

This book is an independent production of Ing. W. HOFACKER
GMBH International. It is published as a service to all ATARI per-
sonal computer users worldwide.

All rights reserved. No part of this book may be reproduced by
any means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable
effort has been made to ensure accuracy throughout this book,
but neither the author or publisher can assume responsibility for
any errors or omissions. No liability is assumed for any direct, or
indirect, damages resulting from the use of information contained
herein.

First Edition

First Printing

February 1983 in the Federal Republic of Germany

© Copyright 1982 by Winfried Hofacker

Order-No. 170

ISBN 3-88963-170-3

Reference was made to ATARI throughout this book. ATARI®is a trademark of
ATARI Inc., a division of Warner Communications Company.

Publisher:
Ing. W. HOFACKER GmbH, Tegernseerstr. 18, D-8150 Holzkirchen, W.-Germany

US-Distributor:
ELCOMP Publishing, Inc., 53 Redrock Lane, Pomona, CA 91766

TABLE
OF CONTENTS

T Whiat s FORTH. & a0 sm s 6 wm memm s 5 5 @ e & i e e e o s m 1
2.Basicelementsof FORTH i, .. 4
2=1 ThESAtK: « v s w vus swsoaasmmmessssesssesnssnsas 4
2—-2 Wordsin FORTH 6
S USTNGWOTAS .. v cvnne srvianssssmass s mmes aboissssass 9
3—1 Definitionofnewwords 9
3—2 Changingthestack 10
3—3 Fundamental operations in arithmetic 12
3=4 INPULOWPUL - :sownisssswssssanassvasasssam 13
3—5 Some simple programs, 15
3—6 The SCreent e 19
3—7 Constantsand variables 21
3—8 Comparison e 24
4, Control struCtUreso vt ii it it i et e 25
4—1 DO....LOOP e 25
4=2 The return stack . . cuwews saamas smnssss smuss as 29
4-3 |F...ELSE....THEN (ENDIF) 30
4—4 BEGIN..UNTIL 32
4-5 BEGIN..WHILE...REPEAT 33
4—6 Thecasestatementcuiuun... 34
B.Sample programs e 35
5—1 Some gratics .« ««vcasssssonas snsess namssswa 35
B—2Patternouineeessonntsonomesvnanaess 41
b—3 Soundandcolor 42
B—4 Hexdump 46
5—5 Largest common divisor0u..... 48
5—6 Fibboconaccinumbers 50
B—7 Prime numbers b2
5—8 More sound and grafics o3

5—9 Using the game port for control applications 55

6. Textand SIS &« omtic s msamarhe s i aames s § 9566 55 5 a8 64

6—1 INPUT/OUTPUT of text 64
6—2 Formatting theoutput 70
7.Thevocabulary 74
7—1 Different vocabularies 74
7—2 Play organ or piano with the ATARI 76
7—3 The construction of a FORTHword 80
7—4 Changing the top of the dictionary 84
7—5 Thevirtualmemoryc.ccvuu... 88
7—6 Definitionwords, 91
8. Applications 95
B=1 Mailing RSt wcu s« aesmsmmn v ssimmmn i oommmn e sno 95
8—2 Serial output via game portthree 107
L2 T894 o 1013 1 o [> P 114

A FORTH-compiler/interpreter is available from the following
vendors:
1. ELCOMP PUBLISHING, INC., Pomona, CA 91766
Phone (714) 623-8314
2. Quality Software, 6660 Resede Blvd. Suite 105, Reseda,
CA 91335, Phone (213) 344-6599

Books and source code information are available from:

1. FORTH Interest Group
P.0.Box 1105
San Carlos, CA 94070

2. Mountain View Press
P.0.Box 4656
Mountain View, CA 94040

3. FORTH Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

PREFACE

ATARI FORTH PROGRAMMING
Learning by using

FORTH is a new, exciting programming
language. It is easy to learn and programs,
written in FORTH are very short, compared
to other high level languages.

The aim of this book is to show the novice
and the experienced programmer how to use
this language on the ATARI. The examples
are short and use sound and grafics for
demonstration. Use these examples to learn
FORTH.

Two applications, a mailing 1list and a
serial interface for a printer, are
included. These two applications show the
wide variety FORTH can be used for.

With FORTH an application <can be written
and debugged faster than in any other
programming language.

I hope this book will add new friends to
the community of FORTH programmers.

Thank's to Rick Schwarz, who helped me in
proofreading.

E.Floegel

T -
S o R o S, e
o eyl - L Ff o
T "
. B i
r 'h.- -
' - T LTI .
S
N - MIMAL IR wres s) =y
. - Al s

L TE>I. p o R 24 L.) B gl
qEERTrei) gL . "1 aaih J) ' ?::'
SOSC ML, 1390 Cirk P PTIST 12 aprhl IS

L L T e L A

mebvifi 3 M- 0 30 oom GlEd iu rbe ¢ .7
Bl &) sl S Mp. o Jawy B sl xecks |I-|.' (P
caldars alr | (TAYA onf a2 Av B2 oo,
Yl Ardfs=s e un- g4, B _.l i

l2.7. .&d wigpe=sii. ZBI= 2" . aL T _;.:.m;.n;ﬂ..
_=Tian

| “=tbar e ! iR . --1nn.-¢'_l'-:.'-=|‘:u|-n'l.' T

- L e o L I L T L R
' et uOofEN ML LMo oG- 53 wasn” Tealigat o2
. 103 Eré&y 2 e WEEATF o ioi i B8h

sy ir od . J0EIEDEMgue nE R LN
1xd1e w2 <l seTRAY BEpst ir'e ;
' AR T Sihaeget o

a2 ehnaisd war Rus JLir ago: LS ., '
- rpemwr el B3 TITAREY T 3 0 kA 'r“:"

£

I A P R T Er S e R e T

fr.BEp 't o

Lo i'1..ﬂ' -

1 what is FORTH?

1. WHAT IS FORTH ?

FORTH is 1like BASIC, FORTRAN or PASCAL a
programming language. It is, however quite
different from these languages. It was
invented by CHARLES MOORE about ten years
ago and its first wuse was to control
telescopes on the Kitt Peak observatory.

Today FORTH is widely used 1in control
applications. One example is the control
of movie cameras in the movie BATTLESHIP
GALACTICA. Using the concept of virtual
memory, FORTH also is used for data base
managment.

FORTH can not be compared with other
programming languages. While you are
learning to program in FORTH it would be
better to forget all you have 1learned
about other languages.

What makes FORTH so unique ?

One of the basic elements of FORTH is the
stack. Everybody knows what a stack is.
Nearly every desk has a stack of paper.
Something is laid upon this stack and may
be removed later. In terms of a computer
this is a LIFO (Last In,First Out) memory.
The last thing put onto the stack is
removed first.

FORTH uses the stack in two different ways.
First there 1is a parameter stack for data
and calculating. Second, there is a stack
for words, called the dictionary or
vocabulary. In FORTH, words are the
elements for programming. Several of
these words can be combined to form a new
word, performing a certain task. A basic
dictionary of predefined words is
contained within FORTH. These words are
used by the programmer to create new words.
This new words are placed on top of the
dictionary. Running a program in FORTH
means calling a sequence of words.

For example, you have written a FORTH
program to control stepper motors. START
may be a word for starting the stepper
motor. FASTER, SLOWER, may be words for
changing the speed while STOP could be the
word for stoping it.

Defining your own words makes FORTH very
flexible. Words can be rearanged to
perform new tasks. All this makes FORTH a
dynamic 1language. On the other hand, all

this freedom makes the programmer
responsible for the correctness of a
program. There are only a few error

messages and warnings.

Though FORTH is used sometimes with other
operating systems, it could be seen as 1its
own operating sytem. It is an interpreter,
calling and executing one word. It is also
a compiler, with its capability to compile
new words in the dictinary. It uses a text
editor, and often an assembler.

In this booklet we will 1learn FORTH by
using this language on an ATARI 400/800.
We will use graphics, sound and joysticks.

All programs however, which don't use
specific hardware on the ATARI can be
easily adapted to other computers.

2 Basic elements of FORTH

2. BASIC ELEMENTS OF FORTH.

Let us first make some remarks concerning
the basic elements of FORTH.

2-1 THE STACK.

As mentioned above, the stack is a LIFO
memory. In Fig 2-1 a stack is represented
in two ways. Fig 2-la shows the normal
representation of a stack. In this book we
will use the stack as it is shown in Fig 2-
1b.

< TOS
|
|
Fig. 2-1a
TOS
4
I T T TTT
Fig. 2-1b

Fig 2-1 Two representations of the stack.

4

The top of stack (TOS) is always the
rightmost element. One memory cell of the
stack is a 16 bit cell.

For documentatjon and understanding _of
FORTH words, it 1s necessary to show™ how

the stack 1is affected by using a word. We
will use the following abbreviations:

l6-bit address

signed 16 bit number
unsigned 16 bit number
signed 32 bit number

8 bit byte

7 bit ASCII character
boolean number, flag

QO QLS SO

These abbreviations are used in the
following manner:

WORD (STACK BEFOR - STACK AFTER)

Examples:
LOOK (an)

The word LOOK, whatever it does, requests
an address and a number on top of stack
before executing. Both items are removed
from stack after execution.

FOUND (-f)

FOUND doesn't need any parameter before
execution and leaves a boolean number f on
the stack after execution.

COMP (aa'c - nf)

The word COMP needs two addresses and a
character on top of the stack. After
execution a number and a boolean flag is
left on stack. In this representation, the
top of stack is always the rightmost

character. To differ between several
addresses or numbers, there can be added a

hyphen or a number to the character like a
a' or n nl n2.

2-2 WORDS IN FORTH.

A word in FORTH may be any arbitrary
string of characters, excluding three
special characters. The excluded
characters are: the space, backspace, and
the return character. The space character
is the only delimiter between FORTH words.

The backspace character is wused for
correcting typing errors, while the return
character 1is wused to indicate that the
input to the computer is finished.

Examples of words:
FIRST 1TIMES . NAME @VALUE

THR EE 1is not recogniced as one word,
because there is a space in it. It would
represent two words THR and EE.

Some words in the predefined dictionary
consist of only one character. The dot . ,
is for example, the printing statement.
The @ sign fetches the content of a 16 bit
memory cell. These letters can be used to
indicate a special function of a word. In
the example above .NAME will print a name
while @VALUE will get some value from
memory. This naming convention makes it
easier to read FORTH programs.

2-3 THE REVERSE POLISH NOTATION.

For calculations, FORTH uses the reverse
Polish, or postfix notation. The operator

6

for the calculation is entered here after
entering the numbers. If you type in

36 +

first, a three is put on stack, then a six.
At this time, the FORTH interpreter
recognices the word + . This word takes

the two top numbers on stack, adds them
together and places the result, 9, on top
of the stack. If you now enter the .

command a 9 1is displayed on the screen.
Try ik.

The word + is defined in the following
manner:

+ (nnl - n2) n2=n+nl

Exercises:

3*4~7
(3*5+3) /6-4
572-472
(345) %2

20y (2*5])

Using the reverse Polish notation, there
is no need to use brackets. Let us look at
the following example:

(345) *({4~-2)~T7

A BASIC interpreter, who has to decipher
such an expression starts with the opening

bracket, then gets a number, an operator,
once more a number and then the closing
bracket. At this moment it can do the

first calculation. The next step indicates
a requirement for multiplication. This can
be done after revealing the second
expression.

Using RPN, it 1is easier for a computer
program to calculate this expression. In
RPN we enter

3 54+42~-%7=

You see there is no need for brackets. Fig
2-2 shows the evaluation on stack.

STACK TOS INPUT

3 3

3 5 5

8 +

8 4 4

8 4 2 2

8 2 -

16 .

16 7 7

9 -

Fig 2-2 Calculating an arithmetic
expression using RPN.

To get acquainted with this reverse Polish
notation, there are some exercises. Type
them into the computer and use the .
command to get the results.

Exercises:

3%4-7
(3*5+3) /6-4
572-4"2
(3+5) *2

20/ (2*5)

3 Using words

3. USING WORDS

You can find a dictionary of all common
words in appendix A. Here we will discuss

the most used words for writing programs
in FORTH.

3-1 DEFINITION OF NEW WORDS.

The definition of a new word starts with
the sign, followed by a space and the
name of the new word. Then all words used
by this new word are listed. The
definition ends with the ; sign.

s XXX Regin of a colon
definition XXX

End of a colon
definition.

e

Until now we have learned only two words.
The . word and the + word. We want to
combine these two to a new one, called +.
(plus print). It adds two numbers and
displays the result. The definition is:

te + o 7}

Now we can enter 3 6 +. RET and get the
result 9 on the screen.

To show that the operators + and - are
real FORTH words we change the meaning of
these two words by

+ -
After hitting return we get a warning :
+ ISN'T UNIQUE OK .

This indicates that the word + has been
already defined. The interpreter will use
the new defined + . When we now type 3 6 +
. RET, we get the result 3.

Let us forget this new + word. By typing
FORGET + RET

this definition and also all definitions

made later on are removed from the

dictionary.

3-2 CHANGING THE STACK.

The stack can be changed in three ways. It

can be enlarged, reduced or rearanged. All
this can be done with the following words:

DUP(n - nn) Duplicate top of stack.

DROP (n) Throw away the top of
stack.

SWAP(nn'-n'n) Reverse the two top
elements.

OVER (n'n-n'nn') Copy of the second
element on top.

ROT (nln2n3-n2n3nl) Rotate the top
three elements counter-
clock wise.

10

Fig 3-1 shows how these words affect the
stack.

2 4 5 3

4 5 3 3 bup

4 3 3 5 ROT

4 3 5 3 SWAP

2 4 3 5 DROP
2 4 3 5 3 OVER

Fig 3-1 Changing the stack.

Now let us do some examples and exercises.
Example 1:

The stack contains the numbers 3 2 1 with
the 1 on top of the stack. What words must

be entered to obtain the sequence 3 2 2 17?

First we enter OVER and get 3 2 1 2.
Second we enter SWAP to obtain the result
32 2 1.

Example 2:

On the stack we have 3 2 1 with the 1 on
top of the stack. Which words must be
entered to get the sequence 2 3 3 ? The
answer is shown below.

3 21
DROP 3 2
SWAP 23
DUP 23 3

Exercise: Start with 3 2 1 on the stack
and get

a) 312
b) 2 i 3
c) 2 3 1
d) 123
e) 32121

11

The word .S (dot s, print stack) shown in
Fig 3-2 is very usefull. It is defined in
most of the FORTH versions and prints the
contents of the stack without destroying
e If your FORTH version doesn't know

this word just type it in.

: 'S Sp@ ;
DEEP S0 @ 's -2 / 1 -
.S CR DEEP 'S 2 - S0 @
DO I @ . -2 +LOOP
ELSE ." EMPTY" THEN ;

B se
I

Fig 3-2 Non-destructive stack print.

3-3 FUNDAMENTAL OPERATIONS IN ARITHMETIC.

The word for the fundamental operations of
arithmetic are defined as follows:

+ (nnl-n2) n2=n+nl

= (nnl-n2) n2=n-nl

* (nnl-n2) n2=n*nl

/ (nnl-n2) n2=n/nl
This arithmetic is done with 16 bit signed
fixed numbers. Finding the remainder and

the quotient of a definition you can use
two more words.

MOD (nnl-n2) n2 is the remainder
of n/nl.

/MOD (nnl-n2n3) n2 is the remainder

and n3 is the quo-
tient of n/nl.

12

Example:

We want to calculate the value of the term
X"2 + X*Y + Z. The values for X, Y and 12
are stored on the stack with Z on top of
the stack. Fig 3-3 shows the sequence of
words to calculate this value.

X Y z
X z Y SWAP
z Y X ROT
z Y X X DuP
z X X Y ROT
- z X X+Y +
Z X(X+Y)|l =
ERG +

Fig 3-3 Calculating the term X"2+X*Y+Z.

We can define a word .VALUE which needs
three numbers on the stack and calculates
the value of this expression.

: JVALUE (nnln2)
SWAP ROT DUP ROT + * + . ;

Exercises: Try to get the word sequences
for

a) X"2+4X*Y-7

b) Xx"2+x*Y+2"2

c) X"2-X*Y-2"2

with X Y Z on the stack. Insert numbers
and get the results.

3-4 INPUT OUTPUT.

One of the output instructions we have
already used was the . word. It definition
is:

. (n) Print the top of stack.

13

Other output instructions are:

. () Print message. The
message ends with " .

Example:

." HELLO " RET HELLO OK

EMIT (c) Prints ASCII value c.
Example:

69 EMIT RET EOK

CR () Prints one carriage
return.

SPACE () Prints one space.

SPACES (n) Prints n spaces.

.R (nnl) Print n, right-justi-

fied in field. Field-
with is nl.
Example:
First we define a word P as
¢: P (n) 4 ,RCR ;
Now we enter:
CR1 P10 P 100 P
and get the result
1

10
100

14

The following words are for data input:

KEY (-c) Reads the keyboard and
places the ASCII value
on the stack.

