

APPENDIX A

BASIC KEYWORDS.
Here's a list of
order, along with
explanation:

APPENDIX At:

all the Dasic keywords in alphabetical
their abbreviations, format and. short

KEYWORD: ABBREV: FORMAT:

ABS P=ABS (Q)
Returns the absolute value of a given value V, which in
other words is; remove the minus sign. Where Q is the
variable of unknown sign, and P becomes the positive Q.

ADR P=ADR (U$)
Returns the ADRress of the given string US. Where P becomes
the location in memory where the data inside U$ begins.

AND X=P AND Q
Boolean expression. Where X=I if P AND Q are both positive,
o otherwise.
ASC X=ASC("U") or X=ASC(U$(I,I))
Where X becomes the ASCII code of the letter U, or of the
letter contained in the 1st element of US.

ATN P=ATN(V)
P becomes the angle in RADians or DEGrees, whose ArcTaNgent
is V.

BYE B. BYE
Exits from Basic to the Self-test mode.

CHR$
The
code

U$=CHR$(V)
1st element of U$ contains the CHaRacter of the ASCII
in V. Reverse of the ASC function.

CLOSE I CL. CLOSE IX
CLOSEs the IOCB OPENed on channel #X.

CLOAD CLOAD
Loads a program that was previously CSAVEd onto cassette.
This is standard type of saved file.

CLOG P=CLOG(V)
P becomes the base-IO LOGarithm of the value V.

CLR CLR
CLeaR all string and variable memory reserved with DIM, COM
and LET.

COLOR
Selects
DRAWTO.
use. See

C. COLOR X
X colour register to be used in the next PLOT and
The colour register contains the actual colour to
pages 55 - 59.

Page 167

COM
Exaclly
unusual

the
bugs.

APPENDIX AI:

COM lJ$(X) or COM 11(1.)
same as DIM, allhough lhis can cause a few

CONT
Ileslarts
command,
retained

CONT
a program where il exited, eilher due to the STOP
the BReaK key or un error. The line number is
in locations 186 and 187 in LSB/MSU format.

cos P-COS(X)
P contains the COSine of angle X, where X can be in RADians
or DEGrees.

CSAVE CS. CSAVE
Saves a program to cassette which can later be CLOADed. This
is the standard type of cassette save.

DATA
Marks a
be READ
statement

D.
list
for
must

DATA flint,stone
of string or numeric data that can laterwards
miscellaneous use. Each element in a DATA
be seperated by a comma.

DEG
Select DEGrees
operations.

DEG
mode for use with all trigonometric

DIM
Allocates X amount
U$, or allocates
cell is 6 bytes.

DIM U$(X) or DIM II(L)
of bytes/elements in memory accessible by
L amount of cells identified by II, where I

DOS DOS
Loads the DOS menu from the disk if it contains the DUP.SYS
f.ile, but if DOS is not loaded, then calling DOS has the
same function as BYE. DOS jumps through the vector at
locations 10 and II.

DRAWTO
Draws a
using the
top-left
PLOT.

DR. DRAWTO X,Y
line from the point of the cursor to the new point
colour register given by COLOR. Co-ordinate 0,0 is
and X is horizontal, wid Ie Y is vertical. See

END END
ENDs a program.

ENTER
Enters the
previously
with any
press C,TRL

E. ENTER"D:TOMMY"
program TOMMY from the
saved with LIST. You can
of E, S, C and K. Though,
and 3 to escape the mode.

disk unit which was
also substitute the D
with K you'll have to

EXP D-EXP(P)
D returns the EXPonential of P, where the EXP of a number is
the power.

Page 168

APPENDIX AI:

FOR F. FOR J=S TO F STEP S
Initiates the program loop J, from S TO F in steps of S.
STEP S is optional, default STEP is I. See NEXT.

FilE ? FRE(O)
Ileturns the amount of free/unused memory available for use.

(;ET GET #C,X
X contains the ASCII code of the next character read from a
file opened on channel C. If the channel is opened on the
keyboard, then a keypress is awaited, and X returns the last
key pressed.

GOSlJ\l
Ilranch
address
IlETlJIlN.

GOS. GOSlJll 1000
to a sub-routine in a Basic program placing the
of the GOSlJB line on the Basic runtime stack. See

GOTO G. GOTO N
Jump to the line whose value is in N.

GIlAPHICS GR. GRAPHICS M
Selects GIlAPHICS mode M. There are 16 modes to choose from,
but M+16 removes the text-window, and M+32 accesses the mode
without clearing the memory used by the mode being called.

IF/THEN IF (condition) THEN (action)
IF the condition is true, THEN the action will be carried
out. Both of which may be a series of keywords or
expressions.

INPUT I. INPUT V or INPUT #X,U$
Awaits keyboard INPUT ended by pressing Return, or brings in
a particular amount of bytes (until it finds an EOL; a
Return character; 155 $9B) from the device OPENed on channel
X, into US.

INT
R returns the
stored in H.

R=INT(H)
INTeger part of a fractional/real number

LEN L=LEN (U$)
L returns the element length of the string US.

LET LET V=9
An optional keyword; where it assigns the value 9 to the
numeric variable V.

LIST L. LIST or LIST "D:BILL",S,F
LISTs the present listing to the screen, or LISTs lines S to
F of the listing to a file called BILL on the disk-drive. S
and F are optional. This kind of storage is different to
that of SAVE and CSAVE.

LOAD LO. LOAD"D:TED"
LOADs the file TED from device D, which is the disk-drive in
this case.

Page 169

LOCATE LOC. LOCATE X.Y.Z
Z returns the colour register value stored at screen
co-ordinates X,Y.

LOG BeLOG (J)
B returns the natura I LOGar! thm of the number in J.

LPRINT LP. LPRINT "e l pa s s o "
Outputs the data "e l pa s s o ' to the printer.

NEW NEW
Clears the program and all variables from memory. CLOSEs all
10CB channels except O. turns all voices off and selects
RADians mode.

NEXT N.
Marks the end of
the loop must
keywords until K

NEXT K
the FOR/NEXT loop K. whilst also means that
execute all lines between the FOR and NEXT
supersedes F. See FOR for the F variable.

NOT I-NOT U
Boolean expression. I returns the reverse sign of the number
in U. See SGN, also AND.

NOTE NO. NOTE IC,S,B
Returns the last byte number B accessed within the last
Sector S accessed in the file OPENed on channel C.

ON ON X GOTO P,Q,R,S
Depending on the value in X, then control will GOTO P. Q, R
or S. GOTO P if X"'l. or Q if X=2 etc .. GOTO can also be
substituted with GOSUB. and the list of destinations can be
endless (almost).

OPEN O. OPEN #G.R,S,"D:ROCKY"
OPEN the file 'ROCKY' from the disk-device using channel C.
The R variable offers you the type of file access, where 4
is read and 8 is write. While S is an additional variable
only used for particular operations (given by R). See the
table on page 96.

OR A=U OR I
Boolean expression. A returns a 1 if either of the U or
variables are positive. Returns a 0 only when both U and
are zero or negative.

PADDLE
H returns
port P.

H..PADDLE(P)
the current position of the paddle controller in

PEEK S=PEEK(T)
S the contents of memory location T.

PLOT PL.
PLOT the present
COLOR and DRAWTO.

PLOT X,Y
colour at screen co-ordinates X.Y. See

Page 170

APPENDIX AI:

POINT PO. POINT #C,S,B
Addresses an internal POINTer to the sector and byte within
that sector given by variables Sand H in the file opened on
channel C.

POKE POKE J,R
Replaces the old value in memory location J with the value
in R, where R is a number between 0 - 255.

POP POP
Used with GOSUB and FOR/NEXT loops. This removes the last
return address placed on the stack, which is normally used
to tell Basic what line number to return to when finding
eilher NEXT or RETURN.

POSITION POS. POSITION X,Y
POSITIONs the cursor at the X,Y co-ordinate, ready for
subsequent PRINTing.

PRINT PR./? PRINT "pizza" or PRINT #Y;U$
Places the string 'pizza' on screen beginning at the cursor'
co-ordinates given by POSITION, or outputs data contained in
U$ 10 the file OPENed on channel Y. A "," can be used
instead of the semi-colon ";" to include a tab in the file.

PTRIG W=PTRIG(P)
W returns the status of the paddle trigger P. 0 is pressed.

PliT
Outputs
pos i tion
POINT.

the
of

byte
the

PUT #L,G
stored in
file OPENed

G to the presently recorded
on channel L. See NOTE and

RAD RAD
Selects RADians mode.

READ READ Y or READ U$
READs the present element in a DATA line into Y or U$
depending on the type of element, whether it be numeric or
string. See location 182.

REM
REMarks
it is
listing

REM this-does-that
in a program listing so that you can REMember what
supposed to do, which is good when you go back to a
you may have wrote several years before.

RESTORE RES.
Re-addresses a
'FREEDOM', it also
line to the 1st
see READ and DATA.

RESTORE FREEDOM
new DATA line given by the
resets the element-number being
one. See locations 182, 183 and

variable
read in a
184. Also

RETURN RET. RETURN
RETURNS from the subroutine to where the GOSUB jumped to by
re-instating its address from the top of the stack. See POP
also.

Page 171

HND N=HND(O) or V=INT(HND(O)*W)
N returns a RaNDom number between 0 and .9, while V returns
an INTeger number between 0 and W-I.

RUN RUN
Executes a Basic program, clearing all variables and
CLOSEing OPENed channels in doing so.

SAVE
SAVEs the
file-name
disk-file.

S. SAVE "D:MONEY"
current program onlo
'MONEY'. This is also
See LOAD.

the disk-drive under the
the standard type of

SOUND
The sound
distortion
between 0
value of 10

SETCOLOR SE. SETCOLOR R,C,L
Sets the colour register R to the colour C and luminance I..
See COLOR.

SGN B-SGN(V)
B returns the SiGN of the number V. When V is positive, H
returns I, if V is 0 then B - 0, but if V is negative, then
B returns -1.

SIN W-SIN(G)
W returns the SINe of the number G in RADians or DEGrees.

SO. SOUND C, P, D, V
made is at Pitch P, Volume V using the D
in channel C. There are 4 channels, pitch is

255, distortion has many variations where a
is pure tone, and the volume has 16 levels.

SQR V=SQR(T)
V returns the SQuaRe root of the number T.

STATUS ST.
E returns the
channel C.

STATUS #C,E
STATUS of the most recent I/O operation on

STEP See FOR
Optional parameter of the FOR/NEXT loop which specifies the
STEP increment of the loop. Default is +1. STEP must be used
to perform decrementing loops.

STICK Q=STICK(K)
Q returns the present position of the joystick in port K,
where K is 0 or 1. See locations 632 and 633.

STOP STOP
STOP the execution of a program. The line at which it stops
can also be continued with CONT.

STR$, H$=STR$(V)
The value V is transfered into the string "$.

STRIG W=STRIG(U)
W returns the status of the joystick trigger in port U,
where 1 means released and 0 is pressed.

Page 172

THEN
Used with IF.

AJ'PENDI X AI:

See IF

TO See FOR
Used with FOR/NEXT loops.

TRAP T. TRAP M
Upon the occurence of an
passed to the line number
turn the TRAP mode off.

error, program control will be
given by M. Type TRAP 40000 to

USR X=USR(joe,L,M,N) or X=USR(ADR(U$) ,L,M,N)
Passes control of the Haslc program to the machine-language
routine beginning at the address given by 'joe'. Parameters
L, M and N are optional (including the amount of parameters)
and are passed through onto the stack (see locations 256 -
51 I) in a particular way: firstly, the current location of
the Basic program is passed onto the stack, followed by all
(if any) of the parameters values in LSB/MSB format (the LSB
preceeds the MSB when being pushed on). Once this is done, a
single byte is then pushed on top of the stack to represent
the amount of parameters passed to the machine-code routine.
Lf there were no parameters passed, then only the Basic
return address (2 bytes) and the amount of variables passed
(0) would be stacked. Upon return from the routine, you
should ensure that the 2 bytes at the top of the stack is
the Basic return address. The return instruction is RTS; 96
$60 and not RTI.
The program on page 78 shows USR passing a variable to a
machine-code routine.

VAL
The reverse
number-digits
element in G$.

J=VAL(G$ o.»
of the STR$ function, J becomes the string of
(the value) found, beginning at the Bth

XIO XIO F,#Y,I.J,"D:SIJE"
A very powerful command that Covers a wide variety of
operations which don't utilize a seperate Basic keyword. XIO
can perform most of the DOS menu functions, DRAWTO and
screen FILLing. See the COMMAND table on page-95. XIO can
also be used to create new commands that Basic don't
support. A good use for XIO would be to write a new handler
device that gives Player/missile graphic commands, such as
clearing memory or vertical movement.

Page 173

BASIC TOKENIZATION.
A very hidden subject is the tokenization of Basic programs.
Probably the best explanation is De Re Atari' one, which is
very in depth. Uere's a coverage of De He Atari's
explanation.

The visual image of the typical Basic program is quite
different to the llasic ROM. To us it appears as 'BASIC', but
to the language it is processed as a TOKENIZED program,
where each llasic command is recognized as a unique character
(a token). When a line of Basic is entered, the language
tokenizes your input, checking for legal syntax as it goes.
Should this tokenized basic line be without a line number,
then it will be executed straight away, but if it has one
then it is included into the 'tokenized program'.

The TOKENIZING process converts a line number into a 2-byte
(LSB/t1SB) integer. If the line is in immediate mode (no line
number), then before executing it, a line number of 32768;
$8000 is assigned to it. The next token is a byte-count,
from the beginning of the line being tokenized to the start
of the next line. Obviously, this byte has to be filled-in
last of all. After this, Basic then searches through its
list of legal commands for the correct token equivalent of
the command. If it doesn't find the command, then it is
unknown, thus, a syntax error is returned. Ofcourse , with
all going fine the next item to be tokenized can be any of 7
different things: a variable, constant, operator, function,
double-quote, another statement or just End-Df-Line EDL.

Basic tests to see if the next inputted character is
numeric. If not then it compares that character and those
following it with the entries from the variable name table
(VNT). If this is the 1st line of code entered in the
program, then no match will be found. The characters are
then compared with the function and operator tables, then
should no match be found again, the characters are accepted
as a new variable name. All variable names in the variable
name table always have the last byte inversed (bit-7 set) to
indicate the end of the name. This variable name then has
its token (variable number in the table) put into the
tokenized line. Note that the variable number token has
bit-7 set and is also subtracted by I, thus the 1st variable
token number would be 128; $80 and so on. Should a match be
found as a function or an operator, then its token will be
placed in the tokenized line.

Double-quotes are tokened with the number 15; $OF, and a
of string characters is included. The actual

characters are moved from the input buffer to the output
buffer until either the 2nd pair of quotes, or EOL.

Page 174

A2i

If the next characters in the input buffer are numeric, then
they are converted into a 6-byte BCD constant. Th'e token
going in the tokenized line becomes 14; SOE and the 6-byte
BCD constant follows it. When (if) a colon (:) is
encountered, a token of 20; $14 is put in the output buffer
and the offset from the beginning of the 1st statement to
the start of the 2nd is completed, another byte-count
character is set aside and the process is repeated by
searching for a command. Eventually, the EOL character will
he found whereby a token of 22; $16 is included and the last
byte-count character is filled-in. This now completes I line
where it is then copied into the token program, replacing
any line of the same value. All numeric line order is
correctly re-organized, thus, contracting/expanding the
program as necessary.

If the line was immediate, then this is where it executes
it. All immediate mode lines have the number 32768; $8000,
so as you can see they overwrite each other every time. The
maximum length of the input line is normally indicated by
the famous bleep, but this is not always true, since the
maximum length is no more than 256 'tokenized' bytes. Here's
an example of a tokenized line:

\0 LET X=l: PRINT X

OA 00 13 OF 06 80 2D DE 40 01 00 00 00 00 14 13 20 80 16

OA 00
13
OF
06
80
2D
DE
40 01 00 00 00 00
14
13
20
80
16

Line 10
Line offset (byte-count)
Statement offset
The LET token
Variable X (the 1st and only)

Numeric constant
The number I
End of statement
Statement offset
The PRINT token
Variable X
End Of Line (EOL)

Following on the next couple of pages is the entire token
list for Atari Basic and Turbo Basic.

Page 175

Al'l'IDi.!!.lLA.2 :

!!X___Jlf D;. ClPt:RHQ!!:
00 0 HEM
01 I DATA
02 2 INPUT
03 3 COLOR
04 4 LIST
05 5 ENTER
06 6 LET
U7 7 IF
08 8 f'OR
09 9 NEXT
OA 10 GOTO
OB 1 I GO TO
OC 12 GOSUB
OD 13 TRAP
OE 14 BYE [NUM CONSTANT]
OF 15 CONT [STR]
10 16 COM [UNUSED]
I 1 17 CLOSE
12 18 CLR .13 19 DEG $
14 20 DIM [STMT END]
15 21 END .
16 22 NEW [LINE END]
17 23 OPEN GOTO
18 24 LOAD GOSUB
19 25 SAVE TO
lA 26 STATUS STEP
IB 27 NOTE THEN
lC 28 POINT #
ID 29 XIO [=
IE 30 ON []
IF 31 POKE]=
20 32 PRINT [
21 33 RAD]
22 34 READ
23 35 RESTORE SPACING
24 36 RETURN *25 37 RUN +
26 38 STOP
27 39 POP /
28 40 7 NOT
29 41 GET OR
2A 42 PUT AND
2B 43 GRAPHICS (
2C 44 PLOT)
20 45 POSITION = [ARITH ASSIGN]
2E 46 DOS = [STRING ASSIGN)
2F 47 DRAWTO [= [STRINGS]
30 48 ,SETCOLOR []
31 49 LOCATE)=
32 50 SOUND [
33 51 LPRINT]

Page 176

34 52 CSAVE __ :
35 53 CLOAD + [UNARY)
36 54 IMPLIED LET 3D 61 STRS
37 55 SYNTAX ERR. [LEFT STRING PAREN) 3E 62 CHRS
38 56 DPOKE [" ARRAY ") 3F 63 USR
39 57 MOVE [DIM ARRAY LEFT PAREN) 40 64 ASC
3A 58 -MOVE [FUN LEFT PAREN) 41 65 VAL
3B 59 *F [DIM STR LEFT PAREN) 42 66 LEN
3C 60 HEPEAT , [ARRAY) 43 67 ADR
3D 61 UNTIL 44 68 ATN
3E 62 WHILE 45 69 COS
3F 63 WEND 46 70 PEEK
40 64 ELSE 47 71 SIN
41 65 ENDH 48 72 RND
42 66 BPUT 49 73 FRE
43 67 BGET 4A 74 EXP
4/. 68 FILLTO 4B 75 LOG
45 69 DO 4C 76 CLOG
46 70 LOOP 4D 77 SQR
47 71 EXIT 4E 78 SGN
48 72 DIR 4F 79 ABS
49 73 LOCK 50 80 INT
4A 74 UNLOCK 51 81 PADDLE
4B 75 RENAME 52 82 STICK
4C 76 DELETE 53 83 PTRIG
40 77 PAUSE 54 84 STRIG
4E 78 TIME$= 55 85 DPEEK
4F 79 PROC 56 86 &
50 80 EXEC 57 87 !
51 81 ENDPROC 58 88 INSTR
52 82 FCOLOR 59 89 INKEYS
53 83 *L 5A 90 EXOR
54 84 5B 91 HEXS
55 85 RENUM 5C 92 DEC
56 86 DEL 5D 93 DIV
57 87 DUMP 5E 94 FRAC
58 88 TRACE 5F 95 TIMt:S
59 89 TEXT 60 96 TIME
5A 90 BLOAD 61 97 MOD
5B 91 BRUN 62 98 EXEC
5C 92 GO# 63 99 RND
5D 93 # 64 100 RAND
5E 94 *B 65 101 TRUNC
5F 95 PAINT 66 102 '10
60 96 CLS 67 103 'II
61 97 DSOUND 68 104 '12
62 98 CIRCLE 69 105 '13
63 99 'IPUT 6A 106 GO#
64 100 'IGET 6B 107 UINSTR

6C 108 ERR
6D 109 ERL

Page 177

HASIC ALTERATIONS

Well, this appendice is the last but one (ur completion of
the book. It's not going to be a very descriptive one
because I don't feel like it (I don't have the IQ anyway!).
Sorry, folks. Perhaps if I make a second bouk, then this
will be a subject for further investigation, but until
then •.. Here's a small coverage in the field of altering the
Basic language.

Altering Basic is really useful. Of course, you'll need to
checkout location 54017; D301 In order to turn the ROM
language into a RAM one. From there you can accomplish many
tasks. Indeed, if you don't want to change anything, but
rather you want to add functions to it, then this is also
feasible. There are several methods to go about this, but
perhaps the easiest and quickest is by use of the OS handler
system. See HATABS, locations 794 - 828; $31A - $33C. For
additional reference then seek out issues 37, 41, 43, 53, 57
and 64 of Page-6 magazine, or as it has recently become to
be known; NEW ATARI USER.

Altering Basic has been a topic of concern for quite a long
time, where one computer owner might have had previous
experience on a different computer, and is now missing the
use of some special command that he/she used a lot before.
The magazine issues mentioned above contain good example
programs that add various commands into the Basic language,
indeed, as you learn more about the Atari XL/XE you will
find that il is quite capable of adding virtually any
command to your Basic language. Of course, in time you may
move onlo machine-language or perhaps move over to a newly
developed one, such like the QUICK language. Anyway, getting
back to the main subject ... Perhaps, the very easiest and
quickest method to achieve extra Basic commands is by use of
a Basic sub-routine, where the sub-routine is the command!
Another method is to use machine-code routines that can be
called via the USR command. This method is used very often.
Another method is to catch the keyboard input before it goes
to the Basic interpreter, but that method is not detailed
here coz I'm not brainy enough, maybe some other time.
Anyway, the only other method is the one mentioned earlier.
It is also perhaps the most popular one. By writing a new
handler, we can perform new Basic processes with any of
these standard Basic commands: OPEN, CLOSE, GET, PUT,
STATUS, XIO, ENTER, INPUT, LIST, LOAD, NOTE, POINT, PRINT,
RUN, and SAVE. In some cases, you can even use: CLOAD, CSAVE
and LPRINT.

Again, see locations 794 - 828 for information on this. It's
not difficult once you get the hang of it. Of course,
if you do write any commands then send them on, as I know
I'd be interested. Good luck.

Page 178

APPENDIX A4:

PROGRAM IMPROVEMENT.

Improving your Basic programs is really a task you
only perform on a copy of your finished Basic program to
enhance its speed and also to reduce its memory
requirements. There are many ways of going about this, here
are 2 lists of best affectiveness. the 1st for speed and the
2nd for memory reduction.

Varying methods of program speed improvements:

I. If you've been editing/adding to the Basic program, then it
will be worthwhile re-coding it.

2. Try to simpl ify the programs calculations, perhaps even
convert them to boolean ones where possible. This includes
IF/THEN statements. Enormous time can be saved.

3. Place your most frequently used GOSUB routines & FOR/NEXT
loops in lower line numbers. since Basic searches your
program beginning at line O.

4. For frequently called routines nested in loops, try to put
the routines in the main program since Basic wastes time
adding/removing entries from the run time stack.

5. Make the most often changing loop from a nested set the
deepest, this way the run time stack will be altered the
fewest amount of times.

6. Simplify floating point calculations within a loop. If a
result is found by multiplying a constant by a counter. then
time can be saved by changing the operation to an add of a
constant.

7. Setup multiple loops on the same line, this way Basic won't
have to get the next line to continue the loop.

B. Approx. of processing time can be saved by disabling the
screen during operations not requiring the screen.

9. If screen display is needed. then substitute a faster mode
(see CYCLE-STEALING append ice) or shorten the DL.

10. Use machine-code. Time is saved by using M/G to perform the
loops in a Basic program, via the USR command.

Page 179

Varying methods of saving memory in your Basic programs:

1. Again, re-code the listing. Speed and RAM are gained.

2. Remove your REMarks, they occupy essential space.

3. Replace constants usud more than twice with variables. Doing
this saves 6 bytes every time the variable is used.

4. Load variables with the READ statement from DATA rather than
directly, since this saves 6 bytes each time.

5. Again, avoid direct values. Use variables of varied values
to achieve other values, adding them etc .. This also applies
to line-numbers used in subroutines.

6. Try to minimize the amount of variables your using. Each
variable takes 8 bytes in the VVT plus bytes in VNT.

7. Clean up the variable value and name tables by LISTing the
program to disk, typing NEW and re-ENTERing it. You should
do this coz old variables ain't deleted from the table.

8. Keep variable names as short as can be, 1 char. is 1 byte.

9. Replace common text with strings that hold this text.

10. Initialize strings in direct assignment, it requires less
space than the READ method.

11. Condense multiple lines on single lines where possible. 3
bytes are saved each time you do this to 2 lines.

12. Replace once used routines with in-line code, the GOSUB and
RETURN waste unnecessary bytes when not needed.

13. Replace numeric arrays with strings if the data values do
not exceed 255, since these values can be stored as a single
character. For each character,S bytes are saved.

14. Replace SETCOLOR statements with POKE commands, this saves 8
bytes each time.

15. Replace POSITION statements with control characters within
PRINTS (1's). 14 bytes are saved each time on average.

16. Modify the string/array pointer to load predefined data,
changing STARP this way saves string/array memory.

17. Delete fade in program control, see the IoeBs in the MAP.

Page 180

APPENDIX A5:

TlIllHO BASIC.
In addition to the normal Basic langunge, Turbo Basic
supports many mod i f i ca t i ons and new keywords. I've li'sted
them here in this appendice.

BLOAD BLOAD "D:CIIARLIE"
Loads file named CHAIlLIE without running it. Same as DOS
option L with IN appended to filename.

BPliT BPliT 'C,A,L
Block output on channel C. A is the start address and L is
the length. Same as FOR Q=A TO A+L:PlIT 'C,PEEKCQ):NEXT Q.

BlllJN BRlJN "D:CHAPI.lN"
Same as BLOAD except that the file CHAPLIN is loaded and
run.

CIRCLE CIRCLE X,Y,H,V
Draws a circle, whose center is X,Y. II and V are horizontal
and vertical radius. V is optional, not being present H
becomes the radious.

CLOSE CLOSE
A nice modification which when used as shown turns all IOCB
channels oft.

CLS CLS 'P
Clears the screen. The 'I' channel is optional, normal mode-O
screen is default.

DEC T=DECCN$)
T returns the decimal equivalent of the hexadecimal number
in N$.

DEL DEL S,G
A long desired addition to Basic editing is this, where
lines from S to G are deleted.

DELETE DELETE "D2: OSCAR"
I of many DOS functions from Basic. This deletes the file
OSCAR on drive 2. The normal Basic equivalent is an XIO
command.

DIM DIM XCZ)
Same as normal DIM, although Turbo Basic now clears arrays
and strings. The LEN command still returns the correct
status of 0 when strings are of no length.

Page 181

IlIR Ilill "1l1:GOLIlMAN"
Ilisplay the disk directory, the parameter string is not
necessary. The default is "Ill:*.*".

DIV DIV E
H returns the integer quotient for ClEo

DO DO
The initial part of a DO/LOOP structure. structured
programming was created to eradicate the reference of
line-numbers within a Basic program. It clarifies a listing
considerably. This loop is what is known as a dead-loop, it
has no end, although you can EXIT from the loop.

DPEEK DPEEK(Q)
This is an excellant feature where you can perform
DL=PEEK(560)+256*PEEK(561) and directly with
DPEEK(560).

DPOKE DPOKE M,V
This is the opposite of DPEEK. Try DPOKE M,58368. The value
DPOKEd is converted to LSB and MSB and put into locations M
and M+I.

DSOUND DSOUND N,F,D,V
Another excellant feature that brings more power of the
POKEY chip to the Basic user. The POKEY chip offers an
ability to pair 2 channels together to achieve a much higher
range of frequencies. The channels that can be paired are 0
with I and/or 2 with 3.

DUMP DUMP "DI :CHUMP"
A very useful editing command that DUMPs all the variables
af a program to the screen (as default) or to the file CHUMP
on drive I.

ELSE IF A THEN W ELSE Q
A splended inclusion that allows the ability to nest
multiple conditions in I IF/THEN statement. This ability
also offers the ability to prevent control-flow going to the
next line. In addition, you can restructure your IF/THEN
loop like so:

IF eondi tion
reaction

ENDIF

ENDIF ENDIF
As shown above, it is used when changing the structure of
your IF/THEN loop. This is used if you want more actions
than wopld fit onto a normal program line.

ENDPROC ENDPIlOC
Last part of the PROC/ENDPROC loop. This is basically a
GOSUB/RETURN routine or procedure. See EXEC.

Page 182

APPENDIX A5:

ERL I=ERL
Better than DPEEKing locations 186 and 187 for the line
number where the program stopped due to BREAK or an error,
you can checkout this Basic variable. I returns the l'ine
number.

ERR S=ERR
S returns the error code.

EXEC
This is

EXEC 0
the GOSliB equivalent for a PROC/ENDPROC structure.

EXIT EXIT
This is the only way out of a DO/LOOP structure. The
continue line is immediately after the location of the LOOP
statement.

EXOR I=T EXOR N
I returns the EXclusive-OR result of T and N.

FCOLOR FCOLOR A
As COLOR assigns the selected colour register for PLOT and
DRAWTO, FCOLOR selects the colour register (A) for the
FI LLTO command.

FILLTO
This is

FILLTO X,Y
the XlO 18 fill command.

FRAC S=FRAC(X)
S returns the FRACtional part of X.

GET GET L
In addition to normal Basic, this method of use now checks
the keyboard for a single keypress. L returns the ASCII
value of the last key pressed.

#C,S
S returns the number accessed from the device open on
channel C. This is a special value, put to the device with
the command. The number is actually written in its true
6-byte FP format and not as a character.

GO# GO# AWAY
Similar to GOTO, but addresses the line-name AWAY addressed
with #, NOT the line-numbers themselves.

GO TO GO TO LONDON
Same as GOTO, this format eases programmers upgraded from a
Spectrum (hint hint).

HEX$ T$=HEX$(B)
T$ returns the hexadecimal equivalent of the decimal number
B.

Page 183

INKEY$ lNKEY$
This returns the present key pressed when execuled. This is
the same as UPEEK(121)+PEEK(764).

INPUT INPUT "JACK FLASH";Z,P
No difference to the older INPUT, although you can now
output text to the screen as shown. Yuu also have this INPUT
#16 offering with Turbo Uasic.

INSTR M=INSTR(G$,A$,H)
M returns the starting position of A$ within G$. H is
optional, though, it allows you to begin the search at byte
H within G$. Uifferent text case (capital, non-capital e t c .)
is treated completely different.

LIST LIST U,
In addition to the normal process of LIST, this format now
allows you to list a program from U onwards.

LOCK LOCK "D: GEM"
DOS option F. Lock a file from Basic.

LOOP LOOP
2nd part of the DO/LOOP structure.

MOD O=P MOD K
o returns the integer remainder of P/K.

MOVE MOVE S,D,B
An excellant command for Basic users. MOVE will copy 8 bytes
of memory beginning at S, and place them beginning at D.
This is especially useful lor PMGs.

-MOVE -MOVE S,E,8
This is exactly the same as MOVE, although the copying of
the memory is performed backwards. OccasionallY important.

ON ON Q EXEC / ON Q GOI
This now gives these 2 variations given.

PAINT PAINT X,Y
A complete fill of an object, where co-ordinates X and Yare
within.

PAUSE PAUSE F
Using this command, pauses program control for F
jiffies/frames. Multiply F by 50 to achieve the PAUSE time
in seconds.

POP POP
Of course , this now handles stack entries for all of the new
structured programming commands.

Page 184

PIlOC PIlOC HARIlY
The initial part of a PROC/ENDPROC procedure. It defines the
beginning at the routine/procedure HAIlRY.

PUT PUT R
This now acts exactly like? CHRS(R); where R is the
characer going to the screen.

%PUT %PUT 'F.E
The opposite of %GET. See this function for further
details.

RAND S=RAND(Y)
S returns a RANDom integer between 0 and Y.

HENAME RENAME "D3:CHUG,BIONIC"
DOS option E from Basic. HENAMEs file CHUG on drive 3 to
BIONIC.

HENUM HENUM p,O.J
HENUMber all program lines from line P to 0, in increments
of J. GOTOs and TRAPs are handled. though. variable
line-number references are not.

HEpEAT REPEAT
1st part of the REPEAT/UNTIL structure. This just marks the
beginning.

HESTOHE RESTOHE 'TINA
You can now restore to a label name (.TINA) as well as line
numbers.

RND Z=RND 0
Same as normal RND, but you can now ommit the brackets
surrounding the number.

SOUND SOUND
A nice feature is this method of turning all of the sound
channels off at once.

TEXT TEXT X,Y.MS
A greatly desired function which plots the text in MS onto
the screen. beginning at co-ordinates X and Y.

TIME ? TIME
Returns the present time in format HHMMSS. You can also set
the time with TIME=HHMMSS.

TIMES ? TIMES
The same as TIME. except for a string variable.

TRACE TRACE - / +
A very explicit command which allows you to debug your Basic
programs. TRACE mode. when engaged. displays the current
line number being executed.

Page 185

TIIAI'
YOli can

TIIAI' #VAT
now THAP control to label names.

TIIUNC W=TRUNC(f)
W returns the integer part of f, the fraclion is THUNCated.

UINSTII Z=UINSTII(P$,G$,H$)
Same as INSTR, although the different case of text is
irrelevant. Inverse, non-caps elc. is now trealed the same.

UNLOCK UNLOCK "04:FELIX"
UNLOCKs the file fELIX on drive 4.

UNTIL UNTIL R
2nd part of the REPEAT/UNTIL structure. Program control will
repeat until condition R is met.

WEND WEND
2nd part of the WHILE/WEND structure. WEND marks the end.

WHILE WHILE Y
1st part of the WHILE/WEND structure. This is similar to
REPEAT/UNTIL except that execution of the WHILE/WEND
structure doesn't process even once before meeting the
condition.

A special form of REM. It chucks 30 dashes across a program
line.

*B *B- / *B+
This command allows the BREAK key to be TRAPped when enabled
with *B+.

*F *F- / *F+
This command corrects a bug in normal Atari Basic, where
loops such as FOR J=2 TO I :NEXT J would initially execute
once, even though the condition is already ended. *f- also
allows you to leave it in just incase.

*L *L- / *L+
The line indent command.

#TWIGGY
This is the line-label pointed to by the GOTO#, TRAP# etc ..

$ FOR 1=$0600 TO $0900
Here's a nice feature that allows you to use hexadecimal
numbers in Turbo Basic as you would use decimal ones.

& V=A & B
V retur'ns the result of A AND B.

T=U ! F
T returns the result of U OR F

Page 186

APPENDIX A5:

='XO-it:l Z='lO etc.
These 4 constants simply denote the numbers 0-3,
respectively. The only difference is that using these in
your program is that X=I requires 10 bytes, while Xd'll only
needs 4. It's good practice to assign values to variables if
the values are used more than once since a great amount of
memory can be 'lost' in large programs.

Well, indeed they are the expansions to normal Basic which
basically make up Turbo Basic. There are still a few simple
facts that you should know also, so I'll run through what I
know.

Programs can now be typed in lower case as well as all the
other cases normally acceptable except for the * commands
and GO TO. The language itself occupy's less memory than the
original Basic too. There are 9 new error codes from 22 -
30. As you may have already discovered, errors now provide a
reasonably clear explanation by supplying a word which
describes the problem. Error number 15 is also updated to
account for a deleted REPEAT statement. Variable, procedure
and label names may now contain the underscore character
(SHIFT and MINUS). You can also print a quote within a PRINT
statement by using double-quotes together, like: PRINT
"GIlEAT""EIl!'!". It you wanted to autoload a program on entry
to Basic, then originally an AUTORUN.SYS file had to exist
on the disk, but since Turbo Basic now uses this, TB
searches for a file named AUTOIlUN.BAS for your autoload
program. The new IF/THEN structure can be used like so:

10 FOR .1=1 TO 10
20 IF .115
30 PRINT "HI"
40 ELSE
50 PRINT "1.0"
60 ENDIF
70 NEXT .I

The compiler which comes with TB is better yet, increasing
program speed twice over plus! In addition to that, it has
to be said that it is an excellant compiler. There are only
a few keywords that are not compilable. they are: *L, TRACE,
NEW, DUMP, RENUM and DEL.

