

COMPUTE!'s

Collection
VOLUME 1

221Yc1~~!~,LEublications,lnc,.
Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-79-5

10 9 8 7 6 5 4 3 2 1

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. Atari is a trademark of Atari, Inc.

Contents

Foreword v

Chapter 1. Getting Started 1
An Introduction to Atari PEEKs and POKEs
Charles Brannon 3

PEEKing and POKEing Around
Sheila Neece Spencer 13

Two Fast and Simple Joystick Routines
Stephen Levy 19

Three Music Editors for Your Atari
David Florallce 23

Exploring Atari Variables
Bob Powell 38

Atari Color Matcher
Ron Tinnell 45

The Automatic Proofreader
Charles Brannon 47

Chapter 2. Games 51
Nessie: A Nonviolent Game for Atari
Tom R. Halfhill 53

Tank
David E. Huff and Douglas C. Huff 65

Dots
Eric Saper 73

Reversi
Jose R. Suarez 79

Dollars from Heaven
Steven Cohen .. 93

Box Hunt
Lenny Norinsky 99

Dragon's Den
Ken and JoAnn Davy 101

Memory Match
Dave Miller .. 113

Chapter 3. Education 119
Alphabone Hunt
Glenn M. Varano 121

Pyramid Math
Stephen Levy 126

Dot Drawing
Robert D. Goeman 132

Art Class
Mark Poesch, Tim Kilby, and Steve Steinberg 135

Hyperword
Daniel M. Daly 141

Stock Market
SuI Kattan 148

Adding Excitement to Educational Programs
Barry Sperling 154

Test Maker
Stephen Levy 156

Chapter 4. Applications 161
Shopping List
John E. Dombrow and John Dombrow 163

Coupon File
Stan Silverman 182

Investment Tracker
John L. Nuss 193

Horizon: A Celestial Coordinates Calculator
Russell A. Grokett, Jr. 209

Invisible Music
Paul Gentieu 214

Chapter 5. Tape and Disk Utilities 219
Atari Tape Enhancer
Jordan Powell 221

Disk Catalog Utility
Andrew Genser 225

Diskovery
John C. Waugh 229

Appendix: How to Type In Programs 249

Index 252

'"

Foreword

This latest addition to COMPUTE!'s library of books for Atari
computer users includes more than 30 never-beFore-published
articles and programs.

COMPUTEt's Atari Collection, Volume 1 has something for
every Atari owner. Whether you have a new Atari 800XL or
the older 400, whether you're a beginning or experienced pro
grammer, or just enjoy using your Atari, you'll find enough
useful articles and programs to keep you in front of the key
board for months.

If you enjoy games (and who doesn't?), you'll find
"Nessie" filled with photographic fast action as you snap pic
tures of the elusive monster. If you want to try to out
maneuver and outwit your computer or a friend, "Reversi"
and "Memory Match" fit the bill. Even youngsters can play
we've included "Pyramid Math," a two-player math contest,
and "Alphabone Hunt" to entertain and educate children.

Do you need practical applications? They're here. "Invest
ment Tracker" helps analyze your investments, and "Disk
Catalog Utility" organizes your disk collection.

What if you just want to sit down and program? There are
useful tips scattered throughout this book, as well as numer
ous articles that help you learn how to get more out of your
Atari. Do you want to program sound? Then use the editors
included with "Three Music Editors for Your Atari" to create
notes, chords, or an entire song. Do you need a fast joystick
routine in BASIC for your special game? You'll find what you
need in "Two Fast and Simple Joystick Routines." And" An
Introduction to Atari PEEKs and POKEs" shows you how to
quickly and easily enhance your programs with these two im
portant commands.

COMPUTEt's Atari Collection, Volume 1 is packed with 30
original programs. They've never appeared anywhere else
before. And because we've included "The Automatic Proof
reader, " program entry is virtually mistakeproof.

An entire year has gone by since COMPUTE! Publications
released a new book just for Atari users. We're sure you'll
agree the wait's been worth it.

v

-

Chapter 1

An Introduction to Atari
PEEKs and POKEs
Charles Brannon

If you're a beginning BASIC programmer, you may not realize
that there's more to your Atari than BASIC. In fact, the Atari
has power that BASIC just doesn't address. For example, you
can redefine the character set, so that the letter A appears as
an alien invader. Player/missile graphics lets you move and
animate images independently of the graphics screen. Custom
display lists and display list interrupts give a programmer
complete control over the graphics screen, and the POKEY
chip gives you more than just four-voice sound.

It's possible to use many of these features in BASIC,
though some require machine language and most are beyond
the beginning programmer. However, there are many power
ful capabilities that anyone can put to good use right away
and since BASIC can't access them directly, you need two spe
cial BASIC keywords: PEEK and POKE.

Atari Memory Management
The 6502 microprocessor is the brain of your Atari. It can di
rectly address any of the 65,536 memory locations. Some of
this memory is RAM, the read/write memory used to hold
data and programs from tape or disk; the rest of the memory
is ROM (Read Only Memory) that holds BASIC and the
operating system. When the power is turned off, RAM is
erased, but the pattern in ROM is not dependent on power.
You may already be familiar with ROM and RAM.

But there's also a third kind of memory which isn' t really
memory at all. Instead, it is a fa~ade used by input/output
chips. Input/output chips in the Atari include the GTIA, a
graphics chip; ANTIC, which drives the GTIA to produce
graphics modes and player/missile graphics; and POKEY,
which reads the keyboard and drives serial input/output (used
to talk to a disk drive or printer). These chips require infor
mation (such as what characters to put on the screen) and can
produce information (such as which key is being pressed).

To make things easy, these chips pretend to be memory
locations. POKEing to an I/O (input/ouput) memory address
alters the action of a chip, and PEEKing will give you infor
mation from the chip.

Chapter 1

From the point of view of the computer, these are mem
ory locations. In fact, some behave like RAM. For example,
you can POKE a number to a location, and then PEEK the
location to get the number back.

Most I/O addresses are either read-only or write-only.
Read is like ROM. Write-only memory locations can be
changed, but you can't PEEK them to see what the current set
ting is .

Sometimes a given memory location is used for two func
tions. Writing (POKEing) to the location does one thing, while
reading (PEEKing) does another. For example, the color loca
tions in hardware will change the screen color if you POKE
them, but PEEKing them returns a meaningless value. To get
around this, the operating system (the master program that co
ordinates all other programs) keeps several shadow registers
that can be PEEKed and POKEd. These locations are ordinary
memory locations, but their values are copied to the hardware
color registers every 1/60 second. Many hardware features are
accessed through their corresponding shadow registers .

PEEK and POKE
The personality of the operating system is affected by many
POKEs, and you can read useful information hidden to BASIC
with PEEK.

POKE is used to change memory (although you can
POKE to ROM, nothing changes). The format is POKE
address,data. The address is a number from 0 to 65535 . Each
number accesses a memory celt which can hold a number
from 0 to 255.

A memory cell can be thought of as holding eight tiny
switches. If you assign ascending powers of two to each
switch, you can use these switches to represent numbers. This
convention is called base 2, or binary. For advanced PEEKing
and POKEing, an understanding of binary numbers can be
most helpful. However, all you need to know to get started is
that a memory location can only hold a number from 0 to 255 .

PEEK is the converse of POKE, but it is a function rather
than a command. PEEK returns a value, and any command
that can use a value can use PEEK. For example, consider how
PRINT can be used. You can PRINT 4, which displays a num
ber; PRINT TOTAL, which displays the number held by the
variable name TOTAL; or PRINT PEEK(53279), which dis-

4

Chapter 1

plays the number held in location 53279. Note, too, that PEEK
can be used with POKE (for example, POKE 106,PEEK
(106) - 8).

Keyboard Control
In BASIC, you can use GET to read a character from the key
board. But GET always waits for a keystroke. Say you want to
periodically check for keyboard input. If no key is pressed,
your program continues. But since GET always waits for a
keystroke, it will freeze your program until a key is pressed.

Instead of using GET, you can check location 764 with
PEEK(764). When it returns a 255, no key has been pressed
and you can continue your program loop. Whenever it doesn't
return 255, you can use GET to read the ATASCII value of the
keystroke.

Another problem with GET is that you must first OPEN a
file to the keyboard device . If you only want to wait for a key
stroke, you can use something like this:

10 PRINT "PRESS ANY KEY TO CONTINUE."
20 IF PEEK(764)=255 THEN 20
30 POKE 764,255

The value returned by location 764 is not in ATASCII, the
convention used by ASC and CHR$. The number is an in
ternal representation of the key, expressed in terms of what
row and column the key is in. Run this small program to see
what values keystrokes return. When you press a key, the in
ternal value is shown:

10 PRINT PEEK(764):GOTO 10

Notice that until you press a key, the value is 255. That's why
you can wait for a keystroke by checking until the location no
longer holds 255. Also note that when CTRL is held down,
the value is greater than 127. If either SHIFT key is used, the
value is greater than 63, but less than 128.

This location is used as a one-key buffer. Even if a pro
gram is not accepting keyboard input, this location still
changes when you press a key. If the program then tries to
GET or INPUT from the keyboard, location 764 will provide
the keystroke you pressed earlier, even if you are no longer
pressing the key.

5

Chapter 1

POKE 764,255 clears any value out of the keyboard
buffer. You can even POKE 764 with other values, and watch
how these values cause the computer to type out a character
automatically.

When you ran the program, you may have noticed that
764 cannot tell if you are holding down a key. Once you press
a key, the value in 764 changes and remains changed until
you press another key. It will not return to 255 when you let
go of the key. Sometimes, however, you may want to see if a
key is being held down. This small program simulates the ac
tion of an organ. When you press a key, a tone sounds as long
as you hold down the key and stops when you let go:

10 IF PEEK(53775)=255 THEN SOUND 0.0 . 0.0:GO
TO 10

20 SOUND 0.100.10,8:GOTO 10

Location 53775 holds 255 if no key is being pressed, 251 if a
key is down, and 247 if the SHIFT key is being held down.

Controlling the Inverse Key
If you are GETting or INPUTting from the keyboard, you may
not want the user to enter inverse or lowercase characters.
Since the INVERSE key is easily struck by mistake on the
400/800 models, you need a way to force inverse video off.
Alternately, you may want to "press" the INVERSE key for
the user, so that everything he types comes out in reverse.
Location 694 controls this. POKE it with a 128 to force inverse
characters, and 0 to disable inverse. It's a temporary thing,
though. If the user hits the INVERSE key again, 694 changes.
This location will not affect how text is printed, only how it's
received from the keyboard.

A similar location, 702, stores the status of the
CAPS/LOWR key. If CAPS lock is on, 702 holds 64, but it
holds 0 if the keyboard is in lowercase mode. Location 702
will hold 128 if the keyboard is in CTRL-mode (same as
CTRL-CAPS/LOWR). You can use POKE to force the key
board into the desired mode under program control. Try this:

10 DIM A$(10)
20 PRINT .. ENTER 0 FOR LOWERCASE":PRINT ."

64 FOR UPPERCASE":PRINT ,"128 FOR CONTRO
L MODE"

6

Chapter 1

30 INPUT X:IF X< >0 AND X<>64 AND X<>128 THE
N 30

40 POKE 702,X
50 INPUT A$
60 PRINT A$:PRINT :PRINT
70 GOTO 20

Consoling Information
The console keys START, OPTION, and SELECT cannot be
read as other keyboard keys can. Whatever you use them for
is up to you, but you can easily read them by checking loca
tion 53279. Here are the values returned:

7 No console keys held down
6 START key alone
5 SELECT key alone
3 OPTION key alone
o START, SELECT, and OPTION pressed simultaneously
1 OPTION and SELECT together
2 OPTION and START together
4 SELECT and START together

This simple program demonstrates how that can be used:

10 A=PEEI«53279)
30 ON A+l GOSUB 50,60,70.80,90,100.110
40 GOTO 10
50 PRINT "START+SELECT+OPTION":RETURN
60 PRINT "OPTION+SELECT":RETURN
70 PRINT "OPTION+START":RETURN
80 PRINT "OPTION":RETURN
90 PRINT "SELECT+START":RETURN
100 PRINT "SELECT":RETURN
110 PRINT "START":RETURN

Notice that when you press a console key, that key contin
ues to return its value as long as you hold it down, but that it
returns to normal (7) when you let go. This rapid-fire repeat is
often undesirable . To remove it, add this line to the program:

20 IF PEEK(53279)=A THEN 20

This waits until you let go of the selected key to print
the message on the screen, so you get only one message each
time the key is pressed. Nothing will happen until you let go
of the key.

7

Chapter 1

Remember how some locations have different functions
when read or written? Location 53279 is one of them. When
read, it tells you what console keys are being held down. But
if you POKE it with a zero, the internal speaker (or the ex
ternal speaker on XL Ataris) makes a tiny click. Zero makes
the speaker cone move out, but the operating system puts an
eight (which moves the cone back in) into 53279 every 1/60
second. Rapidly POKEing this location with zeros creates a
buzzing noise. Notice how those two functions tied to this
location have nothing in common.

While we're on the subject of keyboard POKEs and
PEEKs, here's how to disable the BREAK key. You might want
to do this to prevent anyone from exiting and listing your
BASIC program, or you may want to protect the user from
accidentally breaking out of a program. Just use these two
POKE statements:
POKE 16,64:POKE 53774,64

You can reenable the BREAK key by changing graphics modes
or by pressing SYSTEM RESET. If you don't want the BREAK
key reenabled, you must repeat these POKEs after every
GRAPHICS command or any OPEN statement.

Although SYSTEM RESET cannot be disabled, you can
make someone wish they hadn't pressed it. If you POKE 580
with a value other than 0, the SYSTEM RESET will act as if
you turned the power off and on. This is called a cold start, as
opposed to the warm start normally performed by this key.
POKE 580,0 to reenable warm start.

Screen Play
Although it's easier to use SETCOLOR, you can also POKE di
rectly into the color registers to set colors. POKEing can be
faster and more compact, since there is only one number to
evaluate instead of four. Locations 708-712 correspond di
rectly to SETCOLOR 0 through SETCOLOR 4. Each location
holds both the color and luminance. Just multiply the color
number (0-15) by 16 and add in the luminance (0-15).
SETCOLOR a,b,c corresponds to POKE 708+a,b*16+c. For
example, POKE 712,10 changes the border color to white.

Location 559 can, among other things, turn the screen dis
play on and off. POKE 559,34 is the normal setting. If you
POKE 559,0 the screen blanks to the border color.

8

Chapter 1

How can you use this? To speed up programs. Since it
takes some time to display the screen, the Atari can run up to
30 percent faster with the screen turned off. You can blank the
screen when you perform a long calculation, as long as you
warn the user so that he or she doesn't panic when the screen
blanks out. You may also want to blank the screen while you
are drawing a complex image, then turn the screen back on to
make your graphics instantly appear.

You may have heard of locations 82 and 83. These loca
tions are primarily used to let you adjust the width of the
screen, since some televisions cannot display the full width of
the screen. Location 82 controls the left margin . PEEK will re
turn the current setting, and POKE resets it. The left margin is
the number of blank spaces from the edge of the screen. If you
want a full 40-column screen, use POKE 82,0.

The right margin, set by location 83, is a number from °
to 39 and represents the number of spaces from the left side of
the screen (not from the left margin). After you change the
margins, subsequent PRINT statements will conform to the
new margin settings. Do not make the left margin greater than
the right margin. Why not? Try it and find out! Also beware
that if you make the width of the screen too small, you cannot
type any commands. In any case, SYSTEM RESET restores the
left margin to 2 and the right margin to 39.

Curse That Cursor!
The cursor can be a pesky critter, since it remains on all the
time, showing the current PRINT position. It's easy enough to
disable it, though-just POKE 752,1. A zero in 752 enables
the cursor. After you POKE this location, the cursor will not
change until the next PRINT statement moves it, or after you
clear the screen. Any change in graphics modes will restore
the cursor. SYSTEM RESET also turns the cursor back on.

You can also control how inverse characters appear. A two
in location 755 is the normal state. All the dots making up the
character will reverse their color. POKE it with a zero, and all
inverse characters will not be inverted, but will appear as nor
mal characters. Put a one here, and inverse characters will be
invisible. A three makes all inverse characters appear as in
verse spaces (opaque) . Add four to any of these values, and all
text will appear upside-down and mirror-reversed. (This fea
ture was originally used in video games that projected the

9

Chapter 1

screen onto a mirror.) Since the cursor is just the inverse of
whatever character it is sitting on, 755 also affects the appear
ance of the cursor. Try this short program to see how you can
use 755 to make flashing text:

100 PR I NT " •• :WiiiI:;o-t •• nt:l:l:t ... iiiI:;o.., CAN BL I NK"
110 POKE 755.2-PEEK(755):FOR W=l TO 50:NEXT

W:GOTO 110

You can easily read the position of the cursor by checking
locations 84 and 85. Location 84 holds the current row (the
vertical position of the cursor) and ranges from 0 to 23. The
current column, 0-39, is in location 85. You can use PO
SITION in BASIC to directly move the cursor to an X,Y loca
tion, but with POKE you can change the row or column
separately. When you change 84 or 85, the cursor does not ac
tually move until a PRINT statement is used.

POKE 85 is the replacement for Atari's missing TAB state
ment. It makes formatted displays easy. For example, the line
Z=Z+6:PRINT TAB(20-19*SIN(Z»iCHR$(42):GOTO 10

prints a sine wave in Microsoft BASIC. It's easily translated to
Atari BASIC:

10 Z=Z+6:POKE 85.20-19*SIN(Z):PRINT CHR$(42
):GOTO 10

In a graphics mode, locations 84 and 85 control the po
sition of the graphics cursor, not the text cursor. The text
cursor is set in these modes by location 656 (row) and 657
(column).

You can also change location 201. It holds the number of
spaces between comma zones. When you print a list of vari
ables (such as PRINT A,B,C$) each item is tabbed over into a
separate zone ten spaces wide. If what you are printing over
flows into the next zone, the following item will have to go
into the zone after that. You can change the width of the
comma zone by POKEing 201. Do not ever put a 0 in this
location, or the computer will freeze up when it encounters
the comma, forcing you to press SYSTEM RESET or turn off
the power to regain control. You may want to change it back
to 10 when you are through, or other programs using PRINT
may tab strangely.

10

Chapter 1

The Sound of Silence
When you read or write to tape or disk, the speaker beeps and
warbles in conjunction with bytes being sent out or pulled in
from disk. While this can be a good diagnostic aid (some people
can hear the difference between reading and writing, and can
tell right away if there's been a read error), it can get on your
nerves. Additionally, if you have recorded an audio track to
play while the program loads, the beeps can get in the way.
POKE 65,0 disables the sound, although you can barely hear it
if you turn the volume up. This does not disable the sound
made by keystrokes, and has no effect on the SOUND com
mand. Any nonzero value will reenable the input/output
sounds.

Special Atari XL POKEs
The 1200XL, the new 600XL and 800XL, and the promised
1450XLD all use the new XL operating system. The new
operating system represents a considerable increase in power
and flexibility. What this means is that there are more juicy
POKEs to try. Remember that none of these POKEs will work
with the older 400/800 computers, so if you are writing pro
grams for publication or sharing, keep this in mind.

The most astounding POKE enables fine scrolling in
GRAPHICS O. Just enter POKE 622,255:GRAPHICS O. If you
want a convenient way to watch the scrolling, just enter FOR
1=1 TO 1000:? I:NEXT I.

Unlike normal scrolling, which moves the screen text up a
full line a t a time, fine scrolling moves the characters pixel by
pixel. This fine scrolling can adversely affect some programs,
so to turn it off, enter POKE 622,O:GRAPHICS O. Of course,
the scrolling works only with GRAPHICS O.

The 1200XL has additional function keys to control key
board click, keyboard enable, screen blanking, and the inter
national character set. If you own a 600XL or 800XL, you may
not even be aware of these features. First, try POKE 756,204.
No immediate changes. Now hold down CTRL and type some
letters of the alphabet. Instead of the graphics characters, these
keys now produce all kinds of special foreign language sym
bols. Enter POKE 756,224 and the character set will return to
normal. Now you can write multilingual programs without
having to redefine the character set.

11

Chapter 1

To disable the keyboard, POKE 621,255. Use POKE 621,0
to reenable it. Don't try this POKE from the keyboard, or you
won't be able to type the POKE that restores the keyboard. In
any case, SYSTEM RESET will get you out of this mode. It's
best to do this POKE under program control. It's useful when
you don't want the user to type keys that may interfere with
your program.

The XL Atari models all have a HELP key. Although not
used by the operating system or BASIC, you can read this key
in your own programs, and act on it. Once HELP is pressed,
location 732 holds a 17. It will continue to hold 17 until you
POKE 732,0. You should check to see if location 732 holds a
nonzero value, then POKE 732,0 once you've acted on the
key. If SHIFT is held down with HELP, 732 will return a value
of 81. A value of 145 indicates that CTRL is used with HELP.

Every time you press a key, the internal speaker (on the
400/800) or the external speaker (XL Ataris) makes a soft blip.
This positive audio feedback aids in touch-typing, but some
find it annoying. There's no easy way to disable this beep on
the 400/800 without cutting the wire to the internal speaker,
but you can disable it on XL Ataris. Just POKE 731,255 . A
value of 0 allows the keyclick to be heard. You can also
change the rate at which keys repeat. There are two factors in
repeating keys. When you press a key, you don't want it to re
peat instantly. Instead, the operating system waits for 4/5 sec
ond before it starts the repeating. Once the repeating starts,
the other time factor is how quickly the key is repeated. This
defaults to about 10 repeats per second (or 1/10-second delay
between repeats). In the operating system, these time delays
are expressed in multiples of 1/60 second. A value of 60 is a
full second, 30 is a half-second, and so on. To change the de
lay before the key begins to repeat, POKE 729. Location 730
specifies the delay between the key repeats. The default values
for 729 and 730 are 48 and 6 respectively.

The power offered by the Atari computers continues to
challenge even the most advanced programmers. The locations
covered here give a BASIC programmer additional capability,
but there's much, much more. Read the other articles in this
book and study the PEEKs and POKEs used in the programs
for more ideas. If your curiosity is irresistibly piqued, check
into COMPUTE! Books' Mapping The Atari, a comprehensive
guide to memory.

12

Chapter 1

PEEKing and POKEing
Around
Sheila Neece Spencer

This well-designed program will make it easy for you to
look into your Atari's memory. You'll also be able to
change memory, load ML programs, and even convert
hex, decimal, and binary numbers.

As I pored over my Atari manuals one day, it occurred to me
how helpful it would be to look at the contents of memory
locations in their binary configurations. That would let me see
which bits were set and which were not.

One thing led to another, and the result was the program
given here. Not only does it let you look at memory locations
in hex, decimal, and binary, but it also lets you POKE ad
dresses with binary numbers; convert hex, decimal, and binary
numbers; and enter and run a machine language program in
hex or decimal-all without leaving the comfort of this one
program.

The contents of any address in memory are made up of
one byte (eight binary digits). A binary number consists of 1 's
and O's only; a 1 indicates that a bit is turned on, while a 0 in
dicates that it is turned off. The bits are numbered from 0 to 7
from right to left.

Binary is the only language your Atari can actually under
stand. When you insert a language cartridge into your machine,
you are actually providing your Atari with an interpreter
which allows you to communicate with it (via a language such
as BASIC) in some meaningful and useful way.

Nine Options
Now to the program itself. Type it in, then save a copy before
you use it.

When you run the program, you'll get a menu with nine
options. Option 1 allows you to examine any memory location
and see its contents in hex, decimal, and binary.

Option 2 lets you change memory by entering a binary
number. I chose to use binary here in order to get the feeling
of actually setting bits in the address. I think " bits 0 and 1
set" is a little easier to visualize than "POKE x,3".

Be careful when using option 2. If you POKE the wrong

13

Chapter 1

number into the wrong location, you run the risk of crashing
your system. Then you'll have to turn the computer off and on
again to regain control.

Some interesting places to make changes are locations
53760-53768 (the sound registers), 53266-53274 (the
player/missile graphics color registers), and 53248-53255 (the
player/missile graphics position registers). You may see some
strange things on your screen when you play around with
these registers, but pressing SYSTEM RESET will generally get
you out of whatever mess you've gotten into.

Options 3-8 are conversion routines. Note that if you are
entering a hex number to be converted, you must always enter
two digits, even if the first one is a O. Otherwise, you will get
an erroneous answer.

Option 9 lets you put a machine language program into
memory. You will be asked to choose between hex and deci
mal input and to specify a starting address (1536 is usually a
good starting point for short machine language programs). You
will then input the instructions one by one. Once again, be
very careful as you type in the instructions. One wrong digit
can crash the system.

When you have entered the last instruction, hit RETURN.
The program will prompt you to be sure the RETURN was not
an error by asking "Is that all?" If you reply with N, it will re
turn you to the routine and allow you to continue inputting
instructions. However, Y will prompt the program to ask you
if you wish to run the program you have just entered. At that
point, N will return you to the menu.

Understanding PEEK and POKE
For error-free pmgram entry, read "The Automatic Proofreader" in this chapter before
typing ill this program.

~5 DIM A$(2),AD$(1),B$(4),C$(5),RESP$(1),BIN
$(S),MODE$(3),INST$(2),TD(2),N$(S),TITLE$
(20),BYLINE$(12),NAME$(14)

"C 6 MENU=600: CLICK=6000: B$="0000"
DF 7 GOTO 5000
AN39 REM DECIMAL TO HEXADEMICAL CONVERSION SU

BROUTINE
~40 N=PEEK(ADDRESS):Nl=PEEK(ADDRESS)
BO 60 1=2
PI70 TEMP=N:N=INT(N/16):TEMP=TEMP-N*16:1F TEM

P(10 THEN A$(I,I)=STR$(TEMP}:GOTO 90

14

AH 80 A$ (I , I) =CHR$ (TEMP-10+ASC ("A"))
C6 90 IF N< >0 THEN I = I -1: GO TO 70

Chapter 1

AC 9 1 I F M = 3 0 R M = 8 THE N ? " HEX = " ; A $ (I • 2) : A $ = "
{,}":B$="{4 SPACES}":C$="{5 SPACES}":RET
URN

~L 95 IF M >4 THEN RETURN
AI 100 REM HEXADECIMAL TO BINARY CONVERSION SU

BRoUTINE
FC 1 1 0 I F A $ (1 , 1) = " { , }" 0 R A $ (1 , 1) = " 0 " THE N B $

="0000"
OP 120 IF A$ (1 • 1) = " 1 THEN B$= 00~ll "
PB 130 IF A$(I,I)="2 THEN B$= 0010"
PE 140 IF A$ (1 • 1) = "3 THEN B$= 0011"
PF 150 IF A$ (1 , 1) =" 4 THEN B$= 0100"
PI 160 IF A$ (1 , 1) =" 5 THEN B$= 011211"
pr. 17121 IF A$(1,1)="6 THEN B$= 12111121"
PH 180 IF A$(1,1)="7 THEN B$= 0111"
PM 190 IF A$(1,1)="8 THEN B$= 1000"
PH 200 IF A$(I,I)="9 THEN B$= 101211"
AA 210 IF A$(1,1)="A" THEN B$= 1010"
AD 220 IF A$ (1 , 1) = "B" THEN B$= 1011 "
AE 230 IF A$(I,I)="C THEN B$="11121121"
AH 240 IF A$(I,I)="D THEN B$="1101"
AJ 250 IF A$(1,1)="E THEN B$="1110"
AK 260 IF A$(I,I)="F THEN B$="1111"
P6270 IF A$(2,2)="0 THEN C$=" 1210!l'10"
PJ 280 IF A$(2.2)="1 THEN C$=" 121001"
PL 290 IF A$(2,2)="2 THEN C$=" 0010"
PF 300 IF A$(2,2)="3 THEN C$=" 0011"
P6310 IF A$(2,2)="4' THEN C$=" !l'I100"
PJ 320 IF A$(2,2)="5" THEN C$=" 0101"
PL 330 IF A$(2,2)="6" THEN C$=" 0110 "
PO 340 IF A$(2,2)="7" THEN C$=" !l'I1 11 "
PO 350 IF A$(2,2)="8" THEN C$=" 112100"
AS 360 IF A$(2,2)="9" THEN C$=" 1001
AK 370 IF A$(2,2)="A" THEN C$=" 1!l'11!l'1
AN 380 IF A$(2,2)="B" THEN C$=" 1011
AO 390 IF A$(2,2)="C" THEN C$=" 1100
AI400 IF A$(2,2)="D" THEN C$=" 1101
Ar. 410 IF A$(2,2)="E" THEN C$=" 1110
AN 42!l'1 IF A$(2,2)="F" THEN C$=" 11 11
Lr. 421 IF M=4 OR M=7 THEN ? "BINARY= ;B$;C$:A$

="{,}":B$="{4 SPACES}":C$="{5 SPACES}" :
RETURN

FI422 ? "(4 SPACES}HEX: ";A$(I,2):? "DECIMAL:
";Nl:? " BINARY: ";B$;C$:? "PEEK(";ADD

RESS;")=";PEEK(ADDRESS)
LB 440 IF M=1 OR M=2 THEN A$="{,}":B$="

{4 SPACES}":C$="{5 SPACES}":RETURN

15

Chapter 1

AE 450 IF M=3 THEN? "HEX="; A$ (I,2):? : A$="
{,}":RETURN

~460 IF M=4 THEN? "BINARY=";B$;C$:B$="
{4 SPACES}":C$="{5 SPACES}":RETURN

PH499 REM BINARY TO DECIMAL CONVERSION SUBROU
TINE

AH500 TRAP MENU:B7=VAL(BIN$(1,1»:B6=VAL(BIN$
(2,2»:B5=VAL(BIN$(3,3»:B4=VAL(BIN$(4,
4))

~505 IF BIN$="00000000" THEN PKR=0:GOTO 526
HC510 B3=VAL(BIN$(5,5»:B2=VAL(BIN$(6,6»:B1=

VAL(BIN$(7,7»:B0=VAL(BIN$(B,B»
m520 PKR=INT(B7*2-7+B6*2-6+B5*2- 5+B4*2-4+B3*

2 A 3+B2*2-2+Bl*2-1+B0*2- 0)+1
NH525 IF B7 AND NOT B6 AND NOT B5 AND NOT

B4 AND NOT B3 AND NOT B2 AND NOT Bl
AND NOT B0 THEN PKR=PKR-1

~526 IF M=6 THEN? "DECIMAL=";PKR:RETURN
PO 527 IF M=B THEN RETURN
AA530 POKE ADDRESS,PKR:RETURN
~ 599 REM MENU
~600 ? "{CLEAR}":POKE 752,1:POSITION 16,4:?

II ~":?

~610 ? :? :? "~ LOOK AT CONTENTS OF MEMORY":
? "~ CHANGE CONTENTS OF MEMORY":? "~ CO
NVERT A DECIMAL NUMBER TO HEX"

00615 ? "~ CONVERT A DECIMAL NUMBER TO BINARY
":? "~ CONVERT A HEX NUMBER TO DECIMAL"
:? "~ CONVERT A BINARY";

ff616 ? "NUMBER TO DECIMAL":? "~ CONVERT A HE
X NUMBER TO BINARY":? "~ CONVERT A BINA
RY NUMBER TO HEX"

CO 617 ? "~ ENTER A SERIES OF POKES":?" IN S
UCCEEDING MEMORY LOCATIONS"

P6620 TRAP MENU: INPUT M:? "{CLEAR}": ON M GOTO
1000, 1050, 1100, 1100 , 1200, 1300, 1400, 150

0,1600
EJ699 REM HEXADEMICAL TO DECIMAL CONVERSION S

UBROUTINE
BC 700 FOR Q=1 TO 2
CP 701 IF INST$(Q , Q)="0 THEN TD(Q)=0
DF 705 IF INST$(Q,Q)="1 THEN TD(Q)=1
DD 710 IF INST$(Q,Q)="2 THEN TD(Q)=2
Dr. 715 IF INST$(Q,Q)="3 THEN TD(Q)=3
DI720 IF INST$(Q,Q)="4 THEN TD(Q)=4
DP 725 IF INST$(Q,Q)="5 THEN TD(Q)=5
DN 730 IF INST$(Q,Q)="6 THEN TD(Q)=6
EE 735 IF INST$(Q,Q)= " 7 THEN TD(Q)=7
EC 740 IF INST$(Q,Q)="S THEN TD (Q)=S

16

EJ 745
'!iF 750
HM 755
HP 756
Ie 757
IF 758
I! 759

IF
IF
IF
IF
IF
IF
IF

INST$(Q,Q)="9"
INST$(Q,Q)="A"
INST$(Q,Q)="B"
INST$(Q,Q)="C"
INST$(Q,Q)="D"
INST$(Q,Q)="E"
INST$(Q,Q)="F"

THEN
THEN
THEN
THEN
THEN
THEN
THEN

Chapter 1

TD(Q)=9
TD(Q;=1!,!1
TD(Q)=11
TD(Q)=12
TD(Q)=13
TD(Q)=14
TD(Q)=15

LC760 NEXT Q:INST=TD(11t16+TD(2):IF M=5 THEN
? "DECIMAL=";INST

HO 770 RETURN
Kt: 999 REM "1" LOOI< AT CONTENTS OF MEMORY
GF 101Z10 7 :7 :7 "What

to see7":INPUT
000

is the address yo u want
ADDRESS:GOSUB 40:GOTO

PA 1040 TRAP 401Z101Z1
n: 1049 REM "2" CHANGE CONTENTS OF MEMORY
OD 1050 7 : 7 :?

wish to
S

"Please enter the address you
poke data into";:INPUT ADDRES

FM 1 0 6 0 7 :? "N 0 wen t e r the bin a r y con fig u rat i
on youwant in the register (bits are n
um-{3 SPACES}bered from 7 to IZI 1 eft ";

EE 1 070 7 " tor i g h t 1 _ " : I N PUT BIN $: GO SUB 51Z! lZl : ?

:? "PEEK(";ADDRESS; ")=";PEEI«ADDRESS):
?:? :GOTO li!15!,!1

DC 1099

IL 1100

eN 1199
PH 12iil0

AP 1299
GN 1300

AH 1399
PJ 1400

AJ 1499
ED 1500

NA 1599

LL 1600

REM "3" AND "4" CONVERT A DECIMAL *' TO
HEX or CONVERT A DECIMAL *' TO BINARY

7 :? :? "Enter the number to convert";
:INPUT N:GOSUB 60:GOTO 1100
REM "5" CONVERT A HEX *' TO DECIMAL
7 :? :? "Enter the number to convert (
enter 2 digits)";:INPUT INST$:GOSUB 7
o iiI : GOTO 1201Z1
REM "6" CONVERT A BINARY *' TO DECIMAL
7 :7 :? "Enter the number to convert";
:INPUT BIN$:GOSUB 500:GOTO 1300
REM "7" CONVERT A HEX *' TO BINARY
? :7 :7 "Enter the number to convert
enter 2 digits)";:INPUT A$:GOSUB 110:
GOTO 14iil0
REM "8" CONVERT A BINARY *' TO HEX
7 :7 :? "Enter the number to convert";
:INPUT BIN$:GOSUB 500:N=PKR:GOSUB 60:~
OTO 1500
REM "9" ENTER A SERIES OF POKES IN SUC
CEEDING MEMORY LOCATIONS
7 :? :7 "Will you be inputting instruc
tions in (D)ecimal or (H)e>:adecimal";:
INPUT MODE$

17

Chapter 1

FA16107 :7 "What is the starting address (in
deci-mal, pleasel";:INPUT ADDRESS:ADD

RESS1=ADDRESS
i'lL 1620 IF MODE$ (1,11 ="H" THEN HEX=1
i'lL 1625 IF MODE$(I, 11="D" THEN HEX=0
EH 1 630 7 :? .. Now en t e r the ins t rue t ion 5 ,on e

by{4 SPACES}one."
IT 1640 IF HEX THEN TRAP 1700:INPUT INST$:GOSU

B 700:GOTO 1660
~1650 TRAP 1700:INPUT INST
~ 1660 POKE ADDRESS,INST:ADDRESS=ADDRESS+l:IF

HEX THEN 1640
NE 1680 GOTO 1650
OE 1700 7 : 7 .. Is that all";: INPUT RESP$: IF RES

P$(I,I) <> "V" THEN 1640
001720 7 :7 "Do you want to run the program y

ou{4 SPACES}have just entered";:INPUT
RESP$: IF RESP$(I,II="Y" THEN 1750

DY. 1740 GOTO MENU
IY. 1750 TRAP MENU:X=USR(ADDRESS1)
FF4999 REM OPENING TITLE
eM 5000 7 "{ C LEA R} " : POI< E 752, 1 : TIT L E $ = " FUN WIT

H PEEK & POKE":BYLINE$="presented by":
NAME$="COMPUTE! BOOKS"

OY.5370 LN=INT(LEN(TITLE$)/2):FOR Z=l TO LN:PO
SITION 17-Z,7:7 "t";TITLE$(LN-Z+l,LN+Z
);"t":GOSUB CLICK

IP5400 NEXT Z:LN=INT(LEN(BVLINE$)/21:FOR Z=l
TO LN:POSITION 17-Z,9:7 "**";BVLINE$(L
N-Z+l,LN+Z);"**":GOSUB CLICK

EL5440 NEXT Z:LN=INT(LEN(NAME$)/2):FOR Z=1 TO
LN:POSITION !7-Z,II:7 "**";NAME$(LN-Z

+l,LN+Z);"**":GOSUB CLICK:NEXT Z
1'11'15500 FOR DLAV=! TO 500:NEXT DLAV:GOTO MENU
Y.I6000 FOR TICK=0 TO 3:POI<E 53279,0:NEXT TICK

:RETURN

18

Chapter 1

Two Fast and Simple
Joystick Routines
Stephen Levy

These routines will make it easy for you to incorporate
responsive joystick control into your programs.

You finally feel you know enough Atari BASIC to write your
own game. You have some great ideas for games which use
joysticks, and you've seen some joystick routines in other pro
grams. But every time you try to duplicate a method, the rou
tine seems ridiculously slow.

Most joystick routines written by beginning programmers
contain numerous IF-THEN statements. It's those IF-THEN
statements, as well as the actual placement of the routine, that
make the joystick response seem unbearably slow.

Put It Up Front
Beginners often place joystick routines at high line numbers
(for instance, 10000) and use statements 'such as COSUB
10000 when the joysticks need to be read. It works, but it
needlessly slows the joystick routine operation.

A much better approach is to place the routine at the
beginning of the program. Joystick routines located near the
start of any BASIC program will always run faster than the
same routines placed later in the program.

The reason for this is simple. In order to carry out a state
ment like COSUB 10000, the computer must start at the
beginning of the program and check every line number in or
der until it finds line 10000. If you place the same routine at
line 10 instead of 10000, the computer can find your routine
sooner, without first checking dozens or hundreds of interven
ing line numbers .

The two routines described here are located at low line
numbers. Thus, the program to which they are appended will
have little or no effect on the speed at which the routines read
the sticks.

Using Arrays
Program 1 places all the information needed to respond to
joystick input into two arrays. By placing the information
in arrays, the program will always have the information in

19

Chapter 1

memory before it is needed. That means that the computer
does not have to figure out what to do each time it reads the
joystick.

What has been done is to place a 0, I, or -1 into each
element of the arrays. X=STICK(O) will give X a value based
on the position of the joystick in the first port. If the joystick is
in the center position, X will be equal to IS. When the arrays
were created, the fifteenth element for both row and column
arrays was given a value of zero (COL(lS)=O; ROW(lS)=O).
Therefore, when COL(lS) is added to the current column po
sition, there will be no change-just as there will be no
change in the row position (line 20). Similarly, if the joystick
is pushed up, the row will be decreased by one but the col
umn will remain the same. Pushing the joystick up will return
a value of 14 for X. Thus COL(14)=0 and ROW(14)=-l.

Here are the values of each array element:

COL(l) 0 ROW(1) 0
COL(2) 0 ROW(2) 0
COL(3) 0 ROW(3) 0
COL(4) 0 ROW(4) 0
COL(S) 1 ROW(S) 1
COL(6) 1 ROW(6)-1
COL(7) 1 ROW(7) 0
COL(8) 0 ROW(8) 0
COL(9) -1 ROW(9) 1
COL(10) = -1 ROW(10) -1
COL(11) = -1 ROW(ll) 0
COL(12) = 0 ROW(12) 0
COL(13) = 0 ROW(13) 1
COL(14) = 0 ROW(14)-1
COL(lS) = 0 ROW(lS) 0

To see how it works, take a closer look at the routine.
Lines 100 and 110 begin the creation of the array by placing
zeros into elements 1-4, since those numbers are not used for
joystick reading. Line 120 uses the DATA statements on lines
140 and ISO to place the proper values into array elements
S-IS. Line 130 sets up the screen and some important values.

On line 40 and again on line 130 the statement TRAP 40
appears. TRAP is used here to avoid the need to check bound
aries of the screen each time the routine loops through. TRAP
40 will move the program to line 40 each time an error con
dition is reached. When the PLOT command on line 30 tries
20

Chapter 1

to plot to a location which is out-of-bounds, TRAP detects the
error condition. Without the TRAP the program would stop.
But in this routine the program will move to line 40 and check
the values of the column (C) and the row (R) and reset them
to within the legal limits.

Once everything is set up, this routine uses only lines 20
and 30. The routine moves to another line only if you try to
move the cursor out of bounds. Line 30 erases the old cursor
by PLOTting in the background color, COLOR 0; then it
PLOTs the new location with COLOR 1 and saves the location
in A and B. At the end of line 30 the routine moves back to
line 20 to read the joystick again.

GOTO STICK
Program 2 uses some of the same techniques as Program 1.
The main difference is that the necessary responses to joystick
movement are not stored in arrays . Instead, the instructions
(that is, which way to move the cursor) are placed on the line
number that is returned by reading the joystick. In other
words, GOTO STICK(O) will read the joystick and go to the
line that corresponds to the joystick movement. If the joystick
is in the center position, the routine goes to line 15 and re
peats itself.

In order for this routine to work properly, the correct line
numbers must be used. Line 14 will move the cursor up; line
13 will move the cursor down; line 11 will move it left; line 7
will move it right; and so on.

Of course, you are not limited to using lines 5-15. The
statement could be GOTO STICK(0)*10 and require the use of
lines 50-150. COSUB STICK(O) is also an acceptable state
ment. Again, the loop requires the use of only three lines if
you don't move the cursor out of bounds.

Program 1. Joystick Reading with Arrays
For error-free program entry, rend "Th e Automatic Proofreader" ill this chapter before
typing in this program.

He 1 0 GO 5 U B 1 00
@20 X=STICK(0):C=C+COL(X):R=R+ROW(X):IF X=15

THEN 21'!!
DJ30 COLOR 0:PLOT A,B:COLOR l:PLOT C,R:A=C:B=

R:GOTO 20
EI40 TRAP 40:IF C=-1 THEN C=0:GOTO P
L050 IF C=80 THEN C=79:GOTO P

21

Chapter 1

JD 60 IF R=-1 THEN R=0: GOTO P
NN 70 IF R=48 THEN R=47: GOTO P
NL 100 DIM ROW (15) , COL (15)
~110 FOR X=1 TO 4:ROW(X)=0:COL(X)=0:NEXT X
OA120 FOR X=5 TO 15:READ C ,R: COL(X)=C:ROW(X)=

R:NEXT X
~ 130 GRAPHICS 21:P=30:TRAP 40:POKE 712,132:P

OKE 709,122:RETURN
H~ 140 DATA 1,1,1,-1, 1,0,0 ,lZl,-1 , 1
IH150 DATA -1,-I,-I,lZl,0,0,0,1,0,-1,0,0

Program 2. Joystick Reading with GOlO
He 2 GOTO 70
105 C=C+l : R=R+l: GOTO P
JB 6 C = C + 1 : R = R - 1 : GOT 0 P
BJ 7 C=C+l: GOTO P
JE 9 C = C - 1 : R = R + 1 : GOT 0 P
~10 C=C-l:R=R-1:GOTO P
E6 1 1 C = C - 1 : GOT 0 P
6E 13 R=R+1: GOTO P
GH 14 R=R-1: GOTO P
JO 15 GOTO STICK (O)
D~20 COLOR 0:PLOT A ,B: COLOR l:PLOT C,R:A=C:B=

R:GOTO 15
JA30 TRAP 30:IF C=80 THEN C=79:GOTO P
HD 40 I F C = - 1 THE N C = lZl : GOT 0 P
NL 5 ° I F R = 4 8 THE N R = 4 7 : GOT 0 P
JD 60 IF R=-1 THEN R=lZl: GOTO P
FE70 P=20:GRAPHICS 21:POKE 712,116:POKE 709,1

6:TRAP 30:GOTO 15

22

Chapter 1

Three Music Editors for
Your Atari
David Florance

Atari's SOUND statement lets you create a multitude of
sounds. And sound editors like the ones presented here
make the job easy. You'll be amazed at just what your
A tari can play.

Atari BASIC, unlike many other BASICs, includes a statement
to create sound. It's possible to create music with one to four
voices-the statement is even easy to use. Its syntax is:
SOUND voice,pitch,distortion,volume

where voice is a number from 0 to 3, pitch from 0 to 255,
distortion from 0 to 15 (10 is a pure tone, 8 is noise), and vol
ume from 0 to 15. If you're using more than one voice at a
time, the sum of the volumes should not exceed 16.

With just that short introduction, let's jump right into
creating our music masterpieces.

An Envelope
Some critics of Atari sound generation claim it's not com
parable to a sound synthesizer. However, when you look
closer at the inner workings of Atari sound, you'll quickly find
that it's much more powerful and flexible than first imagined.

The first sample program, "Envelope," shows some of the
sound possibilities of the Atari. When the program is run,
you're asked to supply the envelope parameters. Experiment
with different values, but be sure to stay within the stated lim
its. The figure shows a typical attack/decay /sustain/release
(ADSR) envelope.

The attack value controls how fast a sound rises from si
lence to maximum volume. Decay is the rate at which it de
clines from the maximum to its sustained volume. Sustain
indicates how long the sound will be held, and release con
trols how quickly it fades into silence.

The technique used in Envelope is simple. By using FOR
NEXT loops we can control the envelope of a sound. Since the
Atari's BASIC loop timing will change depending on program
length, this technique is not perfect. For our purposes, how
ever, it works well enough to simulate the ADSR control of a
true sound synthesizer.

23

Chapter '\

Typical ADSR Envelope

Sustain -+

Melodies
Program 2, "Melodies," assists in composing melodies. Pro
gram 3, "Player I," plays the songs you create with Program
2. Be sure to enter and save both Programs 2 and 3 before
using the former.

These two programs let you create melodies of up to 48
notes in length (it's possible to enter more than 48 notes, but
the DATA will scroll off the screen). For each note, enter a
pitch value from those displayed on the screen, and a duration
value (0 to 255). The Atari then plays the note, though not
with the specified duration. When all the notes are entered,
type 0 for the pitch. You'll now hear the composition. If you
don't like it, you can easily edit the note(s).

After your melody is finished, the program lets you save
the song data if desired. If you press Y when prompted, the
Atari prints your note values on the screen, in numbered
DATA lines. At this point you can either write the values
down, or enter NEW and load Program 3. If you do the latter,
be careful not to disturb the DATA lines, which will be added
to Program 3. When the Atari has finished loading, cursor up
and press RETURN at each numbered line. The song data is
now part of the program. Run the program to replay the song,
or save it (with a new name) to preserve your song for
posterity.

24

Chapter 1

Table 1. Pitch Values
c 243 121 60 F# 173 85 42
C# 230 114 57 G 162 81 40
D 217 108 53 G# 153 76 37
D# 204 102 50 A 144 72 35
E 193 96 47 A# 136 68 33
F 182 91 45 B 128 64 31

Note: Any number from 0 to 255 is an acceptable pitch
value.

Creating Chords
Creating chords is very similar to creating notes. Type in and
save Program 4, "Chords," and Program 5, "Player 3." These
programs let you control three voices instead of one. Just as
before, you enter pitch and duration values for each note.
Durations, however, do not have the same values as before.
The cho!"d editor uses eight duration values (see Table 2). The
first note will be assigned to voice I, the second to voice 2,
and so on. The Atari will play each note when you enter it,
but without the specified duration.

When all the notes are entered, enter a pitch of 0 to re
play the chord(s). Next, you can save the chord data as a file.
You'll need to specify the device and filename for disk (no
quote marks are needed).

To play your chords or preserve the data, run Program 5,
Player 3. You'll be prompted for the filename of your chord(s).
Type in the filename, and when the READY prompt appears,
delete lines 1-4, which append the data to the player program,
and enter RUN again. There are your chords, just as you en
tered them, again ready to be saved as a separate program.

Table 2. Duration Values
1 = quarter note
2=half note
3 = dotted half note
4=whole note
5 = quarter & whole
6=half & whole
7 = dotted half & whole
8 = two whole notes

(1 beat)
(2 beats)
(3 beats)
(4 beats)
(5 beats)
(6 beats)
(7 beats)
(8 -beats)

25

Chapter 1

All Four Voices
The chord editor used only three voices. "Song Editor" and
"Player 4" allow you to write songs using any combination of
one, two, three, or four voices. Now you can write complex
songs, controlling the pitch and duration of each note, and
inserting rests wherever desired.

The program will prompt you to enter the number of the
voice you want to use, then the pitch and duration values for
each note . To switch voices, type in 1 for the pitch. Enter a
pitch of 0 for rests, and a pitch of 2 to hear your work. When
finished, the song you've composed is written to disk or cas
sette, and can be heard by using the Player 4 program. Use
the same procedure as you did with Player 3. Try adding a
new line to Player 4, 9999 RUN, for continuous music.

Program 1. Envelope
For error-free program el1try, read "The Automatic Proofreader" il1 this chapter before
typil1g il1 this program.

tjO i 0 DIM A $ (5 0) , P (1 (I) , P $ (1 121) , R $ (1 lZl) , C H (1 '~I) , E F:
$ (38) : X =2 10'1: Y= 1: ER$=" {19 SPA CES}"

~20 CH(1)=3:CH(2)=255:CH(3'=14 :CH(4)=15:C H(5
)=32767:CH(6)=14:CH(7)=CH(4) :CHI81=CH(4)
:CH(9)=CH(2) :CHI101=1

HJ 30 FOR T = 1 TO 1 121 : PIT) = 121 : N EXT T
tiM 50 P R I NT C H R $ (1 2 5 ,
LL 55 PO K E 71219, ~I : PO K E 7 1 121, 1 -4 : PO f< E 7 1 2, 1-4
In 10121 REM MA I NPRG
~ 110 FOR N=1 TO 10:READ A$:PRINT AS:PRINT :N

EXT N
EA 1 2 QI FOR T = 1 TO 1 121
CL 1 3121 PO SIT ION X, Y: I N PUT P $: T RAP 6121 f'1
~ 135 P=VAL(P$):P(T)=INT(P)
JH137 IF P(T»CH (T) OR PIT) < !!I OR ASCIP$) < -48 A

ND ASCIP$»57 THEN POSITION X,Y:PRINT E
R$: GOTO 13lZi

~ 140 Y=Y+2:NEXT T
M190 IF P(6» 0 THEN 300
ON 2 0 !!I SOU N D P (1) , P I 2 1 , P (3 1 , P (4 1
~210 IF P(10)=1 THEN ON P(l)+1 GOSUB 220,230
GJ 2 1 5 GOT 0 260
KM 2 2 121 POI< E 5 3 7 6 8, 1 3 2 : F: E T 1I F: N
~230 POI<E 53768,34:RETURN
LP 26 QI FOR Y = 1 TOP (5)
DJ 269 NEX T Y
EP 270 SOU N D P (1) , P (2 ' , P (3) , 121
LE 28QI GOSUB 5 QIQI: GO TO 21!IIZI

26

Chapter 1

EK 30!Zf REM SUBPRG
NP 305 IF P (6) =!Zf THE N F' (6) = 1
FO 3 IlZf FOR Y = 1 TO 1 5 STEP P (6)
HE 32lZf SOU N D P (1) , P (2) , P (3) , Y
CO 33lZf N EXT Y
IE 332 SOUND P (1) , P (2) , P (3) , 15
IK335 FOR T=l TO P(5):NEXT T
W340 FOR T=15 TO P(8) STEP -l:SOUND P(1),P(2

),P(3),T:FOR F=l TO P(7):NEXT F
CP 345 NE X T T
M350 FOR T=P(8) TO 0 STEP -l:SOUND P(1),P(2)

,P(3),T:FOR D=15 TO P(9) STEP -l:NEXT D
:NEXT T:SOUND P(!) ,P(2) ,P(3) ,0

KP400 GOSUB 500:GOTO 300
FL 51ZflZf REM PROMPT
NC 505 P R I NT" A G A I N (Y / N) .. ; : T RAP 400 k'f IZf: I N PUT R $
K507 IF R$=CHR$(89) THEN POSITION 2,21:PRINT

ER$: POSITION 2,21:RETURN
DM 51 IZI PR I NT .. MORE (Y IN) .. ; : INPUT R$
IA520 IF R$=CHR$(89) THEN CLR :GOTO 10
GP 531Z1 END
IH 601Z1 IF P$=CHR$ (155) THEN 140
GF 6 1 0 GOT 0 1 40
IG 1000 DATA VOICE(0-3),PITCH(0-255) ,DISTORTIO

N (0 - 1 4) _,_ VOL U M E (!if - 1 5)

AD 113 1 0 D A TAD U RAT ION (IZI - 32 767) , AT T A C I< (!Zf - 1 4) , DE
CAY(!3-15) ,SUSTAIN(0-15) ,RELEASE(0-15),
FILTER(0=OFF/l=ON)

Program 2. Melodies
~ 113 COUNTER=1535:POKE 709,132:POKE 712,132:P

OKE 7113,132
HH 15 DIM A(12) ,B(12) ,C(12) ,D(7) ,R(10} ,P$(10},

ER$ (20), G$ (10)
JO 20 ER$=" {18 SPACES}"
81 100 REM OCTAVE 1
~105 RESTORE 11500
EP 1 1 0 FOR X = 1 TO 1 2 : REA D A: A (X) = A : N EXT X
6K 200 REM OCTAVE 2
LD 205 RESTORE 11510
FD210 FOR X=1 TO 12:READ B:B(X}=B:NEXT X
8M 300 REM OCTAVE 3
LF 305 RESTORE 11520
FH310 FOR X=1 TO 12:READ C:C(X)=C:NEXT X
CC400 REM NOTE NAMES
LH 405 RESTORE 115310
CP410 FOR X=1 TO 7:READ D:D(X)=D:NEXT X

27

Chapter 1

All 500 P R I NT C H R $ (1 25)
CD510 FOR X=1 TO 7:PRINT CHR$(D(X»
LL 5 1 2 I F X = 3 THE N 5 1 7
CI515 PR I NT
DE517 NEXT X
JII 520 POS I T I ON 2, 2
BP 530 FOR X = 1 TO 7
CY. 532 IF X=3 OR X=7 THEN 535
~533 PRINT CHR$(D(X));CHR$(35)
CY. 535 PRINT
DS 537 NEXT X
BP540 Y=I:FOR X=1 TO 12:POSITION 9,Y:PRINT A(

X) ,B(X) ,C(X) :Y=Y+l
DB 550 NEXT X
Y.E560 PRINT :FOR X=1 TO 29:PRINT CHR$(20);:NE

XT X
CL 600 POKE 709, 190
Y.H610 TRAP 610:POSITION 2,16:PRINT ER$:POSITI

ON 2,16:PRINT "PITCH ";:INPUT P
KN615 IF P=0 THEN GOSUB 3000:GOSUB 5000:GOTO

10
HK617 IF P(0 OR P)255 THEN 610
IL620 TRAP 620:POSITION 2,16:PRINT ER$:POSITI

ON 2,16:PRINT "DURATION ";:INPUT D
BC 625 IF D< 0 OR D >255 THEN 620
001000 SOUND I,P,10,15
~1010 FOR X=l TO 300:NEXT X
OC1020 SOUND l,P,10,0
U 1025 IF E=1 THEN RETURN
AS 1030 GOSUB 2000
JF 1040 GOTO 610
IN2000 POKE COUNTER,P
FL2010 POKE COUNTER+128,D:COUNTER=COUNTER+l
KE 2020 RETURN
C03000 FOR X=1535 TO COUNTER-l
JH 30 li' SOU N D 1, PEE K (X) • 1 0, 1 5
HC3020 FOR T=1 TO PEEK(X+128):NEXT T
DE 3030 NE X T X: SOUND 1, PEEK (X) , 10,0
BI3040 IF E=1 THEN RETURN
DII 5000 PRINT CHR$ (125)
~5010 PRINT "DO YOU LIKE THE SONG(Y/N)";:INP

UT G$
M5020 IF G$="Y" THEN GOSUB 6000
M5025 IF G$="N" THEN GOSUB 8000
DII 5030 PRINT "MORE";: INPUT G$
815035 IF G$="Y" THEN GOSUB 8000
A" 5040 GOSUB 3000
~6000 PRINT "WOULD YOU LIKE THE DATA(Y/N)";:

INPUT G$
JF 60 1 0 I F G $ = " Y " THE N 6500

28

Chapter 1

~Y. 6015 GOTO 50(110
IJ6020 PRINT :PRINT LN+10;" DATA 256":END
LC6500 PRINT CHR$(125):LN=I(11000:SC=10
~I 6502 PRINT LN;" DATA";
DL6505 FOR X=1535 TO COUNTER-l
N" 6510 PR I NT PEEK (X) ; " • " ; PEEK (X + 129) ;
~6515 IF COUNTER-1>1535+SC AND X>1535+SC THE

N GOSUB 7(1100:GOTO 6550
606520 IF X=COUNTER-l THEN 6550
A66530 PRINT",";
Y.C 6550 NEX T X: GOTO 6020
~7000 LN=LN+10:PRINT :PRINT :PRINT LN;" DATA

";:SC=SC+12:RETURN
OE9000 PRINT CHR$(125):FOR X=1535 TO COUNTER-

1
~9010 PRINT "NOTE #";X-1534;" ";PEEK(X);"

{3 SPACES}DURATION #";X-1534;" ";PEEI«
X+129)

SB 9020 NEXT X
IT9030 PRINT :PRINT :PRINT "PRESS ~ TO HEAR S

ONG AGAIN ";:INPUT G$
IE 9040 IF G$=" A" THEN 9050
LB 9045 RETURN
PH 9050 E= 1: GOSUB 3000
~9060 PRINT "WHICH NOTE TO EDIT";:INPUT NE
BE9070 E=I:GOSUB 400:E=0:POKE 1535+NE-l,P:POK

E 1535+NE-l+129,D
LA 9090 RETURN
~ 11500 DATA 243,230,217,204,193,192,173,162,

153,144,136,129
Y.J11510 DATA 121,114,109,102,96,91.95,91,76,7

2,69,64
GH 11520 DATA 60 , 57,53,50,47,45,42,40,37,35,33

,31 , 29
AHl1530 DATA 67,69,69,70,71,65,66

Program 3. Player 1
HC 1 iZl DIM A (1 2 9) , B (1 2 9) : P R I N T C H R $ (1 2 5) : P 0 K E 7

09,192:POKE 710,45:POKE 712,45
CH 20 X=0
t:M 30 X=X+1
J040 READ A:IF A=256 THEN GOTO 100
All 4 5 A (X) = A : REA DB: B (X) = B
AS 50 GOTO 30
IN 10i!l FOR N= 1 TO X-I
EG 1 1 0 SOU N D 1, A (N) , 1 0 , 5
~ 120 FOR DELAY=1 TO B(N):NEXT DELAY
CB 130 NEXT N
KI 10i!l00 DATA 256

29

Chapter 1

Program 4. Chords

JC 15 0 I M A (1 12) , B (1 12) , C (1 1 2) , 0 (1 12) , R (1 20) , P
$ (10), ER$ (21ZI), G$ (20), FN$ (12)

AD 1 7 0 I M SOP (1 1 2) , A L T (1 1 2) , TEN (1 1 2)
0120 ER$=" {18 SPACES}": NU=0
IT 30 POKE 710,85:PoKE 712,85:PoKE 709,132
~40 FOR X=1 TO 112:SoP(X)=0:ALT(X)=0:TEN(X)=

0
GI 101Z1
LB 105
EP 110
GK 2131Z1
LD 2135
FD 210
GM 31313
LF 3135
FH 310
CC 4130
LH 4135
CP 4113
AM 5131Z1
CD 510
LL 512
CI515
DE 517
JM 520
BP 530
CK 532
FM 533
CK 535
DG 537
BP 540

DB 550
t:E 561Z1

REM OCTAVE 1
RESTORE 11500
FOR X=1 TO 12:READ A:A(X)=A:NEXT X
REM OCTAVE 2
RESTORE 1 151 IZI
FOR X=1 TO 12:READ B:B(X)=B:NEXT X
REM OCTAVE 3
RESTORE 11521Z1
FOR X=1 TO 12:READ C:C(X)=C:NEXT X
REM NOTE NAMES
RESTORE 1153121
FOR X=1 TO 7:READ D:D(X)=D:NEXT X
PRINT CHR$(125)
FOR X=1 TO 7:PRINT CHR$(D(X»
IF X=3 THEN 517
PRINT
NEXT X
POSITION
FOR X=1 TO 7
IF X=3 OR X=7 THEN 535
PRINT CHR$(D(X));CHR$(35)
PRINT
NEXT X
Y=1:FoR X=1 TO 12:PoSITIoN 9,Y:PRINT A(
X) , B (X) , C (X) : Y=Y+ 1
NEXT X
PRINT :FoR X=1 TO 29:PRINT CHR$(20);:NE
XT X

DB 570 POKE 71Z19 , 190
LN 6 0 IZI FOR V = 1 T 0 3: P 0 SIT ION 2, 2 2 : P R I NT" V 0 ICE

#II;V

JP610 POSITION 2,16:PRINT ER$:PoSITIoN 2,16:P
RINT "PITCH";: INPUT P

JC615 IF P=0 THEN GoSUB 3000:GoTo 5000
HY. 617 IF P(0 OR P 255 THEN 610
IC621Z1 POSITION 2, 6:PRINT ER$:PoSITIoN 2,16:P

RINT "DURAT ON ";:INPUT 0
PP 625 I F 0 < 1 0 ROB THE N 620
BG 1 13 0 0 SOU N 0 1, P, IZI, 1 5
~ 11310 FOR X=1 TO 300:NEXT X

30

Chapter 1

DC 1 0 2 0 SOU N D 1, P, 1 0 , III
NO 1030 ON V GOSUB 201210,612100,7000
HO 1040 NEXT V:NU=NU+3:GOTO 600
EH 2000 FOR 1=1 TO D
JJ 2010 J 1 = J 1 + 1 : SOP (J 1) = P : N EXT I
Y.E 2020 RETURN
LG 3000 FOR X= 1 TO NU
DC 30 1 0 SOU N D 0, SOP (x) , 1 0 , 5
CD 3 0 2 0 SOU N D 1, A L T (X) , 1 0 , 5
CP 3025 SOUND 2, TEN (X) , 10,5
HG 3027 FOR T = 1 TO 1 0 III : N EXT T
CN3030 NEXT X:SOUND 0,SOP(X),10,0:S0UND 1,ALT

(X),1I21,0:S0UND 2,TEN(X), 10,0
KH 304121 RETURN
NA51210121 PRINT CHR$(125):GOSUB 901210:END
EL 600121 FOR I = 1 TO D
PA61211121 G=G+1:ALT(G)=P:NEXT I
t:l 6020 RETURN
EM 7121 0 0 FOR I = 1 TO D
PE71211121 F=F+l:TEN(F)=P:NEXT I
¥OJ 7020 RETURN
NJ9000 PRINT "WOULD YOU LIKE THE DATA(Y/N)";:

INPUT G$
JM912110 IF G$="Y" THEN 912115
Y.D 9012 END
6912115 PRINT "REMEMBER TO DESIGNATE DEVICE(E.

