
9 '

!. v-
v-

v-
v-

\-. v

vo-
t('

-
\ ' to-

t g -

\-
tgg-

-
to..

9o-

"oo-
ucr-

too

HiSoft

Interpreter
Jor the Atart ST

\-

i

HiSoft C
Interpreter for fhe AtoriST

Sjrstem Requirements:
Atari ST Computer with a mouse and a disk drive

Program CopJrrrght @ Lorlclels 1988, 89
Engltsh translatlon <if manual Copyrtght @ tttsoft 1989, 90

Htsoft C Verslon 2 Aprtl 1989

Printing History:
lst Edltlon April 1989 (ISBN O 948517 16 6)
2nd (revlsed and corrected Edltlon Februar-y 1990 (ISBN O 948517 25 5)

Set using an Apple Macintoshru with Microsoft Wordru & Aldus Pagemakerru

ISBN 0 l qS5 r? a5 5

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of t-l-re copFight holder. Such wiitten permission
must also be obtained before any part of this publlcation is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to Hlsoft C and its associated
docr-rmentation to copy, by any means whatsoever, any part of Htsoft C for any
reason other than for the purposes of making a security back-up copy ofthe object
code as detailed within this manual.

Tqble of Conlenls
0 Introduclion I

0. I Alwoys moke o bock-up
O.2 Regisllqlion Cord
0.3 HiSoft C Disk Contenfs
O.4 The README File
0.5 Using fhis monuol

2
J

3
4
4

I Using HiSofl C 5

l.l The Keyboold ond lhe culsor
LLI The Editor
L1 .2 Moving the cursor
'L

I .3 The speciol keys
'L 1 .4 Function keys
L I .5 Menu short cuts
'L I .6 Keylvord completion
L] , 7 Menu commonds

|.2 The File menu
1.3 Working wilh severol files

'|
.3.'| Selecting o module

L3.2 The Module List
|.4 Running o progrom

1 .4.1 How's it done?
1.4.2 Error Messoges
I .4.3 Troce Mode
1.4.4 Fol lowingvoriobles
L4.5 Pointer Tests
| ,4.6 Vorioble Dump
|,4.7 Memory dump
1 ,4.8 Stock disploy
1 .4.9 Link ot runtime
I .4, 10 Execution Environment
I .4. 1I Commond toi l

c

5
5
6
7
8
9' t0

l l
r3
t3
l 4
l 5
1 5
t6
17
t8
t9
20
22
23
23
24
24

Contents Hisoft C Poge i

1 ,4.12 Include f i les
1 ,4, l3 Sysiem Memory Size

I.5 Find ond reploce
L5, 1 Find
1.5.2 Find ond reploce
' l .5,3

Seorching in f i les
1 ,5,4 Find ldentifier

I .6 Block operolions
1 .6. I Defining o block
1.6.2 Block operot ions
L6.3 Copying o block to o onother file

1.7 The Help menu
L7 . l The mocro commonds
1 .7 .2 ASCII code toble
L7 .3 P r in t f i l e
\ .7 .4 The Pocket Colculotor
1 .7 .5 He lP
|.7 .6 The Disk OPtions

| .8 Editor configurolion
1,8.'l Soving the configurotion
1.8.2 Editor Opi ions
L8.3 Redefining the keYboord

I .9 Edilor Mode
| .10 Proiecls

1,10.1 Whot is o Projecl?
L1O.2 Looding o Projecl
L 10,3 Executoble functions
I , I 0.4 Assembly Longuoge functions
1,10j5 Compi led C funct ions
'l
.l 0,6 Looding executoble procedures.

1 .I 0,7 Colling executoble funciions
I .l 0,8 Project Informotion

| .l I The Disk Uiilities
1 .l l .l Looding lhe utilities
1 .11 .2 Using the Ut i l i t ies

25
26
27
c'7

29
3t
32
32
32
33
34
35
35
38
38
39
40
40
4 l

45
46
46
47
48
49
5 l
51
52
52
53

4 l
43
44

45

Poge ii Hisott C Contents

2.6
2.7

2 lnlroduclion lo lhe C longuoge 57

2.1

2.2

2.3

2.4

2.5

Your filsf progrom
2.1 . l The trodi t ionol opprooch
2,1.2 The big moment
2,1.3 Funct ions
2.1.4 Stotements
2.1 .5 The C librory
2.1 .6 Colling Functions
2.1.7 Str ings

Voriobles
)) 1 r)na rnarra nralarralm

2.2.2 Function or Stotemeni ?
2.2.3 Assignment
2,2,4 The putchor
2.2.5 Declor ingvor iobles
2.2,6 Integers
2.2,7 Reol numbers
2.2.8 Conclusion ond Exercises

Colculolions
2.3.1 A little progrom
2.3.2 Comments
2.3.3 Arithmeticoperotors
2.3.4 The orithmetic ond trig functions
2.3.5 Types ond ossignments

Condilionols
2,4.1 Exomple
2,4.2 The Rondom
2.4.3 The if stotemeni
2.4,4 printf
2 .4 ,5 i f . , , e l se , . .
2,4.6 Blocks

Ioops
2.5.1 The while stotement
2.5.2 The for stotemenl
2.5.3 The do..,while stotement

Switch slolemenls
Functions

57
57
58
58
59
59
59
60
6 l
o l

6 l
62
62
62
63
64
64
65
65
65
65
66
66
68
68
68
68
70
71
72
74
74
76
78
79
83

Contents Hisott C Poge iii

2 .7 .1
2 ,7 .2
2 ,7 ,3
2 ,7 .4

Alroys
Conclusion

Functions ond subroutines
Porometers
Return volues
Summory

83
85
87
88
89
92

104
r04
105
106
107
109' I

t0
I l 3' |
15

116
117
117

2.8
2.9

3 Introduclion to GEM 93

93
93
94
95
95
95
96
97
98
98
99' t0 r

t 0 l
103
103'104

104

3.1

3.2

3.3

Progromming wiih GEM
3,LI GEM i tsel f
3.1 .2 The Hisoft C toolbox

Windows
3.2.1 Whot is o window?
3.2.2 Opening ond closing o window.
3.2.3 The open_window
3.2.4 The close_window
3,2,5 Writing in o window
3.2.6 The print_window
3.2.7 The pos_window
3.2.8 Cleoring o window
3,2,9 The size_window
3,2, 10 The drow
3,2,I I Woys of possing orguments
3.2.12 Conclusion

Diolog boxes
3,3,'] Whot is o diolog box?
3.3.2 Creoting o diolog box
3,3,3 The init_box
3.3.4 The text-box
3.3.5 The button_box
3.3.6 The drow_box
3.3.7 The reodbut_box
3.3.8 The edit_box
3,3,9 The reodstr_box
3,3, l0 Grophics Text
3.3,I I The gtext_box
3.3, l2 The color_box

Poge iv HiSoft C Contenfs

l t 9
119
120
121
121
121
122
t23
123
123
126
127
128
t32
132
t33

3.4 Menus
3 ,4 . l
3,4.2
3 ,4 .3
3 ,4 ,4
3 ,4 ,5
3 .4 ,6

Evenfs
3.5, 1
3 ,5 ,2
3 ,5 .3
3.5.4
3 ,5 ,5
3 ,5 ,6
3 ,5 ,7

Conclusion

3.5

Whot is o menu?
The init_menu
The title_menu
The item_menu
The drow_menu
The enoble_menu

Whot is on event ?
The loyout of o GEM opplicotion
The event
Menu events
Wndow events
Keyboord events
Mouse events

4 HiSoft C Librory Functions 135

136
136
t38
140
140
141
143
t43
144

149

3.6

4 .1 librory Summory
4.I . I The Hisoft C l ibrory
4,1 .2 ANSI file hondling routines
4, L3 Unix functions
4.1 .4 ANSI Moihemoticol functions
4.1 ,5 String functions
4.1 .6 Chorocter funciions
4,1.7 Memory funct ions
4,1 .8 GEMDOS functions
4.1 ,9 GEM AES functions
4 .1 .10 GEMVDl func t i ons

Appendix A Exelcise Answers 289

Conlenfs HiSofi C Poge v

Appendix B Longuoge Reference 30r

B. l
8 .2

lexicogrophic elements
The Pre-processol

30r
305

B.3 Operolols
8.4 Vorioble fypes
8.5 Declorotions
B.6 Stotemenls
8.7 Opelolions on lypes

307
308
309
3 l l
312

AppendixC Errol Messoges 3r5

C.l lnlerpreler Error Messdges
C.2 Editor Error Messoges
C.3 loqding Erlor Messoges

3r5
326
32t

Appendix D Porling Progroms 329

D. I Porting from fhe inlerpreter to o compiler 329
D.2 Porling tlom compilers lo 330

Appendix E Bibl iogrophy 33r

Books obout C
ST Technicol Monuols

331
332

Appendix F Technicol Support 335

Upgrodes
Suggeslions

335
335 \J

lndex 337

Poge vi Hisott C Conlents

0 Introduction
The c language has always been a compiled language. This means
that the programmer has to t]?e in his or her program ald then
compile it to change the program into machine code.

Unfortunately this process normally takes several minutes and only
then can you execute your program,

HiSoft C takes a different approach.

It is a C Interpreter. This means you type in your program and
execute it immediately as with a BASIC interpreter. There's no
waiung around for compilers and linkers.

To do this, Hisoft C has a powerful GEM-based editor which lets you
edit up to eight files at once. You can even create modular programs
and then, with a simple click of the mouse, run these modules
together.

This gives you an easy-to-use environment where you can spot
errors much more quickly than with a compiler. You can even single
step and put breakpoints in your code.

Hisoft C gives the C language the accessibility of BASIC without
losing the language's power. So HiSoft C is aimed at two categories of
nr^drernrnerq '

. Beginners will ffnd Hisoft C gives them a very easy way to learn
the C language.

C is the language around which the Atari ST is based and is the
language of choice for many professional programmers. Many
newcomers to the ST decide that they would like to try out this
powerful larguage. So they buy a compiler, but it seems to take
forever to get their first program to run because of numerous
compiler or linker errors.

This interpreter lets beginners discover the C language more
gently, using an environment that reminds them (or you!) of
BASIC,

. Experienced programmers vdll find Hisoft C provides a faster
'way to develop their programs.

lnlroducfion HiSofi C Poge I

Compiled and assembly language functions can be loaded and
used with interpreted modules. Htsoft C also supports almost
the full C language as described in Kernighan & Ritchie *The C
Programming Language' (First Edition).

Developers can use IIlSoft C to develop their programs with all
the advantages this gives and then,

"vhen
their application is

ffnished, just compile to a finished product.

Porting programs written with the interpreter is easy as long as you
respecl

-the
standard rules of programming. Nevertheless, each

implementation of C (whether a compiler or interpreter) has its own
pe6utarities and extensions; so some work may be needed. This is-the

case when moving code between a compiler and the interpreter
and between two comPilers.

Hisoft C has a Iibrary of460 functions. These are detailed in Section
4 and include the usual ANSI, UNIX, C, GEM and DOS standard
ftrnctlons. In addition, Hisoft C has a toolbox of functions which are
both simple and powerful, to make programming with menus, dialog
boxes and windows much easier.

So, thanks to Hisoft C, you can easily write programs that use all the
facilities of your machine, with or withoqt GEM' Fina-lly, if -you need
faster running code you can use your favourite compiler (Lattice C
from HiSoft, we hope!) to speed up your programs.

.I moKe q oocK-u
Before using IIlSoft C you shotrld make a back-up copy of both the
distributon disks and put the original away in a safe place. They are
not copy-protected to allow easy back-up and to avoid inconvenience.
'ffre didts may be backed-up using the Desktop or any-back-up
utifty. The didks are single-sided but may be used in double-sided
drives.

If vou have a double-sided disk drive you can copy the contents of
bo-th disks on to one double-sided disk. If you have a hard disk, just
drag the files to a folder on your hard disk.

Before hiding away your master disks make a note in the box below
of the serial num6ei written on them. You will need to quote this if
you requfe technical support.

Serial No:

Poge 2 Hisott C lnfloduclion

Reoistrotion Cqrd
Enclosed with this manual is a registration card which you should
fil1 in and return to us after reading the licence statement. Without it
you will not be entiUed to technical support or upgrades. Be sure to
h[in atl the details, especially the serial number and version number.
The version number is given in the Aboui box when you run HiSoft C.

HiSo ontenls
The Hisoft c disk 1 contains the following files:

H c . PRG the interpreter itself

Fl. rc - F11 .Ic supplementary files the interpreter needs

READlv lE.TxT see below for deta i ls

The HiSoft C disk 2 contains the following folders:

H E A D E R

H E L P

E X A I . I P L E S

S O U R C E

D U I V] P F I L E . '

R E S O U R C E . *

C H E C K S T . P R G

the standard C header files

the information files used by the editor help
command

example C programs

the source code to the HiSoft C toolbox. See
Appendix D. I

the files for the resource file of the DUI'4PFI LE. c
example

the files for the rsource file of the REs0uRcE. c
example

a program to give details of your machine. Please
include this information when writing to us.

lnfroducfion HiSofi C Poge 3

The e
As with a-11 Hisoft products Hisoft C is continually being improved
and the latest details that cannot be included in this manual may be
found in the README . TxT file on the disk. This file should be read at
this point, by double-clicking on its icon from the Desktop and then
clicking on the Show button. You can print it by clicking on the Print
button.

0.5 Usino this monuol
Different sections of this manual are aimed at different readers.

After this introduction, Secfion I describes how to use the Editor
and Interpreter and so everyone should read this.

Seclion 2 is an introducfion to the C language for those of you who
are new to the language.

Section 3 is an introduction for those new to programming in GEM,
whether experienced or novice C programmers. This section also
provides a description of the Hisoft C GEM toolbox for experienced
GEM programmers.

Seclion 4 describes the 460 functions of the Hlsoft C libraljr. This is
mainly designed for reference and includes a summary so you can
find which flrnction you need lor a particu]arjob.

Appendix A contains the answers to the Exercises set in the tutorial
in Section 2. You will need to use this as you work through Section 2.

Appendix B is the reference language for the C interpreter and is
aimed at the experienced programmer.

Appendix C covers the interpreter's error messages and is designed
to be used as a reference if you don't understand an error message.

Appendix D covers porting programs to and from Hisoft C from and
to other implementafons.

Appendix E is the Bibliography which recommends some further
reading on the C langauge and the ST itself.

Appendix F covers technical support ald upgrades.

Finally, there's the index.

Poge 4 Hisoft C lniroduction

l . l The Kevboqrd ond the cursor

I Usin HiSoft C
-

This section describes how to write, modi8/ and run a program with
\- HiSoft C.

. l . l The Edi lor

As soon as you load Htsoft C a menu bar appears and a window
covers most of the screen. HiSoft C uses GEM and the mouse to make
your work easier. The menu lets you select the editor and execution
options. The program that you t,?e in vrill appear ln the window.

At the top left of the window you w'ill see a flashing block cursor. This
indicates where the characters you tlpe will be inserted.

The editor is a full-screen editor; that is to say you can move the
cursor where you like within the window and immediately change
the text as you wish.

Hisoft C lets you work with eight Iiles at the same time. If you cannot
see the file that you n/ant at a given instant you can very easily
switch from one to another.

l . l . e cutsor

You can move the crrrsor in all four directions by pressing the cursor
keys labelled -;1and Jto the rigfrt ofthe keyboard. You can also use
C o n t r o t S , C o n t r o I D , C o n t r o L E a n d C o n t r o L x r e s p e c t i v e l y .

You can position the cursor by moving the mouse and clicking at the
point to which you wish to move.

You can also use the vertical scroll bar and the window's arrov/ icons
to change the cursor position.

The following keys are for rapid cursor movement withln the text:

s h i f t < , ,
S h i f t >
c o n t f o [+
C o n t r o l . - t

moves to the start of line
rnoves to the end of line
moves to the end of the previous word
moves to the start of the next word

Using Hisoft C Hisoft C Poge 5

.1 . e e

The following keys modify the text in some way:

D e t e t e deletes the character under the cursor.

B a c k s P a c e deletes the character to the ieft of the cursor.

R e t u r n inserts a carriage return. If the cursor isn't at
the end of the line the llne is spllt at the cursor
position and the cursor moves to the beginning
of the new line.

C o n t r o t
R e t u r n

inserts a new line without splitting tbe current
one.

t a o inserts a tab character at the cursor position
thus moving the cursor to the next tab position.

S h i f t T a b moves to tie previous tab position.

U n d o
'Undoes' any changes to the current line.

H e l . p displays some help information on a speciffed
subj ect.

H O m e moves the cursor to the start ofthe C block. A C
block is a sequence of instrucuons sr.rrounded
bv curlv brackets { and }.

S h i f t H o m e moves the cr:rsor to the end of the c block.

E s c See Seclion I .1.6.

A L t e r n a t e
to
A L t e f n a t e

1

8

select one of the eight possible flles.

Ttrere's no need to remember these by heart; they can be displayed \-
by selecting Cursor keys from the Help menu.

Poge 6 Hisofi C Using Hisoft C

Funclion ke

The flrncuon keys when used with the s h i f t key work as ten macro
function keys that can be modiffed by the user. See Seciion 1.7.1.

When the function keys are used without the shi ft key they have
the following meanings:

Deletes to the end of the word : under the cursor.
A word consists of a sequence of characters
seoarated bv blanks or the ends of lines.

Inseri the last word which has been deleted with
Fl to the right ofthe cursor. If F3 rvas used since
F 1 then the line deleted by F5 is used.

F 3 or Delete the line containing the cu-rsor.
C o n t r o l . Y

F 4 Insert after the current line the last word
deleted wit]l r t or the last line deleted vdt]l F 5.

Insert an empty line after the current line and
Dosiuon the cursor there.

t)

Join tl.e next line to the end of the current one
by copying.

F 6

Comment out the current line. If the line was
originally commented out the comment is
removed.

F 7

Delete to the end of the current line. This may
notbe recovered with F2 or F4

F 8

F9 or Move the cursor 23 lines [a screen full) towards
cont ro [- R the start ofthe lile.

F 10 or Move the cursor 23 lines (a screen full) towards
Cont ro L-C the end of text .

! The function keys item from the Help menu may also be used to
display a summ#y of these keys.

Using Hisoft C Hisoft C Pqge 7

l . Menu shorl culs

The major commands can be accessed from the keyboard without
having to use the mouse to access the menus.

In Eeneral these comblnations consist of either the ALternate or
thdc o n t

"
o L keys with a letter or digit.

To the right of the menu entries is a single letter. If this is a capital
fupper case) then this item may be selected with A t t e r n a t e and the
letter key. If this is in lower case then it can be selected with c o n t I o I
and the letter.

Here is a list of the key combinations and the corresponding menu
item.

A L t e r n a t e A
A L t e r n a t e B
A L t e r n a t e F
A L t e r n a t e G
A L t e r n a t e I
A L t e r n a t e J
A L t e r n a t e L
A L t e r n a t e F I
A L t e r n a t e N
A L t e r n a t e 0
A L t e r n a t e P
A L t e r n a t e Q
A t t e r n a t e R
A L t e r n a t e S
S h i f t A l . t e r n a t e S

Abandon
Bottom of file
Find
Go to line
Insert {ile
l-oad proj ect
Load file
Module list
Repeat {ind (Next)
q. \ .F ^n+ i^nc

Program Information
Ouit HiSoft C
Fin . l R ' ran lq^c

Save as
Save ffle
Top of ffle
Informauon on the variables
Rr-rn (eXecute)
Go to last position
Set mark 1
Set mark 2
Go to mark 1
Go to mark 2
Page down
Cursor dght
Cursor up
Page up
Cursor left
Cursor down
Delete line

A l . t e r n a t e T
A l . t e r n a t e V
A L t e r n a t e X
A L t e r n a t e Z
C o n t r o t 1
C o n t r o L z
C o n t r o L 3
C o n t r o L 4
C o n t r o L C
C o n t r o L D
c o n t r o L E
C o n t r o t R
C o n t r o l . S
C o n t r o t X
C o n t r o l " Y

Pqge 8 Hisofi C Using Hisofl C

These combinations of keys may be modified to configure the
keyboard in the way that you want; you can thus make the editor
similar to any editor that you are used to.

See Section L8.3 for details.

l . l Ke or complel ion

This facitity can save a lot of typing and looking up the syntax of
functions.

You tlTe only the beginning of the name, and the complete function
call (inaluding the parameters) is automatically created by the editor.

For example if you type:

s t r n i

and then press the r s c key, the editor will display:

s t r n i c n p (s t f 1 , s t r 2 , n)

on the screen, with the cursor one the ffrst argument of thefunction.
You are now in E s c mode. l,ook at the top right corner of thescreen.
E s c is displayed, instead of t n s. The editor is waiting for you to t)?e
in the arguments of the function. After each parameter, you should
press Reiurn, and the cursor is posiUoned on the first character of
the nertargument.

The parameter names which are written by the editor are
automatically replaced by the new names you t14re. You don't need to
erase the old names with eackspace or De l.;just type the new one
and press R e t u r n. If you don't v/ant tochange the name of a
parameter, just t]?e Return.

You exit E s c mode when you have tlped in a1l the parameters, or
when you use cursor keys or select a menu item.

E s c mode can also be used with the C language kelwords, as follows:

short cut statement
I f o r

u h i L e

s $ r i t c h

t The list of the functions and parameters used by E s c mode is in file
Fi 1. rc. You can modiry this as you wish.

Using Hisoft C Hisoft C Poge 9

.1 .7 Menu commonds

You know how to select a menu item, now we will examine the various
menus in detail.

On the far left are the credits! The first entry under the Atari logo,
which is equivalent to the Desk menu on many ST programs, is the
credit for the author of the program.

In the Info menu on the far right, the
Progrom info command displays a dialog
box which gives some statistics for the
current program. With this you can see
how many lines your program has, the
free memory figure, how much memory
this program needs and where the
cursor is in the text. The other
commands on this menu will be
discussed later.

The Move menu commands are also useful:

Top of file moves the cursor to
the front of your program and
Bottom of File moves to the end
(oh good - you guessed).

When you click on the Go to
Iine.., item a dialog box appears
and asks you to enter the line
number that you want to move
to. You are not allowed to move
past the end of text.

There are a set of commands
that some people find incredibly
useful and other people find a
waste of time. As they weren't
difficult to program, they have
been put in HiSoft C.

These are the marks. You set a mark in your program at the cursor
position and then after you have moved tJ e cursor you ca:r retum to
the place that you marked. There are two different marks that you
can use.

0vc curs0r - - - - - -
Top o f f i l e [tT
Botton of f i le [tB
Eo to l i ne , , , 06
60 t r ies t pos i t io t l {Z

l lerks ----------
Set nark I ^1
set r,rark 7 ^Z
So to nerk I ^3
[o to n€rk Z ^4

------ opt i ars
y' Inde ntat i on

f ,u to l ine sp l i t
Se t tab I eng th

Pdge l0 Hisoft C Using Hisott C

L,

t_

L
(-

L

L

L

L

L

L

L

L

L

The command Set mork I sets the first mark at the cursor posi on;
to return there use the Go to mork I command. Naturally Set mork 2
and Go to mork 2 perform the same operations for the second mark.

The Go to lost position command is similar to the marks. It is as if a
mark was automatically placed at the last cursor posiuon that the
text v/as changed. Wtren you click on this command the cursor
moves to the last place that the text was modified.

This is very useful when you are twing in a program. It lets you
interrupt your typing, have a look at another part of the program
and then continue tj?ing where you were before.

Note ttrat the marks can be used to move between modules. If you go
to a mark that is in a different module, the module switching is
automauc.

I e File menu

ea
Load f i le ' JL
Inseft f i le [t I
--- l,{r i tt

Save fi le r{ts
saue as, , , (rs

---- {}st iats ------
Save options 00

y' Confirn abandon
y' Confirn overHf i te
y ' Backup f i le

Text ed i tof
Ruto l oad
l'lo du I e I ist [tH

Rbandon 0R
t

The Lood file command
enough.

We will now describe most of the items
on the File menu.

The Quii command lets you leave HiSoft
C after asking whether you wish to
save any unsaved work. If you realise
that you don't want to quit you can
cancel this cornmand.

Abondon c lears the program in
memory and leaves you with a blank
screen. If you have modified the
program without saving it you will be
warneo,

Note that, with Abondon, only the
curent text is deleted. The other seven
modules are left alone. This oDtion. as
well as the Lood file, Insert file, Sove File,
and Sove os commands, only affects
the current module.

loads a file into memory, surprisingly

Using Hisott C Hisolt C Poge | |

The Iile selector appears and you can choose the file which you wish
to load. If there is a file already loaded in this module that you haven't
saved then Hisoft C will ask for confirmation because the new
program overwrites the old one in memory.

The name you specil' is displayed in the work window's title bar.
This is the name of the current file.

Sove file stores the program in memory on disk under the current
name. If a name hasn't been given yet (the title bar shows N o n a m e)
then the file selector will appear for you to enter the file name and
possibly change the directory (folder) or drive.

Initially the file selector is set up in directory A r \EXAl,4PLEs. This is
so that you can load the examples off Disk 2 straightaway. Ifyou want
to save a file to a newly formatted disk, you will need to change the
directory to A: * . *. Otherwise you will try to save your program in a
non-existent directory.

If, when you save a file, a file with the same name already exists,
HiSoft C will ask you whether you wish to overwrite it. If you don't
want to, click on No and the save operation will be cancelled and the
eKisting ffle will be Ieft as it was.

But if you do want to save the program with the same name, the o1d
version ofthe program v'ilL sunrive with a .BAK extension rather than
.c.
Every time you save a program to disk, HiSoft C remembers the
name of the file and the position of the cursor within the text. Thus
the next time you load Hisoft C it can re-load the last program saved
and re-position the cursor at the place that it was when you saved
the program. You can ttren conunue working where you left off.

Ttre Sove os.,, command lets you save the current program under a
different name to that of the file that was loaded. The file selector will
appear so you can specify the new name. The program is then saved
under that new name.

Finally Insert File lets you merge a program from disk with the
program rn memory.

You can insert a whole file in to the text in memory. The insertion
takes place before the line after the current cursor position.

When you select this option a file selector appears and you can
specifi the file to insert. You can only insed HiSoft C coded files
rather than ASCII ones. If you need to insert ar ASCII file you can
convert it first to the HiSoft C format. See Seclion 1.9.

Poge 12 Hisoft C Using Hisoft C

__

L

For t-Ile same reason files may not be inserted when in Text Mode

HtSoft C will let you suppress some of its dialog boxes if you wish.

For example, you can suppress the alert box that appears when you
qult with an unsaved program. You can also control v/hether a
backup is made, and even whether Hisoft C automatically loads the
last prbgram saved. These commands are described in Secfion 1.8.

_

orkinq with severol fi les
Hisoft C lets you work simultaneously with up to eight modules that
contain eight different programs.

However there is only ever one window open at once. The different
programs appear one after alother in the same window.

L3.1 Selecli o module

L

L

{

L

L

(_

L

A module is an aJea where you can load, modiry, execute and save a
program. There are eight such areas. The simplest v/ay to select a
hodule is to s imul taneously press the ALternate key and the
number you wish to select. For example, to select module 5 press
A L t - 5 .

The module's name and the name of the file being edited are shown in
the windods title bar. But if you have selected module 5 for the ffst
Ume there won't be any lile loaded. The window title will be n o d u L e 5
: N o n a n e

You can move to the next module by clicking on the "Full window" box
on the top right of the curent v/indow. So, if you are ediUng module 3
and you click on ttre fi:ll box you will select module 4.

L Using Hisofi C Hisoft C Poge 13

.3.2 The u

The option Module List on the File menu displays a dialog box
containing a list of the modules.

/t\ f,f,E tind Ruo llove Slock llelD Info Ins

odu le l i s t ,

ffi
fi-f-l

For each module the name of tfle file being edited and ttre state of the
file are shown. The state of the file is either l ' lodi Ji ed or Not
m o d i f i e d .

This cornmand also lets you select a module easily.

For example, say you wish to edit the file DUMPFILE. Thanks to ttris
dialog box, you can see that this program is in module 2. Click on the
box corresponding to this module and module 2 and its file
D UMP F I LE will appear on the screen.

If you wish to exit this dialog box without changing modules click on
oK.

This dialog box also has another purpose. It tells you if a block has
been marked in another module. If one has it enables you to transfer
it to another module. See Seclion I.6.3 for how to cut and paste
between modules.

Poge 14 HiSoft C Using HiSofi C _

\

L

L

Runnino q proqrom

.4.1 How's

You have tj?ed in a fine program or perhaps you have loaded an
example. The only thing left is to mn it.

To do this, save your program, leave the editor and load the ffrst pass
of the compiler with a stack size of 4096 b1'tes. If there are no errors,
load the second pass and speciry that you want a GST output ffle.

There will be errors. And then you will need to include the file stdio.h
which is on disk 4. Ilad the editor again to fix this. And then you link
vdth the wrong libraries so it still doesn't work...

No don't worry it's all lies. That's how it used to be.

To run your program click on Run progrom from the Run menu.
That's it.

Press a key or click on the mouse when the program has finished
a.rld you'll be back in ttre editor.

But we recommend that all programs shor:.ld be saved before running
them. An array index that is a little too big or recursion that uses 20k
memory can both crash the machine and you will have to re-load the
interpreter.

If the computer crashes instead of displaying bombs (youVe coming
across bombs no doubt) and returning to the Desktop, Hisoft C
displays a description of the error and positions the cursor at the
program statement that crashed Hlsoft c.

This considerably reduces the problems caused by program errors
but doesn't remove them completely; after such a crash, GEM may
become conf,ised.

Wtren you start a program running, the work windo\ r and menu bar
disappear and are replaced with a blank screen. Then you are free to
open your own windows and display your owr] menu. See Secfion 3
for details of functions vrhich let you do this.

You can also deliberately stop a program that is running by pressing
two of the Shi f t , Controt or ALternate keys s imul taneously . For
example, press both sh i f t keys or controI and shi f t together .

* Using Hisotl C Hisoft C Poge 15

An alert box will appear and you are asked to confirm that you wish
to halt execution. The work window and editor window will be re-
displayed on the screen and the cursor positioned at the point where
the program was intermpted.

The function stop() can be used within programs to stop the
program.

Please note however that it is not possible to interrupt a program
whilst a built-in Eisoft C routine is running. That is to say when a
library function is executing. This is because the library functions are
written in assembler rather ttran interpreted by HiSoft C and so the
interpreter does not have control. Thus the program may only be
interrupted after the function retums. This normally isn't a problem
as most funcuons execute very quickly, but the event function may
run for several seconds and during that time the program can't be
stopped.

.4.2 Error Messoes

Ifyou run a program you have wr-itten yourself the chances a.re that
there are either slrrtax errors or semantic errors.

If there is an error whilst runnlng a program, Hisoft C displays an
error number and message in an alert box. See Appendix C for a
detailed description of the possible errors.

As soon as you acknowledge the alert box describing your error, the
cursor is positioned at the place where the error was found, so you
can correct it straight away.

Once your program is displayed you won't be abie to see the error
message any more. To re-display it click on the Lost error item on the
lnfo menu if this isn't disabled and this will disDlav the last error
message detected by HiSoft C.

We will now describe the other ltems on the Run menu.

Poge 16 Hisoft C Using Hisoft C

.4 .3 roce Mode

If you have an error in Your
program that you can't identi8/,
the Troce Mode will let you
visualise the execution of your
program. It's a single step mode
whereby for each instmction that
is executed Eisoft C displays the
program line that is executing on
the screen. You can therefore
follow the execution of Your
program.

To single step a program, all you
need to do is to select Troce mode
from the menu; a tick mark wi.ll be
displayed to show that it has been
selected. Now, each time You
execute a program, it wtll be in
trace mocle,

I\/ode again. The tick will disappear.

Run pfogran itj
------ 0pt i r ts
Trace node
Uar iab le dunp
Pointer test
CIear screen
Shor cursor
Pause aftef exeE ut i on

----- Envirarrent ----
y' Link at runti f le

Coniland tai l
Inc lude f i l es
Sgsten nenorg size

------ P rqj e.t
Load project 0J

r

To override tlfs, click on Troce

Before executing each instruction, HtSoft C displays the
correspondlng program line on the top line of the screen. You must
now piess a key. Depending on which key you press the program will
continue, with or without single step or will be terminated.

Ifyou press Return, Q or Cont ro[-c execution continues but not in
Troce lvlode.

If you press anottrer single key, execuiion continues in trace mode;
th! program line is deleted and the old screen re-drawn. Then the
instructon is execr-rted and so on.

(,_

L

B u t i f y o u p r e s s t w o o f t h e s h i f t , A L t e r n a t e a n d c o n t f o !
the same time, execution is interrupted. The instruction
disDlaved is not executed.

keys at
that is

This method of using trace mode is not of much use in some cases.
For example lf you are interested in the behaviour of the program
around line 944 yo:u v/ant to go stlaight to the place that is causing
the problem.

For this reason, there is another way to access single step mode. Two
functions enable and disable this mode, t ra ce-on and t ra ce-of f.

Using Hisotl C Hisoft C Poge 17

\-

For example, in the following program trace mode is activated in the
middle of the program and disabled towards the end

m a i n ()
{
p r i n t t (" 9 1 1 ") ;
p r i n t f (" 9 2 4 ") ; ' -
p r i n t f (" 9 2 8 ") ;
t r a c e _ o n () i
p r i n t f (" 9 3 0 ") ;
p r i n t f (" 9 4 4 ") ; ' -
t r a c e - o f f () ;
p r i n t f (" 9 5 9 ") ;
t _

After the t ra ce_on instruction the progam is executed in single step
mode. Then, after the trace-off, trace mode is disabled and the
program n-rns normally.

Note that you don't have to select Troce mode with the mouse when
using these two fi-rrctions, and you can also have multtple uses in the
same program, so you can use the trace functions where and when
you want t}"em.

| .4 .4 o volto

If you don't already know the C language, skip these sections on
variables and read them later.

In conjunction with trace mode you can fo1low the values of one or
more vadables. You carr see the value of one or more variables after
each instruction if you wish.

This facility must be used v/ith Troce l\4ode.

After the display and execution of the current instructlon, a dialog
box appears which lets you display the values of all the variables you
want. Close this box when you have finished and then the next
instruction will be executed. See Secfion 1.4.6 for a descriDtion of tlds
dialog box.

To enable vadable dump mode just select the Vorioble Dump option
on the Run menu. As with trace mode there are two functions
va._on() and var_of f () which let you enter and exit this mode
whilst a progam is running.

Poge 18 Hisotl C Using Hisoft C

_

In Troce Mode, if you press v (for variable) when about to execute an
, instruction you will be placed in Vorioble Dump mode. Powerful, isn't
* it? If you press M then this will activate the Memory dump (see

Section 1.4.7) and pressing S will activate the Stock disploy (see
Section I.4.8).

.4.5 Pointer s
t

catastophic consequences.

L Fortunately, IIiSoft C tests the values of pointers every Ume you try
to write to an address pointed to by a pointer' If the value of the
pointer is junk then an error message (error 33) appears on the
screen.

These Pointer Tests are acti-{e by default. But if you use pointers a lot
in a program that has been debugged you c:rn suppress this option.
You'll Eain a few tenths of seconds. To do this, click on the Pointer
Test item of the Run menu and the tick will disappear.

(But you do this at your own risk...

One bad pointer value can crash the computer if this option is
suppressed. Remember that, instead of displaying bombs, IIlSoft C
displays an error message giving the problem that has happened
arld positions the cursor at ttre piece of program that tried to crash
the machine.

U

_

(

I

L

L Using Hisotf C Hisofi C Poge 19

| .4 .6 O I e um

The Info menu has five options. We already know about one of them,
progrom Info. We will now cover the Voriqbles option.

This command allows you to display the names and values of
variables of a given type.

Run l lovE Block l le

/* evert vari ables */
int event-tgpe; /x tgDe of event*/

When you click on this menu entry a dialog box like that above
appears. This is the same as as the box that appears when Vorioble
dump mode is selected. The dialog box is split into two parts, the
dght hand side is a window where the names and values of variables
are disptayed.

On the left are ten selectable buttons. One of these lets you leave the
box and the other nine let you choose which tjapes of variables you
wish to display.

A variable's type is composed of an elemtentary type (chor, short,
int/long, floot/double or struct) and a class (none, pointer, orroy or
function). For example, an ordinary integer variable is a combination
of int/long and none. An array of floating point numbers is floot/dbl
and orroy. A pointer to a structure: struct and pointer. A function
returrrinq a character: chor and funciion.

Pdge 20 Hisott C Using Hisott C

t-

{

t,
(_

L

L

(.'

L

I

L-

L

AIl twes of variables can be split up like this. To display-all the
'naridtjtes of a given t'?e, you must select a t'?e and a class by
clicking on the appropriate buttons r dth the mouse.

For example, to displav all the pointers, select pointer and a1l the
orimarv tvpes (chor, shbrt, int/long, floot/dbl' struct). In this way you
i,,iU Ols"ptiv all the pointers used by the program.

Ifvou click a second Ume on a button, this button will be de-selected'
Ydu can thus successively examine several bpes of variable.

Finallv a little tdck we haven't mentioned before. The process above is
a bit iirvolved if all you want to do is display one variable This is what
the two small boxes near the top right of the dialog box are for \pe
the name of a variable in one and then click on the name you have
iust entered with the mouse and the value of the named variable is
-displayed

in the second box.

The values are displayed in a format that depends on the -class of the
variable. If it's a siinple variable (none) then the value is displayed in
decimal. If it's a poinJer the hexadecimal address to which lt points is
displayed. For orroys, the address of the first element is shown and
for fun-ctions the address of the start of the code'

You may display several q4)es of variables simultaneously.

If there are too many variables to display them all in the window use
the up and down buttons to scroll through them.

Hisoft C displays after each va.lue tfre type of the value in a simplilied
f a s h i o n . T h e b a s e t y p e i s d i s p l a y e d f i r s t (i n t , c h a r ' d o u b t e ,
short...) followed by an indicatlon of the class: if the variattle is a
pointer a * is displated, an aray tl is added, or for a function () is
idded. For simple va-riables nothing is added.

For STATIC variables, the modu]e in which they are declared is also
given. For example for a static variable declared in Module 1' Htsoft C
adds an extra nod : 1 .

This command car not be selected until the program has been run'
nor can the variable dump be consulted if the program is changed'
Finally, only global and atatic variables may be displayed - local
variables are invisible.

If memory is very short, Hisoft c can not retain the symbol table
after execution and so this option is not available.

l. Using Hisott C Hisoft C Poge 2l

1.4.7 emo um

This command lets you look at part of the memory of your computer.
You give it an address, and the memory area concerned is displayed
on the screen.

To do this, select Memory dump from the lnfo menu. A dialog box will
appear that nearly fflls the screen. An editable ffeld marked Add ress
lets you enter the hexadecima,l address of the memory area that you
wish to examine.

Press Return and a display of256 bytes sta-rting at ttre address you
entered appears. You can click on the two arrows at the side of the
display windov/ and these move 256 bytes forwards and backwards.
Each b)'te is displayed in both hexadecimal and ASCII.

This command is most frequently used to examine the contents of
structures and arrays having read their address using the Vorioble
dump command. It can be accessed in trace mode by pressing M.

The memory dump can also be activated and de-activated from
within your program using the mem_on0 and mem-offO functions.
These work in the same way as the vor_ono and vor_offo functions
described in Section 1.4.4.

67aaa i I 0 1 l l 0 l 0 e f c e l e 2 0 1 5
57aha:76 65 6e 7l Zg 51 65 6d 6f 6e 73 7l 6L 7z 7{ 6t rrvent
67ara:6f 6e 20 7A 72 6t 67 72 6L 6d 20 0 I 0 f {erron Drogfan
57ada: f ld 2t 75 73 69 5e 67 ZS 71 6E 65 Z0 1E 6, 53 " using the HtS
67aeai6f 66 7l ZA ll ZB 71 6t 6t 6E 62 5t 78 2g 0 I rroft C toolbox
6 7 a f a r 0 l 0 l 8 l f e l l l 2 0 6 d 6 5 6 e ? 5 2 8 7 6 r ' ! n e n u
67b0al5l 7? 61 6L 62 6c 65 ?3 ?0 0 I r? 9c 90 I I rrir l.t les 6
67bla! I 1 e 6d 65 6e 5f 5E 5f 61 61 2t jg t I I rr 0en-load,
67b2ar I e 5d 65 5e 5f 73 51 76 65 2c 90 I I I 1" nen-save,
67btrai e 6d 65 6e 5f 71 75 61 ?1 Zc J0 I I I I e rrr 'ren-duit,
67b{a!6d 65 6e 5f 66 69 6e 61 2c 9g t I I f l l 6d!rne0-find,
67b5dr65 6e 5t 72 65 78 6c 51 63 55 3b 3b 0 I I I "en-replaceii
67b6arfe I Ll 2S 77 6t 6e 61 6t 77 2S 76 6L 72 6t 6f n' rlndoH varl
67h7a '162 6c 65 73 28 0 l .?9qr0 I I I t i 77 "b les 6

Page 22 HiSoft C Using Hisoft C

t_

I

(

t_
I

(-

t

L

I

(_

L

(-_

{

L

1.4.8 Stock s

This command is similar to the previous command except that it lets
you examine the area of memory used by the interpreter's- stack. It is
here that the intrepreter stores your local variables in the order in
which they were declared arrd in order of function cal1s.

Ttrus this may be used to check the values oflocal variables. The local
variables of the current function start 8 b}'tes from the top of the
stack. This is the address of the local variable that is declared first,
wittr the second variable next, etc.

The stack display can be accessed in trace mode by pressing S. It can
be acUvated and de-activated from within your program using the
siock_ono and stock offo functions. These work in the same way as
the vor_ono and vor-offo tunctions described in Secfion |.4.4.

.4 .9 Lin IUn e

When executing your program Htsoft C can consider the modules in
two ways.

When the Link ot runtime option is not selected, it considers the eight
modules to be eight different programs which have nothing to do
r'ith each other. So when you run the program only the curent
module is executed.

On the other hand when Link of runtime is selected, Hisoft C
considers that al1 the modules form one single progam. This lets you
use the classic C programming style of using several modules. HiSoft
C executes all the modules together and 'links' between them in the
same way as a linker in a separate compilaton system.

So you can declare a function or variable in one module and use it in
another module as if you were using a compller and linker.

If you have selected Link of runtime, Hisoft C effectively links the
modules before running them.

L Using Hisoft C Hisotl C Poge 23

xeculion nvronmen

Tl].ere are three options on the Run menu that a-ffect the execution of
a program.

They are selected or de-selected with the mouse. If an option is
currently selected ttrere is a tick in front of it.

Cleor screen lets you view the
execution of your program on a
blank white screen rather u'lan a
GEM-t]?e screen.

Show cursor starts execution of
the program in an environment
similar to a . Tos program, with a
white screen and a solid text
cursor.

Pouse oller execution v/aits for a
key press or a mouse click when
the program finishes execution
before returning to the editor.

These three options are saved and restored every time you save or
load a program with the File menu commands.

In effect, they are dependent on the program. The TOS environment
suits some programs but not others. The automatic saving of these
options lets ttre environment change with each program.

I ommond lo i l

The Commond toil option from the Run menu lets you enter a list of
arguments from the keyboard. These are passed to your program
when it executes.

Thls lets you simulate passing parameters to the program with the
interpreter in a similar way to those passed to compiled .TTP
programs.

Run progran (t){
------ 0pt i o, js
Trace n ode
Uar iab le dunp
Pointer test
Clear screen
Shor{ cursor
Pause after execut i on
---- frvironn€fi t - ' -"-
Link at runt ine
Cor'rnand ta i I
Inc lude f i les
Sgsten nenoru size
- - - - - 9 e a i 6 t . i - - - - - - - - -

Load project (tJ

Page 24 HiSofi C Using Hisoff C

L

I

\

_

The parameters are separated by spaces except when enclosed in
double quotes. For example. the follouring lisl,

L i s t o f " t h r e e p a r a m e t e r s "

c o n s i s t s o f t h r e e p a r a m e t e r s : " l ' r , " , " o f " a n d " t h r e e
p a r a m e t e r s " .

You access the program parameters in the classic C way, that is to
say, by having two parameters to the function rna i n.

The first [a r g c) is the number of arguments in the command line.
The second (a r gv) ls a pointer to an array of strings, which contain
the parameters, one parameter in each string.

The following program writes the parameters passed to it on the
screen.

m a i n (a r g c , a r g v)
i n t a r g c ;
c h a r * * a t g v ;
t

! 1 h i t e (a r g c - -)
p u t s (a r g v E a r g c l) ;

]

.4 .12 lnc e

The lnclude files option on the Run menu displays a list of the current
resident include ffles in a dialog box.

'!tr/hen a #inctude instruction is encountered during program
execution the conesponding llle is loaded into memory. The include
files should be stored in a directory called \HEADER on the disk from
which HiSoft C was loaded, and you should enclose the file name in
angle brackets: < and >. If you use quote symbols (") then the
interpreter will look in the directory: this will normally be that from
which HiSoft C was loaded.

The include files remain in memory between executions to avoid
loading them repeatedly. This option displays a list of include files
that have been loaded by previous runs of programs.

You may have up to eight include files in memory simultaneously.
The dialog box can therefore show eight ftle names.

Using Hisoft C Hisoft C Poge 25

.4 .1 em Memorv Size

It is possible to deliberately remove include files from memory by
clicking the E |. a s e r e s i d e n t f i L e s in the dialog box. These files
are not deleted from the disk but only from memory. They will
automatically be re-loaded if you run a program that needs them.
The include files are automatically removed each time you load a
program to ensure consistency.

lA Do not use the include files from a C compiler with HiSoft C. This
will cause errors. Hisoft C has all the standard include files and only
these should be used with HiSoft C.

The system memory size is the amount of free memory that is not
allocated to Hisoft C but is free for use by the Atari ST's operating
system.

This memory is used for memory allocation (the ma L t o c function
and friends), loading resource ffles (rs rc-Load), the file selector and
loading compiled procedures.

By default this is fixed at 8K bytes. This is perhaps a little sma.1l for
many purposes.

Ifvou wish to load a large resource flle, or use the memory allocation
fuhctions extensively oiload many compiled funcuons then this 8k
will be too smal1.

On the other hand, if you are using none of the facilities above you
may be interested in reducing this space thus increasing the
memory tllat HISoft C can use.

Increaslng the system memory size has the effect of reducing the
space reserved by the interpreter for the storing and running of your
programs.

So how do we modi$r this system memory size?

Select the Svstem memory size item from the Run menu. Enter the
number of kilobytes you wish to ai.locate to system memory and click
on oK. Save the HiSoft C configuration with Sove Opiions from the
File menu. guit HiSoft C and re-load it.

The system memory size is now the size you speciffed. It will be this
value each time you load HiSoft C as this has been saved on the disk.
To change to a new value please repeat the sequence described above.

Poge 26 Hisott C Using HiSofi C

A
"r"ora

C uses this space itself. Always leave at least 6K bltes for
the system; it is impossible to reduce this any fiirther.

L

t

\

(_

I

L

.5 n ond re oce

1.5 . I F ind

Thanks to the Find... item of the Find menu you can search for a
string of characters within a loaded program starting at the cursor
position.

\4rhen you select this option a dialog box appears on the screen arld
you can type in the string to search for, thus,

FIflI) N STRIIIE

I S t r i ng :h -s l i de l -

Direct i oo ffiEtYf lE Ek'iardl

case sensitive ffi fTil_l

llasic node t-lEg-l IL

l-n--d-l TJriEet-l

The string that you t!?e in may correspond exactly to the item that
you are looking for. For example you could search for t h e e n d and
ihe editor woul-d search for those i:xact characters in the text. In this
case you should leave Mogic Mode set to NO.

But you may have more exotic requirements containing a number of
unknowns. For example, you might wish to ffnd all the strings of
characters starting with t h e e n d and finishing with z z .

Equally you can search for every time a * is separated from a + by
zero or more blanks. It's not blindingly obvious that this is useful but
there are many praclical applicauons of this sort of thing. This is
what the Mogic Mode is for.

Using Hisott C Hiso{t C Poge 27

The string that you type will contain ordinary characters which
match exactly the same character in the text, but ttrere are also
special characters as follows:

matches any single character
x+ match with a sequence of one or more of character

x. i.e x, xx, xxx or more character x's
x * match with a sequence of zero or more of character

x. That is nothing, x, xx, xxx etc
1t matches any sequence of characters. It could be no

characters at all or a strinE of characters
2 + matches any string of at least one character
\ ? matches a question mark

matches a plus sign

matches an asterisk

Some examples:

strtng
Entered :

Strings Found:

q H e r r y q } , e r t y " o n l y
q w ? r t y " " q l r a r t y " , o r " q u r b r t y " , o r " q u c r t y ' , , o r

" q w e r t y " , e t c . . .
q w e + r t y " q i , { e r t y " o r " q u e e r t y " o r " q u e e e | " t y , '

" q ! . r e ' r t y " " q w r t y " o r " q l i e r t y " o r " q H e e r t y ' , o r
" q ! r e e e r t y . . .

" q u ? + r t y " All strings starting with ,'q w ", and
finishing wittr " r t y,' , \i\rith any string wlth
at least one character tn between

" q w ? * r t y " All strings starting with " q u "
f in ish ing wi th " r ty ' , , wi th any
inc luding "quer ty"

, and
string

" q v \ + r t y " " q u + r t y " o n l y

" q u r \ * r t y " " q t i * r t y " o n l y

" q u \ ? r t y " " q ! r ? r t y " o n l y

The string that you are searching for must all be on one line of text.
When the characters are found the cursor is automatically moved to
that Dlace.

Poge 28 Hisott C Using HiSofi C

l

_

L,

The d i rect ion of search, Forrard or Back! ,ard may be speci f fed by
clicking on the appropriate button.

If you wish ttre search to distinguish between upper and lower case
letters click on Y E s in the c a s e s e n s i t i v e field. If you want upper
and lower case to be considered the same click on N0. Ifyou click on
No, the string quERT is considered to the same as ol,lERT and qr,rert
during the search.

You have eight possible search strings at your disposal. Thus you
can build up a little library of search strings that you commonly
search for, choosing with the Find command which one you want
this time.

Click on the arrow button to select the lind string you want; the
current number is displayed.

When you have found a stdng you can use the Repeot Find
command to find further occurrences with the same conditons.

(
1.5. nd ond reploce

You can search for a sequence of characters and replace it with
another. To do this choose the Find & reploce item from the Find
menu.

E
E

SENRCH NilD REPLNCE N STRII{E

I F ind rh -s l ider E
E2 Replace:horiz-sliderf-----------------

0ccurence f-n-n- f{llill t-Tl-fl

cdse sensitive f f l lo-'. l

D l rec t ion f*!!tll+I tliElrarfl]

llasiE nqde Ye-;__-l Iil

fE;irce-"] l-tricei-l

The dialog box has two lines so you can enter two strings. The {irst is
the string to search for and the second is the string that will replace
it. You can switch between the two fields using the up and down
cursor keys.

\

(_

Using Hisoft C Hisoft C Poge 29

You calr use all the same facilites that are available vtith the ordinary
Find,,, command.

You can use wildcards, access 8 find strings, select the search
direcuon and whettrer the search is to be case senslflve.

Ttrere are three modes for using replace. You choose which one by
clicking on one of three buttons. You can choose to teplace one,
severaftr all occurrences of a string.

. Replace One occurrence

This replaces only one occurrence. The ffrst one found is
replaced.

. Replace All ocflrrences

All occurrences found are replaced. This starts from the
cursor and in ttre direction specified.

During the operation of tbls command, if you press one of
the Sh-ift, Cohtrol or Alternote keys the replace operauon
continues but in "Some Occr:rrences" mode. See below.

. ReDlace Some Occurrences

This is the most commonly used optlon. For each
occurrence ttre cursor is positioned where the stdng has
been found. A small dialog box with three buttons is
displayed. Hlsoft C asks if you wish to replace this
occurrence. You can:

. Reolace thls occrlrence and ffnd t]le nsrt one (click on Yes
or tl,pe Return).

. Not replace this occurrence and ffnd t]:e next one (click on
No).

. Stop searching without replacing ttris occurrence (click
on StoP).

This process conunues until eittrer all occurrences have
been found or you stop the search.

ZA 3g sarsfiiL not to do a replace operaflon that will leave a comment
line or a string witfrout its terminator. An error message will appear
and the search will stoP.

Poge 30 HiSoft C Using Hisoft C

The option Find string in files fiom the Find menu lets you search for a

, string within liles on disk. A dialog box appears:

_

.5 .3 qrchi in f i les

Ttre liles may be standard ASCII or HtSoft C coded ffles.

Fi.rst define the files in which the search is going to take place. To do
this click on one of the 8 boxes for ffle names that you can see in the
dialog box. You can search up to eight ffles at once.

The file selector will appear; select a file and it will appear in the box
that you clicked on.

To remove one of ttre eight file names, click on the ffle name and then
select Concel in t]le File Selector arld the name will disappear.

To start the search click on Find. When the ffrst occurrence is found,
Hisoft C will display a message indicating in which file, and on what
line wlthin the lile, the string has been found.

You can stop the search by selecting Concel, conunue the search in
the same file (Coniinue) or continue searching in the next lile fNext
f i te) .

*

I

i

F ind . s t r i ng i n { i l es

ffi

@
@ Frr-i---l

f i l . t | |

ffi
m case sensitive

mtri lrm__]
m

Using HiSoft C Hisoft C Poge 3 |

L5.

This option lets you ffnd an identifier without having to type it. When
you use this command HlSoft C will search for the next occurrence of
the vadable name undet the cursor.

Thus, if the current line is:

p | i n t f (" % d \ n " , 1 ! a g _ i d e n t) ;

and the cursor is on the i of f Lag-i dent then HiSoft C searches in
the text from the cursor for the next occurrence of the identifier
f l . a g _ i d e n t .

If the identifier is not found before the end of the current lile the
search continues at the beginning.

If there is only one reference to f Lag-i dent in the text the cursor
re-appears in the same place.

You can use this command with the mouse without pulling down
menus by ffrst moving the mouse to the identifier ttrat you wish to
search for, then pressing on the right button and then clicking at the
same Ume on the left button.

This way you can search for an identifier extremely quickly.

1.6 Bloc o rotions
You carr define a block of text and carry out various oDerations on rr.
For example, delete the text, copy it to another place or'save it to disk.

A block is a collection of consecutive whole lines in the text. Ttrere are
two ways of deffning such a b1ock, with the mouse or with the menu.

With the mouse, double click in ttre ffrst and last line of the block that
you want to define.

1.6 . n a oc

Poge 32 Hisoft C Using HiSofi C

l'love b I ock
Copg b lock
Save b lock
6oto b lock s ta r t

Set top o f b lock
B ottor 'r of block

Hide b lock
Dele te b lock

or t b lack

With the menu, move the cursor to the
ffrst line of the block and select the menu
i tem Set top of b lock f rom the Block
menu. Then move the cursor to the last
line of the block and click on the Boitom of
block item.

When you have defined a block it is shown
highlighted in inverse video (white
characters on a black backgtound).

The block stays selected until you choose
Hide block or Deleie block.

If a block ls selected when you change a module the block isn't de-
selected but it is treated specially. See Section L6.3 .

You must select a block before using any of the commands described
below.

1.6. o ot ions

There are plenty of choices of operations to perform on blocks:

Move block

This command moves the block to the current cursor Dosition. The
block is deleted from its original position and inserted

-aJter
the lirle

containing the cursor.

Note that a block may not be moved if the cursor is currently inside
t]e block.

Copy block

This command copies the block to the cursor position. The contents
of the block are duplicated on the line aJter the current cursor
position.

Dele le b lock

This command is used to remove a block of lines.

.
The block is destroyed.

Using HiSoft C Hisofi C Poge 33

Hide block

All this command does ls de-select the current block.

The text that was shown in reverse video is re-displaved in normal
video; the text is not changed.

Sove Block

The contents of the block are wdtten to a disk file. The file selector
appears and you can enter the name of the file to which the block will
be written. The text in memory does not change.

Goto block stotl

This command isn't the most powerful in the editor but it can be \-
useful on occasion.

.6 .3 o block lo o onolher fi le

HiSoft C lets you select a block in one module and insert its contents
in another module.

If you select a block and then change module the position of the block
isn't lost: the editor remembers which module the block is in and
which lines it contains.

This can be seen using the Module List command from the File menu.

You can insert ttre block after the cur-rent hne by selecting lmporf
Block from the Block menu.

This is the only operation yorr can carry out on the block when you
are in another module, apart from re-defining it of course.

Poge 34 Hisotf C Using Hisofi C

\

The e menu
This secuon describes the various commands under the Help menu.

1.7 . The mocro commonds

You can set up ten programmable keys Shi f t F1 to Shi f t F ' l 0 .
(Press a shi ft key and the function key together).

When you press one of these keys a sequence of commands ls
executed as ifyou had hit the equivalent keys.

" ' - ' - 1e\ l - -----

Hacro cot'tnands
Cufsor kegs
FunEt ion kegs

- - - Sccessar ies -
Pocket ca lcu la to r
f,sci i codes
Pr in t f i l e
l le lp- - - - $ isk - - - -
l ler fo I der
De le te f i l e
Load d isk u t i l

l i t i es

Using Hisotl C Hisott C Poge 35

@
M
ffi

ffi

ffi
ffi
=
ffi-

ffi

Control Z
Cootrol P
Control 0

Conirol Y
Control f ,
control E
Control C

nltern.te

F !

o

4

\-

When you select the Mocro Commonds menu item, a dialog box like
that below appears:

_

Ttrere are ten lines so you can enter ten sets of comflands. Each line
corresponds to one key.

There are two sorts of characters that can be entered in the
command strings: control characters, which are interpreted as
commands to execute, and normal aLphanumerics and punctuation.

When the macro command is executed, normal characters simply
appear on the screen as if they had been typed.

Now for the control keys:

T h e k e y s c o n t r o [- P t o c o n t r o L - Y c o r r e s p o n d t o F 1 0 , F 1 t o F 9
respectively. For example if you select the top line of the dialog box
fthe ffrst macro) and tjpe Escape to clear it and then hit controt-
s, a stylised 3 digit vdu appear indicatlng F3. Then pressing shi ft
F1 is equivalent to pressing F3.

i f y o u t y p e C o n t r o t - P , C o n t r o l . - Q , C o n t r o l - R , C o n t f o L - s ,
C o n t r o L - T , C o n t r o l . - U , i n s e q u e n c e t h e c o m m a n d w i l l b e c o m e
equivalent to t]?ing F10, F1, F2, F3, F4, F5.

Poge 36 Hisoft C Using Hisoft C

Be careful not to confuse the non-shifted function keys and the
shifted function keys that correspond to macro keys. The unshifted

* ones are pre-delined and can not be changed. Also the ten macro
commands can not call each other although they may call the
unshifted fulction keys as we have seen above.

cont ro L-z followed by a letter is equivalent to pressing A Ltefnate
and the letter at the same Ume. This can be used to access some of
ttre menu functions from macro commands.

For example, A L ternate-T selects the Top of file command. If you
vou enter cont rot-z and then T in a macro command this will go to

. Also, controL-z followed by one of the dlgits 1 to 8 will select the

_ correspondingmodule.

The only excepton to the above is that the au i t command can not be
- incorporated into a macro command,

Cursor movements may be added to macro commands. They are
r e D r e s e n t e d b v c o n t r o [- A t o c o n t r o L - D a n d a r e e c h o e d w i t h

_ ariows pointin! in the direction of the cursor movement.

In addition the following control codes can be entered:

\ . . - . controL-Fl is equiva lent to the Retufn key.

contro L-H is equiva lent to t ie Backspace key

\--- Use of control characters other than those above and attempts to call
menu items that do not exist (via a cont ro [-z followed by a letter)

' rMill give an error message.
\-

By default the macro keys are set up as follows:

sh i f t F 1 Add a ca-11 to the function pr i nt_vi ndor.r to the
ffle.

Sh i f t F2 Add aca l l to the f imct ion pr in t f to the tex t .

S h i f t F3 DuDlicates the current line.

s h i f t F 4 Positions the cursor at the start of the file and
ca-lls the Find command.

shift F5 Adds a comment header line.

s h i f t F6 Deletes the new line at the end of this line, thus
joining the folov/ing line to it.

Using Hisoft C HiSofi C Poge 37

s h i f t F 7 Deletes the new line at the start of this line, thus
Joinlng it to the previous line.

s h i l t F 8 Spare.

shi ft F9 Moves the cursor half a screen towards the start
of text.

Shi f t F10 Moves the cursor half a screen towards the end of
text.

| .7.2 l l code toble

When you select the ASCII code command, Hlsoft C displays a dialog
box which shows the character codes used by the ST.

.7 . Print fi le

The Print file opuon lets you print a disk ffle without monopolising the
CPU.

