ATARI

Let
Learn

BASIC

akidsintroductionto
BASIC programmingon
ATARI Home Computers

Lets
leangi
BASIG

A Kids’ Introduction to
BASIC Programming on
ATARI® Home Computers

The Little, Brown Microcomputer Bookshelf

BANSE, TIMOTHY
Home Applications and Games for the VIC-20
BANSE, TIMOTHY
Home Applications and Games for the Apple® II, Apple® II Plus, and Apple® Ile
Computers
BANSE, TIMOTHY
Home Applications and Games for the ATARI® 400™/800™, 600XL™, 800XL™,
1200XL™, 1400XL™, and 1450XLD™ Home Computers
BARNETT, MICHAEL P. AND GRAHAM K. BARNETT
Personal Graphics for Profit and Pleasure on the APPLE® II Plus Computer
BARNETT, MICHAEL P. AND GRAHAM K. BARNETT
Personal Graphics for Profit and Pleasure on the IBM® Personal Computers
HODGES, WILLIAM S. AND NEAL A. NOVAK
Personal Finance Programs for Home Computers
MORRILL, HARRIET
BASIC for IBM® Personal Computers
MORRILL, HARRIET
Mini and Micro BASIC: Introducing Applesoft®, Microsoft®, and BASIC PLUS
NAHIGIAN, J. VICTOR AND WILLIAM S. HODGES
Computer Games for Businesses, Schools, and Homes
NAHIGIAN,]. VICTOR AND WILLIAM S. HODGES
Computer Games for Business, School, and Home for TRS-80 Level II BASIC

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: Learning Activities for Homes and Schools (for the TRS-80%,
Apple®, and PET/CBM® Home Computers)

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: ATARI® Home Computer Edition (for the ATARI®
400/800™, 600XL™, 800XL™, 1200XL™, 1400XL™, and 1450XLD™ Home Com-
puters)

ORWIG, GARY W. AND WILLIAM S. HODGES
The Computer Tutor: IBM® Personal Computer Edition (for the IBM® PC and
PCijr)

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on the Commo-
dore 64®

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on IBM®
Personal Computers

SHNEIDERMAN, BEN
Let’s Learn BASIC: AKids’ Introduction to BASIC Programming on the Apple®
II Series

SHNEIDERMAN, BEN
Let’s Learn BASIC: A Kids’ Introduction to BASIC Programming on ATARI®
Home Computers

WINDEKNECHT, THOMAS G.
6502 Systems Programming

A Kids’ Introduction to
BASIC Programming on
ATARI® Home Computers

Ben Shnetderman

University of Marylani‘i

Little, Brown and Company
Boston Toronto

Library of Congress Cataloging in Publication Data

Shneiderman, Ben.
Let’s learn BASIC.

(The Little, Brown microcomputer bookshelf)

Includes index.

1. Atari computer—Programming. 2. Basic (Computer
program language) I. Title. II. Series.
QA76.8.A82S53 1984 001.64°2 84 -12540
ISBN 0-316-78722 -1

Copyright © 1984 by Ben Shneiderman

All rights reserved. No part of this book may be reproduced in any form or by any electronic
or mechanical means including information storage and retrieval systems without permission
in writing from the publisher, except by a reviewer who may quote brief passages in review.

Library of Congress Catalog Card No. 84 —12540

ISBN 0-31b-78722-1

98 7 6 5 4 3 2 1

HAL

Published simultaneously in Canada
by Little, Brown & Company (Canada) Limited
Printed in the United States of America

Disclaimer of Liabilities: Due care has been exercised in the preparation of this book to insure its
effectiveness. The author and publisher make no warranty, expressed or implied, with respect to
the programs or other contents of this book. In no event will the author or publisher be liable for
direct, indirect, incidental, or consequential damages in connection with or arising from the
furnishing, performance, or use of this book. This book is published by Little, Brown and
Company, which is not affiliated with Atari, Inc. Atari is not responsible for any inaccuracies.

ATARI is a registered trademark of Atari, Incorporated.

400, 800, and 1200XL are trademarks of Atari, Incorporated.

IBM is a registered trademark of International Business Machines Corporation.

Apple is a registered trademark of Apple Computer, Incorporated.

Commodore 64 and VIC-20 are registered trademarks of Commodore Electronics Limited.
TRS-80 is a registered trademark of the Radio Shack Division of Tandy Corporation.
Texas Instruments is a registered trademark of Texas Instruments Incorporated.

Hlustrations by True Kelley

Preface

Who is this book for? This book was written for eight year
olds (third graders) up through fourteen year olds (ninth graders).
I believe that children want a challenge in their education and
that they are eager to learn if offered stimulating educational
materials. This book requires no knowledge of programming or
mathematics beyond simple arithmetic. I hope that many adults
will enjoy and benefit from this book too.

Why did I write this book? 1 was genuinely surprised in
searching through bookstores for an introduction to BASIC for
my eight-year-old daughter Sara. There were several cute books
that described the wonderful world of computers but offered only
a slim discussion of programming. The books that taught
programming used advanced concepts such as scientific notation,
exponentiation, sines and cosines, and two-dimensional array
operations. These books also used sophisticated examples of
bank-interest computation, numerical integration, standard
deviations, or elaborate sales-commission calculations.

I decided to write a book that Sara and her friends could use to
learn BASIC programming. I wanted to teach the important
concepts in programming in a way that made sense to anyone
who was interested. My goal is to preserve intellectual rigor
while simplifying the presentation by offering a logical sequence,
lucid explanations, and adequate examples. I begin with simple
PRINT commands to teach the step-by-step process of
programming. Loops for repeating PRINT commands convey
some of the power of a computer. Next, INPUT commands
allow students to create simple interactions. Writing programs
that do arithmetic, make decisions, and create stories comes after
that. I worked hard to choose interesting and enjoyable examples

vii

viii

Preface

that are easy to understand. The examples and exercises use
stories, riddles, graphics, games, poetry, and simple
computations.

My research on human factors in programming and interactive
systems heightened my awareness of human learning and
problem-solving abilities with respect to computers. The
academic literature on novice programming provided a basis for
developing a precise model of learning and a plan for teaching.
Classroom and individual testing provided feedback for me to
change the wording sequencing, and technical content.

Why BASIC? There is a lively debate among educators about
which language to use for teaching new programmers. I agree
with critics of BASIC who point to its weaknesses in control
structures, data organization, and modular organization. These
become important limitations in longer and more complicated
programs, but for beginners BASIC has many advantages:

[] It is very easy to get started. Learning the PRINT command
is all you need to begin writing programs.

[J Line numbering organizes short programs. The line numbers
emphasize the sequential execution of programs, a difficult
concept for new programmers. Line numbers also make adding,
changing, and deleting lines easy.

[It uses simple control structures and data structures. Some of
the very aspects of BASIC that annoy experts make BASIC very
useful for beginners. The flexible PRINT command, the
FOR-NEXT loop, the simple IF-THEN conditional, and the
convenient INPUT command allow new programmers to make
rapid progress. The confusing distinctions between real or
integer variables are avoided and strings are handled in a simple
form.

[] Operations on numbers are easy to program. BASIC is
well-designed to accept numbers in an INPUT command, store

Preface

them, compare them, print them in neat columns, and do
arithmetic with familiar notation.

[J The BASIC environment is simple and understandable.
Program editing, storing, retrieval, and printing are easy to learn,
remember, and use. Programs are often run rapidly, by just
typing RUN, and error messages can be specific and constructive.
Tracing during RUNs and fast repairs encourage exploration.

[J BASIC is widely available. Almost every microcomputer
offers BASIC. As children move among classrooms, schools,
their home, and their friends’ homes, they can be quite confident
that the computers they use will offer BASIC in a largely
standardized form.

These are important advantages of BASIC, but don’t forget the
limitations. Once you’ve mastered BASIC, keep your mind open
to learning other languages, especially if you want to do
advanced programming.

Some people push for LOGO as the language for new
programmers. It is especially appealing because new
programmers can easily draw certain kinds of figures and
modular programming is more convenient. But LOGO may
make it more difficult to edit programs, to input numbers and
strings, to do some arithmetic, and to do some kinds of printing.
I think that once you learn BASIC you could benefit from
learning LOGO, and once you learn LOGO you could benefit
from learning BASIC.

Objectives

This book introduces computer programming and shows the
important ideas with programs written in BASIC. After reading
this book carefully and doing the exercises, you should be a
competent novice in BASIC programming. I used only a part of

ix

Preface

the BASIC language to simplify learning. The parts of BASIC
that I used work on most microcomputers.

This book is especially for the ATARI Home Computer series:
the 400, 600XL, 800, and 800XL. (There are versions of this
book for other microcomputers.) Sections called Differences
Among Computers compare the ATARI Home Computers, Apple
II series, Commodore 64, IBM Personal Computers,
Timex/Sinclair, TRS-80 Microcomputer, and TI 99/4A.

Acknowledgments

I have to begin by thanking my daughter Sara and her teachers
Karen Glantz and Sheila Ford for getting me started on writing
this book. Other teachers and parents at the Murch Elementary
School in Washington, D.C., helped and encouraged me in many
ways. Gary Orwig, Ron Schwartz, and George Richardson
offered insightful comments on the manuscript’s early stages.
Marilyn Barth, Skip MacArthur, Mary Mullins, and Lee Ripley
gave very helpful, detailed reviews of the complete book.
Valuable comments, encouragement, and classroom testing were
provided by Herb Bernstein, Virginia Bradley, Mary Brown,
Judy Cook, Walter Ellis III, Charles Kreitzberg, John Lovgren,
Patrick Pope, Jerry Weinberg, Howard Weiss, and others.
Gordon Lewis of the District of Columbia Public Schools was
influential in arranging the use of this book for the 1983 Summer
Computer Camps. Jenelle Leonard of the Computer Literacy
Training Laboratory at the Takoma Elementary School supported
this effort in many ways. This trial with thousands of students
and dozens of teachers helped demonstrate and improve the
effectiveness of the material.

The University of Maryland Computer Science Center provided
computer resources to support the many, many changes made to

Preface

the drafts. Deb Stoffel was wonderful in preparing the
typesetting. Mildred Johnson helped with many secretarial
chores and worked with her husband, Joseph, to prepare one of
the solution sets. Len Pedowitz and Nick Roussopoulos
contributed to checking the exercises and the solutions. Donald
R. Mattison provided the computer picture of the violin.

Tom Casson of Little, Brown and Company was always open
to discuss troubling issues and contributed substantially to many
critical decisions. Mark Walsh added his expertise during the
final phases. Sally Stickney and George McLean diligently
pursued the numerous details of the production process.

I'm especially pleased to thank the many children who tried out
the book, worked out every exercise, and urged me to make it
clearer, especially Chris Barth, Walter Ellis IV, Eve and Mema
Roussopolous, Sara Shneiderman, and Warren Tildon.

Xi

Contents

Let’s Get Started !

Getting the Computer to Do Printing 7

1 Printing Strings (PRINT) (LIST, RUN, NEW) 9

2 Printing Strings on the Same Line (,) 19
(SAVE, CATALOG, LOAD)

3 Here We Go Loop-the-Loop (FOR-NEXT) 26

4 Loops Inside Loops (;) 37

5 Putting in the Input (INPUT) 47

Making the Computer Do Arithmetic 57
6 Here Comes the Count 59
7 Simple Arithmetic (+-%/) 69
8 Arithmetic Variables (=) 79
9 Adding Up Numbers 87

Steering the Computer 93

10 To Jump or Not to Jump (IF, GOTO) 95
11 Working with IF Commands 105

12 Random Chances (RND, INT) 116

13 Fill-in-the-Blanks Storytelling 126

14 The Mystery of the Haunted House 133

15 Building Programs from Parts (GOSUB) 144

Let’s Keep Learning 157
Solutions to Selected Exercises 171

Index 193

xiii

DEDICATED

AND
AND
AND
AND
AND
AND
AND

THEIR
THEIR
THEIR
THEIR
THEIR
THEIR
THEIR

TO SARA AND ANNA
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS
FRIENDS

10 PRINT "DEDICATED TO SARA AND ANNA"
20 FOR I
30 PRINT "AND THEIR FRIENDS"
40 NEXT I

=1T0 7

Let’s Get Started

Computer programming is easier to learn than piano playing but
more difficult than tic-tac-toe. In both computer programming and
piano playing, you begin with simple patterns and steadily improve
over a lifetime. Both skills offer a great deal of satisfaction when
you can produce just what you want.

Each time you correctly get the computer to do what you want,
you'll feel great. You’ve learned something new and proved to
yourself that you are in charge of the computer. In order to create a
program that works, you have to

understand each problem completely,

decide exactly what you want to do,

make a step-by-step plan for action,

write commands for the computer to carry out your plan, and
then

5. carefully test your commands to make sure that they work.

BN =

Let’s Get Started

A group of commands is called a program. You may write
programs to print pictures, play games, add or subtract numbers,
print poems, learn science, count money, or find telephone numbers.
You may write learning games to help you or your friends,
information programs to explain about your school’s computer, or
joke-telling programs for fun.

There is a lot to learn about computers. There are many kinds of
computers and many different ways to use them. Most people use a
microcomputer which sits right on a desk or a computer terminal
which is connected to a big computer. Some people use a display
screen, which looks like a small television, while other people use a
terminal that prints on paper.

Most computers and terminals have a keyboard that looks like a
typewriter for you to type commands on. A command is an
instruction to the computer, such as “add 2 and 3.” Sometimes there
are game paddles, joysticks, touchscreens, or other ways of giving
commands to the computer.

When you play computer games, you use a program written by
somebody else. A program is a group of commands that makes the
computer work. To give commands to the computer, you need to
learn a programming language.

There are several hundred programming languages, but a popular
and easy-to-learn one is called BASIC (Beginner’s All-purpose
Symbolic Instruction Code). It was created by John Kemeny and
Thomas Kurtz of Dartmouth College in the early 1960s. This book
will help you learn computer programming in BASIC.

Most of the BASIC commands in this book will work on every
microcomputer. But each microcomputer is slightly different—the
number of letters in a line, the number of lines on the screen,
abbreviations, and so on. This version of Let’s Learn BASIC has
examples and exercises that fit the ATARI 400, 600, 800, and 1200

Let’s Get Started

Home Computer series. The solutions to the exercises were run on
the ATARI 800.

To get started, turn on your ATARI and make sure that it is
connected to your screen. Practice typing the letters on the
keyboard. In addition to the letters there are special keys such as
RETURN, SHIFT, the space bar, CTRL (CONTROL on the 1200),
DELETE/BACK S (DELETE/BACK SPACE on the 1200), and
BREAK . (See Figure 1 for photographs of the ATARI 400, 800,
and 800XL keyboards.)

There are four arrow keys that let you move (up, down, left, and
right) the cursor on the screen. To move the cursor, hold down the
CTRL key and then press one of the four arrow keys. The cursor on
the ATARI is a rectangle that goes over a letter or a blank space.
To get started, just turn on the power switch (on some models you
need to put in the BASIC cartridge).

Differences Among Computers. Most of what you learn in this book
will work on any computer that uses BASIC:

ATARI 400, 600, 800, and 1200 Home Computer series
Apple II, 11+, and Ile

Commodore 64

IBM PC, PCjr, and XT

Texas Instruments (TI) 99/4A and 99/2

Radio Shack TRS—80 Color Computer, Model 100, etc.
Timex/Sinclair 1000, 1500, and 2068

VIC-20

Oo0ooooooao

The differences in the way BASIC works on these computers will be
explained in sections like this one.
If someone has been using the computer before you, you may want to
turn the power switch off and then back on to clear out their programs.
One of the obvious differences is in the size of the screen. The ATARI

Let’s Get Started

has places for 40 characters on the screen, but only 38 are used in BASIC.
The Apple, Commodore 64, and the TRS-80 Model 100 have 40
characters in each line, while the Timex, TI, and TRS-80 Color
Computers have 32 characters. The IBM has 40 or 80 depending

on the computer and the screen. i

When you have finished studying and have tried the keys, you are
ready for Chapter 1. The ATARI is ready for your commands when
the word READY appears with the cursor below it.

Figure 1. Keyboards for the ATARI 400 (top), 800 (middle), and 800XL
(bottom). (ATARI® 400, 800, and 800XL are trademarks of Atari, Inc.
Copyright ©1984.)

Getting

the Computer
to Do
Printing

FEAMT
apnYhe Sueme LIAZ RETURN
RUN

SAVE

Printing Strings

UNITED STAIES of AMERICA
TS

P PREVIEW: The first command you will give to the
computer is to print the word HELLO on the screen.
You type in the command and then get the computer
to carry out your command.

P NEW IDEAS: command, line number, PRINT,
string, RETURN, stored program, RUN

10

Getting the Computer to Do Printing

Your First Command, Your First Program

The first exercise in programming is to get the computer to print
words, such as HELLO on the screen. Sit down in front of the
keyboard and type the command

10 PRINT "HELLO"

The 10 is the line number, and PRINT is the command that gets
the computer to print. The word inside the quotes, HELLO, is what
the computer will print. A word or any letters between a pair of
quotes is called a string.

Now, press the key marked RETURN to store your command in the
computer. The stored command stays in the computer, and the
computer is now ready to take your next command. Your stored
program is made up of the one PRINT command you typed. To get
the computer to carry out your one PRINT command, type

RUN
and press the RETURN key. The computer prints the word

HELLO

If it didn’t work, try again. Type the 10 PRINT "HELLO" and
RUN commands again. If you get a message like ERROR, check the
line and retype it. If you notice a mistake while typing a line, just
press the DELETE/BACK S key to erase the wrong letters.

Congratulations! You have written and run your first program.

Differences Among Computers. The ATARI, Apple, and Commodore
64 use RETURN, but Timex and TI use ENTER, and IBM uses a picture
of an arrow that goes down and to the left.

If you have made a mistake in typing a command, you will get a
message that starts with the line number, has the word ERROR, and then
shows the part of the line that the computer could not accept. Look

1/ Printing Strings

closely at what you have typed, and try again to get it right. Check to
make sure you were careful in using the number zero and the letter 0. W

P PREVIEW (for second part of Chapter 1): You
give line numbers to commands so that they can be
kept in order, changed, and deleted. Your commands
make the computer print words and messages on one
or more lines. A group of commands is called a
program. You can have the computer show your
program on the screen to check it over. You can
make the computer carry out your commands and see
if your program does what you want it to do.

P NEW IDEAS: group of commands, LIST, adding,
changing, deleting, NEW

Adding a Second Command
You can add a second command to your program by typing
20 PRINT "GOODBYE"

and pressing RETURN. The line number 20 means that this
command comes after line 10. This PRINT command gets the
computer to print the string GOODBYE on the next line. To see the
entire program, type the command

LIST
and press RETURN. The computer displays

10 PRINT "HELLOQO"
20 PRINT "GOODBYE"

To have the computer RUN your program, type

RUN

11

12

Getting the Computer to Do Printing

and press RETURN. The computer carries out your two commands
and displays

HELLO
GOODBYE

You can use any whole numbers as line numbers. You can also
put as many blanks as you wish before or after the PRINT
command. These programs do exactly the same thing:

10 PRINT "LUKE"
20 PRINT "SKYWALKER"

3 PRINT "LUKE"
4 PRINT "SKYWALKER"

77 PRINT "LUKE"
4321 PRINT '"SKYWALKER"

They all print

LUKE
SKYWALKER

There are a few rules to remember in numbering your commands:

1. each command must have its own number—no two
commands can have the same number;

2. the numbers should get larger from one line to the next; and

3. you should leave enough space between numbers so that you
can add new commands. Many people like to number lines

by tens (10, 20, 30 . . .) so that they can add lines (15, 17,
18 .. .).

Adding More Commands

You can add a third command between the two lines in your

1/ Printing Strings

program by typing
15 PRINT "HAVE A NICE DAY"

and pressing RETURN to store it. Because the number 15 is between
10 and 20, the computer will put the new command in between the
two old ones. This new command, number 15, makes the computer
print four words: HAVE A NICE DAY. Now type

LIST

and press RETURN to display the entire three command program:

10 PRINT "HELLO"
15 PRINT "HAVE A NICE DAY"
20 PRINT "GOODBYE"

To get the computer to carry out your commands, type

RUN

and press RETURN. The computer shows the results of running your
program:

HELLO
HAVE A NICE DAY
GOODBYE

If you would like an extra blank line to print out between the
second and third lines, you would add another command:

17 PRINT

By now you probably know that you have to press RETURN after
every command. If you ask for the LIST and press RETURN, you
get

10 PRINT "HELLO"

15 PRINT "HAVE A NICE DAY"
17 PRINT

20 PRINT "GOODBYE"

13

14

Getting the Computer to Do Printing

Now when you type RUN and press RETURN, you get

HELLO
HAVE A NICE DAY

GOODBYE

Changing and Deleting Commands
If you decide to change a command, just retype it:

10 PRINT "HI"

The new command number 10 replaces the old one. This is why it
1s important to give each line a different number. Now type in
LIST to see if your stored program is what you expected:

10 PRINT "HI"

15 PRINT "HAVE A NICE DAY"
17 PRINT

20 PRINT '"GOODBYE"

To get rid of or delete a command, type just the line number:

17

When you press RETURN, the command will no longer be part of
your program. You can delete another command

20
and check your work by typing
LIST '
which will display the remaining program:

10 PRINT "HI"
15 PRINT "HAVE A NICE DAY"

1/ Printing Strings

Can you predict what happens when you type RUN?
Instead of printing words, you can get your computer to print
shapes, too. You can get this little diamond shape

X
XX
X X
X X
X

by simply printing it out with five PRINT commands. Spacing is
very important in this program so that you come out with the right
shape. In line 10 you must have exactly two blanks between the "
and the X. In line 15 there must be exactly one blank after the "
and after the first X. In line 20 there must be exactly three blanks
between the two X’s.

10 PRINT " X "
15 PRINT " X X "
20 PRINT "X X"
25 PRINT " X X "
30 PRINT " X "

It may not be a valuable diamond, but it’s a jewel of a program.

Differences Among Computers. The ATARI and many other computers
let you abbreviate the word PRINT by a single question mark, 7. ll

Starting Fresh

If you want to clear out all the commands in your program, you
could delete one at a time by typing each of the line numbers. A
shortcut is to type

NEW

Getting the Computer to Do Printing

which deletes all commands at once. Now you can start over and
type this program:

10 PRINT "ROSES ARE RED"

20 PRINT "VIOLETS ARE BLUE"
30 PRINT "SUGAR IS SWEET"

40 PRINT "AND SO ARE YOU"

50 PRINT

60 PRINT " BYE BYE"

This program has six commands. Five of the commands print a
string, but line 50 just prints a blank line. In line 60 the three
blanks between the " and the BYE BYE make this closing message
appear three spaces over to the right.

Computers can do a lot more than print strings, but you’ve made
a good start in learning programming.

Summary

1. You can use the PRINT command to write letters, words, and
messages.

2. Commands are kept in order by line number.

. The LIST command displays all the lines in a program.

4. The RUN command gets the computer to carry out your
program.

5. You can delete each numbered command one at a time. You
can delete the whole program with the NEW command.

w

Exercises

Each chapter ends with exercises for you to try on your computer.
Read each exercise until you understand it, make a step-by-step
plan, write commands, and test your program carefully.

If the exercise has an asterisk (*) in front of it, that means it is

1/ Printing Strings

more difficult. If the exercise has a plus (+) in front of it, that
means the solution is in the back of the book. I hope you enjoy
doing the exercises.

1.

Write a program with one command to print your first name.
Then add a second command to print your last name on
another line.