G. ' D:' FOR DISK)": PRINT "AS PART OF Y
OUR FILENAME."

DB 9121 1 7 P R I NT" F I LEN A ME" ; : I N PUT F N $: GOT 0 95121 121
AD 912120 PRINT #1; CHR$ (155); LN+ll21;" DATA 256,25

6,256":END
IM95121121 PRINT CHR$(125):LN=112112100:SC=8
PJ 951211 OPEN #1,8,0, FN$
FY. 951212 PRINT #1; LN;" DATA";
MG 9505 FOR X= 1 TO NU
KH 9 5 1 121 P R I N T # 1 ; SOP (X) ; " , " ; A L T (X) ; " , " ; TEN (X) ;
~9515 IF NU)l+SC AND X>l+SC THEN GOSUB 96121121:

GOTO 9550
JJ952121 IF X=NU THEN 9550
J1953121 PRINT #1;",";
K1955121 NEXT X:GOTO 91212121
EM96121121 LN=LN+10:PRINT #l;:PRINT #l:PRINT #l;L

N;" DATA ";:SC=SC+12:RETURN
~ 11500 DATA 243,23121,217,21214,193,182,173,162,

153,144,136,128
~:J 1 1 5 1 121 D A TAl 2 1 , 1 1 4, 1 121 8, 1 02 , 96 , 9 1 , 85 , 81 , 76 , 7

2,68,64
~11520 DATA 6121,57,53,5121,47,45,42,4121,37,35,33

,31,29
M 11530 DATA 67,68,69,7121,71,65,66

31

Chapter 1

Program 5. Player 3
IF 1 DIM FN$ (12): PRINT CHR$ (125): POKE 7!l!9,19!Z!:

POKE 712, 18ii!:POI<E 71ii!,18Q!
CP 2 P R I NT" REM E M B E R TO DES I G NAT E DE V ICE (E • G •

'D:' FOR DISI<":PRINT "WHEN ENTERING FILE
NAME. "

AC 3 P R I NT" F I LEN A ME" ; : I N PUT F N $
GI: 4 ENTER FN$
BN 10 DIM A (128) , B (128) , C (128)
CH 20 X ==0
~: M 3 0 X == X + 1
HL40 READ A,B,C:IF A==256 THEN GO TO 100
BL 45 A(X)==A:B(X)==B:C(X)=C
AS 50 GOTO 30
IN 10!l! FOR N=1 TO X-I
CF 1 1!l! SOU N D ii!, A (N) , 1 il! , 5 : SOU N D 1, B (N) , 1 jl! , 5 : SOU

ND 2,C(N),10,5
@ 120 FOR DELAY=1 TO I00:NEXT DELAY
CB 1 3!l! N EXT N

Program 6. Song Editor

CF 1 0 DIM A (1 2) , B (1 2) , C (1 2) , D (7) , R (1 0) , P $ (1 0) ,
ER$(40).FN$(14)

M 15 POKE 710,23:POKE 712,23:POKE 709,23
JO 20 ER$=" {35 SPACES}"
AB 3 0 DIM SOP (1 28) , A L T (1 2 8) , TEN (1 28) • BAS (1 2 8)
PK 4 0 DIM CO U N T E R (1 28) • G (4) • W (1 0 0) , V L (1 28) • F L (

128). I (128), R$ (128)
AP45 C0=0:C1=0:C2=0:C3=0:LN=10000:SC=12
PI 47 COUNTER=0
EA 50 FOR I == 0 TO 1 28
~52 SOP(I)==0:ALT(I)=0:TEN(I)=0:BAS(I)=0
BB 5 3 V L (I) = 0
PC 55 NEXT I
61 100 REM OCTAVE 1
LB 105 RESTORE 11500
EP 110 FOR X=1 TO 12:READ A:A(X)=A:NEXT X
6K 200 REM OCTAVE 2
LD 205 RESTORE 11510
FD 210 FOR X=1 TO 12:READ B:B(X)=B:NEXT X
6M 300 REM OCTAVE 3
LF 305 RESTORE 11520
FH 310 FOR X=1 TO 12:READ C:C(X)==C:NEXT X
CC 40t:1! REM NOTE NAMES
LH 405 RESTORE 11530
CP 410 FOR X=1 TO 7:READ D:D(X)=D:NEXT X
AM 500 PRINT CHR$(125)

32

Chapter 1

CD510 FOR X=1 TO 7:PRINT CHR$(D(X»
II 5 1 2 I F X = 3 THE N 5 1 7
CI515 PRI NT
DE 517 NEXT X
J" 520 POSITION 2.2
BP 530 FOR X=1 TO 7
CY. 532 IF X=3 OR X=7 THEN 535
F"533 PRINT CHR$(D(X»;CHR$(35)
CY. 535 PRI NT
D6537 NEXT X
BP540 Y=1:FOR X=1 TO 12:POSITION 9,Y:PRINT A(

X) ,B(X) .C(X) :Y=Y+1
DB 550 NEXT X
EA 555 IFF 1 = 1 THE N F 1 = 0: RET URN
~560 PRINT :FOR X=1 TO 29:PRINT CHR$(20);:NE

XT X
DB 570 POKE 709. 190
~600 TRAP 600:POSITION 2.16:PRINT ER$:POSITI

ON 2.16:PRINT "VOICE";:INPUT v
BJ 605 I F V < 0 0 R V)- 3 THE N 600
OE 607 PO SIT ION 2. 2i!1 : P R I NT" V 0 ICE "; V
6D 608 X =!!I
~610 TRAP 610:POSITION 2.16:PRINT ER$:POSITI

ON 2.16:PRINT "PITCH ";:INPUT P
HI615 IF P (0 OR P)- 255 THEN 610
DF617 IF P=1 THEN X=1:G(V)=COUNTER:COUNTER=0:

GO TO 600

OC 618 IF P=2 THEN 6000
Il620 TRAP 620:POSITION 2.16:PRINT ER$:POSITI

ON 2.16:PRINT "DURATION";:INPUT D
PL 630 I F D < lOR D)- 8 THE N 620
~640 ON V+1 GOSUB 1000.2000.3000.4000
6L 650 GOTO 610
~1000 GOSUB 5000
FH 1010 FOR Y= 1 TO D
R 1020 SOP(X)=P:X=X+l:NEXT Y:RETURN
AH 2000 GOSUB 500i!1
FI2010 FOR Y=1 TO D
EY.2020 ALT(X)=P:X=X+l:NEXT Y:RETURN
AI 3000 GOSUB 5000
FJ 3010 FOR Y=1 TO D
FC3030 TEN(X)=P:X=X+l:NEXT Y:RETURN
AJ 4000 GOSUB 5i!10i!1
FY. 40 1 0 FOR Y = 1 TO D
EC4030 BAS(X)=P:X=X+1:NEXT Y:RETURN
JE5000 SOUND V.P.10.8:FOR T=1 TO 200:NEXT T:S

OUND V,0.10.0:COUNTER=COUNTER+D:RETURN
AN 6000 GOSUB 7000
IL6003 TRAP 40000:GOSUB 8000:GOSUB 8900:GOSUB

8800

33

Chapter 1

C0612105 FOR L=12I TO COUNTER
C161211121 SOUND I2I,SOP(L),10,4
BJ 61212121 SOUND I, AL T (L), 1121,4
CB61213121 SOUND 2,TEN(L),II21,4
8661214121 SOUND 3,BAS(L),14,4
EI61215121 FOR T=1 TO 13:NEXT T
FH 61216121 NEXT L
LF61217121 SOUND 0,0,0,12I:S0UND 1,0,0,0:S0UND 2,121,

12I,I2I:S0UND 3,121,0,121
NB 61219121 60TO 9000
PC700121 REM TEST FOR COUNTER
CD 7121 1 121 I F 6 (0)) 6 (1) THE N 6 (1) = 6 (°)
Cl 7020 IF 6 (1))6 (2) THEN 6 (2) =6 (1)
~71213121 IF 6(2»6(3) THEN 6(3)=6(2)
CI1 7 121 4 121 I F 6 (3)) 6 (1) THE N 6 (1) = 6 (3)
CH71215121 IF 6(0»6(1) THEN 6(1)=6(O)
PD 71216121 COUNTER=6 (1)
Y.O 71217121 RETURN
HJ 81210121 PR I NT CHR$ (125) : FL= 1
DI1 81211121 FOR 1=0 TO 3
EP 81212121 PR I NT "WOULD YOU LIKE TO HEAR VO I CE ";

I;"<V/N>";:INPUT R$
EJ 81213121 IF R$="V" THEN ON 1+1 60SUB 811210,82121121,

831210,840121
FE 812140 NEX T I
CO 81215121 FOR I = 1 TO COUNTER
~812155 IF CI2I=1 THEN SOUND 0,SOP(I),10,1121
OP 8 121 5 7 I F C 1 = 1 THE N SOU N D 1, A L T (I) , 1 121, 1 121
PJ 812159 IF C2=1 THEN SOUND 2, TEN (1),1121,1121

00 81216 1 I F C 3 = 1 THE N SOU N D 3, BAS (I) , HI, 1 °
FD812165 FOR T=1 TO 25:NEXT T
&812167 NEXT I:SOUND 0,0,0,0:S0UND 1,0,I2J,0:SDU

ND 2,I21,0,0:S0UND 3,0,0,0
&8069 C0=0:Cl=0:C2=0:C3=0
L6812177 RETURN
ME 81121121 CI2I= 1: RETURN
NG 82121121 C 1 = 1: RETURN
111831210 C2=I:RETURN
MI: 8400 C3= 1: RETURN
BY. 88121 121 P R I NT" REA D Y TO HE A R I TAL L <: YIN:> " ; : I N P

UT R$
~:K 88 1 121 I F R $ = " Y" THE N 601215
~882121 PRINT "WOULD YOU LIKE TO EDIT<:V/N:>";:I

NPUT R$
LC 883121 IF R$=" V" THEN 981:110
N6884121 60TO 9121121121
LB 89121121 PR I NT "ANOTHER COMB I NAT I ON < YIN:>"; : I NPU

T R$
HA 891215 I F R $ = " Y .. THE N 60S U B 8 ° 1Z10 : 60 TO 891210

34

Chapter 1

LF 89 1 10 I F R $ = " N " THE N RET URN
AJ 9101010 PRINT CHR$ (125): POSITION 2,16: PRINT "W

OULD YOU LIKE TO SAVE<Y /N> ";:INPUT R$
U 91002 IF R$=" Y" THEN 9015
NJ 91005 GO TO 88210
OM 9015 PRINT CHR$ (125): PRINT "REMEMBER TO DES

IGNATE DEVICE(e.g.'D:FILE')"
DB 9017 PR I NT "F I LENAME" ; : INPUT FN$: GOTO 9512110
NH 9020 PRINT #1; CHR$ (155); LN+UiI;" DATA 256,25

6,256,256":END
11195010 PRINT CHR$(125):LN=I@000:SC=8
PJ 950 lOP E N # 1 , 8 , 0 , F N $
F~: 95QI2 P R I NT # 1 ; L N;" D AT A ";
ED 9 5QI5 FOR X = 1 TO CO U N T E R
AM 9 5 1 0 P R I N T # 1 ; SOP (x) ; " , " ; A L T (X) ; " , " ; TEN (X) ;

" , " ; BAS (X) ;

~9515 IF COUNTER > l+SC AND X > l+SC THEN GOSUB
96100: GOTO 955lZ1

BG 9520 I F X == C 0 U N T E R THE N q 5 5 QI
Jl 9530 PR I NT # 1; " , " ;
K19550 NEXT X:GOTO 9020
~9600 LN=LN+10:PRINT #l;:PRINT #1:PRINT #l;L

N;" DATA ";:SC==SC+12:RETURN
El9800 PRINT CHR$(125)
@9805 POSITION 2,18:PRINT "WHICH VOICE TO ED

IT"; : INPUT EV
~9810 PRINT CHR$(1 25):ON EV+l GOTO 9820,9840

,9860,988QI
EC9820 FOR X=0 TO COUNTER
OH 9822 P R I NT" NOT E #"; x ;" "; SOP (x)
HC 9824 I F X :;' 2 0 THE N PO SIT ION 1 2, 1
IIJ 9826 I F X > 410 THE N PO SIT ION 24, 1
HC 9828 NEXT X

LP9830 FOR X=1 TO COUNTER:SOUND O,SOP(X) ,10,4
:FOR T=1 TO 100:NEXT T:NEXT X

KD9832 SOUND 0,10,0,0
GK 9834 T RAP 9834: P F: I NT" W H I C H NOT E TOE D IT" ; :

INPUT EN:Fl=l:GOSUB 500
HF 9836 PO SIT ION 2, 1 8 : P R I NT" NEW NOT E #"; EN; : I

NPUT NN:SOP(EN)=NN:PRINT "MORE";:INPUT
R$

LH 9837 IF R$=" Y" THEN 982lZ1
NL 9838 GOTO 6@Ql@

EE 98410 FOR X =10 TO COUNTER
NI 9842 PR I NT "NOTE #" ; X;" "; AL T (X)
ME 9844 IF X > 210 THEN POSITION 12,1
ML 9846 IF X > 4@ THEN POSITION 24,1
HE 9848 NEXT X

35

Chapter 1

JC9850 FOR X=1 TO COUNTER:SOUND I,ALTIX) ,10,4
:FOR T=1 TO 100:NEXT T:NEXT X

KG 9852 SOU N D 1, 0 , 0 , 0
609854 TRAP 9854:PRINT "WHICH NOTE TO EDIT";:

INPUT EN:Fl=I:GOSUB 500
GG 9856 PO SIT ION 2, 1 8 : P R I NT" NEW NOT E #"; EN; : I

NPUT NN:ALTIEN)=NN:PRINT "MORE";:INPUT
R$

HA 9857 IF R$=" Y" THEN 9840
NN 9858 GOTO 601Z10
E69860 FOR X=0 TO COUNTER
OA 9862 P R I NT" NOT E #"; x ;" "; TEN I X)
M69864 IF X>20 THEN POSITION 12,1
MN 9866 I F X :; 4 0 THE N PO SIT ION 24, 1
HG 9868 N EXT X
JL9870 FOR X=1 TO COUNTER:SOUND 2,TENIX), 10,4

:FOR T=1 TO 100:NEXT T:NEXT X
KJ 9872 SOU N D 2, IZI , 0 , y-I
HC9874 TRAP 9874:PRINT "WHICH NOTE TO EDIT";:

INPUT EN:Fl=I:GOSUB 500
GO 9876 PO SIT ION 2, 1 8 : P R I NT" NEW NOT E #"; EN; : I

NPUT NN:TENIEN)=NN:PRINT "MORE";:INPUT
R$

ME 9877 IF R$=" Y" THEN 9861Z1
NP 9878 GOTO 60i!10
EI9880 FOR X=0 TO COUNTER
NB 9882 P R I NT" NOT E #"; x ;" "; BAS I X)
MI9884 IF X > 20 THEN POSITION 12,1
MP 9886 IF X>40 THEN POSITION 24,1
HI 9888 NEXT X
IN9890 FOR X=1 TO COUNTER:SOUND 3,BASIX) ,10,4

:FOR T=1 TO 100:NEXT T:NEXT X
~9892 SOUND 3,O,O,0
HG 9894 T RAP 9894: P R I NT" W H I C H NOT E TOE D IT" ; :

INPUT EN:Fl=I:GOSUB 500
FP 9896 PO SIT ION 2, 1 8 : P R I NT" NEW NOT E #"; EN; : I

NPUT NN:BASIEN)=NN:PRINT "MORE";:INPUT
R$

HI 9897 IF R$=" Y" THEN 9880
C6 1 1 500 D A T A 2 4 3 , 2 3 0 , 2 1 7 , 2 0 4, 1 9 3, 1 8 2, 1 7 3, 1 6 2 ,

153,144,136,128
~: J 1 1 5 1 0 DATA 1 2 1 , 1 1 4, l1Z18, l1Z12, 96 , 9 1 , 85 , 8 1 , 76 , 7

2,68,64
~ 11520 DATA 60,57,53,50,47,45,42,40,37,35,33

,31,29
M 11530 DATA 67,68,69,70,71,65,66

36

Chapter 1

Program 7. Player 4
IC 1 DIM FN$ (14): PRINT CHR$ (125): POI< E 709,160:

POKE 712.170:POKE 710.170
~2 PRINT "REMEMBER TO DESIGNATE DEVICE (E.G.

, D:' FOR DISK": PRINT "WHEN ENTERING FILE
NAME."

AC 3 P R I NT" F I LEN A ME" ; : I N PUT F N $
GK 4 ENTER FN$
HJ 10 DIM A(128) .B(128) ,C(128) .D(128)
CH 20 X=0
KM 30 X=X+ 1
OL40 READ A.B.C.D:IF A=256 THEN GOTO 100
~45 A(X)=A:B(X)=B:C(X)=C:D(X)=D
AS 50 GOTO 30
IN 100 FOR N=1 TO X-I
BE 110 SOUND ~f, A (N) , 1 lZl. 4: SOUND 1, B (N) , 10,4: SOU

ND 2,C(N). 10.4:S0UND 3,D(N),10,4
~120 FOR DELAY=1 TO 100:NEXT DELAY
CB 130 NE XT N

37

Chapter 1

Exploring Atari Variables
Bob Powell

For many programmers, variables are not too exciting. But
you'l! be able to create much more effective programs if
you understand how they are stored and how they can be
manipulated.

There are three types of variables that can be used by Atari
programmers.

Scalars. Common numerical variables, represented by a
variable name such as X, Y, PAY, HIT, etc., are called scalars.
The value of a scalar variable is assigned within your pro
gram (for example, by X=7, INPUT Y, PAY=A+B, or
HIT=X+15*Y). Each scalar value occupies six bytes of
memory.

Arrays. Arrays are sets of numbers represented by a vari
able name followed by the element number in the set (for ex
ample, A(3), SCORE(20), or INCOME(10,12)). Before using an
array, you must dimension it with the maximum size expected
(for example, DIM SCORE(22)). That sets aside six bytes of
memory for each array element; in other words, DIM
SCORE(22) reserves 22*6 or 132 bytes.

Strings. String variables are extremely versatile, and you
will find many uses for them. Strings are represented by a
variable name followed by the dollar sign (for example, A$,
VTAB$, or BLANK$) and must also be dimensioned so the
computer can reserve memory for the string. Each character in
a string variable is stored as a one-byte ATASCII code (rang
ing from 0 to 255), so entering DIM A$(35) will reserve 35
bytes of memory for A$.

The variable name table holds a list of all variable names
that have been entered. They are stored as ATASCII code
numbers in the same sequence that they were encountered in
your program. Each variable name also identifies the type of
variable. Scalars are stored with 128 added to the ATASCII
value of the last byte in the name. For example, the name of
the variable HIT is described in three bytes with values 72, 73,
and 212 (212 = 84 + 128). Arrays are stored with a left paren
thesis with 128 added (40+128, or 168) as the last byte in the
name. Strings are stored with the dollar sign plus 128
(36+128 or 164) as the last byte.

The memory address for the start of the variable name

38

Chapter 1

table can be determined with PEEKs into 130 (LO) and 131
(HI) or with NTAB=PEEK(130)+256*PEEK(131).

Run the following program to see the entries in the name
table. It prints the value stored in the first 24 bytes of the
name table, one byte for each character in each variable name.
Check the results against the ATASCII listing in your manual,
and don't forget that 128 has been added to the last character.
The first number printed is 216, which is the first variable X
(ATASCII code 88) plus 128, since X is also the last character
in the first variable name. Line 50 prints the names with the
last character as an inverse. Note: Before running this and sub
sequent program examples, enter NEW to clear previous vari
ables from the tables before entering the program.
For error-free program entry, read "The Automatic Proofreader" elsewhere in this chapter
before typing in this program.

FK 1 REM .PROGRAM TO PRINT VARIABLE NAME TABLE
EN 1 0 X = 1 2 : Y = 3 5: Z Z = 1 2 34 5 : DIM A (1 2) , HIT (4 , 9) , S M

ALL$ (35) ,BIG$ (612)
~20 NTAB=PEEK(130)+256tPEEKC131):REM .FIND N

AME TABLE STARTING ADDRESS.
~30 FOR BYTE=0 TO 23:7 PEEK(NTAB+BYTE);",";:

NEXT BYTE
JF 40 7 :? : 7
IT50 FOR BYTE=0 TO 23:7 CHR$(PEEKCNTAB+BYTE»

;:NEXT BYTE

The variable value table contains eight bytes of data for
each variable in the name table. The eight bytes have different
meanings for each variable type, as shown in Table 1.

Table 1. Bytes in Variable Value Table

Variable Byte Number

Type 0 1 2 I 3 4 I 5 6 I 7

Scalar 0 var # 6-byte binary coded decimal (BCD) value

Array 65 var # offset first DIM+l second DIM + 1
LO HI LO HI LO HI

String 129 var # offset length DIM
LO HI LO HI LO HI

39

Chapter 1

To find the start of the variable value table, PEEK into
134(LO) and 135(HI) or VTAB=PEEK(134)+256*PEEK(135).
Enter and run the following program to see the variable num
ber, name, and eight bytes of data for each variable in the pro
gram. As in the previous program, line 10 contains example
variables for experimentation. By the way, this program can be
easily modified and appended to your own programs to list
variables for reference.

LG 1 REM .PROGRAM TO PRINT VARIABLE VALUE TABL
E

L65 GRAPH I CS 0
EN 1 0 X = 1 2 : Y = 35: Z Z = 1 2 3 4 5 : DIM A (1 2) , HIT (4 , 9) , S M

ALL $ (35) , B I G$ (612)
~ 15 NTAB=PEEK(130)+256*PEEK(131}:REM . FIND N

AME TABLE STARTING ADDRESS.
~20 VTAB=PEEK(134)+256*PEEKe135}:REM .FIND V

ALUE TABLE STARTING ADDRESS.
JN25 ? "VAR{3 SPACES}VARNAME{5 SPACES}VTAB DA

TA":?
DE 30 I = 0 : FOR V A R N U M = 0 TO 1 2 :? " # " ; V A R N U M; "

{4 SPACES}";
CP35 POSITION 9,VARNUM+2:FOR BYTE=0 TO 100:VA

RCHR=NTAB+BYTE
LM40 IF PEEK(VARCHR»12S THEN? CHR$ePEEKeVAR

CHR}-128) ,:NTAB =VARCHR+l:POP :GOTO 55
~45 ? CHR$ePEEK(VARCHR});
NI50 NEXT BYTE
6B55 POSITION 17,VARNUM+2:FOR BYTE=0 TO 7:? P

EEK(VTAB+VARNUM*S+BYTE);
LF 60 IF BYTE<7 THEN? ",";
FH 65 N EXT BY T E : ?
OE70 I=I+1:NEXT VARNUM

The array/string table contains the actual data for each
element in an array and each character in a string. When
BASIC encounters a string or array in your program, it first
checks the name table for the variable number, then looks to
the value table to see what it is. Finally, it takes the value of
OFFSET (LO+256*HI) and reaches that many bytes past the
start of the array/string table for the actual data. The start of
the array/string table is determined by PEEKing 140(LO) and
141(HI) or ATAB=PEEK(140)+256*PEEK(141).

40

Chapter 1

The following program prints out data in the array/string
table for SMALL$. Note that SMALL$ is the sixth variable en
tered in the program; thus its variable number is 5 (the first
variable, X, is variable number 0).

BP 1 REM .PROGRAM TO PRINT ARRAY/STRING DATA F
OR SELECTED STRING (SMALL$)

EN 1 0 X = 1 2 : Y = 35: Z Z = 1 23 4 5 : DIM A (1 2) , HIT (4 , 9) , S M
ALL$ (35) ,BIG$ (612)

~20 SMALL$="COMPUTE' BOOKS"
NM 30 VTAB=PEEK (134) +256*PEEK C 135)
K40 ATAB=PEEK(140)+256*PEEKC141):REM .FIND S

TART OF ARRAY/STRING DATA AREA
M50 LO=PEEK(VTAB+5*8+2):REM .PEEK IN VTAB FO

R LO-BYTE OF SMALL$ OFFSET
~60 HI=PEEK(VTAB+5*8+3):REM .PEEK IN VTAB FO

R HI-BYTE OF SMALL$ OFFSET
IJ 70 OFFSET=LO+256 * HI
LH80 FOR BYTE=0 TO 16:A=PEEKCATAB+OFFSET+BYTE

):? A,CHR$(A):NEXT BYTE

Using Strings to Store Designs
So much for how variables are managed. What can be done
with this knowledge? Plenty. Obviously, you can PEEK into
the tables and determine the status of various variables. Less
obvious but equally useful, you can POKE in new values.
Also, for arrays and strings, you can change the value of OFF
SET and the computer will use the new address for the data
instead of the array/string table. This is particularly useful
when dealing with strings, as you'll see in a moment.

As mentioned earlier, strings are very versatile. You know
that strings are nothing more than a series of ATASCII num
bers. Each number has a value from 0-255 and occupies one
byte in memory. A string of 1000 characters will occupy 1000
adjacent bytes in memory.

That suggests an interesting application. A handy way to
reserve 1000 bytes (or any other amount) of memory for your
use is to dimension a string, say A$(1000) . You could set up
your own table of values within the string by indexing every
10 or 100 addresses. The starting address of your string can
be quickly found by the ADR(A$) function. Entering
?PEEK(ADR(A$)+99) will return the contents of the hun
dredth byte in A$. Using strings in this manner is a common

41

Chapter 1

way to store integer data (values less than 256) and machine
language subroutines. Note that when a string is used in this
way, it will have a peculiar appearance when printed; what
you see on the screen will be the ATASCII characters
corresponding to the byte values for the data.

Now let's see what happens when you change the OFF
SET value for a string. Recall that after BASIC builds the vari
able tables, you can go in with POKEs and alter them. If you
dimension a string, say A$, to be the first variable encountered
in a BASIC program, it will be listed as the first variable (0) in
the tables (don't forget to enter NEW to clear tables first
before entering your program). Hence, in the variable value
table (VTAB), bytes 2 and 3 are the La and HI values, respec
tively, for the OFFSET of A$ data from ATAB start.

In other words, the starting address of A$ data is
ATAB+OFFSET or ATAB+PEEK(VTAB+2)+256*PEEK
(VTAB+3). POKE new La-HI values into locations (VTAB
+ 2) and (VTAB + 3); the computer will store A$ data to
ATAB+ NEWOFFSET instead of the array/string table.

Remembering that memory is just a long continuous place
to store numbers from 0 to 255, let's change A$'s OFFSET and
position the string to start at the display memory. Afterwards,
any change in A$ will still change numbers in A$'s data table.
But since A$'s data is stored in display memory, you will
change the display as well.

You can use that to create a screen design by putting
characters into A$. That may seem a little mysterious, but the
computer is actually looking at the display memory area 60
times a second for screen data and couldn't care less where
the data came from.

The following program defines a string (A$) , determines
new La-HI values for A$'s OFFSET, and then POKEs the new
values into the variable value table for A$. Line 90 stores
some data in A$ which is immediately displayed on the
screen.

~ 1 REM .PROGRAM TO STORE STRING DATA TABLE F
OR AS IN SCREEN MEMOR Y AREA

MM 5 DIM AS (21l10) , B $ (20121)
~ 10 GRAPHICS 3:SETCOLOR 0,4,6
tiL 20 VTAB=PEEK (134) +256*PEEI< (135)
MB 3 0 A TAB = PEE t< (1 4 0) + 2 5 6 * PEE ~~ (1 4 1)
CA40 SCREEN=PEEK(88)+256*PEEK(89)

42

Chapter 1

~ 50 OFFSET=SCREEN-ATAB:REM .FIND DISTANCE ~R
OM ATAB START TO S CREEN MEMORY START

KI 60 HI=INTIOFFSET /256':REM .FIND HI-BYTE OF
NEW OFFSET

DK 70 LO=OFFSET-256'HI:REM .FIND LO-BYTE OF NE
W OFFSET

R80 POKE VTAB+2,LO: POKE VTAB+3,HI:REM .POKE
IN NEW LO -HI POINTER FOR AS

BM 90 A $ = " COM PUT E I BOO K S " : END
PF 1 0 Q' FOR I = 1 T 0 2 1:'1 ~:I : A $ (I , I , = C H R $ (2 QJ !2" : N EXT I
GJ 11 QI END
~200 A$(1'=CHR$10' :A$(200' =CHR$(0' :A$(2'=A$

While the GRAPHICS 3 picture is on the screen, type
GOTO 100 to see one of many possible effects. Line 100 is a
BASIC loop that fills A$ memory with the number 200.

Speeding Things Up
A much faster trick can be used to work at machine language
speed. All characters in a string can be rapidly set to the same
value by the statement A$(l)=CHR$(X):A$(SIZE)=CHR$(X):
A$(2)=A$, where X=0-255 and SIZE is equal to the maxi
mum string length . For example, A$(200) can be set to all ze
ros by executing A$(1)=CHR$(0): A$(200)=CHR$(0):A$(2)
= A$. Try typing GOTO 200 while you're still in GRAPHICS
3 and you will see the screen go blank (but note that a small,
upper portion of the screen will still have some data since
ATAB has now moved a few bytes in the manual mode) .
ATAB would not have moved had you stayed in the program
mode. Now try changing A$ to contain all 255 's by using
CHR$(255). Try 185, 70, and other numbers of your choice.

By now, you've probably noticed that each screen byte
defines four adjacent color pixels on the screen in combina
tions of four colors (including background). This is true for the
multi color graphics modes of 3, 5, and 7. In GRAPHICS 8,
each screen byte defines eight adjacent pixels of a single color.
In multicolor modes, on and off patterns of bits 0 and 1 of a
screen byte select the color for the rightmost pixel associated
with that byte. Bits 2 and 3 set the next pixel to the left and so
forth. Go ahead and experiment some more by changing A$ to
different values.

Press SYSTEM RESET (don't enter NEW this time or it
will destroy your program) and PRINT A$ to see what it looks

43

Chapter 1

like. Now run the program again and while in GRAPHICS 3
enter B$="FFFFFFFFFF". Then set A$(100,110)=B$ to set the
characters 100-110 of A$ equal to B$. Try A$(120,130)=B$
and experiment with different positions in A$ and values of
B$. You can put A$(X,X+LEN(B$))=B$ in a loop and vary X
to create interesting effects. The screen can be changed very
rapidly by having several strings for different shapes or de
signs and setting A$ (or parts of A$) equal to the choices.
These strings can be complete pictures, and you can flip from
one to another as simply as saying A$=B$ and then A$=C$.

One more possibility is to first position the string in dis
play (or screen) memory. Then using conventional PLOT and
DRAWTO commands, create a design of some sort; the
graphic results will be automatically stored in your string.

Of course, you can save the string to disk or tape like any
other string, but you are really saving the screen. To do so,
put A$ in screen memory and then set B$ = A$ after your de
sign is completed. Finally, save B$.

In order to redisplay your saved picture, set up the graph
ics mode, change the offset to put A$ in screen memory, recall
B$ from tape or disk, and set A$=B$. Presto! Instant picture.
Different graphics modes require different amounts of mem
ory, so be sure you have dimensioned a string large enough to
cover the screen. The memory required for each mode is given
in the following table. The lower row of values shows the
number of bytes available when no text window is used.

Table 2. Screen Memory Requirements for Various
Graphics Modes

Graphic Mode
0 1 2 3 4 5 6 7 8 9 10

Memory 960 400 200 200 400 800 1600 3200 6400

11

Memory (mode+ 16) 480 240 240 480 960 1920 3840 7680 7680 7680 7680

44

Chapter 1

Atari Color Matcher
Ron Tinnell

The Atari has a great color set, but finding the colors you
want can be tiresome. This program lets you browse
through the 128 colors at your leisure and makes it easy to
pick the combinations you want.

"Color Matcher" uses graphics mode 2 to put a three-color
test pattern on the screen. It can show you two foreground
colors and anyone background color at one time.

Using the space bar and the cursor control keys, you have
full control over all three colors. The cursor-left and cursor
right keys control color hue, while the cursor-up and cursor
down keys control luminosity. Pressing these keys steps
through color or luminosity values by 1. You don't need to
use the CTRL key; simply press the cursor key to change the
values.

The display shows the hue and luminosity values that
correspond to the colors currently on the screen. An indicator
points to the variable parameter that is currently active; press
the space bar to select the test color you want to change.

When entering the program, be careful with the PRINT
statements in lines 160, 170, and 420. Each contains a double
space.

Color Matcher
For error-free progra1ll entry, read "The Alltomatic Proofreader" elsewhere ill this chapter
before typing in this program.

DF 1 20 DIM H (3) , L (3)
AD 1 30 G RAP H I C S 2: H (1) = 1 : L (1) = 1 4 : H (2) = 8 : L (2) = 8

:H(3)=3:L(3) =8: F=1
~ 140 SETCOLOR 4,1,14:SETCOLOR 0,8,8:SE TCOLOR

2,3,8
6C 150 POSITION 5,0:PRINT #6;"BKGD COLl"
EN 160 POSITION 1,2:PRINT #6;"HUE 1 "
IP 170 POSITION 1,3: PRINT #6;"LUM 14"
KF 180 POSITION 1l,2:PRINT #6;"8"
KH 190 POSITION 11,3:PRINT #6;"8"
EE 200 POSITION 2,6:PRINT #6;"A B C D"
AP 210 POSITION 3,7:PRINT #6;"E F G"
BL 220 POSITION 4,8:PRINT #6;"HIJ"
FI230 POSITION 2,9:PRINT #6 ; "########"
IB 240 POSITION 2 , 10:PRINT #6;"########"

45

Chapter 1

JA250 POSITION 15,0:PRINT #6;CHR$(195);CHR$(2
07);CHR$(204);CHR$(178)

KE 260 PO SIT ION 1 6 , 2 : P R I NT # 6; .. 3 ..
KL 270 PO SIT ION 1 6 , 3 : P R I NT # 6; .. 8 "
PF280 POSITION 1I,6:PRINT #6;CHR$(205);CHR$(1

60);CHR$(206);CHR$(160);CHR$(207);CHR$(
160);CHR$(208)

KH290 POSITION 12,7:PRINT #6;CHR$(209);CHR$(1
60);CHR$(210);CHR$(160);CHR$(211)

FJ300 POSITION 13,8:PRINT #6;CHR$(212);CHR$(2
13);CHR$(214)

""310 POSITION 10,9:FOR M=0 TO 7:PRINT #6;CHR
$(163);:NEXT M

PF320 POSITION 10,10:FOR M=0 TO 7:PRINT #6;CH
R$(163);:NEXT M

LN 400 IF F=4 THEN F= 1
NE405 POSITION (5 * F+l) ,4:PRINT #6;CHR$(94);CH

R$(94)
LL 4 1 0 C LOS E # 3 : 0 PEN # 3 , 4 , 0, .. K: .. : 6 E T # 3 , K
6N420 IF K=32 THEN POSITION (5*F+l),4:PRINT #

6;" ":F=F+l:60 TO 400
JK430 IF K=42 THEN H(F)=H(F)+l
J0440 IF K=43 THEN H(F)=H(F)-1
CE 450 IF H (F) (0 THEN H (F) = 15
CH460 IF H(F) >15 THEN H(F)=0
KY.470 IF K=45 THEN L(F)=L(F)+2
KL480 IF K=61 THEN L(F)=L(F)-2
~490 IF L(F)(0 THEN L(F)=14
CJ 500 IF L (F))14 THEN L (F) =0
~510 POSITION (5*F+l>,2:PRINT #6;H(F);" "
~520 POSITION (5*F+l>,3:PRINT #6;L(F);" "
FK 530 Q=4
"K 540 IF F=2 THEN Q=0
"0550 IF F=3 THEN Q=2
HB560 SETCOLOR Q,H(F),L(F)
6J 570 60 TO 400

46

Chapter 1

The Automatic Proofreader
Charles Brannon

At last there's a way for your computer to help you check
your typing . "The Automatic Proofreader" will make enter
ing programs faster, easier, and more accurate.

The strong point of computers is that they excel at tedious,
exacting tasks. So why not get your computer to check your
typing for you?

"The Automatic Proofreader" will help you type in
program listings without typing mistakes. It is a short error
checking program that hides itself in memory. When activated,
it lets you know immediately after typing a line from a pro
gram listing if you have made a mistake. Please read these
instructions carefully before typing in any programs in this
book.

Preparing the Proofreader
1. Using the listing below, type in the Proofreader. Be very

careful when entering the DATA statements-don't type an
1 instead of a 1, an 0 instead of a 0, extra commas, etc.

2. Save the Proofreader on tape or disk at least twice before
running it for the fi rst tim e.

3. After the Proofreader is saved, type RUN. It will check itself
for typing errors in the DATA statements and warn you if
there's a mistake. Correct any errors and save the corrected
version. Keep a copy in a safe place-you'll need it again
and again, every time you enter a program from this book
or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates
itself. You are now ready to enter a program listing. If you
press SYSTEM RESET, the Proofreader is disabled. To re
activate it, just type PRINT USR(IS36) and press RETURN.

Using the Proofreader
All listings in this book have a checksum found immediately to
the left of each line number. Don't enter the checksum when
typing in a program. It is just for your information.

When you type in a line from a program listing and press
RETURN, the Proofreader displays the checksum letters at the
top of your screen. These checksum letters must match the
checksum letters in the printed listing. If they don't, it means

47

Chapter 1

you typed the line differently than the way it is listed. Im
mediately recheck your typing. You can correct any mistakes
you find immediately.

The Proofreader is not picky with spaces. It will not no
tice extra spaces or missing ones. This is for your convenience,
since spacing is generally not important. But occasionally
proper spacing is important, so be extra careful with spaces,
since the Proofreader will catch practically everything else that
can go wrong.

Due to the nature of a checksum, the proofreader will not
catch all errors. The Proofreader will not catch errors of trans
position. In fact, you could type in a line in any order, and the
Proofreader wouldn't notice.

There's another thing to watch out for: If you enter the
lines by using abbreviations for commands, the checksum will
not match up. But there is a way to make the Proofreader
check it. After entering the line, LIST it. This eliminates the
abbreviations . Then move the cursor up to the line and press
RETURN. It should now match the checksum. You can check
whole groups of lines this way. The only abbreviation that
cannot be handled this way is when a ? is used instead of
PRINT; they are not the same to the Proofreader.

The Automatic Proofreader

100 GRAPHICS 0
110 FOR 1=1536 TO 1700:READ A:POKE I,A:CK=C

K+A:NEXT I
120 IF CK < >19072 THEN? "Error in DATA Stat

ements. Check Typing.":END
130 A=USR(1536)
140 ? :? "Automatic Proofreader Now Activat

ed. II

150 END
1536 DATA 104,160,0,185,26,3
1542 DATA 201,69,240,7,200,200
1548 DATA 192,34,208,243,96,200
1554 DATA 169,74,153,26,3,200
1560 DATA 169,6,153,26,3,162
1566 DATA 0,189,0,228,157,74
1572 DATA 6,232,224,16,208,245
1578 DATA 169,93,141,78,6,169
1584 DATA 6,141,79,6,24,173
1590 DATA 4,228,105,1,141,95
1596 DATA 6,173,5,228,105,0

48

Chapter 1

1602 DATA 141,96,6,169,0,133
1608 DATA 203,96,247,238,125,241
1614 DATA 93,6,244,241,115,241
162O DATA 124,241,76,205,238,0
1626 DATA 0,0,0,0,32,62
1632 DATA 246,8,201,155,240,13
1638 DATA 201,32,240,7,72,24
1644 DATA 101,203,133,203,104,40
165O DATA 96,72,152,72,138,72
1656 DATA 160,0,169,128,145,88
1662 DATA 200,192,40,208,249,165
1668 DATA 203,74,74,74,74,24
1674 DATA 105,161,160,3,145,88
168O DATA 165,203,41,15,24,1O5
1686 DATA 161,200,145,88,169,O
1692 DATA 133,203,104,170,104,168
1698 DATA 104,40,96

49

Chapter 2

Nessie
A Nonviolent Game for Atari
Tom R. Halfhill

"Nessie" is a nonviolent action game that challenges you
to snap a clear photograph of the Loch Ness monster. It
runs on any Atari computer with at least 16K (tape) or 24K
(disk), and a joystick.

For decades, fans of and believers in Scotland's Loch Ness
monster have affectionately referred to the mysterious creature
as "Nessie" -hence the title of this game.

The game was inspired by a TV documentary on Loch
Ness which recounted the hundreds of attempts to photograph
the monster. Almost all of these attempts have failed; there
exist only a few controversial photos showing parts of fins,
shadowy shapes, and blurred figures. The game simulates
some of the difficulties faced by would-be photographers of
Nessie.

Starting Nessie
When typing " Nessie," omit all REM statements if your com
puter has only 16K of RAM. It will barely fit in memory if
loaded from tape . At least 24K is required for disk.

After you type RUN, the program requires a few seconds
to initialize. During this period, special areas of memory are
protected, player/missile graphics are set up, game screens are
prepared, and machine language routines are loaded into
memory (Nessie makes extensive use of machine language, as
noted below). About halfway through this waiting period
you'll see the camera viewfinder frame and aiming crosshairs
appear on the screen.

The next screen which appears lets you select difficulty
options and displays the scoring possibilities.

There are two difficulty levels. Toggle between them with
the SELECT key. This chooses which .lens you want on your
camera. By far the easiest option is wide-angle, the default op
tion. A wide-angle lens allows photographers to cover a larger
area from their camera position . In Nessie, the wide-angle lens
is indicated by a large viewfinder.

Pressing the SELECT key switches between the wide
angle and the telephoto lens. The telephoto is represented by

53

Chapter 2

a much smaller viewfinder. In fact, the telephoto viewfinder
barely frames Nessie. This makes the telephoto lens much
more difficult to use than the wide-angle. To give you an idea
of this difference, Nessie appears actual size within each view
finder as you switch lenses.

Since the telephoto is harder to use, it scores more points.
The lower half of this screen displays the point totals for every
possible picture you can take. For example, using the wide
angle lens, a clear, properly framed photo of Nessie scores
2000 points; a photo in which you crop off Nessie with the
viewfinder scores 100 points; if you are fooled and take a
photo of a fish or an eel instead of Nessie, you get only 50
points; and if you shoot a blurred photo by moving the cam
era when you press the shutter button, you get zero points.
Likewise, a photo of nothing also scores nothing.

All of these point totals are multiplied by ten if you're
using the telephoto lens. The game also scores you on the
amount of time you take to shoot your pictures. The longer
you take, the lower your score.

After selecting your lens, begin the game by pressing the
START key. This starts the timer and displays the main game
screen.

Getting the Whole Picture
At the top of the main game screen is your camera's film
counter, which shows how many pictures remain on your roll
of film. You start with a 20-exposure roll. Each time you snap
a picture, the film counter decrements.

Your camera viewfinder starts in the center of the screen
(which represents Loch Ness). You can move it in any direc
tion with the joystick. Pressing the fire button releases the
shutter. The viewfinder frame itself is blue, with a green aim
ing crosshairs in the center. To take a properly centered photo,
you must position the crosshairs over Nessie. If any part of
Nessie is touching the viewfinder frame when you snap the
shutter, it will register as a cropped photo when the film is
developed at the end of the game. A picture of a piece of
Nessie is better than nothing-that's why it's worth 100 or
1000 points-but it's not nearly as valuable as a photo of the
whole monster. (Let's face it, wouldn't you feel better walking
into the New York Times with an indisputable picture of Nessie
instead of a doubtful snapshot of a dorsal fin?)

54

Chapter 2

For the same reason, you must be careful not to include
any other objects in the viewfinder while photographing
Nessie. This isn't as easy as it sounds. When you start the
game, you'll find that Loch Ness is alive with fish and eels of
assorted shapes and colors. If you photograph one of these in
stead, you've been fooled-and your photo is worth only 50
or 500 points. (The reason you get any points at all is that you
might be able to sell the photo to Field & Stream or an airline
magazine.) The eels are particularly troublesome. They bear an
uncanny resemblance to Nessie, which is why so many hope
ful photographers over the years have been fooled.

Another hazard to beware of is jittery hands. Nessie is not
an easy target-the creature appears at random in the Loch,
swims in random directions for a few seconds, and then sub
merges to appear somewhere else. Meanwhile, you're trying to
center the monster in the viewfinder. If you snap the shutter
while moving the finder, the picture will be blurred. And
that's worth zero points.

When you get down to your last five pictures on the roll
of film, the viewfinder frame automatically turns from blue to
bright yellow as a warning. This is in case you're too busy to
pay attention to the film counter.

Developing the Film
After snapping your last shot, everything freezes for an in
stant. Then the screen blanks out and the film starts develop
ing. Since the slightest bit of light in the darkroom would
spoil it alt the screen is black during this process. After a few
moments, the finished pictures appear-gradually developing
to full brightness as they would in a darkroom tray.

Each of the 20 finished prints shows what you photo
graphed when you snapped the shutter. They are arranged in
the order you shot them, and each is captioned (unless the
picture is blank). At the bottom of the screen is your final
score, adjusted for the amount of time that elapsed.

To restart Nessie, just snap the shutter button on your
joystick. This returns you to the setup screen, where you can
change lenses if you wish before playing again.

Programmer's Notes
Nessie is a fast, responsive game because the most critical
animation-the movement of the camera viewfinder-is

55

Chapter 2

written entirely in machine language. An ML routine which fills
almost all of page 6 in memory (1536 decimal, $600 hex) con
stantly reads the joystick and moves the finder. All of this is
done during the vertical blank interval, that split second when
the TV's electron gun returns from the bottom of the screen to
the top to begin scanning another screen frame. Since this
happens 60 times per second, the viewfinder's movements ap
pear instantaneous and flicker-free.

The viewfinder itself is created with player/missile graph
ics. Two player objects are used-one for the frame and an
other for the crosshairs. This allows the collision-checking
routine to detect separate collisions between Nessie, the frame,
or the crosshairs.

At least 90 percent of the BASIC in Nessie is initializa
tion-once it sets up the game for the first time, most of it is
never executed again. Using BASIC for this work made Nessie
easier to program, since setup tasks can be tedious in machine
language. ML was used only for the time-critical operations.

This is reflected in the main loop, which starts at line
10000 and is really only six lines long (and a few of these
lines could be combined to make the loop even shorter). Since
the ML routine executes automatically during each vertical
blank, repeated calls to the routine via BASIC's USR statement
are unnecessary. The only thing BASIC does during the main
phase of Nessie is animate the fish, eels, and monster. BASIC
also checks the shutter button and handles the picture-taking
sequence (clicking the shutter, flashing the screen, storing col
lision register values in arrays for later analysis). Everything
else is in machine language.

Actually there are four ML routines in the program. By far
the largest is the main routine in page 6. A second routine
switches on the vertical blank interrupt routine when the
game starts, and another shuts it off when the game ends. The
fourth routine instantly flips player shapes when called by a
USR statement. This is used to rapidly change the viewfinder's
size when toggling back and forth between the wide-angle
and telephoto lenses during the setup screen. This very short
but useful routine is from Eric Stoltman's article "Extending
Player/Missile Graphics" (COMPUTEf's First Book Of Atari
Graphics).

Redefined characters in graphics mode 2 + 16 are used for
Nessie, the fish, and the eels during the main part of the

56

Chapter 2

game. To speed up their animation, the characters are POKEd
directly into screen memory, which is faster than using PO
SITION and PRINT statements.

The final game screen, which shows the developed pic
tures, uses a modified display list to put strips of different
graphics modes on the screen simultaneously. This screen is a
mixture of graphics modes 0 and 1.

Nessie
For error-free program elltry, rend "The Automatic Proofreader" ill Chapter 1 before typillg
in this program.

DE 200 GOSUB 11000: REM In it i a liz e
66210 GOSUB 12000 : REM Redefi ne characters
6H215 GOTO 13000:REM Setups
BL220 GOTO 10000:REM Main loop
KF 1000 RE M
JB1005 REM *** MOVE NESSIE & DECOYS ***
K6 1010 REM
CE 1020 POKE SCREEN+COORD(OBJECT) , 0:NOOCOORD=C

OORD(OBJECT)+MOVE(INT(RND(0)*9)+1)
Cl 1040 IF NOOCOORD (40 OR NOOCOORD)239 THEN CO

ORD(OBJECT)=INT(RND(0)*200)+40:RETURN
AJ 1060 POKE SCREEN+NOOCOORD , CHAR(OBJECT):COOR

D(OBJECT)=NOOCOORD : RETURN
K62000 REM
6D2005 REM *** SNAP PHOTO ***
KH 2010 REM
FB2020 POKE 77 , 0:FILM=F I L M-1:POSITION 15,0:?

#6 ; " ": POSITION 15,0:? # 6;FILM:SOUND
0,0,0,0

BL2040 FRAME(PHOTO)=PEE K (53252):HAIR(PHOTO)=P
EEK(53253):BLUR(PHOTO)=STICK(0):PHOTO=
PHOTO+1

B02060 SETCOLOR 4 , 9 , 4:IF FILM<6 THEN POKE 704
, 28

"62080 IF FILM=0 THEN SOUND 0,240,10,15:POP :
TIME=INT«PEEK(18)*65536+PEEK(19)*256+
PEEK(20»/60):GOTO 2200

AA2100 BUTTON=STRIG(0):RETURN
lJ2200 A=USR(ADR(VBOFF$»:SOUND 0.0,0,0:FOR I

=1 TO 1000:NEXT I:GOTO 14000
NF 10000 REM
DF 10005 REM *** MAIN LOOP ***
H610010 REM
ff10020 POKE HITCLR,0
HF 10040 IF STRIG(0)=1 THEN BUTTON=l

57

Chapter 2

SJ 1~34~ IF STRIG(~)=0 AND BUTTON=1 THEN POKE
712, 14:S0UND 0,4,8,15:GOSUB 2000

EL 1~380 OBJECT=OBJECT+1:IF OBJECT>6 THEN OBJE
CT=1

NF 1~4~0 GOSUB 10~0:REM Move objects
~1~420 GOTO 10~00

HS 110~0 REM
JD11020 REM aaa INIT P/M & ML ***
NI: 11040 REM
~ 11060 GRAPHICS 2+16:SETCOLOR 2,0,0:7 #6;"

{7 SPACES}nessie":7 #6:? #6;"
{4 SPACES}PLEASE WAIT":? #6;"
{5 SPACES}21 SECONDS"

~ 11~80 PM=PEEK(1~6)-8:PMBASE=256*PM:HITCLR=5

3278
~111~0 FOR I=PMBASE+512 TO PMBASE+768:POKE I

,~:NEXT I
HF 1112~ RESTORE 11280:DIM WIDEFRAME$(20):FOR

1=1 TO 20:READ A:WIDEFRAME$(I,I)=CHR$
(A):NEXT I:REM Wide viewfinder

HD 11140 RESTORE 1130~:DIM TELEFRAME$(20):FOR
1=1 TO 20:READ A:TELEFRAME$(I,I)=CHR$
(A):NEXT I:REM Tele viewfinder

ID 11160 RESTORE 1134~:DIM WIDEHAIR$(20):FOR I
=1 TO 20:READ A:WIDEHAIR$(I,I)=CHR$(A
):NEXT I:REM Wide crosshair

1r.1118~ RESTORE 1136~:DIM TELEHAIR$(20):FOR I
=1 TO 2~:READ A:TELEHAIR$(I,I)=CHR$(A
):NEXT I:REM Tele crosshair

~112~~ POKE 7~4,130:POKE 7~5.198:REM Blue vi
ewfinder & green crosshair

IC11220 POKE 559,46:POKE 623,1:POKE 53277,3:P
OKE 54279,PM:POKE 53256,3:POKE 53257,
3:REM P/M setup

~ 11240 HORIZ0=116:VERT~=PMBASE+512+61:HORIZ1
=118:VERT1=PMBASE+64~+66:REM Initial
positions

1"11245 FOR 1=1 TO 2~:POKE VERT0+I,ASC(WIDEFR
AMES(I»:NEXT I:POKE 53248,HORIZ0:REM

Draw viewfinder
NP 1125~ FOR 1=1 TO 20:POKE VERT1+I,ASC(WIDEHA

IR$(I»:NEXT I:POKE 53249,HORIZ1:REM
Draw crosshair

OJ 11260 REM * VIEWFINDER SHAPES *
BO 11280 DATA 255,255,129,129,129,129,129,129,

129,129,129,129,129,129,129,129,129,2
55,255,0

EL 11300 DATA 255, 129, 129, 129, 129, 129, 129, 129,
129,255,0,0,0,0,0,0,0,0,0,0

58

Chapter 2

Y.B11320 REM * CROSSHAIR SHAPES *
D6 11340 DATA 16, 16, 16, 16, 124, 16, 16, 16, 16,0,0,

0,0,0,0,0,0,0,0,0
Ftl 1 1 360 D A TAl 6, 1 6, 1 24, 1 6, 1 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0,0,0,0,0,0,0
PH 11380 REM * FLIP SHAPE ROUTINE *
NA11400 DIM FLIP$(25):RESTORE 11420:FOR 1=1 T

o 25:READ A:FL1P$(1,1)=CHR$(A):NEXT 1
0011420 DATA 104,104,133,204,104,133,203,104,

133,207,104,133,206,160,0,177,206,145
,203,200,192,20,208,247,96

IN 11440 REM * READ JOYMOVE ROUTINE *
Y.A 11460 RESTORE 11480:FOR 1=0 TO 204:READ A:P

OKE 1536+1,A:NEXT I
~11480 DATA 174,120,2,224,14,208
CL 11490 DATA 3,32,172,6,224,6
rn11500 DATA 208,6,32,172,6,32
Fl 11510 DATA 107,6,224,7,208,3
lJ11520 DATA 32,107,6,224,5,208
FD 1 1 530 D A T A 6, 32, 1 40 , 6 , 32, 1 07
FF11540 DATA 6,224,13,208,3,32
ru11550 DATA 140,6,224,9,208,6
CJ 11560 DATA 32,140,6,32,74,6
lL11570 DATA 224,11,208,3,32,74
FJ11580 DATA 6,224,10,208,6,32
DJ 1 1 590 D A T A 1 72 , 6 , 32 , 74 , 6 , 76
PJ 11600 DATA 98,228,173,253,6,201
tlA 11610 DATA 48,240,25,206,253,6
tiD 11620 DATA 206,253,6,173,253,6
LH11630 DATA 141,0,208,206,251,6
tlB 11640 DATA 206,251,6,173,251,6
tiN 1 1 650 D A TAl 4 1 , 1 , 208 , 96 , 96, 1 73
~11660 DATA 253,6,201,176,240,25
~11670 DATA 238,253,6,238,253,6
~11680 DATA 173,253,6,141,0,208
~11690 DATA 238,251,6,238,251,6
LJ 11700 DATA 173,251,6,141,1,208
~11710 DATA 96,96,172,252,6,192
IIY. 11720 DATA 96,176,24,160,0,177
~11730 DATA 203,145,205,136,192,0
D011740 DATA 208,247,238,252,6,238
~ 11750 DATA 252,6,238,250,6,238
N011760 DATA 250,6,96,96,172,252
til 11770 DATA 6,192,28,144,24,160
8011780 DATA 0,177,205,145,203,200
JI 11790 DATA 192,255,208',247,206,252
Ltl11800 DATA 6,206,252,6,206,250
SY. 11810 DATA 6,206,250,6,96,96
ID 11820 REM * SET UP VBLANK *

59

Chapter 2

FH11900 DIM VBSETUP$(II}:RESTORE 11920:FOR 1=
1 TO II:READ A:VBSETUP$(I}=CHR$(A}:NE
XT I

~ 11920 DATA 104,162,6,160,0,169,7,32,92,228,
96

JE 11940 DIM VBOFF$ (11): FOR 1=1 TO 11: READ A: V
BOFF$(I)=CHR$(A}:NEXT I

~ 11960 DATA 104,162,228 , 160,98,169,7,32,92,2
28,96

CB11980 DIM LENS$(18}:DIM MOVE(9},CHAR(6),COO
RD(6),FRAME(20),HAIR(20),BLUR(20),PIC
TURE(20),CAPTION(30}:RETURN

NH 12000 REM
PS 12010 REM *** REDEFINE CHARACTERS ***
NN 12015 REM
HI 12020 CHSET=(PEEK(106)-8)*256:FOR 1 =0 TO 51

2:POKE CHSET+I,PEEK(57344+I):NEXT I
~12021 RESTORE 12025
Al 12022 READ A:IF A=-1 THEN RETURN
F"12023 FOR J=0 TO 7:READ B:POKE CHSET+A*8+J,

B:NEXT J
~ 12024 GOTO 12022
IF 12025 DATA 1,255,255,192,192,192,192,192,19

2
BC12026 DATA 3~255~255,3,3~3,3~3,3
IT 12027 DATA 4,3,3,3,3,3,3,3,3
8612028 DATA S~3,3,3,3,3,3,255,255
~12029 DATA 6,0,0,0,0,0,0,255,255
IH 12030 DATA 7,192,192,192,192,192,192,255,25

5
IJ 12031 DATA 8,192,192,192,192,192,192,192,19

2
n12032 DATA 9,0,0,0,0,0,0,213,127
AK 12033 DATA 10,0,0,64,192,85,127,126,0
JH 12034 DATA 11,0,0,2,3,170,254,126,0
~12035 DATA 12,0,0,0,0,0,0,171~254

AS 12036 DATA 13,0,0,56,125,222,125,56,0
K 12037 DATA 14,0,0,28,190,123,190,28,0
EN 12038 DATA 26,5,10,21,42,84,168,80,128
H 12039 DATA 27,255,255,0,0,0,0,0,0
"" 12040 DATA 32,0,32,48,32,224,224,0,0
HA 12041 DATA -1
NI 13000 REM
IC13005 REM * SET UP SCREEN *
NJ 13010 REM
LI13020 SETCOLOR 4,9,4:POKE 756,CHSET/256:? #

6;CHR$(125):SETCOLOR 3,12,2:SETCOLOR
0,4,8:SETCOLOR 2,0,0

IT 13040 FILM=20:LENS=I:LENS$="wideangleteleph
oto":SCREEN=PEEK(88}+PEEK(89J*256

60

Chapter 2

fN 1311.1611.1 ? #6;" {7 SPACES}I:I"","-s.""iI~":? #6:? #6;" <
select> ";LENS$CLENS,LENS+8):? #6;"
{4 SPACES}<start> game"

BD 1 311.162 PO SIT ION 11.1, 8 :? # 6 ; C H R $ C 1 7 1) ; " N E S S I E
=211.111.111.1/211.111.111.111.1" :POSIT ION 11.1,9:? #6;CHR$Cl
92};" CROP = 111.111.11 111.111.10"

~1311.164 POSITION 0,111.1:? #6;CHR$CI74};CHR$CI72
);" FOOLED= 501 511.10":POSITION 11.1,11:
? #6;CHR$C186}; " BLUR ={3 SPACES} 11.1 "

~ 1311.1711.1 POSITION 10,7:? #6;CHR$C171}
MF 1311.180 SOUND 0,0,0,0:POSITION 10,3:? #6;LENS

$CLENS,LENS+8):IF PEEKC53279}=6 THEN
131611.1

NO 13111.10 IF PEEK(53279)<>5 THEN 130811.1
6E 131111.1 LENS=LENS+9:IF LENS>10 THEN LENS=l
FF 1 3 1 1 5 I F LEN S = 1 THE N 1 3 1 25
EP 1 3 1 211.1 I F LEN S :> 1 THE N 1 3 1 411.1
IH 13125 A=USRCADRCFLIP$),VERT0,ADRCWIDEFRAME$

»:POKE 53256,3 :S0UND 11.1,160,10,15
IE 13128 FOR I=VERTI TO VERT1+2: POKE 1,0: NEXT

I:VERT1=VERT1+3:A=USRCADRCFLIP$),VERT
I,ADRCWIDEHAIR$»:POKE 53257,3

Fr.13130 POSITION 9 ,6:? #6;" ":POSITION 10,7:?
#6;CHR$CI71):HORIZ1=118:POKE 53249,H

ORIZ1:GOTO 130811.1
FE 131411.1 A=USRCADRCFLIP$),VERTI1.I,ADRCTELEFRAME$

»:POKE 53256,I:S0UND 0,811.1,10,15
~ 13145 VERT1=VERTI-3:A=USRCADRCFLIP$},VERT1,

ADRCTELEHAIR$)}:POKE 53257,1
FP 1 3 1 50 PO SIT ION 1 0 • 7 : 7 # 6;" ": PO SIT ION 9, 6 : ?

#6;"~":HORIZ1=117:POKE 53249,HORIZ1:
GOTO 1 30 811.1

DC 1 3 1 60S 0 U N D (!1, 1 2 (!1, 1 11.1, 1 5 :? # 6 ; C H R $ (1 2 5) : P 0 S I
TION 0,0:7 #6; "a::cnessie FILM=";FILM;
limB"

~ 13180 COLOR ASCC"n"):PLOT 0,I:DRAWTO 19,1
~ 132011.1 MOVE(I}=-20:MOVEC2)=-19:MOVEC3}=I:MDV

E(4)=21 :MOV E(5}=211.1:MOVE(6)=19
FD 1 3220 M 0 V E (7) = - 1 : M 0 V E (8) = - 2 1 : M 0 V E (9) = 2 5 0 : C H

AR(1)~9:CHAR(2)=139:CHAR(3)=77:CHAR(4

}=201:CHAR(5)=14 : CHARC6)=204
8613240 FOR OBJECT=1 TO 6:COORDCOBJECT)=INTCR

ND(0)*211.10)+40:POKE SCREEN+COORD(OBJEC
T),CHARCOBJECT):NEXT OBJECT

PD 13250 PHOTO= 1
~13260 POKE 1789,HORIZ0:POKE 1787,HDRIZI
~13270 POKE 17BB,61:POKE 203,0:REM VERT0 10

byte
JL 1 3280 POI< E 2 (!14, (P MBA S E + 5 1 2) 1256: REM V E R T 0 h

i byte

61

Chapter 2

lS13290 POKE 1786,194:POKE 207,128:REM VERTI
10 byte

JJ 13300 POKE 208, ePMBASE+512)/256:REM VERTI h
i byte

6113310 POKE 2i115, 2: REM Lo byte for vert memor
y shift

MG 1 3320 PO K E 206, (P MBA S E + 5 1 2) I 256 : REM H i b Y t e
for vert memory shift

~ 13330 IF LENS)1 THEN POKE 1647,192:POKE 168
0,106:REM Reset range check for telep
hoto

~ 1334121 A=USR(ADReVBSETUPS»:POKE 18,I2I:POKE 1
9,I2I:POKE 20,0:S0UND 0,I2I,0,0:GOTO 22121

NJ 141211210 REM
~ 1412120 REM *** DEVELOP FILM ***
NN 141214121 REM
.141215121 POKE 53277,0:POKE 53261,0:POKE 53262,

I2I:REM P/M OFF
~ 14060 GRAPHICS I2I:SETCOLOR 2,I2I,0:DLIST=PEEK(

56121)+256*PEEKe561):SCREEN=PEEK(88)+25
6*PEEK(89)

NF 14065 SETCOLOR 12I,I2I,0:SETCOLOR 1,12,II21:SETCO
LOR 3,121 , 121

.1412170 POKE 756,CHSET/256:POKE 752,1:7 CHRS(
125);:POSITION 0,16:POKE 82,121

CC 141218121 RESTORE 141121121:FOR 1=6 TO 26:READ A:PO
KE DLIST+I,A:NEXT I

~141121121 DATA 6,6,6,2,2,6,6,6,2,2,6,6,6,2,2,6,
6,6,2,2,6

~ 1411121 FOR 1=1 TO 15:READ A:POKE SCREEN+672+
I,A:NEXT I

~14112 FOR I=PMBASE+512 TO PMBASE+768:POKE I
.12I:NEXT I

~ 14115 DATA 36,37,54.37 . 44.47.48.41.46.39.121,
38,41,4~,4~

lS 1412121 FOR 11=1 TO 4
JS 14140 FOR 1=121 TO 19:READ A:POKE SCREEN+4121+1

,A:NEXT I
El 1 4 1 6121 D A TAl , 2 7 , 3 , 121, 1 , 2 7 , 3 , 121, 1 , 2 7 , 3 , 121, 1 , 2 7 ,

3, 121, 1 , 27, 3,0
J" 1418121 FOR 1=0 TO 19:READ A:POKE SCREEN+6121+I

,A:NEXT I
FB 1 42121 0 D A T A 8, 121 , 4 , 121 , 8 , 121 , 4 , 0 , 8 , 121 , 4 , 0 , 8 , 121 , 4 • 121 ,

8,121,4,0 ...
JJ 1422121 FOR 1 =0 TO 19: READ A: POKE SCREEN+8121+ I

,A:NEXT 1
HD 1 4 2 4 0 D A T A 7, 6 , 5 , 121 , 7 , 6 , 5 , 0, 7 , 6 , 5 , 121 , 7 • 6 , 5 , 121 ,

7,6,5,121

62

Chapter 2

NP 14260 RESTORE 14160:SCREEN=SCREEN+140:NEXT
I I

or. 14280 RESTORE 14300:SCREEN=PEEK(88)+256*PEE
K(89):FOR 1=0 TO 5:READ A:POKE SCREEN
+606+I,A:NEXT I

FN 14300 DATA 46,37,51,51,41,37
GH 14350 FOR 1=1 TO 20:READ A:PICTURE(I)=A:NEX

T I
r.D14355 DATA 61,65,69,73,77,201,205,209,213,2

17,341,345,349,353,357,481,485.489,49
3,497

GA14356 FOR 1=1 TO 30:READ A:CAPTION(I)=A:NEX
T I

cr 14357 DATA 34,44,53,50,0,0,35,50,47,48,0,0,
38,47,47,44,37,36,46,37,51,51,41,37,0
,0,0,0,0,0

KM14360 RESTORE 14510:SCORE=0:SETCOLOR 1,0,0:
FOR 1=1 TO 21

KG 1 4365 I F I = 2 1 THE N 1 4520
~14370 IF BLUR(I) <> 15 THEN POKE SCREEN+PICTU

RE(I),90:X=0:GOSUB 14500:NEXT I
"14380 IF HAIR(I)=4 AND FRAME(I)<>4 THEN SCO

RE=SCORE+2000:POKE SCREEN+PICTURE(I),
203:X=18:GOSUB 14500:NEXT I

~14390 F=FRAME(I):H=HAIR(I)
H 14400 IF F >3 AND F <> 8 AND F <> 9 AND F< > 10 TH

EN SCORE=SCORE+100:POKE SCREEN+PICTUR
E(I),96:X=6:GOSUB 14500:NEXT I

~ 14420 IF HAIR(I»0 THEN SCORE=SCORE+50:POKE
SCREEN+PICTURE(I),76:X=12~GOSUB 1450

0:NEXT I
M 14440 X=24:GOSUB 14500:NEXT I
BE 14500 SOUND j!1, 12*1,10,7: READ A: FOR 11=1 TO

6:POKE SCREEN+PICTURE(I)+A+II.CAPTION
(II+X):NEXT II .

He 14505 SOUND 0,0,0,0:RETURN :REM Print capti
ons

Mr. 14510 DATA 38,42,46,50,54,38,42,46,50,54,38
,42,46,50,54,38,42,46,50,54, 54:REM Ca
ption locations

0614520 FOR 1=0 TO 6:SETCOLOR 0,5,I:FOR 11=1
TO 8:NEXT II:NEXT I

8014540 FOR 1=0 TO 8:SETCOLOR 3,15,I:FOR 11=1
TO 8:NEXTII:NEXT I

ED 14550 FOR 1=0 TO 10:SETCOLOR 1,12,I:FOR 11=
1 TO 8:NEXT II:NEXT I

PO 14560 RESTORE 14570:FOR 1=0 TO 6:READ A:POK
E SCREEN+632+I,A:NEXT 1

K614570 DATA 51,35,47,50,37,0,29

63

Chapter 2

CP1462~ RESTORE 1464~:FOR 1=1 TO 22:READ A:PO
KE SCREEN+666+I,A:NEXT I

PH1464~ DATA 52,47,~,50,37,48,44,33,57,~,51,4
6,33,48,~,51,4~,53.52,52,37,50

BP14650 IF LENS)1 THEN SCORE=SCORE*10
EA 1466~ ? INT ((4fT IME) *SCORE) ;
~ 1468~ IF STRIG(~)=1 THEN 1468~

NN 1470~ SOUND ~,4,8,15:FOR 1=1 TO 3:NEXT I:SO
UND ~,~,~,0:POKE 53248,~:POKE 53249,0
:POKE 7~4,13~

BA1472~ GRAPHICS 2+16:HORIZ~=116:VERT~=PMBASE

+512+61:HORIZ1=118:VERT1=PMBASE+64~+6

6:POKE 53277,3:POKE 559,46
a 1474~ POKE 53256,3:POKE 53257,3:FOR 1 = 1 TO

2~:POKE VERT0+I,ASC(WIDEFRAME$(I»:NE
XT I:POKE 53248,HORIZ~

NF 1476~ FOR 1=1 TO 2~:POKE VERT1+I,ASC(WIDEHA
IR$(I»:NEXT I:POKE 53249,HORIZ1:GOTO
13~00

64

Chapter 2

Tank
David E. Huff and Douglas C. Huff

With the help of this program, you may well be the first on
your block to drive a tank. A joystick and at least 16K RAM
are required .

You are the commander of a sophisticated Tracking And Neu
tralizing Kar (TANK). Your mission? It's too secret to even
think about-but before you can get started you must cross
enemy territory and pick up vital information from rebel
headquarters .

To get that information, you must navigate your tank
through a treacherous battlefield strewn with mines and coiled
barbed-wire fences-and to make things even more interest
ing, you have to take on hostile enemy MCs (Mobile Crunch
ers) as well as enemy aircraft too.

Taking Control
The obstacle-strewn battlefield scrolls from top to bottom as
you push your joystick forward. Should you touch any object
while threading your way through the minefield, your tank
will be destroyed. In addition, you must keep an eye out for
those Crunchers as they cross the field in an attempt to ram
your tank. You have to blast them, because they cannot be
outrun.

Your tank is blue. It will not appear at the bottom of the
screen until you move your joystick to the left, right, or up.
Enemy Crunchers are red and will attack at random from the
sides of the screen.

There are three sets of five fields each. As the field num
ber increases, more obstacles appear on the battlefield. When
you finish a set of five battlefields, the Crunchers speed up for
the next set.

You start with three tanks, and you get an extra one for
each battlefield you cross. Hitting any object (or being flat
tened by a Cruncher) will cost you one tank, and getting
blown up will cost you any points you have accumulated on
that particular attempt. Once you are destroyed you must start
over at the beginning of the battlefield.

You receive ten points for blasting an enemy Cruncher or
for shooting down an aircraft, but the points are not actually
awarded until you successfully complete a field. When you
run out of tanks press the START key to restart the game.

65

Chapter 2

Hints
When maneuvering your tank, try to stay in the middle of the
battlefield. That gives you more time to turn and aim at the
approaching enemy vehicles. Try to get through tight spots
quickly. If you get caught in a tight spot, you might not be
able to turn and fire on the enemy without hitting an obstacle.

Note that your horizontal speed is greater than your verti
cal speed. This gives you a chance to move away from a mine
before turning and firing at the enemy tank. If you just tap the
joystick, you can flip directions without moving. Remember
that you cannot go backwards, so choose your route carefully.

If you find yourself in a spot where there is no way to
squeeze between two objects, shoot down an airplane. That
will cause your tank to automatically miniaturize and enable
you to squeeze through . But be careful. Your tank will return
to normal size without warning just before the next airplane
starts to cross the field. The time varies . Your tank could re
main small for a long time or jump right back to normal size.
As a general rule, when your tank is miniaturized, don't stay
close to obstacles any longer than you have to.

Collision detection requires an overlap between objects, so
you can get right next to mines without getting destroyed.
Even without being miniaturized, your tank can squeeze
through many tight spots if you are careful.

ML, BASIC, VBI, and Characters
The program uses a combination of machine language and
BASIC to set up the screen, scroll the screen, and move the
players. A vertical blank interrupt routine scrolls the playfield
vertically, and redefined characters are used for the battlefield
objects. A machine language subroutine sets up and moves the
players, detects collisions, and makes the explOSions appear on
the screen. BASIC sets up the battlefields by POKEing charac
ters into screen memory at random locations. BASIC also dis
plays the score and keeps track of the number of tanks left
and the number of playfields traversed.

The main machine language routine is stored as a string
of characters labeled E$. This machine language routine is
relocatable so that it may be stored in string form. Type
PRINT E$ and you will see the characters.

The rest of the machine language code, located on page 6
of memory, is not relocatable. It includes the vertical blank

66

Chapter 2

and explosion subroutines, as well as the data for the player
shapes. The main program uses absolute addressing to access
this player data; thus this data must reside on page 6 in its
proper place. Jump-to-subroutine commands are also used by
the main program to access these page 6 routines. These
routines must always stay at their proper places or they won't
be found by the main program.

There are two USR commands in the program. The one at
line 350 jumps to a machine language subroutine that clears
the screen memory area between playfields. BASIC was too
slow to perform this function without delaying the game
considerably, so the machine language routine was developed
to clear the display memory area quickly and efficiently.

The second USR command jumps to the main machine
language program that moves the players on the screen. This
routine also makes all the sounds of the tanks and checks for
possible collisions between tanks, missiles, planes, and battle
field objects. When a collision is detected, the main program
executes a jump-to-subroutine command to the explosion rou
tine on page 6 of memory.

When you finish a battlefield or your tank is destroyed, the
main machine language program rehlms to BASIC. Then BASIC
will either set up a new battlefield (if one was successfully
completed) or put you back on the same one for another try.

Tank
For error-free program entry, read "The Automatic Proofreader" in Chapter 1 before typing
ill this program.

