= A COMPUTE! Books Publication $12.95 US

. COMPUTE!'S FIRST BOOK OF

: ATARI
GRAPHICS

Games, Tutorials, Programs And Other Helpful Information
- For Owners And Users Of Atari® Personal Computers.

/

eccececccceccecececocccececcececceccececececcecceeeecr

DP9 PDP99P99P9997995979V9M799 V7995997959999

From The Editors Of COMPUTE! Magazine

COMPUTE!'S FIRST BOOK OF

AIARI
GRAPHICS

Published by COMPUTE! Books,
A Division of Small System Services, Inc.,
Greensboro, North Carolina

A
Small System
Services, Inc.
Publication

ATARI is a registered trademark of Atari, Inc

Copyright © 1982, Small System Services, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

“Using Strin%s For Graphics Storage” and “Copy Your Screen To Your Printer” were
originally published in COMPUTE! Magazine, May 1981, copyright 1981, Small System
Services, Inc. “Using The COLOR And LOCATE Instructions To Program Pong-Type
Games” and “Positioning P/M And Regular Graphics In Memory” were originally pub-
lished in COMPUTE! Magazine, September 1981, copyright 1981, Small System Services,
Inc. “Discovering ‘Hidden” Graphics’ and “Adding High-Speed Vertical Positioning To
P/M Graphics” were originally published in COMPUTE! Magazine, December 1981,
copyright 1981, Small Scf/stem Services, Inc. “Put Graphics Modes 1 And 2 At The Bottom
Of Your Screen” and “P/M Graphics Made Easy” were originally published in
COMPUTE! Magazine, February 1982, copyright 1982, Small System Services, Inc. ““Print-
ing Characters In Mixed Graphics Modes” was originally published in COMPUTE!
Magazine, April 1981, copyright 1981, Small System Services, Inc. “Add A Text Window
To Graphics 0, “A Self—Mogifying P/M Graphics Utility,” and “GRAPHICS 8 In Four
Colors Using Artifacts” were originally published in COMPUTE! Magazine, June 1982,
Cos:tyright 1982, Small System Services, Inc. “Mixing Graphics Modes 0 and 8" was origi-
nally published in COMPUTE! Magazine, June 1981, copyright 1981, Small System Ser-
vices, Inc. “Character Generation” was originally published in COMPUTE! Magazine,
February 1981, copyright 1981, Small System Services, Inc. “‘Designing Your Own Char-
acter Sets” was originally published in COMPUTE! Magazine, March 1981, copyright
1981, Small System Services, Inc. “SuperFont” was originally published in COMPUTE!
Magazine, January 1982, copyright 1981, Small System Services, Inc. “TextPlot” was
originally published in COMPUTE! Magazine, November 1981, copyright 1981, Small
System Services, Inc. “Using TextPlot For Animated Games” was originally published in
COMPUTE! Magazine, April 1982, copyright 1982, Small System Services, Inc. “Anima-
tion And P/M Graphics” and “Atari Video Graphics And The New GTIA, Part II”” were
originally published in COMPUTE! Magazine, August 1982, copyright 1982, Small System
Services, Inc. “Extending Player/Missile Graphics” and ““Beware The RAMTOP Dragon”’
were originally published in COMPUTE! Magazine, October 1981, copyright 1981, Small
System Services, Inc. “‘Extra Colors Through Artifacting” was originally published in
COMPUTE! Magazine, May 1982, copyright 1982, Small System Services, Inc. ““Atari
Video Graphics And The New GTIA, Part I’ was originally published in COMPUTE!
Magazine, July 1982, copyright 1982, Small System Services, Inc. “Atari Video Graphics
And The New GTIA, Part Il was originally published in COMPUTE! Magazine, Septem-
ber 1982, copyright 1982, Small System Services, Inc. “Memory Protection” was origi-
nally publisll;ed in COMPUTE! Magazine, July 1981, copyright 1981, Small System Ser-
vices, Inc. “Screen Save Routine” was originally published in COMPUTE! Magazine,
March 1982, copyright 1982, Small System Services, Inc.

Printed in the United States of America
ISBN 0-942386-08-6
10 9 87 645 4 3 2 1

AR B EAEREREREAEREREERELEERLENENRIENR.

EEEEEEEREEEERIN.

»9 9

V.

1
3
16
20

23
25
37

i
ity
46

51
a3
62
1

89
91
98
108

127
129
140
154

164
172
184
188
192

201
203
208
215
224
236
239

245
246

Introduction Robert C. Lock

Chapter One: Fundamentals Of Atari Graphics

The Basics Of Atari Graphics Tom R. Halfhill
Using Strings For Graphics Storage Michael Boom
Using The COLOR And LOCATE Instructions

To Program Pong-Type Games Michael A. Greenspan

Chapter Two: Custemizing The Graphics Modes

How To Design Custom Graphics Modes Craig Chamberlain
Put Graphics Modes 1 And 2

At The Bottom Of Your Screen R. Alan Belke
Printing Characters In Mixed Graphics Modes Craig Patchett
Add A Text Window To GRAPHICS0 Charles Brannon
Mixing Graphics Modes 0 And8 Douglas Crockford
Chapter Three: Redefining Character Sets

Designing Your Own Character Sets Craig Patchett
SuperFont . :.:swmsscsammprs g ome s s ans Charles Brannon
Character Set Utilitieso v v v v o nm oo nan Fred Pinho

Chapter Four: Amination With Character Graphics

TextPloto oo Charles Brannon
Using TextPlot For Animated Games David Plotkin
.High-Speed Animation With Character Graphics . . Charles Brannon
Chapter Five: Animation With Player/Missile Graphics

Introduction To Player/Missile Graphics Bill Wilkinson
A Self-Modifying P/M Graphics Utility Kenneth Grace, Jr.
Adding High-Speed Vertical Positioning

To P/M Graphics David H. Markley
P/M Graphics Made Easy Tom Sak and Sid Meier
Animation And P/M Graphics Tom Sak and Sid Meier
Extending Player/Missile Graphics Eric Stoltman
TheiCollision Registers : « sww s osssmmasiwmm ooy Matt Giwer
The Priority Registers . ::smwsssasmoesse am sz Bill Wilkinson

Chapter Six: Advanced Graphics Techniques

GRAPHICS 8 In Four Colors Using Artifacts David Diamond
Atari Video Graphics And The New GTIA, Part1 . Craig Chamberlain
Atari Video Graphics And The New GTIA, Part2 . Craig Chamberlain
Atari Video Graphics And The New GTIA, Part3 . Craig Chamberlain
Protecting Memory For P/M And Character Sets Fred Pinho
Screen SaveRoutine . ..o mm o cossvmasnss smssss Joseph Trem

Listing Conventions (Guide To Typing In Programs
[e) » O l&"
Index

il

A SN SN SN AN SN SN SN ol AN AN SN GN 0N AN oN AN oF SN UN AN SN AN ON AN 0N AN GN AN oN N SN SN AN AN &

EEEEREREEREREERAEREREREAEEREEREEREREEREREEREELEREENEINENREJ’.

Introduction

Robert Lock, Publisher/Editor-In-Chief, COMPUTE! Publications

This special addition to our First Book Series represents
the first time we’ve published a theme-specific book.
COMPUTE!'s First Book of Atari Graphics contains published
as well as original, unpublished material that has been
carefully chosen to provide any Atari user with helpful,
useful information on the extensive capabilities available
with Atari graphics.

As with our parent publication, COMPUTE! Magazine,
you’ll find a range of tutorials, programs, and more, for
the beginner to the most advanced, ready to type right
into your computer and use.

As with all COMPUTE! Books, we’ve organized the
material and designed the book itself for your ease of use.
We welcome your suggestions and comments on this and
future titles from COMPUTE! Books.

Special thanks to Tom R. Halfthill, our Features Editor,
who bore the organizational brunt of this volume, and to
the entire editorial and production staffs who assisted in
this, our ninth book from COMPUTE! Books. Cover design:
Georgia Papadopoulos. Cover illustration: Harry Blair.

COMPUTE! Books is a division of Small System Services, Inc.
Publishers of COMPUTE! Magazine.
Editorial offices are located at 625 Fulton Street, P.O. Box 5406,
Greensboro, NC 27403 USA. (919)275-9809.

COCccoc oo oo

Fundamentals
Atari Graphics

RPN 0)00000000092000902 2002022

¢ecececcoccCc0oCCcCCCOCOCOCOCOCOCOCCEOECOCOCOCOCOCOCOOOO VT

ég Fundamentals 0f Atari Graphics

The Basics 0f Atari
Graphics

Tom R. Halfhill

If you are new to the Atari and have acquired a bit of familiarity with
BASIC, but have not yet taken the plunge into graphics, this article
will introduce you to the fundamentals.

For some reason, many people are intimidated by the program-
ming steps required to create computer graphics. Probably this
is because creating computer graphics is not as easy as it looks.
The typical buyer of a personal computer is dazzled in the store
by all the fantastic arcade games and impressive graphics
demos with which the sales people are armed. It all looks so
simple. Then the buyer eagerly unpacks the computer at home
and quickly discovers that even crude pictures cannot be
created without screenfuls of cryptic programming that seem-
ingly have more in common with Sanskrit than English.

But there is hope. It's not really that hard — honest. Nobody
is promising that you'll be able to duplicate Star Raiders or Pac-
Man any time soon, but the basics of computer graphics are
quite easy to grasp for anyone who has some knowledge of
BASIC programming. You don’t need to be a math wizard,
either. The most valuable attributes are a willingness to learn
and to experiment. And, of course, to be creative.

Choosing A Graphics Mode
Atari graphics are particularly challenging to learn, mainly
because the Atari computers have extremely versatile graphics.
Luckily, Atari made it easier for us by including many special
keywords in Atari BASIC that are dedicated to graphics. The
first step, then, is to learn those keywords. And by the way, if
you don’t already have your Atari BASIC Reference Manual
handy, take a second to grab it. This book and the Manual
should help to explain each other.

The most basic of the keywords is the GRAPHICS com-

1 Fundamentals 0f Atari Graphics

mand. This tells the computer which graphics mode you want,
which in turn determines how the screen will look. The format
is GRAPHICS (aexp), where (aexp) is any arithmetic expression
that results in a positive integer (in other words, not a negative
number or a fraction). For example, GRAPHICS 6 is a valid
command which tells the computer you want graphics mode
six. GRAPHICS 3 + 3 or GRAPHICS 3*2 would do the same
thing.

%epending upon how old your Atari is, the GRAPHICS
command gives you access to either nine or twelve different
graphics modes. The reason for the difference is that earlier
Ataris (generally, those shipped before late 1981) came with a
TV controller chip called the CTIA. Later Ataris have a GTIA
chip instead. The chips are fully compatible — programs written
on CTIA Ataris will run on GTIA machines and vice versa — but
the GTIA adds three new graphics modes. Users with CTIA
chips can have their computers upgraded if they wish. (See
“Atari Video Graphics And The New GTIA” in Chapter 6.)

So, you have either nine or twelve basic graphics modes to
choose from. In addition, most of them have two variations,
for a total of up to 20 modes.

The modes are of two main types: pure graphics modes
and text modes. The first three modes - GRAPHICS 0, 1, and 2
—are text modes. When you switch on an Atari with a BASIC
cartridge plugged in, it defaults to GRAPHICS 0. GRAPHICS 0
has 24 horizontal rows of up to 40 characters each on the
screen. (If you've counted only 38 characters, it's because the
left margin is pre-adjusted to allow for TVs which overscan, or
cut off the left edge of the screen image.) GRAPHICS 1 and 2
display larger-size characters. GRAPHICS 1 characters are the
same height as those in GRAPHICS 0, but are twice as wide.
GRAPHICS 2 characters are not only twice as wide, but also
twice as tall.

The graphics modes generally used for creating pictures
are GRAPHICS 3 through 8 (3 through 11 on GTIA machines).
GRAPHICS 3 through 8 are mixed modes. That is, they are
combinations of text and graphics modes. For example, type
GRAPHICS 3 into the Atari. You'll see a black screen with a
small blue rectangle at the bottom. That rectangle is called the
text window. Although the upper part of the screen is a graphics
mode for drawing pictures, the text window is a section of

GRAPHICS 0 for displaying text. Think of it as the term implies:

4

1 Fundamentals Of Atari Graphics

a “wall” of GRAPHICS 3 with a “window’” of GRAPHICS 0.

The GRAPHICS 0 text window appears in all the graphics
modes from three through eight. Separate commands, which
we'll soon learn, are required to display graphics or text in each
part of those screens.

If you want a “pure”” graphics mode — a full screen for
graphics with no GRAPHICS 0 text window — simply add 16 to
the mode number of the GRAPHICS statement. For example,
GRAPHICS 3 + 16 switches the screen to GRAPHICS 3 without
a text window. Some programmers would type GRAPHICS 19,
which is the same thing. Adding 16 works for all the modes
except GRAPHICS 0, which ordinarily cannot display a separate
text window.

Just Like Graph Paper

You may be wondering why there are so many graphics modes,
and how to choose among them. The modes differ in three
main ways: resolution, number of colors available, and memory
consumed.

First, resolution. Think of the graphics screen as a sheet of
graph paper. Some graph paper is divided into very small
squares; other graph paper has larger squares. If you had to
draw a picture on graph paper only by coloring in the squares —
not by sketching lines — the graph paper with the smaller squares
obviously would allow you to create a more detailed picture. It
would allow greater resolution.

This is exactly how a computer screen works. The screen is
divided into tiny squares, and graphics are created by “filling
in”” those squares. These squares are sometimes called pixels,
for “picture elements.”” In the highest resolution modes, the
pixels are so small that they do not appear as squares at all, but
as tiny dots.

The Atari graphics modes offer different resolutions. The
higher the graphics mode number, the greater the resolution.
So you can draw much more finely detailed pictures in
GRAPHICS 8, forinstance, than in GRAPHICS 3. In GRAPHICS
8, there are 320 horizontal pixels (or “graph paper squares”)
per row on the screen; GRAPHICS 3 has only 40. So GRAPHICS
8 has a horizontal resolution of 320 and GRAPHICS 3 has a hori-
zontal resolution of 40.

When figuring the vertical resolution, don’t forget about the
text window. These four lines of GRAPHICS 0 at the bottom of

1 Fundamentals 0f Atari Graphics

the screen take up room that could be used for drawing pictures;
thus, it decreases the vertical resolution. Adding 16 to the
graphics mode number regains that resolution. So GRAPHICS
3, for example, has a vertical resolution of 20 pixels; GRAPHICS
3+16 has 24 pixels.

Table 1 shows the resolutions of the graphics modes with
and without the text window.

Another difference is color. GRAPHICS 2 (the double-
height, double-width text mode) normally can display charac-
ters in five colors at a time. GRAPHICS 4 and 6 can display
only two colors. These differences also are shown in Table 1.

The final main difference between the Atari graphics modes
is the amount of Random Access Memory (RAM), or user-
available memory, they consume. You may have guessed that
the first two characteristics — resolution and number of colors —
determine the third. The higher the resolution, and the more
colors available, the more memory is required. We won’t delve
into the details, but it's enough to know that the computer
must keep track of what it is displaying, so the more it displays,
the more memory it needs.

You don’t have to worry about allocating the memory
yourself; the computer automatically seizes the memory it
needs when a GRAPHICS statement is executed. But you do
have to worry about how much memory you have left. A 16K
RAM Atari, for example, normally has about 13,300 of its 16,000
memory bytes free when first switched on (the remainder is
also allocated by the computer for other uses, but we won’t go
into that here). Entering GRAPHICS 8 instantly chops that
down to about 5200 bytes, or 5.2K, because GRAPHICS 8 re-
quires about 8000 bytes just to set itself up. That doesn’t leave
much room for an involved program. In fact, the original
8K Ataris cannot even enter GRAPHICS 8 without memory
expansion.

Again, Table 1 shows how much memory each graphics
mode consumes.

The Chameleon Computer
When we said before that the graphics modes are limited to
displaying a certain number of colors, we didn’t mean that
you're stuck with the same colors all the time. Like a chameleon,
the Atari can change its colors at will — your will.

How many colors can you choose from? If you have an

1 Fundamentals Of Atari Graphics

older CTIA chip in your machine, up to 128 colors are possible.
With the new GTIA, there are 256.

These break down into 16 basic colors, with variable shades
(or luminances) to achieve the 128 or 256 hues.

However, without resorting to the kind of special tricks
described in the more advanced chapters of this book, a much
smaller number of colors is available simultaneously.

All the graphics modes default to certain colors. It’s easy to
change these colors, though, with the SETCOLOR statement.
The format is SETCOLOR (register), (hue), (luminance). These
three values can be arithmetic expressions, but should evaluate
to whole numbers. In addition, the values have certain ranges.

(Register) is a number from zero to four. The “registers”
are really memory locations which control the screen colors.
The foregrounds, backgrounds, and borders of the graphics
modes are in turn controlled by these registers. For example,
the backgrounds of GRAPHICS 1 through 7 are controlled by
register four; since register four defaults to black, the back-
grounds of those graphics modes appear on the screen as
black.

(Hue) allows you to change that default color. You just
plug in a color number from zero to 15 (remember, we said
there were 16 basic colors). Table 2 shows the color numbers,
and Table 3 the default colors for the registers.

(Luminance) simply adjusts the brightness, or shade, of
the color selected by (hue). This must be an even number from
zero to 14, with zero the darkest and 14 the brightest.

So, to change the background of GRAPHICS 3 from black
to green, you could enter SETCOLOR 4,12,8.

That’s it. You can change the color of any color register
this way.

Drawing Pictures, At Last

We haven’t forgotten that the whole reason you're reading this
book is that you want to create graphics. But we had to get the
basics out of the way first. Now for the nitty-gritty.

The graph paper analogy really comes in handy here. In
fact, some actual graph paper often is an indispensable aid
when you're planning complex drawings for a screen.

Picture the graphics screen again as a sheet of graph paper.
Depending on the resolution of the graphics mode, the screen
has certain coordinates. For instance, GRAPHICS 6 without

1 Fundamentals 0f Atari Graphics

the text window (that is, GRAPHICS 6 +16) has a horizontal
resolution of 160 pixels and a vertical resolution of 96. Since
computer work often involves counting from zero instead of
one, the horizontal coordinates range from zero to 159, and the
vertical coordinates from zero to 95. Lock the applicable coordi-
nates in your head whenever working with a graphics mode,
because if you exceed them, you’ll encounter the dreaded
ERROR- 141, CURSOR OUT OF RANGE.

Now, we said before that you didn’t have to be a math
wizard to program computers, and we meant it. In fact, plotting
graphics coordinates is one case where a knowledge of higher
math is actually a detriment. Mathematicians usually plot
coordinates starting from the lower-left corner of a graph;
computer designers start at the upper-left corner. So, according
to the coordinate system we just described, position 0,0 is the
upper-left corner of the TV screen in GRAPHICS 6, and all the
graphics modes.

Look at the figure; it shows how the coordinates run in
GRAPHICS 6+ 16. This is the same for all the modes, except
that the upper limit of the coordinates will differ according to
each mode’s resolution. Coordinate position 159,95 is the lower-
right corner in GRAPHICS 6 +16; in GRAPHICS 5+ 16 it would
be 79,39; and in GRAPHICS 8+ 16, 319,191. (The horizontal, or
X, coordinate always precedes the vertical, or Y, coordinate.)

It's vital to understand how this coordinate system works;
it is the basis for all drawing and positioning on the screen.

For example, to draw a dot on the screen, you “light up”
or “switch on” the pixel at that location, according to its co-
ordinates. This is done with the PLOT statement. The format is
PLOT X,Y — where X is the horizontal coordinate and Y is the
vertical coordinate. PLOT 0,0 will put a dot in the upper-left
corner of the screen. The size of that dot depends on the graphics
resolution; the higher the resolution, remember, the smaller
the dot. PLOT 159,95 would draw a dot (“switch on a pixel”) at
the lower-right corner of the screen in GRAPHICS 6 + 16.

To draw a line, you could simply PLOT a number of dots
in a row. For instance, PLOT 2,4:PLOT 2,5:PLOT 2,6 etc.,
would draw a short vertical line near the left edge of the screen.
But there’s an even easier way: the DRAWTO statement. The
format is DRAWTO X,Y. DRAWTO does just what it implies; it
draws a line to the horizontal and vertical coordinates specified.
Before using DRAWTO, however, you have to include a PLOT

1 Fundamentals Of Atari Graphics

statement to give the DRAWTO a starting point. Afterward,
DRAWTO will pick up where it left off. For instance, you could
draw a square like this:

10 GRAPHICS 6+ 16:COLOR 1;PLOT 5,5:DRAWTO 10,5:
DRAWTO 10,10:DRAWTO 5,10:DRAWTO 5,5

Drawing In Different Colors

You probably noticed the COLOR statement in that last example
and wondered where it came from. A COLOR command is
necessary before executing any PLOTs or DRAWTOs. If you
leave it out, the PLOTs and DRAWTOs will be displayed in the
background color, rendering them invisible. The COLOR
statement, then, selects the color for subsequent PLOT and
DRAWTO statements. The format is COLOR (aexp), where
(aexp) is any arithmetic expression that evaluates to a whole
number (fractions are automatically rounded). Further, that
number should be from zero to three.

Important: don’t confuse COLOR with SETCOLOR. SET-
COLOR selects the foreground, background, and border colors
to be displayed by the color registers, while COLOR determines
the color of points or characters to be plotted on the graphics
screen. Since COLOR is the foreground (plotting) color, it can
be changed with SETCOLOR.

A useful analogy is to think of the colors available on the
Atari as a box of crayons (128 crayons with CTIA machines and
256 crayons with the GTIA chip). SETCOLOR allows you to
select a handful of those crayons at once — the exact number
depending on the graphics mode (see Table 1). In GRAPHICS 6
you can select two. Once you’ve chosen the crayons, COLOR
allows you to choose which crayon the computer will use for
subsequent PLOTs and DRAWTOs. At any time, you can
execute COLOR to switch among the crayons in your hand, or
SETCOLOR to replace the crayons in your hand with other
colors from the box. But don’t carry the analogy too far — when
you change colors with SETCOLOR, everything you've already
drawn changes color, too.

For example, in GRAPHICS 7, the color selected by the
statement COLOR 1 is determined by the value in SETCOLOR
register zero. The default color is orange. So if you PLOT and
DRAWTO in GRAPHICS 7 with COLOR 1, the figure will
appear orange. To get a green figure, you would execute SET-

1 Fundamentais Gf Atari Graphics

COLORD0,12,8:COLOR 1:PLOT, etc. The SETCOLOR statement
would change color register zero from orange to green, and
COLOR 1 would use the new color for all subsequent PLOTSs
and DRAWTOs.

Note that any previous figures plotted in orange would
change to green instantly upon execution of the new SET-
COLOR. This system is known as color indirection and accounts
for the flashing screen colors you may have noticed in those
fancy graphics demos you've admired. Yet, as you see, the
technique is really very simple.

One thing that takes some getting used to is that the
COLOR statement does not get its color from the same registers
in all graphics modes, and some modes are restricted to only
two colors. Refer to the table on page 53 of the Atari BASIC
Reference Manual for a summary of how COLOR and SETCOLOR
take effect in the various modes.

More Graph Paper
That graph paper analogy comes in handy again for two more
graphics statements you'll need to learn.

The first is POSITION. The format is POSITION X,Y —
where X is the horizontal coordinate of the graphics mode and
Y is the vertical coordinate. POSITION is a lot like PLOT, except
it doesn’t draw anything. That is, POSITION X,Y directs the
computer’s attention to point X,Y on the screen just as PLOT
X,Y does, except the pixel at that point is not “switched on.”
Instead, the invisible graphics cursor — similar to the text cursor
you're familiar with in GRAPHICS 0 - is spotted at point X,Y in
preparation for the next command.

This command could be a PRINT statement in one of the
large text modes, GRAPHICS 1 or 2. For example, GRAPHICS
2:POSITION 5,5:PRINT #6;HELLO” would print “HELLO"”
starting at column 5, row 5 on the GRAPHICS 2 graphics screen.
(“PRINT #6;” merely specifies a PRINT to the graphics part of
the screen; a PRINT statement without the “#6;” would print
the message in the text window.) The POSITION statement is
valuable for neatly formatting screens in your programs.

The LOCATE statement is another handy programming
tool. The format is LOCATE X,Y,Z — again, where X and Y are
the horizontal and vertical screen coordinates. The third vari-
able, shown here as “’Z,” returns a value read from the pixel at
point X,Y. That value depends on the graphics mode. In modes

10

1 Fundamentals Of Atari Graphics

three through eight, the value is the color register in use (the
SETCOLOR number) at that pixel position. In GRAPHICS 1
and 2, the large text modes, the value tells which character as
well as which color register is in use at the pixel position. And
in GRAPHICS 0, the value is the ATASCII code for the character
at that location (ATASCII is the character code system; see Ap-
pendix C of the Atari BASIC Reference Manual).

Since LOCATE can determine what is being displayed at a
certain location on the screen, it is sometimes used to detect
collisions (or impending collisions) between objects in games.
(See “Using The COLOR And LOCATE Instructions To Pro-
gram Pong-Type Games,” later in this book.)

Beginning Animation

At this point, if you've been practicing and experimenting with
the principles we’ve covered so far, you know all the basics
you need to draw figures and colorful designs on the graphics
screens. But you're probably wondering how to animate those
images.

Animation is perhaps the most difficult graphics technique
to master. For one thing, fast, smooth animation requires a
great deal of processing speed, sometimes more than is possible
with a relatively slow language such as BASIC. But itis possible,
and there are several methods. We won’t cover any of them in
depth here, but we will introduce you to the simplest forms to
whet your taste a bit.

One method may already have occurred to you. By just
drawing a figure on the screen, erasing it, and re-drawing it at
a slightly different location, you can achieve the illusion of
movement in the same way that cartoonists do. You already
know how to draw a picture with PLOT and DRAWTO. Erasing
it is just as easy — you simply re-draw the image in the back-
ground color, making it disappear. Then you switch back to
the foreground color, re-draw the figure elsewhere, and presto
— it will seem to have moved. Sometimes this is called playfield
graphics. Try Program 1 for an example.

Similarly, the POSITION and PRINT statements may have
suggested another simple method of animation. Consider the
text modes, GRAPHICS 0, 1, and 2. While commonly used for
“title screens’”” and other applications requiring text displays,
they also come in handy for a technique called character graphics.
To make the character A" seem to move across the screen, for

11

1 Fundamentals 0f Atari Graphics

example, you PRINT it at the desired starting location, erase it
by PRINTing a blank space in the same spot, and then re-PRINT
it at the next location. POSITION lets you specify where the
movement will start, and LOCATE can detect collisions with
other characters.

All fine and good, you say, but why would I want to ani-
mate letters of the alphabet?

Have you ever noticed what happens when you hold
down the CONTROL key and press an alphabetic key on the
Atari? The resulting character is an odd shape of some sort. A
number of these shapes are available, known as control charac-
ters. When PRINTed side-by-side, they can be put together to
form robots, spaceships, or what-have-you. The POSITION
and PRINT statements can supply the animation. This is some-
times called control graphics. Try Program 2 for an example.

Both of these methods — playfield graphics and control
graphics — are straightforward and simple. Many fine games
have been written in BASIC using these techniques. In fact,
some computers have no other methods available. However,
fast movement of complex figures does tend to get messy.
Luckily, the Atari computers offer several more advanced
techniques, such as redefined characters graphics (which allows
you to sculpt that “A”" into almost any shape you want), player/
missile graphics, page-flipping, and screen scrolling.

Those techniques are covered later in this book. This article
was merely intended to arm newcomers to Atari graphics with
the basic tools needed to understand the more esoteric subjects.
When you run into roadblocks — and you’ll encounter them as
you forge ahead into the sometimes tricky world of computer
graphics — just keep your manuals handy and remember this
famous American proverb:

“When all else fails, read the instructions.”

12

1 Fundamentals Of Atari Graphics

Figure . Coordinates of GRAPHICS 6 + 16.

< X Coordinate —>
0,0 159,0
/\r/\ ® ® ®
10,5 40,5 60,5

C

0

e °

d 40,40

n

a

t

e

\%

0,95 GRAPHICS 6 +16 159,95
Table 1. Summary 0f The Graphics Modes.
Resolution Resolution
Graphics With Without Colors Memory
Mode Text Window Text Window Available Consumed
0 — 40x24 2 993
1 20x20 20x24 5 513
2 20x10 20x12 5 261
3 40x 20 40x24 4 273
4 80 x40 80 x48 2 537
5 80 x40 80x48 4 1017
6 160 x 80 160 x 96 2 2025
7 160 x 80 160 x 96 4 3945
8 320x160 320x192 2 7900
9 _— 80x192 16 7900
10 — 80 x192 9 7900

11 —_ 80 x192 16 7900

13

1 Fundamentals 0f Atari Graphics

Table 2. Atari Golor Numbers.
*Note: Color TVs may vary.

Color
Number Color*
- 077 Gray o
a 1 o -(;;)ld -
D 2 - Ea;lge
a 3¥ Red-drange _
: 47 i ~ Pink 7
5 Violet o
6 Purple-Blue K
D 7 N 7 7[;ue
o 78 . Ehit Blue
79 ;7 Blue-Creen
jO . ~ Turquoise
11 Green-Blue
:12 G;een N
B Yﬂw-Green
1 Ogngém)
15 7 @Orangei

Table 3. Color Register Default Values.
*Note: Color TVs may vary.

14

Register Color Luminance

Number Number Number Color*
0 2 8 Orange
1 12 10 Green
2 9 4 Blue
3 4 6 Pink
4 0 0 Black

1 Fundamentals Of Atari Graphics

Program 1.

10

20
3

30

40

GRAPHICS &6:CHANGE=1:A=5:E=10:7 "
GRAPHICS 6: FLAYFIELD ANIMATION"
FOrR MOVE=1 7O 2

COLOR CHANGE:PLOT A.A:DRAWTO EB,.A:D
RAWTO B,EBE:DRAWTDO A.B:DRAWTO A.A

IF CHANGE=1 THEN CHANGE=0:NEXT MOV
E

IF CHANGE=0 THEN CHANGE=1:NEXT MOV
E

A=A+1: EB=E+1

IF A>79 OR B>79 THEN GRAFPHICS 2:FPO0
SITION O0,5:7 #6:; "PLAYFIELD ANIMATI
ON":7? ™ ¥ GRAPHICS 2 TEXT WINDO
W %":END

GOTO 20

Program 2.

10

20
25
30
40
S0
&0

70

GRAPHICS 0:A=0:B=10:DIM CHARACTER%
(1) :CHARACTER®="A"

POSITION A,EB:7? CHARACTER®

FOR SLOMD=1 TO 10:NEXT SLOMO

FOSITION A,Bz7? "

A=A+1:1IF *39 THEN 60

GaoT0 20

IF CHARACTERS$<>"{T3>" THEN CHARACTE

R&="{T3":A=0:B=10:507T0 20

POSITION 10,5:7 "CHARACTER ANIMATI
ON®2z7 " WITH A LETTER AND CONTROL
CHARACTER"

15

1 Fundamentals 0f Atari Graphics

Using Strings For
Graphics Storage

Michael Boom

If you've ever been frustrated attempting to PLOT and DRAWTO
your way through a complex pattern or design in Atari graphics,
you might appreciate a method of graphics generation using text
strings to store pixel data. While this string method is not simpler
to use in all cases, its ease of data entry and manipulation pos-
sibilities make it a strong graphics tool.

Simple line drawings over large areas of the screen are best
done using PLOT and DRAWTO commands, since this method
uses less memory and generates images faster than the string
method will. However, if you have a very complex pattern in a
small area of the screen, the string method works well. The heart
of string graphics lies in the fact that if you run a PRINT #6 state-
ment followed by ASCII characters while in graphics modes 3-7,
colored pixels will appear on the screen. Different letters and
symbols will plot different colors, but for our purpose we will
deal only with the letters A, B, C, and D. Each of these letters
plots a different colored pixel in graphics modes 3, 5, and 7:

A plots color 1 (color register #0)
B plots color 2 (color register #1)
C plots color 3 (color register #2)
D plots color 0 (color register #4)
In graphics modes 4 and 6, only the letters A and B need be used,
A for the plotting color, B for the background color.
For a demonstration, typing the command

GRAPHICS 3: PRINT #6; “ABCDA"”
moves the pixel string down and to the right.

Creating A Graphics String

We can now use the above methods to plot a pattern. First graph
out the area needed for the pattern, then fill in the pattern using

16

Y

A

1 Fundamentals Of Atari Graphics

“A”,”B”,”C”, and “D" to represent the colors wanted:

String 1 CDDDDAAAAA
String2 DCDDDDDDAA
String 3 DDCDDDDADA
String4 DDDCDDADDA
String 5 DDDDCADDDA
String 6 AAAAACDDDD
String 7 ABBBADCDDD
String8 ABCBADDCDD
String9 ABBBADDDCD
String 10 AAAAACCCCC

Now break down the graph as a series of strings, in this case ten
string of ten characters each:

String 1is “CDDDDAAAAA"”
String 2 is “DCDDDDDDAA”
etc.

Concatenate the ten strings for more efficient data storage:

“CDDDDAAAAADCDDDDDDAADDCDDDDADADDDCDDA
DDADDDDCADDDAAAAAACDDDDABBBADCDDDABCBA
DDCDDABBBADDDCDAAAAACCCCC”

We have now generated all the data necessary to plot our figure
(a square with an arrow) in the graphics mode, and have stored it
in one long string.

Display

To plot the string on the screen, determine where you would like
the upper left-hand corner of the figure to be located, and enter it
during the run of the following program after prompt “X,Y?".

10 GRAPHICS 5
20 DIM A$(100)
30 A$=""CDDDDAAAAADCDDDDDDAADDCDDDDAD
ADDDCDDADDADDDDCADDDAAAAAACDDDDABBBAD
CDDDABCBADDCDDABBBADDDCDAAAAACCCCC”
40 PRINT “X,Y”;:INPUT X,Y
80 FORK=1TO 10
90 POSITION X,Y +K-1
100 PRINT #6;A$(K*10-9,K*10)
110 NEXT K

In this program, lines 20 and 30 set up our main pixel data string,
and line 40 establishes the upper left corner coordinates of the

17

1 Fundamenials 0Of Atari Graphics

figure. Lines 80 and 110 set up a loop of ten steps, to divide our
main data string into seven rows. Line 90 positions the cursor
for each row, and line 100 prints ten consecutive ten-character
strings on the screen.

Obviously, there are figures which require strings too long
for direct entry in Atari BASIC. In that case, divide the figure
into several rectangular sections, each small enough for inclu-
sion into one string (usually under 100 characters in length).
Then concatenate the string as explained in the Atari BASIC
Reference Manual, p. 39.

Figure Manipulation

Plotting a figure using string graphics is fairly simple and
straightforward. Its real strength lies in figure manipulation
through string reading. Some easy manipulations are:

1. Figure rotation (in 90° increments)
2. Figure inversion
3. Color changes

For figure rotation, using the same example figure and data
string, let’s substitute and add to the previous program. For a
90-degree turn clockwise, add and substitute:

20 DIM A$(100),B$(100

50 FORK=1TO 10: FORL=1TO 10

60 B$(K*10 - 10+L,K*10 - 10+ L) = A$((10 - L)*10+ K, (10 - L)
*10+K)

70 NEXT L, NEXT K

100 PRINT #6;B$(K*10 - 9,K*10)

For a 270-degree clockwise rotation, substitute to the above:
60 B$(K*10-10+L,K*10-10+1)+ A$(L*10+1 - K,L*10+1 -K)
For a 180-degree clockwise rotation, substitute to the above:

50 FORK=1TO 100

60 B$(K,K)=A$(101 - K,101 - K)

70 NEXT K

To change color assignments, add and substitute to the original
program:

50 FORK=1TO 100

60 IF A$(K,K)=""C”" THEN A$(K,K)="A"

70 NEXTK

To invert a figure, substitute to the original program:

18

1 Fundamentals Of Atari Graphics

100 PRINT #6;A$((11 - K)*10 - 9,(11 - K)*10)

To turn a figure left to right, substitute in the 180-degree rotation
program:

100 PRINT #6;B$((11 - K*10 - 9,(11 - K)*10))

The string used to manipulate this 10 x 10 figure can easily be
incorporated into subroutines for use in programs using repeti-

tive figures in different positions. Further experimentation for
more possibilities is definitely in order.

19

1 Fundamentals Of Atari Graphics

Using The GOLOR And
LOCATE Instructions
To Program Pong-
Type Games

Michael A. Greenspan

Here’s the skeleton of a Pong-type game that demonstrates simple Atari
playfield graphics. When you grasp the principles, it will be easy to flesh
out the program yourself.

New Atari owners may be confused (as I was) about the COLOR
and SETCOLOR instructions. These two commands, and
the LOCATE instruction, form the basis of the following Porng-
type game.

In GRAPHICS 3, there are four color registers labeled 0, 1, 2,
and 3, which are accessed by the instruction COLOR X, where X
is the number of the register desired. (COLOR 4 is the same as
COLOR 0; COLOR 5 is the same as COLOR 1, etc.) While COLOR
determines the register used, SETCOLOR enables you to deter-
mine which of the 128 colors are used by your chosen register to
draw points on the screen. Thus, since the SETCOLOR instruc-
tions are identical, the following commands will each puta
dark gold point on the screen at location 1,1:

10 GR.3: COLOR 1: SETCOLORO, 1,2 : PLOT 1,1
10 GR.3: COLOR 2: SETCOLORO, 1,2 : PLOT 1,1

*The SETCOLOR command instructs the computer to set the color of the points
on the screen (that’s the function of the 0) to color 1 (that’s gold) brightness 2. A
two for the first mumber will change the text windotw to that color. A four will
change the background.

Each color register has a different default color that deter-
mines the color of the points plotted in that register if no SET-

20

1 Fundamentals Of Atari Graphics

COLOR 0, X, X instruction is given. Therefore, plotting points in
different color registers will produce different colors in the absence
of SETCOLOR instructions, and identical colors if identical SET-
COLOR instructions are used.

In the program below, a ball moves from left to right and a
joystick maneuvers a paddle on the far right to intercept the ball.
The paddle is plotted in color register 1, and the ball in color
register 2. In order to move the ball, it is replotted in color register
4, whose default color is the same as the background color (and
thus is invisible), and then replotted on the adjacent square in
color register 2.

The LOCATE instruction determines if there is a hit. X and Y
are the X and Y coordinates of the ball. LOCATE X+1, Y, X tells
the computer to LOCATE the point to the right of the ball and to
store the color register of that pointin Z. Since the paddle is plotted
in color register 1, Z=1 means that the ball hit the paddle.

Once you understand the use of COLOR and LOCATE to
move the ball and effect a hit, it is a relatively simple matter to
add boundaries, two or more paddles, sound, etc. (Of course, the
same result can be accomplished by player/missile graphics, but
that's an advanced technique tackled later in this book.)

In the program below, A and B are the X and Y coordinates
of the paddle. X and Y are the X and Y coordinates of the ball. C
relates to random changes in the color of the paddle. S relates to
the speed with which the ball moves.

Program.

1 REM X USING COLOR & LOCATE x

2 REM % MICHAEL A. GREENSPAN X

10 5=51:GRAPHICS 3

20 A=35:B=10:X=0:Y=INT(RND{(O)X19)+1:C
=INT(RND(0) ¥15) +1

25 REM PLOT THE PADDLE

30 COLOR 1:SETCOLOR 0.C.B8:PLDT A,B:PL
0T A.E+1

35 REM MOVE THE PADDLE UP?

40 IF STICKE(0)=14 THEN COLOR 4:PLOT A
.B:PLOT A,B+1:B=E—-1:IF EB<O THEN B=
0

50 IF STICK(0)=14 THEN GOTO 30

55 REM MOVE THE FPADDLE DOWN?

21

1 Fundamentals 0f Atari Graphics

60

70

V=

80

85

0
25

100

105
110

22

IF STICK(0)=13 THEN COLOR 4:PLOT A
.B:PLOT A,B+1:RB=RB+1:IF R>19 THEN E
=19

IF STICK(0)=13 THEN GOTO 30
REM PLOT THE BALL AND HOLD IT AT T
HAT LOCATION WHILE THE COMFPUTER CO
UNTS FROM 1 TO S
COLOR 2:PLOT X.Y:FOR D=1 TO S:NEXT
D
REM CHECK IF THE EALL HIT THE PADD
LE
LOCATE X+1,Y,Z
REM MOVE BEALL TO THE RIGHT IF IT H
AS NOT REACHED THE END OF THE ROW
IF Z<>1 THEN IF X<=35 THEN COLOR
4:PLOT X.Y:X=X+1:G0TO 30

REM IT°S A MISS

IF Z<>1 THEN IF X>35 THEN MISS=MI
SS+1:7 "HITS—";HIT;" MISSES-";MI
5S5:COLOR 4:FOR B=0 TO 19:PFLOT 35,
BE:PLOT 36.R

IF Z<>1 THEN NEXT B:S5=5+10:G0T0 2
Q

REM IT*S A HIT

HIT=HIT+1:? "HITS-";HIT:;" MISSES
-":MISS:5=5-10:COLOR 4:FOR E=0 TO

19: PLOT 35,B:PLOT 34,B:NEXT B:GO

TO 20

‘ Chapter2

Customizing
The
Granhlcs Modes ‘

ettt

eeoeecoco0oCCCOOCOOCOCOCCOCCOCOCCOOCOCOCOOCPOCCCRORPPOONTYT

2 Custemizing The Graphics Modes

How To Design
Custom Graphics
Modes

Craig Chamberlain

Itis well known that the Atari 400/800 computers have superior
graphics. One of the things that makes the Atari graphics superior
is the fact that the graphics capabilities are flexible. This versatility
is demonstrated by the several unique graphics modes that can
be generated by the hardware. The Operating System recognizes
12 of these modes, but there are also five other modes available.
The table describes some characteristics of the various graphics
modes.

There are two varying factors which distinguish one graphics
mode from another. First, the pixel size or resolution (number of
pixels it takes to fill the screen) can differ. Second, the number of
color possibilities per pixel may change. The various modes offer
different combinations of these two qualities. Because there are
so many modes to choose from, it is easier to find one to suit a
particular application, which is one reason why Atari graphics
are so versatile.

In BASIC, the GRAPHICS command (or GR. in Atari BASIC)
is used to change the screen from one graphics mode to another.
A number from zero to 11 must follow the GRAPHICS command.
This number corresponds to the 12 graphics modes supported by
the Operating System. An overview of the general characteristics
for these modes is given here.

Operating System Graphics Modes

0 primary text (default mode)
1,2 color text
3,5,7 three-color bit-mapped graphics, various resolutions
4,6 one-colorbit-mapped graphics, various resolutions
8 high-resolution mode, one color
1 specialty modes (explained in other articles)

2 Customizing The Graphics Modes

For all graphics modes except mode zero, a small, four-line
text window is provided at the bottom of the screen. If this text
window is not desired, it can be eliminated by adding 16 to the
number after the GRAPHICS command. Whereas a GRAPHICS
3 changes the screen to mode three with a text window,
GRAPHICS 19 changes the screen to mode three with no text
window.

Whenever the screen is changed to a new mode using the
GRAPHICS command, the screen is automatically cleared, in
case any unwanted data might have been left in the screen mem-
ory. To defeat this automatic clearing of the screen, add 32 to
the number after the GRAPHICS command. This is of little
use, however, to BASIC programs.

Using the GRAPHICS command changes the whole screen
to a new mode. But is it possible to mix graphics modes? Of
course. The text window at the bottom of a screen is actually
mode zero combined with the other mode above it. But then,
what says that the text window has to be at the bottom of the
screen, or that the text must be shown in mode zero? What if it
is necessary to use the other graphics modes not supported by
the Operating System and BASIC? Doing all these wonderful
things requires a little more technical knowledge of Atari
graphics, and it starts with something called the display list.

When BASIC is given a GRAPHICS command, the Operating
System not only reserves room for display data, but also creates a
display list. A display list is a sequence of bytes in memory that,
among other things, defines the format of the screen.

We'll talk more about the display list, how to find it and how
to change it, but first we must delve just a little deeper into Atari
graphics terminology.

When you see a screen of a certain graphics mode, you are
actually seeing a screen of several identical mode lines. A mode
line is equivalent to one row of the screen. It is a horizontal strip
or section of the screen and is one pixel high. Therefore, the vertical
resolution (how many rows) of a graphics mode tells how many
mode lines are needed. Each mode line determines the number
of pixels and colors that will span from left to right (how many
columns).

For example, a mode zero screen offers resolution of 40
across by 24 up and down. In order to produce a mode zero
screen, 24 mode lines of mode zero will be required. Each of
those mode lines will consist of 40 characters across.

26

~

2 Customizing The Graphics Modes

So, the idea of a full-screen graphics mode does not really
apply. Rather, a full screen is a bunch of mode lines stacked
vertically to fill up the screen.

A mode line is just as high as a pixel, but the actual height
of a mode line can vary. The unit used for measuring the height
of a mode line is the scan line. Just as a screen consists of mode
lines, a mode line consists of a certain number of scan lines.
Different mode lines have different numbers of scan lines. The
table shows how many scan lines are contained in each mode
line.

Why all the fuss about scan lines? Because there is a limit
to how many scan lines can be displayed on a screen. As a rule,
whenever the Operating System creates a screen of any graphics
mode, it always uses just the right number of mode lines so
that the scan line total equals 192. One hundred ninety-two is
the maximum number of scan lines that the average television
set can display without excessive overscan (cutoff). A screen can
have fewer than 192 scan lines without any problem, but to use
many more than 192 is only inviting trouble.

Anyway, remember that different mode lines have different
numbers of scan lines, and the desirable total scan line count is
192. These two factors control the vertical resolution in a mode
as follows:

Given a graphics mode, take 192 scan lines, divide by the
number of scan lines per each mode line, and the result is the
proper number of mode lines for that particular graphics mode.
And, as demonstrated earlier, one mode line corresponds to
one horizontal row on the display, so the number of mode lines
is the same as the number of rows, which is called vertical
resolution.

Now, how was that again? Here’s an example using our
familiar friend, graphics mode zero. According to the chart, a
mode line in mode zero consists of eight scan lines. One
hundred ninety-two scan lines divided by eight scan lines per
mode line is 24 mode lines. Indeed, the vertical resolution of
mode zero is 24 rows.

This is where the display list comes in. The display list
describes how many of which mode lines are used to fill the
screen from top to bottom. According to our previous example,
a display list for a mode zero screen will have to indicate that
24 mode lines of mode zero are to be used. Actually, a mode
zero display list looks like this:

27

2 Customizing The Graphics Modes

Mode Zero Display List

112
112
112
66
XXX
XXX

NN NDND NN

65
XXX
XXXX

It is immediately noticeable that there are no zeroes in the
display list. On the other hand, the number two is certainly
used often enough. This brings up an important point. The
number found in a display list to indicate a mode line is not the
same number used by the Operating System for that mode.
The table presented at the end has a column marked IR CODE.
The label IR stands for Instruction Register. The column shows
the hardware equivalent (IR number) for all Operating System

28

()]
L_:% Customizing The Graphics Modes

modes, as well as for modes not supported by the Operating
System. Mode three uses an IR code of eight. IR code fouris a
multicolor character text mode not normally available. Mode
zero is indicated in a display list by an IR number two, which
explains the frequent occurrence of that number in the display
list example.

The number two, however, is not the only number in the
display list example. Now it is time to fully explain the structure
of the display list and reveal what the other numbers mean.

The number 112 is used three times at the beginning of the
display list. Together, these three numbers tell the video
hardware to display 24 empty scan lines at the top of the screen,
before the place where the picture starts. These are not mode
lines, and do not count as part of the 192 scan lines. Instead,
they are called “blank lines,” and they creace a border at the
top of the screen in the background color, just before the 192
scan lines of display. This convention is used by the Atari to
reduce overscan problems.

An entry in the display list can show from one to eight
blank lines. The number to be used in the display list is derived
using the following process:

To show N blank lines, the display list number is (N-1)*16.
To show 8 blank lines, 8-1=7 and 7*16 =112, so every use of
the number 112 in the display list causes the hardware to show
eight scan lines in the background color. Three uses of 112 gives
a total of 24 blank lines.

0 1blank line
16 2 blank lines
32 3 blank lines
48 4 blank lines
64 5 blank lines
80 6 blank lines
96 7 blank lines

112 8 blank lines

The next number in the display list looks like a 66, but it is
nota 66. Itis a 64 +2. The 2 indicates that a mode zero mode
line should follow the blank lines. The 64 is a “load memory
scan counter”” (LMS) command, and means that the next two
bytes form an address which points to where the display mem-
ory (screen data) starts. Because the display data is always put
at the top of memory, the two numbers after the 66 will vary on

29

different computers, according to the amount of RAM installed
in each computer.

Since the address of the display memory is broken down
into two bytes, a little bit of math will be needed to reconstruct
the address. The two bytes are in low-byte, high-byte format.
To compute the address, take the high-byte (the second of the
two numbers), multiply it by 256, then add it to the low-byte.
The result is the address of the first byte of display memory. If
a 10 were POKEd at this location on a mode zero screen, the
upper leftmost character on the screen would be changed to an
asterisk. Adding 20 to the address and doing another POKE will
cause an asterisk to appear in the middle of the top row of the
screen.

The important point to remember is that by adding 64 to a
normal mode line number, in this case a 2, the graphics
hardware will not only process the mode line, but perform a
LMS command as well. The two bytes immediately following
the mode line with the 64 added will form an address that tells
the hardware where the following display data resides in mem-
ory. The LMS operation actually happens before the mode line
starts.