Anyway, with this truly amazing package, 1 'm sure 1st class
quality software can be created by the average Basic
programmer easily. I look forward to TURBO creations.

Page 187

HANny TIlICKS.
As a means of quick reference, I've included a whole list of
handy little tricks Ihat you might not know that you can do.
Have fun reading them!

is possibly the most used. It's a pause/unpause
toggle for any print being listed on the screen,

inside or outside of almost every program. Basic or
Machine-code. This can also be simulated in programs with
values 255 and 0 POKEd into 767 for screen pause and
unpause, respectively.

CONTROL-2 is buzzer sound.

causes Error-136. Some Basic programs disable the
break key, but they can still be broken into by

pressing this key when the program is awaiting an input. To
prevent this, the input must be TRAPped.

can be used to set a tab anywhere across a text
line. Useful when editing Basic/assembly

programs.

CONTROL-TAB will clear the tab set with the shift-tab.

BREAK-KEY can be disabled by POKE 16,64 and POKE 53774,64.

LISTING Basic programs after being broken into can be
prevented by adding a POKE 202,1 within the program

itself. This way, if the program was to be broken into, it
would be automatically erased.

RESET-KEY can be TRAPped with POKE 2,52, POKE 3,185 and
POKE 9,2. When Reset is pressed an error will

occur, thus, the Basic program can TRAP reset to any line.
All the pokes and the TRAP must be setup each time reset is
pressed. It can also be forced to coldstart the computer
with a value of I POKEd to location 580. Poke wilh zero to
revert to normal.

WARMSTART can be done with X=USR(58484). Otherwise known as
pressing reset.

COLDSTART can be done with X=USR(58487). Otherwise known as
turning the computer off and on.

BYE in Basic can also be achieved with X=USR(58481).

LEFT MARGIN can be changed by location 82. A value 0 is
useful when typing in program listings, whereby

all the screen columns are accessable, giving an extra 6
bytes to each program line.

Page 188

APPENDIX A6:

RI<.;IIT-MARQJ1i is changed at location 83. Similar to Left
margin.

can be used in 0 with a POKE 703,0. A
value of 24 will disable it. The DOS menu

actually uses this technique.

IN]'!!J ca n be obtained wi th the Basic INPUT statement
of but to get rid of the dreaded question

mark, use lNPUT #16;X$. This does not work in Turbo Basic
unfortunately.

up the initializing of your Basic programs 301 by
turning the screen off with POKE 559,0. Turn it back

on with a POKE value of 34.

through the cassette or disk-drive can be made
silent with a POKE 65,0, Poke with non-zero to

turn it back on,

DISKS can have data written to both sides by notching an
identical hole on the opposite side of the disk.

Believe it or not, I have written letters to several people
who never knew about this.

J.OA!! machine-code files from Basic with
OPEN #l,4,O,"D:FILENAME.EXT" and X=USR(5576). You can

also use XIO 41,#l,O,O,"D:FILENAME.EXT".

MUSIC can be played from the cassette-unit and through the
TV speaker with a POKE 54018,52. A value of 60 will

turn it off. My music system tends to wake everyone up, so
this is a good resort when programming in the early hours of
the morning.

SCREEN display width can be altered to narrow, standard or
wide with values 33, 34 and 35 POKEd to location 559,

respectively.

LISTED-FILES from Basic are saved to disk exactly as you
see them on-screen. You can load them into a

word-processor and include direct-mode instructions (without
line-numbers) in-between the lines of code, and when you
ENTER the listing back in Basic, the direct-mode lines will
execute as the file is loading!

CAPS-LOCK can be turned on or off with values 64 and 0 put
at location 702. Control-lock can be forced with a

value of 128.

Page 189

can be opaque, inversed and turned upside down with
various values poked to location 755. It can also be

forced in inverse mode with POKE 694,I2H and reversed with a
value of O.

can be chosen at location 756. Value 224 is
standard. Poking with 204 gives international

characters under the control-key presses. Non-capitals are
also obtainable on graphics I with a poke value of 226.

ESCAPE CHARACTERS such as the arrows, can either be acted
upon or displayed on the screen with

values 0 and any non-zero value POKEd into location 766.

CURSOR can be be turned invisible with a non-zero value
poked to 752, and returned to normal with O.

keys can be detected by peeking location 764. A
value of 255 means no key has been pressed, other

values are particular keys. These values tend to be a total
mix-up. though, on XL's they can be converted to ascii
equivalents by taking the PEEKed value of address
PEEK(121)+256*PEEK(122)+PEEK(764).

SCREEN vertical adjustment can be performed by changing the
value in location 560 between 9 and 31. An explosion

effect can be achieved in a game by poking random values
between this range successively.

PRINT all output that normally goes to the screen to the
printer with POKE 838,166 and POKE 839,238. Return to

normal with POKE 838,163 and POKE 839,246. On the XL, the 4
values are 202, 254, 175 and 242 in the above order,
respectively.

FINE-SCROLL can be enabled at location 622 with a value of
255. Disabled with O. Try enabling, calling

Graphics 0 and listing a long program.

KEYBQAR!! can be disabled with a POKE 621,255. It can be
enabled with a value of O.

INITIAL key delay is at location 729. 0 for no repeat, I
for fast and 255 for very slow.

KEY REPEAT RATE is at 730. Similar to 729 except for all
repeats after the initial keypress.

KEY CLICK is at location 731. 0 means sound on and 1 is
of f.

Page 190

APPENDIX A6:

can be found at memory-location 732. A value of 17
means help is pressed, BI meHns shift and

whilst 145 means control and help. I have actually had a
value of 209 in this register.

CHn be found at location 53279. A value of 3
means option is pressed, 5 means select and 6

means start. Multiple combinations call be detected also.

RA.NQQJl numbers between 0 and 255 can easi Iy be obtained by
pe e k i n g location 5:3770. Numbers between 0 and 65535

can also be obtained with PEEK(53770)+256*PEEK(53786).

tlEnQRY can be cleared at the speed of machine-code, from
Hasic by using locations 88, 89 and 106 in conjuction

with the screen clear fUllction. Just set 8B and 89 to the
LSB and MSB start address, and set 106 to the MSB end
address. Then, when a Hasic clear function is issued, all
this memory will be z e r o e d , This is especially useful for
clearing PMG's or s t ri ng s ,

can bl' switched off wilh POKE 1016,1. Pressing reset
will boot DOS.

can be written to a new blank disk without DUP with
OPEN tFl,8,O,"D:DOS,SYS" and CLOSE #1 in Basic.

DEUo;TE a DOS IiII' from ha s i c with
XIO JJ,tFl,O,O,"D:FII.ENAME.EXT".

can be disabled from Basic by changing locations
10 and II. Try POKEing 10 with 20), II with 0 and

20) with 96.

LO!;! your disk files from Basic with
XIO 35,#I,O,O,"D:FlLENAME.EXT".

your disk files from Basic with
XIO 36,#I,O,O,"D:FlLENAME.EXT",

Y.EllIFY can be turned off. when using DOS by POKEing 1913
with 80. A value of 87 turns it back on. Note that

all DOS alterations will only remain permanent when a new
DOS has been written to a blank disk.

your DOS files from Basic wilh
XIO 32,tFl,O,O,"!l:OLDNAME.EXT,NEWNAME.EXT".

can be altered by putting the new
wildcard ascii code at location 3783.

Page 191

t'l !l!\N<a: call be a l te r ed 10 accept
punclual ion, numbers dnd non-caps

with POKE J818,33 and POKE]822,12].

Qlll' can be called up wilh)(=USR(65IB) if it has previously
been called from Basic. Nole that this is very fast, but

is not always reliable.

A\1ImHJtLEILES can be prevented from loading when a DOS disk
is booted, by successively pressing break when

you hear pips through the TV speaker. If READY does not
appear then press reset.

f.QRMAT your DOS disks from Basic with XIO 254,#1,0,0,"0:"
for medium density and XIO 253,#I,O,O,"d:" for

single.

REVISION DATE of your Alari is in day, month and year
order, and is at locations 49154-49156.

Well, thats all of them folks! Of course, if you know of any
other handy little tricks then please send them down for all
to know. In the event of scaled responses about this book, I
may decide to make additional leaves or appendices. If this
does happen, then you should be able to find out about these
corrections, additions etc. through TWAUG.

Page 192

APPENDIX B

APPENDIX B1:

SOUND AND MUSIC.

Although, not an explanatory appendix, here are some various
references and useful programs for creating your own'music.
Of course, sound is produced on the Atari with the SOUND
statement, or with POKEs to location 53760 - 53768; $D200 -
$D208. In Turbo Basic you also get the DSOUND statement
which allows you to create sound in a much higher range of
frequencies (over 8 octaves). If you are writing music in
your own machine-code programs, then after loading the
program in, you must POKE 53775 with 3 and POKE 53768 with
an initial setting value to initialize POKEY correctly. If
you don't do this then you won't get any sound at all.

The parameters of the SOUND and DSOUND statements are as
follows:

SOUND CHANNEL,PITCH,DISTORTION,VOLUME

DSOUND PAIR,PITCH,DISTORTION,VOLUME

The normal SOUND statement gives you a choice of 4 channels,
256 frequencies (PITCH), 16 distortions and 16 volumes. The
DSOUND statement is the same for PITCH and VOLUME, but the
PITCH range now gives 65536 frequencies. The PAIR parameter
means which CHANNEL pair you wish to use. 0 refers to
channels 0 and I, while 1 refers to channels 2 and 3. This
is how the frequency range is increased, by pairing 2
channels.

You can hear the difference with the following TURBO
program:

10 FOR 1=0 TO 65435
20 DSOUND 0,1,10,8
30 DSOUND 1,1+100,10,8
40 NEXT I

Standard Atari Basic only offers this frequency range:

10 FOR 1=0 TO 245
20 SOUND 0,1,10,8
30 SOUND 1,1+10,10,8
40 NEXT I

If you got tired of waiting for the TURBO frequency range to
end, then you can stop the sound with any of END, SOUND,
DSOUND or just pressing RESET.

Page 193

llPENDIX Bl:

If you wanted to create the DSOUND equivalent from
machine-code, then you would set the necessary bit at
location 53768; $D208. That bit would be bit-4 and/or bit-3.
Note, that you'll also have to set bit-6 and/or bit-5 also,
depending on which channels you were pairing. Another point
to note, is that when putting your volumes and distortions
in the appropriate registers, you should zero the volume
output in the lower channel of the 2. So if you paired
channels 1 and 2, then the volume level in channel-I should
be O.

There was a nice selection of different sound affects in the
SOUND chapter of YOUR ATARI COMPUTER by LON POOLE, very
useful. There were such sounds like:

10 REM HI-LO SIREN 10 REM BIRDS
20 FOR J ..O TO 9 20 FOR J=O TO 9
30 SOUND 0,47,10,8 30 FOR K..3 TO 10
40 FOR L-O TO 99:NEXT L 40 SOUND O,K,10,8
50 SOUND 0,64,10,8 50 NEXT K
60 FOR L-O TO 99:NEXT L 60 NEXT J
70 NEXT J

10 REM TAKE-OFF 10 REM EXPLOSION
20 FOR L-l TO 5 20 FOR J=-10 TO 10
30 FOR J-O TO 45 30 SOUND O,200,4,10-ABS(J)
40 SOUND O,J,8,J/3 40 SOUND 1,255,4,10-ABS(J)
50 NEXT J 50 SOUND 2,225,4,10-ABS(J)
60 FOR Jm45 TO 0 STEP -1 60 SOUND 3,150,4,10-ABS(J)
70 SOUND O,J,8,J/6+6 70 NEXT J
80 NEXT J
90 NEXT L

Anyhow, apart from playing particular sounds, how about
creating music pieces? To create music, then you'll need to
create a suitable routine, of course the following example
would achieve this:

10 FOR N"'l TO 11
20 READ F
30 FOR V-8 TO 0 STEP -I
40 SOUND O,F,10,V
50 NEXT V
60 NEXT N
70 DATA 251,193,162,128,108,91,72,63,47,40,31

It doe s play
doesn't allow
e t c . . If you
next page:

music, but the program is very limited. It
for more than 1 channel, sustaining delays
have TURBO BASIC, then try the program on the

Page 194

100
104
108
112
116
120
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
300
304
308
312
316
320
324
328
332
336
340

APPENDIX B1:

DIM F(4) ,S(4) ,V(4)
DO
READ A
IF A=-1 THEN EXIT
G=INT(A/lO)
A=A-(G*10)
FOR Z=1 TO A
READ F
S=FRAC(F)*10
IF s=o THEN S=1
F=INT(F)
F(Z)=F:S(Z)=S:V(Z)=8

NEXT Z
FOR P=G TO 0 STEP -0.5
FOR Z=1 TO 4
V(Z)=V(Z)-S(Z)
IF V(Z)[O THEN V(Z)=O
SOUND Z-I,F(Z),10,V(Z)

NEXT Z
NEXT P

LOOP
END

DATA 31,144,31,144,31.144 300
DATA 63,193,162,128.05 302
DATA 31,144,31,144,31,144 304
DATA 63,162,128,108.05 306
DATA 31,144,31,144,31,144 308
DATA 33,162,128,108 310
DATA 31,162 340
DATA 33,126,96.81
DATA 31.162
DATA 63,128,108,91
DATA -1

DATA
DATA
DATA
DATA
DATA
DATA
DATA

23.128.144.114
01,144.01,136.01,128
23,128.114,102
01,121,01,114,01.108
23,102,91.85
01,102,01,96.01,91
-1

Of course, if you want to RUN this program in normal Atari
Basic, then you'll have to convert the various LOOP
structure commands to GOTOs etc .. Line 144 would change to
S=(F-INT(F»*10. But it is not recommended because the
playing time is considerably slower. You can of course speed
the program up by compacting it; more instructions on 1 line
etc., or even compiling it!

This routine is quite short, but believe me it can be used
for quite complex tunes. The arrays are used so that the
volume of each channel can decay at different rates. The
global speed of the music is controlled by variable G, which
can be changed in your data. See overleaf for a breakdown of
variables and DATA meanings:

Page 195

G Global speed of tune
A Amount of channels to play simultaneously
F Current Frequency being READ
S Current Sustain value being READ

This value is the rate of volume decrement
F(Z) Frequency for each channel
S(Z) Sustain rate for each channel
V(Z) Volume for each channel

This value decreases from 8 at a rate of S(Z)
until it reaches O.

of the DATA:

The 1st number in my DATA is a value of 31. This means that
the Global speed of music played is at a rate of 3, and the
amount of frequencies to be played at once is I, thus, 1
frequency is READ (144). After this frequency is played the
program looks for another 1st number, if that number is -1
then the program ends, otherwise the whole process is
repeated. Of course, should the 1st number be 33, then we
know the global music speed, but note that 3 frequencies
will be played at the same time, thus, 3 numbers/frequencies
will be READ from the DATA lines. OK now, so we can have up
to 4 channels play at the same time, and we can change the
global speed of the music, but what else is there?

The frequencies in their present form decrement in volume at
a rate of 1. But, we can make each channel decrement at
different rates if we like. If we add a fractional value to
the frequency, then this number multiplied by 10 is the
volume decrement rate for the channel playing that
frequency. For example; if the DATA frequency value READ was
144.26, then the frequency would be 144 as we know, but the
volume decrement rate would change from 1 to 2.6, get it!?

Now, the program also includes some other particular
qualities as well as them mentioned. If the volume decay
rate is very slow, and the next set of are READ
before the last frequencies have died out, then the old
volumes will continue to decay, so long as the old
frequencies channel numbers are greater than the new
frequencies channels used. For example; if the last played
frequencies occupied all the channels and none of them have
finished playing, then the only frequencies that won't stop
decaying in volume are those which are replaced by the
following frequencies. If only 1 frequency is read, then
only channel-O is used, channel-l is for a 2nd frequency
etc .. Also, if you want no-sound output (a quite delay) then
add .8 to the frequency you want in silence. Simple as
that!

Things might sound complex at first, but you should get the
hang of it.

Page 196

APPENDIX B1:

You can also improve the routine to allow for different
distortions by reading a distortion for every frequency, or
perhaps better still, you can break up the Z loop in lines
168 184 and put everything in single statements'if you
follow me, this way you can use each channel for a set
distortion. If you wanted to retain several of pure tone,
and of distortion 12 perhaps, then the best way to do it
would be to use channel-O for distortion 12, and the rest
can be used as pure tone depending on how many channels you
wanted playing at the same time.

Anyway, here's a table of equivalent piano notes for the
Atari frequencies:

LOW C 251
FREQ. C# Db 230

D 217
D# Eb 204
E 193
F 182
F# Gb 173
G 162
G# Ab 153
A 144
A# Bb 136
B 128

MIDDLE C 126
C# Db 114
D 108
DI Eb 102
E 96
F 91
FI Gb 85
G 81
G# Ab 76
A 72
AI Bb 60
B 64
C 63
C# Db 57
D 53
D# Eb 50
E 47
F 45
F# Gb 42
G 40
G# Ab 37
A 35
A# Bb 33

HIGH B 31
FREQ. C 29

That's about it really for this musical appendix. of course,
you can expand on the main program included, if you do then
please send me a copy.

Page 197

each delay of time

The Piano-wave;
you should realise

the same for every
step of changing

VOLUME-ONLY SOUND.

Perhaps, a less known feature in the Atari would be Bit-4 of
the AUDCI registers at locations 53761 - 53767. The bit
which allows total control over sound-wave generation.
But why on earth would the wave-form of a sound need to be
changed? And if I knew why, then how could it be done?

The reason why the wave-form of sound is changed is quite
simple. The sound generated by the POKEY sound-chip is in
the form of a square wave. but the sound of a piano for
example is triangular; oh yes. you can simulate it with a
hit, sustain. release type manner of sound, but it still
doesn't sound quite like a piano. Other instruments also
have different wave-forms, your own voice generates sound in
intricately mixing sine waves! OK. so we know the reason for
changing the wave-form. but how do we do it?

Take the Basic line: 10 POKE 53279,O:GOTO 10

This is making the TV speaker POP back and forth, causing
the sound-vibrations in the air (wave-form). Try adding: 5
REM. to the program. This slows Basic down just a fraction
more and affects the noise being made.
The sound itself is quite broken up using Basic, you really
need to use machine-language for proper affects. There is a
program that does just this at location 53279.

To create different shaped waves, you affectively need to
change the position of the speaker (the volume at the AUDC#
register) at different times, the actual note is just the
global frequency of the wave-form. Here is the piano-wave:

volume
01
1 1
21
31
41

that
51

remains6:
7* -

volumes.
8
9
10
1 1
12
13
14
15.L- _

time

Page 198

Here's an assembly program to playa triangle wave;

*=$CB

.BYTE 1

.BYTE 0

. BYTE 7,6,5.4,3,2, 1 ,0, 1 ,2,3

.BYTE 4,5,6,7,8,9,10,11,12

. BYTE 13, 14, 15. 14, 13, 12, 11

.BYTE 10,9,8

.BYTE

*=$5000

;FREQ HI-BIT
;CONTROL

;NEXT VOLUME
;(29 IN TOT.)
;LOOP IF LESS

;SKCTL

;HARD REPEAT

;SET VOLBIT
;FREQUENCY
;AUOC#
;TIME-STEP

; ,X OPTIONAL
;VOL.DELAY

:AUDCTL
:KILL VBls
;KILL IRQs
;KILL DMA

#$0
DEL
MSB
VOLUME,X
#$10
TEMPO
$0201

OEC MSB
BPL DO

LDX
LOA
STA
LDA
ORA
LDY
STA
DEY
BPL W

INX
CPX 1$IE
BNE PHASE

LDA #$3
STA $D20F
LOA #$0
STA $D208
STA $040E
STA $D20E
STA $D400

JMP REP

100
110
120
130
140 TEMPO
150 MSB
160
170
180
190
200
210
220
230
240
250
260
270 REP
280 PHASE
290
300
310
320 DO
330
340 W
350
360
370
380
390
400
410
420
430
440
450
460
470 VOLUME
480
490
500
510
520 DEL

If you wish to try different values in TEMPO by using the
keyboard, then delete line 240 and change line 320 to:

320 LDY $2FC

You may not think that it sounds like a piano at the moment.
thats because the note doesn't decay. Here follows a program
that you can add/alter to the previous one that will give
you a decaying piano-wave. just make sure that you use the
particular line numbers given:

Page 199

152 REPS .BYTE 20
154 REPCPY .BYTE 20
156 crR .BYTE 5
158 CTRCPY .BYTE 5

210 RERUN LDA 1$0
240 STA $D20E

300 VT LDA VOLUME,X
410 XD CPX 1$16

;KILL IRQs

;(22 IN TOL)

.BYTE 7,8,8,9,9,10,10

.BYTE 10,9,9,8,8,7.6,6

.BYTE 6,6,6,6,6

.BYTE 7,8,9,9,10,10,11

.BYTE 12,11,10,10,9,9,8

.BYTE 7,6,6,5,5,5,6,6

.BYTE 7,8,9,10,10,11,12

.BYTE 13,12,11,10,10,9

.BYTE 8,7,6,5,5,4,5,5,6

; DECAY
;DELAY

;WAIT
;FOR
;KEY
;NEW-NOTE

;RESTORE
;IRQs

;WAVES DONE?
;NO
;YES

;RESTORE
;ORIG
;WAVE
;ADDR

;SELECT
;NEXT
;WAVE

LDA $10
STA $D20E

LDA $2FC
CMP I$FF
BEQ L
STA TEMPO
JMP RERUN
.BYTE 7,8,9,10,11,12,13
. BYTE 14, 13, 12, 11 , 10,9
.BYTE 8,7,6,5,4,3,4,5,6

CLC
LDA VT+l
ADC XD+ 1
STA VT+l
LDA VT+2
ADC #$0
STA VT+2

DEC REPS
BNE REP
LDA REPCPY
STA REPS

DEC CTR
BPL REP
LDA CTRCPY
STA CTR
LDA DEL&255
STA VT+l
LDA DEL/256
STA VT+2

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464;
465 L
466
467
468
469
470 VOLUME
471
472
473
475
476
477
478
480
481
482
483
485
486
487

Page 200

488
490
491
492
493
495
496
497
498

APPENDIX B2:

.BYTE 7,7,8,8,9,9,10,10

.BYTE 10,9,9,8,8,7,7,7

.BYTE 7,7,7,7,7,7

.BYTE 7,7,7,8,8,9,9,9,9

.BYTE 8,8,8,7,7,7,7,7,7

.BYTE 7,7,7,7

The way in which the piano-wave decays. is by playing
successive waves whose top and bottom volume-peaks gradually
flatten to one centralized volume. Try graphing my decay
waves, each wave is 22 bytes in length. If you have graphed
my decay-waves, then you'll notice that 8-bits (16 volumes)
tends to be very limited, ie. the lower volume piano-waves
are losing triangularity and becoming more like sine-waves.

that the music on your Atari was "out
believe it? This piece of nonsense!?
work it out, wouldn't you. but how do

POKEY - out of tune?
If a person told you
of tune", would you
You'd probably have to
you go about that?
Well. in COMPUTE!s 2nd
article describing this
brief overlook of it;

book of Atari, there is a good
subject, by Fred Coffey. Here's a

Considering the fact, that on the musical scale. the "A"
note above middle "CO is 440Hz, we should be able to find
out if our Atari really is in tune or not. Referring back to
the Atari Basic manual. it says that to achieve this note.
then you should use the number 72 in the pitch control of
SOUND C.P.D,V. So how does POKEY derive 440Hz from the pitch
value 72? Plug it through the following formula. and you'll
find out:

PITCH=63921/(2*(P+I»

Did you come up with 437.8Hz? The Atari IS out of tune! OK.
I admit. my Atari is out of tune. but is there anything that
we can do about it?
Yes there is; I method of achieving this is to use the
program listed earlier to pop a wave-form this many times
per second. But. I like to take the easy way out wherever
possible, so moving quickly onto method 2:

At AUDCTL. location 53768 we have bits that control 16-bit
precision. and a 1.79MHz clock. It's these bits that we need
to set, not all of them, only the ones necessary; bits-6 and
4 will do the trick. decimal 64+16=80. so POKE AUDCTL with
80. Perform a POKE 53763.(16*10)+8 to set distortion pure
and volume at 8 also.
Now. you should understand that AUDFO at 53760 and AUDFI at
53762 are now changed from 2 seperate pitch channels, to one
pitch being returned as AUDF2*256+AUDFO. If you stick 440Hz
through the following formulas as PITCH. then you should be
returned with the values that we need to POKE at AUDFO and
AUDF2:

Page 201

P2=INT«178979/(2*PITCH)-7)/256
PI=INT(1789790/(2*PITCH)-7-256*P2*.5)

thus,

POKE AUOFO,PI and POKE AUOF2,P2

OK, but is this 440Hz? Notice the use of the INTeger
function in the PI and P2 formulas. Are we smack on target,
or are we off? If so, by how far?
Let us have a look. Substitute the PI and P2 values in the
following formula:

PITCH-1789790/(2*(256*P2+PI+7»

What is the pitch returned? Oid you get 439.97Hz? Well. what
can you say ... only .03Hz off target! An improvement of
2.IHz!! That can't be too bad.

SAMPLEing - how is it done?
Have you ever wanted to play SamPLe
demos or programs? If you have
listing of the .SPL play routine:

100
110 SPL play routine
120 brought to you by TOMO
130 June '93
140
150
160 *-$2134
170
180 LOA #$CO ;dat-endpag+1
190 STA $CO
200 LOA #$40 ;dat-startpag
210 STA $CC
220 LOA #$0
230 STA $CB
240 STA $D20E ;kill-IRQs
250 STA $040E ;kill-NrtIs
260
270 LOA $216 ;store
280 STA $CE ;VIrtIRQ
290 LOA $217
300 STA $CF
310
320
330 LOA #$IRQ&255 ;set
340 STA $216 ;addr
350 LOA #$IRQ/256 ;of new
360 ,STA $217 ;VIrtIRQ
370
380 LOA #$3 ;2-tone
390 STA $D20F ; mode-off
400 LOA #$0
410 STA $0200 ; ini tPOKEY

Page 202

(.SPL) files in your own
then here's an assembly

420 STA $D208 ;CLK-rate
430 STA $D202
440 LDA #$3 ; IRQ
450 STA $D200 ;rate
460 LDA #$1
470 STA $D20E ;enable-IRQs
480 LDA #$AO
490 STA $D201 ;rep-timer
500 WT LDA $CD
510 CMP $CC ;music
520 BNE WT ;played?
530
540 LDA 1$0
550 STA $D20E ;kill-IRQs
560 LDA 1$3 ;2-tone
570 STA $D20F ;mode-off
580 LDA $CE
590 STA $216 ;restore
600 LDA $CF ;orig
610 STA $217 ;VIMIRQ
620 LDA $10
630 STA $D20E ;orig VIMIRQ
640 LDA #$40 ;&
650 STA $D40E ;NMIs
660 BRK ;prog-end
670 ;RTS or
680 ;whatever
690
700 IRQ PHA
710 LDA #$0 ;used to
720 STA $D20E ;keep
730 LDA #$1 ; IRQ
740 STA $D20E ;going
750 STA $D209 ;self-cause
760 X BNE VI
770 VI LDY #$0
780 LDA ($CB),Y ;sample
790 LSR A
800 LSR A ;take hi
810 LSR A ;volume
820 LSR A
830 ORA #$10 set-VOLBIT
840 STA $D203 AUDCI
850 LDA #$14 other-
860 STA X+I volume
870 PLA
880 RTI
890
900 LDA ($CB),Y sample
910 ORA #$10 set-VOLBIT
920 STA $D203 AUDCI
930 INC $CB next-byte
940 BNE P
950 INC $CC next-page
960 P LDA #$0 reset for
970 STA X+I hi-volume
980 PLA
990 RTI

Page 203

The program in its present form is only 162 bytes long, so
it will go just about anywhere. It uses $CB and $CC for the
start address of the sample, $CD for its end address+I,
which points to page-192 ($CO). $CE and $CF just retain the
address of VIMIRQ so that it can be restored later. When the
Interrupt is processing, program execution is held at WT in
line 500. There are 2 parts to the interrupt, the 1st one
(lines 700 880) plays the volume which is stored in the
higher half of the byte, where as the 2nd part plays the
volume stored in the lower half of the byte. This is how the
SPL volumes are stored in memory as a means of
condenseness.

With a few modifications, it's also possible to play more
than one .SPL file at the same time. For example, make the
following alterations/additions:

180
232
234
236

841
842
843
844
845
846
847

LDA
STA
LDA
STA

LDA
LSR
LSR
LSR
LSR
ORA
STA

#$80
$DO
#$80
$Dl

($DO),Y
A
A
A
A
#$10
$D205

;dat-endpag+l

;sample-2
;address

;sample-2

;take hi vol
;of sample-2

;set-VOLBIT
;AUDC3

922
924
926

932
952

LDA ($DO),Y
ORA #$10
STA $D205

INC $DO
INC $Dl

;sample-2
; set-VOLBIT
;AUDC3

;next-byte
;next-page

The modified program will now play 2 .SPL files, however,
the 1st sample must occupy memory $4000 - $7FFF and the 2nd
must occupy $8000 $BFFF. Notice, in this example, each
sample has the same amount of memory reserved for it ($4000
bytes). Sample-2s address is stored in $DO and $Dl. Playing
2 samples at the same time takes a little bit more time to
process, so you may find you'll have to alter the value $AO
on line 480 to a lower one. If the system doesn't achieve
the time you require, it will cease, so the only other way
of getting around this is to turn the screen off by loading
location 559; $22F with O. You may be able to get away with
just turning half the screen off, but if you do try this, it
might be best to avoid the use of a DLI. Instead use direct
mode to'read VCOUNT at 54283. If you do use a DLI, then keep
it as short as possible: SEI, LDA '$0, STA $22F, CLI and
RTI. You might even have time in the actual IRQ. Have fun!

Page 204

POKEY IN STEREO?

To what extent will the XL/XE go to prove that it' is the
best a-bit computer in existence? People said at one time
that the main power of the Atari was its graphics (nice one
Antic and GTIA). The Amstrad 464 thought it was the best
computer tor word-processing and printing, until Atari
proved them wrong (nice one Antic and POKEY). and Commodore
thought it was the best music a-bit, until a program called
Softsynth came to the Atari and made several demo disks. one
of which is called World of Wonders. And now. the user of
the Amiga 16-bit computer thinks he's in the clear with his
sound chip, "Paula" or something like that! But have I got
news tor them or what! You too, like the Amiga user, can
have 4 channel stereo sound (nice one POKEY2). In fact, the
Amiga only has 2 channels per speaker. This modification
gives the Atari 4 channels per speaker!

Anyhow, if you want to make the modification, then it's at
your own risk, you also void any warranty you might have on
your computer, but who needs warranties, Atari 8-bits don't
go bang! (do they!??).

The parts you'll need are:

- Pokey chip (COI2294)
- 74LS14/74HCT14 Inverter IC
- 1000 Ohm resistor, 1/4 Watt metal film 2-51 tolerance
- Two RCA style stereo jacks
- Two IOOnF 16V bypass capacitors
- Two 12" strips of shielded audio cable
- One double-polar select switch (DPDT)
- Optionally. two 50K single turn trimmer pots

total cost approx. l8.50

All you need to fit everything together is a soldering iron.
solder, a steady hand and a little bit of experience. The
instructions have been made as clear as possible and
double-checked for errors, so as long as you follow the
instructions carefully then, hopefully, nothing should go
wrong. One note, though, be careful not to hold the
soldering iron on the soldering joint too long. You might
also take an additional care, by wearing a static wrist band
if you have one. but its not that important.

Page 205

FITTING:

I. THE INVERTER:

a) Bend up all pins except 7 and 14
b) Cut off the narrow part of all the pins that were

bent up
c) Install the inverter over the top of the existing

74LSI4 inverter on the mother-board
d) Solder pins 7 and 14 of this new inverter to the

same pins of the original inverter beneath
e) Run a small wire from pin-I of the new inverter

to pin-13 of the CPU. The CPU is part number
COl4806 on the XL/XEs

f) Unsolder and remove the 3K pullup resistor which
is connected between pin-31 and Vcc of the original
Pokey chip

g) Run a small wire from pin-2 of the new inverter
to pin-3 of the same inverter. and then from there
to pin-31 of the original Pokey. Note. that you can
use the pad where you removed the 3K pullup resistor
but be sure to get the correct one!

2. The 2nd POKEY:

a) Bend up all the pins on the 2nd Pokey which are
marked with a minus-sign from the diagram shown on
the next page. This includes: 8, 9, 10, II, 12
13. 14. 15. 16, 18, 19. 20. 21, 22. 23, 24. 25
26. 27. 28 and 29

b) Cut off the narrow parts of all the pins that
are bent up on Pokey2

c) Tin every pin which was not bent up on Pokey2, this
includes pins: I, 2, 3, 4, 5. 6. 7, 17, 30. 31, 32
33. 34. 35. 36. 37. 38, 39 and 40. These pins are
marked with the hash (#) sign

d) Now. bend up pins 10. 31 and 37 which are indicated
with a dollar sign ($), but do NOT cut these
pins short!

e) Place the new Pokey on top of the original Pokey in
piggy-back style

f) Solder the unbent pins of the new Pokey to the
original Pokey .

. . . more continuing

Page 206

APPENDIX B3:

The POKEY pinouts:

I () I
I I

Vss # :01 40: it D2
D3 it :02 391 # DI
D4 # :03 38: # DO
D5 # :04 $ 37: # Audio OUT
D6 # :05 36: it AO
D7 # :06 35: # AI
02 # :07 34 # A2

Pot6 - :08 33 # A3
Pot7 - :09 32 # R/W
Pot4 - : 10 $ s 31 # CSI
Pot5 - : II 30 # /CSO
Pot2 - : 12 29 - /IRQ
Pot3 - 13 28 - Data OUT
Poto - 14 27 - A Clock
Pot! - 15 26 - B Clock
KS 2 - 16 25 - KS I
Vcc # 17 24 - Data IN

Keyb.5 - 18 23: - Keyb.O
Keyb.4 - 19 22: - Keyb.1
Keyb.3 - 20 21 : - Keyb.2

I
I

g) Solder the 1000 Ohm resistor from pin-37 of the
new Pokey to Vcc. The most convenient place to
pick-up Vcc is where the 3K pull-up resistor was
removed earlier

h) Solder a wire from pin-31 of the new Pokey to
pin-4 of the new inverter

i) Mount the two RCA jacks on the rear of the case
preferably in an area near the Pokeys

j) Solder a bypass capacitor to each of the centre
conductors of the RCA jacks

* k) With the trim-pot knob facing you. pin-I should
be to the left side. Solder a wire from this
pin on each trimmer. to a ground trace on the
motherboard

* 1) Connect the free end of the bypass capacitor to
the centre pin of the trimmer (one capacitor to
each trimmer)

* m) Connect the shields of the audio cables to the
provided solder lugs on each RCA connector. and the
centre conductor of the free terminal of
each trimmer

n) Connect the centre conductor of the free end of
the audio cable which is connected to the left
RCA jack/trimmer/cap to pin-37 of the original Pokey

0) Connect the centre conductor of the free end of
the audio cable which is connected to the right
RCA jack/trimmer/cap to pin-37 of the new Pokey

Page 207

p) The shield of the audio cable on the Pokey end should
be cut and taped, or heat shrinked so that it
does not touch anything

q) Run a 18-20 AWG wire from the ground lug of the
RCA jacks to the wide ground area on the
motherboard. This normally makes contact with the
shield-box that covers the motherboard

3. FINISHING OFF:

You will now be able to connect the 2 RCA cables to an
AUXiliary input to a tape, level input of a stereo or a boom
box. You might find it better to centre the trimmers in
their travel, adjusting them as needed to get best clarity.
Glueing the trimmers to the back of the shell is a good
point to note. to stop them from moving around inside.