HD 1 0 REM TAN K
IIA 20 DIM E$ (1117)
HE30 POKE 106,PEEK(106)-16:GRAPHICS 18:SETCOL

OR 4,12,2:SETCOLOR 2,12~2
R40 POSITION 8,5:? #6; "TANK":SETCOLOR 1,0~12

:SETCOLOR 3,3,6
CN50 RAMTOP=PEEK(106):DLLO=PEEK(560):DLHI=PEE

K(561):DMLO=PEEK(88):DMHI=PEEK(89):DL=DL
LO+256*DLHI

C0600CHBASE=256*PEEK(756):CHBASE=RAMTOP*256
1070 FOR 1=0 TO 511:POKE CHBASE+I,PEEK(OCHBAS

E+I):NEXT 1
IIH80 FOR 1=0 TO 63:READ D:POKE CHBASE+8+I,D:N

EXT I:POKE 756,RAMTOP

67

Chapter 2

CK9~ DATA 2,2~1,48,73,74,74,74,49,2,25,1~0,20
2,81,81,82,140,0,0,36,24,24,36,0,0,0,0,4
0,16,4~,~,~,~

06 1 ~ 0 D A T A 0, ~ , 0, 1 6 , 56, 1 6 , 0 , 0 , 0 , 56 , 68 , 84 , 68 , 5
6,~,0,255,129,129,153,153,129,129,255,1

6,40,84,170,84,40,16,0
IT110 REM PAGE 6 ROUTINES
K6120 FOR 1=1539 TO 1747:READ D:POKE I,D:NEXT

I
IC130 DATA 173,120,2,201,14,208,30,173,0,6,20

1,5!21,240,23,206,2,6,208, 18, 169,2, 141,2,
6,206

NO 1 4 0 D A TAl , 6, 1 73, 1 , 6 , 20 1 , 255 , 240 , 6, 1 4 1 , 5 , 2 1
2,76,98,228,238,0,6,169,15,141,1,6,141,
5

W 150 DATA 212,160,0,177,203,56,216,233,20,14
5,203,160,1,177,203,233,0,145,203,76,40
,b,~~2S2,252

OK 160 DATA 120,120,124,124,126,127,126,124,12
4,120,120,252,252,O,0,0,63,63,30,30,62,
62,126,254 ,126

.170 DATA 62,62,30,30,63,63,0,0,0,16,16,16,5
6,56,186,186,254,254,254,254,254,254,25
4,254,130

NP 180 DATA 130,0,60,24,24,152,216,254,255,254
,216,152 , 24,24,60,0,0,8,16,74,34,72,68,
16,197

HL 190 DATA 16,4,162,20,69,18,72,18,8,0,160,18
,185,144,6,145,205,136,208,248,142,242,
6,162,100

CH200 DATA 160,255,136,208,253,142,6,210,202,
208,245,169,1,141,30,208,169,0,160,18,1
45,205,136,208,251

HN210 DATA 173,242,6,133,205,238,250,6,96
6F300 PMBASE=(RAMTOP+8}*256:VP0=PMBASE+1024:S

M=PMBASE+239
KY. 310 GOSUB 600
"" 325 REM RESTART HERE
86330 POKE 1786,0:DIF=2:POKE 1777,DIF:POKE 17

75,DIF:E=2:DEN=15:FN=1:TN=2
10350 CLEAR=USR(ADR(E$} ,256*(RAMT OP+4}}
Y.K355 REM SET UP PLAYFIELD
"F360 E=E+1:1F E=8 THEN E=3:DEN=20:DIF=DIF-1:

IF DIF<0 THEN DIF=0
H6370 TN=TN+1:DEN=DEN+5:POKE 1777,DIF:POKE 17

75,DIF
Y.Y.380 FOR 1=2 TO 50:POKE SM-I*20,68:POKE SM-I

*20+1,68:NEXT I
AN39~ FOR 1=0 TO DEN:SOUND 0,240,10,9:R=INT(R

ND(0}*950)+40:R1=INT(RND(0)*950)+40

68

Chapter 2

KD400 POKE SM-R,E+192:POKE SM-Rl,E+65:S0UND 0
,0,0,0:NEXT I

P0410 FOR 1=1 TO 15:R=INT(RND(0)*950)+40:S0UN
D 1,12*I,10,10:POKE SM-R,I:POKE SM-R+l,
2:NEXT I:SOUND 1,0,0,0

E1420 POKE SM-15,50:POKE SM-16,33:POKE SM-14,
52:POKE SM-17,52:POKE SM-18,51

PF430 POKE SM-1099,38:POKE SM-1098,41:POKE SM
-1097,46:POKE SM-1096,41:POKE SM-1095,5
I:POKE SM-1094,40

W440 POSITION 1,1:7 #6;"{24 SPACES}":REM 23 S
PACES

JL 450 POSITION 1,1: 7 #6; "SCORE "; 10*PEEK (1786
):POSITION 14,1:7 #6;"TANKS ";TN

B0500 D=USR(ADR(E$)+24,DL+7,VP0,PMBASE,SM-239
)

HO 510

NS 520
BK 530
AS 540

CD 550

II 560

DP 570
C1580
SN 590
FA 595
AN 600

LD 610

LL 620

iL 631/:1

EO 640

HE 650

DO 660

SOUND 2,0,0,0:S0UND 3,0,0,0:S0UND 1,0,0
,0:S0UND 0,0,0,0
IF PEEK(1536)=50 THEN 550
TN=TN-l:IF TN=0 THEN 570
POSITION 14,1:7 #6; "TANKS ";TN;" ":GOTO

500
FN=FN+l:POSITION 14,1:7 #6;" FIELD ";FN
:IF FN=16 THEN 595
POSITION 1,1:7 #6;"SCORE ";10*PEEK(1786
) : GOTO 350
POSITION 14,1:7 #6; "PRESS START"
IF PEEK(53279)<>6 THEN 580
GOTO 330
POSITION 15,1:7 #6;"A WINNER":GOTO 580
FOR 1=1 TO 1117:READ D:E$(I)=CHR$(D):NE
XT I
DATA 104,104,133,204,104,133,203,169,0,
162,14,160,0,145,203,136,208,251,230,20
4,202,208,246,96
DATA 104,104,133,204,104,133,203,104,13
3,206,104,133,205,104,141,255,6,104,104
,160, I, 145,203,104,160
DATA 0,145,203,1.69,0,141,5,212,141,0,6,
141,1,6,169,2,141,2,6,160,3,162,6,169,7
~32,92,22B

DATA 169,0,141,12,208,169,62,141,47,2,1
69,3,141,29,208,173,255,6,141,7,212,169
,1,141.8
DATA 208,141,9,208,141,10,208,141,11,20
8,169,116,141,192,2,169,38,141,193,2,16
9~52,141, 194,2
DATA 169,52,141,195,2,72,104,169,0,133,
205,133,207,141,144,6,165,206,56,233,1,
133,208,169,0

69

Chapter 2

AK 670 DATA 141,249,6, 141, 1,208, 141,2, 2~18, 141,
244,6, 141,252,6, 141,247,6, 141,253,6, 169
,255,141,243

DN680 DATA 6,141,3,208,141,30,21218,169,6,141,2
37,6,160,0,169,0,145,21217,145,21215,136,2121
8,249,23121,206

LI690 DATA 238,144,6,173,144,6,21211,4,208,233,
198,206,198,206,198,206,198,206,169,201
,133,205,169,100,141

KL 7 ° 0 D A T A 254, 6, 1 4 1 , 0 , 2 121 8, 1 7 3, 1 2121 , 2 , 2 121 1 , 1 5 , 2
40,25,169,255,141,0,210,169,40,141,1,21
O,173,12121,2

FP 7 1 ° D A T A 20 1 , 7 , 2 4 0, 1 1 , 2 ° 1 , 1 1 , 24 ° , 4 3 , 2 0 1 , 1 4 ,
240,78,24,144,70,169,1,141,253,6,160,18
,185,74,6

~720 DATA 145,205,136,208,248,173,254,6,21211,
190,240,231,238,254,6,173,254,6,141,121,2
08,24,144,36,240

L1730 DATA 185,169,2,141,253,6,160,18,185,92,
6,145,205,136,208,248 ,173,254,6,201,50,
240,195,206,254

~740 DATA 6,173,254,6,141,0,208,24,144,0,24,
144,19,240,215,169,3,141,253,6,160,19,1
85,110 ,6

LA750 DATA 145,205,136,208,248,240,0,173,252,
6,201,0,240,12,201,1,240,69,201,2,240,8
3,201,3,240

HB760 DATA 59,173,132,2,201,0,240,4,208,88,24
0,207,173,253,6,141,252,6,169,50,141,14
3,6,141,4

AA770 DATA 210,169,200,141,5,210,173,254,6,24
,109,237,6,141,251,6,141,4,208,165,205,
24,105,9,133

AP780 DATA 207,169,3,160,0,145,207,24,144,178
,240,41,238,251,6,238,251,6,173,251,6,1
41,4,208,201

FB790 DATA 192,16,49,48,59,206,251,6,206,251,
6,173,251,6,141,4,208,21211,60,48,31,16,4
1,24,144

06800 DATA 85,240,163 ,169,121,160,121,145,207,169
,3,198,207,198,207 , 198,207,145,207,165,
207,201,42,240,2

D"810 DATA 208,12,169,0,160,0,145,207,141,252
,6,24,144,47,173,8,208,201,2,16,4,48,38
,240,207

NA820 DATA 169,0,160,0,145,21217,141,252,6,169,
47,141,7,210,169,136,141,6,210,173,8,20
8,201,3,240

70

Chapter 2

NA830 DATA 13.201,5,240,36,201,9,240,48,208,0
,24,144,67,166,205,173,246,6,133,205,23
0,206,169,0

BF840 DATA 141,8,208,169,3,141,237,6,32,163,6
,198,206,24,144,38,230,206,230.206,166,
205,32,163,6

LK850 DATA 198,206,198,206,24,144,95,230,206,
230,206,230,206,166,205,32,163,6,198,20
6,198,206,198,206,24

PE860 DATA 144,96,240,150,144,94,173,247,6,41
,1,208,66,173,10,210,201, 1,240,2, 2l1f8, 11
2,173,10,210

NK870 DATA 201,100,16,2,48,103,238,247,6,230,
206,166,205,169,1,141,8,208,169,6,141,2
37,6,173,10

EB880 DATA 210,201,30,48,249,133,205,141,246,
6,160,13,185,129,6,145,205,136,208,248,
134,205,198,206,24

LJ890 DATA 144,57,144,85,174,249,6,232,224,22
5,176,13,142.249,6,142,1,208,24,144,38,
240,160,144,127

DN900 DATA 206,247,6,166,205,173.246,6,133,20
5,230,206,169,0,141,249,6,141,1,208,141
,246,6,160,17

PP910 DATA 145,205,136,208,251,134,205,198,20
6,234,173,240,6,201,0,208,24,173,241,6,
141,240,6,173,247

FH920 DATA 6,41,2,208,55,173,10,210,201,2,240
,10,208,79,144,63,206,240,6,24,144,71,1
73,10,210

EK930 DATA 201,125,16,2,48,62,238,247,6,238,2
47,6,230,206,230,206,160,18,185,74,6,14
5,205,136,208

~940 DATA 248,198,206,198,206,24,144,35,240,
142,174,244,6,232,224,230,176,11,142,24
4,6,142,2,208,24

KE950 DATA 144,16,144,114,169,0,141,244,6,141
,2,208,206,247,6,206,247,6,173,238,6,20
1,0,208,22

EN960 DATA 173,239,6,141,238,6,173,247,6,41,4
,208,63,173,10,210,201,3,240,8,208,91,2
06,238,6

m970 DATA 24,144,85,173,10,210,201,225,16,2,
48,76,238,247,6,238,247,6,238,247,6,238
,247,6,230

L0980 DATA 206,230,206,230,206,160,18,185,92,
6,145,205,136,208,248,198,206,198,206,1
98,206,24,144,39,240

71

Chapter 2

~99~ DATA 138,174,243,6,202 , 224 , 40,144,9,142
,243,6,142,3,208,24,144,20,169,225,141,
243,6,141,3

~1~~0 DATA 208,206 . 247,6,206,247,6~206,247,6

,206,247,6,173,12,208,201,0,208,23,173
,4,208,201,0

801010 DATA 208,16,173,14,208,201,0,208,9,173
,15,208,201,0,208,2,240,36,169,207,141
,3,210,169 , 102

~1020 DATA 141,2,210,166,205~32,163"6,162,0,

160,255,136,209,253,202,208,248,169,0,
141,3,210,206,250

HC1030 DATA 6,96 , 240,151,162,7 , 160 , 255,136,20
8,253,202,208,248,169,0,141,8,210,238,
143,6,173,143,6

8"1040 DATA 141,4,210,160 , 255,136,208,253,173
,143,6,201,255,208,5,169,0,141,5,210,1
69,0,141,1,210

~1~50 DATA 141,7,210,173,0,6,201,50,240,4,16
9,0,240,194,96

OC1100 REM DISPLAY LIST DATA
JP1110 FOR 1=0 TO 21:READ D:POKE DL+I,D:NEXT

I
EJ 1120 POKE DL+8,PMBASE/256:POKE DL+4,DMLO+20

:POKE DL+5,DMHI:POKE DL+22,DLLO:POKE D
L+23,DLHI:RETURN

ON 1130 DATA 112,112,112,66,0,0,103,0,0,39,39 9

39,39,39,39,39,39 , 39,39,39,7,65

72

Chapter 2

Dots
Eric Soper

"Dots" is a computer version of the popular pencil-and
paper strategy game that kids play. It's designed for two
players: joysticks are required.

If you haven't played dots before, you will probably think
there isn't much to the game. The rules are few and simple.
Two players take turns drawing horizontal or vertical lines be
tween two adjacent dots on the playing field. The object of the
game is to close off more boxes than your opponent. When
you close a box, it's identified with your color. Sound simple?
It is. But there is a lot of strategy involved. Toward the end of
the game, a wrong move may cost you the game.

You have to be careful not to draw the third of four lines
needed to complete a particular box, because your opponent
can then win that box by drawing the final line . Sooner or
later, you will have to give away boxes because there will be
no more free space available.

Whenever a player closes a box, he goes again. That
makes it possible to win several boxes in one turn. Toward the
end of the game, when there are no free spaces left, it's im
portant to choose lines that will give your opponent the fewes t
boxes. But you must be careful, because giving the fewest is
not necessarily the best.

How Big?
The program requires about 8K to load and from 10K to 12K
to run, depending on the dimensions of the playing field. It
also requires two joysticks.

When you run the program, you will be asked to supply
the horizontal and vertical dimensions of the playing field.
The smallest either dimension can be is 5; the largest is 20. A
5 X 5 board (16 boxes) will take only a few minutes to play,
while a 20 X 20 board (361 boxes) may require an hour or
two. A good-sized board is 10 X 10 (81 boxes) or 12 X 12
(121 boxes). The dimensions do not have to be the same, al
though it is usually preferred.

After dimensions have been specified, the program draws
the board and puts a text window at the bottom of the screen .
The information in the window gives each player's score and
the number of remaining boxes. An asterisk will indicate each
player's turn.

73

Chapter 2

Assume you're player 1 and that it's your turn. Press your
fire button; the text window disappears and the screen colors
change. One of the dots will be white; that's the cursor dot.
Push your joystick and the cursor dot will move left-right or
up-down.

Move the cursor to one end of the line you want to draw.
Press your fire button and the cursor will turn red, indicating
that you are ready to make your move. With the cursor red,
push your joystick in the direction you wish the line to be
drawn, relative to the cursor. If you decide not to draw from
that point, press your button again and the cursor will turn
white once more.

When you draw the line, a sound will be heard. If you try
to draw your line over another line or off the playing field, a
buzzer will sound and you can try again. When you close a
box, it will fill in with your color. Player 1 's boxes will be
white, while player 2's boxes will be red.

After every move, the text window will reappear. Remem
ber, if you have just gained a box, it will still be your turn.

At the end of the game the final scores are displayed,
with flashing stars surrounding the winner's score. If it is a tie
game, both scores will be surrounded. If you want to play
again, press the START button.

Dots
For error-free program elltry, read "The Alitolllatic Proofreader" ill Chapter 1 before typi l'/g
ill this program.

tiE 1 0 ? "{ C LEA R]- " : PO SIT ION 1 6 • 8 :? " DOT S .. : PO SIT
ION 2.14:? "WHAT ARE THE MAXIMUM DIMENSI
ONS{2 TAB]-(5.5)-(20.20)";:INPUT XM.YM

~20 IF XM<5 OR XM } 20 OR YM < 5 OR YM } 20 THEN 1
o

G~ 30 0 I M A $ (4) • P (X M • Y M) • S (1)
PG40 FOR 1=0 TO XM:FOR J=0 TO YM:P(I.J)=0:NEX

T J:NEXT 1
EH 5 0 X Ql = 1 NT (8 0 / (X M + 1)) : Y 0 = 1 NT (4 8 / (Y M + 1)) : T 0 = (

XM-l)*(YM-l)
EB60 XS=(80-XM*X0+X0)/2-X0-1:YS=(48-YM*Y0+Y0)

/2-Y0-1
M70 GRAPHICS 21:SETCOLOR 0,0.0:SETCOLOR 1.0.

14:SETCOLOR 4.7.4
HJ80 COLOR I:FOR X=1 TO XM:FOR Y=l TO YM
Dr. 90 PLOT X*X0+XS.Y*Y0+YS:NEXT Y:NEXT X
~ 100 COLOR 2:PLOT X0+XS.Y0+YS:COLOR I:X=0:Y=

0:S=0:T=0:S(Ql)=0:S(1)=0

74

Chapter 2

Wll~ GRAPHICS 37:POKE 752,I:IF S=0 THEN? "*
PLAYER 1 HAS ";S(0):7 " PLAYER 2 HAS ";
S (1) : GOTO 130

NB 1 2 ~ ? " P LAY E R 1 HAS "; S (0) : 7 "* P LAY E R 2 H A
S ";S(I)

GO 1 3 ~ ? :? " BOX E S REM A I N I N G = "; T £1- T ;
JC 1 35 PO K E 77, 0
IOI4~J IF STRIG(S)=l THEN 140
1M 145 IF STRIG (S) =0 THEN 145
EO 150 ? :GRAPHICS 53:SETCOLOR 0,0,0:SETCOLOR

1,~,14:SETCOLOR 2,3,8:SETCOLOR 4,7,4
A0155 COLOR 2:PLOT (X+l)*X0+XS, (Y+l>*Y0+YS
PF 1 60 M = S TIC I< (S > : X 1 = X : Y 1 = Y
16 17~ IF STRIG(S>=0 THEN 330
W180 IF M<> 14 THEN 210
W190 Y=Y-l:IF Y < 0 THEN Y=YM-l
66200 GOTO 290
OF 210 IF M<) 7 THEN 240
00 220 X = X + 1 : I F X)- X M - 1 THE N X = 0
6J 230 GOTO 290
BI 240 I F M <)- 1 3 THE N 270
DL 250 Y=Y+l: IF Y)- YM-l THEN Y=0
GM 260 GOTO 290
BH 27~ IF M<)- 11 THEN 16{!J
DJ 280 X = X-I : I F X < "" THE N X = X M - 1
CL 2 90S 0 U N D 0, 1 0 0, 1 0, 1 III
6H 300 COL 0 R 1: P LOT (X 1 + 1 > * x 0 + x S, (Y 1 + 1) * Y 0 + Y S
AH 3 1 0 COL 0 R 2: P LOT (X + 1 > * x 0 + x S, (Y + 1 > * Y 0 + Y S
~320 SOUND 0,0,0,0:FOR 1=1 TO 30:NEXT I
IE 321 IF STRIG (S> =0 THEN 321
GH 322 GOTO 160
pr. 330 SOUND 0,50,10,10
AL340 COLOR 3:PLOT (X+l>*X0+XS, (Y+l>*Y0+YS
6F 350 SOUND 0, ~, 0, ~J
1r.360 IF STRIG(S>=0 THEN 36~
PI 370 M=STICK(S>:X=Xl:Y=Yl
IH380 IF STRIG(S>=0 THEN 31""
BM 39"" I F M < > 1 4 THE N 420
*400 Y=Y-l:IF Y < 0 THEN 510
FE410 C=4:GOTO 53""
OL 420 IF M< > 7 THEN 45""
AH 430 X = X + 1 : I F X)- X M - 1 THE N 5 1 0
F6440 C=3: GOTO 530
BO 45"" IF M<)- 13 THEN 48""
AO 460 Y = Y + 1 : I F Y)- Y M - 1 THE N 5 1 0
F147"" C=2:GOTO 530
BN 480 I F M <)- liT HEN 3 7 ~
Dr. 490 X = X-I: I F X': "" THE N 5 1 0
FB 500 C= 1: GOTO 530

75

Chapter 2

ND51~ SOUND ~.6~ ,12,1~: FOR 1=1 TO 2~~:NEXT I:
SOUND ~.~,~.~

Gy. 52~ GOTO 37~
~53~ A$="~0~~":A$(5-LEN(STR$(INT(P(Xl,Yl»»

,4) =STR$(INT(P(Xl,Yl»)
AH54~ IF A$(C,C)="I" THEN 51~
~55~ A$(C,C)="I":P(X l,Yl) =VAL(A$)
~56~ IF C<3 THEN C=2-C:GOTO 58~
tiC 57~ C=6-C
PJ 58~ P (X, Y) =P (X, Y) + I NT (1 ~-"C+~. 1)
tl659~ COLOR I:PLOT (Xl+1)*X~+XS, (Yl+l)*Y0+YS:

DRAWTO (X+l) *X0+XS, (Y+l) *Y~+YS
AF6~~ FOR I=I~~ TO ~ STEP -5
HJ61~ SOUND ~,I,2,1~:NEXT I:SOUND ~,0,0,0
PG 6 2 ~ B = 0: I F X = X 1 THE N 7 2 ~
LY. 63~ IF Y=~ THEN 67fi.J
CH64~ K=~:C=4:ZX=Xl:ZY=Yl:GOSUB 81~:ZX=X:ZY=Y

:GOSUB 81~:IF Xl<X THEN C=3:GOTO 660
Ell 65~ C= 1
DD66~ ZX=Xl:ZY=Yl-1:GOSUB 81~:IF K=3 THEN C=1

:GOSUB 84~
FL 6 7~ IF Y=YM THEN 1030
CE6B~ K=~:C=2:ZX=Xl:ZY=Yl:GOSUB 810:ZX=X:ZY=Y

:GOSUB 81~:IF Xl<X THEN C=3:GOTO 7~0
FA 690 C=1
CN70~ ZX=Xl:ZY=Yl+1:GOSUB 810:IF K=3 THEN C=2

:GOSUB 84~
JF 71~ GOTO 1030
LJ 720 IF X=0 THEN 760
CF730 K=0:C=I:ZX=Xl:ZY=Yl : GOSUB 810:ZX=X:ZY=Y

:GOSUB 810:IF Yl<Y THEN C=2:GOTO 750
EP 74~ C=4
DF750 ZX=Xl-1:ZY=Yl:GOSUB 810:IF K=3 THEN C=3

:GOSUB 84~
FJ 760 IF X=XM THEN 103~

CP770 K=0:C=3:ZX=Xl:ZY=Yl:GOSUB 810:ZX=X:ZY=Y
:GOSUB 810:IF Yl<Y THEN C=2:GOTO 79~

FD 78~ C=4
D179~ ZX=Xl+1:ZY=Yl:GOSUB 81~ : IF K=3 THEN C=4

:GOSUB 840
JF 8~0 GOTO 1030
~81~ A$="~00~":A$(5-LEN(STR$(INT(P(ZX,ZY»»

,4)=STR$(INT(P(ZX,ZY»)
Y.B 820 IF A$ (C, C) =" 1" THEN I< = K+l
HL 830 RETURN
NIB40 B=I:S(S)=S(S)+ I:T=T+l:COLOR S+2:POKE 76

5,9+2
FAB5~ FOR 1=0 TO 200 STEP 10:S0UND 0,I,10,1~:

NEXT I

76

Chapter 2

H0860 FOR 1 =200 TO 0 STEP -10:S0UND 0,1,10,10
:NEXT I

LD870 ON C GOTO 880,910,940,970
AD880 IF Xl<X THEN Z=Xl+1:GOTO 900
OK 890 Z=X+l
L6900 PX=Z * X0+XS+l:PY=Y*Y0+YS+l:PLOT PX,PY:PO

SITION PX, (Y+l)*Y0+YS-l:GOTO 1000
AA910 IF Xl<X THEN Z=Xl+1:GOTO 930
06 920 Z=X+1
6H930 PX=Z *X0+XS+1:PY=(Y+l)*Y0+YS+l:PL OT PX,P

Y:POSITION PX, (Y+2) *Y0+YS-l :G OTO 1000
AJ 940 IF Y1<Y THEN Z=Y1+1: GOTO 960
OK 950 Z=Y+ 1
LK960 PX=X*X0+XS+1:PY=Z*Y0+YS+1:PLOT PX,PY:PO

SITION PX, (Z+1>*Y0+YS-1:GOTO 1000
~970 IF Y1<Y THEN Z=Y1+1:GOTO 990
ON 980 Z=Y+ 1
DI990 PX=(X+1)*X0+XS+1:PY=Z * Y0+YS+1:PLOT PX,P

Y:POSITION PX, (Z+1) *Y0+YS-1
~ 1000 XIO 18,#6,0,0,"S":PLOT PX,PY:DRAWTO PX

+X0-2,PY
U 1010 IF T0-T=0 THEN 1060
KD 1020 RETURN
KE 1030 IF B=1 THEN 110
JJ 1040 5= NOT 5
JB 1050 GOTO 110
IB 1060 GRAPHICS 18
LC 1 070 REA D N, T
DD 1 080 I F N = - 1 THE N 1 1 1 0
~1090 SOUND 0,N,10 ,1 0:S0UND 1,N+2,10,10:S0UN

D 2,N+4,10,10
M1100 FOR 1=1 TO 20*T:NEXT I:GOTO 1070
KB 1110 SOUND 0 , 0,0,0:S0UND 1,0,0,0: S0UND 2,0,

0 ,0
BK 1120 POSITION 3,1:? #6; "final score is"
AH 1130 POS I T I ON 2,5:? #6;" PLAYER 1 HAS "; 5 (0)
AN 1140 POSITION 2,8:? # 6; "PLAYER 2 HAS"; 5 (1)
• 1150 IF 5(0»=5(1) THEN P=5:GOSUB 1220
~1160 IF 5(0)(=5 (1) THEN P=8:GOSUB 1220
80 1170 FOR 1=1 TO 50:IF PEEK(532 79}=6 THEN 12

10
W1180 NEXT I:SETCOLOR 2 , 0,0
~1190 FOR 1=1 TO 50:IF PEEK(53279} = 6 THEN 12

10
~1200 NEXT I:SETCOLOR 2,~,4:GOTO 1170
JO 1210 CLR :RESTORE 3130:GOT O 10
DD 1220 POS 1 T I ON 0, P-1 :? #6; .. B ••••••••• SS.S ••• ,

GDD":POSITION 0,P:? #6;"0"

77

Chapter 2

~1230 POSITION 19,P:? #6;"O":POSITION 0,P+l:
? #6;"

KH 1240 RETURN
j; t j; ·t .f< ' f< f< t f< + t< t j; j; .t t j; + t +

6E2075 FOR 1=1 TO 300:NEXT I
6C 3 1 30 D A TAl 62, 1 , 1 4 4 , 1 , 1 2 8, 1 , 1 4 4 , 2, 1 2 8, 1 , 1 6 2

,3,81,3,-1,0

78

Chapter 2

Reversi
Jose R. Suarez

"What's this?" you say. "Not another Reversi program!"
Yes, it is-but this one features full-color graphics, p laying
chips that flip over right before your eyes, replay options,
and a computer opponent that will truly make you think.
The program requires 24K memory, 32K if you use a disk
drive.

"Reversi" is played on an 8 X 8 grid. The playing pieces are
two-sided disks, black on one side and white on the other. Ini
tially, four pieces are placed on the four center squares, two
showing black and two showing white, in an X pattern. Black
starts, and the object is to capture as many of the other play
er's pieces as possible.

You do this by bracketing one or more of your opponent's
chips with your chips, and then flipping them over to your
color. This can be done in any direction-vertically, hori
zontally, or diagonally.

A move is legal only if it flips one or more of the other
player's pieces. If you have no legal moves, you must pass .
The game ends when the board is full or when no more
moves are possible. At that time, the player with the most
pieces wins.

Joysticks or Keyboard?
Before displaying the game board, the program asks if you
want to use joysticks or the keyboard to enter moves. Joysticks
(plugged into ports 1 and 2) are the better choice, especially
for a two-player game. But for keyboard fans, traditional row
column entry is also available.

If you opt for the keyboard, enter a letter and a number
for each move. You may enter either the letter or the number
first; the computer will figure out what you mean. To pass,
enter the letter P instead of coordinates.

With joysticks, move the cross-shaped cursor to the
square you want to capture; then press the trigger. To pass,
move the cursor over the word PASS (at the right side of the
board) and press the trigger. The black pieces are always
moved by the joystick in port 1; the white pieces are always
moved by the stick in port 2. Remember this when playing
against the computer.

79

Chapter 2

One or Two Players
Once you select your preferred entry method, there is a short
wait while the computer initializes the game board. When the
board appears, press SELECT to choose a one- or two-player
game, and use the OPTION key to toggle the color of the
computer's pieces. Press START to begin the game.

The computer acts as referee and piece-flipper whether
you play against it or against another player. It does not allow
illegal moves or passes. After a game is completed, the totals
are displayed, and the winner declared.

You may then review the game just played by engaging
one of the two replay options. AUTOMATIC REPLAY shows
you the game over, move by move; just sit back and watch as
it develops. MANUAL REPLAY does much the same thing,
except that after each move the computer will pause until you
press the trigger (if using joysticks) or a key (if using the key
board). To choose a replay option, press SELECT to cycle
through the choices until you reach the option you want.
Then press START. These functions should help you locate
poor moves and improve your game; you can review the game
as many times as you desire .

Setting Things Up
The program begins with a jump to line 14000. Lines 14000-
14030 initialize the important variables and tie together all the
initialization subroutines. Lines 9000-9110 are the title dis
play, and lines 9500-9600 display the 10- or 14-second board
preparation message.

Lines 1000-1140 then move and modify the character set.
Take a look at the expression in line 1005 . Variable FAC is set
to 0 if you chose the keyboard and to 255 if you chose joy
sticks. This means that the character set is moved in comple
mentary form (inverse video) if you choose joysticks. This
unorthodox font permits some interesting and pleasing graphics.

If joysticks are selected, then player/missile graphics are
handled next at lines 2500-2540 . All four players and one
missile are used. Player 0 is the cursor. Player 1 is the word
PASS mapped directly from the character generator. Player 2
is the blue field. Player 3 and missile 3 border the playfield so
that no green background shows except on the board.

The board is sent to the screen by lines 15000-15100. All
the characters embedded in those lines were redefined with

80

Chapter 2

box-making control characters normally unavailable in
GRAPHICS 1 and 2. They form a nice grid when printed out.
Lines 15060-15070 print the coordinate system for the key
board user.

With initialization completed, control passes to lines
8540- 8670 where the console keys are read and the selected
options displayed. Once the player presses START, the main
loop at lines 8000-8430 takes over. This master loop has con
trol over each full game. It calls the scanning and piece
flipping module (1600-1720); the large network of
computer-intelligence subroutines (3300-5420); the animation
subroutine (6990-6995); score keeping and move storing
(3000-3150); illegal-move correction (7100-7130); and mes
sage printing (7200-7220).

Artificial Intelligence
You will find that the computer is a challenging opponent.
The game board is kept internally as array TBL. The computer
assigns a strategic value to each square on the board, and it
keeps those values in array STR. They are not static values,
however, for they change as the game progresses. The value
of a prospective move is based largely on the dynamic value
of the square, and (to a much smaller degree) on the number
of pieces flipped. Corners and edges have the highest values,
while the adjacent squares forming a bridge to these have the
lowest values.

The computer is very careful when moves are made on
the edges, calling special subroutines to handle them. The
value of the number of pieces flipped jumps drastically during
the last few moves of the game-and that's when many games
are won or lost.

Flipping the pieces smoothly adds to the attractiveness of
the display and is quite simply done . Take a look at line
15010. ANIM$ is filled wi th a series of control characters.
These characters have been redefined so that each is a frame
of the flipping action. The characters so reshaped are now
ellipsoids with progressively shorter minor axes-two of them
are just horizontal lines. When these characters are printed out
rapidly at the same screen location, they make a little movie of
a flipping chip. Color switching is accomplished by using the
inverse-video incarnations of the same characters.

81

Chapter 2

Reversi
For error-free progral1l elltry, read ''The Automatic Proofreader" ill Chapter 1 liefore typillg
ill this progral1l.

IP 10 GOTO 1411100
~ 1000 POKE 106,PEEKCI06} - C4:GRAPHICS 17:POKE

53774,11 2: POKE 16,64:GOSUB 9500:I=(PE
EKCI136}+C2}*256

00 10135 FOR J=O TO 511:POKE I +J, ABS(FAC-PEEK(5
7344+J}}:NEXT J

ED 10113 SET= I: GOSUB 960ill: TRAP 113ill: RESTORE 101
13/l1

EI 1020 READ LIST1, LIST2: FOR J=O TO C7: BYTE=PE
EKCLIST1+J+57344}:POKE LIST2+J+I , BYTE:
NEXT J: GOTO 1 ill 2 III

~ 11313 RESTORE 10110:FOR J=O TO C7:READ BYTE:
POKE 8@+J+I,BYTE:READ BYTE:POKE C8+J+I
,BYTE:POKE 480+J+I,0:NEXT J

~ 11413 FOR K=Cl TO C5:READ LISTl:FOR J=O TO C
7:READ BYTE:POKE LIST1+J+I,BYTE:NEXT J
: NEXT 1<: RETURN

JC 1600 FLIP=0:OFF=C9*CNOW=Cl}:FOR VD=-Cl TO C
I:FOR HD=-Cl TO Cl:IF VD=O AND HD=O TH
EN NEXT HD

00 16113 TRAP 1720:X=J:Y=I:DX=X:DY=Y:CFL=0
GC 16313 IF TBLCY+VD,X+HD)=OTHER THEN CFL=Cl:X=

X+HD:Y=Y+VD:GOTO 1630
LE 1640 TRAP 4@0@0:IF TBLCY+VD,X+HD} <> NOW OR C

FL=O THEN 172ill
L~ 16713 IF PASS=Cl THEN FLIP=Cl:POP :POP :RETU

RN
CH168@ DX=DX+HD:DY=DY+VD:TBL (DY, DX)=NOW:FOR L

00P=Cl+0FF TO C9+0FF:K =C I / CI/CI
IF 16913 POSITION DX*C2+C 2, DY*C 2+ C2:? #S;ANIM$(

LOOP,LOOP):NEXT LOOP :SO UND 0,60,12,C8:
FLIP=FLIP+Cl

FH 1 7 III 13 SOU N DO, 0 , 0 , 0: I FO X <: > X 0 R D Y <: :> Y THE N 1
6813

Me 1720 NEXT HD:NE XT VD:RETURN
~ 17413 FOR I=C2 TO 16 STEP C2:POSITION C2,I:?

#S;"~~""""""'''''''''':NEXT I
M 17513 NOW=Cl:0THER=C2:PL1$="CJ}black{,}move

{Z}": PL2$=1I {~}m31lie{ .. }~{~}"
~ 1752 RESTORE 100 00:FOR 1=0 TO C3:FOR J=O TO

C3:READ K:STR(I,J)=K:STR(C7-I,J)=K:ST
RCI,C7-J)= K: STR(C7 - I,C 7 -J)=K

Et: 1754 TBL (I, J) =0 : TBL C C7- I , J) =0: TBL (I, C7-J) =0
:TBL(C7-I,C7-J)=0:NE XT J:NEXT I:HOR=C4
:VER=C4

82

Chapter 2

LP 1760 POSITION C8, C8:? #5;" {~}p;j{J}": POSITION
C 8, 1 QI :? # 5; .. {J } !';i {~} " : B 5 C R = C 2 : W 5 C R = C 2

~ 1770 TBL(C3,C3)=OTHER:TBL(C4,C4)=OTHER:TBL(
C3,C4)=NOW:TBL(C4,C3)=NOW:RETURN

IL 2000 RESTORE 10200:FOR 1=0 TO Cl:FOR J=C5 T
o 15:READ K:DELTA(J, I)=K:NEXT J:NEXT I
:RETURN

~2500 PMBASE=PEEK(106)-C8:POKE 54279,PMBASE:
POKE 53277,C3:P0=PMBASE*256+512:Pl=P0+
128:P2=Pl+128:P3=P2+128

@2510 MIS=P0-128:POKE 559,46:K=39:POKE 623,C
2: RESTORE 253!Z1

EG2520 FOR I=Cl TO C4:READ LIST1:FOR J=O TO 5
:POKE J+Pl+K,PEEK(57344+LIST1+J':NEXT
J:K=K+C7:NEXT I:POKE 53258,Cl

~2530 DATA 384,264,408,408
JF2540 FOR 1=38 TO 69:POKE P2+I,255:NEXT I:FO

R 1=0 TO 119:POKE P3+I,255:POKE MIS+I,
192:NEXT I:POKE 53260, 192:RETURN

~2600 FLIP=O:FOR VD=-Cl TO Cl:FOR HD=-Cl TO
Cl:IF VD=O AND HD=O THEN NEXT HD

DF2610 TRAP 2650:X=J:Y=I:FL=0:CFL=FL
G62630 IF TBL(Y+VD,X+HD'=OTHER THEN X=X+HD:Y =

Y+VD:FL=FL+Cl:GOSUB 2660:GOTO 2630
FA2640 TRAP 40000:IF TBL(Y+VD,X+HD'=NOW THEN

FLIP=FLIP+FL:IF CFL THEN DFL=Cl
MF2650 NEXT HD:NEXT VD:RETURN
DF2660 IF STR(Y,X'=-200 THEN CFL=Cl
KP 267 0 RET URN
~3000 SFL=O:IF NOW=Cl THEN BSCR=BSCR+FLIP+Cl

:WSCR=WSCR - FLIP:GOTO 3145
JH3010 WSCR=WSCR+FLIP+Cl:BSCR=BSCR-FLIP
CA3145 IF BSCR=O OR WSCR=O OR BSCR+WSCR=64 TH

EN SFL=C2
BJ3150 GAME(M'=I+J/CI0:M=M+Cl:RETURN

#iW:'I!lII:li. it: trw:1: 3'"
{3 ,.-"t:Z:ti3~""} It ;

003203 FLIP=O:FOR 1=0 TO C7:FOR J=O TO C7:IF
TBL(I,J'=O THEN GOSUB 1600

~3205 IF FLIP}O THEN POP :POP :PASS=O:GOSUB
7220:GOSUB 3220:GOTO MAINLOOP

JD3210 NEXT J:NEXT I:PASS=O:GOSUB 7220
AE 32 1 2 POI< E 705, 42 : LIN E $ = " {8 5 PAC E 5 } ~ " : I

F NOW=Cl THEN LINE$="{8 SPACES}pass
~3214 DF=CI0:GOSUB 7200:GAME(M'=-Cl:M=M+Cl:S

FL=SFL+Cl:HOR=C4:VER=C4:POKE 705,144:1
F SFL=C2 THEN 8500

NB 3216 GOTO 84!Z1!2!

83

Chapter 2

DS 3220 L I NE$=" {3 SPACES H~l!'I!:("}·!J!I~iH"H~E?:" : IF
NOW=C1 THEN LINE$="{3 SPACES}you{,}mu

st{,}play"
NC3230 DF=C12:GOSUB 7200:RETURN
A83300 FLIP=0:MAX=-210:FOR 1=0 TO C7:FOR J=O

TO C7:IF TBL(I,J)=O THEN GOSUB 2600:GO
SUB 3500

C" 3400 NEXT J: NEXT I: RETURN
8N3500 IF FLIP=O THEN RETURN
L83510 IF STR(I,J)=-70 OR STR(I,J)=45 THEN GO

SUB 3600+I*C10+J
LJ3512 IF BSCR+WSCR)59 THEN K=FLIP:GOTO 3520
~3515 K=FLIP*C5+STR(I,J):IF DFL THEN DFL=O:I

F STR(I,J)<>50@ THEN K=-2@0
L"352@ IF K>MAX THEN MAX=K:HOR=J:VER=I
CI3525 IF K=MAX THEN IF RND(0) < @.4 THEN HOR=J

:VER=I
KL 3530 RETURN
1136@1 X=C2:HD=Cl:GOTO 3700
LN36@6 X=C5:HD=-C1:GOTO 3700
J"3610 Y=C2:VD=C1:GOTO 3750
KD3617 Y=C2:VD=C1:GOTO 3750
N83660 Y=C5:VD=-C1:GOTO 3750
NI3667 Y=C5:VD=-C1:GOTO 3750
IP3671 X=C2:HD=C1:GOTO 37@@
"E 3676 X=C5: HD=-Cl: GOTO 370@
"D37@@ IF TBL(I,X)=O AND TBL(I,X+HD)=NOW THEN

STR(I,J)=-7@:RETURN
~3710 TRAP 37~@:IF TBL(I,X)=NOW THEN X=X+HD:

GOTO 371@
KC372@ TRAP 4@@00:IF TBL(I,X)=OTHER THEN STR(

I,J)=-70:RETURN
JS 373@ STR (I , J) =45: RETURN
~3750 IF TBL(Y,J)=O AND TBL(Y+VD,J)=NOW THEN

STR(I,J)=-70:RETURN
PL3760 TRAP 3780:IF TBL(Y,J)=NOW THEN Y=Y+VD:

GO TO 376@
KJ377@ TRAP 4@0@0:IF TBL(Y,J)=OTHER THEN STR(

I, J) =-7~1: RETURN
JL 378@ STR (I ,J) =45: RETURN
~38@@ IF VER+C2<C7 THEN IF STR(VER+C2,HOR)}0

THEN STR(VER+C2,HOR)=-55
IC3810 IF VER-C2)0 THEN IF STR(VER-C2,HOR»0

THEN STR(VER-C2,HOR)=-55
GE382@ IF STR(VER+C1,HOR)= - 55 THEN STR(VER+Cl

,HOR)=80:GOSUB 385@
GL383@ IF STR(VER-Cl,HOR)=-55 THEN STR(VER-Cl

,HOR)=80:GOSUB 3870
I:P 384@ RETURN

84

Chapter 2

PN3850 TRAP 3860:IF TBL(VER+Cl,HoR)=o AND TBL
(VER+C2.HoR)=o AND TBL(VER+C3.HoR)=NoW

THEN STR(VER+Cl.HoR)=-55
BG3860 TRAP 40000:RETURN
AJ3870 TRAP 3880:IF TBL(VER-Cl.HoR)=o AND TBL

(VER-C2.HoR)=o AND TBL(VER-C3,HoR)=NoW
THEN STR(VER-Cl,HoR)=-55

BI3880 TRAP 40000:RETURN
~3900 IF HoR+C2(C7 THEN IF STR(VER,HOR+C2»o

THEN STR(VER,HoR+C2)=-55
J03910 IF HoR-C2}o THEN IF STR(VER,HoR-C2)}o

THEN STR(VER,HoR-C2)=-55
G63920 IF STR(VER,HoR+Cl)=-55 THEN STR(VER,Ho

R+Cl)=80:GoSUB 3950
6N3930 IF STR(VER,HoR-Cl)=-55 THEN STR(VER.Ho

R-Cl)=80:GoSUB 3970
LA 3940 RETURN
PP3950 TRAP 3960:IF TBL(VER,HoR+Cl)=o AND TBL

(VER.HoR+C2)=o AND TBL(VER.HoR+C3)=NoW
THEN STR(VER,HOR+Cl)=-55

~3960 TRAP 40000:RETURN
AL3970 TRAP 3980:IF TBL(VER,HoR-Cl)=o AND TBL

(VER,HoR-C2)=o AND TBL(VER,HoR -C3)=NoW
THEN STR(VER , HoR-C1)=-55

BJ3980 TRAP 40000:RETURN
AA4000 IF HoR >o AND HoR(C7 AND VER>o AND VER<

C7 THEN RETURN
P04010 IF HOR=o OR HoR=C7 THEN 4100
DA4020 IF TBL(VER,HoR+C1)=NoW THEN HD=-Cl:GoT

o 4600
AK4025 IF TBL(VER,HoR-Cl)=NoW THEN HD=Cl:GoTo

4600
EJ4030 K=STR(VER,HoR+Cl):IF K<500 AND K<>-70

AND K< >-55 THEN STR(VER,HoR+C1)=-K
6E4035 IF K=-55 THEN STR(VER,HoR+Cl)=-60
rn4040 K=STR(VER.HoR-Cl)=IF K<500 AND K< >-70

AND K(>-55 THEN STR(VER,HoR-Cl)=-K
GH4045 IF K=-55 THEN STR(VER,HoR-Cl)=-60
IT4050 GoSUB 5110:RETURN
~4100 IF VER=o OR VER=C7 THEN K=o:GoTo 4200
DN4110 IF TBL(VER+Cl.HoR)=NoW THEN VD=-Cl:GoT

o 450121
BH4115 IF TBL(VER-Cl.HoR)=NoW THEN VD=Cl:GoTo

4500
~4120 K=STR(VER+Cl.HoR}:IF K<500 AND K(>-70

AND K< >-55 THEN STR(VER+Cl.HoR)=-K
~4125 IF K=-55 THEN STR(VER+Cl.HoR}=-60
rn4130 K=STR (VER-Cl.HoR}:IF K<500 AND K(> -70

AND K<} -55 THEN STR(VER-Cl.HoR}=-K

85

Chapter 2

GH4135 IF K=-55 THEN STRIVER-C1.HOR)=-60
CM4140 GOSUB 5310:RETURN
~4200 STRIVER.ABSIHOR-C1»=K:STR(ABS(VER-Cl)

,HOR)=K:STR(ABS(VER-Cl).ABSIHOR-Cl»=K
-30-200*(K=300):RETURN

DN 4500 K=VER+VD: TRAP 4140
~4510 IF TBL(K.HOR)=OTHER THEN K=K+VD:GOTO 4

510
a4520 TRAP 40000:IF TBLIK.HOR)< >O THEN RETUR

N
~4540 Y=K+VD:TRAP 4570:IF TBLIY.HOR)=O THEN

TRAP 40000:GOTO 4570
FD4550 IF TBL(Y.HOR)=NOW THEN Y=Y+VD:GOTO 455

o
OC4560 TRAP 40000 : IF TBLIY.HOR)=OTHER THEN RE

TURN
FG4570 STRIK.HOR)=500+100*(STRIK.HOR) < >500):R

ETURN
CM4600 K=HOR+HD:TRAP 4140
~4610 IF TBLIVER.K)=OTHER THEN K=K+HD:GOTO 4

610
~4620 TRAP 40000:IF TBLIVER.K) <> O THEN RETUR

N
~4640 Y=K+HD:TRAP 4670:IF TBL(VER.Y)=O THEN

TRAP 40000:GOTO 4670
EL4650 IF TBLIVER,Y)=NOW THEN Y=Y+HD:GOTO 465

o
DH4660 TRAP 40000:IF TBLIVER . Y)=OTHER THEN RE

TURN
FP4670 STRIVER,K)=500+100*(STR I VER.K) < >500):R

ETURN
~4800 IF TBL(O,O}=NOW THEN X=O :Y=O:HD =Cl:VD=

O:GOSUB 5000:X=O:Y=O:VD=C1:HD=O:GOSUB
5000

FD4810 IF TBL(O.C7)=NOW THEN X=C7:Y=O:HD=-Cl:
VD=O:GOSUB 5000:X=C7:Y=O:VD=Cl:HD=O:GO
SUB 5000

FE4820 IF TBL(C7.0}=NOW THEN X=O:Y=C7:HD=Cl:V
D=O:GOSUB 5000:X=O:Y=C7:VD=-Cl:HD=O:GO
SUB 5000

AD4830 IF TBL(C7.C7}=NOW THEN X=C7:Y=C7:HD=-C
l:VD=O:GOSUB 5000:X=C7:Y=C7:VD=-Cl:HD=
O:GOSUB 5000

LA 4840 RETURN
SB 5000 DFL=O: TRAP 5040
~5010 X=X+HD:Y=Y+VD:IF TBL(Y , X)< >O THEN GOSU

B 5050:GOTO 5010
~5020 TRAP 40000:IF DFL=O AND STRIY.X)<>500

THEN STRIY,X)=400
KJ 5040 RETURN

86

Chapter 2

KJ5050 IF TBL(Y.X)=NOW THEN RETuRN
05060 DX=X:DY=Y:TRAP 5100
IJ5070 DX=DX+HD:DY=DY+VD:IF TBL(DY.DX)=OTHER

THEN 5070
JH5080 IF TBL(Y.DX)=NOW THEN DFL=Cl
¥.O 5090 RETURN
OA5100 TRAP 5040:RETURN
KN 5 1 1 0 FOR X = CIT 0 S
~5120 IF TBL(VER,X)=O AND TBL(VER,X-Cl) <> O A

ND TBL(VER,X+Cl) <> O THEN GOSUB 5150
HK5130 NEXT X:RETURN
KN5150 HD=Cl:FL=O:GOSUB 5200:IF FL=OTHER THEN

FL=0:HD=-C1:GOSUB 5200:GOTO 5170
¥." 5160 RETURN
SF5170 IF FL=OTHER THEN STR(VER.X)=100
KO 5180 RETURN
DC 5200 DX=X: TRAP 5220
IP5210 DX=DX+HD:IF TBL(VER,DX)< >O THEN FL=TBL

(VER,DX):GOTO 5210
A05220 TRAP 40000:RETURN
LA 53 1 0 FOR Y = CIT 0 S
~5320 IF TBLCY.HOR)=O AND TBL(Y-C1.HOR)<>0 A

ND TBL(Y+Cl,HOR)<>O THEN GOSUB 5350
HN 5330 NEXT Y: RETURN
NB5350 VD=Cl:FL=O:GOSUB 5400:IF FL=OTHER THEN

FL=O:VD=-Cl:GOSUB 5400:GOTO 5370
KO 5360 RETURN
SE5370 IF FL=OTHER THEN STR(Y,HOR)=100
LA 5380 RETURN
DI5400 DY=Y:TRAP 5420
JN5410 DY=DY+VD:IF TBL(DY.HOR) <> O THEN FL=TBL

(DY,HOR):GOTO 5410
BA5420 TRAP 40000:RETURN
~6990 J=HOR:I=VER:K=C5+C9*(NOW=Cl):FOR LOOP=

K TO K+39:K=K+Cl-18*(K=18):POSITION J+
J+C2,I+I+C2:? #S;ANIM$(K,K)

C06995 SOUND 0,C4,0,S*<K=C8 OR K=17):NEXT LOO
P:RETURN

M7000 OPEN #Cl,C4,0,"K:":GET #Cl,KEY:CLOSE #
Cl:IF KEY=155 THEN 7000

~7010 KEY=KEY-128*<KEY>127):KEY=KEY-32*(KEY>
90):RETURN

~7100 POSITION C2*J+C2,I*C2+C2:0N TBL(I,J) G
OTO 7120,7130

HD7110? #S;"\":RETURN
CC 71.20 ? #S;" {J3o .. : RETURN
KD 7 1 30 ? # S; " {!!l} .. : RET URN
M7200 POSITION 0,23:? #S;"{20 SPACES}";:POKE

LIST1+26,C7:POKE LIST1+28,S

87

Chapter 2

KJ7205 FOR LOOP=Cl TO C3:POSITION 0,24-0PT:?
*S;LINE$;:SOUND 0,50*LOOP,DF,CI0:FOR D
EL=Cl TO 55:NEXT DEL

~7210 POSITION 0 ,24 -0PT:? #S;"{20 SPACES}";:S
OUND O,O,O,O:FOR DEL=Cl TO C7:NEXT DEL
:NEXT LOOP

LH7220 POKE LIST1+28,C7:POKE LIST1+26,S:POSIT
ION 17,20:? #S;"{32 SPACES}":RETURN

JB8000 HOR=C8:VER=II:POKE 53248,HOR*16:CR=P0+
VER*C8:COL=14 * (NOW-C l):OP=14*(NOW*C2-C
3):POKE 704,COL

HP8001 SOUND 0,40,CI0,15:POKE CR,24:POKE CR+C
1,126:POKE CR+C2,24:POKE 705,144

~8~02 POSITION Cl,20:? #S;"{4 SPACES}";PL1$(
C2,11);" ":SOUND 0,0,0,0

~8005 JST=STICK(NOW-Cl):TRIG=STRIG(NOW-Cl):I
F JST=15 AND TRIG THEN 8005

ON8007 POKE 77,0:POKE CR,O:POKE CR+Cl,O:POKE
CR+C2,0:IF TRIG=O THEN SOUND 0,20,CI0,
15:J=HOR-C4:I=VER-C3:GOTO 8100

6P8010 HOR=HOR+DELTA(JST,O):VER=VER+DELTA(JST
,Cl):IF HOR)CI2 THEN HOR=HOR-C9

Nk8020 IF HOR<C4 THEN HOR=HOR+C9
N68030 IF VER>11 THEN VER=VER-C9
OH8040 IF VER<C3 THEN VER=VER+C9
KH8080 IF HOR<CI2 AND VER<11 THEN POKE 704,CO

L-OP*(TBL(VER-C3,HOR-C4)=NOW):GOTO 808
5

~8083 POKE 704,COL:IF VER>C4 AND VER<C9 THEN
POKE 704,42

IN8085 CR=P0+VER*C8:S0UND 0,200,CI2,CI0:POKE
53248,HOR*16:POKE CR,24:POKE CR+Cl,126
:POKE CR+C2,24

B08090 SOUND O,O,O , O:FOR LOOP=Cl TO 20:NEXT L
OOP:GOTO 8005

M8100 SOUND O,O,O,O:IF J=C8 AND I)Cl AND I (S
THEN POKE 705,42:PASS=Cl:GOTO 3200

PK8110 IF I=C8 OR J=C8 THEN 8080
HE 8120 GOTO 8260
AF8200 GOSUB 7220 :S0UND 0,40,CI0 , 15:POSITION

Cl,20:? #S;PLl$(C2);" ~ ";:SOUND 0,
0,0,0

B08210 GOSUB 7000:I$=CHR$(KEY):? #S;I$:IF 1$=
"P" THEN PASS=C l: GOTO 3200

6J 8240 ? #S;" {13 SPACES}~ ";: GOSUB 7000: EXC
H$=CHR$(KEY):? #S;EXCH$

AP 8242 I F I $ > = " A " AND I $ < = " H " THE N 8250
CH 8244 IF EXCH$< "A" OR EXCH$)" H" THEN 8254
BI 8246 J = A S C (EX C H $) - 65: I F I $ < " 1" 0 R 1$ > " 8" T H

EN 8254

88

Chapter 2

K08248 I=ASC(IS)-49:GOTO 8260
n8250 J=ASC(IS)-65:IF EXCHS("l" OR EXCHS)"8"

THEN 8254
r.18252 I=ASC(EXCHS)-49:GOTO 8260
~8254 LINES="{5 SPACES}TRY AGAIN":DF=CI0:GOS

UB 7200:GOTO 8200
LS8260 HOR=J:VER=I:POSITION C2*J+C2,I*C2+C2:?

#S;PL1S(Cl,Cl):IF TBL(I,J)=O THEN TBL
(I , J)=NOW:GOSUB 1600:GOTO 8350

FE 8300 L I NES=" t:!IfuiJljiliZ¥ {ft} BEl!EiiG" : IF NOW=C 1
THEN LINES=" captured{,}square"

BA8310 DF=CI2:GOSUB 7200:GOSUB 7100:GOTO MAIN
LOOP

"18350 IF FLIP >O THEN GOSUB 3000:GOTO 8400
OC8360 TBL(I,J)=0:LINES="{4 SPACES}".'WEJJ

{"}~":IF NOW=Cl THEN LINES="
{4 SPACES}illegal{,}move"

BY.8365 DF=CI2:GOSUB 7200:GOSUB 7100:GOTO MAIN
LOOP

JE8400 I = NOW:NOW=OTHER:OTHER=I:EXCHS=PLlS:PLI
S =PL2 S:PL2S=EXCHS:IF SFL=C2 THEN 8500

~8405 IF PLYRS)C2 THEN 9800
HH8410 IF PLYRS=C2 OR NOW=C3-CP THEN GOTO MAl

NLOOP
~8415 LINES=" computer{G}s{,}move":IF NOW=C

2 THEN L I NES=" t!lCJE1in4IiC~}~{"}:::t!1.'E"

1r,84 17 IF OPT=Cl THEN GOSUB 8570
KB8420 SOUND 0,40,CI0,15:POSITION 0,20:7 #S;L

INES:SOUND O , O,O,O:GOSUB 4000:GOSUB 48
00:GOSUB 3300

Dl8421 IF MAX=-210 THEN 3212
IJ8422 IF STR(VER,HOR)=500 THEN K=300:GO SUB 4

200:GOTO 8430
JB8424 IF HOR=O OR HOR=C7 THEN GOSUB 3800
JK8426 IF VER=O OR VER=C7 THEN GOSUB 3900
~8430 GOSUB 6990 : GOTO 8260

JN8500 GOSUB 7220:POSITION Cl,20:7 #S;"black
{DOWN}";:I=BSCR:K=-32:GOSUB 9700:7 #S;
IS;" :'!l3';r=:{INS LINE}";:I=WSCR:K=96:GO
SUB 9700

W8510 ? #S;IS:GFL=Cl:? #S:IF BSCR)WSCR THEN
? #S;"{5 SPACES}black{,}wins";:GOTO 85
40

"J 8520 IF WSCR) BSCR THEN? #S;" C5 SPACES}~
~{"}~";:GOTO 8540

FL 8530 ? #S;" C6 SPACES}.lJ.H._~t!''''I::::Jil:;~I~ .. ";
~8540 IF PEEK(53279»S THEN 8540
NL8550 POKE 77,0:K=PEEK(53279):IF K=S THEN SF

L=O:M=O:GOSUB 8570:GOSUB 1740:GOTO 840
5

89

Chapter 2

008552 IF K=C3 AND PLYRS=Cl THEN CP=CP+CI-C2*
(CP=C2):GOSUB 8600:GOTO 8540

C68554 IF K=C5 THEN PLYRS=PLYRS+CI-C4*(PLYRS=
C4):GOSUB 8560:GOSUB 8600

OC 8556 GOTO 8540
698560 IF PLYRS=C3 AND GFL=O THEN PLYRS=Cl
LI 8565 RETURN
W8570 POSITION O,20:? #S;"{60 SPACES}";:RETUR

N
CN8600 IF PLYRS < C3 THEN GOSUB 8670
EI8601 ON CP+C2*PLYRS-C2 GOSUB 8630,8640,8610

,8610,8650,8650,8660,8660
IT8602 IF PEEK(53279)(=S THEN 8602
LC 8604 RETURN
~8610 ? #S;"{18 SPACES}":RETURN
6H 8630 ? # S;" com put e r { , } i s { , } b 1 a c k " : RET URN
A" 8640 ? #S;" t!i!!:::'I!Xiiit4ji{"}f~{"}:":'1311iG": RETURN
6J 8650 POS I T I ON O,20:? #S;" r:\I.(.];r:).(":l""~.:"·'

":GOTO 8610
AB8660 POSITION 0,20:? #S; "{3 SPACES}I;r:l:lII:l_:.

1",,~.;\·.{4 SPACES}": GOTO 8610
ff8670 POSITION 0,20:? #S;"{3 SPACES}";CHR$(P

LYRS+176); ".~.:"·"*_"";1;1 .. {4 SPACES}":RET
URN

~9000 GRAPHICS 0:I=PEEK(560)+256*PEEK(561):P
OKE I+C3,71:POKE I+CI0,S:SETCOLOR C2,C
10,O:SETCOLOR C4,C10,O

JC9005 SET COLOR Cl,CI0,C8:SETCOLOR C3,C12,C8:
POKE 53774,112:POKE 16,64:POKE I+14,S:
POKE I+15,S:POKE I+20,S

~9010 POKE I+21,S:POKE 82,0:POKE 83,39:POKE
752,Cl:POSITION C5,0:? " REVERS I
{20 SPACES}{12 T}{~}"

LJ9011 FOR J=Cl TO 50:NEXT J:FOR J=19 TO 31:S
OUND O,200,C12,C8:POSITION J,O:? " +";
SOUND 0,0,0,0

FD9012 FOR K=Cl TO C7:NEXT K:NEXT J
EA9013 FOR J=Cl TO 30:NEXT J:SOUND O,20,C10,C

10:POSITION 32,0:-=' "{~}";:SOUND 0,0,0,
O:FOR J=Cl TO 35:NEXT J

~9014 FOR J=Cl TO C12:S0UND 0,60,C12,C8:? "
(~}";:I=I-I+I:SUUND O,O,O,O:FOR K=Cl T
o C4:NEXT K:NEXT J:I$=CHR$(34)

M9020 POSITION 20,C4:? "select input device
{ Z]- {38M]- If :? :? II 1.. L:!t4Jj #'!.t=1 if# II

IJ 91030 ? .. {4 SPACES}Enter COLumn, ROW coordin
ates.":-=' "{4 SPACES}Enter ";I$;"P";I$;
" to pass."

90

Chapter 2

AA 9 0 4 0 ? :? :?

(4 SPACES}Move the cursor (+) to the 5

quare":? "(4 SPACES}you vlant and press
the trigger."

JM9050 ? "(4 SPACES}To pass, place the cursor
over":? "(4 SPACES}";IS;"PASS";IS;" a

nd press the trigger."
009100 GOSUB 7000:TRAP 9100:0PT=VALCCHR$(KEY)

}:TRAP 40000:IF OPT(CI OR OPT}C2 THEN
910QI

JL9110 GRAPHICS 23:RETURN
IH9500 I=C10+C4*(oPT-Cl}:K=-32:GoSUB 9700
IT 9505 POSITION Cl,Cl:? #S;"PREPARING THE FIR

ST":? #S;" BOARD WILL TAKE":? #S:? #S;
ABOUT ";IS;" seconds."

MD 95 1 0 ? # S :? # S :? # S;" W HEN THE BOA R D
(5 SPACES}":? #S;" APPEARS, PRESS:
(4 SPACES}":? #S;" t--"'1=1144. - [..,.:1;:;1';.;:;[1]»'"

CL 9520 ? #S; II [!jilin.], - (!ill':.]:_-]_ 11 :? #S; II ~

1:.tljil,",:U-__ :~ilj;;(ilgii .. 1 " :? #S;" 5£1 ... _. GAME"
:RETURN

Fe 9600 ? # S :? # S :? # S;" pat i en c e { N} " : RET URN
MN97C!10 IS=STF:$(I} :FoR J=Cl TO LEN(IS): I$(J,J)

=CHRS(ASC(I$(J,J) }+K} :NEXT J:RETURN
Kl9800 SOUND O,40,C10, 15:VER=INT(GAME(M}):HoR

=10*(GAME(M}-VER) :POSITIoN C5,20:? #S;
PL1S(C2, 11):SoUND 0,0,0,0

IA98QI5 I=INT«M+C2)/C2):PoSITIoN C9+(I<C10},2
2:K=128:GOSUB 9700:? #S: I$:FoR K=Cl TO

CllZl:NEXT K
"9806 IF PLYRS=C4 THEN GoSUB 7 000+2830*(OPT-

C 1 }
14698el7 IF VER<o THEN 3212
~9810 GoSUB 6990:GOTO 8260
~9830 IF STRIG(O) AND STRIG(Cl) THEN 9830
~9835 POKE 77,O:RETURN
@ 10000 DATA 500,-70,75,65,-70,-200,0,0,75,0,

4 Ql , 2 QI , 65 , 0 , 2121 , I~I

W 10100 DATA 664,88 , 648.224,696,256,552,240,5
20,472,544,488,720,32,704,40,536,48,9
92,120,656,496,ERRoR

JP 1 0 1 IlZl DATA 6121, 2 4, 1 26 , 24 , 255 , 61Z1 , 255 , 23 1 , 255 ,
231!1255~60~ 126~24!16~~~:,24

LG 101 2 f~J D A TAt 6 ~ ~J ~ 6 QJ ~ 1 26'1 255 ~ 255 ~ 1 2 6 ~ 6 ~:j ~ ~f " 24 !I

!~i :"l ~j~ i 2.6 ~ 2SS~ '..::5J:: 1 :2.6~ Y-}~ !:!l~ 64~ !~)!I t}~ ~~)!I 255,
255,0,0 ,0,72,0,0,0,255 ,0,0,0,0

~ 10130 DATA 104,0,0,0,0,255,0,0,0
GD 1 02 0 QI D A TAl , 1 , 1 , QI , - 1 , - 1 , - 1 , QI , QI , !:I , IZI, 1 , - 1 , £1 ,

QI, 1 , - 1 , 0 , 0, 1 , - 1 , QI

91

Chapter 2

~ 14000 Cl=I:C2=Cl+Cl:C3=C2+Cl:C4=C2+C2:C5=C4 ~

+Cl:C8=C4+C4:C7=C4+C3:5=C3+C3:CI0=C5+
C5:CI2=5+5:C9=C5+C4

~ 14010 DIM TBL(C7,C7),5TR(C7,C7) ,DELTA(15,Cl
), I$ (C2), PLl$ (CI2), PL2$ (CI2), EXCH$ (Cl
2), LINE$ (19), ANIMS (18), GAME (75)

U 14020 PLYR5=Cl:CP=Cl:G05UB 9000:FAC =255*(OP
T-Cl):MAINLOOP=8000+200t(OPT=Cl):G05U
B 10~10

~ 14025 IF OPT-Cl THEN G05UB 2000:GOS UB 2500
OC 14030 5FL=0:X=PEEV(559):POKE 559, 0:G05UB 15

000:POKE 559.X:G05UB 8600:GOTO 8540
CF 1 5 ~I ~I QI 7 # 5; " {C LEA F:} " : P 0 V E 7 rjJ 9 , 0 : P 0 K E 7 1 1 , 1 4

:POKE 712,198:POKE 710. 176:POKE 708,2
34:IF OPT=C2 THEN POVE 708,52

FI 151211121 ANIM$=" CB} {C} CH} {I} {l::} {C;:} {~} C~} {~}

~, 151112111 rl1

L.J 15!Z13111

[IF 151114QI
DG 1511142

{~} {~} (rr} {~} {M} {H} C C} {B} {J } " : pot::: E 756

,5ET/256:P05ITION 0,19: 7 #5;"!!!!!I!~!!!!!!!!!!!!!!!!!!!!!!!!!!!

I!!!!!!I!!!!!I!!":REM 2121 IN'v. 5HIFT -
P 0 5 I T ION C 1 • C 1 : 7 # 5; "t<iil ttii1 LI;o,l;<.J;i,'t LL1 ttii1 [t;;:([t".'l
~":FOR I=C1 TO C7:P05ITION C1, (C2t!)
7 #5; "P!jj\P!jj\P!jj\P!jj\P!jj\P!jj\P!jj'd":,j\P!jj": 7 #5;" IRa:
r:tI: a a a a z;a I" : N EXT I
7 #5;" P!jj\P!jj\P!jj\P!jj\P!jj\P!jj\P!jj\P!jj\P!jj"
7 #5;CHRS(32) ;CHRS(164) ;CHR$(222) ;CHR
$(165) ;CHRS(222) ;CHRS(165) ;CHRS(222);
CHR$(165);CHR$(222);CHR$(165);

OC 15044 7 #5;CHR$(222);CHR$(165};CHR$(222);CH
R$(165};CHR$(222);CHR$(165);CHRS(222)
;CHR$(166}

MB15!Z15!Z1 P05ITION C5 , C5: 7 #5;"IJ";:POVE 85,13: 7

#5; "IJ" :POSITION C5, 13: 7 #5; "0"; :POKE
85~13:? #S;"DIJ

~ 15055 IF OPT=C2 THEN 15080
ED 1 5 !ZI 6 !11 PO SIT ION 0, 0 : 7 # S; " ABC D E F G H"

:FOR I=Cl TO C8: 7 #5: 7 #S;I;:POKE 85,
18: 7 #S;I:NEXT I

MP 1 51117 QI 7 # S : 7 # 5; " ABC 0 E F G H": LET L I 5

DF 1508111

NA 15!Z185

NE 15!119121

EF 15!!195

AC 151 ~1\!1

92

Tl=-C8:RETURN
POSITION 17,C5: 7 #S;"~":FOR I=S TO
CI2:POSITION 18,1:7 #5; "\P!jj":NEXT I
POSITION 17,13: 7 #S;CHRS(171);CHR$(22
2) ;CHRS(164}
I=PEEK(560)+256*PEEK(561):LET LI5Tl=I
:POKE I,S:POKE J+Cl,C7
FOR J=C2 TO C4:POKE I+J,PEEK(I+J+Cl):
NEXT J:POKE I+C5,S:POKE I+28,C7:POKE
707,52
POVE 706,150:POKE 705,144:POKE 53251,
208=POKE 53255.40:POKE 53250,188:PDKE
~J5249. 192: RE rURN

Chapter 2

Dollars from Heaven
Steven Cohen

Money may not grow on trees, but after playing this game
you'll be convinced that it drops from the sky.

"Dollars from Heaven" uses the vertical blank PM routine
(VBLANK PM) by Tom Sak and Sid Meier, in COMPUTEt's
First Book of Atari Graphics. It shows how a novice can create a
game using programming techniques like the ones described
in that volume. In fact, once the tricks have been mastered, it
takes only a good idea and a little time.

Understanding Interrupts
The picture on your TV is formed when a beam of electrons
draws scan lines across the screen. The beam starts at the top
left corner and moves to the right edge of the screen. It then
shuts off for a fraction of a second (the so-called horizontal
blank) and moves back to the left edge and down one line to
draw the next scan line.

After the last scan line is drawn, the beam shuts off and
moves back to the top-left corner. This is the vertical blank,
and it repeats 60 times per second. This game uses the blank
period to update the positions of the players on the screen. All
the user has to do is update the registers that hold the player
position; the ML routine does the rest.

In addition, each player can have four different shapes
which, when used in a sequence, add to the animation of the
character. For a complete discussion of the technique, I recom
mend that you get a copy of COMPUTEt's First Book of Atari
Graphics.

Catching Dollars
After you type in Dollars from Heaven, save it to disk or tape
before trying to play. Attempting to save the game after a few
rounds have been played will cause strange things to happen
when it is reloaded.

The object of the game is to catch dollar signs to buy
building materials without getting hit by the bombs. You con
trol the player at the right, moving right or left with the joy
stick. If you get hit by a bomb, you lose everything you were
carrying. In addition, there are nails in the middle of the
screen; use the fire button to jump over them.

93

Chapter 2

Once you have collected enough dollars to match the cur
rent trade value (3 in the first round), take them to the store to
get supplies. Then go to the site where the house is to be built
(at the far-left side of the screen) and part of the house will
appear. It takes four trips to the store to build a house. You
get 10 points for catching a dollar sign, 10 points for installing
the first three parts of the house, and 50 points for completing
the house.

After the first house is completed, you go to the next
round. The trade value becomes four, and the bombs move a
little faster. If you get to 1000 points, you get an additional
player. The game starts with two players on reserve.

How It Works
Below is a brief explanation of the program.
Line(s)

90
91-100
101-102
103-120
125-134
143-145
146
147
148-150
151
152
170-175
176
177
195
300-349
500-506
600-612
800-820
1000-3060

Initializes player/missile graphics and Vblank PM.
Draw background.
Set up variables.
Draw background.
Set player color size and starting location.
Move bombs and dollar sign.
Checks to see if player is currently jumping.
Checks for start of jump.
Check joystick and move player.
Disables attract mode.
Gives Vblank PM new positions.
Check for collisions.
Looks for player at store.
Looks for player at house.
Animates player.
Player-bomb collision routine.
Player-dollar sign collision routine.
House plotting routine.
Jumping routine .
Set up Vblank PM and player/missile graphics.

Dollars from Heaven
For error-free program wtry, read "The Automatic Proofreader" ill Chapter 1 before typing
in this program.

