carry bug has to be dealt with. How can tell if there is a carry?
carry means that will send back two digits (1 and something). That
makes it easy. needs to test whether the result from is one or
two digits long. uses to help and now looks like:

266 P R O G R A M M I N G I D E A S

In some sense this project is completed. We have constructed an addition
operation, and it works on positive integers. There are many extensions we
could pursue. For example, handling negative numbers would probably
necessitate making a subtract operation.

EXTENSIONS

In discussing setting up the table at the start, I mentioned the possibil-
ity of generalizing this scheme so that the operation would add numbers of
other bases. What about fractions or decimals? But what about looking at
a more general question? There are many arithmetic operations like

 There are also others, like the Logo operation that
outputs the length of a word or a list, and the predicates > (greater) and <
(less). Any of these could be implemented as extensions to this project.

Although we might be able to write procedures to perform many of
these operations, the process would probably be uncomfortably slow. This
leads to the question: Are there some arithmetic operations that we
couldn't define without special hardware or without special software? What
operations are primitive? Imagine writing or or or

. What would be required? Is the derivation too clumsy? The
answers to these questions will undoubtedly change as the contexts in
which they arise change.

PROGRAM LISTING

F I L L 2 6 7

Fill

FI LL is a program to fill in solid areas on the graphics screen.

Figure 1

To use F I L L , position the turtle inside the area you want to fill. Then type
the command F I L L with no inputs. The area the program will fill is
bounded by lines drawn with any pen.* For example, try this:

*If the screen dot at the turtle's position was already drawn with one of the pens, then
FILL treats that pen as the background color for filling. So if you have a filled-in area on the
screen, you can draw a picture within that area and fill the inside of the picture using another
color.

By Brian Harvey.

268 P R O G R A M M I N G I D E A S

to draw a solid, filled-in square. The instruction is necessary to
position the turtle inside the square, rather than on its edge, before using

Note: If you have a 16K Atari computer, you should use the number
 instead of in procedure

How It Works: Overview

Figure 2 shows a sort of eccentric doughnut with the turtle positioned
between the two circles, so that the doughnut shape will be filled. The
program begins by filling horizontally from the turtle's initial position, in
both directions (figure 3). It remembers how far it got, to set left and right
limits for what comes later. Then it starts moving up (figure 4), filling
horizontally at each level.

V

Figure 2

(J+j

Figure 3 Figure 4

But when a newly filled line extends beyond the previous line (as illustrated
by the left edge of the filled area in figure 4), the program also checks for
an unfilled space below the new horizontal stretch. If it finds one, it starts
filling downward in that new area (figure 5). This search for new areas works
from left to right on each line, so (figure 6) the program continues moving
downward below the inner hole until it reaches the bottom (figure 7).

 l

I I

Figure 5 Figure 6 Figure 7

F I L L 2 6 9

Then it starts moving up into the newly discovered area to the right of the
hole (figure 8), and when that area is filled, the program continues its
interrupted upward filling of the top area (figure 9). The final result is shown
in figure 10.

(2
Figure 8

Screen Coordinates and Turtle Steps

The graphics screen consists of about 15,000 small dots, in a rectangular
array of 96 rows and 160 columns. Logo draws lines on the screen by
"turning on" some of these dots. To fill an area, we must also turn on dots
in this array.*

When you use the command, the distance measured in "turtle
steps" is not the same as the number of screen dots (or pixels) through
which the turtle passes. There are two reasons for this difference. The first
reason is that the distance between two vertically adjacent pixels is greater
than the distance between two horizontally adjacent pixels. If Logo mea-
sured distances in pixels, squares would come out looking like tall rectan-
gles. Instead, Logo uses the aspect ratio (the ratio of a horizontal pixel
distance to a vertical pixel distance) as a scale factor for vertical turtle steps.
The second reason is that both vertical and horizontal turtle steps are scaled
by a factor of two, so that 100 turtle steps is a reasonable distance on the
screen.

The reason this scaling of distances is important for the FILL project
is that we're going to have to think in terms of pixels, not in terms of turtle
steps. Remember that the overall task of the program is to move along the
screen looking for the border of the region we want to fill. In other words,
the program must look at a position on the screen to see if that position is
in the background color. If so, the program should fill in that position and
move on to the next. Suppose we wrote the program in terms of turtle steps.
(We'd then use to move from one position to the next.)
Since a turtle step is smaller than the distance between pixels, two consecu-
tive turtle positions will often occupy the same pixel on the screen! After
filling in the first position, we'd move on to the next position and think we'd

*For more details about the screen array, see the Savepict and Loadpict project.

270 P R O G R A M M I N G I D E A S

hit the border, because the screen dot would no longer be in the back-
ground color.

The approach took in writing is to think about positions in terms
of screen pixel coordinates, rather than turtle coordinates. The top-level
procedure FILL computes the pixel coordinates corresponding to the tur-
tle's position, and those pixel coordinates are used as inputs to the lower-
level procedures which do the real work. Figure 11 shows the screen coor-
dinate system used in The origin of this system (the point with
horizontal and vertical coordinates zero) is in the top left corner of the
screen. (the horizontal coordinate) gets bigger as you move to the
right. YCOR (the vertical coordinate) gets bigger as you move down the
screen; compare this with Logo's turtle-step YCOR, which gets bigger as you
move up the screen.

x
y

Figure 11

Because FILL uses screen coordinates instead of turtle coordinates, we can't
use the usual Logo graphics procedures like or Instead, we
have to write our own tools for examining and modifying screen pixels. Two
important procedures in this project are which examines the
color of a pixel, and which fills in a pixel.

One final point about the screen array is that each byte of computer
memory contains the color information for four pixels. Logo's
procedure lets us look at an entire byte at a time, not just one pixel. There-
fore, the program is more efficient if we can design it to examine four pixels
at once. You'll see how we do that when we get to the description of the

 procedure.

Initialization

Procedures 1, and are invoked just once each time you
use FILL. They set up certain information that is needed throughout the
program. Here are the procedures, followed by a list of their important
variables.

F I L L 2 7 1

 The aspect ratio. This ratio is 0.8 unless you have changed it
by using Logo's . command. There is no direct way
for FILL to find out the current aspect ratio, so it simply
assumes a value of 0.8 unless you provide a different value in
the global variable named before you use
This information is used in the procedure FILL to help con-
vert the current turtle position into screen pixel coordinates.

 The turtle's current horizontal position, in pixels. Note that
the variable is different from the Logo procedure
named which operates in turtle steps. Note also that
the name is used for other variables in several sub-
procedures to hold local position information.

 The turtle's current vertical position, in pixels. The same
notes apply as for

 The pen we should use for filling. Since one of the possibili-
ties is to fill by erasing (setting pixels to the background
color), we don't use exactly the same numbers that Logo uses
for pens. Instead, Logo's pens 0 to 2 are represented in this
variable with the numbers 1 to 3, while the number 0 repre-
sents the background color. We use the background color if
the turtle is in penerase when you give the com-
mand. Representing the background as 0 and the three pens
as 1 to 3 is convenient in this program, because those num-
bers are the ones that are actually stored in the screen mem-
ory in the Atari computer.

 The pen number that is the background of the region we
should fill. This is not necessarily the background color of the
screen. When you give the command, uses sub-
procedure to find out whether the particular pixel
at the turtle's position is in the background color or in one
of the three pens. Whichever is true of that pixel, the corre-
sponding color is what we look for to determine the region
we're supposed to fill. The value of is coded like that of
PEN: 0 for background, 1 to 3 for the three pens.

 sets this variable to the value of multiplied
This has the effect of reproducing the value of four times
in a byte.* A memory byte that contains this number repre-
sents four consecutive BG-colored pixels.

 This is reproduced four times in a byte, and it represents
four consecutive PEN-colored pixels.

*If you understand how numbers are represented in binary in the computer's memory,
you'll want to know that 85 is 01010101 binary. Multiplying a two-bit code (the possible values
are 0 to 3) by this number has the desired effect of reproducing it four times in the eight-bit
byte. If you don't know about binary representation, don't worry about it.

272 P R O G R A M M I N G I D E A S

 local

Filling a Line

Here is the definition of I I

This procedure uses the same trick as to create local variables
and Although they're defined as inputs to these varia-
bles really get their values within FILL. LINE itself.

Most Logo procedures are either coinmands, which do something visi-
ble like move a turtle, or operations, which have no visible effect but
instead output a value, like the arithmetic operations. I I has both
an effect and an output. Its effect is to fill the line on which the turtle starts.
(Turn back to figure 3 to see FILL. at work.) Its output is a list of
coordinates, indicating how far to the left and right it was able to fill.

The turtle starts out somewhere in the middle of the area we want to
fill. To fill the line containing the turtle's position, we have to start from that
position and fill both to the left and to the right. I I invokes

 twice, first to fill toward the left and then to fill toward the right.
FILL. knows which direction to use because of its third input, which
is - 1 to fill leftward or l to fill rightward.

F I L L 273

Filling in One Direction

 does all of the actual filling in of dots in the entire program.
The other procedures simply figure out where to tell to go to
work.

Because of the importance of I put a lot of effort into trying
to make it fast. Unfortunately, the cost of speed is complexity. Let's start by
examining a version of that doesn't yet have all of the efficiency
features added.

 has three inputs. The first two are the horizontal (x) and vertical
(y) screen coordinates of the pixel at which we want to start filling. The
third input tells the direction in which to fill.*

The strategy of is this:

1. Look at a pixel to see if it's in our background color.!
2. If it's not in our background color, it is a border for the area we're

filling. Output the x coordinate of the last pixel we actually filled—
the one before this one.

3. If it is in our background color, fill it and move on to the next pixel
in the desired direction, left or right.

To implement this strategy, uses two subprocedures. The first,
, is a predicate that outputs if the pixel it examines is in something

other than the background color. The second subprocedure, DOT, fills in the
pixel at the coordinates you give it as inputs. We'll look at those procedures
later. For now, the important point is to understand how they're used by

Filling Vertically

We have seen how the FILL program fills one horizontal line, the one
containing the turtle's position. What remains is to fill more lines, above and
below that first one. This task is entrusted to

*The word delta is the name of a Greek letter (A) that is often used in mathematics to
represent a change in something. In this case, : DELTA is added to : XCOR each time a dot is
filled in. If : DE L TA is positive, the new x coordinate is to the right of the old one. If : DE L TA
is negative, the new coordinate is to the left.

f As explained earlier, this may or may not be the background color of the screen.

