


-. .it . 
.. 



Dr. C. Wacko 
Presents 

Atari BASIC 
and 

The Whiz-Bang Miracle Machine 

David L. Heller and John F. Johnson 

... ...... 
ADDISON - WESLEY PUBLISHING COMPANY, INC. 

Read ing, Massachusetts • Men lo Park, Californ ia • Don Mills, Onta ri o 
Wokingham, England • Amsterdam • Sydney • Singapore • Tokyo 

Mexico City • Bogota • Sant iago • San Juan 



Cover and Book Design·Teapot Graphics/John Johnson 

Atari is a reg istered trademark of Atari , Inc. 

Many thanks to Atari , Inc. for the art used in Append ix C, 
ATASCII Codes. Used with permission of Atari , Inc. 

I.illrar.\' uf ('orl/.~n·s~ ('fJtaloging ill i'lIhli(,<ltiulI Dala 

Heller , David L . 
Dr. C. Wa cko presents Atari BASIC and t he whiz bang 

mirac l e machine. 

Includes index. 
I. Atari compute r --prograrnrning . 2 . Basic (Computer 

program language) I. Johnson , Joh n, 1944-
II . Tit l e . III . Ti t le: Doctor C . Wacko present s Atari 
BASIC and the wh iz bang mirac l e mac hine. 
QA76.8 . A82H45 1984 001 . 64 ' 2 84 - 21687 
ISBN 0 - 20 1-114 91-7 

Copyright © 1984 by Addison·Wes ley Publ ishing Company, Inc. 

A ll rights reserved. No part of thi s publicat ion may be reproduced , 
stored in a retrieval system, or transmitted, in any form or by any 
m eans, elect ronic, mechanical , photocopying, record ing, or otherwi se, 
without the prior wri tten permiss ion of the pub li sher. Printed in the 
United States of America. Publi shed simultaneously in Canada. 

Printed from camera ready boards suppl ied by Teapot Graphics, Santa 
Cruz, California. 

ISBN 0·201·11491·7 

ABCDEFGH IJ·HA·8987654 
Fi rst printing, September 1984 



Contents 

Foreword: Preramble to the Convolution 1 

1. Limber U p Your Fingertips 10 

2. Basic BASIC Training 21 

3. Entering The Great White Expanse 52 

4. Graphics Power: An End to The Desert Blues 148 

5. Desert ZOUNDS! 179 

6. Weaving The Perfect Flying Carpet, or, 
The Art of Programming 188 

Appendix A: Uh Oh! Error Messages 213 

Appendix B: Storing and Retrieving Your Programs 218 

Appendix C: ATASCII Codes 222 

Appendix D: Smokey Peek's Pokes £,. Peeks 231 

Appendix E: Graphics Mode Chart 234 

Index 235 

23226(3 



DR. WACKO PRESENTS ATARI BASIC 

THIS 600" IS 1",( GIfT 
TO I.fOMANIlY- THf= PRODUc.T 

OF Mil G6NIUS- TRIVMPHAIJr 
OVER ADVER511Y,CO~OCRIN6 
iH6 ~KNOW"', ~T 10 l\4EN1'IOnJ 
A MAJOR ~16f.1WGHTOF 
,WESTEKIJ CLVlUZATION· 

UI-\· .. 
I GUESS I GHOUl-V 

K,/.JDA THAN~ 
DAVID /JIIL-l-E:R" 
OU~Et;)lT6R"'WH ? 

A'-lD OONNA SENNA 
AND JESSICA BERMt\N 
AND ~CIA{;/)( 
OOROl"M,( ~R~ 



Foreword 

IT ALL STA1<TGD MlJtoN I(GARS AB0 WHILC I Wt6 STtAAI<'b A SlJDDElJ ~\)AU- HAD COME W, R:X)NDIhl6> 
OFFWO WASTOF »AD~R. WrrH-m5 ~~ "lAW. -mE REST LJ/<E #oAlCH BOXBS. IT !)4MP6NED 

WE lU RNED I~ -mE WI ND AiJD f1£,AJ)ED ~ A SHWEIi.'
eo {,tI6(PN ME.bTlED ~6E~ -me E!)S6 OF 1l-I6" 
D6SERT A~DTH5 RAGlNb SGAS 

11-\£ FIRSTl11l~ I oonceD l.\lHE.t-Il CAME10 WAS-we 
1~1D€ Of A R\m.s~ PURRS THIT "0MEL~N6 OF 
INGCNSG.. ( WAS 6uRR:XJIIlDE.D BY A B.l\NO OF 
wei ~D £mKING cAAR.4CT61O - WE-I Jet> SCCAU5E 
-wee( AIL APPe~ VpSl~ [X)(.AJ~ A'511-1b'-1 
&m- ove.R ME. I STRUGGLED-rO A SITTING 
IDSI'TIO\-.l, AND MVCH TO Ml.4 outeP~~/ ll-\6'i 
STILL- t.-ooKED WE\jj(D. 

MV eIVT\1USIASM x)ME.WHAi ..• 

'STJFEU,t,G I-m", DR~ AIR 5LOWN FROMIHE OE'EE.1<T 
CQMPaJNDeD 51..4 A OE:SP6~Te 1t\IRGT MA.P€ ME 
T).IIAli::. I WAS IiAU,VCI NATIk6. 

AklP 50 Be;.AJJ ADVEMfl)R61tl~Hl\-lE D6.S6RT 
IN f£AOCH CF1l4E WHIZ-BANG MIRtCLE MACHINE 
AND r(s UNIVERSAl.. ABIL!l'( fOR 6O.SlCCOMMl)/\lI
CAliON· we OlD IfJDESD FI~D~ MIlW-LE 
tM.c~'N6, AN .1ARl COMPUTER! MOW WE" INvrtE: 
'100 1D,lOf N os FOft ~ AIMZl AI6 AOU6N1\JRE ~~ 
[)t~IIERI{ ""~ ~ DesERT (K 0I0Wt6u-;;. 
so SAl.)1)1E cl)(OE ANO 1'\J'AA THE PAeE. 



DR. WACKO PRESENTS ATARI BASIC 

YOU MAY BE WONlXRlNG WHY I'M SI1TING 
ON 11-\\S /lMGIC C4RFET WITH A TUREAt-J 

WRAWED MOUND MY HEAD. YOU r/II:JY BE:.
WONDERING Wf4V YOU 6::JlB-lT lHlS E:CDK. 
A~SL), YOU WV E:E WOt0DERlhlS WHY I KEEP 

SN<'ING '''(au flMV BE I/IDf\)DERING." WELL-, 
WON()ER NO MORE AS I WILL OV1ETL-l/, 
COrJC/SEL.~ ArJD S [MFLy eXPLAl1J 
REt'\UTY AS II RELATES TO 13ASIC AI-JD 

TIlE ATARI ! 

2 

TIlE WONDtR 



Foreword 

So, You Want To Talk To 
Your Atari? 

Holy whiz bang! If you want to talk to your computer, 
this is it! The most fabulous book on Atari BASIC ever 
written! But a word of caution: Take care as you flip 
through these pages. The characters residing herein 
are absolutely wacko. Don't catch their wackiness! 
Friends, neighbors, relatives, aardvarks, and other ter
restrial beings might not understand. 

You've been warned, and you 're still reading? Well, 
brave soul, since you 've taken the plunge, you might as 
well find out what's in store for you. 

This Book Was Expressly Written 
(it took two days) 

First, this book was expressly written for all Atari 400, 
800, and XL computer owners equipped with Atari's 
exotic BASIC programming language and their 
camels. 

3 

--------~--~--~~~-=~~ 
SfCO~D, 1M DRE5SED UP IN ThIS 

O{)TFTT TO DRIVE I-\C)ME 1111$ R::>lrvl; 'lOUR 
ATARI IS AL,voSi LIKE AN ALADDIN'S LAMP. 

t-O K.lVDI~I. AU- YOU HAVE "lO CO 15 sPEAK. 
10 IT IN BASIC AtJD rT CA~ PtRFORM MIRACLES. 
WI11-I11-lE RI6f-\T KE'<sTR0KES '-IoU CAN cHA~ 
OUR ATAR\ I~TO AlA .... SORTS of TI"fI~S /("'lKE ••• 



DR. WACKO PRESENTS ATARI BASIC 

• A fancy typewriter (or word processor) 
• A file cabinet (or data base) 
• An accountant (your very own number cruncher) 
• A game machine (fun) 
• A machine that teaches you about itself 

( conceited) 
• A spelling helper (my favorite) 
• An artist's palette (messy) 
• A paper weight (functional!) 

You'll learn how to change your computer into all sorts 
of weird things, plus lots of other miraculous stuff as 
you meander through this book . 

Tripping Through This Book 
(Ooops!) 

This book is so well organized that there is absolutely, 
positively, no way you can get lost during your 
journey. (Dr. Livingston, I presume?) 

Limber Up Your Fingers: Your trip begins as you exer
cise your fingers and get acquainted with the ~----'\.L..--=--' 
keyboard. Once you've savored Atari's many keyboard 
delights, you march bravely on to the rigors of Atari 
Boot Camp. 

Basic BASIC Training: Here, I'll introduce you to some 
BASIC fundamentals and reveal some of my more sub
tle BASIC tricks. You'll be astounded by many new and 
exciting things, like PRINT statements, variables, and 
line numbers. But have no fear; Dr. Wacko will be right 
behind you all the way. 

On, To the Great While Expanse: When you leave Basic 
BASIC Training (either by graduating or going AWOL), 
you'll slip into the central section of this book, other
wise known as the Great White Expanse. Here, as you 
wander through the desert, bold examples of BASIC 

4 



Foreword 

usage pop off each page like lush oases to dazzle your 
eyes. (Water! Water!) 

Build Your BASIC Vocabulary: Having trouble express
ing you rself? In this section the Wackos and I help you 
build your BASIC vocabulary in a logical, step-by-step 
way. Short, fun-filled, and utterly ridiculous program
ming examples show you what each BASIC command 
does, how to use it, and how to combine it with other 
BASIC words so you can really start conversing with 
your computer. 

Obnoxious Colors, Weird Shapes, and Bright Lights: 
After leaving the stark white desert, you enter the 
vibrant and colorful world of Atari graphics. Here you'll 
see and do things with your knowledge of the BASIC 
language that you never dreamed possible. (Well, 
almost never.) 

You ' ll learn my favorite, and until now, carefully guard
ed graphics tricks. After you 've wandered through on
ly a few pages of this section, you'll astound your 
friends, neighbors, and yourse lf as strange shapes, ob
noxious colors (pugnacious purple), and bright lights 
dance on your screen, all under your control. 

ZOUNDS!: Piercing sounds tingle your eardrums, eerie 
flute-like tones float melodiously from your computer 
room, and the neighborhood cats howl as you breeze 
through this section. So close the door, put cotton in 
your ears, and get set for some real audio excitement 
as you delve into the wild world of Atari sound! 

~ 

5 



DR. WACKO PRESENTS ATARI BASIC 

Sounds good, doesn't it? But, that's not all. There's 
more! 

Weauing The Perfect Flying Carpet-The Art of Program
ming: Here's where it all comes together. Now you' ll be 
prepared to fully utilize your BASIC knowledge, talent, 
and creativity to design some of the weirdest, most 
useful, and most exciting programs in the universe_ 
Never before in history (well , almost never) has there 
been a book that teaches you the fine art of programm
ing. The art of programming is all here in this one-of-a
kind section. 

You'll start with an idea or need, and develop programs 
using my patented "Wacko Modular Approach." I'm 
with you each step of the way, right down to inflicting 
your finished product on your unsuspecting friends. 

You will learn much, much more than BASIC program
ming. You' ll learn to " see" every detail of any problem 
clearly; you' ll discover and use the creatiue (Wacko) 
side of your brain, and you'll learn that programming is 
just like making anchovy burritos. (Honest!) 

Building-Blocks and Lots of Schlocks: I wrap up this 
wondrous book with creative building-block projects 
that show you how to build your own: Mini Word Pro
cessor, Secret Text Coder/Decoder, Infamous Model 
Of The Universe, and much, much more! 

Are you ready to go? OK, just hop aboard your camel 
and we' ll start our adventure! 

What's this camel stuff, anyhow? Good question, and it 
will all become crystal clear (as mud) after you meet 
the weird gang that will accost you during the rest of 
this great saga. 

OK gang, let's get this caravan rolling. Do your stuff! 

6 



Foreword 

EZ Book Instructions 

7 

1. Open this mystical book. 

2. Place next to Atari computer. 

3. Turn on your fingers. 

4. Place your fingers on the keyboard . 

5. Grab the closest magic carpet, put on your tur
ban, fez, burnoose, or beanie and enjoy your 
voyage through Dr. C. Wacko's exciting world of 
Atari BASIC programming! 



DR. WACKO PRESENTS ATARI BASIC 

DR.WACKO 
E-VICTED FrtJM IOWA 

/AJ Iq3~, INVeNTED 
WINO'UP (X)MP(J7lR., 
IN /Q47, SWIm/EO 
TO B/t5IC fIJ AN 
ATTfMPTTD TAJ.K 
TO HIS SOIJ,J(JIJIOR.. 
C¥SXXja;E[) We 
Wtf:j UG£RJI- (I.) 

FtAc£5 LJK£ NE8U, / 
MAD,.d6~AR MJD 
S/UCCJA} V4UCY. 

/'----, 

MR). PETUNIA 
WACKO 

WAcm's CHA~IN& \\1\1""="" 

ANDA~l/£ 

W/FE.AN A~CED 
Md/.lJF1\4ME COM MER 
~/,f/;R AND 
Cf\. UJACr.Ds MOST 
VexAL- U2ITIC. Si1£ 
/s N..so THE ClVLJI 
ONE (N "THE bROUP 
WITH AN I( Pf(ACrICAL 
~~. 

JUNIOR.. 
/..aJ{ 1tJ61.-'( cA.LJ.,6 D 
C!5MtNTHE#) 13'1 
HIS AMNV FRI&NDS, 
HES f3EIAJG6ROOMBf) 
Y.lvtK60l/ER THE 
&JE,/AJ5SS WHEN 
HIS ra.;:::s RETIRE 
7lJ WID<. CABIN t)J 

CLCI/E:L.AND. HE , 
CCJu.ECT'S TEST 
PATTE.RNS. 

" 

CAPTAIN 
ACTION 

Resl f£ NT FIX IT [y 
SWAsHBUGK(' .. U-.l0 
HEl<D OP GAME: 
PMArc.s 1 HE: l..EFT 

REAL-I1'1' YeA!?S NO 
10 LOOf<j(, pOR. 
WACKO. N5veR 
REmJRNED, C'llrlER. 
<0M& 1i M es K/oXXI.IN 
1b TfASt JUNIOR. 

SNlDLEY 
SEERSUCKER 
u)VG~ ,0 FII\)P 

MUA'(..E'O./N ~. 
wtc~s. PlL6R.1MS. 
He$. WAO::'OS ZND. 

COJb.I fJ ,Wlc6 
R5/IAOVt D ('ID Tt1 E 

C(;()~ JAIL.) AND 
(}<:LASlOOAW{ 

H6L-PS w Aa::o 
WITH COM~ 
c0~ICS. 

MS. PEEK'< 
FAMO()'5 FOR 
PeE-KINo AT THe; 
LAST PAGE PIRST, 
SHES O\1T HE R6 
TO eXPERIEl.JCE' 
AtN&l,mJRE, 
exc['f'BM5NT 
A.~D C~Ll.yJ 
m.06 R0M.c1~. 

8 



Foreword 

GROVER 
A~ 1l.U:6AL- A/'IE~ 

W~ GOT lC{,ro/IJ 
11iE WA I{ TO Al-PHA 
C6NTMRI 6EG>JJst 
Of- A SEN\" WARP 
DRIVe- CN HIS 'sq 
CADDY SPACG 9i1P. 
IT CANT fl){ OVe R. 
leX) FE.6T ~~£ 
(APTIAN AGnON 
F'~ED IT 