"N9~ POKE 53278,HITCLR:GRAPHICS 5:SETCOLOR 2,
3.3:SETCOLOR 4,8,4:7 "PLEASE WAIT'":GOSU
B 1~~~

IL91 COLOR l:PLOT 35,39:PLOT 37,39:PLOT 39,39

94

Chapter 2

Y.L 92 PLOT 37,38
AA99 COLOR 2:PLOT 75,39:DRAWTO 75,26:PLOT 79,

25:DRAWTO 73,27:PLOT 79,39:DRAWTO 79,25
PH 1~~ PLOT 78,39:DRAWTO 78,26:PLOT 77,39:DRAW

TO 77,27:PLOT 76,39:DRAWTO 76,27
~ 1~1 Q=6:MEN=3:D9=3:Al=1:SC=~:FY=0

H 1~2 B2=~:Dl=~:C~=~
a 1~3 PRINT :? :? :? "SCORE=";SC:FOR 1=1 TO 8

99:NEXT I
M 1~4 PRINT :? "HOUSE{9 SPACES}NAILS

{12 SPACES}STORE":?
DH1~5 COLOR 1:PLOT 9,5:DRAWTO 9,7:PLOT 8,6:PL

OT 1~,4:DRAWTO 1~,8:PLOT 11,4:DRAWTO 11
,8:PLOT 12,5:DRAWTO 12,7

J" 1 ~ 6 P LOT 1 3 , 6
~120 PRINT "ROUND";A1;"{2~ SPACES}TRADE=";D9
a125 POKE PLY,169:POKE PLL,24
m 126 POKE PLY+1,15:POKE PLL+1,9:POKE PLX+1,1

5~

W 127 POKE PLL+2,9:POKE PLL+3,13:POKE PLY+2,1
5:POKE PLY+3,15:POKE PLX+2,17~:POKE PLX
+3,7~

JJ 134 Z=1~:A=1~:B=1~:DRAW=1
~136 I=2~~:GOTO 148
FP143 A=A+Q+2:IF A}22~ THEN A=5:R=RND(1)t2~~:

POKE PLX+2,R:IF R(45 THEN R=17~:POKE PL
X+2,R

~144 B=B+4:IF B}22~ THEN B=5:R=RND(1)t2~~:PO
KE PLX+3,R:IF R(45 THEN R=1~0:POKE PLX+
3,R

DF 145 Z=Z+Q:IF Z}22~ THEN Z=5:R=RND(1)t200:PO
KE PLX+l,R:IF R(45 THEN R=70:POKE PLX+1
,R

~ 146 IF JP(>~ THEN 8~~
OE 147 IF STRIG(0)=~ THEN JP=1:GOTO 8~~
JF 148 IF STICK(0)=15 THEN 152
CF149 IF STICK(0)=7 THEN I=I+3:IF I>2~0 THEN

I=2~0

~ 15~ IF STICK(~)=11 THEN I=I-3:IF 1(44 THEN
1=44

JA 151 POKE 77,0
CK152 POKE PLY+l,Z:POKE PLY+2,A:POKE PLY+3,B:

POKE PLX,I:SOUND 0,Z,14,2
~170 IF PEEK(53261)=1 THEN 30~
Y.H 171 IF 1(126 AND I}102 AND PEEK(53252)}0 TH

EN 3~~
~172 IF PEEK(53262)=1 THEN 3~~
~174 IF PEEK(53263)=1 THEN 5~0
~175 POKE 53278,HITCLR

95

Chapter 2

LP 176 IF D1=D9 AND I>18~ THEN D1=~:SOUND 2~6~
,1~,8:FOR C1=1 TO 2~~:NEXT C1:S0UND 2,~
,~,~:B1=B1+1

DA177 IF B1>0 AND I<5~ THEN GOSUB 6~~
AA185 POKE PDR,DRAW
J8190 IF STICK (0) =15 THEN 2~5

DD195 DRAW=DRAW+24:IF DRAW}73 THEN DRAW=1
61 2f1J5 GOTO 143
NJ 3fIJI2I Z=5: D=I2I: JP=0: SOUND 3,~, ~~ fIJ: EX=fIJ
JF3f1J2 FOR U=1~~ TO 20fIJ STEP 1f1J:SOUND 0,I,~,15

:NEXT U
CC3f1J6 POKE PLY+1,Z:POKE PLY+2,Z:POKE PLY+3,Z
GH3f1J7 POKE PLX,2f1J0:MEN=MEN-1:D1=0:B1=fIJ:POKE P

LX+1,R:FOR S=1 TO 2f1J0:NEXT S:SOUND fIJ~0~

~,fIJ

KF325 POKE 53278,HITCLR:IF MEN=fIJ THEN 327
Gil 326 GOTO 125
CC 327 ? :? "SCORE="; SC
~328 PRINT "GAME OVER{3 SPACES}TO PLAY AGAIN

PRESS FIRE"
EF 33fIJ COLOR fIJ
H8331 PLOT 3,39:DRAWTO 3,33
GN332 PLOT 0,35:DRAWTO 8,3fIJ
Y.E333 PLOT 8,3f1J:DRAWTO 15,35
ME 33.4 PLOT 12,33: DRAWTO 12,39
E6348 IF STRIG (0) =fIJ THEN 99
HI349 GOTO 348
~5fIJfIJ D1=D1+1:IF D1>D9 THEN D1=D9
L1501 B=5:FOR C=1 TO D1:FOR Y=15 TO fIJ STEP -1

:SOUND 2,9,1f1J,Y:NEXT Y:NEXT C
FC502 SC=SC+10:IF FY=~ AND SC>l~~fIJ THEN MEN=M

EN+1:FY=1:? "{BELL}"
MII51215 R=RND(1)*19~:IF R<45 THEN 505
OM5f1J6 POKE PLY+3,B:FOR S=1 TO 2f1J:NEXT S:POKE

PLX+3,R:SOUND 12I,~,0,0:POKE 53278,HITCLR
:GOTO 143

A060~ COLOR 2:B2=B2+B1:B1=~:FOR R1=1 TO 2~:SO
UND 3,170,6~1~:FOR J=1 TO 3:NEXT J:SOUN
D 3,~,0,fIJ:FOR J=1 TO 5:NEXT J

FJ 6f1J1 NEXT R1
OC602 IF B2>~ THEN PLOT 3,39:DRAWTO 3,33
AP603 IF B2}1 THEN PLOT ~,35:DRAWTO 8~3~
EH6~4 IF B2)2 THEN PLOT 8,3~:DRAWTO 15~35
LK605 IF B2)3 THEN PLOT 12,33:DRAWTO 12,39:CO

LOR 0:FOR DE=1 TO l~~:NEXT DE:GOTO 611
KG 6 1 ~ S C = S C + 1 ~ : RET URN
~611 IF C~=0 THEN Al=A1+1:Q=Q+2:D9=D9+1:C~=1

:GOTO 6~2
JI612 SC=SC+5~:GOTO 1~2

96

Chapter 2

EK800 POKE PLY,PEEK(PLY)-3*JP:IF PEEK(PLY)(15
o THEN JP=-JP

"J805 SOUND 3,PEEK(PLY)-100,10,10
OL 806 DRAW=2
IP 810 IF D(>0 OR EX=l THEN 815
~811 IF STICK(0)(>7 AND STICK(0)(>11 THEN EX

=1
NJ812 IF STICK(0)=11 THEN D=-3
K" 8 1 3 I F S TIC K (0) = 7 THE N D = + 3
AF 815 I=I+D: IF I)200 THEN 1=200
OJ 816 IF 1(44 THEN 1=44
06817 IF PEEK(PLY)=169 THEN JP=0:SDUND 3,0,0,

0:D=0:EX=0
6K 820 GOTO 151
061000 FOR 1=1536 TO 1706:READ A:PDKE I,A:NEX

T I
EN 1020 FOR 1=1774 TO 1787:POKE I,0:NEXT I
NC1030 PM=PEEK(106)-16:PMBASE=256*PM
E"1040 FOR I=PMBASE+1023 TO PMBASE+2047:POKE

I,0:NEXT I:DRWBAS=PMBASE+l
~ 1055 FOR J=0 TO 3
6L1065 FOR K=DRWBAS+J*24 TO DRWBAS+J*24+23:RE

AD X:POKE K,X:NEXT K:NEXT J
U 1066 RESTORE 3050
L"1067 FOR I=PMBASE+1281 TO PMBASE+1289:READ

A:POKE I,A:NEXT I
~1068 RESTORE 3050
LN 1069 FOR I=PMBASE+1537 TO PMBASE+1545:READ

A:POKE I,A:NEX~ 1
~1070 RESTORE 3060
LK 1072 FOR I=PMBASE+1793 TO PMBASE+1805:READ

A:POKE I,A:NEXT I
PF1075 POKE 704,223:POKE 705,73
PO 1076 POKE 706,44:POKE 707,200
6P 1080 PLX=53248:PLY=1780:PLL=1784
AK 1090 POKE 559,62:POKE 623,4:POKE 1788,PM+4:

POKE 53277,3:POKE 54279,PM
~1091 POKE 53256,1
~1095 PDR=1772:POKE 1771,PM
HI1100 X=USR(1696)
KO 1 1 1 0 RET URN
K62000 REM
6P2010 DATA 162,3,189,244,6,240,89,56,221,240

,6,240,83,141,254,6,106,141
D62020 DATA 255,6,142,253,6,24,169,0,109,253,

6,24,109,252,6,133,204,133
EC2030 DATA 206,189,240 , 6,133,203,173,254,6,1

33,205,189,248,6,170,232,46,255
E02040 DATA 6,144,16,168,177,203,145,205,169,

0,145,203,136,202,208,244,76,87

97

Chapter 2

PE2~5~ DATA 6,160,0,177,203,145,205,169,0,145
,203,200,202,208,244,174,253,6

r."2~60 DATA 173,254,6,157,240,6,189,236,6,240
,48,133,203,24,138,141,253,6

NE2070 DATA 109,235,6,133,204,24,173,253,6,10
9,252,6,133,206,189,24~,6,133

6L2~80 DATA 205,189,248,6,170,160,~,177,2~3,1
45,205,200,202,208,248,174,253,6

C62~90 DATA 169,0,157,236,6,2~2,48,3,76,2,6,7

6,98,228,0,0,104,169
OF21~~ DATA 7,162,6,160,0,32,92,228,96
Yo" 3~05 REM
R3~15 DATA 0,12,12,30,0,12,12,0,12,14,30,45,

13,13,12,28,28,20,52,34,34,34,102,0
~3~25 DATA 0,12,12,30,0,12,12,0,12,14,14,13,

26,4,8,12,12,28,24,28,24,20,18,5~,0

003~35 DATA ~,12,12,30,0,12 , 12,0,12,14,10,14,
30,12,8,12,28,28,8,12,12,8,24,0

AA3045 DATA ~,12,12,30,0,12,12,0,12,12,12,10,
6,30,12,12,12 , 12,20,20,18,50,6,0

OJ3~50 DATA 126,195,195,126,24,153,90,62,24
LD3~60 DATA 16,124,214,211,208,112,28,22,19,1

47,214,124,16

98

Chapter 2

Box Hunt
Lenny Norinsky

Are you looking for a fast-paced game that challenges re
flexes as well as skill? Then "Box Hunt," for any Atari with
the GTIA chip installed, is for you, It will bring new meaning
to the phrase "Don't fence me in,"

"Box Hunt" is a simple but entertaining game that demon
strates your Atari's ability to plot objects on the screen. You've
just been named to the high post of Territorial Defender of
Wambaogh, and your mission is a simple one: to erect a net
work of protective walls to defend your city and confuse the
hostile Zuvambian raiders, Your weapon? The speedy
Wambaoghian Waller, a sophisticated machine that automati
cally leaves a wall wherever it goes. All you have to do is
guide it across the countryside.

Or so you thought, until you read the fine print in the
manual: "This Wambaoghian Waller must stop for supplies
every 1000 glunkas," Supplies, huh? You know that means
boxite-and that means you'll not only have to erect those
walls but look for boxes too.

It's not just a job. It's a box hunt!
Guide your Waller using your joystick; it will leave a

trail-the wall-behind it. Hit the boxes to run up your score.
Every time you hit a box, you get 100 points and several addi
tional boxes appear, The object is to survive as long as you
can, hitting as many boxes as possible, before crashing into
the border or running into one of your own walls, If you do
crash, the game will stop, show your score, and start over.

As you'll quickly discover, Box Hunt produces some fast,
reflex-challenging action. That's why I've included a panic
button feature too. When you are in a tight space or about to
crash, press the trigger on the joystick and your line will be
randomly relocated on the screen. Sometimes it's all that will
save you, But use it only when you have to, for it can make
things worse just as easily as it can make them better!

99

Chapter 2

Box Hunt
For error-free program entry, read "The Automatic Proofreader" in Chapter 1 before typ irlg
in this progralll . .

CL 1 GRAPH I CS 0: GOSUB 1100:? :? :? ..
{1 2 SPA C E S } 1.10:. all: I 1" : ? :? :? .. POI NT VA L U E S
:":? :? "100 POINTS for a box."

PJ 3 ? "5 PO I NTS f or ali ne segment ... :? "10 PO
INTS mn for easy escape"

~4 POSITION 20,20:? "PRESS":SOUND 0,100,10,1
o : PO SIT ION 2 0 , 2 1 :? " ;;W .. :1:1 : SOU N D 0, 50, 1 0 ,
10:IF PEEK(53279)<>6 THEN 4

H65 GOSUB 1000
~ 10 GRAPHICS II:POKE 710,0:ZX=I:ZV=0:X=40:V=

90:COLOR 10:PLOT 0,0:DRAWTO 79,0:DRAWTO
79,191:DRAWTO 0,191:DRAWTO 0 , 0

BK20 A=RND(0)*70+5:B=RND(0)*180+5:COLOR 15:PL
OT A,B:DRAWTO A+2,B:DRAWTO A+2,B+2:DRAWT
o A,B+2:DRAWTO A,B

FK30 COLOR 5:LOCATE X,V,Z:IF Z=10 OR Z=5 THEN

NA40 PLOT X,V:SOUND 0,X,10,4:S0UND 0,V,10,4:I
F Z=15 THEN 110

1150 S=STICK(0):IF S=14 THEN ZX=0:ZV=-1
JC 60 IF S=13 THEN ZX=0: ZV=1
l070 IF S=11 THEN ZX=-1:ZV=0
6H 80 IF S=7 THEN ZX=I: ZV=0
B685 IF STRIG(0)=0 THEN X=RND(0)*70+5:V=RND(0

)*180+5:SC=SC-10
BD90 X=X+ZX:V=V+ZV:SC=SC+5:GOTO 30
JE 100 GRAPHICS 2:GOSUB 1100:? #6:? #6:? #6:?

#6;"{3 SPACES}score :";SC:FOR 1=0 TO 99
9:NEXT I:RUN

JH110 X=X+ZX:V=V+ZV:SC=SC+100:GOTO 20
m1000 GRAPHICS 2:? #6:? #6:? #6;"{3 SPACES}~

~EADV":SOUND 1,190,10,10:GOSUB 1100
lJ 1 0 1 0 FOR I = 1 TO 500: N EXT I:? # 6 :? # 6; "

{7 SPACES}go!":SOUND 0,121,10,10:S0UND
1,87,10,10:FOR 1=1 TO 200:NEXT I

lC1020 SOUND 0,0,0 , 0:S0UND 1,0 , 0,0:RETURN
K6 1100 REM
cr1101 POKE 709,31
OH 1102 POKE 710,0
KH 1105 RETURN

100

Chapter 2

Dragon's Den
Ken and JoAnn Davy

Fight monsters and sE?arch for gold, but watch out for the
traps in "Dragon's Den."

We've always been dreamers, so after we bought our Atari
and cassette recorder, we went in search of an adventure . But
not just any adventure. We wanted one with several levels
and lots of monsters and treasures, and filled with magic,
sound, and graphics. Most of all, it had to fit into 16K. We
also thought the adventure should change each time it was
played, so that even if players did well, the game would still
be challenging. .

Alas, our searching was in vain. So our next idea was to
write our own adventure. After all, how hard could it be to
write an adventure game that met all our requirements?

A Year Later
One year and many sleepless nights later the task was done.
"Dragon's Den" was complete.

In the game you wander from room to room, through dif
ferent levels, looking for monsters to kill and gold to win.
Each lower level is more difficult than the one above. When
you reach the fifth level, you'll meet the dragon.

Your player has three characteristics: strength, dexterity,
and hit points. Hit points determine the amount of damage
you can survive when fighting monsters.

Strength determines the amount of damage you do to a
monster each time you hit it. Your strength is subtracted from
the monster's hit points and added to your hit points. When a
monster hits you, its strength is subtracted from your hit
points. Some monsters are very strong! When both monster
and player hit each other, its strength is subtracted and your
strength is added to your hit points at the same time.

Dexterity is the measure of how often you can expect to
hit the monster. The higher your dexterity, the more often you
will score a hit.

There are two play options. The STANDARD PLAYER
has a value of seven for each characteristic. Pressing the
OPTION key causes the player characteristics to be selected
randomly, thus RANDOM PLAYER. A random player could

101

Chapter 2

have characteristic values higher or lower than seven. The
game begins when you press START.

Meeting Monsters
All game action is controlled with the joystick. To get from
one room to the next, simply move the joystick in the desired
direction. Choices are prompted by messages in the text win
dow and include things like going up or down stairs, attacking
monsters, and using magic rings or potions.

When you enter a room with a monster, you can attack it
by pushing the trigger on the joystick. You can flee the mon
ster by moving away from it. However, the monster will get a
free attack.

Every time you kill a monster, your gold will increase.
Some monsters will also have magic items. You may possess
one ring and one potion at a time. When you see either, you
are given the choice of using it or leaving it. To use a ring or
drink a potion, press the trigger on the joystick. To leave it,
move away.

When you have found one of the rings that can be used
for attacks, the computer will give you the normal prompt,
PRESS TRIGGER TO ATTACK. If you wish to attack, press
the trigger. Otherwise, move the joystick in any direction. You
will then get the prompt PRESS TRIGGER TO USE RING. If
you wish to flee, move the joystick a second time.

The rings have a limited number of charges, so use them
wisely. When you attack with an empty ring, the computer
tells you OUT OF CHARGES, and the monster gets a free
attack.

A few of the monsters have poison. If you are poisoned
by a monster, you die no matter how many hit points you
had. If you kill a poisonous monster, you will be given a
magic sword which will increase your strength. If you get a
second magic sword, your strength will again increase.

If you pass through an empty room you get extra hit
points for "resting." The level you're on determines how
many hit points you'll get. When you return to a room for a
second or third visit, it is unlikely that what you saw the first
time will still be there. If you see a stairway in a room, leave,
and then come back-there may be a monster in the stair
way's place.

Oh, one more thing: Watch out for traps.

102

Chapter 2

How It's Done
Let's look at the listing. Line 10 assigns variable names to fre
quently used numbers (to save memory), and calls a sub
routine that creates redefined characters.

Line 15 makes the dragon show up at the beginning of
the program.

Lines 35- 75 give you the player option. Memory location
53279 reads the function keys. A value of three means the
OPTION key is pressed, and a value of six means the START
key is pressed.

Line 90 ends the program if you've gone up to the
surface.

Lines 100-105 draw the box for the floor plan. POKE
756,BASE/256 + N2 resets the character set. POKE 77 in line
100 disables the rotating colors that appear if there is no key
board input for several minutes. Lines 120-195 select the
room contents and draw the floor plans. Lines 210-230 draw
the dragon.

Lines 245-350 animate the player with redefined
characters.

Lines 355-380 tell the computer what to do, depending
on what's in the room. The strings store names and graphic
shapes for the monsters. Lines 385-390 make the screen flash
when you meet a monster.

Line 400 sets the strength, dexterity, and hit points for the
monsters. It also decides if you're facing a poisonous monster.

Lines 410-555 handle the combat. Lines 565-685 decide
what you found, if anything.

Lines 760-790, 795- 830 and 835-840 contain subroutines
for stairway up, stairway down, and traps.

The subroutine at 845 prints character values on the
screen; 850 is the sound routine for the rings; 855 is used
when you pick up certain rings . Line 860 disables the BREAK
key. Line 865 blows dragon fire.

Lines 870- 920 end the game when you win or die. Lines
925-935 start the game again.

Next comes the data for monster names and graphics.
Line 960 is a delay loop.

Lines 965-985 place the monster in the room. The po
sition depends on which direction the player came from.

Line 990 prints an often used phrase.

103

Chapter 2

The rest of the program redefines the character set. Be
careful typing the DATA statements, or your graphics won't
look right.

Dragon's Den
For error-free program elltry, read "The Automatic Proofreader" ill Chapter 1 before typillg
ill this program.

IIL5 DIM S$(I).M$(9).L$(17):M$="YOU SEE AU
~ 10 G=I:V=0:J~0:Q=0:E=245:K=330:N0=0:Nl=I:N2

=2:N3=3:N4=4:N5=5:N6=6:N7=7:N8=8:N9=9:GO
SUB 1000£1

16 15 QW=I: GOTO 205
OP20 QW=0:GRAPHICS N2+16:SETCOLOR N4.N8,N£1:GO

SUB 860
~25 POSITION N2,N2:? #6;uTHE DRAGON"S DEN":P

OSITION N9,N4:? #6;"BY":POSITION N2,N6:?
#6;"KEN ~ JOANN DAVY"

JJ30 FOR Z=Nl TO 3000:NEXT Z
C035 GRAPHICS N2+16:SETCOLOR N0,N0 . 14:SETCOLO

R N4.N3,N6:POSITION N5,N3:? #6; "STANDARD

~40 POSITION N6.N7:? #6;"PLAYER":SOUND 0,121
,10,8:FOR Z=1 TO 20:NEXT Z:SOUND 0,0.0,0
:POKE 53729,N8:GOSUB 860

EN45 X=PEEK(53279):IF X=N6 THEN P=N7:N=N7:H=N
7:L=Nl:GOTO 90

BJ5£1 IF X=N3 THEN FOR Z=Nl TO 130:NEXT Z:GOTO
60

All 55 GOTO 45
R60 POSITION N5,N3:? #6;" RANDOM ":SOUND 0,6

0,10,8:FOR Z=1 TO 20:NEXT Z : SOUND 0,0,£1,
o

B065 POKE 53279,N8:X=PEEK(53279):IF X=N6 THEN
8£1

BN70 IF X=N3 THEN FOR Z=Nl TO 130:NEXT Z:GOTO
35

BA 75 GOTO 65
JI180 P=INT(RND(Nl)*N6)+N4:N=INT(RND(Nl)*N5)+N

5:H=INT(RND(Nl) * N7)+N3:L=N l
NA 85 IF L=N0 THEN 905
IIP90 GRAPHICS N2:POKE 756,BASE+N2:SETCOLOR N4

,N8,N2:SETCOLOR N2,N2.N6:SETCOLOR N0,N8,
N2:SETCOLOR N3,10,N8:A=10:B=N4:GOSUB 860

11K 95 IF L=N5 THEN 200
JA10£1 POKE 77.N0:POSITION Nl,N0:? #6;"{Q}{16 R}

{E}":FOR Z=Nl TO N8:POSITION Nl , Z:? #6;
"{Y}":POSITION 18,Z:? #6 ; "{Y}":NEXT Z

.105 POSITION Nl,N9:? #6;"{Z}{16 R}{C}"

104

Chapter 2

~110 ? "USE JOYSTICK TO MOVE"
LI 115 GOSUB 845
00120 M=INT(RND(Nl)*13):W=N0:0N L GOTO 125,14

5,170,185,210
~125 I=M+N2:POSITION N4,N0:? #6;"{W}{5 R}

{W}{3 R}{W}":POSITION N4,N2:? #6;"{Y}
{5 SPACES}{Y}{3 SPACES}{Y}":POSITION N4
,N3:? #6;"{A}{R} {R}{W} {X} {W}{R}{X}
{2 R}{D}"

~ 130 POSITION N1,N4:? #6;"{A}{R} {D}":POSITI
ON N4,N5:? #6;"{Y}{3 SPACES}{Y}
{3 SPACES}{Y}":POSITION N4,N6:? #6;"
{Y}{3 SPACES}{A}{R} {R}{S}{4 R} {D}"

~135 POSITION N8,N7:? #6;"{Y}"
~ 140 POSITION N4,N8:? #6;"{Y}{7 SPACES}{Y}":

POSITION N4,N9:? #6;"{X}{3 R}{X}{3 R}
{X}":RESTORE 940:GOTO E

EC 145 SETCOLOR N0,12,N2:SETCOLOR N4,12,N2:I=M
+N9:POSITION N5,N0:? #6;"{W}{4 R}{W}
{4 R}{W}":POSITION N5,N2:? #6;"{Y}
{9 SPACES}{Y}"

DD 150 POS I T I ON 10, 1:? #6;" {Y} "
II¥. 155 POSITION N1, N3:? #6;" {A} {R} {R} {S} {R}

{2 R}{X}{2 R} {R}{S} , {R}{D}":POSITION 1
5,N4:? #6;"{Y}":POSITION N5,N5:? #6;"
{Y}":POSITION N5,N6:? #6;"{A}{R} {2 R}
{WIeR} {2 R}{S} {R}{D}"

AP 160 POSITION 5,8:? #6;" {Y}"
~165 POSITION 10,N7:? #6;"{Y}{4 SPACES}{Y}":

POSITION N5,N9:? #6;"{X}{4 R}{X}{4 R}
{X}":RESTORE 945:GOTO E

FD170 SETCOLOR N0,Nl,N2:SETCOLOR N4,Nl,N2:I=M
+15:POSITION N4,N0:? #6;"{W}{3 R}{W}
{3 R}{W}":POSITION N4,N2:? #6;"{Y}
{3 SPACES}{A}{3 R}{D}"

IIA 175 POSITION N1, N3:? #6;" {A} {2 R} {X} {R}
{W}{C}{3 SPACES}{Z}{W}{R} {2 R}{D}":POS
ITION N7,N4:? 36;"{Y}{5 SPACES}{Y}":POS
ITION Nl,N6:? #6;"{A}{2 R} {2 R}{X}{E}
{3 SPACES}{Q}{X}{2 R} {R}{D}"

U180 POSITION N8,N7:? #6;"{A}{3 R}{D}":POSIT
ION N8,N9:? #6;"{X}{3 R}{X}":RESTORE 95
0:GOTO E

EA185 SETCOLOR N0,N5,N6:SETCOLOR N4,N5,N6:I=M
+21:POSITION N5,N0:? #6;"{W}{6 R}{W}":P
OSITION N5,N2:? #6;"{Y}{6 SPACES}{A}
{2 R}(E}"

105

Chapter 2

0019~ POSITION Nl,N3:? #6;"{A}{R} {R}{D}
{Q}{R} {R}{D} {Z} {R}{D}":POSITION N5,
N4:? #6;"{Z}{W}{R}{C}{3 SPACES}{Y}":POS
ITION Nl,N6:? #6;"{A}{R} {R}{W}{X}{R}
{W}{R} {W}{X}{3 R} {R}{D}"

60 1 95 PO SIT ION N 5 , N 7 :? # 6; " {Y} { Y } { Y } " : PO S
ITION N5,N9:? #6;"{X}{2 R}{X}{2 R}{X}":
RESTORE 955:GOTO E

6e 2~~ GRAPH I CS N 1
~2~5 IF QW=l THEN GRAPHICS Nl+16
IF21~ POKE 756,BASE+N2:SETCOLOR N~,N~,N0:SETC

OLOR Nl,N3,N5:SETCOLOR N2,N7,12:SETCOLO
R N4,N~,N0:GOSUB 860

NO 2 1 5 PO SIT ION N 4 , N 2 :? # 6; " {F} {M} {J } {F} {G}
{N}{F}{G}{H}{M}{G}":POSITION N5,N3:? #6
;"{H} {G}{N}{F} {J}":POSITION N5,N4:?

#6;"{F}{G}{N} {N}{F}{G}":POSITION N4
,N5:? #6;"{H} {H}{G}"{F}{J} {J}"

~220 POSITioN N4,N6:? #6;"{H}{J}{H}{T}{J}"
{H}{T}{J}{H}{J}":POSITION N4,N7:? #6;"
{H}{J}{V}{M}{G}{N}{F}{M}{B}{H}{J}":POSI
TION N4,N8:? #6;"{H}{J}{V}{H}{J}{N}{H}
{J}{B}{H}{J}":POSITION N5,N9:? #6;"{H}
{J} {J}{X}{H} {H}{J}"

H" 225 POSITION N6, 10:? #6;" {H} {J} {N} {H} {J}"
:POSITION N6,11:? #6;"{H}{F} {U} {G}
{J}":POSITION N6,12:7 #6;"{H}{F} {U}
{G}{J}":POSITION N6,13:? #6;"{H} {H}
{U} {J} {J}"

EJ 230 POSITION N6, 14:? #6;" {B} {H} {Ie- {L} {J}
{V}":POSITION N7,15:? #6;"{V}
{3 SPACES}{B}":POSITION N7,16:? #6;"
{J}{3 U}{H}"

EA235 IF QW=1 THEN FOR Z=1 TO 700:NEXT Z:GOTO
865

6Y. 240 GOTO 380
M245 POSITION A,B:? #6;"~":SOUND N0,25,N0,N8

:SOUND N0,N0,N0,N0
HO 250 IF C=N 1 THEN GOSUB 960
JL255 IF STICK(N0)=14 THEN S=14:LOCATE A,B-Nl

,X:IF X=32 THEN 280
JE260 IF STICK(N0)=13 THEN S=13:LOCATE A,B+Nl

,X:IF X=32 THEN 290
~265 IF STICK(N0)=N7 THEN S=N7:LOCATE A+Nl,B

,X:IF X=32 THEN 300
JB270 IF STICK(N0)=11 THEN S=ll:LOCATE A-Nl,S

,X:IF X=32 THEN 315
HO 275 GOTO 255

106

Chapter 2

PN280 POSITION A,B:? ott6;"~":POSITION A,B-Nl:,?
ott6;"~":SOUND N0,50,N0,N8:S0UND N0,N0,N

0,N0:GOSUB 960
tC 285 PO SIT ION A, B :? ott 6;" ": B = B - N 1 : C = N 1 : GOT 0

K
~290 POSITION A,B:? ott6;"~":SOUND N0,50,N0,N8

:SOUND N0,N0,N0,N0:POSITION A,B+Nl:? ott6
;"~":GOSUB 960

~295 POSITION A,B:? ott6;" ":B =B+Nl:C=Nl:GOTO

ED 300 PO SIT ION A, B:? ott 6; "~ .. : GO SUB 960
LG305 POSITION A,B:? ott6;"~":SOUND N0,50,N0,N8

:SOUND N0,N0,N0,N0:GOSUB 960
IT310 POSITION A,B:? ott6;" ":A=A+Nl:C=N0:GOTO

K
a315 POSITION A,B:? ott6;"~":GOSUB 960
LF320 POSITION A,B:? ott6;"~":S OUND N0,50,N0,N8

:SOUND N0,N0,N0,N0:GOSUB 960
O~ 325 PO SIT ION A, B :? ott 6;" ": C = N 0 : A = A - N 1
~330 IF D=Nl THEN POSITION A,B:? ott6;"~":D=N0

:GOTO 355
DH335 LOCATE A+Nl,B,X:LOCATE A-Nl,B,Xl:LOCATE

A,B+Nl,X2:LOCATE A,B-Nl,X3
BI340 IF X< 32 AND Xl<32 OR X2<32 AND X3=1 OR

X2 < 32 AND X3=4 OR X2(32 AND X3=25 OR X2
<32 AND X3=23 THEN D=Nl

IK345 IF X2(32 AND X3=19 THEN D=Nl
GM 350 GOTO 245
IE355 IF M(N7 THEN FOR Z=N0 TO M:READ L$,S$:N

EXT Z:? M$;L$:GOSUB 965
AD 360 IF M=N7 THEN 760
BB 365 IF M=N8 THEN 795
AJ 370 IF M=N9 THEN 835
DD 375 IF M :>N9 THEN ? :? :? .. ROOM EMPTY": H=H+L

:GOTO 110
~380 IF L=N5 THEN? M$;" DRAGON~":I=30:M=Nl
6L385 FOR Z=1 TO 3:FOR Z1=8 TO 0 STEP -1:SETC

OLOR N1,N2,N6:S0UND N0,60,10,ZI:S0 UND N
1,47,10,Z1:NEXT ZI

BK390 SETCOLOR N1,12,10:S0UND N0,N0,N0,N0:S0U
ND N1,N0,N0,N0:FOR Z2=1 TO 50:NEXT Z2:N
EXT Z

~395 I~ L=N5 THEN SETCOLOR Nl,N3,N5
~400 T=L+N4:0=I+T:F=N0:IF L>N1 AND M=N3 THEN

W=Nl
LK 405 GOSUB 845
~410 IF F=Nl THEN? "IT"S STILL ALIVE~"
~415 ? "PRESS TRIGGER TO ATTACK"
AE420 IF STRIG(N0)=N0 THEN 490

107

Chapter 2

~425 IF STICK(N~)<15 AND L=N5 THEN? "YOU"RE
CUT OFF!"

~43~ IF STICK(N~)(15 THEN 4 4 ~

GL 435 GOTO 42~
EC44~ IF V<N6 OR V>N9 THEN Q=N1:GOTO 5~5
~445 IF V>N5 THEN? :? :? "PRESS TRIGGER TO

USE RING":GOSUB 96~
EC45~ IF STRIG(N~)=N~ THEN GOTO 465
GF455 IF STICK(N~)(15 THEN Q=N1:GOTO 5~5
GK 46~ GOTO 45~
00465 IF U<N1 THEN V=N~:? "OUT OF CHARGES!":F

OR Z=N1 TO 1~~:NEXT Z:GOTO 5~5
L147~ IF V=N6 THEN O=O-12:U=U-N1:GOTO 85~
LP475 IF V=N7 THEN O=O-22:U=U-N1:GOTO 85~
~4B~ IF V=NB THEN O=O-36:U=U-N1:GOTO 85~
~4B5 IF V=N9 THEN O=O+15:U=U-N1:GOTO B5~
K649~ X=INT(RND(N1)*1~):IF X(=N THEN O=O-P:H=

H+P:GOTO 5~~
DJ495 FOR Z=N~ TO 15:S0UND N~,15,N~,Z:NEXT Z:

FOR Z=15 TO N~ STEP -1:S0UND N~,15,N~,Z
:NEXT Z:GOTO 5~5

JG5~~ FOR Z=N~ TO 15 STEP +N2:S0UND N~,15,N~,
Z:NEXT Z:SOU ND N~,N~.N~,N~

B15~5 X=INT(RND(N1) * 1~):IF X(=T THEN H=H-I:GO
TO 515

DA51~ FOR Z=N~ TO 15:S0UND N~.15.N~,Z:NEXT Z:
FOR Z=15 TO N~ STEP -1:S0UND N~.15,N~,Z
:NEXT Z:GOTO 535

AI 5 1 5 I F L = N 5 THE N 865
JF52~ FOR Z=N~ TO 12 STEP +N2:S0UND N~,15,N~,

Z:NEXT Z:SOUND N~ , N~,N~,N~

HJ 525 IF J=N9 THEN W=N~
K153~ X=INT(RND(Nl)*NB):IF W=N1 AND X(L THEN

? "POISONED BY MONSTER!" : G=N~:GOTO 895
AE 535 IF H<Nl THEN 895
LY. 54~ IF Q=N 1 THEN S$=" ": GOSUB 965
.545 IF Q=N1 THEN Q=N~:GOTO 110
HB55~ IF O>N~ THEN F=Nl:GOTO 4~5
~555 ? :? :? "YOU WON ! ":S$=" ":GOSUB 965
HJ 56~ IF J=NB THEN W=N 1
OF565 IF W=N1 AND L}Nl AND M=N3 THEN? :? MS;

" MAGIC SWORD!":? :P=P+L:S$="j":GOSUB 9
65

6P57~ IF W=Nl AND L >N1 AND M=N3 THEN FOR Z=1
TO 3~~:NEXT Z:S$=" ":GOSUB 965

BL575 X=INT(1~~*RND(N1)+Nl) : IF X>l~ THEN 665
IK58~ ? MS;" RING! " :U=INT(N5*RND(N1)+Nl):GOSU

B 99~
6D 585 SS=" k " : GOSUB 965

108

Chapter 2

&590 IF STRIG(N0)=N0 THEN V=X:? :? :Z2=655:0
N V GOTO 605,610 , 615,620,625,630,635,64
0,645,650

0"595 IF STICK(N0)(15 THEN 660
GN 600 GOTO 590
LJ 605 L=N2: GOTO 855
L6610 L=N3: GOTO 855
L" 615 L=N4 : GOTO 855
~620 G=G'N2:? "GOLD DOUBLED!":GOTO Z2
"D 625 G=N0:? "GOLD LOST": GOTO Z 2
NC630? "RING OF ICE!":GOTO Z2
C" 635 ? "RING OF FIRE!": GOTO Z2
~640 ? "RING OF DESTRUCTION! ":GOTO Z2
CH645? "RING OF LIFE'":GOTO Z2
61 650 ? "NO EFFECT"
Y.1655 FOR Z=Nl TO 500:NEXT Z
PC 660 S$=" ": GOSUB 965
D"665 X=INT(100*RND(Nl)+Nl):IF X>N9 THEN 750
LO 670 GOSUB 845
6P675 IF X=Nl AND J=N8 THEN X=N8
~680 ? :? :? M$;" POTION!":J=X:Z2=750:GOSUB

990
6F 685 S$=" 1 ": GOSUB 965
FF 690 FOR Z = 1 TO 1 00 : N EXT Z
HF695 IF STRIG(N0)=N0 THEN ON J GOTO 710,715,

720,725,730,735,740,745,745
OA700 IF STICK(N0)(15 THEN 750
HJ 705 GOTO 695
~710 ? "POISON! TASTED AWFUL!":G=N0:GOTO 895
~715 H=I:? "HIT POINTS LOST!":GOTO Z2
~720 H=H+H:? "HIT POINTS DOUBLED!":GOTO Z2
~725 N=N+L:? "DEXTERITY IMPROVED!":GOTO Z2
~730 N=N-L:? "DEXTERITY LOST!":GOTO Z2
IT735 P=P+L:? "STRENGTH IMPROVED!":GOTO Z2
W740 P=P-L:? "STRENGTH LOST!":GOTO Z2
GN 745 ? "N 0 E F F E C T "
PC 750 S$=" ": GOSUB 965
H"755 G=G+INT(RND(I)*10)*(L*L'L):GOTO 110
NG 7 6 ~J GO SUB 845: S $ = " {H} " :? M $;" S T A I R WAY UP":

GOSUB 99j!!
116765 GOSUB 965
FE 77£1 FOR Z = 1 TO 1 £I 121 : N EXT Z
~775 IF STRIG(0)=Q1 THEN L=L-l:FOR Z=12Q1 TO 8

£I STEP -5:S0UND NQI,Z , 1Q1,N8:FOR Zi=1 TO
10:NEXT Z1:S0UND N0,NQI,N0,N0:NEXT Z:GOT
o 85

IT78Q1 IF STICK(0)=15 THEN 775
PK 785 S$=" ": GOSUB 965
6L 790 GOTO 11 QI

109

Chapter 2

MG 795 GOSUB 845
AL800 S$="{J}":? M$;" STAIRWAY DOWN":GOSUB 99

o
ME 805 GOSUB 965
£P 8 1 0 FOR Z = 1 TO 1 00 : N EXT Z
~815 IF STRIG(N0}=N0 THEN L=L+Nl:FOR Z=80 TO

120 STEP N5:S0UND N0,Z,10,N8:FOR ZI=1
TO 10:NEXT ZI:SOUND N0,N0,N0,N0:NEXT Z:
GOTO 91(1

OG 820 IF STICK (N0) =15 THEN 815
PF 825 S$=" ": GOSUB 965
G6830 GOTO 110
NA 8 3 5 ? : -:> :? "T RAP I " : PO SIT ION A, B : ';' # 6; "i " : F

OR Z=40 TO 150:S0UND N0,Z,10 , N8:NEXT Z:
FOR Z=Nl TO 10:S0UND N0,15,N0,15:NEXT Z

~840 SOUND N0,N0,N0,N0:L=L+Nl:GOTO 85
GA845? "STR=";P;" DEX==II;N;II HP=II;H;JI GOLD

=";G:RETURN
~850 FOR Z=1 TO 50:S0UND N0,40,10,N8:S0UND N

1,100,10,N8:NEXT Z:SOUND N0,N0,N0,N0:S0
UND Nl,N0,N0,N0:GOTO 535

JA 855 ? "TELEPORTED TO LEVEL "; L: FOR Z= 1 TO 2
00:NEXT Z:GOTO 85

~860 X=PEEK(16):IF X> 127 THEN X=X - 128:POKE 1
6,X:POKE 53774,X:RETURN

J6865 FOR ZI=Nl TO 10:FOR Z=Nl TO 14:SETCOLOR
N0,N3, Z:SOUND NI!1,51Z1,N8, 15:NEXT Z:SOUND
N0,N0,N0,N0:NEXT ZI

~870 IF QW=1 THEN FOR Z=l TO 100:NEXT Z:GOTO
20

AL 875 IF H(NI THEN 895
6L 880 IF 0 >NQI THEN F=N 1
ON 885 I F 0 < NIT HEN G = G + 1 0000: ';' " DR AGO N DE A D I

GOLD=";G:GOTO 910
~890 SETCOLOR N0,N0,N0:GOTO 405
GD 895 ';' " P LAY E R DE A D I " : G = N 0 :? " GO L D = " ; G: I F L <

N5 THEN POSITION A,B:? #6;"~"
HB 900 GOT 0 9 1 5
A6 905 ? "G 0 L D = " ; G
LO 9 1 0 ? "Y 0 U SUR V I V E D I "

~915 IF G< Nl THEN FOR Z=N0 TO 255 STEP 10:S0
UND N0,Z,10,N8:FOR ZI=Nl TO N5:NEXT Z1:
NEXT Z:SOUND N0,N0,N0 , N0:GOTO 925

£6920 FOR Z=255 TO N0 STEP -10:S0UND N0,Z,10,
N8:FOR ZI=Nl TO N5:NEXT Z:SOUND N0,N0,N
0,N0

PN 925 ? "PRESS TR I GGER TO PLAY AGA IN"
OJ 930 IF STR I G (0) =0 THEN 35
H6935 GOTO 930

110

Chapter 2

AK940 DATA N oRC,a, GIANT ANT,o, GIANT RAT,w,
GIANT SPIDER, {RIGHT}, SKELEToN,r, ZoMB

IE,v, TRoGLoDYTE,u
KI945 DATA N oGRE,u, BUG BAT,}:, GIANT LIZARD,

{P}, GAS BAG,t, GoRILLA,m, GIANT BADGER
, CLEFT}, MAN EATING PLANT,q

PF950 DATA NEVIL FIGHTER,a, WEREWoLF,a, MUMM
Y,v, GIANT HORNET, {I}, GIANT SNAKE,p, T
ROLL, I, CYCLOPS, {

IJ955 DATA N EVIL WIZARD,s, WRAITH,z, MINoTAU
R,{UP}, GIANT SCoRPIoN,n, VAMPIRE,
{DOWN}, TITAN,y, DEMON, CO}

LD960 FOR Z=Nl TO N9:NEXT Z:RETURN
n965 IF S=14 THEN POSITION A,B-Nl:? #6;S$
~97t21 IF S=13 THEN POSITION A,B+Nl:? #6;S$
MK975 IF S=N7 THEN POSITION A+Nl,B:? #6;S$
IT98121 IF S=11 THEN POSITION A-Nl,B:? #6;S$
IG 985 RETURN
HA 99121 ? "PRESS TR I GGER TO USE": RETURN
~ 11210121121 BASE=PEEK(106)-8:CHSET=BASE*256: IF PE

EK(CHSET+512)=229 THEN RETURN
~1001t21 GRAPHICS 18:SETCoLoR N4,N3,N0:SETCoLo

R Nt21,Nl,10:PoSITIoN N2,N2:? #N6; "THE
DRAGoN'S DEN"

IN 101212121 POSITION N2, N5:? #N6; "PLEASE WAIT FOR
":PoSITIoN N3,N7:? #N6;"35 SECONDS ...

~150t210 FOR I=N0 TO It2123:PoKE CHSET+I,PEEK(57
344+I):NEXT I

BG 1 51210 1 RES TOR E 1 5121 121 5
CI 1501212 READ A: IF A< Nt21 THEN RETURN
EH 15003 FOR J=N0 TO N7:READ B:PoKE CHSET+A*N8

CL 15004
AH 1512105
PP 15006
DG 15007
LD 15008
BY. 15009
LE 1501121
EC 15011
BI 15012
PJ 1512113
EC 15014
MC 15015
HJ 15016
~:N 15017
HF 1512118
PC 15019

+J,B:NEXT J
GoTo 1512102
DATA 64,229,22,215, 124,30,6121, 11216, 161
DATA 73,0,230,234,234,28,12121,15121,23121
DATA 79,56,124,215,253,189,184,68,68
DATA 80,254,225,116,56,62,92,31,23
DATA 89,24,24,24,24,24,24,24,24
DATA 92,56,16,124,124,124,56,56,56
DATA 93,12,30,61,61,6121,62,126,18
DATA 94,0,0,0,59,126,255,128,64
DATA 95,36,149,93,25121,255,9121,149,37
DATA 97,0,48,12121,120,120,48,48,121
DATA 98,0,26,60,88,28,36,64,0
DATA 99,0,12,30,45,12,58,1,0
DATA 10121,121,88,60,26,56,36,2,0
DATA 101,0,48,120 , 180,48,92,128,0
DATA 102,0,121,0,0,48,120,12121,12121

111

Chapter 2

GM 15020
AK 15021
EM 15022
EI 15023
DE 15024
BE 15025
6C 15026
GP 15027
LD 15028
AI 15029
KM 15030
KI15031
DL 15032
LH 15033
OC 15034
OE 15035
HE 15036
J I 15037
EK 15038
OD 15039
FA 1504O
NA 15041
HE 15042

112

DATA
DATA
DATA
DAT.A
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

103,48,48,16,16,!Z1,0,0,0
1!Z14, 0,16,38,56,126,32,16,!ZI
105,0,126,66,66,66,66,126,0
106,16,16,16,16,16,16,56,16
107,0,0,28,20,28,0,0,0
108,0,0,8,8,28,28,0,0
109,24,60,255,189,189,189,219,24
110,0,32,80,128,190,255,42,0
111,0,74,42,237,255,237,42,74
112~0~8!,20!, 16, 12, 126,255,0
113,28,19,18,16,56,16,124,124
114,8,28,42,8,28,20,20,0
115,O,13,62,92,60,124,254,0
116,28,62,127,62,28,215,36,82
117,48,120,252,180,180,48,48,0
118,0,48,60,48,56,40,32,0
119,0,0,60,126,255,128,124,0
120,0,238,124,16,0,0,0,0
121!,24!,126!,255!,255!,255!,255,60!,6~

122,62,107,255,119,62,28,12,24
123,56,108,254,254,254,254,56,56
124,0,0,24,60,126,90,24,0

DATA -1

Chapter 2

Memory Match
Dave Miller

Memory (yours, not the computer's) is the key to winning
this game of matching shapes. For two players.

In this popular memory game, you are presented with a game
board made up of 21 squares. Each square is identified by a
letter, and different shapes are hidden behind the squares. The
object is to match the hidden shapes by picking the appro
priate squares.

Each player picks two squares per turn. If they match, the
player's score increases by ten points and the player gets an
other turn. One extra point is added for each subsequent
match; for instance, the tenth pair is worth 20 points when
correctly matched. If the two squares you want revealed don't
match, the squares will again go blank, no points will be
awarded, and the other player takes a turn.

The board also contains one penalty square. The penalty
square costs you five points (and forfeits your turn) every time
you pick it, so you would be well advised to remember where
it is.

The game continues until the final pair of characters have
been matched. At that time the program checks to see which
player has the most points, or if a tie exists. Pressing the ESC
key will end the game, or you can press any other key to play
again.

Built-in checks make sure that you enter only valid letters
(A-U) when selecting a square. If you do hit an invalid key,
you are notified by a message at the top of the screen and can
then try again . The program also will not allow you to choose
the same square for your first and second guesses in any given
turn.

Memory Match
For error-free program el/ try, read "The Automatic Proofreader" in Chapter 1 before typing
il1 this program.

M10 GRAPHICS 17:POKE 708,44:POKE 709,52:POKE
712,56

~20 DL=PEEK(560)+256*PEEK(561)+4:POKE DL+9,7
AH 30 PO SIT ION 4, 8 :? # 6; .. ME M 0 R Y MAT C H ..
FN 40 PO SIT ION ·2, 1 5 :? # 6; .. pIe a s est and by"
EP 47 REM

113

Chapter 2

GI: 48 REM *** ENABLE CHSET ***
FB 49 REM
MK50 GOSUB 670:':> #6;"CCLEAR}":POKE 756,CHSETI

256
FA 57 REM
6A58 REM *** SET UP GAME BOARD ***
Fe 59 REM
M60 POKE 559,0:POKE 708,142:POKE 709,134:POK

E 711,30:POKE 712,0
JA70 DIM CHR(21',COLRC21',MATCHCll':POKE DL+2

,7:POKE DL+21,7:POKE DL+9,6
~80 PLAYER=0:SCORE1=0:SCORE2=0:COUNT=0:X=0:L

_'77 -".: .. _ ...

AF 90 PO SIT ION 3, 1 : ') # 6; "M E M 0 R Y MAT C H "
~ 100 SCR=PEEKC88'+256*PEEK(89) :POKE 16,64:PO

KE 53774,64
EC110 FOR A=2 TO 16 STEP 2:FOR B=3 TO 17:POKE

SCR+A+B*20,75:NEXT B:NEXT A
~ 120 FOR A=1 TO 4:FOR B=42 TO 56:POKE SCR+B+

X,76:NEXT B:X=X+100:NEXT A
W 130 FOR A=63 TO 75 STEP 2:POKE SCR+A,L:L=L+

I:NEXT A
.JM 14QI FOR A=163 TO 175 STEP

L+l:NEXT A
JP 15 QI FOR A=263 TO 275 STEP

L+l:NEXT A
~ 160 GOSUB 540:POKE 559,34
Ie 167 REM

2:POKE SCR+A,L:L=

2:POKE SCR+A,L:L=

!J 168 REM * * * CHARACTER PLACEMENT * * *
IE 169 REM
M 170 RESTORE INTCRND(0)*9)+180:FOR A=1 TO 11

:READ CHR,COLR:CHRCA)=CHR:COLRCA'=COLR:
NEXT A

NM 171 FOR A=12 TO 21:READ CHR,COLR:CHRCA'=CHR
:COLRCA'=COLR:NEXT A

FB 1 80 D A TAl 29, 1 4, 1 3111 , 20, 1 3 1 , 30, 1 32, 1 86, 1 33 , 8
6, 1 34 , 76, 1 35 , 4lll, 1 36 , 2 1 8 , 0 , 0, 1 38 , 54, 1 37 ,
198

JK 1 8 1 D A TAl 30 , 2 0, 1 38 , 54 , 1 29, 1 4 , 1 37 , 1 98, 1 3 1 , 3
QI, 136,218,132,186,135,4(1,133,86,134,76

FD 1 8 2 D A TAl 3 1 , 3 1[1, 1 3 5 • 4 el , 0 , (:>1, 1 3 8 , 5 4, 1 2 9, 1 4, 1 3
2,186, 13el ,20.137, 198, 134,76, 136,218, 133
,86

JM 1 83 D A TAl 32, 1 86, 1 38 , 5 4, 1 29, 1 4 , 1 37 , 1 98, 1 34 ,
76,133,86,136,218, 135 , 4lll , 131,3(:>1, 130,20

FF 1 84 D A TAl 29, 1 4 , 0 , 1.11, 1 3 1 , 3 iii, 1 36 , 2 1 8, 1 3111 , 2 iii, 1
38,54,1 3 3,86,135,40,134,76,132,186,137.
198

JO 185 DATA 138,54,137,198,136,218,135, 4QI, 134,
76,133,86,132,186,131,3(:>1, 13QI,20, 129, 14

114

Chapter 2

FH 1 86 D A TAl 29, 1 4 , QI , 0, 1 3 1 , 3 Ill, 1 36 , 2 1 8, 1 30 , 2 0, 1
38, 54, 1 33 , 86, 1 35 , 4 Ill, 1 3 4 , 76, 1 32, 1 86, 1 37 ,
198

KA 1 87 D A TAl 32, 1 86, 1 38 , 54 , 1 29, 1 4, 1 37 , 1 98, 1 34 ,
76,133,86,136,218, 135,4!Z1, 131,31l1, 130,20

FJ 188 DATA 129,14, 13QI,20, 131,30, 132, 186, 133,8
6,134,76, 135,41l1, 136,218,0,1l1, 138,54, 137,
198

KC 1 8 9 D A TAl 3 8 , 5 4, 1 3 7 , 1 98, 1 3 6 , 2 1 8, 1 35 , 4 12', 1 3 4 ,
76,133,86,132,186,131 , 31l1, 1312',20,129,14

NJ 1 9 ° FOR X '" 1 TO 1 0 : MAT C H (X) = 0 : N EXT X
HO 226 REM
NH 227 REM * * * READ AND MATCH * * *
~228 REM ***{3 SPACES }K EY PRESS{4 SPACES}***
IS 229 REM
~230 GUESS=0:TEMP1=0:TEMP2=0
LC 240 GOSUB 57 III
~242 P=PEEK (7 64):IF P=255 THEN 242
J"245 FOR S=l TO 5:S0UND 0,50*(S+GUESS+10),10

,14:NEXT S:SOUND 0,0,O,O
LD 250 GOSUB 570
IJ260 RESTORE 270:TRAP 575:FOR X=l TO 21:READ

V,Z
DN 270 DATA 63,103,21,105,18,107,58,109,42,111

,56,113,61,115,57 , 203
61280 DATA 13,205,1,207,5 , 209,0,211,37,213,35

,215,8,303,10,305
D0290 DATA 47,307,40,309,62,311,45,313,11,315
AL 300 IF P< >V THEN NEXT X
SH 305 I F NOT CHR (X) THEN 370
JD307 FOR C=l TO 10:IF CHR(X)=MATCH(C) THEN 5

75
BN 308 NEXT C
~310 GUESS=GUESS+l:POKE 66,0
HB320 IF GUESS=1 THEN TEMP1=CHR(X):POKE 710,C

OLR(X):POKE SCR+Z,CHR(X):A=Z:GOSUB 570:
GOTO 240

D"330 IF GUESS=2 THEN TEMP2=CHR(X):IF TEMP1=T
EMP2 THEN B=Z:POKE SCR+Z,CHR(X):GOSUB 5
70:GOTO 360

PK335 POKE 711,COLR(X):POKE SCR+Z,CHR(X)+64:B
=Z:GOSUB 570:GOTO 360

CO 340 NEXT X
LH 350 GOSUB 570: GO TO 240
IC 356 REM
ID357 REM *** PENALTV FOR ***
LJ358 REM *** BLANK SQUARE ***
IF 359 REM
JA360 IF TEMP1 AND TEMP2 THEN 430

115

Chapter 2

AH37~ POKE 66,~:SOUND ~,42,2,12:IF PLAYER<>l
THEN 4~~

BE3B~ SCORE1=SCOREl-5:POKE 712,52:FOR W=1 TO
1~~:NEXT W

CF39~ GOSUB 5B~:POKE 712,~:POSITION 3,1:? *6;
"{3 SPACES}i::t4n=iliilH3 SPACES}"

DE395 FOR W=1 TO 3~~:NEXT W:POSITION 3,1:? *6
; "MEMORY MATCH":GOTO 53~

AP4~~ SCORE2=SCORE2-5:POKE 712 , 52:FOR W=1 TO
1~~:NEXT W

BP 41 ~

eN 415

IB 427
PN 42B
ID 429
DF 43~
PP 431

IE 432
6" 45~
"I 46~
6l 47~

OD 4B~
"0 49~
6F 5~~

N" 51~
El 52~
Ie 527
H" 52B
IE 529
PD 53~

ID 537
ND 53B

\
,~. IF 539

'" 6N 54~

1~55~
"D 56~

IA 57~
EP 571
IC 572

116

GOSUB 59~:POKE 712 , ~:POSITION 3,1:? *6;
"{3 SPACES}i::t4.J¥ilil!:{3 SPACES}"
FOR W=l TO 3~~:NEXT W:POSITION 3,1:? *6
: "MEMORY MATCH":GOTO 530
REM
REM *** CORRECT MATCH ***
REM
IF TEMP1<>TEMP2 THEN 52~
SOUND ~,I~~,1~,1~:FOR W=l TO 2~~:NEXT W
:SOUND ~,~,~,~:COUNT=COUNT+l
MATCH(COUNT)=TEMPl
IF PLAYER<>l THEN 49~
SCOREl=SCOREl+1~+COUNT:GOSUB 5B~

POKE SCR+A-4~,~:POKE SCR+B-4~,~:IF COUN
T=l~ THEN 6~~
PLAYER=2:GOTO 53~
SCORE2=SCORE2+1~+COUNT:GOSUB 59~

POKE SCR+A-4~,~:POKE SCR+B-4~,~:IF COUN
T=I~ THEN 6~~
PLAYER=I:GOTO 53~
FOR W=1 TO 5~~:NEXT W
REM
REM *** ERASE CHARACTER ***
REM
SOUND ~,~,~,~:GOSUB 54~:POKE SCR+A,~:PO
KE SCR+B,~:GOTO 23~

REM
REM *** UPDATE PLAYER'S TURN ***
REM
POKE 66,~:PLAYER=PLAYER+l:IF PLAYER>2 T
HEN PLAYER=1
IF PLAYER=1 THEN POSITION ~,2~:? #6;"pl
ayer {Q}":POSITION 12,2~:? #6;"
{B SPACES}":RETURN
IF PLAYER=2 THEN POSITION 12,2~:? #6;"p
layer {R}":POSITION ~,2~:? #6;"
{B SPACES}":RETURN
POKE 764,255:POKE 66,I:RETURN
POKE 764,255:RETURN
REM

Chapter 2

IF573 REM *** INVALID KEY PRESSED ***
IE 574 REM

invalid ke ~575 POSITION 3,1:7 ~6;" ":FOR W
=1 TO 200:NEXT W

~576 POSITION 3,1:7 ~6;"MEMORY MATCH":GOTO
240

IH 577 REM
06578 REM *** UPDATE CURRENT SCORE ***
IJ 579 REM
~580 POSITION 0,22:7 =l6;"{5 SPACES}":POSITIO

N 2,22:7 ~6;SCORE1:RETURN
~590 POSITION 12,22:7 ~6;"{5 SPACES}":POSITI

ON 14,22:7 ~6;SCORE2:RETURN
IJ 597 REM
A"598 REM ***{4 SPACES}END OF GAME{4 SPACES} •

• *
Il599 REM
H0600 POKE 66,0:FOR W=1 TO 100:C=PEEK(53770):

POKE 712,C:NEXT W:POKE 712,0
D6610 IF SCORE1)SCORE2 THEN POSITION 1,22:7 =I

6;"~"
61620 IF SCORE1(SCORE2 THEN POSITION 13,22:7

.6;"~"
~630 IF SCORE1=SCORE2 THEN POSITION 8,22:7 =I

6;"~"
~635 POSITION 0,20:7 =16; "player {Q}":POSITIO

N 3,0:7 =16; "esc TO END OR"
~640 POSITION 12,20:7 ~6;"player (R}":POSITI

ON 3,1:7 ~6;"PRESS ~ KEY":GOSUB 571
PL650 P=PEEK(764):IF P=255 THEN 650
Ir,655 IF P=28 THEN CLR :GOSUB 571:POKE 66,0:G

RAPHICS 0:END
BK660 GOSUB 571:GRAPHICS 17:CLR :DL=PEEK(560)

+256.PEEK(561)+4:GOTO 50
IH 667 REM
~668 REM ***{3 SPACES}REDEFINE CHSET ***
IJ 669 REM
AN670 CHSET=(PEEK(106)-8)*256:IF PEEK(CHSET+9

*8)=28 THEN RETURN
KA680 FOR 1=0 TO 512:POKE CHSET+I,PEEK(57344+

I):NEXT I:RESTORE 720
lH690 READ A:IF A=-1 THEN SOUND 0,0,0,0:RETUR

N
H6700 FOR J=0 TO 7:READ B:SOUND 0,B,10,10:POK

E CHSET+A'8+J,B:NEXT J
HA 710 GOTO 690
AN720 DATA 1,126,126,126,60,24,24,24,60
~730 DATA 2,15,15,15,15,31,127,127,7
ED740 DATA 3,0,12,25,51,255,24,12,6

117

Chapter 2

OL750 DATA 4,24,28,30,16,17,255,127,63
OD760 DATA 5,20,93,107,62,20,28,20,119
CD770 DATA 6,28,126,52,62,60,48,127,124
K"780 DATA 7,102,255,219,255,102,60,36,102
18790 DATA 8,60,103,253,244,224,116,29,15
Pr,800 DATA 9,28,127,255,126,28,8,8,255
~81~ DATA 10,0,0,0,120,200,254,255,102
LC820 DATA 11,52,44,52,44,52,44,52,44
FC830 DATA 12,126,219,165,219,219,165,219,126
BE 840 DATA -1

118

Chapter 3

Alphabone Hunt
Glenn M. Varano

Learn the alphabet while sniffing out bones in this delightful
alphabetizing game for children ages five to nine.

I use an Atari 400 in my first-grade classroom, but finding
quality programs at the appropriate level has proved to be
difficult. As a result, I've developed several educational pro
grams myself. Here is one of them, an alphabetical order pro
gram (for ages five to nine) called" Alphabone Hunt."

After a brief initialization, during which characters are re
defined and player/missile graphics are enabled, the screen
shows a dog in a doghouse and ten bones scattered about the
yard. A starting letter is shown at the bottom of the screen,
and the child must locate the next ten letters in order.

Letters are revealed by moving the dog (with the joystick)
until it touches the middle of a bone. That reveals a hidden
letter. If it is the next letter in the alphabetical sequence, the
child pushes the fire button; if the child is correct, the letter
will take its place at the bottom of the screen. The dog wraps
around the screen horizontally but may not cross the fences at
the top and bottom. ..

After an incorrect answer, there will be a time penalty
and the dog is returned to the doghouse. Obviously, the child
will do best by remembering the locations of as many letters
as possible.

The game continues until all letters have been placed in
order. Total time will be displayed, and a short song will be
played. Pushing the START button during play resets the
game to the beginning.

I've included numerous REM statements for those who
would like to enhance the game. All REM statements can be
safely omitted to save on typing and memory.

Alphabone Hunt
For error-free program entry, read "The Alltomatic Proofreader" ill Chapter 1 before typillg
ill this program.

~1~ GOSUB 32~~~:CLR
6e15 GOSUB l~~~e:GOSUB 2~~~~:GOSUB 2~9~~:GOSU

B 6~~~:POKE 2~,~:POKE 19.~:POKE lB,~:GOT
o l~~:REM RESET TIMER

~4~ S=STICK(~):REM JOYSTICK ROUTINE----FROM
COMPUTE"S 2ND BOOK OF ATARI--PAGE 2

121

Chapter 3

IP50 DX=(S=5 OR 5=6 OR 5=7)-(5=9 OR 5=10 OR 5
=11)

"860 DY=(S=5 OR 5=9 OR 5=13)-(5=6 OR 5=10 OR
5=14)

LC65 POKE 53278,1:REM RESET COLLISION REGISTE
R

EH 70 RETURN
~100 S=0:GOSUB 40
BC105 IF PEEK(53279)=6 THEN GAME=I:GOTO 15:RE

M START BUTTON TO RESTART GAME
~110 IF NOT (DX OR DY) THEN 100
~115 POKE 53279,0
~120 X=X+DX:IF X>212 THEN X=35
FL122 IF X<35 THEN X=212:REM LETS DOG WRAP AR

OUND HORIZONTALLY
HA125 POKE 53248,X:REM HORIZ POSITION
~ 130 Y=Y+DY:IF Y>85 THEN Y=85
NC132 IF Y<20 THEN Y=20:REM LIMITS DOG VERTIC

AL MOVEMENT
FA133 IF DX<0 THEN P0$(Y,Y+8)=T$:GOTO 140
B"135 P0$(Y,Y+8)=S$:REM CHANGES DOG FACING
BH140 IF PEEK(53252)<>1 OR DX=0 THEN 100:REM

NO COLLISION
IK 149 REM ••• COLLISION WITH BONE.**
~150 K=«X-56)/16)+I:IF K<>INT(K) THEN 100:R

EM CHECKS FOR CORRECT HORIZ POS
IL160 ON K GOSUB 501,502,503,504,505,506,507,

508,509,510
FC170 POSITION XX,YY:? #6;BL$:POSITION XX,YY:

? #6;CHR$(LTR(K»:FOR T=1 TO 200:NEXT T
:POSITION XX,YY:? *6;"~":GOTO 7000

LN500 REM .*.VARIABLES FOR POSITIONS •••
CP 501 X X= 1: YY=8: RETURN
C" 502 XX=3: YY=2: RETURN
FP 503 XX=5: YY=II: RETURN
~504 XX=7:YY=16:RETURN
OF 505 XX=9: YY=2: RETURN
J8506 XX=II:YY=13:RETURN
~507 XX=13:YY=4:RETURN
Jl508 XX=15:YY=14:RETURN
U509 XX=17:YY=12:RETURN
6F510 XX=19:YY=5:RETURN
BE 3999 REM * •• GAME OVER •••
IL4000 TIME=INT«PEEK(19)'256+PEEK(20»/60):S

EC=TIME-(INT(TIME/60)'60)
DF4005 POSITrON 9,10:? #6;INT(TIME/60);":";:I

F SEC>9 THEN? #6;SEC:GOTO 4010
CH 4006 ? #6; "0"; SEC
AL 4010 GOSUB 6000
CH 4020 GAME= 1 : GOTO 15

122

,

Chapter 3

PH5999 REM ***SONG***
LB 6000 RESTORE 6100
KB 60 1 0 REA D N, D
F66020 IF N=-1 THEN SOUND 0,0,0,0:RETURN
¥.L6030 SOUND 0,N,10,10:FOR S=1 TO D:NEXT S
11K 6040 GOTO 6010
8"6100 DATA 8 1 ,64,60,64,81,64,96,64,121,128,7

2,32,81,32,96,32,81,64,108,256
HA6110 DATA 81,64,64,64,72,64,81,64,91,128,64

,32,72,64,81,256
"06 150 DATA -1,-1
606499 REM ***GOOD SOUND***
6H6500 FOR N=25 TO 1 STEP -1:S0UND 0,N,10,10:

NEXT N:SOUND 0,0,0,0
K" 6510 RETURN
"16999 REM ***CHECK FOR LOW LETTER***
6" 7000 FOR L=l TO 10
¥.D7010 IF CHRS(LTR(K»<>LOW$(M,M) AND STRIG(0

)=0 THEN GOSUB 8000:GOTO 100
6P7015 IF CHRS(LTR(K»=LOWS(M,M) AND STRIG(0)

=0 THEN GOSUB 7500:GOTO 100
FL 7018 NEXT L
JD 7020 GOTO 100
OE7499 REM ***MOVES LETTER TO BOTTOM OF SCREE

N***
017500 M=M+l:POSITION XX , VV:? #6;" ":POSITION

M+3,21:GOSUB 6500:? #6;CHR$(LTR(K»
017510 IF M)10 THEN GOTO 4000:REM GAME OVER
KO 7520 RETURN
NP7999 REM ***PENALTV***
CB8000 FOR N=l TO 500:S0UND 0,N,8,10:NEXT N:S

OUND 0,0,0 , 0:V=45:X=129:GOSUB 20110
KJ 8010 RETURN
LC9999 REM ***DRAW SCREEN***
~ 10000 IF GAME)0 THEN? #6;CHR$(125):GOTO 10

JE 10005

HH 10010

BII 10015

FE 10020

OF 10030

IK 10040

HE 10050

010
GRAPHICS 17:SETCOLOR 4,0,4~SETCOLOR 1
,2, 14:SETCOLOR 0, 15, 10:SETCOLOR 2,8,0
POKE 756,PEEK(106)+5:REM RESETS POINT
ER TO NEW CHARACTER SET
POSITION 3,2:? #6;"!{5 SPACES}!":POSI
TION 19,5:? #6;"!":REM !=BONE
POSITION 1,8:? #6;"!":POSITION 13,4:?

#6;1I!1I
POSITION 11,13:? #6;"!":POSITION 15,1
4:? #6;"!1I
POSITION 5,11:? #6;"!":POSITION 7,16:
? #6;"!fI
POSITION 17,12:? #6;"'"

123

Chapter 3

N" Ul.I Ql6 QI PO SIT ION 9, 7 :? :It 6; "~" : PO SIT ION 9, 8 :
? :lt6;"ygg":POSITION 9,9:? #6;":!:J :!:J":RE
M DOGHOUSE

~ I~Ql7~ POSITION QI,19:? #6;"m{~}m{~}m{~}m{~}m
(~}m{~}m{~}m{~}m{~}m{~}":REM FENCE

~ lQ1Q175 POSITION ~,~:? #6; " m{~}m{~}m{~}m{~}m

{~}m{~}m{~}m{~}m{~}m{~} "

NK 1 ~Ql9~ RETURN
FE 19999 REM ** *PM INIT * **USE STRINGS TO DEFIN

E AND MOVE PLAYERS VERTICALLY
C"2Q1Q1Q1~ IF GAME)~ THEN 2~11~
"L 2~Qll ~ DIM X $ (1)
BS 2~Ql2~ A=ADR (X$)
EL2~~4~ B=INT«A-512)/l~24+1)*1~24

PO 2~~5~ DIM F$ (B-A+51 1)
6"2~~6~ DIM P~$(128),Pl $ (128),T$(8) , S$(8),LTR

(1~),BL$(1) , REPEAT$(1~),LOW$(1~):REPE

AT$="{I~ SPACES}":BL$=" "
BL2~~7~ POKE 559,46:POKE 53277 , 3:POKE 54279,1

NT(B/256)
~2~~8~ POKE 623,4:REM SETS PLAYFIELD PRIORIT

Y OVER PLAYER
BL2~~9~ POKE 7~4,5~:REM PLAYERQI(DOG) COLOR
~2~1~~ S$="{,}DN{TAB}:D~{,}":T$="{,}":T$(2)=

CHR$(34):T$(3)="r{DELETE}) ":T$(6)=CHR
$(34):T$(7)="w{ , }":REM STRINGS FOR DO
GS

PH2~11~ P~$=CHR$(~):P~$(128)=CHR$(~):P~$(2)=P

~$:REM CLEARS PLAYER~
NF 2~12~ RETURN
EF2~899 REM ***RESTART INIT***
~2~9~~ REPEAT$="{1~ SPACES}":M=1
NA2~91~ Y=5~:X=129:REM STARTING POSITION OF D

OG
FS2~92~ P~$(Y,Y+LEN(S$»=S$

LH 2~93~ POKE 53248, X
6J2~999 REM ***RANDOMLY SELECTS LETTERS FOR B

ONES
LE 21~~~ R=INT (RND (~) '16)
J" 21~~5 FOR K=1 TO 1~

~21~1~ J=INT(RND(~)'1~)+1

EI21~2~ IF REPEAT$(J,J)="'" THEN 21~1~
FA 21 ~3~ REPEAT$ (J , J) ="'": L TR (K) =R+97+J: LOW$ (J

,J)=CHR$(R+97+J)
IB 21~4~ NEXT K
~21~5~ POSITION 4 , 21:? #6;CHR$(R+97)
NJ 21 ~6~ RETURN
PD 31999 REM

124

Chapter 3

DA32000 ? CHR$(125):POKE 106,PEEK(106)-9:GRAP
HICS 18:START=(PEEK(106)+5)*256:POKE
756,START/256 : POKE 752, 1

JG32i111i11 POSITION 3,2:? #6;"r:l.~:r:l;I.]:I .. 1IIIT:I:i":PO
SITION 9,5:? #6 ; "~":POSITION 5,6:? ..
6; "G.M . VARANO"

"132015 POSITION 3,9:? #6;"pleaIe stand by"

NP32020 FOR Z=~ TO 1~23:POKE START+Z,PEEK(573
44+Z):NEXT Z:RESTORE 32100

JF32030 READ X: IF X=-l THEN RESTORE :RETURN
N32040 FOR Y=0 TO 7:READ Z:POKE X+Y+START,Z:

NEXT Y:GOTO 32030
KH32100 DATA 40 , 128 , 192 , 224,240,248,252,254,2

55
DD32101 DATA 8,0,102,255,255,255,102,0,0
08 32102 DATA 56,1,3 , 7,15,31,63,127,255
PA32103 DATA 256,255 , 255,255,255,255,255,255,

255
He 32104 DATA -1

125

Chapter 3

Pyramid Math
Stephen Levy

Colorful graphics and exciting sound make "Pyramid
Math" an excellent math tutor for young children. It's a
fun-to-play game too.

"Pyramid Math" is a simple and straightforward math contest
for two players. As each player answers a problem correctly,
he or she builds another part of the pyramid. The winner is
the player who first completes a pyramid by answering ten
problems correctly.

Players choose addition, subtraction, multiplication, or di
vision problems, and the numbers used in the problems are
generated randomly. The upper limits can be changed by
adjusting the italicized number, as shown below.

Note that the actual upper limit is one less than the num
ber given. For example, if the italicized number is 50, the up
per limit is 49 . Be careful with subtraction; do not make Q2's
limit greater than Q1's . Note that division is presently set for
one-digit answers and one-digit divisors. Q1 is the divisor and
Q2 is the dividend; in other words, problems take the form
Q2/Q1.
Operation
Add
Subtract
Multiply
Divide

Line
610
810
1010
1210

Ql = INT(RND(0)*50):Q2 = INT(RND(0)*50)
Ql = INT(RND(0)*50):Q2 = INT(RND(0)*40)
Q1 = INT(RND(0)*12):Q2 = INT(RND(0)*12)
Ql = INT(RND(0)*10):Q2 = INT(RND(0)*9)*Ql

If you prefer to use different colors, change line 433.
Remember, SETCOLOR 0,8,14 sets the print color to white.

Notice that the problems appear in the text window in
large print, while the pyramid is done in graphics mode 3.
This is accomplished by lines 410, 420, and 430 .

Pyramid Math
For error-free program entry. read "Th e Autolllatic Proofreader" ill Cllflpter 1 before typillg
ill tlTis prog ra III .

M50 DIM YES$(3),BUZZ$(1) , CLEAR$(1)~PLAYER1$(

20),PLAYER2$(20) : BUZZ$=CHR$(253):CLEAR$=
CHR$(125):OPEN ~1 , 4,0,"K:".

"N60 DIM P$(10) :PLAYER1$=" ":PLAYER1$(20)=" "
:PLAYER1$(2)=PLAYER1$:PLAYER2$=PLAYER1$

~ 100 REM INTRODUCTION

126

Chapter 3

PP 110 GRAPHICS 18:SETCOLOR 4,4,2:SETCOLOR 0,1
3,14:TRAP 10000 : SETCOLOR 1,12,3

FN 1 20 PO SIT ION 4, 3 : P R I NT # 6; .. P Y RAM I D MAT H .. : PO
SIT I ON 2,5: PR I NT #6;" [:w.::u.:m::\"4#II;_i1:1;1a"

liE 130 POSITION 3,10:PRINT #6; .. t:!l!!!J::1!kE{[D_ifj.X.nl
~":FOR W=1 TO 2500:NEXT W

n 150 GRAPHICS l:SETCOLOR 4,13 , 13:SETCOLOR 2,
13,13:POSITION 5 , 5:PRINT #6;"DO YOU NEE
D":TRAP 10000

Dr. 1 5 5 PO SIT ION 4, 7 : P R I NT # 6; .. INS T R U C T ION S ? ..
~ 160 INPUT YES$:IF YES$(I,I) < >"N" AND YES$(1

,1)< > "Y" THEN GOTO 10000
r.1I 1 70 I F YES $ (1 , 1) = .. N .. THE N 300
Lr. 180 GRAPHICS 18:SETCOLOR 4,8,4:SETCOLOR 2,1

3,7
CII 190 POSITION 4 , 0: PRINT #6;" INSTRUCTIONS": PO

SITION 0,3: PRINT #6; :h._/i. :W.::u.~.:\ ..
~ ..