?TERMINAL (-f) True if the
break key is pressed.

But on the ATARI:

?TERMINAL (-n) n=1,2,4 if
one of the yvellow
keys was pressed.
n=0 if no key was
pressed.
START key n=1
SELECT key n=2
OPTION key n=4

There are some more input and output words,
which will be discussed later on in an ex-
ample.

3-5 SOME SIMPLE PROGRAMS.

Until now we have learned only a few FORTH
words, however they are sufficient to
write some simple programs.

3-5a A LANGUAGE TRANSLATOR.

The concept of the dictionary and of defin-
ing new words can be used for a language
translator. As an example we translate
some words into the german language.

¢ I " ICH ™ ¢
: AM ." BIN " ;
HERE ." DA " ;

15

If we type
I AM HERE

we get the translation

ICH BIN DA

This 1is only a very simple example. But
you can use it to remeber special words in
a foreign language, chemical formulas, or
to make a 1list of your favourite radio
stations and their frequencies. For
example:

KBIG ." 104 FM "
KIQQ ." 100 FM "

we we

3-5b WEIGHTWATCHER.

Some peoples want to calculate the amount
of calories they had for breakfast or
dinner. The input of data should be done
in the following way:

BEER 1 GLAS
COKE 2 GLASSES
BREAD 1 SLICE and so on.

The program is shown in Fig.3-4. First
there is a comment, indicating which units
of measurement are used for the different
types of foods. Regard this only as an
example. Change them as you like. The next
screen (we will discuss this expression
in the next subchapter), contains the
definitions for the units of measurement,
while the following screen contains the
definitions for the calories.

16

Fig 3-4 Weightwatcher.

SCR # 125

0 (AFB WEIGHTWATCHER ef)
1 (UNIT GLAS : BEER, APPLEJUICE
2 COCA-COLA, CHAMPAGNE

3

4 UNIT SLICE : BREAD

5

6 UNIT PIECE : CAKE, MUFFINS
7

8 UNIT OZ : BEEF, HAM, CHIPS,
9 NUTS, CHEESE
10 UNIT CUP : RICE, PASTA
11 UNIT TBSP [TABLESPOON]
12 BUTTER,

13 UNIT PKG : SEAFOOD,

14
15)

SCR # 126

0 (AFB WEIGHTWATCHER cntd ef)
1 (MEASUREMENT UNITS)

2 ¢ GLAS DROP +

3 : GLASSES * + ;

4 SLICE DROP + ;

5 ¢ SLICES * + ;

6 : PIECE DROP + g

7 : PIECES * + ;

8 ¢ OZ DROP + ;

9 : OZES * + ;

10 : OF ;

11 ¢ START 0 ;

12 : TBSP DROP + ; : TBSPS * + ;
13 : PKG DROP + ; : PKGS * + ;
14 : CUP DROP + ; : CUPS * + ;
15

17

SCR # 127

0 (AFB WEIGHTWATCHER cntd ef)
1 (CALORIES)
2 : BEER 255 ; : COCA-COLA 88 ;
3 : BREAD 100 ;
4 ¢ BUTTER 100 ; : BROWNIES 224 ;
5 ¢ RICE 200 ; : GOUDA 108 ;
6 : MUFFINS 118 ;
7 : LASAGNE 241 ; : RAVIOLI 210 ;
8 : BURITO 47 ; : CNCHIPS 166 ;
9 ¢ PEANUTS 179 ; : PTCHIPS 156 ;
10
11
1.2 : AMOUNT DUP . ;
13
14
15
START OK

COCA-COLA 1 GLAS OK
BREAD 2 SLICES OK
MUFFINS 2 PIECES OK
GOUDA 2 0ZES OK
BUTTER 1 TBSP OK
AMOUNT 840 OK
CNCHIPS 2 OZES OK
AMOUNT 1172 OK
LASAGNE 2 CUPS OK
AMOUNT 1654 OK

Fig 3-4 Weightwatcher.

If you enter the word BEER, the number 255
is put on the stack. When you now enter 2
GLASSES, first the number 2 is put onto
the stack, then the both top numbers (255
2) are multiplied and the result is added
to the previous amount.

To start this calculation of calories, you
have to enter the word START, which puts a
0 on top of the stack. The word AMOUNT
duplicates the top of stack and prints it
on the screen.

18

3-6 THE SCREEN.

The writing of a FORTH program can be done
in two ways. You can enter the FORTH words
direct into the dictionary or use a text
editor and write the words into a screen.
Fig. 3-5 shows an example of a screen.
FORTH versions running on an ATARI use a
screen with 16 lines and 32 characters
each.

SCR # 148

0 (SCRN PRINT 10/14/82 ef)
1 0 VARIABLE ROW 0 VARIABLE COLN
2 ?FIN (-f) COLN @ 24 = ;

3 : 1ROW 40 0 DO ROW @ C@ 32 +

4 DUP 128 > IF 32 - THEN

5 OUTCHR 1 ROW +! LOOP ;
6

7

8

9

: .SCRN 88 @ ROW ! 0 COLN !
BEGIN 1ROW CRR 1 COLN +! ?FIN

UNTIL ;

10

b

12

13

14

15 -3

Fig 3-5 Textscreen.

This uses 512 bytes of memory. Thus, when
using a disk drive, you can store 164

screens., In this booklet we don't describe
the editor. It has numerous variations in
the various FORTH versions. Please refer
to the instruction manual of your FORTH.

Once you have written a screen, you can
LOAD it. LOAD compiles the words of a

19

screen into the dictionary. You may also
LIST a screen. LIST displays the content
of a disk screen on the TV screen.

The definitions are:

LOAD (n) Compile disk screen n
into the dictionary.

LIST (n) List disk screen n on
the TV screen.

There are some conventions in the writing
of a screen. The first 1line should be a
comment, noting the task, the date and the
programmer.
For example:

(WEIGHTWATCHER 10/16/82 ef)

The comment in FORTH starts with the
opening bracket and ends with the «closing
bracket. The (is a FORTH word and must
therefore be followed by one space.

(() Beginning of a comment.

You can use the word INDEX to display all
first 1lines of a disk screen on the TV
screen.

INDEX (nn') Display the first
lines from screen n to
screen n'.

In writing a screen, every new definition
of a word should start in a new line. This
makes it easier to read a FORTH program.
After writing you save the screen on disk
with the word FLUSH.

FLUSH () Saves screen on disk.

20

3-7 CONSTANTS AND VARIABLES.

Most of the data used for calculation is
stored on the stack. Sometimes it is
necessary to use a constant or a variable.
The definitions of a constant and a
variable are:

CONSTANT NAME (n) Creates a constant
NAME with the

value n.

VARIABLE NAME (n) Creates a variable
NAME and the

initial value n.

There is a difference in <calling a
constant or a variable. Calling a constant

by name, the wvalue of the constant is
place on the stack. Calling a variable by
name, the address of this wvariable is

placed on the stack. In order to get the
value of a variable, you have to fetch it.
This is done by the word @Q. For changing
the wvalue of a variable, the word ! (
store) is used.

@ (a=n) Fetches the content
stored at address a.

! (na) Stores n at address a.
Both instructions, fetch and store use 16

bit numbers. For storing and fetching a
single byte, the following words are used.

ca (a-b) Fetches a single byte
from address a.

Cc! (ba) Stores a single byte
at address a.

21

Try this:

0 755 C! The cursor will disappear.
4 755 C! The letters are upside down.
3 755 C! Resets to the normal mode.

Later we will use these words to control
with the color and sound registers of the
ATART.

You can increment the value of a variable
by

0 VARIABLE V
Vel+VvVv!

or you can use the word +! (plus-store).

+1 (na) Add n to the content
at address a.

Another word ? fetches the content of a
variable and prints it.

? (a) Prints the content
of address a.

The FORTH system itself wuses several
constants and variables. We will use the
variable BASE in the following example.
The content of this variable determines
the number base in which calculations are
made. If the value of BASE is 10, all
calculations are made in decimal. Changing
this value to 16, the calculations are
made in hexadecimal. You may use however,
any other wvalue for calculating in any
other number base system. Two words are
defined to set a specific number base.

DECIMAL () Set number base decimal.

22

HEX () Set number base
hexadecimal.

An example:
We define:
BIN 2 BASE !
TRI 3 BASE !

.BIN (n) BIN . DECIMAL
.TRI (n) TRI . DECIMAL

ee oo oo oo
~e wo

~e we

The word BIN sets the number base to two
and the word TRI to three. The trinary
system uses only the numbers 0 1 and 2 for
representing a number. The words .BIN and
.TRI take a decimal value from the stack,
converts it to the binary or trinary num-
ber, prints it and switches back into the

decimal number base. Let us convert some
numbers.

120 .BIN 1111000 OK
140 .TRI 12012 OK

The word .BASE fetches the content of BASE,
duplicates it and prints it in decimal.
The the value is restored in BASE.

: .BASE BASE @ DUP DECIMAL BASE ! ;

If you only type BASE @ . you will always
get the result 10, regardless in which
number base you are.

A constant should stay a constant. But you
can change the value of a constant with
the " (tick) word. The ' brings the
address of a definition on the stack.

' NAME (=-a) Find the address of
NAME in vocabulary.

23

Example:

10 CONSTANT C OK

12 ' C ! OK
C . 12 OK

3-8 COMPARISON.

The comparison takes place with the two
top numbers on the stack. They are
replaced by the result of the comparison.
The result is a one if the comparison was
true or the result is a zero, if this
comparison was not true. This boolean
flag is used by the control words,
described in the next chapter, to control
the flow of a program. The words used for
comparison are:

< (nn'-f) f£f=1, if n less than n'
> (nn'-f) f=1, if n greater than n'
= (nn'-f) £=1, if n equal to n'
0< (n-f) f=1, if n is less than zero
0= (n-f) f=1, if n is equal to zero
Some examples:
2 3% ANBR
3 2< .0 0K
3 2= .0 OK
-2 0< ., 1 OK

If you want to use the two top numbers on
the stack after a comparison you have to
duplicate them with

2DUP (nn'-nn'nn') OVER OVER ;

24

4 control structures

4. CONTROL STRUCTURES.

Until now we have only used words which
didn't affect the flow of a program. Now
we will take a closer look at the words
which do control the flow of a program.
First, there is no GOTO statement. There-
fore FORTH is 1like PASCAL, a highly
structered programming language.

As branches in a program it uses state-
ments as BEGIN...UNTIL, BEGIN... WHILE. . &
REPEAT and IF...ELSE...THEN.

These statements along with the DO...LOOP
must be used within a colon definition.
They can not be executed directly by the
interpreter.

4_1 DO.-.LOOP °

The DO...LOOP creates a finite number of
program loops. The definition is:

DO (nn") Loops from n' to n-1,
the increment of the
loop is one.

LOOP () Terminates the loop
inside the program.
Increments the index
by one.

25

The program loop starts at n' and ends at
n-1. The increment is always one. The set
of words between DO and LOOP is executed
from n' to n-1. The comparison between the
loop index and the upper limit is
performed by the word LOOP. Therefore
every loop is executed at least once.

FORTH uses a third stack, wich we haven't
mentioned until now. This is the RETURN
stack. In a computer with a 6502 CPU the
RETURN stack is equal to the stack used by
the CPU. During execution of a loop, FORTH
places the loop index on top of this stack.
With the word I, you can copy the top of
the RETURN stack to the parameter stack.

I (=-n) Copy of the return
stack to the parameter
stack.

Example:

Let wus print the numbers from one to nine
on the screen.

: NR 10 1 DO I . LOOP ;

7

NR 123456789 0K

Just to show that a loop 1is executed at

least once, we change the boundaries of
the loop.

NRR 1 10 DO I . LOOP ;

NRR 10 OK

Loops can be nested. In our next example,
we print a row of numbers from 0 to 9.
Then, in the next line we print a row of
numbers from 0 to 8 and so on, until a
single 0 is printed. The inner 1loop is
defined as:

IL ((n) 0 DO I . LOOP ;

26

IL expects the wupper 1limit + 1 on the
stack. The outmost loop is defined as:

: OL (n) 0 DO CR 1 - DUP IL LOOP ;

OL expects the number of 1lines on the
stack. To get a printout we call 11 10 OL.
The result is shown in Fig 4-1.

|
f—
E*

coocococococococor

OHKFHKFHKHHH
MO N O
WWWWWWwWO

AN N NG NI

U1 U1 U1 LT O

ooy o

PR

™ o

K

Fig 4-1 Triangle-matrix

Another example of nested loop is shown in
Fig 4-2. A rhombus is printed by the two
words RI and RO.

SCR # 103

: STAR (n) 0 DO 42 EMIT LOOP ;

: RI (nnln2) DO CR 7 I -
SPACES I 2 * 1 + STAR DUP
+LOOP ;

RO1 8 0 RI -1 -1 7 RI CR ;

27

RO
*

* %k %
kkk%k*k
kkkkkk%k
kkkkkkkk%k
kkkkkkkkkkk
kkhkkkkkkkkkkkk
kkkkkkkkkkkkkhkk
kkkkkkkkkkkkkk*%
kkkkkkhkkkkkkk
kkhkkkkkkkkkk
kkkkkkkkk
kkkkkkk
kkkkk
* %k %
*

OK
Fig 4-2 Rhombus

Very often it is necessary to increment
the 1loop index by another number instead
of one or even to decrement the loop index.
Then, the DO. ..+LOOP must be used. The
definition of the DO word is the same as
above, but the +LOOP expects a number on
the stack.

+LOOP (n) Increments the index
by n. If n is 1less
zero, the index is

decremented.
Examples:

: +NR (nn') DO I . 2 +LOOP ;
10 0 +NR 0 2 4 6 8 OK
: =NR (nn') DO I . -2 +LOOP ;

0 10 -NR 10 8 6 4 2 OK

28

4-2 THE RETURN STACK.

In the last chapter we mentioned the
RETURN stack. FORTH uses this stack for
program loops and for storing addresses.

With care, a programmer can use this stack
too. The word >R (to-R) puts the top
number of the parameter stack on the
RETURN stack and the word R> (R-from)
returns it.

>R (n) Puts n to the return
stack.,
R> (=-n) Retrieve number from

return stack.

R (-n) Copy the top of the
return stack to the

parameter stack. Same
as I.

Usg these words only within a colon def-
inition and outside of loops.

Example:

We define a word 2SWAP, which exchanges
the two top numbers on the stack with the
third and the fourth number.

: 2SWAP (nnln2n3-n2n3nnl)
>R ROT ROT R> ROT ROT ;

The evaluation of this word on the stack
is shown in Fig 4-3.

29

4 3 2 1
4 3 2)R
3 2 4 ROT
2 4 3 ROT
2 4 3 1 R
2 3 1 4 ROT
1 4 3 ROT

Fig 4-3 Evaluation of 2SWAP

4-3 IF...ELSE...THEN (ENDIF).

This is the first word to control the flow
of a program. It is used in the form IF
<words> THEN or IF <wordsl> ELSE <words2>
THEN, Some versions of FORTH use ENDIF
instead of THEN.

The definitions:

IF (£) The words between IF

THEN () and THEN (ENDIF) are
executed if f is non
zZero,

IF (f) The words between IF

ELSE () and ELSE are executed

THEN () if £ is non zero.

Otherwise the words
between ELSE and THEN
(ENDIF) are executed.

Example:

We define a word COMP, which compares the
two top numbers on the stack. The message
EQUAL is printed, if both numbers are
equal. If not, the message SMALLER or
BIGGER is printed. The definition of the
word COMP is shown in Fig 4-4.

30

2DUP (nn'-nn'nn'")

OVER OVER ;

2DROP (nn') DROP DROP ;
NOTEQUAL (f) IF ." BIGGER "
ELSE ." SMALLER " THEN ;
COMP (nn') 2DUP = IF

." EQUAL " 2DROP ELSE <
NOTEQUAL THEN ;

2 3 COMP BIGGER OK
3 2 COMP SMALLER OK
2 2 COMP EQUAL OK

Fig 4-4 The word COMP.

First we define the word 2DUP, which
duplicates the two top numbers on the
stack and 2DROP which drops these numbers.
The word NOTEQUAL prints the message
SMALLER or BIGGER.

The word COMP duplicates the two top
numbers and compares them. If they are
equal, the message EQUAL is printed and
the remaining numbers are removed from the
stack. If they are not equal, another
comparison is performed and according to
this comparison the message SMALLER or

BIGGER is printed.

If we didn't include the word 2DROP, the
two numbers would be left on the stack.
There could be some problems, if this word
is executed several times without the
2DROP in a DO. ..LOOP. The stack becomes
Qeeper and deeper. The size of the stack
is limited and after a while, the error
message STACK FULL is printed and the
program 1is aborted. Try to keep the stack
clean.

31

4-4 BEGIN...UNTIL.

The word UNTIL expects a flag on top of
the stack. As long as this flag is zero,
all words between BEGIN and UNTIL are

repeated. A non zero flag terminates the
loop.

The definition:

BEGIN () The words between

UNTIL (£f) BEGIN and UNTIL are
repeated, until a non-
zero flag 1is encoun-
terd before executing
the word UNTIL.