SMOKEY 

~~~~p5 
6XPERTAT INI,lJDOW 
SHOPPING roFZ 
~K. l..OUTlCVJS. 
A Fte.leJD OF 
LAWR6tJC6 OF 

NEW.6~K., KES 
SEE.t\\ It-\E 
CAWI N croL.l DbE:' 

ST()R\/ 1<0 "TIMES. 

SLOWPOKE 
AFTGR 13 "iBARS 

OF CC>RRESfQ.J~trE 
S::HCoL- I HeS 1He:: 

fbKE t;i\PERT 
HERE .. . MAIN!..\( 
BeCAUSE HE'S 
USUALJ....l{ R:lKING 
ARoVIIJD SOME-

BoDY E:l-SeS 
e.USINESS . 

9 

BERNICE 
BERNOOSE 
& LAWRENCE 
OF NE.WARf<, 
KICKeD OFFOfTHE 
CLeVELAND UL-L.6T, 
6E..RN1(£ ~ B5CN 
I(ICI::'I /Il0 AFa::UIJ P 
TH& sA\4ARA \-tIT 
SRJTS PURSUED 
BY L-AWRlSNGE, 
WHds lD'KIUb FDR 
SIUCO/J CHIPS 110 
1H&SAND. 

CLYDE. 
Cl-\IEF~ 
FOR SVER'lEODY 
I3Uf JU~10R, HE 
Oa::ASIONAL-L..1{ 
SPITSOJ1 A 
FeJJ ~UM6GR5 
FOR vJ.AC KO 

llI£WftCKO 
CATS 
KE'fs,Pt':lDOL.-eS 
&JCH~ICK LOV6 
1Z) WA LJ( aJ ll-lE 
COMPUIE R AN D 
MU~CH CONTRoLS 
WHaJ NOONE IS 
UX:>KI N6 • TOTAU. '( 
UN 1-I00000BR.oKal. 



DR. WACKO PRESENTS ATARI BASIC 

1 
Limber Up Your Fingers 

'5TA~ lHlS ecot<., 
JuNlOR WILL ~ 

UJ.JVeIL WE P!FFf~Nf 
A-mR1 COMPUftR) ~ 

Here they are, the keyboards you've all been waiting 
for. On the top, I present the fabulous Atari 800/400 
keyboard, and on the bottom, the new improved super
deluxe XL version. You should be sitting in front of one 
0f the two now. If you aren 't, you took the wrong flight! 

•••••••••••••••• _m.aaaa.ama.. • 
maD.aaaaaaa •••• 

118.Dallll •••••• 
ATARI 800/400 

••••••••••••••• ElllllaaDllamll •• RETURN 

_IIDaaamaaaallllll 
aaaaamllllllil CI 

ATARI800XL 

10 

III 
III RESET 

III OPTION 

• SELECT 

III START 

• HELP 

• POWER 



Limber Up Your Fingers 

Get To Know Your Keyboard 

Your keyboard is your best friend. It provides a real 
handy way of communicating with your computer. You 
talk to it by banging on the keys. Simple, isn 't it? 

Try It Without BASIC 

If you are in front of an 800, 400, or 1200XL, make sure 
that the Atari BASIC language cartridge is not stuck in 
the cartridge slot. If it is, take it out! (400/800 owners: 
Remember to CLOSE THE CARTRIDGE DOOR!) Now, 

~-f-__ .......l.-..L.L.O~ turn on your computer! 

~_~L.I.-...l.-_--L1.----J If you've got a 600XL, 800XL, or 1450XL, Atari BASIC 

REMEMBER ... 
~HEN 1VPtAt& IN ANY 
PIC::6RAM,1l-\E Sf1£JJt; AND 
PUNCT()ATION 15 AS 

IMR)RTANT AS EVERYTHItJ6 
€L..SE! 

is built into your computer! To acquaint yourself with 
your keyboard you ' ll have to type in and RUN the short 
program that follows. When the word " READY" ap
pears on your screen, just type each line of the pro-
gram exactly as shown. 

10 GRAPHICS ° 
20 OPEN #1,4,0,"K:" 
30GET#1,A 
40 PRINT CHR$(A); 
50 GOTO 30 

Press the RETURN key at the end of each line. When 
you've finished, type the word "RUN", press the 
RETURN key and you're ready to continue. 

All set? Ready to limber up your fingers? Ok, let's go 
for it. 

Press some buttons and keys. Don't be timid , the worst 
that can happen is that you ' ll dent your fingertips. 
What have you got to lose? 

11 



DR. WACKO PRESENTS ATARI BASIC 

Clean Up That Mess! 

Boy, are you sloppy! Look at the mess you left on the 
screen. It looks a little like Junior's bedroom. Don't 
panic! It's real easy to clean up. Hold down the SHIFT 
key, press the CLEAR key, and your screen is as clean 
as a whistle . (How clean is a whistle , anyhow?) 

Some Cursory Cursor Movement 

Now that everything is straight-arrow and shipshape 
it's time for some cursory cursor movement. To move 
that white square (known as a "cursor" by real com
puter wackos), hold down the control [CTRL] key and 
press one of the four arrows at the right of the 
keyboard. 

I know, it's obvious that the arrow printed on each of 
the four keys shows which way the cursor moves when 
you press it. But moving the cursor the Wacko way re
quires good manners and a sense of proper etiquette. 
Here's Ms. Peeky to show you what I mean. 

A~ I{OURI..£FT PI),) 
AND D€I-lCATE/...'( PLACE 
IT o~ ltIE CTRL K.s,(. 
~rnt.'{ PRESS -nl6 eTR\.. 
~'( INA R&FlNeQMANN6R. 

Q;)HOW '{OUR LeFT PINKY 
IN-nlIS DEPRE.SSI~& 
roslTlON AND lise ,(OUR 
RIGIIT PiNK\{ OR F:oIN6 
FINGER. 10 PRe.'S>s 11-16 
ARROW KI3'< OF ,(OUR 

CHOICE ,.,..----1\ 

Not only does this method work, but if anyone sneaks 
into your computer room, you' ll look like a real pro 
programmer! (Or a real weirdo.) 

Bore yourself by moving the cursor all around the 
screen. Stop before you start crying in frustration and 

12 



Limber Up Your Fingers 

locate the CAPS/LOWR key on the right side of your 
keyboard. 

Did you find it? OK, press it once and type "the first 
thing that comes to your mind." 

A Case of Uppercase Shift 

Your Atari must be getting old - it's acting like an old
fashioned typewriter. All those words you typed appear 
on your screen in lowercase! 

lasc.iate ogni 
sperdnza I voi 
chentr.ate 

Just to prove my point, hold down one of the SHIFT 
keys and press any other key. Voila! An upper-case let
ter or symbol! See, I told you. It's acting just like a 
typewriter. 
13 



DR. WACKO PRESENTS ATARI BASIC 

Lock Up Your Keyboard! 

To lock up your keyboard, in upper-case that is, before 
it starts believing that it's a typewrif er, just hold down 
SHIFT and press the CAPS/LOWR key. 

The Control Key: Weird Shapes and 
Odd Graphics 

Take a look at this keyboard picture. Pretty strange
looking, isn 't it? You can make all those weird and 
strange graphic shapes appear on your screen with a 
little help from the CTRL key. 

Just hold down the CTRL key, press any key, and a 
completely new character will magically appear on 
your screen. You can use these shapes to draw your 
own strange pictures, with or without Atari BASIC on 
line! 

I.iXlK! VAUE.'i GIRlS 
FROM Ice PlANET 

CZiQBLT! 

14 



RETURN 

mil SET 
TAB 

Limber Up Your Fingers 

For example, hold down CTRL and press the comma 
key (,), the period (.), the semicolon (;) and the "P" key. 
Now you 're ready for a game of Gin Rummy, or 
Junior's favorite, Fifty-Two Pick Up! 

RETURN To The Keyboard ... Please! 

I know that Junior's having fun playing cards, even if he 
isn't playing with a full deck. But b.efore you both get 
totally engrossed, please RETURN to the task at hand 
by pressing the RETURN key! 

The RETURN key is one of the most important keys on 
the keyboard. Press it now, and the cursor moves down 
one space and whizzes over to the left margin. Just like 
pressing the carriage return on a typewriter. But when 
you are using Atari BASIC, pressing RETURN wakes 
up your computer and lets it know that you are telling it 
something. 

When you finish your tour of the keyboard and move 
on to Basic BASIC Training, you'll learn a lot more 
about the wondrous RETURN key and its many 
mystical powers. 

TABu-aroonio (CLR-SET-TAB) 

The key that's marked CLR-SET-TAB works just like 
the TAB key on an old fashioned typewriter, it moves 
the cursor a set number of spaces to the right. To 
witness this wondrous apparition, first press RETURN 
to move your cursor to the left side of the screen. Now 
press the TAB key. The cursor moves 10 spaces to the 
right. Press the TAB key again, and the cursor moves 
another 10 spaces. 

Oy Vey! It seems to have a mind of its own. But it's easy 
to take control and make that cursor stop where you 
want it to. Just follow along with Wacko: 

15 



DR. WACKO PRESENTS ATARI BASIC 

1.Press RETURN to position the cursor at the left of 
the screen. 

2.With the space bar, move the cursor 3 spaces to 
the right. 

3.Hold down SHIFT and press the CLR·SET-TAB 
key. 

You'uejust set a TAB stop allhe cursor's position! 

4.Now, press RETURN, then press the TAB key 
again and watch that little rascal stop just where 
it's supposed to! 

To clear the TAB stop under the cursor, hold down 
CTRL, and press the CLR-SET-TAB key. 

• TAB: Moves the cursor. 
• SHIFT + CLR-SET-TAB: Sets a TAB stop at the 

cursor's position. 
• CTRL + CLR-SET-TAB: Clears the TAB stop 

under the cursor. 

Now that you've got that all sorted out, it's time to cor
rect a few mistakes and do a little editing. 

Editing ... Looking Good 

I never make any typing or spelling mistakes when I'm 
writing letters or entering programs. But if you ever do, 
your Atari lets you make instant corrections on the 
screen, using its world-renowned and easy to use 
screen-editing functions. 

Send Your Cursor Home 

You already know how to clear your screen. Remember 
the old SHIFT + CLEAR trick? You can also use the 
CTRL key in combination with the CLEAR key to ac
complish the same results. Both of these great 
methods erase the screen and send your cursor home 

16 



SHIFT 

Limber Up Your Fingers 

to the upper left corner of your screen. 

Your knowledge of cursory cursor movement is im
mense, and you are well prepared to start fixing up 
those pesky screen-entry mistakes. 

Ready to have some fun? OK, let's playa game of "Sim
ple Wacko Says," as you learn all about screen editing. 

Simple Wacko says, "Type the following sentence ex
actly as it appears. " 

I here by volunteer for BASIC Trainng. 

Inserting a line 
SHIFT + INSERT 

Simple Wacko says, " Place your cursor over the letter I 
at the beginning of the sentence. " 

Simple Wacko says, " Hold down SHIFT and press the 
INSERT key. " You've just pushed the whole sentence 
down one line! This is great for creating space for new 
program lines or text. But watch out! Stuff written on 
the bottom line of your screen is pushed down and 
disappears behind your TV's channel knob. It's not 
gone forever, though! 

Insert A Weird Character 
CTRL + INSERT 

Simple Wacko says, "Place your cursor over the se
cond n in the word trainng. There yet? OK, Simple 
Wacko says, "Hold down CTRL and press the INSERT 
key." You 've just created a space between the two n's. 
To correct my horatious* spelling, just type the lower
case letter i and you 're all set. 

Did you do it? Gotcha! Simple Wacko didn't say, "Type 
the lower-case letter." 

• Horati ous: horrib le and at roc ious mixed together; Wacko/Webster Space Duck Dicti onary. 

17 



DR. WACKO PRESENTS ATARI BASIC 

You don't care? You don't want to play any more? OK, 
be that way. Well, even if you are fed up with that silly 
game, you've just done some fancy insertion, and your 
sentence is really starting to shape up. Here's how it 
should look now: 

I here by volunteer for BASIC Training. 

Delete That Character 
CTRL + DELETE/BACK S 

Ooops! There's a space between the words "here" and 
"by" that shouldn't be there. It should read "hereby" . 

To set things right, place the cursor between the words 
" here" and "by, " hold down CTRL, and press the 
DELETE/BACK S key. 

You did it! Your sentence is perfectimundo! Here's how 
it looks now: 

I hereby volunteer for BASIC Training. 

You do? Weren't you told never to volunteer! OK, in a 
minute you can flip the page and join the rest of the 
troops. 

Delete The Entire Line 
SHIFf + DELETE S 

If you've changed your mind, and really don't want to 
go, you can delete your pledge with a few simple 
strokes on your keyboard. (Which is more than I could 
do when I signed up for the Nepalese Navy.) Just move 
the cursor over the letter I at the beginning of the 
sentence, hold down SHIFT and press the DELETE S 
key. The entire line disappears! 

Very Special Computer Keys 
Stop, before you go marching off to Basic BASIC 

18 

• 

SHIFT 

• 



ATAR14DOoR ATARI XL.. 
800 

WHAT BISMOJTH IS,TR\{/lJb 
TD SA\{ IS TI-lAT THe: W~ 
AND B.lIC~"lD ARE 

RSVERSeYl 

Limber Up Your Fingers 

Training. Let's take a look at some very special com
puter keys. 

The Great ESCape 

The escape [ESC] key prints the characters that repre
sent the various control-key functions. Here's an exam
ple of how the Great ESCape works. Press the ESC key 
once, then hold down CTRL and press CLEAR. Instead 
of clearing your screen, the symbol for "CLEAR" ap
pears on your screen. Amazing, isn't it? Here are a few 
more escape combinations you can try: 

ESC, then CTRL + INSERT 
ESC, then CTRL + DELETE/BACK S 
ESC, then CTRL + TAB 

Later, I'll show you how to use this great escape act to 
spice up your BASIC programs. (Promise!) 

The BREAKout 

You ' ll use the BREAK key to interrupt your computer 
while it's thinking about your BASIC programming. 

The Perverse Inverse Character Key 

Now, last but not least, the infamous inverse character 
key. If you've got a 400 or 800 Atari computer, look for 
a key with the Atari symbol on it at the lower right of 
your keyboard. If you're in front of an XL model com
puter, find the key with a diagonal white/black design 
on it. 

Did you find it? If you did, you're in for a big surprise. 
What are you waiting for? Press it! 

Now, type something. All the characters are printed on 
your screen in inverse video! 

19 



DR. WACKO PRESENTS ATARI BASIC 

When you get tired of staring at perverse inverse 
characters, press it again to return to normal print. 

You did it! Your fingers are limbered up and your 
adventure through BASIC programming is about to 
begin! So buckle your seat belts, hold on tight, and get 
set to march into Basic BASIC Training. 

20 



Basic BASIC Training 

2 
Basic BASIC Training 

UHQ.£YfA(m 
WANTS YOU 

JOIN THE CI\O AMB1A~ 
~N\EM1S AND seE 1\\~ 

OESE;~R\~ _ ___ --

BASIC training was a snap for me, I breezed through 
the short course in a few days, and just look where it 
got me! 

If you 'ue already graduated from boot camp, you may 
want to breeze through this chapter, pick up the 
highlights, and move bravely on to the Great White Ex
panse, 

But just so you don't bop ahead of the game, here's 
what I'll be covering during Basic BASIC Training: 

• The Immed iate Mode 
• PRINT 
• Lower, Higher, and Higher Than Lower Arithmetic 
• Line Numbers 
• Statements 
• Variables 

21 



DR~ WACKO PRESENTS ATARI BASIC 

GREAT V/STA'i)OPMV.\II:Hf;D 
PRC6F?NMlIJ\l& AWAIT '{OI.J~ I 
CAN SEE A SPARK IN ALL-OF 

YOUR E,{ESi A leST FOR BASIC. 
1}IAT WI~L. RAISE: I{OV TO GReAT 

WtSlLOMETO 
&'SIC BbSIC. 
twA r N I k)(7 

HEIGHTS- l-IKE" ME! 

Sign up for BASIC training, and you 'll be in good com
pany. Look at that enthusiastic group at the top of the 
page. Don't they inspire and instill a sense of con
fidence? If they can make it, so can you! As you march 
along with these bright-eyed recruits, you'll learn to 
use many of the tools of the BASIC programming 
trade. And once the basics are out of the way, you ' ll be 
prepared to reach into your creative self and produce 
some masterful programs. 

After graduation, you ' ll have a working knowledge of 
the most useful (and useless) programming tools, and 
as you progress through BASIC training I' ll help you 
use these basic tools, plus your creativity, to design 
any program (no matter how wacko) to suit almost any 
job, task, or whim. 

So, now that you and your Atari are present and 
accounted-for, let's dive right in. It's time to start hav
ing some fun with that computer squatting in front of 
you. If your Atari is equipped with built-in BASIC, ac
tivate it by turning your computer off, then on again. If 

22 



IMFORTANT: 
AL.L PR06RAMMI ~G, 
eXC6PT STUn: 15EiWeE~ 
GOOTATION MARKS, \5 
OONf WrTlt CAPITAL 

LETTERS! 

Basic BASIC Training 

you 're working with a BASIC cartridge, insert it into 
the cartridge slot and we'll get started! 

Attenhut! Programming is simple. Just fol low my in· 
comprehensible instructions, use your imagination 
and brain power, and you're on your way! Here, I'll 
show you. But first, put the plug in! 

A Wacko word of caution: Your Atari is very literal minded. 
It will go bzzrk and print a numbered Error Message on 
your screen if you don't enter a program exactly as written 
or try to perform an incomprehensible programming feat. 
Before you flip out, flip back to Appendix A to see what 
each numbered Error Message means. 

Now, Just type in the following words, exactly as written, 
then press the RETURN key when you see " [RETURN]". 

GRAPHICS l:POSITION O,8:PRINT #6; 
"Why Am I Doing This?"[RETURN] 

Simple. Because you've just seen one of your Atari's 
amazing graphics tricks, entered your first program, 
and gotten some instant and weird feedback. You 
made your computer do something dumb instead of 
just sitting there like a sleek piece of furniture! But 
that's not all. You entered a program in what is called 
the immediate mode. 

The Immediate Mode: Life in The 
Fast Lane 
The immediate mode of program entry is just like living 
life in the fast lane. After you type the words and press 
RETURN to "tell" your computer what to do, you in· 
stantly see the results of your programming. Learning 
to give orders to your Atari is what Bas ic BASIC Train· 
ing is all about. And, when you issue orders in the im
mediate mode, your Atari carries them out immediate
ly. Immediately after you press RETURN, that is. 

23 



DR. WACKO PRESENTS ATARI BASIC 

SYSTEM RESET 

When you get sick of staring at a questioning computer 
screen, you can shut it up by pressing the SYSTEM 
RESET key. 

After you press SYSTEM RESET (don't worry, you 
won't scramble your Atari 's brain) the screen turns blue 
and the word "READY" appears in the upper left-hand 
corner. Your computer is talking back to you. It's say
ing, ' 'I'm READY, Sarge, to accept more of your silly 
commands." 

Don't ignore this insubordination! Now's a good time 
to get really angry. Yell at the computer. Or, if you 're 
like me, yell at Junior. After you 've got it out of your 
system, you're READY to start pushing it around! 

PRINT (?) 
In Atari BASIC, your computer responds to a number 
of simple, one-word commands. One way it does this is 
by printing words on its screen. To make it say what 
you want it to, use the PRINT command. If you want to 
get sneaky, just use a question mark (?) instead of the 
word PRINT. Your computer will understand. Trust 
me! 

Type in the word PRINT and press RETURN. 

Uh, oh! There's that word " READY" again! But don't fly 
off the handle. If you look at your screen closely, you ' ll 
see that the computer did print something. It printed a 
blank line! 

Not impressed? Neither am I. So, let's get some real 
utility out of the PRINT command. Let's make it print 
something really important. Ready? OK, type these 
words (including the quotation marks) and press 
RETURN: 

24 

If 11X)/ST66T WHAT 
I \VA~, I1VRN aWE" 
TCO~ 



Basic BASIC Training 

PRINT "Stop banging on my keyboard!!" 

Geez, it seems you can never make it happy. Now it's 
talking back, and being insubordinate! But, I'm sure 
you get the idea. 

To make your computer prinl something on the screen 
just type the word PRINT, enclose your words of wisdom 
within quotation marks, and press RETURN. 

Anything you put between quotation marks after a 
PRINT command is printed on the screen, including 
numbers and symbols! Type this short message, and 
press RETURN to see the result. 

PRINT " E = MCA2, sometimes." 

LPRINT If You Have a Printer 

If you 've got a printer, and would like to see your words 
PRINTed on paper, replace the PRINT command with 
LPRINT in the Einsteinian example above. Don't use 
LPRINT without a printer or when your printer is turned 
off. If you do, you 'll see ERROR message #138 ("Your 
printer's not hooked up!") displayed on your screen. 

OK,MEATHCA/)-YO(JMISSPELL.. Your Computer Isn' t Very Bright 
VOcJR IVAM!3 CWE AKJRE 7741£ 
AND lil Cf) T yeu Off, fllYI1 .-
1FIE REFRI6GPATOK. 

There 's one thing you should know before you start 
bossing your computer around. Your computer isn't 
very bright. It only understands commands that are 
entered perfectly, one-hundred-percent correctomun
do. For example, if you entered PRIR when you meant 
to enter the command PRINT, your Atari would get 
confused , burp, and tell you it doesn't understand PRIR 
by displaying the word "ERROR" followed by the 
misspelled word . Don 't get upset by this . Just 
remember that it is, after all, only a computer. 

25 



DR. WACKO PRESENTS ATARI BASIC 

LOWER ARITHMETIC 
Don't worry, Ms. Peeky. Math has very little to do with 
BASIC programming. Actually, all you need to know is 
simple arithmetic, the kind you learned in grade 
school. In fact, your computer can help you. It's just a 
super-calculator that's really easy to use. 

When you see: " [RETURN]" just press the RETURN 
key. 

Addition 

Try typing these simple equations: 

PRINT 5 + 5 [RETURN] 

PRINT 4 + 6 + 7 [RETURNl 

See how easy it is? And you don't even have to use an 
equal sign! You also don't put quotation marks around 
the numbers. If you do, your computer will print them 
instead of performing the math. Wrap quotes around 
the numbers to see what I mean. 

Subtraction 

Check out these easy examples: 

PRINT 10 - 5 [RETURN] 

PRINT 20 - 10 - 5 [RETURN] 

If you want to get real fancy, try combining addition 
and subtraction functions like this: 

PRINT 20 + 5 - 10 [RETURN] 

26 



'1CXiL-L L-f.ARN 
FAsiBR IF 'fou 
WORK IT OOT oN 
11IE COMpUTER. 

Basic BASIC Training 

HIGHER THAN LOWER 
ARITHMETIC 
Now I'm going to move on to the two biggies, 
multiplication and division. 

Multiplication 

An asterisk [*] is used as the symbol for multiplication 
by your computer. (The "*" key is located next to the 
" + ! , key on the right side of your keyboard.) 

PRINT 5*5 [RETURN] 

Division 

A slash [I] is used as the symbol for division by your 
computer. (The "I" key is located next to the "." key on 
the bottom right of your keyboard.) 

PRINT 25/5 [RETURN] 

LOFTY CONCEPTS OF LOWER 
AND HIGHER ARITHMETIC 
Lofty Concept J: A Set of Logical Rules. When you com
bine multiplication, division, addition, and subtraction 
in a single statement, things get a little hairy (even if 
you're as bald as I am). But they do follow a specific set 
of logical rules. 

IDIDNTCDMEOJT Here's an example. Type it in , press RETURN, and 
HERE FoR NUMBeRS check out the answer. It shou ld be 9.25. 

AND ..JUt.JK L-I~ 
1)-IAT.WH~J<'C!:> 

"U1E ~NCe:? PRINT 5-2 + 5:1:5/4 

Don't run away, Ms. Peeky. It's no big deal! Here's 
Petunia, she'll explain it to you. 

27 



DR. WACKO PRESENTS ATARI BASIC 

11-\8 coMPUTE:R A:;RR:>RMS 
ARm\METIC IN nlE. 5AM15 ORDER eV6R'< 

TIl'1E .IF 115 JUST OOlN6 ADDITION OR 
SUBT~cnON IT WORKS FROM L.E.FTTO 
RIGtlT. JIl'i>T UKE VOO READ. l..CJOK AI TIle:. 
6UMPt..S5A.IJD'IOV'£.I.,.c;gr THE IotA ... 

If you enter: PRINT 5 + 7 + 8 

Your computerfirst adds 5 + 7 = 12, then it adds 12 to 8 
to arrive at the answer: 20. 

Here's another example. But, this time I've mixed in 
subtraction as well as addition. 

If you enter: PRINT - 5 + 9 - 3 + 2 

Your computer first adds - 5 + 9 = 4, then it adds 
4 - 3 = 1, and finally adds 1 + 2 to arrive at the answer: 
3. 

When it's all finished calculating, it spits the answer out 
and displays it on your screen . 

... IF 'lOUR S1A1EMtMT COOTAI~ AU ... FoUR 
Ar<:ITHMeTlC EUMEMl'S: A W\l\D~, '5UBTf?AC.T1()/11, 
MUl"l1\'l.\C/l.TlOt.! AND blll/slDM, ntE.N I\, FERFORMSo 
11S CN-ClJI..AT\O~S IN A sPECIFIC. ORDE.R .IT ~ 

1W:. M[)£,TIPUCATIOtlll='lR$1, THEN DWISION, 
At-JD FIMAt./...1{ \HE ADDI1IOI\J 

AMV ~~~~~~ 

I'll summarize this simple Gperating order, then show 
you some more examples. 

28 



Basic BASIC Training 

The Cosmic Order of Things 

1. For addition and subtraction only, the computer 
calculates left to right across the screen. 

2 . For multiplication and division only, the computer 
performs the multiplication first, then the division, 
regardless of the order. 

3 . When combining addition, subtraction, multiplica
tion , and division , the computer performs the 
multiplication first, then the division, and last but not 
least, the addition and subtraction from left to right 
across the screen. 

Let's work through the arithmetic problem that scared 
Ms. Peeky, and you'll see how the computer follows 
these three operating rules to arrive at 9.25 as the 
answer. 

Here's the problem again: 

PRINT 5 - 2 + 5*5/4 

Following the proper order, the computer first per
forms the multiplication: 

Next, moving right along, the computer does the divi
sion: 

25/4 = 6.25 

Last, but again, not least, the computer does the addi
tion and subtraction from left to right and arrives at its 
answer: 

5 - 2 + 6.25 = 9.25 

See, no problem at all! Your computer was simply 

29 



DR. WACKO PRESENTS ATARI BASIC 

following orders. And even if you switch the order of 
things around like this: 

PRINT 5*5/4 + 5 - 2 

The answer will still be - you guessed it - 9 .25! 

Lofty Concept 2: Operations in Parentheses are Done 
First. You can use the parentheses to change the order 
of things, and get your own way, so t6 speak. 

Suppose, in the above example, you really want to 
mess things up. You want the division performed last, 
after the multiplication, addition, and subtraction. 
Well, it's simple. Just use parentheses, like this: 

PRINT (5 - 2 + 5*5)/4 

Here's how your computer will operate on this pro
blem. 

First it performs the multiplication inside the paren-
r---r=-.---r 

theses: 

Next it does the addition and subtraction within the 
parentheses: 

5-2=3 

Then it adds the two results within the parentheses 
together: 

3 + 25 = 28 

And, now that it's finished operating within the paren
theses, it hops out and performs the division: 

28/4 = 7 

The answer is 7! The same numbers were used in both 
examples. But in the first case the answer was 9.25 and --I 

30 

C?) 



ACTUAU-'1',IT AJ...MCST AM[)E ~ 
I N A W~I RD SO/ITOF WA<-I./T:S 
EAst, ANt/WA~ ..• B'/6, I 
GOlTA &J FIIJD Mil ______ --9 

BRAIN. 

Basic BASIC Training 

in the last example the answer was 7, and all because of 
the parentheses! 

Here's another example that uses the same numbers and 
parentheses. But this time, amazingly enough, the answer 
is different than the first two examples. 

PRINT (5 - 2 + 5)* 5/4 

When you type this problem into your computer and 
press RETURN, the answer is 10. Step through this ex
ample yourself to see why. 

You can breathe easier. We are finished with the 
arithmetic. Now you know enough to be an expert 
BASIC programmeroonie. Ms. Peeky, you should be 
awarded a medal for your perseverance. 

See, I told you it was easy! Here's a short summary list 
to help you remember these simple arithmetic con
cepts: 

• Multiplication first 
• Division second 
• Addition and subtraction third; left to right 
• Operations in parentheses are done first 

Leaving the Fast Lane: 
Bye, Bye, Immediate Mode 

31 

S&~? 1}lE FAST lANE IS eASy, BUT TO 
RB.A/...L'< B£ 6ooD, VA 60TrA HAVe OTHER 
QUA/...i1l&S- WKE. eDVCATION,cXPfR!ENCE, 

DRIVE AND SMARTS. 



DR. WACKO PRESENTS ATARI BASIC 

Up to this point, you 've been living in the fast lane, 
entering stuff into your computer and experiencing in
stant results. But living recklessly has its drawbacks. 
Here's the short program example you first typed in: 

GRAPHICS I:POSITIO'N O,8:PRINT#6;"WHY AM 
I DOING THIS?"[RETURN] 

After you typed this example and pressed RETURN 
you saw the message written in bold letters across your 
screen. But if you cleared your screen (by pressing the 
SYSTEM RESET button) and wanted to repeat the 
message, you had to type all that code again! 

The Infamous Programming Mode: 
Line Numbers and the Perfect 1 0 & 20 

You'll all be happy to hear that there is another way of 
entering a program: Use line numbers in the infamous 
programming mode. 

I'll show you what I mean. Here's another nifty exam
ple. But this time there is a subtle difference. There are 
two lines, and each line has a line number in front of it. 
The perfect 10 and the perfect 20! See them? 

10 FOR X = 1 TO 20:S0UND 1 ,X, 10,8:NEXT X 
20 GOTO 10 

Turn up the volume on your TV and get set to hear the 
strange warblings of the nearly exti nct Wacko Bird. 

Type this program, just as it's shown. Press RETURN at 
the end of each line, and don't forget the perfect 10 and 
20. 

Did you do it? What happened? 

Nothing appeared to happen, and I'm not surprised. 

32 

lHE INFAMOJS PRCGRAMMINb 
MOD£! O~OF'vW FA~RI1ES~ 
CHECt: O{}f APPENDIX B - IT 
s\-ows VOV fJDW TO STORE AN\) 
RETKI8JE I({XJR rn::::GRAMS F~ 
~SK OR CASSETTE! -----

I'M r.JOT SURPRISED 
E.llHER- WACI:::O 

WROTE l1-\E PRC6i'WJl 



ll-IE 

RUN 

BREAK 

Basic BASIC Training 

But appearances can be deceiving, Snidely. Fooled 
you! Something very important did happen after you 
pressed RETURN. The Wacko Bird program was stored 
in your compuler's m emory! And your Atari was trying 
to tell you about it when it said it was "READY." 

RUN, RUN, RUN Around 

Now that you know the Wacko Bird is hiding 
somewhere inside your computer, let's find it, drag it 
out, and get it to warble, so to chirp. To get a program 
to run around and act weird, all you have to do (you 
guessed it!) is type the RUN command and press 
RETURN. Simple, isn't it? 

What are you waiting for! Go for it! Type RUN and press 
RETURN. 

Now your Atari is doing its own thing and telling you 
that it's having fun by singing a little tune! There's 
nothing like having a happy computer to bang on. 

BREAK I t up Gang! 

If the neighbors are complaining about the noise, or if 
your cats are getting real interested in your computer, 
you can stop the Wacko Bird's song in mid-note by 
pressing the BREAK key. 

After you press the BREAK key (you won't break your 
Atari's heart), the message, STOPPED AT LINE 10, ap
pears. You 've stopped your computer right in the mid
dle of its ''I'm making lots of noise" routine! 

Put an END to this Nonsense 

Do you still hear a solitary, persistent, and repugnant 
tone? Even after you 've pressed BREAK? 

To put an end to this endless cacophonous tone, just 
type the word "END" and press RETURN. 

33 



DR. WACKO PRESENTS ATARI BASIC 

END is a command that's often used at the end of a pro· 
gram (where else?). In this case, you've used it in the 
immediate mode to help Captain Action concentrate 
on his immediate mode, finding the Bug Byte Beer. 

CONTinue Where You Left Off! 

If you feel that you've hurt your Atari's feelings by stop· 
ping its happy warbling, there are two things you can 
do to make it happy again. 

You can either type CONT and press RETURN to make 
your Wacko Bird CONTinue where it left off. Or (if you 
want to get snooty) you can type the word "RUN" and 
press RETURN to reRUN your program. 

By adding line numbers to a program, you've told your 
computer to store it in its memory. Then, when you 
type the word "RUN" and press RETURN, it's off and 
RUNning, acting strange! The best part of using line 
numbers is that you don 't haue to retype the program 
when you want to replay il! 

Take a Closer Look at That 
Program 

Get out your magnifying glass and really examine that 
program. 

You'll see that line 10 of this simple program is made 
up of three statements. Each statement is separated by 
a colon (:). 

The first statement is: FOR X = 1 TO 20. This tells 
your Atari to sequentially count from 1 to 20. 

34 



Basic BASIC Training 

The second statement is: SOUND 1 ,X, 1 0,8. This tells 
the computer to sing its warbling song. 

The third, and last statement in line lOis: NEXT X , 
which tells your Atari when to count the next number. 

35 



DR. WACKO PRESENTS ATARI BASIC 

Here's how line 10 of this program reads in English: 
" Hey, computer, count from 1 to 20, and change the 
note in the SOUND command accordingly. When 
you ' re finished counting , go to the next line. " 

Line 20 contains one simple statement: 20 GOTO 10. 
This tells your computer to go to line 10, where the 
counting and warbling begin again. 

Old Lines for New 

Let's get obnoxious and break the Wacko Bird program 
up by using four line numbers, one line number for 
each statement. But before you can break up this hap
py program you'll have to get rid of it - either by 
replacing it or totally annihilating it! 

Junior's method of changing a line, replacing the old f 
line with a new one, works just fine. So, to change a line 
of programming, all you've got to do is type its replace
ment and press RETURN. Your new line wil l rep lace the 
old one. By the way, you can use any whole number as 
a line number. 

For example, you can assign line numbers 1,2,3 and 4 
to your program. But expert programmers li ke me 
number programs by tens; 10, 20, 30, 40. This leaves 
me plenty of room between each line to squeeze al l my 
creative second thoughts into the program sometime 
later. 

Now that you know all about line numbering, let's 
revise line 10 of the Wacko Bird program. Here's the 
original program again, in all its fine-feathered glory: 

10 FOR X = 1 TO 20:S0UND 1 ,X, 1 0,8:NEXT X 
20 GOTO 10 

Now, just type this new program line and press 
RETURN: 

36 

S\OCe WACKO FORfDT,IDBEll"ER 
TeLL- V(JJ1t!ATYOUR CQMPl.JTeR 
EXEClITES A PROGRAM 
BEGINNING AT WE lOWesT uNE. 
NUMBfR AND kK>RKS UP TO"THE 
HIGHEST LINE NUMBER 



e 
o 

CLEAR 

Basic BASIC Training 

10 FOR X= 1 TO 20 

Did you do it? If you did, that long line 10 with all those 
wild and crazy statements has just been replaced with a 
real shorty. 

Now, let's assign line numbers to each statement in the 
original line 10, and a new line number to the one state
ment in line 20. 

Here's how your new, improved, and spiffier program 
looks when you're finished (Don't forget to press 
RETURN after you type each line of programming!): 

10 FOR X = 1 TO 20 
20 SOUND O,X, 10,8 
30 NEXT X 
40 GOTO 10 

This new Warbling Bird sings exactly the same tune as 
the one from the two-line program you started with; 
even though it now has four program lines! If you don't 
believe me, check it out by typing RUN and pressing 
RETURN. 

Do you remember how to turn it off? You do? Well, 
before Captain Action gets violent, turn it of{!!! 

CLEAR up this Mess 
By now your screen is probably full of program lines, 
STOP signs, and other nonsense. Pretty confusing, 
isn't it? Well, before your screen becomes a jumbled 
mess, let's clean it up! Just hold down the SHIFT key, 
press the CLEAR key, and your screen clears instantly. 
Go ahead and try it. 

37 



DR. WACKO PRESENTS ATARI BASIC 

Type LIST or L. 
Don't panic! Your four-line program is just hiding in
side your Atari's memory. To get it to appear on the 
screen , type LIST and press RETURN. Go ahead , type 
LIST and press RETURN already ! 

Wheew, there's your program again. As a matter of 
fact, any time you want to see your program lis ted on 
the screen, simply type LIST or its abbreviated form, 
L., and press RETURN. 

If you want to list a program on your printer, type: 

LIST "P:" [RETURN] 

If you want to list one specific line of your program, VVo'P,BUT AH J£Sf WAMT 
(just line 20, for example) simply type the command L1~2D l-15f£D .IiOW 
LIST and the line number you want listed, then press l\IN AI-\ 00 1J-\Al? 
RETURN . Like this: 

LIST 20 [RETURN] 

To list line 20 to your printer, type: 

LIST "P:" ,20 [RETURN] 

That's all there is to it! "But, " you may ask (I might not 
answer), " how do I list a specific number of program 
lines?" It's simple! First type the word LIST followed by 
the lowest line number you want listed, then type a 
comma, and finally the highest line number you want 
listed. A picture is worth a megabyte of words. So, 
here's how you list only lines 20 and 30 of the Warb l ing 
Bird program: 

LIST 20,30 [RETURN] 

Listing lines 20 and 30 to your printer is a snap! 

LIST "P:" ,20,30 [RETURN] 

38 



HeH,HEH-JUSTTYPE: 1HE 
NVMBER. 10 A~D PRESS 
RHURNAND 

o 0 

Basic BASIC Training 

CTRL + 1 = A Screeching Halt! 
Later you'll be working with longer listings. And, as the 
listing scrolls down your screen, you might want to 
stop it dead in its tracks to look at a line of code in 
closer detail, do a little editing, or bailout of the com
puter room. Here's how to make your program listing 
come to a screeching halt! 

After you type LIST [RETURN], Put your left ring 
finger on the CTRL key and hover your left middle 
finger above the 1 key. If you're double-jointed, use any 
finger you want. To stop the program as it scrolls down 
your screen, simply press the 1 key. To send it on its 
way, press the 1 key again. When the program stops, 
press the BREAK key and lean forward and stare 
glassy-eyed at your masterpiece. 

Total Line Annihilation 
I know that you're quick on the trigger. So, now that 
you 've got your program back, let's get vicious and an
nihilate it , line by line! (Snidely would approve.) To 
totally annihilate a line of code, simply type its line 

~-----' number and press RETURN . POOFF, it's gone! 

If you've followed Snidely 's dastardly instructions, line 
10 of your four-line program has disappeared, erased 
completely from your Atari 's memory! You don't 
believe me? LIST the program again; I'll wait while you 
go through the motions. 

See, line 10 has been ZAPPED. It's vanished. Now, 
you've rea lly done it! 

39 



DR. WACKO PRESENTS ATARI BASIC 

If you really want to be devious, just type 20 and press 
RETURN , then 30, and finally 40. When you're through 
you will have completely annihilated the Warbling 
Bird. 

What's NEW? 
If you think that 's not nice, just watch while I revea l 
Snidely's secret weapon: The NEW command. 
Typing the word " NEW" and pressing RETURN com
pletely and irrevocably erradicates your ent ire pro
gram. Gadzooks! 

CAUTION: The NEW command is extremely powerful. 
Use with extreme care. It not only destroys the Warbl
ing Bird, but completely erases your computer's brain! 
It's almost as shocking as turning off your computer or 
opening the cartridge door. 

You're Becoming a Real Smarty! 
From this point on, I won 't always remind you to press PG5E,MOM- IFDAt:6GQI/JSTO ~ 
" RETURN" after entering each program line or im- STOPTI;LLIf.J6METOPR€<;SRETURN, 

I Oo~,lT HAve TO DO IT ANYMORE J 

mediate command. You know all about t hat now! RIGHT?r-------

Now that you know about line numbers, the PRINT 
command, Higher and Lower Math, Wacko Birds and 
lots of other stuff, it's time to make your computer go 
bzzzrk . 

4 0 



Basic BASIC Training 

Warning: The Three-line Limit 

But first, I have to let you know one very important 
limit to your programs. You can only enter a maximum 
of Lhree screen·lines of information afLer a line number. 
When you are about to reach the end of your Three-line 
Limit the computer gets worried and sounds its buzzer. 
Type this program to hear what happens: 

10 PRINT "I LIKE TO RAMBLE ON AND ON, 
WHILE I PROGRAM. SOMETIMES THIS GETS 
ME INTO VERY SERIOUS TROUBLE ... OOPS!" 

20 PRINT "BETTER START A NEW LINE!" 

Now that you understand all about the Three-line 
Limit, obliterate this program with the NEW com
mand, and we'll go on to more sensible stuff! 

Colons, Commas, Semicolons, 
and the Remarkable REM 

Here's a short program that I'd like you to type in and 
run: 

41 



DR. WACKO PRESENTS ATARI BASIC 

Absolutely Wacko 

10 PRINT "I'M ON MY WAY TO BECOMING A 
GREAT":PRINT "PROGRAMMER. AND, IF I'M 
NOT CAREFUL," 

20 PRINT "I'LL","GO","ABSOLUTELY" 
30 REM:PRINT "WACKO"; 
40 REM:GOTO 30 

After you run this program your screen will look like 
this: 

Pretty weird, isn't it? 

Two lines of text are printed on your screen, then (and 
here's the weird part) the words " I'LL" , " GO" , and "AB
SOLUTELY" are each separated by 10 blank spaces. 

What's going on here? Allow me to elucidate. 

The COLON (:) 

Two PRINT statements are squeezed onto line 10. Each 
statement is separated by a colon. This accounts for 
the two lines of text you saw on your screen. Using a 
colon lets you put more than one instruction in a program 
line. I used this nifty space-saving method earlier when 
I showed you my famous Warbling Bird program. But 
beware of the Three-line Limit! 

The COMMA (,) 

Careful placement of the comma lets you print your 
output in columns ten spaces apart. That's why the 
words "I'LL", "GO", and " ABSOLUTELY" are so spaced 
out. 

Press the SHIFT and CLEAR keys to clean up the mess 
on your screen, LIST the program, and I'll show you 
what all this REM stuff is about. 

42 

rl l-

IM oN MY WAvro BECOroiI/l€> ~ (;ReAT 
PR00RAMMER. AND,lFfM NOT CAWVL-, 
It!. Go A&50LUTHI" 

\ 
@ @ 

l---J L.-



Basic BASIC Training 

REM (.) 

I use a REM statement (or its abbreviated form, a 
period) at the beginning of a program instruction or a 
bunch of words when: 

1. I don 't want that line of code to be executed. 
2. I want to leave a message to myself or other 

wackos about my program. 
3. I want to make my program listing easy to read 

and understand. 

I'm a pacifist and have used REM statements in lines 30 
and 40 to prevent these two lines from being executed. 
If you 're curious, and just have to see what happens 
when these REM statements are removed, I'll tell you 
how to go about it. But please give me a few seconds to 
leave the room before you run the program! 

Here goes! Follow these instructions precisely, and 
you will cause mayhem and disorder. 

1. Hold down the CTRL key and use the up, down, 
left, and right arrow keys to march your cursor 
up the screen. 

2. Halt when your cursor is positioned directly 
above the R of REM in line 30. 

3. Continue to hold down the CTRL key and press 
the DELETE key four times ... until the word 
"REM" and the colon are completely obliterated. 

4. Press RETURN. 
S. Repeat this diabolical process again to remove the 

REM in line 40. 
6. Run the program after I run out of the room! 

EEEEYOW! 

WACKO, WACKO, WACKO! That's what you'll see 
when you run the program after you've removed the 
REM statements. I can't stand it! Please, I beg you, 
press the BREAK key and CLEAR the screen before I 
return to the room. 
43 



DR. WACKO PRESENTS ATARI BASIC 

Whew! Thanks. I'm wacked-out enough as it is. 

Semiwacko, or the Semicolon (;) Did It! 

Do you see that semicolon at the very end of line 30? 
You do? Well, that's what caused the screen to fill up 
with WACKO's! 

Remove that pesky semicolon. Hold down the CTRL 
key and move the cursor on top of the semicolon, then 
press the DELETE key once. Thanks. Now RUN the 
program again. See, the WACKO's aren 't going across 
the screen any more, just down the screen. Oh, well. 

Here's one semipractical use of the semicolon. Press 
BREAK to stop the program, and clean out your com
puter's brain with the NEW command. Now enter and 
RUN this program. 

10 PRINT "2 CAMELS PLUS 1 MAGIC LAMP = "; 
20 PRINT "3 SHEKELS ... SOMETIMES" 

Since you are, by now, semiwacko, you ' ll want to use 
lots of semicolons to print stuff from different lines 
next to each other. 

If you've been overtly alert and paying attention (and 
paying some bribes on the side) most of the mystery of 
that computer in front of you has probably evaporated. 

Let's see , you've entered your first computer programs 
in the immediate mode, learned about the PRINT com
mand, crawled through Lower and Higher, and Higher 
Than Lower Arithmetic, made a few statements, 
entered some programs, watched them acting silly, 
and banged on the keyboard a lot. 

It's Time for a Party! 
If you are still standing while sitting and reading this 
sentence (what?), you've got it made-or you've got 

44 

7 



Basic BASIC Training 

heartburn! You 've reached the pinnacle of Basic BASIC 
Training. All that drill , cleaning sand out of your boots, 
listening to bird calls, and eating C-rations is over. 

But before you get carried away (literally), I'm going to 
introduce you to two important programming con
cepts. Then you'll be ready to hop on your camel , 
charge off to the Great White Expanse, and change 
that magical computer of yours into all sorts of weird 
and wondrous things. 

Important Concept # 1: 
NUMERIC VARIABLES 
Variables are , you guessed it, things that vary or 
change . 

Some examples of things that do vary are: 

• My waist size after I eat too much falafel 
• Petunia 's hair styles 
• Captain Action's beer consumption 
• The price of a good camel 
• Ms. Peeky's boyfriends 
• Time 

45 



DR. WACKO PRESENTS ATARI BASIC 

Captain Action uses his computer to keep track of 
his Bug Byte Beer consumption . To make things sim
ple, he chose the shortened uariable name, BURP, to 
represent the number of cans of beer he has 
consumed. 

BURP is not as outrageous as it sounds. You can assign 
any name or abbreviation you want to a variable. 

One Wacko word of caution though: Don't use two 
words with a space between them as your variable 
name. TWO WORDS will just confuse your computer. 
Write it like this, TWOWORDS, and you'll have no 
problem. 

You're right, Ms. Peeky. If Captain Action was a real 
gentleman, he might have assigned the variable name 
CANS, BEER, or. .. BLAZZT! 

LET's BURP along with Captain 
Action 

Turn on your fingertips again , and we'll BURP along 
with Captain Action. Captain Action consumed 99 
cans of Bug Byte Beer today, and LET his computer 
know about his gluttony by typing : 

LET BURP=99 

Now because the variable BURP has been assigned a 
value of 99, his (and your) Atari is filled with 99 cans of 
beer. 

You Don't Have to Use LET 

Your Atari is really smart. You don't have to use LET to 
let it know that a value is assigned to a variable. You can 
write it like this: BURP = 99, and your Atari will know 
what you 're talking about. But, in general, it's a good 

46 



C>W Tl'IU ACTlOIV Dil6NK 
Q'1 CA/JSOF E£ER ! 

I~APTAI N ACf~~1J SAI/5 , 

Basic BASIC Training 

idea to LET your Atari know officially you're assigning 
a value to a variable. 

Now before your computer gets tipsy, tell it to: 

PRINT BURP 

It will respond by (politely!) belching the number 99. 

Hmm, before things get too messy, let's get out of the 
immediate mode and write a program using the 
variable BURP. 

Burp 

10 BURP= 99 
20 PRINT "CAPTAIN ACTION DRANK "; BURP; 

" CANS OF BEER!" 

Your screen will look like this after your run the BURP 
program: 

Since BURP is equal to 99, 99 is printed on your screen 
when line 20 is executed. Replace the 99 in line 10 with 
your favorite number , and RUN the program 
again ... hic! 

Semicolons Are Surrounding BURP! 

Do you see the semicolons surrounding the variable 
BURP? The first semicolon prints "99" after the word 
" DRANK", and the second semicolon insures that the 
word "CANS" is printed on your screen directly after 
the " 99. " Alway s surround a uariable with semicolons 
when it 's embedded in a PRINT statement. Did you 
notice the blank space I left after the word "DRANK" 
and before the word "CANS" ? They make room for all 
that beer! 

47 



DR. WACKO PRESENTS ATARI BASIC 

BURP is a NUMERIC Variable 

BURP is a numeric variable because you assigned a 
number to it. Here are some examples of numeric 
variables: 

1. My waist size after eating to much falafel: 
INCHES=52 

2. The number of Petunia 's hair-style changes in an 
average week: STYLES = 12 

3. The price of a good camel: SHEKELS = 120 
4. Junior's grades: GRADES = 0 

Ms. Peeky's got a point. All those variable examples do 
deal with numbers. In the BURP program, BURP equals 
the number 99. 

Important Concept #2: STRING 
VARIABLES, 
or, 
the Verbal Variable 

In Atari BASIC there's one other type of variable , called 
a string variable, that's just perfect for invariably verbal 
people like Ms. Peeky. 

What's a String? 

A string is no more than a stringing together of letters, 
characters, or spaces. Each character, word, space, 
sentence, and paragraph on this page is a string. 

Using string variables is lots of fun! They let you get 
really verbose and obnoxious, like me! Also, string 
variables are easy to use. Even the Wacko Cats (Keys, 
Paddles, and Joystick) like to play with string. 

48 

HOW Fl,LlOE! AU- TtU;SE , 
VARIABL&S(EXC&PT JlI/JIORS 
(,It4DE$) DfAL. WIl}l NVMBER'6· 

IYoJJ ABC\JT VARIA~ W0Rlt> 
W<.E'MEN·,'TRUE 

__ ~~:. ~ANC.c',oR'McN'? 



Basic BASIC Training 

But First, Tell Your Atari 

To tell your Atari that you are using a string variable, 
rather than a numeric variable, just put a dollar sign 
($) after the variable's name and surround the string 
with quotation marks like this: 

A$ = "BELCH!" 

In this example the string uariable name is A $, the string 
is BELCH! 

Your variable name doesn't have to be "A", any single 
letter, or short word followed by a dollar sign will work 
just fine . Here's what string variables can look like: 

NAME$ 
INCHES$ 
TIME$ 
NAME$ 
GRADES$ 
A$ 

= "STRING" 
= "FIFTY-TWO" 
= "2 P.M." 
= "Dr. C. Wacko" 
= "0" 
= "BELCH!" 

Numbers, when they're surrounded by quotation 
marks, become strings. Miraculous! 

Making Room for a "BELCH" 
with a DIMension Statement 

Before you can use a silly-looking string variable, you 
49 



DR. WACKO PRESENTS ATARI BASIC 

first have to make room for it inside your computer's 
memory. To do this, you use a DIMension statement. 

Since the string "BELCH!" contains six characters, (in· 
c1uding the exclamation point!) DIMension A$ like 
this: 

DIM A$(6) 

If you want to play it safe, you can set aside (DIMension) 
more room than you need. But if you're a C.M.C.A 
(Computer Memory Conservation Addict) like me, 
make room for the exact number of characters and 
spaces that make up your string. Easy, isn 't it? 

Let's write a short program using a DIM statement and 
the string "BELCH!." Stand back .. . here it comes. 

10 DIM A$(6) 
20 A$ = "BELCH!" 
30 PRINT "CAPTAIN ACTION DRANK ";A$; 

" CANS OF BEER" 

Here's another example: 

10 DIM A$(6), B$(14) 
20 A$ = "BELCH!" 
30 B$ = "Captain Action" 
40 PRINT B$;" drinks too much beer ... ";A$ 

Now, let 's get real tipsy and use numerical and string 
variables in one stupendous and horrific program. 

Horriffic Program 

10 DIM A$(6), B$(14) 
20 A$ = "BELCH!" 
30 B$ = "Captain Action" 
40 BURP=99 
50 PRINT B$;" drank ";BURP;" cans of beer ... ";A$ 

50 



Basic BASIC Training 

Now Type CLR to Clear up This 
JVless! 
Numeric and string variables are two of my favorite 
programming concepts. I'll be showing off while show· 
ing you how to use these two phenomenal concepts 
throughout the rest of this phenomenal book. But for 
now, I'd like to show you what happens if you don't 
clear out your computer's memory after you 've assign
ed strings and numbers to variables. 

First, enter and RUN the HORRIFIC PROGRAM. 
READY? That's what your computer should say after 
you've followed my instructions. 

Now, enter the following in the immediate mode: 

PRINT A$ 

Oopps! Your Atari just belched again! Now, try this in 
the immediate mode: 

PRINT B$ 

My best friend's name! And , this: 

PRINT BURP 

Unfortunately, once you assign a repugnant name or 
number to a variable, your computer remembers it 
forever-almost. 

To clear up this mess, and clean up your computer's 
act , just type: 

CLR [RETURN] 

Now, your computer's variable tables are as empty as 
the desert. But finally, it's time to leave boot camp and 
push on to the Great White Expanse. So put on your 
sunglasses, hop on your camel, and we're off!! 
51 



DR. WACKO PRESENTS ATARI BASIC 

3 
Entering the Great White 

Expanse 

r7SADDLC 1140SE QlMELS, 
V WeSThJARD HO, G/DPYUp, 

RIDE:: t:MMiH\,Yo 
/.-ITT Le !X)Gl~ MUSH 1 

&eNlLCMEN 1 SThRT 
l{ooR eNG11-lE51 

Nice to see that you made it through Basic BASIC 
Training! You made it without going AWOL, your hair's 
starting to grow back, and you have a working 
knowledge of some useful BASIC programming tools. 
Now, it's time to join the caravan and enter the Great 
White Expanse. 

You'll build your BASIC vocabulary with each step 
through these pages. Every page is like a sma ll oasis, 
presenting short, and if you 're hungry, easi ly digesti
ble programming treats. 

As you journey through the Great White Expanse you'll 
discover exciting BASIC words, with simple examples 
that show you how to use each one to talk to your com
puter and get your programs under contro l. 

Before you go charging off, let's take a quick look at 
this map. 

52 

\ 



CAMEiL CONT'RoL. 
&FAlAFELSTAIllD CD 

The Great White Expanse 

Oasis 1: ConLrol ThaL Camel. When the caravan stops at 
this oasis, you' ll have a snack and learn all the BASIC 
words and commands that will get your program under 
control. Yo u wouldn't want it to run off without you, 
wou ld you? 

53 



DR. WACKO PRESENTS ATARI BASIC 

Oasis 2: Provision Your Caravan and Store Your Dates. 
This oasis is loaded with more tasty delights, just ripe 
for the picking. Here, I'll show you how to store your 
treats inside your computer so you can continue 
across the Great White Expanse with a full stomach. 

Oasis 3: Fantastic Function at the Oasis. Its time for a 
little revelry. At this oasis, you'll learn three BASIC 
functions, SGN, INT, and RND, that are guaranteed to 
add a touch of professionalism and wackiness to your 
programs. 

Oasis 4: Don 't String Me Along, Including Strings 
Revisited, ATASCII Codes, and the Hotski- Totski Chart. 
The sun will really get to you by the time you arrive at 
this oasis. When we arrive, we' ll take a closer look at all 
the fun things you can do with strings. Then , I'll in
troduce you to the frivolous Hotski-Totski Charts! 

Oasis 5: Chat with Your Fellow Travelers and 
Psychoanalyze Your Computer. Your journey is almost 
over. And as the sun sets over the Sahara, it's time to 
swap camel jokes, talk to your programs, disk drive, 
and cassette recorder , then peek inside your Atari 's 
brain and poke around. 

After you 've gathered a gigantic BASIC vocabulary 
and charted each oasis, you'll fly off (on your magic 
carpet, of course!) to the mystical worlds of Graphics, 
Sound, and Creative Programming where you will rein
force and expand your new knowledge . And here's the 
best part: If you want a quick review, you can always 
revisit any oasis to sip a refreshing drink from its well of 
knowledge. 

Have you packed your sunglasses? Ready to join the 
caravan through the Great White Expanse? Then put 
on your muklucks, and we'll get going! Mush, Clyde! 

54 



The Great White Expanse 

Oasis 1: Eat Some Falafels and 
Control Your Camel 

Welcome to your first oasis. You must be a little bushed 
and hungry. So, pull up a cushion, make yourself com· 
fortable , eat a few falafels, and learn how to control 
that camel of yours. 

Here beneath the swaying palms, I'll show you how to 
combine your Basic BASIC Training skills with some 
new BASIC words to increase your programming pro
wess and really take control of your programs. 

The Querulous INPUT 

You've probably heard the expression "garbage in, gar
bage out. " Well , the fabulous INPUT statement lets you 
make this expression become a reality. When you use 
INPUT, your computer asks a weird question and waits 
politely for you to enter an even stranger answer, and 
press RETURN. Simply put, an INPUT statement lets 
you (you guessed it) put information into your computer. 

Here, I'll show you how INPUT works in a short, but fat
tening, program: 

55 



DR. WACKO PRESENTS ATARI BASIC 

Falafel Calorie Counter 

10 PRINT "How many falafels did you eat"; 
15 . 
20 INPUT FALAFELS 
25. 
30 CALORIES = FALAFELS* 200 
40 PRINT: PRINT CALORIES;" Calories! Ms. 

Peeky wouldn't "; 
50 PRINT "approve!" 

The Falafel Counter program was one of Ms. Peeky's 
inventions. She originally designed it to embarrass 
everyone at the oasis so she could sneak extra falafels 
on the sly. Still, she did a great programming job! 
Besides demonstrating the INPUT statement, she: 

1. Provided a nomad·friendly user 's guide. In line 10, Ms. 
Peeky was thoughtful enough to tell us what informa· 
tion to type into the program. If she hadn't made her 
program nomad-friendly, all you 'd see on your screen 
would be a lonely question mark. 

Ms. Peeky also added a semicolon (;) at the end of the 
PRINT statement so the question mark (generated by 
the INPUT statement) appears on your screen right 
after she asks you how many falafels you ate. 

Take out the semicolon, run the program again , and 
watch what happens to that querulous question mark. 
Wheew! Ms. Peeky also helped when .... 

2. She made her program easy Lo read. In lines 15 and 
25, Ms. Peeky used a period (.) instead of REM to make 
the INPUT statement on line 20 stand out. 

She also went to a lot of extra trouble when she chose 
"FALAFELS" and " CALORIES" as her variable names. 
Her choices make the program easier to understand . 
She could have used abbreviated forms, like F for 

56 



The Great White Expanse 

"FALAFEL," and C for "CALORIES. " You may also 
notice that.. .. 

3. Ms. Peeky was overwhelmed in line 30. She made the 
numeric variable "CALORIES" equal to 
"FALAFELS:I:200", and then imbedded "CALORIES" 
in the PRINT statement on line 40. 

Using INPUT with a String Variable 

When you INPUT a string variable you've got to DIMen
sion it first. 

Here's one of Paddle's favorite programs: 

No Fishing at the Oasis! 

1 0 DIM FISH $(30) 
20 PRINT "Hey cat! What kind of fish is that" 
25. 
30 INPUT FISH$ 
35. 
40 PRINT :PRINT "This isn't a fish. It's a ";FISH$ 
45. 
50 PRINT :PRINT "Can't you read?" 
60 PRINT "It says, NO ";FISH $ ;"ING!!" 

In line 1 0, I DIMensioned FISH$ to accept up to thirty 
characters (DIM FISH$(30)) because I couldn't think of 
any sea creatures with names longer than that. Can 
you? If you can, reDIMension FISH$ (something smells 
fishy here!). 

When the Oasis Warden asks you what kind of fish you've 
caught, have some fun and enter a strange name, like 
"LOBSTER", "WACKO", or "MS. PEEKY"! 

57 



DR. WACKO PRESENTS ATARI BASIC 

The Easy to Use GOTO 

Even if Clyde's not going anywhere, your program can, 
with the easy-to-use, and utterly simple, GOTO state
ment. Try this: 

10 PRINT" Buy An Edsel! " ; 
20 GOTO 10 

Besides filling up your screen with advertisements for 
defunct products, the versatile GOTO statement can 
spiffy up programs like the No Fishing gem you just 
played with. 

Every time you want to use the No Fishing program 
you'll have to type the word RUN and press RETURN. 
What a waste of time! It's also hard on the fingernails. 
Well, fear not, GOTO to the rescue! Add the following 
new line 70 to the No Fishing program and all your 
nail-splitting problems will be solved: 

70 GOTO 20 

When you've finished razzing the Oasis Warden, you' ll 
notice that the program goes to line 20 and you can go 
fishing again! 

Here's another short example: 

Another Short Example 

10 ? "How many shekels did your camel cost" 
20 INPUT SHEKELS 
30 ? :? SHEKELS;" smackers! Great deal!" 
40. 
50? :GOTO 10 
60 REM - A quick reminder: ? is the same as 

PRINT 

58 



The Great White Expanse 

See how much time the GOTO statement saves you? 
But that's not all! You can also use GOTO to count your 
shekels. 

Counting Shekels 

5 oWe start with 1 shekel. (Initialize the variable) 
108= 1 
15 Now we print our balance 
20 PRINT 8 
25 Shekels equals shekels Plus 1 
308=8+ 1 
35 Back to line 20 to begin again 
40 GOTO 20 

(To keep things manageable, I've used S to represent 
"Shekels" .) 

Accumulating the Maximum 

I play the Game of Life to accumulate the maximum 
~-::::-:::--AAI number of positive camels! Unfortunately, Snidely 

q Seersucker doesn't play by the same rules. His goal is 
/'-..... ...., ........ ~ to sell the maximum number of used camels, and ac

1.-----_---' 

cumulate the maximum number of shekels! Snidely's 
dastardly accumulations are made possible with a little 
help from the GOTO statement. 

Regardless of whether you take your camel with one 
hump or two, the best way to experience Snidely's ac-
cumulating experience is to walk on to his Used 
Camelot and start buying a few camels. 

So, first enter Snidely's Used Camelot, lose all your 
money, get in debt, and I'll counsel you when you 
return . 

59 



DR. WACKO PRESENTS ATARI BASIC 

Honest Snidely's Used ·Camelot 

10 SHEK = 5000:CAM = 1 :TOT = O:SPEND = 0 
20 PRINT "* * *SNIDELY'S FRIENDLY USED 

CAMELS* * *" 
30 PRINT :PRINT "WHAT DO YOU OFFER FOR 

CAMEL #";CAM; 
40 INPUT SPEND 
50 PRINT :PRINT "YOU NOW, (SNICKER) OWN" 

; CAM;" USED CAMEL(S)" 
55. 
60 CAM=CAM+ l:SHEK=SHEK-SPEND: 

TOT = TOT + SPEND 
65. 
70 PRINT "YOU'VE GOT ";SHEK; " SHEKELS 

LEFT" 
80 PRINT "THAT'S $";TOT; " WISELY SPENT. 

(SNARK!)" 
90 PRINT 

100 GOTO 30 

60 



The Great White Expanse 

A Tour through Camelot 

SHEK: The number of shekels you have (or 
don't have!). 

CAM: The number of each camel, and the 
number of camels purchased. 

TOT: The accumulated total 

SPEND: The amount you foolishly spend on 
each camel 

SNARK: A dastardly exclamation. 

SNICKER: Snidely's way of saying hello. 

In line 10, all the variables are "initialized" (set to their 
beginning values). So, you started with 5000 shekels, 
and if you weren't careful and paid too much for each 
used camel, you quickly discovered that you were in 
debt to Snidely. One of his nastier tricks. 

Line 60 is where Snidely keeps track of how many 
camels he's sold, CAM = CAM + 1; keeps tabs on how 
much money you spend and have left, 
SHEK = SHEK- SPEND and accumulates all his ill
gained wealth, TOT = TOT + SPEND. 

The Dynamic, Decision-Making 
IF/THEN 

It's a good thing that we brought the brilliant IFITHEN 
statement along with us on our trek across the Great 
White Expanse. IF/THEN is really the brains of this 
motley outfit. It makes most of our decisions, and we'd 
be lost without it. 

The IF/THEN statement compares two things and 
divines the truth. It has a simplistic, but effective, 
61 



DR. WACKO PRESENTS ATARI BASIC 

philosophy. To the IFITHEN, something is either true 
or false. But before you use it, you need to know how to 
indicate comparisons. 

> Means greater than 
< Means less than 
= Means equal to 
> = Means greater than or equal to 
< = Means less than or equal to 
< > Means not equal to 

How the IF/THEN makes Comparisons 

• IF A > B THEN Means If A is greater than B 
• IF A < B TH EN Means If A is less than B 
• IF A = B THEN Means If A is equal to B 
• IF A > = B THEN Means If A is greater than or 

equal to B 
• IF A < = B THEN Means If A is less than or equal 

to B 
• IF A < > B THEN Means If A is not equal to B 
• IF A = X AND B = X THEN Means If both A and B 

are equal to X 
• IF A = X AND B = Y THEN Means If A equals X 

and B equals Y 
• IF A = X OR B = Y THEN Means If A equals X or B 

equals Y 

What Happens TH EN? 

After the IF/THEN statement makes a comparison and 
divines that it is true, your computer does whatever 
you put after THEN. If the comparison is false, your 
computer moves on to the next program line. 

Take out the following magic lamp and rub it a few 
times; the mystery of the IF/THEN statement will be 
revealed. 

62 



OK, t:XJMM'i-ASII;fl*> fOR 
1,uA W~ANDACA5H 
ADVA~ c;;c-rs '(00 iW~EI> 
IIITO II PlJ6i\(' RJIIoAflJGo 

The Great White Expanse 

ASK THE GENIE 

10 PRINT "How many wishes do you want"; 
20 INPUT WISHES 
25. 
30 IF WISHES > 3 THEN GOTO 50 
35. 
40 PRINT "Your wish is my command.": 

GOTO 10 
45. 
50 PRINT "Aren't you being a little 

greedy?":GOTO 10 

IF the comparison in line 30 is true(you got greedy and 
asked for more than three wishes), THEN the program 
goes to line 50, and the Genie tells you off! 

IF the comparison in line 30 is not true (you asked for 
three or less wishes), THEN the program skips on to 
line 40, and your wish is the Genie's command. 

The Use 'm All Program 

Ask the Genie shows how the IF/THEN statement 
makes a greater than ( > ) comparison. The Use 'm All 
program uses uirtually all the IF/THEN comparisons 
possible. Note that the INPUT statement on line 20 of 
this program lets you enter and compare two numbers. 
You can enter your choice of numbers in either of two 
ways: 

1. Enter the first number, press RETURN, then 
enter the second number and press RETURN 
again. 

2. Enter the first number, then enter a comma; 
enter the second number and press RETURN. 

This short program will surprise you with its 
brilliance, regardless of which method you use to 
enter your two numbers. So type it in, enter some 
numbers, and watch the amazing results. 

63 



DR. WACKO PRESENTS ATARI BASIC 

Use 'm All 

10 PRINT "Enter ANY two (2) numbers" 
20 INPUT Nl,N2 
30 IF Nl = N2 THEN GOTO 100 
40 IF Nl < > N2 THEN GOTO 200 
50 IF Nt > N2 THEN GOTO 300 
60 IF Nt< N2 THEN GOTO 400 
70 IF Nt = 50 OR N2 = tOO THEN GOTO 500 
80 IF Nt < tOO AND N2 > tOO THEN 

GOTO 600 
90 PRINT :GOTO to 
92. 
95. 
97. 

tOO PRINT "Nt EQUALS N2":GOTO 40 
200 PRINT "Nt is NOT EQUAL to N2": 

GOTO 50 
300 PRINT "Nt is GREATER than N2": 

GOTO 60 
400 PRINT "Nt is LESS than N2":GOTO 70 
500 PRINT "Either Nt equals 50 OR N2 equals 

tOO":GOTO 80 
600 PRINT "Nt is LESS than tOO AND N2 is 

GREATER than tOO":PRINT :GOTO to 

Here's what your brilliant computer says when you 
enter the numbers 50 and 500: 

N 1 is NOT EQUAL to N2 
N 1 is LESS than N2 
Either N 1 equals 50 or N2 equals 100 
N 1 is LESS than 100 and N2 is GREATER than 
100 

Pretty smart, isn't it? 

64 



The Great White Expanse 

IF/THEN String Comparisons 

There's some exciting news at the casbah! The 
IF/THEN statement can make more than just 
numerical comparisons. It can be used to compare two 
or more strings! Later, when we revisit strings, you'll 
learn lots of weird ways to get tangled up. But for now, 
here's a neat example that illustrates one common 
usage of IFITHEN string comparisons. 

Ryde Clyde 

10 DIM NAME$(20),A$(I) 
20 PRINT "What's your first name"; 
30 INPUT NAME$ 
40 PRINT NAME$; ", would you like to ryde 

Clyde"; 
50 INPUT A$ 
55. 
60 IF A$ = "Y" OR A$ = "y" THEN GOTO 80 
65. 
70 PRINT "I don't blame you!":PRINT:GOTO 20 
80 PRINT "Outrageously courageous, "; 

NAME$;"!":PRINT:GOTO 20 

Here's how this outrageous program works. Line 50 
waits for and accepts your INPUT. Line 60 is where all 
the decision·making occurs. If you enter a string that 
begins with either a capital Y or a lowercase y the pro· 
gram assumes you say , " YES" and zips outrageously 
to line 80. But if you enter any other letter, the program 
assumes that you mean " NO," and bops to line 70 
where you are praised for your common sense! 

The IF/THEN statement's decision making and logical 
branching abilities are key programming elements. As 
you continue your adventure and begin developing 
your own brilliant programs, the IF/THEN statement 
will become one of your most valuable tools - almost 
as valuable as a date·picker. 

65 



DR. WACKO PRESENTS ATARI BASIC 

Going around in Circles with the 
Dizzy FOR/NEXT Loop 

It's easy to get lost out here in the desert. Caravans 
have been known to go around in circles, repeating the 
same course for days, before getting back on track 
again . 

Getting dizzy is very unhealthy for caravans. But going 
around in circles can actually improve and enhance 
your programs! When you need to repeat part of your 
program a specific number of times, the dizzy 
FOR/NEXT loop is just what the shiek ordered. 

The FOR/NEXT loop has many camel-boggling ap
plications. But since a picture is worth a thousand 
shekels, here's a very short, and eye-popping , exam
ple. Some of the elements contained in this short eye
popper might be new to you . Don 't panic! Take a 
chance and type it in anyhow. The results are well 
worth the risk. 

Eye- Popper 

10 FOR X= 1 TO 255 
20 POKE 710,X 
30 NEXT X 

Don't be squeamish! Open your eyes wide and run this 
short program. 

SINCE lHlS Ba:>t\ ~ AAVG "THe 
Wasn't that fabulous? Your screen looked like the aora- VID€DC~ILrtVOFYOUR ATARl,YoVRE 

~NNA \\AV61O IMARINE. (IU, 1HOre 
boringallofus, and your eyes are probably bloodshot! BRtL.L-IA~T COLORS. 

To set your screen back to blue, just enter the following 
in the immediate mode: POKE 710,148 

Thanks to the FOR/NEXT loop, you've just sampled all 
the brilliant colors your Atari can deliver. Later, I'll 
show you how to astound your camels with more 

66 



1\lE.I\t IS No IfJiELUGCt-lT ~ 
~fAR80NZO 13fAN5~86 PRlmEV 
f'IVGl1M6"S ON 'tJUR a::.REeN. WIS 

~BbmVT1).)(? ANCHOVY 

The Great White Expanse 

psychedelic color wizardry. But now it's time to show 
you how the FOR/NEXT loop made it all possible. 

The Eye-Popper program is real easy to understand. 
The dizzy FOR/NEXT routine begins on line 10 with the 
statement FOR X = 1 TO 255. This simply means that 
the value of X equals 1 when the program starts, and 
will equal 255 when FOR/NEXT is finished looping 
around. 

All that snazzy color-changing takes place in line 20. 
The value of X in 71 O,X, is changed from 1 to 255, the 
current value of X, by the FOR/NEXT loop that sur
rounds it. Line 30, NEXT X, tells the program to go 
back to line 10 and add 1 to the value of X. 

A FOR/NEXT loop can be thought of as a garbanzo 
bean sandwich - a handful of programming 
statement(s) squashed between a FOR and NEXT 
statement. 

Here's another short example that will help you get the 
picture - or heartburn. 

Garbanzo Beans 

10 FOR A = 1 TO 5 
20 PRINT "Garbanzo beans" 
30 NEXT A 

See! The garbanzo beans are squashed between a FOR 
and NEXT statement! When you run this tasty pro
gram, the words "Garbanzo beans" are printed on your 
screen five times. 

If you really like garbanzo beans, just change the 
number 5 in line 10 to a larger number and run the pro
gram again. 

Now, to get real sneaky, add this line and run your pro
~-L-~""""'-->....I gram. 

67 



DR. WACKO PRESENTS ATARI BASIC 

25 PRINT A 

Wow! The value of A increases by 1 each time the pro
gram takes a bite of the sandwich. 

I've used the variable A instead of X in this example. 
You can use any variable you like. You've just got to be 
consistent. If you use A after the FOR statement, use it 
again after the NEXT. 

Stay in STEP with More FOR/NEXT Loop 
Madness 

The STEP statement is used to make a FOR/NEXT 
loop count in increments other than 1. 

Here's a high-step'n example that illustrates this won
drous delight: 

High Step'n 

10 FOR X=O TO 20 STEP 2 
20 PRINT X 
30 NEXT X 

Run this spiffy number and you'll see that the program 
is now counting by twos! 

To really grasp this concept, make it count by fours by 
changing the number that follows STEP to a 4. 

You can also use STEP to count down by subtracting 
instead of adding to X. Here's an example that counts 
down from 20 to 1 in one-step increments: 

Countdown 

10 FOR X= 20 TO 1 STEP-1 
20 PRINT X 
30 NEXT X 

68 



The Great White Expanse 

Experiment with these concepts a little until you have a 
good feeling for the way STEP works in a FOR/NEXT 
loop. Remember, the number following STEP can be 
either positive or negative. It can even be a decimal, 
like 0.5! 

Now Just Wait a Minute! 

Now that you're familiar with the FOR/NEXT loop and 
STEP, here's a common application I call Wait. It's 
one that you'll use often in your programs. 

If things are happening too fast in your program - the 
display doesn't stay on the screen long enough, a 
sound is too short, or you want a color to remain on the 
screen for a fixed period - it's time to use my infamous 
Wait routine. 

10 FOR X = 1 TO 10 
20 PRINT,X 
25. 

Wait 

30 FOR WAIT = 1 TO 100 
40 NEXT WAIT 
45. 
50 NEXT X 

When you run the Wait program you' ll notice a pause 
before the computer prints each number on your 
screen. That's because the Wait routine is cleverly in· 
serted at lines 30 and 40 of the program. If you want to 
shorten the delay, just decrease the value of the 
number following TO. To lengthen the interval, in
crease the value. 

Nested FOR/NEXT Loops 

I'll bet you didn't realize when you typed in the Wait 

69 



DR. WACKO PRESENTS ATARI BASIC 

program that you were entering a "nested loop." A 
nested loop is simply one or more FOR/NEXT loops 
nested inside other FOR/NEXT loops. 

~
FOR X = 1=\00 

~FOR y= 1 ;0\00 
~NE)(T y 

NEXT X 

In the Wait program, the WAIT routine on lines 30 and 
40 is a nested loop because it's inside another 
FOR/NEXT loop. 

This next program, Clyde's Lament, is one of my 
favorites. It gets lonely out here in the desert, and a lit· 
tie music is always welcome. So, put on your dancing 
shoes and RUN this short program. It shows how 
nested loops are structured, and I guarantee it will 
make you smile. 

Clyde's Lament 

10 FOR A= 1 TO 10 
20 FOR B = 5 TO 0 STEP -1 
30 FOR WAIT = 1 TO 20 
35 REM 
40 SOUND 0,B,4, 15 
45 REM 
50 NEXT WAIT 
60 NEXT B 
70 NEXT A 

70 



The Great White Expanse 

Line 10 of Clyde's Lament is set to play ten times. If you 
want to shorten Clyde's song, change the number 10 to 

~~--....:---..., a smaller number. 

Line 20 changes the tone in the SOUND statement in 
~~~;::~~=lline 40. (You'll learn all about sound in a little while.) 

