

This book is an independent production of Ing. W. HOFACKER
GMBH International. It is published as a service to all ATARI per­
sonal computer users worldwide .
All rights reserved. No part of this book may be reproduced by
any means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable
effort has been made to ensure accuracy throughout this book,
but neither the author or publisher can assume responsibil ity for
any errors or omissions. No liability is assumed for any direct, or
indirect, damages resulting from the use of information contained
herein.
First Edition
First Printing
February 1983 in the Federal Republic of Germany

© Copyright 1982 by Winfri ed Hofacker

Order-No. 170

ISBN 3-88963-170-3

Reference was made to ATA R I throughout t hi s book. ATAR I® is a trademark of
ATAR I Inc .• a division of Warner Communications Company.

Publ isher :
Ing. W. HOFAC KER Gm bH . Tegernseerstr . 18 . 0-8 150 Ho lzk irchen . W.-Germany

US-Distributor:
E LCOMP Pu b lish ing. Inc .. 53 Redrock Lane. Pomona, CA 9 1 766

TABLE
OF CONTENTS

1. What is FORTH 1

2. Basic elements of FORTH 4
2-1 The stack 4
2-2 Words in FORTH 6

3. Using words 9
3-1 Definition of new words 9
3-2 Changing the stack 10
3-3 Fundamental operations in arithmetic 12
3-4 I nput output 13
3-5 Some simple programs 15
3-6 The screen 19
3-7 Constants and variables 21
3-8 Comparison 24

4. Control structures 25
4-1 DO LOOP 25
4-2 The return stack 29
4-3 IF .. . ELSE THEN (ENDIF) 30
4-4 BEGIN ... UNTIL 32
4-5 BEGIN .. . WHILE ... REPEAT 33
4-6 The case statement .. 34

5. Sample programs 35
5-1 Some grafics 35
5-2 Pattern 41
5-3 Sound and color 42
5-4 Hexdump 46
5-5 Largest common divisor 48
5-6 F ibboconacci numbers 50
5- 7 Prime numbers 52
5-8 More sound and grafics 53
5-9 Using the game port for control app lications 55

6. Text and strings 64
6-1 INPUT/OUTPUT of text 64
6-2 Formatting the output 70

7. The vocabulary 74
7-1 Different vocabularies 74
7-2 Play organ or piano with the ATAR I 76
7-3 The construction of a FORTH word 80
7-4 Changing the top of the dictionary 84
7-5 The virtual memory 88
7-6 Definition words 91

8. Applications 95
8-1 Mailing list 95
8-2 Serial output via game port three 107

9 . Appendix 114

A FORTH-compiler/interpreter is available from the following
vendors:
1. ELCOMP PUBLISHING, INC., Pomona, CA 91766

Phone (714) 623~314
2. Quality Software, 6660 Resede Blvd. Suite 105, Reseda,

CA 91335, Phone (213) 344-6599

Books and source code information are available from:

1. FORTH Interest Group
P.O.Box 1105
San Carlos, CA 94070

2. Mountain View Press
P.O.Box 4656
Mountain View, CA 94040

3. FORTH Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

PREFACE

ATARI FORTH PROGRAMMING
Learning by using

FORTH is a new, exciting programming
language. It is easy to learn and programs,
written in FORTH are very short, compared
to other high level languages.

The aim of this book is to show the novice
and the experienced programmer how to use
this language on the ATARI . The examples
are short and use sound and grafics for
demonstration. Use these examples to learn
FORTH.

Two applications, a mailing list and a
serial interface for a printer, are
included. These two applications show the
wide variety FORTH can be used for.

With FORTH an application can
and debugged faster than in
programming language.

be written
any other

I hope this book will add new friends to
the community of FORTH programmers.

Thank's to Rick Schwarz, who helped me in
proofreading.

E.Floegel

1 VVhatisFORTH?

1. WHAT IS FORTH?

FORTH is like BASIC, FORTRAN or PASCAL a
programming language . It is, however quite
different from these languages. It was
invented by CHARLES MOORE about ten years
ago and its first use was to control
telescopes on the Kitt Peak observatory.

Today FORTH is widely used in control
applications. One example is the control
of movie cameras in the movie BATTLESHIP
GALACTICA. Using the concept of virtual
memory, FORTH also is used for data base
managment .

FORTH can not be compared with other
programming languages . While you are
learning to program in FORTH it would be
better to forget all you have learned
about othe r languages.

What makes FORTH so unique ?

One of the basic elements of FORTH is the
stack. Everybody knows what a stack is.
Nearly every desk has a stack of paper.
Something is laid upon this stack and may
be removed later . In terms of a computer
this is a LIFO (Last In,First Out) memory .
The last thing put onto the stack is
removed first.

FORTH uses the stack in two different ways.
First there is a parameter stack for data
and calculating. Second, there is a stack
for words, called the dictionary or
vocabulary. In FORTH, words are the
elements for programming. Several of
these words can be combined to form a new
word, performing a certain task. A basic
dictionary of predefined words is
contained within FORTH. These words are
used by the programmer to create new words.
This new words are placed on top of the
dictionary. Running a program in FORTH
means calling a sequence of words.

For example, you have written a FORTH
program to control stepper motors. START
may be a word for starting the stepper
motor. FASTER, SLOWER, may be words for
changing the speed while STOP could be the
word for stoping it.

Defining your own words makes FORTH very
flexible. Words can be rearanged to
perform new tasks. All this makes FORTH a
dynamic language. On the other hand, all
this freedom makes the programmer
responsible for the correctness of a
program. There are only a few error
messages and warnings.

Though FORTH is used sometimes with other
operating systems, it could be seen as its
own operating sytem. It is an interpreter,
calling and executing one word. It is also
a compiler, with its capability to compile
new words in the dictinary. It uses a text
editor, and often an assembler.

In this booklet we will learn FORTH by
using this language on an ATARI 400/800.
We will use graphics, sound and joysticks.

2

All programs however, which don't use
specific hardware on the ATARI can be
easily adapted to other computers.

3

2 Basic elements of FORTH

2. BASIC ELEMENTS OF FORTH.

Let us first make some remarks concerning
the basic elements of FORTH.

2-1 THE STACK.

As mentioned above, the stack is a LIFO
memory. In Fig 2-1 a stack is represented
in two ways. Fig 2-la shows the normal
representation of a stack. In this book we
will use the stack as it is shown in Fig 2-
lb.

<- TOS

Fig .2-1a
TOS

t
- - - -,.--.,.----,--.----r---r------.

___ ---L_---.l._--Ji...-_-'--_~_-'-_...J

Fig. 2- 1 b

Fig 2-1 Two representations of the stack.

4

The top of stack TOS) is always the
rightmost element. One memory cell of the
stack is a 16 bit cell.
For documentation and understanding of
FORTH words, it IS necessary to show how
the stack is affected by using a word. We
will use the following abbreviations:

a 16-bit address
n signed 16 bit number
u unsigned 16 bit number
d signed 32 bit number
b 8 bit byte
c 7 bit ASCII character
f boolean number, flag

These abbreviations are
following manner:

used in

WORD (STACK BEFOR - STACK AFTER)

Examples:

LOOK (an)

the

The word LOOK, whatever it does, requests
an address and a number on top of stack
before executing. Both items are removed
from stack after execution.

FOUND (-f)

FOUND doesn't need any parameter before
execution and leaves a boolean number f on
the stack after execution.

COMP (aa'c - nf)

The word COMP needs
character on top
execution a number
left on stack. In
top of stack is

two addresses and a
of the stack. After

and a boolean flag is
this representation, the

always the rightmost

5

character. To differ between several
addresses or numbers, there can be added a
hyphen or a number to the character like a
a' or n nl n2.

2-2 WORDS IN FORTH.

A word in FORTH may be any arbitrary
string of characters, excluding three
special characters. The excluded
characters are: the space, backspace, and
the return character. The space character
is the only delimiter between FORTH words.

The backspace character is used for
correcting typing errors, while the return
character is used to indicate that the
input to the computer is finished.

Examples of words:

FIRST lTIMES .NAME @VALUE

THR EE is not recogniced as
because there is a space in it.
represent two words THR and EE.

one word,
It would

Some words in the predefined dictionary
consist of only one character. The dot. ,
is for example, the printing statement.
The @ sign fetches the content of a 16 bit
memory cell. These letters can be used to
indicate a special function of a word. In
the example above .NAME will print a name
while @VALUE will get some value from
memory. This naming convention makes it
easier to read FORTH programs.

2-3 THE REVERSE POLISH NOTATION.

For calculations, FORTH uses the reverse
Polish, or postfix notation. The operator

6

for the calculation is entered here after
entering the numbers. If you type in

36+

first, a three is put on stack, then a six.
At this time, the FORTH interpreter
recognices the word + • This word takes
the two top numbers on stack, adds them
together and places the result, 9, on top
of the stack. If you now enter the
command a 9 is displayed on the screen.
Try it.

The word + is defined in the following
manner:

+ (nnl - n2) n2=n+nl

Exercises:

3*4-7
(3*5+3)/6-4
5

A

2-4
A

2
(3+5)*2
20/(2*5)

Using the reverse Polish notation, there
is no need to use brackets. Let us look at
the following example:

(3+5)*(4-2)-7

A BASIC interpreter, who has to decipher
such an expression starts with the opening
bracket, then gets a number, an operator,
once more a number and then the closing
bracket. At this moment it can do the
first calculation. The next step indicates
a requirement for multiplication. This can
be done after revealing the second
expression.

7

Using RPN, it is easier for a computer
program to calculate this expression. In
RPN we enter

3 5 + 4 2 - * 7 -

You see there is no need for brackets. Fig
2-2 shows the evaluation on stack.

STACK TOS

3

INPUT

3

3

8
8 4 . 8

16

5

8
4

2

2

16

7

9

5
+

4

2

7

Fig 2-2 Calculating an arithmetic
expression using RPN.

To get acquainted with this reverse
notation, there are some exerci ses.
them into the computer and use
command to get the results.

Exercises :

8

3*4-7
(3*5+3)/6-4
5"2-4"2
(3+5) *2
20/(2*5)

Polish
Type

the

3 Using words

3. USING WORDS

You can find a dictionary of all common
words in appendix A. Here we will discuss
the most used words for writing programs
in FORTH.

3-1 DEFINITION OF NEW WORDS.

The definition of a new word starts with
the sign, followed by a space and the
name of the new word . Then all words used
by this new word are listed. The
definition ends with the; sign.

: XXX Eegin of a colon
definition XXX

End of a colon
definition.

Until now we have learned only two words.
The word and the + word. We want to
combine these two to a new one, called +.
(plus print) . It adds two numbers and
displays the result. The definition is:

: + . + •

Now we can enter 3 6 + . RET and get the
result 9 on the sc r een .

9

To show that the operators
real FORTH words we change the
these two words by

+ and - are
meaning of

+ -

After hitting return we get a warning

+ ISN'T UNIQUE OK •

This indicates that the word
already defined. The interpreter
the new defined + • When we now
• RET, we get the result 3.

+ has been
will use

type 3 6 +

Let us forget this new + word. By typing

FORGET + RET

this definition and
made later on
dictionary.

also all definitions
are removed from the

3-2 CHANGING THE STACK.

The stack can be changed in three ways. It
can be enlarged, reduced or rearanged. All
this can be done with the following words:

10

DUP(n - nn) Duplicate top of stack.

DROP (n) Throwaway the top of
stack.

SWAP (nn'-n'n) Reverse the two top
elements.

OVER (n'n-n'nn') Copy of the second
element on top.

ROT (nln2n3-n2n3nl) Rotate the top
three elements counter­
clock wise .

Fig 3-1 shows how these words affect the
stack.

2 4

2 4 5

2 4 3

2 4 3

2 4

2 4 3

5

3

3

5

3

5

3

3

5

3

5

3

DUP
ROT
SWAP

DROP

OVER

Fig 3-1 Changing the stack.

Now let us do some examples and exercises.

Example 1:

The stack contains the numbers 3 2 1 with
the 1 on top of the stack. What words must
be entered to obtain the sequence 3 2 2 I?

First we enter OVER and get 3 2 1 2.
Second we enter SWAP to obtain the result
3 2 2 1.

Example 2:

On the stack we have 3 2 1 with the 1 on
top of the stack. Which words must be
entered to get the sequence 2 3 3 ? The
answer is shown below.

DROP
SWAP
DUP

Exercise:
and get

Start

a)
b)
c)
d)
e)

3 2 1
3 2
2 3

2 3 3

with 3 2 1 on

312
213
231
123
32121

the stack

11

The word.S (dot s, print stack) shown in
Fig 3-2 is very usefull. It is defined in
most of the FORTH versions and prints the
contents of the stack without destroying
it. If your FORTH version doesn't know
this word just type it in.

'S SP@ ;
DEEP SO @ 'S - 2 / 1 -
.S CR DEEP'S 2 - SO @ 2 -

DO I @ • -2 +LOOP
ELSE ." EMPTY" THEN

Fig 3-2 Non-destructive stack print.

3-3 FUNDAMENTAL OPERATIONS IN ARITHMETIC.

The word for the fundamental operations of
arithmetic are defined as follows:

+ nnl-n2) n2=n+nl

nnl-n2) n2=n-nl

* nnl-n2) n2=n*nl

/ nnl-n2) n2=n/nl

This arithmetic is done with 16 bit signed
fixed numbers. Finding the remainder and
the quotient of a definition you can use
two more words.

MOD nnl-n2) n2 is the remainder
of n/nl.

/MOD (nn1-n2n3) n2 is the remainder
and n3 is the quo­
tient of n/nl .

12

Example:

We want to calculate the value of the term
XA2 + X*y + Z. The values for X, Y and Z
are stored on the stack with Z on top of
the stack. Fig 3-3 shows the sequence of
words to calculate this value.

x Y

x Z - -
Z Y

Z Y x
z x x

Z x
Z

Z

Y

x
x
Y

X+Y

X(X+YI

ERG

SWAP

ROT

OUP

ROT

+

+

Fig 3-3 Calculating the term XA2+X*Y+Z.

We can define a word .VALUE which needs
three numbers on the stack and calculates
the value of this expression •

• VALUE (nnln2)
SWAP ROT DUP ROT + * + . . ,

Exercises:
for

Try to get the word sequences

a) X
A

2+X*Y-Z
b) x A2+x*Y+Z A2
c) X

A
2-X*Y-Z A2

with X Y Z on the stack.
and get the results.

3-4 INPUT OUTPUT .

Insert numbers

One of the output instructions we have
already used was the . word. It definition
is:

(n) Print the top of stack.

13

Other output instructions are :

"

Example :

Print message. The
message ends with " •

." HELLO" RET HELLO OK

EMIT c) Prints ASCII value c .

Example:

69 EMIT RET EOK

CR

SPACE

SPACES

.R

Example:

Prints one carriage
return .

Prints one space.

n) Pr ints n spaces.

nnl) Print n, right-justi­
fied in field. Field­
with is nl.

First we define a word P as

P (n) 4 • R CR ;

Now we enter:

CR 1 P 10 P 100 P

and get the result

14

1
10

100

The following words are for data input:

KEY (-c) Reads the keyboard and
places the ASCII value
on the stack.

?TERMINAL (-f) True if the
break key is pressed.

But on the ATARI:

?TERMINAL (-n) n=l,2,4 if
one of the yellow
keys was pressed.
n=O if no key was
pressed.
START key n=l
SELECT key n=2
OPTION key n=4

There are some more input and output words,
which will be discussed later on in an ex­
ample.

3-5 SOME SIMPLE PROGRAMS.

Until now we have learned only a few FORTH
words, however they are sufficient to
write some simple programs.

3-5a A LANGUAGE TRANSLATOR.

The concept of the dictionary and of defin­
ing new words can be used for a language
translator. As an example we translate
some words into the german language.

I ." ICH .. ;
AM ." BIN" ;
HERE ." DA .. ;

15

If we type

I AM HERE

we get the translation

ICH BIN DA

This is only a very simple example. But
you can use it to remeber special words in
a foreign language, chemical formulas, or
to make a list of your favourite radio
stations and their frequencies. For
example:

KBIG
: KIQQ

" 104 FM "
" 100 FM " ;

3-5b WEIGHTWATCHER.

Some peoples want to calculate the amount
of calories they had for breakfast or
dinner. The input of data should be done
in the following way:

BEER 1 GLAS
COKE 2 GLASSES
BREAD 1 SLICE and so on.

The program is shown in Fig.3-4. First
there is a comment, indicating which units
of measuremen t are used for the different
types of foods. Regard this only as an
example. Change them as you like. The next
screen (we will discuss this expression
in the next subchapter) , contains the
definitions for the units of measurement,
while the following screen contains the
definitions for the calories.

16

Fig 3-4 Weightwatcher.