Example:

We wuse the BEGIN. . . UNTIL 1loop to add
together the numbers from 1 to 100. The
program is shown in Fig 4-5.

VARIABLE X

INCX X @1 + DUP X ! ;

SUM (n) 0 BEGIN INCX + X @
100 = UNTIL . ;

0 SUM 5050 OK

ee o0 O

Fig 4-5 Adding the numbers from 1 to 100
using BEGIN...UNTIL.

We use the variable X for counting. The
word INCX increments the value of X. We
don't use the +1! , because we must
duplicate this value and add it to the
previous sum. Before starting the loop, a
zero must be on the stack. The 1loop
terminates if the condition X=100 is true.
The result is then printed.

32

Another example for the BEGIN...UNTIL 1loop
is the word vE . It prints an E on the
screen until you hit the OPTION key.

: .E () BEGIN 69 EMIT ?TERMINAL
4 = UNTIL ;

4-5 BEGIN...WHILE...REPEAT .

This 1loop is different from the BEGIN...
UNTIL loop. The word WHILE expects a flag
on the stack. As long as this flag is non-
Zero, the words between WHILE and REPEAT
are executed. An unconditional branch
leads back to the BEGIN. If WHILE finds a
zero on the stack, the words between WHILE
and REPEAT are neglected and the word
following REPEAT is executed.

The definitions:

BEGIN () The words between
UNTIL (£) BEGIN WHILE and
REPEAT () REPEAT are executed,
as long as f is non-
zero. If £ is zero the
program commences
Examp after repeat.

We use the same example as above, adding
the numbers from 1 to 100. The program is
shown in Fig 4-6.

: TEST (-f) 1 + DUP 101 < ;

: ADD DUP ROT + SWAP ;

: SUM 0 BEGIN TEST WHILE ADD
REPEAT DROP . ;
SUM 5050 OK

Fig 4-6 Adding the numbers from 1 to 100
using BEGIN...WHILE...REPEAT.

33

First we define the word TEST. A one is
added to the top number on the stack,
duplicated and compared with 101. The next
word ADD duplicates the top of stack and
rotates the first three elements. The
deepest element on the stack is the amount
of numbers that have been added until now.

The two top numbers are then added and the
result is placed below the number of
additions. The word SUM expects a zero on
the stack. The word TEST is executed
before WHILE. As 1long as the number of
additions is less than 101, the word ADD
is executed. If the number is equal to 101,
the numbers on the stack are swapped, the

result is printed and the remaining number
is droped.

4-6 THE CASE STATEMENT.

In earlier versions of FORTH, there was no
CASE statement defined. Now most of the
FORTH versions have it. The definitions
differ slightly from each other. We will
describe the CASE statement as it is used

in QS FORTH and in POWER FORTH for the
ATARI,

The definition is:

CASE: (n) WORDO WORD1l ... WORDK ;

CASE: requests a number on the stack. In
regard of this number, the corresponding
word 1is executed. If this number is 0,

WORDO is executed or if it is a three
WORD3 is executed. CASE: does not proof
the limit. If you call the 10th word and
there is no word, in most cases the
program hangs up. You have to proof the
limits by program. An example you find in
the next chapter.

34

5 Sample programs

5. SAMPLE PROGRAMS.

In the following programs we will use the
words we have learned up to this point.
The most efficient way to 1learn a
programming language is to type programs
into the computer and execute them. The
ATARI sounds and graphics will be used for
the following samples.

5-1 SOME GRAFICS

There are several predefined words in the
FORTH versions of the ATARI that wuse the
grafics. In the programs we use SETCOLOR,
PLOT and GR.

SETCOLOR (nnln2) Set the color
register.
n2 color register (0-
4 depending mode).
nl color hue number (
see Fig 5-1).
n color luminescance,
even number between 0
and 14. The higher the
number, the brighter
the display.

35

COLORS SETCOLOR nl

GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED-ORANGE 3
PINK 4
PURPLE-BLUE 6
BLUE 7
BLUE 8
LIGHT-BLUE 9
TURQUOISE 10
GREEN-BLUE 11
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15

Fig 5-1 The ATARI hue numbers and colors.

PLOT (nnln2) Plot a point at x=n
y=nl and color c=n2.
The point x=0 and y=0
is the upper left
corner of the screen.

GR. (n) Sets the grafic mode

36

5-1 LINES.

In the program in Fig 5-2, we define the
word START. It opens grafic mode 7 and
sets the background color. The next word
L>R draws a line from left to right.

SCR # 140
(AFB GRAPHICS 10/20 ef)

: START 7 GR. 2 0 0 SETCOLOR ;

R>L () 79 9 DO I 10 2 PLOT
LOOP ;

U>D () 79 10 DO 78 I 3

PLOT LOOP ;

L>R () 8 78 DO I 78 2

PLOT -1 +LOOP ;

D>U () 9 78 DO 9 I 3

10 PLOT -1 +LOOP ;

oAU WNDHFHO
o0

11 : RECT START R>L U>D L>R D>U ;
12
13
14
15

Fig 5-2 Lines.

The next word U>D draws a line down the
screen, starting at the ending point of
the previous line. In the same manner the
words R>L and D>U are defined. They always
start at the end of the former line. The
last word RECT combines these words to
draw a rectangle.

Here vyou can see one of the advantages of
FORTH. Once you have defined a word, you
can use it within other words. With FORTH
it is also easy to change a program. You
may defin a new word with another sequence
of predefined words. Tey it in this
example. Rearrange the words in such a

37

manner, so that the top 1line and the

bottom 1line are drawn first and then the
two side lines.

In this example, line one of the text
screen #140 is left blank. In developing
this screen, the words FORGET START were
inserted. These words were inserted after
the first compilation of the screen. This
prevents the stack of the vocabulary from
becoming too large, thus recievinig the
message word NOT UNIQUE.

In the next program, we will wuse the
joystick to draw lines. Suppose the red
button is in the upper 1left corner, you
get the eight values, shown in Fig 5-3 for
the eight directions of the joystick by
reading memory cell 632.

14

10 ﬁ\ 6

(3]

> 7

Y
s

9 ¢ 3
13
Fig 5-3 Joystick Controller Movement.

Plug in a joystick in game port one, then
type

632 c@ . .

You will get the values shown in Fig 5-3.
The definition of the words is shown in
text screen 116. We use two variables X an
Y. The word +X increments the value of X
by one. The word +Y is defined as

+¥ =1 ¥ #] 3

38

because Y counts positive downward on the
screen,

The word STICK expects a value on top of
the stack which is equal to the content of
game port one. Then it decides which
variable has to be incremented or decre-
mented.

SCR # 116

0 (AFB JOYSTICK 10/18 ef)
1 0 VARIABLE X 0 VARIABLE Y

2 ¢ X 1 X +! ;3 ¢ =X -1 X +1 ;
3 ¢ 4Y -1 Y +! ¢ ¢ =Y 1 Y +1!
4 : STICK (n)

5 DUP 14 = IF +Y ELSE

6 DUP 13 = IF -Y ELSE

7 DUP 7 = IF +X ELSE

8 DUP 11 = IF -X ELSE

9 DUP 6 = IF +X +Y ELSE
10 DUP 5 = IF +X -Y ELSE
11 DUP 9 = IF -X -Y ELSE
12 DUP 10 = IF -X +Y THEN

13 THEN THEN THEN THEN THEN
14 THEN THEN ;

15

SCR # 118

0 (AFB GRAFICS 10/18 ef)
1l : START 2 0 0 SETCOLOR 7 GR.

2 10 Yy ! 10 X ! ;

3 : NOT (n-n') 1 XOR ;

4 : PL (nn') X @Y @ 2 PLOT ;
5 ¢ NPL (nn') X @Y @ 0 PLOT ;
6 : ?STICK 632 C@ DUP 15 = NOT

7 IF STICK PL THEN DROP ;
8 : PJOY START PL BEGIN

9 ?2STICK ?TERMINAL UNTIL
10 0 GR. ;
11
Fig 5-4 Controlling the joystick.

39

The program continues in screen 118. The
word START sets the grafic mode, the
background colors and the starting values
for X and Y. The word NOT 1is wused to
change the result of a comparison. If a
comparison is fulfilled, a one 1is on the
stack. NOT changes this value to zero. If
a zero is on the stack, NOT changes it to
one. With this word the Exclusive OR
function is used. This function is shown
in Fig 5-5 for one bit. FORTH applies this
function bit by bit on the two top numbers
of the stack.

Bitl Bit2 XOR
0 0 1
b} 0 0
0 3 0
1 1 1

Fig 5-5 Exclusive Or

The other logical functions AND and OR are
also implemented.The definitions are:

AND (nnl-n2) logical AND, bitwise
OR (nnl-n2) logical OR, bitwise
XOR (nnl-n2) logical XOR, bitwise

Now we continue with the program. The word
PLL. plots a point at X and Y in color two.
The word ?STICK determines if the joystick
is moved in one of the eight directions.
Then a point is plotted. The word PJOY
combines all these words to plot lines on
the TV screen.

The word NPL plots the point in the color
of the Dbackground. This erases a point on
the TV screen. We can insert this word in
?STICK to move a point across the TV
screen.
¢ ?STICK 632 C@ DUP 15 = NOT
IF NPL STICK PL THEN DROP ;

40

5-2 PATTERN.

The program in Fig 5-6 creates a random
pattern. It uses a random number generator.
RND# expects a number n on the stack. A
random number between 0 and n-1 is
generated. As a starting value for the
random numbers, we use the content of
memory location 53770. In this memory
location there are created random numbers
inside the ATARI.

SCR # 117

0 (AFB RANDOM PATTERN ef)
1 (RANDOM GENERATOR)

2 0 VARIABLE RND 53770 @ RND !
3 : RANDOM RND @ 31421 * 6972 +
4 DUP RND ! ;

5 : RND# (n-n') RANDOM U* SWAP
6 DROP ;

7 '« RNDP 7 GR. 2 0 0 SETCOLOR

8 BEGIN 160 RND# 80 RND#

9 16 RND# PLOT

10 ?TERMINAL UNTIL ;

11

12

13

14

15

Fig 5-6 Random Pattern.

The word RNDP sets the grafic mode 7 and

the background color. In a loop,
terminated by one of the yellow keys, it
Creates random numbers for the X Y

cqordinates and the <color. The result is
displayed on the TV screen.

41

5-3 SOUND AND COLOR

The word SOUND uses four parameters on the
stack.

SOUND (nnln2n3) n (0-15) is the
volume, nl a
distortion, n2 the
frequency and n4
the channel.

For creating several sounds and noises, we
use the random number generator and a wait
loop. The word WAIT requests one number
on the stack. The higher the number, the
longer the delay. The text screens 81 to
85 in Fig 5-7 contain some sound words,
such as the word THUNDER in screen 81.
Using random pitch and volume, a sound
like a swarm of flies is generated. ENG
uses intermittent sound for noise that
sounds like an engine.

Fig 5-7 Sound.

SCR # 081
0 (AFB SOUND 10/20 ef)
1 ¢+ WAIT 0 DO LOOP ;
2 :C (n-n'") 11 RND# 5 + 10 *
3 SWAP / ;
4
5 ¢ OFF 0 0 0 0 SOUND
6 0 001 SOUND ;
7
8 T 100 5 DO I C 8 T 0 SOUND
9 I C81I 20 + 1 SOUND
10 DUP WAIT 5 RND# +LOOP OFF :
11
12 ¢ THUNDER 300 T ;
13
14
15 -=>

42

SCR # 082

0 (AFB SOUND cntd ef)
1 (FLY)

2 : PI (n) 7 RND# 250 + ;

3 :V (n) 4 RND# 6 + ;

4 : F V14 PI 0 SOUND ;

5 ¢ FLY BEGIN F 500 WAIT

6 ?TERMINAL UNTIL OFF ;

7 (ENGINE)

8 ¢ ENG BEGIN 10 10 250 0 SOUND
9 1500 WAIT OFF ?TERMINAL

10 UNTIL ;

11

12

13

14

15 -=>

SCR # 083

0 (AFB SOUND cntd ef)
1 : INCR (n) 10 / 1

2 DO I 10 60 0 SOUND

3 LOOP ;

4 : DECR (n) 2 * 10 / DUP 1

5 SWAP DO DUP 10 60 0 SOUND

6 -1 +LOOP DROP ;

7 ¢ T 100 0 DO I INCR 2 +LOOP ;
8

9 ¢ TT 0 100 DO I DECR -2 +LOOP ;
10
11 : CC 0 100 DO I INCR I DECR
12 -2 +LOOP ;
13
14
15 =-=>

43

SCR # 084

0 (AFB SOUND cntd ef)
1 15 VARIABLE V1 15 VARIABLE V2

2 15 VARIABLE V3

3 ¢ S8ST 15 Vvl ! 15 Vv2 ! 15 V3 ! ;
4 : SS Vl @ 8 20 0 SOUND

5 V2 @ 8 40 2 SOUND

6 V3 @ 8 70 2 SOUND ;

5

8 : DEC -1 V1 +! -1 V2 +!

9 -1 V3 +!

10 : EXPL. ST BEGIN SS DEC

11 1000 WAIT V3 @ 0< UNTIL ;

12

13

14

15

SCR # 085

0 (AFB SOUND cntd ef)
1 : SI 15 0DO I 10 60 I 2 * -

2 0 SOUND 100 WAIT LOOP ;

3

4 : SIREN BEGIN SI OFF 50 WAIT

5 ?TERMINAL UNTIL ;

6

7

8 : DWN 200 100 DO 8 10 I 0 SOUND
9 100 WAIT LOOP ;
10 : UP 100 200 DO 8 10 I 0O SOUND
11 100 WAIT -1 +LOOP ;

12 : EUSI 10 0 DO UP DWN LOOP
13 OFF ;
14
15

The word CC in screen 83 simulates a
dropped coin. These examples are from the
book " ATARI BASIC Learning by Using " by
Tomas E. Rowley.

44

Some more sound words are in the next
screens. EXPL simulates an explosion by
changing the volume and the pitch on three
channels. In the 1last screen we have the
word SIREN for simulating an american
police siren and the word EUSI for an
european police siren.

The best way to create sound effects is
the methode of trial an error. Define new
words and combine them in different ways.

SCR # 086

0 (AFB COLOR 10/22 ef)
1 ¢ CF 712 C@ 710 c@ 712 C!
2 709 Cc@ 710 C! 709 C! ;
3
4 : CCF 100 0 DO CF 100 WAIT
5 LOOP 0 GR.
6
7 ¢ BG 254 0 DO I 712 C! 500 WAIT
8 2 +LOOP ;
9
10 : FG 254 0 DO I 710 C! 500 WAIT
11 2 +LOOP ;
12
SCR # 087
0 (AFB COLOR cntd ef)
1l : DI 16 0 DO I 709 C! 100 WAIT
2 LOOP
3 : AR 0 14 DO I 709 C! 100 WAIT
4 -1 +LOOP ;
5
6 : CURS (nnl) 85 ! 84 C! ;
7 : CLR 125 EMIT ;
8 ¢ DIS CLR 10 5 CURS
9 222 710 C! ." HELLO "
10 1000 WAIT DI KEY AR ;
11
12

Fig 5-8 Color.

45

In the text screens 86 and 87 (Fig 5-8),
the store and fetch words are used to
change the contents of the color registers.
The word CF rotates the contents of the
color registers. This causes a quick
change of foreground and background colors.
Use this word in a new definition of
THUNDER. BG changes the background color
and FG changes the foreground color

In the next screen, the text HELLO
disappears and, after pressing a key, it
reappears. The word DIS uses two other
words CLR and CURS. The word CURS requests
two numbers on the stack. N 1is the
horizontal row and nl the vertical column.
By sending out an end of file character (
155 EMIT) the cursor is placed at the
specified position. The word CLR clears
the TV screen and positions the cursor in
the upper left corner.

5-4 HEXDUMP

Most of the FORTH versions have defined
the word DUMP as that which dumps the
content of memory locations on the screen.
The program in Fig 5-9 (screens 88 and 89
) is a similar program. The word DDUMP
requests two numbers on the stack. N is

the starting address and nl the number of
lines, eight bytes each.

SCR # 088

0 (AFB HEXDUMP 10/22 ef)
1 HEX

2 : LNE (n) DUP DUP 8 + SWAP

3 DO I C@ 3 .R LOOP

4 : NR CR CR 5 SPACES
5 DO I 3 .R LOOP CR
6 : DOT DROP 2E ;

0

we QO we

46

8 ATARI (n-n) DUP 20 < IF DOT
9 ELSE DUP 7D = IF DOT ELSE

10 DUP 7E = IF DOT ELSE DUP 90 =
11 IF DOT ELSE DUP 9C = IF DOT
12 ELSE DUP FB > IF DOT THEN

13 THEN THEN THEN THEN THEN ;
14

15 -—>

SCR # 089

0 (AFB HEXDUMP c¢ntd ef)
1 ¢« ASCII (a—-a) DUP DUP 8 +

2 SWAP DO I C@ ATARI EMIT

3 2 SPACES LOOP ;

4

5

6

7

8 : HDUMP (n-n') CR DUP . SPACE
9 LNE CR 7 SPACES ASCII 8 + ;
10 : DDUMP (an) HEX

11 NR 0 DO HDUMP LOOP DROP

12 DECIMAL ;
13 DECIMAL
14

15

Fig 5-9 Hexdump.