The LMS command is normally used at the beginning of a
screen, on the first mode line, but it can be done on any mode
line, or on several mode lines, for special applications. Display
lists created by the Operating System always have only one
LMS command, on the first mode line, except for modes eight
through eleven, which for technical reasons require another
LMS command in the middle of the display list.

The next numbers in our example display list are a bunch
of 2’s. There are 23 of them, to be exact. These are the remaining
23 mode lines of mode zero. Remember that the first one was
the mode line with the LMS command.

Following the mode lines are a number 65 and a final two
bytes. The 65 is another special number which technically means
“perform a display list jump and wait for vertical sync.”” For
our purposes, the 65 simply means “’this is the end of the display
list; go back to the beginning of the display list when the televi-
sion scanning beam is ready to start drawing another frame.”
The two bytes after the 65 are in low-byte, high-byte format
and represent an address. This address points to the top of the
display list. Now would be a good time to tell where the display
list is placed. Whenever the Operating System is requested to

30

create a screen of a certain graphics mode, it always puts the
display list just before the display data. So, just as the display
memory address varies according to the amount of memory in
the computer and the graphics mode, so will the display list
address vary.

That concludes the explanation for a normal mode zero
display list. It should now be obvious that mixing modes on
one screen is just as easy as changing the mode lines in the
display list. But first, we need to know how to determine exactly
where the display list resides in memory. We know that the
address of the beginning of the display list is given at the end of
the display list, after the 65, but that won’t do us any good if
we don’t know where the display list is located in the first

lace.
g Fortunately, there is a way to find the address of the be-
ginning of the display list. The same address given in the two
bytes after the 65 is also stored in memory locations 560 and
561.

SDLSTL $0230 560 shadow display list address low-byte
SDLSTH $0231 561 shadow display list address high-byte

The address is broken down into two bytes and must be
reconstructed using the same procedure shown earlier. In
BASIC, the standard method is to use the variable DL for the
display list address:

DL = PEEK(560) + 256*PEEK(561)

After issuing a GRAPHICS 0 command and assigning DL,
a PEEK(DL) should return a 112, as will PEEK(DL + 1) and
PEEK(DL +2). But PEEK(DL + 3) will return a 66.

To change mode lines in the display list, POKE statements
must be used. For example, a POKE DL + 20,4 will put a multi-
color text mode line in the middle of the mode zero screen. Try
typing on that row and see what happens.

Next, type some characters below the multicolor text mode
line, do a POKE DL +20,7, and watch carefully. A mode two
line will now be in the middle of the screen, but there will be
side effects as well. Two problems will be evident: the bottom
of the screen is now a little lower than before, and text below
the mode line is not properly aligned.

As for the first problem, a quick glance at the chart will
reveal that we replaced a mode zero line of eight scan lines

31

2 Customizing The Graphics Modes

with a mode two line of 16 scan lines. The display now has
more than 192 scan lines, hence the bottom of the screen appears
lower.

This problem can be fixed, somewhat. It is necessary to
delete the eight extra scan lines, which can be easily done by
getting rid of the last mode line. Eliminate the last mode line by
executing these instructions:

POKE DL + 28,65
POKE DL + 29, PEEK(560)
POKE DL + 30, PEEK(561)

All we did was place the “end of display list” command a
little earlier in the display list, which effectively cuts off any
display below that point. There is a new problem, however,
because now there are only 23 rows, but the Operating System
still “thinks” there are 24. Hmmm. We traded one problem for
another. Let’s change the subject and explore the problem of
the incorrectly aligned text.

The text below the mode two line has been displaced by 20
characters. The explanation for this is really quite simple. We
replaced a mode zero line that needed 40 bytes of data with a
mode line that, according to the chart, requires only 20 bytes.
There are now an extra 20 bytes on the screen, but the Operating
System again is not aware that a change has been made. The
text could be realigned with a POKE DL +21,7 but then there
would be 40 extra bytes, or essentially, enough for another
row.

All of these problems are conflicts with the Operating Sys-
tem. The Operating System establishes the display list but does
not monitor it. Changes to the display list only affect the
hardware and screen display. Such problems are not always
easy to deal with, so they are discussed in separate articles.
The key things to remember are:

1. The display should not exceed 192 scan lines.

2. When creating a custom display list, the number of mode
lines is limited by the number of mode lines normally allotted
for the current mode. (You can mix only up to 24 mode lines on
a mode zero screen.)

3. Care must be taken that the mode lines do not require a
larger total amount of memory than was designated for the
current mode. (Changing several 20-character mode lines to 40-
character mode lines would be one way to cause this problem.)

32

sustomizing The Graphics Modes

We have now covered the main points of what a display
listis, why it is needed, what purpose it serves, how to find it
in memory, how to change it, and what problems can be ex-
pected as a result of these changes. The display list also controls
horizontal and vertical fine scrolling, and a special interrupt,
but these are more advanced topics.

To further demonstrate how to modify a display list, three
BASIC programs have been provided.

Program 1 prints a display list of mode three with a text
window, then changes the bottom text lines to mode one. The
display list in this case consists of the 24 blank lines
(112,112,112), the LMS command on the first mode three mode
line (64 +8=72), the address of the display memory, more mode
three mode lines (8,8,8,...), another LMS command on the first
line of the mode zero text window (64 +2 =66), the address of
the text window memory, the remaining three mode lines of
mode zero (2,2,2), and the return (65) followed by the address
of the beginning of the display list.

Program 2 creates a mode three screen with a text window,
but then moves the text window to the top of the screen. Brief
screen flitter is normal.

Program 3 displays from three to 24 blank lines at the top
of the screen, then mixes 14 different modes on the screen. Try
moving the cursor around and typing in the different modes.

Tahle. The Graphics Modes.

OS IR C SL Vv H B
0 2 1 8 24 40 40
= 3 1 10 - 40 40
= 4 4 8 24 40 40
- D 4 16 12 40 40
1 6 4 8§ 24 20 20
2 7 4 16 12 20 20
3 8 3 8 24 40 10
4 9 1 4 48 80 10
5 10 3 4 48 80 20
6 11 1 2 9% 160 20
- 12 1 1 192 160 20
7 13 3 2 9% 160 40
- 14 3 1 192 160 40
8 15 1 1 192 320 40
0OS OSMODE V ROWS (MODE LINES)
IR IR CODE H COLUMNS
C COLORS (PLAYFIELDS) B BYTES

SL SCAN LINES

33

2 CGustomizing The Graphics Modes

Program 1.

100 GRAPHICS 3:REM 3 COLORS, 40X24
110 COLOR 1:REM GOLDEN ORANGE
120 PLOT 0,0

130 DRAWTO 19,19

140 COLOR 2:REM LIGHT GREEN

150 DRAWTO 38,0

160 DL=PEEK(S60)+2546XPEEK (561)
170 REM DL 18 ADDRESS OF DISFLAY LIST
180 FOR K=0 T0O 33

190 PRINT "PEEK(DL+";

200 PRINT K3

210 PRINT ")=";

220 PRINT PEEK((DL+K)

230 FOR J=1 TO 333:REM DELAY LOOP
240 NEXT J

2530 NEXT K

260 PRINT CHR$(125);:REM CLEAR TEXT
270 PRINT "NOW WATCH THE MODE"
280 PRINT "LINES GET CHANGED"

290 PRINT "AT THE BOTTOM"

300 PRINT "OF THE SCREEN";

310 FOR K=1 TO 999

320 NEXT K

330 POKE DL+25,64+6:REM CHANGE LMS
340 FOR K=1 TO 333

330 NEXT K

360 FOKE DL+28.,6

370 FOR K=1 TO 333

380 NEXT K

3920 POKE DL+29,6

400 FOR K=1 TO 333

410 NEXT K

420 POKE DL+30,6

430 FOR K=1 TO 333

440 NEXT K

450 PRINT

440 FPRINT

470 FOR K=1 TO 333

480 NEXT K

490 PRINT CHR$%${(123);

S00 END

34

2 Customizing The Graphics Modes

Program 2.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

GRAPHICS 3
DL=PEEK (S60) +256¥PEEK (561)
LMSLO=PEEK (DL +4)
LMSHI=PEEK (DL+5)
TLO=PEEK (DL+26)
THI=PEEK{(DL+27)
POKE DL+3,64+2
FOKE DL+4,TLO

POKE DL+%,THI

FOR K=DL+6 TO DL+8E
POKE K.2

NEXT K

POKE DL+9,.64+8
POKE DL+10,LMSLO
POKE DL+11,LMSHI
FOR K=DL+12 TO DL+3Z0
POKE K,.8

NEXT K

COLOR 1

PLOT 0,0

DRAWTO 19,19

COLOR 2

DRAWTO 38,0

END

Program 3.

100
110
120
130
140
150
160
170
180
190
200
210
220

GRAFPHICS ©
FOR K=1 TO 23

PRINT "ATARI ATARI ATARI ATARI"
NEXT K
DL=PEEK (560) +256¥PEEK (561)

POKE DL,O

POKE DL+1,0

FOKE DL+2,0

FOR K=16 TO 112 STEP 16

POKE DL,K

FOR J=1 TO 100

NEXT J

NEXT K

35

2 Customizing The Graphics Modes

230
240
250
2460
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

36

FOR K=16 TO 112 STEP
POKE DL+1,K

FOR J=1 TO 100

NEXT J

NEXT K

FOR K=1&6 TO 112 STEP
POKE DL+2,K

FOR J=1 TO 100

NEXT J

NEXT K

FOR K=1 TO 23

READ P

POKE DL+S5+K,P

FOR J=1 TO 100

NEXT J
NEXT K
DATA 3
DATA 8
DATA 1
DATA 1
END

16

16

?;i Gustomizing The Graphics Modes

Put Graphics Modes
1 And 2 At The Bottom
0f Your Screen

R. Alan Belke

Most of you who are regular readers of COMPUTE! are familiar
with the mixing of the graphics modes. The only problem is
that you can’t use a mode past its regular range. That is, if you
wanted to use mode 1 past line 20 or mode 2 past line 10, you
couldn’t. So you were stuck putting text you wanted at the top
of the screen or in the text window. Until now, that is!

What'’s The Display List?

First we'll look at the ““display list” to see what it is and what it

does. Figure 1 shows the display list for mode 3. You can verify
this by running Program 1. Locations 560, 561 contain the start-
ing address of the list.

Figure 1.
112,112,112,72,112,158,66,96,159,2,2,2,
65,78,158

The purpose of the list is to tell the computer how to display
the information stored in the screen and/or text memories. Let’s
see how it does this. The first three bytes (112) set up the margin
at the top of the screen. Next comes what I call an address byte
(72), in this case, a mode 3 address byte. (Figure 2 shows what
the address bytes are for each of the modes.) This byte pulls
double duty. First, it sets the first line to mode 3. Then it tells
the computer that the next two bytes contain the address of the
screen memory.

Figure 2.

MODE 01 2 3 45 6 7 8
ADDRESS BYTE 66 70 71 72 73 74 75 77 79

The next 19 bytes (8) set one line each to mode 3. I call these

37

¥ Customizing The Graphics Modes

mode 3 bytes. You get the value for these bytes by subtracting
64 from the address byte (72-64 =8). From this, we can deduce
that any byte with bit 6 on is an address byte. Also, notice that
19 mode 3 bytes with the mode 3 address byte give you 20 rows
of mode 3, which fills the screen up to the text window.

For whatever mode you are in, you will have one address
byte and the number of rows, minus one, regular bytes. For
example, mode 7 will have a mode 7 address byte (77) and 79
regular mode 7 bytes, giving you 80 rows. To find out how
many rows each mode has, check the ““Table of Modes and
Screen Formats.” It's on the inside back cover of your Atari
BASIC Reference Manual.

The Last Three Rows Of The Text Window

Now here’s the important part. The next byte (66) is a mode 0
address byte. But, instead of the next two lines containing the
address of the screen memory, they contain the address of the
text editor memory. This is the start of the text window. Modes
1 through 8 use the screen memory. Mode 0 uses the text editor
memory. As you may have already guessed, the next three
bytes (2) are mode 0 bytes, giving us the last three rows of the
text window. If we were in a full screen format, these last six
bytes would not be here.

Now we are to the end of the list. This next byte (65) is also
an address byte. But it has a special purpose. It tells the com-
puter that it has reached the end of the list and that the next
two bytes contain the starting address of the list. (The same as
locations 560, 561.)

Before we go on, let me say that the bytes that contain the
addresses may vary, depending on the mode you’re in and on
the amount of memory you have. All the other bytes will be
the same.

So how do we get modes 1 and 2 on the bottom of the
screen? It’s simple! Basically, all we do is change the mode 0
bytes to mode 1 or 2 bytes. Presto! The computer now displays
the text editor memory in modes 1 or 2.

Let’s look at Program 2 to see how this is done:

Line 10: sets the margins to 40 characters per line and selects
mode 3 with text window. Then it finds the address of the
display list.

Line 20: searches the list for the start of the text window.
Line 30: changes the mode 0 bytes to mode 1 bytes.

38

There are a few things to be aware of. Even though you are
using modes 1 and 2, you're using the text editor memory; so
the computer thinks in 40-column, not 20-column, lines, which
means two lines now equal one old line. Here is an example.
Suppose we use an empty PRINT statement, planning to leave
a blank line. Sorry, it won’t work. We would have two blank
lines. What we do is put 20 spaces in front of what we want
printed on the second line. Also remember that we are using
the text editor, so PRINT #6 will not work. Try some different
things yourself.

What About Mode Two?

Well, that’s almost as simple. Mode 2 lines are twice as wide as
modes 1 and 0; so there are only two combinations using mode
2 possible: two rows of mode 2 or one row of mode 2 with two

rows of mode 1. We can use only the amount of room that was
originally there. Program 3 uses the latter option from above:

Lines 10-20: same as Program 2.

Line 30: basically the same as in Program 2; only this time we
make the second line mode 2. And, since we use one less byte,
we have to move the end of the list one location forward.

By now you should be able to change the text window into
any combination of modes 1 and 2 you want. If you have a pro-
gram that would work better with the text at the bottom of the
screen or the text window as modes 1 or 2, get to work, experi-
ment! Remember, you're the boss.

Program 1.

10 GRAPHICS 3: A=PEEEKA{(SSO0)+FPEEK {(S61) %2
56

20 D=PEEK{(A):7? D3",":;:IF D<>465S THEN A
=A+1:60T7T0 20

30 ? PEEKEK{(A+1):;",";PEEK(A+2)

40 GOTO 40

39

2 Customizing The Graphics Modes

Program 2.

10

20

30
40

S0

POKE 82,0:GRAPHICS 3:A=PEEK (560) +F

EEK(561) X256

IF PEEK(A)<>b6 THEN A=A+1:G0TO 20

POKE A,70:POKE A+3.6:FOKE A+4,6&6:F0D

KE A+5,6

? " ATARI AND COMPUTE:® AN UNEE

ATABLE "

? w TEAM FOUR LINES
MODE 1"

COLOR 2:SETCOLOR 1,10,6:PLOT 17,1:
DRAWTO 17,10:DRAWTO 9,18

PLOT 19,1:DRAWTO 19,18:FLOT 20,1:D
RAWTO 20,18

FLOT 22,1:DRAWTO 22,10:DRAWTO 30,1
8

GOTO 90

Program 3.

10

20

30

40

S0

60

70

80

29

40

FOKE 82.0:GRAFHICS 3:A=FPEEK(S560) +F
EEK(S561) %256

IF PEEE{(A)<>b66 THEN A=A+1:G0TO0 20

POKE A,70:FOKE A+3,7:POKE A+4,6:P0

KE A+5,65:POKE A+6,PEEK{(A+7) :POKE

A+7 ., PEEK (A+8)

? " ATARI AND COMPUTE'! 1 LINE OF
MODE 2 *

? " 2 LINES OF MODE 1"

COLOR 2:SETCOLOR 1,10,4:PLOT 17,1:
DRAWTO 17,10:DRAWTD 9,18

PLOT 19,1:DRAWTO 19,18:PLOT 20,1:D
RAWTO 20,18

PLOT 22,1:DRAWTO 22,10:DRAWTO 30,1
8

GOTO 90

2 Customizing The Graphics Modes

Printing Characters
In Mixed Graphics
Modes

Craig Patchett

One of the problems of custom graphics modes is how to print
characters on mode lines that are out of the usual range of that
mode. For example, if we design a graphics mode such that the
30th line is mode two, we would get an error message if we
attempted to print on that line. This is because the Atari thinks
itis in the regular mode two, which allows only twelve lines of
characters. We must therefore find another way to put the
characters on the screen.

As you may already realize, the screen is just a type of
window looking into a part of memory. If you change that mem-
ory, what you see on the screen also changes. The solution,
therefore, is just to POKE the characters into the memory loca-
tions that correspond to the positions on the screen where we
want them to appear.

Where Is The Screen In Memory?

Here is how to find the display list in memory:
BEGIN = PEEK(560) + PEEK(561)*256 + 4

But, you may well ask, what does this have to do with the screen
memory, or display memory, as we will call it here? It just so
happens that the first two memory locations in the display list
point to the beginning of display memory in the following fash-
ion:

DISMEM = PEEK(BEGIN) + PEEK(BEGIN + 1)*256

How Do We Calculate The Exact Memory Locations
To POKE Into?

Each mode line uses up a certain amount of memory. As you
might guess, different modes use different amounts of memory

41

2 Custemizing The Graphics Modes

per line. To be more exact:

MODE Guit.2 3.4.85 607 B
MEM/LINE 40 20 20 10 10 20 20 40 40

So all we have to do is figure out how much memory is used
before the mode line that we want to print on, and add that to
DISMEM to determine where we want to start POKEing. As an
example of how to do this, let’s suppose we have a graphics
mode with four lines of mode 1, 50 lines of mode seven, three
lines of mode four, and three lines of mode two (4*8 +50*2 + 3*
4+3*16=32+100+12+48=192); and we want to print on the
second line of mode two. Checking the table above, we go:

4 lines of mode 1=4*20= 80
50 lines of mode 7=50*40= 2000
3 lines of mode 4=3*10= 30
1 line of mode 2 =1*20= 20

(remember, we count only the lines above the one we want
to print on)
For a grand total of: 2130

Therefore, memory location DISMEM + 2130 represents the
first character in the second line of mode 2 for this particular
mode. Memory location DISMEM + 2131 represents the second
character, and so on up to DISMEM + 2149 for the 20th character.
We know that POKEing the appropriate value into the
appropriate location will cause the desired character to appear
at the desired screen location. Since we already know how to
determine the appropriate memory location, we now ask:

How Do | Calculate The Appropriate Value For A Character?

It turns out that the value to POKE for a given character cor-
responds to the order in which the character descriptions are
stored in ROM (see “Designing Your Own Character Sets” in
Chapter 3). As a quick memory refresher:

ATASCII VALUETO

VALUE POKE

0-31 64-95

32-95 0-63
96-127 96-127

For reverse characters, just add 128 to the value of the normal
character.

42

g Customizing The Graphics Modes

My Brain Is In Hibernation; How Do I Convert A Character String
To Its Appropriate Values?

I'll leave you with the following self-explanatory subroutine
that will take the (predefined) character string PRINTME$ and
the starting memory location STARTHERE (also predefined
and equal to DISMEM + offset) and POKE PRINTMES$ into the
appropriate memory locations. Enjoy!

Program.

I0000

J0010
30020

J0030
Z0040

I0050
I0060
I0070
30080
F0090
30100
30110
I0120
I0130

JI0140
30150

REM This loop will act on each

character in PRINTME®$

FOR ME=1 TO LENA(PRINTME®)

REM Find ATASCII wvalue of chara

cter

VALUE=ASC(FRINTME® (ME.ME))

REM Subtract 128 temporarily 1+
its a reverse character

VALUE=VALUE-128% {({VALUE>127) : REHM
See note below

REM Make the appropriate value

adjustments

VALUE=VALUE+&64 X (VALUE<3I2) -32% (V

ALUE>Z1 AND VALUE<?4)

REM Convert back to reverse 1f

necessary

VALUE=VALUE+128% {ASC(PRINTMES (M

E.MEY) >127)

FOKE STARTHERE+ME—-1.,VALUE:REM K

emember, ME starts at 0, not 1

7 VALUE

REM Go to next character

NEXT ME

REM A1l done. say goodby

RETURN

Note that (condition) equals 1 if the condition is true, 0 if
it’s not. Thus, X=126:PRINT (X=126) :PRINT(X =127) will
print a 1 followed by a 0.

43

2 Customizing The Graphics Modes

Add A Text Window
To GRAPHICS 0

Charles Brannon

The text window can be a useful feature in the graphics modes,
enabling a simultaneous text and graphics display. The text
window is very similar to a miniature GRAPHICS 0 text screen:
all the editor functions are supported, and scrolling and screen
clearing are confined to the small four-line window.

This same capability would be useful for a GRAPHICS 0
display. For example, a menu (a list of choices) could be pre-
sented in the top 20 or so lines of the screen, and the user’s
input taken in the lower four lines of the text window. Any
errors, such as the user typing editor keys in an INPUT state-
ment, would not interfere with the rest of the screen. Conve-
niently, any scrolling when caused by a line like this one:

1530 PRINT “NAME";: INPUT N$:IF LEN{N%)
>8 THEN FRINT "¥T0OO LONGXx":6G0T0 1
S0

would not cause the menu above it to scroll as well.

How is all this done? With a single POKE statement. Loca-
tion 703 normally contains the number 24. If you POKE a four
in its place, the cursor is zapped to the bottom of the screen
and the text window is in place.

Note that you can’t print to the upper part of the screen
with PRINT statements; you have to use PRINT#6 as you do
with graphics modes 1 and 2. Also, the POSITION statements
affect only the upper part of the display; you must use POKEs
to position text window output.

44

2 Customizing The Graphics Modes

Here is an example program to demonstrate the use of the window. It is a
simple disk menu program. Notice that you don’t need to use PRINT#6 to
print to the upper part of the screen until after the POKE 703,4 takes place.

Program.

100
110
130
140
150
160

170
180
190
200
210
220

230

240

260
2740
280
290
300

REM DEMONSTRATES TEXT WINDOW

REM SIMPLE MENU FPROGRAM FOR DISK
TRAFP 150

OPEN #1,6,0,"D:%.%":60T0 160

? "Can™t read directory":END
GRAPHICS 0:COL=0:FPOKE 752,.,1:REM D
ISARLES CURSOR

DIM A%{(20) ., F$(14):TRAP 230

INFPUT #1:A%

FOSITION COLLLINE:7? A%(1,14)
LINE=LINE+1

IF LINE>20 THEN COL=COL+13:LINE=0
GOTO 180

POKE 703.4:REM CREATES TEXT WINDOG
W

FOR I=1 TO 100:7 I.:NEXT I:REM ON
LY FOR DEMONSTRATION

? CHR%(125):7? "Run which program”
:: INPUT A$:REM CHR%(125) ONLY CLE
ARS WINDOW

TRAP 290
F$="D:":F$ (3) =A%

RUN F$

? "Can’t RUN "3Fs$z;"."
END

45

Mixing Graphics
Modes 0 And 8

Douglas Crockford

Normally, GRAPHICS 8 does not allow text to be displayed alongside
the graphics. This machine language routine, when added to a BASIC
program, provides this useful feature.

Graphics mode 0 is the Atari text mode. It supports uppercase,
lowercase, inverse video, and has a position function for placing
text anywhere within a 40 by 24 display field. Graphics mode 8
is the Atari high resolution plot mode. It supports the plotting
of points and lines in a 320 by 160 (or 192) display field. It would
be very nice to use both modes at the same time. The text win-
dow is some help, but it confines the plot to the top and the
text to the bottom. Modifying the display list p10v1deb a partial
solution, but it is awkward and doesn’t permit the mixing of
text and plot on the same line.

A better solution is to use graphics mode 8 and plot the
dots that make up the text characters. This can be done very
quickly by a 6502 machine language subroutine, which does
things in software which are very similar to what the display
hardware does 60 times a second.

The subroutine is called with the USR function. It has four
arguments:

the horizontal cursor position

the vertical cursor position

the address of the string to be displayed
the length of the string to be displayed.

So, the code

GRAFPHICS O
POSITION X.Y
PRINT STRINGS:

will produce similar results to

46

GRAFHICS 8
A=USR(ADR(PRINT®$) , X, Y.ADR(STRING$) ,LE
N(STRING$))

PRINTS is a string containing the subroutine. The STRING$
should not extend past the last column in a row. Any embedded
function codes (cursor movement, insert, etc.) will be displayed
literally. The position of the PLOT/DRAWTO pointer is not
changed, nor is the current COLOR.

An interesting bonus is that adding 40*R to the horizontal
argument causes the text to be displayed R plot rows lower
than usual. This permits the display of subscripts, mathematical
expressions, 1'2 line spacing, underlining, and so on.

The subroutine is relocatable because it contains no JPs,
JSRs, or data reference to itself. It can run anywhere in memory.
It is also under 256 bytes, so it can also run in page six. The
program shows the subroutine being loaded into a string called
PRINTS$, and shows a few of the things it can do.

Figure. Screen Dump of the Demo Program.

Mixing MM Graphics modes 8 and 8

b4
n _ In“-n
C1+(3n ZJJOE = 3

READY
B

47

2 Customizing The Graphics Modes

Program.

1 REM REEE

2 REM THIS PROGRAM IS A DEMONSTRATION
3 REM OF MIXING MODES O AND 8

10 DIM PRINT$(1467)

2

-
!

2 FOR I=1 TO 1&7
30 READ A:LET PRINT®(I)=CHR%{A)
40 NEXT I
S50 GRAFHICS 8
60 MLPRINT=ADR{(PRINT%):REM ADDRESS OF
STRING IS5 STARTING LOCATION OGOF MA
CHINE LANGUAGE ROUTINE
100 A=USR(MLPRINT,. 10,10, ADR("[1+{3n-2
YILTEERY = 48 RX") ;20)
110 A=USR{(MLFRINT,.101.92,ADR{("n"), 1)
120 A=USR(MLFRINT,105,92 ADR{("3n —-n"},
S
1720 A=USR(MLPRINT,267,.,8.ADR{("2") ,1)
140 A=USR(MLPRINT, 221,10, ADR{("2"),1)
150 A=USK{MLPRINT,227.,10,ADR{"2") . 1)
160 DIM TEXT$(40Q0)
170 TEXT$="Mixing CFHEZEs Graphics mode
s O and 8"
180 A=USR(MLPRINT,.Z,0,ADRI{TEXT%).LEN(
TEXT%))
120 COLOR 1:FPLOT 24,9:DRAWTO 04,9
200 PLOT 64,60:DRAWTO 260,60: DRAWTO 2
60, 100: DRANTO 64, 10C0: DRAWNTO &4,60
210 PLOT 64,100:DRAWTO 74,110: DRAWTO
270, 110: DRAWNTO 270,70: DRAWTO 260,
60
220 PLOT 260,100:DRAWTO 270,110
230 END
1500 REM Following are the decimal
1510 REM bytes for the machine
1520 REM language routine,
1530 REM "Mixing GRAFHICS Modes O AND
8
1531 REM OfFECEEEERECEGXRERFD
1536 DATA 104,201.4,240,9,.170
1542 DATA 240,5.104,104, 202,208
1548 DATA 251.96.104,133,215,104

48

2 Customizing The Graphics Modes

1554 DATA 133,214,104,104,168,104
1560 DATA 133,217,104,133,216,104
1566 DATA 104,240,236,133,212,24
1572 DATA 1465,214,101,88,133,214
1578 DATA 165,89,101,215,133,215
1584 DATA 152,240,15,165,214,105
1590 DATA 64,133,214,165,215,105
1594 DATA 1,133,215,136,208,241
1602 DATA 132,221.1460,0,132,220
1608 DATA 177.216,160,0.170.16
1614 DATA 1,136, 1JL,21Q,1Q8,41
1620 DATA 96,208,4,169,64,16

1626 DATA 14,201,32,208,4,169
1632 DATA 0,16,6,201,64,208

1638 DATA 2,169,32,133,218,138
1644 DATA 41,31,5,218,133,218
1650 DATA 169,0,162,3.6,218

1656 DATA 42,202,208,250,109,244
1662 DATA 2,133,219, 154.LL «ITF
1668 DATA 218,69, 1;.164.LL0 145
1674 DATA 214,200, 112.2:0_196_2 2
1680 DATA 208,182,24,165,214,105
1686 DATA 40,133,214,144,2,230
1692 DATA 215,230,221,169,.8,197
1698 DATA 221,208,159,96,207,96

49

C CCCCCCCeecccccccccccccccccccccccecat

Chapter 3
Redefining
Character
Sets

DOJDIOIDDODDINNNNNRNRNRDDRODNOORORONNOND

eteeoccocoootoooPOOCOCOCCOOCPOCOCOCICOCCCPCLCOMKCRCCRQLLXTE

3 Redefining Character Sefs

Designing Your Own
Character Sets

Craig Patchett

You can change the shapes of your characters with this technique.

If you want to draw boxes, or design a card game, then Atari’s
graphics characters are terrific. But what if you're writing an
outer space game or a music program? Wouldn’t you prefer a
rocket ship or a musical note to a vertical line? This article will
explain not only how to change Atari’s graphics characters to
whatever you desire, but also how to change any Atari character
at all, from letters to numbers to punctuation.

How Characters Are Made

An Atari character, as you may already know, is made up of a
bunch of small dots grouped close together. A total of 64 dots,

arranged in an eight-by-eight square, can be used to make one
character. An Atari 4", for example, really looks like this:

Here, the squares colored in represent the dots that are
used. Notice that the outside squares are not used. If they were,
then the characters would touch each other when printed side

53

by side and would be difficult to read. Graphics characters can
be made to touch, however, since side by side they could be
made to look like one large, continuous character.

Somewhere in memory the Atari has a list of which dots
are used for each character. Before we find out where this list
is, let’s see how the Atari represents each character in the list.

2843216 8 4 2 |

4O gL —O

The Atari remembers each character as eight numbers, each
representing a row of eight dots. These rows I have numbered
above from 0 to 7. Row 0 is always the first number, row 7 the
last. The Atari changes each row of dots into a number from 0
to 255 in the following way. Each dot in the row is assigned a
multiple of two (from 1 to 128) as its value, as shown above. To
get the number for a given row, just add up the values of the
dots used in that row. For example, let’s look at the “4”". The
number in row 1 (the second row from the top) will be 12, since
dots 4 and 8 are being used in row 1 (4 +8=12). The third
number will be 28, since dots 4, 8, and 16 are being used in row
2 (4+8+4+16=28), and so on down to row 7, which will be 0,
since no dots are being used. Before going on, make sure you
understand how to get the following eight numbers as repre-
senting the number “4”: 0, 12, 28, 60, 108, 126, 12, 0.

How Characters Are Stored

Since there are a total of 128 Atari characters, not counting re-
verse characters (see Appendix C: ATASCII Character Set, in
the Atari BASIC Reference Manual), the list will contain 1024 num-
bers (8 numbers per character times 128 characters =1024

54

) Reaerning Lhar

numbers). Look at Appendix D: Atari 400/800 Memory Map in
the BASIC Reference Manual. This simply describes what some
of the different memory locations are used for. We’re interested
in the first locations, containing the “Operating System ROM."”
The Operating System is just a built-in program that tells the
Atari how to do everything it can do in the “Memo Pad”” mode,
simple things such as putting a character on the screen when a
key is pressed, etc. ROM (Read Only Memory) means that the
program will always be in the computer’s memory, even when
the computer is turned off, and can never be changed by the
programmer (that’s you). Unfortunately, the first 1024 locations
in the Operating System ROM (locations 57344 to 58367) contain
the list of numbers we are interested in. In order to change the
characters we are going to have to change the list, which ROM
won’t let us do. There’s an easy way out, however, and that’s
to move the list to a place where we can change it.

Protecting The Character List

We need a place where the list will be safe from our accidentally
changing it, but where we will be able to change it when we
want to. Look at Appendix D again. About halfway down the
page is a box labeled “RAMTOP.” RAMTOP points to the last
location in user memory, the memory we have available for
our use. What if we were to change RAMTOP so that it pointed
1024 locations before the end of user memory? Then the Atari
would think that user memory ended at the new RAMTOP and
would not try to put anything in memory after that location.
We would still be able to use those locations ourselves, though.
Let’s flip over to Appendix I: Memory Locations. If we
look up decimal location 106, we see that it contains the value
of RAMTOP. So if we change location 106, we can trick the
Atari into staying away from our list. Before we do that, how-
ever, let me point out that adding one to the value in 106 actually
adds 256 to RAMTOP. This is because of something called
“paging,”” which is too complicated to explain here, and not
really important for what we’re doing anyway. Just be aware
that to move RAMTOP back 1024 locations, we need to subtract
four (4 x 256 =1024) from location 106. To give us some extra
space in case the Atari accidentally goes a little past RAMTOP,
we’ll subtract five instead. We do this using POKE and PEEK
(finally some programming!):

10 POKE 106, PEEK (106)-5:GRAPHICS 0

3 Redefining Character Sels

The reason we use a GRAPHICS O right after changing RAMTOP
is because the Atari normally stores screen data in the locations
we'll be using for the list (see Chapter 6). If we don’t use a
GRAPHICS command to move that list to a new location, the
screen will do strange things when we move the character list
into place, which we are now ready to do.

Relocating The List

Moving the list is extremely simple; we just use a FOR/NEXT
loop and POKE the values from ROM into their new locations.
We first need to figure out the value of the location of the first
number in the new list:

20 STARTLIST = (PEEK(106) + 1)*256

Remember, we subtracted an extra one from location 106 to be
safe, so we have to add it back on to determine the start of the
list. Also, don’t forget that we have to multiply the value in 106
by 256 because of paging. Now let’s move:

30?2 “HOLD ON...”:FOR MOVEME = 0 TO 1023:POKE
STARTLIST + MOVEME, PEEK (57344 + MOVEME): NEXT
MOVEME

All that's left now is to tell the Atari where the new list is.
We do this by changing the value in location 756, which points
to the starting location of the character set to be used (look at
Appendix I). If you look at location 756 at this stage (use PRINT
PEEK(756)), you'll see that it contains the value 224. Again,
because of paging, this really means 224 x 256, or 57344 (surprise!),
the starting location of the character set in ROM. So we go:

40 POKE 756, STARTLIST/256

A few words of warning about location 756. Every time
you use the GRAPHICS command, the Atari sets the value in
location 756 back to 224. That means that after each GRAPHICS
command, you'll have to execute the equivalent of line 40. No
big deal, but if you forget....

Redefining Characters

Before we actually make any changes, let’s look at the order
the characters are stored in the list. For this we’ll need Appendix
C again (and you thought you’d never use the Appendices!).
Unfortunately, Atari chose not to store the characters in memory

56

3 Redefining Characier Sets

exactly in the ATASCII order. Almost but not exactly:

TYPE ATASCII MEMORY
ORDER ORDER

uppercase,

numbers, 32-95 0-63

punctuation

graphics

characters 0-31 64-95

lowercase,

some 96-127 96-127

graphics

As you can see, all that Atari did was to move the graphics
characters between the uppercase and lowercase (they did this
in order to be able to choose between uppercase and lowercase/
graphics in modes one and two). In the meantime, they made
our job harder for us. In order to determine where a character
is stored in memory, we have to perform a little mathematical
wizardry on its ATASCII value. In the following “formulas,”
keep in mind that each character is represented by eight num-
bers, which is why we multiply by eight:

ATASCII MEMORY LOCATION
VALUE (AV) (of first number)
32-95 (AV-32)*8+STARTLIST
0-31 (AV +64)*8+STARTLIST
96-127 AV*8+STARTLIST

Of course, to get the location of the original character (in ROM),
we would add 57344 instead of STARTLIST.

With these mathematical manipulations in mind, let’s try
one of the original examples that I mentioned. We’ll change
one of the graphics characters, let’s say CTRLPT, to a musical

57

P
piig Redefining Characier Sets

Emres s

note. First, let’s design our note:

1286432 16 8 4 2 1

N4 0N — O

This may not look exactly like a note as is, but because of
the size of the dots, it will look fine when printed on the screen,
as we shall soon see. I'll leave it up to you to check for yourself
that the note translates into the following eight numbers: 15,
12, 12, 124, 252, 252, 120, 0. We now want to replace the eight
numbers already in memory for CTRLP-T with these eight.
qCTRLp-T has an ATASCII value of 20 (see Appendix C),
which fits in the 0-31 category in the formula chart above. The
first thing to do, therefore, is toadd 64 (20 + 64 = 84) and multiply
by eight (8x84 =672) to give us a value of 672. So to change the
<qCTRLP-T character we would have to change the eight num-
bers in memory beginning with location 672+ STARTLIST.

We make this change using a FOR/NEXT loop and DATA
statements:

50 FOR MOVEME =0 TO 7:READ VALUE:POKE 672 +
STARTLIST + MOVEME, VALUE:NEXT MOVEME
60 DATA 15, 12, 12, 124, 252, 252, 120, O

Now, after this has been RUN, whenever we use a
<qCTRLp-T, we will have a musical note. Try it!

As an informal kind of self-test, make sure you understand
the following two lines. Try to work out which character they
will change, and what the new character will look like, before
you actually RUN them (with the rest of the program, of
course):

58

3 Redefining Character Sets

70 FOR MOVEME =0 TO 7:READ VALUE:POKE 776 +
STARTLIST+ MOVEME, VALUE:NEXT MOVEME
80 DATA 0, 0, 60, 102, 102, 102, 63, 0

As you can see, lines 50 and 70 are very much alike except for
the initial value added to STARTLIST. This should light up a
sign in your brain saying “SUBROUTINE!"" If you have more
than one or two characters to be redesigned, you should use a
subroutine to save memory.

A Few Details And Programming Hints

® [n graphics modes one and two, to use lowercase and graphics
characters with your new character set, POKE 756 with
STARTLIST/256 +2. To go back to uppercase, etc., POKE 756
with STARTLIST/256.

® [f you press the RESET button, the Atari will change the value
of location 106 and put the display list back in place of your
character set. Under such circumstances it is necessary to run
the program over again in order to get your character set back.

@ [f a character is too complicated to put in an eight by eight
box, then use more than one box (and therefore more than one
character), and combine them in a string. For example, using
the Atari’s regular graphics characters:

DIM BOX$(7):BOX$ =““(see below)”:PRINT BOX$

Type BOX$ as CTRLP-Q, CTRLP-E, ESCP 4CTRLY
=, ESCp qCTRLp +, CTRLP-Z, CTRLP-C.

Bonus: Four Colors In Graphics Mode 0!

It is possible to define a character to be one of three different
colors (4=3+background). The only drawback is that once
you have defined the letter A’ to be orange, for example, all
A’s will be orange, not just the ones you want.

How do we define the color of a character? It’s really quite
simple. Just as in graphics mode eight, a dot in an even-
numbered column will be a different color than a dot in an odd-
numbered column. Two dots side by side will produce yet
another color. This is why an Atari “4”" (and all other Atari
characters) and my musical note have vertical lines that are two
dots wide, compared to the horizontal lines that are only one
dot wide (or thick, if you prefer). If the vertical lines were only
one dot wide, they would be a different color than the horizontal
ones, unless the horizontal lines alternated one dot on and one
dot off. Confused? Don’t worry, just substitute the following

59

3 Redefining Character Sets

variations of the musical note for the data in the sample program
and see what they look like:

60 DATA 10,8,8,40,168,168,32,0

80 DATA 5,4,4,20,84,84,16,0

Such characters will, of course, look unusual in graphics modes
one and two, just as they look unusual in the above diagrams.

You can’t do a lot of experimenting with this ““phenome-
non” to get such effects as multicolored characters. Changing
the background color will change the colors of the columns,
and thus the colors of the characters. Finally, if you need only
one “A”, or whatever, to be a different color, define it as a
graphics character.

60

3 Redefining Character Sels

Bonus: Upper- And Lowercase In Graphics Modes 1 And 2

By now, after running things over in your mind, you might
already suspect how to mix upper- and lowercase in modes
one and two. If not, it is a painfully simple trick. Since modes
one and two allow use of lowercase and graphics characters
together, just redefine the graphics characters to be uppercase
letters! You can do this by moving the uppercase character de-
scriptions from the ROM list to your own list, like so:

35 FOR MOVEME =256 TO 472:POKE STARTLIST + MOVEME
+256,PEEK(57344 + MOVEME):NEXT MOVEME

Typing a CTRLP-A will now give us an uppercase “A” and
so on. Of course, this is not the best way to do it, since we no
longer have any graphics characters. If we know that we will
need only certain uppercase letters in our program, then it
would be better to move just those letters, one by one, using
the tables given earlier in the article. In any case, we are now
able to mix almost any combination of characters we wish in
graphics modes one and two.

61

3 Redefining Character Sefs

SuperFont

Charles Brannon

The ability to redefine the character set is one of the more useful
features of the Atari. Basically, itinvolves the plotting of a character
on an eight by eight matrix and then converting each row into a
binary number.

This process, however, is slow and tedious for the program-
mer. Fortunately, it is an obvious candidate for computerization.
The computer could display a grid, let you set and clear points on
it, and then do the binary-to-decimal conversion for you. It could
also let you save and load completed fonts (character sets) from
tape or disk.

Although “SuperFont”” may lack some of the features of
commercial products, it is quite powerful and versatile. SuperFont
is written in BASIC, but what makes it special is that it has several
machine language subroutines as well. One of these, thanks to a
display list interrupt (DLI), enables the redefined character set to
be displayed on the screen at the same time as the regular one.
This permits you to see the effects of your changes without letting
the command menu or prompts turn into starships.

SuperFont uses player/missile graphics for fast updates and a
colorful grid. Since the special character window is set off in a
different color than the rest of the screen (again via DLI’s), you
get eight different colors to delight the eye. The human interface
is enhanced with the use of a joystick to plot points in the eight
by eight grid.

62

SuperFont has 18 commands:

3 Redefining Character Sets

d Edit { Restore
d Copy From b Switch
Il Copy To M Clear
i overlay if Invert
M Save Font % Load Font
iy Delete "N Insert
i Scroll Left g Scroll
¥ Print Data Right
Write Data [[uit
AR Reverse B Graphics
ISy & (I, -, /8123456789 {=>"7
EQ CDEFGHIJKLENDPQRSTUUNH?Z[\]A“
E P N ™" s *rtomd v EEtie
¢abcdefghi jklmnopqrstuvwxyze | K4 p
INRSY & (I%+, -, /78123456789 {=>"7
ea CDEFGHIJKLQNDPQRSTUUHHYZt\]A_
VE HA1 N A ™" a *rtomd v LR+
#abcdefghi jklmnopqrstuvwxyze | K4 b

This menu is displayed on the screen along with a checker-
board plotting grid, the 128 characters of the character set, and
the 128 characters of the alternate character set. Some commands
require you to select a character. A cursor will be placed on each
of the character sets. You can move the cursors around the sets
simultaneously. When the cursor is on the desired character,
press the fire button to indicate it. An explanation of each com-
mand follows:

Edit: The basic editing command. The selected character is copied
into the grid, and a flashing cursor is homed into the grid. You
move the cursor with the joystick. Pressing fire will set a point (if
a point is clear) or reset (clear) a point (if a point is already set).
You can draw lines by holding down the button while moving
the joystick. Any changes are immediately visible in the character
set and in the character displayed in the graphics mode one and
two lines at the bottom of the screen. To completely redesign a
character, use the Clear command, and then design the character
from scratch.

Restore: This command will “fix"” a character by copying the original

3 Redefining Characler Seis

bit pattern into it. Very useful if you have mangled a character or
changed the wrong one.

Copy From: You select a character which is copied into the current
character. The grid is updated, and you can further edit the
character.

Copy To: The current character is copied to (replaces) the indicated
character.

Switch: Exchanges the current character’s bit pattern with the
selected character.

Overlay: The selected character is overlaid upon the current char-
acter. This lets you combine two characters to form a new one.

Clear: Clears out the current character. For creating unique
characters.

Invert: Turns the current character “upside down.” For example,
a redefined M could be inverted and copied to the W.

Save Font: Saves the alternate character set in compact form
with a machine language routine. Answer “Filename?”” with
either C: or D:filespec. If you see an error message, press a key
to return to the menu.

Load Font: Retrieves a character set from tape or disk. Answer
the ““Filename”” prompt as you did in Save Font.

Cursor-up or SHIFT-DELETE: Similar to Delete Line in BASIC.
The line of dots the cursor rests on is deleted; the following
lines are pulled up to fill the gap.

Cursor-down or SHIFT-INSERT: Similar to Insert Line in BASIC.
A blank line is inserted at the cursor position. The bottom line
is lost.

Scroll Left: The bit pattern of the character is shifted to the left.

Scroll Right: The bit pattern of the character is shifted to the
right.

Write Data: The internal code (0-127) of the current character is
printed in reverse-field followed by the eight bytes (in decimal)
of the character. If you want a printout of the entire character
set, use the auxiliary program CHPRINT (Program 3). Pressing
any menu selection key will erase the nine bytes.

Print Character: If you want a hardcopy printout of a character,
or only want to define a few characters and have a printed re-
cord, this command comes in handy. Just have your printer
on-line and press P to create a “’picture” of the character (printed

64

M”%
@3 Redefining Character Sets

with X’s). Beside each line of the character is the decimal value
of the binary byte for that line. The number printed at the top
is the internal character code for the character you redefined.
Graphics: Toggles the TEXT/GRAPHICS option of the graphics
mode one and two lines to let you see each half of the character
set.

Reverse: Puts the character in reverse field: all dots become
blanks, and all blanks become dots. Reverse field versions of
the characters are not normally stored in the character set, but
you may want this for special graphics, such as reverse-field
text in graphics modes one or two.

Quit: Exits program.

The commands offer flexibility in working with character
sets, but there may be other functions you want to add. The
program is modular in structure; just follow the branching IF
statements after line 790 to 1370 and replace the 520 (IF K <
ASC(”G”) THEN 520) with a link to your additional com-
mand(s). You may also want to change the colors. Besides the
SETCOLOR statements in line 170, change the zero in line 300
(POKE 1538,0) to COLOR (0-15)*16 + LUMINANCE (0-14). Simi-
larly, you can play with the player/missile colors in line 360.

It is also possible to use the character set data on tape or
disk directly. It is written as a series of 1024 bytes: the bytes of
the character set — no more, no less. I have included three extra
utility programs which access the character data. Program 2
simply loads the set into memory and changes CHBASE (756)
to point to it. Program 3 produces a formatted hex or decimal
dump of the character set. Both programs should have the “file-
spec” changed to the filename of your character set.

You can use Program 4, CHSET DATAMAKER, to create a
“module” of lines that lets you add your character set to any
program. After saving your character set to tape or disk, just
RUN Program 4. It will ask you for the filename of the character
set, the starting line number of the “module,” and a filename
for the module. (Just answer C: to the filename prompt for use
with a cassette.)

CHSET DATAMAKER ““writes”” a subroutine replete with
the appropriate PEEKSs, loops, and DATA statements, to tape
or disk. It optimizes space by writing DATA statements only
for those characters you have changed, by comparing your
character set to the ROM default character set. After it has

65

3 Redefining Character Sets

finished, you can merge the lines it produced with any program
using the ENTER command. You may need to make some minor
adjustments to the code it produces. And in your main program,
remember to use a POKE 756, CHSET/256 after every
GRAPHICS statement, since a GRAPHICS statement resets the
character pointer.

The code of the main program is fairly straightforward. It
uses several machine language subroutines: (1) A Display List
Interrupt handler to maintain the special character window. (2)
Copies the ROM character table into the RAM CHSET table
(avoids the 15-second delay in BASIC). (3) A LOGIC subroutine
that permits AND, OR, EOR to be used on a binary level (see
““Make Your Atari a Bit Wiser,” COMPUTE!, May 1981, #12, p.
74). (4) Implements a fast machine language memory save,
thanks to the Input/Output Control Block (IOCB) PUTREC and
GETREC commands.

You can do a lot with this capability: custom fonts (Greek,
“computeristic,”” script), graphics characters (special line draw-
ing characters, spaceships, “invaders,” bombs, tanks, planes,
ships, even little people). SuperFont makes your task easier,
even fun!

66

3 Redefining Character Sets

Program 1.

140
150
160
170
180
1920

200

210
220
230
240
250
260
270
280
290
300
Z10

S20

1]
J

390
400

DIM I(7),FN$(14) N&{(Z)

IF PEEK(1536)<>72 THEN GOSUB 1400

GRAFPHICS 0:POKE 73532.1

SETCOLOR 2.7.2:S5ETCOLOR 4,7.2

DL=PEEK (S60) +25464%PEEK (S561) +4

SD=PEEK (88) +2546%PEEK (89)+13%40: AS

D=SD+5%40

Al=1630:FUNC=1631:A2=1632:L06IC=1

628

RAM=PEEK (1046)-8: PMBASE=RAMX256

CHRORG=S7344

FPOKE S559.,456:FP0OKE S4279.RAM

POKE S3277.3:POKE S3256,.3

CHSET=(RAM-8) X256

FOKE DL+23,6:P0OKE DL+24,7

POKE DL+18,130

FOKE S512,0:PO0KE S13,.6

FOKE S54286,192

FPOKE 1549, ,RAM-8:POKE 1538,0

A=USR (1555, CHSET)

FO=PMBASE+S12+20: P1=PMEASE+&40+20

:PZ2=PMBASE+76B8+20: P=PMBASE+896+20

: T=85

FOR I=0 TO 128:P0OKE PO+I,0:POKE P

1+1,0:POKE P2+I1,0:NEXT I

FOR 1I=0 TO 7:FOR J=0 TO 3:T=255-T

:POKE FO+I1%4+J,0:POKE P1+1%4+3,T:

T=255-T

POKE P2+I%X4+J,T:NEXT J:T=255-T:NE

XT 1

FPOKE S3248,.64:F0OKE S3Z24%.64: POKE

53250,64

FOKE 704,198:F0OKE 705,240:P0KE 70

b6.68

FPOKE 53256,3:POKE 53257, 3:POKEE 53

298 3:POEE &23;1

7" {@3{8 R3{EX":FOR I=1 TO B:7? "
1 {8 SPACESI I ":NEXT I:2? " {ZI3{8 R3>

A B

POKE 82,14:POSITION 14,1

? "[E Edit{8B SPACESI}[E Restore"

i

67

3 Redefining Character Sels

410
420
430
440

465
470
480

430

500
510
S20
S30
5S40
950
S60
S70
580

? "IE Copy From{3 SPACESIE Switch”
? "I Copy To{S S5PACES>= Clear™

? "[E Overlay{S SPACES>E Invert?”