HA 1 95 PO SIT ION 2, 4 : P R I NT # 6; .. [![i1:'r::~l::;I[3II.[];~l!.!(·;].\~· .. jj#lj~;~-1K!.I:1 :::II~a
GOES FIRST. ":POSITION 2,5:PRINT #6;" ea

ch"
~200 POSITION 0,6 : PRINT #6;"player will be g

iven":POSITION 0,7:PRINT #6;"a problem
to solve."

W210 POSITION 2,8:PRINT #6;" a correc"t answe
":POSITION 0,9:PRINT #6;"builds the pIa
yer's"

AS 2 1 5 PO SIT ION 6, 1 0 : P R I NT # 6; .. P Y RAM I D .. : PO SIT I
ON 3,11:PRINT #6;"PRESS RETURN"

N6220 IF PEEK(764)=255 THEN 220
118225 POKE 764,255:GRAPHICS 18:SETCOLOR 4,6,5
NP230 POSITION 0,2:PRINT #6;"THE FIRST PLAYER

TO":POSITION 1 , 4:PRINT #6;"FINISH BUlL
DING THE"

Jr. 235 POSITION 3,6: PRINT #6; "PYRAMID WINS"
CP 240 POS I T ION 3,9: PR I NT #6; "'Eliiit4~ __ iiit#$i(ilii""
~245 IF PEEK(764)=255 THEN 245
CP 250 POKE 764,255
HN300 GRAPHICS 2:SETCOLOR 4,9,4:SETCOLOR 0,9,

12
SF 305 TRAP 10010: LN=300
IT310 POSITION 4,0:PRINT #6;"PLAYER one's":PO

SITION 4,I:PRINT #6;"NAME PLEASE .•. "
AJ320 INPUT P$;PLAYER1$(1,LEN(P$»=P$:POSITIO

N 5,2:PRINT #6;PLAYER1$:PRINT CLEAR$
IJ325 HH=ASC(PLAYER1$(I,I»:IF HH (65 OR HH>90

THEN 1001(11
EJ 330 POSITION 4,5: PRINT #6; "PLAYER two's": PO

SITION 4,6:PRINT #6 ; "NAME PLEASE ... "

127

Chapter 3

BC34~ INPUT P$:PLAYER2$(1,LEN(P$»=P$:POSITIO
N 5,7:PRINT #6;PLAYER2$:PRINT CLEAR$

1~345 HH=ASC(PLAYER2$(1,1»:IF HH(65 OR HH)9~
THEN 1~~10

BJ36~ GRAPHICS 17:SETCOLOR 4,5,1~
6N 37~ TRAP 10~ 1 ~: LN=36~
HG 380 PO SIT ION 4, 0 : P R I NT # 6; "W HAT T Y P E " : PO SIT

ION 4,1:PRINT #6;"OF PROBLEMS":POSITION
4,2:PRINT #6;"DO YOU WANT?"

JE39~ POSITION 2,4:PRINT #6;"~ ""r:..,..,,."'"l."")'"".,...-!l""' :POSITI
ON 2,6: PRINT #6; "P_-SI) •• I:I:I"_.!l""

CL 395 POSITION 2,8:PRINT #6; "f0W:;(I].-.~""'.:["":P
OSITION 2,l!3:PRINT #6; "r;_.,.WII.'lila

~4~~ GET #1,HH:IF HH (49 OR HH)52 THEN 1~~2~

IN 4~3 HH=HH-48
liE 4~5 TRAP 40~~~
~41~ POKE 82,~:GRAPHICS 3:DL=PEEK(56~)+PEEK(

561)*256
K42~ IF PEEKCDL)(>66 THEN DL=DL+l:GOTO 42~
Q43~ POKE DL,7~:POKE DL+3 , 7:POKE DL+4,6:POKE

DL+5,65:POKE DL+6,PEEK(DL+7):POKE DL+7
,PEEKCDL+8)

JA433 SETCOLOR 4,8,6:SETCOLOR 2,5,12:SETCOLOR
~,8, 14

K6435 COLOR 3:FOR LINE=11 TO 13:PLOT ~,LINE:D
RAWTO 39,LINE:NEXT LINE

KN437 COLOR 2:FOR LINE=14 TO 16:PLOT !3,LINE:D
RAWTO 39,LINE:NEXT LINE

DE44~ ON HH GOTO 6~~,8~~,1!3~~,12~~
FJ 6~~ R=1: ROWl=l~: ROW2=10
LA61~ Ql=INTCRND(~)*5~):Q2=INT(RND(~)*5~)
HE 615 TRAP 1003~: LN=615
I1620 IF R=l THEN GOSUB 1~10~

IL 63~ IF R=2 THEN GOSUB 1~11~

Ell 6 4 ~ P R I NT" .. ; Q 1 ;" + "; Q 2;" =";: 0 N R GOT 0
68~,720

NH 680 INPUT ANS: PR I NT
PC69~ IF ANS=Q1+Q2 THEN GOSUB 600~
NA70~ IF ANS<>Q1+Q2 THEN PRINT BUZZ$:GOSUB 1~

1~~:PRINT "{5 SPACES}";Q1;" + ";Q2;"
";Ql+Q2:FOR W=1 TO 70!3:NEXT W

6D 7 1 ~ R = 2 : GOT 0 6 1 0
HC 72~ INPUT ANS: PRINT
0073~ IF ANS=Ql+Q2 THEN GOSUB 61~0
~74~ IF ANS<>Ql+Q2 THEN PRINT BUZZ$:GOSUB 10

110:PRINT "{5 SPACES}";Ql;" + ";Q2;"
";Ql+Q2:FOR W=l TO 7~0:NEXT W

G675@ R= 1: GOTO 6110
FL 81010 R = 1 : ROW 1 = 1 0 : ROW 2 = 1 0
LB 81 0 Q 1 = I NT C R N D (13) * 510) : Q 2 = I NT (R N D (13) * 410)

128

Chapter 3

00 8 1 2 I F Q 1 < Q 2 THE N 8 HI

HI815 TRAP 10030:LN=815
1Y.820 IF R=1 THEN GOSUB 10100
IN 830 IF R=2 THEN GOSUB 10110
FE 840 P R I NT" " ; Q 1 ;" - "; Q 2;" = " ; : 0 N R GOT 0

880.920
Be 880 INPUT ANS
P6890 IF ANS=QI-Q2 THEN GOSUB 6000
NI900 IF ANS<>QI-Q2 THEN PRINT BUZZ$:GOSUB 10

100:PRINT "{4 SPACES}";Ql ; " ";Q2;"
";QI-Q2:FOR W=l TO 700:NEXT W

6H 910 R=2: GOTO 810
AN 920 INPUT ANS .
PC930 IF ANS=QI-Q2 THEN GOSUB 6100
~940 IF ANS <> QI-Q2 THEN PRINT BUZZ$:GOSUB 10

110:PRINT "C4 SPACES}";Ql;" - ";Q2;"
";QI-Q2:FOR W=l TO 700:NEXT W

6K 950 R=I: GOTO 810
IE 1000 R=1: ROW1=10: ROW2=10
NH 1010 Q 1 = I NT (RND (0) * 12) : Q2= I NT (RND (0) * 12)
~ 1015 TRAP 10030:LN=1015
~ 1020 IF R=1 THEN GOSUB 10100
~1030 IF R=2 THEN GOSUB 10110
P~: 1040 P R I NT" "; Q 1 ;" x "; Q 2; ,; = " ; : 0 N R GOT 0

1080.1120
Ol 1080 INPUT ANS
8M 1090 IF ANS=Ql*Q2 THEN GOSUS 6000
C61100 IF ANS <> Ql*Q2 THEN PRINT BUZZ$:GOSUB 1

0100:PRINT "{4 SPACES}";Q1;" x ";Q2;"
= ";Ql*Q2:FOR W=1 TO 700:NEXT W

lJ 1110 R=2: GOTO 1010
061120 INPUT ANS
811130 IF ANS=Ql*Q2 THEN GOSUS 6100
rr 1140 IF ANS<>Ql*Q2 THEN PRINT BUZZ$:GOSUS 1

0110:PRINT "{4 SPACES}";Ql;" x ";Q2;"
= ";Ql*Q2:FOR W=1 TO 700:NEXT W

lM1150 R=I:GOTO 1010
161200 R=I: ROW1=10: ROW2=10
~ 1210 Ql=INT(RND(0)*10):Q2=INT(RND(0)*9)*Q1
~H 1211 IF Ql=0 OR Q2=0 THEN 1210
~1215 TRAP 10030:LN=1215
~ 1220 IF R=1 THEN GOSUB 10100
1I 1230 IF R=2 THEN GOSUS 10110
IN 1 240 P R I NT Q 2;" D I V IDE D BY"; Q 1 ; "=" ; : 0 N R G

OTO 1280.1320
ON 1280 INPUT ANS
CD 1290 IF ANS=Q2/Ql THEN GOSUS 6000
HD 1 300 I FAN S < > Q 2 / Q 1 THE N P R I NT B U Z Z $: GO SUB 1

0100:PRINT" ";Ql;" INTO ";Q2;" IS ";Q
2/Ql:FOR W=1 TO 700:NEXT W

129

Chapter 3

~ 13111'1 R=2:GOTO 12111'1
DI 13211'1 INPUT ANS
~ 13311'1 IF ANS=Q2/Ql THEN GoSUB 6111'111'1
HI134@ IF ANS< >Q2/Ql THEN PRINT BUZZ$:GoSUB 1

@II@:PRINT " ";Ql;" INTO ";Q2;" IS ";Q
2/Ql:FoR W=1 TO 7@@:NEXT W

~A 1 3511'1 R = 1 : GOT 0 1 2 1 11'1
FD6@@@ RoWl=RoWl-1:SoUND 11'1.711'1.111'1.111'1
IC6@1@ IF RoWl=7 OR RoWl=4 OR RoWl=1 THEN COL

OR I:GoTo 611'1411'1
IH6@2@ IF RoWl=8 OR RoWl=5 OR RoWl=2 THEN COL

OR 2:GoTo 611'1411'1
HL 611'1311'1 COLOR 3
O~6@4@ PLOT 1@-RoWl,RoWl:DRAWTo RoWl+1@.RoWl:

FOR W=1 TO 2@:NEXT W:SoUND 11'1.11'1.11'1.11'1
D~ 60511'1 I F ROW 1 < >11'1 THEN RETURN
IE606@ POP :P$=PLAYER1$:GoSUB 7@@@:GoTo 7111'111'1
FI61@@ RoW2=RoW2-1:SoUND 11'1 . 211'111'1 . 111'1.8
IH611@ IF RoW2=7 OR RoW2=4 OR RoW2=1 THEN COL

OR I:GoTo 61411'1
IN612@ IF RoW2=8 OR RoW2=5 OR RoW2=2 THEN COL

OR 3:GoTo 61411'1
HL 61311'1 COLOR 2
AF614@ PLOT 29-RoW2.RoW2:DRAWTo RoW2+29.RoW2:

FOR W=1 TO 2@:NEXT W:SoUND 11'1.11'1.11'1.11'1
W615@ IF RoW2 <> @ THEN RETURN
1661611'1 POP :P$=PLAYER2$: GoSUB 7@@@:GoTo 7111'111'1
L6700@ T I MES=@
NF 7011'15 FOR XX=1 TO 111'1
0170111'1 POKE 7@8.PEEK(7@9):PoKE 7@9.PEEK(71@):

SOUND @.XX*2@.I@.8:PoKE 71@.PEEK(712):
POKE 712.PEEK(7@8)

~70211'1 POKE 7@9.XX*2@:FoR W=1 TO 25:NEXT W:TI
MES=TIMES+l:NEXT XX

HP 711'155 1FT I MES< 15 THEN 711'111'15
JP7056 SOUND 11'1.11'1.11'1.11'1
YoN 711'1611'1 RETURN
FC71@@ GRAPHICS 18:SETCoLoR 4.8.6:PoKE 82.2
CY. 71111'1 FOR XX=1 TO 111'1: PRINT #6;" "; P$;" WINS I

":NEXT XX
M712@ FOR W=1 TO 5@0:NEXT W:TRAP 411'111'111'111'1
~713@ GRAPHICS @:PoSITION 5.1@:PRINT "Play A

gain":INPUT YES$
EN 7 1 411'1 I F YES $ (1 • 1) = " V" THE N RUN
~715@ GRAPHICS 17:PoSITIoN 5.5:PRINT #6;"GAM

E OVER"
IB716@ FOR W=1 TO 4@0:NEXT W
KG 71711'1 END
~ 1011'111'111'1 PRINT BUZZ$:PRINT #6;CLEAR$:GoTo 1511'1

130

Chapter 3

~ 10010 PRINT BUZZS:GOTO LN
IT 10030 PRINT BUZZS~PRINT CLEARS:GOTO LN
DL 1 01 01l! P R I NT C LEA R S ;" "; P LAY E R 1 S ; : RET URN
DN 1 0 1 1 0 P R I NT C LEA R S;" "; P LAY E R 2 S; : RET URN

131

Chapter 3

Dot Drawing
Robert D. Goeman

Here's a drawing program that lets students create their
own connect-the-dots pictures. It helps develop visual
skills too .

"Dot Drawing" uses less than 2K of memory for the body of
the program. When the program is running, the entire mem
ory requirements total less than 13K. The program is entirely
in BASIC and can be modified by those with limited program
ming skill and an Atari reference manual.

The program places a flashing cursor in the upper left
hand corner of an otherwise darkened screen. Pressing the fire
button marks the cursor's location as the starting point for a
drawing; in the text window, the X and Y coordinates of that
location will be displayed.

As the cursor is moved, each subsequent pressing of the
fire button enters a new X and Y point and displays the new
coordinates in the text window. To connect the points and
draw a picture, press D.

After the drawing is complete, the cursor remains at its
last position, allowing you to expand your creation. You can
clear the screen by pressing BREAK and running the program.
If you attempt to save more than 254 X,Y points without
drawing the picture, the program will automatically jump to
the drawing routine and then return to the beginning of the
program.

About the Program
Lines 1-43 set the graphics mode and control cursor move
ment by reading the joystick. Line 11 initializes the memory
location for storing the X and Y coordinates; that line also
initializes variable ST, which counts the number of points en
tered in a given drawing.

Lines 45-50 read the keyboard and the joystick. POKE
764,255 returns the keyboard to a "no keys pressed" condition
after D has been read.

Lines 100-110 are used to enter X coordinates which are
greater than 255, since numbers larger than 255 cannot be
held in a single memory location. Lines 115-116 enter the
present coordinate values and then move the present memory
locations ahead in preparation for the next set of coordinate

132

Chapter 3

values. Lines 200-215 then reinitialize memory locations and
X, Y values for the drawing routine and plot the first point of
that routine.

Lines 220-240 do the actual drawing. I-I is the number
of points held in memory locations, minus the first point
which has already been plotted.

Dot Drawing
For error-free progra/ll entry, read "Th e Automatic Proofreader" ill Clwpter 1 before typing
in this program.

PI 1 X= 1: Y= 1
JP 1~ GRAPHICS 8:SETCOLOR 2,16,1:COLOR 5
IN11 L=1536:Ll=1537:L2=1538:T=~:ST=~
~ 14 IF STICK(~)=15 THEN X=X:Y=Y
~15 IF STICK(~)=11 THEN X=X-1
~ 19 IF STICK(~)=14 THEN Y=Y-l
6F20 IF STICK(~)=9 THEN X=X-1:Y=Y+1
JE25 IF STICK(~)=1~ THEN X=X-1:Y=Y-l
6F26 IF STICK(~)=5 THEN X=X+l:Y=Y+l
6J 27 IF STICK (~) =6 THEN X=X+l: Y=Y-1
A"3~ IF STICK(~)=13 THEN Y=Y+l
OC 35 IF STICK (~) =7 THEN X=X+l
BJ 4~ IF X< 1 THEN X=319
8"41 IF X>319 THEN X=l
CC 42 IF Y< 1 THEN Y=189
CF 43 IF Y>1B9 THEN Y=l
IF45 IF PEEK(764)=58 THEN POKE 764,255:GOTO 2

~~

AN5~ IF STRIG(~)=~ THEN T=T+l:S0UND 1,3~,1~,8
:FOR P=l TO 25:NEXT P:SOUND 1,0,~,~:GOTO
10~

DN55 PLOT X,Y:FOR P=1 TO 15:NEXT P:COLOR 0:PL
OT X,Y:COLOR 5:GOTO 15

NJ 10~ IF X<=255 THEN XX=0
~ 1~5 ST=ST+l:IF ST)=254 THEN 200
n 110 IF X>255 THEN XX=X-255:X=255
"E 115 POKE L,X:POKE Ll,XX:POKE L2,Y
6L 116 L=L+3:Ll=Ll+3:L2=L2+3
LO 1 1 7 X = X + X X :? X;" "; Y : ?
DC 120 GOTO 15
HE2~0 L=1536:Ll=1537:L2=1538
"121~ X=PEEK(L):XX=PEEK(Ll) :Y=PEEK(L2)
L6 2 1 5 X = X + X X : P LOT X, Y
10220 FOR P=l TO T-l
FF222 SOUND l,220,l~.8:FOR PP=l TO l~:NEXT PP

:SOUND 1,0,0,~

6"225 L=L+3:Ll=Ll+3:L2=L2+3

133

Chapter 3

Kk230 X=PEEK(L):XX=PEEK(Ll) : Y=PEEK(L2)
EK 235 X = X + X X : DRAW T 0 X, Y
LP 23 7 ? X; II "; Y : ?
CF 240 NEXT P
EE 242 IF ST >=254 THEN 1
DB 245 GOTO 11

134

Chapter 3

Art Class
Mark Poesch
Tim Kilby
Steve Steinberg

"Art Class" is an outstanding example of the graphics
capabilities of your Atari computer. It can be an excellent
teaching tool, a fine introduction to computers, or simply
great entertainment for a rainy day.

The Atari GTIA chip is getting to be like the weather-every
body talks about it, but nobody does very much with it.

Until now.
"Art Class" is a drawing program utilizing the GTIA's

graphics mode 10. It is designed for use by small children, who
can use the cursor much like they would use felt coloring pens.

Coloring with the Cursor
We have deliberately kept Art Class simple so children will be
comfortable with the program. Even so, it boasts several fea
tures that will be of interest to programmers.

The screen display consists of a blank GRAPHICS 10
screen, a "color palette" showing the numbers 0-8 in nine dif
ferent colors, and two lines showing the prompts for the com
mands that are available.

A flashing cursor can be seen on the graphics 10 screen.
The joystick is used to move the cursor; holding the red trig
ger button down allows you to draw with the cursor as it
moves. Color 0 is the background color and is used for
erasing.

You can switch to any of the available palette colors by
typing the number corresponding to the desired color (or by
typing 0 for the background). Hitting the CLEAR key clears
the screen, and the Sand L keys enable you to save or load
your drawings to and from disk.

In saving and loading programs, the filename must be en
tered in the form D1:FILENAME. While you can draw with
only eight colors at a time, hitting the N key gives you access
to all 128 Atari colors. You can choose any nine for your pal
ette. Changing colors is accomplished by moving the joystick
left or right until you have the right color in the right place;
then hit the RETURN key to enter your choice.

135

Chapter 3

Short and Powerful
Even though Art Class is a short program, it displays some of
Atari's best features. For example, a text window with graphics
mode 10. The text window will help children learn to read
and follow instructions. But where does that text window
come from?

The program begins by taking a regular GRAPHICS 8
screen (with its four-line text window) and modifying it as fol
lows. The display list, those instructions that set up the screen
display, is modified in lines 270 and 280 for only two
GRAPHICS a lines in the text window. Also, two blank lines
are inserted in the graphics window near the bottom, the sec
ond of which includes an instruction for a display list interrupt
(DLI). It's that DLI instruction that is the key to having text
and GTIA graphics on the same display.

When GTIA modes are initiated, an internal register called
PRIOR (53275) is set for the special modes. That register has
to be set differently for modes 0-8. Every screen cycle (that is,
every 1/60 second) PRIOR's shadow register at location 623
updates the register for GTIA 10 by setting it to a value of
128. The DLI switches PRIOR's setting to a as the electron
beam scans across the screen just above the text window.
Thus, PRIOR is constantly being set and reset according to the
position of the electron beam on the screen.

This setting and resetting must be done in machine code
for speed and accurate timing, but that's no problem. The ma
chine language routine is POKEd into position in page 6 and
activated through BASIC. The DLI pointer at locations 512
and 513 has to be set; finally, the DLI is turned on by
POKEing 54286 with 192.

The DATA for the DLI service routine can be found in
lines 210 and 220. In addition to resetting PRIOR, the DLI
also sets the various colors at the bottom of the screen. In
assembly code, this is the DLI service routine:

PHA
TXA
PHA
TYA
PHA
LDA #0
LOX #148

136

;5ave values from
;5, Y, and A registers

,
;This value will be stored in PRIOR
;Color blue for the text window

Chapter 3

LOY
STA
STA
STX
STY
LOA
STA
PLA
TAY
PLA
TAX
PLA
RTI

#12
$040A
$OOlB
$0018
$0017
$2CO
$OOlA

;White text characters
;Wait for WSYNC horizontal blank to begin
;Reset PRIOR register to a
;Background text window color register
;Text luminance color register
;Load the current border color
;Store in border color register
;Restore X, Y,
; and A values

;Return from interrupt

Now that the screen can display both GIlA graphics and
normal text in a text window, a creative and useful display can
be made. The colored numbers at the bottom of the screen are
normal and inverse numerals plotted in GTIA 10 colors. They
are drawn by lines 300-400.

One last feature worth mentioning is the screen clear
technique. A string S$ originally dimensioned to 1 is
redimensioned to 6560, the size (in bytes) of the graphics win
dow. Lines 400-420 do the redimensioning and relocate the
string to screen memory location. Then, when the screen
needs clearing, zeros are written to the string almost instanta
neously (line 640).

Art Class
For error-free program entnj, read "The Automatic Proofreader" ill Chapter 1 before typing
in this program.

MP10 CLR :DIM S$(I>,B$(I> , C$(I),F$(15),T$(9),
10$ (6) • X (1121) • Y (1121)

eN 2121 GOTO 200
ID 30 S=STICK (0) -5: N=STRIG (0): X=X+X (S): Y=Y +Y (S

):IF X<0 THEN X=79
ON 4 121 I F X > 7 9 THE N X = l11
BF 5121 I F Y < 0 THE N Y = 1 6121
BI6121 IF Y > 160 THEN Y=0
JK7121 LOCATE X,Y.Z:COLOR C+12:PLOT X,Y:DRAWTO

X,Y+3:COLOR C+B:PLOT X.Y:DRAWTO X,Y+3:CO
LOR C+4:PLOT X.Y:DRAWTO X,Y+3

H68121 COLOR C:PLOT X.Y:DRAWTO X.Y+3
PI 9121 IF NOT N THEN 110
AS 11210 COLOR Z:PLOT X.Y : DRAWTO X.Y+3
n 11121 IF PEEK(764)=255 THEN 30
DP 1 20 GET '" 2 • K

137

Chapter 3

FL 130

OA 140
NO 15(!J
OF 160
JP 170

IF
0
IF
IF
IF
IF

K}47

K=83
K=76
K=78
K=60

DF 180 GOTO 30

AND K<58 THEN C=K-48:Z=C:GOTO

THEN 460
THEN 500
THEN 540
OR K=125 THEN 640

~ 190 ? C$;" S~ Save Picture{3 SPACES}N> New
CoiorsC8 SPACES}L) Load Picture

.,.
~,

C3 SPACES}CLEAR) Clear Screen";:GOTO 30
EC200 C$=CHR$1125}:B$=CHR$1253}:FOR 1=0 TO 34

:READ D:POKE 1536+I,D:NEXT I
MD210 DATA 72,138,72,152,72,169,0,162,148,160

,12,141,10,212,141,27,208,142,24,208,14
0,23,208,173,192

6E 2 20 D A T A 2, 1 4 1 , 2 6 , 20 8, 1 0 4 , 1 68, 1 04 , 1 7 0, 1 0 4 , 6
4

FE 230 FOR 1=1 TO 6:READ N:IO$II,I}=CHR$IN}:NE
XT I

JJ240 DATA 104,162,16,76,86,228
rn250 GRAPHICS 8:POKE 704,12:POKE 705,70:POKE

706,152:POKE 707,218:POKE 708,46:POKE
709,118:POKE 710,4:POKE 711,78

I'IJ260 POKE 712,38:D=PEEKI560}+256*PEEKI561}
N270 FOR 1=167 TO 170:POKE D+I+14,PEEKID+I}:

NEXT I:FOR 1=173 TO 175:POKE D+I+12,PEE
KID+I}:NEXT I

~280 FOR 1=165 TO 180:POKE 0+I,15:NEXT I:POK
E D+171,0:POKE 0+180,128:POKE 512,0:POK
E 513,6:POKE 54286,192

~290 POKE 623,128:POKE 87,10:N=PEEKI16 }-128:
IF N)=0 THEN POKE 16,N:POKE 53774,N

I'IK300 X=0:Y=164:T$="012345678"
CM310 FOR N=1 TO 9:S=ASCIT$IN,N}}-32:L=57344+

S*8:FOR 1=0 TO 7:K=255:COLOR C:IF C=0 T
HEN COLOR 6:K=0

~320 D=ABSIPEEKIL+I}-K}:IF D } 127 THEN D=D-12
8:PLOT X,Y+I

~330 IF D)63 THEN 0=0-64:PLOT X+l,Y+I
U340 IF D}31 THEN 0=D-32:PLOT X+2,Y+I
~350 IF D>15 THEN D=D-16:PLOT X+3,Y+I
~360 IF 0>7 THEN 0=0-8:PLOT X+4,Y+I
~370 IF 0)3 THEN 0=D-4:PLOT X+5,Y+I
FL 380 IF D}1 THEN 0=D-2: PLOT X+6, Y+I
PO 390 I F 0 > 0 THE N P LOT X + 7 , Y + I
FP400 NEXT I:X=X+9:C=C+l:NEXT N:N=PEEKI140}+2

56*PEEKI141}:D=PEEKI134}+256*PEEKI135}

138

Chapter 3

~410 I=PEEK(88)+256*PEEKC89)-N:X=INTCI/256):
Y=I-X*256:POKE D+2,Y:POKE D+3,X:POKE D+
4,160:POKE D+5.25

~420 POKE D+6,160:POKE D+7,25:FOR 1=0 TO 10:
READ X,Y:XCI)=X:Y(I)=Y:NEXT I

BB 4 30 D A TAl , 4, 1 , - 4, 1 , 0 , 0 , 0 , - 1 , 4 , - 1
~440 DATA -4,-1,0,0,0,0,4,0,-4,0,0
NA 450 OPEN #2,4,0, "K:": X=39: Y=80: C=I: POKE 752

,1:POKE 82,I:GOTO 190
~460 POKE 752,0:7 C$;"Enter a filename for t

his pictLlre.":INPUT F$:POKE 752,1:IF F$
= THEN GOTO 190

M470 TRAP 650:CLOSE #1:0PEN #1,8,0,F$:POKE 8
52,PEEK(88):POKE 853,PEEK(89):POKE 856,
160:POKE 857,25:POKE 850,11

AH480 L=USRCADRCI0$»:FOR 1 =704 TO 712:PUT #1
,PEEKCI>:NEXT I

~482 CLOSE #1:0PEN #I,4,0,F$
~490 POKE 54286,192:7 C$;"Picture saved as:

" ;F$:FOR D=1 TO 400:NEXT D:GOTO 190
~500 POKE 752,0:7 C$;"Enter the picture's fi

lename.":INPUT F$:POKE 752,1:IF F$="" T
HEN GOTO 190

H0510 TRAP 650:CLOSE #1:0PEN #I,4,0,F$
R520 POKE 852,PEEK(88):POKE 853,PEEK(89):POK

E 856,160:POKE 857,25:POKE 850,7:J=USRC
ADR (10$»

OE530 FOR 1=704 TO 712:GET #I,C:POKE I,C:NEXT
I:POKE 54286, 192:GOTO 190

EJ 540 7 C $; .. Pre s san u m b e r key and the nus e t
he{4 SPACES}joystick. Press RETURN whe
n finished.";:C=1

JP 550 I =PEEK C 704 +C)
60560 I=I+X CSTICK (0) -5): IF 1(0 THEN 1=255
DD 570 I F I >255 THEN 1=0
~580 POKE 704+C,I:IF PEEK(764)<>25 5 THEN 600
He 590 GOTO 560
PH 600 GET #2, K~ IF K=155 THEN 190
ffi610 IF K(48 OR K>56 THEN 560
P~ 620 C=K-48
6~ 630 GOTO 550
KC640 S$C l)=CHR$(0):S$C6560) =CHR$C0):S$C2)=S$

:GOTO 30
~650 POKE 54286, 192:D=PEEK(195)
~660 IF D=165 OR D=130 OR D=146 THEN 7 C$;"Y

ou used an improper or incomplete
{5 SPACES}filename. Tryagai n.";:GOTO
710

139

Chapter 3

~67~ IF 0=138 OR 0=139 THEN? C$;"Check all
connections and try again."; : GOTO 71~

n68~ IF 0=144 OR 0=162 OR 0=167 THEN? CS;"O
iskette is full or write protected
{4 SPACES}or file is l ocked.";:GOTO 710

~69~ IF 0=17~ THEN? C$;"That picture is not
on file. " ;:GOTO 71~

Ir. 7~~ ? C$; "Error "; 0 ;
BC710 ? BS:FOR D=1 TO 5~~:NEXT O:GOTO 190

140

Chapter 3

Hyperword
Daniel M. Daly

Fugitive hyperwords have escaped from their dimension
and are materializing in ours. Your job is to type their
names into the targeting computer and send them back
where they belong.

"Hyperword" is a program that brings new excitement to the
old job of learning how to type. Each round pits you against
five waves of invaders. After the title screen and the warning
to GET READY, the first wave of hyperwords appears.

But what are hyperwords? They are groups of random let
ters (you can specify the size of the group with the SELECT
key) that appear two at a time on your screen. Then, when the
FIRE! command appears, you must type in the letters, in order,
before the hyperword escapes to other dimensions.

A single game consists of five rounds, and you can specify
how long each round lasts by using the OPTION key (to se
lect Skill Level) and the SELECT key (to pick a level from 1 to
9). You'd better practice on the lower levels first, though.
Those high-level hyperwords come at you pretty quickly.

If you type in the hyperword correctly, it will turn dif
ferent colors and then fade out of view. The points earned for
that word will be displayed in the text window and added to
the tally. If there is not a match, a low tone is heard and the
timers continue counting down.

A wave can end in one of two ways. If both words are
typed in correctly, the next wave starts. However, if you do
not type them correctly before time runs out, the words still
remaining will fade out, and then the next wave will begin.
No points are earned for words that fade out by themselves.

At the end of the fifth wave, a short fanfare sounds, and
you'll learn whether or not you've beaten the previous high
score. If so, the high score is changed. The next screen tells
the player now many words were hit and/or missed, again in
dicating the score for the last game.

After a short pause, the program returns to the main
menu, waits for input via the console keys, and displays the
high score for each size/level combination as each combina
tion is chosen.

141

Chapter 3

Fading Words
The fade-in and fade-out subroutines at the beginning of the
program add a great deal of visual excitement to the game.
They look impressive, but they are fairly straightforward. In
fact, they're simple FOR-NEXT loops with a STEP of less than
one. The resulting values set the brightness parameter of the
SETCOLOR statement, and the result is a gradual fading in or
out of the letters of the word.

Hyperword
For error-free program wtry, r.ead ''The Autolllatic Proofreader" ill Chapter 1 before typillg
in this program.

FL 1 0 GOT 0 1 000
~ 100 IF ASC(T0$(1)}}128 THEN WCR=3:WC=4:WL=6

:GOTO lllZ!
IE 105 WCR=0:WC=2:WL=8
~ 110 SETCOLOR WCR,WC,0
M 115 POSITION XPOS.YPOS
~ 120 PRINT #6;T0$
& 125 FOR LUP=0 TO WL STEP O.2
M 130 SETCOLOR WCR.WC . LUP
M 135 SOUND 2,50,12.LUP:SOUND 3,85,12,L UP
MF 14Q! NEXT LUP
IN 145 SOUND 2,0,0.0:S0UND 3,0,0,0:RETURN
~ 160 IF ASCCT0$(I}) } 128 THEN WCR=3:WC=4:WL=6

: GOTO 17!2!
It: 165 WCR=0: WC=2: WL=8
IE 170 SETCOLOR WCR,WC,WL
M 175 FOR LDN=WL TO ° STEP - 0.2
M 180 SETCOLO R WCR,WC,LDN
IT 185 SOUND 2,50, 12,LDN:SOUND 3,60, 12,LDN
LH 19!2! NEXT LDN
U 193 SET COLOR WCR.0,0
JC 195 SOUND 2,0,0,0:S0UND 3 ,0.0,0:RETURN
06 200 SETCOLOR 1 , 0,0
BL 21215 PO 5 I T ION R G X , R G Y
HB 2 lOP R I NT # 6 ; R G $

JI220 FOR LUP=0 TO 1 2 STEP 0 . 15:SETCOLOR 1,O,
LUP :NEXT LUP

IN230 FOR LDN=12 TO 0 STEP - 0 . 15:SETCOLOR 1,0
,LDN:NEXT LDN

~240 POSITION RGX,RGY:FOR W=l TO LEN(RGS):PR
INT #6;" ";:NEXT W:SETCOLOR 1,12,11Z!:RET
URN

MH 251Z! RG$=" get": RGX=5: RGY=3: GOSUB 2Q!!2!: RGS=" r e
ady": RGX=8: RGY=6: GOSUB 2 Q!IZ! : RETURt>1

142

LJ 10Ql0

DO 10lZ15
m: 101lZi

PN 1012

NK 1013
MA 1015

ID 1090
MI 11lZ10
FK 1120
PK 122O
CD 1225
PH 1230
AM 1235
Pt: 1240
MG 1245
JO 1247

Chapter 3

DIM H$ (9), Ll$ (26), L2$ (26), L (26), RG$ (221
) , LD$ (26) , OPN$ (11) , BESTSCORE (9,9)
DIM TQ1$ (9), Tl$ (9), T2$ (9),1<1$ (9), K2$ (9)
H$ = "t:iW£E1 jjjO!'lo]oz; " : L 1 $ = " ABC D E F GH I J t< LMNOPQR
STUVW X Y Z" : L2$=" E!*i.-t3Xtna8i:"':1ot.l:I:IiJ-1l!("L".!"
~"
KBD=764:FF=255:FLAG=206:CHECK=1536:DST
RYD=1561
CONSOL=53279
CDTMVIL=540 :CDTMVIH=541:CDTMV2 L=542:CD
TMV2H=543:TXTROW=656:T XTC OL=657
GRAPHICS 17
POSITION Ql,5
PRINT #6;H$;".
POSITION Ql,13
PRINT #6;"HOW WELL CAN"
POSITION iiI, 15
PRINT #6;"~ TYPE?':>':>"
POSITION lZl ,20
PRINT #6; "h,H4¥jfi4j,'P ..
FOR 1=1 TO 9:FOR J=1 TO 9:BESTSCORE(I,
J)=Ql:SOUND 3, I*J, 10,8:POI<E 711, I*J:NEX
T J:NEXT I

OC1250 FOR 1=1 TO 26:READ A:LD$(I)=CHR$(A):SO

L8 1""'C"~ L..J..J

LH 1257

80 1260
GF 13lZ15
18 13lZ17
HP 1310
JE 1330
EA 1335

NC 1340
PL 1350
HC 1355
ilL 1360
8M 1370
BI 1371

CG 1372
KD 1373
AP 1375
AG 1380
AM 1385
tIM 1387

UND 0,A,IQl,8:POKE 711,A:NEXT I
FOR 1=1536 TO 1560:READ A:POKE I,A:SOU
ND I,A,10,8:POKE 711,A:NEXT I
FOR 1=1561 TO 1637:READ A:POKE I,A:SOU
ND 2,A,10,8:POKE 711,A:NEXT I
FOR 1=0 TO 3:S0UND I,0,0,0:NEXT I
CPT=I:SL=1
OPN=0:SLC N=CPT:OPN$="TARGET SIZE"
GRAPHICS 18
POSITION 5,0:PRINT #6;H$
POSITION Ql, 10: PRINT #6; "PRESS i#Jii:l:il TO

BEGIN"
POSITION 4,5
PRINT #6;OPN$
POSITION 2,2:PRINT #6; " {17 SPACES} "
POSITION 9,7
PRINT #6;SLCN
IF BESTSCORE(CPT,SL) }0 THEN POSITION 2
,2:PRINT #6;"BEST SCORE=";BESTSCORE(CP
T,SL)
POI<E CONSOL,0
FOR PAUSE=1 TO 35:NEXT PAUSE
IF PEEI«CONSOL)=3 THEN 1390
IF PEEt«CONSOL)=5 THEN 1410
IF PEEI«CONSOL)=6 THEN 1500
GO TO 1375

143

Chapter 3

~1390 IF OPN=1 THEN OPN=0:0PNS="TARGET SIZE"
:SLCN=CPT:GOTO 1340

~1400 OPN=I:0PNS="SKILL LEVEL":SLCN=SL:GOTO
1340

~ 1410 IF OPN=1 THEN SL=SL+l:GOTO 1430
CO 1420 CPT=CPT+l
KJ 1 430 I F S L)- 9 THE N S L = 1
H 1440 IF CPT)- 9 THEN CPT=1
DA 1450 IF OPN=1 THEN SLCN=SL:GOTO 1355
M 1460 SLCN=CPT :GOTO 1355
NJ 1500 SCR=0: REM THE .GAME STARTS HERE
F6 1 5 1 0 TIS = " " : T 2 S = " "
EA 1630 GRAPHICS 2:SETCOLOR 2,0,0:POKE 752,1
JO 1640 WAVES= 1: HI TS=0
DD1650 FOR MT=1 TO CPT:PRL=INT(RNO(0)*26)+I:T

IS(MT,MT}=L1S(PRL,PRL):NEXT MT
KN 1 655 T 1 X = I NT (R N 0 (0) * (20 - (CPT - 1))) : T 1 Y = I NT (R

NO(0)*10)
DG1660 FOR MT=1 TO CPT:PRL=INT(RNO(0)*26)+I:T

2S(MT,MT)=L2S(PRL,PRL):NEXT MT
~ 1663 T2X=INT(RNO(0)*(20-(CPT-l»):T2Y=INT(R

NO (0) * HI)

~ 1664 IF ASC(T1S)=ASC(T2S)-160 THEN 1650
OD 1 665 1FT 2 Y = T 1 Y AN 0 T 2 X < T 1 X + (CPT + 1) THE N 1 6

63
00 1667 POKE TXTCOL,16:POKE TXTROW,3:PRINT "WA

VE ";WAVES;
JH1670 IF WAVES=1 THEN GOSUB 250
CF 1 675 HIT = 0
00 1680 T0S=T1S:XPOS=TIX:YPOS=TIY:GOSUB 100
OC 1700 T0S=T2S:XPOS=T2X:YPOS=T2Y:GOSUB 100
IT 1705 SLTM=60 *(2*(10-SL»+75:SLTMH =INT(SLTMI

256):SLTML=SLTM-256*SLTMH
IP 1710 POKE 694,0:POKE 702,64
CE 1720 KSN= 1
~ 1723 POKE TXTROW,I:POKE TXTCOL,2
FP 1 725 FOR PRO M P T = 1 TO CPT: P R I NT" . " ; : N EXT P R

OMPT
IT 1727 POKE TXTROW,0:POKE TXTCOL,12
AL 1730 PR I NT "_ju:P'-": PO KE 755,2
N 1735 POKE TXTROW,I:POKE TXTCOL,2
~ 1740 POKE COTMV2L,SLTML:POKE COTMV2H,SLTMH:

POKE COTMVIL,56:POKE COTMVIH,4
IJ 1745 POKE KBO, FF
00 1747 IF PEEK(COTMV2L)+256*PEEK(COTMV2H)(75

THEN 1995
001750 IF PEEK(KBO)=FF THEN 1747
IN 1760 K=PEEK <I<BD)
PI1 1770 POKE 755, 1
~ 1780 OUMMY=USR(CHECK,K,AOR(LOS)-I)

144

Chapter 3

0 : 1781 INDXY=PEE K (FLAG)
IT 1795 IF INDXY=0 THEN 1840
~1797 POKE 53279,0
KF 1 800 K 1 $ (t< S N) = L 1 $ (I N D X Y , I N D X Y) : I< 2 $ (I< S N) = L 2 $

(INDXY,IND XY)
IH 1810 PRINT 1<1$(I< SN , t<SN) ;
~ 1820 IF I<SN=CPT THEN 1 845
DN 1830 KSN=KSN+ 1
~1840 POI<E 755,2:GOTO 1745
61 1845 SVET I MEL=PEE K (CDTMV2L) : SVET I MEH=PEEK (C

DTMV2H):SVESCOREL=PEEK(CDTMVIL):SVESCO
REH=PEEK(CDTMVIH)

EA 1847 WRDSCR=SVESCOREL+256*SVESCOREH
00 1850 IF Kl$=Tl$ THEN GOSUB 20000:DUMMY=USR(

DSTRYD,0):GOSUB 20100:GOSUB 20200:SCR=
SCR+WRDSCR:GOTO 1880

W 1860 IF 1<2$=T2$ THEN GOSUB 20000:DUMMY=USR(
DSTRYD,3):GOSU8 20100:GOSUB 20210:SCR=
SCR+WRDSCR:GOTO 1880

HI 1 870 SOU N D 0 , 2 ° 0, 1 2, 1 ° : FOR P A USE = 1 TO 25: N E
XT PAUSE:SOUND 0,0 , 0,0

~ 1880 POKE TXTROW,2:POKE TXTCOL,20:PRINT "
{14 SPACES}":IF HIT=3 THEN 1980

~1885 KSN=I:POKE TXTROW,I:POI<E TXTCOL,2:FOR
PROMPT=1 TO CPT:PRINT ".";:NEXT PROMPT

~ 1890 POI<E TXTROW,I:PO KE TXTCOL,2
EA 1900 POI<E CDTMV2H,SVETIMEH:POI<E CDTMVIH,SVE

SCOREH:POKE CDTMV2L,SVETIMEL:POKE CDTM
VIL,SVESCOREL:GOTO 1840

~ 1980 ? "{CLEAR}" : WAVES=WAVES + l:IF WAVES < 6 T
HEN 1650

NA 1990 GOTO 2020
FA 1995 IF HIT=0 OR HIT=2 THEN T0$=Tl$:GOSUB 1

60:POSITION TIX,TIY:FOR 1=1 TO CPT:PRI
NT #6;" " ;: NEXT I

~2000 IF HIT=0 OR HIT=1 THEN T0$=T2$:GOSUB 1
60:POS I TION T2X , T2Y:FOR 1=1 TO CPT:PRI
NT #6;" "; : NEXT I

HC 201'215 GOTO 1980
HN2020 GRAPHICS 17:RESTORE 101 0 0
HD 2030 FOR I = 1 TO 1 7 : REA D A , B
~2040 SOUND 0 , A, 10 , 8:FOR PAUSE=1 TO 12*B:NEX

T PAUSE:SOUND 0,0,0,0:NEXT I:SOUND 0,0
,1'21, °

JP2045 FOR PAUSE=1 TO 25 : NEXT PAUSE
~2050 SOUND 0,121,10,8:S0UND 1,96,10,8:S0UND

2,81,10,8:S0UND 3 ,60,10,8
JL2060 FOR PAUSE=1 TO 15:NEXT PAUSE
W2070 FOR 1=0 TO 3:S0UND I,0,0,0:NEXT I
CG 2090 P R I NT'" 6; "N ICE GO I N G'l I "

145

Chapter 3

KY. 2 1 00 P R I NT # 6: P R I NT # 6; "Y 0 U MAD E ITT H R 0 UGH
" : P R I NT # 6 : P R I NT # 6; ;, S 1< ILL LEV E L "; S L

~2110 IF BESTSCORE(CPT,SL»=SCR THEN 2190
FB 2 1 20 P R IN T # 6 : P R I NT # 6; "A N D H AV E BE ATE NTH E

":PRINT #6:PRINT #6;"BEST SCORE FOR TH
IS":PRINT #6:PRINT #6; "SKILL LEVEL' '"

HO 2 1 30 P R I NT # 6 : P R I NT # 6; "Y 0 U R S COR E : "; S C R
912140 PRINT #6: PRINT #6; "BE ST SCORE: "; BESTS

CORE(CPT ,SL)
~2145 FOR PAUSE=1 TO 450:NEXT PAUSE
EF2150 BESTSCORE(CPT,SL)=SCR:POSITION 12,14:P

RINT #6;BESTSCORE(CPT,SL)
~2160 SOUND 0,121,10,8:S0UND 1,96,10,8:S0UND

2,81,10,8:S0UND 3,60,10,8
JN2170 FOR PAUSE=1 TO 15:NEXT PAUSE
CA21 80 FOR 1=0 TO 3:S0UND I,0,0,0:NEXT I
~2190 FOR PAUSE=1 TO 450:NEXT PAUSE
HN 22~10 GRAPH I CS 17
LJ 2210 PRINT #6; "YOU HIT ";HITS;" WORDS,"
JB 2220 PRINT #6: PRINT #6; "AND MISSED"; 10-HIT

S ." II . .
J02230 PRINT #6:PRINT #6;"YOUR SCORE IS":PRIN

T #6:PRINT #6;SCR;" POINTS'"
~2240 FOR PAUSE=1 TO 750:NEXT PAUSE
MN 2250 GOTO 1307
~9990 DATA 63,21,18,58,42,56,61,57,13,1,5,0,

37,35,8,10,47,40,62,45,11,16,46,22,43,
23

~ 10000 DATA 104,104,104,133,203,104,133,205,
104,133,204,160,26,165,203,209

W 10010 DATA 204,240,3,136,208,247,132,206,96
~ 10020 DATA 104,104,104,133,203,169,128,133,

204,169,170,141,1,210,169,255
PO 10030 DATA 141,0,210,166,204,160,1,136,208,

253,202,208,248,72,138,72
JC 10040 DATA 166,203,173,10,210,157,196,2,104

,170,104,56,233,1,240,3
DH10050 DATA 76,41,6,72,165,204,56,233,16,201

,32,240,6,133,204,104
lH10060 DATA 76,39,6,104,169,0,141,1,210,141,

0,210,96
DI10100 DATA 81,1,60,5,81,1,81,1,81,1,96,1,81

, 1.81 , 1 , 96, 1 ,81 , 1 ,60,6,60, 1 , 81 ,2,81 , 1
,96,2,96,1,121,2

E"20000 POKE TXTROW,2:POKE TXTCOL,20
BE 20010 PRINT WRDSCR;" POINTS!!!"
HE 20020 RETURN
OC20100 POKE TXTROW,2:POKE TXTCOL,20:PRINT "

{14 SPACES}":RETURN

146

Chapter 3

6B2~2~~ T~$=T1$:GOSUB 16~:POS1T10N T1X.T1Y:FO
R 1=1 TO CPT:PR1NT #6;" ";:NEXT 1:H1T
S=H1TS+1:H1T=H1T+1:RETURN

662~21~ T~$=T2$:GOSUB 16~:POS1T10N T2X.T2Y:FO
R 1=1 TO CPT:PR1NT #6;" ";:NEXT 1:H1T
S=H1TS+1:HIT=HIT+2:RETURN

147

Chapter 3

Stock Market
Sui Kattan

The Atari is an excellent computer for action game
programming. However, you should not forget that the
same features that make it a great games computer also
make it ideal for a variety of real-life simulations.

"Stock Market" is a good example of the sophisticated simula
tions that can be done on your Atari. It can be used as an
educational tool or as a game, and it is sure to be enjoyed for
many hours. The program uses approximately SK, so it can be
played on any Atari computer.

After you run the program, it will pause for a few seconds
before prompting you for the number of players (1-5). From
that point, the game is self-explanatory. After the stock codes
have been displayed and you have learned the function keys,
the screen will go blank for another few seconds. Then the top
line will transform into a stock ticker, displaying the three
letter stock codes and their respective costs per share. That's
when the fun begins.

Thanks to machine language and the vertical blank inter
rupt (VBI), the ticker remains active throughout each play ses
sion, even during transactions. All fluctuations will be
displayed on the ticker, so keep a close eye on it.

When you press the BUY or SELL key, all prices will be
frozen. This makes the game fair to all players. However, the
CREDIT CHECK key will not freeze prices.

It is helpful to keep a record of what price you paid for
certain stocks. The game will keep a record of which stocks
you own, and it will list your holdings whenever you buy or
sell shares. Also, remember your identification number (1-5),
but the game will remember your name.

The names of the companies used in the simulator are
completely fictitious. Should such a company name exist, it is
purely coincidental.

Stock Market
For error-free progral1/ wtry, read 'The Autolllatic Proofread er" ill Chapter 1 before typing
ill this program.

~11 SUMMARY=13000
NI 12 GOSUB 14000
W 13 POKE 16.64:REM DISABLE "BREAK" KEY

148

Chapter 3

DE 25 GOTO 130
F630 RESTORE 100+EC:READ D$,A.B.DD$:RETURN
EG 60 ? :? NAME$ (HM*20. HM*20+NL (HM»;" OWNS:":

1165 FOR EC=1 TO 20:IF SH(HM.EC)=0 THEN NEXT
EC:GOTO 70

FD 66 ? C H R $ (32 + 3 * (AV (E C) = 0)) ;
CL 67 ? S H (H M • E C) ;" 5 h are 5 0 f ";: GO SUB 30:? D $

;" (";DD$;")":NEXT EC
6C 70 ? " PRE SEN T C RED I T $"; W (H M)
EI 80 RETURN
IT 100 REM ** STOCK TITLES
IK 101 DATA ASTERISK ELEC .• 22.10.AST
~102 DATA AVLV.55.3.AVV
FA 103 DATA BORVAC AIR.45.5.BOV
BN 104 DATA BOWLAND CORP .• 25.5,BWL
BI 105 DATA COMLINK COMP.,30.8,COM
& 106 DATA CROY GENETICS.15,14.CRG
NF 107 DATA DELTON CHEM .• 40.6,DLT
GO 108 DATA FAIRVIEW MTR .• 46.10.FRV
AG 109 DATA GEM MILLS.23,6,GEM
LC 1 1 0 D AT A G I B SON A E RD. , 40 • 5 • G I B
E6111 DATA I.M.I .• 54.22,IMI
~ 112 DATA KATTAN PROD.,39.9.KTN
~113 DATA LOCKE CORP .• 17.3.LOC
A6 114 DATA METER ONE OIL.35.7.MTO
& 115 DATA RINGER AMERICA.25,5.RNA
FD 1 1 6 D A T A SA F EST EEL. 1 2 • 2 • SF S
L8 117 DATA SONER CORP .• 43.7,SNR
~118 DATA TEXTAR CORP.,36,12.TEX
M 119 DATA UNION TC.45.20.UTC
~ 120 DATA WEDWAY COMM.,30.5,WED
PE 1 30 REM * * I NIT I A LIZ A TID N
IN 135 FOR I=TADR TO TADR+199:POKE I.0:NEXT I:

RESTORE 101
HI 1 40 DIM S T 0 C I< (20) , D $ (30) , AV (2QI) , D D $ (3) , V $ (1

0) • CO (20) ,CODE$ (3)
JD 200 FOR ST= 1 TO 20
8B205 READ D$.A,B,DD$:CO(ST)=B
~210 STOCI«ST'=A+INT«RND(0'*B)*100)/100:AV(

ST)=INT(RND(0)*5000)+3000:NEXT ST
KH 250 TRAP 250:? CHR$ (125) ; "HOW MANY PLAYERS

(1-5) ";: INPUT PL: TRAP 40QIQ10: PL= I NT (PL)
:IF PL (l OR PL }5 THEN 250

CC260 DIM NAME$(PL*20+20) ,W(PL),SH(PL.20).NL(
PL)

AC 265 ? "EACH PLAYER STARTS WITH $3000"
GP 270 ? : FOR M = 1 TOP L :? " N A M E 0 F P LAY E R #"; M

;" ";:INPUT D$:NL(M)=LEN(D$)-l
~280 NAME$(20*M.20*M+NL(M»=D$:NEXT M

149

Chapter 3

EN 2B5 GOSUB SUMMARY
BL600 FOR A=1 TO PL:FOR B=1 TO 20:SH(A,B)=0:N

EXT B:W(A)=3000:NEXT A
JP 640 UU=USR (15B5)
IIF 650 GOTO 1111000
JC 1 000 REM $: * E X I T M A I N L 0 0 P
PB 1010 EP=PEEK(764):IF EP=255 THEN RETURN
~ 1015 POKE 764,255
PI 1020 IF EP=21 THEN GOSUB 2000
~ 1030 IF EP=62 THEN GOSUB 6000
DB 1040 IF EP=IB THEN GOSUB 12000
KH 1060 RETURN
I1B 201£10 REM t $: BUY STOCKS
CI2002 TRAP 5000:POKE 755,2
JE2003 ? CHR$(125):7 "{B SPACES}enter 'RETURN

to e>:it"
62005 ? :? "WHICH PLAYER WILL BUY STOCKS (1-

"; PL;")";: INPUT HM: TRAP 41£l000
KJ 2010 GOSUB 60
HI 2040 ? :? "Enter code of desi red stock ";: I

NPUT CODE$
AJ 2041 IF CODE$="" THEN 2002
~2050 FOR CV=1 TO 20:RESTORE 100+CV:READ D$,

A,B,DD$:IF DD$=CODE$ THEN 2070
BJ2055 NEXT CV:7 "CAN'T LOCATE ";CODE$:GOTO 2

040
KG 2070 7 CHR$ (125) :? CV;") "; D$: 7 : 7 AV (CV) ; "

SHARES AVAILABLE AT":? "$";STOCK(CV);
" PER SHARE."

DA2080?:7 "YOU HAVE $";W(HM);"."
HB 2082 PO = I NT (W (H M) / S T 0 C K (C V)) : I F PO:: A V (C V) T

HEN PO=AV(CV)
PL 2085 ? " You may buy up to"; PO;" s h are s. "
IJ 2090 TRAP 2002: 7 : 7 "HOW MANY SHARES ";: I NP

UT WANT:TRAP 40000
EM 2095 I F WAN T :;. A V (C V) THE N 7 "* * * 0 N L Y "; A V (C

V);" SHARES AVAILABLE"
AL 2100 COST=STOCK (CV) *WANT
FM 2 1 1 0 I F W (H M) - COS T < 0 THE N ? "* * * T HAT W 0 U L D

COST $"; COST: GOTO 2081£l
LL 2 1 20 ? WAN T;" s h are s 0 f "; D $
EL2130 W(HM)=W(HM)-COST:SH(HM,CV)=SH(HM,CV)+W

ANT
HB2135 AV(CV)=AV(CV)-WANT
GP 2 1 40 ? : 7 " Cos t 0 f t ran sac tiD n $"; COS T
LJ2150? "Player ";HM;"'s present credit $";W

(HM)

HA 2160 POKE 755,0:? "HIT ANY KEY TO CONTINUE"
IT2170 IF PEEK(764)=255 THEN 2170
JK2180 POKE 764,255:GOTO 2002

150

Chapter 3

GO 513130 ? CHRS (125) : POKE 755,0: RETURN
AF 6131313 REM * * SELL STOCKS
PO 613 1 0 ? C H R S (1 25) : POI< E 755, 2 :? "{ 9 SPA C E S } en

tel'"" ' RETURN' to e>: it"

W6020 TRAP 800 !3:? :? "WHO WILL SEL L STOCKS
1-";PL; ") ";: INPUT HM:TRAP 4~J0~J!ZJ

~:P 61330 GoSUB 6y-J
NJ 61340 TRAP 60213
K16!350? :? "ENTER STOCK CODE ";: INPUT CODES:

IF CoDES="" THEN 6\1J2~J

~6060 FOR CV=1 TO 20:RESToRE 100+CV:READ DS,
A,B,DDS:IF DDS=CoDES THEN 6080

BP 6070 N EXT C V :? "C AN' T L 0 CAT E " ; COD E S : GOT 0 6
050

6P 60813 ? C H R S (1 25) :? C V; ") "; D S :? :? "Y 0 U 0 W N
" ; SH (HM, CV) ; " SHARES."

II 61390 ? :? "CURRENT PR I CE PER SHARE S"; STOCK
(CV)

BO 6095 ? "YOUR PRESENT CRED ITS" ; W e HM)
CD 611:!J0 ? "HOW MANY SHAR ES DO YOU SELL ";: I NPU

T GIVE
U:6110 IF GIVE>SH(HM,CV) THEN? "*** YOU OWN

ONLY" ; SH (HM, CV);" SHARE (S)": GoTo 610~J

DC 6 1 20 NET = G I V E * S T 0 C K (C V) :? :? "N E T G A I N $"; N
ET

OP6125 SH (HM,CV)=SH(HM,CV)-GIV E
NI6130 W(HM)=W(HM)+NET:? "PRESENT CREDIT $";W

eHM)
GA6140 AVeCV)=AVeCV)+GIVE
IG6150? :? "HIT ANY KEY TO CONTINUE"
EI6160 IF PEEK(764)=255 THEN 6160
JP6170 POKE 764,255:GoTo 6000
~8000 POKE 755,0:? CHRS(125):RETURN
IH 1000\1J X = !ZJ: REM ** MAIN LOOP
OM 1 0 0 1 y-J FOR I = \1J T 0 1 9 iiJ S T E P l!ZJ: X = X + 1
~ 10015 IF PEEK(764) {> 255 THEN GoSUB 1000
DD 10y-J 19 RESTORE 10iiJ+ X
~ 10020 ADD=-Co(X)+INTCRNDe0)*Co(X)*200)/100
~ 10030 SToCKeX)=SToCKeX)+ADD:SToCKeX)=ABSeST

OCI«X»
n 11 f2J05 FOR P=TADR+ I TO TADF:+ I + 1 i2J: POKE P, 0: NE

XT P:P=TADR
IT 11010 READ DS,A,B,DD$
~ 11020 FOR L=l TO 3:PoKE P+I+L,ASC(DDSeL,L»

-32:NEXT L
JO 1 1 03 \1J V S = S T R $ (I NT CST 0 C K (X) * 1 f2J) / 1 0)
M 11040 LN=LEN(V$):FoR L=l TO LN:PoKE P+I+L+4

, AS C (I) $ (L , L)) - 32 : N EXT L
00 1 1 0 5iiJ N EXT I: GOT 0 1 0 iiJ 0 0

151

Chapter 3

EE 120121121 REM ** CREDIT CHECK
BN 1 2 121 1 121 ? C H R $ (1 2 5)
AK 121212121 7 :? "{15 SPACES}CREDIT CHECK"
KG 12QI3QI ? :?
~ 121214121 FOR EPL=1 TO PL
M 121215121 D$=NAME$CEPL*20,EPLt20+NLCEPL»
Ll 1212160 7 EPL;") "; 0$;" (3 SPACES}$"; L>J(EPL):?

:NEXT EPL:RETURN
FK 13QI@QI
EL 13Qll@

AK 13QI2@
HF 13QI25

REM ** SUMMARY
RESTORE :POKE 7 52,I:POKE 82, I:? CHR$C
125) ;
FOR 1=1 TO 20:READ D$,~,B,DD$
IF 1=1 THEN? "a vai l ";AVCI); "code ";
DD$;"stock ";D$:NEXT I

GO 1 3 121 3 Q! ? "(6 SPA C E S} " ; A V (I) ; " {5 SPA C E S} " ; 00$
;"{6 SPACES}";D$

HI 13Q!4!l! NEXT I:POKE 703,4:POKE 82,2:POKE 752,
1

NL 1 3 !l18 121 7 C H R $ (1 25) ; "0 URI N G P LAY YOU MAY:":?
"(3 SPACES}BUY STOCKS BY PRESSING 'B

CO 1 3 !Z19 Q! 7 "{ 3 SPA C E S } S ELL STOCKS BY PRESSING
~ 5:0 ..

CI13@95? "OR (press any key)";
JI1310@ IF PEEK(764)=255 THEN 131121!Z!
BN 1 3 1 1 0 P 0 K E 7 6 4 , 2 5 5 : 7 C H R $ (1 2 5) :? " C HE C I< Y

OUR CREDIT BY TYPING 'c'"
IE 1312121 PRINT
EJ 1 3 1 25 7 " PRE S SAN Y I< E Y T 0 S TAR T " ;
,10 1 3 1 3121 I F PEE I< (7 6 4) = 255 THE N 1 3 1 30
JB 1314121 POKE 764,255
~ 13150 POKE 703,24:7 CHR$(1 25) :RETURN
BN 14121121121 REM ** MACHINE LANGUAGE LOADER
LK 1401215 RESTORE 151211210:FOR AX=1536 TO 1596:REA

FC 1401121
BK 14020
AF 14!z!30
NL 14!Z!4!Z!
HE 1412145

NK 14050
PH 14055

OE 1412156
OF 1412157
LD 150121121
HF 1501212
KP 15!Z!04

152

o AXP:POKE AX,AXP:NEXT AX
POKE 1563,PEEK(88):POKE 1564,PEEK(89)
DIM TAPE$C2I21@):TADR=~DR(TAPE$)
IT=INTCTADR/256)
POKE 1560,TADR-256*IT:POKE 1561,IT
POKE 1576,PEEK(548):POKE 1577,PE EK C54
9)
RETURN
REM THE FOLLOWING NUMBERS ARE MACH
INE
REM
REM
DATA
DATA
DATA

LANGUAGE
-- CODES. TYPE CAREFULLY'

173,47,6,21215,10,210
176,31,174,48,6,232
224,200,208,2,162,0

Chapter 3

JE 15006 DATA 142,48,6,160,0, 189
IIG 15008 DATA <= <=..,

.J:,J~~ 153,64, 156,232
ED 15010 DATA 224,200,240,8,200,192
PA 15012 DATA 40,208,240,76,62,233
F6 15014 DATA 162,0,76,34,6,200
IP 15016 DATA 8i!!,104,169,!Z!, 162,6
FJ 15018 DATA 141,36,2, 142~37!,2
IE 15020 DATA 96

153

Chapter 3

Adding Excitement to
Educational Programs
Barry Sperling

The Atari is an outstanding computer for use in the class
room, particu larly when onscreen printing is made more
exciting with modes 1 and 2.

All students like to see their names in lights. Unfortunately,
even when you put a large, multicolored name request in
graphics mode 2, the name that the student types in appears
in tiny white letters near the bottom of the screen.

How can you get that name on the top where it belongs?
My first thought was to alter the display list, the program

in RAM that controls the ANTIC chip. It governs which mode
line will appear at what level on the screen. GRAPHICS 2, for
example, has ten lines of double-width, double-height letters
followed by four lines of normal size letters (GRAPHICS 0) .

The fifth and sixth bytes of the list carry the address of
the data that will be put on the screen. I decided to change
those bytes to point to the text window. Anything typed in the
text window would then appear on the large screen; the tech
nique is shown in the short program given below.

10 GRAPHICS 2:DL=PE EK(560 l+256*PEE K(561)
20 POKE DL+4,PEEK(660):PO KE DL+5,PEEK(661)
30 ? "TYPE IN A NUMBER.":INPUT A

Line 10 sets the screen for large type with a text window.
Locations 560 and 561 in RAM hold the address of the first
byte of the display list in standard low byte/high byte format.
Therefore, DL + 4 is the fifth byte of the list.

Locations 660 and 661 hold the start of the text window
(upper left byte). POKEing their values into the data address
for the main screen allows your typing to appear on the top in
large letters .

Unfortunately, as you can see when you try it, your
handiwork appears in both the screen and the window. What
do you do? One solution would be to find some permanently
empty memory and point the text window to that. Another
would be to make the window invisible with SETCOLOR
1,0,0 and SETCOLOR 2,0,0, making the characters and back
ground black. Unfortunately, this wipes out two of the pos-

154

Chapter 3

sible colors that you might want to use, leaving only the
background and two character colors.

Can you get all the colors while staying in BASIC? You
can, but it is more complicated. I envisioned a screen with all
five colors available, no question mark for a prompt, and the
input appearing with large letters. The following program
gives you all of that and throws in audible feedback for good
measure.

Feel free to change the programs to suit your own needs
and preferences. You might want to accept longer first names,
for example, or add a redefined character set to sprinkle a few
Martians around the screen. A loop might be used to flash the
words FIRST and RETURN while waiting for input. Maybe a
tune could play during VB LANK as an extra attraction.

Using these techniques, you can make a good educational
program even better. A strong introduction to your program
will give the kids a positive attitude about it right from the start.

Exciting Inputs
For error-free program ell try, read "Th e Automatic Proofreader" in Chapter 1 before typing
in this program.

liE 10 DIM A$(10) :OPEN #2,4,0, "1<:"
1lA20 GRAPHICS 18:POSITION 6,1:? #6; .. hrn.....~~ .. :P

OSITION 1,3:? #6;"r:J1¥i--i¥! type in":POSITI
ON 1,5:? #6 ; "YOUR FIRST NAME,":POSITION
1 , 7

EA 30 ? # 6; .. the n pus h I iI#jOiti I jiI • ... : SET COL 0 R 0, 1 2 , 8
:SETCOLOR 1,15,12:SETCOLOR 2,l,6:SETCOLO
R 3,3,6:SETCOLOR 4,6,4

N40 TRAP 20:A$= :POI<E 764,255:POSITION 4,9:
? #6;".":POSITION 15,9:? #6;"*":POSITION
5,9

BP50 GET #2,A:IF A=155 THEN TRAP 40000:GOTO 9
o

DB60 IF A=126 THEN A$=A$(l,LEN(A$)-l):POSITIO
N 5+LEN(A$' , 9:? #6;" ":POI<E 85,PEEI«91':
POKE 84,9:GOTO 50

6J70 A$(LEN(A$)+l)=CHR$(A':SETCOLOR 0,3+2*LEN
(A$),8:S0UND 0,200-10*LEN(A$),10,12:FOR
T=l TO 30:NEXT T : SOUND 0 , 0 , 0,0

PP 80 PUT # 6 , A : GOT 0 50
IL 90 I F LEN (A$) < 1 THEN 20
~ 100 FOR T=l TO LEN(A$):IF (ASC(A$(T,T»<65

AND ASC(A$(T,T» <>32) OR ASC(A$(T,T»>9
o THEN 20

CF 110 NEXT T
LB 120 REM REST OF YOUR PROGRAM

155

Chapter 3

Test Maker
Stephen Levy

Teachers will find this easy-to-use system for storing ques
tions and printing tests to be an invaluable tool and an
effective timesaver. Questions can be multiple-choice, fill
in the blank, short answer, true/false, or any combination.

"Test Maker" was written for teachers . It allows you to print
nicely formatted tests using questions that have been pre
viously LISTed to disk or tape.

You may save numerous files of questions and pick and
choose from all the files. Questions can be used in any order.
Once you have selected the questions, the program will print
out the test in a uniformly formatted style.

Midterms and finals become a snap. Just load up all test
questions used throughout the term and pick the ones you
want for the final. Save questions from year to year, and add
to your list each year. Think of it-a simple, easy-to-use way
to create different tests for each of your classes without having
to retype the test. It's a teacher's dream come true.

When printing your tests, you can use virtually any type
of master. For instance, I have used Test Maker with standard
ditto masters with an Atari 825 printer (removing the tissue, of
course) to create masters that have produced well over 100
copies.

Creating the Questions
Test Maker stores all your questions in DATA statements. If
you create different files for each unit and do not use DATA
statement line numbers more than once, you will be able to
draw questions from numerous files. Keep track of the DATA
statement line numbers. I find it best to print out a copy of the
files so I know what is in each file.

Writing the actual questions in DATA statements requires
that you follow a few simple rules. Here's how a sample
multiple-choice question would look in final DATA statement
form:
600 DATA 4
601 DATA The first President of the
602 DATA United States was
603 DATA Thomas Jefferson

156

Chapter 3

604 DATA George Washington
605 DATA Jimmy Carter
606 DATA Richard Nixon

The first DATA statement (line 600) tells the program that
this is a four-choice multiple-choice question, although you
could have had as few as two choices. Put a a or 1 here if the
question is not multiple-choice.

Lines 601 and 602 are the actual question. All questions
must be broken into two DATA statements, with the break
occurring between words. In that way, questions can exceed
the three-physical-lines limitation imposed by Atari BASIC.

Finally, each of the four possible answers appears as a
DATA statement.

The question could have been written this way:

600 DATA 4,The first President of the,United States was,Thomas
Jefferson,George Washington,Jimmy Carter,Richard Nixon

However, I prefer the first method because it is easier to
use months or years later when the questions aren't quite so
fresh in my mind.

I could also have included an indication of the correct an
swer as a REM:

607 REM A is the correct answer

Printing Special Characters
Since the questions are held in DATA statements, it might be
difficult to use a comma embedded in a question. The program
would assume that the comma indicated the end of the DATA
item. Whenever you need to include a comma in a question,
press SHIFT = to get the vertical line character. The program
will convert this to a comma when it prints a hard copy.

You can print any character from the Atari character set
(within the capabilities of your printer, of course). Science and
math teachers can even print exponents. Just use the charac
ters that cause the printer to reverse linefeed one-half line,
print the exponent, and then insert the characters which cause
a half-linefeed forward. On an 825 printer, for example, the
following keystrokes would produce an exponent of 2:

ESC, ESC, ESC, CTRL +, 2, ESC, ESC, ESC, CTRL -

157

Chapter 3

Be sure that you do not use any line number below 571
for a DATA statement. In addition, it's best not to use the
same line numbers in more than one file. If you have dupli
cate line numbers, then those questions cannot be used on the
same test. You can avoid the problem completely if you start
each question on a line divisible by 10, starting with 600, and
if you never use a number twice.

Printing Tests
Once you have created your test questions, you must LIST
them to disk or tape. Do not use the SAVE command. For
tape, LIST "C:" and note where on the tape the file starts. For
disk, LIST "D:filename".

Assuming you have saved a copy of Test Maker and
LISTed copies of the DATA statements, you are ready to print
a test. First, load Test Maker from disk or tape. Change line 20
so it contains your own directions. Then ENTER the files that
include any questions you want to include. If you have used
different line numbers for all your questions and have not
used a line number below 571, you will end up with the ques
tions as well as the driver program in memory.

Referring to your list of questions (or scanning the DATA
statements), make a list of the first DATA statement line num
ber for each question that you want to include. Also note the
order in which you wish them to appear. You do not have to
use all the questions that are held in memory.

Run the program. Answer the prompts as they appear.
Enter one line number at a time, pressing the RETURN key
after each one. When asked "How many questions on this
page?" you'll have to estimate how many questions will fit on
your page. It may be helpful to first print out the entire test on
a continuous piece of paper, figure how many questions
should be on each page, and then ask for another copy of the
test. You can print additional copies of the test without enter
ing all the numbers again.

Practice
When learning to use this program, it is a good idea to make a
few practice runs. Create some questions and print some sample
tests . Get the hang of it before you tackle the real thing.

After just a little practice, you'll find that this program is
extremely easy to use. It even includes a simple routine to tell

158

Chapter 3

you when you have entered DATA incorrectly. Also included
are three sample questions (all lines from 600 up). These sample
questions should not be typed in or included as part of Test
Maker; they have only been included as examples.