An example of the printout is shown in
5-10,

Fig

47

HEX 3008 9 DDUMP
6 1 2 3 4 5 & 7

3008 86 4B 45 59 4C 49 D4 EA
f K E Y L I T j

3010 2F D9 C 60 D F3 2F 7C
fF X . « 8 J 1

3018 C60 DE1 8 1C C 3D
L] ° a e . L] =
3020 CFA 8 F3 2F 70 D 9C
« Z « B f P & s
3028 B9C B 91 C 9 F 59
° L L] q L o ° Y
3030 8 4 022 BFA 8 7A
® L ° L ° z L] Z
3038 8 E4A FF F B 31 0 87
. d v j g

3040 43 AF 4E 54 52 4F CC 8
c O N T R O L .
3048 30 5F 11 13 20 86 2C 46
o _ . . £f , F OK

Fig 5-10 Hexdump Printout.

The word ATARI changes all unwanted
characters (for example the byte 9B which
erases the screen) to dots. This word is
used within the word ASCII, which prints
the ASCII characters. LNE prints one line
of hex bytes while NR does the numbering
on top of the printout.

Next we look at some mathematical examples.

5-5 LARGEST COMMON DIVISOR.

We wuse the algorithm of EUCLID to
calculate the largest common divisor of
two numbers A and B. First the remainder

48

of A/B 1is determined by A B MOD . If the
remainder R is zero, B is the 1largest
common divisor. If R is not zero, A is set
to B and B is set to R and the modulo
division is repeated until R is zero. The
definition of LCD is shown in Fig 5-11.

(AFB MATH EXAMPLES _ €f)

: LCD BEGIN SWAP OVER MOD DUP
0= UNTIL DROP . ;

27 21 LCD 3 OK

W NhHO

Fig 5-11 Largest Common Divisor.

STACK TOS INPUT
27 27
27 21 pX
27 21 BEGIN
21 27 SWAP
21 27 21 OVER
21 6 MOD
21 6 6 DUP
21 6 0 =
21 6 UNTIL
6 21 SWAP
6 21 6 OVER
6 3 MOD
6 3 3 DUP
6 3 0 =
6 3 UNTIL
3 6 SWAP
3 6 3 OVER
3 0 MOD
3 0 0 DUP
3 0 1 0=
3 0 UNTIL
3 DROP

Fig 5-12 Largest Common Divisor.
Evaluation on the stack.

49

For a better understanding of this
definition, the evaluation on the stack
for the given example is shown in Fig 5-12.

5-6 FIBBOCONACCI NUMBERS.

Fibboconacci numbers are a series of
numbers. The next element of this series
is always the sum of the two predecessors.
The series starts with zero and one. The
word FIB in Fig 5-13 creates these numbers.
This is an example for the BEGIN...WHILE...
REPEAT loop. FIB expects on the stack one
number which determines the end of the

series, If the calculated element 1is
larger than this number, the calculation
stops.

SCR # 099

0 (AFB MATH EXAMPLES cndt ef)

1

2 ¢« FIB (n) CR 0 1 BEGIN DUP

3 >R ROT DUP R> > WHILE

4 ROT ROT DUP ROT + DUP .

5 REPEAT DROP DROP DROP ;

6

100 FIB

1 235 8 13 21 34 55 89 144 OK

Fig 5-13 FIBBOCONACCI Numbers.

The evaluation on the stack for the first
three loops is shown in Fig 5-14.

50

20

20

20 0

20 0 1

20 0 1

20 0 1 1
20 0 1

0 1 20

0 1 20 20
0 1 20 20 1
0 1 20 1
0 1 20

1 20 0

20 0 1

20 0 1 1
20 1 1 0
20 1 1

20 1 1 1
20 1 1

20 1 1

20 1 1 1
20 1 1

1 1 20

1 1 20 20
1 1 20 20 1
1 1 20 1
1 1 20

1 20 1

20 1 1

20 1 1 1
20 1 1 1
20 1 2

20 1 2 2
20 i 2

20 1 2

20 1 2 2

Fig 5-14 FIBBOCONACCI Numbers.,
Evaluation on the stack.

20
FIB

BEGIN
DUP
)R
ROT
DUP
R)

)
WHILE
ROT
ROT
DUP
ROT

.

DUP

REPEAT
DuP
'R
ROT
DUP
R)

)
WHILE
ROT
ROT
bDup
ROT
+

bup

REPEAT
DUP

51

5-7 PRIME NUMBERS.

In the next example, we calculate the
prime numbers between two limits. The
algorithm used is very simple. The word
PTEST tests within a loop, if a number is
divisible by the 1loop index. The loop
starts with two and ends at half of the

number. In this program the predefined
word LEAVE is used. This word terminates
the execution of a loop. The program

continues after the next LOOP word.
LEAVE () Terminates a loop

If TEST finds a remainder equal to zero, a
zero is placed on the stack and the loop
is left. The program then continues with
the word DUP. With a zero on the stack the
word . PRIM is not executed and the top of
stack is discarded. To format the output
a variable #ROW 1is used. The program is
shown in Fig 5-15.

SCR # 100

0 (AFB MATH EXAMPLES cndt ef)
1

2 4 VARIABLE #ROW

3 ¢ TEST (n-f) MOD 0= ;

4 : PRIM (n-n) DUP 4 .R #ROW @
5 DUP 0= IF CR DROP 4 ELSE

6 1 - THEN #ROW ! ;

7 : PTEST (n) DUP 2 / 2 DO DUP
8 I TEST IF 0 LEAVE THEN LOOP
9 DUP IF .PRIM ELSE DROP

10 THEN DROP ;
11
12 ¢ PRIM (nn') CR 4 #ROW !
13 DO I PTEST LOOP CR ;

14
15

52

200 1 PRIM
1 3 5 7 11
13 17 19 23 2%
31 37 41 43 47
53 59 61 67 71
73 79 83 89 897
101 103 107 109 113
127 131 137 139 149
151 157 163 167 173
179 181 191 193 197
199
OK

Fig 5-15 Prime Numbers.

5-8 MORE SOUND AND GRAFICS.

I found some new sounds in the September
issue of COMPUTE! magazine. I translated
these examples from BASIC to FORTH. These
new sound words are shown in Fig 5-16.
There 1is another thunder which you can
combine with the old thunder and rain to
Create stormy weather.

SCR # 094

0 (MORE SOUND 10/26 ef)
1 : B (-n) 255 RND# 50 + ;

2 : X (-n) 200 RND# ;

3 ¢ T1 () B1 DO 15 8 I 0 SOUND
4 LOOP ;

5 : T2 () X 1 DO LOOP ;

6 : TH () 2 0 DO Tl OFF

i T2 OFF LOOP ;

8 : STO TH TH THUNDER TH ;

9 : Rl (n) 00 2 SOUND ;

10 : RAIN 150 0 DO I 10 / Rl
11 100 WAIT 2 +LOOP BEGIN

12 ?TERMINAL UNTIL ;

13

14

15

53

0 (MORE SOUND cntd ef)
1 : HB 10 1 DO 15 3 12 0 SOUND

2 1000 WAIT OFF 6000 WAIT LOOP ;
3

4 -1 VARIABLE XX

5 : LO1l 40 150 po 1 10 / 0 15 0
6 SOUND XX @ +LOOP ;

7 ¢ LO 50 1 DO LO1 XX @ -7 > IF
8 -1 XX +! THEN LOOP ;

9 : LS 10 10 40 1 SOUND
10 8 10 10 2 SOUND
11 10 10 90 3 SOUND ;
12 : STE 2 0 DO LS 4000 WAIT XSND
13 1000 WAIT LOOP ;
14 : STEAM -1 XX ! LO STE LO
15 XSND ;

Fig 5-16 More sound.

The program in Fig 5-17 produces the
grafic shown in picture 5-18. The 1lines
are drawn in grafic mode eight. Draw this
picture as it is and then a second time

with the background color. It appears and
disappears.

0 (MORE GRAFICS 10/26 ef)
0 VARIABLE X 0 VARIABLE Y

2 : CG 8 GR. 0 0 2 SETCOLOR ;
3 ¢ S8G 260 X ! 10 Y ! ;

4 : PG 160 80 1 PLOT ;

5 ¢ =X =10 X +!

6 : +X 10 X +! ;

7 + =Y =10 Y +! ;

8 : +Y 10 Y +! ;

9 : LG X @Y @ 1 DRAWTO ;

10 : LL 20 0 DO PG LG -X LOOP ;
11 ¢« DD 15 0 DO PG LG +Y LOOP ;
12 : RR 20 0 DO PG LG +X LOOP ;
13 : UU 15 0 DO PG LG -Y LOOP ;
14 ¢« PIC CG SG LL DD RR UU ;

15

Fig 5-17 Rayshaped pattern.

54

Fig 5-18 Picture of the rayshaped pattern.

5-9 USING THE GAME PORTS FOR CONTROL
APPLICATIONS.

The ATARI uses two 6520 Peripheral
Interface Adapters (PIA) for the game
ports. These ports can be used to transmit
or to recieve data. The 6520 provides two
bi-directional ports, A and B; two control
registers and four interrupt lines. In our
examples we only use the ports and the
control registers. The four registers have
the following addresses:

PORTA = $D300
PORTB = $D301
PACTL = $D302

and PBCTL = $D303

55

The data direction for the two ports is
set by two data direction registers, DDRA
and DDRB. Both, the ports and the data dir-
ection registers, have the same addresses.

Bit two of the control register determines
which one of the two registers is accessed.
If bit two of the control register PACTL
is one, PORTA acts as a port. If bit two
is =zero, PORTA acts as a data direction
register. A line of a port is set to an
output if the corresponding bit in the
data direction register is set to one.
Respectivly a zero marks a line as input.

The word INIT in Fig 5-19 sets the four
lower bits of port A as outputs. These
four lines are available at game port 1.

SCR # 104

0 (AFB PORT CONTROL 10/16 ef)
1 HEX D300 CONSTANT PORTA
2 D301 CONSTANT PORTB
5 D302 CONSTANT PACTL
4 D303 CONSTANT PBCTL
5 INIT 30 PACTL C!

6 OF PORTA C!

7 34 PACTL C!

8 00 PORTA C! ;

)

10 DECIMAL

11

12 : PA! (b) PORTA C! ;
13 : WAIT (n) 0 DO LOOP ;
14

15

Fig 5-19 Initialisation of the ports.

We use the <circuit shown in Fig 5-20 to
demonstrate the output of data.

56

1=PA0

2 = PAT #=GHB
3=PA2 =YL
4=PA3

REPEAT 4 TIMES

GAME CONNECTOR | VCC =+5V
INSIDE ATARI |
220 I
001 C—ID 220
I NPN -
| TRANSISTOR LED -
I
GND

Fig 5-20 Schematic of the circuit.

Fig 5-21 The experimenter board.

o7

Fig 5-21 The experimenter board.

Screen # 105 in Fig 5-22 contains three
programs.

RL simulates a running 1light. The four
LED's turn on and off one after the other.
The sequence starts with one on the stack.
This turns on LED one. The second LED is
turned on by multiplying the top of the
stack with two. With an additional
multiplication the third LED is switched
on. The last LED is turned on with the
number eight on the stack. If the number
on top of the stack is wequal to 16 the
sequence restarts with one.

58

SCR # 105

(AFB PORT CONTROL cntd ef)
RL 1 BEGIN DUP PA! 2 * DUP

16 = IF DROP 1 THEN 2000 WAIT
?TERMINAL UNTIL ;

LB 0 BEGIN DUP PA! 2 * 1 +
DUP 31 = IF DROP 0 THEN
1000 WAIT ?TERMINAL UNTIL ;

CoOoO~NOuUTd: WNDHO
°

OINIT INIT O DUP PA! ;
NEW 1 SWAP DUP 1 = IF DROP
il ELSE 1 DO 2 * LOOP THEN ;

12 : ON (n) NEW OR DUP PA! ;
13 : OFF (n) NEW XOR DUP

14 PAl

15

Fig 5-22 Running light, lightbar and ON OFF

LB simulates a lightbar. The LED's are not
turned off until all four LED's are on.
The sequence starts with one. By
multiplying with two and adding one we get
three. This value turns on LED one and two.

An additional multiplication and addition
leaves the value seven on top of the stack.
This turns on LED one, two and three.
After all LED's are turned on a zero on
top of the stack turns all off. Both
programs use the WAIT loop.

The words defined in screen 105, line 9
thru 14, can be used to turn on or off a
particular LED.

1 ON turns on LED one,

3 ON turns on LED three
and 1 OFF turns off LED one.

59

The word OINIT initialises port A, places
a zero on top of the stack and turns off
all LED's. The word NEW determines which
LED has to be turned on. The state of the
four LED's is stored in the four lower
bits of a byte on top of the stack. A one
markes the corresponding LED as turned on,
a zero marks it as turned off. Using the
logical OR function the new LED is added.
In the same way a LED is turned off using
the logical XOR function.

The application in Fig 5-23 simulates a
dice. Seven LED's are grouped to form the
spots of a dice (see Fig 5-25). The word
DINIT initialises port A. Seven 1lines are
used as output, one line as an input. A
pushbutton is connected to this line (see
Fig 5~24) . The word PA@ fetches the
content of port A and masks out the seven
low order bits. (128 AND). With 128 XOR
bit eight is inverted. The number 128 is
read if the button is pressed and a zero
is read if it is not ©pressed. The next
words 1D thru 6D relate the decimal
numbers 1 thru 6 to the six spots of the
dice, These words use a binary pattern.

For instance 0001000 turns on the LED in
the middle. This is equal to a throw of
one. OD is used as a dummy definition in
the CASE: statement CDICE.

60

SCR # 106

0 (AFB PORT CONTROL cntd ef)
1 HEX

2 : DINIT 30 PACTL C!

3 7F PORTA C!

4 34 PACIL C!

5 00 PORTA C! ;

6 DECIMAL

7 : PA@ (-b) PORTA CQ@ 128 AND
8 128 XOR ; 2 BASE !

9 : 1D 0001000 PA! ;
10 : 2D 1000001 PA! ;
11 : 3D 0101010 PA! ;
12 : 4D 1010101 PA! ;
13 : 5D 1011101 PA! ;
14 : 6D 1110111 PA! ; DECIMAL
15 : 0D ; —>

SCR # 107

0 (AFB PORT CONTROL cntd ef)
1 CASE: CDICE 0D 1D 2D 3D

2 4D 5D 6D ;

3 : BUTTON 1 BEGIN DROP PA@ DUP
4 UNTIL 500 WAIT

5 BEGIN WHILE PA@

6 REPEAT ;

7 :DICE1BEGIN1 + DUP 7 =
8 IF DROP 1 THEN DUP CDICE

9 PA@ UNTIL 500 WAIT 1

BEGIN WHILE PA@ REPEAT
DROP ;

12 : DODI BEGIN BUTTON DICE

13 1000 WAIT ?TERMINAL UNTIL ;
14

15

e
o

Fig 5-23 Simulating a dice.

61

The word BUTTON waits in the BEGIN...UNTIL
loop until the button 1is pressed. Then
a delay 1loop follows to suppress the
bouncing of the key. The BEGIN...WHILE. . .
UNTIL loop is left on releasing the button.
The word DICE starts the count. Pressing
the button stops it and the thrown number
is shown on the display.

—o o

PA7
It

REPEAT 7 TIMES

o
=
o o
_J
> S
0 ~
I
S)
5]
< 0 © N >
CCC <<
oo o
oo E
. —N® < B
n
P
Z <
oo
Z

GAME CONNECTOR |1
—C
i 4
T

62

BIR e B YA @0 Leomons ol & o g R

o o

Fig 5-25 The dice.

63

6 Text and strings

6. TEXT AND STRINGS.

In the standard version of FORTH, there
are no strings or string functions
implemented. Yet, it is very easy to enter
text or to print out text.

6-1 INPUT/OUTPUT OF TEXT.

The word EXPECT expects the input of
characters. The definition is:

EXPECT (an) Expects n characters
of text at address a.
Also terminated by CR.
For the input of text you can wuse a
special area’ in memory, called PAD. The
address of PAD is always 68 bytes beyond
the top of the vocabulary stack.

PAD (-a) Address of PAD is put
on the stack.

Example:

PAD 15 EXPECT RET THIS IS FORTH RET

64

The text THIS IS FORTH is stored in PAD.
To get the momentary address of PAD type
PAD . and try to get the text out onto the
screen with DUMP or DDUMP . You can also
use the predefined word TYPE.

TYPE (an) Prints n characters of
text, starting at
address a.