(+) Write a program to print the alphabet like this:

ABCDEFG
HIJKLMNOP
QRSTUVWXYZ

. Write a program to print this saying:

A STITCH IN TIME
SAVES NINE

(+) Write a program to print a rectangle in which there are
exactly seven spaces between the two R’s in the second and
third rows: '

RRRRRRRRR
R R
R R
RRRRRRRRR

. Write a program to print this poem:

TWINKLE, TWINKLE LITTLE STAR
HOW I WONDER WHAT YOU ARE

UP ABOVE THE WORLD SO HIGH
LIKE A DIAMOND IN THE SKY

. Now, how about printing this star to go with the program in

Exercise 5. There are four blanks before the A on the first
line and three blanks before the A on the second line. You
will have to count the As and the blanks carefully.

17

18 Getting the Computer to Do Printing

A
AAA
AAAAAAAAA
AAAAAAA
AAAAAAAAA
AAA
A

7. (*+) Write a program to draw this picture of a cat. Be sure
to count the spaces carefully—this exercise is tricky.

M M
MM MM
I - --1
I I
I0 01
I I

I 0-1I

I I

Printing Strings
on the Same Line

ANNA | COME OVER
AND see MY
NEW ADDRESS

P PREVIEW: Sometimes you will want to print two or
more strings on one line. Strings can be printed in
columns to produce neat lists. Programs can be saved
on a cassette tape player or a disk drive.

» NEW IDEAS: printing in columns, cassette tape
player, disk drive, magnetic tape, magnetic disk,
floppy disk, CSAVE, CLOAD, SAVE, LOAD.

19

20

Getting the Computer to Do Printing

Printing Lists

Keeping track of information such as school grades, library books
or addresses is a common use of computers. You might want to
write a program to print your friends’ names and phone numbers.
To get rid of your old program and start a new one, give the
command

b

NEW

Now you are ready to type in program commands. If you have
four friends, you might write a program like this:

10 PRINT '"ANNA 928-3744"
20 PRINT "ELIZA 485—-4788"
30 PRINT "SARA 744-0902"
40 PRINT "WENDY 864-3435"

If you type it this way, you put the names in alphabetical order. If
you run this program, the output is

ANNA 928-3744
ELIZA 485-4788
SARA 744-0902
WENDY 864-3435

As the list gets longer, it would look much neater if all the phone
numbers are lined up in a column:

ANNA 928-3744
ELIZA 485-4788
SARA 744~-0902
WENDY 864-3435

This output also makes it easier to spot an extra or missing digit in
the telephone number.

To print the list in two columns, each print command should have
two strings: the name and the telephone number.

2/ Printing Strings on the Same Line

10 PRINT "ANNA", "928-3744"
20 PRINT "ELIZA", "485—4788"
30 PRINT "SARA", "744-0902"
40 PRINT "WENDY", ''864-3435"

Each of the two strings is enclosed in quotes and separated by a
comma. The blank after the comma is not necessary but makes the
program easier to read. The comma is the part of the PRINT
command that tells the computer to start a new column for the next
string. The ATARI has 10 spaces in each column, so the telephone
numbers begin in the 11th space.

Now, if you want to add a new friend to your list and still keep
the alphabetical order, you could just choose the right line number.
For example, to add JEREMY, any line number in the 20s would be
fine:

25 PRINT "JEREMY", '244-3809"
Your program now looks like this:

10 PRINT "ANNA", '928-3744"
20 PRINT "ELIZA", "485-4788"
25 PRINT "JEREMY", "244-3809"
30 PRINT "SARA", "744-0902"
40 PRINT "WENDY", ''864-3435"

Can you predict what the five lines of output for this program

would be?

Differences Among Computers. The ATARI and Commodore 64 have
10 letters in each column. The IBM and TI have 14, and the Apple and
Timex have 16. l

Printing Column Headings

A nice touch would be to add column headings for the list:

21

22

Getting the Computer to Do Printing

5 PRINT "NAME", "TELEPHONE"
6 PRINT

The comma in line 5 makes the word NAME appear in the first
column and the word TELEPHONE in the second column. The
PRINT in line 6 leaves a blank line in the output. Remember, the
second column on the ATARI begins in the 11th space from the left
side. The final output looks neatly labeled by column:

NAME TELEPHONE
ANNA 928-3744
ELIZA 485-4788
JEREMY 244-3809
SARA 744-0902
WENDY 864—-3435

You can print lists for many different things. You could keep
lists of books and authors, homework assignments and due dates,
toys you want and their prices, or birthdays of family and friends.

Since your ATARI and many computers have narrow screens
(with space for 38 or fewer letters), you may have to print some
items on several lines. The title of a book could be on one line, and
the author, date of publication, and number of pages could be on the
next line. To make the list more readable, you could print a blank
line before each book title. The ATARI has room for 40 characters
on the screen, but in ATARI BASIC the first two spaces are left
blank. That means that you can only display 38 characters on a
line.

Saving Your Program

Getting a nice display or printed copy of a list is useful, but if
you turn off your computer, the list will be gone forever. To avoid
having to retype the program each time you want to use it, you need

2/ Printing Strings on the Same Line

to SAVE the program. Your ATARI can be connected to a cassette
tape player (such as the ATARI 410 Program Recorder) or a disk
drive (such as the ATARI 810). These devices contain either
magnetic tape or a magnetic disk which can store a copy of your
program. Many microcomputers use a soft magnetic disk called a
floppy disk.

On the ATARI, you can save a copy of your program on a
cassette tape player by typing:

CSAVE

After you press RETURN you will hear two beeps. Put a blank
cassette in the Program Recorder and press the PLAY and RECORD
keys at the same time. Now press RETURN on the computer. You
will hear a high pitched sound, then a raspy sound while the
program is being copied to the tape. When the noise stops the word
READY should show on your screen. Press the STOP key on the
Program Recorder and rewind the tape so that you can read the
program back when you want it. Keep track of which programs you
have saved by writing the names down on a sheet of paper.

To retrieve an old program that has been stored away, first make
sure that the tape is rewound to the beginning. Type the command:

CLOAD

After you press RETURN you will hear one beep from the computer.
Press the PLAY key on the cassette tape player and RETURN on the
computer. You should soon begin to hear the raspy sound of your
program being loaded into the computer’s storage. When the
loading is done, you will get the READY message on your screen.
Press STOP on the Program Recorder and rewind the tape so it will
be ready when you need it again.

Now you can try the LIST command or just go ahead and RUN
the program.

If you have a disk drive, then saving and loading programs is

23

Getting the Computer to Do Printing

even simpler. When storing on a disk drive you have to give a
name for your program such as PHONES. Instead of CSAVE and
CLOAD you use these commands:

SAVE "D:PHONES"
LOAD "D:PHONES"

You will hear the disk drive spinning and the computer will beep.
You do not have to press any buttons, the disk drive will come on
automatically. To get a list of the programs on your disk, use the
Disk Operating System (DOS) menu option "A”.

Differences Among Computers. You can check in your computer
manual to learn how to SAVE and LOAD programs with your cassette tape
player or magnetic disk drive.

The commands for using a disk are different on each computer. For

example, you get a list of programs by typing LOAD "§",8 (Commodore
64), CATALOG (Apple), or FILES (IBM). B

Summary

1. You can print two or more strings on the same line in neat
columns.

2. The comma separates the strings in the PRINT command.

3. The CSAVE or SAVE command stores a program on tape or
disk.

4. The CLOAD or LOAD command retrieves an old program that
has been stored on tape or disk.

Exercises

Remember, an * means that the exercise is more difficult and a +
means that the solution is in the back of the book.

2/ Printing Strings on the Same Line

1. (+) Write a program to print out this list of abbreviations in
two columns:

KG KILOGRAM
CM CENTIMETER
MM MILLIMETER

2. Write a program to print out this list of birthdates:

NAME MONTH DAY
ANDREW MARCH 25
TOM OCTOBER 6
BETTY JUNE 12

3. (+) Write a program to print these little flags spread out in
three columns:

+000000 +XXXXXX +IITITI
+000000 +XXXXXX +IITIII
+000000 +XXXXXX +IIIITI

+ + +
+ + +
+ + +

4. (*) Write a program to print a book list with titles, authors,
year of publication, and number of pages. Include books that
you have read.

THE MAGIC OF 0Z
L. FRANK BAUM 1919 208

THE SECRET OF PIRATES HILL
FRANKLIN W. DIXON 1972 178

CHARLOTTE'S WEB
E. B. WHITE 1952 184

26

Here We Go
Loop-the-Loop

7 will be bus

for a while . |
used the magic

words © FOR- NEXT,

-

P PREVIEW: The computer’s power is best used when
a simple action can be repeated. In this chapter you
will learn how to repeat printing a string 2, 10, 500,
Or more times.

>

NEW IDEAS: loops, counter variable, FOR-NEXT

loops

3/ Here We Go Loop-the-Loop

The Power of Repetition

The great advantage of using a computer shines through when you
can make the computer repeat some action again and again. Once
you write a program to print a picture, multiply numbers, make a
move in a game, or convert inches to centimeters, it’s easy to make
the computer repeat the same action many times.

Our first program printed the word HELLO once. If you want to
print a string four times, you wrap a repetition loop around the
command. It’s called a loop because the computer goes around and
around repeating the same commands again and again.

The repetition loop begins with a FOR command and ends with a
NEXT command:

10 FORI =1 TO 4
20 PRINT "HELLO"
30 NEXT I

The FOR command at line 10 makes the computer count from 1
up to 4 using the counter variable named I. Imagine a cup labeled
I into which you drop stones. Every time you drop in one of the
stones, the computer carries out the commands until it reaches the
NEXT command. If the cup contains the full number of stones, in
this case 4, the computer goes on to the line following the NEXT
command. If the cup contains fewer than 4 stones, the computer
adds one and goes through the loop again. The output of this
program is

HELLO
HELLO
HELLO
HELLO

The counter variable in the FOR command must match the counter
variable in the NEXT command. To make it easy, we’ll use a single
letter for counter variables. The counter variable in this first

27

28

Getting the Computer to Do Printing

program is I. It is the name of the imaginary cup for counting from
1 to 4.

To print HELLO six times, change the FOR command so that T
goes from 1 to 6:

10 FORI =1 T0O 6
20 PRINT "HELLO"
30 NEXT I

Just to see how this all works, you can add PRINT commands
before and after the FOR-NEXT loop

7 PRINT "WELCOME"
10 FORI =1 TO 6
20 PRINT "HELLO"
30 NEXT I

40 PRINT "GOODBYE"

When you type RUN, you get this output:

3/ Here We Go Loop-the-Loop

WELCOME
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
GOODBYE

To print 20 HELLOs, just change the FOR command to go up to 20.
If you added another command inside the loop, it would get
repeated, too. Let’s add line 25:

7 PRINT "WELCOME"

10 FORI =1 T0 6

20 PRINT "HELLO"

25 PRINT '"HOW ARE YOQU?"
30 NEXT I

40 PRINT "GOODBYE"

And then the output is

WELCOME
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
HELLO

HOW ARE YOU?
GOODBYE

I’'m fine, I'm fine, I’m fine, I’m.fine, I’'m fine, I'm fine.

30

Getting the Computer to Do Printing

Shapes, Too

Once you have repetition, you can make shapes much more
easily. A rectangle is made by repeating a line of symbols or letters
such as the A. The program might be

10 FORI =1T05

20 PRINT "AAAAAAAAAA"
30 NEXT I

When you RUN this program, you get

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

To get a rectangle that is empty in the middle requires a little
more planning. If the goal is

RRRRRRRRR
R R
R R
R R
RRRRRRRRR

you would have to get the top line done with a simple PRINT
command, then loop three times to get the sides (with exactly seven
blank spaces between the two R’s) and finally get the bottom line
with another simple PRINT command

10
20
30
40
50

3/ Here We Go Loop-the-Loop

PRINT "RRRRRRRRRR"
FORI =1TO 3

PRINT "R R"
NEXT I
PRINT "RRRRRRRRRR"

What if you wanted the rectangle to be moved over to the right?
You could add blanks to the PRINT commands in lines 10, 30, and

50.

10
20
30
40
50

PRINT " RRRRRRRRRR"
FORI =1 TO 3

PRINT " R R"
NEXT I

PRINT " RRRRRRRRRR"

You could also just print a string with a single blank, before

skipping over. This would cause the rectangle to start in the second

column:

10
20
30
40
50

PRINT " ", "RRRRRRRRRR"
FORI =1TO0 3

PRINT n H, HR RH
NEXT I

PRINT " ', "RRRRRRRRRR"

To make a taller rectangle, you could just change the FOR command
to go from 1 up to 15, or more.

31

32

Getting the Computer to Do Printing

Snack Time

This section uses the FOR-NEXT loop to print out a fork and a
layer cake. Let’s print the fork shifted over into the second printing
column, like this:

16 I e BRC B Be |
i B IR Be B |
i e B B B |

I IR B B e B

F F
FFFFFFFFFF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

The four tines (tips of the fork) are produced by repeating the same
pattern for six lines:

10 FORI =1 T0 6

20 PRINT " ", "F F F F"
30 NEXT I
In line 20 the " " and the comma space the fork over to the second

column, and there are two blanks between each F. The line that
joins the tines is produced by a PRINT command:

3/ Here We Go Loop-the-Loop

40 PRINT " ", "FFFFFFFFFF"

The long handle is made of 14 lines of two Fs, which are four
spaces in from the left side. Line 60 prints a blank in the first
column and uses the comma to skip to the second column.

50 FOR I = 1 TO 14
60 PRINT " ", " FF"
70 NEXT I

The four blanks before the FF are necessary to center the fork
handle.

Now that your appetite is growing, it’s time for the three-layer
cake:

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
BBBBBBBBBBBBBB
BBBBBBEBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
ccceeeceecccececcececececce
ccceeeceeececeecceccececc
CCCCccceceeececcececcecc

Three sets of FOR-NEXT loops will be all that you need to bake this
cake. The top layer begins with six blanks and then has eight A’s,
the middle layer has three blanks and 14 B’s, and the bottom layer
has 20 C’s:

10 FORI =1 TO0 5

20 PRINT " AAAAAAAAT

30 NEXT I

40 FOR I = 1 TO 4

50 PRINT " BBBBBBBBBBBBBB"

33

34

Getting the Computer to Do Printing

60 NEXT I

70 FORI = 1T0 3

80 PRINT "ccCcCcccccceeeeceeecee”
90 NEXT I

Hearty appetite!

Summary

1. FOR-NEXT loops cause the commands between them to be
repeated. The command to repeat six times is FOR I = 1
TO 6. The counter variable I goes from 1 up to 6.

2. With clever use of FOR-NEXT loops and PRINT commands
you can print pictures.

3. Each letter or blank inside the quotes of a PRINT command
must be counted carefully.

b

Exercises

1. Write a program to print your first name 7 times and then
your last name once.

2. (+) Write a program to print stripes like these:

00000000000000
XXXXXXXXXXXXXX
00000000000000
XXXXXXXXXXXXXX
00000000000000
XXXXXXXXXXXXXX

You’ll need two PRINT commands inside one FOR-NEXT
loop.

3. Write a program to print this rectangle with dots on the
inside:

3/ Here We Go Loop-the-Loop

00000000
O...... 0
0...... 0
0...... 0
0...... 0
0...... 0
0...... 0
00000000

4. (+) Write a program to print this flag:

S I
S — I
S I
S S I
S S I
S S I
+
+
+
+
+
+
+
+

5. (*) The game called “dots” is played on a paper filled with a
grid of dots like this:

Using pencils, players take turns adding a line to connect a
pair of dots horizontally or vertically. If your line completes
a box, you get to put your initials inside the box and you get

36 Getting the Computer to Do Printing

another turn. When the board is filled, the player with the
most boxes with his or her initials in it is the winner. Write a
program to produce the board with four rows of six dots
shown above. There are three blanks going across between
each dot and a blank line between each row of dots. Then
make a board with fifteen rows of six dots.

6. (*) Add another layer of D’s to the bottom of the layer cake
and a candle to the top.

! Loops
Inside Loops

YOUR BOAT
ROW
ROW
ROW
YOUR BOAT

p PREVIEW: In this chapter you will learn how to
make some fancier programs by combining loops.
You will learn how to control the printing of letters
more carefully.

p NEW IDEAS: inner loop, outer loop, print control
with comma and semicolon

37

38

Getting the Computer to Do Printing

Row, Row, Row Your Boat

Up until now each FOR-NEXT loop was separate from the other
loops in the program. Sometimes it is necessary to have one loop
inside another. Let’s start with a loop around a PRINT command
followed by a second PRINT command, to print a line from a
familiar song:

10 FORI =1T0 3
20 PRINT "ROW"

30 NEXT I

40 PRINT "YOUR BOAT"

The output of this program is

ROW
ROW
ROW
YOUR BOAT

What if you want to repeat this pattern twice? You could write
the four commands again. Or you could wrap a FOR-NEXT loop
around the whole program:

8 FORJ = 1T0 2

10 FOR I=1 TO 3).
nner

20 PRINT "ROW" 100 outer
30 NEXT I P loop
40 PRINT "YOUR BOAT"

48 NEXT J

The FOR-NEXT loop on lines 10 and 30 is called the inner loop and
it uses the counter variable I to count from 1 up to 3. The
FOR-NEXT loop on lines 8 and 48 is called the outer loop, and it
must use a different counter variable. The outer loop uses the
counter variable J, which goes from 1 up to 2. If you run this
program, you get

4/ Loops Inside Loops

ROW
ROW
ROW
YOUR BOAT
ROW
ROW
ROW
YOUR BOAT

If J in line 8 went from 1 up to 7, you would get seven copies of
the four-line song. You can change the outer loop counter variable
to repeat the inner loop as many times as you want. Remember that
the counter variable in the inner loop must be different from the
counter variable in the outer loop.

Controlling the Printing

You could have all of the ROWs appear on the same line. You’ve
already learned that a comma between two strings prints them in two
columns on the same line. By putting a comma at the end of line
20, you can make the next string print on the same line.

8 FORJ =1 TO 2

100 FORI =1T0 3

20 PRINT "ROW", — notice the comma
30 NEXT I

40 PRINT "YOUR BOAT"

48 NEXT J

With this slight change the program output is

ROW ROW ROW YOUR BOA
T
ROW ROW ROW YOUR BOA

T

39

Getting the Computer to Do Printing

The letter T does not fit on the line, so it is forced onto the next
line. Line 40 does not have a comma on the end, so the next string
to print will begin on a new line.

You may find that this form is still too spread out and that you
would like to put the words right next to each other. To do this,
use a semicolon (;) instead of a comma. This will make each string
print right next to the previous string. The only change is the
semicolon in line 20:

8 FORJ =1T0 2

10 FORI = 1T0 3
20 PRINT "ROW";

30 NEXT I

40 PRINT "YOUR BOAT"
48 NEXT J

With this change the output is

ROWROWROWYOUR BOAT
ROWROWROWYOUR BOAT

This output is too squeezed together. There is no space between
each of the ROWs. To separate strings you could add a blank right
after the W in line 20. You can add one more line to the song with
line 60:

8 FORJ =1 T0 2

10 FORI =11T0 3

20 PRINT "ROW "; — notice the blank after ROW
30 NEXT I

40 PRINT "YOUR BOAT"
48 NEXT J
60 PRINT "GENTLY DOWN THE STREAM"

The semicolon at the end of line 20 makes each string print next to
the previous string. The first time through the loop "ROW " gets
printed on a new line. The next time through the loop "ROW " gets

Blast it all!
Now Were
5{;32@& too Ci!ose,

We've spaced
much Yoo far

4/ Loops Inside Loops

11

42

Getting the Computer to Do Printing

printed on the same line. Then the third time through the loop
"ROW " gets printed again on the same line. When "YOUR BOAT"
is printed, it is still on the same line. Line 40 does not end with a
semicolon, so "GENTLY DOWN THE STREAM" begins on a new
line. The output is

ROW ROW ROW YOUR BOAT
ROW ROW ROW YOUR BOAT
GENTLY DOWN THE STREAM

Loops are just a dream!

Slow Down, You’re Moving too Fast

It’s amazing how fast the computer can print out line after line of
letters or words, but sometimes you may want to slow things down.
Instead of printing

HELLO
GOODBYE

you may want to have the computer wait a few seconds between
printing these two words. One way to do this is to have the
computer just count from 1 to 1000 between the PRINT commands:

10 PRINT "HELLO"

20 FOR I = 1 TO 1000
30 NEXT I

40 PRINT "GOODBYE"

On some computers counting from 1 to 1000 may take less than a
second, so you may want to have the computer count up to 10,000.
If your computer is slow, you may want to go up to only 100. Try
it out on your computer.

One enjoyable use of this idea is to have the computer pretend to
be a beating heart:

4/ Loops Inside Loops 43

LUB
DUB
(pause here)
LUB
DUB
(pause here)
LUB
DUB

You can decide how long a pause you want between each heartbeat.
Let’s say you find that counting to 500 is about right. To get 20
heartbeats, you could use an outer Joop and an inner loop:

10 FOR B = 1 TO 20
20 PRINT "LUB"

30 PRINT "DUB"

40 FOR I = 1 TO 500
50 NEXT I

60 NEXT B

The counter variable B stands for bear. You could speed up or slow
down the heartbeat by changing the highest number in the FOR
command on line 40.

Your ATARI has a loudspeaker in it. Try to find someone who
has used it. Maybe together you can make the sound of a heartbeat.

Summary

1. By wrapping one loop around another loop, you can repeat
commands to make complicated patterns.

2. The semicolon in a PRINT command causes two strings to be
printed right next to each other.

Getting the Computer to Do Printing

3. A FOR-NEXT loop without any commands inside the loop can
be used to make a slight pause between PRINT commands.

Exercises
1. (+) Write a program to print

NO
NO
YES
NO
NO
YES
NO
NO
YES

2. Write a program to print

SHE LOVES ME
SHE LOVES ME
NOT

SHE LOVES ME
SHE LOVES ME
NOT

SHE LOVES ME
SHE LOVES ME
NOT

4/ Loops Inside Loops

3. (+) Write a program to print this flag. (Hint: you can do it
using three loops.)

+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+000000000000000000
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXX
+000000000000000000

+ 4+ + ++

+

4. (+) Write a program that imitates a clock by printing

TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TICTOC

Figure out how long a pause to put in so that one line is
printed every second. The 10 lines should take 10 seconds.
You’ll need a watch that shows seconds to see if your
program is accurate.

45

Getting the Computer to Do Printing

5. (*) Here’s another challenge. Print this ladder:

I
I
I
00000000000
I
I
I
00000000000
I
I
I
00000000000
I
I
I
000000000000
I I
I I
I I

HHHOHHHOMHMMHEHOMHH H

Have a safe climb to the top.

Putting in
the Input

How did you gel it fo wait ?

ts alt in how you INPUT.

» PREVIEW: In all the programs you have written
until now, you could make changes as you wished
until you typed in the RUN command. Sometimes it
is useful to control a program while it is running. In
this chapter you will learn how to take in numbers
and strings to control a running program. You will
have to reserve space for input variables that store
strings.

P NEW IDEAS: INPUT, input variables for strings and
numbers, controlling loops, BREAK key, DIM

47

48

Getting the Computer to Do Printing

The Riddle Machine

Everyone likes funny riddles. Everyone moans at silly riddles.
Now you can turn your computer into a riddle machine which asks a
riddle and gives the answer whenever the user presses RETURN.

The computer might display

WHAT DID ONE HOT DOG SAY TO THE OTHER?

PRESS RETURN TO GET THE ANSWER
?

and then wait until the user presses RETURN. The question mark
shows that the computer is waiting before going on. When the user
presses RETURN, the answer is shown:

HI, FRANK.

To have the computer print a ? and wait, you use the INPUT
command. INPUT commands have an input variable to store
whatever someone types. To reserve space for the input variable
you must use a DIM (it stands for dimension) command. Since this
program only asks the user to press RETURN (the user doesn’t type
anything), we reserve only one space for A$.