? "& Save Font{3I SFACES>M® Load Fo
nt "

? "{ESCY{DEL LINEX Delete

{6 SFACESI{ESC3>{INS LINEZ Insert”

? "{ESC>{CLR TARY Scroll Left
{ESCY{SET TABY Scroll {DOWNZX

{6 LEFTXRight"

? "{UFP>E Print Char.”

?7 "E Write Data [Fuit™”

? "{DOWNI{E{B>{[® EKeverse

{3 SPACES:>[? Graphics"

FOR I=0 TO 3:FOR J=0 TO Z1:7Z1=J+1
¥40+4: 72=1%32+J: POKE SD+Z1,Z2:PFPO0OK

E ASD+Z1,Z2:NEXT Jd:NEXT I

FOKE B2.2:FOSITION 0,0

OFEN #2.4.0,"K:"

F=PEEK(764):1IF F=255 THEN S2Z0

IF P=60 THEN 520

IF P=392 THEN POKE 764,158

GET #2.K

IF K< ASC{("E")Y THEN 790

GOSUR 1750

FOR I=0 TO 7:A=PEEK (CHSET+C*8+1):

FOR J=0 TO 3:POKE PO+I%x4+J,.A:NEXT
J:NEXT I

FPOKE ASD+149,C:POKE ASD+1920,.C

JX=0:JY=0

FOSITIOM JX+4,JY+1

2 CHR${32+128%XFF); "{LEFT>"3:FF=1=
FF

IF STRIG{O)=0 THEN 750

IF PEEK{(764)<255 THEN 7 " ";:60TO0
520

ST=8TICK{Q):IF S8T=15 THEN &20

IF STRIG(O) THEN FOR I=0 TO 100 S
TEP 20:S50UND O0,100-1,10,8:MEXT I
FOSITION JdX+3,JdY+122 * &g
IX=IJX+(8T=7)—-(5T=11)
JY=JY+{8T=132)-(5T=14)

IF IJX<0 THEN JdX=7

710
720
730
740
750

760

770

780
790
800
810

820
830
840
850

860
870
880
820

00
710
720
@0

940
250

60
Q@70

780
290

3 Redefining Character Sets

IF JX>7 THEN JX=0
IF JY<0O THEN JY=7

IF JY>7 THEN JY=0

GOTO 610

FPOKE Al1,PEEE(CHSET+C¥8+JY):FOKE A
2,2°(7-J3X):POKE FUNC,73:A=USR(LOG
1C)

POKE CHSET+C¥8+JY,A:FOR J=0 TO 3:
POKE PO+JYX4+J,A:NEXT J

FOR I=1 TO 10:SOUND ©,I%4,8,8:NEX
T I:SOUND 0,0,0,0

GOTO 650

IF K<3>ASC("F") THEN 830

S=C:GOSUER 1750

FOR I=0 TO 7:A=FPEEK(CHSET+CX8+1):
FOKE CHSET+S¥8+I,A:NEXT I
C=S:G60TO =80

IF K<>ASC{("T") THEN B70

S=C:GOSUER 1750

FOR I=0 TO 7:A=PEEK (CHSET+S5%8+1I):
FOKE CHSET+C¥8+I,A:NEXT I
C=S:G0TO 600

IF K<>ASC("0") THEN 920

S=C:G0SUR 1750

FOR I=0 TO 7:FOKE Al,PEEK(CHSET+C
X8+1):FOKE AZ2.PEEK(CHSET+S%8+I):F
OKE FUNC,9:A=USR{LOGIC)

POKE CHSET+S¥8+I.A:NEXT I
C=S:G60T0O S80

IF K<*ASC("R") THEN 940

FOR I=0 TO 7:POKE CHSET+C#*8+I,FEE
K(CHRORG+CXxB+I):NEXT I:G0T0O 580
IF K<>ASC("C") THEN 9&0

FOR I=0 TO 7:FPOKE CHSET+CX8B+1I,0:N
EXT 1:B0TO S80

IF K<>ASC("{R>") THEN 980

FOR I=0 TO 7:POKE CHSET+CX8+1,255
—PEEK (CHSET+C%8+I):NEXT 1:G60T0 58
Q)

IF K<3>ASC("X") THEN 1010

S=C: GOSUE 1750

1000 FOR I=0 TO 7:A=FPEEK(CHSET+S5%8+1I)

:POKE CHSET+S5%8+1,PEEK (CHSET+CXx8

69

3 Redefining Character Sets

1010
1020

1050

1060

1070
1080

1090

1100
1110

1130
1140

1150
11460
1170
1180
1190

200
1210
1220

1230

1240

1250

70

+I):POKE CHSET+CXxB+I.A:NEXT I:G60
TGO S80

IF K<>*ASC("I") THEN 1030

FOR I=0 TO 7:1(1)=PEEK{(CHSET+Cx%8
+I):NEXT I:FOR I=0 TO 7:POKE CHS
ET+C¥8+1,I(7-1I):NEXT I1:60T0 580
IF K<>ASC("{UPX") AND K<>ASC ("
{DEL LINE3") THEN 1050

FOR I=JY TO &4:POKE CHSET+C¥8+I.F
EEK{CHSET+C¥8+I+1):NEXT I:FPOKE C
HSET+C¥8+7,0: 60T0 580
IF K<>ASC{("{DOWNX") AND
{INS LINE>") THEN 1070
FOR I=7 TO JY STEFP —-1:POKE CHSET
+Cx8+1 ,PEEK(CHSET+C¥8+1—-1):NEXT
I1:POKE CHSET+C¥8+JY.0:60T7T0 580
IF K<>ASCA("{LEFT>") THEN 1100
FOR I=0 TO 7:A=PEEK{(CHSET+CX8+1)
¥2:IF A>255 THEN A=A-256

FOKE CHSET+C¥8+I.,A:NEXT I1:60T0 S
80

IF K«
FOR I=0
8+1)/2)
POKE CHSET+C*8+1,.A:NEXT I:G07T0 S
80

IF E<>=ASC("a"}
FPOEE 53248,0:FPOKE
3250,0: POKE 53277,.,0:6RAFPHICS
ND

K<>ASC ("

FASC (" (RIGHT>") THEN 1130
TO 7:A=INT{(PEEK (CHSET+CxX

THEN 1150
S3249,.0: POKE S
O E

IF K<>ASC{("S") THEN 1210
GOSUR 1610:POKE 195,0
TRAP 1190:0PEN #1,8,0,FN$

A=USR {1589, CHSET)
CLOSE #1:TRAF 40000:
THEN 1260

POKE S54284,122:60T7T0 530
IF K{>ASC{"L") THEN
GOSUR 1610:FOKE 195,0

TRAF 1250:0FEN #1,4,.0,FN$
A=USKRi{1&819.CHEET)

CLOSE #1:TRAP 40000: IF PEEK(125)
=0 THEN 1200

IF PEEE(195)

1260

1270

1280
1290
1300

1310

1320

330
1340

13250
1360

1370
1380

390
1395
1397
1400

1410

1430
1440
1450
1460
1470
1480
1490
1500
1510
152
530
1540

3 Redefining Character Sets

FOSITION 14,0:7 "{BEELL2}¥ ERROR -
"iPEEK(195) ;" %":CLOSE #1

IF PEEK (764)<255 THEN POSITION 1
4,0:7? "{20 SPACES}":G0OTO 1200
GOTO 1270

IF K<>ASC("W") THEN 1370
FOSITION 2,10:N$="{% SPACES3":
LEN(STR$(C)):N${1.L)=STR$(C):L
EN(NS$)

FOR I=1 TO L:7 CHR$(ASC(N${I,I))
+128) ;s NEXT I:? “xn":

FOR I=0 TO 2:FOR J=0 TO 1+(I3>0):
A=FPEEK (CHSET+C¥8+J+I%3)

SOUND O, (I¥3+J)%X10+50,10,.8

PRINT A;",";:NEXT J:? "{BACK S”
:NEXT I:SQUND 0,0,0,0

IF PEE#(764)=555 THtN 1350
POSITION 2,10:FOR I=1 TO 3Z:7? *

{12 SPACESX":NEXT I:G50TQ S20

IF K<>ASC("6") THEN 1395
CF=1-CF:POKE 1549,RAM-B+2%CF

GOTO 520

IF K<>ASC("F") THEN 520

GOTO 5000

GRAPHICS 2+16:SETCOLOR 4,1,6:F0S
ITION S5,3:7 #6: "SUPERGEIG"
FOSITION 4.5:7 #6;:;"patience{3 NI
":POSITION 2,7:7 #6:"EFEEICCEEEE
EFEr”

FOR I=1536 TO 1639:READ A:POKE I
LA:POKE 709.A:SOUND ©,A.,10,4:NEX
T I

SOUND ©0,0,0,0: RETURN

DATA 72,169.1OUA141_IO,21Q
DATA 141.24,208,141,26,208
DATA 169.6.141,9,212,104
DATA 64,104,104,133,204,104
DATA 133,.203,169,0,133,205
DATA 1&9, 22 L13T. P06, 1462,4
DATA 160,0,177,205,145, 203
DATA 200, ﬂna 249,230,204 ,230
DATA 206,202,208,7240,96,104
DATA 162.16,169,9,157,66
DATA 3,164,157,69,;,104

1=
=L

71

3 Redefining Character Sets

1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

1650
1660

1670
1680

1690

1695

1700

1710
1720

1730
1740
1750
1760
1770
1780
17920
1800

1810
1820
1830
1840

72

DATA 157,68,3,169,0,157
DATA 72.3,169,48,157,73

DATA =,32,86,228,96,104
DATA 162 _16_169_5_76,q8

DATA 6,9.104,169,0,9,0,133
DATA 212,169,0, 1*3.L _96
FPOSITION 14,0:7 "F11ename7";
FN$="":K=0

POKE 20,0
IF PEEK(768)<255 AND PEEK{(764)<>
39 AND PEEEK(764)<3460 THEN 1670
IF PEEK(20)<10 THEN 1&40

? CHR$(21+11%K) 3" {LEFT}";:E=1-K:
GOTO 14630

GET #2.A

IF A=155 THEN ? " ";:FOR I=1 TO
LEN(FN$)+10:7 "{BACEKE SX"3;:NEXT I
: RETURN

IF A=126 AND LEN(FN$%)3>1 THEN FN%
=FN$ (1, LEN(FN%)-1)>:7 " (LEFT3":C
HR$ (A) : : GOTO 1630

IF A=126 AND LEN(FN$)=1 THEN ? C
HR$ (A) ; : GOTO 1620

IF A=58 OR (A>=48 AND A<=S7) OR
(A>=65 AND A<=90) OFR A=446 THEN 1
720

GOTO 1630

IF LEN(FN$)<14 THEN FN$(LEN(FN$)
+1)=CHR$(A):? CHR${A) ;

GOTO 1630

END

REM GET CHOICE OF CHARACTER
CY=INT(MRY/32):CX=MRY—-32XCY
C=CX+CY%32

POKE SD+CX+CY¥40+4,C+128

POKE ASD+CX+CYX40+4,C+128

IF STRIG(0)=0 OR PEEK(764)<{255 T
HEN MRY=C:GOTO 1900
ST=STICW(0)-IF ST=15 THEN 1800
POKE 53279,

GOSUE 1900
CX=CX—(ST=11)+(ST=7):CY=CY-(ST=1
4) +(ST=13)

1850
1860
1870
1880
1890
19200
1910
1920
2000

S01lS

S020

S030
5040
5050
060
S070
S080

S090

5100

3 Redefining Character Seis

IF CX<0 THEN CX=31:CY=CY-1
IF CX>31 THEN CX=0:CY=CY+1

IF CY<O THEN CY=3

IF CY>3 THEN CY=0

GOTO 1770

FOKE SD+CX+CY¥40+4,C

FOKE ASD+CX+CYX40+4,C

RETURN

REM PRINT DATA

TRAP 1260:0PEN #1,8,0,"F:":PRINT
#1:"{10 SPACESY———{":;C3")————— "
FOR I=0 TO 7:PRINT #1:"

£10 SPACES»";:

A=PEEK (CHSET+CX8+1)

F=128:D=A

FOR J=1 TO 8

IF INT(D/P)>=1 THEN PUT #1,.88:D=D
-FP:G0OTO 5080

FUT #1,32

P=F/2:NEXT J:PRINT #1:" ";:;A
NEXT I:PRINT #1;" {10 SPACES}————-

n

CLOSE #1:POKE S5S4286.192: TRAFP 400
00:60TO S2Z0

Program 2.

1000
1005

1010

1020
1030

1040

1050

1060

REM CHLOAD-CHARACTER SET LOADER
OFEN #1,4,0,"D:FONT":REM YOUR FI
LENAME HERE
X=16:CHSET=(PEEK(106) -8) x256: POK
E 756,CHSET/256

ICCOM=834: ICEADR=836: ICELEN=840
FOKE ICRBADR+X+1,CHSET/256:POKE I
CEADR+X, 0

POKE ICBLEN+X+1,4:P0OKE ICBLEN+X,
QO

POKE ICCOM+X,7:A=USR(ADR("hhhELV
E").X):REM CALL CIO

CLOSE #1

73

3 Redefining Character Sets

Program 3.

100 REM CHPRINT--CHARACTER SET PRINTO
uT

110 TRAP 340

120 OPEN #1,.,4,0,"D:FONT":REM YOUR FIL
ENAME HERE

130 OPEN #2,8,0,"P:":REM CHANGE TO "E
:" FOR SCREEN

140 PRINT "E® HEX OR B DECIMAL";: INPUT
TYPE

150 DIM HEX$%(16) . F$(3)

160 HEX$="0123456789ABCDEF "

165 LSE=-1

170 FOR I=0 TO 1023 STEP 8

180 F$="{3 SPACES>":C=INT(I/8)

190 IF TYPE=2 THEN F$(1.LEN(STR%(C)))
=STR${(C) : PRINT #2:F%:;":";:60T7T0 25
Q

200 LSB=LSB+1:1IF LSB=256 THEN LSE=0:M
SR=MSEBE+1

210 PRINT #2;"$":HEX% (MS5B+1,MS5E+1) ;

230 HINYB=INT(LSB/16):LONYEB=LSEB—-16%HI
NYR

240 PRINT #2:HEX$(HINYEB+1 HINYE+1) ;HE
X$(LONYBR+1,LONYEB+1)3;": "3

250 FOR J=0 TO 7

260 GET #1.,A

270 F$="{(3 SPACES>":1IF TYPE=2 THEN F%
(1. LEN(STR%(A)))=STR$(A) : PRINT #2
3" ":F%:;:60TO0 310

290 HINYB=INT{(A/16):LONYB=A-16%HINYR

J00 PRINT #2:HEX$(HINYE+1 HINYE+1) ;HE
X$(LONYB+1,LONYEB+1) 3" "3

310 NEXT J

320 PRINT #2

330 NEXT I

340 CLOSE #1:CLOSE #2

74

3 Redefining Character Sets

Program 4.

100 REM CHSET DATAMAKER

102 GRAPHICS 1+16:CHSET=(PEEK{106) —-8)
X256

105 DIM F${(14) ,0F$<{(14)

110 POSITION 3,0:7? #6:;"character set”

120 FPOSITION S,2:7 #6:;"datamaker™

130 7 #6:7 #46&:;"THIS UTILITY CREATES®

140 ? #&:;"A SET OF DATA STATE-":
150 7 #63; "MENTS FROM A SAVED"
160 ? #6:"CHARACTER SET. IT®
170 7 #6:"OPTIMIZES BY ONLY™

180 7 #6:;"LISTING CHARACTERS"
190 2 #6:"NOT PRESENT IN THE"
200 7 #6;"STANDARD CHARACTER™
210 ? #6:"SET.'

220 7 #6:7 #6:"PRESS FECGHERT"

230 IF PEEK(S53279)<>3 THEN 230
240 GRAPHICS 1+146

250 ? #6;"THE DATA STATEMENTS”
260 7? #6;"WILL BE WRITTEN"
270 ? #63;"AS A list FILE."
280 7 #63;"USE enter TO MERGE"
290 7?7 #6:;"THE DATA WITH YOUR"

I00 7?7 #6: "PROGRAM.":7? #6:7 #6; "EOOEEE
EERELIEFEE": ? #6; "EEEEFEEEEOEZESEN

305 POKE 82,0: POKE 87 o)

310 72 "{UF'}{DEL LINE}";:INF’UT Fe:IF F

$="" THEN 310
315 IF F#$="C" OR F$="C:" THEN CASS=1:
GOTO 332

320 ? "{6 UPI{6 DEL LINEEOODECEEREEXDEIED
{8 SPACES>EREEITEE":7? :7?

330 7?7 "{UPX{DEL LINEX":;:INPUT OF%$:1IF
OF$="" THEN 330

335 ? "{3 UP>{3 DEL LINE}GEODECEEMEIEEE
BEER{S SPACESEEDEEESLOEODEEEIGA": ?
8P

340 INPUT SLINE

345 CLOSE #1

350 GRAPHICS 2+16:SETCOLOR 4,3,0

360 IF CASS THEN ? #6:7 #6; "POSITION
CHARACTER":? #6;:;"SET TAPE.HIT ZEDO
EEe”

75

3 Redefining Character Seis

370 POSITION S5.6:7? #b6;"working{3 N»"

375 GOSUB 1000:REM LOAD CHARACTER SET

377 IF CASS THEN ? #63;"{(CLEAR}INSERT
OUTPUT TAPE,":? #é;"PRESS EELOEEE"

380 OPEN #2,8,0,0F$:POSITION S5,6:7 #6
: "EEEEARE(S O3

381 ? #2;SLINE; "CHSET=(PEEK(1046)-8) %2
56:FOR I=0 TO 1023:POKE CHSET+I,P
EEK(S57344+1):NEXT I"

382 ? #2;SLINE+1;"RESTORE ";SLINE+S

383 7?7 #2;5LINE+2;"READ A:IF A=-1 THEN
RETURN"
384 7?7 #2;SLINE+3;"FOR J=0 TO 7:READ BR
:POKE CHSET+A%X8+J,B:NEXT J"
385 ? #2;SLINE+4;"GOTO ":;SLINE+2
387 LINE=SLINE+4
390 FOR I=0 TO 127:F=0
400 FOR J=0 TO 7
420 IF PEEK{(CHSET+I1%8+J)<>PEEK(S7344+
I¥8+3J) THEN F=1
430 NEXT J
440 IF NOT F THEN 460
445 LINE=LINE+1
450 ? #23;LINE;" DATA ";:? #2;I3;:FOR J
=0 TO 7:7? #2;3;",";PEEK(CHSET+I%8+J
)3 sNEXT J:=:7 #2
450 NEXT I:7 #2:LINE+1;"DATA -1"
470 ? "All finished! Use ENTER "3;CHR
$(34);0F%
480 ? "to merge the file."
490 END
1000 REM HIGH-SPEED LOAD OF CHARACTER
SET
1005 OPEN #1,4,0,F%:REM OPEN FILE
1010 X=16:REM $10
1020 ICCOM=834:1CBADR=83646: ICBLEN=840
1030 POKE ICBADR+X+1,CHSET/256:P0OKE I
CBADR+X, 0
1040 POKE ICBLEN+X+1,4:POKE ICBLEN+X,
0
1050 POKE ICCOM+X.7:A=USR(ADR("hhhELV
E").X):REM CALL CIO
1060 CLOSE #1:RETURN

76

3 Redefining Character Seis

Character Set Utilities

Fred Pinho

In addition to providing some useful utilities for working with redefined
characters, this article discusses memory allocation and the various ways
of storing machine language subroutines.

The Atari computer has the ability to redefine its character set at
will. Making full use of this power, however, requires some
programming. It isn’t available at the flick of a switch or the touch
of akey. To help in this effort, Id like to present two simple
machine language utilities for use in the text modes (GRAPHICS
0,1,2).

To set the stage, here’s a brief overview of the Atari character
set. A character set is really just a table of shapes which defines
what a character will look like when printed to the screen or to a
printer. The characters are used solely for communication with
the human operator. The computer, as always, is manipulating
numbers, not letters or graphics symbols. However, we think
very clumsily, if at all, in pure numbers. The computer graciously
converts its thoughts into symbols that we can understand and
manipulate.

The set is stored in Read Only Memory (ROM) beginning at
memory location 57344. Each character is stored within eight bytes
of information. This provides an eight-by-eight grid for defining a
character. Within each byte, a one means a dot is turned on by
the video display. A zero leaves the dot off. There are 128 regular
characters plus inverse. Since inverse characters can be generated
from the normal, only the regular characters are stored. Thus, the
Atari character set contains 1024 bytes (8*128).

Before it can do its thing, the computer needs to know the
location of the character set. This is stored in two registers: the
“shadow” register (CHBAS =756 decimal) and the hardware
register (CHBASE =54281). The computer actually uses the
hardware register to locate the character set. However, every
60th of a second, during vertical blank of the TV screen, it goes to
the shadow register and transfers its contents to the hardware
register.

77

3 Redefining Character Seis

From BASIC, if you wish to change the location of the char-
acter set, you must POKE the new location into the shadow re-
gister, not the hardware register. If you POKEd into the hardware
register, you would see nothing, as it would be wiped out im-
mediately by the copy from its shadow. The setup of the two
registers makes it impossible to have multiple character sets on
the screen at the same time when using BASIC. However, it can
be done with machine language subroutines.

What do you store in the character registers? You store the
page number of the beginning memory location of the set. What's
a page number? The computer breaks down memory into 256-byte
“pages”’ (recall that the range of numbers that can be stored in a
single byte is 0 to 255 for a total of 256). The page number is just a
fancy way of indicating a multiple of 256. To get the page number,
divide your memory address by 256. If your answer doesn’t come
out to an exact number, you're in trouble. Run, don’t walk, to
another memory location that is exactly divisible. This is important
because your programs will not work if your page calculation is
incorrect.

The full character set, plus inverse, can be displayed in
graphics mode 0. Inverse characters cannot be displayed in
graphics modes 1 and 2. In addition, these modes can display
only half of the full set at any one time (64 characters). Thus, in
these modes, you are limited to displaying either capital letters,
numbers and punctuation, or lowercase letters and graphics sym-
bols. From BASIC, you can’t have both.

As you can see, the power of the redefinable character set is
there, but it's not available without some programming effort.
What's required to use redefined and multiple character sets?
Three main steps must be considered.

1) Relocating the original character set from ROM into Random
Access Memory (RAM).

2) Revising the relocated, RAM-based, character set.

3) Providing the computer with a program that can switch be-
tween character sets at predictable times during the TV display
process.

Relocating The Character Set

Relocating the character set is simple in principle: PEEK each
ROM location and POKE it into the desired RAM location. The
first problem arises as to where to store the set. One common
solution is to lower RAMTOP. This memory location (106) de-

78

3 Redefining Character Sefs

fines the upper limit of available memory. By POKEing a lower
page number into this location, you can fool the computer into
thinking it has less memory than actually installed. The charac-
ter set can then be relocated to this area. Note, however, that
this hidden area is not completely safe. Certain programming
operations can cause unanticipated visits into this area by the
computer. This would have a disastrous effect on your charac-
ters. Solutions to this problem would involve avoiding the guilty
program commands and/or allocating extra, wasted memory
above RAMTOP.

Another way is to relocate the set just below the display
list. You have to be careful not to overrun the display list. Also,
you have to plan your program so that it doesn’t expand into
your new character set. Even if your program is properly sized,
you can still run into problems with an overly-obese run/time
stack. This software stack is established by BASIC and resides
just above your BASIC program area. It stores needed informa-
tion for GOSUB and FOR/NEXT routines. If you exit from a
FOR/NEXT loop before it finishes counting down, an entry is
left on the stack. If this loop is used frequently, the stack will
grow until it attacks your character set. The solution is careful
use of the POP command to clean up the stack whenever you
prematurely exit from a loop. Table 1 will allow you to relocate
your set without interfering with the display list.

Another possibility would be to relocate your character set
into a string. Just DIMension it for the proper size and then use
the ADR function to locate the first memory location. This
method would certainly provide a safe location. However,
another problem arises.

Note that when you relocate a character set there are certain
limitations. The full set (GRAPHICS 0) must start on a 1K bound-
ary (i.e., the first memory location must be a multiple of 1024).
The reduced set for GRAPHICS 1 and 2 must start on a 1/2K
boundary (multiple of 512). This poses no problem for the first
two storage methods. However, if you wish to use the string-
storage method, you will have to expend some extra program-
ming effort. You must insure that the string begins on the proper
memory boundary.

Which storage method is best? I'll leave that up to you and
to the demands of your program.

79

3 Redefining Character Sets

Relocation of the Character Set Beneath the Display List.

GRAPHICS Relocate at the Indicated Offset (in Pages)

MODE from RAMTOP
Full Set (1024 bytes) Half Set (512 bytes)
0 8 Won’t work
1 8 6
2 8 4
3 8 4
4 8 6
5 12 8
6 16 12
7 24 20
8 36 34

Note: Graphics modes are included since certain applications may require
: ‘ yreq
plotting of characters to the graphics screen.

Example:

Relocate the first half of the character set so it resides just
below the GRAPHICS 1 display list. Label the first memory
location of the set as BEGIN.

BEGIN = (PEEK(106)-6)*256

Once you've chosen the location, the next step is to move
the character set. Using the PEEK-POKE method works OK,
but it’s too slow. If you've chosen to store your new character
setin a string, then you could also relocate your set using the
Atari’s string handling routines, which are fast. This involves
modifying the variable value table to fool the computer into
thinking that one string is located at the ROM-based character
set. This technique is described by Bill Wilkinson (COMPUTE!,
January 1982, #20). Use of this technique would also solve your
memory boundary problem. Note that there is a BASIC bug
that does not allow the correct movement of string characters
in multiples of 256. Thus you would have to transfer either 513
or 1025 bytes, instead of 512 or 1024 bytes. The most general,
quickest and hassle-free method is to use a machine language
subroutine. As usual, a decision must first be made. Where do
you store your routine in order to protect it from BASIC’s vora-

80

Redefining Character Sets

cious appetite? Here are three good methods:

1. In page six (begins at memory location 1536). This page of
memory was set aside by the Atari designers for use by the
BASIC programmer. Generally, you can safely store machine
language programs here. You then access them by the USR
command (X=USR (1536)). Note, however, that the first 128
bytes of page six are not always safe. If you perform cassette
input/output during the program, you could lose this first block
of memory. To be absolutely safe, store your routine only in
the last half of the page.

2. As a string. The method that I like is to store the program
commands as graphics symbols within a string. Take the
machine language number (in decimal), go to the ATASCII
table (Appendix C in your Atari BASIC Reference Manual), find
the equivalent graphics symbol, and type it into the string. You
then access the machine language program by:

X =USR (ADR(MVCHRS$))

Remember to DIMension this string first. With this method
you are not limited in the size of your program as you would
be with page six storage, and your program is safe.

3. Within an array. Atari BASIC allocates memory within the
string/array area in the order in which you DIMension it. This
location doesn’t change thereafter. Note that this is not true of
many other machines. Thus, if you DIMension a string followed
by an array, you can locate the array relative to the string by
use of the ADR function.

10 DIM AA$(1), MVCHR(32)
20 X =USR(ADR(AA$) + 1)

AAS$ is meaningless except that you can determine its memory
location. If you POKE your machine language program into the
array MVCHR, you can always access it in the memory location
following AA$. This method, however, can chew up large gobs
of memory. Each cell in the array takes six bytes. Be careful to
type these DIMension statements sequentially.

Which method should you use? Again, it depends. I like
the string method since it is safe and memory-efficient. The
efficiency arises from storing data with a single symbol, rather
than storing each integer of the number plus a comma in DATA
statements. You also avoid the overhead of the program lines
required for READing the data statements.

81

3 Redefining Character Sels

To aid your programming efforts, I've included a machine
language routine in Programs 1, 2, 3, 4, and 5. This routine will
rapidly relocate your character set. Program 1 is listed in as-
sembly language. The others are BASIC versions which
demonstrate the various ways of storing a machine language
routine in memory. This routine uses four zero-page memory
locations (203-206). These locations have been set aside by Atari
for programming use and are safe. To use them, POKE the
address of your new character set into locations 203 and 204.
As always, the least significant byte of the 16-bit address is
POKEd first, followed by the high byte. Since the set must start
on either a 512 or 1024-byte boundary, the least significant byte
must always be zero. Then POKE the page number of the char-
acter set address into location 204. Memory locations 205 and
206 are set by the machine language routine to point to the
character set in ROM. Note that location 205 is also set to zero.
Finally, do a USR call to your routine.

Switching Between Character Sets

Remember that, because of the setup of the two character set
registers, it's not possible to use more than one set at a time via
BASIC. You can display as many sets as you wish, however,
with display listinterrupts. Well, almost. Actually you’re limited
to some extent by memory availability and the constraints of
the display list. I won’t go into detail here; this subject has been
covered by numerous articles. It’s enough to say that:

1) The interrupt will cause the 6502 processor to stop at a given
scan line of the TV display.

2) It will then execute a machine language routine of your
choice. The address of the routine must be specified in locations
512 and 513.

3) Once done, the 6502 will then merrily resume its TV display.

If the interrupt is done properly, all the action will occur
while the TV beam is off the visible part of the screen. Thus the
changes performed will appear instantaneous. Program 3 is a
routine to allow the use of a redefined character set in the upper
window of a GRAPHICS 1 or 2 display and the standard set in
the text window. This routine simply loads the page number of
the old ROM-based character set into the hardware character
base register (CHBASE =54281). What good is that, you ask?

82

3 Redefining Character Sets

This is done normally anyhow. Here’s the strategy:

1) In BASIC, load the address of your new set into the shadow
character base register. This is copied into the hardware register
at the start of each TV screen display (every 60th of a second).

2) Set a display list interrupt at the last line of the GRAPHICS 1
or 2 screen. Then the interrupt will begin at the first line of the
text window.

3) The interrupt routine loads the address of the standard char-
acter set into the hardware register. Thus the text window re-
gains all the standard characters.

4) Things remain standard until vertical blank. At this time the
TV beam is brought back to the top of the screen in order to
begin a fresh sweep of the display. During vertical blank the
contents of the shadow are automatically copied into the
hardware register. Thus we’ve restored the new character set.

Note that the interrupt routine stores a number (any
number will do) into memory location WSYNC (54282). This
causes the processor to wait until the end of the blank period at
the start of the next horizontal line. Thus the character set is
switched while the electron beam is off the visible portion of
the display. The result is a neat, clean change. Program 6 is an
assembly listing of the display list interrupt routine, with deci-
mal equivalents in parentheses to use in your DATA statements.
(See line 31000 of Program 7.)

Notes: To set the interrupt, do the following:

1. Load the routine into memory.

2. POKE the address for the interrupt routine into locations 512 and
513. POKE the low byte of the two-byte address first.

3. POKE the interrupt into the display list. Set the line before the
one you warnt.

4. Last, enable the interrupt by POKEing 192 into location 54286. To

disable the interrupt, POKE zero into this location.

Pulling It Together

Program 7 demonstrates the techniques discussed. It prints an
identical set of characters to the text window and to the
GRAPHICS 1 screen. The expected characters are seen in the
text window. However, the GRAPHICS 1 display shows a band
of archers beseiging a castle.

83

3 Redefining Character Sels

Line No.

1 Calls initializing subroutine and turns screen
display back on.

10-40 Draws a border using a redefined character.

50-60 Prints characters.

100 Uses STOP instead of END, as this allows you to
experimentand print to the GRAPHICS 1 screen in
direct mode. END does not.

29000 Turns off display to speed processing. Calculates
location of new character set (BEGIN) at six pages
below RAMTOP.

29010 POKE:s the low and high bytes of the new set loca-
tion into memory locations 203 and 204.

29020 DIMensions the string for relocation of the old set.
Defines the string and calls the machine language
routine.

29030-29040 Reads the redefined character data and POKEs it
into the relocated set.

29050-29060 Calculates the location of the display list. POKEs
aninterruptinto the last GRAPHICS 1 line. Reads
the interrupt routine into page six of memory.
POKESs the address of page six into locations 512
and 513. Finally, it enables the interrupt.

30000-30060 New character data.

31000 Data for interrupt routine.

You can do a simple experiment with this routine. To prove the
necessity of writing to WSYNC in the interrupt routine, elimi-
nate the fourth through sixth numbers in line 31000 (i.e., 141,
10, 212). Also change line 29050 to FROM X =0 TO 7. Run the

rogram again. You'll see that the last scan line of the
GRAPHICS 1 screen stops about halfway across the screen.
Also, the point at which it stops tends to jiggle annoyingly.
Other weird lines appear when you hit a key. Finally, delete
POKE 756, BEGIN/256 from line 29000. RUN and you’ll see
only normal characters.

There you have it. These programs only scratch the surface.
With some further programming, you can have even more
character sets on the screen simultaneously. You can also make
your characters blink or change color without interfering with
your BASIC program.

84

3 Redefining Character Sets

Program 1. Character Set Relocater — Assembly Listing.

FLA :Pull unused byte
off stack
LDA #O
STA $CD :Low byte of
ROM-based
character set
TAY :Set register
Y to zero
LDA X ; ¥5ee Notes
S5TA $CF :High byte of ROM set

LOAD LDA ($CD) .Y ;:Load from ROM
STA (%CER) .Y ;S5tore into RAM

INY s Increment Y

BNE LOAD i:Loop 256 times

INC %CC s:Increment REAM page
number

INC $CE :Same for ROM

LDA %CE

CMF X% sCompare to final

page number
¥See Notes

BENE LOAD :If not done.
loop again
RTS s FReturn

Notes on Programs 1, 2, 3, 4, and 5:

Programs 2 through 5 are BASIC versions of Program 1. To customize,
make the following changes (if needed). Remember to convert the DATA
numbers below to character equivalents when using Program 3.

1. To relocate the entire character set, be sure the Sth DATA number is 224,
and the 25th DATA number is 228.
2. To relocate only the first half of the character set (uppercase, numbers,
punctuation), be sure the Sth DATA number is 224, and the 25th DATA
;unnberstZb

. To relocate only the second half of the character set (lowercase, graphics

sl/mbals) be sure the 8th DATA number is 226, and the 25th DATA number
is 228.

85

3 Redefining Character Sets

Program 2. Store machine language routine in page six.

10 RESTORE 30:FOR X=0 TO 27:READ Y:PO
KE 1536+X,Y:NEXT X
20 Z=USR{1536)
30 DATA 104,169,0,133,205,168,169, 2L
33,206,177,205,145,203, 200, 208,
49 2~o,204.gqo,206,16J,L05 01.L26
40 DATA 208,239,96

Program 3. Store machine routine as a string.

10 DIM MVCHR$ (28)

20 MVCHRs="hi{ ., {EEEBA {(EOIOE (& EEE
FGEGLBCEERE ©

30 I=USR(ADR{MVCHR%$))

Program 4. Store machine language routine as a string converted
from DATA statements.

10 DIM MVCHR$ (28)

20 RESTORE 40:FOR I=1 TO 28:READ Y:MV
CHR$ (I)=CHR$(Y) : NEXT 1

30 Z=USR{(ADR{(MVCHR%$))

40 DATA 104,169,0,133,205,168,169,22 4
L133,206,177,205,145,203,200, 08
49, 30,204,230,206_164_206,201,226

S0 DATA 208,239,96

Program 5. Store machine language routine within a matrix.

10 DIM AA$ (1) ,MYCHR(27)

20 RESTORE 40:FOR X=1 TO 28:READ Y:FO
KE ADR(AAS) +X,Y:NEXT X

30 Z=USR{(ADR(AA%) +1)

40 DATA 104,169,0,133,205,168, 169.LL
L133,206,177,.205,145,203%,200,208,
49 _ 230,204,230 ,206,165,206,201.;26

S0 DATA WOB.LQQ_qb

86

3 Redefining Character Sets

Program 6. Display List Interrupt.

FPHA :Save accumulator
{decimal 72).

LDA # $EO :Load ROM page num-—
ber {(decimal 169,
224) .

Write to WSYNC
{(decimal 141,10,
212) .

Store page number
in hardware regi-
ster {decimal 141,
9,212) .

5TA WSYNC

a

STA D409

‘an

FPLA :Restore accumu-—
lator {(decimal
104) .

RTI :Return {(decimal
64) .

Program 7. Demonstration.

1 GOSUR 29000:FOKE 559,34
10 FOR X=0 TO 18 STEP 2:COLOR 1S54:PLO
T X,0:COLOR 26:FPLOT X,19:NEXT X
20 FOR X=1 TO 19 STEP 2:COLOR 26:PLOT

X,0:COLOR 154:PLOT X.19:NEXT X
30 FOR Y=2 TO 18 STEP Z:COLOR 1S54:FLO
T 0,.Y:COLOR 26:FLOT 19,Y:NEXT Y
40 FOR Y=1 TO 17 STEF 2:COLOR 26:PLOT
0,Y:COLOR 1S4:PLOT 19,Y:NEXT Y
S50 POSITION 4,6:7 #&6:" 'ZL&%Z#":POSITIO
N 12,627 #b43"——="
L0 7P MULLKALH" ;P M megP Mo——uw
100 STOP
29000 GRAPHICS 1:POKE 559,0:BEGIN={(PE
EK(106)-6)X256: POKE 756,BEGIN/2
56
29010 SHI=REGIN/256:S5SL0=0:P0OKE 203,S5L
0:POKE 204,SHI

87

3 Redefining Character Sets

29030
29040

29050

29060

I00Q0

30010

30020

Z0030
30040

3IQ060
31000

DIM MVCHR$(28):MVCHR$="hE{,
{(EEEEBM {(E0ORE () EEEGEGEIEn
BRERE": Z=USR (ADR (MVCHR%$)) 3
RESTORE 30000

READ X:IF X=--1 THEN 29050

FOR Y=0 TO 7:READ Z:POKE X+Y+EE
GIN,Z:NEXT Y:G0OTO 29030
DLST=PEEK (560) +2546%FEEK (561) : PO
KE DLST+24,134:RESTORE 31000:F0
R X=0 TO 10:READ Y

POKE 1536+X.Y:NEXT X:POKE S512,0
: POKE S13,6:POKE 54286,192:RETU
RN

DATA 8,165,231,231,231,255,219,

255,231

DATA 24,.161,162,228,232,240,22
ey .

DATA 40,24,60,126,66,126,219,25
5,255

DATA 48,0,0,0,36,36,36,255,255
DATA 104.,0,44,68,254,76,44,20,2

.—’

DATA 208,255,255,255,255.255,
5,255,255

DATA -1

DATA 72,169,224,141,10,212,141,

‘?,212,104,64

8]

=
oF

Notes on Program 7:
1. To set interrupts for the text window of each of the text modes, change line

29050 as follows:

Text Mode Change to

1 POKE DLST +24,134
0 POKE DLST + 24,130

2

POKE DLST +14,135

2. To add a text window to GRAPHICS 0, POKE 4 into memory location
703. See ""Add a Text Window to GRAPHICS 0," reprinted in this book.

3. If you change the mode as in 2 above, don't forget to adjust the character
set storage (BEGIN) in line 29000. Also remember the GRAPHICS call in

line 29000.

88

eeeeoeoeecoeveteceeooee

v
v
»
v
v
v
-
v
5
v
v
v
v

Chapter 4

Animation
w With
Character

HE] TTHS

¢eecocoCoCCOCCOCCOCOOOPLOCOCOPLOCOLOCOPOOCCOCOOCOCPOCCOCOCOROOOT

ﬂ. Animation With Character Graphics

TextPlot

Charles Brannon

TextPlot is a machine language graphics utility that lets you
mix text and graphics. It is designed to work with the four-color
graphics modes three, five, and seven. It will place any ATASCII
character — upper/lowercase, graphics, numbers, and special
symbols in normal or reverse field — on the graphics screen in
any of three colors. The size of the characters varies in propor-
tion to the pixel size: GRAPHICS 3 characters are four times as
large as those in GRAPHICS 7, whose characters are the same
size and proportions as those in GRAPHICS 2 (text mode).
Through standard display list modification, any of the three
sizes of text can be mixed with the other modes. TextPlot enables
you to use a total of eight text modes. (See the description of the
“bonus”’ text modes later.)

Text On Graphics Lines
TextPlot, unlike the text modes, can be mixed on the same line
with normal graphics. You can label charts and graphs, or quick-
ly draw pictures with the graphics characters and then embellish
them. TextPlot even works with an alternate character set, so
you can design special “shapes” and move them around the
screen for high-speed animation. The text in graphics mode
three is huge, a real eyecatcher. Unlike the other text modes,
TextPlot lets you position any character at any possible vertical
resolution (although horizontally it’s the same). And all this
was without modifying the dlsplav list!

Luckily, TextPlot is easy to use. You load it into memory
(it goes into the reserved memory at $600 hex) with a BASIC
loader or BINARY LOAD, via DOS. You then select the graphics
mode in which to use it with the ordinary GRAPHICS com-
mand. (TextPlot works in either full-screen or window modes.)
You then “plot” each character with the command:

A =USR(1536,chr,color,column,row)

Don’t let this machine language call intimidate you. It merely
enables a USeR command. The other variables for the function
communicate with TextPlot. If you leave one out, or add an

91

a Animation With Character Graphics

extra one, TextPlot will ring the bell to warn you.

CHR: The ASCII value of the desired character [like ASC(“K")].
COLOR: The color of the character (just like the COLOR state-
ment, 1-3).

COLUMN: The horizontal position of the character. This de-
pends on the mode:

Mode MaxColumns MaxRows

3 5 16
5 10 40
6 10 88
7 20 88
8 20 184

ROW: The vertical position of the character. This also depends
on the mode (see above), and is the line at which you want the
character to start. Remember that each character is just eight
lines of dots, so they can start at any pixel position vertically.
The horizontal resolution is limited by the internal storage of
graphics information on the screen.

So, to place a blue capital letter “A”” on the screen in
graphics mode three, at the second column and tenth row, use
the command:

A =USR(1536,65,3,2,10)

where 65 is the ATASCII value of “A”’; 3 is the color; 2 is the
column; 10 is the row. Strings of text can be placed on the screen
as well:

DIM T$(20)

T$="That’s Incredible!”

GRAPHICS 7+16

FORI=1TO LEN(T$)
A= ASC(TS(1,1))
V=USR(1536,A,1,1,2)

NEXT I

Notice that you can use any variable with the USR function,
not just A.

Bonus Text Modes

TextPlot was designed for the four-color graphics modes.
Strange things can happen if you use it in any other mode. In
modes six and eight, however, you will indeed get text. In
GRAPHICS 6, the characters are the same size as those in

92

4 Animation With Character Graphics

GRAPHICS 5. There is a blank line between each row of dots in
each character. A character plotted in COLOR 1 or COLOR 2
will also skip horizontally. COLOR 3 will create characters di-
vided into “bands.” The effect is similar to the IBM logo (see
Figure 1). This same oddity results in “artifacting” in
GRAPHICS 8. What does that mean? You get three colors of
text in GRAPHICS 8! Depending on background and dot colors,
COLOR 1is purple, COLOR 2 is green, and COLOR 3 is white.
(See Chapter 6 for more information on artifacting.) The text is
twice the width of GRAPHICS 0 characters, but the same height,
just like GRAPHICS 1. Other strange patterns and effects can
be generated by using numbers other than 0-3 in the color as-
signment. A seven creates a “3-D”" overlay effect, for example.

I have included a sample program that lets you type on the
screen using a flashing cursor. It works in graphics mode seven.
You can use all the standard keys, but only a few of the editing
keys work. What can I say? It’s not supposed to be a word pro-
cessor! The lines from 20000 and up will place TextPlot into
memory at page six. You can save them to disk or tape and
merge them with other programs using the LIST/ENTER
combination.

For Cassette For Disk

Rewind cassette, press

PLAY & RECORD, and

enter: Enter:

LIST*C:",20000,32767 LIST”D:TXTPLT.ENT”, 20000,32767
Press RETURN twice. and press RETURN.

To merge with a program
already in memory:

Rewind tape, press PLAY,
enter: Enter:

ENTER “C:"" ENTER “D:TXTPLT.ENT”
and press RETURN twice. and press RETURN.

Advanced readers may want to know how TextPlot works
(if you haven’t figured it out already). You are probably familiar
with how to plot characters on the GRAPHICS 8 screen by PEEK-
ing the character generator and then placing these bit patterns
directly into the screen memory for GRAPHICS 8. It works
because each byte in GRAPHICS 8 (and modes four and six,
too) displays eight dots, or pixels. A one-bit in the byte means
a “lit” pixel and a zero is a dark (“background”’) dot. The four-

93

a Animation With Characler Granhiﬁ}‘

color modes have to split the load between two bytes. Each
byte displays four pixels. Two bits hold the color (binary): 01
color one, 10 color two, 11 color three. (See Figure 2.) TextPlot
uses the character generator (indirectly through CHBAS, 756
decimal) to get the bit map and then “pulls” the byte accordion-
style into two color bytes. Theoretically, any character could be
a mixture of the three colors, but it’s hard to implement and
use. (Unless you use Antic Display modes 4 or 5....)

Using TextPlot As A BINARY FILE

The Atari DOS lets you store machine language files on the
disk and load them back, both by DOS menu selections. You

can even have TextPlot load in automatically with the DOS, if
you're sure you'll always need it. After placing TextPlot into
RAM, go to DOS with the command: DOS. If you have DOS
2.0S, there will be a pause as the Disk Utility Package loads.
The DOS menu should be displayed. Type K <RETURN>. After
the prompt, enter:

TXTPLT.OBJ,0600,06FF <RETURN>
If you want TextPlot to automatically load with DOS, enter:
AUTORUN.SYS,0600,06FF <RETURN>

instead. If you don’t do this, you’ll have to go to DOS and enter
L (Load) and reply with TXTPLT.OB]J to load it and B <RETURN>
to exit to BASIC.

Figure 1.
GRAPHICS 6

1
+ 1
-
-
-

5] [(0 O

LLTT TS ENEEEDAR 11T i il D § ITTT

94

Figure 2.

BIT

PIXEL

BIT

PIXEL

Program.

10
20
30
40
S0
60
70
80
0

100
110
120
130

140
150

160
170

REM
REM
REM
REM
REM
REM
REM
REM
REM

GRAPHICS MODES
4,6,and 8

7 6 b 4 3 2 1 0

1 2 3 4 5 6 7 8

GRAPHICS MODES
3,5,and 7

3 2 1 0

SUFPER SCREEN-TextPlot Demo
Use all the ATARI characters
including cursor up/down
left/right. backspace. HETURN,
et . Fress CAPS/LOWR to
select upper or lower case,

as usual. Atari Logo key
toggles reverse field.

Press console buttons +or diff

erent colors
REM ESC switches modes (7 wvs. 8)
ML=1536

IF

FEEK {ML)=0 THEN GOSUE 470

XL=19:¥L=11:DIM CHAR%(480) ., C% (480

)

CHAR%=" ":CHAR$%{480)=" ":CHAR${2)
=CHAR%: C$=CHARS®
GRAFHICS 7+G+16:0PEN #1.4,0, "K: ™

IF

G=1 THEN SETCOLOR 2,0,0

LM=1:X=LM:Y¥Y=0:C=1

95

4 Animation With Character Graphics

260
270

380
390
400
410

20
430
440

4460
470

480

96

POS=X+Y%20+1: CHR=ASC (CHARS$ (FPOS, PO
$)) :RVS=CHR: SC=ASC(C$ (FOS)) -31
POKE 20,0:RVS=RVYS+128: IF RVYS:>255
THEN RVS=RVS5-256

A=USR (ML ,RVYS.C.,X.,Y¥8)

IF PEEK(7&4)<3>255 THEN 270
T=FPEEK{(53279):IF T=6 THEN C=1

IF T=5 THEN C=

IF T=3 THEN C=3

IF PEEK(20)4<15 THEN 210

GOTO 190

A=USK{ML,CHR,SC,X.Y%8)

GET #1,.KEY:E=0:DL=E

IF KEY>31 AND KEY<123 THEN 430

IF KEY=ASC{"{(CLEARX") THEM CLOSE
#1:60TO0 140

IF KEY=ASC{"(ESC>") THEN CLOSE #1
:6=1-6:G0TO0 140

IF KEY=ASC("(UF2") THEN Y=Y-1:
IF KEY=ASC{"{DOWN>") THEN Y=Y+
=1

IF KEY=ASC{"{LEFT3>"}) THEN X=X-1:E
=1

IF KEY=ASC("{RIGHT>") THEN X=X+1:
E=1

IF KEY=155 THEN X=LM:Y=Y+1:E=1

IF KEY=ASC("{BACK S3") THEN X=X-1
:KEY=32:DL=1

IF X<LM THEN X=XL:Y=Y-1

IF X>XL THEN X=LM:Y=Y+1

IF Y>YL+YL¥G THEN Y=0

IF Y0 THEN Y=YL

IF E THEN 180
A=USR{ML . KEY,C.X.Y¥8)
POS=X+Y%¥20+1:CHAR$ (POS,PDOS)=CHR% (
KEY):C$ (POS,POS)=CHR$ (31+C)

IF DL=0 THEN X=X+1:IF X>XL THEN X
=LM:Y¥Y=Y+1:IF Y¥Y>YL THEN Y=0

GOTO 180

ML=153&:FOR I=0 TO 252:READ A:FOE
E ML+I.A:NEXT I:RETURN

DATA 104,240,10,201,4,240

E=1
1:E

490
S00
510
520
930
540
oS0
560
570
580
590
600
610
620
630
640
650
660
670
680
670
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
00

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

4 Animation With Character Graphics

11.170,104,104,202,208
251,169.253.76,164_ 246
104 ,133,195,104,201,128
144,4,41,127,198,195
170,141 ,250,6,224,.96
176, lq.ibq 64.L¢ o DL
144.5.169.LL4.24 109
250,6,141,250,6, 104
104,141 ,251.6, 104 104
141,252,6, 14.LJL.6
104,104, 141.th.6,133
186,166,87, 169 10,224
3.L40 8. 169 .L24
5.440.4.169 40 B 0
207 4 133,187, 164.88 133
°0¢,16q,89, 33,204,
228, 6,294, 173,252, 6
104,203,133, 205,144,2
230,204,24,165,20F,101
212,133, 203,165,204,101
213,133, 2084,173, 280,46
133,187 1869:8:1F3,186
I2; 228, 65168, 212,; 133
203, 17¢.A44.L.101.L13
135,206, 160,0,162.8
169,0. 33.208_1¢¢,409
177 . 205,69,195,72,104
10,72,144,8,24,173
291l:0:9,; 208, 1335: 208
224,1,240,8,6,208
38,209,6,208,38,209
202,208,228,104,152,72
160,0,165,209,145, 203
200,165,208,145,203,104
168,24,165,203,101,207
133,203,144 ,2,230,204
200,192,8, 208, 183,96
169, 0,133,212,162.8
70,186,144, 35,24,101
187,106, 1602, “12.2ﬂ” 208
243,13”.L1~,96 0.1

28

97

@i Animation With Character Graphics

Using TextPlot For
Animated Games

David Plotkin

When typing in this program, be especially careful typing the numbers in
the DATA statements and USR commands. A mistake could cause your
machine to lock up, that is, no longer respond to the external world,
requiring a power-on reset.