274 P R O G R A M M I N G I D E A S

The name indicates that it must fill both above and below the
line we've already filled. Just as invokes twice,

 invokes a subprocedure called . twice.
 you'll remember, is invoked by The input to

 is the output from This output is a list of three
numbers: the vertical (y) coordinate of the line we've filled, and the left-
most and rightmost horizontal (x) coordinates of the line.* See figure 12 for
a pictorial representation of this information.

t

r ^
^

Figure 12

 0 gives two inputs to . The first input is the range list.
The second input tells the direction (up or down) in which to fill.
This second input is either 1 or - 1 , just like the similar direction input to

Here is the definition of I

All it does is to invoke FI P1, with six inputs. The first three inputs are
the three members of the range list, except that the vertical coordinate is
offset by one. (The reason is this: the range list output by FI I con-
tains the vertical coordinate of the line it just filled. We now want to fill a
new line, just above or just below that line. The first input to FI P1 is
the vertical coordinate of the line we should fill next.) The fourth input to
FI P1 is the direction indicator, 1 or - 1 . The fifth and sixth inputs are
given as zero. They're really used as local variables within FI l

The Smart Procedure

 really contains all the geometric knowledge of this program.
 has to know how to fill an area above or below a given line. This

task would be very easy if areas were always pleasantly shaped. In fact,
though, the filling job may have to "double back" because of irregularities
in the area we're filling. This complication is illustrated in figures 4 and 5

*If you want to be picky, of course, what we've filled is a line segment, not a line.

F I L L

(reproduced here). In figure 4, we are filling upward. This process continues
straightforwardly until we get above the "hole" in the center of the region.
At that point, the program is able to extend the filled area farther to the
left. It then discovers a new, unfilled region below the new line. Figure 5
shows that the program has reversed its direction; it's filling downward to
take care of the area to the left of the central hole.

Figure 4 Figure 5

The strategy of FI L L . U P1 is quite complicated, but it's made up of two
kinds of parts: using FILL. RAY, and using Fl LL . UPl recursively.

1. Use FI LL . RAY to fill at the current vertical position.
2. Compare the horizontal extent of FI . RAY's work to the horizontal

extent of the previous line.
3. If we've gone farther on this line than on the previous line, invoke

 recursively to deal with the area newly exposed.
4. Also invoke FI L L . U P1 recursively to continue with the same region

we were already filling.

Since the procedure is complicated, we'll show its definition with the in-
struction lines numbered. In the discussion that follows we'll refer to partic-
ular lines by number.

[FILL.UPl : YCOR- : DELTA : IMEWL : LE FT (- : DE LTA) 1 0]

[FILL.UPl :YC0R+:DE LTA :NEWL :NEWR :DELTA 2 0]

[8] IF WORDP : NEWL [FILL.UPl :YC0R : NEWL : RI GHT : DELTA 4 0]

276 P R O G R A M M I N G I D E A S

Refer to figure 13 for a picture of what happens in 's work.
The solid horizontal line in that picture was filled earlier, either by

 or by the previous invocation of . The dashed horizon-
tal line above is the one that will be filled by the current invocation of

R E G I O N 2

h v
4

previously f i l led iine

R E G I O N 3

Figure 13

Here is a list of the variables used in FI . U P1.

 The vertical coordinate of the dashed line, the one being filled
by this invocation of I P1

 The leftmost horizontal coordinate of the solid line, the one
previously filled.

RIGHT The rightmost horizontal coordinate of the solid, previously
filled line.

 The direction indicator. Its value will be 1 if the new (dashed)
line is above the old (solid) line, or - 1 if the new line is below
the old line.

 The leftmost horizontal coordinate of the new (dashed) line.
 The rightmost horizontal coordinate of the new line.

Each invocation of FI . UP 1 actually fills only one line. This filling is
done by using twice, on lines 2 and 4 of the procedure. Line 2
fills to the left of : and line 4 fills to the right of : The variables

 and are given as values the x coordinates of the endpoints of the
newly filled line.

When we're filling vertically, the most obvious thing is that after filling
one line, we must continue filling vertically in the same direction. Referring
to figure 13, after filling the dashed line we must continue upward, filling
region 2 in the figure. (Of course, we don't know yet what the exact shape
of that region will be. In the figure, it's shown as extending straight up, but
the edges might really be curved.) This continuation in the same vertical
direction is done in line 5 of the procedure.

How do we know when to stop? The answer is that if on this level we
didn't manage to fill anything (because we ran into borders right away),
then we shouldn't continue to the next level up. That's why line 5 compares

 to : If they're equal, we didn't fill anything on this level.

F I L L 2 7 7

There are two possible cases of "doubling back": one if the newly filled
line extends farther to the left than the old line, and one if the new line
extends farther to the right. In figure 13, both of these situations have
arisen.

We know that the new line has extended farther to the left than the
old line if : NEWL is less than : LEFT. This is the situation at the transition
from figure 4 to figure 5, which we've discussed earlier. Line 3 of the
procedure checks for this situation. If the condition is met, then FI L L . U P l
is recursively invoked to fill what is labeled region 1 in figure 13.

Similarly, we must double back on the right (into region 3 of figure 13)
if : E is greater than : Line 6ofFILL takes care of this case.
An example of this situation is at the transition between figure 7 and figure
8 (reproduced here). In figures 6 and 7, the program was filling downward.
When the lower boundary of the region is reached, in figure 7, the program
doubles back and starts filling upward in figure 8.

By the way, the doubling back into region 1 happens before the continued
filling of region 2. But the doubling back into region 3 happens after region
2 is filled. That's because lines 3, 5, and 6 happen to be in the order they
are. If line 3 were moved below line 5, the program would always complete
one direction of filling before starting in the other direction.

There is one more complication in FI L L . U P1. The line that is filled in
lines 2 and 4 of the procedure extends to both sides of : the leftmost
end of the previously filled line. Suppose that a border is reached above the
old line, before its rightmost end. This situation is shown in figure 14. Since
we want to fill all of the area above the previously filled line, it's not enough
to fill the area above the dashed line in the figure. We must also fill what
is labeled as region 4.

Figure 6 Figure 7 Figure 8

another line which was

already visible

: LEFT : R IGHT

previously f i l led line

Figure 14

278 P R O G R A M M I N G I D E A S

How do we know when this situation arises? First of all, : must be
less than : Second, if we look to the right of : we must find
another patch of background color before reaching : This search is
conducted by which is used on line 7 of
outputs the empty list if it does not find a suitable background pixel. If it
does find one, outputs the x coordinate of that pixel. This coordi-
nate is the left edge of region 4. Line 8 of checks to see if
found a background pixel. If so, it invokes FILL.UPl once more to fill
region 4.

Examining a Screen Pixel

The real core of this program is the strategy FILL.UPl uses to explore the
nooks and crannies of irregular shapes. What remains for us to consider are
the utility procedures that actually manipulate individual pixels. For exam-
ple, relies on to find out whether a particular pixel is a
border of the area.

 compares the color* of a particular pixel with our background
color. It outputs if the two are different. That is, outputs
if the pixel it's examining is on an edge of the area we're filling.

 outputs the color status of a pixel. Remember that each byte
of screen memory contains this information for four pixels. So
must read a byte of screen memory and extract from that byte the particu-
lar pixel we're interested in.

 translates from the x and y coordinates of a pixel to the byte
address in screen memory that contains that pixel. If you want to know
about how these addresses are calculated, read the Savepict and Loadpict
project.

•Actually, not the color number, but the pen number, in the form discussed earlier in
the description of the PEN and BG variables.

F I L L 279

PIXEL extracts one pixel from a byte. It takes two inputs. The first input
is a byte of screen memory. The second input is a number from 0 to 3,
specifying which pixel we want within that byte.

Filling One Pixel

 uses the procedure to fill each pixel. takes the coordi-
nates of the pixel as inputs. Here it is.

 must change the color of one pixel in a byte, leaving the other
three pixels of that byte unchanged. Since Logo's command can
only change an entire byte of memory at once, has to combine the new
color of one pixel with the old colors of the three other pixels. Precisely how
to do this depends on which pixel in the byte we want to change, so
has a subprocedure for each possibility. These subprocedures are named

 through

Making More Efficient

Earlier we looked at a simplified version of which examines and
fills one pixel at a time. It's faster if we can examine an entire byte full of
pixels at once. Here is the modified which does that, along with
some new subprocedures.

280 P R O G R A M M I N G I D E A S

 can only examine a complete byte of four pixels if the pixel
it's ready to examine next is the first one in a byte. The predicate
outputs if that is the case. If not, does the same things it did
in the simpler version.

If is examines the entire byte containing the
pixel of interest. If that byte contains four pixels all in background color, we
can fill all four at once. The variable contains the byte value that
represents four background pixels.

If does find a byte full of background pixels, it uses
 to fill all four at once. then examines the next

byte to see if it, too, contains four background pixels. Once
reaches a byte that is not entirely background, it reverts to the use of

 to check individual pixels.

Finding Region 4

The procedure FIND.BG, which is used to detect the appearance of a fourth
region to fill, is very much like with two exceptions. First,
FIND.BG passes over nonbackground pixels and stops when it reaches a
background pixel. Second, FIND.BG just examines the pixels, whereas

 fills them also.

F I L L 281

PROGRAM LISTING

0 . 8]

0]

282 P R O G R A M M I N G I D E A S

Savepict and Loadpict

When you've drawn a complicated picture, it's useful to be able to save the
picture itself in a disk file, so that you can later restore it to the screen
without going through the procedures that drew the picture again. For
example, suppose you're writing a video adventure game in which charac-
ters in the story are drawn against a backdrop showing a forest, dungeon,
or whatever. The backdrop could be saved as a picture file and then loaded
onto the screen for each scene before drawing in the actors.

In this project, you'll see three different sets of Logo programs for
saving and loading pictures. The three versions differ in how fast they can
load a picture and also differ somewhat in flexibility. The last version, for
example, allows a small picture to be "stamped" on the screen in different
positions. One thing to learn from this project is how using different data
representations can affect the efficiency of a program.

There are two ways to approach this project. If you just want to use
these procedures as a tool to save and load pictures for some other project
of your own, you don't have to understand some of the details explained
here about how pictures are stored. On the other hand, by studying how
the project works, you can learn about the important idea of data represen-
tation.

Note: If you have a 16K Atari computer, you should use the number
 instead of in procedures and

 appears only in the third version of the project.) With a 16K
machine, you don't have a disk drive, but you could save pictures on cas-
sette.

By Brian Harvey.

S A V E P I C T AND L O A D P I C T 283

How a Picture Is Stored

In order to save and load pictures, we have to know something about how
a picture is represented in the Atari computer. In this project we are
concerned only with the pictures drawn with pens, not with the turtle
shapes. The lines you draw are represented as a pattern of dots (called pixels)
on the screen. There are 96 rows and 160 columns of dots on the screen:

- 1 6 0 -

96

Screen pixels

The reason that a diagonal line comes out jagged on the screen is that
it isn't actually drawn as a smooth line, but simply by filling in certain dots
on the screen. Each pixel can be in one of four conditions: it can be empty
(that is, it can be in the background color) or it can be filled in with one of
the three possible pens.