10 DIM A$(1)

20 PRINT "WHAT DID ONE HOT DOG SAY ";

30 PRINT "TO THE OTHER?"

40 PRINT " PRESS RETURN TO GET THE ANSWER"
50 INPUT A$

60 PRINT "HI, FRANK."

In line 50 the INPUT command has the input variable A$, which can
take a letter, a number, or just the RETURN. The input variable can
be any letter of the alphabet followed by a $ (A$, B$, C$. . .).

A one-riddle riddle machine is nice, but you can expand this
program with two riddles or as many as you like:

5/ Putting in the Input

70 PRINT

80 PRINT

90 PRINT "WHAT IS THE BEST THING ";:

100 PRINT "TO PUT IN A PIE?"

110 PRINT "PRESS RETURN TO GET THE ANSWER"
120 INPUT A$

130 PRINT "YOUR TEETH."

140 PRINT

150 PRINT

160 PRINT "IF YOU THROW A WHITE STONE IN"
170 PRINT "THE RED SEA, WHAT WILL 1T BECOME?"
180 PRINT "PRESS RETURN TO GET THE ANSWER"
190 INPUT A$

200 PRINT "WET."

210 PRINT "THAT'S ALL FOLKS."

If the user of the program gets bored, he or she can stop the
program by pressing the BREAK key.

Differences Among Computers. On other computers you can end the
program after a 7 by pressing the BREAK or RESET keys. On the Apple
you have to type CTRL—C and RETURN. On the Commodore 64 you
have to hold down the RUN/STOP key and press RESTORE. Ml

Controlling a Loop
In Chapter 3 the first program printed HELLO four times:

10 FORI =1 T0 4
20 PRINT "HELLO"
30 NEXT I

You could get nine HELLOs by changing the FOR command to I =
1 TO 9 and then running the program again. Another way of
changing a program is to let the user control the FOR loop. An

49

50

Getting the Computer to Do Printing

INPUT command can have an input variable that is used as the

upper limit of a FOR loop. The program should begin by asking the
user for a number:

10 PRINT "HOW MANY HELLOS DO YOU WANT"
20 INPUT N

30 FORI =1 TON

40 PRINT "HELLO"

50 NEXT I

The number that the user types is stored in the input variable N.
Any letter of the alphabet (A, B, C...) can be used for an input
variable to store a number. A DIM command is not needed for
variables that store a number.

The value the user has given N will also be used as the N in the
FOR command in line 30. When you run this program, it will print
the message

HOW MANY HELLOS DO YOU WANT
?

and then wait for the user to type a number such as

9
followed by RETURN. The output is

HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO
HELLO

5/ Putting in the Input 51

Printing Address Labels

If you have a printer connected to your ATARI, you can list the
output on the printer by using LPRINT instead of PRINT. If you
just have a display screen, you can enjoy seeing your address
repeated on the screen.

You can control the number of labels printed each time by an
INPUT command:

10
20
30
40
50
60
70
80

PRINT
INPUT
FOR I
PRINT
PRINT
PRINT
PRINT
NEXT I

"HOW MANY LABELS DO YOU WANT";
N

= 1TO N

"NANCY DREW"

"48 GHOSTLY LANE"

"MILLTOWN, NY 14226"

52

Getting the Computer to Do Printing

When this program is RUN, the question in line 10 will be asked.
Since there is a semicolon at the end of the PRINT command, the ?
from the INPUT command will appear immediately after the
question. If the user types 5, then the program loops five times,
printing five copies of the address label.

In addition to taking in the number of labels, you could take in
the address as well. Start by asking for the number of labels and
then ask for the name, street address, city, state, and zip code.
Remember that you need to reserve space for input variables which
store letters or strings. We’ll reserve 30 characters for the name
(N$), address (A$), city (C$), and state (S$). The number of labels
(N) and the zip code (Z) do not need dimension information.

10 DIM N$(30), A$(30), C$(30), S$(30)

20 PRINT "PRESS RETURN AFTER EVERY ITEM"
30 PRINT "HOW MANY LABELS DO YOU WANT ";
40 INPUT N

50 PRINT "TYPE YOUR NAME"

60 INPUT N§

70 PRINT "TYPE YOUR ADDRESS"

80 INPUT A$

90 PRINT "TYPE YOUR CITY"

100 INPUT C$%

110 PRINT "TYPE YOUR STATE"

120 INPUT S$

130 PRINT "TYPE YOUR ZIP CODE"

140 INPUT Z

The input variable N takes the number of labels. The input variables
N$, A$, C$, and S$ will each take a string and store it until it is
used. The input variable Z will take the number of the zip code and
store it until it is used.

150 FOR I = 1 TO N
160 PRINT
170 PRINT N$

5/ Putting in the Input

180 PRINT A$
190 PRINT C$; ", "; S§; " "; 2
200 NEXT I

The name and street address are printed by lines 170 and 180. The
city, state, and zip code are printed by line 190 which puts a comma
and a space between the city and state, and a space between the
state and the zip code. The semicolons make the strings print next
to each other on the same line. Here is how the program runs:

PRESS RETURN AFTER EVERY ITEM
HOW MANY LABELS DO YOU WANT 93
TYPE YOUR NAME

?MISS PIGGY

TYPE YOUR ADDRESS

?77 SESAME STREET

TYPE YOUR CITY

?KERMITSVILLE

TYPE YOUR STATE

?NEW YORK

TYPE YOUR ZIP CODE

?10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

MISS PIGGY
77 SESAME STREET
KERMITSVILLE, NEW YORK 10001

We’ll use a single letter for variables that store a number. We’ll
use a single letter followed by a $ for variables that store a string.

53

54

Getting the Computer to Do Printing

Differences Among Computers. On many microcomputers, counter and
input variable names can be one letter, two letters, or one letter followed
by a number, for example A, AB, or K9. Variables that store strings have
a § on the end, for example A$, AB$, or K9$. On the ATARI you can
use longer variable names (up to 120 characters long), for example AGE,
INNINGO, or FIRSTNAMES$. In this book, we’ll keep using one letter
variable names, because it simplifies typing and reading. Longer and
more meaningful variable names are useful when you write programs with
tens or hundreds of variable names. ll

Summary

1. In this chapter you learned to use an INPUT command which
stops the program until RETURN is pressed.

2. The second use of the INPUT command is to take a number
from the user to control a loop or to print later in the
program.

3. The third use of the INPUT command is to take a string from
the user which can be printed later in the program.

4. When the input variable stores a string, the variable name
must have a $ and you must put in a DIM command to
reserve enough space.

Exercises

1. Write a program to be a Wisdom Machine. Every time the
user presses RETURN, he or she gets another wise saying:

A STITCH IN TIME SAVES NINE
PRESS RETURN FOR ANOTHER SAYING ?

A PENNY SAVED IS A PENNY EARNED
PRESS RETURN FOR ANOTHER SAYING ?

A WATCHED POT NEVER BOILS
THE END

You can add another wise saying of your own.

5/ Putting in the Input 55

2. (+) In Exercise 4 at the end of Chapter 4 you were asked to
make a clock-imitating program that printed TICTOC every
second for 10 seconds. Now, ask for the number of seconds
that the user wants the clock to run. In this program print
TICTOC every second and then print TIME IS UP when the
program is done.

3. In Exercise 5 at the end of Chapter 4 you were asked to print
a ladder. Write a program that asks the user how many steps
he or she would like on the ladder. Then print the right sized
ladder.

4. In Exercise S at the end of Chapter 3 you were asked to print
four rows of six dots each. Can you write a new program
with an INPUT command that asks for the number of rows
and a second INPUT command asking for the number of dots
in each row? Then print the correct number of dots in each
row and continue printing for the correct number of rows.

5. (+) Write a program to ask the user to type in a short
message, followed by the number of times the message
should be printed. For example:

TYPE A SHORT MESSAGE AND PRESS RETURN
?MY NAME IS THEA

HOW MANY TIMES DO YOU WANT THIS MESSAGE
76

MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA

6. (*) Write a program to ask for a person’s first name and then
last name. Print out the last name, a comma and a space,
and the first name.

56 » Getting the Computer to Do Printing

TYPE YOUR FIRST NAME AND PRESS RETURN
?ROBIN

TYPE YOUR LAST NAME AND PRESS RETURN
?HOOD

YOUR NAME IN THE TELEPHONE BOOK IS
HOOD, ROBIN

Making
the Computer
Do Arithmetic

Here Comes
the Count

PREVIEW: You’ve been using the computer to count
the number of times through a FOR-NEXT loop. Now
you can use this ability to do counting by printing the
value of the counter variable. You can also get the
computer to count from one number to another
number, for example, from 11 to 20.

NEW IDEAS: counting, printing numbers and strings
together

59

60

Making the Computer Do Arithmetic

Printing the Counter Variable
In Chapter 3 you learned how to print HELLO six times:

10 FORI =1 T0 6
20 PRINT '"HELLO"
30 NEXT I

The counter variable I went from 1 up to 6. You can see how
many times you print HELLO by printing out the value of the counter
variable I. Since you want the value of I, not the letter I, you put
the counter variable I in the PRINT command without quotes:

10 FORI =1 TO 6
20 PRINT "HELLO", I
30 NEXT I

When you run this program, it prints

HELLO
HELLO
HELLO
HELLO
HELLO
HELLO

O OLbdh NN

The string HELLO is printed in the first column and the value of I is
printed in the second column.

If you changed the order in the PRINT command
20 PRINT I, "HELLO"

you would get the numbers in the first column and the string HELLO
in the second column. So the output is

1 HELLO
2 HELLO
3 HELLO
4 HELLO

6 / Here Comes the Count

5 HELLO
6 HELLO

If you wanted to watch the computer print out the numbers
quickly from 1 to 100, you could just have a PRINT command that
printed the value of I:

10 FOR I = 1 TO 100
20 PRINT I
30 NEXT I

But watch carefully. On most computers, this would go very, very
quickly.

Printing Strings and Numbers Close Together

You can bring numbers and strings close together by using the
semicolon in the PRINT command. If you put semicolons around
the variable, you’ll need to put single blanks inside the quotes to
make sure that the output has a blank before and after the value of
the variable:

10 FORI =1 TO 4

20 PRINT "I WISH I HAD "; I;
30 PRINT " SLICES OF PIZZA"
40 NEXT I

Notice the blank after HAD and before SLICES. When you run this
program, you get

I WISH I HAD 1 SLICES OF PIZZA
I WISH I HAD 2 SLICES OF PIZZA
I WISH I HAD 3 SLICES OF PIZZA
I WISH I HAD 4 SLICES OF PIZZA

It sounds yummy, even though the first line would leave a bad
taste with an English grammar teacher.

61

Making the Computer Do Arithmetic

e 8 % aseq.,

50 slices of "=,

P
Vs

Printing Numbers Across the Line

So far you’ve learned how to print strings inside a pair of quotes
and the value of a variable. You can also print out numbers that are
not inside a pair of quotes. You could just print the number 1984

10 PRINT 1984

and your computer would simply show the number on the screen. If
you printed two numbers separated by a comma

10 PRINT 1984, 2001
you would get
1984 2001

The semicolon keeps strings and numbers closely packed together.
If you print numbers only, they’ll also be kept close together.

10 PRINT 1; 2; 3; 4; 5; 6; 7
would print as

1234567

6 / Here Comes the Count

To get the numbers spread out, you will have to include spaces:

10 PRINT 1; " ": 2, "M, Z.on o, 4; " n. 5; nn
20 PRINT 6; " "; 7

The blanks between the quotes are the ones getting printed, so the
line could be written a bit more compactly as

lO PRINT l;” 17;2;” H;S;ll ll;4;ll ll;5;ll ”;6;" ";7
In either case the output would be:
1234567

Sometimes getting the exact spacing that you want can be tricky.

You can think of the comma (,) and semicolon (;) as two forms of
glue. The comma glues two strings or numbers together and places
them in neat columns. The semicolon is much stronger since it
glues two strings or numbers together and places them right next to
each other.

Differences Among Computers. The ATARI, Apple, and Timex do not
put blanks around numbers. The Commodore 64 and IBM put a blank
before and after each number, so there are two blanks between numbers.
For example:

10 PRINT 1;2;3;4;5;6;7
would print as
1 2 3 4 5 6 7
on the IBM and Commodore 64. H

Instead of just printing the numbers, you could use a loop to get
the spaced out output:

10 FORI =1T0 7
20 PRINT I; " ";
30 NEXT I

63

64

Making the Computer Do Arithmetic

To see your screen or printer filled with numbers, you could write
a FOR command to go up to 100 or 200 or even more. If the
numbers fill up a line, the computer just begins a new line and
keeps right on going.

Counting from Here to There

You’ve used the FOR command to do something seven times by
counting from 1 to 7. You can also use the FOR command to count
from any number up to another bigger number, for example, from
11 up to 20. If you write this program

10 FOR I = 11 TO 20
20 PRINT I; "
30 NEXT I

yow’ll get
11 12 13 14 15 16 17 18 19 20

You could also print all the years from the time you were born,
let’s say 1975 to 1984.

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

The program for this would be

10 FOR Y = 1975 TO 1984
20 PRINT Y
30 NEXT Y

6 / Here Comes the Count

The Y counter variable stands for year.

If you were born in 1971 or even earlier, you could print out all
the years and remember the good years as they appeared in the
output. You could also look ahead to the years from 1985 to 2001
or beyond.

There is a limit to the size of a number that your computer can
handle. If you are going to be using very large numbers, read the
computer instruction manual and find out the largest number that is
allowed on your computer.

Inner and Outer Counts

When you have one loop inside another, it may be helpful to see
the counter variables. You could print the numbers by themselves
or with a note about which counter variable is being printed:

10 FORI =1T0 3

20 PRINT "HERE IS I "; I

30 FORJ =1 T0 4

40 PRINT "THERE GOES J "; J
50 NEXT J

60 NEXT I

When you ran this program, you could see the pattern

HERE IS I 1

THERE GOES J 1
THERE GOES J 2
THERE GOES J 3
THERE GOES J 4
HERE IS I 2

THERE GOES J 1
THERE GOES J 2
THERE GOES J 3
THERE GOES J 4

65

Making the Computer Do Arithmetic

HERE IS I 3
THERE GOES
THERE GOES
THERE GOES

J
J
J
THERE GOES J

1
2
3
4

Have a Seat

Imagine that you are in a theater where the rows are numbered
from 1 to 4 and the seats are numbered from 101 to 105. There are
four rows of five seats. You could get an idea of the theater by
printing out the floor plan:

ROW 1 SEAT 101 102 103 104 105
ROW 2 SEAT 101 102 103 104 105
ROW 3 SEAT 101 102 103 104 105
ROW 4 SEAT 101 102 103 104 105

The program for this has to be planned carefully to get the spacing
just right. You need a plain PRINT command in line 60 to make
each theater row begin on a new line of the output:

10 FORR =1 TO 4

20 PRINT "ROW "; R; " SEAT";
30 FOR S = 101 TO 105

40 PRINT S; " ";

50 NEXT S

60 PRINT

70 NEXT R

Enjoy the performance!

Summary

1. Counting is done easily with the FOR command. The counter
variable starts at the lowest value and goes up to the highest
value.

6 / Here Comes the Count

2. You can see how this happens by printing the value of the
counter variable.

3. Numbers and strings can be printed in columns, using the
comma, or close together using the semicolon.

4. Counting can start at any number and go up to any higher
number.

Exercises
1. (+) Write a program to print

POTATO
POTATO
POTATO
POTATO
POTATO
POTATO
POTATO

N 0NN

MORE
2. Write a program to print

LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
LITTLE INDIAN
10 LITTLE INDIAN
BOYS AND GIRLS

(ColiNo o BN I e) I &1 I SN S IR O I g

68

Making the Computer Do Arithmetic

3. (+) Write a program to print

WAS SO HUNGRY THAT

ATE 1 ICE CREAM CONES

ATE 2 ICE CREAM CONES

ATE 3 ICE CREAM CONES

ATE 4 ICE CREAM CONES

ATE 5 ICE CREAM CONES

ATE TOO MANY ICE CREAM CONES

HHH H HH H

It would take a bit of clever programming to make the second
line grammatically correct (CONE instead of CONES). If you
want an extra challenge, try to find a way.

4. (*) Write a program to print this schedule for five weeks of

summer camp:

WEEK 1 DAY 1 2 3 4 5 6 7
WEEK 2 DAY 1l 2 3 4 5 6 7
WEEK 3 DAY1 2 3 4 5 6 7
WEEK 4 DAY1 2 3 4 5 6 7
WEEK 5 DAY 1 2 3 4 5 6 7

Use an inner loop to print the days from 1 to 7. Use an outer
loop to print the weeks from 1 to 5.

Simple Arithmetic

You Finished

your arithmetic
homewortf 7 [t
or\l\{ been. five

minutes !

» PREVIEW: Computers are very useful in adding
(+), subtracting (), multiplying (%), and dividing (/).
In this chapter you will learn to program simple
calculations and to print the results.

P NEW IDEAS: arithmetic with +, —, *, and /

69

70

Making the Computer Do Arithmetic

Calculating and Printing

Computers were first built in the 1940s to do complicated
arithmetic. Modern computers can perform millions of additions or
multiplications in a second! You can begin to use this power with a
very simple calculation:

10 PRINT 2+3

This one line program will add two and three and display the result
when you type RUN:

5
You can get several calculations done at once:
10 PRINT 2+3, 247, 6-2, 9-6
and get the results when you RUN the program:
5 9 4 3

The plus sign (+) means addition and the minus sign (=) means
subtraction. Multiplication is done with the asterisk (*) and division
with the slash (/).

10 PRINT 3x4, 8/2
produces the output
12 4

If you use a semicolon, your answers will print closer together.
You can print the three’s multiplication table across the line by
using a semicolon and a blank between each calculation:

10 PRINT 3x1; " "; 3%2; " . 23 n n. 3*4;

» ’

20 PRINT " "; 3#5; " "; 3xG; " 1. 347

This prints

3 6 9 12 15 18 21

7/ Simple Arithmetic

Can you get the computer to print the four’s multiplication table?

4 8 12

16 20 24 28

You might want to print your three’s multiplication table in a
column. You can get this by having one calculation in each PRINT

command:

10 PRINT
20 PRINT
30 PRINT
40 PRINT
50 PRINT
60 PRINT
70 PRINT

3*1
3%2
3%3
34
3*5
36
37

When you run this program, it will print

3
6
9
12
15
18
21

This program is fine, but it uses one command for every line of

printed output.

Repeating Calculations

If you wanted to multiply 3 by every number from 1 up to 20,
you’d get tired of typing all of the commands. To multiply up to 20
requires 20 PRINT commands! How did you repeat commands
before? Did you think of a FOR-NEXT loop? You can write a
FOR-NEXT loop that changes the counter variable I from 1 up to 7:

7

72

Making the Computer Do Arithmetic

10 FORI =1T0 7
20 PRINT 3xI
30 NEXT I

The same seven lines of output are printed with less work for you!

Two Column Table

What if someone asked you to use the three’s multiplication table
to find out what 3 times 5 was? You’d have to count down to the
fifth line to find the answer—15. It would be easier if the number
5 was printed next to the number 15. You can do just that by
having your computer print a three’s multiplication table with two
columns:

3
6
9
12
15
18
21

O D W

The left column is exactly the values that the counter variable I
takes, so why not just print I:

10 FORI = 1T0 7
20 PRINT I, 3x*I
30 NEXT I

7/ Simple Arithmetic

A More Meaningful Printout

The multiplication table would be even nicer if it appeared as

31 =23
3 %2 =6
3 %3 =9
3 x4 = 12
3 x5 =15
3 *x6 = 18
37 =21

To get this requires a few more changes to the PRINT command.
You need to PRINT the number 3, then next to it an asterisk, then
next to that the value of the counter variable I. All you need now
is to print a string with an equals sign and finally the answer:

10 FORI =1T0 7
20 PRINT 3; " % "; I; " = "; 3xI
30 NEXT I

Getting tables of calculations should now be “a piece of cake.”
Speaking of cake, you could put the table-making program idea to
good use for Warren. He needs to print out the number of ounces
of flour necessary in a recipe that gives instructions by cups.
Remember each cup has 8 ounces. To produce this table with a
heading

CUPS OUNCES

8

16
24
32
40
48
56
64

000 A WN

73

74

Making the Computer Do Arithmetic

you could write this program:

10
20
30
40
50

PRINT "CUPS'", "OUNCES"
PRINT

FORI =1 TO 8

PRINT I, 8xI

NEXT I

Now, why not add some chocolate frosting. Yum yum!

Calculations with INPUT Values

Instead of printing a whole table of values every time, you might
just want the computer to do a calculation when you need it. The
program could ask the user for the number of cups and then print
out the number of ounces, like this:

THIS PROGRAM WILL CALCULATE THE
NUMBER OF OUNCES IF YOU GIVE THE
NUMBER OF CUPS.

HOW MANY CUPS DO YOU HAVE 96
THAT MAKES 48 OUNCES

7/ Simple Arithmetic

The program would begin by giving the instructions:

10 PRINT "THIS PROGRAM WILL CALCULATE THE"
20 PRINT "NUMBER OF OUNCES IF YOU GIVE THE"
30 PRINT ''"NUMBER OF CUPS."

Now the program asks for the INPUT:

40 PRINT "HOW MANY CUPS DO YOU HAVE ";
50 INPUT C

There is a semicolon at the end of the string in line 40. This means
that the question mark printed out by the INPUT command will
appear on the same line. The INPUT command asks for the value
of the variable C, which represents cups.

The calculation and the printing complete the program:

60 PRINT "THAT MAKES"; 8xC; '"OUNCES"

Each time you need to compute ounces given the number of cups,
you could RUN this program. Since you may want to make several
calculations at once, you could wrap a loop around the whole
program. You could have the instructions repeated 10 times:

S FORI =1 TO 10

10 PRINT "THIS PROGRAM WILL CALCULATE THE"
20 PRINT "NUMBER OF OUNCES IF YOU GIVE THE"
30 PRINT "NUMBER OF CUPS."

40 PRINT "HOW MANY CUPS DO YOU HAVE ";

50 INPUT C

60 PRINT "THAT MAKES"; 8%C; "OQUNCES"

70 NEXT I

You could write this program so that the instructions appear only
once. Instead of putting the FOR command on line 5, you might put
it at line 35. This program stops when you have done exactly 10
calculations. If you want to stop at eight, you press the BREAK key,
when the computer is waiting for INPUT.

A typical run might be:

75

76 Making the Computer Do Arithmetic

THIS PROGRAM WILL CALCULATE THE

NUMBER OF OUNCES IF YOU GIVE THE

NUMBER OF CUPS.

HOW MANY CUPS DO YOU HAVE 95

THAT MAKES 40 OUNCES

HOW MANY CUPS DO YOU HAVE 2?12

THAT MAKES 96 OUNCES

HOW MANY CUPS DO YOU HAVE 9261

THAT MAKES 2088 OUNCES

HOW MANY CUPS DO YOU HAVE 97

THAT MAKES 56 OUNCES

HOW MANY CUPS DO YOU HAVE ?
(Press BREAK)

and then the program would stop. You can now RUN the program
again, do a LIST, or other commands.

Summary

1. Simple arithmetic calculations can be done by using the plus
sign (+), minus sign (-), multiplication (*), and division .

2. The result of the calculations can be printed across the line in
columns, across the line closely together, or down the page.

3. The user of a program can supply a number for a calculation
whenever you put an INPUT command in your program.

Exercises

1. Test out the arithmetic calculations by finding 2 plus 2, 2
minus 2, 2 times 2, and 2 divided by 2.

2. (+) Did you ever wonder how many hours there are in a
week? Compute the number of hours in a week by
multiplying the number of days in a week by the number of
hours in a day.

7 / Simple Arithmetic

3. Find out how many inches in a mile by multiplying the
number of inches in a foot (12) by the number of feet in a

mile (5280).

