

From The Editors Of COMPUTE! Magazine

COMPUTErs FIRST BOOK OF

ATARI"
GRAPHICS

Published by COMPUTE! Books,
A Division of Small System Services, Inc.,
Greensboro, North Carolina

AlARI is a registered trademark of Alarl . Inc

A
Small System
Services, Inc.

j Publication

Copyright © 1982, Small Syste m Services, Inc. All ri g hts reserved"

Reproduction or translatio n of any part of thi s wo rk beyond that pe rmitted by Sections
107 and 108 of the Unite d Sta tes Copy ri g ht Ac t w ith o ut th e permiss ion of th e co py ri g ht
owner is unlawful.

"Using Strings For Grap hics Storage" a nd " Copy Yo ur Sc reen To You r Printe r" we re
orig inally published in COMPUTE! Magaz ine, May 1981, copy right 1981, Sma ll Sys te m
Se rvices, Inc. "Using The COLOR And LOC ATE Ins tru ctions To Prog ram Pong-Type
Games" and "Positioning PI M A nd Regular G raphics In Me mory" we re or ig in alfy pub
li shed in COMPUTE! Maga z ine , Septe mbe r 1981, copy ri g ht "1981, Small Sys te m Services,
Inc. "Discove rin g 'H idde n ' Graphi cs" and " Ad ding High-S peed Verti ca l Pos ition ing To
PIM Graphics" we re orig ina ll y publi shed in COMPUTE! Ma gazine, Dece mber "1981,
copyright 1981, Sma ll Sys te m Services, Inc. "Put Graphics Mod es 1 And 2 At The Botto m
O t Your Screen" a nd "P/M G ra phics Made Easy" were o rig ina lly published in
COMPUTE! Magazine, Fe bruary 1982, cop y ri g ht 1982, Small System Se rvices, In c. " Print
ing Characte rs In Mixed Graphics Modes" was o ri g inally publi s hed in COMPUTE!
Magazine, Apri l 1981, copy rig ht 1981, Sma ll Sys tem Services, Inc. "Add A Tex t Window
To Grap hics 0," "A Self-Modifying PI M G rap hi cs Utility," a nd "G RA PHI CS 8 1n Four
Colors Us ing Artifacts" we re originally publi s hed in COMPUTE! Ma gazin e, June 1982,
copyright "1982, Sma ll Syste m Se rvices, Inc. "Mixing G ra phi cs Mod es 0 ar.d 8" was o ri g i
nally publi shed in COMPUTE! Magazin e, Jun e 1981, copy rig h t 1981, Small System Se r
vices, Inc. "Character G ene ration" was o ri g inall y publ is hed in COMPUTE! Ma gazine,
February 1981, copy right 1981, Small System Se rvices, Inc. "Designing Your Ow n C har
acte r Sets" was o rig inally published in COMPUTE! Magazine, Ma rch 198"1, copy ri g ht
1981, Sma ll System Services, Inc. "S upe rFo nt" wa s o ri gina ll y publi s hed in COMPUTE!
Magazine, January 1982, co pyrig ht "198], Small Sys te m Se rvices, Inc. "Tex tPlot" was
origina lly publis hed in COMPUTE! Magazine, Novembe r 1981, copyright]981, Small
Sys tem Services, Inc. "Us ing Tex tPl ot For Animated Games" was o rig inally publi shed in
COMPUTE! Magazine, A pril 1982, co pyrig ht 1982, Sma ll Sys tem Services, In c. "Anim a
tion And PIM Grap hi cs" a nd "Ata ri Vid eo Gra phics And The New GTIA, Pa rt II" we re
originally pu blis hed in COMPUTE! Ma gazine, Augus t 1982, co py rig h t "1982, Sma ll Sys te m
Services, Inc. " Extending Pla ye r/Miss il e G ra phics" a nd " Bewa re The RAMTO P Drago n"
we re origina ll y publis hed in COMPUTE! Ma gazine, Octobe r 198"1, copy rig ht "1981, Sma ll
System Se rvices, In c. "Extra Colors Throu gh Art ifa ctin g" was origimllly published in
COMPUTE! Maga zine, May]982, co py rig ht "1982, Small Sys te m Services, In c. "Atari
Video Graphics And The New GTIA, Part I" was o ri gina ll y publis hed in COMPUTE!
Magazine, July 1982, copyrig ht 1982, Sm a ll Sys te m Se rvices, In c. "A ta ri Video Graph ics
And The New GTIA, Part III " was o ri gina ll y publi s hed in COMPUTE! Magazine, Sep te m
ber 1982, copy rig ht 1982, Sma ll Sys tem Services, In c. "Mem o ry Protec tion" was or ig i
nally published in COMPUTE! Magazine, July 198"1, co py ri g ht 1981, Small Sys tem Ser
vices, Inc. "Screen Save Routine" was o ri g inall y publis hed in COMPUTE! Ma gazine,
March 1982, copyright 1982, Sma ll Sys te m Se rvices, Inc.

Printed in the Unitf d States of A me ri ca

ISBN 0-942386-08-6

10 9 8 7 6 5 4 3 2

ii

v. Introdu ction

1 Chapter One: Fundamentals Of Atari Graphics
3 Th e Bas ics Of A tari G ra phics

16 Us in g Strin gs Fo r G rap hi cs Sto rage

Robe rt C. Lock

Tom R. Ha lfhill
Mi cha e l Boom

20 Usin g The COLO R A nd LOCAT E inst ru c ti o ns
To Prog ra m Pong-Ty pe Ga mes M ichael A . Green s pan

23 Chapter Two: Customizing The Graphics Modes
25 How To Des ig n Cus to m G ra phics Mod es
37 Put G ra phics Mod es I And:?

A t The Bo tto m O f Yo ur Sc ree n
41 Prin tin g C ha rac ters In M ixe d G ra phics Mod es
44 Add A Tex t Wind ow To GRA PI'-llCS 0
46 Mixin g G ra ph ics Mod es 0 A nd 8

51 Chapter Three: Redefining Character Sets
53 Desig n ing Yo ur Ow n C ha rac le r Se ts
62 Supe rFo nt
n C haracte r Se t Ul ili ti es

89 Chapter Four: Amination With Character Graphics
91 Tex tPlllt
98 Usin g Tex tP lo t ro r A nima ted Ga mes

108 .. High-Speed A nim a ti o n W ith C ha ra cte r G ra phics

C raig C hambe rla in

R. Alan Be lke
. C raig Patchett

Cha rl es Bra nn on
Doug la s C rockford

C ra ig Pa tche tt
Cha rl es Bra n non

Fred Pinho

Ch a rl es Bra n non
Dav id Plotkin

Cha rl es Bra nnon

127
129
140
154

Chapter Five: Animation With Player/Missile Graphics
Bill Wi lkin son

Ke nn e th Grace , Jr.

164
172
184
188
192

Introdu ction To Playe rl Miss il e G ra phics
A Se lf-Mod ify in g PIM G rilphi cs Util ily
Addin g Hi g h-S peed Vert ica l Pos iti o n ing
To PIM G ril phics
P/M G ra phics Mad e EelSY
Anim a ti o n A nd PIM G ra phics
Ex te ndin g Plilye rlM iss il e G ra phics
The Co lli s ion Reg is te rs
The Prio rity Reg is te rs

Da vid H . Mark ley
Tom Sak a nd Sid Me ier
To m Sak and Sid Me ier

Eri c Sto ltman
Matt Ciwe r

Bill Wi lkin son

201 Chapter Six: Advanced Graphics Techniques
203 G RAPHI CS 8 In Fo ur Co lo rs Us ing Artifa cts
208 A ta ri Vid eo G r<lp hi cs A nd Th E' New GTI A, Pa rt]
215 Atari Vid eo G rdphi cs A nd Th e New GT IA, Pa rt:?
224 Ata ri Vid E'O G ra phics A nd The New GTI A, F' cll" t 3
236 Pro tec ling Me m o l·\, Fo r P/M A nd C hdr<lc te r Se ts
239 Scree n Save Routine

245 Li s tin g CO ll\ e n li ons (C uid e To Ty pi ng In Prog ra ms)
246 Index

Dav id Dia m o nd
C ra ig C hambe rlain
C ra ig C hambe rla in
C rai g C hambe rlain

Fred F' inh o
Joseph Trem

III

-
-

-

Introduction
Robert Lock, Publi s heriEditor-In-Chie F, COMPUTE! Publications

This special addition to our First Book Series represents
the first time we've published a theme-specific book.
COMPUTEt 's First Book of Atar; Gmphics contains published
as well as original, unpublished material that has been
carefully chosen to provide any Atari user with helpful,
useful information on the extensive capabilities available
with Atari graphics .

As with our parent publication , COMPUTE! Magazine,
you'll find a range of tutorials, programs, and more, for
the beginner to th e most advanced, ready to type right
into your conlputer and use .

As with all COMPUTE! Books, w e' ve organized the
material and designed th e book itself for your ease of use.
We welcome your sugges tion s and comments on this and
future titles from COMPUTE! Books.

Special thanks to Tom R. Halfhill, our Features Editor,
who bore the organizational brunt of this volume, and to
the entire editorial and production staffs who assisted in
this, our ninth book from COMPUTE! Books. Cover design:
Georgia Papadopoulos. Cover illustration: Harry Blair.

COMPUTE! Books is a di v ision uf Smal l Sys tem Servi ces, Inc.
Pu bli shers of COMPUTE! M'l gazine

Editorial o ffi ces ,He loca ted at 625 Fulton Stree t, r. o Box 5406,
Gree nsbo l'O, NC 27403 USA . (9 19)275-98U9.

v

-

1 Fundamentals Of Atari Graphics

The Basics Of Atari
Graphics
Tom R. Halfhill

If you are new to the Atari al1d have acquired a bit of familiarity with
BASIC, but have 110t yet takel1 the plunge into graphics, this article
will introduce you to the fundamentals.

For some reason, many people are intimidated by the program
ming steps required to create computer graphics. Probably this
is because creating computer graphics is not as easy as it looks.
The typical buyer of a personal computer is dazzled in the store
by all the fantastic arcade games and impressive graphics
demos with which the sales people are armed. It all looks so
simple. Then the buyer eagerly unpacks the computer at home
and quickly discovers that even crude pictures cannot be
created without screenfuls of cryptic programming that seem
ingly have more in common with Sanskrit than English.

But there is hope. It's not really that hard - honest. Nobody
is promising that you'll be able to duplicate Star Raiders or Pac
Man any time soon, but the basics of computer graphics are
quite easy to grasp for anyone who has some knowledge of
BASIC programming. You don't need to be a math wizard,
either. The most valuable attributes are a willingness to learn
and to experiment. And, of course, to be creative.

Choosing A Graphics Mode
Atari graphics are particularly challenging to learn, mainly
because the Atari computers have extremely versatile graphics.
Luckily, Atari made it easier for us by including many special
keywords in Atari BASIC that are dedicated to graphics. The
first step, then, is to learn those keywords. And by the way, if
you don' t already have your Atari BASIC Reference Manual
handy, take a second to grab it. This book and the Manual
should help to explain each other.

The most basic of the keywords is the GRAPHICS com-

3

1 fundamentals 01 Atari Graphics

mand. This tells the computer which graphics mode you want,
which in turn determines how the screen will look. The format
is GRAPHICS (aexp) , where (aexp) is any arithmetic expression
that results in a positi ve integer (in o ther words, not a nega tive
number or a fracti on). For example, GRAPHICS 6 is a valid
command which tells the computer you want graphics mode
six . GRAPHICS 3 + 3 or GRAPHICS 3*2 would do the same
thing.

Depending upon how old your Atari is, the GRAPHICS
command gives you access to either nine or twelve different
graphics modes. The reason for the difference is that earlier
Ataris (generally, those shipped before late 1981) ca me with a
TV controller chip called the CTIA. Later A taris have a GTIA
chip instead. The chips are fully compa tible - programs written
on CTIA Ataris will run on GTIA machines and vice versa - but
the GTIA adds three new graphics modes . Users wi th CTIA
chips can have their computers upgraded if they wish. (See
"Atari Video Graphics And The New GTIA" in Chapter 6.)

So, you have ei the r nine or twelve basic graphics modes to
choose from . In addition, mos t of them have two variations,
for a total of up to 20 modes.

The modes are of two main types: pure gra phics modes
and text modes. The first three modes - GRAPHICS 0, I, and 2
- are text modes . When you switch on an Atari with a BASIC
cartridge plugged in, it defaults to GRAPHICS O. GRAPHICS 0
has 24 horizontal rows of up to 40 characters each on the
screen . (If you've counted only 38 characters, it' s beca use the
left margin is pre-adjusted to allow for TVs w hich overscan , or
cut off the left edge of the screen image.) GRAPHICS 1 and 2
display larger-size characters . GRAPHICS 1 characters are the
same height as those in GRAPHICS 0, but are twice as wide.
GRAPHICS 2 ch aracters are not onl y twice as wide, but also
twice as tall.

The graphics modes ge ne rally used for crea ting pictures
are GRAPHICS 3 through 8 (3 through 11 on GTIA machines).
GRAPHICS 3 through 8 are lIIixed l1lodes. That is, they are
combinations of tex t and graphics modes . For example, type
GRAPHICS 3 into the Atari. You' ll see a black screen with a
small blue rectangle at the bottom. Tha t rectangle is ca lled the
text window. Although the upper part of the screen is a graphics
mode for drawing pictures, the tex t window is a section of
GRAPHICS 0 for disp laying text. Think of it as the term implies:

4

1 Fundamentals 01 Atari Graphics

a "wall" of GRAPHICS 3 with a "window" of GRAPHICS O.
The GRAPHICS 0 tex t window appears in all the graphics

modes from three through e ight. Separate commands, which
we'll soon learn , are required to disp lay graphics or text in each
part of those screens.

If yo u want a " pure" graphics mode - a fu ll screen for
graphics with no GRAPHICS 0 tex t window - s imply add 16 to
the mode number of the GRAPHICS s tatem ent. For example,
GRAPHICS 3 + 16 switches the screen to GRAPHICS 3 withou t
a text window. Some programmers would type GRAPHICS 19,
which is the sam e thing. Adding 16 works for all the modes
except GRAPHICS 0, which ordinarily cannot di splay a separate
text window.

Just Like Graph Paper
You may be wondering why there are so many graphics modes,
and how to choose among them . The modes differ in three
main ways: resolution , number of colors ava ilable, and memory
consumed .

First, resolution. Think of the graphics screen as a sheet of
graph paper. Some graph paper is divided into very small
squares; other graph paper has larger squares. If you had to
draw a picture on g raph p aper only by coloring in the squares
not by ske tching lines - the graph paper w ith the smaller squares
obviously would allow yo u to create a more de tailed picture. It
would allow greater resolutioll .

This is exac tl y how a computer screen works. The screen is
divided into tiny squares, and graphics are created by "filling
in" those squares. These squares are sometimes called pixels,
for " picture elements." In the highes t resolution modes, the
pixels are so small that they do not appear as squares a t all, but
as tiny dots .

The Atari graphics modes offer different resolutions . The
higher the graphics mode number, the grea ter the resolution.
So you can draw much more finely de tailed pictures in
GRAPHICS 8, for ins tance, than in GRAPHICS 3. In GRAPHICS
8, there are 320 horizontal pixels (or "graph paper squares")
per row on the screen; GRAPHICS 3 has only 40. So GRAPHICS
8 has a horizontal resolutioll of 320 and GRAPHICS 3 has a hori
zontal resolution of 40.

When figuring the vertical resoilltion, don' t forget about the
text window. These four lines of GRAPHICS 0 a t the bottom of

5

1 Fundamentals 01 Atari Graphics

the screen take up room that could be used for drawing pictures;
thus, it decreases the vertical resolution . Adding 16 to the
graphics mode number regains that resolution. So GRAPHICS
3, for example, has a vertical resolution of 20 pixels; GRAPHICS
3 + 16 has 24 pixels.

Table 1 shows the resolutions of the graphics modes with
and without the text window.

Another difference is color. GRAPHICS 2 (the double
height, double-width text mode) normally can display charac
ters in five colors at a time. GRAPHICS 4 and 6 can display
only two colors. These differences also are shown in Table 1.

The final main difference between the Atari graphics modes
is the amount of Random Access Memory (RAM), or user
available memory, they consume. You may have guessed that
the first two characteristics - resolution and number of colors -
determine the third . The higher the resolution, and the more
colors available, the more memory is required. We won't delve
into the details, but it's enough to know that the computer
must keep track of what it is displaying, so the more it displays,
the more memory it needs.

You don't have to worry about allocating the memory
yourself; the computer automatically seizes the memory it
needs when a GRAPHICS statement is executed. But you do
have to worry about how much memory you have left. A 16K
RAM Atari, for example, normally has about 13,300 of its 16,000
memory bytes free when first switched on (the remainder is
also allocated by the computer for other uses, but we won't go
into that here). Entering GRAPHICS 8 instantly chops that
down to about 5200 bytes, or 5.2K, because GRAPHICS 8 re
quires about 8000 bytes just to set itself up. That doesn't leave
much room for an involved program. In fact, the original
8K Ataris cannot even enter GRAPHICS 8 without memory
expansion.

Again, Table 1 shows how much memory each graphics
mode consumes.

The Chameleon Computer
When we said before that the graphics modes are limited to
displaying a certain number of colors, we didn't mean that
you're stuck with the same colors all the time. Like a chameleon,
the Atari can change its colors at will- your will.

How many colors can you choose from? If you have an

6

1 Fundamentals Of Atari Graphics

older CTIA chip in your machine, up to 128 colors are possible.
With the new GTIA, there are 256.

These break down into 16 basic colors, with variable shades
(or luminances) to achieve the 128 or 256 hues.

However, without resorting to the kind of special tricks
described in the more advanced chapters of this book, a much
smaller number of colors is available simultaneously.

All the graphics modes default to certain colors. It's easy to
change these colors, though, with the SETCOLOR statement.
The format is SETCOLOR (register), (hue), (luminance) . These
three values can be arithmetic expressions, but should evaluate
to whole numbers. In addition, the values have certain ranges.

(Register) is a number from zero to four. The "registers"
are really memory locations which control the screen colors .
The foregrounds, backgrounds, and borders of the graphics
modes are in turn controlled by these registers. For example,
the backgrounds of GRAPHICS 1 through 7 are controlled by
register four; since register four defaults to black, the back
grounds of those graphics modes appear on the screen as
black.

(Hue) allows you to change that default color. You just
plug in a color number from zero to 15 (remember, we said
there were 16 basic colors). Table 2 shows the color numbers,
and Table 3 the default colors for the registers .

(Luminance) simply adjusts the brightness, or shade, of
the color selected by (hue). This must be an even number from
zero to 14, with zero the darkest and 14 the brightest.

So, to change the background of GRAPHICS 3 from black
to green, you could enter SETCOLOR 4,12,8.

That's it. You can change the color of any color register
this way.

Drawing Pictures, At Last
We haven't forgotten that the whole reason you're reading this
book is that you want to create graphics. But we had to get the
basics out of the way first . Now for the nitty-gritty.

The graph paper analogy really comes in handy here. In
fact, some actual graph paper often is an indispensable aid
when you're planning complex drawings for a screen.

Picture the graphics screen again as a sheet of graph paper.
Depending on the resolution of the graphics mode, the screen
has certain coordinates. For instance, GRAPHICS 6 without

7

1 Fundamentals 01 Atari Graphics

the text window (that is, GRAPHICS 6 + 16) has a horizontal
resolution of 160 pixels and a vertical resolution of 96. Since
computer work often involves counting from zero instead of
one, the horizontal coordinates range from zero to 159, and the
vertical coordinates from zero to 95. Lock the applicable coordi
nates in your head whenever working with a graphics mode,
because if you exceed them, you'll encounter the dreaded
ERROR- 141, CURSOR OUT OF RANGE.

Now, we said before that you didn't have to be a math
wizard to program computers, and we meant it. In fact, plotting
graphics coordinates is one case where a knowledge of higher
math is actually a detriment. Mathematicians usually plot
coordinates starting from the lower-left corner of a graph;
computer designers start at the upper-left corner. So, according
to the coordinate system we just described, position 0,0 is the
upper-left corner of the TV screen in GRAPHICS 6, and all the
graphics modes.

Look at the figure; it shows how the coordinates run in
GRAPHICS 6 + 16. This is the same for all the modes, except
that the upper limit of the coordinates will differ according to
each mode's resolution. Coord ina te posi tion 159,95 is the lower
right corner in GRAPHICS 6 + 16; in GRAPHICS 5 + 16 it would
be 79,39; and in GRAPHICS 8 + 16, 319,191. (The horizontal, or
X, coordinate always precedes the vertical, or Y, coordinate.)

It's vital to understand how this coordinate system works;
it is the basis for all drawing and positioning on the screen.

For example, to draw a dot on the screen, you "light up"
or "switch on" the pixel at that location, according to its co
ordinates. This is done with the PLOT statement. The format is
PLOT X, Y - where X is the horizontal coordinate and Y is the
vertical coordinate. PLOT 0,0 will put a dot in the upper-left
corner of the screen. The size of that dot depends on the graphics
resolution; the higher the resolution, remember, the smaller
the dot. PLOT 159,95 would draw a dot ("switch on a pixel") at
the lower-right corner of the screen in GRAPHICS 6 + 16.

To draw a line, you could simply PLOT a number of dots
in a row. For instance, PLOT 2,4:PLOT 2,5:PLOT 2,6 etc.,
would draw a short vertical line near the le ft edge of the screen.
But there's an even easier way: the DRAWTO statement. The
format is DRAWTO X, Y. DRAWTO does just what it implies; it
draws a line to the horizontal and vertical coordinates specified.
Before using DRAWTO, however, you have to include a PLOT

8

1 Fundamentals Of Atari Graallics

statement to give the DRAWTO a starting point. Afterward,
DRAWTO will pick up where it left off. For instance, you could
draw a square like this:

10 GRAPHICS 6 + 16:COLOR l;PLOT 5,5:DRAWTO 10,5:
DRAWTO 10,10:DRAWTO 5,10:DRAWTO 5,5

Drawing In Different Colors
You probably noticed the COLOR statement in that last example
and wondered where it came from. A COLOR command is
necessary before executing any PLOTs or DRAWTOs. If you
leave it out, the PLOTs and DRAWTOs will be displayed in the
background color, rendering them invisible. The COLOR
statement, then, selects the color for subsequent PLOT and
DRAWTO statements . The format is COLOR (aexp), where
(aexp) is any ari thmetic expression that evaluates to a whole
number (fractions are automatically rounded). Further, that
number should be from zero to three.

Important: don't confuse COLOR with SETCOLOR. SET
COLOR selects the foreground, background, and border colors
to be displayed by the color registers, while COLOR determines
the color of points or characters to be plotted on the graphics
screen. Since COLOR is the foreground (plotting) color, it can
be changed with SETCOLOR.

A useful analogy is to think of the colors available on the
Atari as a box of crayons (128 crayons with CTIA machines and
256 crayons with the GTIA chip). SETCOLOR allows you to
select a handful of those crayons at once - the exact number
depending on the graphics mode (see Table 1). In GRAPHICS 6
you can select two. Once you've chosen the crayons, COLOR
allows you to choose which crayon the computer will use for
subsequent PLOTs and ORAWTOs. At any time, you can
execute COLOR to switch among the crayons in your hand, or
SETCOLOR to replace the crayons in your hand with other
colors from the box. But don't carry the analogy too far - when
you change colors with SETCOLOR, everything you've already
drawn changes color, too.

For example, in GRAPHICS 7, the color selected by the
statement COLOR 1 is determined by the value in SETCOLOR
register zero. The default color is orange. So if you PLOT and
ORA WTO in GRAPHICS 7 with COLOR I, the figure will
appear orange. To ge t a green figure, you would execute SET-

9

1 Fundamentals 01 Atari Graphics

COLOR O,12,8:COLOR l:PLOT, etc. The SETCOLOR statement
would change color register zero from orange to green, and
COLOR 1 would use the new color for all subsequent PLOTs
and DRAWTOs.

Note that any previous figures plotted in orange would
change to green instantly upon execution of the new SET
COLOR. This system is known as color indirection and accounts
for the flashing screen colors you nlaY have noticed in those
fancy graphics demos you've admired. Yet, as you see, the
technique is really very simple.

One thing that takes some getting used to is that the
COLOR statement does not get its color from the same registers
in all graphics modes, and some modes are restricted to only
two colors. Refer to the table on page 53 of the Atari BASIC
Reference Manual for a summary of how COLOR and SETCOLOR
take effect in the various modes.

More Graph Paper
That graph paper analogy comes in handy again for two more
graphics statements you'll need to learn.

The first is POSITION. The format is POSITION X, Y -
where X is the horizontal coordinate of the graphics mode and
Y is the vertical coordinate. POSITION is a lot like PLOT, except
it doesn't draw anything. That is, POSITION X,Y directs the
computer's attention to point X,Y on the screen just as PLOT
X, Y does, except the pixel at that point is not "switched on."
Instead, the invisible graphics cursor - similar to the text cursor
you're familiar with in GRAPHICS 0 - is spotted at point X,Y in
preparation for the next command.

This command could be a PRINT statement in one of the
large text modes, GRAPHICS 1 or 2. For example, GRAPHICS
2:POSITION 5,5:PRINT #6;"HELLO" would print "HELLO"
starting at column 5, row 5 on the GRAPHICS 2 graphics screen.
("PRINT #6;" merely specifies a PRINT to the graphics part of
the screen; a PRINT statement without the "#6;" would print
the message in the text window.) The POSITION statement is
valuable for neatly formatting screens in your programs.

The LOCATE statement is another handy programming
tool. The format is LOCATE X,Y,Z - again, where X and Yare
the horizontal and vertical screen coordinates. The third vari
able, shown here as "Z," returns a value read from the pixel at
point X,Y. That value depends on the graphics mode. In modes

10

1 Fundamentals Of Atari Graphics

three through eigh t, the value is the color register in use (the
SETCOLOR number) at that pixel position . In GRAPHICS 1
and 2, the large text modes, the value tells which character as
wel1 as which color register is in use at the pixe l position. And
in GRAPHICS 0, the value is the ATASCIJ code for the character
at that location (ATASCII is the character code system; see Ap
pendix C of the Atari BASIC Referel7ce Manual).

Since LOCATE can de termine what is being displayed at a
certain location on the screen, it is sometimes used to detect
collisions (or impending collisions) between objects in games.
(See "Using The COLOR And LOCATE Instructions To Pro
gram Pong-Type Games," later in this book.)

Beginning Animation
At thi s point, if you' ve been prac ticing and experimenting with
the principles we've covered so far, you know all the basics
you need to draw fi gures and colorful designs on the graphics
screens. But you're probably wondering how to animate those
images .

Animation is perhaps the mos t difficult graphics technique
to mas ter. For one thing, fast, smooth animation requires a
great deal of processing speed, sometimes more than is possible
with a relatively slow language such as BASIC. But it is possible,
and there are severa l methods. We won't cover any of them in
depth here, but we will introduce you to the simplest forms to
whet your ta s te a bit.

One me thod n1ay already have occurred to you. By just
drawing a figure on the screen, erasing it, and re-drawing it at
a slightly different location, you can achieve the illusion of
movement in the sa me way that cartoonis ts do. You already
know how to draw a picture with PLOT and DRAWTO. Erasing
it is jus t as easy - yo u simply re-draw the image in the back
ground color, making it disappea r. Then you switch back to
the foreground color, re-draw the figure e lsew here, and pres to
- it will seem to ha ve moved. Sometimes this is called playfield
gmphics. Try Program 1 for an example.

Similarly, the POSITION and PRINT s tatements may have
suggested another s imple me thod of animation. Consider the
text modes, GRAPHICS 0, I, and 2. Whil e commonly used for
"title screens" and other applications requiring text displays,
they a lso come in ha nd y for a technique ca lled character graphics.
To make the character "A" seem to move across the screen, for

11

1 Fundamentals Of Alari Graphics

example, you PRINT it at the desired starting location, erase it
by PRINTing a blank space in the same spot, and then re-PRINT
it at the next location. POSITION lets you specify where the
movement will start, and LOCATE can detect collisions with
other characters.

All fine and good, you say, but why would I want to ani
mate letters of the alphabet?

Have you ever noticed what happens when you hold
down the CONTROL key and press an alphabetic key on the
Atari? The resulting character is an odd shape of some sort. A
number of these shapes are available, known as control charac
ters. When PRINTed side-by-side, they can be put together to
form robots, spaceships, or what-have-you. The POSITION
and PRINT statements can supply the animation. This is some
times called control graphics. Try Program 2 for an example.

Both of these methods - playfield graphics and control
graphics - are straightforward and simple. Many fine games
have been written in BASIC using these techniques . In fact,
some computers have no other methods available. However,
fast movement of complex figures does tend to get messy.
Luckily, the Atari computers offer several more advanced
techniques, such as redefined characters graphics (which allows
you to sculpt that "A" into almost any shape you want), player/
missile graphics, page-flipping, and screen scrolling.

Those techniques are covered later in this book. This article
was merely intended to ann newcomers to Atari graphics with
the basic tools needed to understand the more esoteric subj ects.
When you run into roadblocks - and you'll encounter them as
you forge ahead into the sometimes tricky world of computer
graphics - just keep your manuals handy and remember this
famous American proverb:

"When all else fails, rend the instructions."

12

1 Fundamentals Of Alarl Graphics

Figure. Coordinates of GRAPHICS 6 + 16.

l'
y

C
o
o
r
d
i
n
a
t
e
'-l!

<E(------x Coordinate ------)~
0,0 159,0
r-----------------~

0,95

• 10,5 • •
40,5 60,5

• 40,40

GRAPHICS 6 + 16 159,95

Table 1. Summary Of The Graphics Modes.

Resolution Resolution
Graphics With Without Colors Memory

Mode TextWindow TextWindow Available Consumed

0 40x 24 2 993

1 20x20 20x 24 5 513

2 20x10 20 x12 5 261

3 40x20 40x24 4 273

4 80x40 80x48 2 537

5 80x40 80x48 4 1017

6 160 x 80 160 x 96 2 2025

7 160 x 80 160 x 96 4 3945

8 320 x 160 320 x 192 2 7900

9 80 x 192 16 7900

10 80 x 192 9 7900

11 80 x 192 16 7900

13

1 Fundamentals Of Atari Graphics

Table 2. Atari Color Numbers.
*Note: Color TVs may vary.

Color
Number Color*

o Gray

1 Gold

2 Orange

3 Red-Orange

4 Pink

5 Violet

6 Purple-Blue

7 Blue

8 Light Blue

9 Blue-Green

10 Turquoise

11 Green-Blue

12 Green

13 Yellow-Green

14 Orange-Green

15 Light Orange

Table 3. Color Register Default Values.
*Note: Color TVs may vary .

Register Color Luminance
Number Number Number Color*

0 2 8 Orange

1 12 10 Green

2 9 4 Blue

3 4 6 Pink

4 0 0 Black

14

1 Fundamentals Of Atari Graphics

Program 1.

10 GRAPHICS 6:CHANGE=1:A=5:B=10:? II

GRAPH I CS 6: PLAYF I ELD AN I MAT I ON"
20 FOR MOVE=1 TO 2
30 COLOR CHANGE:PLOT A~A:DRAWTO B~A:D

RAW TO B,B:DRAWTO A~B:DRAWTO A,A
40 IF CHANGE=1 THEN CHANGE=O:NEXT MOV

E
50 IF CHANGE=O THEN CHANGE=1:NEXT MOV

E
60 A=A+1:B=B+1
70 IF A}79 OR B}79 THEN GRAPHICS 2:PO

SITION 0,6:? #6;"PLAYFIELD ANIMATI
ON":?" * GRAPHICS 2 TEXT WINDO
W *":END

80 GOTO 20

Program 2.

10 GRAPHICS 0:A=0:B=10:DIM CHARACTERS
(1):CHARACTERS="A"

20 POSITION A~B:? CHARACTERS
25 FOR SLOMO=1 TO 10:NEXT SLOMO
30 POSITION A,B:? " "
40 A=A+1:IF A}39 THEN 60
50 GO TO 20
60 IF CHARACTERS<)"{T}" THEN CHARACTE

RS="{T}":A=0:B=10:GOTO 20
70 POSITION 10~5:? "CHARACTER ANIMATI

ON":?" WITH A LETTER AND CONTROL
CHARACTER"

15

1 Fundamentals Of Atari Graphics

Using Strings For
Graphics Storage
Michael Boom

If you've ever been frush-ated attempting to PLOT and DRAWTO
your way through a complex pattern or design in Atari graphics,
you might appreciate a method of graphics generation using text
strings to store pixel data. While this sh-ing method is not simpler
to use in all cases, its ease of data entry and manipulation pos
sibilities make it a sh-ong graphics tool.

Simple line drawings over large areas of the screen are best
done using PLOT and DRA WTO commands, since this method
uses less memory and generates images faster than the string
method will. However, if you have a very complex pattern in a
small area of the screen, the string method works well. The heart
of string graphics lies in the fact that if you run a PRINT #6 state
ment followed by ASCII characters while in graphics modes 3-7,
colored pixels will appear on the screen. Different letters and
symbols will plot different colors, but for our purpose we will
deal only with the letters A, B, C, and D. Each of these letters
plots a different colored pixel in graphics modes 3, 5, and 7:

A plots color 1 (color register #0)
B plots color 2 (color register #1)
C plots color 3 (color register #2)
o plots color 0 (color register #4)

In graphics modes 4 and 6, only the letters A and B need be used,
A for the plotting color, B for the background color.

For a demonstration, typing the command

GRAPHICS 3: PRINT #6; "ABCDA"

moves the pixel sh;ng down and to the right.

Creating A Graphics String
We can now use the above methods to plot a pattern. First graph
out the area needed for the pattern, then fill in the pattern using

16

1 Fundamentals Of Alari Graphics

"A", "B", "C', and "D" to represent the colors wanted:

String 1 CDDDDAAAAA
String2 DCDDDDDDAA
Sh-ing 3 DDCDDDDADA
Shing 4 DDDCDDADDA
String 5 DDDDCADDDA
String6 AAAAACDDDD
String 7 ABBBADCDDD
String 8 ABCBADDCDD
String 9 ABBBADDDCD
String 10 AAAAACCCCC

Now break down the graph as a series of shings, in this case ten
string of ten characters each:

String 1 is "CDDDDAAAAA"
String 2 is "DCDDDDDDAA"
etc.

Concatenate the ten shings for more efficient data storage:

"CDDDDAAAAADCDDDDDDAADDCDDDDADADDDCDDA
DDADDDDCADDDAAAAAACDDDDABBBADCDDDABCBA
DDCDDABBBADDDCDAAAAACCCCC'

We have now generated all the data necessary to plot our figure
(a square with an arrow) in the graphics mode, and have stored it
in one long shing.

Display
To plot the shing on the screen, determine where you would like
the upper left-hand corner of the figure to be located, and enter it
during the run of the following program after prompt "X, Y?" .

10 GRAPHICS 5
20 DIM A$(100)
30 A$ = "CDDDDAAAAADCDDDDDDAADDCDDDDAD
ADDDCDDADDADDDDCADDDAAAAAACDDDDABBBAD
CDDDABCBADDCDDABBBADDDCDAAAAACCCCC"
40 PRINT "X,Y";:lNPUT X,Y
80 FORK=l TO 10
90 POSITIONX,Y+K-1

100 PRINT #6;A$(K*10-9,K*10)
110 NEXT K

In this program, lines 20 and 30 set up our main pixel data string,
and line 40 establishes the upper left corner coordinates of the

17

1 Fundamentals Of Atari Graphics

figure . Lines 80 and 110 set up a loop of ten steps, to divide our
main data string into seven rows . Line 90 positions the cursor
for each row, and line 100 prints ten consecutive ten-character
strings on the screen.

Obviously, there are figures which require strings too long
for direct entry in Atari BASIC. In that case, divide the figure
into several rectangular sections, each small enough for inclu
sion into one string (usually under 100 characters in length).
Then concatenate the string as explained in the Atari BASIC
Reference Manual, p . 39.

Figure Manipulation
Plotting a figure using string graphics is fairly simple and
straightforward . Its real strength lies in figure manipulation
through string reading. Some easy manipulations are:

1. Figure rotation (in 90° increments)
2. Figure inversion
3. Color changes

For figure rotation, using the same example figure and data
string, let's substitute and add to the previous program. For a
90-degree turn clockwise, add and substitute:

20 DIM A$(100),B$(100
50 FOR K= 1 TO 10: FOR L= 1 TO 10
60 B$(K*10 - 10 + L,K*10 - 10 + L) = A$((10 - L)*10 + K,(10 - L)

* 10+K)
70 NEXT L, NEXT K
100 PRINT #6;B$(K*10 - 9,K*10)

For a 270-degree clockwise rotation, substitute to the above:

60 B$(K*10 - 10 + L,K*10 - 10 + 1) + A$(L *10 + 1 - K,L *10 + 1 - K)

For a 180-degree clockwise rotation, substitute to the above:

50 FOR K= 1 TO 100
60 B$(K,K) = A$(101 - K,101 - K)
70 NEXTK

To change color assignments, add and substitute to the original
program:

50 FOR K= 1 TO 100
60 IF A$(K,K) = "C" THEN A$(K,K) = "A"
70 NEXTK

To invert a figure, substitute to the original program:

18

1 Fundamentals or Atari Graphics

100 PRINT #6;A$((11 - KtlO - 9,(11 - K)*lO)

To turn a figure left to right, substitute in the ISO-degree rotation
program:

100 PRINT #6;B$((11 - K*lO - 9,(11 - KtlO))

The string used to manipulate this 10 x 10 figure can easily be
incorporated into subroutines for use in programs using repeti
tive figures in different positions. Further experimentation for
more possibilities is definitely in order.

19

1 Fundamentals 01 Alari Graphics

Using The COLOR And
LOCATE Instructions
To Program Pong
Type Games
Michael A. Greenspan

Here's the skeleton ofa Pong-type game that demol1strates simple Atari
playfield graphics. When YOIl grasp the pril1ciples, it will be easy to fl esh
out the program yourself.

New Atari owners may be confused (as I was) about the COLOR
and SETCOLOR instructions. These two commands, and
the LOCATE instruction, form the basis of the following POllg
type game.

In GRAPHICS 3, there are four color registers labeled 0, I, 2,
and 3, which are accessed by the instruction COLOR X, where X
is the number of the register desired. (COLOR 4 is the same as
COLOR 0; COLOR 5 is the same as COLOR I, e tc.) While COLOR
determines the register used, SETCOLOR enables you to deter
mine which of the 128 colors are used by your chosen register to
draw points on the screen. Thus, since the SETCOLOR instruc
tions are identical, the following commands will each put a
dark gold point on the screen at location 1,1:

10 GR.3: COLOR 1: SETCOLOR 0, I, 2: PLOT 1,1
10 GR.3: COLOR 2: SETCOLOR 0, I, 2: PLOT 1,1

*The SETCOLOR COlllll1l7lld illstrtlc/s the compu ter to sct ti,e color of the poil1ts
all the screen (thai 's the fUll ctioll of ti,e 0) to color 1 (that's gold) urightlless 2. A
two for the first l1umber will change the text will dow to that color. A four will
change the uackgrou lid.

Each color regis ter has a different default color that deter
mines the color of the points plotted in that register if no SET-

20

1 Fundamenlals Of Alari Graphics

COLOR 0, X,X insh"uction is given. Therefore, plotting points in
different color registers will produce different colors in the absence
of SETCOLOR instructions, and identical colors if identical SET
COLOR insh"llctions are used.

In the program below, a ball moves from left to right and a
joystick maneuvers a paddle on the far right to intercept the ball.
The paddle is plotted in color register 1, and the ball in color
register 2. In order to move the ball, it is replotted in color register
4, whose default color is the same as the background color (and
thus is invisible), and then replotted on the adjacent square in
color register 2.

The LOCATE insh"uction determines if there is a hit. X and Y
are the X and Y coordinates of the ball. LOCATE X + 1, Y, X tells
the computer to LOCATE the point to the right of the ball and to
store the color register of that point in Z. Since the paddle is plotted
in color register I, Z = 1 means that the ball hit the paddle.

Once you understand the use of COLOR and LOCATE to
move the ball and effect a hit, it is a relatively simple matter to
add boundaries, two or more paddles, sound, etc. (Of course, the
same result can be accomplished by player/missile graphics, but
that's an advanced technique tackled later in this book.)

In the program below, A and B are the X and Y coordinates
of the paddle . X and Yare the X and Y coordinates of the ball. C
relates to random changes in the color of the paddle. S relates to
the speed with which the ball moves.

Program.

1 REM * USING COLOR & LOCATE *
2 REM * MICHAEL A. GREENSPAN *
10 S=51:GRAPHICS 3
20 A=35:B=10:X=0:Y=INT(RND(0)*19)+1:C

=INT(RND(0}*15)+1
25 REM PLOT THE PADDLE
30 COLOR l:SETCOLOR 0~C~8:PLOT A~B:PL

OT A~B+1
35 REM MOVE THE PADDLE UP?
40 IF STICK(O)=14 THEN COLOR 4:PLOT A

~B:PLOT A~B+l:B=B-l:IF B{O THEN B=
o

50 IF STICK(0)=14 THEN GOTO 30
55 REM MOVE THE PADDLE DOWN?

21

1 Fundamentals Of Atari Graphics

60 IF STICK(O)=13 THEN COLOR 4:PLOT A
~B:PLOT A~B+l:B=B+l:IF B>19 THEN B
=19

70 IF STICK(0)=13 THEN GOTO 30
7C" . oJ REM PLOT THE BALL AND HOLD IT AT T

HAT LOCATION WHILE THE COMPUTER CO
UNTS FROM 1 TO S

80 COLOR 2:PLOT X~Y:FOR D=1 TO S:NEXT
D

85 REM CHECK IF THE BALL HIT THE PADD
LE

90 LOCATE X+l~Y~Z

95 REM MOVE BALL TO THE RIGHT IF IT H
AS NOT REACHED THE END OF THE ROW

100 IF Z<>1 THEN IF X<=35 THEN COLOR
4:PLOT X~Y:X=X+l:GOTO 30

105 REM IT'S A MISS
110 IF Z< > 1 THEN IF X>35 THEN MISS=MI

SS+I:? "HITS-";HIT;" MISSES-";MI
SS:COLOR 4:FOR B=O TO 19:PLOT 35~
B:PLOT 36~B

120 IF Z<>1 THEN NEXT B:S=S+10:GOTO 2
o

125 REM IT'S A HIT
130 HIT=HIT+l:? "HITS-";HIT;" MISSES

-";MISS:S=S-10 : COLOR 4:FOR B=O TO
19:PLOT 35~B:PLOT 34~B:NEXT 8:GO

TO 20

22

2 Custemizing The Gr3llllics Modes

How To Design
Custom Graphics
Modes
Craig Chamberlain

It is well known that the Atari 400/800 computers have superior
graphics. One of the things that makes the Atari graphics superior
is the fact that the graphics capabilities are flexible. This versatility
is demonsh"ated by the several unique graphics modes that can
be generated by the hardware. The Operating System recognizes
12 of these modes, but there are also five other modes available.
The table describes some characteristics of the various graphics
modes.

There are two varying factors which distinguish one graphics
mode from another. First, the pixel size or resolution (number of
pixels it takes to fill the screen) can differ. Second, the number of
color possibilities per pixel may change. The various modes offer
different combinations of these two qualities. Because there are
so many modes to choose from, it is easier to find one to suit a
particular application, which is one reason why Atari graphics
are so versa tile.

In BASIC, the GRAPHICS command (or GR. in Atari BASIC)
is used to change the screen from one graphics mode to another.
A number from zero to 11 must follow the GRAPHICS command.
This number corresponds to the 12 graphics modes supported by
the Operating System . An overview of the general characteristics
for these modes is given here.

Operating System Graphics Modes
o primary text (default mode)

1,2 color text
3,5,7 three-color bit-mapped graphics, various resolu tions

4,6 one-color bit-mapped graphics, various resolutions
8 high-resolution mode, one color

9,10,11 specialty modes (explained in other articles)

25

2 Customizing The Graphics Modes

For all graphics modes except mode zero, a small, four-line
text window is provided at the bottom of the screen. If this text
window is not desired, it can be eliminated by adding 16 to the
number after the GRAPHICS command. Whereas a GRAPHICS
3 changes the screen to mode three with a text window,
GRAPHICS 19 changes the screen to mode three with no text
window.

Whenever the screen is changed to a new mode using the
GRAPHICS command, the screen is automatically cleared, in
case any unwanted data might have been left in the screen mem
ory. To defeat this automatic clearing of the screen, add 32 to
the number after the GRAPHICS command. This is of little
use, however, to BASIC programs .

Using the GRAPHICS command changes the whole screen
to a new mode. But is it possible to mix graphics modes? Of
course. The text window at the botton1 of a screen is actually
mode zero combined with the other mode above it. But then,
what says that the text window has to be at the bottom of the
screen, or that the text must be shown in mode zero? What if it
is necessary to use the other graphics modes not supported by
the Operating System and BASIC? Doing all these wonderful
things requires a little more technical knowledge of Atari
graphics, and it starts with something called the display list.

When BASIC is given a GRAPHICS command, the Operating
System not only reserves room for display data, but also creates a
display list. A display list is a sequence of bytes in memory that,
among other things, defines the format of the screen.

We'll talk more about the display list, how to find it and how
to change it, but first we must delve just a little deeper into Atari
graphics terminology.

When you see a screen of a certain graphics mode, you are
actually seeing a screen of several identical II lode Iil1es. A mode
line is equivalent to one row of the screen. It is a horizontal sh-ip
or section of the screen and is one pixel high . Therefore, the vertical
resolution (how many rows) of a graphics mode tells how many
mode lines are needed. Each mode line determines the number
of pixels and colors that will span from left to right (how many
columns).

For example, a mode zero screen offers resolution of 40
across by 24 up and down. In order to produce a mode zero
screen, 24 mode lines of mode zero will be required. Each of
those mode lines will consist of 40 characters across.

26

2 Cuslomizing The Graphics Modes

So, the idea of a full-screen graphics mode does not really
apply. Rather, a full screen is a bunch of mode lines stacked
vertically to fill up the screen.

A mode line isjust as high as a pixel, but the actual height
of a mode line can vary . The unit used for measuring the height
of a mode line is the scan line. Just as a screen consists of mode
lines, a mode line consists of a certain number of scan lines.
Different mode lines have different numbers of scan lines. The
table shows how many scan lines are contained in each mode
line.

Why all the fuss about scan lines? Because there is a limit
to how many scan lines can be displayed on a screen. As a rule,
whenever the Operating System creates a screen of any graphics
mode, it always uses just the right number of mode lines so
that the scan line total equals 192. One hundred ninety-two is
the maximum number of scan lines that the average television
set can display without excessive overscan (cutoff). A screen can
have fewer than 192 scan lines without any problem, but to use
many more than 192 is only inviting trouble.

Anyway, remember that different mode lines have different
numbers of scan lines, and the desirable total scan line count is
192. These two factors control the vertical resolution in a mode
as follows:

. .

Given a graphics mode, take 192 scan lines, divide by the
number of scan lines per each mode line, and the result is the
proper number of mode lines for that particular graphics mode.
And, as demonstrated earlier, one mode line corresponds to
one horizontal rowan the display, so the number of mode lines
is the same as the number of rows, which is called vertical
resolution.

Now, how was that again? Here's an example using our
familiar friend, graphics mode zero. According to the chart, a
mode line in mode zero consists of eight scan lines . One
hundred ninety-two scan lines divided by eight scan lines per
mode line is 24 mode lines. Indeed, the vertical resolution of
mode zero is 24 rows.

This is where the display list comes in. The display list
describes how many of which mode lines are used to fill the
screen from top to bottom. According to our previous example,
a display list for a mode zero screen will have to indicate that
24 mode lines of mode zero are to be used. Actually, a mode
zero display list looks like this:

27

2 Customizing The Graphics Modes

Mode Zero Display List
112
112
112

66
XXX
XXX

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

65
XXX
XXXX

It is immediately noticeable tha t there are no zeroes in the
display list. On the other hand, the number two is certainly
used often enough . This brings up an important point. The
number found in a di splay list to indicate a mode line is not the
same number used by the Operating System for that mode.
The table presented at the end has a column marked IR CODE.
The label JR stands for Instructiol1 Register. The column shows
the hardware equivalent (lR number) for all Operating System

28

2 Customizing The Graphics Modes

modes, as well as for modes not supported by the Operating
System. Mode three uses an IR code of eight. IR code four is a
multicolor character text mode not normally available. Mode
zero is indicated in a display list by an IR number two, which
explains the frequent occurrence of that number in the display
list example.

The number two, however, is not the only number in the
display list example. Now it is time to fully explain the structure
of the display list and reveal what the other numbers mean.

The number 112 is used three times at the beginning of the
display list. Together, these three numbers tell the video
hardware to display 24 empty scan lines at the top of the screen,
before the place where the picture starts. These are not mode
lines, and do not count as part of the 192 scan lines . Instead,
they are called "blank lines," and they creMe a border at the
top of the screen in the background color, just before the 192
scan lines of display. This convention is used by the Atari to
reduce overscan problems .

An entry in the display list can show from one to eight
blank lines. The number to be used in the display list is derived
using the following process:

To show N blank lines, the display list number is (N-1)*16.
To show 8 blank lines, 8-1 = 7 and 7*16 = 112, so every use of
the number 112 in the display list causes the hardware to show
eight scan lines in the background color. Three uses of 112 gives
a total of 24 blank lines.

o 1 blank line
16 2 blank lines
32 3 blank lines
48 4 blank lines
64 5 blank lines
80 6 blank lines
96 7 blank lines

112 8 blank lines

The next number in the display list looks like a 66, but it is
not a 66. It is a 64 + 2. The 2 indicates that a mode zero mode
line should follow the blank lines. The 64 is a "load memory
scan counter" (LMS) command, and means that the next two
bytes form an address which points to where the display mem
ory (screen data) starts. Because the display data is always put
at the top of memory, the two numbers after the 66 will vary on

29

2 Customizing The Graphics Modes

different computers, according to the amount of RAM installed
in each computer.

Since the address of the display memory is broken down
into two bytes, a little bit of math will be needed to reconstruct
the address. The two bytes are in low-byte, high-byte format.
To compute the address, take the high-byte (the second of the
two numbers), multiply it by 256, then add it to the low-byte.
The result is the address of the first byte of display memory. If
a 10 were POKEd at this location on a mode zero screen, the
upper leftmost character on the screen would be changed to an
asterisk. Adding 20 to the address and doing another POKE will
cause an asterisk to appear in the middle of the top row of the
screen.

The important point to remember is that by adding 64 to a
normal mode line number, in this case a 2, the graphics
hardware will not only process the mode line, but perform a
LMS command as well. The two bytes immediately following
the mode line with the 64 added will form an address that tells
the hardware where the following display data resides in mem
ory. The LMS operation actually happens before the mode line
starts.

The LMS command is normally used a t the beginning of a
screen, on the first mode line, but it can be done on any mode
line, or on several mode lines, for special applications. Display
lists created by the Operating System always have only one
LMS command, on the first mode line, except for modes eight
through eleven, which for technical reasons require another
LMS command in the middle of the display list.

The next numbers in our example display list are a bunch
of 2's. There are 23 of them, to be exact. These are the remaining
23 mode lines of mode zero. Remember that the first one was
the mode line with the LMS command.

Following the mode lines are a number 65 and a final two
bytes. The 65 is another special numberwhich technically means
"perform a display list jump and wait for vertical sync." For
our purposes, the 65 simply means "this is the end of the display
list; go back to the beginning of the display list when the televi
sion scanning beam is ready to start drawing another frame."
The two bytes after the 65 are in low-byte, high-byte format
and represent an address. This address points to the top of the
display list. Now would be a good time to tell where the display
list is placed. Whenever the Operating System is requested to

30

2 Customizing The Graphics Modes

create a screen of a certain graphics mode, it always puts the
display list just before the display data. So, just as the display
memory address varies according to the amount of memory in
the computer and the graphics mode, so will the display list
address vary.

That concludes the explanation for a normal mode zero
display list. It should now be obvious that mixing modes on
one screen is just as easy as changing the mode lines in the
display list. But first, we need to know how to determine exactly
where the display list resides in memory. We know that the
address of the beginning of the display list is given at the end of
the display list, after the 65, but that won't do us any good if
we don't know where the display list is located in the first
place.

Fortunately, there is a way to find the address of the be
ginning of the display list. The same address given in the two
bytes after the 65 is also stored in memory locations 560 and
56l.

SDLSTL $0230 560 shadow display list address low-byte
SDLSTH $0231 561 shadow display list address high-byte

The address is broken down into two bytes and must be
reconstructed using the same procedure shown earlier. In
BASIC, the standard method is to use the variable DL for the
display list address:

DL = PEEK(560) + 256*PEEK(561)

After issuing a GRAPHICS 0 command and assigning DL,
a PEEK(DL) should return a 112, as will PEEK(DL + 1) and
PEEK(DL + 2). But PEEK(DL + 3) will return a 66.

To change mode lines in the display list, POKE statements
must be used. For example, a POKE DL + 20,4 will put a multi
color text mode line in the middle of the mode zero screen. Try
typing on that row and see what happens.

Next, type some characters below the multi color text mode
line, do a POKE DL+20,7, and watch carefully. A mode two
line will now be in the middle of the screen, but there will be
side effects as well. Two problems will be evident: the bottom
of the screen is now a little lower than before, and text below
the mode line is not properly aligned .

As for the first problem, a quick glance at the chart will
reveal that we replaced a mode zero line of eight scan lines

31

2 Customizing The Graphics Modes

with a mode two line of 16 scan lines . The display now has
more than 192 scan lines, hence the bottom of the screen appears
lower.

This problem can be fixed , somewhat . It is necessary to
delete the eight extra scan lines, which can be easily done by
getting rid of the last mode line. Eliminate the last mode line by
executing these instructions:

POKE DL+28,65
POKE DL + 29,PEEK(560)
POKE DL + 30,PEEK(561)

All we did was place the "end of display list" comnland a
little earlier in the display list, which effectively cuts off any
display below tha t point. There is a new problem, however,
because now there are only 23 rows, but the Operating System
still "thinks" there are 24. Hmmm. We traded one' problem for
another. Let's change the subject and explore the problem of
the incorrectly aligned tex t.

The text below the mode two line ha s bee n displaced by 20
characters. The explanation for this is rea lly quite simple. We
replaced a mode zero line that n eeded 40 bytes of data with a
mode line that, according to the chart, requires only 20 bytes .
There are now an ex tra 20 by tes on the screen , but the Operating
System again is not aware that a change has been made . The
text could be realigned w ith a POKE DL+21,7 but then there
would be 40 extra bytes, or essen tially, enou gh for another
row.

All of these problems are conflicts with the Operating Sys
tem. The Opera ting System establishes the di splay list but does
not monitor it. Changes to the display list only a ffect the
hardware and screen disp lay. Such problems are not always
easy to deal with, so they are discussed in separa te articles.
The key things to remember are:

1. The display should not exceed 192 scan lines.
2. When creating a custom di splay li s t, the number of mode

lines is limited by the number of mode lines normally allotted
for the current mode. (You can mix only up to 24 mode lines on
a mode zero screen.)

3. Care must be taken that the mode lines do not require a
larger total amount of memory than was d esignated for the
current mode . (Changing several 20-character mode lines to 40-
character mode lines would be one way to cause this problem.)

32

2 Cuslomizing The Graphics Modes

We have now covered the main points of what a display
list is, why it is needed, what purpose it serves, how to find it
in memory, how to change it, and what problems can be ex
pected as a result of these changes. The display list also controls
horizontal and vertical fine scrolling, and a special interrupt,
but these are more advanced topics.

To furth e r demonstrate how to modify a display list, three
BASIC programs have been provided.

ProgratTl 1 prints a display list of mode three with a text
window, then changes the bottom text lines to mode one. The
display list in this case consists of the 24 blank lines
(112,112,112), the LMS command on the first mode three mode
line (64 + 8 = 72), the address of th e display memory, more mode
three mode lines (8,8,8, ...), another LMS command on the first
line of the mode ze ro text window (64 + 2 = 66), the address of
the text window memory, the renLaining three mode lines of
mode zero (2,2,2) , and the return (65) followed by the address
of the beginning of the display list.

Program 2 creates a mode three screen with a text window,
but then moves the text window to the top of the screen. Brief
screen flitter is normal.

Program 3 displays from three to 24 blank lines at the top
of the screen, then mixes 14 different modes on the screen. Try
moving the cursor arou nd and typing in the different modes .

Table. The Graphics Modes.
as IR C SL V H B

0 2 1 8 24 40 40
3 1 10 40 40
4 4 8 24 40 40
5 4 16 12 40 40

1 6 4 8 24 20 20
2 7 4 16 12 20 20
3 8 3 8 24 40 10
4 9 1 4 48 80 10
5 10 3 4 48 80 20
6 11 1 2 96 160 20

12 1 1 192 160 20
7 13 3 2 96 160 40

14 3 1 192 160 40
8 15 1 1 192 320 40

os OSMODE V ROWS (MODE LINES)
IR IRCODE H COLUMNS
C COLORS (PLA YFIELDS) B BYTES

SL SCAN LINES

33

2 Customizing The Graphics Modes

Program 1.