SCR # 125

o
1
2
3
4
5
6
7
8
9

(AFB WEIGHTWATCHER ef)
(UNIT GLAS : BEER, APPLEJUICE

COCA-COLA, CHAMPAGNE

UNIT SLICE BREAD

UNIT PIECE CAKE, MUFFINS

UNIT OZ : BEEF , HAM, CHIPS,
NUTS , CHEESE

10
11
12
13
14
15

UNIT CUP : RICE, PASTA
UNIT TBSP [TABLESPOON

BUTTER ,
UNIT PKG : SEAFOOD ,

SCR # 126

o AFB WEIGHTWATCHER cntd ef)
1 MEASUREMENT UNITS)
2 GLAS DROP + ;
3 GLASSES * + ;
4 SLICE DROP +
5 SLICES * +
6 PIECE DROP +
7 PIECES * +
8 OZ DROP + ;
9 OZES * + ;

10 OF ;
11 START 0 ;
12 TBSP DROP + ; : TBSPS * +
13 PKG DROP + ; PKGS * +
14 CUP DROP + ; : CUPS * +
15

17

SCR # 127

o AFB WEIGHTWATCHER cntd ef)
1 CALORIES)
2 BEER 255 ; : COCA-COLA 88
3 BREAD 100 ;
4 BUTTER 100 ; : BROWNIES 224
5 RICE 200 ; : GOUDA 108 ;
6 MUFFINS 118
7 LASAGNE 241 RAVIOLI 210
8 BURITO 47 ; CNCHIPS 166
9 PEANUTS 179 PTCHIPS 156

10
11
12 AMOUNT DUP •
13
14
15

START OK
COCA-COLA 1 GLAS OK
BREAD 2 SLICES OK
MUFFINS 2 PIECES OK
GOUDA 2 OZ.ES OK
BUTTER 1 TBSP OK
AMOUNT 840 OK
CNCHIPS 2 OZES OK
AMOUNT 1172 OK
LASAGNE 2 CUPS OK
AMOUNT 1654 OK

Fig 3-4 Weightwatcher .
If you enter the word BEER , the number 255
is put on the stack . When you now enter 2
GLASSES , first the number 2 is put onto
the stack, then the both top numbers (255
2) are multiplied and the result is added
to the previous amount .
To start this calculation of calories, you
have to enter the word START, which puts a
o on top of the stack . The word AMOUNT
duplicates the top of stack and prints it
on the screen .

18

3-6 THE SCREEN.

The writing of a FORTH program can be done
in two ways. You can enter the FORTH words
direct into the dictionary or use a text
editor and write the words into a screen.
Fiq. 3-5 shows an example of a screen.
FORTH versions running on an ATARI use a
screen with 16 lines and 32 characters
each.

SCR # 148

o (SCRN PRINT 10/14/82 ef)
1 0 VARIABLE ROW 0 VARIABLE COLN
2 ?FIN (-f) COLN @ 24 = ;
3 lROW 40 0 DO ROW @ C@ 32 +
4 DUP 128 > IF 32 - THEN
5 OUTCHR 1 ROW +! LOOP
6
7 .SCRN 88 @ ROW ! 0 COLN
8 BEGIN lROW CRR 1 COLN +! ?FIN
9 UNTIL;

10
11
12
13
14
15 -->

Fig 3-5 Textscreen.

This uses 512 bytes of memory. Thus, when
using a disk drive, you can store 164
screens. In this booklet we don't describe
the editor. It has numerous variations in
the various FORTH versions. Please refer
to the instruction manual of your FORTH.

Once you
LOAD it.

have
LOAD

written
compiles

a screen, you can
the words of a

19

screen into the dictionary. You
LIST a screen. LIST displays the
of a disk screen on the TV screen.
The definitions are:

may also
content

LOAD (n)

LIST (n)

Compile disk screen n
into the dictionary.

List disk screen n on
the TV screen.

There are some conventions in the writing
of a screen. The first line should be a
comment, noting the task, the date and the
programmer .
For example :

(WEIGHTWATCHER 10/16/82 ef)

The comment in FORTH starts with the
opening bracket and ends with the closing
bracket . The (is a FORTH word and must
therefore be followed by one space.

Beginning of a comment.

You can use the word INDEX to display all
first lines of a disk screen on the TV
screen.

INDEX (nn') Display the first
lines from screen n to
screen n'.

In writing a screen , every new definition
of a word should start in a new line. This
makes it easier to read a FORTH program.
After writing you save the screen on disk
with the word FLUSH.

FLUSH (Saves screen on disk .

20

3-7 CONSTANTS AND VARIABLES.

Most of the data used for calculation is
stored on the stack. Sometimes it is
necessary to use a constant or a variable.
The definitions of a constant and a
variable are:

CONSTANT NAME (n) Creates a constant
NAME with the
value n.

VARIABLE NAME (n) Creates a variable
NAME and the
initial value n.

There is a difference in calling a
constant or a variable. Calling a constant
py name, the value of the constant is
place on the stack. Calling a variable by
name, the address of this variable is
placed on the stack . In order to get the
value of a variable, you have to fetch it .
This is done by the word @. For changing
the value of a variable, the word ! (
store) is used.

@ (a-n)

(na)

Fetches the content
stored at address a.

Stores n at address a.

Both instructions, fetch and store use 16
bit numbers. For storing and fetching a
single byte, the following words are used.

C@ a-b)

C! ba)

Fetches a single byte
from address a.

Sto r es a single byte
at address a.

21

Try this:

o 755 C!
4 755 C!
3 755 C!

The cursor will disappear.
The letters are upside down.
Resets to the normal mode.

Later we will use these words to control
with the color and sound registers of the
ATARI.

You can increment the value of a variable
by

o VARIABLE V
V @ 1 + V

or you can use the word +! (plus-store).

+! na) Add n to the content
at address a.

Another word ? fetches the content of a
variable and p r ints it .

? (a) Prints the content
of address a.

The FORTH system itself uses several
constants and variables . We will use the
variable BASE in the following example.
The content of this variable determines
the number base in which calculations are
made. If the value of BASE is 10, all
calculations are made in decimal. Changing
this value to 16 , the calculations are
made in hexadecimal . You may use however,
any other value for calculating in any
other number base syst em. Two words are
defined to set a specific number base.

DECIMAL (Set number base decimal.

22

HEX Set number base
hexadecimal.

An example:

We define:

BIN 2 BASE ! ;
TRI 3 BASE ! ;
.BIN (n) BIN
.TRI (n) TRI •

DECIMAL ;
DECIMAL ;

The word BIN sets the number base to two
and the word TRI to three. The trinary
system uses only the numbers Oland 2 for
representing a number. The words .BIN and
.TRI take a decimal value from the stack,
converts it to the binary or trinary num­
ber, prints it and switches back into the
decimal number base. Let us convert some
numbers.

120 .BIN 1111000 OK
140 .TRI 12012 OK

The word . BASE fetches the content of BASE,
duplicates it and prints it in decimal.
The the value is restored in BASE.

: .BASE BASE @ DUP DECIMAL BASE , . . ,

If you only type BASE @ . you will always
get the result 10, regardless in which
number base you are .

A constant should stay a constant. But you
can change the value of a constant with
the ' (tick) word. The brings the
address of a definition on the stack.

, NAME (- a) Find the address of
NAME in vocabulary.

23

Example:

10 CONSTANT C OK
C • 10 OK
12 I C ! OK
C • 12 OK

3-8 COMPARISON.

The comparison takes place with the two
top numbers on the stack. They are
replaced by the result of the comparison.
The result is a one if the comparison was
true or the result is a zero, if this
comparison was not true. This boolean
flag is used by the control words,
described in the next chapter , to control
the flow of a program. The words used for
comparison are:

< (nn' -f) f=l, if n less than n '
> (nn '- f) f=l, if n greater than n'
= (nn' -f) f=l, if n equal to n'
0< (n-f) f=l, if n is less than zero
0= (n-f) f=l, if n is equal to zero

Some examples:

2 3 < · 1 OK
3 2 < · 0 OK
3 2 = · 0 OK
-2 0 < · 1 OK

If you want to use the two top numbers on
the stack after a comparison you have to
duplicate them with

: 2DUP (nn'-nn'nn') OVER OVER

24

~ Control structures

4. CONTROL STRUCTURES.

Until now we have only used words which
didn't affect the flow of a program. Now
we will take a closer look at the words
which do control the flow of a program.
First, there is no GOTO statement. There­
fore FORTH is like PASCAL, a highly
structered programming language.

As branches in a program it uses state­
ments as BEGIN ••• UNTIL, BEGIN ••• WHILE •••
REPEAT and IF .•• ELSE ••• THEN.

These statements along with the DO ••• LOOP
must be used within a colon definition.
They can not be executed directly by the
interpreter.

4-1 DO ••• LOOP •

The DO ••. LOOP creates a finite number of
program loops. The definition is:

DO nn')

LOOP (

Loops from n ' to n-l,
the increment of the
loop is one .

Terminates the loop
inside the program.
Increments the index
by one .

25

The program loop starts at n' and ends at
n-l. The increment is always one. The set
of words between DO and LOOP is executed
from n' to n-l. The comparison between the
loop index and the upper limit is
performed by the word LOOP. Therefore
every loop is executed at least once.

FORTH uses a third stack, wich we haven't
mentioned until now. This is the RETURN
stack. In a computer with a 6502 CPU the
RETURN stack is equal to the stack used by
the CPU. During execution of a loop, FORTH
places the loop index on top of this stack.
With the word I, you can copy the top of
the RETURN stack to the parameter stack.

I -n) Copy of the return
stack to the parameter
stack.

Example:

Let us print the numbers from one to nine
on the screen.

NR 10 1 DO I LOOP;
NR 1 2 3 4 5 6 7 8 9 OK

Just to show that a loop is executed at
least once, we change the boundaries of
the loop.

: NRR 1 10 DO I • LOOP

NRR 10 OK
Loops can be nested. In our next example,
we print a row of numbers from 0 to 9.
Then, in the next line we print a row of
numbers from 0 to 8 and so on, until a
single 0 is printed. The inner loop is
defined as:

: IL (n) 0 DO I • LOOP ;

26

IL expects the upper limit + 1 on the
stack. The outmost loop is defined as:

OL (n) 0 DO CR 1 - DUP IL LOOP

OL expects the number of lines on the
stack. To get a printout we call 11 10 OL.
The result is shown in Fig 4-1.

11 10 OL
012 3 4 5 6 7 8 9
012 3 4 5 6 7 8
012 3 4 5 6 7
012 3 4 5 6
012 3 4 5
012 3 4
012 3
012
o 1
o OK

Fig 4-1 Triangle-matrix

Another example of nested loop is shown in
Fig 4-2. A rhombus is printed by the two
words RI and RO.

SCR # 103

STAR (n) 0 DO 42 EMIT LOOP i
RI (nnln2) DO CR 7 I -

SPACES I 2 * 1 + STAR DUP
+LOOP

RO 1 8 0 RI -1 -1 7 RI CR i

27

RO
*

*

OK

Fig 4-2 Rhombus

Very often it is necessary to increment
the loop index by another number instead
of one or even to decrement the loop index.
Then, the DO ••• +LOOP must be used. The
definition of the DO word is the same as
above, but the +LOOP e xpects a number on
the stack.

+LOOP (n) Increments the index
by n. If n is less
zero, the index is
decremented.

Examples:

: +NR (nn') DO I • 2 +LOOP

10 0 +NR 0 2 4 6 8 OK

- NR (nn I) DO I -2 +LOOP

o 10 -NR 10 8 6 4 2 OK

28

4-2 THE RETURN STACK.

In the last chapter we mentioned the
RETURN stack. FORTH uses this stack for
program loops and for storing addresses.

With care, a programmer can use this stack
too. The word >R (to-R) puts the top
number of the parameter stack on the
RETURN stack and the word R> (R-from)
returns it.

>R (n) Puts n to the return
stack.

R> (-n) Retrieve number from
return stack.

R (-n) Copy the top of the
return stack to the
parameter stack. Same
as 1.

Use these words only within a colon def­
inition and outside of loops.

Example:

We define a word 2SWAP, which exchanges
the two top numbers on the stack with the
third and the fourth number.

: 2SWAP (nnln2n3-n2n3nnl)
>R ROT ROT R> ROT ROT ;

The evaluat i on of thi s word on the stack
is shown i n F i g 4-3 .

29

4 3

4

3

2

2 4

2 3

2 1

2

3

2

4

3

1

4

1

2

4

3

1

4

3

) R

ROT

ROT
R)

ROT

ROT

Fig 4-3 Evaluation of 2SWAP

4-3 IF ••• ELSE ••• THEN (ENDIF).

This is the first word to control the flow
of a program. It is used in the form IF
<words> THEN or IF <wordsl> ELSE <words2>
THEN. Some versions of FORTH use ENDIF
instead of THEN.

The definitions:

IF (f)
THEN (

IF (f)
ELSE (
THEN (

Example:

The words between IF
and THEN (ENDIF) are
executed if f is non
zero.

The words between IF
and ELSE are executed
if f is non zero.
Otherwise the words
between ELSE and THEN
(ENDIF) are executed.

We define a word COMP, which compares the
two top numbers on the stack. The message
EQUAL is printed, if both numbers are
equal. If not, the message SMALLER or
BIGGER is printed. The definition of the
word COMP is shown in Fig 4-4.

30

First

2DUP (nn'-nn'nn')
OVER OVER ;
2DROP (nn') DROP DROP
NOTEQUAL (f) IF ." BIGGER"
ELSE ." SMALLER" THEN;
COMP (nn') 2DUP = IF
." EQUAL" 2DROP ELSE <
NOTEQUAL THEN ;

2 3 COMP BIGGER OK
3 2 COMP SMALLER OK
2 2 COMP EQUAL OK

Fig 4-4 The word COMPo

we define the word 2DUP,
duplicates the two top numbers
stack and 2DROP which drops these
The word NOTEQUAL prints the
SMALLER or BIGGER.

which
on the

numbers.
message

The word COMP duplicates the two top
numbers and compares them. If they are
equal, the message EQUAL is printed and
the remaining numbers are removed from the
stack. If they are not equal, another
comparison is performed and according to
this comparison the message SMALLER or
BIGGER is printed.

If we didn't include the word 2DROP, the
two numbers would be left on the stack.
There could be some problems, if this word
is executed several times without the
2DROP in a DO •.• LOOP. The stack becomes
deeper and deeper . The size of the stack
is limited and after a while, the error
message STACK FULL is printed and the
program is aborted. Try to keep the stack
clean.

31

4-4 BEGIN ••• UNTIL.

The word
the stack.
all words
repeated.
loop.

UNTIL expects
As long as this

between BEGIN
A non zero flag

a flag on top of
flag is zero,
and UNTIL are
terminates the

The definition:

BEGIN
UNTIL

)
f)

The words between
BEGIN and UNTIL are
repeated, until a non­
zero flag is encoun­
terd before executing
the word UNTIL.

Example:

We use the BEGIN ••• UNTIL
together the numbers from 1 to
program is shown in Fig 4-5.

o VARIABLE X
INCX X @ 1 + DUP X 1 ;

loop to add
100. The

SUM (n) 0 BEGIN INCX + X @
100 = UNTIL •

o SUM 5050 OK

Fig 4-5 Adding the numbers from 1 to 100
using BEGIN ••• UNTIL.

We use the variable X for counting. The
word INCX increments the value of X. We
don't use the +1, because we must
duplicate this value and add it to the
previous sum. Before starting the loop, a
zero must be on the stack. The loop
terminates if the condition X=lOO is true.
The result is then printed.

32

Another example for the BEGIN ••• UNTIL loop
is the word .E • It prints an E on the
screen until you hit the OPTION key •

• E (BEGIN 69 EMIT ?TERMINAL
4 = UNTIL ;

4-5 BEGIN ••• WHILE ••• REPEAT •

This loop is different from the BEGIN •••
UNTIL loop. The word WHILE expects a flag
on the stack. As long as this flag is non­
zero, the words between WHILE and REPEAT
are executed. An unconditional branch
leads back to the BEGIN. If WHILE finds a
zero on the stack, the words between WHILE
and REPEAT are neglected and the word
following REPEAT is executed.

The definitions:

Examp

BEGIN
UNTIL
REPEAT

)
f)

)

The words between
BEGIN WHILE and
REPEAT are executed,
as long as f is non­
zero. If f is zero the
program commences
after repeat.

We use the same example as above, adding
the numbers from 1 to 100. The program is
shown in Fig 4-6.

TEST (-f) 1 + DUP 101 < ;

ADD DUP ROT + SWAP ;

SUM 0 BEGIN TEST WHILE ADD
REPEAT DROP • ;
SUM 5050 OK

Fig 4-6 Adding the numbers from 1 to 100
using BEGIN ••• WHILE ••• REPEAT.

33

First we define the word TEST. A one is
added to the top number on the stack,
duplicated and compared with 101. The next
word ADD duplicates the top of stack and
rotates the first three elements. The
deepest element on the stack is the amount
of numbers that have been added until now.

The two top numbers are then added and the
result is placed below the number of
additions. The word SUM expects a zero on
the stack. The word TEST is executed
before WHILE. As long as the number of
additions is less than 101, the word ADD
is executed. If the number is equal to 101,
the numbers on the stack are swapped, the
result is printed and the remaining number
is droped.

4-6 THE CASE STATEMENT.

In earlier versions of FORTH, there was no
CASE statement defined. Now most of the
FORTH versions have it. The definitions
differ slightly from each other. We will
describe the CASE statement as it is used
in QS FORTH and in POWER FORTH for the
ATARI.

The definition is:

CASE: (n) WORDO WORDI •.. WORDK ;

CASE: requests a number on the stack. In
regard of this number, the corresponding
word is executed. If this number is 0,
WORDO is executed or if it is a three
WORD3 is executed. CASE: does not proof
the limit. If you call the 10th word and
there is no word, in most cases the
program hangs up. You have to proof the
limits by program. An example you find in
the next chapter.

34

5 Sample programs

5. SAMPLE PROGRAMS.

In the following programs we will use the
words we have learned up to this point.
The most efficient way to learn a
programming language is to type programs
into the computer and execute them. The
ATARI sounds and graphics will be used for
the following samples.