(+) Karen was making a ghost costume for Halloween. She

figured out that she needed 54 inches of cloth, but the store
sells cloth by the foot. Make a table of feet and inches like

this:

12
24
36
48
60
72

o OB NN

Now Karen can figure out how many feet of cloth to buy.
5. Expand the feet and inches table to be yards, feet, and inches.
There are 3 feet per yard and 36 inches per yard.

YARDS FEET
3

6

9

12

15
18

OOt VN

INCHES

36
72
108
144
180
216

6. (+) Write a program to ask the user for the input of a number
of feet and print out the number of inches. The run might

look like this

THIS PROGRAM WILL CALCULATE THE
NUMBER OF INCHES IF YOU GIVE THE

NUMBER OF FEET.

HOW MANY FEET DO YOU HAVE 23

THERE ARE 36 INCHES

77

78 Making the Computer Do Arithmetic

7. (*) Write a program to ask users for the year in which they
were born (call it B) and for this year (call it T). Then print
out a table that shows their age in each year. For example:

WHICH YEAR WERE YOU BORN IN ?1974
WHAT YEAR IS IT NOW ?1984

YEAR YOUR AGE

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

= O 030 0N WNDHO

0

You'll need a loop from B to T and then a subtraction to get
the age.

Arithmetic
Variables

P PREVIEW: Many arithmetic problems require only a
simple calculation and printout of the result.
Sometimes you need to save the result of one
calculation and use the value in another calculation.
This chapter shows how to use arithmetic variables to
store the results of a calculation.

P NEW IDEAS: arithmetic variables, LET, storing
with =, printing arithmetic variables

79

80

Making the Computer Do Arithmetic

Storing Values in a Variable

David and Lisa set up a lemonade stand. They are charging 15
cents for a large cup and 10 cents for a small cup. Their first
customers are the family next door. The parents each have a large
cup, and the four children each have a small cup. David and Lisa
need to know how much to charge for 2 large cups and 4 small cups
of lemonade. The total charge is 2 times 15 plus 4 times 10. You
could probably do this in your head, but you might want to try
programming this simple problem.

First, you multiply 2 cups times 15 cents for the large cups. You
need to store the result in an arithmetic variable called L for large.
The LET command sets an arithmetic variable to a given value. For
example,

10 LET L = 215

does the multiplication of 2 times 15. The value—30—is stored in
the arithmetic variable L. The value of L is now 30. The next step
1s to use another LET command to multiply the 4 small cups times
10 cents and store the result. The value—40—is stored in another
arithmetic variable S for small. Now, you can add L and S to get
the total. You store this result in an arithmetic variable called T for
total. Finally, you print the total:

10 LET L = 2x15
20 LET S = 4%*10
30 LET T = L+S
40 PRINT "TOTAL COST IS "; T

Running this program produces one line of output:
TOTAL COST IS 70

Line 10 gets the computer to multiply 2 times 15 and store the
result—30—in the arithmetic variable L. Line 20 multiplies 4 times
10 and stores the result —40—in the arithmetic variable S. Line 30

8 / Arithmetic Variables

adds the values in L and S and stores the answer in the arithmetic
variable T. The semicolon in line 40 makes the value print out
close to the string.

You could print the results of each step by adding some other
PRINT commands:

10 LET L = 215

15 PRINT "COST FOR LARGE CUPS IS ": L
20 LET S = 4%10

25 PRINT "COST FOR SMALL CUPS IS "; S
30 LET T = L+S

40 PRINT "TOTAL COST IS '"; T

and rerunning the program:

COST FOR LARGE CUPS IS 30
COST FOR SMALL CUPS IS 40
TOTAL COST IS 70

LET commands are used to store a value in a variable.

LET commands begin with a line number and the word LET.
Then comes a variable followed by an equal sign. To the right of
the equal sign there can be a calculation using numbers and
variables.

The first step for the computer is to carry out the arithmetic on the
right side of the equal sign. Then the second step is to take this
value and store it in the variable. A simple LET command is

10 LET X =1
which would set the variable X to 1. Another LET command is
20 LET P = Q

which would set the variable P to the same value as Q. Many times
LET commands have arithmetic calculations such as

30 LET M = 4K

81

82

Making the Computer Do Arithmetic

which multiplies K by 4 and stores the result in M. If K was 6, then
after the LET command was done, M’s value would be 24. K would
still be 6.

Differences Among Computers. With the ATARI and most computers
you can leave out the LET part of the LET command. For example:

10X =1
20 P = Q
30 M = 4%K

Some computers, such as the Timex, require the word LET. ll

Lawn Service

Two friends started a lawn mowing and gardening service which
had this poem as their advertisement:

Jack and Jill went up the hill

To fetch a pail of water.

They wet the flowers, mowed the lawns,
And did just what they oughta.

Jack and Jill wrote a computer program to help them add up charges
for watering plants, mowing lawns, raking leaves, and trimming
hedges. Their program asked for the amount of money for each
service and then added up the total:

10 PRINT "TYPE IN THE DOLLAR AND CENTS AMOUNTS"
20 PRINT " FOR EACH SERVICE AND PRESS RETURN"
30 PRINT

40 PRINT "WATERING PLANTS";

50 INPUT W

60 PRINT "MOWING LAWNS "

70 INPUT M

80 PRINT "RAKING LEAVES ";

8 / Arithmetic Variables 83

90 INPUT R

100 PRINT "TRIMMING HEDGES":
110 INPUT T

120 LETC =W+ M+ R + T
130 PRINT

140 PRINT "TOTAL COST IS § "; C

Line 120 adds up the four separate charges so that the total cost can
be printed in line 140. A typical run might be

TYPE IN THE DOLLAR AND CENTS AMOUNTS
FOR EACH SERVICE AND PRESS RETURN

WATERING PLANTS?1.75
MOWING LAWNS ?4.50
RAKING LEAVES ?20.0
TRIMMING HEDGES?0.0

TOTAL COST IS $ 6.25

Can you see how to expand the program to include other services

such as pulling weeds or to offer a $1.00 discount for advance
payment?

84

Making the Computer Do Arithmetic

Fahrenheit and Celsius Temperatures

The Fahrenheit temperature scale is used in the United States, but
most of the countries in the world use the Celsius temperature scale.
The freezing temperature of water is 32 degrees Fahrenheit and 0
degrees Celsius. The boiling temperature of water is 212 degrees
Fahrenheit and 100 degrees Celsius.

Changing from Fahrenheit to Celsius requires three calculations:

1. Start with the Fahrenheit temperature and subtract 32
2. Multiply by §
3. Divide by 9 to get the Celsius temperature

The program to change Fahrenheit temperatures to Celsius might
start by asking the user to give a Fahrenheit temperature. The three
calculations are done, and finally, the result is printed:

10 PRINT "TO CHANGE FAHRENHEIT TO CELSIUS"
20 PRINT "TYPE THE DEGREES AND PRESS RETURN"
30 PRINT "FAHRENHEIT DEGREES ";

40 INPUT F
50 LET G = F - 32

60 LET H = G * 5

70 LET C =H / 9

80 PRINT "CELSIUS DEGREES "; C

The run might look like this:

TO CHANGE FAHRENHEIT TO CELSIUS
TYPE THE DEGREES AND PRESS RETURN
FAHRENHEIT DEGREES ?212

CELSIUS DEGREES 100

If the program had more print commands you could show the
subtraction of 32 to give 180, the multiplication by 5 to give 900,
and the division by 9 to give 100. In this program the arithmetic
variables G and H were used just to save the results of steps 1 and 2
of the calculation. These values do not need to be printed out.

8 / Arithmetic Variables

Summary

1.

The results of arithmetic calculations can be stored in
arithmetic variables.

The LET command stores a value in a variable. It has a line
number, the word LET, an arithmetic variable, an equal sign,
and the calculation.

Complicated calculations can be done one step at a time.

Exercises

1.

Courtney has 2 quarters and 3 dimes. Write a program to
find the total amount of money by multiplying 2 times 25 and
storing the result. Then multiply 3 times 10 and store the
result in another arithmetic variable. Finally, add the two
values and print the result.

(+) Have you ever wondered how many seconds there are in
a day? There are 60 seconds in a minute, 60 minutes in an
hour, and 24 hours in a day. First, calculate and print the
number of seconds in an hour. Then calculate and print the
number of seconds in a day. Be sure to print a message to
describe each number.

. Michael and Matthew have started a car-washing business.

They call themselves M and M, and give free candy to their
customers. They offer car washing, waxing, and vacuuming
as their services. Write a program that asks for the charge for
each of these three services and prints out the total cost.

. Richard has a newspaper route and must figure out the

monthly charge for his customers. A weekday newspaper
costs 25 cents, and the Sunday newspaper costs 75 cents.
Write a program that asks for the total number of weekday
papers delivered and the total number of Sunday newspapers
delivered. Then calculate and print the total amount in cents:

85

86 Making the Computer Do Arithmetic

TYPE THE NUMBER AND PRESS RETURN

HOW MANY WEEKDAY PAPERS THIS MONTH ?26
HOW MANY SUNDAY PAPERS THIS MONTH %4
TOTAL COST IN CENTS IS 950

5. (*) Changing from Celsius to Fahrenheit has three steps:
a. Multiply the Celsius temperature by 9
b. Divide this amount by 5
c. Add 32
Write a program that asks for a Celsius temperature, does the
calculation, and prints out the Fahrenheit temperature.

6. (*+) Katie collects stamps from four countries: France,
England, Italy, and Germany. She likes to keep track of how
many stamps she has from each country. Write a program
that helps her keep track. It might run like this:

TYPE IN THE NUMBER OF STAMPS
FROM EACH COUNTRY AND PRESS RETURN
FRANCE 223
ENGLAND 9?49
ITALY ?13
GERMANY 921
TOTAL NUMBER OF STAMPS IS 106

Adding Up
Numbers

Dot <stop yet..
you need (o
move minutes Yo

qej to loo.

P PREVIEW: Sometimes people use computers to add
up a list of numbers. The list may be prices on a
supermarket bill or the number of minutes you spent
practicing piano each week. In these cases an
arithmetic variable can be used for adding up the
total.

P NEW IDEAS: adding up a list of numbers, setting an
arithmetic variable to zero

87

88

Making the Computer Do Arithmetic

How Much Cheese?

Three mice are saving up cheese and want to know how much
they have, so they write a computer program. The program uses an
arithmetic variable called T for total, which is set to zero. Then
when the amounts of cheese in ounces—C—are typed in, the total
variable is increased. Finally, the result is printed:

10 PRINT "TYPE IN THE NUMBER OF OUNCES"
20 PRINT " FOR EACH OF THE THREE MICE"
30 PRINT " AND PRESS RETURN EACH TIME"

40 LET T = 0O

50 FORM =1 TO 3
60 INPUT C

70O LET T =T + C
80 NEXT M

90 PRINT "TOTAL AMOUNT OF CHEESE IS "; T;
100 PRINT " OUNCES"

The counter variable M goes from mouse number 1 up to mouse
number 3. The input variable C takes the number of ounces of
cheese for each mouse. Line 70 causes the current total amount—
T—to be added to the amount of cheese—C-—and the result is
stored back in T. If the mice had 3, 7, and 4 ounces each, the run
might look like:

TYPE IN THE NUMBER OF OUNCES
FOR EACH OF THE THREE MICE
AND PRESS RETURN EACH TIME
?3
7
74
TOTAL AMOUNT OF CHEESE IS 14 OUNCES

The total variable T was first set to O, then 3 was added. The
second time through the FOR-NEXT loop, 7 was added to T to make
it 10. The third time through the loop, 4 was added to 10 to make
T have the value 14. Then the final value was printed by line 90.

9 / Adding Up Numbers 89

Remember that when a question mark has been displayed, you can
stop the program by pressing the BREAK key.

Adding up numbers is one of the first things programmers learn to
do. Adding up starts by setting a total variable to zero. Then each
time a value has to be added, you take the current value of the total
variable and add another amount to it. This sum is stored back into
the total variable.

Piano Practice

Claire’s piano teacher requires 100 minutes of practice every
week, but Claire can spend as long as she wants in each practice
period. To make sure that she gets all her practicing done, she gets
the computer to total up the number of minutes in each practice
period. The program asks for the number of practice periods and
then asks for the number of minutes in each practice period. When
all the numbers have been typed in, the program prints the total
number of minutes:

90 Making the Computer Do Arithmetic

10 PRINT "TYPE THE NUMBER OF PRACTICES"

20 PRINT " AND PRESS RETURN"

30 INPUT S

40 PRINT "FOR EACH PRACTICE, TYPE THE NUMBER"
50 PRINT " OF MINUTES AND PRESS RETURN"

60 LET T =0

70 FORI =1 TO0 S

80 PRINT "PRACTICE "; I;

90 INPUT M

10O LET T =T + M

110 NEXT I

120 PRINT "TOTAL NUMBER OF MINUTES IS "; T
The program might run like this:

TYPE THE NUMBER OF PRACTICES
AND PRESS RETURN
76
FOR EACH PRACTICE, TYPE THE NUMBER
OF MINUTES AND PRESS RETURN
PRACTICE 1 ?12

PRACTICE 2 ?31
PRACTICE 3 ?5
PRACTICE 4 ?15
PRACTICE 5 925

PRACTICE 6 9?22
TOTAL NUMBER OF MINUTES IS 108

As you can see, Claire did more than enough piano practice.

Summary

1. Adding up lists of numbers can be done by using an
arithmetic variable to total up the numbers one at a time.

2. A LET command is used to set the total variable to zero.

3. Another LET command is used to add in each number.

9 / Adding Up Numbers

4. A FOR-NEXT loop controls the number of items added in to
get the total.

Exercises
1. What is the output of this program?

10 LET T =0

20 FOR I = 1 TO 5
B0LET T =T + I
40 NEXT I

50 PRINT T

Run it and see if your guess was right.

2. (+) Every weeknight Jenna gets a math worksheet with 100
problems on it. She has 8 minutes to do as many as she can.
Write a program that will help Jenna add up the number of
problems she completes in a five-day week.

3. Billy’s ski team has four racers. They each ski down the trail
as fast as they can. The team score is the sum of the time in
seconds for all four racers. Write a program to ask for and
add up time for each racer.

TYPE THE NUMBER OF SECONDS
AND PRESS RETURN

RACER 1 9?79
RACER 2 786
RACER 3 277
RACER 4 ?80
TOTAL TEAM TIME IS 322 SECONDS

4. Becky likes to check the bill she gets when she goes
shopping. Write a program that asks how many shopping
items were purchased. Then set the total cost variable to
zero. Now loop from 1 to the number of items, printing a

91

92 Making the Computer Do Arithmetic

message to request the price, and finally print the total:

TYPE THE NUMBER OF ITEMS YOU BOUGHT
AND PRESS RETURN

74

ITEM 1 PRICE WAS ?1.25

ITEM 2 PRICE WAS ?93.87

ITEM 3 PRICE WAS ?.63

ITEM 4 PRICE WAS ?12.00

TOTAL COST WAS $§ 17.75

5. (*) In some games, like Scrabble, players take turns and score
points. Write a program that will keep score and show the
score of each player after each move. Set arithmetic variables
to zero for player A and player B. Ask for each score and
add it to the score for each player.

TYPE IN THE SCORE FOR EACH PLAYER
AND PRESS RETURN

PLAYER A SCORE IS 0
PLAYER B SCORE IS 0

HOW MANY POINTS DID PLAYER A SCORE 98
HOW MANY POINTS DID PLAYER B SCORE 99

PLAYER A SCORE IS 8
PLAYER B SCORE IS 9

HOW MANY POINTS DID PLAYER A SCORE 711
HOW MANY POINTS DID PLAYER B SCORE 96

PLAYER A SCORE IS 19
PLAYER B SCORE IS 15

HOW MANY POINTS DID PLAYER A SCORE ?

(Press BREAK to stop the program.)

Steering
the Computer

£ ,
To Jump or Not fo Jump \

WovKihq with ¢ Compmand
» - ‘ﬁ N T i

93

To Jump
or Not to Jump

7 1 can use
the computer
to remind me
what To weay,

» PREVIEW: People often use computers to help make
decisions. In your programs you can test if a string
in an input variable matches a string in your program.
You can also test arithmetic variables such as a
temperature to see if it is above or below 32 degrees
Fahrenheit and then print ABOVE FREEZING or
BELOW FREEZING. You can compare two numbers
and jump over some commands. It’s like steering the
computer around the commands.

P NEW IDEAS: decision making, IF, GOTO, THEN,
jumping over commands, END

95

96

Steering the Computer

Rumpelstiltskin Is My Name

So far you’ve used a computer to print words and pictures and to
do arithmetic. Now you will learn how to make decisions by
steering the computer around the commands.

In the story of Rumpelstiltskin a dwarf helps a girl spin straw into
gold. He forces her to promise to give her first baby to him. When
the baby comes, she doesn’t want to give it up. Rumpelstiltskin
says she can keep the baby if she can guess his name.

We can write a program that won’t stop until someone types in
the right name. Line 5 reserves up to 40 characters for the string
input variable A$. The program keeps asking for a name and tests
if the name is RUMPELSTILTSKIN. If it is, then the program jumps
to line 50. If the name does not match, then line 40 sends the
program back to line 10 and the question is repeated.

5 DIM A$(40)

10 PRINT "CAN YOU GUESS MY NAME ":
20 INPUT A$

30 IF A$ = "RUMPELSTILTSKIN" THEN 50
40 GOTO 10

50 PRINT "YOU GUESSED MY NAME, SO"
60 PRINT " YOU CAN KEEP YOUR BABY."

If you ran this program, it might go like this:

CAN YOU GUESS MY NAME ?POLLY
CAN YOU GUESS MY NAME ?MIGUEL
CAN YOU GUESS MY NAME ?MEI LEE
CAN YOU GUESS MY NAME ?RUMPELSTILTSKIN
YOU GUESSED MY NAME, SO
YOU CAN KEEP YOUR BABY.

There are two new commands in this program. The IF command
lets you compare a variable to a string to see if it matches. If A% is
RUMPELSTILTSKIN the program will jump to line 50. If there is
no match, the program goes right on to line 40. The GOTO 10
command sends the program back to repeat the question. This

10/ To Jump or Not to Jump

program ends if you guess the right name or if you press the BREAK
key. IF commands and GOTO commands will be used in most
programs that you write.

Do I Need a Warm Coat?

You might want to use a computer to give instructions about what
to wear. If the temperature is warmer than 32 degrees Fahrenheit
(the freezing temperature of water), you print ABOVE FREEZING.
WEAR A JACKET. If the temperature is 32 degrees or colder, print
IT'S FREEZING. WEAR A COAT AND SCARF. Your program
begins by putting in the temperature

10 PRINT "WHAT IS THE TEMPERATURE "
20 INPUT T

which is stored as T, for temperature. Next comes the decision
whether the temperature is warmer than 32 degrees Fahrenheit. We
use the symbol > to mean greater than.

30 IF T > 32 THEN 60

The IF command compares T to the number 32. THEN is the
second part of the IF command. It means that if T is warmer than
32 (greater than 32), the next command is on line 60.

40 PRINT "IT'S FREEZING. WEAR A COAT AND SCARF."
50 GOTO 70

60 PRINT "ABOVE FREEZING. WEAR A JACKET."
70 PRINT "HAVE A NICE DAY."

If T is 32 degrees or colder (less than or equal to 32), the computer
does not jump but simply goes on to the next line—line 40—and
prints IT'S FREEZING. WEAR A COAT AND SCARF. The
computer moves on to line 50 which makes it GOTO line 70. Line
70 is where the program goes after printing either one of the

97

98

Steering the Computer

messages. If the temperature is 88 degrees, the program works like
this:

WHAT IS THE TEMPERATURE 988
ABOVE FREEZING. WEAR A JACKET.
HAVE A NICE DAY.

The computer went through lines 10, 20, 30, 60, and 70. The
THEN part of line 30 steered the computer around line numbers 40

and 50 by jumping to line 60. If the temperature is 23 degrees, this
is what happens:

WHAT IS THE TEMPERATURE 723
IT'S FREEZING. WEAR A COAT AND SCARF.
HAVE A NICE DAY.

In this run the computer went through lines 10, 20, 30, 40, 50, and
70. The GOTO command in line 50 jumped the computer right to
line 70. This program always uses two of the three PRINT

10/ To Jump or Not to Jump

commands. Here’s the full listing:

10 PRINT "WHAT IS THE TEMPERATURE ";

20 INPUT T

30 IF T > 32 THEN 60

40 PRINT "IT'S FREEZING. WEAR A COAT AND SCARF."
50 GOTO 70

60 PRINT "ABOVE FREEZING. WEAR A JACKET."

70 PRINT "HAVE A NICE DAY."

Decisions, Decisions, Decisions

The first section used one form of the IF command: IF T > 32.

The greater than sign is one of six signs that you can use in BASIC.
The equal sign (=) allows you to compare two values to test if they
are the same.

IF T = 32 THEN 80

tests if the temperature is exactly 32 degrees. The full set of six
comparisons that you can use are:

IF T > 32 THEN 80 greater than

IF T = 32 THEN 80 equal to

IF T < 32 THEN 80 less than

IF T >= 32 THEN 80 greater than or equal to
IF T <= 32 THEN 80 less than or equal to

IF T <> 32 THEN 80 not equal to (less than or

greater than, but not equal to)

The THENSs in the IF command show the line number to jump to
if the test is true. If the test is not true, then the computer goes on
to the next line after the IF command.

Differences Among Computers. On the ATARI Home Computers and
most other computers there are a few ways to write IF commands. These
commands do the same thing:

100 Steering the Computer

20 IF T > 32 THEN 80
20 IF T > 32 THEN GOTO 80
20 IF T > 32 GOTO 80

On most computers you can put a PRINT, LET, or other command
instead of a line number. For example:

20 IF T > 32 THEN PRINT "ABOVE FREEZING" M

GOTO commands can be used anywhere in the program by
themselves to steer the computer around some commands. For
example, this strange program has a secret message in it:

10 PRINT "THERE ";
20 GOTO 50

30 PRINT "CE LIK";
40 GOTO 70

50 PRINT "IS NO"
60 GOTO 90

70 PRINT "E HOME"
80 GOTO 110

90 PRINT "PLA";
100 GOTO 30

110 PRINT "SAID DOROTHY"

When this program is run, the hidden message will appear. Can
you figure it out?

Checking Temperature Ranges

Normal body temperature is 98.6 degrees Fahrenheit. Most
doctors agree that one degree above or below is still healthy. To
check if a person’s temperature was in the normal range of 97.6 to
99.6, you would need two IF commands:

10 PRINT "WHAT IS YOUR TEMPERATURE "
20 INPUT T

10/ To Jump or Not to Jump

30 IF T < 97.6 THEN 100

40 IF T > 99.6 THEN 100

50 PRINT "NORMAL BODY TEMPERATURE"

60 GOTO 200

100 PRINT "NOT NORMAL BODY TEMPERATURE"
200 END

This program tests only if the temperature is normal or is not
normal. If the temperature is too low or too high, the program
jumps to line 100. If the temperature passes both of the tests in
lines 30 and 40, the program goes right on to line 50.

The GOTO in line 60 jumped to line number 200, which is a new
command—the END command. When there is nothing more to do
in a program, you just END the program. We will make the END
command the highest numbered line in a program. It will always be
the last command in a program. The END command lets readers of
your program know that the program is through. We will use END
commands for most programs, especially the longer ones.

The body-temperature program could be improved to print out
whether the temperature was above or below normal. Instead of
having both IF commands jumping to line 100, the second IF
command could jump to line number 150. Then you could have a
below normal message at line 100 and an above normal message at
line 150. The program would still end on line 200.