If Print file is selected, HiSoft C lets you enter the ffle to print using the
file selector, and the file will be spooled for printing. You keep control
of the ST and can, for example, edit or run a program while the file is
printed - it's magicl

P : 7 0
q:71
r "12
s r7 l
t ! 7 1

v t 7 6
,1i77
x t 7 8
g t ? t
ziTA
{ !78
l : ? t
)r7D
- ' t7E

t7l

: 9 0 C : 1 0
ot0 I l r l . l
0 i82 ?r12
o io t r l :13
c r 8 1 \ r l 1
I r 9 5 5 r 1 5
t i 0 6 5 t 1 5
0ts7 ' l l l 7
y ' :08 Sr lE
ot0 t 9 : i .9
r r A e a r l n
r r0E t r tB
?rBC r i lG
t r0D r r l0
ltoE IrlE
l \ i0F t r lF

:20 0r t ro
! t 2 l 1 t 3 lnt22 2tl2
I r 2 3 3 r 3 3
5 ! 2 a a ! 3 a
it i25 5: 15
& r ? 5 6 t 3 6'127 7 t37
(r 2 8 8 ! 3 8

* r2n r i t r i
+ tz l ; t38
, !2C < i3 t
- r20 =r3D
, rZE > :3E
ltZF 1t3l

e r l0 Pr50 \ !60
n r a l 0 r 5 l r r 6 l
8 r 1 2 R r 5 ? c ! 6 2
C r l S S r 5 l c r 6 3
D r l l T : 5 4 d r 6 a
E i 1 5 U i 5 5 e i 6 5
F r 1 6 U r 5 6 l r 6 5
6 : 1 7 I r 5 7 q : 6 7
[! 4 8 X r 5 E h : 5 8
I t 1 9 Y r 5 9 i r 6 J
J r l n Z i s i j i 6 n
K ! 1 8 t r S B k ! 6 8
L i l c \ i 5 c I i 6 C
l l r l 0 1 l 5 D n r 6 0
I r l E ^ : 5 E n r 6 !
0 r l F - : 5 F o r 6 F

C l6o
At82
l r E 5
i r S n
i t 9 7
ttJc

Poge 38 HiSoff C Using Hisoff C

However, despite the above, you can't use the File menu whilst
printing; loading and saving ffles is not possible, nor is leaving Hisoft
C. If you select one of these options you will be asked whether you
want to cancel printing so that the command you selected can then
be executed.

1.7 . ockef Colculolor

A calculator can be used in HlSoft C by clicking on the Pocket
colculoior menu entry. It looks like this:

In brief, it uses reverse Polish notatlon, is integer-only but can
calclrlate in base 8, 10 and 16.

The four standard arithmetic oDerations are available. To calculate
2OE3 - 1FE3 for example, click the digits for 20E3 and the larger
up-arrow button (this is the enter ker. Then enter 1 FE3 in a similar
way. Finally press - and the answer appears.

To change base click on the appropriate button on the right hand
side of the calculator. The displayed value is immediately converted to
tJre new base.

You can easily see which is the current base because only the
appropriate digits a.re enabled. So v/hen you are in base 8, the digits 8,
9, A to F are disabled and displayed in grey. In base IO, only 0 to 9 are
enabled. and in base I6 you can use all the digits.

The t button clears the calculator display.

The left arow key deletes t-Ile last digit entered.

Tbe + / - changes the sign of the number. Finally to leave the
calculator click on the close box at the top right of the display.

Using Hisoft C Hisoft C Poge 39

\-

You can paste the value displayed by the calculator into your
program by using the F 1 and F /' keys.

I .5 Hel

When you select the Help menu item, or press the H e t p key, a small
dialog box appears on the screen.

It asks you to enter the word that you would like help about. Ifyou
give a valid key'word, help about the appropdate word will be
displayed.

If the program displays an error message because it does not know
the word ttrat you are asking for help about, make sure that the disk
vrith the H E L P folder is in drive A. lStrictly this is the current drive
when HiSoft C was loaded; so if it was loaded from drive C, ttre H E L P
folder will need to be on drive C).

Obviously the help files doesn't include every word in the Shorter
English Dictionary or even Kernighan & Ritchie. So ifyou don't know
which word to type to obtain help on the subject that you are
interested in type H I c. This will guide you to the information that
you are looking for.

The subjects covered by the help files are the library functions, in
particular the Hisoft C specific ones, the menus, the error messages
and a few ottrers.

You can display a list of several library functions with some
information about each one. For each function the type returned and
the number of parameters is displayed. To do this, enter the name of
the function preceded by a dash or minus sign (-). For example, -
ob jc will give all the functions starting with ob jc. This facility is
available for all 460 Librarv functions.

1.7 . Disk Opfions

You can carry out two disk operations directly from the HiSoft C
editor.

You can delete a file by selecting Delete file (!) from the Help menu.
The file selector will appear and you call enter which lile to delete.

You will be asked to conlirm that you wish to delete the ffle before it is
destroyed.

Poge 40 Hisoft C Using HiSofi C

You can also create a New folder. Again the file selector is used to
enter dre name of the new folder that tou wish 1o create.

You can also select Disk utility. This is a program that lets you copy,
delete, and rename files and folders, format disks etc. This program
is described in Section l .l l .

Editor confiqurotion

1.8.1 Sovinq fhe conf iqurol ion

The HiSoft C editor has many pa.rameters that can be set by the user.

You can save the values of these options on disk so that you do not
have to set them up every time you use HiSoft C.

The Sove options command from the File menu lets you save the
editor configuration ffle to disk. The oDtions are saved in a file which
is automatiially loaded when you load HiSoft C; thus the next time
you load the interpreter the conffguration will be exactly the same as
when vou selected Sove options. Of course. vou must have the disk
from vihich you load Eisoft C present when you use this command.

1.8. I ns

mr
Load f i l e 0L
Inser t f i le 0 I

----- ltr i te
Save f i le +(tS
Save as , , , 0S

- - - - 0pt iars - - - -
Save options [x0

y' Confirn ab andon
y' Confirn ovefr{f i te
y ' Backup f i le

Text ed i tor
Ruto I oad
1'lo du I e I ist 0ll

- - - - - ' f sd
Ebandon [tR
0u

There are ten menu commands that let
you configure the editor. They selectively
change how the editor works.

For example, if the Confirm obondon
item from tlre File menu is selected then
you will be asked to confirm that you
'wish to abandon a file if you have
changed it wittrout saving it to disk. By
default this option is selected. But if you
wish to suppress this, click on the menu
item. The tick mark will disappear and
the abandon confirmation box will no
Ionger appear.

There are the fo l lowins other
configuraLion opLions on the File menu:

Using Hisotl C Hisoft C Poge 4l

Confirm overwrite. This option informs you lf you are about to save on
top of a file ttrat already exists. A dialog box appears asking you if you
wish to overwrite tl.e old lile. This option is selected by default.

Bockup file. When you save a program, this opton lets you keep the
previous version by renaming this file with a . BAK extension rather
than . c. Thus, you always have two versions of the program, the
current one and the last one. This is another option that is selected
by default.

Auto lood. If this option is selected, then when Htsoft C is loaded it
automatically loads the last file that was saved and positions the
cuJsor at its position when the save took place. This option is not
selected by default.

Text editor. This option activates a special editor mode that lets you
use Hisoft C as a mini-word processor. See Seclion | .9 for more
details. This option is not set by default.

The Pointer Test option from the Run menu is configurable. This
enables testing that pointers are valid during program execution. See
Section 1.4.5. This option is selected by defauJt.

The Link of runtime option is also configurable and is discussed in
Secfion |.4.9. This option is selected by defauJt.

Some crrrsor control options follow: ttrese are on the Move menu.

----- lJote clrscr ------
Top o f f i l e
Bot ton o f f i l e
60 to l i ne , , ,
60 to los t t€s i t io t i l z
------ l {€rks
Set irark I ^l

lxT
nB
I'E

^2
^3
^4

Set nark 2
6o ta nerk 1
[{ to ark ?

------- 0pt i cns
y' In dentat i on

Ruto l i ne sp l i t
Set tab I ength

,./ Ruto Hf i te

Indeniotion. when thls option is
selected and you press Return the
cursor is not necessar i ly
oositioned at the start of the next
iine, but under the flrst non-
blank character in the line. This
lets you enter text with a left
margin very easily as HiSoft C will
enter the margin for you from the
previous line. More importantly
however it lets you indent your
programs in a readable manner
without haldng to press the space
bar or Tob key all the time. This
oDtion is selected bv default.

Poge 42 Hisoft C Using HiSofi C

Auto Wrop. When this option is selected, and you try to t)?e a line
that is too long to fit in the work window the editor will automatically
enter a new line for you and you can continue to tJpe on the nexit line.
The word that you are currently ty?ing is placed on the nexl line.

When this option isn't selected and you tlpe a long line the screen
scrolls sideways to let you enter lines longer than 80 characters.
This option isn't selected by default.

Auto Write. when this option is selected and you t)?e in an if or for
statement, the interpreter will insert a matching pair of curly
brackets, t and) on separate lines and places you on a line between
them: so that you can insert the code for the statements straight
away. If you don't like this, switch just it off.

Ifvou do not like one or more of the options above then you can de-
seiect them by clicking on the corresponding menu entry' The tick in
front of the entry will disappear and you should then save the
configuration using Sove options from the File menu.

Set iob length. You can change the size of tabs. By default this is five
characters but can be set to any value you like (within reason!). When
the editor conligr.radon is saved the size oftabs is also saved.

lvlocro commonds. The current settings of the macro commands are
saved as well so that you can set them up in exactly the way you like
and they will always be ready when you load HiSoft C.

And finally, the last part ofthe configuration is the path that is used
for loading and saving files. The name of the disk and directory that
you last used with the file selector is saved when you saved the
options.

This opton is padicularly useful if you have a hard disk as you don't
have to select the right folder every time you use lfisoft C - you are
alreadv there.

1.8.3 Redef in inq the keyboor

You can modift the keyboard shortcuts that are used for the menu
commands.

By default, A Lternate s is equivalent to selecting Sove from the File
menu; but you could change this to contfoL N or any other
combination vou lvish.

Using HiSofi c HiSofi C Poge 43

To do this you will need to know the keyboard scan codes
corresponding to the key sequence that you are going to use. For
example, for the combination c o n t r o I N the code is 31OE.

To find the scan code for a given sequence, run the following program
and t)?e the key; the corresponding sequence will then be displayed
on ttre screen.

v o i d m a i n ()
t

p r i n t f (" Z x \ n " , e v n t _ k e y b d ()) ;

)
e v n t - k e y b d () ;

Once you know the code put the editor in to Text N/ode and load the
{ile F5.Ic from your backup disk 1.

Each line of this ffle corresponds to one command. The third line is
the line for the Sove file command. To change this to cont ro L N
replace the code for ALternate s (fF00) wi th that for controL N
t310E).

Now save the F5.Ic file, quit and reload Hlsoft C. 1\?e control. N
and ttris will be equivalent to saving the {ile.

Of course this should be performed with your backup copy in case
you make a mistake.

Editor M e
Hisoft C has an editor mode as opposed to the interpreter mode. The
Editor tvlode command from the File menu lets you change from one
mode to the other.

By default you are in interpreter mode in which Hlsoft C encodes the
lines of your program which you type although you hardly notice
this. The program is saved on disk in this non-ASCII format: however
this speeds up the execution of the program.

You can remove he encoding thanks to Editor Mode. The memory
image is a.lways faithfu-Uy what you have typed in and is saved to disk
in standard ASCII format. So you can use IIiSoft C as a normal text
editor. Together with the Auto Wrop command you can almost use it
like a word processor - you can type away without ever pressing
Return.

But in Editor mode, you can run C programs. Clearly, you can't have
everjrthing. To run programs you must be in Interpreter mode.

Page 44 Hisotf C Using Hisoft C

gisoft C recognises two tj,pes of files: its own format and standard
ASCII. You are in you can load both true of file in either mode; the
editor will conven between them when you load.

In Interpreter mode, you can not load C programs in ASCII that have
been written with a compiler in mind; they will be automatically
encoded into the internal form. Similarly you can load a program
that you have developed with the interpreter when you are in Text
mode and then save it out so that vou can comDile it or even send it to
another machine.

.10 Proiects qnd Compiled Librories
This section describes one of the more advanced features of HiSoft C;
beginners are advised to ignore this for now.

.10.1 Whot is o pro iec

As far as Hisoft C is concerned a Proiect is a collection of Iiles that
make up a whole program.

All applications can be split into one or more files. The liles are of two
types:

C source files which are programs that are wdtten in C and
interpreted. A C program is composed of several modules; the
different modules are toaded together and then interpreted as ifyou
were using a linher with a compiler.

The source files are loaded for executlon into one of the eight editor
modules. You can therefore split a C program into at most eight
modules.

The other tlpe of files contail binary executable code.

These files contain compiled functions that can be called by an
interpreted C program.

A project lets you link interpretable C files with machine code fi1es
and irldicale to Hisoft C exactly which files make up the program.

Note that a project can consist ofjust interpreted C modules. In this
case loading the project loads several files in one operaton.

Using Hisott C Hisoft C Poge 45

Lr0. n o

A project is described in a file with extension ,PRO, When you load a
project Hlsoft C reads the lile names of the C files and compiled liles
and loads them into memory in one single operauon.

For example, on the Exomples disk there is the project FILL. PR0.
This describes a project consisting ofa C Iile ad a function written in
assembler.

when you click on the Lood project item on the Execute menu, the
file selector will appear. Select the {ilename of the project that you
want to load.

The loading of C and machine code files happens automatically
according to the description in the project fiIe (FILL.PRo for
example).

All you now have to do is click on Run to execute the whole project.

.10.3 Exec e nclton s

Ttris secuon describes how to load machine code functions and link
them to an interpreted program.

You can build a function library in assembler, compiled C or another
language and then use these procedures with an interpreted C
program.

These functions must always be in a special format. You can only
have one fi.mction per file; the ffle name is the name of the function.

A library file=one procedure.

For example, if you write an assembler routine that you have called
et ephant, then you must assemble the code of the said rouUne to a
f f1e cal led ELEPHANT. coD.

In practice, Hisoft C ignores what is inside the compiled file - it
assumes that the name of the ffle is the name of the procedure.

You can pass parameters to tl.e fi:nction and it can return a value.

You can write your procedures in assembler or C although there are
rules for writing tl.ern because library funcfions that are loaded by
HiSoft C have a djfferent format to ordinary executable [. PRG) ffles.

Poge 46 Hisott C Using Hisoft C

.10.4 Assembly Lon nct ions
Ifyou aren't an assembly language wizard it is probably best to skip
to the next section.

The entry point of your procedure is the first instruction of the
program arrd you must return with an R T s instruction.

Do not use the GEMDOS pT E R I',r to finish the program.

You don't have to set up using the program's base page as Hisoft C
has already done so. Trying to do this again will cause unexpected
resulrs.

The following is a complete example of a function wdtten in
assembler. HiSoft C passes two parameters on the stack and the
function retu-rns the value 1 .

This example is purely to show how this is done and is not at all
usefirl..

As we have seen, the entry point of the routine is the first instmction
in the program and it terminates with a RTS. There is no base page
manipulation.

The two parameters that are passed are two pointers to strings of
characters. in the C program this function is called as follows:
writ[str I ,str2).

The L i n k instruction makes it easier to access the Darameters
passed by Hisoft C. 8 (a 6) is the address of the first parameter,
1 2 (a 6) that of the second. If vou have more than two Darameters
the third will be at 16(a6) etc

All parameters are passed as 4 bytes (a long word) whether they are
characters, integers or pointers except for floats and doubles which
take 8 by'tes.

Function number 9 of trap I displays a string of characters on the
screen.

_ L i n k a 6 , H O

\ m o v e . L 8 (a 6) / - (s p)
m o v e . u # 9 , - (s p)

- t r a p # 1

\ - m o v e , 1 1 2 (a 6) , - (s p)
m o v e . u # 9 , - (s p)

i l n i t i a L i s e A 6 f o r t h e p a r a m e t e r s .

; H r i t e t h e f i r s t s t | i n g

; t r r i t e t h e s e c o n d

Using Hisoft C Hisoft C Pdge 47

t r a p f l 1

u n l , k a 6 ; R e s t o r e A 6

m o v e . l . # ' l , d 0 ; s t o r e t h e v a L u e t o b e r e t u r n e d i n D 0
r t s ; e n d o f t h e f u n c t i o n ; . e t u r n t o H i S o f t C

The un L k instruction restores the AG and stack registers to their \-
original va-lues.

The value returned by the function must be stored in DO. In our r,.
example the value returned ls always 1. This value is recovered by the
interpreted C program.

If the funcuon returns a double precision 8 blte number then this is \/
taken from D0 and D I .

Finally the R T s instmction finishes the function. \v

To produce an executable program you must assemble it to produce a
standa-rd executable {ile with just the above instructons. You can if
vou wish link with your assembly libraries llike the GEM ones '\-.

lupplied with Der.pacSTl but don't forget the following golden mles:

. the first instruction in the executable file must be the first
instruction in the function.

. the function must ffnish with an RTs.

. don't mess with the base page.

Ll i led C funclions

This section describes how to use compiled C functions in your
Hisoft C program.

As with assembler the C function must be at the very start of ttre
module. The assembler example above is the following in C: \-

i n c I u d e < o s b i n d . h >

r , , . i t (s t r l , s t r Z)
c h a r * s t . 1 , * s t r 2 ;
t
c c o n u s (s t r 1) ;
C c o n H S (s t r 2) i
r e t u r n (1) ;
)

The procedure u r i t is the first in the module: it does exactly the
same thing as the little assembly language program.

Poge 48 HiSofi C Using HiSoIt C

To tum this into an executable file that HiSoft C can understand you
must of course compile and link this function. But you must not
include the 'sta-rtup' code in you program.

With most C compilers you explicitly link with this startup module
With Lattice C 5 this module is called c. o. With tattice C 3, it was
cal led STARTUP. BI N, and wi th Megamax C i t is I N I T.0. You must
not link with any of these files. Remove the startup ffle from the file
list that is used when you link. Your program will now be the ffst in
the list.

With Aztec C, things are slightly easier, just compile with the + B
oDtion. This will remove the reference to the . b e q i n label, so the
siart up code won't automatically be included.

Although you. mustn't link v/ith the usual startup code you can use
the normal libraries [C, Gem etc).

So you produce a . P R G lile, but one that cannot be directly executed
bv vour ST because it does not have the correct initialisation. This is
tie ffle that you can load under HiSoft C.

l 10.6 Looding execuloble p locedules.
Proiect Files.

A proiect {ile consists of commands telling Hisoft C which files make
uf a frolect and thus which ffles must be loaded.

These files are of two t]?es: interpreted C files and executable code
liles.

The project flle consists of a series of lines.

If a line starts with a hash character (#), the line is treated as a
comment and ignored.

If a line starts with a dollar ($), it is a command.

If not, it is a ffle name.

Using Hisoft C Hisoft C Pqge 49

v

The commarrds are as follows

$REP <directory name> Speciffes the directorv in which the \/
files are stored. You rnay have several
of these in the same project lile.

$C Speci{ies that the following files are
the C files to be loaded. These files will
be treated as in (erpreted C.

$ASFI Indicates that the followine filenames
are those of executable Tiles to be
loaded by HlSoft C.

$32 and 564 OnIy relevant for executable files. They \-
give the size of the value retumed by
the function stored within the
executable file.This stze is 32 bits by .\-/
default for integers, characters,
pointers etc. This size must be 64 bits
for functions that return a double
precision real number.

You may have several $ c and $ A s M commands in one project lile.
*

Here is an example project ffle:

f l
' .2

P r o j e c t D e s c r i p t i o n F i L e

f F i r s t p a r t (o p t i o n a L) r $ R E P s p e c i f i e s t h e d i r e c t o f y (t e
r e D e r t o i r e !) t o L o a d t h e f i t e s f r o n . T h i s $ R E P d i r e c t i v e
m a y o c c u r s e v e r a I t i n e s i n t h e f i L e ,

$ R E P D : \ H C \ E X A I , , I P L E S \ v

S e c o n d p a r t (o p t i o n a t) :
C s o u r c e f i I e s t o L o a d f o r H i S o f t C t o t o a d .
N o m o r e t h a n 8 C f i L e s n a y b e ! o a d e d
T h e L i s t o f f i l . e s n u s t b e e n t e r e d a f t e r t h e $ C d i r e c t i v e
o n e f i L e p e r L i n e . \--

f i L L . c

Poge 50 Hisotl C Using Hisott C \v.

d = = = = = = = = = = = = =
T h i . d s t a g e (o P t i o n a [) :
f I ' l a c h i n e c o d e f i L e s t o L o a d
N o t e t h a t t h e i r f o r n a t i s s p e c i a L a n d i s n o t t h a t o f
s t a n d a r d
e x e c u t a b L e f i L e s .
N o n o r e t h a n 2 0 0 (!) m a Y b e t o a d e d
f T h e t i s t o f f i t e s ! n u s t b e e n t e f e d a f t e r t h e $ C d i r e c t i v e
d o n e f i L e p e r L i n e .

$ 3 2 i n d i c a t e s t h a t t h e f u n c t i o n s
f l (c h a r , s h o r t , i n t o r L o n g) .
S 6 4 i n d i c a t e s t h a t t h e f u n c t i o n s
v a L u e

$ASt l

f i L t . c o d

r e t u . n a 3 2 b i t v a t u e

f e t u r n a 6 4 b i t d o u b t e

This file describes a very simple project containing only one C ffle fill c
and one executable ffle fill,cod.

Both f i les are s tored in D: \Hc\ExAlv lPLEs.

The f i L L function is supposed to return a 32 bit value (the default
case). This is also a sensible value to use for all functions that do not
return values. If the function returns a double precision real value
then you must specit/ $ 6 4.

When you select the option Lood projec-t from the Run menu al1 the
files mentioned in the project file are loaded into memory.

1.10.7 Col l inq execuloble funcl ions

An executable ftrnction that you load and call in a C program must be
declared as ext ern. For example, the following line must be placed in
the interpreted C program in order to use tl.e f i L l' funcuon:

e x t e f n v o i d f i t L () ;

An executable ftrnction may have parameters and may return a value.
The definiuon and call are in the traditional C style.

I .8 Proiecl Informolion

wtren vou click on the Info obout project item from the Run menu a
list of ioaded executable files appears on the screen together with the
type returned by the firnction (32 or 64 bits).

Using Hisott C Hisoft C Poge 5 |

The Disk Ufil i t ies

. l l . l Lood lhe uli l it ies

Disk Utlities is a program that can be loaded at the same time as the
Interpreter aIrd be co-resident in memory. You can switch between
the disk utilities and the interpreter instantly to perform various
operations on files and directories (copying, duplicating, deletion)
and disks (formatting, information). Wtren you return to Hisoft C
you will be in exactly the same state as when you 1eft. You can thus
work with your files and disk without retu-rfng to the Desktop.

However, naturally the Disk Uulities use some memory. If you have
512K rnemory, you only have a limlted amount of memory when
using Hisoft C and loading the utility will reduce this further.

So you can decide whether to load the Disk Utility depending on how
much memory you need.

If you have 512K, Hisoft C will not load the Disk Utility by default.
This gives a 'decent' amount of usable memory for writing C
programs.

If you have more than 512k the utility will automatica-lly be loaded. It
is available for use t]le moment that the interpreter has loaded.

However, you can change the default.

To load the disk utility you should select the Lood disk util option
from ttre Help menu. When a tick mark is present, every time you
load Hisoft C, it will load the utility as well. If you remove the tick by
selecting t]e menu item again then the utility is not loaded and your
programs can use t]le memory that it would otherwise use.

After selecting Lood Utiliies you should save the optons and re-load
HtSoft C. This is hov/ Hisoft C remembers your choice. Then each
Ume you load the lnterpreter lflSoft C vrill load or not load the utility
as vou have asked.

Poge 52 Hisott C Using HiSofi C

I sin the Ulil i l ies

Wtren you click on Disk utilities, the screen is cleared and a new menu
appears. There is only one menu, called Opiions.

The menu item Return to Hisoft C does iust that: it takes vou back to
the interpreter.

Ttre Formot command produces a dialog box Like this:

/l\ Elf,'lllr

frirronliil-]

Dlsk dr ive , m
S ides I E
ltunber of tricks ' m

Nunber or sectors ' |IFl

rreri fc I ffi
l-rilT'nTl fJa'r-er-l

You can use this to format a disk, single- or double-sided, and specify
several parameters (the number of sectors per track and the number
of tracks per side) which will give you a little extra space on your
disks. You may also indicate whether you want to verily that the disk
has been formatted successfully. Ciicking on Formot v/ill bring up a
confirmation box and then format vour disk.

Using Hisott C Hisoft C Poge 53

The File Selector opuon brings up a dialog box like this:

A\ E MlB

I llens
6160 Bgtes

r*-;r;=;F;'l
U::=l-ji:-l-i::J
t , .@o t r . * c t . . s , I
r-T**a
t?lojt-I-al
r << Ed!-?a-l
F---rnTiT----1
T-ltrnrE

---l

Tllrr,rji-r5Ei--

@

n ! \
t . *
NEXNHPIES 8
'HENDER O
'HETP g
nscll stf, 3?000
8t0cK, scR 32800
Ft. rc 629
fz , r [Eg
ru,rc 1735
FI,IC 25812
Fs, rC 165
F6,IC 22T18
F7,rC r7d2l
F8, rC {1819
i9 , rc t1 l8

, 8

nPSKEL,C 9818
NR6, E Z5J
GELSI|S,C 399
c0uilT. c 1li
DFREE,C 175

EUEI|TS,C 7187
EX-PIR'C,C 505
FIL I ,T J5 '
6ET[,C 266

The two selectors display the ffles on the clrrent drive fnormally A)
vrhen HiSoft C was loaded. To change drive, Just click one of the
buttons at the top of the screen that indicate which drives are
available.

To select a partlcular folder or directory just double-click on its name.
To retum to the parent of this directory double-click on the directory
c a l l e d " . , " .

By default, all the ffles in a dfectory are displayed; a selec on of files
can be displayed by choosing one of the 'fflters' near t]le middle of the
screen. To display just the . c flles click on the button *. c.

The two windows can display the contents of different files or
directories. To switch between windows, click on the appropriate
window's title or information bar.

To delete or rename a file select the appropriate ffle and click on the
DELETE or RENAI ' IE but tOn. To COpy or move a f i le , Set up the
destination directory (where the ffle will be copied or moved to) in one
window and then select the file to copy in the other window. To
perform the copy or move click on the appropriate button. MovE is
just like coPY except that the original Iile is deleted.

You may copl/, move, delete or rename more than one file at once, just
hold a s h'i f t key down when clicking on a ffle; any currently selected
files will remain selected.

Poge 54 HiSott C Using Hisoft C

_

e

t

You can find out how much used and free space there is on a
particular drive by double-clicking on ttre appropriate drive button.

Finally, to create a new folder, first select the folder ln which you
want ihe new one to appear and then click on the ttgw FoLiER
button. You wlll then be prompted to enter the name of the new
folder.

Using Hisoft C HiSofi C Poge 55

2 lnlroduclionto the c
lonouo e

This introduction to the C language is designed for people with some
programming experience. We assume that you know and are familiar
ivitfr tfre fundamental ideas of programs, statements, variables,
conditionals and loops.

Some lcrowledge of the BASIC language is useful for this section as
we will make comparisons with BASIC.

This is designed as a practical tutorial. There are a number of
exercises and example problems. Appendix A contains answers to
the exercises and suggestions for solutions. Note that certain ideas
are discussed in the answers to the exercises. If you don't read the
answers you will miss some vital information.

This section does not attempt to be a complete C language course but
it nevertheless covers the working of a number of simple programs.

. l our I rqm

. l . l The f rodi l ionol opprooch

In iust about every introduction to a programming language, the first
pr6gram is one to display h e L L o on the screen. So to follow the
tradition of many generations of programmers, here is a C program
that d isp lays HeLto and then Hou are ' /ou2 on the screen and
then waits for a key to be pressed.

m a i n ()
{
p r i n t f (" H e t L o \ n ") i
D r i n t f (" H o u a r e y o u ? \ n ") i
p r i n t f (" p r e s s a k e y \ n ") ;
e v n t _ k e y b d () i
]

That's it. It seems a bit more complicated than in BASIC.

C [onguoge Inhoducfion HiSofi C Poge 57

bi momenl

I-oad HtSoft C if you haven't already.

It's waiting for you to t]?e a progrzrm - go to itl

If you have problems typing the program, see Secfion l, the section
describing the editor.

Alv/ays type carefuJly. In the C language upper and lower case letters
are treated differently. The language ke!'words are always written in
lower case. Two identfiers (variables or functions) made up of the
same letters, one in capitals and one in lower case are different. Thus
the names Language and Language are not the same. You can't use
one in place of the other.

Now that you have entered this example, the only thing left is to run
it. To do this, click on the Run item on the Run menu. That's it.

Now let's look at the program more closely.

.1.3 Funcl ions, fhe fundomenlol uni l in

A program written in C is made up of fr.rnctions. Ttrey are ttre bricks
frorn which a program is built

One of these functions has a special role; it's called mai n.

Ttris function is essential because ma i n is v*rere the program starts
executing. If there is no na i n fimcuon the program can't run.

The whole C program is built around this function. You can have
other functions as well as rn a i n and these are called from tl"e
funct ionmain.

Keeping to this rule, the example above has a nain function.
Obviously it is the only function present in this program. So our {irst
program is very simple in this sense although it may still seem
complicated with its firnny names and punctuation.

Strictly, a function is a set of statements enclosed in curly brackets
and preceded by the fi.rnction name.

The name of the function is foliowed by two round brackets
(parentheses). This is explained in more detail below.

Poge 58 HiSoft C C longuoge Inf]oduclion

2.1 olemenls

A function is made up of statements which must always be
terminated by a semi-colon(;). The semi-colon indicates that the
statement is over. It is similar to the colon(:) in BASIC, but in C every
instruction is terminated by a semi-colon even if it is the only one on
the line.

.1 .5 The ro

Our example has four statements. they are:

p r i n t f (" h e L t o \ n ") ;
D r i n t f (" H o u a r e y o u ? \ n ") ;
D r i n t f (" p r e s s a k e y \ n ") ;
e v n t - k e y b d () ;

pr in t f and evnt-keybd are funct ions f rom the C l ibrary (yes,
functions again, well we warned you!). That is to say they have
already been wdtten for ease of use. All implementations of C have
their own library of functions. They are invisible but very important.
HiSoft C has over 460 of tlem.

If 460 functions isn't enough you can, of course, write your own. You
have already started to write a function main. In fact there's no
fundanenta.l difference between library functions and those that you
have written. Only that those in the library have been written already
(in C of cor:rse) and you have to create your own functions yourself.

.1 .6 uncltons

Amongst the l ibrary functions are evn t-keybd which waits for a
key to be pressed (short for keyboard event) and p r i n t f which
displays a string of characters on the screen. The string is passed to
the p |i n t f function. The values that are passed to functions are
calted the parameters or arguments of the function. The list of
parameters to pass are given enclosed in round brackets. To conform

_ to this rule the. strings in our example are enclosed in parentheses in
order to Dass them to the function.

-
A function may trave one, several, or no parameters. In our example

\ - the pr in t f funct ion has a s ingle parameter . The main and
evnt-keybd functions don't have any parameters. This is why the

- names nain and event-keybd are fo l lowed by parentheses. We
'._ haven't seen any functions with severa-l parameters yet. In this case

the arguments are separated by commas.

C Longuoge Introduciion Hisoft C Poge 59

1.7 Slr inos

A string is a collection of characters enclosed in double quote signs.
What ever it contains a string is a valid element in language. The
following are legal strings:

" H e l . l . o "

and

" H o t . l a . e y o u ? "

In our program v/e added the two characters \n at the end of the
string just before the closing quotes. These two characters form one
unit and mean together "newline". On the ST this means carriage
return and line feed. So because of the \ n in our example H o r,,| a r e
you? is on ttre line below he L Lo.

Exercise I

Produce the following display on the screen:

h e
L L o H o r , r a r e
y o u 2

and follow this with a message asking for a key press. There is
no need to use a.Iry extra printf statements.

Exercise 2

Try to run this program after deleting a few characters to see
what eror messages t].ey produce.

Poge 60 Hisoft C C Longuoge Infroducfion

i

Here's a program that reads a key from the keyboard and displays it
on the screen. Then the program v/aits for another key before it

\-. terminates:

. i n t c h ;
t - m a i n ()

c h = e v n t _ k e y b d () i
P u t c h a r (c h) ;
e v n t - k e Y b d () i

Before t'?ing this program, you must lirst delete the last program

t that youVe already t1ped. A11 you need to do is select Abondon from
the File menu. This is equivalent Lo New in BASIC.

-
Ok, so now Epe in ttris program and execute it by clicking on Run

L, Press a key on the keyboard and the corresponding characterwill be
displayed on the screen. Press a key again and you'll be back in the
editor.

orrooles

.2 .1 ne mole IOm

.2 Fun n or slqlemenl

\ In C a function always retums a value. This is sometimes ignored by
the programmer. However, ttre evn t-keybd () function can be used
either as if it were a statement:

\ - e v n t - k e y b d () ;

or as if it were a function. That is to say it can be treated as a routine
\- that returns a value (the ASCII value of the key pressed in the case of

evnt-keybd()) , l ike th is :

c h = e v n t _ k e y b d () ;

!-

C Lqnguoge lntroducfion Hisofi C Poge 6l

2.2.3 Assiqnmen

This last instmction assigns to the variable called c h , the value
retumed by evnt_keybd. The variable ch then contains the ASCII
code of the key that was pressed. The synbol = is the assignment
operator as in BASIC. Also, like BASIC

gives tfle variable i the value 1 We're on familiar, friendly territory
here. But there are mines ahead!

e or nclion

The statement

p u t c h a r (c h) ;

writes the character whose ASCII code is stored in the variable ch.
put cha r is a C l ibrary funct ion l ike pr i n t f or evnt_keybd. I t has
one parameter that is the character to display.

eclo n vor iobles

Well, we left the best bit until the end. In C, everv variable must be
declared before it is used. This is so the user can indicate what t!.De is
associated with each variable.

In BASIC, variables are reals by default, integers are followed by Z
and string variables by $. Modern BASICS also let you use ! to
indicate single precision and # double precision.

This is how BASIC knows the t5.pe of each vadable. In C it is totally
different.

A scheme like that used by BASIC is impossible because there are so
many types (in fact, there's theoretically an infinite number). The
user must declare his or her variables, i.e. specii/ the t1pe, before
they are used. A variable may be a whole number or a real etc. This
procedure seems fussy at first, it requires more thought when
defining variables but means that some errors can be detected that
otherwise wouldn't be, mis-spelllngs in particular.

Poge 52 Hisoft C C lqnguoge lnlroduclion

.2 .6 In leqers

We now know that all variables must be declared before they are used
and that this declaration specifies the t]?e of the variable. In our
example, the declaration of the variable c tr is

i n t c h i

The keyword i n t is short for integer. So the statement above makes
c h an integer. We say that c h is declared as ty?e integer.

In HiSoft C integers are signed and use 4 b)'tes of storage.

An integer variable may therefore contain values between
-21474A3648 and +2747483647, which is quite enough for most
purposes.

The t]?e i nt is probably the most frequently used in C. But there are
others.

whole numbers will often fit into only two bytes. This is the type
short. It's the equivalent to integers in most BASICS. Ttre range of
values is -32768 to 32767 .

We can make our variable ch of b?e short because a character code
can be between O and 255, which is entirely within -32768 to 32767.
We do this as follows:

s h o r t c h ;

So this makes c h a short integer. This is the only change needed in
the program because the ASCII code for the character can be
represenled by a shori integer.

There are also whole numbers that fft into iust one b\4e. This is the
amount of storage needed for a character. F6r this typ!. the variables
may take values between 0 and 255. This tpe is sensibly enough
called char. So to indicate that ch is of t)?e char a.ll we have to do is
use

c h a r c h ;

and the program will work just as well.

We used the t}?e i n t for c h to stad with because this is more or less
right, but it looks more elegant to declare it as type char. The
difference between these three integer t]?es is only a question of size;
they are all integers.

C Longuoge Inlroduclion Hisott C Poge 63

Reol numbers

Hisoft C supports real or floating point numbers. These are always
double precision. Their values can vary t etween - 1.8 E 308 and 1.8 E
308, and can be as small as I E -307 without being zero. They have 16
significant digits and use eight bytes of storage. The type of these
numbers is { toat or doubte. As far as Hisoft C is concerned they
are eqrrivalent. The decla.rations of real numbers look like this:

f L o a t x ;
d o u b l . e f t ;

These two lines declare variables x and f L of real type. f Loat and
double are exactly the same tlpe.

Floats aren't often used in C. Inteeers are used much more
frequenuy. aloough engineers tend to use floats a lotl

2.2.8 Conclusion ond Exercises

We have seen in this example how to use integer variables in C.

The tlpes discussed above are the pdmary types. We cal also
construct arrays, structures and polnters based on these four t5rpes.

Exercise 3
- Wdte a program which waits for two keys to be pressed and
then writes the two characters on the screen. You should declare two
variables.

Poge 64 HiSoft C C longuoge Introduclion

Colculotions

AI rom

Try the following litfle program:

/ * E x a m p l e s o f c a L c u t a t i o n s u i t h r e a I s * /
d o u b L e r e a L ;
i n t t , h o L e i
s h o r t s m a L t i
n a i n ()
(

r . r h o L e = 1 + 5 6 i
s m a l . [= w h o L e l 2 ;
r e a [= 1 0 . 2 + 2 * s n a L L + s i n (2 .) ;

)

This example doesn't include much that is new. It just puts into
pracuce what we have already seen.

.2 ommen

You can add comments to your programs. Comments start with / *
and finish \pith i,/. Between these tv/o pairs of characters anything
goes. However a comment must fft on a single line fthis is a Hisoft C
restricton because it is an interpreterJ.

Comments are normally placed between statements and fiequently
at the ends of lines, whether they are empty or not.

.3 .3 Ar metic operotors

The C language has the following binary operators:

multiplication
division

.T modulus
+ addition

subtraction

These operators act on the two items to either side of the operator
followins the usual rules.

C longuoge Inlroduction HiSofi C Poge 65

The modulus operator is the remaindelwhen the lirst operand is
divided by the second. Both arguments must be integers in this case.
For ttre other four operators ttre arguments can be integers or reals.

The following priority rules hold:

The operators muitipllcation (r.), division (/) and modulus [z) all have
the same priority v/hich is higher than the addition (+) and
subtraction operators (-). These rules are the same in most
larguages, BASIC included.

Note that there are many other operators that we will cover later.

.3.4 The orithmetic ond trig functions

In our example, we used the function si n which calculates the sine
function of the argument that it is passed. This argument must be
ex?ressed in radians. This is only one of the trigonometric functions
available. Here's the full list:

c o s , s i n , t a n , a t a n , L o g , e x p , s q r , a s i n , a c o s , { [o o .

These function al1 take one compulsory parameter of type double.
They return real values equal to the cosine [cos], sine (s i n) tangent
(ta;), arctangent (atan), natural logadthm (Log), natural anti-log
(exp) , square root (sqr) , arc-s ine (as i n) , arc-cosine (acos) or the
whole number parl [f L o o r') of the argument.

If you want to pass a whole number, for example to find the
logarithm of 5, you must fo1low the parameter with a decimal point to
indicate that the number is really a floating point number. Otherwise
you will be in for a surprise. For example,

L o g (5 .) + s i n (2 .) i

.3 .5 es on o nmenfs

Returning to our example,

d o u b L e r e a L ;
i n t v h o L e i
s h o r t s m a t L ;

The lirst three lines declare the three variables that v/e need in the
program, rea L is a real number, uhoLe is an integer aIrd smaL t is a
short integer.

Poge 66 Hisoft C C Ldnguoge Introduciion

u h o L e = 1 + 5 6 ;
s n a t [= u t h o l e / 2 ;

The first statement stores the value 57 in the variable w h o L e. Then
whole is divided by 2 and this value stored in the variable s n a t L .

vho Le and smal. L aren't of the same t1pe. But there is no problem
assigning an i nt variable to a short one. More generally it doesn't
matter which of the integer t]?es (i nt, short or char) you assign to
another integer variable. The only problem is that the value may have
to be truncated. This is the case ifyou tly to store 350 in a variable of
type char which can't hold a value bigger than 255. No error
message will be given but the value stored wiU be equal to 350 modulo
256.

The division of whol.e by 2 is an integer division because uhol.e and 2
are both integers. As rh o L e is 57, w h o ! e / 2 is 26 and not 26.5.

In general, within expressions where all the terms are integers, the
+,-,* and / operators are all treated as integer operators and retum
whole numbers.

If, on the other hand, at least one of the terms in an expression is a
real, a1l the other terms are converted to floating point numbers and
+,-,* and / are used as real operators.

This is what happens in the third statement:

r e a t = 1 0 . 2 + 2 * s m a L L + s i n (2 .) i

The terms 10.2 and s ine(2.) are reals so the other terms in the
expression (2 and sna L L) are converted to reals.

Then the calculations are performed and they return a real value
which is assigned to the variable reol. Thus a floating point
expression is assigned to a floating point variable. In fact both sides
of an assignment must be of the same E4pe, that is to say, elther both
integer or both floating point. Ifyou want to break this rule, you will
need to use the explicit tJ,?e conversions (see your favourite book on
c).

C [onguoge Inlroduction HiSofi C Poge 67

.4 on onqls

2.4.1 xomole

In C, like in BASIC, there is a conditional statement that lets you
execute a series of instructions if a pa.rticular condition is true.

Type the following program:

i n t n u m ;
m a i n ()
t

n u m = R a n d o n () ;
i f ((n u m / 2 r * 2 = =

p r i n t f (" T h e
n u m) ;

e v n t - k e y b d () i
)

n u m)
n u m b e r Z d i s e v e n \ n " ,

Ttre example uses the variable called num. It is declared in the ffrst line
of the program and is of type i n t or integer.

The Rondom funclion

Random is a function from the BIOS llbrary (see Chopter 4 for a
description). Note that the first letter of this identilier is in upper
case and that all the others are in lower case. This is a convention
used by Atad for all the BIOS functions, soweuseittoo.

Right, back to where v/e were. Random retrrns a random number! It's
a 24 bit positve whole number, that is between O al]d 76777275.

In the example, tl.e random number is stored in the variable n um. So
we have an ur mown value in num.

2.4. The

We now suppose that we want to knovr whether this number is odd
or even. The mathematical definition is that a number is even if it is
divisible by two. More precisely a number, n um, is even if <nun/2)*2
ls eoual to num wtrere the division is integer division.

Pqge 68 Hisotl C C [onguoge Introducfion

We can write this algorithm in the form:

lf (num/2)*2 is equal to num then
write "the number 'num' is even-

\-' In C thls becomes:

i f ((n u m / 2) * ? = = n u n)
p r i n t f (" T h e n u m b e r Z d i s e v e n \ n " , n u m) i

The i f statement has the form:

, i f (c o n d i t i o n)

The condition, which must be enclosed in round brackets, is
evaluated. If this is true then the given statement is executed. If the

\: condition is false then the statement is not executed and the
program continues executing at the following instruction.

\- One sma-ll detail. To test if two expressions are equal we use the two
characters ==. In BASIC only one equal sign is used. But two is better
than one ...

\r There are other comparison operators:

not equal
Iess than
greater than
less than or equal
greater than or equal
equar

r For example, the condition that tests if the two terms (num/2)*2
\'/ and n u m are different is

(n u m / 2) * 2 ! = n u m
_

There are also logical operators so that you can test several
conditions at the same time. These are eqrrivalent to BASIC's AND,

_
OR and NOT keywords.

Ol? l-oqical OR between two condifons
& & AND I-oEical AND between two conditions

N O I Negation ol a condiuonL

L
These oDerators will be discussed frrther in future examples.

L C longuoge Introducfion HiSofi C Poge 69

in i f . . . o in

Thus if our number is by chance even, then the p r i n t f statement is
executed.

We have already encountered printf , but that was in its most
simple form. We have only had one parameter. Now there a-re two and
also there's a strange %d in the string.

The two characters Zd in the st r ing "Th e nunbe r Zd is even\n"
indicates where to insert ttre number num in the output to the screen.
For example, if num is 256 then the instruction:

p r i n t f (" T h e n u m b e r Z d i s e v e n \ n " , n u m) i

writes on t]le screen:

T h e n u m b e r 2 5 6 i s e v e n

So the value of the variable n u m is sent in place of the %d. The z d is \-
powerfr-rl if cryp c, isn't it?

Thus Zd replaces an integer value in the string. That's it. Does it seem
complicated? We11, its like that regardlessl

More seriously, you can write several variables with the p r i n t f
function. For example here's an instruction that writes the values of 's

the three variables v1,v2 and v3:

p f i n t f (" H e f e a r e t h r e e v a t u e s : y . d , 7 , d a n d
' / . d "

, v 1 , v 2 , v 3) t
' -

If these three variables are l, 2 and 3 respectively then this will
display:

H e r e a r e t h r e e v a t u e s : 1 , 2 a n d 3

You wiu have noticed that there are three lots of zd in the string and \.'-
also three va-riables to write. The three variables are substituted for
the three z d's left to right.

The ffrst variable [v 1) is substituted for the ffrst z d and so on.

Exercise 4

Write a program (complete wittr variable declarations and so on)
which lets you see the three va.riables above.

Poge 70 Hisotl C C longuoge Introducfion

2.4.5 . . .e1se. . .

Even the simplest of machines have BASIC IF...THEN...ELSE...
statements nowadays, and C doesn't stop ttrere.

Let's improve our previous program.

In the last example a message was only displayed if the number was
even but not if it was odd. Now let's have a message if it v/as odd as
well.

i n t n u m ;
m a i n ()
t

n u n = R a n d o r n () ;
i | (n u n ' 1 2 = = 1 ,

p r i n t f (" T h e n u m b e r Z d i s o d d \ n " , n) i
e t s e

p r i n t f (" T h e n u m b e r % d i s e v e n \ n " , n) ;
e v n t _ k e y b d () ;

)

The algorithm for ttris prograrn is simple:

Make num a random number,
if num is odd
then write -The number 'num' is even"

if not
' write "The number 'num' is even"

Wait for a key press.
-

Th" form of tl1e if...else instn-rcuon is

i f (c o n d i t i o n)
s t a t e m e n t l ;

, e t s e\ v s t a t e m e n t 2 ;

. The expression, which must be enclosed in parentheses, is evaluated.
\ _ . I f t h e c o n d i t i o n i s t r u e t h e n s t a t e n e n t l i s e x e c u t e d . I f t h e

c o n d ' i t i o n i s f a - l s e . s t a t e m e n t l i s n o t e x e c u t e d b u t s t a t e n e n t 2 i s
executed instead.

\ -\- Examine the program in detall. There's a nev/ little bit in the
conditon of the if. We use the modulus or remainder oDerator which

. is written as Z in C. A number is even if its remainder when divided bv
\ two is 0. It's odd if the remainder is l.

! C longuoge Introduction Hisott C Pdge 7l

If the condition is true, that is to say the number is odd, then the
ffrst of ttre two p . i n t f statements is executed. Thus we conld get:

T h e n u n b e r 2 5 7 i s o d d

If the condition is false then the second instruction is executed:

T h e n u n b e r 2 5 6 i s e v e n

.4 .6 Blocks

The examples we have seen so far only let you execute a single
statement conditionally with i f . Thus the syntax is:

i f (c o n d i t ' i o n)
s t a t e n e n t i

and not

' i f (c o n d i t i o n)
s t a t e m e n t l ;
s t a t e n e n t Z i
s t a t e n e n t 3 ;

What happens if you want to execute more than one instrucfon in
the body of an i f?

Answer: There's a structure that is always considered as a single
statement but {and this is its secret) actually contains several
statements.

This groups several statements into a btock, A block can be put
anyuvhere that you can put a single statement. Any'evhere you see a
statement in a slaatax description you can put a block instead.

In practice, a block is a set of statements (followed by semi-colons as
,rsua1) and s,rrrounded by curly brackets. Here's a block consisting of
two Printf statements:

{
p r i n t f (" H i ! ") ;
p r i n t i (" H o u a r e y o u 2 ") ;

)

Poge 72 Hisoft C C longuoge Introduclion

Note that the curly brackets surrounding the block are on lines by
themselves and the statements are on separate lines. This is to make
it more readable. However, this layout is not compulsory. The block
above is equivalent to:

t p r i n t f (" H i ! ") ; p r i n t f (" H o v a r e y o u 1 ") ; j

The first block is more readable but the second is quicker to t,?e.

Now that you know (we hope) vrhat a block is, the syntax for an i f
statement can be written:

i f (c o n d i t i o n)
{

s t a t e m e n t ;
s t a t e m e n t ; / * e t c . . . * /

)
e t s e
t

)

This uses the rule that a block can replace any instruction and vice
versa,

The foUov/ing sequence is equally correct.

i f (c o n d i t i o n)
s t a t e m e n t ;

e L s e
t

s t a t e m e n t ;
s t a t e m e n t ;

)

Note that a block can contain just one statement.

Exercise 5

Write a program that generates an even random number from some
random number. The program should display neatly whether the
initial random number is odd or even. If it is already even it should be
1eft as it is.

s t a t e n e n t ;
s t a t e m e n t i / * e t c . . . * /

C Longuoge Inhoducfion Hisoft C Pqge 73

Loops
Inops enable you to execute the same sequence of statements several
times.

In old-style BASIC there is only one sort ofloop. Everyone latows the
famous FOR...TO...NEXT statement. There's a similar statement in C
called f o r.

In slighflv more modern BASIC's there's a WHILE...WEND loop. This
execrites'a Darticula-r set of statements while a condition is true. This
statement i3 also called vh i L e in C.

Finally there's a third statement which is a variant on the !l h i L e
s t a t e m e n t c a l l e d d o . . . } l h i L e .

The em

Tlpe and run the follov\ring program:

i n t i ;
n a i n ()
{

i , h i l e (i < = 2 0)
{

p | i n t f (" Z d s q u a r e d i s Z d \ n " , i , i * i) ;
i = i + 1 ;

)
e v n t _ k e y b d () ;

)

If you have followed the previous section you can probably guess
what this program does.

It ffnds the squares of all the numbers between I and 20.

The algorithm used by this program is:

initiallse the number to one.
while the number is less than 20 do

rrrite the square of the number
add one to t]"e number

Poge 74 Hisotf C C longuoge Introduction

kt's look at this program in detail.

\- The variable i is declared in the first line as of tlpe integer. The first
statement in the program is i =1; Vrhich stores the value I in the
variable i .

The w h i I e statement repeatedly executes the block containing the
following two statements:

p r i n t f (" Z d s q u a r e d i s Z d \ n " , i , i * i) i
i = i i 1 ;

)

while the condition i <=20 is true. The two statements are repeated
twenty times during the execution of the program to write the

\.-, twenty squares on the screen.

The s)'ntax of l,lhi te statements is

\ - u h i t e (c o n d i t i o n)
s t a t e n e n t i

\- or

! , h i l , e (c o n d i t i o n)
t

s t a t e m e n t ;\ v
s t a t e n e n t ; / * e t c . . - * /

)

1 The one or more statements that form the body of the u h i L e
statement are executed whilst the conditlon is true.

The two groups of Zd in the mysterious pri ntf statement insert the
\- values of i alrd 'i * i in the string to be output. This follows the rules

we have seen in Seclion 2.4.4.

. The statement i = i + 1 adds thevalue I to the variable i, just like
you would write in BASIC.

The statement evnt-keybd waits for a key to be pressed on the
\- keyboard.

!_ C longuoge Infroduction Hisoft C Poge 75

Exercise 6

The example above writes the first twenty squares in increasing \v

order. Write a program which writes the squares of whole numbers
starling with 20 and finishing with 1.

Note that if the conditon in a u h i t e statement is false on entry the
statements in the loop aren't executed at all, as in the following
program:

i n t i ;
m a i n ()
t

! r h i L e (' i < 4)
{

p r i n t f (" t o t o ") i
i + + ;

]
]

.5.2 The fo] menl

In BASIC the FOR...NEXT statement uses a loop counter variable.
When tJle said variable reaches a certain value the program stops
executing the statements between the FOR and NEfl statements.
It's nearly the same in C.

The fo[owing program writes the squares of ttre numbers between 1
and twenty that we've already seen using a f o r statement.

i n t i ;
n a i n ()
{

l o r (i = 1 ; a < = 2 0 ; i = i + 1)
p | i n t f (" % d s q u a r e d i s Z d \ n " , a , i * i) ;

)
e v n t _ k e y b d () ;

This example is exactly equivalent to the previous one. To prove it,
run itl

The algorithm for this program is as follows:

Va-rying i from I to 20 in steps of 1 do
write the square of i

Wait for a key press

Poge 76 Hisoft C C Longuoge Introduclion

In BASIC this corresponds to

\ _ F o R I = 1 T 0 2 0
P R I N T I ; " s q u a r e d i s " i I * I

N E X T I' A $ = I N K E Y $

if we remember BASIC correctlY.

. In detail, the C syntax for for statements is

f o r (s t a t e m e n t l ; c o n d i t i o n ; s t a t e m e n t Z)
s t a t e m e n t S i

\ _ r e s t o f t h e P r o g r a m i

or altematively

, . f o r (s t a t e m e n t l ; c o n d i t i o n i s t a t e m e n t 2)

s t a t e m e n t S ;
s t a t e m e n t 4 ; l * e t c . - . * /

\ -)
r e s t o f P r o g r a n ;

when HlSoft C comes across such a statement, it does the following:

I t executes statement l f i rs t o f a l l (i=1) . Next i t evaluates the
c o n d i t i o n (i < = 2 0) .

\!-
If this is false, HtSoft C starts executing ttre rest of the program. If,
however, the condition is true, IIlSoft C executes statement3 then'
s tatement4. . . which const i tu tes the body of the for s tatement

\ , (p r i n t f . . .)

F inal ly s tatement2 is executed (i = i+1) '

\-
The condition is evaluated once more.

If it is false, HlSoft C orecutes t]-e rest of the program. But if it is still
\ - t r u e , I I i S o f t C e x e c u t e s s t a t e m e n t 3 , s t a t e n e n t 4 a n d t h e n

statement2 again. The condition is evaluated once more...

But perhaps we are repeating ourselves.

Looldng at it another way, s t a t e n e n t 1 is executed. Then the body
statements followed by stat ement 2 while the condition is true.

C Longuoge Inlroduction Hisoft C Poge 77

So the statement above is exactly equivalent to:

s t a t e n e n t l ;
! , h i t e (c o n d i t i o n)

{
s t a t e m e n t S ;
s t a t e m e n t 4 ;
s t a t e m e n t Z i

)
r e s t o f t h e P f o g r a m ;

Note the numbering of the statements.

Exercise 7

This is the same as the last one. Rewrite the program above (with the
f o r statement) so that it writes the squares in reverse order using a
f o r statement.

Exercise 8

Write a program which flnds the sum of the whole numbers between
1 and 100.

Exercise 9

Write a Drogram that displaYs the ASCII character set' Remember
that putctrir<ctrl writes the character whose code is in the lrariable \J

c n .

.5.3 The do. . . emenf

This loop stmcture is used less often than the two previous ones. It is
based on the uh i t e statement and resembles it a lot.

c h a r c h ;
m a i n ()
{

o o
t

c h = e v n t - k e y b d () ;
p u t c h a r (c h) ;

]
u h i L e (c h ' l = 1 3) ;

)

A character is read from the keyboard, stored in the variable ch, then
written to the screen. This is repeated until the character read is a
neturn (ASCII code 13) .

Poge 78 HiSoft C C longuoge Inlroducfion

The syntax of the do. . . uh i Le statement is as follows:

. d o
s t a t e m e n t ;

u h i L e (c o n d i t i o n) ;

!- Of

o o
t

- s t a t e n e n t l ;
s t a t e m e n t 2 ;
s t a t e m e n t S ; / * e t c . . . * /

)' \ - .
l . l h i l . e (c o n d i t i o n) ;

N o t e t h e s e m i - c o l o n a f t e r t h e ! , h i L e (c o n d i t i o n) ; .

The statements are executed wbile the condition is tme.

The difference between the = statement that we saw above and this
'\- one is that the body of the statement is executed first and then the

condition is evaluated. If it is true, then the program continues to
loop. I f not , the do. . . ! ,h i !e loop f in ishes.

\' In the standard !, h i L e loop the condition is tested before the body
statements. As a result, with a do...uhi Le the body statement is
always executed at least once, whereas with the U h i L e statement it

''- may never be executed.

wrrc stotements
A switch lets you execute one of several statements depending on a
conditon. For example, if a variable or expression has one of several
values.

The statements that are executed are different dependlng on the
value. This is equivalent to the SELECT CASE statement in HiSoft
BASIC.

I€t's take a simple slot machine as an example.

A number between 0 and 9 is chosen by chance. Ifyou get a number 5
or 7 you win. 7 is the jackpot. Ifyou get a 6 you lose.

C ldnguoge Ini]oducfion HiSofi C Poge 79

The algorithm is:

Select a number bD/ chance

Depending on the number
if it is 6

write "you have lost-
i f i t i s T

write "Jackpot"
u r r l s D o r /

write "you have won"
ottrer values

wdte "you haven't won or lost"

Translated into C this becomes:

i n t n u m i
t n a i n ()
{
p r i n t f (" P u t a 1 0 p c o i n i n t h e s L o t \ n ") ;
e v n t - k e y b d () i
n u m = R a n d o m () Z 1 0 , .
s u i t c h (n u m)
{
c a s e 6 i ' . - -

p | i n t f (" Y o u h a v e g o t 6 \ n ") ;
p r i n t f (" Y o u ' v e t o s t \ n ") ;
o f e a K , '

c a s e 7 :
p r i n t f (" Y o u h a v e g o t 7 \ n ") ;
p f i n t f (" J a c k p o t \ n ") ;

c a s e 5 :
p r i n t f (" Y o u h a v e ! r o n \ n ") ;
D r e a K i

d e f a u t t :
p r i n t f (" Y o u h a v e g o t Z d \ n " , n u m) ;
p f i n t f (" a n d h a v e n e i t h e r ! i o n n o r L o s t \ n ") i
o r e a K ;

]
e v n t - k e y b d () ;
) \ _

Irt's examine this program in detail.

The variable nurn is an integer which contains the number chosen by
clunce.

To obtain this, we use the function Ra n don to return a whole random
number. We take this value modulo I0 to make it a random number
between 0 and 9.

Poge 80 Hisott C C longuoge Iniroducfion

Then we come to the interestng bit of this example.
' . -

I t 's the sur i tch s tatement . su i tch executes one of severa l
statements depending on an lnteger va-lue. The expression is
evaluated and then compared with a list of constants. When a match
is found execution starts with the corresponding statement.

In our example, the said expression is the vadable num. Depending on
. the value of this variable we know whether you have won or lost
\- because n u n b e r contains the value that was chosen by chance.

In_C, the phrase "if it is 6" translates to case 5:. Don't forget the
coron.

Thus if the variable has the value 6 then the two statements:

p r i n t f (" Y o u h a v e g o t 6 \ n ") ;
p r i n t f (" Y o u ' v e L o s t \ n ") i

which follow case 6: are executed.

Just after these two statements is the ke]'word b r e a k. This means
in this case (if nurn=6) the switch statement is finished.

Tlrus if the value is 6 the messages are written on the screen and you
have lost.

\v Now, we'I1 look at the next case. It's the value 7; good news, it's the

_
jackpot and the appropriate message is written in ttre screen.

. p r i n t f (" Y o u h a v e g o t 7 \ n ") i
p r i n t f (" J a c k p o t \ n ") ;

Next it's the turn of 5. You've won but not the jackpot. So just the fact
that you have won is displayed.

p r i n t f (" Y o u h a v e u o n \ n ") ;

\!- Immediately afterwards there's a b I e a k statement which tells us
that the sv i t c h statement is over and the rest of the program is
executed.

If you have been paying close attenton, you will have noticed that
there is no break statement after case 7,

C longuoge Infroduclion Hisofi C Poge 8l

kt's take another look:

c a s e 7 :
p r i n t f (" Y o u h a v e g o t 7 \ n ") ;
p f i n t f (" J a c k p o t \ n ") ;

c a s e 5 :
p r i n t f (" Y o u h a v e ! r o n \ n ") i
b r e a k ;

A 7 has been chosen. Hisoft C executes the two printf statements *

after case 7. But there's no bfeak to tell the interpreter to stop, so
i t cont inues and executes the statement pr in t f ("You have
lron\n"); from case 5. After that, there's a break statement so the \-
switch is finished. The next statement in the program will then be
executed (eve n t -keybd ()) .

The last pa-rt of t-Ile sv i tch statement is def aut t:. This is a special
posslble switch value that is executed only if no match has been
found. So in our slot machine program the following statements will
be executed if our random number lsn't 5,6 or 7. \s

p r i n t f (" Y o u h a v e g o t % d \ n " , n u m) i
o r i n t f (" a n d h a v e n e i t h e r l . l o n n o r I o s t \ n ") ;

\

Note that you don't haue to have a def aul.t in a s!,i tch statement.
In this case if t]le s u i t c h variable doesn't match one of the other
cases, no statements are executed as part of the switch.

More rigorously, the switch slmtax is as follows:

s r { i t c h (i n t - e x p r e s s i o n) \ -

c a s e c o n s t a n t - 1 :
s t a t e m e n t - 1 ;
D r e a K ; \ ,

c a s e c o n s t a n t - 2 :
s t a t e n e n t - 2 ;
s t a t e m e n t - 3 ; \ *
D f E A K ;

c a s e c o n s t a n t - 3 :
s t a t e m e n t - 4 ; \ v

Poge 82 Hisotl C C longuoge Inlloduclion

c a s e c o n s t a n t - 4 :
s t a t e n e n t - 5 ;

d e f a u L t :
s t a t e m e n t - 6 ;
s t a t e m e n t - 7 ;
b r e a k ;

]

So in English, this does the following:

I f t h e i n t - e x p r e s s i o n i s e q u a l t o c o n s t a n t - 1 , t h e n s t a t e m e n t - 1
is executed.