Line 30 is the first part of the WAIT routine. Changing 
the 20 to any other number will vary the length of 
Clyde's song. (The shorter the better.) 

The Subterranean Subroutine, 
Starring GOSUB and RETURN 

Lurking in the depths of the oasis is the dark and 
mysterious subterranean subroutine. A subroutine is a 
chunk of programming that your program uses one or 
more times to do something special. 

When I get hungry I send out for a date-anchovy pizza 
from the oasis pizzeria. My special treat is delivered in 

\..---____ --- a flash by the local merchant. When your program 
wants a special treat, it sends its order to the 
subroutine and, voila, instant delivery! 

I'll show you a devastating example in just a second. 
But before you send an order to a subroutine, you 
should know that GOSUB is used to send the order to 
the subroutine and RETURN zips your computer back 
to the main part of your program after the subroutine 
has filled the order. 

It Remembers from whence It Came! 

GOSUB works just like GOTO. It sends your program 
racing to the line number placed after it. And, with a lit 
tle help from its partner, RETURN, the program 
remembers where it came from and returns after it has 
finished executing the subroutine. 

71 



DR. WACKO PRESENTS ATARI BASIC 

Snidely, always the perfect villain, has devised this 
subterranean example: 

Where Are My Minions? 

10 . The main part of the program: 
15 . 
20 PRINT "SNIDELY: Where are my minions 

hiding?":GOSUB 60 
30 PRINT "SNIDELY: Snark!" 
40 END 
45. 
50 • The Subterranean Subroutine: 
55. 
60 PRINT "LURKING IN THE DEPTHS OF 

YOUR PROGRAM.":RETURN 

The GOSUB in line 20 tells the program to race down 
to the subroutine in line 60. After Snidely receives his 
answer in line 60, the RETURN sends the program 
back to line 30, where Snidely makes a snide remark. 

The END in line 40 is used to separate the main part of the 
program from the subroutine below it. 

Snidely's dastardly program shows how the GOSUB 
works with RETURN to get to and return from a 
subroutine. But remember, subroutines come in real han
dy when you've written a program containing short 
chunks that it uses repeatedly. Later in this book, when I 
help you weave the perfect flying carpet, you'll experience 
more subroutine madness. 

The Smart and Speedy 
ON GOTO 

The ON GOTO statement is smart, speedy , and pa
tient. It waits for numeric input, then races to the cor-

72 



DA BCOMP3XJMP 
DA BIXWf>eJl( BCOMP 

PA f3a:)Mf'St:X)M P 
SCOMP 

The Great White Expanse 

rect line number. Here's what a typical ON GOTO state
ment looks like: 

ON N GOTO 100,200,300,400 

In this example, if the value of N is 1, your program 
races to line 100, the first line number after the com
mand GOTO. If N equals 3 , line 300, the third number 
after GOTO is executed. (Off with its head!) 

Enter and run this short program to see how smart the 
ON GOTO really is. 

Smarty Harem Pants 

10 PRINT :PRINT "Enter a number from 1 
to 5"; 

20 INPUT N 
25. 
30 ON N GOTO 100,200,300,400,500 
40. 

100 PRINT "It's a I! (or a 0 or a number greater 
than 5). ":GOTO 1 0 

150. 
200 PRINT "You entered a 2. ":GOTO 1 0 

"---------' 2 5 0 • 
300 PRINT "You entered a 3. ":GOTO 1 0 
350. 
400 PRINT "You entered a 4. ":GOTO 1 0 
450. 
500 PRINT "You entered a 5. ":GOTO 1 0 

See how smart ON GOTO is? The program goes, in 
order, to the correct line number. Just for fun, scram
ble line 30 like I've done below, and run SMARTY 
HAREM PANTS again . 

30 ON N GOTO 200,300,500,100,400 

73 



DR. WACKO PRESENTS ATARI BASIC 

Now, when you enter the number 1, the program goes 
to line 200! (The first line number after GOTO.) 

If you enter a zero or a number greater than 5, the pro
gram goes to the first line number on ON GOTO's list. 
But don't enter a negative number or a number greater 
than 255. If you do, your computer will get heartburn 
and spit out an error message. Try it, if you have a 
strong constitution. 

I use the smart and speedy ON GOTO in programs to 
give the user a choice of options. What 's Up includes 
some nifty programming techniques (in line 10) to 
clear the screen and turn off the cursor. 

This stupendous program also contains a WAIT 
subroutine in line 1000. Since the program uses a 
WAIT three times, the subroutine saves a lot of typing 
and makes this program super efficient! 

What's Up 

5 . Line 10 clears the screen and turns off the 
cursor. 

10 PRINT CHR$(125):POKE 752,1 
15. 
20 PRINT" 1. What's Clyde's favorite word?" 
30 PRINT "2. What does Snidely say?" 
40 PRINT "3. What is Junior's I.Q.?" 
50 PRINT :PRINT "Enter a number from 1 

to 3"; 
55. 
60 INPUT N 
65. 
70 ON N GOTO 100,200,300 
75. 

100 PRINT "Gruntl":GOSUB 1 OOO:GOTO 10 
120. 
200 PRINT "Snark!":GOSUB 1 OOO:GOTO 10 
220. 

74 



The Great White Expanse 

300 PRINT "-35":GOSUB 1000:GOTO 10 
320. 
340 . Here's the subroutine! 
350. 

1000 FOR WAIT = 1 TO 300:NEXT WAIT:RETURN 

ON GOS(JB 

ON GOSUB is just about the same as ON GOTO. A 
typical ON GOSUB statement looks like this: 

10 ON N GOSUB 1000,2000,3500 

In this example, a response of 1 sends the program rac
ing to a subroutine on line 1000. If the response is 3, 
the program goes to the subroutine in line 3500. After 
the subroutine has finished doing its thing, the pro
gram returns to the next statement after the GOSUB. 

In this example, if N has a va lue less than 1 or greater 
than 3, the program will omit any subroutine and go on 
to the next line. Negative numbers, or numbers greater 
than 255, make the computer display an error 
message (oops!). 

75 



DR. WACKO PRESENTS ATARI BASIC 

Oasis 2: Provision Your Caravan 
and Store Your Dates 

Congratulations! You just left Oasis 1, one of the 
longest stopovers in this entire book! You 've taken a 
giant step, written some programs, and learned how to 
take control of them. This knowledge puts you on top 
of the sand pile. And , as Captain Action once said, it's 
all down dune from now on. Wow! 

I've been emptying sand out of my shoes waiting for 
you. Junior's been emptying sand out of his head. So, 
welcome to your second oasis. First, with a little help 
from a couple of really wacked-out date nuts, READ 
and DATA, I'll show you how and where to store all the 
supplies you've been lugging around. After breezing 
through a few pages you ' ll be twirling information in 
and out of your programs like a Sahara sand storm! 

Next, after you've scattered some sand and really 
made a mess of things, my beautiful and talented wife, 
Petunia , will make an appearance to help us all get 
organized with her special storage system, Arrays! 

This bit of desert paradise is chock full of easy-to
understand programming examples that, with a little 

76 



The Great White Expanse 

imagination, can be expanded into real blockbusters; 
not to mention something useful. So settle in, and 
check out the scenery. 

Getting Organized with DATA 

In many programs there's a real danger of tripping over 
numbers, strings, and figs at every stop of the way. 
What's a nomad to do? Just enter Plaudit to Wacko, 
RUN it, and I'll show you how it solves your storage pro
blems. 

Plaudit to Wacko 

10 READ X 
20 IF X= -1 THEN GOTO 50 
30 PRINT X 
40 GOTO 10 
50 PRINT "WHO DO YOU APPRECIATE? 

WACKO, WACKO, WACKO!":END 
1 00 DATA 2,4,6,8, - 1 

After RUNning this strange program and viewing the 
humble results , you probably asked yourself, "What's 
being stored, where is it stored, and what's in store for 
me next?" I'll answer all these questions in order. After 
all, this chapter is about getting organized! 

What's Being Stored and Where Is It? 

The provisions you take with you on your program
ming adventure include numbers and slrings. That's 
what you need to store! And to make your journey a 
snap, Atari BASIC lets you store them after a DATA 
statement! 

77 



DR. WACKO PRESENTS ATARI BASIC 

"Wow" Is in Store for You Next 

Storing numbers or strings after a DATA statement is 
just like placing words in a book. For example the word 
"Wow" has been waiting patiently for you to come 
along and read it. And what's amazing is that you can 
go back and read it again, and again, and again, and ... 
just like stored information you'll find after a DATA 
statement, as you'll soon see! 

In Plaudit to Wacko, I've stored the numbers 2,4,6,8 
and - 1 after the DATA statement in line 100. Here's 
line 100 again so you can take a closer look at it: 

100 DATA 2,4,6,8, - 1 

Numbers or strings are always placed after a DATA 
statement according to these four simple rules: 

1. A comma always separates each chunk of data. 
2. There is no comma before the first chunk or after 

the last chunk of data. So, in this example, 
there's no comma before the number 2 or after 
the - 7. 

3. You can store as many numbers or strings on a 
line of data as you want, as long as you don't ex
ceed the three-line limit we mentioned in Basic 
BASIC Training. 

4. You can position a line, or lines, of data anywhere 
in your program, and the program will still work. 
Sound impossible? Just for fun, in Plaudit to 
Wacko, change line 100 to read line 5, and rerun 
the program. It still works! 

Go Bonkers and READ It! 

Eeeeyargh! You know that numbers and strings can be 
stored after a DATA statement. But just like the words 
in this book, if you don't read them, they won't drive 
you bonkers. If you're fearless, and want your program 

78 

WAC!<O WANTED HIS I.j~ME 
TO APPEiAR CY.I6RNJD o.IeR. 
As,AtN SOT ()./6 T4U<£O 
H/U O{jTOFIT 



X!!! 1M fOIIJ6 ft:JMe 
IF lIE CAN'T HAVE A 
G RATliJG 

The Great White Expanse 

to read the stuff you place after DATA statements, 
you'll have to use the logically literate READ 
statement! 

READ is always used with a variable, like this: 

10 READ X 

Here I've used the variable X, but you can use any 
variable you'd like. When your program reads string 
data, use a string variable, like A$ . 

READing with an Invisible Finger 

Junior always uses his finger to read. Likewise, READ 
has a mysterious, invisible finger (called a "pointer") 
that points to each number or string after the DATA 
statement. 

The pointer moves from left to right (just like your eyes 
scanning a book) and sequentially reads each number 
or string. As the pointer "looks» at each number or str
ing, the variable following the READ statement is 
assigned that value. 

In Plaudit to Wacko, the invisible pointer first looks at 
the number 2. The program prints 2 on your screen 
because X equals 2 when the PRINT statement in line 
30 is executed. Next, it points to the number 4, and 4 is 
printed on your screen. Next, well, I'm sure you get the 
point! 

Just to make sure that you've got it, enter and run this 
stripped down version of the Plaudit to Wacko pro
gram. 

Stripped Down Plaudit 

10 READ X 
20 PRINT X 
30 GOTO 10 
40 DATA 2,4,6,8 

79 



DR. WACKO PRESENTS ATARI BASIC 

Ooops, a boo boo! I'll bet you thought your camel was 
running on high octane and you were home free at the 
oasis, until the number 8 appeared on your screen, 
followed by "ERROR 6 AT LINE 10." Uh Oh! 

Not to worry. Everybody goofs (except Dr. Wacko). 
Your computer is just telling you that the pointer ran 
out of data. After reading the number 8, it fell off the 
right edge of the program. Plop! 

FLAG it Down! 

The original program didn 't plop because I cleverly 
placed the number - 1 at the end of my data, right 
after the number 8. 

I used - 1 as a flag to tell the pointer it had reached the 
last chunk of data. After the pointer read - 1, the 
IF/THEN statement in line 20 told the program to go to 
line 50, print some nonsense, and come to a screech· 
ing halt - END. 

Any number (or string) can be used as a flag. To see 
what I mean, modify Stripped Down Plaudit like so: 

1. Change line 40 to read: 40 DATA 2,4,6,8,0 
2. Add this line: 151F X=O THEN END 

This time I used zero (0) as the (lag. When you run your 
modified program, the IFITHEN statement in line 15 
stops the program when it is flagged down by the O. 

Strings of Dates and Data . 

The DATA statement comes in real handy when you 
want to store a list of names, dates, pomegranates, or 
brilliant ideas. Here's a motley program full of motley 
wackos to demonstrate the DATA statement's string 
handling versatility. 