10 PRINT "WHAT IS YOUR TEMPERATURE ":

20 INPUT T

30 IF T < 97.6 THEN 100

40 IF T > 99.6 THEN 150

50 PRINT "NORMAL BODY TEMPERATURE"

60 GOTO 200

100 PRINT "BELOW NORMAL BODY TEMPERATURE"
110 GOTO 200

150 PRINT "ABOVE NORMAL BODY TEMPERATURE"
200 END

101

102

Steering the Computer

Cool Pool

The Little Falls Pool charges 40 cents for swimmers under 16
years and 90 cents for those 16 or older. After 6:00 P.M. the price
is cut in half for everyone. This program might be useful to the
ticket taker in figuring out how much to charge.

HOW OLD ?12
IS IT BEFORE 6:00 PM ?YES
PRICE IS 40 CENTS

This program has two IF commands and two INPUT commands:

10 PRINT "HOW OLD ";

20 INPUT A

30 IF A >= 16 THEN 60

40 LET P = 40

50 GOTO 70

60 LET P = 90

70 PRINT "IS IT BEFORE 6:00 PM ";
80 INPUT A$

90 IF A$ = "YES" THEN 110

100 LET P = P/2

110 PRINT "PRICE IS"; P; “CENTS"

The arithmetic variable A holds the age. The variable A$ holds the
input string YES or NO. A and A$ are different variables.

Some programmers use a clever shortcut to replace lines 30, 40,
50, and 60 with just two lines

30 LET P = 40
40 IF A >= 16 THEN LET P = 90

In this program, the price is set to 40 cents. If the age is greater
than 16, the price is set to 90 cents.

IF commands and GOTOs can be put together to form complicated
programs. You should practice with simple programs first. Then
you can move on to programs which have many IFs and GOTOs.

10/ To Jump or Not to Jump

To understand more complicated programs, you may want to print
out the variables after some commands. For example, you may
want to add PRINT commands for A, P, and A$ after lines 20, 40,
60, and 80. -This information can be very helpful if your program
does not work correctly the first few runs. Sometimes it takes many
runs and changes until you get your program right. Think carefully

and keep trying.

Summary

1. IF commands are a very important part of programming. A
single IF command lets you test if a number is above, below,

or equal to another number.

2. Two IF commands can be put together to test if a number is

within a range of numbers.

3. The GOTO command lets you jump to a line number.
4. We will make END the last command in a program. It is used
when you need to GOTO a line that ends the running of a

program.

Exercises

1. Write a program that keeps asking for the secret password
until the user guesses it. It might run like this:

TYPE THE SECRET PASSWORD
TYPE THE SECRET PASSWORD
TYPE THE SECRET PASSWORD
TYPE THE SECRET PASSWORD
YOU GUESSED IT...WELCOME

2. (+)To qualify for the neighborhood swim team, the Dolphins

?COOKIE
?MONSTER
?HEFFALUMP
?SESAME

TO THE CLUB

b

you must swim at least 16 laps of the pool. Write a program
to let the user type in the number of laps with an INPUT

103

104

Steering the Computer

command. Then test if the number is greater than or equal to
16 and print the message QUALIFIES or DOES NOT
QUALIFY.

3. John keeps the school records for best times in sports events.
The school record for running around the track is 94 seconds.
Write a program to INPUT a new time in seconds. Then test
the time and print either CONGRATULATIONS, YOU SET A
NEW RECORD or GOOD WORK, BUT THE OLD RECORD
STANDS.

4. On some highways there is a minimum speed limit of 40
miles per hour and a maximum speed limit of 55 miles per
hour. Write a program to INPUT a speed and test if the
speed is legal. Print the message LEGAL SPEED or ILLEGAL
SPEED.

5. (+) Change the program in Exercise 4 so that it prints one of
these three messages:

LEGAL SPEED
ILLEGAL SPEED — TOO SLOW
ILLEGAL SPEED — TOO FAST

6. (*) The third-grade teacher, Ms. Glantz, rewarded her best
students by allowing them to spend an extra hour in the
library reading books of their choice if the sum of their three
weekly tests (0 to 10 points on each test) was at least 25.
Write a program to take in the three test scores with three
INPUT commands, then add up the three values, print the
sum, and after testing the sum, print one of these two
messages: YOU MAY GO TO THE LIBRARY or YOU MUST
REDO ALL THE WRONG ANSWERS ON YOUR TESTS.

Working with
IF Commands

PREVIEW: You will find that most programs use IF
commands. Some programs have dozens of them.
This chapter uses IF commands to build a quiz
program in which the user must choose the correct
answer. As your programs get longer, you will want
to add comments to explain how they work. REMarks
let you tell the reader something about your program.
The second program, which is about simple banking,
uses IF commands to check values and to steer the
program from one step to another.

NEW IDEAS: quiz questions, counting answers,
REMarks, banking

105

106

Steering the Computer

Quiz Time

Multiple-choice quizzes can be fun, and you can learn from them,
too. In this first example the program prints out a question and four
possible answers. Then the user makes a choice and finds out if it
is correct. It goes like this,

WHO INVENTED THE PHONOGRAPH

1 JAMES WATT

2 BENJAMIN FRANKLIN

3 SAMUEL MORSE

4 THOMAS EDISON

TYPE THE NUMBER AND PRESS RETURN 94
YOU ARE CORRECT

If any other number were chosen, the computer would print

THE INVENTOR OF THE PHONOGRAPH WAS
THOMAS EDISON

To make this program, you must first print out the question:

10 PRINT "WHO INVENTED THE PHONOGRAPH"

20 PRINT "1 JAMES WATT"

30 PRINT "2 BENJAMIN FRANKLIN"

40 PRINT "3 SAMUEL MORSE"

50 PRINT "4 THOMAS EDISON"

60 PRINT "TYPE THE NUMBER AND PRESS RETURN ";

That’s the easy part. Next, your program must take the answer and
test to see if the right answer was chosen:

70 INPUT A

80 IF A = 4 THEN 150

90 PRINT "THE INVENTOR OF THE PHONOGRAPH WAS"
100 PRINT "THOMAS EDISON"

110 GOTO 200

150 PRINT "YOU ARE CORRECT"

Your program could now go on to another question:

200
210
220
230
240
250
260
270
280
290
300
310
350

11/ Working with IF Commands 107

PRINT "WHO INVENTED THE TELEPHONE"

PRINT "1 THOMAS EDISON"

PRINT "2 ALEXANDER GRAHAM BELL"

PRINT "3 LEE DE FOREST"

PRINT "4 GEORGE WESTINGHOUSE"

PRINT "TYPE THE NUMBER AND PRESS RETURN ':
INPUT A

IF A = 2 THEN 310

PRINT "THE INVENTOR OF THE TELEPHONE WAS"
PRINT "ALEXANDER GRAHAM BELL"

GOTO 350

PRINT "YOU ARE CORRECT"

At line 350 you could go on to a third question. By putting together
a series of questions like this, you could help teach yourself and
your friends about inventors or about state capitals. You could write
programs about presidents or biology or whatever you are interested

1n.

108

Steering the Computer

Counting Answers

With a little bit of extra work, you could keep track of how many
correct and incorrect answers were given and print the results at the
end. Start by setting two counter variables to zero, C for correct
answers and I for incorrect answers:

SLET C =0
6 LET I =0

Put in a command to increase the C counter by 1 after a correct
answer, just after line 150:

155 LET C = C + 1

This LET command makes the computer add 1 to C and then store
the result back into C. You also need to increase the I counter by 1
after an incorrect answer, just after line 100:

105 LET I =1 + 1
You would need to add these commands for the second question:

315 LET C = C + 1

295 LET I =1 + 1

and similar commands for each question you have. Then at the end
of the questions, you print the results:

950 PRINT C; " CORRECT ANSWERS"
960 PRINT I; " INCORRECT ANSWERS"
990 END

Now let’s put all these pieces together and add some REMarks
which tell the reader about the program. If a line number is
followed by the letters REM (for remarks), the rest of the line can be
used to tell the reader anything about the program. REMarks are
shown when you LIST a program, but they are skipped over when

11/ Working with IF Commands 109

you RUN a program. REMarks should have information for the
programmer, not for the user of a program.

You can use REMarks to give a title to your program (line 1), put
your name in (line 2), and tell about the variables that are used

(lines 3

and 4). You can add REMarks anywhere else in the program

(see lines 8, 190, and 950):

D= 00O AW

OB T B O) B & Y N &)
ol elNeoNolNoNolNoNolNe

REM — INVENTORS QUIZ —
REM WRITTEN BY BEN SHNEIDERMAN

REM C COUNTS CORRECT ANSWERS
REM I COUNTS INCORRECT ANSWERS
LET C =0

LET I =0

REM PRINT THE FIRST QUESTION

PRINT "WHO INVENTED THE PHONOGRAPH"

PRINT "1 JAMES WATT"

PRINT "2 BENJAMIN FRANKLIN"

PRINT "3 SAMUEL MORSE"

PRINT "4 THOMAS EDISON"

PRINT "TYPE THE NUMBER AND PRESS RETURN ":
INPUT A

IF A = 4 THEN 150

PRINT "THE INVENTOR OF THE PHONOGRAPH WAS"

100 PRINT "THOMAS EDISON"

105 LET I =1 + 1

110 GOTO 200

150 PRINT "YOU ARE CORRECT"

155 LET C = C + 1

190 REM PRINT THE SECOND QUESTION
200 PRINT "WHO INVENTED THE TELEPHONE"
210 PRINT "1 THOMAS EDISON"

220 PRINT "2 ALEXANDER GRAHAM BELL"
230 PRINT "3 LEE DE FOREST"

240 PRINT "4 GEORGE WESTINGHOUSE"

250 PRINT "TYPE THE NUMBER AND PRESS RETURN "

260 INPUT A

110

Steering the Computer

270
280
290
295
300
310
315
350

950
960
970
990

IF A = 2 THEN 310

PRINT "THE INVENTOR OF THE TELEPHONE WAS"
PRINT "ALEXANDER GRAHAM BELL"

LET I =1 + 1

GOTO 350

PRINT "YOU ARE CORRECT"

LET C =C + 1

(more questions)

REM PRINT THE FINAL SCORE
PRINT C; "CORRECT ANSWERS"
PRINT I; "INCORRECT ANSWERS"
END

If you retype this program you may want to renumber the lines
because of the additions and uneven numbering. You can make up
quizzes about cartoon characters, your favorite books, popular
singers, or computers.

Dollar Banking

Real banks have many rules about how much money you can
deposit or withdraw, about interest payments, extra expenses, and

penalties.

Just for fun and to learn a little about banking, we’ll keep

the rules simple. You start with $1000 and can deposit or withdraw
money. You might do the following:

WELCOME TO THE FIRST BANK OF ATLANTIS

YOU HAVE 1000 DOLLARS
DO YOU WISH TO

1
2
3

WITHDRAW
DEPOSIT
GO HOME

11/ Working with IF Commands

TYPE A NUMBER AND PRESS RETURN ?1
HOW MUCH DO YOU WANT TO WITHDRAW
TYPE THE AMOUNT AND PRESS RETURN ?147

YOU HAVE 853 DOLLARS

DO YOU WISH TO

1 WITHDRAW

2 DEPOSIT

3 GO HOME

TYPE A NUMBER AND PRESS RETURN 92
HOW MUCH DO YOU WANT TO DEPOSIT
TYPE THE AMOUNT AND PRESS RETURN 922

YOU HAVE 875 DOLLARS

DO YOU WISH TO

1 WITHDRAW

2 DEPOSIT

3 GO HOME

TYPE A NUMBER AND PRESS RETURN ?1

HOW MUCH DO YOU WANT TO WITHDRAW
TYPE THE AMOUNT AND PRESS RETURN ?900
900 DOLLARS IS MORE THAN YOU HAVE
YOU CANNOT WITHDRAW THAT AMOUNT

YOU HAVE 875 DOLLARS

DO YOU WISH TO

1 WITHDRAW

2 DEPOSIT

3 GO HOME

TYPE A NUMBER AND PRESS RETURN 2?3
THE FIRST BANK OF ATLANTIS THANKS
YOU FOR YOUR BUSINESS. COME AGAIN.

The program uses IF commands to check the numbered choice
and the amount withdrawn. Repeating the list of choices is done by
having a GOTO that jumps to the early part of the program. The
arithmetic variable D is the number of dollars you have, and A is the
amount you withdraw or deposit.

111

112 Steering the Computer

10 LET D = 1000 |
20 PRINT "WELCOME TO THE FIRST BANK OF ATLANTIS"
25 PRINT

30 PRINT "YOU HAVE ";D;" DOLLARS"

40 PRINT "DO YOU WISH TO"

50 PRINT "1 WITHDRAW"

60 PRINT "2 DEPOSIT"

70 PRINT "3 GO HOME"

80 PRINT "TYPE A NUMBER AND PRESS RETURN ";
90 INPUT N

100 IF N = 1 THEN 200

110 IF N = 2 THEN 300

120 IF N = 3 THEN 400

130 GOTO 40

200 PRINT "HOW MUCH DO YOU WANT TO WITHDRAW"
210 PRINT "TYPE THE AMOUNT AND PRESS RETURN "
220 INPUT A

230 IF A > D THEN 260

240 LET D = D - A

250 GOTO 25

260 PRINT A; "DOLLARS IS MORE THAN YOU HAVE"
270 PRINT "YOU CANNOT WITHDRAW THAT AMOUNT"
280 GOTO 30

300 PRINT "HOW MUCH DO YOU WANT TO DEPOSIT"
310 PRINT "TYPE THE AMOUNT AND PRESS RETURN "
320 INPUT A

330 LET D = D + A

340 GOTO 25

400 PRINT "THE FIRST BANK OF ATLANTIS THANKS"
410 PRINT "YOU FOR YOUR BUSINESS. COME AGAIN."
500 END

A program like this might be fun to use for teaching someone
about banking. You might make some changes to this program and
use it as part of a computer game based on Monopoly.

When you use several IF commands, be very careful that you
have put in the right line numbers for the THEN and GOTO

11/ Working with IF Commands

commands. Make sure that after each group of lines there is a
GOTO that takes you to the proper line for the next command. It's a
good idea to think of several tests and check your program carefully.
You take the job of the computer and walk through the lines of your
program. Try out small parts of your program as you build it.
Make sure that at each step the program is doing what it’s supposed
to do.

Summary

1. By using IF commands, you can build programs that change
course based on what the user does. You can get the
computer to guide the user and to respond to the user’s
choices.

2. You should know how to offer a set of choices to the user
and then steer the computer to the commands that carry out
the correct steps.

3. By careful use of GOTOs, you can get the computer to go
back and repeat part of the program.

4. REMarks let you tell the reader something about your program.

Exercises

1. Write a program to print this multiple-choice question and let
the users know if they got it right or not:

IN WHICH MOVIE DOES JABBA THE HUTT APPEAR
1 STAR WARS

2 THE EMPIRE STRIKES BACK

3 RETURN OF THE JEDI

TYPE THE NUMBER AND PRESS RETURN ¢

In case you forgot, the answer is choice 3.

113

114

Steering the Computer

. (+) Write a program to print a multiple-choice question on a

state capital. Give the name of a state and four choices for
the state capital.

. Make up a program to print three multiple-choice questions

on characters in books or movies. Give the name of the
character and then four choices. Let the users know if they
got it right or not. Leave three blank lines between each
question.

. Make up a program for a younger brother or sister who needs

practice in counting. Get the computer to type out some
asterisks and then ask the child to type the number of
asterisks. The computer will type NO or YES and go on to the
next problem, like this:

* ok ok
?3

YES

* ok ok %
72

NO

You will probably have to help your brothers or sisters use
this program. You might have to help them recognize the NO
or YES. Your program should have at least six problems.

. (+) Write a program to offer this shape-matching test:

11/ Working with IF Commands

TYPE THE NUMBER WHICH MATCHES THIS
SHAPE AND PRESS RETURN

Heskokk
%
sk sk skeskskok ok
ok ks sk ok skokskok K ok okeofe ok ok sk ok ook ok
* * * *
koK ok skeok ok sheoke ok ok sk ok sk sk ok skok *okkok
(1) (2) (3) (4)

The instructions and shapes are printed by simple PRINT
commands. You will have to count spaces carefully. Let the
user know if he or she got it right or not.

. (*¥) Write a program like the dollar-banking program to keep
track of the number of jelly beans you have. Instead of
asking for WITHDRAW or DEPOSIT, ask for EAT SOME or
BUY SOME MORE.

115

Random Chances

(Advanced chapter—optional reading)

P PREVIEW: The computer can print a number for you
to use in dice playing games, or to make up
arithmetic exercises. A number which the computer
generates is called a random number. You can find
out what the random number is by printing it out, or
you can use it in your programs.

p NEW IDEAS: rolling dice, random numbers,
RND (1), function, INT, arithmetic exercises

116

12/ Random Chances 117

Rolling Dice

Many board games use dice or a spinner to decide how many
moves you get or which player wins points. You can get the
computer to roll a die (singular of dice) or become the spinner for
your games. The computer can generate a random number that is a
decimal fraction between 0.0 and 1.0. Each time you ask for a
random number, you get another number. If you run this program

10 PRINT RND(1)
you get one random number, such as:
0.378851

RND(1)is a function which gets a random number. Functions are
- special BASIC commands that you use as part of a PRINT command
or a LET command.

Differences Among Computers. You can use RND(1) on the ATARI,
Apple, and Commodore 64. RND works on Timex/Sinclair, IBM PC, and
the TI 99/4. On the TRS-80, it is RND(0). I

If you ask for five random numbers

10 FORI =1T0 S5
20 PRINT RND (1)
30 NEXT I

you will get five decimal numbers between 0.0 and 0.999999. The
numbers you get may be different, but they might be like this:

0.637022
0.761092
0.018769
0.941335
0.719427

118

Steering the Computer

Fractions are fine, but for dice you need a number between 1 and
6. To get the numbers between 0.0 and 5.999999, multiply the
fractions by 6 to get

3.822132
4.566552
0.112614
5.64801

4.316562

and then add 1 to these numbers to get numbers between 1.0 and
6.999999

4.822132
5.566552
1.112614
6.64801

5.316562

and finally throw away the decimal fractions part

4

oo~ O

You can do all this in your program by storing results with LET
commands. You will need a special function called the integer
function which throws away decimal fractions. For example, if N =
4.759219, then INT(N) is 4 without the fraction. Now you are
ready to write a program which creates random numbers one step at
a time.

10 FORI =1T0 5
20 LET A RND (1)
30 LET B 6 * A

12 / Random Chances

40 LET C = B + 1
50 LET D = INT(C)
60 PRINT
70 NEXT I

w)

You could also do all the arithmetic in the PRINT command:

10 FORI =1T0 5
20 PRINT INT(6%RND(1)+ 1)
30 NEXT T

If you had a game that needed a spinner with numbers from 1 to 8,
you could get the computer to be the spinner with this program:

10 PRINT "TO GET A NUMBER FROM 1 TO 8"
20 PRINT "AND PRESS RETURN "

30 INPUT A$

40 LET N = INT(8*RND(1l)+ 1)

50 PRINT "YOUR NUMBER IS ", N

60 GOTO 10

This program will keep on going until you stop it. In line 40,

RND(1)is multiplied by 8 because you need a number in the range
of 1 to 8.

Indianapolis 500 Car Race

Imagine that the famous Indianapolis 500 car race had only two
cars. The race goes for 500 miles. We’ll call the cars the GREEN
MACHINE and the SPEEDY SPIDER. Our program will get a
random number between 1 and 50 to show how many miles each car
has gone in the last 15 minutes. When one of the cars goes over
500 miles the race is over. The program might go like this:

119

120 Steering the Computer

DISTANCE COVERED

GREEN SPEEDY
MACHINE SPIDER

19 33
55 61
60 88
105 109
116 144
129 177
177 189
201 220
243 255
277 261
308 308
355 383
357 372
399 401
422 417
451 455
488 460
492 487
522 GREEN MACHINE IS THE WINNER

We’ll use G to count the total distance for the GREEN MACHINE. S
will count the total distance for the SPEEDY SPIDER. The IF
commands will check to see if there is a winner yet. The program
loops until there is a winner.

10 G =0

20 S =0

30 PRINT "DISTANCE COVERED"
40 PRINT

50 PRINT "GREEN", "SPEEDY"
60 PRINT '"MACHINE", "SPIDER"
70 PRINT

12 / Random Chances

80 LET A = INT(50*RND(1) + 1)

90 LET G = G + A

100 PRINT G,

110 IF G >= 500 THEN 200

120 LET B = INT(504RND(1) + 1)

130 LET S = S + B

140 PRINT S

150 IF S >= 500 THEN 300

160 GOTO 80

200 PRINT "GREEN MACHINE IS THE WINNER"
210 GOTO 400

300 PRINT "SPEEDY SPIDER IS THE WINNER"
400 END

Could you change this program to have a third car? You can
invent horse racing or other games using random numbers.

Number Guessing Game

A number guessing game that helps teach number facts can be
easily written once you have a random number generator. The
computer' gets a random number in the range 1 to 100, and then you
have to guess what that number is. You can write a program to
make the computer print a message showing whether your guess was
TOO HIGH or TOO LOW. The run might go like this:

THE COMPUTER HAS A NUMBER FROM 1 TO 100
GUESS THE NUMBER AND PRESS RETURN

?17

TOO LOW

744

TOO HIGH

729

TOO LOW

?35

TOO HIGH

121

122

Steering the Computer

?32

TOO LOW

734

CORRECT. YOU GOT IT!

The program begins with the message and the generation of the
random number from 1 to 100. Then two IF commands test the
guess and jump to print a message. The GOTOs send the computer
back up to get another guess:

10 PRINT "THE COMPUTER HAS A NUMBER";

15 PRINT " FROM 1 TO 100"

20 PRINT "GUESS THE NUMBER AND PRESS RETURN"
30 LET X = INT(100*RND(1) + 1)

40 INPUT N

50 IF N > X THEN 90

60 IF N < X THEN 110

70 PRINT "CORRECT. YOU GOT IT!"

80 GOTO 10
90 PRINT "TOO HIGH"
100 GOTO 40
110 PRINT "TOO LOW"
120 GOTO 40

Once the correct number is guessed, the computer goes back to the
beginning and starts the game over again with a new random
number.

Arithmetic Expressions

Learning addition or multiplication takes practice, but it is hard to
find someone who will sit for hours, offer new problems, and grade
the answers. Aha! Why not get the computer to do it? The first
program will be a simple addition exercise program that uses only
the numbers from 1 to 5. This might be useful for kindergarteners
or first graders who are just learning addition.

The computer will get two random numbers in the range 1 to 5,

12/ Random Chances

type out the problem, and wait for the answer. If the answer is
correct, the computer just types YES and goes on to the next
problem. If the answer is wrong, the computer types NO, gives the
correct answer, and then goes on to the next problem. Here’s a part
of the run:

3+ 1= 924
YES
1 + 4 =95
YES
4 +.5 = 98
NO S

Since this program is for children who may not be able to read, it
makes no sense to print instructions. Someone older will have to
get the child started and explain the symbols. Young children learn
fast and can spend a half hour practicing. The program is

10 LET A INT(5*RND(1) + 1)
20 LET B = INT(S5#RND(1l) + 1)
30 PRINT A; " 4+ "; B; "= 1;
40 INPUT C

50 IF A + B = C THEN 80

123

124

Steering the Computer

60 PRINT "NO "; A+B
70 GOTO 10

80 PRINT "YES"

90 GOTO 10

The GOTO 10 commands send the computer back up to the first
command to generate another problem. To stop this program, just
press the BREAK key.

If you know children who need practice in arithmetic, you might

let them try this program.

Summary

1.

The RND(1) function generates random numbers between 0.0
and 0.999999.

You can use this function to produce random numbers in any
range you want,

The INT function throws away the fraction of a number.

Dice rolling, number guessing, and arithmetic practice are just
three uses of random number generators.