By the way, the length of a "turtle step" is not the same as the distance
between pixels. That is, when you type the command the
turtle does not move 100 pixels on the screen. How many pixels it actually
does move depends on the direction. If you're moving horizontally (head-
ing 90, for example), then moves through 50 pixels. If
you're moving vertically, the distance depends on the aspect ratio, which
is controlled by the . command. The usual aspect ratio is 0.8, in
which case moves 40 pixels (50 times 0.8). In this project,
since we're interested in saving a picture that is already on the screen
rather than drawing a picture with turtle commands, we have to think in
terms of pixels, not in terms of turtle steps.

I said that each pixel can be in any of four conditions (background or
three pens). Therefore, each pixel can be represented in the computer's
memory using two bits, or binary digits. Each bit can be either zero or one.
The four conditions are represented this way:

0 0 background
0 1 pen 0
1 0 pen 1
1 1 pen 2

Memory is grouped into bytes of eight bits. So each byte represents four
pixels. There are 96 times 160, or 15,360, pixels altogether on the screen.
The memory required is one fourth of that, or 3840 bytes. It happens that
the first byte of Logo's screen memory is at memory location number
16384. So the picture memory is arranged something like this:

284 P R O G R A M M I N G I D E A S

Picture memory

Characters (letters, digits, spaces, and so on) are represented in the
computer's memory by a number that is stored in one byte. For example,
the letter A is represented by a byte containing the number 65. Most of the
time you don't have to worry about this, but if you remember this fact, it'll
help you understand the process of storing information in disk files.

Representing the Screen in a Disk File

The most straightforward way to represent a screen picture in a disk file is
simply to write each of the 3840 bytes into the file. To find out what is in
each byte, we use the . operation, which outputs a number repre-
senting the byte at whatever memory location is used as its input. For
example:

will print the number in the first byte of Logo's screen memory. This byte
represents the first four pixels in the upper left corner of the screen. (For
Atari computers with 16K of RAM, the first byte of screen memory is in
location 8192 instead of 16384.)

It would be possible to save a picture in a file, then, with a program like
this:

Each byte of the picture memory would be represented in the file by a line
containing the digits in the number in that byte. That is, if a particular byte
happened to contain the number 125, that byte would be stored in the file
as the three digits 1, 2, 5, just as it is typed on the screen by a
command. Each digit takes up one byte in the file. Therefore, using this
scheme, it takes three bytes in the file to represent one byte in the picture!

S A V E P I C T AND L O A D P I C T 285

(Actually, another byte is used to represent the end-of-line code.) This leads
to very large files.

Instead, it would be better to use only one byte in the file to represent
each byte in the picture. This can be done by using the operation CHAR. This
procedure takes a number as its input and outputs the single character that
corresponds to that number. For example, CHAR 6 5 outputs the letter A.
Using this procedure, we can write the program as follows:

Savepict/Loadpict, Version 1

TO SAVEPICT :FlLE
SETWRITE :FILE
SAVEPICT1 16384 3840
SETWRITE []
END

TO SAVEPICT1 :LOC :NUM
IF :NUM=0 [STOP]
TYPE CHAR .EXAMINE :LOC
SAVE PICT1 :LOC+1 :NUM-1
END

TO LOADPICT :FILE
SETREAD :FILE
LOADPICT 1 16384 3840
SETREAD []
END

TO LOADPICT1 :LOC :NUM
IF :NUM=0 [STOP]
.DEPOSIT :LOC ASCII RC '
LOADPICT1 :LOC+1 :NUM-1
END

To use the SAVE PI CT procedure, you first draw a picture on the screen
using the usual turtle commands. Then you say

or whatever you want to name the file. The program writes 3840 bytes into
this file. Later, you can restore the picture to the screen by typing

The operation ASCI I, which is used in L0ADPICT1, is the inverse of
CHAR. It takes a single character as input and outputs the number that
represents that character. So ASCI I "A outputs 6 5.

Experiment with these procedures. You'll find that both saving and
loading pictures are quite slow. This is because the procedures SAVEPICT1
and LOADP I CT l are invoked 3840 times, once for each byte of screen mem-
ory, even if nothing is drawn in that part of the screen. Also, the files written
by this version of SAVEPICT are rather large (3840 bytes), so you can't fit
very many on a diskette.

286 P R O G R A M M I N G I D E A S

Sparse Data Representations

A typical turtle graphics picture is sparse. This means that most of the pixels
on the screen are unused (background color), which means that most of the
bytes of picture memory are zero. It seems silly to write a file that is mostly
full of zeros. By using a cleverer representation of the picture, we can write
smaller files and make the loading of a picture file much faster.

The idea is this: as we look through the picture memory, we'll find a
bunch of zero bytes, and then a nonzero one, and then a bunch more zero
bytes, and so on. To make this more specific, consider this sample fragment
of a picture memory:

In the first version of the program, we'd represent these twenty-four bytes
of screen memory as twenty-four bytes in the file. But instead, we can think
of this as 9 zeros, 23,4 zeros, 47,8 zeros, 15. We could store this information
in a file in this form:

In other words, we have decided that odd-numbered bytes in the file repre-
sent how many consecutive zero bytes are in the picture, while even-
numbered bytes represent actual picture data. By representing the picture
in this way, we've reduced twenty-four bytes of picture to six bytes in the
file. We'll find that it is also much faster to load a picture stored in this form.

In practice, there may be several hundred consecutive zero bytes in a
picture. This poses a slight problem: the largest number that can be repre-
sented in a single byte is 255. Therefore, if there are more than that many
consecutive zeros, the new procedure writes the sequence
0 in the file for each group of 256 zeros.

A second minor detail is that there must be a way for to know
when the end of the file has been reached. This isn't a problem in the first
version of the program because there all picture files are the same length,
3840 bytes. But in the new version, the length of the file depends on the
number of pixels that are drawn in a nonbackground color. To solve this
problem, writes the sequence 0 0 at the end of the file. This
sequence can't be part of real picture data.

Savepict/Loadpict, Version 2

S A V E P I C T AND L O A D P I C T 287

Experiment with this version of the program. You'll notice that
 isn't any faster, but is usually very much faster. The

reason is that must still examine every byte of picture memory,
because it doesn't know ahead of time where you've drawn lines. But

 only has to deposit information into the bytes in picture memory
that actually correspond to lines in the saved picture file.

Snapshots

In the second version, doesn't change the parts of picture mem-
ory that aren't used in the picture file you're loading. This suggests that it
should be possible to merge two pictures. (In the first version, loading a
picture file completely replaced whatever might have been on the screen
before you invoked Try drawing a picture, saving it with

 clearing the screen, drawing another picture, and then using
 to restore the first picture. Make sure that the two pictures aren't

in exactly the same part of the screen, so you can see whether the old
picture remains intact.

What you'll find is that this merging of two pictures works pretty well,
but not perfectly. The problem comes up if the two pictures use pixels that
are right next to each other, so that a pixel in one picture is part of the same
byte of memory as a pixel of the other picture. (Remember that each byte
contains four pixels.) Loading a new number into that byte eliminates the
pixel that used to be there. Still, this technique works perfectly if the two
pictures are widely separated, and it works pretty well in most cases.

It would be handy to take advantage of this merging capability by using
a picture file as a kind of rubber stamp that could be drawn in different
positions on the screen. The scheme is this: you draw a small picture near
the center of the screen. Then you use a version of to make a
"snapshot" of this picture. You can then use a version of to
"stamp" the saved picture anywhere on the screen, depending on the turtle
position.

288 P R O G R A M M I N G I D E A S

To make this work, the picture file must include information about
where the turtle was when the picture was taken. must be
modified to write this information in the file. Then must be
modified to compare the current position of the turtle to the one stored in
the file. If the two positions are different, the picture should be loaded into
a different part of the screen memory.

This third version of the program is quite a bit more complicated than
the others. The main reason for this is that it has to deal with the difference
between pixels and turtle steps. To know where to "stamp" the saved
picture in memory, we have to think in terms of pixels. But Logo tells us
the turtle's position in turtle steps. This position has to be rounded off to the
nearest pixel. Also, as explained earlier, the conversion between steps and
pixels depends on the aspect ratio. There is no easy way for a Logo proce-
dure to find out what this ratio is. The solution used in this program is that
it looks for a variable named in the workspace. If there is such a
variable, its value should be the aspect ratio. If not, the standard value of
0.8 is assumed.

Another complication is that if the picture is being loaded into a posi-
tion that is different from where it came from, part of the picture may
extend beyond the edge of the screen. The procedure in the
following program is used like but it checks to be sure that you
are trying to deposit into the part of memory that contains the picture.

Savepict/Loadpict, Version 3

S A V E P I C T AND L O A D P I C T 289

TO LOADPICT1 :LOC :NULL :BYTE

PUTBYTE : L0C+:NULL :BYTE
LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII RC

TO PICTLOC

TO PUTBYTE :LOC :BYTE

Note: If you have a 16K Atari computer, you should use the following:

TO YDIFF :YLOC

To experiment with this program, try something like this:

CS

In practice, you wouldn't bother making a snapshot of something as simple
as a square, because it's easier to draw another square than to load it from
a disk file. But if you draw more complicated pictures, in multiple colors,
this technique can really be worthwhile.

Suggestion: Run-Length Encoding

What if you filled in the screen completely with some pen color and tried
to save that in a picture file? Using the first version of the program, of
course, it doesn't matter what's on the screen; the file ends up with 3840
data bytes. But with the two later versions, something else happens. The
picture memory is completely filled with bytes that represent the same
number, but not zero. For example, if you fill the screen with pen 0, the
picture memory will be

290 P R O G R A M M I N G I D E A S

In the sparse encoding scheme we've been using, this is thought of this way:
0 zero bytes, 85, 0 zero bytes, 85, and so on. What ends up in the picture
file is

The picture file is twice as big as the screen memory! This isn't a very good
result. The smart will be slower for this picture than the stupid
one. A sparse representation only works well if the picture is, in fact, sparse.

This is an extreme, unlikely example. But it isn't unlikely for part of the
screen to be filled in solidly. For example, if you're drawing a picture of a
farm, the background might be blue to represent the sky, and there might
be a large solid green area at the bottom of the screen to represent grass.

Still, although that green area isn't empty, it is uniform. The bytes
representing that area in screen memory are mostly all the same, even if
not all zero. We could use a slightly more complicated data representation
called run-length encoding, which would handle this case well. Here's how
it works. Instead of a two-byte sequence representing the number of zero
bytes and then the value of a data byte, we can use a sequence representing
the value of a data byte and the number of consecutive bytes containing
that value. For example, suppose the screen memory looks like this:

We would represent that in the picture file this way:

In this example, the version in the file is only a little smaller than the screen
memory. But in real situations, the run lengths would often be several
hundred bytes, not just five or seven.

This run-length technique is often used in serious computer graphics
work. It's especially efficient for black-and-white pictures, because there
are only two possible values for the data. You can just alternate them and
leave them out of the file. You only store the run lengths. That is, the
odd-numbered bytes of the file would contain the numbers of consecutive
black pixels and the even-numbered bytes would contain the numbers of
consecutive white pixels.