Steps k. I and m which are marked with an asterisk (*) are
not a necessity. The Pokey outputs can work fine without the
trimmers connected. Just connect the bypass capacitors on
each RCA jack to the appropriate audio cable centre
conductors. You can also fit a switch into the setup. which
will allow you to select between the normal stereo-mono
output and the new stereo-stereo output. Just type in the
following program to see a diagram of the switch circuit:

100 GRAPHICS 24
102 POKE 709.0:POKE 710.252
104 DIM A$(40)
106 DL-PEEK(560)+256*PEEK(561)
108 DM-PEEK(DL+4)+256*PEEK(DL+5)
110 COLOR 1
112 SET-PEEK(756)*256
114 GOTO 140
116 FOR J-l TO LEN(A$)
118 C=ASC(A$(J,J»
120 NC-C
122 IF SGN(C-96)--1 THEN NC-C-32
124 IF SGN(C-32)--1 THEN NC=C+64
126 CH-SET+NC*8
128 FOR 1-0 TO 7
130 AREA-DM+J*D+I*40+X+Y*40
132 POKE AREA,PEEK(CH+I)
134 NEXT I
136 NEXT J
138 RETURN
140 D-320
142 FOR Q-l TO 6
144 READ A$.X.Y:GOSUB 116:NEXT Q
146 DATA OLD,2.40.NEW,12,40
148 POKEY.3,32.POKEY,13,32
150 DATA 0 0 0 0,15.96,0 0,18,104
152 D-l
154 FOR Q-l TO 15
156 READ AS.X,Y:GOSUB 116:NEXT Q

Page 208

APPENDIX B3:

158 DATA 37,4,40,37,14,40
160 DATA 100nF,23,8,100nF,23,56
162 DATA AUDIO,30,12,AUDIO,30,42
164 DATA LEFT,30,21,RIGHT,30,51
166 DATA DOUBLE-POLAR,26,96
168 DATA SWITCH,29,104,LEDs,9,128
170 DATA GROUND,O,140,-Vcc,l, 149
172 DATA R=220 Ohms,26,152
174 DATA +5 VOLTS,28,136
176 FOR Q=1 TO 26
178 Z=NOT (Q-3)
180 READ P1,P2,P3,P4
182 GOSUB 188
184 NEXT Q
186 GOTO 230
188 FOR w=o TO Z
190 PLOT P1+W,P2+W
192 DRAWTO P1+P3+W,P2+W
194 DRAWTO P1+P3+W,P2+P4+W
196 DHAWTO P1+W,P2+P4+W
198 DHAWTO P1+W,P2+W
200 NEXT W
202 RETURN
204 DATA 12,37,21,44,92,37,21,44
206 DATA 114,102,42,58,264,148,40,0
208 DATA 252,146,10,4,151,148,99,0
210 DATA 8,148,64,0,72,140,0,16
212 DATA 72,140,24,0,104,140,17,0
214 DATA 72,156,24,0,104,156,17,0
216 DATA 72,124,48,0,72,20,0,104
218 DATA 72,20,144,0,34,50,38,0
220 DATA 114,50.10,0,124,50,0,55
222 DATA 150,116,16,0,166,50,0,66
224 DATA 166,50,50,0,222,50,64,0
226 DATA 222,20,64,0,125,116,20,0
228 DATA 125,148,20,0,137,116,0,32
230 FOR Q=1 TO 4
232 READ AS,X,Y:GOSUB 116:NEXT Q
234 DATA K,11.137,K.11,153
236 DATA H,26,17.H,26,47
238 PLOT 103,137:DRAWTO 103,144
240 PLOT 103,153:DRAWTO 103,160
242 PLOT 223,20:PLOT 223,50
244 PLOT 156,130:DRAWTO 230,110
246 COLOR 0
248 FOR Q=O TO 1
250 PLOT 219+Q,17:DRAWTO 219+Q,54
252 NEXT Q
254 FOR Q=1 TO 3
256 READ AS.X,Y:GOSUB 116:NEXT Q
258 DATA The stereo-stereo / stereo-mono switch.0.167
260 DATA Use shielded audio cable for all,3,175
262 DATA connections between Pokey and audio!.1.183
264 GOTO 264

Page 209

!J'YENDIX B3:

There is one problem with the stereo-stereo mode, and that
is when you try to play music or samples that are not
modified or specially made for the stereo upgrade, you will
hear these sounds from the left speaker only. But, if you
add the switch, pln-37 of the old Pokey will lead to both
speakers, thus, not using the new Pokey .

. . . where In memory is the new Pokey1

The original Pokey registers from $D200 - $D20F remain
unchanged. For a full explanation of how the AUDFI, AUDCt,
AUDCTL and SKGTL registers, see the appropriate locations.

The new Pokey registers take the following locations:

Address: Name: R/W Function:
---------- ---------
53776/D210 AUDF5 W Audio #5 frequency
53777/D211 AUDC5 W control
53778/D212 AUDt'6 W 16 frequency
53779/D213 AUDC6 W control
53780/D214 AUDF7 W #7 frequency
53781/D215 AUDC7 W control
53782/D216 AUDF8 W 18 frequency
53783/D217 AUDF9 W control
53784/D218 AUDCTL2 W AUDIO CONTROL
53791/D21F SKCTL2 W SERIAL PORT CONTROL

The SKCTL2 register controls various functions of the Pokey
device, and only needs to be initialized to a value of 3 to
assure the additional 4 channels are active and ready. You
can also test to see if your new Pokey works by PEEKing the
AUDFI and AUDCI registers. If they return constant 0, then
all is ok. You can also test this through the key code
register at $D209, with that of $D219 and if $D219 is 0, the
upgrade is installed. You may want to mask the IRQs during
the test for safety. This program will do the test for you,
if the screen turns black then it is ok, else something is
wrong:

10 DATA 104,120,173,9,210,141,196,2
12 DATA 66,96
14 FOR 1=0 TO 9
16 READ D:POKE 1536+I,D:NEXT
16 X=USR(l536)

where to from here ... 1

Page 210

APPENOIX B3:

All we need now is some software to operate the new Pokey.
So, get cracking experts! However, for the time being try
the following program:

100 POKE 53768,5:POKE 53784,80
110 POKE 53775,3:POKE 53791,3
120 POKE 53760,254:POKE 53761,168
130 POKE 53764,255:POKE 53765,168
140 POKE 53777,160:POKE 53779,168
150 POKE 19.0:POKE 20,0
160 POKE 53776,PEEK(20)
170 POKE 53778,PEEK(19):GOTO 160

This will only work properly in stereo-stereo mode, so make
sure your switch is set correctly.

Well, what can you do with a feature that is presently
incompatible with all existing software? What else, but to
change the existing software to MAKE it compatible!
You can do this by searching for all the 'pokes' in the old
pokey and replacing two channels with two of the new pokey.

But where there are answers, there are problems. Like poking
in different ways:

STA $0200, STA $0201
STX $D200, STX $0201
STY $0200, STY $0201

or even like:

LOY #1
STA $OIFF,Y or STA ($CB),Y

Which is very irritating to find (though, good protection).
Another problem is that some programs link channels to use
16-bit sound or filtering. See location 53768.

If the program doesn't use filters or 16-bit sound, then you
can substitute channels 1 and 2 from the original Pokey
addresses, to channels 3 and 4 of the new Pokey addresses.
This way, the program will play in stereo-stereo for
upgraded machines, but unchanged for the unmodified dudes.
If it does use filters. then you've got a problem in
compatibility if you change it. You can exchange the 2
channels (I and 3, or 2 and 4) from the old Pokey. for the
same channels on the new Pokey and initialise AUOCTL2 with
the same value as AUOCTL, but the program will only work
properly with the upgraded system.

If there are channels used for 16-bit resolution, then you
can also exchange the channels over for the other Pokey, but
you need to also change the bit you set in AUDCTL. If AUDCTL
sets bit-4, then after changing them over. AUDCTL2 should
set bit-3. Test for bits 5 and 6 also.

Page 211

APPENDIX B3:

You should note, that the changes made filters and
16-bit sound are not always compatible, because, since the
program uses two channels for 1 sound, it usually uses 1 or
both remaining channels for additional sounds, and it is
these channels that are lost on the unmodified system when
playing a modified tune in this way.

If you have a copy of World of Wonders, perhaps the best
music demo on the Atari, then you can turn it into stereo by
using a sector editor.
The program stores volumes into the AUDC' registers on
sector 1008, bytes SOB, $21, $38 and $51. All you have to do
is add $10 to which-ever bytes above, to make them use the
2nd Pokey.

Here's a program that converts Softsynth to stereo:

100 DATA 62,4,87,4,37,28
102 DATA 61,4,86,4,36,28
104 DATA 66,4,91,4,44,28
106 DATA 21,23,21
108 DATA D:PLAY1.SYN,D:PLAY2.SYN
110 DATA D:PLAYB.SYN
120 FOR IDO TO 20
130 READ D:POKE 1536+I,D:NEXT
140 DIM F$(20)
150 FOR NRDO TO 2
160 READ F$
170 XIO 36,#l,O,O,F$
180 OPEN #l,12,O,F$
190 FOR 1-0 TO 2
200 NOTE #l,S,B
210 S-S+PEEK(1536+NR*6+1*2+1}
220 B=PEEK(1536+NR*6+1*2)
230 POINT 'l,S,B
240 Q-PEEK(1554+1)
250 PUT #l,Q
260 NEXT I
270 NEXT NR

You can also change the music of a program yourself if you
like. Some programs are easy to alter, but others are
harder, it all depends on what music editor they were
created on. Draconus, Zybex, panther, BMX simulator etc.
(from the BIG demo) are ZUPKGC files. These are fairly easy
to alter, because they store music in the sound registers
only 1 place in the program.

Page 212

APPENDIX B3:

All you'll need to search
looks 1ike this:

A2 06 LDX #$6
BD 71 11 LOOP LDA $1711, X
9D 00 D2 STA $D200,X
CA DEX
10 F7 BPL LOOP

for is some that

Where $1111 might be any address!. You can change this loop
to:

20 XX XX JSR NEW ROUTE
EA NOP
EA NOP
EA NOP
EA NOP
EA NOP
EA NOP
EA NOP
EA NOP

and include somewhere else in the program, where there is a
suitable place of unused memory:

A2 04
BD 11 11
9D 00 D2
BD 11 71
9D 15 D2
CA
10 Fl
AD 71 11
6D 06 D2
60

LOOP
LDX
LDA
STA
LDA
STA
DEX
BPL
LDA
STA
RTS

#$4
$1111,X
$D200,X
$1111+5, X
$D215,X

LOOP
$1171+6
$D206

Don't forget that you have to initialize the new Pokey
with:

LDA #$3
STA $D21F

Credits for the upgrade go to Chuck Steinman, thanks also to
Frankensteins information (I took from his articles).

Page 213

APPENDIX C

CIIAHACTEH CODES:

Here's the Atascii and Internal character codes inside theAta r i.

!';JjAH----AlMQI_I NIE IlN
space 32 II L 76 44
! 33 1 M 77 45

34 2 N 71\ 46
35 3 0 79 47s 36 4 P 80 41l
\ 37 5 Q 81 49
& 38 6 Il 1\2 50

39 7 S 83 51
(411 Il T 84 52
) 41 9 U 85 53
>'< 42 10 V 116 54+ 43 II W 87 55

44 12 X Illl 56
45 13 Y 89 57
46 14 Z 90 58

I 47 15 [91 59
0 41l 16 \ 92 60
1 49 17 I 93 61
2 50 III 94 62
3 51 19 95 63
4 52 20 CTRL*. 0 64
5 53 21 CTHL*A 1 656 54 22 CTIIl.*1l 2 66
7 55 23 CTRL*C 3 67
B 56 24 CTIlL*D 4 61l
9 57 25 CTHL"'E 5 69

58 26 CTIll.*F 6 70
59 27 CTHL*G 7 71< 60 28 CTIll.*H 8 72
61 29 CTIll.*1 9 73> 62 30 III 74

7 63 31 CTRL*K 11 75
@ 64 32 CTRL*L 12 76
A 65 33 CTIlL*M 13 77
B 66 34 CTllL*N 14 71l
C 67 35 CTRL*O 15 79D 68 36 CTHL*P 16 80
E 69 37 CTRL*Q 17 81
F 70 38 CTHL*R 18 82
G 71 39 CTIlL*S 19 83
H 72 40 CTRl.*T 20 84
I , 73 41 CTRL*U 21 1\5
J 74 42 CTRL*V 22 86
K 75 43 CTIlL*W 23 87

Page 214

APPENDIX CI:

qIAH. .ATAli<:J ! ._..1tH!-: Uti rlltlL.tlT 1.1 .IN'HHti

24 88 108 lOll
CTUL*Y 25 119 m 109 109
CTHL*Z 26 90 n 110 110
ESC 27 91 0 111 111
liP 28 9:l p 112 112
DOWN 29 93 q 113 113
LEFT 30 94 r 114 114
IliGHT 3 I 95 s i i s 115
CTHL*. 96 96 t 1 I b 116
a 97 97 u 1 17 117
b ')B 9B v 11B 118
r 99 99 I' 119 119
d 100 100 x 120 120
e t n t 10 I y 121 121
f 102 102 z 122 122
g 103 103 CTUL*: I :l3 123
h 1114 104 124 124

Ill'; IllS CLEAR 125 125
j 106 106 DELETE 126 126
k 107 107 TAB 1:l7 127

Also see lucations 121 and 122 for a few special Atascii
characters. To achieve the inverse version of all the listed
Atascii characters, simply add 128 to the character code
value. There are only 128 illternul codes, and to achieve the
inverse runoffs of these c ha r a c t e r s , then bi t-7 is set, or a
value of 128 is added by the hardware when the character is
outputted to the display. In addition tu the above codes,
there are also:

155
157
159
254

End Of Line
Insert Line
Sill FT*TAll
Delete Char

156
158
253
255

Delete Line
CTRLf'TAR
CTHL*2 lluzzer
Insert Chur

As well as the above codes, there is a Jrd standard unique
to the Atari 8-bit. This standard is often referred to as
the keyboard "IIAW" vatue. The codes are as follows:

Page 215

CUll IlAW CUll IlAW
H'L;___J.:Ql!E:

A 63 0 50
B 21 I 31
C 18 2 30
D 58 3 26
E 42 4 24
F 56 5 29
G 61 6 27
II 57 7 51
I 13 8 53
J 1 9 48
K 5 < 54
I. 0 > 55
M 37 14
N 35 15
0 8 + 6
P 10 * 7
Q 47 2
R 40 32
S 62 34
T 45 / 38
U II TAB 44
V 16 SPACE 33
W 46 DEL 52
X 22 RETURN 12
Y 43 CAPS 60
Z 23 INV 39

ESC 28

Of the 57 keys on the main keyboard, 53 of them can be used
in of 4 combinations. You can press the key on its own,
use it with shift, with control or alternatively, use it
with both shift and control held simultaneously. The code
returned for the standard keypress is listed above, however,
if you use shift, then add 64. If you use control then add
128. If you use both shift and control, then add 192.

Page 216

APPENDIX C2:

NliMBEIl SYSTEMS:

Converting between number systems such as Decimal, or
Hexadecimal isu't that difficult once you got the right
formulas or charts. Here's some varying ways of doing so:

Fi r s t l y Ipt me give you true Binary columns:

DEC: 12!l 64 32 16 8 4 2 I
BIT: 7 b s 4 3 2 1 0

You should sep that i f threw a Binary number into this,
like so:

0 0 0

We have 1*12!l + 0*64 + 1*32 + 1*16 + O*!l + 1*4 + 0*2 +1*1,
or to make it clearer: 128+32+16+4+1 which = 181 in decimal.
Easy Ell!?

You could if you wanted label the columns;

DEC:
BIT

So if

8 4 2 1 II II 2 I
7651,3210

we inserted Ihe Binary number:

I 0 1 1 0 I 1

'l'h e n we get IH4+1 and 8+2+1, all we need to do is multiply
thp 1st half of the Binary conversion 8+4+1 by 16, and add
the 2nd half. Hence, 8+4+1 = 13 1< 16 = 208 + 8+2+1 = 219!
Try the previous formula to prove it.

Decimal is Rase-IO as you know, because each units, hundreds
column etc. is a multiple of ten, i e , 1*10 = 10, 10*10 = 100
etc ..

Binary is Base-2 because each column (digit) is a multiple
of 2, ie. 1*2 = 2. 2*2 = 4, 2*4 = 8. 2*8 = 16 etc ..

Hexadecimal is Base-16. If you wanted to convert any system
to or from hex .. you must l s t know what its loth, lith etc.
digits are.

DEC:
HEX:

15 14 13 12 II 10 9 8 7 6 5 4 3 2
FED C B A 9 8 7 6 ') 4 3 2

o
o

As you can see, the number OE in Hex. is 14 in decimal. But
what if we had the number 9E ... ?

Page 217

No problem. Knowing that lle x , is Bas e r l o , we should see that
the l s t column is 1*10, the 2nd is 16*11., then 256;'16,
4096*lb etc., so:

9E in Hex. = 9*16 + 14 = 15H Dec.

Here's a table for easy relerence:

DIGIT:

4th 3rd 2nd l s t
Hex Dec Hex Dec Hex Dec Hex Dec

1000 4096 100 256 10 16 01
2000 AI92 200 'j 12 20 32 02 2
3000 1222A 300 768 30 48 03 3
4000 16384 400 1024 40 64 04 il
5000 20480 500 1280 50 80 05 5
6000 24576 600 1536 60 96 06 6
7000 28672 700 1792 70 112 07 7
AOOO 327611 1100 20411 110 128 08 8
9000 3686 i l 900 2304 90 144 09 9
AOOO 40960 AOO 2560 AO 160 OA 10
BOOO 45056 BOO 2816 BO 176 all II
COOO 49152 COO 3072 CO 192 OC 12
0000 53248 000 3328 DO 208 Oil 13
EOOO 57344 EOO 3584 EO 224 OE III
FOOO 61440 FOO 3840 FO 240 OF 15

Binary and Hexadecimal conversion is probably the easiest of
the lot! Take the Binary number:

01011011

AII you have to do is sp lit i t in half, the left 4-bits
becomes the left Hex. dig it, and the right 4-bits becomes
the right Hex. di gi t, i e;

0101 = 4+1 .. 5, and lOll = 8+2+1 = B (II in Dec.), so our
Hex. equivalent = 'lB. For the decimal equivalent, just
multiply 5*16 and add II as described earlier, 5*16 = AO +
II = 91 Dec i ma l . To get the lIinary value from the lIex. code,
just reverse the operation!

There are many other ways to convert the numbers, but I feel
that the ways I've described are the easiest and quickest!

If you to convert a Decimal number to Binary, then
you can do it like so:

Take the Dec. number 239;

Page 218

APPENDIX C2:

239-128 = III, so we have a 12!l bit
I I 1-64 = 47, 64 comes out too
47-32 = 15, yeap, a 32 also
15-16 gaps negative, so this bit is 0
15-8 = 7, yes an 8 is there
7-1, 3, a II too
3- 2 1, a n d il 2
I-I 0, e ve n the 1, a 11 done

This gives:

11101111

All the hits f'xcept 16, anti in fact, if y ou take 239+16, you
get 255; 1I1I I II 1. What a coincidence!

You might agree, that the hardest conversion to make is from
IJpcimal to Binary, but who says Ihat you have to go in a
d i r e c t way. For instance, to convert the Decimal number 189
10 Binary, why nol go via Hex. 1st! 189/16 = 11 (or rather
B) + Ihe remainder which is 189-(16*n) (A Hex. = II De c .)
which gives you 13 Dec. or 0 Hex. Thus, you can now change
BU 10 Ainary. You can convert the B and the D as seperate
parts, going back to single decimal numbers, called ACD
(t'xplained in a moment), Ihus: B II and 0 = 13, so:

11=8+2+1 and 13=!l+4+1 which gives:

lOll and 1101, or rather 10111101

Instead of going from Decimal, 10 Hex. and back to the
singled decimal values, you can label the Binary columns in
Hexadecimal, as shown:

i e:

BIT:
IJEC:
HEX:

7 6 543 2
128 64 32 16 8 4
80 illl 20 I 0 8 I,

I 0
2 I
2 I

This way, changing the decimal number 189 to Binary, via
Hex. would go like so:

1!l9d/lbd
so:

Bh and 1!l9d-(16h*lId) (lid Bh) 13d or Dh,

BOh
OOh
BDh

80h+20h+IOh
Ollh+O/,h+O I h
10111101 b

1011 and
1101, so:

where h = Hex., d Dec. and b Binary

Page 219

Hillary Coded Dec i mal (BCD) is similar to what we came across
earl i e r , where we to ok Ii Decimal number to Hex , and from
there, we converted the two Hex. digits to separate Decimal
values to work-out which Bi na r y co l umns to set in each half
of ii fu II Hi nary number.

When Ii number is in BCD, what is meant is that when you lake
the Hinary sum of the byte, you must spl it the Hinary into
two halves, and the two decimal values extracted from each
half of the Binary sum is the actual decimal number, you DO
NOT multiply the 1st digit e x t r a c t ed by 16!, i e :

a BCD number is shown as:

10010110

Split the Binary into IDOl and OliO, and this returns 8+1
and 4+2, giving 96. Now the real Decimal equivalent of this
Binary number is 9*16+6, but we do not do this because the
number is a BCD one. It is MEANT to be 96d! This call be very
confusing when reading a memory location that is in nco
format, because Basic returns the Decimal equivalent of the
Binary bits. You'll have to convert that Decimal number to
the Hinary bits so that you call extract what the number is
meant to be, a BCD number!
Thats about it with number systems, all you need to remember
to convert to any other Base, is that each column multiplies
the previous column by the Base.

Page 220

APPENDIX C3:

LSBs AND MSBs

often used as pointers to tables and vectors to
routines, where LSB is the Least Significant Byte and MSB is
the Most Significant Byte. Take the fol lowing example:

DL-PEEK(5bO)+256*PEEK(561)

You wi II have come across this quite often in this book. The
v a r i a h l e Ill. finds th e a dd r e s s of the Antics Display List
instructions in memory. Thf' LSB (low byte) is in location
56D and the MSIl (high byte) is in location 501. As you
should know, you cannot perform:

POKE 5hll,:l996B

Not in an B-bit computer anyway! So, to represent this
address, we simply have to divide it by 256 to find the
high-byte, and take the remainder for the low byte, hence:

BI-INT(:l990B/25b)
LO=:l990B- (III *256)

Another 2 formulas you will see often in this book. The
number 256 is used as the division because this is the
maximum amount of values that 1 memory location in the
computer can have.

In assembly language, to take the high and low bytes would
look something like this:

LDX ADDRESS/256
LDY ADDHESS&255

;high byte
;low byte

The
256 .
only
LOGIC

high byte just finds the integer of ADDRESS divided by
The low byte ANDs the address with the low bits, and
returns a value whose binary bits are set. See the
appendiee for an explanation of the AND function.

Page 221

1I0lJNDAIlIES:

When you setup a Display List (DL), Display Memory or
PIlIyer/Missi Ie Graphics (PMGs), you need to organize them
suitably in memory. The instructions of II ilL cannot run
through Ii IK boundary, tor example:

Addr: lnstr:
$531'C 2
$53FD 2
$5:lFE 2
$531'1' 2
$5400 2
etc.

This will not work, since the DL instructions run straight
through II IK boundary (IK 1024; $400 bytes). You'll have
to change this to something like:

$5JFC $2
$5JI'D $1
$5JFE $00
$53FF $54
$5400 $2
etc.

JMP-instruction to address:
1.SB;
MSB; $00+256*$54 = $5400

Display Memory (DM) must be organized so that it does not go
through a 4K (4K = 40l)6; $1000 bytes) boundary. For example,
if the mode-line columns were in memory like so:

0123456789ABCDEFOl23456789ABCDEFOl234567
0123456789012345678901234567890123456789

I
I

addr.$5FFO
I
I

addr.$6000

If the loth byte in the line was location $51'1'0, then you
would think that the 26th byte would be location $6000. lIut,
the 26th byte will actually be address $5000, the 27th byte
would be $5001 etc. in this case. To avoid this, you should
organize the memory correctly, do this by shifting the
previous 1.MS address over so that the last byte of the 4K
boundary is the last byte of the line. Should the last byte
of the 4K boundary be the last byte of the line, then the
1st byte in the next line will continue after the 4K
boundary, and into the next one, hence, everything is fine.
You can also use the LMS instruction to point to the next
area of, memory to display.

Page 222

APPENDIX C4:

When the Atari sets up Gr a plt i c s modes 8, 9, l O, II, 14 and
15, it achieves boundary crossing by inclusion of a 2nd LMS
instruction at the point of the DI. where it needs it. I.MS
instructions are also necessary when you want more than 4K
un the screen at one time. Graphics mode 8 on an HOOXL, for
example, begins its OM at 33104; $8150. Here, only 94 lines
of 40 bytes ppr line can be accommodated before the 2nd LMS
instruction needs to point to the next 4K boundary because
<j1.*1.0=37hO. I f you add 3760 to J:110/., you get 361l64; $9000
(the next boundary). And because there is more than 4K to be
displayed on the screen at the same time, an LMS needs to be
present.

Player/Missi Ie Graphics have boundary limitations also. But,
with PMGs, depending on what resolution you are using, you
ha ve to POKE t he start address (hi-hyte only) into PMBASE.
With Iluubte-l inc resolution, PMRASE must begin on a IK
boundary (a multiple of 4 pages), but with Single-line
resolution. PMIlASE must begin on a 2K buundary (a multiple
of fl pages).

When yOIl set l'MIlASE with the appropriate value, a table is
con f i gur od as shown in the PMRASE append i c e , I f you do not
give an acceptable start boundary address, then Antic will
not calculate the table correctly, as simple as that!

A sllitable address for Double-line resolution can be taken
trom this formula:

POKE PMBASE,ADDRESS*4

This ensures, that whatever value you give variable ADDRESS,
it is multiplied by 4, 1*4=1024, etc., they are all
lK boundaries!

The Single-line resolutiun formula would be:

POKE PMHASE,ADDRESS*a

Any value given this time will ensure that a 2K boundary is
found correctly.

Page 223

AfillDlX C5:

BOOLEAN EXPIlESSIONS:

Boolean programming is quite a powerful technique that can
totally re-configure the standard Basic program. Take the
following example:

A=(F> 10)

This is exactly the same as:

A=O
IF F<IO THEN A=I

IF/THEN statements take a fair bit of time to process in
Basic, so doing without them would be a bonus.
Another format of the expression is:

GOTO IOO+4*(YES=1 OR YES=4)

Take the following lines that detect the joystick:

S=STICK (0)
IF S=07 THEN X=X+I
IF S=II THEN X=X-I

You can change this to:

S=STICK(O)
X=X+(S=7)-(S=II)

Here's how it goes: If S=7 then X=X+I-O. If S=11 then
X",X+O-I. If X07 or II then x-x-u-o ,
You can even put the boundaries in the same formula, ie:

X=X+«S=7) AND (X<MAX»-«S=II) AND (X)MIN»

The full formulas and all 8 directions can be found with
these 2 formulas:

X=X+(S=5 OR S=6 OR S=7)-(S=9 OR S=IO OR S=II)

Y=Y+(S=5 OR S=9 OR S=13)-(5=6 OR 5=10 OR S=14)

I'm sure you can put your own boundaries into the formulas.
You don't want me to do everything do you? OK, I'll give you
a clue if you don't know. You've got to put both X and Y
MINs/MhXs in both formulas ...

Page 224

LOGIC:
Anything to
about! Try
your Atari:

'? 2+3*2

do with lugic, that's what this append ice is
the following formula exactly as it's shown, on

What answer did you get? 10 or 8? This proves that the Atari
computes all its l.OGlC in a particular order. It doesn't
necessarily work from left to right!
The actual order of precedence is as follows:

puwers
divide
multiply
minus
plus

powers are done first
next is divisions
then multiples
onto subtractions
and lastly, additions

? 5+7*9/8-3

If you work from left to right in this formula, then
get 10.5, but this ain't how it works is it! The real
is obtained by dividing 9 by 8, multiplying
subtracting 3 and adding 5. which gives you 9.875.

you'll
answer
by 7,

Another feature that precedes all of these factors, is
brackets. When bracketing particular segments of the
formula, this is calculated first, for example:

? (5+7)*9/8-3

This gives:

(12)*9/8-3
12 * 1.125 - 3

13.5 - 3 = 10.5
Mathematical functions take the highest order of all
formulas, and require brackets as an essential part of their
syntax, ie:

? 7+COS(9-3)/5*2

This gives:

7+INT(COS(6) * 10
7+INT(9.945218954
7+ 9

/ 5 * 2
/5* 2
/5* 2

... the rest is as before

Mathematical functions, and indeed all other functions can
be used in many ways. For instance:

SIN(COS(5)*ATN(I»

Page 225

This is a perfectly feasible syntax. If an error occurs, it
is due to the values, divide by zero or out of range. You
can even substitute standard functions into mathematic
expressions, for example:

ASC("Z")*SIN(x)

This will multiply the sine of variable "x" by the ASCII
code of the letter Z. Consider for argument purposes, that
you have DIMensioned A$ and it contains the string
"SUEI9DOB290294". Here are some other expressions that are
of perfectly evaluable syntax:

2*VAL(A$(4» - Multiplies 19 by 2

ASC(CHR$(A$(I,I»)+1 - finds ASCII code of S and adds I

PEEK(SGN(PEEK(88») - finds contents of location I if
location 88 contains a positive
number, location 0 otherwise.

CHRS(VAL(AS(9,10») - returns the character whose ASCII
code is 29.

The context of Basics functions is quite unlimited, so long
as they abide by a syntax law. for instance; CHRS expects a
value in its argument which it treats as an ASCII code of
the character it returns. ASCII is the opposite of CHRS, so
ASCII expects the argument to address a character, either
via the use of the CHR$ command, or the use of inverted
commas.

On a similar
AND, OR and
examples as
of course.

line to functions, is the logical operators;
NOT. These can be substituted in the above
well, so long as they use the correct syntax,

These operators can be used in 2 different ways, depending
solely upon whether you are using Rasic or machine-language.
The machine-language way is described later on.

The 1st 2 operators, AND and OR take the format:

argument 1 operator argument2

The result of the operation is dependent upon the 2
arguments as in the following truth table:

Input:
argl arg2
o 0
o 1
I 0
1 1

Output:
AND OR
o 0
o 1
o 1
1 1

Page 226

So, with
then the
the result

the AND operator, if both arguments are positive
result is I. Otherwise the result is O. With OR,
is 0 only when both arguments are negative.

The NOT operator is just an inversion of the argument. If
the argument is positive, then the result is 0, if the
argument is negative, then the result is I.

In machine-language, there isn't a NOT instruction, but
there is EOIL AND, OR (ORA) and EOR actually affect the
biliary bits of a number.

The AND i ns t r uc t i on is widely used to turn particular bits
on or of f , for instance:

AND #$FO

This instruction will turn off all the low 4-bits in the
byte, leaving the high 4-bits unchanged. This is a handy
technique for ensuring that any colour going to the screen
is at its darkest shade. If used along with:

ORA #$08

it will set bit-3 of
unaffected, thus, all
8.

EOR it $1l0

t he byte, and I eave a 11 other bi ts
colour output would be at luminance

This is a widely used technique which will simply inverse a
byte.

The EOH truth table is:

Input:
a r g I arg2
o 0
o I
t 0
I 1

Output:
EOH
o
1
1
o

You'll only get a I, wlH'n both input arguments are
alternate.

Another use of the EOR instruction, is to alternate between
a blank screen and an image being put there. Very handy for
showing an image, blanking it out, moving it and re-placing
it. For example:

LDA SCREENBYTE
EOR DATAflYTE
STA SCREENBYTE

Page 227

A.l'Pt;l'!OI x CO:

The l s t time through the loop would select just the bits
from the d a t a by t a , but the znd time through the loop will
return a blank byle.

You can also simulate the Basic NOT command with:

EOH 1St'

The logical operators can also go much turther than these
simple J described. You can nest an AND with a NOT to
achieve what is known as a NAND. An OR and a NOT achieve a
NOH. In fact, you can create your own special truth tables
to achieve whalever program you want using just Basic
Formulas!

ERROR CODES.

This appendice contains very many of the error codes you're
likely to come across within the Atari personal computers
with a little description alongside each one. This list
begins with the Basic language error codes:

OUT OF MEMORY
There is not enough RAM available for the
process the Atari is trying to carry out, or there
are too many nested FOR/NEXT loops or subroutines.

ERRORS:
ERR.
NAME

BASIC
ERR.
CODE
dec hex
2 2

3 3 VALUE ERROR
The numeric value is either too great, too
small or of the wrong sign (negative when it
should be positive).

4 4 TOO MANY VARIABLES
A standard Basic program is limited to 128
different variable names (256 in TURBO Hasic).
Variables previously used, but presently deleted
still affect variable counts, so to overcome this
problem, LIST your Basic program to disk,
coldstart
the computer and re-ENTER the program.

5 5 STRING LENGTH ERROR
The element or cell being addressed is past the
end of the strings or arrays DIMension.

Page 228

APPENDIX C7:

6 6 OUT OF DATA
The most recent READ statement was trying to
obtain an element of data past the end of
all DATA elements. You should use RESTORE
to point to the DATA line that you wish to READ.

7 7 NUMERIC/LINE ERROR
The numeric value is negative, or greater than
32767 in a situation where it is not allowed,
such like a line number.

B 8 INPUT STATEMENT ERROR
An attempt to input a string value into a
numeric variable was made

9 9 ARRAY/STRING DIMENSION ERROR
The string in lise is unDIMensioned, or an
already existing string has tried to be
re-DIMensioned.

10 A ARGUMENT STACK OVERFLOW
An expression is too large, or there is too much
nesting of GOSUBs or FOR/NEXT loops.

II B FLOATING POINT OVERFLOW/UNDERFLOW ERROR
A number is greater than the magnitude
9.99999999 * IOE-97 (97 digits after the decimal
poi II t) .

12 C LINE NOT FOUND
A GOSUB, GOTO or IF-THEN statement tried to
reference a non-existent line number.

13 D NEXT WITHOUT FOR
A NEXT statement with no existing FOR has
been encountered. Perhaps a POP statement has
taken its address off the stack.

14 E LINE TOO LONG
The line entered is greater than 3 logical
lines (120 bytes). The end of a program line is
denoted by a BEEP sound.

15 F GOSUIJ OR FOR LINE DELETED
A RETURN or NEXT statement can no longer find
its relation, GOSUB or FOR.

16 10 RETURN WITHOUT GOSUB
There is no existing GOSUB for the recently
encountered RETURN statement to react to.

17 II GARBAGE ERROR
A previously executable line is no longer of
any sense. Perhaps due to POKEing in the wrong
area of memory, or a machine-code routine
crashing the Basic program.

Page 229

III 12 INVALID STHING CIIAHACTEH
A non-numeric string was trying to be converted
to a numeric value using the VAL function.

19 13 LOAD PROGRAM TOO LONG
Not enough HAM for the program trying to load.

20 14 DEVICE NUMBEH EHROR
A device number less than 0 or greater than 7
was used.

21 15 LOAD FILE ERROR
The command being used to load a file is not the
companion to which it was saved with. LIST goes
with ENTER. CSAVE goes with CLOAD and SAVE
goes with LOAD.

END OF FILE ERROR
Either the EOF record has been reached, or the
CTRL+"3" key was pressed.

IOCB INPUT ONLY ERROR
An Attempt to write to a file which is only
OPENed for read was done.

BAD IOCB CHANNEL NUMBER
A channel outside the range 0 - 7 was referenced.

CHANNEL NOT OPEN
An I/O operation tried to use a channel which
has not been OPENed.

INVALID COMMAND
An illegal command has been used in an 1/0
operation such as XIO.

IOCB OUTPUT ONLY ERROR
An attempt to read from a file which is only
OPENed for write was done.

NONEXISTENT DEVICE
Your program is trying to use a non-existent
device.

IOCB CHANNEL ALREADY OPEN
You are trying to OPEN a channel that is
already OPEN.

BREAK KEY ABORT
The BREAK key was pressed during an I/O operation.

TRUNCATED RECORD
A data record greater than the INPUT command can
accomodate has been read, thus, truncating the
record. INPUT must find an EOL character at a
maximum of 120 bytes apart.

128 80

129 81

130 82

131 83

132 84

133 85

134 86

135 87

136 88

137 89

Page 230

APPENDIX C7:

DR RA DEVICE TIMEOUT
The specified device has not responded in a
particular amount of time, given by location 774.

)39 8B DEVICE NAK
The device cannot carry out the command asked
of it.

140 BC SERIA(. BliS FRAME ERROR
Serial bus data inconsistency. The device may be
faulty.

141 BD CURSOR our OF RANGE
The cursor is trying to access a co-ordinate
outside the range uffered by the Graphics mode
in use. See the ROWS and COLUMNS in the
chart on page-16.

142 BE SERIAL BliS DATA FRAME OVER-RUN
Serial bus data inconsistency. The device may be
faulty. or perhaps even the I/O lead itself.