Exercises

1.

(+) Use the RND (1) function to generate a random number in
the range 1 to 2. If the result is 1, print the word HEADS:; if
it is 2, print the word TAILS.

. Use the coin-tossing program from Exercise 1, and flip the

coin 100 times. Count up and print out the number of HEADS
and the number of TAILS.

. (+) Change the number guessing program so that the program

asks the user for the upper limit on the numbers. That should
make the game more of a challenge for the user. How many
guesses do you think it would take to find out the number if it
was in the range of 1 to 1000?

12 / Random Chances

. Change the addition exercise program to ask for the biggest
number that could be used in a problem. As users learn the
addition table up to 5, they can then go up to 7, 10, 20, 100,
or 1000.

. Change the addition exercise program so that it is now a
multiplication exercise program.

. (*+) Change the addition exercise program so that it is now a
subtraction exercise program. If A is smaller than B, don’t
use the numbers, because you would get a negative result.
Get another pair of random numbers.

. (*) You can get the computer to compose music with a
random number generator. Let’s say that each of the notes
A, B, C,D, E, F, and G is matched up with the numbers 1,
2,3,4,5,6,and 7. Now write a program to print out 10
random numbers in between 1 and 7, for example:

PLAY THESE NOTES FOR THE NUMBERS
ABCDETFG
1234567

PRESS RETURN TO GET 10 NOTES ?

THE NOTES ARE 4 4 7 3 4 2 7 6 3 1

PRESS RETURN TO GET 10 NOTES ?

In this example, the notes generated by the computer are
DDGCDBGFCA. Try to play these on a piano or other
instrument. Extra added attraction: can you add seven IF
commands to this program so that the program will print out
the letters instead of the numbers?

125

126

Fill-in-
the-Blanks
Storytelling

P PREVIEW: In this chapter you will see how to ask
for names, colors, or numbers from the user of the
program. The names, colors, and numbers can be
used to make up a story. People enjoy seeing their
names used in a story printed on the computer.

p NEW IDEAS: writing stories, using INPUT strings in
a printed story

13/ Fill-in-the-Blanks Storytelling

Compunicorn Story Writer

A good storyteller knows how to change a story to fit the
audience. A personal story which has danger and a hero who saves
everyone can be a lot of fun. The computer can simply print out a
whole story, but you could make it special. The computer can print
a story that lets the user fill in words.

The Compunicorn Story Writer was created by my daughter Sara
for her eighth birthday party. She decided to ask for a person’s
name, a favorite number, two foods, two colors, an animal, and an
ice cream flavor. Sara used the answers in a story that she wrote.
Sometimes the story can come out sounding funny and sometimes
it’s just plain silly, but everyone finds it fun.

This is what it looks like:

HELLO

THIS IS THE COMPUNICORN STORY WRITER
AFTER YOU ANSWER THESE QUESTIONS,
YOU WILL GET A STORY.

PRESS RETURN AFTER EVERY ANSWER.

WHAT IS YOUR NAME ?JENNA
WHAT IS YOUR FAVORITE
NUMBER BETWEEN 1 AND 50 2?17
FOOD ?PIZZA
ANOTHER FAVORITE FOOD ?BROCCOLI
COLOR ?BLUE
ANOTHER FAVORITE COLOR ?PINK
ANIMAL ?GIRAFFE
FLAVOR OF ICE CREAM ?CHOCOLATE CHIP

THE STORY OF 17 UNICORNS
ONCE UPON A TIME THERE WAS A

GROUP OF 17 UNICORNS GRAZING IN
A PATCH OF BLUE PIZZA.

127

128 Steering the Computer

ONE DAY THE YOUNGEST UNICORN NAMED
JENNA WHO WAS 17 YEARS OLD

LED THE GROUP TO SEARCH FOR A NEW
GRAZING PLACE. THEY FOUND A PATCH OF
TASTY PINK BROCCOLI. ALL OF A SUDDEN,
A BIG GIRAFFE CAME OUT AND SAID,

'TELL ME YOUR FAVORITE FLAVOR OF

ICE CREAM OR I WILL KILL YOU ALL!"

THE UNICORN NAMED JENNA SAID,

'I WILL TELL HIM THAT OUR FAVORITE
FLAVOR OF ICE CREAM IS CHOCOLATE CHIP.'
SHE DID, BUT THE GIRAFFE PUT THEM IN
A CAGE ANYWAY! JENNA WAS SO LITTLE
THAT SHE COULD SLIP THROUGH THE BARS.
SHE TOUCHED HER HORN TO THE LOCK AND
THE UNICORNS ALL CAME OUT.

THEY WENT BACK TO THEIR GRAZING AND
LIVED HAPPILY EVER AFTER.

This program has three parts: the introduction, the questions, and
the story. The introduction is simple since it has only DIM and
PRINT commands:

13/ Fill-in-the-Blanks Storytelling

5 DIM A$(30), C$(30), D$(30), E$(30), F$(30)
6 DIM G$(30), H$(30)

10 PRINT
20 PRINT
30 PRINT
40 PRINT
50 PRINT

60 PRINT

"HELLO"

"THIS IS THE COMPUNICORN STORY WRITER"
"AFTER YOU ANSWER THESE QUESTIONS,"
"YOU WILL GET A STORY."

"PRESS RETURN AFTER EVERY ANSWER."

The INPUT variables go in alphabetical order, with $ signs for the
string variables, A$, C$, D$, E$, F$, G¥, and H$, and just a plain B
for the number. Next, the questions are made of PRINT commands
followed by INPUT commands.

70 PRINT "WHAT IS YOUR NAME "

80 INPUT A$
90 PRINT "WHAT IS YOUR FAVORITE"

100
110
120
130
140
150
160
170
180
190
200
210
220
230

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT

n

B

C

LA

D$

E$

"

F$

G#

"

H$

’

NUMBER BETWEEN 1 AND 50 ";
FOOD ";

ANOTHER FAVORITE FOOD ":
COLOR ";

ANOTHER FAVORITE COLOR ":
ANIMAL ";

FLAVOR OF ICE CREAM "

All of the values of the variables are now ready to be used in the
story. First skip two lines and print the title. The value of the
variable B is used in the title. By using semicolons around the
variable B, you make sure that the words get printed close to the

number.

129

130 Steering the Computer

240 PRINT
250 PRINT
260 PRINT "THE STORY OF "; B ; '" UNICORNS"
270 PRINT

On the ATARI you can clear the screen and have the story begin on
the top by replacing line 240 with

240 PRINT "<ESC> <CTRL> <CLEAR>"

Within the quotes you press the ESC key, then the CTRL and CLEAR
keys. Your screen will show a small curving arrow inside the
quotes.

The story starts with an indented line and goes on by using the
variables where they are needed:

280 PRINT " ONCE UPON A TIME THERE WAS A"
290 PRINT "GROUP OF "; B ; " UNICORNS GRAZING IN"
295 PRINT "A PATCH OF "; E$; " "; C§; "."

300 PRINT "ONE DAY THE YOUNGEST UNICORN NAMED"
310 PRINT A$; " WHO WAS "; B; " YEARS OLD"

320 PRINT "LED THE GROUP TO SEARCH FOR A NEW"

330 PRINT "GRAZING PLACE. THEY FOUND A PATCH OF"
340 PRINT "TASTY "; F$; " " ; D§ ;".";
345 PRINT "ALL OF A SUDDEN,"

350 PRINT "A BIG '"; G§ ;'" CAME OUT AND SAID,"
360 PRINT "'TELL ME YOUR FAVORITE FLAVOR OF"
370 PRINT "ICE CREAM OR I WILL KILL YOU ALL!'"

Since your ATARI has room for only 24 lines on the screen, it’s a
good idea to stop the story and let people read until they are ready
to go on. You can do this by printing a message and waiting for
INPUT of any character:

380 PRINT " (TO GO ON, PRESS RETURN)"
390 INPUT Z$

This is an exciting point in the story. The pause builds interest in
finding out what will happen. On with the story:

13/ Fill-in-the-Blanks Storytelling

400 PRINT "THE UNICORN NAMED "; A$;" SAID,"

410 PRINT "'I WILL TELL HIM THAT OUR FAVORITE"
420 PRINT "FLAVOR OF ICE CREAM IS "; H$ ", '

430 PRINT "SHE DID, BUT THE "; G$;" PUT THEM IN"
440 PRINT "A CAGE ANYWAY! "; A$;" WAS SO LITTLE"
450 PRINT "THAT SHE COULD SLIP THOUGH THE BARS."
460 PRINT "SHE TOUCHED HER HORN TO THE LOCK AND"
470 PRINT "THE UNICORNS ALL CAME OUT."

480 PRINT "THEY WENT BACK TO THEIR GRAZING AND"
490 PRINT "LIVED HAPPILY EVER AFTER."

500 END

This program uses only INPUT and PRINT commands, but there
is a lot of careful planning to make sure that the story comes out
making sense. When you make up your own stories, write out the
questions first and then create a story using the answers to the
questions. The story is more enjoyable if the answers get used
several times.

It’s often fun to see how the story turns out. Strange things can
happen, such as the patch of blue pizza or pink broccoli. Sara had a
contest to see which of her friends could produce the funniest story.

Everyone got to make a story but could vote only for someone else’s
story as the funniest.

Summary

1. Stories can be given a personal touch by asking users to
provide words, names, or numbers for the story.

2. After the question-and-answer section of the program, the
story is printed. 4

3. It is a good idea to stop the story every so often and have the
readers press RETURN when they are ready to g0 on.

131

132

Steering the Computer

Exercises
1. Write a program that would produce this:

WHAT IS YOUR NAME ¢?LARRY

TYPE AN ARTICLE OF CLOTHING ?PANTS
TYPE AN ANIMAL 9?RABBIT

TYPE A NUMBER 7174

LARRY REACHED INTO HIS PANTS
AND PULLED OUT 174 GIANT RABBITS

2. (+) Write a program that asks for (1) the names of two
people, (2) a game that is played by two people, (3) a number
of days that they play the game, and (4) a kind of candy
which is used as a prize for the winner. Now write a short
story using these ideas, and turn it into a program.

3. (*) Write a storytelling program about a circus, with users
giving names for two clowns, some animals, and some
refreshments.

4. (*) Write an adventure story about children caught in a storm
on a ship out on the ocean. A sea creature comes up to the
ship, but the hero takes a weapon and chases the creature
away. The sun comes out, and they make it safely home.
The users could provide names for the hero and the ship,
describe the color of the water or sky, describe the creature,
choose the weapon, and name the feelings at the end of the
story.

The Mystery of
the Haunted House

p PREVIEW: The Compunicorn Story Writer takes
words and includes them in a story. An even more
exciting story program is one in which the user is part
of the story and can decide what happens next. This
chapter starts with a mystery story and then shows
you how to write your own.

P NEW IDEAS: stories with different endings,

complicated paths through programs 133

134

Steering the Computer

The Mystery Begins

Reading an adventure story or watching a mystery on television is
fun. It can be even more exciting if you are in the story and can
decide what happens next. There is a series of “Choose your own
adventure” books by R. A. Montgomery such as The Abominable
Snowman or The Mystery of the Maya which lets you choose the

plot by answering questions and then jumping to some page in the
book.

You can write your own adventure programs for your friends to
try out. For instance, in this adventure you explore a haunted
house. You can get out of the house safely without discovering the
mystery, you can solve the mystery and slay the dragon, or you can
be killed by the dragon—so watch out.

First, let’s see what happens if you leave the house early in the
adventure:

THE MYSTERY OF THE HAUNTED HOUSE

YOU ARE STANDING IN FRONT OF A
HAUNTED HOUSE WITH BROKEN WINDOWS.
TYPE F TO GO IN BY THE FRONT DOOR

B TO GO INTO THE BASEMENT
(PRESS RETURN AFTER EVERY CHOICE)
7F
THE DOOR CREAKS OPEN AND THEN SLAMS
SHUT BEHIND YOU. A LOUD VOICE SAYS
'YOU BETTER RUN AWAY FROM THIS HOUSE.'
TYPE L TO LEAVE THE HOUSE

B TO GO INTO THE BASEMENT
?B
THE COLD, DARK, AND DAMP BASEMENT SENDS
A SHIVER THROUGH YOUR SPINE. YOU SEE
TWO DOORS AND HEAR A HISSING SOUND.
TYPE R TO OPEN THE RIGHT DOOR

L. TO OPEN THE LEFT DOOR
?L

14/ The Mystery of the Haunted House

YOU SEE A NARROW WET TUNNEL.
YOUR HEART POUNDS AS YOU CRAWL
THROUGH IT AND

YOU COME OUT SAFELY INTO THE SUNLIGHT.
YOU NEVER RETURN AND NEVER LEARN THE
MYSTERY OF THE HAUNTED HOUSE.

The version in which you meet and slay the dragon goes like this:

THE MYSTERY OF THE HAUNTED HOUSE

YOU ARE STANDING IN FRONT OF A

HAUNTED HOUSE WITH BROKEN WINDOWS.
TYPE F TO GO IN BY THE FRONT DOOR

B TO GO INTO THE BASEMENT

(PRESS RETURN AFTER EVERY CHOICE)

?F

THE DOOR CREAKS OPEN AND THEN SLAMS
SHUT BEHIND YOU. A LOUD VOICE SAYS
'YOU BETTER RUN AWAY FROM THIS HOUSE.'

TYPE L TO LEAVE THE HOUSE

135

136

Steering the Computer

B TO GO INTO THE BASEMENT
7B
THE COLD, DARK, AND DAMP BASEMENT SENDS
A SHIVER THROUGH YOUR SPINE. YOU SEE
TWO DOORS AND HEAR A HISSING SOUND.
TYPE R TO OPEN THE RIGHT DOOR
L TO OPEN THE LEFT DOOR
7R
A SLIMY SCALE-COVERED DRAGON
BREATHES FIRE AT YOU, BUT ONLY
BURNS YOUR HAIR SLIGHTLY.
YOU LOOK AROUND FOR WEAPONS.
TYPE S TO GRAB THE SWORD ON THE FLOOR
G TO TAKE THE GUN FROM A SHELF
?S
AS YOU GRAB THE SWORD, IT GLOWS AND
GIVES YOU STRENGTH. YOU STAB AT THE
DRAGON'S HEART, AND IT TURNS INTO A
GOLD STATUE WITH DIAMOND EYES. AT THAT
MOMENT, ALL THE EVIL IN THE WORLD TURNS
TO GOOD. YOU RELAX, WALK PROUDLY INTO
THE SUNLIGHT, AND GET HOME SAFELY TO TELL
YOUR STORY.

The unfortunate ending comes if you decide to take the gun:

YOU SHOOT AT THE DRAGON'S STOMACH,
BUT THE BULLETS BOUNCE OFF.

THE DRAGON IS ANGERED. IT GROWLS.
IT BREATHES FIRE AT YOU

AND BURNS YOU UP COMPLETELY.
SORRY. IT WAS A BAD DAY FOR YOU.

You can change the ending if you want it to be gentler. The
program is long but uses only PRINT, IF, INPUT, and GOTO
commands. To prepare a story like this, you might want to draw a
diagram (Figure 2) to show the plan of action. The numbers in the
circles are the line numbers in the program. The letters on the
arrows are the choices that the user gets to make. The shortest path

L(Leave)

F(Front)

14/ The Mystery of the Haunted House

START

B(Basement)

B(Basement) R

END

Figure 2. A diagram for the plan of action in “The Mystery of the Haunted
House.”

has three circles, the longest path has five circles. There are seven
possible paths in this simple mystery.

If the user does not type one of the given letters, the choice is
repeated. The program goes like this:

50 DIM A$(1)

100
110
120
130
140
150
160
170
180
190
195
200
210

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
IF A$
IF A%

"THE MYSTERY OF THE HAUNTED HOUSE"

"YOU ARE STANDING IN FRONT OF A"
"HAUNTED HOUSE WITH BROKEN WINDOWS."
"TYPE F TO GO IN BY THE FRONT DOOR"
" B TO GO INTO THE BASEMENT"
"(PRESS RETURN AFTER EVERY CHOICE)"
A

= "F'" THEN 200

= "B" THEN 300

GOTO 140

PRINT
PRINT

"THE DOOR CREAKS OPEN AND THEN SLAMS"
"SHUT BEHIND YOU. A LOUD VOICE SAYS,"

137

138

Steering the Computer

220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380
400
410
420
430
500
510
520
525
530
540
550
560
570
580
600
610
620
630
700
710
720

PRINT "'YOU BETTER RUN AWAY FROM THIS HOUSE.'"
PRINT "TYPE L TO LEAVE THE HOUSE"

PRINT " B TO GO INTO THE BASEMENT"
INPUT A%

IF A$ = "L" THEN 400

IF A$ = "B" THEN 300

GOTO 230

PRINT "THE COLD, DARK, AND DAMP BASEMENT SENDS
PRINT "A SHIVER THROUGH YOUR SPINE. YOU SEE"
PRINT "TWO DOORS AND HEAR A HISSING SOUND."
PRINT "TYPE R TO OPEN THE RIGHT DOOR"

PRINT " L TO OPEN THE LEFT DOOR"

INPUT A%

IF A$ = "R" THEN 500

IF A$ = "L" THEN 600

GOTO 330

PRINT "YOU COME OUT SAFELY INTO THE SUNLIGHT."
PRINT "YOU NEVER RETURN AND NEVER LEARN THE"
PRINT "MYSTERY OF THE HAUNTED HOUSE."

GOTO 1000

PRINT "A SLIMY SCALE-COVERED DRAGON"

PRINT "BREATHES FIRE AT YOU, BUT ONLY"

PRINT "BURNS YOUR HAIR SLIGHTLY."

PRINT "YOU LOOK AROUND FOR WEAPONS."

PRINT "TYPE S TO GRAB THE SWORD ON THE FLOOR"
PRINT ¢ G TO TAKE THE GUN FROM A SHELF"
INPUT A$

IF A$ = "S" THEN 700

IF A$ = "G" THEN 800

GOTO 530

PRINT "YOU SEE A NARROW WET TUNNEL."

PRINT "YOUR HEART POUNDS AS YOU CRAWL"

PRINT "THROUGH IT AND"

GOTO 400

PRINT "AS YOU GRAB THE SWORD, IT GLOWS"

PRINT "AND GIVES YOU STRENGTH. YOU STAB AT"
PRINT "THE DRAGON'S HEART, AND IT TURNS"

14 / The Mystery of the Haunted House 139

730 PRINT "INTO A GOLD STATUE WITH DIAMOND EYES."
740 PRINT "AT THAT MOMENT, ALL THE EVIL IN THE"
750 PRINT "WORLD TURNS TO GOOD. YOU RELAX, WALK"
760 PRINT "PROUDLY INTO THE SUNLIGHT, AND GET"
770 PRINT "HOME TO TELL YOUR STORY."

780 GOTO 1000

800 PRINT "YOU SHOOT AT THE DRAGON'S STOMACH,"
810 PRINT "BUT THE BULLETS BOUNCE OFF."

820 PRINT "THE DRAGON IS ANGERED. IT GROWLS."
830 PRINT "IT BREATHES FIRE AT YOU"

840 PRINT "AND BURNS YOU UP COMPLETELY."

850 PRINT '"SORRY. IT WAS A BAD DAY FOR YOU."
1000 END

Take the time to follow this program through for several paths
until you feel that you understand it. The seven possible choices are

140

Steering the Computer

-L
-L

1 W ™
(o

B I v e v]

B—
R-
R—
B-—
B—

X QW

-S
-G

You may want to try your hand at writing an adventure in the
jungle, a love story, a detective story about a strange murder, a

happy story about a family picnic, or a fantasy about unicorns and
Pegasus.

The Good Morning Program

This kind of question-asking program can also be useful for
planning and organizing your life. You could make sure you got the
day started out right by having the computer ask questions like this:

GOOD MORNING!

WHAT IS THE OUTSIDE TEMPERATURE
TYPE A FOR ABOVE FREEZING
B FOR BELOW FREEZING
?B
MAKE SURE THAT YOU WEAR WARM CLOTHES
AND TAKE YOUR GLOVES.
DO YOU HAVE YOUR LUNCH
TYPE Y FOR YES
N FOR NO
7Y
DO YOU HAVE YOUR HOMEWORK
TYPE Y FOR YES
N FOR NO
?N
LOOK FOR IT IN YOUR BEDROOM AND

14 / The Mystery of the Haunted House

THE KITCHEN. DID YOU LEAVE ANY
OF YOUR BOOKS IN SCHOOL.
DO YOU HAVE TO FEED THE PETS
TYPE C TO FEED THE CAT

G TO FEED THE GOLDFISH

N NO FEEDING NEEDED
?C
THE CAT FOOD IS IN THE KITCHEN.
CHECK IF THE CAT NEEDS FRESH LITTER.
DO YOU HAVE TO FEED THE PETS
TYPE C TO FEED THE CAT

G TO FEED THE GOLDFISH

N NO FEEDING NEEDED
7N
HAVE A GOOD DAY AT SCHOOL.

In the last part of this run there were three choices. After one was
chosen, the user got the chance to make a second choice. A paper
checklist might be just as good for a short list, but the computer
program might be fun. The computer does get to be useful if there
are many tasks to remember.

Long checklists of activities might be useful for packing up for
weekend trips, preparing a shopping list, or helping out new users of
a computer.

Summary

1. Mystery stories can develop from decisions made by the user.
The program offers two or more choices, and the user types
one choice.

2. This same approach can be used to prepare useful checklist
programs and teaching programs.

141

142

Steering the Computer

Exercises

1. Write a simple program with one question for the user:

CHOOSE THE CONTENTS OF MY HANDS
TYPE R FOR MY RIGHT HAND
L. FOR MY LEFT HAND
?R
GOOD CHOICE, YOU GET CANDY

If the user chooses L, he or she gets

BAD CHOICE, YOU GET A CANDY WRAPPER

. Write a program about an adventure in a jungle. Give the

user the choice of taking a boat or going on foot, then the
choice of traveling by day or night. The user can meet
crocodiles or snakes and try to capture them. Make sure
there is at least one good and one bad ending.

. (*) Write a checklist program for getting dressed. Choose

different kinds of shoes, clothes, hats, and coats. You might
keep track by drawing the clothing as they are chosen.

. (*+) Write a program to help someone choose an activity.

Start by asking for indoor or outdoor activities. Then ask if
exercise or quiet activities are wanted. Finally, print out one
or two activities for each category. Figure 3 has the diagram
for this program. The second question will appear twice in
your program.

14/ The Mystery of the Haunted House 143

START

[(Indoor) O(Outdoor)

END

Figure 3. A diagram for Exercise 4.

Building Programs
from Parts

P PREVIEW: As you start to write longer programs
you may find that some parts of the program will get
repeated in two or more places. There is a shortcut
when you need the same commands in two places:
you can write the commands once and then call on
them from two places (or more) in your program.
These pieces of your program are called subroutines.
Writing subroutines also helps to break up a
complicated program into a group of smaller pieces
that are easier to write.