On the other hand, for a color picture that really is sparse, the represen-
tation we've been using is somewhat more efficient than the run-length
representation. The moral is that before you choose a data representation
for any problem, you should think hard about different possibilities!

PROGRAM LISTING

VERSION 1

SAVEPICT AND LOADPICT 311

0 . 8]

0 . 8]

292 P R O G R A M M I N G I D E A S

Display Workspace Manager

L
The Display Workspace Manager is a tool that helps you manage

projects that involve large numbers of procedures. The program lists all

your procedures on the screen. You can move a pointer around, marking

particular procedures. Then you can edit, erase, print, or save the marked

procedures.

 divides the screen into two parts. The top part is used to list the

names of procedures. The bottom few lines remind you of the commands

you can type to (For example, you can type to erase procedures.)

In the figure above, is being used to examine Blaster, a project in

this book. The arrow points to the word on the screen. is the

name of one of the procedures in Blaster. The pointer arrow can be moved

from one procedure name to another by using the arrow keys on the Atari

keyboard.

By Brian Harvey.

DISPLAY WORKSPACE MANAGER 293

In the next figure, the user has typed the PO command to DWM. DWM's

PO command tells it to print out the definition of the procedure at which

the arrow points, in this case STEER.

In the following figure, seven procedures have been marked with as-

terisks on the screen.

- - - - - GE 33 GU - - - - -
q a H Q EUIT SE S SI
R A i f a r r r l

In the next figure the user has typed the command ER, which means

to erase all the marked procedures. DWM has printed "Really erase 7 proce-

294 PROGRAMMING IDEAS

dures?" on the bottom line of the screen. It asks this question to make it

harder for someone to erase many procedures accidentally.

In the next figure, the user has typed for yes, and has erased the

marked procedures. It now displays a shorter list of the remaining proce-

dures.

- - - - - G E g i i m - - - - -
• • Q H E U I T ffllT (3 D A S E S E R O C I A R K S
a i ^ ^ r V f l T O T O G G L E M A R K

This is a large project. I won't attempt a complete explanation of every

detail of the program. Instead, I'll indicate the most important parts to

understand.

Creating the List of Procedures

In order for to work, it must have a list of the names of all the proce-

dures in your project. This list must be in a global variable named

DISPLAY WORKSPACE MANAGER 295

 If this list doesn't already exist, the first thing does

is to call create the list. This automatic creation of the list

requires a disk drive with a writeable disk in it! works by

doing a command while writing to the disk, then rereading the results

to find the names of your procedures. When the list is created automatically,

it is sorted alphabetically. The sorting process is quite slow, because it's

done simply rather than cleverly. (Read the Mergesort project for another

sorting technique.) The automatically generated list omits all procedures

whose names start so that the procedures in the program itself

won't clutter up your list.

If you want to save time when starting up or if you want the

procedures in your project listed in some order other than alphabetical, you

can create the variable yourself and make it part of the

workspace file.

How Arranges the Display

Once the list of procedures exists, lists them on the screen. This is done

by two main procedures, and The first

these figures out how the names should be arranged on the screen, given

the number of procedures you have in your list. The more procedures, the

more columns on the screen will be required to list them all. The more

columns, the less wide each column can be. This limits the length of a

procedure name that can be displayed. Therefore, the program uses the

smallest number of columns that will fit your list. Then the

procedure uses this information to draw the display.

If the name of a procedure is too long to fit in a screen column, an

inverse video plus sign (+) is shown at the end of the truncated name.

Reading Commands

The procedure reads and processes the commands

type to the program. Commands are either one or two characters long.

Here is a list of the commands.

arrows Move the pointer up, down, left, or right. You can type the

arrow keys either with or without the CTRL key held down,

space bar Mark the procedure where the pointer is, if it's not marked

already, or unmark it if it is. An asterisk is displayed next to

the name of marked procedures.

ED Edit the marked procedures in the Logo editor.

 Erase all the marked procedures. This command first tells you

how many procedures are marked and insists that you type

 to confirm that you really want to erase the procedures.

PO Print out on the screen the single procedure whose name is

pointed to by the arrow.

 List all marked procedures on the printer.

D: Save all marked procedures on the disk. This command

prompts for a filename to be used for the saved procedures.

Notice that these save files do not contain the values of varia-

296 PROGRAMMING IDEAS

bles! But the procedures in them can be loaded with the

command.

 Zero Marks. Unmark all procedures.

 Quit. Exits from

If there are no marked procedures, the commands that normally apply

to marked procedures apply instead to all procedures in the display. Be

careful about erasing!

Possible Extensions

DWM takes up just under 2000 nodes, somewhat more than half the available

space. This limits the size of the programs you can use it on. (This is particu-

larly unfortunate since it's the big projects that most need this sort of help.)

If there were space, this project could be the basis for implementing

workspace management tools like and which are found in

some other versions of Logo. The technique would be to have several lists

of procedures instead of just one list.

PROGRAM LISTING

In the program listing that follows, characters that are underlined

represent inverse-video characters on the Atari.

CREATING THE LIST

DISPLAY WORKSPACE MANAGER 297

PRINTING THE MENU

318 PROGRAMMING IDEAS

READING COMMANDS FROM THE KEYBOARD

DISPLAY WORKSPACE MANAGER 299

MOVING THE POINTER

300 PROGRAMMING IDEAS

SETTING AND CLEARING MARKS

EDIT

PRINTOUT

DISPLAY WORKSPACE MANAGER 321

ERASE

SAVE TO D: OR P:

302 PROGRAMMING IDEAS

A Logo Interpreter

Introduction

Suppose you were marooned on a desert island, with only your Atari and

an assembler/editor cartridge. If you wanted to use Logo, you would have

to write it yourself. H ow would you go about writing a computer language?

You would have to write a program that runs the language. It is possible to

write such a program, with some simplifications, in Logo itself.

Logo is an interpreted language. When you run your programs, Logo

reads through them one instruction line at a time and executes each instruc-

tion in the line before proceeding to the next line. This is called interpreting

a program.

Once you grasp the basic principles of interpreter design and opera-

tion, you could write an interpreter for any computer language, not just

Logo. And you could write your interpreter in another language, like as-

sembly language.

This project is about writing an interpreter for Logo in Atari Logo.

We' l l call this interpreter MLogo(for micro-Logo), to distinguish it from

Atari Logo, which is an interpreter written in Atari machine language.

How to Use MLogo

To MLogo ,

MLogo will prompt you for input with a ? in inverse video.

MLogo has fewer primitives than Atari Logo; among them are some list

and arithmetic operations and some turtle commands.

'PRINT SUM 3 4

1PRINT FIRST BF "WALLABEE

1FD 100

You can write procedures in MLogo.

2T0 POLY :SIDE :ANGLE

>FD :SIDE

>RT :ANGLE

>P0LY :SIDE :ANGLE

>END

MLogo is different from Atari Logo in some ways. MLogo doesn't care

whether a line outputs or not. If you type:

SUM 3 4

By Jim Davis and Ed Hardebeck. An earlier version of this project was written by Henry
Minsky.

A LOGO INTERPRETER 303

the value is just ignored. In Atari Logo you would get the error message:

MLogo doesn't have the STOP primitive. Every line of a user procedure

is executed. It also doesn't have OP. The value of a user procedure is the

value of the last line in it.

ITO GREET :WHO

>SE "HELLO :WHO

>END

IPRINT GREET "ARTHUR

If you typed this to Atari Logo, you'd get an error:

Another difference is that all variables start with the empty list as their

value.

ISHOW :NOVAL

In Atari Logo, you'd get an error.

If you try to use an undefined procedure in MLogo, you get a mysteri-

ous error message, then MLogo "crashes."

'ZIPPER 3

After MLogo crashes, you are once again talking to Atari Logo. You must

restart MLogo.

You may notice other differences as well. The reason for these differ-

ences is that it's difficult to implement Logo completely.

Now that you've had a chance to use MLogo and know what it does,

we'll explain how it does it. The discussion, however, omits many details

about interpreters.* Throughout this explanation we use the technical

terms usually used by Logo implementors for describing Logo interpreters.

Interpretation Happens a Line at a Time

The structure of MLogo resembles that of Atari Logo. The normal action

of Logo is to repeatedly type a prompt (?), read a line from the keyboard,

*For more information see Structure and Interpretation of Computer Programs by Ger-
ald J. Sussman and Harold Abelson, MIT Press and McGraw-Hill, 1984.

304 PROGRAMMING IDEAS

and evaluate it. The top-level loop of MLogo is:

The output of is a list of what the user typed.

 accepts a line as its input and carries out whatever instructions

the line contains (for example, moves the turtle, prints a sentence, and so

on).

 does the actual evaluation of the instructions of a line. The

easiest way to understand it is to look first at its last line.

The operation removes the first item from the variable

 and outputs it. Each call to removes one item and outputs

it. In this way each item is inspected in turn.

EVAL takes an item, decides what kind of thing it is, and evaluates it to

get its value. The value output from this call to is the input to

when it recurses. If there's nothing left on the line, this is the value to

output. Otherwise, there's another instruction on the line.

When calls none of the line has been evaluated. If it

should turn out that the line has no instructions (a blank line), then there

is no value to output. is just a default value.

Here's an example of how this recursion works. Suppose you type

to MLogo. calls with the list as input.

 outputs and is is passed to

for evaluation.

In evaluating FD, the number 6 0 would be removed from the line (it

is an input to When stops, the value of is

Since this is not an empty list, evaluation would continue.

A LOGO INTERPRETER 305

The Rules of

The value of an item is determined by these rules.

• The value of a list is just the list.

• The value of a number is just the number.

' The value of a quoted word is the word itself without the quote.

• The value of a word prefaced with a colon (called "dots") is the value

of the variable.

• Otherwise the word is the name of a procedure to call. Inputs to the

procedure appear after the name of the procedure.

 it

How Carries Out Its Rules

's first test is for a list. If the item isn't a list, it must be a word. The

remaining tests all assume the item is some kind of word and don't include

 as part of the test.

The predicate tests whether its input is a quoted word.

The operation removes the quote and outputs the word.

In Logo a colon ("dots") before a word is a request for the value of a

variable. The predicate checks this case.

The procedure UNDOT outputs the word with the dots removed.

 outputs the.value of a variable.

306 PROGRAMMING IDEAS

The predicate checks whether the word has been assigned a

value. If it has one, outputs it, otherwise the value is • . We'll

explain more about this later on.

Evaluating a Procedure Call

To evaluate a procedure call, we have to know some things about the

procedure being called, such as how many inputs it has and whether it's a

primitive or a user procedure. Information about a procedure is kept in the

definition of the procedure. We'll describe definitions in detail later. For

now, we'll just say that the operation outputs the definition and

leave it at that.

When EVAL wishes to evaluate a procedure, it passes the definition of

the procedure to

 actually runs the procedure. It takes two inputs. The first is the

definition of a procedure, the second is a list of values for the inputs. It

causes the procedure to "do its thing," whatever that is, and outputs

whatever the procedure outputs.