80 



The Great White Expanse 

Motley Crew 

10 DIM NAME$(20) 
20 PRINT "Presenting our motley crew:" 
30 READ NAME$ 
40 PRINT NAME$ 

~~~q-~ 50 IF NAME$ = "SNIDELY" THEN END 
60 GOTO 30 

100 DATA DR. WACKO,MRS. PETUNIA 
WACKO,JUNIOR,CAPTAIN ACTION,MS. 
PEEKY,CLYDE,SMOKEY PEEK,SLOW 
POKE,SNIDELY 

Instead of numbers, this motley program is filled with 
wackos! We're all crammed into line 100, right after 
the DATA statement, and each of us is separated by a 
comma. I've listed my name first, of course, and 
naturally Snidely Seersucker (that dastardly villain) is 
last. "SNIDELY" is the flag that indicates the end of the 
list. And because he wanted to see his name printed on 
the silver screen, I placed the IFITHEN statement in line 
50 , after the PRINT statement. Clever, no? 

Juggling More Than One! 

You know how to make your program point to and 
READ one number or string at a time. No problem! 
Now comes the exciting part. Stand back as I show you 
how to turn your computer into a data juggling vir
tuoso! Take a look at this READ statement - if you 
dare: 

10 READ X,Y 

This strange looking statement contains two, count 
'em, two variables separated by a comma! Right again, 
your computer can juggle more than one variable at a 
time! 

81 



DR. WACKO PRESENTS ATARI BASIC 

Here, I'll show you. Just enter my infamous Hi! pro
gram. When you're all set, clear the screen by pressing 
the SHIFT and CLEAR keys, then RUN it! I'll explain all, 
after you 've witnessed your Atari 's juggling prowess. 

H o' I. 

10 READ X,Y 
15 IF Y = - 1 THEN END 
20 POSITION X,Y:PRINT "X" 
30 GOTO 10 
40 DATA 10,2,10,3,10,4,10,5,10,6 
50 DATA 11,4,12,4,13,4 
60 DATA 14,2,14,3,14,4,14,5,14,6 
70 DATA 16,2,16,3,16,4,16,5,16,6 
80 DATA 19,2,19,3,19,4,19,6 
90 DATA - 1, - 1 

Did you see that? A gigantic "HI!" This nifty program 
actually juggles two numbers to perform this mystical 
feat! 

First, the pointer reads the value for X, then it switches 
hands and reads the value for Y. In the Hi! program, 
starting at line 40, it first reads 10, assigns this value to 
X, then 2 , and assigns this value to Y. Then it reads the 
second 10, assigns it to X, and finally 3, assigning it to ~ _____ ----/ 
Y. It continues this juggling act until it arrives at the - 1 
in line 90. 

The program reads each set of values, uses the values 
in the POSITION statement in line 20, and prints an X 
on your screen. It takes a set of numbers to position 
stuff on your screen, but more about the amazing 
POSITION statement in Chapter 4. 

82 



The Great White Expanse 

RESTO RE 's Also in Store for You! 

Out here in the desert, one day seems to blend into the 
next. Junior has come up with a crude method of keep
ing track of each day of the week so he knows when to 
watch his favorite TV shows. At the end of each day's 
march he notches his skateboard; one notch for Mon
day, two for Tuesday , and so on. But even my brilliant 
son gets confused after a while. To help him translate 
his skateboard notches into days of the week, I have 
devised this simple but effective program, Not
cheroonio. The great thing about Notcheroonio is that 
it introduces even more exciting DATA tricks! 

Here's Notcheroonio. Before I explain all the new stuff 
that's in it, enter it, RUN it, and start having some fun! 

Notcheroonio 

10 DIM DAY$(10) 
20 RESTORE 
30 PRINT "ENTER A NOTCH BETWEEN 1 

AND 7"; 
40 INPUT N 
50 READ A,DAY$ 
60 IF N = A THEN PRINT DAY$:GOTO 20 
70 IF N > 7 OR N < 1 THEN PRINT "OOPS! "; 

:GOTO 20 
80 GOTO 50 

100 DATA 1,MONDAY,2,TUESDAY,3, 
WEDNESDAY,4,THURSDAY,5,FRIDAY,6, 
SATURDAY,7,SUNDAY 

I'll bet the first weird thing you noticed about this pro
gram was the RESTORE in line 20. RESTORE resets 
the pointer back to the beginning of a DATA statement. 

83 



DR. WACKO PRESENTS ATARI BASIC 

In line 60, when the number you've entered (N) is the 
same as the number just read by the pointer (A), the 
pointer comes to a screeching halt. For example, if you 
enter the number 3, the pointer reads up to and in
cluding "3,WEDNESDAY." Then the computer prints 
"WEDNESDAY" (DAY$) on your screen, and the pro
gram returns to line 20. In line 20 the RESTORE state
ment returns the pointer to the beginning of the DATA 
statement so you can try again. 

Some programs you may develop might include sets 
of DATA on different lines_ To reset a specific line of 
data just place the appropriate line number after 
RESTORE, like this: RESTORE 100. In this case, the 
program will RESTORE only the data beginning on 
line 100. 

Now for the other weird thing about Notcheroonio. Yes, 
it is possible, as you have just seen, to read string and 
numeric data at the same time. Just remember to 
DIMension the string variable and set things up like 
this: 

50 READ A,DAY$ 

You've also got to make sure that you alternate 
numeric and string data, as I've done in line 100. 
Remember, your program can't read a string into a 
numeric variable. 

Ms. Peeky's Black Book 

The other day Ms. Peeky lost her little black book, and I 
found it. She'd listed all her favorite men in it and in
cluded comments on each. What an embarrassing 
revelation! 

Drat! Caught in a Sand TRAP! 

There are only two new concepts in her little black 
book, and they both occur in line 60. Before you peek 

84 



The Great White Expanse 

at Ms. Peeky's book, here's line 60, complete with new 
concepts: 

60 TRAP 80:IF DESC$(1,3) = NAME$(1,3) THEN 
PRINT DESC$:GOTO 30 

The TRAP statement is used to t rap any error that 
might occur in line 60. (See Appendix A for a complete 
list of error messages.) If an error occurs, the program 
moves on to the line that has the same number as the 
number following TRAP. In this example (TRAP 80) 
the program will go to line 80. This is really great! Now, 
when an error occurs, your program won't stop, and 
your screen won't display an error message! It just goes 
on about its business. Here's a simple example that il· 
lustrates the point: 

10 PRINT "ENTER A NUMBER"; 
20 TRAP 1 O:INPUT N 
30 PRINT N:GOTO 10 

In this program, if you goof and enter a letter instead of 
a number, the TRAP statement in line 20 sends the pro· 
gram back to line 10 so you can try again. No mess, no 
fuss, and no error messages. Neat, isn't it? 

Now, look at those two weird·looking string variables: 
DESC$(1,3) and NAME$(1,3). 

DESC$ and NAME$ by themselves aren't unique at 
all. But by adding (1,3) after each one, they've become 
Selective Strings! 

The two numbers inside the parentheses select a por· 
tion of the string variable, in this case, the first three 
letters. In Ms. Peeky's little black book, this neat trick 
is used to compare only the first three letters of each of 
her boyfriend's names. 

Here's a short example that shows how this concept 
works: 

85 



DR. WACKO PRESENTS ATARI BASIC 

10 DIM A$(20) 
20 A$ =" Caravan" 
30 PRINT A$(1,3) 

After you run this program the word "Car" will appear 
on your screen! That's because the program selects 
only the first through the third letters of " Caravan. " To 
print the word "van", just change line 30 to read: 30 
PRINT A$(5,7) and the fifth through the seventh let· 
ters of "Caravan" will print on your screen! 

Now that we're out of the sand trap and understand those 
weird string variables, it's time to peek at Ms. Peeky's Lit· 
tie Black Book. Just enter her friend's first names to see 
what happens. It's absolutely shocking! 

Little Black Book 

10 . Ms. Peeky's Little Black Book 
20 DIM NAME$(10),DISC$(50) 
30 RESTORE :PRINT "ENTER HIS FIRST NAME" 
40 INPUT NAME$ 
50 READ DISC$ 
60 TRAP 80:IF DISC$(1,3) = NAME$(1,3) THEN 

PRINT DISC$:GOTO 30 
70 GOTO 50 
80 PRINT NAME$;" IS NOT IN MY LITTLE BLACK 

BOOK!":GOTO 30 
82. 
85 . Here comes the DATA! 
87 . 

100 DATA MARVIN MAINSTREAM (A real macho 
guy!),WEIRD HAROLD(Weird me out. Really!) 

110 DATA SLOW POKE (A real sweetheart 
xxxx),GRUESOME GEORGE (Good in a clinch.) 

120 DATA SNEAKY PEEK (Eeeuk!),CAPTAIN 
ACTION (Faar out!!),WACKO (Gag me with a 
ladle!) 

86 



The Great White Expanse 

Think of Ms. Peeky's Black Book as a rudimentary file 
cabinet called a data base. The program stores infor
mation in the DATA statements, points to it, READs it, 
then displays it on your screen. The best part of this 
program is its ability to selectively search and retrieve 
information. By modifing it, you can tailor this short 
program to perform all sorts of data-storage tasks. 
Here are some ideas: 

1. Store and retrieve names, addresses, and phone 
numbers. 

2. File those mouth-watering clam dip recipes. 
3. Store information about your favorite lacrosse 

team. 
4 . Organize your record collection . 
S. List all your creditors and the amounts you owe 

them. 
6. Keep track of the tamale sauce and anchovy 

burritos. 
7 . Store and retrieve the birthdays of all your worst 

enemies, so you remember not to send them 
cards. 

Use a FOR/NEXT Loop to 
READ Data 

Before I run off and make way for my charming wife, 
Petunia , I'd like to share one final DATA trick with you. 

You can incorporate a FOR/NEXT loop within your 
data-reading program to let you select the specific 
chunks of data you 'd like to read . Here's a final exam
ple that illustrates this FOR/NEXT reading trick. 

FOR/NEXT DATA Trick 

10 FOR X = 1 TO 5 
20 READ A 
30 PRINT A;" "; 

87 



DR. WACKO PRESENTS ATARI BASIC 

40 NEXT X 
50 END 
60 DATA 1,2,3,4,5,6,7,8,9,10 

When you RUN this program, you 'll see that it READS 
only the first five numbers and prints them on your 
screen. Change the FOR/NEXT loop in line 10 to FOR 
X = 1 TO 10, and the program will present all the data 
on this line! 

Now that you know all about DATA statements, it's 
time for me to go and feed Clyde. Anyway, here comes 
Petunia to tell you all about arrays! Ciao, bambino, 
see you later! 

Presenting Mrs. Petunia Array 
Wacko! 

FtX:>R WACKQ, ~ LEFT IN sUCH 
A HURR:( 6€CAUse He' t::oe5N'T UNt:e~;rANID 
AR~V5, SUTHS$ c.~, 

Actually, arrays are easier to understand than my hus
band. You just have to be organized, like me. I did most 
of the packing for this motley caravan and became an 
expert at storing stuff in wicker baskets. I then labelled 
each basket so I'd know what was in it. 

Array names are just like variable names, only dif
ferent. Variable names can identify a basket full of in
formation. For example, in the expression X = 100, "X" 

88 



The Great White Expanse 

is the label for a basket that contains the number 100. 
Variable baskets, however, have one important limita
tion. They can only hold one piece of information at a 
time. 

But here's the exciting part! Arrays let you store a 
whole bunch of numbers in individually marked wicker 
baskets, without having to use a whole bunch of dif
ferent variable names! How is this possible? Simple, I'll 
show you how it's done. First you have to know how 
many numbers you want to store. Then you've got to 
DIMension the array to tell your computer to set aside 
individual baskets for each of those numbers. For ex
ample , if you want to store five numbers, dimension 
your array like this: 

DIM A(5) 

This means that you are reserving five wicker baskets, 
labelled A(1), A(2), A(3), A(4), and A(5) to hold each of 
your five numbers. 

You don't have to use the letter A; you can use any 
variable name as the first part of the label, then put a 
number within parentheses right after the variable 
name. After you've labelled all your baskets, you can 
store numbers in each one and know where each 
number is stored. 

I think it 's about time to show you how all this works in 
a short, but organized example named after my 
brilliant son, Junior. 

Basket Case 

10 DIM A(5) 
15 . 1. Set up the array. 
20 FOR X = 1 TO 5 
30 A(X) = X: . Each value of "X" is assigned to 

the array here. 
40 NEXT X 

89 



DR. WACKO PRESENTS ATARI BASIC 

45 . 2. Put numbers into the array. 
50 FOR X = 1 TO 5 
60 PRINT "Put a number in basket ";X; 
70 INPUT N 
80 A(X)=N 
90 NEXT X 

Let's just belly-dance our way through this program. 

The FOR/NEXT loop in lines 20 through 40 sets up the 
array. Line 30 labels each of the five empty baskets 
A(1) through A(5) respectively. The loop in lines 50 
through 90 lets you place one number in each wicker 
basket. 

When you run this program, you'll be asked to put a 
number in each basket. Just so we're on the same light 
beam, put lOin basket 1, 20 in basket 2, and any 
numbers you want in the remaining three baskets. 
When your screen says, "READY," you can look at the 
contents of each basket by using a PRINT statement in 
the immediate mode, like this: 

PRINT A(I) [RETURN] 

See! A lOis stored in basket A(1)! Check out basket 
A(2). I'll bet you find a number 20 in it! 

Put Stuff into Arrays from DATA 

Basket Case shows how to use an INPUT statement to 
put stuff into an array. Here's a short program that 
takes numbers stored after a DATA statement and 
READs them into an array. 

DATA Array 

10 DIM A(5) 
15 . 1. Set up the array. 

90 



The Great White Expanse 

20 FOR X = 1 TO 5 
30 A(X)=X 
40 NEXT X 
45 . 2. Read numbers into the array. 
50 N=O 
60 READ A 
70 IF A= - 1 THEN STOP 
80 N=N+ 1 
90 A(N)=A 
100 GOTO 60 
110 DATA 10,20,30,1,2,- 1 

This program is quite similar to Basket Case. But in
stead of using an INPUT statement, the program takes 
numbers stored after the DATA statement on line 110 
and READs them into each basket. 

Stay in Shape! 

Junior is a junk-food junky! I've tried and tried to get 
him to eat the right foods, but he just doesn't listen. 
Finally, out of sheer exasperation, I put him on a 
500-calorie-per-meal diet. To keep track of the number 
of calories he munches each meal, I developed a short 
calorie-counting program that shows off a great array 
application. 

Here's a list of some of Junior's favorite foods, along 
with calories per serving for each. 

91 

Anchovy Burritos: 
Twinkle Cakes: 

280 Calories each 
340 Calories a look 

Guacamole Juice: 90 Calories per slurp 
Clam Dip: 70 Calories a dip 
Greaso Burgers: 470 Calories per bun 
Quicko TV Dinner: 400 Calories a tray 
Pizza a la Hollandaise Sauce: 900 Calories a sniff 



DR. WACKO PRESENTS ATARI BASIC 

Now you can see how serious the situation is! If he eats 
just one Anchovy Burrito, looks at a single Twinkle 
Cake, slurps some Guacamole Juice, and sniffs a Pizza 
a la Hollandaise Sauce, he's in big trouble! 

Just to show you how effective arrays are in curbing ex
cessive appetites, enter Calorie Counter and RUN it. It 
is a long listing. Take your time and type it in carefully . 
It'll be well worth the effort , and you 'll probably burn 
off a few calories in the process! 

Calorie Counter 

10 DIM C(21 ):T = 0 
15 • 1) Empty the baskets. 
20 FOR X = 1 TO 21 :C(X) = O:NEXT X 
25 . 2) Clear the screen. 
30 PRINT CHR$(125) 
40 PRINT "HOW MANY JUNKY MEALS DID 

YOU DEVOUR" 
45 . 3) Input Number of meals. 
50 INPUT N 
60 PRINT :PRINT "ENTER 

CALORIES/MEAL-":PRINT 
70 FOR X = 1 TO N:PRINT "MEAL #";X;":"; 
75 . 4) Put calories in each basket. 
80 INPUT M 
90 C(X)=M 
95 . 5) Keep track of total calories. 

100 T = T + C(X) 
110 NEXT X 
120 PRINT 
130 PRINT T;" calories in ";N;" meals." 
135 . 6) 'A' equals average calories per meal. 
140 A=T/N 
150 PRINT A; " calories per meal." 
160 IF A > 500 THEN PRINT "Grody! Grease me 

out!":GOTO 180 
170 PRINT "Junior, you're doing great!" 

92 



The Great White Expanse 

180 PRINT :PRINT "Press START to eat again" 
185 . 7) Fancy press START routine. 
190 IF PEEK(53279)< >6 THEN GOTO 190 
195 . 8) Clear keyboard and start again. 
200 POKE 764,255:CLR :GOTO 10 

Here's what my screen looked like after I entered 
Junior's first day (three meals) of dieting. 

HOW MANY JUNKY MEALS DID YOU 
DEVOUR?3 

ENTER CALORIES/MEAL 

MEAL#1:?620 
MEAL#2:?470 
MEAL#3:?490 

1580 calories in 3 meals 
526.666666 calories per meal. 
Grody! Grease me out! 

Press START to eat again 

Junior went wild and overdid it a bit. When I wasn't 
looking, he must have scarfed down a bunch of an
chovy burritos topped off with a generous helping of 
Twinkle Cakes! But things have improved. Just look at 
these before-and-after pictures. 

93 



DR. WACKO PRESENTS ATARI BASIC 

The results of this calorie-counting program were 
made possible , in large part, by the amazing array_ 
Although this program is long, it's really easy to 
understand_ To help you , I put REM statements, 
numbered 1 through 8 , in the program. Here's a 
broader (no pun intended) explanation of Calorie 
Counter. 

First, empty the baskets . It's always good practice to 
clear out each basket before you start stuffing 
anything into it. Line 20 places zeros in each array loca
tion. I DIMensioned twenty-one locations to hold a 
maximum of three-week's gorging. That's about the 
limit of Junior's attention span. 

Second, clear the screen. Li ne 30 does just that. Dr. 
Wacko will explain how this works later. 

Third, input the number of m eals Junior devoured. I n line 
50 the number of meals, N , is INPUTed. The program 
also uses this number to label each basket with the 
FOR/NEXT loop that begins in line 70. 

Fourth, put calories in each baskel. All the action takes 
place in line 90. 

In the FOR/NEXT loop and INPUT routine beginning 
on line 70 and ending on line 110, you enter the 
calories per meal into the array. 

Here's a close look at these important program lines. 
The FOR/NEXT loop begins on line 70, and is set to the 
number of meals (N) you've provided in line 50. Each 
meal number(X) is printed on the screen by the second 
statement in line 70. 

The INPUT statement in line 80 lets you enter total 
calories for each meal. Then, in line 90, the calories are 
put into array C(X). 

94 



The Great White Expanse 

Line 100 keeps a running total of calories. Finally, in 
line 110, the loop goes back to line 70 to continue the 
process. When the program has finished looping 
around, it moves on to line 120. Wheew! 

Fifth, keep track of the total calories. Line 100 is a simple 
counting routine, just like the one Snidely used to 
count his shekels on page 59. 

Sixth, A equals the auerage calories per meal. In line 140, 
A equals the total calories divided by the total number 
of meals. 

Seuenth, try a fancy press START routine. The IFITHEN 
statement on line 190 waits until you press the START 
key. When you do, the program drops down to line 
200. Don't worry about the PEEK you see in line 190. 
You 'll learn more about PEEKs soon, when you analyze 
your computer. 

Finally, clear the keyboard and start again. In line 200, 
POKE 764,255 clears out the keyboard so the last key 
you press doesn't interfere with the first INPUT on line 
50. Delete this amazing POKE, run the program a few 
times, and I'm sure you'll see what I mean. The CLR in 
line 200 is used to clear out your computer's memory 
so you can start again. 

Now that Junior's eating habits are under control , play 
with the Calorie Counter program. Modify it to your 
heart's content. When you really understand how it 
works, you'll be ready to move on to my next specialty. 

The Marvelous Matrix 

That calorie·counting program was great, but it can on
ly be used to keep track of one hedonist at a time. To 
keep tabs on all the Wackos, I had to resort to a fancier 
storage system, called a matrix. 
95 



DR. WACKO PRESENTS ATARI BASIC 

A matrix is just a fancy array that lets you organize 
stuff in columns and rows. Each basket in each column 
and row is individually labelled and looks just like this 
weird drawing. 

The great thing about a matrix is that it lets you store 
information in a really organized fashion. For example, 
you could store the calories gorged by Junior in the 
baskets in column 1, Dr. Wacko's prodigious intake in 
column 2, and Ms. Peeky's petite pickings in column 3 . 

Setting Up A Matrix 

Setting up a matrix is almost like setting up a simple 
array. First you DIMension the matrix like this: 

DIM A(3,4) 

This means that you are reserving three columns, and 
that each column consists of a stack of four baskets. If 
you want to set up a matrix with ten columns having 
five baskets in each column, just DIMension the matrix 
like this: 

DIM A(lO,5) 

After you DIMension the matrix it's always a good idea 
to empty all the baskets. Here's how its done: 

96 



I'D RAn-IE R FUT CONllfS 
(N ThE BASKET I tllSfE.()D 

OF- zm::,s 

The Great White Expanse 

Empty The Baskets 

10 DIM A(3,4) 
20 FOR X = 1 TO 3 
30 FOR Y = 1 TO 4 
40 A(X,Y) = 0 
50 NEXT Y 
60 NEXT X 

This short routine places zeros in each basket. 

After you 've emptied each basket, it's time to start fill
ing each one with information. The best ways to do this 
are to use an INPUT statement, or to use DATA and 
READ statements to read numbers into each basket. 
You can also put stuff into a matrix the hard way by fill 
ing up each basket one by one. 

This short program shows how easy it is to put data in
to a matrix. It sets up a matrix with two columns and 
two rows. 

Matrix Stuffer 

10 DIM A(2,2) 
20 FOR X= 1 TO 2:FOR Y= 1 TO 

2:A(X,Y) = O:NEXT Y:NEXT X 
30 PRINT "Put a number into each basket" 
40 FOR X = 1 TO 2:FOR Y = 1 TO 2 
50 PRINT X;",";Y;" "; 
60 INPUT NUMBER 
70 A(X, Y) = NUMBER 
80 NEXT Y:NEXT X 

All the stuffin ' takes place in the FOR/NEXT loop in 
lines 40 through 80. Here's what my screen looked like 
when I put numbers into each basket: 

97 



DR. WACKO PRESENTS ATARI BASIC 

Put a number into each basket 
1,1 ?20 
1,2 ?40 
2,1 ?60 
2,2 ?80 

Run the program and put numbers into each location. 
Then, when your screen says "READY" , look into each 
basket in the immediate mode like this: 

PRINT A(1, 1) [RETURN] 

If you put 20 in basket (1,1) 20 will be printed on your 
screen! 

Now that you know how to DIMension a matrix and put 
numbers into it, I'll show you how to take information 
out of the matrix and do something useful with it. 

The next program, Wacko Quotient, really puts 
matrices to the test. In fact, I developed it to test up to 
five wackos and average each of their scores. 

I asked each member of this weird group to rate 
themselves on a scale of 1 to 10 by filling out this sim
ple questionnaire. 

S\MPLE QUE$TIONNA\~ 
fO~ SIMOt.-& WACl<OS 

rA1E I{OO~ WACKO G>OOT 1 ENT 01.1 A ~ OF I 11) 10. ~ 'ItXJ~ 
/C!ATINb IN -nu:; SPACE PfWVIOSt7 

I· DOT TO LUNCH~ES$ 
z. SAAI~ Pou,U:~ 
3. SL.U56ISIo4NCSS 

4. sey. APP~l-
5. TAP DANC.IAlb ASIL-ITlf 

After I collected all this meaningful information, I 
entered it into my Wacko Quotient program. Here are 
Captain Action's and Junior's results. Captain Action is 
"Wacko 1 ," Junior is "Wacko 2. " 

98 



The Great White Expanse 

How many Wackos?2 
Remember, there are five questions! 

Wacko 1: Answer to question I? 1 0 
Wacko 1: Answer to question 2?5 
Wacko 1: Answer to question 3?8 
Wacko 1: Answer to question 4? 1 0 
Wacko 1: Answer to question 5? 1 0 

Wacko 2: Answer to question I? 1 0 
Wacko 2: Answer to question 2? 1 
Wacko 2: Answer to question 3?10 
Wacko 2: Answer to question 4? 1 
Wacko 2: Answer to question 5? 1 

Wacko l's total is:43 
Average wackiness is 8.6 

Wacko 2's total is:23 
Average wackiness is 4.6 

Here's the great program that made it all possible! 

Wacko Quotient 

10 DIM A(5,5) 
20 . Clean up your act... 
30 FOR X = 1 TO 5:FOR Y = 1 TO 

5:A(X,Y) = O:NEXT Y:NEXT X 
40 PRINT CHR$(125):PRINT :PRINT "How many 

Wackos"; 
50 INPUT W 
60 . Only accept up to 5 wackos 
70 IF W > 5 OR W< 1 THEN GOTO 40 
80 PRINT "Remember, there are 5 questions" 
90Q=5 
92. 
94. 
96. 

99 



DR. WACKO PRESENTS ATARI BASIC 

100 . Puttin' answers into the array 
110 PRINT 
120 FOR X = 1 TO W:FOR Y = 1 TO Q 
130 PRINT "Wacko ";X;": Answer to question ";Y; 
140 INPUT ANSWER 
150 . Only accept answers from 1 to 10 
160 IF ANSWER < 1 OR ANSWER> 10 THEN 

PRINT "Ooops!":GOTO 130 
1 7 0 A(X, Y) = ANSWER 
180 IF Y = Q THEN PRINT 
190 NEXT Y:NEXT X:GOTO 260 
192. 
194. 
196. 
200 . Takin' stuff out of the array 
210 PRINT 
220 FOR X = 1 TO W:FOR Y = 1 TO Q 
230 PRINT "A(";X;",";Y;") = ";A(X,Y) 
240 IF Y = Q THEN PRINT 
250 NEXT Y:NEXT X 
260 T=O 
270 FOR X = 1 TO W:FOR Y = 1 TO Q 

280 T = T + A(X, Y) 
290 IF Y = Q THEN PRINT "Wacko ";X;"'s total 

is:";T:A = T/Q:PRINT "Average wackiness is 
";A:PRINT :T = 0 

300 NEXT Y:NEXT X 

The first section, lines 10 through 90, clears out the ar
ray by putting zeros into all the baskets, then lets you 
enter up to five wackos. 

The second section, lines 100 through 190, lets you fill 
the array with information from the questionnaire. It '--- f
also limits the range of numbers you can enter to those T 
between 1 and 10. 

The final section, lines 200 through 290, takes infor
mation out of the array, totals it, averages it, and prints 
it out on your screen . 

100 



The Great White Expanse 

As you can see, a matrix is ideal when it comes to 
rating a bunch of wackos , but it's also perfect for 
anything that can be charted in columns and rows. 

The best way to set up a matrix is to first get out the 01' 
pencil and paper, draw a chart containing columns and 
rows , then write labels across the top and down the 
side. Once you 've finished , simply transfer your 
masterpiece to your matrix program. 

Here's the chart I drew before I programmed Wacko 
Quotient: 

wtL/<.o 1- WIKK02 WAC¥03 W4cKo4 WAcICo5 

iMlwJER I 

ANsW€R2 

~N$I.IJeR 3 

AltSUI6g4 

~WER. 5 

lOTALS 

A~ 

Well , that 's it for now. I've got to go and retest Junior. 
Any way, here comes my lovable and cute husband to 
invite you to a fantastic function at the oasis. Bye! 

101 



DR. WACKO PRESENTS ATARI BASIC 

Oasis 3: Three Fantastic 
Functions 

During your short stay at this oasis you 'll meet three 
fantastic functions: INT, RND, and SON, that are 
guaranteed to add pizazz (or pizza) to your programs. 

So, join in on the fun , and I'll introduce you to the first 
important function. 

The Round-Down INT 

INT, which is an abbreviation for the word " integer, " 
rounds off answers to math problems. By using INT 
you can round fractional answers down to integers or 
whole numbers. 

The best way to see what INT does is to put it to work 
and watch it in action. Try these simple math ex
amples in the immediate mode, and you' ll discover 
how easy INT is to use. 

First, here's a division example. 

PRINT 55/20 [RETURN] 

102 

" 

lllPOLE MlvaERS 
ARE" /l4OCH MORt: 
. GCNT!3e/"". 



The Great White Expanse 

The answer is 

2.75 

Now suppose you don't want to fool around with parts 
of camels, but you do want a whole number as your 
answer. Not to worry! To round down the answer to 
the nearest whole number, just use INT. 

PRINT INT(55/20) [RETURN] 

The answer, amazingly enough, is 2 because of the 
fantastic INT function. In plain English, the statement 
PRINT INT(55/20) means divide 55 by 20, round 
down the answer to the nearest whole number, and 
print it. 

Here's a multiplication example. 

PRINT 2.75* 18 [RETURN] 

The answer is 

49.5 

To round this down to the nearest whole number use 
INT, like this. 

PRINT INT(2.75 * 18) [RETURN] 

Now, the answer is 

49 

Amazing! 

To use INT, just type in INT, a beginning parenthesis, 
the math , and a closing parenthesis. Then press 
RETURN . 

103 



DR. WACKO PRESENTS ATARI BASIC 

Always keep in mind that INT rounds down the 
answer. So, if the math inside the parentheses equals 
2.9999, INT will round the answer down to 2. 

The Random RND 

Your Atari computer has a built-in random-number 
generator. Allah be praised! By using RND and rubbing 
gently, you can make your computer spit out random 
numbers that you can use in all sorts of inventive pro
grams. For example, you can use random numbers in 
games of chance whenever you want to roll dice, select 
cards, or simulate the spin of a roulette wheel. 

Random numbers also liven up adventure games by 
varying the computer's response to a player's choice. 
Every time the player "opens" a door or decides to 
"walk" down a corridor, he or she is guaranteed a sur
prise from a new and randomly selected experience. 
Just like in real life. 

The rollicking RND makes quiz games more rambunc
tious by offering your players a variety of randomly 
selected questions to answer. 

Although programs that use the RND function are un
predictable and exciting, generating random numbers 
is predictable and easy. 

Here's a short program that generates whole numbers 
between 1 and 10. Enter it, run it, and , when you've 
seen how it works, I'll explain all. Trust me! 

Random-Number Generator 

10 N = INT(RND(O)* 10) + 1 
20 PRINT N 
30 GOTO 10 

104 



The Great White Expanse 

It works pretty well , doesn't it? After you ran this pro
gram, a string of random numbers flowed down your 
screen. And it was all made possible by the random 
RND in line 10. 

Here's a close-up view of the entire line so you can see 
how it all fits together. 

ION = INT(RND(O) * 10) + 1 

I've placed an INT function before RND to generate 
whole numbers. Remove the INT, run the program 
again , and you ' ll get the picture. Or indigestion. 

First, Start Spitting 

The + 1 at the end of the line tells RND where to start. 
This program spits out numbers Uust like Clyde) star
ting with 1. 

How Many Numbers? 

The * 10 tells the random generator how many 
1-----______ numbers to spit out. Here we get ten numbers. Replace 

the 10 with a 5, and the program spits out five numbers 
between 1 and 5. 

Will The Real Random Generator Please 
Stand up! 

105 



DR. WACKO PRESENTS ATARI BASIC 

RND(O) is the generator. A zero in parentheses always 
follows RND. Here are two more short examples that 
show the random generator in action. 

RND Example 1 

o . This generator starts at 5 and spits out six 
numbers: 5,6,7,8,9, and 10. 

10 N = INT(RND(0)*6) + 5 
20 PRINT N 
30 GOTO 10 

RND Example 2 

o . This generator starts at 1 and spits out five 
numbers: 1,2,3,4, and 5. 

10 N = INT(RND(O)* 5) + 1 
20 PRINT N 
30 GOTO 10 

I now present The Standard Guess My Number Pro
gram. This unoriginal program is almost identical to 
the dull programs found in every other BASIC pro
gramming book! Almost, but not quite. This program 
not only illustrates a cute use of the random RND, but it 
has a few wacky touches of my own to spice it up. So 
here it is! 

The Standard 

10 . The Standard 'Guess My Number' Program 
20 T = O:N = INT(RND(O)* 100) + 1 
30 PRINT "I'm thinking of a number between 1 

and 100. " 
40 PRINT "So, what's my number ... huh"; 
50 INPUT GUESS 
55 T=T + 1 
60 IF GUESS = N THEN PRINT "Wow, gee, 

cowabonga! You got it in ";T; " tries!":PRINT 
:GOTO 20 

106 



The Great White Expanse 

70 IF GUESS < N THEN PRINT "Your guess is 
too low. Try again.":GOTO 50 

80 IF GUESS > N THEN PRINT "Your guess is 
too high. Try again.":GOTO 50 

When you look at it, this standard program is pretty 
standard. It generates a number between 1 and 1 00 in 
line 1 0 , uses a counter (T = T + 1) to keep track of the 
total number of guesses, and has a bunch of IFITHEN 
statements that check for a correct guess. No 
problem! 

A Random-Problem Generator 

If you want to generate a lot of problems, a random
I OOJUST FINe ON ~-::;:::=:::::---, problem generator is just the ticket! 
M.Y OIJN Wm1CXJT 
A AAf\lD?M PR?6L-EM. 
GC~~RAlOR To help Junior improve his math skills, I developed this 

!IIm'Ni#fJ~ short Multiplication Practice program. It uses two 
\W1J'::~ generators to create baffling random problems. 

Two numbers for each problem are generated in lines 
30 and 40. Just change the number 10 to 1000 and 
really make them tough! 

Multiplication Practice 

10 . Junior's Multiplication Practice 
20 C=O:W=O 
25 . Beware! Problems generated below: 
30 A = INT(RND(O) * 10) + 1 
40 B = INT(RND(O)* 10) + 1 
45. 
50 PRINT "What's ";A;" times ";B; 
60 INPUT ANSWER 
70 IF C* 10 = 100 THEN PRINT :PRINT 

"* ** WOW! 100%. My son the 
genius!!* * * ":PRINT :GOTO 20 

107 



DR. WACKO PRESENTS ATARI BASIC 

80 IF C + W = 10 THEN PRINT: PRINT" * You got 
";C;" right and missed ";W;":";C * 1 0;"%": 
PRINT :GOTO 20 

90 IF ANSWER=A*B THEN PRINT "Right on 
Junior! Here's another one.":PRINT: 
C=C+ l:GOTO 30 

100 IF ANSWER < > A* B THEN PRINT "Ooops! 
Maybe you read it wrong. Here it is 
again!":W = W + l:GOTO 50 

The principles used in this multiplication program can 
easily be expanded into one gigantic program that 
generates a random addition, subtraction, multiplica
tion, and division quiz. No kidding! 

Enter and SGN In, JVlystery 
Guest 

Presenting last, but not least, a little-known and less
understood friend of Lawrence of Newark, the 
mysterious SGN. 

Don't panic! SGN has nothing whatsoever to do with 
trigonometry. It is not sine/cosine stuff. 

When you use SGN, as I have below, it sets the variable 
A equal to - 1, 0 or 1 to correspond with the value in
side the parentheses (either negative, zero , or positive). 
Here's what it looks like. 

A=SGN(N) 

And now, presenting a very short program that 
demystifies SGN, but tells you nothing at all about 
Lawrence of Newark. 

108 



The Great White Expanse 

SGN In 

10 PRINT :PRINT "Enter a number"; 
20 INPUT N 
25. 
30 A=SGN(N) 
35. 
40 IF A = - 1 THEN PRINT "It's a negative 

numberl":GOTO 1 0 
50 IF A = 1 THEN PRINT "It's a positive 

number!":GOTO 1 0 
60 IF A = 0 THEN PRINT "It's Junior's grade

point average. ":GOTO 1 0 

Don't run away! Just run this program and enter some 
numbers. You might try a positive number like 100 
first , then enter a negative number like - 5 , and finally 
aD. 

SGN has some pretty esoteric uses in BASIC program
ming. It can control the movement of screen images in 
BASIC arcade games, and lots of other stuff. (Check 
out my other book: "Dr. C. Wacko 's Miracle Guide To 
Designing And Programming Your Own Atari Com
puter Arcade Games!") I just thought I'd show you SGN 
now so you can add it to your bag of programming 
tricks. By the way, who is Lawrence of Newark, and 
where is he? 

'---- Lawrence of Newark Is Lost in 
the Desert! 

Lawrence is lost in the desert, and you can help him 
find his way back to the oasis! So, get set to hone up 
your navigation skills by playing a few games of 
Rescue Lawrence. 

I've placed this bonus game here, at the end of this 
oasis, because it uses all the programming elements 

109 



I 

DR. WACKO PRESENTS ATARI BASIC 

you've learned so far. It really puts the RND function to 
good use. And besides, it's time to have some fun! 

N 
2.. 3 5 9 10 I 

)E:VEI..A .eL D 
~",\ 1 1 1// -----I--- .- I---~-

/ --
t -

3 

4 

5 

" 
1 

W' 0 

I 

I/, 

I~ 

~ 

5 

~ 

j 

SAI"l!) PIj - --
• I, f I -:;. 

.~ 
"'~III II, \llllfl , 1\ \,,~ - I /" "III" 

:--" \\~<, I//Ili 
N "" ~'" -- (."'~.:: ~ I\; - tJ IU D ~ -

~-., n ,w SA D" ~ , 

-:;:. 
,-

/" 
/ ; 

-~ -- - - - '-'1fTT 
L-

, " 111 1 \. \. \" , 

,,~; iSs 
t2 I'l. <, 

U F'- ~ 
, 

oYs ~ 0° 
, 

-7 - '. 
, - , /-- -

}\ I II , f II 
' \\ ,' 1 "1\; .' , , 

.' ~-

"i ll' 
.. 

TOM~~ 
<;#ID {t III 

p 
,," ~ 

\11." IV K -'I , ~ , " . 11"_ 

'P'QU t-l s:? V 
., 

. 
SA I • _\ . "-- "" : 

" -

SA"'C BAR • (~ G ILL) IloWHE Rf> 

s 
Here's a map of the desert. The oasis is in the center, 
and you and Lawrence are lost somewhere out in the 
sand dunes. You've got ten days (turns) to find the 
oasis. You can travel up to five miles each day in any 