5-1 SOME GRAFICS

There are several predefined words in the
FORTH versions of the ATARI that use the
grafics. In the programs we use SETCOLOR,
PLOT and GR.

SETCOLOR nnln2) Set the color
register.
n2 color register (0-
4 depending mode).
nl color hue number (
see Fig 5-1).
n color luminescance,
even number between 0
and 14. The higher the
number, the brighter
the display.

35

COLORS SETCOLOR nl

GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED-ORANGE 3
PINK 4
PURPLE-BLUE 6
BLUE 7
BLUE 8
LIGHT-BLUE 9
TURQUOISE 10
GREEN-BLUE 11
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15

Fig 5-1 The ATARI hue numbers and colors.

PLOT nnln2) Plot a point at x=n

GR.

36

(n)

y=nl and color c=n2.
The point x=O and y=O
is the upper left
corner of the screen.

Sets the grafic mode

5-1 LINES.

In the program in Fig 5-2,
word START. It opens grafic
sets the background color.
L>R draws a line from left to

we define the
mode 7 and

The next word
right.

SCR # 140

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

AFB GRAPHICS 10/20 ef)

START 7 GR. 2 0 0 SETCOLOR ;
R>L () 79 9 DO I 10 2 PLOT

LOOP ;
U > D () 79 10 DO 78 I 3
PLOT LOOP ;
L > R () 8 78 DO I 78 2
PLOT -1 +LOOP ;
D > U () 9 7 8 DO 9 I 3
PLOT -1 +LOOP ;
RECT START R>L U>D L>R D>U ;

Fig 5-2 Lines.

The next word U>D draws a line down the
screen, starting at the ending point of
the previous line. In the same manner the
words R>L and D>U are defined. They always
start at the end of the former line. The
last word RECT combines these words to
draw a rectangle.

Here you can see one of the advantages of
FORTH. Once you have defined a word, you
can use it within other words. With FORTH
it is also easy to change a program. You
may defin a new word with another sequence
of predefined words. Try it in this
example. Rearrange the words in such a

37

manner, so that
bottom line are
two side lines.

the top line and the
drawn first and then the

In this example, line one of the text
screen #140 is left blank. In developing
this screen, the words FORGET START were
inserted. These words were inserted after
the first compilation of the screen. This
prevents the stack of the vocabulary from
becoming too large, thus recievinig the
message word NOT UNIQUE.

In the next program, we will use the
joystick to draw lines. Suppose the red
button is in the upper left corner, you
get the eight values, shown in Fig 5-3 for
the eight directions of the joystick by
reading memory cell 632.

14

11 ----4

13
Fig 5-3 Joystick Controller Movement.
Plug in a joystick in game port one, then
type

632 C@ •

You will get the values shown in Fig 5-3.
The definition of the words is shown in
text screen 116. We use two variables X an
Y. The word +X increments the value of X
by one. The word +Y is defined as

: +Y -1 Y +! ;

38

because Y counts positive downward on the
screen.

The word STICK expects a value on top of
the stack which is equal to the content of
game port one. Then it decides which
variable has to be incremented or decre­
mented.

SCR # 116

o (AFB JOYSTICK 10/18 ef)
1 0 VARIABLE X 0 VARIABLE Y
2 +X 1 X +1 ; : -X -1 X +1
3 +Y -1 Y +1 ; : -Y 1 Y +1 ;
4 STICK (n)
5 DUP 14 = IF +Y ELSE
6 DUP 13 = IF -Y ELSE
7 DUP 7 = IF +X ELSE
8 DUP 11 = IF -X ELSE
9 DUP 6 = IF +X +Y ELSE

10 DUP 5 = IF +X -Y ELSE
11 DUP 9 = IF -X -Y ELSE
12 DUP 10 = IF -X +Y THEN
13 THEN THEN THEN THEN THEN
14 THEN THEN ;
15

SCR # 118

o AFB GRAFICS 10/18 ef)
1 START 2 0 0 SETCOLOR 7 GR.
2 10 Y 1 10 X 1 ;
3 NOT (n-n') 1 XOR ;
4 PL (nn') X @ Y @ 2 PLOT;
5 NPL (nn') X @ Y @ 0 PLOT;
6 ?STICK 632 C@ DUP 15 = NOT
7 IF STICK PL THEN DROP
8 PJOY START PL BEGIN
9 ?STICK ?TERMINAL UNTIL

10 0 GR. ;
11

Fig 5-4 Controlling the joystick.

39

The program continues in screen 118. The
word START sets the grafic mode, the
background colors and the starting values
for X and Y. The word NOT is used to
change the result of a comparison. If a
comparison is fulfilled, a one is on the
stack. NOT changes this value to zero. If
a zero is on the stack, NOT changes it to
one. With this word the Exclusive OR
function is used. This function is shown
in Fig 5-5 for one bit. FORTH applies this
function bit by bit on the two top numbers
of the stack.

Bitl
o
1
o
1

Bit2
o
o
1
1

XOR
1
o
o
1

Fig 5-5 Exclusive Or

The other logical functions AND and OR are
also implemented.The definitions are:

AND nnl-n2) logical AND, bitwise
OR nnl-n2) logical OR, bitwise
XOR nnl-n2) logical XOR, bitwise

Now we continue with the program. The word
PL plots a point at X and Y in color two.
The word ?STICK determines if the joystick
is moved in one of the eight directions.
Then a point is plotted. The word PJOY
combines all these words to plot lines on
the TV screen.

The word NPL plots the point in the color
of the background. This erases a point on
the TV screen. We can insert this word in
?STICK to move a point across the TV
screen.

40

?STICK 632 C@ DUP 15 = NOT
IF NPL STICK PL THEN DROP

5-2 PATTERN.

The program in Fig 5-6 creates a random
pattern. It uses a random number generator.
RND# expects a number n on the stack. A
random number between 0 and n-l is
generated. As a starting value for the
random numbers, we use the content of
memory location 53770. In this memory
location there are created random numbers
inside the ATARI.

SCR # 117

o (AFB RANDOM PATTERN ef)
1 (RANDOM GENERATOR)
2 0 VARIABLE RND 53770 @ RND
3 RANDOM RND @ 31421 * 6972 +
4 DUP RND ! ;
5 RND# (n-n') RANDOM U* SWAP
6 DROP;
7 RNDP 7 GR. 2 0 0 SETCOLOR
8 BEGIN 160 RND# 80 RND#
9 16 RND# PLOT

10 ?TERMINAL UNTIL ;
11
12
13
14
15

Fig 5-6 Random Pattern.

The word RNDP sets the grafic mode 7 and
the background color. In a loop,
terminated by one of the yellow keys, it
creates random numbers for the X Y
coordinates and the color. The result is
displayed on the TV screen .

41

5-3 SOUND AND COLOR

The word SOUND uses four parameters on the
stack.

SOUND (nnln2n3) n (0-15) is the
volume, nl a
distortion, n2 the
frequency and n4
the channel.

For creating several sounds and noises, we
use the random number generator and a wait
loop. The word WAIT requests one number
on the stack. The higher the number, the
longer the delay. The text screens 81 to
85 in Fig 5-7 contain some sound words,
such as the word THUNDER in screen 81.
Using random pitch and volume, a sound
like a swarm of flies is generated. ENG
uses intermittent sound for noise that
sounds like an engine.

Fig 5-7 Sound.

42

SCR # 081

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

AFB SOUND
WAIT 0 DO
C (n-n I)
SWAP / i

10/20 ef)
LOOP ;
11 RND# 5 + 10 *

OFF 0 0 0 0 SOUND
o 0 0 1 SOUND ;

T 100 5 DO I C 8 I 0 SOUND
I C 8 I 20 + 1 SOUND
DUP WAIT 5 RND# +LOOP OFF ;

THUNDER 300 T i

-->

SCR # 082

o AFB SOUND cntd ef)
1 FLY)
2 PI (n) 7 RND# 250 + i
3 V (n) 4 RND# 6 + i
4 F V 14 PI 0 SOUND i
5 FLY BEGIN F 500 WAIT
6 ?TERMINAL UNTIL OFF i
7 ENGINE)
8 ENG BEGIN 10 10 250 0 SOUND
9 1500 WAIT OFF ?TERMINAL

10 UNTIL i
11
12
13
14
15 -->

SCR # 083

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

AFB SOUND cntd ef)
INCR (n) 10 / 1

DO I 10 60 0 SOUND
LOOP ;

DECR (n) 2 * 10 / DUP 1
SWAP DO DUP 10 60 0 SOUND
-1 +LOOP DROP ;

T 100 a DO I INCR 2 +LOOP i

TT 0 100 DO I DECR -2 +LOOP

CC 0 100 DO I INCR I DECR
-2 +LOOP

-->

43

SCR * 084

o (AFB SOUND cntd ef)
1 15 VARIABLE VI 15 VARIABLE V2
2 15 VARIABLE V3
3 ST 15 VI 1 15 V2 1 15 V3 1 ;
4 : SS VI @ 8 20 0 SOUND
5 V2 @ 8 40 2 SOUND
6 V3 @ 8 70 2 SOUND
7
8 DEC -1 VI +1 -1 V2 +1
9 -1 V3 +1 ;

10 EXPL ST BEGIN SS DEC
11 1000 WAIT V3 @ 0< UNTIL
12
13
14
15

SCR * 085

a AFB SOUND cntd ef)
1 SI 15 a DO I 10 60 I 2 * -
2 a SOUND 100 WAIT LOOP ;
3
4 SIREN BEGIN SI OFF 50 WAIT
5 ?TERMINAL UNTIL ;
6
7
8 DWN 200 100 DO 8 10 I a SOUND
9 100 WAIT LOOP ;

10 UP 100 200 DO 8 10 I 0 SOUND
11 100 WAIT -1 +LOOP ;
12 EUSI 10 0 DO UP DWN LOOP
13 OFF;
14
15

The word CC in screen 83 simulates a
dropped coin. These examples are from the
book " ATARI BASIC Learning by Using " by
Tomas E . Rowley .

44

Some more sound words are in the next
screens. EXPL simulates an explosion by
changing the volume and the pitch on three
channels. In the last screen we have the
word SIREN for simulating an american
police siren and the word EUSI for an
european police siren.

The best way to create sound effects is
the methode of trial an error. Define new
words and combine them in different ways.

SCR # 086

0 (AFB COLOR 10/22 ef)
1 . CF 712 C@ 710 C@ 712 C! .
2 709 C@ 710 C! 709 C!
3
4 CCF 100 0 DO CF 100 WAIT
5 LOOP 0 GR. ;
6
7 BG 254 0 DO I 712 C! 500 WAIT
8 2 +LOOP ;
9

10 FG 254 0 DO I 710 C! 500 ~vAIT
11 2 +LOOP
12

SCR # 087

o AFB COLOR cntd ef)
1 DI 16 0 DO I 709 C! 100 WAIT
2 LOOP;
3 AR 0 14 DO I 709 C! 100 WAIT
4 -1 +LOOP ;
5
6 CURS (nnl) 85 ! 84 C!
7 CLR 125 EMIT ;
8 DIS CLR 10 5 CURS
9 222 710 C! ." HELLO ..

10 1000 WAIT DI KEY AR ;
11
12

Fig 5-8 Color.

45

In the text screens 86 and 87 (Fig 5-8),
the store and fetch words are used to
change the contents of the color registers.
The word CF rotates the contents of the
color registers. This causes a quick
change of foreground and background colors.
Use this word in a new definition of
THUNDER. BG changes the background color
and FG changes the foreground color
In the next screen, the text HELLO
disappears and, after pressing a key, it
reappears. The word DIS uses two other
words CLR and CURS. The word CURS requests
two numbers on the stack. N is the
horizontal row and nl the vertical column.
By sending out an end of file character (
155 EMIT) the cursor is placed at the
specified position. The word CLR clears
the TV screen and positions the cursor in
the upper left corner.

5-4 HEXDUM~

Most of the FORTH versions have defined
the word DUMP as that which dumps the
content of memory locatIons on the screen.
The program in Fig 5-9 (screens 88 and 89
) is a similar program. The word DDUMP
requests two numbers on the stack. N is
the starting address and nl the number of
lines, eight bytes each.

SCR # 088

0 (AFB HEXDUMP 10/22 ef)
1 HEX
2 LNE (n) DUP DUP 8 + SWAP
3 DO I C@ 3 .R LOOP . ,
4 NR CR CR 5 SPACES 8 0
5 DO I 3 .R LOOP CR
6 DOT DROP 2E ;

46

7
8 ATARI (n-n) DUP 20 < IF DOT
9 ELSE DUP 7D = IF DOT ELSE

10 DUP 7E = IF DOT ELSE DUP 90 =
11 IF DOT ELSE DUP 9C = IF DOT
12 ELSE DUP FB > IF DOT THEN
13 THEN THEN THEN THEN THEN ;
14
15 -->

SCR # 089

o AFB HEXDUMP cntd ef)
1 ASCII (a-a) DUP DUP 8 +
2 SWAP DO I C@ ATARI EMIT
3 2 SPACES LOOP ;
4
5
6
7
8 HDUMP (n-n') CR DUP • SPACE
9 LNE CR 7 SPACES ASCII 8 + ;

10 DDUMP (an) HEX
11 NR 0 DO HDUMP LOOP DROP
12 DECIMAL
13 DECIMAL
14
15

Fig 5-9 Hexdump.

An example of the printout is shown in Fig
5-10.

47

HEX 3008 9 DDUMP

0 1 2 3 4 5 6 7

3008 86 4B 45 59 4C 49 D4 EA
f K E Y L I T j

3010 2F D9 C 60 D F3 2F 7C
/ y s / I

3018 C 60 D El 8 lC C 3D
a =

3020 C FA 8 F3 2F 70 D 9C
z s / P

3028 B 9C B 91 C 9 F 59
q Y

3030 8 4 0 22 B FA 8 7A .. z z
3038 8 E4 FF F B 31 0 87

d 1 g
3040 43 4F 4E 54 52 4F CC 8

C 0 N T R 0 L
3048 30 SF 11 13 20 86 2C 46

0 f F OK

Fig 5-10 Hexdump Printout.

The word ATARI changes all unwanted
characters (for example the byte 9B which
erases the screen) to dots. This word is
used within the word ASCII, which prints
the ASCII characters. LNE prints one line
of hex bytes while NR does the numbering
on top of the printout.

Next we look at some mathematical examples.

5-5 LARGEST COMMON DIVISOR.

We use the algorithm of
calculate the largest common
two numbers A and B. First the

48

EUCLID to
divisor of

remainder

of AlB is determined by A B MOD • If the
remainder R is zero, B is the largest
common divisor. If R is not zero, A is set
to Band B is set to R and the modulo
division is repeated until R is zero. The
definition of LCD is shown in Fig 5-11.

0 AFB MATH EXAMPLES ef)
1
2 LCD BEGIN SWAP OVER MOD DUP
3 0= UNTIL DROP . ;
4

27 21 LCD 3 OK

Fig 5-11 Largest Common Divisor.

STACK

27
27
21

21 27
21

21 6
21 6

21
6

6 21
6

6 3

6 3

6
3

3 6
3

3 0

3 0

3

TOS

27
21
21
27
21

6

6

0

6
21

6

3

3

0

3
6

3

0

0

1
0

3

INPUT

27
21
BEGIN

SWAP

OVER
MOD
DUP

0=

UNTIL

SWAP

OVER
MOD
DUP

0=

UNTIL

SWAP

OVER
MOD
DUP

0=

UNTIL

DROP

Fig 5-12 Largest Common Divisor .
Evaluation on the stack .

49

For a better understanding of this
definition, the evaluation on the stack
for the given example is shown in Fig 5-12.

5-6 FIBBOCONACCI NUMBERS.

Fibboconacci numbers are a series of
numbers. The next element of this series
is always the sum of the two predecessors.
The series starts with zero and one. The
word FIB in Fig 5-13 creates these numbers.
This is an example for the BEGIN ••• WHILE •••
REPEAT loop. FIB expects on the stack one
number which determines the end of the
series. If the calculated element is
larger than this number, the calculation
stops.

SCR # 099

a
1
2
3
4
5
6

AFB MATH EXAMPLES cndt ef)

FIB (n) CR a 1 BEGIN DUP
>R ROT DUP R> > WHILE
ROT ROT DUP ROT + DUP •
REPEAT DROP DROP DROP

100 FIB
1 2 3 5 8 13 21 34 55 89 144 OK

Fig 5-13 FIBBOCONACCI Numbers. (

The evaluation on the stack for the first
three loops is shown in Fig 5-14.

50

20
20

20 0
20 0 1

20 0 1

20 0 1 1

20 0 1

0 1 20

0 1 20 20
0 1 20 20 1

0 1 20 1

0 1 20
1 20 0

20 0 1

20 0 1 1

20 1 1 0
20 1 1

20 1 1 1

20 1 1

20 1 1

20 1 1 1

20 1 1

1 1 20

1 1 20 20

1 1 20 20 1

1 1 20 1

1 1 20
1 20 1

20 1 1

20 1 1 1

20 1 1 1

20 1 2
20 1 2 2

20 1 2
20 1 2

20 1 2 2

Fig 5-14 FIBBOCONACCI Numbers.
Evaluation on the stack.

20
FIB

o

BEGIN

OUP
)R

ROT
OUP
R)

)

WHILE

ROT
ROT
OUP
ROT
+

OUP

REPEAT

OUP
)R

ROT
OUP
R)

>

WHILE

ROT
ROT
OUP
ROT
+

OUP

REPEAT

OUP

51

5-7 PRIME NUMBERS.