Before we can run the procedure, we have to get the values of its

inputs. We usually refer to inputs as arguments (or args, for short).

The operation NARGS outputs the number of arguments this procedure

expects. extracts this from the definition. (We'll see later.) This

number is the input to takes these inputs from the

line being evaluated and evaluates each one, returning a list of the values.

To simplify MLogo, everything outputs. If commands were allowed in

MLogo, as they are in Atari Logo, would have to know if an

output was expected and make the proper complaint if an output was

missing or an unexpected output showed up.

Inputs Require Recursive Evaluation

 calls to get the next item in the line being

evaluated and makes a recursive call to EVAL to evaluate this item.

Here's an example. Suppose we type:

A LOGO INTERPRETER 307

MAKE "DOGS 3

PRINT :DOGS

to MLogo. Our example begins after the when evaluating the call to

 gets as input. This is a dotted word so

 is called with It outputs the value

 which is outputs

Before we show how works, we'll give some details of procedure

definitions.

Procedure Definitions

Both primitives and user procedures have definitions. Their definitions

have some features in common and some differences.

In the remainder of this discussion, we refer to a primitive as an sfun

(System FUNction), pronounced "ess-fun." Likewise we refer to a user

procedure as a ufun (User FUNction), pronounced "you-fun." These are the

terms usually used by Logo implementors.

Procedure definitions are kept in lists.

The first item in the list is the word or The predicate

distinguishes sfuns from ufuns by inspecting this item.

The second item is the number of inputs the procedure expects (this

may be zero). The operation outputs this number.

The remaining items of the list differ for the two types of procedures.

We'll show you the rest of an sfun definition now and take up ufuns later.

308 PROGRAMMING IDEAS

The third and final item in an sfun definition is the name of the Atari

Logo procedure that implements the MLogo primitive.

The operation outputs this procedure.

If you print the names in the Logo workspace, you'll see definitions for

all the MLogo primitives. All the definitions are in words beginning

with $.

?SH0W :$PRINT

?SH0W NARGS :$PRINT

?SH0W SFUN.FUNC :$PRINT

?SH0W :$SUM

Sometimes an MLogo primitive is implemented directly by an Atari

Logo primitive (for example, and sometimes by a procedure

The operation makes a definition for an sfun.

N o w we can finish discussing the evaluation of a procedure call.

 Evaluates a Procedure Call

The first input to is the definition of a procedure to evaluate. The

second input is a list of input values for that procedure. Sfuns and ufuns are

evaluated differently.

The command applies an sfun to its inputs by building a

list as input for

Suppose you typed the following to MLogo:

MAKE "WHO "LOWELL

PRINT :WHO

A LOGO INTERPRETER 309

While evaluating the call to would get the inputs

 (the definition of and (the value of the vari-

able

Recall that outputs the procedure that implements the

sfun. In our example it will output

 would call with the input

would call on behalf of MLogo and output whatever it output.

Here's the MLogo sfun

The operation puts a quote in front of words that need it.

Variable Values

The values of MLogo variables are stored in Atari Logo variables with

slightly "funny" names. (This is useful for learning about how MLogo works.

You can stop it and print out names. You can easily spot all MLogo variables

by their names.)

The operation makes these names by adding a # to the front of

the name. (The name stands for Variable SYMbol.)

The command sets the value of an MLogo word, and gets

the value of an MLogo word. They both use to get the name of the

word to use. translates from an MLogo name to an Atari Logo name.

310 PROGRAMMING IDEAS

The predicate tells whether there is a value for the word.

A second reason to use "funny" names for MLogo variables is that

otherwise an MLogo user might set a variable with the same name as one

used in the MLogo program itself. The results would be very strange.

Adding the character guarantees that the names will never be the same.

Using a scheme like the one for variables, the definition of a procedure

is kept in a variable whose name is the name of the procedure with a "$ "

prefix. The operation (Function SYMbol) outputs the Logo variable for

the definition of the MLogo procedure.

The command sets the definition of a procedure, and the opera-

tion outputs the definition of a procedure.

How Sfuns Are Defined

The primitives we implemented are all very similar to familiar Logo primi-

tives. In some cases we could call Logo primitives directly. But because

every MLogo sfun must output, we had to write small Atari Logo proce-

dures for those that don't output. These procedures call the sfun, then

output a value. The value may just be TRUE.

A LOGO INTERPRETER 311

 defines an sfun, that is, it associates the name of an sfun with

the definition.

All sfun procedures' names begin with a percent sign to distinguish

them from procedures that are part of MLogo itself. This makes it easy to

spot all the MLogo sfuns in the workspace (except those implemented

directly by Atari Logo primitives).

Ufun Definitions Include Arglist and Body

Like sfuns, ufuns have a definition, but the definition is slightly different.

A user procedure consists of an arglist and a body. The arglist is a list of

the input variables for the ufun. The body is a list of the lines of the

procedure. Like sfuns, ufun definitions are lists.

If we had defined SQUARE by

. . . then the definition would be

?SH0W FSYMEVAL "SQUARE

The arglist is the body is

Remember that MLogo ufun definitions are stored by the interpreter as

Atari Logo variables, not as Atari Logo procedures.

The operation makes a definition for a ufun. The oper-

ation outputs the arglist from the definition, and the opera-

tion extracts the ufun body from the definition.

312 PROGRAMMING IDEAS

Evaluating a Ufun Means Evaluating
the Lines of Its Body

An sfun is a primitive, but a ufun body is a collection of lines, each requiring

evaluation itself.

 does the actual evaluation of the lines of the body. The

value of the ufun is the value of the last line evaluated.

 recurses in the same way does. To understand it,

look at the recursive call first. Each time recurses its first input

is the value from evaluating the previous fine. When the last line is evalu-

ated, this is the value to output.

When is first called (from it is passed

 as a first input. When first called, . has yet to evaluate

a line, so there is no value to output from the ufun. If the ufun body is

empty, then is output. Otherwise there is at least one line to

evaluate. evaluates the first line in the body, and recurses with

this value and the remainder of the lines.

Ufuns Have Inputs with Names

Ufuns can have inputs. The title line (and therefore the arglist) of a ufun lists

a set of variables that hold the inputs to the ufun. While a ufun is being

evaluated, it can find its inputs in these variables.

For example, if you have the procedure:

and you type:

GREET "PHIL

Logo (either Atari Logo or MLogo) responds:

Logo acts as if the value of had been set by before any of

the instructions were evaluated. The effect is like what you could get by

?MAKE "WHO "PHIL
7PRINT SE "HELLO :PHIL

A LOGO INTERPRETER 313

?MAKE "WHO [BAKED HAM]
?GREET "BOB

?SH0W :WHO

?MAKE "WHO "BOB
?PRINT SE "HELLO :WH0

?SH0W :WHO

 binding

How Binding Is Implemented

 bind frame.

314 PROGRAMMING IDEAS

 simply recurses through the argument list and the values.

There is a one-to-one correspondence between the argument list and the

values list. For each input there is a value.

After a ufun is evaluated it outputs a value, and this is the value that

 should output as the value of the ufun it was asked to apply.

But first the bound variables must be unbound. This is the purpose of

' S input is the output of the ufun. It holds onto this value while

 undoes the binding, then returns the held value. is ex-

plained later.

A bind frame enables the interpreter to restore the values of the input

variables of a single ufun call. But a ufun can call other ufuns. W e need one

bind frame for each ufun call. There will be as many bind frames as the

depth of calling. Bind frames are created as calls occur and cleaned up as

the call returns. The most recently added frame is always the one to clean

up.

W e need to keep track of all these bind frames and ensure we bind and

unbind in the same order calls and returns are made. To do this, we use a

stack.

The Concept of a Stack

A stack is a method of arranging data. You can think of it as a pile of papers

on a desk. Only the topmost sheet is visible (if the stack is neat) because it

covers the others. If you add another sheet to the pile, it becomes the

topmost. You can only touch the top sheet. If you remove it, a new top sheet

is exposed.

This order of accessing is sometimes referred to as "Last In, First Out,"

because the last item added to the stack is the first one that can be removed.

Stacks Are Implemented by Lists

Most computers have machine instructions to implement stacks. But since

we wrote MLogo in Logo and not in machine language, we had to imple-

ment stacks. W e decided to use Logo lists to hold stacks, and to put the top

of the stack at the front of the list so that we could use FIRST to get the top

item on the stack and to add a new one.

PUSH puts something on the top of a stack. It takes two inputs. The first

is the name of the word containing the stack, the second is the item to add

to the stack.

A LOGO INTERPRETER 315

 makes a new list by adding the item to the old contents of the

stack. This new list is assigned to the variable holding the stack.

The operation outputs the top value on the stack. This value is

removed from the stack.

The input to the operation is the variable holding the stack.

of this variable outputs its value—the list holding the stack. The first item

in the list is the item to output. Before outputting it, sets the stack

variable to hold the of the list, thus removing the top item from the stack.

This example shows how stacks work.

?MAKE "STACK []
?PUSH "STACK 9
?SH0W :STACK

?PUSH "STACK 5
?PUSH "STACK 2
?SH0W :STACK

?PRINT POP "STACK
2

?SH0W :STACK

Bind Frame in Detail

A bind frame is a list of bindings. Each binding is a list of a name and a value.

The name is the name of a variable that must be saved, and the value is the

value it had at the time it was saved.

A typical bind frame might be

This bind frame is holding two variable bindings, for and

 makes a bind frame. Its input is the argument list of a

ufun. Each input is a variable whose value must be saved.

316 PROGRAMMING IDEAS

The Sfun Harder Than Others

In Logo the primitive TO treats its inputs differently from all other sfuns.

It does not evaluate them. The first input to is the name of the procedure

to define. The rest of the inputs are the names of the inputs of the procedure

being defined. These are written with dots to remind you that they are the

inputs.

1T0 SQUARE :A
>PR0DUCT :A :A
>END

TO manages the trick of not evaluating its inputs by lying to the evalua-

tor about its number of inputs. It says it takes none but then goes and takes

them off (where the current line is kept) by itself. evalu-

ates the arguments as it collects them. This trick also lets TO take as many

arguments as are present on the line.

The TO definition is:

A LOGO INTERPRETER 317

The procedures that implement it are

The operation pops the input names directly off

and removes the dots.

 takes as inputs the name of the procedure to define, a list of

its arguments, and its body, which is a list of the lines that make up the

procedure.

 makes the actual definition. W e have already seen it.

 reads an entire ufun body, prompting with > before read-

ing each line.

 recurses, reading a line each time, until it gets a line

Reading Things You Type

Both and the need to get typein from the user. They don't

want empty lines as input. Each has its own prompt character. They can

both share

318 PROGRAMMING IDEAS

Some Improvements

Here are some modifications to MLogo to make it more like Atari Logo. W e

didn't include them in MLogo because we wanted to keep it simple to

explain. If you want to have these extra features, you can type in the

following procedures.