100 GRAPHICS 3:REM 3 COLORS~ 40X24
110 COLOR I:REM GOLDEN ORANGE
120 PLOT O~O
130 DRAWTO 19,19
140 COLOR 2:REM LIGHT GREEN
150 DRAWTO 38,0
160 DL=PEEK(560}+256*PEEK(561)
170 REM DL IS ADDRESS OF DISPLAY LIST
180 FOR K=O TO 33
190 PRINT "PEEK(DL+";
200 PRINT K;
210 PRINT ")=";
220 PRINT PEEK(DL+K)
230 FOR J=1 TO 333:REM DELAY LOOP
240 NEXT J
250 NEXT K
260 PRINT CHR$(125);:REM CLEAR TEXT
270 PRINT "NOW WATCH THE MODE"
280 PRINT "LINES GET CHANGED"
290 PRINT "AT THE BOTTOM"
300 PRINT "OF THE SCREEN";
310 FOR K=1 TO 999
320 NEXT K
330 POKE DL+25,64+6:REM CHANGE LMS
340 FOR K=1 TO 333
350 NEXT K
360 POKE DL+28~6
370 FOR K=1 TO 333
380 NEXT K
390 POKE DL+29,6
400 FOR K=1 TO 333
410 NEXT I<
420 POKE DL+30,6
430 FOR K=1 TO 333
440 NEXT K
450 PRINT
460 PRINT
470 FOR K=1 TO 333
480 NEXT K
490 PRINT CHR$(125);
500 END
34

2 Customizing The Graphics Modes

Program 2.

100 GRAPHICS 3
110 DL=PEEK(560)+256*PEEK(561}
120 LMSLO=PEEK(DL+4)
130 LMSHI=PEEK(DL+5)
140 TLO=PEEK(DL+26)
150 THI=PEEK(DL+27)
160 POKE DL+3,64+2
170 POKE DL+4~TLO
180 POKE DL+5~THI
190 FOR K=DL+6 TO DL+8
200 POKE K~2
210 NEXT K
220 POKE DL+9~64+8
230 POKE DL+I0~LMSLO
240 POKE DL+ll~LMSHI
250 FOR K=DL+12 TO DL+30
260 POKE K~8
270 NEXT K
280 COLOR 1
290 PLOT 0,0
300 DRAWTO 19,19
310 COLOR 2
320 DRAWTO 38,0
330 END

Program 3.

100 GRAPHICS 0
110 FOR K=l TO 23
120 PRINT "ATARI ATARI ATARI ATARI"
130 NEXT K
140 DL=PEEK(560)+256*PEEK(561)
150 POKE DL~O
160 POKE DL+l,O
170 POKE DL+2,0
180 FOR K=16 TO 112 STEP 16
190 POKE DL,K
200 FOR J=1 TO 100
210 NEXT J
220 NEXT K

35

2 Customizing The Graphics Modes

230 FOR K=16 TO 112 STEP 16
240 POKE DL+l,K
250 FOR J=1 TO 100
260 NEXT J
270 NEXT K
280 FOR K=16 TO 112 STEP 16
290 POKE DL+2~K
300 FOR J=l TO 100
310 NEXT J
320 NEXT K
330 FOR K=l TO 23
340 READ P
350 POKE DL+5+K,P
360 FOR J=l TO 100
370 NEXT J
380 NEXT K
390 DATA 3,4,5,6,7,7
400 DATA 8,8,8,8~9,9,9,9
410 DATA 10,10,11~11

420 DATA 12,12,13,14,15
430 END

36

2 CuSlomizing The Graphics Modes

Put Graphics Modes
1 And 2 AI The Bonom
01 Your Screen
R. Alan Belke

Most of you who are regular readers of COMPUTE! are familiar
with the mixing of the graphics Diodes. The only problem is
that you can't use a mode past its regular range. That is, if you
wanted to use mode 1 past line 20 or mode 2 past line 10, you
couldn't. So you were stuck putting text you wanted at the top
of the screen or in the text window. Until now, that is!

What's The Display List?
First we'll look at the "displa y list" to see what it is and what it
does. Figure 1 shows the display list for mode 3. You can verify
this by running Program 1. Locations 560,561 contain the start
ing address of the list.

Figure 1.
112,112,112,72,112,158,66,96,159,2,2,2,

65,78,158

The purpose of the lis t is to tell the computer how to display
the information stored in the screen and/or text memories. Let's
see how it does this. The first three bytes (112) set up the margin
at the top of the screen. Next comes what I call an address byte
(72), in this case, a mode 3 address byte. (Figure 2 shows what
the address bytes are for each of the modes.) This byte pulls
double duty . First, it sets the first line to mode 3. Then it tells
the computer that the n ext two bytes contain the address of the
screen memory.

Figure 2.
MODE 0 1 2 3 4 5 6 7 8
ADDRESS BYTE 66 70 71 72 73 74 75 77 79

The next 19 bytes (8) set one line each to mode 3. I call these

37

2 Customizing The Graphics Modes

mode 3 bytes. You get the value for these bytes by subtracting
64 from the address byte (72-64=8). From this, we can deduce
that any byte with bit 6 on is an address byte. Also, notice that
19 mode 3 bytes with the mode 3 address byte give you 20 rows
of mode 3, which fills the screen up to the text window.

For whatever mode you are in, you will have one address
byte and the number of rows, minus one, regular bytes. For
example, mode 7 will have a mode 7 address byte (77) and 79
regular mode 7 bytes, giving you 80 rows. To find out how
many rows each mode has, check the "Table of Modes and
Screen Formats." It's on the inside back cover of your Atari
BASIC Reference Manual.

The Lasl Three Rows Of The Texl Window
Now here's the important part. The next byte (66) is a mode 0
address byte. But, instead of the next two lines containing the
address of the screen memory, they contain the address of the
text editor memory. This is the start of the text window . Modes
1 through 8 use the screen memory. Mode 0 uses the text editor
memory. As you may have already guessed, the next three
bytes (2) are mode 0 bytes, giving us the last three rows of the
text window. If we were in a full screen format, these last six
bytes would not be here.

Now we are to the end of the list. This next byte (65) is also
an address byte. But it has a special purpose. It tells the com
puter that it has reached the end of the list and that the next
two bytes contain the starting address of the list. (The same as
locations 560,561 .)

Before we go on, let me say that the bytes that contain the
addresses may vary, depending on the mode you're in and on
the amount of memory you have . All the other bytes will be
the same.

So how do we get modes 1 and 2 on the bottom of the
screen? It's simple! Basically, all we do is change the mode 0
bytes to mode lor 2 bytes. Presto! The computer now displays
the text editor memory in modes 1 or 2.

Let's look at Program 2 to see how this is done:

Line 10: sets the margins to 40 characters per line and selects
mode 3 with text window. Then it finds the address of the
display list.
Line 20: searches the list for the start of the text window.
Line 30: changes the mode 0 bytes to mode 1 bytes .

38

2 Customizing The Graphics Modes

There are a few things to be aware of. Even though you are
using modes 1 and 2, you're using the text editor memory; so
the computer thinks in 40-column, not 20-column, lines, which
means two lines now eq ual one old line. Here is an example.
Suppose we use an empty PRINT statement, planning to leave
a blank line. Sorry, it won't work . We would have two blank
lines. What we do is put 20 spaces in front of what we want
printed on the second line . Also remember that we are using
the text editor, so PRINT #6 will not work. Try some different
things yourself.

What About Mode Two?
Well, that's almost as simple. Mode 2 lines are twice as wide as
modes 1 and 0; so there are only two combinations using mode
2 possible: two rows of mode 2 or one row of mode 2 with two
rows of mode 1. We can use only the amount of room that was
originally there . Program 3 uses the latter option from above:

Lines 10-20: same as Program 2.
Line 30: basically the same as in Program 2; only this time we
make the second line mode 2. And, since we use one less byte,
we have to move the end of the list one location forward.

By now you should be able to change the text window into
any combination of modes 1 and 2 you want. If you have a pro
gram that would work better with the text at the bottom of the
screen or the text window as modes 1 or 2, get to work, experi
ment! Remember, you're the boss .

Program 1.

10 GRAPHICS 3:A=PEEK(560}+PEEK(561}*2
56

20 D=PEEI< (A): 'J D;" ~";: IF D< >65 THEN A
=A+l:GOTO 20

30 'J PEEK(A+l);" ";PEEK(A+2}
40 GOTO 40

39

2 Customizing The Graphics Modes

Program 2.

10 POKE 82~0:GRAPHICS 3:A=PEEK(560}+P
EEK(561)*256

20 IF PEEK(A} <> 66 THEN A=A+l:GOTO 20
30 POKE A~70:POKE A+3 . 6:POKE A+4.6:PO

KE A+5~6

40 ? II ATARI AND COMPUTE! AN UNBE
ATABLE

50 ':> II TEAM FOUR LINES
MODE 1 II

60 COLOR 2:SETCOLOR 1 ~ 10~6:PLOT 17,1:
DRAWTO 17~10:DRAWTO 9~18

70 PLOT 19,I:DRAWTO 19,18:PLOT 20,I:D
RAWTO 20,18

80 PLOT 22,I:DRAWTO 22 , 10:DRAWTO 30,1
8

90 GOTO 90

Program 3.

10 POKE 82,0:GRAPHICS 3:A=PEEK(560}+P
EEK(561)*256

20 IF PEEK(A) < >66 THEN A=A+l:GOTO 20
30 POKE A,70:POKE A+3,7:POKE A+4,6:PO

KE A+5,65:POKE A+6,PEEK(A+7}:POKE
A+7,PEEK(A+8)

40 ? II ATARI AND COMPUTE! 1 LINE OF
MODE 2 II

50 ? II 2 LINES OF MODE I"
60 COLOR 2:SETCOLOR 1,10,6:PLOT 17,1:

DRAWTO 17,10:DRAWTO 9,18
70 PLOT 19,I:DRAWTO 19.18:PLOT 20,1:D

RAWTO 20,18
80 PLOT 22.1:DRAWTO 22,10:DRAWTO 30,1

8
90 GO TO 90

40

2 Customizing The Graphics Modes

Printing Characters
In Mixed Graphics
Modes
Craig Patchett

One of the problems of custom g raphics modes is how to print
characters on mode lines that are out of the usual range of that
mode. For example, if we design a graphics mode such that the
30th line is mode two, we would get an error message if we
attempted to print on that line . This is because the Atari thinks
it is in the regular mode two, which allows only twelve lines of
characters . We must therefore find another way to put the
characters on the screen.

As you may already realize, the screen is just a type of
window looking into a part of memory. lfyou change that mem
ory, what you see on the screen also changes. The solution,
therefore, is just to POKE the characters into the memory loca
tions that correspond to the positions on the screen where we
want them to appear.

Where Is The Screen In Memory?
Here is how to find the display list in memory:

BEGIN = PEEK(560) + PEEK(561)*256 + 4

But, you may well ask, what does this have to do with the screen
memory, or display memory, as we will call it here? It just so
happens that the firs t two memory location s in the display list
point to the beginning of display memory in the following fash
ion:

DISMEM = PEEK(BEGIN) + PEEK(BEGIN + 1)*256

How Do We Calculate The Exact Memory Locations
To POKE Into?
Each mode line uses up a ce rtain amount of memory. As you
might guess, different modes use different amounts of memory

41

2 Customizing The Graphics Modes

per line. To be more exact:

MODE 0 1 2 3 4 5 6 7 8
MEM/UNE 40 20 20 10 10 20 20 40 40

So all we have to do is figure out how much memory is used
before the mode line that we want to print on, and add that to
DISMEM to determine where we want to start POKEing. As an
example of how to do this, let's suppose we have a graphics
mode with four lines of mode 1, 50 lines of mode seven, three
lines of mode four, and three lines of mode two (4*8 + 50*2 + 3*
4 + 3*16 = 32 + 100 + 12 + 48 = 192); and we wan t to print on the
second line of mode two. Checking the table above, we go:

4 lines of mode 1 = 4*20 = 80
50 lines of mode 7 = 50*40 = 2000

3 lines of mode 4 = 3*10 = 30
1 line of mode 2 = 1 *20 = 20

(remember, we count only the lines above the one we want
to print on)

For a grand total of: 2130

Therefore, memory location DISMEM + 2130 represents the
first character in the second line of mode 2 for this particular
mode. Memory location DISMEM + 2131 represents the second
character, and so on up to DISMEM + 2149 for the 20th character.

We know that POKEing the appropriate value into the
appropriate location will cause the desired character to appear
at the desired screen location. Since we already know how to
determine the appropriate memory location, we now ask:

How Do I Calculate The Appropriate Value For A Character?
It turns out that the value to POKE for a given character cor
responds to the order in which the character descriptions are
stored in ROM (see "Designing Your Own Character Sets" in
Chapter 3). As a quick memory refresher:

ATASCII VALUETO
VALUE POKE

0-31 64-95
32-95 0-63
96-127 96-127

For reverse characters, just add 128 to the value of the normal
character.

42

2 Customizing The Graphics Modes

My Brain Is In Hibernation; How Do I Convert A Character String
To lis Appropriate Values?
I' ll leave you with the following self-explanatory subroutine
that will take the (predefin ed) character string PRINTME$ and
the s tarting memory location ST ARTHERE (also predefined
and equal to DISMEM + offset) and POKE PRINTME$ into the
appropriate memory loca tions . Enjoy!

Program.

30000 REM This loop will act on each
cha~acte~ in PRINTME$

30010 FOR ME=1 TO LEN(PRINTME$)
30020 REM Find ATASCII value of cha~a

cte~

30030 VALUE=ASC(PRINTME$(ME~ME»
30040 REM Subt~act 128 tempo~a~ily if

it's a ~eve~se cha~acte~

30050 VALUE=VALUE-128*(VALUE } 127}:REM
See note below

30060 REM Make the app~op~iate value
adjustments

30070 VALUE=VALUE+64*(VALUE < 32}-32*(V
ALUE >31 AND VALUE<96}

30080 REM Conve~t back to ~eve~se if
necessa~y

30090 VALUE=VALUE+128*(ASC(PRINTME$(M
E,ME}) } 127}

30100 POKE STARTHERE+ME-l~VALUE:REM R
emembe~~ ME sta~ts at O ~ not 1

30110 ? VALUE
30120 REM Go to next cha~acte~
30130 NEXT ME
30140 REM All done , say gOQdby
30150 RETURN

Note that (conditi on) equals 1 if the condition is true, 0 if
it's not. Thus, X = 126:PRINT (X = 126) :PRINT(X = 127) will
print a 1 followed by a O.

43

2 Customizing The Graphics Modes

Add A Texl Window
To GRAPHICS 0
Charles Brannon

The text window can be a use ful feature in the graphics modes,
enabling a simultaneous tex t and graphics display. The text
window is very similar to a miniature GRAPHICS 0 text screen:
all the editor functions are supported, and scrolling and screen
clearing are confined to the small four-line window.

This same capability would be useful for a GRAPHICS 0
display. For example, a menu (a list of choices) could be pre
sented in the top 20 or so lines of th e screen, and the user's
input taken in the lower four lines of the text window. Any
errors, such as the user typing editor keys in an INPUT state
ment, would not interfere with the rest of the screen. Conve
niently, any scrolling when caused by a line like this one:

150 PRINT "NAME";:INPUT N$:IF LEN(N$)
)8 THEN PRINT "*TOO LONG.":GOTO 1
50

would not cause the menu above it to scroll as well .
How is all this done? With a single POKE statement. Loca

tion 703 normally contains the number 24. If you POKE a four
in its place, the cursor is zapped to the bottom of the screen
and the text window is in place.

Note that you can't print to the upper part of the screen
with PRINT statements; you have to use PRINT#6 as you do
with graphics modes 1 and 2. Also, the POSITION statements
affect only the upper part of the di splay; you must use POKEs
to position text window output.

44

2 Cuslomizing The Graphics Modes

Here is an exall/ple progmll/ to dell/oll stmte the li se of tlie willdow. It is a
sill/pie disk II/ellll progmll/. Notice tliat you don't lIeed to use PRINT#6 to
prillt to tlie IIpper part of tile screell IIl1til after tlie POKE 703 ,4 takes place.

Program.

100 REM DEMONSTRATES TEXT WINDOW
110 REM SIMPLE MENU PROGRAM FOR DISK
130 TRAP 150
140 OPEN #1,6~O.ID:*.*":GOTO 160
150 ? "Can't r-ead dir-ector-y":END
160 GRAPHICS O:COL=O:POKE 752.1:REM D

ISABLES CURSOR
170 DIM AS(20).FS(14):TRAP 230
180 INPUT #1;AS
190 POSITION COL,LINE:? AS(I,14)
200 LINE=LINE+1
210 IF LINE}20 THEN COL=COL+13:LINE=0
220 GOTO 180
230 POKE 703,4:REM CREATES TEXT WINDD

W
240 FOR 1=1 TO 100:? I~:NEXT I:REM ON

LY FOR DEMONSTRATION
250 ? CHRS(125):? "Run which

;:INPUT AS:REM CHRS(125)
ARS WINDOW

260 TRAP 290
270 FS="D:":F$(3)=AS
280 RUN FS
290? "Can't RUN ";FS;"."
300 END

pr-ogr-am"
ONLY CLE

45

2 Customizing The Graphics Modes

Mixing Graphics
Modes 0 And 8
Douglas Crockford

No rmally, GRAPH1CS 8 does /lot allow text to be displayed alollgside
the graphics. This mach ille lallguage routine, when added to a BASIC
progral1l, provides this lI seful feature.

Graphics mode 0 is the Atari text mode. It supports uppercase,
lowercase, inverse video, and has a position function for p lacing
text anywhere wi thin a 40 by 24 display field. Graphics mode 8
is the Atari high resolution plot mode. It supports the plo tting
of points and lines in a 320 by 160 (or 192) display field. It would
be very nice to use both modes a t the same time . The text win
dow is some help, but it confines the plot to the top and the
tex t to the bottom. Modifying the display lis t provides a partial
solution , but it is awkwa rd and doesn't pe rmit the mixin g of
tex t and plo t on the sa me line.

A better solution is to use graphics mode 8 and plot the
dots that make up the text characters. This can be done very
quickly by a 6502 machine language subro utine, which does
things in software w hich are very simi lar to w hat the display
hardware does 60 tim es a second .

The subroutine is ca ll ed with the U5R function. It has four
arguments:

the hori zo n ta I cu rsor posi ti on
the vertical cursor position
the address of the s tring to be displayed
the length of the s tring to be displayed.

So, the code

GRAPHICS (>

POSITION X~Y

PRINT STRING$;

will produce similar resu lts to

46

2 Customizing The Graphics Modes

GRAPHICS 8
A=USR(ADR(PRINT$)~X~Y~ADR(STRING$)~LE

N(STRING$»

PRINT$ is a string containing the subroutine. The STRING$
should not extend past the last column in a row. Any embedded
function codes (cursor movement, insert, etc.) will be displayed
literally. The position of the PLOT/ORAWTO pointer is not
changed, nor is the current COLOR.

An interesting bonus is that adding 40*R to the horizontal
argument causes the text to be displayed R plot rows lower
than usual. This permits the display of subscripts, mathematical
expressions, 11/2 line spacing, underlining, and so on.

The subroutine is relocatable because it contains no JPs,
JSRs, or data reference to itself. It can run anywhere in memory.
It is also under 256 bytes, so it can also run in page six . The
program shows the subroutine being loaded into a string called
PRINT$, and shows a few of the things it can do.

Figure. Screen Dump of the Demo Program.

Mixing mornmn Graphics Modes 0 and 8

READV •
47

2 Customizing The Graphics Modes

Program.

1 REM n:@~n:

2 REM . THIS PROGRAM IS A DEMONSTRATION
3 REM OF MIXING MODES 0 AND 8
10 DIM PRINT$(167}
20 FOR 1=1 TO 167
30 READ A:LET PRINT$(I}=CHRS(A)
40 NEXT I
50 GRAPHICS 8
60 MLPRINT=ADR(PRINTS}:REM ADDRESS OF

STRING IS STARTING LOCATION OF MA
CHINE LANGUAGE ROUTINE

100 A=USR(MLPRINT~10~10~ADR(II[1+(3n-2
)]{T}{R} = {5 R}")~20)

110 A=USR (MLPRINT ~ 101 ~ 9. ADR ("n") ~ 1)
1 2 (> A = U S R (M L P R I N T ~ 1 (I 5 ~ 9 ~ AD R (" 3 n .. - n ") •

5)
130 A=USR (MLPRINT. 267,8, ADR ("2") , 1)
140 A=USR (MLPRINT. 221, 10 ~ ADR ("2").1)
150 A=USR(MLPRINT~227 , 10.ADR("2") ,I)
160 DIM TEXTS(40)
17(1 T EXT S = " M i >: i n g r::::[m::rr:~ G rap hi c s mod e

s 0 and 8"
180 A=USR(MLPRINT~3,O.ADR(TEXTS),LEN(

TEXTS))
190 COLOR I:PLOT 24~9:DRAWTO 304~9
200 PLOT 64~60:DRAWTO 260~60:DRAWTO 2

60.100:DRAWTO 64 . 100:DRAWTO 64 . 60
210 PLOT 64.10(>:DRAWTO 74~11(>:DRAWTO

270.110:DRAWTO 27(>~70:DRAWTO 260~
60

220 PLOT 260~100:DRAWTO 270~110
230 END
1500 REM Following are the decimal
1510 REM bytes for the machine
1520 REM language routine~
1530 REM "Mixing GRAPHICS Modes 0 AND

8
1531 REM u~reG.~~~G~~UU~U
1536 DATA 104,201~4.240~9.170

1542 DATA 240,5.104,104,202.208
1548 DATA 251,96,104,133~215.104

48

1554 DATA
1560 DATA
1566 DATA
1572 DATA
1578 DATA
1584 DATA
1590 DATA
1596 DATA
1602 DATA
1608 DATA
1614 DATA
1620 DATA
1626 DATA
1632 DATA
1638 DATA
1644 DATA
1650 DATA
1656 DATA
1662 DATA
1668 DATA
1674 DATA
1680 DATA
1686 DATA
1692 DATA
1698 DATA

2 Customizing The Graphics Modes

133~214~ 104~ 104, 168~ 104
133~217~ 104~ 133~216~ 104
104~240~236.133.212~24

165~214~ 101~88~ 133~214

165~89~101~215~133,215

152,240,15.165~214.105

64.133, 214.165. 215~ 105
1,133, 215. 136~ 208~ 241
132.221~ 160,0,132.220
177,216~ i60~O.170,16

1~ 136~ 132,213,138.41
96. 208, 4~ 169,64.16
14.201,32~208~4,169

O~16,6~201~64~208

2. 169. 32~ 133, 218~ 138
41~31~5,218~133~218

169~O~162,3~6,218

42,202~208~250~109,244

2, 133~219~ 164,221,177
218,69~213,164,220,145

214,200,132.220~196~212

208~ 182.24,165,214~ 105
40,133,214,144~2~230

215~230.221,169~8~197

221~208,159~96.207,96

49

-.

-

-
-

.-

3 Redefining Character Sets

Designing Your Own
Character Sets
Cra ig Patchett

YO II call change the shnpes of your chnracters with this technique.

If you want to draw boxes, or design a card game, then Atari's
gra phics characters are terrific. But what if you're writing an
outer space gam e or a music program? Wouldn't you prefe r a
rocket ship or a musical note to a vertical line? This article will
explain not only how to change Atari's graphics characters to
whatever you desire, but also how to change any Atari character
at all, from le tters to numbers to punctuation.

How Characters Are Made
An Atari character, as yo u may already know, is made up of a
bunch of small dots grouped cl ose together. A total of 64 dots,
arranged in an eight-by-eight sq uare, can be Ll sed to make one
character. An Atari 1/41/, for exa mple, rea lly looks like this:

Here, the squares colored in represent the dots that are
used . Notice that the outside sq uares are not used. If they w ere,
then the characters would touch each other when printed side

53

3 Redetining Character Sets

by side and would be difficult to read. Graphics characters can
be made to touch, however, since side by side they could be
made to look like one large, continuous character .

Somewhere in memory the Atari has a list of which dots
are used for each character. Before we find out where this list
is, let's see how the Atari represen ts each character in the list.

o 1--+-+--+-
\

ZJ--~
3
4
5

6 t--+--+--+--

7 L-...&.-.....I---'---'---'_~...&.-~

The Atari remembers each character as eight numbers, each
representing a row of eight dots. These rows I have numbered
above from 0 to 7. Row 0 is always the first number, row 7 the
last. The Atari changes each row of dots into a number from 0
to 255 in the following way . Each dot in the row is assigned a
multiple of two (from 1 to 128) as its value, as shown above. To
get the number for a given row, just add up the values of the
dots used in that row. For example, let's look at the "4". The
number in row 1 (the second row from the top) will be 12, since
dots 4 and 8 are being used in row 1 (4 + 8 = 12) . The third
number will be 28, since dots 4, 8, and 16 are being used in row
2 (4+8+16=28), and so on down to row 7, which will be 0,
since no dots are being used. Before going on, make sure you
understand how to get the following eight numbers as repre
senting the number "4": 0, 12, 28,60, 108, 126, 12, o.
How Characters Are Stored
Since there are a total of 128 Atari characters, not counting re
verse characters (see Appendix C: ATASCII Character Set, in
the Atari BASIC Reference Manllal), the list will contain 1024 num
bers (8 numbers per character times 128 characters = 1024

54

3 Redefining Character Sets

numbers). Look at Appendix 0: Atari 400/800 Memory Map in
the BASIC Reference Manual. This simply describes what some
of the different memory locations are used for. We're interested
in the first locations, containing the "Operating System ROM."
The Operating System is just a built-in program that tells the
Atari how to do everything it can do in the "Memo Pad" mode,
simple things such as putting a character on the screen when a
key is pressed, etc. ROM (Read Only Memory) means that the
program will always be in the computer's memory, even when
the computer is turned off, and can never be changed by the
programmer (that's you). Unfortunately, the first 1024 locations
in the Operating System ROM (locations 57344 to 58367) contain
the list of numbers we are interes ted in . In order to change the
characters we are going to have to change the list, which ROM
won't le t us do. There's an easy way out, however, and that's
to move the list to a place where we can change it .

Protecting The Character List
We need a place where the list will be safe from our accidentally
changing it, but where we will be able to change it when we
want to. Look at Appendix 0 again. About halfway down the
page is a box labeled "RAMTOP." RAMTOP points to the last
location in user memory, the memory we have available for
our use. What if we were to change RAMTOP so that it pointed
1024 loca tions before the end of user memory? Then the Atari
would think tha t user ITlemory ended at the new RAMTOP and
would no t try to put any thing in memory after that loca tion .
We would still be able to use those locations ourselves, though.

Let's flip over to Appendix I: Memory Locations. If we
look up decimal location 106, we see that it contains the value
of RAMTOP. So if we change location 106, we can trick the
Atari into s tay ing away from our lis t. Before we do that, how
ever, let me point out that adding one to the value in 106 actually
adds 256 to RAMTOP. This is because of something called
"paging," which is too complicated to explain here, and not
really important for what we're doing anyway. Just be aware
that to move RAMTOP back 1024 loca tions, we need to subtract
four (4 x 256 = 1024) from location 106. To give us some extra
space in case the Atari accidentall y goes a little past RAMTOP,
we' ll subtract five instead. We do thi s using POKE and PEEK
(finally some programming!) :

10 POKE 106, PEEK (106)-5:GRAPHICS 0

55

3 Redefining Character Sets

The reason we use a GRAPHICS 0 right after changing RAMTOP
is because the Atari normally s tores screen data in the locations
we'll be using for the list (see Chapter 6). If we don't use a
GRAPHICS command to move that li st to a new location, the
screen will do strange things when we move the character list
into place, which we are now ready to do.

Relocating The List
Moving the list is ex tremely simple; we just use a FOR/NEXT
loop and POKE the values from ROM into their new locations .
We first need to figure out the value of the location of the first
number in the new list:

20 STARTLIST = (PEEK(106) + 1)*256

Remember, we subtracted an extra one from location 106 to be
safe, so we have to add it back on to determine the start of the
list. Also, don't forget that we have to multiply the value in 106
by 256 because of paging. Now let's move:

30? "HOLD ON ... ":FOR MOVEME= 0 TO 1023:POKE
STARTLIST + MOVEME,PEEK(57344 + MOVEME): NEXT
MOVEME

All that's left now is to tell the Atari where the new list is.
We do this by changing the value in loca tion 756, which points
to the starting location of the character set to be used (look at
Appendix I) . If you look at location 756 at this stage (use PRINT
PEEK(756)), you'll see that it contains the value 224. Again,
because of paging, this really means 224 x 256, or 57344 (surprise!),
the starting location of the character set in ROM. So we go:

40 POKE 756,STARTLIST/256

A few words of warning about location 756. Every time
you use the GRAPHICS command, the Atari se ts the value in
location 756 back to 224. That means that after each GRAPHICS
command, you'll have to execute the equivalent of line 40. No
big deal, but if you forget. . ..

Redefining Characters
Before we actually make any changes, let's look at the order
the characters are stored in the list . For this we'll need Appendix
C again (and you thought you'd never use the Appendices!).
Unfortunately, Atari chose not to store the characters in memory

56

3 Redefining Character Sets

exactly in the ATASCII order. Almost but not exactly:

TYPE ATASCII MEMORY
ORDER ORDER

uppercase,
numbers, 32-95 0-63
punctuation

graphics
characters 0-31 64-95

lowercase,
some 96-127 96-127
graphics

As you can see, all that Atari did was to move the graphics
characters betwee n the uppercase and lowercase (they did this
in order to be abl e to choose between uppercase and lowercase/
graphics in modes one and two) . In the meantime, they made
our job harder for us. In order to de termine where a character
is stored in memory, we have to perform a littlc mathematical
wizardry on its ATASCII value. In the following "formulas,"
keep in mind that each character is represented by eight num
bers, which is why we multiply by eight:

ATASCII
VALUE(AV)

32-95

0-31

96-127

MEMORY LOCATION
(of first number)

(A V -32)*8 + ST ARTLIST

(A V + 64)*8 + STARTLIST

A V*8 + ST ARTLIST

Of course, to get the loca ti on of the original character (in ROM),
we would add 57344 ins tead of STARTLIST.

With these mathematica l manipulations in mind, let's try
one of the original examples tha t 1 mentioned. We'll change
one of the graphics characte rs, le t' s say CTRL~T, to a musical

57

3 Redefining Character Sets

note . First, let's design our note:

1286432 16 8 4 42 1

o
t---t--t-+--

\

2

3
4

5

" 7

t---t--t-+--

~~~~4-~_~~_~-4 

This may not look exactly like a note as is, but because of 
the size of the dots, it will look fine when printed on the screen, 
as we shall soon see. I'll leave it up to you to check for yourself 
that the note translates into the following eight numbers: IS, 
12, 12, 124, 252, 252, 120, O. We now want to replace the eight 
numbers already in memory for ...... CTRL~T with these eight. 
...... CTRL~ T has an AT ASCII value of 20 (see Appendix C), 
which fits in the 0-31 category in the formula chart above . The 
first thing to do, therefore, is to add 64 (20 + 64 = 84) and multiply 
by eight (8x84 = 672) to give us a value of 672. So to change the 
...... CTRL~T character we would have to change the eight num
bers in memory beginning with location 672 + STARTLIST. 
We make this change using a FOR/NEXT loop and DATA 
statements: 

50 FOR MOVEME = 0 TO 7:READ VALUE:POKE 672 + 
STARTLIST + MOVEME, V ALUE:NEXT MOVEME 

60 DATA IS, 12, 12, 124,252,252, 120, 0 

Now, after this has been RUN, whenever we use a 
...... CTRL~T, we will have a musical note . Try it! 

As an informal kind of self-test, make sure you understand 
the following two lines. Try to work out which character they 
will change, and what the new character will look like, before 
you actually RUN them (with the rest of the program, of 
course): 

58 



3 Redefining Character Sets 

70 FOR MOVEME = 0 TO 7:READ V ALUE:POKE 776 + 
ST ARTLIST + MOVEME, V ALUE:NEXT MOVEME 

80 DATA 0,0,60, 102, 102, 102,63,0 

As you can see, lines 50 and 70 are very much alike except for 
the initial value added to STARTLIST. This should light up a 
sign in your brain saying "SUBROUTINE!" If you have more 
than one or two characters to be redesigned, you should use a 
subroutine to save memory . 

A Few Details And Programming Hints 
• In graphics modes one and two, to use lowercase and graphics 
characters with your new character set, POKE 756 with 
STARTLIST/256 +2. To go back to uppercase, etc., POKE 756 
with STARTLIST/256. 
• If you press the RESET button, the Atari will change the value 
of location 106 and put the display list back in place of your 
character set. Under such circumstances it is necessary to run 
the program over again in order to get your character set back. 
• If a character is too complicated to put in an eight by eight 
box, then use more than one box (and therefore more than one 
character), and combine them in a string. For example, using 
the Atari's regular graphics characters : 

DIM BOX$(7):BOX$ = "(see below)":PRINT BOX$ 
Type BOX$ as ~CTRL~Q, ~CTRL~E, ~ESC~ ~CTRL~ 
=, ~ESC~ ~CTRL~ + , ~CTRL~Z, ~CTRL~C. 

Bonus: Four Colors In Graphics Mode O! 
It is possible to define a character to be one of three different 
colors (4 = 3 + background). The only drawback is that once 
you have defined the letter" A" to be orange, for example, all 
A's will be orange, not just the ones you want. 

How do we define the color of a character? It's really quite 
simple. Just as in graphics mode eight, a dot in an even
numbered column will be a different color than a dot in an odd
numbered column. Two dots side by side will produce yet 
another color. This is why an Atari "4" (and all other Atari 
characters) and my musical note have vertical lines that are two 
dots wide, compared to the horizontal lines that are only one 
dot wide (or thick, if you prefer) . If the vertical lines were only 
one dot wide, they would be a different color than the horizontal 
ones, unless the horizontal lines alternated one dot on and one 
dot off. Confused? Don't worry, just substitute the following 

59 



3 Redelining Character Sets 

variations of the musical no te for the data in the sample program 
and see what they look like: 

60 DATA 10,8,8,40,168,168,32,0 

80 DATA 5,4,4,20,84,84,16,0 

Such characters w ill , of course, look unu sual in graphics modes 
one and two, jus t as they look unusual in the above diagrams. 

You can ' t do a lot of experilTl enting with this " phenome
non" to get such e ffects as multicolored characters . Changing 
the background color w ill change the co lors of the columns, 
and thus the co lors of the charac ters . Finally, if you need only 
one" A" , or w ha tever, to be a different color, d efin e it as a 
graphics charac ter. 

60 



3 Redefining Character Sets 

Bonus: Upper- And Lowercase In Graphics Modes 1 And 2 
By now, after running things over in your mind, you might 
already suspect how to mix upper- and lowercase in modes 
one and two. If not, it is a painfully simple trick . Since modes 
one and two allow use of lowercase and graphics characters 
together, just redefine the graphics characters to be uppercase 
letters! You can do this by moving the uppercase character de
scriptions from the ROM list to your own list, like so: 

35 FOR MOVEME = 256 TO 472:POKE STARTLIST + MOVEME 
+ 256,PEEK(57344 + MOVEME):NEXT MOVEME 

Typing a ...... CTRL~A will now give us an uppercase "A" and 
so on. Of course , this is not the best way to do it, since we no 
longer have any graphics characters. If we know that we will 
need only certain uppercase letters in our program, then it 
would be better to move just those letters, one by one, using 
the tables given earlier in the article. In any case, we are now 
able to mix almost any combination of characters we wish in 
graphics modes one and two. 

61 



3 Redelining Character Sets 

SuperFonl 
Charles Brannon 

The ability to redefine the character set is one of the more useful 
fea tures of the Atari. Basically, it involves the plotting of a character 
on an eight by eight matrix and then converting each row into a 
binary number. 

This process, however, is slow and tedious for the program
mer. Fortunately, it is an obvious candidate for computerization. 
The computer could display a grid, let you set and clear points on 
it, and then do the binary-to-decimal conversion for you. It could 
also let you save and load completed fon ts (character sets) from 
tape or disk. 

Although ISuperFont" may lack some of the features of 
commercial products, it is quite powerful and versa tile. SuperFont 
is written in BASIC but what makes it special is that it has several 
machine language subroutines as well . One of these, thanks to a 
display list interrupt (DLI), enables the redefin ed character set to 
be displayed on the screen at the same time as the regular one. 
This permits you to see the effects of your changes without letting 
the command menu or prol1,pts turn into starships. 

SuperFont uses player/missile graphics for fas t updates and a 
colorful grid. Since the special character window is se t off in a 
different color than the res t of the screen (again via DU'sL you 
get eight different colors to de li ght the eye. The human interface 
is enhanced with the use of a joys tick to plo t points in the eight 
by eight grid . 

62 



3 Redefining Character Sets 

SuperFont has 18 commands: 

Edit 
COP!.' frOM 
COP!.' To 

I Overla!.' 
Save font 
Delete 
Scroll Left 

, Print Data 
Write Data 

"..~ Reverse 

, Restore 
SWitch 
Clear 
Invert 
Load font 
Insert 
Scroll 
Right 

muit 

[:B Graphics 

! II~$X&: I () *+.' -,/012345678': ; <=>? 
GABCDEfGHIJKLMNOPQRSTUVWHVZ[\]A_ 
q ... ~, ~ .... - .... ~ ........ -..1 T.Lt I.~t"'++ 
.abcdefghijklMnopqrstuvwx!.'ztl~~ ~ 

! IIU$X&: I () *+ 1- , 10.12345678': ; <=>? 
GABCDEfGHIJKLMNOPQRSTUVWHVZ[\]A_ 
q ... ~,~ .... - .... ~""""_..I T.Lt I.~t"'++ 
.abcdefghijklMnopqrstuvwx!.'ztl~~ ~ 

This menu is displayed on the screen along with a checker
board plotting grid, the 128 characters of the character set, and 
the 128 characters of the alternate character set. Some commands 
require you to select a character. A cursor will be placed on each 
of the character sets. You can move the cursors around the sets 
simultaneously. When the cursor is on the desired character, 
press the fire button to indicate it. An explanation of each com
mand follows: 

Edit: The basic editing command. The selected character is copied 
into the grid, and a flashing cursor is homed into the grid . You 
move the cursor with the joystick. Pressing fire will set a point (if 
a point is clear) or reset (clear) a point (if a point is already set). 
You can draw lines by holding down the button while moving 
the joystick. Any changes are immediately visible in the character 
set and in the character displayed in the graphics mode one and 
two lines at the bottom of the screen. To completely redesign a 
character, use the Clear command, and then design the character 
from scra tch. 
Restore: This command will "fix" a character by copying the original 

63 



3 Redefining Character Sets 

bit pattern into it. Very useful if you have mangled a character or 
changed the wrong one. 

Copy From: You select a character which is copied into the current 
character. The grid is updated, and you can further edit the 
character. 

Copy To: The current character is copied to (replaces) the indicated 
character. 

Switch: Exchanges the current character's bit pattern with the 
selected character. 

Overlay: The selected character is overlaid upon the current char
acter. This lets you combine two characters to form a new one. 
Clear: Clears out the current character. For creating unique 
characters. 
Invert: Turns the current character "upside down." FOl' example, 
a redefined M could be inverted and copied to the W. 
Save Font: Saves the alternate character set in compact form 
with a machine language routine. Answer "Filename?" with 
either C: or D:filespec. If you see an error message, press a key 
to return to the menu. 

Load Font: Retrieves a character set from tape or disk . Answer 
the "Filename" prompt as you did in Save Font. 
Cursor-up or SHIFT-DELETE: Similar to Delete Line in BASIC. 
The line of dots the cursor rests on is dele ted; the following 
lines are pulled up to fill the gap . 
Cursor-down or SHIFT-INSERT: Similar to Insert Line in BASIC. 
A blank line is inserted at the cursor position. The bottom line 
is lost. 
Scroll Left: The bit pattern of the character is shifted to the left. 
Scroll Right: The bit pattern of the character is shifted to the 
right. 
Write Data: The internal code (0-127) of the current character is 
printed in reverse-field followed by the eight bytes (in decimal) 
of the character. If you want a printout of the entire character 
set, use the auxiliary program CHPRINT (Program 3). Pressing 
any menu selection key will erase the nine bytes . 
Print Character: If you want a hardcopy printout of a character, 
or only want to define a few characters and have a printed re
cord, this command comes in handy. Just have your printer 
on-line and press P to create a "picture" of the character (printed 

64 



3 Redefining Character Sets 

with X's). Beside each line of the character is the decimal value 
of the binary byte for that line. The number printed at the top 
is the internal character code for the character you redefined. 
Graphics: Toggles the TEXT/GRAPHICS option of the graphics 
mode one and two lines to let you see each half of the character 
set. 
Reverse: Puts the character in reverse field: all dots become 
blanks, and all blanks become dots. Reverse field versions of 
the characters are not normally stored in the character set, but 
you may want this for special graphics, such as reverse-field 
text in graphics modes one or two. 
Quit: Exits program . 

The commands offer flexibility in working with character 
sets, but there may be other functions you want to add. The 
program is modular in structure; just follow the branching IF 
statements after line 790 to 1370 and replace the 520 (IF K <> 
ASC("G") THEN 520) with a link to your additional com
mand(s). You may also want to change the colors. Besides the 
SETCOLOR statements in line 170, change the zero in line 300 
(POKE 1538,0) to COLOR (0-15)*16 + LUMINANCE (0-14). Simi
larly, you can play with the player/missile colors in line 360. 

It is also possible to use the character set da ta on tape or 
disk directly . It is written as a series of 1024 bytes: the bytes of 
the character set - no more, no less. I have included three extra 
utility programs which access the character data. Program 2 
simply loads the set into memory and changes CHBASE (756) 
to point to it. Program 3 produces a formatted hex or decimal 
dump of the character set. Both programs should have the "file
spec" changed to the filename of your character set. 

You can use Program 4, CHSET DATAMAKER, to create a 
"module" of lines that le ts you add your character set to any 
program. After saving yo ur character set to tape or disk, just 
RUN Program 4. It will ask you for the filename of the character 
set, the starting line number of the "module," and a filename 
for the rnodule. (Just answer C: to the filename prompt for use 
with a cassette.) 

CHSET DATAMAKER "writes" a subroutine replete with 
the appropriate PEEKs, loops, and DATA statements, to tape 
or disk. It optimizes space by writing DATA statements only 
for those characters you have changed, by comparing your 
character set to the ROM default character set. After it has 

65 



3 Redefining Character Sets 

finished, you can merge the lines it produced with any program 
using the ENTER command . You may need to make some minor 
adjustments to the code it produces. And in your main program, 
remember to use a POKE 756,CHSET/256 after every 
GRAPHICS statement, since a GRAPHICS statement resets the 
character pointer . 

The code of the main program is fairly straightforward. It 
uses several machine language subroutines: (1) A Display List 
Interrupt handler to maintain the special character window . (2) 
Copies the ROM character table into the RAM CHSET table 
(avoids the 15-second delay in BASIC). (3) A LOGIC subroutine 
that permits AND, OR, EOR to be used on a binary level (see 
"Make Your Atari a Bit Wiser," COMPUTE!, May 1981, #12, p. 
74) . (4) Implements a fast machine language memory save, 
thanks to the Input/Output Control Block (lOCB) PUTREC and 
GETREC commands . 

You can do a lot with this capability: custom fonts (Greek, 
"computeristic," script), graphics characters (special line draw
ing characters, spaceships, "invaders," bombs, tanks, planes, 
ships, even little people). SuperFont makes your task easier, 
even fun! 

66 



3 Redefining Character Sets 

Program 1. 

140 DIM I(7)~FN$(14)~N$(3) 

150 IF PEEK(1536) <> 72 THEN GOSUB 1400 
160 GRAPHICS O:POKE 752~1 
170 SETCOLOR 2~7~2:SETCOLOR 4~7~2 
180 DL=PEEK(560}+256*PEEK(561}+4 
190 SD=PEEK(88)+256*PEEK(89)+13*40:AS 

D=SD+5*40 
200 Al=1630:FUNC=1631:A2=1632:LOGIC=1 

628 
210 RAM=PEEK(106)-8:PMBASE=RAM*256 
220 CHRORG=57344 
230 POKE 559 ~ 46:POKE 54279~RAM 

240 POKE 53277~3:POKE 53256~3 
250 CHSET=(RAM-8)*256 
260 POKE DL+23~6:POKE DL+24~7 
270 POKE DL+18~130 
280 POKE 512~0:POKE 513~6 
290 POKE 54286~192 
300 POKE 1549~RAM-8:POKE 1538~0 

310 A=USR(1555~CHSET) 
320 PO=PMBASE+512+20:Pl=PMBASE+640+20 

:P2=PMBASE+768+20:P=PMBASE+896+20 
:T=85 

325 FOR 1=0 TO 128:POKE PO+I,O:POKE P 
l+I~O:POKE P2+I,0:NEXT I 

330 FOR 1=0 TO 7:FOR J=O TO 3:T=255-T 
:POKE PO+I*4+J~0:POKE Pl+I*4+J~T: 
T=255-T 

340 POKE P2+I*4+J~T:NEXT J:T=255-T:NE 
XT I 

350 POKE 53248~64:POKE 53249,64:POKE 
53250,64 

360 POKE 704~ 198:POKE 705~240:POKE 70 
6~68 

370 POKE 53256~3:POKE 53257~3:POKE r- -:r 
J~' 

258~3:POKE 623 , 1 
380 ? II {Q}{8 R}{E}":FOR 1=1 TO 8:? II 

:{8 SPACES}:":NEXT I-? " {Z}{8 R} 
{C}" 

390 POKE 82~14:POSITION 14~1 

400 ? "I]! Edit{8 SPACES}[::; Resto ..... e .. 

67 



3 Redefining Character Sets 

410 ? "~ Copy From{3 SPACES}(!: Switch" 
420 ? "ij Copy To{5 SPACES}[!: Clear" 
430 ? "e!: Overlay{5 SPACES}~ Invert" 
440 ? "~ Save Font{3 SPACES}~ Load Fo 

nt" 
450 ? "{ESC}{DEL LINE} Delete 

{6 SPACES}{ESC}{INS LINE} Insert" 

460 ? "{ESC}{CLR TAB} Scr-oll Left 
{ESC}{SET TAB} Scroll{DOWN} 
{6 LEFT}Right" 

465? "{Up}r:;;Print Char." 
470 ? "~ W r i teD a t a [Iu it" 
480 ? "{DOWN} {~{en {~} Reverse 

{3 SPACES}~ Graphics" 
490 FOR 1=0 TO 3:FOR J=O TO 31:Z1=J+I 

*40+4:Z2=I*32+J:POKE SD+Zl~Z2:POK 
E ASD+Zl~Z2:NEXT J:NEXT I 

500 POKE 82~2:POSITION O~O 
510 OPEN #2,4,0, "K:" 
520 P=PEEK(764):IF P=255 THEN 520 
530 IF P=60 THEN 520 
540 IF P=39 THEN POKE 764,168 
550 GET #2,K 
560 IF I«>ASC("E") THEN 790 
570 GOSUB 1750 
580 FOR 1=0 TO 7:A=PEEK(CHSET+C*8+I): 

FOR J=O TO 3:POKE PO+I*4+J,A:NEXT 
J:NEXT I 

590 POKE ASD+169.C:POKE ASD+190.C 
600 JX=O:JY=O 
610 POSITION JX+4 . JY+l 
620 ? CHR$(32+128*FF);"{LEFT}";:FF=1-

FF 
630 IF STRIG(O)=O THEN 750 
640 IF PEEK (764) < 255 THEN ? " ";: GOTO 

520 
650 ST=STICK(O):IF ST=15 THEN 620 
660 IF STRIG(O) THEN FOR 1=0 TO 100 S 

TEP 20:S0UND O,lOO-I,10,8:NEXT I 
670 POSITION JX+4.JY+l:? " "; 
680 JX=JX+(ST=7)-(ST=11) 
690 JY=JY+(ST=13)-(ST=14) 
700 IF JX<O THEN JX=7 

68 



3 Redefining Character Sets 

710 IF 
720 IF 
730 IF 

J X >7 
JY<O 
JY>7 

740 GOTO 610 

THEN JX=O 
THEN JY=7 
THEN JY=O 

750 POKE A1,PEEK(CHSET+C*8+JY):POKE A 
2,2~(7-JX):POKE FUNC,73:A=USR(LOG 
I C) 

760 POKE CHSET+C*8+JY,A:FOR J=O TO 3: 
POKE PO+JY*4+J,A:NEXT J 

770 FOR 1=1 TO 10:S0UND O,I*4,8,8:NEX 
T I:SOUND 0,0,0,0 

780 GO TO 650 
790 IF K< >ASC ("F") THEN 830 
800 S=C:GOSUB 1750 
810 FOR 1=0 TO 7:A=PEEK(CHSET+C*8+I): 

POKE CHSET+S*8+I,A:NEXT I 
820 C=S:GOTO 580 
830 IF K<>ASC("T") THEN 870 
840 S=C:GOSUB 1750 
850 FOR 1=0 TO 7:A=PEEK(CHSET+S*8+I): 

POKE CHSET+C*8+I,A:NEXT I 
860 C=S:GOTO 600 
870 IF K<>ASC("0") THEN 920 
880 S=C:GOSUB 1750 
890 FOR 1=0 TO 7:POKE Al,PEEK(CHSET+C 

*8+I):POKE A2,PEEK(CHSET+S*8+I):P 
OKE FUNC,9:A=USR(LOGIC) 

900 POKE CHSET+S*8+I,A:NEXT I 
910 C=S:GOTO 580 
920 IF K<>ASC("R") THEN 940 
930 FOR 1=0 TO 7:POKE CHSET+C*8+I,PEE 

K(CHRORG+C*8+I):NEXT I:GOTO 580 
940 IF K<>ASC("C") THEN 960 
950 FOR 1=0 TO 7:POKE CHSET+C*8+I,O:N 

EXT I:GOTO 580 
960 IF K<>ASC("{R}") THEN 980 
970 FOR 1=0 TO 7:POKE CHSET+C*8+I,255 

-PEEK(CHSET+C*8+I):NEXT I:GOTO 58 
o 

980 IF K<>ASC("X") THEN 1010 
990 S=C:GOSUB 1750 
1000 FOR 1=0 TO 7:A=PEEK(CHSET+S*8+I) 

:POKE CHSET+S*8+I,PEEK(CHSET+C*8 

69 



3 Redetining Character Sets 

+I):POKE CHSET+C*8+I.A:NEXT 1:60 
TO 580 

1010 IF K<>ASC("I") THEN 1030 
1020 FOR 1=0 TO 7:1(1)=PEEK(CHSET+C*8 

+I}:NEXT I:FOR 1=0 TO 7:POKE CHS 
ET+C*8+I~I(7-1}:NEXT I:GOTO 580 

1030 IF K< >ASC (" {UP} ") AND K< )-ASC (" 
{DEL LINE} "} THEN 1050 

1040 FOR I=JY TO 6:POKE CHSET+C*B+I~P 
EEK(CHSET+Ct8+I+l}:NEXT I:POKE C 
HSET+C*8+7~0:GOTO 580 

1050 IF K< )-ASC (" {DOWN}") AND K< >ASC (" 
{INS LINE}"} THEN 1070 

1060 FOR 1=7 TO JY STEP -l:POKE CHSET 
+Ct8+I~PEEK(CHSET+C*8+I-l):NEXT 

I:POKE CHSET+C*8+JY,O:GOTO 580 
1070 IF K< )-ASC (" (LEFT}") THEN 1100 
1080 FOR 1=0 TO 7:A=PEEK(CHSET+Ct8+I} 

*2:IF A)-255 THEN A=A-256 
1090 POKE CHSET+C*8+I~A:NEXT 1:60TO 5 

80 
1100 IF K<>ASC("{RIGHT}"} THEN 1130 
1110 FOR 1=0 TO 7:A=INT(PEEK(CHSET+Ct 

8+1}/2} 

1120 POKE CHSET+C*8+I,A:NEXT I:GOTO 5 
80 

1130 IF K< >ASC("Q") THEN 1150 
1140 POKE 53248,O~POKE 53249,O:POKE 5 

3250,0:POKE 53277,O:GRAPHICS O:E 
ND 

1150 IF I«>ASC("S"} THEN 1210 
1160 60SUB 1610:POKE 195,0 
1170 TRAP 1190:0PEN #1,8,0,FNS 
1180 A=USR(1589,CHSET) 
1190 CLOSE #1:TRAP 40000:IF PEEK(195) 

THEN 1260 
1200 POKE 54286,192:GOTO 580 
1210 IF 1« >ASC ("L") THEN 1290 
1220 GOSUS 1610:POKE 195,0 
1230 TRAP 1250:0PEN #1,4,O,FNS 
1240 A=USR ( 1619 ,C HSET) 
1250 CLOSE #l:TRAP 40000:IF PEEK(195) 

=0 THEN 1 2 00 

70 



3 Redefining Character Sets 

1260 POSITION 14,0: 7 "{BELL}*: ERROR -
";PEEK(195);" *":CLOSE #1 

1270 IF PEEK(764)(255 THEN POSITION 1 
4,0: 7 "{20 SPACES}":GOTO 1200 

1280 GOTO 1270 
1290 IF K<>ASC("W") THEN 1370 
1300 POSITION 2,10:N$="{3 SPACES}":L= 

LEN(STR$(C»:N$(I,L)=STR$(C):L=L 
EN(N$) 

1310 FOR 1=1 TO L:7 CHR$(ASC(N$(I,I» 
+128);:NEXT 1: 7 ")": 

1320 FOR 1=0 TO 2:FOR J=O TO 1+(1)0): 
A=PEEK(CHSET+C*8+J+I*3) 

1330 SOUND 0, (I*3+J)*10+50, 10,8 
1340 PRINT A;",";:NEXT J:7 "{BACK S}" 

:NEXT I:SOUND 0,0,0,0 
1350 IF PEEK(764)=255 THEN 
1360 POSITION 2,10:FOR 1=1 

1350 
TO 

{12 SPACES}":NEXT I:GOTO 520 
1370 IF K<>ASC(uG") THEN 1395 
1380 CF=I-CF:POKE 1549,RAM-8+2*CF 
1390 GOTO 520 
1395 IF K<>ASC("P", THEN 520 
1397 GOTO 5000 
1400 GRAPHICS 2+16:SETCOLOR 4,1,6:POS 

I T ION 5, 3 : 7 # 6; If SUP E R (jijt!:I::::u " 
1410 POSITION 4,5: 7 #6;"patience{3 N} 

" : POS I T I ON 2, 7:? #6;" ~~E"r:;(]~~.~u:E" 
rLrLr!:rL" 

1420 FOR 1=1536 TO 1639:READ A:POKE I 
,A:POKE 709,A:SDUND 0.A,10,4:NEX 
T I 

1430 SOUND O,O,O,O:RETURN 
1440 DATA 72,169 , 100 , 141,10,210 
1450 DATA 141,24,208,141,26,208 
1460 DATA 169,6,141,9,212,104 
1470 DATA 64,104,104 , 133,204,104 
1480 DATA 133,203,169 , 0,133,205 
1490 DATA 169 . 224,133,206 , 162,4 
1500 DATA 160.0,177.205,145,203 
1510 DATA 200,208.249,230,204,230 
1520 DATA 206,202,208,240,96,104 
1530 DATA 162,16 , 169,9,157,66 
1540 DATA 3,104,157,69,3,104 

71 



3 Redefining Character Sets 

1550 DATA 157,68 , 3 , 1 6 9 , 0 , 157 
1560 DATA 72,3 , 169,4 , 157,73 
1570 DATA 3,32,86,228,96,104 
1580 DATA 162 , 16,169 , 5 , 76,58 
1590 DATA 6 , 9 , 104,169 , 0 , 9 , 0 , 133 
1600 DATA 212 , 169 . 0.1 3 3,21 3 ,96 
1610 POSITION 14,0:7 "Filename?"; 
1620 FN$="":K=O 
1630 POKE 20,0 
1640 IF PEEK(764) { 255 AND PEEK(764) {> 

39 AND PEEK(764) <} 60 THEN 1670 
1650 IF PEEK(20){10 THEN 1640 
1660 ':> CHR$(21+11*1<); "{LEFT}"; :1<=I - K: 

GOTO 1630 
1670 GET #2,A 
1680 IF A=155 THEN '7 " ";:FOR 1=1 TO 

LEN(FN$)+10:? "{BACK S}";:NEXT I 
:RETURN 

1690 IF A=126 AND LENCFN$) } 1 THEN FN$ 
=FN$(I,LENCFN$)-l) : ':> " {LEFT}";C 
HR$(A) ;:GOTO 16 3 0 

1695 IF A=126 AND LEN(FN$)=1 THEN? C 
HR$(A) ;:GOTO 1620 

1700 IF A=58 OR (A } =48 AND A{ =57) OR 
CA } =65 AND A{ =90) OR A=46 THEN 1 
720 

1710 GO TO 1630 
1720 IF LEN(FN$) < 14 THEN FN$CLEN(FN$) 

+1)=CHR$(A):'7 CHR$(A); 
1730 GOTO 1630 
1740 END 
1750 REM GET CHOICE OF CHARACTER 
1760 CY=INTCMRY/32):CX=MRY-32*CY 
1770 C=CX+CY* 3 2 
1780 POKE SD+CX+CYt40+4,C+128 
1790 POKE ASD+CX+CY*40+4,C+128 
1800 IF STRIGCO)=O OR PEEK(764)<255 T 

HEN MRY=C:GOTO 1900 
1810 ST=STICK(O):IF ST=15 THEN 1800 
1820 POKE 5 3 279 , 0 
1830 GOSUB 1900 
1840 CX=CX-CST=11)+(ST=7) : CY=CY-(ST=1 

4)+(ST=1 3 ) 

72 



3 Redefining Character Sets 

1850 IF CX < O THEN CX=31:CY = CY-l 
1860 IF CX >31 THEN CX=O:CY=CY+l 
1870 IF CY <O THEN CY=3 
1880 IF CY >3 THEN CY=O 
1890 GOTO 1770 
1900 POKE SD+CX+CY*40+4~C 
1910 POKE ASD+CX+CY'40+4 ~ C 

1920 RETURN 
5000 REM PRINT DATA 
5015 TRAP 1260:0PEN #1 ~ 8~0~uP:u:PRINT 

#1; "{10 SPACES}---(";C; ")-----" 
5020 FOR 1=0 TO 7:PRINT #1;" 

{10 SPACES}"; 
5030 A=PEEK(CHSET+C'8+I) 
5040 P=128:D=A 
5050 FOR J=l TO 8 
5060 IF INT(D/P)=l THEN PUT #1~88:D=D 

-P:GOTO 5080 
5070 PUT #1~32 
5080 P=P/2:NEXT J:PRINT #1;" u;A 
5090 NEXT I:PRINT #1;"{10 SPACES}-----

5100 CLOSE #l:POKE 54286~192:TRAP 400 
OO:GOTO 520 

Program 2. 

1000 REM CHLOAD-CHARACTER SET LOADER 
1005 OPEN #1~4~0~"D:FONT":REM YOUR FI 

LENAME HERE 
1010 X=16:CHSET=(PEEK(106}-8)*256:POK 

E 756~CHSET/256 
1020 ICCOM=834:ICBADR=836:ICBLEN=840 
1030 POKE ICBADR+X+l~CHSET/256:POKE I 

CBADR+X ~ O 

1040 POKE ICBLEN+X+l~4:POKE ICBLEN+X~ 

o 
1050 POKE ICCOM+X~7:A=USR(ADR(UhhhDLV 

~U)~X):REM CALL CIO 
1060 CLOSE #1 

73 



3 Redefining Character Sets 

Program 3. 

100 REM CHPRINT--CHARACTER SET PRINTO 
UT 

110 TRAP 340 
120 OPEN #1~4~0~"D:FONT":REM YOUR FIL 

ENAME HERE 
130 OPEN #2~8~0~"P:":REM CHANGE TO "E 

:" FOR SCREEN 
140 PRINT "~ HEX OR ~ DECIMAL",: INPUT 

TYPE 
150 DIM HEX$(16)~F$(3) 
160 HEX$="0123456789ABCDEF" 
165 LSB=-l 
170 FOR 1=0 TO 1023 STEP 8 
180 F$="{3 SPACES}":C=INT(I/8) 
190 IF TYPE=2 THEN F$(l,LEN(STR$(C») 

=STR$(C):PRINT #2;F$;":";:GOTO 25 
o 

200 LSB=LSB+l:IF LSB=256 THEN LSB=O:M 
SB=MSB+l 

210 PRINT #2;"$";HEX$(MSB+l~MSB+l}; 
230 HINYB=INT(LSB/16):LONYB=LSB-16*HI 

NYB 
240 PRINT #2;HEX$(HINYB+l~HINYB+l};HE 

X$ (LONYB+l ~ LONYB+l); ": ": 
250 FOR J=O TO 7 
260 GET #1,A 
270 F$="{3 SPACES}":IF TYPE=2 THEN F$ 

(l,LEN(STR$(A)})=STR$(A}:PRINT #2 
;" ";F$; :GOTO 310 

290 HINYB=INT(A/16):LONYB=A-16*HINYB 
300 PRINT #2;HEX$(HINYB+l,HINYB+l);HE 

X$(LONYB+l~LONYB+l);" "; 
310 NEXT J 
320 PRINT #2 
330 NEXT I 
340 CLOSE #l:CLOSE #2 

74 



3 Redefining Character Sets 

Program 4. 

100 REM CHSET DATAMAKER 
102 GRAPHICS 1+16:CHSET=(PEEK(106}-8} 

*256 
105 DIM F$ (14). oF$ (14) 
110 POSITION 3.0:? #6;"character set" 
120 POSITION 5.2:7 #6;"datamaker" 
130 ? #6:7 #6;"THIS UTILITY CREATES" 
140? #6;"A SET OF DATA STATE-"; 
150 ? #6;"MENTS FROM A SAVED" 
160 7 #6;" CHARACTER SET. IT" 
170 ? #6;"oPTIMIZES BY ONLY" 
180 ? #6;"LISTING CHARACTERS" 
190 ? #6;"NoT PRESENT IN THE" 
200 ? #6; "STANDARD CHARACTER" 
210 7 #6; "SET." 
220 ? #6:7 #6;"PRESS ~~~H~rr" 
230 IF PEEK(53279} <> 3 THEN 230 
240 GRAPHICS 1+16 
250 7 #6;"THE DATA STATEMENTS" 
260 7 #6;"WILL BE WRITTEN" 
270 ? #6;"AS A list FILE." 
280 7 #6;"USE enter TO MERGE" 
290 ? #6;"THE DATA WITH YOUR" 
300 ? #6;" PRoGRA~1 ... : 7 #6:? #6;" [Ba:O[BU;. 

(jj~~[Ba:r::t::[B" : 7 .. 6; "n:(jj.[!!£rr::u;r::[!![j[BU;.~[BO " 
305 POKE 82,0:PoKE 87,0 
310? "{UP}{DEL LINE}";:INPUT F$:IF F 

$= .... THEN 310 
315 IF F$="C" OR F$="C:" THEN CASS=I: 

GOTO 332 
320 ? "{ 6 UP} {6 DEL LIN E } [Ba:O[BU;.OC[[O[jj[[O 

{8 SPACES}(jj~~~a:r::t::[B":? :? 
330? "{UP}{DEL LINE}";:INPUT OF$:IF 

OF$="" THEN 330 
335 ? "{ 3 UP} {3 DEL LINE} [Ba:O[BU;.~~a:[B.E!] 

.(jjOCU; { 5 SPA C E S } n:r::Or::.~Or::ii[BI::[Ba:O~" : ? 
: ? 

340 INPUT SLINE 
345 CLOSE #1 
350 GRAPHICS 2+16:SETCOLOR 4~3~0 
360 IF CASS THEN 7 #6:? #6;"POSITION 

CHARACTER":? #6;"SET TAPE,HIT U;[BO 
[[U;a:" 

75 



3 Redetining Character Sets 

370 POSITION 5~6:? #6;"working{3 N}" 
375 GOSUB 1000:REM LOAD CHARACTER SET 
377 IF CASS THEN? #6;"{CLEAR}INSERT 

OUTPUT TAPE,":? #6;"PRESS ~~DOC~~" 
380 OPEN #2,8,0,OF$:POSITION 5,6:? #6 

; "~f!:U;mlH[L~ {3 ~}" 
381 ? #2;SLINE;"CHSET=(PEEK(106)-8)*2 

56:FOR 1=0 TO 1023:POKE CHSET+I,P 
EEK(57344+I):NEXT I" 

382 ? #2;SLINE+l;"RESTORE ";SLINE+5 
383 ? #2;SLINE+2;"READ A:IF A=-l THEN 

RETURN" 
384 ? #2;SLINE+3;"FOR J=O TO 7:READ B 

:POKE CHSET+A*8+J,B:NEXT J" 
385 ? #2;SLINE+4;"GOTO ";SLINE+2 
387 LINE=SLINE+4 
390 FOR 1=0 TO 127:F=0 
400 FOR J=O TO 7 
420 IF PEEK(CHSET+I*8+J)<>PEEK(57344+ 

I *8+J) THEN F= 1 
430 NEXT J 
440 IF NOT F THEN 460 
445 LINE=LINE+l 
450 ? #2;LINE;" DATA ";:? #2;I;:FOR J 

=0 TO 7:? #2;"~";PEEK(CHSET+I*8+J 
);:NEXT J:? #2 

460 NEXT I:? #2;LINE+l;"DATA -1" 
470? "All finished! Use ENTER ";CHR 

$(34);OF$ 
480? "to merge the file." 
490 END 
1000 REM HIGH-SPEED LOAD OF CHARACTER 

SET 
1005 OPEN #1~4~0~F$:REM OPEN FILE 
1010 X=16:REM $10 
1020 ICCOM=834:ICBADR=836:ICBLEN=840 
1030 POKE ICBADR+X+l~CHSET/256:POKE I 

CBADR+X~O 

1040 POKE ICBLEN+X+l~4:POKE ICBLEN+X~ 

o 
1050 POKE ICCOM+X,7:A=USR(ADR("hhhDLV 

~"),X):REM CALL CIO 
1060 CLOSE #l:RETURN 

76 



3 Redefining Character Sets 

Character Set Utilities 
Fred Pinho 

II1 addition to providing some useful utilities for working with redefined 
characters, this article discusses memory allocation and the various ways 
of storing machine lnngunge subroutines. 

The Atmi computer has the ability to redefine its character set at 
will. Making full use of this power, however, requires some 
programming. It isn't available at the flick of a switch or the touch 
of a key . To help in this effort, I'd like to present two simple 
machine language utilities for use in the text modes (GRAPHICS 
0, 1, 2). 

To set the stage, here's a brief overview of the Atari character 
set. A character set is really just a table of shapes which defines 
what a character will look like when printed to the screen or to a 
printer. The characters are used solely for communication with 
the human operator. The computer, as always, is manipulating 
numbers, not letters or graphics symbols . However, we think 
very clumsily, if at all, in pure numbers. The computer graciously 
converts its thoughts into symbols that we can understand and 
manipulate. 

The set is stored in Read Only Memory (ROM) beginning at 
memory location 57344. Each character is stored within eight bytes 
of information. This provides an eight-by-eight grid for defining a 
character. Within each byte, a one means a dot is turned on by 
the video display. A zero leaves the dot off. There are 128 regular 
characters plus inverse. Since inverse characters can be generated 
from the normal, only the regular characters are stored. Thus, the 
Atari character set contains 1024 bytes (8*128). 

Before it can do its thing, the computer needs to know the 
location of the character set. This is stored in two registers: the 
"shadow" register (CHBAS = 756 decimal) and the hardware 
register (CHBASE = 54281). The computer actually uses the 
hardware register to locate the character set. However, every 
60th of a second, dUling vertical blank of the TV screen, it goes to 
the shadow register and transfers its contents to the hardware 
register. 

77 



3 Redelining Character Sets 

From BASIC, if you wish to change the location of the char
acter set, you must POKE the new location into the shadow re
gister, not the hardware register. If you POKEd into the hardware 
register, you would see nothing, as it would be wiped out im
mediately by the copy from its shadow. The setup of the two 
registers makes it impossible to have multiple character sets on 
the screen at the same time when using BASIC. However, it can 
be done with machine language subroutines. 

What do you store in the character registers? You store the 
page number of the beginning memOlY location of the set. What's 
a page number? The computer breaks down memory into 256-byte 
"pages" (recall that the range of numbers that can be stored in a 
single byte is 0 to 255 for a total of 256). The page number is just a 
fancy way of indicating a multiple of 256. To get the page number, 
divide your memOlY address by 256. If your answer doesn't come 
out to an exact number, you're in h·ouble. Run, don't walk, to 
another memory location that is exactly divisible. This is important 
because your programs will not work if your page calculation is 
incorrect. 

The full character set, plus inverse, can be displayed in 
graphics mode o. Inverse characters cannot be displayed in 
graphics modes 1 and 2. In addition, these modes can display 
only half of the full set at anyone time (64 characters). Thus, in 
these modes, you are limited to displaying either capital letters, 
numbers and punctuation, or lowercase letters and graphics sym
bols. From BASIC, you can't have both. 

As you can see, the power of the redefinable character set is 
there, but it's not available without some programming effort. 
What's required to use redefined and multiple character sets? 
Three main steps must be considered. 

1) Relocating the original character set from ROM into Random 
Access Memory (RAM) . 
2) Revising the relocated, RAM-based, character set. 
3) Providing the computer with a program that can switch be
tween character sets at predictable tiI1"\eS during the TV display 
process. 

Relocating The Character Set 
Reloca ting the character set is sim pie in principle: PEEK each 
ROM location and POKE it into the desired RAM location. The 
first problem arises as to where to store the set. One common 
solution is to lower RAMTOP. This memory location (106) de-

78 



3 Redefining Character Sets 

fines the upper limit of available memory . By POKEing a lower 
page number into this loca tion, you can fool the computer into 
thinking it has less memory than ac tually installed. The charac
ter set can then be relocated to this area. Note, however, that 
this hidden area is not completely safe. Certain programming 
operations can cause unanticipated visits into this area by the 
computer. This would have a disas trous effect on your charac
ters . Solutions to this problem would involve avoiding the guilty 
program commands and/or allocating extra, wasted memory 
above RAMTOP. 

Another way is to reloca te the set jus t below the display 
list. You have to be careful not to overrun the display list. Also, 
you have to plan your program so that it doesn't expand into 
your n ew character se t. Even if your program is properly sized, 
you can s till run into problems with an overly-obese run/time 
stack . This software s tack is es tablished by BASIC and resides 
just above your BASIC program area. It s tores needed informa
tion for GOSUB and FOR/NEXT routines. If you exit from a 
FOR/NEXT loop before it finishes counting down, an entry is 
left on the stack. If this loop is used frequently, the s tack will 
grow until it a ttacks your character se t. The solution is careful 
use of the POP command to clean up the stack whenever you 
prematurely exit from a loop . Table 1 will allow you to relocate 
your set without interfering with the display list . 

Another possibility would be to relocate your character set 
into a string. Ju st DIMension it for the proper size and then use 
the ADR functi on to loca te the first memory location. This 
method would certainly provide a safe loca tion . However, 
another problem arises. 

Note that w hen you reloca te a character set there are certain 
limita tions. The full se t (GRAPHICS 0) must s tart on a 1K bound
ary (i. e., the first memory loca tion must be a multiple of 1024). 
The reduced set for GRAPHICS 1 and 2 must start on a 1I2K 
boundary (multiple of 512). This poses no problem for the first 
two storage me thods. However, if you wish to use the s tring
storage method, yo u w ill have to exp end some ex tra program
ming effort. You must insure that the s tring begins on the proper 
memory boundary. 

Which s torage me thod is best? I' ll leave that up to you and 
to the demands of yo ur program . 

79 



3 Redefining Character Sets 

Relocation of the Character Set Beneath the Display List. 

GRAPHICS Relocate at the Indicated Offset (in Pages) 
MODE from RAMTOP 

Full Set (1024 bytes) Half Set (512 bytes) 

o 8 Won't work 
1 8 6 
2 8 4 
3 8 4 
4 
5 
6 
7 
8 

8 
12 
16 
24 
36 

6 
8 

12 
20 
34 

Note: Graphics 1Il0des nre il/c/uded sil/ce cer fnil/ npplicnfiol/ s IIlnIj require 
plotting of characters to tlie grnphics screen. 

Example: 
Relocate the first half of the character set so it resides just 

below the GRAPHICS 1 display list. Label the first memory 
location of the set as BEGIN. 

BEGIN = (PEEK(106)-6)*256 

Once you've chosen the location, the next step is to move 
the character set. Using the PEEK-POKE method works OK, 
but it's too slow. If you've chosen to store your new character 
set in a string, then you could also relocate your set using the 
Atari's string handling routines, which are fast. This involves 
modifying the variable value table to fool the computer into 
thinking that one string is located at the ROM-based character 
set. This technique is described by Bill Wilkinson (COMPUTE!, 
January 1982, #20). Use of this technique would also solve your 
memory boundary problem. Note that there is a BASIC bug 
that does not allow the correct movement of string characters 
in multiples of 256. Thus you would have to transfer either 513 
or 1025 bytes, instead of 512 or 1024 bytes. The most general, 
quickest and hassle-free method is to use a machine language 
subroutine. As usual , a decision must first be made. Where do 
you store your routine in order to protect it from BASIC's vora-

80 



3 Redefining Character Sets 

cious appetite? Here are three good methods: 

1. In page six (begins at memory location 1536). This page of 
memory was set aside by the Atari designers for use by the 
BASIC programmer. Generally, you can safely store machine 
language programs here. You then access them by the USR 
command (X = USR (1536)) . Note, however, that the first 128 
bytes of page six are not always safe. If you perform cassette 
input/output during the program, you could lose this first block 
of memory. To be absolutely safe, store your routine only in 
the last half of the page. 
2. As a string. The method that I like is to store the program 
commands as graphics symbols within a string. Take the 
machine language number (in decimal), go to the AT ASCII 
table (Appendix C in your Atari BASIC Reference Manual), find 
the equivalent graphics symbol, and type it into the string. You 
then access the machine language program by: 

X=USR (ADR(MVCHR$)) 

Remember to DIMension this string first . With this method 
you are not limited in the size of your program as you would 
be with page six storage, and your program is safe. 
3. Within an array. Atari BASIC allocates memory within the 
string/array area in the order in which you DIMension it. This 
location doesn't change thereafter. Note that this is not true of 
many other machines. Thus, if you DIMension a string followed 
by an array, you can locate the array relative to the string by 
use of the ADR function. 

10 DIM AA$(l), MVCHR(32) 
20 X = USR(ADR(AA$) + 1) 

AA$ is meaningless except that you can determine its memory 
location . If you POKE your machine language program into the 
array MVCHR, you can always access it in the memory location 
following AA$. This method, however, can chew up large gobs 
of memory. Each cell in the array takes six bytes . Be careful to 
type these DIMension statements sequentially. 

Which method should you use? Again, it depends . I like 
the string method since it is safe and memory-efficient. The 
efficiency arises from storing data with a single symbol, rather 
than storing each integer of the number plus a comma in DATA 
statements. You also avoid the overhead of the program lines 
required for READing the data statements. 

81 



3 Redefining Character Sets 

To aid your programming efforts, I've included a machine 
language routine in Programs I, 2, 3, 4, and 5. This routine will 
rapidly relocate your character set. Program 1 is listed in as
sembly language. The others are BASIC versions which 
demonstrate the various ways of storing a machine language 
routine in memory. This routine uses four zero-page memory 
locations (203-206). These locations have been set aside by Atari 
for programming use and are safe . To use them, POKE the 
address of your new character set into locations 203 and 204. 
As always, the least significant byte of the 16-bit address is 
POKEd first, followed by the high byte . Since the set must start 
on either a 512 or 1024-byte boundary, the least significant byte 
must always be zero. Then POKE the page number of the char
acter set address into location 204. Memory locations 205 and 
206 are set by the machine language routine to point to the 
character set in ROM. Note that location 205 is also set to zero. 
Finally, do a USR call to your routine. 

Switching Between Character Sets 
Remember that, because of the setup of the two character set 
registers, it's not possible to use more than one set at a time via 
BASIC. You can display as many sets as you wish, however, 
with display list interrupts. Well, almost. Actually you're limited 
to some extent by memory availability and the constraints of 
the display list. I won' t go into detail here; this subject has been 
covered by numerous articles . It's enough to say that: 

1) The interrupt will cause the 6502 processor to stop at a given 
scan line of the TV display . 
2) It will then execute a machine language routine of your 
choice. The address of the routine must be specified in locations 
512 and 513. 
3) Once done, the 6502 will then merrily resume its TV display. 

If the interrupt is done properly, all the action will occur 
while the TV beam is off the visible part of the screen. Thus the 
changes performed will appear instantaneous. Program 3 is a 
routine to allow the use of a redefined character set in the upper 
window of a GRAPHICS 1 or 2 display and the standard set in 
the text window. This routine simply loads the page number of 
the old ROM-based character set into the hardware character 
base register (CHBASE = 54281). What good is that, you ask? 

82 



3 Redefining Character Sets 

This is done normally anyhow. Here's the strategy: 

1) In BASIC, load the address of your new set into the shadow 
character base register. This is copied into the hardware register 
at the start of each TV screen display (every 60th of a second). 
2) Set a display list interrupt at the last line of the GRAPHICS 1 
or 2 screen. Then the interrupt will begin at the first line of the 
text window. 
3) The interrupt routine loads the address of the standard char
acter set into the hardware register. Thus the text window re
gains all the standard characters. 
4) Things remain standard until vertical blank. At this time the 
TV beam is brought back to the top of the screen in order to 
begin a fresh sweep of the display. During vertical blank the 
contents of the shadow are automatically copied into the 
hardware register. Thus we've restored the new character set. 

Note that the interrupt routine stores a number (any 
number will do) into memory location WSYNC (54282). This 
causes the processor to wait until the end of the blank period at 
the start of the next horizontal line. Thus the character set is 
switched while the electron beam is off the visible portion of 
the display. The result is a neat, clean change. Program 6 is an 
assembly listing of the display list interrupt routine, with deci
mal equivalents in parentheses to use in your DATA statements. 
(See line 31000 of Program 7.) 

Notes: To set the interrupt, do the following: 
1. Load the routine into memory. 
2. POKE the address for the interrupt rou tine into locatiolls 512 and 

513 . POKE the low byte of the two-byte address first. 
3. POKE the interrupt into the display list. Set the line before the 

one you want. 
4. Last, enable the interrupt by POKEing 192 into location 54286. To 
disable the interrllpt, POKE zero into this loention. 

Pulling It Together 
Program 7 demonstrates the techniques discussed . It prints an 
identical set of characters to the text window and to the 
GRAPHICS 1 screen. The expected characters are seen in the 
text window. However, the GRAPHICS 1 display shows a band 
of archers beseiging a castle . 

83 



3 Redelining Character Sets 

Line No. 
1 

10-40 
50-60 
100 

29000 

29010 

29020 

29030-29040 

29050-29060 

30000-30060 
31000 

Calls initializing subroutine and turns screen 
display back on. 
Draws a border using a redefined character. 
Prints characters. 
Uses STOP instead of END, as this allows you to 
experiment and print to the GRAPHICS 1 screen in 
direct mode. END does not. 
Turns off display to speed processing. Calculates 
location of new character set (BEGIN) at six pages 
belowRAMTOP. 
POKEs the low and high bytes of the new set loca
tion into memory locations 203 and 204. 
DIMensions the string for relocation of the old set. 
Defines the string and calls the machine language 
routine. 
Reads the redefined character data and POKEs it 
into the relocated set. 
Calculates the location of the display list. POKEs 
an interrupt into the last GRAPHICS lline. Reads 
the interrupt routine into page six of memory. 
POKEs the address of page six into loca tions 512 
and 513. Finally, it enables the interrupt. 
New character data. 
Data for interrupt routine. 

You can do a simple experiment with this routine. To prove the 
necessity of writing to WSYNC in the interrupt routine, elimi
nate the fourth through sixth numbers in line 31000 (i.e., 141, 
10,212). Also change line 29050 to FROM X = 0 TO 7. Run the 
program again. You'll see that the last scan line of the 
GRAPHICS 1 screen stops about halfway across the screen. 
Also, the point at which it stops tends to jiggle annoyingly. 
Other weird lines appear when you hit a key. Finally, delete 
POKE 756, BEGIN/256 from line 29000. RUN and you'll see 
only normal characters. 

There you have it. These programs only scratch the surface. 
With some further programming, you can have even more 
character sets on the screen simultaneously. You can also make 
your characters blink or change color without interfering with 
your BASIC program. 

84 



3 Redefining Character Sets 

Program 1. Character Set Relocater - Assembly Listing. 

PLA 

LDA #0 
STA $CD 

TAY 

;Pull unused byte 
off stack 

;Low byte of 
ROM-based 
character set 

;Set register 
Y to zero 

;*See Notes LDA * 
STA $CF 

LOAD LDA ($CD) ~ Y 

STA ($CB) ~ Y 
INY 

;High byte of ROM set 
;Load from ROM 

BNE LOAD 
INC $CC 

INC $CE 
LDA $CE 
CMP * 

BNE LOAD 

RTS 

; Store into RAM 
;Increment Y 
;Loop 256 times 
;Increment RAM page 

number 
;Same for ROM 

; Compare to final 
page number 
*See Notes 

;If not done~ 

loop again 
;Return 

Notes a ll Progra lll s 1,2,3,4, and 5: 
Progra lll s 2 through 5 are BASIC versioll s of Progralll 1 . To custoll1ize, 

lllake the fo llowillg changes (if lI eeded) . Relllelllber to call vert the OAT A 
I/umbers below to character equivalellts when using Progra l'n 3 . 

1. To reloca te the en tire character set, be sure the 8th OA T A number is 224 , 
and the 25th OAT A 1ll.lI l/bel' is 228 . 

2. To relocate ollly the fi rst half of the cha racter set (uppercase, nUlI1bers, 
pu I7 ctuatioll ), be sure the 8th OAT A II UllliJer is 224, a lid the 25th OA T A 
number is 226 . 

3 . To reloca te only the seco lld half of the character set (lowercase, graphics 
symbols), be su I'e the 8th OAT A lIulI1ber is 226, and the 25th OA T A 11 U II1ber 
is 228 . 

85 



3 Redefining Character Sets 

Program 2. Store machine language routine in page six. 

10 RESTORE 30:FOR X=O TO 27:READ Y:PO 
KE 1536+X~Y:NEXT X 

20 Z =USR ( 1536) 
30 DATA 104~169~0,133,205~168~169,224 

,133,206,177~205~145~203~200~208,2 

49,230,204,230,206~165,206,201~226 
40 DATA 208,239~96 

Program 3. Store machine routine as a string. 

10 DIM MVCHR$(28) 
20M V C H R $ = .. h D{ , } {£B} ~[U] {II} {[§} r:=:~r:: { CD rnrr£:i 

~[j~[jr:=:l;IIr:=:~I]!£:ir:!:' .. 
30 Z=USR(ADR(MVCHR$» 

Program 4. Store machine language routine as a string converted 
from DATA statements. 

10 DIM MVCHR$(28) 
20 RESTORE 40:FOR 1=1 TO 28:READ Y:MV 

CHR$(I}=CHR$(Y}:NEXT I 
30 Z=USR(ADR(MVCHR$}} 
40 DATA 104,169,0~133~205~168,169,224 

,133~206~177~205~145~203~200~208,2 

49,230~204~230,206~165,206,201,226 

50 DATA 208,239,96 

Program 5. Store machine language routine within a matrix. 

10 DIM AA$(1),MVCHR(27) 
20 RESTORE 40:FOR X=l TO 28:READ Y:PO 

KE ADR(AA$)+X~Y:NEXT X 
30 Z=USR(ADRCAA$)+l) 
40 DATA 104,169~0,133,205~168,169,224 

,133,206,177,205,145,203,200,208,2 
49,230,204,230,206,165,206,201,226 

50 DATA 208,239,96 

86 



3 Redefining Character Sets 

Program 6. Display Listlnterrupl. 

PHA 

LDA # $EO 

STA WSYNC 

STA $D409 

PLA 

RTI 

Program 7. Demonstration. 

;Save accumulator 
(decimal 72). 

;Load ROM page num
ber (decimal 169~ 

224) . 
;Write to WSYNC 

(deci mal 141 ~ 10~ 
212) . 

;Store page number 
in hardware regi
ster (decimal 141, 
9~212). 

;Restore accumu
lator (decimal 
104) . 

;Return (decimal 
64) . 

1 GOSUB 29000:POKE 559~34 
10 FOR X=O TO 18 STEP 2:COLOR 154:PLO 

T X~O:COLOR 26:PLOT X~19:NEXT X 
20 FOR X=l TO 19 STEP 2:COLOR 26:PLOT 

X~O:COLOR 154:PLOT X~19:NEXT X 
30 FOR Y=2 TO 18 STEP 2:COLOR 154:PLO 

T O~Y:COLOR 26:PLOT 19~Y:NEXT Y 
40 FOR Y=l TO 17 STEP 2:COLOR 26:PLOT 

O~Y:COLOR 154:PLOT 19~Y:NEXT Y 
50 POSITION 4~ 6:? #6;" I ~I.~-(~<!.#": POSITIO 

N 12.6:? #6;"---" 
60? "'~I..~(~(i:#";:?" 

100 STOP 

" __ 1"") 11 ___ " 
!f • : 

29000 GRAPHICS 1:POKE 559~0:BEGIN=(PE 
EK(106)-6)*256:POKE 756,BEGIN/2 
56 

29010 SHI=BEGIN/256:SLO=O:POKE 203~SL 
O:POKE 204~SHI 

87 



3 Redefining Character Sets 

29020 DIM MVCHR$(28):MVCHR$="h~{~} 
{ [§} r::[1~ {II} {[§} a:[!1:: { CD am:u;~[j~[ja:~a: 
[m~U; [!:: < II : Z == U S R ( AD R ( M V C H R $) ) : 

RESTORE 30000 
29030 READ X:IF X=-l THEN 29050 
29040 FOR y=o TO 7:READ Z:POKE X+Y+BE 

GIN~Z:NEXT Y:GOTO 29030 
29050 DLST=PEEK(560)+256*PEEK(561):PO 

KE DLST+24~134:RESTORE 31000:FO 
R X=O TO 10:READ Y 

29060 POKE 1536+X~Y:NEXT X:POKE 512~0 
:POKE 513~6:POKE 54286~192:RETU 
RN 

30000 DATA 8~165~231~231~231~255~219~ 
255~231 

30010 DATA 24~161~162~228~232~240~227 
~227~227 

30020 DATA 40~24~60~126~66~126~219~25 
5~255 

30030 DATA 48 ~ 0~0~0~36~36~36~255~255 

30040 DATA 104~0~44~68~254~76~44~20~2 

2 

30060 DATA -1 
31000 DATA 72 ~ 169~224~141~10~212~141~ 

9~212~104~64 

Notes on Program 7: 
1. To set interrupts for the text window of each of the text lIlodes, change line 
29050 as follows: 

Text Mode Change to 

1 POKE DLST+24, 134 
o POKE DLST + 24,130 
2 POKE DLST + 14, 135 

2. To add a text wil1dow to GRAPHICS 0, POKE 4 into lI1elllory locatioll 
703. See "Add a Text Willdow to GRAPH fCS 0," reprin ted ill this book. 
3. If you change the mode as in 2 above, dOIl ' t forget to adjust the character 
set storage (BEGIN) in line 29000 . Also relllelllber the GRAPHICS call in 
line 29000. 

88 







~ Animation With Character Graphics 

TexlPlol 
Charles Brannon 

TextPlot is a machine language graphics utility that lets you 
mix text and graphics . It is designed to work with the four-color 
graphics modes th ree, five, and seven. It will place any ATASCII 
character - upper/lowercase, graphics, numbers, and special 
symbols in normal or reverse field - on the graphics screen in 
any of three colors. The size of the characters varies in propor
tion to the pixel s ize: GRAPHICS 3 characters are four times as 
large as those in GRAPHICS 7, whose characters are the same 
size and proportions as those in GRAPHICS 2 (text mode) . 
Through standard display list modification, any of the three 
sizes of text can be mixed with the other modes. TextPlot enables 
you to use a total of eight text modes. (See the description of the 
"bonus" text modes later.) 

Text On Graphics Lines 
TextPlot, unlike the text modes, ca n be mixed on the same line 
with normal graphics. You ca n labe l charts and graphs, or quick
ly draw pictures with the gra phics characters and then embellish 
them. TextPlot even works with an alternate character set, so 
you can design special "shapes" and ITwve them around the 
screen for high-speed animation. The text in graphics mode 
three is huge, a rea l eyeca tche r. Unlike the other text modes, 
TextPlot le ts you position any character at any possible vertical 
resolution (although horizon tall y it's the same). And all this 
was without modifying the display lis t! 

Luckily, TextPlot is easy to use . You load it into memory 
(it goes into th e rese rved memory a t $600 h ex) with a BASIC 
loader or BINARY LOAD, via DOS. You then select the graphics 
mode in which to use it with the ordinary GRAPHICS com
mand. (TextPlot works in e ither full-screen or window modes.) 
You then " plot" each character with the command: 

A = USR(1536,chr, co lor,column ,row) 

Do n't let thi s machine lan guage call intimidate you. It merely 
enables a USeR command. The othe r variables for the function 
communicate with TextPlot. ]f yo u leave one out, or add an 

91 



"Animation With Character Graphics 

extra one, TextPlot will ring the bell to warn you. 

CHR: The ASCII value of the desired character [like ASC("K")]. 
COLOR: The color of the character (just like the COLOR state
ment, 1-3) . 
COLUMN: The horizontal position of the character. This de
pends on the mode: 

Mode Max Columns Max Rows 

3 5 16 
5 10 40 
6 10 88 
7 20 88 
8 20 184 

ROW: The vertical position of the character. This also depends 
on the mode (see above), and is the line at which you want the 
character to start. Remember that each character is just eight 
lines of dots, so they can start at any pixel position ver tically. 
The horizontal resolution is limited by the internal storage of 
graphics information on the screen. 

So, to place a blue capi tal let ter "A" on the screen in 
graphics mode three, at the second column and tenth row, use 
the command: 

A = USR(1536,65,3,2, 10) 

where 65 is the AT ASCII value of "A"; 3 is the color; 2 is the 
column; 10 is the row. Strings of text can be placed on the screen 
as well: 

DIM T$(20) 
T$ = "That's Incredible!" 
GRAPHICS 7 + 16 
FOR 1=1 TO LEN(T$) 

A = ASC(T$(I,I)) 
V = USR(1536,A, l,l,2) 

NEXT I 

Notice that you can use any variable with the USR function, 
not just A. 

Bonus Texl Modes 
TextPlot was designed for the four-color graphics modes . 
Strange things can happen if yo u use it in a ny other mode. In 
modes six and eight, however, yo u will indeed get tex t. In 
GRAPHICS 6, the characters are the same size as those in 

92 



~ Animation With Character Graphics 

GRAPHICS 5. There is a blank line between each row of dots in 
each character. A character plotted in COLOR 1 or COLOR 2 
will also skip horizontally . COLOR 3 will create characters di
vided into "bands." The effect is similar to the IBM logo (see 
Figure 1). This same oddity results in "artifacting" in 
GRAPHICS 8. What does that mean? You get three colors of 
text in GRAPHICS 8! Depending on background and dot colors, 
COLOR 1 is purple, COLOR 2 is green, and COLOR 3 is white. 
(See Chapter 6 for more information on artifacting.) The text is 
twice the width of GRAPHICS 0 characters, but the same height, 
just like GRAPHICS 1. Other strange patterns and effects can 
be generated by using numbers other than 0-3 in the color as
signment. A seven creates a "3-D" overlay effect, for example. 

I have included a sample program that lets you type on the 
screen using a flashing cursor. It works in graphics mode seven. 
You can use all the standard keys, but only a few of the editing 
keys work. What can I say? It's not supposed to be a word pro
cessor! The lines from 20000 and up will place TextPlot into 
memory at page six. You can save them to disk or tape and 
IT\erge them with other programs using the LIST/ENTER 
combina tion. 

For Cassette 

Rewind cassette, press 
PLA Y & RECORD, and 
enter: 
LlST"C:" ,20000 ,32767 

Press RETURN twice. 
To merge with a program 
already in memory: 
Rewind tape, press PLA Y, 

For Disk 

Enter: 
LlST"D:TXTPL T. ENT", 20000,32767 

and press RETURN. 

enter: Enter: 
ENTER "C:" ENTER "D:TXTPL T.ENT" 
and press RETURN twice. and press RETURN. 

Advanced readers may want to know how TextPlot works 
(if you haven't figured it out already). You are probably familiar 
with how to plot characters on the GRAPHICS 8 screen by PEEK
ing the character generator and then placing these bit patterns 
directly into the screen memory for GRAPHICS 8. It works 
because each byte in GRAPHICS 8 (and modes four and six, 
too) displays eight dots, or pixels. A one-bit in the byte means 
a "lit" pixel and a zero is a dark ("background") dot. The four-

93 



16 Animation With Character Graphics 

color modes have to split the Load be tween two by tes. Each 
byte displays four pixels . Two bits hold the color (binary) : 01 
color one, 10 color two, 11 colo r three. (See Figure 2.) TextPlot 
uses the character genera tor (indirectly through CHBAS, 756 
decimal) to get the bit map and then "pulls" the by te accordion
s tyle into two color bytes. Theoretically, any character could be 
a mixture of the three colors, but it' s hard to implement and 
use . (Unless you use Antic Display modes 4 or 5 .... ) 

Using TexlPlol As A BINARY FILE 
The Atari DOS le ts you store machine lang uage files on the 
disk and load them back, both by DOS me nu selec ti on s. You 
ca n even have Tex tPlot load in automatica lly with the DOS, if 
you' re sure you'll a lways need it. After placing Tex tPlo t into 
RAM, go to DOS w ith the command: DOS. If you have DOS 
2.0S, there will be a pause as the Disk Utility Package loads . 
The DOS menu should be d isplayed . Typ e K <RETURN >. After 
the prompt, ente r: 

TXTPLT. OBJ,0600,06FF <RETURN> 

[f you want TextP lo t to automa tica lly load with DOS, ente r: 

AUTORUN .SYS,0600,06FF <RETURN> 

ins tea d. If you do n't do thi s, yo u' ll have to go to DOS and enter 
L (Load) and reply w ith TXTPL T.OS] to load it and S <RETURN > 
to exit to BASIC. 

Figure 1. 
G RAPHICS 6 

94 



4. Animation With Character Graphics 

Figure 2. 

BIT 

PIXEL 

7 6 

GRAPHICS MODES 
4,6, and 8 

5 4 3 2 1 o 

I I I I I I I I I 
1 2 3 4 5 6 

GRAPHICS MODES 
3,5, and 7 

7 8 

BIT 7 6 5 4 3 2 1 0 

_olofo'.' 
PIXEL 1 2 3 4 

Program. 

10 REM SUPER SCREEN-TextPlot Demo 
20 
30 
40 
50 
60 

REM 
REM 
REM 
REM 
REM 

Use all the ATARI characters 
including cursor up/down 
left/right~ backspace~ RETURN~ 

etc . Press CAPS/LOWR to 
select upper or lower case~ 

70 
80 

REM 
REI"l 

as usual. Atari Logo key 
toggles reverse field. 

90 REM Press console buttons for diff 
erent colors 

100 REM ESC switches modes (7 vs. 8) 
110 ML=1536 
120 IF PEEK(ML}=O THEN GOSUB 470 
130 XL=19:YL=11:DIM CHAR$(480)~CS(480 

) 

140 CHARS=" ":CHARS(480}=" ":CHARS(2) 
=CHARS:CS=CHAR$ 

150 GRAPHICS 7+G+16:0PEN #1~4~0~"1<:" 
160 IF G=l THEN SETCOLOR 2~0~0 
170 LM=l:X=LM:Y=O:C=l 

95 



" An\malion With Character Graphics 

180 POS=X+Y=20+1:CHR=ASC(CHAR$(POS~PO 
S}):RVS=CHR:SC=ASC(C$(POS)}-31 

190 POKE 20,0:RV5=RVS+128:IF RVS}255 
THEN RVS=RVS-256 

200 A=USR(ML~RVS,C~X,Y*8} 
210 IF PEEK(764}{}255 THEN 270 
220 T=PEEK(53279}:IF T=6 THEN C=l 
230 IF T=5 THEN C=2 
240 IF T=3 THEN C=3 
250 IF PEEK(20}{15 THEN 210 
260 GOTO 190 
270 A=USR(ML~CHR,SC,X~Y*8} 
280 GET #l,KEY:E=O:DL=E 
290 IF KEY}31 AND KEY<123 THEN 430 
300 IF KEY=ASC("{CLEAR}"} THEN CLOSE 

#l:GOTO 140 
310 IF KEY=ASC("{ESC}"} THEN CLOSE #1 

:G=l-G:GOTO 140 
320 IF KEY=ASC("{UP}") THEN Y=Y-1:E=1 
330 IF KEY=ASC("{DOWN}") THEN Y=Y+1:E 

=1 
340 IF KEY=ASC("{LEFT}") THEN X=X-l:E 

=1 
350 IF KEY=ASC (" {RIGHT} ") THEN X=X+l: 

E=l 
360 IF KEY=155 THEN X=LM:Y=Y+l:E=l 
370 IF KEY=ASC("{BACK S}"} THEN X=X-l 

:KEY=32:DL=1 
380 IF X<LM THEN X=XL:Y=Y-1 
390 IF X}XL THEN X=LM:Y=Y+1 
400 IF Y}YL+YL*G THEN Y=O 
410 IF Y<O THEN Y=YL 
420 IF E THEN 180 
430 A=USR(ML~KEY~C~X~Y*8) 
440 POS=X+Y*20+1:CHAR$(POS~POS)=CHR$( 

KEY}:C$(POS,POS)=CHR$(31+C) 
450 IF DL=O THEN X=X+1:IF X}XL THEN X 

=LM:Y=Y+1:IF Y}YL THEN Y=O 
460 GOTO 180 
470 ML=1536:FOR 1=0 TO 252:READ A:POK 

E ML+I~A:NEXT I:RETURN 
480 DATA 104,240~10~201~4,240 

96 



490 DATA 11~170~104~104~202~208 

500 DATA 251~169~253~76~164~246 
510 DATA 104~j33~195~104~201~128 
520 DATA 144~4~41~127~198~195 

530 DATA 170~141~250~6~224~96 

540 DATA 176~15~169~64~224~32 

550 DATA 144~2~169~224~24~109 
560 DATA 250 ~6~1 41~250~6~104 

570 DATA 104~141~251~6~104~104 

580 DATA 141~252~6~14~252~6 

590 DATA 104~104~141~253~6~133 

600 DATA 186~166~87~169~10~224 

610 DATA 3~240~8~169~20~224 
620 DATA 5~240~2~169~40,133 
630 DATA 207~133~187~165~88~133 
640 DATA 203~165~89~133~204~32 
650 DATA 228~6~24~173~252~6 
660 DATA 101~203~133~203~144~2 

670 DATA 230~204~24~165~203~101 
680 DATA 212~133~203~165~204~101 
690 DATA 213~133~204~173~250~6 
700 DATA 133~187~169~8~133~186 
710 DATA 32~228~6~165~212~133 
720 DATA 205~173~244~2~101~213 
730 DATA 133~206~160~0~162~8 
740 DATA 169~0,133~208,133~209 

750 DATA 177,205~69~195,72~104 

760 DATA 10,72,144~8~24~173 

770 DATA 251,6~5,208~133,208 
780 DATA 224~1,240~8,6,208 
790 DATA 38,209~6~208,38,209 
800 DATA 202~208,228,104,152~72 
810 DATA 160,O,165~209~145~203 

820 DATA 200,165,208~145~203,104 
830 DATA 168~24~165~203~101~207 

840 DATA 133,203,144,2,230~204 

850 DATA 200~192,8~208~183~96 
860 DATA 169.0,133~212~162.8 

870 DATA 70~186~144~3~24~101 
880 DATA 187~106~102~212~202~208 

890 DATA 243,133~213,96~0~1 
900 DATA 28 

97 



4 Animation With Character Graphics 

Using TexlPlol For 
Animated Games 
David Plotkin 

When typing in this program, be especially careful typing the numbers in 
the DATA statements and USR cOlllll1al1ds. A mistake could cause your 
machine to lock up, that is , 110 longer respond to the external world, 
requ iring a power-on reset. 

If you're like me, the first thing you did when you bought your 
new Atari was run out to buy some games for it, probably with 
visions of multicolored, arcade-style entertainment in mind. The 
computer store where I purchased my Atari also sells Apples. 
The wide assortment of exciting, machine language games avail
able on the Apple and not on the Atari was a real disappointment. 
Time and time again I saw fascinating games which were not 
available to me. The recent release of 111any new Atari programs 
has somewhat alleviated this, but the problem still exists. To make 
things even more frustrating, many interesting games are not all 
that complex from a programming standpoint. 

I decided to h-y my hand at programming these games myself. 
Having completed the book on how to program in BASIC, I 
charged ahead and wrote my first "arcade-style" game, which I 
entitled "Space Rocks ." It was a home-grown version of Asteroids. 
The program had it all: graphics, sound, multiple missiles in flight 
at once, a fancy space ship, scoring, and music . It was also ex
tremely slow. I had spent two weeks on it and each move took 