In the next example, we calculate the
prime numbers between two limits. The
algorithm used is very simple. The word
PTEST tests within a loop, if a number is
divisible by the loop index. The loop
starts with two and ends at half of the
number. In this program the predefined
word LEAVE is used. This word terminates
the execution of a loop. The program
continues after the next LOOP word.

LEAVE Terminates a loop

If TEST finds a remainder equal to zero, a
zero is placed on the stack - and the loop
is left. The program then continues with
the word DUP. With a zero on the stack the
word . PRIM is not executed and the top of
stack is discarded. To format the output
a variable #ROW is used. The program is
shown in Fig 5-15.

52

SCR # 100

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

AFB MATH EXAMPLES cndt ef)

4 VARIABLE #ROW
TEST (n-f) MOD 0= ,
.PRIM (n-n) DUP 4 .R #ROW @

DUP 0= IF CR DROP 4 ELSE
1 - THEN #ROW! ;

PTEST (n) DUP 2 / 2 DO DUP
I TEST IF 0 LEAVE THEN LOOP
DUP IF .PRIM ELSE DROP
THEN DROP ;

PRIM (nn') CR 4 #ROW
DO I PTEST LOOP CR

200 1 PRIM
1 3 5 7 11

13 17 19 23 29
31 37 41 43 47
53 59 61 67 71
73 79 83 89 97

101 103 107 109 113
127 131 137 139 149
151 157 163 167 173
179 181 191 193 197
199

OK
Fig 5-15 Prime Numbers.

5-8 HORE SOUND AND GRAFICS.

I found some new sounds in the September
issue of COMPUTE! magazine. I translated
these examples from BASIC to FORTH. These
new sound words are shown in Fig 5-16.
There is another thunder which you can
combine with the old thunder and rain to
create stormy weather.

SCR # 094

0 MORE SOUND 10/26 ef)
1 B (-n) 255 RND# 50 +
2 X (-n) 200 RND# ;
3 Tl () B 1 DO 15 8 I 0 SOUND
4 LOOP ;
5 T2 () X 1 DO LOOP ;
6 TH () 2 0 DO Tl OFF
7 T2 OFF LOOP ;
8 STO TH TH THUNDER TH ;
9 Rl (n) o 0 2 SOUND ;

10 RAIN 150 0 DO I 10 / Rl
11 100 WAIT 2 +LOOP BEGIN
12 ?TERMINAL UNTIL ;
13
14
15

53

o (MORE SOUND cntd ef)
1 : HB 10 1 DO 15 3 12 0 SOUND
2 1000 WAIT OFF 6000 WAIT LOOP i
3
4 -1 VARIABLE XX
5 LOI 40 150 DO I 10 / 0 15 0
6 SOUND XX @ +LOOP i
7 LO SOlDO LOI XX @ -7 > IF
8 -1 XX +1 THEN LOOP
9 LS 10 10 40 1 SOUND

10 8 10 10 2 SOUND
11 10 10 90 3 SOUND i
12 STE 2 0 DO LS 4000 WAIT XSND
13 1000 WAIT LOOP
14 STEAM -1 XX 1 LO STE LO
15 XSND

Fig 5-16 More sound.

The program in Fig 5-17 produces the
grafic shown in picture 5-18. The lines
are drawn in grafic mode eight. Draw this
picture as it is and then a second time
with the background color. It appears and
disappears.

o (MORE GRAFICS 10/26 ef)
1 0 VARIABLE X 0 VARIABLE Y
2 CG 8 GR. 0 0 2 SETCOLOR
3 SG 260 X 1 10 Y 1 i
4 PG 160 80 1 PLOT
5 -X -10 X +1
6 +X 10 X +1
7 -Y -10 Y +1 i
8 +Y 10 Y +1 i
9 LG X @ Y @ 1 DRAWTO i

10 LL 20 0 DO PG LG -X LOOP
11 DD 15 0 DO PG LG +Y LOOP
12 RR 20 0 DO PG LG +X LOOP
13 UU 15 0 DO PG LG -Y LOOP
14 PIC CG SG LL DD RR UU i
15

Fig 5-17 Rayshaped pattern.

54

Fig 5-18 Picture of the rayshaped pattern.

5-9 USING THE GAME PORTS FOR CONTROL
APPLICATIONS .

The ATARI uses two 6520 Peripheral
Interface Adapters (PIA) for the game
ports . These ports can be used to transmit
or to recieve data . The 6520 provides two
bi-directional ports , A and Bi two control
registers and four interrupt lines. In our
examples we only use the ports and the
control registers . The four registers have
the following addresses:

PORTA = $D300
PORTB = $D301
PACTL = $D302

and PBCTL = $D303

55

The data direction for the two ports is
set by two data direction registers, DDRA
and DDRB. Both, the ports and the data dir­
ection registers, have the same addresses.

Bit two of the control register determines
which one of the two registers is accessed.
If bit two of the control register PACTL
is one, PORTA acts as a port. If bit two
is zero, PORTA acts as a data direction
register. A line of a port is set to an
output if the corresponding bit in the
data direction register is set to one.
Respectivly a zero marks a line as input.

The word INIT in Fig 5-19 sets the four
lower bits of port A as outputs. These
four lines are available at game port 1.

SCR # 104

o (AFB PORT CONTROL 10/16 ef)
1 HEX D300 CONSTANT PORTA
2 D30l CONSTANT PORTB
3 D302 CONSTANT PACTL
4 D303 CONSTANT PBCTL
5 INIT 30 PACTL C!
6 OF PORTA C!
7 34 PACTL C!
8 00 PORTA C!
9

10 DECIMAL
11
12 PAl (b) PORTA C! ;
13 WAIT (n) 0 DO LOOP
14
15

Fig 5-19 Initialisation of the ports.

We use the circuit shown in Fig 5-20 to
demonstrate the output of data.

56

.0.0
6 789

GAME CONNECTOR I
I

INSIDE ATARI

220 I
~)

.001 .l I
I
I

1 = PAD
2 = PA1
3 = PA2
4 = PA3

7 = GND
8 = vee

REPEAT 4 TIMES

NPN
TRANSISTOR

VCC = + 5V

Fig 5-20 Schematic of the circuit.

Fig 5-21 The experimenter board.
57

Fig 5-21 The experimenter board.

Screen # 105 in Fig 5- 22 contains three
programs.

RL simulates a running light. The four
LED's turn on and off one after the other.
The sequence starts with one on the stack.
This turns on LED one. The second LED is
turned on by multiplying the top of the
stack with two. With an additional
multiplication the third LED is switched
on. The last LED is turned on with the
number eight on the stack. If the number
on top of the stack is equal to 16 the
sequence restarts with one.

58

SCR # 105

o AFB PORT CONTROL cntd ef)
1 RL 1 BEGIN DUP PAL 2 * DUP
2 16 = IF DROP 1 THEN 2000 WAIT
3 ?TERMINAL UNTIL i
4
5 LB 0 BEGIN DUP PAL 2 * 1 +
6 DUP 31 = IF DROP a THEN
7 1000 WAIT ?TERMINAL UNTIL i
8
9 OINIT INIT 0 DUP PAL i

10 NEW 1 SWAP DUP 1 = IF DROP
11 ELSE 1 DO 2 * LOOP THEN i
12 ON (n) NEW OR DUP PAL i
13 OFF (n) NEW XOR DUP
14 PAL i
15

Fig 5-22 Running light, lightbar and ON OFF

LB simulates a lightbar. The LED's are
turned off until all four LED's are
The sequence starts with one.
multiplying with two and -adding one we
three. This value turns on LED one and

not
on.

By
get

two.

An additional multiplication and addition
leaves the value seven on top of the stack.
This turns on LED one, two and three.
After all LED's are turned on a zero on
top of the stack turns all off. Both
programs use the WAIT loop.

The words defined in screen 105, line 9
thru 14, can be used to turn on or off a
particular LED.

1 ON turns on LED one,
3 ON turns on LED three

and 1 OFF turns off LED one.

59

The word OINIT initialises port A, places
a zero on top of the stack and turns off
all LED's. The word NEW determines which
LED has to be turned on. The state of the
four LED's is stored in the four lower
bits of a byte on top of the stack. A one
markes the corresponding LED as turned on,
a zero marks it as turned off. Using the
logical OR function the new LED is added.
In the same way a LED is turned off using
the logical XOR function.

The application in Fig 5-23 simulates a
dice. Seven LED's are grouped to form the
spots of a dice (see Fig 5-25). The word
DINIT initialises port A. Seven lines are
used as output, one line as an input. A
pushbutton is connected to this line (see
Fig 5-24) • The word PA@ fetches the
content of port A and masks out the seven
low order bits. (128 AND). With 128 XOR
bit eight is inverted . The number 128 is
read if the button is pressed and a zero
is read if it is not pressed. The next
words ID thru 6D relate the decimal
numbers 1 thru 6 to the six spots of the
dice. These words use a binary pattern.

For instance 0001000 turns on the LED in
the middle. This is equal to a throw of
one. OD is used as a dummy definition in
the CASE: statement CDICE.

60

SCR # 106

o (AFB PORI' CONI'ROL cntd ef)
1 HEX
2 DINIT 30 PACl'L C!
3 7F PORI'A C!
4 34 PACl'L C!
5 00 PORI'A C!
6 DECIMAL
7 PA@ (-b) roRI'A C@ 128 AND
8 128 XOR ; 2 BASE !
9 ID 0001000 PAL ;

10 2D 1000001 PAL
11 3D 0101010 PAL ;
12 4D 1010101 PAL ;
13 5D 1011101 PAL
14 6D 1110111 PAl DECIMAL
15 OD ; -)

SCR # 107

o (AFB roRI' CONI'ROL cntd ef)
1 CASE: CDICE OD ID 2D 3D
2 4D 5D 6D ;
3 BU'ITON 1 BffiIN DROP PA@ DUP
4 UNTIL 500 WAIT
5 BffiIN WHITLE PA@
6 REPEAT;
7 DICE 1 BffiIN 1 + DUP 7 =
8 IF DROP 1 THEN DUP CDICE
9 PA@ UNTIL 500 WAIT 1

10 BffiIN WHILE PA@ REPEAT
11 DROP;
12 DODI BffiIN BUTTON DICE
13 1000 WAIT ?TERMlNAL UNTIL ;
14
15

Fig 5-23 Simulating a dice.

61

The word BUTTON waits in the BEGIN •.• UNTIL
loop until the button is pressed. Then
a delay loop follows to suppress the
bouncing of the key. The BEGIN ••• WHILE •••
UNTIL loop is left on releasing the button.
The word DICE starts the count. Pressing
the button stops it and the thrown number
is shown on the display.

62

..;tl!)CDI'
<t<t<t<t
a... a... a... a...
II II II II
.--NM..;t

(/)
w
~

l-
I'

I-
<t
w
a...
w
0::

Oal .co
Or-­

.<0

I'
<to
a...

> l!)
+
II

U
U
>

0::
o
I-
()
w
z.­
Z
o
()

w
~ 0 « N

'--______ -' <.9 w _ N

00:: -« (/)1-
~«

•

++
0

0 Z
w 19
-l

0::
0
I-
(/)

(/)

Z
Z«
a... 0::
ZI-

.,
'l

(

.{

"'
4-
(

·r

+
C1

E
0

.L
t

U

":l
C"'
I

Lt"

t
tI.

•
• • ••• • •

Fig 5-25 The dice.

63

6 Text and strings

6. TEXT AND STRINGS.

In the standard version of FORTH, there
are no strings or string functions
implemented. Yet, it is very easy to enter
text or to print out text.

6-1 INPUT/OUTPUT OF TEXT.

The word EXPECT expects the input of
characters. The definition is:

EXPECT (an) Expects n characters

For the
special
address
the top

of text at address a.
Also terminated by CR.

input of text you can use a
area ' in memory, called PAD. The
of PAD is always 68 bytes beyond

of the vocabulary stack.

PAD (-a) Address of PAD is put
on the stack.

Example:

PAD 15 EXPECT RET THIS IS FORTH RET

64

The text THIS IS FORTH is stored in
To get the momentary address of PAD
PAD • and try to get the text out onto
screen with DUMP or DDUMP • You can
use the predefined word TYPE.

PAD.
type
the

also

TYPE (an) Prints n characters of
text, starting at
address a.

If we have stored text as in the example
above and made no new definitions, which
would alter the address of the top of the
vocabulary stack, we can get the text from
PAD with:

PAD 15 TYPE RET THIS IS FORTH

We can make a printout of only a part of
the text. We are able to change the start­
ing address and the number of characters.

PAD 2 + 2 TYPE prints IS.

We use a new word, TEXT, to read text into
PAD. In some versions TEXT is a predefined
word. The definition is:

TEXT (c)
PAD 72 32 FILL WORD HERE
COUNT PAD SWAP CMOVE ;

First, we must describe several new words
used in this definition. The word FILL
fills memory cells withe the byte b.

FILL (anb) Fill n bytes, starting
at address a, with the
byte b.

The next new word is WORD. There are two
different definitions of WORD in FIG FORTH
and in FORTH-79.

65

WORD (c) Read text from the
input buffer until the
delimiter c is encoun­
tered. (FIG FORTH) •

WORD (c-an) Read text from the
input buffer, until
delimiter c is encoun­
tered. Leave the
address a and the
length n of the text
on the stack. (FORTH-
79)

In our example we use a FIG version of
FORTH. Therefore we need two more words
HERE and COUNT. HERE leaves the address of
the first free memory location of the
vocabulary stack on the parameter stack.
All text, corning from the keyboard is
taken to an input buffer TIB. After
hitting RETURN this text is moved to the
top of the vocabulary stack.

HERE (a) a
free
the

Leaves the address
of the first
memory location of
vocabulary stack
the parameter stack.

on

The first byte of the text is the length
byte. It gives the length of the text. The
word COUNT converts this byte in such a
manner that it can be used by TYPE.

COUNT (a-a In) Converts the length
at address a to a l and
the length n.

These are the parameters, TYPE needs for
printing text. The last word CMOVE moves n
bytes from address a to address al.

66

CMOVE (aa'n) Moves n bytes from
a to a'

CMOVE moves the first byte from a to a',
the second byte from a+l to a'+l and so on.
For a correct moving of bytes, the desti­
nation address a' must not be in the range
of a<a'<a+n.

Example:

13 TEXT THIS IS TEXT RET

There is no RETURN between the word TEXT
and the word THIS. If you now type :

PAD 20 TYPE RET , you get THIS IS TEXT

As a delimiter we used the byte 13. This
is the ASCII code for CARRIAGE RETURN. Now
let's try this:

32 TEXT THIS IS TEXT RET IS ?

What happens ? If we type PAD 20 TYPE, we
get the printout THIS. We used the ASCII
code, 32, of the space character as
delimiter. Therefore only the word THIS
was moved to PAD. The interpreter finds
more text and however tries to interpret
it. IS is not a defined word, so we get
the error message IS ? •

As an example for text input, we will make
the input for a mailing list. The text is
stored in PAD. Later we will see how to
store this text on the disk.

Screen 91 in Fig 6-1 shows the input of a
mailing address. The word FNAME expects 10
characters at the starting address of PAD.

67

The next word adds ten to the starting
address, then it expects an additional ten
characters. The other words are defined
in the same way.

SCR # 091

0 AFB TEXT cntd ef)
1 FNAME PAD 10 EXPECT
2 LNAME PAD 10 + 10 EXPECT
3 STREET PAD 20 + 15 EXPECT ;
4 CITY PAD 35 + 15 EXPECT
5 STATE PAD 50 + 2 EXPECT
6 ZIP PAD 52 + 5 EXPECT
7 INPUT 125 EMIT CR
8 PAD 58 32 FILL
9 FIRST NAME FNAME CR

10 LAST NAME LNAME CR
11 STREET STREET CR
12 CITY CITY CR
13 STATE STATE CR
14 ZIP ZIP CR
15

Fig 6-1 Input for a mailing list.

The word INPUT clears the screen and fills
the PAD with blanks. Next the message
FIRST NAME is displayed on the screen.
After this FNAME expects ten characters.
In the same way, all the other inputs are
made for this mailing list address.

Type in your address and then PAD 58 TYPE.
The content of the 58 bytes of PAD are
displayed on the screen. All names, if
they do not fill all bytes are followed by
little hearts. This is the printout of
the ASCII zero character. FORTH adds three
zeros to the end of the text. On the ATARI
screen these zeros are displayed as little
hearts. To get rid of this we use a new
definition of TYPE, shown in FIG 6-2.

68

TYPE -DUP IF OVER + SWAP
DO I C@ 127 AND DUP 0=

IF DROP ELSE EMIT THEN
LOOP ELSE DROP ENDIF

Fig 6-2 Another TYPE.

In the new definition of TYPE, the word
-DUP (query dup) is used. This word
duplicates the stack only if it non-zero.

The printout of an address is shown in FIG
6-3, screen 92. The word PRINT expects two
numbers on the stack. The first number is
the startinq address. relative to thp
starting address of PAD. The second number
gives the number of characters being
printed.

SCR # 092

o AFB TEXT OUTPUT ef)
1 PRINT (nn') PAD + SWAP
2 -TRAILING TYPE ;
3 OUT CR 10 0 PRINT SPACE
4 10 10 PRINT CR 15 20 PRINT
5 CR 15 35 PRINT SPACE
6 2 50 PRINT SPACE 5 52 PRINT
7 CR
8

Fig 6-3 Printout of an address.