First, a synonym for

Here's the sfun PO:

PO is by far the longest sfun yet, because there is no useful Atari Logo

primitive for it. The Atari Logo primitive prints out Atari Logo user

procedures, which are not stored like MLogo user procedures.

The procedure prints each word in the argument list,

A LOGO INTERPRETER 319

preceded by a space and a colon. (In the second line of PO. ARGS, a space

appears after the backslash even though you can't tell from this listing.)

To add to MLogo we have to change and

As is, each line is always evaluated. By adding a flag variable we can

cause evaluation to stop.

Here's the sfun OP.

The input to is the value to output. This value is stored in the

variable for reference by the evaluator. sets the flag which

causes the evaluation of the body to stop.

We have to modify the evaluator to check these flags.

PROGRAM LISTING

320 PROGRAMMING IDEAS

A LOGO INTERPRETER 321

322 PROGRAMMING IDEAS

Map

Have you ever written a procedure like this:

By Brian Harvey.

MAP 323

Or like this:

Or like this:

All of these procedures have a common pattern. They go through a list,

doing something with each member of the list, and then stop when they get

to the end of the list. The procedures differ in what they do with the

members of their input list. In one case it's a list of things to print; in the

second it's a list of frequencies of musical notes; in the third it's a list of color

numbers. But they all share this structure:

You can think of this skeleton procedure as a template for many proce-

dures that do similar work for you.

Mapping Commands

You can write a single procedure that does all these things. What's special

about it is that it is a general tool that can apply any procedure to each

member of a list. This general process is called mapping the procedure over

the list, so we call this general procedure Here are some examples.

?MAP [PRINT] [VANILLA CHOCOLATE GINGER LEMON]

?MAP [PRINT FIRST] [VANILLA CHOCOLATE GINGER LEMON]

324 PROGRAMMING IDEAS

?MAP [TYPE FIRST] [EVERY GOOD BOY DOES FINE]

The first example of using is equivalent to the procedure

with which we started this discussion. The first input to says what you

want to do to each member of the input list (in this example, it). The

second input is the list over which you are mapping. So the instruction

is equivalent to

Here are the procedure definitions.

You can use with more complicated instructions than just

In the second example, the first input to is the list

This example works as if we'd written a special procedure like this:

W e can use to obtain the same effect as the procedure we

showed earlier.

MAP [WAIT 60 SETBG] [0 88 74 7]

To get the same effect as our procedure, we have to work a little

harder. The problem is that the frequency input to comes in the

middle of the instruction, like this:

 expects to put each member of the list at the end of an instruction, not

in the middle. What we have to do is write an auxiliary procedure that takes

the frequency as a single input:

MAP 325

MAP [NOTE] [440 880 220 440]

How It Works

What makes it possible for to be a general-purpose tool instead of a

procedure for a specific purpose is its use of Logo's command. This

replaces the specific commands like or or in the earlier

examples. The input to is a Logo instruction that is assembled out of

two parts: the template, which is the first input to and one member

of the list, which is 's second input.

Let's look at an example. If we say

MAP [PRINT] [VANILLA CHOCOLATE GINGER LEMON]

then has to carry out these four instructions:

Each of these four instructions is made by combining the template [PRINT]

with one member of The com-

bination is made using LPUT, which adds the list member at the end of the

template. For example, the expression

outputs the list

The procedure itself has much the same pattern as the examples

at the beginning of this discussion. The first instruction inside is the

 stop rule; the last instruction is the recursive use of with

the of the input list. Compare with for example:

326 PROGRAMMING IDEAS

One possibly confusing detail in has to do with quotation marks.

Notice that if you want Logo to print the word you can't say

 Wrong!

To assemble this instruction, the first input to LPUT must be the word

 including the quotation mark as part of the word. The procedure

 is used by to supply the needed quotation marks.

Mapping Operations

So far, the templates we've used have been commands. That is, they have

been Logo procedures that do something external, like print something,

make a sound, or change the color of the screen. An even more powerful

facility is to map operations over a list, producing (outputting) a new list of

the results. Perhaps an example will make this clearer.

?SH0W MAP.LIST [FIRST] [THIS IS A LIST]

?SH0W MAP.LIST [SQRT] [1 2 3 4]

Like generalizes a common pattern of Logo proce-

dures. The examples here could have been written as special-purpose

procedures this way:

 is an operation. Its output is a list of the same length as its

second input. Each member of the output list is the result of applying the

template to a member of the input list.

MAP 327

Here the first input to is the same expression that was used to assemble

the instructions in

An example of using to apply a procedure to each word of

a sentence is this program to translate a sentence into Pig Latin.

7PRINT PIGLATIN 'HELLO

?PRINT MAP.LIST [PIGLATIN] [THIS IS GREEK TO ME]

Mapping Over Words

In Logo, we can assemble letters into words, just as we can assemble words

into lists. We can extend the idea of mapping to apply a procedure to each

letter of a word.

 is the same as except that it uses instead of

as the combining operation, and it builds onto an empty word instead of an

empty list.

Here is an example of how to use Suppose you want to print

a word in inverse video (black on white). On the Atari computer, to print

any character in inverse video, you must add 128 to the code that repre-

sents that character.

7PRINT MAP.WORD [CHAR 128+ASCII] 'HELLO

328 PROGRAMMING IDEAS

If we put this into a procedure, we can print an entire sentence with each

word inverted combining and

7PRINT MAP.LIST [INVERT] [THIS IS A TEST.]

List Reduction

There is one more way in which an operation can be applied to the mem-

bers of a list. Consider an operation with two inputs, like or

It is often convenient to be able to add up all the numbers in a list, or

multiply them together. Of course, as in the earlier situations, we could

write special-purpose procedures.

?PR ADD [1 2 3 4]

10
?PR MULTIPLY [1 2 3 4]

What we'd like to do is produce a general tool for these situations.

?PR REDUCE [SUM] [1 2 3 4]

10

MAP 329

?PR REDUCE [PRODUCT] [1 2 3 4]

There is one slight complication that prevents from following

exactly the pattern of and The problem is that each of those

procedures knows about the identity element for the corresponding opera-

tion. The identity element is the value to start with when the input list is

empty: 0 for 1 for To make a general tool, we want

to avoid building this kind of information into it. The solution is to apply

REDUCE recursively only down to the point where there are two members

remaining in the input list, then just apply the template to those two. The

resulting procedure is a little messy, but if you go through.it carefully you'll

see that it's really much like the mapping procedures we've used before.

Here are more examples of how can be used.

?PRINT REDUCE [WORD] [A B C D]

?SHOW REVERSE [A B C D]

SUGGESTIONS

• You could modify these procedures so that the list members could

be inserted anywhere in the template, instead of only at the end. For

example, the music example that earlier required writing an auxil-

iary procedure could instead be written

where the question mark indicates the position in the template into

which the members of the input list are placed.

• The general name for doing something over and over is iteration.

Mapping is a particular kind of iteration, based on using the mem-

bers of a list, one after the other. Other kinds of iteration can also be

330 PROGRAMMING IDEAS

invented using the RUN primitive. For example, here is an iteration

procedure that tests a predicate to control the repetition.

?CS
?WHILE [HEADING < 270] [FD 10 RT 10]

You might try to write a procedure to create numeric iteration.

?STEP "NUM 3 7 [PRINT :NUM * :NUM]

16

• Use and to implement a substitution cipher. A

cipher is a technique for protecting secret messages by transforming

each letter into some other form. (Ciphers are sometimes called

codes, but, strictly speaking, a code is a technique that transforms a

word by looking it up in a dictionary, rather than by manipulating

it letter by letter. A foreign language is like a code.) Write a proce-

dure that takes a single letter as input and outputs some secret

representation of the input letter. Then you can encipher a word by

applying to it, and you can encipher a sentence by apply-

ing to encipher each word. The example of inverse video

works like a cipher, although of course the result isn't very secret.

 uses to accumulate the results for each member of

the input list, and uses to accumulate its results.

Logo has other accumulating operations: and Try

writing versions of that use each of these. Are any of them

useful?

• Here is a tricky example.

?SH0W FLATTEN [[THIS IS] [A [L I S T]]]

FLATTEN combines iteration over a list, list reduction, and recursion,

since the template input to uses itself. The pro-

cedure converts any list into a flat list, one that has only words as

MERGESORT 331

members. Can you see why both and must be

used? Compare the result of to these:

SHOW REDUCE [SE] [[THIS IS] [A [L I S T]]]

SHOW MAP.LIST [FLATTEN] [[THIS IS] [A [L I S T]]]

PROGRAM LISTING

Mergesort

People often want to use computers to sort information of various kinds.

For example, you may want to list your friends' addresses in alphabetical

order, or you may want the same information arranged in order of their

birthdays to remind you when to send cards. Programmers have invented

many different techniques to solve the sorting problem. Generally, the

methods that are easy to understand tend to run slowly, while the faster

methods are rather complicated. Here is a method that is medium-fast and

medium-tricky. Its name is mergesort.

In Logo, we'll represent the information we want to sort as a list of

items. The general strategy is this:

1. Divide the list into two smaller parts.

2. Sort each part separately.

3. Merge the two sorted lists into one big sorted list.

This may not seem like much of a strategy, because we are still left with the

problem of sorting the smaller lists in the second step. But the clever part

Program by Danny Hillis; write-up by Brian Harvey.

332 PROGRAMMING IDEAS

is that if we keep applying the strategy to the smaller lists, eventually we

get lists with just one member, and we can simply declare these lists sorted.

Here's a specific example. To make it easy to read, we'll sort a list of

numbers in size order. Start with this list:

Divide it into two smaller lists.

Now sort the first of the smaller lists. To do that, divide it into two smaller

lists.

Now sort the first of these lists, again by dividing it into two smaller lists.

Each of these lists has only one member, so each is already sorted. Now we

merge them to get

Now we can merge this list with its "partner," which is the list [27] , The

result is

The next step is to sort the "partner" of this list, namely the list [1 10

. This also involves dividing it into smaller lists, as before. To make this

example shorter, we'll skip the steps of sorting the list . Finally

we are left with two sorted lists:

The last step is to merge these:

Dividing a List into Two Parts

The first step in the sorting process is to divide a list into two parts. To do

that, we can use procedures and

MERGESORT 333

You may notice that refers to in-

stead of The reason for this difference is that if the input

list has an odd number of members, we must divide the list into two pieces

that differ in length by one. For example, if the input list has five members,

 will output the first three members of the list and

will output the last two members.

?SH0W FIRST.PART [14 3 27 1 10]

?SH0W LAST.PART [14 3 27 1 10]

[1 10]

Merging Two Ordered Lists

The last step of the sorting procedure is to merge two lists. The

procedure assumes that each of the two lists is already in the correct order.

 takes two inputs, namely, the two lists.

 compares the first member of one input list with the first mem-

ber of the other list. One of these becomes the first member of the final

merged list; is applied recursively to the remaining members of the

input lists.

 uses a subprocedure, which tells whether one item

should come before or after another. takes two inputs. It outputs

the word if the first input comes before the second input, or

otherwise.