Test Maker
For error-free program elltry, read "The Automatic Proofreader" ill Chapter 1 before typillg
ill this program.

ED 10 DIM YES$ (1) • A$ (110) • Q 1 $ (125) • Q2$ (125) • P$
(250},BL$(11):BL$="{11 SPACES}"

AB20 DATA DIRECTIONS: REPLACE THIS LINE WITH
YOUR SPECIFIC DIRECTIONS FOR THE TEST.

~30 TRAP 30:PRINT CHR$(125);"HOW MANY QUESTI
ONS ON THE TEST";:INPUT NUM

OP35 IF NUM < 2 THEN PRINT CHR$(253);CHR$(125);
"YOU MUST HAVE AT LEAST 2 QUESTIONS":FOR

1=1 TO 1500:NEXT I:GOTO 30
ND 37 DIM N (NUM)
LI40 PRINT "ENTER THE DATA STATEMENT NUMBERS

{6 SPACES}ONE AT A TIME.":G=60
J650 FOR 1=1 TO NUM
ON60 TRAP 70:1NPUT D:GOTO 80
OC70 PRINT CHR$(253);"ENTER A NUMBER PLEASE,

TRY AGAIN.":FOR W=1 TO 500:NEXT W:GOTO G
NB80 N(I)=D
PF 85 NEXT I
CJ 90 Z = 1 : P = 1
FI 100 PRINT "Questions listed to the §creen 0

r Ulrinter?";:INPUT YES$:CLOSE #1
DE 105 TRAP 70
KL 1 1 0 G = 1 05: P R I NT: P R I NT" T his i spa 9 e "; P; "

.How many":PRINT "questions on this pag
e";:INPUT C:IF Z>1 THEN GOTO 250

~200 IF YES$="S" THEN OPEN #1,8,0,"E:":GOTO
240

16210 TRAP 230:IF YES$="P" THEN OPEN #1,8,0,"
P:":GOTO 240

PE 221!1 P R 1 NT" En t era P for P r i n t e r 0 r S for S
creen";CHR$(253):PRINT :INPUT YES$:CLOS
E #1:GOTO 105

U231!1 PRINT CHR$(253);"TURN ON THE PRINTER!":
PRINT :PRINT :GOTO 100

M240 RESTORE :READ P$:PRINT #1;"Name";:FOR I
=1 TO 30:PRINT #1;"_";:NEXT I:PRINT #1:
PRINT #1:GOSUB 51!10

JJ250 P=P+l:TRAP 550:FOR 1=1 TO C
LD255 IF Z >NUM THEN GOTO 350
"P260 D=N(Z):RESTORE D:PRINT #1
KB270 READ TYPE,Q1$,Q2$:Y=0:CH=64:L=LEN(Ql$)

159

Chapter 3

ff280 P$=Ql$:P$(L+l,L+l)=" ":P$(L+2,LEN(Q2$)+
I+L)=Q2$

H290 PRINT #1;" __________ ";Z;".";:GOSUB 500:
Z=Z+1

NB300 IF TYPE < 2 THEN GOTO 340
LA 310 FOR ANS= 1 TO TYPE: Y=0
~320 CH=CH+l:READ A$:PRINT #l;BL$;CHR$(CH);"

";:P$=A$:GOSUB 500
LH 330 NEXT ANS
~340 IF YES$="S" THEN FOR W=l TO 500:NEXT W
CN 345 N EXT I: GOT 0 1 05
AD 350 P R I NT: P R I NT" P r i n tan 0 the r cop y " ; : I N P U

T YES$
NG 360 IF YES$="N" THEN 380
DK 370 GOTO 90
U380 PRINT "ARE YOU SURE YOU ARE FINISHED";:

INPUT YES$
BO 390 IF YES$ < > "Y" THEN 350
6L 400 END
6N 500 FOR X = 1 TO LEN (P $) : I F P $ (X , X) =" I" THE N

P$(X,X)=","
00510 Y=Y+l:IF P$(X,X)=" " AND Y>50 THEN PRIN

T #1:PRINT #1;BL$;:Y=0
IP520 PRINT #1;P$<X,X);
CP 530 NEXT X
~540 Y=0:P$="":PRINT #l:RETURN
CP 550 PR I NT : PR I NT "YOU HAVE AN ERROR I N YOUR

DATA{8 SPACES}STATEMENTS. CHECK THE QU
ESTIONS WHOSE DATA BEGIN ON THE"

~560 PRINT "FOLLOWING LINES":PRINT N(Z),N(Z-
1)

HD 570 END
OB 600 DATA 1
FS 601 DATA What is the capital of the
KO 602 DATA United States?
OF 610 DATA 4
LP 611 DATA The first President of the
NL 612 DATA United States was
Me 613 DATA Thomas Jefferson
DA 614 DATA George Washington
BN 615 DATA Jimmy Carter
IA 616 DATA Richard Ni >: on
06620 DATA 4
FY. 621 DATA The only President of the
SH 622 DATA Un i ted. St at es to resign from

e was
KD 623 DATA Thomas Jefferson
D8624 DATA George Washington
80625 DATA Jimmy Carter
IB626 DATA Richard Ni>:on

160

offie

Chapter 4

Shopping List
John E. Dombrow
and John Dombrow

"Shopping List" is a program that lets you create, update,
and save to disk personalized shopping checklists. It com
bines menus, editing capabilities, parameter-driven print
ing, and error recovery to produce a remarkably practical
shopper's aid.

"Shopping List" incorporates mixed graphics modes and dis
play list interrupts. It also uses PLOT and DRAWTO in
GRAPHICS 0, machine language subroutines, and a text win
dow in GRAPHICS O. Other features include multiple colors
and luminances as well as keyboard INPUT without the?
prompt.

Shopping List was designed to be practical. It allows you
to specify shopping categories in the order that you find them
at your grocery store. If that order changes, it's a simple mat
ter to change the sequence. Items and categories may also be
added, deleted, or changed. When items are changed, the new
name will be displayed on the screen where the old name ap
peared, allowing you to verify any changes that you make.
Once a new function is performed, the changed names will
automatically be sorted into their proper alphabetic sequence.

Shopping Menus
Main Menu. When the program is initially run, you'll get

the Main Menu. It offers the following options:
View List. If no file is loaded in memory, this selection

will display a directory of all .5HP files on disk and ask which
one you want to load. However, if a file is loaded into mem
ory, it displays the Categories screen instead. To override this
action and load a new file, select Read File from the Main
Menu when a file is currently in memory.

Print List. If no file is in memory, this displays a directory
of .5HP files and asks which file to load for printing. It contin
ues to a screen which lets you specify normal or condensed
print, the number of shopping lists to print, the number of
item columns to print, and whether you are using continuous
forms or cut sheet paper (which would require a stop at the
end of each page). This option is designed for use with an
Epson MX-IOO printer.

163

Chapter 4

Read File. This lets you load a new file when one is al
ready in memory. If the file in memory has not been saved on
disk, you'll get a warning message with several options.

Save File. This will appear only if a file is currently in
memory (variable C> O). It offers you the option of saving the
file under its most recent name, saving it under a new name,
or pressing RETURN to cancel. If you continue, the program
will calculate the number of disk sectors necessary to save the
current file . If sufficient space is not available, you'll be so
notified and no attempt to save the file will be made. At that
point, you may DELETE some other file to make room or use
a different disk.

Create File. This option allows you to make up a new
shopping list. If a file is in memory and has not been saved,
you'll get a warning message with options; otherwise, you'll
get a screen that lets you begin entering categories. A maxi
mum of 38 categories (governed by variable MC in line 620) is
allowed.

Delete File. This allows you to delete unwanted .SHP files.
You'll get a directory and be asked which file to delete. If you
don't want to delete a file , press RETURN. This option will
not affect a file in memory and may be selected at any time.

Quit. This ends program execution. If a file exists in mem
ory, you'll get a warning message with appropriate options.

Every effort has been made to insure that a file or updates
to a file cannot be accidentally lost by inadvertent use of the
above options. Variable C (number of categories) and variable
FS (file saved) are always checked to see if a file exists or dif
fers from the version saved on disk; if so, the program will
allow you to recover. You always have the option to return
from a selection that was inadvertently entered. To select an
option, simply enter the associated letter without pressing
RETURN.

Directory Menu. This displays a directory of up to 20
.5HP filenames per disk. It is also useful with Read, Save, or
Delete. In the case of Save File, the directory is included as a
convenience to show what filenames already exist.

Each filename is displayed with a unique alphabetic
identifier. This identifier allows for selection with a single key
stroke. All filenames are suffixed automatically with the ex
tender .5HP; you do not need to type in the extender yourself.

164

Chapter 4

After the filenames, the remaining sectors available on the
disk are displayed.

Categories Menu. You'll get this menu if you want to
view a list with a file in memory, view a list or read a file after
a file is loaded, create a file, or use the Cats option from the
Items Menu.

The Categories screen will display all categories entered,
in any order determined by you. To select an option, simply
enter the associated letter.

Add. This allows you to add categories to your shopping
list. All additions will appear at the end of the list. When you
enter the Add option, the text window will change to allow
entry of the new categories. The format allows for up to 16
characters per category; any characters beyond will be trun
cated. To exit, press RETURN with a blank category name.

Insert. This option lets you insert a new category into an
existing list. Enter the number that you want the new category
to have and press RETURN. The text window will change to
the Add mode for the entry of one new category. Then enter
the new category and press RETURN. The Categories Menu
will again be displayed with the new category inserted at its
proper place.

View. This lets you view, enter, and update the items
associated with each category. Enter the category number and
press RETURN. The Items Menu will then be displayed.

Renum. This lets you rearrange the order of existing cate
gories. Specify the old category and its new location, and the
Categories screen will be redisplayed with the categories in
the new order.

Change. This lets you change a category name. Enter the
category number and press RETURN. The original name will
be displayed for you to modify as desired; when you're
through, press RETURN. The Categories Menu will be
redisplayed with the change.

Delete. This lets you delete an unwanted category. Enter
the number and press RETURN. The text window will display
the category name selected and ask for verification. Enter a Y
or N.

If you try to delete a category that still has items asso
ciated with it, further verification is requested . If you continue,
all items associated with the category are deleted as well.

165

Chapter 4

Main Menu. This returns you to the Main Menu. If you
make a mistake while using any of these options, you'll get an
appropriate error message and be returned to the Categories
Menu.

Items Menu. This menu and display will show all items,
if any, associated with the selected category. All items will be
in alphabetical order according to the ASCII sequence. A list
of the remaining entries is displayed in the text window dur
ing certain options and is governed by variable ME (maximum
entries) in line 620, which defines the maximum number of
items across all categories (initially set to 400). The keyboard
is set to lowercase when entering items, and the program will
capitalize the first character of the item if necessary.

To select an option, enter the appropriate letter without
pressing RETURN. The following options are available.

Next Pg (Next page). This displays the next sequential
screen of items, if more items exist.

Last Pg (Last page). This displays the previous screen of
items, if you have advanced beyond the first screen.

Add. This lets you enter additional items in the selected
category. The items will be displayed in the order entered un
til you exit the Add mode; at that time all items will be sorted
and page 1 of the Items Menu will be redisplayed. To exit and
return to the Items Menu, press RETURN with a blank item
name.

Cats (Categories). This option will return you to the Cate
gories Menu.

Change. This lets you modify an item name displayed on
the current screen. Enter the appropriate item number and
press RETURN. The item name will be displayed in the text
window. Press RETURN after you have completed the change,
and the new name will be displayed in place of the original.

The new name(s) will be sorted into correct sequence
when you select one of the Add, Cats, Sort, or Pg 1 options.
That allows you to easily update all items.

Delete. This deletes a specific item from the current
screen. Enter the appropriate number and press RETURN. The
item name will be displayed, along with the option to con
tinue. Enter Y or N accordingly. If Y is entered, the item will
be deleted and scrolled off the graphics portion of the display.

Sort. This forces a sort of all items associated with the se
lected category, if any updates have been performed. For ex-

166

Chapter 4

ample, it may be used after making modifications with
Change, to display all items in the correct sequence without
having to exit the Items Menu or do additional Adds. After
entering this option, the first page of the Items Menu will be
displayed.

Pg 1 (Page 1). This option displays the first screen of the
Items Menu/display. If the items have been modified, they
will be re-sorted in to ascending ASCII sequence.

Main Menu . Returns you to the Main Menu.
Print Menu. This menu lets you print your list. To select

an option, enter the corresponding number without pressing
RETURN. It offers the following options:

Normal/Condensed. This allows you to print your shop
ping list in normal or condensed print; the default is con
densed print. The default may be changed by modifying
variable MODE$ in line 720 in the program.

Number of Columns of Items. This lets you select the num
ber of columns of items across the page of the shopping list.
The default value is 5; it can range from 1 to 9. The default
may be changed by modifying variable COL in line 720.

Number of Pages to Print. This lets you select the number
of shopping lists to print. One list is considered a page. A
page eject is issued after each list is printed. The default is 1;
the value can range from 1 to 9. The default may be changed
by modifying variable PAGES in line 720.

Any changes made to these parameters during program
execution will remain in effect until other changes are made
(or until the session is completed).

A Closer Look
The shopping list file is kept in memory as a sequential group
of records in F$. All items sequentially follow their respective
category. Array P contains a relative displacement to each
category in F$. Variable C maintains a count of active cate
gories, while variable E maintains a count of active items.

When a category is added, it is placed at the end of F$,
and P(C) is updated to reflect the displacement. When a cate
gory is inserted, the proper position in F$ is calculated, the
data to the right of this position is moved one entry to the
right, and the new category is inserted. Array P is then up
dated to reflect the new displacements. Likewise, when a cate
gory is deleted, the category and any items are removed by

167

Chapter 4

moving all data to the right of the category back to the left
and updating array P.

The move left and move right subroutines are machine
language subroutines. Machine language is needed to move
data left because of BASIC's inability to move multiples of 256
characters.

The machine language subroutines implemented in Shop
ping List have been converted to string arrays.

With the exception of documenting the Epson MX -100
printer control characters, REMarks have been omitted from
the program to increase speed and reduce size. For those who
wish to analyze the program or make changes or enhance
ments, here is a line-by-line description.
Line(s)

20
30-40

50
60-70

100-120

130
140-170
180-200

210-250

260

270-300
310-340
350-470

168

Go to initialization code.
Solicit a reply and compare it to legal values in R$. If not
valid, sound the keyboard speaker. If valid, R is set to the
relative position of the response in R$.
Sound the keyboard speaker.
Display Categories/Items screen in a two-column format.
Note in line 70 the use of PLOT and DRAWTO in
GRAPHICS O. First the COLOR is set to the value of the
character you wish to propagate with the DRAWTO.
Solicit a category or item number and verify. If not valid,
sound the keyboard speaker.
Display all categories in two-column format.
Display one screenful of items in two-column format.
Sort all items associated with the specific category and re
set the changed flag.
Display an item for change, solicit the new value, and
verify. If the first character is lowercase, change it to
uppercase.
Set up a display list rou tine to al ter the luminance of the
characters in the GRAPHICS 0 graphics part of the screen
and the luminance of the characters in the GRAPHICS 0
text window, and change the background luminance of
the text window to one shade darker than the graphics
part of the screen.
Display PRINT parameter menu with current settings.
Print horizontal 'lines in shopping list printout.
Display disk directory of .5HP fil es. Current option is dis
played in GRAPHICS 2 mode at the top of the screen,
and the directory is displayed in GRAPHICS O. A text

480-540

550-570

580-590

600-720

730
740-860

870-930

940-1030

1040-1220
1230-1250
1260-1350
1360-1480
1490
1500-1610

1620-1630
1640-1670
1680-1690
1700-1880
1890-1940
1950-2010
2020-2120

2130-2610

Chapter 4

window is used at the bottom to request selections. The
filenames found on the disk are saved in array D$.
Request a file selection and validate, If invalid, sound
keyboard speaker. If valid, build complete filename in
FN$.
Set up mixed GRAPHICS 2jGRAPHICS 0 screen by
modifying the display list. The current option is displayed
in the GRAPHICS 2 portion.
Make a sound. The pitch of the sound is determined by
the value passed in variable K.
Initialize constants and variables; set up machine lan
guage subroutines and printer parameter defaults.
Open the keyboard and screen editor for input.
Display Main Menu, get selection, and go to appropriate
routine.
Quit option routine. Lines 880-900 are also used by other
routines to display the FILE NOT SAVED CONT YjN?
option.
Display Categories Menu, get selection, and go to appro
priate routine.
Add or Insert category routine.
Change category routine.
Delete category routine.
Renumber category routine.
View category.
Display Items Menu, get selection, and go to appropriate
routine .
Sort items routine.
Next Pg option on Items Menu.
Last Pg option on Items Menu .
Add items routine.
Change item routine.
Delete item routine.
Load a file from disk for Main Menu Read option, or
View jPrint option and no file in memory. See write-up
for lines 2640-2830 for file characteristics . If a disk error
occurs that inhibits loading the complete file, responding
to the RETRY Y j N message with an N will cause reten
tion of data already read to help in the re-creation of the
file. Before continuing, check the last category displayed,
then resave and reread "the partial file before rebuilding.
Print a shopping list based on PRINT parameters. The ti
tle is printed in the Epson enlarged character set if the
number of columns is grea ter than 1. The PRINT routine
uses Epson MX-100 printer control characters.

169

Chapter 4

2620-2630 Read file initialization .
2640-2830 Save file routine. The fil e is a sequential file with items

foliowing their respective categories. Prior to writing a
new category, a one-character binary value of the cate
gory number is written. This is used to detect each new
category. Before writing the file to disk, a check is made
to see if the file will fit. If a new filename is entered for
the SAVE and the filename already exists on the disk, an
OVERWRITE YIN request message will be issued.

2840-2930 Delete file routine.
2940-2970 Error recovery subroutine for disk and printer errrors.

Shopping List
For error-free program wtry, read "The Automatic Proofreader" ill Chapter 1 before typing
ill this program.

DB 20 GOTO 60Ql
W30 GET #K5,ANS:FOR R=Kl TO LEN(RS):IF ANS=A

SC(RS(R,R» THEN RETURN
~40 NEXT R:GOSUB 50:GOTO 30
~50 FOR N=KI5 TO K40:POKE 53279,K0:NEXT N:RE

TURN
060 POKE 752,Kl:7 #K6;CSS;:POSITION KI8-LEN!

RS) IK2, K0: 7 #6; "."; RS; ".";
~70 COLOR 124:PLOT K19,Kl:DRAWTO KI9,KI9:RET

URN
M80 U=USR(PK,656 ,K l ,657 ,K2):? "I ENTER NUMBE

R TO ";RS;" :{8 SPACES}I";
IB 90 U=USR (PK, 752 ,1<0, 657,27) : 7 ":";: INPUT #1<4

,AS:POKE 752,1<1:7 "(Z}";:IF LEN(AS)(1<8 T
HEN AS(LEN(A$)+l<l, K8)=BLS

~10@ AS=AS(1<1,1<8):IF AS=BLS(33) THEN X=K0:RE
TURN

~11@ TRAP 12@:X=VALeAS):TRAP CLEAR:IF X}1<0 A
ND X<=K AND INTeX)=X THEN RETURN

M 1212' GOSUB 50:POKE 656,Kl:GOTO 912'
00 1 312' FOR I = X T 0 C: X = P (I) : J = I)- 1< 1 9 : P 0 SIT ION (I

< KI0) +1<20*J, I -KI9*J:? #6; STRS (I);" "; FS
eX,X+Z);:NEXT I:RETURN

~ 1412' RS=IS:GOSUB 60
~ 1512' X=F+EL+ePG-1<1)*K38*EL : FOR I=Kl TO K38:1

F X=T THEN 170
BM 16\'i1 J=I) 1<19:POSITION <I<I<HI)+1<2@*J,I-1<19*J:

7 #6;STRS(I);" ";FSeX,X+Z) ;:X =X+EL:NEXT
I

~17@ K=I-l<l:RETURN
I:C 1 80 X = e T - F) / E L: I F X <: K 3 THE N 2 QI Ql
JD 1 90 U = U 5 R (PI<, 204 , Z , 205 , E L , 212'6 , K (1) : U = U 5 R (5 R T

,ADReFSeF+EL»,X-l<l)

170

Chapter 4

IE200 CHNG=K0:RETURN
NB 2 1 0 U = U S R (P K , 656 , K 1 , 657 , I< 2) :? .. 1 EN T E R C HAN

GE{3 SPACES}: " ; F$(J,J+Z); "I"; :U=USR(PK,
752,K0,657,KI9)

EC 220 ? ":" ;: 1 N PUT # I< 4 , A $: PO K E 752, I< 1 :? .. { Z } ..
;:IF LEN(A$) (EL THEN A$(LEN(A$)+Kl,EL)=
BL$

MI230 I=ASC(A$):IF 1 >96 AND 1 { 123 THEN A$(I<I,
I< 1) =CHR$ (1 -32)

~240 A$=A$(Kl,EL):IF A$=BL$(Kl,EL) OR A$=F$(
J,J+Z) THEN RETURN

~250 F$(J,J+Z)=A$:FS=1<0:I=X) KI9:PoSITIoN K3+
K20*I,X-KI9*I:? #6;A$;:CHNG=Kl:RETURN

JJ 26~1 DL=PEEI< (560) +PEEI< (561) *,,~256: U=ADR (.. H~
{ D} {I::} {J Jij{ I::} { X } r;n { J } {I::} {W} ~h @ ..) : PO K E U
+1<2,I<:U=USR(PK,512,U,DL+24, 130,54286, 19
2):RETURN

BL 2 7 0 PO SIT ION I< 2 , K 6 :? # I< 6 ; .. ~ . P R I N T 1:::0 R MAL I C!:
ONDENSED ;MODE$

JP 280 ? #1<6; "~. NUMBER OF COLUMNS OF ITEMS ...
. . . "; COL

M290 ? #1<6;"~. NUMBER PAGES TO PRINT ..•.....
..... ;PAGES

PP 30~1 ? #1<6;"~. C!:ONT 1 NUOUS FORM I~I NGLE SHEET .
..... ;TyPE$:RETURN

NC 3 1 0 ? # K 1 ;" "; A $; : 1 F COL:> 1< 1 THE N FOR J = KIT
o COL-I<I:? #Kl; "-";A$; :NEXT J

AM 320 ? # K 1 ;" ": RET URN
FA33~1? #1<1;"I";A$;:IF COL:>1<1 THEN FOR J=Kl T

o CoL-Kl:? #Kl; " -" ; A$;: NEXT J
II: 34~1 ? #Kl;" I": RETURN
LC 350 GOSUB 550
li360 GOSUB 580:TRAP 540:oPEN #Kl,K6,K0,"Dl:*

.SHp .. :D$=
~370 TRAP 390:INPUT #Kl,A$:TRAP CLEAR:IF LEN

(A$) (KI7 THEN 390
IJ380 L=LEN(D$)+Kl:D$(L)=A$(1<3,KI0):D$(L+K8)=

A$(KI5):GoTO 370
EJ390 CLOSE #Kl:POSITION K2,1<1:? "{Q}{35 R}

{E}":IF D$= THEN 460
FL400 T=LEN(D$)/K22:IF INT(T) (:> T THEN D$(LEN(

D$) +Kl)=BL$ (Kl ,Kl1): T=T+!Zi. 5
M410 FOR 1=1<1 TO T:R$=BL$(K5}:FOR J=K~ TO Kl

:X=(I+J*T)*Kll:L=K18*J+Kl
HH 4 20 R $ (L , L) =" 1 " : 1 F D $ (X -I< 1 0, X - K 1 0) = THE N

450
1Y,430 R$(L+Kl,L+K4)=" (@) ":R$(L+1<2,L+K2)=CHR$

(64+X/I<11}:R$ (L+K5,L+1<12}=D$(X-1<10,X-1<3
}:R$(L+K14,L+K16}=D$(X-1<2,X)

171

Chapter 4

N440 FOR X=L+KI3 TO L+K6 STEP -Kl:IF RS(X,X)
_ THEN RS(X,X)= :NEXT X

M0450 NEXT J:? RS;"''':NEXT I
LG 4 6 ~I ? "'''; B L 1; (K 1 , 35) ; .. I .. :? .. I (9 SPA C E S"} .. ; AS

;"(10 SPACES}'"
GB 470 ? .. (Z "} (35 R"} {C} .. :? :? :? .. {3 SPA C E S "} 0 N L

Y , .SHP' FILES ARE LISTED. ":RETURN
IB 48v.1 GOSUB 50
HC490 POSITION K0,K2~1:? "(DEL LINE"}";:POSITIO

N 1<8,1<20:? " "-J311;(i!ii.1('1:.'1;=':I"iIJ:~:::"";

U500 GET #K5,X:IF X=155 THEN RETURN
IA510 X=(X-64)*Kll:TRAP 480:AS=DS(X-K10,X-K3)

:TRAP CLEAR:IF A$=BLS(Kl,K8) THEN 480
GA 5 2 ~I F N S = .. D 1 : .. : FOR I = KIT 0 I< 8: I F A S (I , I) <: :: ..

.. THEN FNS(I+K3)=A$(I, I) :NEXT I
EH 53v.1 FNS C 1 +K3) =" . SHP" : RETURN
PE 54~1 GOSUB 294v.1: GOTO 36v.1
~550 GRAPHICS 1<0:DL=PEEK(560)+PEEKC561)*K256
IP560 U=USR(PK,75 2,Kl,709,K8,710,66,711,182,7

12,66,DL+K3,71,DL+K6,K7,DL+28,65,DL+29,
DL,87,~:2)

AH 5 7 ~I ? # I< 6; " {3 SPA C E S"} .. ; R S; "_n It: .. : POI< E 87, K
~I: RETURN

tlE 58~1 K=K 1 3
~590 FOR 1=1<15 TO K0 STEP -0.5:FOR J=K2 TO K

o STEP -Kl:50UND K0,K-J,k10,I:NEXT J:NE
XT I:RETURN

~600 K0=0:Kl=I:K2=2:K3=3:K4=4:K5=5:K6=6:K7=7
:K8=8:K9=9:KI0=10:Kl1=11:KI2=12:KI3=13:
1<14=14:1<15=15

~610 1<16=16:1<17=17:1<18=18:1<19=19:1<20=20:K21=
21:1<22=22:1<38=38:1<39=39:1<40=40:1<128=128
:1<256=256

~620 MC=1<38:ME=400:MF=1<20:EL=1<16:Z=EL-Kl:CLE
AR=40000:FS=Kl:C=1<0

~630 DIM SRT$CI26) ,MLS(39),MRS(47),PKSC25),M
ODES(I<I),TYPES(Kl),FS«ME+MC)*EL) ,DS(MF
*Kl1), FNS (1<15), RNS (1<15)

IT640 DIM BLSCI(40),ASIK40),RS(K40),IS(EL),BZS
(1<1), CSS (Kl), P IMC+I<I)

IE 650 RESTORE 5000
~H660 FOR 1=1 TO 126:READ QQ:SRTS(I,I)=CHRS(Q

Q):NEXT I
DL670 FOR 1=1 TO 39:READ QQ:MLS(I,I)=CHR$(QQ)

:NEXT I
EB680 FOR 1=1 TO 47:READ QQ:MRSII,I)=CHRS(QQ)

:NEXT I
JI690 FOR 1=1 TO 25:READ QQ:PI<S(I,I)=CHRS(QQ)

:NEXT I:RESTORE

172

Chapter 4

AB700 SRT=ADR(SRT$):ML=ADR(ML$):MR=ADR(MR$):P
K=ADR(PI<$)

IF 710 BL$=" ": BL$ (1<40) =" ": BL$ (K2) =BL$: FN$=
:RN$=FN$:BZ$=CHR$(253):CS$=CHR$(125)

PH 720 MOD E $ = .. C .. : COL = I< 5 : P AGE S = K 1 : T Y P E $ = .. S .. : P (K
0)=K0:RS=K0

AF 730 OPEN #K5,K4,1<0, "1<:" : OPEN #K4,1<4, 1<0, "E:"
IT 740 GRAPHICS 1<2:U=USR(PI<,710,K4,711,72,712,

K4)
~750 POI<E 201,K4:POSITION K3,Kl
I'IA 760 ? #1<6; "SHOPPING LIST":? #K6
01 770 ? #1<6, .. t!:i ew 1 i st ..
FL 7 8 0 ? # K 6, .. r::r i n t 1 i 5 t ..
I'IB790 IF C THEN? #1<6,"r;ead file":? #6,"~ave

file"
HP 800 ? #K6, "[!Ireate fi Ie"
HP 8 1 0 ? # K 6. .. ~e let e f i 1 e ..
NP820? #1<6,"~uit":POKE 752,1<1
AJ 830 ? CS$:? :? .. I NSERT DATA D I SI< AND ENTER

SELECTION."
IF 840 R$=" VPRSCDQ" : IF

$
NOT C THEN R$(Kj,K4)=R

IA 850 GOSUB 30
CD860 ON R GOTO 2020,2130,2620,2640,940,2850
JA870 IF FS THEN 910
IJ880 ? CS$:? :? "{3 SPACES}FILE NOT SAVED CO

NT I NUE -W:.";
AI'I890 I=R: R$="NY": GOSUB 30: IF R=1<1 THEN 830
AD 900 R= I: FS=I< 1: GOTO 860
~910 CLOSE #K4:CLOSE #1<5:GRAPHICS K0:POKE 20

1,1<10
HI'I920 POSITION K9, K6:? 'a.]~ -ti_."":~:; ... :r:U3 •• .. . ,
HP 930 POSITION K2, K18: END
IF 940 I F NOT FS THEN 880
PF 950 F$= : C=K0: E=1<0
~960 GRAPHICS 1<0:U=USR(PI<,709,1<12,710,198,71

2,50,703,1<4):1<=196:GOSUB 260
AP 970 R$="(!J:u;c:r<t']:JII4"''': GOSUB 60: IF NOT C THEN

R=I< I: GOTO 1070
AA 980 X=i< 1: GOSUB 130
JB990 ? CS$;"{Q}{8 R}{W}{7 R}{W}{8 R}{W}{7 R}

{E}"

BJ 1000 ? .. I [fDD{4 SPACES} I (,!;IEW [!lHANGE
{3 SPACES}?{3 SPACES} I"

Jy. 1010 ? .. I ~SERT I IT;ENUM I [!:ELETE {5 R}

CE 1020 ? .. {Z} {7 R}"''":IMiil.];-:;r:u:_:;13:L'_{6 R}
{C}fI;

173

Chapter 4

J61030 R$="AICDRVM":GOSUB 30:0N R GOTO 1070,1
210,1230,1260,1360,1490,740

Fl 1040 7 C S $; B Z $: 7 : 7 .. • ... :;.,[,..:"":"'+""II-:; L.~J:;.,.~:~L"'IJ-:;""', .,..J="""':.-""!{-=:~ • .".=;(-=.,..:-I:
I:JlII4 __ "": .. "":I# ; : GOTO 1060

Y.O 1050 7 CS$;BZ$:7 :7 NO CATEGORIES TO
R$;

~ 1060 FOR I=Kl TO K256:NEXT I:GOTO 990
FL 1070 IF C=MC THEN 1040

... ,

F01080 7 CS$;"{Q}{33 R}{E}":? "'{33 SPACES}I"
U: 1090 7 .. {Z} {5 R} __ :hi ,1m !' iiil]:.I]~.(Il:i#W{ 5 R}

{C}II;

~1100 IF R)Kl THEN K=C:GOSUB 80:IF NOT X TH
EN 990

HF 1110 ON R GOTO 1120, 1120, 1250, 1280, 1380, 151
o

AA 1120 U=USR(PK,656,Kl,657,K2):7 "I ENTER CAT
EGORY :{16 SPACES} 1 ";:U=USR(PK,752,K0
,657,KI9)

HD 1 1 30 7 ":" ;: I N PUT # K 4 , A $: P 0 ~: E 7 5 2 , I< 1 :? "
{Z}";:IF LEN(A$) <E L THEN A$(LEN(A$)+t<1
,EL)=BL$

MP1140 A$=A$(Kl,EL):IF A$=BL$(Kl,EL) THEN 990
M 1150 C=C+Kl:FS=K0:K=LEN(F$)+Kl: F$(K)=A$:IF

R=~: 2 THEN 1190
EG 1 1 60 P (C) = 1<: X = C
JO 1170 GOSUB 130:IF C <MC THEN ON R GOTO 1120,

990
AG 1180 7 CS$: 7 :? ".:;r:l:+II:;LIJ:;.:LIJ:;I.).,.:.!{:U;(?lI]:Ji44"1

• .,.: .. .,.:~.,. •• " ; : I<=K40: GOSUB 590: GOTO 99~1

HD 1 1 9 0 7 C S $; : I = P (x) : J = A D R (F $ (I)) : U = U S R (M R , J ,
J+EL,I<-I-I<I):F$(I,I+Z)=A$

U 1200 FOR I =C TO X +1< 1 STEP -I< 1: P (I) =P (I -K 1) +
EL:NEXT I:GOTO 1170

~ 1210 IF C THEN R$="INSERT":GOTO 1070
AK 1220 R$=".II:;;t;;j;'.": GOTO 1050

KA 1230 IF C THEN R$=" CHANGE" : GOTO 1080
DN 1 2 4 0 R $ = .. [!J: t:l : [l1." : GOT 0 HI 5 0
~ 1250 J=P(X) :GOSUB 210:FS=1<0:GOTO 990
LA1260 IF C THEN R$="DELETE":GOTO 1080
EN 1270 R$= "I.l",,,,,u;;a": GOTO 1050
BK 1280 I =P (X) : U=USR (PI<, 656, t< 1,657, K2) :? "I DE

LETE "; F$ (I , I +Z) ; .. : ."Il4:_ 7 I":? "
{DEL LINE}{Z}{33 R}{C}";

~1290 R$="NY":GOSUB 30:IF R=1<1 THEN 990
JG 1 300 L = LEN (F $) + K 1 : P (C + K 1) = L : J = P (x + K 1) : I< = J - I

:IF K=EL THEN 1320
EE 1 3 1 0 7 C S $; B Z $: 7 :? .. I T EMS S TIL LAS S I G NED -

CONT I NUE .""":_";: R$=" NY" : GOSUB 3~1: IF
R=Kl THEN 990

174

Chapter 4

PH 1 3 20 ? C S $: C = C -I< 1 : I F X)- C THE N F $ I I) = " " : GOT 0
1350

101330 U=USRIML,ADR(F$(J» ,ADR(F$(l) ,L--J) :F$
=F$II<I,L-K-I<I)

Drl1340 FOR I=X TO C:PII)=PII+I<I)-I<:NEXT I:GOS
UB 130

~ 1350 E=LEN(F$)/EL-C:J=C)- 1<18:POSITION 1<20*J,
C+I<I-KI9*J:? #6;BL$(I<I,EL+1<3);:FS=IC=K
0):GOTO 990

DP 1360 IF C >I<~ 1 THEN R$=" RENUM ": GOTO H!80
PL 1 3 7 0 R $ = " 1 :1#4 : (I):;I.J #4 :_" : GOT 0 1 050
HN 1 380 I = X : R $ = " M A 1< E " : GO SUB 80: I F NOT X 0 R

X=I THEN 990
~ 1390 ? CS$:P(C+I<I)=LENIF$)+I<I:F=P(I):K=PII+

Kl)-F:R=I<:D$(MF*1<11)="X"
~ 1400 IF I)- X THEN F=P(X):GOTO 1450
II 1410 L=LEN (D$): IF L)- I< THEN L=K
AC 1420 T=P(X+l<l)-L:J=ADR(F$(F)} :U=USR(ML,J,AD

R(D$),L):U=USR(ML,J+L,J,T-F):U=USRIML,
ADR (D$) , ADR IF $ (T)) , L)

~ 1430 I<=K-L:IF I< THEN 1410
ND 1 4 40 FOR J = I + I< 1 T 0 X: P (J) = P (J + K 1) - R : N EXT J:

X=I:GOSUB 130:GOTO 990
1M 1450 L=LEN(D$):IF L)-I< THEN L=K
~ 1460 T=P(I+I<I)-L:U=USRIML,ADR(F$(T»,ADRID$

), L): J=ADR (F$ IF»: U=USR (MR, J, J+L, T-F-I<
I) : U=USR (ML, ADR (D$) , J, L}

IT 1470 I<=I<-L:IF I< THEN 1450
IT 1480 FOR J=I TO X+1<1 STEP -Kl:PIJ} =P(J-Kl}+

R:NEXT J:GOSUB 130:GOTO 990
DN 1490 IF C THEN R$="VIEW ": GOTO 1080
NB 1 500 R $ = " l'JI II #4:-" : GOT 0 1 05lZ!
~ 1510 GRAPHICS K0:U=USR(PK,709,1<12,710,K6,71

2,50,703,K4}:K=K4:GOSUB 260
JB 1520 PIC+I< I}=LENIF$)+KI:L=X:F=PIL} :T=PIL+1<1

}:PG= t<I:CHNG=K0
CE 1 530 I $ = F $ (F , F + Z) : FOR I = E L T 0 K 1 S T E P -I(1 : I

F I$II,I}=" " THEN NEXT I
MN 1 5 4 0 I $ = I $ (f< 1 , I) : FOR I = f< 1 T 0 LEN (T $) : I $ (I • I

)=CHR$(ASC(I$(I}) -1-1<128} :NEXT I
OA 1550 GOSUB 140
U 1560 ? CS $;"{Q}{9 R}{W}{6 R}{W}{8 R}{W}{7 R}

{E}fI

EJ 1570 ? " 1 crXT PG nJ)D ~ANGE EJ]RT

CO 1580 ? " I ~ST PG CAIijS (};ELETE n;G 1

I:C 1590 ? II{Z}{8 R } _I:;~ iii] :-:[;l!!I: -:13: [... { 6 R}
{C} II ;

175

Chapter 4

PP 1 600 R $ = .. N L T A C D M P S" : GO SUB 30: I FIR = 3 0 R R = 7
) AND CHNG THEN GOSUB 180

~1610 ON R GOTO 1640,1680,960,1700,1910,1950
,740,1890

& 1620 IF T-F)EL THEN 1890
EJ 1630 R$= "~": GOTO 1930
~ 1640 IF IT-F)/EL-Kl)PGtK38 THEN PG=PG+Kl:GO

TO 1550
~:K 1650 ? CS$:? :? ,," -:C._:I"+:41,";
60 1660 ? .. _i ... -JW1: ... ; : GOSUB 50
EB 1 670 FOR I = KIT 0 K 1 28 : N EXT I: GOT 0 1 560
M 1680 IF PG)K l THEN PG=PG-Kl:GOTO 1550
OD 1690 ? CS$:? :? ,," _:t._.:;o.~,,,;: GOTO 1660
& 1700 K=K0:X=K0:IF E=ME THEN 1850
AJ 1710 R$=I$: GOSUB 60
FP 1 7 20 ? C S $; .. {Q} {3 3 R} {E} .. :? .. 1 {3 3 SPA C E S} 1 ..
FA 1730 ? .. {ZJ· {5 R}MI;t"liil);t:t iiil.1: ••):j.OJ:i--W{5 R}

(C}":? ,"{3 SPACES}REMAINING ENTRIES:
";ME-E;"C3 SPACES}";

10 1740 IF R :>I(4 THEN GOSUB 80: IF NOT X THEN 1
560

Al 1750 J=F+ I PG-I< 1) *1<38*EL+X tEL: ON R-K4 GOTO 1
940,1970

"H 1 760 U = U SRI P K , 656 , K 1 , 657 , I< 2) :? '" EN T E R I T E
M --- >: {16 SPACES} I It; :U=USR(Pt<!,,702,K0
,656,1<3,657,28)

BD 1 770 ? ME - E; " {3 SPA C E S} " ; : U = US RIP I< , 656 , K 1 , 7
52,1<0,657 ,1<1 9}

BG 1 7 80 ? " :";: I N PUT # I< 4 , A $: P 0 K E 7 5 2 , V 1 : ':> "

{Z}" ;: POKE 7QI2,64:IF LEN(A$}<EL T HEN A
$(LENIAS}+Kl,EL)=BLS

AH 1 79 III AS = A $ I K 1 , E L) : I F A $ = B L $ (K 1 , E L) THE f\I 1 86
o

PM 1 8 Ql 0 I = A S C (AS) : I F I :> 9 6 AND I < 1 2 3 THE N A S (I< 1
,Kl)=CHR$(I -32 i

~ 1810 FS=1<0 : E=E +Kl:X=X+EL:K =I< +1<1:I=LENIF$}+K
1: F$ (I) =A$

PO 1 82 el I F I - T THE N J = A D R (F $ (T)) : U = US R (M F: , J , .J +
EL,I-T-Kl):F$IT,T+Z)=A$

~ 1830 IF 1<)1< 38 THEN GOSUB 60:I<=Vl
JJ 1840 J = K > 1< 1 9 : PO SIT ION (I< < K 1 0) + K 2 Ql * J , f< - f< 1 9 * J

:':> #6;STR$(K);" ";A$;:IF E<ME THEN ON
IK=1<1 AND X >EL)+Kl GOTO 1760,1720

NE 1 850 ':> C S $:? : ':> ," _;r:}:1III;lIJ;_. j "4;;;W "4: .. ~~
" ; : K=R 40: GOSUB 590

KJ 1860 IF NOT X THEN 1890
OJ 1870 CHNG=K 1: IF E< ME THEN ? CS$;
EJ 1880 FOR I=L+Kl TO C:P(I)=P (I)+X:NEX T I:T=T

+X
HJ 1890 IF CHNG THEN GOSUB 180

176

Chapter 4

FI 19~~ PG=Kl:GOTO 155~

N 191~ IF T-F)EL THEN R$="CHANGE":GOTO 1720
GJ 192~ R$="(lnf:1:[., .. "
JI 193~ ? CS$; BZ$; :? :? •• "_:[o ••• ",: ... -i--" ; R$; "

.";:GOTO 1670
~ 1940 POKE 7~2.K0:GOSUB 210:POKE 702.64:GOTO

156~

AK 195~ IF T-F>EL THEN R$="DELETE": GOTO 1720
LK 1960 R$= "l>l",,,?i ... " : GOTO 193~

ill 197~ U=USR(PK,656,Kl,657,K2}:? "I DELETE ";
F$(J,J+Z};":.-"":.? I":? "{DEL LINE}
{Z}{33 R}CC}";

FM 1 9 8 ~ R $ = " NY" : GO SUB 30: I F R = KIT HEN 1 560
~ 199~ ? CS$;:I=ADR(F$(J»:U=USR(ML,I+EL.I,LE

N(F$)+KI-J-EL):FOR I=L+Kl TO C:P(I}=P(
I}-EL:NEXT I:E=E-Kl:FS=K0:T=T-EL

~2000 F$=F$(Kl,LEN(F$)-EL):GOSUB 150:IF K(K3
8 THEN J=K>KI8:POSITION K2~*J.I-KI9*J:
? #6;BL$(Kl.EL+K3);

HI 2010 GOTO 156~

6E 2020 IF C THEN 96~
HH 2030 R$="~"
PI204~ GOSUB 35~:GOSUB 490:IF X=155 THEN 740
~2050 POKE 752,Kl:POSITION K2,K20:? "

{DEL LINE}C3 SPACES} ";F
N$

~206~ GOSUB 580:F$="":TRAP 2110:0PEN #Kl,K4,
K0,FN$:E=K0:C=K0:RN$=FN$

~2~70 INPUT #Kl,A$:IF LEN(A$)=Kl THEN C=C+Kl
:P(C)=LEN(F$}+Kl:GOTO 2~7~

~2080 IF E (ME THEN F$(LEN(F$)+Kl)=A$:E=E+Kl:
GOTO 207~

~2~9~ POSITION K3,K21:? BZ$;"MEMORY FILE TOO
SMALL - ENTER _:HIM";: R$=CHR$ (155) : GO

SUB 30
~21~~ CLOSE #Kl:TRAP CLEAR:ON R GOTO 960,214

0,960
IT2110 E=E-C:IF PEEK(195)=136 THEN 2100
EP 212~ GOSUB 294j11: GO TO 2060
JF 213~ IF NOT C THEN R$="jE)ti_"i-": GOTO 2040
AD 214~ R$=" IUti ... " : GOSUS 550: U=USR (PK, 709, K2, 7

10,248,711,116,712,152.703,K4,DL+22,13
~)

P6 2150 U=ADR ("HDC(!!} {I::} C J HHI::} C X } I2IC N} CI::} {W} (];h
@"):U=USR(PK,512.U,54286,192)

J F 2 1 60 PO SIT ION K 1 1 , I< 3 :? # I< 6; "-_"":oJ~:JI"""'"':""':-::Iir-ol"lrll:i:-::l_~_""] :I"",",,.,,",.7="_

~":GOSUB 270
HH 2170 ? #1<6:? #1<6:? #K6;" C3 SPACES}ENTER ...:J

IiIC3 i#t:t:t!i~"'} TO CHANGE OPT ION"

177

Chapter 4

IH 2180 ? #1<6;" {3 SPACES}ENTER ...:u{3 jO-J:z:t!¥~,}

FOR MAIN MENU"
6D 2190 ? #K6;" {3 SPACES} ENTER -'::1#1 1

' TO STAR
T PRINT"

~C2200? CS$;:U=USR(PK,656,1<0,657,K12):?"~

TER ' SELECTION ... ,
I:r. 22 1 0 R $ = .. 1 234M" : R $ (I< 6) = C H R $ (1 55) : GO SUB 30:?

CS$;:U=USR(PK,656,K0,657,1<5)
H62220 CLOSE #K1:? CS$:U=USR(PK,656,K0,657,K5

loON R GOTO 2240,2250,2270,2290,740,23
10

~2230 GOSUB 270:S0UND 1<0,29,1<10,1<8:FOR I=K1
TO K10:NEXT I:SOUND K0.K0.K0,K0:FOR 1=
K1 TO 100:NEXT I:GOTO 2200

PO 2240 MODE$=CHR$ (145-ASC (MODE$)) :? ." .~;u: ..
• !¥:r:]:tl!'l#it •• , ; CHR$ (ASC (MODE$) +K 128) ; ...
";:GOTO 2230

AD 2 2 5 0 ? ... #it: II #it;_: (ll;I.! *_H.ulll;I:~. 0;> __ " ; : R $ =
"123456789":GOSUB 30:COL=R

BN 2260 ? CS$;: POKE 656.1<0: POKE 657. K9:? .. ~
lIJ;I:j#W!¥a:]:tI!'l#it •• , ; CHR$ (COL+176) ; ;: G
OTO 2230

C6 2270 ? ".#it:II .. ;_all:a.J .. :_:Z*';!i-1{ 3 i#1:z:t!¥~1}(.aam

.";:R$="123456789":GOSUB 30:PAGES=R
AA 2280 ? CS$;: POKE 656.1<0: POKE 657.1<9:? .. ~

I ~ __ !¥ a;]: [I!'I" •• , ; C H R $ (P AGE S + 1 76) ; ... " ; : G
OTO 2230

HN 2290 TYPE$=CHR$ (150-ASC (TYPE$)) :? ." .iila);~:

.!¥a:]:tl!'l , ; CHR$ (ASC (TYPE$) +K 128) ; ...
";:GOTO 2230

~2300 U=USR(PK,559,34,657,K3):RS=K1:GOSUB 29
40:IF RS THEN RS=K0:GOTO 2600

EB 2310 POKE 657, K3:? ".:Hi(:1t~":Z;'.:II": ~: .. ~;_
i#1"."'''.I(.J:.'' ; : R$=" 1234M" : R$ (1<6) =CHR$ (15
5):GOSUB 30:IF R<K 6 THEN 2220

I~2320 ? CS$;:TRAP 2300:0PEN #K1,K8,K0."P:"
U2330? #K1;CHR$(27);"O"; :R EM ** RELEASE SKI

P-OVER PERFORATION
~2340 ? #K1;CHR$(27);"8";:REM ** DESELECT PA

PER OUT DETECTOR
MN 23 5 it! -:> # K 1 ; C H R $ (K 1 8 - K 3, (MOD E $ = " C")) ; : REM * It

SET NORMAL /C ONDENSED PRINT
FA2360 ':' #Kl;CHR$(27};"A";CHR$(K6);:REM SET L

INE SPACING TO 6/72
IG2370 POKE 559,K0:IF F$(1<1,Kl) < CHR$(V128) TH

EN FOR I=Kl TO C:X=P(I}:F$(X,XI=CHR$(A
SC(F$(X»+ 1<1281: NEX T I

DH 23 B it! A $ = " - - - - - _. - - - - - - - - - - - - - - "
U 239!1! D$="I ":D$«EL+1<5)tCOL)=" ":D$ (1<3)= D$(

1<2): D$ (LEN (D$)) =" I"

178

Chapter 4

FH2400 X=INTCCE+C+COL - I<I)/COL):FOR L=Kl TO PR
GES:GOSUB 310: 7 #1<1;DS:7 #1<1;DS

EM 24 1 0 I F COL = I< 1 THE N T = I NT (C LEN (D S) - I< 1 3) I K 2)
+ 1< 1 : D S (T , T 1-1< 1 2) = .. S HOP PIN G LIS T " : '} # I< 1 ;
DS:DSCT , T +1<1 2)=BLS:GOTO 24 3 0

M2420 T=INTCCLENCDS)-26)/K2)+Kl:DS(T.T+25)="
{5 .}{N}SHOPPING LIST{6 ,}{T}":? #Kl;D
S:DSCT.T+25)=BLS

~2430 ? #Kl;DS:? #Kl;DS:GOSU8 330
M2440 FOR I=Kl TO X:FOR J=K0 TO COL-Kl:K=(I+

J*X)*EL
~2450 RS="I":RSCK2)=8LSCK1.EL):RSCEL+K2)="1

(3 SPACES}": IF K)-LEN C FS) THEN 2490
U2460 IF FS(K-Z. K-Z) (CHRSCKI28) THEN RSCK2.E

L+Kl)=FSC K- Z . K):GOTO 2490
U2470 IS=FSC K-Z,K):IS(K l.Kl)=CHRS(ASCCIS)-KI

28):FOR T=EL TO Kl STEP -Kl:IF ISCT,T)
-" " THEN NEXT T

~2480 IS=ISCK1,T):F=INT(CEL+K6-T)/K2)+Kl:RSC
EL+K2.EL+K2)=" ":RSCF,F+T-Kl)=IS:RSCK2
, K3) = " * *":RSCEL+1<4)="**"

n2490? #Kl;RS;:NEXT J:? # Kl;"I":GOSUB 330:N
EXT I:DSC K2 ,K 7)="NOTES: ":? #Kl;DS:DS(1<
2.K7)=8LS

KC2500 FOR I=Kl TO K9:? #Kl;DS:NEXT I:GOSUB 3
10

U2510 ? #Kl;CHRS(K12):REM HOME PAPER
BH 2520 IF TYPES=" C" OR L=PAGES THEN 2550
IP2530 POKE 559,34:U=USRCPK.656,K0.657.K3):?

".;J#(:1>~ __ ~;U:"3: .]3~;J3i--S ':;"UI):J:"" ;
&2540 RS = "1234M":RSCK6)=CHRS(155):GOSUB 30:1

F R(K6 THEN 2220
~2550 POKE 559. K0:NEXT L:IF TYPES="S" THEN 2

590
~2560 ? #Kl;CHRS(27) ;" N";CHRSCK6);:REM ** SE

T SKIP-OVER PERFORATION 6 LINES
~2570 ? #Kl;CHRS(27);"9" ; :REM SELECT PAPER 0

UT DETECTOR
FE 2580 ? # I< 1 ; C H R S (27) ; "2" : REM SET NOR MAL LIN E

SPACING
~2590 CLOSE #1<1:TRAP CLEAR
~2600 IF FS(I<I. I< I) } CHRS(K128) THEN FOR I= K l

TO C:X=PCI) : FS(X . X)=CHRS(ASCCFSCX»-Kl
28):NEXT I

IT2610 GRAPHICS K2:POKE 559.34:GOTO 740
LC2620 IF NOT FS THEN 880
JH 2630 RS="~": GO TO 2040
662640 OV=K0:RS="~" : GOSUB 350:IF RNS="" TH

EN 2660

179

Chapter 4

JI2650 POSITION K4,K20:? "OK TO SAVE ";RN$;"
."N:." ; : R$=" NY" : GOSUB 30: IF R=1<2 THEN
FN$=RN$:OV=Kl:GOTO 2700

LI2660 POSITION K2,K20:POKE 752,K0:7 #K4;"
{DEL LINE}ENTER .iiiiliil :r:l:l .. OR -,;gt··
:";:INPUT #K4,I$:POKE 752,Kl:7

B62670 I F 1$="" THEN 740
AK2680 IF LEN(I$»K8 OR I$(Kl,K1><"A" OR I$(K

1,1(1) } "Z" THEN? BZ$;:GOTO 2660
JB 2690 FN$="Dl:": FN$ <I(4} =1$: FN$ (LEN (FN$) +1(1) =

".SHP"
~2700 X=1<0:TRAP 2830:0PEN #Kl,K6,K0,FN$
M2710 TRAP 2830: INPUT #l<l,A$:TRAP CLEAR:IF L

EN(A$)=KI7 THEN X=X+VAL(A$(1<15):GOTO
2710

W2720 X=X+VAL(A$(Kl,K3}}:CLOSE #1<1:IF X>INT(
(C*2+E*CEL+I<I)+1<1+124)/125) THEN 2760

~2730 POSITION 1<2,1<20:7 "{DEL LINE}INSUFFICI
ENT ROOM ON DISK - HIT 'RET''';BZ$;

K2740 GET #1<5,ANS:IF ANS <}15 5 THEN 2740
~: C 2750 GOTO 740
~2760 IF OV=l<l OR X=VALCA$CK1,1(3» THEN 2780
~2770 POSITION K2,K20:7 "{DEL LINE}

{6 SPACES}OVERWRITE "; 1$;" .-~·Jf!6:a:.::J: •• "; :R$=
"NY":GOSUB 30:IF R=Kl THEN 2660

~2780 POSITION 1<2,1<20:? "{DEL LINE}
{4 SPACES} .. -J:WiI:CtWiiiiliil." "; FN$;

~2790 GOSUB 580:TRAP 2800:XIO 36,#Kl,K0,1<0,F
N$

ru2800 PCC+Kl}=LENCF$)+Kl:TRAP 2840:0PEN #Kl,
K8, ~: 0, FN$

LB 28 1 0 FOR I = KIT 0 C : 7 # K 1 ; C H R $ C I } : FOR J = P C I }
TO PCI+Kl} - EL STEP EL:? #Kl;F$CJ,J+Z)

:NEXT J:NEXT I
~2820 CLOSE #Kl:TRAP CLEAR:XIO 35,#Kl,K0,K0,

FN$:FS=Kl:RN$=FN$:GOTO 740
FI2830 GOSUB 2940:GOTO 2700
OC2840 GOSUB 2940:GOTO 2790
IL 2850 R$="t:r~IEli;r::": GOSUB 350
LA2860 GOSUB 490:IF X=155 THEN 740
GF 2870 PO SIT ION V 3 , K 2 0 :? " 0 k TO DEL E T E "; F N $;

II .an:_ II
;: R$="NY"

11 2880 GOSUB 30:IF R= Kl THEN 2860
HB 2 8 9 0 P 0 SIT ION K 2 , f< 2!Z!:? " { DEL LIN E }

(4 SPACE S} •• l?l.3ii. i!:C .. iiiiIi "; FNS ;
~ 2900 GOSUB 580:TRAP 2930:X IO 36,#K l ,K0,K0, F

NS:XIO 3 3, #Kl,K0,f<0,FNS:TRAP CLEAR
JE 2910 IF FNS=RN S THEN FS=K0
KB 2920 GOTO 7411!

180

Chapter 4

R2930 GOSUB 2940:GOTO 2900
MM2940 CLOSE #Vl:POSITION V3,V21:7 BZ$; " ERROR

";PEEV(19S);" ENCOUNTERED - RETRY .-z;
~II;

ME 29SIZ1 I=R: R$="NY": GOSUB 3 121: POSITION 1<2,1<21: ':'
"{DEL LINE}";: IF R=1<2 THEN R=I: RS=VQI:

RETURN
BE 296!Z1 IFF: S THE N RET U F: N
MP 29 71Z1 POP : GOT 0 7 4 121
AH SIZI ill IZI D A TAl 0 4, 1 0 4, 1 3 3 , 2 1 7, 1 III 4, 1 3 3 , 2 1 6
BF Sitl 1 IZI D A TAl III 4, 1 3 3 , 2 '~I 9, 1 111 4, 1 3 3 , 2 iii 8, 1 6 9
EF S 0 2 0 D A T A !'I, 1 33 , 2 1 8, 1 33 , 2 ~~I 7 , 1 62, 1
Br S III 3 III D A TAl 6 5 , 2 1 (, , 1 3 3 , ::' I 4 , 1 6 5 , '2 1 7 , I 3 3

~5040 DATA 215,24,165,214,133,212,101
BC5050 DATA 205,133 , 214,165,215,133,213
"5060 DATA 105,0,133,21S,164,203,165
005070 DATA 206,240,10,177,214,209,212
M5080 DATA 144,44,240,12,176,19,177
H"5090 DATA 214,209,212,144,13,240,2
OC5100 DATA 176 , 30,200,196,204,240,227
IE5110 DATA 176,23,144,223,169,1,133
PA5120 DATA 218,164,205,136,177,214,72
~5130 DATA 177,212,145,214,104,145,212
EI5140 DATA 192,0,208,241,232,224,0
LH5150 DATA 208 , 2,230,207,228,208,208
OA5160 DATA 172,165,209,197,207,208,166
IL5170 DATA 165,218,201,0,208,144,96
~5180 DATA 104,104,133,215,104,133,214
~5190 DATA 104,133,217,104,133,216,104
KO 5200 D A TAl 33 , 2 1 8, 1 04, 1 70, 1 60 , 0, 1 77
~5210 DATA 214,145,216,200,208,4,230
BK5220 DATA 215,230,217,202,208,242,198
H65230 DATA 218,16,238,96
885240 DATA 104,104,133,255,104,133,254
~5250 DATA 104,133,253,104,133,252,104
OK5260 DATA 170,24,101,255,133,255,138
OH5270 DATA 24 , 101,253,133,253 , 104,168
OA5280 DATA 177,254,145 , 252,136,192,255
OH5290 DATA 208,247,198,253,198,255,202
~5300 DATA 224,255,208,238,96
H65310 DATA 104,74,170,160,0,104,133
K05320 DATA 255,104,133,254,104,240,4
815330 DATA 200,145,254,136,104,145,254
KD5340 DATA 202,208,237,96

181

Chapter 4

Coupon File
Stan Silverman

"Coupon File" is a practical coupon-sorting program. It
might even help you save some money. Requires at least
32K and a disk drive.

"That's the most ridiculous thing I've ever heard," she said.
"A computer program to keep track of store coupons? You
remember the hours we spent trying to use the computer to
balance our checkbook, don't you? And you expect me to
think that this will be different?"

I flinched. She did conjure up images of those endless
sessions in front of the screen, with the incessant whirring of
the disk drive in the background, as we tried to use the com
puter for a task better done with pencil, paper, and calculator.

But "Coupon File" is different. It is a practical coupon
sorting program, with features that make it extremely useful,
and we've found it to be a valuable money-saving tool.

Program Requirements
Coupon File requires at least 32K of memory and one disk
drive. That gives it a maximum capacity of 400 coupons. In a
40K (or 48K) system, the capacity is 600 coupons. The pro
gram checks the size of installed memory and adjusts for it
accordingly.

Before using the program, you will have to write a ref
erence number on each of your coupons. That lets you iden
tify the coupons when you want to take them to the store.
The number has no meaning to the program, but it does check
to make sure that you don't try to use a number more than
once. The allowable range of reference numbers allowed is
0-9999, so you should be able to use the program for many
years without worrying about running out of numbers.

Data Entry
Every time the program needs information from you, it will
display a rectangle into which your keyboard response will go.
You will be able to see how much space remains for your use
in each information field . The information fields that you will
use are described below.

Reference Number. Up to four numerals will be accepted. If

182

Chapter 4

you don't want to enter all four digits, press RETURN to end
the entry.

Description. Up to 17 characters of any kind will be ac
cepted. Use RETURN to terminate descriptions less than 17
characters.

Amount. Up to four characters, including the decimal
point (period) will be accepted. Press RETURN to complete
entries of less than four characters.

Dates . These entries are in the form of MM/DD /YY. All
six numerals must be entered. It is not necessary to enter the
slashes, as the computer will place them in the rectangle for
you.

After you have completed each field, you can verify that
the displayed information is correct by typing a Y. If you
made an error, entering N will clear out the rectangle and let
you reenter the information.

The Menu
After the program has been initialized and all of the coupon
data has been loaded from disk, the program will display the
number of coupons that is on file and the highest reference
number in use. Next, the menu will be displayed. The pro
gram will return to this menu at the end of every operation.
You may return to the menu at any time by pressing the ESC
(Escape) key. You don't have to worry about confusing the
program if you abort an operation with the ESC key. The pro
gram performs its operation only upon receiving a final
verification from you and will not be left in limbo if you
change your mind about what you are doing.

The menu will give you these choices:

1 Add Coupon
2 Delete Coupon
3 Sort by Date
4 Sort by Description
5 List All Coupons
6 List Expired Coupons
7 List by Date Range
8 List by Description Range
9 End Session

Press the number corresponding to the choice you want.

183

Chapter 4

Add Coupon. You will be asked to enter a reference num
ber, which will be checked to make sure that a coupon of the
same number has not been filed before. Next, you will be
asked to enter the description, the amount that the coupon is
worth, and its expiration date. If the coupon does not have an
expiration date, simply enter a d.ate like 12/31/99 to indicate
unlimited validity. After all of the information has been en
tered, a facsimile of the coupon is displayed for final verifica
tion. If you wish, you can reject the coupon at that point and
create a new one.

Delete Coupon . You will be asked to enter the reference
number of the coupon you wish deleted. If there is no coupon
on file with that reference number, you will be notified of that
fact. If the coupon is in the file , a facsimile of it will be dis
played. You will be asked for verification before it is deleted
from the file.

Sort by Date. This operation (as well as Sort by Descrip
tion) is included to make for more useful coupon listings. It is
not required. No other operation is dependent upon the cou
pons being sorted, and the program will give you all the infor
mation you ask of it whether or not the date is sorted.

Unfortunately, the sorts are slow. Sorting 300 coupons
can take a half-hour. An onscreen notice will inform you that
the screen will go dark during sorts. This is done to improve
the sort speed. To wake you up, the built-in speaker will
sound at the completion of the sort.

Sort by Description. Of the two sorts, this one is probably
the most useful.

List All Coupons. The file of coupons will be listed to the
screen in the order in which you entered them, unless you
have sltbsequently sorted them. When the screen is filled, you
can either continue the listing or return to the menu.

List Expired Coupons. You will be asked to enter the cur
rent date. The program will then list all expired coupons
(those with earlier expiration dates) on the screen. Make a
note of their reference numbers if you wish to delete them
later.

List by Date Range. You will be asked to enter a starting
date and then an ending date . The program will list all cou
pons whose dates fall within that range.

List by Description Range . You will be asked to enter a
starting description and an ending description. The program

184

Chapter 4

will list all coupons whose descriptions fall within that range .
For example, if you want to list all coupons whose descrip
tions begin with C, you should enter C as the starting descrip
tion and D as the ending description. Similarly, if you want to
list all coupons whose descriptions begin with CEREAL, enter
CEREAL as the starting description and CEREAL A as the end
ing description. Play with this feature for a few minutes and
you will quickly learn how to use it.

End Session. If you have made any additions or deletions
to the file or if you have sorted the coupons during the ses
sion, the disk will be updated to reflect these changes. You
will be asked not to tum off the computer until the disk has
stopped. No disk operation will occur if you have only listed
coupons to the screen.

File Initialization
The first time you use Coupon File, it will create a data file
containing one dummy coupon . You may delete this coupon
anytime after you have added one of your own. The program
needs at least one coupon in the file in order to operate
properly.

Typing the Program
In order to provide memory space for as many coupons as
possible, several memory-saving techniques are used to reduce
the amount of memory required by the program itself. Tech
niques include the use of strings to store most of the numeric
information, the use of variables for frequently used constants
and line numbers, and the use of multiple-statement lines.

To get the most from multiple-statement lines, the
abbreviations for BASIC's reserved words are often used to
pack instructions into the three physical lines allowed for a
logical program line. This means that as you type in the program
you may have to use abbreviations for the BASIC keywords as
well as eliminating spaces wherever possible. For example, if you
were to see a statement like this
300 FOR 1=1 TO 1000:NEXT I:RETURN

you would type the following:
300F.I = Kl TOKIOOO:N .I:RET.

Obviously, for a short line such as this, it would not be nec
essary to use abbreviations. For longer lines, however,

185

Chapter 4

abbreviations can make a significant difference. Using abbrevi
ations will cause us to have to sacrifice the advantages of
using "The Automatic Proofreader." The checksums for lines
with abbreviations will not match up. If you use the technique
described in the Automatic Proofreader article for lines with
abbreviations, with program lines of more than three physical
lines, you run the risk of losing the ends of the program lines.

Coupon File
For error-free program el1try, read 'Th e Allfomatic Proofreader" ill Chapter I before typillg
ill this program.

FE 1 REA DO. K 1 , K 2 , K 3 , K 4 , K 5 , K 6 , K 7 , K 8 • K 1 1 , K 1 4 , K 1
7,K27,K78,K89,KI00,KI000,KI0000:0PEN #Kl,
K4,0,"K:":GOSUB KI0000:GOTO K10000*K2

062 FOR 1=0 TO ICOUNT - Kl:FOR J=I TO ICOUNT-Kl
:DESBUF$=DES$(VREF(I)*KI7+Kl):IN$=DES$CVR
EF C J) *"~ 1 7+K 1)

KI3 IF IN$<DESBUF$ THEN A=VREFCI):VREFCI)=VRE
FCJ):VREFCJ)=A

LH4 NEXT J:NEXT I:GOTO 4010
016 FOR 1=0 TO ICOUNT-Kl:FOR J=I TO ICOUNT-Kl

:DBUF$=DAT$CVREFCI)*K6+Kl):IN$=DAT$(VREF(
J)*K6+Kl)

BE7 IF IN$(DBUF$ THEN A=VREF(I):VREFCI)=VREFC
J):VREF(J)=A

LL 8 N EXT J: N EXT I: GOT 0 40 1 0
~ 11 FOR J=O TO ICOUNT-Kl:IF VAL(IN$)=REF(J)

THEN 10470
~12 NEXT J:RETURN
FL27 POSITION I-K2,K8:? "_CB}_":POSITION 1-

K2,K6:? "_C-B}_":RETLJRN
K 100 POKE K78+K4,K6:GOSUB KI0000:? :? :? "1

";Ml$:? "2 ";M2$:?"3 Sort by Date":
?"4 Sort by Description"

A1110? "5 List All Coupons":?"6 List E>:pi
red Coupons":?"7 ";M7$:-:>"8 ";M8$:?
"9 End Session":poSITIoN K7+K6,K8+1<8

DB 120 ? .. I:01 • ...-:j#'J_~:[oIo;...,''' ..
0130 GET #I<I,A:A=A-K6*1<8:IF A(KI DR A >1<8+Kl

THEN 130
~ 140 GoSUB 1<10000:PoKE K78+K4,K2:0N A GoTO K

1000,1<2*KI000,K3*KI000,K4*KI000,1<5*1<100
0,1<6*1<1000,1<7*KI000,K8*KI000,9000

BI200 IN$=· .. ·:FOR I=ISTART TO 1<5H~ 4

U201 GOSUB K27:PoSITIoN 1<11+1<7,I<I:GET #Kl,A:
? A-A;"{BACK S}o":IF A=126 THEN 10230

HJ 202 IF A=155 THEN FOR L=I TO K5*1<~ 4: IN$ (L-IS
TART+Kl)=" ":NEXT L:GoTO 210

186

GOSUB I< 10lil *,,:2
M 1060 GET #I<I,A:IF A=K78 THEN 1050
~ 1065 IF A=K27 THEN GOTO K100
ME 1070 IF A< >1<89 THEN 1060

Chapter 4

FF 1090 DES$(ICOUNTtK17+l<l)=IN$:GOSUB 10040:PO
SITION 1<2,1<6:? B$(1<6);BL$(1<5*K3):7 B$(
1(6) ; "_$"; B$ (1<14):? B$ (K6) ; BL$ (1<5*1<:3)

CB II iii 0 RFLAG=1<2: POS I T I ON 1<8+1< 1, I< II:? " 1:J1¥f--'i;
-"(j1ic4iM: :;t.l i lok.{ 4 SPACES}": I START=I< 1 7: GO
SUB I< 100*,,:2

ru1110 GET #I<I,A:IF A=K78 THEN POSITION 1<17,K
7:7 "(4 SPACES}":GOSUB 10040:GOTO 1<100
*1<11

~ 1115 IF A=K27 THEN GOTO 1<100
LM 1120 IF A(>1<89 THEN l11lil
GJ 1140 RFLAG=O: AMT$ (ICOUNT*1<4+I<I) =IN$
rn 1150 GOSUB 10040:GOSUB 10030:POSITION K6,I<1

I:? tll:lI¥J..-i¥M#(i'illtglilE£:j£J1i1¥iH.jIW .. Fiit;": GOS
UB 22111

~ 1160 GET #Kl,A:IF A=1<78 THEN GOSUB 10030:GO
SUB 10040:GOTO 1150

~ 1165 IF A=K27 THEN GOTO K100
MG 1 1 7 0 I F A < :> I< 89 THE Nil 6 0
L6 1 1 80 L = leo U NT: D A T $ (L t I< 6 + 1< 1) = D B U F $ (I< 4 + I< 1) : D A

T$(LtK6+1<3)=DBUF$(l<l,K4):POSITION 1<7+1<
7,K2:7 Ml$:GOSUB 10300

IT 1190 GET # Kl,A:IF A=1<78 THEN GOSUB 1<10000: G
OTO K1000

~ 1200 IF A=K89 THEN ICDUNT=ICOUNT+I<I:DISK FLA
G= I< 1: GOTO 1< 10lil

~1205 IF A= K27 THEN GOTO K100
Ml1210 GOTO 1190
M 1300 GOSUB 10040:RFLAG=O:POSITI ON K2,K6:? B

L$:7 BLS$;B$;BLS$:? BL$:ISTART=K4:RET U
RN

187

Chapter 4

~2000 POSITION K7+K6,K2:? M2S:GOSUB 10400:GO
SUB KI0000+KI000:FOR L=o TO ICOUNT-Kl:
IF VALeIN$) <> REFeL) THEN NEXT L:GOTO 1
0500

062010 GOSUB 10040: GOSUB 1 lZI300
~2020 GET #Kl,A:IF A=K78 THEN GOSUB K10000:G

OTO K2tl<1000
MY. 2030 IF A=K27 THEN GOTO I< HI0
LP 2040 IF A< >1<89 THEN 2020
JA 2042 POS I T ION 1<6+K7, K7:? "* 1.];ul;a_II:[r' *": POS

ITION Kl1,KI7:? B$
FF 2045 IF L= I COUNT -K 1 THEN 2060
H2050 DESSeLtI<17+Kl)=DES$eL*KI7+1<11+K7) :DAT$

eLtI<6+1(1)=DAT$eLtK6+K7):AMT$(LtI<4+Kl)=
AMT$ eLtK4+1(5)

~2060 FOR J=L TO ICoUNT-1<2:REFeJ)=REF(J+Kl):
NEXT J

R2070 FOR J=O TO ICoUNT-Kl:IF VREFeJ)=L THEN
FOR K=J TO ICoUNT-1<2:VREF(K)=VREF(K+K

1) : NE XT I<
DL2080 NEXT J:FoR J=O TO ICoUNT-K2:IF VREFeJ)

>L THEN VREFeJ)=VREFeJ)-KI
JP2090 NEXT J:ICoUNT=ICOUNT-Kl:DISKFLAG=Kl:Go

TO 1<1 00
n3000 GOSUB 3100:GoTO K6
~3100 POSITION K3,K8:? "NOTE: Screen is dark

during Sorts":POSITIoN K8+I<I,K4:? "Pr
ess ~ to begin Sort"

IT3110 GET #Kl,A:IF A=K89 THEN Pol<E 559,0:RET
URN

AE 3120 POP : GO TO K100
PI 4000 GOSUB 3100:GoTo 1<2
~: C 40 1 0 DIS K F LAG = K 1 : PO K E K lit K 7 , 0 :? "{ BEL L} " : P

oKE 559,K27+K7:GoTo 1<100
DO 5000 PRFLAG=K5
165010 GOSUB 10050:FoR K= o TO ICoUNT-Kl:I=VRE

Fel<}:DBUF$=DATS(ItK6+Kl)
~5020 IF PRFLAG=1<8 THEN GoTo 1<100*1<4
~5030 IF PRFLAG=1<5 OR (PRFLAG=1<6 AND NoW$ } DB

UF$) OR (PRFLAG=1<7 AND (DBUF$>=LoDA$ A
ND DBUF$ (=HIDAS» THEN 5100

~5050 NEXT K:G oSUB 10060:GOSUB 10075:GOTo Kl
00

~5100 POSITION K2, J:? REFeI):POSITION K7 , J:?
DES$eI*1<17+Kl ,ItK I7+KI7):PoSITION K27

-K2,J
1"5110 ? DBUFSeK 3,K4); "1" ; DBUF$O~ 5); " I";D BUF$

eKl, K2);" "; AMT$ (I tK4+1<1, I tK4+K4): J=J+
Kl

188

Chapter 4

IN5120 IF J=K27-K6 THEN GOSUB 10070:GOSUB K10
000:GOSUB 10050

"" 5130 GOTO 5050
IT6000 PRFLAG=K6:GOSUB 10030:POSITION K8,Kl1:

? 1JI=lI=t=f.-i::M;;(LiI(#)iM(i!:f¥V -W.Fi(:;!JI: GOSUB 22
o

~6010 GET #Kl,A:IF A=K78 THEN GOSUB K10000:G
OTO K6H:100~1

ME 6020 IF A< >K89 THEN 6010
~6030 NOW$=DBUF$(K5):NOW$(K3)=DBUF$:GOSUB Kl

0000:GOTO 5010
&7000 POSITION Kll,K2:? M7$:GOSUB 10030:POSI

T ION K 7 !' K 1 1 :? .. I=» 1¥2¥-..--'i¥M ;;(Liii¥)" ;1$ n Ii ,fl,"G_
t::!EiE":GOSUB 10160:GOSUB 220

OC7010 GET #Kl,A:IF A=K78 THEN GOSUB 10030:GO
SUB 10040:GOTO K7*K1000

~7020 IF A=K27 THEN GO TO K100
"H 7030 I F A < > K 8 9 THE N 70 1 0
M7040 LODA$=DBUF$(K5):LODA$(K3)=DBUF$
~7050 GOSUB 10030:GOSUB 10040:POSITION 20,Kl

I:? "'''fj't':Hd'!iM.flG{3 SPACES}": GOSUB 220
EL7060 GET #Kl,A:IF A=K78 THEN GOSUB 10030:GO

SUB 10040:GOTO 7050
ND7070 IF A=K27 THEN GOTO K100

07080 IF A<>K89 THEN 7060
~7090 HIDA$=DBUF$(K5):HIDA$(K3)=DBUF$:PRFLAG

=K7:GOSUB KI0000:GOTO 5010
~8000 POSITION K7,K2:? M8$:GOSUB 1300:POSITI

ON I< 2 ~ f< 1 1 :? II I:» 1#)#t--"t¥M #fi1iil#l --ti"f#1 an .t!fM:!l1k
t!iiiiESH.h": GOSUB K100tK2

U8010 GET #Kl,A:IF A=K78 THEN GOTO K8*K1000
MP 8020 IF A=K27 THEN GOTO K 100
"J 8030 IF A< >1<89 THEN 8010
FP 8040 LODES$= I N$
DO 8050 GO SUB 1 3 0 ~I : PO SIT ION I< 1 1 + K 4 , I< 1 1 :? " ~

W:;M.l4--iOiiHESH.h ": GOSUB K 100tK2
~8060 GET #Kl,A:IF A=K78 THEN 8050
NE8070 IF A=1<27 THEN GOTO K100
NO 8080 IF A< >1<89 THEN 8060
~8090 PRFLAG= 1<8: GOSUB KI0000:GOTO 5010
~9000 CLOSE #l<l:IF DISKFLAG=O THEN 9020
OF 9005 ? :? :? " PIe a sew a i tun til Dis k Dr i ve

stops":? "before turning the system of
f." : OPEN #K2, K8, 0, "D: DAT":? #K2; ICOUNT

KJ9010 FOR J=O TO ICOUNT-Kl:I=VREF(J):? #1<2;R
EF(l):? #K2;DES$(ltKI7+1<1, I*KI7+1(17):?