If you're like me, the first thing you did when you bought your
new Atari was run out to buy some games for it, probably with
visions of multicolored, arcade-style entertainment in mind. The
computer store where I purchased my Atari also sells Apples.
The wide assortment of exciting, machine language games avail-
able on the Apple and not on the Atari was a real disappointment.
Time and time again I saw fascinating games which were not
available to me. The recent release of many new Atari programs
has somewhat alleviated this, but the problem still exists. To make
things even more frustrating, many interesting games are not all
that complex from a programming standpoint.

I decided to try my hand at programming these games myself.
Having completed the book on how to program in BASIC, I
charged ahead and wrote my first “arcade-style” game, which I
entitled “Space Rocks.” It was a home-grown version of Asteroids.
The program had it all: graphics, sound, multiple missiles in flight
at once, a fancy space ship, scoring, and music. It was also ex-
tremely slow. I had spent two weeks on it and each move took
almost a minute. Ridiculous? Of course. I tried to speed it up by
simplifying the graphics, but never did get it running very fast.

The next step was to try writing a program in a text mode.
The Atari can manipulate text quickly, so I had limited success.
Using a custom-designed character set also added to the text-mode
games. Nevertheless, when there is more than one character to
move, it can still be quite slow. I briefly considered learning
machine language, but it's not something I'm eager to tackle.

The program “TextPlot” (see previous article) is a first-rate

98

a Animation With Character Graphics

gaming tool. As the author said, it allows you to use text and text
characters in graphics modes. It also works with an alternate
character set, as also mentioned briefly. But here’s the kicker —
since it draws the text character (and erases it also) using a machine
language routine, it can be used to animate in high resolution
graphics modes at machine language speeds. Thus, your character
"A”, redefined to a space ship or missile, literally zips across the
screen, and five or ten “A’s”” can move across the screen without
the frustrating BASIC characteristic of “taking turns.”

By drawing the non-moving portions of your picture in a
BASIC graphics mode, and the moving portion using TextPlot,
you can write some colorful and challenging games. The program
below demonstrates my own efforts in this regard, which I will
tell you about shortly. But first some pointers:

1. Animation is done by drawing, erasing, and redrawing in a
new position. The erasing can be done in two ways. You can call
the USR command with the character ASCII code, but in the back-
ground color. Or you could call USR command with the ASCII
code 32 (blank space) in any color. By looping and using a variable
either in the color slot or in the ASCII code slot, drawing and
erasing is easy. Increment the X and/or Y coordinates (such as
MX1 and MY1 in the program) between erase and the redrawing,
and the character moves smoothly across the screen. This incre-
menting, by the way, was done in BASIC (MX1=MX+1, etc.)
and seems to be the limiting factor in how many characters can
move across the screen at once without significant “taking
turns.”

2. Itis possible to define a creature or object which consists of
two or three redefined characters which move together. It is best
to increment the location of all three characters and then call the
machine language routine to move them the most smoothly.

3. There is a large difference between vertical and horizontal
resolution. Moving a character one space horizontally is equi-
valent to moving eight spaces vertically. Remember this when
moving diagonally. Also, BASIC commands such as DRAWTO,
PLOT, LOCATE, etc., work on the graphics mode coordinate
system. Thus, the horizontal location in mode seven can vary
from zero to 159, but the X coordinate input to the USR call can
vary only from zero to 19, normally. Therefore, X coordi-

nate = horizontal location/eight. The vertical resolution is the
same as the Y coordinate.

99

u Animation With Character Graphics

Note that, in the program, I have varied the X coordinate
from 60 to 79 instead of from zero to 19. What this does is move
the character down one pixel for each multiple of 20 (60 to 79
moves the character down three pixels from where it would be
at zero to 19). A character moving horizontally will pass across
the screen lower and lower at higher values of the X coordinate
without changing the Y coordinate. This invalidates the
relationships shown above between coordinates and screen
position, which work only if the X coordinate is between zero
and 19.

4. A LOCATE statement meant to find or detect one of the
generated text characters cares not what the character is, but
only what the color of the character is. This is because the text
character is just a series of pixels set to a particular color.

5. The alternate character set is located in an area of RAM pro-
tected by POKEing a lower number of pages into location 106,
which stores the number of pages (multiply by 256 to get bytes)
available in memory. This is a fairly common technique of pro-
tecting memory, since the computer doesn’t know about the
memory above location 106 (see line 3200 in the program) and
thus doesn’t use it.

In the original version of the character generator, a step-
back of five pages (1280 bytes) was used. The character set is
four pages (1K) long, plus one extra. This works fine in graphics
mode zero, but does not work for this program. I found that
the minimum step-back is 16 pages (4K), although any multiple
of 4K (32 pages or 48 pages) will work. Intermediate values led
to part of the screen being blank or to runny dots and lines being
displayed. A final point on this: after every GRAPHICS com-
mand, you need to include a POKE 756, PEEK(106) + 1 to point
the Character Base (CHBAS) address to the redefined character
set, since the GRAPHICS command resets the pointer to the
ROM character set.

Rules 0f The Game

Now to the program. You are chief gunnery officer of the Space
Fortress Reliable, located at the outermost fringes of the Galactic
Empire. Although the fortress is protected by shields, there are
four “channels” through the shields to allow for supply ships
and transportation of personnel. Since attacking vessels can
also make use of these channels, a big laser is mounted to fire
down each of the channels.

100

h Animation With Character Graphics

The channels are located directly above, below, left, and
right of the fortress. Their width is such that only one ship ata
time can attack from any direction. The laser is aimed in the
appropriate direction by pushing the joystick in that direction.
Once the laser is aimed, it fires automatically.

As the attack progresses, however, and energy is used up,
the shields begin to withdraw towards the fortress to maintain
integrity. The enemy ships can come out of hyperspace and
begin the attack through the channels closer to the fortress, so
you have less time to fire on them. Watch out especially for the
ships to the left and right which, although they start farther
away than the ships above and below, move eight times as
fast. Good luck, and good hunting.

101

a Animation With Character Graphics

Program
Line No.

Description

1-10

20

30
40-100
110-120
130-170
180-220
230-280

290-310

320-350

360-400

500-620
700-710

Go to the subroutines for redefining the character set and
initializing TextPlot.

Initialize graphics, set character base address to redefined
character set.

Initialize variables.

Draw the fortress and background.

Print “SCORE 000" on the screen.

Erase last gun position.

Read current joystick position.

Aiming and firing sequence. The gun is drawn in the new
position, and the laser is fired. If the ship is hit, it explodes.
Updates the score on the screen, digit by digit. Jumps to the
end of the game on high score.

If aship was destroyed, then uses the random number generator
to decide whether a new ship is to be launched. The starting
position of the new ship is moved closer to the fortress as the
score increases.

Moves each ship toward the fortress. If the fortress is hitby a
ship, then jumps to the end of game routine.

End of game routine when fortress is destroyed.

End of game routine on winning game.

20000-20430 Subroutine for TextPlot.
32000-32109 Subroutine for redefining character set.

Variables
SC=Score

J =joystick position

J1=1,2,3,4 depending on joystick position

MX1 to MX4 =X coordinate of enemy ships

MY1 to MY4=Y coordinate of enemy ships

M1 to M4 = status of enemy ships; =0 when ship is blown up;
=1 when ship is intact

Starx,Stary =X and Y coordinates of stars

ML = memory location

START =byte address of RAMTOP

Z,Y,STAR,N,W,I=loop variables.

102

s

5& Animation With Character Graphics

Program.
1 GOSUR 32000:CLR
10 GOSUE 20000
20 GBRAFHICS 7+16:POKE 756,.PEEK (106) +1
30 SETCOLOR 2.3.4:5C= 0:J1=1:MX1=0:MY1
=0:MXZ2=0:MYZ=0:MX3I=0:MYZ=0: MX4=0:M
Y4=0:M1=0:M2=0: M3=0: M4=0
40 COLOR 1:FOR Y=35 T0O 45S:FPLOT 72,.Y:D
RAWTO 95,.Y:NEXT Y
41 COLOR 2
S0 PLOT 72,.35:DRAWTO 69,.3Z2:PLOT 73,35
:DRAWTO &62.32:PLOT 72,36:DRANTO 69
32
60 PLOT 72.45: DRANTO &62.48:PLOT 73,45
:DRAWTO 69.48:PLOT 72.44:DRAWTO 69
.48
70 PLBT 95, 35:DRANTOE 98,32:PLOT 24,35
:DRAWTO 98.32:PLOT 95,.3246:DRAWTO 98
32
80 FLOT 95.45:DRAWT0O 98.48:FLOT 94,45
:DRAWTO 98.48B:FPLOT 95.44:DRAWTO 98
.48
0 FOR STAR=1 TO BO:5TARX=RND (D) X158+
1:STARY=RND(O)X24+1:FLOT STARX.STA
RY:NEXT STAR
00 COLOR 0O:FOR X=73 TO 94 STE 2:FLO
T X,.40:NEXT X
110 D=USR(1536,83,3.0,0):D=U8R{1536.6
a3 1,0)Y e D=USRIS3RE,. 79,3, 2,80
120 D=USR{1536,82,3,.3,.0):D=USR{1536.56
?.3.4,0):D=U8KR{1536,48,3,1.8):D=U
SR(ld\ﬁ 48, 3.2,8):D=USR(1536.48, 3
=)
130 ON J1 GOTO 140,150,160, 170
140 D=USR(1536,32,.1,70,24):60T0 180
150 D=USRI(153 _~L.1 7L.x4):GDTD 180
160 D=USR({1536, hL.l 70,43) : 6070 180
170 D=USR({(15Z56,32,1,68,34)
180 JIJ=STICK(0):IF J—ld THEN GOTO 290
120 IF J=10 0OR J=14 OR J=6 THEN J1=1:

D=USR{(1536,16,1,70,24) :60T0 230

103

4 Animation With Character Graphics

)
i
<

rJ
t
<

[SEN]
ou
ou

265

270

280

290

300

104

IF J=7 THEM J1=2:D=USR(1536,17.1,
72,34):60T0 230

IF J=5 OR J=13 OR J=9 THEN J1=3:D
=USR(1536,18,1,70,43):607T0 zzn

IF J=11 THEN J1=4:D=USR(1536,19,1
L 68,34)

COLOR 1:SOUND 0,25.10,8: SOUND 1,2
8,10,8:0N J1 GOTO 250,260,270, 280
PLOT 84,27:DRAWTO 84,0:COLOR ©:PL
OT 84,77:DRAWTO 84,0:1IF Mi=1 THEN
M1=0:D=USR(1536,15,3.MX1,MY1):SC
=5C+2

GOTO 290

FLOT 104,40:DRAWTO 159.40:COLOR O
:PLOT 104,40:DRAWTO 159,40:1IF M2

1 THEN M2=0:D=USR(1536, 14.¢. XZ. M
Y2):S5C=8C+2

GOTO 290

PLOT B4,54:DRAWTO 84,95S:COLOR O:F
LOT B4,54:DRAWTOD B84,95S:1IF M3=1 TH

EN M3=0:D=US5R({(1536,15, 3, MX3., MY3) :

SC=S5C+2:6G0T0 220

PLOT 63,40:DRAWTO 0,40:COLOR C:PL
0T &63,.,40:DRAWTO 0. 40:1F M4=1 THEN
M4=0:D=USR{(1536,15. 3, MX4,MY4):5C
=5C+2

SOUND ©0,0,0,0:50UND 1,0,0,.0: SOUND
DB, 0,0 IF SE€>»999 THEN GOTO 700
VI=INT{(SC/100):VZ2=INT(SC/10-V1iX¥x10
Y:VE=8C—V1Xx100-V2%10:V1i=V1+48:V2=
VZ2+48:V3=V3+48
D=USR(1536,V1,3,1,8):D=USR{(1536,V
2:.3.2,8):D=USR{15346,V3,3,3.8)

IF M1=0 THEN IF INT(RND{O)X2+1)=1
THEN M1=1:MX1=70:MY1=5C/75: D=USR
(15336,20,2,MX1,MY1)

IF M2=0 THEN IF INT{(RND{(O)¥2+1)=1
THEN MZ=1:MX2=79-5C/400:MY2=33:D
=USRA(1536,.21,2.MX2,MY2)

IF M3=0 THEN 1IF INT(RND(O)*2+1)=1
THEN M3I=1:MX3I=70:MYI=70-8C/75:D=
USR{1536,22, 2. MX3. MYZ)

I
n
o

370

380

3920

400

300

510

S70

600

l‘ Animation With Character Graphics

IF M4=0 THEN IF INT(RND({(0)%x2+1)=1
THEN M4=1:MX4=60+SC/400:MY4=32:D
=USR(1536,23,2.MX4,.MY43)
IF Mi=1 THEN D=USR(1536,20,0,MX1,
MY1):MY1=MY1+1:D=USR(1536,20,2.MX
1,MY1):IF MY13>=24 THEN GOTO S00
IF M2=1 THEN D=USR{1536.21.0,MX2,
MY2):MX2=MX2—1:D=USR(1536,21,2,MX
LMY2):IF MX2<=72 THEN GOTO 500
IF M3=1 THEN D= USR(1536,22,0,MX3,
MYQ)-MYS—MYT—I D=USR(1534, 22,2, MX
«MY3):IF MY3<=43 THEN GOTO 500
IF M4=1 THEN D=USR{1536,23.0.,MX4,
MY4) : MX4=MXA+1:D=USR(1536,23,2,MX
4,MY4):IF MX4>=68 THEN GOTO S00
GOTO 130
SOUND ©0,50,8,8:S0UND 1,100,8,8:50
UND 2,200,8,8:S0UND 3,5,.8,8
D=USR(1536.15.3.68,34) : D=USR(1536
15,3,70,83) :D=USR{1536,15,3,72,5
4) : D=USR(1536,15,3,70,24)
D=USR(1536,15,3,69,36) : D=USR(1536
15,3,69,80):D=USR(15346,15,3,70,3
0) :D=USR(1536,15,3,71,27)
FOR N=0 TO 3:S0UND N,0Q,0,0:NEXT N
FOR N=0 TO 3:SOUND N,.N%¥80+5,8,.8:N
EXT N
COLOR 3:PLOT 84,40:DRAWTO 84,20:D
RAWTC 84,60:FLOT 84,40:DRAWTO 114
.A40:DRAWTO S54,40:PLOT 84,40:DRAWT
0O 114,20
PLOT 84,40:DRAWTO 114,60:FLOT 84,
40:DRAWTO S4,60:PLOT 84,40:DRAWTO
54,20
FOR W=0 TO 1S:FOR W1=1 TO 20:SETC
OLOR 2,W,S:NEXT W1:NEXT W
FOR N=0 TO 3:SOUND N,O,0,0:NEXT N
FOR I=1 TO 30:FOR J=1 TO 10%RND(1
) : SOUND O,I+10%XRND(1),10,8:NEXT J
:NEXT I:SOUND 0,0,0,0
GRAFPHICS 2+16:7 #&; "GAME OVER..FI
NAL":? #6:"SCORE ";SC:7? #6:;"TO PL

105

a Animation With Character Graphics

AY AGAIN":? #6;"PRESS TRIGGER"
610 IF STRIG(O)=1 THEN GOTO &10
620 GOTO 20
700 GRAPHICS 2+16:7 #6;"G0O0OD GAME!'!':'"

17 #6; "GEEECECEOOO ":7 #6;"YOUR S

FPACE FORTRESS":7? #6&; "SURVIVED"
710 ? #&6;"TO FLAY AGAIN":? #6:"PRESS

OEEOREEEE ":60T0 610
19999 END
20000 ML=1536:FOR I=0 TO 252:READ A:P

OKE ML+I1,A:NEXT I:RETURN

20010 DATA 104,240,10,201,4,240
20020 DATA 11,170,104,104,202,208
20030 DATA 251,1469,253,76,.164,246
20040 DATA 104,133,195,104,201,128
20050 DATA 144,4,41, 1“7,198,195
20060 DATA 170,141,250,6,224,96
20070 DATA 176,15,169,64,224,32
20080 DATA 144.L.169~LL4 24,109
20090 DATA 250,6,141,250,6,104
20100 DATA 104 141,251,6,104,104
20110 DATA 141,252,.6,14,252.6
20120 DATA 104,104,181 ,253,6,133
20130 DATA 186,166,87.,169,10,224
20140 DATA 3,240,8,169,20,22
20150 DATA 5,240,2,.169,40,133
20160 DATA 207,.133,187,165,88,133
20170 DATA 203,.165,89,133,204,32
20180 DATA 228,6,24,173,252,6
20190 DATA 101,203,133,203,144,72
20200 DATA 230,204,24,165,203,101
20210 DATA 212,133,203,165,204,101
20220 DATA 213,133,204,173,250,6
20230 DATA 133,187,169,8,133, 186
20240 DATA 32,228,6,16J,L1L,133
20250 DATA 205,173, 44.L.101 213
20260 DATA 133,206,160,0,162
20270 DATA 169_0,1QB.L08 1::.L09
20280 DATA 177,.205,69.195,.72,104
20290 DATA 10,72,144,8,24,173
20300 DATA 251,6.J.L08 133,208
20%10 DATA 224,1,240,8,6,208

106

20320
20330
20340
20350
203460
20370
20380
20390
20400
20410
20420
20430
2000

A
PJ
o
[N}
4y

e
rJ
ol
i

32040

32100

32101

3210

(=]

32104

32105

32106
32107

-._\.Ll()B

32109

[
ﬁ Animation With Character Graphics

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA 28

POKE 106,.PEEK(106)—-16:GRAPHICS
0:START=(PEEK(106)+1) x25&: POKE
756,START/256: FOKE 752.1

POKE S559,0:FOR Z=0 TO 1023:PFPOKE
START+Z,PEEK (S57344+Z) :NEXT Z:R
ESTORE 32100

FOR I=1 TO 30:FOR J=1 TO 10%XRND
(1):S0OUND O, I+10%¥RND{(1),10,8:NE
XT J:NEXT I:SOUND 0,0,0,0
READ X:IF X=-1 THEN RESTORE
KE 559,34:RETURN

FOR Y=0 TO 7:READ Z:POKE X+Y+ST
ART,Z:NEXT Y:60TO 32030

38,209,6,208,38,209
202,208,228,104,152,72
160,0,165,209,145,203
200,165,208,145,203,104
168,.24,165,203,101,207
1 X3, 205, 184,2, 250, 264
200,192,8, ﬂB_lB?,?é
169,0 1¢_,L 162
70,186, 144,J.L4 101
187,106,102,212,202,208
243,133,213,96,0,1

: PO

DATA &32,145,82,44,222,57,52,74
137

DATA 640,24,24,24,60,126,126,60
. 255

DATA 648,128.176,248,255,255,24
8,176,128

DATA 656,255,60,126,126,60,24,7
4,24

DATA 664,1,13,31,255,255,31, 13,1
DATA 672,.231,231,126,60,25,24,72
4,0

DATA 680,3,7,15,252,.252,15,7,.3
DATA 488,24,24,24,24,560,126,231
. 231

DATA 696,192,224,240,63,63,240,
224,192

DATA —1

107

4 Animation With Character Graphics

High Speed
Animation With
Character Graphics

Charles Brannon

Sound, color, and detail are all important in an arcade-style
game, but movement generates the most interest. It’s pro-
grammed into the brain. In all vision oriented creatures, motion
takes precedence over all other visual stimulation. A frog notices
a fly not because of any characteristic shape, or even its buzz,
but because of its movement.

In a good arcade game, there is a lot of motion. Alien ships
swarm and dive, invaders weave back and forth, ghosts chase,
balls bounce — the mere description sounds exciting. If we want
to develop a thrilling game, we must be able to quickly move
objects around on the screen.

Speed is the key word. Let’s face it — arcade games require
fast animation of many objects. True arcade-quality games al-
most always require a high-speed language such as FORTH or
machine language.

But BASIC is not a high-speed language. Its generality,
style, and ambiguity make it easy to learn and use, but hard for
a computer to efficiently execute. However, since BASIC is
easier to use and modify for most people, let’s see what we can
do to make the most of what we’ve got.

Optimizing BASIC

Remember that computers are rather simple-minded, so try to
break your task into small pieces. Try to have BASIC do as little
work as possible. For example, to create a glowing image, we
just need to change its colors rapidly. For example, to flash
something drawn in in COLOR 1, we could code:

100 FOR I=1 TO 100
110 SETCOLOR O, INT{16XRND(O)) INT{16X

108

A
h

4 Animation With Character Graphics

RND (0)})
120 NEXT I

The FOR/NEXT loop controls the duration of the flashing effect,
but line 110 is the heart. It picks a random color and a random
luminance for COLOR 1 (color register zero). To speed this up,
we could POKE directly into the color register. There is one
memory location (for our purposes) for each color register.
These are located from 704-707 (the player/missile color regis-
ters) and from 708 to 712 (COLOR 0 to COLOR 4). Each can
hold an even number from 0-254, according to the formula:

COLORBYTE=HUE*16+ LUMINANCE
So we could speed up line 110 by using:

110 POKE 7O0B,INT(146XRND(O))X16+INT (16
¥RND (0Q))

This is still rather slow, since BASIC must interpret the
long expression of INT’s and RND’s and perform three multi-
plications. Fortunately, there is another memory location called
RANDOM ($D20A, or 53770 in decimal) that will give us a ran-
dom number from 0-255. We can read RANDOM with
PEEK(53770), and POKE it directly into color register zero:

110 FPOKE 708B,PEEK{533770)

We've reduced a slow, albeit more readable and understand-
able, BASIC instruction with a direct POKE to a color register.
POKEs are the key to fast graphics, then.

Animation

What about animation? The first thing that comes to mind is
the technique of drawing a figure on a high-resolution screen
such as GRAPHICS 7, redrawing it at a new location, and then
erasing the old image. The following routine will move a box
from left to right in GRAPHICS 7:

100 GRAPHICS 7

110 FOR I=1 TO 100

120 COLOR 1:G0SUE 200:REM DRAW A EOX
130 COLOR ©O: GOSUR 200:REM ERASE IT
140 NEXT I

150 END

199 REM DRAWS A ROX:

109

a Animation With Character Graphics

200 PLOT I,.,0:DRAWTO I+10,0
210 DRAWTO I+10,10:DRAWTO I,10
220 DRAWTO I,0:RETURN

As you can see, the motion is smooth, but slow and flickery.
This is unavoidable in BASIC. BASIC just can’t draw things
fast enough to provide fast animation.

What About P/M Graphics?

The Atari solution to high-speed animation is player/missile
graphics. These shapes can be moved over the playfield without
erasing what they pass over, unlike the method mentioned
above. Unfortunately, P/M graphics are not suitable for purely
BASIC programs, unless you want only horizontal movement.
Vertical motion in BASIC is also slow and flickery.

One solution is machine language, and you will find some
machine language routines for using P/M graphics from BASIC
in this book. But if you're not ready for machine language, can’t
quite grasp P/M graphics, or if you're looking for an easier way
to quickly move dozens of objects, read on.

POKEing Graphics

What if we could use POKE to generate graphics? That way,
we could simplify graphics the same way we did the color re-
gisters. Did you ever wonder how the Atari displays a screen?
It’s a complex subject, but it can be simplified:

COMPUTER-» MEMORY-e ANTIC/CTIA-» TV

When the computer wants to display something, say the char-
acter “A”, it places a number representing “A” into memory.
The ANTIC chip, a video microprocessor, continually looks at
the memory, calculates a TV display, and sends this information
to the CTIA (or GTIA in recent Ataris), which draws the picture
on the television screen.

The computer could directly tell the CTIA what to do, but
if it did bypass ANTIC, the computer would be responsible for
all display, leaving little or no time for its main job — computing!
So the memory is like an image of the TV screen. Since the com-
puter can both read and write to memory, it can place characters
on the screen by writing to this memory, and can look at the
TV indirectly by reading this memory.

Perhaps our scheme is becoming clear. Instead of using
PLOT, DRAWTO, or POSITION and PRINT (which are slow,

110

/]
:’i‘g ﬁa@"ga.m;?imsa With Character Graphics

e e T TR T

slow, slow), we can use POKE to directly place a character on
the screen. To move the letter “A” across the screen, we just
POKE a 33 (the value corresponding to an “A”’) into the screen
memory, and erase it by replacing it with a space. A fragment
of code might look like this:

SCREEN=PEEK {(88) +2546%¥FPEEK {8%)
FOR I=1 TO Z9:FOKE SCREEN+I,33:POKE S
CREEN+I—-1,0:NEXT 1

This would move the letter “A” left to right, assuming the vari-
able SCREEN has been set to the start of screen memory. Notice
how fast the character moves. Imagine that the “A” is a
spaceship, or an alien invader. That’s some fast animation!

Defeat The Invading Q’s!

Butan “A’ is not an alien invader, and it isn’t much fun shooting
at letters of the alphabet. Fortunately, there are two solutions.
First, we can use some special characters built into the Atari.
For example, press CTRL-T (hold down the CTRL key and press
“T"). You'll see a “ball”” character. This could be used as a ball
in a pong-type game.

Next, try CTRL-A, CTRL-T, and CTRL-D, in that order.
You should see a “tie fighter,” right out of Star Wars. You can
see the potential here, but it’s not easy to get much color from a
GRAPHICS 0 display. Instead, you can use these character
graphics in graphics modes one and two, which generate large-
size, five-color text. It’s rather complicated to use the CTRL
graphics in these modes, but another option is available.

Custom Characters
As you are probably aware, you can rather easily redefine any
character. You could, for example, change the alphabet into a
foreign-language alphabet, such as Greek. You could also rede-
fine a character into a spaceship or a blue meanie. These rede-
fined characters can be shaped to resemble almost anything,
and then moved about at high speed. The details of customizing
the Atari character set are explained in the previous chapter.
Since each character is 8x8 blocks, and takes up only one
byte of memory on the screen, you can move up to 64 pixels
(8x8) with a single POKE. Using PEEK, you can scan ahead in
the direction of movement for a collision with other screen ob-
jects, much faster than you could with POSITION and LOCATE
statements.

111

4 Animation With Character Graphics

Finding The Screen

For the sake of example, let's use a GRAPHICS 1 screen. The
computer must store the information for the screen somewhere
in its memory. Since this is the same memory that you use to
store programs or other information, the screen memory must
be somewhere out of the way. The GRAPHICS command al-
ways places the screen where it perceives the top of memory to
be. If you have a 32K machine, the top of memory is at location
32767 (32*1024-1). On an 8K machine, the screen would reside
at just under the 8191 byte limit. Furthermore, the screen mem-
ory starts at different places in each graphics mode. For example,
GRAPHICS 8 must start the screen 8,000 bytes from the top of
memory.

Locating the starting address of screen memory would
seem to be rather tricky. Sure, you could probably look the
value up in a large table (indexed by memory size and graphics
mode), but why not just ask the computer?

A Double Byter

As it turns out, the starting address of screen memory is stored
at locations 88 and 89. Since a memory location can hold only a
number from 0-255, it is obvious why two memory locations
are needed to hold numbers as large as 65,535. The two locations
each hold a part of the number. So, we can use PEEK to calculate
the starting address of the screen:

SCREEN=FPEEK (88) +256%FEEK {(87%)

The second part of the number is always multiplied by 256 and
added to the first. There are many of these double-byte locations
in the Atari, and you use the same formula to read them.

Now that we have the screen address, we're ready to begin.
Note that you should place the screen calculation line after the

GRAPHICS statement in your program.

A Better Way

Formerly, you probably used something like POSITION

X, Y:PRINT#6;”A” or COLOR 65:PLOT X,Y to place a character
on a graphics mode 1 or 2 display, at horizontal location X, and
vertical location Y. For GRAPHICS 1, X can range from 0 to 19,
and Y ranges from 0-23. It’s almost that simple to POKE a value
into screen memory, using:

POKE SCREEN+X+20X%XY,33

112

4 Animation With Character Graphics

(SCREEN is the address of screen memory)

The vertical component, Y, is multiplied by 20. Think of
screen memory as 24 rows of 20 characters. You could go strictly
left to right, from 0 to 19, then wrap around to 20 through 39,
40 through 59, etc. But if you want to access the screen by X,Y
coordinates, you multiply Y by 20 to reach line Y. You can see
that the last memory location would be at X,Y:19,23. Using
“X+20*Y”, this would give us 479. So to place an “A’" at the
top left corner of the screen (home, or the origin), use POKE
SCREEN, 33. To place a “B” at the lower right-hand corner,
then, we could use POKE SCREEN + 19 +20%23,34 or POKE
SCREEN +479,34.

Internal Vs. ASCII

[f you already happen to know the ASCII value of “A”, which
is 65, you may wonder why we POKEd the screen with a 33.
The reason is that although you use ASCII to PRINT characters
to the screen, printer, or disk drive, the Atari uses an internal
character set for its own uses. Two of these uses are for character
set look-up and for storing information in screen memory.

Why doesn’t the Atari use ASCII internally? Well, graphics
modes one and two permit you to display four colors of charac-
ters. This requires two bits to hold the colors from 0-3. These
bits are stored as part of the character’s numeric, or binary,
value. This leaves only six bits for the character, restricting it to
the range of 0-63. Whew! This is only half of a full 128-byte
character set, so Atari restructured the order of the characters
so that uppercase and punctuation are in the top half, and low-
ercase and graphics in the lower, a feat not possible with stan-
dard ASCII. This way, with a “switch”” POKE, you could use
either half in graphics mode one or two. (The lower half is used
in a demo in the Atari BASIC Reference Manual, ““Seagull over
Ocean,” on page H-11, and in our example program at the end
of this article.)

The result of this is that we must translate between ASCII
and the internal character set. You can compare the two using
Figure 1, or look up the number of a character in Table 1. As
A’ is 65 in ASCII and 33 internally, you may be tempted to
think the translation is as simple as subtracting 32 from the
ASCII value. This works fairly well in graphics modes 1 and 2;
but, as you can see from Figure 1, lowercase doesn’t move at
all, and you must add 64 to convert the “control graphics”

113

a Animation With Character Graphics

characters from ASCII (also called ATASCII for ATari ASCII) to
the internal character set.

Action!

Let’s look at a fragment of code that moves the character “A”
diagonally from top left towards bottom right. Again, the “A”
could be redefined with a custom character set, or you could
use another character by looking it up in Table 1 and replacing
the 33 below:

10 GRAFPHICS 1+146:REM Full =screen
20 SCREEN=FPEEE {(B8)+25&6¥PEEK (89)
30 FOR I=0 TO 19

40 FPOKE SCREEN+I+20%I, 33

S0 NEXT 1

60 GOTO SH0:REM Wait for [EBEREAEKE]

The sample program should be fairly self-explanatory. The
“I"” index ranges from 0 to 19, which is used to select both a
horizontal and vertical value. The 33" places an “A” on the
screen. This is not erased, so we get a diagonal line of “A’s”.
Add this line to erase an A" after it's drawn. This creates the
illusion of movement.

45 POKE SCREEN+I+Z20%xI1,0

A Star Maker

Let’s add a line that litters the screen with stars, as in an outer
space scene. The code for our star will be 14, the period:

22 FOR I=1 TO S0
24 POKE SCHREENM+INT(48O0%XRND(C)) , 14
256 NEXT 1

We don'’t care to independently control both the X and Y coor-
dinates of each star. We just want to pick a random screen loca-
tion from 0-479 (0,0 to 19,23). The above piece of code will place
about 50 stars on the screen. There could be fewer than 50 stars,
even though the index ranges from 1 to 50. Can you see why?
Imagine what would happen if the same random number were
picked twice within the loop. The second star would simply
replace the first. We could make our star-maker fragment more
intelligent by having it look to see if there is already a star where
it wants to place one.

114

& Animation With Character Graphics

Taking A PEEK

With PLOT, you can use LOCATE, to “read” a point on the
screen. This is much slower than PEEK. We use the same for-
mula as POKE to read point X,Y (since we're looking at the
same memory): Z=PEEK(SCREEN + X + 20*Y). Of course, the
variables X,Y, and Z are entirely arbitrary. We can change line
24 to look at the screen before it plunks down a star, and force
it to find a blank spot:

24 R=SCREEN+INT(480%XRND(0)):IF PEEK(R
)< 30 THEN 24
25 FPOKE R,14

We could likewise place a lookahead statement into the loop
that moves the “A” to see if it hits a star:

35 IF PEEEK{(SCREEN+I+Z20%xI}<{>0 THEN &0

60 POKE SCREEN+I+2Z20%I.10
70 &6QaT0 7o

We place this statement at line 35, before line 40, for if we placed
it after line 40, the PEEK would read the “A”" we just POKEd in
line 40, and would of course detect a collision. As is, it checks
the intended position first, and if there is something other than
a space (code 0), there must be a star there, so we exit to line
60, which places an asterisk, representing an explosion, at the
intended position.

If we didn’t want to explode when we collided with a star,
we could have left out line 35. When the “A”’ traveled over a
star, it would merely erase it. If we wanted to have the “A” just
pass over the star nondestructively, we could use PEEK to read
the contents of the next position of the “A”, save it in a variable,
and then restore the old value when we’re ready to move the
A" to its next position:

35 P=PEEK{(SCREEN+I+20%I)
45 FOEE SCREEN+I+2Z0%I.F (instead of 0)
&0 Delete this line if you changed it above.

A Sample Program

A complete program using all these techniques is presented at
the end of this article (Program 1). Using GRAPHICS 1, it draws
a border around the screen. If every animated object checks for

115

4 Animation With Character Graphics

a collision with the border, we won’t have to worry about errant
creatures flying off the screen (out of the boundaries of screen
memory) into our program’s memory. If you don’t use a border
in your game, you should make sure that any POKE is within
the range of SCREEN + 0 to SCREEN + 479 for GRAPHICS 1.
(You can refer to Table 2 for screen limits for other graphics
modes.)

Two objects are moved, the player (moved with the joy-
stick), and a bouncing ball. The game is written using the lower
half of the character set. SETCOLOR 0,0,0 is used to make the
hearts (which map into the same area as SPACE does in the top
half) disappear. POKE 756,226 selects the bottom half.

The ball is CTRL-T, but the player can be any of eight char-
acters, depending on which direction he is facing. Only one
character representing the character is used at a time, however.

Four-Color Mapping

Figure 1 (Internal Character Set) comes in handy for figuring
out what colors a character will be. For example, you know
that you can get four colors of “A” by using “A”’, lowercase
“a’”’, inverse video ““A”’, and inverse video lowercase ““a”’. Not
so obvious is, say, the dollar sign. There’s no such thing as a
lowercase dollar sign, but you can still get four colors.

Just count down two rows to see the character you should
use. If you count down two rows from “A”, you will find a
lowercase ““a”’. Two rows down from the dollar sign is CTRL-D.
Incidentally, we can tell that the strange graphics symbol two
rows down from the dollar sign is indeed a CTRL-D, since it is
underneath the letter “D”.

If we are using the second half of the character set for our
game, we can use the same figure (Figure 1) to see where the
strange graphics characters map out. To get a blue club, we
just use an inverse-video “0”. (See how the 0" is two rows
above the club, CTRL-P?) I'm sure you will find many uses for
Figure 1 in the future.

Analyzing The Sample Game

Let’s look at Program 1 together. In addition to using character
graphics for animation, this program uses a few programming
tricks that require explanation.

Initialization
Lines 100-180 initialize the direction and character arrays (de-

116

a Animation With Character Graphics

scribed later). Lines 190-230 set up the GRAPHICS 1 screen,
select the lower half of the character set, and set color register
zero to black in order to erase the inevitable hearts. Line 240
defines variables for two characters used, the ball and the star
(which is CTRL-I, a small block).

Lines 250-370 draw a border around the screen (Lines 270-
300 draw the sides, 310-350 the top and bottom, and 370 the
corners). Lines 390-400 scatter stars upon the screen. The IF
statement checks to see if the intended spot is empty before
POKEing a star. This prevents a star from overwriting the screen
border just drawn.

The variables PX and PY, initialized in line 410, hold the
player’s horizontal and vertical position, respectively (1-18 and
1-22). Line 410 also places the upward-facing player character
on the screen. Line 420 initializes the ball X,Y variables and
effectively selects a random starting location for the ball.

Line 410 sets the ball’s horizontal and vertical displacement
variables. Each move, DX is added to BX, and DY to BY. If DX
and DY are 1, then the ball will move diagonally towards the
lower right (+1 right, +1 left). DX and DY can take on other
values from -1,0, and + 1. In this program, either DX, DY, or
both DX and DY are switched (their sign is changed, as in
DX =-DX) to bounce the ball in an opposite direction when it
hits the wall or a star.

The Main Loop
The main program, in the form of a continuous loop, goes from
460-770. Lines 460-600 let the player move, if he wants to (the
joystick is pushed); otherwise the ball moves.

Temporary variables hold the updated values of PX and
PY. These variables are changed by the arrays DX and DY,
which, like DX and DY for the ball, make the player move up,
down, left, or right. ST, the joystick position, is used as an index
into the array, instantly selecting the proper displacement. For
example, a joystick reading of 14 means up. DY(14) equals -1,
and DX(14) is 0. This subtracts one from the player Y value
(moving it up), and leaves the horizontal value unchanged. If
DX was non-zero, a diagonal motion would result. Puzzle over
the concept of displacement, but remember the technique.
Using an array as a look-up table saves you from having to use
a list of IF/THEN statements such as IF ST=14 THEN PY =
PY-1:GOTO xxx. This saves memory, and, more importantly,

117

l‘ Animation With Character Graphics

time. Table lookup gives BASIC less work to do and results in
some very fast games.

Collision Detection

Line 510 calculates PPOS, which is the absolute memory address
of the player in screen memory. We can then easily check for a
collision, as in lines 520-530. Remember, the player hasn’t
moved yet, since we’ve only used temporary variables. We're
just checking the anticipated move. Since the ball and the star
have already been processed, if there is any other character
detected in line 540, it must be one of the characters in the
boundary. If so, we cannot let the player advance, since this
would erase the boundary and let him escape from the screen.
(Shades of TRON!) Since PX and PY haven’t been changed yet,
we just exit and let the ball move. The player hasn’t gone any-
where.

Assuming the player makes a legal move, table lookup is
used once again to find the character corresponding to the di-
rection the player is facing. The characters used are arrows and
the diagonal corner characters. The previous player character,
still pointed to by PX and PY, is erased in line 580, and the new
character is POKEd into PPOS, the updated location. Now PX
and PY are changed to reflect the new location (line 600).

Moving The Ball 2

Lines 640-730 move the ball. This is a tairly simple routine. All
we dois update the X and Y variables (using temporary variables
as we did with the player), with DX and DY. The ball’s position
in screen memory is calculated in line 650. Line 660 checks for a
collision with the player character, meaning that the ball is
caught. Since there are eight player characters, we could need
up to eight IF clauses. But since the only thing drawn in COLOR
2 (green by default) is the character, all we need do is check for
a character in the range of 64-96. (All characters from 64-96 are
drawn in COLOR 2.)

If the ball hits anything else, lines 700-720 reverse the ball’s
direction. The RND (RaNDom) statements insure that the ball
won’t get caught in an endless ricochet loop. Finally, lines 740
to 760 update the ball, as we did with the player. It's a good
thing that the computer executes all this faster than we can
read about it!

118

]
Vi

gﬁ Animation With Character Graphics

Game Over

The two exit routines at lines 1000 and 2000 either cheer the
player for catching the ball or result in his explosion if he collides
with a star. Line 1040 flips the ball character with the cross
(CTRL-S) character. Line 1050 is the heart of the sound effect.
Line 1070 wraps up the sound effects for the win routine. There
is no scoring in this game; you either win or lose. You can add
features to the game, of course. But remember, since we're
using the lower half of the character set, there aren’t any num-
erals to print a score with.

Line 2000 explodes the character and produces the explo-
sion sound. The high-speed color POKE is used extensively to
provide flashing (lines 2040 and 2090). The explosion effect is
produced by POKEing the graphics characters from CTRL-A to
CTRL-F into the player’s position. This doesn’t look too much
like an explosion, but it does produce a flickering effect. If you
expanded this program into a full-fledged game, you could add
an option for three lives here.

Custom Characters Are More Fun

[previously mentioned that a custom character set adds flair to
a program like this. To avoid confusion, I refrained from using
a custom character set in Program 1. You should type in and
try to understand Program 1 before adjusting it with Program
2, which adds custom characters to the game. The changes to
Program 1 given in Program 2 are trivial, but they make the
game much more fun. Good, detailed graphics really jazz up a
game.

The subroutine at line 5000 places the character set in mem-
ory, just below the screen. The character data is in the DATA
statements from 5005-5024. It takes several seconds to initialize
the character set. However, since RUN does not clear out this
memory, we can check to see if the character set has already
been initialized, as in line 5001. Subsequent RUNs start in-
stantly.

The up/down/left/right arrows have been redefined as a
sort of cup, or scoop, that you use to catch the ball. Since
diagonal movement is permitted in the game, the corner char-
acters (CTRL Q,E,Z and C) are redefined as diagonal scoops.
Unfortunately, these same characters are also used as the cor-
ners of the screen border. To avoid too much modification of
Program 1, the scoops are used as the corners of the border

119

Table 1. Internal Character Set.

l‘ Animation With Character Graphics

Q0 N U R W N @

ii
iz
i3
14
15

L Y

5

is
17
18
i2
zZe
Z1
22
23
24
25
Z6
Z7
28
29
38
31

M W@ ot & W N @

I o~ ==

oy W

32
33
34
35
I6
37
38
39
48
41
42
43
44
45
46
47

 E I F X L H T B M TS O O D @

48
49
58
51
52
53
54
55
56
57
58
59
58
61
52
63

o= O =ML X E € E =~ wvo@m o T

64
65
66
67
68
6%
78
71
7z
73
74
75
76
77
78
79

-_— T

b & NN 4 A L

[

88
81
82
83
84
85
86
87
88
89
28
21
2z
a3
94
95

-

r™= 4 — 8§ e

+ A 4 - gm

26

97

28

29

ie68
181
laz
183
184
i8s
i8s6
187
188
la%
1is8
111

T - G T - T = T - TR 3

Q J X = X L,

1iz
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127

w Mo x X € £ ~ W 37 O T

v 4 N

120

& Animation With Character Graphics

anyway, and the connecting characters (CTRL-R and SHIFT =)

are thickened.

Finally, five characters have been defined for the explosion
of the player. These depict a small center core expanding out-
ward in five stages. When POKEd rapidly into the same spot,

they create a good explosion effect. Since CTRL-A through

CTRL-F (used in Program 1 for the explosion) already contain
custom characters, five characters from CTRL-J to CTRL-N were

used instead, and line 2030 changed appropriately.

The speed of PEEKs and POKEs lets you program some
really fast games in BASIC. The more objects you move, the
slower the game will run, of course. But you may very well
find that you must insert delay loops just to slow down the

game enough to play it!

Figure 1. Atari Character Sets.

| Interinal Character Set

tugSn&' () %+, -, /0123456789 ; {=
¢ab CDEFGHIJKLMNDPQRSTUUHH?Z[\]
¥ I-'-hf'\l h ™" Pt M Rt
¢ab cdefgh:Jklnnopqrstuuuxyztlﬁ

| ATASCII Character Set

op 4 /\J-L - Pt i LGt

1eigg V& () x+, ./8123455?89:;{2
EGBCDEFGHIJKLMNOPQRSTUUNHYZ [|
¢abcdefghi jklmnopqrstuyvwxyze | K

Table 2. Screen Limits and Characteristics.

Mode | X-Limit | Y-Limit | Range | Bytes/Line

0 39 23 0-959 40%
1 19 23 0-479 20
2 19 11 0-239 20

Assumes full screen mode (no text window).

*This is the number in the formula:
SCREEN + X +20*Y. Use SCREEN + X +40*Y for GRAPHICS 0.

121

a Animation With Character Graphics

Program 1. Sample Program Using PEEK and POKE for Fast Graphics.

100
110

20
1=6
140

150

160

250

260

270
280
290
IT00H

10

20

JI30

40

=y
tvigan N

REM

M EERnimation by PEEKing

REM EGCEENIASNLGT-N

DPIM EHEI15) DX {153 . BY{15E)

REM Divrection ocffsst= for sach joc
vystick positicn
DX{143=0:DX{1i3)=0:DX{P)=—1:DX{(10)
=—1:DX{11)=—1:D¥{5)=1:D¥({(6)=1:DX(
7r=1

DY{11)=G:D¥Y{(7)=0:DY {&5)Y=—1:D¥(10)=
—1:D¥{14)=—1:D¥(S)=1:DYi{2)=1:D¥Y (1
Zr=1

REM The character +ocr each Jjoyeti
ck position
CHR{14)=92:CHR{13:=23:CHR{11)=%4:
CHR{7)=95:CHR{10)=281:CHR {5)Y=5%9: CH
R{Z)Y=F0: CHR{53)Y=47

GRAFHICS 1+1&:REM Hp text window
FOKE 75&,.226:REM UH=ze lower half o
f character set

SETEOLOR O, 0,0:RE®M Make hearts va
nish

REM Calculate screen memory =sddre
=53

SCREENM=PEEK i83)+Z2C45¥PEEK {(8%)
BRALL=20+1Z8:5TAR=72+128: KREM CTRL -
T AND CTRL-I

REM Draw a border:
BEARHORIZI=8Z2+128:FREM Horizcntsl ba
r (CTRL-R)

FOR I=1 70 1&

FPCKE SCHREEN+I.EBARHORIZ

FOKE SCHEEN+4&60+1I.BARHORIZ

MEXT I

BARVERT=124+128: REM YYertical bar
{SHIFT-EQUALS?