I f t h e i n t - e x p r e s s i o n i s e q u a l t o c o n s t a n t - 2 , t h e n s t a t e n e n t - 2
and s ta tement -3 a re executed .

I f t h e i n t - e x p r e s s i o n i s e q u a l t o c o n s t a n t - 5 , t h e n s t a t e n e n t s
4.5.6 and 7 are executed.

I f t h e i n t - e x p r e s s i o n i s e q u a l t o c o n s t a n t - 4 , t h e n s t a t e n e n t s
5,6 and 7 are executed.

I f t h e i n t - e x p r e s s i o n i s n o t e q u a l t o a n y o f t h e c o n s t a n t s 1 , 2 , 5
or 4 then both statements 6 and 7 are executed.

Note that the expression following s!,i tch is in parentfleses, a case
must be followed by a colon and all the case items are enclosed in
curly brackets.

Exercise l0

Write a program that reads a character fiom the keyboard, and then
displays it if it is A or B, otherwise it displays an asterisk instead.
Pressing the space bar should stop the program. You can use a
suitch statement or several if statements.

Funclions

.7. l Funcl ions on nes

At the start of this introduction to the C language we said that a C
program is made up of one or more functions which are called from
one anol-her. The moment has come to prove it.

C longuoge Introducfion HiSofi C Poge 83

A function is a set of statements that are grouped together'
Generally there is something linking these statements, that is to say
they implement a particular operation.

There are two sorts of functions: library functions and those that
you write yourself.

Library functions are subroutines that are already wdtten and are
available for your use. YouVe already used the library functions called
p r i n t f , p u t c h a r , a n d e v n t - k e Y b d .

The functions that you write yourself are the equivalent of
subroutines in BASIC that are called using GOSUB. (Actually they
are more like SUB and DEF FNx< deffnitions in Hisoft BASIC).

C functions have names of their own which are used to call them. In
addition you can pass information between the calling program and
the function.

Let's look at a concrete example. We shall create a function called
l , a 1 t .

This will wr:ite "press a key" on the scrpen and wait for a key to be
typed on the keyboard. This function is useful when you are
displaying messages, as it gives the user plenty of time to read what
is on the screen.

m a i n ()
t

p r i n t f (" m e s s a g e 1 \ n ") ;
v a i t () i
p r i n t f (" m e s s a g e 2 \ n ") ;
w a i t () ;

)
l l a i t ()
{

p r i n t f (" P r e s s a k e y \ n ") ;
e v n t - k e y b d () ;

)

The uai t function consists of two statements. The first writes
press a key and the second waits for a key to be typed.

The mai n flnction has four statements. Wtren you run the program,
these and only these are executed. The statements in the function
l,ai t are not executed unless thev are called bv the nai n function.

Poge 84 HiSofi C C longuoge Introduclion

The program starts by displaying messase 1. Then it calls the
fr:nction r a i t, which waits for a key to be pressed. After the user has
ti.ped a key, nessage 2 is displayed. The function lla it completes
th-e program and it terminates as soon as the user presses another
key.

So far functions seem just like GOSUB subroutines in BASIC.
However functions are more powerful than that For example, they
can have parameters.

Polomele ls

Remember our function !,ai t. Suppose we want to vai t for a
particular key, but it isn't always the same one. For example, the first
iime we -ani to wait for the a key and the second time the b key. This
is a little artificial, but better than nothing.

There's a neat soluLion using parameters:

c h a f c h i
m a i n ()
t

p r i n t f (" n e s s a g e 1 \ n ") i
! a i t (' a ') ;
p r i n t f (" m e s s a g e 2 \ n ") ;
t , l a i t (' b ') i

]

r"ra i t (c)
c h a r c i
t

p r i n t f (" P r e s s t h e Z c k e y \ n " , c) ;
d o

c h = e v n t _ k e y b d () i
u h i L e (c h ! = c) , '

)

The only real difference between this and the last program is
l, a i t function. Now this function has a parameter which is
character that must be b?ed on the keyboard.

The mai n function calls the vai t function with a parameter 'a' and
then vrith a parameter ' b ' . This indicates the key to wait for. Both of
these values are the integers whose values are the ASCII codes for a
and b.

Inside the wa i t function the parameter is called c. This is a variable
which contains the value that was passed as a parameter. During the
two calls it takes the value of first ' a I and then I b '.

the
the

C longuoge Infroduction HiSofi C Poge 85

Be careful, the variable c can only be used in the ua i t function. All
attempts to access it outside vdll be greeted with an error message.
We say that c is a local variable of the function uait.

You have learnt to declare all variables before using them, and
parameters are no exception to this rule. They must be declared just'after

the name of the funcUon arld before thi statements thal make
up the function. See the example.

In our program, the variable c is of tl?e c h a r. This declares the
variable inside the function: you can not access it outside its
function, ttre !, a i t function. Inside the !,, a i t function, we have a
variable contairfng the character to wait for.

The first statement in this function writes a message to the screen
asking the user to press the appropriate key.

Notice the bizafie iLc inside ttre pri ntf string. In a similar way to Zd
meaning \arite an integer here', /"c means 'wdte a character here'. So
a character will appear on the screen rather than a whole number. \-

The ASCII code of this character is in the variable c which was passed
as a parameter.

Thus, if c has the value 97 which is the ASCII code for the character
' a ' , t h e s t a t e m e n t :

p r i n t f (" P r e s s t h e Z c k e y \ n " , c) ;

d isp lays

P r e s s t h e a k e y

on the screen. If you change the Zc to Zd then

p | i n t f (" P r e s s t h e Z d k e y \ n " , c) ;

will show

P r e s s t h e 9 7 k e y

Next, after indicating which is the key to wait for, Htsoft C executes \v
the following loop:

o o
c h = e v n t _ k e y b d () ;

u h i l . e (c h ! = c) ;

which reads a character from the keyboard (using evnt-keybd)
wbilst that character is different to the parameter of the function

Poge 86 Hisotl C C longuoge Inlroducfion \,

elurn volues

A function may return a value to the calllng program. For example,
event_keybd sends back the code of the key that has been pressed.

Let's look at an example. Suppose we want to create a poqTer function
which raises a whole number to the power that it has been g[ven. Ttris
fr:nction will be called from the main program in a couple of places to
calculate 21o

"tr4
216. 1n" algorithm used will be a brute force one.

The two parameters of this frmction are the number to raise and the
power to raise it to. The value retumed by this power function is the
result of the calculation.

i n t v a L 1 0 ;
i n t v a | 1 6 ;
i n t r e s u L t ;
n a i n ()
t

v a I " 1 0 = p o v e r (2 , 1 0) ;
v a L 1 6 = p o u e r < z , 1 6) ;

p l i n t f (" 2 ^ 1 0 = y " d , 2 ^ 1 6 = Z d \ n " , v a l . 1 0 / v a l . 1 6) i
e v n t _ k e y b d () i

]

p o r . r e r (n u m b e r , e x p o n e n t)
i n t n u m b e r , e x p o n e n t , '

r e s u I t = n u m b e r ;
r r h i I e (e x o o n e n t > 1)
{

e x p o n e n t - - ;
r e s u L t * = n u m b e f ;

)
r e t u r n (r e s u t t) ;

)

The two integer va-riables va l. 10 and va L 16 contain the result of the

calculations- of 2ro and 216. The mai n function stores 1024 in
va 1. 10 and 65536 in va [16. The pri ntf statement displays these
values on tJte screen, thus,

2 ^ 1 0 = 1 O 2 1 , 2 ^ 1 6 = 6 5 5 3 6

The pouer func t ion has two parameters ca l led nunrber and
exponent, and they are both declared as type integer.

C longuoge Infroduction Hisoft C Poge 87

The statement:

e x p o n e n t - _ ;

subtracts one from the variable exponent and the statement:

r e s u I t * = n u m b e r ;

m u l t i p l i e s r e s u t t b Y n u m b e f .

The variable resu L t will thus contain the result of the calculation
when the loop has finished. All it needs to do now is return this value
to the calling program. This is done with the very simple statement:

r e t u r n (f e s u L t) i

This statement stops execution of the function and returns control
to the ca-lling program. In addiuon, the value in parentheses is taken
as the result of the function.

7.4 ummo

The general syntax of a function is as follov/s:

f u n c t i o n - n a n e (a I g 1 ' a r 9 2 , . . . , a r g n)
t y p e a r g 1 , '
t y p e a r 9 2 ;

i i pu " "gn ;t
s t a t e m e n t ;
s t a t e m e n t ;

" i " t u t " n t ;r e t u r n (e x p r e s s i o n) i
j

f u n c t i on-n an e is the name of the function.

ar91,ar92, , . . / argn are the arguments to the funct ion.

type is a t]?e speciffer (e.9. i nt,cha r, etc...)

The characters in italics are compuJsory, the others are optional.

The arguments are optional. There may be none, one or several. But if
there are any, then they must be declared. The parameter
declarauons must be after the list of arguments and before the
opening bracket and statements of the function.

Poge 88 Hisoft C C [onguoge Inlroduclion

Exelcise I I

Write a function which does nothing, with no statements, and no
parameters that is called from a main function which doesn't do
anything either. An exceptionally useful program...

Exercise l2

Write a program that reads two numbers from the keyboard and
displays their sum. The getchar function reads a character from
the keyboard, echoing it and returns the ASCII code of the character.
This i i s imi lar to our f r iend evnt-keybd except that getchar
disDlavs the character on the screen. To build up to this, write a
functibn that reads a number from the keyboard where this may
have several digits.

Arr s
The C language has arrays ljke BASIC. For simple cases (arrays of
i n t , s h o r t , c h a r o r d o u b t e) t h e s t r u c t u r e s u s e d a r e a l m o s t
idenucal to those in BASIC.

Let's consider the example of determining which numbers are
produced most frequently by the random number generator.

To do thls we will have an array of twenty integers 0 to 19. We'll
generate a random number between 0 and 19. To count the numbers,
we will increment the array element whose index is the random
number. For example, if it is 6 we will increment element number 6 of
the array. When weve finished we will know how many times each
number has been chosen.

Increment means 'add one to'

Those ofyou who can read French, may be interested in the following
from the French version of this manual:

(Ajouter deux, c'est deuxcr6menter, ajouter trois, c'est
troiscrementer, etc... Ne pas confondre deuxcr6menter avec
decrementer, qui signifie retranctrer un.,

C lqnguoge Infroduction Hisoft C Poge 89

i n t a r r E 2 0 l i
' i n t i ;
n a i n ()
{

J o r (i = 0 ; i < 2 0 ; i + +)
a r r E i l = 0 ;

{ o r (i = 0 ; i < 1 0 0 0 ; i + +)
a r r I R a n d o m (, l i 2 O 7 + + i

f o r (i = 0 i i < 2 0 ; i + t)
p r i n t f (" Z d : Z d \ n " , i , a r r t i l) ;

e v n t - k e y b d () ;
)

The ffrst line declares an array of20 elements of type i nt. It is called

In BASIC, this corresponds to DIM ARR[20).

In BASIC, array indices are enclosed in parentheses, in C you use v

square brackets. It's not our fault!

In the program well need an integer variable. In a fft of origina.lity it's \-
called i .

The first statement in the program is a f o r loop. lt initialises a.ll the
elements of an array to zero. The variable i varies from 0 to 19 (i =0
and i <20) .

When we declare an array of integers with int arrt2oJ; the \-.
indices vary between 0 and 19. So a r r t 0l is the first element and
a r r E l 9 l i s t h e l a s t .

But be careful, there are no checks for array indices. Ifyou want to \-

read from or, worse, wdte to element arrt450l no-one will stop you.
But I times out of 1O the machine will crash.

Is this stupid? Yes and No. The language is deffned this vray and it
can be very useful in certain cases. Be uery careful with your array
indices. _

HiSoft C has an option to test to see if pointers have certain nasty
va-lues and if so give an error. Ttris may happen if you get your aray
indices wrong or then again it may not. \J

Poge 90 HiSoft C C Longuoge lnlroduclion

Irt's get back tb our progftrm.

The third statement is another f o r loop:

f o r (i = 0 ; i < 1 0 0 0 ; i + +)
a f r I R a n d o m () ' l 2 0) + + ;

This loop is executed 1000 times. That is to say the statement
arrERandon() % z1i++ is executed 1000 t imes. So the var iab le i is
a loop count that varies between 0 and 999 or 1000 times.

This statement that ls executed 1000 times works as follows: a
random number is chosen using the R a n d om () function. To make
this between 0 and 19 we find its remainder when divided by twenty
using Random() 220. So weve got a random number between 0 and
19.

This value is used as the index for the element that we want to
increment. For example if 6 is chosen it will increment element
number 6 of a r r. Using this we can determine which numbers occur
most frequently.

-

The element of the anay we want is ca-lled arrt Randon () Z20l as
Random () 220 is t f ie index.

You can wipe yor:r brow now, we re nearly therel

We have seen in several exercises tllat to add one to the variable i , we
can just write i ++. This is equiva-lent to i=i+1.

S o t o a d d I t o a r r E R a n d o m () 2 2 0 1 w e j u s t n e e d

a r r E R a n d o m () % 2 0 1 + + ;

That's it. It doesn't take long to write but it does a lot.

The program repeats this statement IOOO times, picking 1000
random numbers and incrementing the corresponding array
element.

Wtren execution of the loop {inishes, most of the work of the program
is done; all we need to do is display the results on the screen. For each
element of the aray, we are going to rrrite its index (between 0 and
19) and its value (theoretlcally between 0 and 19).

C Longuoge Infroduclion HiSofi C Poge 9l

We have a loop whose counter goes from 0 to 19 and uses a pri ntf
statement for the screen output:

f o r (i = 0 ; i < 2 0 ; 1 + +)
p r " i n t f (" 7 , d | y , d \ n " , a , a r r a i)) i

Weve used i yet again as the loop variable, this time varying between
0 and 19 (i =0 to i <20) .

The printf function has three pa.rameters.

The last two numbers represent the two numbers to wdte: i and
a r r I i] .

The first parameter gives the format with which the numbers are to
be written. It's a string " Z d : d \ n " . The first Z d replaces the value of
i and the second writes the value in a r r E i l. If, for example, i has
thevalue 6 and a rrE i I is 52, then the statement:

p r i n t f (" % d | y , d \ n " , i , a r r E i l) ;

displays the following :

6 | 5 2

The two characters \n cause the cursor to move to the start of the
next line so that the display for each element is on its own line.

Conclusion
We have seen in this section the basics fpardon the pun) of
programming in the C language. C is a language that needs more
care than BASIC or Pascal but it is also more powerful. We have seen
this in the last example.

You can write things very concisely in C. This can make programs
more difficult to read but can also mean that thev run quicker when
compiled.

We haven't seen all the features of C so far; the C that is explained in
this section corresponds to a modern BASIC. C has many other
facilities. To summarise, structured types, pointers, 42 arithmetic &
logical operators, macro pre-processor, modular programs, pointers
to functions, recursion etc...

To discover all these, equip yourself with one of the books in the
bibliography, your Hlsoft C disks and a large dose of patiencel

Poge 92 Hisoft C C Longuoge Inlroducfion

3 Introduction lo GEM
This section will describe some of the secrets of GEM that you can

\.- uncover using the toolbox of functions that will let you open
windows, use dialog boxes and menus.

. l Proqrommin w

3.1 . l Mi

GEM stands for Graphics Environment Manager. GEM lets you'manage your environment graphically" via icons and windows,
letting you open windows, pull dovun menus move icons etc...

For the C programmer (that's you), GEM is available to you via a
library of functions.

For example, there's a function to open a windov/, and another to
close it. Another function draws a line between two points, another
displays text urith formatting attributes, arld another waits for a
menu selection.

GEM has about 200 of these functions altogether. Suitably used they
let you create programs with Mndows and pull down menus. All the
GEM AES and VDI functions are available from HlSoft C. but the
Hisoft C toolbox has been created to make thinps easier.

GEM Inlroducfion Hisoft C Poge 93

GEM lets you create windows and pull down menus -However
j I

;;;" i;;d p;"gramming with GEM before' vou've probablv realised

itrat ca ing ii is arduous to say the least'

The documentation doesn't help The only official^ documents are

;;;";";; i;;;" for the IIM-PC and oeslsi!!.fo.r^ lrnfessional
;;;;;;;... (but then you have to be a regi;lered developer to get

f,;;3';i i i i i-;d-ioesn't ihclude a single proplr example ̂ Mosr
of the

.i'fr"a lo.Xa available are shoflened versions of the olTicial ones but

#" i""i l" Orfit"tlt for a beginner to use' There's one.thing to be

flniritirrf..l'"t ieist these ire written in English (well American

anyrvay)!

Most people find learning to program. GEM long and, trard work'

#'ld it';&";;i u"l n"gF. Foi ex"ample' to wrire a program which

Iji**"r*:'h jl"xm:,ts":1";?.l."'#ffif iT'J"rffi *""dJ
instructions.

This is because you need to use lots of functions to program with

atM.
"il;il; r'eaion, nisoft C includes a librarv or toolbox ot

frnctions that lets you use most of GEM's facilities but is very-much

;fr;l;; ;;;. ihd toolbox -"utt" vo''t can use GEM.effectivelv and

;;;'i'lu.
-Tit"";

function prooide a ;soit-ate cushion' betwe-e119y^a1{

ffii'i. t;;- aoJt
""i.4

to dive into hundreds of pages ot

iJ""-"tttutiott to work out how to do each little thing'

We haven't ignored the purists ho.wever' A11 the standard GEM

i,l"*i i"ii"tiir1i,:-. "u"iuir"
-itr' their standard names lf vou have

##i#;;;ii-il" "tt"ggl.
of learning GEM with -qno!he1 language

imDlementation, you can use your hard-eamed ski11s straight away'

Poge 94 Hisoft C GEM lnkoduclion

o

noows

You already know what windows are, becarrse you have used the
GEM Desktop and Hisoft C. A window is a part of the screen with a
border which you can change using sliders, arrow boxes etc.

As far as GEM is concerned, a window is nothing more and nothing
less than a border on the screen. You misht think that there is a
GEM function that would let you move within a window on a virtual
screen of say 1000 lines and 200 columns and update the display...
but no. GEM has no concept of virtual screens.

When you open a screen window GEM draws the border; that's au. It
is up to the programmer to generate the display that appears in t]lat
window. You have to create your own virtual window and use this to
generate the window display.

Now we shall look at the HtSoft C toolbox functions for windows.

The lirst thing we need to do to open a window is to open it, as you
probably g;uessed. The fi:nction to do this is called o p e n-u i n d o u.

Wtren you have finished using a window you must close it using
c t o s e _ l r i n d o ! r .

Tlpe in and mn the following short program:

i nt l . l i n d ou_n o;
m a i n ()
t

l r i n d o u - n o = o p e n - u i n d o ! , (4 0 9 5 , 2 0 , 2 0 , 4 O O , 1 5 O ,
" w i n d o u " , " p f e s s a k e y ") i

evn t -k eybd () ;
c L o s e_!, i ndo!, (u i nd o !r_n o) ;

In tl.e Iirst line, we declare an integer variable called ui ndo!,-no, then
we have our usual mai n() and t.

The first statement proper in the program calls the open-xi ndoB
function. This draws t]le window on the screen and has so manv
parameters that they are on two lines.

ctosrnq o ow-

GEM lnfroduction HiSofi C Poge 95

The evnt-keybd() waits for a key press once the window is opened
but before the window is closed with c L ose !ii ndou.

3.2.3 The open_window funcl ion

Let 's look in deta i l a t the open-u i ndou funct ion. I t has 7
parameters.

The ffrst of these indicates the attributes of the window. For example,
whether it has a title, sliders, arrows, etc...

Each attribute has a number associated ririth it. The following table
gives a list of the numbers corresponding to the var-ious attributes.

base 10 base 16 Attribute
I OXOO I Title bar with name
2 0x002 Close box
4 0x004 !u window
8 0x008 Window can be moved
l 6 OxO 10 Inlormation line
32 0x020 Change window size
6 4 OxO40 Up arrow
r2a 0x080 Dowrr arrow
256 0 x 1 0 0 Vertica] slider
572 Ox2O0 I-elt arrow
t 0 2 + Ux40U Riaht arrow
2Q4A 0x800 Horizontal slider

want your window to have several attributes, you use the sum
numbers corresponding to each attribute.

If you
of the

For example, if you want a window with a tiUe, two sliders, and a close
box then the parameter value is l+2+256+2044 = 23O7,

{SK\&\ $.ss >\sg!q.rs,, sr{rre.r:.sed'{(<.rr3!.se- 4t3S5. (b-isxe$st-1s(\R s\\s\ s{
all the attributes above, so our wlndow will be drawn with all the
possible 'gadgets'.

The next four parameters give the co-ordinates and size of the
window. They are, in order, the x and y co-ordinates of the top left of
the window, the v/idth and the height.

These four values are expressed in pixel co-ordinates. The x co-
ordinate may be between 0 and 639 fin medium & high resolution)
and the y co-ordinate may be between 0 and 199 fmedium) or 0 and
399 thigh).The origin is the top left ofthe screen.

Poge 96 Hisoft C GEM lntroduction

In the example, our window has a width of 400 pixels and a height of
150. Its top left corner has co-ordinates (20,20).

The sixth parameter is the name of the window and it is a string. If
you don't want your window to have a title use the empty string " " .

Our window has the origina-l name "!ii ndov".

The linal parameter is the text that is displayed in the information
line just below the dtle. Again, ifyou have no informatlon line use a
null string "".

The open_v i ndoB function returns an integer. This tells us which
window v/e have opened arrd gives us a han-dle to use when calling the
other window routines, so that they know which window to operate
on. So for example when we want to display text in our window q/e use
this handle to say v/hich window to write to.

This is a similar idea to the file pointers that are used to access {iles.
When you open a file you are given a file handle to access it
subsequently.

If GEM can't open the window then the value returned is 0. Your
program should cope with this error condition.

So that's it. When you specify all the parameters, the window
appears on the screen as if by a miracle.

.2.4 The c lose window funcl ion

An opened window must always be closed, and you mustn't close a
window that hasn ' t been opened. I t makes sense. The
c L ose-u i ndor,l function does this job for us:

c L o s e - l r i n d o ! r (! i i n d o w - n o) ;

It has one parameter which is the integer returned by the
ope n-u i ndo!, function. This indicates which window is to be closed
and is used in ttre functions that use windows; c I os e-wi ndou is no
excep0on,

The c tose-wi ndoi{ function retums a value indicating the success
or otherwise of the close operation. If there is a problem, such as an
attempt to close a window that isn't open, the value returned is 0; if
all went well the ralue returned is not zero.

GEM Infloducfion Hisoft C Poge 97

Writi n o window

We have seen that a window is a screen area with a border, no more
no less. So we need some functions to change the display in the
lvindow.

The p|i nt-vi ndou function lets us write into a windov/ without
bothering about the position of the te'd. The following program, after
opening the same windov/ as the previous example, wr-ites some text
inside the window.

i n t H i ndo ! , t _no ;
n a i n ()
t

u i n d o w _ n o = o p e n - l i n d o u (1 0 9 5 ' 2 0 ' 2 0 '
" u i n d o l r " , " p r e s s a k e y ") ;

p r i n t _ u i n d o u (H i n d o ! i - n o , " L i n e 1 ") ;
p r i n t _ v i n d o r , r (! r i n d o w _ n o , " t h i s i s l i n e
p r i n t _ ! , i n d o u (l , i n d o l r _ n o , " t h i s i s L i n e
e v n t _ k e y b d () ;
c Iose-u i ndor , / (v i ndou-no) ;

4 O 0 , 1 5 O ,

The returned value is only provided for information. Normally it \/ill
always succeed. This value is often ignored, as in the example above.
The calling program simply 'throws away' the value returned.

)

Thls program is identical to the previous one apart from the three
calls to pri nt-ui ndoli that have been added. Three messages are
written in the window.

Run this program to see the effect of this function.

.2.6 The pr in l_window funct ion

pf i nt-ui ndo!i has two arguments.

The first is the integer handle of the window that is returned by
open- indo!,. It indicates which windov/ is to be written to.

The second is the text to display in the window. It is a string of
characters enclosed in quotes.

The pri nt-vi ndou function returns a value indicating whether
there was a problem writing the text in the window. If an error occurs
then 0 is returned otherwise a non-zero value is passed back to the
callinA function.

Poge 98 Hisott C GEM Introduction

In practlce, this never fails unless the window handle is wrong or if
the string is a pointer to an invalid area of memory. Thus this return
value is often ignored as in the example above.

This function positions the text itself. The ffrst Ume you use this
function, the text is written on the first line of the window.
Subsequent calls wdte the text on the following lines. Thus a newline
is always inserted at the end of each string that is written. If you
v/ant to write somewhere e1se, use the pos-windo! function.
p r i n t-u i n d ou works in a similar way to PRINT in BASIC.

If the text is too long to display in the window, the end of the message
isn't displayed - it's clipped to fit in the window.

If you write too many lines to the window, nothing is shown below
the bottom of the window and it will not scroll; any subsequent text
will not be displayed but will be iEFrored.

The display is always within the border of the window.

.2.7 The pos window funcl ion

This function lets you change the position where the text wfitten
wi th pf in t - ! , indou is d isp layed.

The program below writes "hel to" at line 5 column 5 and ttren
closes the window:

i n t t { i ndo ! , r ;
n a i n ()
t

x i ndou = open- t r indot . t (2307, 20, 20 ' 400, '150,
" t i t L e " , " ") ;

p o s _ w i n d o u (u i n d o u , 5 , 5) ;
p r i n t _ v i n d o u (u i n d o u , " h e I L o ") ;
e v n t - k e y b d () ;
c Lose-v i ndol r (l r i ndor . r) ;

)

The window is opened with a Utle, both sliders and a close box' The
values of these attributes are l, 2, 256 and 2048. Their sum is 2307,
and this is used as the first parameter of ope n-r.r i ndor.t.

The co-ordinates and size of the window haven't been changed from
the previous example. They are (20,20) and (400,150) respectively

The window name has changed to " t i t te" and there is no
informauon line and so ttre last parameter is an empty string "".

GEM Introducfion Hisoft C Poge 99

The statement

p o s - w i n d o w (t r i n d o v , 5 ' 5) ;

indicates that the next str'ng is to be disptayed at line 5 column 5
within the window that we have opened.

Then the text is displayed at the position {ixed by the pos-'.,i ndo|.,
statement.

Finaly, after waiting for a key, we close the window.

I-et's take a closer look at the pos-r.ri ndo!, function. It has three
parameters.

The first is the integer that is returned by the open-uindour
function. It indicates which window is to be written to.

The next two parameters indicate r rhere text is to be displayed. They
are first the cblumn and then the line. Bottr values are specified in
characters relative to the top left of the window. Thus they must be
between 0 and 79 for the cblumn and 0 and 24 for the line. If the
values rrsed are too large, and the cursor is thus posiuoned outside
the window, no text will be displayed by the next p r i n t-ui ndow call'
No indication of this eror is given.

If an error is detected then this function returns 0, otherwise a non-
zero value is returned. This will only happen if ttre window number is
wrong and so this is often ignored.

Note that the pos-ui ndow functlon doesn't actually display any
text. It must be used in conjunction with pri nt-ui ndo!,' Text
speci f fed to pr in t -Bindou appears at the posi t ion g iven by
p o s_ ! i i ndo ! r .

Poge 100 HiSoft C GEM Introduction

There's a function to clear out the inside of a window. The following
Drogram opens a window, and wdtes "heL I'o" into it and waits for a
i<ey-press. lt then clears the window contents, displays " H e l" L o,
r o-. fd " and waits for another key. Finaly the window is closed.

i n t ! r i n d o u r ;
\ - m a i n ()

t
! , i n d o u = o p e n - u i n d o u (2 3 0 7 ' 2 0 ' 2 0 , 4 0 0 ' 1 5 0 '

' t i t t e " / " ") ;
\ - p r i n t - ! , i n d o u (u i n d o u , " h e L t o ") ;

e v n t - k e y b d () ;
c I ea r_ ! , r i ndo l ,J (t J i ndo! ,) ;
p r i n t - x i n d o u (v i n d o u ' " h e t t o , t , o r I ' d ") ;
e v n t - k e y b d () ;

3.2.9 The s ize-window funcl ion

This function lets you find out the size of the available work area
inside a window.

In practice, this space is the total space used by the window wtren
opened minus the space used by the window's borders

The borders contain the Utle bar, sliders etc...

c L o s e - w i n d o u (x i n d o u) ;
]

\- The funcuon ctear-u indo!, clears out a window. It has one single
parameter. This is the integer that is returned by the open-vi ndout
iunction. It indicates which window is l"o be clea-red.

The value returned by this function is an error indicator. As usual it
- is O if there is an error and non-zero if the operation is successful

,\, This value is normally ignored.

Exercise l3
\- write a program that opens two windows and writes alternately to

them both.

GEM Inlroduclion Hiso{t C Pdge l0 l

Here's an example of a program that draws a straight line between
the opposite corners of its window.

l n t x , y , u i d t h , h e i g h t , l , l i n ;
n a i n ()
t

4 0 0 , 1 5 0 ,

& h e i g h t) ;

The first line of the program declares the integers x, y, w i d t h and
h e i g h t v*rich will contain the work area of the window.

The integer v i n is used to store the handle of the windov/ that rve are
uslng.

The window is opened by the o p e n-u i n do!,r fimction. Then the size of
the inside of the window is obtained by calling s i z e-u i n d o !,.

The function draws a line between two corners of the window, we wait
for a key press and then the window is closed.

Let's examine the size-r,rindot., parameters in detail. It has five
parameters,

The first is the window handle as returned by the open-r.ri ndour
function. This indicates whlch window to ffnd the size of.

The for:r other parameters are going to receive the co-ordinates of the
area inside the window. These are, in order, the x and y co-ordinates
of the top left corner, then the width and the height; these
parameters are modified during the call of the function. They are set
uo to be the work area of the window.

In this program you should have noted the presence of the &
operator before the names of these parameters in the function call.

This & symbol is absolutely essential for the si ze-wi ndolr function
and indicates that the parameters are to be modilied by the function
(see Section 3.2.1 | for the details of this).

l , i n = o p e n _ u i n d o u < 2 3 0 7 , 2 0 , 2 0 ,
" t i t L e " / " ") ;

s i z e _ ! r i n d o v (t { i n ' & x ' & y ' & t r i d t h ,
d r a l i (x , ' t , x + u i d t h , y + h e i g h t) ;
e v n t _ k e y b d () i
c t o s e - ! r i n d o u (l r i n) ;

Poge I02 Hisott C GEM lnlfoduclion

0 The drow

The d rau fLnction is new.

It drav/s a straight line between two points. It has four parameters.

The ffst two parameters are the x and y pixel co-ordinates of the
ffrst Doint. Their values must be between 0 and 639 for x, and 0 and
399 or 0 and 199 depending on the resolution for y.

The other t\ /o parameters are the graphics co-ordinates of the other
end of the line.

If the co-ordinates are outside the limits given above then only that
part of the line visible on the screen is drawn.

This function does not return a value.

.2 .11 Woys of umenls

A function parameter is only a copy of a variable. Only the value of the
variable is passed to the function. Thus, modi4/ing a parameter
within a fr.rnction does not modiff the variable that is used u/hen ttre
lincuon is called. We say that the parameter is passed bg uaLue.

However, there is a method so that you can modiff variables that are
passed as parameters. Al1 you have to do is precede them with the &
operator.

Then it is the variable itself that is passed and it can be modiffed. We
say that this is ^ Darioble parameter.

If you have understood this properly, the hardest part is over,

Be careful, as in C if a parameter is to be used by value it must be
called that way. Similarly v/hen using a variable parameter you must
use the & sign.

Othen'ise 99 out of a 100 Umes the machine 'r'l'ill crash.

As a general rule, parameters are passed by value. No problem. Every
so often a function must modify a parameter. Such a parameter
must always be preceded by a &.

eEM Infroduclion Hisoft C Poge 103

Exercise 14

Write a program which opens a window of a random size.

Then, inside this window draw a ray of lines in all directions starting
from one corner of the window.

.2 .1 onclusion

We have seen in ttds section how to open a window and how to draw
and print inside it.

The use of sliders, arrows, and close boxes is described in Seclion 3.5
concerning events.

.3 o xes

.3 . I o box?

You have already seen dialog boxes. They are a sort of window
without sliders or tiUe bars that appear in middle of the screen and
ask you for information.

For example, when you select Set Preferences from the Desktop, a
dialog box appears and asks if you want confirmation for copies,
what screen resoluton you want etc,

Such a box consists of an outer box and various objects such as
buttons. text. and icons and which can be selected with the mouse or
changed with the keyboard.

3. reoti o d io box

There are two stages in using a dialog box in your program.

First create your box. That is, deffne its size and its various objects
(buttons, text, icons etc) that you want to put in it. This is the ffrst
stage that t}te user of the program doesn't see.

Then you must display the box on the screen and let the operator use
it. This is the second stage.

Note that the box creation stage is totally separate from its display
on the screen,

Poge 104 Hisoft C GEM lnlroducfion

A box is thus created at the start of the program, once and for all, but
it can be displayed on the screen as mzrny times as you like without
having to redeffne it.

The creation of a box itself has severa,l stages. First its size and the
number of elements within it must be defined with the i n i t-b o x
function.

Then, one by one, we add the different objects that we want to appear
inside this box.

This is done with the help of the functions: t e x t-b o x (add a string,
but ton-box (add an ex i t but ton) , g text -box (add graphics text) ,
edi t-box ladd an editable text ffeld) and cotor-box (speciff the
colours of the text, background, and border of graphics or editable
textl.

Now that we have created our box, we can display it and let the user
modiry it. This is achieved with the d r a u-b o x function.

It onlv remains to find out v/hat modifications to the state of the
dialod box the user has made. We use the f eadst r-box (read a
strinf of text) and r e a d b u t-b o x (read ttre state of a button).

It is important to note that only the d r a !,-b o x function has aI affect
that the user can actually see. The creation of the box is invisible. It is
only when we call ttris function that anlthing appears on the screen.

3. il box funclion

This funcuon creates and initialises a dialog box. It's the function
that must be called first and specifies the size of the box and the
number of objects that will be placed inside it. Put simply, an empty
box is created. This provides the ground work for you to position text
and buttons.

This function has three parameters.

The first two specil' the size that you want to give the box. They are,
in order, the width and height. Both values are expressed in
characters. They must be between I and 24 for th.e height and I and
80 for the width.

The thfd parameter indicates the maximum number of elements
tfiat you will be allowed to add to this dialog box.

GEM Inlloducfion Hisoft C Poge I05

\/

For example, if you give this value as 5, you may put up to 5 elements
in the box. You can drus, for example. use 2 buttons and 2 srings. or
equally, I button and 4 strings, so long as there aren't more than 5 -'
objects.

This function retums an integer. It is the handle for the box that we
have iust created. This is its number. It lets us distinguish between
different dialog boxes when we want to use several.

For example, let's create a dialog box 20 characters wide by 5
characters high. Inside it we only want a string of text and an exit
button, i.e. two objects. The statement to start off the creation of this
box is:

b o x = i n : t - b o x (2 0 ' 5 , 2) i

This function doesn't produce any result on the screen. It is only \-
when we have completely defined this box that we can call d r a u b o x
ard it will appear on t}-e screen.

.4 The le x f uncf ion

A dialog box contains messages to indicate, for example, how to use it.
These strings of text are positioned in the box using the t ext-box
function.

You must create an empty box using the i ni t-box function before
calling this function, like all the functions that add objects to a dialog
box.

The function t e x t-b o x has four parameters that let you specif, the
box to which it is to be added, where to position the tert, and linally
the text itself.

The {irst parameter is the integer that is returned by i n i t-b o x It
indicates in which box ttre text dialog is to be positioned.

The following two parameters let you position the text within the
dialog box. They are the co-ordinates of the first text character in the
form column and then line. They are expressed in numbers of
characters relative to the top left of the dialog box. For example if you
give both values as 0 then the tert appears in the top left of the box.

The last parameter is the text that is to be placed in the box. It is a
string of characters enclosed in quotes.

Poge 106 Hisott C GEM Infroducfion

This funcuon returns an integer. It is the number of the object within
the box. This value can be ignored, except when you need to
distinguish between objects that you have added to the dialog box.
This is generally ignored because text is simply displayed on the
screen rather than being used to exchange information vrith the
user. Its state is never tested as it would be if it were a button that the
user could select.

This example builds on the example of i ni t_box. We have added two
t e x t_b o x statements to add two text strings to the box:

b o x = i n i t _ b o x (2 0 , 5 , 2) ;
t e x t _ b o x (b o x / 1 , 1 , " t e x t ' 1 ") ;
t e x t _ b o x (b o x / 1 , 3 , " t e x t 2 ") ;

These ttrree statements don't make up a valid program because you
must have a button in a dialog box so you can cljck on it to exit the
dialog box.

.3.5 The bulton_box function

Buttons are used for two purposes in dialog boxes. They let the user
choose between several possibilities using radio buttons. For
example, when you \ /ant to search for a word using the Find
command of IIiSoft C you are presented with a dialog box and you
can choose the direction of the search by clicking on the appropriate
button.

Ttre second use of buttons is to close the dialos box. These are often
the usual Ok and Concel buttons.

The but ton_box fr.rnction lets us add one ofthese buttons to a dialog
box. We can specify its posiuon and its type (radio or exit).

It has five parameters. The {lrst four are the same as for the
t ex t-box function.

The Iirst is the integer that is returned by i ni t-box. This handle
indicates to which dialog box ttre button is to be added.

The next two parameters are the co-ordinates to posiuon the button
in the box. They are in character co-ordinates (line then column).

The fourth is the text of the button, as a string of characters in
quotes.

GEM Inlroducfion Hisoft C Poge 107

The final parameter is unique to the button-box function. It
indicates the button's b?e. This value is detailed in the reference
sect ion under but ton-box.

There are two tj?es ofbutton.

Radio (or choice) buttons let the user select one of several possibilities
without leaving the dialog box. For these this parameter should be 17.

Exit buttons cause the dialog box to be closed when the user clicks on \-
them. If you \tant to create such a button use 5 for the final
parameter.

This function returns an integer; this is the index of the object within
the dialog box. It is used to distinguish this button from other ones

The following examples show some simple uses of the but ton-box '-
function:

o k = b u t t o n - b o x (b o x - n o , ' l , 2 , " 0 K " , 5) ;

This example creates an exit button (last parameter=s) in the dialog
box given by box-no. This is placed at line 2 column 1 from the top
left of the dialog box. It contains tl.e text " 0 K".

Finally the number of thls box is stored in the variable called ok.

Now for a second example:

c h o i c e 1 = b u t t o n - b o x (b o x - n o , 4 , 3 , " c h o i c e 1 " ' 1 7) ;
c h o i c e 2 = b u t t o n _ b o x (b o x _ n o , 4 , 4 , " C h o i c e 2 " , 1 7) ;
c h o i c e 3 = b u t t o n _ b o x (b o x . n o , 4 , 5 / " C h o i c e 3 " ' 1 7) ;

These ttrree statements create three buttons that vrill let the user
c h o o s e b e t w e e n c h o i c e ' 1 , c h o i c e 2 a n d c h o i c e 3 . T h e v a l u e 1 7 a s
tl.e last parameter means that these are radio buttons.

The three buttons are inserted in the dialog box given by box-no all
in column 4 but one beneath another in lines 3, 4 and 5. The text
i n s i d e t h e s e b u t t o n s i s c h o i c e ' l , c h o i c e 2 a n d c h o i c e 3
resPectively.

These buttons aren't exit buttons (as the last parameter is l7). When
you click on one of them it wiu be selected and appear highlighted, but
the dialog box isn't closed.

When the user clicks, for example, on choi ce 1 this will be the only
button selected. If either of the ottrer two had been selected thev will
return to normal.

Poge 108 Hisotl C GEM lntroduction

Then, when the choice has been made, we click on oK to confirm the
, choice and exit the dialog box.

3.3.6 The drow-box funclion

We have seen that this is the function that actually draws a dialog
box on the screen,

In general, a box is first created using the three functions that we
have just discussed. Then it is displayed in its full splendour all at
once,

The d r a !,,-b o x fimction provides this complicated display function.
The box is drawn on the screen, the mouse cursor appears and the

. user can select the buttons and edit the text that have been drawn in
rne Dox.

Then, when the user clicks on an exit button, the box is removed and
control returns to the calling program.

Here's an example so we don't get out of practice.

\r 'Iype in and run the following program:

i n t b o x ;
\ - m a i n ()

b o x = i n i t _ b o x (1 8 , 8 , 2) ;
b u t t o n - b o x (b o x , 6 , 6 , " O K " , 7) ;

\ _ t e x t - b o x (b o x , 2 , 2 , " c t i c k o n 0 K ") i
d r a u b o x (b o x) ;

) -

\- Let's examine this example in detail.

The ffrst line declares an integer variable called box. Ttris will be used

_ to store the number of the box ttrat we are building up.

The first proper statement initialises the box. It is to be 18 characters
wide (the first parameter) and 8 characters high (the second

\-- parameter).

The box will contain a total of 2 items (third parameter).

GEM Introduciion HiSofi C Pqge 109

The statement:

b u t t o n _ b o x (b o x . 6 , 6 , " O K " , 7) ;

adds the ffrst of these objects to the box. It is a button with the text
or and positioned at column 6line 6. This is an exit button []ast
parameter is 7). So when this button is clicked on the dialog box will
be closed.

The second object is added using:

t e x t - b o x (b o x , 2 ' 2 ' " c L i c k o n 0 K ") ;

This is a stdng at column 2hne2 and its text is cti ck on 0K.

Finally the statement:

d r a w - b o x (b o x) ;

draws the box on tJre screen and waits for the user to click on 0K.

The drav-box function returns an integer result representing
vrhich button caused the box to be exited. This is the number of the
box as returned by button-box when the button was created. You
need to lceow which exit button was pressed if there is more than one
exit button.

This value ls ignored in the above example because there is only one
exit button: it must be this one that caused the box to be closed, so
the program can safely ignore this informaton.

3.3.7 The reodbul-box funclion ond rodio
bultons

There are two types of buttons.

We have already seen that these are exit buttons, rthich cause the
dialos box to be closed and radio buttons, that let the user choose
between several opUons.

For buttons in the latter category we need to lc1ow which button the
user has chosen. Ttre d I a li-b o x frnction returns which exit button
the user clicked on but not the last exit button that was pressed.

To do this there is the readbut box function. It tells us ifa button is
selected or not.

Poge I l0 Hisott C GEM lnfroducfion

In the following example a dialog box is displayed on the screen and
iha ,"". is given a-choice. She or he musl click on a button

coiresponAin[to their age. Finally the user must close the box by

clicking on oK.

' i n t box ;
i n t a g e 1 ,
m a i n ()
t

a g e z , a g e 5 ;

b o x = i n i t - b o x (3 O , 1 0 , 5) ;
b u t t o n - b o x (b o x ' 1 2 ' 8 , " O K " ' 7) ;
t e x t - b o x (b o x , 4 , 2 , " s e t e c t y o u r a g e . . .
a q e l = b u t t o n - b o x (b o x , 1 ' 5 ' " O O - 2 O
a ! e 2 = b u t t o n - b o x (b o x , 1 1 , 5 ' " 2 1 - ! 9
a i e 3 = b u t t o n - b o x (b o x , 2 1 ' 5 , " 1 1 - 9 9

d r a ! , - b o x (b o x) ;
i f (r e a d b u t , b o x (b o x , a g e ' 1) = = 1)

D r i n t f (" Y o u n g s t e r . ' . \ n ") i
i f (r e a d b u t , b o x (b o x , a g e 2) = = 1)

p r i n t f (" I n t h e P | i n e o f Y o u r
' i f (r e a d b u t - b o x (b o x / a g e 3) = = 1)

p r i n t f (" A n c i e n t . . . \ n ") ;
p f i n t f (" p r e s s a k e Y \ n ") i
e v n t - k e y b d () i

The variable box contains the dialog box number. The integers agel'

"g"z ".ta
age3 are where the numbers of the three buttons

containing age ranges are stored.

The ffrst rea-l statement initialises the box to have a width of 30

characters and a height of 10 characters. Inside the box we can

insert 5 ob;ects -trlch
"in ttris case will be, a stdng, an odt button and

three radio buttons.

In line 8 at column 12 we position the oK exit button, thus'

b u t t o n - b o x (b o x ' 1 2 ' 8 , " 0 K " ' 7) ;

Ttre value 7 as the last parameter means that this is a default exit

button. This is the button ttrat will be selected if we tj4)e R e t u r n '

Next the string s e L e c t your age is added at column 4llnez'

" , 1 7) ;

l . i f e \ n ") i

\ -)

t e x t - b o x (b o x , 4 , 2 , " s e t e c t y o u r a g e " . ' ') ;

GEM Initoduction HiSofi C P o g e I l l

The statement

a g e l = b u t t o n - b o x (b o x , 1 ' 5 ' " O O - 2 O " , ' 1 7) ;

Dositions the ffrst of the three radio buttons in the box. It represents
the choice of0 to 20 years. The last parameter is 17 because t}.is is a
radio button.

The index of this button is stored in the variable a s e 1 '

The two statements:

a g e 2 = b u t t o n - b o x (b o x , 1 ' l ' 5 , " 2 1 - 4 0 " , 1 7) ;
a g e 3 = b u t t o n - b o x (b o x , 2 ' l ' 5 , " 4 1 - 9 9 " ' 1 7) ;

Dosition the other two radio buttons next to the ffst at columns 11
and 21 where the first one was in column 1 .

The three numbers of the radio buttons are stored in the three
var iables agel (0-20) , age2 (27-4OJ and ase3 (41-99) .

Next the box is drawn on the screen using the calt to the d r a u-b o x
funcuon. The user must select one of the three ages and then press
on the oK button.

The program must now v/ork out which of the three buttons has
been selected with the help of the readbut-box function. This tells
us ifa radio button has been selected or not and has two parameters.

The first is ttre number of the dialog box in which the button is
located. This is the integer that was returned when the box was
created with i ni t-box.

The second parameter is the number ofthe radio button whose state
we are finding, within the box. This is the value returned by
bu t ton-box when the radio button was created.

The function returns a value, the state of the box. If this value is 0
then the button is not selected. If however the result is I then the
button is selected. It's that simple.

Back to our example. The statement:

i f (r e a d b u t - b o x (b o x , a g e l) = = 1)
p r i n t f (" Y o u n g s t e r , . . \ n ") i

tests if the button 0-2 0 rvhose number is stored in the agel variable
is selected. If it is then the value returned by r ea dbu t-box will be I
and the pri ntf statement is executed.

Poge I 12 Hisott C GEM Introduciion

t . '

t-

L_,_

t

I

(

(_

In the same way the next two statements test the other two radio
buttons.

Note that only one radio button is ever selected. If the user tries to
select another one, the original one is de-selected.

The readbut-box function should only be called a.fter a d rau-box
statement where a dialog box will have been displayed and the user
has selected a button. This button should always be a radio button
that has been created using button_box.

.3.8 The edit box function ond ediloble

The dialog boxes we have created so far let you click on buttons as
much as you like, but they don't let you enter text using the
kqrboard. For example, when you create a new folder on a disk the
Desktop v/ill display a dialog box and ask you to tpe the name of the
folder.

The edi t_box function lets you create such items so ttrat you can
enter text.

For example the following program asks the user to enter the current
date :

i n t b o x ;
i n t e d i t ;
c h a r * d a t e i
n a i n ()
{

b o x = i n i t _ b o x (3 3 , 7 , 3) i
b u t t o n _ b o x (b o x , ' 1 1 , 5 , " O K " , 7) ;
t e x t _ b o x (b o x , 1 , 1 , " E n t e r t o - d a y ' s d a t e . . . ") i
e d i t = e d i t _ b o x (b o x , 1 1 , 3 , " 2 5 0 6 4 7 " , " _ / _ / _ " ,

" 9 9 9 9 9 9 " , 3) ;
d r a u - b o x (b o x) ; / * d r a u
d a t e = r e a d s t r _ b o x (b o x ,
p u t s (d a t e) ;
e v n t _ k e y b d () ;

]

This program starts in a way with which you are familiar. A dialog
box is created and an exit button called 0K and a text stirng Enter
t o-da y' s d a t e is added to it.

To change the standard recipe, we have added a new call to add a bit
ofspice. This is the edi t_box function and it has seven parameters.

/ * l r r i t e

t h e b o x * /
e d i t) i / *
t h e d a t e

r e a d t h e d a t e * /
o n t h e s c r e e n * /

L GEM Inlroduction HiSofi C Poge I 13

Ok, 1et's start at the beginning.

The ffst three parameters we have seen before. Th€y are tf.e dialog
box number, th6 column and line where the text will be displayed'

An editable field (where we can enter text) has three parts.

First there is lhLe template (or site) of the {ield. It is where the text is
physically wdtten. in general it uses the underline characters:

These characters are replaced by the data that we want to

rilterrris is the fifth parameter to e d i t-b o x.

In our example the string consists of "-/-/-'. This lets us t]?e sL{

characters with slashes between each pair.

Thus, we need to know the maximum size of text in advance'

Next there are the characters that we are allowed to enter' or
uahdatton string. we can just accept digits or only upper case letters
for example.

For each character that we can enter, we must specify which
characters are allowed. To do this, each "-" character in the template
{ield has another character associated with it. This is represented by
a string of characters indicatjng which characters are valid

In this example, ttris string is "999999", mealing that only digits
are allowed. iJo other character may be tlped. There are many other
Dosslbilities however. For example, using just the character "A"'
upper case letters or y are allov/ed.

Here's the full selecuon:

A
----*--A:Z

anilspaCe
A-2, a-2, 128-255 and space

F *2. a.a. O-9, 128-255, : ? "
T NZ, a-2, O-9, 128-255, -
N A-7,. U-!, and SDaCe
n

-
EZ, a-2. O-9, 128-255 and sPace-

P
----TZ.

a-^ 0r9. 128-255, \ : ? ** p
*----ET5-2.

0-9. 128-255. \ :
x

---***-AI
cfidiaCteis allowed

Poge I 14 Hisotl C cEM Inlloduclion

L

_

(-

L

L

l

t

In the above A-Z includes non-English capital letters. 12A-255
means that all characters with value greater than 128 can be used
including lower case non-English letters arrd the € sign. Note that
the f validation character is not normally documented but is present
in all versions of t]e operating system that we have used.

We could replace the "999999" in our example with "xxxxxx". Then
the user could type any character on the keyboard notjust digits.

Fina11y, the third part of an editable text field is the text that will be
displayed for the user to modi$/ if he wishes. This is the fourth
parameter in the e d i t-b o x funcuon call. In the example this will
write 250687. This is combined vrith the template (the fifth
parameter) to produce the display 25 | 06 / 87, Wtren you run the
program, it won't be that date so you will need to delete it (using the
Esc or Backspace kqrs) and enter the new one,

We could replace the " 250687 " in the function call with " " . This
would make the field empty when the dialog box is displayed
producing "_/_/_", and you wouldn't have to delete the old date
before entering the new one.

An editable field may, or may not have a border round it. The last
parameter of the function speciffes the border. 0 means no border, 1
to 3 mean borders of increasing thickness. If this parameter is not
between O and 3 no border is drawn.

Thls function returns the index of the edit ffeld within the dialoE box.

So at Last, we have ffnlshed v/ith the edi t_box function.

Next in our example, the d r a v_b o x functon is called to display the
box and let the user enter ttre date.

.3.9 The reodstr_box funcfion

This function is used to read text that has been entergd using an
editable fleld. In our e:<ample we want to ffnd the date that has been
entered by the user.

To do this we use the f eadst f-box function which is much simpler
than ed i t_b o x, it only has two parameters.

The first is the number of the dialog box, r /here the text that we $/ant
to read is placed and the second is the number o/ the editable ffeld
within that box. This is the va-lue returned by edi t_box when tl.e
item was created.

(-' GEM Infloduclion Hisoft C Poge I 15

3.3. G hics Texl

As if by maglc, the va-lue returned is the string of cha.racters ttrat was
t5ped: in our example the date.

For C experts, the type of the value returned is c h a r *, that is pointer
to character. It's the address where the characters typed were
stored.

kr our example we have a call to p u t s to display the string containing
the date on the screen.

It is possible to have text with graphics attributes in dialog box.

So far we have just had boring strings, but they may have different
colours, border, fill patterns and even different sized characters'

i n t b o x ;
i n t t e x t ;
m a i n ()
t

b o x = i n i t - b o x (2 O ' 1 D ' 3) ;
b u t t o n - b o x (b o x , 6 , 8 , " 0 K " ' 7) ;
t e x t - b o x (b o x , 3 , 2 ' " c l i c k o n 0 K ") ;
t e x t = g t e x t - b o x (b o x , 1 , 5 , " g r a p h i c s t e x t " ' 1 ' ? ' 1 > ;
c o t o r - b o x (b o x , t e x t , O , 2 , 3) ;
d r a !,r-b ox (box);

]

This example displays a string in small characters, ririth a black
border, red characters (on a colour screen!) and on a green
background.

You will remember the usual box creation function (2O characters
wide, 10 high, containing 3 objects). A button and a string are added
to the box with text of 0Kand cl-ick on 0K.

Then a couple of nerv functions gtext-box (to create graphics text)
and coIor-box (to change the colour of the text). The box is then
displayed using dral,-box as ever.

Poge I 16 Hisott C GEM lnkoduction

_

(-

t

L

(

{

L

L

{

L

{

I The exl_box f unclion

This function places a graphics te)d item in a dia-log box. This is
similar to a t e x t_box but the text can have several effects applied to
it to relieve the boredom.

This function has severr parameters. The first is the number of the
dialog box to which the text will be added. It is always the first
parameter in all ttre object addition functions.

The next two parameters give the position of the text within the box
as in the t ex t-box function for example.

The fourth parameter, if we've counted dght, is the string of
characters that are the actual message text of t]le box.

So far this has been exacUy the same as the text_box function. But
this changes vrith the next parameter r /hich is the size of the
characters. If this is 0 then thev are written as normal, otherwise
they are written as small text.

The parameter before the last one is for the border of ttre text box,
with 0 meaning no border, 3 a very wide one and I and 2 meaning
borders in between.

T?re backpround on which the text is wdtten can have the 'darlmess'

of the fitl specilied. This is a va.lue between 0 (white) and 7 (full black)
with values fi:om 1 to 6 being shades of grey.

You may need to use the co I o r-box function so you can read your
textl

The g t e x t_b o x returns an integer, whlch is the index of the object
within its box as ever. In general this value is ignored as the text is
simply displayed on the screen rather than being used in interaction
with the user. However there is one time when you need ttris value
and thai is when ca,lung co I o f-box.

.12 The color box funcl ion

As we have already said this function is used to set the colours of
graphics text. It has five arguments.

The flrst is the number of the dialog box in which the graphics text
has been added. The second is the index of the text within that box.
This is the value returned by ttre g t e x t_b o x function.

GEM Inkoduction HiSofi C Poge l17

The last three parameters indlcate the colours of the border, the
characters and the background.

With a monochrome screen only the values 0 and I should be used,
corresponding to white and black respecuvely.

If you are using a colour screen in medium resolution 4 values are
allowed:

0 white
1 black

red
green

For example, if you want a black border, red characters and green
background, speci$' these parameters as 1. 2 and 3.

If you don't like these colours ttr€y can be changed with the Control
Panel or using t]le GEI/[!'DI v s-c o I o r function.

Note that if you want a non-white background you 'dll need to
speci{r a non-zero lill pattern in your call to g t ext-box.

Be carefi:l, you c€rn change ttre colour of text created with edi t-box
or g t ext-b;x only. You Can not do this for buttons [but t on-box) or
non-graphlcs text (t e x t-box)

Poge I 18 Hisoft C GEM Infloducfion ,_

U

enus

3.4. t Whol is o menu?

YouVe used pull down menus. Ttrere is a bar at the top of the screen
vrith Utles which have menus on them which drop down when you
move ttre mouse over them.

Using the HlSoft C toolbox, ttris is done as follows:

' i n t t i t t e , e l . e m i
m a i n ()
t

i n i t _ m e n u (" D e s k " , " A b o u t l ' l e n u " / 2 / 5) i
t i t t e _ n e n u (" F i L e ") ;

i t e n _ n e n u (" L o a d F i L e ") ;
i t e m _ m e n u (" S a v e F i I e ") ;
i t e n _ m € n u (" Q u i t ") ;

t i t L e _ m e n u (" 0 p t i o n s ") ;
i t e n _ n e n u (" S e a r c h ") ;
i t e m _ n e n u (" R e p L a c e ") ;

d r a B _ n e n u () ;

)
e v e n t (& t i t L e , & e L e m , O , O , O , O) ;

This program creates a menu with three titles: Desk, File and Options.
In the File menu there are three entries and in the Options menu
there are two.

Ttre menu is drawn on the screen (using the d rau_menu function),
then the user selects an item from the menu (using the event
function) before the menu disappears.

The event function is detailed in the secton on events [See Secfion
3.5). This is a Hisoft C toolbox routine; it manaAes the mouse and lets
you pull down menus when the mouse reaches the menu bar. It
returns control to the program ri/hen a menu item is selected.

I t i s i m p o r t a n t t o n o t e t h a t t h e i n i t _ m e n u , t i t l . e _ m e n u a n d
i t e m_m e n u items create tJle menu in a way that is invisible to the
user. Nothing changes on the screen. Only during the call to the
d r a u_n e n u function does the menu bar appear. The menus can't be
oulled down until the event call.

GEM lnfroducfion HiSofi C Poge l19

The in menu f unclion

This lets you initialise and teserve space in memory for a menu that
vou wish to create. It is the function that must be called first during
treation of a menu.

ini t-menu has five Parameters.

The first is a stdng of characters representing the title of the {irst
menu. This is nearly always Desk but you can change it ifyou like.
This isn't the only choice you have...

The second argument is another string of characters lt's the first
item on the Desk menu and is normally used to display an'About'
box for the program describing the program, its author etc. This
string musf not be more than twenty characters long. In the
example, we've used "About lYle n u ".

The next Darameter is the number of tiues of our own that v/e wish to
have withbut containing the Desk rnenu.

So in our example this parameter has the value 2.

For the HiSoft C editor, with the titles File, Find, Run, Move, Block,
Help and Info, there are 7 titles. To create such a menu this
parameter must have tl.e value 7.

Note ttrat this va-lue is the madmum number of titles that you wish
to include in the menu bar. You can indicate that you want more titles
ttran you actually add to your menu.

Finallv, the Iast arEument indicates the maximum number of menu
entries, not counting the Desk menu items nor the menu titles.

For example, in the HiSoft C menu there are 63 entries' In the
pro€Fam above, ttrere are 5.

The i n i t-m e n u function returns an integer. This is the index of the
About' box in the Desk menu. This number is used to see whether it
was ttre item that was selected. (See Seclion 3,5 on events).

Poge 120 Hisoft C GEM lnlroducfion

\-

\-

L

\-

L

e menu f unct ion
Afier intialising a menu with i ni t-menu, we can start to add the
ti.tles in the menu bar alter the Desk menu. This piece of magic is
p e r f o r m e d v i t h l h e h c l p o f t h e t i t t e _ n e n u f u n c i i o n .

The new title is added to the right of the Desk menu if there aren't
a]]y other titles. Iiyou haYe already called t i t t e-nenu then the new
l il..le wiil appear lo the lefl of fre exisijng ones.

The title bar may not contain more than 80 characters.

t j t L e_m e n u only has one parameter. It is the string of characters
that you wish to add to the menu bar. So in orll example it is " F i L e
" o r " o p t i o n s " "

A value is returned by this function. It is the integer that identifies
the title that we have added to the menu bar. We need this to find out
from which menu the user has selected an item. See Seclion 3.5
Evenls.

3.4.4 The em_rnenu nclion

This function creates an entry beneath a menlr. This item is added
below the iast title that was added to the menu bar.

This tunct ion must not be cal led before us ing t i t te_menu.
tit L e_men u is used to create a title and then i t en_ne nu is used to
add the entdes beneath that menu.

The value returned by this function is the integer that identifies the
item that we have added to the menu bar. We need this to find out
which item t]le user has selected. See Secfion 3.5 Events.

.4.5 The drow menu ond delefe menu
funci ions

These two functions display or remove the menu bar.

The function dra$i_$enu must be cal1ed after the menu has been
c r e a t e d (u s i n g t h e i n i t - m e n u , t i t t e _ m e n u a n d i t e m _ m e n u
functions) and beforc tlte user can interact with the menu (using the
event func t ion) .

L GEM Inlroduction Hisoft C Poge l2 l

If vou forget this function, no menu events can occur and tie event
function c-an wait for ever for a menu event that will never happen.

guickly turn to Section 3.5 on events if the event concept isn't
crystal clear.

Neither of these functions have any parameters and both return an
inteAer indicating whether an error occurred. This is an integer with
valuE I for true) if all went well or 0 (or false) if an error occur:s.

Generally this value is ignored by the program, assuming
[hopetully!) that all v/ent well.

3.4.6 The enoble-menu, check-menu,
selecl-menu funcl ions

We've grouped these three functions as they are all used when
changing the state of a menu. we won't give an example here because
it wo;ld need to build on the other menu functions and so be rather
1ong. There is an extended example in the examples folder of master
d isk 2 ca l led event . c .

check-nenu makes a tick (or check mark) appear or disappear in
front of a menu item. If the item isn't already ticked ttre tick appears;
if it is Ucked it v/i[disappear.

e n a b L e*n e n u 'greys' an item in a menu, Ttrat is, it makes the item
appear grey so the user may not select it with the mouse. If the item
is already gr€y it appears as normal and so is enabled once more,
hence tfre name of the fi.rnction.