#K2; DAT$ (1 *I<:6+K 1, I * ~:6 +K6)
~9015 ? #K2;AMT$(I*K4+Kl,I*K4+1<4):NEXT J

189

Chapter 4

~91320 CLOSE #K2:GRAPHICS O:CLR :? :? :? "It"
s O.K. to shut down now.":END

~ 10000 GRAPHICS O:POKE K8+K8,K8*K8:pqKE 5377
4,K8*K8:POI<E 709,1<7*K4:POKE 71@,Kll+K
7:POI<E 752,Kl:POI<E 712,K7+Kll:POSITIO
N KI4,Kl

10113010 ? "COUPON FILE": RETURN
~ 10020 POSITION K6*K4,K7:? COR$:RETURN
U 100313 POSITION Kll,K6:? BL$CK8+K2):POSITION

Kll,K7:? BLS$;D$;BLS$:POSITION Kl1,K
8:? BL$CK8+K2):RETURN

~ 10040 POSITION K6*K4,K7:? B$CK4):RETURN
JP1@05@ J=1<4:? :? "~{E1}{3 ;....,:z:t~;;i.1}1>l4--i4iiiElL!!D

[!IT{3 i#t:z:t~;;i.1} {E1}iE4£J1it4-__ {E1}~": RETUR
N

MO 10060 POSITION K6+K7,J:? "a.3i.Y;; _a":
RETURN

HA 113070 GOSUB 10160
A61@075 POSITION 1<6,1<11*K2:? "Pr-ess ~$tll.;f=lj:

to Continue"
~ 10080 GET #1<1,A:IF A=K8*K4 THEN RETURN
UI13085 IF A=1<27 THEN GOTO K10@
CM 10090 GOTO 1 ((113813
IE1@10@ IF I=Kll+~:4 OR I=Kl1+K7 THEN I=I+Kl
FF 10105 GOSUB K27:GET #Kl,A:IF A=126 THEN 101

313
~ 10107 IF A=1<27 THEN GOTO KI13@
NP 1 13 1 1 0 I F A < K 8 * t< 6 0 R A > 57 THE N 1 13 1 13 5
ITl@120 POSITION I,K7:? CHR$CA):DBUF$(LEN(DBU

F$)+Kl)=CHR$CA):RETURN
~ 10130 IF I=Kl1+1<2 THEN I=I-Kl:RETURN
BO 10135 IF 1=1<14 THEN DBUF$="": GOTO 10150
U1014@ DBUF$=DBUF$CI<I,LENCDBUF$)-Kl): IF I=K8

+1<8 OR 1=1<11+1<8 THEN I=I-Kl
1110150 I=I-Kl:POSITION I,K7:7 " ":GOTO 1<1000

0+1< 1 ((10
JE 10160 POSITION 1<6,K27-K4:? MESC$;:RETURN
JG 102313 IF LEN C I N $) < K 2 THE N I N $ = " " : I = 1ST ART: G

OTO 11325jll
OJ 10240 I = I -K 1: I N$= I N$ C t< 1, LEN C I N$) -~~ 1)
CH 1 19 2 5 0 PO SIT ION I, I< 7 : 7 " ": GOT 0 20 1
~ 113300 GOSUB KI000@:POKE 1<78+K4,K7:POSITION

1<7,K6
LP 1 0305 7 "{ Q} {2 3 R} {E} " : 7 M T $: 7 "I

(6 SPACES}Ref. # ";REFCL):POSITION 1<2
7+K4,1<8:7 "I"

PB 1 031 0 ? M T $: 7 "I"; DES $ C L * K 1 7 + K 1 , L * I< 1 7 + K 1 7) ;
" $";AMT$CL*K4+I<I,L*K4+K4);"''':? MT$:
A=L*1<6+t<6

190

Chapter 4

66 1 0320 7 .. 1 C 3 SPA C E S } E}: p ire 5 "; D A T $ (A - I< 3 , A - K
2); "f";DAT$(A-Kl,A); "f";DAT$(A-K5,A-1<
4);" {4 SPACES} I": 7 MT$

NL 1 0 3 3 0 ? .. C Z} C 2 3 R} {C} " : P 0 K E I< 7 8 + I< 4 , I< 2 : P 0 SIT
ION Kll+1<2,1<17:7 CoR$:GoSUB 10160:RET
URN

IP10400 POSITION 1<11+1<4,1<6:7 BL$(1<14):PoSITIo
N Kl1+K4,1<7:7 BLS$;B$(1<14);BLS$:PoSIT
ION Kl1+1<4,K8: 7 BL$(KI4)

PN10410 POSITION 1<2,1<11:7 "C4 SPACES}I:JI$JO-'iA"
tLij4iM;t=¥j[4iZ¥J.jc=w:tI :134. II: GOSUB 10160:
ISTART=1<17:RFLAG=I<I:GoSUB 1<100*1<2

~ 10420 GET #1<1,A:IF A=1<78 THEN GoSUB 10040:G
oTo 1040~'

~10440 IF A=1<27 THEN GoTo 1<100
~ 10450 IF A<> 1<89 THEN 10420
NL 10460 RETURN
eo 1 0470 GO SUB 1 0040 : PO SIT ION I< 2 , I< 1 1 : 7 .. ":II ~-W :.

l#4ij1#4:~ #4 :lij4 :(1);I.J#4:_;[: ~.J #4 #4: _1j.-'I#4.: " : FOR J =
o TO 1<10000f1<27:NEX T J:Pop :GoTo 1<100
o

LH 10500 GoSUB 10~'40: POS I T ION 1<6, I< 11: 7 :II~-W:
lI);I.)"'4:W ... -W:lo ••• : •• :I.iIi : FOR I =0 TO
K10000f1<27:NEXT I:GoTo 1<2*1<1000

IP 11000 POSITION 1<6*1<: 4,1<7: 7 "Please Wait ..• ":
RETURN

~20000 DIM DESBUF$(1<17) ,LoDES$(1<17),MT$(1<5*K
5),IN$(1<17):C=PEEI«1<100+1<6)*1<5*1<5fK4-
K4*1<: 100

Be 200 1 0 DIM REF (C - I< 1) , V REF (C - I< 1) , DES $ (C * K 1 7) ,
DAT$(C tI<6),AMT$(C*1<4) ,BL$(KI7+1<4),BLS
$ (1<2) ,D$ (K8) ,CoR$ (KI4), DBUF$ (K6)

IL20020 DIM B$(1<17),NoW$(1<6),MESC$(1<27),Ml$(1<
5+1<5) ,M2$(1<6+1<7),M7$(1<17+K l),M8$(1<5*K
5),LoDA$(K6),HIDA$(1<6),AMTBUF$ (1<4)

HN 20030 M T $ =" : {2 3 SPA C E S} : .. : ME S C $ = .. Pre 5 5 ~ t
o Return to Menu":Ml$="Add Coupon":M2
$="Delete Coupon"

IK2005~' M7$="List by Date Range":M8$="List by
Description Range":D$=" I I ":BL$

= " {2 1 i#'I :z:tij "i--n " : B L S $ = B L $

MN2006~' CoR$="CoRRECT7 (YIN) ":B$="CI7 SPACES}"
: TRAP 21 ~'0~': OPEN #1<2,1<4,0," D: DAT" : TRA
P 1<100~10*1<4

~20070 INPUT #1<2;ICoUNT:FoR 1=0 TO ICoUNT-1<1
:INPUT #K2;A,DESBUF$,DBUF$,AMTBUF$:VR
EF(I)=I:REF(I)=A:IF A>HIREF THEN HIRE
F=A

191

Chapter 4

M20080 DES$(I*KI7+Kl'=DESBUF$:DAT$(I*K6+Kl'=
DBUF$:AMT$(I*K4+Kl'=AMTBUF$:NEXT I

IJ20090 CLOSE #K2:POSITION K6.K8:? "The highe
st Reference Number":POSITION Kll+K2.
K8+Kl:? "used is ";HIREF;".":POSITION

K6. ~:6
FB 213 1 1313 ? .. The rea r e "; I CO U NT;" Co u po nsf i 1 e d

. " : GOSUB 1(111375: GOTO K 100
.210013 CLOSE #K2:IF PEEK(195'<>170 THEN RUN
IA21(1110 OPEN #K2.K8.0,"D:DAT":? #K2;Kl:? #K2;

Kl:? #K2;"SEVENTEEN LETTERS":? #K2;"9
91231":? #K2;"9.99":CLOSE #K2:RUN

II 3130130 DATA 13. 1.2.3.4.5.6.7.8, 11. 14, 17.27,78
,89.1130,113013,101300

192

Chapter 4

Investment Tracker
John L, Nuss

If you invest in the stock market, this program will help you
follow the progress of your portfolio, It also demonstrates
some techniques for using Atari's "Return Key Mode,"

"Investment Tracker" was designed to help investors follow
the stock market and to quickly determine the overall value of
a portfolio, Many investors sit down with their Sunday papers
and review the performance of their stock portfolio, and I
wrote this program to facilitate that process,

After current stock prices are entered, it will compute the
market value of each holding, the gain or loss on each invest
ment, and the dividend yield if applicable, That information is
summarized for the entire portfolio, and provision is made to
review the details of each holding as well as to consolidate
multiple holdings of a given stock. Then all that has to be
done is to sit back while the computer calculates and displays
the results ,

By using Atari 's well-documented dynamic keyboard fea
ture, I've made it easy for users to update their portfolios and
enter the current prices, It is possible to get information di
rectly from the screen without input prompts for every data
field, A screen is displayed with columns for each field and a
row for each holding or stock. Information already in the
DATA statement files is appropriately displayed, and the user
is free to edit as needed (for instance, to update current stock
prices) ,

New entries are added by positioning the cursor at the
next blank line on the screen and typing in the appropriate
information in each column field, Entries may also be deleted,
and a routine is available to keep the files sorted in alphabeti
cal order, Suitable menus and prompts are included to make
the procedures self-explanatory,

Two DATA Files
Two separate DATA statement files are used, The first stores
the portfolio data and has fields for the stock name, the pur
chase price, and the acquisition data of each holding, The sec
ond contains the latest price and dividend information and the
date the information was current.

193

Chapter 4

It might seem unnecessarily complicated to have two files,
since the current dividend and price for each stock could just
as easily have been included in the portfolio file . However,
using separate files makes it easier to handle situations in
which the portfolio contains several separate holdings of a
single stock. That way, the current price needs to be entered
only once for each stock in order for the program to have data
to calculate the value of each individual holding.

Subroutines have been included for dollar and cents
formatting and to convert fractional stock prices to decimal
values with which the computer can work. The program will
handle up to 98 holdings of as many as 98 individual stocks.

Using the Program
While program operation should be self-explanatory, some de
tailed explanations may still be helpful.

After loading and running the program you will be asked
to type in the current date. The program expects six digits, so
preface single-digit months and dates with zero. The date you
enter should correspond to the date of the price quotations
you will be using to update the current price and dividend
records. If you make a mistake while typing in the date, just
type any non numerical key to start over.

After entering the date, you will be presented with the
main program menu. If this is your initial run, you will first
want to enter your portfolio data . Type 1 to go to the REVISE
PORTFOLIO routine.

The portfolio holdings screen and its command menu will
be drawn on the screen. You should type an A to begin enter
ing your holdings. The cursor will go to the first open line on
the screen, where you can enter the name of the stock, the
number of shares that make up the holding, the purchase
price per share, and the acquisition date. Use the TAB key to
move from one column to the next. You may ignore the RE or
Reference Number field at this point. It will be filled automati
cally and is used by the program if a record must be edited or
deleted.

You have 13 spaces for the name of the stock. If this is
not room enough to type the full names of some companies,
use the same abbreviations that appear in the newspaper
financial pages. You may shift to lowercase letters where

194

Chapter 4

needed. An alternative would be to use the trading symbol
abbreviation for the stock.

Type the number of shares making up the holding in the
SHRS field. The purchase price may be entered as a frac tion
(for example, 35 1/8) or as a decimal value, whichever way
the stock or mutual fund is normally quoted. There is not
much space left for the acquisition date, so you must enter it
as six unseparated digits.

The tab stops have been programmed so you can tab from
one field to the next without having to resort to the cursor
control keys. If you should, however, happen to space over
and consequently erase one of the vertical lines separating the
fields, don't worry. They're there only for cosmetic purposes.

If you make a mistake, use the cursor keys to correct it.
Then, when you're satisfied with your entry, hit the RETURN
key and the program will create a DATA statement containing
the information you have just entered. The lower six lines of
the screen will flash as the Return Key Mode is utilized to
read the DATA statement into the program. The upper portion
of the screen containing your portfolio information will be un
affected except for the insertion of a reference number.

Continue in this manner until all of your stock holdings
have been entered. Remember, if you have more than one
holding of a stock, a record must be entered for each purchase
so that separate gains or losses can be calculated.

Sorting Your Stocks
A simple bubble sort routine, which puts the portfolio in
alphabetical order, can be accessed from the main menu. The
sort routine will blank the screen to cut processing time; then,
when the menu returns, the sort is complete. The stocks will
show up sorted as you requested the next time you look at
your portfolio. Actually, this routine is rather slow, so I recom
mend that you attempt to enter your initial portfolio infor
mation in alphabetical order and rely on the sort routine only
to put new holdings in order when you add them later on.

Should you find that you have made any mistakes, they
can be fixed by typing E to access the editing function. That
allows you to move the cursor to the offending field, correct it,
and rewrite the DATA statement with a press of the RETURN
key. You can also delete a holding (after a sale, for instance)

195

Chapter 4

by typing D. The program will ask for the reference number of
the holding to be deleted. All you need do is type in the num
ber and hit RETURN. Finally, when your portfolio information
is up-to-date, type R to return to the main menu.

Current Prices
The next step is to enter or update the current prices. Type 2
to call up this routine. This price update routine works exactly
as the portfolio revision does, except that you are supplying
information for each stock and not each individual holding.
Type A to enter new stocks to the file.

The fields to be filled for each stock record are the stock
name, which must be entered in the identical manner which it
appears in the portfolio file; the current price; the current an
nual dividend; and the date this information was obtained. The
date field for any record you add or update will be automati
cally updated to the date you entered when the run commenced.

Enter the stock name, price, and dividend just as you did
the portfolio holding information. You will have to enter data
for each unique stock you own, but you do not have to enter
the data more than once if you hold more than one block of a
particular stock. Corrections and/or price and dividend
changes are made by typing U for the update routine. This
routine functions almost like the edit routine, except that after
each change is recorded (by hitting RETURN) the cursor will
move to the next stock to permit you to continue to update
prices. Respond with a Y or N when the program asks if you
have more to update.

The D and R routines function as previously described.
Both the portfolio file and the price file update routines will
allow you to continue entering data on a new screen, should
you be unable to find enough room on the initial one.

Evaluation
Once all of the relevant data has been loaded into the pro
gram, you may proceed with computing and summarizing !l}e
value and gain of your stock holdings. You have two routines
to choose from. Return to the main menu and type 3 for a
summary of the entire portfolio status. The program will dis
play each holding on the screen, along with its current value,
gain (or loss), and the total annual dividend. The overall totals
for the portfolio will be accumulated at the bottom of the

196

Chapter 4

screen. If your portfolio won't fit on the screen, you can re
view the first portion of it and then continue the listing on a
new screen. The totals at the bottom will include only the
holdings already listed, so you must list all of the portfolio to
see the grand total.

Your other option is selection number 4, which will allow
you to review all of your holdings of a specific stock in more
detail. If you type 4, a list of your stocks will appear on the
screen, and you will be prompted to type S to select a stock.
Any other response will return you to the main menu.

Having entered an S, you will be prompted to type in the
name of the stock you want to review. Do so and hit RE
TURN. Be sure to type in the name exactly as it was entered
in your data field, being careful to use lowercase characters if
applicable. (Actually, you needn't enter the entire name, just
the first unique character string. If the only stock you own that
begins with an A is Allied Corporation, then an A plus RE
TURN will suffice. If you also own ATT then you must type
in at least Al to look at the Allied.)

The program will then compile all of the information it
has for that stock and display it on the screen. The particulars
on each holding will appear, with room for up to three hold
ings on the screen at once. If you have more than three blocks
of a stock, you will be told that there is more to see. You can
continue to review the holdings of that stock three blocks at a
time.

The information displayed will include the name of the
stock, its current price and dividend, and (for each holding)
the number of shares, their purchase price, the current value,
gain or loss, and dividend. At the bottom of the screen will be
total value, dividend, and gain or loss for all of the holdings
listed so far, plus the dividend yield for the stock.

Your other main menu options are the file sorting
routines, a routine to save the program along with the latest
data, and a routine to delete all of the data should you want
to start over or begin another file for a separate portfolio.

This is a lengthy program, but it is well worth the effort
to type it in. I'm sure you'll find it useful if you're a stock
market investor and haven 't yet purchased a more sophisti
cated commercial stock-tracking program.

197

Chapter 4

Saving the File
The program uses DATA statements to store the data. When
you select the SAVE option, the program will save out the
whole program to tape. If you prefer to save to a disk, change
the following few lines:
6000 REM SAVE DATA ON DISK
6060 REM
6070 REM
6080 REM
6100 SAVE "D:TRACKER":END
6110 PRINT "CANNOT SAVE DATA": STOP
6120 REM

The program will be saved with the filename TRACKER.
Save a backup copy of the program just in case the worst

happens.

Investment Tracker
For error-free progmm eillry, read "The Automatic Proofreader" ill Chapter 1 before typing
in this progralll.

®50 REM *** Stock Portfolio Tracker ***
NK 110 GOSUB 80QI0
IN 120 GOTO 1 QI00
~200 REM -CLEAR SCREEN & WRITE TITLE
m2107 "(CLEAR}":SETCOLOR 2,11,0:SETCOLOR 4,

11,0:POKE 752,1:TRAP 1000
0220 POSITION 5,0:7 TITLES;CDATES(1,2) ;SLS;C

DATES(3,4);SLS;CDATES(5,6)
HL 290 RETURN
~300 REM -FORCED READ PART 1
EE310 POSITION 0,19:7 CBSS
OK320 POSITION 0,19:RETURN
@350 REM -FORCED READ PART 2
FA 360 7 "CONT"
NE 370 PO SIT ION 0, 1 8
HI 380 POKE 842,13:STOP
~390 POKE 842,12:GOSUB 310:RETURN
PP400 REM -INTERPRET PRICE STRINGS
AC410 REM -CONVERT FRACTIONS TO DECIMAL
BA 420 FOR I = 1 TO LEN (P R C $)
AG 430 I F P R C $ (I , I) = S L $ THE N 450
CP 440 N EXT I: GOT 0 48 QI
~450 PRC=VALCPRCSCI - l,I - l»/VALCPRC$(I+l,I+l

))

~460 IF 1}=3 THEN PRC=PRC+VALCPRCS(l, 1 - 3»
HB 470 GOT 0 490
PL 480 PRC=VAL (PRCS)

198

Chapter 4

~490 I=LEN(PRCS):RETURN
~500 REM -DOLLAR AND CENTS FORMAT
~510 IF ABSCAMT»=10 ~ PWR THEN AMT$=STR$(AMT)

:RETURN
CJ 5 2 ~j AM T S = " " : AM T S (1 , P W R + 3) = B L S : AM T S C P W R + 1 , P W

R+ I} =". ": B=PWR+ I-LEN (STRS (I NT (AMT))) + (A
MT<0)

HN 5 3 ~j I F AM T < 0 THE N AM T = - A M T : AM T S (B-1 , B-1) = " -

CA 540 AM T $ (B , P W R) = S T R S (I NT (AM T))
~550 AMTS(PWR+l,PWR+3)=STR$C100+INTC(AMT-INT

C AMT}) * 1 ~j0+0. 5)) : AMTS I PWR+ 1, PWR+ 1) =". "
~560 IF VALCAMTS)<0 THEN AMT=-AMT
HM 57~j RETURN
FC600 REM -DATA FOR DATE, NUMBER OF HOLDINGS

AND STOCKS
IJ610 DATA 000000,O,0
BK 7 0 ~j REM - H 0 L DIN G S D A T A
11799 DATA @

DG 80~j REM -PRICE DATA
IJ 899 DATA @

IB900 REM -CLEAR TAB STOPS
Jt:910':> "{CLEAR}"
OL94~j FOR 1=1 TO 6-':> "(TAB}{CLR TAB}";:NEXT I
HO 950 RETURN
~1000 REM -MAIN MENU
NE 1010 GOSUB 2~j0

BN 1 020 PO SIT ION 3, 3 : ':> " P LEA S ESE L E C TON E: "
HI 1030 POS I T I ON 6,6: 7 "1 - REV I SE PORTFOL I 0"
HJ 1 040 PO SIT ION 6, 8 : ':> "2 - UP D ATE P RIC E S "
BD 1 050 PO SIT ION 6, 1 0: 7 "3 - SUM MAR I Z E PO RTF 0 L

10 VALUE"
LB 1060

IF 1070
FL 1080

LF 1090
HH 1120
1m 1130
DC 1140

HL 1300
PB 1310
PC 1320
EP 1330
KI 1340
1M 1390
DE 1400

POSITION 6, 12: ':> "4 - REVIEW INDIVIDUAL
STOCKS"

POSITION 6,14: 7 115 - SORT DATA"
POSITION 6,16:':> "6 - SAVE PROGRAM AND
DATA"
POSITION 6,18: ? "7 - ERASE DATA"
GET #2,R
IF R<49 OR R } 55 THEN 1120
ON VALICHRSCR» GOTO 5000,2000,3000,40
00,7400,6000,7000
REM -ELIMINATE COMMAS FROM DATA
FOR 1=1 TO LENCINS)
IF INSII,I)="," THEN INS(I,I)=",,"
NEXT I
RETURN
POP :GOTO RN+200
REM -ADD TO PORTFOLIO OR PRICE FILE

199

Chapter 4

MI1411'l1 IF CNT=13 THEN CNT=I'lI:SCR=SCR+l:POP :GO
TO RN+2l!1

~ 1415 IF CNT=13 THEN POP :GOTO RN+100
HI 1 420 PO SIT ION 1, 1 9:? CBS $

HI 1430 POSITION 3,18: 7 "ENTER THE APPROPRIATE
DATA IN EACH{3 SPACES}COLUMN AND PRES

S _:t"iilJ:t:."
Ll1440 POKE 752,0:POSITION 3,CNT+4: 7 ": ";

NO 1450 TRAP 1 390
~ 1460 INPUT #1,INS:POkE 752,I:GOSUB 1310
KM 1470 RETURN
NI 1490 CNT=CNT+ 1: I TM= I TM+ 1
EB 1 500 PO SIT ION 1 + (I T M < 1 Ill) , C N T + 3 : '7 I T M
FN 1510 GOTO RN+21210
~2000 REM -PRICES AND DIVIDENDS
~2010 SCR=I:CNT=0:ITM=0:RESTORE 800
BL 20 1 5 GO SUB 9 1 0: 7 "{ 4 SPA C E S} {S E T TAB}

{14 SPACES}{SET TAB}{8 SPACES}{SET TAB}
{6 SPACES}{SET TAB}"

rIG 2020 GOSUB 21210
PP 2030 PO SIT ION iii, 1 : 7 0 L S
CA 2040 PO SIT ION 121, 2 : 7 "{ V } REt {4 SPA C E S } S T 0 C K

{4 SPACES}tC.PRICEtDIVNDt DATE {B}"
DN 20 5 0 P 0 SIT ION I'll, 3: '7 "{ V} {2 M} t { 13M} t {7 M l

{5 Mlt {6 M}{B}"

200

Chapter 4

B02320 IF R=85 OR R=117 THEN 2520
AH 2330 IF R=82 OR R=114 THEN 101Ql
~2340 IF R=67 OR R=99 THEN RN=2000:GoTO 1410
NA 2350 GoTo 2290
OL 2370 RN=2000: GoSUB 141Ql
102470 STI<$=IN$ (1,13): CP$=IN$ (15,21): DV$=IN$ (

23,27):CD$=IN$(29,34)
OF 2480 GO SUB 3 1 0 : 7 "{ DOW N} " ; 800 + I T M + 1 ; D $; S T K $

;CM$;CP$;CM$;DV$;CM$;CD$:GoSUB 360
CP24 90 NUMS=NUMS+1:GoTo 1490
HJ 2520 PO SIT ION 1 , 1 8:? CBS $
JJ 2530 POSITION 3,19: 7 "MOVE CURSOR TO LINE T

o BE UPDATED,{3 SPACES}MAKE CHANGES AN
D PRESS .;~"*iIJ;t:."

JO 2540 POI< E 752, Ql : PO SIT ION 0, 1 8 :? " ";: T RAP 1
390

B62550 INPUT #1, IN$: GoSUB 1310
002580 RE=VAL(IN$(2,3»:STK$=IN$(5,17):CP$=IN

$(19,25):DV$=IN$(27,31):CD$=CDATE$
012590 GoSUB 310: 7 "(DOWN}";800+RE;D$;STK$;CM

$;CP$;CM$;DV$;CM$;CD$:GOSUB 360
FL2595 POSITION 32,RE+3-13*(SCR-1):7 CDATE$;
MO 26 Ql0 PO SIT ION 1, 22 : 7 "M 0 RET 0 UP D ATE 7 " ;
HO 2630 GET #2, R
n2640 IF R=78 OR R=110 THEN POKE 752,1:GoTo

220Ql
~2650 IF R< >89 AND R<> 121 THEN 2630
~2655 IF RE/13=INT(RE / 13) THEN RN=2000:GoSUB

1410
FN 2660 PO SIT ION 1, 22 : 7 "{ DEL LIN E } "
BE 2670 POSITION QI,RE+4-13*(SCR-1):7 "{V}

{LEFT}";
NF 2680 GoTo 2550
DN 2700 REM -DELETE STOCK INFO
HY. 2710 POSITION 1,18: 7 CBS$
LK 2720 POS I T I ON 3, 19: 7 "ENTER REFERENCE NUMBE

R OF I NFo TO BE DELETED, PRESS 8;t,,*iIJ;t:
.":POI<E 752,0

R2730 INPUT RE:PoKE 752,1:RESToRE 800+RE+1:I
F RE=NUMS THEN 2780

SF 2740 FOR I =RE TO NUMS-1
IT 2750 READ STK$,CP$,DV$,CD$
OJ 2760 GO SUB 3 1 0 : 7 "{ DOW N} " ; 800 + I ; D $; S T I< $; C M $

;CP$;CM$;DV$;CM$;CD$:GoSUB 360
FI2770 NEXT I
F02780 GoSUB 310:7 "{DOWN}";800+NUMS:GOSUB 36

o
~2790 NUMS=NUMS-1:GoTO 2010
HA3000 REM -PORTFOLIO SUMMARY
AE3010 SCR=0:ITM=0:CNT=0:TV=0:NG=0:DV=0

201

Chapter 4

NH 3020 GOSUB 2j110
AS 3030 PO SIT ION 1, 1 :? 0 L $
JA 3040 PO SIT ION 1, 2 :? "{ V} {3 SPA C E S } S T 0 C I<

{3 SPACES} I VALUE INET GAINI DIVND
{B}"

NA 3050 PO SIT ION 1, 3:? "{ V]- {1 1 M]- I {8 M} I {8 M]-
{7 M}{B}"

~3060 FOR 1=4 TO 19:POSI TI ON I,I:? SR$:NEXT
I

AB 3070 PO SIT ION 1, 20 :? "{ V} { 1 1 M} I {8 M} I {8 M]-
1{7 M}{B}"

EC 3080 PO SIT ION 1, 2 1 :? S R $
IE 3090 POSITION 8,21:? "TOTAL";
HD 3 1 00 P 0 SIT ION 1, 2 2:? U L $;
HK3110 ITM=ITM+l:RESTORE 700+ITM:TRAP 1390
BH 3120 READ STI<$: IF STK$= "@" THEN 3 800
6H 3130 READ SH$, PP$, AD$
IE 3140 RESTORE 800
PN 3150 READ SEL $: IF SEL $= "@" THEN 3700
6C 3155 READ CP$, DV$, CD$
003160 IF SEL$< >STI<$ THEN 3150
IB3170 POSITION 2,CNT+4:':' STI<$(1,11)
663180 PRC$=CP$:GOSUB 400:AMT=VA L(SH$)*PRC:PW

R=5:GOSUB 500
J63190 POSITION 14,CNT+4:? AMT$
GD 3200 TV =T V+AMT
~3210 PRC$=PP$:GOSUB 400:AMT=AMT-VAL(SH$)*PR

C:GOSUB 500
JA3220 POSITION 23,CNT+4:? AMT$
DM 3230 NG=NG+AMT
OC3240 AMT = VAL(DV$)*VALCSH$):PWR=4:GOSUB 500
JD3250 P OSITION 32,CNT+4:? AMT$
EJ 3260 DV =D V+AMT
~3270 CNT=CNT+l:IF CNT=16 THEN 3800
ML 3280 GOTO 3110
PK 37 Ql0 PO SIT ION 1, 23: ':' "N 0 I N F 0 FOR "; S T K $;
GB3710 FOR 1=1 TO 300 :N EXT I
MY. 3720 GOTO 3110
lJ3800 AMT=TV:PWR=5:GOSUB 500
LE 38 1 0 PO SIT ION 1 4 , 2 1 :? AM T $

NA 3820 AMT=NG: GOSUB 5 00
L63830 POSITION 23,21:? AMT$
HL3840 AMT = DV:PWR=4:GOSUB 500
Ll3850 POSITION 32,21:':' AMT$
PN3860 IF ITM)=NUMH THEN 3950
YoN 3870 POSITION 1,23:? "M:;[ol:P_""""Jij[IX!i3"AU 4~:t~-s. __

[1- •. -IIl.]:i Ii": [lJ"" ;
IN390 0 GET #2,R:IF R<>67 AND R < >99 THEN 3900
~3910 IF ITM <N UMH THEN CNT=0:GO TO 3020
til 3920 GOTO 1000

202

Chapter 4

PI 39513 POSITION 1.23: 7 "{8 SPACES} .~=I#ii.~ __ "j[·:
CONTINUE " . •

NH 39613 GOTO 391313
~4131313 REM -REVIEW INDIVIDUAL STOCKS
KD40113 SCR=1:ITM=1:RESTORE 8013
NI413213 GOSUB 200
JD 413 3 13 PO SIT ION 1 4 , 2 : 7 "S T 0 C K S "
NO 413413 READ STK$: IF STK$= "~" THEN I TM=IZI: GOTO

41113
NN 413513 I F I TM > 1 7 THEN 41 10
F0413613 READ CP$.DV$.CD$
DI 413713 I TM= I TM+ 1
BF 413813 POSITION 113,2+ITM
CC 413913 ? STI<$
~6 41013 GOTO 413413
I~4110 POSITION 1.21:7 "{3 DEL LINE}"
KD 4120 7 "{4 SPACES}.3: .. 3= .. Wj[•• -4J3.?l!:1i_:,.j[.X.:

!::tI"
DB 4 1 3 13 I FIT M < 1 8 THE N 4 1 70
AC 4 1 40 PO SIT ION 1. 23: 7" •• 33::::: i:. i:jI .. ~=_.!3 .. .::ilj[!l._.:).!!U ... ~;JiIUl_IC::I!:[.;

1:I,.j[OXO!3--W" ;
HP 4 1 713 GET # 2 • R
BD41813 IF R=83 OR R=115 THEN 4210
~41913 IF R=67 OR R=99 THEN ITM=1:GOSUB 200:G

OTO 41Z160
MA 4200 GOTO 11300
IN42113 POSITION 1,21: 7 "{3 DEL LINE}"
00 4220 POS I T I ON 1.21: ':> ".:lal(!3: __ ""'j[.Xo!~";: POKE

752, t:il
DB 42313 I N PUT # 1 , S E L $
IA 4240 1=0
IF4250 I=I+1:IF I)NUMS THEN 4900
P~42613 RESTORE 800+1
~42713 READ STI<$:IF STI<$(1.LEN(SEL$}}<)SEL$ T

HEN 4250
6C 42813 READ CP$. DV$, CD$
DB 42913 GOSUB 2t:i113
FL 431313 TV=0: NG=0: DV=0
~:E 4350 PO SIT ION 9, 2 : 7 " S T 0 C K : "; S T 1< $
FD 43613 POSITION 2,4: 7 "CURRENT PRICE: "; CP$
EF 4365 PO SIT ION 25, 4 : 7 " D I V IDE N D : "; D V $
A043713 POSITION 1,6:7 OL$

1,7: 7 "{V} DATA{4 SPACES} a: 43813 POSITION
OLDINGI HOLDINGI HOLDING{B}"

IE4390 POSITION 1,8:7 "{V}{10 SPACES}I NO.
{3 SPACES} I NO. {3 SPACES} I NO.
{3 SPACES}{B}"

H

NG44130 POSITION 1,9: 7 "{V}{10 M}I{B M}I{B M}I
{B M}{B}"

OL44113 FOR 1=10 TO 16:POSITION 1,1:7 DR$:NEXT
I

203

Chapter 4

IB 4420
NO 4430
FH 4440
FS 4450
FC 4460
AM 4470
El 4480

POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
POSITION

2,10: 7

2,11 : 7

2,12:?
2,13:7
2,14: 7

2 ,15:?
1,17:7

"SHARES"
"ACQ . DATE"
"PUR. PRICE"
"CUR. VALUE"
"GAIN/LOSS"
"DIVIDEND"
UL$

IS 4490 POSITION 1,19: 7 "TOTAL VALUE:
{10 SPACES}DIVIDEND:"

~4500 POSITION 1,21: 7 "NET GAIN/LOSS:
{II SPACES}YIELD: {6 SPACES}%"

DM4510 ITM=0:CNT=0:SCR=0
EC4520 ITM=ITM+1 : RESTORE 700+ITM
CD 4530 READ STI<$: IF STI<$="@" THEN 4850
M4540 IF STK$(1,LEN(SEL$» <> SEL$ THEN 4520
GO 4550 READ SH$, PP$, AD$
E"4560 CNT=CNT+l:IF CNT=4 THEN 4800
EP4565 POSITION 10+CNT*9 , 8:7 CNT+SCR*3
LE4570 POSITION 7+CNT*9,10 : 7 SH$
AN4580 POSITION 4+CNT * 9,11: 7 AD$(I,2);SL$;AD$

(3,4);SL$;AD$(5,6)
LL4590 POSITION 5+CNT * 9 , 12: 7 PP$
GH4600 PRC$=CP$:GOSUB 420:AMT=PRC*VAL(SH$):PW

R=5:GOSUB 510
PS4610 POSITION 4+CNT*9,13: 7 AMT$
DP4620 TV=TV+AMT : YD=100*VAL(DV$)/PRC
OA4630 PRC$=PP$:GOSUB 410:AMT=AMT-VAL(SH$)*PR

C:GOSUB 510
PY.4640 POSITION 4+CNT*9,14 : 7 AMT$
ED 4650 NG=NG+AMT
E04660 AMT=VAL(SH$)*VAL(DV$):GOSUB 510
P04670 POSITION 4+CNT*9 , 15:? AMT$
FA 4680 DV=DV+AMT
0"4690 AMT=TV:GOSUB 510
LY. 4700 PO SIT ION 1 4, 1 9 :? AM T $
U4710 AMT=NG:GOSUB 510
LH 4720 PO SIT ION 1 6 , 2 1 : 7 AM T $

HL4730 AMT=DV:PWR=4 : GOSUB 510
LO 4740 PO SIT ION 32, 1 9 : 7 AM T $
H04750 AMT=YD:PWR=2:GOSUB 510
LV. 4760 PO SIT ION 33. 2 1 : 7 AM T $
tm 4770 GOTO 4520
Y.B4800 SCR=SCR+l:CNT=0:LN=4560
Y.A 4810 POSITION 1,23 : 7 " . :Eo]:;_:c.] ...]i.:trs;._ ~ ..

t .. i._!!.]: :lIJ ;
NH 4820 GOTO 4930
OB 4850 POS I T I ON 1 , 23: 7 ".:Eo_:t.]:;;ea.]".]iil:trso.&L

1~."i._!!.]: •• iI:(IJ"" ;
Y.N4860 LN=1000:GOTO 4930

204

Chapter 4

PI 4900 POSITION 1,23:? "a.-wil.I1i:_:c ••• iiij(tIIJ:I> .. ,.:;

1 ... il'.':Ial: •• 1I:L1J4" ; : LN= 1 jll 0 jll
ID 4930 GET #2, R
AA4940 IF R=67 OR R=99 THEN GOTO LN
t~L 4950 GO TO 4930
GC5000 REM -REVISE PORTFOLIO
CD5010 SCR=1:CNT=0:ITM=0:RESTORE 700
BO 50 1 5 GO SUB 9 1 0 :? "{ 4 SPA C E S} {S E T TAB}

{14 SPACES}{SET TAB}{6 SPACES}{SET TAB}
{S SPACES}{SET TAB}"

NJ 5020 GOSUB 200
AC 5030 POS I T I ON 0, 1:? OL $
Gt: 5040 PO SIT ION 0, 2 :? "{ V } REI {4 SPA C E S } S T 0 C I<

{4 SPACES} I SHRSIP.PRICEIA.DATE{B}"
EA 5050 PO SIT ION 0, 3 :? "{ V} {2 M} I { 13M} I {5 M J I

{7 M}I{6 MJ{B}"
BL5060 FOR 1=1 TO 13 : POSITION 0,1+3: 7 HR$:NEX

T I
ED5070 POSITION 0,17: 7 UL$
rIB 5 1 00 I F C N T = 1 3 THE N 5200
BE 5110 READ STI<$: IF STf<$="@" THEN 5200
NC 5 1 20 C N T = C N T + 1 : I T M = I T M + 1
~5130 READ SH$, PP$,AD$
EF 5 1 40 PO SIT ION 1 + (I T M < 1 0) , C N T + 3 : 7 I T M
~5150 POSITION 4,CNT+3:? STf<$
FB 5 1 60 PO SIT ION 1 S , C N T + 3 :? S H $
IT5170 POSITION 24,CNT+3:? PP$
DJ5180 POSITION 32,CNT+3:? AD$
~D5190 GOTO 5100
HG 52i!10 POSITION !!l, 18:? CBS$
BB 52 1 0 PO SIT ION 4, 1 S :? "E N T ERA N INS T R U C TID N

TO PROCEED:"
DE 5220 ? "{ 5 SPA C E S J A - ADD TOP 0 RTF 0 LID "
M5230 ? "{5 SPACESJD - DELETE FROM PORTFOLIO

t:E 5240 ? " { 5 SPA C E S } E - ED I T PO RTF 0 LID "
KL 5250 ? "{ 5 SPA C E S } R - RET URN TOM A I N MEN U "
ED 5260 I F C NT = 1 3 AND N U M H :> 1 3 * (S C R) THE N PO SIT

ION 5,23:? "C - CONTINUE LISTING";
ID 5290 GET #2, R
DP5300 IF R=65 OR R=97 THEN 5370
05310 IF R=68 OR R=100 THEN 5610
BF5320 IF R=69 OR R=101 THEN 5530
At: 5330 I F R = 8 2 0 R R = 1 1 4 THE N 1 jll 1 0
M5340 IF R=67 OR R=99 THEN RN=5000:GoTO 1410
NG 5350 GOTO 5290
PB 5370 RN=50i!10: GoSUB 1410
JH5470 STI<$=IN$(1, 13) :SH$=IN$(15, 19) :PP$=IN$(

21,27):AD$=IN$(29,34)

205

Chapter 4

PO 5480 GO SUB 3 1 0:? "C DOW N} " ; 700 + I T M + 1 ; D $; S T K $
;CM$;SH$;CM$;PP$;CM$;AD$:GOSUB 360

BM 5490 NUMH=NUMH+ 1: GOTO 1490
HN 5530 POSITION 1.18:? CBS$
EF 5540 POS I T ION 3. 19:? "MOVE CURSOR TO LINE T

o BE EDITED.C4 SPACES}MAKE CHANGES AND
PRESS _:~;jiIJ:~:."

KA 5560 PO K E 752. 13 : PO SIT ION 3. 1 8 :? .. ";: T RAP 5
2130

HP 5570 I N PUT # 1 • I N $: PO K E 752. 1 : GO SUB 1 3 1 13
~5580 RE=VALCIN$C2.3»:STK$=IN$C5.17) :SH$=IN

$C19.23):PP$=IN$C25.31):AD$=IN$C33.38)
IA5590 GOSUB 310:? "CDOWN}";700+RE;D$;STK$;CM

$;SH$;CM$;PP$;CM$;AD$:GOSUB 360:GOTO 5

I:~ ,,(!il):~

KG 6080 POS I T I ON 4.9:? .. 3 - PRESS _:;"'II,IJ:;:."
MO 6090 TRAP 6110
KA 6 1 00 L P R I NT
O~: 6 1 1 0 C S A V E
BB 6 1 20 PO SIT ION 4. 1 1 :? "4 - R E WIN D TAP E "
KB 6130 END
DL7000 REM -ERASE ALL DATA
NK 7010 GOSUB 2Ql0

206

Chapter 4

IN 7020 PO SIT ION 4. 8 :? .. DO YOU REA L L Y WA N T TO
ERASE ALL bF{13 SPACES}{6 M}{27 SPACES}Y
OUR DATA?"

HP 7050 GET #2, R
IJ 7060 IF R < >89 THEN 1000
OA 7070 GOSUB 200
07080 POSITION 15,10:? "ERASING DATA
EJ 7090 FOR 10:1 TO NUMH
EP 7100 GOSUB 310:? .. {DOWN}"; 700+1: GOSUB 360
FB 7110 NEXT I
EO 7 1 20 FOR I = 1 TON U M S
FD 7 1 30 GO SUB 3 1 0 :? .. {D 0 W N} .. ; 800 + I : GO SUB 361£1
FI7135 NEXT I
FL 7140 NUMS=I:1I: NUMH=0
MA 7 1 50 PO SIT ION 1 5, 1 1:11 : ~ .. D A T A ERA SED

{4 SPACES}"
6E 7160 FOR 1=1 TO 300:NEXT I
MJ 7 1 70 GOT 0 1 000
DO 7400 REM - SORT DATA
NO 74 1 0 GO SUB 200
EI7420 POSITION 12,2:? "DATA SORT ROUTINE"
~7430 POSITION 8,6:~ "ENTER 1 TO SORT PORTFO

LIO"
ML 7440 POSITION 8,8: '7 "ENTER 2 TO SORT PRICE

FILE"
107450 GET #2, R
~7460 IF R=49 THEN ID=700:ND=NUMH:GOTO 7490
HJ7470 IF R=50 THEN ID=800:ND=NUMS:GOTO 7490
NM 7480 GOTO 7450
~7490 SA=PEEK(559):POKE 559,0
OB7500 SCHK=0:IN$=BL$:RESTORE ID
SA 7510 FOR I=ID+l TO ID+ND
~7520 IF ID=700 THEN READ STK$,SH$,PP$,AD$
~7530 IF ID=800 THEN READ STK$,CP$,DV$,CD$
IC7540 IF STK$(IN$(1,13) THEN 7590
PB 7550 I N $ (1 , 1 3) = S T K $
rn7560 IF ID=700 THEN IN$(15,19)=SH$:IN$(21,2

7)=PP$:IN$(29,34)=AD$
~7570 IF ID=800 THEN IN$(15,21)=CP$: IN$(23,2

7)=DV$:IN$(29,34)=CD$
OB 7580 GOT 0 7670
IE 7590 SCHK= I
LL 7600 GO SUB 3 1 0 :? .. {D 0 W N} U ; I-I; D $; S T K $; C M $;
U7610 IF ID=700 THEN? SH$;CM$;PP$;CM$;AD$
IT7620 IF ID=800 THEN ~ CP$;CM$;DV$;CM$;CD$
BM7630 GOSUB 360:? U{DDWN}";I;D$;IN$(1,13);CM

$;
U7640 IF ID=700 THEN? IN$(15,19);CM$;IN$(21

,27) ;
JN7650 IF ID=800 THEN ~ IN$(15,21);CM$;IN$(23

,27) •

207

Chapter 4

F0766~ ? CM$;IN$(29.34):GOSUB 36~
F" 767~ NEXT I
~768~ IF SCHK}~ THEN 7S0~
JN769~ POKE 5S9,SA:GOTO 1010
EE8~~~ REM -DIMENSION AND INITIALIZE
NK 8 ~ 1 ~ 0 PEN # 1 , 1 2 • 0. "E: " : 0 PEN # 2 • 4 • ~. "K: " : PO K

E 82,!21

M802~ DIM TITLE$(22).CDATE$(6).SL$(1).CM$(1)
, D$ (6) ,CBS$ (6)

008~3~ DIM STK$(13),SH$(S).PP$(7),AD$(6).CP$(
7) ,CD$(6) , DV$(5)

~8~4~ DIM SEL$(13),IN$(39),AMT$(9),PRC$(7).B
L$(39)

H"8~S~ DIM OL$(39),UL$(39),HR$(39).PR$(39),DR
$ (39), SR$ (39)

~811~ TITLE$="STOCK PORTFOLIO AS OF "
D0812~ SL$="I"
CN 8 1 3 ~ C M $ = " , "
NA 8 1 4 ~ D $ =" D A T A "
DA 8 1 5 ~ 0 L $ = " {3 9 N}"
BA 8 1 6 ~ U L $ = " {39M} "
~8170 HR$="{V} 1{13 SPACES} I {5 SPACES} I

{7 SPACES}I{6 SPACES}{B}"
CA 8 1 8 ~ P R $ = " {V} I { 1 3 SPA C E S} I {7 SPA C E S} I

{S SPACES}I{6 SPACES}{B}"
JJ8190 DR$="{V}{10 SPACES}I{8 SPACES}

{8 SPACES}I{8 SPACES}{B}"
KA 82 0 ~ S R $ = " { V} { liS PAC E S} I {8 SPA C E S }

{8 SPACES}I{7 SPACES}{B}"
PO 8 2 1 0 B L $ =" {3 9 SPA C E S} "
LF8220 SEL$=BL$:STK$=BL$:SH$=BL$:PP$=BL$:AD$=

BL$:IN$=BL$:CP$=BL$:DV$=BL$:AMT$=BL$:P
RC$=BL$

PC 82 3 ~ CBS $ = " {6 DEL LIN E} "
AB 8900 REM -READ KEY DATA
EG891~ READ CDATE$,NUMH,NUMS
HG90~0 REM -ENTER DATE
NM 901 ~ GOSUB 20~

~9~2~ POSITION 2,3:? "ENTER CURRENT DATE (MM
IDD/YY)."

OB 9~3~ POS I T I ON 22,5:? "_1_1_"
EF 9 ~ 5 ~ FOR I = 1 TO 6
ID 9~70 GET #2, R
GO 908~ IF R< 48 OR R >57 THEN CDATE$="

{6 SPACES}":I=6:GOTO 9~30
OL 9~90 POS I T I ON 21 + 1+ (I >2) + (I } 4) , S
~: N 910~ ? CHR$ (R)
EA 9 1 1 ~ CD ATE $ (I • I) = C H R $ (R)
FE 912~ NE X T I
KO 914~ RETURN

208

Chapter 4

Horizon: A Celestial
Coordinates Calculator
Russell A. Grokett, Jr.

Among your Atari's many talents is the ability to precisely
locate the planets and stars. With this program, astronomy
and photography buffs will be able to pinpoint celestial
bodies with remarkable accuracy.

Remember when you got that telescope for Christmas, and
how you ran out to set up your new equipment, only to dis
cover how hard it was to find anything more difficult than the
moon or a few stars?

Now your Atari comes to the rescue. With the aid of "Ho
rizon," your computer, and a star atlas or almanac, you can
find the altitude and azimuth, in degrees, of any celestial ob
ject, at any time, whether it's rising, setting, or high in the
sky. Then, with the use of a compass, you can position your
camera or telescope in just the right direction, ready to begin
observation.

Using Horizon
In order to calculate the altitude and azimuth of an object, the
program will ask for the date (month, day, year) and universal
time (UT), in hours and minutes, of the event. It will also ask
for your latitude and longitude (in degrees and minutes of arc)
at the time of the event, as well as the right ascension (RA) (in
hours and minutes) and the declination (DEC) (in degrees and
minutes) of the object, as published in a star atlas or celestial
almanac.

The program will then print out the altitude and azimuth
of the object for the specified time and location. Note that if
an object is below your horizon at the time, the altitude angle
will be a negative number.

If you want to calculate the azimuth angle for a rising or
setting object, you will need only your latitude and the ob
ject's declination. The output will then be the azimuth angle
of the object.

With that information, set up your camera or telescope.
Use a compass to position your camera the number of degrees
from true north specified by the azimuth angle. If the altitude
angle of your camera needs to be set, use a device like that

209

Chapter 4

shown in the figure to tilt your camera the required number of
degrees. Lock everything down, and wait for the specified
time to arrive!

A Simple Elevation-Only Tracking Device

Nail

Line of sight ~,~

~' Yard stick

Protractor

Screw Eye ~-- String

~--Weight

How Horizon Works
Lines 250-370 calculate your local sidereal time for the event.
Lines 390-480 gather information concerning your position
and the object's position. Lines 490-540 convert everything to
radians and calculate the altitude and azimuth of the object, at
the specified time, and lines 850-990 calculate the object's
rising or setting azimuth .

Lines 1110-1230 calculate the Julian day for the month,
day, and year that you entered, in order to determine your
local sidereal time. If you wish, you can modify lines 330, 440,
and 860 to print your longitude and latitude.

Horizon: A Celestial Coordinates Calculator
For error-free program elllry, read "Th e Alilolllalic Proofreader" ill Chapler 1 before typillg
in tilis program.

HC 15£1 DIM N (12)
CK16£1 LET RADIAN=£I.£I174532
E617£1 LET DEGREE=57.295778
NA 1 8 £I 0 PEN # 1 • 4 , £I, .. K: ..
~ 19£1 FOR 1=1 TO 12:READ N:N(I) = N:NEXT 1

210

Chapter 4

LK200 DATA 0,31,59,90,120,151,181,212,243,273
,304,334

SF 210 GOTO 720
KB220 REM ** CALCULATE LST **
PE 230 SETCOLOR 2 , 6 ,4
LP 240 POKE 752.0
~250 ? "{CLEAR}{DOWN}Input Month,Day,Year (i

.e.,12,7,78)":INPUT MO,DA,YR
~260 YEAR=YR+1900
NL 270 GOSUB 1100
BA 280 N=N (MO) +DA
JK290 ? "{2 DOWN}UNIVERSAL TIME (UT) of Event

(Hr. ,Min)"
FK 300 I N PUT T 1 , T 2
EB 3 1 0 T = T 1 + (T 2 I 60)
LL 320 ? "{ 2 DOW N}- I n put you r Lon 9 i t u d e (De 9 , M i

n .) "
KO 330 ? "(DOW N)- J A X, F L = 8 1, 39 . 74"
"H 340 ? : I N PUT L 1 , L 2
CN 350 L = L 1 + (L 2 160)
LJ360 LST=K+(0.0657*N)+(1.0027*T)-(L/15)
~370 IF LST }2 4 THEN LST=LST-24
FN 380 REM * * CAL. AL T l!, AZ I M * *
N"390? "{2 DOWN}Input R.A. of Object (Hr,Min

) " : INPUT R 1, R2
H"400 RA=Rl+(R2/60)
AD 4 1 0 H A = L S T - R A
HF 420 HA=HA * 15
JN430 ? "(CLEAR}- {2 DDWN}-Input your Latitude

Deg,Min)"
y.J 440 ? "{ DOW N}- J A X, F L = 30, 1 9 . 75"
FA 450 INPUT Ll, L2
CP 460 L=L 1 + (L2 160)

IA470 ? "{2 DDWN}-Declination of Object (Deg,M
in)" :I NPUT Dl ,D2

KB 480 DEC = D 1 + (D 2 I 6 t:!J)

"1490 REM ** CONVERT ALL TO RADIANS **
LN 500 HA=HA*RAD I AN
EE 5 1 0 L = L * R A D I AN
EF 520 DEC = DEC * R A D I AN
IT530 Y=(SIN(DEC)*SIN(L»+(COS(DEC)*COS(L)*CD

S (HA»
SF 540 E=ATN (Y I SOR (1-Y-"2))
PN 550 AL T=E
10560 Y=(SIN(DEC)-SIN(L)*SIN(E»/(COS(L)*COS(

E))

R570 IF Y<0 THEN AZ=3.1415927+ATN(SOR(1-Y - 2)
IY):GOTO 590

~580 AZ=ATN(SOR(1-Y A 2)/Y)
~590 REM ** CONVERT BACK TO DEG

211

Chapter 4

6L 600 AL T=AL T*DEGREE
OA 6 1 0 A Z = A Z * DE G R E E
LP620 IF SGN(HA)=l THEN AZ=360-AZ
r.K 630 REM * * P R I NT 0 U T * *
PJ640 SETCOLOR 2,7,3
~650 ? "{CLEAR}{DOWN}** HORIZON COORDINATES

**"
~660 ? "{2 DOWN}DATE: ";DA,MO,YR+1900
OJ 6 7 0 T = I N T (T * 1 0 0) 1 1 0 0
G6680 ? "{DOWN}UT= "; T;" HR's"
~690 ? "{3 DOWN}Altitude of object= ";INT(AL

T*100)/100;" Deg."
AG700? "(3 DOWN}Azimuth

100) 1100;" Deg."
JC 710 GOTO 1 jE!0jE!
LO 720 REM * * START * *
P6730 SETCOLOR 2.3,4
IIF 740 POKE 752, 1

of Object= ";INT(AZ*

KP 750 ? "{ C LEA R} {D 0 W N:} * *
CALCULATOR **"

F1760? "{3 DOWN}l. Cal.

HORIZON COORDINATES

00770
LC 780
LP 790
OJ 800

? "2. Cal. Angle
? "3. Cal. Angle
? "{2 DOWN:}Input
GET #l,A:IF A< 49

Altitude & Azimuth"
of Rising Object"
of Setting Object"
one of above."
OR A) 51 THEN 800

NG 8 1 0 I F A = 4 9 THE N 220
J6820 IF A=51 THEN SET= 1
01830 REM * CAL. ANGLE *
IIF 840 POKE 752,0
~850 SETCOLOR 2,13,4:? "{CLEAR}{2 DOWN}Input

your Latitude (Deg,Min)"
H1I860? "{DOWN}JAX,FL. is 30,19.75"
liP 870 ? : INPUT L 1. L2
OF 880 L = L 1 + (L 2 1 6 0)
~890 ? "{3 DOWN}Input Object"s Declination

D,M)":INPUT Dl,D2
JO 900 DEC=D 1 + (D2 1 60)
EI910 L=L*RADIAN
EJ 920 DEC=DEC *RAD I AN
OK 930 Y=SIN (DEC) ICOS (L)
LD 940 AN = A T N (Y 1 S Q R (1 - y." 2))
liP 950 AN=AN*DEGREE
OK960 IF SGN(AN)=-l THEN AN=ABS(AN)+90:GOTO 9

80
JB 970 AN=90-AN
PP980 IF SET=l THEN AN=ABS(AN)+180
IT990? "(2 DOWN}Object"s Azimuth Angle= ";IN

T(AN*100) 1100;" DEG."
~ 1000 REM ** AGAIN **
Oil 1010 POKE 752,1

212

Chapter 4

BP 1020 ? "{2 DOWN}Another- calculation?"
SF 1030 GET #1. A
~1040 IF A=89 THEN RUN
~ 1050 IF A=78 THEN GO TO 1070
~E 1060 GOTO 1030
PB 1070 POKE 752. (11

EI: 1080 GRAPH I CS (11

t:B 1090 END

&1100 REM ** JULIAN DAY **
MD 1 1 1 0 A = I N T ((7 * YEA R) J 4)
IL 1120 B= (367*YEAR) -A+30
~1130 MJD=B-678987+0.5
~ 1140 JD=MJD+2400000
JI 1150 Jl=JD-2415020
Alii 60 T = J 1 /36525
~ 1170 J2=8640184.54*T+0.0929*T A 2
PI1180 J3=J2J3600
~1190 J3=J3+6.6460656
JA 1200 J4=J3J24
~ 1210 J5=J4-INT(J4)
FM 1 220 I< = J 5 * 2 4
~: 6 1230 RETURN

213

Chapter 4

Invisible Music
Paul Gentieu

Using the simple routine described here, you can add
sophisticated music to your BASIC programs-without
affecting execution speed.

If you've written a program that includes music, you probably
noticed that playing that music requires quite a bit of process
ing time. The reason is simple: The sound registers must be
constantly updated. As a result, it is difficult to do any com
plex calculations or graphics manipulations while your music
routine is playing.

Having run into this problem, I decided to write a small
machine language routine that plays music "in the back
ground." That music is invisible, as far as BASIC is concerned,
and it frees your program to do more important things. It can
be of grea t value, particularly in games or other applications
where it would be nice to add music without affecting execu
tion speed.

This routine interfaces with BASIC via the USR function.
Simply make one call to the routine and forget it. The tune
will immediately begin playing and will not affect the execu
tion speed of any BASIC program. You can use up to four
voices.

Once you have decided how many voices you want, POKE
the audio control registers (53761, 53763, 53765, and 53767)
with 160 for a pure tone plus the volume (from 1 to 15) that you
wish to use. The voice parameter is passed to machine language,
along with the address of the string holding your music data,
by the statement A = USR(1536,ADR(A$),VOICES). When set
ting up the string, the first number is the duration; it is fol
lowed by the notes themselves. The table gives a listing of
note values.

An example is helpful. A typical statement might be
A = USR(1536,ADR (A$),2) . In this case, the string A$ would
be made up of a duration value, then the values for two notes
to be played simultaneously, then another duration, then two
more notes, and so on.

The duration is measured in sixtieths of a second. Since a
string can hold only individual values from 0 to 255, the dura
tion can range from 1/60 second to 4-1/4 seconds. That
should be a wide enough range for most applications. Note

214

Chapter 4

that when you use a zero for the duration, the routine will
start the music over from the beginning.

Note Values

High notes

Middle C

Low Notes

Note
C
B
A#
A
G
F#
F
E
D#
D
C#
C
B
A#
A
G#
G
F#
F
E
D#
D
C#
C
B
A#
A
G#
G
F#
F
E
D#
D
C#
C

Value
29
31
33
35
40
42
45
47
50
53
57
60
64
68
72
76
81
85
91
96

102
108
114
121
128
136
144
153
162
173
182
193
204
217
230
243

215

Chapter 4

modified to work on strings of any length, but 256 bytes
should be enough for most tunes.

Caution
One thing to watch for: When the routine is running (and it
will continue to run if you press the BREAK key to stop the
program), you should not type in any program lines or cause
the program to modify itself in any way. Nor should you type
in anything in immediate mod~, as that may cause the string
holding the music to be moved around in memory and result
in incorrect notes.

A Simple Example
A sample BASIC program with a demonstration tune is in
cluded to show just how easy the routine is to set up and use.

The routine works using the interrupt generated by the
second system software timer. I chose to use the timer inter
rupt over the vertical blank because the music routine is short
and many excellent utilities already use the vertical blank
interrupt. The second timer is one of two that generate inter
rupts. Timer 1 was not used, because it is used to time
input/output and serial bus events.

Duration is very easily implemented using timers. The
second timer is started by storing a clock value in $21A (the
timer 2 value address) . This value is decremented during each
vertical blank interrupt (once every 1/60 second). Once the
timer hits zero, the computer interrupts what it is doing and
performs an indirect JSR through $228 and $229 (the timer 2
interrupt vector).

The music routine is set up by placing its beginning ad
dress in these vector locations. Once that's done and the timer
has been started, the routine will execute without slowing
down BASIC operations. To implement duration, all that must
be done is to store different clock values in $21A, controlling
how frequently the routine is called (and how often the sound
registers are updated). The routine ends with RTS since it was
called with JSR.

216

Chapter 4

Invisible Music
For error-free progralll elltry, read "The Autolllat ic Proofreader" ill Chapter 1 before typing
ill th is prograll1.

PA 5 M= 1
J" 10 POKE 53761,168:POKE 53763.168:REM POKE A

UDIO CONTROL REGISTERS WITH A PURE TONE
AND VOLUME OF 8

AK20 DIM A$(256):REM MUSIC HOLDING STRING
PP 30 TRAP 50
~40 READ D:POKE 1536+T.D:T=T+l:GOTO 40:REM R

EAD ROUTINE DATA
CO 50 TRAP 200
H60 READ D:A$(M.M)=CHR$(D):M=M+l:GOTO 60:REM

READ MUSIC DATA
IH70 REM ***ROUTINE DATA***
IP80 DATA 104.169.0,141.254.6,104,133.205.104

, 133.204.104.104.10.233.1.141,255.6.169.
36,141,40.2.169.6,141 . 41.2,169

KI 81 D AT AI, 141 , 26 . 2. 96. 172, 254 • 6, 162, 0. 177, 2
04,240,29,141,253,6.200.177.204.157.0.21
0,232,232~236,255,6 ~ 48 , 243,240

ffi82 DATA 241,200,140,254,6.173 , 253,6,141,26,
2,96, 169,QI, 141,254,6, 169, 10, 141,26,2,96,
-1

OE 90 REM ***MUSIC DATA***
AE 1 00 D A T A 9, 8 1 , 1 2 1 , 9 , 9 6 , 1 4 3 , 9, 1 2 1 , 8 1 , 9 , 9 6, 1 2

1, 9,81,143,9,96,81,9,121,121.9,96,143,9
,81,81 , 9,60,121,9,60.143,9,64,81

CP 1 0 1 D A T A 9, 7 2, 1 2 1 , 9 , 9 1 , 1 4 3 , 9, 1 0 8 , 8 1 , 9, 1 2 1 , 1
21,9, 108, 143,9,91 , 81.9, 108, 121,9, 121, 14
3,9, 108,81,9,68, 121 , 9,68, 143

At: 102 DATA 9 , 72 , 81 , 9,68,121,9,81,143,9,96,81,
9,121,121,9,96,143 , 9,81,81,9,96,121 , 9,1
21,143,9,96,81 , 9 , 60,121,9,60,143

E¥. 1 0 3 D A T A 9, 6 4 • 8 1 • 9 , 7 2. 1 2 1 , 9 , 9 1 • 1 4 3 • 9. 1 08 • 8 1
JA 1 04 D A T A 9, 1 2 1 • 1 2 1 • 9. 1 Q18. 1 43 • 9 • 9 1 • 8 1 • 9. 1 08 •

121,9,72,143,9~9i , 81~9.53.i21~9.53~143~
9,60,81.9 , 64 . 121.9,60,143,9,81

~ 105 DATA 81.9,47,121,9.60,143,9,40,81,9,40,
121,9,53, 143.9 . 64.81 . 9.64, 121.0, -1

18200 REM * **START MUSIC***
EC 2 1 QI A = U S R (1 536 • AD R (A $) , 2)
AK220 GOTO 220:REM YOUR PROGRAM HERE

217

Chapter 5

Atari Tape Enhancer
Jordan Powell

If you've ever been frustrated by the lack of file handling
on the Atori program recorder, then the two short pro
grams described here ore for you. The article also includes
information on string handling and program compaction
with A tori BASIC .

Looking for files on the Atari program recorder can be a real
chore. You can write down the file description and its location,
but the paper could get misplaced. Loading files one after the
other to get to the right one isn't my idea of fun either.

Taking a lesson from the way the VIC-20 handles its tape
files, I have written two programs to help make life easier for
Atari tape users. You use them as follows: Start out by loading
a tape and zeroing the tape counter, then advance the tape to
a reading of 20 on the counter. Next, store up to six files on
the tape, being careful to note the filename you want (up to
16 characters), the location of the beginning of the file , and
the command used to save the file.

When you're done, rewind the tape and run Program 1. It
will ask you for the name you would like to give the cassette;
respond with a tape name of up to 16 characters (for example,
GAME TAPE #1). The program will then ask for the names,
locations, and commands used to save up to six files on the
tape . You respond with the filename, tape counter reading for
the beginning of the file, and the first letter of the command
used to save the file . If you have less than six files, respond to
the filename prompt after the last file by pressing ESCape
twice followed by RETURN. The program will stop prompting
you and store what I call the system tape file on the cassette.
It contains the information you just typed in, and all the infor
mation you need to locate and load all of the files on the tape
is safely stored on the cassette itself.

Program 2 reads the system file, writes a menu to the
screen, and asks you to select the number of the file you want
to load. After you select the appropriate file, it tells you the
counter reading at which it will be found. Advance the tape to
that location and press RETURN to load the file. If you make
a mistake locating the file, the program gives you another
chance.

221

Chapter 5

Atari Strings
The key to these programs lies in an understanding of Atari
BASIC string handling. A string is a sequence of one or more
characters. In statement 40 of Program I , the dimension state
ment defines the string variables used in the program. CBUF$
is the string variable which will be put into the cassette buffer
and subsequently written to the tape. The cassette buffer is an
area in RAM from which the Atari writes to the program
recorder.

The rest of the string variables will hold inputs from the
keyboard. As filenames, locations, and commands are entered,
they are added to CBUF$ one after the other. S is used as a
space-saving measure. Every time a constant is used in Atari
BASIC, it takes up seven bytes. Using a variable causes it to
be stored once when it is defined, and all other references take
up only one byte.

Adding characters to CBUF$ as in line 110 is done by
using the following form of expression: CBUF$(start,end) =
TN$, where start and end are the starting and ending po
sitions in the string CBUF$. TN$ contains the character string
to be placed into CBUF$ at the positions indicated by start and
end. By manipulating the starting and ending positions of data
within CBUF$, the string is filled with file data one piece at a
time. With this explanation and the Atari BASIC reference
manual you should be able to decipher the rest of the
program.

To speed up the loading of these programs, you can make
them smaller so there is less to load. This can be done by
removing REM statements, substituting variables for constants
as explained above, putting two lines of code on one logical
line (a logical line is one starting with a line number) sepa
rated by colons, and by substituting? for the word PRINT in
PRINT statements.

Program 1. Tape File Maker
For error-free progralll elltry, read "Til e Alitolllatic Proofrende r" ill Chapter 1 before typillg
ill this program.