If we have stored text as in the example
above and made no new definitions, which
would alter the address of the top of the
vocabulary stack, we can get the text from
PAD with:

PAD 15 TYPE RET THIS IS FORTH

We can make a printout of only a part of
the text. We are able to change the start-
ing address and the number of characters.

PAD 2 + 2 TYPE prints IS.

We use a new word, TEXT, to read text into
PAD. In some versions TEXT is a predefined
word. The definition is:

t TEXT (€)
PAD 72 32 FILL WORD HERE
COUNT PAD SWAP CMOVE ;

First, we must describe several new words
used in this definition. The word FILL
fills memory cells withe the byte b.

FILL (anb) Fill n bytes, starting
at address a, with the
byte b.

The next new word is WORD. There are two

different definitions of WORD in FIG FORTH
and in FORTH-79.

65

WORD (c¢) Read text from the
input buffer until the
delimiter ¢ is encoun-
tered. (FIG FORTH).

WORD (c-an) Read text from the
input buffer, until
delimiter ¢ is encoun-
tered. Leave the
address a and the
length n of the text
on the stack. (FORTH-
79)

In our example we use a FIG version of
FORTH. Therefore we need two more words
HERE and COUNT. HERE leaves the address of
the first free memory location of the
vocabulary stack on the parameter stack.
All text, coming from the keyboard is
taken to an input buffer TIB. After
hitting RETURN this text is moved to the
top of the vocabulary stack.

HERE (a) Leaves the address a
of the Figst free
memory location of the
vocabulary stack on
the parameter stack.

The first byte of the text is the length
byte. It gives the length of the text. The
word COUNT converts this byte in such a
manner that it can be used by TYPE.

COUNT (a-a'n) Converts the length
at address a to a' and
the length n.

These are the parameters, TYPE needs for

printing text. The last word CMOVE moves n
bytes from address a to address a'.

66

CMOVE (aa'n) Moves n bytes from
a to a'

CMOVE moves the first byte from a to a',
the second byte from a+l to a'+l and so on.
For a correct moving of bytes, the desti-

nation address a' must not be in the range
of a<a'<a+n.

Example:
13 TEXT THIS IS TEXT RET

There is no RETURN between the word TEXT
and the word THIS. If you now type :

PAD 20 TYPE RET , you get THIS IS TEXT

As a delimiter we used the byte 13. This
is the ASCII code for CARRIAGE RETURN. Now
let's try this:

32 TEXT THIS IS TEXT RET IS ?

What happens ? If we type PAD 20 TYPE, we
get the printout THIS. We wused the ASCII
code, 32, of the space character as
delimiter. Therefore only the word THIS
was moved to PAD. The interpreter finds
more text and however tries to interpret
it. IS 1is not a defined word, so we get
the error message IS ? .

As an example for text input, we will make
the input for a mailing list. The text is
stored in PAD. Later we will see how to
store this text on the disk.

Screen 91 in Fig 6-1 shows the input of a

mailing address. The word FNAME expects 10
characters at the starting address of PAD.

67

The next word adds ten to the starting
address, then it expects an additional ten
characters. The other words are defined
in the same way.

SCR # 091

0 (AFB TEXT cntd ef)
1 : FNAME PAD 10 EXPECT ;

2 : LNAME PAD 10 + 10 EXPECT ;
3 : STREET PAD 20 + 15 EXPECT ;
4 : CITY PAD 35 + 15 EXPECT ;

5 : STATE PAD 50 + 2 EXPECT ;

6 : ZIP PAD 52 + 5 EXPECT ;

7 : INPUT 125 EMIT CR

8 PAD 58 32 FILL

9 ." FIRST NAME " FNAME CR
10 ." LAST NAME " LNAME CR
11 " STREET " STREET CR
12 st CITY " CITY CR
13 i STATE " STATE CR
14 o ZIP " ZIP CR ;

=
(S}

Fig 6-1 Input for a mailing list.

The word INPUT clears the screen and fills
the PAD with blanks. Next the message
FIRST NAME 1is displayed on the screen.
After this FNAME expects ten characters.
In the same way, all the other inputs are
made for this mailing list address.

Type in your address and then PAD 58 TYPE.
The content of the 58 bytes of PAD are
displayed on the screen. All names, : b
they do not fill all bytes are followed by
little hearts. This is the printout of
the ASCII zero character. FORTH adds three
zeros to the end of the text. On the ATARI
screen these zeros are displayed as 1little
hearts. To get 1rid of this we use a new
definition of TYPE, shown in FIG 6-2.

68

: TYPE -DUP IF OVER + SWAP
DO I C@ 127 AND DUP 0=
IF DROP ELSE EMIT THEN
LOOP ELSE DROP ENDIF ;

Fig 6-2 Another TYPE.

In the new definition of TYPE, the word
-DUP (query dup) 1is used. This word
duplicates the stack only if it non-zero.

The printout of an address is shown in FIG
6-3, screen 92. The word PRINT expects two
numbers on the stack. The first number is
the starting address, relative to the
starting address of PAD. The second number
gives the number of characters being
printed.

SCR # 092

0 (AFB TEXT OUTPUT ef)
1 : PRINT (nn') PAD + SWAP

2 -TRAILING TYPE ;

3 : OUT CR 10 0 PRINT SPACE

4 10 10 PRINT CR 15 20 PRINT
5 CR 15 35 PRINT SPACE

6 2 50 PRINT SPACE 5 52 PRINT
7 CR ;

8

Fig 6-3 Printout of an address.

For example, 10 0 PRINT prints 10
characters,starting at address zero of PAD.

The word OUT prints the address. An
example is shown in Fig 6-4.

69

FIRST NAME EKKEHARD
LAST NAME FLOEGEL
STREET 53 REDROCK LANE
CITY POMONA
STATE CA

ZIP 91766
OK
ouT
EKKEHARD FLOEGEL
53 REDROCK LANE
POMONA CA 91766
OK
. SCRN

Fig 6-4 Sample printout.
6-2 FORMATTING THE OUTPUT.

FORTH uses several words to format the
output. These words require that the
number on top of the stack is a double
precision, 32 bit, number. A double
precision number is entered on the stack,
if there is a decimal point in this number.

Examples:
123.45 1.2345 1234.

These are double precision numbers. There
are a few operators used for calculating
with these 32-bit numbers.

D+ (ddl-d2) d2=dl+d

DMINUS (d-d') d'=-d

D, (4) Prints d.
For more words see Appendix A. There is no
double precision multiplication or

division. These words must be written 1in
machine language.

70

The words for formatting an output are:

<t (d) Start converting a num-
ber into a string.

Convert one digit and
add the character to
the string.

#S Convert remaining
digits.

#> (-an) End of conversion. The
address a is the

starting address and n
is the 1length of the
string.

HOLD («c¢) Insert the character
¢ in the string.

Example:

We define a word .$ which prints us 10000
for exmple as $100.00 .

.S <# # # 46 HOLD #S 36 HOLD #> TYPE ;
12344, .$ RET $123.44

The conversion of this number to a string
starts at the end of this number. First
the two digits 4 4 are converted. Then a
decimal point is inserted, after which the
rest of the number is converted. The $
sign is placed in front of this number and
the conversion is terminated with #>. This
places the address and the 1length of the
string, ready for the word TYPE, on top of
the stack. Another example is the printout
of a double precision unsigned number:

: UD. <# S# #> TYPE SPACE ;

71

The word NUMBER converts a string to a
double precision number.

NUMBER (a-d) Convert a string at
a+l to a double
precision number. At
address a the 1length

of the string is
stored., The variable
DPL contains the

number of digits right
from the decimal point.

We use this word in the program CASH-
REGISTER, shown in Fig 6-5.

The word CASH opens the cash register and
displays the amount of $0.00 in the upper
right corner of the TV screen. The last
word in the definition of CASH is the word
QUIT. It terminates the interpreter
without printing OK. A new amount is
added by the word $.

$ 120.00 adds $120 to the pre-

vious amount. The result is displayed. $
uses the word NUMBER to convert the string
into a double precision number. WORD
places the text at HERE, with the first
byte as length byte.

72

SCR # 101

0 (AFB CASHREG 11/12/82 ef)
1 : CURS (nnl) 85 ! 84 C! ;

2 : >SS (d-an) <# # # 46 HOLD #S
3 36 HOLD #> ;

4 : .$ 2DUP >S DUP 34 SWAP -
5 1 SWAP CURS TYPE ;

6 : CLR 5 2 CURS 20 0 DO 32 EMIT
7 LOOP 4 2 CURS ;

8 : $ (-d) 13 WORD HERE

9 NUMBER D+ .$ CLR QUIT ;
10
11 : CASH 125 EMIT 1 2 CURS
12 ." CASH:" 0. .$ 4 2 CURS
13 ." INPUT:" QUIT ;
14

15

Fig 6-5 Cash register.

The word >S reconverts the double
precision number into a string. This word
is used by .$. This word also determines
the 1length of the string and adjusts the
printout, that the decimal point is always

at the same position on the TV screen.

73

7 The vocabulary

7. THE VOCABULARY

7-1 DIFFERENT VOCABULARIES.

Every new word is entered into the FORTH
vocabulary. But you can create your own
vocabulary. This is done with the word
VOCABULARY .

VOCABULARY <NAME> Opens vocabulary
NAME.

You have to tell the FORTH compiler that
all definitions made now, have to be
entered in the new vocabulary. This 1is
done with the word DEFINITIONS.

<NAME> DEFINITIONS All new defini-
tions are entered
in the vocab-
ulary NAME.

With these two words, two variables are
set. The variable CURRENT contains the
address of the vocabulary, where the new
definitions are entered. The variable
CONTEXT contains the address, in which a
word is searched for first.

74

For example:

We are in the FORTH vocabulary and define:

¢ WHERE ." I AM IN FORTH "

;
Now we create a new vocabulary:

VOCABULARY TEST
TEST DEFINITIONS

All new definitions are now entered into
the vocabulary TEST. We define the same
word WHERE as:

WHERE ." I AM IN TEST" ;

We get the warning WHERE NOT UNIQUE,
because we have defined it already in the
vocabulary FORTH. If we call now WHERE, we
get the message:

I AM IN TEST

With the word FORTH, we set the address,
stored in CONTEXT to the beginning of the
FORTH vocabulary. All words are now
searched for first in the FORTH
vocabulary. If we now call WHERE, we get
the message:

I AM IN FORTH

Thats a very powerfull tool. Powerful to
the extent of having one word with the
same name, defined in two different
vocabularies, performing different tasks.
We wuse this to play the piano or an organ
with the keyboard of the ATARI.

75

7-2 PLAY ORGAN OR PIANO WITH THE ATARI.

The numeric keys one to eight of the ATARI
keyboard are used to play an organ or
piano. They refer to the musical notes of
the C scale. The parameters for the fre-
quency of each note are shown in Fig 7-1.

60
64
72
81
91
96
108
121
128
144
162
182
193
217
243

OUomMmMOP>»IOO0OMMO» IO

Fig 7-1 Pitch values of the musical notes.

The program is shown in Fig 7-2. The
screens 93 and 94 contain the definition
of the notes. Each tone is mixed with a
tone of half the frequency and a tone
which differs slightly from the basic tone.

In the vocabulary PIANO (screen 95, 96)
the musical notes are defined as a tone
with decreasing volume. In the vocabulary
ORGAN (screen 97), they are defined as
tones with a constant volume.

76

SCR # 092

—
NMHOWVLENAUTBEWN HO

(W
U W

SCR # 093

(AFB PIANO OR ORGAN 10/22
: OFF 0 0 0 0 SOUND

0 0 01 SOUND
0 0 0 2 SOUND

°
’

: WAIT (n) 0O DO LOOP ;

(AFB TONE TABLE

15 VARIABLE V

(C)

: (D)

(E)

(F)

\%

<< << << <<<<<<

OO MMM MM

10
10
10
10
10
10
10
10
10
10
10
10

243
240
121
217
214
108
193
190

96
182
179

91

NHONMHFONFONRFO

SOUND
SOUND
SOUND
SOUND
SOUND

SOUND ;

SOUND
SOUND

SOUND ;

SOUND
SOUND

SOUND ;

ef)

ef)

77

78

SCR # 094

ef)

ef)

0 (AFB TONE TABLE cntd

1 (G) Vv @ 10 162 0 SOUND

2 V @ 10 160 1 SOUND

3 Vv @ 10 81 2 SOUND ;
4 (A) V @ 10 144 0 SOUND

5 V @ 10 142 1 SOUND

6 V @ 10 72 2 SOUND ;
7 (H) Vv @ 10 128 0 SOUND

8 V @ 10 126 1 SOUND

9 V @ 10 64 2 SOUND ;
10 (Cl) v @ 10 121 0 SOUND
11 V @ 10 119 1 SOUND
12 V @10 60 2 SOUND ;
13 ?TASTE KEY 49 - DUP 0< IF -1
14 ELSE DUP 7 > IF -1 THEN
15 THEN ; -->

SCR # 095

0 (AFB PIANO DEFINITIONS

1 VOCABULARY PIANO IMMEDIATE
2 PIANO DEFINITIONS

3 : WAIT 100 0 DO LOOP ;

4 : C-115DO IV ! (C) wAIlT
5 -1 +LOOP ;

6 :D-115D0O I V ! (D) WAIT
7 -1 +LOOP ;

8 E -115D0 I V ! (E) WAIT
9 -1 +LOOP ;
10 F -1 15D0O I V ! (F) WAIT
11 -1 +LOOP ;

12 : G-115D0O I V ! (G) WAIT
13 -1 +LOOP ;
14 A -1 15 DO I V ! (A) WAIT
15 -1 +LOOP ; -->

SCR # 096

0 (AFB PIANO cntd ef)
1 : H-1 15 DO I V ! (H) WAIT
2 -1 +LOOP ;
3 : Cl -1 15DO IV ! (Cl) WAIT
4 -1 +LOOP ;
5
6 CASE: TONCD EF G A H Cl ;
7
8 ¢ PLAY BEGIN ?TASTE DUP -1 >
9 WHILE TON REPEAT
10 15 v I ;
11
12
13 =-=>
14
15
SCR # 097
0 (AFB ORGAN DEFINITIONS ef)
1 VOCABULARY ORGAN IMMEDIATE
2 ORGAN DEFINITIONS
3 15Vv !
4 : C (C) ; ¢+ D (D) ; ¢+ E (E) ;
5 ¢« F (F) § ¢+ G (G) ; ¢« A (p) ;
6 : H (H) ; : Cl (Cl) ;
7
8
9 CASE: TON C D EF GA H C1 ;
10
11 ¢+ PLAY BEGIN ?TASTE DUP -1 >
12 WHILE TON REPEAT
13 OFF ;
14
15

Fig 7-2 ATARI plays organ or piano.

79

The words PIANO PLAY lets you play piano.
The words ORGAN PLAY lets you play organ.

The word ?TASTE determines which key was
pressed and allows the corresponding note

to be picked up by the CASE: statement
NOTE.

7-3 THE CONSTRUCTION OF A FORTH WORD.

The word HERE places the address of the
first free memory location of the
vocabulary stack onto the parameter stack.
Type HERE . and you will get a number
printed on the screen. The value of this
number ‘depends of how many definitions
you have made. Enter a new definition,
such as

ADD + ;

and type once more HERE . . The hexdump
starting at HERE is shown in Fig 7-3.

HERE . 17409
ADD + ;
HERE . 17421

17409 83 41 44 C4 EB 43 82 26 .ADDKC.&
17417 44 25 B7 24 04 D%7S.

Fig 7-3 Hexdump of the word ADD.

80

HERE AFTER
THE DEFINITION 17421 440D

17419 | B7 24 4408B
PARAMETER FIELD 17417 | 44 25 4409

CODEFIELD 17415 | 82 26 4407
LINK FIELD 17413 | EB 43 4405
NAMEFIELD 17411 | 44 Cc4 4403
HERE BEFORE

THE DEFINITION 17409 | 83 41 4401

Fig 7-4 Constuction of the word ADD.

The address before the definition of ADD
was 17409, the address after the
definition is 17421. Fig 7-4 shows the
construction of the word ADD. The word
starts with the name field. The first byte
is the length byte. Here the length of the
name 1is stored in the lower 4 bits. The
maximum length of a name 1is therefore 16
characters.

The next bytes contain the name in ASCII.
The highest bit of the 1last character is
set to one. This indicates to the
interpreter the name searching routine 1is
at the end of a name.

The next two bytes are the link field. The
address stored here points to the previous
definition. The search routines wuses this
address to Jjump to the next word. The
following two bytes are the codefield.
This address points to the address where
the execution of a word starts.

81

In our example this is the codefield
address of the colon definition. The next
two bytes are the parameter field. Stored
here are the codefield addresses of the
words used in the definition. In our
example the first two bytes are the
codefield address of the + word and the
next two bytes the codefield address of
the ; definition. The definition of ADD
ends here and the pointer HERE points to
the address of the next byte.