Finally, seLect-menu makes a title appear in inverse (black on
white) or if it is already selected in this way it returns to normal. The
most common use for this is to restore menu titles to normal after
an item has been selected.

These three functions all have one parameter and it is used for the
same puryose in all of them.

This parameter indicates which item is to be selected, greyed or
ticked. This is the value returned by t.Ile i t en-n e n u or t i t I e-m e n u
function.

All three functions return an integer. This indicates the new state of
t]le item. If the item is now selected, disabled or ticked 1 is returned; if
not 0 is returned. Ifyou try to change the state of an item that does
not exist then 0 is returned.

Poge 122 Hisofi C GEM lnlroduclion

The se Lect-menu funcuon may only be used ri/ith Utles; trying this
\^/ith memr items will always return 0.

se I ect-meiru has a rather special purpose. when you select a menu
with the mouse t-Ile title appears in inverse and remains that way
until you call setect-menu with the number of the title as its
argument. You can see this in the pa I' eoc h rome program'

Here is a tiny program fragment tiat ticks a menu entry'

i n t i t e m ;
i t e m = i t e m - m e n u (" m e n u i t e n ") ;
c h e c k - m e n u (i t e m) i

venls
This is the section whose importance we stressed a few pages back.

Events are the fundamental items in a true GEM program.

Thev are single user actions as far as GEM is concerned. This might
be i key pres-3, a mouse button press, tfie selection of a menu item or
the maitipulation of a window lmoving it, changing the size, clicking
on an arrow or slider etc).

An event is therefore GEM'S v/ay of telling you what the user has just
done with the mouse or keYboard.

A program running under GEM witl. pull-down-menus and windows
is bas-ed around tfus concept. Some mis-guided programmers try to
avoid this, but this is a waste of Ume; it is much better to do things
cEM's way rather than fighting it!

t3
The e v e n t function is by far the most powerful and important GEM
fi.rnction. GEM applications are built round this function.

It lets us wait for the user to complete one of the actions described
below.

So thanks to this function you can ask GEM to wait for a key press
and/or mouse click, and/or select a menu, and/or change a window.
It's powerful isn't it?

GEM Infloducfion Hisolt C Poge 123

When you make the call you specifr which events you want to wait
for. Tlie function returns to the main program when one of the
specified events has occured.

For example, you can wait until the user selects a menu or presses a
key. You call the e u e n t function 'saying' that you want to wait for a
menu or keyboard event. As if by magic, the function doesn't return
until the user has chosen a menu item or pressed a key.

You will be told whether a key was pressed or that a menu item was
selected.

Typicaly, a GEM application uses events in the following way:

create t]-e menu
create the dialog boxes
ooen the windows
t'hile we haven't ffnished do the following:

wait for an event
Depending on the type of the event

If it is a mouse event:
deal with the mouse event

If it is a keyboard event
deal with the keyboard event

If it is a menu event
deal with the menu event

If it is a window event:
deal u/ith the vrindow event

Close the window
Remove ttre menu

If we translate this algorithm into C, we get:

i n t m e n u - t i t L e , m e n u - i t e m ; / * m e n u i t e m s e t e c t e d * /
i ^ t x , y i / * m o u s e c o - o r d i n a t e s * /
i n t e v e n t _ t y p e ; l * e v e n t t y p e
(k e y b o a r d , o r o u s e . .) * /
i n t c h ; / * c h a r a c t e r t y p e d o n k e y b o a r d * /
s h o r t u i n d o ! , f 6 1 ; / * u i n d o l , e v e n t d e t a i I s * /
i n t n o t f i n i s h e d ; / * i n d i c a t e s i f t h e p r o g r a m * /

/ * h a s f i n i s h e d o r n o t * /

n a i n ()
t

c r e a t e - n e n u () i
c r e a t e _ d i a L o g () ;
o p e n u i n d o u s () i

Poge 124 Hisotf C GEM Inlroducfion

u h i L e (n o t f i n i s h e d)
t

e v e n t _ t y p e = e v e n t (& m e n u _ t i t t e , & m e n u - i t e n /' l , i n d o l r / & c h , & x , & y) ;
i f

I T

I T

I T

(e v e n t _ t y p e = = 2) / * m o u s e b u t t o n * /
d o _ m o u s e (x / y) ;

(e v e n t _ t y p e = = 3) / * n e n u s e L e c t e d * /
d o _ m e n u (m e n u _ t i t L e / m e n u _ i t e m) ;

(e v e n t _ t y p e = = 1) / * k e y p r e s s e d * /
d o _ k e y (c h) ;

(e v e n t _ t y p e = = 4) / * l l i n d o w c h a n g e d * /
do_ ' . l i ndou(! r i ndou) i

]

d e s t r o y _ n e n u () ;
c L o s e v i n d o w s () ;

)

kt's look at this in detail.

The variables declared at the start of the program are alsed to store
the type of event and details about a particular event. They are
modiffed by the call to the e v e n t function.

Thus the in tegers, menu-t i t te and menu- j tem conta in the ind ices
of the tiue and item of the selected menu if a menu event occurs.

The x and y variables contain the position of the molrse if the user
clicks on a mouse button.

c h will contain the key that was pressed on the keyboard if a
keyboard event has occurred.

The array l.li ndou contains extra information about a window event.
For example that a slider has been moved or that the window size has
been changed.

e ve n t-t yp e contains the tlpe of event that has just happened. This
may be a menu, keyboard, mouse or window event.

The integer n o t f i n i s h e d is used to indicate when the program has
terminated. If, for example, the user clicks on a close box or selects
Quit from t]le menu we would set this variable to 0 (false).

The ffrst three statements in the program initialise the envaonment
by calling the functions which open windows, and create menus and
dialog boxes. We won't go into detail about these here.

Then we have a uh i L e loop which waits for and deals with events
until the user decides to exit the program.

GEM Introduciion Hisoft C Poge 125

Now for the big moment - the e v e n t function is called.

This waits for a keyboard, mouse or window event. See the detailed
description of the function in the next secuon.

We then test which tlpe of event occurred and, depending on the
event t1pe, we call a specilic llmction.

Then v/hen the program terminates
windows and remove the menu.

we cal l rout ines to c lose lhe

Obviously this program is only a skeleton; it calls functions that we
haven't described but which perform specilic actions. However, this
example shows the layout of a GEM program that uses the Hisoft C
GEM toolbox.

On your Hisoft C disk, there are two programs showing ttre hatdling
of events ca1led pa Leochr . c and event . c .

The commenting of these is un-even but you are likely to find them
very useful in understanding this complex mechanism.

3.5. evenl f unclion

We will now describe in detail the HiSoft C toolbox e v e n t frrnction.

This function has 6 parameters whose sjmtax is as follows:

i n t m e n u - t i t l e ;
i n t m e n u - i t e m ;
i n t k e y _ p r e s s ;
i n t c L i c k x ;
i n t c t i c k y ;
s h o r t u i n d o u , t 6 l ;
i n t e v e n t _ t y p e ;
e v e n t _ t y p e = e v e n t (& m e n u _ t i t L e , & m e n u _ i t e m ,

u i n d o u , & k e y - p r e s s , & c t i c k x / & c L i c k y) ;

Note that the parameters are modified by the call to the function.
This is the reason for the & character before the parameters. If you
omit one of these your program won't work and may even crastr.

In general, these parameters let you indicate the tlpe of events that
you wish to v/ait for and, in addition, the details of the event that
occurred are returned therein.

Page 126 Hisotf C GEM Introduction

This function has one or two parameters for each type of event. If a
parameter corresponding to an event is zero, this indicates that you
do not wish to wait for this t]?e of event. Otherwise this parameter
must be a variable and when the function returns the variable will
retrrrn the details of that event.

This function returns a whole number which indicates which event
has happened. So by examining this variable you can find out if a
keyboard event or a menu event has occurred.

Value Event ty?e
I key press
2 mouse button click

menu selected
4 window manipulated

GEM also has other types of events which are not used as
frequently, like timer events, which wait for a certain amornt of time
to pass and events that wait for the mouse to leave an area.

You can not use the event function to access ttrese events; you must
u s e t h e G E M f u n c t i o n s e v n t - n u t t i , e v n t - t i m e r o r e v n t - m o u s e
directly rather ttran a toolbox function.

enu events

First of all, what is a menu event?

When you decide to wait for a menu event, you call the e v e n t
function. The mouse cursor will appear on the screen and the user
may 'pull-down' the menus and select an entry. At the precise
moment that the mouse button is released the menu event is
considered over. The event function returns to the calling program
indicatng which menu item has been selected.

The first two parameters of the e v e n t function are concerned with
pull down menus. If you don't want to \ait for events caused by
menu selection then these two values must be zero. lrr place of
& n e n u - t i t l e a n d & m e n u - i t e n , y o u p u t t h e v a l u e 0 .

Otherwise. the e v e n t function returns the numbers of the title and
item of ttre menu entry that was selected with tlle mouse.

GEM Infroducfion Hisoft C Poge 127

Remember that these numbers are identical to the values returned
bv the t i t te-menu and i tem-nenu toolbox funct ions when you
cieate the menu. These two functions give unique numbers
speci$,ing the menu item. The same values are returned in ttre
menu

' t
i1 [e and rnenu- i tem i tems to in form you which i tem has

been selected and the title of the sub-menu.

For example, if you select the Quit entry from the Flle menu the
variable menu-ti t Le will contain the number of the title File and
m e n u-i t e m will return the number for Quit. These values are the
same;s those returned by ti t te-nenu and i tetn-nenu when the
menu was created.

. c ndow evenls

This event is the most difficult to handle as there are many different
'flavours' of window event: changing the size, closing the window,
moving a slider etc...

The thlrd parameter of the event function is concerned with events
aDDlied to windows. Remember that window events occur when the
usir changes the window in any way. For example, c[cking on the full
box, moving the window, or even clicking on an arrow etc.

When such an event occurs the event function needs to return the
sort of event (changing the size, dragging a slider) and also extra
details of that event, for example, when the window size is changed
the new size of tlle window that the user has asked for.

The place where the details of the event are stored must be big
enouAh. To do this, an array of six short integers is used. The third
parameler of event is t]le name of this afray.

Wtren the function returns, the array contains the full details of the
windowevent. I

Ifyou haven't opened a windov/, or you don't wish to deal with events
th-at can happen to your window then pass zero instead of the array
name.

The frrll list of GEM window events is as follov/s:

. Clickins in the close box

. Clicking in the flrl1 box
r Clickin€l on the arrows
. Moving a slider
. Changing the size of a window
r Moving a window without changing the size

Poge 128 HiSott C GEM Introduction

. Making a vr'indow the top one

.\.- The first (number 0) element of the array indicates which event has
taken place. The significance of the other elements depends on the
type of event: all the elements are never used at once.

\-- Ttrere now follows a list of all the different GEM window messages
together wittr a description of the elements that are used:

\- . Clicking in lhe close box

element O: 22

\- element L: the number of the window to be closed.

When the user clicks on the close box, the first element of the array
has the value 22 and the second element indicates which window has'*
been clicked on.

. Clicking in fhe full box.

element 0 23

element 1 the number of the window to make flrll size.

. clicking on the orrows or in lhe grey porl of the slider.

,- If the user clicks on a window's arrows ttris moves the window
upwards, downwards, to the right or to the left by one hne/character.
If you click in the grey area of ttre slider the window should move by a

. page in the corresponding direction.

element 0 : 24

element 1: window number
\- element 2 : acLion to oerform:

0 Page uP
I page down
2 row up
3 row oown
4 page lelt

page right
column lelt

7 column right

For example, if element 2 contains the value 3, the user has cLicked on
the down arrow of the v/indow.

GEM lnlroduction Hisoft C Poge 129

In this case the program should scroll the window one line towards
the bottom of the file.

. Moving fhe horizontol sl idel

GEM retums the new position of the slider as a value between 0 (the
leftmost posiuon) and 1000 (the rightmost).

element 0 : 25

element 1: window number

element 2 : slider position between 0 and 1000.

. Moving the verlicol slidel

GEM returns the new posiuon of the slider as a value between 0 (the
top position) and 1000 [the bottom).

element O : 26

element 1: window number

element2: slider position between o and 1000.

. Chonging the size of o window

GEM retrrns the new size of the window.

2 7

window number

x co-ordinate of ttre top right of the window !
(should remain unchanged)

y co-ordinate of the top right of the window
(should remain unchanged)

the new width of the window

the new height of the windo',v.

element 0

element 1

element 2

element 3

element 4

element 5

Poge 130 Hisoft C GEM lnlroduclion

. Moving o window withoul chonging lhe size

The user has moved the windoqr by dragging on the title bar. cEM
returns tlle new window position that the user wants.

element 0

element I

element 2

element 3

element 4

element 5

element 0 :

element I :

2 8

window number

new x co-ordinate of the top right of the window

new y co-ordinate of the top right of the window

the u/idth of the window funchanged)
the new height of the window (ulchanged).

. Moking o window lhe lop one

The user has clicked on a window to make it the flont one.

element 0 : 27 or 29

element I : number of the window to become active.

. Re-disploying fhe inside of o window

This event occurs when a window is oDened. or when it becomes
larger or when an object (another window or dialog box) has deleted
the interior of the wlndow.

2 0

number of the window to redraw.

Note : The toolbox function d ra!,-box which displays a dialog box on
the screen saves the screen before drawing it and restores it
afterwards. If there is only one window on the screen and it cannot
change size this event can be ignored.

Obviously this list will give you something to think about. "Well, have
I got to cope with all these t}?es if I'm going to use windows ?" I am
afraid so. However to help you, at least a bit, there's an example on
the HiSoft C disks called event. c. It will get you started.

This concludes our discussion of bv far the most comolicated event
tvDe.

eEM Iniroduclion Hisoft C Poge l3l

3.5. eyboold evenls

The fourth parameter of the event function is concerned with
keyboard events. Such events are simply keystrokes from the
keyboard.

When you wait for a keyboard event, you are waiting for ttre user to
press a key but it is a bit more sedous than saying 'Oi you, I'm
waiting for a keyboard eventl-.

If vou aren't interested in what the user E4)es you can use zero as
the fourth parameter. So if you put 0 instead of &kev-press,
keyboard events will be ignored.

Otherwise the e v e n t function will return a code for the key you have
pressed in the key-p r e s s variable. The low order blte of this is the
ASCII code of the key; the higher order bytes are special keyboard
codes that GEM uses all the time. This lets you detect He t p keys, A t t
combinations etc.

If vou don't understand how to use the powerful/obscure facility,
doh ' t worry ; you can use the C expression key-press i l 256lo
return the normal ASCII code of the key pressed where k e y-p r e s s
is the var:iable that you passed to the event functon. Obviously in
this case you can't check for keys with no ASCII equivalent like Undo
or the function kevs.

.5 .7 Mouse evenls

A mouse event (also lalown as a button event in GEM-speak) is a click
on a mouse button. With the help of the event function, you can q/ait
for the user to click on the mouse.

The fffth and sixth parameters of the e v e n t function are concerned
with mouse events. As usual, if you don't want to wait for ttris event
then bottr parameters should be 0. Instead of &c L i c kx and &c I' i cky,
put the value 0. Otherwise the event function returns the posiuon of
ihe mouse at the moment of the mouse click.

The examples below show how to call event for a fev/ very simple
cases. The example programs paLeochr .c and event . c show how
to handle all the types of event at once.

Poge 132 HiSoft C GEM Introduction

i n t m e n u _ t i t t e i
i n t m e n u _ i t e m ;' \ -
i n t k e y _ p r e s s i
i n t c L i c k x i

- - i n t c L i c k y i
. s h o r t u i n d o ! , t 6 1 ;
\ * i n t e v e n t _ t y p e i

, m a t n
t

\ - - e v e n t _ t y p e = e v e n t (0 , 0 , 0 , & k e y _ p r e s s , & c L i c k x , & c t i c k y) ;
/ * ! r a i t f o r a k e y p r e s s o r a m o u s e c t i c k * /

, e v e n t _ t y p e = e v e n t (& m e n u _ t i t I e , & n e n u _ i t e n , 0 , O , 0 , 0) i\ . - / * l r a i t f o r a m e n u t o b e s e L e c t e d * /

- - e v e n t _ t y p e = e v e n t (0 / 0 , ! i i n d o l i , & k e y _ p r e s s / & c t i c k x ,
\ & c L i c k y) i

/ * w a i t f o r a k e y p r e s s , m o u s e c L i c k o r ! r i n d o ! , a c t ' i o n * /
)

Conclusion
\ This section has shown how to use GEM via the HiSoft C toolbox

facilities. Clearly, you carl access the standard GEM AES and GEM
VDI functions directly. These functions are not described here. See

. ttre books in the Bibliography that document these.

The toolbox functions which have simplified life for us, are
. themselves written in C; we supply their source in the COMPILE
\- folder.

Have fun reading them, and you will probably soon be happy that we-
have wdtten them for youl

GEM Inlroduction HiSofl C Poge 133

Poge 134 Hisotf C GEM Introducfion

4 HiSoft C Librory
Functions

This section describes all 460 functions in the Hlsoft C library.

We start with a one line summary of each function in the libraries to
make it easy to find which function you need and then describe each
funcuon in alphabetic order.

Some of the functions are specific to the Hisoft C interpreter and we
supplv the source code to these free so that you can compile
pr6grims that use them. These functions are marked as Hlsoft C in
the reference section.

The GEMDOS library is used to access the lower levels of the ST
operating sYStem.

The GEM AES and GEM VDI librades are used to access the
appropriate higher levels of the ST operating system.

The UNIX library contains the low-level routines that are derived
from the standard UNIX libraries as used with most
imDlementauons of C. We have had to make some changes to these
beiause of differences in the under\ring operating systems. To make
them all exacfly the same the ST would need to be running UNIX of
course.The differences between t]le Htsoft C and the UNiX functions
are described rmder the particular firnction.

Finally, there is the ANSI library. This contains many of the
functi6ns described in the draft ANSI standard for C and which have
been implemented under UNIX and in many of the more recent C
implementations. In partlcular it is a good idea to use the ANSI file
handling functions rather than the lower-level UNIX ones as the
ANSI functons ane much more portable.

If vou have used Lattice C 3 you v/ill be familar with these functions
aoart from the Hlsoft C ones. Of course, Lattice C 5 also includes
most of these .

Other compilers may have additional functions, or they may omit
some of them.

Each function is described in the same way. Its name and the library
that it comes fi:om are given in the heading.

[ib1ory Summory Hisoft C Poge 135

Then the s]'ntax and t54res of parameters are described followed by
the usage of the function.

Finally, there may be some other sections, prefaced with an icon:

/5\ n i" icon is used to indicate a tricky point about a function or
a common error that beginners make.

,/t\(-iJ 16is is used to indicate a par:ticular usage of a function or a
trick that may not be obvious.

Ilejl Thi" icon is used belore an actual example
function.

of the use of a

This icon is used to make references to other functions, other
parts of the manual or the name of a ke)'word used by the Help
system.

. l IO ummo

4.1 . C librorv

Debug coni lol
t f a c e _ o n
t f a c e - o f f
v a r _ o n
v a r _ o f f
s t o p

functions
sets trace mode
disables trace mode
enables display of var:iables
disables display of var:iables
stops execution of program

Diolog Box f unclions
i ni t-box creates a dialog box
d raw-box displays a dialog box
t ext-box adds a string to a dialog box
but ton-box adds a button to a dialog box
g t e x t-b o x adds graphics text to a dialog box
edi t-box adds an editable field
c o I o r-b o x sets the colours of a graphics text ffeld
rea ds t f -box retums the text component of an editable field
fea dbu t-box returns the state ofa button
a d r-b o x returns the address of a dialog box

Poge 136 Hisoft C [ibrory Summory

n e a 0
n e a l
n e a 2
n e a 3
n e a 4
n e a 5
n e a o
n e a T
n e a 8
n e a 9

n e a b
n e a c
n e a d
n e a e
n e a f

Line A grophics funcl ions
initialises the lineA routines
plots a point
returns the colour of a point
draws a line
draws a horizontal line
draws a filled rectangle
draws a fflled po$gon
I h l i is e rccfarrd lc

writes a character
shows the mouse
hi.des the mouse
rnodiffes the mouse form
def inec a cnr i t c

dic!'rl e\/c a cnritp

copies raster form
seed ffll

. Menu Funcl ions
i n i t - m e n u c r e a t e s a m e n u
t i t L e_menu adds a Utle to a menu' i t em_menu adds an item to a particular menu title

\-- drall-nenu displays the menu bar
de L ete_menu de-installs ttre menu bar
e n a b L e - m e n u ' g r e y s ' a m e n u i t e m

\ check menu Dlaces a tick in front of a menu itern
se L e ci-me n u select/de-select a menu title

Reciongle functions
* rect-int e rsect ffnds the intersection of two rectangles

r e c t_un i on finds the union of two rectangles
- r e ct_poi n t returns whether a point is within a rectangle

\- rect_init initalises a rectangle structure

Resource File funcf ions
\ - rs_drauaLert draws aI a ler t

r s_d r a !, o b j e c t draws an object or objects from an object tree
rs_d ra ud i a L draws a dialog box
rs_e ra sed i a L erases a dialog box'v
rs_addrdi a t retrrns the address of a dialog box
r s_a dd ra L e rt retu-rns the address ofa dialog box
rs_add redi t returns the addess of an editable string'\,
r s_a d d r b u t t o n gives the address of the text of a str:ing or button
r s_o b j x y r{ h returns the co-ordinates of an obiect
rs-obj sta te returns wtrether an object is selected or not

, r s _ o b j s e L e c t s e l e c t s a n o b j e c t
r s_o b j unse I e ct de-selects an object

Hisott C Poge 137

Window hondling functions
open_ui ndou opens a window
c Lose_Hi ndow c loses a window
c I ea r-wi ndo!, clears the work area of the window
p r i nt-ui ndol,l displays a string in a window
pos_u i ndov positions the text cursor of the window
s i z e-ui ndow retums the size of the work area of the window

Miscelloneous functions
d r a w draws a line on t-Ile screen
mouse returns the mouse Dosition
event waits for an event
timer-vaIue returns the value of the interrupt timer

4.1. nq rouilnes

Opening ond Closing f i les
fopen open a f i1e
fc tose c lose a f f le
f d o p e n open a ffle that has been opened using open
f reopen close and then open a file
f c L o s e a I L c l o s e a l l f i l e s

Reod ing
f read read bytes from a ffle
fget c read a character from a ffle
g e t c read a character from the standard input
u n g e t c put back a character so ttrat the last one will be

read again
fgetchar read a character liom a ffle
getchar read a character from the standard input
fgets read a string of characters from a file
gets read a string of characters from the standard

rnput
f scan f formatted input from a file
s c a n f formatted inDut from the standard input

Poge 138 Hisotf C Librory Summory

Writing
f ! r r i t e
f p u t c
p u t c
f p u t c h a r
p u t c h a r
f p u t s
p u t s
f p r i n t f
p r i n t f

Slondord f i les
s t d i n
s t d o u t
s t d e r f
s t d a u x
s l o p r n

Positioning wilhin o file
f s e e k
f t e t L
r e ! r i n d
f f l . u s h
J l - u s h a t t

Enot hondling
f e o f
f e r r o r
c L r e r n
e r r n o

Vo r io us
s e t b u f
s e t n b u f
c p r i n t f
c s c a n f
r e m o v e

write b)'tes to a file
write a single character to a file
write a single character to the standard output
write a character to a ffle
write a single character to the standard output
write a stdng to a lile
wdte a string to the standard output
formatted output to a file
formatted output to the standard output

Standard input lile
Standard output fi1e
Standard error Iile
Serial device
Printer device

moves to a particular b1'te in a ffle
returns the current positon within a Iile
moves to the beginning of a ffle
writes any remaining bltes in a file's buffer
perform a f f t us h for all open ffles

returns whether at the end of a ffle
tests whether an error has occurred
cancels an error condition
describes t]"e last error

changes the i/o buffer for a ffle
suppress i/o buffering for a file
formatted output to the screen
formatted input from the keyboard
delete a file

[ibrory Summory Hisott C Poge 139

4.1. Unix functions

Opening ond Closing f i les
open a file
create a lile
close a ffle
duplicate a ffle handle
force a file handle to refer to another ffle

f i t e n o return the file handle of a file that has been opened
wi th f ooen

Reoding ond Wrif ing
read b1'tes from a ffle
write bytes to a ffle
position within a file
return the current position of a ffle

File operol ions
a c cess read the access attributes ofa file
c h m o d chanpe the access attributes of a file

o p e n
c a e a r
c L o s e
o u p
d u p z

r e a o
u r i t e
L s e e k
t e t t

r ename chanAe the name of a ffle
un t ink de le te a f i le

Directory operolions
g e t c ud read the crr:rent directory

r change the current directory
r create a new directon/

delete a directory

c h d
m k d
r n o

4.1 .4 ANSI Mothemoficol funclions

Trigonomelt ic funcl ions
sine
cosine
tangent
inverse (arc) cosine
inverse (arc) sine
inverse (arc) tangent
special form of inverse (arc) tangent

s i n

t a n
a c o s
a s l n

a t a n 2

Poge 140 Hisott C Librory Summory

Exponentiol functions
\ e x p raise to the power of e

t og natural logarithm (to base e)
_. Log10 logai thm to base 10

p o !r raise to the power
\- sqrt square root

sinh hyberbolic sine
- cosh hyberbolic cosine
_ tanh hyberbolic tangenl

Floofing poinl monipulol ion routines
\ f I oo. nearest whole number (rounds down)

c e i L nearest whole number [rounds up)
fabs absolute value--
fmod floating point modulo''-'
n o d f retrrrn the whole and fractional part
t d exp create a float given a mantissa and exponent

. f r e x p return the mantissa and exponent of a float
_ ma t h e r r the error that occurred with a maths function

d q s o r t sort an array of double precision numbers

- Integer functions
abs absolute value
iabs absolute value
tabs absolute value

\- m a x larger of two integers
m i n smaller of two integers

- rand generates a random number
\ srand intialise the random number generator

s q s o n t sort an aray of short integers
L q s o r t sort an array of long integers

st f unclions

Numeric/slr ing conversions
\s- sscanf converts from a string to numeric (integer, float

etc)- sprintf converts from numerics to strings
a t o f converts from ascii to float
a t o i converts from float to ascii
a t o t converts from stdng to a long integer

! st rto L converts fiom string to a long integer
ecvt converts from float to stdng
f c v t converts from float to string' g c v t converts from float to string

Librory Summory Hisotl C Poge 14l

1-

String Copy functions
s t r c p y copy from one str:ing to another
s t r n c p y copy from one string to another

'v

s t r c a t copy from one string to the end of another
s t r n c a t copy from one string to the end of another

Seorch f uncl ions
strtok splits a string into words
st rspn counts particular characters in a string \-
s t r c s pn counts all but particular characters in a string
st rch r searches for a character within a string

String comporison funcfions -*

strcmp compare two strings
st rncnp compare two strings
s t r i cmp compare two strlngs ignoring upper/lower case .v
st rni cnp compare two strings ignorlng upper,/lower case

Miscelloneous sf r ing functions \-
s t r Len retum the length ofa s t r ing
st r Iuf upper case a string
st rupr lower case a s tdng
str rev reverse a s t r ing
s t r t i me create a string containing the current time
st rdate create a string containing the current time
strgetfn create affle name from its components \,
st.sp t f n split a ffle name into its components
t qso r t sort a table of strings

Poge 142 Hisoft C Librqry Summory

4.1 . tocrer tuncflons

Testing choroctels
i sa Lpha tests if a character is alphabetic
i sa Lnum tests if a character is numeric
i s I oue r tests ifa character is a lower case letter
i supper tests ifa character is an upper case letter
i spunct tests if a character is a punctuation sJmbol
'i sspa ce tests ifa character is a space
i sd i g i t tests i fa character is a d ig i t
i sxdi gi t tests ifa character is a hexadecimal digit
i s csym tests ifa character is valid in C identifiers
iscsymf tests if a character is valid at the front of C

identifiers
tests if a character is Drintable
tests if a character is a valid ascii character
tests if a character is a graphics character
tests if a character is a conhol character

Modifying chorocters
t o Lor{e. converts to lower case
t ouppe r converts to upper case
toasci i converts to ascii

i s p r i n t
' i s a s c i i
i s g r a p h
' i s c n t . L

7 Memo nclions

Memory ol locof ion
allocate a block of memory
allocate a new block of memory
allocate a block of memory ffIled with zeros
free a block of memory

Block monipulot ion
compare two blocks of memory
find a character wlthin a block of memorv
copy a block of memory
fiIl an area of memory with a particular value
copy a block until a partictrlar character is found
initialises a buffer to a given value

Progrqm Telmnolion
abort terminate the program
ex i t terminate the program

m a t L o c
r e a [[o c
c a l . l . o c
f r e e

m e m c n p
m e n c h r
m e m c p y
m e m s e t
m e m c c p y
r e p n e m

[ibrory Summory HiSofi C Poge 143

g e n d o s
b i o s
x b i o s

call a GEMDOS fr:nction
call a lJlub runcuon
call an XBIOS flncton

Chorocler input/oulPui routines
B c o n i n
B c o n o u t
B c o n s t a t
B c o s t a t

wait for a character fiom a specified device
outpul- a cha.racler to a specified device
return the inpul. status of a specified device
return the state of an output device

Reoding fhe keyboold
C c o n i n
C r a u c i n

C r a r i o

c n e c ' i n
C c o n r s
C c o n i s

K b r a t e
I k b d t { s

K e y t b L
B i o s k e y s
K b d v b a s e
G e t s h i f t

Screen
cconout write a character to ttre screen
c c o n !, s write a string to the screen
c u fscon f set the text cursor attributes
Physbase return the memory address of the physical screen
L o g b a s e return the memory address of the logical screen
cet rez retum the screen resolution
setscreen change the address or resolution of the screen
setco Lor set the Palette colours
stepa I Lette change the palette colours
v s y n c wait for the next vertical sync pluse

wait for a character from the keyboard with echo
wait for a character from the keyboard without
echo
read a chanacter from the keyboard without
waiting
wait foi a character from the keyboard
read a string of characters from ttre keyboard
returns 'vhether a character is present in the
keyboard buffer
set the keyboard repeat rate
send a string of commands to the keyboard
controller
set the keyboard mapping table
re-iniLialise the keyboard mapping table
return the address of the keyboard vector table
return the state of keyboard shift keys

Poge 144 Hisoft C [ibrory Summqry

Seriol ond
R s c o n f
C a u x i n
C a u x o u t
C a u x i s
C a u x o s
l l i d i u s
I o r e c

Midi functions
modi$' the RS232 conliguration
wait for a character from the serial port
wdte a character on the serial oort
return whether a character is ready to be read
return the serial output status
wdte a string to the MIDI port
return the address of the serial inDut buffer

set the current (default) drive
return the curlent drive
return the free space on the speecified drive
read or wdte logical disk sectors
physical read of a floppy disk
physical wdte of a floppy disk
formats a floppy disk track
physical veri,S, of a floppy disk
create a new directory
/lalaia a .{ira.t^nr

set the default path for a partlcular drive
return the current path for a particular drive
read the first file name that matches a given
filespec
read the next file name that matches a given
filespec
s e t t h e d t a a d d r e s s (u s e d b y F s l i r s t a n d
F s n e x t)
read the dta address
return the currently connected disk drives
returns whether a floppy disk has been changed
returns information about a disk drive
creates a boot sector image

create a new file
open a file
close a file
read llom a ffle
write to a file
posiuon within a ffle
delete a ffle
retum a ffle's attributes
rename a file
change a file's time and date stamp
duplicate a ffle handle

Disk funcl ions
D s e t d r v
D g e t d r v
D f r e e
R ' . r a b s
F L o p r d
F L o p u r
F L o p f m t
F L o p v e r
D c r e a t e
D d e L e t e
D s e t p a t h

F s f i r s t

F s n e x t

F s e t d t a

F g e t d t a
D r v m a p
M e d i a c h
G e t b p b
P r o t o b t

File hondling
F c r e a t e
F o p e n
F c L o s e
F r e a d
F v r i t e
F s e e k
F d e L e t e
F a t t r i b
F f e n a m e
F d a t i m e
F d u p

Librory Summory Hisotl C Poge 145

Fforce force a file handle to refer to the same file as
another ha,ndle

Prinf ing
setprt conligure the printer device
cp rnou t write a character to the printer
cprnos return the printer output status
Prt b L k Print a screen dump

Sound
c i a cces s read or write a sound chip control register
ongi bi t set one bit of portAof the sound chip
of fg i b i t set one bit of port A oftl.e sound chip
Dosound execute a set of sormd commands

Dote ond Time
T g e t d a t e r e a d t h e d a t e
Tsetdate change the date
Tge t t i me read the current time
Tset t i me set the cur-rent Ume
Get t i me read the Ume and date
Set t i me change the time and date

Memory ol locol ion ond opplicol ion conhol -
Ma t t oc allocate a block o[memory
tree free a block of memory
I't s h r i n k retum an area of memory to tl.e operating system
Pexec load and execute a program
PtermO terminate (he aPPlication
Ptermres terminate the application rt4thout removing it

from rnemory
Punt a es reboot the machine
Setexc Set avector
supe I enter supervisor mode
Supexec execute a routine in supervisor mode

Progroming the 68901
r4f pint initialise a 68901 interupt
Jenabint acuvate an interrupt
Jdi s int deactivate ar interruPt
x bt i me I initialise a Umer
T i ckca t retrm the timer calibration value

Vo r io us
Randon retum a random number
I ni tnous initialise the mouse
Sversi on return the GEMDOS verslon number

Poge 146 Hisoft C Iibrory summory

.9 EM tions

App
a p p r
a p p t

l icot ion control
_ini t intialise application
_exi t deiniilalise application
_t record start recording events
_t p t ay execute a string of events
_r,rf i te send a message
_read read a message
_f i n d find an application's id

Evenf Control
evnt-dc L i ck specify the rnouse double-click speed
evnt-keybd wai t fora keyboard event
evnt- t imef wai t for a Umer event
e vn t_bu t t o n wait for a mouse button event
evnt-mou se v/ait for a mouse movement event
evn t-ne sag wait for an AES message
evn t-mu L t i wait for more than one event at once

a p p
a p p
a p p
a p p
a p p

FoTm
f o r m _
f o r m _
f o r m _
f o r m _
f o a m _

functions
d i a L perpare the screen for drawing a dialog box
d o let the user 'fill in' a form using the AES
a I ert display an alert box
cente r centre a form on t}.e screen
e r ror disDlav an error box

File Selectot
l s e L - i n p u t make the GEM file selector appear

Grophics touf ines
g ra f -d ragbox move a rectangle using the mouse
g ra f _s L i d eb ox move a rectanglel within another rectangle
graf-rubberbox size a rectangle using the mouse
g ra f _g r ou b ox draws an expanding box outline
graf-shf i nkbox draws a shrinking box oufline
graf-movebox draws a moving box outline without finally

displaying the box
graf_vatchbox changes a bods state when the mouse enters or

exits a box
changes the appearance of the mouse and can be
used to hide and show the mouse
returns ttre GEM VDI handle and character cell
information

g ra f-m ksta t e returns Ure state of the keyboard shift keys

g r a f _ m o u s e

g r a f - h a n d t e

[ibrory Summory HiSoft C Poge 147

Menu funcf ions
m e n u - b a r
n e n u _ t e x l
m e n u _ t n o r m a L
m e n u _ i c h e c k
m e n u - i e n a b t e
m e n u - r e g i s t e r

Obiecf funcf ions

displays the menu bar
changes the text of a menu item
disolavs a menu title in inverse <ir normal
disilais a tick in front of a menu item
a 'greys' a menu i(em
adds a desk accessory to the desk memr

add an obiect to a tree
delete an 6biect from a tree
change an dbiect's state (ob-state lield)
draw an object and optionally its children
calculate the co-ordinales ofa given object
ffnd an object given a co-ordinate
change the order of objects within a tree
edits a character within an editable fleld

load a resource file
free the memory used by the resource ffle
finds the address of an item in a loaded resource
ffle
fixup an address within a loaded resource ffle
convert the co-ordinates of an object to plxel co-
ordinates

o b j c - a d d
o b j c - d e t e t e
o b j c _ c h a n g e
o b j c - d r a ! , 1
o b j c _ o f f s e t
o b j c - f i n d
o b j c - o r d e r
o b j c _ e d i t

s h e
s h e
s n e

Resoutce loutines
r s r c - L o a d
r s r c _ f r e e
r s r c - g a d d r

r s t c - s a d d r
r s r c - o b f i x

Clipboord funcl ions
scrp-read lind the clipboard directory
scrp_uri te set ttre clipboard directory

Shell roul ines
_ e n v f n
_ ! r r i t e
_ r e a d

J i n d

read an environment string
indicate the next application to be loaded
find the name of the application
find a given program in the current path

create a window
ooen a window
ciose a window
delete a '&'indow
return information about a window
modify a window
find which window is below a given co-ordinate
forbid screen modifications
calculate the size of a window's work area

Window functions
u i n d _ c r e a t e
! r i n d _ o p e n
x i n d _ c L o s e
u i n d _ d e L e t e
u i n d _ g e t
u i n d _ s e t
u i n d - f i n d
u i n d - u p d a t e
u i n d _ c a t c

Poge 148 Hisoft C [ibrory Summory

Workstof ions
v - o p n v u r k

v _ c I r u k
v s - c I i P
v q - e x t n d

v q t _ e x t e n t
v q t _ l , l i d t h

Grophics Ailtibufes
v s-c o L o r set the RGB components of a colour
v q-c o L o r retum the RGB components of a colour
v-g e t-p i xe t return the colour ofa point
vq-ce L La r ray return the colours ofa cell array
vq i n-mode select a tlpe of input
vsw r-mode select rpriting mode

Fonf functions
v s t-t oa d-f on t s load all ttre font definitions
vst-untoad- f onts remove the font del in i t ions
vs t-font select a ParticuJar font
v q t-n a m e Iind the name of a given font
vqt-f ont inf o return irformauon about the cr.rrrent font

Grophics text
v-gtext d isp lay graphics text
v-j ust i f i ed display justified text
vst -hei ght set the character height
v s t-p o i n t set the character height in points
vst-rotation set the angle of rotation of characters
v s t-c o L o r set the colour of graphics text
vst-ef fects set the text graphic effects
vst-a t i gnment set the vertical text alignment
vqt-a t t r i but es return the current text attributes

open virtual workstation
close vftual workstation
clear workstation
set clipping rectangle
return extra information about the workstation

return the size of a graptrics text string
return the size of a single character

Areq fill functions
v-f i t ta rea draw a Iil led PolYgon
v - c o n t o u f f i t I s e e d f f I l
vs f - in ter io f se lect t t re t lpe of l i l l
vsf-pe r i met e r set whether areas are surroulded by borders
vsf-sty L e select the tyPe of filI
v s f-c o I o r select the colour of fllls
v s f-u d p a t sel user defined fi]l pattern
vqf-at t r ibutes retum the f i l I a t t r ibutes

[ibrory Summory Hisoft C Poge 149

Line dlowing funcl ions

!v

v_p L i n e
- t y p e
_ u d s t y
_ w i d t h
_ c o t o r
_ e n d s

a t t r i b u t e s

draw one or more lines
select ttre line tlTre
set a user-delined line tvDe
set the tne Mdth

- ^

set the line colour
set how the ends of lines are to be drawn
retum the line drawins attributes

v _ p n a r K e r
v s m _ r y p e
v s m _ h e i g h t
v s m _ c o L o r

v s

v q

v_p
v_c

Morker functions
draw a set of markers
set the type of polymarker
set the height of polymarkers
set the colour of ooh'rnarkers

v q m_a t t r i b u t e s return the current poll'rnarker attributes

Rectongle drowing funcl ions
v_ce [[array draw an array of rectangles
vr_recf I draw a fflled rectangle without a border
v-ba r draw a flled rectanAle with a border
v- r. b o x draw an unlilled redtangle u'ith a rounded border
v_rfbox draw a filled rectangle with a rounded border

Circulor objecis
v _ a r c draw a circular arc

draw a pie slice
draw a circle
draw an elliptical arc
draw an elliptcal pie slice
draw an ellipse

routines
enter a-lpha mode
exit alpha mode
draw alpha text
inverse video on
inverse video off
cu-rsor right
cursor left
cursor up
cursor dorrrr
home the cursor to the top right
erase to end of line
erase to end of screen
retum the size of the screen
position the cursor
return ttre current cursor position

e s I i c e
r c t e
L a r c

Alpho mode
v _ e n t e r _ c u r
v _ e x i t _ c u r
v _ c u f t e x t

v _ c u r r i g h t
v _ c u r L e f t
v _ c u r u p
v _ c u r o o w n
v _ c u r n o m e
v _ e e o I
v _ e e o s
v q _ c h c e t t s
v s _ c u r a d d r e s s
v q _ c u r a d d r e s s

Poge 150 HiSott C Librory Summory

Mouse conf rol functions
v_shor",_c display the mouse cursor\- v_h i d e-c remove the mouse cursor
v-dspcu r change the mouse position- v_r n c u r make the mouse disappear

\- vsc_torm define a new mouse form
vq_key_s return the keyboard shift key state
vq_mouse return the mouse position and button state

\- Screen Rosf er functions
v ro_cpyfm copy a screen block
v r t-c py f n copy a monochrome screen block

\-- vf-t fnfm copy a monochrone screen block (device
dependent)

Modifying vecfols
vex- t imv t imer vector

, vex-curv mouse cursor vector
\ vex-butv mouse button vector

vex-motv mouse movement vector

a

a

_ liblory Summory HiSoft C Poge l5l

a b o r t () i

This function stops a running program immediately.

r e t = a b s (v a t) ;
i n t r e t , v a L i

This function returns the absolute value of the value passed as a parameter.
Both values are of t ?e i n t.

chmod, errno,

CE

A ,uo", r*, ruo".

r e t = a c c e s s (n a m e , m o d e) i
' t -

i n t r e t , m o d e ;
c h a T ' n a m e ;

Tests if a lile can be acessed for read and/or vrrite depending on the value of \-

I fmod€ = 0, test t le existence ofthe f i le

If mode = 2, test if write access to tie lile is possible.
\-

The other UNIX modes are ignored,
\

The value returned is O if access is possible and -l if not. In the latter case
the variable e r . n o contains the corresponding error number.

Poge I52 Hisoft C Liblory Reference

r e t = a c o s (v a L) i
d o u b t e r e t , v a L ;

Calculates the arc-cosine of the value (between -l and +1) passed as a
parameter. The value retumed is between O and pi.

Both values (t}Ie paiameter and the result) are double reals.

If the parameter is not between -1 and +1 the variable errno wil l indicate
the error condition.

A ."in, atan, atarl2, errno,

DR B X Hi

i n c L u d € < g e m l i b , h >
p = a d r_b o x (b o x_n o) i
i n t b o x - n o ;
0 B J E C T * o ;

This funcuon returns the address of a dialog box. box_no is the number of
box $/hose address you wish to find. This is t]'e same as the value that is
returned by the function i ni t_box.

The value returned is a pointer to the tree stmcture of E4)e oBJ E c r.

Section 3.3. lnit_box. Help command (adr_boxl.

a p p t _ i d = a p p L _ i n i t () ;
i n t a p p L _ i d ;

Initia.lise the applicauon aJId the GEM AES.

The value returned is t]le application's identilier (or appl-id) that is used in
the application librarlr functions.

V/ith Htsoft C, it is not necessarJr to call this function if you v/ish to use GEM.

If the value returned is -1 this indicates an error.

tibrory Reference Hisott C Poge 153

A IT EM AE

r e t = a P P l - e x i t () i
i n t f e t ;

This function de-initialises the applicauon as far as the AES is concerned.

If ret = 0 there has been an error.

when using IIlSoft c, there is no need to call this function.

PP MAE

a p p L _ i d = a p p L - i n i t (n a m e) ;
i n t a p p L _ i d ;
c h a r ' n a m € i

Finds the application identifier of the named application (normally a desk
accessory). The name must be at least eight characters, padded with blanks if
necessary.

PPL AES

r e t = a p p L - . e a d (a p p L - i d , L e n g t h , b u f f e r) i
i n t a p p L _ i d , t e n g t h i
c h a r * b u f { e r ;

Reads a message (of the specif ied Length) that has been sent by another
application. The message is stored in t l1e given bufter. The application
identifer of the program whose message pipe is being read must be supplied
as the a pp t-i d parameter.

The value returned is O if an error has occurred.

PL T E

a p p t _ t p L a y (a d d r € s s , n , s p e e d) i
i n t n , s p e e d ;
c h a r * a d d r e s s ;

Executes a set of n events that have been stored by the appL-trecord
function at address at t- I :e speed given (1OO is normal speed).

PL-TRE

a p p L _ t r e c o r d (a d d r e s s . n) i
r n t n i
c h a r * a d d r e s s i

Stores a set of n events at the address given by the a dd re s s parameter.

Poge 154 Hisoft C librory Reference

WRITE EM

r e t = a p p L - v . i t e (a p p L - i d . L e n g t h , b u f f e r) i
i n t a p p L _ i d , L e n g t h
c h a r * b u f f e r ;

Writes a message (of the length specified from buffer) so that other
applications may read them. The application idenulier of the program that is
td read the message must be passed as the a pp t-i d parameter.

The message can be read using appL-read.

O is returned if there is an error.

A .ppt-."ua.

r e t = a s i n (v a L) t
d o u b L e a e t , v a L ;

Calculates the arc-sine of the value (between -1 and +1) passed as a
parameter. The value retumed is between -pi/2 alrd +pi/2

Both values (parameter and return value) are double reals.

If the value passed is not between -1 and +I then the variable errno will
indicate that an etror has occuired.

A
""o",

atan, atan2, errno.

r e t = a t a n (v a L) ;
d o u b L e a e t . v a L i

Calculates the aic-tangent of t]le value passed as a paiameter. The parameter
and the value returned are double reals.

The result (in radians) is between -pi/z and. +pil2 inclusive.

at2Jg.

m ,'tno the vatue of pi

v o i d r n a i n ()
{

p r i n t { (" 2 1 0 . 1 0 f " ,
]

a t a n (1 .) * 4 > ;

[iblory Reference Hisott C Poge 155

N

r e t = a t a n 2 (y , x) ;
d o u b I e x , y , r e t ;

Calculates the arc-tangent of y divided by x.

The value retumed corresponds to the angle (expressed in radians between
-pi arld +pi) formed by the positive x-axis and the vector from (O,O) to {x,r).

I f x is zero this funcuon returns +pi l2 or-pi/2 depending on the value of
v .

I t is an error to cal l this function with both parameters O (e.rno wil l
indicate this).

/N .,"t, asin, acos, errno.

..-

OF ANSI

x = a t o f (s t r i n g) ;
d o u b t e x ;
c h a r * s t r i n g ;

This function converts a string of characters to a double precision floating
point number.

The string may contain white space, a plus or minus sign followed by a
standaid scientilic format number.

The conversion stops at the first inappropriate character.

A r,ot, atol, sscanf.

A ANSI

i = a t o i (s t l i n g) ;
i n t i t
c h a r * s t r i n g i

This function converts a stdng of char:acters to an tnteger number.

The string may contain white space, a + or - sign followed by a string of
digits.

The conversion stops at the first inappropriate character.

A .,or, atol, sscarf.

Poge 156 Hisoft C Iibrory Reference

A ANSI

i = a t o L (s t r i n g) i
L O n g r i
c h a r r s t r i n g i

This function converts
the same way as atoi .

A .,or, """-.rr.

a str ing o[characlers to a long integer and i l works in

B EMDOS

c h a r a c t e r _ c o d e = B c o n i n (p e r i p h e I i a L) ;
i n t p e r i p h e r a L , c h a r a c t e r _ c o d e ;

Waits for a character to be input from the specified peripheral:

The character code

The low blte is the

returned consists of two

ASCII code and the high

b)'tes.

blte the keyboard scan code.

B EMDOS

B c o n o u t (p e r i p h e r a L . c h a r a c t e r) i
i n t p e r i p h e r a L , c h a T a c t e T , -

Writes a character to the given peripheral {see the Bconin function).

c NSTAT

s t a t u s = B c o n s t a t (p e r i p h e r a L) ;
i n t s t a t u s , p e r i p h e r a L i

Returns the input status of tlle peripheral given as a parameter (see the
Bcon in funcuon) .

The returned value is -1 if the device is ready, O othenvise.

Liblory Reference Hisofi C Poge 157

c GEMDOS

s t a t u s = B c o s t a t (p e r i p h e r a L) ;
i n t s t a t u s . P e r i P h e r a L i

Returns the output status of the peripheral given as a parameter (see the
Bcon in func t ion) ,

The returned lalue is -1 if the device is ready, O otherwise.

G DOS

r e t = b i o s (n o , a r g l , a r 9 2 - - -) ;

L o n g r e t , a r g I , a r g 2 ' . . .

Executes a BIOS function using TRAP #13.

no is the number of the function.

r e t is the value returned by the function.

argl, atg2... aie the parameters for the part icular function.

A xtios, gemdos.

B

B i o s k e y s () i

Re-initialises the standard BIOS key table.

A^"*o,.

Poge 158 Hisoft C Librory Reference

b u t t o n - n o = b u t t o n - b o x (b o x - n o , x , y , b u t t o n - n a m e , s t a t e) i
i n t b u t t o n _ n o , b o x _ n o , x , y , s t a t e ;
c h a r * b u t t o n - n a m e ;

\ Adds a button to a dialog box that has been intualised by 'i ni t-box.

bo x_n o ls the number of the dialog box to which the button is to be added.

\- x and y are the co-ordinates (in characters) of the position of the button
within the box,

bu t t o n_n a me is the string of chaiacters giving the text of the button.

state gives t] e state of the button (the ob-s ta t e value).

The value returned is the index of the button within the box.

A ,nt,-Oo*. Seclion 3.3.5. Help command (butron-bl.

oc ANSI

\ - a d r = c a L l o c (n o _ e L e m e n t s , e L e n e n t _ s i z e) ;
c h a r * a d r ;
L o n g n o _ e I e n e n t s , e I e m e n t _ s i z e i

\ * A l l oca tes a b l ock o f memory o f s i ze no -eLemen ts t eL€men t - s i ze .

The block is initialised to zero.

The value returned is a pointer to the block of memory or O if the block
\- cannot be allocated.

The memory is allocated from the system memorywhose size is fixed when

, fr" interpreter is loaded. It is possible to change this value ifyou have enough
\- memorv.

A Section I.4.13, Maloc, Mfree, malloc, free, realloc.

A

c h a r a c t e r = c a u x i n () , '
i n t c h a r a c t e t . i

Reads a chaiacter from the serial por:t.

Librdry Reference Hisotl C Poge 159

UXI E

s t a t u s = C a u x i s () i
i n t s t a t u s ;

Returns whether a character has been received from the serial port
(s t a t u s = - 1) o r n o t (s t a t u s = 0) .

UX GE MD

s t a t u s = c a u x o s () ;
i n t s t a t u s ;

Returns whether the serial port is ready for output (status=-l) or not
(s t a t u s = 0 r .

C a u x o u t (c h a r a c t € r) i
i n t c h a r a c t e r i

Write a character to the serial port.

ONIN GEMDOS

c h a r a c t e r = C c o n i n () ,
' i n t c h a a a c t e r i

Wait for a key-press and echo it to the screen.

Returns the character code read in the same form as that used by B c o n i n.

c NI DO

s t a t u s = c c o n i s () ;
i n t s t a t u s ;

Returns whether a character has been tjped on the keyboard (status=-l) or
n o t (s t a t u s = 0) .

UT E D

C c o n o u t (c h a r a c t e a) i
' i n t c h a r a c t e r i

Write a character to the screen.

Poge 160 Hisoft C [ibrory Reference

ANSI

C c o n r s (s t r i n g) ;
c h a r * s t r i n g ;

Read a string of characters from the keyboard.

On entry, the first b'.te in the string must contain the maxtmum number of
characters to read. On exit, the second bvte contains the number of
characters actually read. The actual characters are stored starting at the third
Dl'Ee.

EMD s
C c o n v s (s t r i n g) i
c h a r * s t r i n g ;

Writes a string of characters to the screen.

r e t = c e i L (v a L) ;
d o u b L e r e t . v a L ;

Returns the whole number larger or equal to the value of the argument.

The value returned ls a double ieal with a zero fractional part; not an integer.

floor

HDIR UNI

r e t = c h d i t . (p a t h) ;
' i n t a e t ;
c h a r * p a t h ;

Changes the current directory to the given p a t h .

This function returns zero if there was no error; otherwise the g4)e of error
can be found in the vadable e r r n o.

A o""tp"ttr, mkdir, rmdir, getcvrd, errno.

Librory Reference Hisotl C Poge 16l

E o
s t a t e = c h e c k _ n € n u (e n t r Y) ;
i n t s t a t e , e n t r y ;

Makes a tick in front of a menu item appear or disappear. The menu must
have been created with the function i n 'i t-n e n u .

e n t ry is the number of tlle menu entry as returned by i t e m-ne n u

The value returned is the new state of the menu entry (1 if Ucked, O if not).

lA io,t-rn"n.r. item-menu, Seclion 3.4.6, Help command (check-me).

OD

i n c l u d e < f c n t L . h >
r e t = c h n o d (n a m e , n o d e) i
i n t r e t / t n o d e i
c h a a * n a f i e i

Changes the protecuon status of the lile called name.

Unlike UNIX, only the wiite status can be changed.

Ifmode = s-rREAD, the f i le may only be read.

If mode = s-ILlRrrE, the f i le may only be writ ten. These tu/o values are
deffned in the file fcntl,h.

On return, r e t =0 if the operation 'was successful; otherwise the E4)e of error
can be found in the e r rn o variable.

A .""""", "-to.
CL

i n c L u d e < s t d i o . h > \ -
c L r e r r (f p) ;

Resets the error condition on the given stream.

This function is cal led cLearerr under UNIX system v so be careful when
porting programs.

A ,on"n, feof, ferror.

Poge 162 Hisoft C [iblory Reference

c L e a r _ H i n d o x (u i n d o H _ n o) ;
i n t l , l i n d o t . l _ n o ;

Clears the interior of a windov/ opened
o p e n_y i n d o !r. The number of the window
parameter.

with the Hlsoft C function
to clear must be passed as a

A op.n-*uloo*, Section 3.2.8. Help command (clear-wil.

A oo"rr, fopen, fclose, errno.

r e t = c t o s € (f h a n d L e) i
i n t f h a n d L e , r e t ;

Close a lile opened using open,

fhandLe is the handle of the f i le to close as returned by the open function.

The value returned by cLose is zero i f successful otherwise errno indicates
which error has occurred.

c L o s e - v i n d o v (H i n d o H _ n o) ;
i n t H i n d o v _ n o ;

Closes a window that was opened by the Hlsoft C function o p e n_H i n d o y.

r i n d o u _ n o i s t h e w i n d o w n u m b e r a s r e t u r n e d b y t h e o p e n _ u i n d o u
function.

A open-*indow, Section 3.2.4, Help command (close-wi).

L

CL iSo

ECIN

c h a r a c t e r = c n e c i n () i
i n t c h a r a c t e r i

Read a character from the keyboard.

[ibrory Refe]ence HiSoft C Poge 163

ftL

c o L o r - b o x (b o x - n o , o b j e c t - n o , b o . d , t e x t , b a c k) i

This lunction enables you to change tlle colour of graphics text of a dialog box
created by tl'e Hlsoft C function i n i t-b ox.

box-no is the number of the dialog box created by i n i t-box.

ob jec t_no i s t l 1e ob jec t number as re tu rned by s tex t -box .

bo rd , t ex t , and back a re t he co lou rs o f t he bo rde r , t he t ex t and t he
background respectively.

A ,r1rr-Oo*, gtext-box. Section 3.3.12, Help command (color-bo).

o AN

r e t = c o s (v a t) i
d o u b L e r e t , v a L i

Calculates the cosine of the angle {in radians) that is passed as a parameter.
The parameter and the result are both double reals.

A ",,,. ,"rr.

SH

r e t : c o s h (v a L) ;
d o u b l e r e t , v a L ;

Calculates the h)?erbolic cosine of its parameter. The parameter and the
result are both double reals.

If the argument is too big for the result to be tn range the e r r n o variable will
indicate this error.

A
"inn,

tanh, errno.

Poge 164 Hisoft C Librory Reference

ANSI

L € n g t h = c p . i n t f (t o r m a t / a r g l , a r g z , , . , > i
' i n t L € n g t h ;
c h a f * f o r n a t i

\ " ! 2 1 1 a r g l ' a r g z ' - - .

This function writes formatted text. ? ? ? ? indicates that t]re parameters may
be of different tt?es.

\.- The characters are sent direct to the screen, unlike p r i n t I where the
characters are sent to the lile stdout. This function avoids the filing system
a s u s e d b Y P l i n t f .

Apart from this, this function behaves exactly like p r i n t L

See the p r i n t f funcuon for the description of the parameters.

CP EMD

s t a t u s = c p r n o u t (c h a a a c t e a) i
i n t s t a t u s , c h a r a c t e r i

Writes a character to the printer. The return value indicates that the
\ - cha rac te r has been p r i n ted (s ta tus= - ' l) o r t ha t t he p r i n te r i s busy

(s t a t u s : 0) ,

W IN

c h a r a c t e r = C r a ! c i n () ;
i n t c h a a a c t e r ;

Waits for a character from the keyboard. The full scan code is returned (See
B c o n i n) .

s t a t u s = c p r n o s () i
i n t s t a t u s ;

Returns vrhether the printer is ready (s ta tus=-1) or busy (sta tu s=01.

G

Librory Reference Hisott C Poge 165

c h a r a c t e r = c r a H i o (p a r a m e t e r) i
i n t c h a r a c t e r , p a r a m e t e a ;

Writes a character to the screen ll.ith the ASCII code passed as pa r.n e t e r.

Or.. . reads a chaiacter from the keyboard i f parameter is -1. In this case the
value returned is the scan code (see B c o n i n) or O if there has been no key
pressed. The function returns immediately if no chaiacter has been O?ed.

UN

i n c L u d e < f c n t L . h >
f h a n d L e = c r e a t (n a m e , m o d e) i
i n t f h a n d L e , m o d e ;
c h a r * n a m e ;

This function creates and opens for wdte a new lile with the given name. If
the lile already exists it is deleted

The ffle is always opened for write.

The access privtleges for tl.e lile are Iixed by the value of mode:

fhandLe ls the file handle associated v/ith tie created file and is the return
value of t]'e function.

If the value returned is - 1, the file could not be created. The e r r n o variable
v/ill indicate the tj4)e of error.

A r"r".t", fopen, chmod.

o r O
S - l l ' / R I T E

n = c s c a n t (f o r ' ' l ' a t , a r 9 1 , a r 9 2 , . , .) ;
l n r n ;
c h a r * f o r n a t i
? ? ? ? a r g l , a r g Z i

This function is equivalent to scanf except that the characters are read
directly from the keyboard rather than via tlle file stdi n.

? ? ? ? indicates that the parameters may be of different tjpes.

See scanf for a description of the parameters.

Poge 166 HiSoft C [iblory Reference

EMD

r e t = C u r s c o n f (p e r i o d , a t t r i b u t e) ;
i n t r € t , p e r i o d , a t t r i b u t € i

Sets the text cursor attributes depending on the value of otlrjbute:

CR GE

r € t = D c r e a t e (d i r e c t o r y _ n a m e) i
i n t r e t ;
c h a r * d i a e c t o r y _ n a m e i

Creates a diiectory whose name is passed as a parameter.

The value returned is zero if the operatlon was successful.

ELE MD

r e t = D d e L e t e (d i r e c t o r y - n a m e) ;
i n t r e t i
c h a r * d i r e c t o r y - n a m e i

Deletes the directory vr'hose name is passed as

The value returned is zero if the operation was

a parameter-

successful.

D MENU c
r e t = d e t e t e - m e n u () ;
i n t r e t ;

Deletes a menu that has been created v/t th ini t-menu and drawn with

The value returned by this function is I if the operauon v/as successful and O
tf not.

A tr,--"n r, draw-menu, section 3.4.5, Help command tdelete,m).

Librory Reference Hisotf C Poge 167

D

r e t = D f r e e (b u f f e r , d i s k - n o) t
i n t r e t , d i s k - n o i
L o n g b u { f e r t 4 l i

This function returns information about the disk given by
numbers used are

d i s k - n o . T h e

etc.

The function stores the information in the array buffe. as follows

buffert0l the number of free clusters on tie disk

buffertl l the total number of clusters on the disk (351 or
7ll for f loppies)

buf{ert2l the sector size in b}.tes {normally 512}

b u f f e . t 3l the number of sectors per cluster (normatly 2)

The value retumed by the function is O if the operation was successful.

o the current drive
I drive A
2 drive B
3 onve (-

d r i v e - n o = D g e t d r v () i
i n t d r i v e _ n o ;

Retums the number of the current disk drive (O=A, 1=B, 2=C, etc.)

TPA

r e t = D g e t p a t h (p a t h - n a m e , d r i v e - n o) i
i n t d r i v e - n o , r e t i
c h a r * p a t h _ n a m e ;

Returns the default path name (in path-nam€) for the specif ied drive
according to the value of drive-no (O=current disk, 1=A, 2=8, 3=C etc.).

The €lue returned is zero if the operation was successful.