143 UF SERIAL BUS DATA FRAME CHECKSUM ERROR
The data being transferred is corrupted.

144 90 DEVICE DONE ERROR
The disk is either write-protected. or the disk
directory is scrambled.

145 91 BAD SCREEN MODE HANDLER
There is either a problem with the screen handler,
or the disk drive detected a difference between
what it wrote compared to what it was supposed to
write.

146 92 FUNCTION NOT IMPLEMENTED
An unalluwable action was attempted. such-like:
outputting to the keyboard. or inputting from the
printer etc ..

147 93 INSUFFICIENT RAM
Not enough memory to perform the task the Atari
has been appointed. such like changing from
Graphics 0 to Graphics 8 with only a few bytes of
memory spare.

ISO 96 SERIAL PORT ALREADY OPEN
Each serial port can be OPEN to only 1 channel
simultaneously.

lSI 97 CONCURRENT MODE ERROR
A serial port must be OPENed for concurrent mode
BEFORE enabling current mode 1/0 with the
XIO 40 command.

Page 231

In 'Ill CONCUIlHENT MOIJE BUHEH ERHOH
An inconsistent buffer length and address during
Lhe startup of concurrent I/O using the optional
program-provided buffer feature.

153 99 CONCURHENT MODE ACTIVE
An I/O on a serial port was attempted, while
another serial port was OPEN and active in
concurrent mode.

154 9A CONCURRENT MODE INACTIVE
The I/O attempted through the serial port
requires the concurrent mode.

160 AO DRIVE NUMBEH ERROR
A drive number outside the range I - 8 was used.

161 Al TOO MANY OPEN FILES
Normally, only 3 disk files can be OPEN at one
time. See location 1801.

162 A2 DISK FULL
The disk is full, to the last sector!

163 A3 UNRECOVERABLE SYSTEM ERROR
During I/O, an unknown error occured which cannot
be determined or recovered from.

164 A4 FILE NUMBER MISMATCH
The sector POINTed Lo is not within Lhe file
OPENed, or the disk-file' sector-link bytes
are scrambled (the last 3 bytes of every DOS
sector) .

165 A5 FILE NAME ERROR
The file-name is illegal, see locations 3783,
3818 and 3822.

166 A6 POINT DATA LENGTH EHROR
You are POINTing to a byte in a sector which
doesn't exist. There are normally 128
bytes in a sector, but 256 in true double density.

167 A7 FILE LOCKED
A locked file was accessed for alteration. You
should unlock the file first.

168 A8 INVALID DEVICE COMMAND
A non-existent XIO command was attempted, or
is not defined for the device in use.

169 A9 DIRECTORY FULL
The disk directory allows up to 64 files only.
With SPARTADOS, you can create sub-directories
which is an excellent feature brought down from
grandfather programs such as MS-DOS on the IBM.

Page 232

APPENDIX C7:

170 AA FILE NOT FOUND
The specified file-name is not on the disk
directory.

171 AB POINT INVALID
Incorrect use of the POINT command; an attempt was
made to use POINT with an incorrectly OPENed (ile.

STATUS
ERR.
CODE
dec hex

ERRORS:
ERR.
DESCRIPTION:

I I Operation complete and OK
3] EOY approaching; next read gets the last data

in the file.

These are the only differences in errors, all others
including those given on page-83 are the same as the Basic
error codes listed previous.

DOS 3 ERRORS:

Also among the errors is probably the worst list ot all!
Those of DOS 3, why on earth did Atari change everything
(including the error codes!) when it was quite fine in the
beginning!? "ere are the alterations only returned by DOS 3.
In my opinion. and possibly another few thousand others, you
should convert all your DOS] files to DOS 2.5, or use an
even better DOS again such as SUPERDOS V.5 or SPARTADOS.

ERR.
CODE
dec hex

ERR.
NAME

Errors 2 - 10 are the same as DOS 2.X, except
when using the DOS 3 menu functions; they are then
used as follows:

2 2 NO COMMAND
No file with an extender .eMU exists in drive-I.

3 3 INPUT REQUIRED
You've given a blank character in the Rename
function which is not allowed.

4 4 NO CARTRIDGE
You tried executing the TO-CARTRIDGE function
when one doesn't exist.

5 5 I/O ERROR
Any 1/0 error, ie. printer is not on-line.

Page 233

b b INVAI.ID END ADDHESS
The END address, given in the Save function is
lower thall the STAIIT address.

7 7 MEM.SAV LOAD ERROR
The system is unable to r!!store the mf'mory
using the MEM.SAV tile. The program that you had
in memory is now lost, told you DOS 3 was a waste
of time didn't I!

8 8 MEM.SAV SAVE ERROR
Something has happened while the system was trying
to write the MEM.SAV file. Try changing the disk
that your writing to.

9 9 DRIVE INPUT ERROR
Invalid device specification supplied.

10 A FILENAME INPUT ERROR
Invalid filename supplied.

Here's a few additional errors included with DOS 3. not on
any other DOS:

174 AE DUPLICATE FILENAME
You are trying to Hename a file to a name ot
a file that already exists.

175 AF BAD LOAD FILE
The file you are trying to load is not a
load-type file.

176 BO INCOMPATIBLE FORMAT
You are trying to perform a 1)OS :l f unc l ion wi t h
a DOS 2.0 disk. Your halfway there!

177 Bl DISK STRUCTURE DAMAGED
DOS 3 does not recognize the files on the disk
due to damage (well done).

The sooner you get rid of DOS 3. the better. because nos 3
is not only incompatible with DOS 2. 2.5, SPARTADOS,
SUPERllOS e t c . , bu t it saves in a format that can easily
waste 'chunks' of memory, literally! Send off to Atari for
your replacement.

Page 234

THIGONOMETHIC FORMULAS:

This list is. by far. not complete. but does provide some
more commonly used trigonometric formulas. Some val ue s of
"x" invalidate some functions. such as COS(x)=O then SEC(x)
is not real. Make sure you check for these:

ARCCOS(x)=-ATN(x/SQR(-x*x+I»+1.5707633
Heturlls the illverse cosine of x(ABS(x)(I)

ARCCOSH(x)=LOG(x+SQR(x*x-l»
Heturlls the illverse hyperbolic cosine of x (x>=1)

ARCCOT(x)=-ATN(x)+1.5707633
Returlls the inverse cotangent of x

ARCCOTH(x)=LOG«x+l)/(x-l»/2
Returns lhe illverse hyperbolic cotangent of x(ABS(x>1)

ARCCSC(x)=ATN(1/SQR(x*x-l»+(SGN(x)-I)*1.5707633
Heturns the illverse cosecBllt of x(ABS(x»I)

ARCCSCH(x)=LOG«SGN(x)*SQR(x*x+l)+l)/x)
Returns the i nv e rs e hyperbol ic of x(x>O)

ARCSEC(x)=ATN«SQR(x*x-l)+(SGN(x)-I)*1.5707633
Returns the inverse secant of x(ABS(x»=I)

ARCSECH(x)=I.OG«SQR(-x*x+l)+l)/x)
Returns the inverse hyperbolic secant of x(O(x<=1)

ARCSIN(x)=ATN(x/SQR(-x*x+l»
Heturns the inverse sine of x(ABS(x)(1)

ARCSINH(x)=LOG(x+SQR(x*x+l»
Heturns the illverse hyperbolic sine of x

ARCTANH(x)=LOG«1+x)/(1-x»/2
Returlls the inverse hyperbolic tangellt of x(ABS(x)(1)

COSH(x)=(EXP(x)+EXP(-x»/2
Returns the hyperbol ic cosine of x

Page 235

C01'(x)=COS(x)/SIN(x)
keturns the cotangent of x(x(>O)

COTH(x)-EXP(-x)/(EXP(x)-EXP(-x»*2+1
Returns the hyperbolic cotangent of x(x(>O)

CSC(x)=I/SIN(x)
Returns the cosecant of x(x(>O)

CSCH(x)-2/(EXP(x)-EXP(-x»
Returns the hyperbolic cosecant of x(x(>O)

1.0Ga(x)=I.OG(x)/I.OG(a)
Returns the base a logarithm of x(a>O,x>O)

I.OGIO(x)=LOG(x)/2.30258509
Returns the common (base ten) logarithm of x(x>O)

MODa(x)-INT«x/a-INT(x/a»*a+0.05)*SGN(x/a)
Returns x modulous a: the remainder after division
of x by a (aOO)

SEC(x)=t/COS(x)
Returns the secant of x(x(>pye/2)

SECH(x)=2/(EXP(x)+EXP(-x»
Returns the hyperbolic secant of x

SINH(x)=(EXP(x)-EXP(-x»/2
Returns the hyperbolic sine of x

TAN(x)=SIN(x)/COS(x)
Returns the tangent of x(x[]O)

TANH(x)=-EXP(-x)/EXP(x)+EXP(-x»*2+1
Returns the hyperbolic tangent of x

Note: pye instead of its symbol and the base elements "a"
and "10" on the 2 LOG formulas, where they should be entered
as base expressions.

Page 236

DISPLAY MODES.

When you call a GRAPIIICS mode from BASIC you can n'ormally
access it in I of 2 different ways, choosing either a whole
graphics screen, or a graphics screen with a text window at
lhe bottom. The 4 tables on the next sheet show you the
exact memory configurations for both these combinations. Of
course, you can always add 32 to your GRAPHICS mode value to
access the mode without clearing the screen, but in addition
to this it is also possible to obtain an invisible text
window. You do this by calling the GRAPHICS mode you want,
a dd i ng 16 so that you ob t a i n a filii graphics screen and then
include a POKE 703,4 to enable the text window. This way,
the 160 bytes that are normally unused in the full-screen
mode would be taken by the text-window, bllt since you called
the mode WITIIOUT a text window, there is no Display List
supplied to display the memory you type in, whether it be
in-screen or below! This technique also works in GRAPHICS 0,
but the text window then occupies the real bottom 4 lines of
lhe rpst of the screen.

It Is also possible to achieve a visible text window in GTIA
modes 9. 10 and It. You do this exactly the same way as you
would call a GTIA mode in machine-code by calling GRAPHICS
8. POKEing /17 with 9 and POKEing 623 with either 64, 128 or
192 depending on whether you wanted GTIA 9, 10 or II,
respectively. This way, the memory configuration would then
take the same format as GRAPIIICS /I with a text window.

Oh dear, the text window is unreadable. What a shame ...
Well, thats just another problem to overcome isn't it! There
are a few ways. one ot which uses a short Dtl on the very
last scan-line of the graphics area (immediately above the
text window). See the end of Appendice CII for this
program.

In addition to the 16 modes given, there is also a graphics
mode usually referred to as GRAPHICS 0.5; ANTIC code 3. It
isn't accessible with the standard BASIC statement so you
need to create your own Display List (DL). Try the following
program:

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEK(561)
30 POKE DL+3,64+3
40 FOR 1=6 TO 23
50 POKE DL+I,3:NEXT I
60 POKE OL+24,16:POKE OL+25,65
70 POKE DL+26,PEEK(560)
80 POKE OL+27.PEEK(561)

Page 237

This modes memory cunfiguration is as fullows:

t : _

28byles UL:28bytes DL
----------:----------
4bytes I 4byles
unused : unused

---- 1 ----

760bytes
char.map

760bytes
char.map I

4bytes
unused

200bytes
unused

1---------- ----------
: 40 bytes 40 bytes
: unused unused
1----------,----------
I 160bytes : 160bytes
ltextwindowl unused
:----------1----------

Note. that to obtain the text window you must POKE 703 with
4. The only snag is that the text window is invisible (off
screen). but that's no problem! If you want the text window
on-screen then add the following lines to the previous
program:

22 DM=PEEK(DL+4)+256*PEEK(DL+5)
24 DM=DM+(5*40)
26 HI=DM/256:LO=DM-HI*256
28 POKE DL+4,LO:POKE DL+5,HI

This does, however. change the memory configuration to:

1 1 ----;

28bytes DL 28byles DL:
---------- ----------;

4bytes :
unused :

---------- ----------l
I
I

200bytes :
unused :

I
I

600bytes :
char.map :----------:

I I
I I

----------: 760bytes :
160bytes : char.map :
textwindow: :
----------:----------:

Page 238

M'PENOIX C9:

You may find the tabLes a littLe peculiar at first, but they
are correct. This mode only aLLows 19 Lines to be on-screen
at once since the mode-byte is now LO scan-lines

You may wonder why the standard text screen has a mode-byte
of this configuration. Well, the main reason this mode is
used is so that you can achieve 'true descenders' in text,
where any non-capital text can droop below the base level of
capital text. Also, in addition to this the international
character-set with the phonetic symbols can be fully
exploited. There is a program in appendice G4 which
redefines the character-set to achieve full power of this
mode.

Another use for this mode would be for enlarging characters
twice over by substituting this Antic code in the example
program at the top of page-L62 in the map. Anyway, if all
thats been offered doesn't satisfy you, then you can always
create your own. See locations 560 and 561, also the
BOUNUAHIES appendice. Here's a split-screen variant:

10 GHAPHICS 15+16
12 DL=PEEK(560)+256*PEEK(561)

HT=PEEK(I06)*256
20 W2=HT-80:WI=W2-8U:U2=WI-776
22 S2=U2-3160:SI=S2-3160
24 U\=])L+178
26 FOR 1=0 TO 7
28 REAIJ Il
30 POKE IJL+84+I,Il:POKE OL+170+I,D
32 NEXT I
34 DATA 66,0,0,0,2,78,0,0
36 POKE IlL+175,65
38 FOR 1=0 TO 77
40 POKE DL+6+I,14:POKE 01.+92+1,14
42 NEXT I
50 H=INT(SI/256):L=SI-H*256
52 POKE])L+4,L:POKE OL+5,H
54 POKE 88,L:POKE 89,H
56 H=INT(S2/256) :1.=S2-H*256
58 POKE IlL+9U,L:POKE])L+9I,1I
60 H=INT(WI/256) :L=WI-H*256
62 POKE IlL+85,I.:POKE 01.+86,11
64 H=INT(W2/256) :1.=W2-H*256
66 POKE DL+\71 ,L:POKE OL+172,H
68 H=INT(OL/256) :L=OL-H*256
70 POKE 1l1.+176,L:POKE 1l1.+177,H
72 POKE 703,11
110 STOP

The program is quite large for a OL change, the reason being
that it gives you aLl of the memory pointers that you could
need. The DI. takes 178 bytes, the 4 mode-O lines still act
as the text window, but in 2 halves.

Page 239

There are 2 unu s ed areas of memory beg i nn i ng a I lJ I a nd lJ2,
the sizes of which are 704 byle5 and 776 byles,
respectively. To draw in t he top hall 01 the screen, the
vertical co-ordinates ure 0 10 78.
The 2nd screen is co-ordinates 79 to 157. Should you want to
load information from disk into the 2 areas, then area 1
begins at SI and area 2 begins at 52. The memory
configuration is as follows:

1----------:
i 178bytesDL:
1 ----;

704bytes :
unused i

---- 1

6320 bytes
bitmap

.----------
: 776bytes
: unused
:----------
I 160bytes
ltextwindow
:----------

You should also note thai every table in this appendice has
been calculated from the DL address to RAMTOP. Where RAMTOP
is always the next byte above the text window memory.

If your unsure about the split-screen DL program pre-Ieated,
then consult the DISPLAY LISTS appendice and locations 560
and 561.

COLOURS PER MODE.
Lastly, to complete this appendice here is a table showing
you how many colours are allowed standard in each mode.

t10DE: RliG I

0 2 1/2 709 - 710 and 712
I 5 708 - 712
2 5 Same as mode-I
3 4 708 - 710 and 712
4 2 708 and 712
5 4 Same as mode-3
6 2 4
7 4 3
8 2 1/2 0
9 I 712
10 9 704 - 712
I I 16 712
12 5 Same as mode-I
13 5 1
14 2 4
15 4 Same as mode-3

Page 240

APPENDIX C9:

It's all fairly straightforward; modes 0 and 8 can have a
border colour and a background colour, but the foreground
plotting colour will be a luminance of the background
colour. Should you overlay PMGs, then the foreground colour
under the PMG overlap wi II become a luminance of 'the PMG
colour. Modes I, '2,12 and I:J have 5 colours. Modes I and 2
are what I call byte-handicapped, meaning that the whole of
the byte can only be I of 4 colours. You print text in these
colours by choosing capitals, non-capitals or inverse
combinations. The 5th colour is background. Modes 12 and 13
are a bit different and are not byte-handicapped. They can
have up to 5 colours spread throughout I character. For more
information all these modes see the GRAPHICS 12/13 appendice.
Modes 3, 5, 7 and 15 are 4 colour modes, each colour
accessed by use of the COLOR statement. Modes 4, 6 and 14
are 2 colour modes. COLOR I being the plotting colour and
COLOR 0 being t he background colour.

The GTIA modes 9, 10 and J I are different again. Mode 9 can
have up to 16 shades by use of the COLOR statement. The
shades are Ihe luminance of the background colour in 712.
Mode 10 can achieve 9 colours, 704 being the background
colour. Mode II is the opposite to mode 9, where 16 colours
call he accessed from the background shade given in 712.
Although these are all the standard colour configurations,
it is also possible to excel on this again. DLIs offer
additional colours on the screen, and in fact, you can also
achieve '256 colours in the GTIA modes on screen at once. The
photos on the ATAR! Corporation demonstration disk proves
this. But, there is also another technique to gain extra
colour which is similar to artifacting in mode 8, which you
can perform on mode 15. One way of doing this is by
converting your GRAPHICS 15 displays into GRAPHICS 12 by the
use of a program called LOGOS CREATOR by TIIORGAL. This will
allow you to have I extra colour in your pictures. The ATAR!
Artist cartridge shows another way by plotting a pixel of I
colour exactly opposite a pixel of another colour, whilst
alternating them vertically. Whilst this technique does work
it doesn't look that good. A better way would be as in the
program below:
10 GRAPHICS 15+16
12 POKE 708,5'2:POKE 709,13'2
14 POKE 710,212
16 FOR X=IO TO 90 STEP 10
IB READ CI,C2
20 fOR Q=O TO 19 STEP 2
22 COLOR CI
24 PLOT X,50+Q:DRAWTO X+8,50+Q
26 COLOR C2
2B PLOT X,50+Q+I:DRAWTO X+8,50+Q+I
30 NEXT Q
32 NEXT X
34 GOTO 3 /t
36 DATA 1,1,2,2,3,3
38 DATA 1,'2,2,3,1,3
40 DATA '2,1,3,2,3,1
It's possible to have 10+ colours in mode 15, think about
it!

Page 241

I 0 0+16 I 1 I 1+16 2 I 2+16 I 3 I 3+16
I I I I I I I
I 32 bytes DL 32 bytes DL I 34 bytes DL I 32 bytes DL 24 bytes DL I 20 bytes DL I 34 bytes DL I 32 bytes DL I
I I I I I I I
I I I I I I I
I 960 bytes 960 bytes I 400 bytes I 480 bytes 200 bytes I 240 bytes I 200 bytes I 240 bytes I
I char.map char.map I char.map I char.map char.map I char.map I bitmap I bitmap I
I I I I I I I
I I 80 bytes I 40 bytes I I 40 bytes I I
I I unused I unused I I unused 1 I
I I I I I I I
I I 160 bytes I 160 bytes 160 bytes I 160 bytes I 160 bytes I 160 bytes I
i I text window I unused text window I unused I text window I unused I
I I 1 I I I I Nor

N

>< I 4 I 4+16 I 5 I 5+16 6 6+16 I 7 I 7+16 I III- ell

Q
18

Z I I I I I I I a.
Ul I 54 bytes DL I56 bytes DL I54 bytes DL I56 bytes DL 94 bytes DL 104 bytesDL 94 bytes DL 1104bytesDL Ia.a.<:: I I I I I I

I I I I 96 bytes 1 96 bytes I
I I I 1 unused I unused I
I I I I I I
I 400 bytes I 480 bytes I 800 bytes I 960 bytes 1600 bytes 1920 bytes 3200 bytes I 3840 bytes I
I bitmap I bitmap I bitmap I bitmap bitmap bitmap bitmap I bitmap I
I I I I I I
I 80 bytes I I 160 bytes I 320 bytes 640 bytes I I
I unused I I unused I unused unused I I
I I I I I I
I 160 bytes I 160 bytes I 160 bytes I 160 bytes 160 bytes - 160 bytes 160 bytes I 160 bytes I
I text window I unused I text window I unused text window unused text window I unused I
I I I I I I

I 8 8+16 I 9 9+16 I 10 10+16 11 11+16 I
I I I I
1176bytesDL 202bytesDL I 202bytesDL 202bytesDL 1202bytesDL 202bytesDL 202bytesDL 202bytesDL I
I I I 1
I 80 bytes 80 bytes I 80 bytes 80 bytes I 80 bytes 80 bytes 80 bytes 80 bytes I
I \.lnused unused I unused unused I unused unused unused unused I
I I I I
I 6400 bytes 7680 bytes I 7680 bytes 7680 bytes 1 7680 bytes 7680 bytes 7680 bytes 7680 bytes I
I bitmap bitmap 1 bitmap bitmap I bitmap bitmap bitmap bitmap I
1 I I I
11280 bytes 1 1 I
I unused I 1 I
I I 1 I
I 160 bytes 160 bytes 1 160 bytes 160 bytes I 160 bytes 160 bytes 160 bytes 160 bytes I
I text window unused 1 unused unused I unused I unused I unused unused I M
1 I I I I I or

N

>< III
I 12 I 12+16 I 13 13+16 I 14 I 14+16 I 15 I 15+16 I Dl.... IIIQ

I I I 1 I I I I a.z
lJJa. I 34 bytes DL I 32 bytes DL I 24 bytes DL 20 bytes DL 1174bytes DL 1200 bytesDL 1176 bytes DL 1202bytesDL Ia.
<X I I I 1 I I I I

1 I I 96 bytes I 96 bytes I 80 bytes 1 80 bytes I
I I I unused 1 unused I unused 1 unused I
1 I 1 I I 1 I
I 800 bytes 960 bytes I 400 bytes 480 bytes I 3200 bytes 1 3840 bytes 16400 bytes I 7680 bytes 1
1 char.map char.map I char.map char.map I bitmap I bitmap I bitmap I bitmap 1
I I I I I I I
1 160 bytes I 80 bytes I 640 bytes I I 1280 bytes I I
1 unused I unused I unused I I unused I I
I I 1 1 I I I
I 160 bytes 160 bytes I 160 bytes 160 bytes 1 160 bytes 1 160 bytes I 160 bytes 1 160 bytes I
I text window unused I text window unused 1text window 1 unused 1text window I unused I
I I I 1 1 I I

1'1.AYEIl/M ISS II.E GilAI'll ICS:

Ilere's an easy reference table for all PMG locations, and a
map of PMHASE organisation:

(W) 53248 - 53251 HPOSPO - 1'3
5:1252 - 53255 HI'OSMO - M3
53256 - 53259 SIZEPO - 1'3
53260 SIZEMO - M3
53261 - 5326/. GRAPIiPO - 1'3
53265 GHAI'IIMO - M3
53266 (704) - 53269 (7(7) COLPMO - PM3

53275 (623) PRIOR (GPHlOR)
53276 VIlELAY
53277 GRACTL
53278 HITCLH
54272 (559) LlMACTL (SDMCTL)
54279 PMBASE

(R) 53248 - 53251 MOPF - M3PF
53252 - 53255 POPF - P3PF
53256 - 53259 MOPL - M3PL
53260 - 53263 1'01'1. - P3PL

Double-line 0 "'* "''''PMBASE"'''' "'''' 0 Single-line
resolution '" '" resol ution
bytes '" unused '" bytes
offset: '" '" offset:

+384 *------------'" +768
'" '"* missiles *'" 4;0 - 3 '"
'" '"+512 "'------------'" +1024
'" '"'" player#O '"'" '"+640 "'------------'" +1280
'" '"'" player#1 '"'" '"+768 "'------------'" +1536
'" '"
'" player#2 '"'" '"+896 "'------------'" +1792
'" '"
'" player#3 '"'" '"IK +1024 "'' +2048 2K

Page 244

APPENDIX CIO:

GRAPHICS IN YOUR OWN PROGRAMS.

Should you be including PMGs in your own programs, then you
should perform the following steps. If you do not to
use PMBASE for full blown shapes, then you should ignore
s t e ps 2 and 4:

I. CALL YOUR PLAYFIELD:
A simple graphic call will suffice

2. ENABLE PIM DMA AND RESOLUTION:
see DMACTL

3. DETERMINE GRAPHIC SHAPE:
see PMBASE for full-blown shapes, otherwise see GRAPHs

4. ENABLE DMA TO SCREEN:
see GRACTL

5. DETERMINE PIM COLOURS AND SIZES:
see COLs and SIZEs

6. DETERMINE HORIZONTAL POSITIONS:
see HPOSs

VERTICAL MOVEMENT:
Vertical player missile movement is usually only of an
acceptable speed if you use machine-code, however, here's
the Basic answer:

100 REM TOMO' Vertical PMG movement
110 REM using strings
120 REM April '92
130 REM
140 DIM PM$(256),I$(24)
150 ADDR=(9*4096)/256
160 POKE 140,O:POKE 14I,ADDR+2
170 POKE 559,42:POKE 53248,100
180 POKE 704,253:POKE 53256,1
190 FOR C=I TO 24
200 READ D:I$(C,C)=CHR$(D):NEXT C
210 DATA 0,255,48,48,56,0,0,255,129
220 DATA 193,255,0,0,255,161,177
230 DATA 129,0,0,255,129,193,255,0
240 POKE 54279,ADDR:POKE 53277,2
250 FOR J=I TO 120
260 PM$(J,J+24)=I$:NEXT I
270 FOR J=120 TO I STEP -I
280 PM$(J,J+24)=I$:NEXT I
290 GOTO 250

There you have it. Enjoy yourself!

Page 245

g -----------------------
i
k

q -----------------------

DISPI.AY LIST INn:HIHJPTS.
Well now, let m... s ... e. It you look down at locations 512 and
.'i13 , you may notice that I hadn't intended to give full DLI
details in this book. In fact, I was only going to give you
some solutions to overcoming problems using OLIB. llut, I've
c ha nged my mind, lind ha ve i nc l ud ed my tutor ill I un DLls. I'll
still be including what I originally was going to put here
as well, so expect a lot of reading!

Just as a means of reference, the Dt.I is an NMI interrupt
processed by the ANTIC chip. They are user created, ane!
their purpose is to gain the full potential of any feature
of the hardware. The hardware being whatever the computer
can do! As an example, you could achieve 128 colours in
Graphics 15, create a screen of scrolly stars out of a
Player/Missile Graphic, even turn 4 PMGs into 8, the list
goes on ...

But, as you woule! imagine. To gain such power at your
fingertips, you'll need to sacrifice a tot of grey-matter to
understanding them. You would normally need to understand
Machine-code, but having cut a (ew corners, the average
Basic programmer should be able to make their own Dl.ls after
reading this tutorial/appendice (fingers crossed).

We'll kick-off with the Televisions Raster scan. Take a look
at figure-I;

a F---------------------- b
c d
e f

h
j
I

m ----------------------- n
o p

r

Consider the "F" is the pulse of lin electron-beam. This "F"
(Fred from now on) travels from a to b, in reaching b it
switches off, but, continues travelling to c where it then
switches back on. Fred continues this type of journey until
it reaches the bottom right-hand corner of the tube, alias
r. Upon reaching r, Fred turns off and returns directly to a
to continue the journey indefinitelY. Each horizontal
journey, from a to b, c to d etc. is called a scan-line.
Each journey from b to c , d to e etc. is referred to as a
horizontal blank.
The journey from r to a is called the vertical blank; for an
explanation of this time-period, see the relating appendice.
In real,ity, the European TV (PAL) has 312 scan-lines, all of
which are called a frame, and there are 50 (rames drawn
every second, hence, the mains power of 50Hz.

Page 246

APPENDIX Gil:

The IlLI is a Machine-code interrupt routine that executes
during a horizontal blank. Hut. althongh there are 311
horizontal blanks, you don't actually get to all of
these. It depends on which Graphics mode you are using. If
you were using Graphics O. then you could only achieve 24
on-screen IlLls since there are only 24 mode lines which can
set the IlLI to occur! Another limitation is the amount of
lime each DLI has to execute. Under normal circumstances,
you would only be al lowed 34 Machine-cycles of lime, which
is approximately 10 machine-code instructions. The time does
vary, depending on the width of the playfield. controlled
with location 559.

Try this. program-I:

10 GRAPHICS 0
20 IlL=PEEK(560)+256*PEEK(561)
30 J=O
40 READ D:lf D+I THEN POKE 1536+J,D:J=J+I :GOTO 40
50 DATA 72,169,11l2,142,24.208,104,64,-1
60 POKE 512,0:POKE 513,6
70 POKE DL+16,PEEK(DL+16)+128
80 POKE 54286,128+64

The listing was programmed with 6 steps in mind:

I. Select Lhe Graphics mode
2. Find the address of the Display List (DL)
:I. Poke the Machine code interrupt routine (DLl) into a
safe
area of memory. In this case. page-6 (1536; $600)

4. Tell Antic where to find the DLI
5. Tell Antic where you wish the IlLI to be executed
6. Add the magic powder; make it work!

OK then. to progress
understand steps I. 2
you don't, then you
I.SBs and MSBs. MODES
and 512 - 513.

further, then you should be able to
and 3 (Lines 10. 20 and 30 - 50). If
can get more details from appendices
and locations 1536 - 1791. 560 - 561

4. for step 4, Antic needs to know where in memory the DLI
resides. so to achieve this memory locations 512 and 513 are
used as an LSB/MSB vector address;

DLIADDR = PEEK(512)+256*PEEK(561)

Hence. 0+256*6 = 1536. the memory to where we POKE our
machine-code routine.

5. step 5. we need to tell Antic where on the Graphics DL we
want the DLI interrupt to execute. We do this by setting
bit-7 (decimal 128) to the relevant mode-line. Thus. we just
add 128 to the mode-line in line 70.

Page 247

6. The tinal step is to add the magic powder. Antic doesn't
normally run a DLI. so we have to do this ourselves. Do this
by setting bit-7 (decimal 121l) at hardware location 5421l6;
$040E. You should also note, however. that this location is
also used to enable a vertical blank interrupt. The VBI uses
bit-6 (decimal 64) and you should leave lhis interrupt
enabled for normal Atari working. If you do disable this
interrupt. then all of the actions in a ppend i ce 01 will be
de-act ivated.

3 other areas to explain are:

a. Hardware and shadow registers
b. Machine-language
c. DLI needs and limitations etc.

a. Hardware and Sbadow registers.

A shadow register is a memory location whase contents are
transferred to its hardware register during the vertical
blank. As an example. the Graphics 0 background colour
'blue' is conrolled with location 710. But. should you POKE
location 710 with a different colour. then the background is
only changed to this new colour when the contents of
location 710 are copied into its hardware location 53272.
This is done during the Atari' deferred Vertical Blank
Interrupt. and it serves 2 purposes;
The first is to achieve a precise timing in colour change,
thus. you see no flicker on the screen. The 2nd is a little
more depthy. Since some hardware registers are used for 1
purpose when POKEing them, and a completely different
purpose when PEEKing them. there would be no way of finding
out the value contained in them for the purpose that you
POKE them. hence. the reason for keeping shadow registers!

b. Machine-language.

If you're not familiar with 6502 machine-language. then you
might have thought it to be hard to learn. perhaps. In fact,
in some ways it is easier to learn than Basic, but I am nat
taking away any achievement that you will feel when you do
understand machine language. The main challenge in grasping
the lowest level language of the system, is that of Binary.
Once you achieve this. then the rest isn't so hard. Indeed,
if I told you just a few details about machine-code, then
you would be able to use most of its instruction codes right
now! So. why not!??

As your reference. pullout the machine-language appendice
D4. If you take a look at the 1st table, you will see all
the assembly instructions ADC, AND. ASL etc .. The internal
machine codes for each instruction are alongside. under
their particular mode. These modes; IMM. ABS etc. are also
explained in the appendice.

Page 248

APPENDIX CII:

'rhe 3 numhers stand for 3 things. The 1st is the
machine-code, the znd is the amount of time in
machine-cycles the instruction takes to process (remember
there are 34 cycles per horizontal blank'!), the 3rd' is the
amount of bytes the instruction takes. I think now, you
should be able to convert the machine-code from line-50 of
the earlier listing to assembly, and mayhe even english!

71 48 PIlA Implied
169 182 A9 B6 l.DA Immediate
141 21, 20H BD 18 DO STA Absolute
104 hH Pl.A Implied
1>4 1,0 RTI Implied
-I nla ;data termination code

Did you get this? If you didn't, I wanna know why?? Anyway,
the assembly instructions are abbreviated english, for
example; l.DA is l.o a D the Accumulator, STA is STore the
Acc umu l a l o r , IlTI is Rel'u r n from Interrupt. In fact, every LD
is load, ST is store. PIlA and PLA are perhaps more awkward
funclions to learn. but they mean Pus H the Accumulator to
,the stack and PulL the Accumulator from the stack. The stack
being an area of memory that remembers values pushed on top,
or pulled from the top. In the event of a PIlA, the contents
of the Accumulator is pushed on to the top of the stack and
in the event of a PLA, the value on the top of the stack is
pulled otf, just like a stack of cards, where only I at a
lime (always the lop one) can be added or removed.

The Accumulator by the way is an internal register, there
are) in tolal. The Accumulator. the X-register and lhe
Y-register. They are much like Basic variables except that
lhey can only hold a number between 0 and 255. In
machine-code, we only deal with numbers. There is no such
thing as 'string-arrays' or 'string-registers' because a
character "D" for example is itself treated by its numeric
code, whether it be ascii, raw or internal.

Anyhow, getting back to the mainstream. These converted
codes could be seen as this:

72
169
14 I
104
64

IH2
24 20B

Slack=A
A=V
POKE M,A
A=Stack
End Interrupt routine

So, there we have it. The machine-code interrupt routine
actually translates loading register A with a number (182)
and storing that number at memory location M.

M is derived from using 24 as the LSB and 208 as the MSB,
thus, 24+256*208=53272. The background colour Hardware
register in Graphics O.

Page 249

you wi II have noticed t he re a r e il few things I
What are the Slack=A, A=Stack and HTI used

Hight then,
jumped pa s t ,
for'!
When it IlLI is executed, the system jumps tu your
machine-code routine and in doing so, the address to where
it came from is placed in the X-register ilnd the Accumulator
as I.SD and MSD torm. Bu t , since your routine may use these
registers, you must remember their contents so that they can
be replaced before using the liT! instruction to end your
routine and ReTurn to normal system control.

Another point you may have noticed, is that the machine-code
routine stores the colour in the hardware register itself,
and that the top halt of the screen remains blue. We store
the value directly to the hardware register beciluse this is
the actual register that changes the colour, not 71ll. 71ll is
simply used by the system as a shadow of the hardware
register. Also, the reason for the top half of the screen
remaining blue, is because although our DL! changes the
colour half way down the screen, the colour is updated from
the shadow register during the Vertical Blank Interrupt. You
could turn this off if you wanted, ufcourse.

Some additional information you may like to know is for the
other assembly instructions. Here's a quick review of some
of them:

ADe is Add with carry. AND performs logical AND on the
Accumulator with a given byte. All the B11 instructions are
Branches. A branch is similar to a format of Goru like;

I Goro (Iine-I)+byte IF case is true

Where;

no
yes

169 103
16 I
o
o

LDA Immediate
BPI. Relative
BHK Implied
BilK lmpl i ed

Load the Accumulator with value 103, and Branch it lhis
result is positive, which it is. rhe deslination ot the jump
is address 'no' plus I. Branch instructions offer much more
than what I've given here, but you really need to get a 65112
machine-language book for a full explanation.

DEC DECrements the given memory location. OEX and DEY
decrement the X and Y internal registers. All the T11
Instructions are Transfer instructions. For instance, TAX
would transfer the contents of A into X.

Going back to the program, if you noticed a glitch in the
changing of the colour, then you can find an explanation and
solution later in this appendice. For lhe moment, here's
some more DLIs for your fancy.