direction(s) you choose. To help you, your compass 
displays the direction you are in relation to the oasis. 
What makes the game challenging is that you don't 
know how far you are from the oasis. Uh oh! 

110 

" 

IS I t.> " 18 I 9 '2D 

:.~'- " 

", 
\\\\ 

,,\\\\(1\ ' ' \" 

E-
'v 

\ 

, I' I I 

':flj I, 

c f I \" 11//;;. , 
:: " .... l \ \. \.\. .... 

= -= • 
ASTUiS 

E 

~ E:. ~ 't .s ..-: ... 
C' ~ 
\oJ 

"'" 

ARFS ~ID 
SAN DY 



The Great White Expanse 

Here's the program listing. Type it in, RUN it, then try 
not to get lost! After you've enjoyed the game I'll 
review some of this program's highlights and lowlights. 

Rescue Lawrence 

10 T = 1 
15 . Generate your initial location 
20 X = INT(RND(O)* 20) + 1 
30 Y = INT(RND(O)* 20) + 1 
35 . 
37 . Make sure that you don't start at the oasis 
40 IF X = 10 AND Y = 10 THEN GOTO 20 
45 . 
50 PRINT :PRINT "Day ";T;":You are "; 
60 IF T = 11 THEN PRINT "Ooops! Out of 

water!":GOTO 1 0 
65 . You've arrived at the oasis! 
70 IF X = 10 AND Y = 10 THEN PRINT "Welcome 

to the oasis!":GOTO 1 0 
7 5 . Print your position relative to the oasis 
80 IF Y > 10 THEN PRINT "South "; 
90 IF Y < 10 THEN PRINT "North "; 

1 00 IF X < 10 THEN PRINT "West "; 
110 IF X > 10 THEN PRINT "East "; 
115 . 
120 PRINT "of the oasis!" 
130 IF T = 10 THEN PRINT" * * * You're out of 

water! Try again * * * ":GOTO 1 0 
140 PRINT :PRINT "How many miles North 

today"; 
150 INPUT N:GOSUB 300 
160 IF N > 0 THEN GOTO 190 
170 PRINT "How many miles South today"; 
180 INPUT S:GOSUB 300 
190 PRINT "How many miles East today"; 
200 INPUT E:GOSUB 300 
210 IF E > 0 THEN GOTO 240 

11 1 



DR. WACKO PRESENTS ATARI BASIC 

220 PRINT "How many miles West today"; 
230 INPUT W:GOSUB 300 
240 T=T+ 1 
245 . Update your position relative to the oasis 
250 IF X > 10 THEN X=X-W 
260 IF X < 10 THEN X = X + E 
270 IF Y > 10 THEN Y = Y-N 
280 IF Y < 10 THEN Y = Y + S 
290 GOTO 50 
295. 
297 . This subroutine checks for an input greater 

than 5 
300 IF N > 5 OR S > 5 OR E > 5 OR W > 5 THEN 

PRINT "You can't travel more than 5 
miles":GOTO 140 

310 RETURN 

Here's what my screen looked like after I played a cou
ple of rounds of Rescue Lawrence: 

Day 1 :You are South East of the oasis! 

How many miles North today?5 
How many miles East today?O 
How many miles West today?3 

Day 2:You are East of the oasis! 

How many miles North today?O 
How many miles South today?O 
How many miles East today?O 
How many miles West today?3 

Day 3:You are welcome to the oasis! 

made it in two moves. Wheew! Here's how this 
fabulous game works. 

The program randomly generates your initial location 

112 



The Great White Expanse 

in lines 20 and 30. The map is a 20-column by 20-row 
grid, and the random generators define your position 
in terms of a row and a column. A position of 3,4, for 
example, starts you off in the upper left, or North West 
quadrant of the map. (You're 3 across and 4 down, on 
the left side of the map.) 

The IFITHEN statement in line 40 makes sure that you 
don't start off at the oasis (10 across and 10 down). 

Lines 80 through 90 print your position relative to the 
oasis. Let's say you start at 3 across and 4 down, (X = 3 
and Y = 4). Because Y is less then 10, the program 
displays "North," and because X is also less than 10, 
the word "West" is displayed. The combined display 
reads like this, Day 1 :You are North West of the oasis! 

In lines 250 through 280 the program adds or subtracts 
your mileage inputs to or from your current position to 
update your position relative to the oasis. New, up
dated values of X and Yare then sent back up to line 50 
to determine whether you begin another turn, run out 
of water, or arrive at the oasis. 

As you move on to the graphics and sound chapters, 
you' ll discover all sorts of ways to spruce up this simple 
program. But in the meantime, call in your friends, 
relatives, or camel and challenge them to a game of 
Rescue Lawrence! 

113 



DR. WACKO PRESENTS ATARI BASIC 

Oasis 4: Don't String Me Along 
Including Strings Revisited plus 
ATASCII Codes and the Hotski

Totski Chart 

"What's so advanced about string?" That's a question I 
hear daily from Keys, Joystick, and Paddles, the cats 
we took along on our trip. To them, string is just string. 
But to wackos like me, advanced string-handling is 
one of the niftiest treats Atari BASIC has to offer. 

During your visit at this oasis, I'll show you some very 
special string-handling tricks that you can use im
mediately to make your programs sizzle with excite
ment! 

The Selective String 

When we stopped at Oasis 2 , I introduced you to some 
selective string variables. They helped Ms. Peeky 
choose an escort from her Little Black Book. 

114 



The Great White Expanse 

Remember? Well if you don't , or if you skipped ahead a 
bit , here they are again. 

By entering a string variable and then following it with 
two numbers in parentheses like this, A$( 1 ,3), you can 
select a portion of the string. 

The following short example shows how this concept 
works. 

10 DIM A$(20) 
20 A$ = "CAREFREE" 
30 PRINT A$(1,3) 
40 PRINT A$(l,4) 
50 PRINT A$(5,8) 
60 PRINT A$(2,2) 

After you run this program your screen will look like 
this. 

CAR 
CARE 
FREE 
A 

In line 30, the statement A$( 1 ,3) selects the first 
through the third characters; line 40 prints the first 
through the fourth characters; line 50 prints the fifth 
through the eighth characters; and finally , line 60 
singles out just the second character for printing. 

This concept is really important when you 're designing 
programs that do lots of word manipulation. And, 
when you put numeric variables inside the parentheses 
these selective strings become super-powerful! 

Presenting my super-powerful Random Nonsense 
Generator! It shows you how to use selective strings 
with numeric variables. 

115 



DR. WACKO PRESENTS ATARI BASIC 

Random Nonsense Generator 

10 DIM A$(60) 
20 X = INT(RND(O)* 50) + 1 
30 Y = INT(RND(O)* 50) + 1 
40 IF X > Y THEN GOTO 20 
50 IF Y -X> 7 THEN GOTO 20 
60 A$ = "CRUNCH SNORF WOW! ZONKERS 

GLOP ZING DING BAT BLRRP" 
70 PRINT A$(X,Y); 
80 GOTO 20 

Finally the truth can be revealed. I used this nonsen
sical program to write this book! It generates random 
words by continually changing the values of X and Yin 
the selective string on line 70. With each new set of ran
dom numbers, your screen displays a different letter or 
group of letters. 

The IF/THEN statement in line 40 makes sure that the 
value of Y is always greater than the value of X. Other
wise, an error would occur since the selective string 
reads from left to right , and Y always has to have a 
higher value than X. 

The IF/THEN statement in line 50 limits the size of each 
"word" to seven characters. Make this number larger if 
you want to show off some fancy vocabulary. 

Now that you know how it 's done, you can write the 
Great American Novel or a letter to Captain Action . 

If you look closely at the RND statements in lines 20 
and 30, you'll see that they spit out numbers between 1 
and 50. There are 50 characters - a space counts as a 
character - in line 60. But, amazingly enough, I didn't 
have to count each character and space to find the 
number of characters in that line. I used the LEN state
ment! 

116 



~---. 

The Great White Expanse 

The LENgth of Your String 

When you want to write nonsensical programs, know
ing how long your string is comes in real handy. If you 
know how long a string is, you can also slice it up to 
perform some pretty fancy string-manipulation tricks. 

To learn how I learned how long my string was in the in
famous Random Nonsense Generator, try this little 
program: 

10 DIM A$(100) 
20 A$ = "CRUNCH SNORF WOW! ZONKERS 

GLOP ZING DING BAT BLRRP" 
30 PRINT LEN(A$) 

After you run this program, the answer 50 appears on 
your screen. That's the length (including the spaces 
between the words), of string A$. 

'-I.aO~~""""- To show you how LEN works, I've modified this pro
gram to accept your wacked-out inputs. 

10 DIM A$(100) 
20 PRINT "Enter some nonsense" 
30 INPUT A$ 
40 PRINT LEN(A$):GOTO 20 

Now, for some wild and crazy applications. 

Limit the Length of an Input 

When you 're designing a computerized questionnaire, 
it's sometimes (but not always) nice to limit the length 
of the data you enter. Here's an example that limits the 
length of a string input to 10 characters. 

117 



DR. WACKO PRESENTS ATARI BASIC 

Limiter 

10 DIM A$(100) 
20 PRINT :PRINT "What's your favorite sport, 

sport." 
30 PRINT "(10 characters or less, please.)" 
40 INPUT A$ 
45. 
50 IF LEN(A$) > 10 THEN PRINT A$;"? That's 

";LEN(A$);" characters!":GOTO 20 
55. 
60 PRINT "What do you mean by that?": 

GOTO 20 

The LEN in line 50, in combination with the IF/THEN 
statement, does all the work by checking the length of 
A$. Here's a sample run of Limiter so you can preview 
the typical results of this zany program. 

What's your favorite sport, sport. 
(10 characters or less, please.) 
?CAMEL RACING 
CAMEL RACING? That's 12 characters! 

What's your favorite sport, sport. 
(10 characters or less, please.) 
?CMLRCNG 
What do you mean by that? 

Besides using it to check the length of an input, I use 
LEN to look for specific words within a string. This 
technique will come in real handy when you start work
ing with disk-directory names. Just sweep this bit of 
programming knowledge to the back of your mind (or 
under the Persian rug) and pull it out when you start 
talking to your disk drive. 

The next example, written by Captain Action, "looks" 
at the last three characters of a string. If the last three 

118 



V'RIGHTEOUS, FARovr. 
H€AV'{ I BAA A 0 ,SOLI D 
AND SNAZ-ZY ARE 
Al.SO ACCEPTA8l-E 

The Great White Expanse 

characters are equal to "MAN", ALL RIGHT! prints on 
your screen. 

10 DIM A$(1 00) 
20 INPUT A$ 
25. 

Be Cool 

30 IF A$(LEN(A$) - 2,LEN(A$)) = "MAN" THEN 
PRINT "ALL RIGHT!":GOTO 20 

35. 
40 PRINT "NOT SO COOL.":GOTO 20 

Here are two runs of Be Cool: 

?YOU'RE A REAL COOL DUDE, MAN 
ALL RIGHT! 

?YOU'RE A REAL GARBANZO BEAN 
NOT SO COOL. 

Captain Action really likes to end his sentences with 
"man, " so he went to a lot of effort to produce his Be 
Cool program. The statement in line 30 may look a lit
tle weird , but it's real easy to understand. Here's the im
portant part. 

IF A$(LEN(A$) - 2,LEN(A$)) = "MAN" THEN 

If this line of BASIC programming were written in 
English it might read , "If A$(from the length of A$ 
minus two characters) to the (length of A$) equals 
MAN, then ... do something! " 

The program begins counting back on the last 
'---______ ...J character, the N. From there it goes back two places to 

arrive at the first letter of the word MAN. If you change 
the -2 to a - 3 the program will isolate four 
characters; MAN plus the space that precedes it. If you 
change the - 2 to - 1 only AN is isolated. 

119 



DR. WACKO PRESENTS ATARI BASIC 

The best way to understand Captain Action's master
piece is to mess around with his progam. Just change 
the -2 to another number, and MAN to a word of your 
own choosing, and you're on your way to becomming a 
LEN expert! 

ESREVER NI YLERITNE NET
TIRW EREW KOOB TAERG 
SIHT FI TAHW 

What? What if this great book were written entirely in 
reverse! Well, it was, until Junior got tired of standing 
on his head, and I got tired of talking to his feet. 

And here's the short program that started all the confu
sion . It's Reverseroonio (It used to be Oinooreserver), 
and it demonstrates just how much fun you can have 
with a simple LEN statement and a selective string . 

Reverseroonio 

10 DIM A$(200) 
20 ? "Type in a word or sentence. Please don't 

exceed three lines of text." 
30 INPUT A$ 
40 FOR X = LEN(A$) TO 1 STEP - 1 
50 PRINT A$(X,X); 
60 NEXT X 

Reverseroonio counts backwards, from the last string 
character to the first. All this topsy-turvy counting 
takes place in line 40, then the result prints on your 
screen in line 50. Short, sweet, and zany, isn 't it? 

Camel Latin 

The people out here in the desert speak a strange and 

120 



f?C>fJ{GA,( OTA'( HSTA'1' 
A6(;A'{ ~A'( lillWAI{ 

PClONSAV! 

The Great White Expanse 

mysterious dialect, called Camel Latin. It was a 
mystery to me, until Junior told me how it works. 

They take the first letter of each word, put it at the end 
of the word, then add the letters AY. Instead of saying 
"Hello" they say "Ellohay" - almost like Hawaiian. In 
Camel Latin the word desert translates into esertday. 
Wheew! 

I wondered how Junior was able to do all this fancy 
translating. Then one day I spotted a short program 
that he had hidden underneath a skateboard at the 
back of his closet. 

This program, called Easy Latin, can only convert one 
word at a time from English to Camel Latin. So, after 
you enjoy it, I'll dazzle you with my own creation, Ar
dhay Atinlay. It can translate entire sentences. Wow! 

Both of these programs show even more ways to use 
the LEN statement in combination with a selective str
ing . So, avehay unfay! 

Easy Latin 

10 DIM A$(30) 
20 PRINT "Enter one word then press RETURN." 
30 INPUT A$ 
40 FOR X = 2 TO LEN(A$):PRINT A$(X,X); 
50 NEXT X 
60 PRINT A$(l, l);"AY" 
70 PRINT :GOTO 20 

Ere'shay owhay histay emgay orksway. In line 40, the 
program counts from the second letter of the word 
you've entered , X = 2, through the last letter of the 
word, LEN(A$), and prints each letter, one at a time. 

When the FOR/NEXT loop gets tired of looping, the 
program drops down to line 60, where it adds the first 

121 



DR. WACKO PRESENTS ATARI BASIC 

letter, A$( 1,1). Then, for the final touch of nonsense, it 
adds the letters AY to the end of each word. 

All this was great. But I wanted a program that could 
translate entire sentences to Camel Latin. So, here's 
Ardhay Atinlay! 

One word of caution! Ardhay Atinlay has lots of pro
blems when it comes to translating the one-Ietter
words I and A. That's because it works by taking the 
first letter of a word, placing this letter at the end of the 
word, and then adding the letters AY. When your com
puter tries to do this with one-letter words, its brain 
gets scrambled and the program comes to a screech
ing halt! So, be nice to this program by not entering 
anyone-letter words. After all, your Atari is only a 
computer. 

Ardhay Atinlay 

10 DIM A$(128):S = 2 
15 ? "Type in a word or sentence. Please don't 

exceed three lines of text." 
20 INPUT A$ 
30 FOR X = 1 TO LEN(A$) 
40 IF A$(X,X) =" "THEN PRINT 

A$(S,X-1);A$(S - 1,S -l);"AY";" ";:S = X + 2 
50 IF X = LEN(A$) THEN PRINT 

A$(S,X);A$(S-l,S-l);"AY" 
60 NEXT X 
70 ? :? :? "THAT'S ALL FOLKS!" 

Isn't that great! Now you can talk to camels and other 
assorted desert wanderers. 

Ardhay Atinlay is really a lot like the Easy Latin pro
gram. The FOR/NEXT loop (lines 30 through 60) 
counts from the first letter of the sentence through, ' 
and including, the last letter. All the translating takes 

122 



The Great White Expanse 

place in line 40. Here's a close-up shot of this amazing 
programming line: 

40 IF A$(X,X) =" " THEN PRINT A$(S,X - 1); 
A$(S -l,S - l);"AY";" ";:S = X + 2 

Pretty long, isn't it? But don't panic; here's what it all 
means. " If A$(X,X) equals a blank space, then print the 
word represented by A$ from its second character to 
its last character (which is a blank space) minus one. 
Then print the first character of this word and add the 
letters AY. Finally, move S (Start) to the second 
character of the next word by making the value of S 
equal to X + 2 . Comprende? (If not, read it again!) 

The Last Word 

Everything is hunky-dory until the program reaches 
the last word in the sentence. Because the program's 
always looking ahead for a blank space then retreating 
to rearrange the previous word, when it gets to the last 
word in the sentence it looks ahead, finds nothing and 
goes brzzzrk! 

I added line 50 to remedy this little glitch. Here it is. 

50 IF X = LEN(A$) THEN PRINT A$(S,X); 
A$(S -l,S-l);"AY" 

In line 50, when X equals the last letter of the sentence, 
the program prints the last word (minus its first letter), 
followed by the first letter of the last word, and finally 
the letters AY. 

Understanding this program may require a little thought. 
The best way to really understand it is to step through 
each small substatement until you've got it down cold. 
Then, before you freeze, warm up a bit by moving on to 
the Hotski-Totski codes! 

123 



DR. WACKO PRESENTS ATARI BASIC 

The Hotski-Totski Codes! Also 
(Sometimes) Known As The 
ATASCII Codes 

Don't flip out! Just flip to Appendix C at the back of 
this book and take a look at the AT ASCII Code chart. 
See it! Three columns filled with numbers, shapes, and 
typing instructions. 

The first column lists numbers from 0 to 255. Next to 
each number is a character, and next to each character 
is a typing instruction. 

If you want a character to appear on your screen, just 
follow the simple instructions next to each character's 
picture. For example, if you want a heart shape 
(number 0) to appear on your screen, hold down the 
CTRL key and type a comma (,). 

That was easy, wasn't it? Now, on to the decimal code 
numbers. Most of the numbers on the chart represent 
letters or characters that are printed on your screen. 
For example, 65 represents the uppercase letter A, and 
66 represents B. So far so good. 

Now, here comes the sneaky part. Some of these 

124 



The Great White Expanse 

numbers represent control functions. A control func
tion isn 't printed on your screen. It does something , 
like clear the screen , ring the buzzer, or move the 
cursor. 

Presenting CHR$ 

Here 's a new BASIC statement called CHR$ that will 
help you see and hear what I'm talking about. Enter 
this line in the immediate mode: 

PRINT CHR$(65) [RETURN] 

The letter A appears on your screen! Replace the 
number inside the parentheses with 66 and the letter B 
appears. Just look at the decimal code column in the 
Hotski-Totski chart and you' ll see how it all works! 

CHR$ converts all those numbers to their associated 
characters, and it can also put the control characters 
through their paces . 

Here are the "control" numbers and the functions they 
represent: 

Control Numbers 

125 

28 
29 
30 
31 

125 
126 

127 

155 
156 

Control Function 

Cursor moves up 
Cursor moves down 
Cursor moves left 
Cursor moves right 

Clears the screen 
Backspace and delete one 
character 
TAB 

The end of a line (RETURN) 
Total line annihilation 



DR. WACKO PRESENTS ATARI BASIC 

157 
158 
159 

253 

254 

255 

Insert an entire line 
TAB function 
TAB function 

Ring the buzzer (One Ringey
Dingey) 
Delete character in front of 
cursor 
Insert a character 

Here are some short examples that let you see and hear 
how CHR$ makes my favorite control characters come 
to life. 

o . Number 125: Clear that screen 
10 PRINT "CLEAR UP THIS MESS!" 
20 FOR WAIT = 1 TO 500:NEXT WAIT 
30 PRINT CHR$(125); 

o . Number 253: Listen to the buzzer 
10 PRINT CHR$(253); 

o . Number 126: Delete one Character at a time 
10 PRINT "You REALLY wipe me out!"; 
20 FOR WAIT = 1 TO 500:NEXT WAIT 
30 FOR X = 1 TO 23 
40 PRINT CHR$( 126); 
50 FOR WAIT = 1 TO 30:NEXT WAIT 
60 NEXT X 

o . Number 156: Total line annihilation 
10 PRINT "You REALLY, REALLY wipe me out!"; 
20 FOR WAIT = 1 TO 500:NEXT WAIT 
30 PRINT CHR$( 156) 

o . Number 127: TABaroonio 
10 FOR X = 1 TO 10 
20 PRINT CHR$( 127); 
30 FOR WAIT = 1 TO 200:NEXT WAIT 
40 NEXT X 

126 



The Great White Expanse 

o . Numbers 28, 29, 30, and 31: Move that 
cursor 

10 C=O 
20 PRINT CHR$( 125): . Clear the screen 
30 FOR X = 1 TO 38 
40 PRINT CHR$(28 + C); 
50 FOR WAIT = 1 TO 30:NEXT WAIT 
60 NEXT X 
70 IF C = 3 THEN PRINT CHR$(253);:END 
80 C = C + 1 :GOTO 20 

This last example not only moves the cursor, but really 
shows how to put CHR$ to work in your programs. 

I use CHR$ a lot, and you 'll really get an eyeful (of 
CHR$'s that is) when we design a full-fledged word pro
cessor later in our journey. By the way, if you return to 
the Ardhay Atinlay Program, and look at line 40, you'll 

--.... see that you can replace the two quotation marks with 
CHR$(32), the space bar! 

Finally, here's a real short routine that displays all the 
characters and codes on your screen. 

o . Display them all! 
10 FOR X = 1 TO 255 
20 PRINT CHR$(X); 
30 NEXT X 

Wow! 

Ask theASC 

The ASC has all the answers. Just place a character or 
control function in quotation marks, surround it in 
parentheses, and the amazing ASC tells you its 
decimal code number. Now you won't have to look at 
the Hotsi-Totski chart to get a character's number, the 
ASC does all the looking for you! 

127 



DR. WACKO PRESENTS ATARI BASIC 

Here's how it's used. 

PRINT ASC("A") [RETURN] 

When you type this in , and press the RETURN key, the 
number 65 appears on your screen. Put any letter, or 
character, inside quotes, wrap parentheses around it, 
and watch the results. Amazing! It's just like the Hotski
Totski chart! 

"But, " you may ask (I might not answer), "how do I find 
the decimal code number for a control function? " 

ESC to the rescue! 

Finding the decimal code number for a control function 
is a snap. All you need is the ESC key. Here's how to find 
the number for the function that clears the screen. 

First, type in the PRINT and ASC statements, an opening 
parenthesis, and a quotation mark, like this: 

PRINT ASC(" 

Next, press the ESC key. Now, press the CTRL key and 
the < key. A bent arrow, just like the symbol in the box 
next to decimal code 125 in the chart, will appear on 
your screen. Finish off the statement with another 
quotation mark and an ending parenthesis. Here's what 
your input should look like: 

PRINT ASC(",,") 

The abbreviated instructions for entering control 
characters are listed in the Hotski-Totski chart next to 
each character's picture. Here are the abbreviated in
structions for entering the clear-screen control func
tion: "ESC/CTRL- < or ESc/SHIFT- < " 

128 



IT JUST THINK. ~OO'Re toNNA r IMPRESS TIlE HECK omrA '<oUR 
FRIENDS DOWN AT THE CAFMASH 
WHEIJ I(OU CAN TALK ABOUT 

ESC/CTRL-< OR PRINT GlR$(x). 
IT EVEN 8)1 ME A DATE WITH A 

CHEERLEADER. 

The Great White Expanse 

So, now you know most of my string-manipulation 
tricks. Now, when you're conjuring up a wordy pro
gram, you can use these tricks to dazzle (and confuse) 
your admirers! 

129 



DR. WACKO PRESENTS ATARI BASIC 

Oasis 5: Chat with Your Fellow 
Travelers and Psychoanalyze 

Your Computer 

J)-0'~ 
DR .\lJActoV,O:C:K:E :S:P; 

All that programming you 've learned during your 
journey through the desert lets you perform some 
pretty snazzy computer magic. But if your programs 
can't talk to and control the peripheral devices of your 
system, like the printer, screen, keyboard, disk drive, 
cassette recorder, or the interface , you're missing out 
on lots of pizazz. 

This is the last oasis you ' ll visit before entering the 
dazzling worlds of graphics and sound. It might very 
well be the most important. In the last part of this book 
we'll be designing a word processor and secret text 
coder/decoder. To run these programs, your computer 
has to chit-chat with other parts of your system. So if 
you want to join in the coffee klatch , spend a little time 
at this oasis and I'll show you how your computer raps 
with its fellow travelers. 

This oasis has another treat in store for you. After 
you've seen how to make your computer talk to its 

130 



The Great White Expanse 

peripherals, I'll show you how to look inside your com
puter's brain, scramble it up, and produce some pretty 
weird effects. So grab a cushion, sit down in front of 
your Atari, munch a fig, and we'll get started. 

Garbage In, Garbage Out 

Your Atari talks to its peripheraL devices (the printer, 
screen, keyboard, disk drive, cassette recorder, inter
face unit, or anything else that talks back, like Clyde) 
by using an abbreviated name for each device. Here's a 
list of their names. 

Device 

Printer 
Screen 
Screen editor 
Keyboard 
Disk drive 
Cassette recorder 
RS-232 Interface 
Junior 

Abbreviated Name 

P: 
s: 
E: 
K: 
D: 
C: 
R: 
CEMENT HEAD: 

There are eight input and output channels, numbered 
o through 7, that your Atari sets aside for all this chit
chat. But because it reserves channels 0, 6, and 7 for its 
own use, you can only use channels 1 through 5 to tell 
it to talk to these devices. 

OPEN up a channeL. Before you can tell your Atari to 
chat with one of the devices, you've got to OPEN up a 
channel for communication. You do this with the 
OPEN statement, like this. 

OPEN #l,4,O,"K:" 

Captain Action 's got a good point. What is all that stuff 
behind the OPEN? 

131 



DR. WACKO PRESENTS ATARI BASIC 

Choose a channel. First , the # 1 means that channel 1 
has been opened. You can use any number between 1 
and 5. 

Boss the device around. The next number is the order 
number. It lets you tell your computer and the device 
what they're supposed to be doing. 

In this example, 4 means that you want to read the 
keyboard's output. Petunia's drawn this simple chart 
(called "Petunia's Chart" naturally) that explains all , 
bless her heart. 

PETUNIA'S CHART 

ORDER 
DEVICE NUMBER ORDERS 

[P:] 8 
Printer 

[S:] 8 
Screen 

12 

[E:] 8 
Screen 12 
Editor 

13 

[K:] 4 
Keyboard 

[D:] 4 
*Disk File 6 

8 
9 

12 

Write to the printer. 

Clear the screen and write 
to it. 
Clear the screen, write to it, 
and read from it. 

Screen output. 
Keyboard input & screen 
output. 
Screen input & output. 

Read the keyboard. 

Read from a disk file . 
Read the disk directory. 
Write a new file. 
Write to and update an ex
isting file. 
Read and write to a file and 
update it. 

CONTINUED ••• 

132 



The Great White Expanse 

[<=:] Ll 
<=assette 8 
Tape 

Read from a cassette tape. 
Write to a cassette tape. 

* ~isk file: The abbreviation for disk file, 0:, is 
always followed by a filename and an optional exten
sion like this: "O:FILENAME.EXT'. To talk to a disk 
drive other than drive 1 , place the drive number after 
the " 0 " like this: "02:FILENAME.EXT'. In this ex
ample your computer will be talking to disk drive 2. 

Repeat Juniors grade point average. The third number 
after OPEN is always a O! It doesn't do anything but 
take up space. But you've always got toput it there! 
Crazy, isn't it? 

The decisive device. The abbreviation of the device you 
want your computer to talk to is placed after the last 
comma, and wrapped in quotation marks like this, 
" P:" 

All those commas! You've got to include all those com
mas between each statement following OPEN to open 
a channel for communication. Wheew! 

In a minute I'll show you how to use OPEN. But before I 
get ahead of myself and get carried away, here are 
some typical uses of OPEN and their translations: 

OPEN # 1 ,8,0, "P:" 
Translation: Open <=hannel 1. Write to the printer. 

OPEN #3,12,0, "S:" 
Translation: Open <=hanneI3. <=lear screen, write, and 
read. 

OPEN #2A,0, "K:" 
Translation: Read the keyboard. 

133 



DR. WACKO PRESENTS ATARI BASIC 

CLOSE The Channel 

It's easy (but nasty) to pull the plug and disconnect your 
computer from one of its devices. Still, you should 
close each channel after it's been used. So, if you're 
ready to close a channel, just use the CLOSE statement 
like this. 

CLOSE #1 

This example closes channel #1. But of course, you can 
close any channel you want. Just replace the number 
after the "#" with a channel number from 1 to 5. 

Now that you know how to OPEN and CLOSE chan
nels, it's time to show you how to put all those devices 
to work. 

GET and POT (That Famous Vaudeville Team) 

The GET and PUT statements work together like Tom 
and Jerry. After you OPEN a channel, you can use 
GET to get information from a device, and PUT to put it 
into your program. Or, if you want to be sneaky, your 
can use GET to get information from your program, 
and PUT to put it into, or on, a device! 

134 



I WONDER IF l-INE 
20CAN e£T ME 
LAWRENCE OF 

0
0 L(VfRMORE 

The Great White Expanse 

The Keyboard and Your Screen 

Sometimes it's nice to be able to GET information 
from the keyboard and display it on your screen while 
your program is running around doing its thing. This 
technique can be used as the basis of a simple word 
processor, where you 're able to get keyboard in
formation printed on your screen while the program is 
running. 

To do this , you 've just got to open a channel, and turn 
on the K: device. Here's a short keyboard program that 
prints stuff on your screen while the program is run
ning around and acting silly! 

0. Keyboard 
10 OPEN #l,4,O,"K:" 
20 GET #l ,A 
30 PRINT CHR$(A); 
40 GOTO 20 

The GET statement in line 20 gets each character's 
ATASCII code from the keyboard as you type it in. 
Each character's ATASCII code is placed in variable A. 
Then , in line 30, the program prints the character on 
your screen. 

Line 40, sends the program back up to line 20 so it can 
GET the next character. 

When you're finished playing with this program, type 
CLOSE # 1 [RETURN] in the immediate mode to turn 
off the keyboard. 

This short example is the heart of the word processor 
that we'll develop together later. 

The keyboard program has one drawback. It doesn 't 
clear your screen, and it doesn't let you take full advan
tage of Atari's built-in editing functions. Here a short 

135 



DR. WACKO PRESENTS ATARI BASIC 

program that uses both the keyboard and screen 
editor. It also demonstrates how that great team, GET 
and PUT, work together. 

o . Keyboard and Screen Editor 
10 OPEN #1,4,0,"K:":OPEN #2, 12,0,"E:" 
20 GET #1,A 
30 PUT #2,A 
40 GOTO 20 

In line 20, this program GETs each character 's 
ATASCII code from device #1 (the keyboard) and PUTs 
it into device #2 (the screen editor) in line 30. PUT, in 
this program, replaces the PRINT CHR$(A) statement 
I used earlier in the keyboard program. 

Line 40 sends the program back to line 20 to GET the 
next character from the keyboard. 

When you're finished being astounded by this pro
gram, turn off channels #1 and #2 by using CLOSE 
statements in the immediate mode. 

Your Prose in Print 

The next program is really exciting. It opens channels 
to the keyboard, the screen editor, and the printer. It 
then lets you send all the great prose you 've written on 
the screen to your printer! 

Here's the program. Type it in , RUN it, and start writing. 

To print the contents of your screen to your printer: 

1. Press the RETURN key after the text you want 
printed. 

2 . Type in an asterisk (*), and your printer will 
come to life (if it's turned on). 

136 



The Great White Expanse 

° . Keyboard, Screen Editor and Printer 
10 DIM 8(500):X = 1 
20 OPEN # 1 ,4,0, "K:":OPEN #2,12,0, "E:" 
30 GET #1,A 
40 PUT #2,A 
50 IF A = 42 THEN OPEN #3,8,0, "P:":PUT #3, 

155:FOR P= 1 TO X-l:PUT #3,B(P):NEXT 
P:CLOSE #3:X = 1 :GOTO 30 

60 B(X) = A:X = X + 1 :GOTO 30 

In line 30, this short program first GETs each 
character's ATASCII code from the keyboard. Then, in 
line 40, it PUTs each character on the screen. Finally, it 

.....-..,..------. goes down to line 60, where it places each character's 
ATASCII code into array B(X). Far out! 

The Printing Takes Place in Line 50 

When you type in the asterisk (* ) you set the value of A 
to 42, (the ATASCII value of ' * ') so line 50 goes into ac
tion . 

First, the program opens a channel to the printer. Then 
the program prints ATASCII code 155, which positions 
your printer so it will start printing on the left side of 
your paper. 

The FORJNEXT loop PUTs each character (except the 
asterisk, because the loop goes from P to X-I) to the 
printer. 

When the loop runs out of steam, the program CLOSEs 
the channel to the printer, resets the value of X to 1, 
and returns back to line 30 to get the next keyboard in
put. Nifty! 

In line 10, I only DIMensioned B to store 500 
characters. Increase this number if you 'd like to print 
out longer bits of prose. 

137 



DR. WACKO PRESENTS ATARI BASIC 

Store Your Lore on Disk or 
Cassette 

Now that you've printed your undying prose, you may 
want to store it on a diskette or cassette. There are lots 
of ways to store information so you can ret rieve it later. 
I'll show you a few of my favorite tricks and introduce 
you to some wacked-out concepts. later you'll be able 
to use this knowledge to design your own secret 
coder/decoder and word processor. Hot stuff! 

HeLpfuL hint: Before you move on, take a minute to flip 
back to Appendix B to learn how to name files pro
perly. 

List The Grist with a Set of Nifty Programs 

We are going to discuss two programs. The first, Store 
Numbers, PUTs numbers on a disk file named 
WACKO.LST. The second, Retrieve Numbers, GETs 
the numbers from the disk file WACKO.LST and prints 
them on your screen. 

To store and retrieve information from a cassette 
recorder, just change the device symbol that appears 
after the OPEN statement in both programs to: C:. 
Don't use a filename. 

Look at the two programs now. I've used the filename 
WACKO.LST in both programs. If you're working with 
a disk drive, you can use any filename you'd like, as 
long as its first part (before the period) contains eight 
or less characters, and its extension (after the period) 
has three or less characters. But remember, both pro
grams complement each other and each look for the 
same file names. 

Yes, these little programs are short, sweet, and jucy. 
Here's how to use them. 

138 



The Great White Expanse 

First, RUN Store Numbers. It will open a file named 
WACKO.LST on your disk and store the numbers 1 
through 9. 

When the word READY appears on your screen, type 
NEW [RETURN] to clear out memory, then enter and 
RUN Retrieve Numbers. The program will enter the 
numbers 1 through 9 into your computer and display 

\7THE 1W ~ SHOUl HOW them on your screen. Amazing! 
r TO CCfJ~ '{ouR [)IS(. DRiVe: OR 
C~S<5£l1C ... WHICH IS A LOT Store Numbers 
~ASI~R 1WI~ caJiRoUl ~ CL'IDE. 

10 OPEN #1,8,0,"D:WACKO.LST" 
20 READ A 
30 TRAP 60:PUT # 1,A 
40 GOTO 20 
50 DATA 1,2,3,4,5,6,7,8,9 
60 CLOSE #1 

Retrieve Numbers 

10 OPEN #1,4,0,"D:WACKO.LST" 
20 TRAP 50:GET # 1,A 
30 PRINT A; 
40 GOTO 20 
50 CLOSE #1 

The Nitty Gritty: Inside Store and Retrieve 

First, let's look at the Store Numbers program. The 
order number, 8, in the OPEN statement tells the com· 
puter and disk drive that you want to write a new file. 

Line 20 READs the numbers that appear after the 
DATA statement in line 50. Line 30 PUTs each number 
into device #1 (the disk drive). Then, from line 40, the 
program goes back to line 20 to READ the next 
number. 

139 



DR. WACKO PRESENTS ATARI BASIC 

The TRAP statement sends the program down to line 60 
to close channel #1 when the pOinter runs out of data to 
READ. 

Now, a closer examination of the Retrieve Numbers pro
gram. The order number, 4, in the OPEN statement tells 
the computer and disk drive that you want to read a file. 

In line 20, the program GETs each number from device # 1 
(the disk drive). Then, in line 30, the program prints each 
number on the screen. Line 40 sends the program back to 
line 20 to GET the next number. 

The TRAP statement in line 20 sends the program down 