Poge 168 Hisoft C Librory Reference

D o s o u n d (c o m m a n d _ s t r i n g) i
c h a r * c o f l n a n d _ s t r i n g ;

Executes a set of sound commands passes as a string of char:acters to tlle
funcuon as a paiameter.

A command consists of a cornmand byte followed by optional parameters that
depend on the command.

Commands 0 to 15 have a parameter that is to be wrttten to one of the 16
sound chip regtsters (command O for register O, command I for register I
e rc . l .

Command 128 has a b]'te argument that is written to a temporarJr register.

Command 129 is a form of loop statement and has three blrte arguments. The
first is the register to use (the temporarjr register is iniflally assigned to this
reAister). The second argument is the increment and the third the
ter-mination value:-The inciement is added to the appropriate iegister until
the termination value is reached. How frequently these assignments are
executed is set by the commands below.

Commands f3O to 255 have one argument. If t].is ts zero then the sound is
terminated; otherwise the argument is taken as how frequently sound
commands are to be executed in fiftieths of a second-

UN

d q s o r t (a r r , n) t
d o u b L e * a r r ;

Sorts an array of n double precision floating point numbers into ascending
order.

A tq"ort, sqsort. tqsort.

d r a u (x 1 , y 1 , x 2 . y 2) ;
: ^ t x 1 , y 1 , x 2 , y 2 ,

Draws a l ine between the two points (xi, yt) and (xz, y2).

This function does not return a value.

A lr-pti.", Section 3-2.10. Help command (draw).

o

[ibrory Reference Hisoft C Poge 169

w o
o b j € c t - n o = d f a r - b o x (b o x - n o) ;
i n t o b j e c t - n o , b o x - n o ;

Draes a dialog box created by i ni t-box.

A section 3.3.6, Help command (draw-box).

A HiSo

r e t = d r a v - m € n u () ;
i n t r e ! i

Makes a menu bar created using i n i t-me n u appear. It is then possible to
click on menu items.

Ttre value retumed by this function is I if all v/ent v/ell and O otherwise.

lA d"l.t"--"r,.,. init-menu, Seclion 3.4,5, Help command [draw-menJ.

a c t i v e _ d . ' i v e s = d r v m a p () i
i n t a c t i v e _ d f i v e s i

Returns which disk drives ale present ln a ct i ve-dr i ves.

The value returned has bit O set if drive A exlsts, bit 1 set if drive B edsts,
etc.

E EMD

a c t i v e - d l i v e s = D s e t d r v (d r i v € - n o) i
i n t d r i v e - n o , a c t i v e - d l i v e s i

Set the default disk drive (drive-no= O for drive A, I for drive B etc.).

The value returned indicates'ffhlch drives are active (see drvmap).

R

Poge 170 Hisoft C Librory Reference

r e t = D s e t p a t h (p a t h _ n a n e) ;
i n t r e t ;
c h a r * p a t h - n a m e i

Sets the default directory for the default drive to be pa t h_n an€.

The value returned is zero if the operation was successful.

UP
n e r _ h a n d t e = d u p (h a n d L e) ;
i n t n e r , r _ h a n d t e , h a n d t e ;

Duplicates a file handle. The new lile handle (returned by the funcflon) is
associated with the same ffle as the original one.

If the duplication isn't possible -l ls retumed and e r rn o contains the reason
for the error.

A
"o.rn,

Fforce, fdopen, errno.

HJ see std.

r e t = d u p 2 (n e r _ h a n d L e , h a n d L e) i
i n t n € x _ h a n d L e , h a n d L e ;

Forces the l i le handle to point to the same f i le as ney_ha nd L e.

If an error occurs -1 is returned and errno indicates v/hich error occurred.

lA ral,p. Fforce. fdopen. ermo.

See std.

D

[ibrory Reference HiSott C P o g e l 7 l

E UNIX
p = e c v t (a , p r e c , d e c p t , s i g n) ;
i n t p r e c , * s i g n , * d e c p t i
d o u b L e a i
c h a r * p ;

Converts the floating point number a to a string of characters consisting only
of digits,

p r € c is the number of signilicant digits desired.

On return, decpt indicates v/here the decimal point would appear from the
start of the string. s i g n contains zero tf the number a was positive or zero. 9
points to the string of characters. --

IT-B o

o b i e c t _ n o = e d i t - b o x (b o x _ n o , x , y . t e x t / t e m p l a t e ,
L e g a L - c h a r s) ;
i n t o b j e c t _ n o , b o x _ n o , x , y ;
c h a r * t e x t , * t e m p L a t e , * L e g a l . _ c h a r i

Adds an editable text field to a dialog box created by i n i t-box.

box-no indicates the dialog box to vr'hich the editable telt is added.

x and y are the character co-ordinates of the text relative to the top left
corner of the box.

text indicates the text to be displayed. tempLate describes the format of
t he f i e l d . l egaL_cha rs desc r i bes wh i ch cha rac te rs may be en te red .
ob jec t_no i s t he i ndex o I l he ob jec l w i l h i n l he box .

A,.,,,-Oo*. Section 3.3.8. Help command ledit-boxl.

Poge 172 HiSofi C Librory Reference

AB o
s t a t u s = e n a b L € - m e n u (€ n t r y - n o) i
i n t s t a t u s , e n t r y _ n o i

.- Makes a menu appear in grey or makes it appear as normal if it v/as already
- grey.

The menu must be created using the i n i t-me nu function.

\--
entry-no is the index of the menu entry to change as returned by

, l r e m _ m e n u .

The returned value is the new state of the menu; I if grey O if not.

A trrrr-*"nrr, item-menu, Secfion 3,4.6, Help command (enable-m).

ER UNIX
\ - # i n c t u d e < e r r o r . h >

e T T n o i

e r r no is an integer variable deffned by HlSoft C. It is initialised to zero; it is
.-- set to a non-zero value following an error.

When a system function fails (generally returning -l), tl e reason for the error
is stored in errno. This variable is not reset to zero when a function

\, terminates couectly, thus it should only be checked when an error tras
occurreq.

Htsoft C does not use a.U the UNIX error codes. In the followin{ list of all the
codes, those that are not used by Htsoft C are prefixed with an asterisk. The
names of the errors (following

-the
UNIX stanilard) are defined in the file

eror,n.

1 .* E P E R 11 The user doesn't have Dermission to access this file.

2 t{ 0 E N T The ffle name sDecified does not exist.

3 * E S R C H Process does not exist.

4 E I N T R The function has been interruDted bv an event.

E I O [/O error during a read or write. This error is not
detected until the follou/ins call to the function.

6 E N X I O Non-existent peripheral or not working (no disk in
drive).

7 EZBIG An argument to t]'e funcuon is too large.

8 *ENoEXEc E r ro r i n t he f o rma t o f an execu lab le f i l e .

9 E B A D F Invalid file handle. This error is given if the Iile is not
open, or a read is attempted on a write-only file or vice
versa.

[ibrory Reference HiSofi C Poge 173

1 0 * E C H I L D No child process.

1I *EAGAII{ No more processes avai lable.

12 E N O I,t E ltl The program is asking for more memory than is
available.

1 3 E A C C E S Attempt to access a file in a way that does not
correspond to the access privileges of the file. For
example, trjdng to open a read-only file for write.

E F A U L T Memory access error during a system call {access to an
illegal address) whilst trying to access its par:ameters.

l 4

I5 E N 0 TB L K File name used instead of a device identiffer.

E B U S Y Device busy.

17 EExrsr Attempt to create a file which already exists.

Attempt to mount a volume that is already present on
another device.

* E X D E V1 8

Trying to execute a system function that is
inappropriate for this device (reading from a wiite-only
device).

I . J O D E V1 9

E N O T D I R Using an invalid name when a directory is required. For
example,- the path name required by the c h d i r
commanq.

2 0

2I EISDIR Trying to wii te to a directory.

2 2 E I N V A L Invalid function argument. For example, trying to read
or write a I i le after Lseek has returned a negative
value. or a bad aigument to a mathematical function.

23 ENFILE The table of open f i les is ful l . No more f i les may be
opened.

24 E I ' l F I L E A process may not open more than 20 f i les
simultaneously.

* E N O T T Y Not a terminal.

26 ETXTBUSY Opening a l i le that is already opened.

File too long.2 7 T E F B I G

2A EN0SPC Device ful l (no disk space).

29 ESPIP€ Call to a seek function for a device that only supports
sequential access.

30 ERoFS Attempt to write or modify for a device v/hich only
supports read access.

3 1 * E I { L I N K Too many links to a file.

32 *EPI PE wiiung to a pipe without a process to read i t .

E D O I ! The argument of a mathematical function is outside its
defined domain.

3 3

34 ERAllc€ The value calculated by a function is too big to be
represented by the machine.

Poge 174 Hisoft C Librory Reference

ENT

€ v e n t _ t y p € = e v € n t (& m e n u _ t i t L e , S m e n u _ e n t r y .
| | i n d o w , & k e y , & x c L i c k , & y c L i c k) ;' i n t n € n u _ t i t t e , n e n u _ e n t r y i

' i n t k e y , x c L i c k , y c L i c k ;
i n t e v e n t _ t y p e i
s h o f t ! l i n d o { [6] t

This fimction waits for an event as described ln Seclion 3.5.3.

A evnt-multi, Seclion 3.5, Help command (event).

n u r n = e v n t _ b u t t o n (n o _ c L i c k s , m a s k , s t a t e _ r € q u i r e d ,
g x , & y , & b u t t o n _ s t a t e , & k e y b o a r d _ s t a t e) ;

i n t n u n , n o _ c L i c k s . m a s k , s t a t e _ r e q u i r e d i
s h o r t x , y / b u t t o n _ s t a t e , k e y b o a r d _ s t a t e i

Walt for a given mouse button state,

n o_c L i c k s is the number of clicks to x/ait for.

mask indicates which buttons to test (l=left, 2=ri€ht, 3=both).

state_required indicates i f the function should retum when the button is
pressed (O) or when it is released (1),

n um is the number of clicks that actually occurred.

x and y aie the mouse co-ordinates when the mouse \r,.as clicked,

button_state indicates which mouse buttons were Dressed when the
button was pressed or released.

keyboard_state indicates the state of the r ight shif t (bit O), left shif t (bit
1), Control (bit 2) and Alternate hit 3) keys, The corresponding bit is set if
the given key is do&'n.

E

[ibrory Reference Hisoft C Poge 175

TD LICK

i n t e r v a L = e v n t _ d c L i c k (n e x _ i n t e | . v a L , s e t) ;
i n t i n t e | . v a L , n e u _ i n t e r v a L , s e t i

Sets or returns the double-click speed of the mouse.

I f se t i s I then nev_ i n te rva L i s used to se t the doub le-c l i ck speed
between O (45O ms) and 4 (165 ms).

If s e t is O then the current speed is being requested.

In either case, i n t e rva t is returned as the new double-click speed.

KEYBD AES

k e y _ c o d e = e v n t _ k e y b d () ;
i n t k e y _ c o d e ;

This function waits for a key to pressed on the keyboard. It returns a 16 bit
code. The bottom 8 bits are the ASCII code for the key.

T M ESAG

e v n t _ m e s a g (b u f t e r) i
s h o r t b u f l e r t 8 l ;

Wait for a i rindow or menu event.

The description of the message is contained in the array bu f f e r.

M AES

e v n t . . . m o u s e (s o r t ' r x . r Y , r u . t h ,
& x , & y . & b u t t o n _ s t a t e , & k e y b o a r d _ s t a t e) ;

i n t s o r t , r x , r Y , . | t t l , r h
s h o r t x , y , b u t t o n _ s t a t e , k e y b o a r d _ s t a t e ;

Wait for the mouse to enter or leave the specified rectangle.

so.t indicates whether the function should return when the mouse enters
(O) or leaves (l) the rectangle.

rx,.y,rv.rh give the co-ordinates of the rectangle.

bu t t on_s ta te i nd i ca tes wh i ch mouse bu t t ons we re p ressed when the
mouse moved across the rectangle border.

keyboard_state indicates the state of the r ight shif t (bit O). left shif t (bit
l). Control (bit 2) and Alternate (bit 3) keys. The corresponding bit is set if
the given key is down.

Poge 176 Hisoft C Liblory Reference

E T MUL

r r h i c h _ e v e n t s = e v n t _ m u L t i (e v e n t _ t y p e s ,
n o _ c L i c k s , m a s k , s t a t e _ r e q u i | . e d ,
s o r t l , r x 1 , t y 1 , r u 1 , r h 1 ,
s o I t 2 , | \ 2 , r y 2 , r u Z , r h 2 ,
b u f f e r ,
t i n e l . t ' i m e 2 ,
& \ , & y ,
& b u t t o n _ s t a t e / & k e y b o a r d _ s t a t e ,
& ke y_cod e ,
& n u m) i

Wait for one or more events.

/ * e v n t _ b u t t o n * /
/ * e v n t _ m o u s e * /
/ * evn t_mouse * /
/ * e v n t _ m e s a g * /
/ * e v n t _ t i m e r * /

event_types indicates the tjpes of event to wait for: l=keybd, 2=button,
4=mousel, 8=mouse2, 16=mesag, 32=timer. To u,'ait for more than one
event, or (l) them together.

The other parameters are the same as described under the functions
e v n t _ k e y b d , e v n t _ m o u s e , e v n t _ t i f l e r , e v n t _ m € s a g a n d e v n t _ b u t t o n .

The value returned is the event or events that occuired.

event.

NT

e v n t _ t i m e r (t i m e l , t i n e Z) ;
u n s i g n e d i n t t i m e 1 , t i m e 2 , .

lvait for a time interval. The interval
mil l iseconds. temp'1 and temp2 must be

j s g i v e n b J _ t i m e l + 6 5 5 3 6 ' t i n e 2
less tnan bSbJti .

ANS

e x i t (r e t u r n - c o d e) i
i n t r e t u r n _ c o d e i

This function terminates the current

The parameter re tu rn_code is the
this is ignored by Hlsoft C.

A abort, stop.

program.

code returned to the calling program:

Librory Reference Hisotl C Poge 177

A

r € t = e x p (v a L) i
d o u b L e r e t , v a L ;

This function retums e to the power va L.

The parameter and the result are both double reals.

If the parameter is too large, the variable e r r n o will indicate tl.e reason for
the error.

A tog, togro, pow, ermo.

RI o
r e t = F a t t r i b (f i L e - n a n e , s e t , a t t r s) ;

Reads (set=O) or sets (s€t=1) the attributes of a {i le.

The possible attributes (which may be combined) are

o the current drive
2 file is hidden

{iii is system
8 user file
L 6 {ile is a directory
3 2 Iile has been written and closed

s
r e t = f a b s (v a L) t
d o u b t e r e t , v a L i

This function retums the absolute value of the function.

The parameter and the result aie both double reals.

A ,ut", t.b", uu".

Poge I78 Hisoft C Librory Reference

osE A

i n c L u d e < s t d i o . h >
r e t = f c L o s e (f p) , -
i n t r e t i

Close a ffle that has been opened with f op en.

The lile to close is given via the file pointer fp.

If the value retumed is not zero, then an error has occurred during the close
and the e r r n o variable may be inspected to find out why.

,^
lA fcloseall, fopen. open. close. ermo.

E D
r e t = t c L o s e (f h a n d L e) i

\ _ i n t r e t , f h a n d t e ;

Close a f i le opened with Fopen.

\ The value returned is zero if the lile was closed correctly.

NSI

i n c L u d e < s t d i o , h >
n o = l c L o s e a L [(f p) ;

F I L E * f p t

Close all the files that have been opened with f op e n.

The returned value indicates how many files have been closed. If this value is
-1 then an error has occurred v/hi lst closing a f i le and errno may be
inspected to lind out why.

Al l the f i les are closed even stdin, stdout etc. After a cal l to this
function all the standard file input/output routines won't work unless you
expljcit ly re-open lhem.

A r"to"r, fopen, open, close, errno.

Librory Reference Hisott C Poge 179

CR E o
f i L e _ h a n d t e = F c r e a t e ({ i L e - n a n e , a t t r i b u t e s) i
i n t f i L e - h a n d L e , a t t r i b u t e s i
c h a r * f i L € - n a m e i

Creates and opens a f i le cal led { i le-name rMith the given attr ibutes. See
F a t t r i b .

If the file already exists then it ts deleted.

The functlon returns the file handle for use v/hen writing and closing the lile.

c UNIX

p = f c v t . (a , n , & d e c P t , & s i g n) ;
i n t n , s i g n , d € c P t ;
d o u b t e a ;

This functton is identical to ecvt except that n indicates the required
number of digits aJter the dectmal point

F d a t i m e (d a t e - t i m e , f i L e - h a n d L e , s e t) ;
i n t f i L e _ h a n d L e , s e t , -
c h a r * d a t e - t i m e i

Sets (set=O) or returns (set=1) the l i le 's creation date and t ime

The date and t ime are returned in the buffer pointed to by date-t ime (see

Tge tda te f o r t he f o rma t) .

FD TE DO

r e t = F d e L e t e (J i L e - n a m e) i
i n t r e t i
c h a r * f i L e , n a m e ;

Deletes the file whose name is passed as a parameter.

Ttre value returned is O if the operation \vas successful.

Poge 180 HiSofi C Librory Reference

F EN sl
f i n c L u d e < s t d i o . h >
f p = f d o p e n (f i I e - h a n d L e , m o d e) i
i n t f i t e _ h a n d L e i

c h a r * m o d e i

This function enables you to use the ANSI f i le functions (fe.ror, fprintf ,
isets, etc) with a f i le that has already been opened v/ i th t ire UNIX open
function.

It is therefore a transformation from a UNIX file handle to a ANSI file pointer.

f i Le_handLe is the l i le handle ofa f i le that has been opened using open.

rnode gives the tlpe of access for the file. Its value is the same as that
desc r i bed unde r {open .

f p is the returned value; this is the new file pointer for t]'e same ffle.

If an error occurs the value returned is O. See e r r no for which error.

A oo"rr, fopen, Iileno.

see std.

n e ! - h a n d L e = F d u p (f i L e - h a n d L e) i
i n t n e v _ h a n d I e , f i L e - h a n d L e i

Duplicates a file handle. t i L e-h a nd L e and n e |,,l-h a n d L e will both use the
same file.

This function is very useful for re directing t-I:e standard input/output files.

A ouo.

Libiory Reference Hisott C Poge l8l

F

f i n c t u d e < s t d i o . h >
r € t = f e o f (f p) ;
i n t r e t t
F I L E * f p t

Tests whether the a lile given by t}Ie ffle pointer fp is at tlle end of the lile.

This functlon retuins the value 0 if the end of the Iile has not been reached.

The file concerned must be opened using {open.

A ,"..o..

ERR NSI

i n c L u d e < s t d i o . h >
r e t = { e r r o r ({ p) i
i n t r e t ;
F I L E * f P ;

Tests v/hether an error has occurred during i/o to the file fp.

This function returns O if an error hasn't occurred on this file.

The lile must have been opened using fopen.

ANSI

{ i n c t u d e < s t d i o . h >
r e t = t f L u s h (f p) i \ -

i n t | " € t i

Empties the output buffer for the lile given by f p. lf the buffer isn't already _
empty the information in it is written to disk.

If the operation ls successful O is returned. Otherwise the value EoF is
returned; for example, -this will happen if the file is not open for rr'"rite. In _
thls case e r r no will indicate which error has occurred.

A mrrslart. fclose, ermo.

Poge I82 Hisott C Librory Refetence

A ANSI

i n c L u d e < s t d i o . h >
n o = { f l u s h a L l () ;
i n t n o i

Flushes the output buffer for all liles opened with {open.

If the operation was successful the number of liles closed is returned.

Otherwise the value E 0 F is returned. This v/ill occur if one of the files is not
open for write. The variable e r. no can be examined to ffnd out tl1e error tJrat
has occurred.

A rn,-r.n, fclosea.ll, errno.

r e t = F t o r c e (n e H _ h a n d L e , h a n d L e) ;
i n t n e H _ h a n d L € , h a n d L e ;

Forces the given file handle to point to the sarne file as neu_ha nd Le.

If a-n error occurs the value returned is negative. otherwise it is O.

ET

i n c L u d e < s t d i o . h >
c = g e t c (f p) ;
c = f g e t c (f p) ;
i n t c ;

Reads a character for the lile f p that has been opened using f op e n.

The value EO F is returned if the end of the file is reached or an error occurs.
If an error has occurred the vaiiable e r r no indicates which error.

Be careful not to assign the result of this function to a variable of type c h a r. If
you do this end of ffle detection will be impossible.

The tu/o functions getc and fgetc are equivalent.

A ,r","n"'.

[ibrory Reference Hisoft C Poge I83

ug-ll The program below reads a lile blte by blte and displays it on the screen
blte by blte. An equivalent but much faster version is given under the
function f gets.

i n c t u d e < s t d i o . h >
v o i d m a i n ()
{

i n t i ,
f p = f o p e n (" t e s t . t x t " / " r ") ;
i f (l f P)
{

p r i n t f (" F a t a L € | " r o r . . . ") i
e x i t (0) i

]

x h i L e ((i = g e t c (t p)) ! = E 0 F)
p u t c h a r (i) ;

f c L o s e (f p) i

ET AN

c = g e t c h a f () i
c = f g e t c h a r () i

Reads a character from the lile s td i n (the keyboard by default).

Ttre two functions getchar and fgetchar are equivalent.

A ru",".

TD DO

b u f t e t . - a d r = F g e t d t a () i
c h a r * b u f f e r _ a d . t

This function returns the address of the buffer used by the GEMDOS
directory search functions.

Poge 184 Hisott C Librory Reference

-
d i n c L u d e < s t d ' i o , h >
p = f s € t s (b u { f e r , t e n , I p > ;
c h a r * p . * b u ' f f e r ;
i n t L e n ;

\ - F I L E * f O , ;

Reads a str ing of characters terminated by a new l ine (' \n') from the f i le
given by I p. This lile must have been opened for read.

A maximum of ten characters are read. Reading stops i f ei ther Len
characters have been read or a ' \n' character is read. A nul l chatacter ' \0'

is stored instead of the new line or after the last character read.

case O is returned and e r r no indicates the source of the error.

y h i L e (p = f g e t s (b u f , 8 0 , f p))
p t " i n t f (" % s " , b u f) ;

t c L o s e (f p) i

AF E

A ,",". fread, errno.

ffi fhe program below reads a lile line by line and displays it on the screen
a line at a time. Compare this with the f q e t c exarnple.

i n c L u d e < s t d i o . h >
v o i d n a i n ()
t

c h a r * p , b u f t 8 2 l ,
f p = f o p e n (" t e s t . t x t " , " r ") i
i f (! f p)
t

p r i n t f (" f a t a L e r r o r ") i
€ x i t (0) ,

)

NO

f i n c t u d e < s t d i o . h >
f d = f i L e n o (f p) i
i n t f d i
F I L E * f p ;

Returns the lile descriptor associated with the file pointer fp that has been
opened using f op e n.

A ,uoo"r'.

see std.

Librory Refelence Hisoft C Pqge 185

FL A

r e t = t L o o r (v a r) i
d o u b L e a e t , v a r ;

Retums the whole number less than or equal to the value of the aigument.

Although the result has a zero fractional pait it is a doubLe not an i nt.

r e t = F L o p f m t (b u f f e r . 0 . d r i v e _ n o , s e c t o r s - p e r _ t r a c k , t r a c k - n o ,
s i d e , r e s e r v e d _ s e c t o r s , 0 x 8 7 6 5 4 3 2 1 , v i . g i n > i' i n t a e t , d r i v e - n o , s e c t o r s - p e r _ t r a c k , t r a c k - n o , s i d e i

i n t a e s e r v e d _ s e c t o r s , v i r g i n ;
c h a r b u f f e r t 8 l 9 2 l ;

Fo rma ts a t r ack (t r ack_no) on a f l oppy [d r i ve -no : O=A , 1=B) on a g i ven
s ide (s i de) . The number o f sec to rs pe r t r ack (sec to rs -pe r_ t . ack) and
reserved sectors must be specified as parameters. v 'i . s i n gives the word fill
value for ne'l/ sectors.

The value returned is o if the oDeration succeeded.

r e t = F L o p r d (b u I l e r , D , d r i v e _ n o , s e c t o r ,
s i d e , n o - s e c t o r s) i

i n t r e t , d | i v e _ n o , s e c t o r , t r a c k , s i d e , n o

t r a c k ,

c h a r * b u f f e r ;

Reads sectors from a given floppy disk and stores the bytes at address
bu f t e r . Th i s f unc t i on reads no_sec to rs s ta r t i ng a t t he g i ven sec to r ,
t r ack and s i de f r om the d r i ve d r i ve -no (A=O, B=1) .

T?re value returned is zero if the operation was successful.

tOPV GE MDOS

r e t = F L o p v e r (b u f f e r , 0 / d a i v e _ n o , s e c t o r , t r a c k ,
s ' i d e , n o _ s e c t o r s) i

i n t r e t , d r i v e _ n o . s e c t o r . t r a c k , s i d e , n o _ s e c t o r s i
c h a r * b u f f e r i

Verifies floppy disk sectors and stores the numbers of those that fail in
bu{fe.. The other parameters are the same as for FLoprd.

L

Poge 186 Hisoft C [ibrory Refelence

L P

r e t = F L o p r r (b u f 1 e r , 0 , d r i v e - n o /
s i d € , n o _ s e c t o r s) ;

i n t r e t , d r i v e _ n o , s e c t o a , t r a c k ,
c h a r * b u f f € r ;

Writes one or more sectors to a floppy
parameters are the same as for F L o p|" d.

The value returned is O if the write was successful.

s e c t o r , t r a c k ,

s i d e , n o - s e c t o r s ;

d i sk f r om bu f f e r . The o the r

F ANSI

a = f m o d (b , c) ;
d o u b t e a , b , c i

Real number modulus.

This function returns b nod c.

a , b a n d c s a t i s r y t h e r e l a t i o n : b = k * c + a .

A
"

oro on".u,or.

OPE ANSI

i n c L u d e < s t d i o . h >
f p = f o p e n (n a m e , m o d e) t
F I L E * f p i
c h a r * n a m e , * m o d e ;

This function opens a ffle for the tjpes of i/o given by mode.

name is the lile to access including an optional path speciffer.

mode is a stiing of one to three characters.

The Iirst character must be present and should be one of:

The string may contain the character +. This indicates that the lile is opened
for updale (i.e. both read and write). If "r+" is used i/o starts ;t the
beginning of the file; if "!+" is used the file is created (any er<isting lile is
deleted) and if "a+" is used then i/o starts at the end of the lile.

wTrte.
open lor rrrite having moved to tl'e end ol the
file (append). If the file does not exist it is

[ib]qry Reference Hisott C Poge 187

The nod€ string may also contain the character "a' and tf so the lile is
treated as an ASCII file. In this case when reading CR/LF pairs {oxod,Oxoa)
a-re replaced by a stngle OxOa. when writing. OxOa is expanded to CR/LF. In
additi6n Ctrl-Z (0xla) is considered to indiaate t]le end of ffle. Alternatively,
you may include a " b " and the lile will be treated as a binaiy file, so that no
conversions will be down.

ExamDles :

open the file for read
open a file for read/write
open an ASCII f i le for read/wri le.
open a nev/ binarJr file for u/rite

Ttre value returned by the function is a ffle pointer for accessing the lile that
has been opened. If this value is O, the file could not be opened and e r r n o
v/ill indicate whv.

,/L\4-!J open. ldopen. lreopen. lclose.

OP EMD

f i t e _ h a n d t e = F o p e n (f i L e - n a n e , o p e n - m o d e) ;
' i n t f i L e _ h a n d L e , o P e n - t n o d e i
c h a a * f i L e - n a n e i

Opens the Iile with name f i t e-n a me for read and/or write depending on the

v a l u e o f o p e n - m o d e :

The value ieturned is either a positive file handle or a negative GEMDOS \v

error number folloiting an error.

OR RT ES

e x i t _ b u t t o n = f o r m - a L e r t (d e f a u L t - b u t t o n , s t r i n g) ;
i n t e x i t _ b u t t o n , d e f a u L t - b u t t o n i
c h a a * s t a i n g ;

Displays an alert dialog box on the screen and waits for user input.

de fau t t -bu t ton is the bu t ton number tha t w i l l be re tu rned i f the user
q 4) e s R e t u r n .

s t r i n g is a stiing of characters describing the alert message.

The returned value is the butlon selected by the user,

Poge 188 Hisoft C Librory Reference

OR EMA

i n c l u d e < g e t i b , h >
f o r m _ c e n t e r (b o x _ a d r , & x , & y , & r , g h) ;

0 B J E C T * b o x _ a d . i
s h o r t x , Y , Y , h ;

Centres a dialog box in the screen

box-adr ls the address of the tree to be centred.

The function returns x,y,r,h as the co-ordinates of tlle box.

R AES

r € t = f o r m - d i a L (t y p e , x 1 , y 1 , $ 1 , h 1 , x 2 , y Z , | l 2 , h 2 > i
i n t t Y P e , r e t ;
i n t x 1 , y 1 , s 1 , h 1 ;
i n t x Z , y 2 , ' r 2 , h 2 i

Initialise or finish tl1e display of a dialog box.

OR M AES

i n c L u d € < g e m L ' i b - h >
r e t = f o r m _ d o (d i a L o g , f i e L d - n o) i
i n t r e t , f i e L d _ n o i
0 B J E C T * d i a L o g ;

Irts the user interact v/ith a dia.log box.

F

\ r e t = f o r m _ e r I o r (e r r o r - n o) i
\ z i n t r e t , e r a o r _ n o i

Displays a GEMDOS error message given by error_no,

Librory Reference Hisoft C Poge 189

A

, i n c I u d e < s t d i o . h >
L e n = f p r i n t f (f p , f o r m a t , a r g 1 , a r 9 2 , . . . > ;
i n t L e n ;

c h a a * f o r m a t t
? 2 7 2 a r g l , a r g Z , . . .

Write formatted text to the ffle given by the lile pointer fp. This file must
have been opened using fopen.

? ? ? ? indicates that the parameters may be of different types.

This function is the same as printf except that the text is written to a ffle
rather than to the stardard output (the screen by default).

i n c t u d e < s t d i o . h >
r e t : f p u t c (c , f P) ;
r e t = p u t c (c , f p) ;
i n t c , r e t ;
F I L E * f P t

Writes a character c to a ffle given by fp. fputc and putc are identical.

If an error occurs the functlon returns -I and e r r no indicates the reason for
the failure.

A ,n.r,"nut, putchar, eirno.

U

AN

c = f g e t c h a r () i

Reads a file from the standard input (the keyboard by default). The ASCII
code of the character is returned bv the function.

A putchar, fputc.

Poge 190 Hisoti C [iblory Refelence

b y t e s _ r e a d = F r e a d (f h a n d L e , ^ , h u l l e r r i
. i n t f h a n d L e , b y t e s - r e a d , n ;

c h a r * , b u r f e r ;

Reads n bj, ' tes from the ff le given by fhandte (as returned from ropen). The
number of bj,'tes to read is given by n and the b]'tes read are stored in

\ - - b u f f e r .

The function's result is the number of bytes actually read. This value will be
less than n if an error occurs or the end-of-file is reached.

UT

i n c L u d e < s t d i o . h >
r e t = f p u t s (s , f p) i
i n t r e t ;

F I L E * f P ;

\frites a string of characters to the {ile given by f p. The flle must be opened
for wrtte.

If an error occurs this lunction returns -1 and
"..no

will indicate which
error.

A *r,", puts, errno.

FR sl
i n c L u d e < s t d i o . h >
n u m = f r e a d (b u { f e r , i t e m _ s i z e , n , t p r ;
' i n t n u m . n . i t e m - s i z e i
c h a r * b u f f e r ;
F I L E * f p ,

Reads n items of slze (in bl,'tes) i tem_si ze from the Iile given by fp. This
Iile must have been opened wtth f o p e n.

The items are read so long as end of lile is not reached or an error does not
occur.

b u J f e r is t]'e address where ttre items are stored,

The function returns the number of whole blocks read. If this is less than n
then an error has occurred or the end-of-Iile has been reached. These two
cases can be distinguished by using the f e r ro r and f e ol functions.

A r*",", fgetc, feof, ferror, errno.

GE M DOS

Liblory Reference Hisott C Poge l9 l

EE
.'-

r e t = t r e e (m e m) i

i n t r e t ;

This function frees a block of memory that has been allocated with ma t L o c,
\-

c a L L o c o r r e a L L o c .

The value passed as a parameter must have been returned by one of the \
allocation fiinctions and irust not have already been freed.

-

The value returned is O if successful ; -1 if an error occured.

A ^"tto", calloc. realloc, Malloc, Mlree,

AME

r e t = F r e n a n e (0 , o l d _ n a m e , n e l , l _ n a n e) ;
i n t r e t i
c h a r * o L d _ n a m e , n e v _ n a n e i

Renames an exist ing f i le otd-nane to have the name nev_name.

The-value returned is O if all is we1l.

EN

i n c t u d e < s t d i o , h >
f p = f f e o p e n (f i L e - n a m e , m o d e , f p)
F I L E * t p , * 1 p ;
c h a r r f i L e _ n a m e , * m o d e ;

Close a ffle and open another one using the same file pointer.

The file f p is closed and is immediately re-opened to refer to the file
t i Le_name i n t he g i ven access mode . The mode and f i Le_name pa rame te rs
are the same as for *Ie {open function.

Ttre value returned is the file pointer and is the same as that passed as a
parameter.

This function is generally used to redirect the standard input/output ffles. For
example to divert screen output (via stdout) to a f i le.

A ,oo".r, fdopen, dup.

Poge 192 Hisolt C Libldly Reference

EXP ANSI

a = f r e x p (b , e x P) t
d o u b L e a , b ;

Spli t a f loating point number b into i ts mantissa a (O.5<=a<1.O) and i ts
e x p o n e n l e x p (- 1 O 2 4 < e x p < l O 2 4 l .

The following relation is satisfied:

b = a * (2 ^ e x p)

, i n c L u d e < s t d i o , h >
n = f s c a n f (f p , f o r n a t , a t g l , a r 9 2 , . . .) i
r n r n i
F I L E * f p ;
2 ? ? a . * a r g l , * a . 9 2 , . . -

This function is equivalent to s c a n f except that tnput is taken from the file
f p rather from the standard input (s t d i n).

? ? ? ? indicates that the parameters may be of different tjrpes.

Note that

t s c a n f (s t d i n , f o r m a t , a r g 1 . , . .)

is equivalent to

s c a n f (f o r m a t . a r g 1 , . . .) t

A
""utrr,

sscanr, cscarf.

F

Librory Reference Hisoft C Poge 193

F

i n c t u d e < s t d i o . h >
r e t = f s e e k (f p , p o s , n o d €) i
i n t r e t , P o s , m o d e i

This function changes where in a file the next read or r'"'rite will occur. The
positon depends on the mode:

o pos gives the number of blrtes from the start
of tie ffle.

po s gives the number of bltes from the
current position.

pos gives the number of blrtes from the end of
the file (this number must alv/ays be O or
negative).

Ttre value returned by the function is O if the operation was successful or
non-zero if an error occurred in which case er.no indicates the tJ,?e of
error.

l0\ y,.1r"r, m o d e =2, the number ot b]rtes must be negative to move to beJore
the end of the file. It is not possible to position past the end of file.

,/i\
{--$ The f te L L function returns the current posiiion v/ithin the lile,

lA t.""t. ftell. rewind.

r e t = f s e [_ i n p u t (d i r e c t o r y . f i L e _ n a m e , & o k) i
i n t f e t i
s h o r t o k i
c h a r * d i r e c t o r y , * f i L e - n a n e ;

This function makes the file selector appear on the screen, lets the operator
use it and returns the value selected.

path is a string containing the drive and directory. This is updated when the
funcuon returns.

On input, t i Le-name is the name of t}le default f i le, on exit it is the value
that the user has entered; it should be at least 13 b)'tes long.

o k is returned as 1 if the user clicks on OK or O if on Concel.

fet is 0 if an error occurred and I if there was no error.

E

Poge 194 Hisofi C Librory Reference

lffi
l f fJ rnis function displays the f i le selector and stores in HhoLe-nane the
enure name of the file selected (the path + the name) and returns I if the

, name is valid and O otherwise.

The path and lile names are, by default, preserved between successive calls to
- the function, so that if the user changes drive or folder, the lile selector v/ill

\- display those that the user has previously selected.

c h a . p a t h _ n a m e [7 0] = " A r \ * . r " , f i L e - n a m e t 1 2 l = " " i
\ - ' c h a r H h o I e - n a m e [8 0] i

i n t a s k _ f o r - n a m e ()
t

s h o r t o k _ c L i c k € d t
c h a r r p ;
i n t o k ;
o k = 0 t
i f (f s e L - i n p u t (p a t h _ n a m e , f i L e - n a m e , & o k - c L i c k e d) & & o k _ c L i c k e d)
t

s t a c p y (r h o L e _ n a n e , p a t h _ n a m e) ;
i f (p = s t r r c h r (v h o L e - n a m e , ' \ \ '))
t

s t r c p y (p + 1 , J i L e _ n a m e) i
o k = 1 ;

)
)
r e t u r n (o k) ; / * ' 1 i f n a m e o k , 0 o t h e r r i s e r /

- |

TDTA GEM D
\' F g e t d t a (b u f t e r) i

c h a r * b u f f e r i

Set the GEMDOS data transfer address as used by the file search functions.

SFIR EMDOS

r e t = F s f i r s t (f i L e _ s p e c , a t t | i b u t e s) i
i n t r e t . a t t r i b u t e s ;
c h a r * f i L e _ s p e c i

Searches for the first ffle matching the { i L e_s p e c with the corresponding
attr ibutes {see rattr iU). The f i Le-spec may contain the wildcards * and
2 .

If a file is found, the function returns O and the GEMDOS data transfer area
{found using dta=Fgetdta()) contains the fol lowing information:

d t a l z l lile attributes
d t a t 2 2 l a n d d t a E 2 3 l ume stamP
d t a t 2 4 l a n d d t a t 2 5 l oate stamp
d t a t 2 6 l t o d t a t 2 9 l tile srze
d t a t S 0 l o n w a r d s lile name

[ibrory Reference Hisotl C Poge 195

SNE S

f e t = F s n e x t () i
i n t r e t i

Searches for the next file satisrying the conditions given by Fsfirst. This
function must not be called lDlt]'out calling Fst i rst.

This function returns O if a file is found and the information found is stored
in t he GEMDOS d ta . See Fs f i r s t ,

i n c L u d e < s t d i o . h >
p o s = f t e L L (f P)
r n t p o s i
F I L E * f p ,

Returns the position in the Iile r p of the next blte that vtill be read or
\,vritten.

A *r" position may be modified by using f s e e k.

F

, i n c L u d e < s t c l i o . h >
i t e m s _ u r i t t e n = f v r i t e (b u f f e r , i t e n _ s i z e , ^ , 1 p) i
i n t i t e m s _ v r i t t e n , n , i t e m - s i z e ;
c h a r * b u J f e . i
F I L E * f D , ;

Writes n items of size i tem-s i ze b]'tes to the ffle given by f p. The lile must
have been opened for write using fopen.

The items are v'ritten until n items have been wdtten or an error occurs.

b u f f e r is the buffer where the items to write are read from.

The function returns the number of entire items wdtten as its result. If this
number is less than n then an error has occurred.

A rp,rts, fputc, ferror, errno.

Poge 196 Hisott C Iibro]y Reterence

ITE o
b y t e s - H r i t t e n = F r | i t e ({ h a n d L e , n o - b v t e s , a d d r) i
i n t b y t e s - v r i t t e n , n o - b v t e s , f h a n d L e ;

" _ c h a r * 6 d d r ;

\-
Wntes no-byt€s from the buffer at addr to the l i le given by thand!e.

Thts function returns the number of bltes actually rtittten. After an error'
, t tr ls wtl l be tess than no-byt€s.

r e t = g e m d o s (n o , a r g l , a r g 2 . . .) ;
' i n t n o , r € s u L t i
I o n g a r g 1 , a r g 2 , a r 9 2 - . .

Call a GEMDOS function.

no is the function to ca.ll.

a r g !,a rg2 - . . are the parameters for this paiticular function.

\- A uios, 'bio".

Equivalent to tgetc.

o

,/i\
Z-i.-) 66y965 functions may be called directly using their names. For
examp le ccon in () i s equ i va len t t o gemdos (1) .

TBPB EMD

b p b = G e t b p b (d . i v e - n o) ;
s h o r t * b p b ;
i n t d r i v e - n o i

Returns a pointer to the Bios Parameter Block [bpb) for the disk drive given
by d r i ve -no (O=A,1=B , . . .) .

UNI

- Equ i va len t t o f ge t cha r .

ET UNIX

[ibrory Reference Hisoft C Poge I97

G

p a t h = g e t c v d (p , l . € n g t h) i
c h a r * p a t h , * p i
i n t L e n g t h i

This function retums the current dtrectory for the current drive.

If the pointer p is not zero then the name of the directory is placed tn the
buffer pointed to by p and p is returned as the result of the function.

If p ls zero, a block of memory of tength bytes is allocated using maLLoc and
the narne is stored there. The value returned by the function is a pointer to
this block.

The value returned is tierefore always a pointer to the current path or is O if
an error has occurred. In this case the !'ariable e r r h o v/lll specily the error'

Z-iJ 11 fts parameter p is zero the program should ensure that it retums the
memory allocated by tlle implicit call to oaL Loc by using the free function,

A ogetprth, e...ro.

G DO

G e t m p b (b u f f € .) i
c h a r * b u t f e r t
i n t b y t e s ;

Returns a pointer to the Memory Parameter Block used by the system.

p = g € t s (b u f f e r) i
c h a . * p , * b u t f e r ;

Reads a string of char:acters from the standard input file, s t d i n, v/hich is the
keyboard by default.

Chaiacters are read into buffer unfl l a Return character is found. This isn't
placed in t].e buffer but a null character \ 0 is placed instead.

Ttre value returned is equal to b u f f e r.

Poge 198 Hisoft C Librory Reference

/\4) This functlon doesn't make any checks that the buffer hasn't
overf lowed. We therefore recommend that you use fgets(buffer, max,

\- s t d i n) which wtll stop if you enter m a x characters before a carriage return.

- A ,*",", ,*","n-.
M DOS

r e t = G e t s h i f t (k e y s) ;
i n t r e t , k € y s i

Activate some control keys if keys>=O or read u/hich keys are pressed if
teys=-l. The value returned is always the new current state of the keys.

The keys are given as a bit map as follows:

o Right shift
I L€lt Shitt
2 Control Key
3 Altemate Key

Caps lock
5 ClrlHome
6 Inseri

ETR GEMD

r e s o L u t i o n = G e t r e z () ;
i n t r e s o L u t i o n ;

Returns the current screen resolution 2=high, l=medium, 0=1ow.

ETTIME
_ d a t e _ t i m e = G e t t i m e () i

\ L o n o d a t e t i m e ;\-
Returns the date and time as a long integer in the same format as for the

- - f u n c t r o n s r g e t d a t e a n d T g e t t i m e .

Librory Reference Hisott C Poge 199

v 6 L = G i a c c e s s (v a L u e , r e g i s t e r - n o) ;
i n t v a t , v a L u e / r e g i s t e r - n o ;

Reads or writes a value from/to a given sound chip register.

For reading pass the register number in regi ster-no; to wr:ite the register
number plus 128.

The value returned is the value read or written.

FD

r e t = g r a f _ d r a g b o x (u i d t h , h e i g h t ,
x _ i n i t . y _ i n i t ,
x _ L i m i t , y - L i m ' i t , H - L i m i t , h - L i m i t ,
& x - e n d , & y - e n d) ;

i n t v i d t h , h e i g h t , x _ i n i t , y - i n i t ;
i n t x _ L i m i t , y _ t i m i t , u - 1 . i m i t , h - L ' i m ' i t ;
s h o r t x _ e n d , y _ e n d ;

DisDlavs an outlined rectanAle (with initial co-ordinates x-i n i t, v-i n i t) of
the'sp-ecif ied uidth and hei ght. The user may then move the rectangle with
the mouse until ttre mouse button state changes. The box is forced to remaln
i n s i d e t h e r e c t a n g l e g i v e n b y x - L i m i t , y - L ' i m i t , u - L i m i t , h - L i m i t '

The Iinal position of the rectangle is returned in x-end and v-end.

r e t = g r a f _ g r o v b o x (x l , y 1 , l , l ' 1 , h 1 , x 2 , y 2 , u 2 . h 2 > ,
i n t x 1 , y 1 , u 1 , h 1 ;
: n t x 2 ' y 2 ' r 2 , h 2 ;

Drav/s an expanding rectangle in the same way as when a lvindow is opened
us ing t he Desk top . x ' 1 , y1 ,u1 ,h1 spec i f y t he sma l l e r r ec tang le and
x2 ,y 2 , v2 ,h2 t he l a rge r one .

The result of the function is 0 if an error occurs.

s

MR

R ANDLE AES

v d i _ h a n d t € = g r a f _ h a n d L e (& c h a r _ u , i d t h , & c h a r _ h e i g h t .
& b o x _ v i d t h , & b o x - h e i g h t) ,

i n t v d i _ h a n d L e i
s h o r t c h a r - | , l i d t h , c h a r - h e i g h t ;
s h o r t b o x - t { i d t h , b o x - h e i g h t ;

Returns the traDI virtual workstation that the AES is using and also the size of
a character cell and the size of a boxed character.

Poge 200 HiSoff C Librory Reference

RAF_ STA

g r a f - m k s t a t e (& x , & y , & b u t t o n , & k e v b o a r d) ;
s h o r t r , Y . b u t t o n , k e Y b o a r d i

Returns the current position of the mouse (x,v), the state of the mouse
buttons (button) and the state of the shift keys (kevboardJ.

A evnt-trutton.

a e t = g r a f _ m o u s e (m o u s e _ f o r m , a d r) ;
' i n t r e t , m o u s e - f o r n i

Changes the mouse form.

GR MOVE G

r e t = g r a f - n o v e b o x (u i d t h , h e i g h t ,
x _ s o u r c e , y _ s o u r c e . x - d e s t . y - d e s t) t

i n t r e t , H i d t h , h e i g h t i
i n t x _ s o u r c e , y - s o U a c e , x - d e S l , y - d e s t ;

D i s p l a y s a b o x o f s i z e (v i d t h , h e i g h t) m o v i n g b e t w e e n t h e t w o p o i n t s
(x , s o u r c e , y - s o u r c €) a n d (x - d e s t , y - d e s t) .

F- R, GEM

r e t = g r a f _ r u b b e . b o x (x , y , m i n - H i d t h , n i n - h e i g h t ,
& u i d t h , & h e i q h t) ,

i n t r e t . x , Y ;
i n t r n i n - u i d t h , m i n - h e ' i g h t ;
s h o r t r i d t h . h e i g h t i

Displays an outline box from (x,y) to the current mouse position and lets the
,-r""i ih.ng" the size of the box without letting it become smaller than
min-v id th , n in -he igh t . When the user re leases the mouse the cur ren t
width and heisht are returned in the variables t. l idth and heisht.

[ibrory Reference Hisott C Poge 201

EEINR

r e t = g r a f - s h r i n k b o x (x 1 , v ' l , t 1 ' h 1 . , 2 " 1 2 ' r t 2 ' h 2 ' ,
i n t x 1 , Y 1 . 1 1 , h 1 i
i n t t 2 , y Z ' v 2 ' h 2 i

Draws a rectangle shrinking in the
Desk toD 's w indows. x 1 ,Y 1 ' r 1 ,h I
x2,yZ,;2,h2 the larger one.

r e t is zero unless there was an error.

same way as when you
specifies the smaller

close one of the
rectangle and

i n c L u d e < g e m L i b . h >
p o s i t i o n = g . a f - s t i d e b o x (t r e e
v e r t i c a L) ;
i n t p o s i t i o n , P a r e n t , c h i L d ,
O B J E C T * t r e e - a d r t

kts a child object slide u/ithin its parent.

i i n c L u d e < g e m L i b . h >
o o s i t i o n = g r a f - v a t c h b o x (t r e e - a d r , o b j e c t - n o ,

' i n - s t a t e , o u t - s t a t e) i
i n t p o a i t i o n , o b j e c t - n o , i n - s t a t e , o u t - s t a t e i

O B J E C T * t r e e - a c l r i

Chanses an object s state as the mouse moves inside or outside of th€ object

;;til'd." mouie button is released. This should only be called when the
mouse button is down.

- a d r , p a r e n t , c h i t d ,

The value returned (posit ion) indicates i f the mouse is within t l le object

(1) or outside it (O) when the mouse button is released
\-

o b j e c t - n o = g t e x t - b o x (b o x - n o . x ' y . t e x t ._
c h a r - s i z e , b o r d e ' ' , { i L t) i

i n t o b j e c t - - n o / b o x - n o , x , y ' c h a r - s i z e ' b o r d e r , l l L L ;

c h a r * t e x t i

Adds a graphics te\t item to a dialog box.

A Section 3.3.10, Help command (gtext-bo).

SL E S

R c G AE

cH

?oge 202 Hisolt C Librory Reterence

B sl
r e t = i a b s (v a L) , '
i n t r e t , v a L ;

This function returns the absolute value of its parameter. Both values are of
tjpe integer.

A *", r*, r*".

I k b d v s (t e n , b y t e - s t r i n g) ;
i n t L e n ;
c h a . * b y t e - s t r i n g ;

Writes a str ing of t€n bltes from byte-str ing to the keyboard processor.

TB o

b o x _ n o = i n i t - b o x (r i d t h , h € i g h t , o b i e c t s) i
i n t b o x _ n o , H i d t h , h e i g h t , o b j e c t s i

Creates and iniUalises a dialog box.

A *.r,on 3.3.3, Help command (init-box).

ENU o
e n t t . y _ ' i n f o = i n i t - m e n u (d e s k - n a m e , f i L e _ n a n e , t ' i t L e s ,
e L e m e n t s) i
i n t e n t r y - i n f o , t i t I e s , e L e m e n t s ;
c h a r * d e s k - n a m e , * n a n e _ i n i o i

Initialises a menu.

A Section 3.4.2. Help command (inil-box).

[ibrory Reference Hisoft C Poge 203

OU

f e t : I n ' i t n o u s < t y p e , p a f a n . o r ;
' i n t r e t , t Y P e i
c h a r * p a r a m ;

Initialise the mouse depending on t]'e type of the parameter:

o disable the mouse
I enable mouse in relative mode
2 enable mouse in a e mode

enable mode in kevboard mode

pa ram is a pointer to a parameter block:

b u f f e r _ a d r = r o r € c (d e v i c e) ;
i n t d e v i c e i
c h a r * b u f f e r - a d r t

Returns the address of the i/o buffer for a device (O=RS232, l=keyboard,
2=MIDD.

p a r a m E 0 l gives the origtn of y co ordintates:
1=top O=bottom

p a r a rn ['1] is a parameter to the keyboard's set
mouse button command

p a r a m f 2 l is the hor?ontal mouse scale
p a r a m [3] vertical mouse scale

pa ramt 4 and 5 I mardmum horizontal mouse position

param[6 and 7] maximum vert ical mouse posit ion

pa r am t 8 and 9I initial horizontal mouse position

pa raml10 and 1'1 I ini t ial vert ical mouse posit ion

Page 2U Hisoft C Librory Reterence

ANSI

s a t n u m (c)
s a t p h a (c)
s a s c i i (c)
s c n t r L (c)
s c s y m (c) i
s c s y m f (c)
s d i g i t (c)

a L p h a n u n e r i c c h a r a c t e r * /
a t p h a b e t i c c h a r a c t e r * /
A S C I I c h a r a c t € r (< 1 2 a > * /
c o n t t . o I c h a r a c t e r (< 3 2) * /
C i d e n t i f i e . c h a | " a c t e . * /
i n i t i a L C i d e n t i f i e r c h a r a c t e r * /
d e c i m a L d i g i t * /
g r a p h ' i c s c h a r a c t e r * /
L o H e r c a s € t e t t e r * /
p r i n t a b L e c h a . a c t e r * /
p u n c t u a t i o n c h a r a c t e a * /
s p a c e , t a b o r \ n * /
u p p e r c a s e l e t t e r * /
h e x a d e c i m a I d i g i t * /

i n t r e t ,

s g . a P h (c) ;
s L o r e r (c) ;
s p r i n t (c) ;
s p u n c t (c) i
s s p a c e (c) ;
s u p p e r (c) , -
s x d i g i t (c) ;

These functions test the value of a chaiacter c and return either (O= FAI-SE
or I=TRUE) if the character sattsfies a certain condition.

For example istorer('e') returns L because e is a lower case letter and
i s u o o e . (' e ') r e t u r n s O .

EM iSoft

e n t r y _ n o = i t e m _ m e n u (t i t L e) ;
i n t e n t r y - n o i
c h a r * t i t l e i

Adds an entry to a menu.

J EMD

r e t = J d i s i n t (i n t _ n o) ;
i n t r e t , i n t _ n o i

Disables intermpt i nt-no of the 68901.

J

r e t = J e n a b ' i n t (i n t - n o) ;
i n t r e t , i n t _ n o i

Enables the 68901 interrupt number int_no,

Librory Reference Hisotl C Poge 205

E

d e s c r i p t o r - a d r = K b d v b a s e () ;
c h a r * d e s c | i P t o r - 6 d r ;

Returns the address of the keyboard vector table.

R

p e r i o d = K b r a t e (d e L a y l , d e l a y z >)
L o n g p e r i o d ;
i n t d e t a y l , d e L a Y 2 i

Sets or returns the keyboard repeat rate. del'av'1 is the delay before key
repeat and deLay2 after.

If both parameters are -1 then the cunent settings are not changed.

The functlon returns a long composed of the new values of d e L a v 1 and
d e t a y 2 -

o L d - a d d r e s s = K e y t b L (u n s h i f t , s h i f t , c a p s L o c k) i
c h 6 . * o l d - a d d r e s s , u n s h i { t , s h i f t , c a p s L o c k '

Sets the BIOS keyboard translatlon tables.

r e t = L a b s (v a L) i
I o n g r e t , v a L i

This functton returns the absolute value of its paiameter. Both values are of
g /pe Long.

A aus, iars, fabs.

Poge 206 Hisoft C Librory Reference

P ANSI

a = L d e x p (b , e x p) i
d o u b L e a , b ;
r n r e x p ;

P roduces a f l oa t i ng po in t number f r om a man t i ssa b (0 ,5<=b<1) and
exponent exp. This is the inverse operation to f rexp.

The following relation is true:

a = b * (2 ^ e x p)

A uoo.

iSoft C

i n c L u d e < L i n e a . h >
p a r a m - a d r = L i n e a 0 () ,

n e a ' l () ;
n e a 2 () ;
n e a 3 () ;
n e a 4 () i
n e a 5 () i
n e a 6 () i
n e a T (b L k) t
n e a S () ;
n e a 9 () ;
n e a a () i
n e a b () ;
n e a c (s a v e) ;
n e a d (r . y , s p r i t e ,
n e a e () ;
n e a f () i

L A _ I N I T * p a r a m _ a d r ; / * P o i n t e r t o L i n e A v a r i a b t e s r /
L A _ S P R I T E * s p r i t e , a s a v e ; / * P o i n t e r s t o S p r i t e s t /
i n t x , y ; / * S p | . ' i t e c o - o r d i n a t e s * /
c h a r * b L k ; / * P o i n t e l . t o a b i t b L k s t . u c t u r e * /

/ * r e t u r n a d d r e s s o f L i n e A
/ a d r a u a p o i n t * /
/ * r e a d c o t o u r o f a p o ' i n t
/ * d r a v a L i n e { /
l r d r a r a h o r ' i z o n t a L L ' i n e
I * c l r a u a f i L L e d r e c t a n g t e
/ * d r a u p a r t o f a p o L y g o n
/ r b i t b l k o p e r a t i o n s * /
/ * v r i t e a c h a r a c t e r * /
/ r s h o r m o u s e * /
/ r h i d e n o u s e * /
/ t c h a n g e m o u s e f o r m r /
/ r u n d ' " a r s p r i t e * /

s a v e) i / + d r a v s p r i t e * /
/ * c o p y r a s t e r f o r m * /
/ * s e e d f i L L * /

Librory Reference Hisoft C Page 207

The followin€ three structures are
Ttrey are defined in the lineo.h {ile.

used v/hen calling the LineA routines.

t y p e d e f s t r u c t

{

L a _ v a r i a b L e s

L a - H i d t h ;
r t a _ c o n t r L , ;
* L a _ i n t i n ;
* L a _ p t s i n i

* L a _ p t s o u t ;
L a _ c o [0 b i t i
L a - c o [1 b i t i
L a _ c o t 2 b i t i
L a _ c o [3 b i t i

L a _ L n m a s k ;

L a _ x 1 ;
ta-y l ;
L a - x 2 ;
l a _ y 2 ;
r t a _ p a t p t a ;

a _ p a t m s k i
a _ m f i L L ;
a - c L i p i
a _ x m i n c L ;
a - y m i n c L t
a _ x m a x c L i
a _ y m a x c L ;
a _ x d d a i
a - d d a ' i n c i
a _ s c a I d i r ;

s h o r t t a - x s o u r c e i
s h o r t L a _ Y s o u r c e i
s h o r t t a _ d s t x i
s h o r t L a _ d s t y i
s h o r t I a _ d e L x ;
s h o r t t a _ d e L y i
s h o r t * l a _ f b a s e ;
s h o r t t a - t r i d t h i
s h o r t L a - s t y L e i
s h o r t L a _ L i t e m a s k i
s h o r t I a _ s k e m a s k ;
s h o r t L a - u i e g h t i
s h o r t L a _ r o f f i
s h o r t L a - L o f f ;
s h o r t L a _ s c a L e i
s h o r t L a _ c h u p t
s h o | . t t a _ t e x t t g i
s h o r t * L a _ s c . t c h p ;
s h o r t L a - s c r p t 2
s h o r t L a _ t e x t b g ;
s h o r t L a _ c o p y t r a n ;

} L A - V A R I A B L E S ,

* n u n b e r o f p t a n e s n * /
* n u n b e . o f b y t e s / L i n € * /
* p o i n t e . t o t h e c o n t r L a r r a y t /
* p o i n t e r t o t h e i n t i n a . r a y * l
* p o i n t € a t o t h e p t s i n a a r a y * l
* p o ' i n t e | . t o t h e i n t o u t a r r a y * l
* p o i n t € r t o t h e c o n t r L a r r a y * /
* c o L o u . f o r p t a n e 0 * /
* c o I o u r f o r p l , a n e I * /
* c o t o u . f o r p l a ^ e 2 * l
* c o L o u a f o r p l , a n e 3 * /
* t . l h e t h e | " L a s t L i n e p o i n t i s p L o t t e d * /
* D o t y L i n e t y p e * /
* d i s p t a y m o d e * /
* x ' 1 c o o r d r /
* y l c o o . d * /
* x 2 c o o t ^ d * /
* y Z c o o r d * I
* p o i n t e r t o c u r | " e n t f i l . L p a t t e r n * /
r l i L L p a t t e r n m a s k * /
* m u L t i - p L a n e f i t L f t a g * /
* c t i p p i n g f L a s * /
* m i n i n u m x c L i p p i n g v a L u e * /
r n ' i n i m u m y c L i p p i n g v a L u e * /
* m a x i m u m x c L i p p i n g v a L u e * /
* m a x i | n u m y c L i p p i n g v a L u e * /
* a c c u m u L a t o r f o r L i n e a S * /
* t f a c t i o n a L a m o u n t t o s c a L e u p l d o | . l n t /
* s c a L e d i r e c t i o n f L a g (0 = d o r n , 1 = u p) * /
* 1 i t n o n o - s p a c e d , 0 = p r o p r t i o n a L * /

/ * x c o - o r d o f c h a L i n l o n t f o r m * /
/ r y c o - o r d o f c h a | i n t o n t f o r m t /
/ * x c o - o r d o f c h a r a c t e r o n s c r e e n * /
I t y c o o r d y o f c h a r a c t e r o n s c r e e n * /
/ * | , l i d t h o f c h a t . a c t e r * /
/ * h e i g h t o f c h a r a c t e r r /
/ * p o i n t e r t o f o n t b a s e * /
/ * H i d t h o f f o n t f o r m * /
/ * t e x t b L t s t y L e * /
/ * m a s k u s e d t o " g r e y " t e x t * /
/ * m a s k u s e d t o s k e H t e x t * /
/ * N i d t h t o t h ' i c k e n t e x t * /
/ * o f f s e t a b o v e c h a r l . l h e n s k e u i n g * /
/ * o f f s e t b e L o v c h a r L , h e n s k e ! , , , i n g * /
/ * s c a L i n g f L a g * /
/ * c h a r a c t e r r o t a t i o n v e c t o r t /
/ * t e x t f o r e g r o u n g c o L o u r * /
/ * p o i n t e r t o s p e c i a L e f { e c t s b u f f e r s * /
/ * o f f s e t o f 2 n d b u f f e r * /
/ * t e x t b a c k g r o u n d c o L o u r * /
/ * c o p y a a s t e r t o r m t y p e * /

s h o r t
s n o r r
s h o a t
s h o f t
s h o r t
s h o a t
s h o r t
s h o a t
s h o r t
s h o r t
s h o r t
s h o a t
s l r o r t
s h o r t
s h o r t
s n o r r
s n o T t
s h o r t
s h o r t
s h o r t
s h o r t
s h o r t
s n o T !
s h o r t
s h o l . t
s n o a !
s h o r t
s h o r t
s h o r t
s n o r t

Poge 208 HiSofi C Librory Reference

t y p e d e f s t n u c t L a _ i n i t
t

s t r u c t L a - v a r i a b I e s

I o n g t a - a 1 i
t o n g I a _ a 2 ;

) L A - I N I T i

t y p e d e f s t r u c t L a _ s p f i t €
t

s h o r t L a _ x h o t i
s h o l . t L a _ y h o t i
s h o r t I a _ f o a m a t i
s h o f t L a - c o L ' 1 i
s h o l . t L a _ c o L 2 i
s h o r t L a - i f i a g e [3 2] ;

] L A - S P R I T E t

ffi
[9",8

i n c L u d e < L i n e a . h >
L A _ I N I T * p t r i
L A _ V A R I A B L E S * p i
v o i d m a i n ()
t

p t r = L i n e a 0 () ;

* L a - a 0 i
/ * p o i n t e r t o t h € L A
/ * p o i n t e r t o s y s t e n
/ * p o i n t e r t o L i n e A

_ v A R I A B L E S a r e a * /
f o n t h e e d € r I i s t * /

/ * x o f f s e t o f s p r i t e h o t s p o t * /
/ * y o f f s e t o f s p r i t e h o t s p o t * /
l * 1 l o r u D r , - ' 1 f o r x 0 R * /
/ r b a c k g r o u n d c o t o u r * /
/ * f o . e g r o u n d c o t o u r * /
/ * s p r i t e i m a g e * /
/ * (r o | " d s o f n a s k & d a t a a L t e . n a t e) * /

/ * n a k e p c o n t a i n t h e a d d r € s s
p = p t r - > L a _ a 0 i

/ * d r a v a p o i n t * /
(p - > L a - p t s i n) f 0 l = 1 0 0 i
(p - > L a _ p t s ' i n) t 1 l = 5 0 ;
(p - > L a _ i n t i n) t 0 l = 1 ,
t i n e a l () i

l * d t a u a l i n e * I
p - > t a _ x 1 = 1 0 5 i
p - > t a _ y 1 = 5 5 ;
p - > L a _ x 2 = 3 0 5 , '
p - > t a - , y z = 1 0 5 ;
p - > L a _ c o [0 b i t = ' 1 . '

L ' i n e a 3 () ;

/ * d r a u a r e c t a n q L e * /
p - > t a _ x 1 = 3 0 0 ;
p - > L a _ y 1 = 6 0 ,
p - > L a _ x 2 = 4 0 0 ;
p - > l a _ y 2 = 1 2 O ;
L i n e a 5 () ;

o { t h e L i n e A v a r i a b t e s * /

a = L o g (b) i
d o u b L e a , b ;

Returns the natural log (to base e) of the argument. Both values are double
reals.