Page 25ll

APPENDIX CII:

Just replace line-50 with whichever of the 3 DLIs you want
to see in action, below;

50 DATA 72,173,20,0,141,23,208,169,52,141,24,208,104,'64,-1

50 DATA 72,173,10,210,141,0,210,169,168,141,1,210,104,64,-1

50 DATA 72,169,33,141,0,212,169,64,141,1,212,104,64,-1

MllLTIPLE DLIs.
So far, you have only been able to execute I DLI per frame,
but, it is also possible to have many more DLls running on
the same frame. You could run the I DLI more than once by
setting the DLI bit on more mode-lines than just the I. You
could also execute many DLIs on alternate frames from the I
mode-line if you like. But, you can also execute several
DLls allan the same frame. The way in which you do these
last 2 techniques is by altering the address contained in
the DLI vector 512 and 513 to point to the next DLI from
within the previous DLl. Here are 2 demonstration programs:

Program-2; the same DLI more than once:

10 GRAPHICS 1
20 DL=PEEK(560)+256*PEEK(561)
30 J=O
40 HEAD D:IF D+I THEN POKE 1536+J,D:J=J+1 :GOTO 40
50 DATA 72,173,11,212,141,22,208,104,64,-1
60 POKE 512,O:POKE 513,6
70 FOH 1=6 TO 24
80 POKE DL+I,PEEK(DL+I)+128
90 ? #6; "THE ONE DLI REPEATED"
92 NEXT I
94 POKE 54286,192

Program-3; more than I DLI, here's 3:

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEK(561)
30 J=O
40 READ D:IF D+I THEN POKE 1536+J,D:J=J+I:GOTO 40
50 DATA 72, 169, 132, 141 .24,208, 169, 13, 14 I ,0,2, 104,64
52 DATA 72,169,52,141,24,208,169,26,141,0,2,104,64
54 DATA 72,169,182,141,24,208,169,0,141,0,2,104,64,-1
60 POKE 512,O:POKE 513,6
70 POKE DL+IO,PEEK(DL+10)+128
72 POKE DL+16,PEEK(DL+16)+128
74 POKE DL+22,PEEK(DL+22)+128
80 POKE 54286,192

c. DLI NEEDS AND LIMITATlONS.

did mention earlier, that when a DLI is executed the
Accumulator and the X-register are used to hold the return
address when exiting your interrupt routine.

Page 251

APPENDIX CII:

Should you need to r enn-m be r and restore both the Accuiuu l a t or
and lhe X-register. Ihen you can use the tol lowing code:

II. 72 Stack=A This is the
1111 TXA Remembering
t : Stack=A routine.

b. 104 A=Stack This is the
17U TAX Restoring
IU4 A=Stack routine.
64 UTI

Your routine would begin with part a. then do whatever you
wallt via your own code and Ihen end with part b.

Also mentioned earlier. you are limited to a specific amount
of lime per DLI which is normally 34 cycles. But. should you
be using only I DLI, or the Ol.ls you're using are several
lUode-lines apart then you CAN increase the size of them
considerably!

FIXING A GLITCH.
If you recall program-I. you'll remember that a glitch was
visible due to the DLI changing the background colour in
plain view. To overcome this. you should ensure that the
colour registers are changed 'off-screen'. and there are 2
ways of achieving this:

The 1st method is to store the value into the horizontal
synchronization register immediately prior to storing the
value into the colour register itself. To do this. include
the 3 codes; 141 10 212 after loading the Accumulator with
the colour value.
This method is very effective. but it does have I drawback.
To achieve its precise timing. it turns the CPU off and
re-powers it exactly 7 cycles before the beginning of the
next scan-line. which wastes crucial Dl.l time that could
otherwise be used for something else! The 2nd method
overcomes this problem. and you do this by either wasting a
little bit of time with the use of the NOP instruction
(No-OPeration) or you can process other funclions of your
OLI while the electron-beam is in a visible-zone
(on-screen). whilst performing colour changing after these
functions and off-screen. Of course, Ihe other functions
must. themselves not effect colour. Dl. or DM in the present
scan-line on the screen.

OVERCOMING DLI PROBLEMS.

In general. the DLI is very cleverly thought of and its
interraFtion with the rest of the system IRQs and VBls is
flawless. but a problem does arise when using the keyboard
with activated DLls.

Page 252

Many sources say this is be ca us e a STA WSYNC (STA $1l40A)
occurs during the key-click routine. I wouldn't argue about
it, but I think that it is actually because the os goes into
a tight loop in this routine (including a few o t he r s) so
that the sound given by pressing a key sounds like it does.
See the OS source-listing at $F989. In fact, there are 4
tight-loops using the scan-counter ($1l40B) in the os as well
as 2 STA WSYNC's. The 2 STA WSYNC's occur in the VBLANK
parameter setting and the fine-scroll IlLI processed by the
deferred VBl at addresses $C279 and $FCCE, which don't
affect IlLl timing in the slightest!

The 4 tight-loops using the sean-counter are at addresses
$F057, $fHIO, $F822 and $F989. The 1st one is used in the
OPEN completion routine (for Graphics), and since OPENing
graphics screens is achieved before creating OLIs, this does
not affect the smooth running of IlLIs. The 2nd, 3rd and 4th
tight-loops occur during the screen scroll routines and the
key-click routine, and it is these tight-loops that do
effect the smooth running of IlLls.

There are a few ways you can overcome these problems. The
best and most obvious would be to disable the keyboard, but
what if you wanted to take input from the keyboard? Well,
why not disable the keyboard prior to the execution of your
ilL! s , bu I. ena b lei t be I ow your DL!s! There are many ways you
can acllieve this, you could even disable the keyboard in the
Vertical Blank, but enable it in your last DLI. Problem
solved. But, what about the screen scroll routines
tight-loops?

This is more awkward. You could always turn your ROM OS into
a RAM OS and re-write the routines somehow, but, this I'm
sure you'll agree could be fairly difficult. There is a way,
however, by including a very small routine before your 1st
DLI ;

SYNC LOA
CMP
BNE
STA

$D40B
#$Scan-line
SYNC
$D4UA

I first seen this routine in Paul Lays 'Smoother DLIs',
Page-6 issue 23. It sure does the trick, but you'll have to
work-out the correct sean-line for the interrupt to execute
on, and since it turns the CPU off for I scan-line. you
might have to execute it a little earlier than normal.
So, does this mean that all the problems are solved?
Unfortunatly not; because of the nature of the IlLI, this now
brings about another problem. Also documented on in the
article previously described, but appears to be a little
inaccurate. Since the DLI now escapes the time of the
horizontal blank and becomes a tight-loop itself. any
immediately needed register changes may be delayed by
conflicting IRQs whose priority is highest.

Page 253

A solution to this was apparently i nc l ud ed in this article
as well, but find that it is unnecessary to go to such
lengths when all is ne eded is to set the Interrupt flag
immediately at the beginning of your OLI with SEI, and
ending your IlLI with CI.1.

I/O GLITCHES.

In addition to
case of DLls
saves data
disk-drive.

the above problems, now solved. There is the
occasionally active whilst an IRQ loads or
from/to a peripheral device such as the

It is actually possible to have DLls fully operational
without having to reconfigure the entire I/O sub-system, and
the way in which to achieve this is to sustain them from
within an immediate VBI alike the OS VBI achieves its
fine-scrolling DLI. You could also use an IRQ to activate
your DLls if you so desired.

Anyway, if you find any information in this appendice
inaccurate or would like to discuss the interraction of
detailed timing considerations with the lRQs, DLls and VilIs,
then please get in touch with me, because I would like to
hear from you. This subject is a very tricky one.

Finally, to end this appendice I leave you with the program
to obtain a readable text window in the GTIA modes:

10 GRAPHICS 8
12 POKE 87,9
14 POKE 623.64
20 DL=PEEK(560)+256*PEEK(561)
30 FOR 1=0 TO 10
34 READ D:POKE 1536+I,D:NEXT I
36 DATA 72,169,0,141,10,212,141,27,208,104,64
40 POKE 512,O:POKE 513,6
50 POKE DL+166,PEEK(DL+166)+128
60 POKE 54286,192
70 FOR 1=0 TO 79
72 COLOR I
74 PLOT 1,I:DRAWTO 1,159
76 PLOT O,I*2:DRAWTO 1,1*2
80 PLOT I,I:DRAWTO 79,1
90 NEXT I

Page 254

APPENDIX C12:

BOOT:

What happends when you boot a disk in the drive? How many
sectors load in, and where do they go?
The information you're after is contained in the very 1st 6
bytes of sector I on a disk. Take a look at the following
table:

BYTE:
o
I
2,3
4,5

IlESCHII'TION:
Null; unused ...
Amount of sectors to load
Load address
Initiation address

When you turn the computer on with an assumed perfect
disk-setup with a disk in the drive etc., the computer calls
sector I and places it in memory beginning at location 1024.
From here, the computer then transfers this 128 bytes to the
start address given by bytes 2 and 3. After doing this. it
then loads all the sectors, placing them I after the other
following on from where the 1st sector was transferred to.
Once all the sectors are loaded. the Atari JMPs to the
load-address+6. which is the byte immediately following the
initiation address bytes. This is the beginning of the users
machine-language program.

The initiation address is where the Atari will JMP to when
it encounters the next HTS instruction. unless of course you
do a JSH, which itself places an address on top of the
initiation address. The address below the initiation address
is that of Basic. if enabled. Otherwise. it points to the
Self-Test entrY.

The maximum amount of sectors that you can load in one go is
256, do this by placing 00 in the sectors to load byte. FF
is 255. If you want to load more sectors. then you should
use your own sector loading routine, which might look
something similar to:

MOHE JSH $EI'S3 ;get sector
INC $]OA ;point to
BNE XP ;next sector
INC $30Il ;to load

XP CLC
LDA $304 ;next
Aile #$80 ;1211-byte
STA $304 ; load area
LilA $:105 ;for
AIlC #$0 ;next
STA $305 ;sector
DEC COUNT ;sectors-to-go
BNE MOHE

Page 255

CASSETTE !lOOT:

The c a s s o t t e boot is identical to the disk boot, except that
each sector is now called a r e c o r d and it is comprised of
l:l:t bytes. The extra bytes are fully explained in CASBliF at
I ()2 I •

DOS SECTOH IlYTES OVEHHEAD:

Sectors on a normal formatted disk offer 128 bytes for use,
but on a DOS disk you only have 125. The last 3 bytes on the
disk are used as follows:

BYTE: liSE:

125 Hi-6 bits: file number 0 - 63;
1.0-2 bits: next sector number in tile;

(hi-2 bits of byte 126)

126 Next sector in the file link

127 Number of bytes used in the sector; 0 - 125.

You should notice that the lowest 2-bits of byte 125 are
considered by DOS to be 2 additional bits that append to the
high bits of byte 126. This gives a higher range, ie:

---BYTE 125:--- ---IlYTE 126:---
HITS: 7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0

---file#--- ----next-sector----

Bit-7 on byte 126 is decimal 1211, bit-O of byte 125
represents decimal 256, and bit-I represents 512, this means
there are 1024 combinations which is the amount of sectors
that DOS can access on a 1050 density disk. The next sector
in a file link only applies to DOS sectors excluding the
directory, VTOC sector and the initial 3 boot sectors on 11

disk. When this sector-link is 0, there are no more sectors
in the file.

See locations 736,737 for an explanation of a binary-file.

Page 256

APPENDIX C13:

GRAPHICS 12/13.

The character modes in the XL/XE are 0, 0.5, I, 2, 12 and
13. For a description of altering mode-O character-sets,
then see location 756. Mode I and 2 character-sets are just
the same as mode-O, see the MODES appendix also. Mode 0.5 is
something special, see the MODES appendix and a relevant
program in appendix G4. Also see VSCROL location $D405 for a
way of mixing different 1/2s of text or graphics modes.

Modes 12 and 13 are unlike all the other text modes. The
defining of the shape is done the same, but the result is
somewhat different. Try typing the two character
redefinition programmes on page-68, but change the Graphics
mode in line 20 to 12 or 13.

Take the following redefinition grid:

DEC: 128 64 32 16
BIT 7 6 5 4

8
3

4
2

2
I

I Coloour
o register

I : 0

I : I

o : I

:-------l-------:-------:-------:
: 0 : 0 : : : ;
:-------:-------:-------1-------:
I I I I I
I I I I I
1 1 -:- 1 -:

I I
I I

------- -------1------- -------
I
I

------- -------1------- -------
I
I

------- -------1------- -------
I
I------- -------1------- -------
I
I

------- -------:------- -------
I

I I

-------:-------:-------1-------

712 Background

708

709

71 0 or 711

You plot in an 8 by 8 grid, but unlike the normal Graphics 0
definition, 2 bits are now paired to represent I pixel of
selective colour. The colour is taken from the register
depending on the bit-pair as shown. Should the bit-pair be
1:1, then the colour will be taken from register 710 for
normal characters, and register 711 when the character is
inversed.

Try changing line 160 of the program to:

160 DATA 0,0,0,85,0,170,0,255,0

As you can see, there are 4 colours across the screen. If
you want the 5th colour, then try printing 'inverse' spaces.
To change the colours simply change locations 708 - 712.

Page 257

Graphics 13 is exactly the same as Graphics 12, except that
every line of characters are twice as high, alike Graphics 2
compared to Graphics I. These modes, especially mode-12 are
extremely powerful modes in the Atari since you can create
colourful detailed displays and save enormous memory and
processing time. Graphics 12 is used very much in the
production of commercial software because of these factors.
Take for example perhaps I of the all time best arcade games
on the 8-bit Atari, Boulderdash. This game uses 4 Graphics
12 characters in a square to build all of its game objects
such as diamonds, boulders etc .. The 'whole' cave-screen
takes approx 1300 bytes of memory, where as if the game used
Graphics 15, the memory usage would be something like 10300
bytes. Of course, the larger the cave, the more memory you
savel Basically, the entire memory usage of the Graphics 12
method is 1024 bytes character-set memory and screen memory
(usually 960 bytes), a total of 1984 bytes. The Graphics 15
method takes just screen memory, but that is 7680 bytes.
There are so many advantages to using Graphics 12, another
very important one is the processing time to perform common
tasks like printing, memory copying etc .. Quite often a
program might find it just too slow to perform these tasks
in Graphics 15, but on average, using Graphics 12 is not 8
times faster, but actually about 72 times faster. My
calculation comes from the amount of cycles it takes for the
equivalent machine-code instructions to copy the equivalent
amount of display memory between the 2 modes.

Besides these advantages, there is 1 feature that poses a
problem. That problem is the display of text, where it
appears virtually unreadable. This happens because the
character-set used is designed for Graphics 0 only. There
are a few ways around this, firstly you could use the easy
method:

1 GRAPHICS 12+16
2 POKE 87,0
3 POKE 708,O:POKE 709,8:POKE 710,8
4 LIST
5 STOP

This isn't that bad considering. It's a very simple
technique and does the job for most applications, but if you
want proper clarity then you'll have to redesign the
character-set. Use the earlier program and make the
following additions/alterations:

100 READ CH:IF CH=-1 THEN 180
160 DATA 33,0,252,204,204,252,204,204,0
162 DATA 34,0,252,204,240,204,204,252,0
164 DATA 35,0,252,192,192,192,192,252,0
180 ? #6;"ABC ABC"
182 REM NOTE* THE 2ND ABC IS INVERSED

Page 258

I've just redesigned the 1st 3 characters of the
character-set (internal codes 33 - 35), and in doing so I've
set both bits of the bit-pair for each pixel displayed so
that registers 710 and 711 are used. This allows you to have
your text in any of 2 colours depending on whether you
inverse the text or not.

If you want to be able to display text in all of the 5
standard available colours then that's a little trickier.
Obviously, without using DLI's, you would have to create 3
sets of character definitions within the 1 character-set.
The lower-case characters can be used for I definition and
the graphics characters can become the other definition.
whilst the standard capital character range can be the
standard and inverse colours. Having a 5th colour present at
the same time as these other 4 does become tricky, though.
It depends on what characters, numbers or symbols you want
or don't want in your character-set. If you don't want the
numbers and the symbols above them then you can redefine 20
letters under these ranges. Try including this data to the
previous program:

166 DATA 65,0,84,68,68,84,68,68,0
168 DATA 214,0,168,136,136,168,136,136,0

You can now print a capital "A" to a Graphics 12 screen in
any of 4 colours by using a capital "A" normal and inversed,
"control" and "A", and a non-capital "a". Why not convert
the entire character-set, most font editor programs allow
for Graphics 12 or Antic 4 as it's otherwise known. You can
get hold of a suitable program from the public domain.
TWAUG's public domain has fairly recently included an
apparently excellent font editor. Why don't you give them a
call. Happy font making.

As a last point for your curiosity. There exists 1 or 2
programs that will convert your Graphics 15 displays into
Graphics 12 ones. One such program is called LOGO's MAKER
(by THORGAL I believe). The result will require several
DLI's to change the character-set at several points on the
screen, but it brings about increased advantage. It don't
just give you 1 extra colour, in fact, it actually gives an
extra 4 colours. See the last paragraph of the MODES
appendix. The technique is known as Bleeding colours.

Page 259

IlISPLAY LISTS.

Building your own display lists is a brilliant feature with
the Atari, instead of having a boring mode of all the same
mode-lines, you can create a special mode for title-screens
or games of all types. In fact, all of the standard modes
were specially designed the way they are to give the user a
varied choice for the displaying of text and graphics.

The charts at the end of this appendix shows you the list of
display codes (the Display Lists DLs) for all of the
standard modes with and without text window. For a full
description of the codes and how to use them refer to
locations 560 and 561 in the map. Note that the addresses
for Display Memory (OM) are given for all XL/XEs except the
600XL. No worries, however, since all of the modes OM
requirements have been calculated immediately below RAMTOP.
Thus, because RAMTOP is 160 in all Atari' except the 600XL,
to find the correct addresses in this one all you have to do
is relate the values to your RAMTOP alike they do to a
RAMTOP value of 160. For example, the MSB of 156 in the
immediate OM address of mode 0 is 4 pages lower than a
RAMTOP of 160. So, to find the address on the 600XL just
take 4 pages from its RAMTOP (location 106).

Before you can create your own DLs, there are a few things
you should understand. In looking at the original DL tables,
you may wonder why there are unused bytes allover the
place. Well, this is very important to know. Unfortunatly,
there are 2 problems that you should always make sure you
have correct. They are both described in the BOUNDARIES
appendix. Basically, your Display List (DL) cannot run
straight through a IK boundary (a multiple of 1024 bytes)
and the Display Memory (OM) is a little more tricky. If the
amount of memory being displayed to the screen exceeds 4K
(4096 bytes), then a second LMS instruction (described at
560 and 561) must occur exactly on the byte that pertrudes
the next 4K boundary from the prior one! Again, it is only
possible to put an LMS instruction on a particular mode-line
(and not an individual byte), so you should realise that
should your DM be exceeding 4K. then it must be
pre-calculated so that this pertruding byte is at the
beginning of the 1st mode-line in the 2nd 4K boundary, thus,
you then put your LMS instruction on this mode-line (this
byte!). Hence, the last byte of the previous 4K boundary is
the last byte of its last mode-line!

What I described there
creating Display Lists.
you should abide by. but
with a, little practice
creating of Display Lists

(1) is the only real difficulty in
There are a few other points that
they are not a necessity. Besides,
of DM calculating you'll find the
a lot of fun!

Page 260

CREATING YOUR OWN DLs.

In order to create your own DLs, you will need to reference
the information given at locations 88, 89, 560, 561 lind the
BOUNDARIES appendix. Just before we do create our own unique
DL, let me just clarify the problem and solution to DM that
exceeds 4K using the following addresses as reference:

10 GRAPHICS 15+16
20 DL=PEEK(560)+256*PEEK(561)
30 DM=PEEK(DL+4)+256*PEEK(DL+5)
40 RT=PEEK(106)*256

From the
graphics
so t his
modes DM.

table at locations 88 and 89, we can see that
mode IS takes more than 4K (actually RT-DL bytes),
is ideal to find out how the system calculates its

The system tries to shuffle all its DM around the middle of
the 2 boundaries as possible, so since we know that more
than 4K is used, lets see how the highest 4K is used. The
top 160 bytes are always reserved for the text-window,
whether it be on or off. The remainder of this top 4K =
4096-160 3936. There are no other high reservations, so
the next thing to do is to see how many mode-IS lines we can
get out of this memory. 3936/40 - 98.4 what a pity. A non
integer! We can have 98, but there is a .4 that must be left
aside (remember the 2nd LMS problem). OK, 98 it is. If you
multiply .4 by 40 then you'll get the amount of bytes we
cannot use for mode-IS in this higher 4K boundary, which is
16! What a coincidence, it states this on the DL tables!

The system places these 16 unused bytes at the end of the 98
lines so that it can address the beginning of the 98 lines
DM exactly on this 2nd 4K boundary. Anyway, since graphics
IS offers 192 mode-lines, 192-98 leaves 94 to be put in the
lower 4K boundary (the hi-part of the screen). 4096-(94*40)

336 bytes, the amount of memory left (from 8K) for the
actual Display List (DL). Thus, you should now see that the
bottom 98 lines DM of mode-IS begins at RT-4096, while the
top 94 lines DM begins at RT-4096-(94*40) (DM)!

The DL occupies the last bytes of the 1st page in the 1st 4K
boundary (in 8K modes), thus, 256 (1 page) - 202 - 54. The
54th byte into the 1st 4K boundary is the beginning of the
DL for mode 15+16. It isn't so important to calculate the
DL, so long as you keep it in it's original area all should
be fine because there are also a few pointers in the memory
that are pre-calculated, such like the top of program memory
at 741 and 742 where it points to the DL-l.

Page 261

Well, with that tricky explanation out of the way. why don't
we create a unique DL of our own. Now, what shall we do?
Speak up, I can't hear you. Hmmm, I guess they haven't
invented the conversable book!

Enough of this. Since we already have a split screen game DL
(in some other appendix?), why don't we create a
title-screen DL. It won't exceed 4K, but that split-screen
DL does and I'm sure that you can understand how I went
about creating that one with the information there and
here.

So then, how does a few mode 2 lines, a couple of mode I
lines, a small graphics 8 area and a finish of mode 0 lines
sound? If you reference locations 88, 89, 560 and 561 you'll
get the following information:

Basic Amount Display
Graphics of Mode Antlc Scan Memory
Mode Lines Code Lines Bytes

2 4 7 16"'4- 64 20"'4= 80
I 2 6 8"'2= 16 20"'2= 40
8 80 15 1"'80= 80 40"'80- 3200
0 4 2 8"'4" 32 40"'4= 160

192 3480

You'll notice that the total number of scan-lines the DL
occupys is 192. This isn't essential, but should be abided
by tor various flickery reasons (in some cases). Another
point of note, is that the total memory usage is less than
4K (3480 + DL). Now, this can become tricky, since you have
to protect this much memory. A Graphics call will protect
the memory you need, and the normal procedure would be to
call Graphics 8+16, the reason being that it is the highest
memory usage mode which is used in our DL, but this will
protect 8Kl If you want to protect only that memory
necessary, then you can use a better technique. If your DM
usage is less than 4K then call Graphics 14, but if it uses
more then call Graphics 15.

The DL in its present form isn't quite complete. Firstly,
you should include 3 8-BSL instructions at the beginning of
the DL to centre it on the screen. It should have an LMS
instruction on the very 1st mode-line instruction (code 64)
and you should follow that with the start address of DM.
Lastly, you must include a JVP instruction at the end of the
DL followed by 2 bytes which address the beginning of the
DL. This is to instruct Antic that the DL is finished. Take
the program on the next leaf:

Page 262

APPENDIX C14:

10 GRAPHICS 14
12 DL=PEEK(560)+256*PEEK(561)
20 FOR 1=0 TO 10
22 READ D:POKE DL+I.D:NEXT I
24 DATA 112.112.112.71.0.144.7.7.7
26 DATA 6.6
30 FOR 1=11 TO 90:POKE DL+I.15:NEXT
32 POKE DI.+91. 66
34 POKE DL+92.PEEK(660)
36 POKE DI.+93,PEEK(661)
38 FOR 1=94 TO 96:POKE DL+I.2:NEXT
44 POKE DL+97.65
46 POKE DL+98.PEEK(560)
48 POKE DL+99.PEEK(561)
50 RT=PEEK(I06) :DM=(RT-16)*256
52 H=INT(DM/256) :L=DM-H*256
54 POKE 88.L:POKE DL+4.L
56 POKE 89.H:POKE DL+5.H

There you have it. Screen memory begins at DM. the Display
List begins at DL. I've also included an LMS instruction on
the 1st of the bottom 4 Graphics 0 lines so that they use
the text-window memory. If you wish to place text in the
Graphics I or 2 lines. then use IOCB #6 (7 #6). but ensure
you POKE 87 with the mode your printing or drawing to. The
Graphics 8 area can be accessed with a POKE 87.8 and the
rows are from 3 to 82.

Here's the memory configuration for this Display List:

:----------
: 100bytesDL
I
I

: 74 bytes
: unused
:---------- 4K BOUNDARY
: 80 bytes
: mode-2
:---- 1

: 40 bytes
: mode-I
:----------
:3200 bytes
: mode-8
:----------
: 776bytes
: unused
l----------
I
I

: 160bytes
ltextwindow
:---------- RAMTOP

Page 263

:-----------:-- : 1 _

'0 : 1 : 2 3
I ,
I ,

112 *3 1112 *3 :112 *3 112 *3
66 64 156170 128 157:71 112 158 72 112 158
2 *23 :6 *19 17 *9 8 *19
65 32 156166 96 159:66 96 159 66 96 159

: 2 *3 : 2 *3 2 *3
165 94 157165 86 158 65 66 156

-----------:-----------1----------- -----------

-----------:-----------:----------_._----------:
4 : 5 '6 7 :

I I
I I

112 *3 1112 *3 112 *3 112 *3 :
73 128 157174 160 155 75 224 151 77 96 144:
9 *39 110 *39 11 *79 13 *79 :
66 96 159166 96 159 66 96 159 66 96 159:
2 *3 12 *3 2 *3 2 *3 :
65 74 157165 106 155 65 130 151 65 96 159:
:-----------:----------- ----------- -----------:

:-----------:-----------:-----------:-----------
'8 19 : 10 : 11

I I ,, , ,
112 *3 1112 *3 :112 *3 :112 *3
79 80 129:79 60 129:79 60 129:79 60 129
15 *93 115 *93 115 *93 :15 *93
79 0 144179 0 144:79 0 144:79 0 144
15 *65 :15 *97 115 *97 115 *97 ,
66 96 159/65 54 128:65 54 126/65 54 126:
2 *3 I : : :
65 80 128: : : I
-----------:-----------:-----------:-----------;

1 ______-----:----------- -----------:-----------
12 113 14 : 15, II
112 *3 : 112 *3 112 *3 112 *3
68 160 155'69 128 157 76 96 144 78 80 129
4 *19 5 *9 12 *160 14 *93
66 96 159 66 96 159 66 96 159 78 0 144
2 *3 2 *3 2 *3 14 *65
65 126 155 65 104 157 65 82 143 66 96 159

2 *3
I 65 80 128I1 ___________ ----------- ----------- -----------I

Page 264

APPENDIX C14:

----------- ----------- -----------:----------_\
0+16 1+16 2+16 :3+16

I
I

112 *3 112 *3 112 *3 : 112 *3
66 64 156 70 128 157 71 112 I 58l? 2 112 158
2 *23 6 *23 7 * II :8 *23
65 32 156 65 96 157 65 96 157165 80 158
----------- ----------- -----------1-----------

:-----------:-----------:-----------:-----------
:4+16 :5+16 :6+16 l?+16
I I I I
I I I I

: 112 *3 :112 *3 :112 *3 : 112 *3
:73 128 157:74 160 155175 224 151177 96 144
:9 *47 110 *47 :11 *95 :13 *95
:65 72 157:65 104 155:65 120 151:65 152 143
:-----------:-----------:-----------:-----------

-----------:-----------;-----------:-----------
8+16 :9+16 :10+16 111+16

I I I
I I I

112 *3 :112 *3 :112 *3 :112 *3
79 80 129:79 80 129:79 80 129:79 80 129
15 *93 :15 *93 :15 *93 115 *93
79 0 144:79 0 144:79 0 144179 0 144
15 *97 :15 *97 :15 *97 :15 *97
65 54 128:65 54 128:65 54 128:65 54 128
-----------l-----------l-----------l-----------

144

128

129
*3
80
*93
o
*97
54

112
78
14
78
14
65

*3
96 144
*191
56 143

-----------'-----------1-----------:-----------
12+16 13+16 :14+16 :15+16

I I
I

112 *3 112 *3 :112
68 160 155 69 128 157:76
4 *23 5 *11 :12
65 128 155 65 108 157:65

I
I
I
I

----------- -----------:----------- -----------

Page 265

APPENDIX D

VULANK processes

The VUlank routines were
source listing, pages 34
processed at 49378; $CGE2.

Shge-I VBLANK:
Performed every VBl:

formerly documented in the OS
37. In the XL/XE's they are

I. Increment the realtime clock at 18 - 20; $12 - $14
2. Process the attract mode variables at 77; $4D
3. Decrement system timer-I at 536; $218 and if 0, then

JSR through 550; $226

Stage-2 VBLANK:
Performed every VBI which does not interrupt critical
sections, see CRITIC at 66; $42.

I. Update the Hardware registers from the shadow registers
as follows:

Shadow:
SDLISTL/H
SDI1CTL
CHBAS
CHACT
GPRIOR
COLOURO-4
PCOLO-3
LPCNV/H
STICKO-l
PTRIGO-3
PADDLO-3
STRIGO-l
nla

Hardware:
DLISTL/H
DI1ACTL
CHBASE
CHACTL
PRIOR
COLPFO-4,BAK
COLPI10-3
PENV/H
PORTA
PORTA
POTO-3
TRIGO-I
CONSUL

Update reason:
Display List end

Attract mode

Light pen
Joysticks
Paddle triggers
Paddles
Joystick triggers
Console speaker off

2. System timers 2 - 5 are decremented, and if 0, the
corresponding flag/JSR is performed. See 538 - 545.

3. A character is read from POKEY keyboard register at
53769 and read into CH at 764 if the auto-repeat is
active.

4. The keyboard debounce counter is decremented by
1 if it is not 0 and if no key is being pressed.

5. Keyboard auto-repeat logic is processed.
6. Exi t , the VBLANK rout ine through 58466; $E462.

Page 266

APPENDIX D2:

ATARI TIMING VALUES:

Ian Chadwick missed out on I important point when he wrote
Mapping. and that was the timing values in its Appendix-3.
Only the NTSC values were given! Here are the timing values
for both NTSC and PAL.

PARTICULAR:
Clock freq.
I Machine-cycle
1 TV-frame
Scan-lines
Colour-clocks

Machine-cycles

PAL:
2.217MHz
0.562usec
1/50th sec
312/frame
228/scan-line
2/machine-cycle
35568/frame
114/scan-line

NTSC:
1.79MHz
0.558usec
1/60th sec
262/frame
228/scan-line
2/machine-cycle
29868/frame
114/scan-line

The VBLANK differs between PAL and NTSC also. On NTSC
Atad'. the VBLANK is 7980 machine-cycles. but on the PAL
Atari'. it is 13680 machine-cycles. The time is further
reduced depending on what graphic mode you are in and
whether you use PMG' with PMBASE. It's all to do with
cycle-stealing with DMA. See the CYCLE-COUNTING appendix.

Horizontal blank
Wide playfield
Normal playfield
Narrow playfield

times:
18 machine-cycles
34
50

Here are my calculations:
I (second) / 50 (frames) = 0.02 = 20ms (time per PAL frame).
0.02 / 312 (scan-lines) = 64.103us per line. and 64.103us /
114 (cycles/line) 0.562us (I cycles time). The frame
cycles is: 312 (scan-lines) * 114 (cycles/frame) - 35568. On
a standard Atari DL, there are 192 scan-lines, or 192 * 114

21888 cycles per DL. The remaining 120 scan lines are
considered as the VBLANK time; 120 * 114 = 13680 cycles.

The PAL CPU is faster than the NTSC, but the TV frame
refresh rate is slower in the PAL system. The VCOUNT
register at 54283; $D40B keeps track of the present
scan-line the TV electron-beam is processing divided by 2.
PAL systems range from 0 - 156. but NTSC ranges between 0 -
131.

Page 267

CYCLE STEALING.

Calling a Graphics mode is very easy to accomplish 1 'm sure
you'll agree, but how about sustaining that mode? Unless you
know, you'd probably say what the heck is he talking about!
Well, you'll find in this appendix some fascinating details
about retaining the display screen. Advanced users will
probably find my look-up charts very handy.

When you call a Graphics mode, of course the screen appears,
but it is actually 'there' only 50 times a second (plus
transistor de-luminizing time!). The technical details of a
frame you'll find in the TIMINGS appendix. Anyway, without
going into the television specifics, the visual image is
constructed within the Antic chip and sent to the GTIA chip
for colouring etc.. This appendix breaks down the
constructing process, the main reason being that
occasionally, more advanced programmers need to know how
much time is available per frame, and sometimes even how
much time is available to DLI's in particular areas of the
screen. The less knowledgeable users will find this
information imaginatively illuminizing.

Although the Atari supplies you with 35568 cycles (29968
NTSC) of processing time per frame, this time is actually
much shorter due to 'cycle stealing' performed by the Antic
chip to create the television picture. The amount of cycles
stolen depends on the Display mode and Player/Missile
Graphics as follows:

For each byte of Display Memory fetched (DMA'd), I cycle is
stolen. 1 cycle is also stolen for every byte in the DL, so
if your DL is 32 bytes long then 32 cycles would be a DL
steal. If a DL instruction is for memory-map graphics (not
text) AND the memory-map mode line extends greater than 1
scan-line in height, then the data for each scan-line of the
mode-line is only fetched on the top scan-line of the
mode-line (!).

Memory refresh takes 9 cycles for EVERY scan-line in the
frame, unless pre-empted by a high resolution graphics mode.
This last sentence was mentioned in the Hardware manual,
it's an indisputably crap explanation if you ask me because
it is very confusing. Anyway, this is what I believe it's
supposed to mean:

9 are stolen by Antic to do memory refresh per
scan-line EXCEPT on Hi-Resolution mode-lines, why I don't
know is because it doesn't say!! I presume it's referring to
horizontal resolution whereby there ain't enough cycles
available on the scan-line to perform a clear refresh?

Page 268

M'J'ENDIX 03:

The book also says in another paragraph about 'lost cycles'
in the Hi-Resolution modes. which is why 1 presume a
horizontal deficiency in refresh time. Anyway. The Hardware
manual goes on to say that memory refresh cdntinues
throughout the Vertical Blank. I only wish that the book was
more thorough in its explanation because I find it very
irritating!.

Missiles take I cycle every line in single-line res .• and I
every other line in double-line res .. The Hardware manual
states that you cannot disable missile DMA whilst enabling
player DMA. but according to DMACTL location 559; $22F. you
can. Player DMA takes 4 cycles every I or 2 lines depending
on resolution, as with missiles.

The Player/Missile and Display List (DL) instructions fetch
DMA process occurs during the horizontal blank if they are
required for the fOllowing scan-line. In memory-map modes.
the graphics data is fetched as it is required across the
1st scan-line of the mode-line. Again. if the mode-line is
greater than I scan-line in height. then the already fetched
data is remembered by Antic and used accordingly. In
character modes, the character codes for that mode-line are
fetched in the 1st scan-line inclusive of the font data
needed for that scan-line, while in all succeeding
scan-lines, only the font data itself is fetched as
required. The character codes are remembered.

In a standard Graphics 0 mode, the Hardware manual states
that most of the cycles in the top scan-line of each
mode-line are used up, so there is time for only I memory
refresh cycle instead of the usual 9. What this means I
don't know. since I can't SEE any difference. In the narrow
width screen, you get 2 memory refresh cycles. Again. as
explained earlier (another confusing bit for you). the
memory refresh cycle is done fast enough to make up for
'lost cycles' in the high resolution modes (see my
presumption, explained earlier). Once memory refresh starts
on a hi-res scan-line, it re-occurs every 4 cycles unless
pre-empted by DMA (I'm in out of my depth!). Actually, what
is meant is that refresh takes place unless it conflicts
with the time a byte is accessed from memory (DMA) (7).