You can write different versions of depending on what order-

ing you want to use for your sorted lists. If you are sorting numbers by size,

as in the earlier example, you can use this version:

If you want to sort words alphabetically, or use some other ordering,

you need a more complicated version of We'll show an example

later.

334 PROGRAMMING IDEAS

Putting It All Together

We 've written the easy parts of this sorting method. The hard part is putting

it all together. The main procedure SORT does this. It takes one input, which

must be a list. It outputs the same list, but with its members in sorted order.

If the input list is empty, or has only one member, then the list is

already sorted. outputs the list unchanged. For larger lists, goes

through the steps we described at the beginning.

1. It uses and to divide the list in two.

2. It uses to sort each of these smaller lists.

3. It uses MERGE to combine the resulting ordered lists.

Alphabetical Order

Sometimes we want to deal with information composed of words or sen-

tences, rather than numbers. Here are procedures to alphabetize lists of

words.

 takes two inputs. Each input is a sentence (in other

words, a list of words). It outputs the word if the first input comes

before the second alphabetically.

 is similar to except that its

two inputs are single words instead of lists of words.

An Example

Here is a list of the greatest songs of all time.

MERGESORT 335

(To type in a long list like this, you have to use the Logo editor. When

you are typing directly to the ? prompt in Atari Logo, there is a limit to how

long a line you can type.)

This list contains five items. Each item is itself a list with two members,

the title and artist of a record. This is a simple example of a data structure.

That is, instead of having a list of words or a list of numbers, we have a list

of more complicated things, each of which is itself made up of smaller parts.

Suppose we want to sort these songs by title. W e can define a

procedure to do that.

The of each song is a list containing its title, so this version of

sees which title comes first alphabetically.

?SH0W SORT :RECORDS

W e can make this prettier by using a formatting procedure to print

each record on a separate line.

?FORMAT SORT :RECORDS

336 PROGRAMMING IDEAS

Now suppose we want to sort the same list of records, this time by artist.

To do this, we replace the procedure with one that uses the

of each item instead of the FIRST.

The of each song is a list containing the name of the group that

performed it.

?FORMAT SORT :RECORDS

SUGGEST IONS

If you are interested in learning about other ways to write sorting

programs, the standard reference book on this subject is Sorting and

Searching, volume 3 of The Art of Computer Programming, by Donald E.

Knuth (Reading, Mass.: Addison-Wesley, 1973).

P R O G R A M L IST ING

Note: There are three different versions of in the write-up.

The one here is the first version. and are the other two

versions and can be substituted for in

BESTLINE 337

Bestline

Bestline is a Logo project that draws the "best-fitting" straight line on a

Cartesian graph of some data points. It is a strategy commonly used among

scientists to predict the value of some quantity based on another.

An Example: A Scientific Experiment

I got the idea for this project while helping a friend interpret data from a

laboratory experiment. The purpose of the experiment was to find the

concentration of antibodies in each of a large number of test tubes. This is

done by adding radioactive iodine to the antibodies. A certain amount of

the iodine bonds to the antibody and the rest is removed. The concentration

of antibodies can be determined by measuring how much iodine bonded

to them. Since the iodine is radioactive, you can run it through a machine

that measures how much radiation is emitted by each test tube. In this

experiment, the radiation (rad) counts were collected and processed by a

computer in my friend's lab. I thought I could write a Logo program that

could generate a "best-fit" line for this data and for samples of other data.

By Julie Minsky.
*In statistics, this kind of plot is called a scattergram.

338 PROGRAMMING IDEAS

Making a Graph of the Data

In the antibody experiment, we take samples of known antibody concentra-

tions, measure their radiation counts, and plot them on a graph. For each

known concentration, we plot the corresponding radiation count.* When

we plot all the points, we might see:

2400 - -

II C CO
1600 ••

1200 • •

400- •

1.0 1.5 2 0

radiation count (rads)
2.5

W e can use this plot for looking at the data from our samples of known

concentrations. H o w can we use this data to estimate the unknown concen-

trations of our experimental samples?

W e know that for this kind of experiment, the radiation count of a

sample is proportional to the concentration of antibodies in it. That is, when

we double the concentration, the radiation emitted will be doubled. This

relationship suggests that the graph of radiation versus concentration is a

line. W e need to find a line on which we can look up an estimate of the

concentration of a sample once we have experimentally found its radiation

count.

Looking Things Up on a Graph

Let's look at the graph above. It shows a regression line plotted for the data

points in this experiment.* Once we know how much radiation is emitted,

*The "best-fitting" line through a sample of data points is called a "least squares," or
regression, line and is calculated from the data points.

BESTLINE 359

we can estimate the concentration of antibodies present. For example, if

the radiation count is 2, then the concentration is estimated to be 1600

picograms/ml.

This line was already calculated for this particular experiment; some-

one plotted the data points and determined the line. Different samples of

data generate different graphs and regression lines.

For example, a realtor selling office space might want to know how

much to charge for a 1700-square-foot building. Let's say the realtor called

other realtors who sold office space in the same community and asked them

how much they charged for buildings of different square footages. A helpful

graph would be price plotted against square footage. While the realtor

might consider other factors in setting the price (for example, property

location, condition of the building), she is able to estimate the market price

for the office space.

500 1000 1500 1700 2000

area
(square feet)

Possible Lines

Many different lines might be drawn through the known sample points.

How can we find a line that goes through all the measured points and makes

sense for our data?

Since this is a real-world experiment, the sample points don't all lie

exactly on a straight line. W e could draw lots of lines near these data points.

W e would like to find the one line that goes as close as possible to all of

them.

E

radiation count (rads)

340 PROGRAMMING IDEAS

Moving the line closer to some points will increase its distance from

others. Some of the lines fit the data so poorly that we wouldn't even

consider them. Others would seem to be pretty good fits to the data. W e

need to find a way of determining the line with the best fit, the line that

comes closest to all the points. How can we choose which line is the best

fit?

A Technique for Finding the Best Line

There are two things you need to know to plot a line: its slope (m) and its

y -intercept (b). The standard equation for a line is

y — mx + b

Once you know m and b, you can use the equation to find the y

coordinate for any x.

A method usually used to find the best-fit line is called "least squares."

The least squares line is that which minimizes the sum of the squares of the

vertical distances between the line and the data points. It is a neat way of

solving the problem when the real-world data points are not exactly on the

line (this is usually called minimizing the error). Let's look at the following

graph.

Not all the data points fall on the regression line. The amount of "error"

of the regression line is the sum of the squares of the vertical distance of

each point from the line. If all the data points fall on the best-fit line the

error would be 0. This is the ideal; most real-world data do not behave so

neatly. The method of least squares is used to calculate a line that minimizes

the error.

Given a set of points, you can find the best-fit least squares line by

solving two equations: one to calculate the slope of the best-fit line and one

to calculate its y-intercept.

In our experiment, we have the x and y coordinates of N points. W e

can use the coordinates and these two equations to find m and b\

BESTLINE 341

Nlxy — Ix m
Nix2 - (lx)2

, = ly - mix

N

The Greek letter sigma, 2 , is called summation notation; it means that

you add a set of numbers. Ix means add up all the x coordinates from the

set of points. Ixy means you should multiply the x and y coordinates of

each point and add up all the products.

Using, the Program

Here is an example of how to use BESTLINE. The text that is boldface is what

you type. Say your points are (28, 39), (25, 10), (140, 72), and (5, 2).

BESTLINE

28 39 25 10 140 72 5 2

Before plotting the line, BESTLINE prints:

When continues, it plots your points and draws the line that

best fits them.

At the bottom of the screen prints:

342 PROGRAMMING IDEAS

To find the y coordinate on the best (fit line for a certain x-100, for

example) type:

SOLVE.Y 100

Similarly, you can use a procedure called to find the x value

for a certain y.

How the Program Works

Overview

 is the top-level procedure. It sets up a global variable,

 to contain the list of points the user types in. The list of x and

y coordinates the user types is converted into a list of lists by Each

sublist contains the x and y coordinates for each point. In our example,

 is [calls

 to find the slope and the y -intercept of the line that best

fits these points. then calls to plot the points and draw

the best-fit line.

 creates two global variables, and : is the slope

of the line and is computed by is the y-

intercept and is computed by

BESTLINE 343

TO YINTERCEPT -.POINTS
OP (((BIGE : POINTS "JUSTY)

- (:M * BIGE : POI NTS "JUSTX)) / COUNT -.POINTS)
END

Both LEAST. SQUARES. SLOPE and YINTERCEPT rely on a collection of

procedures used by BIGE.

BIGE

BIGE takes two inputs, a list of points and the name of another proce-

dure. It sums the result of applying that procedure to each point in the list.*

(This procedure is called BIGE, pronounced "big-ee," because the Greek

letter 2, used as the summation symbol, looks like an upper-case "E . " For

e x a m p l e , if you type BIGE : POINTS "JUSTX, JUSTX will extract just

the x coordinate from each point in the list and BIGE will end up adding

up just the x's! BIGE : POINTS " XT I ME SY adds up the products of the x

and y coordinates for each point. The procedures used with BIGE in the

formulas are JUSTX, JUSTY, XTIMESY, and XSQUARED.

TO BIGE :LI ST :PROC
IF EMPTYP :LI ST [OP 0]
OP (SUM (RUN LIST :PROC FIRST :LI ST)

BIGE BF :LI ST :PROC)
END

TO JUSTX :POINT
OP FIRST -.POINT
END

TO JUSTY :POI NT
OP FIRST BF :POINT
END

TO XTIMESY :POI NT
OP (JUSTX :POI NT) * (JUSTY :POI NT)
END

TO XSQUARED :POI NT
OP (JUSTX :POI NT) * (JUSTX :POINT)
END

Graphing

After the equation of the best-fit line is determined, PLOT LINE plots

your points and the line. PLOT LINE first uses PLOT. POINTS to draw your

points.

*BIGE is a mapping procedure. See Brian Harvey's Map project (p.322) for more about
mapping. ,•

344 PROGRAMMING IDEAS

SS

 then draws the best-fit line. If the slope (:M) is 0, then

 draws the line. The procedure finds the smallest and

largest x and y coordinates for your set of points. finds the best-fit

line's x coordinate for the minimum y and maximum y computed by

These are the procedures for finding and plotting the endpoints of the

best-fit line.