almost a minute . Ridiculous? Of course . I h-ied to speed it up by 
simplifying the graphics, but never did get it running very fast. 

The next step was to hy writing a program in a text mode. 
The Atari can manipulate text quickly, so I had limited success. 
Using a custom-designed character set also added to the text-mode 
games. Nevertheless, when there is more than one character to 
move, it can still be quite slow. I briefly considered learning 
machine language, but it's not something I'm eager to tackle . 

The program "TextPlot" (see previous article) is a first-rate 

98 



~ Animation With Character Graphics 

gaming tool. As the author said, it allows you to use text and text 
characters in graphics modes . It also works with an alternate 
character se t, as also m e ntioned briefly. But here's the kicker
since it draws the text character (and erases it also) using a machine 
language routine, it can be used to animate in high resolution 
graphics modes at machine language speeds. Thus, your character 
"A", redefined to a space ship or missile, literally zips across the 
screen , and five or ten " A's" can move across the screen without 
the frus trating BASIC characteris tic of " taking turns. /I 

By drawing the non-moving portions of your picture in a 
BASIC graphics mode, and the moving portion using TextPlot, 
you can write some colorful and challenging games. The program 
below demonsh"ates my own efforts in this regard, which I will 
tell you about shortly. But first some pointers: 

1. Animation is done by drawing, erasing, and redrawing in a 
new position. The erasing can be done in two ways. You can call 
the USR command with the character ASCII code, but in the back
ground color. Or you could ca ll USR command with the ASCII 
code 32 (blank space) in nl1Y color. By looping and using a variable 
either in the color slot or in the ASCII code slot, drawing and 
erasing is easy. Increment the X and/or Y coordinates (such as 
MXI and MYI in the progra n1) between erase and the redrawing, 
and the character moves smoo thly across the screen. This incre
menting, by the way, was done in BASIC (MXI = MX + I, etc.) 
and seems to be the limiting factor in how many characters can 
move across the screen at once without significant "taking 
turns./I 

2. It is possible to define a creature or object which consists of 
two or three redefined characters which rnove together. It is best 
to increment the location of a ll three characters and then call the 
machine language routine to move them the most smoothly. 

3. There is a large differe nce between vertical and horizontal 
resolution . Movin g a cha ra cte r one space horizontally is equi
valent to moving eight s paces ve rtically . Rem ember this when 
moving diagonally. Also, BASIC commands such as DRAWTO, 
PLOT, LOCATE, e tc ., work on the gra phics mode coordinate 
system. Thus, the horizonta l location in mode seven can vary 
from ze ro to 159, but the X coordinate input to the USR call can 
vary only from zero to 19, n ormally. Therefo re, X coordi-
na te = horizontallocatio n/eigh t. The vertical resolution is the 
sa me as the Y coordinate. 

99 



4 Animation With Character Graphics 

Note that, in the program, I have varied the X coordinate 
from 60 to 79 instead of from ze ro to 19. What this does is move 
the character down one pixel for each multiple of 20 (60 to 79 
l1l.oves the character down three pixels from where it would be 
at zero to 19) . A character moving horizontally w ill pass across 
the screen lower and lower at higher values of the X coordinate 
without changing the Y coordina te. This inva lida tes the 
relationships shown above between coordina tes and screen 
position , which work only if the X coordina te is be tween zero 
and 19. 
4. A LOCATE s tatement mean t to find or de tect one of the 
generated tex t characters cares not w hat the character is, but 
only what til e color of the charac ter is . This is because the text 
character is jus t a series of pixels se t to a p articular color. 
5. The alternate characte r se t is located in an area of RAM pro
tected by POKEing a lower number of pages into loca ti on 106, 
which s tores the number of pages (multiply by 256 to ge t by tes) 
available in memory. This is a fai rly common technique of pro
tecting memory, since the computer doesn't know about the 
memory above location 106 (see line 3200 in the program) and 
thus doesn't use it. 

In the original version of the characte r generator, a s tep
back of five pages (1280 bytes) was used. The character se t is 
four pages (lK) long, plus one ex tra . This wo rks fine in graphics 
mode zero, but does not work for thi s program. I found that 
the minimum s tep-back is 16 pages (4K), al though any l11ultiple 
of 4K (32 pages or 48 pages) wi ll work . Inte rmediate va lues led 
to part of the screen bei ng blank or to runny dots and lines being 
di splayed. A fin al point on th is : after every GRAPHICS CO I11 -

mand, you need to include a POKE 756,PEEK(106) + 1 to point 
the Character Base (CHBAS) address to the redefined character 
se t, since the GRAPHICS command rese ts the pointer to the 
ROM character set. 

Rules Of The Game 
Now to the program. You are chief gunnery officer of the Space 
Fortress Reliable, located at the outermost fr inges of the Galactic 
Empire. Although the fortress is protected by shields, there a re 
four "channels" through the shields to allow for suppl y ships 
and transporta tion of personnel. Since a ttacking vessels can 
also make use of these channels, a big lase r is mounted to fire 
down each of the chan nels. 

100 



" Animation With Character Graphics 

The channels are located directly above, below, left, and 
right of the fortress. Their width is such that only one ship at a 
time can attack from any direction. The laser is aimed in the 
appropriate direction by pushing the joystick in that direction. 
Once the laser is aimed, it fires automatically. 

As the attack progresses, however, and energy is used up, 
the shields begin to withdraw towards the fortress to maintain 
integrity. The enemy ships can come out of hyperspace and 
begin the attack through the channels closer to the fortress, so 
you have less time to fire on them. Watch out especially for the 
ships to the left and right which , although they start farther 
away than the ships above and below, move eight times as 
fast. Good luck, and good hunting. 

101 



" Animation With Character Graphics 

Program 
Line No . 

1-10 

20 

30 
40-100 

110-120 
130-170 
180-220 
230-280 

290-310 

320-350 

360-400 

500-620 

Description 

Go to the subroutines for redefining the character set and 
initializing TextPlot. 
Initialize graphics, set character base address to redefined 
character set. 

Initialize variables. 
Draw the fortress and background. 

Print "SCORE 000" on the screen. 
Erase last gun position. 

Read current joystick position. 
Aiming and firing sequence. The gun is drawn in the new 
position, and the laser is fired. If the ship is hit, it explodes. 
Updates the score on the screen, digit by digit. Jumps to the 
end of the game on high score. 
If a ship was destroyed, then uses the random number generator 
to decide whether a new ship is to be launched . The starting 
position of the new ship is moved closer to the fortress as the 
score increases. 
Moves each ship toward the fortress. If the fortress is hit by a 
ship, then jumps to the end of game routine. 
End of game routine when fortress is destroyed. 

700-710 End of game routine on winning game. 
20000-20430 Subroutine forTextPlot. 
32000-32109 Subroutine for redefining character set. 

Variables 

SC=Score J = joystick position 

J1 = 1,2,3,4 depending on joystick position 
MX1 to MX4 = X coordinate of enemy ships 
MY1 to MY4 = Y coordinate of enemy ships 
M1 to M4 = status of enemy ships; = 0 when ship is blown up; 

= 1 when ship is intact 
Starx,Stary = X and Y coordinates of stars 
ML = memory location 
START = byte address of RAMTOP 
Z, Y,STAR,N, W,I = loop variables . 

102 



4 Animation With Character Graphics 

Program. 

1 GOSUB 32000:CLR 
10 GOSUB 20000 
20 GRAPHICS 7+16:POKE 756,PEEK(106)+1 
30 SETCOLOR 2,3,4:SC=0:Jl=I:MXl=0:MYI 

=0:MX2=0:MY2=0:MX3=0:MY3=O:MX4=0:M 
Y4=0:Ml=0:M2=0:M3=0:M4=0 

40 COLOR I:FOR Y=35 TO 45:PLOT 72~Y:D 
RAWTO 95~Y:NEXT Y 

41 COLOR 2 
50 PLOT 72,35:DRAWTO 69~32:PLOT 73~35 

:DRAWTO 69,32:PLOT 72~36:DRAWTO 69 

60 PLOT 72~45:DRAWTO 69~48:PLOT 73~45 
:DRAWTO 69,48:PLOT 72~44:DRAWTO 69 
,48 

70 PLOT 95~35:DRAWTO 98~32:PLOT 94,35 
:DRAWTO 98~32:PLOT 95,36:DRAWTO 98 

BO PLOT 95~45:DRAWTO 98~48:PLOT 94~45 
:DRAWTO 9B~4B:PLOT 95~44:DRAWTO 98 
~48 

90 FOR STAR=1 TO BO:STARX=RND(0)*158+ 
I:STARY=RND(0)*94+1:PLOT STARX~STA 
RY:NEXT STAR 

100 COLOR O:FOR X=73 TO 94 STEP 2:PLO 
T X~40:NEXT X 

110 D=USR(1536~83~3~0~0):D=USR(1536~6 
7~3~ l~O) :D=USR(1536~79~3~2~O) 

120 D=USR(1536~82~3~3~0):D=USR(1536~6 
9~ 3~ 4~ 0): D=USR (1536~ 48~ 3~ 1 ~ 8): D=U 
SR(1536~48~3~2~8):D=USR(1536~48~3 

130 ON Jl GOTO 140~150~160~170 

140 D=USR(1536~32~1~70~24):GOTO 180 
150 D=USR(1536~32~1~72~34):GOTO 180 
160 D=USR(1536~32~1~70~43):GOTO 180 
170 D=USR(1536~32~1~68~34) 
180 J=STICK(O):IF J=15 THEN GOTO 290 
190 IF J=10 OR J=14 OR J=6 THEN Jl=l: 

D=USR(1536~16~1~70~24):GOTO 230 

103 



"AnimatiOn With Character Graphics 

200 

210 

220 

230 

250 

265 
270 

280 

IF J=7 THEN Jl=2:D=USR(1536~17~1~ 
72~34):GOTO 230 
IF J=5 OR J=13 OR J=9 THEN Jl=3:D 
=USR(1536 ~18~1~70~43):GOTo 230 
IF J=11 THEN Jl=4:D=USR(1536~19~1 
~68~34) 

COLOR 1:S0UND 0~25~10 ~ 8:SoUND 1~2 

8~10~8:0N Jl GoTo 250~260~270~280 
PLOT 84~27:DRAWTO 84~0:COLOR O:PL 
oT 84~27:DRAWTO 84~O:IF Ml=1 THEN 
Ml=O:D=USR(1536~15~3~MX1~MY1):SC 

=SC+2 
GOTO 290 
PLOT 104~40:DRAWTO 159~40:COLOR 0 
:PLOT 104~40:DRAWTO 159~40:IF M2= 
1 THEN M2=0:D=USR(1536~15~3~MX2~M 
Y2):SC=SC+2 
GO TO 290 
PLOT 84~54:DRAWTO 84~95:COLOR O:P 
LOT 84~54:DRAWTO 84~95:IF M3=1 TH 
EN M3=0:D=USR(1536~15~3~MX3~MY3): 
SC=SC+2:GOTO 290 
PLOT 63~40:DRAWTO 0~40:COLOR O:PL 
OT 63~40:DRAWTO 0~40:IF M4=1 THEN 
M4=0:D=USR(1536~15~3~MX4~MY4):SC 

=SC+2 
290 SOUND O~O~O~O:SOUND I~O~O~O:SOUND 

3~0~0~0:IF SC)999 THEN GOTO 700 
300 Vl=INT(SC/100):V2=INT(SC/10-VI*10 

):V3=SC-Vl*100-V2*10:Vl=Vl+48:V2= 
V2+48:V3=V3+48 

310 D=USR(1536~Vl~3~1~8):D=USR(1536~V 
2~3~2~8):D=USR(1536~V3~3~3~8) 

320 IF Ml=O THEN IF INT(RND(0)*2+1)=1 
THEN Ml=I:MX1=70:MY1=SC/75:D=USR 
(1536~20,2~MX1~MY1) 

330 IF M2=O THEN IF INTCRNDCO)*2+1)=1 
THEN M2=1:MX2=79-SC/400:MY2=33:D 

=USR(1536~21 ~2~MX2~MY2) 

340 IF M3=O THEN IF INT(RND(0}*2+1)=1 
THEN M3=1:MX3=70:MY3=70-SC/75:D= 

USR(1536~22~2~MX3~MY3) 

104 



4. Animation With Character Graphics 

350 IF M4=0 THEN IF INT(RND(O)*2+1) = 1 
THEN M4=I:MX4=60+SC/400:MY4=32:D 

=USR(1536~23~2~MX4~MY4) 

360 IF M1=1 THEN D=USR(1536~20~0~MX1~ 
MY1):MY1=MY1+l:D=USR(1536~20~2~MX 

I~MY1):IF MY1}=24 THEN GOTO 500 
370 IF M2=1 THEN D=USR(1536~21~0~MX2~ 

MY2):MX2=MX2-1:D=USR(1536~21~2~MX 

2~MY2):IF MX2(=72 THEN GOTO 500 
380 IF M3=1 THEN D=USR(1536~22~0~MX3~ 

MY3):MY3=MY3-1:D=USR(1536~22~2~MX 

3~MY3):IF MY3(=43 THEN GOTO 500 
390 IF M4=1 THEN D=USR(1536~23~0~MX4~ 

MY4):MX4=MX4+1:D=USR(1536~23~2~MX 

4~MY4):IF MX4}=68 THEN GOTO 500 
400 GOTO 130 
500 SOUND 0~50~8~8:S0UND 1~IOO~8~8:S0 

UND 2~200~8~8:S0UND 3~5~8~8 
510 D=USR(1536~15~3~68.34}:D=USR(1536 

~ 15~ 3~ 70~ 43): D=USR (1536~ 15~ 3~ 72~ J 

4):D=USR(1536~15~3~70~24) 

520 D=USR(1536~15~3~69~36):D=USR(1536 
~ 15~ 3~ 69~ 40): D=USR (1536~ 15~ 3~ 70~ 3 
O): D=USR (1536.15.3.71.27) 

530 FOR N=O TO 3:~OU~D-N~6~o~0:NEXT N 
550 FOR N=O TO 3:S0UND N~N*80+5~8~8:N 

EXT N 
560 COLOR 3:PLOT 84~40:DRAWTO 84~20:D 

RAWTO 84~60:PLOT 84~40:DRAWTO 114 
~40:DRAWTO 54~40:PLOT 84~40:DRAWT 

o 114~20 

570 PLOT 84~40:DRAWTO 114~60:PLOT 84~ 
40:DRAWTO 54~60:PLOT 84,40:DRAWTO 
54~20 

580 FOR w=o TO 15:FOR Wl=1 TO 20:SETC 
OLOR 2,W~5:NEXT Wl:NEXT W 

585 FOR N=O TO 3:S0UND N~O~O~O:NEXT N 
590 FOR 1=1 TO 30:FOR J=1 TO 10*RND(1 

):SOUND 0~I+I0*RND(I)~10~8:NEXT J 
:NEXT I:SOUND O.O~O~O 

600 GRAPHICS 2+16:? #6;"GAME OVER .. FI 
NAL":? #6;"SCORE ";SC:? #6;"TO PL 

105 



" Animation With Character Graphics 

AY AGAIN":? #6;"PRESS TRIGGER" 
610 IF STRIGCO)=1 THEN GOTO 610 
620 GOTO 20 
700 GRAPHICS 2+16:? #6; "GOOD GAME! I I" 

:? # 6; II ~r!:[!.~r!:r:::.DDD ":? # 6; II YOU R S 
PACE FORTRESS":? #6;"SURVIVED" 

710 ? #6;"TO PLAY AGAIN":':' #6;"PRESS 
iir:;[!~~(§a; ": GOT 0 6 1 0 

19999 END 
20000 ML=1536:FOR 1=0 TO 252:READ A:P 

OKE ML+I~A:NEXT I:RETURN 
20010 DATA 104~240~10~201~4~240 

20020 DATA 11~170~104,104,202,208 

20030 DATA 251,169,253~76~164,246 
20040 DATA 104~133~195~104~201~128 

20050 DATA 144,4~41~127~198~195 

20060 DATA 170~141~250,6,224~96 

20070 DATA 176~15,169~64~224~32 

20080 DATA 144~2~169,224~24~109 

20090 DATA 250~6~141~250~6~104 
20100 DATA 104~141~251~6~104~104 

20110 DATA 141~252~6~14~252~6 

20120 DATA 104~104~141~253~6~133 

20130 DATA 186,166,87,169,10,224 
20140 DATA 3,240~8~169~20,224 
20150 DATA 5~240~2~169~40~133 
20160 DATA 207~133~187~165~88~133 
20170 DATA 203~165,89~133~204~32 
20180 DATA 228~6~24~173~252~6 
20190 DATA 101~203~133~203~144~2 

20200 DATA 230,204~24 , 165,203~101 

20210 DATA 212~133,203~165~204,101 
20220 DATA 213~133~204~173~250~6 
20230 DATA 133~187~169,8,133~186 

20240 DATA 32,228,6,165,212,133 
20250 DATA 205,173~244~2,101~213 
20260 DATA 133,206,160,0~162~8 

20270 DATA 169~0~133,208,133~209 

20280 DATA 177~205~69,195,72,104 

20290 DATA 10,72,144,8,24,173 
20300 DATA 251,6~5~208,133,208 
20310 DATA 224~1,240,8,6,208 

106 



4. Animation With Character Graphics 

20320 DATA 38,209,6~208,38,209 
20330 DATA 202,208,228~104,152,72 
20340 DATA 160~0,165,209,145,203 

20350 DATA 200,165,208,145,203~104 
20360 DATA 168,24,165~203,101,207 

20370 DATA 133,203,144,2,230,204 
20380 DATA 200,192,8,208,183,96 
20390 DATA 169,0,133~212,162,8 

20400 DATA 70,186,144,3,24,101 
20410 DATA 187,106,102,212,202,208 
20420 DATA 243,133,213,96,0,1 
20430 DATA 28 
32000 POKE 106,PEEK(106)-16:GRAPHICS 

0:START=(PEEK(106)+I'*256:POKE 
756,START/256:POKE 752,1 

32020 POKE 559,0:FOR Z=O TO 1023:POKE 
START+Z,PEEK(57344+Z):NEXT Z:R 

ESTORE 32100 
32025 FOR 1=1 TO 30:FOR J=1 TO 10*RND 

(1):SOUND 0,I+I0*RND(I),10,8:NE 
XT J:NEXT I:SDUND 0,0,0,0 

32030 READ X:IF X=-l THEN RESTORE :PO 
KE 559,34:RETURN 

32040 FOR y=o TO 7:READ Z:POKE X+Y+ST 
ART,Z:NEXT Y:GOTO 32030 

32100 DATA 632,145,82,44,222,57,52,74 
,137 

32102 DATA 648,128,176,248,255,255,24 
8.176.128 

32103 D~TA ~56,255,60,126,126,60,24,2 
4,24 

32104 DATA 664,1,13,31,255,255,31,13,1 
32105 DATA 672,231,231,126,60,24,24,2 

4,0 
32106 DATA 680,3,7,15,252,252,15,7,3 
32107 DATA 688,24,24,24,24,60,126,231 

,231 

224,192 
32109 DATA -1 

107 



" Animation With Character Graphics 

High Speed 
Animation With 
Character Graphics 
Charles Brannon 

Sound, color, and detail are all important in an arcade-style 
game, but movement generates the most interest. It's pro
grammed into the brain. In all vision oriented creatures, motion 
takes precedence over all other visual stimulation. A frog notices 
a fly not because of any characteristic shape, or even its buzz, 
but because of its movement. 

In a good arcade game, there is a lot of motion. Alien ships 
swarm and dive, invaders weave back and forth, ghosts chase, 
balls bounce - the mere description sounds exciting. If we want 
to develop a thrilling game, we must be able to quickly move 
objects around on the screen. 

Speed is the key word. Let's face it - arcade games require 
fast animation of many objects. True arcade-quality games al
most always require a high-speed language such as FORTH or 
machine language. 

But BASIC is not a high-speed language. Its generality, 
style, and ambiguity make it easy to learn and use, but hard for 
a computer to efficiently execute. However, since BASIC is 
easier to use and modify for most people, let's see what we can 
do to make the most of what we've got. 

Optimizing BASIC 
Remember that computers are rather simple-minded, so try to 
break your task into small pieces. Try to have BASIC do as little 
work as possible. For example, to crea te a glowing image, we 
just need to change its colors rapidly. For example, to flash 
something drawn in in COLOR I, we could code: 

100 FOR 1=1 TO 100 
110 SETCOLOR 0~INT(16*RND(O» INT(16* 

108 



" Animation With Character Graphics 

RND(O) 
120 NEXT I 

The FOR/NEXT loop controls the duration of the flashing effect, 
but line 110 is the heart. It picks a random color and a random 
luminance for COLOR 1 (color register zero). To speed this up, 
we could POKE directly into the color register. There is one 
memory location (for our purposes) for each color register. 
These are located from 704-707 (the player/missile color regis
ters) and from 708 to 712 (COLOR 0 to COLOR 4). Each can 
hold an even number from 0-254, according to the formula: 

COLORBYTE = HUE*16 + LUMINANCE 

So we could speed up line 110 by using: 

110 POKE 708 ~I NT(16*RND(O»*16+INT(16 

*RND(O» 

This is still rather slow, since BASIC must interpret the 
long expression of INT's and RNO's and perform three multi
plications. Fortunately, there is another memory location called 
RANDOM ($D20A, or 53770 in decimal) that will give us a ran
dom number from 0-255. We can read RANDOM with 
PEEK(53770), and POKE it directly into color register zero: 

110 POKE 708~PEEK(53770} 

We've reduced a slow, albeit more readable and understand
able, BASIC instruction with a direct POKE to a color register. 
POKEs are the key to fast graphics, then. 

Animation 
What about animation? The first thing that comes to mind is 
the technique of drawing a figure on a high-resolution screen 
such as GRAPHICS 7, redrawing it at a new location, and then 
erasing the old image. The following routine will move a box 
from left to right in GRAPHICS 7: 

100 GRAPHICS 7 
110 FOR 1=1 TO 100 
120 COLOR l:GOSUB 200:REM DRAW A BOX 
130 COLOR O:GOSUB 200:REM ERASE IT 
140 NEXT I 
150 END 
199 REM DRAWS A BOX: 

109 



4 Animation With Character Graphics 

200 PLOT I,O:DRAWTO 1+10,0 
210 DRAW TO I+I0,10:DRAWTO 1,10 
220 DRAW TO I,O:RETURN 

As you can see, the motion is smooth, but slow and flickery. 
This is unavoidable in BASIC. BASIC just can't draw things 
fast enough to provide fast animation. 

What About P/M Graphics? 
The Atari solution to high-speed animation is playerlmissile 
graphics. These shapes can be moved over the playfield without 
erasing what they pass over, unlike the metlwd mentioned 
above. Unfortunately, P/M graphics are not suitable for purely 
BASIC programs, unless you want only horizontal movement. 
Vertical motion in BASIC is also slow and flickery. 

One solution is machine language, and you will find some 
machine language routines for using PIM graphics from BASIC 
in this book. But if you're not ready for machine language, can't 
quite grasp PIM graphics, or if you're looking for an easier way 
to quickly move dozens of objects, read on. 

POKEing Graphics 
What if we could use POKE to generate graphics? That way, 
we could simplify graphics the same way we did the color re
gisters. Did you ever wonder how the Atari displays a screen? 
It's a complex subject, but it can be simplified: 

COMPUTER--MEMORY .... ANTICICTIA .... TV 

When the computer wants to di splay something, say the char
acter "A", it places a number representing" A" into memory . 
The ANTIC chip, a video microprocessor, continually looks at 
the memory, calculates a TV display, and sends this information 
to the CTTA (or GTTA in recent Ataris), which draws the picture 
on the television screen. 

The computer could directly tell the CTIA what to do, but 
if it did bypass ANTIC, the computer would be responsible for 
all display, leaving littl e or no time for its main job - computing! 
So the memory is like an image of the TV screen. Since the com
puter can both read and write to memory, it can place characters 
on the screen by writing to this memory, and can look at the 
TV indirectly by reading this memory. 

Perhaps our scheme is becoming clear. Instead of using 
PLOT, DRA WTO, or POSITION and PRINT (which are slow, 

110 



4 Animation With Character Graphics 

slow, slow), we can use POKE to directly place a character on 
the screen. To move the letter" A" across the screen, we just 
POKE a 33 (the value corresponding to an "A") into the screen 
memory, and erase it by replacing it with a space. A fragment 
of code might look like this: 

SCREEN=PEEK(88)+256*PEEK(89) 
FOR 1=1 TO 39:POKE SCREEN+l~33:POKE S 
CREEN+I-l~O:NEXT I 

This would move the letter" A" left to right, assuming the vari
able SCREEN has been set to the start of screen memory. Notice 
how fast the character moves . Imagine that the" A" is a 
spaceship, or an alien invader. That's some fast animation! 

Defeat The Invading Q's! 
But an" A" is not an alien invader, and it isn't much fun shooting 
at letters of the alphabet. Fortunately, there are two solutions. 
First, we can use some special characters built into the Atari . 
For example, press CTRL-T (hold down the CTRL key and press 
"T"). You'll see a "ball" character. This could be used as a ball 
in a pong-type game. 

Next, try CTRL-A, CTRL-T, and CTRL-O, in that order. 
You should see a "tie fighter," right out of Star Wars. You can 
see the potential here, but it's not easy to get much color from a 
GRAPHICS 0 display. Instead, you can use these character 
graphics in graphics modes one and two, which generate large
size, five-color text. It's rather complicated to use the CTRL 
graphics in these modes, but another option is available. 

Custom Characters 
As you are probably aware, you can rather easily redefine any 
character. You could, for example, change the alphabet into a 
foreign-language alphabet, such as Greek. You could also rede
fine a character into a spaceship or a blue meanie . These rede
fined characters can be shaped to resemble alnlOst anything, 
and then moved about at high speed. The details of customizing 
the Atari character set are explained in the previous chapter. 

Since each character is 8x8 blocks, and takes up only one 
byte of memory on the screen, you can move up to 64 pixels 
(8x8) with a single POKE. Using PEEK, you can scan ahead in 
the direction of movement for a collision with other screen ob
jects, much faster than you could with POSITION and LOCATE 
statements. 

111 



" Animation With Character Graphics 

Finding The Screen 
For the sake of example, le t's use a GRAPHICS 1 screen. The 
computer must store the information for the screen somewhere 
in its memory. Sin ce this is the same memory that you use to 
store programs or o ther informa tion , the screen memory must 
be somewhere out of the way. The GRAPHICS command al
ways places the screen where it perceives the top of memory to 
be . If you have a 32K machine, the top of m emory is at location 
32767 (32*1024-1). On an 8K machine, the screen would reside 
at jus t under the 8191 byte limit. Furthermore, the screen mem
ory s tarts at differen t places in each graphics mode. For example, 
GRAPHICS 8 must s tar t the screen 8,000 bytes from the top of 
memory. 

Locating the s tarting address of screen memory would 
seem to be rather tricky. Sure, you could probably look the 
value up in a large tab le (indexed by memory size and graph ics 
mode), but why n ot just as k the computer? 

A Double Byler 
As it turns out, the starting address of screen memory is stored 
a t locations 88 and 89. Since a memory location can hold only a 
number from 0-255, it is obvious why two memory locations 
are needed to hold numbers as large as 65,535. The two locations 
each hold a part of the number. So, we can u se PEEK to calculate 
the s tarting address of the screen: 

SCREEN=PEEK(88)+256*PEEK(89) 

The second part of the number is always multiplied by 256 and 
added to the firs t. There are many of these double-byte locations 
in the Atari, and you use the same for mula to read them . 

Now that we have the screen address, we're ready to begin. 
Note tha t you sh ould place the screen calculation line nfter the 
GRAPHICS statement in your program . 

A BeHerWay 
Formerly, you probably used something like POSITION 
X,Y:PRINT#6;IA" or COLOR 65:PLOT X,Y to place a character 
on a gra phics m ode 1 or 2 display, at horizontal location X, and 
vertical loca tion Y. For GRAPHICS I , X can range from 0 to 19, 
and Y ranges from 0-23. It's almos t tha t simple to POKE a value 
into screen memory, using: 

POKE SCREEN+X +20*V,33 

112 



" Animation With Character Graphics 

(SCREEN is the address of screen memory) 
The vertical component, Y, is multiplied by 20 . Think of 

screen memory as 24 rows of 20 characters. You could go strictly 
left to right, from 0 to 19, then wrap around to 20 through 39, 
40 through 59, e tc . But if you want to access the screen by X, Y 
coordinates, you multiply Y by 20 to reach line Y. You can see 
that the last memory location would be at X,Y:19,23. Using 
"X+20*Y", this would give us 479. So to place an "A" at the 
top left corner of the screen (home, or the origin), use POKE 
SCREEN,33. To place a "B" at the lower right-hand corner, 
then, w e could use POKE SCREEN + 19 + 20*23,34 or POKE 
SCREEN +479,34. 

Internal Vs. ASCII 
If you already happen to know the ASCII value of "A", which 
is 65, you may wonder why we POKEd the screen with a 33. 
The reason is tha t although you use ASCII to PRINT characters 
to the screen, printer, or disk drive, the Atari uses an internal 
character set for its own uses. Two of these uses are for character 
set look-up and for storing informa tion in screen memory. 

Why doesn 't the Atari use ASCII internally? Well, graphics 
modes one and two permit you to display four colors of charac
ters. This requires two bits to hold the colors from 0-3. These 
bits are stored as part of the charac ter's numeric, or binary, 
value. This leaves only six bits for the character, restricting it to 
the range of 0-63. Whew! This is on ly h alf of a full 128-byte 
character set, so Atari restructured the order of the characters 
so that uppercase and punctuation are in the top half, and low
ercase and graphics in the lower, a feat not possible with stan
dard ASCII. This way, w ith a "switch" POKE, you could use 
either half in graphics mode one or two. (The lower half is used 
in a demo in the Atnri BASIC Referel1ce Manual, "Seagull over 
Ocean," on page H-ll, and in our example program at the end 
of this article.) 

The result of this is that we must translate between ASCII 
and the internal character se t. You can compare the two using 
Figure I, or look up the number of a character in Table 1. As 
"A" is 65 in ASCII and 33 interna lly, you n"lay be tempted to 
think the transla tion is as si mple as subtracting 32 from the 
ASCII value. This works fairly well in graphics modes 1 and 2; 
but, as you can see from Figure 1, lowercase d oesn't move at 
all, and you must add 64 to convert the "control graphics" 

113 



4 Animation With Character Graphics 

characters from ASCII (also called AT ASCII for ATari ASCII) to 
the internal character se t. 

Action! 
Let's look at a fragment of code that moves the character" A" 
diagonally from top left towards bottom right. Again, the" A" 
could be redefined with a custom character set, or you could 
use another character by look ing it up in Table 1 and replacing 
the 33 below: 

10 GRAPHICS 1+16:REM Full screen 
20 SCREEN=PEEK(88)+256*PEEK(89) 
30 FOR I =0 TO 19 
40 POKE SCREEN+I+20*I,33 
50 NEXT I 
60 GOTO 60:REM Wait for [BREAK] 

The sample program shou ld be fairly self-explanatory . The 
"I" index ranges from 0 to 19, which is used to select both a 
horizon tal and vertical value. The "33" places an "A" on the 
screen. This is not erased, so we get a diagonal line of" A's". 
Add this line to erase an "A" after it's drawn. This creates the 
illusion of movement. 

45 POKE SCREEN+I+20*I~0 

A Star Maker 
Let's add a line that litters the screen with stars , as in an outer 
space scene. The code for our s tar will be 14, the period: 

FOR 1=1 TO 50 
24 POKE SCREEN+INT(480*RND(0»),14 
26 NEXT I 

We don't care to independently control both the X and Y coor
dinates of each star. We jus t want to pick a random screen loca
tion from 0-479 (0,0 to 19,23). The above piece of code will place 
about 50 stars on the screen . There could be fewer than 50 stars, 
even though the index ranges from 1 to 50. Can you see why? 
Imagine what would happen if the same random number were 
picked twice within the loop. The second star would simply 
replace the first. We could make our s tar-maker fragment more 
intelligent by having it look to see if there is already a star where 
it wants to place one. 

114 



4 Animalion Wilh Characler Graphics 

Taking A PEEK 
With PLOT, you can use LOCATE, to "read" a point on the 
screen. This is much slower than PEEK. We use the same for
mula as POKE to read point X, Y (since we're looking at the 
same memory): Z = PEEK(SCREEN + X + 20*Y). Of course, the 
variables X, Y, and Z are entirely arbitrary . We can change line 
24 to look at the screen be fore it plunks down a star, and force 
it to find a blank spot: 

24 R=SCREEN+INT(480*RND(0»:IF PEEK(R 
)<}O THEN 24 

25 POf<E R ~ 14 

We could likewise place a lookahead statement into the loop 
that moves the" A" to see if it hits a star: 

35 IF PEEK(SCREEN+I+20*I)<>0 THEN 60 

60 POKE SCREEN+I+20*I,10 
70 GOTO 70 

We place this statement at line 35, before line 40, for if we placed 
it after line 40, the PEEK would read the "A" we just POKEd in 
line 40, and would of course de tect a collision. As is, it checks 
the intended position first, and if there is something other than 
a space (code 0), there must be a star there, so we exit to line 
60, which places an asterisk, representing an explosion, at the 
intended position . 

If we didn't want to explode when we collided with a star, 
we could have left out line 35. When the "A" traveled over a 
star, it would merely erase it. If we wanted to have the" A" just 
pass over the star nondes tructively, we could use PEEK to read 
the contents of the next position of the II A", save it in a variable, 
and then restore the old value when we're ready to move the 
"A" to its next position: 

35 P=PEEKCSCREEN+I+20*I) 
45 POKE SCREEN+ I +20 * I ~ P (instead of 0) 
60 Delete this line if you changed it above. 

A Sample Program 
A complete program using all these techniques is presented at 
the end of this article (Program 1). Using GRAPHICS I, it draws 
a border around the screen . If every animated object checks for 

115 



4 Animation With Character Graphics 

a collision with the border, we won't have to worry about errant 
creatures flying off the screen (out of the boundaries of screen 
memory) into our program's memory. If you don't use a border 
in your game, you should make sure that any POKE is within 
the range of SCREEN + a to SCREEN + 479 for GRAPHICS 1. 
(You can refer to Table 2 for screen limits for other graphics 
modes.) 

Two objects are moved, the player (moved with the joy
stick), and a bouncing ball. The game is written using the lower 
half of the character set. SETCOLOR 0,0,0 is used to make the 
hearts (which map into the same area as SPACE does in the top 
half) disappear. POKE 756,226 selects the bottom half. 

The ball is CTRL-T, but the player can be any of eight char
acters, depending on which direction he is facing. Only one 
character representing the character is used at a time, however. 

Four-Color Mapping 
Figure 1 (Internal Character Set) comes in handy for figuring 
out what colors a character will be. For example, you know 
that you can get four colors of "A" by using" A", lowercase 
"a", inverse video "A", and inverse video lowercase "a". Not 
so obvious is, say, the dollar sign. There's no such thing as a 
lowercase dollar sign, but you can still get four colors. 

Just count down two rows to see the character you should 
use. If you count down two rows fron1 "A", you will find a 
lowercase "a". Two rows down from the dollar sign is CTRL-D. 
Incidentally, we can tell that the strange graphics symbol two 
rows down from the dollar sign is indeed a CTRL-D, since it is 
underneath the letter "D". 

If we are using the second half of the character set for our 
game, we can use the same figure (Figure 1) to see where the 
strange graphics characters map out. To get a blue club, we 
just use an inverse-video "a". (See how the "a" is two rows 
above the club, CTRL-P?) I'm sure you will find many uses for 
Figure 1 in the future. 

Analyzing The Sample Game 
Let's look at Program 1 together. In addition to using character 
graphics for animation , th is program uses a few programming 
tricks that require explanation . 

Initialization 
Lines 100-180 initialize the direction and character arrays (de-

116 



4 Animation With Character Graphics 

scribed later). Lines 190-230 set up the GRAPHICS 1 screen, 
select the lower half of the character set, and set color register 
zero to black in order to erase the inevitable hearts. Line 240 
defines variables for two characters used, the ball and the star 
(which is CTRL-I, a small block). 

Lines 250-370 draw a border around the screen (Lines 270-
300 draw the sides, 310-350 the top and bottom, and 370 the 
corners). Lines 390-400 scatter stars upon the screen. The IF 
statement checks to see if the intended spot is empty before 
POKEing a star. This prevents a s tar from overwriting the screen 
border just drawn. 

The variables PX and PY, initialized in line 410, hold the 
player's horizontal and vertical position, respectively (1-18 and 
1-22). Line 410 also places the upward-facing player character 
on the screen. Line 420 initializes the ball X, Y variables and 
effectively selects a random starting location for the ball. 

Line 410 sets the ball's horizontal and vertical displacement 
variables. Each move, OX is added to BX, and OY to BY. If OX 
and OY are 1, then the ball will move diagonally towards the 
lower right (+ 1 right, + 1 left). OX and OY can take on other 
values from -1,0, and + 1. In this program, either OX, OY, or 
both OX and OY are switched (their sign is changed, as in 
OX = -OX) to bounce the ball in an opposite direction when it 
hits the wall or a star. 

The Main Loop 
The main progrant, in the form of a continuous loop, goes from 
460-770. Lines 460-600 let the player move, if he wants to (the 
joystick is pushed); otherwise the ball moves . 

Temporary variables hold the updated values of PX and 
PY. These variables are changed by the arrays OX and OY, 
which, like OX and OY for the ball, make the player move up, 
down, left, or right. ST, the joystick position, is used as an index 
into the array, instantly selecting the proper displacement. For 
example, a joystick reading of 14 means up. OY(14) equals -1, 
and OX(14) is O. This subtracts one from the player Y value 
(moving it up), and leaves the horizontal value unchanged. If 
OX was non-zero, a diagonal motion would result. Puzzle over 
the concept of displacement, but remember the technique. 
Using an array as a look-up table saves you from having to use 
a list of IF/THEN statements such as IF ST = 14 THEN PY = 
PY-l:GOTO xxx. This saves memory, and, more importantly, 

117 



4 Animation With Character Graphics 

time. Table lookup gives BASIC less work to do and results in 
some very fast games. 

ColliSion Detection 
Line 510 calculates PPOS, which is the absolute memory address 
of the player in screen memory. We can then easily check for a 
collision, as in lines 520-530. Remember, the player hasn't 
moved yet, since we've only used temporary variables. We're 
just checking the anticipated move. Since the ball and the star 
have already been processed, if there is any other character 
detected in line 540, it must be one of the characters in the 
boundary. If so, we cannot let the player advance, since this 
would erase the boundary and let him escape from the screen. 
(Shades of TRON!) Since PX and PY haven't been changed yet, 
we just exit and let the ball move. The player hasn't gone any
where . 

Assuming the player makes a legal move, table lookup is 
used once again to find the character corresponding to the di
rection the player is facing. The characters used are arrows and 
the diagonal corner characters. The previous player character, 
still pointed to by PX and PY, is erased in line 580, and the new 
character is POKEd into PPOS, the updated location. Now PX 
and PY are changed to reflect the new location (line 600) . 

Moving The Ball 
Lines 640-730 move the ball. This is a tairly simple routine. All 
we do is update the X and Yvariables (using temporary variables 
as we did with the player), with OX and DY. The ball's position 
in screen memory is calculated in line 650. Line 660 checks for a 
collision with the player character, meaning that the ball is 
caught. Since there are eight player characters, we could need 
up to eight IF clauses. But since the only thing drawn in COLOR 
2 (green by default) is the character, all we need do is check for 
a character in the range of 64-96. (All characters from 64-96 are 
drawn in COLOR 2.) 

If the ball hits anything else, lines 700-720 reverse the ball's 
direction. The RND (RaNDom) statements insure that the ball 
won't get caught in an endless ricochet loop. Finally, lines 740 
to 760 update the ball, as we did with the player. It's a good 
thing that the computer executes all this faster than we can 
read about it! 

118 



4 Animation With Character Graphics 

Game Over 
The two exit routines at lines 1000 and 2000 either cheer the 
player for ca tching the ball or result in his explosion if he collides 
with a star. Line 1040 flips the ball character with the cross 
(CTRL-S) character. Line 1050 is the heart of the sound effect. 
Line 1070 wraps up the sound effects for the win routine. There 
is no scoring in this game; you either win or lose. You can add 
features to the game, of course. But remember, since we're 
using the lower half of the character set, there aren't any num
erals to print a score with . 

Line 2000 explodes the character and produces the explo
sion sound. The high-speed color POKE is used extensively to 
provide flashing (lines 2040 and 2090). The explosion effect is 
produced by POKEing the graphics characters from CTRL-A to 
CTRL-F into the player's position. This doesn't look too much 
like an explosion, but it does produce a flickering effect. If you 
expanded this program into a full-fledged game, you could add 
an option for three lives here . 

Custom Characters Are More Fun 
I previously mentioned that a custom character set adds flair to 
a program like this . To avoid confusion, I refrained from using 
a custom character set in Program 1. You should type in and 
try to understand Program 1 before adjusting it with Program 
2, which adds custom characters to the game. The changes to 
Progranl 1 given in Program 2 are trivial, but they make the 
game much more fun. Good, detailed graphics really jazz up a 
game. 

The subroutine at line 5000 places the character set in mem
ory, just below the screen. The character data is in the DATA 
statements from 5005-5024. It takes several seconds to initialize 
the character set. However, since RUN does not clear out this 
memory, we can check to see if the character set has already 
been initialized, as in line 5001. Subsequent RUNs start in
stantly. 

The up/down/leftlright arrows have been redefined as a 
sort of cup, or scoop, that you use to catch the ball. Since 
diagonal movement is permitted in the game, the corner char
acters (CTRL Q,E,Z and C) are redefined as diagonal scoops. 
Unfortunately, these same characters are also used as the cor
ners of the screen border. To avoid too much modification of 
Program 1, the scoops are used as the corners of the border 

119 



III 
Co:! 
:= =-1'1:1 ... c:I 
... S Co:! 
1'1:1 
... 1'1:1 
-= f.:I :: 
i =

 
e 
~
 

E
 
~ 
~
 

Table 1. Internal C
haracter Set. 

0 
1

6
 

0 
3

2
 

1 
! 

1
7

 
1 

3
3

 

2 
.. 

1
8

 
2 

3
4

 

3 
" 

1
') 

3 
3

5
 

4 
$ 

2
0

 
4 

3
6

 

5 
X

 
2

1
 

5 
3

7
 

6 
&

 
2

2
 

6 
3

8
 

7 
I 

2
3

 
7 

3
') 

8 
( 

2
4

 
8 

4
0

 

') 
) 

2
5

 
') 

4
1

 

1
9

 
'* 

2
6

 
. 

4
2

 
I 

1
1

 
+

 
2

7
 

. 
4

3
 

I 

1
2

 
I 

2
8

 
<

 
4

4
 

1
3

 
-

2
') 

=
 

4
5

 

1
4

 
. 

3
0

 
>

 
4

6
 

1
5

 
I 

3
1

 
? 

4
7

 

Q
 

4
8

 
P 

A
 

4
') 

0 

B
 

5
0

 
R

 

C
 

5
1

 
5 

[) 
5

2
 

T
 

E
 

5
3

 
U

 

f 
5

4
 

U
 

G
 

5
5

 
H

 

H
 

5
6

 
X

 

I 
5

7
 

V
 

J 
5

8
 

Z
 

K
 

5
') 

[ 

L 
6

0
 

\ 

M
 

6
1

 
] 

N
 

6
2

 
A

 

0 
6

3
 

-

6
4

 • 
8

0
 

~
 

6
5

 
t-

8
1

 
r 

6
6

 
I 

8
2

 -
6

7
 

.I 
8

3
 

+
 

6
8

 
-I 

8
4

 
• 

6
') 

, 
8

5
 

• 
7

0
 

I 
8

6
 

I 
7

1
 , 

8
7

 
T

 

7
2

 
~
 

8
8

 .. 
7

3
 

• 
8

') 
I 

7
4

 
It.. 

')9
 

L-

7
5

 
• 

')1
 

~
 

7
6

 
• 

')2
 

t 

7
7

 -
')3

 

'" 
7

8
 -

')4 
+-

7
') 

• 
')5 

~
 

')6
 

• 
')7

 
a 

')8
 

b 

')') 
c 

1
0

0
 

d 

1
0

1
 

e 

1
0

2
 

f 

1
0

3
 

9 

1
9

4
 

h 

1
9

5
 

i 

1
9

6
 

j 

1
0

7
 

k 

1
0

8
 

1 

1
0

') 
till 

1
1

0
 

n 

1
1

1
 

0 

1
1

2
 

P 

1
1

3
 

q 

1
1

4
 

r 

1
1

5
 

s 

1
1

6
 

t 

1
1

7
 

u 

1
1

8
 

v 

1
1

') 
w

 

1
2

9
 

x 
1

2
1 

~
 

1
2

2
 

z 
1

2
3

 
t 

1
2

4 
I 

1
2

5
 
~
 

1
2

6
 

~ 

1
2

7 
~ 

o N
 

r-<
 



4 Animation With Character Graphics 

anyway, and the connecting characters (CTRL-R and SHIFT =) 
are thickened . 

Finally, five characters have been defined for the explosion 
of the player. These depict a small center core expanding out
ward in five stages. When POKEd rapidly into the same spot, 
they crea te a good explosion effect. Since CTRL-A through 
CTRL-F (used in Program 1 for the explosion) already contain 
custom characters, five characters from CTRL-J to CTRL-N were 
used instead, and line 2030 changed appropriately. 

The speed of PEEKs and POKEs lets you program some 
really fast games in BASIC. The more objects you move, the 
slower the game will run, of course. But you may very well 
find that you must insert delay loops just to slow down the 
game enough to play it! 

Figure 1. Atari Character Sets. 

em;m nat Character Set 

! "U$X& I () *+, - . 1912345678' : ; <=>? 
eABCDEFGHIJKLMNOPQRSTUVHKVZ[\]A_ 
• ~ t-' ~, A~ .... • -..II .,. ,-+ • ....1 .,.-LI Lott.,,+--+ 
.abCdefghijklMnOpq~stuvwx~z+I~~ ~ 

W!11!'mE I Cha~acter Set 

• ~ ,.I -I , /\~ .. • -..II .,. ,-+ • ....1 .,.-LI Lo~ t." +--+ 
! 1I;n$x& I () *+, - . 1912345678' : ; <=>? 

eABCDEFGHIJKLMNOPQRSTUVHKVZ[\]A_ 
.abcdefghijklMnopqrstuvwx~z+I~~ ~ 

Table 2. Screen Limits and Characteristics. 

Mode 

o 
1 
2 

X-Limit Y-Limit 

39 23 
19 23 
19 11 

Range 

0-959 
0-479 
0-239 

Assumes full screen mode (no text window). 

*This is the number in the formula: 

Bytes/Line 

40* 
20 
20 

SCREEN + X + 20*Y. Use SCREEN + X +40*Y for GRAPHICS o. 

121 



4 Animation With Character Graphics 

Program 1. Sample Program Using PEEK and POKE for Fast Graphics. 

100 REt-1 Dlit&Jit= : •. t=::t·"t-___ ljil=iI(4~ 
110 REN i;ITfi:t=iH.1iWll!_:J3#4:H.t!. 
120 REM ~:ot'J3*,&1I 
130 DIt1 CHR (15) ~ DX (15), DY (15) 
140 REM Di~ection offsets for each jo 

ystick posit i on 
150 DX(14)=0:DX(13)=O:DX(9)=-1:DX(10) 

=-1; DX (11 j =-1: DX (5) =1: DX (6) =1. DX ( 
7)=1 

160 DY(111=0:DY(7)=O:DY(6)=-1:DY(10)= 
-1:DY (14)=-1:DY(51=1:DY(9)=1:DY( 1 
3)=1 

170 REM The character for each joy sti 
ck position 

180 CHR(14)=92:CHR ( 13 l =93:CHR(11)=94. 
CHR(7)=95:CHR(10)=81:CHR ( 6)=69:CH 
R(9)=90:CHR(5)=67 

190 GRAPHICS 1+16:REM No text window 
200 POKE 756~226:REM Use lower half 0 

f c h a r act e r- 5- e t 
210 SETCOLOR O,O,O:REM Make hearts va 

nish 
220 REM Calculate screen memory addre 

55: 

230 SCREEN=PEEK(88)+256*PEEK(89) 
240 BALL=20+128:STAR=73+128:REM CTRL

T AND CTRL-I 
250 REM Draw a border: 
260 BARHORIZ=82+128:REM Horizontal ba 

r (CTRL-F: ) 
270 FOR 1=1 TO 18 
280 POKE SCREEN+I~BARHORIZ 
290 POKE SCREEN+460+I . BARHORIZ 
300 NEXT I 
310 BARVERT=124+128:REM Vertical bar 

(SHIFT-EQUALS) 
320 FOR 1=1 TO 22 
330 POKE SCREEN+I*20,BARVERT 
340 POKE SCREEN+19+I*20,BARVERT 
350 NEXT I 

122 



4 Animation With Character Graphics 

360 REM Do corners CTRL-Q,CTRL-E,CTRL 
-Z,CTRL-C 

370 POKE SCREEN,81+128:POKE SCREEN+19 
,69+128:POKE SCREEN+460,90+128:PO 
KE SCREEN+479,67+128 

380 REM Put in random "stars" 
390 FOR 1=1 TO 20:R=SCREEN+INT(480'RN 

D(O»:IF PEEK(R)=O THEN POKE R,ST 
AR:REM Don't overwrite border 

400 NEXT I 
410 PX=10:PY=11:POKE SCREEN+PX+20.PY, 

CHR(14l:REM Player X, Player Y. 
Put "up-arrow" character on sCI-ee 
n 

420 BX=INT(18*RND(1)+1):BY=INT(22*RND 
(l)+l):REM Ball X~ Ball Y Selecte 
d randomly 

430 DX=1:DY=1:REM Direction offsets f 
or ball 

440 REM Main loop 
450 REM Check for player's move: 
460 ST=STICK(O; 
470 IF ST=15 THEN 640:REM Let ball bo 

unce 
480 REM Temporary variables hold upda 

ted PX and PY 
490 TX=PX+DX(ST):REM X offset IJO,-l 
500 TY=PY+DY(ST):REM Same with Y. Ta 

ble lookup is fast~ 
510 PPOS=SCREEN+TX+20*TY:REM Calculat 

e current position 
520 IF PEEK(PPOS)=BALL THEN 1000:REM 

Hit ball 
530 IF PEEK(PPOS)=STAR THEN 2000:REM 

Hit star 
540 IF PEEK(PPOS}<>O THEN 640:REM If 

wall hit, don't let player advanc 
e 

550 REM Update player 
560 REM Table lookup also replaces IF 

/ THEN , an d is u I tim at ely m 0 1- e m e m 
Dry efficient: 

123 



4 Animation With Character Graphics 

570 CHR=CHF:';ST) 
580 POKE SCREEN+PX+20*PY~0:REM Erase 

previous character 
590 POKE PPOS~CHR:REM Place new one 
600 PX=TX:PY=TY:REM Update variables 
610 REM 
620 REM Let ball have its turn 
630 REM 
640 TEMPBX=BX+DX:TEMPBY=BY+DY:REM DX 

and DY are direction offsets 
650 BPOS=SCREEN+TEMPBX+20*TEMPBY:REM 

Ball absolute position 
660 IF PEEK(BPOS»64 AND PEEK(BPOS)<9 

6 THEN 1000:REM Ball hit player 
670 IF PEEK(BPOS)=O THEN 730 
680 REM Any other collision is a boun 

ce 
690 REM Change direction of either X, 

Y~ or both X and Y: 
700 IF RND(I)}0.5 THEN DX=-DX:GOTO 46 

(I 

710 IF RND(1}}0.5 THEN DY=-DY:GOTO 46 
o 

720 DX=-DX:DY=-DY:GOTO 460 
730 REM Update ball 
740 POKE SCREEN+BX+20*BY~0:REM Erase 

old ball 
750 POKE BPOS~BALL:REM Draw new ball 
760 BX=TEMPBX:BY=TEMPBY:REM Update ba 

11 variables 
770 GOTO 460 
1000 REM Hit ball~ win! 
1010 BALLPOS=SCREEN+BX+20*BY:FLIP=128 

:REM BALL POSITION~ "FLIPPING" V 
ARIABLE 

1020 REM FLIP is used to alternate tw 
o characters in one spot 

1030 REM 257-FLIP switches FLIP from 
128 to i29, and viCe-versa 

1040 FOR 1=1 TO 5:FOR J=l TO 6:POKE B 
ALLPOS~19+FLIP:POKE 710,PEEK(537 
70) 

124 



II Animation With Character Graphics 

1050 FOR W=5 TO 0 STEP -5:S0UND 0~J*2 
~10~W:NEXT W:FLIP=257-FLIP:NEXT 
J:NEXT I 

1060 REM STRANGE SOUND, FLASH BALL AG 
AIN 

1070 FOR 1=255 TO 0 STEP -5:S0UND O~I 
~ 12~ 8: SOUND 1 ~ 1,10,8: POKE 710~ I: 
NEXT I 

1080 RUN 
2000 REM UH-OH! Hit a star! 
2010 FOR 1=100 TO 200 STEP 10 
2020 XPLODE=XPLODE+O.5:REM Advance ch 

aracter every other "I ", from 1-
5 

2030 POKE SCREEN+PX+20*PY,65+INT(XPLO 
DE}:REM Place a graphics char act 
er 

2040 POKE 709,PEEK(53770):REM More "c 
heap thrill" color 

2050 SOUND 0~I~0~15-INT«I-I00)!6.66) 
:REM Explosion sound 

2060 NEXT I 
2070 POKE SCREEN+PX+20*PY,0:REM Erase 

character 
2080 REM Flash screen 
2090 FOR 1=1 TO 100:POKE 711,PEEK(537 

70):NEXT I 
2100 RUN 

Program 2. Make these changes to Program 1 to add custom 
characters. 

200 GOSUB 5000:POKE 756~CHSET/256:REM 
activate character set 

210 REM DELETE THIS LINE 
240 BALL=20+128:STAR=9:REM CTRL-T AND 

CTRL-I 
2030 POKE SCREEN+PX+20*PY,74+INT(XPLO 

DE):REM Place an explosion chara 
cter 

5000 CHSET=(PEEK(106)-8)*256:FOR 1=0 

125 



"AnimatiOn With Character Graphics 

TO 7:POKE CHSET+I~O:NEXT I:REM C 
LEAR OUT HEART 

5001 RESTORE 5005:IF PEEK(CHSET+9*8)= 
16 THEN RETURN :REM IF CHSET STI 
LL IN MEMORY~ WHY RE-INITIALIZE? 

5002 READ A:A=A-64:IF A{O THEN RETURN 
5003 FOR J=O TO 7:READ B:POKE CHSET+A 

*8+J~B:NEXT J 
5004 GOTO 5002 
5005 DATA 67~248~254~241~225,96~48~24 

~ 0 
5006 DATA 69,32~64~64~196~228~252~248 

~240 

5007 DATA 73~16~84~40~198~40~84~16~0 
5008 DATA 74,0,0.16~56~56~16~0,0 
5009 DATA 75~0~32,O,16,8,16~4~0 
5010 DATA 76,0,64 ,0~ i6~68~16,4~O 

5011 DATA 77~0,64~16~2,O,128.32,2 
5012 DATA 78,128~8~1,0,0,0,0,64 
5013 DATA 79,8,O~0~0~O,0~O,O 
5014 DATA 81,4,2,2,35,39,63,31,15 
5015 DATA 82 , 0~255 ,255,255,255,255,0, 

o 
5016 DATA 83~28,34,73~93~93~73,34~28 
5017 DATA 84,0~0.8~28~28~8~0.0 
5018 DATA 90,31,127,143,135~6,12,24~0 
5019 DATA 92~66,195~129~195~231~126,6 

0,24 

5~66 
5021 DATA 94,60 ,126,15~7,7,15,126~60 

5022 DATA 95,60 , 126,240,224~224,240,1 

26,60 
5023 DATA 124,60~60,60,60,60,60,60~60 

5024 DATA 127~16,24,28,30,30,28,24,16 

5025 DATA -1 

126 







5 Animation With PlayerlMissile Graphics 

Introduction To 
Player/Missile 
Graphics 
Bill Wilkinson 

This article describes the features of the Atari player/missile graphics 
system ("P/M graphics" for those of us with lazy typing fingers). 
Although there are now other sys tems available with similar capabilities 
(notably "sprites" 011 the Com1llodore and Texas Instruments T199-4A 
compllters), there are several aspects of PIM graphics which are 
uniquely and powerfully Atari. 

For reasons having to do with lack of information and (often) 
an abundance of misinformation, many Atari owners think of 
players and missiles as some mysterious aspect of the machine 
which requires convoluted machine language and arcane rites 
to control properly. In truth, PIM graphics is in many ways less 
mysterious than the standard Atari "playfield" graphics. Have 
you yet truly d eciphered the relationship between SETCOLOR 
and COLOR? (J haven't. I usually use trial and error to find the 
connection that I need.) Have you mastered the concept of dis
play lists? (I didn ' t ask if you could produce one, just if you 
understood the level of indirection that is needed to produce 
even the simplest display on an Atari.) Player/missile graphics 
is actually simple compared to some of these obscurities . 

I think the first thing n eeded to understand PIM graphics 
is a little flexibility in conceiving how memory is mapped into 
display in the Atari computer. Consider Figure l. As far as the 
Central Processing Unit (CPU) or most of the Atari hardware is 
concerned, memory is simply one long string of bytes. (Well, 
some parts of the system like to digest memory in 1K, 2K, or 
4K byte blocks, but within those blocks it's all a string of bytes.) 
But if you look at Figure 1, you will probably soon decide that 
this is not a reasonable way for human beings to consider mem-

129 



5 Animation With Player/Missile Graphics 

ory, especially human beings who are trying to visualize mem
ory being displayed as graphics. 

So consider instead wha t we know of BASIC graphics mode 
19 (GRAPHICS 3 + 16). GRAPHICS 19 (which is simply a full
screen version of GRAPHICS 3) consists of 24 lines of 40 pixels 
each, where each pixel occupies only two bits of memory, im
plying that a line is only 10 bytes long. Instead of thinking of 
memory as one long string of bytes, why not consider it as an 
array of ten-byte strings? This visualiza tion is presented in 
Figure 2, and you will probably agree tllat this is a much clearer 
representation than that of Figure 1. 

One more exercise before leaving this subject: try visual
izing the normal text (GRAPHICS 0) display screen as a repre
sentation of memory. How many lines are there? How many 
bytes per line? I hope you answered 24 lines of 40 bytes each; a 
pictorial representation of this display mode is shown in Figure 3. 

So just exactly what is a player or a missile? First, let's note 
that for most purposes there's no real difference between a 
player and a missile other than size, so all further references to 
"players" may be assumed to refer to missiles also, unless other
wise noted. A player, then, is simply the graphic video display 
of a portion of the Atari computer's main memory. "So what?" 
you say. "That's how all computers put stuff on the screen: by 
displaying the memory." True. And we just showed diagrams 
of how the Atari also displays its main video screen from what 
Atari calls "play field memory." But players and missiles are 
displayed independently of the playfield and from an entirely 
separate segment of memory. 

The "5:" ("Screen") device driver, which is what actually 
processes such BASIC keywords as GRAPHICS, PLOT, and 
DRAWTO, knows nothing of PIM graphics. In a sense this is 
proper: the hardware mechanisms that implement r iM graphics 
are, for virtually all purposes, completely separate and distinct 
from the "playfield" graphics supported by "5:". For example, 
the size, position, and color 6f players on the video screen are 
completely independent of the GRAPHICS mode currently 
selected and any COLOR or SETCOLOR commands currently 
active. In Atari parlance, a "player" is simply a contiguous 
group of memory cells displayed as a vertical stripe on the 
screen. 

We again take refuge in a diagram, that of Figure 4. This 
figure shows a standard playfield display along with that por-

130 



5 Animation With Player/Missile Graphics 

tion of Random Access MenlOry (RAM) being used to genera te 
the display (and n o te the rep rese nta tion of RAM as a series of 
character strings). But notice tha t the figure also shows another 
piece of mem ory being used to display something else on part 
of the screen . This "something else" is a player . And no tice 
tha t the player's porti on of RAM is shown as an "array" of 
character s trings w h ere each s tring is onl y on e by te long. This 
is always true: all players are always displayed as a one-by te 
wide array. There are no di splay li s ts to worry about, no 
graphics m odes (using 10 or 20 or 40 by tes per line, and w hich 
is which ?), and no visualiza ti on p roblen1 s. It's like being back 
to thinking of mem ory as one long s tring of by tes - almos t. 

The "almos t" is the kicke r. Firs t, note tha t we n eed to make 
sure we are thinking o f the s tring as being s tacked ve rtica lly. 
Second , the pictoria l representa tion (the pl ayer on the screen 
ins tead o f the s tring of by tes in memory) is ac tua lly the more 
accura te one, since each player is a lways a "semi-fixed" length : 
Player 1 starts on the very n ex t byte after Player 0, and so on. 
Third, there are actually two choices op en to the user regarding 
the amount of m emory u sed by each player (hence the words 
"semi- fixed"): players may have ve ry fin e ver tica l resolution 
(equiva lent to GRAPHICS 8), in which case they occupy 256 
bytes each; or they may have re la tively coa rse resolution (equi
va lent to GRAPHICS 7), in which case they occupy 128 by tes 
each . But even with this minor complica tion , players a re fa irly 
simple, since all playe rs mu st always have the same resolution . 

Sounds dull? Consider : each player (and there are four or 
five, depending on how you think of missil es) m ay be "painted" 
in any o f the 128 colo rs ava il able on the Atari (see SETCO LOR 
for specific colors). Within the vertica l s tripe w hich is each 
player's display, each bit se t to 1 paints the player's color in the 
corresponding p ixel, w hile each bit se t to 0 paints no color at 
all! Tha t is, any 0 bit in a player s tripe h as n o effect on the un
derlying playfield di splay . 

Why ca ll it a vertical s tri pe? Refer to Figure 5 for a rough 
idea of the player concept. If we define a shap e w ithin the 
bounds of this s tripe (by changing som e of the player'S bits to 
ones as shown) , we may m ove the player vertically by simply 
doing a circular shift on the contiguous me mory block repre
senting the player. Why is tha t eas ie r than simply PLOTting 
something on the play fi eld and then m oving it by PLOTting it 
aga in ? First, since the player does not affect the playfield , any 

131 



5 Animation With Player/Missile Graphics 

pretty picture (or text or whatever) on the main screen remains 
unchanged . Second, because it' s a lot easie r to do a circular 
shift on a byte string tha n it is to change memory cells that are 
40 (or 20 or 10?) by tes apart in m emory. 

Finally, the real clincher: even though vertical movement 
requires some shuffling of a s tring of by tes, horizontal move
m ent is essentially effortl ess. Each and eve ry player alld missile 
has its own independent register (i .e., memory loca ti o n) which 
controls its current horizo ntal pos ition on the sc reen. Moving a 
player s tripe horizontall y is as easy as a single POKE from 
BASIC. 

To summarize and s implify: A player is ac tually seen as a 
s tripe on th e screen eight pixels wide by 128 (or 256) pixels high. 
Within thi s s tripe, the u se r ma y POKE or 1l1Ove by tes to es tablish 
what is essentially a tall, sk inn y picture (though much of the 
picture may consist of 0 bits, in which case the background 
"shows through"). Using a simple POKE, th e programmer 
may then move this player to a ny horizontal loca tion o n the 
screen. To move a player vertically, though , on e must do som e 
so rt of shift or move on the contents of the s tring of by tes dis
played in the stripe. 

From standard Atari BASIC, th ere is no easy way to move 
these stripes vertically (using a FOR/NEXT loo p with PEEKs 
and POKEs is simply too slow). And while there now exist 
languages which have built-in mechanisms to do this movement 
(e .g., MOVE in Microsoft BASIC; MOVE and PMMOVE in 
BASIC A +), the overwhelming use o f Atari BASIC has promp
ted many authors to try th eir h ands at providing this movem ent 
in a form easily u sable fro m A tari BASIC. This cha pter includes 
sec tions de tailing a few of th e m ethods w hich h ave been worked 
out. 

And now some final comments before we leave this intro
duction to player/missil e gra phics: 

Missiles pretty nlUch work jus t like players except that (1) 
th ey are only two bits wide ins tead of eight, (2) a ll four missil es 
share the same 128 or 256 bytes of m emory (each using only its 
own bits in each byte), (3) each two-bit sub-s tripe has a n inde
pendent horizontal positio n register, and (4) by default a missil e 
has the sam e color as its parent player. A la ter section in this 
chapter will delve a bit d eeper into the m ysteries of missiles. 

There are essentia lly only five primary controls ava ilable to 
the P/M graphics user. We have a lready 111 entio ned three: inde-

132 



5 Animation With Player/Missile Graphics 

pendent control of the variou s player horizontal positions, in
dependent control of the player's colors, a nd system-wide con
trol over the resolution (128 bytes or 256 by tes per player, or 
simply "off"). 

In addition, each player and each missile has an indepen
dently controllable "width. " A player or missile may be 
specified as single-width (narrow), double-width, or quadruple
width . This width does not affec t the number of bytes or bits 
used for the display; it affec ts only the width of each individual 
pixel. Refer to Figure 6 for a diagram of a four-player system 
showing independent horizonta l position and width control. 

Incidentally, single-width players gen era ted in the 128-byte 
vertical resolution mode have square pixels which are the same 
size as those in GRAPHICS 7, a presumably no t altogether acci
dental happening. 

The last control available to the user is the ability to sp ecify 
where in memory the player and missile stripes are to be located. 
The rule is fairl y s imple: you need 2K bytes for single-line re
solution (256 bytes per player), and it must be loca ted on a 2K
byte memory boundary . For double-line resolution (128 by tes 
per player) , you need a 1K-byte segment loca ted on a 1K byte 
boundary . 

Are you quick in a rithmetic? How many 256-byte players 
can yo u put into 2K bytes? O r how many 128-byte players can 
1K bytes hold? If you answered eigh t, you pass . If you an swered 
five, yo u can go to the h ead of your A tari class. Indeed , with 
the Atari PIM memory map, yo u "waste" three players if you 
allocate the full amount of memory called for; see Figure 7 to 
see why. 

Do you see the was ted memory? Does it need to be wasted? 
No. There is no reason why you can 't put da ta , character se ts , 
or what-have-you in this area. Indeed, in BASIC A + , part of 
the language is in thi s o therwise excess area. 

And now you are ready to peruse the secre ts un veiled 
herein; the darkes t m ys teries of player/missile graphics will 