All interrupts reach the CPU near the end of the horizontal
blank. with standard or narrow screen widths. refresh DMA
begins after the end of the horizontal blank. The time at
which Antic performs cycle stealing is not static. it all
depends on the graphics mode. the screen width and whether
or not the horizontal fine-scrolling bit has been set on the
mode line. Horizontal fine-scrolling is achieved by delaying
the time at which DMA takes place for even numbered colour
clocks. to scroll odd numbered colour clocks, Antic has an
internal I colour clock delay. Overleaf is a diagram showing
you the exact occurrence of cycle stealing:

Page 269

Here's the explicit timing at cycle stealing:

End at
Previous
Line

Horizontal
Blank

20 Cycles/40 C/Clks

5

SYNC

4 4 2 8 1-9

Refresh cycles &
Char/Graphics
data DMA
(depends on
graphic mode)

-- Interrupt

Address DMA
(3 byte DL instruction)

-- Player DMA

DL instruction fetch DMA
I
I

:-- Missile DMA

Here's a quick-reference to calculating cycle loss per
frame:

Steal ing
Purpose

Missiles

Players

DL
DM

Refresh
1st

Cycles
Stolen

1 cycle per line Single-line res.
1 cycle every other line tor
double-line res.
4 cycles per line single line res.
4 cycles every other line for
double-line res.
1 cycle per byte
1 cycle per byte. for text modes
add 1 cycle for every character
9 cycles every scan-line, but only in

scan-line of mode-O rows (narrow width=2)

Page 270

The Hardware
Graphics mode
following it
other mode.

APPENDIX D3:

manual gave an example of cycles loss in
0, you'll find that example below, and
are my calculations of cycle loss for every

Graphics 0 cycle loss example:

The DL is 32 bytes long, thus, 32 cycles are lost due to
this. 960 cycles are lost to DMA the characters (40*24), and
8*960 cycles are taken to DMA the character data (each font
row). Refresh DMA takes 9 cycles for 312 scan-lines (262
NTSC) except for the 1st scan-line on all 24 mode-lines,
where only I refresh cycle takes place. Thus:

PROCESS

DL
Characters
Char.data
Refresh

TOTAL

40*24
960*8

312*9-24*8

CYCLES
LOSS

32
960
7680
2616

11288

Thus, the total DMA is 11288 cycles lost per PAL frame in
Graphics O. For the NTSC frame-loss, then change Refresh to
262*9-24*8 which = 2166, giving the total time loss per NTSC
frame of 10838 cycles. loss of total frame time of 29868
cycles. The PAL frame loss is from 35568 cycles.

Graphics
(cycles)
Mode

Time Loss (cycles)

PAL NTSC

Graphics

Mode

Time Loss

PAL NTSC

o
0.5
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15

11288
11043
7850
6040
4450
4670
5070
5910
7510
10792
10792
10792
10792
11290
7840
8256
10792

10838
10593
7400
5590
4000
4220
4620
5460
7060
10342
10342
10342
10342
10840
7390
7806
10342

0+16

1+16
2+16
3+16
4+16
5+16
6+16
7+16
8+16
9+16
10+16
11+16
12+16
13+16
14+16
15+16

11288
11043
7160
4988
3080
3344
3824
4832
6752
10690
10690
10690
10690
11288
7052
6848
10690

10838
10593
6710
4538
2630
2894
3374
4382
6302
10240
10240
10240
10240
10838
6602
6398
10240

With a bit of luck, all of the calculations are correct.
GTIA modes 9,10 and II have been calculated with and without
a text-window.

Page 271

Graphics 0.5 (the 10 row mode 0) has been calculated for the
amount of mode-lines that will fit into 192 scan-lines (19).
The text-window in this mode is of the same Antic code.
Obviously, the timing for all the modes is only as accurate
as my interpretation of the given facts. If anyone believes
any information is wrong, then please get in touch with me
and we'll sort it out. While your pondering in bafflement as
to how I achieved some of the calculations, then here is how
I went about a couple of them:

Graphics I with text-window:

Display List (DL)
Characters
Character-data
Refresh

20*24
400*8
312*9

34
400
3200
2808

... not forgetting the text-window:

DL
Characters
Character-data
Refresh

TOTAL

already included
40*4 160
160*8 1280
already included, except
that we must subtract
4*8 because only I refresh
cycle occurs on 1st scan-line
of each row.

7850

To find the NTSC value, then change Refresh to 262*9 or
simply take 450 off the PAL value. All text-windows are the
same, so you can work all text-window modes out by firstly
calculating the standard screen and adding all refresh time.
and then adding 1408. The 1408 is found with 160
(characters) + 160*8 (char.data) and subtracting 4*8
(refresh loss per 4 rows). Graphics 2 and 13 are similar to
Graphics 0, I and 12 in that you only multiply the
characters by 8 to find the character data, since there are
only 8 different rows in all cases. Refresh does the rest.

Graphics 15 without text-window:

Display List (DL)
Characters
Character-data
Disp. Memory (DM) 40*192
Refresh 312*9

TOTAL

202
nla
nla
7680
2808

10690

Graphics
13 lose
mode-line
me.

modes such as 7 are alike Graphics 15. Modes 12 and
8 refresh cycles on the 1st scan-line of each
also, as like Graphics O. Any problems, contact

Page 272

APPENDIX D4:

MACHINE LANGUAGE.

This appendix is merely meant as a informational reference,
it will not teach M/L, but if you're an experienced Basic
programmer then you will gain some knowledge and insight
into Machine-code if you use your head.

Given on the next few pages are the instruction code charts
showing the bytes required, cycles processing time and flags
affected. From the chart, you will notice the 13 different
6502 addressing modes. They are as follows:

01.

The immediate addressing mode is the easiest one to
understand by far, it is also the quickest of the 13 modes
along with Implied and Accumulator. An instruction in this
mode comprises of 2 bytes, the instruction byte itself and 1
byte which is treated as direct/immediate data. You can
associate this mode with the Basic statement: LET R=V.

Comprising of 3 bytes, this mode uses 2 data bytes which are
treated as an LSB/MSB address to a memory location. It would
be used in the same manner as R=PEEK(M), where M is achieved
by LSB+256*MSB.

03. Zero Page:

This is exactly the same as the Absolute addressing mode,
except that you can only address memory locations 0 - 255
(Page 0), thus, the instruction is comprised of 2 bytes only
(no MSB).

This mode uses just 1 byte, the instruction code itself.
It's used to perform a maths operation on the Accumulator in
the 6502. For instance, ASL A will multiply the contents of
the Accumulator by 2, to multiply by 10, then repeat this
instruction 3 times and add the original value twice. If you
can't understand this, then get reading some machine-code
book because it's quite a heavy subject. It's to do with
moving the bits of a byte once to the left and manipulating
any bits going out the left hand side of the byte (the high
side) via the Carry flag and into the high byte (MSB). Any
6502 book will do, try the local library.

A single-byte mode again, this time to perform a particular
task such as setting or clearing a particular flag,
incrementing an index register or whatever.

Page 273

Namely (Ind,X) or (ZP,X). This mode comprises just 2 bytes,
lhe inslruction code and I byte that we shall call M for
argument sake. Take the statement:
R-PEEK(PEEK(M+X)+256*PEEK(M+I+X». This is lhe exact
function of this addressing mode. The contenls of location
M+X is the LSB, the contents of location M+I+X is lhe MSB,
and R then equals PEEK(LSB+256*MSB). Easy eh!?

07. Indirect Indexed:

Namely (Ind),Y or (ZP),Y. This mode is very similar to the
previous mode and is also 2 bytes in size. The Basic
equivalent would be: R=PEEK(PEEK(M)+256*PEEK(M+I)+Y). The
LSB and MSB is found beginning al M, then the Y index
register is added to this value.

08. Zero Page,X:

This is the same as R=PEEK(M+X). Where on a load operation,
the (R)egister in question would be loaded with lhe contents
of location (M+X). The mode is 2 bytes in size.

09. Zero Page,Y:

Exactly the same as the above mode except the index register
is Y and not X.

10. Absolute,X:

This mode is the same as mode 08, except that the address is
absolute, thus, the instruclion is comprised of 3 bytes.

11. Absolute,Y:

Exactly the same as mode 10, except that it uses the Y index
register.

Comprising of 2 bytes, this mode uses the instruction-code
and 1 special byte which depicts where to branch to from the
origin of the instruction. This is a very clever instruction
which will involve a good bit of reading in a 6502 book.

13. Indirect:

This is 3 bytes in size and is used by only I
instruction; JMP (M). At location M and M+I is the LSB and
MSB of the real address in memory to actually JuMP to.

Page 274

In addition to the modes and instructions, there is a
processor status register which shows the current status of
the 8 6502 flags; Negative, Overflow, Reserved, Break.
Decimal, Interrupt, Zero and Carry. '
The Negative llag is set positive when the most recent value
processed goes negative, used in conjunction with BMI and
BPL; Branch if result MInus (N=I) and Branch if result PLus
(N=O). Overllow is set if bits overflow the size of the byte
and carry being processed using ADC and SBC instructions,
BkeaK is set positive when the BRK instruction is executed.
The Decimal flag is selectively set to tell the 6502 to
handle bytes in Decimal mode, not Hexadecimal. This way you
can add decimal numbers together and obtain decimal results
instead of converting between the number systems Decimal and
Hexadecimal. The numbers must, however, be represented as
Binary Coded Decimal (BCD) numbers. See Number Systems
appendix. The Interrupt flag is set positive to disable the
IkQ' temporarily. This is especially useful when executing
code that must occur at a particular time on the screen.
Clear the flag with CLI to re-enable IRQ execution. The Zero
flag is set positive when the result of an operation is 0,
used in conjunction with BNE and BEQ; Branch if Not Equal to
o (Z=O) and Branch if EQual to 0 (Z=I). The Carry flag is
mainly used to show that a carry has occurred when
adding/subtracting 2 numbers together (the result is greater
than 255 or less than 0). The Carry flag can also be used to
test if a number is less than, equal to or greater than
another number by using the Compare instructions. Again, a
6502 book will give you all the information you need and
they are usually quite easy to get hold of. The final flag
is the reserved/unused one. In all sources this flag is said
to be unused, but in fact, I have reason to believe that it
can increase the speed of the main-clock pulse. If I
remember how I cleared this bit before this book is
finished, then I'll include the information, but all I can
recall is that you've got to use 2-3 instructions, one of
which is an illegal one!

Here's a description of the characters used in the flags
column of the instruction charts:
Except for the BIT instruction, all other numbers in the
flags column refer to the state of the flag. The numbers in
the BIT flags refer to the status of the according bits of
the byte being operated upon. 'Y' means the flag is affected
and 'C' alongside SBC refers to note C. Lastly, be careful
when acting on flags affected from illegal operations. Some
of the flags return unusual status' for different
operation-byte values ... especially the DCP instruction! One
case is where the Zero-flag is set when a result of #$AA is
reached using DCPl

The 'Notes' are described under the illegal instructions.
Well folks, in this machine-language appendix you will
notice some Assembler Mnemonics you will not have come
across before, so here is some description on them:

Page 275

First on the list is AAC; AND Accumulator with byte and if
result is negative then set Carry.

2. MX

AND the X-register with the Accumulator and store the result
in memory.

3. ABX

AND Accumulator with byte, then AND this result with the
X-register and then store the result in the Accumulator.

4. ARR
AND Accumulator with byte. then rotate I-bit right in the
Accumulator and check bits 5 and 6.
If both bits are I then set C and clear V,

o clear both C and V.
" only bit 5 is I " C and set V,

6 set both C and V.

5. ASR

AND Accumulator with byte, then shift right I-bit in the
Accumulator.

6. ATX

AND Accumulator with byte, then transfer Accumulator to the
X-register.

7. AXA

AND the Accumulator with
result with Q and store in
used, the value maybe I, 3
what makes the difference
survey of 6502'.

8. AXS

the X-register, then AND this
memory. Note, that wherever Q is
or 7. I haven't folly discovered
as yet, perhaps someone can do a

AND Accumulator with X-register. then subtract byte (without
Carry) from this result and store in the X-register.

9. DCP

Decrement memory. The only difference between DCP and DEC is
the way in which the flags are affected. Many of the
illegal-instructions affect the flags in odd ways, so be
careful if you do use these codes.

Page 276

10. Ime
No operation (Double NOP).

II.

Increment memory by I. subtract memory from Accumulator
(with Carry) and store result in Accumulator.

12. KIt.
Freeze Program Counter (PC; program lockup). I can't seem to
put a processing time for these instruction-codes on the
illegal-codes table because I can't find a way to time
them!

13. LAB.

AND memory with the Stack-Pointer and transfer the result to
the Accumulator. X-register and Stack-Pointer.

14. 1AX

Load the Accumulator and X-register with memory.

15. NQI'

No operation.

16. RLA

Rotate I-bit left in memory. AND Accumulator with memory and
store result in the Accumulator.

17. BRA

Rotate I-bit right in memory. then add memory to the
Accumulator with Carry).

18.

Exactly the same as SBC #byte.

19.

Shift I-bit left in memory. OR Accumulator with memory and
store result in the Accumulator.

20. SRE

Shift right I-bit in memory. EOR Accumulator with memory and
keep result in Accumulator.

Page 277

21. :iB

AND X-register with Q and store result in memory. Where Q
maybe I, 3 or 7.

AND Y-register with Q and store result in memory.

23. IQ.!'

This instruction will turn your Atari into an Amiga. (NA!)
Not really, I'm just kiddin'. Actually, it is a Triple NOP
and does nothing at all except waste time.

24.

AND Accumulator with X-register and store the result in the
Stack-Pointer, then AND Stack-Pointer with Q and store the
result in memory.

Thats all folks! They are the 24 illegal-instructions of the
6502. Enjoy them!

For your convenience, I thought
include the full instruction list in
both the decimal and hexadecimal
addressing mode that each instruction

it a good idea to also
numerical order, giving
codes along with the
uses.

I've always found that when I'm browsing through other
peoples demos, games etc. to see how they perform a
particular task, I find there are a few codes that I don't
know off by hand. I then have to search through the
instruction table to find it. This can be quite a pain
sometimes, but with the numerical ordered list, it's much
easier and quicker to find the byte and to see what mode it
uses.

0 00 BRK Implied 58 3A nap Implied
I 01 ORA (Zpag,X) 59 3B rIa Abs,Y
2 02 kil Implied 60 3C top Abs,Y
3 03 slo (Zpag) ,Y 61 3D AND Abs,X
4 04 dop Zpag 62 3E ROL Ahs,X
5 05 ORA Zpag 63 3F rIa Abs,X
6 06 ASL Zpag 64 40 RTI Implied
7 07 slo Zpag 65 41 EOR (Zpag,X)
8 08 PHP Implied 66 42 kil Implied
9 09 ORA Imm 67 43 sre (Zpag,X)
10 OA ASL Accum 68 44 dop Zpag
II OB aac Imm 69 45 EOR Zpag
12 OC, top Abs 70 46 LSR Zpag
13 OD ORA Abs 71 47 sre Zpag
14 OE ASL Abs 72 48 PHA Implied
15 OF slo Abs 73 49 EOR Imm
16 10 BPL Relative 74 4A LSR Accum

Page 278

APPENDIX D4:

17 11 ORA (Zpag) ,Y 75 4B asr 1mm
18 12 k i 1 Implied 76 4C JMP Abs
19 13 slo (Zpag,X) 77 4D EOR Abs
20 14 dop Zpag,X 78 4E LSR Abs
21 15 ORA Zpag,X 79 4F sre Abs
22 16 ASL Zpag,X 80 50 BVC Relative
23 17 slo Zpag,X 81 51 EOR (Zpag),Y
24 18 CLC Implied 82 52 kil Implied
25 19 ORA Abs,Y 83 53 sre (Zpag) ,Y
26 I A nop Implied 84 54 dop Zpag,X
27 I B slo Abs,Y 85 55 EOR Zpag,X
28 IC top Abs, X 86 56 LSH Zpag,X
29 I D ORA Abs,X 87 57 sre Zpag,X
30 IE ASL Abs,X 88 58 CLI Implied
31 IF slo Abs,X 89 59 EOR Abs,Y
J2 20 JSH Abs 90 5A nop Implied
33 21 AND (Zpag,X) 91 5B sre Abs,Y
34 22 k i 1 Impl ied 92 5C top Abs,X
35 23 ria (Zpag,X) 93 5D EOR Abs,X
36 24 BIT Zpag 94 5E LSR Abs,X
37 25 AND Zpag 95 5F sre Abs,X
38 26 ROL Zpag 96 60 RTS Implied
39 27 ria Zpag 97 61 ADC (Zpag,X)
40 28 PLP Implied 98 62 k i I Implied
41 29 AND Imm 99 63 rra (Zpag,X)
42 2A ROL Accum 100 64 dop Zpag
43 2B aac Imm 101 65 ADC Zpag
44 2C BIT Abs 102 66 ROH Zpag
45 2D AND Abs 103 67 rra Zpag
46 2E ROL Abs 104 68 PLA Implied
47 2F ria Abs 105 69 ADC Imm
48 30 BMI Relative 106 6A ROR Accum
49 31 AND (Zpag),Y 107 6B arr Imm
50 J2 k i 1 Implied 108 6C JMP Indirect
51 33 ria (Zpag),Y 109 6D ADC Abs
52 34 dop Zpag,Y 110 6E ROH Abs
53 35 AND Zpag,X III 6F rra Abs
54 36 ROL Zpag,X 112 70 BVS Relative
55 37 ria Zpag,X 113 71 ADC (Zpa g) ,Y
56 38 SEC Implied 114 72 k i 1 Implied
57 39 AND Abs,Y 115 73 rra (Zpag) ,Y
116 74 dop Zpag,X 174 AE LOX Abs
I 17 75 AIlC Zpag,X 175 AF lax Abs
118 76 ROH Zpag,X 176 BO BCS Relative
119 77 rra Zpag,X 177 B1 LOA (Zpag),Y
120 78 SEI Implied 178 B2 k i 1 Implied
121 79 AIlC Abs,Y 179 B3 lax (Zpag) ,Y
122 7A nop Implied 180 B4 LDY Zpag,X
123 7B rra Abs,Y 181 B5 LOA Zpag,X
124 7C top Abs 182 B6 LOX Zpag,X
125 70 ADC Abs,X 183 B7 lax Zpag,X
126 7E ROR Abs,X 184 B8 CLV Implied
127 7F rra Abs,X 185 B9 LilA Abs,Y
128 80 dop Imm 186 BA TSX Implied
129 81 STA (Zpag,X) 187 BB lar Abs,Y

Page 279

H pttHHL Q!E

130 112 dop Imm 188 BC l.IlY Abs,XIJI 83 aax (Zpag,X) 189 IJO LOA Abs,X132 84 STY Zpag 190 BE l.OX Abs,Y133 85 STA Zpag I'll IJF lax Abs,Y134 86 STX Zpag 192 CO CPY Imm1J5 87 aax Zpag 193 C1 CMP (Zpag,X)136 88 IlEY Implied 194 C2 dop Imm137 89 dop Imm 195 C3 dep (Zpag,X)138 8A TXA Implied 196 C4 CPY Zpag139 liB aax Imm 197 C5 CMP Zpag140 IIC STY Abs 198 C6 DEC Zpag141 80 STA Abs 199 C7 dep Zpag142 liE STX Abs 200 C8 lNY Implied143 8F aax Abs 201 C9 GMP Imm144 'Ill BCC Relative 202 CA IlEX Implied145 91 STA (Zpag) ,Y 203 CB axs Imm146 92 kil Implied 204 CC CPY Abs147 93 dop (Zpag,X) 205 CD GMP Abs148 94 STY Zpag,X 206 CE DEC Abs149 95 STA Zpag,X 207 CF dep Abs150 96 STX Zpag,X 208 DO BNE Relative151 97 aax Zpag,Y 209 D1 CMP (Zpag) ,Y152 98 TYA Implied 210 D2 kil Implied153 99 STA Abs,Y 211 D3 dep (Zpag),Y154 9A TXS Implied 212 D4 dop Zpag,Y155 9B xas Abs,Y 213 D5 CMP Zpag,X156 9G sya Abs,X 214 D6 DEC Zpag,X
157 9D STA Abs,X 215 D7 dep Zpag,X158 'IE sxa Abs,Y 216 118 CLD Implied159 'IF axa Abs,Y 217 D9 CMP Abs,Y160 AO LOY Imm 218 DA nop Implied161 AI LDA (Zpag,X) 219 DB dep Abs,Y162 A2 LOX Imm 220 IlC top Abs,Y
163 A3 lax (Zpag,X) 221 DD GMP Abs,X164 A4 LOY Zpag 222 DE DEC Abs,X
165 A5 LDA Zpag 223 OF dep Abs,X
166 A6 LDX Zpag 224 EO CPX Imm
167 A7 lax Zpag 225 E1 SBC (Zpag,X)168 A8 TAY Implied 226 E2 dop Imm
169 A9 LDA Imm 227 E3 ise (Zpag,X)
170 AA TAX Implied 228 E4 CPX Zpag
171 AB atx Implied 229 E5 SBC Zpag
172 AC LOY Abs 230 E6 INC Zpag
173 AD LDA Abs 231 E7 ise Zpag
232 E8 INX Implied 244 F4 dop Zpag,Y
233 E9 SBC lmm 245 F5 SBC Zpag,X
234 EA NOP Implied 246 F6 INC Zpag,X
235 EB sbe Imm 247 F7 ise Zpag,X
236 EC CPX Abs 248 F8 SED Implied
237 ED SBC Abs 249 F9 SBC Abs,Y
238 EE INC Abs 250 FA nop Implied
239 EF' isc Abs 251 FB isc Abs,Y
240 FO BEQ Relative 252 FC top Abs,Y
241 FI SBG (Zpag),Y 253 FD SBC Abs,X
242 F2 kil Implied 254 FE INC Abs,X
243 F3 ise (Zpag),Y 255 FF ise Abs,X

Page 280

Finally, I must give credit to MegaMagazine, where a fair
chunk of the information in this appendix originated from.
My appreciation to WosFilm and someone called Freddy
(Hello) .

This note has been added to this page very late to give you
some more information concerning the possibility of
switching to a faster CPU clock by clearing the
Reserved/unused bit of the status Processor register
(Bit-S).

It seems that I can't remember what instructions I used to
clear this bit, although I believe that 1 of the 3
instructions was ABX. There is, however, a relatively easy
way of finding out. If y ou t c a n get hold of a program called
"The 6502 Simulator", and simulate instructions from memory
in the area of SHC40 (without any other programs loaded).
you wi II find that the program seems to crash (the screen
loses its lower halt). Is this a bug in the program, or has
it something to do with the main CPU clock changing speed??

When I get the time,
I'll sort out fact
with this book ...

wi I I be hunting this program down and
from fiction. But in the meantime, on

Page 281

VEHTICAI. IlLANK INTEHHUPTS.

Yeap! A 2nd appendix concerning the Vertical "lank. The
other (DJ) simply describes the existing OS VOl processes
for both Immediate and Deferred VBls, but this one should
teach you how to create your own VBls.

Simi l a r to the DLI, you will need to understand the nature
of the TV raster-scan, so If your unsure about this, the
information you need Is in the DLI appendix. As described in
that appendix, the vertical blank is an interval of time
which occurs when the TVs electron beam returns to the top
l e t t of the screen f rom the bot tom r i ght. On PAL systems
this time period is a maximum of IJ680 cycles, which
approximates to 3420 machine-code instructions. This time is
also reduced according to the Graphics mode, PMGs and a few
other points (see the CYCLE-STEALING appendix).

To create your own VBI, you should firstly put your
machine-code routine into a protected area of memory such as
page-6 (1536 ;$600). Once this is done you can now decide
whether your routine should be an immediate VBI or a
deferred VBI. If you POKE the address of your VBI into the
immediate vector at 546 547; $222 - $223, then your
interrupt routine should normally end with a JMp to address
$E45F. But, if your interrupt routine is intended to be
deferred, then Its address should be POKEd into the deferred
vector at 548 - 549; $224 - $225, and your routine should
end with a JMp to address $E462. By following these rules,
then should your VBI be immediate, it would be the very 1st
VBI executed, followed by the systems immediate VOl and then
its deferred one. Should your VBI be deterred, then it will
be the very last VBI executed. Note, that if CRITIC
(location 66) is not clear, then the systems deferred VBI
will not execute and neither will yours.

On the other hand, you do not have to follow these rules.
You can completely disable the original systems VBls and
only activate your own by ending your immediate VBI with an
indirect JMp ($224) through the deferred vector, or directly
to $E462.

Having set your routine in protected memory which exits with
the correct JMp address and setting the correct vector, you
should enable your VBls by setting bit-6 (decimal 64) at
location 54286; $D40E. You should also know that when you
POKE the address of your routine to the immediate or
deferred vector, you must ensure that both LSB and MSB bytes
are loaded before the VBI re-executes between the time you
load them. You can do this by disabling the VBI while you do
this in Basic. There is also another method which is
described in the SYNCHRONIZED REGISTER LOADING appendix.

Page 282

APPENDIX D6:

SYNCHRONIZED REGISTER LOADING.

Due to occasional mistiming with a users program and the
setting of the VBI vectors. it is possible to accidentally
set the LSB before the execution ot a VBI. and the MSB 'too
late' (after the interrupt exceedes the priority of the main
program). In the case ot this happening, the system would
try to execute a VBI whose vector is only 'halt' set, thus,
jumping to a wrong area ot memory and crashing the system.

There are many ways that you can overcome this simple
problem. The 1st would be to disable the VBI interrupt until
the correct vector LSB and MSB is fully loaded. A 2nd way
would be to wait until the electron-beam is drawing a
scan-line somewhere else on the screen. But, a 3rd way is
possible which also allows some other features.

To perform a clean change, then you load the Y-register with
the LSB, the X-register with the MSB and the Accumulator
with a value of 6 or 7 depending on whether you wanted to
set the Immediate or Deferred vectors, respectively. In
loading these] registers, you then do a JSR to SETVBV at
$ E45C.

In addition to this, you can also use this same routine to
load many LSB/MSB register addresses/vectors. The table
below shows you what vectors/addresses you can change,
depending on the value you load into the Accumulator.
Remember, though, that the Y-register is always the LSB and
the X-register is always the MSB.

Accum. Vector/
Value Address
(hex) (hex) Name Description

00 216,217 VIMIRQ IRQ Immediate vector
01 218,219 CDTMVI Sottware Timer-I value
02 21A, 2 IB CDTMV2 2
0] 21C, 2 I D CIlTMV]]
04 21 E, 2 I F CIJlMV4 4
05 220,22\ CIlTMV5 5
Ob 222,223 VVIlLKI VBI Immediate vector
07 224.225 VVllLKD Deferred
OIJ 226,227 CDTMAI Software Timer-I JMP
address
09 228,22'i CDTMA2 2
OD 230,231 SDLSTL Display List address
10 236,237 llRKKY Break-key IRQ vector

The list really does go on for a fair distance ...

Page 283

APPENDIX E

XL/H: ENHANCEMENTS ANI> flUGS:

First the good news.
The XL computers fixed several bugs in the older Atari' and
added many enhancements including relocatable handlers, new
poll and extra graphics modes from Basic.
Now, the OS inserts an EOL character in the printer buffer
if there isn't one already when you CLOSE the device. You
don't have to force out the last characters in the buffer.
Printer numbers PI - P8 are also, now accessible.
When reading a record that's too long or one that is
truncated with an EOF character, the OS inserts an EOL
character into the input buffer to provide at least, as much
as the butfer can handle without an error, so data isn't
lost.
Note that, the cassette handling mechanics have also been
greatly improved by a change in timing values.

Now the bad news.
If you have the older XL', usually the ones with the flatter
keyboard, you may have the revision B HOM. It you
PEEK(43234) and get 96, then you sure have B HOMS. B is for
BUGged rotten, just write to Atari and ask for the C HOM
replacement.
Here are some of the bugs by Matt Ratclitf: First, Basic
appends 16 useless bytes to the end of a file on saving.
This is a cumalative process; each time you load and save
the same program, another 16 useless bytes are appended to
the file. This can cause severe problems and errors like
164-truncated record. Make sure you have a blank DOS disk,
and try this:

10 ? FRE(O) :SAVE "D:JUNK" :RUN"D:JUNK"

Repeat it over and watch your memory dwindle away, 16 bytes
at a time! Eventually, the system will crash.

Now try this: Type CSAVE (even if you've not got a cassette
unit) and turn up your TV volume. Press Return after the
beeps and you'll hear the CSAVE tones. When the READY prompt
re-appears, pump up the volume a little more. Hear that!?
AAGH! It's the sound of the cassette load still on. You'll
have to type END or SOUND 0,0,0,0 to get rid of it. CLOAD
has the same problem. This is a bug in both ROMS, not just
the B ROM.
Another problem is the unaccountable error 9-string not
DIMed, occuring on the line where the DIM statement
resides!
When you do too many loads, saves or even use the editor
generally 'too much', your system will lock-up. Known as THE
dreaded lock-up, this problem was a right pain up the rear,
which is thankfully no-longer. Don't suffer! Just send to
Atari for the new ROM.
All XE computers use the C ROMS, so there's no worries with
these.

Page 284

CHANGING A RAM BASED OS:

When you boot the translator-disk, use one of the commercial
'fix' disks such like FIX XL, use XL BOSS, or use Matt
Ratcliff' "ROM OS to RAM OS" at the back of this book, you
turn your XL/XE RAM-OS to an old 400/800 RAM-OS Revision B.
When you run the ROM-RAM OS at location 54017, you turn your
XL/XE ROM-OS to XL/XE RAM-OS. This appendix shows you a few
changes you can make to both versions of the OS (also Rev.A
where stated) when RAM. The labels "4/800" and "XL/XE"
denote which RAM OS the selective changes are meant for.
If you have the hardware for blowing PROMS or EPROMS, you
can make these changes permanent and replace the original
chips in the board.

50104 C3B8 XL/XE

This is the initial value loaded down into CHACT at 755, you
can change the value mainly to give the cursor a different
format; invisible, opaque, solid etc ..

50109 C3BD XL/XE

This is the initial value loaded down into CHBASE at 756.
Originally 224, which is the standard character-set,
CHARSETI below, you can put 204 here to point to the
international character-set, CHARSET2.

52224
57344

CCOlJ
ElJOO

CIIARSET2
CHARSETI

XL/XE
4/800 & XL/XE

CHARSETI can be altered in both OSs, you can save IK by
changing it here because you don't have to reserve IK of
memory in normal RAM. In XL/XEs, you can also change the
international character-set at 52224, saving you an
additional lK of memory.

50052
591,97

C384
E869

XL/XE
4/800

The interval tor the keyboard repeat. The original value is
6. Increase the cursor speed by lowering the value.

60294 EB86 4/800

Comment :
lo-byte, write baud
hi-byte
lo-byte, baud write init routine
hi-by te
baud-rate open routine
hi-byte
leader time

You can increase the old cassette baud rate by almost a 3rd
and reduce the leader time from 20 to 10 seconds by POKEing
the following:
Addr: Dec:
60294/EB84 0
60299/EB8B 4
61250/EF42 0
61255/EF47 4
61346/EFA2 0
61351/EFA7 4
61371/EFBIl 2

Page 285

The XL/XEs already have their cassette rout ines considerably
improved.

61683-6170B FOF3-FIOC 4/800

Memo-pad mode startup message; "ATARI COMPliTEH - MEMOPAD",
followed with a carriage return character.

50237-50247
61709-61719

C43D-C447
FIOD-FI17

XL/XE
4/800

The "1100'1' ERROR" message. Followed with Carriage Return.

50029
61812

C36D
F 171,

XL/XE
4/800

Initial value (2) which is loaded down to I.MARGN at 82 for
the left margin. The 4/800 location is lor A and II
revisions.

50033
61816

C371
FI78

XL/XE
4/800

Initial right margin value of 39, loaded down to location
83. 4/800 is both A and Il revisions.

63878-63880
63227-63229

F986-F988
F6FIl-F6FD

Xl./XE
4/1HlO

If you POKE these 3 locations with 234, then you will
disable the keyboard click and bel I-buzzer. If you only want
to disable the bell-buzzer on the XL/XE, then you can POKE
locations 62808 - 62810 with 234.

64264-64268
65217-65221

FII08-FIIOC
FECt-FEe5

XL/XE
4/800

Default colour value tables upon startup. These values are
moved to shadow registers 708 - 712 on power-up or Reset.
Screen startup is blue; to change this to black, then POKE
65219 with O.

64337
65278

FIl5t
FE FE

XL/XE
4/800

The keyboard definition table begins here. You can re-direct
your own in the XL/XE series at locations 121 and 122. A
nice trick that Ian Chadwick pointed out in Mapping, is that
you can change the arrow keys so that they work without the
use of the Control-key. Math signs with shift, and the
remaining combinations work with Control. You can do this
with:

Page 286

APPENDIX E2:

10 FOR I =0 TO 5
20 READ A,DI ,D2
30 POKE A,DI :POKE A+I,D2
40 NEXT I
50 DATA 64343,30,31,64351,28,29
60 DATA 64407,43,42,64415,45,61
70 DATA 64481,92,94,64489,95,124

Figures given are for XL/XE. 4/800 B-Roms will have to
replace the locations above with: 65284, 65292, 65348,
65356, 65412 and 65420 accordingly.

65281 FFOI 1200XL

Owners of this XL can turn their function keys into cursor
keys by POKEing 65281 with 30,65282 with 31,65297 with 28
and 65298 with I I.

62815 F55F XL/XE

Normally this would be the cursor to bottom left corner of
the screen routine, which isn't on the keyboard. If you use
my program at locations 121 and 122 then you can get this,
but here's how to change it to a Character-set toggler,
which 6/800XL users will lind a treat:

100 POKE 62815,76:POKE 62816,159
102 POKE 62817,228
104 FOR 1=0 TO 23
106 REAll ll:POKE 58527+I,Il:NEXT 1
108 DATA 173,158,228,240,8,169,204
110 DATA 206,158,228,76,177,228
112 DATA 238,1511,22fl,169,224
114 DATA 141,244,2,76,12,2119
116 POKE 58526,0

All you need to do is to type the program at locations 121
and 122, Ihen add this routine. The program uses a small
'unused' patch of memory in the OS ilself for storage of the
machine-code rout ine.

65487 FFCF XL/XE

You can make the HELP-key act as a start/stop flag like the
Co n t r o l > " l " keypress by POKEing here with 17. See location
732.

65507 HE3 4/800

The time delay for the keyboard repeat feature; initially 3,
POKE wilh for full-speed ahead.

50056
65516

C388
HEC

XL/XE
4/800

Key repeal delay. Initially 48, or 40 depending on your
system being NTSC or PAL. Lower the value, the faster.

Page 287

IJOXE MEMOHY MANAGEMENT.

Owning the IJOXE, you will know that you have an additional
64K in yuur machine, so as you turn your computer on and
type in Basic; 1 FHE(O), you would probably expect to see
103438 returned. Hut you dont! OK, so where is this extra
64K7

Well, take a look at the diagram below:

ADDRESS
MAIN 64K dec hex 2ND 64K
---------- 0 $0000 ----------
I I I I
I I I I

: 1st Hank: : 1st Bank:
I I I I
I I I I

---------- 16384 $4000 ----------
I I I I
I I I I

:2nd Hank: :2nd Bank:
referred

I
I

can
---------- 32768 $8000 ----------
I I I I
I I I I

:3rd Bank: :3rd Bank:
I I I I
I I I I

---------- 49152 $COOO ----------
I I I I
I I I I

:4th Bank: :4th Bank:
I I I I
I I I I

---------- 65535 $FFFF ----------

Note:
The 2nd Bank of the
MAIN 64K can be

to as a 'Window'. It

be used to access any
of the 16K Banks in
the 2ND 64K.
Explained afterwards

The memory is divided up into 4 16K banks for both 64K
groups inside your 130XE. I've given both the decimal and
hexadecimal addresses at which each of the 16K banks begin.

Now then, if told you that it is only possible to have
'full' access to 64K at anyone time, then you would
probably assume that you can either use the main 64K OR the
2nd 64K. Well, you're right, and to do this you would set or
clear both bits 4 and 5 (decimal 8 and 16) at the
bank-select location 54017; $D301, depending on whether you
wanted the MAIN 64K, or the 2ND 64K, respectively.

BIT: 7 6 5 4 3 2 1 0
DEC: -n/a- 32 16 -----n/a-----

1 1
0 0

GROUP:

MAIN 64K
2ND 64K

In addition to this method of accessing the extra 64K, you
can also retain the MAIN 64K, but access an additional 16K
from the 2ND 64K via a 'window' in the MAIN 64K at Bank 2.
There are a few complications using this method, however.