BESTLINE 345

346 PROGRAMMING IDEAS

PROGRAM LISTING

LINES AND MIRRORS 347

TO XVALUE :Y
OP (: Y - :B) / :M
END

TO RANGE :PLIST
MAKE "MINX LEAST.NUM XLIST :PLIST
MAKE "MINY LEAST.NUM YL1ST :PLIST
MAKE "MAXX GREATEST.NUM XLIST :PLIST
MAKE "MAXY GREATEST.NUM YLI ST :PLIST
END

TO LEAST.NUM :NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST :NUMS) < (FIRST BF :NUMS •

) [OP LEAST.NUM SE BF BF :NUMS •
FIRST :NUMS]

OP LEAST.NUM BF :NUMS
END

TO GREATEST.NUM ;NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST BF :NUMS) > FIRST :NUMS •

[OP GREATEST.NUM BF :NUMS]
OP GREATEST.NUM SE BF BF :NUMS FIRST •

: NUMS
END

TO XLIST : POINTLI ST
IF EMPTYP : POINTLI ST [OP []]
OP FPUT JUSTX FIRST : POINTLIST XLIST •

BF :POINTLIST

TO YLIST : POINTLIST
IF EMPTYP : POINTLIST [OP []]
OP FPUT JUSTY FIRST :POINTLIST YLIST •

BF :POINTLI ST
END

TO PLOT.HORIZ
PU SETPOS LIST :MI NX :B
PD SETPOS LIST :MAXX :B
END

TO PAIRUP :LI ST
IF 1 = REMAINDER COUNT -.LIST 2 [MAKE •

"LIST BL : LIST]
OP PAIRS :LI ST
END

TO PAIRS :LI ST
IF EMPTYP :LI ST [OP []]
OP FPUT SE FIRST :LI ST FIRST BF :LI ST •

PAIRS BF BF :LI ST
END

Lines and Mirrors

This program was designed to simulate a beam of light bouncing off mirrors

or a ball bouncing off walls. The user enters the coordinates of endpoints

of lines. The program then draws the lines and starts the turtle going in a

random direction. When the turtle hits one of those lines, it will bounce off

at the same angle at which it came in. The turtle draws its path as it goes.

You can think of the turtle's path as a beam of light and the lines as mirrors.

In this write-up there are three main sections: first, how the program

calculates the angle at which the turtle should bounce after hitting a line;

second, how the information about the lines is remembered; and third, the

detailed structure of the program.

By Toby Mintz.

348 PROGRAMMING IDEAS

Bouncing Off a Line

What Is a Line?

You probably know that two points determine a line, as in the following

illustration.

Another way to determine a line is by its slope (m) and ^-intercept (b). The

slope is the steepness of the line. In the following figure the line on the right

rises twice as fast as the line on the left.

LINES AND MIRRORS 349

There may be many different lines with the same slope. A way to

distinguish these lines is by their y -intercept. The y -intercept is the point

at which the line crosses the y axis.

Calculating the Turning Angle

For our purposes we need a representation that tells us where the line

is and what its orientation is. (The orientation is particularly important

because the problem we are trying to solve is about directions of motion.)

These aspects of lines are reminiscent of the major components of the state

of a turtle: position and heading. This suggests that the best way to repre-

sent the orientation of a line is by the heading that a turtle would take to

draw it.

It is important for us to know the heading of a line in order to figure

out how the turtle should bounce off it. The angle at which the turtle comes

in (angle of incidence) should be the same as the angle at which it bounces

out (angle of reflection).

The angle of incidence is the amount the turtle must turn to get from its

initial heading to the heading of the line.

Y - l Y-lntercept -1

Amount
of turn

Before After

350 PROGRAMMING IDEAS

So we get

(,line's heading) — (turtle's heading)

as the angle of incidence. The angle of reflection should also be

(line's heading) — (turtle's heading)

The total amount through which the turtle turns is therefore

2 X [(line's heading) — (turtle's heading)}

Figuring Out the Heading

In fact, we are not given the heading or the position of a line. All we

are given are its two endpoints. With the two endpoints we can figure out

the slope. Then we can use the ARCTAN procedure, described in the To-

wards and Arctan project, to figure out the heading. The procedure to

figure out the heading is as follows.

(It is because Logo headings are clockwise from north, not

counterclockwise from east as in algebra.)

Figuring Out the Slope

The slope is the difference between the y coordinates of any two points

on the line divided by the difference between the x coordinates of those

points (Ay I Ax, where A stands for "difference in").

Amount of
total turn

Before After

S lope = %

LINES AND MIRRORS 351

Traditionally, a line is represented by the equation y = mx + b. Given

m and b, we can tell whether a particular point is on a particular line. For

example, if

 (m b

then we know that the turtle's position is on the line.

m of line = %
b of line = 1
YCOR = 6
XC OR = 3

(% * 3) + 1 = 6
So the point is
on the line.

W e use Ay I Ax to figure out the slope. But if the line is vertical (the two

x coordinates are the same), then the slope is infinite, so the procedure to

figure out the slope has to treat that case in a special way. The procedures

to figure out the slope (m) and y-intercept (b) of the line are as follows.

Information We Need About a Line

What information does this program need about a line?

It needs the heading for use in calculating the turning angle when the

turtle hits the line.

352 PROGRAMMING IDEAS

It uses slope and y -intercept to figure out if a position is on a line, with

the equation y = mx + b.

It also needs the endpoints. Why? So far we have been talking about

lines, which are infinitely long. Really the program has to deal with line

segments, which have two endpoints.

So we finally need five pieces of information to represent a line seg-

ment: two endpoints, heading, slope, and y -intercept.

Storing the Lines

What Each Line Looks Like

The only thing that the user gives the program is the endpoints of lines.

From this the slope, heading, and y -intercept are figured out. The program

has to have a way of storing all this information in some kind of organized

structure. It stores the five pieces of information about the line in a list of

the following format:

Here is a sample line and the list that represents it.

h

Retrieving Information About Lines

The program would get very ugly and confusing if we used that approach.

A much clearer and neater way is to have a procedure that extracts one

piece of information about a line. So we could say M to retrieve

the slope, or P 01 T 2 to retrieve the coordinates of the second

endpoint. By using these procedures, other parts of the program do not

have to know the detailed structure of a line list. The procedures also make

LINES AND MIRRORS 353

the program much easier to read and understand. Here are the information

retrieving procedures.

The List of Lines

Since the program has to keep track of a lot of lines, it stores them all

in a list called The elements of : are themselves lists, each

representing a line. For example, the border lines and the line shown

earlier would be represented as follows:

354 PROGRAMMING IDEAS

Program Structure

The top-level procedure is It has four tasks. First it creates the list

of lines. Then it sets up the initial position and shape of the turtle. The third

task is to draw the lines in the list. Finally it starts the turtle moving and

prepares to turn the turtle when it bounces off a wall. There is a subproce-

dure for each of these tasks.

Creating the List of Lines

When the program starts up, creates the list of lines. It

calls to remember the lines which the user enters. It also calls

 which remembers the border lines.

 lets the user enter lines. It calls to get each line and calls

 to add each line to the list :

 asks the user to type in the endpoints of a line segment. It calls

 to calculate the other information about the line. The output from

 is the list representing the line.

 takes the endpoints of a line segment as its input. It calls

 and to compute the slope, heading, and y -intercept of the

line.

LINES AND MIRRORS 375

 adds a line to the list of lines (:

 remembers the four lines making up the border of the screen.

Setting Up Graphics

 I selects turtle 0 and changes its shape. W e don't use

the normal turtle shape because later on we will need to know the precise

position of the turtle. The normal turtle shape is big enough that its edges

are at a very different position from the position of the center, which XCOR

and output. Instead, we use a small square dot shape.

Drawing the Lines

 draws the lines in : on the screen. The lines are

drawn with pen 1. Later, when the turtle is moving, its trajectory is drawn

with pen 0. Using a different pen for the walls allows the demon to notice

collisions with the walls and not notice collisions between the turtle and its

own earlier path.

356 PROGRAMMING IDEAS

Starting the Turtle

 positions the turtle in the center of the screen, points

it in a randomly chosen direction, and starts it moving. It also creates the

demon that waits for collisions with lines. Finally, calls

LOOP, which is explained next.

Knowing When a Line Is Hit

While the turtle is moving, continually checks if it has hit a line.

 knows the turtle has hit a line when its speed becomes zero.

How does the speed become zero? There is a demon, created by

 whose instructions include 0.

Setting the turtle's speed to zero is a convenient way for the demon to signal

to that the turtle has hit a line. W e could have changed something else

as the signal, but we had to stop the turtle anyway. Otherwise the turtle

would go through the line. Using the speed as the signal solves two prob-

lems at once.

When the speed is zero, calls to figure out which line was

hit and how much the turtle should turn.

LINES AND MIRRORS 357

Which Line Is Being Hit?

When a line is hit, calls to go through the list of lines,

finding the one that was hit. Then uses that line as the input to

 which figures out how much the turtle should turn. Finally,

 restarts the turtle and the demon.

SEARCH goes through the list of lines, looking for the one the turtle hit.

It calls the predicate for each line in the list. If outputs

 outputs the line that has been found.

How to Check a Line

The straightforward way to check if the turtle hit a certain line is to use

the equation y = mx + b, substituting the and of the turtle for

x and y. If the equation holds true, then the turtle hit that line.

There are three problems. The first problem has to do with the fact that

we are using line segments and not lines. Look at the following picture.

358 PROGRAMMING IDEAS

The turtle has hit line segment #1 . The turtle's coordinates satisfy the

equation y = mx + b for the line containing that segment. The turtle has

not hit line segment #2 . However, the line containing that segment

happens to pass through the turtle's position. Therefore, the equation

y = mx + b for that line is also satisfied. must also check to see if

the turtle is between the two endpoints of the line segment.

The second problem is that the turtle isn't actually one point; it is

slightly bigger. This means that when the edge of the turtle hits a line, the

turtle's coordinates won't match up exactly with the line's, because the

turtle's coordinates are those of its center, not those of its edge. In this

program the turtle has a square shape. If its is within seven units of

the line's y value for the turtle's we consider the turtle to be on the

line. The number seven worked out best experimentally. Larger numbers

lead to false hits. Smaller ones lead to not finding any hits at all. Our updated

version of looks like this.

The last problem is that vertical lines have an infinite slope (Ax is zero

in Ay / Ax). won't work for a vertical line, because it needs a numeric

slope. Also, we can't check to see if the turtle is between the x values of the

endpoints of the line, because the x values are the same; there is no "be-

LINES AND MIRRORS 359

tween."* So, for a vertical segment, we have to see if the of the turtle

is between the y values of the two endpoints.

Instead of calling we see if the of the turtle is within seven

units of the x value of one of the endpoints. Our final version of looks

like this.

Turning the Turtle

Once knows which line was hit, it can figure out how much

to turn the turtle. The turtle's original heading is provided the primitive

procedure HEADING. The heading of the line is provided

Recall that the angle through which the turtle should turn is therefore

 calls to figure out how much the turtle should turn:

This is not exactly true. If the turtle's XCOR is equal to the * values of the line, then in
a sense the turtle is between the r values. This doesn't mean the turtle is on the line segment.
The problem is that for a vertical line segment, the turtle's YCOR might not be between the
y values of the endpoints of the line segment, even though the XCOR is in the right range. For
diagonal lines, if one coordinate is in range, the other must also be in range.

360 PROGRAMMING IDEAS

PROGRAM LISTING

1 2 0]]

1 2 0]]

120]]

LINES AND MIRRORS 361

0 0 0 0 0 0]