become open to yo u . But don ' t be surprised if you find even 
more things tha t can be done w ith PIM graphics than we told 
you about here. 

133 



5 Animation With Player/Missile Graphics 

Figure 1. RAM considered as a linear "string" of bytes. 

PLAY FIELD 
"GRAPHICS 19" 

TV 

Figure 2. RAM considered as an array of 10-byle strings. 

SYSTEM RAM 
MEMORY 

134 

2009 

2019 

2239 

PLAYFIELD 
"GRAPHICS 19" 



5 Animalion With Player/Missile Graphics 

Figure 3. RAM considered as an array of 40-byte strings. 

j..........:::.....-__ -l2039 
2079 

~~--"::::'......,.....-I 
2119 

2959 

Figure 4. RAM considered two different 
ways lor two different purposes. 

SYSTEM RAM 
MEMORY 

Portion used for 
player display 

12800 

12801 

12802 

12927 

PLAYFIELD 
"GRAPHICS 0" 

SYSTEM RAM 
MEMORY 

Portion used for 
playfield display 1-------1 

135 



5 Animation With Player/Missile Graphics 

Figure 5. Detail-the display of Player Memory. 

12800 1----------1 
12801 I-____ ~ 

_____ +-_____ -+ ______ Bound of visible 
TV screen. 

_____ +-_____ -+ ______ Bound of displayed 
playfield. 

Binary Hex Decimal 

12828 10011001 99 153 
12829 10111101 BD 189 
12830 11111111 FF 255 
12831 10111101 BD 189 
12832 10011001 99 153 

_____ +-_____ -+ ______ Bound of displayed 
play field. 

------t-------t------- Bound of visible 
TV screen. 

136 

~ 

"'" 



5 Animation With Player/Missile Graphics 

Figure 6. Four Players at once. 
(Player 2 is double width and overlaps Player 3) 

....---- .---

/ "'\ 

\.. ~ 

7 // 
Player 1 Player 0 Player 3 Player 2 

137 



5 Animation With Player/Missile Graphics 

Figure 7. Plaver/missile graphics RAM positioning. 
PMBASE must be on II< boundary for double-line resolution, 
21< boundary for single-line resolution. 

138 

PMBASE 

+128 

+256 

+384 

Missi les 

+512 

+640 

+768 

+896 

+1024 

double-line 
resolution 

unused 

M3 1 M2 1 Ml I MO 

Player 0 

Player 1 

Player 2 

Player 3 
M3 

single-line 
resolution 

unused 

M2 Ml 

Player 0 

Player 1 

Player 2 

Player 3 

MO 

PM BASE 

+768 

Missiles 

+1024 

+1280 

+1536 

+1792 

+2048 



5 Animation With Player/Missile Graphics 

Figure 8. Important P/M memory locations. 

Useful addresses 
(all values in decimal) 

559 put a 62 he re for a s ing le-line, a 46 for double-line resolution 
623 sets playe r/pla y fi e ld priorities (only one bit on!) 

1: il ll players have priority over all playfield registe rs 
4: all play fi e ld regis te rs have priority ove r a ll players 
2: mixed. PO & PI, th en a ll playfield, then P2 & P3 
8: mixed , PFO & PFl , th en a ll players, then PF2 & PF3 

704 co lor of player/miss ile 0 
705 color of player/miss ile 1 
706 co lor of playe r/miss il e 2 
707 color of playe r/missil e 3 
53248 hori zonta l pos ition of player 0 
53249 hori zonta l pos ition of player 1 
53250 hori zo nta l pos itio n of player 2 
53251 hori zo nta l pos ition of p layer 3 
53252 horizo n till pos itio n of miss ile 0 
53253 hori zo n til l pos itio n of miss il e 1 
53254 horizontal pos ition of miss ile 2 
53255 hori zo ntal pos itio n of miss ile 3 
53256 s ize of playe r 0 (0 = normal, l = doubl e, 3 = quadruple) 
53257 s ize of playe r ·1 (0 = normal, 1 = doubl e, 3 = quadru pie) 
53258 size of playe r 2 (0 = nmmal, 1 = double, 3 = quadruple) 
53259 s ize of playe r 3 (0 = normal , 1 = doubl e, 3 = quadruple) 
53277 A 3 he re enab les player/missil e g raphi cs, a 0 disabl es th em . 
54279 put high by te of PMBASE here 

139 



5 Animation With Player/Missile Graphics 

A Self-Modilving 
Plaver IMissile 
Graphics Utility 
Kenneth Grace, Jr. 

This excellent utility program removes much of the complexity from 
setting up playerlmissile graphics. it modifies itself into a skeleton 
program that can become the core of your game or graphics demo. 

The utility in Program 1 sets up a skeleton program for Atari 
player/missile graphics. It presents a series of questions about 
the PIM situation you want to create and then modifies itself 
according to your responses . The resulting skeleton program 
includes some subroutines which you can u se for controlling 
player and missile motion. They a re based on s tring manipula
tions, so animation is a lso easy to accomplish . 

I got the idea for this program after reading Bruce Frumker's 
article (COMPUTE!, August 1981, #15) on self-modifying 
programs. I hope this program will stimulate your thinking on 
other ways to u se the self-modi fica tion capability built into the 
Atari. 

There are several steps involved in setting up P/M gra phics, 
and they have been covered in COMPUTE! and elsewh ere. The 
steps are easy, but there are severa l choices available along the 
way (resolution , numbers of players and missiles, colors, initial 
positions, e tc .). That's where this utility comes in. 

It contains all the basic steps, and where there are choices 
to be made, they are presented to yo u . The program then uses 
Frumker' s technique to add appropriate lines to the program. 
It also uses the sa me technique to delete lines that are no t needed 
for your specific P/M se tup, including the lines which ask the 
ques tions. 

140 



5 Animation With Plaver/Missile Graphics 

When the utility has finished, you are left with the skeleton 
of a PIM graphics program. You can LIST or RUN it at this point 
to check things out. But to make it a real program, you will 
have to draw the playfield and add the main loop for controlling 
motion, checking collisions, etc. In other words, the utility does 
just the PIM setup. 

Since I make extensive use of Frumker's technique, I have 
split it into two subroutines, at 150 and 155. Between the two 
subroutine calls I put PRINT statements for the lines to be added 
to, or deleted from, the skeleton. 

Aside from these two subroutines, the heart of the program 
is in lines 20-145. These lines present the series of questions 
through which you define your particular PIM arrangement. 
For example, lines 20-36 and 9020 take account of Fred Pinho's 
rules for placing PIM memory so that it doesn't overlap the 
memory for the BASIC GRAPHICS mode [see his articles elsewhere 
in this book]. The self-modifying feature is used after every ques
tion or two to add the appropriate statements to the setup sec
tion beginning at line 9000. At a few places the program STOPs 
while you enter DATA statements containing the bytes defining 
the shapes of the players and missiles. 

Also scattered through this section are lines, such as 18, 
which delete the preceding lines, or delete the missile motion 
subroutines (when you have no missiles), or delete other un
needed lines in the section starting at 9000. If you have done 
any program editing on the Atari, you no doubt are aware of 
the keyboard "lock-up" problem. With all the deletions in this 
utility, I am almost inviting this disaster. Indeed, it cropped up 
many times as I was developing it. 

Seemingly minor changes in the program would make the 
difference in whether it showed up or not. I say all this by way 
of warning. If you key in Program 1 exactly as shown, it should 
work OK. But if you decide to make improvements to it, you 
might run into the lock-up problem for certain combinations of 
inputs. 

When the utility has finished running, you are left with 
lines I, 159, appropriate subroutines from 160-198, a trivial 
loop at 200, and the PIM setup steps starting at 9000. Starting 
from this skeleton, I suggest that you use lines 2-158 for 
REMarks, opening titles, instructions, other subroutines, etc., 
and begin your main program at line 200. Additional setup 
steps, such as drawing the playfield, could go at the end of the 
section at 9000. 

141 



5 Animation With Player/Missile Graphics 

Motion Using Strings 
I have included subroutines for player motion which use string 
manipulations. This method is described in George Blank's 
column in the April 1981 issue of Creative Computing. The basic 
idea is that you trick your Atari into treating the playerlmissile 
memory as the string array storage area for strings PO$, P1$, 
P2$, P3$, and M$. Lines 1 and 9500-9580 do this. You can then 
use Atari's fast string-handling routines for vertical motion or 
animation of the players. 

In order for this to work, PO$, ... ,M$ must be the first vari
ables mentioned in the program. You can assure this by turning 
off power momentarily and then typing line 1. In line 9500, 
VTAB is a pointer to the start of the variable table, which con
tains eight bytes for each variable. ATAB points to the start of 
the string array table, which is where the actual values are 
stored. Each pass through 9510-9580 modifies the eight bytes 
for Px$ (PO$, P1$, etc.) in the variable table, including the offset 
from AT AB where the actual values are stored (the P/M graphics 
memory). 

The bytes defining the players are stored in strings 00$, 
01$, .. . at lines 9090,9140, etc. Each character in a string is stored 
in memory as a byte containing the corresponding ATASCII 
value. In this case, we want our data BYTE treated as though it 
were already an ATASCII value, so we use 
Ox$(I,I) = CHR$(BYTE) . Note that this is a different way of 
using strings for P/M from Alan Watson's method (COMPUTE!, 
September 1981, #16). The demo (Program 2) mirrors Watson's 
example. 

The descriptions Ox$ and OMx$ are initially read into P/M 
memory (i .e ., into Px$ and M$) at lines 9600-9680. The string 
B$ is a "blanking" string; it is filled with AT ASCII values of 
zero at line 9070. 

I have included two subroutines for playe r motion. The 
routine at 160 handles vertical moves of one or two units . The 
strings Ox$ are set up to include two blanks (ATASCII zero) at 
the top and bottom of each player description. Thus, small ver
tical moves can be accomplished by writing 
Px$(Y(P) + OY) = Ox$ . The blanks in Dx$ will make sure that 
the old image is wiped out . The variable P is a pointer to the 
player being moved (0, 1, 2, or 3); its value is set by your program 
before the subroutine is called , as are the position changes OX 
and DY. Incidentally, the array variables XO, yO, and LO hold 

142 



5 Animation With Player/Missile Graphics 

the horizontal positions, vertical positions, and vertical lengths 
of the players. The corresponding variables for missiles are 
XMO, YMO, and LMO. 

The routine at 170 handles larger moves by blanking out 
the old player image with B$, changing the horizontal position 
to X(P) + DX, and rewriting the player image into Px$ at the 
new vertical position Y(P) + DY. 

Vertical motion of a missile is slightly more difficult. The 
problem is that all four missiles are stored in the same memory 
block. Each missile occupies a two-bit slice of the eight-bit bytes 
in this memory block. Thus, we cannot simply write whole 
new bytes or blanks into this memory. 

Instead, using a machine language routine, we do a logical 
AND of the existing memory with a binary mask, such as 
11110011 . This erases the old image in the appropriate two-bit 
slice, but leaves the rest of the missiles unchanged. Then we 
ADD the new image from DMx$. Since this image has zeros 
outside the two-bit slice, it won't affect the images of the other 
missiles. All of this is done at the vertica l position of the new 
image. If there is a substantial vertical move involved, then two 
calls to the machine language routine are necessary: once to 
write B$ at the old position and once to write DMx$ at the new 
position. 

Lines 9700-9740 read the machine language routine into 
the string MOVE$. The missile motion subroutine at 180 makes 
a USR call to this routine. The las t variable in the USR call is the 
decimal equivalent of the binary mask. This subroutine assumes 
that vertical moves will be limited to one or two units (analogous 
to the player routine at 160). The subroutine at 190 handles the 
larger moves (analogous to the player subroutine at 170). 

The Demo Program 
Program 2 presents a demonstration of the use of the utility 
and motion routines . The demo attempts to duplicate Watson's 
animation program in COMPUTE! #16. The top part of the listing 
shows the answers you should give to the questions presented 
by the utility . The bottom part shows the lines to be added to 
the skeleton. Lines 300-530 match Watson's line numbers as 
closely as possible. A comparison of this demo with Watson's 
shows that the motion here is slightly faster - listen to the rate 
of the marching fe e t. 

Finally, a word of caution: after keying in Program 1, save 
it on tape or disk before you run it. If you don't, you will find 
that a lot of your hard work has been wiped out. 

143 



5 Animation With Player/Missile Graphics 

Program 1. Plaver/Missile Graphics utility. 

1 DIM PO$(I}~Pl$(I)~P2$(I)~P3$(I)~M$( 
1 ) ~ x (3) , Y (3) , L ( 3) , X M (3) ~ YM ( 3) , LM (3 ) 

10 GRAPHICS 17:POSITION 2~3:? #6;"A S 
ELF-MODIFYING":POSITION 3,6:? #6;" 
PLAYER-MISSILE" 

11 POSITION 2~9:? #6;"GRAPHICS UTILIT 
Y":POSITION 6~16:? #6;"ken gr-ace" 

12 FOR T=1 TO 2000:NEXT T 
13 GRAPHICS O:? :? "THIS UTILITY ASKS 

SEVERAL QUESTIONS{3 SPACES}ABOUT 
THE P-M GRAPHICS SITUATION YOU WA 
NT TO SET UP." 

14 7 :7 "IT THEN MODIFIES ITSELF INTO 
A PROGRAMSKELETON.":':' :':' "SUBROUT 

INES FOR PLAYER AND 1'1ISSILE " 
15 ? "MOTION ARE INCLUDED.":7 :':' "YOU 

ADD THE REST OF THE PROGRAM.":':' : 
7 "ANIMATION IS POSSIBLE BY COPYIN 
G NEW .. 

16 7 "SHAPE STRINGS INTO THE STRINGS" 
:7 "DEFINING THE PLAYERS.":? :? :7 

"PRESS ~iJ[Ia;u TO BEG IN. " 
17 X=PEEK(53279):IF X<>6 THEN 1 7 
18 GOSUB 150:FOR 1=10 TO 17:? I:NEXT 

I : GOSUB 155 
20 7 CHRS ( 125) :? : ? "ENTER THE (};[I~~~ 

GRAPHICS MODE FOR THE PLAYFIELD":? 
"GR. ";: INPUT X 

22 GOSUB 150:? "9000 GR. "; X:GOSUB 15 
5 

24 --:> "RESOLUTION DESIRED FOR PLAYERS: 
":7 "0 = DOUBLE-LINE":7 "1 = SINGL 
E-LINE (FINER)": INPUT R 

26 Y=INT(X/16):X=X-16*Y:IF X< =4 THEN 
S=8*(1+R) 

28 IF X=5 THEN S=12+4*R 
30 IF X=6 THEN S=16+8*R 
32 IF X=7 THEN S=24+8*R 
34 IF X=8 THEN S=36+4*R 
36 GOSUB 150:? "9010 RES=";R;":S=";S: 

144 



5 Animation With Player/Missile Graphics 

GOSUB 155:S=128*(I+R) 
38 GOSUB 150:FOR 1=18 TO 36 STEP 2:? 

I:NEXT I:GOSUB 155 
40 ? "NUI'1BER OF PLAYERS TO BE DEF I NED 

";:INPUT NP 
42 IF NP(4 THEN GOSUB 150:FOR I=NP TO 

3:? 9085+50*I:? 9090+50*I:NEXT I: 
GOSUB 155 

44 IF NP { 4 THEN GOSUB 150:FOR I=NP TO 
3:? 9600+10*I:NEXT I:GOSUB 155 

GOSUB 150 : FOR 1=38 TO 44 STEP 2:? 48 

50 
I:NEXT I:GOSUB 155 
FOR 1=0 TO NP-l 

? CHR$( 1 25):? : ? "COLOR (0 - 15) A 
ND INTENSITY ( 0 - 15) FOR PLAYER" 
; I ; : I NPUT X ~ Y 

54 GOSUB 150 : ? 9050+1;" POI<E ";704+1; 
"~";16*X+Y:GOSUB 155 

56 ? "WIDTH OF PLAYER ";I;":":? "0 = 
NORMAL":? "1 = TWICE NORMAL":? "3 
= FOUR TIMES NORI"1AL": I NPUT X 

58 GOSUB 150 : ? 9060+1;" POKE ";53256+ 
I ; " ~ " ; X: GOSUB 155 

60 ? "INITIAL HORIZONTAL POSITION (0 
- 255) FOR LEFT EDGE OF PLAYER "; 
I;" ( 45 TO 2100N SCREEN}" ; :INPUT 
x 

62 GOSUB 150:? 9080+50*1;"X(H ; I;")=iI; 
X;":REt1 HORIZ POS OF PLAYER ";I:GO 
SUB 155 

64 ? "VERTICAL LENGTH (BYTES) OF PLAY 
ER ";I;:INPUT X:7 CHR$(125):? 

66 ? "INITIAL VERTICAL POSITION OF TO 
P OF{3 SPACES } PLAYER (1 TO "~S-x-

1; ") " ; : INPUT Y 
68 GOSUB 150 : ? 9082+50*1; "Y("; I; ")="; 

Y;":L{";I; iI )=";X+4;":REM VERT POS 
AND LENGTH":GOSUB 155 

70 ? "USE LINES ";9100+50*1;" TO ";91 
20+50*1;" TO ENTER DATA STATEMENT 
S WITH THE ";X;" BYTES DEFINING P 

145 



5 Animation With PlaverfMissile Graphics 

LAYER "; 
72 ? :? "TYPE (!:r!:l::::iJ WHEN FINISHED.": ST 

OP 
74 NEXT I 
78 GOSUB 150:FOR 1=48 TO 74 STEP 

I:NEXT I:GOSUB 155 
'">.'"> 
.L... : 

80? :? II HO\.tJ I'1ANY MISSILES TO BE DEFI 
NED (0 TO 4}";: INPUT NM 

82 IF NI'1=O THEN GOSUB 150:FOR 1=180 T 
o 188:? I:NEXT I:GOSUB 155 

84 IF NM=O THEN GOSUB 150:FOR 1=190 T 
o 198:? I:NEXT I:GOSUB 155 

86 IF NM<4 THEN GOSUB 150:FOR I=NM TO 
3:? 9285+50*1: 7 9290+50*I:NEXT I: 

GOSUB 155 
88 GOSUB 150:FOR 1=78 TO 86 STEP 2:7 

I:NEXT I:GOSUB 155 
90 IF NM=O THEN? CHR$(125}:GOTO 119 
92 S=O:FOR 1=0 TO NM-l 
94 7 CHR$(125):? :? "WIDTH OF MISSILE 

/I;I:? "(I = NORMAL/I:7 "1 = TWICE N 
ORMAL" 

96 ? "3 = FOUR TIMES NORMAL": INPUT X: 
S=INT(4 A I+0.1}*X+S 

98 GOSUB 150: ':'> !J 9064 POI<E 53260,"; S: G 
OSUB 155 

100 ? "INITIAL HORIZONTAL POSITION OF 
t-tISSILE"; I;: INPUT X 

102 GOSUB 150:? 9280+50*I;/lXM(II;I;/I)= 
";X;":REM MISSILE /1;1;" HORIZ POS 
":GOSUB 155 

104 ? "VERTICAL LENGTH (BYTES) OF MIS 
SILE ";I:INPUT X:? CHR$(125) 

106 ? :7 "INITIAL VERTICAL POSITION 0 
F TOP OF{3 SPACES}MISSILE (1 TO " 
; 128* (l+R) -X-I; "} ": INPUT Y 

108 GOSUB ISO:? 9282+50*1;" YM(II;I;") 
=" ; Y; II : LM ( " ; I ; " ) =" ; X +4; " : REl'i VERT 

POS AND LENGTH":GOSUB 155 
110? "USE LINE ";9300+50*1;" (TO ";9 

320+50* I; ") TO ENTER DATA STATEI'1E 

146 



5 Animation With Player/Missile Graphics 

NTS WITH THE "; X;" , BYTES' DEFINI 
NG" 

112? "NISSILE .. ;I:X=INT(4 -····I+O.1):? 
? "ALLOWED VALUES ARE (), "; X; .. ~ 

;2*X;", OR ";3*X:7 :STOP 
114 NEXT I 

II 

119 GOSUB 150:FOR 1=88 TO 114 STEP 2: 
? I;NEXT I:GOSUB 155 

120 IF NM{4 THEN GOSUB 150:FOR I=NM T 
o 3:? 9650+10*I:NEXT I:GOSUB 155 

125 IF NM=O THEN GOSUB 150;FOR 1=0 TO 
4:? 9700+10*I:NEXT I:GOSUB 155 

129 GOSUB 150:? "119":? "12(1":? "125" 
:GOSUB 155 

130 7 "PRIORITY SCHEDULE :":7 :7 "1 -
PLAYERS 0-3,PLAYFLDS 0-3,BACKGND 

131 ? :? "2 - PLAYERS 0-1,PLAYFLDS (1-

3,PLAYERSC6 SPACES}2-3,BACKGND" 
132 ? :? "4 - PLAYFLDS 0-3,PLAYERS 0-

3,BACKGND" 
133 ? :? "8 - PLAYFLDS 0-1,PLAYERS (1-

3,PLAYFLDS{5 SPACES}2-3,BACKGND" 
134 ? :? "ALSO ~ THE NUI'lER I CAL SUMS OF 

THE ABOVE CHOICES ARE ALLOWED~ G 
I V I NG BLACK FOR O'.,,lERLAPS. II 

135 ? :? "ABOVE +32 GIVES COLOR IN 0'.,1 
ERLAPS";? ;7 "CHOICE";:INPUT X 

136 GOSUB 150: 7 "9045 POI<E 623~ "; X:GO 

SUB 155 
137 7 : 7 "WHEN'{OU SEE a![§[IEE~ YOU NAY 

LIST OF{ RUN":FOR X=1 TO 900:NEXT 
X 

140 GOSUB 150:FOR 1=129 TO 137:7 I:NE 
XT I:GOSUB 155 

145 7 :? :7 "140":? "145":? "150":? .. 
155":? "156":? "POKE 842,12:? CHR 
$(125)":POSITION O,O:POKE 842,13: 
STOP 

150 SETCOLOR 1,9,4:? CHR$(125)~? :RET 
URN 

147 



5 Animation With Player/Missile Graphics 

155 ? :7 :? "CONT":POSITION O~O;POKE 
842~13:STOP 

I e;"' 
.Jo POKE 842~12:7 CHR$(125):7 

OR 1~9~10:RETURN 

:SETCOL 

159 GOTO 9000 
160 REM MOTION OF PLAYER P. X(P) AND 

Yep) ARE X~Y POSITIONS. DX AND DY 
ARE CHANGES. USE FOR DY=-2~-1~O~ 

1 OR 2. 
161 TRAP 168:IF DY=O THEN 167 
162 ON P+l GOTO 163~164~165,166 

163 PO$(Y(P)+DY)=DO$:GOTO 167 
164 Pl$(Y(P)+ DY)=Dl$:GOTO 167 
165 P2$(V(P)+DY)=D2$:GOTO 167 
166 P3$(Y(P)+DY)=D3$ 
167 POKE 53248+P~X(P)+DX:X(P)=X(P)+DX 

:V(P)=Y(P)+DY:DX=O:DY=O:RETURN 
168 DX=O:DY=O:GOTO 161 
170 REM MOTION OF PLAYER P. USE FOR 

{3 SPACES}DV }2 OR (-2 (OR 0). 
171 TRAP 177:0N P+l GOTO 172.173~174~ 

172 

173 

174 

1 ,<= 
, .J 

1 ,<= 
! .J 

PO$=B$:POKE 53248~X(P)+DX:PO$(Y(P 
)+DY)=DO$:GOTO 176 
Pl$=B$:POKE 53249~X(P)+DX:Pl$(V(P 
)+DV)=Dl$:GOTO 176 
P2$=B$:POKE 53250~X(P)+DX:P2$(V(P 
)+DY)=D2$:GOTO 176 
P3$=B$:POKE 53251~X(P)+DX:P3$(V(P 
)+DY)=D3$ 

176 X(P)=X(P)+DX:Y(P)=V(P)+DV:DX=O:DV 
=O:RETURN 

177 DX=O:DY=O:GOTO 171 
180 REM MOTION OF MISSILE P. XM(P)~YM 

(P) ARE X~Y COORDS. DX~DY ARE CH 
ANGES.USE FOR DY=-2~-1~O~1 OR 2. 

181 TRAP 158:IF VM(P)+DY { l OR YM(P)+D 
Y+LM(P)}S OR DY=O THEN DY=O:GOTO 
187 

182 ON P+l GOTO 183~184~185~186 

183 Z=USR(MOVE~M+YM(P)+DY~DMO~LM(0)~2 
52):GOTO 187 

148 



5 Animation With Player/Missile Graphics 

184 Z=USR(MOVE~M+YM(P}+DY~DM1~LM(1},2 
43):GOTO 187 

185 Z=USR(MOVE~M+YM(P)+DY~DM2,LM(2)~2 
(7):GOTO 187 

186 Z=USR(MOVE,M+YM(P)+DY,DM3,LM(3)~6 
3) 

187 POKE 53252+P,XM(P)+DX:XM(P)=XM(P) 
+DX:YM(P)=YM(P)+DY:DX=O:DY=O:R ETU 
RN 

188 DX=O:DY=O:POKE 53252+P~XM(P):RETU 
RN 

190 REM MOTION OF MISSILE P. USE FOR 
DY>2 OR < -2 (OR 0). 

191 TRAP 198:IF YM(P)+DY(1 OR YM(P}+D 
Y+LM(P) } S OR DY=O THEN DY=O 

192 ON P+1 GOTO 193~194,195~196 

193 Z=USR(MOVE,M+YM(P),B,LM(P),252}:P 
OKE 53252~XM(P)+DX:Z=USR(MOVE,M+Y 
M(P)+DY,DMO~LM(P},252):GOTO 197 

194 Z=USR(MOVE~M+YM(P),B,LM(P),243}:P 
OKE 53253,XM(P)+DX:Z=USR(MOVE,M+Y 
M(P)+DY~DM1,LM(P),243):GOTO 197 

195 Z=USR(MOVE~M+YM(P)~B,LM(P)~207):P 
OKE 53254,XM(P)+DX:Z=USR(MOVE~M+Y 
M(P)+DY,DM2,LM(P),207):GOTO 197 

196 Z=USR(MOVE~M+YM(P),B,LM(P)~63):PO 
KE 53255~XM(P)+DX:Z=USR(MOVE~M+YM 
(P)+DY~DM3~LM(P),63) 

197 YM(P)=YM(P)+DY:XM(P)=XM(P)+DX:DX= 
O:DY=O :RETURN 

198 DX=O:DY=O:GOTO 191 
200 GOTO 200 
9015 POKE 559,46+16*RES 
9020 PMBASE=PEEK(106)-S:POKE 54279,PM 

BASE:PMBASE=PMBASE*256 
9030 POKE 53277~3:S=128:IF RES=1 THEN 

S=255 
9070 DIM B$(S):B=ADR(B$):B$(I)=CHR$(O 

):B$(S)=CHR$(O):B$(2)=B$ 
9085 DIM DO$(L(O»:DO$=B$(I~L(O»:POK 

E 53248~X(0) 

149 



5 Animation With Player/Missile Graphics 

9090 RESTORE 9100:FOR 1=3 TO L(0)-2:R 
EAD BYTE:DO$(I,I)=CHR$(BYTE);NEX 
T I 

9135 DIM Dl$(L(I»:Dl$=B$(1~L(1»:POK 
E 53249~X(1) 

9140 RESTORE 9150:FOR 1=3 TO L(I)-2:R 
EAD BYTE:Dl$(I~I)=CHR$(BYTE):NEX 
T I 

9185 DIM D2$(L(2»:D2$=B$(I~L(2»:POK 
E 53250~X(2) 

9190 RESTORE 9200:FOR 1=3 TO L(2}-2:R 
EAD BYTE:D2$(I~I)=CHR$(BYTE):NEX 
T I 

9235 DIM D3$(L(3) ):D3$=B$(1~L(3»:POK 
E 53251,X(3) 

9240 RESTORE 9250:FOR 1=3 TO L(3)-2:R 
EAD BYTE: D3$ (I, I) =CHR$ (BYTE): NEX 
T 1 

9 2 8 5 DIM D 1'1 0 $ ( L 1'1 ( 0) ) : D t1 0 $ = B $ ( 1 ~ L M ( (I) ) 

:POKE 53252,XM(O) 
9290 RESTORE 930(l:FOR 1=3 TO LM(0)-2: 

READ BYTE:DMO$(I,I'=CHR$(BYTE):N 
EXT I:DMO=ADR(DMOS) 

9 3 3 5 D I 1'1 D M 1 $ ( L 1'1 ( 1 ) ) : D t'l 1 $ = B $ ( :I • L M { 1 ) ) 
:POKE 53253~XM(1) 

9340 RESTORE 9350:FOR 1=3 TO LM(1) -2 : 
READ BYTE;DM1$(I~I)=CHR$(BYTE):N 
EXT I:DM1=ADR(DM1$) 

9385 DIM DM2$(LM(2» : DM2$=B$(1~LM(2» 

:POKE 53254~XM(2) 
9390 RESTORE 9400:FOR 1=3 TO LM(2)-2: 

READ BYTE:DM2$(I,I)=CHR$(BYTE):N 
EXT I:DM2=ADR(DM2$) 

9435 DIM DM3$(LM(3»:DM3$=B$(1~LM(3}) 
:POKE 53255,XM(3) 

9440 RESTORE 9450:FOR 1=3 TO LM(3}-2: 
READ BYTE:DM3$(I,I}=CHR$(BYTE):N 
EXT I:DM3=ADR(DM3$) 

9500 VTAB=PEEK(134)+256*PEEK(135}:ATA 
B=PEEK(140)+256*PEEK(141) 

9505 OFFSET=PMBASE+512*(1+RES)-ATAB 

150 



5 Animation With Player/Missile Graphics 

9510 FOR 1=0 TO 4 
9520 V3=INT(OFFSET/256):V2=OFFSET-256 

*V3 
9530 POKE VTAB+2~V2:POKE VTAB+3~V3 
9540 POKE VTAB+4~128*(1-RES):POKE VTA 

B+5~RES 

9550 POKE VTAB+6~128*(1-RES}:POKE VTA 
B+7~RES 

9560 VTAB=VTAB+8:0FFSET=OFFSET+128*C1 
+RES) 

9570 IF 1=3 THEN OFFSET=PMBASE+384*(1 
+RES}-ATAB 

9580 NEXT I 
9600 PO$=B$:PO$(Y(O»=DO$ 
9610 P1$=B$:P1$(Y(1})=Dl$ 
9620 P2$=B$:P2$(Y(2)}=D2$ 
9630 P3$=B$:P3$(Y(3»=D3$ 
9650 M$=BS:M$(YMCO»=DMOS:M$(YM(O}+LM 

(O})=B$ 
9660 FOR I=1 TO LM (I }:J=YM(I}+I-l:M$( 

J~Ji=CHR$(ASC(M$(J~J})+ASC(DM1$( 

I,I»}:NEXT I 
9670 FOR 1=1 TO LM(2}:J=YM(2}+I-l:M$( 

J~J)=CHR$(ASC(M$(J,J»+ASC(DM2$( 

I~I)}):NEXT I 
9680 FOR 1=1 TO LM(3):J=YM(3)+I-l:M$( 

J~J}=CHR$(ASC(M$(J,J}}+ASC(DM3$( 

I~I}»:NEXT I 
9700 DIM MOVE$(38):MOVE=ADR(MOVE$}:M= 

ADR(M$)-1 
9710 RESTORE 9730 
9720 FOR 1=1 TO 37:READ BYTE:MOVE$(I, 

I)=CHR$(BYTE}:NEXT I 
9730 DATA 104,104~133~204~104.133.203 

,104, 133.206.104,133~205.104, 104 
,133.207,104,104~133,208 

9740 DATA 160,0~177,203,37~208,113~20 

5,145.203,200,196,207,208,243,96 
9999 GOTO 2UO 

151 



5 Animation With Player/Missile Graphics 

Program 2. Animation Demo. 

RUN the utility in Program 1 and give the following answers: 

Graphics Mode: 18 
Resolution: 0 
Number of Players: 1 
Color, Intensity: 1,6 
Width: 0 
Horizontal Position: 127 
Length: 9 
Vertical Position: 63 

9100 DATA 126,90,66,60,219,189,102,102,231 
CONT 

Number of Missiles: 0 
Priority: 1 

Then add the following Jines to the skeleton program : 

200 DIM D01S(13)~D02S(13)~D03S(13) 
210 D01S=DOS:D02S=B$:D03S=BS:P=O 
220 RESTORE 520 
230 FOR 1=3 TO II:READ BYTE:D02S(I~I) 

=CHRS(BYTE):NEXT I 
240 FOR 1=3 TO II:READ BYTE:D03S(I~I) 

=CHRS(BYTE):NEXT I 
250 SETCOLOR 4~7~2 
300 REM ***VIEW POINTER & STRING *** 
310 C=C+l 
320 IF C>4 THEN C=1 
330 ON C GOTO 340~350~340~360 
340 DOS=D01S:GOTO 370 
350 DOS=D02S:GOTO 370 
360 DOS=D03$ 
370 POS(Y(O»=DOS 
380 FOR 1=1 TO 9 
385 IF C=2 OR C=4 THEN SOUND 0~28*I,6 

~9-I 

390 NEXT I 
400 REM *** MOTION ROUTINE *** 
410 A=STICI«O} 
420 IF A=15 THEN 310 
430 IF A=11 THEN X(O)=X(O}-I:POI<E 532 

48~ X (O) 

152 



5 Animation With Player/Missile Graphics 

440 IF A=7 THEN X(O)=X(O)+l:POKE 5324 
8, X (0) 

450 IF A=13 THEN DY=I:GOSUB 160 
460 IF A=14 THEN DY=-I:GOSUB 160 
470 GOTO 310 
520 DATA 126~90~66,60,219,189,102,230 

,7 
530 DATA 126~90,66 , 60,219,189,102,103 

,224 

153 



5 Animation With Player/Missile Graphics 

Adding High-Speed 
Vertical Positioning 
To P/M Graphics 
David H. Markley 

Although fast horizontal movelllellt of players alld lIliss iles is easy 
with BASIC, verticall110vement is lI1uch slower . This nrticle provides 
a machine language routine which m il be nUnelled to n BASIC program 
to speed things up considerably. 

By now many of you have been experimenting with programs 
incorporating the advanced player/missile gra phics of the Atari. 
As you may have observed, player images can be moved hori
zontally across the playfield quite easil y jus t by placing the 
player'S horizontal coord ina te (0-120) into its associa ted hori
zontal position register. Ver ti cal positioning w ith PIM graphics, 
however, is somewhat more difficult. Since the player'S ve rtical 
position on the playfield inverse ly co rresponds to its position 
within the image memory, it is necessa ry to relocate each byte 
of the image up or down w ithin the memory to produce vertical 
movement. For example, if we move the player'S image to 
higher address location s within the image mem ory, the player 
will appear to move downward on the playfield. 

A BASIC routine ca n be w ritte n using PEEKs and POKEs 
to m ove the player within the image memory, but for m os t 
applications this me thod is too s low. An a lte rna tive, however, 
is to use a small , genera l purpose ver tica l positioning routine 
written in 6502 machine language which ca n be ca ll ed by 
BASICs USR instru ction. 

The vertical positioning rou tine show n in Program 1 is 
rela tively simple, but provides th e user with a flexible and easy 
method of handling P/M grap hics w ithin a BASIC program. 
This not only provides a val uable too l to use w ith player/n1issile 
gra phics, but for those of you w ho have not used i1l achine 

154 



5 Animation With Player/Missile Graphics 

la nguage routines wit h BASIC, it will a lso provide some in sight 
into this area. The ro utin e is ca ll ed by a BASIC statement similar 
to: . 

DUMMY=USR(VP,IMACE,LAST LOCATION, NEW 
LOCATIO N) 

The variable to the left of th e eq ual s ig n , called "DUMMY", 
is used by som e machine la ng ua ge subroutines as a target for a 
value re turned to th e program . The vertical positioning routine, 
howeve r, does no t return a usab le va lue, but th e DUMMY vari
able is s till required to sa ti s fy Ata ri' s USR format requirements. 
Any variable m ay be used in place of DUMMY. Within the 
parentheses of th e comma nd are four argum.ents. The first a r
gument, VP, is th e trans fe r address to th e Vertical Positioning 
routine which has been placed into a free area of me mory. 
Loading of th e VP routine into mem ory will be d escribed late r 
with a program app li ca ti o n examp le. Following th e trans fe r 
address argument (which, by th e way, is also required for any 
USR routine ca ll ed by BASIC) a re three arguments which a re 
pa ssed to the VP rou tin e. 

These arguments are the address of th e image's data struc
ture, th e add ress of th e image's curre nt pos ition in the P/M 
image m e mory , a nd th e address of its new position (the d es ti
nation). As usu a l in r i M g rap hics, each image requires a s mall 
data structure. This provides th e vr routine with a pattern of 
th e actual image wh ich it will vertically re position . An example 
of a typical image data s tru cture is shown in the figure. This is 
identical to the usual way in w hich images are drawn in P/M 
graphics, except for one add itio nal byte which mu st be ta cked 
onto th e front of th e data. The first by te of data provides th e 
vr routine with th e im age's s ize in bytes. The second and fol
lowing by tes are Ll sed to form a bit map pattern of th e image as 
it would appear in the r i M image me mory. 

The nex t two arguments conta ined in th e USR command 
tell the VP routine th e image's curre nt and new pos itions. These 
arguments are actual addresses into the image m en,ory; th e re
fore, care must be taken to assure that they do not access another 
a rea of m emory by mi s take. 

Routine Operation 
The program begins with a n initi a li za tion step in which th e 
three arguments passed to it by the USR command are re moved 
from the processor's s tack a nd placed into an area in page ze ro 

155 



5 Animation With Player/Missile Graphics 

where th ey ca n be more easil y used . Yo u m ay have noticed 
tha t a to tal o f seve n by tes a re popped o ff th e s ta ck during this 
opera ti on . This is beca u se th e USR comma nd a lwa ys places a 
one-by te a rgum ent count onto the s tac k, fo llowed by the a rg u
ments th em se lves . The arg uments are a lways tw o by tes in 
length . 

On ce th e initia li za ti on tas k is com ple te, th e ro utine is rea d y 
to begin its inte nded task of m ov in g th e playe r image. Basica lly, 
th e ope ra tio n is pe rform ed in two s te ps. Th e image da ta is firs t 
removed fro m its current loca ti o n a nd th e n copied to its new 
locatio n . Be fo re either s tep ca n be exec uted , th e ro utine mu s t 
fir s t look a t the image'S da ta s tru ctu re a nd ge t th e image size 
param e te r. This valu e tells th e ro utine how la rge a n image it 
must handle and thus de te rmines the number o f by tes it mu s t 
remove and res tore . To rem ove a n in, age fro m its curre nt loca
tion , the routine s imply goes to th e cur re n t loca ti on address 
and writes ze ros into an X numbe r of me mo ry loca tions indi
ca ted by th e s ize pa rame ter. Rep lace ment o f th e image is d o ne 
by cop ying fro m th e image's d a ta s tru cture a n X number o f 
by tes, a lso d e te rnlin ed by th e s ize pa rameter, to th e image 
memo ry s ta rtin g a t th e add ress spec ifi ed by th e n ew pos itio n 
a rg ume nt. 

In so me cases it may no t be d es ira ble to have the VP routin e 
perfo rm bo th th e de le te and res tore fun cti o ns. O ne example 
would be if th e pl aye r image is to be removed fro m th e scree n 
a nd no t res tored a t a new loca ti on . Thi s ca n be ha ndled by us ing 
the fo ll owing ro utine ca ll : 

DUM MY= USR(VP,IMAGE,C URRENT LOCATION, O) 

The zero in th e new loca tio n argume nt te ll s th e VP routine 
no t to a ttempt to res to re th e image. Likew ise, th e d ele te fun cti o n 
ca n be di sa bled by placing a zero in th e curre nt loca ti on 
arg um ent. 

Let's Have Some Fun 
No w th a t we have looked a t the Player/Miss il e Ve rti ca l 
Positio ner ro utin e, le t's put it to wo rk. The fo llowin g ga me will 
show yo u how to loa d th e p laye r images a nd VP routine into 
mem ory a nd how to use th e ro utin e in othe r ways bes id es ve r
ti ca l pos itio nin g . 

T hi s ga me, w hich I ca ll "Is la nd Jum pe r," in vo lves th e 
coope ra ti o n o f two cha racte rs na med C rils h Cole man a nd 
Dead eye Da n . C ras h is th e p il o t o f a re liab le (but no t so s table) 

156 



5 Animation With Player/Missile Graphics 

a irpla ne, th e "Lea ping Lucy." C ra s h ha s had o nl y one flying 
lesso n , but h as co urageo us ly vo lun tee red to make this fli g ht so 
that yo u ca n see th e VP routine in ac tion . Altho u gh h e h as suc
cessfull y ma naged to ge t th e Lea ping Lucy o ff th e ground , he 
see m s to be ha ving so m e tro ubl e keeping he r in leve l fli g ht. 
Our othe r dared ev il o f th e sky, Deadeye Dan , w ill a tte mpt, 
with your h elp , to jump out of C ras h 's airp la ne and land on 
Ta rge t Is la nd. Since th e ground see ms to be a bit unsta bl e from 
Dan' s point of v iew, he is hav in g difficulty fig urin g out whe n 
to jump a nd asks that yo u he lp him by pu llin g back on yo ur 
joys ti ck contro ll e r vv he n yo u think he 's o n teu ge t. 

Dan w ill make a to tal o f fi ve jumps each time you p lay the 
ga me . He wil l try to la nd on top of a sa nd dune o n th e lef t s id e 
o f th e is la nd. If he makes the jump on Crash 's first pass ove r 
the is la nd and lands o n th e dune w ith both fee t, you ge t 30 
points . If you d o n't g ive Dan th e s ig na l to jump during th e first 
pa ss, C ra s h wi ll co ntinu e to fly over the is la nd u ntil a jump is 
made . Eac h additional pass w ill d educt eig ht points from Dan's 
max imum o bta in ilb le sco re . 

Dan can a lso la nd in th e l1 rel1 be tween th e sa nd dune a nd 
th e pa lm tree, but yo u w ill rece ive a m ax imum of 15 po in ts for 
the jump. At th e co mpl e ti o n of th e ga m e, th e co mputer w ill 
give yo u both 11 fin l1 l sco re for th e lilst gan1e played and th e 
hi g hest sco re for il ll ga m es plil yed s ince th e las t RUN com mand 
was e nte red . To play a nothe r ga me, press the butto n o n th e 
joys tick co ntroll e r. 

Th e data for the VP routin e and th e pl aye r dilta s tru ctures 
is reil d from data sta te m ents a nd PO KEd into m e mory by lines 
110 through 310 of th e progra m . It is loaded into memory pa ge 
s ix (start ing at address 1536), w hi ch is a 256- by te area in m e m o ry 
that Atar i has rese rved fo r use r bin a ry data and machin e lan
g uage routin es . O nce th e data s tru ctures a nd VP routin e a re 
loaded into m e mory , they arc rcfc' re nced in th e BASIC progra m 
by var ia ble names w hose va lu es have bee n set to th e s tartin g 
add ress of the data s tru cture or vr rou tin e th ey re present. 

157 



5 Animation With Plaver/Missile Graphics 

Figure. Image Data Structure for the Player/Missile Vertical 
Positioner Routine. 

Image Byte Byte 
Pattern Number Va lu e 

1 60 
2 126 

3 126 

4 255 

5 255 

6 129 

7 189 

8 ]89 

9 90 
10 60 
n 24 

12 24 

13 36 
14 66 
15 195 

DATA 15,60,126,126,255,255,"129,] 89,189,90,60,24,24,36,66,"195 

158 



5 Animation With Player/Missile Graphics 

Program 1. Island Jumper. 

lOR E M L') #4:11. (!{:1. :1-:;0...,. i. (I]:' #4:_ iilf:f:l:;I:.1_;oI 
20 REM "ISLAND JUMPER" 
50 GRAPHICS 2:POKE 752~1 
60 SET COLOR 4,9,4 
70 ? #6:? #6:? #6:? #6;"{6 SPACES}ISL 

AND" 
80 ? #6:? #6;"{6 SPACES}JUMPER" 
90 ? ,"{6 SPACES}BY" 
100 ':> :? ~"DAVID MARKLEY" 
110 VP=1536 
120 FOR G=O TO 93 
125 READ D 
130 POKE VP+G~D 
135 NEXT G 
140 REM ** VERTICAL POSITIONER CODE * 

* 150 DATA 104,162,5,104,149~220~202,16 

,250~198,220,198,222~160~0,177,22 

4~170 

160 DATA 168,165,223,240,9~169,0,145~ 

222~ 136~208~249~ 138, 168~ 165~221,2 
40~7~ 177,224, 145,220, 136,208,249, 
96 

170 REM ** AIRPLANE DATA ** 
180 APIMG=VP+44 
190 DATA 6,142,132,255,255,4,14 
200 REM ** JUMPER DATA ** 
210 JPIMG=APIMG+7 
220 DATA 9,189,189,90,60,24,24~36~66, 

129 
230 REM ** JUMPER & CHUTE DATA ** 
240 JSIMG=JPIMG+I0 
250 DATA 15,60,126,126,255,255,129,18 

9,189,90,60,24,24,36~66,195 

260 REM ** WAVING JUMPER ** 
270 JWIMG=JSIMG+16 
280 DATA 15,0,0,0,0,0,128,188,188,88, 

290 REM ** DATA USED TO CLEAR MEMORY 

** 
159 



5 Animation With Player/Missile Graphics 

300 CLEAR=JWIMG+16 
310 DATA 255 
320 FOR D=i TO 300:NEXT D 
330 GRAPHICS 5 
340 SETCOLOR 2~9~2 
350 SETCOLOR 4~8~6 
360 I =PEEI< ( 1(6) 
365 X=I*256-1172 
370 POKE X~112 
371 POKE X+1 ~ 71 

372 POKE X+2~96 
373 POKE X+3~I-l 

374 POKE X+4 , 112 

375 POKE X+5~74 
376 POKE X+6 ~ 160 

377 POKE X+7 ~ 1-5 

380 1=1-8 
390 POKE 54279~1 
400 J=I*256+513 
410 POKE 559 ~ 46 

420 POKE 53256 ~ 1 

430 POKE 53277~3 
440 POKE 704 ~ 56 

450 POKE 705 ~ 12 

460 D=USR(VP,CLEAR ~ J~O) 

465 SLOPE=2 
470 TOP=J+17 
480 BOT=J+55 
490 SETCOLOR 0 ~ 12~8 

500 SETCOLOR 1~1~2 

510 COLOR 2 
520 PLOT 37~34:DRAWTO 42 , 34 
530 PLOT 36~35:DRAWTO 49 , 35 
540 PLOT 47~29:DRAWTO 47 , 34 
550 COLOR 1 
560 
570 
580 
590 

PLOT 
PLOT 
PLOT 
PLOT 

43~30:DRAWTO 

51~30:DRAWTO 

47~27:DRAWTO 

47 ~ 27:DRAWTO 

600 PLOT 46~27 
610 HSCORE=O 
620 LAPOS=O 

160 

47,27 
47 , 27 
49 , 30 
45,30 



5 Animation With Player/Missile Graphics 

630 APOS=J+70 
640 1=-1 
650 JUMP=5 
660 SCORE=O 
670 PNTS=30 
680 JMP=O 
690 SOUND 0~31~4,4 
700 POKE 623~4 
7 1 0 J S TOP = J ;-2 1 9 
720 FOR G=20 TO 245 STEP 3 
730 POKE 53248,G 
740 D=USR(VP.APIMG , LAPOS,APOS} 
750 IF JMP=O AND G< 180 AND STICK(O)<) 

15 THEN JMP=APOS+132:POKE 53249,G 
+4:IMG=JPIMG:D=USR(VP,IMG,0,JMP) 

760 LJMP=JMP 
770 IF JMP=O THEN 880 
780 JMP=JMP+3 
790 IF JMP { J+200 THEN HJMP=G+4:POKE 5 

3249,HJMP:SOUND 1~G~10,8:GOTO 860 
800 IMG=JSIMG 
804 JMP=JMP-2 
808 SOUND 1~0,0~0 

810 IF HJMP ) =122 AND HJMP{=126 THEN J 
STOP=J+208:GOTO 860 

820 IF HJMP{120 OR HJMP>134 THEN 860 
830 JSTOP=J+210 
840 POKE 623 ,1 
850 IF PNTS )1 5 THEN PNTS=15 
860 IF JMP ) JSTOP THEN 940 
870 D=USR(VP,IMG~LJMP,JMP) 
880 LAPOS=APOS 
890 APOS=APOS+I 
900 D=USR(VP~APIMG~LAPOS~APOS} 
910 IF APOS)BOT THEN I=-SLOPE 
920 IF APOS { TOP THEN I=SLOPE 
930 NEXT G 
940 IF JMP {J AND PNTS ) 9 THEN PNTS=PNT 

S-8:GOTO 1220 
950 IF JMP { J THEN 1220 
970 IF HJMP {1 20 OR HJMP)134 THEN TONE 

=8:GOTO 1010 

161 



5 Animation With Player/Missile Graphics 

980 SCORE=SCORE+PNTS 
985 TONE=12 
990 D=USR(VP,JWIMG,0,JMP-1} 
1000? "SCORE ";SCORE:? :? 
1010 FOR D=15 TO ° STEP -1 
1020 SOUND 1,12,TONE,D 
1030 FOR 1=1 TO 10:NEXT I 
1040 NEXT D 
1050 SOUND 0,0,0,0 
1055 SOUND 1,0,0,0 
1060 JUMP=JUMP-1 
1070 IF JUMP(}O THEN 1170 
1080 IF SCORE } HSCORE THEN HSCORE=SCOR 

E 
1090 FOR 1=1 TO 120 
1100 IF 1=1 THEN? "HIGH SCORE ";HSCO 

RE:? :? 
1110 IF 1=60 THEN? "FINAL SCORE ";SC 

ORE:? :? 
1120 IF STRIG(O}=l THEN 1150 
1130 D=USR(VP,CLEAR,J,O} 
1135 PRINT 
1140 GOTO 630 
1150 NEXT I 
1160 GOTO 1090 
1170? "JUMP ";6-JUMP:? :? 
1180 FOR D=O TO 250:NEXT D-7 
1190 D=USR(VP,CLEAR,J,O) 
1195 I=SLOPE 
1200 IF RND(O)}0.5 THEN I=-SLOPE 
1210 GOTO 670 
1220 POKE 77,0 
1225 GOTO 690 
1230 END 

162 



5 Animation With Plaver/Missile Graphics 

Program 2. Assembly language representation of the P/M Vertical 
Positioner Routine. 

10 ;P/M VERTICAL POSITIONER 
20 NEW=220 
30 CURRENT=222 
40 IMAGE=224 
50 START PLA 

60 
70 LPI 
80 
90 
100 
110 
120 
no 
140 
150 
160 
170 
180 
"190 
200 
210 
220 

LP2 

230 SKIPD 
240 
250 
260 
270 LP3 
280 
290 
300 
310 SKIPR 

LDX # 5 
PLA 
STA NEW,X 
DEX 
BPL LP1 
DEC NEW 
DEC LAST 
LDY # O 
LOA (IMAGE),Y 
TAX 
TAY 
LOA LAST+1 
BEQSKIPD 
LDA # O 
STA (LAST),Y 
DEY 
BNE LP2 
TXA 
TAY 
LOA NEW+l 
BEQ SKIPR 
LOA (IMAGE),Y 
STA (NEW),Y 
DEY 
BNE LP3 
RTS 

;REMOVE ARGUMENT 
BYTE COUNT 
;REMOVE 6 BYTES 
;AND PLACE IN PAGE ZERO 

;GET IMAGE BYTE COUNT 

;IF ZERO DON'T DELETE 

;DELETE IMAGE 

;IF ZERO DON'T RESTORE 

;COPYIMAGE DATA TO NEW 
;ADDRESS 

163 



5 Animation With Player/Missile Graphics 

P 1M Graphics Made 
Easy 
Tom Sak a nd Sid Me ie r 

TI/(?rc's Illorc th l7 l1 0 11 1' wily 10 o/Jinill fi7st ucrticn lll}() (Jl' lIl l' llt w itll player/ 
lIIiss ile graphics. Tllis nrliC/c, nll(1 til l' 011 1' fo llow illg, slwws IIOW ucrtiCl7I 
IJlal1k illtcrmpts 11101/ IJL' IIsed for tllis pllrposc. 

Many people have ca ll ed th e A ta ri 's g rap hi cs ca pa biliti es its 
bes t fea ture, es pecia ll y th e p laye r/mi ss il e g raphi cs. We won't 
argue, but how m a ny o f you have backed away beca use it looks 
too difficult to ha ndl e in BASIC or yo u s impl y are not sa ti sfied 
with the executio n s peed s which yo u are a ble to ac hi eve? 

W ell, no m o re exc uses ' We've got a m ac hine lang uage 
subroutine th a t yo u ca n use w ith BASIC to ac hieve exciting 
graphics pe rfo rm a nce w itho u t a lo t o f mu ss a nd fuss . As a mat
te r of fact, you m ake o nl y o ne se tup ca ll to th e subroutine and 
the n forge t it! And we promise yo u need k now nothing about 
ma chine lang uage . Ju s t a few POKEs a nd yo u' ll ha ve yo ur 
playe rs dancing around th e te lev is ion scree n. 

You Don't Need To Know Machine Language 
There h a ve bee n a numbe r o f ve ry he lpful ar ticl es publish ed 
d escribing th e essenti a l playe r/miss il e g ra phics info rma tion . 
We're goin g to ass ume th a t yo u a re familiar w ith th e funda
me ntals, but we' ll re vi ew hi g hli g hts clS they' re required. 

A fea ture o f th e A ta ri with which yo u may no t be familiar 
is its "interrupt" mec ha ni s m a nd how yo u ca n le t it move your 
playe rs for you a t machine la n gua ge speed - without th e over
hea d of ca llin g it fro m yo ur BASIC program. Before w e ex plore 
thi s u se ful feature, le t's ta ke a quick refres he r co urse o n inter
rupts. 

As you know, th e A tari kee ps itse lf pre tty busy doing its 
"housekeeping" c ho res eve n while it is inte rpre tin g your BASIC 
program . Among o th e r things, th e Atar i mu s t maintain th e 
s teady d e live ry o f info rmation to yo ur te le v is io n se t, a ll ow in g 

164 



5 Animation With Player/Missile Graphics 

it to paint a co ns ta ntl y up-to-date picture of the di s play data. 
Multiple, co ncurre nt activiti es are pe rformed by allowing one 
particular activity to pe ri od ica ll y interrupt anothe r. 

The traditional a nalogy is that of a bu sy busin ess executive 
w ho, while e ngaged in a mee tin g with an associate, is inte r
rupted by a te le phon e ca ll . The ringing phone s ig na ls th e inter
rupt; th e executi ve "checkpoints" hi s m ee tin g and a ns wers the 
phone. Afte r di s pos ing of th e ca ll , th e executi ve resumes his 
mee tin g at the point of inte rruption . 

A s imilar circum s tan ce occu rs each tim e a comple te picture 
is painted by yo ur te lev is io n se t. T he te levisio n's e lec tro n bean, 
pa ints th e picture by sw ee ping ho ri zo ntal rows ac ross th e pic
ture tube beg innin g in th e uppe r le ft-hand corne r a nd e nding 
in th e lower ri g ht. Th e bea n. is turned off whe n it reaches the 
lower ri g ht co rn e r a nd is re turned to its uppe r le ft s tarting posi
ti o n . This re turn trip is esse ntiall y a ver tica l pos iti o ning move
me nt, so thi s pe riod w he n th e beam is turned off is known as 
th e (II.' rt iw / bit 711 k t i III I.' . 

Move During Vertical Blanks 
The o nse t of th e ve rti ca l blank cycle se rves as an o ppo rtunity 
for the Atari' s ANTIC chip to s ig na l a n interrupt, th e vertical 
blank or VBLANK inte rrupt. T he o pe rating system uses thi s 
occas io n to pe rfo rm som e o f its " ho usekeepi ng" duti es . Fortu
nately, th e operating sys te m d esig ne rs a llow us to includ e a 
machine language s u broutin e w hi ch ca n be executed as on e of 
these tasks. 

The mac hine la ng uage ve rti ca l blank inte rrupt pl aye r move
me nt s ubro utin e d esc ribed he re is ca ll ed VBLANK PM , and it 
allows yo u to s impl y POKE th e nex t x and y coord in a te a t which 
yo ur playe r is to be di s p layed . The re is no need to re peatedly 
ca ll th e subro utin e fro m BAS IC via the USR function . Th e sub
routin e w ill be a uto ma ti ca ll y executed during th e nex t vertical 
blank pe riod . It is pOSS ible to move th e playe rs eve ry tim e a 
ne w scree n is p a inted o n th e te lev is io n - and th a t's 60 times a 
seco nd! 

Yo u may reca ll from o th e r a rticl es tha t an app ro pria te POKE 
to locatio n 53248 (a nd th e three me mory locatio ns following) 
pe rmits yo u to pos iti o n playe rs ze ro through three hori zo ntally 
,do ng th e x-axis . It's no t quite as casy to positi on the playe rs 
ver ti ca lly along th e y-axis . No t until now! 

165 



5 Animation With Plaver/Missile Graphics 

The VBLANK PM subro utine takes care to move th e playe rs 
in both direc ti o ns. Movements a lo ng th e vert ica l ax is invo lve 
"erasing" a nd rewriting th e player in th e new position . 
VBLANK PM does thi s for yo u , auto mati ca lly . There are a few 
things which you must d o fo r VBLANK PM, however. 

First, yo u mus t ge t th e VBLANK PM m ac hine language 
subroutine into me mo ry a nd no tify the o pe rating systen1 that it 
is to be includ ed as one o f th e " hou se keeping" ta sks to be pe r
form ed as a part of serv icing th e ve rti ca l blank inte rrupt. Nex t, 
it's up to yo u to draw yo ur pl aye rs and te ll VBLANK PM how 
tall they are. After initia li za tion , VBLANK PM looks after th e 
positio nin g of your playe rs until either a warm sta rt (pressin g 
SYSTEM RESET) or a co ld s tar t (power-o ff, power-on seq ue nce) 
is performed . 

The program is an exa mpl e of th e initia li za ti on and use o f 
th e VBLANK PM subro utine . Thi s prog ram ca uses VBLANK 
PM to be loaded a nd initi a li zed and playe rs ze ro a nd on e to be 
drawn and th e n moved abo ut th e te levision screen in a ra ndom 
pattern . The players are mal e a nd fema le ge nde r sy mbo ls which 
the prog ra m "da nces" aro Lln d th e screen. 

Lines 100 throug h 200 are th e main progra m; we' ll save a n 
exp lana ti o n o f these lines until a fter yo u' ve ga in ed some in s ig ht 
into th e initi a li za tion subprogra n1 con ta ined in lin es 1000 
throu g h 1110. The VBLANK PM 1l1achin e la nguage subro utine 
is expressed in th e DATA s ta te me nts numbe red 2000 thro ug h 
2100 . Fina ll y, lines 3000 thro ug h 3020 s uppl y a d esc ripti o n of 
the two playe rs used in thi s exa mple . 

The firs t task is to loa d VBLANK PM into page s ix of me m
ory. Page s ix is locatio ns 1536 throu g h 1791 (hexa d ecimal 600 
through 6FF) and h as bee n le ft avai labl e by Atari's so ftw a re 
design e rs for app lica ti ons s uch as thi s o ne . These 256 bytes of 
memory a re no t d is tu rbed by BASIC o r DOS; howeve r, a co ld 
start does ca use page s ix to be cleared to ze ros . Line 1010 causes 
the VBLANK PM to be read and POKEd into memo ry. Lin e 
1020 cl ea rs a few location s used by th e subroutine; thi s s tate ment 
ca n be omitted if you are sure th a t page s ix has not been a lte red 
since th e last co ld start. 

We' re go ing to e mpl oy th e Atari's ANTIC chip direc t mc n,
ory access (DMA) facility to tra nsfe r grap hi cs info rm a ti o n from 
mem ory to th e te lev isio n us in g s ing le-line reso lution . (You 
might want to re-read th e introdu cto ry article o f thi s chapte r o r 
ju s t " tru s t us o n this o ne!") Thi s mea ns th a t we must a ll ocate 

166 



5 Animation With Player/Missile Graphics 

2K (2048) by tes of m e m ory for the sto ra ge of pl aye rs . ln lin e 
1030 we obtain th e page numbe r of RAMTOP, d edu ct 16 pages, 
and ca ll th e result the base o f th e req uired 21< byte a ll ocation. 

Memory Allocation 
Why 16 pages? We ll , firs t co n s ide r that 21< bytes are e ig ht pages 
(a page conta ins 256 by tes) and that, d e pending on th e g raphics 
m o d e (i.e., G RAPH ICS 0 throu g h CRAPH1 CS 8), you mus t 
a ll ow s uffi c ie nt s pace at the top of RAM to conta in th e display 
li s t a nd sc ree n data . In c id e ntall y, the playe r/missil e 2K byte 
a ll ocatio n Illu s t begin at a n address w hi ch is a multipl e of 2048; 
we ca ll thi s s tarting cld dress PMBASE . 

O ne m o re ca uti o na ry no te: yo u wi ll h ave to a llow more 
th an -16 pages be tween PM BASE a nd RAMTOP if yo u are u s in g 
g rap hi cs m odes s ix through eig ht. Ar ti c les e lsewh e re in this 
book provid e greater detail in thi s area. 

T h e figure d e picts th e 2K byte m e m o ry a ll ocation. Re nl em
be l' , we didn't des ig n thi s sc he m e, A tari did, a nd we're n o t 
s ure why, but the re is a co n s id erab le a m o unt of unused s pace 
in vo lved. Yo u ca n use th e lowe r, unused by tes for yo ur ow n 
purposes w ith out di s turbing a ny thing, if yo u like. We're go in g 
to u se o nl y the upper I I< bytes. 

Player ze ro occupies PMI3ASE + 1024 through 
PMI3AS E + 1279; playe r o ne is s itu a te d in loca tion s 
PMI3ASE + 1280 throu g h PMI3ASE +"] 535, a nd so o n for players 
two a nd three. Lin e "1040 clea rs a ny res idu a l data - if yo u ' re in a 
hurry a nd are s ure that thi s area is a lready clear (i.e., following 
a co ld star t) , you wo n ' t need lin e H)40 . 

Memory Allocation For Single-Line Resolution of P/M Graphics. 

curre ntl y 
not 

lI sed 

player zero 

player one 

player two 

player three 

PM BASE 

+1024 

+1280 

+1536 

+1792 

167 



5 Animation With PlayerfMissile Graphics 

Lines 1050 and 1060 a re u sed to draw playe rs ze ro and 
on e. VBLAN K PM exp ec ts th e players to be d raw n so th a t their 
top line is initially placed a t th e beginning o f th e indi vidual 
playe r' s s to rage a rea. The playe r ca n be as ta ll as you like up to 
255 lines; o f course, yo u w ill neve r see a ll o f a playe r w hich is 
that tall on th e screen at th e sa me time. 

Nex t yo u ca n see th a t we've take n ad va ntage o f th e Atari 's 
sp ecia l mem o ry loca ti o ns fo r some fun cti on s. You es tabli sh th e 
players' colors with a POKE into loca ti o ns 704 thro ugh 707 for 
players zero thro ug h three, res pec ti ve ly. l in e 1070 is u sed to 
se t th e co lo rs and assum es th a t yo u've se t th e va ri ables PCOLO, 
PCOLI , PCOL2, a nd PCOl3 a lrea d y. 

Line 1080 es ta bli shes th e p os itionin g add resses w hich yo u 
will be usin g la te r to s ign a l player moveme nts us ing only 
PO KEs. PLX a nd P LY a re th e loca ti o ns POKEd to es tabli sh th e 
nex t x a nd y positio n of pl aye r ze ro . A POKE into loca ti o n 
P lX + 1 an d PLY + 1 acco IT1pli s hes th e sa me thin g fo r playe r 
one, and so fo rth fo r pl aye rs two a nd three. PLl (a nd P lL + 1, 
PLL+2, and PLL + 3) a re POKEd to inform VBLAN K PM o f the 
leng th (or h eig ht) o f each pl ayer . 

Line 1090 initi a li zes th e re mainin g co ntro l pa ra mete rs. A 
62 is POKEd into loca ti o n 559 to se t th e sin g le line player/rni ss il e 
resolutio n g ra phics; a o ne placed into loca ti o n 623 es tabli shes 
the player/play fi e ld pri o riti es, g iving th e playe rs prio rity ove r 
th e play fi eld . (Yo u ca n cha nge thi s to suit your purposes, if 
you wish .) Loca ti o n 1788 is in VBLANK P M a nd is POKEd with 
the number o f th e firs t page co nta ining p layer/missile d a ta. 
Loca tions 53277 and 54279 a re used to switch o n th e DMA 
gra phics da ta tran sfe r fac ility a nd to te ll th e ANTIC chip w here 
in m e mory to find th e playe r g rap hi cs da ta. 

Wrapping Up The Loose Ends 
You're a lmos t rea d y to go! A s ubro utine ca ll to VBLANK PM 
fro m line 1100 a ll ows VB l ANK PM to no tify th e o pera tin g sys
tem o f both its prese nce a nd its d es ire to be automa ti call y in
voked as a pa rt o f th e ve rtica l bla nk interrupt process. This is 
th e onl y time in w hich yo ur BASIC p rogra m mu st ex pli citl y ca ll 
VBLA NKPM. 

O kay, to w ra p u p loose end s, let's take a qui ck look a t th e 
m ain progra m - lines 100 th ro ug h 200. Lin e 100 turn s o ff th e 
cursor, clea rs th e screen , a nd prov ides a b lack backgr01md so 
tha t w e can read ily see the pl aye rs. 

168 



5 Animation With Player/Missile Graphics 

Line 110 se ts th e playe rs' co lors be fore the VBLANK PM 
initializa tion subprog raIT1 is executed. You know ho w to se t the 
colors, right? Multipl y th e co lor number by 16 a nd add th e d e
sired inten sity - th e co lor a nd inte nsity numbe rs a re th e sa m e 
as those used in th e SETCOLOR command . Line 120 ass ures 
that VBLANK PM is lau nched. 

Line 130 illu s trates th e ma nne r in w hich you pass ins tru c
ti o ns to VBLANK PM . H e re we a re te lling VBLANK PM that 
bo th players are eight lines ta ll . Yo u can chan ge thi s paralTle ter 
at any time - we have a littl e surpri se for you la te r abo ut why 
you 111.ight wa nt to cha nge thi s pa ra me ter. 

Lines 140 a nd 150 es tab li s h the initial te levisio n sc reen 
positions of playe rs ze ro a nd o ne, res pective ly . A word abo ut 
th e ava ilable va lu es fo r th e x a nd y coordina tes might be he lpful , 
since no t all x and y va lu es w ill res ult in th e playe r be ing di s
played. There are 255 x pos itio ns, wi th o nl y 160 o f these ap
pea ring across the te lev is io n sc ree n beginning w ith a n x va lue 
of 48 . 

Similarly, th e re are 255 y positio ns, with 192 of these vi s ibl e 
on th e screen beg in n in g w ith 32 at th e top. (These x a nd y values 
may vary sli ghtl y d e pe nding o n th e adju s tme nt of yo ur te levi
sion receiver.) VBLANI< PM ass um es that yo u a re re ferring to 
th e upper le ft co rn e r o f yo ur playe r wheneve r you POKE new 
x a nd y coord inates. 

Lines 170 a nd 180 illu s tra te th e u se of th e pseud o-random 
number function to d e te rmine th e nex t se t of x a nd y coo rdi
na tes . Line 190 provid es a s ma ll de lay be tween playe r move
ments. Delete th e FOR a nd NEXT s ta te ments if yo u wa nt to 
see h ow fast - a nd easy - it is to move players. 

Well , w h o sa id p laye r/mi ss il e g raphics h ad to be a ny thin g 
but fun?! Give VBLANI< PM a try in o ne of your current pro
gram s to add a littl e z ip; o r try it in yo ur nex t gra phics proj ec t. 

O h, we almos t forgot th a t we promised yo u a s urpri se 
rega rding w hy yo u mig ht wa nt to cha nge th e he ig ht o f a playe r. 
VBLANK PM h as a few more fea tures w hich a llow yo u to 
animate th e m oveme nts o f yo ur playe rs - so turn to th e nex t 
a rticl e ' 

169 



5 Animation Wilh Player/Missile Graphics 

Program. 

90 REM * VBLANK PM DEMO * 
100 POKE 752,1: 7 CHR$(125):SETCOLOR 2 

~ 0, 0 
110 PCOLO=216:PCOL1=56:REM Color of p 

layers 
120 GOSUB 1000:REM Initialize VBLANK 

routine 
130 POKE PLL,8:POKE PLL+l,8:REM Heigh 

t of players 
140 POKE PLX,108:POKE PLY~102:REM PIa 

yer 0'5 initial position 
150 POKE PLX+l,108:POKE PLY+l,72:REM 

Player 1'5 initial position 
160 REM Let players dance l 

170 POKE PLX,RND(0)tI59+48:POKE PLY,R 
ND(0)tI91+32 

180 POKE PLX+l,RND(0}tI59+48:POKE PLY 
+1,RND(0}*191+32 

190 FOR 1=1 TO 75:NEXT I:GOTO 170 
200 END 
1000 REM * INITIALIZE VBLANK t 
1010 FOR 1=1536 TO 1706:READ A:POKE I 

,A:NEXT I 
1020 FOR 1=1774 TO 1787:POKE I,O:NEXT 

I 
1030 PM=PEEK(106)-16:PMBASE=256tPM 
1040 FOR I=PMBASE+I023 TO PMBASE+2047 

:POKE I,O:NEXT I 
1050 FOR I=PMBASE+I025 TO PMBASE+I032 

:READ A:POKE I,A:NEXT I 
1060 FOR I=PMBASE+1281 TO PMBASE+1288 

:READ A:POKE I,A:NEXT I 
1070 POKE 704,PCOLO:POKE 705,PCOLl:PO 

KE 706,PCOL2:POKE 707,PCOL3 
1080 PLX=53248:PLY=1780:PLL=1784 
1090 POKE 559,62:POKE 623,I:POKE 1788 

,PM+4:POKE 53277~3:POKE 54279,PM 
1100 X=USR(1696) 
1110 RETURN 
2000 REM * VBLANK INTERRUPT ROUTINE * 
170 



5 Animation With Player/Missile Graphics 

2010 DATA 162,3,189,244,6,240,89,56,2 
21,240,6,240,83,141.254,6,106,14 
1 

2020 DATA 255,6,142.253,6,24.169.0,10 
9,253,6,24,109,252,6,133,204,133 

2030 DATA 206,189~240,6,133,203,173,2 
54,6,133,205,189,248,6,170,232,4 
6,255 

2040 DATA 6,144,16,168,177,203,145,20 
5,169,0,145,203,136,202,208,244. 
76,87 

2050 DATA 6,160,0,177,203,145,205,169 
,0,145,203,200,202,208,244,174,2 
53,6 

2060 DATA 173,254,6,157,240,6,189,236 
,6,240,48,133,203,24,138,141,253 
,6 

2070 DATA 109,235 , 6,133,204,24,173.25 
3,6 , 109~252,6,133,206.189,240,6, 
133 

2080 DATA 205,189,248.6,170,160,0,177 
,203,145,205,200,202,208,248,174 
!f 253 !,6 

2090 DATA 169,0,157.236,6,202,48,3,76 
,2,6,76,98,228,0,0,104,169 

2100 DATA 7,162,6,160,0,32,92,228,96 
3000 REM * Draw players ° & 1 * 
3010 DATA 6,6,8,126,195,195,195,126 
3020 DATA 126,195,195,126,24,126,126~ 

24 

171 



5 Animation With Player/Missile Graphics 

Animation And 
P 1M Graphics 
Tom Sa k and Sid Meie r 

This nrticle bllilds upo n tile vert icnllJlnll k rOll ti ll e ill til l' precedillg 
piece, showing how to nllil1lnte plt7yers with pre-dmwll shnpes. 

You' re alread y fa mili a r w ith th e Ata ri 's ability to ra pidly move 
a playe r fro m o ne loca ti o n to a no th e r. But th e re a re ma ny times 
w hen you would like to d o mo re tha n s im p ly move a playe r; 
yo u' d like to g ive it life like mo ti o n , o r a nima ti o n. Spe nd a few 
minutes a nd learn how yo u ca n ac hieve th ese e ffects w ith far 
less e ffo rt th a n yo u mig ht have imagined. 

Th e a rt o f bring ing li fe to s till p ictu res is much olde r tha n 
many o f us rea lize. The p rodu ctio n of books w hi ch conta ined 
moving pictures was we ll es tab li s hed befo re the in venti o n of 
the m o ti on picture ca mera and projec to r. T he e ffec t o f moving 
pictures was typica ll y acco mpli s hed by rap id ly fli p ping the 
pages o f a bookle t conta ining s im ple cha racte r draw ings, 
makin g th e m see m to s pring to li fe . 

Walt D isney a nd num e ro us o th e r a nima to rs have produced 
thi s illus io n o f mo ti o n by d raw ing se ri es of pictures in which 
each picture differs fro m th e prev io ll s one o nl y in a ve ry s ma ll 
d e ta il , a s ubtl e d is place ment of eac h mov ing e le me nt. The pic
tures a re th e n pho togra phed fo r s ubsequent projec ti o n. 

Fo r exa mpl e, a n a nim a to r, us in g a sequence of drawings, 
dra w s a ma n who appea rs to ra ise hi s a rm away from hi s sid e. 
The firs t drawing wo uld sh ow th e man facing yo u with bo th 
a rms a t hi s s id es . The second p icture d iffers o nl y in tha t o ne 
a rm is now s li g htl y away fro m th e ma n's side. The nex t picture 
sh ows th e arm s lig htl y fu rther away, and so on thro ug h th e 
sequ e nce o f drawings . 

Animate With Onlv Four Drawings 
As each picture in th e se ries is v iewed in rap id s uccessio n, by 
flippin g th rou g h th e s tack of d rawi ngs, the fig ure a ppea rs to be 

172 



5 Animation With Player/Missile Graphics 

raising his am, avvay from hi s s ide . A motion picture film con
sists of an analogous sequ e nce o f pictures which also provide 
the illusion of m o tion when they are projected and viewed in 
rapid succession . 

As you can we ll imagine , a very large number of drawings 
is required to produ ce eve n a re latively short motion picture 
sequence. Since you're not about to adapt Fantasia for the s mall 
screen attached to yo ur Atari, we will s how you a way to use 
only four drawings, re pea ted in a cyclical pattern, to produce 
th e illusion of m oti o n. Thi s is a ve ry e ffec ti ve shortcut which 
makes it practi ca l to adapt th e a nimator's techniqu es to yo ur 
BASIC program. 

Now for so me A ta ri animation. There is no qu es tion that 
our artistic creativity and g raphi c tal ents ma y n ever rival those 
of Walt Disney, but we will e nd eavo r to adapt the basic anima
tion technique w hi ch he p op ul ar ized in order to move four 
"cowboys" from ri g ht to left across your te levis ion scree n , 
totally out of s tep w ith each o th e r. 

For illus trati ve purposes we'll begin by moving only one 
cowboy. Progra m J acco mpli s hes thi s objective by using th e 
automatic playe r/mi ss il e g ra phics manipulation of th e ve rtical 
blank inte rrupt ro utine which we di scussed in the preceding 
article. Those who have e ntered th e exa mple program in that 
article will be pleased to know it already contains th e animation 
fea tures d escribed he re. 

Program 2 add s co mpl ex ity to the o ne cowboy prog ram, 
illustra ting th e asy nchro no us move me nt of four playe rs . De
ve loping an und ers ta nding of th e m ore complex program won't 
be too difficult once yo u 've ~ra sped th e concepts in Program 1. 

Reviewing Vertical Blank Interrupts 
An elementary und ers ta nding of ou r vertical blank interrupt 
routine, VBLANK PM, is a prerequi s ite. Here we will rev iew 
hi g hlights of o ur previolls ar ticl e . 

VBLANK PM is a machin e lang ua ge subroutin e which 
occupies a portion o f m e mory page s ix. It is initiali zed by a s in g le 
BASIC USR fun ction celli which celLl ses VBLANK PM to notify 
the operating syste m o f both its presen ce and its des ire to be 
automatically in voked durin g each ve rti ca l blank inte rrupt. 

Prior to initi a li za ti o n , a 21< (2048) by te m em o ry allocation 
must be mad e fo r th e s to rage of playe rs, and th e players mu s t 
be drawn. Following initi a li za ti o n, a POKE of th e x-ax is (hori-

173 



5 Animation With Player/Missile Graphics 

zontal) and y-axis (vertical) scree n coo rdinates is a ll th a t is 
required to ca u se a player to be a uto mati ca ll y moved during 
th e n ex t vertica l blank period, o r approx ilTl a te ly eve ry 60 th o f a 
second. 

W e hinted in the previous a rticl e th a t VBLANK PM ha s an 
a nima ti o n feature ju st wa iting to bring life to yo ur playe rs. All 
you n eed do is suppl y a fevv m o re dra w ings. The drawings and 
th e current display image are conta ined in the 21< by te s tora ge 
block. 

Players Are Stored As Separate Images 