Page 288

See the table below:

IlIT: 7 6 5 4 3 2 I 0 2ND 64K
DEC: -n/a- 32 16 8 4 -n/a- BANK No: USE:

0 0 0 1 ANTIC
0 1 2
I 0 3
I I 4

0 repeat CPU

Bits 2 and 3 simply denote which 16K bank from the 2ND 64K
is accessed via the window in the MAIN 64K. But, if this
bank replaces the original bank, then how on earth is the
original bank accessed at the same time!? Easy! Bits 4 and 5
are the important bits: If bit 4 is set and bit 5 is clear
then it means that the main 16K which is supposed to be in
this area IS still in this area, HUT only accessible to the
CPU! In this same case, Ihe 16K bank selected from the 2ND
64K is only accessible to ANTIC! Of course, were bits 4 and
5 reversed, then access would also reverse.

So, now we know Ihal we can have 2 banks accessed from the
'window' (address $4000 - $7FFF in the MAIN 64K), what does
this CPU/ANTIC individual access compl ication mean!?

Put simply, the ANTIC chip is responsible for all the
graphics you see on Ihe screen, il uses a technique known as
DMA (Direct Memory Access) to process any instructions, from
its own instruction-set, to create the screen display. The
CPU, on the olher hand, directly accesses memory for
everything else excepl graphics. So, as an example, if you
set bit 4, clear bit 5 and set both bits 2 and 3, then you
would be able to use the original 16K bank for standard
program or data memory, but the 2ND 64K's 16K bank (no. 4 in
this case) will only be accessed by the ANTIC chip, thus,
using this memory for Display Lists and Display Memory.

Of course, this ANTIC memory would have to be loaded or
POKEd wilh the necessary information in the first place, so
you would have to give it CPU access so that you can fill it
with what you want, and then when your program uses this
memory for DL's and DM, you should then set the bits so that
ANTIC can access it.

Having this extra memory is a good thing, but as you can
see, it can become tedious some times. I'm sure that after a
while it will all come easy.

Page 289

OS 2.5 Memory assignment.

Unlike the earlier DOS 2.0, t he better version now has a
very different memory layout, and the code itself is not t he
same in many areas. The information in the map between
memory locations 1792; $700 and 8191; $IFFF is for DOS 2.0.
If you're a DOS 2.5 user, then the correct addresses are in
this appendix.

1801 709 SABYTE

Maximum files that can be open simultaneously. Same as DOS
2.0.

1802 70A DRVBYT

Maximum drives allowable in system. Same as DOS 2.0.

1804,S 70C,D SASA

Buffer allocation address for drives and files.

1806 70E DFSFLG

Reads 0 if there isn't a DOS.SYS file on the disk.

1807,8 70F,7I0 DFLI NK

Pointer to the 1st sector of DOS.SYS.

1809 711 BLDISP

The number of displacement bytes to sector link bytes (the
last 3 of each sector). which should read 125. In true
double density DOS's, this byte would read 253.

1810, I 712.3 DFLADDR

Address of the FMS (D:) handler table at 1995; $7CB.

1812 714 XBCONT

The beginning of the boot program.

1900 76C BSIO

FMS sector I/O routines.

1906 772 BSIOR

FMS disk handler routines.

Page 290

1913 779

Write verify flag; POKE with 80 to disable verify, thus
speeding up all write operations. Engage write verify by
POKEing with 87.

1981 7BD DFMSTA

STATUS routines.

1995 7CB DFMSDH

FMS handler table. The handler table occupies the same
memory as DOS 2.0. but the handlers themselves are now at
different addresses. as below:

OPEN 2149; $865
CLOSE 2704; $A'JO
GET 2638; $A4E
PUT 2448; $990
STATUS t sa i : $78D

2016 7EO IlINIT

DOS initialization routine.

2149 865 DFMOPN

The new address lor the OPEN routines.

2448 'J'JO IJFMPUT

The PUT routines.

2638 A4E IJFMGET

GET routines.

2704 A'JO DFMCLS

10CB CLOSE routines.

2859 B2B IJFMDDC

Device dependent command routines. including Basic XIO
special commands.

2904 B58 INVCMD

Invalid command routines.

2213 8A5 WTBUR

Burst I/O routines (7).

Page 291

J I 2'J C39 XRENAME

RENAME routines.

3237 CA5 XDELETE

DELETE rou t i nes .

3296 CEO XLOCK

LOCK f i Ie routines entry.

3299 CEJ XUNI.OCK

UNLOCK f i Ie routines entry.

3346 1112 XPOINT

BASIC POINT command routines.

3421 D5D XNOTE

8ASIC NOTE command routines.

3442 D72 XFORMAT

FORMAT disk routines.

3501 DAD LISTDIR

Disk directory routines.

3544 DDO

"FREE SECTORS" message.

3709 E7D FNDCODE

Filename decode routines. including 'wildcard' validity
tests. The current filename is pointed to by locations 67
and 60.

3747 EA3

This is DOS 2.5's address of the validation check of the "*"
wildcard. You can change the wildcard by putting the ASCII
code of the character you want to replace it right here.

3760 E80

This is the other wildcard ("1"). You can change it in the
same way as you do at location 3747.

Page 292

3774,3778

APPENDIX E4:

EBE,EC2

This is DOS 2.5's
filenames. You can
allow the use of
your filenames.

low/hi character acceptance range for
POKE 3774 with 33 and 3778 with 123 to
punctuation and lowercase characters in

3799 ED7

By POKEing this location with 0, you can force DOS to accept
any character from the filename character range in the
initial character of the filename, you needn't begin with an
alpha (A - Z). DOS 2.0's equivalent is by POKEing 3828; $EF4
with 4.

3732 E94

This is the full-stop field separation character code. DOS
2.0's location is 3798; $ED6.

3810 EE2

The 'space' character prevented trom being in filenames.

3820 EEC SFDIR

Directory search routines: search tor the user specified
filename.

3872 F20

When a disk directory has been read and displayed to the
screen, the way in which DOS knows it has reached the end of
a1 I tiles to be displayed is either due to the tact that all
64 tiles have been read, or when it reaches an unused entry
(all O's). Occasionally, some programmers write messages in
the directory sectors and they put the filenames atter an
'unused entry', thus preventing them being displayed. To
overcome this and display EVERY directory entry, POKE here
with O. DOS 2.0 users should POKE 3925; $F55 with 5.

3874 F22

A handy I ittle technique is being able to load deleted
tiles. This is only possible it the sectors they
pre-occupied haven't been overwritten by recent files saved
on the disk. You can do this by POKEing here with O. The DOS
2.0 equivalent is location 3927; $F57.

3952 F70 WRTNXS

Write data sector routines.

4066 FE2 RDNXTS

Read data sector rout ines.

Page 293

416\ 1041 RIlIlIR

Read and write directory sertor routines.

4180 1054 RIlVTOC

Read and write the volume table of contents (VTOC) sectors.

4365 IIOD FRESECT

Free sector(s) routines; returns the number of free sectors
on a disk that are user accessible.

4426 114A GETSECTOR

Get sector routines; gets a free/unused sector for use.

4521 II A9 SETUP

Setup and initialization of the FMS parameters which
basically prepares FMS to deal wit h the operation asked by
the user.

4626 1212 ?

Data sector I/O.

4639 121F WRTDOS

Wri te new DOS and DUP f I I es to disk routines.

4738 1282 ?

Test DOS.SYS filename.

4762 129A

"DOS.SYS" CR (Carriage Return) name.

4945 1351 FCB

Start of the FMS File Control Blocks.
these FCB's begin at 4993, but I seem
start here. There are 8 FCBs. each being
For a full description of these, refer
locations in the map.

Mapping says that
to find that they
16 bytes in size.
to the old memory

5121 1401 FILDIR

128 byte buffer for a disk directory sector.

5361 14FI

"D:RAMDISK.COM" CR name.

Page 294

5439

POKE with 49
DUP.SYS file
the RAMDISK.
files from the

APPENDIX E4:

153F

(ASCII for "I") to re-route DOS to call the
from drive-I (DI:) instead of D8: when using
You can then delete the DUP.SYS and MEM.SAV
RAMDISK for extra RAM.

5440 1540 MINIDUP

Beginning of permanently resident portion of the DUP.SYS
f i l e ,

5446.5450 1546.154A

The values here are loaded down into DOSVEC (locations 10
and II; $A and $B) upon pressing RESET. See relating
locations for further details.

5540 15A4 SFLOAD

Mapping states this to be the entry point to the DUP.SYS
binary-file load routine, but I find the disassembly in this
area of DOS 2.5 is exactly the same as that in DOS 2.0 where
it is described to be the routines to load a MEM.SAV file if
it exists. I leave you to have your own beliefs, but I
believe it is the tatter.

5899 170B MEMLDD

Flags that lhe MEM.SAV file has been loaded. 0 means nope.

5<)00 170(;

"DI:ALJTOIHlN.SYS" eR name. This is lhe filename DOS executes
In finding it on a disk. Of course. you can change this to
any name you wish.

5915 171B

"NEED MEMSAVE TO LOAD TIllS FILE" CR prompt.

5947 173B

The MEM.SAV file crealion routines begins here. The
immediate II bytes are "DI :MEM.SAV" CR.

6044.5 179C.D INISAV

DOSINI (locations 12 and 13) vector save location which Is
the entry point to DOS on exit from BASIC.

6046 179E MEMFLG

Flag to show if memory has been saved to disk using the
MEM.SAV file.

Page 295

61 'II 182F

APPENDI X E4:

"IJI:DlIP.SYS" CR name. The utility package DOS searches for
on the disk when DOS is typed in HASIC. The DlIP.SYS file is
a normal binary-load file which has control passed to it
after being loaded.

6202 183A

"ERROR-SAVING USER MEMORY ON DISK" CR prompt.

6235 185H

"TYPE Y TO RUN DOS" CR prompt.

6418 1912 CLMJMP

Test to see if DOS should load MEM.SAV prior to it executing
a 'run-at-cartridge' address.

6432 1920 LMTR

Test to see if the MEM.SAV file should be loaded before a
'run-at-address' is executed.

6457 1939 LDMEM

MEM.SAV load routines.

6518 1979 INITIO

DUP.SYS warmstart entry.

7276 IC6C

In a standard DOS 2.5. this is where MEMLO normally points
to when DOS is resident. See location 7420; $ICFC in the DOS
2.0 map for full descriptions.

Well. that's about as much as I could work out of DOS 2.5.
It's pretty difficult when you don't have the source
listing! Before I bring this appendix to an end, here's a
handy way of finding out what DOS has loaded within your
programs:

PEEK Value DOS
location returned version

3889 0 SpartaDOS 2.3e
13 DOS 4.0
IS SpartaDOS 1.1
19 DOS 2.5
76 DOS 3.0
78
89 SpartaDOS 3.2d

Page 296

108
207
221
238
238
244

APPENDIX E4:

MYDOS 4.0
OSS OS/A+4.00
MYDOS 4.50
DOS 2.0
OSS DOS XL 2.3
DOS XE

You'll notice that DOS 2.0 and OSS DOS XL 2.3 have the same
values, to seperate the 2 then just check this location:

1804 o
124

OSS DOS XL 2.3
DOS '2.0

You can thank Dave
because that's where
newsletter to be exact.

Ewens
they

of TWAUG for these handy tips
came from. Issue #5 of TWAUG

FREE BYTES.

For quick and easy reference. here's a list of all the
unused bytes inside your machine.

0-1 0-1

Free tor use.

28-31 Ie-IF

Free for use.

1'28-'202 BO-CA

Free outside of Basic. If you are in Basic, then you only
get location 147 free.

203-209 CB-41

Always free except in the Assembler/Editor, where locations
203-207 are then unusable.

212-255 D4-FF

Free for non-Basic users if you don't use the Floating Point
package.

583-618 247-26A

Free for 1200XL users.

590-618

Unused.

24E-26A

Page 297

653 26D

Unconditionally Free.

704-707 2(;0-2(;3

Free it not using PMG's.

71 I 2(;7

Free tor use, except when in 5-colour modes.

736-739 2EO,2E3

Free it not using DOS.

775 307

Always tree tor use.

794-808 31A-328

Depending on which handlers you don't use in your program.
then 3 bytes are free for each handler not used.

809-826 329-33A

Always free unless used for additional handlers. If using
DOS, then avo id 809-811; $:I29-$:I2B.

827-828

Always free.

829-831

33B-33C

33D-33F

OK to use except it you press RESET. You should replace the
original values if RESET should be pressed. since the system
will coldstart otherwise.

832-959 340-3BF

Very tricky, especially using Basic. Except for 10CB's O. 6
and 7, the rest can be completely free for use. The used
10CB's allow free use outside Basic. but in Basic: 10CB-0 is
only free outside typical Graphics 0 operations such as
PRINT. LIST etc.. IOCB-6 is free only outside Graphics
commands such as PLOT, PRINT #6 etc .• while IOCB-7 is free
only outside device I/O commands such as LPRINT, LOAD etc ..

960-999 3CO-3E7

Without using a printer. you get these 40 bytes free

Page 298

1001 3E9

APPENDIX E5:

Free tor use without booting the cassette.

1002 3EA

Free except when booting the cassette or disk via the OS
routines.

1003 3EB

Always tree. except in the 1200XL. To tree its use in the
1200XL, then ommit its use in the VBLANK.

1021-1151 3FD-47F

Always tree except tor the initial booted sector at a disk
and all cassette records being loaded.

1152-1535 480-5FF

other than using Basic, this area is OK to use. It you have
any applications/utilities loaded into memory. this is the
low-memory area that they most otten occupy.

1536-1791 600-6FF

Always tree tor your
Originally, I thought
this is not so. You can.

use. and even in Turbo Basic.
1B stopped you using this area. but

1792-MEMLO 700-MEMLO

MEMLO is the address at locations 743 and 744. This area is
tree except when using DOS and some other programming
environments. When using any Basic without DOS. your
programs occupy this area. When using DOS. your Basic
programs occupy memory tram MEMl.O upwards. MEMLO is usually
kept below 8192; $2000 with most DOS's.

8192-32767 2000-7FFF

Again. Basic programs occupy this memory depending on their
size. It you've exited Basic to the DOS you're using. then
most DOS's utility Packages (DUP) occupy 8192-16384;
$2000-$4000. The top end varies. but they never usually
exceed the address given.

32768-40959 8000-9FFF

Using Basic. this is display memory. The amount at memory
used depends on the mode in use. The memory being occupied
always takes the higher end of this block, which is pointed
to by locations 88 and 89; $58 and $59. If you're not using
Basic, then this area is unsused and tree tor your use. Most
hi-memory menu's and utilities occupy the higher area of
this block. so be careful of conflict.

Page 299

40960-491 AOOO-BFFF

Always used by Basic. It you're
is occupied by the display mode
32768-40959. Most cartridges
Assembler/Editor. It you have
the lower 8K is also used.

out ot Basic, then this area
in the same way as addresses
use this area including the
a 16K cartridge inserted then

49152-53247
57344-65535

COOO-CFFF
EOOO-FFFF

Both these areas can be turned into total RAM, though, not
allot it can be used as such. It depends on your
application. See location 54017; $lnOI.

Well, there you have the obvious memory tree tor your use.
Besides this, there is much more memory that your programs
can use, it all depends on what your programs don't need to
use. Have fun!

THE XL/XE OS-SOURCE LISTING:

I was searching through my utilities for a program to
disassemble the computers OS to make this appendix, but
could I find one!? Could I heck! I found programs to
disassemble to screen and printer but not to disk and allot
them were heavily protected you could only RUN the program
straight from disk! If I could've LISTed it, then I would
have sent the output to a disk-file instead of the printer.
Anyway, it worked out I had to write my own disassembler. I
wrote it in Turbo Basic and then found that the OS-ROM was
different to what it normally is! What a pain. So, I then
was forced to convert my Turbo Basic program into normal
Basic, which required some additional routines for DEC to
HEX conversions etc. because I was previously using T/Basics
HEX$ command for the conversion.

Anyway,
Operating
fun!

here it
System

is after all that unexpected trouble! The
Source listing for XL/XE machines. Have

NOTE: You will find the author comments below the
appropriate lines, preceded by an upper case enclosed in
brackets (C). The reason is to print the Source Code
Listings in double column to save on paper and cost.

Page 300

APPENDIX E6

COOO II 92 C047 AD FF DI LDA $DI FF
(e) LSB/MSIl ROM Checksum C04A 2D 49 02 ANO $0249
C002 10 C040 FO 03 IlEQ $C052
(C) Revision date in C04F 6C 38 02 JMP ($0238)
C003 05 C052 A2 06 LDX #$06
(C) form: DDMM¥Y C054 BO CF CO LDA $COCF,X
C004 83 C057 EO 05 CPX #$05
COOS 00 C059 DO 04 BNE $C05F
(C) Reserved option byte C05B 25 10 AND $10
C006 42 COSO FO 05 BEQ $C064
(C) Part-Number in C05F 2C OE D2 IlIT $020E

form: AANNNNNN C062 FO 06 BEQ $C06A
AA is ASCII Char and C064 CA DEX
NNNNNN is a 4-bi t BCO C065 10 EO BPL $C054
digit (AI) C067 4C AO CO JMP $COAO

C007 42 00 00 01 C06A 49 FF EOR #$FF
(C) A2 and NI-N6 where C06C 80 OE D2 STA $020E

each N is 2 4-bit C06F AS 10 LOA $10
BCO values C071 80 OE 02 STA $020E

COOB 02 C074 EO 00 CPX #$00
(C) Revision Number C076 00 05 BNE $C07D

C078 AO 6D 02 LOA $0260
COOC A9 40 LDA #$40 C07B DO 23 BNE $COAO
(C) INTERRUPT HANDLER C07D BD D7 CO LOA $C007.X
COOE 80 OE D4 STA $040E C080 AA TAX
(C) INITIALIZATION C081 BO 00 02 LOA $0200,X
COIl All 13 110 LilA $IlOI:l C084 8D 8C 02 STA $028C
COl4 81l FA 0:1 STA $03FA COU7 BO 01 02 LOA $0201,X
C017 60 RTS COUA 8D 8D 02 STA $028D
COl8 2C OF 04 BIT s040 F C080 6U PLA
(C) NMI INITIALIZATION C08E AA TAX
COIB 10 03 BPI. $C02O COHF 6C 8C 02 JMP ($028C)
COlD 6C 00 02 JMP ($0200) C092 A9 00 LDA #$00
C020 08 C1.1) (C) BREAK-KEY IRQ
C021 48 PIIA C09/. U'i II STA sI I
C022 8A TXA C09h Ull H 02 STA $02FF
C023 48 PHA Cll99 Ull FO 02 STA $OlFO
C024 9U TYA C09C 85 40 STA $4D
C025 48 PIIA con 68 PLA
C026 80 OF 04 STA $040F C09F 40 RTi
C029 6C 22 02 JMP ($0222) COAO 68 PLA
C02C 08 CLO (C) CONTINUE IRQ
(C) IRQ PROCESSOR COAl AA TAX
C020 6C 16 02 JMP ($0216) (C) PROCESSING
C030 48 PHA COA2 2C 02 D3 BIT $D302
C031 AO OE 02 LOA $D20E COA5 10 06 BPL $COAD
C034 29 20 AND #$20 COA7 AO 00 D3 LOA $D300
C036 DO 00 BNE $C045 COAA 6C 02 02 JMP ($0202)
C038 A9 DF LOA #$OF COAO 2C 03 D3 BIT $0303
C03A 8D OE D2 STA $02OE COBO 10 06 BPL $COIl8
C031l AS 10 LOA $10 COB2 AD 01 03 LOA $D301
C03F 8D OE D2 STA $D20E COBS 6C 04 02 JMP ($0204)
C042 6C OA 02 JMP ($020A) COll8 68 PLA
C045 8A TXA COB9 80 8C 02 STA $028C
C046 48 PHA COBC 68 PLA

Page 301

t\p!'ENQJ .. Ef?

COIlIl 48 PitA CI34 81J VI 02 STA $0234COilE 29 10 AND it $ 10 C1:1 7 AD 31 02 LilA $0231COCO FO 07 REQ $COC9 C13A 81l 03 D4 STA $D40:lCOC2 All 8C 02 LilA $028C CDD All 30 02 LilA $0230COC5 48 PitA C11,0 8D 02 114 STA $D402COC6 6C 06 02 JMp ($0206) CI43 AD 2f' 02 LDA $022FCOC9 AD 8C 02 LDA $028C C146 8D 00 D4 STA $D400COCC 411 pHA CI49 AD 6F 02 LDA $026FCOCD 611 PLA CI4C 8D III DO STA $DOIBCOCE 40 H1'I C14 F AD 6C 02 LDA $026C
C152 Fo OE !lEQ $C162COCF 80 40 04 02 01 08 10 20 CI54 CE 6C 02 IlEC $026C(C) TABLE OF I HQ TYPES C157 A9 08 LDA #$011

COD7 36 08 14 12 10 OE OC OA CI59 38 SEC
(C) AND OFFSETS CI5A ED 6C 02 SBC $026C

CI5D 29 07 AND #$07
CODF 4C DF CO JMP $COIlF CI 5F 81l 05 D4 STA $D405COE2 E6 14 INC $14 C162 A2 08 LDX #$08
(C) IMMEDIATE VBLANK NMI CI64 8E IF DO STX $DOIF
COE4 DO 011 BNE $COEE C167 58 CLI
(C) PROCESSING CI68 !Ill CO 02 LDA $02CO,XCOE6 E6 4D INC $4D CI6B 45 4F EOH $4 F
COE8 E6 13 INC $13 CI6D 25 4E AND $4E
COEA DO 02 BNE $COEE CI6F 9D 12 DO STA $DOI2,X
COEC E6 12 INC s I 2 C172 CA DEX
COEE A9 FE LDA #$FE C173 10 F2 BPL $C167
COFO A2 00 LDX #$00 C175 All F4 02 LilA $02F4COF2 A4 4D LDY $4 D CI78 81l 09 D4 STA $D409COF4 10 06 BPL $COFC CI7B AD F3 02 LDA $02F3COF6 85 4D STA $4D CI7E 8D 01 D4 STA $D401COF8 A6 13 LDX $13 CI81 A2 02 LDX #$02
COFA A9 F6 LDA #$F6 CI83 20 55 C2 JSR $C255COFC 85 I,E STA $4E CI86 DO 03 BNE $CI8B
COFE 86 4F STX $4F CI1I8 20 52 C2 JSR $C252
CIOO AD C5 02 LDA $02C5 CI8B A2 02 LDX #$02
CI03 45 4F EOR $4F CI8D E8 INX
CI05 25 4E AND $4E CI8E E8 INX
CI07 8D 17 DO STA $DOI7 CI8F BD 18 02 LDA $0218,X
CIOA A2 00 LDX #$00 CI92 I D 19 02 ORA $0219,X
CIOC 20 55 C2 JSR $C255 CI95 FO 06 BEQ $CI9D
CIOF DO 03 BNE $C114 CI97 20 55 C2 JSR $C255
CI II 20 4F C2 JSR $C24F CI9A 9D 26 02 STA $0226,X
CI14 A5 42 LDA $42 CI9D EO 08 CPX #$08
CI16 DO 08 BNE $C120 CI9F DO EC BNE $CI8D
CI18 BA TSX CIAI AD OF D2 LDA $D20F
CI19 BD 04 01 LDA $0104,X CIA4 29 04 AND #$04
CIIC 29 04 AND #$04 CIA6 Fo 08 BEQ $CIBO
CIIE FO 03 BEQ $C123 CIA8 AD FI 02 LDA $02FI
CI20 4C 8A C2 JMP $C28A CIAB FO 03 BEQ $CIBOCI23 AD 13 DO LDA $DOI3 ClAD CE FI 02 DEC $02FICI26 CD FA 03 CMP $03FA CIBO AD 2B 02 LDA $022B
CI29 DO B4 BNE $CODF CIB3 Fo 3E BEQ $CIF3CI2B AD OD D4 LDA $D40D CIB5 AD OF D2 LDA $D20F
CI2E 8D 35 02 STA $0235 CIB8 29 04 AND #$04
CI31 AD OC D4 LDA $D40C CIBA DO 32 BNE $CIEE

Page 302

APPENDIX E6

CIIlC CE 2B 02 DEC S022B C23E A9 00 LDA 1$00
CIIlF DO 32 IlNE $CIF3 C240 2A ROL A
CICI AD 6D 02 LDA S02bD C241 9D 7C 02 STA S027C.X
CIC4 DO 2D IlNE SCIF3 C244 9D 80 02 STA S0280.X
CIC6 AD DA 02 LDA S02DA C247 CA DEX
CIC9 8D 2B 02 STA $022B C248 CA DEX
CICC AD 09 D2 LDA SD209 C249 88 DEY
CICF C9 9F CMP 1$9F C24A 10 E6 BPL $C232
CIDI FO 20 BEQ SCIF3 C24C 6C 24 02 JMP (S0224)
CIU3 C9 83 CMP 1$83 C24F bC 26 02 JMP ($0226)
CID5 FO IC BEQ $CIF3 (C) TIMER-I EXPIRED
CID7 C9 84 CMP #S84 C252 6C 28 02 JMP ($0228)
CID9 FO 18 BEQ SCIF3 (C) TIMER-2 EXPIRED
CIDB C9 94 CMP #$94 C255 BC 18 02 LDY $0218.X
CIDD FO 14 BEQ $CIF3 (C) DECREMENT COUNTDOWN
CIDF 29 3F AND 1$3F C258 DO 08 BNE $C262
CI EI C9 II CMF #$11 (C) TIMER
CIE3 FO OE BEQ $CIF3 C25A BC 19 02 LDY $0219.X
CIE5 AD 09 D2 LDA $D209 C25D FO 10 BEQ $C26F
CIE8 8D FC 02 STA $02FC C25F DE 19 02 DEC $0219.X
CIEIl 4C F3 CI JMP SCIF3 C262 DE 18 02 DEC $0218.X
CI EE A9 00 LDA #$00 C265 DO 08 BNE $C26F
CIFO 8D 2B 02 STA $022B C267 BC 19 02 LDY $0219.X
CI F3 AD 00 D3 LDA SD300 C26A DO 03 BNE $C26F
CIF6 4A LSR A C26C A9 00 LDA #$00
CIF7 4A LSR A C26E 60 RTS
CIF8 4A LSR A C26F A9 FF LDA I$H
CIF9 4A LSR A C271 60 HTS
CIFA 8D 79 02 STA S0279 C272 OA ASL A
CIFD 8D 7B 02 STA $O271l «» SET VBLANK PARAMETERS
C200 AD 00 D3 LDA $D300 C27:l 8D 2D 02 STA $022D
C203 29 OF AND #$OF C276 8A TXA
C205 8D 78 02 STA $0278 C277 A2 05 LDX IS05
C208 8D 7A 02 STA S027A C279 8D OA D4 STA $D40A
C20B AD 10 DO LDA SDOIO e27C CA DEX
C20E 8D 84 02 STA $0284 C27D DO FD BNE $C27C
C211 8D 86 02 STA S0286 C27F AE 2D 02 LDX S022D
C214 AD II DO LDA SDO I I C282 9D 17 02 STA $0217,X
C217 8D 85 02 STA S0285 C21J5 98 TYA
C21A 8D 87 02 STA $0287 C286 9D 16 02 STA $0216,X
C21D A2 03 LDX #$03 C289 60 RTS
C21F 1111 00 D2 LDA $D200,X C28A 68 PLA
C222 91J 70 02 STA Sll270,X (C) PROCESS DEFERRED
C225 9D 74 02 STA $0274.X C281l A8 TAY
C228 CA DEX (C) VIlLANK NMI
C229 10 F4 BPL $C2IF C28C 68 PLA
C22B 8D OB D2 STA SD20B C28D AA TAX
C22E A2 02 LDX #$02 C28E 68 PLA
C230 AO 01 LDY #$01 C28F 40 RTI
C232 B9 78 02 LOA S0278.Y C290 78 SEI
C235 4A LSR A (C) PERFORM WARMSTART
C236 4A LSR A C291 AD 13 DO LDA $DOI3
C237 4A LSR A C294 CD FA 03 CMP $03FA
C238 9D 7D 02 STA S027D,X C297 DO 2F BNE SC2C8
C23B 9D 81 02 STA $0281.X C299 6A ROR A

Page 303

AI'PEND!X (::b

C2')A 90 05 BCC $C2AI cz FIl Ab 05 LOX $05
C29C 20 C9 C4 JSH $C4C9 C2FF EI, Db CI'X $06
C29F DO 27 IlNE $C2CB C301 00 E1 IlNE $C2E4
C2AI AD 44 02 LDA $0244 003 A9 23 LDA #$23
C2A4 DO 22 BNE SC2CB C305 85 OA STA SOA
C2A6 A'J FF LilA #$FF C307 A9 F2 LDA #$F2
C2A8 DO 20 RNE SC2CA C309 85 Oil STA SOB
C2AA 78 SEI CJOB AD 01 D3 LDA $DJOI
(C) PROCESS RESET C30E 29 7F AND itS 7F
CUB A2 BC LDX #$BC CJIO BD 01 D3 STA $DJOI
C2AD 88 DEY CJ\3 20 73 FF JSR $FF73
C2AE DO FD BNE $C2AD C316 BO 05 B(;S SC31D
C2BO CA DEX C318 20 92 FF JSR $FF'12
C2RI DO FA BNE SC2AO C31B 90 02 BCC SCJIF
C2B3 AD 3D 03 LDA $1l33D (;JID 46 01 LSR $01
C2Bb C9 5C CMP #$5(; CJIF AD 01 03 LOA S\)301
C2BB DO OE BNE SC2CB C322 09 flO ORA #$BO
C2BA AD JE 03 LilA S033E C324 8D 01 D3 STA $D301
C2BD C9 9J CMP #$9J C327 A9 FF LDA #$FF
C2BF DO 07 IlNE $C2C8 C329 8D 44 02 STA $0244
C2CI AD 3F 03 LilA $033F C32C DO 22 IlNE SC350
C2C4 C9 25 CMP #$25 C32E A2 00 LDX #$00
C2C6 FO C8 REQ $C290 C330 AD EC 03 LDA $03EC
C2C8 A9 00 LDA #$00 C333 FO 07 BEQ $C33C
(C) PERFORM COLDSTART C335 8E OE 00 STX $(J()OE
C2CA 85 08 STA $08 C33B BE OF 00 STX $OOOF
(C) PRESET MEMOIlY; C3313 BA TXA
C2CC 78 SEI C33C 9D 00 02 STA $0200,X
(C) COI.D/WARM START C33F EO ED CPX #SED
C2CD D8 CLD C341 BO 03 RCS $G:l46
(C) CONTINUATION C343 9D 00 03 STA $0300,X
C2CE A2 FF LDX #$FF C346 CA DEX
C2DO 9A TXS C347 DO F3 BNE $C33C
C2Dl 20 71 C4 JSR $C471 C31'9 A2 10 LDX #$10
G2D4 A9 01 LDA #$01 C3413 95 00 STA $OO,X
G2D6 B5 01 STA $01 G34D E8 INX
C2DB A5 OB I.DA $OB C34E 10 FB BPL $C34B
G2DA DO 52 BNE $C32E C350 A2 00 LDX it$OO
C2DG A9 00 LDA #$00 C352 AD 01 D3 LDA $D301
C2DE AO OB LDY #$OB C355 29 02 AND it$O2
C2EO B5 04 STA $04 C357 FO 01 BEQ $C35A
C2E2 B5 05 STA $05 C359 EB INX
C2E4 A9 FF LDA #$FF C35A BE FB 03 STX S03FB
C2E6 91 04 STA ($04),Y C35D A9 5C LDA #$5C
C2E8 01 04 CMP ($04),Y C35F 8D 3D 03 STA $033D
C2EA FO 02 BEQ SC2EE G362 A9 93 LDA #$93
C2EC 46 01 LSR $01 C364 BD 3E 03 STA $033E
C2EE A9 00 LDA #$00 C367 A9 25 LDA #S25
C2FO 91 04 STA ($04),Y C369 BD 3F 03 STA S033F
C2F2 01 04 CMP ($04) , Y C36C A9 02 LDA #$02
C2F4 ro 02 BEQ $C2FB C36E 85 52 STA $52
C2F6 46 01 LSR $01 C370 A9 27 LDA #$27
C2FB CB INY C372 B5 53 STA $53
C2F9 00 E9 BNE $C2E4 C374 AD 14 00 LDA $0014
C2FB E6 05 INC $05 C377 29 OE AND #SOE

Page 304

APPE!iOIX E6

C379 00 08 BNE $C383 C3FA E8 INX
C37B A9 05 LOA #$05 C3FB 00 1"0 BNE $C3FA
C370 A2 01 LOX #$01 C3FO C8 INY
C37F AO 28 LOY #$28 C3FE 10 FA BPL $C3FA
C381 00 06 BNE $C389 C400 20 6E C6 JSR $C66E
C383 A9 06 LOA #$06 C403 A5 06 LOA $06
C385 A2 00 LOX #$00 C405 1"0 06 BEQ $C400
C387 AO 30 LOY #$30 C407 AO 1"0 BF LOA $BFFO
C389 8D OA 02 STA $020A C40A 6A ROR A
C38C 86 62 STX $62 C40B 90 06 Bce $C413
C38E 8C 09 02 STY $0209 C400 20 8B C5 JSR $C58B
C391 A2 25 LOX #$25 C410 20 39 E7 JSR $E739
C393 BO 4B C4 LOA $e44B.X C413 A9 00 LOA #$00
C396 90 00 02 STA $0200,X C415 80 44 02 STA $0244
C399 CA OEX C418 A5 06 LOA $06
C39A 10 1"7 BPL $C393 C41A 1"0 OA BEQ $C426
C39C A2 OE LOX #$OE C41C AO 1"0 BF LOA $BFFO
C39E BD 2E C4 LOA $C42E,X C41F 29 04 ANO #$04
C3AI 90 I A 03 STA $031A,X C421 1"0 03 BEQ $C426
C3A4 CA OEX C423 6C FA BF JMP ($BFFA)
C3A5 10 F7 BPL $C39E C426 6C OA 00 JMP ($OOOA)
C3A7 20 35 C5 JSR $C535 C429 6C FE BF JMP ($BFFE)
C3AA 58 CLI (C) INITIALIZE CARTIlIOGE
C3AB A5 01 LOA $01 C42C 18 CLC
C3AO 110 15 BNE $C3C4 (C) PIHlCESS ACMI
C3AF AO 01 D3 l.OA SIlJO I C420 60 RTS
C3B2 29 71" ANIl #$7F (C) INTERRIIPT
C3B4 80 01 1J3 STA suaoi
C31l7 A9 02 LDA #S02 C42E 50 30 E4 43 40 E4 45 00
C31l9 80 F3 02 STA $02F3 C436 E4 53 10 E4 4B 20 E4
C31lC A9 EO LOA #$EO
C31lE 80 1"4 02 STA $02F4 C430 42 41" 41" 54 20 45 52 52
C3CI 4C 03 50 JMP $5003 (C) "!lOOT ERROR" (CR)
C3C4 A2 00 LIlX '$00 C445 4F 52 9B
C3C6 86 06 STX SOt>
C3C8 AE E4 02 LOX $01£4 C448 45 3A 9B
C3CB EO !lll CPX #$110 (C) E: (CR)
C3CO BO 00 !lCS $C30C
C3CF AE FC H LOX $IIFFC C44B CE CO
C302 00 08 BNE $nOC (C) VIJSLST VECTOR
C31l4 E6 06 INC $06 C440 CO CO
C31l6 20 C9 C4 JSR $C4C9 (C) VPRCEO
C:11l9 20 29 C4 JSH $C429 C44F CO CO
C3DC A9 03 LOA #$OJ (C) VINTER
C30E A2 00 LOX '$00 C451 CD CO
C3EO 90 42 03 STA $0342,X (C) VIIREAK
C3E3 A9 48 LOA '$48 C45J 19 FC
C3E5 90 44 03 STA $0344,X (C) VKEYBO
C3E8 A9 C4 LOA '$C4 C455 2C EB
CJEA 90 45 03 STA $0345,X (C) VSERIN
C3EO A9 OC LDA 'SOC C457 AD EA
C3EF 90 4A OJ STA $034A.X (C) VSEROR
CJF2 20 56 E4 JSR sE456 C459 EC EA
C3F5 10 03 BPL $C3FA (C) VSEROC
C3F7 4C AA C2 JMP $C2AA