We will wuse the word ADD in a new
definition:

: #ADD DUP ROT ADD ;
FIG 7-5 shows the hexdump and Fig 7-6 the
construction of the word #ADD.,

#ADD DUP ROT ADD ;
HERE . 17438

17409 83 41 44 C4 EB 43 82 26 .ADDKC.&
17417 44 25 B7 24 84 23 41 44 DR7S.#AD
17425 C4 01 44 82 26 E6 25 C5 D.D.&f%E
17433 28 07 44 B7 24 04 (.D7S.

Fig 7-5 Hexdump of the word #ADD.

Notice! In a 6502 CPU system the memory
addresses are stored in reverses order.
First the low order byte and next the high
order byte is stored 1in two consecutive
memory locations.

82

17438 441E

; 17436 | B7 24 | 441C

ADD 17434 | 07 44 | 441A

PARAMETERFIELD ROT 17432 | C5 28 | 4418

DUP 17430 | EG6 25 | 4416

CODEFIELD : 17428 | 82 | 26| 4414
LINKFIELD 17426 | 01 | 44| 4412
17425 | c4 4411

17423 | 41 | 44| 440F

NAMEFIELD 17421 84 23| 440D

Fig 7-6 Construction of the word #ADD.

The address 17426 in the linkfield is the
namefield address of ADD. In the parameter
field you'll find the codefield addresses
of DUP, ROT and ADD.

When #ADD 1is executed, the words DUP and
ROT are executed. Next the interpreter
jumps to the codefield address of ADD. It
executes this word until the semicolon
definition, then it jumps back to #ADD.
Here the interpreter finds the semicolon
definition in #ADD. This terminates the
execution of this word. If there are no
more words the interpreter prints OK and
waits for the next input.

83

If you know the codefield address of a
FORTH word, you can execute it with the
word EXECUTE.

EXECUTE (a) Execute the word with
codefield address a.

3 5 HEX 2544 DECIMAL EXECUTE . 8 OK

7-4 CHANGING THE TOP OF THE DICTIONARY.

We have already used the word HERE, which
places on the parameter stack the address
of the first free memory location of the
vocabulary stack. As pointed out in the
last subchapter, the definition of a word
starts at HERE and after this, HERE points
one byte beyond the end of the word. The
definition of HERE is:

HERE DP @ ;
It uses a variable DP. With
10 DP +!
we make a gap in the dictionary. This gap
can be used for storing data. The word

ALLOT does the same as the line above.

ALLOT (n) Leave a gap of n bytes
in the dictionary

Attention ! The word ALLOT reserves n
bytes in the dictionary. If you want to

store n numbers in this gap, you have to
reserve place for 2*n bytes.

84

HERE points to the parameter field. We
store the number 1000, for example, at
this place with

1000 HERE !

If we want to store a second number, first
we have to add two to HERE, and then we
can store it.
We can use the word , (komma) . The
definition is:

, (n) Places n on top of the
dictionary stack. Add
two to HERE.

Instead of

1000 HERE ! 2 DP +!

we can write
1000 , .

To read these numbers from the dictionary,
we use the word ' (tick).

' <NAME> (=—a) Places the parameter
field address a on the
stack.

To use this gap in the dictionary, we must
name it. We use the word <BUILDS . This is
part of a defining word which we discuss
in the next subchapter.

<BUILDS <NAME> places the entry NAME into
the dictionary.

Fig 7-7 shows an example. We write the
word VECTOR into the dictionary, and
reserve a place for five numbers. The word
!VECTOR stores a number in this area.

85

It expects two numbers on the stack. The

index n and the number itself, which
should be stored. If the index is zero,
this number is stored in the first place.
If the index 1is four, this number is

stored in the fifth place. The word
@VECTOR fetches a number out of this array.
It expects the index on the stack. Be
carefull. If you use an index outside of
the specified range the number is stored

at this place. This can damage the program
and hang up the computer.

SCR # 110
(AFB MEMORY RESERVATION ef)
<BUILDS VECTOR DP @ 10 + DP !

¢ @VECTOR (n-n')
' VECTOR SWAP 2 * + @

~e

' VECTOR SWAP 2 * + !

e

0
|
2
3
4
5
6
7 & IVECTOR (nn')
8
9
10
11
12

Fig 7-7 Memory reservation.

Fig 7-8 is another example to store data
in an array. We enter the name VECTOR into
the dictionary and reserve place for 6
numbers. The word INIT stores a one in the
first place. The word +INDEX increases
this number by one.

86

SCR # 111

(AFB INDEXED MEM ALLOC. ef)

<BUILDS VECTOR 12 ALLOT

+INDEX 1 ' VECTOR @ +
' VECTOR ! ;

0
1
2
3
4 : INIT () 1 ' VECTOR ! ;
5
6
7
8

9 : QVECTOR (n-n')

10 ' VECTOR SWAP 2 * + @ ;

11

12 + IVECTOR (n) ' VECTOR DUP @
13 2 * + 1 +INDEX

14

15

Fig 7-8 Indexed memory allocation.

The word @VECTOR is the same as in the
last example. The word !VECTOR is differ-
ent. This word takes the parameter field
address and duplicates it. Then it takes

the number from the first place,
multiplies it by two, and adds it to the
parameter field address. This gives the

new address where the number is stored.
The number in the first place is increment-
ed. The words:

INIT

1000 !VECTOR
2000 !VECTOR
3000 !VECTOR

store the numbers 1000 2000 3000 in three
consecutive memory locations. With

2 @VECTOR

87

you read the number stored in the second
place.

7-5 THE VIRTUAL MEMORY.

In the example above we reserved a place
for five numbers. What can we do, if we
want to store ten thousand 16 bit numbers?
This could only be done with a disk drive.

Now some words, how FORTH handles the disk.
This 1is very easy. If you use a disk,
formatted by DOS and no DOS files on it,
FORTH recognices this as a memory of 720
blocks with 128 bytes each. The word BLOCK
reads one block into the disk buffer.

BLOCK (n-a) Reads block n if it
is not present, in the
disk buffer and leaves
the address a of the
first byte on the
stack.

The disk buffer 1is a region in RAM,
reserved for these blocks. If this buffer
is full, one block is overwritten. Prior
to this, the block was written back to
disk if it was marked as updated. The
update bit is set by the word UPDATE.

UPDATE () Marks a block as
updated.

This word is used in a program when a
block is changed and the changings should
be saved on disk. Fig 7-9 shows the
relation between a block on disk and in
memory.

88

UPDATE BIT

BLOCKNUMBER
o| 480
< BLOCK
_—in
0| 482
481 0| 483
480
482
483 RAM
DISKETTE

Fig 7-9 Blocks in RAM and on diskette .

The program in Fig 7-10 shows how to use
the disk as a virtual memory. To store
data on disk we use the same technique as
in our last example.

The constant START is the number of the

first block on disk we will use for data
storage. The blocknumber 480 is equal to

89

screen number 120. The next word #INDEX
requests the index of the wanted number on
the stack and leaves the address where it
is stored. The index n is multiplied by
two and divided by 128 with the word /MOD.
This leaves the remainder and the quotient
on the stack.

SCR # 112

(AFB VIRTUAL MEMORY ef)
480 CONSTANT START

: #INDEX (n-a) 2 * 128 /MOD
START + BLOCK + ;

FIRST# (—-a) 0 #INDEX ;

+NR 1 FIRST# +! ;

!IMEM (n) FIRST# @ #INDEX !
+NR UPDATE ;

@MEM (a-n) #INDEX @ ;

#INIT 1 FIRST# ! ;

LCo~~NNoaoaubdkWNDHO

10 .CONTENT CR FIRST# @ DUP 1 =
11 IF ELSE 1 DO I @MEM . CR

12 LOOP THEN ;

13

14

15

Fig 7-10 Virtual memory.

The constant START is added to the the
quotient. This 1is the block number in
which the wanted number is stored. BLOCK
brings the address of the first byte on
the stack. To this address the remainder
is added. The result is the address of the
wanted number. FIRST# brings the address
of the first byte of block START on the
stack. This byte contains the amount of
numbers stored on disk. #INIT sets the
starting value to one. The words !MEM and
@MEM work like !VECTOR and @VECTOR in the
last example. The word .CONTENT prints the

90

content of this array. We will use the
virtual memory in an application program
in the next chapter.

#INIT OK

1 !MEM OK

2 !MEM OK
9999 IMEM OK
1234 IMEM OK
FLUSH OK

. CONTENT

1

2

9999

1234

OK

Fig 7-11 Example for a virtual memory.

7-6 DEFINITION WORDS

In the last subchapter, we used the word
<BUILDS to make an entry in the dictionary.
This word is part of the defining word
<BUILDS. . .DOES> . In FORTH these defining
words are used to create new data struc-
tures. Fig 7-12 shows the construction of
a defining word.

: CONSTANT <BUILDS , DOES> @ ;

COMPILE
NAME | (BUILDS TIME poesy |RYUNTIME
BEHAVIOUR BEHAVIOUR

Fig 7-12 Construction of a defining word.

Aﬁter the word <BUILDS all words are
listed which are executed during compiling
a word (compile time behaviour). After

91

DOES> all words are 1listed, which are
executed during running a word (run time
behaviour) .

Example:
The word CONSTANT is defined as:

CONSTANT <BUILDS , DOES> @ ;

During compile time of CONSTANT a number
is stored on top of the dictionary stack (
r). During runtime this number is fetched
(@) from the stack. As another example
we define an array as:

: ARRAY <BUILDS 20 ALLOT DOES> SWAP 2 * + ;

We can use the word ARRAY to <create new
words with the same data structure. They
all store ten 16 bit numbers.

ARRAY VECTOR

Ccreates the word VECTOR as a one
dimensional array for ten numbers.

1000 0O VECTOR !

stores the number 1000 in the first
element of this array and

0 VECTOR d
prints it on the screen.

Using a defining word means to change the
compiler of the FORTH system. Other
computer languages are sealing the
compiler, so that nobody can change it.
This does'nt happen in FORTH. You can
change the compiler and even can change
the compile time behaviour. We will see an
example later.

92

The program in Fig 7-13 is another example
for <BUILDS... DOES>. It is a language
translator. LIS creates an array for four

numbers. "LIST is a list of addresses. In
this list the addresses of the messages

. " HELLO" . "™ GUTEN TAG" and so on are
stored.

(AFB LANGUAGE TRANSLATOR ef)
: LIS <BUILDS 8 ALLOT DOES>
SWAP 2 * + ; LIS 'LIST

: EN ." HELLO " ;

' EN 0 '"LIST !
DE ." GUTEN TAG " ;
' DE 1 'LIST !

: IT ." BON GIORNO " ;
' TT 2 'LIST |

: FR ." BON JOUR " ;
' FR 3 '"LIST !
-->

(AFB LANG. TRANSLATOR cntd ef)

=
CONOAUBEWNHFO G RnWNHFOWVONAUTDWN - O

0 CONSTANT ENGLISH
1 CONSTANT GERMAN
2 CONSTANT ITALIEN
3 CONSTANT FRENCH
: GREETINGS 'LIST @ 2 -
EXECUTE ;

10

11

12

13

14 e

15

Fig 7-13 Language translator.

93

The words ENGLISH, GERMAN, ITALIEN and
FRENCH are the names of constants. The
word GREETINGS fetches the address from
'LIST, subtracts two, to get the codefield
address and executes it.

GERMAN GREETINGS GUTEN TAG OK

94

8 Applications

8. APPLICATIONS.

8.1 MAILING LIST.
The program in Fig 8-3 is a mailing list.
For the input of an address a mask is used.

This mask is shown in Fig 8-1 and an
example in Fig 8-2.

MAILING LIST

-FN -LN =
—co _TTTTTTTTTTTTTLIIIIIIL
_sT _TTTTTTTTLIIIIC
v T T e -
1 -c2 -MomE (v/m) -
CwEar

Fig 8-1 Input mask.

95

MAILING LIST

-ATARI-99-47 -MORE (Y/N) -

EKKEHARD FLOEGEL
ELCOMP PUBLISHING
53 REDROCK LANE
POMONA CA 91766

Fig 8-2 Example for an address input.
The main words of the mailing list are:
NEW

NEW creates a new mailing list. The number
FIRST#, stored in the first two bytes in
block 100 is set to one. In FIRST# the
number of the next entry is stored.

INPUT

INPUT enters the input mode of the mailing
list. The mask is placed on the screen and
the cursor is placed into the first field.
The cursor is moved to the next field by
pressing the RETURN key. It is also moved
if all places of a field are filled with
characters. Typing Y after OK (Y/N) puts
the entry into memory. N cancels the entry.
For more input type Y after MORE (Y/N) .

96

.CONTENT

. CONTENT prints the content of the mailing
list. Three entries are displayed on the
screen at one time. Pressing the space bar
displays the next three entries. Any other
key cancels the output.

SEARCH <item> <name>

SEARCH searches for a specific entry.
SEARCH LN JEFFERSON searches the entry
with the last name JEFFERSON. The input
SEARCH LN JEF searches all entries 1in
which the last name starts with the
characters JEF. The entries are printed
three at a time. Pressing the space bar
prints the next three entries, until the
message END OF LIST appears.

DELETE <item> <name>

DELETE <item> <name> deletes an entry.
DELETE LN MILLER searches first for the
entry with the last name MILLER. The
entry is deleted by Y after the message OK
(Y/N) . A deleted entry is marked with the
character *.

ENTRY
ENTRY replaces a deleted entry with a new
one. If there is no deleted entry the

message NO DELETED ENTRY, USE INPUT 1is
displayed.

GO

GO erases the TV screen and waits for the
input of a main word.

97

Some words used in the program:

CM sets the background color to a bright
yellow. The characters are printed in
black on the TV screen.

MASK creates the mask on the TV screen.
For printing the words 1R 2R 3R 4R 5R and
.— are used.

DESCR <name> creates an entry into the
vocabulary with the name <name>. It is
used to store the starting address within
PAD and the length of a field.

FN (nn') First name.
LN (nn') Last name.
CO (nn') Company.

ST (nn') Street.

CY (nn') City.

CT (nn') State.

ZP (nn') Zip code.

Cl (nn') Codefield 1.
C2 (nn') Codefield 2.

The two codefields can be used to mark the
entries of an address. They are not
printed on the screen.

The words in screen four are used to erase
an entry within the mask.

(CL) (n) erases n characters starting at
the momentary cursor position.

FNC places the cursor at the beginning of
the first name field and clears the entry.
In the same manner the other words are
defined.

The words used in screen #5 are similar to
the words defined in chapter six. The
virtual memory is expanded to store
records with a length of 128 bytes. The
same words as in Fig 7-10 are used.

98

One of the most significant words used in
the searching part is (VERGL).

(VERGL) (aa'c-f)

(VERGL) compares two strings starting at
address a and a' until a delimiter c¢ is
found in the string at address a. If the
two strings are equal until the delimiter
is found, a one 1is put on the stack. The
zero is left on the stack if they are not
equal. In the word VERGL the space
character (ASCII 32) is used as
delimiter. For large mailing lists (VERGL)
should be written in machine language.

(CONTENT) (n)

(CONTENT) prints the entry with the number
n on the screen. It uses the variable CNT
for counting. After three printouts the
screen is cleared and CNT is set to zero.

FOUND moves the content of PAD to PAD +
128, then prints the address found and
restors PAD for further searching.

(SEARCH) (nn'0-f)

(SEARCH) searches for an entry between the
boundaries n and n'. The zero on top of
the stack 1is replaced by a one if the

entry was found. The word (ERASE) 1is
similar.

Used constants and variables:

START contains the number of the first
block used for date storage.

99

RECLEN contains the length of a record.
WO (variable) contains the starting
address within PAD for the string
comparison.

#NR (variable) contains the number of the
entry which is examined.

CNT (variable) is used for counting.

SCR # 001

0 (BUSINESS MASK 10/22 ef)
1 : CURS (rocl) 85 ! 84 C!