For example, 10 0 PRINT prints 10
characters,starting at address zero of PAD.

The word OUT prints the address. An
example is shown in Fig 6-4.

69

FIRST NAME EKKEHARD
LAST NAME FLOEGEL

OK
OUT

STREET 53 REDROCK LANE
CITY POMONA

STATE CA
ZIP 91766

EKKEHARD FLOEGEL
53 REDROCK LANE
POMONA CA 91766
OK
.SCRN

Fig 6-4 Sample printout.

6-2 FORMATTING THE OUTPUT.

FORTH uses several words to format the
output. These words require that the
number on top of the stack is a double
precision, 32 bit, number. A double
precision number is entered on the stack,
if there is a decimal point in this number.

Examples:

123.45 1.2345 1234.

These are double precision numbers. There
are a few operators used for calculating
with these 32-bit numbers .

D+ (ddl-d2) d2=dl+d

DMINUS (d-d') d'=-d

D. (d) Prints d.

For more words see Appendix A. There is no
double precIsIon multiplication or
division. These words must be written in
machine language.

70

The words for formatting an output are:

<# (d)

#S

#> (-an)

HOLD c)

Example:

Start converting a num­
ber into a string.

Convert one digit and
add the character to
the string.

Convert remaining
digits.

End of conversion. The
address a is the
starting address and n
is the length of the
string.

Insert the character
c in the string.

We define a word .$ which prints us 10000
for exmple as $100.00 •

: .$ <# # # 46 HOLD #S 36 HOLD #> TYPE

12344 •• $ RET $123.44

The conversion of this number to a string
starts at the end of this number. First
the two digits 4 4 are converted. Then a
decimal point is inserted, after which the
rest of the number is converted. The $
sign is placed in front of this number and
the conversion is terminated with #>. This
places the address and the length of the
string, ready for the word TYPE, on top of
the stack. Another example is the printout
of a double precision unsigned number:

: DD. <# S# #> TYPE SPACE i

71

The word NUMBER converts a string to a
double precision number.

NUMBER (a-d) Convert a string at
a+l to a double
precision number. At
address a the length
of the string is
stored. The variable
DPL contains the
number of digits right
from the decimal point.

We use this word in the program CASH­
REGISTER, shown in Fig 6-5.
The word CASH opens the cash register and
displays the amount of $0.00 in the upper
right corner of the TV screen. The last
word in the definition of CASH is the word
QUIT. It terminates the interpreter
without printing OK. A new amount is
added by the word $.

$ 120.00 adds $120 to the pre-
vious amount. The result is displayed. $
uses the word NUMBER to convert the string
into a double precision number. WORD
places the text at HERE, with the first
byte as length byte.

72

SCR # 101

o APB CASHREG 11/12/82 ef)
1 CURS (nnl) 85 ! 84 C! ;
2 >8 (d-an) <# # # 46 HOLD #S
3 36 HOLD #> ;
4 .$ 2DUP >8 DUP 34 SWAP
5 1 SWAP CURS TYPE
6 CLR 5 2 CURS 20 0 DO 32 EMIT
7 LOOP 4 2 CURS ;
8 $ (-d) 13 WORD HERE
9 NUMBER 0+ .$ CLR QUIT

10
11 CASH 125 EMIT 1 2 CURS
12 " CASH:" O •• $ 4 2 CURS
13 " INPUT:" QUIT;
14
15

Pig 6-5 Cash register.

The word >S reconverts the double
precision number into a string. This word
is used by .$. This word also determines
the length of the string and adjusts the
printout, that the decimal point is always
at the same position on the TV screen.

73

7 The vocabulary

7. THE VOCABULARY

7-1 DIFFERENT VOCABULARIES.

Every new
vocabulary.
vocabulary.
VOCABULARY.

word is entered into the FORTH
But you can create your own

This is done with the word

VOCABULARY <NAME> Opens vocabulary
NAME.

You have to tell the FORTH compiler
all definitions made now, have to
entered in the new vocabulary. This
done with the word DEFINITIONS.

that
be
is

<NAME> DEFINITIONS All new defini­
tions are entered
in the vocab­
ulary NAME.

with these two words, two variables are
set. The variable CURRENT contains the
address of the vocabulary, where the new
definitions are entered. The variable
CONTEXT contains the address, in which a
word is searched for first.

74

For example:

We are in the FORTH vocabulary and define:

: WHERE ." I AM IN FORTH"

Now we create a new vocabulary:

VOCABULARY TEST
TEST DEFINITIONS

All new definitions
the vocabulary TEST.
word WHERE as:

are now entered into
We define the same

WHERE ." I AM IN TEST" ;

We get the warning WHERE NOT UNIQUE,
because we have defined it already in the
vocabulary FORTH. If we call now WHERE, we
get the message:

I AM IN TEST

With the word FORTH, we set the address,
stored in CONTEXT to the beginning of the
FORTH vocabulary . All words are now
searched for first in the FORTH
vocabulary. If we now call WHERE, we get
the message:

I AM IN FORTH

Thats a very powerfull tool. Powerful to
the extent of having one word with the
same name, defined in two different
vocabularies, performing different tasks.
We use this to play the piano or an organ
with the keyboard of the ATARI.

75

7-2 PLAY ORGAN OR PIANO WITH THE ATARI.

The numeric keys one to eight of the ATARI
keyboard are used to play an organ or
piano. They refer to the musical notes of
the C scale. The parameters for the fre­
quency of each note are shown in Fig 7-1.

C 60
H 64
A 72
G 81
F 91
E 96
0 108
C 121
H 128
A 144
G 162
F 182
E 193
0 217
C 243

Fig 7-1 Pitch values of the musical notes.

The program is shown in Fig 7-2. The
screens 93 and 94 contain the definition
of the notes. Each tone is mixed with a
tone of half the frequency and a tone
which differs slightly from the basic tone.

In the vocabulary PIANO (screen 95, 96)
the musical notes are defined as a tone
with decreasing volume. In the vocabulary
ORGAN (screen 97), they are defined as
tones with a constant volume .

76

SCR # 092

o (AFB PIANO OR ORGAN 10/22 ef)
1 : OFF 0 0 0 0 SOUND
2 0 0 0 1 SOUND
3 0 0 0 2 SOUND ;
4
5 WAIT (n) 0 DO LOOP ;
6
7
8
9

10
11
12
13
14
15 -->

SCR # 093

0 (AFB TONE TABLE
1 15 VARIABLE V
2 (C) V @ 10 243
3 V @ 10 240
4 V @ 10 121
5 (D) V @ 10 217
6 V @ 10 214
7 V @ 10 108
8 (E) V @ 10 193
9 V @ 10 190

10 V @ 10 96
11 (F) V @ 10 182
12 V @ 10 179
13 V @ 10 91
14 -->
15

0 SOUND
1 SOUND
2 SOUND
0 SOUND
1 SOUND
2 SOUND
0 SOUND
1 SOUND
2 SOUND
0 SOUND
1 SOUND
2 SOUND

ef)

77

SCR it 094

0 AFB TONE TABLE cntd ef)
1 (G) V @ 10 162 o SOUND
2 V @ 10 160 1 SOUND
3 V @ 10 81 2 SOUND
4 (A) V @ 10 144 o SOUND
5 V @ 10 142 1 SOUND
6 V @ 10 72 2 SOUND
7 (H) V @ 10 128 o SOUND
8 V @ 10 126 1 SOUND
9 V @ 10 64 2 SOUND

10 (C1) V @ 10 121 0 SOUND
11 V @ 10 119 1 SOUND
12 V @ 10 60 2 SOUND ;
13 ?TASTE KEY 49 - DUP 0< IF -1
14 ELSE DUP 7 > IF ~1 THEN
15 THEN ; -->

SCR # 095

a (AFB PIANO DEFINITIONS ef)
1 VOCABULARY PIANO IMMEDIATE
2 PIANO DEFINITIONS
3 WAIT 100 0 DO LOOP ;
4 C -1 15 DO I V (C) WAIT
5 -1 +LOOP ;
6 D -1 15 DO I V (D) WAIT
7 -1 +LOOP ;
8 E -1 15 DO I V (E) WAIT
9 -1 +LOOP ;

10 F -1 15 DO I V (F) WAIT
11 -1 +LOOP ;
12 G -1 15 DO I V (G) WAIT
13 -1 +LOOP ;
14 A -1 15 DO I V (A) WAIT
15 -1 +LOOP ; -->

78

SCR # 096

0 AFB PIANO cntd ef)
1 H -1 15 DO I V ! (H) WAIT
2 -1 +LOOP i
3 Cl -1 15 DO I V (Cl) WAIT
4 -1 +LOOP i
5
6 CASE: TON C D E F G A H Cl
7
8 : PLAY BEGIN ?TASTE DUP -1
9 WHILE TON REPEAT

10 15 V ,
i .

11
12
13 -->
14
15

SCR # 097

a (AFB ORGAN DEFINITIONS
1 VOCABULARY ORGAN IMMEDIATE
2 ORGAN DEFINITIONS
3 15 V !
4 C (C) D (D) . E (E) ,
5 F (F) i G (G) . A (A) ,
6 · H (H) Cl (Cl) i · 7
8
9 CASE: TON C D E F G A H Cl

10
11 · PLAY BEGIN ?TASTE DUP -1 · 12 WHILE TON REPEAT
13 OFF i
14
15

>

i

>

ef)

i . ,

Fig 7-2 ATARI plays organ or piano.

79

The words PIANO PLAY lets you play piano.
The words ORGAN PLAY lets you play organ.

The word ?TASTE determines which key was
pressed and allows the corresponding note
to be picked up by the CASE: statement
NOTE.

7-3 THE CONSTRUCTION OF A FORTH WORD.

The word HERE places the address of the
first free memory location of the
vocabulary stack onto the parameter stack.
Type HERE and you will get a number
printed on the screen. The value of this
number ~epends of how many definitions
you have made. Enter a new definition,
such as

: ADD + ;

and type once more HERE. • The hexdump
starting at HERE is shown in Fig 7-3.

HERE. 17409

: ADD + ;

HERE. 17421

17409 83 41 44 C4 EB 43 82 26 .ADDkC.&
17417 44 25 B7 24 04 D%7$.

Fig 7-3 Hexdump of the word ADD.

80

HERE A
THE DE

FTER
FINITION

TER FIELD

ELD

PARAME

CODEFI

LINK FI

NAMEFI

HERE B
THE DE

ELD

ELD

EFORE
FINITION

17421

17419

17417

17415

17413

17411

17409

B7 24

44 25

82 26
EB 43

44 C4

83 41

Fig 7-4 Constuction of the word ADD.

440D

440B

4409

4407

4405

4403

4401

The address before the definition of ADD
was 17409, the address after the
definition is 17421. Fig 7-4 shows the
construction of the word ADD. The word
starts with the name field . The first byte
is the length byte. Here the length of the
name is stored in the lower 4 bits. The
maximum length of a name is therefore 16
characters.

The next bytes contain the name in ASCII.
The highest bit of the last character is
set to one. This indicates to the
interpreter the name searching routine is
at the end of a name.

The next two bytes are the link field. The
address stored here points to the previous
definition . The search routines uses this
address to jump to the next word. The
following two bytes are the codefield.
This address points to the address where
the execution of a word starts.

81

In our example this is the codefield
address of the colon definition. The next
two bytes a~e the parameter field. Stored
here are the codefield addresses of the
words used in the definition. In our
example the first two bytes are the
codefield address of the + word and the
next two bytes the codefield address of
the i definition. The definition of ADD
ends here and the pointer HERE points to
the address of the next byte.

We will use the word ADD in
definition:

a new

#ADD DUP ROT ADD i

FIG 7-5 shows the hexdump and Fig 7-6 the
construction of the word #ADD.

: #ADD DUP ROT ADD

HERE . 17438

17409 83 41 44 C4 EB 43 82 26 .ADDkC.&
17417 44 25 B7 24 84 23 41 44 D%7$.#AD
17425 C4 01 44 82 26 E6 25 C5 D.D.&f%E
17433 28 07 44 B7 24 04 (. D7$.

Fig 7-5 Hexdump of the word #ADD.

Notice! In a 6502 CPU
addresses are stored in
First the low order byte
order byte is stored in
memory locations.

82

system the memory
reverses order.

and next the high
two consecutive

17438 441E

, 17436 87 24 441C

ADD 17434 07 44 441A

PARAMETERFIE LD ROT 17432 C5 28 4418

DUP 17430 E6 25 4416

CODEFIELD 17428 82 26 4414

LlNKFIELD 17426 01 44 4412

17425 C4 4411

17423 41 44 440F

NAMEFIELD 17421 84 23 4400

Fig 7-6 Construction of the word #ADD.

The address 17426 in the linkfield is the
namefield address of ADD. In the parameter
field you'll find the codefield addresses
of DUP, ROT and ADD.

When #ADD is executed, the words DUP and
ROT are executed. Next the interpreter
jumps to the codefield address of ADD. It
executes this word until the semicolon
definition, then it jumps back to #ADD.
Here the interpreter finds the semicolon
definition in #ADD. This terminates the
execution of this word. If there are no
more words the interpreter prints OK and
waits for the next input.

83

If you know the
FORTH word, you
word EXECUTE.

EXECUTE (a)

codefield address of a
can execute it with the

Execute the word with
codefield address a.

3 5 HEX 2544 DECIMAL EXECUTE . 8 OK

7-4 CHANGING THE TOP OF THE DICTIONARY.

We have already used the word HERE, which
places on the parameter stack the address
of the first free memory location of the
vocabulary stack. As pointed out in the
last subchapter, the definition of a word
starts at HERE and after this, HERE points
one byte beyond the end of the word. The
definition of HERE is:

: HERE DP @ ;

It uses a variable DP. With

10 DP +1

we make a gap in the dictionary. This gap
can be used for storing data. The word
ALLOT does the same as the line above.

ALLOT n) Leave a gap of n bytes
in the dictionary

Attention 1 The word ALLOT reserves n
bytes in the dictionary. If you want to
store n numbers in this gap, you have to
reserve place for 2*n bytes .

84

HERE points to the
store the number 1000,
this place with

parameter field. We
for example, at

1000 HERE !

If we want to store a second number, first
we have to add two to HERE, and then we
can store it.
We can use the word, komma). The
definition is:

(n)

Instead of

1000 HERE

we can write

1000 ,

Places n on top of
dictionary stack.
two to HERE.

2 DP +!

the
Add

To read these numbers from the dictionary,
we use the word I tick) •

I <NAME) (-a) Places the parameter
field address a on the
stack .

To use this gap in the dictionary, we must
name it. We use the word <BUILDS • This is
part of a defining word which we discuss
in the ne x t subchapter.

<BUILDS <NAME) places the entry NAME into
the dictionary.

Fig 7-7 shows an example. We write the
word VECTOR into the dictionary, and
reserve a place for five numbers . The word
!VECTOR stores a number in this area.

85

It expects two numbers on the stack. The
index n and the number itself, which
should be stored. If the index is zero,
this number is stored in the first place.
If the index is four, this number is
stored in the fifth place. The word
@VECTOR fetches a number out of this array.
It expects the index on the stack. Be
carefull. If you use an index outside of
the specified range the number is stored
at this place. This can damage the program
and hang up the computer.

SCR # 110

o (AFB MEMORY RESERVATION ef)
1
2 <BUILDS VECTOR DP @ 10 + DP
3
4 @VECTOR (n-n')
5 'VECTOR SWAP 2 * + @
6
7 !VECTOR (nn')
8 'VECTOR SWAP 2 * +
9

10
11
12
13
14
15

Fig 7-7 Memory reservation.

Fig 7-8 is another example to store data
in an array. We enter the name VECTOR into
the dictionary and reserve place for 6
numbers. The word INIT stores a one in the
first place. The word +INDEX increases
this number by one.

86

SCR # III

0 (AFB INDEXED MEM ALLOC. ef)
1
2 <BUILDS VECTOR 12 ALLOT
3
4 INIT () 1 I VECTOR !
5
6 +INDEX 1 I VECTOR @ +
7 I VECTOR , . . ,
8
9 @VECTOR (n-n I)

10 I VECTOR SWAP 2 * + @ . ,
11
12 !VECTOR (n) I VECTOR DUP @
13 2 * + ! +INDEX i
14
15

Fig 7-8 Indexed memory allocation.

The word @VECTOR is the same as in the
last example. The word !VECTOR is differ­
ent. This word takes the parameter field
address and duplicates it. Then it takes
the number from the first place,
multiplies it by two, and adds it to the
parameter field address. This gives the
new address where the number is stored.
The number in the first place is increment­
ed. The words:

INIT
1000 !VECTOR
2000 !VECTOR
3000 !VECTOR

store the numbers 1000 2000 3000 in three
consecutive memory locations. With

2 @VEC'l'OR

87

you read the number stored in the second
place.

7-5 THE VIRTUAL MEMORY.

In the example above we reserved a place
for five numbers. What can we do, if we
want to store ten thousand 16 bit numbers?
This could only be done with a disk drive.

Now some words, how FORTH handles the disk.
This is very easy. If you use a disk,
formatted by DOS and no DOS files on it,
FORTH recognices this as a memory of 720
blocks with 128 bytes each. The word BLOCK
reads one block into the disk buffer.