Fig ure :1 d e picts th e m e m o ry a ll oca ted fo r th e s torage o f players 
(see line 1030 in Program 1; m e m ory a ll oca tion is ex pla ined in 
our ea rli e r article). The current di s pla yed image of playe r ze ro 
resides a t location s PM BASE + 1024 throu g h PMBASE + 1279; 
playe r o ne's homes tead is PM BASE + 1280 thro ug h PM BASE 
+ 1535, a nd so on for th e othe r two players. 

To achieve th e a nimatio n , yo u need m o re tha n o ne image 
of each playe r, so th e lower lK (1024) loca ti o ns (PMBASE 
throu g h PMBASE + 1023) of th e 21< by te sto rage block a re used 
to ho ld th e necessa ry se t of drawings. Eac h player's drawings 
a re stored in a n area of m e mo ry beginnin g a t a locJt io n vvhich 
is lK bytes be low (lo we r m e m ory address) th e pl aye r's pos iti o n 
in th e uppe r 11< portio n of th e 2K by te s to rage block. A draw ing 
is cop ied to th e uppe r 11< po rti on by VBLANK PM when it is to 
be dis played. As a m atte r of fact, yo u wo n ' t draw a nythin g at 
a ll in th e uppe r 11< loca ti o ns, but wi ll le t VBLANK PM look 
after th is chore for you. 

Fo r exa mple, a ll of the player ze ro drawings res id e a t the 
256 loca ti o ns beginning at PMBASE. The curre ntl y displayed 
image of player ze ro res id es a t loca tion s PMBASE + '1024 
thro u g h PMBASE + 1279. The drawings for player ze ro a re 
s tored 1024 locations be low thi s point, which is equ a l to 
PMBASE + 1024 minu s 1024, o r s imply PMBASE. The playe r 
one draw ings begin a t PMBASE + 256, o r (PMBASE + 1280)-
1024, a nd so on for players two an d three at loca ti o ns 
PMBASE + 512 and PMBASE + 768, respective ly. 

A no te of ca ution: we m e nti o ned in th e previous a rticl e 
th a t yo u could use th e lower 11< by tes fo r yo ur ow n purposes 
without di s turbin g anything. Thi s is tru e o nl y when th e 
VBLANK PM animation feature is no t go ing to be used . We 
h o pe that you 've no t bee n led too far as tray! 

174 



5 Animation With Player/Missile Graphics 

At th e ris k of s tatin g th e obvious, we'd like to mention 
that as soo n as you've decid ed to use more than o ne drawing 
pe r playe r - which yo u mus t do in o rd e r to ac hi eve th e a nimatio n 
- yo u can no longer have a playe r which is 255 lin es tall. This is 
tru e beca use th e re a re only 256 loca tions in wh ich to store a ll of 
th e drawings necessa ry to a nima te a s ing le player. The firs t 
position , location ze ro , of each s tora ge bin is reserved for a 
reason di scussed la te r. 

Initialize The Vertical Blank Routine 
Now le t' s turn our a tte nti o n to Program 1. Lin e numbe rs e nding 
in ze ro are the sa me as in th e preceding art icl e a nd, for those 
who previously keyed th e leng th y DATA s ta te me nts co ntai ning 
VBLANK PM, w e've m ad e no cha nges to th e machine la ng uage 
s ubro utine. 

Lines 105 thro ug h 205 are th e main prog ram which causes 
our ra g tag cowboy to m ea nd e r ac ross th e sc ree n. The BASIC 
code required to load a nd initiali ze VBLANK PM is found on 
lines 1000 throu g h 1110. The VBLANK PM mac hin e lang uage 
subroutin e is re prese nted as DATA in lines 2000 throug h 2100. 
Finally, lines 3005 thro ug h 3045 co ntai n th e fo ur drawin gs , 
used to d escribe a s in g le pl aye r. 

Be fore rev iew ing th e m ain prog ra m , w e' ll go over th e in
itiali za ti o n s ubro utine w hich pe rfo rm s three fun c tion s : load 
VBLANK PM, load the playe r's drawings, and initialize 
VBLANK PM. 

Lines 1010 a nd 1020 ca use VBLANK PM to be read from 
DATA s ta te me nts a nd POKEd into m e mory page s ix . A more 
memory-e ffici ent me th od o f re prese ntin g VBLANK PM is th e 
u se of a s trin g va ri ab le ins tea d of DATA s ta te me nts . Us ing this 
alternative, yo u continue to POKE th e VBLANK PM cod e into 
pa ge s ix, but from th e s trin g va ri able ins tea d of from D ATA 
s tate me nts . 

You wo uld save me mo ry beca use o nl y a s ing le by te o f me m
ory is required in th e s tring va ri able assig nme nt s tate m e nt to 
represent a by te o f mac hine la ng uage cod e . In the DATA s ta te
ment, as man y as three by tes may be required fo r th e sa m e 
thin g. For certain o th e r m ac hin e lang ua ge code a pplication s, 
you ca n direct ly execute from th e s trin g, e liminating th e need 
to POKE th e cod e into a no th e r mem o ry loca ti o n . 

How The Animation Works 
Line 1030 acquires th e 2K by te memo ry s to rage block, and line 

175 



5 Animation With Player/Missile Graphics 

1040 assures th a t th e upper lK by te disp lay po rtion is clea red. 
Lines 1045 through 1065 are res po nsible for reading and s toring 
the player's drawings in th e lower lK byte portion of th e s tora ge 
block. The four drawings of a cow boy are illustrated in Figure 
2; you see now why Disney Produ ctions ca n res t easy! 

Notice that in line 1045 th e first loca tion in which th e first 
drawing is s tored is es tabli shed as o ne byte above PMBASE; 
you will learn why thi s is n ecessa ry in a minute . The FOR state
m e nt on line 1055 assures th a t four drawings (ze ro through 
three) are read and s tored . Each drawing is 24 lines tall, so we 
begin the FOR loop o n line 1065 with the base of the firs t drawing 
offset by 24 by tes for each previous drawing s to red. Since each 
drawing consists of 24 bytes, th e loo p is comple ted by adding 
23 to the s tarting point. 

Line 1075 d esigna tes the p layer'S co lo r. Line 1080 es tab
lishes th e loca tions to be POKEd to cha nge th e player's x-axis 
and y-axis scree n coordinates (PLX a nd PLY) a nd to set th e 
length (height) of th e player (PLL). 

The x-axis screen display positio ns fo r p layers ze ro, o ne, 
two, and three a re indica ted by POKEs to PLX, PLX + 1, PLX + 2 
and PLX+3, respecti ve ly. The a na logous s itu a ti on is tru e for 
se tting the player's y-axis coordinate (PLY, PLY + 1, ... ) a nd th e 
playe r'S height (PLL, PLL + 1, ... ), a nd for se lec ting th e nex t 
drawing to be disp layed (POR, POR + 1, ... ). 

POR is defined o n line 1095 and is used to se lect th e nex t 
drawing to be u sed as th e playe r' s curre nt d isplay ima ge. 
VBLANK PM is res ponsible for co pying th e drawing to th e 
appropriate locatio n in th e uppe r 1K by te porti o n of the 2K 
byte s torage block. A va lue in the range o f o ne to 255 is POKEd 
into POR to indica te th e bottom-mos t line of the se lected draw
ing. The mos t recent va lue POKEd into PLL indica tes the 
number of bytes (the height of the playe r) to be co pied. 

VBLANK PM Must Announce Itself 
A value o f zero POKEd into POR s ignals VBLANK PM to con
tinue to display th e current image. This is w hy we were careful 
to avoid loca tion ze ro wh e n load ing the first drawing. VBLANK 
PM se ts POR to ze ro automa ti ca ll y after it cop ies a drClwin g to 
th e upper lK byte di s play Clrea. 

LocCltion 1771, POKEd in line 1095, is Cl locatio n in VBLANK 
PM w hich mus t contCl in the memory page numbe r of the first 
pCl ge in which drawings are sto red. Location 1788, refere nced 

176 



5 Animation With Plaver/Missile Graphics 

o n line 1090, is a lso in VBLANK PM, and mu s t conta in th e page 
numbe r o f the beginning of th e upper 1K by te curre nt di splay 
po rti o n . (These paramete rs afford even grea te r fl ex ibility to 
VBLANK PM, features which a re beyond th e sco pe o f thi s dis
cu ssion.) 

The o th e r POKEs on line 1090 are associated w ith th e Atari's 
playe r/mi ss il e g raphi cs mec ha ni sm w hi ch is d escribed in 
nume rou s other articles . 

VBLANK PM is initiali zed o n lin e 1100. Thi s is th e o nly 
ex pl icit BASIC functi o n ca ll to VBLANK PM which is required. 
As a result of thi s call , VBLANK PM will regis te r its inte ntion 
to beco m e a part o f th e ve rtica l b lank inte rrupt process with th e 
operating sys te m . 

Inside The Main Routine 
Turning our atte nti o n to th e ma in program, w e s ta rt with line 
105, which es tabli s hes th e te levis io n scree n backg round, or 
p layfie ld. It is in1po rta nt that yo u a lways d e fin e a g rap hi cs l1l od e 
(execute a g ra phics s ta te me nt) be fore you initi a li ze VBLANK 
PM; if yo u fail to follo w thi s sage ad vice, yo u a re like ly to be 
p lagued by a s tra nge fla s hing ve rti ca l bar on yo ur sc ree n . 

It does n' t mat te r w hi ch g ra phics m od e is s pecifi ed s in ce 
Ata ri players are inde p e nd e nt of the mod e. G rap hi cs mod e one 
is chose n to prov id e a tex t w ind ow to se rve as a wa lkway for 
o ur s tro lling cowboy. Line 125 se ts th e y-axis pos iti o n of th e 
cow boy so he a ppea rs to wa lk o n top of th e tex t w ind ow. The 
playe r's he ig ht is a lso es ta bli s hed o n line 125. 

The a nimatio n is p e rfor med by lines 135 throu g h 205 . Th ese 
lines s ho uld be rela ti vely easy to compre he nd o nce you have a 
me nta l pi cture of th e wa y in w hi ch th e dravvings we re s tored 
durin g th e initiali za ti o n procedure. Th e varia ble DRAW, in
iti a li zed as on e o n line 135, se lec ts th e nex t draw ing to be used 
as th e curre nt di spl ay image. 

Li nes 145 a nd 165 co ntro l th e ri g ht to le ft mo ti o n of th e 
cow boy by us in g th e index va ri able I as th e x-a xis coo rdina te of 
th e playe r. The POKE to PDR o n line 185 se lec ts th e nex t 
drawing to be di splayed , a nd th e ca lculation on lin e 195 results 
in th e se lec ti on of th e drawing to be used in the nex t cycl e when 
the cowboy tClkes hi s n ext s te p. 

The IF stCl te me nt o n line 195 ass ures thClt Clfter th e fourth 
drawing is used , th e progra m w ill cycle a nd beg in Cl new with 
th e firs t draw in g . Th e FOR loop on line 205 co ntro ls th e s peed 



5 Animation With Player/Missile Graphics 

with which th e cowboy s tro lls ac ross th e sc ree n. A ma ximum 
value of 30 results in a movem e nt w hi ch yo u mi g ht d esc ribe as 
a bris k w alk . Th e large r th e m ax imum va lue of thi s d elay loo p , 
th e slowe r th e pace of the playe r. 

T he cow boy w ill continue to wa lk ac ross th e sc reen until 
yo u s top th e progra m . Incidenta ll y, th e p rogra m d oes n o t g ra ce
full y turn o ff the A ta ri' s player/miss il e g raphi cs mecha ni sn" so 
yo u a re we ll ad vised to press SYSTEM RESET to re m ove th e 
undesirable res idu e from th e screen . (POKE 53277,0 turn s o ff 
the playe r/miss il e g race full y. ) Be pa ti e n t w he n th e prog ra m is 
s tarted , s ince it ta kes m o re tha n te n second s fo r th e initi a li za ti o n 
p raced u re . 

Four Heads Are Better Than One 
A nd tha t' s a lmos t a ll th ere is to anima ti o n! A re yo u read y to 
tackle a littl e bit m ore cha ll e ng ing projec t? Progra m 2 re prese nts 
e nha nce me nts to the p rogra m w e've bee n rev ie win g. It uses a ll 
fo ur playe rs a nd , w hile it ca uses th e m to wa lk o ut o f s te p with 
eac h othe r, it e mploys o nly th e sa me fo ur draw ings. 

P rogra m 2 m od ifi es seve n lines a nd add s two m o re. Th e 
cha n ged lines a re : 125, 165, 185, 205, 1045, 1055 a nd ]075; lines 
155 a nd 175 are n ew . 

Line 1045 now includes a FOR s ta te m e n t to ca use th e draw
ings to be READ and POKEd in th e s to rage a rea associa ted 
w ith th e additi o n al three pl aye rs . Note a lso tha t th e ca lcul a ti o n 
of DRWB AS is revised to reflec t th e additi o na l pl aye rs . 
DRWBAS co nta ins th e ad d ress of th e firs t by te o f th e draw ing 
s to rage a rea containing th e firs t draw ing fo r th e cu rre nt playe r. 
As th e va lu e o f th e va riable, t in th e FOR loo p is ind exed fro m 
o to 3, DRWBAS w ill ta ke th e va lu es 1,257,513 a nd 769 . T he 
firs t b y te, loca ti o n 0, o f each s to rage a rea is sk ipped fo r th e 
reason me nti oned ea rli e r. 

A RESTO RE s ta tem e nt is added to lin e 1055 w hi ch rese ts 
th e DATA pointer to re read th e sa m e draw in gs fo r each playe r. 
T he modifi cation to line 1075 is simpl y th e additi o n o f pl aye r 
co lo rs fo r th e ne w players . 

Looking a t th e ma in progra m , line 125 no w es ta bli s hes th e 
y-axis and he ig ht fo r fo ur players rath e r th a n o ne . Lin e 155 is 
add ed to cycle throu gh th e x-ax is moveme nt a nd picture se lec
tion fo r a ll players. 

In line 165 we've added a ca lculatio n to th e x-ax is pos iti o n
ing PO KE to m a inta in a se para ti o n be twee n th e cowboys whi ch 

178 



5 Animation With Player/Missile Graphics 

is equClI to s li g htl y m o re than th e width of Cl s in g le playe r ClS 
m eCls ured from th e le ft-mo s t ed ge of o n e plClye r to th e le ft-most 
edge o f th e foll owin g pl Clye r. 

Still Only Four Drawings 
Line 175 is add ed to Clss ure thClt Cl diffe re nt drClwin g is u sed a s 
th e curre nt di sp lay image fo r each playe r. T he vCl ri a ble DRAW 
co ntinu es to d e tenT1in e th e d rClwing to be se lected fo r pl aye r 
ze ro. Stud y th e s tCl te m e nt, Cl nd you w ill discove r th Cl t each playe r 
w ill be d epicted by th e draw in g following thClt u sed for th e 
previou s playe r . That is, if player ze ro is pictured by th e firs t 
drawing, th e n playe r o n e is illu s tra ted by th e second , pl Clye r 
tw o by th e third , Clnd , fin Cl ll y, plCl ye r three is di s plClyed ClS th e 
fourth drawing. A c ircula r ass ig nm e nt is u sed so that th e fourth 
draw ing is fo llowed by th e fi rs t. 

T h e delay loop is o mitted from line 205 beca use th e addi
ti ona l cCl lculatio n s n eed ed for th e ad d ed playe rs co n s ume s uffi
cie nt tim e to m ai nta in a reason able pace for a ll four cowboys. 
Yo u mi g ht wa nt to ex p e rim e nt w ith a delay loop to further 
s low th e ac ti on; be tte r ye t, co n sid e r us ing GET to Clccept a key
s troke in s tea d of employing a d e lay in g FOR loop. T h e GET w ill 
a ll ow yo u to s te p th e playe rs ac ross the sc ree n in o rd e r to s tudy 
th e Cl nim Cl ti o n techniqu e. 

Don't yo u ag ree that a nim Cl ti o n m Clkes a wo rld of differe nce 
in the u se of player/mi ssil e g ra phics? 1 was fa scinated whe n m y 
m o re tCll e nted partne r, Sid , gave me a h a lf-doze n lin es of c ry ptic 
BASIC s tatem e nts to turn into a n a nim a ti on tutoriClI. T he firs t 
tim e [ SClW th e n. execute, I was m esm e ri zed . Go a head, type 
e ithe r prog ra m into your Atar i; yo u ' ll be ad di c ted too. 

]79 



5 Animation With Player/Missile Graphics 

Figure 1. 

8 bits wide 

PMBAsE 

PMBAsE 
+256 

PMBAsE 
+5]2 

PMBAsE 
+768 

PM BASE 
+1024 

PM BASE 
+]280 

PMBAsE 
+1536 

PM BASE 
+1792 

PM BASE 
+2048 

Unused 
(PlayerO-
Drawing Storage) 

Unused 
(Playerl-
Drawing Storage) 

Unused 
(Player2-
Dra wing Storage) 

Missiles 
(Player 3-
Drawing Storage) 

PlayerO 

Player1 

Player2 

Player3 

() - VBLANK PM unique usage 

180 



5 Animation With Player/Missile Graphics 

Figure 2. 

.& 
• 

.& 
• 

.& 
• 

.& 
• 

DRAWING 1 DRAWING 2 DRAWING 3 DRAWING 4 

Program 1. 

5 REM .... PRO G R A M{4 SPACES}O N E .... 
105 GRAPHICS 1:SETCOLOR 2,1,8:SErCOLOR 4,8,4 

:POSITION 5,3:? #6;"animation":POSITION 
3,5:? #6;"demonstration" 

120 GOSUB 1000:REM initialize vb routine 
125 POKE PLY,169:POKE PLL,24 
135 DRAW=l 
145 FOR 1=212 TO 10 STEP -l:REM move rt to 1 

ft horiz 
165 POKE PLX,I:REM new position 
185 POKE PDR,DRAW:REM new drawing 
195 DRAW=DRAW+24:IF DRAW>73 THEN DRAW=l:REM 

select next drawing 
205 FOR DELAY=1 TO 30:NEXT DELAY:NEXT I:GOTO 

145 
1000 REM INITIALIZE VBLANK PM SUBR 
1010 FOR 1=1536 TO 1706:READ A:POKE I,A:NEXT 

I 
1020 FOR 1=1774 TO 1787:POKE I,O:NEXT 1 
1030 PM=PEEK(106)-16:PMBASE=256*PM 
1040 FOR I=PMBASE+I023 TO PMBASE+2047:POKE I 

,O:NEXT 1 
1045 DRWBAS=PMBASE+l 
1055 FOR J=O TO 3:REM four drawings 

181 



5 Animation With Player/Missile Graphics 

1065 FOR K=DRWBAS+3*24 TO DRWBAS+3*24+23:REA 
D X:POKE K,X:NEXT K:NEXT 3 

1075 POKE 704,12 
1080 PLX=53248:PLY E I780:PLL=1784 
1090 POKE 559,62:POKE 623,I:POKE 1788~PM+4:P 

OKE 53277,3:POKE 54279,PM 
1095 PDR=1772:POKE 1771,PM 
1100 X::USR(1696) 
1110 RETURN 
2000 REM vblank interupt routine 
2010 DATA 162,3,189,244,6,240,89,56,221,240, 

6,240,83,141,254,6,106,141 
2020 DATA 255,6,142,253,6,24,169,0,109,253,6 

,24,109,252,6,133,204,133 
2030 DATA 206,189,240,6,133,203,173,254,6,13 

3,205,189,248,6,170,232,46,255 
2040 DATA 6,144,16,168,177,203,145,205,169,0 

,145,203,136,202,208,244,76,87 
2050 DATA 6,160,0,177,203,145,205,169~0,145, 

203,200,202,208,244,174,253,6 
2060 DATA 173,254,6,157,240,6,189,236~6,240, 

48,133,203~24,138,141,253,6 

2070 DATA 109,235,6,133,204,24,173,253,6,109 
,252,6,133,206,189,240,6,133 

2080 DATA 205,189,248,6,170,160,0,177~203,14 
5,205,200,202,208,248,174,253,6 

2090 DATA 169,0,157,236,6,202,48,3,76~2,6,76 

,98,228,0,0,104,169 
2100 DATA 7,162,6,160,0,32,92,228,96 
3005 REM drawings 0, 1, 2 and 3 
3015 DATA 0,12,12,30,0,12,12,0,12,14,30,45,1 

3,13,12,28,28,20,52,34,34,34,102,0 
3025 DATA 0,12,12,30,0,12,12,0,12,14,14,13,2 

6,4,8,12,12,28,24,28,20,18,50,0 
3035 DATA 0,12,12,30,0,12,12,0,12,14,10,14,3 

0,12,8,12,28,28,8,12,12,8,24,0 
3045 DATA 0,12,12,30,0,12,12,0,12,12,12,10,6 

, 30, 12, 12, 12, 12, 20,20, 18, 50, 6,0 

182 



5 Animation With Player/Missile Graphics 

Program 2. 

This program uses the Vertical Blank Player/Missile routine, so add lines 
2000-3045 of Progmm 1 when you type it in. 

5 REM ..•• PRO G R A M{4 SPACES}T W 0 •••. 
105 GRAPHICS l:SETCOLOR 2,l,8:SETCOLOR 4,8,4 

:POSITION 5,3:? .6;"animation":POSITION 
3,5:? *6; "demonstration" 

120 GOSUB 1000:REM initiAlize vb routine 
125 FOR J=O TO 3:POKE PLV+J,169:POKE PLL+J,2 

4:NEXT J 
135 DRAW=l 
145 FOR 1=212 TO 10 STEP -l:REM move rt to I 

ft horiz 
155 FOR J=O TO 3:REM four players 
165 POKE PLX+J,I+J*10:REM new positioN, main 

tain separation 
175 NXTDRW=DRAW+J*24:IF NXTDRW>73 THEN NXTDR 

W=NXTDRW-96:REM $elect different drawing 
for each player 

185 POKE PDR+J,NXTDRW:NEXT J 
195 DRAW=DRAW+24:IF DRAW>73 THEN DRAW z 1:REM 

select next drawing 
205 NEXT I:GOTO 145 
1000 REM INITIALIZE VBLANK PM SUBR 
1010 FOR 1=1536 TO 1706:READ A:POKE I,A:NEXT 

I 
1020 FOR 1=1774 TO 1787:POKE I,O:NEXT I 
1030 PM=PEEK(106)-16:PMBASE=256*PM 
1040 FOR I=PMBASE+1023 TO PMBASE+2047:POKE I 

,O:NEXT I 
1045 FOR 1=0 TO 3:DRWBAS=PMBASE+I*256+1:REM 

four players 
1055 RESTORE 3015:FOR J=O TO 3:REM four draw 

ings 
1065 FOR K=DRWBAS+J*24 TO DRWBAS+J*24+23:REA 

D X:POKE K,X:NEXT K:NEXT J:NEXT I 
1075 POKE 704.12:POKE 705,128:POKE 706,48:PO 

KE 707,192 
1080 PLX=53248:PLV=1780:PLL z 1784 
1090 POKE 559,62:POKE 623,1:POKE 1788,PM+4~P 

OKE 53277,3:POKE 54279,PM 
1095 PDR=1772:POKE 1771,PM 
1100 X=USR(1696) 
1110 RETURN 

183 



5 Animation With Player/Missile Graphics 

Extending 
Player/Missile 
Graphics 
Eri c Stoltman 

Here's nl10tl ler way to (7Ililllnte player sl1i7pes will i n Illac/lillt! Inllgllnge 
!'O llt iliC. It's nlso (ll7 ll1 ll ll le/or ill stn lltly chaligiliS tlit' sl1i7Jit' ofn player 
to fi t the directioll ii 's tm(lL'iill~. 

. L 

One of the bes t feClture s of the Ata ri is playe r/missi le g ra phics . 
This a rticl e a nd exa mpl e program will exp lain how to crea te 
excell e nt a nima ti o n, such as a wa lking fi g ure o r Cl rotating ship , 
with just o ne plClyer. 

O ne WCly to perform a nima ti on is to Cl lte rn ate playe rs back 
and forth, but problems ari se. What if the plClye r is moved up) 
The o th er playe rs i'l iso hi'lw to be moved up . Thi s t<lkcs tim e. 
Anothe r me thod is to Cl lte rJ1 Cl te ly POKE data into the plClye r, 
thu s cha nging its shape. Thi s ca n be don e s low ly in BAS IC or 
quickly a nd eCls il y in machine la nguage . Thi s program w ill 
compa re bo th the BASI C a nd machine ICl nguage methods for 
changing the data of Cl playe r. 

A fte r a plClye r is set up , <Idd iti onal data for othe r s hClpes 
mu st be s tored in RAM. I prefe r to use me mory loc<ltions 256 to 
511, since they a re empty and a re protected. Thi s dat<l ca n be 
manipul a ted by se ttin g up pointers in an a rrily. A s ubroutine 
can the n easily re tri eve thi s datCl il nd place it in th e plClyer' s 
data area. This ca n be done in BAS IC: 

C =O: FOR A = PMBASE+512+ Y TO PMBASE+519+ Y:POKE 
A, PEEK(POINTER(FACING)+C) :C = C +L NEXT A 

POINTER(FACINC) = Arrily co ntClining addresses of diltil. 
EXAMPLE: POI NTER( I) = 260, POINTER(2) = 2(iS, etc. 

Or in machin e ICl nguage: 

A = US R(XXX, PM BASE + 512 + Y,POJNTER(FACINC)) 

184 



5 Animation With Player/Missile Graphics 

xxx = Address o f Machine La ng uage s ubro utine. 

Th e machine la ng uage me th od is no t only easie r, but also ex
ecutes 11 times fas te r a nd p rov id es s m oo th er m o tion . 

The machine lan g uage cod e is re loca table a nd ca n eas ily be 
modified by ch a nging th e 22nd DATA e lem e nt so m o re o r less 
d a ta can be PO KEd into th e playe r's d ata a rea . 

In addition to p rov iding a nima ti o n , thi s s ubroutine ca n 
move a playe r up or d ow n w h e n th e ve rti ca l va lu e cha nges 
g rea tly. To d o this, point to a n e mpty a rea o f RA M (thu s e ras ing 
th e playe r), a nd th e n cha nge th e ve rti ca l va lue a nd point to th e 
desired data. An exa mple wo uld be if a p laye r we nt o ff th e top 
o f the sc reen a nd , using th e me th od mentio ned abo ve, qui ckly 
reappea red at th e bo tto ill. 

[ s ho uld po int o ut th a t nl a ny fa lse players, th a t is, d a ta fo r 
a lte rna te s ha pes, nlay be s to red a nd ro ta ted a ill o ng the fo ur 
playe rs to provide exce ll en t a nima ti on. 

Line N umbers Explanation 
110-130 

140-170 
180-190 
200-250 
270-330 

340-400 

POKE m ac hin e la ng uage su bro utin e fo r 
cha ng in g pl aye r into pl aye r. 
POKE da ta fo r additi o na l sha pes into m e m o ry. 
Se t up po i n te rs to da ta. 
Se t u p player . 
If tri gger is p ressed, cha nge p laye r by mac hin e 
la ng uage. 
If trigge r is no t p ressed , cha nge p laye r by BASIC. 

185 



5 Animation With Plaver/Missile Graphics 

Program. 

20 REM THE "I" I NTH E V A R I A B L-E II POI N 1 
ER" IN LINES 190,250,320,390 SHOUL 
D BE A "I" AS "POINT" IS A RESERVE 
D WORD 

100 REM ** INITIALIZATION ** 
110 FOR A=1536 TO 1560:READ I:POKE A, 

I:NEXT A:REM POKE DATA FOR MACHIN 
E LANGUAGE SUBROUTINE INTO MEMORY 

PAGE 6 
120 REM ** MACHINE LANGUAGE DATA ** 
130 DATA 104,104,133,204,104,133,203, 

104,133,207,104,133,206,160,0,177 
,206,145,203,200,192,8,208,247,96 

140 REM ** ADDRESS OF PLAYER DATA ** 
150 FOR A=260 TO 323:READ I:POKE A,I: 

NEXT A:REM POKE DATA INTO PROTECT 
ED RAM 

155 REM ** PLAYER SHAPE DATA ** 
160 DATA 28,62,62,28,73,127,73,65,7,2 

3,39,88,154,36,8,16,240,38,47,127 
,47,38,240,0,16,8,36,154,88,39,23 
, 7 

170 DATA 65,73,127,73,28,62,62,28,8,1 
6,36,89,26,228,232,224,15,100,244 
,254,244,100,15,0,224,232,228,26, 
89,36,16,8 

180 REM ** POINTERS TO DATA ** 
190 DIM POINTER(8}:FOR A=lrO 8:READ 

I:POINTER(A}=I:NEXT A:DATA 260,26 
8,276,284,292,300,308,316 

200 REM ** SET UP PLAYER ** 
210 GRAPHICS O:POKE 752,I:POKE 710,0: 

POKE 559,46 
220 A=PEEK(106}-8:POKE 54279,A:POKE 5 

3277,3:PMBASE=256*A:POKE 53256,1: 
X=124:Y=48 

230 FOR A=PMBASE+512 TO PMBASE+640:PO 
KE A,O:NEXT A 

240 POKE 53248,124:POKE 704,12:FACING 
=1 

186 



5 Animation With Player/Missile Graphics 

250 C=O:FOR A=PMBASE+512+Y TO PMBASE+ 
519+Y:POKE A~PEEK(POINTER(FACING) 
+C):C=C+l:NEXT A 

270 REM ** MACHINE LANGUAGE CHANGE ** 
275 IF STRIG(O)=l THEN 340 
280 POSITION 5~5:? "MACHINE LANGUAGE" 

285 J=STICK(O) 
290 IF J=15 THEN 270 
300 IF J=11 THEN FACING=FACING-1:IF F 

ACING(1 THEN FACING=8 
310 IF J=7 THEN FACING=FACING+l:IF FA 

CING)8 THEN FACING=1 

320 D=USR(1536~PMBASE+512+Y~POINTER(F 
ACING) ) 

330 GOTO 270 
340 REM ** BASIC CHANGE ** 
345 IF STRIG(O)=O THEN 270 
350 POSITION 5~5:? "BASIC{ll SPACES}"; 
355 J=STICI«O) 
360 IF J=15 THEN 270 
370 IF J=11 THEN FACING=FACING-l:IF F 

ACING(1 THEN FACING=8 
380 IF J=7 THEN FACING=FACING+l:IF FA 

CING}8 THEN FACING=l 
390 C=O:FOR A=PMBASE+512+Y TO PMBASE+ 

519+Y:POKE A~PEEK(POINTER(FACING) 
+C):C=C+l:NEXT A 

400 GOTO 340 

187 



5 Animation With Player/Missile Graphics 

The Collision 
Registers 
Matt G iwer 

Collision registers allow you to detect overla ps betweeJl players, lIIis
siles, and other objects on the screen - an especially valuable feature 
for ga llle programl1lil1g. 

When using player/missile gra phics, the Atari O perating Sys tem 
sets aside 16 regis ters (memory loca tions) fo r d e termining colli
sions. These colli sion regis ters can be read to see if the re has 
been a collision , and w hat the playe r o r missil e has collided 
with . Thi s allows control of events o r ac ti ons w ithin the program 
- such as triggering explos ions, for exa mple . Fo r complex 
games, we need d e tail ed knowled ge a bout the numbers in these 
regis ters. 

Exactly wha t is a colli sion? In the player/miss il e gra phics 
sense, a collisio n occurs w he n the CTIA or GTIA video display 
chip is directed to overw ri te a n ordina ry scree n graphic o r a 
player/missile with anothe r player/missil e. As part of thi s over
writing process, the computer writes d iffere nt numbers into its 
collis ion regis ters, depending upon w ha t kind of ove rw rite has 
occurred . In othe r words, w hen two things a re to be o n the 
screen at the sam e place a t the sa me time, a number w ill be 
written to these regis ters. 

An important fac t abou t a co lli sion is tha t the re m ll s t be a n 
overwrite by a t least one pixel, ra th er than as a ball co lliding 
with a wall whe re touching is enough to be ca ll ed a colli sion . 

Also, the numbers in these regis ters w ill no t re turn to ze ro 
during the verti ca l blank ing pe riod (th e sp lit-second a TV sc reen 
is blank betwee n frames). The onl y way to re turn the co llision 
regis ters to zero is to POKE a numbe r into reg is ter 53278. Thi s 
is ca lled the HITCLR, fo r Hit Clea r, regis ter. 

Refer to Tab le 1. Thi s shows w ha t happe ns w hen Players 0 
through 3 collide wi th o ther playe rs. The left-h a nd co lumn 
shows the regis te r nUl1,be r associa ted w ith the co lli sio n of the 

188 



5 Animation With Plaver/Missile Graphics 

player. The Player 0 through Player 3 across the top are the 
ones being collided with. The values in the table are those re
turned after the collision . For exa mple, if Player 0 collided with 
Player 1, then PRINT PEEK(53260) would return the number 2. 
Also, PRINT PEEK(53261) would return the number 1, because 
the players have collided with each other and both registers 
will have a number written in them. 

Look again a t Table 1. Since Player 0 ca nnot collide with 
itself, the value remains zero . When you POKE a number into 
the HITCLR register, this collision register returns zero and 
remains zero until there is a collision with a player other than 
itself. This permits a register tes t such as IF PEEK(53260»0 
THEN [SOMETHING] ra ther than using three tes t statements 
for the values 2,4, and 8. Thus, if yo u do no t need to know 
exactly which player has been in a co llision , you need no t tes t 
for it. 

Another aspect of this regis ter is that it returns the sum of 
the collision values. That is, if Player 0 collides with more than 
one other player before you POKE HITCLR, then the number 
in regis ter 53260 will be the su m of the numbers. If Player 0 
collides with Player 1 and Player 2, then the collision regis te r 
will conta in 6; with Player 1 and Player 3, then the value will be 
10; with Players 1, 2, and 3, the value will be 14. Note that in 
this case, as in Tables 3 and 4, these numbers are genera ted by 
setting bits 0 through 3 in the registe rs. Thus, in a machine 
language routine, the s ta te of these registers ca n be determined 
by u sing a logica l AND with a compare (CMP) . 

Table 2 sh ows the regis ter values resulting from collisions 
of players with playfields draw n w ith the BASIC ins truction 
COLOR. De pending upon the grap hics mode, these can be 
character se ts (normal or redefined) , or PLOT and DRAWTO 
figures. There is no requirement that these ac tually be different 
colors since the rea l co lo rs a re contro ll ed by regis ters 709, 710, 
and 711 and ca n be set to the same value. The play field gra phic 
needs only to be draw n by the COLOR ins tructi on . The graphic 
might even be th e same color as the background, and therefore 
in visible . Because these collis ions return diffe rent numbers, it 
is possible to have differe nt responses depending upon the 
g raphic collided with. Thu s a room may have walls drawn with 
COLOR 1 and a door w ith COLOR 2. When the collision register 
va lue re turned is 1, the playe r will no t be able to pa ss through 
the wall, but when the va lue is 2, th e player ca n pass through. 

189 



5 Animation With Player/Missile Graphics 

Tables 3 and 4 are similarly structured and comple te the 
register information. All ha ve the sa me gene ral characteristics. 
The number is generated by the se tting of bits 0 throu gh 3 in 
the registers, so the re turned decimal value is I, 2, 4, or 8 if 
only one collision has occurred, or the sum of these numbers if 
multiple collisions have occurred. Note that since no two num
bers add up to any third collision value, multiple colli sions can
not be confused with single collisions. Even with nwltiple colli
sions there is always a unique number re turned . These values 
will remain in the registers until HITCLR is POKEd . 

Note also that several collision registers are not provided . 
Collisions be tween missil es and o ther missiles are not d etected , 
nor are collisions among playfields. Nor, as in the case of player 
collisions, are there reciprocal regis ters for the other possible 
collisions. For exa mple, there a re registers to de tect when mis
siles collide with players, but there are no reciproca l registers 
to determine if players have been hit by missiles . To some extent 
this dictates the character of the program. When a missil e is 
fired, the missile regis ters mus t be tes ted. 

Another characteristic of these registers is tha t even though 
a collision can be described as an overwrite, the registers fill 
regardless of the priority between players and playfi e lds that 
has been selec ted by a POKE into regis ter 623, th e shadow 
(duplicate) of 53257. Setting these priority regis te rs allows players 
to pass in front of or behind playfields, to simula te three
dimensional move ment. But despite the priority selected, the 
register will res pond as though there were no prio ri ty. Missiles 
will respond the same as the ir associated players. Thus when 
two objects are to be on the screen at the same place at the same 
time, the regis ters will change whether or not yo u ca n see both 
of the objects. 

The colli sio n registers also fill with the sa me number from 
each collision . Thus, if Player 0 co lli des w ith three sepa rate 
objects all drawn with COLOR I , regis ter 53252 will s till contain 
the value 1. No matter how ma ny tim es the playe r collides with 
the different objects, the value will re main I, until it collides 
with a playfie ld figure drawn with COLOR 2 or 3 or until 
HITCLR ha s bee n POKEd . A lthough different COLOR colli
sions will result in the sum, multiple collisions with the same 
COLOR do not y ield a sum. 

This way you ca n dra w severa l ide ntica l graphi c fi gures 
with the sa me COLOR, and the n PEEK the collision registers 

190 



5 Animation With Player/Missile Graphics 

for player collisions. When a collision is encountered, the loca
tion of the player can be used to determine where, among the 
ITlany identical graphics, the next action (such as an explosion) 
is to occur. 

Table 1. These values result from collisions among plavers. 
Playa Play1 Play2 Play3 

Player a/Register 53260 -0- 2 4 8 
Player lIRegister 53261 1 -0- 4 8 
Player 2/Register 53262 1 2 -0- 8 
Player 3/Register 53263 1 2 4 -0-

Table 2. These values result from collisions between players and 
plavfield graphics. 

COLOR1 COLOR2 COLOR3 

Player a/Register 53252 1 2 4 
Player 1/Register 53253 1 2 4 
Player 2/Register 53254 1 2 4 
Player 3/Register 53255 1 2 4 

Table 3. These values result from collisions between missiles and 
playfield graphics. 

COLOR1 COLOR2 COLOR3 

Missile a/Register 53248 1 2 4 
Missile lIRegister 53249 1 2 4 
Missile 2/Register 53250 1 2 4 
Missile 3/Register 53251 1 2 4 

Table 4. These values result from collisions between missiles 
and players. 

Playa Play1 Play2 Play3 

Missile a/Register 53256 1 2 4 8 
Missile lIRegister 53257 1 2 4 8 
Missile 2/Register 53258 1 2 4 8 
Missile 3/Register 53259 1 2 4 8 

191 



5 Animation With Player/Missile Graphics 

The Priority Registers 
Bill Wilkinson 

Those of you who have s tudied th e Atnri Hnrdwnrc Mn llunl have 
probably been overwhelmed by the number o f "registers." 
There are registe rs th a t d efin e the star t of the character set, the 
origin of th e disp lay list, th e gra phics mode, th e Direct Memory 
Access m od es, the a mount of horizon ta l a nd ve rtica l scro lling, 
th e colors o f the play field s and players, and mu ch, much more. 
And yet, for the 11l.0s t part, th e use of th ese regis te rs is fairl y 
clear and di s tinct, one fro m ano th er. For exa mple, yo u cer tainly 
know that a regi s ter ca lled "COLPF2" (COLor o f PlayField 2) 
wouldn't be used to d efin e th e s ta rt of th e player/missil e 
graphics a rea (that's the job of "PMBASE"). 

But are there som e excep ti o ns to this "separa tion of wo rk" 
philosophy? Well , o ne mig ht seem to be "DMACTL", which 
can turn players a nd miss iles o n and off, turn th e playfi e ld o n 
and off, a nd dete rmine whether players a nd missil es have 
single- o r double-line reso luti on. And ye t th e regis ter'S va ri ed 
functions can all be jus tified un de r the head ing of "Direc t Mem
o ry Access ConTroL". 

However, the re is one regis ter w hich does seem to have 
several unrelated functions. From the viewpoint of both soft
ware and article a uthors, the functions w hich this register con
trols are all extre me ly interesting. Ye t little has been written 
about thi s register'S dominant fun cti o n. Naturally, I hope to 
cha nge th a t. 

What's In A Name? 
The regis te r in ques tion was nalTled "PRIOR" by Atari. It is 
important enough tha t it was even given an Opera ting System 
shadow loca tion , "GPRIOR", at 623 (decimal). (A "shad ow 
location" is a RAM loca tion into which a p rog ram may s tore a 
va lue actually intended for a ha rd wa re register. During th e 
ve rtical bla nk inte rru p t processing - th a t is, every 60 th of a 
second with U.S. NTSC te lev isio n and every 50 th of a second 
with the Europea n PAL sys te m - th e Operating Sys te m ROM 
code m oves each shad ow loca ti on to the correspo nding register. 

192 



5 Animation With Player/Missile Graphics 

The purpose of thi s is us ua lly to fo rce th e register load to occur 
at a tim e when the screen is blanked, thu s avoiding strange 
and biza rre visual e ffect s.) 

So ju s t exac tly w h a t does thi s loca ti o n control? Several 
things. Let's start with a reca p of th e table in Atari 's Hardware 
Ma11ual. 

Bits 0-3 
Bit 4 
Bit 5 
Bits 6-7 

Priority Se lec t 
Fifth Player Ena ble 
Multiple Color Player Ena ble 
Special GTIA Display Mode Selects 

W e ll , at leas t it's tru e tha t half of th e register is u sed for 
" PRIORity" work, but wow' Look a t all th e other goodies. 

Thi s a rticl e is not going to d ea l with th e ex tra GTIA ITwdes 
(GRAPHICS 9, 10, and 1] in BASIC parlan ce), but 1 would like 
to invite you to court di sas te r. If yo ur machine has a GTIA chip 
(as do m os t rece n t mod e ls), th e n som e tim e when yo u have a 
nice lis tin g or dis play on th e screen , try u s ing POKE 623,128 or 
POKE 623,64 or POKE 623, 192 . If yo u d o it when a li s ting is on 
th e screen, you will quickly see why Atari doesn't provide mixed 
mode (text window) grap hi cs for m odes 9,10, and 11. (Inciden
tally, if no thin g hap pens w he n you d o th e POKEs, yo u d o n't 
have a GTIA.) Oh, yes, yo u ca n POKE 623,0 to re turn to nor
ma l. 

The rea l "discoveries" to be ex pl ored in thi s section are the 
influe nces of bits 4 and 5, but befo re I d elve into th e m, I would 
like to at leas t tou ch on the ca pabilities of th e priority select 
bits. 

Who's On First? What's On Second? 
Atari s ta tes th a t eac h of th e four pri ority se lect bits will produce 
a sing le type of s upposedl y mutua ll y exclu s ive priority ord e rin g 
of the va ri ous playe rs and n.i ss il es . For exa mple, if bit 0 is turned 
o n (POK E 623,1), all th e players hilve "priority" over all th e 
playfields (and eve ry thin g a lways has priority over th e back
gro und). Within th e group of playe rs, a lower-numbe red player 
has pri o rity over a highe r-numbe red on e. 

But what d oes it m ea n to say som e thin g ha s prio rity? Sim
pl y thi s: since each playe r m oves ind epe nd ently n o t onl y of the 
playfield but al so of eve ry o th er pl ilye r, it is possibl e fo r one or 
more objects to ap pea r at th e sa me s pot on th e di s play screen 
ilt th e sa m e tim e. "Prio rity" s impl y a nswe rs the ques ti on of who 
gets di sp layed fir s t, second , e tc. A n important p oint to re-

·193 



5 Animation With Player/Missile Graphics 

member: only those parts of player s tripes containing "on" bits 
(i .e ., only those parts to be made visible) participate in the prior
ity contest! The "off" portion of a ll players is totally ignored by 
the system. 

In theory, a lower-numbered playfield takes precedence 
over a higher-numbered one. In ac tuality, there is no way for 
two playfields to occupy the same video space, so the distinction 
is a moot one (except for one obscure case, as we shall see 
below) . Anyway, here is a table of the various available 
priori ties: 

Bit 0 (POKE 623,1) : All playe rs, a ll playli e ld s . 
Bit 1 (POKE 623,2): Playe rs 0 a nd 1, a ll p lay fi e ld s, playe rs 2 and 3 . 
Bit 2 (POKE 623,4): All playficlds, all pla ye rs . 
Bit 3 (POKE 623,8): Playfie lds 0 a nd 1, a ll playe rs, pla y fi e lds 2 and 3 . 

Although the bits are described as l11Utually exclusive, 
there is nothing to prevent you from turning on two or more 
(e.g., POKE 623,7). The theory says that if you overlap any two 
objects whose priorities are " in conflict" as a result of the mul
tiple bits being on, the di spla y will turn black in the overlap 
region. This would m ean that if you used "POKE 623,5" all 
players would turn black excep t when over the background. I 
have yet to see a program use thi s to adva ntage, but no doubt 
somebody will someday. 

And one final note: the whole reason for having priorities 
is so that you can gracefully control what happens to players 
when they meet the background display. Imagine that we select 
bit 3. Then if we have an airplane made from players, clouds in 
playfield color 0 or 1, and mountain s in playfield color 2 or 3, 
the plane will fly in front of the mountains and yet behind the 
clouds! 

When Is A Missile Not A Missile? 
Atari would have you beli eve that the answer is "When it's a 
player." The name of Bit 4 of PRIOR is enticing: "Fifth Player 
Enable." Wow! We can turn thi s bit on and all of a sudden we 
have five players , right? 

By default (i.e., if this bit is not set), each player takes on 
the same color as its "parent" player. Turn this bit 011, and all 
missiles share a single common color. And tilat is all this bit 
does. Period. 

What color do the missi les use? Playfield Color 3. Why 
was that color chosen? Because, in the normal graphics modes, 

194 



5 Animation With Player/Missile Graphics 

the only wa y to ge t tha t color is in GRAPHICS 1 or GRAPHICS 
2, the large tex t modes . Notice tha t th ere are five SETCOLORs 
ava il able, even th ough mos t g raphics modes all ow only two or 
four colors to be di splayed . Since the background (SETCOLOR 
4 in four-co lor modes) is always one o f these (COLOR 0) , one 
of the SETCOLORs - in point of fac t, SETCOLOR 3 - goes un
used . Until now . 

So h ow ca n yo u use the fo ur missiles as a sing le player? 
From BASI C, it's no t easy . Each missil e s till re tains its own 
independent hori zonta l p osition . Each missil e s till retains its 
own indep endent hori zo ntal w idth. And, na turally, you s till 
have to m ove the playe r/missile stripe verti cally (althou gh that 
is easier to do fo r a player than fo r a mi ssil e). This mea ns that , 
for such a simple opera ti on as moving the new " player" hori
zontally to (say) position X, yo u mus t perfo rm thi s series o f 
BASIC sta tements: 

POKE HPOSMO,X 
POKE HPOSMl, X + 2 
POKE HPOSM2,X + 4 
POKE HPOSM3,X+6 

And even that only works if you ha ve previously specified 
that all the missiles have single horizontal width (admittedly 
the SYSTEM RESET default). 

Any oth er cavea ts? Yes . The lYlissil es s till ac t independently 
as far as the collision registers are concerned . And the Atari 
documenta ti on claims tha t the priority of the new " playe r" is 
the same as that of Play fi eld 3, but tha t's only partially true . In 
parti cular, when consid e ring w hich player has priority, it is true 
that the fifth player beh aves according to the chart. But, 
s trangely enough, the fifth player always has prio rity over allY 
play fi eld color. Thi s might imply some interes ting consequences 
fo r a creati ve game des ign er. 

So, is this "Fifth Player Enable" bit ac tua lly useful? From 
pure BASIC, I thin k no t. With so me mac hine language support, 
probably . And, of course, from pure machine language (or C or 
FORTH or Pascal) , you can p robably do some really inte res ting 
things. Afte r all , how many moving objects do you see in Pac
Mall or Jawbreaker? 

195 



5 Animation With Player/Missile Graphics 

All Colors Of The Rainbow 
How many times have you read tha t, eve n though the Atari 
can display 128 diffe rent colors, it can display only four of those 
at a time? Well, you probably know by now that it's simply not 
true. First of all , if you have a GTIA, it's actually possibl e to 
display 16 different colors on the playfield in two of the GTIA 
graphics modes, and nine co lors in th e o th er mode. But let's go 
after the maximum number of colors possible . 

To begin, choose GRAPHICS 11. That will ge t yo u 16 pos
sible hues, each with the same luminance. Great. 

Now, le t' s add four players, each with its ow n color and 
each different from any of the playfield co lors . Now we are up 
to 20 colors! 

But we're not d one: why not use the "Fifth Player Enable" 
bit to get yet another color (since Play fi eld 3 is n o t involved in 
the GRAPHICS 11 playfield di splay). Twenty-one colors! 

But .. .. Yep, you guessed it, there's more . Remember that 
bit titled "Multiple Color Playe r Enable"? If you turn o n that bit 
(POKE 623,32 or POKE 623,49 to a lso d o a ll we just d escribed) , 
then pairs of players that overl ap will gene rate ye t another color 
in the overlap region! Actuall y, the va lid overla p pairs are lim
ited to Playe r 0 joined with Player 1 and/or Player 2 overlapping 
Player 3. (If Player 0 o r 1 overlaps P laye r 2 o r 3, th e priority 
rules still apply.) 

So there you have it. Twenty-three colors di splaya ble at 
the same tim e. And I believe that, without reso rting to display 
li st interrupts or s in1il ar chi ca nery, that is the Ata ri computer's 
maximum. 

But that isn' t the rea l reason I introduced th e Multiple Color 
Playe r Enable. Do you have an object tha t you want to anilTla te 
that is jus t begging to be lTlulti colored? He re is your me thod of 
imple mentation . A nd if you need even ITl o re tha n three colors, 
you could use all four (or three, or five) players to di splay it. If 
you n eed to anim a te onl y a single objec t, the lT1Ldticolor playe rs 
could give you some very ni ce co ntrol over both detail a nd 
color. 

Unfortunately, to do effec ti ve multicolored work, you mus t 
devo te two players to each animated object. Even if you use 
the "fifth player" tri ck, thi s limits yo u to three moving objec ts. 
Yet I ca n't help but think tha t thi s is a so lution wa iting for a 
problem. Come on, ga me d esign ers, ge t to work. 

196 



5 Animation With Player/Missile Graphics 

W e n eed to make a co upl e of points before w e leave thi s 
s ubj ect: by default , miss il es be have th e sa me as th e ir pare nt 
players . Tha t is, if th e multipl e color playe rs are enabled and 
missil e 0 overl a ps mi ss il e ] , th e n th e ove rl a pped region w ill 
result in th e third co lor be ing di splayed. But Atari did it right: 
if you ch oose th e fifth playe r o ptio n, th e missil es a ll take o n 
that fifth player colo r a nd th e miss il e ove rl a p s have no e ffect. 

And , finall y, I vvo uld li ke to say that I have no t ye t fi gured 
o ut how to predi ct w ha t th e third col o r, di splayed in the ove rlap 
region , w ill be. The hu e a nd intens ity in th e reg io n do no t seem 
to directl y relate to th a t o f th e overl a pping colo rs . Gene rally , 
th e inte ns ity is brig hter th a n th e dull e r o f th e two, but it is not 
a lways brig hte r th a n th e li g hte r. It seem s to m e that th e resultin g 
color mi ght be so me so rt of vecto r additi o n of th e o th e r tw o 
co lors, but I d o n ' t kn ow th a t. Wa nt to write an a rticle for 
COMPUTE! ? H e re's a to pic for a good on e. 

A Hair-Trigger Reaction 
Before w e leave thi s sec ti o n, I think a n exa mpl e of SO I1, e o f th e 
ca pabilities we have bee n di sc uss in g mi g ht be in o rder. In th e 
di scuss io n th a t fo ll ows, we w ill be refe rrin g to th e di agra ms in 
th e fi g ure. 

Th e a im he re is to d es ig n a "c ross ha ir" Lls ing players . Ob
viou s ly, w e co uld make a n ad equ a te cross ha ir with a sing le 
player, but th a t wouldn 't g ive us a cha nce to tryout w h a t we've 
been di sc uss ing . So exa min e th e firs t three parts o f the fi g ure. 

Firs t, we d efine P laye r O. No te th a t] have s uppli ed th e 
hexad ecima l and decim al va lues necessa ry to produ ce each line 
(i. e ., by te) of th e pl aye r fo r th ose o f yo u w ho w o uld like to ac
tu a ll y try thi s . A ny vvay , no ti ce th e ga ps in wha t is o th e rw ise a 
ni ce cross s ha pe. 

But if we n ow defin e Playe r 1 as s how n, and purpose ly 
ove rl a p th e two playe rs co rrec tl y, no ti ce th a t w e ge t a ni ce, 
two-co lo red crossha ir. Thi s is ve rs io n on e . 

Fo r ve rs io n two, we ass um e th a t PRIO R =1 (PO KE 623, 1). 
We red e fin e Playe r 1 so th a t its " ho le" in th e middl e is go ne . 
And ye t, when we ove rl a p it w ith th e o ri g inal P laye r 0, we ge t 
th e sa me res ults vve did w ith ve rs io n o ne . Wh y? Simply beca use 
P laye r 0 has hi g he r pri o rity th a n Playe r 1, so th e bits in th e mid
dl e of Playe r 0 e ffec ti ve ly ove rrid e those in Playe r 1. 

But fin a ll y we ge t to ve rs io n three. The onl y di ffe re nce 
be twee n thi s ve rs ion a nd ve rs io n two is th a t n ow we have 

197 



5 Animation With Player/Missile Graphics 

turned on the Multiple Color Player Enab le bit. La and behold , 
since the very center has bits turned on in both Player 0 and 
Player 1, we achieve yet a third co lor. A most satisfacto ry and 
colorful crosshair. 

So there you have it. Some fairly impressive displays have 
been genera ted using players, and ye t I have still not seen one 
that takes advantage of a ll the features we have discussed h ere . 
So, if you are a "do-er," do it' 

198 



5 Animation With Player/Missile Graphics 

Overlapping Players lor creative results. 

PlayerO 

Player 1 

Version 1 

The combined 
result 

Player 1 

version 2 

The combined 
result 

I tE I 
EBtEEB 
I tE I 

D 

m 

~ I I 

~ I I 

Hex 18 Decimal 24 
18 24 
00 0 

DB 219 
DB 219 
00 0 
18 24 
18 24 

Hex 3C Decimal 60 
24 36 
24 36 

3C 60 

A "crosshair" 

version one 

Hex 3C Decima l 60 
3C 60 
3C 60 
3C 60 

A "crosshair" 

version two 
(see text) 

A "crosshair" 

version three 
(see text) 

199 



--

-

-
-

--







6 Advanced Graphics Techniques 

GRAPHICS 8 In Four 
Colors Using Artilacts 
David Diamond 

A painless, no-POKE lIlethod for mastering Atari high resolution, 
four-color graphics from BASIC. 

Contrary to what the Atari BASIC Reference Manual states, 
GRAPHICS 8 is a true four-color mode (five colors if you count 
the border). Other articles have shown you how to obtain 16 or 
128 colors by PEEKing, POKEing, and using machine language 
subroutines to fake out the operating system. This article is 
different. You can paint with four colors using simple, 
straightforward BASIC programming. 

You probably have noticed that patterns drawn in 
GRAPHICS 8 often contain spurious colors. Atari sketches your 
television's resolution to its limits and the extra bues do sneak 
111 . 

The spurious colors seem random. because tbey are ap
pearing within a random pattern. They are, however, well
bebaved. They can be harnessed, controlled, and used for bril
liant displays. 

Before I get into the details, try the following demonstration 
program: 

10 GRAPHICS ~:COLOR 1 
15 R=50 
20 FOR X=-R TO R STEP 2 
30 Y=SQR(R*R-XtX):REM Formula for a c 

ircle 
40 PLOT 100+X.I00+Y:DRAWTO 100+X~100-

Y:REM Circle #1 
50 PLOT 151+X~100+Y:DRAWTO 151+X~100-

Y:REM Circle #2 
60 NEXT X:FOR 1=1 TO 350:NEXT I 
70 FOR C=O TO 15 

203 



6 Advanced Graphics Techniques 

80 SETCOLOR 2~C~4:SETCOLOR 4~15-C~8 
85 FOR 1=1 TO 350:NEXT I 
90 NEXT C 

Surprise! You h ave five vivid, solid colors on th e screen at the 
sam e time . Now le t's take a look at that program: 

Line 10 - Straight GRAPHICS 8. Sta ndard color defaults. 
Line 15 - "R" is the radius of a circl e. 
Line 30 - This is the formula for a circle: X2 + y 2 = R2. ("R*R" is 
a little faster than "R A 2"). 
Line 40 - This draws the firs t circl e . It is vertica lly cross-hatched 
to fill it in with a solid co lor. 
Line 50 - This draws th e second circle. Bllt why is it n different 
color from the first ci rcl e? 
Line 20 - Ah, here begi ns th e sec re t: "STEP 2". Before readin g 
further, change it to "STEP I" and rerun the program. 
Lines 40,50 - Here is the second ha lf of the sec re t: "100 + X" is 
an even offset. "151 + X" is a n odd offset . Change both occur
rences of " 151" to "150" o n lin e 50, and see w hat happe ns. 
(Remember to set line 20 back to "STEP 2".) 
Lines 70-90 - These lines s how you th e wide range of co lor 
combination s available. Of course, w hen you are varying the 
luminance leve l, there will be even ITlOre. 

Alternating Colored Fields 
Without any additiona l prog ramming lines, th e circles can easi ly 
be changed into beach balls with a lte rnating bands o f color. 
Make sure that line 20 says "STE P 2" , and change lines 40 a nd 
50 as fo ll ows: 

40 PLOT 98+X ~100+Y:DRAWTO 101+X~100-Y 

:REM Ci ..... c:le #1 
50 PLOT 147+X~100+Y:DRAWTO 150+X~100-

Y:REM Ci ..... c:le #2 

Changing the slope of th e cross-hatching by a si ng le horizo nta l 
point wi ll add or ren,ove one band of colo r. Increm ent the 
DRAWTOs by one ho ri zonta l point, and see w ha t happe ns: 

40 PLOT 98+X~100+Y:DRAWTO 102+X~100-Y 
:REM Ci ..... c:le #1 

50 PLOT 147+X~100+Y:DRAWTO 151+X~100-
Y:REM Ci ..... c:le #2 

204 



6 Advanced Graphics Techniques 

Although the q uirk tha t p rov ides us wi th the ex tra colors 
seems somewha t magica l, the reason for the varied so lid colors 
is no t. Remember tha t th e "colo red-in" areas are rea lly com
p ri sed of finely separa ted , ve rti ca l lines. To be tter see w ha t is 
happening, spread those lines out into a large grid for easier 
inspec tion: 

10 GRAPHICS 8 : COLOR 1 
20 FOR X=10 TO 160 STEP 15 
3 0 PLOT X,I:DRAWTO X, 160 
40 PLOT I , X: DRAWTO 160 , X 
50 NEXT X 

This iso la tes yo ur three co lors . Th e even column vertical 
lines are one color. Odd column vertical lines are a second color. 
Horizo ntal lines are the third color. (Th e backgro und is the 
fourth , and the border is the fifth. ) 

Line 20 controls the colors. Try "FOR X = 10 TO 160 STEP 
14" a nd try "FOR X = 9 TO 160 STEP 14". 

When two adj ace n t lines touch each o the r ("FOR 
X = .. .sTEP 1" ), the two co lo rs blend into the officia l color for 
gra phics mode 8. Anothe r way to look a t it is tha t there a re no 
longe r sepa ra te lines w hen they touch, but ra ther a solid field 
of pixe ls. 

The Alternating Color Phenomenon 
The beach ball di splay, w ith its a lterna ting ba nd s of co lor, takes 
adva ntage o f the fac t tha t, w ith a pixel ma trix, on e cann ot draw 
nea rly verti cal p ure d iago nal lines . Ins tead a series o f shorter 
ver tica l lines are draw n, as shown below: 

As programmed: As actually d raw n: 

(1 03, 0) (103,0) 

I 

,I 

(101,50) (101,50) 

You ca n see tha t the three verti ca l line segments a re drawn on 
od d , even , and odd co lumns, res pec ti ve ly, thu s alterna ting col
ors. 

205 



6 Advanced Graphics Techniques 

Why Multiple Colors 
The ho ri zontal resolutio n limit of a telev is ion set is about 160 
unique points. This is because on a nyone line of th e te levision 
tube surface there are 160 se ts of phosphor points which emit 
light when struck by th e sca nning electron beam. Each set ac
tually conta ins three separa te ph osphor points - o ne that g lows 
blue when s truck, one tha t glows gree n, and one tha t g lows 
red. Conlbinations of these d ots in variou s intensities create 
th e m y ri ad of colo rs ava il able. 

Ata ri , in order to provide finer resolutions th a n 160 bytes 
across, plots 320 points across th e screen - two for each se t of 
co lor d o ts . (This is refe rred to as a half color cycle, or a half color 
clock.) Thus, even-column points will turn on the left portion of 
the three color phosphors, a nd odd-column points will turn on 
th e right portion, producing alte rn a ting co lo rs. The e ffect is 
re ferred to as artifacting. 

Diagonal Lines 
Diagonal lines, ranging from vertical to a lmos t 45 d egrees, con
tain ve rtical compo nents, a nd are th erefore subj ec t to the arti
factin g effec ts d esc ribed above. However, when these lines 
are drawn on top of a " .. .sTEP 2" solid colo red fi e ld (such as 
d e monstra ted in th e above progra ms) , much of th e spurious 
color effect is minimized , so th a t the "official" co lo r for graphics 
mode 8 will be seen. If th e backg round is d a rk, a medium 
intensity line will appear li g ht (whitish). If th e background is 
bright, a medium intensity line wi ll appea r dark (often a rich 
chocola te brown). 

The bold splas hes of multiple solid co lo red sha pes can 
thu s be combined with th e more de lica te effec ts o f intersec ting 
diagonal lines, as in the following demo ns tra tion prog ram : 

10 GRAPHICS 8:COLOR 1 
20 SETCOLOR 4.15 , 10:SETCOLOR 2 , 0,15 
30 FOR A=20 TO 140 STEP 2 
40 IF A=100 THEN A=101 
50 PLOT 65.20:DRAWTO A,1:DRAWTO A.A:D 

RAWTO A+30.70 
60 DRAW TO 65.A:DRAWTO 30.A+40:DRAWTO 

65.20 
70 NEXT A 
80 FOR 1=1 TO 350:NEXT I 

206 



6 Advanced Graphics Techniques 

90 FOR COLOR=O TO 15 
100 SETCOLOR 2~COLOR~5:SETCOLOR 4~15-

COLOR~10 

110 FOR 1=1 TO 350:NEXT 1 
120 NEXT COLOR 

MOire Patterns 
No di scussion of multiple colors would be complete without 
mentioning color moire pa tte rns. There a re two types of moire 
patterns . One type is the seconda ry pa ttern produced by the 
intersection o f di agonal lines, such as is illus tra ted by demon
stra ti on Program 2, above . This typ e is not dep endent on color 
for its e ffect. Th e second ty pe is the subtl e and delicate designs 
produced by shi fts in color along diagona l lines. Thi s type is 
depende nt on th e a rtifac ting effect and is illu s tra ted in the fol
lowing program: 

10 GRAPHICS 8:COLOR 1 
20 FOR A=O TO 319 STEP 3 
30 PLOT 0~159:DRAWTO A~O 
40 PLOT 319 ~ 0:DRAWTO 319-A~159 

50 NEXT A 

Noti ce tha t the pa ttern is whites t in the center, where the 
lines are no t as s teeply sloped , and also toward the upper right 
and lower left corne rs, where the lines a re closes t toge ther. In 
addition to the w hite and the two artifac ted colors, you may 
notice a fo urth and fifth color alo ng the top and bottom sec tions 
of the pa ttern. These ex tra colors are formed by a visual blending 
of the two artifacted co lors. It is ca used by the fac t tha t the al
ternating colored areas are so close toge ther that the eye has 
difficulty resolving them (a trick used by the Impressionis ts). 

You can combine the va ri ous effec ts discussed in this articl e . 
Expe riment with different color a nd intensity combinations . 
Blend in some d ynamic co lor changes . You have a p ale tte that 
any arti s t would en vy . 

207 



6 Advanced Graphics Techniques 

Part I: 

Atari Video Graphics 
And The New GTIA 
C raig Chambe rla in 

In this, the first of 17 three-pl7rt series all the illner workings of Atnri 
~mphics, the I7l1thor reviews tIle COlllplifer's SljS felll of screell 11ll7lll7 ge
Inent nnd defin es several illi portallt tenlls inci llding color clock, C 

play fi eld , mod e line, alld display li s t. TIl e lIext article illcllldes 
techniques for II sing color indirec tion , a powerful graphics tool, nlld 
explores the new GTIA chip ill detail . The fillnl nrticle del1lonstrates 
tIle capabilities of the GTI A. This new chip costs 1I0tllillg if your Atari 
is stillllllder warmnty . If .'10 11 hmle all older lliacliille, the ll Cl7 rest 
allthorized service cellter Cl7 11 install it fo r .'1011. 

The GTIA is a n exciting new gra phics chip now being shipped 
in Atari 4001800 computers. Among its special fea tures are a 16-
color mode with a reso lution eight times be tter than th e Apple's, 
and the capability of ge nera ting 256 co lor va riati ons . The GTIA 
chip provides three new graphics IT'IOdes in additi on to the nor
mal 14, to tally different, full- screen modes. Thi s articl e d efin es 
a few terms relating to g raphics, explains th e no rni al graphi cs 
modes, the n introduces the new mod es provided by the GTTA. 

ANTIC Is A Busy Chip 
We all know that the A tari 400 a nd 800 have superior graphi cs 
ca pabilities. This has been achieved by des igning special chips 
to handle vid eo di splay tasks, taking tha t burd en off the ma in 
microprocessor. In Ata ri compute rs these specia l chips are 
known as ANTIC and CTIA. 

The ANTIC chip is ac tua lly an adva nced DMA (direct mem
ory access) controll er tha t qu alifi es as a tru e microprocesso r. it 
ha s an ins tru ctio n se t (mode lines a nd " loa d memory scan" 
operati on) , a progra m (the good 'o le di sp lay li s t) , and da ta (di s-

208 



6 Advanced Graphics Techniques 

play memory and character se ts). 
This special chip is a rath er bu sy fellow. Its responsibilities 

include doing DMA for th e di s play list, the di splay data 
(playfields) , the character se t, and player/missil e memory. Be
sides that, it sets the playfie ld width , controls h orizonta l and 
vertical fine scrolling, keeps track of the vertical position of the 
sca n beam , and handles non-maskable interrupts. It also sup
ports a light pen. 

The GTlA: Three New Modes 
The o the r chip is the CTlA , o r Compute r Tel evision Inte rface 
Adapted integra ted circuit. This is the chip which handles all 
color and luminance (bri ghtness) information to se nd to the 
television screen . Thi s is a co mplica ted process, but the chip 
designers a t Atari go t ca rried away and crea ted whole n ew 
functions w hich we know as th e player/missil e graphics system. 
It is the CTIA which processes the horizo ntal position , s ize, 
prio rity, and co lor o f the playe rs . The CTIA a lso wa tches for 
player/playfi e ld colli sions, joys tick triggers, and console keys. 
Like th e ANTIC, it is a busy chip . 

The new GTIA chip re places th e CTIA. Rumor has it that 
th e " G" s tand s for Geo rge. Appa re ntly some fe llow na med 
Geo rge was s till no t sati s fi ed w ith all the special function s of 
the CTIA, and gave it th e ab ility to gene rate three to tally new 
graphics mod es. Whe n yo u find out what these new mod es 
ca n d o, I think yo u w ill apprec ia te "George" and hi s GTIA . 

The three new mod es a re 9,10, and 11. The ope rating sys
tem and, there fore, Ata ri BASIC, suppo rts these new lT1Odes. 
But be fore describing a ll th e fea tures of these new m od es, I 
wa nt to d efine a few esse nti a l te rm s and rev iew the normal 