Librory Reference Hisott C Poge 209

L sl
a = t o g 1 0 (b) t
d o u b t e a , b ;

Returns the log to base 10 of the argument. Both values are double reals.

SE

s c r - a d d r = L o g b a s e () ;
c h a r * s c r - a d d r i

Returns the address of the logical screen (that which software routines
modify).

T AN

L q s o r t (a r r , n) i
L o n g * a r r ;
i n t n ;

This function sorts an airay a r r of long integers into ascending order.

A aq"ott, sqsort, tqsort.

EK

. e t = L s e e k (f d , P o s , f l o d e) ;
' i n t r e t , { d , P o s , m o d i i

Moves the input/output position on the UNIX Iile f d depending on the value
o f m o d e :

O po s gives the number of bytes from the start of the lile

I pos gives t] e number of bltes from the current
posit ion

2 po s gives the number of bltes from the end of the file
(this number must always be O or negative)

The value returned by the function is O if the operation was successful or
non-zero if an error bccurred in which case €.rno indicates the t]?e of
error.

Poge 210 Hisoft C Librory Reference

A *"n mode=2, the number of bjrtes must be negative to move to beJore
the end of the lile. It ts not possible to position pcst the end of file.

Ttris function returns the new posiuon from the beginning of the file.

/i\
{-iJ This function may be used to ffnd the length of a file, as follows:

L e h g t h = L s e e k (f d , 0 , 2) i

fseek.

a d t . = m a L L o c (s i z e) ,

u n s i g n e d L o n g s i z e ;

Allocates a block of memory of the size that is passed as a pzrrameter.

The value returned is a pointer to the allocated memory or zero if the
allocation was not possible.

The memory is allocated from GEMDOS system memory u/hose size is fixed
when the interpreter is loaded. This can be changed if you have sufficient
memorv.

A Sectlon 1.4.13, Malloc, Mfree. calloc, liee, realloc.

a d r = i l a l L o c (s i z e) ;

u n s i g n e d I o n g s i z e ;

Allocates a block of memory whose size is passed as a parameter.

The value returned is a pointer to the allocated memory or O if the allocation
was not possible.

This function returns the number of free bltes if the value passed is -1.

malloc

A

Librory Refelence Hisott C Poge 2l I

AT UN

, i n c L u d e < m a t h . h >

r e t = n a t h e r r (m a t h s t r) ;
i n t r e t i
s t a u c t e x c e p t i o n * m a t h s t r ;

This function is called when an error occurs
mathematical function. The details of the error
structure which is modiffed by the function.

ANSI

L a r g e r = m a x (a , b) ;
i n t a , b , L a r g e r i

This function returns the larger of ttre two integers passed as paralneters.

during the execution of a
a ie s to red i n t he oa ths t r

CCPY

t e s t = I | l e d i a c h (d r i v e _ D o) i
i n t t e s t , d r i v e - n o ;

Tests if the floppy disk has been changed in drive A (d r i ve-no=0) or drive B
(d l i v e - n o = 1) .

The value returned is:

p = m e m c c P Y (d e s t , s o u r c e , c h , b Y t e s) i
i n t b y t e s , h i
c h a f * d e s t , * s o u r c e . * p ;

This function copies a block of memory from s ou r c e to de s t.

by t e s gives the number of bytes to copy.

The copy stops when the number of bltes has been copied or the character
c h is found.

Ttre value returned is a pointer and has the same value as d e s t.

A -.-"0". strcpy, strncpy.

HM

Poge 212 Hisoft C Librdry Reference

p o s = m e m c h r (b L o c k , c h , b y t e s) t
i n t c h , b Y t e s ;
c h a r * b t o c k , * P o s ;

This function returns a pointer to t].e lirst character
starting at bLock and of Lensth b]'tes.

If the character cannot be found O is returned

A strchr, strrchr.

c o m D = m e t n c m p (b L o c k l , b L o c k 2 , b y t e s) ;
c h a r * b t o c k l , * b L o c k 2 ;
i n t c o n p , b Y t e s i

This function compares two blocks, bLockl and bLock2, of Length bi^es'

If the value returned is O then the two blocks are idenucal'

If not, the comparison stops as soon as two bJte-s differ and the value

returned is posilive or negauve depending on whether the character from

the llrst block is larger or smaller than the second respectjvely.

A
"trn"*p.

p = m € n s e t (b u f , c h , L e n) ;
c h a r * b u f , * p i
' i n t L e n , c h i

This function fills a block of memory pointed to by buf and t€n bytes long'

Ttre value returned is a pointer to the same place as bu f.

c h found in the block

d e s t = n e m c p y (d e s t , s o u f c e , L e n r ;
i n t L e n ;
c h a r * d e s t , * s o u r c e i

This function copies a block of Len b]'tes from
re tu rned i s des t .

The areas to be copied may parually overlap'

s o u r c e t o d e s t . T h e v a l u e

Librory Reference Hisoft C Pqge 213

BAR MA

i n c t u d e < 9 e m L i b , h >
r e t = m e n u - b a r (m e n u _ a d f , d i s p I a y) i
i n t r e t , d i s p I a y ;
0 B J E C T * m e n u - a d r ;

D i s p l a y s (d i s p L a y = ' 1) o r d e l e t e s (d i s p L a y = o) t h e m e n u b a r g i v e n b y
m e n u - a d r ,

The value returned is O following an error.

E HECK M AES

, i n c L u d e < g e m L i b . h >

r e t = n e n u _ i c h e c k (m e n u - a d r , e n t r y - n o . c h e c k) i
i n t r e t , e n t r y _ n o , c h e c k ;
O B J E C T * m e n u _ a d r ;

D i sp lays (check=1) o r r emoves (check=0) a t i c k i n f r on t o f menu en t i y
en t r y -no w i t h i n t he t r ee enu -ad r .

Ttre value returned is O follort'ing an error.

E ABLE ES

i n c L u d e < g e m L i b . h >

r e t = m e n u _ i e n a b L e (m e n u _ a c l r , e n t r y - n o , e n a b L e) i
i n t r e t , e n t r Y - n o , a c t i v e ;
O B J E C T * m e n u - a d r ;

E n a b l e s (e n a b l . e = l) o r d i s a b l e s { e n a b L e = O) e n t r y n u m b e r e n t r v - n o f r o m

menu tree f lenu-adr. Disabled menus are displayed in grey.

The value returned is O following an error.

E ER

e n t r y _ n o = m e n u - r e g i s t e r (a p p | _ i d , e n t . y _ n a m e) i
i n t a p p L _ i d , e n t r y - n o ;
c h a r * e n t r y _ n a m e ;

Adds the name of a desk accessory within name e n t.y-n ane and application
id app t_ id t o t he desk menu . The appL - i d i s r e tu rned by appL - i n i t .

The value returned is the entry number v/ithin the desk menu.

Pdge 214 Hisoft C librory Reference

. -
i n c L u d e < g e m l i b ' h >
r e t = n e n u - t € x t (m e n u - a d r , e n t r y - n o , s t r i n g) i
' i n t r e t , e n t r Y - n o ;
c h a r * s t r i n g ;

' ' -
O B J E C T * m e n u - a d r ;

Changes t l le text for the menu entiy entrv-no of tree menu adr to be
s t r i n q .

The value returned is zeto if a\ eror occurred.

N AE

, i n c L u d e < g e m t i b ' h >

r e t = m e n u - t n o r n a L (m e n u - a d r , t i t L e - n o , i n v e r s e) ;
' i n t r e t , t i t L e - n o , i n v e r s e ;
O A J E C T * m e n u - a d r i

D i sp lays a menu t i t l e i n i nve rse v i deo (i nve . se=1) o r no rma l (i nve . se=0) .

The menu t i t le is given by t i t L e-no and the tree address 'nenu-ad r.

The value returned is O following an error.

INT o
t l f p i n t (v e c t o f - n o . a d r > ;
i n t v e c t o r - n o i

Sets interrupt vector ve ct o r-no to be adr.

REE G

r e t = t t l f . e e (p o i n t € r) ;
i n t r e t ;

\ - c h a r * p o i n t e . i

Frees the memory array given by pointer which has been al located by

l l a L t o c .

-
This functron returns zero if successful.

E

Librory Reference Hisoft C Poge 215

ID

i d i v s (L e n , s t r) i
i n t L e n i
c h a r * s t r ;

Sends a str:ing of L en characters given by s t r to the MIDI port.

IR

r e t = m k d i r (d i r e c t o | " Y - n a m e) i
i n t r e t ;
c h a r * d i r e c t o r Y - n a m e ;

Creates a new directory cal led d i r e c tory-name.

The value returned is O if successful; if the operation fails -1 is returned and
e r r n o will indicate the source of the error.

Dcreate, errno.

s n a L I e . = m i n (a , b) ;
i n t a , b , s m a L t e r ;

Returns the smaller of two whole numbers a and b.

f | " a c = m o d f (d b L . & u h o l e) i
d o u b L e k h o L e , d b t , l r a c ;

Splits a double floating point number into its whole (returned in vhote) and
fractional part {retumed as the result of the function).

Of course,

d b L = l l h o L e + { r a c ;

A r*oa, frexp, ldexp.

AM

Poge 216 HiSofi C librory Reference

s t a t u s = m o u s e (& x , 8 Y , b u t t o n - n o) i
' i n t x , y , s t a t u s , b u t t o n - n o i

Reads the position of the mouse into (x,v) after the user has clicked a button.

If button-no=o then the functton doesn't wait for a cl ick but returns the
mouse Positron immediately.

\ . - I f button-no=1 then mouse waits for a cl ick on the left button, 2 the r ight
button, 3 both buttons at once.

Ttre value returned gives the state of the button in the same form as for the
' . - pa rame te rbu t t on -no .

/N g.rp command, mouse.

EMD
\ . - -

r e t = i l s h r i n k (b a s e - p a q e , b y t € s) ;
i n t r e t , b y t e s ;
c h a r * b a s e - P a g e i

\.- Free memory to system during initialisation.

base -page i s t he p rog ram 's base page ; bv tes i s t he number o f by tes t o

\-
return'

Ttre value returned by the function is zero if the operauon was successful.

BJ G

, i n c L u d e < g e m L i b . h >
\ _ r e t = o b j c - a d d (t r € e _ a d r , p a r e n t - o b i , a d d - o b j) i

i n t r e t , p a r e n t _ o b j , a d d - o b j ;
0 B J E C T t t r e e - a d r i

. r Adds an ob jec t (o f i ndex add -ob j) t o have pa ren t pa ren t -ob i i n t he t r ee
t r e e a d r .

The value returned is O i f an error occurs.

[ibrory Reference Hisotl C Poge 217

B MA

i n c L u d e < g e n L i b . h >
r € t = o b j c _ c h a n g e (t r e e _ a d l . , o b j e c t _ n o , O , x , y , y , h ,

o b j e c t - s t a t e , d l . a H _ o b j e c t) ;
i n t r e t , o b j e c t _ n o i
i n t x , Y , v , h i
i n t o b j e c t _ s t a t e , d | . a r _ o b j e c t i
0 B J E C T * t r e e _ a d r i

C h a n g e s t h e s t a t e o f t h e o b j e c t o b j e c t - n o i n t h e t r e e t r € e - a d r t o b e
o b j e c t - s t a t e . If d r a H _ o b j e c t =1 then re-draw the obiect with the
rectangle (x,y, r , t r) .

Ttre value returned is 0 if an error occurs.

OB

' i n c L u d e < g e m L i b . h >
t . € t = o b j c _ d e L € t e (t r e € _ a d r , o b j e c t _ n o) ;
i n t r e t , o b j e c t _ n o i
0 B J E C T i t . € e _ a d r ;

R e m o v e s t h e o b j e c t o b j € c t - n o f r o m t h e t r e e t r e e - a d r .

i n c t u d e < g e m t i b . h >
r e t = o b j c _ d r a x (t r e € _ a d r , o b j e c t _ n o , L e v e [, x , y , r , h r ;
i n t r e t , o b j e c t _ n o , L e v e L i
i n t x ' y ' r , h ;
0 B J E C T * t r e e _ a d r i

D raws an ob jec t (ob j€c t_no) i n a t r ee (t r ee_ad r) w i t h i n t he c l i pp ing
rec tang le (x , y , v ,h) .

If t eve L =0 then the function drav/s just the object itself.

If LeveL=1 then the function drav/s the object and its children.

If Levet=2 then the object, its children and grand children are drawn.

The maximum Leve L is level 10.

zero is returned if there was an error.

B

Poge 218 HiSofi C tibrory Reference

OB EM AE

i n c t u d e < g e m L i b - h >

r e t = o b j c - e d i t (t r e e _ a d r , o b j € c t _ n o , c h a r a c t e r , p o s i t i o n ,
k i n d , & r e t - p o s i t i o n) ;

i n t r e t , o b j e c t _ n o , c h a r a c t e r , p o s i t i o n , k i n d i
s h o r t r e t - P o s i t i o n , '
0 B J E C T * t r e e _ a d | " ;

. Display a character in a G_FTEXT object {given as object-no of the tree
t | . e e a d r) .

posi t ion gives the index where the character ls to be added. The posit ion
after the addit ion ls given as r e t_pos i t ion.

The operation performed depends on the value of k i n d:

o E D S T A R T reserved
ED_IN IT d i sD lav t he s l r i nA and l u rn l he t ex t cu rso r on

2 ED-cHAR va l i da te t he cha rac te r and re -d i sp lay s l r i ng
3 E D E N D turn text cursor oll

Ttre value returned is zero if an error occurred.

M AES

i n c t u d e < g e f l t i b . h >
o b j e c t _ f o u n d = o b j c _ { i n d (t r e e _ a d r , o b j e c t _ n o . l e v e t , x , y) i

\ . - , i n t o b j e c t _ n o , L € v e L , o b i € c t _ f o u n d i
i n t x , y ;
0 B J E C T * t r e e _ a d r ;

_ Finds which object is under co-ordinates (x, y).

The search is within tree tree_adr start ing at object object_no (normally
O). The search descends to a level given by L ev e t (see o b j c_d r a u).

\-
The value returned is -1 if the object is not found; otherwise it is the index of
the object that has been found.

OBJC FFSET

f i n c l u d e < g e m t i b . h >

r e t = o b j c _ o f f s e t (t r e e _ a d r , o b j e c t _ n o , & x , & y t ;
i n t r e t , o b j e c t _ n o i
s n o f t x . y i

\ - 0 B J E C T * t r e e - a d r i

R e t u r n s t h e c o - o r d i n a t e s o f o b j e c t _ n o o f t r e e t r e e _ a d r i n (x , y) .

_ The value return is zero if an error occurs.

Librory Reference Hisott C Poge 219

B MAE

f i n c l u d e < g e m t i b . h >
r e t = o b j c _ o f f s e t (t . e e _ a d r l o b j e c t _ n o , n e H _ p o s i t i o n) i
i n t r e t , o b j € c t _ n o , n e | l _ p o s i t i o n i
0 B J E C T * t r e e _ a d . ;

Moves an object (object-no) from t iee tfee-adr within the tree structure.
The va lue ne ! , - pos i t i on (0 ,1 ,2 , . .) i nd i ca tes wh i ch ch i l d (f i r s t , second ,
third) of its parent the new object is to be.

The value retum is zero if an error occurs.

0 f J q i b i t (b i t - n o) ;
i n t b i t _ n o i

Resets (to O) a bit of port A of the sound chip. which bit to zero is passed as a
parameter.

IB

0 n g i b i t (b i t - n o) t' i n t b i t _ n o i

Sets (to 1) a bit of port A of tlle sound chip. Which bit to set is passed as a
parameter.

i n c L u d e < f c n t L . h >
n f = o p e n (f i L e _ n a m e , m o d e , a c c e s s) ;
c h a r * f i t e - n a m e ;
i n t n f , m o d e , a c c e s s ;

T h i s f u n c t i o n o p e n s a f i l e f i L e _ n a m e a n d r e t u r n s i t s f i l e h a n d l e . m o d e
indicates ho]r' the file is to be opened as given in the following table. These
constants aie defined in the file fcnll.h):

O _ R D O N L Y reao onlY
O I , J R O N L Y wrrte onlv
O R D I , I R read ancl write
O_APPtND wr i l e S ta run€ a t l he end O I t he l i l e
O T R U N C i l the l i le exists, delete i t
0_cREAT i l t he l j l e doesn I ex i s t c rea te i t
O - E X C L {used only with 0_CREAT, i l the l i le exists

don't oDen i t

Pdge 22O Hisoft C Librory Reference

The values above can be combined using the OR operator e.g.
0 _ c R E A T l 0 _ E X C L .

The a c c e s s parameter specifies how the lile may be accessed and takes one
of the follouring values:

access = s - IREAD : f i l e i s r ead on l y .

access = s_ IREAD l s_ I I JR ITE o r node = O : f i l e i s open fo r r ead /w r i t e .

The value ieturned by the function is the lile number which must be used for
all input-output operaUons on the lile.

I f an error occurs, this function returns -1. The variable errno indicates
'$/hich error has occuired.

lA wte., you open a lile with this function, you can only use the Unix
input/output functions (read and |Jr i te for example) and not the ANSI ones
(e . 9 . f r e a d , f r l . i t e , f p r i n t f) .

A
"."ut,

chmod, close, fopen, ermo.

P iSo

H i n d o w _ n o = o p e n - r ' i n d o r (a t t r i b u t e s ,

i n t L r i n d o w _ n o , a t t r i b u t e s , x , y , u ,
c h a r * t i t L e , * c o m n e n t i

Opens a vrindow.

y . H , h , t i t L e ,

''-
A ,."r,on 3.2.3, Help command {open-win).

c GEM DOS

b a s e _ p a g e = P e x e c (e x e c u t e , p r o g r a m _ n a m e , a r g _ L ' i s t /
e n v i r o n m e n t) ;
c h a r * b a s e _ p a g e ;
i n t e x e c u t e i
c h a r * p r o g r a m - n a m e , * a r g _ t i s t , * e n v i r o n m e n t i

Irad and/or execute a program in memory.

I f execute = O, the program is loaded bu t no t executed . I f execute = 3 , the
program is loaded and executed.

p r o g r a m _ n a m e i s t h e n a m e o f t h e p r o g r a m t o l o a d . a r g _ L i s t
arguments that you wish to pass onto the program. envi ronnent
environment variables to be passed.

The function returns the address of the base
been loaded.

page of the program that has

gives
gives

the
the

Librory Reference Hisofi C Pqge 221

P ASE G

s c r € e n _ a d r = P h y s b a s e () i
c h a r r s c r e e n - a d r ;

Retums the address of the physical screen (that u/hich is actually dtsplayed
on the monitor).

P oft

p o s _ r ' i n d o w (r i n d o s - n o / c o L u n n , r o w) i
i n t x i n d o x - n o , c o L u f i n , r o l , r ;

Positions the text cursor v/ithin a wlndow that has been opened by
o p e n _ r l n d o L l .

A Sectlon 3.2.7, Helpcommand (pos-v/ind).

r e s u I t = p o v (n u m b e r , e x P o n € n t) i
d o u b L € r e s u L t , n u n b e r , e x P o n e n t ;

Raise the parameter number to the power of €xponent.

The two pdameters and the value returned are both double reals.

The three values satisi':

r e s u I t = n u n b e r ^ e x P o n e n t .

A tog. tog to. e*p.

AW

Po.ge 222 HiSoft C [ibrory Refelence

P

L e n g t h = p r i n t f (f o r m a t , a r g l , a r 9 2 , - - -) ;
c h a r * t o r m a t i
i n t L e n g t h i
2 2 ? 2 a r g l , a r g 2 , . . .

This function performs formatted output. The output is to the standard file
stdout (the screen, by default).

The p |i n t f function builds up its output based on a control string and then
sends it to the screen by default. The value returned by this function is the
number of char:acters output by pf intf .

The Darameter format contains both ordinary characters to be simply
copied to the screen and format conversion chaiacters with v/hich to w'ite
thA other aiguments to the pri ntf function.

Each one of these conversion sequences outputs a string of characters that is
not explicitly contained in the format string.

?? ?? indicates that the parameters may be of different t,?es.

You must have an exact correspondence between the control string and the
pararneters ar91, ar92, . . . Each conversion specif icauon is associated with-one

parameter that describes how that parameter is to be written to the
screen.

The type of tlle variable indicated in the specilication must correspond
exact{r'wittr the type of the variable that is passed as a parameter. Otherwise,
the results are not predictable...

The conversion specilications are of the form:

Z E a t t r i b u t e s l t n i n i m u n l t . p r e c ' i s i o n l I L] t y p e

A speciffcation always starts with the character z. There then follo'ts various
elements in the following order.

1. An optional attributes field which can contain O or more of the following
characters:

A minus sign indicates that the value converted is left
just i f ied within the output f ield specif ied. Right
iusufication is used bv default. This attribute does not
have a wisible effect on the display unless you specify a
minimum width field.

The digit 0 is used only in the conversion of numeric
values (integer or f loals) and when you a usc a minimum
width f ield. I t indicates that the number is to be
preceded by 0 characters rather than spaces.

The plus sign can only be used with signed values. It
indicates t]lat the value is to be preceded by a plus sign if
it is positive. Negative values are always preceded by a
minus sign, this cannot be disabled.

Librqry Reference Hisott C Pdge 223

This attiibute is similar to plus. It can only be used for
signed values: it indicates that the value is to be preceded
by a space if it is positive. Negative values are alv/ays
preceded by a minus sign, this-cannot be.disabled.

. .-
This attribute may only be used with the numeric
conve rs ions g , G . { , F , o , x and x . I t s e f f ec t s a re
described under the appropriate conversion.

2. The optional m i n'i mu m ffeld is a whole number constant. This ffeld can also
be reDlaced with an asterisk (*). In this case the next value from
a r g 1 , Jr g 2,... is used as tlle value of this lield, which must be atr integer.

This field specifies t}Ie minimum \Midti for this conversion. If the converted
value isn't laige enough to fill the minimum lengti then characters (space or
0) are added to liu the space so tl.at it is always at least minimum size. If the
the value converted is too big then tl.e lield grov/s to be laige enough,

3. The optional precision f ield is preceded by a decimal point and must be
followed by an integer constant. If the decimal point is not followed by a digit
it is taken as zero, which is not the same as the absence of this precision
field.

This field can be an asterisk (*) in which case the next argument from
arg1 ,a rg2 , . . . i s used as t he va lue o f t he f i e l d . The a rgumen t mus t be a
positive integer.

For the f format, fixed point numbers, this value represents the number of
digits after the decimat point. For the e format, exponential floating point
format, it is the number of signilicant digits. By default this value is 6. This
represents the maximum number of digits that will be generated.

When used vr'ith the s format this is the maximum number of chatacters to
write; any further characters in the string are ignored.

4. An oDtional letter t v,/hich when used with the d, o , u and x formats
indicatee that t]le argument is of t]'pe long.

5. A compulsory type indicator. This is one of the characters: c, d, e, E, f , F,
g , G , o . s , u , x , x .

wi i tes a signed whole decimal integer of Brpe i nt or Lons
The result of the conversion is a sequence of digits
preceded by a sign if the argument is negative or if the +
attribute is used.

performs the conversion for an unsigned decimal number.
This parameter must be of type i n t or L o n s. The result is a
string of decimal digits.

writes a number in octal. The argument must be Lrn s i g n ed.
The value is converted into a sequence of digits. lf the #
attribute is used the value converted is Dreceded bv a zero.

Page 224 Hisoft C [ib.ory Reference

ZZ in the format string outputs a single Z chaiacter.

x wdtes a number in base 16, The argument is supposed to be
a str ing oftype unsigned. The result of the conversion is a
striing of hexadecimal digits. The letters a-f are used with x
and a-F aie used with x. If the attribute # is used then the
characters are preceded by 0x or 0x (with x).

c the argument is used as a character. A single character is
converted. The tlpe of t l1e parameter can be char, short,
i n t or L o n g, In the last three cases, only the least
significant b''te is used.

s the argument is written as a string of characters. It must be
a pointer to a string of characters terminated by a null
character. If the precision format was specil ied then this
indicates the maximum number of characters to write from
the string. The string will be truncated if this value is less
than the length of the string.

wr i t e a f l oa t i ng po in t number (o f twe l l . oa t o r doubLe)
without using exponential notation. A sequence of digits
preceded by an appropriate sign and containing a decimal
point is produced. The sign is present if t}te number is
negative or the + attribute is used. The number of digits
after the decimal point is fixed by the precision asked for (6
by default). If the precision is O or the value is a whole
number then the decimal point is omitted unless the #
attribute is used.

w r i t e a f l oa t i ng po in t number (o f t ype f Loa t o r doubLe)
using exponenual notation. The result of the conversion is
n u m b e r o f t h e f o r m - x , x x x x x x e - x x x { w i t h e) o r -
x , x x x x x x E - x x x (w i t h E) , x c a n b e a n y d i g i t . T h e s i g n
before the number is present if the number is negauve or if
the + attribute is used. There is always exactly one digit
before the decimal point. The number of significant digits is
set by the precision attribute (6 by default). If the precision
is O or the value has only one significant digit then the
decima.I Doint is omitted unless the t attribute is used.

g , G wr i t e a f l oa t i ng po in t number (o f t ype f Loa t o r doubLe)
using fixed point or floating point notation depending on
which would require the least characters. If the o'?onent is
greater than -4 and is less than the precision asked for, the
fixed point (t) notation is used, otherwise the exponential
form is used. In this case if G is used then E format ls used,
i f g is used then e is used. Non signif icant zeros and
decimal points are suppressed unless the f attribute is
used,

, librory Reference Hisott C Poge 225

UH
p r i n t f (" T o - d a y i s t h e Z d l 7 . O 2 d I Z 0 2 d \ n " , d a y . m o n t h , v e a r) ;

would display, for example:

T o - d a y i s t h e 1 9 1 0 7 1 8 9

If x =1.34 then

p r i n t f (" T h e v a l u e i s 7 . f l t t . * 9 " , 1 4 , 4 > t

produces

T h e v a L u e i s 1 . 3 4 0 0 0 0 0 0

p r i n t f (" Z t 0 7 x \ n " , 6 3) ,

produces

0000x3 F

p r i n t f (" < 2 1 0 . 5 s > < Z - 1 0 . 5 s > " , " i n t e r p r e t e r ") ;

produces

< i n t e r > < i n t e r

A
"prr.rtf,

cprintf, fprintf, Help command (print|.

r e t = p r i n t _ r ' i n d o ! (| l i n d o L r _ n o , s t r i n g) ;
i n t r e t , v i n d o Y - n o i
c h a r * s t r i n g i

Writes a string of characters at the cursor position in a \ /indow (r'i nd ou-n o)
that has been opened using open-ei ndot.

A s.ction 3.2.6, Help command (Print-u'i).

oft

Poge 226 Hisofi C Librory Reference

P r o t o b t (b u f , s e r i a L - n o , d i s k - t y p e , e x e c u t a b L e) ;
i n t s e l i a L - n o , d i s k - t v p e , e x e c u t a b L e ;
c h a r b u { t 5 1 2 1 ;

Produces a boot sector image for track O sector 1. bu{ is used for the boot
sector image. disk-type ia 2 for 80 track single-sided and 3 for 80 track
double-sid;d. executabIe is I if this is to be an executable boot sector, O
otherwise.

T G

r e t : P r t b L k () i
i n t r e t i

Produces a screen dump on the printer.

This function returns O if the operation r.r€s successful.

P t e . f i 0 () i

Terminates the running program and returns to the calling program
(normatly the GEM Desktop).

P t e r m r e s (b v t e s , r e t u r n - c o d e) ;
i n t b Y t e s , r e t u r n - c o d e ;

Terminates the current program, fleeing only bvtes of memory and return
to the Desktop. Used for ao-Called TSR programs. Not useful in Htsoft C.

P u n t a e s () ;

Reboots the AES: i.e. the whole machine.

sEo

DsU

[ibrory Reference Hisotl C Poge 227

T
\v

d i n c L u d e < s t d i o . h >
. e t = p u t c (c h , l p) i
' i n t r e t , c n ;

\-

Writes the character ch to the ftle fp. The returned value is the same as the
value written, unless an error occurs. In this case, the va.lue -t is returned
and the variable e r . n o indicates the nature of the error.

A putchar, fputchar, errno.

r e t = p u t c h a . (c h) i
i n t r e t , c h ;

Writes the character ch to the standard output file stdout (the screen by

defaulo. The returned value is the same as the value wiitten' unless an error
occurs. In this case, t}le value -1 is returned and the variable errno indicates

the nature of the error.

A orr,", fputchar, errno.

sl
r e t = p u t s (s t r i n g) ;
i n t r e ! ;
c h a r * s t r i n g ;

writes a string of characters to the file stdout (the screen, by default). A
new-line is wiilten after the string. The value returned is O or -1 if there v/as
an error. e r r n o will give the tJpe of error tn this case.

lA puts moves to the next line after wiiting the string. This is not the
Same as f Pu t s .

p u t s (s t r i n g) i s n o t t h e s a m e a s f p u t s (s t r ' i n g , s t d o u t) .

A pr,,",
"r-o.

cP

Poge 228 Hisoft C Librory Reference

ND

n u m = r a n d () i
i n t n u m ;

Retums a random 32 bit unsigned integer,

A srand, nandom.

n u m = R a n d o m () ;
i n t n u m ;

Returns a random 24-bit unsigned integer.

DA

R UN

n u n = r e a d (n f , b u f f e r , b y t e s) ;
i n t n u r n / n f , b y t e s ;
c h a r * b u f l e r ;

Reads bltes from the file nf which has been opened using the UNIX call
o p e n .

\ buffer is the address to where the bl, tes are read. bytes is the number of
bytes to be read,

nun is the number of bl^es successfully read. Normally this will be equal to

_ bytes. However if the end of file is reached, then num will be less.

If num is -1 then an error has occurred and errno q/ill indicate which error.

\- A *" o,lrr". that you are reading should be at least by t e s long; othen'ise
you will destroy other variables, with possibly fatal consequences.

\'- A oo"n, wdte, errno.

AD

r e t = l . e a d b u t _ b o x (b o x _ n o , b u t t o n _ n o) i
i n t r e t , b o x _ n o , b u t t o n _ n o i

Returns 1 i f a but ton (but ton-no) of a d ia log box (box-no) is selected.

\-- lB Sectlon 3.3.7. Help command (readburJ.

[ibrory Reference Hisott C Poge 229

TR

s t r i n g = r e a d s t r - b o x (b o x - n o , f i e L d - n o) i
\ . - ' /

c h a r * s t r i n g i
i n t b o x - n o , f i e L d - n o ;

Returns the text entered by the user for an editable text lield (text-no) in a
dialog box (box-n o).

A edrt-box, Seclion 3.3.9, Help command {readstrj.

n e r - b L o c k = . € a I t o c (o L d - b L o c k , n e u - s i z e) i
u n s i g n e d i n t n e v - s i z e i
c h a r * n e r - b L o c k , * o l d - b l o c k i

This function allocates a block of memory whose length is given by
ner-size, The contents of an old block (the memory pointed to by
oLd-btock) are then copied to the new one and finally the old block is
freed.

Ifnev-size is larger than the origlnat block size the erlra space is f i l led
with zeros. If the n ev-s i z e is smaller than the original size then only part of
the block is copied.

A
""to",

malloc, free.

CT Hi

r e c t - i n i t (r e c t a n g L e , x , Y , 1 t , h > ;
s h o r t r e c t a n g L e t 4 l ;
l n t x , y , u , h ;

Assign t} le values x,y, r and h to an array rectansLe.

x,y,H,h give the co-ordinates of the top left, the width and the height of the
rectangle resPectively.

T h u s r e c t a n g L e t 0 l w i l l c o n t a i n x , r e c t a n g L e t l l w i l l c o n t a i n y ,
r e c t a n g L e t 2 l { , a n d r e c t a n g L e [3] h .

L

Poge 230 HiSofi C Librory Reference

A *" could also be written

i n c L u d e < g e m L i b . h >
r e c t - i n ' i t (& r e c t a n g L € , x , y , v , h) ;
G R E C T r e c t a n g L € ;
i n t x , y . u , h ;

*
GREcr is a structure containing four f ields, g-x, g-y. g-v and g-h, The
values passed as paiameters are assigned to the corresponding fields in the
structure.

ffi
""" rect-n.to..

INTE R o

i n t e r = a € c t _ i n t e r s e c t (r e c t ' 1
, r e c t 2) ;

\ - s h o r t . e c t 1 [4] , r e c t z l 4 7 ;
i n t i n t e r . '

Thts function determines the intersection of two rectangles (see

\ r ec t_ i n i t) r ec t l and r€c t2 . The f unc t i on re tu rns l i f t hey do ove r l ap i n-
which case rect2 wil l contain the intersection. I f there is no intersection O
is returned,

R IN

\ l r i t h i n = r e c t _ p o i n t (r e c t , x , y) i
s h o r t a e c t [4] i
i n t x . Y ;

Returns 1 i f the co-ordinates (x, y) are wi th in the rectangle rect [See
\ - r e c t - i n i t) .

CT_UNI N Hi

r e c t _ u n i o n (r e c t 1 , r e c t 2) i
s h o r t r e c t 1 E 4 l . r e c t z l 4 7 ;

Calculates the union of two rectangles. That is to say the smallest rectangle
containing r€ct1 and r€ct2. rect2 is returned containing the union.

Librory Reference Hisoft C Poge 23 |

[rR- fl
EJ These two programs below do exactly the same thing: they display the
union of two rectangles.

i n c L u d e < g e m L i b . h >
G R E C T a r r ' l i
G R € C T a r r 2 t

v o ' i d n a i n ()
{

r e c t _ ' i n i t (& a r r 1 , 1 O O , 1 0 0 , 5 0 , 1 0 0) ,
r e c t _ i n i t (& a r r 2 , 1 5 0 , 1 5 0 , 5 0 , 1 0 0) ;
r e c t _ u n i o n (& a r r 1 , & a r r Z) ;
{ i n t f < " y ,d , ' / . d , " , a r 12 .g_x , a r r 2 .g - , y r ;
p . i n t f (" Z d , Z d \ n " ,

" r r Z . g - s ,
a r 1 2 . g - h) i

)
s h o r t a r r 1 [4] , a r r 2 [4] i
v o i d m a i n ()
t
. e c t _ i n i t (a r . 1 , 1 O O , 1 O O , 5 0 , 1 0 0) ;
r € c t - i n i t (a r r 2 , 1 5 0 , 1 5 0 , 5 0 , 1 0 0) ;
r e c t _ u n i o n (a a r 1 , a r r 2) ;
p r : n t f (" X d , y . d , Z d , Z d \ n " , a r r 2 t 0 7 , e r r 2 l 1 1 , a . r Z t Z) , a r r 2 1 3) t '

]

second program:

! h o r t a r r 1 t 4 l = t 1 0 0 . 1 0 0 , 5 0 , 1 0 0] ,
s h o r t a r r 2 [4] = { 1 5 0 ' 1 5 0 ' S O ' 1 O O l ,

v o i d m a i n ()
{

. e c t _ u n i o n (a r r ' 1 , a r r 2) i
w i n t f < " Z d . 7 . d , / . d , 7 . d \ n " . a r r z t l) , a r l " 2 t 1 7 , a r r 2 t 2 7 ' a r r Z C 3) > ;

)

r e t = r e m o v e (n a r n €) i
c h a r r n a n e i
i n t r e t i

Deletes a disk file whose name is given as a parameter.

This function returns O if the operation v/as successful or another value if an
error occurTed, in which case e I r n o 1vill indicate why.

unlink, Ddelete, errno.

Poge 232 Hlsoft C Librory Reference

E

r e t = r € n a m e (o L d - n a m e , n e r - n a r n €) ;
i n t r e t ;
c h a r * o L d _ n a m e , * n e r - n a m e ;

Changes the name of the file. The file o L d_n an e is renaned to n e v_n ame.

This function returns O if the operation was successful or another value if an
error occurred, tn which case errno v\rill indicate why.

A *".rr-", "..no.

r e p m e I n (b u f , e L e n e n t , s i z e , n u f i) i
c h a r * b u f , * e L e m e n t i
i n t s i z e , n u m ;

This functlon initialises the area of memory pointed to by buf and sets up
each element to have the same value,

e L en e n t is a pointer to a buffer containing the initlal value of the elements.
s i ze is the size of each element in bytes. nun is the number of times to
duDlicate.

A or, *rr"t t" big enough, at least s i z € * n um bytes.

A -"-"tr..

IND ANSI

i n c L u d e < s t d i o . h >
r e t = r e H i n d (f p) ;
i n t r e t ;

Move tlle file position of the file f p to the beginning, This is the position at
which reading and writing occurs. The file f p must have been opened using
f o p e n .

The value returned is O if the operation was successful; non-zero otherwise.

A
""trn,

this function is equivalent to fseek(fp,0,o).

fseek, ftell, errno.

[ibrory Reference Hisofi C Poge 233

RMD

r e t = . n d i r (d i r - n a m €) i
c h a r * d i r _ n a m e i
i n t | . e t i

D e l e t e s t h e d i r e c t o r y (f o l d e r) n a m e d d i r _ n a m e . T h e d i r e c t o r y m u s t b e
emPtY.

This function retums -1 if an error occurred and O if the operation v/as
successful. As usual e r r n o v/ill indicate the reason for the error.

A D"r".t",
"..rro.

D RALE RT

a I e r t - a d r = r s _ a d d r a L e r t (a L e r t - n o) ;
i n t a I e r t _ n o i
c h a r * a L e r t a d r i

This functlon returns the address of an alert box v/ithin the resource file
\-

l oaded by r s r c -Load .

a I e r t_ n o ls the number of t]re alert box of v/hich you l,{sh to lind the ,!_
address.

d i n c L u d e < g e n L i b . h >
t e x t _ a d r = r s - a d d r b u t t o n (d i a L - a d r , b u t t o n _ n o) ;
i n t b u t t o n _ n o ;
0 9 J E C T * d i a L _ a d r t
c h a r * t e x t _ a d r i

This function returns the address of the strinA of a button or a non-editable
text object. This is the address of the string th;t is displayed.

d.ist-adr is the address of the dialog box (this can be found using
rs_a dd rd i a L). The box wil l normally have been loaded using rs r c_Load.

b u t t o n_no is which item to Iind the address of.

Poge 234 Hisoft C [ibrory Reference

i n c L u d e < g e m L i b . h >
d i a t - a d r = r s - a d d r d i a L (d i a [- n o) ;
i n t d i a L - n o ,

\ _
0 B J E C T * d i a L - a d r i

This function returns the address of a diatog box that has been loaded from a
resource f i le via r s rc-L oa d.

\' d i a t -n o is the number of the dia.log box that you wish to find.

see rs_drawdia.l.

AD o c
i n c L u d e < g e m L i b . h >
t e x t - a d r = r s - a d d r e d i t (d i a L - a d r . e d i t - n o) ;
i n t e d i t - n o ;

r 0 8 J E C T * d i a L - a d r ;
c h a r * t e x t - a d r ;

This funcuon retums the address of an editable text ffeld in a dia-log box. This

_ is the address where tlle characters trced by the user are stored.

dial-ad|" is the address of the dialog box (this can be found using
rs_add rd i a L). The box vti l l normally have been loaded using rs rc-Load.

\- e d i t-n o is {'hlch item to Iind the address oi

see rs drav/dial.

co MDO

R s c o n f (s p e e d , h a n d s h a k e , c o n t r o l , r s r , t s t . , s c r) i
i n t s p e e d , h a n d s h a k € . c o n t r o L , r s r , t s r , s c r i

\ Configures the RS232 port. I f any of the parameters is -1 then the
corresponding attr ibute ls not changed.

speed contains a value between O and 15 which indicates the speed of

\ tr:ansmission as a baud rate.

O : 19200 4 2400 8 r 6 0 0 r2 . t34
I : 960O 5 : 2OOO 9 : 3 O O 1 3 : 1 1 0
2 i 48oo 6 : 1 6 0 0 l0 : 200 T 4 '/5

3 : 3ttOO '/ i lzot) r t : 1 5 0 1 5 : 5 0

R DR I

[ibrory Reletence Hisoft C Poge 235

T?re_handshake paiameter indicates v/hat sort of handshaking is to be
useo.

cont.ot indicates how bytes are transmitted:

bit 7

bits 5,6 number of bits (OO = 8, O1= 7, 1O=6, f I = 5)

bits 3,4 start and stop bits (OO = neither, 01= 1 start & I
stop, 10 = 1 Start & I.5 stop, lt =1 start & 2 stop).

bll 2 I = parity on, o=parity off

bit I 1 = even parity, O=even parity

bit o 0

The rsr, tsr, scr parameters set the corresponding register in the 68901.
Thay are not normally changed.

DRAWALE RT o
b u t t o n _ n o = r s _ d r a v a L e r t (a l e r t _ n o) i
i n t b u t t o n _ n o , a L e r t _ n o ;

This function draws an alert box on the screen, walts for the user to click on
a button and returns which button was selected.

The index of the alert box to draw is passed as the a I e r t_n o parameter,
This box must be part of a resource fi le that has been loaded u/ith
r s r c _ L o a d .

A *" Oor'" number not its address is Dassed as a parameter.

D RAWD IA L HiSoft C

i n c L u d e < g e m t i b . h >
r s _ d . a r d i a L (d i a L - a d r) ;
0 B J E C T * d i a L _ a d r t

This funcuon displays a dialog box on the screen.

The box is only drawn, this function does not wait for a mouse button click.

Pqge 236 Hisoft C Librdry Reference

The screen is saved before drawing. It can be re-displayed by using the
r s - e r a s e d i a L f u n c t i o n .

The address of the form to display is passed as the d i a L-a d r parameter.
This is the value returned by rs-addrdi a [, This form must be part of a
resou rce l i l e l oaded by r s r c -Load .

ZA 'I.he address of the box, not its index is Dassed to this function,

,/N
l-ij This function isn't enough to handle the complete interacuon between
the user and a form. You should also cal l form-do (GEM AES), and then
res to re t he sc reen us ing r s -e rased iaL .

@l ftris program loads a resource file containing a dialog box (with an
editable l ietd €DIT, two buttons DRIvEA and DRIvEB to change the editable
f i e l d E D I T , f o u r r a d i o b u t t o n s c H o r c E ' 1 , c H o t c E 2 , c H 0 t c E 3 a n d c H 0 l c E 4 ,

.v and two exit buttons 0K and c A N c E L) and an alert string. This program is one

of the examples on Disk 2.

i n c L u d e " e x a m P L e . h "
i n c L u d e < g e m L i b . h >

m a i n ()
t

. 0 B J E C T * a d .-d i a L i
\ - i n t o b j e c t _ n o i

i n t f i n i s h e d i
/ * L o a d r e s o u r c e f i L e * /
' i f (! r s . c _ l o a d (" e x a m p L e . r s c "))
{
/ * c h e c k i f e r r o r * /
p r i n t { (" t a t a L e f f o r . . . \ n ") ;
e x i t (0) ;
)

/ * A d d . e s s o f f o r m c a L L e d D I A L i /
a d r _ d i a L = r s _ a d d r d i a L (D I a L) ;

/ * d r a w t h e d i a L o g b o x * /
s _ d r a { d i a L (a d r _ d i a L) i- g r a f _ m o u s e (_ 0 N , 0) i

r e s t a T t :
{ i n i s h e d = 0 , '

/ i c L e a r t h e e d i t a b L e t e x t f i e L d * /
s t . c p y (r s _ a d d r e d i t (a d r _ d i a L , T E x T) , " ") ;
d o
t
/ * g i v e t h e u s e r c o n t r o L * /
o b j e c t _ n o = t o r m _ d o (a d r _ d i a L , T E X T) ;

/ * d e - s e L e c t t h e b u t t o n t h a t c a u s e d t h e e x i t * /
' \ r s o b j u n s e I e c t (a d r _ d i a I , o b j e c t _ n o) i

r s : d r ; u o b j e c t (a d r - E i a t , o u j i c t - n o l ;

. Librory Refelence HiSofi C Poge 237

/ * a c t d € p e n d i n q o n e x i t b u t t o n * /
s L , i t c h (o b j e c t _ n o)
{
C A S E D R I V E A :

/ * p u t A : \ * . * . i n t h e t € x t f i e L d * /
s t r c p y (r s_a d d f e d i t (a d r_d i a L , T E x T) , ., A : \ \ * . * ,,) ;
/ * d i s p L a y t h € n e y t e x t * /
| " s _ d r a u o b j e c t (a d r _ d i a L , T E x T) i

o T e a K i
C A S E D R I V E B :

s t r c p y (. s _ a d d r e d i t (a d r _ d i a L , T E X T) / " 8 : \ \ * . * ") ;
r s _ d r a y o b j e c t (a d r _ d i a L , T E X T) ;

c a s e 0 K :
f i n i s h e d = ' 1 i

c a s e c A l , l c E L :
f i n i s h e d = 2 ,

]
]
u h i L e (! f i n i s h e d) ;

I * i J y o u c L i c k o n 0 K , a s k f o . c o n f i r m a t i o n * /
i f (f i n i s h e d = = 1)
' i f (r s - d r a ! , a L e r t (A L E R T) = = 2)

g o t o r e s t a r t ;

/ * r e m o v e t h e { o r n & r e s t o r e t h e s c r e e n r /
r s _ € r a s e d i a L () i

g r a { _ n o u s e (l { _ 0 F F , 0) ;

/ * F r e e m e m o r y u s e d b y t h e r e s o u r c e f j t e * /
r s r c * f r e e () i

D RAW o
j n c L u d e < g e m L i b . h >
r s _ d r a r l o b j e c t (d i a L _ a d r , o b j e c t _ n o) ;
0 B J E C T * d i a L _ a d r i
i n t o b j € c t _ n o i

This function re-draws a single object {o b j e c t_n o) in the dialog box given by
the add ress d i a L_ad r .

For an example of its use see above.

/ * d ' i s p L a y t h € r e s u t t * /
c p r i n t f (" F o t d € r s e t e c t e d : Z s \ n " ,

r s _ a d d f e d i t (a d . _ d i a L , T E x T)) ;' j f (r s _ o b j s t a t e (a d r _ d i a | , C H 0 I C E ' 1))
c p r i n t f (" C h o i c e ' 1 a n d ") ,
e L s e
c p r i n t f (" C h o i c e 2 a n d ") ;
' i f (r s _ o b j s t a t e (a d r _ d i a t , c H 0 r c E 3))
c p r i n t f (" C h o i c e 3 ") ;
e L s e
c p r i n t f (" C h o i c e 4 ") i
c p r i n t f (" h a v e b e e n s e L e c t e d \ n -) ;

Poge 238 Hisoft C Librory Reference

R iSo

r s _ € r a s e d i a L () i

This parameterless function removes a dialog box that has been drawn v/ith
rs-dra diaL. The screen is re-drawn as i t was before the dialog box u'as
drawn.

You must only use this function after calling . s_d r a ud i a L and similarly if
you cal l r s-d raxd i a L you should always cal l rs_e.asedi a L.

See tlle examDle above.

f i n c L u d e < g € m L i b . h >
r s - o b j s e L e c t (d i a L _ a d r . o b j e c t - n o) i
0 8 J E C T r d i a L - a d r ;
i n t o b j e c t _ n o ;

This funct ion selects object number object_no in the form at address
d i a L _ a d r .

The must be re-drar*'n for it to appeai in inverse video.

A rs-oblunselect, rs-drawobject, rs-drav/dial.

iSoft C

f i n c L u d e < g e m L i b . h >
s t a t e = f s _ o b j s t a t e (d i a L _ a d r , o b i e c t _ n o) ;
0 B J E C f * d i a L _ a d r ;
' i n t o b j e c t _ n o , s t a t € i

This funct ion returns the state of the object object_no in the dia log box
given by d i a t-a d r. The value returned is I if the object is selected and O if
not.

A rs-ob.lselect. rs-drawdial.

R I

'-.-. lib]ory Reference Hisotf C Poge 239

R ELECT o
f i n c L u d e < g e m L i b . h >
r s _ o b j u n s e L e c t (d i a L _ a d r , o b j e c t _ n o) i
0 B J E C T * d i a t - a d . ;
' i n t o b j e c t _ n o ;

This function de-selects the object object-no within the tree diaL_aor.

You should re-draw the object so that it appears as noEnal.

A rs-oUlselect, rs-drav/object, rs-drawdial.

S-OBJXY Hi c
g i n c L u d e < g e m t i b . h >
r s _ o b j u n s e L e c t (d i a L _ a d r , o b j e c t _ n o , r € c t a n g L e) ;
0 8 J E C T * d i a L _ a d . ;
i n t o b j e c t _ n o t
s h o r t r e c t a n g L e [4] ;

This function returns the screen co-ordinates of thr object object*no
vr'ithin the dialog box d'i a L_a d..

The co-ordinates are stoied in the array rectangte whose elements wil l
contain the x,y co-ordinates of the top left of the object and its u/idth and
height,

A rs-drawoblect, rs-drawdial, rect-init, rect-point.

r e t = r s r c _ f r e e () ;
i n t r e t ;

Frees the space used by resources loaded with . s r c_L oa d. You should alv,-ays
call this function before terminating a program that calls rsrc_Load.

If an error occurs the function returns O.

R

Poge 240 HiSofi C Librory Reterence

D R

d i n c L u d e < g € m t i b . h >
r e t = r s r c _ g a d d r (o b j e c t - t y p e , o b j e c t _ n o , & o b i e c t _ a d r) ;

' - i n t r e t , o b j e c t _ t y p e , o b j e c t _ n o i
0 B J E C T * o b j e c t - a d r ;

This function returns in object-ad. the address of the given object
(ob j ect_no) ofthe given t lpe (ob j ect_type) of the loaded resource ff le.

\' If an error occurs the function ieturns O.

r e t = r s r c _ L o a d (f i L e _ n a m e) i
c h a r * f i L e - n a m e ;

' \ - i n t r e t i

Load a resource file into memory.

, The value returned is O if an error occurs, for example if the file is not found- or t-here is insufficient memory to load t}le fi le.

z-gj The area v/here resource files are loaded is fixed durinp the
iniUalisation of Htsoft C. If you are loading a substantial resource lile tl.is will
be too small. The size of this area can be chanped. See Section 1.4.13.

R EM AES

i n c L u d e < g e m t i b . h >
r s r c _ o b f i x (t r e e _ a d r , o b i e c t _ n o) ;
i n t o b j e c t _ n o t
0 B J E C T * t r e e _ a d r ;

C o n v e r t s t h e c o - o r d i n a t e s o f t h e o b j e c t o b j e c t _ n o i n t h e t r e e t r e e _ a d r
from character co ordinates to screen co-ordinates.

GEM AES
' f i r c l u d e < g e m t i b . h >

- r e t = | s r c _ s a d d r (o b j e c t _ t y p e , o b j e c t _ n o , o b j e c t _ a d r) ;
i n t r e t , o b j e c t _ t y p e , o b j e c t _ n o ;
0 B J E C T * o b j e c t _ a d r i

This funct ion sets the address f ie ld of the object object_no of t j /pe
\ - o b i e c t - t y p e t o b e o b j e c t - a d . .

lf an error occurs the function returns O.

R

Librory Reference Hisoft C Poge 24 |

r e t = R r a b s (r e a d _ r r i t e , b u f f e r , s € c t o r s ,
s e c t o r _ n o , d r i v e _ n o) ;
i n t f e t , r e a d _ | . l r i t e , s e c t o r s , s e c t o r _ n o ,
c h a t " * b u f f e r ;

R e a d (i f r e a d _ H r i t e = O) o r w r i t e (i f r e a d _ H . i t e
disk.

= 1) logical sectors on a

Ttre number of sectors to read or write is given by s e c t o r s. The i/o starts
at sector number se cto r-no.

drive_no indicates which drive to read from O=A, 1=B etc.

o b i e c t _ n o = s c a n f (f o r m a t , a r g l , a r g 2 , . - .) t
c h a r t f o r m a t i
i n t o b j e c t _ n o ;

The scanf function performs formatted input on the f i le stdin (the
keyboard by default).

The f irst argument (format) indicates the format of the reading. Extra
arguments are needed according to the format specified. Each of these edra
arguments is a pointer to a variable. Each value read from the keyboard is
stored in the variables given by these pointers.

The value retumed by s c a n f is the number of values successfully read from
the keyboard and assigned to the variables ar91,ars2,,, ,

The format parameter is a str ing indicating hov/ to perform the read.
There aie three sorts of elements that can make up the format string:

. white space (spaces, tab characters and newlines).

A sequence of white space characters in the format sLring causes
a.ll white space characters input to be ignored until a non-blank
character is entered. Exactly which white space characters are
used in t}Ie format strin€ is irrelevant.

. Conversion specifications.

Conversion specifications start with a per-cent sign 7. The rest of
the format of conversion sDecifications is exDlained later.

. All other characters.

Each such character must correspond to the same character in
tlre input. A Z in the input is represented, by 2,7, in the format
string.

Poge 242 Hisoft C librory Reference

-
Reading stops when:

. The end of l i le is reached (i f stdi n has been re-directed).
Clearly reading must stop at this point.

. There is a mis match in tie format and the characters read. InDut
stops as soon as this occurs. The remaining conversion
specllications will be ignored.

. The u/hole format string has been scanned.

The value returned by s c a n I is the number of successful conversions. That is
'.- to say the number of values assigned to the var-iables ar91,arg2...

If no chaiacters can be read the function retums -1.

\! The syntax for f o r n a t statements is as follov/s:

Z * n l c

_ They consist of the follov/ing elements in order.

l A z character.

2. An oDtional asterisk * v/hich indicates that tie conversion should be made
\- as usua], but that the value obtained should not be stored in a trariable. Thus

no argument is 'consumed' by this conversion.

3. A strictly positive decimal number n which gives the maximum number of\\ characters to be read during the conversion. This is only used v/hen reading
str ings of characters (Zs).

4. An opuonal letter L indicaung that the tj,?e of a parameter is long. This is
\- used wilh the conversion characters d, e. {. g. o. u and x.

5. A conversion character. This must be present and should be one of c, d, e,
f , g , h , n , o , s , l J , x .

The scanf specif iers are similar to the printf ones. In some cases the
format stiings can be the same. But this doesn't mean that a string that can
be used for output via p r i n t t can always be used to tnput the string.

The convercion characters are as follows:

c
Character.

Decimal
integer.

character, i.e of t lpe char*. The first character present
in the input is read and stored at the address pointed to
by the argument. Blanks are not skipped.

must be a Dointer to a

' lhe corresponcl ing argument must be a
in tege r , i . e . o f t l r pe i n t * , o r Long* i f t he
indicator is present. Blanks, if any, are

t lpe {L)

sign may be present. Characters are read until a non-
valid digit is found. There is no check for overflow. The
converted value is stored in the integer pointed to by
the argument.

, Librory Reference Hisoft C Poge 243

e,f,g Floating point. These three t]4)es are equivalent, The
Floating corresponding argument must be a pointer to a float or
point. double. As both float and double are double-precision,

the long t)?e indicator (L) must be used. Otherwise the
conversion q/ill not be done correctly.

The format required is

I b L a n k s] [s i g n] d i 9 i t s [. d i g i t s] [e x p o n e n t]

1. Optional blank characters are ignored.

2. An optional + or - .

3. A sequence of digits.

4. An optional decimal point, followed by further digits
if present,

5. An optional exponent consisting of a letter e or E
followed by an optional sign and sequence of digits.

The value calculated from the characters read is stored
in the double precision variable pointed to by the
corresPonding argLlment.

n
short
decimal
integer,

The corresponding argument must be a pointer to a
short integer, i .e. of t j ,?e short*. Blanks. i f any, aie
skipped. A + or - sign may be present. Characters ar:e
read until a non-valid disit is found. There is no check
for overflow. Ttre converled value is stored in the
integer pointed to by the a.gument.

o
Octal
integer.

-lhe corresponding argument must be a pointer to a
integer, i ,e. of t)?e i nt*, or Long* i f the long t lpe (t)
indicator is present. Blanks, i f any, are skipped.
Characters are read until a non-valid octal di€it is found
(i . e no t 0 71 . The re i s no check f o r ove i f l ow . The
converted value is stored in the integer pointed to by
the ar€ument.

s
Character
string

The corresponding argument must be a pointer to a
character, i.e. of tj,?e char*, or array of chaiacters.

x
Hexa-
decimal
integer.

-lhe corresponding argument must be a pointer to an
integer, i.e. of type int*, or longt if the long t)?e (l)
indicator is present. Blanks, i f any, are skipped.
Characters are read until a non-valid hex dipit is found
(i.e not 0-9. a-t or A-r). There is no check [6r overf low.
The converted value is stored in the integer pointed to
by the argument.

A tn"r" are some characters that can be t,?ed which will not be read by
scanf because the scanf funcuon has not been asked to read therr.

Poge 2U HiSofi C Librory Reference

For example, the newline character B?ed at the end of a line won't be read
by scanf unless the string finishes v/ith a space.

\, This can also happen if t]le format stiing does not correspond to the user's
input. If s c a n f is waiting for a number (z d) and the user tl4)es digits then
the letters won't be read by s c a n f.

\- Al l characters not read by scanf remain in the input buffer and these
characters wiu be handled by subsequent calls to s c a n f.

This problem can appear particularly if you are trying to read a character
_ using zc. W?ren using this conversion character, white space (i.e. spaces and

new lines) are not skipped.

I f f o r examp le , you execu te two scan I ("Zc " , I c) i s t a temen ts one a f t e r
\ another and on the first call you gDe a character followed by Retu.n, then

the first chaiacter will be stoied in i as you expected. But when it comes to
the second call the character read will be the R e t u r n, which is probably not
what you expected.

\-
There are two ways to get round this probtem.

The f i r s t i s t o a l v /ays ca l l g€ t cha r () a f t e r scan f t o read t he ne r i d i ne
I character.

The second method is to force the input buffer to be emptied before calling
-- scanf. To do this use f s e e k (s t d i n , 0 , 2) . Don't forget to include the

\ < s t d i o . h > f i l e .

A r""ut r. sscanf. sprintf.

CRP EM E
' \ -

r e t = s c r p - r e a d (a d d r e s s r ;
i n t r e t i

. - c h a r * a d d r e s s i

* Reads the name of the clipboard directory.

GEM AES

r e t = s c r p _ r | i t e (a d d r e s s) i
i n t r e t i
c h a r * a d d r e s s i

Changes the name of the clipboard directory.

[ib]ory Reference Hisoft C Poge 245

ELE H o
s t a t e = s e L e c t - m e n u (t i t L e) i
i n t s t a t e . t i t L e i

Select or de-select a menu title.

The menu must have been created using the i n i t_m€ n u function.

titte is the number of the menu tit le as returned by ti t Le_menu. The
value returned is the new state of the menu. 1 meaninq selected, O otherrvise.

.lA i.rit-^.r,,t, item-menu, Section 3.4.6, Help command (select-mi.

TB

i n c L u d e < s t d i o . h >
s e t b u f (f p , b u f f e r) i
F I L E * f p i
c h a r b u f f e . E B U F S l z l ;

This function must be used after a lile has been opened with fopen, but
before any other operation on the Iile (read or write).