BLOCK (n-a) Reads block n if it
is not present,
disk buffer and
the address a
first byte
stack.

on

in the
leaves
of the

the

The disk buffer is a region in RAt-i,
reserved for these blocks. If this buffer
is full, one block is overwritten. Prior
to this, the block was written back to
disk if it was marked as updated. The
update bit is set by the word UPDATE.

UPDATE Marks a block as
updated.

This word
block is
be saved
relation
memory.

88

is used in
changed and
on disk.

between a

a
the
Fig

block

program when a
changings should

7 - 9 shows the
on disk and in

480

DISKETTE

UPDATE BIT
BLOCKNUMBER

4- BLOCK

o 482

o

RAM

Fig 7-9 Blocks in RAM and on diskette •

The program in Fig 7-10 shows how to use
the disk as a virtual memory. To store
data on disk we use the same technique as
in our last example.

The constant START is the number of the
first block on disk we will use for data
storage. The blocknumber 480 is equal to

89

screen number 120. The next word #INDEX
requests the index of the wanted number on
the stack and leaves the address where it
is stored. The index n is multiplied by
two and divided by 128 with the word /MOD.
This leaves the remainder and the quotient
on the stack.

SCR # 112

o (AFB VIRTUAL MEMORY ef)
1 480 CONSTANT START
2 #INDEX (n-a) 2 * 128 /MOD
3 START + BLOCK + ;
4 FIRST# (-a) 0 #INDEX
5 +NR 1 FIRST# +! ;
6 !MEM (n) FIRST# @ #INDEX
7 +NR UPDATE ;
8 @MEM (a-n) #INDEX @
9 #INIT 1 FIRST# ! ;

10 .CONTENT CR FIRST# @ DUP 1 =
11 IF ELSE 1 DO I @MEM • CR
12 LOOP THEN ;
13
14
15

Fig 7-10 Virtual memory.

The constant START is added to the the
quotient. This is the block number in
which the wanted number is stored. BLOCK
brings the address of the first byte on
the stack. To this address the remainder
is added. The result is the address of the
wanted number. FIRST# brings the address
of the first byte of block START on the
stack. This byte contains the amount of
numbers stored on disk. #INIT sets the
starting value to one. The words !MEM and
@MEM work like !VECTOR and @VECTOR in the
last example. The word .CONTENT prints the

90

content of this array . We will use the
virtual memory in an application program
in the next chapter .

#INIT OK
1 !MEM OK
2 !MEM OK
9999 !MEM OK
1234 !MEM OK
FLUSH OK
• CONTENT
1
2
9999
1234
OK

Fig 7-11 Example for a virtual memory.

7-6 DEFINITION WORDS

In the last subchapter, we used the word
<BUILDS to make an entry in the dictionary.
This word is part of the defining word
<BUILDS ••• DOES > • In FORTH these defining
words are used to create new data struc­
tUres. Fig 7-12 shows the construction of
a defining word.

: CONSTANT <BUILDS , DOES> @ ;

COMPILE
(BUILDS TIME

BEHAVIOUR
DOES) RUN TIME

BEHAVIOUR

Fig 7-12 Construction of a defining word.

After the word <BUILDS all words are
listed which are executed during compilihg
a word (compile time behaviour). After

91

DOES> all words
executed during
behaviour) •

are listed, which are
running a word (run time

Example:
The word CONSTANT is defined as:

CONSTANT <BUILDS , DOES> @

During compile time of CONSTANT a number
is stored on top of the dictionary stack (
,). During runtime this number is fetched
(@) from the stack. As another example
we define an array as:

ARRAY <BUILDS 20 ALLOT DOES> SWAP 2

We can use the word ARRAY to create
words with the same data structure.
all store ten 16 bit numbers.

ARRAY VECTOR

* + ;

new
They

creates the word VECTOR as a one
dimensional array for ten numbers.

1000 a VECTOR

stores the number 1000 in the first
element of this array and

a VECTOR @

prints it on the screen.

Using a defining word means to change the
compiler of the FORTH system. Other
computer languages are sealing the
compiler, so that nobody can change it.
This does'nt happen in FORTH. You can
change the compiler and even can change
the compile time behaviour. We will see an
example later.

92

The program in Fig 7-13 is another example
for <BUILDS ••• DOES). It is a language
translator . LIS creates an array for four
numbers. 'LIST is a list of addresses. In
this list the addresses of the messages

"HELLO" "GUTEN TAG" and so on are
stored.

o AFB LANGUAGE TRANSLATOR ef)
1 LIS <BUILDS 8 ALLOT DOES)
2 SWAP 2 * + ; LIS 'LIST
3
4 : EN ." HELLO " ;
5 'EN 0 'LIST
6 : DE ." GUTEN TAG " ;
7 'DE 1 'LIST
8 : IT ." BON GIORNO "
9 'IT 2 'LIST !

10 : FR ." BON JOUR" ;
11 'FR 3 'LIST !
12
13
14 --)
15

o AFB LANG. TRANSLATOR cntd ef)
1
2 0 CONSTANT ENGLISH
3 1 CONSTANT GERMAN
4 2 CONSTANT ITALIEN
5 3 CONSTANT FRENCH
6
7 GREETINGS 'LIST @ 2 -
8 EXECUTE ;
9

10
11
12
13
14 ; S
15

Fig 7-13 Language translator .

93

The words ENGLISH, GERMAN,
FRENCH are the names of
word GREETINGS fetches the
'LIST, subtracts two, to get
address and executes it.

ITALIEN and
constants. The

address from
the codefield

GERMAN GREETINGS GUTEN TAG OK

94

8 Applications

8. APPLICATIONS.

8.1 MAILING LIST.

The program in Fig 8-3 is a mailing list.
For the input of an address a mask is used.
This mask is shown in Fig 8-1 and an
example in Fig 8-2.

MAILING LIST

-FN -LN

-CO

-ST

-Cy -CT-ZP

-Cl -C2 -MORE (yiN)

WHAT

Fig 8-1 Input mask.

95

MAILING LIST

-EKKEHARD - FLOEGEL

-ELCOMP PUBLISHING

-53 REDROCK LANE

-POMONA

-ATARI-99-47 -MORE (yiN)

WHAT
EKKEHARD FLOEGEL
ELCOMP PUBLISHING
53 REDROCK LANE
POMONA CA 91766

-CA-91766-

Fig 8-2 Example for an address input.

The main words of the mailing list are:

NEW

NEW creates a new mailing list. The number
FIRST#, stored in the first two bytes in
block 100 is set to one. In FIRST# the
number of the next entry is stored.

INPUT

INPUT enters the input mode of the mailing
list. The mask is placed on the screen and
the cursor is placed into the first field.
The cursor is moved to the next field by
pressing the RETURN key . It is also moved
if all places of a field are filled with
characters. Typing Y after OK (yiN) puts
the entry into memory. N cancels the entry.
For more input type Y after MORE (yiN) •

96

· CONTENT

. CONTENT prints the content of the mailing
list. Three entries are displayed on the
screen at one time. Pressing the space bar
displays the next three entries. Any other
key cancels the output.

SEARCH <item> <name >

SEARCH searches for a specific entry.
SEARCH LN JEFFERSON searches the entry
with the last name JEFFERSON. The input
SEARCH LN JEF searches all entries in
which the last name starts with the
characters JEF. The entries are printed
three at a time. Pressing the space bar
prints the next three entries, until the
message END OF LIST appears.

DELETE <i tem > <name >

DELETE <item > <name > deletes an entry.
DELETE LN MILLER searches first for the
entry with the last name MILLER. The
entry is deleted by Y after the message OK
(yiN) • A deleted entry is marked with the
character *

ENTRY

ENTRY rep~aces a deleted entry with a new
one. If there is no deleted entry the
message NO DELETED ENTRY, USE INPUT is
displayed.

GO

GO erases the TV screen and waits for the
input of a main word.

97

Some words used in the program:

CM sets the background color to a bright
yellow. The characters are printed in
black on the TV screen.

MASK creates the mask on the TV screen.
For printing the words lR 2R 3R 4R 5R arid
.- are used.

DESCR <name> creates an entry into the
vocabulary with the name <name>. It is
used to store the starting address within
PAD and the length of a field.

FN (nn') First name.
LN (nn') Last name.
CO (nn I) Company.
ST (nn') Street.
Cy (nn I) City.
CT (nn I) State.
ZP (nn') Zip code.
Cl (nn') Codefield 1.
C2 (nn') Codefield 2.

The two codefields can be used to mark the
entries of an address. They are not
printed on the screen.

The words in screen four are used to erase
an entry within the mask.
(CL) (n) erases n characters starting at
the momentary cursor position.
FNC places the cursor at the beginning of
the first name field and clears the entry.
In the same manner the other words are
defined.
The words used in screen #5 are similar to
the words defined in chapter six. The
virtual memory is expanded to store
records with a length of 128 bytes. The
same words as in Fig 7-10 are used.

98

One of the most significant words used in
the searching part is (VERGL).

(VERGL) (aa'c-f)

(VERGL) compares two strings starting at
address a and a' until a delimiter c is
found in the string at address a. If the
two strings are equal until the delimiter
is found, a one is put on the stack. The
zero is left on the stack if they are not
equal. In the word VERGL the space
character (ASCII 32) is used as
delimiter. For large mailing lists (VERGL)
should be written in machine language.

(CONTENT) (n)

(CONTENT) prints the entry with the number
n on the screen. It uses the variable CNT
for counting. After three printouts the
screen is cleared and CNT is set to zero.

FOUND moves the content of PAD to PAD +
128, then prints the address found and
restors PAD for further searching.

(SEARCH) (nn'O-f)

(SEARCH) searches for an entry between the
boundaries n and n'. The zero on top of
the stack is replaced by a one if the
entry was found. The word (ERASE) is
similar.

Used constants and variables:

START contains the number of the first
block used for date storage.

99

RECLEN contains the length of a record.
WO (variable) contains the starting
address within PAD for the string
comparison.
#NR (variable) contains the number of the
entry which is examined.
CNT (variable) is u3ed for counting.

SCR # 001

0 BUSINESS MASK 10/22 ef)
1 CURS (rocl) 85 ! 84 C!
2 155 EMIT ;
3 CLR 125 EHIT ; : . - 45 EMIT
4 CM 222 710 C! 0 709 C!
5 lR (n) 3 CURS 38 3 DO
6 LOOP .

I

7 2R 6 3 CURS . - 6 20 CURS · -8 6 37 CURS . - ;
9 3R (n) DUP 3 CURS . - 30

10 CURS 8 o DO .- LOOP ;
11 4R 12 3 CURS .- 12 28 CURS
12 12 31 CURS . - 12 37 CURS · - ;
13 5R 14 3 CURS .- 14 9 CURS . -
14 14 17 CURS . - 14 37 CURS · -15 - ->

SCR # 002

o (BUSINESS MASK cntd ef)
1 128 CONSTANT RECLEN
2 MASK CLR CM 5 lR 2R 7 lR 8 3R
3 9 lR 10 3R 11 lR 4R 13 lR
4 5R 15 lR ;
5 ADDRESS INPUT)
6 DESCR 0 VARIABLE -2 ALLOT
7 DESCR (FN) 0 , 16 ,
8 DESCR (LN) 16 , 16 ,
9 DESCR (CO) 32 , 26 ,

10 DESCR (ST) 58 , 26 ,
11 DESCR (CY) 84 , 24 ,

100

12 DESCR (CT) 108 , 2 ,
13 DESCR (ZP) 110 , 5 ,
14 DESCR (NR) 115 , 5 ,
15 DESCR (AM) 120 , 7 , -->

SCR # 003

0 BUSINESS ADDR INPUT cntd ef)
1 2@ DUP 2 + @ SWAP @ ;
2 FN (FN) 2@ LN (LN) 2@
3 co (CO) 2@ ST (ST) 2@
4 Cy (CY) 2@ CT (CT) 2@
5 ZP (ZP) 2@
6 Cl (NR) 2@ C2 (AM) 2@
7 IN PAD + SWAP EXPECT ;
8 (INPUT) 6 4 CURS FN IN
9 6 21 CURS LN IN 8 4 CURS CO IN

10 10 4 CURS ST IN 12 4 CURS CY IN
11 12 29 CURS CT IN
12 12 32 CURS ZP IN
13 14 4 CURS Cl IN
14 14 10 CURS C2 IN
15 -- >

SCR # 004

o BUSINESS ADDR INPUT cntd ef)
1 (CL) (n) 0 DO 32 EMIT LOOP;
2 FNC 6 4 CURS 16 (CL) ;
3 LNC 6 21 CURS 16 (CL) ;
4 COC 8 4 CURS 26 (CL) ;
5 STC 10 4 CURS 26 (CL) ;
6 CYC 12 4 CURS 24 (CL) ;
7 CTC 12 29 CURS 2 (CL) ;
8 ZPC 12 32 CURS 5 (CL) ;
9 NRC 14 4 CURS 5 (CL) i

10 AMC 14 10 CURS 7 (CL) ;
11 CL FNC LNC COC STC CYC
12 CTC ZPC NRC AMC
13 MC 14 18 CURS ;
14 OK? MC 19 (CL) MC
15 " OK (yiN) " ; -->

101

SCR # 005

o BUSINESS ADDR INPUT cntd ef)
1 MORE? MC 19 (CL) MC
2 ." MORE (yiN)" ;
3 PADC PAD RECLEN 32 FILL ;
4 TYPE FOR ATARI)
5 ATYPE -DUP IF OVER + SWAP
6 DO I C@ 127 AND DUP 0=
7 IF DROP ELSE EMIT THEN
8 LOOP ELSE DROP ENDIF ;
9 : IS SPACE ; : 5S 5 SPACES ;

10 : PRINT (na) PAD + SWAP
11 -TRAILING ATYPE ;
12 : .ADDR CR 5S FN PRINT IS LN
13 PRINT CR 5S CO PRINT CR 5S ST
14 PRINT CR 5S CY PRINT IS CT
15 PRINT IS ZP PRINT; -->

SCR # 006

o (VIRTUAL MEMORY ef)
1 100 CONSTANT START
2 #INDEX (n-a) RECLEN * 128
3 IMOD START + BLOCK + ;
4 FIRST# (-a) 0 #INDEX ;
5 +NR 1 FIRST# +! UPDATE ;
6 !MEM PAD FIRST# @ #INDEX
7 RECLEN CMOVE UPDATE +NR ;
8 @MEM (n) #INDEX PAD RECLEN
9 CMOVE ;

10 NEW 1 FIRST# ! ;
11
12 -->
13
14
15

102

SCR # 007

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BUSINESS ADDR INPUT cntd ef)
.MSG 1 4 CURS ." MAILING LIST

" . ,
.MSGI 16 4 CURS ." WHAT" ;
GO CLR CM .MSG .MSGI QUIT
INPUT MASK PADC .MSG
BEGIN (INPUT) OK? KEY 89 =
IF !MEM THEN
MORE? KEY 89 ==
WHILE CL PADC MC 19 (CL)
REPEAT .MSGI FLUSH QUIT;

-->

SCR # 008

o (BUSINESS SEARCH ef)
1 0 VARIABLE WO 1 VARIABLE #NR
2 2DROP DROP DROP ;
3 [I] [COMPILE] 1 ;
4 (VERGL) (aa1c-f)
5 BEGIN ROT DUP C@ >R OVER I =
6 R> SWAP DUP IF 0
7 ELSE DROP >R ROT DUP C@
8 R> = DUP DUP THEN WHILE
9 2DROP 1+ >R 1+ R> ROT

10 REPEAT >R 2DROP 2DROP R> ;
11 WHAT [I] 2 - EXECUTE SWAP
12 DROP DUP WO ! 13 WORD HERE
13 COUNT ROT PAD + SWAP CMOVE ;
14 -->
15

103

SCR # 009

o BUSINESS SEARCH cntd ef)
1 VERGL PAD WO @ + #NR @ #INDEX
2 WO @ + 32 (VERGL) ;
3 NIL CR ." NOT IN LIST"
4 EOL CR ." END OF LIST" ;
5 .NAME #NR @ @MEM .ADDR ;
6
7
8
9 -->

10
11
12
13
14
15

SCR # 010

o (BUSINESS OUTPUT ef)
1 0 VARIABLE CNT
2 3? (- f) CNT @ 3 = ;
3 (CONTENT) (n) @MEM .ADDR
4 1 CNT +! 3? IF KEY 0 CNT !
5 CLR 32 = 1 XOR IF .MSGI QUIT
6 THEN THEN ;
7 .CONTENT CLR CM 0 CNT !
8 CR FIRST# @ DUP 1 = 1 XOR
9 IF 1 DO I (CONTENT)

10 CR LOOP THEN .MSGI QUIT ;
11
12
13
14
15 -->

104

SCR # 011

o BUSINESS SEARCHING cntd ef)
1 MOVE) PAD PAD 128 + RECLEN
2 CMOVE ,
3 <MOVE PAD 128 + PAD RECLEN
4 CHOVE ;
5 FOUND MOVE) #NR @ (CONTENT)
6 CR <MOVE ;
7 (SEARCH) DO I #NR ! VERGL
8 IF FOUND DROP 1 THEN LOOP ;
9

10 SEARCH 0 CNT ! PADC CLR
11 WHAT 0 FIRST# @ 1 (SEARCH)
12 IF EOL ELSE NIL THEN
13 .MSGI QUIT ;
14 --)
15

SCR # 012

o BUSINESS DELETING ef)
1 (ERASE) DO I #NR ! VERGL
2 IF DROP 1 LEAVE THEN LOOP ;
3
4 :.* #NR @ #INDEX RECLEN
5 42 FILL UPDATE ;
6
7 DELETE PADe CLR WHAT 0 FIRST#
8 @ 1 (ERASE) IF .NAME OK?
9 KEY 89 = IF .* THEN

10 ELSE NIL THEN .MSGI QUIT
11
12
13
14
15 --)

105

SCR # 013

o BUSINESS ENTRY ef)
1 !ENTRY PAD #NR @ #INDEX
2 RECLEN CMOVE UPDATE FLUSH
3
4 (ENTRY) CLR MASK BEGIN
5 (INPUT) OK? KEY 78 = WHILE
6 CL REPEAT !ENTRY ;
7
8 .MSG3 CR ." NO DELETED ENTRY,
9 USE INPUT .. ;

10 ENTRY PADC 42 PAD ! 32 PAD
11 1 + ! 0 WO ! 0 FIRST# @ 1
12 (ERASE) IF (ENTRY) ELSE .MSG3
13 THEN .MSG1 QUIT
14
15 HELP 14 LIST ;

SCR # 014

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BUSINESS HELP SCREEN ef)
Main words:

NEW starts a new mailing list.
INPUT makes an entry. It is
placed at the end of the list.