AI li/J REM [!f$,,:u"-S"'-w'#ij;_':l~_iillI.;a

Y.H 21/J P R I NT (C LEA R)
HL 31/J REM 1.]#ijillll:I ... J:l:0:l.' :1:I.aO:t.J:;O'-w.:l: '
LO 41/J DIM C B U F $ (1 28) , F N $ (1 2) , C T $ (3) , T N $ (1 6) , 5 M

$ (1) : 5= 16
IN 51/J REM liillI •• !f:;.-s,-Ja •••• IIJiiii*_:!I'U;_.'.:l:I::"'-W

222

Chapter 5

~60 FOR N=l TO 128:CBUF$(N,N) =" ":NEXT N
BN 70 REM INPUT TAPE VOLUME LABE
~80 PRINT "INPUT TAPE NAME(16 CHARS MAX)"
LP 90 INPUT TN$
GM 100 REM 1::.1l i_i:1:.1".:1.J3Wiiil:U._.lIJiilila:.
~110 CBUF$(I,S)=TN$
6F 120 REM INPUT INFORMATION FOR UP TO 6 FILES
M130 FOR N=l TO 6
DP 140 PRINT "INPUT FILE "; N;" NAME"
NO 150 INPUT FN$
J6160 IF FN$(I,l)="{ESC}" THEN GOTO 270:REM

{T} WHEN ESCAPE HIT WE ARE DONE ENTERIN
G FILE INFO

BA 170 REM l:m:l_IiOWI:l:.1_!lo1IJ:Ua:_:g!(:,.,iiI:C"
NA 180 CBUF$CN*S+I,N*S+13)=FN$
~ 190 PRINT "TAPE COUNTER READING FOR THIS FI

LE? C3 DIGITS)"
16200 INPUT CT$:CBUF$CN*S+13,N*S+15)=CT$
PO 2 1 0 REM { 6 j#f :l:tM #Ij.-'J}

ru220 PRINT "WHICH COMMAND USED TO SAVE ?"
~230 PRINT "CSAVE/SAVE C/LIST C -CC,S,L)"
or. 240 INPUT SM$
OL250 CBUF$CN*S+S,N*S+S)=SM$
CF 260 NEXT N
AM 270 REM ~RITE SYSTEM FILE TO CASSETT
~280 PRINT "PRESS PLAY/RECORD-RETURN"
MO 290 OPEN #1,8,0, "C:"
IN300 PRINT "WRITING SYSTEM FILE"
PE 3 1 0 P R I NT # 1 ; C B U F $

Program 2. Tape File Reader
LP 10 REM DISPLAY SYSTEM TAPE FILE MENU
AJ 20 P R I NT" {C LEA R } .. : REM { T } C LEA R S C R E E N
HL 30 REM I.] 3 iii iii: I ;a.J:l:J .:I.J. 4 __ :1: 1._!l.W;» 1:1 a .-1
LO 40 DIM C B U F $ C 1 28) , F N $ (1 2) , C T $ C 3) , TN $ (1 6) , S M

$(1):S=16
BH 50 REM a.l:.13: allf:;;s....,:a
0060 PRINT "PRESS PLAY THEN HIT RETURN"
J670 OPEN #1,4,0, "C:"
AA 80 REM liiliiI •• IIf:;;s....,:a •• ".lIJiliil3:_: ••• :_.J.:l:I$-1
CI90 FOR N=l TO 128:CBUF$(N,N)=" ":NEXT N:REM

I $;(:1.» iii :_:1: 1-_:.1:0:._ 1:1:.1" .:1 .J3 : I""'IM :.
~

~100 PRINT "{CLEAR}";"READING SYSTEM FILE"
~ 110 INPUT #1;CBUF$:PRINT "{CLEAR}"
NN120 PRINT CBUF$(1 ,1 5):PRINT :REM {T} SPACE
LH 130 REM 1:.1:0:._iiliiI.,,;13:1I_.l: __ 'M:I#lI#lI:
SB 1 40 FOR N = 1 TO 6

223

Chapter 5

FN$=CBUF$(N*S+1 ~ N*S+13)

CT$=CBUF$(N*S+13~N*S+15}

SM$=CBUF$(N*S+S,N*S+S)
PRINT N;" ";FN$;" ";CT$;"
PRINT
NEXT N

";SM$

"N 15/11
AS 16/11
0" 17/11
NJ 18/11
CH 19/11
BP 2/11/11
EL 21/11
8122/11

REM r.. ~"';"'I~O]";:'I":' =I~_--=iiI:r..""]"';.--=~"';="'I""aIr::.,r:;""'I:"I;l";:_~""""' •• --=;""J _=-.... r..""'r"';l~.]r:#Ij::r.co.:

PRINT ;PRINT "ENTER NUMBER OF PGM YOU W
ANT RUN"

HD 23/11 INPUT N
~24/11 FN$=CBUF$(N*S+1,N*S+13)
AS25/11 CT$=CBUF$(N*S+13~N*S+15}
~26/11 PRINT "ADVANCE TAPE TO ";CT$;" FEET"
61 27/11 TRAP 35/11
¥.N 28/11 REM DECIDE HHICH COMMAND TO LOAD HIT
~29/11 IF CBUF$(N*S+S,N*S+S)="C" THEN GOTO 33/11
~3/11/11 IF CBUF$(N*S+S,N*S+S)="E" THEN GOTO 34/11
NA 3 1 /II REM •• m]._ :m::m1 :1:1;:
ffi32/11 LOAD "C;";PRINT "HIT RETURN"
"J 33/11 CLOAD ; PR I NT "H I T RETURN"
NS 34/11 ENTER "C:"
EE35/11 PRINT "REPOSITION TAPE TO ";CT$;" FEET

AND RETRY"
6N 36/11 GOTO 29/11

224

Chapter 5

Disk Catalog Utility
Andrew Genser

For many computer users, one of the most time-consuming
tasks is searching through disks to find a particular pro
gram. This program gives you an alternative.

Wouldn't it be nice if you could have an index of all your
disks, stored on one disk? That way, you would never have to
switch disks-and with a few enhancements like a search
capability and printout, you would have an extremely useful
utility.

The problem with many disk cataloging systems is that
they do much more than is really necessary. The time spent in
keeping one up-to-date usually negates its usefulness. Thus,
many home computer users end up with a list of programs
that includes all kinds of unwanted information. However, this
disk housekeeping utility forgoes the unneeded frills to make
it much simpler to keep track of your disks.

One Large Directory
"Disk Catalog Utility" (DCU) is really just a mass directory. It
creates separate files, on one designated catalog disk, of all
your disks' directories. This means that you can get a directory
of any disk without going to DOS and switching disks around.

Three other features make DCU even more useful. First,
you have the option of doing a disk directory of all of your
disks, one of your disks, or all disks in a certain range. Sec
ond, DCU makes full use of Atari's wild card. This is a symbol
in the filename of a program that allows you to view every
thing with a specified string in its name. For example, if you
want to see files ending with the letters .LSI, type *.LST in re
sponse to the prompt. The asterisk is the most common wild
card symbol, but you may choose your own when using DCU.

A file specification doesn't have to have a wild card. If
you know exactly which filename you are looking for, type
that in, and DCU will identify all the disks that contain that
filename.

Finally, for those who own a printer, DCU will also give
you a hard copy of the directory catalog. It channels whatever
is printed on the screen directly to your printer, using the
LPRINT statement.

225

Chapter 5

Creating the Directory
First, you must number each disk, starting with disk number
1. Using a felt-tip pen, write the disk number on the label (not
on the disk cover).

Then run the program. You'll be asked to specify the de
sired wild card symbol. If you hit return, DeU will automati
cally use the asterisk (*) as your wild card.

At that point, you are ready to catalog your disks. Run
DeU, and type e for catalog disk. You will be asked which
disk you want to be cataloged. Type in the appropriate num
ber and press RETURN. Then insert disk number one and
press RETURN. DeU will read in the directory of disk 1. Then
insert the data disk (the disk with DeU and all of your Deu
files on it) and press RETURN. DeU will then save that disk's
directory as a data file called DISK1.

Repeat this procedure until all of your disks have been
cataloged. Be sure to type in the correct disk number when
cataloging.

Searching for a File
To get a complete directory, type D to get to the directory
mode; then insert the data disk and press RETURN. You will
then have several options . If you have a printer and want a
printout of your directories, type Y when asked if you want a
printout. If you don't have a printer, press N (or just hit RE
TURN, and DeU will default to nonprintout).

Next, you will be asked if you want to search a particular
range of disks. Type Y to specify a range. For example, if you
type Y followed by 3,8 then DeU will search through direc
tories 3, 4, 5, 6, 7, and 8 for whatever filename you specify. If
you want DeU to start with disk 1 and go on until it can't
find any more files, simply press RETURN .

You can also specify the file spec (name of the file) you
are looking for. This is where you use the wild card symbol.
Type in your chosen file spec; alternately, hit RETURN to dis
play all files from the specified disk range. DeU will display
each disk number as it searches, followed by all files that
match the file spec. When DeU has searched through all cat
alogs, or has finished the specified range, it will display the
number of files found and RETURN you to the main screen.

226

Chapter 5

Disk Catalog Utility
For error-free progralll, read "The Automatic Proofreader" ill Chapter 1 before typillg ill
this progralll,

HO 10 GRAPHICS 0:SETCOLOR 2.12,4:SETCOLOR 1,0.
15: DIM D (1000) , SPEC$ (17) , F$ (17) • FN$ (15) :
DSI<=1

IN 15 OPEN #1,4.0, "1<:"
0017? "D I S I< CAT A LOG UTI LIT Y

":? "WILDCARD symbol ?":GET #1,WILD:IF W
ILD=155 THEN WILD=ASC("*")

~ 19 FOR 1=1 TO 38:? CHR$(WILD);:NEXT I
ID20 CLOSE #2:? :? "DISI< CATALOG UTILITY [DCU

]":? "BY ANDREW GENSER":? :? "~TALOG DI
SI<":?

B" 22 ? "l!:I RECTORY"
AF40?" ":GET #1.I<:IF CHR$(I<)<>"

Coo AND CHR$(lO<>"D" THEN'? "{CLEAR}
{BELL}D OR C":GOTO 40

EH 50 I F C H R $ (I<) = " C " THE N 3000
IF 60 REM ,.,i4;J#(l:1iil]:i __ ilIJ:lI:1i_Ol:
~65 ? "{CLEAR}{DOWN}[DCU] DIRECTORY":FLS=0:S

ETCOLOR 2,15,4
IJ70? "Insert data disk,then hit ':B'ilJ:~:":GET

1 • I<
AF 75 ? " S ere e nOLl t put top r i n t e r (yIn) " : GET #

I,K:IF CHR$(I<)="Y" THEN FLAG=I:GOTO 80
PF 77 FLAG=0
tlN80? "Disk range specs (y/n)":GET #1,I<:IF C

HR$(I<)="Y" THEN? "Disk range ";:INPUT S
TART,EN:GOTO 100

III 90 START= 1: EN=99999
JD 1 00 ? " F i 1 e s pee ";: I N PUT S P E C $
DL 105 IF SPEC$="" THEN SPEC$ (1) =CHR$ (WILD): SP

EC$(2)=".":SPEC$(3)=CHR$(WILD)
EL 1 1 0 F $ = S P E C $: S P E C $ (1 , 2) = " " : S P E C $ (3) = F $: F $

~120 FOR DSK=START TO EN
HN 1 30 F N $ = " D : DIS I< " : F N $ (7) = S T R $ (D S 10
t:N 1 40 T RAP 605: 0 PEN # 2 , 4 , 0 , F N $:? "{ BEL L } Dis k

";DSI<:TRAP 605:IF FLAG THEN LPRINT "DIS
I< ";DSI<

BD 150 INPUT #2; F$: 1=3
LN 1 52 REM 1 in. ~ :r:1:;g_:!lll:;' :1:1 :11 ... -11): ti--'J :11":1 : .. 1:
PY. 1 55 IFF $ (1 , 1) < >-" " AND F $ (1 , 1) < :> " *" THE N 6

~ 160 IF ASC(SPEC$(I,I»=WILD THEN I=I+1:GOTO
500

PI 170 IF SPEC$ (I , I) =" ." THEN 500
DO 180 IF SPEC$(I, I)<>F$(I. I) THEN 150

227

Chapter 5

IJ 2!21!21 IF I<LEN(SPEC$) THEN 1=1+1 :GOTO 16!21
C021!21 FLS=FLS+1:? F$:IF FLAG THEN LPRINT F$
GH 215 GOTO 15!21
"K 4 9 9 REM '?f:iI "": I.] "" :_.N:l:l:l :J ... -JII: _ :tlllj _ .. :,~
IA5!21!21 I=I+1:L=LEN(F$)-6
NK51!21 IF ASC(SPEC$(I,I»=WILO THEN 210
EC 52!21 I F S P E C $ (I , I) <)- F $ (L , L) THE N 1 50
PJ 53!21 I F I < LEN (S P E C $) THE N I = I + 1 : L = L + 1 : GOT 0 5

1!21
DE54!21 FLS=FLS+1:? F$: IF FLAG THEN LPRINT F$
61: 542 GOTO 150
JP60!21 ? F$:CLOSE #2:NEXT OSK
NJ 6!215 ? :? F L S;" F i 1 e (s) f 0 U n d " : IFF LAG THE N

LPRINT :LPRINT FLS;" File(s) found"
DC 6 1!21 GOT 0 2111
EC 2999 REM [1{:U:]lUX" iiill : [11_01:
IA 3!210!21 7 "{CLEAR}": SET COLOR 2, 1,4: SETCOLOR 1,

!21,15:? "[OCU]CATALOG" : ? :7 "OISK # TO
BE CATALOGEO ";: INPUT OS~:

LC 3!211 5 F N $ = " D : DIS K " : F N $ (7) = S T R $ (0 S K)
HA 3!212!21 7 :? .. INSERT OISK #"; OSK;: 7 " THEN PRE

SS I:giil):t:": GET # 1 , A
HB 3!214 5 0 PEN # 2 , 6 , !21, "0: * . * " : I = !21
U3!215!21 TRAP 350!21:GET #2,K
NA 3!2152 0 (1> =K: 1 = 1+1: GOTO 3!2150
0635!21!21 0(1+1)=0:CLOSE #2:7 :7 "INSERT DATA DI

SK-HIT RETURN":GET #1,A:OPEN #2,B,0,FN
$:I=!2I

Y.13505 TRAP 360!21:7 CHR$(O(I»;:PUT #2,0(1):1=
1+1

JL 351!21 IF 0 (1) =!2I THEN 3600
tiE 3515 GO TO 3505
~360!21 7 "CATALOG COMPLETE{BELL}":CLOSE #2:GO

TO 20

228

Chapter 5

Diskovery
John C. Waugh

Would you like to know what's really hidden beneath the
dull brown exterior of your disks? "Diskovery" will help you
find out. Requires a disk drive and Atari DOS 2.0S.

What's on an Atari disk? One way to find out is to use the
DOS directory. That won't tell you much, though, just names,
lengths, and free sectors. And it won't tell you anything if it's
not a DOS-made disk. To really find out what's on it, you'll
have to diskover it-and this program will give you the tools
you need. It will provide you with the ability to change disk
memory directly.

Be careful using this program. Be sure to have a backup of
any important programs on another disk before trying the ex
amples in this article.

The Problem
The problem was simple to begin with. A friend had brought
me a disk with a problem: There were two versions of a pro
gram on it, but both had the same name. Both appeared on
the DOS directory listing, although with different lengths.
COpy and LOAD would get only the first and older version
of the two. And even the rename option of DOS would re
name both programs simultaneously, to the same new name.
We didn't try the delete file option, for fear of losing both. So,
knowing something about Atari's direct disk access, I wrote a
short and simple program to fix the problem. That was the
kernel from which the current program grew.

Atari DOS accesses disks a sector at a time. However, that
can also be done independently of DOS by setting up certain
pointers in the disk control block (DeB) section of memory
and calling the operating system (OS) to do the dirty work.
The DeB and OS do not need the DOS loaded in with this
method. Look at lines 8010 to 8100 in the program. This is the
subroutine to do direct disk access. Here's how it works.

A buffer area must be set up to hold the contents read
from a disk sector, or to be written to a disk sector. This buffer
should be 128 bytes long since there are 128 bytes per sector.
BUF$ is used in this program. Line 8010 identifies the begin
ning of the DeB, which occupies memory locations 768-779.
POKEing a 1 into the second byte (BLK + 1) specifies access to

229

Chapter 5

drive 1. The variable FUN in line 8020 is set by the calling
routine; 82 decimal means a read sector command, and 87 will
cause a sector to be written to the disk.

In order to read into the buffer, or write from it, the ad
dress of the buffer area must be placed in BLK + 4 and BLK + 5
in low byte/high byte format. This means that BLK + 5 will
contain the high part of the address, the number of times that
256 will go into the address. This is expressed as
INT(ADR(BUF$)/256). BLK + 4 should have the low part of the
address, the remainder from division by 256, given by
ADR(BUF$) - 256*(high part). This low byte/high byte ad
dress format is standard on the Atari and other 6502-based
microcomputers .

Next, the sector number to be accessed must be broken
up into low/high form and placed in BLK + 10 and BLK + 11.
The sectors are numbered from 1 to 720. Some of the sectors
are used for the directory, boot-up, and so on, so DOS will
show only 707 free sectors on an empty disk, although all sec
tors can be accessed with this program.

Now it's time to call the operating system. Located at
hexadecimal address $E453 (decimal 58451) is the subroutine
that will either write the buffer to the specified disk sector or
read the sector contents into the buffer. To call this subroutine
you need to do an assembly language JSR, so a short machine
language routine is in order. Line 8080 initiates the short ma
chine language program that was put in DSKINV$ by lines
205 and 210. Essentially all this does is JSR to $E453, then re
turn to BASIC with an RTS. After return, if there was a prob
lem reading or writing a sector, an error code is placed in
BLK +3 (the value 1 indicates no error). Line 8080 also puts
this code in the variable NR for use in lines 8086 and 8090.

Looking at the Disk
Now that you know how direct disk access can be achieved,
look at the main program. When you have the program entered,
save it before running it. Put into your drive a disk that has a
lot of varied DOS files on it-perhaps an AUTORUN.5YS, a
machine language object program, a LIST/ENTER program,
and some SAVE/LOAD programs. Of course the DOS.SYS
and DUP.5YS files themselves would be nice to look at too.

Run the program, and a menu will appear. Push the SE
LECT button. If all is well, you should be able to toggle the

230

Chapter 5

screen background between normal blue and green (or blue
and darker blue, depending on your TV). When the screen is
green (or darker blue), whatever is on the screen will be
dumped to a printer, assuming that a printer is on-line. At any
point in the program run, regardless of what it is doing, you
can toggle between printing and nonprinting modes. That will
not interrupt a screen dump already in progress, but any nor
mal keyboard key will. The toggle is done using a vertical
blank interrupt. More on that later.

Select a normal blue screen (for nonprinting) for now.
Choose option 2 and press RETURN. This option allows you
to look at the contents of a sector in a special way; the pro
gram will assume that you are looking at one of the sectors
from 361 to 368, and will display the data accordingly. In re
sponse to the sector number prompt enter 361 , to look at the
first directory sec tor. You will hear the beep from the TV
speaker as the sector is read, and then the bytes in the sector
are displayed as characters on the screen. Directory sectors are
arranged in sets of 16 bytes, each set being the information
about one file listed in the DOS directory. Probably DOS.SYS
and DUP.SYS will be among those shown on your screen.

DOS refers to programs or file entries by number, the firs t
one being 0 up to a maximum of 64 files (note that the maxi
mum file number is thus 63). The display is arranged in 8
lines of 16 bytes each, so that each directory entry appears on
a separate line . Notice the first byte of a typical directory en
try. An uppercase B indicates a normal file that is ready to
use, so a first byte of 66 (the ATASCII value for B) tells DOS
that this file is OK and ready to go. A locked file has bit 5 of
the first byte set (a I, or on bit); locked files will appear on the
directory dump as a lowercase b. If bit 7, the topmost bit, of
the first byte is set, then the file is considered deleted from the
directory by DOS. Its directory space is up for grabs, and will
be overwritten by the next new file saved on the disk. If a file
has been deleted using the D option of DOS, as long as no
new files have been saved over its directory entry, the file can
be undeleted and gotten back.

Undelefing
Let's try an example of that, to see if you've really entered the
program without any errors. Write some dummy program, like
10 REM, and save it on disk. Go to DOS and list the directory.

231

Chapter 5

Now use the D option to delete the dummy file; a directory
listing will no longer show it. Go back to BASIC and load in
the "Diskovery" program. Run it, and choose option 2 again.
Look at sector 361. If there are many files on the disk, you
may have to look at more sectors, perhaps up to sector 368, to
see the dummy program; by pressing RETURN a couple of
times, you'll get back to the main menu to select the next sec
tor. Do this until you find the sector with the dummy pro
gram-it will show up even though it was deleted.

Now press RETURN once more to get the change sector?
prompt. Answer Y, then type C for the next prompt, so you
can insert bytes into the sector as characters rather than as
numbers. Type 1 for the number of characters to change. For
the starting byte prompt, determine which byte is the first one
in the dummy file. This will be an inverse heart (CHR$(128))
indicating a deleted file. The byte number range for each entry
is given on the left side of the screen.

Enter the number of the starting byte. The program will
ask for one character to insert. Type a B, then type Y for the
next prompt, to actually carry out the change. You will hear a
clunk sound as the modified sector is written out to the disk,
and a beep as it is read back in and redisplayed. There should
be a B as the first byte of the dummy file entry. The dummy
has been undeleted. To check, try loading the dummy, or go
back to DOS and look at a directory listing.

Protecting the File
Although the dummy file is now available for loading and
saving, its sectors have not been protected in the usual DOS
way. Thus, future programs might save over them. To protect
it for now, save it under a new name (or under the same
name). DOS will mark the sectors as in use.

A similar method was used to solve the original problem
that led to this program. Two files had exactly the same direc
tory name, so I simply modified the name of the first to be
different from the second. That way, DOS would recognize
them as different files. Voila! The lost fil e was recovered.

Invisible Files
As you can see in the directory, the filename extender is sim
ply th e characters in the last three spaces allocated for the file
entry. You can change the characters in a filename with

232

Chapter 5

interesting results. For example, run option 2 again and choose
the change sector option. Choose N this time, for inserting
numbers. Type 1 to insert just one number. Now use the
dummy file again, and use one of the bytes in its name for the
byte to change. Change it to value 125, then type Y to modify
the sector. ATASCII value 125 is the clear screen character,
displayed in the sector dump as a bent arrow. If you were to
go to DOS and request a disk directory now, when the
dummy filename goes on the screen, it would clear the screen.

You can' t load the dummy file wi th this modified name
because CHR$(125) isn 't a legal filename character. However,
DOS will not consider the dummy file sectors to be available,
so they are protected from being overwritten. You have cre
ated a file that cannot be loaded or run without modification
of its name. With the proper choice of control characters (for
instance, CTRL-back arrow), you can name a file so it doesn ' t
appear on the listing at all.

Here's something else to try. Make another short dummy
and save it as the first program on a blank formatted disk.
Then save a few more programs (or copies of the dummy) un
der other names. Run the Diskovery program, use option 2 to
look at sector 361, and use the change option with number
insertion eight times to insert the following numbers at the
beginning of the dummy file entry area (start at the beginning,
not at the filename): 66,1,0,4,0,88,156,155. Then change the
remaining eight bytes of that directory entry to spaces. You
can use the number insertion option, with multiple-byte inser
tion, since they are all the same number. The number 32
represents the ATASCII character for blank space.

Now to the DOS. List the directory; nothing appears at
all. You can still load, run, and save programs normally-but
only if you know the right names.

If you've followed all this, you might wonder why, when
the sector contents are displayed onscreen, the CHR$(125) is
displayed as a bent arrow, rather than clearing the screen.
There is a POKE to make the computer display command
characters instead of performing their commands. It is found
in line 1047 (POKE 766,1). POKE 766,0 will return you to the
normal mode. Try POKE 766,1 in direct mode and try editing
the screen with the CTRL arrows.

Using option 2, directory dumps also show more infor
mation about a file. Stored in the bytes between the first byte

233

Chapter 5

and the first name byte are four bytes that contain the starting
sector number of the file and the length of the file in sectors.
This information is stored in low jhigh format, as previously
explained. With option 2, the interpretation of these bytes is
displayed on the right side of the screen.

Other Options
Let's have some fun with the other options. Examine the
directory sector that contains the DUP.SYS file entry, the Disk
Utilities Package. Note what sector it starts with. Now go back
to the main menu and choose option 1. Specify the sector that
DUP.5YS starts with. Enter the choice for character dump, and
you will see the first DUP.5YS sector displayed in character
form. Somewhere in this sector you will see the text that is
shown at the top of the screen when DOS gets control. Using
the sector-changing options, you could put in your own string
of characters so that whenever you go to DOS, your own cus
tomized message would be displayed.

Also note that the computer beeps several times during
the display. This is because there are several bytes in the file
with value ISS, the code for the RETURN key being pressed.
These have no character representation, even with POKE
766,1, so they would normally disrupt the screen display with
line returns. To avoid this, the program detects them, beeps
the speaker to let you know about them, and puts an inverse
asterisk onscreen to mark their location. This is done by line
1067. It is necessary to POKE 766 back to normal to get the
computer to beep, then POKE 766 again to display control
characters for the rest of the dump.

Each sector on the disk is 128 bytes long. However, if the
sector has been filled by the Atari DOS, only 125 of those sec
tors are used for actual data in the file. The other three bytes
contain housekeeping information. Byte 126 has, in six of its
bits, the file number that the sector is associated with. Thus all
sectors that are a part of the second directory entry file will
have the number 1 (remember that file references start at file
0, not file 1).

Stored in the other two bits of byte 126, and in eight bits
of byte 127, is the forward pointer. This tells which sector is
next in line in that particular DOS file. Sectors associated with
a certain DOS entry do not have to 'be next to each other

234

Chapter 5

(contiguous) on the disk. Each one contains a reference to the
next one in line. We'll see an example of that in a moment.

Byte 128 contains a count of how many bytes are unused
in that sector. Thus, if a sector is the last one in a particular
file, it may not be full. DOS needs to know how many bytes
are unused, so it doesn't load the remaining garbage into the
computer as part of the file . Bytes 125-128, then, are used in
this program to compute the information given at the bottom
of the sector dumps: file number, forward pointer, and extra
sector bytes.

Option 3 on the main menu will automatically trace
through a specified DOS file, sector by sector, following the
forward pointers . Find the starting sector of the DUP.SYS file.
Run the trace option with its first sector as the starting one.
Now a menu appears with either auto trace or pause as an op
tion. Pause means the computer will wait for a keypress after
each sector is displayed before going on. With auto trace, the
sectors will go by automatically until the end of the file. If you
have a printer on-line, each sector dump will be printed before
going to the next one.

For this example, choose the pause option. Choose charac
ter dump next. You will see the sectors of the DUP.SYS file
successively displayed. Some of the information, such as the
DOS menu, will be intelligible. Trace could also be used to
look through stored programs. If a program has been saved,
much of it will look like garbage since it is in tokenized form .
However, if a program has been LISTed to disk, it will be
readable since it is in straight ATASCII form. Looking at a
LISTed program, you will see the regular program lines, fol
lowed by a beep, and the inverse asterisk character. This is the
return code (155) for the return keypress after each physical
program line.

Option 6 will give you a table of all the sectors used by a
given file, if you supply the starting sector. In many cases, the
sectors will not be sequential.

Similar to the file trace is main menu option 4. This is
used to look at a block of contiguous sectors by inputting the
starting sector and the number of sectors. This will not follow
the linked list method of the trace; it will ignore forward
pointers.

Since DOS-created sectors all contain the number of their

235

Chapter 5

associated directory entry, it is possible to make a map of the
disk, marking each sector with the file that it is linked to. This
is just what option 5 does. Run it, with a disk that has a lot of
files on it and has been well used with resaving and reloading.
It takes a few minutes to map all 720 sectors. If you have a
printer, you might want to toggle into print mode to save a
copy of the map for future reference.

The file ID number of each sector is read in turn, and a
single character is put on the map: a 0 for file 0, a 1 for file 1
(the second entry), and so on. After file 9, uppercase alphabet
characters are put in, A-Z, then lowercase a-z. Since there are
64 possible filenames per disk, there could still be two files
after z. These will be the next ATASCII characters, numbers
123 and 124 on Appendix page C-3 in the Atari manual. Also,
if a bad sector is found, it is displayed as an asterisk. Bad sec
tors are often used as a protection device on commercial disks.

Most sectors on a partly full disk will probably be zeros.
This doesn 't mean they are part of file number O-they just
don 't have anything in them. To find out which of those sec
tors are really part of file 0, use option 3 or 6.

Since file sectors for a given program do not have to be
contiguous, it may be that a much-modified program is spread
all over the disk. For example, suppose you write and save
programs A, B, and C in that order. They are stored sequen
tially on the disk, with so many sectors per file (say 10 each).
Then you go back and modify program A, adding some lines
so that it takes up 15 sectors. When it is saved, DOS will still
use the first 10 sectors-but it will also take 5 more, the first 5
available after the sectors for program C. So the file linkage
map becomes A-B-C-A.

Then you might modify program C to give A-B-C-A-C,
and so on. With a heavily modified disk, programs are here,
there, and everywhere. The sector linkage map will show this .
All this splitting up makes the disk more prone to LOAD and
SAVE errors, since the driver has to jump all over the disk for
a given file. It is also slower. Duplicating the disk will still re
tain the same organization on the new one, but using the
COpy option of DOS, with filename *.*, file sectors will all be
placed contiguously on the new disk, making it more reliable.

236

Chapter 5

DOS Sector Map
Since file sectors can be dispersed on a disk, you might won
der how DOS keeps track of what sectors are in use (and thus
should be protected from overwriting). It would be impractical
to check all sectors for each SAVE. Instead, DOS maintains a
sector map of the disk, updated with each new modifying op
eration. This map, a bitmap, is stored in sector 360. Thus sec
tor 360 is a special reserved sector, created during formatting.
360 was chosen since it is near the middle of the disk, and so
has a short average access time. That is important, since it is
accessed during each data saving operation.

Run main menu option 1. Type in 360 for the sector.
Choose option 4 (which only appears for a sector 360 choice),
a hex map of sector 360. It takes a few seconds for the conver
sion of numbers to hexadecimal, so be patient. You will then
see the contents of sector 360 displayed in hex. Probably this
will be mostly F's and O's.

Zeros indicate sectors that are in use (or thought to be in
use by the DOS). Actually each 0 marks four sectors in use,
since this is a bitmap. Each set of two hex digits represents
one byte. A byte is eight bits, so each two hex digits represent
eight sectors on the map. F is the hex digit for decimal 15,
which in binary is 1111 . Free sectors on a disk are shown as
l 's, so FF means that there are eight free sectors. C in hex
equals 12 decimal, which is binary 1100. Thus a C on the map
means two free sectors followed by two in-use (locked) sec
tors. In-use sectors are locked out from use by the DOS,
whether or not this locking was done by the DOS or by some
other method (for example, this program). Thus, you can re
serve space which will never be touched by DOS.

It may take a while to get used to reading the sector map
if you are not familiar with hexadecimal numbers. To help,
decimal numbers that show what sector is represented by the
last bit of the last number on that line are listed on the right
side of the screen. You can count backwards to identify the
other sectors.

Locked Sectors
Format a new disk and leave it blank. Load and run
Diskovery, then put the blank disk back in. Choose main
menu option 9, lock/unlock sectors. Start at sector 700 and

237

Chapter 5

specify four sectors. Specify lock. When the beeps stop, go
back to the main menu and choose option 1; then select op
tion 4 for a hex map of sector 360. Notice that not all of sector
360 is used for the hex map. Also notice that the map does
not start at byte 1 of sector 360. Although the sector identifier
on the right of the map goes up to sector 751 , that is just a
reference number. Actual disk sectors end with 720.

Sector 360 also contains this information; bytes 4 and 5
have the free sector count that is used on the DOS display. It
is stored in low jhigh form. Take the value of byte 5 times
256, add the value of byte 4 (do a decimal dump of sector 360
if you're uncertain about hex), and the result is the free sector
count of the disk. This number is updated as needed by the
DOS, and also by the Diskovery program.

Note the values of bytes 4 and 5 from the map of your
blank test disk with the four sectors reserved. It should come
out to 707 - 4, or 703. Go back to the main menu and run op
tion 8. Leave the same disk in as both source and destination
disk.

Specify sector 690 as the starting point. You will hear
various beeps and clunks. When it's done, run a disk map of
sector 360 to see the lockouts. What has been done is that sec
tors 360-368, the DOS directory sectors, have been copied and
protected, starting at sector 690. Run a sector dump of 690 to
verify this-it should be a copy of the disk bitmap.

If an error is made saving a sector in an individual file to
the disk, only that file is lost. However, if an error is made
saving a directory entry or the bitmap, it may make all pro
grams on a disk inaccessible. If you have a copy of these sec
tors, though, you could put them back aright, making the disk
healthy again. Thus option 8 can be used to give some measure
of protection for important disks, by saving the directory sectors
elsewhere on the disk in case they are needed. You could also
save directories from a number of disks on a separate directory
backup disk. Although the sectors might not be absolutely cur
rent if a lot of changes have been made, they will usually
allow many otherwise lost programs to be recovered.

Copying Sectors
Since the sector 360 bitmap is resaved every time a SAVE is
done, it is the most likely one to go bad. Check for garbage in
sector 360 on a problem disk. You may be able to modify it,

238

Chapter 5

or to copy sector 360 from a full disk to protect all sectors.
Option 7 on the main menu allows you to copy single sectors
from anywhere to anywhere, on the same disk or to other
disks. The bit map will also be updated with this option .

The last option on the main menu, 10, will allow you to
use the various features of Diskovery to examine the comput
er's main memory, instead of disk storage. For example, select
this option and give 42240 for the start of memory to look at.
You may then enter the number of sequential 128-byte blocks
to dump. Memory will be displayed in 128-byte blocks, since
this option uses the same routines as the sector dumps and
each sector is 128 bytes long.

Next indicate either automatic sequential dumps or pause
between blocks. Finally, specify the type of display. Remem
ber that a hex display will take longer to do the conversions
than the others. With a starting location of 42240, and a
character dump, you will see some of the BASIC keyword
identifiers, since you are looking into the brains of the BASIC
cartridge. Somewhere in main memory, you could also find
the actual lines for the Diskovery program since it is currently
loaded in. Look at memory starting at 1536 to see the machine
language routine to toggle the print mode. Those numbers in
decimal should be the same as the DATA items on lines 230
and 231 in the program listing.

Use this program with caution. Misuse can really scramble a
disk. But proper use will allow you to rejuvenate sick disks
and to perform nice non-DOS tricks. Either way, you'll learn a
lot in the doing.

Diskovery Variables List
BIT$

BLA$
BUF$

DSKINV$
G$
H$
HEX$
KNOT$
ND$
OAR$

Lookup table of decimal numbers with successive bits
set.
String of blanks for erasing screen text.
Buffer area used to store information from a sector, or to
be sent to a sector.
Calls the OS subroutine for disk access.
Holds Y or N for user response.
Stores BUF$ contents after hex conversion.
Lookup table of hex digits for conversion.
Machine language routine to logically NOT a number.
Logically ANDs a number with another number.
Logically ORs a number with another number.

239

Chapter 5

VB$

AP
B
BIT
BITMOD
BLK
BN
CN
FN
FP
FUN
H
HH
HL
I
J
K
LK
M
MEM
N
NB
NFRE
NFREH
NFREL
NR
NSL
NUM
P
PK
Q
RSLT
SEC
SECHI
SECLO
SS
SSH
SSL
TY
WH

240

Machine language routine to initialize the vertical blank
routine set up on page 6.
Decision for auto trace or pause.
Temporary variable for reading data into strings.
ATASCII value of BIT$(BITMOD).
Index to BIT$.
Start of disk control block in memory.
Bytes of same number to insert into BUF$.
Number of characters to insert into BUF$.
File number from sector data.
Forward pointer to next file sector.
Holds function number for disk access routine.
ATASCII value of BUF$ characters to convert to hex.
High byte of H.
Low byte of H .
Loop index variable .
Temporary storage and loop index.
Byte from screen in printer dump routine.
Choice variable for lock/ unlock options.
Temporary storage of PEEK values.
Pointer to memory block for dump.
Index variable to H$.
New byte value to insert into BUF$.
Number of free sectors from sector 360.
High byte of NFRE.
Low byte of NFRE.
Error number for bad sector read.
Number of sectors to lock/unlock.
Number of sectors or blocks to look at.
Byte from keyboard to continue at keypress.
Variable for temporary PEEK value storage.
USR function dummy variable.
Result of logical operation subroutine.
Sector to access.
High byte of SEC.
Low byte of SEC.
Starting sector for operations .
High byte of SS.
Low byte of SS.
Type of dump requested.
Main menu choice.

Diskovery Subroutines List
Initialization.
Main menu and submenus.
Look at memory instead of disk.
Handling some menu choices.
Character dump.
Change a sector.
Erase text.
Copy sector option.
Backup directory option.

Chapter 5

100-260
300-770
660-670
780-1000
1040-1105
1106-1160
1200
1400-1440
1600-1640
1700-1799 Lock and unlock sectors on bitmap, and update free sec

tor count.
1800-1840
2010-2200
3000-3060
4040-4060
4205-4240
5015-5060
7010-7100
8010-8100

Single file map options .
Sector linkage map option.
Screen dump to printer.
Hex conversion.
Hex dump.
Decimal dump.
Determine file number and forwarcj pointer.
Read/write file sector.

Diskovery
Caution: The misuse of this program can destroy valuable
programs; please read the accompanying article before using
Diskovery.
For error-free program ell try, read "The Automatic Proofreader" ill Chapter 1 before typhlg
ill this program.

JA 10 REM LISTING 1
00 100 REM DISKOVER.Y *** BY JOHN C. WAUGH --

4/83 ***
ON 105 CLOSE #2:0PEN #2,4,i!I,"I<:":CLOSE #4:0PEN

#4, 12,0, "S: " : POKE 7 66, III
HI 20121 DIM BUF$ (130), DSI<INV$ (11l1), G$ (1), ND$ (12)

, HE X $ (16) , H$ (1 155) , BLA $ (38) , VB $ (1 1) , BIT
$ (8), OAR$ (12), KNOT$ (12)

GP 203 HEX $ = " QI 1 23456789 ABC D E F " : B L A $ = "
{37 SPACES}"

~205 DATA 104,32,83,228,96
~210 RESTORE 205:FOR 1=1 TO 5:READ B:DSKINV$

(I)=CHR$(B):NEXT I:REM PLA,JSR 53E4 (
DSI<INV) ,RTS

FH 2 1 5 D A T A 1 QI 4, 1 il! 4 , 1 !I! 4, 1 3 3 , 2 12! 9, 1 f2! 4, 1 l2! 4 , 3 7 , 2121 9
,133,209,96

241

Chapter 5

JE220 RESTORE 215:FOR 1=1 TO 12:READ B:NDS(I,
I)=CHRS(B):NEXT I:REM PLA,PLA,PLA,STA20
9,PLA,PLA,AND209,STA209,RTS

~225 OARS=NDS:OARS(8)=CHRS(5) :KNOTS=NDS:KNOT
S(8)=CHRS(69):REM CHANGE AND TO OR AND
EOR FUNCT.

AC 2 3121 D A T A 7 2, 1 6 9 , 8, 1 4 1 , 3 1 , 211! 8, 1 7 3 , 3 1 , 2121 8 , 2111 1
~ 5 ~ 2{!J8, 8, 173,255:r 6:- 73,255, 141 !' 255 ~ 6

AG 2 3 1 D A T A 1 7 3 , 2 5 5 , 6 , 2111 1 , 2 5 5 , 2 4 111 , 7, 1 6 9, 1 4 8, 1 4
1 , 1 98 , 2 , 208 , 5, 1 69, 1 62, 1 4 1 , 1 98 , 2, 1!Z14, 76 ,
95,228

M235 RESTORE 230:FOR 1=1 TO 44:READ B:POKE 1
535+I,B:NEXT I:REM SEE ASSEMBLER LISTIN
G ~(TEXT

IT240 DATA 104,162,6,160,0,169,6,32,92,228,96
00245 RESTORE 240:FOR 1=1 TO 11:REAO B:VBS(I)

=CHRS(B):NEXT I
FE 250 Q=USR (AOR (VBS))
EL 2 6 111 J = 1 28 : FOR I = 1 T 0 8: BIT $ (I) = C H R S (J) : J = J /

2:NEXT I
CE 30111 L M = 2 3 : PO SIT ION Q!, 11! :? C H R S (1 25) ; " (0 N A 5

TANDARD DOS 0 I SK": ':" "SECTORS 361-368 AR
E THE DIRECTORY)":? :?

BP 31111 ? "1 =LOOK AT SECTOR"
EJ 3 1 5 ? "2 = L 001< AT 5 E C T 0 F: AS D 1 R E C TOR Y 5 E C "
M320 ? "3=TRACE FILE BY HAND"
HL 325 ? " 4 = L 001< AT B L 0 C K 0 F SEC TOR S "
PE 3312! ? "5=SECTOF: L I NVAGE MAP OF D I SV"
FB 335 ..., "6 = SIN G L E F I L E MAP"
JJ 34Q! ? "7=COPY SECTOR"
PP 345 ? "8 = B A C I< U P D IRE C TOR Y "
Nl3512! ? "9=LOCl<fUNLOCI< SECTORS"
FN 35 1 ? "1 i11 = L 0 0 KAT ME M 0 R Y "
EF 355 ? : 1 NPUT WH
~360 ON WH GOTO 400,400,450,480,2010,1800,14

00,1600,1700,375,1900
PJ 375 ? CHRS (125):? :? :? "STARTING MEMORY LO

CATION";:INPUT MEM

EL 376 ? :? "# OF 128 BYTE BLOCKS TO LOOI< AT";
:INPUT NUM:GOTO 500

FE 4012! ? C H R S (1 25) :? :? : ? "(D IRE C TOR 'f SEC TOR S
= 361 - 368)":? :? "WHAT SECTOR";: INPU

T SEC
lK430 IF WH=2 THEN T'f=1:GOTO 720
GH 44 i1! GOT 0 6 i110
PN 45 i1! ? C H R S (1 25) :? :? : ? "L>J HAT SEC TOR TO S T A

RT TRACE";: I NPUT SEC: GOTO 5 (21{21
H 48i11 -:> CHR$ (125):? :? :? "NUMBER OF SECTORS"

;: INPUT SEC2:? : ? "STARTING SECTOR";: IN
PUT SECI

242

Chapter 5

AB 50 QI ':' C H R $ (1 25) : ':' : ':' : ':' "1 = AUT 0 T R ACE" : ':' "2

=PAUSE": ':' : INPUT AF'
BF 6 ~I QI ':' C H R $ (1 25) : ':' : ':' : ':' "T Y P E 0 F DIS P LAY: " :

':':7 "l=CHAF:~lCTER":':':':' "2=HEXADECIMAL"
:7 :':' "3 = DECIMAL"

~605 IF SEC <>360 THEN? : INPUT TY:GOTO 650
CA 6 1 QI ':' : ':' "4 = SEC T 0 F: 36 kl HEX MAP": ':' : I N PUT T Y

GK 6 5 0 I F W H < > 1 QI THE N 7 121 QI
IJ660 LM=12: ? CHRS(125):SEC=1:FOR M=MEM TO ME

M+128*(NUM-l) STEP 128:POSITION 2,~1 :':'''

MEMORY START I NG P,T "~M

10670 FOR PK=1 TO 128:BUFS(PK)=CHRS(PEEK(M+PK
-l»:NEXT PI<:GOTO 735

LF700 IF WH=4 THEN FOR SEC=SECI TO SEC1+SEC2 -
1

JP 72QI BUF$ (128) =" ": FUN=82: REM GET SECTOR
OD 73QI GOSUB 8QI10

W735 REM HOLD PLACE FOR FUTURE DISASSEMBLER
L I NI<

~740 ON TY GO S UB 1040,4040,5015,4040
DJ 765 I F W H = 1 0 THE N 84 121
DP 770 I F W H < :> 2 THE N 8 QH1i
IL78QI':' :':' "DIRECTORY ENTF:Y BYTES:":? :':' "STA

RT+QI=FLAG":':' "(66/NORMAL; 128/DELETED;98
ILOCVED;etc)"

DJ 79 QI ':' "S TAR T + 1 , 2 = SEC TOR CO IJ N T L 0 / HI" : ':' "S T A
RT+3,4=STAF: TING SECTOR LO/HI"

HI 800 GOSIJB 7010:REM GET FILE # AND FORWARD P
OINTER (FN AND FPI

CJ 8 1 III PO SIT ION 2, 2 0 : ':' "F I LEN 0 .. = "; F N : P 0 SIT I
ON 2,21: ':' "FORI>JARD POINTER TO SECTOR ";
FP

LL 82 QI PO SIT ION 2, 22 : ':' "E X T R A SEC TOR BY T E S
; 125-ASC(BIJFS(128»

L0840 IF PEEV(1791)=255 THEN GOSIJB 3000
DC 845 I F A P = 1 THE N GOT 0 9 2 QI
BC 85 QI PO SIT ION 2, 2 3 : ':' "A N Y KEY TO CON TIN U E " ; :

GET #2,P:GOSUB 1105
~920 IF WH=3 AND FP=0 THEN POSITION 2,23:':' B

LAS;:POSITION 2,23:':' "END OF TRACE";:AP
=2:WH=1:GOTO 850

~930 IF AP<>1 THEN POSITION 2,21:7 BLAS:POSI
TION 2,21: 7 "PRESS ANY ~~ EY TO CONTINUE"

; : GET #2 , P
Cl935 IF WH=10 THEN NEXT M
IT940 IF WH=3 THEN SEC=FP:GOTO 720
IG950 IF WH=4 THEN NEXT SEC
IN 1000 GOTO 300
I" 1040 IF WH=HI THEN 1047

243

Chapter 5

JC 1045 POSITION iii, 0:? CHR$ (125); "SECTOR #"; SE
C; .. (BEEP 1:;#iiIJ:;: CODE AT 1[3)": ';>

PL 1 047 PO K E 766, 1
NJ 1 060 ? "B Y T E " , "0 2 4 6 8 ACE { 3 SPA C E S } SST

LTH":';> :FOR 1=1 TO 8
NM 1 065 ? 1 6 * (I - 1) ; " - " ; 1 6 * 1 - 1 , : FOR J = iii T 0 1 5 : K

=16*(I-l)+I+J
a 1067 IF ASC(BUF$(K,K»=155 THEN POKE 766,0:

? CHR$(253);"I[3";:POI<E 766,I:GOTO 1070
FO 1 06 9 ? B U F $ (K , 1<) ;
FB 1070 NEXT J
~1071 IF SEC (361 OR SEC > 368 THEN';> :GOTO 107

5
~ 1072 POSITION 30,3+1:';> 256*ASC(BUF$(16*(I-l

) +5» +ASC (BUF$ (16* (1 - 1) +4»
rn1073 POSITION 35,3+1: 7 256*ASC(BUF$(16*(I-l

) +3» +ASC (BUF$ (16* (I - 1) +2))
~ 1075 NEXT I:POKE 766 ,0
LA 1078 RETURN
~ 1103 IF PEEK(1791)=255 THEN GOSUB 30 00
NF 1 1 iii 5 I F W H = 1 iii THE N POP : GOT 0 9 3 5
IH1106 FOR 1=0 TO 3:POSITION 2,20+1:? BLA$;:N

EXT I
DA 1107 GOSUB 120111: 7 "CHANGE SECTOR (Y/N) ";: IN

PUT G$:IF G$ <> "Y" THEN RETURN
NP 1110 GOSUB 120121: ';> "I NSERT # (N) OR CHARACTE

RS (C)";: I"NPUT G$
lC1112 IF G$="N" THEN 11 30
LE 1 1 1 4 I F G $ < > .. C" THE Nil 1 QI

NC 1 1 1 6 H $ = " ": GO SUB 1 2 (II 0 : ';> " HOW MAN Y C H A R ACT E
RS TO CHANGE";:INPUT CN

NO 1 1 1 8 GO SUB 1 2 0 QI :? "S TAR TAT I.>J H 1 C H B Y T E " ; : I N
PUT BYTE

EL 1 1 20 GO SUB 1 20121 :? " T Y P E "; C N;" C H A F: ACT E R S T
o BE INSERTED •• ":INPUT H$

~ 1122 BYTE=BYTE+l:BUF$(BYTE,BYTE+CN-l)=H$:GO
TO 1150

PA 1130 GOSUB 120!Z1: ? "HOW MANY BYTES TO SAME #
" ; : INPUT BN

LH 1 1 42 GO SUB 1 200 : ';> "B Y T E # TO BEG I N MOD. ";:
INPUT BYTE:B=BYTE+l

n 1144 GOSUB 120iil:? "OLD BYTE"; BYTE; "="; ASC (
BUF$(B,B»;

CF 1146 ? " I I NEW BYTE "; BYTE; "=";: INPUT NB
~ 1148 FOR I=B TO B+BN - l:BUF$(I,I)=CHR$(NB):N

EXT I
MC 1150 G$=" ":GOSUB 120111: ';> "TYPE 'Y' TO MODIF

Y SECTOR";:INPUT G$:IF G$ <> "Y" THEN 11
05

~ 1160 FUN=87:GOSUB 8010:POP :GOTO 720

244

Chapter 5

& 121010 POSITION 2,21: 7 BLA$:PoSITIoN 2,21:RET
URN

DB 1 41010 PO SIT ION 10, ~l : 7 C H R $ (1 25) ; : ';' : 7 "C 0 P Y W
HICH SECToR";:INPUT SEC:? :? "INSERT S
oURCE DISK, HIT ANY KEY"

DH 1 4 1 10 GET # 2 , P : B U F $ (1 28) = " ": FUN = 8 2 : GO SUB 810
112J:SECT=SEC:? :7 "SAVE TO WHAT DEST. S
ECToR";:INPUT SEC

JA 14310 7 :? "I NSERT DEST. DISK, HIT ANY KEY":
GET #2,P:FUN=87:GOSUB 812J112J:LK=I:SS=SEC
:NSL=I:GoSUB 1710

MM 1 4410 7 :? " 0 L D SEC TOR "; SEC T; : 7 " S A V E D AS
NEW SEC"; SEC:? :? "ANY I<EY FOR MENU":
GET #2,P:GoTo 3010

DK 1 6 10 10 P 0 SIT ION {!l, 10 : 7 C H R $ (1 2 5) ; :? :? "I N S E R T
DISK W/DIR. TO SAVE":';' "AND HIT ANY K

EY TO CoNTINUE":GET #2,P
EH 1 6 1 13 FUN = 8 2 : B U F $ (1 28) =" ": FOR I = (!I TO 8: SEC =

360+I:GoSUB 812J10:N=128*I+l:H$(N,N+127)
=BUF$:NEXT I

NM 1 620 7 :? "S TAR TIN G S EC TOR TO S A V E D I R. AT"
; : INPUT SS:? :? "I NSERT DEST. DISK, PU
SH ANY KEY":GET #2,P

BC 1 630 FUN = 8 7 : FOR I = (!l T 0 8: SEC = S S + I : N = 1 28 * I + 1
:BUFS=HS(N,N+12 7):GoSUB 8010:NEXT I:LK
=1:NSL=9:GoSUB 17110

OM 1 64 0 7 :? "D IRS A V E DON SEC "; S S;" TO"; S S +
8:7 :? "ANY KEY FOR MENU":GET #2,P:GoT

FC 17013

EO 1705

DE 17113

LN 1720

CK 1722

SF 1725

FL 1730

JE 1735

o 312J1Z1
POSITION IZI,I2J:? CHRS(125):? "1=LoCK":';'
"2=UNLoCK":? :INPUT L K
? :? :? "START AT SECToR";:INPUT SS:';'
: 7 "HOW MANY SECTORS";: INr'UT NSL
SEC=3612J:FoR 1=10 TO NSL-l:BUF$(128)="
:FUN=82:GoSUB 81010
S=SS+I:SSH=INT(S/8):SSL=S-8*SSH:BYTE=A
SC(BUF$(11+SSH»:BITMoD=SSL+l:BIT=ASC(
BITS(BITMoD»
Q=USR C ADR C NDS) ,B IT, BYTE) : IF (LK=2 AND
PEEKC212J9) >10) OR CLK=1 AND PEEKC212J9)=0)

THEN 1795:REM ALREADY RIGHT BIT
IF LK=2 THEN Q=USRCADR(oARS),BIT,BYTE)
:RSLT=PEEK(212J9):GoTo 1735
Q=USR(ADR(KNoTS),BIT , 255):RSLT=PEEK(20
9):Q=USR(ADRINDS) ,RSLT,BYTE) :RSLT=PEEK
(2109)
BUF$(11+SSH)=CHRSCRSLT):NFRE=ASC(BUFS(
4»+256*ASCCBUFSC5»:IF LK=1 THEN NFRE
=NFRE-l:GoTo 1745

245

Chapter 5

~1740 NFRE=NFRE+l
DE1745 NFREH=INT(NFRE/256):NFREL=NFRE-256*NFR

EH
B"1750 BUF$(4)=CHR$(NFREL):BUF$(5)=CHR$(NFREH

)

ru 1790 FUN=87:GOSUB 8010
PO 1795 NEXT I:IF WH=7 OR WH=8 THEN RETURN
KG 1799 GOTO 300
~1800 BUF$(128)=" ":N=0:POSITION 0,0:? CHR$(

125):? "FILE STARTS AT SECTOR";:INPUT
SEC:POKE 82,I:POKE 201,5:?

ND 1810 FUN=82:GOSUB 8010:GOSUB 7010:N=N+l:IF
N=9 THEN N=I:? :? "{UP}";

PL 1820 ? SEC,: SEC=FP: IF FP<)- 0 THEN 1810
~ 1830 POKE 82,2:POKE 201,10:? :? :? "END OF

MAP ••• ":IF PEEK(1791)=255 THEN GOSUB 3
000

LP 1840 POSITION 2,23:? "ANY KEY"; :GET #2,P:GO
TO 300

~2010 ? CHR$(125):SEC=0:FUN=82:BUF$(128)="
:POSITION 1,23:? "ANY KEY TO TERMINATE
" . ,

EN 2020 POKE 764,255:POKE 766.1:FOR J=0 TO 23:
POSITION I,J:? J*30+1; "-"; (J+l)*30;

FE2025 POSITION 9,J:FOR 1=1 TO 30:SEC=SEC+l
002030 IF PEEK(764)=255 THEN GOSUB 8010:GOSUB

7010:GOTO 2038
&212135 POKE 764,255:POP :POP :GOTO 2150
PE2038 IF NR() 1 THEN? "*";:GOTO 2100
OC2040 IF FN (10 THEN? CHR$(FN+48);:GOTO 211210
~2050 IF FN}9 THEN IF FN (36 THEN? CHR$(FN+5

5);:GOTO 210121
~2060 IF FN)35 THEN? CHR$(FN+61);
A02100 NEXT I:NEXT J
~215!21 IF 'PEEK(1791)=255 THEN GOSUB 31210121
OC2160 POSITION 2,23:? BLA$;:POSITION 1,23:?

"ANY KEY";
OD2200 POKE 766,0 : GET #2,P:GOTO 300
lA300!21 POKE 764,255:POKE 766,I:TRAP 3!2160:CLOS

E #3:0PEN #3,B , 0,"P : "
IF 3020 FOR J=!21 TO LM:FOR 1=0 TO 39
OC 3030 POSITION I, J: GET #4,K
EH 3035 I F K > 1 27 THE N K = I< - 1 28
~3036 IF K(32 OR K=127 THEN? #3;"*";:GOTO 3

045
6P 3040 ? #3; CHR$ <10 ;
~3045 NEXT I:LPRINT :IF PEEK(764)=255 THEN N

EXT J:GOTO 3050
~3047 POKE 764,255:POP :GOTO 3050
"H3050 LPRINT :LPRINT :LPRINT

246

Chapter 5

~3060 POKE 766.0:TRAP 40000:RETURN
EB4040 FOR 1=1 TO 382 STEP 3:H=ASC(BUF$(INT(I

J3)+I»:HH=INT(HJI6):HL=H-16*HH:HH=HH+
I:HL=HL+l

DB4050 H$(I,I)=HEX$(HH.HH):H$(I+l.l+l)=HEX$(H
L.HL):H$(I+2.1+2)=" ":NEXT I

004060 IF WH=10 THEN? :GOTO 4210
CD 4205 ? C H R $ (1 25) :? :? " SEC TOR "; SEC;" HEX D

UMP":?
E4210 FOR 1=1 TO 16:? 8*(I-l);"-";8l1-1.H$(2

4*(I-l)+1.24*1):NEXT I
~4220 IF TY=4 THEN J=47:FOR 1=5 TO 16:POSITl

ON 36.1:? J;:J=J+64:NEXT 1
KK 4240 RETURN
IK5015 POKE 82,1:POKE 201.5:REM COLUMN WIDTH
MN 5017 IF WH= 10 THEN GoTO 5025
DG 5020 PO SIT ION 2. 0 :? C H R $ (1 25) ; "S E C TOR "; SEC

;" DECIMAL DUMP"
~5025 ? :? .:FoR 1=0 TO 7:? I.CHR$(30);:NEXT

I:? :?
6P 5 030 FOR I = 1 T 0 1 6 :? 8 * (I - 1) ,
FN5040 FOR J=1 TO 8:? ASC(BUF$(8*(I-l)+J».CH

R$ (30) ; : NE X T J:?
M5050 NEXT I:POKE 201.10:PoKE 82,2
~:L 5060 RETURN
IH7010 FP=ASC(BUF$(126»:Q=USR(ADR(ND$),FP.3)

:FP=PEEK(209)*256:FP=FP+ASC(BUF$CI27»
~7050 FN=ASCCBUF$CI26»:Q=USRCADRCND$).FN,25

2): FN=INT CFNJ4)
KI 7100 RETURN
~8010 BLK=768:REM START OF DISK CONTROL BLOC

K
~8020 POKE BLK+l,I:POKE BLK+2,FUN
PE8040 ABUF=ADRCBUF$):AH1=INT(ABUFJ256):ALo=A

BUF-256*AHI
~8050 POKE BLK+4.ALO:POKE BLK+5.AHl
IC8060 SECHI=INT(SECJ256):SECLO=SEC-256*SECHI
~8070 POKE BLK+10.sECLO:POKE BLK+l1,SECHl
II 80b0 Q=USR(ADR(DSKINV$»:NR=PEEK(BLK+3)
GN 8085 1 F WH=5 THEN 8100
GL 8086 1 F NR= 1 THEN 81 QI0
NN 8090 POSITION QI, 0:? CHR$ (125):? :? :? "SECT

DR ";SEC;" = BAD SECTOR":IF AP=1 THEN
8100

MF 8095 ? :? " ANY KEY TO CON TIN U E " : GET # 2 • P : PO
P :GOTO 300

KJ 8100 RETURN

247

Appendix

How to Type In Programs

In order to make special characters, inverse video, and cursor
characters easy to type in, we use the following listing
conventions for all the programs in this book. Please refer to
the table and explanations if you come across an unusual sym
bol in a program listing.

Conventions
Characters in inverse video will appear like: Ii II: (OJ #I::;...., ... Ji 11.];;(.:

Enter these characters with the Atari key.

When you see Type See
[CLEAR} ESC S HIFT iii Clear- Screen

[UP } ESC C TRL - .,. Cursor Up

[DOWN} ESC CTRL ~ Cursor Down

[LEFT } ESC CTRL + ~ Cu r s or Left

[RIGHT} ESC CTRL • .. Cursor Right

[BAC K S } ESC DELETE ~ Backspace

{DE LETE } E SC CT RL DELE TE tJ Delete Character

[IN SERT} E SC CTR L IN SER T D Insert Character

[DEL LINE } E SC SHIFT DELETE G Delete Line

[IN S LINE} ESC SHIFT IN SERT 0 Insert Line

[TAB} ESC TAB • TAB key

(CLR TAB) ESC C TRL TAB ~ Clear TAB

[SET TAB } ESC SHIFT TAB I:l Se t TAB stop

(BE LL } E S C C TRL '2 [OJ Ring Bu zz er

(ESC} ESC ESC ~ ESCape key

Graphics characters, such as CTRL-T, the ball character, will
appear as the normal letter enclosed in braces, {T} .

A series of identical control characters, such as 10 spaces,
3 cursor lefts, or 20 CTRL-Rs, will appear as {to SPACES}, {3
LEFT}, {20 R}, etc. If the character in braces is in inverse
video, that character or characters should be entered with the
Atari key.

Program entry can be mistake-proof if you use "The
Automatic Proofreader" by Charles Brannon; see Chapter 1.

251

Index

abbreviations 48
address 4
ADSR envelope 23-24
adventure games 101-2
"Alphabone Hunt" program v, 121-25
altitude 209
ANTIC chip 3
applications 163-219
arrays 19-21, 38, 167-68
array /string table 40-41
"Art Class" program 135-40
ASCII 166
Atari 825 printer 156
Atari Program Recorder 221
"Atari Tape Enhancer" program package

221-24
ATASCII 5, 38-39, 41, 231, 233, 236
attack 23
audio control register 214
"Automatic Proofreader, The" 47-49
azimuth 209
BASIC keywords 185
binary configurations of memory loca-

tions, manipulating l3-18
border color 8
" Box Hunt" program 99-100
BREAK key 132, 216

disabling 8
bubble sort 195
buffer 222, 229-30
cassette buffer 222
characters 56, 103, 121, 154-55
checksum 47
chords 25
"Chords" program 25, 30-31
cold start 8
color 8-9, 14,45-46, 126, 154
" Color Matcher" program 45-46
color registers, POKE and 8-9
comma 157
COMPUTE!'s First Book of Atari Graphics

93
COMPUTEt's Mapping the Alari 12
condensed print 167
COPY DOS command 229
copying sectors 238-39
"Coupon Fi le" program 182-92
cursor 9-10
cursor position 10
DATA statement 156, 158, 195
DATA statement file 193
decay 23
disabling the keyboard 12

"Disk Catalog Utility" program v,
225-28

disk control block 229
disk directories 163-64
disk directory 225-26
disk drive 135, 182
disk file ID number 236
disk files v, 135, 167-68, 198, 225-39
disk mapping 235-36
"Diskovery" program 229-47
display list 154
display list interrupt 136
distortion 23
Dll. See display list interrupt
DLI pointer 136
"Dollars from Heaven" program 93-98
DOS 229
DOS directory 229-39
DOS sector map 236
"Dot Drawing" program 132-34
"Dots" program 73-78
"Dragon's Den" program 101-12
DRAWTO command 44, 163
duration, of a musical note 25, 214-15
dynamic keyboard 193
education 119-60
educational programs, adding excitement

to 154-55
"Envelope" program 26-27
Epson MX-I00 printer 168
" Exciting Inputs" program 155
filename 135
files 167-68
fine scrolling (Xl) 11
FOR-NEXT loop 142
foreign language symbols (Xl) 11
games 53-117
GET statement 5
GOSUB 19, 21
GOTO statement 21
graphics 6, 20-21 , 14,44, 56, 103, 121,

154-55, 163
graphics cursor 10
GRAPHICS 0 mode 11, 136, 163
GRAPHICS 2 mode 45
GRAPHICS 3 mode 43
GRAPHICS 8 mode 43, 136
GRAPHICS 10 mode 135-37
GTiA graphics chip 3, 135
HELP key (Xl) 12
" Horizon: A Celestia l Coordinates Cal

culator" program 209-13
" Hyperword" program 141-47

253

INPUT statement 5
interrupt 56,93,136, 148,216,231
inverse characters 9-10
inverse key 6-7
inverse video 6
" Investment Tracker" program v,

193- 208
invisible disk fi les 232-34
" Invisible Music" program 214-17
joystick 19-22, 56, 65, 73-74, 79, 99,

102-3, 113, 135
"joystick Reading with Arrays" program

21-22
" joys tick Reading with GOTO" program

22
joystick routines, effici ent placement of

19
jSR opcode 216, 230
key 6, 7,8,9, 12, 14,43,53, 65, 80, 121 ,

132, 141,216, 230
keyboard 5-6, 163, 193

checking with peek 5
keyboard buffer 5-6
keycodes 5
large characters 154-55
LIST command 158
LOAD DOS command 229
locked sectors 237-38
logical program line 185
LPRINT statement 225
luminance 8, 45
machine language routines 53, 21 , 163
machine language, mixed with BASIC

66-67
" Melodies" program 24, 27-29
" Memory Match" program v, 113-17
music, outside of BASIC 214- 16
" Nessie" program v, 53-64
NEW command 43
note, musical 214-16
offset 41-42
operating system 229-30
OPTION key 7, 80, 141
PEEK function 3- 5
pitch 23, 25
" Player 1" program 29
" Player 3" program 32
" Player 4" program 26, 37
player/missile graphics 3, 14,53, 80, 121
PLOT command 20-21 , 44, 163
POKE statement 3-5, 132
POKEY chip 3
POSITION statement 10, 57
protec ting disk fil es 232
" Pyramid Math" program v, 126-31

254

question mark, input without 163
redefined characters 56, 103, 121
register 1, 4,8-9, 14,214
release 23
return key mode 193, 195, 196
" Reversi" program v, 79-92
right ascension 209
RTS opcode 216, 230
SAVE command 158
scalars 38
screen blanking 8-9
screen width 9
scrolling 11
sectors 229, 236, 237-38, 238- 39
SELECT key 7,53, 80, 141 , 230
sequential files 167-68
SETCOLOR statement 8-9, 126, 154
shadow regis ters 4
"Shopping List" program 163-79
6502 microprocessor 3
"Song Editor" program 26, 32-36
sort 195
sound 11 ,23-37, 214- 17
sound register 1, 14, 214
sound synthesizers 23
speaker 8
special characters, printing 157- 58
START key 7, 65, 80, 121
"Stock Market" program 148-53
stocks 193-97
string variabl es 38, 41 -43
strings 38, 4 1-43, 222
sustain 23
SYSTEM RESET key 8, 9, 14, 43
tabbing 10
"Tank" program 65-72
tape 221-24
"Tape Fil e Maker" program 222-23
"Tape Fi le Reader" program 223-24
tape files 221 - 22
"Test Maker" program 156-60
text cursor 10
text window 132, 136, 141 , 154, 163
timer interrupt 216
tone 214
transposition 48
TRAP statement 20-21
typing in programs 251
undeleting disk fi les 231-32
" Understanding PEEK and POKE" pro-

gram 13-18
universal time 209
USR statement 56, 67, 21
variable name table 38-40
variables 19- 21, 38-43, 167-68

VB!. See vertical blank interrupt
VBLANK 155
vertical blank interrupt 56,93, 148, 216,

23 1
VIC-20 computer 221

voice 23, 214
volume 23
warm start 8
wild card 225, 226
XL operating system 11-12

255

Notes

Notes

Notes

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COM
PUTE! Magazine, Use this form to order your subscription
to COMPUTE!,

For Fastest Service
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P,O. Box 5406
Greensboro, NC 27403

My computer is:
o Commodore 64 0 TI-99/4A 0 Timex/Sinclair 0 VIC-20 0 PET
o Radio Shack Color Computer 0 Apple 0 A tari 0 Other __
o Don't yet have one .. ,

o $24 One Year US Subscription
o $45 Two Year US Subscription
o $65 Three Year US Subscription
Subscription rates outside the US:
0$30 Canada
o $42 Europe, Australia, New Zeland/ Air Delivery
o $52 Middle East, North Africa, Central America/Air Mail
0$72 Elsewhere/Air Mail
o $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international
money order, or charge card,
o Payment Enclosed 0 Visa
o MasterCard 0 American Express

Acct, No, Expires I

Your subscription will begin with the next available issue,
Please allow 4-6 weeks for delivery of first issue, Subscription
prices subject to change at any time,

7511 99

COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!,

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P,O, Box 5406,
Greensboro, NC 27403,

Quantity Title

Machine Language for Beginners
The Second Book of Machine Language
COMPUTE!'s Guide to Adventure Games
Computing Together: A Parents & Teachers
Guide to Computing with Young Children
Personal Telecomputing
BASIC Programs for Small Computers
Programmer's Reference Guide to the
Color Computer
Home Energy Applications
Creating Arcade Games on the Timex/Sinclair
COMPUTE!'s First Book of PET /CBM
Commodore Peripherals: A User's Guide
All About the Commodore 64, Volume 1
COMPUTE!'s Commodore Collection, Volume 1
Every Kid's First Book of Robots and Computers
The Beginner's Guide to Buying a
Personal Computer

Price· Total

$14.95
$14.95
$12.95 __

$12.95 __
$12.95 __
$12.95 __

$12.95
$14.95
$12.95
$12.95
$ 9.95 __
$12.95 __
$12.95 __
$ 4.95t __

$ 3.95t __
• Add $2.00 per book for shipping and handling.
t Add $1.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order),
All payments must be in US funds,
NC residents add 4,5% sales tax.
o Payment enclosed.
Charge 0 Visa 0 MasterCard o American Express
Acct, No, _____________ _ Exp, Oate ___ _
Name ________________________ __

Address _______________________ _

City, ____________ _ State ___ _ Zip, __ _
• Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.

COMPUTE! Books
P.o. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books, If he or she
has sold out, order directly from COMPUTEL

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

COMPUTE! 's First Book of Atari
COMPUTE! 's Second Book of Atari
COMPUTE! 's Third Book of Atari
COMPUTE! 's First Book of Atari Graphics
COMPUTE!'s Second Book of Atari
Graphics
Mapping the Atari
COMPUTE!'s First Book of Atari Games
The A tari BASIC Source Book
Inside Atari DOS
Machine Language for Beginners
Second Book of Machine Language
Computing Together: A Parent and
Teacher's Guide to Using Computers
with Young Children
Personal T elecomputing
Home Energy Applications on Your
Personal Computer

Price Total

$12.95 __
$12.95 __
$12.95 __
$12.95 ' __

$12.95 __
$14.95 __
$12.95 __
$12.95 __
$19.95 __
$14.95 __
$14.95 __

$12.95 __
$12.95 __

$14.95 __

Add $2.00 shipping and handling . Outside US add
$5.00 air mail or $2.00 surface mail.

Please add shipping " handling for each
book ordered. __ _

Total enclosed or to be charged __ _
Ail orders must be prepaid (money order, check, or charge) , All
payments must be in US funds. NC residents add 4%% sales tax ,
o Payment enclosed Please charge my: 0 Visa 0 MasterCard
o American Express Acct . No. Expires

Name __ __

Address __ _

City ______________________ _ State _____ Zip ____ _

Country

Allow 4-5 weeks for delivery.
Prices and availability subject to c hange without notice.

	Cover
	Contents
	1: Getting Started
	PEEKs and POKEs
	PEEKing and POKEing around
	Two Fast and Simple Joystick Routines
	Three Music Editors for the Atari
	Exploring Atari Variables
	Atari Color Matcher
	Automatic Proofreader

	2: Games
	Nessie
	Tank
	Dots
	Reversi
	Dollars from Heaven
	Box Hunt
	Dragons Den
	Memory Match

	3: Education
	Alphbone Hunt
	Pyramid Math
	Dot Drawing
	Art Class
	Hyperword
	Stock Market
	Adding Excitement to Educational Programs
	Test Maker

	4: Applications
	Shopping List
	Coupon File
	Investment Tracker
	Horizon: A Celestial Coordinates Calculator
	Invisible Music

	5: Tape and Disk
	Atari Tape Enhancer
	Disk Catalog Utility
	Diskovery

	Appendix
	How to type in Programs

	Index