The b u f f e I whose address is passed as a parameter is used to replace the
default buffer for input-output on this lile.

This buffer must be of size BU F s r z.

If the address passed is zero then the i/o on this Iile is performed v/ithout
using a buffer, causing a physical i/o operation for each sj/stem call.

The first parameter is the lile pointer for the ffle concemed.

coL GEMDOS

s e t c o L o r (c o L o u .
i n t c o t o u T _ n o ,

Sets the palette (to

_ n o , p a L L e t e _ v a L u e) i
p a L L e t e _ v a L u e i

p a L L e t e - v a L u e) f o r t h e c o l o u r c o t o u r _ n o .

s e t e x c (v e c t o r - n o .
i n t v e c t o r _ n o i
c h a r * v e c t o a _ v a L u e ;

Sets the interrupt or exception vector {given by vector_no between O and
255) to the ve c t o r-va L u€ passed as a parameter.

v e c t o r _ v a L u e) i

Poge 246 Hisoft C Librory Reference

ET

i n c t u d e < s t d i o . h >
s e t n b u f ({ p) i
t t L E * f p ;

This function lets you suppress the bulfering of a glven file.

After calling thls function every i/o call for the lile given by the file pointer f p
will cause a physical i/o operatjon.

S e t p a L t e t t e (p a L € t t e _ a d f) i
s h o r t p a L e t t e [1 6] , .

Sets the pallette of all 16 colours.

n _ c o n f i g = S e t p r t (c o n f i g) i
i n t c o n f i g ;

Read or write t]le printer configuration.

lf the paraneter is -1, tien the configuratlon ts read by the function.

Otherwise this parameter ts a bitmap giving the new conflguration as follows:

btt value O vs.lue I
O dot matrix daisv wheel
I colour black and white
2 Atari printer EDson
5 dralt mode final mode
4 parallel printer serial
5 conunuous statjonery sinAle sheet

must be O

The function returns the qew printer configuration.

[ibrory Reference Hisofi C Page 247

EEN GEM

s e t s c r e e n (L o g i c a L _ a d r , p h y s i c a L _ a d r , r e s o L u t i o n) i
c h a r * t o g i c a t - a d r , * p h y s i c a L _ a d . ;
i n t r e s o t u t i o n , ;

Modifies tlle screen addresses and/or the screen resolution.

The parameters are the logical screen address, the physical screen address
and the desired resolution (0, I or 2).

If a parameter is negative the corresponding parameter is not changed.

SE E

r e t = s e t t i m e (d a t e _ t i m e) ;
L o n g r e t , d a t e _ t i n e i

Sets the intelligent keyboard controller's idea of the date and time. The same
fo rma t as Tge tda te and Tge t t i ne i s used .

Ttre value returned is the time that has been set.

HEL AE

s h e L - e n v c n (a d d r e s s , n a m e) i
c h a r * a d d r e s s , * n a m e i

Finds the address of an environment variable.

HEL

r € t = s h e L _ f i n d (b u f f e r) ;
i n t r e t i
c h a r * b u t f e r i

Searches for a file name using the AES path.

HE ES

s h e t _ r e a d (a p p L i c a t i o n _ n a m e , c o n ' n a n d _ L i n e) ;
c h a r * a p p L i c a t i o n - n a m e . * c o m m a n d - [i n e ;

Reads the name of the running applicauon and its command line.

Poge 248 HiSofi C [ibrq]y Reference

r e t = s i n (v a L) i
d o u b L e r e t , v a L ;

Calculates the sine of an angle in radians.
aie double reals.

Both the argument and the resulL

A cos, tan.

r e t = s i n h (v a |) ;
d o u b t e r e t , v a t i

Calculates the h]?erbolic sine of the angle given as a parameter. Both the
argument a-nd the result are double reals.

If the argument is too large for the sinh to be calculated then errno v/i l l
indicate thts error.

A
"o"rr,

tanh, ermo.

NTF

t e n g t h = s p r i n t f (s t r i n g , f o r m a t , a r g l , a r 9 2 , . . . r ;
' i n t L e n g t h i
c h a r * s t r i n g , * f o a m a t i

This tunction is similar to p r i n t f except that instead of wrtting to the
screen it writes to a string that is passed as a parameter.

The tollowing function converts an integer (number) into a string
(s t r i n g) containtng its hexadecimal representation.

z-:J This function lets you easily convert from numeric E4)es to ASCII.

v o i d c o n v _ h e x (n u m b e r , s t r i n g)
i n t n u m b e r ;
c h a r * s t r i n g i
{

s p r i n t f (s t r i n g . " Z f x " , n r r l - b e r) ;
)

A
"O.trr*

fprintf, printf.

[ibrory Refetence Hisotl C Page 249

ANSI

RA

r e t = s o r t (v a L) ;
d o u b L e r e t , v a t ;

Returns the square root of t}le number passed as a parameter. Both the
parameter and the result are double precision real numbers.

s r a n d (v e L u e) i
u n s i g n € d i n t v a l u e i

Re-seed the random number generator.

UNI

s q s o . t (t a b . n) i
s h o . t * t a b i
' i n t n ;

This funcuon sorts an array of short integers.

The array of shorts is modified so that they are in increasing order.

A tn"o.,, dqsort, tqsort.

NF A

n u m b e r = s s c a n f (s t r i n g , l o r r , a t , a r g l , a r 9 2 , . . .) ;
i n t n u m b e a i
c h a r * s t a i n g , * f o r m a t ;

This function is similar to s c a n I except that the characters, instead of being
read from the keyboard, are read from a string {st.ing} that is passed as a
parameter to the sscanf function.

,/i\ \-
Z-i-J This lunction may be used to perform ASCII to numeric conversion for
all the types used by s c a n f.

Poge 250 HiSofi C Iibroly Reterence

ffi

- H&.! The following functlon converts a string (s t I i n s) containing a
hexadecimal digit into an integer. The converted value is ieturrred by the

\- function. If an error occurs -1 is returned.

i n t c o n v - h e x (s t r i n g)
c h a r * s t r i n g ;

\ t
i n t n u n b e r i
' i J (! s s c a n f (s t r i n g , " Z x " , & n u m b e r))

\ }
n u m b e r = - 1 i

a e t u r n (n u m b e a) i

i n c l u d e < s t d i o . h >
F I L E * s t d i n ; / * d e f a u L t s t a n d a r d i n p u t l i L e * /

- - F r L E * s t d o u t ; / t d e t a u L t s t a n d a r d o u t p u t f i L e * /

. F I L E * s t d e . r i / * d e t a u t t e . r o r f i t e * /
\ - F J L E * s t d a u x ; / r s e r i a L i / o f i L e * /

F I L E * s t d p r n i / * p r i n t e r f . i L e * /

These identiffers are defined in the Iile sidio.h.

T?rey represent the files that are alv/ays opened v/hen you run youi program.

s td i n i s t he i npu t l i l e t ha t t s used by scan { , ge t cha r , e t c . I f you w i sh t o
\ take input from a file rather than from the screen. all you need to do is re-

direct 6 this file.

- s t dou t i s t he ou tpu t f i l e used by p . i n t f , pu t cha r , e t c , I f you l van t t he
outDut to €o to a lile all vou need to do is re-direct s t d o u t.

s t d e r r is t]le file that is used to v,riite eror messages.

, stdaux corresponds to a ffle open for read/write to the serial port.

stdprn ls an opened output f i le for the prin[er.

A
"""*r,

fscanf, scanf.

ANSI

Librory Reference Hisoft C Poge 251

ffiI tn" ,orto*.r* program re-directs the standard output (s t d o u t) to the
l i l e t € x t , t x t o n d i s k .

i n c L u d e < s t d i o . h >
F I L E * s v - s t d o u t ;
F I L E * f p ;
v o i d m a i n ()
t

/ * m a k e a c o p y o f s t d o u t * /

s v _ s t d o u t = f d o p e n (d u p (f i t e n o (s t d o u t)) / " 1 , ") ;
/ * o p e n t h e f i L e t o r e p L a c e s t d o u t * /

i t (f p = f o p e n (" t e x t . t x t " , " r "))
{

/ * a s s ' i g n t h e n e v f i I e t o s t d o u t * /
d u p 2 (f i L e n o (f p) , f i L e n o (s t d o u t)) ;
p r i n t l (" T h i s i s v r i t t e n t o t h € t e x t f i L e ") ;
/ * f € s t o r e t h e n o r m a L s t d o u t * /
d u p Z ({ i L e n o (s v _ s t d o u t) , f i I e n o (s t d o u t)) ;
p r i n t J (" T h i s i s H r i t t e n t o t h e s c r e e n \ n ") ;
f c t o s e (f P) t

)
p r i n t f (" E r r o r n u m b e r 7 d \ n " , € r r n o) i
f c L o s e (s v _ s t d o u t) i

)
)

ffi *rj,"" the contents of some variables to tlle printer.

i n c L u d e < s t d i o . h >
v o i d m a i n ()
t

i n t i ,
c h a r t ' i m e [1 0] t
i = t i m e r _ v a L u e () i
s t r t i m e (t i m e) i
f p r i n t f (s t d p r n , " I t i s Z s \ n " , t i m e) i
f p r i n t l (s t d p r n , " T i m e r v a l u € : Z d \ n " , i) ;
f f L u s h (s t d p r n) ,

)

P o

s t o p () i

Stops the execution of the Iile and returns to the I Soft C editor.

Page 252 Hisoft C librory Reference

c h a r s t r i n g l t 2 0 l = " q H e r t Y u i o P " ;
\ - c h a r s t | i n q 2 [8] = " a s d f g h " t

v o 1 d f i a r n (,
t

p u t s (s t r c a t (s t r i n g l , s t r i n g 2)) ;
r)

p t r = s t r c a t (s t r i n g ' l , s t r i n g 2) ,
; h a r r D t r . r s t r ' i n g 1 , r s t r i n g 2 i

Th i s f unc t i on cop ies t he s t r i ng s t r i ngz t o t he end o f s t r i ng l . s t r i ng l
thus becomes longer including all the characters of s t r i n q 2.

The value returned is a pointer to st r i ng1.

NTs

lA.a.ing1 must correspond to an atea large enough to contain all the
characters of the two strings.

ffi tnr" program writes the string q H e r t y u i o p a s d f g h .

srrncat.

HR A

p = s t r c h r (s t . i n g , c h) i
c h a r * p , * s t r i n g i

Searches t}le string passed as a parameter for the first occurrence of the
character ch.

The pointer is returned pointing to the place in the string where the
character was found,

If the character isn't present in the string, 0 is returned.

A
"t

."tr., memccpy.

Librory Reference Hisoft C Poge 253

c o m p a r i s o n = s t | . c m p (s t r i n g l , s t r i n g 2) i
c h a r * s t r i n g 1 , * s t . i n g 2 ;
i n t c o m p a r i s o n ;

Th i s f unc t i on compares s t | i ng l and s t r i ng2 . The t r r / o s t r i ngs a re
compared character by character. The comparison continues until all the
characters have been cbmpared if the strings-are equal or until the first time
two different striings are found.

s t . ' i ng l l s l ess t han s t r i ng2 i f t he f i r s t cha rac te r t ha t i s f ound t o be
d i f f e ren t i s l ess i n s t r i ng l t han i n s t r i ng2 .

Ttre value returned is zero if the strings aie equal, posttive if stringl ts
greater than st| i ng2 or negative i f str i ng1 ls less than str ing2.

A stmcmp, stricmp.

Y ANSI

p t r = s t r c p y (s t . ' i n g 1 , s t l i n g 2) i
c h a r * p t r , * s t r i n s 1 , * s t f i n g 2 t

Th i s f unc t i on cop les s t r i ng2 t o s t t . i ng1 . The cha rac te rs t ha t we re
original ly in str ingl are deleted

Ttre value retumed is a pointer to s t. i n g 1 .

l0\.r.;ng,| must point to an area of memory large enough to contain
s t . i n g Z .

t n s = s l . " " o n a s t r i n g , c h s) i
i n t t n g ;
c h a r t c h s , * s t r i n g i

This function searches for the first character in s t r i ng tl.at is not one of the
characters in chs.

Ttre value returned is the number of characters ignored until a chaiacter in
chs was found,

A "t "p..

P

Poge 254 Hisoft C [ibrory Refelence

d a t e = s t r d a t e (b u f f e r) ;
c h a r b u f f e r t 9 l i
c h a r * d a t e ;

This fimction retums the current date in the form of a string: "ddllrtnlyy".

The date is wiitten to the buffer that is passed as a pararneter. The value
returned is equal to the parameter.

rffi?
I]F B

c h a r b ! f f e r [9] ;
v o i d m a i n ()
t

p r i n t f (" T o d a y i s Z s \ n " , s t | " d a t e (b u f { e .)) ,
)

strtime.

s t r g e t f n (f i L e _ n a m e , d r i v e , p a t h , n a m e , e x t e n s i o n) ;
c h a a * f i L € - n a m e i
c h a r r d r i v e , * p a t h , * n a m e , * e x t e n s i o n i

This function creates a full lile name from a drive, a Dath. a ftlename and an
extensron.

The first parameter is zrn ruray of characters where the name will be stored.

The four other parameters are strings containing the drive, directory, name
and extension respectively.

A tn" f i L e-name array must be big enough!

c h a . l i L e - n a n e [6 0] = " d : \ \ h c \ \ e x a m p L e s \ \ s t r g e t f n - c " i
c h a r d r i v e [4] , p a t h t 4 0 l , n a m e t 1 0 l , e x t t 4 l ;
v o i d m a i n ()
{

s t r s p L f n (f i L e _ n a m e , d r i v € , p a t h , n a m e , e x t) i
/ * d r i v e i s
/ * n a m e i s n o v " s t a g e t f n " , e x t " c " * /
s t . g e t f n (f i L e _ n a n e . " a t " . " \ \ " . " h c " . " p . 9 ") ;
/ * f i L e _ n a m e i s n o v " a : \ h c . p r g " * /

]

A
"t."pttn.

o

o

Librory Reference HiSoft C Poge 255

c
c o n l p a r i s o n = s t . i c m p (s t r i n g 1 , s t r i n g 2) i
i n t c o m P a r r s o n ;
c h a l . * s t r i n g t , * s t r i n g 2 ;

This funcuon compares two strings. It is similar to st rcnp except that it

ignores differences between upper and lower case letters.

The value returned ls negative, zero, or positive depending on whether
s t r i ng l l s l ess , equa l o r g rea te r t han s t r i ng2 respec t i ve l y as l o r s t r cmp .

/N strcmp, strnicmp, strncmp.

E

L e n g t h = s t | " L e n (s t . i n g) ;
i n t L e n g t h i
c h a a * s t r i n g i

This frmction r:eturns the length of the string passed as a parameter.

s t r t e n (" a b c ") r e t u r n s 5 .

L

c h = s t r t w r (s t r i n g) t
c h a r * c h , s t r i n g ;

This function converts all upper case letters in the string passed as a
parameter to lo'wer case.

The value returned is a pointer to a string equal to the value passed as a
parameter.

IEJ D u t s (s t r L { r (" a b c 1 2 D E & ")) , wrttes abc'1 2de& on the screen

A
"tn

p..

Pdge 256 Hisoft C Librory Reterence

p t r = s t r n c a t (s t r i n g I , s t r i n g 2 ,
c h a r * p t r , * s t r i n g l , * s t . i n g 2 i

L n g) ;

i n t t n 9 ;

Th i s f unc t i on cop ies s t . i ng2 t o t he end o f s t r i ng1 . T t rus s t t " i ng l l s made
longer ustng characters from str ing2.

A mardmum Lng characters v/ i l l be added to st. ing1.

The value returned is a pointer to str ing'1.

A
"

a
",

n g 1 must point to an area of memory that is large enough to
contain all the characters of the nevr string.

ff i tnr, program writes the string "qverty" on the screen

I = " q r e r , ' ;
: , ' t y u . i o , , ;

s t r i n g 2 , 2)) i

c h a r
c h a r
v o i d
t

]

s t r i n g l [1 0
s t r i n g 2 t 6 l
m a i n ()

p u t s (s t r n c a

strcat.

t (s t r i n g l ,

STR A

c o r n p a . i s o n = s t r c n p (s t r i n g 1 , s t r i n g 2 , L n g) i
c h a r * s t r i n g l , * s t r i n g 2 ;
i n t c o n p a | i s o n , L n g ;

Th i s f unc t i on compares s t l " i ng l and s t r i ng2 . The two s t r i ngs a re
compared until either

(a) Lng char:acters have been compared and the strings are equal thus far. O
is returned in this case.

b) aft the characters have been compared and the strings are equal. Again 0
is returned.

(c) Tvr'o different characters are found. If the character from stringl is less
than that from str ingz then a negative integer is returned, otherwise a
positive integer is returned.

T h u s s t r n c m p i s l i k e s t r c m p b u t a m a x i m u m o f t n g c h a r a c t e r s a r e
compared.

A strcmp, stricmp.

Librory Reference Hisoft C Poge 257

AN

p t r = s t r n c p y (s t r i n g ' l
, s t r i n g 2 , L n g) i

c h a r * p t r . * s t r i n g 1 , * s t r i n g 2 i
' i n t L n g ;

This func t ion coptes up to Ing charac ters f rom s t r ing2 to s t r ing l . The s - '

characters that were onginally in s t r'i n g 1 are deleted.

Ttre value retumed is a potnter to str-ing1.
\-

If st r i ng2 is shorter than L ng, null (O) characters are added until a total of
t ng char:acters has been added.

Ifstring2 is longer than Ing only the first Ing characters are copied and
the string is not terminated by zero.

A .,
",

n g 1 must point to an area of memory that is large enough to \v

receive the new string.

A
"t "py,

-"-"py.

c o f i p a f i s o n = s t r n i c m p (s t r i n g 1 , s t r ' i n g 2 , L n g) ;
i n t c o f i p a r i s o n . t n g ;
c h a r * s t r i n g 1 , * s t I i n s Z i

This function compares up to the first t n g characters of the two strings
s t . i n s l a n d s t r i n s z . T h i s i s s i m i l a r t o s t r n c n p e x c e p t t h a t t h e
corresponding upper and lower case letters are treated as the same.

The value returned is negative, zero or positive, depending on whether
s t . i n g 1 ls less than, equal, or greater than s t r i n g 2 as for s t r n c m p .

A
",."-0,

stricmp, strncmp.

R UNIX

c h = s t r r e v (s t r i n g) ;
c h a r * c h , * s t r i n g i

This function reverses the order of the characters in the string that is passed
as a parameter.

The returned value is a pointer to the same string.

Poge 258 Hisoft C [ibrory Reference

\ s t | . s p L f n (f i t e - n a n e , d r i v e , p a t h , n a m e , e x t e n s i o n) i
c h a r * f i I e - n a m e i
C h a r * d r i v e / * p a t h , * n a m e , * e x t e n s i O n ;

\- Thts function splits a full Iile name into its individual components.

These components are the drive, the path (directory), the name and the
extensron.

The lirst parameter is a string of characters containing the file name to
analyse.

\- Th€ four other parameters are arrays of characters where the drive, path,
name and extension will be stored.

L o

\s A *"
"t.^""

-ust be big enough!

\- A
"t.""p..

A
",.g",rr,.

T N ANSI

L n 9 = s t r s P n (s t r i n g , c h s) .
' i n t L n 9 t
c h a r * s t r i n g , * c h s i

This finds the number of characters at the start of s t r i ng that are contained
i n c h s .

Thus the returned value is the number of characters ignored whilst finding
the fiist chaiacter that is not tn the string c h s.

[ibrory Reference Hisott C Poge 259

o

t i m e = s t r t i n e (b u f f e r) ;
c h a r b u f f e r [9] ;
c h a r * t i m e i

This function returns the current tlme in a string of characters of the form

The time is stored in the buffer passed as a parameter. The retumed \,'alue is
a lso equa l to bu f fe f ,

[.d:' u

c h a r b u f f e . ! 9 l i
v o i d m a i n ()
t

p r i n t f (" I t i s Z s \ n " , s t r t i m e (b u f f e r)) t
]

A
"tra.t",

timer-value.

ST ANSI

c h = s t r t o k (s t r i n g , c h s) t
c h a r * c h , * s t f i n g , * c h s ;

Splits a string lnto a string of tokens.

This function considers the parameter str ing to be made up of tokens
separated by one or more characters from the string chs.

A sequence of calls to this function returns these tokens one at a time.

The first time the function is called a Dointer to the first token found in
str ing is returned. To f ind subsequeht tokens. O is passed instead of
str ing. The function wil l then return a pointer to the second token, then
the thiid etc.

When the strtok function returns 0 this means that no further tokens are
present in the string.

The following program \.vrites the words contained in the string " a a a
ccc ddd " on sepa ra te l i nes .

* s t r i n g = " a a a b b b c c c d d d " ;

m a i n ()

c h = s t . t o k (s t r i n g , " ") i
d o

p u t s (c h) i
| . l h i L e (c h = s t r t o k (0 ,

b b b

c h a r
v o i d
t

)

Iibrory ReferencePoge 250 HiSoff C

RT UNI

n = s t r t o L (s t f i n g , g € n d _ p o s , b a s e) t
i n t n , b a s e ;
c h a r * s t r i n g . * e n d _ p o s i

This function converts a string of characters into a long integer and returns
this as the value of the funcuon.

The str ing must contain only val id digits from O-9, a-z and A-zlo form a
number tn the given ba se from 2 to 36.

The function ignores blanks at the stait of the string and v/ill note an initial +
or - sign. It stops, however, u/hen an illegal chaiacter is found.

when tt returns end-pos points to the first illegal character (or the null at
f h a a n . l l ^ f f h F < f r i n d

f f i . , . .o , , " ' too o" .&p. '16, returns the value 4096 = 1OOO Hex.

sscanf.

PR NIX

c h = s t r u p r (s t r i n s) ;
c h a r r c h , s t r i n g ;

This function converts all the lower case letters in the string passed as a
parameter into upper case.

The value returned is a pointer to the string.

lgJ p ! ' t s (s t I r . ,r r (" A b c 1 2 D E & ")) wi i tes ABcl2DE& on the screen.

A
"trt-r.

o L d _ p o i n t e f = S u p e r (s t a c k _ p t r) i
c h a r * o L d _ p o i n t e r , * s t a c k _ p t r ;

Change to 68000 supervisor or user mode.

lf vou are about to enter supervisor mode, s t a c k-p t r is tl- e value to use as
thl supen'isor stack pointer. The pointer returned is the current user stack
pornter.

When returning to user mode, s t a c k-p t r is the value to be used for the user
mode stack.

[ibrory Retelence Hisoft C Poge 26 |

E MD

r e t = s u p e x € c (a o u t i n e _ a d r) i
t o n g r e t ;
c h a r * r o u t i n € _ a d a i

Executes an assembly language routine in supervlsor mode. The value
returned by the funcuon is the value returned by tl.e routine.

VE GE

v e T s i o n _ n o = s v e a s i o n () i
i n t v e r s i o n _ n o i

Returns the GEMDOS version number.

r e t = t a n (v a L) ;
d o u b L e r e t , v a L ;

Calculates the tangent of tl.e angle
The argument and the retum !?Iue

(in radians) that is passed as a par:ameter.
are both double reals.

sin, cos.

ANSI

r e t = t a n h (v a l) ;
d o u b L e r e t , v a t i

Calculates the hyperboltc tangent of the argument passed as a parameter.

The aigument and the return value are both double reals.

A
"r.rn,

cosh, errno.

Poge 262 Hisoft C Liblory Reference

E
p o s = t e L t (n f) i
i n t p o s ;
i n t n f i

Returns the current file position in the UNIX file nf (opened vrith open)
where the next byte will be read or written.

A *r" position may be changed using L s e e k.

n o - o b j e c t = t e x t - b o x (b o x - n o , x , y , t e x t r ;
i n t n o - o b j e c t , b o x - n o , x , Y ;
c h a r * t e x t ;

Adds an object of tlpe text into a dialog box created by i n i t-b o x.

See Section 3.3.4 for a description of thts function.

DA

d a t e = T g e t d a t e () ;
i n t d a t e ;

Returns the current date in the folloMng format:

E MDO

t ' i m e = T g e t t i n e () i
i n t t i m € ;

Returns the current time in the follorving format:

bits O to 4 Seconds o-29 0=0 sec. 1=2 sec etc
bits 5 to IO Minutes 0-59
bits 11 to 15 Hours (O- 11)

Liblory Reference Hisott C Poge 263

T AL

b a s e = T i c k c a L () i
i n t b a s e ;

Returns the clock tick interval in milliseconds.

IM LUE c
v a L u e = t i n e r - v a L u € () ;
i n t v a L u e ;

This function returns the video clock frequency in Hertz. 60 (colour monitor)
or 70 (monochrome monitorJ.

TLE iSo

n o _ t i t L e = t i t L e _ m e n u (t i t L e _ n a m e) ;
i n t n o - t i t L e i
c h a r * t i t L e - n a m e i

Adds a title bar to a menu. The menu must have been created with
' i n i t _ m e n u .

See Secfion 3.4.3 for the description of this function.

n e ! - c h = t o a s c i i (c h) , '
i n t n e v _ c h , c h i

This function converts a character (between O and 255] to ASCII (code<1281
by removing the top bit.

The function returns the new character code.

n c h = t o L o u e r (c h) ;
i n t n c h / c h ;

This function converts an upper case letter (passed as an integer) to lower
case. If the character isnt an upper case letter then the value is returned
unchanged.

A touppe., islo*er.

T

Poge 264 Hisott C Librory Reference

PP

n c h = t o u p p € r (c h) i
' i n t n c h . c h ;

This function converts a lower case letter (passed as an integer) to upper
case. If the character isn't a lou'er case letter then the value is returned
unchalged.

ANSI
A tolo-"r, ,"r-,pp"..

t q s o f t (a r r , n) ;
c h a r * a r r l x x l i

\ ! - i n t n ;

This function formats an array (a r r) of n pointers to string into lncreasing
oraler.

The array of pointers is modilied in situ,

: A ,a r" not the values of the pointers, but the values of t]le strings that are
used for the sort.

trffi
t ffiJ .fhe follo*ing program sorts an array of three st'ings into alphabettcal

order, alld vniites ttrem in that order.

Ttre array a r r is initialised to contain three pointers. The first points to tl.e
\ string "zzzz". the second to "aa" and the third to "zer". After the sort,-

the o;der of the pointers is modified. The first points to "aa", the second to
'z et.' and t]'e third to " zzzz" . 'fhe strings themselves do not move.

\ _ c h a r * t a b [3] = { " z z z z " , " a a " . " z e r " } ;

t
- - t s q o r t (a r | . , 3) i' p u t s (a r r [0]) ;

\ * p u t s (a r r [1]) i
p u t s (a r r [2]) ;

]

A tq"ort, sqsort, dqsort.

\ _ Librory Reference Hisoft C Poge 265

TR OFF o

t r a c e _ o f f () ;

This function switches
variables is suppressed.

off single step mode, At the same. the display of

A ou""-on. var-on. var-o[f. seclion 1.4.3.

CE HiSo

t r a c e - o n () ;

This function su/itches on single step mode.

A o."",on var-on, var-off, Section 1.4.3.

TDA GE

r e t = T s e t d a t e (d a t €) ;
i n t d a t e , r e t ;

Sets the date using the following format

Ttre value returned is O if the date is valid.

IME

r e t = T s e t t i m e (t i m e) i
i n t t i m e . r e t t

Sets the time, using the following format:

bits O to 4 Seconds o 2 9 O=O sec, 1=2 sec etc
bits 5 to 10 Minutes 0-59
bits to Hours (O- I l)

Pclge 266 Hisoft C [ibrory Reference

U c
'

i n c L u d e < s t d i o . h >
r e t = u n g e t c (c h , f p) ;

. - i n t r e t , c h i
. F I L E * f P ,

Ttris function cancels the affect of the last call to tlle fgetc function. The

next chaiacter to be read from the lile fp vrill be ch.

/A trrt" function mav not be called twice for a file between two reads of
that lile. Only one character can be 'put back'.

A ,"-o.,", Ddelete, ermo.

\ v _ a r c (v d i - h a n d L e , x , y ' r a d i u s ' a n g L e l , a n g L e 2) ;
\ i n t v d i h a n d t e . x , y , r a d i u s , a r g t e ' 1 , a n g L e 2 , '

- Draws a circular arc of centre (x.y) of the given radius between the angles

, angLel and angLe2. The angles should be between O and 3600 (tenths of
_.- deqrees).

- v a r - o f t () ;

\'-- Stops the display of vaiiables during execution.

A o.".-on, seclion 1.4.4.

r e t = u n L i n k (n a m e) ;
c h a r r n a m e ;
i n t r e t ;

Deletes the disk Iile called name that is passed as a parameter.

This function returns O if the operauon was successful, or a non-zero if an
error 6ccurred in which case e r r n o will indicate the source of the error.

N

A

R o

[ibrory Refelence Hisotl C Poge 267

R o

Starts the display of variables on the screen during execution Trace mode
must already be active

A o"". on, seclion 1.4.4.

BA EM

v - b a r (v d i - h a n d L e . a c r - x Y > ;
' i n t v d i - h a n d L e i
s h o r t a r r - x y [4] i

Draw a rectangle $'ith the current attr:ibutes.

arr-xy contains the (x,y) co ordinates of tv/o opposite corners of the
rectangle.

E MVD

v _ c i r c t e (v d i - h a n d L e , x , Y , r a d i u s) i
i n t v d i - h a n d L e , x , Y , r a d i u s ;

Draws a c l rc le centr :ed at (x.y) wi th the given radi us.

KV

v _ c L r v k (v d i - h a n d L e) ;
i n t v d i - h a n d L e i

Clears the screen.

tsv
v _ c L s v r k (v d i _ h a n d l e) ;

Close the virtual workstation opened using v-opnvvk.

NTO U RFILL GE

v _ c o n t o u r f i L L (v d i _ h a n d L e , x , y , t i L L * c o L o u r) ;
i n t v d i _ h a n d L e , \ , y , t i L L _ c o L o u r ;

Performs a seed f i l l in the f i tL-colour star t ing at the co-ordinates (x,y) .

Pqge 268 HiSofi C [ibro]y Reference

EM

v _ c u r d o r n (v d i _ h a n d I e) i
' i n t v d ' j _ h a n d L e i

Moves the text cursor one line down.

A -r-".rt".-"rr..

CUR EM VD
\--

v - c u | " h o m e (v d i - h a n d L e) i
' i n t v d i _ h a n d L e i

.
^

Moves the text cr]rsor to the top left of the screen.

A .,-"rrt".-".r..

\ - v - c u r L e f t (v d i - h a n d l e) ;
i n t v d i _ h a n d L e t

'
Move the cursor left one character.

A ,r-"rrt..-",.,..

RI

v - c u r r i g h t (v d i - h a n d L e) i
' i n t v d i _ h a n d L e ;

Move t.l'e text cursor right one character.

A .,r-"nt".-"rr.

[ibrory Reference Hisofi C Poge 269

CUR VD

v _ c u r (v d i _ h a n d t e ,
i n t v d i - h a n d t e ;
c h a r * s t r i n g

s t r ' i n g) i

Display a string of text at the current cursor position.

A .,-"nt".-"r.r.

DI

v - c u . (v d i - h a n d t e) ;
' i n t v d i _ h a n d L e , -

Move the text cursor uP one line.

A ',r-"nt".-".,r.

v _ d s p c u r (v d i - h a n d t e , x , Y) ;
i n t v d i h a n d L e , x , y i

Display the mouse cursor at position (x,y).

v _ e e o L (v d i _ h a n d L e) i
i n t v d i _ h a n d l e ;

Clear the screen from the current cursor position to t}le end of the current
line.

A .,-"nt".-"r..

ED

E L

EE

v _ e e o s (v d i _ h a n d L e) i
i n t v d i - h a n d L e ;

Clears the text screen starting at the current cursor position.

A .',-".rt".-"r..

Page 270 HiSofi C Librory Reference

ELL

v - e l . L a r c (v d i - h a n d t e . x , Y , x - r a d i u s , y - r a d i u s ,
s t a r t - a n g I e , f i n i s h - a n g L e) t

_ i n t v d i - h a n d t e , \ , y , x - l a d i u s , y - . a d i u s ,
. . - s t a r t - a n g [e . t i n i s h - a n g L e i

Draws an el l ipt ical arc based on centre (x,y) and radi l x-radius and
- y - r a d i u s b e t w e e n s t a r t - a n g t e a n d f i n i s h - a n g L e . T h e t w o a n g l e s a r e

. measured in tenths of degrees (that is between 0 and 3600),

E EM

_ v _ e L L p i e (v d i - h a n d L e , x , y ' x - r a d i u s , y - r a d i u s ,

. s t a . t - a n g l e . { i n i s h - a n g l . e) ;
i n t v d i - h a n d L e , x , Y , \ - r a d i u s , v - r a d i u s ,

s t a r t - a n g I e / f i n i s h - a n q L e i

D r a w s a n e l l i p t i c a l p i e s l i c e g i v e n t h e c e n t r e (x , v) , r a d i u s , s t a r t - a n g L e
\- and f in ish-angLe. The angles are measured in tenths of degrees between o

and 3600.

NT

v _ e f . t i p s e (v d i - h a r , d l e , x , y , x - r a d i u s , y - r a d i u s) ;
i n t v d i - h a n d L e , x , y , x - r a d i u s , Y - t a d : u s ;

Draws an el l ipse v/ i th centre (x,y), x radius, x-radius and y radius,
v r a d i u s .

EL DI

v _ e n t e r - c u r (v d i - h a n d L e) ;
i n t v d i - h a n d L e , '

Enter text mode. The screen is cleared and a flashing cursor appears.

B EM

v e x - b u t v (. v d i - h a n d L e , n e v - a d . , o l d - a d r) i
i n ! v d 1 _ h a n o L e ;
c h a . * n e u - a d r , * o L d - a d . i

Modifies the mouse interrupt vector.

Liblory Reference HiSott C Poge 271

EX-C GE

Draws a filled polygon containing n points. The array arr-xv contains the
co-ordinates of al l the points in the polygon (xO,yO, x1,yI, . . .) .

TPI DI

v _ 9 e t _ p i x e | (v d i - h a n d t e , x , Y ,
' i n t v d i _ h a n d L e , x , Y i
s h o r t r g b _ c o L o u . , c o L o u r - n o ;

Returns the colour of the point (x,r).

& r g b _ c o L o u r , & c o L o u r - n o) ;

v e x - c u r v (v d i - h a n d I e ,
i n t v d i - h a n d L e i
c h a r * n e ! , - a d l . , * o L d -

Modifies the end of mouse

n e H _ a d r , o L d _ a d r) i

a d r ;

cursor drawing vector.

v - e x i t - c u r (v d i - h a n d L e) i
i n t v d i - h a n d L e i

Iraves text mode. The screen is cleared and the flashing cursor disappears'

v e x - m o t v (v d i - h a n d L e / n e H - a d . , o l d - a d r) i
i n t v d i - h a n d t e i
c h a r * n e v - a d r , * o L d - a d r ;

Modifies the mouse movement vector'

v e x - t i m v (v d i - h a n d L e , n e v - a d r , o L d - a d r) i
i n t v d i - h a n d L e i
c h a r * n e e - a d r , * o L d - a d r ;

Modilies the timer interrupt vector.

v _ f i L t . a r e a (v d i - h a n d t € , n ,
i n t v d i _ h a n d L e , n ;
s h o f t a r r - x Y I n * 2] i

a r r _ x y) i

U

VE

MVX

ML

Poge 272 Hisott C Librory Reference

v _ g t e x t (v d i - h a n d t e , \ , v , s t r i n g) i
i n t v d i - h a n d L € / x , Y ;
c h a r * s t . i n g i

Displays a strin_g of graphics texl cbaracters. The position
character is given by tx,v,.

of t]le first

v - h i d e - c (v d i - h a n d L e) ;
i n t v d i - h a n d L e ;

Hides the mouse cursor.

v - j u s t i f i e d (v d i - h ! n d L e , . x , y , s t r r n g ,-
L e n g t h , v o | " d - s p a c i n g , c h a . - s p a c i n g) i

i n t ; ; i : h a ; d L e , t v , L l n g t h . v o r d - s p a c i n g , c h a r - s p a c i n g , '
c h a r * s t r i n g i

Display a justified graphics te)rt string starting at co-ordinates (x'v) in a

widtl t of Length Pixels.

I fvo.d-spacing = '1 t] len spaces may be added between'words and/or t f

char-spacing = '1 then space may be added between characters'

v o o n v H k (a r r 1 , & v d i - h a n d t e , a r t . 2) ;
s f , o i t v u i - t r a n a l e , a r t 1 t 1 1) , a r r 2 t 5 ?) ;

Initialise a virtual workstation for GEITTVDI

It is not necessa-ry to call this function when using Hlsoft C because Insoft C

has already done this.

T o f i n d t h e v d i - h a n d t e u s e g r a f - h a n d L € .

LI E

v o i e s t i c € (v d i - h a n d L e , x , y , r a d i u s ' s t a r t - a n g L e / f i n i s h - a n q L e) t
i ; t v d i h a n d t e , \ , y ' . a d i u s , s t a r t - a n g L e , f i n i s h - a n q l e ;

Dravi, /s a circular pie sl ice centred on (x.v) of the speci l ied radi us, between
t h e s t a r t - a n g l . e a n d t h e t i n i s h - a n s L e . T h e a n g l e s a r e e x p r e s s e d i n

tenths of a degree.

J FIE D DI

DIKP

Libtory Retetence Hisoft C Page 273

PLI M VDI

v _ p L i n e (v d i _ h a n d t e , n , a r r - x y) ;
i n t v d i _ h a n d L e , n ;
s h o r t a r r - x y I n * 2] ;

Draws a set of straight lines joining the n points stored in the array a r r-xy
{ x 0 , y 0 , x 1 , y 1 , x 2 , y 2 . . .) .

v _ p n a r k e r (v d i _ h a n d L e , n , a r r - x y) ;
i n t v d i _ h a n d L e , n i
s h o r t a r r - x y I n * 2] i

Draw n markers whose co-ordinates are stored in the array arr_xy
(xo,yo,x1,yr...).

R G

H ELL GEM

v q _ c h c e t L s (v d i _ h a n d t e , & s c r e e n _ h e i g h t ,
i n t v d i _ h a n d L e ;
s h o r t s c . e € n _ h e i g h t , s c r e e n _ r i d t h i

Returns the size of the screen in chariacters.

& s c r e e n _ v i d t h) i

v q _ c o L o . (v d i _ h a n d L € , c o L o u r - n o , v a L u e _ t y p e ,
i n t v d i _ h a n d L e , c o L o u r _ n o , v a L u € _ t y p e i
s h o r t r g b _ a r r [3] i

Returns the representation of a colour in rgb units.

r g b - a r r) i

a
v q _ c u r a d d r € s s (v d i _ h a n d t e , & r o v , & c o L u m n) i
i n t v d i _ h a n d L e ,
s h o r t r o r , c o t u m n ;

Return the current text cursor position.

A 'r,
"nt", ".rr.

Poge 274 Hisoft C Librory Refelence

v q - e x t n d (v d i - h a n d L e , Y h i c h , t a b) ;
i n t v d i - h a n d L e , H h i c h i
s h o r t t a b t 5 T l i

Retums informauon on the given virtual workstation.

v q - i n f l o d e (v d i - h a n d L € , d e v - t v p e , & i n p u t - m o d e) ;
i n t v d i - h a n d L e , d e v - t Y P e ;
s h o r t ' i n P u t - m o d e i

Returns the current input mode of a glven device.

ATTR s EMV

v q f - a t t r i b u t e s (v d i - h a n d t e , f i L L - t y p e) ,
i n t v d i _ h a n d L e , '
s h o r t f i t l . - t Y P e t 4 l ;

Returns the current fill aiea attributes (t1pe, colour, style and v/iiting mode
in that orderl.

v q _ k e y - s (v d i - h a n d L e , & k e y - s t a t e) i
i n t v d i _ h a n d L e t
s h o r t k e y - s t a t e ;

Returns the state of tlle control keys: right Shift (bit O), left Shift (bit r),
Control (bit 2). a-nd Alternate (bit 3).

The corresponding bit ls I if the key is down.

RIB DI

v q L - a t t r i b u t e s (v d i - h a n d L e , L i n e - t y p e) ;
i n t v d i - h a n d L e i
s h o r t I i n e - t y P e [4] ;

Returns in the array Line-tvp€ informat ion on
(tJrpe, colour, writing mode and hne 1vidth in that

the current line attributes
order).

DIDa

[iblory Reference Hisotl C Poge 275

ATTR M

v q n - a t t | i b u t e s (v d i - h a n d L e , m a r k e r - t v p e) i
i n t v d i - h a n d L e , '
s h o r t m a t . k e . - t Y P e [4] i

Returns in the array marker-type the current marker attributes (t],?e,
colour, writing mode and height in that order).

M EM

v q - . . m o u s € (v d i - h a n d L e , & b u t t o n , & x , A v) ,
i n t v d i - h a n d L e i
s h o r t b u t t o n , x / Y ;

Returns the state of the mouse buttons.

T TE MVD

v q t _ a t t r i b u t e s (v d i _ h a n d t e , t e x t - t y p e) i
i n t v d i _ h a n d L e ;
s h o r t t e x t - t Y P e t 1 0 l ;

Returns in the array text-type information on the current text attributes
(font. colour, angle, horizontal alignment, vertical alignment, 1&Titing mode,
character v/idth, character height. cell wldth, cell height in that order).

v q t _ e x t e n t (v d i - h a n d I e , s t r i n g , e x t e n t) i
i n t v d i - h a n d L € i
s h o r t e x t e n t [8] ;
c h a r * s t r i n g i

Returns in the extent array (xO, yO, x1,y1, x2,y2, x3,y3) the co ordinates of
a box that would surround the text of the s t r i n g passed as a parameter.

TF DI

v q t _ { o n t i n f o (v d i _ h a n d I e , & ' i r s t _ c h a r , & L a s t _ c h a r ,
d i s t a n c e s , S m a x x i d t h , e f f e c t s) ;

i n t v d i _ h a n d L e ;
s h o r t f i r s t - c h a r , t a s t _ c h a r , n a x H i d t h i
s h o r t d i s t a n c e s [5] , e t f e c t s t 3 l i

Returns information on the current text font.

T

Page 276 HiSoff C [ibrory Reference

v q t - n a m e (v d i - h a n d L e , { o n t - n o , { o n t - n a m e) ;
i n t v d i - h a n d L e , f o n t - n o i
c h a r * f o n t - n a m e ;

Returns the name of the font whose index is passed as a parameter.

v q t - v i d t h (v d i - h a n d L e , c h a r a c t e r , & c e I L - v i d t h ,
S t e f t o f f s e t , & r i g h t - o f f s e t) ;

i n t v d i - h a n d l e , c h a r a c t e r ;
s h o r t c i L L - r J i d t h , L e { t - o f f s e t , r i g h t - o f f s e t ;

R e t u r n s t h e c e L L - v i d t h , a . n d L e f t - o l f s e t a n d r i g h t - o f f s e t o f t h e

g i v e n c h a r a c t € r .

v _ r b o x (v d i - h a n d L e , a r r - x Y) i
i n t v d i - h a n d L e i
s h o r t a r r - x Y [4] i

Draws a rectangle urith rounded corners using the line attributes' arr-xv

contains the two opposite corners of the rectangle.

v - r { b o x (v d i - h a n d l e , a r t - x Y) ;
i n t v d i - h a n d L e i
s h o r t a . r - x y [4] ;

Dra'ws a filled rectangle with rounded
afr-xy contains the two opposite corners

corners using the f i l l attr ibutes.
of the rectangle.

R VD

v - r m c u r (v d i - h a n d t e) ;
i n t v d i - h a n d L e ;

Removes the mouse cursor.

Go

Librdry Reference Hisott C Page 277

coDies a block of memorv from a source
area (mfdb-d es t i na t io ;) per fo rming a

i n c [l J d e < g e m l i b . h >
v r o _ c p y f f l (v d i _ h a n d L € , o p e r a t i o n , a r t .

m f d b _ s o u r c e , m t d b _ d e s t i n a t i o n) ;
i n t v d i _ h a n d L e , o p e r a t o r i
s h o r t a a a - c o o r d s C 8 l ;
F D B * m f d b _ s o u I c e , * m f d b _ d e s t i n a t i o n ;

i n c t u d e < g e m L i b . h >
v r o _ c p y f m (v d i _ h a n d I e , o p e r a t o r . a r r

n f d b _ s o u r c e , m f d b _ d e s t i n a t i o n ,
i n t v d i _ h a n d L e , o p e r a t o r ;
s h o r t a r r _ c o o r d s [8] , c o L o u r s t 2 l ;
F D B * n f d b _ s o u r c e . r m f d b _ d e s t i n a t i o n

a rea (m fdb_sou rce) t o a des t i na t i on
ras te r ope ra t i on on t he b lock .

c o L o u r s) i

RE

v r - r e c f L (v d i - h a n d t e , a r . - x y) ;
i n t v d i _ h a n d L e i
s h o r t a r r - x y ! 4 1 ;

Drav,/s a filled rectangle u/ithout a border using the fill attributes. arr-xy
contains the two opposite comers of the rectangle.

T P GEM VDI

Similar to the v r o-
to be monochrome
copied.

cpyfm function except that the source area is considered
and is given the colours in the array colours when

VR M VDI

v r _ t r n f m (v d i _ h a n d L e , m f d b _ s o u r c e , m t d b _ d e s t) i
i n t v d i _ h a n d L e i
F D B * n f d b _ s o u r c e , * f l f d b _ d e s t i

Copies a memory area (descr ibed by mfdb_source) in standard format to a
desunat ion area (descr ibed by nfdb_dest) in device dependent format.

F GEM VDI

v _ . v o f i (v d i _ h a n d L e) i
i n t v d i _ h a n d t e ;

Cancels t] le ef fect of v_rvon.

Poge 278 Hisoft C Librory Reterence

v - r v o n (v d ' i - h a n d L e) i
i n t v d i - h a n d L e ;

After a call to this function, all text written with v-curtext will be wrttten

in inverse video (white on black).

c M VDI

v s c - f o r m (v d i - h a n d t e , m o u s € - t o . m) ;
i n t v d i _ h a n d L € i
n o u s e - f o r f i [3 7] i

Re-defines the mouse form. The elements of the array are as follows:

CL

v s - c L i p (v d i - h a n d L e , c L i p , c t i p - a r r) t
i n t v d i - h a n d L e , c t i P ;
s h o . t c L i p - a r r [4] ;

Enab les (c l . i p=1) o r d i sab les (cL ip=g ; c l i pp ing w i t h i n
c L i p-a rr (xo,Yo,x1,Yl).

the VDI rectangle

v s - c o L o r (v d i - h a n d L e , c o L o u r - n o , r g b - v a L u e s) i
i n t v d i - h a n d t e , c o L o u r - n o i
s h o r t r g b - v a l ' u e s f 3 l ;

Sets the palette for a colour cotour-no to be the red, green & blue values
fbetween O and IOOO) in the array rs b-va l u e s.

R

Gc

librory Reference Hisott C Poge 279

M VDI

v s _ c u r a d d r e s s (v d i _ h a n d L e , r o x , c o L u f l n) i
i n t v d i _ h a n d t e , r o H , c o L u m n ;

Positions the text cursor at position given by roH, cotunn.

A ,r,"rrt..-"r..

F VDI

v s f _ c o I o r (v d ' i - h a n d L € , c o L o u r _ n o) i
i n t v d i _ h a n d L e , c o L o u r - n o , '

Selects the colour used for filling areas.

SF

F STYLE

v s f - i n t e r i o r (v d ' i - h a n d L e , f i t t - t y p e) i' i n t v d i _ h a n d L e , { i l l _ t y p e , '

Selects the type of fill depending on the value of ffll_t]pe:

V GE VDI

v s f _ p e r i m e t e r (v d i _ h a n d L e , p e I i m e t e r) i
i n t v d i _ h a n d t e , p e r i m e t e r i

Indicates i f GEM is to draw a perimeter round f i l led objects (t f
p e r i m e t e . = 1) o r n o t (p e r i m e t e r = O) .

v s f _ s t y L e (v d i _ h a n d L e , s t y L e) i
i n t v d i _ h a n d l e , s t y L e i

Selects a fill pattern style (l to 24) or hatch (1 to 12).

v s f i n t e r i o r

Poge 280 Hisoft C [ibroly Reference

F-U D

v s f _ u d p a t (v d i _ h a n d I e , i n a g e , p I a n e s) ;
i n t v d i _ h a n d t e , p t a n e s ;
s h o r t * i m a g e i

sets up a user delined lill pattern,

ptan€s indicates the number of planes in the design (16 =1 plane, 32= 2
p lanes ,64=4p lanes) .

i ma g e contains the bit pattern for the neE' pattern and should contain the
same number of words as t]le value of planes.

HO
\ - v - s h o u - c (v d i - h a n d L e , c o u n t) ;

i n t v d i _ h a n d L e , c o u n t ;

Makes the mouse appear i f count is zero.

L DI

v s f - c o L o r (v d i - h a n d L e , c o L o u r - n o) i
i n t v d i _ h a n d L e , c o L o u r _ n o ,

Select the colour that ls used for drawing lines.

ND EM

v s L _ e n d s (v d i - h a n d L e , s t a r t - t y p e , e n d - t y p e) ;
i n t v d i - h a n d L e , s t a r t - t y p e , e n d - t y p e i

Sets the style used for the ends of lines: O = normal, I = arrow, 2= rounded.

DI

v s L _ t y p e (v d i _ h a n d L e , L i n e - t y p e) i
i n t v d i _ h a n d L e , L i n e _ t y p e ,

Sets the line style (O to 7) that is used in drawing lines.

UD GEM

v s L _ u d s t y (v d i _ h a n d L e , s t y L e) ;
i n t v d i _ h a n d L e , s t y t e ;

Del lnes the user def ined l ine sty le

[ibro]y Reference Hisott C Poge 281

IDTH EM VDI

v s l . _ u d s t y (v d i _ h a n d t e ,
i n t v d i _ h a n d L e / v i d t h ;

Deffnes t]le line width to be

H i d t h) '

r{i dth (between I and 39).

OL R EM VDI

v s f _ c o L o r (v d i _ h a n d [€ , c o L o u r _ n o) ;
i n t v d i _ h a n d L e , c o L o u r _ n o , '

Selects the marker colour.

TYPE EM

v s m _ t y p e (v d i _ h a n d L e , t y p €) i
' i n t v d i _ h a n d L e , t y p e ;

Selects the tlT)e of marker to be used (l to 6).

V GEM VDI

v s t _ a t i g n m e n t (v d i _ h a n d L e , h o r i z _ a t i g n , v e r t _ a L i g n .
& r e t _ h o r i z o n t a [, 8 r € t _ v e r t i c a L) ;

i n t v d i _ h a n d L e , h o r i z _ a L i g n , v e r t _ a t i g n ;
s o r t r € t _ h o r i z o n t a L , r € t _ v e a t i c a L ;

Deffnes the horizontal al ignment (in horiz_aLign from O to 2) and vert ical
al ignment { in vert_aLign from O to 5) for text.

The va lues re tu rned i n re t_ho r i zon taL and re t_ve r t i ca t a re t he va lues
set.

coroR EM VDI

v s f _ c o L o r (v d i _ h a n d L e , c o L o u r _ n o) ;
i n t v d i _ h a n d L e , c o L o u r _ n o , '

Selects the tert colour.

Pqge 282 HiSolt C Librory Reference

v s t - e J f e c t s (v d i - h a n d ! e , € f f e c t) ;
i n t v d i - h a n d L e , e l l e c t ;

. Selects the elTects to apply to text using the bitmap e f f e c t:

ST CT

btt efiect"-0------Toftf
I light (greyed
2 italic--5-------T;a;in'

-
4

-
outltned
shadowed

v s t - f o n t (v d i - h a n d t e , f o n t - n o) i
i n t v d i - h a n d L € , f o n t - n o i

Selects l l 'h ich font to use (ront-no).

v s t - h e ' i g h t (v d i - h a n d L e , r e q u e s t e d - h e i g h t , & c h a r - h € i g h t ,
. & c h a . - H i d t h ,
\ . ' ' & c e L L - h e i g h t , & c e L L - v i d t h) ;

i n t v d i - h a n d L e , r € q u e s t e d - h e i g h t i
s h o r t c h a r - h e i g h t , c h a r - t i d t h , c e L L - h e i g h t . c e t t - t i d t h i

_ Attempts to set the height of characters to r e q u e s t e d-h e 'i g h t .

This returns the size actually selected which is never bigger than that which
'was requested.

OA VDI
\ '

f o n t s = v s t - L o a d - { o n t s (v d i - h a n d t e , r e s € . v e d) i
i n t v d i - h a n d L e , a € s e r v e d , f o n t s i

I-oad t}le fonts indicated in ASSIGN.SYS. Requires GDoS for use.

Librory Reference

GF

GTT

Hisoft C Poge 283

EP

h e i g h t = v s t _ p o i n t (v d i _ h a n d t e , p o i n t s . & c h a r - h e i g h t ,
& c h a r - v i d t h ,

& c e L t - h e i g h t , & c e L t - H i d t h) ;
i n t v d i _ h a n d L e , p o i n t s , h e i q h t i
s h o r t c h a r _ h e ' i g h t , c h a r _ | l i d t h , c e L L _ h e i g h t , c e L t - H i d t h i

Selects the height of a character using points (1/72th oI an inch) as the units.

R M VDI

v s t _ r o t a t i o n (v d i _ h a n d t e ,
i n t v d i - h a n d L e , a n g L e ;

Specifies the angle of rotation
o=normal, 9OO, 18OO arrd 27OO.

a n g L e) ;

of text characters. Possible values are :

LOAD F NT GE

v s t _ u n I o a d _ f o n t s (v d i - h a n d L e , r e s e r v e d) i
i n t v d i - h a n d L e , r e s e r v e d i

Frees the space used by loaded fonts.

SWR_

m o d e _ s e L e c t e d =
i n t v d i _ h a n d t e ,

Selects the writing
transparent).

This funcuon returns

v s u r _ m o d € (v d i _ h a n d L e , u l i t i n g _ m o d e) i
x | " i t i n g _ n o d e , m o d e _ s e L e c t e d ;

mode (l=normal, 2=transparent, 3=XOR, 4=inverse

the value that has been selected.

V s y n c () i

Waits unul the vertical screen interupt.

Poge 284 Hisoft C Liblory Reference

CAL MAE

r e t = u i n d _ c a L c (i n t e | i o r ' , a t t r i b u t e s ,
x 1 , y 1 , u 1 ' h 1 .
& x Z ' & y 2 , g v z , & h 2 > ;

\ i n t r e t , i n t e . i o r , a t t r i b u t e s , x 1 , v l , u 1 , h 1 ;
s h o r t x 2 , y Z , u 2 . h 2 t

Calculates t}le size of a v/indow needed, returned in (\2. y2, H2. h2), to gve a
'wo rkspace s i ze o f (x 1 , y1 , r r 1 , h1) i f i n t e r i o r = O Or t he s i ze o f t he wo rk

\-
area given the border size if i n t e r i o r =1.

This doesn't apply to a particular windov', but is useful for windows in

\-
general'

attr ibutes gves \rhich 'gadgets' a windov/ has (see Secl ion 3.2.3).

LOSE MAE

f e t = x i n d - c I o s e (t i n d o Y - n o) i
\ * i n t r e t , Y i n d o H - n o ;

Close the window {x i ndo r-n o) v/hich has been opened v/ith u i n d-o p e n.

\-. The value returned is zero if an error occurs.

REATE AES

v i n d o H _ n o = v ' i n d _ c r e a t e (a t t | i b u t e s . x . y , u , h r ;
i n t r i n d o r - n o . a t t . i b u t € s , x , y . u . h ;

\- Initialises a window v/ithout opening it.

The attiibutes are the same as for o pe n-u i ndot.

\- x,y,H,h are the co ordinates of the window'

Ttre value returned is the window's handle, or negative if the window cannot
be created,

DD GEM

. e t = t . l i n d - d e L e t e (v i n d o H - n o) ;
' i n t ' r e t ,

} l i n d o H - n o ;

Deletes a rv indow (r i ndo!-no) af ter i t has been c losed.

The value returned is zero if an error occurred.

[ibrory Reference Hisoft C Poge 285

r i n d o u - n o = x i n d _ { i n d (x , y) ;
i n t H i n d o v - n o , x , y i

Returns tlle handle of the v/indow under co-ordinate
Desktop is window number O.

posit ion (x,y). The

ET

i n c t u d e < g e n L i b . h >
r e t = r i n d _ s e t (v i n d o u - n o , t y p e - i n f o , & x , & ' / ' & u , & h > ;
i n t r e t . r i n d o l , _ n o , t Y P e _ i n f o ;
s h o r t x , y , u , h ;

Returns in the parameters {x, y, v, h) information about the v/ indow
depending on the value of typ€-i nfo:

T?re value returned by this function is O if an error occurs.

F l , , l x Y l r H

L I S I Z S i e

OPEN

r e t = v i n d _ o p e n (u i n d o w _ n o , x , y . t t , h) ;
i n t r e t . u i n d o H _ n o , x , y , u , h ;

Opens a window that has been created with yind_create. The co-ordinates
should be the same as, or smaller than the co-ordinates given to
u ' i n d _ c r e a t e .

Poge 286 Hisoft C [ibrory Reference

L

(-

L

i n c l u d e < g e n t i b . h >
r e t = v i n d - s € t (r i n d o t - n o , t v p e - i n f o ,
i n t r e t , v i n d o v - n o , t y p e - i n f o ;
i n t x ' Y , r , h ;

Se ts . us in4 t he pa rame te rs (x . y . u . h) ,
H i ndor-no-depending on the value of tvpe-

x , y , u , h) ,

the attributes of the windov/
i n { o :

L

L

L

L-

i n c t u d e < g e m t i b . h >
r e t = r ' i n d - u p d a t € (P a r a m) i
i n t a e t . P a r a m -

Permit or bart certain of GEM'S automauc control of the system dependtng on
the value of pa ram:

B E G _ U P D A T E The application is vtriting to the screen. GEM
won't let the user pull down menus or 'play' with
windows.

EID-uPDATE Cance l t he e f f ec t o f BEG-UPDATE. Menus may be
activated once more.

B E G-l,l c T R L The application is about to take control of the
mouse.

E Il D-11 c r R L Retum mouse control to GEM.

The value retumed by this function ts O if an error occurs.

L

L

AT

EE

(_ IT

(_

n u m = v r i t e (n f , b u f f e r , b Y t e s) ;
i n t n u m , n { , b Y t e s ;
c h a r * b u f f e r ;

Writes bytes to t}le file number n{ that has been

b u { J e r is the address from which the b}tes are

opened using op€n.

read from the file.

L Librory Reference Hisotf C Poge 287

by t e s is the number of blrtes to write to the ffle.

n um is the number of bl,'tes that were actually written to the ffle. Generally
thts u/ill be the same as bytes. Hov/ever num may be less than this if an error
occurs (the disk is full for example).

If t}re value returned by the function is -1 or is less than bytes an error has
occuired. In this case the vaiiable e r r n o will contain an indicatlon of v/hich
error,

A oo"t, read, errno.

GE

r e t = x b i o s (n o , a r g l , a r 9 2 - - - t ;
i n t n o ;
L o n g r e t , a r g l , a . g Z , . . .

Execute an XBIOS function using TRAP #14.

no is the functron number.

r e t is the value returned by the XBIOS function.

al"gl, a|.g2... are the paiameters for the particular XBIOS function.

A bro", g"-ao".

n o _ i t = X b t i m e r (t i m e r - n o , c o n t r o L - r e g ,
r o u t i n e - a d r) i
i n t n o _ i t , t i m e r - n o , c o n t r o L - r e g , d a t a _
c h a r * r o u t i n e _ a d a i

Initialises a 68901 timer.

d a ! a _ r e g ,

f e g ;

r i me r_no (O-3) indicates which timer is to be initialised (A, B, C or D).

controL_reg and data-reg are the values (bytes) to $r:ite to the control
and data registers of the timer.

Finally the interrupt routine for each timer event is passed as the
.ou t i ne-adr Parameter .

Poge 288 Hisoft C Librory Reference

Appendix A'
Exercise Answers

Exercise I

m a i n ()
{

p r i n t f (" h e \ n L L o ") ;
p r i n t f (" H o w a r e \ n y o u ? \ n ") ;
p r i n t f (" p f e s s a k e Y \ n ") ;
e v n t - k e y b d () ;

)

\- Exetcise 3

c h a r c h 1 , c h 2 i
\ m a i n ()

c h ' l = e v n t - k e y b d () ;
c h Z = e v n t _ k e y b d () i

t P u t c h a r (c h 1) ;
P u t c h a f (c h 2) ;
evn t -k eybd () ;

]

Notes :

. The variables ch1 and ch2 could be declared as char, shol"t or int -

\- it does not matter.

. More than one vat:iable can be declared in the same statement by
l seDaraLing them with commas.
\-

Exercise 4
\ - i n t v 1 , v 2 , v 3 ;

r n a i n ()
{

I p r i n t f (" H e r e a r e t h r e e v a t u e s | 7 . d , 7 . d a n d ' l d \ n " ' v ' 1
, v 2 , v 3) ;

\ ' e vn t -ke ybd () ;
)

I There is not]ring complicated here. The evnt*kevbd () calljust waits
for a key to be pressed so you c:rn admire the results of the program.