.CONTENT prints the content of
the list. The printing stops
after three entries. Use the
space bar for more. Any other
key cancels the printing.

SEARCH <item> <name> searches
for the item with name.

DELETE <item> <name> deletes
the entry with the item name.
ENTRY searches for a deleted
entry and replaces it.

Fig 8-3 Mailing list.

106

8-2 SERIAL OUTPUT VIA GAME PORT THREE.

The game port three
data from the ATARI to
serial input. One
interface is simulated
connections to be made
4.

(FIGURE)

Transmit Data
5

6 9

Signal Ground

is used to transmit
a printer with a
half of an RS232
by software. The
are shown in Fig 8-

0

o 1

0 2
0-

0

0
0

0
0

0
0

0
0

7
0-SIGNAL GND

20

~8
0

0
0

0
0

0
0

0
0

0
0

Fig 8-4 Transmit data from the ATARI
to a printer or RS232 input.

107

This application also shows how to use
machine code without using an assembler in
FORTH . The program is listed in Fig 8-5 .

The word CREATE <name> creates an entry
into the vocabulary with the name <name>.
It writes the parameter field address into
the codefield address of this word. The
bytes of the machine code are stored in
the parameter field by C, CREATE sets
bit 6 of the length byte to one. This
makes the name unknown to the search
routine of the interpreter . The word
SMUDGE sets this bit to zero.
The last instruction of a FORTH word
defined in machine code must be a JMP NEXT
instead an RTS instruction . with JMP NEXT
the FORTH interpreter is called. The
address of NEXT is $747 in QS-FORTH and
$842 in POWER-FORTH.

The word IN IT in text screen #140 initial­
ises the port B. This word could be
written with FORTH words . To get the exact
timing for the data transfer rate of 300
baud, a subroutine BITWAIT is used. The
code for this routine is placed into
memory locations $6EB to $6F5. The word
OUTCHR takes the byte on the top of the
stack and sends it to the printer. During
printing all interrupts of the ATARI are
disabled. This causes the TV screen to
become black and flickering .

The words defined in screen #145 to #149
print the content of a text screen and a
TV screen •

• SCREEN (n) Print text screen n •

• SCRN Print TV screen.

108

SCR # 140

0 (SCREENPRINT RS232 9/29 ef
1 CREATE INIT (PORT B) HEX
2 A9 C, 30 C, (LDA #$30
3 8D C, 03 C, D3 C, (STA $D303
4 A9 C, 01 C, (LDA #$01
5 8D C, 01 C, D3 C, (STA $D301
6 A9 C, 34 C, (LDA #$34
7 8D C, 03 C, D3 C, (STA $D303
8 A9 C, 00 C, (LDA #$00
9 8D C, 01 C, D3 C, (STA $D301

10 4C C, 47 C, 07 C, (JMP NEXT
11 SMUDGE
12
13 DECIMAL -->
14
15

SCR # 141

0 (SCREENPRINT RS232 cntd ef)
1 HEX (BITWAIT)
2 96A2 6 EB (LDX #$96
3 06AO 6ED (LDY #$06
4 88 6EF C! (DEY)
5 FDDO 6FO (BNE -3
6 CA 6F2 C! (DEX)
7 F8DO 6F3 (BNE -8
8 60 6F5 C! (RTS)
9

10
11 DECIMAL
12
13 -- >
14
15

109

SCR # 142

0 (SCREENPRINT RS232 cntd ef
1 HEX
2 CREATE OUTCHR c)
3 B5 C, 00 C, (LDA OO,X)
4 E8 C, E8 C, (DEC SPTR)
5 86 C, B5 C, (STX XSAVE)
6 49 C, FF C, (EOR #$FF)
7 8D C, F6 C, 06 C, (STA BUFF)
8 78 C, (SEI)
9 A9 C, 00 C, (LDA #00)

10 8D C, OE C, D4 C, (STA NMIEN)
11 8D C, 00 C, D4 C, (STA DMACTL)
12 A9 C, 01 C, (LDA #$01)
13 8D C, 01 C, D3 C, (STA PORTB)
14 20 C, EB C, 06 C, (JSR WAIT)
15 -->

SCR # 143

0 (SCREENPRINT RS232 cntd ef)
1 AO C, 08 C, (LDY #$08)
2 84 C, IF C, (STY COUNT)
3 AD C, F6 C, 06 C, (LDA BUFF)
4 8D C, 01 C, D3 C, (STA PORTB)
5 6A C, (ROR)
6 8D C, F6 C, 06 C, (STA BUFF)
7 20 C, EB C, 06 C, (JSR WAIT)
8 C6 C, IF C, (DEC COUNT)
9 DO C, EF C, (BNE -17)

10 A9 C, 00 C, (LDA #00)
11 8D C, 01 C, D3 C, (STA PORTB)
12 20 C, EB C, 06 C, (JSR WAIT)
13 20 C, EB C, 06 C, (JSR WAIT)
14 AO C, 01 C, (LDY #01)
15 -->

110

SCR # 144

0 (SCREENPRINT RS232 cntd
1 A9 C, 22 C, (LDA
2 8D C, 00 C, D4 C, (STA
3 A9 C, FF C, (LDA
4 8D C, OE C, D4 C, (STA
5 58 C, (CLI
6 A6 C, B5 C, (LDX
7 4C C, 47 C, 07 C, (JMP
8
9 SMUDGE

10
11 DECIMAL
12
13 --)

14
15

SCR # 145

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(SCREENPRINT
3020 VARIABLE ZNR
HEX
o VARIABLE #SCR -2 ALLOT
53 C, 43 C, 52 C, 20 C,
23 C, 20 C,

DECIMAL -->

ef)
#$22)
DMACTL)
#$FF)
NMIEN)

)
XSAVE)
NEXT)

ef)

111

SCR # 146

o SCREENPRINT cntd ef)
1 CRR [HEX] OD OUTCHR
2 OA OUTCHR [DECIMAL] i
3 PRINT (ADR N -->) 1+ 0
4 DO DUP I + C@ OUTCHR LOOP
5 DROP i
6 BLANCS 1+ 0 DO [HEX] 20
7 OUTCHR [DECIMAL] LOOP i
8 SCO /MOD 48 + i
9 .ZNR DUP 10 SCO DUP 48 =

10 IF DROP 32 THEN OUTCHR
11 1 SCO OUTCHR DROP i
12 .TOS DUP 100 SCO OUTCHR
13 10 SCO OUTCHR 1 SCO OUTCHR
14 DROP i : .B 10 SCO OUTCHR
15 1 SCO OUTCHR DROP i -->

SCR # 147

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

112

(SCREENPRINT cntd
DECIMAL INIT

ef)

lLINE CRR 4 BLANCS
1+ ZNR ! 1 BLANCS
?CRR 32 MOD 0= IF

ZNR @ .ZNR . ,
lLINE

THEN i
ANF 5 BLANCS #SCR 5 PRINT
.TOS 0 ZNR ! CRR i
ZAUS 128 0 DO DUP BLOCK
I ?CRR I + C@ OUTCHR LOOP

. SCREEN ANF 4 * 4 0 DO ZAUS
1+ LOOP CRR DROP i

-->

SCR # 148

o (SCRN PRINT 10/14/82 ef)
1 0 VARIABLE ROW 0 VARIABLE COLN
2 ?FIN (-f) COLN @ 24 = ;
3 lROW 40 0 DO ROW @ C@ 32 +
4 DUP 128 > IF 32 - THEN
5 OUTCHR 1 ROW +1 LOOP;
6
7 .SCRN 88 @ ROW 1 0 COLN 1
8 BEGIN lROW CRR 1 COLN +1 ?FIN
9 UNTIL;

10
11
12
13
14
15 -->

SCR # 149

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SCREENPRINT cndt
6CR 6 0 DO CRR LOOP
4CR 4 0 DO CRR LOOP ;
TRI (n) DUP 3 + SWAP
DO I .SCREEN 4CR LOOP
CRR eRR ;

ef)

Fig 8-5 Serial output via game port three.

113

-I::
>

9
.

A
PP

E
N

D
IX

FO
R

T
H

-G
L

O
SS

A
R

Y

ST
A

C
K

M

A
N

IP
U

L
A

T
IO

N

D
U

P
D

R
O

P
SW

A
P

O
V

ER

R
O

T
>R

R

>
R

A
R

IT
H

M
E

T
IC

A

N
D

L

O
G

IC
A

L

+
 * / *
/

M
OD

/M

O
D

*/

M
O

D

M
IN

U
S

M
AX

M

IN

n
-n

n
)

n)

n
n

'-
n

'n
)

n
n

'-
n

n
'n

)
n

n
ln

2
-n

ln
2

n
)

n
)

-n
)

-n
)

n
n

'-
n

l)

n
n

'-
n

l)

n
n

'-
n

l)

n
n

'-
n

l)

n
ln

2
n

3
-n

)
n

n
'-

n
l)

n

n
'-

n
ln

2
)

n
ln

2
n

3
-n

n
'

)
n

-
-n

)
n

n
'-

n
l)

n

n
'-

n
l)

D
u

p
li

c
a
te

th

e

to
p

o

f
th

e

s
ta

c
k

.
T

h
ro

w
a
w

a
y

th

e

to
p

e
le

m
e
n

t
o

f
th

e

s
ta

c
k

.
R

e
v

e
rs

e

th
e

tw
o

to

p

e
le

m
e
n

ts
.

C
o

p
y

se

c
o

n
d

e
le

m
e
n

t
o

n

to
p

o

f
th

e

s
ta

c
k

.
R

o
ta

te

th
e

to
p

th

re
e

e
le

m
e
n

ts

c
o

u
n

te
rc

lo
c
k

w
is

e
.

M
ov

e
to

p

e
le

m
e
n

t
to

th

e

re
tu

rn

s
ta

c
k

.
R

e
tr

ie
v

e

to
p

e
le

m
e
n

t
fr

o
m

th

e

re
tu

rn

s
ta

c
k

.
C

o
p

y

to
p

e
le

m
e
n

t
o

f
re

tu
rn

s
ta

c
k

to

p

a
ra

m
e
te

r
s
ta

c
k

n
l=

n
+

n
'

n
l=

n
-n

'
n

l=
n

*
n

'
n

l=
n

/n
'

n
=

n
l*

n
2

/n
3

w

it
h

d

o
u

b
le

p

re
c
is

io
n

in

te
rm

e
d

ia
te

.
n

l
re

m
a
in

d
e
r

o
f

n
/n

'.

n
l

re
m

a
in

d
e
r,

n

2

q
o

u
ti

e
n

t
o

f
n

/n
'.

n

re
m

a
in

d
e
r,

n

'
q

u
o

ti
e
n

t
o

f
n

l*
n

2
/n

3
.

C
h

a
n

g
e

s
ig

n
.

n
l=

n

if

n

>
n

'
e
ls

e

n

l=
n

'.

n
l=

n

if

n

<
n

'
e
ls

e

n

l=
n

'.

U
) ,. -a

-a

d

) ::1
 a.
 -. ><

U
1

A
BS

D

+
D

M
IN

U
S

D
A

BS

AN
D

O
R XO

R

CO
N

TR
O

L
ST

R
U

C
TU

R
ES

DO
 .
.•

 L
O

O
P

DO

DO
 •

••
 +

LO
O

P
DO

+L

O
O

P
I LE

A
V

E
(

n
-n

')

d
d

'-
d

l)

d
-d

')

d
- d

')

nn
 '

-
n

l)

n
n

'-
n

l)

n
n

'-
n

l)

n
n

')

n
n

')

n)

n)
)

IF

<w
or

ds
>

 T
H

EN

(E
N

D
IF

)
IF

(

f)

IF

<w
o

rd
sl

>
 E

LS
E

<w
o

rd
s2

>

TH
EN

(E

N
D

IF
)

IF

(
f)

B

EG
IN

<w

or
ds

>
 U

N
TI

L
(E

N
D

)
U

N
TI

L
(E

N
D

)
(

f)

B
EG

IN

<w
o

rd
sl

>
 W

H
IL

E
<w

or
ds

2
>

 R
EP

EA
T

W
H

IL
E

(
f)

M

EM
OR

Y

@

a-
n)

C@

a-

b
)

na
)

C
!

b
a)

?

a)

+
!

na
)

CM
OV

E
a
a
'n

)
F

IL
L

an

b)

ER
A

SE

an
)

BL
A

N
K

S
an

)
,

n)

C
,

b)

A
LL

O
T

n)

n
'

a
b

so
lu

te

o
f

n
.

d
l=

d
+

d
'

d
o

u
b

le

p
re

c
is

io
n

a
d

d
it

io
n

.
C

ha
ng

e
si

g
n

.
d

'
a
b

so
lu

te

o
f

d
.

L
o

g
ic

a
l

AN
D

b
it

w
is

e
.

L
o

g
ic

a
l

O
R

b
it

w
is

e
.

L
o

g
ic

a
l

X
O

R
b

it
w

is
e
.

L
oo

ps

fr
om

n

'
to

n

-l
,

lo
o

p

in
c
re

m
e
n

t
is

o

n
e.

L
oo

ps

fr
om

n

'
to

n

-l
.

L
oo

p
in

c
re

m
e
n

t
is

n

(m
ay

b

e
n

e
g

a
ti

v
e
)

.
P

u
t

lo
o

p

in
d

ex

on

th
e

st

a
c
k

,
sa

m
e

as

R
.

T
er

m
in

at
e

lo
o

p

a
t

n
ex

t
LO

O
P

o
r

+L
O

O
P.

I
f

f
is

n

o
t

z
e
ro

,
<w

o
rd

s
>

 a
re

e
x

e
c
u

te
d

.

I
f

f
is

n

o
t

z
e
ro

,
<w

o
rd

sl
>

 a
re

e
x

e
c
u

te
d

,
e
ls

e

<w
o

rd
s

>
 a

re

re
p

e
a
te

d

u

n
ti

l
f

is

no
n

z
e
ro

.

<w
o

rd
s2

>
.

If

f
is

z
e
ro

,
p

ro
g

ra
m

c
o

n
ti

n
u

e
s

a
ft

e
r

R
E

PE
A

T
,

e
ls

e

u
n

c
o

n
d

it
io

n
a
l

b
ra

n
ch

b

ac
k

fr

o
m

R

EP
EA

T
to

B

E
G

IN
.

F
e
tc

h

c
o

n
te

n
t

fr
om

a
d

d
re

ss

a
an

d

a
+

l.

F
e
tc

h

b

y
te

fr

o
m

a
d

d
re

ss

a
.

S
to

re

n
in

a
d

d
re

ss

a
an

d

a
+

l.

S
to

re

b
y

te

b
in

a
d

d
re

ss

a
.

P
ri

n
t

c
o

n
te

n
t

o
f

a
d

d
re

ss

a
an

d

a
+

l.

A
dd

n

to

th
e

c
o

n
te

n
t

o
f

a
d

d
re

ss

a
an

d
a
+

l.

M
ov

e
n

b
y

te
s

fr
om

a

to

a
'.

a+

n
<

a'
<a

.
S

to
re

n

b
y

te
s

b
in

to

m
em

eo
ry

s
ta

rt
in

g

a
t

a
d

d
re

ss

a
.

S
to

re

n
A

S
C

II

0
in

to

m
em

eo
ry

s
ta

rt
in

g

a
t

a
d

d
re

ss

a
.

S
to

re

n
A

S
C

II

32

in
to

m

em
or

y
s
ta

rt
in

g

a
t

a
d

d
re

ss

a
.

S
to

re

n
on

to

p

o
f

d
ic

ti
o

n
a
ry

.
A

dd

tw
o

to

H
ER

E
.

S
to

re

b
on

to

p

o
f

d
ic

ti
o

n
a
ry

.
A

dd

o
n

e
to

H

ER
E.

L

ea
v

e
g

ap

o
f

n
b

y
te

s
on

to

p

o
f

d
ic

ti
o

n
a
ry

.

C
O

M
PA

R
SI

O
N

0

)

<

>

0
<

0=

N
U

M
BE

R
B

A
SE

S

D
EC

IM
A

L
HE

X
B

A
SE

IN
PU

T
-O

U
T

PU
T

n

xx
x"

• R

D

.
D

.R

U
.