2 155 EMIT ;

3 : CLR 125 EMIT ; : .- 45 EMIT ;
4 : CM 222 710 C! 0 709 C! ;

5 : 1R (n) 3 CURS 38 3 DO .-

6 LOOP ;

7 : 2R 6 3 CURS .- 6 20 CURS .-

8 6 37 CURS .- ;

9 : 3R (n) DUP 3 CURS .- 30

10 CURS 8 0 DO .- LOOP ;

Jul: ¢ 4R 12 3 CURS .- 12 28 CURS .-
12 12 31 CURS .- 12 37 CURS .- ;
13 : 5R 14 3 CURS .- 14 9 CURS .-
14 14 17 CURS .- 14 37 CURS .- ;
15 -
SCR # 002

0 (BUSINESS MASK cntd ef)
1 128 CONSTANT RECLEN

2 : MASK CLR CM 5 1R 2R 7 1R 8 3R
3 9 1R 10 3R 11 1R 4R 13 1R

4 5R 15 1R ;

5 (ADDRESS INPUT)

6 : DESCR 0 VARIABLE -2 ALLOT ;
7 DESCR (FN) 0 , 16 ,

8 DESCR (LN) 16 ; 16

9 DESCR (co) 32 ; 26 ,
10 DESCR (st) 58 , 26 ,

11 DESCR (Ccy) 84 , 24 ,

100

12 DESCR (ct) 108 , 2 ,

13 DESCR (zp) 110 , 5 ,

14 DESCR (NR) 115 , 5 ,

15 DESCR (am) 120 , 7 , =-=>
SCR # 003

0 (BUSINESS ADDR INPUT cntd ef)
1 : 2@ DUP 2 + @ SWAP @ ;

2 : FN (FN) 2@ ; : LN (LN) 2@ ;

3 : CO (CO) 2@ ; : ST (ST) 2@ ;

4 + CY (CYy) 2@ ; CT (CT) 2@ ;

5 s ZP (zZP) 2@ ;

6 Cl (NR) 2@ ; : C2 (AM) 2@ ;

7 IN PAD + SWAP EXPECT ;

8 (INPUT) 6 4 CURS FN IN

9 6 21 CURS LN IN 8 4 CURS CO IN
10 10 4 CURS ST IN 12 4 CURS CY IN
11 12 29 CURS CT 1IN
12 12 32 CURS ZP 1IN
13 14 4 CURS Cl IN
14 14 10 CURS C2 IN ;
15 -—>

SCR # 004

0 (BUSINESS ADDR INPUT cntd ef)
1 : (CL) (n) 0 DO 32 EMIT LOOP ;
2 : FNC 6 4 CURS 16 (CL) ;

3 : LNC 6 21 CURS 16 (CL) ;

4 : COC 8 4 CURS 26 (CL) ;

5 : STC 10 4 CURS 26 (CL) ;

6 : CYC 12 4 CURS 24 (CL) ;

7 : CTC 12 29 CURS 2 (CL) ;

8 : ZPC 12 32 CURS 5 (CL) ;

9 : NRC 14 4 CURS 5 (CL) ;
10 AMC 14 10 CURS 7 (CL) ;
11 CL FNC LNC COC STC CYC
12 CTC ZPC NRC AMC ;

13 : MC 14 18 CURS ;
14 : OK? MC 19 (CL) MC

15 " OK (Y/N) " ; -—>

101

SCR

LCo~NAaAUTSWNDEHO

e S
S WN - O

=
(S2]

SCR

CoJdJauds WNhHO

N
—=o

(W
Us W N

102

005

BUSINESS ADDR INPUT cntd ef)

MORE? MC 19 (CL) MC

." MORE (Y/N)" ;

PADC PAD RECLEN 32 FILL ;

TYPE FOR ATARI)

ATYPE -DUP IF OVER + SWAP

DO I C@ 127 AND DUP 0=
IF DROP ELSE EMIT THEN
LOOP ELSE DROP ENDIF
1S SPACE ; : 5S 5 SPACES

PRINT (na) PAD + SWAP
-TRAILING ATYPE ;

.ADDR CR 5S FN PRINT 1S LN
PRINT CR 5S CO PRINT CR 5S ST
PRINT CR 5S CY PRINT 1S CT
PRINT 1S ZP PRINT ; -—>

~e

~e

006

(

VIRTUAL MEMORY ef)

100 CONSTANT START

#INDEX (n-a) RECLEN * 128

/MOD START + BLOCK + ;

FIRST# (-a) 0 #INDEX ;
+NR 1 FIRST# +! UPDATE ;
!MEM PAD FIRST# @ #INDEX
RECLEN CMOVE UPDATE +NR ;

@MEM (n) #INDEX PAD RECLEN
CMOVE ;
NEW 1 FIRST# ! ;

SCR # 007

0 (BUSINESS ADDR INPUT cntd ef)
1 .MSG 1 4 CURS ." MAILING LIST
2 :

3 .MSG1 16 4 CURS ." WHAT " ;

4 GO CLR CM .MSG .MSGl QUIT ;

5 INPUT MASK PADC .MSG

6 BEGIN (INPUT) OK? KEY 89 =

7 IF !MEM THEN

8 MORE? KEY 89 =

9 WHILE CL PADC MC 19 (CL)

10 REPEAT .MSGl FLUSH QUIT ;

11

12

13 -—>
14

15

SCR # 008

0 (BUSINESS SEARCH ef)
1 0 VARIABLE WO 1 VARIABLE #NR

2 2DROP DROP DROP ;

3 ['] [COMPILE] ' ;

4 (VERGL) (aa'c-f)

5 BEGIN ROT DUP C@ >R OVER I =
6 R> SWAP DUP IF 0

7 ELSE DROP >R ROT DUP C@
8 R> = DUP DUP THEN WHILE
9 2DROP 1+ >R 1+ R> ROT
10 REPEAT >R 2DROP 2DROP R> ;

11 : WHAT ['] 2 - EXECUTE SWAP

12 DROP DUP WO ! 13 WORD HERE

13 COUNT ROT PAD + SWAP CMOVE ;
14 -—>

15

103

SCR # 009

OWCoOoO~NAUTd WNDHO

SCR

oAU WNEHO

=
N O

=
Ul W

104

(BUSINESS SEARCH cntd ef)
: VERGL PAD WO @ + #NR @ #INDEX
WO @ + 32 (VERGL)
: NIL CR ." NOT IN LIST " ;
EOL CR ." END OF LIST " ;
: .NAME #NR @ @MEM .ADDR ;

010

(BUSINESS OUTPUT ef)
0 VARIABLE CNT
: 32 (-f) CNT @ 3 = ;
: (CONTENT) (n) @MEM .ADDR
1 CNT +! 3?2 IF KEY 0 CNT !
CLR 32 = 1 XOR IF .MSGl QUIT
THEN THEN ;
.CONTENT CLR CM 0 CNT !
CR FIRST# @ DUP 1 = 1 XOR
IF 1 DO I (CONTENT)
CR LOOP THEN .MSGl QUIT ;

SCR # 011

SCR

LoOoONOUTLE WD O

e
U WO

(

BUSINESS SEARCHING cntd ef)

MOVE> PAD PAD 128 + RECLEN

CMOVE ;

<MOVE PAD 128 + PAD RECLEN

CMOVE ;

FOUND MOVE> #NR @ (CONTENT)
CR <MOVE ;

(SEARCH) DO I #NR ! VERGL

IF FOUND DROP 1 THEN LOOP ;

SEARCH 0 CNT ! PADC CLR
WHAT 0 FIRST# @ 1 (SEARCH)
IF EOL ELSE NIL THEN
.MSG1 QUIT ;

-=>

#

012

BUSINESS DELETING ef)

(ERASE) DO I #NR ! VERGL
IF DROP 1 LEAVE THEN LOOP ;

.* #NR @ #INDEX RECLEN
42 FILL UPDATE ;

DELETE PADC CLR WHAT 0 FIRST#

@ 1 (ERASE) IF .NAME OK?
KEY 89 = IF .* THEN
ELSE NIL THEN .MSGl QUIT ;

105

LCo~JNaudbdhwWwNDHO n
@)
)
=

I o
U WN HO

SCR

LCoJoaouTdkd WO

15

013

—

BUSINESS ENTRY ef)
!ENTRY PAD #NR @ #INDEX
RECLEN CMOVE UPDATE FLUSH ;

(ENTRY) CLR MASK BEGIN
(INPUT) OK? KEY 78 = WHILE
CL REPEAT !ENTRY ;

: .MSG3 CR ." NO DELETED ENTRY,

USE INPUT " ;

: ENTRY PADC 42 PAD ! 32 PAD
1+ 1! 0WO ! 0 FIRST# @ 1
(ERASE) IF (ENTRY) ELSE .MSG3
THEN .MSG1l QUIT ;

: HELP 14 LIST ;

014

(BUSINESS HELP SCREEN ef)
(Main words:
NEW starts a new mailing list.
INPUT makes an entry. It is
placed at the end of the list.
.CONTENT prints the content of
the list. The printing stops
after three entries. Use the
space bar for more. Any other
key cancels the printing.
SEARCH <item> <name> searches
for the item with name.
DELETE <item> <name> deletes
the entry with the item name.
ENTRY searches for a deleted
entry and replaces it.)

Fig 8-3 Mailing list.

106

8-2 SERIAL OUTPUT VIA GAME PORT THREE.

The game port three is used to transmit
data from the ATARI to a printer with a
serial input. One half of an RS232
interface is simulated by software. The
connections to be made are shown in Fig 8-
4,

(o)
(FIGURE) &
2 o 2
o.__
Transmit Data
(o]
(o)
(o]
(o]
o
(o)
(o]
Signal Ground 2 7
O0—SIGNAL GND

" o\\\o
8

o

o
e]

o
o

(e)
o

o
o

(@]
o

Fig 8-4 Transmit data from.the ATARI
to a printer or RS232 input.

107

This application also shows how to wuse
machine code without using an assembler in
FORTH. The program is listed in Fig 8-5.

The word CREATE <name> creates an entry
into the vocabulary with the name <name>.
It writes the parameter field address into
the codefield address of this word. The
bytes of the machine code are stored in
the parameter field by C, . CREATE sets
bit 6 of the 1length byte to one. This
makes the name unknown to the search
routine of the interpreter. The word
SMUDGE sets this bit to zero.

The last instruction of a FORTH word
defined in machine code must be a JMP NEXT
instead an RTS instruction. With JMP NEXT

the FORTH interpreter is called. The
address of NEXT is $747 in QS-FORTH and
$842 in POWER-FORTH.

The word INIT in text screen #140 initial-
ises the port B. This word could be
written with FORTH words. To get the exact
timing for the data transfer rate of 300
baud, a subroutine BITWAIT is wused. The
code for this routine 1is placed into
memory locations $S6EB to S$6F5. The word
OUTCHR takes the byte on the top of the
stack and sends it to the printer. During
printing all interrupts of the ATARI are
disabled. This causes the TV screen to
become black and flickering.

The words defined in screen #145 to #149
print the content of a text screen and a
TV screen.

.SCREEN (n) Print text screen n.

. SCRN Print TV screen.

108

SCR

Wo~NoauTds WO

el =
U WD +-HO

SCR

=
HOWNAUTE WN H O

e
Ul WK

140

(SCREENPRINT RS232
CREATE INIT (PORT
A9 C, 30 C, (
8D €, 03 €, D3 C; {
A9 €, 01 ¢C, (
8D C, 01 €, D3 €, |
A9 C, 34 ¢, (
8D C, 03 €, D3 C; {
A9 C, 00 C, (
8D C, 01 €, D3 Gy {
iC ¢y 47 ©, 07 C, ¢
SMUDGE

DECIMAL -—>

141

(SCREENPRINT RS232
HEX (BITWAIT)
96A2 6EB ! (LDX
06A0 6ED ! (LDY
88 6EF C! (DEY
FDDO 6F0 ! (BNE
CA 6F2 C! (DEX
F8D0O 6F3 ! (BNE
60 6F5 C! (RTS
DECIMAL

-—>

9/29 ef)
B) HEX
LDA #S$30
STA $D303
LDA #S$01
STA $D301
LDA #S$34
STA $D303
LDA #S00
STA $D301
JMP NEXT

cntd ef)

#$96)
#506)
)
=3)
)
-8)
)

109

SCR

Co~Naud WD HO

SCR

ook WwWNDHFHO

[
o

e
=W N

=
(S,

-
—
o

142

(SCREENPRINT RS232
HEX

CREATE OUTCHR (c)
B5 €, 00 C,

E8 C, E8 C,

86 C, B5 C,

49 C, FF C,

8D C, F6 C, 06 C,
78 C,

A9 C, 00 C,

8D C, OE C, D4 C,
8D C, 00 C, D4 C,
A9 C, 01 ¢C,

8D C, 01 Cc, D3 C,
20 C, EB C, 06 C,
-—>

143

(SCREENPRINT RS232
A0 C, 08 C,

84 C, 1F C,

AD C, F6 C, 06 C,
8D C, 01 ¢, D3 C,
6A C,

8D C, F6 C, 06 C,
20 C, EB C, 06 C,
c6 C, 1F C,

DO C, EF C,

A9 C, 00 C,

8D C, 01 Cc, D3 C,
20 C, EB C, 06 C,
20 C, EB C, 06 C,
A0 C, 01 C,

-—>

PN TN SN SN AN N N N N NN o~

cntd

LDA
DEC
STX
EOR
STA
SEI
LDA
STA
STA
LDA
STA
JSR

cntd

LDY
STY
LDA
STA
ROR
STA
JSR
DEC
BNE
LDA
STA
JSR
JSR
LDY

ef)

00,X
SPTR
XSAVE
#SFF
BUFF

e e N e e

#00
NMIEN)
DMACTL)
#S01)
PORTB)
WAIT)

ef
#S08
COUNT
BUFF
PORTB

BUFF
WAIT
COUNT
-17
#00
PORTB
WAIT
WAIT
#01

o N e e e e e N e S S S S S St

SCR # 144

SCR

oo WNHO

e el el
S WNhHO

=
(8

(SCREENPRINT RS232 cntd

A9 ¢, 22 ¢, (LDA

8D C; 00 C; D4 C; (STA

A9 C, FF C, (LDA

8D ¢, OE C, D4 €, (STA

58 C, (CLI

A6 C, B5 C, (LDX
(

4Cc C, 47 Cc, 07 C, JMP
SMUDGE
DECIMAL

-->

145

(SCREENPRINT

3020 VARIABLE ZNR

HEX

0 VARIABLE #SCR -2 ALLOT
53 €, 43 ¢, 52 ¢, 20 C,
23 €; 20 ©5

DECIMAL =-->

ef)
#$22)
DMACTL)
#SFF)
NMIEN)
)

XSAVE)
NEXT)

ef)

111

SCR # 146

(SCREENPRINT cntd ef)
CRR [HEX] 0D OUTCHR

OA OUTCHR [DECIMAL] ;
PRINT (ADR N -—=->) 1+ O
DO DUP I + C@ OUTCHR LOOP
DROP ;
BLANCS 1+ 0 DO [HEX] 20
OUTCHR [DECIMAL] LOOP ;
SCO /MOD 48 + ;

.ZNR DUP 10 SCO DUP 48 =

IF DROP 32 THEN OUTCHR

1 SCO OUTCHR DROP ;

.TOS DUP 100 SCO OUTCHR

10 SCO OUTCHR 1 SCO OUTCHR
14 DROP ; : .B 10 SCO OUTCHR

CoJoaoumbdbWwWMNpDHO
ee

=
WN O

15 1 SCO OUTCHR DROP ; —-->

SCR # 147

0 (SCREENPRINT cntd ef)
1 DECIMAL INIT

2 I1LINE CRR 4 BLANCS ZNR @ .ZNR
3 1+ ZNR ! 1 BLANCS ;

4 ¢+ ?CRR 32 MOD 0= IF 1LINE

5 THEN ;

6 ¢ ANF 5 BLANCS #SCR 5 PRINT

7 .TOS 0 ZNR ! CRR ;

8 : ZAUS 128 0 DO DUP BLOCK

9 I ?2CRR I + C@ OUTCHR LOOP
10
11 : .SCREEN ANF 4 * 4 0 DO ZAUS
12 1+ LOOP CRR DROP
13
14
15 -—>

SCR # 148

el
U WNHFOWVWONOAUTEWN O

SCR

LCo~Nould WNDHO

(SCRN PRINT 10/14/82 ef)

0 VARIABLE ROW 0 VARIABLE COLN

: ?2FIN (-f) COLN @ 24 = ;

: 1ROW 40 0 DO ROW @ C@ 32 +
DUP 128 > IF 32 - THEN
OUTCHR 1 ROW +! LOOP ;

: .SCRN 88 @ ROW ! 0 COLN !
BEGIN 1ROW CRR 1 COLN +! ?FIN
UNTIL ;

149

SCREENPRINT cndt ef)
6CR 6 0 DO CRR LOOP ;

4CR 4 0 DO CRR LOOP ;

TRI (n) DUP 3 + SWAP

DO I .SCREEN 4CR LOOP

CRR CRR ;

e 00 00 o~

Fig 8-5 Serial output via game port three.