FOR 1I=1 TGO 22

FPOKEE SCREEN+I®20,BARVERT

FOKE SCREEN+19+I%20,2ARVERT

NEXT I

360

370

380
I

40
410

470

440
450
460
470

Sé Animation With Character Graphics

HEM Do cornmers CTRL-G.CTRL-E.CTRL
~Z s BTRL=E

FOEE SCREEN,81+1Z8:FP0OEE SCHREEN+1LIS
s67+128: POKE SCREEN+450,70+128:F0
KE SCREEN+479 ,&67+128

FEM Put in randem "stars"

FOR I=1 TO 20:R=SCREEHRH+IHNT{480Q0%RN
DIOY):IF PEEE{(R}=0 THEN FOEE R.S8T
AFR:REM Don"t overwrite border
MEXT I

FX=10:FPY=11:FPOKE SCREEN+PX+20%XFY,
CHR{14):REM Flaver X, Flayver Y.
Fut "up-—arrow” charactser onn scree
n
EX=INT{(18¥RND{1)>+1):EBY=INT{(22XRND
{1)+1):REM Ball X, Hall ¥ Selecte
d randomly

DX=1:DY=1:REM Direction offsets +
or ball

REM Main lcop

REM Check for plaver’ s move:
ST=ETICK (D

IF ST=15 THEN 640:R=M Let ball bo
unce

REM Temporary variables hold upda
ted FX and PY

TX=FPX+DX{5T):REM X cffset 1.0,-1
TY=PY+DY (5T} :REM Same with Y. Ta
ble lookup is fast'!
PFRPOS=SCREEN+TX+2D0%¥TY:REM Calculat
g current position

1F PEEKE(FPOS)Y=BALL THEN 1000:REM

Hit bail
IF PEEK{(PFPOS)=8TAR THEN 2Z000:REM
Hit star

IF PEEE(PFOS)Y< >0 THEN &L40:REM If
wall hit, don t let player advanc
=

REM Update plaver

REM Table lockup also replaces IF
/THEM, and is ultimately more mem
ory efficient:

123

gga Animation With Character G

Q70
oS80

SS90
600
610
620
&0
640
650

660

670
480

&0
? OO0
710
T20
730
740

730
760

770

1000
10190
1020
1030

1040

124

CHR=CHFR {5T)
FOKE SCREEN+FPX+20%PY.,0:REM Erase
previous character
FOKE PPOS,CHR:REM Flace new one
FPX=TX:PY=TY:REM Update wariables
REM
REM Let ball have its turn
REM
TEMPEX=BX+DX: TEMFEY=BY+DY:HEM DX
and DY are direction offsets
BPOS=S5CREEN+TEMPERX+Z20¥TEMPEY : REM
Eall absclute position
IF PEEK{(BPOS) »64 AND PEEK{BFO3)?
&6 THEN 1CGO0:REM BHall hit plavyer
IF PEEK (BEPGS)=0 THEN 730
REM Any other collision is a kboun
ce
REM Change directicn of either X,
Y. or both X and Y:
IF RND(1)>0.5 THEN ¥=-DX:G50T7T0 46
0
IF RND{1)>0.5 THEN DY=-DY:GOTO 46
4]
DX=-DX:DY=-DY:60T0Q 460
REM Update ball
FOKE SCREEN+RX+20%RY,0:REM Erase
old ball
POKE BFOS.BALL:REM Draw new ball
BX=TEMFPEX: BY=TEMPEY: REM Update ba
11 variables
GOTO 460
REM Hit ball, win'!
BALLPOS=SCREEN+EBEX+2Z20%kBY:FLIF=128
:REM BALL POSITION, "FLIFPPING" V¥V
ARIABLE
REM FLIFP is used to alternate tw
o characters in one spot
REM 257-FLIF switches FLIF from
128 to 129. and vice-versa
FOR I=1 T8O S:FOR J=1 TO &6:POKE R
ALLFOS, 19+FLIP:POKE 710,PEEK(S537
70)

& Animation With Characier Graphics

1050 FOR W=5% TO O STEP —-5:50UND 0,J%2
1O WaNEXT W:FLIP=2S57-FLIPFP:NEXT
J:NEXT I

10560 REM STRANGE SOUND. FLASH BALL AG
AIN

107¢ FOR I=255 TO © STEP —-S:S50UND O,.1
+»12,8:50UND 1.1,10.,B:FOKEE 710,11z
NEXT I

1080 RUN

2000 REM UH-OH! Hit a star'!

2010 FOR I=100 7O 200 STEF 10

2020 XFPLODE=XFPLODE+O.S:REM Advance ch
aracter every other "I", from 1-

=
ot

2030 FOEE SCREEN+PX+Z0XPY 65S+INT(XFPLOD
DE)Y:REM Place a graphics charact
er

2040 FPOKE 709 ,.FPEEE{(SZE770):REM More “c
heap thrill” color

2050 SCUND O, I1.0,15-INT{{I-100)/56.866)
:REM Explosion socund

2060 NEXT I

2070 FPOKE SCREEN+PX+20%PY,0:REM Erase

character

2080 REM Flash =screen

2090 FOR I=1 TO 100:FOKE 711,PEEK(S3
7O0)Y:NEXT I

2100 RUN

Program 2. Make these changes to Program 1 to add custom
characters.

200 GOSUER SOO00:POKE 7S&6,CHSET/ 254 REM
activate character set

210 REM DELETE THIS LINE

240 BALL=20+128:5TAR=9:REM CTRL-T ARND
CTRL-I

) FPOKE SCREEN+FX+20%¥PY ., 74+INT{XPLO
DEY:REM Place an explosion chara
cter

S000 CHSET={(PEEK(1046})-8)X256:FOFK I=0

rJ

o
-

Q

125

4 Animation With Character Graphics

S001

S002
SO03

5004

S005

S006

S007
5008
S009
S010
5011
S012
S013
S014

o015

S016
5017
S018
5019

126

TO 7:POKE CHSET+I,0:NEXT I:REM C
LEAR OUT HEART

RESTORE S500S:IF PEEK{(CHSET+9%8)=
16 THEN RETURN :REM IF CHSET STI
LL IN MEMORY,. WHY RE-INITIALIZE?
READ A:A=A-64:IF A<C THEN RETURN
FOR J=0 TO 7:READ E:POKE CHSET+A
X8+J,H:NEXT J

GOTO 5002

DATA &7,.248,254,241,225,946,.48,2
2 c’

DATA 69,32,64,464,.196,228,252,248
. 240

DATA 73,16.84,40,198,40,84,146,0
DATA 74,0,0,16,546,56,16,0,0

DATA 7q.ﬂ,32,0,16,8,16,4,ﬁ

DATA 746,0,64,0,16,48,16,4,

DATA 77,0,64,16,2,0, 1na,h2.2

DATA 78,128,8 1,0 u.u .04

DATA 79.8.0,0,0, :.U + 0

DATA 81,4.2,2,35.39.6:.31,15
BATA B2.,0,2505,235, 255325525549,

i

DATA 3,L8,¢4 ?3593..3,73,34,28
pATA 84,0,0,8,28,.28,8,

DATA 90,31,127,143, 135,6,12,24,0
DATA 92,66,195,129,195,231,126,6

0,24
DATA 93,24,460,126,231,195,129,19
5,46

DATA 94,460,126,15,7.7.15,124,8&0
DATA 95,560,126,240,224,224,240,1

26, 60
DATA 124,60,60,60,60,60,460,60,60
DATA 127.14,24,28,30,30,28,24,16
DATA -1

!

Chapter 5

Animation
With
Player/Missile
Graphics

cecceecedececteceCeCeCoCCCEQEERECEEREEC

ol N X B o oF oX oX ol K o o oK N o N ol oN oM 0N N o oK of o <N o oF oX o} ol ol o¥ o X oF 4

| Animation With E"‘hww/ Mis u e &ﬁ*mm“m

R ——— S—

Introduction To
Player/Missile
Graphics

Bill Wilkinson

This article describes the features of the Atari player/missile graphics
system (“"PIM graphics”” for those of us with lazy typing fingers).
Althoutgh there are now other systems available with similar capabilities
(notably “sprites’” on the Commodore and Texas Instruments T1 99-4A
computers), there are several aspects of PIM graphics which are
uniquely and powerfully Atari.

For reasons having to do with lack of information and (often)
an abundance of misinformation, many Atari owners think of
players and missiles as some mysterious aspect of the machine
which requires convoluted machine language and arcane rites
to control properly. In truth, P/M graphics is in many ways less
mysterious than the standard Atari “playfield”” graphics. Have
you yet truly deciphered the relationship between SETCOLOR
and COLOR? (I haven't. I usually use trial and error to find the
connection that I need.) Have you mastered the concept of dis-
play lists? (I didn’t ask if you could ploduce one, just if you
understood the level of indirection that is needed to produce
even the simplest display on an Atari.) Player/missile graphics
is actually simple compared to some of these obscurities.

I think the first thing needed to understand P/M graphics
is a little flexibility in conceiving how memory is mapped into
display in the Atari computer. Consider Figure 1. As far as the
Central Processing Unit (CPU) or most of the Atari hardware is
concerned, memory is simply one long string of bytes. (Well,
some parts of the system like to digest memory in 1K, 2K, or
4K byte blocks, but within those blocks it’s all a string of bytes.)
But if you look at Figure 1, you will probably soon decide that
this is not a reasonable way for human beings to consider mem-

129

iy Animation With Player/Missile Graphics

ory, especially human beings who are trying to visualize mem-
ory being displayed as graphics.

So consider instead what we know of BASIC graphics mode
19 (GRAPHICS 3 +16). GRAPHICS 19 (which is simply a full-
screen version of GRAPHICS 3) consists of 24 lines of 40 pixels
each, where each pixel occupies only two bits of memory, im-
plying that a line is only 10 bytes long. Instead of thinking of
memory as one long string of bytes, why not consider it as an
array of ten-byte strings? This visualization is presented in
Figure 2, and you will probably agree that this is a much clearer
representation than that of Figure 1.

One more exercise before leaving this subject: try visual-
izing the normal text (GRAPHICS 0) display screen as a repre-
sentation of memory. How many lines are there? How many
bytes per line? I hope you answered 24 lines of 40 bytes each; a
pictorial representation of this display mode is shown in Figure 3.

So just exactly what is a player or a missile? First, let’s note
that for most purposes there’s no real difference between a
player and a missile other than size, so all further references to
“players”” may be assumed to refer to missiles also, unless other-
wise noted. A player, then, is simply the graphic video display
of a portion of the Atari computer’s main memory. “So what?”’
you say. “That’s how all computers put stuff on the screen: by
displaying the memory.” True. And we just showed diagrams
of how the Atari also displays its main video screen from what
Atari calls “playfield memory.” But players and missiles are
displayed independently of the playfield and from an entirely
separate segment of memory.

The “S:”" (“’Screen”’) device driver, which is what actually
processes such BASIC keywords as GRAPHICS, PLOT, and
DRAWTO, knows nothing of P/M graphics. In a sense this is
proper: the hardware mechanisms that implement P/M graphics
are, for virtually all purposes, completely separate and distinct
from the “playfield” graphics supported by ““S:”". For example,
the size, position, and color of players on the video screen are
completely independent of the GRAPHICS mode currently
selected and any COLOR or SETCOLOR commands currently
active. In Atari parlance, a ““player” is simply a contiguous
group of memory cells displayed as a vertical stripe on the
screen.

We again take refuge in a diagram, that of Figure 4. This
figure shows a standard playfield display along with that por-

130

5 Animation With Player/Missile Graphics

tion of Random Access Memory (RAM) being used to generate
the display (and note the representation of RAM as a series of
character strings). But notice that the figure also shows another
piece of memory being used to display something else on part
of the screen. This “something else”” is a player. And notice
that the player’s portion of RAM is shown as an “array’’ of
character strings where each string is only one byte long. This
is always true: all players are always displayed as a one-byte
wide array. There are no display lists to worry about, no
graphics modes (using 10 or 20 or 40 bytes per line, and which
is which?), and no visualization problems. It’s like being back
to thinking of memory as one long string of bytes — almost.

The “almost” is the kicker. First, note that we need to make
sure we are thinking of the string as being stacked vertically.
Second, the pictorial representation (the player on the screen
instead of the string of bytes in memory) is actually the more
accurate one, since each player is always a ““semi-fixed”” length:
Player 1 starts on the very next byte after Player 0, and so on.
Third, there are actually two choices open to the user regarding
the amount of memory used by each player (hence the words
“semi-fixed”’): players may have very fine vertical resolution
(equivalent to GRAPHICS 8), in which case they occupy 256
bytes each; or they may have relatively coarse resolution (equi-
valent to GRAPHICS 7), in which case they occupy 128 bytes
each. But even with this minor complication, players are fairly
simple, since all players must always have the same resolution.

Sounds dull? Consider: each player (and there are four or
five, depending on how you think of missiles) may be “painted”’
in any of the 128 colors available on the Atari (see SETCOLOR
for specific colors). Within the vertical stripe which is each
player’s display, each bit set to 1 paints the player’s color in the
corresponding pixel, while each bit set to 0 paints no color at
all! That is, any 0 bit in a player stripe has no effect on the un-
derlying playfield display.

Why call it a vertical stripe? Refer to Figure 5 for a rough
idea of the player concept. If we define a shape within the
bounds of this stripe (by changing some of the player’s bits to
ones as shown), we may move the player vertically by simply
doing a circular shift on the contiguous memory block repre-
senting the player. Why is that easier than simply PLOTting
something on the playfield and then moving it by PLOTting it
again? First, since the player does not affect the playfield, any

131

5 Animation With Player/Missile Graphics

pretty picture (or text or whatever) on the main screen remains
unchanged. Second, because it’s a lot easier to do a circular
shift on a byte string than it is to change memory cells that are
40 (or 20 or 10?) bytes apart in memory.

Finally, the real clincher: even though vertical movement
requires some shuffling of a string of bytes, horizontal move-
ment is essentially effortless. Each and every player and missile
has its own independent register (i.e., memory location) which
controls its current horizontal position on the screen. Moving a
player stripe horizontally is as easy as a single POKE from
BASIC.

To summarize and simplify: A player is actually seen as a
stripe on the screen eight pixels wide by 128 (or 256) pixels high.
Within this stripe, the user may POKE or move bytes to establish
what is essentially a tall, skinny picture (though much of the
picture may consist of 0 bits, in which case the background
“shows through”). Using a simple POKE, the programmer
may then move this player to any horizontal location on the
screen. To move a player vertically, though, one must do some
sort of shift or move on the contents of the string of bytes dis-
played in the stripe.

From standard Atari BASIC, there is no easy way to move
these stripes vertically (using a FOR/NEXT loop with PEEKs
and POKEs is simply too slow). And while there now exist
languages which have built-in mechanisms to do this movement
(e.g., MOVE in Microsoft BASIC; MOVE and PMMOVE in
BASIC A +), the overwhelming use of Atari BASIC has promp-
ted many authors to try their hands at providing this movement
in a form easily usable from Atari BASIC. This chapter includes
sections detailing a few of the methods which have been worked
out.

And now some final comments before we leave this intro-
duction to player/missile graphics:

Missiles pretty much work just like players except that (1)
they are only two bits wide instead of eight, (2) all four missiles
share the same 128 or 256 bytes of memory (each using only its
own bits in each byte), (3) each two-bit sub-stripe has an inde-
pendent horizontal position register, and (4) by default a missile
has the same color as its parent player. A later section in this
chapter will delve a bit deeper into the mysteries of missiles.

There are essentially only five primary controls available to
the P/M graphics user. We have already mentioned three: inde-

132

5 Animation With Player/Missile Graphics

pendent control of the various player horizontal positions, in-
dependent control of the player’s colors, and system-wide con-
trol over the resolution (128 bytes or 256 bytes per player, or
simply “off”).

In addition, each player and each missile has an indepen-
dently controllable “width.” A player or missile may be
specified as single-width (narrow), double-width, or quadruple-
width. This width does not affect the number of bytes or bits
used for the display; it affects only the width of each individual
pixel. Refer to Figure 6 for a diagram of a four-player system
showing independent horizontal position and width control.

Incidentally, single-width players generated in the 128-byte
vertical resolution mode have square pixels which are the same
size as those in GRAPHICS 7, a presumably not altogether acci-
dental happening.

The last control available to the user is the ability to specify
where in memory the player and missile stripes are to be located.
The rule is fairly simple: you need 2K bytes for single-line re-
solution (256 bytes per player), and it must be located on a 2K-
byte memory boundary. For double-line resolution (128 bytes
per player), you need a 1K-byte segment located on a 1K byte
boundary.

Are you quick in arithmetic? How many 256-byte players
can you put into 2K bytes? Or how many 128-byte players can
1K bytes hold? If you answered eight, you pass. If you answered
five, you can go to the head of your Atari class. Indeed, with
the Atari P/M memory map, you “waste”” three players if you
allocate the full amount of memory called for; see Figure 7 to
see why.

Do you see the wasted memory? Does it need to be wasted?
No. There is no reason why you can’t put data, character sets,
or what-have-you in this area. Indeed, in BASIC A +, part of
the language is in this otherwise excess area.

And now you are ready to peruse the secrets unveiled
herein; the darkest mysteries of player/missile graphics will
become open to you. But don’t be surprised if you find even
more things that can be done with P/M graphics than we told
you about here.

133

5 Animation With Player/Missile Graphics

Figure 1. RAM considered as a linear “‘string”’ of hytes.

— 2
%,
)
<

SYSTEM RAM MEMORY

()
PLAYFIELD
“GRAPHICS 19"

—>
et
TV

Figure 2. RAM considered as an array of 10-hyte strings.

2000 [~ 2009
2010 |~ \ 2019
2020
SYSTEM RAM
MEMORY i
PLAYFIELD
“GRAPHICS 19”
2230 (SN 2239
2240 /\/\,\/\\
&

5 Animation With Player/Missile Graphics

Figure 3. RAM considered as an array of 40-hyte strings.

2000 | ~_ 2039
2040 | N N 2079)
2080 2119 [
2120 - !
SYSTEM RAM
MEMORY PLAYFIELD
\W\/v “GRAPHICS 0"
2020 |E=u—N 2959
—] @ lw
/\/V\/\ & X2
Figure 4. RAM considered two different
ways for two different purposes. SYSTEM RAM
MEMORY
SYSTEM RAM :
Portion used for
MEMORY playfield display
Portion used for
player display

12800
12801
12802

I

ST

[

=

12927

SHE

135

5 Animation With Player/Missile Graphics

Figure 5. Detail - the display of Player Memory.

12800
12801

Binary
12828] &l 10011001
12829 @ 10111101
12830 11111111
12831 [i 10111101
12832]] 10011001

136

Bound of visible
TV screen.

Bound of displayed
playfield.

Hex Decimal
99 153
BD 189
FF 255
BD 189
99 153

Bound of displayed
playfield.

Bound of visible
TV screen.

5 Animation With Player/Missile Graphics

Figure 6. Four Players at once.
(Player 2 is double width and overlaps Player 3)

()

_ y
S S /S

Player 1 Player 0 Player 3 Player 2

137

5 Animation With Player/Missile Graphics

Figure 7. Player/missile graphics RAM positioning.

PMBASE must be on 1K boundary for double-line resolution,
2K boundary for single-line resolution.

double-line single-line
PMBASE resolution resolution
+128 +
unused
+256 +
+384 unused
Missiles | M3 | M2 | M1 | MO
+512
Player 0
+ 640
Player 1
+768
Player 2
+ 896 M3 | M2 | M1 | MO
Player 3
+1024
Player 0
Player 1
Player 2
Player 3

138

PMBASE

+ 768

Missiles

+1024

+1280

+1536

+1792

+2048

5 Animation With Player/Missile Graphics

Figure 8. Important P/M memory locations.

Useful addresses
(all values in decimal)

559 puta 62 here for a single-line, a 46 for double-line resolution
623 sets player/playfield priorities (only one bit on!)

1: all players have priority over all playfield registers

4: all playfield registers have priority over all players

2: mixed. PO & P1, then all playfield, then P2 & P3

8: mixed, PF0 & PF1, then all players, then PF2 & PF3
704 color of player/missile 0
705 color of player/missile 1
706 color of player/missile 2
707 color of player/missile 3
53248 horizontal position of player 0
53249 horizontal position of player 1
53250 horizontal position of player
53251 horizontal position of player
53252 horizontal position of missile 0
53253 horizontal position of missile 1
53254 horizontal position of missile 2
53255 horizontal position of missile 3
53256 size of player 0 (0=normal, I =double, 3=quadruple)
53257 size of player 1 (0=normal, 1 =double, 3=quadruple)
53258 size of player 2 (0=normal, 1 =double, 3=quadruple)
53259 size of player 3 (0=normal, 1 =double, 3=quadruple)
53277 A 3 here enables player/missile graphics, a 0 disables them.
54279 put high byte of PMBASE here

W N

139

nimation With Player/Missile Graphics

A Self-Modifying
Player/Missile
Graphics Utility

Kenneth Grace, Jr.

This excellent utility program removes much of the complexity from
setting up player/missile graphics. It modifies itself into a skeleton
program that can become the core of your game or graphics demo.

The utility in Program 1 sets up a skeleton program for Atari
player/missile graphics. It presents a series of questions about
the P/M situation you want to create and then modifies itself
according to your responses. The resulting skeleton program
includes some subroutines which you can use for controlling
player and missile motion. They are based on string manipula-
tions, so animation is also easy to accomplish.

I got the idea for this program after reading Bruce Frumker’s
article (COMPUTE!, August 1981, #15) on self-modifying
programs. I hope this program will stimulate your thinking on
other ways to use the self-modification capability built into the
Atari.

There are several steps involved in setting up P/M graphics,
and they have been covered in COMPUTE! and elsewhere. The
steps are easy, but there are several choices available along the
way (resolution, numbers of players and missiles, colors, initial
positions, etc.). That’s where this utility comes in.

It contains all the basic steps, and where there are choices
to be made, they are presented to you. The program then uses
Frumker’s technique to add appropriate lines to the program.
It also uses the same technique to delete lines that are not needed
for your specific P/M setup, including the lines which ask the
questions.

140

5 Animation With Player/Missile Graphics

When the utility has finished, you are left with the skeleton
of a P/M graphics program. You can LIST or RUN it at this point
to check things out. But to make it a real program, you will
have to draw the playfield and add the main loop for controlling
motion, checking collisions, etc. In other words, the utility does
just the P/M setup.

Since I make extensive use of Frumker’s technique, I have
split it into two subroutines, at 150 and 155. Between the two
subroutine calls I put PRINT statements for the lines to be added
to, or deleted from, the skeleton.

Aside from these two subroutines, the heart of the program
is in lines 20-145. These lines present the series of questions
through which you define your particular P/M arrangement.
For example, lines 20-36 and 9020 take account of Fred Pinho’s
rules for placing P/M memory so that it doesn’t overlap the
memory for the BASIC GRAPHICS mode [see his articles elsewhere
in this book]. The self-modifying feature is used after every ques-
tion or two to add the appropriate statements to the setup sec-
tion beginning at line 9000. At a few places the program STOPs
while you enter DATA statements containing the bytes defining
the shapes of the players and missiles.

Also scattered through this section are lines, such as 18,
which delete the preceding lines, or delete the missile motion
subroutines (when you have no missiles), or delete other un-
needed lines in the section starting at 9000. If you have done
any program editing on the Atari, you no doubt are aware of
the keyboard “lock-up” problem. With all the deletions in this
utility, I am almost inviting this disaster. Indeed, it cropped up
many times as I was developing it.

Seemingly minor changes in the program would make the
difference in whether it showed up or not. I say all this by way
of warning. If you key in Program 1 exactly as shown, it should
work OK. But if you decide to make improvements to it, you
might run into the lock-up problem for certain combinations of
inputs.

When the utility has finished running, you are left with
lines 1, 159, appropriate subroutines from 160-198, a trivial
loop at 200, and the P/M setup steps starting at 9000. Starting
from this skeleton, I suggest that you use lines 2-158 for
REMarks, opening titles, instructions, other subroutines, etc.,
and begin your main program at line 200. Additional setup
steps, such as drawing the playfield, could go at the end of the
section at 9000.

141

5 Animation With Player/Missile Graphics

Motion Using Strings

I have included subroutines for player motion which use string
manipulations. This method is described in George Blank’s
column in the April 1981 issue of Creative Computing. The basic
idea is that you trick your Atari into treating the player/missile
memory as the string array storage area for strings P0$, P1$,
P2$, P3%, and M$. Lines 1 and 9500-9580 do this. You can then
use Atari’s fast string-handling routines for vertical motion or
animation of the players.

In order for this to work, P0$,...,M$ must be the first vari-
ables mentioned in the program. You can assure this by turning
off power momentarily and then typing line 1. In line 9500,
VTAB is a pointer to the start of the variable table, which con-
tains eight bytes for each variable. ATAB points to the start of
the string array table, which is where the actual values are
stored. Each pass through 9510-9580 modifies the eight bytes
for Px$ (P0$, P1$, etc.) in the variable table, including the offset
from ATAB where the actual values are stored (the P/M graphics
memory).

The bytes defining the players are stored in strings DO0$,
D1$,... atlines 9090, 9140, etc. Each character in a string is stored
in memory as a byte containing the corresponding ATASCII
value. In this case, we want our data BYTE treated as though it
were already an ATASCII value, so we use
Dx$(1,1)=CHRS$(BYTE). Note that this is a different way of
using strings for P/M from Alan Watson’s method (COMPUTE!,
September 1981, #16). The demo (Program 2) mirrors Watson's
example.

The descriptions Dx$ and DMx$ are initially read into P/M
memory (i.e., into Px$ and M$) at lines 9600-9680. The string
B$ is a “blanking’” string; it is filled with ATASCII values of
zero at line 9070.

I have included two subroutines for player motion. The
routine at 160 handles vertical moves of one or two units. The
strings Dx$ are set up to include two blanks (ATASCII zero) at
the top and bottom of each player description. Thus, small ver-
tical moves can be accomplished by writing
Px$(Y(P)+ DY) =Dx$. The blanks in Dx$ will make sure that
the old image is wiped out. The variable P is a pointer to the
player being moved (0, 1, 2, or 3); its value is set by your program
before the subroutine is called, as are the position changes DX
and DY. Incidentally, the array variables X(), Y(), and L() hold

142

5 Animation With Player/Missile Graphics

the horizontal positions, vertical positions, and vertical lengths
of the players. The corresponding variables for missiles are
XM(), YM(), and LM().

The routine at 170 handles larger moves by blanking out
the old player image with B$, changing the horizontal position
to X(P) + DX, and rewriting the player image into Px$ at the
new vertical position Y(P)+DY.

Vertical motion of a missile is slightly more difficult. The
problem is that all four missiles are stored in the same memory
block. Each missile occupies a two-bit slice of the eight-bit bytes
in this memory block. Thus, we cannot simply write whole
new bytes or blanks into this memory.

Instead, using a machine language routine, we do a logical
AND of the existing memory with a binary mask, such as
11110011. This erases the old image in the appropriate two-bit
slice, but leaves the rest of the missiles unchanged. Then we
ADD the new image from DMx$. Since this image has zeros
outside the two-bit slice, it won't affect the images of the other
missiles. All of this is done at the vertical position of the new
image. If there is a substantial vertical move involved, then two
calls to the machine language routine are necessary: once to
write B$ at the old position and once to write DMx$ at the new
position.

Lines 9700-9740 read the machine language routine into
the string MOVE$. The missile motion subroutine at 180 makes
a USR call to this routine. The last variable in the USR call is the
decimal equivalent of the binary mask. This subroutine assumes
that vertical moves will be limited to one or two units (analogous
to the player routine at 160). The subroutine at 190 handles the
larger moves (analogous to the player subroutine at 170).

The Demo Program
Program 2 presents a demonstration of the use of the utility
and motion routines. The demo attempts to duplicate Watson’s
animation program in COMPUTE! #16. The top part of the listing
shows the answers you should give to the questions presented
by the utility. The bottom part shows the lines to be added to
the skeleton. Lines 300-530 match Watson’s line numbers as
closely as possible. A comparison of this demo with Watson’s
shows that the motion here is slightly faster — listen to the rate
of the marching feet.

Finally, a word of caution: after keying in Program 1, save
it on tape or disk before you run it. If you don’t, you will find
that a lot of your hard work has been wiped out.

143

5 Animation With Player/Missile Graphics

Program 1. Player/Missile Graphics Utility.

1 DIM FPOS(1) . . P1${1) . P25 (1) . PEE{1) MB(

10

11

14

16

17
i8

Il
fJ

|
£

RY.)

144

1), X(3),¥Y(3),L{3) . XM(3),YM(3) ,LM(3)

GRAFHICS 1 7:PO051ITIBN 2.3:7 #65"A §

ELF-MODIFYING":FOSITION J,6:7 #&6:3"

PLAYER-MISSILE™

FOSITION 2.9:7 #6:;"GRAFPHICS UTILIT

Y":POSITION 6,16:7 #6; "ken grace’

FOR T=1 TO 2Z000:NEXT T

GRAPHIECS ©:7 :7 "THIS UTILITY ASKS
SEVERAL RUESTICNS{3Z SPACES>ARIUT

THE F-M GRAFPHICS SITUATION YOU WA

NT TO SET upr.*™

2?2 22 "IT THEN MOBDBIFIES ITSELF INTO
A PROGRAMSKELETON.":72 :7 "SUBROUT
INES FCR FLAYER AND MISSILE ”

? "MOTION ARE INCLUDED.":7? ::7? "YOU
ADD THE REST OF THE PROGRAM. ":7 :

7 O"ANIMATION IS5 POSSIBLE BY COPYIN

G NEW ©

? "SHAPE STRINGS INTO THE STRINGS”
:? "DEFINING THE PLAYERS.":7?7 % =7
"PRESS @llia 70 BEGIM. T
X=PEEKASE279): IF X<32& THEN 7

GOSUR 150:FOR I=10 TO 17:7 I:=:NEXT
I1:605UEF 155

7?7 CHR$(125):7 ::7 "ENTER THE EERSk=

GRAFPHICS MODE FOR THE PLAYFIELD":?
YBR. Y3 INPUT X

GOSUR 150:272 "9000 GR. ":X:G05UR 15

=
J

? O'"RESOLUTION DESIRED FOR PLAYERS:
He? "0 = DOUBLE=LINE":7? "1 = SINGL
E-LIMNE (FINER)":INPUT R
Y=INTI{X/16): X=X—-146%Y:1IF X<=4 THEN
S5=8%(1+R)

IF X=5 THEN S5=12+4i%R

IF X=46 THEN 5=1&6+3%R
IF X=7 THEN §5=24+8%K
IF X=8 THEN S5=356+4%R
GOSUE 15027 "010 REG="i;Rg"sS=";:83

44

E-
o

un
s

o
B

&4

b6

68

~J
-
c

% Animation With Player/Missile Graphics

GOSUR 155:5=128%(1+R)

GOSUR 150:FOR I=18 TO =6 STEP 2:7
I:NEXT I:6085UEB 155

2 "NUHEER OF FLAYERS TO BE DEFINED

s INPUT NF

IF NF<4 THEN GOSUER 150:FOR I=NP TO
3:7 F085+50%xI1:7? F0F0+S0¥I:NEXT I:

GO5UR 155

IF NF<{4 THEN GOSUR 150:FOR I=NF TO
3:7 FH00+10%I:NEXT I:G05UE 155

GOSUR 150:FOR I=38 TO0 44 STEF 2:7
IT:NEXT I:608UE 155

FOR I=0 TO NP-1

? CHR$(125):7 :7 "COLOR (O — 15) A
ND INTENSITY (O - 15) FOR PLAYER ™
:I:: INPUT X,Y

GOSUER 150:7 9050+1:" POKE ";704+1;:
oM 18%XX+Y:GOSUR 155

? "WIDTH OF PLAYER ";I;":":7 "Q =
NORMAL":? "1 = TWICE NORMAL":7? "3
= FOUR TIMES NORMAL": INPUT X

GOSUER 150:7 90&60+1;" POKE ";S5325&6+
I;",";X:605UR 155

? "INITIAL HORIZONTAL POSITION (O
- 255) FOR LEFT EDGE OF PLAYER ";
I; " (45 TO 2100N SCREEN) ":: INPUT
X

GOSUER 150:7 90BO+S0¥I;"X(";I;")=";
X:":REM HORIZ FPOS OF PLAYER ";1:60
SUER 155

? "VERTICAL LENGTH {(BYTES) OF PLAY
ER ":;I::INPUT X:7? CHR$(125):7

? "INITIAL VERTICAL POSITIOM OF TO

-

P OF{3 SPACESIFLAYER {1 TO ";S-X-—
1:")";: INPUT ¥
GOSUE 150:7 9082+S0%xI;"Y{(";Iz;"1=";

Yi":L{":I;")=":;X+4;:":REM VERT POS
AND LENGTH":GOSUER 1S5

? "USE LINES ":9100+50%xI:" TO ";91
20+50%1:" TO ENTER DATA STATEMENT
S WITH THE ":X:;" EYTES DEFINING F

145

5 Animation With Player/Missile Graphics

86

g8

90

92
94

F6

104

106

108

110

146

LAYER "3;

? :7? "TYPE EEIG WHEN FINISHED.":ST
oF

MEXT I

GOSUE 150:FOR I=48 T0O 74 STEFP 2:7
I:NEXT I:608BUR 155

? :? "HOW MANY MISSILES TG BE DEFI

NED (O TG 4)7:;:INPUT NM

IF MNM=0 THEN GOSUER 150:FOR I=180 T

g0 188:7 I:nNEXT I:605UE 155

IF NM=0 THEN GOSUER 150:FOR I=190 T
0 198:7 I:NEXT IzGO0S5UE 155

IF MNM<4 THEN GOSUBR 150:FOR I=NM TO
ST 9ZES+50x1s? 9290+30K L NEXT 1I:
GOSUR 155

GO0S5UE 1S50:FOR I=78 TO 86 STEF 2:7
I=zNEXT I:2608UB 155

IF NM=0 THEN 7 CHR${(125):60TC 1179

S=0:FOR I=0 TO NM-1

P CHRS(125):7F 2% "WIDTH BF MISSILE

el "D NORMAL" =7 "1 = TWICE N
ORMAL"
?O"E = FOUR TIMES NORMALY: INPUT X:

S=INT(4~140.1) kKX+S

GOSUR 150:7 "9044 POKE S3260,":5:5

OSUE 155

? "INITIAL HORIZONTAL FOSITION OF
MISSILE":I::INPUT X

GOSUR 150:7 9280+50%I:"XM{("3I;")=
":X3;":REM MISSILE ";I;" HORIZ FPOS
":GOSUR 155

? "YERTICAL LENGTH (BYTES) OF MIS
SILE "3;I:INPUT X:? CHR$(125)

? :? "INITIAL VERTICAL POSITION O
F TOF OF{(3 SPACESIMISSILE (1 TO "
:128%(1+4R) —X—1:;")": INPUT Y

GOSUE 150:7 9282+450%XI:” YM{":I:")
=" Y:":LM(":I:;")=":X+4;":REM VERT
FPOS AND LENGTH":GOSUR 155

? "USE LINE ";9300+S0%I;" (TO ";9
I20+50%I;") TO ENTER DATA STATEME

112

114
112

1350

126

1=7

140D

145

I} Animation With Player/Missile Graphics

NTS WITH THE ";3X;* "BYTES® DEFINI
NG"

? "MISSILE ";I:X=INT{(4-I40.1):7 :
? "ALLOWED VALUES ARE O, ";X:", ="
:2%X:", OR ";3%X:7? :STOF

NEXT I

GOSUE 1S50:FOR I=88 TO 114 STEP 2:
7 I:NEXT 1:G0SUE 155

IF NM<4 THEN GOSUE 1S0:FOR I=NM T
0 3:7 96S0+10%I:NEXT I:G50SUR 155
IF NM=0 THEN GOSUR 1S0:FOR I=0 TO
4:7 9700+10XI:NEXT I1:G0SUR 155
GOSUR 1S50:? "119%":7 "120%":7? "125%
: BOSUE 155

7 "PRIODRITY SCHEDULE :z":7 :7 "1 —
PLAYERS 0-3,PLAYFLDS (-3,BACEGND

i3]

? 87 "2 =~ PLAYERS O0—-1 . .PLAYFLDS O=
Z.FLAYERS {6 SPACESIZ-5,HACKGND"Y

? 27 "4 —~ PLAYFLDS 0—3,PLAYERS 00—
Z.BACKEGND"”

? 7 "8 — PLAYFLDS 9-1,FPLAYERS 0O-
3.PLAYFLDS{S SPQCES-E*&.BQC&GND”
".*

:? "ALSO, THE NUMERICAL SUMS OF
THE AROVE CHOICES ARE ALLOWED, &
IVING BLACK FOR OVERLAFS."

? :? "ABOVE +32 GIVES COLOR IN QV
ERLAPS":7 :7 "CHOTICE":: INPUT X
GOSUER 150:7 "9045 POKE 623, ";X:60
SUE 155

? :7? "WHEN YOU SEE EEEER YOU MAY
LIST OR RUN":FOR X=1 TO 900:NEXT
X

GOSUR 1S0:FOR I=129 TO 137:7? I:NE
XT 1:G50SUER 155

? 27 £7 140737 Y145"37 *iS0v;7F *
155":7 "156":7? "POKE B842,12:7 CHR
${125)":POSITION O,0:FOKE 842,13:
STOF

SETCOLOR 1,9,4:7 CHR&(125):7? :RET
URN

147

5 Animation With Piayer/Missile Graphics

155 ? :? :7 "CONT":POSITION O,0:PQOKE
842,13:STOP

156 POKE 842,12:7? CHR$(125):7? :SETCOL
OR 1,9,10:RETURN

159 GOTO 9000

160 REM MOTION OF PLAYER P. X(P) AND
Y(P) ARE X.,Y POSITIONS. DX AND DY
ARE CHANGES. USE FOR DY=-2,-1,0,
1 OR 2.

161 TRAF 1&68:1IF DY=0 THEN 147

1642 ON P+1 GOTO 1&63,164,165,1486

16% PO${Y{(FP)+DY)=D0O%$:G0TO 167

164 P1$(Y{(P)+DY)=D1%$:G07T0 1&67

165 FP2%(Y{(P)+DY)=D2%:60T0 1&7

166 PI$(Y(P)+DY)=DI%

167 POKE S3248+F,X(P)+DX:X{(P)=X{F)+DX
tY(F)=Y(P)4DY:DX=0:DY=0: RETURN

1648 DX=0:DY=0:G0TO 161

170 REM MOTION OF PLAYER P. USE FOR
(3 SPACESIDY 32 OR <-2 (OR 0).

171 TRAP 177:0N P+1 GOTO 172,173,174,
175

172 PO$=B$:POKE S3248,X(F)+DX:FO$ (Y (P
) +DY)=DO%$:GOTO 176

173 P1$=E$:POKE S3249,.X(F)+DX:P1$(Y (P
) +DY)=D1%:G0TO 176

174 P24=R%$:POKE S3250,X(F)+DX:P2%(Y (P
Y+DY)=D2%:G0TO 1764

175 P34=R%$:POKE S53251,.X(P)+DX:P3$(Y (P
) +DY)=D3%

176 X(P)=X{(P)+DX:Y{(F)=Y{(P)+DY:DX=0:DY
=0: RETURN

177 DX=0:DY=0:60T0 171

180 REM MOTION OF MISSILE P. XM(FP),YHM
(P) ARE X.Y COORDS. DX,DY ARE CH
ANGES.USE FOR DY=-2,-1,0,1 OR 2.

181 TRAP 158:IF YM{(P)+DY<1 OR YM{(P)+D
Y+LM{(F) *S OR DY=0 THEN DY=0:50TO
187

182 ON P+1 GOTO 183,184,185,186

183 Z=USR(MOVE.M+YM(F)+DY,DMO,.LM{0O),2
52):G0TO 187

148

186

187

188

190

191

192
193

194

1946

197

198
200
92015
F020

O30

5 Animation With Player/Missile Graphics

7=USR (MOVE,M+YM{F) +DY,DM1,LM{1),2
4%):60T0 187

Z=USR {MOVE,M+YM(F)+DY,DM2,LM{(2),2
07):60T0 187

Z=USR(MOVE,M+YM(F) +DY,DM3I,LM(3),6
)

POKE S32524P,XM(P)+DX: XM(P)=XM(F)
+DX:¥YM(FP)=YM{P)+DY:DX=0:DY=0:RETU
RN

DX=0:DY=0:FPOGKE S53252+P.XM(P):RETU
RN

REM MOTION OF MISSILE F. USE FOR
DY>2 OR <-2 (DR Q).

TRAFP 198:IF YM{F)+DY<1 OR YM{P)+D
Y+LM(F)>S OR DY=0 THEN DY=0

ON P+1 GOTO 193,194,195,194

Z=USRKR (MOVE,M+YM(F) ,B,LM(P) ,252):F
OKE S3252,XM(P)+DX:Z=USR (MOVE,M+Y
M(FP)+DY,.DMO,LM(P),252):60TQ 197
Z=USR(MOVE,M+YM(P) ,BE.LM{P) ,243): P
OKE S3253.XM{(P)+DX:Z=USR {(MOVE,M+Y
M(F)+DY,DM1,LM{(P),243):60T0 197
Z=USR (MOVE,M+YM(F) ,BE.LM{P) ,207):F
OKE S3254.XM{F)+DX:Z=USR{MOVE, M+Y
M{F)+DY.DM2,LM{(P),207):60T0 197
Z=USR{MOVE ,M+YM{FP) ,EBE,LM{P) ,563):FO
KE S3255,.XM(F)+DX:Z=USR (MOVE,M+YM
(F)+DY,.DMI. LM(F) ,63)
YM{F)=YM{P)+DY: XM{P)=XM(F)+DX:DX=
0:DY=0: RETURN

DX=0:DY=0:G0T0 191

GOTO 200

FOKE S59,.4&6+16%XRES

FMEASE=FPEEK (106)-S: POKE S4279,PM
BASE: PMEASE=FMEASE*25&

POKE S3277,.3:5=128:IF RES=1 THEN

=255

DIM E$(S):B=ADR(E$):B${1)=CHR$ (O
): B$ (S)=CHR$(0): B$ (2) =R%

DIM DO$(L{(0)):DO$=R${1,L(0)):POK
E S53248,X(0)

149

5 Animation With Player/Missile Graphics

QUI0

7140

7185

0
|
A
|

0
fJ
S

g
Pl
8]
n

Q290

-0
A
)
i

340

F435

440

F 500

RESTORE 9100:FOR I=3 TO L{0)-2:R
EAD BYTE:DO$(I,I)=CHR$ (BYTE) :NEX
T

DIM Di$¢L{1)):D1%=R$(1,L (1)) :FOK
E S3249,.%X(1)

RESTORE 91S0:FOR I=3 TO L{1)-2:
EAD EBEYTE:D1$(I,I1)=CHR$(EYTE) :NEX
T B

DIM D2%(L{2)):D2$=R$(1,L (2)):FOK
E 53250,X(2)

RESTORE 9200:FOR I=3 TO L{(2)-2:K
EAD BYTE:D2%(I,I)=CHR${(BYTE) : NEX
T 1

DIM D3${(L{3)):D3$=B${(1,.L(3)):POK
E 53251,%X(3)

RESTORE 92S50:FOR I=3 TO L{3)-2:R
EAD BYTE:D3$(I,I)=CHR$(BYTE) :NEX
T 0

DIM DMO${LM{D)) :DMOS=E$(1,LM(0O))
:POKE S3257,XM{0)

RESTORE 9300:FOR I=3 TD LM(0) -2
READ EYTE:DMO$(I,I)=CHR$ (RYTE):
EXT 1:DMCO=ADR{DMO%)

DIM DMI1$(LM{1)»:DMIs=BS{I.LM{1)?
:FOKE S3253.¥M1)

RESTORE 9350:F0OR I=3 TO LM(1) -
READ BYTE:DM1%{I.I)=CHR$S{(BYTE)
EXT I:DMi=ADR{DM1%)

DIM DM2E{(LM{Z2)) :DM2%s=R& {1, LM(2Z2))
:POKE S3254,XM(2)

RESTORE 400:FOR I=32 T0 LMA{2)-2:
READ BYTE:DM2Z24(I,.I)=CHR&(BYTE):N
EXT I:DMZ=ADRA(DM2%)

DIM DMI$S{LM(3)):DME$S=BH{1.LM{Z))
:FPOKE S3255., XM(3)

RESTORE 9450:F0OR I=3 TO LM(Z)-2:
READ BYTE:DMIZ$ (I, I)=CHR&E(BYTE):N
EXT I:DM3=ADR{(DMI%}
VTABR=FPEEK {134) +2546%¥PEEK (135) : ATA
B=PEEK (140 +2564%FEEK {141)
OFFSET=FPMBASE+S12¥%¥ (1+RES) -ATAER

N

[

=
all
-
N

N

970
9580
FLOO
610
620
FEID
LSO

660

680

?700

2710
Q720

9740

FEFI

nimation With Player/Missile Graphics

FOR I=0 TO 4
Z=INT(OFFSET/256):V2=0FFSET-256
XV3I

FOKE VTAE+2,V2:FPOKE VTAR+3I,V3
FPOKE VTAR+4,128%(1-RES):POKE VTA
E+5,RES

FOKE VTAEB+6,128%(1-RES):POKE VTA
BE+7,.RES

VTAE=VTAR+8: OFFSET=0FFSET+128x% (1
+RES)

IF I=3% THEN OFFSET=PMEASE+384% (1
+RES) -ATAR

NEXT I

POS=R$: PO$(Y{(0Q))=DO0%
P1$=E$:P1$(Y{(1))=D1%

F2$=B$: P24 (Y (2))=D2%
PI4=RE$:FP3$(Y (3))=D3%

M$E=H$:M$E (YM{O))=DMOS: M (YM(O) +LM
(0))=E%

FOR I=1 TO LM{1):J=YM(1)+I—1:M${
J,Jd:=CHR$ (ASC{(M$ (I, J)) +ASC (DM1$ (
I.IY)):NEXT I

FOR I=1 TO LM{(2):JI=YM(2)+I-1:M%$(
J.J)=CHR% (ASC(M$ (I, J)) +ASC (DM2% ¢
I,I))):NEXT 1

FOR I=1 TO LM(3):J=YM{(3Z)+I—1:M%${

J.J)=CHR$ (ASC{M$E(I,J)) +ASC (DMI$ {
I,1))):NEXT I

DIM MOVES$(38):MOVE=ADR (MOVE$) : M=

ADR (M$) —1

RESTORE 9730

FOR I=1 TO 37:READ BYTE:MOVES®{I,
I})=CHR$ (BYTE) : NEXT I

DATA 104,104,133,204,104_ 133,203
L104,133,206,104,133,205,104,104
L,133,207,104,104,133,208

DATA 140, _.177q2ﬂ~,n7,208,113,20

5,145,20%,200,196,207,208,245,96

GOTO 200

151

5 Animation With Player/Missile Graphics

Program 2. Animation Demo.

RUN the utility in Program 1 and give the following answers:

Graphics Mode: 18

Resolution: 0

Number of Players: 1

Color, Intensity: 1,6

Width: 0

Horizontal Position: 127

Length: 9

Vertical Position: 63

9100 DATA 126,90,66,60,219,189,102,102,231
CONT

Number of Missiles: 0
Priority: 1

Then add the following lines to the skeleton program:

200 DIM DO1$(13) ,DO2%{(13),DOE$E(13)

210 DO1$=D0%:DOZ$=B$:DOZ%E=RB$:P=0

220 RESTORE 3SZ0

230 FOR I=3 TO 11:READ BYTE:DOZ%(I,1I)
=CHR${BYTE) : NEXT 1

240 FOR I=3 TO 11:READ BYTE:DO3&{I,I)
=CHR$(BYTE) : NEXT 1

250 SETCOLOR 4,7.2

Z00 REM ¥Xx¥VIEW POINTER & STRING %¥XX

Z10 C=C+1

320 IF C>4 THEN C=1

230 ON C GOTO 340,350,340, 360

340 DO%=D0O1%:G0T0 =70

350 DO$=DO02%:G60T0 =70

360 DO$=DO3$

370 POS(Y (0O))=DO%

380 FOR I=1 TO 9

385 IF C=2 0OR C=4 THEN S0UND 0,28%1.6
s FT=1

Z90 NEXT 1

400 REM %x%x¥ MOTION ROUTINE XXXk

410 A=STICEK (0O)

420 IF A=15% THEN 310

430 IF A=11 THEN X{0)=X{(0)—-1:POKE S32
48, X {0Q)

152

440

450
460
470
520

th
A
o)

5 Animation With Player/Missile Graphics

IF A=7 THEN X(0)=X(0)+1:POKE
8.X(0)

IF A=13 THEN DY=1:G0SUE 140
IF A=14 THEN DY=-1:G60SUR 160
GOTO 310

DATA 126,.90,.66,60,219,189,102

7

DATA 126,90,66,60,219,189,102

224

S324

s 230

« YOS

153

5 Animation With Player/Missile Gu‘zz:‘smﬁs

Adding High-Speed
Vertical Positioning
To P/M Graphics

David H. Markley

Although fast horizontal movement of players and missiles is easy
with BASIC, vertical movement is much slower. This article provides
a machine language routine which can be attached to a BASIC program
to speed things up considerably.

By now many of you have been experimenting with programs
incorporating the advanced player/missile graphics of the Atari.
As you may have observed, player images can be moved hori-
zontally across the playfield quite easily just by placing the
player’s horizontal coordinate (0-120) into its associated hori-
zontal position register. Vertical positioning with P/M graphics,
however, is somewhat more difficult. Since the player’s vertical
position on the playfield inversely corresponds to its position
within the image memory, it is necessary to relocate each byte
of the image up or down within the memory to produce vertical
movement. For example, if we move the player’s image to
higher address locations within the image memory, the player
will appear to move downward on the playfield.

A BASIC routine can be written using PEEKs and POKESs
to move the player within the image memory, but for most
applications this method is too slow. An alternative, however,
is to use a small, general purpose vertical positioning routine
written in 6502 machine language which can be called by
BASIC’s USR instruction.

The vertical positioning routine shown in Program 1 is
relatively simple, but provides the user with a flexible and easy
method of handling P/M graphics within a BASIC program.
This not only provides a valuable tool to use with player/missile
graphics, but for those of you who have not used machine

154

5 Animation With Player/Missile Graphics

language routines with BASIC, it will also provide some insight
into this area. The routine is called by a BASIC statement similar
to: '

DUMMY = USR(VP,IMAGE, LAST LOCATION, NEW
LOCATION)

The variable to the left of the equal sign, called "DUMMY",
is used by some machine language subroutines as a target for a
value returned to the program. The vertical positioning routine,
however, does not return a usable value, but the DUMMY vari-
able is still required to satisfy Atari’s USR format requirements.
Any variable may be used in place of DUMMY. Within the
pmenthebeb of the command are four arguments. The first ar-
gument, VP, is the transfer address to the Vertical Positioning
routine which has been placed into a free area of memory.
Loading of the VP routine into memory will be described later
with a program application example. Following the transfer
address argument (which, by the way, is also required for any
USR routine called by BASIC) are three e arguments which are
passed to the VP routine.

These arguments are the address of the image’s data struc-
ture, the address of the image’s current position in the P/M
image memory, and the address of its new position (the desti-
nation). As usual in P/M graphics, each image requires a small
data structure. This provides the VP routine with a pattern of
the actual image which it will vertically reposition. An example
of a typical image data structure is shown in the figure. This is
identical to the usual way in which images are drawn in P/M
graphics, except for one additional byte which must be tacked
onto the front of the data. The first byte of data provides the
VP routine with the image’s size in bytes. The second and fol-
lowing bytes are used to form a bit map pattern of the image as
it would appear in the P/M image memory.

The next two argumonts‘ contained in the USR command
tell the VP routine the image’s current and new positions. These
arguments are actual addresses into the image memory; there-
fore, care must be taken to assure that they do notaccess another
area of memory by mistake.