EM
IT

TY

PE

KE
Y

?T
ER

M
IN

A
L

EX
P

EC
T

W
OR

D
CO

U
N

T

NU
M

BE
R

FO
R

M
A

TT
IN

G

<#

i #S

#>

H
O

LD

SI
G

N

N
U

M
BE

R

nn
 '-

f)

nn
 I

-f
)

nn
 I

-f
)

n
-f

)
n

-f
)

))
-a

)

n)
 }

nn
 '
)

d)

dn
}

n}

c)

an
}

-c
)

-f
)

an
)

c)

a
-a

 'n
}

} } } an
}

c)

n}

a-
d)

f=
l,

i
f
n

<n
'.

f=

l,

if

n
>n

 I
.

f=
l,

if

n=

n
I.

f=

l,

if

n
<O

.
f=

l,

if

n=
O

.

S
e
t

d
ec

im
al

b

a
se

.
S

e
t

h
ex

ad
ec

im
al

b

a
se

.
V

a
ri

a
b

le
,

c
o

n
ta

in
s

nu
m

be
r

b
a
se

.

P
ri

n
t

n
.

P
ri

n
t

m
es

sa
g

e
x

x
x

.
M

es
sa

g
e

en
d

s
w

it
h

n

P
ri

n
t

n
,

ri
g

h
t j

u
s
ti

fi
e
d

in

fi

e
ld

.
F

ie
ld

w
id

th

is

n

'
•

P
ri

n
t

d
o

u
b

le

p
re

c
is

io
n

n

u
m

b
er

d

.
P

ri
n

t
d

ri
g

h
t j

u
s
ti

fi
e
d

in

fi

e
ld

.
F

ie
ld

w
id

th

is

n

.
P

ri
n

t
n

as

u
n

si
g

n
ed

nu

m
b
e
r

u
.

P
ri

n
t

A
S

C
II

c
h

a
ra

c
te

r
c
.

P
ri

n
t

n
b

y
te

s
s
ta

rt
in

g

a
t

a
d

d
re

ss

a
.

G
et

c
h

a
ra

c
te

r
fr

o
m

k

e
y

b
o

a
rd

.
f=

l,

if

BR
EA

K

k
ey

w

as

p
re

ss
e
d

.
E

x
p

ec
ts

n

b
y

te
s

a
t

a
d

d
re

ss

a
.

R
ea

d
c
h

a
ra

c
te

rs

fr
o

m

th
e

in
p

u
t

b
u

ff
e
r

u
n

ti
l

d
e
li

m
it

e
r

c
is

fo

u
n

d
.

C
ha

ng
e

le
n

g
th

b

y
te

a
t

a
d

d
re

ss

a
to

a
'=

a
+

l
an

d

le
n

g
th

n

.
R

ea
dy

fo

r
T

Y
PE

.

S
ta

rt

c
o

n
v

e
rt

in
g

a

n
u

m
b

er

to

a
s
tr

in
g

.
C

o
n

v
er

t
o

n
e

d
ig

it

an
d

ad

d

it

to

th

e

s
tr

in
g

.
C

o
n

v
er

t
re

m
ai

n
in

g

d

ig
it

s
.

E
nd

o

f
c
o

n
v

e
rs

io
n

.
P

u
ts

s
ta

rt
in

g

a
d

d
re

ss

a
an

d

le
n

g
th

n

on

th
e

st

a
c
k

.
R

ea
d

y

fo
r

T
Y

PE
.

In
s
e
rt

s

th
e
 A

S
C

II

c
h

a
ra

c
te

r
in

to

th

e

s
tr

in
g

.
In

s
e
rt

s

si
g

n

o
f

n
in

to

th
e

s
tr

in
g

.
C

o
n

v
er

t
a

s
tr

in
g

a
t

a
d

d
re

ss

a+
l

to

a
d

o
u

b
le

p

re
c
is

io
n

n

u
m

b
er

.
T

he

le
n

g
th

o

f
th

e

sr
in

g

m
u

st

b
e

st
o

re
d

a
t

a
d

d
re

ss

a
.

-..
..I

D
E

FI
N

IN
G

W

OR
DS

xx
x

V
A

R
IA

B
LE

<n

am
e

>

<n
am

e>

CO
N

ST
A

N
T

<n
am

e
>

<n

am
e

>

<B
U

IL
D

S
<w

o
rd

sl
>

C
R

EA
TE

<n

am
e

>

V
O

C
A

B
U

LA
R

IE
S

CO
N

TE
X

T
CU

RR
EN

T
FO

RT
H

V

O
CA

BU
LA

RY

<n
am

e
>

D

E
FI

N
IT

IO
N

S
V

L
IS

T

FO
R

G
ET

<n

am
e

>

,
<n

am
e

>

D
IS

K

L
IS

T

LO
AD

BL

O
CK

EM

PT
Y

-
B

U
FF

ER
S

U
PD

A
TE

FL

U
SH

IN

D
EX

SO
M

E
V

A
R

IA
B

LE
S

D
P H
ER

E
PA

D

))
n

) a)

n
)

n
)

D
O

ES
>

<w

o
rd

s2
>

a)

a)
)))))

a)

n
) n)

n
-a

)
)))

n
n

'
)

-a
)

-n
)

-a
)

B
eg

in

o
f

a
c
o

lo
n

d

e
fi

n
it

io
n

.
E

nd

o
f

a
c
o

lo
n

d

e
fi

n
it

io
n

.
C

re
a
te

v

a
ri

a
b

le

<n
am

e
>

 w
it

h

th
e

in

it
ia

l
v

a
lu

e

n
.

T
he

a
d

d
re

ss

a
o

f
th

e

v

a
ri

a
b

le

is

p
u

t
on

th

e

st

a
c
k

.
C

re
a
te

a

c
o

n
st

a
n

t
<n

am
e

>
 w

it
h

th

e

v
a
lu

e

n
.

T
he

v

a
lu

e

n
o

f
th

e

c
o

n
st

a
n

t
is

re

tu
rn

e
d

.
U

se
d

to

c
re

a
te

a

ne
w

d

e
fi

n
in

g

w
o

rd
.

<w
o

rd
sl

>
 a

re

ex
ec

u
te

d

d
u

ri
n

g

co
m

p
il

e
ti

m
e
.

<w
o

rd
s2

>

a
re

e
x

e
c
u

te
d

d

u
ri

n
g

ru

n

ti
m

e
.

C
re

a
te

s
an

e
n

tr
y

<n
am

e
>

in

to

th
e

v
o

c
a
b

u
la

ry
.

T
he

c
o

d
e
fi

e
ld

a
d

d
re

ss

o
f

<n
am

e
>

is

th

e

p
a
ra

m
e
te

r
fi

e
ld

a
d

d
re

ss
.

R
et

u
rn

s
a
d

d
re

ss

o
f

CO
N

TE
X

T
v

o
c
a
b

u
la

ry
.

T
h

is

is

se

a
rc

h
e
d

f
ir

s
t.

R

et
u

rn
s

a
d

d
re

ss

o
f

C
U

R
R

EN
T

v
oc

a
b

u
la

ry
.

N
ew

d

e
fi

n
it

io
n

s

a
re

p

u
t

h
e
re

.
M

ai
n

FO
RT

H

v
o

c
a
b

u
la

ry
.

O
pe

ns

ne
w

v

o
c
a
b

u
la

ry
.

S
e
ts

C

U
R

R
EN

T
to

<n

am
e

>
.

S
e
ts

CO

N
TE

X
T

to

C
U

R
R

EN
T.

P

ri
n

t
a
ll

w

o
rd

s.

F
o

rq
e
t

a
ll

d

e
fi

n
it

io
n

s

b
ac

k

an
d

in

c
lu

d
in

g

<n
am

e
>

.
G

et

p
ar

am
et

er

fi
e
ld

a
d

d
re

ss

o
f

<n
am

e
>

.

L
is

t
c
o

n
te

n
t

o
f

te
x

t
sc

re
e
n

n

.
C

o
m

p
il

e
te

x
t

sc
re

e
n

n

in
to

d

ic
ti

o
n

a
ry

.
R

ea
d

b
lo

ck

n
.

E
ra

se

a
ll

d

is
k

b

u
ff

e
rs

.
M

ar
k

la
s
t

b
u

ff
e
r

a
c
c
e
ss

e
d

.
S

av
e

a
ll

u

p
d

at
ed

d

is
k

b

u
ff

e
rs

.
L

is
t

a
ll

f
ir

s
t

li
n

e
s

o
f

te
x

t
sc

re
e
n

s
n

to

n

'.

D
ic

ti
o

n
a
ry

p

o
in

te
r.

C

o
n

ta
in

s
th

e

f
ir

s
t

fr
e
e

m
em

or
y

lo
c
a
ti

o
n

on

to

p

o
f

th
e

v

o
c
a
b

u
la

ry
.

F
e
tc

h
e
s

D
P.

S

c
ra

tc
h

b

u
ff

e
r

PA
D

.
68

b

y
te

s
ab

o
v

e
H

ER
E.

0
0

T
IB

IN

SO

SP

@

B
LK

SC

R

B
!B

U
F

-a
)

-n
)

-a
)

-i
i)

-
a

)
-a

)
-n

)

T
er

m
in

al

in
p

u
t

b
u

ff
e
r.

O

ff
se

t
to

te

rm
in

a
l

in
p

u
t

b
u

ff
e
r.

C

o
n

ta
in

s
th

e

in

it
ia

l
a
d

d
re

ss

o
f

th
e

p
a
ra

m
e
te

r
st

a
c
k

.
F

e
tc

h

c
o

n
te

n
t

o
f

SO
.

C
o

n
ta

in
s

c
u

rr
e
n

t
b

lo
c
k

n

u
m

b
er

.
C

o
n

ta
in

s
c
u

rr
e
n

t
sc

re
e
n

n

u
m

b
er

.
C

o
n

st
a
n

t,

g
iv

e
s

b
lo

c
k

s
iz

e

in

b

y
te

s.

FORTH for the ATARI®

Learn-FORTH

A subset of Fig­
Forth for the
beginner. On
disk (32K RAM)
or on cassette
(16K RAM).
Even the
ATARI 400 or
ATARI 800
/16K RAM
owner can pro­
gram in FORTH.

Order-No. 7053
S 19.95

POWER FORTH is an extended Fig-FORTH version, Editor
and I/O package included. Utility package includes decompiler,
sector copy, Hex-dump (ASCII), ATARI Filehandling, total
graphic and sound; joystickprogram and player missile.
Extremely powerful. Two game demos (sound and animation) and
a mailing list, written in FORTH are included.
Order-No. 7055 disk S39.95

Floating point package for POWER FORTH with trigonometric
functions (0-90°).
Order-No. 7230 disk S29.95

NOTES

NOTES

NOTES

NOTES

NOTES

ORDER FORM

HOFACKER
ELCOMP PUBLISHING , INC., 53 Redrock Lan e, Pomona, CA 91766 (Phone: (714) 623·8314)

Name:• . • •.... .. . • . . ••.....•

Address:

City / State / Zip:.

Oty.
Order
No.

Description Price S

.... . 29 NICROC . HARDUARE HANDB. 14. '15

... .. 150 CARE AND FEEDING ••• 9 . 95

..... 151 81: MICROSOFT BAS IC 9 . 95 152 EXP . HANDB . 6502 AND 6802 '1 . 95

... .. '1 ~i3 MICROe . APPLICATION NOW; 9.95

..... 154 COMPLEX SOUND 6 . '15

..... 156 SMAL L BUSINESS PROGR . 14.'10

... .. 158 SECOND 800 1: OF OHIO ;0 .95

... .. 159 THE THIRD BOOI: OF OHIO 7.95

..... 160 THE FOURTH BOOl: OF OHIO 9.95

.. ... 161 THE FIFTH BOOI: OF OHIO 7 . tlS

. 162 GAM ES FO R THE ATARI 7 . 95

.... . 164 ATARI LEARN I NG BY USING ;0.95

.. ... 166 PROGR. 1. 6502 MACH, LANG. 1'1.9S

.... . '169 HOW TO PROGR.IN NACH.L. 9.'15
..... 1 7~ FORTH ON THE ATARI 7 . 115
... .. 171 A LOOK INTO THE FUTURE 9. 95
. 173 PROGRAM DESCRIPTIONS q. 9~i
..... 174 ZX-81ITIMEX '1.95
..... 176 TRICI:s FOR VICs 9.95
..... 202 JANA ! 1 MON nOR 2'1.95
. 604 PROTOT'(P I NG CARD 29.00
.. .. . 605 6522 VIA I/O EXP, CARD 39 . f1 0
.... . 606 SLOT REPEATER 4'1.00
. 607 2716 EPROM PROGRAMMER 49.00
.. .. . 608 SOUND WITH TH E 61 AY3-8912 39 . ~0
.. .. . 609 81: EPROM CARD (27 16) 29.06
.. ... 61! 12 BIT A/ D CONVERTER BOAR 74.06
... .. 615 161: RAMROM-BOA RD 59 . 95
..... 680 THE CUSTOM APPLE BOOl: 24.115
. 2398 MAILI NG LIST FOR ZX-81 19. 95
.. .. . 2399 MACHINE LANG. MONITOR 9 . '15
... .. 2400 ADAPTER BOARD FOR ZX-Bl 14.80
. 3276 EDITOR /ASS . FOR C8M 39.00
..... 3475 ASSEMBLER FOR C8M 39. 9~)
... .. 4826 GUNFIGHT FOR PET/CBM 9.95
.... . 4844 UN I VERsAL EXP. BOARD 18. 95
.. ... 4B48 ADAPT ER BOARO 3 . 95
.... . 4870 PROFI UORDPROC. F. VIC 19.'15
.... . 41180 TIC TAC I~II C 9. 95
... .. 4881 GAMEPACI: FOR VIC 14.9 5
...... 4883 MAll-VIC 14.lfS

Payment: Check, Money Order, VISA, Mastercharge, Access,
Inlerbank, Eurocheck
Prepiilid ordou add £3.50 for shipping IUSAI
£5.00 handling fee for C.O.D.
AL L ORDERS OU T S IDE USA: Add 15 % shipping.
Cll lifornio resid e nts add 6.5% so les Iilx .

Please make chocks out to ELCOMP PUBLISHING,INC .

Please bill to my Master Card or Visa acco unt # ...

Card #

Expiration Date

Master Charge Bank Code ...

Signature ..
Order

Oty. No. Description

. 4889 EXPANDING YOUR VIC

. 4894 RUNFI LL

. 4896 MINIA SSENBLER

. 6153 LEARN-FOR TH

. 6155 POW ER FORTH (APP LE!

. 7022 ATMONA-1, CAss.

. 7023 ATMONA-1, 0151:

. 7024 ATMONA-'I, CARTRIDGE

.
M •••• 7042 EPROM BUR NER FOR ATARI
. 70 43 EPROM BOARD (CARTRIDGE)
. 7049 ATMONA -2, CAss.
. 7050 ATMONA-2. DISI:
~ 7053 LEARN-FORTH
~ 7055 POWER FORTH
... .. 7098 ATAs
... .. 7099 ATMAs
..... J') 00 PROGRAMS FROM BOOl: H 164
.... . 7200 I NVO I CE WRITING,OISI:
.... . 7207 GUtiF I GHT FOR ATARI
.... . 72)0 WORDPROCEsSOR , CASs .
..... 7211 HOW TO COIINECT, ••
. 72 '12 MAILING Ll !3T, CAS!),
. 72 13 MA I LI NG LIST, DISK
. 7214 INVENTOR'(CONTR . , CA ~)S •
. 7215 ItiVENTORY CONTR . , DISH
~ :.'2 1 b UORDPROCEsSOR. DISK
. 7217 UORDPROCEssOR , CARTRIDGE
. 722 1 PROGRAMS FROM BOOl: " 162
. 7222 l:tlAUS OG INO
.. . . . 7223 ASTRO LOGY PROGRAM
. 7~2 ·~ EPROM BOARD I:IT
.... . 7230 FLOATING POINT PACI:AGE
..... 7291 Rs232-INTERFACE
.. .. . 7292 EPRO M BURNER KIT
..... 7307 ATCAsH
..... 73fPl MOON PHASES
..... 731 B ATAMEHO
..... 7312 sUPERMAIL
. 7313 BUsIPACI: 1
. 7314 BIORHYTHM FOR ATARI

.
u c.bolHd an P , S p d C l II e t odcmo,ks of Ohio SClcntlllc Co .

ATAR I Is a I'iildomark of ATARf Wo. ner Communic31ions

. . ..

PET, CBM and V IC ·20 o.e tradema rks of Commodo,e Bus/nus
Mn c hine5.
TAS·OO Isa Ifndomork of TANDY Rlldlo Shock .
Ar'r'LE II (511 trnu O'TlPrk of APPLE Computer Inc.

...
Price S

14 . 95
9 . 95

19 . 95
lL95
39 . '15
19.95
24 . 95
5'1.00

'179.00
29.95
49.95
54.00
19.95
311. 95
49.95
89.00
217. 175
39 .00
111.95
29.95
1'1 . 95
111.95
24.(?S

19.95
24.95
3<\ . 95
69.00
211. 1,5
2'1 . 95
29 . '15
"14.94

299 . 95
1'1.95
49 . 00
49 . 95
19 . 95
29 . 95
49 .00
98.00

9.95

	Cover

	Contents

	Preface

	1: What is Forth?
	2: Basic elements of FORTH

	3: Using Words

	4: Control Structures

	5: Sample Programs

	6: Text and Strings

	7: The Vocabulary

	8: Applications

	9: Appendix