to line 50 to close channel #1 when there are no more 
numbers on the disk file - closed for the day, just like 
Mort's Falafel Stand and Deli when they run out of 
falafels. 

Lingering Strings, Featuring, 
Your Old Tent Mates: INPUT and 
PRINT 

The two commands, INPUT and PRINT, come in real 
handy when you're storing and retrieving strings. You 
can use them with an OPEN statement by just adding 
the channel number. Here's what I mean. 

140 



The Great White Expanse 

INPUT #1,A$ 
or 
PRINT #1,A$ 

The best way to see how these two old friends futz 
around is to watch them in action. So here's another set 
of programs, called Store String and Retrieve String, 
that show one way to (you guessed it) store and retrieve 
strings. 

Make sure that your disk drive is turned on and ready to 
go. Now, RUN Store String first, erase your computer's 
memory with the NEW command, then enter and RUN 
Retrieve String. 

Store String 

10 DIM A$(100) 
20 OPEN #1,8,0,"D:STRING.LST" 
30 READ A$ 
40 TRAP 60:PRINT # 1 ,A$ 
50 GOTO 30 
60 DATA HI GANG. WACKO HERE! 
70 CLOSE #1 

Retrieve String 

10 DIM A$(100) 
20 OPEN #1,4,O,"D:STRING.LST" 
30 TRAP 60:INPUT #1,A$ 
40 PRINT A$; 
50 GOTO 30 
60 CLOSE #1 

Unravelling Strings 

The only difference between the Store String and 
Store Numbers programs occurs in line 40 where the 
program READs the string from line 30 and then 
PRINTs it on to device #1 (the disk drive). 

141 



DR. WACKO PRESENTS ATARI BASIC 

In the Retrieve String program the INPUT statement on 
line 30 accepts the input of string A$ from device #1 
(the disk drive). Line 40 prints the string to your screen. 

Ask a Question without a Question Mark? 

You can use INPUT with an OPENed device to ask ques
tions without having a question mark appear on your 
screen. And here's how it's done. 

No Question Mark? 

10 OPEN #1,4,0,"K:":OPEN #2,12,0,"E:" 
20 PRINT "ENTER A NUMBER, PLEASE "; 
30 INPUT #2,A 
40 PRINT A * 25 
50 CLOSE # 1 :CLOSE #2 

The INPUT statement in line 30 acts just like the INPUT 
you're familiar with. It waits for your input! But because 
it is waiting for an input to a specific device, no ques
tion mark appears on the screen! 

You can use this trick to spruce up the look of some of 
your programs, or baffle your aardvarks. 

Deciphering the Disk Directory 

Before moving on to one of my favorite topics, dissect
ing your computer's mind, here's a last example of 
divisive device communications - reading the disk 
directory. The disk directory contains the names of all 
the programs stored on the disk, shows how much 
space - measured in sectors - each program oc
cupies and how much space remains on the disk. 

142 



The Great White Expanse 

Directory 

10 DIM NA$( 1 00) 
20 GRAPHICS O:POKE 752,1:POSITION 3,1:? 

"Press START to print disk directory":? 
30 IF PEEK(53279)< > 6 THEN GOTO 30 
32 . 
35 . Here's where the action is: 
37 . 
40 POKE 752,1:CLOSE #2:0PEN 

#2,6,0, "D: *. *" 
50 TRAP 80:INPUT #2,NA$ 
60 PRINT NA$ 
70 GOTO 50 
75. 
80 CLOSE #2:POSITION 6,22:? "Press START 

To Continue" 
90 IF PEEK(53279)< > 6 THEN GOTO 90 

100 ? CHR$(125):POKE 752,O:GOTO 20 

All the action takes place in lines 40 through 70. In line 
40 the order number, 6 , tells the computer to read the 
disk directory. Then line 50 accepts the listing of 
names from the disk as string input NA$. 

Line 60 prints the file names on your screen, and then in 
line 70 the program goes back to line 50 for more. After 

143 



DR. WACKO PRESENTS ATARI BASIC 

the program has received all the directory file names, and 
the pointer sends a message that the file has ended, the 
TRAP on line 50 sends the program to line 80 to CLOSE 
the channel. Wheew! Now we can proceed to 
psychoanalyze your computer. 

Psychoanalyze Your Computer 

Throughout the course of this book you may have 
noticed a couple of weird-looking statements hidden in 
the recesses of some of the programming examples. 
They looked like this. 

POKE 752,1 
or 
PEEK(53279) 

"What," you may have asked yourself, "is Dr. Wacko 
doing?" 

Elementary, my dear desert wanderer. I was peeking 
inside the computer with the PEEK statement, and 
poking around with the POKE statement. 

The PEEK statement lets you look inside your com
puter's brain. When you find out what's in it , you can 
use the POKE statement to scramble it up! 

There are lots of hidden recesses inside your com
puter's memory, called locations or addresses, that do 
special things, or hold certain types of information. 
Sneaky Peek's listed a bunch of his favorite locations 
back in Appendix D, but they won't do you much good 
unless you know how to get in there and really mess 
them up. 

144 

Inn:; LIKE JUNIORS'"', --r-o 

&JV ARE '1bV GONNA 
BE DISA"~HJT€'P 



L-~::::::::::::::=--__ --oJ 

The Great White Expanse 

So get out your scalpel and we'll cut through all the 
rhetoric and peek inside your computer's brain. 

Here's how to use a PEEK statement to see what's go· 
ing on inside a location. 

PRINT PEEK(53279) [RETURN] 

When you execute this short routine in the immediate 
mode, the number 7 appears on your screen. That's 
what's inside location 53279. Let's try another one: 

PRINT PEEK(82) [RETURN] 

This time 2 appears on your screen. You guessed it. 
The number 2 is stored in location 82. 

It's easy! The number inside the parentheses, after the 
PEEK statement, is the location you're peeking into. 

Now, lets POKE around inside location 82, and put our 
own number inside: 

POKE 82,10 [RETURN] 

Uh oh, Something happened! The cursor moved ten 
spaces to the right, and the entire left margin is out of 
whack! To set things straight again, just 

POKE 82,2 [RETURN] 

Wheew, back to normal! That was a close call. But it did 
demonstrate the power of the POKE. 

You can POKE a location with any whole number bet
ween 0 and 255 by placing it after the comma, behind 
the location number. 

Now that you know how to PEEK inside your com
puter's brain and POKE around, I'll show you how to 
use some of my favorites. 

145 



DR. WACKO PRESENTS ATARI BASIC 

If you don't want the cursor to appear on your screen, 
you can get rid of it by POKEing 752 with 1. Try this. 

POKE 752,1 [RETURN] 

To get the cursor to return , POKE 752,0. Simple, isn 't 
it? 

Controlling the Control Keys 

Now for another of my favorites. Manipulating the 
OPTION, SELECT, and START keys. 

Wouldn't if be loverly if your programs let the user 
press one of the special function keys to make 
something happen? For example, you might want the 
user to press the START key, to start the program, or 
press the SELECT key to select a level of difficulty . No 
problem. PEEK(53279) to the rescue! 

Here's a handy chart that shows what number is placed 
in location 53279 after you press each of these keys. 

Value 

o 
1 
2 
3 
4 
5 
6 

PEEK(53279) 

Key(s) Pressed 

OPTION, SELECT and START 
OPTION and SELECT 
OPTION and START 
OPTION 
SELECT and START 
SELECT 
START 

But don't take my word for it! Just enter and run the 
following program , press the special funct ion keys, 
and watch the results. 

10 PRINT PEEK(53279):GOTO 10 

146 



The Great White Expanse 

You can use a short program like this to see what goes 
on inside locations that relate to the keyboard. Just for 
fun, replace the number in parentheses after PEEK 

r-------------, with 764, run the program again, and start banging on 

I FfAlISHED 
MYOESERT~ y 

the keyboard. You ' ll see lots of different numbers on 
your screen! 

Now that you 've had some fun , here's how to put 
PEEK(53279) to work in your programs. 

10 POKE 752,1 
20 PRINT "Press START to begin" 
30 IF PEEK(53279)< > 6 THEN GOTO 30 
40 PRINT "You did it this time, buster!" 

Wow! Did you see that? The program first turns off the 
cursor, then waits in line 30 until you press the START 
key! Change line 30 to read : 

30 IF PEEK(53279)< > 5 THEN GOTO 30 

Now the program won't move on until you press the 
SELECT key. Amazing. 

There are lots more handy PEEKs and POKEs waiting 
for you back in Appendix D: Smokey Peek's Pokes & 
Peeks. Wander back there now and have some fun. 

You JVlade It! 

Congratulations! You 've made it through the desert, 
and now it's time for total pixel control! So flip the 
page, leave your sunglasses on, and we'll explore the 
dazzling world of Atari graphics! 

147 



DR. WACKO PRESENTS ATARI BASIC 

4 
Graphics Power: An End to The 

Desert Blues 

WERE NOWeoNNA to 
GAAPHtcs\ WffiI COLOR! 
SHAPE ! M~MENT, 

-- ~D,(? c'MO~-BE 
oR Sl: ~A1CE I 

Up to this point you 've been sitting in front of a blue 
screen filled with white printing, and I'll bet that you're 
about to hang it up and return to reality. Things can get 
awfully dull without color or interesting shapes. 

I know. Three months of traveling around in the desert 
was enough to dull my senses and make me almost 
color-blind! White, white , WHITE! I couldn 't stand it 
any more, and neither could my charming wife, 
Petunia; Snidely Seersucker; Ms. Peeky; or Captain 
Action. (Clyde and my brilliant son, Junior, loved it!) I 
almost had a mutiny on my hands! 

Your Atari computer has the graphics power to dazzle 
and mesmerize you with vibrant colors, weird shapes, 
and strange movable objects. So, don't mutiny! I'm 
about to show you how easy it is to take charge of 
Atari's computing power and end those desert blues. 

148 



Graphics Power 

Get set for a real treat. In this amazing chapter you ' ll 
learn how to doodle in the sand, create your own color
ful Camel Racetrack, and recreate my infamous Model 
of the Universe, plus lots of other fascinating stuff. 
Wow! 

But seeing is believing. Leave your sunglasses on, turn 
on your creative self, and we'll get started. 

I'd like you to enter, run, and have some fun with the 
short program below so you can get a taste of what's in 
store for you as you wander through this chapter. The 
program is called Doodle. It lets you create all sorts of 
colorful shapes on your screen. Many of the com
mands and statements in Doodle will be new to you. 
Many of them will be old hat. Don't worry! When you 've 
finished this chapter, Doodle will seem as easy as 
riding a camel or dancing at the oasis. 

Doodle 

10 GRAPHICS 3:T = 1 
20 C = INT(RND(O)* 3) + 1 
30 GOSUB 90 
40 COLOR C 
50 PLOT X,Y 
60 GOSUB 90 
70 DRAWTO X,Y 
80 GOTO 20 
90 PRINT T;") ENTER A NUMBER FROM 0 TO 

39";:INPUT X 
1 00 PRINT" ENTER A NUMBER FROM 0 TO 

19";:INPUT Y 
110 PRINT CHR$( 125):T = T + 1 
120 RETURN 

I' ll bet you noticed a few oddball words as you typed in 
Doodle - words like GRAPHICS, COLOR, PLOT, and 
DRAWTO. As I said before , don't sweat it! (Not easy out 

149 



DR. WACKO PRESENTS ATARI BASIC 

here in the desert.) You 'll learn all in a little while. Now 
it's time to run the program and have some fun . 

The first thing you ' ll see after you run Doodle is 

10 
20 ENTER A NUMBER FROM 0 TO 39? 
30 

Enter a number, press RETURN, and you'll be asked 
for another number between 0 and 19. Just follow the 
instructions, keep on entering numbers, and a 
multico lored drawing will appear on your screen. 

To he lp you get started, here are the numbers I entered 
to draw a pyramid. 

Entry My Inputs 

1) 18 
5 

2) 18 
15 

3) 18 
15 

4) 28 
15 

6) 28 
15 

7) 18 
5 

Now that you 've expressed your creative drawing 
talent, and sampled a bit of your Atari's colorful 
capability, it's time to push on to the nitty, gritty, and 
sometimes glamorous world of Atari graphics. 

150 



Graphics Power 

The Sheik of Araby - Lights, 
Camera, Action. Rudolph 

Wackentino? 
I know I look handsome, sheik (sic), and suave in this 
getup. But I'll bet you 're wondering why I'm dressed up 
this way? Well, to be perfectly honest, I did it to attact 
your attention! Ever since boot camp, Petunia and the 
other recruits refused to talk to me, and I had to find 
some way to get their attention. 

Now that I've gotten your attention - well almost 
everyone's attention - it's time to tell you the secrets 
of my success on the silver screen. 

Your Atari's Screen 
I perform some of my most dazzling feats right here on 
your Atari's screen , not at the local casbah. And so can 
you! But before you can astound the geni with your 
genius you'll have to select the proper scenery, then do 
some set design and construction. 

I always like to ham it up on the Atari. This great com
puter offers so many different stage settings (called 
graphics modes) that I can always find the right one for 
any performance I've conceived - the weirder, the 
better! Each graphics mode lets me express my 
brilliant talent in a different way. I use some graphics 
modes to display the text titles at the beginning of the 
show, and others to wow the audience with my artistry. 

151 



DR. WACKO PRESENTS ATARI BASIC 

Setting The Stage: Atari's 
Graphics Modes 

Constructing a stage set and backdrop for your desert 
fantasy takes a lot of backbreaking work, so to make 
things easier, you first need to get acquainted with the 
Atari computer's world-famous graphics modes. 

The first pearl of knowledge I'm going to impart is this: 
To select a particular graphics mode , use the BASIC 
command GRAPHICS (or its abbreviated form GR.). 
For example, this short, direct command selects and 
displays graphics mode 1: 

GRAPHICS 1 [RETURN] 

Give it a try! 

Since a picture is worth a caravan of words, check out 
your screen after you type in and run the following pro
gram. It shows you all the "stage settings" your Atari 
computer offers. Your Atari computer may have as 
many as lwelve graphics modes. To keep things sim
ple , let's only discuss and use graphics modes 0 
through 8. Not that I'm lazy , Allah forbid! It's just that 
graphic modes 9 through 11 use lots of precious 
memory, memory that can be used to make camels 
and other assorted desert beasties race around the 
Camel Racetrack that you ' ll be designing soon. 

152 



Graphics Power 

Dr. Wacko's World-Renowned Selecting-the
Stage Program 

10 FOR X = 0 TO 8 
20 IF X = 0 THEN GRAPHICS X:POKE 

752,1:POSITION 13,11:PRINT 
"GRAPHICS " ;X:X = 1 

30 FOR A = 1 TO 1 OO:NEXT A 
40 IF PEEK(53279)< > 6 THEN GOTO 40 
50 GRAPHICS X:POKE 752,1 :PRINT :PRINT 

CHR$( 127);CHR$( 127);"GRAPHICS " 
;X:POSITION 5,5:PRINT #6;"GRAPHICS " 
;X 

60 FOR A = 1 TO 1 OO:NEXT A 
70 IF PEEK(53279) < > 6 THEN GOTO 70 
80 NEXT X:GOTO 10 

After your run this program , just press START to view 
each of the graphics modes. 

Vive La Difference! 

A s you flip through each of the nine graphics modes 
presented in this program you ' ll notice that the screens 
differ in several , important ways. 

Texl M odes . The first three screens you ' ll view (graphics 
modes 0,1, and 2) are known out here in the desert as 
the text modes, and are normally used (you guessed it 
again!) to display text. 
153 



DR. WACKO PRESENTS ATARI BASIC 

Pixel Modes. The remaining six screens (graphics 
modes 3 through 8) display colored squares in place of 
text. Each colored square is called a " pixel. " 

The Thin Blue Strip 

A thin blue strip runs mirage-like across the bottom of 
graphics modes 1 through 8. (In graphics mode 8 the 
blue strip is hard to see because I'm nearsighted, and 
the entire screen is the same blue color as the strip. But 
it's there. Trust me.) 

This blue strip is called a "text window." It's used to 
display standard letters, numbers, and symbols. 

You can use the text window to display information and 
messages, like I've done in the next strange example. 
Enter and run the following weird program: 

10 GRAPHICS 2 
20 PRINT "Earth calling Dr. Wacko ... " 

To get rid of the text window, add the integer 16 to the 
graphics designation number, and you ' ll create a full 
screen display. 

To change graphics mode 2 from a split-screen to a 
full-screen display, use the command GRAPHICS 18 
(2 + 16 = 18). Try this two-line program: 

10 GR. 18 
20 GOTO 20 

You 've eliminated that pesky blue strip, and the 
screen's grown! Do you remember the Selecting-the
Stage program? (How soon we forget!) You can cleverly 
modify the program by deleting line 50 and replacing it 
with: 

50 GRAPHICS X+ 16:POKE 712,INT 
(RND(O)* 100) + 10 

154 



Graphics Power 

Now you can press START and flip through each 
graphics mode without having to watch that obnoxious 
thin blue strip run across the bottom of your screen. 
I've identified each full·screen graphics mode by tak
ing its fingerprints and assigning it a different random 
color to help you spot each screen as it flashes by. 

The Wacko Unified Hole 
Theory - Columns, Rows, and 

Coordinates 
Take a magnifying glass (or squint a lot) and look at the 
color cover of this book. 

Right , Ms. Peeky. And graphics are displayed on your 
computer's screen in the exactly the same way: each 
graphics mode contains hundreds of " holes" (pixels) 
waiting to be filled in with color. Just like the well at the 
oasis waiting to be filled with water. 

Resolution 

Graphics mode 0 is the screen you've used when 
you 've typed in all the programs I've introduced to you. 
The screen size for graphics mode 0 is 40 columns 
across by 24 rows down (40X24). This means that it can 
accept up to 40 characters on each line and display up 
to 20 lines filled with characters. 

Interestingly enough, the screen size for graphics 
mode 3 + 16 is also 40X24, but it dosn't display 
characters , it's used to draw on! Even though one mode 
displays text and the other displays pixels, bOlh o(lhese 

155 



DR. WACKO PRESENTS ATARI BASIC 

graphics screens have lhe sam e resolulion (number of 
holes per screen). 

Tucked away in appendix E is a handy chart that will help 
you learn about the different sizes and shapes of all the 
graphics modes. 

If you check out the chart you ' ll see that low-resolulion 
graphics modes 0 and 3 + 16 each have a total of 960 
(40X24) empty holes waiting to be filled. Not too many 
holes, that's why they're called "low-resolution 
modes. " 

On the other hand, high-resolulion mode 8 has 69120 
(360X192) teeny-weeny holes waiting to be filled in 
with color. Wow! 

Coordinates 

I'm glad you're here, Junior. It's simple! Each hole (or 
pixel) is assigned its own two-number loc,ation called a 
coordinate. This nifty system works just the same as 
the map you used to rescue Lawrence of Newark on 
page 110. Here's how the coordinate system applies 
to Atari graphics: ~ 

.~--------------~~y-

x COWMO \.OCAllONS 
5 Jo 15 2J> 2S 30 35 40 

~ 511111~~1!!l1I1I1I1I!:~ E SEE!' Wow. 
~IO~ 

!,:~~-=~ 

156 



..------.r"?~____, 

Graphics Power 

The numbers across the top of the illustration assign a 
value to each column; these are called "X" locations. 
The numbers down the illustration's side assign a value 
to each row ; these are called " Y" locations. Each pixel is 
idenLified by its two-number locaLion coordinate. The 
pixel 's column location is always stated first , followed 
by a comma, then the pixel's row location, like this: 
X,Y. 

Snidely's filled in the holes at location 15,10 (X,Y) and 
at location 24,15 (X ,Y) to illustrate this simple concept. 

Loads of Modes 

Selecting the right graphics mode requires some ar
tistic pizzazz (or lots of pizza!). I hold my thumb up in 
front of the screen , like Van Gogh appraising his can-
vas, and make comments - "Ahh, ooh, aargh, grunt 
snuffle, and wow, what a nice thumb!" - until I've 
choosen the right graphics mode. 

This method works great for artistic types like me. But 
will it work for you? Even if you are an accomplished 
computer artist with a great thumb, you will enjoy the 
following fascinating section . It's loaded with some real 
"artistic" tricks of the trade , and gives you the com
plete rundown on each graphics mode, plus some very 
exciting graphics tricks. 

Pixel Modes 3 through 8 -
Using the COLOR and PLOT 
Statements 

If you wander back to Appendix E , and peek at the all
inclusive graphics chart , you' ll see that the pixel 
modes are separated into three groups. 

157 



DR. WACKO PRESENTS ATARI BASIC 

• Four-color graphics 
• Two-color graphics 
• High-resolution graphics 

Using the COLOR statement to add color to your 
display in these modes is real easy. I'll use it in graphics 
mode 3 to give you the idea. 

Graphics mode 3 or its full screen version , 19 (3 + 16), 
is a four-color graphics mode. This simply means that 
you have one background color and three pixel colors 
to work with. The COLOR and PLOT statements go 
together like Clyde and sand - they're inseparable. In 
graphics mode 3 , you use COLOR 0 to " paint" the 
background of your picture and COLOR's 1,2 , and 3 to 
" draw" on your screen in vibrant hues! 

The PLOT command fills a pixel on your screen with 
the color of your choice, at the coordinates of your 
choice. COLOR and PLOT are used together like this: 

COLOR I:PLOT 5,10 

Here's a short program that PLOTs an orange pixel 
(COLOR 1) on your screen in graphics mode 3 . 

158 



POKE. 710 I 82-
COLOR,) coutR AND 

RE6ISlER /..LJ/tAlfIlANCt: 

Graphics Power 

Color and Plot 

10 GRAPHICS 3 
20 COLOR 1 
30 PLOT 0,0 

Replace line 20 first with COLOR 2, then with COLOR 
3. COLOR 2 appears as light green and COLOR 3 as a 
small blue box. Amazing! The four colors are preset: 

COLOR O-Black (background) 
COLOR I-Orange 
COLOR 2-Light Green 
COLOR 3-Blue 

Have no fear, Dr. Wacko's here with our old friend 
POKE to rescue you from futzing around with the COL
OR statement. 

Remember, a POKE statement's got two numbers. 
Study the illustration to the left. 

You use the POKE statement to stuff information 
directly into a special location inside your Atari com
puter's memory. Certain locations, when they hold in
formation about colors, are sometimes called registers. 
The first number in the POKE statement tells the com
puter what register you want to stuff with information. 
The second number is the stuff that you 're POKEing. 
Sound familiar? 

159 



DR. WACKO PRESENTS ATARI BASIC 

Take a look at this chart. It shows the POKEs used to con
trol each of the colors available: 

By adding a number between 0 and 255 you can change 
the color of each PLOTed pixel. The added POKE color 
number changes both the pixel 's color and its brighlness. 
To get different shades of color, you simply add or sub
tract 2 from the color number. 

Now, while you are still dazzled by all those vibrant colors 
let's do some more programming. Clear your screen, type 
NEW, then retype the preceding Color and Plot program 
and change line 10 to read: 

10 GR. 3:POKE 708,99 

Now, when you run your new Color and Plot program 
you ' ll see that the color of the little dot has changed to 
pugnacious purple! 

Go wacko with this short program. By POKEing 708 
with any number between 0 and 255 you can change 
the color of the pixel that you 've PLOTed using COLOR 
1. Experiment with other COLOR statements and 
registers. Replace the COLOR statement in line 20. 
Make it COLOR 2 , and change line 10 to read: 

10 GR. 3:POKE 709,195 

Play with these concepts until you 've added color to 
your deserted world, and have a good grasp of how the 
different color POKEs control each PLOTed color. 

DRAWTO the Casbah 

Now that you 're all wacked-out on color, I'll show you 
how to use DRAWTO to draw lines on the screen. But 

160 

~RA~I(S 3,5,1 
R:llJR COLOR) 

Gl?APHICS 4,b 
[TWO COLOR) 

GRAPHICS g 
(I COLO~ ,1YJO 
WMlrv..ANCES 

R>KE 
RS6 ISlER ()SE 
M)/t48ER CDL.OR. 

708 1 
709 :z 
110 3 
112- 4 

7<Y8 I 
712. 0 

10q 1 
7(Z -
710 0 



Graphics Power 

before you use DRAWTO you' ll have to PLOT a begin
ning coordinate. DRAWTO is always used with PLOT 
like this: 

PLOT XI, Y 1 :DRAWTO X2, Y2 

Put the Color and Plot program back together again 
and add this line: 

40 DRAWTO 39,19 

Again, fool around with this new program, then we'll 
mess it up some more. 

OK? Now, using the same program, add this line: 

15 POKE 708,99 

And change line 40 to read: 

40 DRAWTO 0, 19:DRAWTO 39, 19:DRAWTO 
39,0:DRAWTO 1,0 

Now, when you run your modified program, a strip of 
purple borders the edge of the screen. It's pugnacious 
purple again because we've POKEd 708, COLOR 1 's 
register, with 99. Remember? 

Line 40 shows that you can "chain " DRAWTO com
mands one after another. You can draw anything im

.-:::=:::::::::-----::::::::=::-1 aginable, even a deposed despot, by combining these 
PLOT, DRAWTO, and COLOR techniques! 

161 



DR. WACKO PRESENTS ATARI BASIC 

Camel Racetrack 

Ready to put your graphics knowledge to use? If you 
are, here's one of Clyde's favorite programs: Camel 
Racetrack. Enter it , run it, then we' ll take a tour of the 
circuit. 

Camel Racetrack 

10 GRAPHICS 19 
20 COLOR 1 
30 FOR A = 0 TO 4 
40 PLOT A* 2,A* 2 
50 DRAWTO 39-A* 2,A*2 
60 DRAWTO 39-A* 2,23-A* 2 
70 DRAWTO A * 2,23-A* 2 
80 DRAWTO A * 2,A* 2 
90 NEXT A 

100 COLOR 0 
110 PLOT 19,2:DRAWTO 19,21 
120 PLOT 20,2:DRAWTO 20,21 
130 PLOT 2,11:DRAWTO 37,11 
140 PLOT 2,12:DRAWTO 37,12 
150 COLOR 2 
160 PLOT 10,10 
170 DRAW TO 29,10 
180 DRAWTO 29,13 
190 DRAWTO 10,13 
200 DRAWTO 10,10 
210 COLOR 3 
220 PLOT 11,11 
230 DRAWTO 28,11 
240 PLOT 11,12 
250 DRAWTO 28, 12 

1000 GOTO 1000 

162 



Graphics Power 

Racing through Camel Racetrack 
Now, armed with your knowledge of graphics modes 
and commands, put on your racing silks and we'll trot 
through Camel Racetrack. 

In line 10, I've selected "windowless" graphics mode 19 
(3 + 16). 

To speed up the drawing process I often use the handy 
FOR/NEXT loop. Lines 20 through 90 of Camel 
Racetrack quickly draw five COLOR 1 lines of decreas
ing lengths from the top to the bottom of the screen. 

Here are lines 10 through 90 of the Racetrack program. 
I've slowed down the drawing process by adding a 
pause FOR/NEXT loop in line 85 so you can watch the 
screen being drawn. Run this short program, watch it 
race around in circles, and you ' ll get the picture - or a 
headache! 

163 



DR. WACKO PRESENTS ATARI BASIC 

Camel Racetrack FOR/NEXT loop Demo 

10 GRAPHICS 19 
20 COLOR 1 
30 FOR A = 0 TO 4 
40 PLOT A*2,A*2 
50 DRAWTO 39-A* 2,A:I: 2 
60 DRAWTO 39-A:I: 2,23-A* 2 
70 DRAWTO A* 2,23-A:I: 2 
80 DRAWTO A*2,A*2 
85 FOR PAUSE = 0 TO 200:NEXT PAUSE 
90 NEXT A 

100 GOTO 100 

The balance of the program, lines 100 through 250, is 
broken into sections headed by a COLOR statement 
and followed by a bunch of PLOT and DRAWTO 
statements. COLOR 0, the background color, is used 
to " cut away" sections of the lines that were first drawn. 
COLORs 2 and 3 are used to draw the design in the 
center of the screen. 

Now that you know what you are doing (I wish I could 
say the same), use your new skills to modify your 
racetrack to your heart's content. Change its colors; 
put it in a different graphics mode; put it on a different 
planet; change its design. Go completly wacko - real
ly mess it up! 

164 



Graphics Power 

Sifting Through the Text Modes 

Graphics Mode 0 

Graphics mode 0 is usually used to display text, but 
stick with Dr. Wacko, kid , and I'll show you how to go 
bzzrrk in this mode (if you'll be a little patient). 

Just so you'll recognize it when you see it, graphics 
mode 0 is that blue display with a black background 
that you see when you first turn on your computer. 

Here's some basic information about graphics 0: 

Graphics command: GRAPHICS 0 or its abbreviated 
form GR.O turns on graphics mode O. 

Screen size: Graphics mode 0 has a screen size of 40 
characters across by 24 characters down, and is usually 
used to display text. 

Luminance: It can display one color having two 
degrees of brightness. To change the text <::haracter's 
brightness just POKE 709 with a number between 0 
and 255, like this: POKE 709,30. 

Screen and border color: If you want to change the 
screen's color , POKE 710 with a number between 0 
and 255 , and if you want to change the color of the 
screen 's border, POKE 712 with a number. 

Graphics Modes 1 and 2: EI Biggo Texteroonio 

Graphics modes 1 and 2 are also used to display text. 
Trip between graphics modes 0,1 , and 2 in my 
Selecting-the-Stage program, and once you get back 
up you ' ll see that letters and symbols printed in 
graphics mode 1 are twice the width of those printed in 
graphics 0 , but are the same height. 

165 



DR. WACKO PRESENTS ATARI BASIC 

Letters and symbols printed in graphics mode 2 are the 
same width as graphics mode 1 characters, but twice as 
tall. 

Here's the scoop on graphics modes 1 and 2: 

Graphics commands: GRAPHICS t or GRAPHICS 2 
or their abbreviated forms GR.t or GR.2 are used to 
turn on these two graphics modes. 

Screen size: Graphics mode 1's split screen measures 
twenty characters across by twenty characters down 
(20X20). Its full·screen size is twenty characters across 
by twenty·four characters down (20X24). 

Graphics mode 2 's split screen size is twenty characters 
across by ten characters down (20X 10). Its full screen 
size is twenty characters across by twelve characters 
down (20X 12). 

Colors: Both graphics modes can display up to five col · 
ors: Four character colors and one background color. 

Plotting in the Text Modes 
Many of my most colorful tent shows were presented in 
the text modes. I often use either graphics mode 1 or 2 
because each offers (iue colors. I've even used graphics 
mode 0 a few times. 

Now I'll show you how to PLOT in these text modes so 
you 'll be ready to wow them at the oasis. 

Here's a short , but brilliant example: 

166 

GPAPlUC50 N 

~IC.S 1. N 

N 



Graphics Power 

Text Mode Plotting 

10 GRAPHICS 1 
20 GOTO 40 
30 POKE 752, I:COLOR 32:PLOT 2,0 
40 COLOR 87 
50 PLOT 0,0 
60 COLOR 97 
70 PLOT 1,1 
80 COLOR 227 
90 PLOT 2,2 

100 COLOR 203 
110 PLOT 3,3 
120 COLOR 111 
130 PLOT 4,4 

First run this program as is and you ' ll see "WACKO" 
printed in brilliant colors. 

Now change line 1 ° to : 10 GRAPHICS 2, and run it 
again - BIGGER letters! 

Now try it in graphics mode ° by deleting line 40, then 
changing line 10 to: 10 GRAPHICS O. 

What's happening here? The number you put behind 
the COLOR statement, like COLOR 87, is the ATASCII 
value (see page 225) of the letter or symbol that will be 
printed at the PLOT coordinates! In line 40 of my 
brilliant program, COLOR 87 prints the first letter of 
my name, W, at coordinates 0 ,0 . 

Refer to the Hotski-Totski Chart on page 222 to modify 
this program and put your name on the silver screen! 

167 



DR. WACKO PRESENTS ATARI BASIC 

Getting Into POSITION 

Oh, before I forget (and I never do that!) , you can also 
use PRINT (in GR.O) or PRINT #6; (in GR.1 or GR.2) with 
the POSITION statement to place characters on the 
screen. Try this one-liner: 

10 GRAPHICS 1 :POSITION 5,5:PRINT 
#6;CHR$(87); CHR$(97);CHR$(227); 
CHR$(203); CHR$(111) 

Yup. That's me! 

PRINT #6 and EI Biggo Texteroonio 

In graphics modes 1 and 2, uppercase, lowercase , and 
inverse video letters, numbers, and symbols normally 
appear on your screen as uppercase text. But, here's the 
exciting part: Each has its own disLincl color ! 

Type in and run this short program, and you ' ll get the 
picture. Underlined letters indicate inverse text. Press 
the perverse inverse character key with the Atari sym
bol (or diagonal white/black markings) to enter these 
characters (see page 19). Press it again to return to nor
mal text. 

Colorful Letters 

10 GR.2 
20 POSITION 3,5 
30 PRINT #6;"EI blggO tEXt" 

Isn't that shocking! Now let's have some fun . 

First, change line 10 to read GRAPHICS 1 and run it 
again. Neato! 

168 



~-~-"----~ 

Graphics Power 

OK, now we come to the devious part. I'm going to 
show you how to mess up alllhose colors! 

Grab Clyde and safari on over to Table A on page 170. 
There yet? 

Let's give it a try. Type: POKE 708,99 [RETURN]. All 
the letters that were entered as standard uppercase let
ters - the E in "EL", the I in "BIGGO" , and the E in 
"TEXT" have all miraculously changed color. They're 
all putrid purple! Eeeyuk! 

POKE other numbers into location 708 by changing 
the n~mber after 708. Try combinations like 708,23; 
708,185; and so on, so forth , and to wit. 

Figure out that chart yet? You did! Then you realize 
that you can change the other letter's colors in the 
same manner. 

Here's the explanation Slow Poke gave me: 

POKE 71 O,XX changes the color of inverse upper
case letters. 

POKE 709,XX changes the color of standard lower
case letters. 

POKE 711 ,XX changes the color of inverse lower
case letters. 

One additional thought. You can also change the 
background color from black to any color your heart 
desires by POKEing 712 with any number between 1 
and 255 (0 is black so don't waste your time entering 
it). POKE 712,185 turns the background to my favorite 
color, oasis green. 

169 



DR. WACKO PRESENTS ATARI BASIC 

TABLE A Color in Graphics Modes 1 and 2 

ATASCII Value Char- ATASCII Value Char-
for Color Register acter for Color Register acter 
0 1 2 3 0 1 2 3 

32' 0 160 128 D 50 18 178 146 W 
33 1 161 129 IT] 51 19 179 147 QJ 
34 2 162 130 [J 52 20 180 148 [±] 

35 3 163 131 ~ 53 21 181 149 [I] 

36 4 164 132 [I] 54 22 182 150 []] 

37 5 165 133 [ill 55 23 183 151 [1J 

38 6 166 134 ~ 56 24 184 152 lliJ 
39 7 167 135 D 57 25 185 153 @J 

40 8 168 136 CO 58 26 186 154 D 
41 9 169 137 OJ 59 27 187 NoneW 

42 10 170 138 GJ 60 28 188 156 ~ 
43 11 171 139 [B 61 29 189 157 [3 

44 12 172 140 D 62 30 190 158 [2J 

45 13 173 141 [J 63 31 191 159 [1J 

46 14 174 142 D 64 96 192 224 [@l 

47 15 175 143 [2] 65 97 193 225 [AJ 

48 16 176 144 [[] 66 98 194 226 ~ 
49 17 177 145 OJ 67 99 195 227 [QJ 

170 



Graphics Power 

ATASCII Value Char- ATASCII Value Char-
for Color Register acter for Color Register acter 
0 1 2 3 0 1 2 3 

68 100 196 228 [QJ 82 ll4 210 242 [8J 

69 101 197 229 [I] 83 ll5 2 ll 243 [§J 

70 102 198 230 [f] 84 ll6 212 244 IT] 

71 103 199 23 1 [ill 85 11 7 21 3 245 [QJ 

72 104 200 232 [8J 86 ll8 214 246 [YJ 

73 105 20 1 233 ITJ 87 ll9 215 247 ~ 
74 106 202 234 QJ 88 120 216 248 0 
75 107 203 235 [RJ 89 121 217 249 [YJ 

76 108 204 236 [I] 90 122 21 8 250 [I] 

77 109 205 237 lli1J 91 123 219 25 1 CD 
78 110 206 238 [ill 92 124 220 252 [SJ 

79 III 207 239 [Q] 93 None 22 1 253 OJ 
80 112 208 240 [EJ 94 126 222 254 5] 

8 1 113 209 241 [QJ 95 127 223 255 GJ 

. 155 selects the same character and color register as value 32. 

POKE 708 ,X FOR COLOR REGISTER 0 (uppercase) 
POKE 709 ,X FOR COLOR REGISTER 1 (lowercase) 
POKE 7l0 ,X FOR COLOR REGISTER 2 (inverse uppercase) 
POKE 7ll.X FOR COLOR REGISTER 3 (inverse lowercase) 

171 



DR. WACKO PRESENTS ATARI BASIC 

LOCATE and Collisions 

After you finish marching through this desert of 
knowledge you might go beserk like me and decide to 
try your hand at a little arcade-game design. If you do, 
you'll want lots of action! When a camel bumps into a 
palm tree, you'll probably want your computer's screen 
to display a blinding flash and sound off with an ear
splitting explosion - BAAROOOOOM! When a date 
falls on a character's head, you'll want to hear the ac
tion - BONG! One way to let the other elements in an 
arcade game program know that a collision has occur
red is to use the LOCATE statement. LOCATE is used 
in this format: LOCATE X, Y ,Z. 

X is the column location of the collision , Y is the row 
location, and Z is the value that's encountered at loca