Routine Operation

The program begins with an initialization step in which the
three arguments passed to it by the USR command are removed
from the processor’s stack and placed into an area in page zero

155

5 Animation With Player/Missile Graphics

where they can be more easily used. You may have noticed
that a total of seven bytes are popped off the stack during this
operation. This is because the USR command always places a
one-byte argument count onto the stack, followed by the argu-
ments themselves. The arguments are always two bytes in
length.

Once the initialization task is complete, the routine is ready
to begin its intended task of moving the playerimage. Basically,
the operation is performed in two steps. The image data is first
removed from its current location and then copied to its new
location. Before either step can be executed, the routine must
first look at the image’s data structure and get the image size
parameter. This value tells the routine how large an image it
must handle and thus determines the number of bytes it must
remove and restore. To remove an image from its current loca-
tion, the routine simply goes to the current location address
and writes zeros into an X number of memory locations indi-

cated by the size parameter. Replacement of the image is done
by copying from the image’s data structure an X number of
byt& , also determined by the size parameter, to the image
memory starting at the address specified by the new position
argument.

In some cases it may not be desirable to have the VP routine
perform both the delete and restore functions. One example

would be if the player image is to be removed from the screen
and not restored at a new location. This can be handled by using
the following routine call:

DUMMY = USR(VP, IMAGE, CURRENT LOCATION,0)

The zero in the new location argument tells the VP routine
not to attempt to restore the image. Likewise, the delete function
can be disabled by placing a zero in the current location
argument.

Let’s Have Some Fun
Now that we have looked at the Player/Missile Vertical
Positioner routine, let’s put it to work. The following game will
show you how to load the player images and VP routine into
memory and how to use the routine in other ways besides ver-
tical positioning.

This game, which I call “Island Jumper,” involves the
cooperation of two characters named Crash Coleman and
Deadeye Dan. Crash is the pilot of a reliable (but not so stable)

’

156

5 Animation With Player/Missile Graphics

airplane, the “Leaping Lucy.” Crash has had only one flying
lesson, but has courageously volunteered to make this flight so
that you can see the VP routine in action. Although he has suc-
cessfully managed to get the Leaping Lucy off the ground, he
seems to be having some trouble keeping her in level flight.
Our other daredevil of the sky, Deadeye Dan, will attempt,
with your help, to jump out of Crash’s airplane and land on
Talgct Island. Since the ground seems to be a bit unstable from
Dan’s point of view, he is having difficulty figuring out when
to jump and asks that you help him by pulllm1 back on your
joystick controller when you think he’s on target.

Dan will make a total of five jumps each time you play the
game. He will try to land on top of a sand dune on the left side
of the island. If he makes the jump on Crash’s first pass over
the island and lands on the dune with both feet, you get 30
points. If you don’t give Dan the signal to jump during the first
pass, Crash will continue to fly over the island until a jump is
made. Each additional pass will deduct eight points from Dan’s
maximum obtainable score.

Dan can also land in the area between the sand dune and
the palm tree, but you will receive a maximum of 15 points for
the jump. At the completion of the game, the computer will
give you both a final score for the last game played and the
highest score for all games played since the last RUN command
was entered. To play another game, press the button on the
joystick controller.

The data for the VP routine and the player data structures
is read from data statements and POKEd into memory by lines
110 through 310 of the program. It is loaded into memory page
six (starting ataddress 1536), which is a 256-byte area in memory
that Atari has reserved for user binary data and machine lan-
guage routines. Once the data structures and VP routine are
loaded into memory, they are referenced in the BASIC program
by variable names whose values have been set to the starting
address of the data structure or VP routine they represent.

157

5 Animation With Player/Missile Graphics

Figure . Image Data Structure for the Player/Missile Vertical
Positioner Routine.

Image Byte Byte
Pattern Number Value
1 60
2 126
3 126
4 255
5 255
6 129
7 189
8 189
9 90
10 60
11 24
12 24
13 36
14 66
15 195

DATA 15,60,126,126,255,255,129,189,189,90,60,24,24,36,66,195

5 Animation With Player/Missile Graphics

Program 1. Island Jumper.

NNV IVERTICAL POSITIONER EXHAMPLE]
20 REM "ISLAND JUMPER™

30 GRAFPHICS 2:FOKE 752.1
50 SETCOLOR 4,9, 4
70 7?7 #é6:7? #6:7 #6:'? #63; " {6 SFACESTISL

AND™
80 ? #6:7 #6;"{6 SPACESTIIUMPER™"
ga 72 "{& SPACES>BRY™

100 2 27 ."DAVID MARKLEY"
110 VP=1536

120 FOR 6=0 TO 93

25 READ D

130 POKE VF+G.D

135 NEXT G

140 REM %% VERTICAL FOSITIONER CODE X

X

150 DATA 104,162,5,.104,149,220, 16
g 2O, 1‘?8.;_1_0 198,222,160,0, 177,3_;_
4,170

160 DATA 1468,165,223,240,9,169,0,145,
222,136,208,249,138,168,165,221,2
40,7,177,.2248,145,220, 136,208,249,
94

170 REM %% AIRPLANE DATA XX

180 APIMG=VF+44

190 DATA 6,142,132,255,255,4,14

200 REM %% JUMPER DATA XX

210 JPIMG=AFIMG+7

220 DATA 9.189,189,90,60,24,24,36,66,
129

230 REM %% JUMPER & CHUTE DATA XX

240 JSIMG=JPIMG+10

250 DATA 15,60,126.126,255,255,129,18
9,189,90,60,28,24,36,66,195

260 REM %% WAVING JUMPER XX

270 JWIMG=JSIMG+16

280 DATA 15,0,0,0,0,0,.128,188,188,88,
60 ,26,25,.37,.66,195

290 REM %% DATA USED TO CLEAR MEMORY
XX

159

5 Animation With Player/Missile Graphics

300 CLEAR=JWIMG+16&
Z10 DATA 255

X720 FOR D=1 TO 3I00:NEXT D
330 GRAFHICS 5

%40 SETCOLOR 2,9.2
350 SETCOLOR 4.8,6
260 I=PEEK (10&)
I65 X=I1%256-1172
70 POKE X,112

71 FOKE X+1,71
T72 POKE X+2,.96
I73 POKE X+3,1-1
374 POKE X+4,112

375 FOEKEE X+5,74

376 POKE X+46,.160

377 POEE X+7.1-5

380 I=1I-8

370 POKE 54279.1

400 J=1%¥256+513

410 FOKE S559.46

420 POKE 53256.1

430 POKE 53277.3

440 FPOKE 704,56

450 POKE 705,12

460 D=USR{(VFP,CLEAR,J.OQ)

4465 SLOPE=2

470 TOP=Jd+17

480 BOT=J+5%

490 SETCOLOR 0,12.,8

S00 SETCOLOR 1,.1.2

10 COLOR 2

920 PLOT Z7,34:DRAWTO 42,34
230 PLOT Z6.35:DRAWTO 49,35
540 PLOT 47,.29:DRAWTO 47.34
550 COLOR 1

S60 PLOT 43,30: DRAWTO 47,27
S70 PLOT S1.30:DRAWTO 47,27
580 PLOT 47.27:DRAWTO 49, 30
S90 FPLOT 47.27:DRAWTO 45, 30
&00 FLOT 46,27

610 HSCORE=O0

620 LAPOS=0

160

630
640
650
660
670
680
670
700
710

20
730
740

750

760
770
780
790

800
204
808
810

820
830
840
850
860
870
880
820
OO
P10
220
P30
40

950
P70

5 Animation With Player/Missile Graphics

APDS=J+70

I:._

JUMP=5

SCORE=0

FNTS=30

JMF=0

SOUND 0,.31.4.,4

FOKE &23.4

JSTOP=J+219

FOR G=20 T0O 245 STEP =X

FOKE S53248.6G
D=USR(VP.APIMG.LAFPOSAFO0S)

IF JMP=0 AND G<180 AND STICK (Q) <>
1S5 THEN JMF=AFP0OS+132:FPOKE 53249.6
+4: IMG=JPIMG: D=USR(VF,IMG, 0, JMP)
LIMF=JMF

IF JMP=0 THEN 880

IJMP=0MF+3

IF JMP<{J+200 THEN HJIMF=G+4:FPOKE S
3249 HIMFPz:50UND 1,6,10,8:607T08 860
IMG=JS5IMG

JMF=0dMF -2

SOUND 1,0,0,0

IF HIMP>=122 AND HIMP<{=126 THEN J
STOFP=J+208:60T0 8&90

IF HIMP<120 OR HIMP>134 THEN 860
JSTOFP=J+210

POKE &23F,1

IF PNTS>1S THEN PNTS=15

IF JMP>JS5TOP THEN 240

D=USR(VF, IMG,.LIMP,JIMF)

LAPOS=AFOS

APOS=APOS+1I
D=USR{(VFP.APIMG,.LAPOS,AF0S)

IF AFOS>EBOT THEN I=-SLOPE

IF AFPOS<TOF THEN I=SLOPE

NEXT G

IF OJMP<J AND FNTS>% THEN PNTS=PNT
S—-8:G0T0 1220

IF OJMP<J THEN 1220

IF HIMP<120 OR HIMF>134 THEN TONE
=8:60T7T0 1010

161

5 Animation With Player/Missile Graphics

980 SCORE=SCORE+FNTS

985 TONE=12

990 D=USR{(VP,JWIMG,.0,JMP—1)

1000 ? "SCORE ";SCORE:? :7?

1010 FOR D=15 TO O STEP -1

1020 SOUND 1,12,TONE,D

1030 FOR I=1 TO 10:NEXT I

1040 NEXT D

1050 SOUND 0,0,0,0

1055 SOUND 1,0,0,0

1060 JUMP=JUMP—-1

1070 IF JUMP<30 THEN 1170

1080 IF SCORE3>HSCORE THEN HSCORE=SCOR
E

1090 FOR I=1 TO 120

1100 IF I=1 THEN ? "HIGH SCORE ";HSCO

RE:? 2%
1110 IF I=60 THEN ? "FINAL SCORE ":S5C
ORE:7? =7

1120 IF STRIG(0)=1 THEN 1150
1130 D=USR{(VP,CLEAR,J.O)
1135 PRINT

1140 GOTO 630

1150 NEXT I

1160 GOTO 1090

1170 ? "JUMP ":6-JUMP:? :7?
1180 FOR D=0 TO 250:NEXT D:?
1190 D=USR{(VF,CLEAR,J,0)
1195 I=SLOPE

1200 IF RND(Q)>0.5 THEN I=-SLOPE
1210 GOTO 670

1220 POKE 77,0

1225 GOTO &90

1230 END

162

5 Animation With Player/Missile Graphics

Program 2. Assembly language representation of the P/M Vertical
Positioner Routine.

10 ;P/M VERTICAL POSITIONER
20 NEW =220

30 CURRENT =222

40 IMAGE=224

50 START PLA :REMOVE ARGUMENT
BYTE COUNT

60 LDX#5 :REMOVE 6 BYTES

70 LP1 PLA ;AND PLACE IN PAGE ZERO

80 STA NEW, X

90 DEX

100 BPL LP1

110 DEC NEW

120 DECLAST

130 LDY#0

140 LDA (IMAGE),Y ;GETIMAGEBYTE COUNT

150 TAX

160 TAY

170 LDALAST+1 ;IFZERO DON'T DELETE

180 BEQ SKIPD

190 LP2 LDA#0 ;DELETE IMAGE

200 STA (LAST),Y

210 DEY

220 BNE LP2

230 SKIPD TXA

240 TAY

250 LDA NEW +1 :IFZERO DON'T RESTORE

260 BEQ SKIPR

270 LP3 LDA (IMAGE),Y ;COPYIMAGEDATA TONEW

280 STA (NEW),Y ;ADDRESS

290 DEY

300 BNE LP3

310 SKIPR RTS

5 Animation With Player/Missile Graphics

P/M Graphics Made
Easy

Tom Sak and Sid Meier

There’s more than one way to obtain fast vertical movement with player/
missile graphics. This article, and the one following, shows how vertical
blank interrupts may be used for this purpose.

Many people have called the Atari’s graphics capabilities its
best feature, especially the player/missile graphics. We won't
argue, but how many of you have backed away because it looks
too difficult to handle in BASIC or you simply are not satisfied
with the execution speeds which you are able to achieve?

Well, no more excuses! We've got a machine language
subroutine that you can use with BASIC to achieve exciting
graphics performance without a lot of muss and fuss. As a mat-
ter of fact, you make only one setup call to the subroutine and
then forget it! And we promise you need know nothing about
machine language. Just a few POKEs and you’ll have your
players dancing around the television screen.

You Don’t Need To Know Machine Language

There have been a number of very helpful articles published
describing the essential player/missile graphics information.
We're going to assume that you are familiar with the funda-
mentals, but we'll review highlights as they’re required.

A feature of the Atari with which you may not be familiar
is its “interrupt” mechanism and how you can let it move your
players for you at machine language speed — without the over-
head of calling it from your BASIC program. Before we explore
this useful feature, let’s take a quick refresher course on inter-
rupts.

As you know, the Atari keeps itself pretty busy doing its
“housekeeping” chores even while itis interpreting your BASIC
program. Among other things, the Atari must maintain the
steady delivery of information to your television set, allowing

164

5 Animation With Player/Missile Graphics

it to paint a constantly up-to-date picture of the display data.
Multiple, concurrent activities are performed by allowing one
particular activity to periodically interrupt another.

The traditional analogy is that of a busy business executive
who, while engaged in a meeting with an associate, is inter-
rupted by a telephone call. The ringing phone signals the inter-
rupt; the executive “checkpoints” his me ceting and answers the
phone. After disposing of the call, the executive resumes his
meeting at the point of interruption.

A similar circumstance occurs each time a complete picture
is painted by your television set. The television’s electron beam
paints the picture by sweeping horizontal rows across the pic-
ture tube beginning in the upper left-hand corner and ending
in the lower right. The beam is turned off when it reaches the
lower right corner and is returned to its upper left starting posi-
tion. This return trip is essentially a vertical positioning move-
ment, so this period when the beam is turned off is known as
the vertical blank time.

Move During Vertical Blanks

The onset of the vertical blank cycle serves as an opportunity
for the Atari’s ANTIC chip to signal an interrupt, the vertical
blank or VBLANK interrupt. The operating system uses this
occasion to perform some of its “housekeeping’” duties. Fortu-
nately, the operating system designers allow us to include a
machine language subroutine which can be executed as one of
these tasks.

The machine language vertical blank interrupt player move-
ment subroutine described here is called VBLANK PM, and it
allows you to simply POKE the next x and y coordinate at which
your player is to be displayed. There is no need to repeatedly

call the subroutine from BASIC via the USR function. The sub-
routine will be automatically executed during the next vertical
blank perlod It is possible to move the players every time a
new screen is painted on the television —and that’s 60 times
second!

You may recall from otherarticles that an appropriate POKE
to location 53248 (and the three memory locations following)
permits you to position players zero through three horizontally
along the x-axis. It's not quite as easy to position the players
ver tlcally along the y-axis. Not until now!

165

5 Animation With Player/Missile Graphics

The VBLANK PM subroutine takes care to move the players
in both directions. Movements along the vertical axis involve
“erasing’’ and rewriting the player in the new position.
VBLANK PM does this for you, automatically. There are a few
things which you must do for VBLANK PM, however.

First, you must get the VBLANK PM machine language
subroutine into memory and notify the operating system that it
is to be included as one of the “housekeeping’” tasks to be per-
formed as a part of servicing the vertical blank interrupt. Next,
it's up to you to draw your playcrs and tell VBLANK PM how
tall they are. After initialization, VBLANK PM looks after the
positioning of your players until either a warm start (pressing
SYSTEM RESET) or a cold start (power-off, power-on sequence)
is performed.

The program is an example of the initialization and use of
the VBLANK PM subroutine. This program causes VBLANK
PM to be loaded and initialized and players zero and one to be
drawn and then moved about the television screen in a random
pattern. The players are male and female gender symbols which
the program “dances” around the screen.

Lines 100 through 200 are the main program; we'll save an
explanation of these lmcs until after you've gamod some insight
into the initialization subprogram contained in lines 1000

through 1110. The VBLANK PM machine language subroutine
is expresscd in the DATA statements numbered 2000 through
2100. Finally, lines 3000 through 3020 supply a description of
the two players used in this example.

The first task is to load VBLANK PM into page six of mem-
ory. Page six is locations 1536 through 1791 (hexadecimal 600
through 6FF) and has been left available by Atari’s software
designers for applications such as this one. These 256 bytes of
memory are not disturbed by BASIC or DOS; however, a cold
start does cause page six to be cleared to zeros. Line 1010 causes
the VBLANK PM to be read and POKEd into memory. Line
1020 clears a few locations used by the subroutine; this statement
can be omitted if you are sure that page six has not been altered
since the last cold start.

We're going to employ the Atari’s ANTIC chip direct mem-
ory access (DMA) facility to transfer graphics information from
memory to the television using single-line resolution. (You
might want to re-read the introductory article of this chapter or
just “trust us on this one!”’) This means that we must allocate

166

5 Animation With Player/Missile Graphics

2K (2048) bytes of memory for the storage of players. In line
1030 we obtain the page number of RAMTOP, deduct 16 pages,
and call the result the base of the required 2K byte allocation.

Memory Allocation

Why 16 pages? Well, first consider that 2K bytes are eight pages
(a page contains 256 bytes) and that, depending on the graphics
mode (i.e., GRAPHICS 0 through GRAPHICS 8), you must
allow sufficient space at the top of RAM to contain the display
list and screen data. Incidentally, the player/missile 2K byte
allocation must begin at an address which is a multiple of 2048;
we call this starting address PMBASE.

One more cautionary note: you will have to allow more
than 16 pages between PMBASE and RAMTOP if you are using
graphics modes six through eight. Articles clsewhere in this
book provide greater det ail in this area.

The figure depicts the 2K byte memory allocation. Remem-
ber, we didn’t design this snhcmc Atari dld, and we're not
sure why, but thcw is a considerable amount of unused space
involved. You can use the lower, unused bytes for your own
purposes without disturbing anvlhlng, if you like. We're going
to use only the upper 1K b\’los

Player zero occupies PMBASE 4+ 1024 through
PMBASE + 1279; player one is situated in locations
PMBASE + 1280 through PMBASE + 1535, and so on for players
two and three. Line 1040 clears any residual data —if you're in a
hurry and are sure that this area is already clear (i.e., following
a cold start), you won’t need line 1040.

Memory Allocation For Single-Line Resolution of P/M Graphics.

PMBASE
currently
not
used
+1024
playerzero +1280
playerone +1536
playertwo +1792
playerthree

167

5 Animation With Player/Missile Graphics

Lines 1050 and 1060 are used to draw players zero and
one. VBLANK PM expects the players to be drawn so that their
top line is initially placed at the beginning of the individual
player’s storage area. The player can be as tall as you like up to
255 lines; of course, you will never see all of a player which is
that tall on the screen at the same time.

Next you can see that we've taken advantage of the Atari’s
special memory locations for some functions. You establish the
players’ colors with a POKE into locations 704 through 707 for
players zero through three, respectively. Line 1070 is used to
set the colors and assumes that you've set the variables PCOLO,
PCOL1, PCOL2, and PCOLS3 already.

Line 1080 establishes the positioning addresses which you
will be using later to signal player movements using only
POKEs. PLX and PLY are the locations POKEd to establish the
next x and y position of player zero. A POKE into location
PLX+1and PLY + 1 accomplishes the same thing for player
one, and so forth for players two and three. PLL (and PLL+1,
PLL+2, and PLL+3) are POKEd to inform VBLANK PM of the
length (or height) of each player.

Line 1090 initializes the remaining control parameters. A
62 is POKEd into location 559 to set the single line player/missile
resolution graphics; a one placed into location 623 establishes
the player/playfield priorities, giving the players priority over
the playfield. (You can change this to suit your purposes, if
you wish.) Location 1788 is in VBLANK PM and is POKEd with
the number of the first page containing player/missile data.
Locations 53277 and 54279 are used to switch on the DMA
graphics data transfer facility and to tell the ANTIC chip where
in memory to find the player graphics data.

Wrapping Up The Loose Ends

You're almost ready to go! A subroutine call to VBLANK PM
from line 1100 allows VBLANK PM to notify the operating sys-
tem of both its presence and its desire to be automatically in-
voked as a part of the vertical blank interrupt process. This is
the only time in which your BASIC program must explicitly call
VBLANK PM.

Okay, to wrap up loose ends, let’s take a quick look at the
main program — lines 100 through 200. Line 100 turns off the
cursor, clears the screen, and provides a black background so
that we can readily see the players.

168

5 Animation With Player/Missile Graphics

Line 110 sets the players’ colors before the VBLANK PM
initialization subprogram is executed. You know how to set the
colors, right? Multiply the color number by 16 and add the de-
sired intensity — the color and intensity numbers are the same
as those used in the SETCOLOR command. Line 120 assures
that VBLANK PM is launched.

Line 130 illustrates the manner in which you pass instruc-
tions to VBLANK PM. Here we are telling VBLANK PM that
both players are eight lines tall. You can change this parameter
at any time — we have a little surprise for you later about why
you might want to change this parameter.

Lines 140 and 150 establish the initial television screen
positions of players zero and one, respectively. A word about
the available values for the xand y coordinates might be helpful,
since not all x and y values will result in the player being dis-
played There are 255 x positions, with only 160 of these ap-
pearing across the television screen beginning with an x value
of 48.

Similarly, there are 255y positions with 192 of these visible
on the screen beginning with 32 at the top. (These x and y values
may vary slightly depending on the adjustment of your televi-
sion receiver.) VBLANK PM assumes that you are referring to
the upper left corner of your player whenever you POKE new
x and y coordinates.

Lines 170 and 180 illustrate the use of the pseudo-random
number function to determine the next set of x and y coordi-
nates. Line 190 provides a small delay between player move-
ments. Delete the FOR and NEXT statements if you want to
see how fast —and easy — it is to move players.

Well, who said player/missile graphics had to be anything
but fun?! Give VBLANK PM a try in one of your current pro-
grams to add a little zip; or try it in your next graphics project.

Oh, we almost forgot that we promised you a surprise
regarding why you might want to change the height of a player.
VBLANK PM has a few more features which allow you to
animate the movements of your players — so turn to the next
article!

169

5 Animation With Player/Missile Graphics

Program.

0 REM ¥ VYELANE FPM DEMO x

100

110

160
170

180
120
200
1000
1010

1020

1030
1040

1050

1060

1070

1680
1090

1100

1110
2000

170

POKE 752,1:7 CHR${125):5ETCOLOR 2
0.0
FEOLO=214:FCOL1=54:REM Color of p
lavers
GOSUR 1000:REM Initialize VELANE
routine
FOKE PLL.B:POKE PLL+1,8:REM Heigh
t of player5
FOKE PLX,108:P0OKE PLY,10Z:REM Fla
ver O0°s 1nitial position
FOKE FPLX+1,108:F0KE FLY+1,72:REM
Flayer 1°s 1nitial peosition
REM Let plavyers dance!
POKE FPLX,RND{(OQO)%159+48:POKE PLY.R
ND(O) %191 +32
FOKE PLX+1,RND{(0)%159+48:POKE FLY
+1,RND(O) %191+32
FOR I=1 T0O 75S:NEXT I:G0T0 170
END

REM % INITIALIZE VBLANEK ¥

FOR I=1536 TO 1706:READ A:POKE 1
<AZNEXT I

FOR I=1774 TO 1787:FPO0OKE I1I.0:NEXT

I

FM=FPEEK (106) —-16: FMBASE=2554%FM
FOR I=PMBASE+1023 TO FMBASE+2Z2047
tFOKE I.0:NEXT I

FOR I=FMEBASE+1025 TO PMBASE+1032
:READ A:FOKE I.A:NEXT I

FOR I=PMRASE+1281 7O PMEASE+1288
:READ A:FPOKE I.A:MEXT I

FPOKE 704,FPCOLO:FOKE 70Z,FPCOL1:FO
KE 70&6,PCOL2:FPOKE 707 .FCOLZE
PLX=S3248:PLY=1780:FLL=1784

FPOKE 5S559.62:POKE 623.1:F0OKE 1788
LFPHM+4: POKE S3277,353:F0KE S4279.FPM
X=US5R{16986)

RETURN

REM ¥ VELANEKE INTERRUPT ROUTINE %

2010

2020

2030

2040

b
0
o

2060

FJ

070

2080

2090

2100
3000
3010
3020

5 Animation With Player/Missile Graphics

DATA 162.3,189,244,6,240,89,56,2
21,240,6,240,83,141,254,6,106,14
1

DATA 255,6,142,253,6,24,169,0,10
9,.253,6,24,109,252,6,133,204,133
DATA 206,189,.240,6,133,203,173,2
54,6,133,205,189,248,6,170,232,4
6,255

DATA 6,144,16,1568,177,203,145,20
5,169,0,145,203,136,202,208,244,
76,87

DATA 6.160,0,177.203,145,205,169
.0,145,20%,200,202,208,244,174,2

X, 2
53,6

DATA 173,254,.6,157,.240,6,189,236
B ZA0 88, 133, P03, 24,138,141 ,253
L O

DATA 109,235,6,133,204,24,173,25
2,6.109,252,46,133,206,189,240, 6,
13E

DATA 205,189,248, 6,170,.1460,0,177
L203,145,205,200,202,208,248,174
« 255 6

DATA 169,0,157,.236,6,202,48,3.76
. 2,6.76,98,228,0,0,104,1469

DATA 7.162,6,1460,0,32,92,228,96
REM % Draw players O & 1 X%

DATA 6.6.8,126,195,195,195,126
DATA 126,195,195,126,.24,126,126.
24

171

5 Animation With Player/Missile Graphics

Animation And
P/M Graphics

Tom Sak and Sid Meier

This article builds upon the vertical blank routine in the preceding
piece, showing how to animate players with pre-drawn shapes.

You're already familiar with the Atari’s ability to rapidly move
a player from one location to another. But there are many times
when you would like to do more than simply move a player;
you'd like to give it lifelike motion, or animation. Spend a few
minutes and learn how you can achieve these effects with far
less effort than you might have imagined.

The art of bringing life to still pictures is much older than
many of us realize. The production of books which contained
moving pictures was well established before the invention of
the motion picture camera and projector. The effect of moving
pictures was typically accomplished by rapidly flipping the
pages of a booklet containing simple character drawings,
making them seem to spring to life.

Walt Disney and numerous other animators have produced
this illusion of motion by drawing series of pictures in which
each picture differs from the previous one only in a very small
detail, a subtle displacement of each moving element. The pic-
tures are then photographed for subsequent projection.

For example, an animator, using a sequence of drawings,
draws a man who appears to raise his arm away from his side.
The first drawing would show the man facing you with both
arms at his sides. The second picture differs only in that one
arm is now slightly away from the man’s side. The next picture
shows the arm slightly further away, and so on through the
sequence of drawings.

Animate With Only Four Drawings
As each picture in the series is viewed in rapid succession, by
flipping through the stack of drawings, the figure appears to be

172

5 Animation With Player/Missile Graphics

raising his arm away from his side. A motion picture film con-
sists of an analogous sequence of pictures which also p10v1de

the illusion of motion when they are projected and viewed in

rapid succession.

As you can well imagine, a very large number of drawings
is required to produce even a relatively short motion picture
sequence. Since you're not about to adapt Fantasia for the small
screen attached to your Atari, we will show you a way to use
only four dlawmlfs 1epcalcd in a cyclical pattern, to produce

the illusion of motion. This is a very effective shortcut which
makes it practical to adapt the animator’s techniques to your
BASIC program.

Now for some Atari animation. There is no question that
our artistic creativity and graphic talents may never rival those
of Walt Disney, but we will endeavor to adapt the basic anima-
tion teChquL which he popularized in order to move four

“cowboys” from right to left across your television screen,
totally out of step with each other.

For illustrative purposes we’'ll begin by moving only one
cowboy. Program 1 accomplishes this objective by using the
automatic player/missile graphics manipulation of the vertical
blank interrupt routine which we discussed in the preceding
article. Those who have entered the example program in that
article will be pleased to know it already contains the animation
features described here.

Program 2 adds complexity to the one cowboy program,
illustrating the asynchronous movement of four players. De-
veloping an understanding of the more complex program won’t
be too difficult once you've grasped the concepts in Program 1.

Reviewing Vertical Blank Interrupts

An elementary understanding of our vertical blank interrupt
routine, VBLANK PM, is a prerequisite. Here we will review
highlights of our previous article.

VBLANK PM is a machine language subroutine which
occupies a portion of memory page six. Itis initialized by a single
BASIC USR function call which causes VBLANK PM to notify
the operating system of both its presence and its desire to be
automatically invoked duri ing each vertical blank interrupt.

Prior to initialization, a 2K (2048) byte memory allocation
must be made for the storage of plavels, and the playus must
be drawn. Following initialization, a POKE of the x-axis (hori-

173

5 Animation With Player/Missile Graphics

zontal) and y-axis (vertical) screen coordinates is all that is
required to cause a player to be automatically moved during
the next vertical blank period, or approximately every 60th of a
second.

We hinted in the previous article that VBLANK PM has an
animation feature just waiting to bring life to your players. All
you need do is supply a few more drawings. The drawings and
the current display image are contained in the 2K byte storage
block.

Players Are Stored As Separate Images

Figure 1 depicts the memory allocated for the storage of players
(see line 1030 in Program 1; memory allocation is explained in
our earlier article). The current displayed image of player zero
resides at locations PMBASE + 1024 through PMBASE + 1279;
player one’s homestead is PMBASE + 1280 through PMBASE

+ 1535, and so on for the other two players.

To achieve the animation, you need more than one image
of each player, so the lower 1K (1024) locations (PMBASE
through PMBASE +1023) of the 2K byte storage block are used
to hold the necessary set of drawings. Each player’s drawings
are stored in an area of memory beginning at a location which
is 1K bytes below (lower memory address) the player’s position
in the upper 1K portion of the 2K byte storage block. A drawing
is copied to the upper 1K portion by VBLANK PM when it is to
be displayed. As a matter of fact, you won’t draw anything at
all in the upper 1K locations, but will let VBLANK PM look
after this chore for you.

For example, all of the player zero drawings reside at the
256 locations beginning at PMBASE. The currently displayed
image of player zero resides at locations PMBASE + 1024
through PMBASE +1279. The drawings for player zero are
stored 1024 locations below this point, which is equal to
PMBASE + 1024 minus 1024, or simply PMBASE. The player
one drawings begin at PMBASE + 256, or (PMBASE + 1280)-
1024, and so on for players two and three at locations
PMBASE + 512 and PMBASE + 768, respectively.

A note of caution: we mentioned in the previous article
that you could use the lower 1K bytes for your own purposes
without disturbing anything. This is true only when the
VBLANK PM animation feature is not going to be used. We
hope that you've not been led too far astray!

174

5 Animation With Player/Missile Graphics

At the risk of stating the obvious, we’d like to mention
that as soon as you've decided to use more than one drawing
per player—which you mustdo in order to achieve the animation
— you can no longer have a player which is 255 lines tall. This is
true because there are only 256 locations in which to store all of

the drawings necessary to animate a single player. The first
position, location zero, of each storage bin is reserved for a
reason discussed later.

Initialize The Vertical Blank Routine

Now let’s turn our attention to Program 1. Line numbers ending
in zero are the same as in the preceding article and, for those
who previously keyed the lengthy DATA statements containing
VBLANK PM, we’ve made no Lhan«ms to the machine language
subroutine.

Lines 105 through 205 are the main program which causes
our ragtag cowboy to meander across the screen. The BASIC
code required to load and initialize VBLANK PM is found on
lines 1000 through 1110. The VBLANK PM machine language
subroutine is represented as DATA in lines 2000 through 2100.
Finally, lines 3005 through 3045 contain the four drawings,
used to describe a smg,le pla\'o

Before reviewing the main program, we’ll go over the in-
itialization subroutine which performs three functions: load
VBLANK PM, load the player’s drawings, and initialize
VBLANK PM.

Lines 1010 and 1020 cause VBLANK PM to be read from
DATA statements and POKEd into memory page six. A more
memory-efficient method of representing VBLANK PM is the
use of a string variable instead of DATA statements. Using this
alternative, you continue to POKE the VBLANK PM code into
page six, but from the string variable instead of from DATA
statements.

You would save memory because only a single byte of mem-
ory is required in the string variable assignment statement to
represent a byte of machine language code. In the DATA state-
ment, as many as three bytes may be required for the same
thing. For certain other machine language code applications,
you can directly execute from the string, eliminating the need
to POKE the code into another memory location.

How The Animation Works

Line 1030 acquires the 2K byte memory storage block, and line

175

5 Animation With Piayer/Missile Graphics

1040 assures that the upper 1K byte display portion is cleared.
Lines 1045 through 1065 are responsible for reading and storing
the player’s drawings in the lower 1K byte portion of the storage
block. The four drawings of a cowboy are illustrated in Figure
2; you see now why Disney Productions can rest easy!

Notice that in line 1045 the first location in which the first
drawing is stored is established as one byte above PMBASE;
you will learn why this is necessary in a minute. The FOR state-
ment on line 1055 assures that four drawings (zero through
three) are read and stored. Each drawing is 24 lines tall, so we
begin the FOR loop on line 1065 with the base of the first drawing
offset by 24 bytes for each previous drawing stored. Since each
drawing consists of 24 bytes, the loop is completed by adding
23 to the starting point.

Line 1075 designates the player’s color. Line 1080 estab-
lishes the locations to be POKEd to change the player’s x-axis
and y-axis screen coordinates (PLX and PLY) and to set the
length (height) of the player (PLL).

The x-axis screen display positions for players zero, one,
two, and three are indicated by POKEs to PLX, PLX+1, PLX+2
and PLX + 3, respectively. The analogous situation is true for
setting the player’s y-axis coordinate (PLY, PLY +1, ...) and the
player’s height (PLL, PLL+1, ...), and for selecting the next
drawing to be displayed (PDR, PDR+1, ...).

PDR is defined on line 1095 and is used to select the next
drawing to be used as the player’s current display image.
VBLANK PM is responsible for copying the drawing to the
appropriate location in the upper 1K byte portion of the 2K
byte storage block. A value in the range of one to 255 is POKEd
into PDR to indicate the bottom-most line of the selected draw-
ing. The most recent value POKEd into PLL indicates the
number of bytes (the height of the player) to be copied.

VBLANK PM Must Announce Itself
A value of zero POKEd into PDR signals VBLANK PM to con-

tinue to display the current image. This is why we were careful
to avoid location zero when loading the first dmwmgj VBLANK
PM sets PDR to zero automatically after it copies a drawing to
the upper 1K byte display area.

Location 1771, POKEd in line 1095, is a location in VBLANK
PM which must contain the memory page number of the first
page in which drawings are stored. Location 1788, referenced

176

)

e

5 Animation With Player/Missile Graphics

on line 1090, is also in VBLANK PM, and must contain the page
number of the beginning of the upper 1K byte current display
portion. (These parameters afford even greater flexibility to
VBLANK PM, features which are beyond the scope of this dis-
cussion.)

The other POKEs on line 1090 are associated with the Atari’s
player/missile graphics mechanism which is described in
numerous other articles.

VBLANK PM is initialized on line 1100. This is the only
explicit BASIC function call to VBLANK PM which is required.
As a result of this call, VBLANK PM will register its intention
to become a part of the vertical blank interrupt process with the
operating system.

Inside The Main Routine

Turning our attention to the main program, we start with line
105, which establishes the television screen background, or
playfield. Itis important that you always define a graphics mode
(execute a graphics statement) before you initialize VBLANK
PM; if you fail to follow this sage advice, you are likely to be
plagued by a strange flashing vertical bar on your screen.

[t doesn’t matter which maphus mode is specified since
Atari players are independent of the mode. Graphics mode one
is chosen to provide a text window to serve as a walkway for
our strolling cowboy. Line 125 sets the y-axis position of the

cowboy so he appears to walk on top of the text window. The
player’s height is also established on line 125.

The animation is performed by lines 135 through 205. These
lines should be relatively easy to comprehend once you have a
mental picture of the way in which the drawings were stored
during the initialization pmwduxe The variable DRAW, in-
itialized as one on line 135, selects the next drawing to be used
as the current display image.

Lines 145 and 165 control the right to left motion of the
cowboy by using the index variable I as the x-axis coordinate of
the player. The POKE to PDR on line 185 selects the next
drawing to be displayed, and the calculation on line 195 results
in the selection of the drawing to be used in the next cycle when
the cowboy takes his next step.

The IF statement on line 195 assures that after the fourth
drawing is used, the program will cycle and begin anew with
the first drawing. The FOR loop on line 205 controls the speed

177

5 Animation With Player/Missile Graphics

with which the cowboy strolls across the screen. A maximum
value of 30 results in a movement which you might describe as
a brisk walk. The larger the maximum value of this delay loop,
the slower the pace of the player.

The cowboy will continue to walk across the screen until
you stop the program. Incidentally, the program does not grace-
fully turn off the Atari’s player/missile graphics mechanism, so
you are well advised to press SYSTEM RESET to remove the
undesirable residue from the screen. (POKE 53277,0 turns off
the player/missile gracefully.) Be patient when the program is
started, since it takes more than ten seconds for the initialization
procedure.

Four Heads Are Better Than One

And that’s almost all there is to animation! Are you ready to
tackle a little bit more challenging project? Program 2 represents
enhancements to the program we’ve been reviewing. It uses all
four players and, while it causes them to walk out of step with
each other, it employs only the same four drawings.

Program 2 modifies seven lines and adds two more. The
changed lines are: 125, 165, 185, 205, 1045, 1055 and 1075; lines
155 and 175 are new.

Line 1045 now includes a FOR statement to cause the draw-
ings to be READ and POKEd in the storage area associated
with the additional three players. Note also that the calculation
of DRWBAS is revised to reflect the additional players.
DRWBAS contains the address of the first byte of the drawing
storage area containing the first drawing for the current player.
As the value of the variable, I, in the FOR loop is indexed from
0 to 3, DRWBAS will take the values 1, 257, 513 and 769. The
first byte, location 0, of each storage area is skipped for the
reason mentioned earlier.

A RESTORE statement is added to line 1055 which resets
the DATA pointer to reread the same drawings for each player.
The modification to line 1075 is simply the addition of player
colors for the new players.

Looking at the main program, line 125 now establishes the
y-axis and height for four players rather than one. Line 155 is
added to cycle through the x-axis movement and picture selec-
tion for all players.

In line 165 we've added a calculation to the x-axis position-
ing POKE to maintain a separation between the cowboys which

178

5 Animation With Player/Missile Graphics

is equal to slightly more than the width of a single player as
measured from the left-most edge of one player to the left-most
edge of the following plaver.

Still Only Four Drawings

Line 175 is added to assure that a different drawing is used as
the current display image for each player. The variable DRAW
continues to determine th e drawing to be selected for player
zero. Study the statement, and you will discover that each player
will be depicted by the drawing followmg7 that used for the
previous player. That is, if player zero is pictured by the first
drawing, then player one is illustrated by the second, player
two by the third, and, finally, player three is displayed as the
fourth drawing. A circular assignment is used so that the fourth
drawing is followed by the first.

The delay loop is omitted from line 205 because the addi-
tional calculations needed for the added players consume suffi-
cient time to maintain a reasonable pace for all four cowboys.
You might want to experiment with a delay loop to further
slow the action; better yet, consider using GET to accept a key-
stroke instead of employing a delaying FOR loop. The GET will
allow you to step the players across the screen in order to study
the animation technique.

Don’t you agree that animation makes a world of difference
in the use of plave r/missile graphics? I was fascinated when my
more talented partner, Sid, gave me a half-dozen lines of cryptic
BASIC statements to turn into an animation tutorial. The first
time I saw them execute, I was mesmerized. Go ahead, type
either program into your Atari; you'll be addicted too.

179

5 Animation With Player/Missile Graphics

Figure 1.

8 bits wide

PMBASE

PMBASE
+256

PMBASE
+512

PMBASE
+768

PMBASE
+1024

PMBASE
+1280

PMBASE
+1536

PMBASE
+1792

PMBASE
+2048

() - VBLANK PM unique usage

180

D2 DII2DI3D2DD22D3D0D2)D02I0D02D0322)0302I2DdH22)H)))2))H)

AR B R R R EREREREREEREREREEREREEREEEERIEEEEIEEEEEEEREIN

5 Animation With Player/Missile Graphics

Figure 2.

DRAWING1 DRAWING2 DRAWING3 DRAWING 4

A
HE =

.
o

f

Program 1.
S REM PR O GR A M{4 SPACES30O N E
105 GRAPHICS 1:SETCOLOR 2,1,8:8ETCOLOR 4.8,4

120
125
135
145

165
185
195

205

1000
1010

1020
1030
1040

1045
1055

:POSITION 5,3:7 #6;"animation”:POSITION

3,5:7 #6; "demonstration” '

GOSUB 1000:REM initialize vb routine

POKE PLY,169:P0OKE PLL,24

DRAW=1

FOR I=212 TO 10 STEP —-1:REM move rt to 1

ft horiz

POKE PLX,I:REM new position

POKE PDR,DRAW:REM new drawing

DRAW=DRAW+24: IF DRAW>73 THEN DRAW=1:REM

select next drawing

FOR DELAY=1 TO 30:NEXT DELAY:NEXT 1:G0TO
145

REM INITIALIZE VBLANK PM SUBR

FOR 1I=1536 TO 1706:READ A:POKE I,A:NEXT
I

FOR I=1774 TO 1787:P0OKE I,0:NEXT I
PM=PEEK(106)-16:FPMBASE=256%FPM

FOR I=PMBASE+1023 TO PMBASE+2047:P0OKE I
s O NEXT I

DRWBAS=PMBASE+1

FOR J=0 TO 3:REM four drawings

181

5 Rnimation With Player/Missile Graphics

1065
1075
1080
1090
1095
1100
1110
2000
2010
2020
2030
2040
20350
2060

2070

2080
2090
2100
3005
3015
3025
3035

3045

182

FOR K=DRWBAS+J%24 TO DRWBAS+J%24+23:REA
D X:POKE K,X:NEXT K:NEXT J

POKE 704,12

PLX=53248:PLY=1780:PLL=1784

POKE 559,62:POKE 623,1:POKE 1788,PM+4:P
OKE 53277,3:POKE 54279,PM

PDR=1772: POKE 1771 ,PM

X=USR(1696)

RETURN

REM vblank interupt routine

DATA 1462,3,189,244,46,240,89,56,221,240,
6,240,83,141,254,6,106,141

DATA 255,6,142,253,6,24,169,0,109,253,6
+ 24,109,252,6,133,204,133

DATA 2046,189,240,6,133,203,173,254,6,13
3,205,189,248,6,170,232,46,255

DATA &,144,16,168,177,203,145,205,169,0
,145,203,136,202,208,244,76,87

DATA 6,160,0,177,203,145,205,169,0, 145,
203,200,202,208,244,174,253,6

DATA 173,254,6,157,240,6,189,236,6,240,
48,133,203,24,138,141,253,6

DATA 109,235,6,133,204,24,173,253,6,109
2 252,6,133,206,189,240,6,133

DATA 205,189,248,6,170,160,0,177,203,14
5,205,200,202,208,248,174,253,6

DATA 169,0,157,236,6,202,48,3,76,2,6,76
+98,228,0,0,104,169

DATA 7,162,6,160,0,32,92,228,96

REM drawings 0, 1, 2 and 3

DATA 0,12,12,30,0,12,12,0,12,14,30,45,1
3,13,12,28,28,20,52,34,34,34,102,0

DATA 0,12,12,30,0,12,12,0,12,14,14,13,2
6,4,8,12,12,28,24,28,20,18,50,0

DATA 0,12,12,30,0,12,12,0,12,14,10,14,3
o,12,8,12,28,28,8,12,12,8,24,0

DATA 0,12,12,30,0,12,12,0,12,12,12,10,6
1 30,12,12,12,12,20,20,18,30,6,0

5 Animation With Player/Missile Graphics

Program 2.

This program uses the Vertical Blank Player/Missile routine, so add lines
2000-3045 of Program 1 when you type it in.

S REM P R OG R A M{4 SPACES3T W O
105 GRAPHICS 1:SETCOLOR 2,1,8:SETCOLOR 4,8,4
:POSITION 5,3:7 #6;3;"animation":POSITION
3,9:7 #6; "demonstration”
120 GOSUB 1000:REM initialize vb routine
125 FOR J=0 TO 3:POKE PLY+J,169:POKE PLL+J,2
4:NEXT J
135 DRAW=1
145 FOR I=212 70 10 STEP —-1:REM move rt to 1
ft horiz
155 FOR J=0 TO 3:REM four plavyers
165 POKE PLX+J,I+J%x10:REM new positioN, main
tain separation
175 NXTDRW=DRAW+JXx24: IF NXTDRW>73 THEN NXTDR
W=NXTDRW-926: REM select different drawing
for each player
185 POKE PDR+J,NXTDRW:NEXT J
195 DRAW=DRAW+24: IF DRAW>73 THEN DRAW=1:REM
select next drawing
205 NEXT I:60TO0O 145
1000 REM INITIALIZE VBLANK PM SUBR
1010 FOR I=1536 TO 1706:READ A:POKE I,A:NEXT
I
1020 FOR 1I=1774 70 1787:P0OKE I,0:NEXT I
1030 PM=PEEK(106)-16:PMBASE=256%PM
1040 FOR I=PMBASE+1023 TO PMBASE+2047:POKE I
s O:NEXT 1
1045 FOR 1I=0 TO 3:DRWBAS=PMBASE+1%256+1:REM
four players
1055 RESTORE 3015:FOR J=0 70 3:REM four draw
ings
1065 FOR K=DRWBAS+J%24 TO DRWBAS+J%x24+23: REA
D X:POKE K, X:NEXT K:NEXT J:NEXT I
1075 POKE 704,12:PO0OKE 705,128: POKE 706,48:P0
KE 707,192
1080 PLX=53248:PLY=1780:PLL=1784
1090 POKE 559,62:POKE 623,1:POKE 1788,PM+43P
OKE 53277,3:POKE 54279,PM
1095 PDR=1772:POKE 1771,PM
1100 X=USR(14696)
1110 RETURN

183

5 Animation With Player/Missile Graphics

Extending
Player/Missile
Graphics

Eric Stoltman

Here’s another way to animate player shapes with a machine language
routine. It's also valuable for instantly changing the shape of a player
to fit the direction it's traveling.

One of the best features of the Atari is player/missile graphics.
This article and example program will explain how to create
excellent animation, such as a walking figure or a rotating ship,
with just one player.

One way to perform animation is to alternate players back
and forth, but problems arise. What if the player is moved up?
The other plavols also have to be moved up. This takes time.
Another method is to alternately POKE data into the player,
thus changing its shape. This can be done slowly in BASIC or
quickly and easily in machine language. This program will
compare both the BASIC and l]’lﬂth]’lL language methods for
changing the data of a player.

After a plavm is set up, additional data for other shapes
must be stored in RAM. | prefer to use memory locations 256 to
511, since they are empty and are protected. T his data can be
mampulated by setting up pointers in an array. A subroutine
can then easily retrieve this data and place it in the player’s
data area. This can be done in BASIC:

C=0: FOR A=PMBASE+512+Y TO PMBASE + 519+ Y:POKE
A, PEEK(POINTER(FACING)+C) :C=C+1: NEXT A

POINTER(FACING) = Array containing addresses of data.

EXAMPLE: POINTER(1)=260,POINTER(2) =268, etc.

Or in machine language:
A=USR(XXX,PMBASE +512+Y,POINTER(FACING))

184

5 Animation With Player/Missile Graphics

XXX=Address of Machine Language subroutine.

The machine language method is not only easier, but also ex-
ecutes 11 times faster and provides smoother motion.

The machine language code is relocatable and can easily be
modified by changing the 22nd DATA element so more or less
data can be POKEd into the player’s data area.

In addition to providing animation, this subroutine can
move a player up or down when the vertical value changes
greatly. To do this, point to an empty area of RAM (thus erasing
the player), and then change the vertical value and point to the
desired data. An example would be if a player went off the top
of the screen and, using the method mentioned above, quickly
reappeared at the bottom.

[should point out that many false players, that is, data for
alternate shapes, may be stored and rotated among the four
players to provide excellent animation.

Line Numbers Explanation

110-130

140-170
180-190
200-250
270-330

340-400

POKE machine language subroutine for
changing playerinto player.

POKE data foradditional shapes into memory.
Set up pointers to data.

Set up player.

If triggeris pressed, change player by machine
language.

If triggeris not pressed, change player by BASIC.

185

5 Animation With Player/Missile Graphics

Program.