_ Exercise Answets Hisoft C Poge 289

Exercise 5

i n t n u m ;
n a i n ()
{

n u m = R a n d o n () ;
i f (n u m % 2 = = 1)
{

p r i n t f (" T h e n u n b e r Z d i s o d d \ n " , n) i
n u m = n u n + 1 i

)
e I s e

p r i n t f (" T h e n u n b e r Z d i s e v e n \ n " , n) ;
e vn t -keybd () ;

)

If ttre number n urn is odd, we write a message to this effect and add
one to this number.

If num is dready even, we just need to \r'rite a message on ttre screen'

Exercise 6

i n t i i
n a i n ()
t

i = 2 0 ;
B h i L e (i)
t

p r i n t f (" Z d h a s s q u a r e Z d \ n " , i , i * i) ;
i - - .

)
evn t -keybd () ;
)

There's a bizarre blt in this program, i --. This is actually very
simple. These three characters subtract one from i. This is \._

equivalent to the instruction:

i = i - 1 i \

But i --, takes less time to write and can execute quicker.

Poge 290 Hisotf C Exercise Answers \._

There's a similar trick to add one to a variable. For example to add one
to the variable sum we czrn write

s u t l l = s u m + 1 ;

,..-. or equa.lly well :

s u n + + ;

\- Ttrere's another trick in this program. A condition is either true or
false. False is represented by zero. TrLe is represented by any other
value. Thus 0 is taken as false and any other va-lue as true.

\v In our example the condition in the statement uhite (i) is
therefore true whilst the variable is not zero. The set of two
instructions are thus executed until i is zero. When i becomes 0 the

\- program stops.

Exercise 7

! n I 1 ;
m a i n ()
t

f o r (i = 2 0 ; i t ' 0 ; i - -)
p r i n t f (" ; ; d s q u a r e d i s Z d \ n " , i , i * i) ;

e v n t - k e y b d () ;
]

L
The va-riable i va.ries between 20 and I in the loop.

i -- is used to subtract I from the va.riable i.

Exercise I

i n t i , s u m ;
m a i n ()
t

s u n = 0 ;
f o f (i = 1 ; i < = 1 0 0 ; i + +)

s u m + = i ;
e v n t - k e y b d () ;

)

The vadable sum contains the sum of the hundred numbers. The
variable i is the index that varies from one to a hundred.

The instrucuon

S u n + = i ;

looks a bit firnny. And in fact it is. This is equivalent to

L

Exelcise Answers Hisott C Poge 291

_

s u n = s u n + i i

The orrly difference is that it is to quicker to type and execute. \-

The operators -= l= *= Z= work in a stnilar way:

s u m - = i i s u n = s u m - i ;

s u m / = i ; s u n = s u m / i ;

s u m * = i ; s u t t t = s u n * i ; \ . -

s u m z = i i s u m = s u r n Z i ;

The statements on the left are equivalent to the statements on the \.-
right in the above table.

The operator z is the remainder operator.
\.--

The statement

i + r ;

is used to add 1 to i as we have seen in Exercise 6.

Exercise 9

i n t c h ;
m a i n ()
{

f o r (c h = 3 2 ; c h < 2 5 6 i c h + +)
t

p u t c h a r (c h) ;
' i f (c h Z 1 6 = = 0)

P r i n t f (" \ n ") ;
)
e vn t -ke ybd () i

)

This program displays the characters for the ASCII codes 32 to 255.

The statement:

p u t c h a r (c h) ;

writes the character corresponding to the ASCII value in c h.

Poge 292 Hisott C Exercise Answers \-

The conditional

i f (c h % 1 6 = = 0)
p r i n t f (" \ n ") ;

. is to tidy the display. The program writes 16 characters per line'
-

Aft". I6'have been written, i.e when i is divisible by 16, then the
following characters are written on the next line. To do this Hisoft C
executes the statement:

P r i n t f (" \ n ") t

. wtrich puts the cursor on the start of the following line.
\-

Exercise l0

Here's the version of the program using a sw i t c h statement:

c n a r c i
\ n a i n ()

t
d o
t

c = e v n t - k e y b d () i
s l i i t c h (c)
t
c a s e ' a ' :
c a s e ' b ' :
c a s e ' A ' :
c a s e ' B ' :

P u t c h a r (c) ;
b r e a k ;

d e f a u l . t ;
P u t c h a f (' * ') ;

)
)
l i h i t e (c l = ' ') ;

]

,, The variable c is of tlpe c h a .; it's used to store the character ttrat is
typed at the keYboard.

WeVe used a do ' '.tthi Le loop to repeat the reading ofa character
\!-. and the echoing on ttre screen.

\- Exercise Answets Hisolt C Poge 293

\-

The C language lets us manipulate constants that represent the
ASCII code for characters. In fact these constants are of integer type.
The syntax for these character constants is that they are enclosed in \.-

single quotes. So you can write, for example,

c = ' a ' i . *

Tfris instruction stores ttre ASCII code for a in the variable c.

These constants can be used anywhere an integer constant could be \.-

used, in partlcular in switch statements. The ASCII code for I 1s 65,
so case 'A ' is equiva lent to case 65.

In our e).ample, lf the character typed on the keyboard is a, b, A or B,
then it is echoed to the screen using the statement:

P u t c h a r (c) ; . -

Remember that putchar is a function to wrlte a character on the
screen. Its parameter is the ASCII code of the character to write. The
default part lets us cope with all the other characters. If the key \-

pressed is not a or b then a star is written on ttre screen.

The looping condition is (c ! = ' '). This is to test if the space bar !
was pressed. ' ' represents the space character; it is a single space
between two apostrophes.

The two characters | = mean "is dfferent to-. Thls 1s equivalent to <>
in BASIC. Note that the test "is equal to'which is = in BASIC, is == in
C. C distinguishes between the assignment operator which is written
vdth a single equals sign and the equality operator which is two
equals signs.

The follov/ing program is equivalent to the previous one but it uses an
it statement instead ofa sBi tch.

c n a r c ;
m a i n ()
t

o o
t

c = e v n t _ k e y b d () ;
i f (c = = ' a ' l l c = = ' b r l l c = = ' A , l l c = = ' B ')

p u t c h a r (c) i
e I s e

P u t c h a r (' * ') ;
)
l h i l . e (c l = | t) '

Pdge 294 Hisoft C Exelcise Answers _

you can see that the variable c is of type cha r. The program loops
.,_ reading a character and then veriting one to ttre screen.

In place of the sui tch statement we've got an i f statement. The
condition is a bit odd. The expression c==' a ' tests if the variable c

!- contains the ASCII code for the character a . We also test if c is equal
to t}re codes for the characters b, A and B. Between these four tests
there are a two vertical bars | | . They mean "or" and are equivalent to

! OR in BASIC. The i f condition in the program above is therefore:

if (c is equal to ' a ' or c is equal to ' b ' or c is equal ' A ' or c is equal
t o ' B ') .

In this case we echo the character to the screen, otherwise (e L se) we
dlsplay a star.

''-
Exercise I I

m a i n ()
1 T\ ' - '

n o n e () ;

, n o n e ()
\ ,]

t

!
Another version:

m a i n () { n o n e () ; } n o n e () t }

I

_

L

L

1,. Exercise Answers HiSofi C Poge 295

Exercise l2

c h a r c ;
i n t v a t u e ;
n a i n ()
{
p f i n t f (" T y p e t u o n u n b e r s s e p a r a t e d b y a s p a c e , \ n ") ;
p r i n t f (" t h e n p r e s s R e t u r n \ n ") ;
p r i n t f (" S u m = Z d \ n " , r e a d - n u n b e r () + r e a d - n u m b e r ()) ;
e v n t _ k e y b d () ;
)

r e a d - n u m b e r ()
{
v a l . u e = 0 i
c = g e t c h a r () ;
u h i L e (d i g i t (c))
{

v a L u e = v a I u e * 1 0 .] c - r 0 r ;
c = g e t c h a r () i

]
r e t u r n (v a t u e) i
]

d i q i t (c h)
c h a r c h ;
{
. i f (c h > = , 0 ' & & c h < = ' 9 ')

r e t u r n (1) ;

r e t u r n (0) i
)

The funcuon diqi t has a parameter. Itis a character. Ifitis a digit *
the function retrrns 1 [tme). If not it returns 0 (false).

The two characters && mean "and-. This is equivalent to BASIC'S \
AND operator. The condition:

c h > = ' 0 ' & & c h < = ' 9 ,

is t rue i f ch >= '0 'and ch <= '9 ' areboth t rue.

Thus di gi t (ch) is true if it is a digit, and false otherwise.

Poge 296 Hisoft C Exercise Answers .-

\

The read-nunber function reads a positive number, from ttre
keyboard. Are digits are read one by one as they are t]?ed using the
statement:

c = g e t c h a r () ;

The variable v a I u e contains the value of this number. It is calculated
as the individual digits that make up the number are read.

The expression c - ' 0' represents the value of the digpt between 0
and 9 rihen c contains the ASCII code of a digit between '0 I and ' 9 ' .

For example, suppose we have already typed the two digits 1 0 on the
kevboard and then press 5 to make 105. The va L ue variable will

"o i ta in
10 and c ur i t l be '5 ' for th is d ig i t . c- '0 ' is 5, so

v a I u e * 1 0 + c - ' 0 ' i s 1 0 5 .

Finally the va.riable va t u e is returned to the main program'

The main funcuon has three p r i n t f function calls. The third one
displavs the value read-number() + read-nunber() . This is the

"u-
oi th. t-o tllmbers that have been read from the keyboard.

Exelcise Answers Hisoft C ?oge 297

Exercise | 3

The program below is well commented. Ttre comments are enclosed
with /* and */ character sequences.

i n t ! i n 1 , r , i n 2 ;
m a i n ()
{
/ * o p e n l . l i n d o u 1 * /
u i n l = o p e n - v i n d o u (4 0 9 5 , 2 0 , 2 0 , 2 0 O , 1 5 0 ,

" x i n d o u ' l " , " p r e s s a k e y ") i
/ * w r i t e t o t h e ! r i n d o u * /
p r i n t - u i n d o u (x i n l , " h i ! ") ;
p r i n t - r , i n d o n (u i n l , " T h i s i s v i n d o l . . | 1 ") ;
e v n t - k e y b d () ;

t l i
o D e n a s e c o n d u i n d o ! , 1 * /

n 2 = o p e n - ! , i n d o u (4 0 9 5 , 2 O O , 8 0 , 2 O O , ' 1 1 O ,
" ! , i n d o w 2 " , " p r e s s a k e y ") ;

D o s i t i o n t h e t e x t i n u i n d o u 2 L i n e 4 c o l u n n 2 * /

p o s - t . i n d o u (u i n 2
/ * u r i t e " h i ! "
p r i n t - H i n d o u (u i
e v n t - k e y b d () ;
/ * c L e a r i n s i d e
c I e a r _ u i n d o] r (H i
e v n t - k e y b d () ;
/ * c t e a r i n s i d e
c I e a r_!, i n d ou (u i
e v n t - k e y b d () ;
/ * l r r i t e t o u i n
p l i n t _ ! , i n d o u (x i
e v n t - k e y b d () i

, 4 , 2) ;
i n u i n d o x 2 L i n e 4 c o t u m n 2 * /

n 2 , " h i l ") ;

n o o n

n o o u

n 1)

e i
n 2)

d o u

? * l

2 * /
" T h i s i s u i n d o v 2 ") i

/ * c t o s e | l i n d o l , 2 * /

c L o s e_!r i n d ol, (v i n 2) ;
/ * c t e a | i n s i d e ! r i n d o ! , 1
c I e a r - r i n d o u (] r ' i n 1) ;
/ * v r i t e i n ! r i n d o ! , 1 * /
p r i n t _ l , l i n d o u (! , i n 1 , " T h i s
e v n t _ k e y b d () ;
/ * c t o s e ! i i n d o l , 1 * /
c L o s e _ u i n d o u (w i n 1) ;

]

! r i n d o B 1 a g a i n ") ;

Poge 298 Hisott C Exercise Answers

Exercise I4

i n t H i n d o r r ;
i n t x , ' t ' E ' h ;
i n t i ;
n a i n ()
{
x = R a n d o n (
Y = R a n d o n (

\ * u = R a n d o n (
h = R a n d o m (

1 0 0 t
5 0 + 2 0 ;
(6 0 0 - x) + 5 0 ,
(2 0 0 - y) + 5 0 i

'T
7.'t
z

r . r i ndou

s i z e _ u
f o f (i

f o r (i

e v n t - k

)

= o p e n - v i n d o u (4
" m o i r e

i n d o u (w i n d o H , & x
= y + h i i > y ; ,
d r a w (x + H / i , x ,
= x + r ; i > x ; i
d r a u (i , y t x t f

e y b d () i
! r i n d o r . i (u i n d o i . l) ;

O 9 5 , x , y , u ' h .
" , " P r e s s a k e y ") i
, & y , & ' , t , & h) ;

- = 4)
y + h) ;
- = 6)

+ h) ;

The integers x,y,B and h represent the size of the window. They are
deffned with the help of the four calls to the Random fi'rnctlon'

Then the window is opened. All the gadgets are drawn because the
the flrst parameter to open-tJi ndou is 4095.

The si ze-!,i ndov function stores the slze of the usable area of the
window in x,y,v,tr. This is not the same as the original size of the
whole window because of the presence of t]le sliders, title etc'

The f o r loops draw the lines as rays from the bottom left corner at
co-ordinates [x, y+ h)

The program then waits for a key to be pressed and closes the
window.

Exercise Answers Hisott C Poge 299

Poge 300 Hisoft C Exercise Answers

(

{

Appendix B
HiSoft C Longuoge

Reference
Htsoft C for the ST corresponds to the language descdbed in
Kernighan & Ritchie in their book 'The C language" (ffrst edition).

. l Lexic rq c elemenls
A lexicographic element is the smallest unit in the language. Th€y are
the bricks that make up a program.

B. I . I e ords

The following words are the keywords of the C language. They must
be tvDed in lower case.

Ttrese words can only be used as kqrwords.

The names of library functions are also considered key;vords. They
must only be used for calling these funcuons. You may not re-define
a library function identiffer.

When you t]?e the name of a library function, only the Iirst eight
characters are required. HiSoft C can automatically add the
remdining characters. For example, if you type v s t-u n L o HtSoft C
automat ica l ly d isp lays vst -un Ioad- f onts.

b r e a k c a s e c h a r c o n t i n u e
d e f a u t t d o d o u b t e e L s e
e x t e r n f t o a t f o r g o t o
i f i n t l o n g r e g i s t e r
r e t u r n s h o r t s i z e o f s t a t i c
s t r u c t s v i t c h t y p e d e f u n i o n
u n s i g n e d v o i d | , h i L e

Longuoge Reterence HiSofi C Poge 301

B. l . enlri lers

A C idenutrer represents a variable.

It is made up of a set of alphanumeric characters. Only the first eight
characters are taken into account.

The legal characters in an identifier are letters iupper or lower case),
digits and the underline "_". Identiliers may not start with a digit.

Upper and lower case letters aje considered different. Thus, i dent is
not the same idenufier as I D E N T.

B. n el consl

Integer constants may be expressed in decimal, hexadecimal or octal.

. A decimal constant is a sequence of digits which does not start
with zero.

. An octal constant starts with a zero and is followed by a set of
digits between 0 and 7. An error message is given if 8 or 9 is used
in an octal constant.

. A hexadecimal constant starts with a 0. followed bv an x or x
and a sequence of hexadecimal digits. The hexadeiimal digits
are 0 to 9, a to f (or A to F) v/ith the letters indicatinA the values
10 to 15 respectively.

A constant may be followed by a letter t or L which indicates that the
constant is of type long.

Note that a sign does not make up part of a constant but is
considered a unary operator.

B. l . conslonls
A floating point for real) constant is a collection of the foltowing
elements:

a whole part, decimal point, Ilactional part, exponent.

The decimal point and fractional part or the exponent may be
omitted, but not both.

All floating point numbers are considered double precision.

Poge 302 Hisoft C [onguoge Refelence

1.5 Chorqcler constonls

A character constant consists of a character enclosed in two
apostrophes: 'A ' .

Ttrere are ways of wdting certain special characters:

You can also create character constants by speciS,ing their ASCII
code in base 8,10 0r '16: ' \23 ' (character wi th ASCII code 23
decimal) , ' \012 ' fcharacter wi th ASCII code 12 octa l) or ' \x45 '
(character with ASCII code 45 hex).

The value of a character constant is an unsigned integer equal to the
ASCII code for the character.

.1 .6 St I i c onsto nls

A string constant consists of a set of characters enclosed in double
quotes and may include all the possible special characters (\ n, 0x c
etc, as described above.

A double quote may be included in a string constant by using \ " .

Strings may be of any length, even O characters.

Hlsoft C inserts a null character (code 0) at the end of every string to
mark its end.

The va-lue of a string is a pointer to the lirst byte of that string. Thus,
when the interpreter encounters the string "querty" it retums the
address rvhere the string is stored in memory not the string itself.

[onguoge Reference Hisoft C Poge 303

. t .7 eI ors
An operator consists of one, two or three characters.

Single character operators:

+ - r t l & - l = < > 7 r ! () t J ,

MulU character operators

+ + - - < < > > - > < = > = : = ! = & & l l-= += *= l= i4= &= l= <<= >>=

These operators consisting of several characters may not have their
components separated by v/hite space.

B. l ommenls

Comments start with / * and ffnish with * / .

Comments may not be nested.

They must be opened and closed on a single line. The IIlSoft C editor
will not let you enter comments ttrat are not closed,

When loading a file containing comments that are several lines long,
HlSoft C automatically inserts the / * and * | symbols at the start
and end of each line.

.9 Seporolors

The separators split up the lexicographic elements. These are spaces,
tab characters and end of line characters.

The ; (semi-colon) character terminates statements.

The curly brackets t and) characters are used at the sta-rt and end
of blocks of statements.

Poge 304 HiSott C longuoge Reference

B. e Pre-orocessor

.2 .1 Det ine

The #defi ne direcuve has several differences to that given in K & R
becamse IIlSoft C is interpreted rather than compiled.

The s]'ntax is as follows:

d e f i n e n a m e c o n s t a n t

d e f i n e n a m e (a r g 1 , a r 9 2 , . . .) e x p r e s s i o n

(without a semi-colon at the end).

Ttre value given in #def i ne must be used in expressions. A macro
may not be used outside of expressions.

Thus it is impossible to re-define a type in this way:

d e f i n e i n t l , l 0 R D

You mrrst use typedef instead.

It is also illegal to deffne a rariable with the sarne narne as a macro.

Nested defines are also iUegal. That is a deri ne may not reference a
value that is given by another a e t i n e.

You can also write:

d e f i n e P I 3 . ' 1 4 1 5 9 2
d e f i n e h e l , I o " h e L t o "

to deffne both floating point and string constants.

Examples :

d e f i n e S I z E 5 1 2

d e f i n e U P P E R (a) ((a) > = ' A ' & & (a) < = ' z ')

., Longuoge Reterence Hisoft C Poge 305

B. nclude

The #i ncLude directive loads a header Iile. The sl,'ntax is

i n c I u d e " f i I e - n a m e "

i n c L u d e < f i I e - n a m e >

The version with double quotes looks for the file in the current
directory. The version with greater than and less than signs looks in
the \header directory on the cunent drive.

Include files may themselves include other ffles.

8.2. il ionol Intelprelotion

It is possible to either interpret, or not interpret depending on a
condition. This is performed with the help of the #i f , #i f def and
#i f ndef directives.

i f e x D r e s s i o n

is true if the expression ls non-zero (and if the identifiers in the
oq)ression are properly defined).

i f d e f i d e n t i f i e r

is true if the identiffer is deffned.

i f n d e f i d e n t i f i e f

is true if the idenffier is not de{ined.

lf one of these three directives is used there must be a followinq
e n d i f .

So, if the condition is true the lines beb^reen the f i f and the #endi f
are interpreted. If ttre condition is false these lines are ignored.

The # e I s e directive may be used. This causes lines between an i r
directive and the # e L s e to be intemreted if the condition is true and
the lines between the #el.se and the #endi f to be intemreted if the
condition is false.

Pqge 306 Hisott C longuoge Reference

Example:

\ - # i f LABEL
/ * [i n e s i n t e r p r e t e d i f L A B E L i s n o n - z e r o * /

e t s e
\ - / * [i n e s e x e c u t e d i f L A B E L i s z e r o * /

g e n d i f

\- The identilier I c is always defined as I so that code may be added
that wiJl only be used under the HiSoft C interpreter.

-i5------at
fi:nction call

f 5-*----m-----ilEyln dex
direct selection of a structure element

lil- - t indirect selecuon of a structure element
7 4 indirection

ffiularion
t 4 unary mlnus

1 4 + + rncrement
l 4 decremenl-"i3-------r-

-tlltplicatio" "-i3------7"------anGion
t 3 7, modulus
i 2 + addition
I 2 subtraction
1 1 shift left
l 1 shilt right
l o less than comparison
l0 > greater lhan comparison
l0 <= less than or equals compafison
l0 >= greater than or equal comparison
9 equality compafison
I inequality--6-*----f-

bit$/iseAND
liihvise exclusive OR

--- T bitwise OR
&& logical AND

B. erorors
The C language operators are summarised below together with their
Drioritv:

longuoge Reference HiSoff C Poge 307

Operator prioritles may be changed by using parentheses.

B. orioble es
HiSoft C recognises all the types deffned in K&R.

8.4 . mpte

v o i d the type of a function that doesn't
return anything. This type may only
be used with functions and ma]r' not
be used with structured tvDes

c n a r 8 bit unsigned integer

s h o r t 16 bit signed integer
unsi gned short 16 bit unsigned integer

i n t 32 bit singed integer
unsigned int 32 bit unsigned integer
I o n g 32 bit signed integer
unsi gned long 32 bit unsigned integer
f L o a t 64 bit double precision floating point

in IEEE format
d o u b L e 64 bit double precision floaung point

in IEEE format

Poge 308 Hisott C [onguoge Reference

8.4 . red

As well as the simple t]?es described above, types may be--
constructed from other tYlPes:

. Arrays of any type

Pointers to any t)?e

. Functions returning a particular t]?e

\- . Structures consisung of simple Epes, arrays, pointers, unions
or other structures.

Unions containing simple types, arrays, pointers, structures or
\' other unions.

'- The rules for building stmctured types can be used recursively, so
\- that an array may contain arrays and a pointer may point to an

array of structures which contajns pointers etc.

. Be careful: in HiSoft C the mar.imum number of array dimensions is
\ 16 and for the same reason the maximum depth of pointer

indirections is 16.

.5 ectorqlrons
A va.riable declaraton is constmcted as follows:

m e m o r y - c L a s s t y p e d e c l . - i t e m 1 , d e c l . - i t e n 2 , . , . ;

.5 .1 emo c losses

Memory classes indicate where the declared variable is to be
physically stored. It may be stored in ordinary memory, on the
stack, in a register or even in another module.

The class also indicates the scope of the variable, that is to say, the
area of the program where the variable may be accessed.

longuoge Refetence Hisoft C Poge 309

_

The memory class may be omitted. In this case if the variable is
declared outside a function the variable is considered global to the
module. If the variable is declared within a function it is considered
local to that function. No more than 40 local variables, including the
Darameters mav be declared within a function. This would be very
ioor style. you ihould sptit the frncuon into several smaller ones. \-

The avaflable memory classes are as follows:

e x t e r n indicates that a variable is declared in another
module.

indicates that the scope of the variable is
strictly limited to the module/function in
which it is declared.

f e g t s t e f used inside a function definiuon indicates
that t]le vadable is to be stored in a register
rather than on the stack.

t y p e d e f indicates that the 'variable" declared is to be
considered a new t14)e of variable. This new
type is equivalent to the ty?e specified in the
t y p e d e f .

B.5. e

The tlpe part of a declarauon consists of one of the tjpes described
above or a name defined using typedef .

The typede{ is optional when declaring functions. In this case the
function is taken as of type i n t.

8.5. lored i tems

The followins element in a decla,ration is a list of declared items,
separated byiommas if there are several.

A declared item consists of an identi{ier (the name of the variable)
together with characters indicating if it is a pointer, a function, a
structure or an array, separated by commas if there are several.

A declared item may contain an initaliser preceded by an = sign.

Poge 310 Hisoft C tonguoge Relerence

I
For variables vstrich are declared outside functions (global variables)'
simple, pointer and array twe-! qay be initialised. However

\- st nuctuie types may not be initialised'

-- For var-iables declared inside funcuons, only simple and pointer

_ types. may be initiallsed. Thus it is impossible to initialise arrays or
-

stmctures within tuncuons.

otements
HISoft C supports all the statements described in K&R.

. i f e l s e

. r l h i L e
\ . d o u h i L e\-

. l o r

. s H i t c h c a s e d e f a u t t
b r e a k

\ . c o n t i n u e
. r e t u r n
. g o r o

A break instruction in a sri tch statement may only be used at the
end of a list of statements. Thus you may not use:

\ v c a s e ' 1 ' :
i f (a)
t

a - -)
\ _ o r e a K i

)

i b r e a k i
\ - d e f a u t t :

/ * e t c . . - * l

The program secuon above should be replaced by

c a s e i l ' :
T t (a J

- . a - - ;
\ - e L s e

a + + '
b r e a k ;

! d e f a u t t :' !
l) t e t c . . . * /

longuoge Reference Hisoft C Poge 3l I

The goto statement must reference a label in the same C block as the
goto statement itself. It is impossible to goto another block.

A C block is a sequence of statements enclosed in curly brackets.

The following two programs are not accepted by IItSoft C:

t
t

g o t o h e r e i
]

h e r e :
{
)

and

n e r e :

t
g o t o h e r e ;

)

On t1e other hand, the following is allowed:

{
n e r e :
t
)
i f (c o n d)

g o t o h e r e ;
]

rqtrons on rypes

B. oinler conversions

A pointer to a type may not be assigned to anottrer pointer if it is not
of equivalent tpe fthe same level of indirection) without an explicit
bpe conversion.

Poge 312 Hisott C Longuoge Reference

''-
Arrays and pointers are strictly equivalent. In practice, the
state-ment tabt i ndexl is conver ted to * (tab+i ndex) '

\- When adding an integer to a pointer the value of the integer is lirst
multipued bt the size of the object that the pointer points to

_ So, i f p is a pointer to in t , p+1adds 4to p (4 * the s ize of an in t) '

So, storing an integer in a pointer variable gives an error message
urless you use a cast.

{
c h a r * P ;

' i n t i ;
o = ' i ; / * i t l e g a L * /
p = (c h a r *) i ; / * a l I o ' " e d * /

. j

\-
Be careful when assigning a pointer to an intege,r. Except with
pointers to characters, pointers must have even addresses; using
bdd addresses will give an error message.

As far as Hisoft C is concerned there are two classes of fnnctions:

. Hisoft C librarv functions and loaded compiled (or assembled)
functions. These ire stored in machine language and are executed
directly by the 68000.

'.- . User functions written with the Interpreter's editor. These
functions are stored in source form and are not executed directly by
the 68000 but are interpreted by HiSoft C.

\!-
These two classes of functions are distinct; the 68000 cannot execute
an interpreted C routine and HiSoft C cannot interpret a library
functionl This differs from a compiled C program where all functions

\v are in 68000 code

With an interpreted C function there are two ways of calling it. You
. can call it direcflv or ffnd its address and store this as a pointer to a

function. Ttris prbvides a method of passing functions as parameters
to other functions.

'\- Longuoge Reference Hisoft C Poge 313

With a compiled C fimction oibrary function or a compiled one that
has be loaded) you can only call iti it is not possible to find its
address, this will give an error message.

Thus HlSoft C pointers to functions can only point to interpreted
functions not compiled ones.

8.7. clures ond unions

The possible operations on pointers are accessing one of its
members, (via "." or "->') or calculating its address. All other
operations, such as assignment or passing as a parameter, are
ilegal.

When you access a structure member (using "." or "->"), the
identilier on the left hand side must be a structure (with ". ") or a
pointer to a structrrre [with "->"), and the identifier on the right
must be a member of a structure or union.

Poge 314 Hisofi C Longuoge Reference

AppendixC
Error Messoqes

Here is a detafled commented listing of HlSoft C's error messages.

. l Interpreter Error Messqges
When an eror is found whilst running a program, a window opens
with a descripflon of the error that has occurred. Finally the cursor
is positioned at the precise place that the error vras found. However
sometlmes the actual cause of the error may be elsewhere [e.g'
omitting a declaration).

The program has been interrupted. The user has pressed two of the
C o n f r o t , s h i f t o r A l . t k e y s . A l t e r n a t i v e l y a s t o p , e x i t o r a b o r t
statement has been encountered.

Htsoft C does distinguish between some little s)'ntax mistakes. This
error doesn't appear as frequently as with some BASICSI

A semi-colon was expected at the end of a declaration or statement

3 Missinq porenthesis

A pa-renttresis has been opened but not closed or vice versa.

You've run out of memory. Well donel Seriously though, try removing
Desk accessories, ramdisks or other memory resident programs.

execution slo

Efiof Messoges Hisott C Poge 315

HlSoft C was expecting to ffnd an integer, perhaps, as an array index.
Empty array indices are only allowed in function parameter
declarauons.

The maximum number of dimensions in an array and the maximum \-

number of indirections off a pointer is 16.

A slobal variable has been declared twice. This is strictly illegal.
Neither may you have two structure field identifiers with the same
narne.

8 Undefined siructure nome

Hisoft C has expected to ffnd the name of a structure but it has found
somethinA else.

A reference has been made to a structure that has not been deffned.
Please deffne it.

9 Missing slructure nome

Either there are no elements declared in the structure or the
stmctr.re name is used with indirection.

I I Missing identi f ier

HiSoft C expected to flnd a variable identifier. This error can occur if
vou omit the Darameters in a function definition.

A local variable is declared twice within the same function.

Duplicole declotot ion

icofe declorqf ion of locol vorioble

Poge 316 Hisotf C Error Messoges

Function argtrrments may not be of t]?e function, union or structure.

If you need to pass a union or function as a parameter, pass pointers
to them.

14 Nome mismotch in the poromefer l is l

The function argument list and the declarations of those arguments
disagree.

I 5 Too mony locol voriobles

The maximum number of local variables in a function (together with
parameters) is 40. This error is probably due to very bad
programming style; split your function up.

17 Poromeler nol declored

A parameter is present in the argument list but there is no
declarafion for it.

I8 Missing)

A block has been opened using t but not closed with). Use the Hone
key (see rhe Cursor key ilem on tjte Help menu).

l 9 Undef ined lobe l

1 There is a reference to a variable that has not been declared. Perhaps
it has been mist]?ed.

There is an enor in the declaration section ofa function, or the enfre
bodv fthe statements) has been omitted.

21 Vorioble type errol

function declorol ion

The tlpe specified is illegal. For example there is no such ttring as an
u n s i g n e d s t r u c t .

Error Messoges Hisoft C Poge 31 7

22 No reference to locol lobel

A local variable has been declared but is not used.

The function main has been left out. Every program must have a
ftrnction ain so that execution can start.

Missinq moin lunction

24 ord found in on explession

A language ke)'word has been found in an expression.

An 'lvalue' is a value that you can assign to, i.e. can appear on the left
of an = sign. You can have a=l ; because a is an lvalue. But 1=5 is
illegal because 1 is not an lvalue.

So this error occurs when the left hand side of an assignment
statement is illegal.

It will also happen when using & the "address ol- operator. The
argument to this must be an lvalue. Note that the name of an array is
noi an lvalue.

Hisoft C forbids assigning pointers to integers without using a cast.

gisoft C forbids assigning integers to pointers without using a cast.

You cannot assign a pointer value to another one, unless they point
to the same tj?e, without using a cast.

29 l l leqol operofol for pointer olgumenls

For example, pointers can not be muluplied together'

"lvolue" required

ned io on inl

mismotch. o

Poge 31 8 Hisott C Error Messoges

An attempt to divide by 0 has been made. Often this will be caused by
a variable that has been assigned an inappropriate value.

3 l Inleger used with operotor "*"

The indirecton operator * must be followed by a pointer or ar-ray.

32 Poinier used insleod of on integer

A pointer, rather than an integer has been used to index an array.

33 Incol lecl pointer volue

The interpreter has spotted the use of an un-initialised pointer, and
rather than crashing the machine gives you this error message.

34 DO wilhout WHILE

A Do statement has been found, but there is no corresponding
!l H r L E. Perhaps some curly brackets have been added or left out.

35 ELSE wilhouf lF

An E L s E statement has been found, but there is no corresponding
t, H I L E. Perhaps some curly brackets have been added or left out.

36 CASE withoul SWITCH

A cAsE statement has been found, but there is no corresponding
s |,,l I T c H. Perhaps some cr:rly brackets have been added or left out.

37 DEFAULT withoul SWITCH

A DE FAULT statement has been for:nd, but there is no corresponding
slll TcH. Perhaps some curly brackets have been added or left out.

38 Missing : in o CASE insfrucl ion

The correct syntax ofa cAsE statement is:

c a s e I e x p r e s s i o n] :

However the colon has not been found.

Errol Messoges HiSofi C Poge 319

lmmediatelv after a sl,/ITcH statement there must be either a cAsE
(or o E r I u I i) statement, but there is something else insteac.

Immediately after a swITcH statement there should be a curly
bracket. For o<ample:

s u i t c h (a)
{
c a s e 1 : l * e t c * I

A Htsoft C library call has been made and there aren't enough
parameters. Alternatively you may have got the function name
irronq. The Help command can be used to check the number of
parameters.

42 Missing , in o function col l

Each parameter should be separated by a comma. A character that is
neither a , nor a) has been found a-fter a pzrrameter.

43 U n known operotor

Error in an operator. Or perhaps you have used a unar5z operator as
a binary one or vice versa, e.g. ++, --, ! and - can only be unary
operators. Thus i ++ is legal but i ++ j is not.

44 Too mony pqrometers in o funclion cqll

A Hisoft C library call has been made and there are too many
parameters. Alternatively you may have got the function name
wrong. The Help command can be used to check the number of
parameters.

45 Flool ing point volue used with SWITCH

Only integer or pointer values can be used in s ti I T c H statements, not
floating point ones.

in o SWITCH instlucfion

Poge 320 Hisoft C Erol Messoges

46 Bqd type for o funcfion nome

An attempt to pass an enUre structure to a firnction has been made.
Only pointers to structures may be passed.

An attempt has been made to use a pointer to a function as a
function. For example,

c h a r (* f c t t 5 l) () / * d e c l ' a r e a n a r r a y o f p o i n t e r s * /
/ * c a t t f u n c t i o n * /

To access ar element in the f ct array the following should be used:

/ * c a t L f u n c t i o n * /

The togical operators [^,
-,

l, &) and modulo (Z) can only be used with
integers, not floating point numbers.

f c t E 3 l ()

48 Stock full

There have been too many recursive function calls and the stack has
overflowed. This is almost certainly because of a programming error.
For example,

f u n c t i o n ()
{

i f (i > 2)
f u n c t i o n () i

)

BREAK and CONTINUE Statements may be uSed ins ide t tHILE, D0 or
ron loops to change the order of execution. BREAK statements may
also be used in s t l ITcH statements. A l l o ther uses of these
statements are illegal.

50 Bod volue for shifl numbet

The second argument of << and >> (the shift operators) must not be
negauve.

foT BREAK

r volue uired with this

E or Messoges Hisoft C Pqge 321

A library function needing a floating point number has been passed
an integer instead.

53 Structure idenlif iel expecied

Only structure variables may be used before the ". " and "->"
oDerators.

54 Sfructureifem ed

A field structure
operators.

be used after the n . " and 't - > nname must

Using ". " on a pointer to a structure or using a structure
variable.

56 Forbidden usoge mode on structure fype

This operator may not be used on a structure variable. & to find the
address may be used and members rnay be accessed using " ' ". Apart
from this all others are forbidden.

57 Forbidden chorocter

An illegd character not recognised by the language, has been found
outside a string or comment, for example a control character or
character greater rJ]aJf 127.

58 Missing '(' of ler o l ibrory funcl ion nome

This message is also given if you try to calculate the address of a
library function.

59 Missing vorioble type

The name of the type of a vadable is expected after s i zeof.

60 Incorrecf volioble type

You con't use f his

An array type can not be used with sizeof or casts.

Poge 322 HiSofi C Error Messoges

6l Preprocessor keyvvord expecied

A preprocessor keyword is expected after a # sign.

62 Missing ' : ' of let '? '

The only valid character after ? is the : of the ? : conditional
operator.

63 Bod funclion return volue

\' The value in a return statement is not the same as in its declaration.

- 64 Too mony ilems in on inifiolizqtion

Too many items have been used in an initialiser (normally an array)
to match the declaration.

65 Mocro nome expected ofler #define

"!- A non-empty macro name is required after a #def i ne.

- 66 Emply mocro defini l ion

\- s t ru c t tjpe va.riables may not be iniualised.

69 Fi le nome expected ofter #include

The entlre body of a macro may not be empty.

57 Forbidden operolor in on init iol izot ion

Only constants may be used ln initialisers. For example, you can't
call a function inside a macro.

68 You connof ini t iol ize oggregoles .

An invalid file name has been used a.fter #i nc Lude.

70 Too mony include fi les

No more than 8 include files may be loaded at the same time.

\- Error Messoges Hisoft C Poge 323

71 You must check lhe "link of runtime" oplion io
use #include

To use the # inctude facility you must fi.rst select the Link ot runtime
option on the Run menu.

72 Connof lood include f i le

The include flle can not be loaded. It needs to be in the \HEADER \-

directory on the drive that Htsoft C was loaded from if < and > have
been used and in the current directory if quotes are used.

73 Bod lype usoge

Error in a tJ4)e when using si zeof or a cast.

7 4 Bus error

68000 excepfion. An attempt to access an illegal address has been
\-

made, such as one of the ST's low memory variables.

7 5 Odd Address occess

68000 exception. An attempt to indirect using an odd address has
been made.

7 6 Unknown instrucf ion

68000 exception. An ilegal 68000 instruction has been encountered.

77 Division by 0 \':

68000 exception. An attempt to divide by O has been made.

78 CHK inslrucl ion

68000 exception. An exceptlon has been generated by a CHK
instruction.

7I TRAPV insf ruct ion

68000 exception. An exception has been caused by a TRAPV
instruction.

Poge 324 HiSoft C Error Messoges _

80 Supervisor mode required

68000 exception. An instruction that can only be used in supervisor
mode has been encountered.

8 l Troce mode

68O00 exception. An exception has been generated because we are in
trace mooe,

82. Connot ini t iol ize o locol complex fype vorioble

Arrays and structures that are local to a function may not be
initialised. See Appendix B.

83 Golo out of locol block

goto's may not reference a label that is not in the same C block
(t . . .]) a s t - 1 e s o t o . S e e A p p e n d i x B .

84 Lobel nome expected offer golo

An item which is not an identiffer has been found after a soto or the
identifier used is declared as a va.riable.

85 #endif or #else withoul #if

A #endi f or #etse directive has been found without an associated
H i t , l i l d e t o r # i f n d e f .

86 #endif expecled ofter #if

A #i f directive has been used, but the end ofthe text has been found
without encountedng a #endi f .

87 This lobel is olreody used in fhe funcfion librory

An attempt to re-define a variable which is already used in a library
function has been made.

Enor Messoges Hisoft C Poge 325

.2 Editor Error Messqqes

l0l Cursor is inside fhe block. Con'f copy lhe block

You may not copy a block to a positon inside that block.

102 The l ine is foo long. Moximum lengfh is 127 chols

The length of lines ls lirnited to 127 characters.

103 This l ine number does not exist

You have entered a non-existent line number (there aren't that many
lines in the fiIe).

104 No more windows!

All the GEM windows have been used up. Close desk accessories or
retum to the Desktop.

105 You ron oul of memory...

You've used all the available space.

106 The file you wonl to lood does not exisl

If this effor occurs after the use of #INcLUDE make sure that the \?

disk containing the HEADER folder is present in the drive from which
Htsoft C was loaded.

1O7 Seorch foi led; Slr ing nol found

I08 Disk errol or disk ful l

Either the disk is fulI or the disk can't be read or written to, perhaps
because there is no disk in the drive.

I09 Commenf is nof closed on currenl l ine

A comment must only be one line long. Add a * / at the end of the line.

Poge 326 HiSoft C Error Messoges \-

I l0 Error in chor or inl constonl on cultenl line

Htsoft C has found ttre start of a constant (octal beginning witfi 0,
hex beginning with 0 x or a character beginning with ') but it is
incorrectly formed.

A strinp of characters must be closed on the same line as lt is opened.
Perhaps there is a " missing.

The contents of a macro command, glven by sh i f t and a function
key is wrong.

I I I Con'f find end of slling on currenf line

error in mocro commond

I 13 | con ' l

There is no trelp lile corresponding to this keyword.

The contents of the project flle that you are trying to load has an
error on the gven line.

c. no Eilor Messooes
The following errors may be given when HlSoft C is loading:

I con'l lood lhe resource file

Make sure that you have all the F1 . c to F9. c files present on the
current disk.

I con'i run in lo\iv resolulion

Switch to Medium resolution using the Desktop.

So there's not enough for HiSoft C to rln. Use the System memory
size command on the Run menu.

I 14 Ertor in

Ertor Messoges Hisoft C Poge 327

Poge 328 Hisotf C Error Messoges

Compillng a program written in IIlSoft C doesn't pose too much of a
problem if you have a compiler .

Hisoft C is almost totally compatible with lzttice C interp-reted
programs can be compiled almost immediately with Lattice C 5: see
ihe

-Lattice
C 5 manual for details.

With other compilers, you may have problems because of the size of
integers. Aztec C, for example, has a flag to enable 4 byte integers and
you should use this.

Moving to a new implementation of C can be tricky, you need to know
the co-mniler. include files and libraries well. It is not something
recomm6nded for beginners. One problem to watch out for is that
Htsoft C expects integers to be 32 bit: so you should use the
appropriate compller flags to ensure ttrat tlLis is the default.

Ttre general procedure to use is as follows:

. Convert the program to ASCII format. Hlsoft C interpreted
DroArams are tokenised in a special way. To convert a program to
hsi toaO Hisoft c and choose Editor mode from the File menu (see
Section 1.8). Then load the ffle and it will automatically be converted
to ASCII and you can save it as ASCII

. For some HlSoft C speci{ic functions (the GEM toolbox), the source
is supplied in the souRcE directory on Disk 2 for you to compile.

If you have used the toolbox functions you witl need to compile these
f i l - e s (c o r n p i L . c , t i b r ' i n d . c , t i b d i a L . c , t i b m e n u ' c a n d
I i bresou. c) and link with the object ffles produced. There's an
example of a linker ffle in c. t n k.

derine.h contains some constants that are built into Hisoft C.

Appendix D
Portin loqroms

orling from the inlerpreler
o compiler

Porting Progloms Hiso{t C Poge 329

Ifyou are using Iattice C 5 you need not re-compile ttre Toolbox: you
can use the libra4r that is supplied with I-aluce.

Whichever compiler you are using, you must also rename your ma i n
function to be i c-ma i n. This is because the toolbox has to perform
some irftialisauon.

Porling from compilers fo
-HiSoft C

Porting programs in the other direcuon, wr-itten for a compiler to the
hrterpreter can be more dilffcttlt.

First of all because programs run more slowly under the interpreter
than when compiled.

Also some compilers have extensions to the K&R standard (for
example some of the features of the new ANSI C),

The other possible main sources of incompatibilities are tfre fact that
HlSoft C variables rnay not have the same name as a library fimction
ald the restricUons on the use of #defi ne. See Appendix B for
details.Remember that HiSoft C uses long (32-bit) integers as
standard, so be especially careful if porting code that assumes t].at
16 bit tntegers are being used. See Appendix B for details.

Poge 330 Hisott C Porling Progroms

This bibliography contains our suggestions for further reading on
the subject of C, the ST, and GEM. The views expressed are our own
and as with all reference books there is no substitute for looking at
the books in a good bookshop before maldng a decision.

Please also note ttrat none of these books on C describe Hlsoft C for
the ST ln particular. Should an example program fail to work as
expected please study the appropriate secuons in ttlls manual.

The C progromming Longuoge by Kernighon & Rilchie,
published by Prenfice-Holl

The C programmer's bible, which is very expenslve, unfortunately.
There are two ediuons: the ffrst one is more applicable to Hisoft C
(and most compilers). The second edition covers the new ANSI
standard which isn't implemented by many compilers (at least not
until recently). If you have a lot of experience in, say Pascal, this is
also a good tutorial book.

leorning lo p]ogrom in C by Thomos Plum, published
byPrent ice-Hol l

A tutorial book which starts fiom first principles.

\- The Big Red Book of C by Sullivon, published by Sigmo
Press

s obout

A cheap tutorial book.

The C progromming Tulor by Worlmon & Sidebottom,
published by Ptentice Holl

A cheaper tutorial from the publishers of K&R.

Appendix E
Bibti rophy

Bibliogrophy HiSofi C Poge 331

Colo by Adom Denning, Published bY
& Ho l l

Another lovr cost tutorial book that mentions the 'other'HlSoft C for
280 comDuters.

GEM Progrommer's Guide Volumes
bv Disitol Reseorch

- VDI ond AES

The definitive guide to the VDI and AES, but marred by mistakes'
Only available tio registered developers.

GEMDOS S if icol ion I Reseorch

The definition of the GEMDOS calls. Only available to registered
developers.

The definition of the BIOS and XBIOS calls' and correcuons to the
GEMDOS rnamral. This is accurate, a good read and updated
regularly. Normally only available to developers.

This book is the best documentation available for the user who is not
a registered developer. It describes the hardv/are and non-GEM
aspe-cts of the operatlng system, including an (out-of-date) BIOS
listing. Thoroughly recommended, despite its inaccuracies.

This describes programming under GEM, though is not as complete
as the DR manual, but has similar errors. It describes calls mainly
from C, although there is more reference to the 6800O than in tfre DR
manual. Better than no book at all on GEM.

A Hilchhikers Guide to ihe BIOS

Dolo Becker/Abocus

GEM on the Alori ST

Poge 332 HiSoft C Biblioglophy

Concise Aiori 68000 Plogrommet's Refelence
KotherinePeel. publ ished

An alternative to The Anotomy of the Atori ST. It contains information
on the ST's hardware, the operating system and GEM. Its coverage of
the vadous levels of the machine is comprehensive, though a couple
of sections are very inaccurate and some features are described that
simply don't exist. It is rather difficult to ffnd one's ryay around as
the layout is based on large numbers of tables and it lacks an index.

Tricks ond Tips on the Aiori ST by Dolo Becker/Abocus

This contains a wide variety of material, including an accurate
descriDtion of the more esoteric ST BASIC commands, and good
sampl6 hstlngs including a RAM-disk driver and desk accessory.

Bibliogrophy HiSofi C Poge 333

r'i

L

4

t

Bibliogrophy
L

HiSoft CPoge 334

Appendix F
Technicol Su ort

So that we can maintain the quality of our technical support service
we are detaiJ.ing how to take best advantage ofit' These guidelines vrill
make it easier-for us to help you, ffx bugs as they get reported and
save other users from having the same problem. Technical support is
available in four ways:

Phon€ our technical support hour is normally between 3pm and
4pm, though non-European customers' calls will be
accepted at other tirnes.

Post if sending a disk, please put your name & address on it.

BxrM our username is (not surprising9 hisoJft. Would UK
customers please use CIX or more old fashioned methods:
it's cheaper for everyone.

CD(TM our username is (still not surprlsingly) hisoJft.

For bug reports, please always quote tl.e program, computer and the
version number of the program (the one displayed by the About box)
and the serial number found on your master disk.

If you thlnk you have found a bug, try and create a small program
that reproduces the problem. It is always easier for us to answer y,onr
questions if you send us a letter and, if the problem is with a
particular source file. enclose a copy on disk {which we will return).

rodes
As with all our products, Hisoft C is undergoing continual
development and, periodlcally, new versions become available. We
make a small charge for upgrades, though if extensive additional
documentation is supplied the charge may be higher. All users who
return their registration cards will be noti{ied of major upgrades.

u estions
We welcome any comments or suggesuons about our programs and'
to ensure v/e remember them, they should be made in wdtjng'

Bibliogrophy HiSofi C Poge 335

Poge 336 HiSoft C Bibliogrophy

Index

\-

a

% opetalot 292 Blocks 72

Boltom ol File 10

button_box 107, 159

C block 6
C library 59
Calculalions 65
Calculator 39
Calling Funclions 59
CALLOC 159
cAUXtN 159
cAUXtS 160
CAUXoS 160
CAUXOUT 160
cc,oNtN 160
ccoNrs 160
ccoNouT r60
ccoNRs 161
ccoNws 161
cEtL 161
CHDR161
check menu 122,162
cHMoD 162
CLEAR-WINDOW 163
Cleadng a window 101
closE i63
close,window 97, 163
CLRERR 162
cNECtN 163
color_bor 117,164
Commandlail24
Compiled C funclions 48
Condiuonals 68
cos 16{
cosH l&t
CPRINTF 165
CPRNOS 165
CPRNOUT 165
CBAWCtN 165
cRAWtO 166

CREAT 166
cscANF 166
cuRscoNF 167
cursor 5

DCREATE 167
DDELETE 167
Declaring variables 62
Delining a block 32
Delete 6
delele menu 121,167
DFREE 168
DGETDRV 168
DGETPATH 168
Dialog boxes l04
Disk Contents 3
Disk Oplions 40
Disk Utililies 52
DOSOUND 169
do...while slalemenl 78
DQSORT 169
daw 103, 169
draw box 109, 170
draw menu 121, 170
DRVMAP 170
DSETDRV 170
DSETPATH 171
DUP 171
DUP2171

ECW 172

edi l box 113,172

edihble fields 113

Edilof 5

Ediior conliguralion 41

enaue_menu 122, 173

Aban&n

ABORT 152
ABS 152
ACCESS 152
ACoS 153
ADR-BOX 153
APPL_EXIT 154
APPLFIND 154
APPL_INIT 153
APPL_BEAD 154
APPL TPLAY 154
APPL-TRECORD 154
APPL-WRITE 155
Aithmelic operalors 65
A(ays 89
Ascllcode table 38
ASIN 155
Assembly Lanquage funclions 47
Assignment62
ATAN 155
ATAN2 156
ATOF I56
ATOI 156
ATOL 157

back-up 2
Backs$ce 6
BCoNtN 157
BCONOUT 157
BCONSTAT 157
BCOSTAT 158
Blos 158
BToSKEYS 158
Block ope.aions 32, 33

A

D

E

lndex Hisoft C Poge 337

end o,ling

ERRNO 1N
Erof Messges16
Esc 6
Esc mode I
event126,175
Events 123
EVNT-BUTTON 175
EVNT-DCLICK 176
EVNT-KEYBD 1 76
EVNT-MESAG 1 76
EVNT_MOIJSE 176
EVNT-MULTI I77
EVNT-TIMER 177
Erecution Envionmenl 24
EX|T 177
EXP 178

FL@R 186

FLOPFMT 186

FLOPRD 186

FLOPVER 186

FLOPWR '87

FMOD 187

Following vadades 18

FOPEN 187, i88

Ior shtement 76

FORM-ALERT 188

FORM-CENTER 189

FORTV_DjAL 189

FORM-DO 189

FORI.I-EFROR 189

FPRINTF 190

FPUTC 190

FPUTCHAR 190

FPUTS 191

FREAD 1SI

FREE 192

FFENAME 192

FREOPEN 192

FREXP 193

FSCANF 193

FSEEK 194

FSEL INPUT 194

FSETDTA 195

FSFIRST 195

FSNEI 196

FTELL 196

Fuhction keys 7

Funciions58,83

FWRTTE 196, 197

GEMDOS I97

GETBPS 197

GETC 197

GETCHAR 197

GE1CWD I98

GETMPB 198

GETREZ 199

GETS 198

GETSHIFT 139

GETTIME 199

GIACCESS 200

Go to lasl posilion 1 1

Go to line 10
GBAF-DRAGBOX 2OO
GFAF,GROWBOX 2OO
GRAF-HANDLE 2OO
GNAF_MKSTATE 201
GRAF-MOUSE20l
GRAF_MOVEBOX20l
GRAF-RUBBERBOX 201
GRAF-SHRINKBOX 202
GRAF-SLIDEBOX 202
G RAF_WATCHBOX 202
GraphicsTextl l6
gtext box 117, 202

Fr.tc3
FABS 178

FATTRIB 178

FCLOSE 179

FCLOSEALL 179

FCREATE I80

FCW 180

FDATIME 180

FDELETE 180

FDOPEN 18I

FDIJP I81

FEOF182

FERROH 182

FFLUSH 182

FFLIJSHALL]83

FFOHCE 183

FGETC 183

FGETCHAR I84

FGETDTA 184

FGETS 185

File menu 11

FILENO 185

l i les
mutFIel3

Flnd27

Find and redace 29

Find ldeniilier 32

Help 6, 40
Help fienu 35
Hisolt C loolbox 94
Home 6

|ABS 203
if statement 68
il...else...71
rKB0ws 203
Include files 25
inilbox 105, 209
inilmenu 120,203
|NTIMOUS 204
lnsen Fib l2
Inlegers 63
roREc 204
ts 205
isalnum 205
isalpha205
isascii205
iscnld 205
iscsyli 205
iscsymf 205
isdigit 205
isgraph 205

ispfint 205
ispunct 205
isspace 205

H

F

Poge 338 HiSoft C Index

isupper 205
lsxdigit 205
ibm_m9nu 121, 2O5

JDISINT 205

JENABINT 205

MEMCPY2l3
emorydump 22

li,lEMSEI213
[4€nu commanh 10
lvlenu e\€nb 127
Menu short cuts 8
MENU_BAR 214
MENU-ICHECK 2I4
MENU,IENAELE 2I4
MENU_REGISTER 214
MENU-TEN 215
MENU_TNORMAL 215
lirerus 119
MFPINT215
MFREE215
MtDtws216
MtN216
MKDIR 216
MODF216
Moduls Lisl14
modies 13
MOUSE217
Mouse evenh 132
MSHRINK2lT

Paramelerc 85
PEXEC 221
PHYSSASE 222
Pointer Tests 19
pos-*indow 99, 222
POW 222
p€vious wod 5
P nI fiIe 38
print_window 99, 226
p nt 70, 223
Progfam inlo 10
proglams

slopping 15

Project Files 49
Poiect lnfomalion 51
Projects 45
PflOTOBT 227
PRTSLK 227
PTERMO 227
PTERMRES 227
PUNTAES 227
P01C 228
putchd 62, 228
PUTS 228

KBDVBASE 206
KBRATE 206
Kgyboad events 132
keyboad shorlcuts 8
KEYTBL 206
K€yword completjon I

LAES 206
LDEXP 207
LINEA 207
Link at tuntme 23
Load file command I I
LOG 209
LOG10 210
LOGBASE 210
Loops 74
tosoRT 210
LSEEK 210

nen €dibr command 5

Out comnard 1 1

madD @mmands 35
MALLOC 211
Irryrd

ma*s 10
MATHEFR 212
MAX2I2
MEDIACH 212
MEMCCPY2l2
MEMCHR213
MEMCIIP213

oBJC-AD0 217
OBJC-CHANGE 218
OBJC DELETE 2I8
OBJC-DRAW 2I8
OBJC-EDIT 219
OBJC_FIND 219
OBJC-OFFSET 219
OBJC-ORDER 220
OFFGIBIT 220
oNGrSlT 220
OPEN 220
otsn window96,221

radio buttons 110
FAND 229
Random 68, 229
READ 229
teadbut box 110, 229
README FiIe {
readslr_box 115,230
Real numbers 64
REALLOC 230
RECT_INIT 230
RECT-INTERSECT 23I
RECT-POINT 231

K

N

o

R

lndex Hisoft C Poge 339

RECT-UNION 231
Redetining the keyboard 43
Registralion Card 3
remainder operalor 292
REt\.rovE 232
RENAME233
REPMEM 233
Retum 6
Retun valugs 87
REWIND 233
RMDIR 234
BS-ADDBALENT 234
RS-ADDRBIJTTON 234
BS ADDRDIAL 235
RS-AODREDIT 235
RS-DRAWALERT 236
RS-DBAWDIAL 236
RS-DBAWOBJECT 238
RS-ERASEDIAL 239
RS OBJSELECT 239
RS_OBJSTATE 239
RS-OBJUNSELECT 240
RS,OBJXYWH 240
RSCoNF 235
RSRC-FHEE 240
RSRC GADOR 241
RSRC_LOAD 241
RSRC_OBFIX 241
RSnC_SADDB 241
Running a yogGm 15
RWABS 242

SETTIME 241)
SHEL,ENVRN 2()
SHEL FIND 248
SHEL-READ 248
stN 249
stNH 249
size window 101
sp€cial keys 6
SPRINTF 249
SQRT 250
sosoRT 250
SRAND 250
sscANF 250
Slack display 23
start ol line

Slalemenls 59
sTD 251
sldaux 251
stde 251
stdin 251
sldout 251
sldprn 251
sroP 252
stopping pogams 15
STRCAT 253
srRcHR 253
STRCMP 254
STRCPY 254
STRCSPN 254
STRDATE 255
STRGETFN 255
STRICMP 256
Slrings 60
STRLEN 256
STRLWR 256
STRNCAT 257
STRNCMP 257
STRNCPY 258
STRNICMP 258
STRREV 258
STRSPLFN 25S
STRSPN 259
STRTIME 260
STBTOK 260
STRTOL 261
STRUPR 261
Suggeslions 335
SUPEB 26I

SIJPEXEC 262

svERsroN 262
switch statements 79
Slstem Memory Size 26

Tab 6
TAN 262
TANH 262
Tedmical Supporl 335
TELL 263
Text Mode 13
texLbox 106, 263
TGETDATE 263
TGETTIME 263
TICKCAL 264
TIMER-VALUE 264
iille_menu 121,264
ToASC 264
TOLOWER 264
Top ol file 10
TOUPPER 265
TQSORT 265
Trace Mode 17
TRACE-OFF 266
TRACE-ON 266
trig luiclions 66
TSETDATE 266
TSETTIME 266
Types and assignmenls 66

lJndo 6
UNGETC 267
UNLINK 267
Upgrades 335

V_ARC 267
V 8AR 268
v_ciRCLE 268
v cLRwK 268
v_clswK 268

Saw a$,, ommand 12

Savo lile 12

scANF 242
SCRP-READ 245
SCRP-WRITE 245
Searching in flles31
s€lecl,nenu 1 22, 246
SETBUF 246
SETCOLOR 246
SETEXC 246
SETNBI]F 247
SETPALLETE 247
SETPRT 247
SETSCREEN 248

s

Poge 340 Hisoft C lndex

V-CONTOURFILL 268
v_cuRDowN 269
v_cuRl-loME 269
V CURLEFI 269
V-CURRIGHT 269
V-CURTEXT 270
V_CURUP 270
v_DsPcuR 270
V_EEOL 270
v_EEos 270
V_ELLABC 271
V_ELLIPSE 271
V-ELLPIE 271
V-ENTER-CUB 27J
V_EX|T_CUR 272
V-F'LLAREA 272
V GET-PIXEL 272
V_GTEXT 273
v_H|DE_C 273
v_JUSTTFTE0 273
V-MARKER 274
v_oPNvwK 273
v_PtEsLtcE 273
V-PLINE 274
v_RBox 277
V-RFBOX 277
V-RMCUR 277
v RVoFF 278
v RVON 279
v_sHow_c 281
VAR-OFF 267
VAR_oN 268
vadable Dump 20
Variables 61
VEX_BUTV 271
vEx oURV 272
vEx_MoTv 272
vEx_TlMV 272
VQ,CHCELLS 274
.vo_coLoR 274
VO_CUBADDRESS 274
vo_ErrND 275
vo_rNMo0E 275
Vo_KEY,S 27s
vo_MousE 276
VOF-ATTRIBUTES 275

VOL-ATTBIEUTES 275
VOM-ATTRIBIJTES 276

VOI_ATTRIEUTES 276

VOT-EXTENT 276
VQT-FONTINFO 276
VOT_NAME 277
VQT-WDTH 277
VR-RECFL 278
VR TRNFM 278
VRO-CPYFM 278
VRT-CPYFM 278
vs_cltP 279
vs_coloR 279
VS-CURADDRESS 280
vsc_FoRM 279
vsF coLoR 280
VSF_INTERIOR 280
VSF-PERIMETER 280
VSF-STYLE 280
VSF-UDPAT 281
vsL_coloR 281
vsLENo 281
VSL-TYPE 281
VSL-UDSTY 281
VSL-WIDTH 282
vsM_coloR 282
VSM TYPE 282
VST ALIGNMENT 282
vsT,coloR 282
VST EFFECTS 283
vsT_FoNT 283
VST-HEIGHT 283
VST-LOAD FONTS 283
vsT_PotNT 284
VST-ROTATION 284
VST_UNIOAD FONTS 284
vswF_MoDE 284
vsYNc 284

Wndow ewnls 1 28
Wndows 95

ptevious edilot comnaid 5

wRtTE 287

xBtos 288
XBIIMEB 288

while stalemenl 74
wtND oALC 285
wrND_cLosE 285
WIND_CREATE 285
WIND_DELETE 285
WIND,FIND 286
WIND_GET 286
WIND OPEN 286
WIND SET 287
WIND UPDATE 287

X

Index HiSoft C Poge 341

Hisoft C for the Atari Sf

tsBN 0 948517 25 5

e49.95 inc. Softwale