P NEW IDEAS: subroutines, GOSUB, RETURN
144

15/ Building Programs from Parts 145

Building Rockets from Parts

If you have a complicated and long project to do, it helps to break
that project into smaller parts. You may not see how to do the big
project, but you probably can figure out how to do each small part.
You might want to print out a big rocket as part of a game or story
program:

0
000
0000000 (command module)

000000000

000000000

M M
M M (second stage)
M M
MMMMMMMMMMM
A A

(main booster)

> B > e >
B> o> > e

AA AA
AAA AAA
AAAAAAAAAAAAAAAAAAA

This might be what the rocket looks like just before blast-off. You
could get this picture printed out easily enough with 17 PRINT
commands. But now you might want to print the second picture in
the story, which shows the rocket taking off:

146

Steering the Computer

0
000
0000000

000000000

000000000

M M
M M
M M
MMMMMMMMMMM
A A

> e e

AA
AAA
AAAAAAAAAAAAAAA
(I)
((C III)))
(((IIIIT))

(command module)

(second stage)
A
A (main booster)
A
A
AA
AAA
AAAA

(rocket firing)
)

To get this picture would take another 20 PRINT commands. The
main booster fires for a while until it drops away, and then the
second stage rocket begins firing:

0
000
0000000
000000000
000000000
M M
M M
M M
MMMMMMMMMMM
(I)

(CC IIT)))
(((IIIII)))

(command module)

(second stage)

(rocket firing)

15/ Building Programs from Parts 147

This picture would take another 12 PRINT commands. Then the
command module would be in orbit by itself:

0
000
0000000
000000000
000000000

This last picture could be done with just 5 PRINT commands. So
the whole story with four pictures would take a total of 54 PRINT
commands. You could do it this way, but you might make a
mistake in one of the parts. That would take quite a while to
correct.

There is another way! You could write print commands for each
part separately and then use the parts to build each picture. This
means you have to plan ahead, but it is well worth it since the
program is shorter and easier to write. We’ll call each part a
subroutine and begin it with a REMark to describe what it does.
Each subroutine ends with a RETURN command. First, the
command module subroutine:

100 REM COMMAND MODULE SUBROUTINE

110 PRINT " o"

120 PRINT " ooo"
130 PRINT " 0000000"
140 PRINT " 000000000"
150 PRINT " 000000000"
160 RETURN

Next comes the second stage of the rocket, which we write as a
subroutine. This part of the program uses line numbers beginning at
200, to keep it separate from other parts of the program:

148 Steering the Computer

200 REM SECOND STAGE SUBROUTINE

210 PRINT " M M"
220 PRINT " M M"
230 PRINT " M M"
240 PRINT " MMMMMMMMMMM "
250 RETURN
The third subroutine takes care of the main booster. It begins at line
300:
300 REM MAIN BOOSTER SUBROUTINE
310 PRINT " A A"
320 PRINT " A A"
330 PRINT " A A"
340 PRINT " A A"
350 PRINT " A A"
360 PRINT " AA AA"
370 PRINT " AAA AAA"
380 PRINT " AAAAAAAAAAAAAAAAAAAY
390 RETURN
Finally, the fourth subroutine is the rocket firing. It begins at line
400:
400 REM ROCKET FIRING SUBROUTINE
410 PRINT " (I)"
420 PRINT " (((III)))"
430 PRINT " (((IIIII)))"
440 RETURN

Now that the parts of the rocket are ready, there has to be some
way to use them in the program. The GOSUB command makes the
computer jump to the subroutine and do the printing. Then the
RETURN command sends the computer back to the line after the
GOSUB. To print the first picture with the command module, second
stage, and main booster, you only have to jump to three subroutines:

15/ Building Programs from Parts

10 PRINT "READY FOR BLAST-OFF"
15 GOSUB 100
20 GOSUB 200
25 GOSUB 300

To get the picture of the blast-off, you need to use all four
subroutines:

30 PRINT "3, 2, 1 BLAST-OFF"
35 GOSUB 100
40 GOSUB 200
45 GOSUB 300
50 GOSUB 400

The picture of the second stage rocket firing uses only three
subroutines:

55 PRINT "SECOND STAGE ROCKET FIRING"
60 GOSUB 100
65 GOSUB 200
70 GOSUB 400

Finally, the picture of the command module in orbit uses only one
subroutine:

75 PRINT "COMMAND MODULE IN ORBIT"
80 GOSUB 100

When all four pictures have been drawn, the program is done. To
get to the END command without going through the subroutine, you
need to include a GOTO command:

85 GOTO 500
To finish the program, be sure to include the END command

500 END

149

150 Steering the Computer

after all four subroutines. The complete program follows below.
Instead of the 54 lines for the program without subroutines, we have
37 lines to do the printing, 4 lines of printed comments, and 4
REMarks.

10 PRINT "READY FOR BLAST-OFF"

15 GOSUB 100

20 GOSUB 200

25 GOSUB 300

30 PRINT "3, 2, 1 BLAST-OFF"

35 GOSUB 100

40 GOSUB 200

45 GOSUB 300

50 GOSUB 400

55 PRINT '"SECOND STAGE ROCKET FIRING"
60 GOSUB 100

65 GOSUB 200

70 GOSUB 400

75 PRINT "COMMAND MODULE IN ORBIT"
80 GOSUB 100

85 GOTO 500

100 REM COMMAND MODULE SUBROUTINE
110 PRINT " o"

120 PRINT " 000"

130 PRINT " 0000000"

140 PRINT " 000000000"

150 PRINT " 000000000"

160 RETURN

200 REM SECOND STAGE SUBROUTINE
210 PRINT " M Mv

220 PRINT " M M"

230 PRINT " M M"

240 PRINT " MMMMMMMMMMM"*

250 RETURN

15/ Building Programs from Parts

300 REM MAIN BOOSTER SUBROUTINE

310 PRINT " A A"

320 PRINT " A A"
330 PRINT " A A"
340 PRINT " A A"
350 PRINT " A A"
360 PRINT " AA AAM
370 PRINT " AAA AAA"
380 PRINT " AAAAAAAAAAAAAAAAAAAT
390 RETURN

400 REM ROCKET FIRING SUBROUTINE
410 PRINT " (I)"

420 PRINT " (((III)))"

430 PRINT " (((ITIIT)))"
440 RETURN

500 END

Working with Subroutines

Subroutines are a wonderful invention because they make it much
easier to build bigger programs and to make changes. For example,
let’s say you decided to have two second stages in your rocket. It’s
easy; just add another jump to a subroutine

22 GOSUB 200

and now you’ve got a taller rocket.

You can make changes inside a subroutine, and then every time it
is used the change will show up in the program. You might change
the main booster subroutine to have a decoration on the rocket or the
letters USA:

350 PRINT " A USA A"

This change would show up every time the subroutine is used.
Here’s the taller rocket with the decoration, as it blasts off:

151

152

Steering the Computer

0
000
0000000 (command module)

000000000

000000000

M M
M M (another second stage)
M M
MMMMMMMMMMM

M M
M M (second stage)
M M
MMMMMMMMMMM
A A

(main booster)

o
g

USA
AA AA
AAA AAA
AAAAAAAAAAAAAAAAAAA
(I)
(((III))) (rocket firing)
(((IIIITI)))

It takes some practice to see how to break programs apart into
subroutines. Subroutines become more useful as your programs get
longer and more complicated.

Summary

1. When programs become long and parts of the program are
repeated, subroutines help organize and shorten the program.

2. You jump to the subroutine with a GOSUB command and go
back with the RETURN command.

15 / Building Programs from Parts 153

3. To help organize your program, begin every subroutine with a
REMark explaining it.

4. You need a GOTO command to jump over the subroutines and
get to the END command.

Exercises

1. Write a program to draw this castle with a roof, three floors,
and the entrance:

MMM MMM MMM MMM
MMM MMM MMM MMM
MMMMMMMMMMMMMMMMMMMMM

I I
I IIIIII IIIIIT I
I I I I I I
I TIIITII IITIII I
I I
I TIIIIII ITITIII I
I I I I I I
I IIIIIT ITITIT I
I I
I TIIITII ITIIIT I
I I I I I I
I IIITII IITIIT I
I I
I I
I ITITIITIII I
I I 00 I I
I I I I
I I I I
I I I I

000000000000000000000
000000000000000000000

154 Steering the Computer

Write three subroutines: one for the roof, one for the floor,
and one for the entrance. Then use one GOSUB to print the
roof, three GOSUBs to print the floors, and one GOSUB to print
the entrance.
If you want to get fancy, you can replace the three GOSUBs

for the floors with a loop and one GOSUB. Now you can print
a 10-story castle if you want

2. (+) First make three flowers lying on their sides as
subroutines. One of your flowers might look like this:

FF
FFF
FFFFF
FFFFFFFOO
ITITITIIIIIIIIIIIIIIIIIIIIIFFFFFFFFO0000
FFFFFFFOO
FFFFF
FFF
FF

You can design the other two flowers as you like.

Now print one of the first, two of the second, another one
of the first, and three of the third—all right next to each
other. If you have a printing terminal, you could make a
very long flower garden to decorate your classroom or
bedroom. Since the flowers will be printed on their sides,
you’ll have to turn the paper to the left to make the flowers
point up.

3. (*) You can print messages in big letters to make signs for
your door or your room. If your name is Anna, you might
want to print:

AAA

AAAAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAAAA
AAA AAAAAA
AAA AAAAAAAA
AAA AAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

AAAAAA

AAA

NNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNN
NNNNNN
NNNNNN
NNNNNN
NNNNNN
NNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNN

NNNNNN
NNNNNN
NNNNNN
NNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNN

AAA

AAAAAA

AAAAAAAAAAAA

AAAAAAAAAAAAAAAAA
AAA AAAAAA
AAA AAAAAAAA
AAA AAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAA

AAAAAA

AAA

155

156 Steering the Computer

Write the subroutines for the letter A and for the letter N, then
use four GOSUBs to get the job done.
You could work with your friends and create more letters of

the alphabet so that you could write out whole words and
sentences.

Let’'s Keep Learning

Congratulations! You have finished this introduction to computer
programming in BASIC. You deserve to be congratulated because
you have learned many important ideas that are used in computer
programming;:

printing strings

doing loops

taking input from a user

calculating with numbers

using variables to save values

making decisions and jumping over commands
building programs from parts

000000 ao

You know enough BASIC to write useful and enjoyable programs
to:

print poems, shapes, pictures, and stories
keep a telephone book

add, subtract, multiply, and divide numbers
keep track of your allowance

make up riddle or quiz programs

write storytelling programs

create mystery and adventure games

O 000o0oao

Some people are satisfied knowing just this much about BASIC.
They can write programs when they need to or just for fun. They
are in charge of the computer and can learn more when they want
to. Now they can explore other interests such as basketball,
reading, or dancing.

157

158

Let’s Keep Learning

Let’s Learn More BASIC

Other people get very excited about learning more BASIC. They
want to know all the commands and all the ways to use the
commands. They want to write longer programs and use some of
the fancy parts of their computer—the color graphics, sound, disks,
joysticks, game paddles, or printers.

This chapter is a quick tour of some other BASIC commands,
programming ideas, and computer uses. Read this only if you want
to learn more about BASIC.

Fancy Calculations

In Chapter 8 you learned to do calculations using arithmetic
variables. Changing Fahrenheit to Celsius took three LET
commands:

50 LET G =
60 LET H
70 LET C =

2

Il
jo ol p B
~N ¥ |

3
5
9

If you study more BASIC, you’ll learn that there is a shortcut which
lets you do it all in one LET command:

50 LET C = 5/9 * (F - 32)

Parentheses () help you write fancy calculations in one LET
command. But you have to learn the rules of where to put the
parentheses.

Computers are especially useful for doing math problems. If you
are into math, you can write programs to do percentages, fractions,
decimals, trigonometry, exponents, or square roots. In BASIC there
is a function—SQR—that lets you take square roots. You can find
out the square root of 9 by running this program:

10 PRINT SQR (9)

Let’s Keep Learning

The answer is 3. There are more functions in BASIC that help you
do calculations. Check your computer manual.

Commanding an Army of Numbers

The programs in this book never had more than 10 variables.
Using one letter of the alphabet for each variable was easy. You
never ran out of letters. As you get to write longer programs, you
may need many variables. For example, you may want to keep
track of the number of hits for each player during a baseball game.
If there are 29 players, you would need 29 variables.

The following program uses the DIM—Dimension—command to
set up 29 integer variables named H (1), H(2) .. . H(29). This is
called an array of integers. Lines 20 — 40 set all 29 variables to 0.
Then lines 50 — 80 ask which player got a hit. If player number 0
is used, the program goes on to print out the total number of hits for
each player (lines 120 - 150). If the INPUT value N was 27, that
means that player 27 got a hit. In line 100, one gets added to
H(27) to keep track of the number of hits. The program keeps
repeating the PRINT and INPUT commands until N = 0.

10 DIM H(29)

20 FORI = 1 TO 29

30 LET H(I) = 0

40 NEXT I

50 PRINT "TYPE THE NUMBER OF THE PLAYER"
60 PRINT "WHO GOT A HIT, OR O AT THE"

70 PRINT "END OF THE GAME. PRESS RETURN."
80 INPUT N

90 IF N = 0 THEN 120

100 LET H(N) = H(N) + 1

110 GOTO 50

120 PRINT "PLAYER", "HITS"

130 FOR I = 1 TO 29

140 PRINT I, H(I)

150 NEXT I

159

160

Let’s Keep Learning

This program will give you an idea of how arrays are used. Check
your computer manual or a more advanced book to get a full
explanation.

Arrays are useful in keeping track of such things as rainfall for
each of the 365 days of the year, speed for each of the 22 swimmers
in a race, or the amount of money to charge each of the 41 people
on a newspaper route.

You can also have arrays of strings such as the names of the top
40 record albums, the names of the 17 people you want to invite to
a party, or the 60 strings needed to draw a spaceship on your
screen.

Sum and Average

When you start using arrays, you’ll learn and think of more
programming ideas. An idea for a program is called an algorithm or
a plan. An important algorithm is adding up a list of numbers.
Chapter 9 showed how to add up numbers which were typed in.
Now, you can see how to add up the numbers in an array. The idea
is the same. Start by setting a total variable T to zero. Then loop
through the array and add each value to the total variable.

These commands add up the total number of hits by the baseball
team:

160 LET T = 0

170 FOR I = 1 TO 29

180 LET T = T + H(I)

190 NEXT I

200 PRINT "TOTAL TEAM HITS = "; T

To find the average number of hits per player, simply divide by 29

210 LET A =T / 29
220 PRINT "AVERAGE HITS = "; A

Let’s Keep Learning

Since average may be used several times in a program, it makes
sense to write it as a subroutine. The average subroutine could then
be called from any point in the program.

Biggest and Smallest

Another important algorithm finds the biggest value in an array.
The idea is to assume that H(1) is the biggest and copy it into B,
for biggest. Then compare H(2), H(3) . . . H(29) to B. If any
value is bigger than B, copy it into B.

230 LET B = H(1)

240 FOR I = 2 TO 29

250 IF B >= H(I) THEN 270

260 LET B = H(I)

270 NEXT I

280 PRINT "BIGGEST NUMBER OF HITS = ": B

s

Finding the smallest can be done in almost the same way. Just
change line 250 to

250 IF B <= H(I) THEN 270

and change the message in 280, of course.
These algorithms take a while to understand. A lot of the fun in
programming is learning new algorithms and inventing your own.

Pluck My Strings

This book showed how to print, input, store, and compare strings.
Sometimes it is useful to change one letter in a string, split a string
in two, or glue two strings together. There are string functions in
BASIC to help you do these jobs.

You could take a string containing a title like THE BLACK
STALLION and break it into three strings: THE, BLACK, and

161

162 Let’s Keep Learning

STALLION. Now you can print these on three lines in the center of
your screen.

THE
BLACK
STALLION

You may also want the computer to search if one string is part of
another string. For example, ART is part of DARTH VADER. With

just a little bit of study, you should be able to do many things with
strings.

Special Effects

Graphics

This book showed how to make shapes and pictures on your
screen or printer. You used the PRINT command and then figured
out where each character belonged. You could try to make simple
computer graphics like these:

LIEsEy UEa

—t e ==

*

*

*

*

*

*

*

*

*

*»

*

* * * * *

*
* % % Ok Ok R % % Ok N F % ¥ X % X X F* ¥ X ¥

Let’s Keep Learning

*
* %
* % %
* %
* %k %k
* % %
* %k k
* % %k
* * % %
* % * % %k
* k% * % X
* J %k % % % %
khkdkhkhkkhkhkhkhkhkhkkhhhkhkhkhhkhkhkhkhkhkhkhkhkhkkkkk
I I I I *
I I I 1 0 *
I I 1 I 0
*kkkkkk*k
*
*kkkkk*k
*

kkokok gk kokkkkkkkk

 F % % O X ¥ ¥ X F ¥ *

163

164 Let’s Keep Learning

N
}"w'/z’\/-.: A

o4

PATAN

5,

XXX x,<>*><s<>< ';-«i;ﬂ::‘:f :

XAX

-’;{x"&" ¥

SN

Let’s Keep Learning

* %k * k%
dkkdkkkkkkh * kK ok kK kkk
* Kk ok ok ok kkkkk * koK dkkokkkkk

ddkkdkkokkkkkkkk kdk dkokkkkkkkkkh
khkhhkhkhkkhkkhhkh hhhkhkhdkkkhkkkhx
kkkkhkkkhkhkkkhkhkhhkhkhkhhkhkkkkxkkk
kkkkhkhkhkhkhkhhhhkhkhkhhhhhkhkkkkxk
khkhkhkkkhkkhkhkhkhkdhkhdhdkkdkkkkh
khkkkhkhkhkhkhhkkkhkhhkhkhkx
khkkhkkkhkkkkkkkkhkk
kkdkkdkhkkkhkkxk

% Kk Kk kK
khkkkk * & Kk * * %k
* % % dk kkkkkk*x Jok dkdkk kkkk
* kkk khkkkkkkk kdkok ok ok okkkk

khkkhkhkhhhkhkhkhkhkk hhkhkhkkkhkkkkkkk
khkkhkkhkhkkhhkhhh khkkkkkkkkkkk*k
kkkhhkhkkhkhkhkhkhhkhkhkhkhkdkhkhkhkkkkkkk
khkkhhhhkhkhkkhkhkhhhkhkhkhkkkkkk
kde ke ke deodeokokokok dodeok ok ok ok ok kkok ok ok Kk
kkkkhkhkhkkkkhkkkkkkkxkk
dde kodkok ok ok ok ok kkkkkk
khkkkhkkkkkkk
% %k Kk ok k k
*kkkk
* k%
*

The ATARI and most microcomputers have special graphics
characters and color to help you make more detailed pictures or
people, spaceships, or flowers. Drawing a picture on the screen is
the first step in making fancy graphics.

The second step would be to produce animation—moving
pictures. This gets you into advanced programming, but the idea is
to show one picture and then change part of it quickly. If you put
together several changes in a row, you can begin to make movies.

165

166

Let’s Keep Learning

Filmmakers and cartoon artists use computers to make movies.
TRON and the Star Wars series used computer animation for parts of
the movies. Video and arcade games are good examples of
computer animation. You can find out how to do some graphics by
reading the manual that came with your computer. There are
program packages to help you make color graphics on your screen.
Some of these need a joystick or game paddle. You can find out
more about graphics in Personal Graphics by Michael P. Barnett
and Graham K. Bennett.

Sound

Many microcomputers have a built-in loudspeaker or use the
loudspeaker in the display screen. They can be programmed to
make sounds that are high or low. Getting single sounds or tones is
easy, but putting them together to make a song is more complicated.
Some computer scientists and engineers have found ways to get
computers to make human voice sounds. The Texas Instruments
Speak and Spell machine uses a computer voice to help teach
spelling.

Other Programming Languages

BASIC is the most popular language for microcomputers. There
are many other languages that are worth learning. If you like
drawing pictures and computer graphics, you should look into
LOGO. In LOGO you control an electronic turtle on your screen.
Simple commands make the turtle go forward, turn left or right, or
repeat some steps. The fun part is watching the turtle draw shapes
that you have programmed. You can make shapes such as flowers,
houses, birds, or circles.

Let’s Keep Learning

There are hundreds of programming languages. Each one is
especially useful for some kinds of work. You may see the names
of some of them such as Pascal, FORTRAN, COBOL, or PILOT.

Word Processors

Learning to program is only one use of your computer. Most
people who use computers use programs written by other people.
They may use a word processor to help them write.

Word processors help you write and change stories, letters, or
books. Word processing programs are built up from complicated
string operations. I used a word processor in writing this book. It
helped me to make changes easily. I could add an exercise, change
an example, or correct an error and then get a clean printout. The
Bank Street Writer is a word processing program that is very easy to
learn and to use.

Using a word processor is great because you can easily fix your
spelling mistakes, improve your writing style, and add sentences
anywhere. Then when you are satisfied with how your work looks
on the screen, you can print it.

Program Packages

Besides programming and word processing, you can use your
computer for learning spelling, arithmetic, science, or health. There
are thousands of program packages to help you learn different
subjects.

There are also thousands of game programs for fun. They can
help you develop quick reactions and teach you how to solve some
kinds of problems.

If you are choosing a learning or game package, be sure to try it

167

168

Let’s Keep Learning

out first. Make sure it does what you need and that you understand
how to use it.

Most program packages are carefully designed and tested. But
you may find that some packages have poorly written manuals,
confusing screen displays, and nasty or useless error messages. If
this happens, you can complain to the store or write a letter to the
manufacturer. You can help fight for better quality program
packages.

Magazines

One way of learning more about BASIC and computers is to read
one of the many computer magazines. ENTER and F amily
Computing are meant for children and their families. There are
several magazines just for ATARI users such as the ATARI
Connection. There are many other magazines that will let you know
about new ideas in microcomputers: Creative Computing, Byte,
Personal Computing, Electronic Classroom News, Popular
Computing, The Computing Teacher, and others.

Computers and People

Computers are fun to use. They can also be very valuable and
powerful tools for helping people. Computers can be used in
medicine, business, education, and in your home. But every
powerful tool can be used in harmful ways. Computers have been
used to steal money or to trick people. The movie Wargames
showed some of the dangers of misuse of military computers.

When you see people using computers or when you use
computers, think carefully. Think about how you can avoid
harming people and how you can be most helpful.

Computers are toys and tools. You can use them to have fun and

Let’s Keep Learning

to get your work done. You are in charge of the computer and can
use it to help a first grader learn spelling, to organize a family
business, to keep a mailing list for a community group, or to play
games with your friends. Think about how you can share your
knowledge about computers with others. People are what really
count—friends, teachers, parents, brothers, and sisters. Can you
think of creative ways of exploring the computer with these people?
Please let me know what you come up with. Good luck.

169

Solutions to
Selected Exercises

The solutions for some of the exercises are included so that you
can compare your solutions to these. These solutions were run on
an ATARI 800 computer and printed on the ATARI 820, a
40-column printer. This set of solutions was done as a family
project by Joseph, Mildred, and Tracy Johnson.

The programs were saved on the ATARI Cassette 410 Program
Recorder. The programs were printed by simply typing the LIST
"P'" command. To get the output printed, the PRINT commands
were changed to LPRINT commands. This approach means that the
? produced by the INPUT command does not appear. In printing
the output of the running program, LPRINT commands were added
for the values entered with the INPUT commands.