tion X,Y. (You don't have to use Z; any variable other 
than X or Y will work just fine.) 

In graphics modes 3 through 8 the value placed in Z at 
each location is the number that follows the COLOR 
statement: either 0, 1, 2, or 3. 

In graphics modes ° through 2 the value placed in Z at 
each location will be the ATASCII value of the 
character that's encountered. For example, if the letter 
A is located at coordinates 5 ,5 in graphics mode ° 
(LOCATE 5,5,Z), the value placed in Z will be 65. 
(Now's a good time to refer again to the Hotski-Totski 
chart on page 222.) 

172 



Graphics Power 

Here's a short program that shows the basic LOCATE 
concept. My infamous model of the universe program 
at the end of this chapter uses LOCATE to help me 
simulate the universe! 

LOCATE Demo 

10 GRAPHICS 3 
20 COLOR 1 
30 PLOT 0,0 
40 COLOR 2 
50 PLOT 1,1 
60 COLOR 3 
70 PLOT 2,2 
80 LOCATE O,O,A 
90 LOCATE 1,I,B 

100 LOCATE 2,2,C 
110 LOCATE 3,3,D 
120 PRINT A,B,C,D 

After you run this program three colored squares will 
appear at the upper left of the screen . The correspon
ding COLOR statement numbers (1, 2 , 3 , and 0) are 
LOCATEd, then printed in the text window. 

173 

COLOR 1 (register 0 - orange) is plotted at 0,0. 
COLOR 2 (register 1 - green) is plotted at 1,1. 
COLOR 3 (register 2 - blue) is plotted at 2,2. 
COLOR ° (register 4 - black) is the background 
color. 



DR. WACKO PRESENTS ATARI BASIC 

Wacko's Infamous Model of the 
Universe! 

And now, here's the wondrous program you've been 
waiting for. I've titled it "Universe." It was developed at 
the Wacko Institute of Alchemy many years ago to 
check out the Big Bong Theory , and demonstrate the 
improbability of life occurring in a random environ
ment. 

Here's the experiment you ' ll watch on your screen after 
you enter and run UNIVERSE. 

Two randomly controlled colored squares bounce 
around on Atari 's graphic mode 3, two-dimensional 
screen. 

Each square is controlled by three random generators : 

1. X coordinate (1-39 , inclusive) 
2. Y coordinate (1-19, inclusive) 
3. COLOR (1 -3, inclusive) 

A condition, or " Law of Life" is set. In thi s creative ex
periment, " life" occurs when both squares arrive at ad
jacent positions (line 100) at the same time. When they 
arrive, one square must be orange (COLOR 1), and the 
other square must be blue (COLOR 3). 

174 



Graphics Power 

Some Real Heavyweight Stuff 

Since this is a simple model (for simple wackos), 
Petunia told me that the probability of "life" occurring 
can be calculated by using a simple binomial distribu
tion method. (Easy for her to say. Wheew!) 

Her calculations made two assumptions. 

Her calulations assume that the random movement of 
each square and its color will be truely random. 
Because true random behauior is real hard to simulate 
on a computer, her ca lculations might be off a little bit. 

Her calculations also assume that each square will 
behave independently. Do its own thing, so to speak. 

Petunia 's binomial distribution calculations for this 
model show that there is a probability of 2,4 70,864.5: 1 
that " life" will occur in each cycle. This means that 
" life" should statistically occur after 2,470,864.5 
cycles. But, " life" may occur during the first cycle , or 
" life" may never occur at all . Uh oh! 

As a matter of scientific interest, if each cyc le's dura
tion was 1 second, life "should" occur in 28 days! 

One reason for baffling you with such alchemy is to 
demonstrate how versatile your computer really is. 
Modeling, from stress analysis (I'm usually under a lot 
of stress) to a model of the universe, is all within the 
realm of possibility. That chunk of machinery in front 
of you is very powerful , if you use your imagination! 

There's another reason I'm showing you this great pro
gram; it uses many of the elements that you have learned 
in this chapter. It's also a great example of how to use 
LOCATE. So without any further "pad dew" (water on a 
camel's foot), here's Universe: 

175 



DR. WACKO PRESENTS ATARI BASIC 

Universe 

o GRAPHICS 3:POKE 752,1 
lOX = INT(RND(O)* 39) + 1 
20 Y = INT(RND(O)* 19) + 1 
30 Z = INT(RND(O)* 3) + 1 
40 Q = INT(RND(O)* 39) + 1 
50 R = INT(RND(O)* 19) + 1 
60 S = INT(RND(O)* 3) + 1 
65 COLOR O:PLOT 15,1 O:DRAWTO 16,10 
70 COLOR S:PLOT Q,R 
80 COLOR Z:PLOT X, Y 
90 LOCATE 15,1 O,C:LOCATE 16,1 O,D 

100 IF C = 1 AND D = 3 THEN GOTO 100 
105 IF C= 1 THEN 0=0+ 1 
107 IF D = 3 THEN B = B + 1 
110 POKE 77,0 
120 COLOR O:PLOT X,Y:PLOT 

Q,R:N = N + 1 :SOUND O,X + Y + Q,8, IS:? 
CHR$(28); 

130 PRINT "ORANGE:";O;" BLUE:";B;" CYCLES:";N 
135 COLOR 2: PLOT 15,1 O:DRAWTO 16,10 
140 GOTO 10 

The Universe Explained (Almost) 

Here's a quick journey through all but the SOUND por
tion of Universe_ 

Line 0 selects graphics mode 3 and turns off the cursor. 

Lines 10 through 60 spit out numbers used to random
ly place the squares on the screen and change their 
colors_ 

Line 65 erases the two green squares that were drawn 
in line 135, by drawing the background color (COLOR 

176 



Graphics Power 

0) from coordinates 15,10 to 16,10. These two green 
squares show where the two random squares must land 
for " life" to occur. 

Lines 70 and 80 PLOT the two randomly colored 
squares at random locations on the screen. 

Here's the exciting part of this program! The two 
LOCATE statements in line 90 and the IFITHEN state
ment in line 100 " look" for " life." If C = 1 AND D = 3 , 
the program stops at line 100 - the conditions for 
" life" have been met! 

Lines 105 and 107 update the ORANGE and BLUE 
readout at the bottom of the screen. 

After around ten minutes, if no keys are pressed , the 
screen goes into what is called the " attract" mode; it 
starts flashing different colors. In line 110, POKE 77,0 
disables the attract mode. 

Line 120 erases the last PLOTed position of each col
ored square with COLOR 0, it sounds off, then prints 
CHR$(28) (an up cursor) in the text window to keep the 
display from scrolling. 

Line 130 prints the number of times the ORANGE and 
BLUE squares land on the " life" coordinates. It also 
prints the number of CYCLES the program runs 
through. 

Line 135 draws two green squares on the screen at the 
" life" coordinates. 

Line 140 sends the program back to line 10 to repeat 
the cycle. 

CONGRATULATIONS! Pat yourself on the back, have a 
wild and crazy party! You understand and can now 
almosl design programs like this one. 

177 



DR. WACKO PRESENTS ATARI BASIC 

I said "almost" because I will be introducing the 
SOUND statement used in Universe in the next 
chapter. But you 've come a long way! 

You know how to select the proper graphics mode for a 
program like UNIVERSE, and how to use the COLOR, 
PLOT, and DRAWTO statements to draw almost 
anything you 'd like. And you understand the amazing 
LOCATE statement! 

Are you ready to make a lot of noise with your com
puter? Then, put in your earplugs and turn the page! 

178 



Desert ZOUNDS 

5 
Desert ZOUNDS! 

Close your eyes and do a little desert dreaming. If you 
listen real closely you might hear the hot wind of the 
Sahara blowing grains of sand across the dunes, the 
gentle rustling of palm leaves blown by an evening 
breeze , or the errie sound of flutes , lambskin drums, 
and a dancer's clacking cymbals. 

Open your eyes! (Ooops! I forgot that you can 't read 
this with your eyes closed. Oh, well.) 

If you heard all those sounds when you closed your 
eyes you've really got a great imagination. All I ever 
hear are Clyde's grunts and Junior's questions. 

Now that your eyes are open (I hope), and you've 
retured to the " real" world, close the door, put cotton in 
your ears, and get set for some real audio excitement 
as we delve into the wild world of Atari sound! 

Your Atari can sing , or meow, in as many as four voices. 
You can use each voice solo, or you can be creative and 
combine a few, or all four to achieve remarkable sound 
effects, and some beautiful music. 

179 



DR. WACKO PRESENTS ATARI BASIC 

But the best thing about th e Atari SOUND statement is 
that it's so easy to use. 

A typical SOUND statement looks like this : 

SOUND 0,100,10,15 

Type this in and press RETURN. When you have heard 
enough , type END [RETURN]. 

Here's what each number in the SOUND statement 
controls: 

VOICE: SOUND .Q. 

Your Atari can sing in harmony, using up to four voices, 
and you select the voice you 'd like to hear by assigning 
a value to the first number following the SOUND com
mand. SOUND 0, SOUND 1, SOUND 2 , and SOUND 3 
are all available. 

PITCH: SOUND 0, 100 

Select each voice's pitch by setting the second number 
to a value between ° and 255. The pitch I've selected in 
my example is 100. 

DISTORTION: SOUND 0,100, 1 ° 
The third number in a SOUND statement varies distor
tion , from pure tones to gobbledygook. Examples of 
pure tones are 10 and 14. Other even-numbered values 
(0 , 2, 4, 6, 8 , and 12) add different amounts of noise 
and distortion to your tone. But the number controll 
ing the distortion must be an even value between ° and 
14. 

VOLUME: SOUND 0 ,100,10..12. 

180 

Gee-I CAtJ 
SoUNDJUSfUI<6" 
THE P~SIDENT l 



Desert ZOUNDS 

Vary the loudness of each voice by setting the fourth 
number to a value between 1 and 15. The value 15 is 
the LOUDEST, while 1 is just a whisper. 

Before I show you how to program barrooms, bongs, 
and arrghs, type in and play around with this short pro
gram. It will help you become acquainted with the 
basic sound concepts you 've just learned. 

BASIC Sound 

10?:? "ENTER Pitch, Distortion and Loudness. 
Press RETURN after each entry." 

20 TRAP 70:INPUT P,D,L 
30 SOUND O,P,D,L 
40 IF PEEK(53279)< > 6 THEN GOTO 40 
45 . * * CHECK OUT SMOKEY PEEKS'S LIST OF 

GREAT PEEKS FOR MORE ON 
PEEK(53279)* * 

50 SOUND 0,0,0,0 
60 ?:?: "ZOUNDED GREAT!":GOTO 1 ° 
70 ? "YOU MADE A BOO-BOO. TRY 

AGAIN!":GOTO 1 ° 
A question mark appears on the screen when you run 
this glamorous program. First enter the pilch , then the 
distortion , and finally the loudness. Hit RETURN after 
each entry. 

Press START when you 've heard enough. 

I always enjoy playing with combinations of pitch and 
distortion. Captain Action showed me these in
teresting combinations. Try them, and then create 
some of your own astounding sounds: 

181 

Dune Buggy: PITCH = 1 00, DISTORTION = 4 
Desert hum: PITCH = 1 00, DISTORTION = 6 

???: PITCH = 100, DISTORTION = 8 
Biplane: PITCH = 250, DISTORTION = 12 



DR. WACKO PRESENTS ATARI BASIC 

A Cacophony of Mullivoiciferous 
Zounds 
Want to make a cacophony of multivoiciferous 
zounds? Just replace lines 30 and 50 in the BASIC 
Sound program with: 

30 SOUND O,P + 4,D,L:SOUND 
1,P + 8,D,L:SOUND 2,P + 12,D,L:SOUND 
3,P+ 16,D,L 

50 FOR OFF = ° TO 3:S0UND OFF,O,O,O:NEXT 
OFF 

Line 50 is a neat routine that turns all four voices off. 

See what happens when you use a whole bunch of 
voices? You get a whole bunch of noise! Change the 
values that are added to the pitch in each SOUND 
statement. Wilder noise! 

Now That You Understand ZOUND 

Now that you understand how the SOUND statement 
works, it's time to show you how to use SOUND in your 
programs. But first, here are some extra·special sound 
treats for you to enjoy. Spend a little time working 
through each program and then we' ll get started. 

182 



Desert ZOUNDS 

The Marrakesh Express 

1 ° . MAR RAKESH EXPRESS 
20 GRAPHICS 17:POKE 712, 148:POSITION 

1,1 O:PRINT #6;"MARRAKESH EXPRESS" 
30 FOR X = 15 TO ° STEP - 1- P:SOUND 

1,0,0,X 
40 R = INT(RND(O)* 300) + 1 
50 IF R = 30 THEN SOUND 3,36, 10,10:S0UND 

2,48,10,10:GOSUB 90:S0UND 
3,0,0,0:SOUND 2,0,0,0 

60 NEXT X:P = P + 0.03 
70 IF P > = 5 THEN P = 5 
80 GOTO 30 
90 POKE 77,0:POSITION 8, 12:PRINT #6; 

"toot":FOR A = 1 TO 400:NEXT A:POSITION 
8, 12:PRINT #6;" ":RETURN 

Captain Action's Design 

1 ° GRAPHICS 17 
20 FOR X= 10 TO 100:S0UND 0,X,10, 

10:S0UND 1,X - 2,1 0,8:S0UND 
2,X + 2,10, 12:NEXT X 

30 SOUND 1 ,O,O,O:SOUND 2,0,0,0 
40 POSITION 4, 11:PRINT #6; 

"BAROOOOMMM!" 
50 FOR DECAY = 15 TO ° STEP - 0.5:S0UND 

0,1 00,8,DECAY:FOR B = 1 TO 20:POKE 
712,B:NEXT B:NEXT DECAY 

60 GRAPHICS 1 + 32:POKE 712,148 
70 POKE 752,1 :PRINT "Captain Action designed 

this one!" 
80 PRINT :PRINT " Press START to blow up 

again!" 
90 IF PEEK(53279)< > 6 THEN GOTO 90 

100 GOTO 10 

183 



DR. WACKO PRESENTS ATARI BASIC 

SOUND and the IF/THEN 
Statement 
The IF/THEN statement is often used to introduce 
sound into a program. It's easy to use. IF, something 
happens in your program, or game - a certain key is 
pressed, a ball hits a wall or a rocket ship takes off -
THEN, the SOUND statement is activated. And 
glorious sound accompanies and enhances the action! 

Here's a short and simple example that shows how the 
IF/THEN works with SOUND: 

10 PRINT "Press START for a real blast!" 
20 IF PEEK(53279) < > 6 THEN GOTO 20 
30 SOUND 0,150,10,15 
40 FOR WAIT = 1 TO 500:NEXT WAIT 
50 SOUND 0,0,0,0 
60 GOTO 10 

Now that you're an expert Sahara sound maker, fool 
around with the SOUND statement in line 120 of the 
Universe program. Change it to your heart's desire. 
Captain Action was able to make the computer utter 
some real far out and spacey sound to accompany the 
action. It sounded like utter nonsense to me - you can 
do better then that! See if you can add more SOUND 
statements, more than one voice, to really make the 
program come alive - PLUNK! 

Decay of the PING 
A ping sound is often heard out here in the desert -
when I drop an olive pit down a well, when sand pings 
against the side of my tent , or when Junior gets verbal. 
I wanted to simulate this exciting sound on my Atari 
computer. 

184 

IT HEl-PS 10 TRY TO W1'f.E. SOUNDS 
-mAT THAT f\MTCH WflATS AAI'PE.lJW6 
ON111E~. FOR e<AMI'!.-C~ 
"PlNGPlNGPlA.I6" rSNT QUrTe illE 
OOIS~ 'mAT CL..liDE WlKES WHIl,E: 
~tVG'Tl-I~H"THE I>ESE~ 
Wl-\rL£~C~ 8RAC~SRA.C"GRU~!1" 
~OND5 J(}Sf t.1f(E JOf\lk:)R ~'Nb 

lD1HINK. 
.....-~~...-



Desert ZOUNDS 

A pinging effect is achieved by decaying the sound: that is, 
playing the sound several times and reducing the volume 
of each play. 

Here's how to produce a decaying sound. You'll find many 
uses for this effect if you decide to design arcade games, 
create music, or baffle your camel. 

Ping! 

10 FOR DECAY = 15 TO ° STEP -.8:S0UND 
0,60,10,DECAY:NEXT DECAY 

A decay decreases a note's volume while sustaining its 
pitch. 

Vary the rate decay rate by changing the negative value 
that follows the word STEP in the Ping! program. The 
smaller the negative number, like -.05, the longer the 
decay. 

Play around with this concept a little. You should be 
able to get Ping! to sound like a note played on a piano! 

A decay's opposite number is called an aUack. An at 
tack increases a note's volume while sustaining its 
pitch. Just change the program to read 

10 FOR ATTACK = ° TO 15 STEP .8:S0UND 
0,60,1 O,ATTACK:NEXT ATTACK 

and you ' ll be attacked! 

Let's Go to a Ping Subroutine 

In many programs the same sound is called for over 
and over. In one of the stranger arcade games I design
ed, the player presses the START key to flip through a 
variety of screens and maps. A p ing sound effect ac-

185 



DR. WACKO PRESENTS ATARI BASIC 

companies each screen change. Rather than repeating 
the routine each time, you should use a subroutine to 
create the ping. 

Type in and run this little gem to get the idea. 

5 . * START key PEEK is on line 1 O! * 
10 IF PEEK(53279)= 6 THEN GOSUB 100 
20 GOTO 10 
30 . * HERE COMES THE SUBROUTINEh 

100 FOR DECAY = 15 TO ° STEP -.8:S0UND 
0,60, 10,DECAY:NEXT DECAY 

200 SOUND O,O,O,O:RETURN 

Every time you press the START key , the program 
branches to the subroutine in line 100. A ping sounds, 
then in line 200 the sound is turned off and the pro
gram returns to line 10. 

If you are using the same SOUND statement 
throughout your program, it's easier to GOSUB to a 
SOUND subroutine. You'll save yourself the effort and 
time of typing in the same SOUND statements many 
times, and your program will be more efficient and use 
less memory. 

Changing SOUND with DATA 
Complex and changing sounds can be made by 
READing values into the SOUND statement(s). 

Here's a gruesome example. I've named this short pro
gram Clyde's Lament. Listen and you ' ll understand 
why. 

186 



Desert ZOUNDS 

Clyde's Lament 

° . * * * Read PITCH £, DISTORTION values 
from DATA into SOUND Statement * * * 

10 FOR X = ° TO 3:READ P,D 
20 SOUND O,P,D, 12 
25 . * * * PAUSE * * * 
30 FOR PAUSE = 1 TO 200:NEXT PAUSE 
40 NEXT X:RESTORE:GOTO 10 
50 . * * * The DATA is in pairs: (PITCH, 

DISTORTION) * * * 
100 DATA 60,2,85,10,150,6,100,8 

Even though Snidely's wild about Clyde's Lament, 
most camels (except Clyde) have a more refined 
musical sense. (No offense to your sense intended, 
Clyde.) They deserve to hear the real McCoy. Music 
with a beat. Music they can relate to. Music that sounds 
like music! It's all possible with Atari SOUND, but that's 
another book. 

Now that you 've developed a sound foundation, add 
sound and weird noise to all your programs. It'll give 
them a professional touch, and wake up your caravan. 

187 



DR. WACKO PRESENTS ATARI BASIC 

6 
Weaving The Perfect Flying 

Carpet, or, The Art of 
Programming 

If you've got a strong constitution, walk into a hot stuf
fy room filled with wacked-out programmers (all mun
ching stale tuna fish sandwiches), give them the same 
problem, and they' ll all solve it in their own unique and 
creative way. 

I'll give you an example. I walked into a room full of 
wackos (and wackettes) and asked them to create a 
simple version of the game Black Jack (21) to play 
against the computer. 

Captain Action's first thought was to use a joystick for 
the player/computer interface. Ms. Peeky felt that 
touching the keys was more reassuring , and Petunia 
went high-tech and decided to get information into 
the computer by using a light pen. Junior had no 
comment. 

Right off the bat, I knew that these four weirdos would 
design their programs differently. But it goes even 
deeper than individuality. The logical thought process 

188 



The Art of Programming 

that each programmer goes through while creating a 
program is unique. He or she can effectively solve the 
same problem in many different ways. 

Pay Attention to Detail, 
Especially When Making 
Anchovy Burritos 

Programming is just like making anchovy burritos for 
Thanksgiving dinner. You 've got to work out a recipe, 
go shopping 'for the ingredients, then put it all together 
and cook it up. If you've paid close attention to detail , 
your burritos will be scrumptious. If not, you may end 
up with burned pots, disgruntled relatives, and lots of 
former friends. 

189 



DR. WACKO PRESENTS ATARI BASIC 

To show you what goes on in a programmer's brain, I' ll 
let you take a glimpse into mine as I tell you how I 
designed the Mini Word Processor listed on page 206. 
(A word processor is just a computerized typewriter. I 
designed my computerized typewriter after the keys of 
myoid electric got jammed with sand.) 

Know the Rules of the Game and Define the 
Problem 

I always write down what I want my program to do 
before I start doing any programming. I do this so I' ll 
have a written framework upon which to build my pro
gram. Defining the problem - by creating a written 
description of it - is always an essential first step, 
regardless of what type of program you are designing. 
This first step may require more of your brainpower 
and attention to detail than all of the actual programm
ing! Here's what happened to me . . .. 

I wanted my word processor to have six principal 
features: 

1. Show text on the screen. 
2. Include at least some rudimentary editing 

functions. 
3. Store text to disk or cassette and load it back 

into the computer when needed. 
4. Print out the contents of the screen onto a 

printer. 
S. Erase the contents of memory and the screen at 

the press of a key. 
6. Be friendly to writers. All options should be easy 

to remember and easy to use. 

I originally thought that designing a simple word pro· 
cessor would be, well, simple. But after writing down 
all the ingredients I needed, and mulling over the pro
gramming consequences, I discovered that I had never 
really looked closely at the mechanics of a word pro-

190 



The Art of Programming 

cessor. I had never broken it down and examined all the 
little details. 

To write a workable program, I had to examine every 
feature to gain a thorough and complete understan· 
ding of it. In the process, I discovered that there was 
more to a word processor than meets the eye, and I now 
have a much better understanding of how a word pro
cessor operates. 

Programming on The Right Side 
of The Brain 
The process of really looking at a programming pro· 
blem is the same process that artists go through when 
they paint still-lifes or portraits. Artists must "see" 
every minute detail of the subject before they can 
create a picture on canvas. 

A Short Exercise in Seeing 

Here's a short exercise in seeing. It involves what is call· 
ed " experiential " learning (learning by doing). Once 
you're through , you will have experienced total vision, 
and understand the relationship between art and the 
art of programming. 

Take a piece of paper and a pencil and sit down at the 
kitchen table. Lay the paper in front of you ;:Ind place 
your hand at the side of the paper. Now, take a really 
close look at that hand. See every line, every curve , 
every shadow. In a few minutes you'll know more about 
your hand than you thought possible. 

Starting at any point, move your eyes very, very slowly 
over the edge of your hand. As your eyes do this let your 
pencil draw this outine on your paper. Really get into "see
ing" every curve and shape that make up the outline of 
your hand. Take your time. Go slowly. Really concentrate. 

191 



DR. WACKO PRESENTS ATARI BASIC 

When you are finished drawing the outline of your hand, 
go back and fill in all the other details: the curves of your 
fingernails, the small creases in your hand, even the pores 
and minute strands of hair on the top of each finger. You'll 
be pleasantly surprised at the results. This drawing (if 
you're not already an artist) is probably the most detailed 
and realistic you've ever done. And all because you really 
saw your hand for the first time! 

The Wacko Side of Your Brain 
While you were drawing, you may have noticed that 
you lost sense of time and didn 't hear that radio or TV 
playing in the background or any external sounds. You 
were completely engrossed in your work. That's 
because you were using what I call the "Wacko 
(creative or right) side of your brain ." You 've also learn
ed to appreciate the effort and attention to detai I that 
goes into a work of art, such as your drawing of your 
hand. 

But what does this have to do with programming? 
EVERYTHING! When you are programming or design
ing a program, you need to " see" the final result with 
the detail artists "see" before they begin painting pic
tures. When you program, you musL use Lhe Wacko side 
of your brain! 

"Like, Totally, Really!" 

You must totally see your programming problem , 
whether your are designing a word processor, a game, 
or something totally wacko. By seeing the problem, 
you gain a total understanding of the problem and can 
successfully design a program that effectively solves 
the problem. Total involvement helps you appreciate 
good programming in yourself and in others. 

192 

... A'-lD ~OWMJ 
IMl'bRTAlVT 
ANNOUNCf;MEtVT. 
TilE I.lJOIl:LDENt>fD 
~VeN MlootES 

Aoo.MoR6" 
AFTER nu<o 
fj!R~W. 



The Art of Programming 

Now That You Understand The 
Ground Rules 
Once I've defined a program and have an in-depth 
understanding of its functions, I review each function, 
apply my knowledge of the BASIC language, and add a 
touch of wackiness. 

You can start working with any of the steps you 've writ
ten down. But I usually start at the top, with the first 
one, and work my way down the list. This is the same 
way that your computer executes a program. So, work
ing this way makes it easier to put together the total 
program. As you get deeper into the programming you 
may want to change the order of things to make your 
program more efficient. Go for it! This is part of the 
creative programming process. 

The Modular Approach 
I examine and work through each step, treating it as a 
small program unto itself, which I call a " module." I 
write a "shopping list" of programming ingredients 
needed to make each module of the program work on 
their own , then formulate a recipe that blends its ingre
dients. 

After I've completed a module, I first test it by itself, 
and then within the entire program . Sometimes I'll 
design a module directly on the computer. I enter all 
the programming, then experiment with my module 
(adding a pinch of this and pinch of that) until it "tastes" 
just right. This method also works when making 
spaghetti sauce! 

193 



DR. WACKO PRESENTS ATARI BASIC 

A Word Processor, Step-By-Step 

Enough of this conceptualizing stuff. Let's design a 
word processor! (If you'd like to look at the finished 
product before we begin, just flip to page 206, type in 
the program, and start writing that great novel.) All 
set? 

OK, but I'd like to point out one thing before we start 
designing and programming. The line numbers I use 
below to explain each module are the same I've used in 
the finished word processor. This will help you see how 
it all fits together. 

MODULE 1: Print to the Screen 
The first thing a word processor must do is print text on 
the screen. So, I designed Module 1 to do just that. 

Module 1 

50 CLR :DIM S$(20),L$(20),B(2500) 
60 X = l:GRAPHICS 0 
70 CLOSE #1:0PEN #1,4,0,"K:" 
80 GET #l,A 
85 . * * *OPTIONS* * * 

160 ? CHR$(A); 
170 B(X)=A 
180 X = X + l:GOTO 80 

Line 50 DIMensions S$ for use in the Save Text Module 
that comes later and L$ for use in the Load Text 
Module. Most important, it DIMensions the array B 
that's used to store the text in line 170 of this module. 

Type in and run Module 1. You've got a very rudimen
tary word processor. Each character you type is printed 
on your screen, and stored in array B! 

194 



The Art of Programming 

The OPTIONS, like printing, saving, loading, erasing , 
and editing the text will fit between lines 80 and 160 of 
the program. 

MODULE 2: Edit 
Everything was hunky-dory until I discovered that 
each time I corrected text by pressing the DELETE 
BACK S key , the ATASCII value of the DELETE key, 
126, was stored in array B. 

This just wouldn't fly. I realized that if I tried to print or 
save the text , these extra characters would get in the 
way and bollix up the works. I had to come up with a 
way to delete each character on the screen, without 
placing the ATASCII value of the DELETE key into the 
array. 

Here's the solution I finally came up with, after much 
experimentation, and futzing around: 

Module 2 

100 IF A = 126 THEN? CHR$(A);:X = X - 1 :GOTO 
80 

I inserted this short module into Module 1, and solved 
the problem. Here's how it works. If you press the 
DELETE BACK S key, A equals 126. When this hap
pens the program prints the control character for 
DELETE on the screen, and the cursor moves one 
space to the left and erases the character it lands on. 

X = X - 1 is the heart of this module. Each time the 
cursor does its thing on the screen, the array counter is 
set back one notch. 

To finish things off, the program returns to line 80 to 
GET the next character. 

195 



DR. WACKO PRESENTS ATARI BASIC 

The solution looks pretty straightforward here. But it 
took me quite a bit of experimentation to arrive at the 
result I was looking for. One lesson I lea rned while 
working through this problem was to have a very clear 
idea of the result I wanted before I tried to find a solu
tion. It all gets back to defining the problem! 

SINCE '(OOR COMPlrrER CANT JU"1PTO 
CDNCI.lJ€,IONS A6D<JT WI1Ai '(OURe 1ToMUS 
TO DO. ITS IMRJRTANTiO OOTUIVE VCX.JR. 
PROGRAM BE'FORE '{OU START. OTHERWISE 
l{oU{,.L- s~o UP UKE JUNrOR WHO PLANNED 
FOR. 114E. TRIP BY PACK)IJG 34~ AM::HOV'{ 

BURRITOS. 

MODULE 3: Saving Text 
I wanted to design this module to make saving text as 
easy as possible. Here's how I wanted it to work: 

1. Press OPTION + "S" or "s" and the screen clears 
2. A message appears on the screen asking for a 

device and filename. 
3. You enter info and press RETURN. 
4 . If you make a mistake in entering info, the pro

gram goes back to line 70 for another try. 
5 . Otherwise, text that is stored in array B(X) is sav

ed to the proper device. The text is printed on 
the screen during this process. 

6. After the text is stored, the program goes back to 
line 70 to start again. 

Once I had written down what I wanted to accomplish, I 
started programming. Here's the result: 

196 



The Art of Programming 

Module 3 

115 . GOTO the Save Text Routine 
120 IF A = 83 AND PEEK(53279) = 3 OR A = 115 

AND PEEK(53279) = 3 THEN GOTO 200 
195 . Save Text Routine 
200 CLOSE # 1 :OPEN # 1, 12,0,E:" 
210 POSITION 3,1 O:?"[SAVE] 

DEVICE:FILENAME "; 
220 INPUT #1,S$ 
230 CLOSE # 1 :TRAP 370:0PEN 

#2,8,0,S$:POKE 712,195:POKE 710,195:? 
CHR$(125) 

240FORT=1 TOX-1 
250 PUT #2,8(T):? CHR$(8(T»;:NEXT T 
260 CLOSE #2:?CHR$(253);:POKE 

710,148:POKE 712,148:GOTO 70 

GOTO the Save Text Routine. In line 120, if a you press 
an uppercase letter "S," A equals 83. If you press a 
lowercase "s," A equals 115. And, if the OPTION key 
is pressed at the same time, the program goes to the 
Save Text Routine beginning on line 200. 

The Save Text Routine. In line 200, channel #1 is first 
closed, then opened to allow writing to and reading 
from the screen editor. This action also clears the 
screen and sets the stage for the printing in line 210 
and the INPUT, less question mark, in line 220. 

Line 210 prints a message on the screen asking for a 
device and filename. 

Line 220 waits for an INPUT, then assigns it the string 
variable name S$. 

Line 230 closes the screen editor (channel # 1), then 
uses a TRAP statement to trap any input errors to line 
370. A channel is then opened to the device you 
specified in line 220, and finally, the screen is colored 
green and cleared. 
197 



DR. WACKO PRESENTS ATARI BASIC 

The FOR/NEXT loop in Lines 240 and 250 takes each 
character from array B(T) and PUTs it into the file on 
whatever device is selected. 

When the FOR/NEXT loop runs out of characters, the 
program branches to line 260 where channel #2 is clos
ed and a buzzer sounds to let you know that the saving 
process is complete. The screen turns blue, and the 
program goes back up to line 70. 

MODULE 4: Loading Text 
To keep things simple, I designed this module to load 
text like the module that saves text. Here's how I 
wanted it to work: 

1. Press OPTION + "L" or "I" and the screen clears. 
2. A message appears on the screen and asks for a 

device and filename . 
3. You enter info and press RETURN. 
4. If the you make a mistake in entering info, the 

program goes back to line 70 for another try. 
5. Otherwise, text is loaded into array B(X). The 

text is printed on the screen during this process. 
6 . After the text is loaded into the computer the 

program goes back to line 70. 

By making the save and load features of this word pro
cesor similar, I eased my programming chores and 
made the program easy to use. Here's the Module 4 
part of this program: 

198 



The Art of Programming 

Module 4 

135 . GOTO the Load Text Routine 
140 IF A=76AND PEEK(53279) = 3 ORA= 108 

AND PEEK(53279) = 3 THEN 
8(X) = 32:GOTO 270 

265 . Load Text Routine 
270 CLOSE #1:0PEN #1,12,0,"E:" 
280 POSITION 2,1 O:? "[LOAD] 

DEVICE:FILENAME "; 
290 INPUT #l,L$ 
300 CLOSE # 1 :TRAP 370:0PEN 

#2,4,0,L$:OPEN # 1 ,8,0,"S:":POKE 
712,195:POKE 710,195:X= 1 

310 TRAP 350:GET #2,A 
320 PUT #l,A 
330 8(X)=A:X=X+ 1 
340 GOTO 310 
350 CLOSE #l:CLOSE #2 
360 ? CHR$(253);:POKE 712, 148:POKE 

710,148:GOTO 70 

GOTO lhe Load Texl Routine. This routine is almost 
identical to the GOTO Save Text Routine you've just 
seen. There's one small difference, however. Before 
this routine goes to line 270 (the Load Text Routine), it 
enters a blank space (32) into array 8(X). After much 
experimentation, I discovered that this space was 
needed for proper screen formatting. Remove 
8(X) = 32 from line 140, run the program, and you'll 
see what I mean. 

The Load Texl RouUne. This routine is almost identical 
to the Save Text Routine. But, it GETs characters from 
either disk or cassette and PUTs them into array 8(X). 

199 



DR. WACKO PRESENTS ATARI BASIC 

MODOLE 5: Printer Routine 
I decided that it would be nice to add a feature so you 
can print the contents of the screen to a printer. And 
here's the module that does this: 

Module 5 

88 . GOTO Printer Routine 
90 IF A = 80 AND PEEK(53279) = 3 OR A = 112 

AND PEEK(53279) = 3 THEN GOTO 190 
185 • Printer Routine 
190 LPRINT CHR$(155):CLOSE #1:0PEN 

#2,8,0,"P:":FOR T = 1 TO X-I :PUT 
#2,8(T):NEXT T:CLOSE #2:GOTO 70 

GOTO the PrinLer RouLine. In line 90, if you press an up· 
percase letter "P," A equals 80. If you press a lowercase 
" p," Aequals 112. And , if you press the OPTION keyat 
the same time, the program goes to the Printer Routine 
beginning on line 190. 

Printer Routine. The Printer Routine on line 190 per· 
forms several functions: 

1. It prints a carriage return on the printer so print· 
ing begins at the left side of the paper. 

2. It closes channel #1 then opens channel #2 to the 
printer. 

3. The FOR/NEXT loop PUTs the contents of the 
array onto the printer. It goes to X-I so the ex· 
tra carriage return or space at the end of the text 
isn't printed. 

4. When printing is completed , it closes channel #2 
and goes back to the main program beginning 
on line 70. 

Ending Text with a Carriage Return 

While experimenting with the Printer Routine, I was 
surprised to discover that I had to end the text to be 

200 



P€RHAPS"W6 F/~AL IMPROVEMENT" 
/5~T QuITE ACCURATE . 61NCE I'M 

f'ERFECT,IMPRClV€MENlS ARe 
IMR::1SS/Bw='. /.£T'S SA.., 

"0"'£ FIliAL.. HAMPLe OF 
MIJ GCNIU5! 

The Art of Programming 

printed with at least one carriage return . When I didn't 
press RETURN before printing, the printout wasn't the 
same as the information printed on the screen. This 
taught me a very valuable lesson: Always "plug 
modules in " and LesL Lhem before moving on. " 

MODOLE 6: Clear Screen and 
Erase Memory 
I designed this short module so you can clear the 
screen and memory by pressing the CTRL key plus the 
uppercase letter " E." I selected the letter " E" to repre
sent " Erase, " so the operation would be easy to 
remember. 

Module 6 

150 IF A = 5 THEN GOTO 50 

Simple, isn 't it? If you press the CTRL key and the " E" 
key A equals 5, and the program goes to line 50 and 
begins again. 

Module 7: One Final 
Improvement 
Since most novels are longer than twenty-four screen 
lines, I decided to incorporate a feature that lets you 
scroll a document to read and review it. 

Look at the routine first , then I'll explain how it works 
and how it's used. 

Module 7 

130 IF A = 18 THEN ?CHR$( 125);:FOR T = 1 TO 
X-I:? CHR$(8(T»;:NEXT T:GOTO 70 