113

9 Appendix

°,U=TuU 3STd ,Upu JT U=TU
*,U=TU 3STd ,UCuU JT U=TU

*ubts sbueyn

*gU/guyTu JOo 3uaTjondb ,u ‘IsputRWSI U

*,u/u jo 3juaTt3inob zu ‘IspurewWar TU

°,u/u JO ISPUTRWAI TU

*323eTpPaWID3UT UOTSTO91d STQNOP YITM EU/ZUyTU=U
,u/u=Tu

,UgU=TU

,U-u=Tu

,U4+u=TU

sjoe3s 1232wered 03 3oOe3S uinlal Jo juawals dox Adod
*joe3sS uINla1 3yl woiJ juswaTd dol SASTIISY

°3}0e3S UIN3a1 9yl 03 JusawaTd dol SA0K
*3STMYDOTOI93UNOD s3uswaTa 921Yy3z dol syl a3e3o0y
*yoe3s ayz Jo dol uo juswaTa puodas AdoD

*sjuswaTa dojl om3 3yl 951943y

*3joe3s ay3l Jo juawaTe dol ayjl Aeme MoIyj

*joe3s ayyx jo dol ay3z a3eorrdng

(Tu-,uu) NIW
(Tu=-,uu) XYW
(u- -u) SONINW
A_EEImCNEHG v QOE\%
(guu-,uu) aow/
(Tu-,uu) aou
(u-gugutu) /%
(Tu-,uu) /
(Tu-,uu) *
(Tu-,uu) -
(Tu-,uu) +

TYDID0T ANV DILAWHLIVY

(u-

(u-

(u

(uzuTu-zuTuu

(u,uu-,uu
nﬂ_cl_:

(u

(uu-u

a
<4
¥<

LoY¥
JIAO
dVMS
doya

dana

——

NOILVTINdINVH XDVIS

AJVSSOTO-HLIOA

XIANZddY °6

114

*K1euot3oTp Jo doj uo sa3zhkq u Jo deb aaeaq

*d¥dH 03 suo ppy °*Areuor3zorp jo dol uo q 31038
*q¥dH 03 oM} ppy °*A1euor3oTp Jo doj uo u 31038

e ssaippe 3e bBurjiejls AIowsw O3UT Z¢ IIDSY U 21038
*e ssaippe 3e burjiels AIoswaw 03UT (IIDSY U 21038
e ssaippe 3e burjiels Aioswsw 03UT q S33AQ U 3103S

*e>,B>U+® *,B 03 B WOIJ S33AQ U SA0K

*I+e pue B SS9Ippe JO 3JUS3UO0D 3Y3l 03 U ppVY
*I+B pue B SS2Ippe JO 3IUS3UO0D 3JUTIJ

*e Ssaippe Ul g 934Aq 81038

*I+® puER B SS9IpPpPR UT U 31038

‘e SsaIppe wWoilJ 393Aq yoilagd

*I+B pue B SS2IppEe WOIJ JUSJUO0D Yd3laJd

*NIDJId 03 IVdddY WoIJ 3OBQ yduerliq TeRUOTITPUODUN

Iyaddy 1933Je sanuTjuodo weiboiad ‘oisz sT J II

*013Z UOU ST J TT3un pajeadal 21 (SPIOM>

*<ZSpiomy OST2 /pa3Noaxa 91 ([SPIOM> ‘0192 30U ST F II

*pa23noaxa 3ie (spiom> ‘013z jou ST J II

*d00T+ 10 do07T 3Ix¥2u 3e dooT S3eUTWId]
*g se awes ‘yoe3s ayjy uo xapur dooTl and
* (aa13eboU °q Kew) u ST juawaiout dooT
*T-u 03 ,u woijy sdooT

*auo st juawaiout dooT ‘T-u 03 ,u woij sdoo7q]

*9STM3Tq ¥OX TeoThot

*9STM3ITQ YO Teotbhot

*9STM3Tq ANV TeothoT

*p Jo 33nrosqge ,p

ubts sbueyd

*UOT3TPpPe UOTsTOa1d aTqnop ,pP+pP=TpP
*u Jo @3nosge ,u

(u) LOTTY

(q) e}

(u) 1

(ue) SANYTd

(ue) asvyd
(que) T1Id
(u,ee) FAOWD
A.mﬁ v i+

(e) é

(eq) 19

(eu) i
(q-e) 90
(u-e) ?
AIOWAN

(3) dTIHM
IVAdaY <ZSPIOoM> HTIHM <TSPIoM)> NIDdAd
) (aNg) TITNQ
(aNd) TIINN <SpIoM> NIDIL

(3) dI
(AIANE) NIHL <ZSPIom> ISTI <TSPIOM> JI
(3) a1
(JIANT) NIHL <sSpiom> JI

C) AAVAT

(u) I

(u) d00T+

(yuu) oa
dooT+* * *0da

(yuu) oa
doo1" **0da

SAYNLONYLS TOULNOD

(Tu-,uu) ¥0X
(Tu—,uu) ¥0
(Tu-,uu) any
(4P-pP) sdava
(.P-P) SONIKWA
(TP-.PP) +a
(yu-u) sav

115

*e sSsaiIppe 3je pa103s o9 3Isnw buris 3yl Jo yzbusa ayg
*1aqunu uoTsTo21d aTQqnOp ® 03 T+t SS3Ippe 3B buTIlS B JI2AUOD

*buTI3s 9Yy3 03UT U JOo ubTts s3iasur

*buTIlS 9Y3 03UT I93d0eIRYD IIDSY 9Y3j S3Isasul

*ddAL 103 Apeay

*joe3s ayj uo u yizbua pue ® Ss2Ippe burlIels SINg °"UOTSISAUOD JO pug

°s3T1H6Tp bBuTuTEPWRI 3I9AU0)

*buTrils 8yl 03 3IT pPpe pue 3ITHIP aUO JISAUOD

*buTI3S ® 03 IdqUNU ® BUTIISAUOD 3Ie3S

“HdAL

103 Apeay °u yjbuaT pue [+e=,e 03 B SSaIppe 3B 93Aq Y3ibual abueyd
*punoj ST O I93TWTITAP [T3un 137I3nq InduT SY3 WOIJ SIS30BRIRYD pedYy

*e ssaippe 3e s934Aq u s3joadxmy
*possaid sem Koy yya¥yd IT ‘=3
*pieogAay WOIJ I930BRIRYD 339

*e ssaippe 3® buTrjiels s934Aq u 3uTig
°D I330®IBYUD IIDSY 3IUTIg

*n Isaqunu paubTsun se U 3JUTIg

*u ST Y3IPTMPTSTJ °PTSTF uT parFTisnlfiybra p 3jurig

*p Iaqunu uoTsTod1d aTQnOp 3JIUTIg

*,U ST UYIPTAPTSTA °*PTOTF UT paT3ITisnl3ybri ‘u 3utid

. UITA spus abessay °xxx abessaw jurig
*u 3juTiag

*9seq Iaqunu SUTB3UOD ‘ITqeTriep
*9seq TRWTOSpPRXdY 338
*aseq TRWTD3P 33§

‘0=u 3T ‘1=3
To>u 3IT ‘1=3
T u=u IT ‘1=3
Jucu T/ 1=3
U 3T 1=3

(u,e-e

(ue
(3-
(o-
(ue

(o

(u
(up

(,uu

(u

(3-u
(3-u
(3-,uu
(3-,uu
HMI.EG

————

— e e e e e e e e e

——— e —

JIINAN
NDIS
aT10H

<#
S#

#
#

ONILLYWIOd ¥IFWAN

INNOD
@IoM
LOddXd
TUNIWIILE
ptco:!

ddAL

LINT

‘n

4°a

*a

LNdLNO-LNdNI
asvd

XdH

TYWIDEA

SASVE ¥AIWAN

Nl
VAIloo

NOISYVdWOD

116

*EYIH dA0qQe s93Aq g9 °*AVd I93INg Yd3RIOS

°da sayd3iag

*KA1eTngeooA ay3l

Jo do3l uo uOT3BOOT AIowaw 991F 3ISITI 9yl surejuo) °*1a3utod AIrUOT3OIQ

*,U 03 U SU32ID0S 3IX33 JO SdUTT 3ISITI TR 3ISTT
*sis3yjng }sTp pajepdn TTe 2AES

*possa00® 193INg 3Isel HIew

*sI19JIng YSTp TTe 9seid

*u 300Tq peay

*AI12UOT3D0TP O3UT U U3310S 3x33 oTTdwo)

‘U U9310S 3IX33 JO 3USIUOD 3ISTT

*¢dweu> JO sSsaippe pTa2T13 1933wered 389
*<aweuy HUIPNTOUT pue 3}oBq SUOTITUTISP TTR 3I@biog

*SpIOM TTE 3JUTI4

SLNIYEND 03 LXALNOD s3ies

*¢dWRU> 03 INIYYAD S3I9S °AieTngeosoa mau suado

*X1eTNged0A HIYOJd UTeW

*219y 3nd 9I® SUOT3ITUTISP MIN °*AIRTNQeOO0A INAYYA) JO SS2Ippe suinjiay
*3SITJ payosIeas ST STYL °*AIeTNQed0A LXAINOD JO SS2Ippe suiniay

*SsaiIppe pPIoTJ 193awered ayj ST <BWRU>

JO SsoIppe PTATI2P0OD aYJ °*AITNQeD0A aY3 03UT <dWeU> AIJUS UR S83BIID
“3WT3 uni HUTINp pPa3INDIXd 31 (ZSpIom> *autl aTTdwod

butinp pajnosaxs a1 (TSPIOM> °*pIoM DBUTUTISP MU B 23B2ID 03 pPasn
*pauIn3al ST JURISUOD dY3 JO U 3nTeA 3ayJ

U anTeA 93Uyl Y3ITA <SWRUY JULRISUOD ® 93BIID

*joe3s ayjz uo 3nd ST STQeTIeA 3Y3 JO B SSIIPPE YL

*u anTeA TRI3ITUT 9Y3 YITM <BWBU> STQeTIeA d3BaID

*UOT3ITUTJIIP UOTOO ® JO pum

*UOT3ITUT ISP UOTOD ® JO urlbag

(-
(u-

(e-

N~ e~~~ o~

©

(

)

avd
dYdIH

da
STATAVIYVYA IWOS

XAANI

HSNTd

aLvadn
S¥IIJNg-ALdWI
A0071d

avo1

LSIT

ASIa

{a{aweuy

<duweu) LIDI0J
LSITA
SNOILINIJIA
<duweu) ZYYTINEGYIOA
HLIOd

LNITIND

LXZLNOD

SATYVINGYDOA

<dueu> HLYIED

<ZsSpIoM)> <SIOA <TSpIom> sSa1ing>

)

)
)
)
)
)

<aueuy
<dWweu) LNYILSNOD
<aueuy

<dueu) FTIVIYVA
1

XXX ¢

SQYOM ONINIJIA

117

*joe]s

*s934q UT 9zTS 00Tq S2ATH ‘3jue3zsuo)
°ISquNu UI3IDS JUSIIND SUTRJUO)
*I93qUNU YO0Tq IUSIIND SUTBIUOD

*0S JO 3u23UO0D Yd3ag

1932wered a2y3l JO SSaIppe TBRIJITUT SY3 SUTBRIUOD
*1333nq 3nduTr TRUTWIS} 03 13I3SIJ0

*1373nq 3ndul TRUTWIST

(u-
(e-
(e-

(-
(e-
(u-
(e-

dnd /g
¥ds
a1d

9ds
0s

dIL

118

FORTH for the ATARI®

Learn-FORTH

A subset of Fig-
Forth for the

beginner. On
disk (32K RAM)
or on cassette
(16K RAM).
Even the
ATARI 400 or
ATARI 800
/16K RAM

owner can pro-
gram in FORTH.
Order-No. 7053
$19.95

POWER FORTH is an extended Fig-FORTH version, Editor
and /O package included. Utility package includes decompiler,
sector copy, Hex-dump (ASCIl), ATARI Filehandling, total
graphic and sound; joystickprogram and player missile.
Extremely powerful. Two game demos (sound and animation) and
a mailing list, written in FORTH are included.

Order-No. 7055 disk $39.95

Floating point package for POWER FORTH with trigonometric
functions (0—90°).
Order-No. 7230 disk $29.95

NOTES

NOTES

NOTES

NOTES

NOTES

ORDER FORM m——
VISA

==
ELCOMP PUBLISHING, INC., 53 Redrock Lane, Pomona, CA 91766 (Phone: (714) 623-8314)
Please make checks out to ELCOMP PUBLISHING,INC.
Please bill to my Master Card or Visa account #
RAMEE wmsnodelercn Sl i S SRR B S 54 Card # ..ot
INTATOBEH sovorse smoitrossorcosesivtossiron s AEs(binkbsar el A SH8 a8 ms EXpiration Date: « saswm s sneais seampaig s s
Master Charge Bank Code
City [SHEE S ZIDE wis s awan s somane s smsas s o
BIGNELURE & sivewas s s o8 Sl naEe Lt
Qty. Our;!er Description Price 8 Qty. 0;::{ Description Price 8
MICROC. HARDWARE HANDB. 14.95 | sween 4889 | EXFANDING YOUR VIC 14.95
CARE AND FEEDING... 9.95 | meves 4894 | RUNFILL 9.95
8K MICROSOFT BASIC 9,95 | wsves 48946 | MINIASSEMBLER 19.935
EXF.HANDB. 6582 AND 6882 P95 | weeen 6153 | LEARN-FORTH 19.95
HICROC. AFPLICATION NOTES 9,95 | weenn 6155 | FOUER FORTH (APFLE) 39,95
COMFLEX SOUND 6.95 | «ve..| 7622 | ATHONA-1, CASS. 1995
SMALL BUSINESS PROGR. 14.98 | aveee 7823 | ATHONA-1, DISK 24.95
SECOND BOOK OF OHIO 795 | wnove 7824 | ATMONA-1, CARTRIDGE 39.08
THE THIRD BOOK OF OHIO 7.95 | ceenn
THE FOURTH BOOK OF OHIO 2.95 | wones 7842 | EFROM BURNER FOR ATARI 179.60
THE FIFTH BOOK OF OHIO 7.95 ..| 7643 | EPROM BOARD (CARTRIDGE) 29.95
GAMES FOR THE ATARI 7.98 ..| 7649 | ATHONA-2, CASS. 49.95
ATARI LEARNING BY USING 7.95 | «o...| 76850 | ATMONA-2, DISK 54.06
PROGR. I1.6582 HACH.LANG. 19.95 | weces 78353 LEARN-FORTH 19.95
HOW TO PROGR.IN MACH.L. 9.95 | neeee 7855 | FOWER FORTH 39.93
FORTH ON THE ATARI 7.95 [veees 7698 | ATAS 49.95
A LOOK INTO THE FUTURE 9.95 [=eren 7899 | ATHAS 89,04
PROGRAM DESCRIFTIONS 4,95 | eeeen 7189 | FROGRAMS FROM BOOK # 144 29:99
7X-81/TIMEX 9.95 | =enes 7208 INVOICE URITING,DISK 39.68
TRICKS FOR VICS 9.95 | «vees 7267 | GUNFIGHT FOR ATARI 19.95
JANAST HONTTOR 29.95 [«eenn 7216 | WORDFROCESSOR, CASS. 29.95
PROTOTYPING CARD 29,60 | cven- 21 HOW TO COMMECT...
4522 VIA I/0 EXP. CARD 39.08 | noens 7212 MATLING LIST, CASS.
SLOT REFEATER 496G | «ononn 7213 MAILING LIST, DISK 2
2714 EPROM PROGRAMMER 49.08 | ooee 7214 INVENTORY CONTR., CASS. 192,95
SOUND WITH THE 61 A4Y3-B8912 19.00 oo | 7215 INVENTORY CONTR., DISK 24.95
BK EPROM CARD (2716) 29.08 7218 WORDPROCESSOR, DISK 34,95
12 BIT A/D CONVERTER BOAR 74.08 WORDPROCESSOR, CARTRIDGE 49.08
14K RAMROM-BOARD 59.95 PROGRAMS FROM BODK # 142 22.95
THE CUSTOM APPLE BOOK 24.95 KNAUS 0GIND 29.93
MAILING LIST FOR ZX-81 19.95 ASTROLOGY PROGRAH 29.95
HACHINE LANG. MONITOR 9.95 24 | EFROM BOARD KIT 14.94
ADAFTER BOARD FOR ZIX-81 14.89 | ~+oe- 7236 | FLOATING POINT PACKAGE 299.95
EDITOR/ASS. FOR CEM 39.00 | co0ee 72N RS232-INTERFACE 19.99
ASSEMBLER FOR CBM 39,95 | aveee 7292 | EPROM BURNER KIT 49.80
GUNFIGHT FOR PET/CBH 9.95 | weeee 7387 | ATCASH 49.95
UNIVERSAL EXP. BOARD 18.95 | «oves 7389 HOON PHASES 19.95
ADAPTER BOARD 295 | sseee 7318 | ATANEKD 29.95
FROFI WORDPROC. F. VIC 19.95 | «eeen 7312 | SUPERKAIL 49.06
TIC TAC VIC 9.95 | seens 7313 BUSIPACK 1 96.09
GAMEPACK FOR VIC 14.95 | 0000]7314 BIORHYTHN FOR ATARI LR
HAIL-VIC (LT) ISR U [
Payment: Check, Money Order, VISA, Mastercharge, Access, Superboard and C1P are trademarks of Ohio Scientific Co.
Interbank, Eurocheck ATARI is a trademark of ATARI Warner Communications
Prepaid orders add $3.50 for shipping (USA) PET, CBM and VIC-20 are trademarks of Commodore Business
£5.00 handling fee for C.0.D. Machines.
ALL ORDERS OUTSIDE USA: Add 15 % shipping. TRS80 isa trademark of TANDY Radio Shack.

California residents add 6.5% sales tax. APPLE Il isa trademark of APPLE Computer Inc,

BITFIRE
BITFIRE
BITFIRE

	Cover

	Contents

	Preface

	1: What is Forth?
	2: Basic elements of FORTH

	3: Using Words

	4: Control Structures

	5: Sample Programs

	6: Text and Strings

	7: The Vocabulary

	8: Applications

	9: Appendix