grap hics modes 0 throu g h 8. 

In o rd er to full y und ers tand Ata ri graphics, o ne mu s t ha ve 
a solid concept of how a te levis ion di splay is ge ne ra ted . And 
no di scussion o n " telev is ion theo ry" wo uld be comp le te without 
a definition of th e "colo r cl ock ." Th e te rm c%r clock d e rives 
from the fact that the re is a p roblem in m eas uring di s tances on 
a te lev is ion screen. Diffe rent te lev is ion se ts have different 
scree n s izes, w ith 9",13" a nd 19" being common diago na l 
measurements . A ll te levision se ts, however, have a scanning 
bea m w hich trans lates a signa l fro m the compute r (or a TV s ta
tion) into a picture o n th e sc ree n . 

209 



6 Advanced Graphics Techniques 

The signal coming from the computer contains two charac
teris tics . It has a frequ ency, which defines a color, and it has an 
amplitude, which defines the IUlllinnllce of tha t color, often re
fenoed to as the brightness or intensity. Th ese qu alities of the 
computer signal affec t the way in which the sca nning beam 
shoots electrons a t the phosphors on a television screen . This 
electron shoo ting process is d one h orizontall y, one line a t a 
time, but it is don e so quickly tha t it is not noticeable to the 
human eye . 

Wh en drawing a line, the scanning beam s tarts a t the left 
edge of the screen and proceeds to the right edge, shoo ting 
electrons the whole time. Since the beam h as a finite amount of 
time it can spend drawing one lin e, the bea m will seemingly 
have to move fas ter to cove r more area on a larger screen . Thus 
the problem of trying to measure horizontal di stances is furth er 
complicated by the fac t tha t diffe rent scanning beams not only 
travel different dis tances, but a lso at different ra tes. O ur unit of 
measu rement cannot really be a dis tance; it mus t be a unit of 
time. The hint I gave a moment ago was tha t the sca nning bea m 
has a certain amount of time it ca n spend on one sca n line. How 
fas t or how far the bea m travels is insigni fica nt. 

Understanding Color Clock 
The fact that our unit of measurement is ba sed on tim e ex plains 
the word clock in the te rm color clock. A color clock is the amount 
of time the computer needs in order to sufficiently change the 
frequency of the s ignal it genera tes so as to produce a diffe rent 
color. Wha t a m o uthful! This is m y own pe rsonal definiti on; it 
has worked for m e, but some people may not agree with it. 
H ere's another d efiniti on. A sca n line is the hori zonta l pa th of 
the sca nning bea m from th e left edge of the screen to the ri ght 
edge. 

Sca n lines ex tend horizonta ll y across the screen , but it takes 
a lo t of them stacked vertica lly to fill up the screen from top to 
bottom. Therefo re, horizontal resolution is usua lly expressed 
in terms of color clocks w hil e ve rtica l reso lution is expressed in 
scan lines . Of co urse, on different television se ts the actual 
lengths will differ, but the resolution hori zonta lly to verti ca lly 
is always proporti ona te . It turn s out tha t, on any screen , one 
color clock appea rs to be equal in length to two sca n lines. 

Now we have to get even more technica l fo r a moment. 
The scanning bea m s tarts a t th e upper left corner of the screen 

210 



6 Advanced Graphics Techniques 

and travels horizontally to the right. By the tim e it hits the right 
edge it has drawn one sca n line tha t is 228 color clocks w ide. 
The beam then shuts off for a shor t period w hile it re turns to 
the left ed ge, only on e scan line lower. This p eriod is called the 
" hori zontal blank" for obviou s reason s . The beam then turns 
on aga in and s tar ts drawing the nex t sca n line. Thi s sequ ence 
of drawing scan lines co ntinu es 262 tim es. A t that p oint, the 
sca nning bea m , a t the lower ri ght corne r o f the screen , shuts 
off and re turns to the upper left corner of the screen d uring a 
period known as the (g uess w ha t! ) "verti cal blank." 

This w hole process of drawi ng 262 sca n lines, each of 228 
color clocks, plu s the bl anking peri ods, constitutes one "fra m e." 
The te levisio n draws 60 of these fra mes eve ry second , because 
your home power line is 60 Hz (cycl es). The nanle given to thi s 
di splay me thod is "ras te r scan." The fac t tha t your A tari fo llows 
a broa d cas t s tan dard refe rred to as "NTSe" m akes it one of the 
few ho me comp uters tha t ca n be video ta ped witho ut special 
equipment. 

Ju st beca use the sca nning bea m gen erates a ll those scan 
lines and co lor clocks d oes n' t mea n tha t the co mpute r is gener
ating tha t much display d a ta. Eve n if th e com p uter did, yo u 
wouldn ' t see the w hole image since mos t te lev ision se ts di splay 
a little less than 200 sca n lines of about 170 color clocks . Th e 
part where the tru e p icture ex is ts is ca lled the p layfi eld , and 
now it's time for a no th e r de fini tion . 

Playfields And Mode Lines 
The playfie ld is th e porti on of each sca n line fo r w hich d a ta 
read from m em ory ca n p rodu ce co lors and luminan ces. Th e 
background exis ts a t the ends of each sca n line; the playfield is 
in the middl e . Fro m th e viewpoint o f o ne fra m e, the playfield 
appears as a rec tangular region w hich ex tends to the sides of 
the screen. 

Two things control the s ize of thi s p layfie ld area . The height 
in sca n line is controlled by the d isplay li s t as you w ill see in a 
mome nt. Reca ll tha t th e w idth in co lor cl ocks is set by the DMA 
control regis ter o f the ANTIC. 

SO MCTL 
DMACTL 

05 

$022F 559 shadow 
$0 400 54272 h ard w are 

1 di splay li s t OMA e nabl e 
o di splay li s t D MA d isa ble 

211 



6 Advanced Graphics Techniques 

01,00 00 
01 
10 
11 

playfield OMA disable (no playfield) 
narrow playfield (128 color clocks) 
standard playfield (160 color clocks) 
wide playfield (192 color clocks) 

The operating system screen handler always uses a stan
dard width playfield. The advantage of the narrow playfield is 
that less DMA is required, so progra ms execute faster. Unfor
tunately, the screen handler routines do not work properly 
when the playfield width is othe r th a n th e stand ard. The wide 
playfield generates more data than the te lev ision can display; 
its uses are rather limited. It's even possible to turn off the 
playfield completely, in which case ANTIC fill s the screen with 
scan lines of the background color. As will be shown in a mo
ment, the playfield also requires a "displa y lis t," so bit five 
must be set for any playfield type to be generated. 

Remember tha t a byte is made up of eight binary "bits." If 
playfield and display li st DMA is enClbl ed, bits I1l ClY be read 
from the computer memory during the course of one scan line. 
The bit pattern determines the frequ ency a nd intensity dlClnges 
of the scanning beam, with the result being different colors/ 
luminances. The same bit pattern mClY be repeated for seve ral 
scan lines. And th e bit pattern can be inte rpreted in different 
ways. This leads us to ye t anothe r definition: 

A mode line is a contiguous group of scan lines for which 
display m emory is read only once. 

There are two main types of mode lin es . In direct mem ory 
map modes, th e bit pattern produces the sa me image o n each 
scan line. Text modes are a more co mpli cated mode type which 
use a character se t. 

The ANTIC knows how to ha ndle 14 different kinds of 
mode lines. Each mode line corresponds to a different n, e thod 
for inte rpre tin g a bit pattern. A full sc reen g raphics mode is 
actually just a series of id en ti ca l mode lin es . 

The display li s t is merely a seq uence of bytes in memory 
tha t, among other thin gs, tell s ANTIC the proper sequence of 
mod e lines for one screen. 

Whenever the screen is opened (accomplished in Atari 
~ASIC with the GRAPHICS s tatement), the screen hand ler 
es tablishes a display li s t of many mode lines to produ ce a screen 
of the desired mode. Modes ca n be mi xed by manuall y cha nging 
the display list. Display li sts produced by the sc reen handle r 
always contain th e prope r number of mode lines for exactl y 192 

212 



6 Advanced Graphics Techniques 

sca n lines of playfie ld . Alterin g th e display li s t ca n affec t th e 
total numbe r of sca n lin es, w hich is how th e ve rticCl I size of the 
playfie ld is co ntro ll ed . 

The dis play li s t also hCl s othe r functions, such CIS contro l of 
fine sc rollin g, ho ri zo ntal blClnk interrupts, a nd loadin g the me m
ory sca n co unter of th e ANTIC so it knows w here to s tar t read ing 
me mo ry. 

A mode line d ivided into seve ra l parts form s pixe ls, w hich 
are s ingle p lotti ng poi nts so mewhe re w ithin th e p layfield area. 
A pixel's ve rti ca l reso lution is th e sa me CIS th e m od e line in which 
it is displa yed, so th e re ca n be jus t as many p ixe ls ve rti ca ll y as 
mod e lin es in th e displCly list. The numbe r of color clocks over 
which on e pixe l is s pread is a lso de termined by th e mode line. 
H e re is a littl e cha rt to s how yo u th e pixel size for th e primary 
mapping modes : 

MODE COLOR 

3 
4,5 
6,7 

CLOCKS 

4 
2 

SCAN 
LINES 

8 
4 
2 

RESOLUTION 
(full/split screens) 

40 by 24/20 
80 by 48/40 

160 by 96/80 

Note that each time the wid th of a pixel is reduced, its height 
also decreases, so a single pixe l appears to be square in shape 
regardless of th e graphics nlOde. 

Some Observations About Memory 
Now to ta lk abou t me mory . In th e o ne-color modes, o ne pixel 
is re prese nted in me nlOry by o ne bit. If th e bit is O il , pIay fi e ld 
zero s hows . If th e bit is off, th e background s hows . Mod es four 
a nd s ix are th e o ne-co lo r modes . Fo r more co lo r, modes three, 
fiv e, and seven a ll ow three co lors. The trade-off is th a t a si ngle 
bit is no longer s uffici e nt. Two bits, a pair, are required. The 
tota l va lu e of th e two b its se lec ts e ith e r o ne of three playfie ld s 
or th e background: 

BIT PATTERN COLOR PLA YFI ELD TYPE 

00 0 bilckg round 
01 1 pli1yfield zero 
10 2 p layfield one 
11 3 plilyfie ld two 

P layfie ld ze ro is th e same thin g as COLOR 1 in A tari BASIC. 
Playfie ld o ne is rea ll y COLOR 2, and so o n , w ith COLO R 0 
being the ba ckgrou nd . 

213 



6 Advanced Graphics Techniques 

Although modes four a nd fiv e both have the sa me reso lu
tion, or pixel size on the screen, mode fi ve will require twice as 
much memory. In the lower reso lution modes which require 
littl e 111emory in the first place, the additional mem o ry need ed 
is rather insignificant. You mi ght have no ticed that mod e three 
had no single color counte rpar t. Consider that in a 48K sys tem 
it is poss ible to have about 150 different mode 3 sc ree ns in mem
ory simultaneously . The chip d esigners probably decided it 
wasn't worth the effort or mem ory sav ings to provide a one
color mod e with such low resolution. 

Therefore, the size of a pixel on the screen is de te rmined 
by two things : h ow many sca n lines high, and how many color 
clocks wide. The amount of memory required for a mod e is 
also d ete rmined by two things: how ma ny separate pixels to 
one mod e line, and how ma ny co lo r possibilities per pixe l. The 
only real connection between pixe l size on the scree n a nd s ize 
in memory is that bigger pixels fill up a scree n faster , so th ere 
are fewer of the m, and less memory is needed . 

Now, three colors mea ns two bits mus t be used . Does that 
m ean we are always s tuck with onl y three colors w hich can ' t 
be changed? No . The CTlA is capable of generating 128 color/ 
luminance varia tion s . It ca n produ ce 16 different co lors, each 
in eight different deg rees o f luminance. But 128 possibiliti es 
means seven bits wou ld be required, and , in ITlOSt cases, seven 
bits per pixel is simply no t feasib le. There is a limit to how much 
memory can be devoted to a screen. The solution to thi s problem 
is a sort of compromise, but it a lso presents so me powerful and 
flexib le advantages, too. The solution is to use color il/directiol/. 

214 



6 Advanced Graphics Techniques 

Part II: 

Atari Video Graphics 
And The New GTIA 
C ra ig C hambe rl a in 

!-low to get 256 colors oul of YOllr Atari . The previolls article in this 
three-part series opel/cd with a discussiol1 of Atari grnphics. Part II 
examines techniques involvil1g color indirec tion and looks at the new 
GTIA chip il1 detail. 

Next, this series cO l/chides with several programs which put GTIA 
through its paces. 

Using Color Indirection 
With colo r indirection, th e numbe r of diffe re nt playfie lds is 
limited according to th e number o f bits p e r pixe l, but th e actual 
co lo r/lun,inance of each play fi e ld ca n be o ne of the 128 pos
s ibiliti es. The d a ta bits a re Ll sed as a n index o r offse t into 
playfie ld co lo r regis ters: 

COLO RO $02C4 708 
play field zero color regi s ter 

COLO R} $02C5 709 
playfield one 

COLO R2 $02C6 710 
playfield two (used in modes 0 and 8) 

COLO R3 $02C7 711 
playfield three (used in color tex t modes ) 

CO LOR4 $02C8 712 
background color regi s ter 

These playfie ld color regis te rs use seven bits to se lec t the 
color and lumina nce, as fo ll ows: 

07,06,05,04 
0 3,02,01 

DO 

co lor 
lumina nce 
not used 

215 



6 Advanced Graphics Techniques 

BITS VA LUE COLOR 
0000 0 gray (no colo r) 
0001 1 light orange 
0010 2 orange 
0011 3 red orange 
0100 4 pink 
0101 5 purple 
0110 6 purple blue 
0111 7 blu e 
1000 8 blue 
1001 9 li ght blue 
1010 10 turquoi se 
1011 11 blue g reen 
1100 12 green 
1101 13 ye llo w green 
1110 14 ora nge gree n 
1111 15 ligh t ora nge 

A ta ri BASIC a ll ows yo u to se lect a playfie ld co lor to d raw 
in by us ing th e CO LO R s ta tem e nt. The co lo r regis ter th a t 
co rrespo nds to th a t playfie ld ca n be cha nged by us ing 
SETCOLO R. 

Colo r indirec ti o n is a tool th a t s hould not be overl ooked . It 
is possib le to draw a de ta il ed fi g ure o n th e sc ree n w ith o ne 
p lay fi e ld , and th e n change th e co lo r o f th e e ntire fi gure w ith 
jus t o ne comma nd . For exa mple, a printed message ca n fl as h 
in co lo rs to a ttrac t a ttenti o n . A "glow in g" e ffec t ca n be created 
by ra pidl y cha nging th e lumina nce of a p lay fi eld w hil e main
ta ining th e sa me co lor. O r, the playfie ld co lo rs ca n all be se t to 
the sa me color/luminance as th e backg round . Fig ures drawn 
w ill no t a ppea r until th e pl ayfie ld colo r regis ters are cha nged . 
By cha ng ing th e regis te rs o ne a t a tim e, a n a nima ti o n e ffec t ca n 
be crea ted . Color ind irec ti o n m ay s till not so lve th e problem of 
hav ing man y colo rs o n the scree n a t th e sa me tim e, but it d oes 
a fford poss ibi liti es th a t o th erw ise wo uld be diffi cult to achieve. 

In specia l ins ta nces, playfield co lo r reg is te rs ca n be changed 
during the hori zonta l bl a n k, in w h ic h case a ll 128 co lor va ria ti o ns 
ca n be show n in o ne fra me. T hi s req uires th e use o f m ac hine 
la ngu age a nd s till does no t so lve th e proble m o f ma ny co lo rs 
on on e sca n line . Fo rtun a te ly, ex pe ri e nce has sh own th a t, fo r 
ma ny app li ca ti o n s, three p layfie ld co lo rs w ill be s uffic ie nt. 

216 



6 Advanced Graphics Techniques 

Multiple Colors 
Neverth eless, th ere a re times w hen m a ny co lors would be d e
sirable. This is w he re th e GTIA s te ps in. It sho uld now be ap
parent that 16 co lors w ill require four bits pe r pixe l. This is very 
expensive in terms of m em o ry, so e ither pixel s ize or di splay 
memory will have to increase. Beca use ANTIC has a limit on 
how mu ch m e m ory it ca n access during one horizo ntal sca n 
line, we have a limit o n how much m e mo ry ca n be d evo ted to a 
screen . Therefore, reso lutio n w ill have to s uffe r. 

Before we see w ha t th e me mo ry limit is , we should m e ntion 
th e two mod es w hich a re exceptio ns to th e above rul es. Three 
thin gs di s ting ui s h m od es ze ro a nd eight from th e normal 
mod es. Eac h pixel is a half co lo r clock wide; a s ide e ffect of thi s 
is artifact ing . Th e bac kgroun d co lor n ow becomes the bo rd er, 
a nd th e main part of th e scree n is filled with playfie ld two . 
Fi na ll y, s ince th e w ho le sc ree n is now play fi e ld two, th e bit no 
longer te ll s w hi ch play fi eld to u se, but w hich IlIIlIillnllce to u se . 

MODE BIT LUMIN ANCE REG ISTER 

0,8 
0,8 

1 
2 

playfield one 
p layfie ld two (n o image) 

The co lor part of p layfie ld o ne is ig no red ; o nly th e lumi
na nce data is used. If th e lumina nce va lu es of playfie lds o ne 
a nd two are th e sam e, th e w ritin g d isa ppea rs. Modes ze ro a nd 
eight use thi s spec ia l " ha lf co lo r cl ock, o ne pla yfie ld colo r, two 
brightn ess" a rra nge m e nt. Both modes ha ve 320 distinct po ints 
of lig ht ho rizonta lly and have s ing le sca n line reso lution . The 
on ly diffe ren ce be tween mode zero and mod e e ig ht is that the 
firs t is a tex t mod e a nd th e second is a direc t ma pping mode. 
Mode ze ro uses a char<lcter se t a nd the reby saves me mory; 
abou t lK is required for this mode. Mod e e ig ht does n ' t u se a 
character se t, and req uires app rox im a te ly 8K. T ha t is o ur di splay 
memory limit. T he A tari 400/800 is not ca pa bl e of doing DMA 
to much more me mo ry tha n th e memo ry rep rese nted by o ne 
te lev isio n frame. 

Since th e " ha lf co lo r clock, o ne co lo r, two bri ghtness" m od e 
is Ll sed by g raphi cs m odes ze ro a nd e ig ht, a ll th e GTlA rea ll y 
d oes is provide three va ri at io ns o n thi s mod e. They a ll use the 
max imum me mory a lT<l nge me nt used by mod e e ight, so each 
of th e three new modes requires 8K . A ll of th e ne vv m od es use 
four-bit pixels, so th e horizo nta l reso lutio n goes from 320 (half 
colo r clock) to 80 (two co lo r clock, as in m od es four a nd fi ve). 

217 



6 Advanced Graphics Techniques 

Therefore, the reso lution for a ll three new m odes is 80 by 192, 
for a total of 15,360 points. One side effec t of changing only the 
horizontal resolution is that the pixels are no longer square . 

The ANTIC instructi on regis ter mode number fo r the 
maximum memory m ode (the number yo u will find in the dis
play lis t) is $OF, o r decimal 15. It is important to und ers tand 
that this number indica tes not only mode eight, but also nine, 
ten , and eleven as well . In fact, the di splay lis t for anyone of 
these mod es is identica l to the di sp lay lis t for a ny of the others. 

Selecting Modes With PRIOR 
How then does ANTIC know which of the four is the d esired 
mode? The answer is tha t ANTIC neither knows nor cares; no 
matter which mod e is being used, ANTIC s till has to d o the 
same work of fe tching memory. It' s the GTIA that processes 
the video signal; somehow the chip mu st be told which of the 
four modes is wanted. The GTIA hardware register PRIOR 
does exactly tha t. 

GPRIOR $026F 623 shadow 
PRIOR $D01B 53275 hardware 

The two most sign ifi cant bits (bits six and seven) of this 
regis ter are the GTIA specia l mode selec t bits. Here's how they 
are set. 

MODE BITS HEX DECIMAL 

8 00 00 0 
9 01 40 64 

10 10 80 128 
11 11 CO 192 

For exa mple, it is possible to switch from a nyone of the 
four modes to a no the r simpl y by changing the values of the 
two se lect bits. 

Other bits in GPRIOR serve different functions, so ca re 
111us t be take n no t to alter them. These other bits all ow multi
color players (bl ending on overlap), se t a ll missiles to the co lor 
of playfield three to fo rm a fifth player, and establish player/mis
sile and playfield priorities. See the Hardware Manual for furth er 
informa tion . 

Now that we know how the three new mod es are si milar, 
le t' s find out how they are different. 

Mode 11 is the one-luminance, 16-color mode. The overall 
lumina nce is set by the background color, wh ich , for this mode, 

218 



6 Advanced Graphics Techniques 

defaults to a luminance of six, ra th er than the usua l zero. It is 
now easy to draw rather fin ely d etail ed shap es in several colors 
without having to fo ol around with th e di splay li s t and machine 
code interrupt routines. The thing I am especially excited about 
is going to make Apple owne rs e nviou s. The Apple has a 16-
color mode with resolution of 40 by 48, ca lled the " 10 res" mode . 
The Atari now has a 16-color mode, but the resolution is eight 
times greater than the Apple's. 

Sixteen colors d o present a proble m, th oug h, since the 
GTTA has only four playfield co lor regis ters. Therefore, mode 
11 does not allow color indirection . The co lor on th e screen is 
de te rmined directly by the bit d a ta stored in m emory, according 
to th e chart given ea rli e r in the section on color indirecti on. 
The values in the four color/luminance registers are ignored . 
Some may consider thi s a di sadvantage, but the re is a be nefit 
too. Ju s t as the playfield color registers a re no t used, neither 
are the player/m issile co lor regis ters u sed, so by using players 
it is possible to have 21 colors o n the screen a t the sam e time, 
without using di splay li s t interrupts or other tricks. 

Producing 256 Colors 
Mode nine is the one color, 16-lum.inance mode. This mode 
will be used to crea te some excell ent three-dimen sional e ffects 
and di giti zed pictures . The 16 luminances, when stacked verti
ca lly by the scan line w ith each line having the nex t brightest 
luminance, blend so we ll th a t it is very difficult to see the divi
sion from one to the o the r. The main color is se t by the back
ground color. Weird things happe n w hen you change the lumi
nance of the background . Ano ther nice fact is tha t having 16 
main colors with 16 lumina nce va riation s mea ns that the Atari 
is capable of producing 256 colors. 

One adva nced application for mode nine is the display of 
digiti zed pictures. Digiti za ti on is a process by which a normal 
television picture, such as fro m a station or video record e r, can 
be analyzed and divided into different luminances. That infor
mation can be sent to the computer and stored on disk for later 
di splay. Mode nine, with 16 1uIT1inances and rather high reso
lution, is able to reproduce such pictures with impressive qual
ity. Thus far we ha ve seen onl y four di giti zed pictures . They 
were apparently mad e by some people at Atari, and two of the 
pictures were, uh, fo r mature viewers only. Standing from a 
short distance, however, it is ve ry difficult to tell if any o f these 

219 



6 Advanced Graphics Techniques 

pictures is computer gen e ra ted or not. I have never seen such 
quality on a ny other compute r in th e 400/800 price ra nge without 
ex pe nsive additional equipm e nt. 

Mode te n is a cross be twee n th e other two modes; it allows 
eight colors plus th e background, each wi th its ow n lumina nce, 
as in the primary m odes. Unlike th e o ther two modes, this one 
allows color indirec ti o n, so it uses the playfie ld and playe r/ 
miss il e registers for co lor/lumina nce information . This chart 
sho ws how data va lues co rres pond with play fi e ld reg is ters. 

BITS VALUE REG ISTER PLA YFIELD 

0000 0 704 PCOLRO 
0001 1 705 PCOLR1 
0010 2 706 PCOLR2 
0011 3 707 PCOLR3 
0100 4 708 COLORO 
0101 5 709 COLOR1 
0110 6 710 COLOR2 
0111 7 711 COLOR3 
1000 8 712 COLOR4 
1001 9 712 COLOR4 
1010 10 712 COLOR4 
1011 11 712 COLOR4 
1100 12 708 COLO RO 
1101 13 709 COLO R1 
1110 14 710 COLOR2 
1111 15 711 COLO R3 

Only nine of th e 16 poss ible datil va lues corres po nd to 
diffe rent play fi eld s. Data va lu es g rea te r tha n eight jus t repea t 
play fi elds. For so me reaso n, the bilckground co lo r is no longer 
set by COLOR4, but ins tead by PCOLRO . The Atar i BASIC s ta te
m e nt SETCOLOR ca n' t be used to change th e player/miss il e 
co lo r regis te rs, so th e equi vale nt POKE mu s t be used . Fo r any 
regis te r, th e data part of th e POKE is th e co lo r ch o ice number 
multipli ed by 16, plu s th e lumina nce (refe r to ea rli e r chart). 

The power of indirec ti o n is mag nified when e ig h t ma in 
drawing colors can be used. Thi s mode is ve ry use ful for crea ting 
mo tio n effects . With nine co lo r/luminances a nd co lo r indirec
tio n, mode te n m ay prove to be th e mos t versa til e of the three 
new modes . 

Compatibility Between CTiA And GTIA 
Re member tha t the CTIA o nl y contro ls how th e di s play is ge n
e ra ted , so all progra ms writte n fo r th e CTIA s hould run o n a 
CTIA 111achine in th e sa me way. The re ca n be no such thing as 

220 



6 Advanced Graphics Techniques 

incompa tibility. We have, however, come across one discre
pancy be tween the CTIA and GTIA. The video signal genera ted 
by the GTIA is shi fted one ha lf color clock, so colors produced 
by artifac ti ng, such as in POOL 1.5 or Jawbreakers, will be differ
ent. That is jus t a minor visual difference; the important thing 
is tha t all software should be entire ly compa tible . Of course, 
yo u cannot expect a CTIA to generate these three new modes, 
but again the confli ct is the di splay, not the program . 

Beca use of the half colo r clock shift, it is now possible for 
players and playfie ld s to ove rl ap pe rfectly, whereas with the 
CTIA they didn' t. 

The re a re SOllI e cases w here softwa re will not run o n GTIA 
machines . This is du e to the fac t tha t some of the new computers 
with the GTIA also have a rev ised (no bugs) ope rating system 
in them . Atari has made very clea r w hich mem ory loca tio ns 
and vec to rs a re p ermanent and protected from any revis ions. If 
a program d oes not run on a GTIA machine, it is the so ftware' s 
fault beca use illega l entry points were used . 

O ne o th e r confli ct has appeared which rea ll y surpri sed 
me . We have discove red tha t a few p rograms written on CTIA 
machines ca relessly se t the GTIA special mode select bits of 
GPRIO R fo r no purpose. Since these two bits d o nothing on 
the CTTA, the re was no probl em . But th e re was a lso n o reason 
to in vo lve them . When the sa me progra ms a re run on GTI A, 
the accide ntal bit se ttings affec t the di splay, even thoug h modes 
nine, ten, a nd eleven are not used . The fun ction of those two 
bits has no t been a secre t. I figured o ut their functi o n in Jul y 
1981, w hen 1 read the OS so urce lis ting before ] bought my 
Atari 800. The Hardware Manual has described the three " n ew" 
modes in Appendix H ever since the manual was released. 

No Text Window 
There is a difference be twee n the normal modes a nd the three 
new modes - the three new ones do no t all ow split scree n (tex t 
wind ow a t bo tto m) co nfigura ti o ns. If you remember h ow modes 
eight and ze ro are rela ted , yo u s hould unders ta nd why. The 
mode used in the text w indows is mode zero, w hich fo ll ows 
the specia l " half color clock, one color, two luminances" a r
rangement. As s ta ted above, hav ing the mod e se lect bits in 
GPRIO R se t for a mode grea te r than eig ht ca uses mode zero to 
ac t funn y . A split scree n wo uld be poss ible onl y if a dis play li st 
inte rrupt were inse rted jus t befo re the tex t w ind ow area. The 

221 



6 Advanced Graphics Techniques 

interrupt routine w ould have to rese t to ze ro th e mod e select 
bits in th e hardware regis te r PRIOR, no t the s had ow regis ter. 
The h a rdware regis te r w ill then be rese t to th e va lue o f GPRIOR 
during th e verti ca I blan k se rv ice ro u ti ne . 

The three new mod es seem to handle player/miss il e to 
play fi e ld collisio ns a littl e d iffe rentl y. In m od es zero a nd eight, 
a play fi e ld tw o co lli sio n is flagged ,",v hen a playe r o r missile hits 
a pixel w hose lumina nce is contro ll ed by CO LO RI ra th e r than 
the CO LOR2 for th e n1 ain p layfie ld . From w ha t I have been 
abl e to tell thu s fa r, th ere is no kind o f p lay fi e ld co lli s io n a t a ll 
in m od es nine a nd e leve n . Mode te n colli s io ns wo rk o nl y for 
play fi e ld colors th a t correspo nd to th e usu a l play fi e ld regis te rs 
(COLORI through COLOR3). Also, th e fact tha t the background 
in this m od e is se t by PCOLRO a ffects the priority of players 
and play fields in some cases. In priority, m ode ten play fi eld 
colors PCOLRO thro ug h PCOLR3 behave like players . 

The GTIA s till a ll ows o nl y eight lumina nces o n the no rm a l 
mod es. 

A ll new A ta ri com pute rs a re be ing shipped w ith th e GTIA 
a t no ex tra cos t. T he CTIA is no lo nge r be ing produ ced . The 
new mac hines w ith th e GT IA have littl e ye ll ow or w hite s ticke rs 
th a t have th e le tte r "G" o n th en, . Those of us w ho have old er 
machines with th e CTlA ca n rep lace it w ith a GTIA. T he pa rt 
numbe r is C014805. 

If yo u want to d o it yo urself, it w ill be a s imple ma tter to 
re place the CTIA. The CTlA is on th e CPU ca rd th a t p lugs into 
the mo therboard in side th e A tari case. H's no t solde red in , so 
the re placem ent ope ra ti o n s ho uld take o nl y 30 minu tes if yo u 
have take n yo u r computer apart befo re. 1 ns truc ti o ns a re s up
plied w ith the chip . In the mea ntime, if yo u do n't have the 
GTIA, d o n' t fret. It w ill be a w hil e befo re mu ch softwa re re
quiring th e chi p is ava il ab le . 

222 



6 Advanced Graphics Techniques 

Do You Already Have The GTlA? 
If yo u wa nt to qui ck ly see if yo ur CO ll1 p ute r has a GTIA, try 
thi s: POKE 623,64 (w hil e in the defa ult m od e, zero). 

If you have the GTlA, the screen w ill go b lack. O therw ise, 
there w ill be no ch a nge an d yo u' ll know you've go t th e CTIA. 
If yo u have th e GTIA a nd wa nt to see 16 co lors, try thi s: 

10 G RAPHICS 1] 
20 FOR K = O TO 79 
30 COLOR K 
40 PLOT K,O 
50 ORA WTO K,191 
60 NEXT K 
70 GOTO 70 

223 



6 Advanced Graphics Techniques 

Pari III: 

Atari Video Graphics 
And The New GTIA 
Craig Chamberlain 

In this conclusion of the three-part series, severn I demonstra tion pro
grams teach the concepts of (and show off) the new Atari GTIA grnphics 
chip . 

Welcome back to our discussion of Atari play fi eld graphics and 
the exciting new GTTA chip . In Par ts I and II I presented defini
tions of various terms rela ted to graphics, ex plained the normal 
graphics modes, and then introduced the three new modes 
p rovided by the GTIA . Specifica ll y, these new modes are: 

MODE DESCRIPTION 
9 16 shades of one color 

10 8 indirected colo rs 
11 16 colors (one luminance ) 

Here are several programs in A tari BASIC to dem onstra te 
how these new m odes might be put to use. But firs t, le t's tie up 
a few loose ends fro m the prev ious articles. 

We used a s tandard me thod to show bit designa tions in 
the first parts of thi s a rticl e. If you are not familiar with this 
convention , here ' s how it wo rks. Any given memo ry loca ti on 
or hardware address consists of one byte lT1 ade up of eight bi
nary units called bits. These bits are numbered zero to seven 
and are frequently show n as ~O, 01 , 0 7, e tc. Individually, each 
bit can have two va lues, zero or one, but from the viewpoint of 
a by te, they take on quite different va lues known as " powers 
of two." For example, 0 3 means " two to the power o f three," 
whi ch also mean s " the number two used as a fac tor th ree 
times." Two times two times two is eight, so if we wa nted to 
turn on only bit three in a give n hard ware register, we would 
POKE it with an eight. If we wa nt to turn several bits on , we 
mus t add all the proper va lu es toge ther. 

224 



6 Advanced Graphics Techniques 

BIT VALUE 
0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 

Mod e 11 can be invoked by turning on bits six and seven 
of GPRIOR, loca tion 623 (decimal) . Thus w e would POKE 623 
w ith 64 + 128, w hich is 192. This brief expla na tion should help 
yo u d ea l w ith the mem ory loca tions and h ard ware registers 
described in the prev ious a rticl es . Now for a review o f the pri
ma ry graphics s ta tements of A tari BASIC a nd some special 
no tes about the GTIA. 

Graphics Statements 
GRAPHICS aexp 

Thi s sta tem e nt is the sam e as O PEN #6, 12 + 16,aexp , " S:" , 
and tell s the screen handle r to open the screen to one of 12 
mod es. The number "aexp", which mean s "arithme ti c expres
sion," can ran ge from zero to 11 . Cha racteris tics of these 1110des 
are explained in chapter nine of the Atnri BASIC Reference 
Ma l7i1 a/. 

Som e m odes allow split screen configura ti ons, w hich 
mea ns tha t a text window appears a t the bo ttom of the screen . 
Of course, mod e zero d oes no t allow a tex t window becau se 
mod e zero is the tex t m od e, alth oug h you ca n experiment with 
POKE 703,4. Modes one through eight d o support text win
dow s, and the onl y way to ge t a full screen (no tex t window) in 
one of these m odes is to add 16 to aex p in the GRAPHICS sta te
ment. When using a full screen mod e, Atari BASIC forces a 
mod e zero if it has to print norm al tex t. It is impossible to use 
these full screens in the imm edia te programming m od e beca use 
the " READY" prompt forces the m od e zero screen. 

Due to technical reasons explain ed in the prev ious article, 
mod es nine, te n, and eleve n d o no t normally allow text w in
dows . Yo u ca n foo l the opera ting sys tem into giving yo u one of 
these modes w ith a tex t w indow by asking fo r m od e 8 and then 
doing a couple of POKE s ta tem ents, like thi s : 

225 



6 Advanced Graphics Techniques 

MODE POKES 
9 POKE 87,9: POKE 623,64 

10 POKE 87,10: POK E 623,128 
11 POKE 87,11: POK E 623,192 

Loca tion 87, known as DINDEX, tell s th e operating sys te m 
the current mode a nd is used in the computa ti o n of row and 
column addresses for plotting, so a ny numbe r fro m nine to 
e leve n will give the sa me results. Unfortunately, th e tex t win
d ow obtained by this me th od looks weird . Th e o nl y way to ge t 
a rea l tex t window is to use a di s play lis t inte rrupt, discussed 
la ter. 

If you add 32 to aexp, th e sc reen will no t be clea red wh en 
th e n ew mode is requested. 

Finally, th e CTIA a nd GTIA s upport fi ve o th e r mod es which 
th e operating system d oes no t recognize. They are th e e ight by 
ten matri x character vers ion of mode zero, th e multi co lo r tex t 
cha rac te r modes, and th e s ing le sca n line vers io ns o f m od es s ix 
and seven, for 160 by 192 plot tin g in on e or three colo rs. The 
o nl y way to access these modes is to write a Cus tOITI di splay 
li s t. 

COLOR aexp 
This s pecifies th e playfie ld that will be used for PLOT and 
DRAWTO statements, until changed by another COLOR s ta te
ment. It does no t in any way cha nge an y of the co lo r/luminance 
regis te rs for th e variou s playfields! The range of aexp d e pe nd s 
o n the number of diffe rent playfields ava il able in th e curre nt 
g raphi CS mode. This s till holds tru e for th e new GTIA modes. 
For exa mple, a COLOR 2 in mode 9 mea ns th a t futun: plo tted 
points will be rathe r da rk, whereas brig ht lin es will be draw n 
a fter a COLOR 12. 

In mode 11, COLOR 5 chooses a purple co lo r, as indica ted 
by the chart in part o ne o f thi s a rticl e. For a lllTwd es, COLOR 0 
(zero) is tile background o r "e ras in g" color. Normally, th e 
ope ratin g sys tem wants yo u to s pecify th e playfie ld each tim e 
yo u write to th e scree n, but A tar i BASIC a uto ma ti ca ll y te ll s the 
operating sys te m which playfield you have chosen eve ry tim e 
you u se PLOT o r DRAWTO . Incid enta lly, th e data pa rt of th e 
COLOR statement is s tored in memory loca tio n 2UO (decimal) , 
but I would not recommend using that. 

One other no te. To be technically accurate, CO LOR 1 co r
resp o nd s to play fi e ld ze ro, COLO R 2 mea ns play fi e ld o ne, and 
so on. 

226 



6 Advanced Graphics Techniques 

POSITION aexpl ,aexp2 
This s ta te me nt moves th e g ra phics cursor to th e loca tion o n the 
screen d esig na ted by th e two numbers, acco rdin g to th e Carte
sian coo rdinate sys te m . No ra nge ch eckin g is d o ne. 

PLOT aexpl ,aex p2 
This is th e sa me as POSITION aex p1 ,aex p2: PUT # 6, colo r 
whe re "color" is th e play fie ld type ch osen by the m ost recent 
CO LO R s ta te ment. Yo u w ill ge t a n e rro r number 141 if you try 
to PLOT outs id e th e bo und s o f th e scree n . A ll three new modes 
have reso lutio n of 80 by 192. 

ORA WTO aexpl,aexp2 
Esse nti a ll y, thi s is th e sa me as PLOT exce pt th a t a line is dra wn 
from th e m os t recen tly pl o tted po int to th e new po int indica ted 
by aex p1 a nd aexp2 . Yo u ca n a lso do thi s w ith a n XIO 17,#6, 0, 
O,"S:". See page 54 of th e Atl1ri BAS IC IZe!e rell cc Ma ll 11171 to see 
how XIO 18 ca n be used to fill a reas w ith a play fi e ld. 

LOCA TE aexpl ,aex p2,avar 
r d o n' t know w hy, but nobod y see ms to kno w a bout thi s s ta te
IT1 ent. It co uld be co nside red th e reve rse of P LOT. Ins tead o f 
putting a playfie ld po in t at a certa in loca ti on o n the screen, thi s 
s ta te me nt re turns to yo u, in th e cHithm e ti c va ria bl e "avar", the 
play fi e ld number o f th e po int a t loca ti o n aex p l,aex p2. Thi s 
play fi e ld number w ill be the sa ill c as th e va lue of COLO R th a t 
was in effec t w hen th e po int was pl o tted . LOCATE is ac tua ll y 
quite ha ndy . It is vc ry useful in ga mes w he re co lli sio ns occur 
be twee n diffe re ntl y co lo red pl aye rs, but it has many o th e r a p
plica ti o ns, too. LOCATE is th e sa m e as POSITION aex p1 ,aex p2: 
GET #6,ava r. 

SETCOLOR aex pl ,aexp2,aexp3 
Thi s is th e s tate me n t vv h ich cha nges th e co lo r a nd lumina nce o f 
a play fie ld register. The numbe r aex p1 d esign a tes which 
playfic ld registe r is be ing cha nged, a nd is re la ted to th e number 
in th e COLOR s tateme n t in th e fo ll ow ing way: 

COLOR SET CO LO R (play fi e ld numbe r) 

o 
2 1 (al so used fo r lumina nce in m o d es zero a nd e ig ht) 
3 2 

3 (u sed o nl y in fo u r-co lor tex t m od es o ne a nd two ) 
o 4 (bac kg ro und, o r bo rder in mo d es zero a nd e ig ht) 

227 



6 Advanced Graphics Techniques 

The value for aexp2 is a number from zero to 15 which 
specifies one of 16 colors. See the chart in part one of this article, 
or on page 50 of the Atari BASIC Reference Manunl, to find which 
numbers go with which colors. The lumin ance is chosen by 
aexp3, which can range from zero to 15, but only eight true 
luminances can be selected. A value of zero here gives the same 
luminance as one, two the same as three, and so on. The larger 
the number, the greater the luminance. 

Remember that modes 9 and 11 do not use color indirection 
or the play field registers, so SETCOLOR has little use in these 
modes. It can be used to set the background color/luminance in 
these two modes, but that's about it. 

Now for mode 10. This mode uses the player/missile color/ 
luminance registers, which cannot be accessed using SET
COLOR. An equivalent POKE statement must be used instead. 
The location to POKE is similar to the aexp1 of SETCOLOR. 
The shadows of the playfield registers run from locations 708 
(decimal) to 712. The value to POKE contains the color and 
luminance information and is a combination of aexp2 and aexp3. 
This value is the sum of 16 times the color number, plus the 
luminance. In effect, SETCOLOR X, Y,Z will do the same as 
POKE 708 + X, 16*Y + Z. If you want to change the player/missile 
color/luminance registers, which run from locations 704 to 707, 
use the same procedure of multiplying the color by 16 and then 
adding the luminance. Refer to part one of this article for a chart 
that tells which COLOR numbers match with which registers. 

Some Lively Demos 
Now comes the good part, where the action is! If your Atari 
computer has a GTIA in it, here are some programs to show off 
the talents of this remarkable chip. 

How to put 16 colors on the screen? It could be done in 
one line: 

GRAPHICS 11: FOR K=O TO 79: COLOR K: PLOT K,O: 
DRA WTO K,191: NEXT K: FOR K = 0 TO 0 STEP 0: NEXT K 

The endless loop is necessary to prevent Atari BASIC from 
printing a "READY" prompt which would force mode zero. To 
make the vertical color bands wider, change the COLOR K to 
COLOR K/5. To see 16 shades, change the GRAPHICS 11 to 
GRAPHICS 9. 

228 



6 Advanced Graphics Techniques 

A fancier way of showing 16 shades is found in Program 1. 
After drawing the shades, the background color is rotated 
through all 16 colors. 

Program 3 randomly draws lines in 16 colors. You can make 
these colors appear darker or more pas tel by changing the lumi
nance of the background . Please note that m ode 11 is the only 
mode in which the background is se t by the operating system 
to a luminance of six. All o ther modes have backgrounds of 
color/luminance zero (black). 

Program 2 dem ons trates the color indirection capabilities 
of mode 10. Location 20 is the lowes t counter of the realtime 
clock, so it is always changing. Continuously PEEKing this 
loca tion and POKEing the value into a co lor register gives a 
nice "throbbing" color spectrum effect. 

How about a doodling program that lets you draw in 16 
co lors using the joystick? Program 4 does this in only three 
lines of Atari BASIC code ' Press the joys tick tri gger to change 
colors. 

Program 5 is a really beautiful colo r kaleidoscop e gen era tor, 
considering it is only four lines lo ng . It's not something you 
will spend hours watching, but it can produce some nice pic
tures . Try changing the K = I + J in the second line to K = I for a 
different picture. Or yo u ca n reverse th e direc ti on o f the main 
loops, as in FOR] = 31 TO 1 STEP -1. If you change the J loop 
(note that it sta rts a t zero, FOR J=31 TO 0 STEP -1) , you will 
also wa nt to change th e H loop (FOR H = 1 TO 3 STEP 1). 

To show 256 colo rs on the screen all at once, u se Program 
6. This program does not show the co lors. Ra ther, it produces 
a single line w hich yo u ca n ENTER from disk or casse tte . This 
single line perfo rms all the mag ic. What is also neat about this 
program is tha t when yo u ENTER the line in , the program al
read y in memo ry is untouched . If you examine Program 6, you 
will see that it w rites a line to the chose n dev ice, but the line 
has no line number in front of it. When yo u ENTER this line, it 
is the sa me as typing it in the immediate mod e . When Program 
6 asks fo r a d ev ice specifi cation , res po nd with C: for cassette or 
D:filename for di sk. 

I included the asse mbl y source code and Atari BASIC in
sta llatio n routine for a di splay li st inte rrupt se rvice ro utine (Pro
gram 8) that crea tes a tex t window on modes 9, 10, or 11. An 
inte rrupt is req uested a t th e las t mode lin e of the graphics mode 
portion of the screen . The serv ice routine takes the value of 

229 



6 Advanced Graphics Techniques 

GPRIOR, sets the GTIA mode se lec t bits to ze ro, and s tores the 
result in PRIOR, the hardware register. PRIOR ge ts rese t to the 
value of GPRJOR as part of th e verti cal blank se rvice routine. 
The routine also stores a ze ro into th e backg round ha rdware 
register. This was necessa ry to fi x a conflict in mode 11 . Setting 
th e luminance in 712 a lso changes th e bord e r a round the text 
w indow. But this " fix" crea ted another proble m in mode 10. 
For mode 10, change th e fourteenth DATA ele me nt, which 
normally should be a zero, to be th e sa me as th e numbe r POKEd 
into 704. 

The service routine is w ritten using reloca tabl e code, so 
you can put the routine anyp lace in memory simply by changi ng 
th e assignment of ADORES in th e second line . It is curre ntly 
set to s tart at th e beginning o f page s ix. Th e first three lines of 
Program 7 actually ins tall the routine. The fourth line ju s t draws 
a picture for purposes o f demons tra tion. Notice th e luminance 
change of the colors when 712 is POKEd. 

My routine shares th e pro blem of many di s play li s t inter
rupt service routines; key board clicks can affect th e di s play. 
Obviously this routine is suitabl e on ly for progra ms that do not 
accept keyboard input (LIse th e joys ti ck or PEEK th e hardware 
keycode regis te r 764 direc tly) o r LI se se rial I/O (the vertica l blank 
routine is abbrev iated and PRIOR does not ge t rese t). 

Program 9 is a handy littl e routin e whi ch a ll ows your Atari 
to tes t itself for a eTJA o r GTlA chip - without yo ur ha ving to 
inte rpre t screen colors, as othe r routines do. Now yo ur pro
gram s can adapt th emse lves to e ith e r chip. 

Program 1. 
10 GRAPHICS 9:FOR K=1 TO 10 STEP 2:FO 

R J=O TO 15:COLOR J:PLOT 0,K*16+J+ 
I:DRAWTO 79~K*16+J+l 

20 PLOT 0,K*16-J:DRAWTO 79~K*16-J:NEX 
T J:NEXT K 

30 FOR K=l TO 255 STEP 16:POKE 712,K: 
FOR J=l TO 500:NEXT J:NEXT K:GOTO 
30 

Program 2. 
10 GRAPHICS 10:FOR K=705 TO 712:POKE 

K,12:NEXT K:FOR K=O TO 79:COLOR (K 
+4)/I0:PLOT K,O:DRAWTO K,191:NEXTK 

230 



6 Advanced Graphics Techniques 

20 FOR K=704 TO 712:FOR J=1 TO 300:PO 
KE K~PEEK(20):NEXT J:NEXT K:GOTO 2 

° 
Program 3. 
10 GRAPHICS 11:FOR K=1 TO 124:COLOR K 

:DRAWTO RND(1)*79,RND(I)*191:NEXT 
K:GOTO 10 

Program 4. 

10 GRAPHICS 11:DIM SX(15),SY(15):FOR 
K=5 TO 15:READ X,Y:SXCK)=X:SY(K)=Y 
:NEXT K:X=40:Y=96:COLOR 1 

20 PLOT X,Y:X=X+SX(STICK(O):X=X+(X<O 
)-(X}79):Y=Y+SY(STICKCO»:Y=Y+(Y<0 
)-(Y}191):IF STRIGCO) THEN 20 

30 C=C+I-15*(C=15):COLOR C:GOTO 20:DA 
TA 1,1,1,-1,1,0,0,0,-1,1,-1,-1,-1, 
0,0,0,0,1,0,-1,0,0 

Program 5. 

10 GRAPHICS 10:FOR 1=705 TO 712:POKE 
I,PEEK(53770):NEXT I:FOR 1=1 TO 31 

STEP I:C=C+1-9*(C=8) 
20 POKE 704+C,PEEK(53770):FOR J=O TO 

31 STEP I:COLOR INT(RND(I)*15)+I:K 
=1+J:J3=J*3 :K3=K*3:J8=J+8:J71=71-J 

30 PLOT K+7,J3:DRAWTO K+7,191-J3:PLOT 
72-K,J3:DRAWTO 72-K,191-J3:FOR H= 

3 TO 1 STEP -1 
40 PLOT J8,191+H-K3:DRAWTO J71,191+H

K3:PLOT J8,K3-H:DRAWTO J71,K3-H:NE 
XT H:NEXT J:NEXT I:POKE 77,0:GOTO 
10 

Program 6. 

100 IF PEEK(S7) THEN GRAPHICS 0 
105 ? CHR$(125):? "GTIA DEMONSTRATION 

II • ,..., . : 

110 ':> "This pr-ogr-am cr-eates an ATASCI 
I file" 

231 



6 Advanced Graphics Techniques 

120 ? "for ATARI BASIC. 
sists" 

The file con 

130 ? "of one line which will produce 
256" 

140 ? "colors on your screen if you" 
150? "have a GTIA installed.":? 
170 DIM S$(120):? "Please enter devic 

e specification." 
180 INPUT S$:IF S$="" THEN 180 
190 ? :TRAP 260:0PEN #1,8~0,S$ 
200 ? #1;"GR.9:F.K=OT079:C.K/5:PL.K,0 

: DR. K, 191: N. K: K=USR (ADR ( " ; 
210 PUT #1,34:FOR K=1 TO 15:READ P:PU 

T #1,P:NEXT K:PUT #1 , 34 
220 DATA 173,11,212,10,229,20,41,240, 

141,26,208,208,243,240,241 
230 ? #l;"»":CLOSE #1:? "File has be 

en written." 
245 POSITION 2,19:? "ENTER ";CHR$(34) 

;S$;CHR$(34) 
250 POSITION 2,15:? "Now press the RE 

TURN key if" 
255? "you want to ENTER the file.":N 

EW 
260 STATUS #1 , P:? "1/0 ERROR ";P:END 

Program 7. 

10 POKE 54286,0:GRAPHICS 8:POKE 87,11 
:POKE 623,192:POKE PEEK(560)+256*P 
EEK(561)+166,143 

20 ADDRES=1536:POKE 54286,64:FOR K=O 
TO 18:READ P:POKE ADDRES+K,P:NEXT 
K:P=INTCADDRES/256):POKE 513,P 

30 POKE 512,ADDRES-256*P:POKE 54286,1 
92: DATA 72,173,111,2,41,63,141,10, 
212,141,27,208,169,0,141,26,208,10 
4,64 

40 FOR K=O TO 159:COLOR K/I0:PLOT O,K 
:DRAWTO 79,K:NEXT K:POKE 712,6:STO 
P 

232 



6 Advanced Graphics Techniques 

Program 8. 

0000 10 .PAGE 

1 1 
12 ;necessary operating s 

ystem and hardware equates 
13 ; 

026F 14 GPRIOR = $026F 
;GTIA priority control (sha 

dow> 
DOIA 15 COLBK = $OOlA 

;background color register 
DOIB 16 PRIOR = $OOlB 

;GTIA priority control (hardwa 
re) 
D40A 17 WSYNC = $040A 

;horizontal blank synchronizat 
ion 

18 , 
19 , 

0000 20 *= $0600 
21 , 
22 ;this service routine 

for the display list interrupt 
23 ;can be placed anywher 

e in RAM, and was placed on page s 
i >: 

24 ;only for purposes of 
demonstration 

25 
26 ;begin interrupt servi 

ce routine code 

mulator 

0600 48 

27 ; 
28 ;save contents of accu 

29 
30 

31 

PHA 

32 ;get the multicolor pI 
ayer, fifth player, and priority b 
its 

233 



6 Advanced Graphics Techniques 

33 , 
0601 AD6F02 34 

36 ; force 
elect bits to zero 
her bits 

0604 293F 37 
38 ~ 

LDA GPRIOR 

the GTIA mode s 
but save the ot 

AND #$3F 

39 ;wait until next scan 
line for a nice clean change 

40 ~ 

0606 8DOAD4 41 
42 

STA WSYNC 

43 ;change hardware regis 
ter until VBLANI< 

44 
0609 8D1BDO 45 

46 ~ 

STA 

47 ;reset COLOR4 
(for modes 9 and 11) 

060C A900 48 LDA 
060E 8D1ADO 49 

50 ~ 

STA 

PRIOR 

to z er 0 

#$00 
COLBI< 

51 ;restore accumulator 
52 

0611 68 PLA 
54 
55 ;return from the displ 

ay list interrupt 
56 

0612 40 57 

{L} 

234 

58 
59 

ice routine 
60 

RTI 
~ 

;end of interrupt serv 



6 Advanced Graphics Techniques 

Program 9. 

10 POKE 66,I:GRAPHICS 8:POKE 709,0:PO 
KE 710,0:POKE 66,0:POKE 623,64:POK 
E 53248,42:POKE 53261,3:PUT #6,1 

20 POKE 53278,0:FOR K=1 TO 300:NEXT K 
:GRAPHICS 18:POKE 53248,0:POSITION 
8,S:? #6;CHRS(71-PEEK(S3252»;"TI 

A" 
30 POKE 70B,PEEK(20):GOTO 30 

235 



6 Advanced Graphics Techniques 

Protecting Memory 
For P/M And 
Character Sets 
Fred Pinho 

Redefined character sets nnd plnyer/1I1issile graphics both require pro
tected memory. This article shows how to avoid 1l1ellIOry conflicts. 

Othe r articles in thi s book exp lain how to pro pe rly locate eithe r 
a red e fined cha racter se t or playe r/miss il e data . But what if you 
want to use both a t th e sa me time? You ca n' t use th e form.ula s 
give n in these articles directly, becau se th e two data sets will 
interfere with each o th er. To s implify ma tters, I've pre pa red 
the table be low . It w ill a ll ow you to positio n both your r iM a nd 
character d a ta so that they won't clas h. 

Note th a t th e two se ts o f data a re s to red in mem ory below 
th e di s play li s t. Because of this, a co upl e o f ca utions are in 
order: 

1. Be ca reful w hen cha ng ing g ra phics mod es. If yo u go to a 
graphics mode requiring increased display me mory , you cou ld 
overwrite your r i M data. Jt's probably bes t to loca te your data 
to accommodate th e g raphi cs mod e w ith th e largest m emory 
require l11e nt. To he lp, I' ve included the m emo ry requireme nts 
for each graphi cs mod e . 

2. You have to watch yo ur BAStC progra m to in sure that it 
doesn't expand into yo ur da ta-s torage a rea . 

In your readin g, you' ll come ac ross o th er me thods o f s to rin g 
these data se ts (above a lowe red RAMTOP, in a string, e tc.). 
However, th ese m e th od s have some se ri o Li s limitat io n s of th e ir 
own. The me thod g iven he re is s tra ig htfo rw a rd and easy to 
tro ubl e-shoo t. 

The table g ives th e o ffse t fro m RAMTOP (in pages) need ed 

236 



6 Advanced Graphics Techniques 

to pro pe rly loca te each data se t. Note that a page is a fan cy way 
of desc ribing a bl ock of 256 data bytes . Also, the offset is sub
tracted from RAMTOP to get th e proper memory location. I've 
give n an example of use o f the ta ble below: 

Des ired: GRAPHICS 7 

Code: 

S ingle-Line Player/Missile Gra phics 
Redefined Full Character Set 

10 PM=PEEK(106)-32:REM Calculate page 
setback for player/missile data 

20 POKE 54279,PM:REM Set page number 
of PMBASE 

30 PMBASE=256*PM:REM Calculate memory 
location of PMBASE 

40 CHRSTART=256*(PM - 41:REM Calculate 
page offset for new character set 

50 POKE 756~CHRSTART:REM Set CHBAS to 
point to new character set locati 

on 

From he re, yo u ca n go o n to implem ent the player/miss il e 
sys tem and you r redefined characte r se t as desc ribed e lsewhere 
in thi s book. Maya ll yo ur mi ss il es be on targe t. 

237 



IV
 

w
 

r:t
:J

 
Si

m
ul

ta
ne

ou
s 

Po
si

tio
ni

ng
 O

f P
la

ye
r/M

is
si

le
 A

nd
 R

ed
ef

in
ed

 
R

el
o

ca
ti

o
n

 o
f 

fu
ll

 c
h

ar
ac

te
r 

Ch
ar

ac
te

r S
et

 D
at

a 
in

 M
em

or
y.

 
P

la
y

er
/M

is
si

le
 D

at
a 

se
t 

b
en

ea
th

 p
la

y
er

/m
is

si
le

 d
at

a 

L
oc

at
e 

P
M

B
A

S
E

 a
t 

th
e 

R
el

oc
at

e 
at

 t
h

e 
in

d
ic

at
ed

 
M

em
o

ry
 r

eq
u

ir
ed

 f
or

 
in

d
ic

at
ed

 o
ff

se
t 

(i
n 

pa
ge

s)
 

o
ff

se
t 

(i
n 

p
ag

es
) 

fr
om

 R
A

M
T

O
P

 
D

is
p

la
y

 D
at

a 
+

 D
is

p
la

y
 L

is
t 

fr
om

 R
A

M
T

O
P

 
C

h
ar

ac
te

r 
se

t 
C

h
ar

ac
te

r 
se

t 
G

ra
p

h
ic

s 
T

o
ta

l 
A

s 
D

o
u

b
le

-l
in

e 
S

in
g

le
-l

in
e 

w
it

h
 

w
it

h
 

m
o

d
e 

b
y

te
s 

w
h

o
le

 p
ag

es
 

re
so

lu
ti

o
n

 
re

so
lu

ti
o

n
 

d
o

u
b

le
-l

in
e 

P
/M

 
si

n
g

le
-l

in
e 

P
/M

 

0 
99

2 
4 

8 
16

 
12

 
20

 
1 

67
4 

3 
8 

16
 

12
 

20
 

2 
42

4 
2 

8 
16

 
12

 
20

 
3 

43
4 

2 
8 

16
 

12
 

20
 

4 
69

4 
3 

8 
16

 
12

 
20

 
5 

11
74

 
5 

12
 

16
 

16
 

20
 

6 
21

74
 

9 
16

 
24

 
20

 
28

 
7 

41
90

 
17

 
24

 
32

 
28

 
36

 
8 

81
12

 
32

 
36

 
40

 
40

 
44

 

N
ot

es
: 

A
. 

G
en

er
al

 
1

. 
A

ll 
p

,lg
e

 c
i1

ic
u

la
ti

o
n

s 
i1

re
 t

o 
th

e 
n

ei1
re

s
t,

 h
ig

h
e

st
 w

h
o

le
 p

a
g

e
. 

2.
 R

A
M

T
O

I' 
(l

ll
Ci1

ti
o

n
l 0

6)
 d

e
fi

n
es

 t
h

e
 t

o
p 

o
f i

1v
i1

il
il

bl
e 

m
e

ll1
o

r\
'. 

T
h

e 
d

is
p

li1
v 

d
il

til
 l

ie
s 

ju
st

 b
c

n
L'

<1
th

 R
A

M
T

O
P

. T
h

e 
d

is
p

lil
y 

li
st

 
re

s
id

es
 l

u
st

 b
e

n
ei

lt
h

 t
h

e 
di

s
~l

l<
l\

' 
d

il
til

. 
B

. 
P

la
y

er
/M

is
si

le
 

["l
ew

e
r/

m
is

s
ile

 (
)f

fs
c

ts
 il

re
 c

,l
ic

u
la

te
d 

b
v 

u
b

sc
rv

in
g 

th
e 

fu
ll

(l
\\

'i
n

g 
re

s
tr

ic
ti

o
n

s 
fo

r 
th

e 
lo

ca
ti

o
n

 o
f 

P
M

 B
A

S
E

. 

O
ff

se
t 

fr
o

m
 <

lil
y 

o
th

e
r 

d
a

ta
 

B
o

u
n

d
a

ry
 l

o
ci

lt
il
ln

 f
o

r 
P

M
 B

A
S

E
 

C
. 

C
ha

ra
ct

er
-S

et
 

D
o

u
b

le
-L

in
e

 
S

in
o

le
-L

in
e

 
" 

re
so

lu
ti

o
n 

re
so

lu
ti

o
n

 

lK
 

lK
 

2
K

 
2

K
 

T
h

e
 f

u
ll 

re
d

e
fi

n
e

d 
ch

ilr
il

c
te

r 
se

tl
1

lu
st

 s
tM

t 
o

n 
il 

I K
 b

u
u

n
d

il
ry

 (
i.

e
.,

 t
h

e
 f

ir
s

t
ll1

e
ll1

llr
v 

lo
ci

lt
io

n 
m

u
st

 b
e 

il 
ll1

u
lt

ip
le

 o
f 

10
24

).
 

en
 

zoo
 

C
o .c:
 

c»
 =
 

c:
")

 
C1

:I 
C

o
 

~
 ... c»
 -= :r
 

n
' 

en
 

-4
 

C1
:I 

c:
")

 
:r

 =
 

.E
' =
 

C1
:I en
 



6 Advanced Graphics Techniques 

Screen Save Routine 
Jose ph Trem 

It certn i Illy WO li Id be grel7 t if YOli call Id presenJe for pos terity those 
lIent gmphics desiglls yO Il 'ue lenmed to cren te. Here's aile wny. 

The fo ll owing utility routine ca n be appended to the end of 
your favo rite dra wing p rogra ms and will ena ble you to save 
those Rembrandts. A sa mple draw ing is included a t the begin
ning of thi s utility. 

The Ata ri co mpute r is fasc inating indeed . The more you 
delve, the more intriguing it beco mes . Thi s program is based 
o n three sc reen-rela ted mem ory addresses - 87, 88, and 89 . 
Loca ti on 87 conta in s the gra phics mod e presentl y in use. Typ e 
"GRAPHICS 7", the n type " PRINT PEE K(87)". The computer 
will res pond with "7". Loca ti o ns 88 and 89 s tore th e s ta rtin g 
addresses o f scree n me mory; 88 contains the low by te and 89 
contain s th e hig h byte . Aga in , type "GRAPH ICS 7", the n typ e 
" PRINT PEEK(88) + PEEK(89)*256". This w ill re turn the mem
ory s ta rtin g address fo r GRAPHI CS 7. No te tha t each CO ITlputer 
may re turn a diffe ren t num ber de pending o n the memo ry size 
o f the mac hine. Now type "POKE( me mo ry s ta rt), 255". Thi s 
will li ght up one full by te a t th e top le ft co rn e r o f th e sc reen 
(Figure 1). 

Ty pe " POKE(me mory s ta rt+ 40, 255)", and thi s will li ght 
up the nex t full byte d irectly und er the firs t by te. Knowing 
this, it is p ossible to keep trac k of every by te o n the screen . 
There are 40 by tes hori zonta ll y a nd 80 bytes ve rti ca lly in 
GRAPHICS 7. In th e utility progra m, line 32240 loca tes th e 
startin g address of your pictu re. Lines 32125 a nd 32225 sca n 
and se t screen me mo ry loca ti ons. You may ad apt these lin es to 
any g raphics m ode us ing the char t prov ided . For exa mple, if 
you ha ppe n to be using GRAPHICS 5, cha nge th e "40*80" in 
those lines to "20'AO". (See Figure 2. ) 

Af te r runnin g thi s p rog ra m, yo u m ay wa nt to a ppe nd o n ly 
the utility pa rt to yo ur favo rite draw ing progra m . Here's how 
to d o it. First, make sure your d raw ing program d oes no t exceed 
line 30999 . Now type LJ ST"C",31000,32240 o r LIST 

239 



6 Advanced Graphics Techniques 

"D:filename", 31000,32240. This will save only lines 31000 
through 32240. When completed, type NEW and load your 
drawing program . Now load your utility program back in. This 
is done by typing ENTER"C:" or ENTER "D:filename". This 
will append your utility to the end of any drawing program. 

Some programs may have to be modified slightly, but with 
a little effort you may find it worth it. Run your program. Draw 
your masterpiece. When you are satisfied with your creation, 
press the BREAK key and type "GOTO 31000". This will in
itialize the save and load routine . Then sit back, relax, and sur
prise someone with a genuine work of art worthy only of the 
great masters. 

10 Initializes SCREEN SA VE ROUTINE 
40-195 Draws sample picture (e .g., space game playfield). 
200 Reinitializes menu after drawing. 
30000 Sets GR.2 and title . 
31000 Opens IOCB for keyboard. 
32000-32060 Prints menu. Gets keyboard input and directs to 
a ppropria te line . 
32100-32103 Prints save menu. Gets keyboard input and directs 
to appropriate line . 
32105-32208 Prints d isk instructions. 
32110-32210 Prints cassette instructions . 
32200 Prints load menu. 
32122 Stores graphics mode and color register data. 
32125 Stores screen RAM data . 
32222 Reads graphics mode and color register data and POKEs 
it into correct locations. 
32225 Reads screen RAM data and POKEs into correct loca
tions . 
32240 Determines start address of screen. 

240 



6 Advanced Graphics Techniques 

Figure 1. 

--i-
BO 

I GRAPHICS 7 I 
~~'----------40BYTES----------~~~1 

-
~1~1----::-::-:-:::----__ ~ 

READY • 

Figure 2. 

HORIZONTAL VERTICAL 
BYTES BYTES 

GR.B 40 160 
GR.7 40 BO 
GR.6 20 BO 
GR.S 20 40 
GR.4 10 40 
GR.3 10 20 
GR.2 20 10 
GR.} 20 20 
GR.O 40 24 
(fu II screen) 

241 



6 Advanced Graphics Techniques 

5 REM * SCREEN SAVE ROUTINE * 
S REM * JOE TREM * 
10 GOTO 30000 
40 GRAPHICS 7:SETCOLOR 0,6,6:REM lSET 

GRAPHICS 7 MODE 
60 INC=49:CO=1:COLOR 1 
65 INC=INC+0.05 
70 X=SIN(INC}*20:Y=COS(INC)*20 
75 PLOT X+SO,Y+35:S0UND 1,X+50,10,S 
SO CO=CO+l:IF CO(130 THEN 65 
100 CO=l 
110 COLOR 3 
130 INC=INC+0.05 
140 X=SIN(INC+l)*30:Y=COS(INC)l30 
145 IF CO)49 AND CO(70 THEN 160 
150 COLOR 2:PLOT X+SO,Y+35:S0UND 1,X+ 

50,6~8 

155 COLOR 3:PLOT X+Sl,Y+3S:COLOR l:PL 
OT X+79,Y+32 

160 CO=CO+l:IF CO{130 THEN 110 
170 COLOR l:FOR X=l TO 159:PLOT X,79: 

DRAWTO X,79-RND(0)*5:S0UND 1,X,10 
,S:NEXT X 

180 FOR X=l TO 20:COLOR RND(O)*l+l:PL 
OT 40,40:DRAWTO RND(0)*10,RND(0)* 
10:S0UND 1,X+20,S,S:NEXT X 

183 FOR X=120 TO 159:COLOR RND(0)*2+1 
:PLOT X,20:DRAWTO X,RND(0}*20:NEX 
T X 

lS5 COLOR 2:PLOT 130,30:DRAWTO 130,24 
:DRAWTO 134,24:DRAWTO 134,30:PLOT 

130,27:DRAWTO 134,27 
186 PLOT 142,25:DRAWTO 142,24:DRAWTO 

13S,24:DRAWTO 13S,30:DRAWTO 142,3 
O:DRAWTO 142,29 

lS7 PLOT 150,24:DRAWTO 146,24:DRAWTO 
146,30:DRAWTO 150,30:PLOT 146,27: 
DRAWTO 149,27 

190 COLOR 2:PLOT O,O:DRAWTO 159,0:DRA 
WTO 159,79:DRAWTO O,79:DRAWTO 0,0 

195 COLOR 1:PLOT 30,70:PLOT 40,10:PLO 
T 140,30:PLOT 150,70:PLOT 105,35: 

242 



SOUND 1~0~0~0 
200 GOTO 32000 

· 6 Advanced Graphics Techniques 

30000 GRAPHICS 2:? #6;" SCREEN SAVE R 
OUTINE" 

31000 CLOSE #l:OPEN #1~4~O~"K:" 
32000 SCRN=32240:G05UB SCRN:POKE 752~ 

1·':> " 1 ... DRAW PICTURE 

32010 ? " 
32020 ':> " 

2 ... SAVE PICTURE" 
3 ... LOAD PICTURE" 

32050 GET #1~A:IF A{49 OR A}51 THEN 3 
2050 

32060 ON A-48 GOTO 40~32100~32200 
32100? :?" SAVE TO 1 ... CASSETTE?" 

:? II 2 ... DISt<?'· 
32101 GET #1~A:IF A{ 49 OR A)50 THEN 3 

2101 
32103 ON A-48 GOTO 32110~32105 
32105 ? :':>" PLEASE INSERT DISKETTE 

AND PRESS ffi@U~ffi~":GET #1~ 

A:OPEN #2~8~0~IJD:PICTURE":GOTO 
32120 

32110 ? :? "PLEASE PLACE CLEAN TAPE I 
N RECORDER AND PRESS 
ffi@U~ffi~1J 

32115 OPEN #2~8~0~"C:":REM *OPEN FILE 
TO SAVE 

32120? :':> "SIT BACK AND RELAX ... ~ffl!; 