If you press the CTRL and " R" keys at the same time, A 
equals 18 and the screen is cleared. Then, the 

201 



DR. WACKO PRESENTS ATARI BASIC 

FOR/NEXT loop is used to print the contents of the ar
rayon the screen. When the printing is finished , the 
program goes back up to line 70. 

Here's how to use the "Read" feature: 

1. Press the CTRL key plus the " R" key to start the 
scrolling 

2. Press the CTRL key plus the " 1" key to pause; 
press them again to continue scrolling. 

Error Handling 

The routine on line 370, below, was put into the program 
after I added the routine on line 130 that lets you scroll long 
text down the screen. 

370 ? CHR$( 125);:A = 18:GOTO 130 

In essence, if an error occurs in line 230, the program 
goes to line 370, branches up to line 130, and finally to 
line 70 to start again . This may seem like the long way 
around, but if you review the Text Scrolling Routine, it 
will all become clear. 

The Word Processor That Ate 
Cleveland 

As I designed this program I kept wanting to add more 
features. I thought it would be nice to add a "wrap
around" feature to automatically shift (wrap) the last 
word of a line to the left margin of the next line. This 
common feature on most profesional word processors 
eliminates pressing RETURN at the end of each 
line. 

I also wanted to add printer functions that would 
automatically center text, line up text evenly on the 
right-hand side of the printout, and underline or 
highlight words. 

202 



The Art of Programming 

I also thought that incorporating a "search and 
replace" feature would be real helpful. And, most of all, 
I wanted to make use of all the editing functions; not 
just the DELETE BACK S. 

But I knew that if I added all these features, the program 
would be extremely long and difficult to explain, and you 
wouldn't have a chance to experiment on your own! 

Keep the Cards and Letters 
Coming! 
I'd like to see your modified versions of this word pro
cessor. So, if you make some additions, please send 
me a short note and your program listing. Dr. Wacko 
will answer you. Trust me! 

Adding Some Documentation 
~ Once you've finished your program, worked out the L bugs, and really think it's got possibilities, it 's time to 

write operating instructions so your friends can use it. 
To give you the idea , here's the documentation for 
Wacko's Amazing Word Processor. 

Wacko's Amazing Word Processor 

This word processor lets you create text (up to 2500 
characters in length) on your screen, save it to either 
disk or cassette, and print the contents of the screen to 
a printer. 

Easy Operating Instructions 

1. Gelling started. A title page appears on your screen 
after you load and run your word processor. Just press 
the START key and you're ready to begin typing. 

203 



DR. WACKO PRESENTS ATARI BASIC 

2. To save your lexL. Press the OPTION key and the " S" 
key simultaniously, and your screen will look like this: 

[SAVE] DEVICE:F1LENAME 

Type a letter "D", a colon (:), and a filename, then press 
RETURN to save your text to disk. Your entry should 
look like this: 

D:FILENAME.EXT [RETURN] 

Type a letter "C" , followed by a colon (:), then press 
RETURN to save your text to cassette. No file name is 
required. 

3 . To Load text inlo the word processor. Press the OP
TION key and the " L" key and your screen will look like 
this: 

[LOAD] DEVICE:F1LENAME 

Type a letter "D", a colon (:) and the name of the file 
stored on disk, then press RETURN to load the text into 
the word processor. Your entry should look like this: 

D:FILENAME.EXT [RETURN] 

Type a letter "C", followed by a colon (:), then press 
RETURN to load the text from cassette into the word 
processor. No file name is required . 

4 . To prinl text on your printer. Press RETURN at the end 
of the text you want to print. Then press the OPTION 
key and the "P" key and your text will be printed out. 
Don't forget to turn on your printer! 

204 



The Art of Programming 

5. Editing. The only editing function available on this 
word processor is the DELETE BACK S key. Each time 
you press the DELETE BACK S key the cursor moves 
back one space and deletes one character. 

The cursor will travel up the screen a maximum of 
three lines before stopping. If you continue to press the 
DELETE BACK S key , characters are still being 
deleted from the word processor's memory. Use the 
Read and Review option to see your edited text. 

6. Read and review. The read and review option is used 
during editing to see edited text, and to scroll and read 
text that is longer than the length of the screen. 

Press the CTRL key and the "R" key to begin scrolling. 
Press the CTRL key and the " 1" key to stop scrolling . 
Press CTRL and " } " again to continue scrolling. 

Now that you know how to design and use a word pro
cessor, here 's the program you 've all been waiting for. 
Type it in carefully, run it, and write that great novel or 
a nasty letter to me . 

205 

.,-- ....... 

" -...... ~'"" ...... 
... .,-.---- ""'"' I 

./ "" '\ I "'\' \ 
'\ I 

\ \J 



DR. WACKO PRESENTS ATARI BASIC 

Wacko's Amazing Word Processor 

10 GRAPHICS 1 + 16:POKE 712,99:POSITION 
5,8:PRINT #6;"DR WACKO'S":POSITION 
7,1 O:PRINT #6;"AMAZING" 

20 POSITION 3, 12:PRINT #6;"WORD 
PROCESSOR" 

30 POSITION 5,20:PRINT #6;"PRESS start" 
40 IF PEEK(53279)< > 6 THEN GOTO 40 
50 CLR :DIM S$(20),L$(20),B(2500) 
55 REM * * * PRINT TO SCREEN * * * 
60 X = 1 :GRAPHICS 0 
70 CLOSE # 1 :OPEN # 1,4,0, "K:" 
80 GET #1,A 
85 REM * * * OPTlONS * * * 
90 IF A = 80 AND PEEK(53279) = 3 OR A = 112 

AND PEEK(53279) = 3 THEN GOTO 185:REM 
Print-out. Press RETURN after text! 

100 IF A = 126 THEN? CHR$(A);:X = X-I :GOTO 
80:REM Editing Function 

110 IF A= 155 THEN? CHR$(171): 
B(X) = A:X = X + 1 :GOTO 80:REM 
Carraige return 

120 IF A = 83 AND PEEK(53279) = 3 OR A = 115 
AND PEEK(53279) = 3 THEN GOTO 200:REM 
Save file 

130 IF A = 18 THEN? CHR$(125);:FOR T = 1 TO 
X-I:? CHR$(B(T»;:NEXT T:GOTO 70:REM 
Read long text. CTRL + 1 Stops scroll 

140 IF A = 76 AND PEEK(53279) = 3 OR A = 108 
AND PEEK(53279) = 3 THEN B(X) = 32:GOTO 
270:REM Load file 

150 IF A = 5 THEN GOTO 50:REM CTRL + E Clears 
the screen 

155 REM * * * PRINT TO SCREEN * * * 
160 ? CHR$(A); 
170 B(X)=A 
180 X = X + l:GOTO 80 
185 TRAP 380: REM * * * PRINTER* * * 

206 



The Art of Programming 

190 LPRINT CHR$(155):CLOSE #1:0PEN 
#2,8,0,"P:":FOR T = 1 TO X-I :PUT 
#2,8(T):NEXT T:CLOSE #2:GOTO 70 

195 REM ***SAVE * ** 
200 CLOSE #1:0PEN #1, 12,0,"E:" 
210 POSITION 3,1 O:? "[SAVE] 

DEVICE:FILENAME "; 
220 INPUT #1,S$ 
230 CLOSE #l:TRAP 370:0PEN #2,8,0,S$:POKE 

712, 195:POKE 710, 195:? CHR$( 125) 
240 FOR T= 1 TO X-I 
250 PUT #2,8(T):? CHR$(8(T»;:NEXT T 
260 CLOSE #2:? CHR$(253);:POKE 710, 148:POKE 

712,148:GOTO 70 
265 REM * * * LOAD* * * 
270 CLOSE #1:0PEN #1,12,0,"E:" 
280 POSITION 2,1 O:? "[LOAD] 

DEVICE:FILENAME "; 
290 INPUT #1,L$ 
300 CLOSE #1:TRAP 370:0PEN #2,4,0,L$:OPEN 

#1,8,0,"S:":POKE 712,195:POKE 710,195:X= 1 
310 TRAP 350:GET #2,A 
320 PUT #1,A 
330 8(X)=A:X=X+ 1 
340 GOTO 310 
350 CLOSE #1:CLOSE #2 
360 ? CHR$(253);:POKE 712, 148:POKE 

710,148:GOTO 70 
365 REM * * * SAVE/LOAD ERRORS * * * 
370 ? CHR$( 125);:A = 18:GOTO 130 
380 ? CHR$(125);:POKE 710,34:POSITION 4,10:? 

"Please Turn Printer/Interface On!"; 
390 FOR WAIT = 1 TO 500:NEXT 

WAIT:A = 18:POKE 710, 148:GOTO 130 

207 



DR. WACKO PRESENTS ATARI BASIC 

A Special Bonus Coder/Decoder 

Once you've created a message using Wacko's Amaz
ing Word Processor, you can protect it from prying 
eyes with the next two bonus programs: Coder and 
Decoder. 

Here are the two program li st ings. Just enter and save 
each one, then I'll tell you how to protect your text. 

Coder 

10 CLR :CLOSE # I:? CHR$(125):X = 1 
15 POKE 710,0:POSITION 15,1:? 

"* * *CODER* * * ":? 
20 DIM C(15000),A$(20),C$(20) 
30 ? "ENTER TODAY'S CODE:"; 
40 TRAP 10:INPUT D 
50 ? :? "CLEAR TEXT -

DEVICE:FILENAME.EXT" 
60 TRAP 1 O:INPUT A$ 
70 OPEN # 1 ,4,0,A$ 
80 TRAP 11 O:GET # 1 ,A 
85 ? CHR$(A); 
90 X = X + 1 :C(X) = A + D 

100 GOTO 80 

208 



The Art of Programming 

110 CLOSE # I:? :? CHR$(253):? :X = 1 
120 ? "CODED TEXT -

DEVICE:FlLENAME.EXT" 
130 TRAP 1 O:INPUT C$ 
140 OPEN #1,8,0,C$ 
145 IF C(X)-D = 91 THEN GOTO 180 
150 TRAP 180:X = X + l:PUT #l,C(X) 
170 GOTO 145 
180 CLOSE # I:? CHR$(253):? "FINITO!" 

Decoder 

1 0 CLR :X = 1 :CLOSE # I:? CHR$( 125) 
15 POKE 71 O,O:POSITION 15,1:? 

"* * *DECODER* * *":? 
20 DIM C( 15000),A$(20),B$(20) 
30 ? "ENTER TODAY'S CODE:"; 
40 TRAP 1 O:INPUT D 
50 ? :? "CODED TEXT -

DEVICE:FILENAME.EXT" 
60 TRAP 10:INPUT A$ 
70 OPEN # 1 ,4,0,A$ 
80 TRAP 11 O:GET # 1,A 
90 X=X+ l:C(X)=A-D 
95 ? CHR$(C(X»; 

100 GOTO 80 
lOS? CHR$(125) 
110 CLOSE #1 
120 ? :? CHR$(253) 
130 ? "CLEAR TEXT -

DEVICE:FILENAME.EXT" 
135 X = 1 
140 TRAP 10:INPUT B$ 
150 OPEN #1,8,0,B$ 
155 IF C(X) = 91 THEN GOTO 190 
160 TRAP 190:PUT #l,(C(X» 
180 X = X + 1 :GOTO 155 
190 CLOSE #1 
200 ? CHR$(253):? "FINITO!" 

209 



DR. WACKO PRESENTS ATARI BASIC 

To Code Your Text 
Important: When you compose your text , type at least 
one Left Bracket "I" as the last character. Both pro
grams recognize the left bracket as the end of text. 

Run the Code program and you ' ll be asked to " ENTER 
TOOAY'S CODE. " Enter any whole number you'd like 
and press RETURN. (Remember this number. You ' ll 
need it to decode your text!) 

Next, you' ll be asked for the device and filename of the 
text (stored on disk or cassette) that you want coded. 
Your screen will look like this: 

CLEAR TEXT - DEVICE:FILENAME.EXT 

If your text is stored on a disk, respond by entering the 
device symbol " 0 " , followed by a colon (:), and the 
name of the text file stored on your disk. 

D:FILENAME.EXT 

If your text is stored on cassette , just enter " C", follow
ed by a colon . (C:). No file name is required. 

Press RETURN, and text f rom the file you've selected 
will scroll down your screen. 

You' ll hear a buzzer, and the words 

CODED TEXT - DEVICE:FILENAME.EXT 

will appear on your screen. 

Enter the storage device and the filename (disk only) 
you 've chosen for your coded text. When the word 
"FINITO!" appears on your screen , a new file of coded 
text has been created on your disk or cassette. 

210 

"RlOAI.( I !-lAse A 
CDD~ IN,.oN NOSE. 



The Art of Programming 

To Decode 
Run the Decode program and you 'll be asked to 

-~::;::::::;:~ "ENTER TODAY'S CODE." Enter the same number 
~==1iii'41r-::::~ you used when coding your text. Press RETURN. 

Next, you'll be asked for the device and filename of the 
text (stored on disk or cassette) that you want to 
decode. Your screen will look like this: 

CODED TEXT - DEVICE:FILENAME.EXT 

If your text is stored on a disk, respond with the device 
symbol " D", followed by a colon (:), and the name of the 
text file stored on your disk. 

D:FILENAME.EXT 

If your text is stored on cassette just enter "C", followed 
by a colon. (C:). No file name is required. Press 
RETURN. 

You 'll hear a buzzer, and the words 

CLEAR TEXT - DEVICE:FILENAME.EXT 

will appear on your screen. 

Enter the storage device and the filename (disk only) 
you 've chosen for your decoded text. When the word 
"FINITO!" appears on your screen, a new file of decod
ed text has been created on your disk or cassette. 

Enjoy your new secret Coder/Decoder! 

211 



DR. WACKO PRESENTS ATARI BASIC 

r"" ... <"T, .. "v:. SOCIAU.l{ SI6NIFICAIIIT, 
SOMEnlI/.b 1I1Ai SENEFI1'5 ALL

MANKJ/JD, SOM€1BIAlb illAT EXPlOm 
FR:>IIIT"IERS OF HUMAN 

Ei"P€RIENCE. ! 

WANT MORE? we &Of MORE 1 RUN IX'JW~ To 'lO~ l.OCAL Si:mE AND GeT 

DR.G.WACKD~ MIRACLE 6UlDE ~~~~~;~:~~~o~JNATARI COMPUTER ARCAOf SAMES! 
212 



APPENDIX A: ERROR MESSAGES 

APPENDIX A: 
OH OH! ERROR MESSAGES 

Your Atari computer lets you know that there are pro
blems by printing numbers on the screen. Here's what 
those numbers mean. 

2 Not Enough Memory. There is not enough 
memory left in RAM for your BASIC program or 
variables. 

3 Weird Numeric Value. A numeric value that was 
expected to be positive is negative, or a value is way 
out of wack. 

4 Too Many Variables. You 've used too many 
variables! A program can only have a maximum of 
128 different variable names. 

5 A String is Too Long. Your program tried to use a 
string that is 10llger than the DIMensioned string 
length . 

6 Not Enough DATA. A READ statement tried 
reading past the end of the DATA statement's list of 
values and dropped off the edge of the program. 

7 Number Greater Than 32767. Oops! You can 't 
use a value greater than 32767. 

8 INPUT Boo Boo. You tried to INPUT a non
numeric value (such as a letter, punctuation mark, or 
control character) into a numeric variable. 

9 Array or String DIMension Error. Your DIM state
ment might contain a string variable or array that 
you 've already DIMensioned; or you've tried to use an 
array larger than 32,767 bytes; or your program tried 
using an unDIMensioned string variable or array or an 
array element that doesn't exist. 

213 



DR. WACKO PRESENTS ATARI BASIC 

10 You're Getting Too Fancy. There are too many 
GOSUBs, or an expression has too many levels of 
parentheses. (((parXenth)eses))) ... good grief! 

11 Numeric Zonkers. Your program tried to divide 
by zero or refer to a number larger than 1 X 1 098 or 
smaller than 1 X 1 0- 99 . 

12 Can't Find That Line!. A GOSUB, GOTO, IF
THEN, ON-GOSUB or ON-GOTO tried to branch to a 
nonexistent line number and got lost. 

13 A NEXT Without a FOR. Your program bumped 
into a NEXT statement, but there wasn 't a com
plementary FOR statement for it to refer to. It got con
fused. 

14 A Line is Too Long. A statement is too complex 
or too long for BASIC to handle on one logical line. 

15 A GOSUB or FOR Statement Vanished. A 
NEXT or RETURN statement looked for a FOR or 
GOSUB and couldn 't find it. 

16 The Program That Never RETURNed. A 
RETURN statement tried to return but cou ldn't find a 
matching GOSUB. 

17 Garbage in Garbage out. Something weird hap
pened. A strange POKE, machine language routine , 
or faulty RAM caused your program to try to execute 
completely meaningless garbage. 

18 Strange String. A string doesn 't start with a 
valid character (like a number), or a string in a VAL 
statement is not a numeric string. 

19 The Program's Too Big. The program you 're try
ing to load won 't fit into the avai lable RAM. 

214 



APPENDIX A: ERROR MESSAGES 

20 Change The Channel. The program tried to use 
channel 0 or tune in on a channel larger than 7. 

21 It's Not in LOAD Format. You tried using a 
LOAD statement to load a program that you stored by 
using an ENTER or CSAVE statement. 

128 BREAK It Up. You pressed the BREAK key 
while the computer was thinking. 

129 The Channel Is Already Open. The program 
tried using a channel that was already being used. 

130 The Nonexistent Device. The program tried 
using a device that doesn't exist. For example, D:, P: , 
and S: do exist; Q: doesn 't. 

131 Reading from a Write-Only Device. The pro
gram tried to read from a device that you can only 
write to , such as a printer. 

132 Bad XIO Grammar. Something's wrong with an 
XIO (Input/Output) command. 

133 The Channel's Not Open. The program tried to 
" speak" to a device before OPENing it. 

134 Bad Device or Channel Number. The program 
can only use channels 1 through 7 . 

135 Writing to a Read-Only Device. The program 
tried to write to a device that you can only read from. 

136 End Of File. The program bumped into the end 
of a file or tried to read a sector on a disk that wasn't 
part of the opened file. 

137 Truncated Record. The program tried to read a 
record longer than 256 characters and truncated it. 

215 



DR. WACKO PRESENTS ATARI BASIC 

138 Time Out. A specified external device (like the 
disk drive or printer) doesn't respond. Are they turned 
on? 

139 A Device Can't Perform. The disk drive, pro
gram recorder or ATARI 850 Interface Module can 't 
perform a command. 

140 Serial Bus Problem. There's a serial bus pro
blem. Your diskette or cassette may be defective. 

141 The Cursor is Out of Range. The cursor tried to 
whiz off the side of the screen. 

142 Another Serial Bus Problem. There's a serial 
bus problem. Check your diskette or cassette , it may 
be defective. 

143 Yet Another Serial Bus Problem. Are you sure 
your diskette or cassette is OK? 

144 The Disk Is Protected!. You can't write to a 
diskette because it is physically write-protected or its 
directory is scrambled. 

145 Disk Drive Comparison Glitch. The disk drive 
found a difference between what it wrote and what is 
was supposed to write . (I often have the same pro
blem) Or, there is a problem with the screen handler. 

146 It Tried To Do The Impossible. The program 
failed while trying to do the impossible, like inputting 
from the printer or outputting to the keyboard . 

147 Not Enough RAM for Graphics. There 's not 
enough memory space in RAM for all those fancy 
graphics. 

150 Too Many Serial Ports Are Open. You can only 
open one serial port to one channel at a time. 

216 



APPENDIX A: ERROR MESSAGES 

160 I Don't Know That Drive Number. Drive 
numbers can only be D: , D 1:, D2:, D3:, or D:4. If you 
tried something like " D:5" , you got this error. 

161 There Are Too Many Files Open. You can only 
open three disk files at the same time. 

162 The Disk Is Full (Burp!). There's no more room 
on the diskette. 

163 What's Happening? While the computer was 
inputting or outputting data, it found and error and 
can 't determine its cause or recover from it. Wheew. 

164 POINTed in The Wrong Direction. A POINT 
statement inadvertently moved the file pointer out
side of the opened file. You might also get this error if 
the disk file is garbled. 

165 The Old File Name Error. A file name contain
ed weird characters, started with a lowercase letter or 
used improper wild-card characters. 

167 It's Locked Up. The disk files can 't be written to 
or erased because they're locked up. (Le' me outa 
here!!) 

169 The Directory Is Full . The disk directory only 
has room for sixty-four names. 

170 I Can't Find That File. You 've got to be precise. 
If the file name you use isn't exactly the same as the 
name on the directory, you'll get this error. 

217 



DR. WACKO PRESENTS ATARI BASIC 

APPENDIX B: 
STORING AND RETRIEVING 

YO(JRPROGRAMS 
If You Have A Disk Drive 

There are two ways to store and retrieve your pro
grams from disk. 

SAVE Your Program 

The first , and most common , way to store a program 
on disk is to SAVE it by using the following BASIC 
format: 

SAVE"D:FILENAME.EXT" 

Type the SAVE command first , then enclose the 
deuice symbol, filename, and exlension in quotation 
marks. 

DEVICE 

In this example the device is D:, which means that you 
are saving your program to disk drive 1. If you want to 
save your program to another disk drive, disk drive 2 
for example, just add the drive number(2) after the 
" D" like this: D2:. 

FILENAME 

The filename can be any name of your choice , but you 
have to follow these rules: 

1. It can never exceed eight (8) characters. 
2. It must begin with a letter; it cannot begin with 

a number or symbol. 

218 



APPENDIX B: STORE AND RETRIEVE 

Here are some examples: 

MYFILE is OK. 

2MYFILE begins with a number and cannot be 
used. 

MYGREATFILE is too long. 

EXTENSION 

Using an exlension is optional. It can help you keep 
track of the type of program you've saved, or to fur
ther identify the program. 

If you want to use an exlension, just place a period (.) 
after the filename, then type your exlension. 

The EXTENSION also has a couple of rules you must 
follow: 

1. It cannot be longer than three (3) characters. 
2. It may begin with a number. 

Here are a few examples of program names with ex
tensions: 

FILENAME.BAS - "BAS" is the exlension, and is 
shorthand for "BASIC." 

FILENAME.LST - "LST" is the extension, and is 
shorthand for "LIST." 

FILENAME.OBJ - "OBJ" is the exlension, and is 
shorthand for "OBJECT CODE" (machine language 
program). 

219 



DR. WACKO PRESENTS ATARI BASIC 

The LOAD Command 

The LOAD command loads programs in SAVEed for
mat from your disk into your computer. Here's an ex
ample: 

LOAD"D:FILENAME.EXT" [RETURN] 

LIST Your Program 

When you want to merge one program with another, a 
variation of the familiar LIST command comes in real 
handy. 

To LIST your program to disk, use the following 
BASIC format: 

L1ST"D:FI LENAME. EXT" 

Type the LIST command first , then enclose the 
device symbol , filenam e, and exlension in quotation 
marks. 

Merge Two Programs 

Here's a short example that shows how to merge two 
programs. 

First, type this one-line program and LIST it to your 
disk. Name this program, " ONE". 

10 PRINT "WACKO"; 

Now, use the NEW command to clear out your com 
puter's memory, type this one-liner, and LIST it to 
your disk. Name this program, "TWO. " 

20 GOTO 10 

Use the NEW command again , and we' ll merge the 
two short programs. 

220 



APPENDIX B: STORE AND RETRIEVE 

The ENTER Command 

The ENTER command loads programs in LISTed for
mat from your disk into your computer. 

First, ENTER the program called "ONE," then enter 
"TWO" like this: 

1. ENTER"D:ONE" [RETURN] 
2. ENTER"D:TWO" [RETURN] 

Now, to make sure both programs are in your com
puter type " LIST" and press RETURN . 

All set"? OK, RUN the program and go absolutely 
wacko! 

If You Have A Program Recorder 

To SAVE/LOAD and LIST/ENTER programs to and 
from your program recorder use the device symbol 
"C ", but don 'l use a filename or exlension. Here are 
some examples: 

SAVE"C:" 
LOAD"C:" 

LIST"C:" 
ENTER"C:" 

You can also SAVE and LOAD programs to and from 
your program recorder with these two commands: 

CSAVE 
CLOAD 

221 



DR. WACKO PRESENTS ATARI BASIC 

APPENDIXC: 
ATASCII CODES 

ARb 1l6E1HE 

w)1SI\J TOTS I< I 

o ~ CTRL- . 

1 [EJ CTRL-A 

2 [] CTRL-B 

3 ~ CTRL-C 

4 [3J CTRL-D 

5 5J CTRL-E 

6 [Z] CTRL-F 

7 [SJ CTRL-G 

coDES'? 

8 Gil CTRL-H 

9 ~ CTRL-I 

10 ~ CTRL-J 

11 [!] CTRL-K 

12 ~ CTRL-L 

[IiiiiiiiI] 
13 LJ CTRL-M 

14 ~ CTRL-N 

15 ~ CTRL-O 

222 



APPENDIX C: ATASCII CODES 

;). ~ ,11,' Q} 
~ ~ ,11,' ,11,' >.: 

<$''& ~v ,&" ,0 11, ,&" cl;~q, ~v ,&" ,0 ,11, ,&V () ~q, \'" ~ .. ,&>':,&' \'" ~ .. '& ~ 
'Vq; cP ~ 0~ *-q,.:s,d'0~ 'VQ;0° ~ 0~ *-q,.:s,d' 0~ 

16 ~ CTRL-P 31 ~ ESC/ CTRL-* 

17 [B CTRL-Q 32 D SPACE BAR 

18 B CTRL-R 33 OJ SHIFf-l 

19 ~ CTRL-S 34 [J SHIFf-2 

20 [i] CTRL-T 35 ~ SHIFf-3 

21 ~ CTRL-U 36 [j] SHIFf-4 

22 [] CTRL-V 37 ~ SHIFf-5 

23 Et1 CTRL-W 38 ~ SHIFf-6 

24 ~ CTRL-X 39 D SHIFf-7 

25 IJ CTRL-Y 40 [I] SHIFf-9 

26 ~ CTRL-Z 41 OJ SHIFf-O 

27 ~ ESC/ ESC 42 8 SHIFf-* 

28 ffi ESC/ CTRL-- 43 [±J + 

29 [I] ESC/ CTRL- = 44 CJ 
30 ~ ESC/ CTRL-+ 45 [J -

223 



DR. WACKO PRESENTS ATARI BASIC 

46 D 
47 [2] / 

48 [QJ 0 

49 [JJ 1 

50 ~ 2 

51 @] 3 

52 m 4 

53 ~ 5 

54 [I] 6 

55 [I] 7 

56 em 8 

57 [[] 9 

58 D SHIFf- ; 

59 D 
60 8J < 

61 [3 = 

62 ~ > 

63 [2J SHIFf-/ 

64 ~ SHIFf-8 

65 ~ A 

66 [ID B 

67 [9 C 

68 [Q] D 

69 [IJ E 

70 [£J F 

71 [Q] G 

72 [8J H 

73 OJ I 

74 QJ J 

75 [K] K 

224 



APPENDIX C: ATASCII CODES 

.... ....~' <. ,'I-' 
~ ~ ,'I- ,0 'I- 7>" ~ d' ",'I- ,0 ,'I- ,7>" "'V 7>" :'\" 7>" ~ ,l''b'l- '?' 7>' +'1- G''I-G~ i.-''::- 'b'l- .., ,7> :'\" '1-7> 7> 

.y'l- GO ~G~ .yq; GO ,<,,'?' ~7> +q;G' G~ 
'?' v 

76 IT] L 91 IT] SHIFT-. 

77 ~ M 92 [S] SHIFT- + 

78 [ill N 93 OJ SHIFT-

79 [Q] 0 94 5J SHIFT- · 

80 [EJ P 95 B SHIFT--

81 [Q] Q 96 [!J CTRL-. 

82 [BJ R 97 ~ (LOWR) A 

83 ~ S 98 ~ (LOWR) B 

84 IT] T 99 0 (LOWR) C 

85 ill] U 100 [ill (LOWR) D 

86 ~ V 101 0 (LOWR) E 

87 ~ W 102 IT] (LOWR) F 

88 [RJ X 103 [ill (LOWR) G 

89 [YJ Y 104 [BJ (LOWR) H 

90 [I] Z 105 OJ (LOWR) I 

225 



DR. WACKO PRESENTS ATARI BASIC 

~ 
0-' ~ ,0-' 

~ cJ ,0- ,0 0- 7>"" ~ cJ ,0- ,0 0- 7>" 
0<$"'/)0- c; 7>" A" 0-7>" -z} i.><$" '/)0- C;7>" ,,~<. 

~ -z} *-0- (;' (;"<:> ,,~"<:>-z} *-o--'i(;,f/; (;,,<:>7> <Jf/; (;0 ~(;"<:> <Jf/;(;o ,?,v 

106 OJ (LOWR) J 121 W (LOWR) Y 

107 [BJ (LOWR) K 122 0 (LOWR) Z 

108 ITJ (LOWR) L 123 [I] CTRL-; 

109 §] (LOWR) M 124 rn SHIFT- = 

110 [6J (LOWR) N 125 ~ ESC/ CTRL-< 
or 

@] [i] ESC/ SHIFT-< 
111 (LOWR) 0 126 ESC/ BACK S 

112 [EJ (LOWR) P 127 ~ ESC/ TAB 

113 @] (LOWR) Q 128 C (-"') CTRL- , 

114 CD (LOWR) R 129 G (A) CTRL-A 

115 0 (LOWR) S 130 ~ (A) CTRL-B 

116 IT] (LOWR) T 131 CI (A) CTRL-C 

117 ~ (LOWR) U 132 CJ (A) CTRL-O 

118 0 (LOWR) V 133 CI (A) CTRL-E 

119 B (LOWR) W 134 P"J (A) CTRL-F 

120 0 (LOWR) X 135 ~ (A)CTRL-G 

226 



APPENDIX C: ATASCII CODES 

136 ~ (A) CTRL-H 

137 It (A) CTRL-I 

138 ~ (A) CTRL-J 

139 III (A) CTRL-K 

140 a (A) CTRL-L 

141 iii (A) CTRL-M 

142 ~ (A)" CTRL-N 

143 fI (A) CTRL-O 

144 g (A) CTRL-P 

145 ~ (A-.) CTRL-Q 

146 = (A) CTRL-R 

147 a (A) CTRL-S 

148 C (A) CTRL-T 

149 ~ (A) CTRL-U 

150 (J (A) CTRL-V 

227 

151 ~ (A) CTRL-W 

152 ~ (A) CTRL-X 

153 [I (A) CTRL-Y 

154 1:1 (A) CTRL-Z 

155 EOL (A) RETURN 

156 0 
1570 

158 C 

ESC/ SHIFf
BACK S 

ESC/ SHIFf-> 

ESC/ CTRL
TAB 

159 C ESC/ SHIFf-
TAB 

160 II (A) SPACE BAR 

161 0 (A) SHIFf-1 

162 II (A) SHIFf-2 

163 Et (A) SHIFf-3 

164 D (A) SHIFf-4 

165 II (A) SHIFf-5 



DR. WACKO PRESENTS ATARI BASIC 

166 D (.-...) SHIFr-6 

167 • ("") SHIFr-7 

168 n (A.) SHIFr-9 

169 D (A..) SHIFr-O 

170 a ("") SHIFr-· 

171 II (A..) + 

172 • (A) , 

173 • (A.) _ 

174 II (A..). 

175 • (.-...) / 

176 m (A--) 0 

177 D ("") 1 

178 II ("") 2 

179 m ("") 3 

180 II (A..) 4 

181 Ii) (A) 5 

182 II (A..) 6 

183 61 (A) 7 

184 Ii] (A..) 8 

185 m (A) 9 

186 • (A) SHIFr-; 

187 • (A) ; 

188 It (A) < 

189 IE! (A) = 

190 HI (A) > 

191 II (A.) SHIFr- / 

192 ~ (A) SHIFr-8 

193 m (A) A 

194 m (.-...) B 

195 [!J (A..) C 

228 



APPENDIX C: ATASCII CODES 

;. 

~ 
cY ,Q, rz,' ~ ~ ,rz,' ,rz,' '=' '1>" ,0 rz, '1>"" ,>~orz, '?' '1>' ~"rz,'1>" ~ ,>~orz, "C; '1>" ,0 ,rz, '1>" 

~ c.:<:- '?' '1>' ~"'1> '1>' 'OII;(p *-11; G' G'<:- '011; GO ~ G'<:- *-11; G'rz, G'<:-

196 m (A-.) 0 211 meA) S 

197 II (A) E 212 Ii (A) T 

198 iii (A) F 213 m (A) U 

199 m (A-.) G 214 m (A) V 

200 ID (A) H 215 L!1J (A) W 

201 o (A) 1 216 t3 (A) X 

202 II (A) J 217 D (A) Y 

203 m (A)K 218 II (A) Z 

204 II (A) L 219 U (A) SHIFT- , 

205 mJ (A) M 220 II (A) SHIFT - + 

206 m (A) N 221 D (A) SHIFT- . 

207 m (A) 0 222 ,., (A-.) SHIFT-. 

208 iii (A) P 223 ~ (A)SHIFT--

209 [!1 (A) Q 224 C (A) CTRL-. 

210 m (A) R 225 E1 (A) (LOWR) A 

229 



DR. WACKO PRESENTS ATARI BASIC 

~ cY ... "'~ ... "-~ .;:. .. " .... ~' ~~ 

~,~o'" ",'?1(.. .... o .... Q., ~r:-c.. c.,~ ..... otJ.. 0V
,:/ ' ,0 .... Il. ~r:-(.' 

,,'?" ~ " 'b ·~ ,,'?" "b .,J,'" .J.. r:- "b 
QQ;c.? '?" G"" *""''::;G~''-G'''' Q~ (} '?" c.; *""'(,~ G"" 

226 m (A) (LOWR) B 241 m (A) (LOWR) Q 

227 m (A) (LOWR) C 242 a (A) (LOWR) R 

228 m (A) (LOWR) D 243 m (A) (LOWR) S 

229 II (A) (LOWR) E 244 D (A) (LOWR) T 

230 D (A) (LOWR) F 245 m (A) (LOWR) U 

23 1 iii (A) (LOWR) G 246 II (A) (LOWR) v 

232 m CA-.) (LOWR) H 247 m (A) (LOWR) W 

233 D (A) (LOWR) I 248 13 (A) (LOWR) x 

234 n (A) (LOWR) J 249 I!I (A) (LOWR) Y 

235 13 (A) (LOWR) K 250 B (A) (LOWR) Z 

236 o (A) (LOWR) L 251 D (A) CTRL-; 

237 liD (A) (LOWR) M 252 II (A) SHIFT- = 

238 m (A) (LOWR) N 253 [J (A-) ESC/ CTRL-2 

239 II (A) (LOWR) 0 254 f] (A) ESC/ CTRL-
BACK S 

240 II (A) (LOWR) P 255 D (A) ESC/ CTRL-> 

230 



APPENDIX D: POKES & PEEKS 

APPENDIX D: 
SMOKEY PEEK'S POKES & 

PEEKS 

This appendix includes some of my favorite memory 
locations. You'll find them useful as you continue to ex
plore the power of your Atari computer. 

The PEEK function lets you " look" into a memory 
location and read its contents. The POKE statement 
lets you stuff information directly into a memory loca· 
tion. 

16 and 53774: Used together a{ler each Graphics 
slalemenl, they disable the BREAK key. Program 
example : 

10 POKE 16,64:POKE 53774,64:GOTO 10 

20: PEEKing this location will give you a source of 
ever-changing numbers. Program example: 

10 POKE 71 0,PEEK(20):GOTO 10 

580: POKEing 580 with 1 (POKE 580,1) at the begin
ning of your program purges the existing program 
from memory when you press the SYSTEM RESET 
key. 

Color Registers: 708 to 712 

708: Controls co lor register O. 

709: Controls color register 1. 

710: Cont rols color register 2. 

711: Controls co lor register 3. 

712: Cont rols color register 4. 

231 



DR. WACKO PRESENTS ATARI BASIC 

752: POKE 752 with 0 (POKE 752,0) to get rid of the 
cursor. Use POKE 752,1 to put the cursor back on the 
screen. 

764:PEEK(764) returns a different value for each key 
you press. You can use PEEK(764) in an IF/THEN state· 
ment to tell your program to do something when you 
press a specific key. Here's what I mean. 

First RUN this program, press some keys, and watch 
the results: 

10 PRINT PEEK(764):GOTO 10 

Now we'll use this PEEK in a short example: 

10 IF PEEK(764) = 62 THEN GOTO 30 
20 GOTO 10 
30 FOR X = 1 TO 20:S0UND 0,50,6,1 O:NEXT 

X:SOUND 0,0,0,0 
40 POKE 764,255:GOTO 10 

Just press the "S" key a few times and listen to the 
glorious results! 

POKEing 764 with 255 (POKE 764,255) in line 40 
resets this location back to its normal setting. 

53279: PEEK(53279) tells which special function key 
you have pressed. Oasis 5 shows how to get the most 
from this very special PEEK, which also shows up in 
the Wacko Word Processor. Here's a handy chart that 
shows you how to use this great PEEK: 

232 



APPENDIX D: POKES & PEEKS 

Values of PEEK(53279) 

VALUE KEY(S) PRESSED 

o OPTION, SELECT and START 
1 OPTION and SELECT 
2 OPTION and START 
3 OPTION 
4 SELECT and START 
5 SELECT 
6 START 

Just enter and RUN this short program, press the 
special-function keys, and watch the results: 

10 PRINT PEEK(53279):GOTO 10 

233 



DR. WACKO PRESENTS ATARI BASIC 

APPENDIX E: 
GRAPHICS MODE CHART 

If) ~ color REbISTEt<. JJOM86K(~) 
~ :r CD 

2 ~? IC'fl 
0 

- "'<ll UI :z: <(~ ~ >- " ~~ --.IUJ ::!o ~lld 0 ~~ ~ 9 ~:i!l1 ~Q~ ~() "'-c.. 

~8 t'A~ j, ~ ~ ~?: "" iJ':l.C> 'i": o "':2 ~~~ \.9:t uO &l u 2< 

STANDARD 
1 colo!"" & 

.<10 x 24 
l (VARIABL-E 7- 4 Vl 0 ',j>.RIAI3LE WMIIJMIlC£ (ewE) (I\lla) - - q% 

lU 
Ten CHARA(.'ER ONl..'-I ) 

Q. LUMINANCE 

0 DOuBLe- 20 .,,20 ('5I'1-IT) 
L\ (5E:E TABLE 2.2) ~ 1 WIDTH 1EXT 5 lO ~ 24 ( FUL-L) 

0, 1, 2 . :; 4 513 

r-
x ~6,E-WIDTH 20 '10 (5PI..\ T) UJ 2 DO()6i£-H£16HT 5 0. 1,1 ,3 4 4 (sa TAB L£ 22) 201 
t- TEXT 20 ~ 12 (FUL.L) 

3 4 40" 20 (5 pelT) 0 , 1, 2- 4 4 
COl-OR OI~ft"'4 

213 40.24 ( FU LL) 
JbJ:C 112,0 

r-- FOVR 
flO , ~o ( SPLIT J, 

CO\.OFt I ~I'5TEFt: 0 -
5 cow 1\ 4 0, 1,2- 4 4 

fbo:£ /O'i ,-40 
1017 130, 4'6 (FU!.-L-) <:0<.0"- :>. """'>Tl!~ I 

~ 
GRAPHICS 

11..0' 'lI o (SPLI T), 
POKE 70Q, 10:2- -

lfl 4 1(,,0' 90 C FLJ L L ) 0, 1, 2- 4 4 ~"l~~<SZ. 3945 
lU 

$0 , 4 0 (sPLn) COLOR 0 
C. 4 2 0 4 4 R.E0 1":'>TER 4 537 
0 1VJO '30 ~ 4'i1 (FULL) fbKE 11~,O r-- COWR 
~ 6 GR.6PHICS 2 IW~'ilO(S fUT) 

4 4 
(OLD/1.. I 

].olS 
1100 ~ % ( FULL...) ° RE01STcR 0 

.J PoKE 10 SAO 
UJ 

l (VA!'<, IA f3Lc: CO LO R 0 X 1 color &-
3W, I roD (SPLIT) RE6IS"Tf'JZ 2-

Il. 8 
HIGH 

vARIABL-E W M IIJ At-JC.E 
2 \O~E 110 , ,~1 7900 it€soWTION 

CH AAACI!:O f'\ 360 1192.(FULL) A'JD PHAtE 4 CO LO~ I G,(?AP\·UCS 
WM I IVA I\i(.£ ~ H ! n color-) ReG ISTE.R- I 

Fb~E 7cA ,2.oZ-

234 



Absolutely Wacko Program 
Arithmetic 
Arrays 
ASC 
A T ASCII Codes 

and co lor 
codes, characters and 

INDEX 

42 
26·31 

88·95,213 
127·129 
124·128 
171·172 

keystrokes cha rt 222·230 
BASIC Sound Program 181 
BREAK 19,33,2 15 
Calorie Counter Program 92·93 
Camel Latin 120·1.23 
Camel Racetrack Program 162 
CAPS/LOWR Key 14 
Captain Action's Design Program 183 
Channels, input and output 131· 132,215 
CHR$ 125·127 
CLEAR 12,37 
CLOSE 133 
CLR·SET·T AB 15· 16 
Clyde's Lament Program 70, 187 
Coder/Decoder Program 208·209 
Co lon 42 
COLOR 157· 159 
Comma 42 
CONT 34 
CONTROL [CTRL) 12, 14,39 
Control Keys 146·147 
Coordinates 156 
Counting Shekels Program 59 
Cursor 12, 16,17, 216 
DATA 77·78,83 , 84,87·88,90·91 ,97,213 

Stri ngs of DATA 80·81 
Changing SOUND 186· 187 

Database 87 
Decay 184· 185 
DELETE 18 
DIMension Statement 49·50 , 89 , 96, 213 
Disk Directory 142·143 
Distortion 180 
Doodle Program 149·150 
DRAWTO 160·161 
Editing 16·18 
END 33·34 
ENTER 221 
Error Messages 213·217 
ESC 19 
EXTENSION 219 
Falafel Counter Program 56 

235 

FILENAME 
Flag 
FOR/NEXT Loop 

nested 
data reading 

218-219 
80 

66·69, 137,163·164,214 
69·71 
87·88 

arrays 90,94 
matrix 97 

GET 134·140 
GOSUB 71·72,75,214 
GOTO 58-59 , 214 
GRAPHICS 152, 165, 166 
Graphics Mode 152·172 

chart 234 
IFITHEN 61·65 ,95,116, 184 
Immediate Mode 23 
INPUT 55·57,63,94,97,140· 142,213 
INSERT 17 
Inverse Character Key 19·20 
Keyboards 10,13,14 

and your screen 135-136 
LEN 117·120 
Line Ann ihilation 39·40 
Line Numbers 32 
LIST 38,220 
LOAD 215 , 220,221 
LOCATE 172·173 
LPRINT 25 
Marrakesh Express Program 183 
Matrix 95· 1 0 1 
Matrix Stuffer Program 97·100 
Merge Two Programs 220 
Modular Approach to Programming 193·202 
N~ ~ 

Numeric Variables 45-48, 51 , 213 
ON GOSUB 72·75,2 14 
ON GOTO 75,214 
OPEN 131·133 
Parentheses Levels 30, 214 
PEEK 144·147,23 1·232 
Peripheral Devices 131 
Pitch 180 
Pixel Modes 154,157·158 
PLOT 157·161 , 166·167 
PLiNT 217 
POKE 144·147,159·160,169,214,231·232 
POSITION Statement 82, 168 
PRINT 24, 25, 140· 142 
Program List 39 
Programming, The Art of 188·202 



DR. WACKO PRESENTS ATARI BASIC 

Programming Mode 
PUT 
Random-number Generator 

32 
134-140 
104-107 

Random Problem Generator 1 07! 1 08 
READ 78-79,81 , 87 -88 , 90-91 , 97 , 213 
REM ~ 

Rescue Lawrence Program 109- 112 
Resolution 155-156 
RESTORE 83-84 
Retrieving Data 141 
Retrieving Programs 218-221 
RETURN 15,23,34,37, 71-72,214 
Reverseroonio Program 120 
RND 104-108,116 
RUN 33-34 
SAVE 218 , 221 
Selecting the Stage Program 153 
Semicolon 44 
SGN 108-109 
SHIFT 13 
SOUND 35-36, 180-187 
STEP 68-69 
Storing Data 
Storing Programs 
Strings 

77, 101 , 140-142 
218-221 

comparisons 65 
storing and retrieving 141 
variables 48-50, 51 , 114-118, 213 , 214 

SYSTEM RESET Key 24, 32 
Text Modes 153, 165-169 
Text Window 154-155 
Three-line Limit 
TRAP Statement 
Universe Program 
Use 'm All Program 
Vo ice 
Vo lume 
Wacko Bird Program 
Wacko's Amazing 

Word Processor Program 
WAIT 

41 
84-85 

174-178 
63-64 

180 
180-181 

33-37 

206-207 
69, 74 

236 



.. 



Thkethe 

Wacko ChaUenge! 

Pick up any other BASIC programming 
book on the shelf. No, not that one, the 
one over there. Open it. Now open Dr. C. 
Wacko Presents Atari BASIC and the 
Whiz-Bang Miracle Machine. Which 
one will you trust to guide your pro
gramming career? Well, you're not alone, 
since surveys show that BASIC program
mers prefer the Wacko method 3-1. 

> $12.95 FPT USA 


	Cover
	Contents
	Foreword 
	Limber up your Fingers
	Basic BASIC Training
	Entering the Great WHite Expanse
	Eat some Falafels and Control you Camel
	Provision your Caravan and Store your Dates
	Three Fantastic Functions
	Dont String Me Along
	Chat with your Favorite Travelers

	Graphics Power: An End to the Desert Blues 
	Camel Racetrack

	Desert Zounds!
	Weaving the Perfect Flying Carpet, or, the Art of Programming
	Appendix
	Error Messages
	Storing and Retrieving Programs
	ATASCII Codes
	PEEKS and POKES
	Graphics Modes

	Index