1

Exercise 2 Exercise 4
18 PRINT “ABCDEFG® 18 PRINT "RRRRRERRR"
28 PRINT “HIJKLMNOP® 28 FRINT “R R
28 FRINT "GRSTUUMXYZ" 38 PRINT "R R*
48 PRINT “RERRRRRRR
ABCDEFG
RIJKLMNOP KRRRRRERR
GRSTUMKYZ r R
k K
RRRRERRER

171

172 Solutions to Selected Exercises

Exercise 7

18 PRINT " M n*
28 FRINT "M M MN
38 PRINT "] === "

48 PRINT "1 I
58 FRINT "I 0 0O I®
68 PRINT "1 I

78 PRINT " 1 -0~ I*
88 FRINT * I I*
S PRINT " III"

i H
M M

0 o
11-0- I
1381

2

Exercise 1

18 PRINT "KG","KILOGRAM"
28 PRINT “CM“, “CENTIMETER"
38 FRINT “m",“"MILLIMETER"

KG KILOGRAM
[y CENTIMETER
i 4 MILLIMETER

ot bt bt bt T
L X o L N R 4

Solutions to Selected Exercises 173

Exercise 3

18 PRINT "+000000" , "+X000K", "+111111"
28 FRINT "“+000000" , "+XQX00" , "+11111T"
38 FRINT "+000000" , "+XXXXX4", "+111111"

48 F:RINT |I+ 1] s I|+ u R l|+ "
m PRINT ||+ L1} , ll.’_ " R I|+]
68 FIR!INT II+ n R II+ " R I|+ "

+000000 #00KK +111111
+000000 #Q00LK +111111

+000000 900000 +II1III
+ + +

+ + +

+ + +
Exercise 2

18 FOR W=1 T0 3

20 PRINT "0D00O00D0000000"
38 PRINT *XDOLKARAO0AR"
48 NEXT W

00000000000000
LR
G00000000G0000
KRR FARAXRLAAA,
0000000000000
HHRRRRKAAAAARR

174

Solutions to Selected Exercises

Exercise 4

18 FOR G=1 TO 6
28 PRINT “4+——mmoeem I
30 NEXT G

48 FOR F=1 TO 8
98 PRINT “+¢
60 NEXT F

S -1
+m—————]
e |
et 1

Fo e e 1
e

+

+

+

+

+

+

+

+

4,

Exercise 1

10 FOR 0=1 T0 3
28 FOR N=1 TO 2
38 PRINT “NO"
48 NEXT N

o8 PRINT "“YES"
68 NEXT O

AEBHEEHES

Solutions to Selected Exercises 175

Exercise 3

18 FOR F=1 TO 2
20 FOR L=1 TO 3

30 PRINT "+ 0o
48 NEXT L

90 PRINT "+000000000000000000"
68 MEXT F

78 FOR =1 TO 7

88 PRINT “+"

98 NEXT M

XKLL KL
+WKXW
+ XX XA RN,

+000000000000000000
FRAHHHLRARRIEI X0,
FRARARKXAXR ALK,
+;QC%XX>¢XXXXX‘W
+000000000000000000

FA S TR

Exercise 4

18 FOR H=1 TO 10
28 FRINT “TICTOC"
38 FOR S=1 TO 388
48 NEXT S
58 NEXT H

TICTOC
TICTOC
TICTOC
TICTOC
TICTOC
TIETOC
TICTOC
TICTOC
TICTOC
TICTOC

176

Solutions to Selected Exercises

9

Exercise 2

18 PRINT "TYPE THE NUMBER OF SECONDS YOU
WANT THE CLOCK TO RUN®

28 INFUT F

38 FOR N=1 TOF

48 PRINT “TICTOC"

S8 FOR S=1 TO 388

68 NEXT S

78 NEXT N

88 PRINT "TIME IS UP*

TYPE THE NUMBER OF SECONDS YOU WANT THE
ngIK TO RUN

TICTOC

TICTOC

TICTOC

TICTOC

TICTOC

TIE IS UP

Exercise §

18 DIM A4 108

20 PRINT "TYPE A SHORT MESSAGE AND PRESS
RETURN"

38 INPUT a8

48 PRINT "HOW MANY TIMES DO YOU WANT *
41 PRINT “THIS MESSAGE"

58 INFUT J

&8 FOR T=1 TO J

78 PRIMT A$

88 MNEAT T

Solutions to Selected Exercises

TYPE A SHORT MESSAGE AND PRESS RETURN
7 MY NAME IS THEA

HOW MANY TIMES DD YOU WANT

THIS MESSAGE

? 4
MY NGE 1S THEA
MY NAME IS THEA
MY NAME IS THEA
MY NAME IS THEA

3

Exercise 1

i8 FOR B=1 TO 7

28 FRINT B, "POTATO"
38 NEXT B

49 PRINT "“MORE"

gumm&wm»—-

Exercise 3

18 FRINT "I WAS 50 HUNGRY THaT"

28 FRINT "1 ATE 1 ICE CREfM CONE®

38 FOR R=2 TO S

40 FRINT "I ATE “;R;" ICE CREAM COMES"
S8 NEXT K

POTATO
POTATO
POTATO
POTHTO
POTATO
POTATO
POTATO

68 PRINT "I ATE TOO MaNY ICE CREAM COMES

S0 HUNGR'Y THAT
1 ICE CREAM CONE
CE CREAM CONES
CE CREAM CONES
CE CREAM CONES
CE CREAM CONES
MANY ICE CREAM COMES

)

Nl
LTV b Dot ot el et

TO

177

178 Solutions to Selected Exercises

/

Exercise 2

18 PRINT 24%7," = HOURS IN A WEEK"
168 = HOURS IN A WEEK

Exercise 4

18 FOR F=1 TO 6
28 FRINT F.F&12

YL ERTRY,
NEBHRES

Exercise 6

18 PRINT "THIS PROGRAM WILL CALCULATE"
11 FRINT "THE MUMBER OF INCHES IF you"
12 PRINT “GIVE THE MUMBER.OF FEET®

€8 PRINT “HOM MANY FEET DO YOU HAUE"
38 INFUT ¥

40 FRINT “THERE ARE ";12%X:" INCHES®
THIS PROGRAM WILL CALCULATE

THE NUMBER OF INCHES IF vOU

GIVE THE NUMBER OF FEET

l{lH MANY FEET DO YOU HAVE

TFERE ARE 68 INCHES

Solutions to Selected Exercises

Exercise 2

19 He6oE

20 PRINT "THE NUMBER OF SECONDS IN®
21 PRINT "#N HOUR IS "H

38 D=24%H

48 PRINT "THE MUIEER OF SECONDS IN"
41 FRINT " D&Y 1S "0

THE NUMBER OF SECONDS IN
AN HOUR 15 3680
THE NUMBER OF SECONDS IN
A DAY IS Sedea

Exercise 6

18 PRINT “TYPE THE MUMBER OF STAMPS FOR®
12 PRINT "EACH COUNTRY AND FRESS RETURN®
28 PRINT “FRANCE";

38 INFUT F

40 PRINT “ENGLAMD";

58 INFUT E

68 PRINT “ITALY";

°8 INFUT 1

88 PRINT "GERMANY";

98 INFUT G

168 T=F+E+14G

lll‘BTF‘RINT “THE TOTAL MUMBER OF STAMPS IS

TYPE THE NUMBER OF STAMPS FOR
EACH COUNTRY @ND PRESS RETURM
ERQ%&ZE

ENGLAND

T i

ITALY

T 6

GERMANY

7?9

THE TOTAL NUMBER OF STAMPS IS 31

179

180

Solutions to Selected Exercises

J

Exercise 2

10 T=8

20 FOR D=1 TO 5

38 FRINT “TYPE THE NUMBER OF PROBLEMS®
35 FRINT * COMFLETED FOR D&Y “;D;

33 FRINT " AND FRESS RETURN"

48 INPUT P

58 T=T+F

&8 MEAT D

78 PRINT “PROBLEMS COMPLETED &RE ;T

TYPE THE NUMBER OF PROBLEMS
COMPLETED FOR DAY 1
F;dé[l FRESS RETURN

TYPE THE MUMBER OF PROBLEMS
COMPLETED FOR DAY 2
ga:n PRESS RETURN
TYFE THE NUMBER OF FROBLEMS
COMPLETED FOR D&Y 3
D PRESS RETURN
67
TYPE THE NUMBER OF PROBLEMS
COMPLETED FOR DAY 4
540 FRESS RETURM
9
YFE THE NUMEER OF PROBLEMS
COMPLETED FOR D&Y 5
”’9‘,[’ PRESS RETURN
B
FROBLEMS COMPLETED tRE 277

Solutions to Selected Exercises

10

Exercise 2

18 FRINT "HOW MANY LAPS DID YOU SWIM";
28 INFUT L

28 IF Ly=16 THEN 100

40 PRINT “"DOES NOT QUALIFY"

56 GOTD 268

106 PRINT "GUALIFIES®

288 END

HOW MaNY LAPS DID YOU SWIN
T 12

DOES NOT QUALIFY

HOW MANY LAPS DID YOU SWIM
T 16

QUALIFTES

Exercise §

18 PRINT "TYPE IN THE SPEED";

28 INPUT S

30 IF S555 THEM 168

48 IF 5{48 THEN 118

50 PRINT “LEGAL SPEED"

68 GO TO 158

168 PRIMT "ILLEGAL SPEED - TOOD FRST®
165 G0 TO 158

118 PRINT "ILLEGAL SPEED - TOD SLOW"
158 END

TYPE IN THE SPEED
3D

ILLEGAL SPEED - TOO SLOW
Z‘SfPE IN THE SFEED
ILLEGAL SPEED - TOD FAST
ngh’F'E IN THE SPEED

LEGAL SPEED

181

182

Solutions to Selected Exercises

il

Exercise 2

18 PRINT "WHAT IS THE CAPITAL OF “

15 PRINT "NEW YORK STATE?"

28 PRINT "1. MNEW YORK CITY“

38 PRINT "2. SYRACUSE"

48 FRINT "3. BUFFALO"

o8 FRINT "4. ALBANY®

Sg ;?IHT “TYFE THE NUMBER OF THE CORRECT
I f“j

78 INFUT G

88 IF G=4 THEN 110

S8 PRINT “INCORRECT™

168 GOTO 140

118 FRINT “CORRECT"

148 END

WHAT IS THE CAPITAL OF
1
2
3.
4. ALBANY
I
2

WHAT IS THE CAPITAL OF

NEW YORK STATE?

1. NEW YORK CITY

2. SYRACUSE

3. BUFFALD

4. ALBANY

I\’PE THE NUMBER OF THE CORRECT CITY

CORRECT

Exercise §

18 PRINT
15 PRINT
28 FRINT
38 PRINT
48 PRINT

Solutions to Selected Exercises

"TYPE.THE NUMBER THAT MATCHES"
"THIS SHAPE"

“m*ll

" *ll

"Rk

58 FRINT
8 PRINT "Skbikkk dhkk b
70 FRINT " % X 3

FOOCKKE o

88 PRINT "dokkk
m“

SB(I‘;‘R)ENT " (1) (23 (3)

180 PRINT

118 INPUT T

128 IF T=2 THEN 150

138 PRINT “WRONG"

140 GOTO 168

158 FRINT “CORRECT®

189 END

TYPE THE NUMBER THAT MATCHES
THIS SHAPE
ook

Aok m; mm;si xm«*
X
(13 (23 (3> (43

CORRECT

183

184 Solutions to Selected Exercises

12

Exercise 1

18 LET A=INT(ZARNDCL 341)

28 IF =1 THEN PRINT “HEADS"
38 IF =2 THEN FRINT "“TAILS"
48 GO TO 1@

HEADS
HEADS
TRILS
HEADS
HEADS
HEADS
HEADS
TAILS
HEADS
TAILS
Talks

Exercise 3

18 FRINT “WHAT IS THE HIGHEST NUMBER"

15 PRINT "YOU WANT TO GUESST™

i INFUT N

38 FRINT "THE COMPUTER HAS A NUMBER FROM
1 TO "N

48 LET A=INTCNARNDO 13417

98 FRINT “GUESS THE MUMBER AND™

99 PRINT “FRESS RETURN"

oB INFUT J

63 IF J=f THEN 116

78 IF Jof THEN PRINT “TOO HIGH"

88 IF J{A THEN PRINT “TOO LOW"

%Ei IF J=f THEM PRINT "CORRECT, YOU GOT 1
teB GOTO S8

118 PRINT “CORRECT!, YOU GOT IT!v

128 GOTO t@

Solutions to Selected Exercises 185

WHAT IS THE HIGHEST NUMBER
2’% WANT TO GUESS?

THE COMPUTER HAS & NUMBER FROM 1 TO 109
GUESS THE NUMBER AND

PRESS RETURN

)

TOD HIGH

GUESS THE NUMBER AND

PRESS RETURN

25

TOO LOW

GUESS THE NUMBER AND

PRESS RETURN

33

TOO LOW

GUESS THE NUMBER AND

FPRESS RETURN

48

TOO HIGH

GUESS THE NUMBER AND

PRESS RETURN

36

T0O LOW

GUESS THE NUMBER AND

geRESS RETURN

CORRECT!, YOU GOT IT!

WHAT IS THE HIGHEST NUMBER
YOU WANT TO GUESS?

186 Solutions to Selected Exercises

Exercise 6

10 LET A=INTC1BARND(L 410
28 LET B=INTC1BARND(10+ 5
30 IF B>A THEN 18

48 PRINT &" - “;Bi" =
o8 IWFUT 2

68 IF A-B=2 THEW S8

78 PRINT "HO"

20 GOTD 48

S8 PRINT “YES"

1668 GOTO 18

O e B T
m
[y |
- a
]

t
[ory
il

m5 e 00 oC B (122 OV 2 0O W0
I v A

EN - -

0 " I

=~J
I

(4N
i

Solutions to Selected Exercises

18

Exercise 2

18 DINM A$(283
28 DIM B$(203
30 DIM C¥(20)
48 DIM D$(20 3
58 PRINT "NAIE ONE PERSON WHO WILL PLAY"

68 INFUT a8

65 PRINT "NAME THE OTHER PERSON";

78 INPUT B$

80 FRIMT “WHAT GAME WILL THEY PLAY";

So INPUT C$

168 PRINT "HOW MeMY DAYS WILL THEY PLAY"

119 THPUT N
126 FRINT "WHAT CANDY MILL BE THE PRIZE®

138 INPUT D$

140 FRINT A$;" @ND ";B$;" AGREED TO PLAY
"0 ON “;N; " CONSECUTIVE Days"

158 FRINT "THE WIMMER ON EACH DAY"

151 FRINT “WOULD GET ONE “,;D$

152 PRIMT "FROM THE OTHER.“

168 PRINT "AT THE END OF “;N;" DAYS,"
161 PRIMT B$:" HAD 4 “;D$:"S. “;h¢

162 PRINT "HAD NOME; SHE HAD EATEN HERS.

(continued on next page)

187

188

Solutions to Selected Exercises

NediE ONE PERSON WHO WILL PLAY
ALICE

MAME THE OTHER PERSON

HARKY

WHAT GAME WILL THEY PLAY
BADMINTON

l:g“ MANY DAYS WILL THEY PLAY

WHAT CANDY WILL BE THE FRIZE

FILKYWAY

ALICE AND HARRY AGREED TO PLAY BADMINTON
ON 28 CONSECUTIVE DAYS

THE WINNER ON EACH DAY

WOULD GET OME MILKYWAY

FROI THE OTHER.

AT THE END OF 28 DAYS,

HARRY HAD 4 MILKVWAYS. ALICE

HAD NONE; SHE HAD EATEN HERS.

Solutions to Selected Exercises

14

Exercise 4

16 REM CHOOSING AN ACTIVITY

28 PRINT "TYPE 1 IF YOU WANT AN OUTDOOR
ARCTIVITY"

36 FRINT "TYPE 2 FOR AN INDOOR ACTIVITY®
48 INPUT @

o8 IF A=t
&8 PRINT
&1 FRINT
78 PRINT
o8 PRINT

THEN 268

"D0 YOU WENT QUIET ACTIVITIES"
"0R EXERCISE?"

"TYFE 2 FOR GUIET ACTIVITIES®
"TYPE 4 FOR EXERCISE“

S INFUT B
168 IF B=3 THEN 158

118 FRINT
1!1|1 PRINT

112 PRINT
128 END

158 PRINT
151 PRINT
152 FRINT
133 PRINT
168 FRINT
161 FRINT
162 FRINT
i78 END

268 PRINT
281 PRINT
218 PRINT
228 FRINT
238 INPUT

"YOU MAY CHOOSE RUNNING IN®
"PLACE, JUMPING JACKS, SIT-UPS

"OR LIFTING WEIGHTS"

“IF_YOU HAVE SOMEDHE TO PLAY"
"WITH, YOU MAY CHOOSE:"
“CHECKERS, CHESS, OR"
"BACKGAMMON®

“IF YOU ARE ALONE. YOU MAY®
“CHOOSE: READING, SOLITAIRE,"
"OR SEWING"

"D0 YOU WANT GUIET ACTIVITIES®
"DR EXERCISET"

"TYFE 6 FOR QUIET"

_‘;T‘:’PE 7 FOR EXERCISE"

248 IF T=6 THEM 388

258 PRINT
:?51 FRINT

252 FRINT
253 PRINT
268 END

308 PRINT
381 PRINT
382 PRINT

“YOU MIGHT RIDE A BIKE, JOG."
"CROSS-COUNTRY SKI, ICE SKATE,

"0R SWIM, DEPEMDING OW"
“THE WEATHER"

"YOU MIGHT TAKE A WALK, WEED"
“THE GARDEN, OR TRY"
"BIRDWATCHING"

(continued on next page)

189

190 Solutions to Selected Exercises

TYPE 1 IF YOU WANT AN OUTDOOR ACTIVITY
TYPE 2 FOR AN INDOOR ACTIVITY

1

DO YOU WANT GUIET ACTIVITIES
OR EXERCISE?

TYPE 6 FOR GUIET

TYFE 7 FOR EXERCISE

-

H

YOU MIGHT RIDE & BIKE, OR JOG.
CROSS-COUNTRY SKI, ICE SKATE,
OR SWIM, DEFENDING ON

THE WEATHER

Solutions to Selected Exercises 191

15

Exercise 1

o REM CH 15 €XER 1

18 REM PROGRAM TO DRAM CASTLE

28 GOSUE 186

38 FOR F=1 TO 3

48 GOSUE 288

98 NEAT F

68 GOSUE 388

88 END

188 REM - ROOF SUEROUTINE

118 PRINT "M Mt ot e
128 FRINT "Mttt MHf M M
138 PRINT “MtBHtdttrd et
148 RETURN

268 REM - OME FLOOR OF BUILDING
218 PRIMT "1 I"
228 PRINT "I IIIIII IIIlID 1I®
238 PRINT "1 1 I I I I
248 PRIMT *I IIIIIT IIIIII 1®
258 RETURM

308 REM ENTRANCE

318 PRINT "1 I
328 FRINT "1 It
338 FRINT "1 ITTIIITII I"
I8 FRINT "I I 00 1 It
268 FOR G=1 TO 3

378 FRIMT "1 I 1 "
368 NEAT G

(continued on next page)

192

Solutions to Selected Exercises

M M M M
M MM MM M
MR Rt

I 1
I IITIIT ITTIIDI 1
I 1 I 1 I 1
% ITIIIT IITIII %
I IITITD ITIIID 1
11 I 1 I 1
% ITTTIT IIIINI %
I IITIIDT ITITID
I 1 I 1 I 1
I IITIIT IITIID 1
I I
1 1
1 ITTIITIII 1
1 1 00 1 I
1 1 I I
1 1 I I
1 1 I I
000000000000000000000

00000000000000000D000

Index

Adding commands, 11-14

Adding up a list of numbers,
87-91

Addition, 70

Algorithm, 160-161

Animation, 165-166

Arithmetic exercises, 122124

Arithmetic variables, 79 -82

Arithmetic with +,—*, and /, 69,
70-71

Arrays, 159-161

Average, 160-161

Banking, 105, 110-113
Biggest value, 161
Blanks, 13, 15
BREAK, 47, 75

Cassette tape player, 19, 23

Changing commands, 11, 14-15

CLEAR, 130

CLOAD, 19, 23

COBOL, 167

Command, 2, 9, 10

Complicated paths through
programs, 133

Controlling loops, 47, 49-50

Counter variables, 26, 27 -29

Counting, 59, 64 -65

Counting answers, 105, 108-110

CSAVE, 19, 23

CTRL, 130

Cursor, 3

Decision making, 95, 99-100
DELETE/BACK, 3, 10

Deleting commands, 11, 14-15

Differences Among Computers, 3,
10-11, 15, 21, 24, 49, 54,
63, 82, 99-100, 117

DIM (Dimension), 47, 48, 159

Disk drive, 19, 23-24

Division, 70

END, 95, 101
ERROR, 10
ESC, 130

Floppy disk, 23

FOR -NEXT, 26, 27-29
FORTRAN, 167
Function, 116-118

GOSUB, 144, 148-150
GOTO, 95, 96, 100
Graphics, 162-166

IF, 95, 96-104

Inner loop, 37, 38

INPUT, 47, 48, 74-75
INPUT strings, 126, 129
Input variable, 47, 48, 50, 52
INT, 116, 118

Jumping over commands, 95 -99

Kemeny, John, 2
Kurtz, Thomas, 2

LET, 79-82
Line number, 9, 10
LIST, 11, 13, 20-21

193

194

Index

LOAD, 19, 24
LOGO, 166
Loops, 26-29

Magazines, 169

Magnetic disk, 19, 23
Magnetic tape, 19, 23
Minus sign, 70
Multiplication, 70
Multiplication table, 72-73

NEW, 11, 15, 20
NEXT, 27, 28

Outer loop, 37, 38

Parentheses, 158

Pascal, 167

PILOT, 167

Plus sign, 70

PRINT, 9

Print control with comma, 21, 37,
39

Print control with semicolon, 37,
40, 61

Printer, 51

Printing arithmetic variables, 79

Printing counter variables, 60

Printing in columns, 19, 20

Printing lists, 20-21

Printing numbers, 59, 60 —65

Printing strings, 9

Program, 2

Program packages, 167 -168

Quiz questions, 105, 106-107

Random numbers, 116119

READY, 5

REMarks, 105, 108 -109

RETURN, 9

RETURN from subroutine, 144,
147

RND(1), 116, 117

Rolling dice, 116, 117-119

RUN, 9

SAVE, 19, 24

Screen size, 3

Setting arithmetic variables to
zero, 87, 88 -89

Slowing down, 4243

Smallest value, 161

Sound, 43, 166

SQR (Square root), 158

Stored program, 9

Stories with different endings,

133, 134-140
Storing with =, 79, 81
String, 9, 10

Subtraction, 70
Subroutine, 144, 147

THEN, 95, 97

Using INPUT strings in a printed
story, 126, 129

Word processors, 167
Writing stories, 126, 127

FPT $8.95

UNLOCK THE CREATIVITY IN YOUR KIDS!

Packaged programs are fine, but they can get boring fast. Ask any kid. But when kids write
their own programs, they’re in charge. The number of things they can do at the computer
is limited only by their imaginations. And, as any kid will tell you, taking command of a
powerful computer is fun!

INTRODUCING THE CHALLENGES AND
REWARDS OF COMPUTING...

This book teaches kids how to write commands for the ATARI® Home Computers by using
a programming language called BASIC. It is written for 8- to 14-year-olds to read and

use on their own. No knowledge of programming or math beyond third-grade arithmetic
iS necessary.

Let's Learn BASIC is activity-oriented. Kids are introduced to the step-by-step process

of programming right from the start by “Getting the Computer to Do Printing.” Repeating
PRINT commands using program loops gives kids a feel for the power of the computer.
Writing programs that do arithmetic, make decisions, and create stories comes after that.

Along the way, kids will learn how to

* print poems, shapes, pictures, and stories
* keep an address book

* add, subtract, multiply, and divide numbers
* keep track of their allowance

make up riddle and quiz programs

write storytelling programs

¢ create mystery and adventure games

¢ and much, much more!

[] []

Throughout, lots of examples and exercises use games, stories, graphics, and riddles
to maintain a high level of interest. Let’s Learn BASIC has been extensively “kid-tested”

to make sure that it’s easy to read, fun to use, and effective in teaching BASIC program-
ming concepts.

ABOUT THE AUTHOR

Ben Shneiderman is Associate Professor of Computer Science and Head, Human-
Computer Interaction Laboratory at the University of Maryland. He is also the father of two
children. He wrote this book for his 8-year-old daughter, Sara, when he found that other
computer books were either too shallow (picture books) or too technical (reference guides)
to be of much use or interest to the average pre-teen or young teenager. Let’s Learn
BASIC is the solution that worked for Dr. Shneiderman’s youngster—and it will do the
same for yours!

Little, Brown and Company « Boston * Toronto

0884870 ISBN 0-316-78722-1