20 REM THE "I" IN THE VARIABLE "POINT
ER" IN LINES 190,250,320,390 SHOUL
D BE A "1" AS "POINT" IS A RESERVE
D WORD
100 REM %% INITIALIZATION XX
110 FOR A=153&6 TO 1560:READ I:FPOKE A,
I:NEXT A:REM POKE DATA FOR MACHIN
E LANGUAGE SUBROUTINE INTO MEMORY
PAGE &
120 REM %% MACHINE LANGUAGE DATA XX
130 DATA 104,104,133,204,104,133,203,
104,133,207,108,133,206,160,0,177
., 206,145,203,200,192,8,208,247,96
140 REM %% ADDRESS OF PLAYER DATA XX
150 FOR A=260 TO 3I23:READ I:FOKE A,I:
NEXT A:REM POKE DATA INTO PROTECT
ED RAM
155 REM %% PLAYER SHAPE DATA XX
160 DATA 28,.62,62,28,73,127,73,65,7,2
3.39,88, 154,36,8.,16, 240,38,47,.127
47,¢B 240,0,16, 8,¢6_154,88,39,23
"7
170 DATA 65,73,127,73,28,62,62,28,8,1
6,36,89,26,228,232,224, 1d.1uo 244
.254,244,100,15,0,224,232,228,26,
89,36,16,8
180 REM %% POINTERS TO DATA %x
190 DIM POINTER(8):FOR A=1 0O 8:READ
I:POINTER(A)=TI:NEXT A:DATA 260,26
8,276,284,292,300,308,316
200 REM %% SET UP PLAYER X%
210 GRAFPHICS 0:POKE 752,1:P0OKE 710,0:
POKE 559,46
220 A=PEEK{(106)-8:POKE 54279,A:POKE 5
3277,3: PMEASE=256%A: POKE 53256, 1:
X=124:Y=48
230 FOR A=PMBASE+512 TO PMEASE+&40:P0
KE A,0:NEXT A
240 POKE S53248,124:FPOKE 704,12:FACING
=1

186

5 Animation With Player/Missile Graphics

250 C=0:FOR A=FMBASE+512+Y TO PMBASE+
J19+Y: POKE A,PEEK(POINTER(FACING)
+C):C=C+1:NEXT A

270 REM %% MACHINE LANGUAGE CHANGE xx

2753 IF STRIG(0)=1 THEN 340

280 POSITION 5,5:7? "MACHINE LANGUAGE"

285 J=STICK{Q)

290 IF J=135 THEN 270

300 IF J=11 THEN FACING=FACING-1:IF F
ACING<1 THEN FACING=8

310 IF J=7 THEN FACING=FACING+1:IF FA
CING>8 THEN FACING=1

320 D=USR(1536,FMBASE+S12+Y . FOINTER(F
ACING))

330 60710 270

340 REM ¥xx BASIC CHANGE XX

345 IF STRIG{(0)=0 THEN 270

350 POSITION 5,.5:7? "BASIC{11 SPACES>";

355 J=STICK{Q)

360 IF J=15 THEN 270

370 IF J=11 THEN FACING=FACING-1:1IF F
ACING<1 THEN FACING=8

380 IF J=7 THEN FACING=FACING+1:IF FA
CING>8 THEN FACING=1

390 C=0:FOR A=PMBASE+S12+Y TO FMBRASE+
S12+Y:POKE A,.PEEK(FPOINTER(FACING)
+C):C=C+1:NEXT A

400 GOTO 340

187

5 Animation With Player/Missile Graphics

The Collision
Registers

Matt Giwer

Collision registers allow you to detect overlaps between players, mis-
siles, and other objects on the screen — an especially valuable feature
for game programmniing.

C C C

When using player/missile graphics, the Atari Operating System
sets aside 16 registers (memory locations) for determining colli-
sions. These collision registers can be read to see if there has
been a collision, and what the player or missile has collided
with. This allows control of events or actions within the program
—such as triggering explosions, for example. For complex
games, we need detailed knowledge about the numbers in these
registers.

Exactly what is a collision? In the player/missile graphics
sense, a collision occurs when the CTIA or GTIA video display
chip is directed to overwrite an ordinary screen graphic or a
player/missile with another player/missile. As part of this over-
writing process, the computer writes different numbers into its
collision registers, depending upon what kind of overwrite has
occurred. In other words, when two things are to be on the
screen at the same place at the same time, a number will be
written to these registers

An important fact about a collision is that there must be an
overwrite by at least one pixel, rather than as a ball colliding
with a wall where touching is enough to be called a collision.

Also, the numbers in these registers will not return to zero
during the vertical blanking period (the split-second a TV screen
is blank between frames). The only way to return the collision
registers to zero is to POKE a number into register 53278. This
is called the HITCLR, for Hit Clear, register.

Refer to Table 1. This shows what happens when Players 0
through 3 collide with other players. The left-hand column
shows the register number associated with the collision of the

188

5 Animation With Player/Missile Graphics

player. The Player 0 through Player 3 across the top are the
ones being collided with. The values in the table are those re-
turned after the collision. For example, if Player 0 collided with
Player 1, then PRINT PEEK(53260) would return the number 2.
Also, PRINT PEEK(53261) would return the number 1, because
the players have collided with each other and both registers
will have a number written in them.

Look again at Table 1. Since Player 0 cannot collide with
itself, the value remains zero. When you POKE a number into
the HITCLR register, this collision register returns zero and
remains zero until there is a collision with a player other than
itself. This permits a register test such as IF PEEK(53260)>0
THEN [SOMETHING] rather than using three test statements
for the values 2, 4, and 8. Thus, if you do not need to know
exactly which player has been in a collision, you need not test
for it.

Another aspect of this register is that it returns the sum of
the collision values. That is, if Player 0 collides with more than
one other player before you POKE HITCLR, then the number
in register 53260 will be the sum of the numbers. If Player 0
collides with Player 1 and Player 2, then the collision register
will contain 6; with Player 1 and Player 3, then the value will be
10; with Players 1, 2, and 3, the value will be 14. Note that in
this case, as in Tables 3 and 4, these numbers are generated by
setting bits 0 through 3 in the registers. Thus, in a machine
language routine, the state of these registers can be determined
by using a logical AND with a compare (CMP).

Table 2 shows the register values resulting from collisions
of players with playfields drawn with the BASIC instruction
COLOR. Depending upon the graphics mode, these can be
character sets (normal or redefined), or PLOT and DRAWTO
figures. There is no requirement that these actually be different
colors since the real colors are controlled by registers 709, 710,
and 711 and can be set to the same value. The playfield graphic
needs only to be drawn by the COLOR instruction. The graphic
might even be the same color as the background, and therefore
invisible. Because these collisions return different numbers, it
is possible to have different responses depending upon the
graphic collided with. Thus a room may have walls drawn with
COLOR 1 and a door with COLOR 2. When the collision register
value returned is 1, the player will not be able to pass through
the wall, but when the value is 2, the player can pass through.

189

5 Animation With Player/Missile Graphics

Tables 3 and 4 are similarly structured and complete the
register information. All have the same general characteristics.
The number is generated by the setting of bits 0 through 3 in
the registers, so the returned decimal valueis 1, 2, 4, or 8 if
only one collision has occurred, or the sum of these numbers if
multiple collisions have occurred. Note that since no two num-
bers add up to any third collision value, multiple collisions can-
not be confused with single collisions. Even with multiple colli-
sions there is always a unique number returned. These values
will remain in the registers until HITCLR is POKEd.

Note also that several collision registers are not provided.
Collisions between missiles and other missiles are not detected,
nor are collisions among playfields. Nor, as in the case of player
collisions, are there reciprocal registers for the other possible
collisions. For example, there are registers to detect when mis-
siles collide with players, but there are no reciprocal registers
to determine if players have been hit by missiles. To some extent
this dictates the character of the program. When a missile is
fired, the missile registers must be tested.

Another characteristic of these registers is that even though
a collision can be described as an overwrite, the registers fill
regardless of the priority between players and playfields that
has been selected by a POKE into register 623, the shadow
(duplicate) of 53257. Setting these priority registers allows players
to pass in front of or behind playfields, to simulate three-
dimensional movement. But despite the priority selected, the
register will respond as though there were no priority. Missiles
will respond the same as their associated players. Thus when
two objects are to be on the screen at the same place at the same
time, the registers will change whether or not you can see both
of the objects.

The collision registers also fill with the same number from
each collision. Thus, if Player 0 collides with three separate
objects all drawn with COLOR 1, register 53252 will still contain
the value 1. No matter how many times the player collides with
the different objects, the value will remain 1, until it collides
with a playfield figure drawn with COLOR 2 or 3 or until
HITCLR has been POKEd. Although different COLOR colli-
sions will result in the sum, multiple collisions with the same
COLOR do not yield a sum.

This way you can draw several identical graphic figures
with the same COLOR, and then PEEK the collision registers

190

)

5 Animation With Player/Missile Graphics

for player collisions. When a collision is encountered, the loca-
tion of the player can be used to determine where, among the
many identical graphics, the next action (such as an explosion)
is to occur.

Table 1. These values result from collisions among Dlavers.
Play0 Playl Play2 Play3

Player 0/Register 53260 -0- 2 4 8
Player 1/Register 53261 1 -0- 4 8
Player 2/Register 53262 1 2 -0- 8
Player 3/Register 53263 1 2 4 -0-

Tahle 2. These values result from collisions hetween players and
playfield graphics.

COLOR1 COLOR2 COLOR3

Player 0/Register 53252 1 2 4
Player 1/Register 53253 1 2 4
Player 2/Register 53254 1 2 4
Player 3/Register 53255 1 2 4

Table 3. These values result from collisions hetween missiles and
playfield graphics.

COLOR1 COLOR2 COLOR3

Missile 0/Register 53248 1 2 4
Missile 1/Register 53249 1 2 4
Missile 2/Register 53250 1 2 4
Missile 3/Register 53251 1 2 4

Table 4. These values result from collisions hetween missiles
and players.

Play0 Playl Play2 Play3

Missile 0/Register 53256 1 2 4 8
Missile 1/Register 53257 1 2 4 8
Missile 2/Register 53258 1 2 4 8
Missile 3/Register 53259 1 2 4 8

191

5 Animation With Player/Missile Graphics

The Priority Registers

Bill Wilkinson

Those of you who have studied the Atari Hardware Manual have
probably been overwhelmed by the number of “registers.”
There are registers that define the start of the character set, the
origin of the display list, the graphics mode, the Direct Memory
Access modes, the amount of horizontal and vertical scrolling,
the colors of the playfields and players, and much, much more.
And yet, for the most part, the use of these registers is fairly
clear and distinct, one from another. For example, you certainly
know that a register called “COLPF2"” (COLor of PlayField 2)
wouldn’t be used to define the start of the player/missile
graphics area (that’s the job of “PMBASE"").

But are there some exceptions to this “separation of work”
philosophy? Well, one might seem to be “DMACTL”, which
can turn players and missiles on and off, turn the playfield on
and off, and determine whether players and missiles have
single- or double-line resolution. And yet the register’s varied
functions can all be justified under the heading of “’Direct Mem-
ory Access ConTroL"”.

However, there is one register which does seem to have
several unrelated functions. From the viewpoint of both soft-
ware and article authors, the functions which this register con-
trols are all extremely interesting. Yet little has been written
about this register’s dominant function. Naturally, [hope to
change that.

What'’s In A Name?

The register in question was named “PRIOR” by Atari. It is
important enough that it was even given an Opc atmg System
shadow lmahon “GPRIOR"”, at 623 (decimal). (A ‘shadow
location” is a RAM location into which a program may store a
value actually intended for a hardware register. During the
vertical blank interrupt processing — that is, every 60th ofa
second with U.S. NTSC television and every 50th of a second
with the European PAL system — the Operating System ROM
code moves each shadow location to the corresponding register.

192

5 Animation With Player/Missile Graphics

The purpose of this is usually to force the register load to occur
at a time when the screen is blanked, thus avoiding strange
and bizarre visual effects.)

So just exactly what does this location control? Several
things. Let’s start with a recap of the table in Atari’s Hardware
Manual.

Bits 0-3 Priority Select

Bit 4 Fifth Player Enable

Bit 5 Multiple Color Player Enable

Bits 6-7 Special GTIA Display Mode Selects

Well, at least it’s true that half of the register is used for
“PRIORity” work, but wow! Look at all the other goodies.

This article is not going to deal with the extra GTIA modes
(GRAPHICS 9, 10, and 11 in BASIC parlance), but I would like
to invite you to court disaster. If your machine has a GTIA chip
(as do most recent models), then sometime when you have a
nice listing or display on the screen, try using POKE 623,128 or
POKE 623,64 or POKE 623,192. If you do it when a listing is on
the screen, you will quickly see why Atari doesn’t provide mixed
mode (text window) glaphlgs for modes 9, 10, and 11. (Inciden-

tally, if nothing happens when you do the POKEs, you don’t
have a GTIA.) Oh, yes, you can POKE 623,0 to return to nor-
mal.

The real ““discoveries” to be explored in this section are the
influences of bits 4 and 5, but before I delve into them, I would
like to at least touch on the capabilities of the priority select
bits.

Who’s On First? What’s On Second?

Atari states that each of the four priority select bits will produce
a single type of supposedly mutually exclusive priority ordering
of the various players and missiles. For example if bit 0is turned
on (POKE 623,1), all the players have “priority”” over all the
playfields (and everything always has priority over the back-
ground). Within the group of players, a lower-numbered player
has priority over a higher-numbered one.

But what does it mean to say something has priority? Sim-
ply this: since each player moves independently not only of the
playfield but also of every other player, it is possible for one or
more objects to appear at the same spot on the display screen
at the same time. “‘Priority” simply answers the question of who
gets displayed first, second, etc. An important point to re-

193

5 Animation With Player/Missile Graphics

member: only those parts of player stripes containing “on” bits
(i.e., only those parts to be made visible) participate in the prior-
ity contest! The “off” portion of all players is totally ignored by
the system.

In theory, a lower-numbered playfield takes precedence
over a higher-numbered one. In actuality, there is no way for
two playfields to occupy the same video space, so the distinction
is a moot one (except for one obscure case, as we shall see
below). Anyway, here is a table of the various available
priorities:

Bit 0 (POKE 623,1): All players, all playfields.

Bit 1 (POKE 623,2): Players 0 and 1, all playfields, players 2 and 3.
Bit 2 (POKE 623,4): All playfields, all players.

Bit 3 (POKE 623,8): Playfields 0 and 1, all players, playfields 2 and 3.

Although the bits are described as mutually exclusive,
there is nothing to prevent you from turning on two or more
(e.g., POKE 623,7). The theory says that if you overlap any two
objects whose priorities are “in conflict” as a result of the mul-
tiple bits being on, the display will turn black in the overlap
region. This would mean that if you used “POKE 623,5" all
players would turn black except when over the background. I
have yet to see a program use this to advantage, but no doubt

somebody will someday.
And one final note: the whole reason for having priorities

is so that you can gracefully control what happens to players
when they meet the background display. Imagine that we select
bit 3. Then if we have an airplane made from players, clouds in
playfield color 0 or 1, and mountains in playfield color 2 or 3,
the plane will fly in front of the mountains and yet behind the
clouds!

When Is A Missile Not A Missile?

Atari would have you believe that the answer is “Whenit’s a

player.” The name of Bit 4 of PRIOR is enticing: “‘Fifth Player
Enable.” Wow! We can turn this bit on and all of a sudden we
have five players, right?

By default (i.e., if this bit is not set), each player takes on
the same color as its ““parent”” player. Turn this bit on, and all
missiles share a single common color. And that is all this bit
does. Period.

What color do the missiles use? Playfield C0101 3. Why
was that color chosen? Because, in the normal graphics modes,

194

5 Animation With Player/Missile Graphics

the only way to get that color is in GRAPHICS 1 or GRAPHICS
2, the large text modes. Notice that there are five SETCOLORs
available, even though most graphics modes allow only two or
four colors to be dlsp]ayed Since the background (SETCOLOR
4 in four-color modes) is always one of these (COLOR 0), one
of the SETCOLORs — in point of fact, SETCOLOR 3 — goes un-
used. Until now.

S0 how can you use the four missiles as a single player?
From BASIC, it’s not easy. Each missile still retains its own
independent horizontal position. Each missile still retains its
own independent horizontal width. And, naturally, you still
have to move the player/missile stripe vertically (although that
is easier to do for a player than for a missile). This means that,
for such a simple operation as moving the new “player” hori-
zontally to (say) position X, you must perform this series of
BASIC statements:

POKE HPOSMO, X

POKE HPOSM1,X +2
POKE HPOSM2,X +4
POKE HPOSM3,X +6

And even that only works if you have previously specified
that all the missiles have single horizontal width (admittedly
the SYSTEM RESET default).

Any other caveats? Yes. The missiles still act independently
as far as the collision registers are concerned. And the Atari
documentation claims that the priority of the new “player” is
the same as that of Playfield 3, but that’s only partially true. In
particular, when considering which player has priority, it is true
that the fifth player behaves according to the chart. But,
strangely enough, the fifth player always has priority over any
playfield color. This might imply some interesting consequences
for a creative game designer.

So, is this “Fifth Player Enable” bit actually useful? From
pure BASIC, I think not. With some machine language support,
probably. And, of course, from pure machine language (or C or
FORTH or Pascal), you can probably do some really interesting
things. After all, how many moving objects do you see in Pac-
Man or Jawbreaker?

195

5 Animation With Player/Missile Graphics

All Colors Of The Rainhow

How many times have you read that, even though the Atari
can display 128 different colors, it can display only four of those
ata time? Well, you probably know by now that it's simply not
true. First of all, if you have a GTIA, it’s actually possible to
display 16 different colors on the playfield in two of the GTIA
graphics modes, and nine colors in the other mode. But let’s go
after the maximum number of colors possible.

To begin, choose GRAPHICS 11. That will get you 16 pos-
sible hues, each with the same luminance. Great.

Now, let’s add four players, each with its own color and
each different from any of the playfield colors. Now we are up
to 20 colors!

But we're not done: why not use the “Fifth Player Enable”
bit to get yet another color (since Playfield 3 is not involved in
the GRAPHICS 11 playfield display). Twenty-one colors!

But.... Yep, you guessed it, there’s more. Remember that
bit titled “Multiple Color Player Enable””? If you turn on that bit
(POKE 623,32 or POKE 623,49 to also do all we just described),
then pairs of players that overlap will generate yet another color
in the overlap region! Actually, the valid overlap pairs are lim-
ited to Player 0 joined with Player 1 and/or Player 2 overlapping
Player 3. (If Player 0 or 1 overlaps Player 2 or 3, the priority
rules still apply.)

So there you have it. Twenty-three colors displayable at
the same time. And I believe that, without resorting to display
list interrupts or similar chicanery, that is the Atari computer’s
maximum.

But that isn’t the real reason I introduced the Multiple Color
Player Enable. Do you have an object that you want to animate
that is just begging to be multicolored? Here is your method of
implementation. And if you need even more than three colors,
you could use all four (or three, or five) players to display it. If
you need to animate only a single object, the multicolor players
could give you some very nice control over both detail and
color.

Unfortunately, to do effective multicolored work, you must
devote two players to each animated object. Even if you use
the “fifth player” trick, this limits you to three moving objects.
Yet I can’t help but think that this is a solution waiting for a
problem. Come on, game designers, get to work.

196

5 Animation With Player/Missile Graphics

We need to make a couple of points before we leave this
subject: by default, missiles behave the same as their parent
players. That is, if the multiple color players are enabled and
missile 0 overlaps missile 1, then the overlapped region will
result in the third color being displayed. But Atari did it right:
if you choose the fifth player option, the missiles all take on
that fifth player color and the missile overlaps have no effect.

And, finally, I would like to say that I have not yet figured
out how to predict what the third color, displayed in the overlap
region, will be. The hue and intensity in the region do not seem
to directly relate to that of the overlapping colors. Generally,
the intensity is brighter than the duller of the two, but it is not
always brighter than the lighter. It seems to me that the resulting
color might be some sort of vector addition of the other two
colors, but I don’t know that. Want to write an article for
COMPUTE! ? Here’s a topic for a good one.

A Hair-Trigger Reaction

Before we leave this section, I think an example of some of the
capabilities we have been discussing might be in order. In the
discussion that follows, we will be referring to the diagrams in
the figure.

The aim here is to design a “crosshair’” using players. Ob-
viously, we could make an adequate crosshair with a single
player, but that wouldn’t give us a chance to try out what we’ve
been discussing. So examine the first three parts of the figure.

First, we define Player 0. Note that I have supplied the
hexadecimal and decimal values necessary to produce each line
(i.c., byte) of the player for those of you who would like to ac-
tuallv try this. Anyway, notice the gaps in what is otherwise a
nice cross shape.

But if we now define Player 1 as shown, and pu rposcly
overlap the two players correctly, notice that we get a nice,
two-colored crosshair. This is version one.

For version two, we assume that PRIOR=1 (POKE 623,1).
We redefine Player 1 so that its “hole” in the middle is gone.
And yet, when we overlap it with the original Player 0, we get
the same results we did with version one. Why? Simply because
Player 0 has higher priority than Player 1, so the bits in the mid-
dle of Player 0 effectively override those in Player 1.

But finally we get to version three. The only difference
between this version and version two is that now we have

197

5 Animation With Player/Missile Graphics

turned on the Multiple Color Player Enable bit. Lo and behold,
since the very center has bits turned on in both Player 0 and
Player 1, we achieve yet a third color. A most satisfactory and
colorful crosshair.

So there you have it. Some fairly impressive displays have
been generated using players, and yet I have still not seen one
that takes advantage of all the features we have discussed here.
So, if you are a ““do-er,” do it!

198

5 Animation With Player/Missile Graphics

Overlapping Players for creative results.

% Hex 18 Decimal 24
18 24
Player0 00 0
HH HEHH DB 219
DB 219
Bﬂ 00 0
18 24
18 24
Player1 T Hex 3C Decimal 60
CH & 24 36
Version 1 T 24 36
3C 60

The combined E D :| A “crosshair”’

result version one

Player1 Hex 3C Decimal 60
3C 60
version 2 3C 60
3C 60

The combined
result

=

A “’crosshair”

version two
(see text)

B || OOF

’

A “crosshair’
version three
(see text)

199

fgecccrrccccerTrrcrccecccececcecececcececeeercececceeer

W o = NN AN
g BSE
gl =88
sl SSE
| L —

E— Y1
—
T

IEEANESRRRERRRNRRRRRRR A AR AN AR R R AL B 2 B

o000 O0OCOoOOCCOCOCCOOCOONOPOORPOCPOCTOCOCOCICOVNOCKCTRTLYTE

] Advanced Graphics Techniques

GRAPHIGS 8 In Four
Colors Using Artifacts

David Diamond

A painless, no-POKE method for mastering Atari high resolution,
four-color graphics from BASIC.

Contrary to what the Atari BASIC Reference Manual states,
GRAPHICS 8 is a true four-color mode (five colors if you count
the border). Other articles have shown you how to obtain 16 or
128 colors by PEEKing, POKEing, and using machine language
subroutines to fake out the operating system. This article is
different. You can paint with four colors using simple,
straightforward BASIC programming.

You probably have noticed that patterns drawn in
GRAPHICS 8 often contain spurious colors. Atari sketches your
television’s resolution to its limits and the extra hues do sneak
in.

The spurious colors seem random because they are ap-
pearing within a random pattern. They are, however, well-
behaved. They can be harnessed, controlled, and used for bril-
liant displays.

Before I get into the details, try the following demonstration
program:

1¢ GRAPHICS Y:COLOR 1

15 R=50

20 FOR X=-R TO R STEF 2

30 Y=500R{(R¥R—X%¥X):REM Formula for a c
ircle

40 PLOT 100+X,.100+Y:DRAWTO 100+X, 100-—
Y:REM Circle #1

SO FPLOT 151+X,100+Y:DRAWNTO 151+X,100-—
Y:REM Circle #2

60 NEXT X:FOR I=1 TO 3S0:NEXT I

70 FOR C=0 TO 15

203

6 Advanced Graphics Technigues

80 SETCOLOR 2,C,.4:SETCOLOR 4,15-C.8
85 FOR I=1 T0O 350:NEXT I
0 NEXT C

Surprise! You have five vivid, solid colors on the screen at the
same time. Now let’s take a look at that program:

Line 10 - Straight GRAPHICS 8. Standard color defaults.

Line 15 — “R” is the radius of a circle.

Line 30 — This is the formula for a circle: X*+ Y?=R? (“R*R” is
a little faster than “RA2").

Line 40 — This draws the first circle. It is vertically cross-hatched
to fill it in with a solid color.

Line 50 — This draws the second circle. But why is it a different
color from the first circle?

Line 20 — Ah, here begins the secret: “STEP 2", Before reading
further, change it to “STEP 1" and rerun the program.

Lines 40,50 — Here is the second half of the secret: 100+ X" is
an cven offset. 151+ X" is an odd offset. Change both occur-
rences of 151" to 150" on line 50, and see what happens.
(Remember to set line 20 back to “STEP 2".)

Lines 70-90 — These lines show you the wide range of color
combinations available. Of course, when you are varying the
luminance level, there will be even more.

Alternating Colored Fields

Without any additional programming lines, the circles can easily
be changed into beach balls with alternating bands of color.
Make sure that line 20 says “STEP 2, and change lines 40 and
50 as follows:

40 PLOT 98+X.100+Y:DRAWTO 101+X,100-Y
:REM Circle #1

SO0 PLOT 147+X,100+Y:DRAWTO 150+X, 100-
Y:REM Circle #2

Changing the slope of the cross-hatching by a single horizontal
point will add or remove one band of color. Increment the
DRAWTOs by one horizontal point, and see what happens:

40 PLOT 98+X.,100+Y:DRAWTO 102+X,100-Y
:REM Circle #1

SO PLOT 147+X,.100+Y:DRAWNTO 151+X,100-—
Y:REM Circle #2

204

6 Advanced Graphics Technigues

Although the quirk that provides us with the extra colors
seems somewhat magical, the reason for the varied solid colors
is not. Remember that the “colored-in"" areas are really com-
prised of finely separated, vertical lines. To better see what is
happening, spread those lines out into a large grid for easier
inspection:

10 GRAPHICS 8:COLOR 1

20 FOR X=10 T0 160 STEF 15
30 PLOT X.1:DRAWTO X,.160
40 FPLOT 1.X:DRAWTO 160,X
S0 NEXT X

This isolates your three colors. The even column vertical
lines are one color. Odd column vertical lines are a second color.
Horizontal lines are the third color. (The background is the
fourth, and the border is the fifth.)

Line 20 controls the colors. Try “FOR X=10 TO 160 STEP
14" and try “FOR X=9 TO 160 STEP 14".

When two adjacent lines touch each other (“FOR
X=...STEP 17), the two colors blend into the official color for
graphics mode 8. Another way to look at it is that there are no
longer separate lines when they touch, but rather a solid field
of pixels.

The Alternating Color Phenomenon
The beach ball display, with its alternating bands of color, takes
advantage of the fact that, with a pixel matrix, one cannot draw
nearly vertical pure diagonal lines. Instead a series of shorter
vertical lines are drawn, as shown below:
As programmed: As actually drawn:
(103,0) (103,0)

|
|
|

(101,50) (101,50)

You can see that the three vertical line segments are drawn on
odd, even, and odd columns, respectively, thus alternating col-
ors.

205

6 Advanced Graphics Technigues

Why Multiple Colors

The horizontal resolution limit of a television set is about 160
unique points. This is because on any one line of the television
tube surface there are 160 sets of phosphor points which emit
light when struck by the scanning electron beam. Each set ac-
tually contains three separate phosphor points — one that glows
blue when struck, one that glows green, and one that glows
red. Combinations of these dots in various intensities create
the myriad of colors available.

Atari, in order to provide finer resolutions than 160 bytes
across, plots 320 points across the screen — two for each set of
color dots. (This is referred to as a half color cycle, or a half color
clock.) Thus, even-column points will turn on the left portion of
the three color phosphors, and odd-column points will turn on
the right portion, producing alternating colors. The effect is
referred to as artifacting.

Diagonal Lines

Diagonal lines, ranging from vertical to almost 45 degrees, con-
tain vertical components, and are therefore subject to the arti-
facting effects described above. However, when these lines
are drawn on top of a ”...STEP 2" solid colored field (such as
demonstrated in the above programs), much of the spurious
color effect is minimized, so that the “official”” color for graphics
mode 8 will be seen. If the background is dark, a medium
intensity line will appear light (whitish). If the background is
bright, a medium intensity line will appear dark (often a rich
chocolate brown).

The bold splashes of multiple solid colored shapes can
thus be combined with the more delicate effects of intersecting
diagonal lines, as in the following demonstration program:

10 GRAPHICS B8:COLOR 1

20 SETCOLOR 4,15,10:SETCOLOR 2.0,15

30 FOR A=20 TO 140 STEFP 2

40 IF A=100 THEN A=101

50 PLOT &65,20:DRAWTO A.1:DRAWTO A.A:D
RAWTO A+30,70

60 DRAWTO 65,A:DRAWTO 30,A+40:DRAWTO
65,20

70 NEXT A

80 FOR I=1 TO 3S50:NEXT I

206

ﬁ Advanced Graphics Technigues

90 FOR COLOR=0 TO 15

100 SETCOLOR 2,COLOR,.S:SETCOLOR 4,15-—
COLOR, 10

110 FOR I=1 TO 350:NEXT I

120 NEXT COLOR

Moiré Patterns

No discussion of multiple colors would be complete without
mentioning color moire patterns. There are two types of moire
patterns. One type is the secondary pattern produced by the
intersection of diagonal lines, such as is illustrated by demon-
stration Program 2, above. This type is not dependent on color
for its effect. The second type is the subtle and delicate designs
produced by shifts in color along diagonal lines. This type is
dependent on the artifacting effect and is illustrated in the fol-
lowing program:

10 GRAPHICS 8:COLOR 1

20 FOR A=0 TO 319 STEF 3

30 PLOT 0,159:DRAWTO A, 0O

40 PLOT 3192,0:DRAWTO 319-/4,159
S0 NEXT A

Notice that the pattern is whitest in the center, where the
lines are not as steeply sloped, and also toward the upper right
and lower left corners, where the lines are closest together. In
addition to the white and the two artifacted colors, you may
notice a fourth and fifth color along the top and bottom sections
of the pattern. These extra colors are formed by a visual blending
of the two artifacted colors. It is caused by the fact that the al-
ternating colored areas are so close together that the eye has
difficulty resolving them (a trick used by the Impressionists).

You can combine the various effects discussed in this article.
Experiment with different color and intensity combinations.
Blend in some dynamic color changes. You have a palette that
any artist would envy

207

6 Advanced Graphics Techninues

Parti:

Atari Video Graphics
And The New GTIA

Craig Chamberlain

In this, the first of a three-part series on the inner workings of Atari
graphics, the author reviews the computer’s system of screen manage-
ment and defines several important terms including color clock,

playfield, mode line, and display list. The next article includes
techniques for using color indirection, a powerful graphics tool, and
explores the new GTIA chip in detail. The final article demonstrates
Hw capabilities of the GTIA. This new chip costs nothing if your Atari
is still under warranty. If you have an older machine, the nearest
authorized service center can install it for you.

The GTIA is an exciting new graphics chip now being shipped
in Atari 400/800 computers. Among its special features are a 16-
color mode with a resolution eight times better than the Apple’s,
and the capability of generating 256 color variations. The GTIA
chip provides three new graphics modes in addition to the nor-
mal 14, totally different, full-screen modes. This article defines
a few terms relating to graphics, explains the normal graphics
modes, then introduces the new modes provided by the GTIA.

ANTIC Is A Busy Chip

We all know that the Atari 400 and 800 have superior graphics

capabilities. This has been achieved by designing special chips
to handle video display tasks, taking that burden off the main
microprocessor. In Atari computers thesc special chips are
known as ANTIC and CTIA.

The ANTIC chip is actually an advanced DMA (direct mem-
ory access) controller that qualifies as a true microprocessor. It
has an instruction set (mode lines and “load memory scan”
operation), a program (the good “ole display list), and data (dis-

208

6 Advanced Graphics Technigues

play memory and character sets).

This special chip is a rather busy fellow. Its responsibilities
include doing DMA for the display list, the display data
(playfields), the character set, and player/missile memory. Be-
sides that, it sets the playfield width, controls horizontal and
vertical fine scrolling, keeps track of the vertical position of the
scan beam, and handles non-maskable interrupts. It also sup-
ports a light pen.

The GTIA: Three New Modes

The other chip is the CTIA, or Computer Television Interface
Adapted integrated circuit. This is the chip which handles all
color and luminance (brightness) information to send to the
television screen. This is a complicated process, but the chip
designers at Atari got carried away and created whole new
functions which we know as the player/missile graphics system.
Itis the CTIA which processes the horizontal position, size,
priority, and color of the players. The CTIA also watches for
player/playfield collisions, joystick triggers, and console keys.
Like the ANTIC, it is a busy chip.

The new GTIA chip replaces the CTIA. Rumor has it that
the “G” stands for George. Apparently some fellow named
George was still not satisfied with all the special functions of
the CTIA, and gave it the ability to generate three totally new
graphics modes. When you find out what these new modes

can do, I think you will appreciate “George” and his GTIA.

The three new modes are 9, 10, and 11. The operating sys-
tem and, therefore, Atari BASIC, supports these new modes.
But before describing all the features of these new modes, 1
want to define a few essential terms and review the normal
graphics modes 0 through 8.

In order to fully understand Atari graphics, one must have
a solid concept ot how a television dlsplay is generated. And
no discussion on “television theory” would be complete without
a definition of the “color clock.” The term color clock derives
from the fact that there is a problem in measuring distances on
a television screen. Different television sets have different
screen sizes, with 9”7, 13" and 19” being common diagonal
measurements. All television sets, however, have a scanning
beam which translates a signal from the computer (or a TV sta-
tion) into a picture on the screen.

209

6 Advanced Graphics Technigues

The signal coming from the computer contains two charac-
teristics. It has a frequency, which defines a color, and it has an
amplitude, which defines the luminance of that color, often re-
ferred to as the brightness or intensity. These qualities of the
computer signal affect the way in which the scanning beam
shoots electrons at the phosphors on a television screen. This
electron shooting process is done horizontally, one line ata
time, but it is done so quickly that it is not noticeable to the
human eye.

When drawing a line, the scanning beam starts at the left
edge of the screen and proceeds to the right edge, shooting
electrons the whole time. Since the beam has a finite amount of
time it can spend drawing one line, the beam will seemingly
have to move faster to cover more area on a larger screen. Thus
the problem of trying to measure horizontal distances is further
complicated by the fact that different scanning beams not only
travel different distances, but also at different rates. Our unit of
measurement cannot really be a distance; it must be a unit of
time. The hint I gave a moment ago was that the scanning beam
has a certain amount of time it can spend on one scan line. How
fast or how far the beam travels is insignificant.

Understanding Color Clock

The fact that our unit of measurement is based on time explains
the word clock in the term color clock. A color clock is the amount
of time the computer needs in order to sufficiently change the
frequency of the signal it generates so as to produce a different
color. What a mouthful! This is my own personal definition; it
has worked for me, but some people may not agree with it.
Here’s another definition. A scan line is the horizontal path of
the scanning beam from the left edge of the screen to the right
edge.

Scan lines extend horizontally across the screen, but it takes
a lot of them stacked vertically to fill up the screen from top to
bottom. Therefore, horizontal resolution is usually expressed
in terms of color clocks while vertical resolution is expressed in
scan lines. Of course, on different television sets the actual
lengths will differ, but the resolution horizontally to vertically
is always proportionate. [t turns out that, on any screen, one
color clock appears to be equal in length to two scan lines.

Now we have to get even more technical for a moment.
The scanning beam starts at the upper left corner of the screen

210

| Advanced Graphics Techniques

and travels horizontally to the right. By the time it hits the right
edge it has drawn one scan line that is 228 color clocks wide.
The beam then shuts off for a short period while it returns to
the left edge, only one scan line lower. This period is called the
“horizontal blank’” for obvious reasons. The beam then turns
on again and starts drawing the next scan line. This sequence
of drawing scan lines continues 262 times. At that point, the
scanning beam, at the lower right corner of the screen, shuts
off and returns to the upper left corner of the screen during a
period known as the (guess what!) ““vertical blank."”

This whole process of drawing 262 scan lines, each of 228
color clocks, plus the blanking periods, constitutes one “frame.”
The television draws 60 of these frames every second, because
your home power line is 60 Hz (cycles). The name given to this
display method is “raster scan.”” The fact that your Atari follows
a broadcast standard referred to as “NTSC” makes it one of the
few home computers that can be video taped without special
equipment.

Just because the scanning beam generates all those scan
lines and color clocks doesn’t mean that the computer is gener-
ating that much display data. Even if the computer did, you
wouldn’t see the whole image since most television sets display
a little less than 200 scan lines of about 170 color clocks. The
part where the true picture exists is called the playfield, and
now it’s time for another definition.

Playfields And Mode Lines

The playfield is the portion of each scan line for which data
read from memory can produce colors and luminances. The
background exists at the ends of each scan line; the playfield is
in the middle. From the viewpoint of one frame, the playfield
appears as a rectangular region which extends to the sides of
the screen.

Two things control the size of this playfield area. The height
in scan line is controlled by the display list as you will see in a
moment. Recall that the width in color clocks is set by the DMA
control register of the ANTIC.

SDMCTL $022F 559 shadow
DMACTL $D400 54272 hardware
D5 1 display list DMA enable

0 display list DMA disable

211

6 Advanced Graphics Technigues

D1,D0 00 playfield DMA disable (no playfield)
01 narrow playfield (128 color clocks)
10 standard playfield (160 color clocks)
11 wide playfield (192 color clocks)

The operating system screen handler always uses a stan-

dard width playﬁeld The advantage of the narrow playfield is
that less DMA is required, so programs execute faster. Unfor-
tunately, the screen handler routines do not work properly
when the playfield width is other than the standard. The wide
playfield generates more data than the television can display;
its uses are rather limited. It's even possible to turn off the
playfield completely, in which case ANTIC fills the screen with
scan lines of the background color. As will be shown in a mo-
ment, the playfield also requires a ““display list,” so bit five
must be set for any playfield type to be generated.

Remember that a byte is made up of eight binary “bits.”” If
playfield and display list DMA is enabled, bits may be read
from the computer memory during the course of one scan line.
The bit pattern determines the frequency and intensity changes
of the scanning beam, with the result being different colors/
luminances. The same bit pattern may be repeated for several
scan lines. And the bit pattern can be interpreted in different
ways. This leads us to yet another definition:

A mode line is a contiguous group of scan lines for which
display memory is read only once.

There are two main types of mode lines. In direct memory
map modes, the bit pattern produces the same image on each
scan line. Text modes are a more complicated mode type which
use a character set.

The ANTIC knows how to handle 14 different kinds of
mode lines. Each mode line corresponds to a different method
for interpreting a bit pattern. A full screen graphics mode is
actually just a series of identical mode lines.

The display list is merely a sequence of bytes in memory
that, among other things, tells ANTIC the proper sequence of
mode lines for one screen.

Whenever the screen is opened (accomplished in Atari
BASIC with the GRAPHICS statement), the screen handler
establishes a display list of many mode lines to produce a screen
of the desired mode. Modes can be mixed by manually changing
the display list. Display lists produced by the screen handler
always contain the proper number of mode lines for exactly 192

212

6 Advanced Graphics Technigues

scan lines of playfield. Altering the display list can affect the
total number of scan lines, which is how the vertical size of the
playfield is controlled.

The display list also has other functions, such as control of
fine scrolling, horizontal blank interrupts, and loading the mem-
ory scan counter of the ANTIC so it knows where to start reading
memory.

A mode line divided into several parts forms pixels, which
are single plotting points somewhere within the playfield area.
A pixel’s vertical resolution is the same as the mode line in which
itis displayed, so there can be just as many pixels vertically as
mode lines in the display list. The number of color clocks over
which one pixel is spread is also determined by the mode line.
Here is a little chart to show you the pixel size for the primary
mapping modes:

MODE COLOR SCAN RESOLUTION
CLOCKS LINES (full/splitscreens)

3 4 8 40 by 24/20
4,5 2 4 80 by 48/40
6,7 1 2 160 by 96/80

Note that each time the width of a pixel is reduced, its height
also decreases, so a single pixel appears to be square in shape
regardless of the graphics mode.

Some Observations About Memory

Now to talk about memory. In the one-color modes, one pixel
is represented in memory by one bit. If the bit is on, playfield
zero shows. If the bit is off, the background shows. Modes four
and six are the one-color modes. Fm more color, modes three,
five, and seven allow three colors. The trade-off is that a single
bit is no longer sufficient. Two bits, a pair, are required. The
total value of the two bits selects either one of three playfields
or the background:

BITPATTERN COLOR PLAYFIELDTYPE

00 0 background

01 1 playfield zero
10 2 playfield one
11 3 playfield two

Playfield zero is the same thing as COLOR Tin Atari BASIC.
Plavheld one is really COLOR 2, and so on, with COLOR 0
being the backg sround.

6 Advanced Graphics Technigues

Although modes four and five both have the same resolu-
tion, or pixel size on the screen, mode five will require twice as
much memory. In the lower resolution modes which require
little memory in the first place, the additional memory needed
is rather insignificant. You might have noticed that mode three
had no single color counterpart. Consider that in a 48K system
it is possible to have about 150 different mode 3 screens in mem-
ory simultaneously. The chip designers probably decided it
wasn’t worth the effort or memory savings to provide a one-
color mode with such low resolution.

Therefore, the size of a pixel on the screen is determined
by two things: how many scan lines high, and how many color
clocks wide. The amount of memory required for a mode is
also determined by two things: how many separate pixels to
one mode line, and how many color possibilities per pixel. The
only real connection between pixel size on the screen and size
in memory is that bigger pixels fill up a screen faster, so there
are fewer of them, and less memory is needed.

Now, three colors means two bits must be used. Does that
mean we are always stuck with only three colors which can’t
be changed? No. The CTIA is capable of generating 128 color/
luminance variations. It can produce 16 different colors, each
in eight different degrees of luminance. But 128 possibilities
means seven bits would be required, and, in most cases, seven
bits per pixel is simply not feasible. There is a limit to how much
memory can be devoted to a screen. The solution to this problem
is a sort of compromise, but it also presents some powerful and
flexible advantages, too. The solution is to use color indirection.

214

6 Advanced Graphics Technigues

Part li:

Atari Video Graphics
And The New GTIA

Craig Chamberlain

How to get 256 colors out of your Atari. The previous article in this
three- part series opened with a discussion of Atari graphics. Part 11
examines techniques involving color indirection and looks at the new
GTIA chip in detail.

Next, this series concludes with several programs which put GTIA
through its paces.

Using Color Indirection

With color indirection, the number of different playfields is
limited according to the number of bits per pixel, but the actual
color/luminance of each playfield can be one of the 128 pos-
sibilities. The data bits are used as an index or offset into
playfield color registers:

COLORO $02C4 708

playfield zero color register
COLOR1 $02C5 709

playfield one
COLOR2 $02Ce6 710

playfield two (used in modes 0 and 8)
COLOR3 $02C7 711

playfield three (used in color text modes)
COLOR4 $02C8 712

background color register

These playfield color registers use seven bits to select the
color and luminance, as follows:

D7,D6,D5,D4 color
D3,D2,D1 luminance
DO not used

6 Advanced Graphics Technigues

BITS VALUE COLOR
0000 0 gray (no color)
0001 1 lightorange
0010 2 orange

0011 3 red orange
0100 4 pink

0101 5 purple

0110 6 purple blue
0111 7 blue

1000 8 blue

1001 9 lightblue
1010 10 turquoise
1011 11 blue green
1100 12 green

1101 13 yellow green
1110 14 orange green
1111 15 light orange

Atari BASIC allows you to select a playtfield color to draw
in by using the COLOR statement. The color register that
corresponds to that playfield can be changed by using
SETCOLOR.

Color indirection is a tool that should not be overlooked. It
is possible to draw a detailed figure on the screen with one
playfield, and then change the color of the entire figure with
just one command. For ex amplc, a printed message can flash
in colors to attract attention. A “glowing’” effect can be created
by rapidly changing the luminance of a playfield while main-
taining the same color. Or, the playfield colors can all be set to
the same color/luminance as the background. Figures drawn
will not appear until the playfield color registers are changed.
By changing the registers one at a time, an animation effect can
be created. Color indirection may still not solve the problem of
having many colors on the screen at the same time, but it does
afford possibilities that otherwise would be difficult to achieve.

In special instances, plavheld color registers can be changed
during the horizontal blank, in which case all 128 color variations

can be shown in one frame. This requires the use of machine
language and still does not solve the problem of many colors
on one scan line. Fortunately, experience has shown that, for
many applications, three playfield colors will be sufficient.

216

6 Advanced Graphics Technigues

Multiple Colors

Nevertheless, there are times when many colors would be de-
sirable. This is where the GTIA steps in. It should now be ap-
parent that 16 colors will require four bits per pixel. This is very
expensive in terms of memory, so either pixel size or display
memory will have to increase. Because ANTIC has a limit on
how much memory it can access during one horizontal scan
line, we have a limit on how much memory can be devoted to a
screen. Therefore, resolution will have to suffer.

Before we see what the memory limitis, we should mention
the two modes which are exceptions to the above rules. Three
things distinguish modes zero and eight from the normal
modes. Each pixel is a half color clock wide; a side effect of this
is artifacting. The background color now becomes the border,
and the main part of the screen is filled with playfield two.
Finally, since the whole screen is now playfield two, the bit no
longer tells which plavfield to use, but which luminance to use.

MODE BIT LUMINANCEREGISTER

0,8 1 playfield one
0,8 2 playfield two (no image)

The color part of playfield one is ignored; only the lumi-
nance data is used. If the luminance values of playheldb one
and two are the same, the writing disappears. Modes zero and
eight use this special ““half color clock, one playfield color, two
bnghtness arrangement. Both modes have 320 distinct points
of light horizontally and have single scan line resolution. The
only difference between mode zero and mode eight is that the
first is a text mode and the second is a direct mapping mode.
Mode zero uses a character set and thereby saves memory;
about 1K is required for this mode. Mode eight doesn’t use a
character set, and requires appm\lmatclv 8K. Thatis ourdisplay
memory limit. The Atari 400/800 is not capable of doing DMA
to much more memory than the memory represented by one
television frame.

Since the “half color clock, one color, two brightness” mode
is used by graphics modes zero and eight, all the GTIA really
does is provide three variations on this mode. They all use the
maximum memory arrangement used by mode eu,ht so each
of the three new modes requires 8K. All of the new modes use
four-bit pixels, so the horizontal resolution goes from 320 (half
color clock) to 80 (two color clock, as in modes four and five).

6 Advanced Graphics Technigues

Therefore, the resolution for all three new modes is 80 by 192,
for a total of 15,360 points. One side effect of changing only the
horizontal resolution is that the pixels are no longer square.
The ANTIC instruction register mode number for the
maximum memory mode (the number you will find in the dis-
play list) is $0F, or decimal 15. It is important to understand
that this number indicates not only mode eight, but also nine,
ten, and eleven as well. In fact, the display list for any one of
these modes is identical to the display list for any of the others.

Selecting Modes With PRIOR

How then does ANTIC know which of the four is the desired
mode? The answer is that ANTIC neither knows nor cares; no
matter which mode is being used, ANTIC still has to do the
same work of fetching memory. It's the GTIA that processes
the video signal; somehow the chip must be told which of the
four modes is wanted. The GTIA hardware register PRIOR
does exactly that.

GPRIOR $026F 623 shadow
PRIOR $D01B 53275 hardware

The two most significant bits (bits six and seven) of this
register are the GTIA special mode select bits. Here’s how they
are set.

MODE BITS HEX DECIMAL

8 00 00 0
9 01 40 64
10 10 80 128
11 11 Co 192

For example, it is possible to switch from any one of the
four modes to another simply by changing the values of the
two select bits.

Other bits in GPRIOR serve different functions, so care
must be taken not to alter them. These other bits allow multi-
color players (blending on overlap), set all missiles to the color
of playfield three to form a fifth player, and establish player/mis-
sile and playfield priorities. See the Hardware Manual for turther
information.

Now that we know how the three new modes are similar,
let’s find out how they are different.

Mode 11 is the one-luminance, 16-color mode. The overall
luminance is set by the background color, which, for this mode,

218

ﬁ Advanced Graphics Technigues

defaults to a luminance of six, rather than the usual zero. It is
now easy to draw rather finely detailed shapes in several colors
without having to fool around with the display list and machine
code interrupt routines. The thing I am especially excited about
is going to make Apple owners envious. The Apple has a 16-
color mode with resolution of 40 by 48, called the “lo res” mode.
The Atari now has a 16-color mode, but the resolution is eight
times greater than the Apple’s.

Sixteen colors do present a problem, though, since the
GTIA has only four playfield color registers. Therefore, mode
11 does not allow color indirection. The color on the screen is
determined directly by the bit data stored in memory, according
to the chart given earlier in the section on color indirection.

The values in the four color/luminance registers are ignored.
Some may consider this a disadvantage, but there is a benefit
too. Just as the playfield color registers are not used, neither
are the player/missile color registers used, so by using players
it is possible to have 21 colors on the screen at the same time,
without using display list interrupts or other tricks.

Producing 256 Colors

Mode nine is the one color, 16-luminance mode. This mode
will be used to create some excellent three-dimensional effects
and digitized pictures. The 16 luminances, when stacked verti-
cally by the scan line with each line having the next brightest
luminance, blend so well that it is very difficult to see the divi-
sion from one to the other. The main color is set by the back-
ground color. Weird things happen when you change the lumi-
nance of the background. Another nice fact is that having 16
main colors with 16 luminance variations means that the Atari
is capable of producing 256 colors.

One advanced application for mode nine is the display of
digitized pictures. Digitization is a process by which a normal
television picture, such as from a station or video recorder, can
be analyzed and divided into different luminances. That infor-
mation can be sent to the computer and stored on disk for later
display. Mode nine, with 16 luminances and rather high reso-
lution, is able to reproduce such pictures with impressive qual-
ity. Thus far we have seen only four digitized pictures. They
were apparently made by some people at Atari, and two of the
pictures were, uh, for mature viewers only. Standing from a
short distance, however, it is very difficult to tell if any of these

219

6 Advanced Graphics Techniques

pictures is computer generated or not. I have never seen such
quality on any other computer in the 400/800 price range without
expensive additional equipment.

Mode ten is a cross between the other two modes; it allows
eight colors plus the background, each with its own luminance,
as in the primary modes. Unlike the other two modes, this one
allows color indirection, so it uses the playfield and player/
missile registers for color/luminance information. This chart
shows how data values correspond with playfield registers.