~~~.[;;~::m:U~ffi@ " 
32122 MODE=PEEK(87):PUT #2~MODE:FOR I

=0 TO 4:COL=PEEK(708+I):PUT #2~
COL:NEXT I

32125 FOR I=SCREEN TO SCREEN+(40t80)
I:LOC=PEEK(I):PUT #2~LOC:NEXT I
:CLOSE #2

32130 GOTO 32000
32200 ..., .~ II

: .:

...,1t.""""J II
: -:

LOAD TO 1 ... CASSETTE
2 ... DISK?"

32201 GET #1.A:IF A{49 OR A)50 THEN 3
2201

32203 POKE 752~1

243

6 Advanced Graphics Techniques

32205 ON A-48 GOTO 32210~32208
32208 ? :?» PLEASE INSERT DISKETTE

AND PRESS ~~~~~~":GET #1~A

:OPEN #2~4~0~"D:PICTURE":GOTO 3
2220

32210 ? " PLEASE INSERT TAPE AND PRES
S U!@ij[!~~"

32215 OPEN #2~4~0~"C:»:REM *OPEN FILE
TO LOAD

32220? :? :? "RELAX AND ENJOY ... ~OC~

~[!~~.I];[m:ij[!~~ »

32222 GET #2~MODE:GRAPHICS MODE:GOSUB
SCRN:FOR 1=0 TO 4:GET #2~COL:P

OKE 708+I~COL:NEXT I
32225 FOR I=SCREEN TO SCREEN+(40*80}

I:GET #2~LOC:POKE I~LOC:NEXT I:
CLOSE #2

32230 GOTO 32000
32240 SCREEN=PEEK(88}+PEEK(89}*256:RE

TURN

244

Listing Conventions
In order to ma ke special charac ters, inverse video, and cursor
characters easy to type in , COMPUTE! Magazine' s Atari li s ting
conventions are ll sed in a ll the program li s tings in this book .

Please refer to the fo llowing tables and explanations if you
come across an unusual symbol in a program lis ting .

Atari Conventions
Characters in inve rse video w ill appear like: IiII:W#II: .. -t;ay ••]:i(.:

Enter these chara cters w ith the Atari logo key, {A].

When you see Type See

{CLEAR} ESC SHIFT < ... Clear Screen

{UP} ESC CTRL - ... Cursor"" Up

{DOWN} ESC CTRL ... Cursor Down

{LEFT} ESC CTRL + ~- Cursor Left

{RIGHT} ESC CTRL * ~ Cursor Right
{BACK S } ESC DELETE 1 Backspace

{DELETE} ESC CTRL DELETE ~ Delete Character

{INSERT} ESC CTRL INSERT lJ Insert Character

{DEL LINE } ESC SHIFT DELETE G Delete Line

<INS LINE} ESC SHIFT INSERT ~ Insert Line

{TAB} ESC TAB t TAB key

{CLR TAB} ESC CTRL TAB GI Clear TAB

(SET TAB} ESC SHIFT TAB ~ Set TAB stop

{BELL} ESC CTRL 2 GJ Ring Buzzer

{ESC } ESC ESC '" ESCape key

Graphics characte rs, such as CTRL-T, the ba ll character. will
a ppea r as the " no rma l" le tte r e nclosed in braces, e.g ., {T} .

A se ries o f identi cal control charac ters, such as 10 spaces,
three curso r-le ft s, or 20 CTRL-R's, will appea r as no SPACES},
{3 LEFT}, {20 R}, e tc. If the charac ter in braces is in inverse video,
that character o r charac te rs should be e nte red with the Atari
logo key. Fo r example, { .. } mea ns to e nter a reverse-field heart
with CTRL-comma, { 5 m } mean s to enter fi ve inverse-video
CTRL-U's .

245

Index
a lternate shapes data 185
a ltern a ting color ba nd s 204-207
anima ted ga mes 98-107
anima tio n]] ,91,99,]08,126,

172-183,184-1 87
a nim a tio n demo 143,152-] 53
ANTIC chip 110,166,208,209,2-11,

213,217,219
ANTIC display mod es 102
a rtifac ti ng 206-207
ASCllI6,92,99,1l3
Atari BAS IC Referel/ ce Mal/lIlll 3,

10,11,18,38,54,55,56,8 1,11 3,
203,225,227,228

Atari Hardwa re Mal/ual]92,193,
219,221

AT ASCII 1] ,42,54,57,58,81 ,91,92,
114,142-143

BASIC 3, 18,25,26,33,62,64,78,79,
80,81,82,83,84,91,98,99,
108-109,118,132,184,185, 195,
209,212,216 (see also
GRAPHICS co Illm a nd s)

BASIC A + 133
BREAK 240
Central Processing Unit (CPU)

129,222
cha rac te r graphi cs 11 ,]]I , 116
cha ra cte r registers 78
cha rac te r set 77,82-83,85,121

reloca ti ng 78-82,85
cha rac te r s to rage 79-82
cha racte r string 43,131
colli s io n regis te rs -188--191,195
colli s io ns

playe rs with players 188-189,
191
players with playfie ld s 189,
19]

color clock 209,210-211 ,213

246

color indirec ti on 215-216,229,
230-231

color numbe rs (tab le) 14
Color Regis te r Default va lu es

(table) 14
color regi s te rs 21 ,215-2] 6
COLOR s tate me nt 9, 20,21 ,93,

] 09, 129, 130,] 89,] 90,2] 6, 227
co lors, d emo programs 228-235
co ntro l g raphics]2

co ntrol s fo r PIM g ra phics 132-135
coordina tes 8,]0,13,99, 100,] 14,

-165,169, -173-1 74, -176, 177
Crelltiue COlI/plltillS 142
"crosshair" 197-1 99
CTrA chip 4,9,110,188,208-209,

214,220-221,230
CTRL key 111 ,1'1 6, 117,11 9, 121
de fault co lor 7, 194
delay loop 179
d iagonal lin es 206-207
di gitized pictures 2-19-220
direc t me mo ry access (DMA)

166,168,192,209,210,211 ,212
display d a ta 165,238
display im age 174
di spl ay li s t 26,27-33,37-38,4 1,46,

80,82,9-1,131,212,2-13,236,238
display li s t inte rrupt 62,68,82,

83,87
disp lay memory 29,30,41
DOS 94
drawing s to rage 172-180
fi gure ma nipul a ti o n 18, -19
fu nction codes 47
ga mes

a nima ted 98-107, 108-] 26
Asteroids 98
" Island Jumpe r" 156-] 57,
] 59-162

Jmuhreaker 195,221
Pac-Mall 3, 195
POllg-type ga mE's 20-22
POOL 1,5221
"S pace Rocks" 98, 100-107
Star Wars nl
Star Raiders 3

GPR fOR 219,221 ,230
GRAPHI CS cha rac te rs 4,53,54
GRAPHI CS comma nd s 4,25,56,

66, J 12,130
DRAWTO 8,9, 10,16,99, 110,] 30
LOCATE 1O,lJ,12,21 ,99,
I 00, 11 I ,227
PLO T 8,9,]0,16,99, 110,130,
13 1,227
POS IT ION 10, 11 , 12,44,1 10,
111 ,227
PR INT 10,11 ,39,44, 110
g rilphics mod es 13,25-36,80,95,
113, 177,213,224,24 1
G RAPHICS 04,5,6, J I, 15, 3 1,
38,44-45,46,56,59-60,88,130,
137, 167 (see a lsu text mode)
GRAPH ICS 14,33,34,6 1,82,
83,R4, 112, 1 13, 11 5, 11 6, 11 7,
177, 195
GRA PHICS 2 -1- ,6, 10, 39, -1-2 ,
6 1,82, 1'13, 195
GRAPH ICS 3 4,5,7, 16,20,33,
34,37-38,91, 130
GRAPH ICS 4 6
G RAPH ICS 5 9 1,239
GRA PHICS 6 6,7,8,9, 15,92,
9-1-
G RAPHI CS 7 9,38,91,99,
109- 110, 131,133, 237, 239
G RAPH ICS 8 5,6,46,93, 1 12,
131, 167,203-207
G R/\ PH ICS 11 196,223,225,
226,228
GRAPH ICS s ta te ments
225-228

g raphics s tring J6-1 8
GTIA chi p 4,9,] 10, 188, 193, 196,

208-235

ha rdwa re registe r (see PRIOR)
hi g h reso l u tion 203
hori zontal b lank 211
JF s tate m e n ts 65
im age da ta 158
i mage m e m o ry] 55
In s truction Regis te r (IR) code

28,29
In terna l C harac ter Se t 116

table 120
inte rru pts 163-167 (see a lso

ve rti ca l b la nks)
in ve rse cha racte rs 77,78
LMS co mm a nd 29, 30, 34
loca ti o n a rg um e nt '156
lumina nce 7,210,214,217,219,

222,228
machin e la ng ua ge ro utines 143,

154, 175,184,
fo r a nim atio n 184-187
for characte r s tora ge 86

me m ory 6,133,213, (see a lso
RAM)
m e m o ry a ll oca ti o ns 167-168,
173, 174
nwmo ry loca ti o ns 42,55,78,
79,100,109; 118,132,139,156,
221
memo ry protec tion 236-238

m iss i Ie regis te rs 190
mixed Illodes (see text wi ndow)
Ill ode lin es 26-27,2'/ '1-2 13
Moire patte rn s 207
mu lti ple color p laye r e na bl e 193,

196-197
numbe r uf co lo rs 5,6-7,25
O percl ti ll g Sys lelll 26,27,28,29,

30,32,55, 192
ove rl aps 196- 197, 199 (see a lso

co lli s io n regis te rs)
oversca n 27
page s ix 81,93, 106, 173
pages 78, 155,176-177
paging 55,56
player draw in gs 172-179, 18J
p laye r im age 156

247

player memory 136
player motion 142-143
playe r s torage 173-176,178
player/missile (P/M) g rap hics

110,129-139,140-153
PIM m emo ry loca ti ons 139
players 137,180
play fi e ld g rap hics 129,130,134,

211-213,216
RAM positioning 138

playfie ld regis ters 220
PM BASE 138,167, 174,176,180,

184,192
POKEs 31, 132, 175, 185, 189, 193,

196,228
POllg- type ga mes 20-22
PRJNT #6 19,44,45
PRIOR 218,222,230
priori ty registers 192-199
progra ms

fa s t grap hi cs 122-125
" lsla nd Jumper" 159-162
Mixin g Modes 0 and 8
(d emo) 48-49
P/M Grap hics Uti lity 144-151
Screen Save Routine 242-244
"Space Rocks" 102-107
TextPlot 95-97

pseudo-random num ber
fu nction 169

RAMTOP 55,78,167,236-237
Random Access Memory (RAM)

6,78, 131,134, 135,167,184,
185, 192

ra s ter scan 211
redefining character se ts 53-6],

62,77,82
registe rs 7,132,188-19]

character registe rs 78
co lli s ion regis ters 188-191,195
colo r registe rs 21,215-216
hardware reg is te r

218,222,230

248

Instruction Register 28,29
missil e registe rs 190
p Ia y fi e ld registers 220

p rio rity regis ters 192-199
"shadow" regis te r 77,78,83,
190,222

reso lu tion 5,25,138,203,219,238
horizon ta l 5,210,217
sing le lin e 167
ve rti ca I 5-6,210,2J3

ROM 42,55,57,61,65,77,78,80,192
sca n lines 26,29,210,213,217
scree n limi ts 121
sc ree n memory 38,93, 113,203-207
sc ree n save utility 239-244
scrollin g 33,4<1-
SETCOLOR s ta te ments 7,9,20,

21,65,129,130, H I, 169,216-228
"shadow" regis te r 77,78,83, 190,

222
s tring graph ics] 6
s trin g manipulations 142
Supe rFont 62-76

commands 63-65
tex t editor memory 38,39
tex t modes 4,46,77,88,91,92-94,

195,212,217,225-226
tex t window 5,6,26,33,38-39,

44-45,46,83,88,177,193,
221-222,225-226

use r memo ry 55
USR fu ncti on 46,81, 99,143,154,

155, 165, 173,184
variab les 31,91,102,1'11 ,11 7,118,

'142,143
DL 31
SCREEN -111
for "S pa ce Rocks" 102

ve rtica l bla nk in te rru ptI 64--167,
1 73- I 79, 192

ver ti ca l bla nk P/M routine 183
ve rti ca l blank time 165
verti ca l bla nks 77,83,172
ve rti ca l movement 164,166
ve rti ca l pos iti on ing 154-163,

J 64-167
assembly language repre
sen ta tion 163

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.o. Box 5406
Greensboro. NC 27403

My Computer Is: o PET 0 Apple 0 Atari 0 VIC 0 Other __ 0 Don't yet have one ...

o $20.00 One Year US Subscription
o $36.00 Two Year US Subscription o $54.00 Three Year US Subscription

Subscription rates outside the US:
0$25.00 Canada F= 2

0$38.00 Europe/Air Delivery FI= 3

0$48.00 Middle East, North Africa, Central America/Air Mail FI= 5

0$88.00 South America, South Africa, Austra lasia/Air Mail FI= 7

0$25.00 International Surface Mail (lengthy, unre liable delivery) FI= 4.6.8

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card.
o Payment Enclosed
o MasterCard
Acc't. No.

08-6

o VISA
D American Express

Expires

COMPUTE! Books
P.o . Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In Ne call 919-275-9809

Quantity Title Price Total

____ The Beginner's Guide To
Buying A Personal Computer $ 3.95 _ __ _
(Add $1.00 shipping a nd hand ling. Outside US add
$4.00 a ir mail; $2.00 surface mail.)

___ COMPUTE!'s First Book of Atari $12.95
(Add $2.00 shipping a nd ha nd ling. Outside US add
$4.00 a ir mail; $2.00 surface ma il.)

___ Inside Atari DOS $19.95
(Add $2.00 ship ping and ha nd ling. Outside US add
$4.00 a ir mail; $2.00 surface mail.)

___ COMPUTE!'s First Book of
PET/CBM $12.95
(Add $2.00 shipp ing and handling. Outside US add
$4.00 a ir mail; $2.00 surface mai l.)

___ Programming the PET/CBM $24.95
(Add $3.00 shipping a nd hand ling. Outside US add
$9.00 air mail; $3.00 surface ma il.)

____ Every Kid's First Book of
Robots and Computers $ 4.95
(Add $1.00 shipping a nd ha nd ling. Outside US add
$4.00 air mail; $2.00 surface ma il.)

_ __ COMPUTE!'s Second Book of
Atari $12.95
(Add $2.00 shipping and hand ling. Outside US add
$4.00 air mail; $2.00 surface mai l.)

_ __ COMPUTE!'s First Book of VIC $12.95
(Add $2.00 shipping a nd hand ling. Outside US add
$4.00 a ir ma il; $2.00 surface mail.)

All orders must be prepaid (money order, c hec k, or charge). All
payments must be in US funds. NC residents add 4% sales tax.
D Payment enclosed Please c harge my: D VISA D Maste rCard
D American Express Accl No. Expires I

Name

Address

City

Country
Allow 4-5 weeks for delivery.

08-6

State Zip

	Cover
	Contents
	Introduction
	1: Fundamentals
	Basics of Atari Graphics
	Using String for Graphics Storage
	Using the COLOR and LOCATE Instructions

	2: Customizing Modes
	Custom Graphics Modes
	Put Graphics 1 and 2 at the bottom of your screen
	Printing Characters in Mixed Graphics Modes
	Add a Text window to Graphics 0
	Mixing Graphics Modes 0 and 8

	3: Redefining Character Sets
	Desing You own Character Sets
	SuperFont
	Character Set Utilities

	4: Animation with Character Graphics
	TextPlot
	Using TextPlot for Animated Games
	High Speed Animation with Character Graphics

	5: Player/Missle Graphics
	Intro to P/M Graphics
	Self-modifying P/M Graphics Utility
	Adding high-speed vertical positioning to P/M Graphics
	P/M Graphics Made Easy
	Animation and P/M Graphics
	Extending P/M Graphics
	The Collision Registers
	The Priority Registers

	6: Advanced Graphics
	Graphics 8 in Four Colors using Artifacts
	Atari Video Graphics and the new GTIA part I
	Atari Video Graphics and the new GTIA part II
	Atari Video and the GTIA part III
	Protecting Memory for P/M and Character Sets
	Screen Save Routine

	Listing Conventions
	Index