BITS VALUE REGISTER PLAYFIELD

0000 0 704 PCOLRO
0001 1 705 PCOLR1
0010 2 706 PCOLR2
0011 3 707 PCOLR3
0100 4 708 COLORO
0101 5 709 COLOR1
0110 6 710 COLOR2
0111 7 711 COLOR3
1000 8 712 COLOR4
1001 9 712 COLOR4
1010 10 712 COLOR4
1011 11 712 COLOR4
1100 12 708 COLORO
1101 13 709 COLOR1
1110 14 710 COLOR2
1111 15 711 COLOR3

Only nine of the 16 possible data values correspond to
different playfields. Data values greater than eight just repeat
playfields. For some reason, the background color is no longer
set by COLOR4, butinstead by PCOLRO. The Atari BASIC state-
ment SETCOLOR can't be used to change the player/missile
color registers, so the equivalent POKE must be used. For any
register, the data part of the POKE is the color choice number
multiplied by 16, plus the luminance (refer to earlier chart).

The power of indirection is magnified when eight main
drawing colors can be used. This mode is very useful for creating
motion effects. With nine color/luminances and color indirec-
tion, mode ten may prove to be the most versatile of the three
new modes.

Compatihility Between CTIA And GTIA

Remember that the GTIA only controls how the display is gen-
erated, so all programs written for the CTIA should run ona
GTIA machine in the same way. There can be no such thing as

220

]

6 Advanced Graphics Technigues

incompatibility. We have, however, come across one discre-
pancy between the CTIA and GTIA. The video signal generated
by the GTIA is shifted one half color clock, so colors produced
by artifacting, such as in POOL 1.5 or Jawbreakers, will be differ-
ent. That is just a minor visual difference; the important thing
is that all software should be entirely compatible. Of course,
you cannot expect a CTIA to generate these three new modes,
but again the conflict is the display, not the program.

Because of the half color clock shift, it is now possible for
players and playfields to overlap perfectly, whereas with the
CTIA they didn’t.

There are some cases where software will not run on GTIA
machines. Thisis due to the fact that some of the new computers
with the GTIA also have a revised (no bugs) operating system
in them. Atari has made very clear which memory locations
and vectors are permanent and protected from any revisions. If
a program does not run on a GTIA machine, it is the software’s
fault because illegal entry points were used.

One other conflict has appeared which really surprised
me. We have discovered that a few programs written on CTIA
machines carelessly set the GTIA special mode select bits of
GPRIOR for no purpose. Since these two bits do nothing on
the CTIA, there was no problem. But there was also no reason
to involve them. When the same programs are run on GTIA,
the accidental bit settings affect the display, even though modes
nine, ten, and eleven are not used. The function of those two
bits has not been a secret. I figured out their function in July
1981, when I read the OS source listing before I bought my
Atari 800. The Hardware Manual has described the three “new”
modes in Appendix H ever since the manual was released.

No Text Window

There is a difference between the normal modes and the three
new modes — the three new ones do not allow split screen (text
window at bottom) configurations. If you remember how modes
eight and zero are related, you should understand why. The
mode used in the text windows is mode zero, which follows
the special “half color clock, one color, two luminances” ar-
rangement. As stated above, having the mode select bits in
GPRIOR set for a mode greater than eight causes mode zero to
act funny. A spllt screen would be possible only if a display list
interrupt were inserted just before the text window area. The

221

6 Advanced Graphics Technigues

interrupt routine would have to reset to zero the mode select
bits in the hardware register PRIOR, not the shadow register.
The hardware register will then be reset to the value of GPRIOR
during the vertical blank service routine.

The three new modes seem to handle player/missile to
playfield collisions a little differently. In modes zero and eight,
a playfield two collision is tlagged when a player or missile hits

a pixel whose luminance is controlled by COLORI1 rather than
the COLOR? for the main playfield. From what I have been
able to tell thus far, there is no kind of playfield collision at all
in modes nine and eleven. Mode ten collisions work only for
playfield colors that correspond to the usual playfield registers
(COLORI1 through COLORS3). Also, the fact that the background
in this mode is set by PCOLRO affects the priority of players
and playfields in some cases. In priority, mode ten playfield
colors PCOLRO through PCOLR3 behave like players.

The GTIA still allows only eight luminances on the normal
modes.

All new Atari computers are being shipped with the GTIA
at no extra cost. The CTIA is no longer being produced. The
new machines with the GTIA have little yellow or white stickers
that have the letter “G” on them. Those of us who have older
machines with the CTIA can replace it with a GTIA. The part
number is C014805.

If you want to do it yourself, it will be a simple matter to
replace the CTIA. The CTIA is on the CPU card that plugs into
the motherboard inside the Atari case. It’s not soldered in, so
the replacement operation should take only 30 minutes if you
have taken your computer apart before. Instructions are sup-
plied with the chip. In the meantime, if you don’t have the
GTIA, don't fret. It will be a while before much software re-
quiring the chip is available.

6 Advanced Graphics Technigues

Do You Already Have The GTIA?
If you want to quickly see if your computer has a GTIA, try
this: POKE 623,64 (while in the default mode, zero).

If you have the GTIA, the screen will go black. Otherwise,
there will be no change and you’ll know you’ve got the CTIA.
If you have the GTIA and want to see 16 colors, try this:

10 GRAPHICS 11
20 FORK=0TO 79
30 COLOR K

40 PLOTK,0

50 DRAWTO K, 191
60 NEXT K

70 GOTO 70

223

6 Advanced Graphics Techniques

Part lil:

Atari Video Graphics
And The New GTIA

Craig Chamberlain

In this conclusion of the three-part series, several demonstration pro-
grams teach the concepts of (and show off) the new Atari GTIA graphics
chip.

Welcome back to our discussion of Atari playfield graphics and
the exciting new GTIA chip. In Parts I and I I presented defini-
tions of various terms related to graphics, explained the normal
graphics modes, and then introduced the three new modes
provided by the GTIA. Specifically, these new modes are:

MODE DESCRIPTION

9 16 shades of one color
10 8 indirected colors
11 16 colors (one luminance)

Here are several programs in Atari BASIC to demonstrate
how these new modes might be put to use. But first, let’s tie up
a few loose ends from the previous articles.

We used a standard method to show bit designations in
the first parts of this article. If you are not familiar with this
convention, here’s how it works. Any given memory location
or hardware address consists of one byte made up of eight bi-
nary units called bits. These bits are numbered zero to seven
and are frequently shown as D0, D1, D7, etc. Individually, each
bit can have two values, zero or one, but from the viewpoint of
a byte, they take on quite dlfferent values known as ““powers
of two.” For example D3 means “two to the power of three,”
which also means ““the number two used as a factor three
times.” Two times two times two is eight, so if we wanted to
turn on only bit three in a given hardware register, we would
POKE it with an eight. If we want to turn several bits on, we
must add all the proper values together.

224

N
% ﬂeﬂwnmﬁ &mu echnigues

— ey ESe—

BIT VALUE

16
32
64
128

NSQUL bR WN=O

Mode 11 can be invoked by turning on bits six and seven
of GPRIOR, location 623 (decimal). Thus we would POKE 623
with 64+ 128, which is 192. This brief explanation should help
you deal with the memory locations and hardware registers
described in the previous articles. Now for a review of the pri-
mary graphics statements of Atari BASIC and some special
notes about the GTIA.

Graphics Statements

GRAPHICS aexp

This statement is the same as OPEN #6, 12+ 16,aexp, ‘S:”,
and tells the screen handler to open the screen to one of 12
modes. The number “aexp”, which means “arithmetic expres-
sion,” can range from zero to 11. Characteristics of these modes
are explained in chapter nine of the Atari BASIC Reference
Manual.

Some modes allow split screen configurations, which
means that a text window appears at the bottom of the screen.
Of course, mode zero does not allow a text window because
mode zero is the text mode, although you can experiment with
POKE 703,4. Modes one through eight do support text win-
dows, and the only way to get a full screen (no text window) in
one of these modes is to add 16 to aexp in the GRAPHICS state-
ment. When using a full screen mode, Atari BASIC forces a
mode zero if it has to print normal text. It is impossible to use
these full screens in the immediate programming mode because
the “READY"” prompt forces the mode zero screen.

Due to technical reasons explained in the previous article,
modes nine, ten, and eleven do not normally allow text win-
dows. You can fool the operating system into giving you one of
these modes with a text window by asking for mode 8 and then
doing a couple of POKE statements, like this:

225

6 Advanced Graphics Technigues

MODE POKES

9 POKE 87,9: POKE 623,64
10 POKE 87,10: POKE 623,128
11 POKE 87,11: POKE 623,192

Location 87, known as DINDEX, tells the operating system
the current mode and is used in the computation of row and
column addresses for plotting, so any number from nine to
eleven will give the same results. Unfortunately, the text win-
dow obtained by this method looks weird. The only way to get
a real text window is to use a display list interrupt, discussed
later.

If you add 32 to aexp, the screen will not be cleared when
the new mode is requested.

Finally, the CTIA and GTIA support five other modes which
the operating system does not recognize. They are the eight by
ten matrix character version of mode zero, the multicolor text
character modes, and the single scan line versions of modes six
and seven, for 160 by 192 plotting in one or three colors. The
only way to access these modes is to write a custom display
list.

COLOR aexp
This specifies the playfield that will be used for PLOT and
DRAWTO statements, until changed by another COLOR state-
ment. It does not in any way change any of the color/luminance
registers for the various playfields! The range of aexp depends
on the number of different playfields available in the current
graphics mode. This still holds true for the new GTIA modes.
For example, a COLOR 2 in mode 9 means that future plotted
points will be rather dark, whereas bright lines will be drawn
after a COLOR 12.

In mode 11, COLOR 5 chooses a purple color, as indicated
by the chart in part one of this article. For all modes, COLOR 0
(zero) is the background or “erasing’ color. Normally, the
operating system wants you to specify the playfield each time
you write to the screen, but Atari BASIC automatically tells the
operating system which playfield you have chosen every time
you use PLOT or DRAWTO. Incidentally, the data part of the
COLOR statement is stored in memory location 200 (decimal),
but I would not recommend using that.

One other note. To be technically accurate, COLOR 1 cor-
responds to playfield zero, COLOR 2 means playfield one, and
S0 on.

226

6 Advanced Graphics Techniques

POSITION aexp1,aexp2

This statement moves the graphics cursor to the location on the
screen designated by the two numbers, according to the Carte-
sian coordinate system. No range checking is done.

PLOT aexp1,aexp2

This is the same as POSITION aexp1,aexp2: PUT #6, color
where “color” is the playfield type chosen by the most recent
COLOR statement. You will get an error number 141 if you try
to PLOT outside the bounds of the screen. All three new modes
have resolution of 80 by 192.

DRAWTO aexpl,aexp2

Essentially, this is the same as PLOT except that a line is drawn
from the most recently plotted point to the new point indicated
by aexpl and aexp2. You can also do this with an XIO 17,#6,0,
0,S:". See page 54 of the Atari BASIC Reference Manual to see
how XIO 18 can be used to fill areas with a playfield.

LOCATE aexpl,aexp2,avar

[don’t know why, but nobody seems to know about this state-
ment. It could be considered the reverse of PLOT. Instead of
putting a playfield point at a certain location on the screen, this
statement returns to you, in the arithmetic variable “avar”, the
playfield number of the point at location aexpl,aexp2. This
playfield number will be the same as the value of COLOR that
was in effect when the point was plotted. LOCATE is actually
quite handy. It is very useful in games where collisions occur -
between lemcntlv colored players, but it has many other ap-
plications, too. LOCATE is the same as POSITION aexpl,aexp2:
GET #6,avar.

SETCOLOR aexpl,aexp2,aexp3

This is the statement which changes the color and luminance of
a playfield register. The number aexpl designates which
playfield register is being changed, and is related to the number
in the COLOR statement in the following way:

COLOR SETCOLOR (playfield number)

0

1 (also used for luminance in modes zero and eight)
2

3 (used only in four-color text modes one and two)
4 (background, or border in modes zero and eight)

[=JN B O I S

227

6 Advanced Graphics Technigues

The value for aexp2 is a number from zero to 15 which
specifies one of 16 colors. See the chart in part one of this article,
or on page 50 of the Atari BASIC Reference Manual, to find which
numbers go with which colors. The luminance is chosen by
aexp3, which can range from zero to 15, but only eight true
luminances can be selected. A value of zero here gives the same
luminance as one, two the same as three, and so on. The larger
the number, the greater the luminance.

Remember that modes 9 and 11 do not use color indirection
or the playfield registers, so SETCOLOR has little use in these
modes. It can be used to set the background color/luminance in
these two modes, but that’s about it.

Now for mode 10. This mode uses the player/missile color/
luminance registers, which cannot be accessed using SET-
COLOR. An equivalent POKE statement must be used instead.
The location to POKE is similar to the aexp1 of SETCOLOR.
The shadows of the playfield registers run from locations 708
(decimal) to 712. The value to POKE contains the color and
luminance information and is a combination of aexp2 and aexp3.
This value is the sum of 16 times the color number, plus the
luminance. In effect, SETCOLOR X,Y,Z will do the same as
POKE 708+ X, 16*Y + Z. If you want to change the player/missile
color/luminance registers, which run from locations 704 to 707,
use the same procedure of multiplying the color by 16 and then
adding the luminance. Refer to part one of this article for a chart
that tells which COLOR numbers match with which registers.

Some Lively Demos

Now comes the good part, where the action is! If your Atari
computer has a GTIA in it, here are some programs to show off
the talents of this remarkable chip.

How to put 16 colors on the screen? It could be done in
one line:

GRAPHICS 11: FOR K=0TO 79: COLOR K: PLOT K, 0:
DRAWTO K,191: NEXT K: FOR K=0TO 0 STEP 0: NEXT K

The endless loop is necessary to prevent Atari BASIC from
printing a “READY”” prompt which would force mode zero. To
make the vertical color bands wider, change the COLOR K to
COLOR K/5. To see 16 shades, change the GRAPHICS 11 to
GRAPHICS 9.

228

6 Advanced Graphics Technigues

A fancier way of showing 16 shades is found in Program 1.
After drawing the shades, the background color is rotated
through all 16 colors.

Program 3 randomly draws lines in 16 colors. You can make
these colors appear darker or more pastel by Changmg the lumi-
nance of the background. Please note that mode 11 is the only
mode in which the background is set by the operating system
to a luminance of six. All other modes have backgrounds of
color/luminance zero (black).

Program 2 demonstrates the color indirection capabilities
of mode 10. Location 20 is the lowest counter of the realtime
clock, so it is always changing. Continuously PEEKing this
location and POKEin;, the value into a color register gives a
nice ““throbbing’” color spectrum effect.

How about a doodling program that lets you draw in 16
colors using the joystick? Program 4 does this in only three
lines of Atari BASIC code! Press the joystick trigger to change
colors.

Program 5 is a really beautiful color kaleidoscope generator,
considering it is only four lines long. It's not something you
will spend hours watching, but it can produce some nice pic-
tures. Try changing the K=1+] in the second line to K=Ifor a
different plctule Or you can reverse the direction of the main
loops, as in FOR1=31TO 1 STEP -1. If you change the] loop
(note that it starts at zero, FOR J=31 TO 0 STEP -1), you will
also want to change the H loop (FOR H=1TO 3 STEP 1).

To show 256 colors on the screen all at once, use Program
6. This program does not show the colors. Rather, it produces
a single line which you can ENTER from disk or cassette. This
single line performs all the magic. What is also neat about this
program is that when you ENTER the line in, the program al-
ready in memory is untouched. If you examine Program 6, you
will see that it writes a line to the chosen device, but the line
has no line number in front of it. When you ENTER this line, it
is the same as typing it in the immediate mode. When Program
6 asks for a device specification, respond with C: for cassette or
D:filename for disk.

[included the assembly source code and Atari BASIC in-
stallation routine for a display list interrupt service routine (Pro-
gram 8) that creates a text window on modes 9, 10, or 11. An
interrupt is requested at the last mode line of the graphics mode
portion of the screen. The service routine takes the value of

229

6 Advanced Graphics Technigues

GPRIOR, sets the GTIA mode select bits to zero, and stores the
result in PRIOR, the hardware register. PRIOR gets reset to the
value of GPRIOR as part of the vertical blank service routine.
The routine also stores a zero into the background hardware
register. This was necessary to fix a conflict in mode 11. Setting
the luminance in 712 also changes the border around the text
window. But this “fix"" created another problem in mode 10.
For mode 10, change the fourteenth DATA element, which
normally should be a zero, to be the same as the number POKEd
into 704.

The service routine is written using relocatable code, so
you can put the routine anyplace in memory simply by changing
the assignment of ADDRES in the second line. It is currently
set to start at the beginning of page six. The first three lines of
Program 7 actually install the routine. The fourth line just draws
a picture for purposes of demonstration. Notice the luminance
change of the colors when 712 is POKEd.

My routine shares the problem of many display list inter-
rupt service routines; keyboard clicks can affect the display.
Obviously this routine is suitable only for programs that do not
accept keyboard input (use the joystick or PEEK the hardware
keycode register 764 directly) or use serial I/O (the vertical blank
routine is abbreviated and PRIOR does not get reset).

Program 9 is a handy little routine which allows your Atari
to test itself for a CTIA or GTIA chip — without your having to
interpret screen colors, as other routines do. Now your pro-
grams can adapt themselves to either chip.

Program 1.

10 GRAPHICS 9:FOR K=1 TO 10 STEP 2:FO
R J=0 TO 15:COLOR J:PLOT O,KX16+J+
1: DRAWTO 79 .Kx16+J+1

20 PLOT 0,K¥16-J:DRAWTO 79,.K%x16-J:NEX
T J:NEXT K

30 FOR K=1 TO 255 STEP 16:POKE 712,K:
FOR J=1 TO S00:NEXT J:NEXT K:GOTO

30

Program 2.

10 GRAFPHICS 10:FOR K=705 TO 712:FOKE
K,12: NEXT K:FOR K=0 TO 79:COLOR (K
+4) /10:FPLOT K,O0:DRAWTO K, 121 :NEXTK

230

dvanced Graphics Technigues

20 FOR E=704 TO 712:FOR J=1 TO 300:PO
KE K. PEEK(20) :NEXT J:NEXT K:G60T0O 2
Q

Program 3.

10 GRAFHICS 11:FOR kK=1 TO 124:C0OLOR K
:DRAWTO RND{(1)Xx72,RND{(1) X121 :NEXT
:607T0 10

Program 4.
10 GRAPHICS 11:DIM SX(15),5Y{(15):FOR

K=5 TO 15:READ X.Y:SX{(K)=X:S8Y{(K)=Y
:NEXT K:X=40:Y=946:COLOR 1

20 PLOT X,Y:X=X+SX{(STICK(0)):X=X+{X<O
)= {X>79): Y=Y+SY(STICK(D)):Y=Y+{(Y<O
)—{Y¥>191): IF STRIG(0) THEN 20

30 C=C+1-15%{(C=15):COLOR C:GOTO 20:DA
TA 1,1,1,-1,1,0,0,0,-1,1,-1,-1,-1,
0,0,0,0,1,0,-1,0,0

Program 5.

10 GRAPHICS 10:FOR I=705 TO 712:POKE

I, PEEK(S3770):NEXT I:FOR I=1 TO 31
STEF 1:C=C+1-2%<(C=8)

20 POKE 704+C,PEEKA(S3I770):FOR J=0 TO
31 STEF 1:COLOR INT{(RND(1)X15)+1:K
=I+J:J3=J%3:K3=K%Xx3:J8=3+8:371=71-J

30 PLOT K+7,J3:DRAWTO K+7,191-33:PLOT

72-KE.J3:DRAWTO 72-K,191-J3J3:FOR H=
F TH 1 STEP —1%

40 PLOT J8,191+H-K3:DRAWTO J71.191+H-
K3:PLOT J8,K3-H:DRAWTO J71,K3I-H:NE
XT H:NEXT J:NEXT I:POKE 77,0:60T7T0
10

Program 6.

100 IF PEEK(87) THEN GRAPHICS ©

105 7?7 CHR${125):7? "GTIA DEMONSTRATION
LI |

110 7?7 "This program creates an ATASCI
I file”

231

6 Advanced Graphics Technigues

120 ? "for ATARI BASIC. The file con
sists”

130 7?7 "of one line which will produce
256"

140 7? "colors on your screen if you”

150 ? "have a GTIA installed.":7?

170 DIM S${(120):7? "Please enter devic
e specification.”

180 INPUT S4$:1IF S5%="" THEN 180

120 ? :TRAFP 260:0PEN #1,8,0,5%

200 ? #1:;"GR.9P:F.K=0T079:C.K/S:PL.K.Q
tDR. K. 1921 :N.K:K=USR{ADR ("3

210 PUT #1,34:FOR K=1 TO 15:READ P:FU
T #1.P:NEXT K:PUT #1,34

220 DATA 173,11,212,.10,229,20,.41,240,
141 ,26,208,208,243,240,241

230 2 #1:"))":CLOSE #1:7? "File has be
en written."

245 FPOSITION 2,.19:7 "ENTER ";CHR%(34)
:S5$; CHR$(34)

250 POSITION 2,15:7 "Now press the RE
TURN key 1"

235 ? "you want to ENTER the file.":N
EW

260 STATUS #1,FP:? "I1/0 ERROR "3:;P:END

Program 7.

10 POKE S54286,0: GRAPHICS B8B:POKE 87.11

40

232

:POKE 623,192:POKE PEEK(S560)+256%P
EEK(561)+1656,143

ADDRES=1536:POKE S4286,64:FOR K=0
TO 18:READ P:POKE ADDRES+K.P:NEXT
K:P=INT(ADDRES/254) : POKE S13,F
POKE S12,ADDRES-256%P:POKE S4286,1
92:DATA 72,173,111,2,81,63,.141,10,
212,141 ,27,208,169,0,141,26,.208,10
4,64

FOR K=0 TO 159:COLOR K/10:PLOT 0,K
:DRAWTO 79,K:NEXT K:POKE 712,6:STO
P

6 Advanced Graphics Technigues

Program 8.
0000 10 - PAGE

11 3
12 :;necessary operating s
ystem and hardware eqguates

135 3
Q26F 14 GFRIOR == $026F
:67T1IA priority control (sha
dow)
DO1A 15 COLBK = $DO1A
sbackground ceclor register
DO1R 16 PRIOR = $DC1R
:6TIA priority control {(harduwa
re)
D40OA 17 WSYNC = $D40OA
shorizontal blank synchronizat
10n
18 ;
19 3
0000 20 x= $0600
21 3
22 ;this service routine

for the dispiay list interrupt

23 ;can be placed anywher
e in RAM, and was placed on page s
i

24 3;only for purposes of
demonstration

25 i

26 zbegin interrupt servi
ce routine code

27 3

28 :save contents of accu
mul ator

29

0600 48 i PHA

31 3

32 :get the multicolor pl
ayer, fifth player, and priority b
its

233

6 Advanced Graphics Technigues

- -

P P
0601 AD&GFOZ2 34
35

36

LDA GPRIOR

force the GTIA mode s

elect bits t6 zero but save the ot

her bits
0604 293F :

7
8 i
9

ot

AND #$3F

swait until next scan

line for a nice clean change

40 3
046046 8DOAD4A 41

42 ;

STA WSYNC

4% 3change hardware regis

ter until VBLANK
44 3
04609 8DIRDO 45
46

{for modes 2 and 11)
Q60C AFQO 48
0640E 8D1ADO 49

SO
b |
S2
04611 &8 S3
5S4
95 sreturn
ay list interrupt
a6 3
0612 40 S7
=8
o9
ice routine
60 3

‘An as

end of

{L*

234

STA PRIOR

47 :reset COLOR4 to zero

LDA #$00
STA COLRK

restore accumulator

FLA

from the displ

RTI

interrupt serv

6 Advanced Graphics Technigues

Program 9.

10 POKE b66,1:BRAPHICS 8:POKE 709,0:F0
KE 710,0:POKE 66,0:P0OKE 623, 64:FP0K
E 53248,42: POKE 53261,3:PUT #6,1

20 POKE S53278,0:FOR K=1 TO 300:NEXT K
: GRAPHICS 18:POKE 53248,0:POSITION
8,5:7 #6:CHR$(71-PEEK(S53252));"TI
All

30 POKE 708.PEEK{(20):G0T0O 30

235

6 Advanced Graphics Technigues

Protecting Memory
For P/M And
Character Sets

Fred Pinho

Redefined character sets and player/missile graphics both require pro-
tected memory. This article shows how to avoid memory conflicts.

Other articles in this book explain how to properly locate either
a redefined character set or player/missile data. But what if you
want to use both at the same time? You can’t use the formulas

given in these articles directly, because the two data sets will
interfere with each other. To simplify matters, I've prepared
the table below. It will allow you to position both your P/M and
character data so that they won't clash.

Note that the two sets of data are stored in memory below
the display list. Because of this, a couple of cautions are in
order:

OO
graphics mode requiring increased display memory, you could
overwrite your P/M data. It's probably best to locate your data
to accommodate the graphics mode with the largest memory
requirement. To help, I've included the memory requirements
for each graphics mode.

1. Be careful when changing graphics modes. If you go to a
9, O

2. You have to watch your BASIC program to insure that it
doesn’t expand into your data-storage area.

In your reading, you’ll come across other methods of storing
these data sets (above a lowered RAMTOP, in a string, etc.).
However, these methods have some serious limitations of their
own. The method given here is straightforward and easy to
trouble-shoot.

The table gives the offset from RAMTOP (in pages) needed

236

6 Advanced Graphics Technigues

to properly locate each data set. Note that a page is a fancy way
of describing a block of 256 data bytes. Also, the offset is sub-
tracted from RAMTOP to get the proper memory location. I've
given an example of use of the table below:

Desired: GRAPHICS 7

Code:

10

Single-Line Player/Missile Graphics
Redefined Full Character Set

PM=PEEK (106) -32:REM Calculate page
setback for player/missile data
FOKE S5S42792.FM:REM Set page number

of PMEBASE

FMBASE=256%PM: REM Calculate memory
location of PMBASE

CHRSTART=25&% {PM—-4): REM Calculate

page offset for new character set

FPOKE 756.CHRSTART:REM Set CHEAS to
point to new character set locati

on

From here, you can go on to implement the player/missile

system and your redefined character set as described elsewhere
in this book. May all your missiles be on target.

237

6 Advanced Graphics Technigues

((+201 Jo apdnnuw e oq 1SNW LOREIO] ALOWIW JSA1] AU *a°1) AILPUNOG Y[© UO 1ILIS 1SN 1S 19]OLIeLD POULapaL [oy [,

Jpg-133EIRYD) D)

NT M1 ISV AN 10] U0NedO[Adepunog
T NI LICP IO AUP WO]9SO
UONNOSIL UonN|OSaL
aul-osulg AUIT-2]qNO(]

ISVAINJ JO UOIEI0][L) 10) SUOLILISAT SULMO[[0] O] SULALISAO AQ PAIL[NI[LI UL $JISFO I[ISSIU/IIAL] |
d[IsSIA/1d4R] g
eyep aedsip oy yeouaq isnl sopisal
1St Aepdsip oy JOLIN VY Yieauaq isnl sarj ejep Aejdsip oy | -Asowat ajqepieae jo doy oy sauap (90 [uonedo)) JOLINVY T
aded ajoym jsoySiy ‘Jsateau ay) 0y ore suonenojed aged 1y o1
[e1dUdD) "y

:S9JON
144 Uiy Uiy 9¢ (43 CLI8 8
9¢ 8T (43 14 LL 06LF L
8¢ 0c 04 9L 6 vLIT 9
0¢ 9L 91 rd i) PLIL S
0T <L 9L 8 € 769 4
0¢ <L 91 8 4 vey €
0T <L 9L 8 < 1444 [4
0T 41 91 8 & v29 L
0T cr 9L 8 4 <66 0
/d durf-3[3urs /d duI[-3[qnop uoIIN[0Sax uoINjosal saded ajoym sa1Aq apow
ypm ypm aurf-a[8uig aui-3[qno sy el sorydein
}9s I3poeIEy D) Jos IoprIelD) JOLIN VY wWwouj 1817 Aepdsiq + eyeq Aejdsig
JOLINVY woij (saSed ur) 3as330 (sa8ed ur) 335350 pajedrpur 10j paxmbai A1owayy
pajedIpuI dyj je 33ed0[3Y 3yl 18 ISVYIAd 218207
ejep aqissiwyiaheld yjeauaq jos eje(A[ISSIN/IdAe[d

*KIOWA Ul eleg 13 13)9BIRY)
pauljapay puy ajissi/1ake]d Jo HuluoSod Snoauelnuis

I9)deIRYD [[NJ JO UOIIEIO0[IY

8

o
ol

ﬁ Advanced Graphics Technigues

Screen Save Routine

Joseph Trem

[t certainly would be great if you could preserve for posterity those
neat graphics designs you've learned to create. Here's one way.

The following utility routine can be appended to the end of
your favorite drawing programs and will enable you to save
those Rembrandts. A sample drawing is included at the begin-
ning of this utility.

The Atari computer is fascinating indeed. The more you
delve, the more intriguing it becomes. This program is based
on three screen-related memory addresses — 87, 88, and 89.
Location 87 contains the graphics mode presently in use. Type
“GRAPHICS 7”7, then type “PRINT PEEK(87)"”". The computer
will respond with “7”. Locations 88 and 89 store the starting
addresses of screen memory; 88 contains the low byte and 89
contains the high byte. Again, type “GRAPHICS 77, then type
“PRINT PEEK(88) 4+ PEEK(89)*256"". This will return the mem-
ory starting address for GRAPHICS 7. Note that each computer
may return a different number depending on the memory size
of the machine. Now type “POKE(memory start), 255”. This
will light up one full byte at the top left corner of the screen
(Figure 1).

Type “POKE(memory start+40,255)"”, and this will light
up the next full byte directly under the first byte. Knowing
this, it is possible to keep track of every byte on the screen.
There are 40 bytes horizontally and 80 bytes vertically in
GRAPHICS 7. In the utility program, line 32240 locates the
starting address of your picture. Lines 32125 and 32225 scan
and set screen memory locations. You may adapt these lines to
any graphics mode using the chart provided. For example, if
you happen to be using GRAPHICS 5, change the “40*80" in
those lines to ““20%40”. (See Figure 2.)

After running this program, you may want to append only
the utility part to your favorite drawing program. Here’s how
to do it. First, make sure your drawing program does not exceed
line 30999. Now type LIST“C:",31)00 32240 or LIST

239

6 Advanced Graphics Technigues

“D:tilename”’, 31000,32240. This will save only lines 31000
through 32240. When completed, type NEW and load your
drawing program. Now load your utility program back in. This
is done by typing ENTER”C:”” or ENTER “’D:filename”’. This
will append your utility to the end of any drawing program.

Some programs may have to be modified slightly, but with
a little effort you may find it worth it. Run your program. Draw
your masterpiece. When you are satisfied with your creation,
press the BREAK key and type “GOTO 31000”. This will in-
itialize the save and load routine. Then sit back, relax, and sur-
prise someone with a genuine work of art worthy only of the
great masters.

10 Initializes SCREEN SAVE ROUTINE

40-195 Draws sample picture (e.g., space game playfield).

200 Reinitializes menu after drawing.

30000 Sets GR.2 and title.

31000 Opens IOCB for keyboard.

32000-32060 Prints menu. Gets keyboard input and directs to
appropriate line.

32100-32103 Prints save menu. Gets keyboard input and directs
to appropriate line.

32105-32208 Prints disk instructions.

32110-32210 Prints cassette instructions.

32200 Prints load menu.

32122 Stores graphics mode and color register data.

32125 Stores screen RAM data.

32222 Reads graphics mode and color register data and POKEs
it into correct locations.

32225 Reads screen RAM data and POKEs into correct loca-
tions.

32240 Determines start address of screen.

240

6 Advanced Graphics Techniques

Figure 1.
!‘ GRAPHICS 7 l
—_—>|
| 40 BYTES |
—f - (In
80
BYTES
e READY
]
Figure 2.
HORIZONTAL VERTICAL
BYTES BYTES
GR.8 40 160
GR.7 40 80
GR.6 20 80
GR.5 20 40
GR.4 10 40
GR.3 10 20
GR.2 20 10
GR.1 20 20
GR.0 40 24

(full screen)

241

6 Advanced Graphics Technigues

5 R
8 R
10
40

&0
65
70
78
80
100
110
130
140
145
150

155

160

170

180

183

185

186

187

190

EM X SCREEN SAVE ROUTINE X
EM %x JOE TREM X
GOTO 30000
GRAPHICS 7:SETCOLOR 0,&5.6:REM XSET
GRAPHICS 7 MODE
INC=49:C0=1:COLOR 1
INC=INC+0.05
X=SIN{INC)X20: Y=COS(INC) X20
PLOT X+80,Y+35:SOUND 1,X+50,10,8
CO=CO+1:1IF CO<130 THEN &5
Cco=1
COLOR 3
INC=INC+0. 05
X=SIN(INC+1)%30: Y=COS{(INC) x30
IF CO>49 AND CO<70 THEN 140
COLOR 2:PLOT X+80,Y+35:S0UND 1,X+
50,6,8
COLOR 3:FLOT X+81,Y+38:COLOR 1:PL
0T X+79,Y+32
CO=CO+1:1IF CO<130 THEN 110
COLOR 1:FDR X=1 TO 159:PLOT X,79:
DRAWTO X,79-RND(0)%5:SOUND 1,X,10
LB:NEXT X
FOR X=1 TO 20:COLOR RND(OQ)Xx1+1:PL
OT 40,40:DRAWTO RND(O) ¥10,RND(O) X
10: SOUND 1,X+20,8,8:NEXT X
FOR X=120 TO 159:COLOR RND{(Q)Xx2+1
:PLOT X,20:DRAWTO X,RND(0) x20:NEX
T X
COLOR 2:PLOT 130,30:DRAWTO 130,24
:DRAWTO 134,24:DRAWTO 134,30:PLOT
130,27: DRAWTO 134,27
PLOT 142,.25:DRAWTO 142,24:DRAWTO
138,24: DRAWTO 138,30:DRAWTO 142, 3
0:DRAWTO 142,72
FPLOT 150,.24:DRAWTO 146,24:DRAWTO
146,30: DRAWTO 150,30:FPLOT 14&,27:
DRAWTO 149,27
COLOR 2:PLOT ©,0:DRAWTO 159,0:DRA
WTO 159,79:DRAWTO ©,79:DRAWTO 0,0
COLOR 1:PLOT 30,70:PLOT 40,10:PLO
T 140,30:PLOT 150,70:PLOT 105,35:

6 Advanced Graphics Techniques

P

SOUND 1,0,0,0
200 GOTO 32000

30000

31000
32000

32010
32020
32050

32060
32100

A
kJ

101

32103
32105

32110

A
8|
[y
[y
]

Al
]
[y
[
o)

%
N
5
kJ
rJ

L
rJ
[
kJ
th

32130
32200

A
b
rJ
o
[

=
M
N
o
]

GRAFHICS 2:7 #&:;" SCREEN S5AVE R
OUTINE"

CLOSE #1:0PEN #1,4,0,"K:"
SCRN=32240: GOSUR SCRN:POKE 752,

PegF ¥ 1...DRAW FPICTURE
2" 2...5AVE PICTURE"™
Z = 3...LO0AD PICTURE"™
GET #1,A:1IF A<49 OR >31 THEN =
2050

ON A—-48 GOTO 40,32100,32200

2 g2 ® SAVE TO i1...CAS5ETTE?"
s B Zew«BDISKZ"

GET #1.A:IF A<49 DR A>S50 THEN 3
2101

ON A4-48 GOTO 32110,32105

? z2 » PLEASE INSERT DISKETTE
AND PRESS EELGEED":GET #1,

A:OPEN #2,8,0,"D:PICTURE":GOTO
2120

? :? "PLEASE PLACE CLEAN TAPE I
N RECORDER AND PRESS
HRE] TIUNR N

OPEN #2,8,0,"C:":REM ¥OPEN FILE
TO SAVE

? :? "SIT BACK AND RELAX... SEE

TING [P Ci TR ER

MODE=PEEK (87) : PUT #2.MODE:FOR I

=0 TO 4:COL=PEEK{(708+1):PUT #2,

COL:NEXT I

FOR I=SCREEN TO SCREEN+(40%80)—
1: LOC=PEEK(I):PUT #2,LOC:NEXT I
:CLOSE #2

GOTO 32000

2 :? " LOAD TO 1...CASSETTE

Pz » 2...DISK?"

GET #1.A:IF A<49 OR A>S0 THEN 3

2201

POKE 752,1

243

ﬁ Advanced Graphics Technigues

(R

SN
N R

o0
ow

(" A =
kJ bJ r
N r M
b - bt
o)| o

%
rd
N
8!
[N]

2
rJ
M
b
w

I2230

244

ON A-48 GOTO 32210,32208
2 :7? " PLEASE INSERT DISKETTE

AND PRESS EELEEE":GET #1,.A
:0PEN #2,.4,0,"D:PICTURE":G0TO 3

2220

2 » PLEASE INSERT TAPE AND PRES

S EEnEEL”

OPEN #2.4,0,"C:":REM XOPEN FILE
TO LOAD

? :? :? "RELAX AND ENJOY... @EE
IDITING [P TOC TURIERS

GET #2.MODE:GRAPHICS MCDE:GOSUR
SCRN:FOR I=0 TO 4:GET #2.COL:P
OKE 708+1,COL:NEXT I

FOR I=SCREEN TO SCREEN+(40%80)-
1:6ET #2,L0C:POKE I,LOC:NEXT I:
CLOSE #2

GOTO 32000
SCREEN=PEEK (88) +PEEK (89) ¥x256: RE
TURN

Listing Conventions

In order to make special characters, inverse video, and cursor
characters easy to type in, COMPUTE! Magazine’s Atari listing
conventions are used in all the program listings in this book.

Please refer to the following tables and explanations if you
come across an unusual symbol in a program listing.

Atari Conventions
Characters in inverse video will appear like:
Enter these characters with the Atari logo key, {A).

When you see Type See
{CLEARZ} ESC SHIFT < L3 Clear Screen
{UP3 ESC CTRL - + Cursor Up
{DOWN?Z ESC CTRL = + Cursor Down
CLEFT: ESC CTRL + € Cursor Left
{RIGHT?> ESC CTRL x > Cursor Right
{BACK S73* ESC DELETE 4 Backspace
{DELETE?> ESC CTRL DELETE 4] Delete Character
{INSERT?Z} ESC CTRL INSERT | W] Insert Character
{DEL LINEZ ESC SHIFT DELETE 1] Delete Line
{INS LINEZ ESC SHIFT INSERT & Insert Line
{TAB3> ESC TARB 3 TAB key
{CLR TAB3> ESC CTRL TAB Clear TAB
{SET TARZ ESC SHIFT TAB > Set TAB stop
{BELL?Z ESC CTRL 2 3 Ring Buzzer
{ESC?> ESC ESC E ESCape key

Graphics characters, such as CTRL-T, the ball character ® will
appear as the “normal” letter enclosed in braces, e.g., {T}.

A series of identical control characters, such as 10 spaces,
three cursor-lefts, or 20 CTRL-R’s, will appear as {10 SPACES},
{3 LEFT}, {20 R}, etc. If the character in braces is in inverse video,
that character or characters should be entered with the Atari
logo key. For example, {P} means to enter a reverse-field heart
with CTRL-comma, {5 } means to enter five inverse-video
CTRL-U’s.

245

Index

alternate shapes data 185

alternating color bands 204-207

animated games 98-107

animation 11,91,99,108,126,
172-183,184-187

animation demo 143,152-153

ANTIC chip 110,166,208,209,211,
213,217,219

ANTIC display modes 102

artifacting 206-207

ASCII16,92,99,113

Atari BASIC Reference Manual 3,
10,11,18,38,54,55,56,81,113,
203,225,227,228

Atari Hardware Marual 192,193,
219,221

ATASCII 11,42,54,57,58,81,91,92,
114,142-143

BASIC 3,18,25,26,33,62,64,78,79,
80,81,82,83,84,91,98,99,
108-109,118,132,184,185,195,
209,212,216 (see also
GRAPHICS commands)

BASIC A+ 133

BREAK 240

Central Processing Unit (CPU)
129,222

character graphics 11,111,116

character registers 78

character set 77,82-83,85,121
relocating 78-82,85

character storage 79-82

character string 43,131

collision registers 188-191,195

collisions
players with players 188-189,
191
players with playfields 189,
191

color clock 209,210-211,213

246

color indirection 215-216,229,
230-231

color numbers (table) 14

Color Register Default values
(table) 14

color registers 21,215-216

COLOR statement 9,20,21,93,
109,129,130,189,190,216,227

colors, demo programs 228-235

control graphics 12

controls for P/M graphics 132-135

coordinates 8,10,13,99,100,114,
165,169,173-174,176,177

Creative Computing 142

“crosshair”” 197-199

CTIA chip 4,9,110,188,208-209,
214,220-221,230

CTRL key 111,116,117,119,121

default color 7,194

delay loop 179

diagonal lines 206-207

digitized pictures 219-220

direct memory access (DMA)
166,168,192,209,210,211,212

display data 165,238

display image 174

display list 26,27-33,37-38,41,46,
80,82,91,131,212,213,236,238

display list interrupt 62,68,82,
83,87

display memory 29,30,41

DOS 94

drawing storage 172-180

figure manipulation 18,19

function codes 47

games
animated 98-107,108-126
Asteroids 98
“Island Jumper” 156-157,
159-162

Jawbreaker 195,221
Pac-Man 3,195
Pong-type games 20-22
POOL 1.5 221
“Space Rocks” 98, 100-107
Star Wars 111
Star Raiders 3
GPRIOR 219,221,230
GRAPHICS characters 4,53,54
GRAPHICS commands 4,25,56,
66,112,130

DRAWTO 8,9,10,16,99,110, 130

LOCATE 10,11,12,21,99,
100,111,227

PLOT 8,9,10,16,99,110,130,
131,227

POSITION 10,11,12,44,110,
111,227

PRINT 10,11,39,44,110

graphics modes 13,25-36,80,95,
¢

113,177,213,224,241
GRAPHICS 04,5,6,11,15,31,
38,44-45,46,56,59-60,88, 130,
137,167 (see also text mode)
GRAPHICS 1 4,33,34,61,82,
83,84,112,113,115,116,117,
177,195
GRAPHICS 2 4,6,10,39,42,
61,82,113,195
GRAPHICS 34,5,7,16,20,33,
34,37-38,91,130
GRAPHICS 46
GRAPHICS 591,239
GRAPHICS 66,7,8,9,15,92,
04
GRAPHICS 79,38,91,99,
109-110,131,133,237,239
GRAPHICS 85,6,46,93,112,
131,167,203-207
GRAPHICS 11 196,223,225,
226,228
GRAPHICS statements
225-228

graphics string 16-18

GTIA chip 4,9,110, 188,193,196,
208-235

hardware register (see PRIOR)

high resolution 203

horizontal blank 211

IF statements 65

image data 158

image memory 155

Instruction Register (IR) code
28,29

Internal Character Set 116
table 120

interrupts 163-167 (see also
vertical blanks)

inverse characters 77,78

LMS command 29,30,34

location argument 156

luminance 7,210,214,217,219,
222,228

machine language routines 143,
154,175,184,
for animation 184-187
for character storage 86

memory 6,133,213, (see also
RAM)
memory allocations 167-168,
173,174
memory locations 42,55,78,
79,100,109,118,132,139,156,
221
memory protection 236-238

missile registers 190

mixed modes (see text window)

mode lines 26-27,211-213

Moir¢ patterns 207

multiple color player enable 193,
196-197

number of colors 5,6-7,25

Operating System 26,27,28,29,
30,32,55,192

overlaps 196-197,199 (see also
collision registers)

overscan 27

page six 81,93,166,173

pages 78,155,176-177

paging 55,56

player drawings 172-179,181

player image 156

247

player memory 136

player motion 142-143

player storage 173-176,178

player/missile (P/M) graphics
110,129-139,140-153

P/M memory locations 139

players 137,180

playfield graphics 129,130,134,
211-213,216
RAM positioning 138

playfield registers 220

PMBASE 138,167,174,176,180,
184,192

POKEs 31,132,175,185,189,193,
196,228

Pong-type games 20-22

PRINT #6 19,44,45

PRIOR 218,222,230

priority registers 192-199

programs
fast graphics 122-125
“Island Jumper”” 159-162
Mixing Modes 0 and 8
(demo) 48-49
P/M Graphics Utility 144-151
Screen Save Routine 242-244
“Space Rocks” 102-107
TextPlot 95-97

pseudo-random number
function 169

RAMTOP 55,78,167,236-237

Random Access Memory (RAM)
6,78,131,134,135,167,184,
185,192

raster scan 211

redefining character sets 53-61,
62,77,82

registers 7,132,188-191
character registers 78

collision registers 188-191,195

color registers 21,215-216

hardware register
218,222,230

Instruction Register 28,29

missile registers 190

playfield registers 220

248

priority registers 192-199
“shadow” register 77,78,83,
190,222
resolution 5,25,138,203,219,238
horizontal 5,210,217
single line 167
vertical 5-6,210,213
ROM 42,55,57,61,65,77,78,80,192
scan lines 26,29,210,213,217
screen limits 121
screen memory 38,93,113,203-207
screen save utility 239-244
scrolling 33,44
SETCOLOR statements 7,9,20,
21,65,129,130,131,169,216-228
“shadow’” register 77,78,83,190,
229

string graphics 16
string manipulations 142
SuperFont 62-76
commands 63-65
text editor memory 38,39
text modes 4,46,77,88,91,92-94,
195,212,217,225-226
text window 5,6,26,33,38-39,
44-45,46,83,88,177,193,
221-222,225-226
user memory 55
USR function 46,81,99,143,154,
155,165,173,184
variables 31,91,102,111,117,118
142,143
DL 31
SCREEN 111
for “Space Rocks” 102
vertical blank interrupt 164-167,
173-179,192
vertical blank P/M routine 183
vertical blank time 165
vertical blanks 77,83,172
vertical movement 164,166
vertical positioning 154-163,
164-167
assembly language repre-
sentation 163

’

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868

In NC call 919-275-9809

COMPUTE!

P.O. Box 5406
Greensboro, NC 27403

My Computer Is:
[JPET [JApple [JAtari [JVIC []Other

[]Dontyet have one..

[]520.00 One Year US Subscription
[]$36.00 Two Year US Subscription
[1554.00 Three Year US Subscription

Subscription rates outside the US:

[]$25.00 Canada r=2

[]$38.00 Europe/Air Delivery fi=3

[]$48.00 Middle East, North Africa, Central America/Air Mail - fi=5
[]$88.00 South America, South Africa, Australasia/Air Mail - fi=7
[]$25.00 International Surface Mail (lengthy, unreliable delivery) fi=468

Name
Address
City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card.

[] Payment Enclosed [JVISA
[] MasterCard [] American Express
Acc't. No. Expires /

08-6

COMPUTE! Books

P.O.Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly frorn COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868

In NC call 919-275-9809

Quantity Title Price Total

The Beginner’s Guide To

Buying APersonal Computer $ 3.95

gAdd $1.00 shipping and handling. Outside US add
4,00 air mail; $2.00 surface mail.)

COMPUTE?s First Book of Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

Inside Atari DOS $19.95

gAdd $2.00 shipping and handling. Outside US add
4,00 air mail; $2.00 surface mail.)

COMPUTE"’s First Book of
PET/CBM $12.95

gAdd $2.00 shipping and handling. Outside US add

4.00 air mail; $2.00 surface mail.)

Programming the PET/CBM $24.95

gAdd $3.00 shipping and handling. Outside US add
9.00 air mail; $3.00 surface mail)

Every Kid’s First Book of

Robots and Computers $ 495

gAdd $1.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

COMPUTE!’s Second Book of

Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4,00 air mail; $2.00 surface mail.)

COMPUTE"s First Book of VIC $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail)

All orders must be prepaid (money order, check, or charge). All
payments must be in US funds. NC residents add 4% sales tax.

[]Paymentenclosed Please charge my: [JVISA []MasterCard

[] American Express Acc't. No. Expires /
Name

Address

City State Zip
Country

Allow 4-5 weeks for delivery.
08-6

n.n.n.‘-..-..AP.,‘nn‘...n...@n.p.n..pn.@@.?y

o8 oF o of of o A oF sf o aF sk aF o af oF af ot of of af off oF off of of of of o o &f & o o 4 ¢

$12.95 US =

ISBN 0-942386-08-6

	Cover

	Contents

	Introduction

	1: Fundamentals

	Basics of Atari Graphics
	Using String for Graphics Storage

	Using the COLOR and LOCATE Instructions

	2: Customizing Modes

	Custom Graphics Modes
	Put Graphics 1 and 2 at the bottom of your screen
	Printing Characters in Mixed Graphics Modes

	Add a Text window to Graphics 0

	Mixing Graphics Modes 0 and 8

	3: Redefining Character Sets

	Desing You own Character Sets

	SuperFont

	Character Set Utilities

	4: Animation with Character Graphics

	TextPlot

	Using TextPlot for Animated Games

	High Speed Animation with Character Graphics

	5: Player/Missle Graphics

	Intro to P/M Graphics

	Self-modifying P/M Graphics Utility

	Adding high-speed vertical positioning to P/M Graphics

	P/M Graphics Made Easy

	Animation and P/M Graphics

	Extending P/M Graphics

	The Collision Registers

	The Priority Registers

	6: Advanced Graphics

	Graphics 8 in Four Colors using Artifacts
	Atari Video Graphics and the new GTIA part I

	Atari Video Graphics and the new GTIA part II

	Atari Video and the GTIA part III

	Protecting Memory for P/M and Character Sets

	Screen Save Routine

	Listing Conventions

	Index