Page 305

ArfIDf

C45B CO CO C4CO 01 05 CMP ($05),Y
(C) VTIMR I C4C2 DO 04 BNE $C4C8C450 CO CO C4C4 E6 06 INC $06
(C) VTIMR2 C4C6 DO EA BNE $C4B2C45F CD CO C4C8 60 RTS
(C) VTIMR3 C4C9 A9 00 LDA '$00C461 30 CO (C) RAM-TEST & SET
(C) VIMIRQ C4CB AA TAX

C4CC 18 CLC
C463 00 00 00 00 00 00 00 00 C4CO 70 FO BF AOC $BFFO, XC46B 00 00 C400 E8 INX

C401 00 FA BNE SC4COC460 E2 CO C403 CD EB 03 CMP $03EB
(C) VVBLKI C406 80 EB 03 STA $03EBC46F 8A C2 C409 60 RTS
(C) VVBLKO C40A A9 00 LOA #SOOC471 AD 13 DO LOA SOOl3 (C) I NI TI ALI ZE HAROWARE
C474 6A ROR A C40C AA TAX
C475 90 00 BCC SC484 (C) tlEtlORY
C477 AO FC BF LOA $BFFC C400 80 03 03 STA S0303C47A 00 08 BNE $C484 C4EO 90 00 00 STA $OOOO,XC47C AO FO BF LOA $BFFO C4E3 90 00 04 STA S0400,XC47F 10 OJ BPL $C484 C4E6 90 00 02 STA S0200,XC481 6C FE BF JMP ($BFFE) C4E9 EO 01 CPX #$01
(C) INITIALIZE CARTRIOGE C4EB FO 03 BEQ SC4FOC484 20 OA C4 JSR SC40A C4EO 90 00 03 STA S0300,XC487 AO 01 03 LOA $0301 C4FO E8 INX
C48A 09 02 ORA #S02 C4FI DO ED BNE SC4EOC48C 80 01 03 STA $0301 C4F3 A9 3C LOA #S3CC48F A5 08 LOA $08 C4F5 80 03 03 STA $0303C491 FO 07 BEQ SC49A C4F8 A9 FF LOA #SFFC493 AO F8 03 LOA $03F8 C4FA 80 01 03 STA $0301C496 DO 11 BNE SC4A9 C4FO A9 38 LOA #$38
C498 FO 07 BEQ SC4Al C4FF 80 02 03 5TA S0302C49A AO IF 00 LOA $OOIF C502 80 03 03 5TA S0303
(C) CHECK OPTION-KEY C505 A9 00 LOA #SOOC490 29 04 ANO #S04 C507 80 00 03 STA S0300C49F FO 08 BEQ $C4A9 C50A A9 FF LOA #SFF
C4Al AO 01 03 LOA S0301 C50C 80 01 03 5TA S0301
(C) ENABLE BASIC C50F A9 3C LOA #S3C
C4A4 29 FO ANO '$FO C511 80 02 03 STA $0302C4A6 80 01 03 STA S0301 C514 80 03 03 5TA $0303C4A9 A9 00 LOA #SOO C517 AD 01 03 LOA S0301C4AB A8 TAY C51A AO 00 03 LOA S0300C4AC 85 05 STA S05 C510 A9 22 LOA #S22C4AE A9 28 LOA #$28 C51F 80 OF 02 5TA $020FC4BO 85 06 STA S06 C522 A9 AO LOA #SAOC4B2 Bl 05 LOA ($05),Y C524 80 05 02 5TA $0205C4B4 49 FF EOR 'SFF C527 80 07 02 STA S0207C4B6 91 05 5TA ($05). Y C52A A9 28 LOA 'S28C4B8 01 05 Cl1P (S05),Y C52C 80 08 02 5TA $0208
C4BA 00 OC BNE $C4C8 C52F A9 FF LOA '$FFC4BC 49 FF EOR #$FF C531 80 00 02 STA S0200
C4BE 91 05 5TA ($05),Y C534 60 RT5

Page 306

APPENDIX E6:

C535 C6 11 DEC $ 11 C5B8 8D 05 03 STA $0305
(C) SOFTWARE & RAtI C5BB 20 59 C6 JSR $C659
C537 A9 92 LDA #$92 (C) BOOT & INITIALIZE
(C) VARIABLE INITIALIZATION C5BE 10 09 BPL $C5C9
C539 8D 36 02 STA $0236 (C) DISK
C53C A9 CO LDA #$CO C5CO 20 3E C6 JSR $C63E
C53E 8D 37 01 STA $0237 C5C3 AD EA 03 LDA $03EA
C541 A5 06 LDA $06 C5C6 FO DF BEQ $C5A7
C543 8D E4 02 STA $02E4 C5C8 60 RTS
C546 8D E6 02 STA $02E6 C5C9 A2 03 LDX #$03
C549 A9 00 LDA #$00 (C) COtlPLETE BOOT &
C54B 8D E5 02 STA $02E5 C5CB BD 00 04 LDA $0400,X
C54E A9 00 LDA #$00 (C) INITIALIZE
C550 8D E7 02 STA $02E7 C5CE 9D 40 02 STA $0140,X
C553 A9 07 LDA #$07 C5DI CA DEX
C555 8D E8 02 STA $02E8 C5D2 10 F7 BPL $C5CB
C558 20 OC E4 JSR $E40C C5D4 AD 42 02 LDA $0241
C55B 20 lC E4 JSR $E41C C5D7 85 04 STA $04
C55E 20 2C E4 JSR $E42C C5D9 AD 43 02 LDA $0243
C561 20 3C E4 JSR $E43C C5DC 85 05 STA $05
C564 20 4C E4 JSR $E44C C5DE AD 04 04 LDA $0404
C567 20 6E E4 JSR $E46E C5El 85 OC STA SOC
C56A 20 65 E4 JSR $E465 C5E3 AD 05 04 LDA $0405
C56D 20 6B E4 JSR $E46B C5E6 85 OD STA SOD
C570 20 50 E4 JSR $E450 C5E8 AO 7F LDY #$7F
C573 A9 6E LDA #$6E C5EA B9 00 04 LDA $0400,Y
C575 8D 38 02 STA $0238 C5ED 91 04 STA ($04),Y
C578 A9 C9 LDA #$C9 C5EF 88 DEY
C57A 8D 39 02 STA $0239 C5FO 10 F8 BPL $C5EA
C57D 20 9B E4 JSR $E49B C5t'2 18 CLC
C580 AD IF DO LDA $DOIF C5F3 A5 04 LDA $04
C583 29 01 AND #$01 C5F5 69 80 ADC #$80
C5B5 49 01 EOR #$01 C5t'7 B5 04 STA $04
C5B7 BD E9 03 STA $03E9 C5F9 A5 05 LDA $05
C5BA 60 llTS C5FB 69 00 ADC #$00
C5BB A5 08 LDA S08 C5FD B5 05 STA $05
(C) ATTEI'IPT DISK-BOOT C5FF CE 41 02 DEC $0241
C5BD FO 09 BEQ $C598 C602 FO 12 BEQ $C616
C58F A5 09 LDA $09 C604 EE OA 03 INC $030A
C591 29 01 AND '$01 C607 20 59 C6 JSR $C659
C593 FO 33 BEQ $C5C8 C60A 10 DC BPL $C5E8
C595 4C 3B C6 JI'IP $C63B C60C 20 3E C6 JSR $C63E
C598 A9 01 LDA '$01 C60F AD EA 03 LDA $03EA
C59A 80 01 03 STA $0301 C612 DO AC BNE $C5CO
C59D A9 53 LDA #$53 C614 FO Fl BEQ $C607
C59F 8D 02 03 STA $0302 C616 AD EA 03 LDA $03EA
C5A2 20 53 E4 JSR $E453 C619 FO 03 BEQ $C61E
C5A5 30 21 BtlI $C5C8 C61B 20 59 C6 JSR $C659
C5A7 A9 00 LDA #$00 C61E 20 29 C6 JSR $C629
C5A9 BD DB 03 STA $030B C621 BO 9D BCS $C5CO
C5AC A9 01 LDA #$01 C623 20 3B C6 JSR $C63B
C5AE 8D OA 03 STA $030A C626 E6 09 INC $09
C5Bl A9 00 LDA #$00 C628 60 RTS
C5B3 8D 04 03 STA $0304 C629 18 CLC
C5B6 A9 04 LDA #$04 (C) EXECUTE BOOT LOADER

Pase 307

, APJ' tau)!

C62A AD 42 02 LDA $0242 C6AO 6C 02 00 JMP ($0002)
C62D 69 06 AUC '$06 C6A3 A9 AO LOA '$AO
C62F 85 04 STA $04 (C) INITIALIZE DISK I/O
C631 AD 43 02 LDA $0243 C6A5 8D 46 02 STA $0246
C634 69 00 ADC '$00 C6A8 A9 80 LOA '$80
C636 85 05 STA $05 C6AA 80 05 02 STA $0205
C638 6C 04 00 JMP ($0004) C6AD A9 00 LOA '$00
C63B 6C OC 00 JMP ($OOOC) C6AF 8D 06 02 STA $0206
(C) INIT BOOTEO SOFTWARE C6B2 60 RTS
C63E A2 3D LOX '$30 C6B3 A9 31 LOA '$31
(C) DISPLAY "BOOT ERROR" (C) DISK I/O
C640 AO C4 LDY '$C4 C6B5 80 00 03 STA $0300
(C) I1ESSAGE C6B8 AD 46 02 LOA $0246
C642 8A TXA C6BB AE 02 03 LOX $0302
C643 A2 00 LOX '$00 C6BE EO 21 CPX '$21
C645 90 44 03 STA $0344.X C6CO FO 02 BEQ $C6C4
C648 98 TYA C6C2 A9 07 LOA '$07
C649 90 45 03 STA $0345.X C6C4 80 06 03 STA $0306
C64C A9 09 LOA '$09 C6C7 A2 40 LOX '$40
C64E 90 42 03 STA $0342,X C6C9 AD 02 03 LOA $0302
C651 A9 FF LOA '$H C6CC C9 50 CMP '$50
C653 9D 48 03 STA $0348,X C6CE FO 04 BEQ $C604
C656 4C 56 E4 JMP $E456 C600 C9 57 CI1P '$57
C659 AD EA 03 LOA $03EA C602 DO 02 BNE $C6D6
(C) GET NEXT SECTOR C604 A2 80 LOX '$80
C65C FO 03 BEQ $C661 C606 C9 53 CMP '$53
C65E 4C 7A E4 JI1P $E47A C60B DO 10 BNE $CbEA
C661 A9 52 LOA '$!l2 C60A A9 EA LOA '$EA
C663 80 02 03 STA $0302 C60C 80 04 03 STA $0304
C666 A9 01 LOA 1$01 C60F A9 02 LOA '$02
C668 80 01 03 STA $0301 C6EI 8D 05 03 STA $0305
C66B 4C 53 E4 JMP $E453 C6E4 AO 04 LOY '$04
C66E A5 08 LDA $08 C6E6 A9 00 LOA #$00
(C) ATTEI1PT CASSETTE BOOT C6E8 FO 06 BEQ $C6FO
C670 FO 09 BEQ $C67B C6EA AC 05 02 LOY $0205
C672 A5 09 LOA $09 C6EO AO 06 02 LOA $0206
C674 29 02 AND '$02 C6FO 8E 03 03 STX $0303
C676 FO 27 BEQ $C69F C6F3 8C 08 03 STY $0308
C678 4C AO C6 JI1P $C6AO C6F6 80 09 03 STA $0309
C67B AD E9 03 LOA $03E9 C6F9 20 59 E4 JSR $E459
C67E FO IF BEQ $C69F C6FC 10 01 BPL $C6FF
C680 A9 80 LOA #$80 C6FE 60 RTS
C682 85 3E STA $3E C6FF AO 02 03 LOA $0302
C684 EE EA 03 INC $03EA C702 C9 53 CMP #$53
C687 20 70 E4 JSR $E470 C704 DO OA BNE $C710
C68A 20 BB C5 JSR $C5BB C706 20 3A C7 JSR $C73A
C680 A9 00 LOA #$00 C709 AO 02 LOY #$02
C68F 80 EA 03 STA $03EA C70B BI 15 LOA ($15).Y
C692 80 E9 03 STA $03E9 C70D 80 46 02 STA $0246
C695 06 09 ASL $09 C710 AO 02 03 LOA $0302
C697 A5 OC LOA SOC C713 C9 21 CMP #$21
C699 85 02 STA $02 C715 DO IF BNE $C736
C69B A5 00 LOA $00 C717 20 3A C7 JSR $C73A
C69D 85 03 STA $03 C71A AO FE LOY #$FE
C69F 60 RTS C71C C8 INY

Pase 308

APPENPIX E6:

C710 C8 INY C78C 20 02 C7 JSR $C702
C71E Bl 15 LDA ($15),Y Cl8F EE 33 02 INC $0233
C720 C9 FF CMP I$FF C792 DO E9 BNE $C77D
C722 00 F8 BNE $C7IC C794 60 RTS
C724 C8 INY C795 20 CF C7 JSR $C7CF
C725 Bl 15 LDA ($15),Y C798 AO 9C LOY 1$9C
C727 C8 INY C79A BO 2C BCS $C7C8
C728 C9 FF CMP I$FF C79C 80 C9 02 STA $02C9
C72A DO F2 BNE $C71E C79F 20 CF C7 JSR $C7CF
C72C 88 DEY C7A2 AO 9C LDY 1$9C
C72D 88 DEY C7A4 BO 22 BCS $C7C8
C72E 8C 08 03 STY $0308 C7A6 8D CA 02 STA $02CA
C731 A9 00 LDA 1$00 C7A9 AD 45 02 LDA $0245
C733 8D 09 03 STA $0309 C7AC C9 01 CMP #$01
C736 AC 03 03 LDY $0303 C7AE FO 16 BEQ $C7C6
C739 60 RTS C7BO 90 17 BCC $C7C9
C73A AO 04 03 LOA $0304 C7B2 18 CLC
(C) SET BUFFER ADDRESS C7B3 AD C9 02 LDA $02C9
C73D 85 15 STA $15 C7B6 6D Dl 02 ADC $02Dl
C73F AD 05 03 LDA $0305 C7B9 A8 TAY
C742 85 16 STA $16 C7BA AD CA 02 LDA $02CA
C744 60 RTS C7BO 60 D2 02 AOC $02D2
C745 A2 05 LOX 1$05 C7CO 8C C9 02 STY $02C9
(C) RELOCATE RELOCATABLE C7C3 8D CA 02 STA $02CA
C747 A9 00 LDA 1$00 C7C6 AO 01 LOY 1$01
(C) ROUTINE TO NEW C7C8 60 RTS
C749 90 C9 02 STA $02C9,X C7C9 AO 00 LOY 1$00
(C) AOORESS C7CB A9 00 LOA 1$00
C74C CA OEX C7CO FO FI BEQ $C7CO
C74D 10 F8 BPL $C747 C7CF 6C CF 02 JMP ($02CF)
C74F A9 00 LOA 1$00 C7D2 6C C9 02 JMP ($02C9)
C751 80 33 02 STA $0233 C7D5 AC 33 02 LOY $0233
C754 20 CF C7 JSR $ClCF (C) HANOLE TEXT RECORD
C757 AO 9C LOY 1$9C C708 CO 01 CPY 1$01
C759 BO 39 BCS $C794 C70A FO OA BEQ $C7E6
C75B 80 88 02 STA $0288 C70C BO 73 BCS $C851
C75E 20 CF C7 JSR $C7CF C70E 8D 4A 02 STA $024A
C761 AO 9C LOY 1$9C C7EI 8D 8E 02 STA $028E
C763 BO 2F BCS $C794 C7E4 90 6A BCC $C850
C765 8D 45 02 STA $0245 C7E6 80 4B 02 STA $024B
C768 AD 88 02 LDA $0288 C7E9 8D 8F 02 STA $028F
Cl6B C9 OB CMP I$OB ClEC A2 00 LOX #$00
C76D FO 26 BEQ $C795 C7EE AO 88 02 LDA $0288
C76F 2A ROL A ClFl FO 06 BEQ $ClF9
Cl70 AA TAX C7F3 C9 OA CMP I$OA
C771 BO E4 C8 LDA $C8E4.X C7F5 FO 15 BEQ $C80C
C774 8D C9 02 STA $02C9 ClF7 A2 02 LOX 1$02
C777 BO E5 C8 LDA $C8E5. X C7F9 18 CLC
C77A 8D CA 02 STA $02CA C7FA AD 4A 02 LDA $024A
C77D AD 45 02 LOA $0245 ClFD 7D DI 02 AOC $0201.X
C780 CD 33 02 CMP $0233 C800 80 8E 02 STA $028E
C783 FO CA BEQ $C74F C803 AD 4B 02 LDA $024B
C785 20 CF C7 JSR $C7CF C806 7D D2 02 ADC $0202.X
C788 AO 9C LDY 1$9C C809 80 8F 02 STA $028F
C78A BO 08 BCS $C794 C80C 18 CLC

Page 309

APPENDIX E6:

C80D AD 8E 02 LDA $028E C86E 6D 8E 02 ADC $028EC810 6D 45 02 ADC $0245 (C) RECORD TYPE
C813 48 PHA C871 85 36 STA $36C814 A9 00 LDA #$00 C873 A9 00 LDA #$00C816 6D 8F 02 ADC $028F C875 6D 8F 02 ADC $028FC819 A8 TAY C878 85 37 STA $37C8IA 68 PLA C87A AO 00 LDY #$00C81B 38 SEC C87C BI 36 LDA ($36). YC81C E9 02 SBC #$02 C87E 18 CLCC81E BO 01 BCS SC821 C87F 6D Dl 02 ADC $02DlC820 88 DEY C882 91 36 STA ($36). YC821 48 PHA C884 E6 36 INC $36C822 98 TYA C886 DO 02 BNE $C88AC823 DD CC 02 CI'IP $02CC,X C888 E6 37 INC $37C826 68 PLA C88A Bl 36 LDA ($36),YC827 90 10 BCC $C839 C88C 6D D2 02 ADC $02D2C829 DO 05 DNE $C830 C88F 91 36 STA ($36),YC82D DD CD 02 CI'IP $02CD.X C891 60 RTSC82E 90 09 DCC $C839 C892 A2 00 LDX #$00C830 9D CD 02 STA $02CD,X (C) HANDLE LOW-DYTE &
C833 48 PHA C894 AC 88 02 LDY $0288C834 98 TYA (C) ONE DYTE RECORD TYPE
C835 9D CC 02 STA $02CC,X C897 CO 04 CPY #$04C838 68 PLA C899 90 02 DCC $C89DC839 AE 88 02 LDX $0288 C89D A2 02 LDX #$02C83C EO 01 CPX #$01 C89D 18 CLCC83E FO 10 DEQ $C850 C89E 6D 8E 02 ADC $028EC840 CC E6 02 cn $02E6 C8AI 85 36 STA $36C843 90 OB DCC $C850 C8A3 A9 00 LDA #$00C845 DO 05 DNE $C84C C8A5 6D 8F 02 ADC $028FC847 CD E5 02 CI'IP $02E5 C8A8 85 37 STA $37C84A 90 04 BCC $C850 C8AA AO 00 LDY #$00C84C 68 PLA C8AC Bl 36 LDA ($36),YC84D 68 PLA C8AE 18 CLCC84E AO 9D LDY #$9D C8AF 7D Dl 02 ADC $02DI,XC850 60 RTS C8B2 91 36 STA ($36),YC851 38 SEC C8D4 60 RTS(C) RELOCATE TEXT C8B5 48 PHAC852 48 PHA C8B6 AD 33 02 LDA $0233(C) INTO I'IEI'IORY C8B9 6A ROR AC853 AD 33 02 LDA $0233 C8BA 68 PLAC856 E9 02 SBC #$02 C8BD DO 15 DCS $C8D2C858 18 CLC C8DD 18 CLCC859 6D 8E 02 ADC $028E C8DE 6D 8E 02 ADC $028EC85C 85 36 STA $36 C8CI 85 36 STA $36C85E A9 00 LDA #$00 C8C3 A9 00 LDA #$00C860 6D 8F 02 ADC $028F C8C5 6D 8F 02 ADC $028FC863 85 37 STA $37 C8C8 85 37 STA $37C865 68 PLA C8CA AO 00 LDY #$00C866 AO 00 LDY #$00 C8CC Bl 36 LDA ($36),YC868 91 36 STA ($36),Y C8CE 8D 88 02 STA $0288C86A 4C 50 C8 JI'IP SC850 C8Dl 60 RTSC86D 18 CLC C8D2 18 CLC(C) HANDLE WORD REFERENCB C8D3 6D Dl 02 ADC $02Dl

C8D6 A9 00 LDA #$00

Pale 310

APPENDIX E6:

C8D8 6D D2 02 ADC $02D2 C951 A9 00 LDA #$00
C8DB 6D 88 02 ADC $0288 C953 8D 48 02 STA $0248
C8DE AO 00 LDY #$00 C956 8D FF DI STA $DIFF
C8EO 91 36 STA ($36), Y C959 FO 03 BEQ $C95E
C8E2 FO ED BEQ $C8DI C95B 20 71 E9 JSR $E971
C8E4 D5 C7 CliP $C7,X C95E 68 PLA
C8E6 D5 C7 CliP $C7,X C95F 8D 01 03 STA $0301

C962 A9 00 LDA #$00
C8E8 92 C8 92 C8 92 C8 92 C8 C964 8D 42 00 STA $0042
C8FO 6D C8 6D C8 B5 C8 B5 C8 C967 8C 03 03 STY $0303
C8F8 D5 C7 95 C7 C96A AC 03 03 LDY $0303

C96D 60 RTS
C8FC A9 FF LDA #$FF C96E A2 08 LDX #$08
(C) SELECT & EXECUTE C970 6A ROR A
C8FE 8D 44 02 STA $0244 C971 BO 03 BCS $C976
(C) SELF-TEST C973 CA DEX
C901 AD 0 I D3 LDA $D301 C974 DO FA BNE $C970
C904 29 7F AND #$7F C976 AD 48 02 LDA $0248
C906 8D 01 D3 STA $D301 C979 48 PHA
C909 4C 83 E4 JIIP $E483 C97A BD 20 CA LDA $CA20,X
C90C A9 01 LDA #$01 C97D 8D 48 02 STA $0248
(C) INITIALIZE GENERIC C980 8D FF DI STA $DIFF
C901l 8D 48 02 STA $0248 C983 20 08 D8 JSR $D808
(C) PARALLEL DEVICE C986 68 PLA
C911 AD 48 02 LDA $0248 C987 80 48 02 STA $0248
C914 8D FF DI STA $DIFF C98A 8D FF DI STA $DIFF
C917 AD 03 D8 LOA $D803 C98D 68 PLA
C91A C9 80 CliP #$80 C98E AA TAX
C91C DO OA BNE $C928 C98F 68 PLA
C91E AD OB 08 LOA $D80B C990 40 RTI
C921 C9 91 CliP #$91 C991 AO 01 LDY #$01
C923 DO 03 BNE $C928 (C) PIO VECTOR TABLES
C925 20 19 08 JSR $D819 C993 4C DC C9 JMP $C9DC
C928 OE 48 02 ASL $0248 C996 AO 03 LDY #$03
C92B DO E4 BNE $C911 C998 4C DC C9 JMP $C9DC
C92D A9 00 LDA #$00 C99B AO 05 LDY #$05
C92F 8D FF DI STA $DIFF C99D 4C DC C9 JMP $C9DC
C932 60 RTS C9AO AO 07 LDY #$07
C933 A9 01 LDA 1$01 C9A2 4C DC C9 JMP $C9DC
(C) PIO-PARALLEL C9A5 AO 09 LDY #$09
C935 8D 42 00 STA $0042 C9A7 4C DC C9 JMP $C9DC
(C) DEVICE I/O C9AA AO OB LOY #$OB
C938 AD 01 03 LDA $0301 C9AC 4C DC C9 JIIP $C9DC
C93B 48 PHA C9AF CA DEX
C93C AD 47 02 LDA $0247 (C) SELECT NEXT
C93F FO IA BEQ $C95B C9BO 10 09 BPL $C9BB
C941 A2 08 LDX #$08 (C) PARALLEL DEVICE
C943 20 AF C9 JSR $C9AF C9B2 A9 00 LDA #$00
C946 FO 13 BEQ $C95B C9B4 8D 48 02 STA $0248
C948 8A TXA C9B7 8D FF DI STA $DIFF
C949 48 PHA C9BA 60 RTS
C94A 20 05 D8 JSR $D805 C9BB AD 47 02 LDA $0247
C94D 68 PLA C9BE 3D 21 CA AND $CA21.X
C94E AA TAX C9CI FO EC BEQ $C9AF
C94F 90 F2 BCC $C943 C9C3 8D 48 02 STA $0248

Page 311

API'!HfP.IX_Ml-

C9C6 8D FF Dl STA $Dll'F CA32 BO 20 BCS $CA54
C9C9 60 RTS CA34 18 CLC
C9CA 89 OD D8 LDA $D80D.Y CA35 20 9E E8 JSR $E89E
(C) INVOKE PARALLEL CA38 BO 1A BCS $CA54
C9CD 48 PHA CA3A AE 2E 00 LDX $002E
(C) DEVICE HANDLER CA3D BD 4C 03 LDA $034C.X
C9CE 88 DEY CA40 20 16 E7 JSR $E716
C9CF 89 OD D8 LDA $D80D,Y CA43 BO OF 8CS $CA54
C9D2 48 PHA CA45 AE 2E 00 LDX $002E
C9D3 AD 4C 02 LDA $024C CA48 9D 40 03 STA $0340,X
C9D6 AE 4D 02 LDX $024D CMB 85 20 STA $20
C9D9 AO 92 LDY #$92 CA4D A9 03 LDA #$03
C9DB 60 RTS CA4F 85 17 STA $17
C9DC 8D 4C 02 STA $024C CA51 4C 5C E5 JMP $E55C
C9DF 8E 4D 02 STX $024D CA54 4C 10 E5 JMP $E510
C9E2 AD 42 00 LDA $0042
C9E5 48 PHA CA57 00 13 16 Dl E4 E4 E8 29
C9E6 A9 01 LDA #$01 (C) SELF-TEST OFFSETS
C9E8 8D 42 00 STA $0042 CA5F EB EE 00 00 2D 25 2D 2F
C9EB A2 08 LDX #$08 (C) & TEXT
C9ED 20 AF C9 JSR $C9Ar CA67 32 39 00 34 25 33 34 00
C9FO FO 1 I BEQ $CA03 CA6F 00 00 32 2F 2D 32 21 2D
C9F2 8A TXA CAn 00 00 2B 25 39 22 2F 21
C9F3 48 PHA CA7F 32 24 00 34 25 33 34 00
C9F4 98 TYA CA87 00 00 82 91 00 92 00 93
C9F5 48 PHA CA8F 00 94 00 A8 00 Al 00 A2
C9F6 20 CA C9 JSR $C9CA CA97 00 00 00 5B 00 II 00 12
C9F9 90 20 BCC $CAIB CA9F 00 13 00 14 00 15 00 16
C9FB 8D 4C 02 STA $024C CAA7 00 17 00 18 00 19 00 10
C9FE 68 PLA CAAF 00 lC 00 IE 00 A2 80 B3
C9FF 68 PLA CAB7 00 00 00 FF I'F 00 31 00
CAOO 4C 05 CA JMP $CA05 CABF 37 00 25 00 32 00 34 00
CA03 AO 82 LDY #$82 CAC7 39 00 35 00 29 00 2F 00
CA05 A9 00 LDA #$00 CACF 30 00 OD 00 ID 00 B2 B4
CA07 8D 48 02 STA $0248 CAD7 00 00 00 80 DC 80 00 21
CAOA 8D FF Dl STA $DIFF CADF 00 33 00 24 00 26 00 27
CAOD 68 PLA CAE7 00 28 00 2A 00 2B 00 2C
CAOE 8D 42 00 STA $0042 CAEF 00 IB 00 OB 00 OA 00 A3
CAll AD 4C 02 LDA $024C CAF7 00 00 00 80 B3 A8 80 00
CA14 8C 4D 02 STY $024D CAFF 3A 00 38 00 23 00 36 00
CA17 AC 4D 02 LDY $024D CB07 22 00 2E 00 2D 00 OC 00
CAIA 60 RTS CBOF OE 00 OF 00 80 B3 A8 80
CAIB 68 PLA CB17 00 00 00 00 00 00 00 00
CAlC A8 TAY CBIF 80 B3 80 BO 80 Al 80 A3
CAID 68 PLA CB27 80 A5 80 80 80 A2 80 Al
CAIE AA TAX CB2F 80 B2 80 00 33 00 30 00
CAlf 90 CC BCC $C9ED CB37 21 00 23 00 25 00 00 00

CB3F 22 00 21 00 32 00 00 33
CA21 80 40 20 10 08 04 02 01 CB47 28 00 22 00 33 00 5C 00

CB4F 36 2F 29 23 25 00 03 AO
CA29 AE 2E 00 LDX $2EOO
(C) LOAD & INITIALIZE CB56 AO 11 LDY #$11
CA2C BD 4D 03 LDA $034D,X (C) CHECKSUM LINKAGE
(C) PERIPHERAL HANDLER CB58 A9 00 LDA #$00
CA2F 20 DE E7 JSR $E7DE CB5A 18 CLC

Pllge 312

APPENDIX E6:

CB5B 71 4A ADC ($4A).Y CCCO 00 3C 66 3C 66 66 3C 00
CB5D 88 DEY CCC8 00 3C 66 3E 06 OC 38 00
CB5E 10 FB BPL $CB5B CCDO 00 00 18 18 00 18 18 00
CB60 69 00 ADC 1$00 CCD8 00 00 18 18 00 18 18 30
CB62 49 FF EOR I$FF CCEO 06 OC 18 30 18 OC 06 00
CB64 60 RTS CCE8 00 00 7E 00 00 7E 00 00

CCFO 60 30 18 OC 18 30 60 00
CB65 00 00 00 00 00 00 00 00 CCF8 00 3C 66 OC 18 00 18 00
(C) UNUSED CDOO 00 3C 66 6E 6E 60 3E 00
CB6D 00 00 00 00 00 00 00 00 CD08 00 18 3C 66 66 7E 66 00
CB75 00 00 00 00 00 00 00 00 COlO 00 7C 66 7C 66 66 7C 00
CB7D 00 00 00 00 00 00 00 00 CD18 00 3C 66 60 60 66 3C 00
CB85 00 00 00 00 00 00 00 00 CD20 00 78 6C 66 66 6C 78 00
CB8D 00 00 00 00 00 00 00 00 CD28 00 7E 60 7C 60 60 7E 00
CB95 00 00 00 00 00 00 00 00 CD30 00 7E 60 7C 60 60 60 00
CB9D 00 00 00 00 00 00 00 00 CD38 00 3E 60 60 6E 66 3E 00
CBAS 00 00 00 00 00 00 00 00 CD40 00 66 66 7E 66 66 66 00
CBAD 00 00 00 00 00 00 00 00 CD48 00 7E 18 18 18 18 7E 00
CBBS 00 00 00 00 00 00 00 00 COSO 00 06 06 06 06 66 3C 00
CBBD 00 00 00 00 00 00 00 00 CD58 00 66 6C 78 78 6C 66 00
CBC5 00 00 00 00 00 00 00 00 CD60 00 60 60 60 60 60 7E 00
CBCD 00 00 00 00 00 00 00 00 CD68 00 63 77 7F 68 63 63 00
CBDS 00 00 00 00 00 00 00 00 CD70 00 66 76 7E 7E 6E 66 00
CBDD 00 00 00 00 00 00 00 00 CD78 00 3C 66 66 66 66 3C 00
CBE5 00 00 00 00 00 00 00 00 CD80 00 7C 66 66 7C 60 60 00
CBED 00 00 00 00 00 00 00 00 CD88 00 3C 66 66 66 6C 36 00
CBFE 00 00 00 00 00 00 00 00 CD90 00 7C 66 66 7C 6C 66 00
CBFD 00 00 00 CD98 00 3C 60 3C 06 06 3C 00

CDAO 00 7E 18 18 18 18 18 00
CCOO 00 00 00 00 00 00 00 00 CDA8 00 66 66 66 66 66 7E 00
(C) INTERNATIONAL CDBO 00 66 66 66 66 3C 18 00
CC08 00 18 18 18 18 00 18 00 CDB8 00 63 63 6B 7F 77 63 00
(C) CHARACTER-SET COCO 00 66 66 3C 3C 66 66 00
CC10 00 66 66 66 00 00 00 00 CDC8 00 66 66 3C 18 18 18 00
CC18 00 66 FF 66 66 FF 66 00 CDDO 00 7E OC 18 30 60 7E 00
CC20 18 3E 60 3C 06 7C 18 00 CDD8 00 1E 18 18 18 18 1E 00
CC28 00 66 6C 18 30 66 46 00 CDEO 00 40 60 30 18 OC 06 00
CC30 1C 36 1C 38 6F 66 3B 00 CDE8 00 78 18 18 18 18 78 00
CC38 00 18 18 18 00 00 00 00 CDFO 00 08 1C 36 63 00 00 00
CC40 00 OE 1C 18 18 1C OE 00 CDF8 00 00 00 00 00 00 FP 00
CC48 00 70 38 18 18 38 70 00 CEOO OC 18 3C 06 3E 66 3E 00
CC50 00 66 3C FF 3C 66 00 00 CE08 30 18 00 66 66 66 3E 00
CC58 00 18 18 7E 18 18 00 00 CE10 36 6C 00 76 76 7E 6E 00
CC60 00 00 00 00 00 18 18 30 CE18 DC 18 7E 60 7C 60 7E 00
CC68 00 00 00 7E 00 00 00 00 CE20 00 00 3C 60 60 3C 18 30
CC70 00 00 00 00 00 18 18 00 CE28 3C 66 00 3C 66 66 3C 00
CC78 00 06 DC 18 30 60 40 00 CE30 30 18 00 3C 66 66 3C 00
CC80 00 3C 66 6E 76 66 3C 00 CE38 30 18 00 38 18 18 3C 00
CC88 00 18 38 18 18 18 7E 00 CE40 1C 30 30 78 30 30 7E 00
CC90 00 3C 66 OC 18 30 7E 00 CE48 00 66 00 38 18 18 3C 00
CC98 00 7E OC 18 OC 66 3C 00 CE50 00 66 00 66 66 66 3E 00
CCAO 00 OC 1C 3C 6C 7E DC 00 CE58 36 00 3C 06 3E 66 3E 00
CCA8 00 7E 60 7C 06 66 3C 00 CE60 66 00 3C 66 66 66 3C 00
CCBO 00 3C 60 7C 66 66 3C 00 CE68 OC 18 00 66 66 66 3E 00
CCB8 00 7E 06 DC 18 30 30 00 CE70 DC 18 00 3C 66 66 3C 00

Page 313

eE78 00 66 00 3C 66 66 3C 00 D808 A2 ED LDX ISEDCE80 66 00 66 66 66 66 7E 00 D80A AD 04 LDY 1$04CE88 3C 66 lC 06 3E 66 3E 00 D80C 20 48 DA JSR $DU8CE90 3C 66 00 66 66 66 3E 00 D80F A2 FF LDX I$FFCE98 3C 66 00 38 18 18 3C 00 D811 86 Fl STX $FlCEAO DC 18 3C 66 7E 60 3C 00 D813 20 44 DA JSR $DA44CEA8 30 18 3C 66 7E 60 3C 00 D816 FO 04 BEQ $D81CCEBO 36 6C 00 7C 66 66 66 00 D818 A9 FF LDA I$FFCEB8 3C C3 3C 66 7E 60 3C 00 D81A 85 FO STA $FOCECO 18 00 3C 06 3E 66 3E 00 D81C 20 94 DB JSR $DB94CEC8 30 18 3C 06 3E 66 3E 00 D81F BO 21 BCS $D842CEDO 18 00 18 3C 66 7E 66 00 D821 48 PHACED8 78 60 78 60 7E 18 lE 00 D822 A6 D5 LDX $D5CEEO 00 18 3C 7E 18 18 18 00 D824 DO 1 I BNB $D837CEE8 00 18 18 18 7E 3C 18 00 D826 20 EB DB JSR $DBEBCEFO 00 18 30 7E 30 18 00 00 D829 68 PLACEF8 00 18 DC 7E OC 18 00 00 D82A 05 D9 ORA $D9CFOO 18 00 18 18 18 18 18 00 D82C 85 D9 STA $D9CF08 00 00 3C 06 3E 66 3E 00 D82E A6 Fl LDX $FlCFI0 00 60 60 7C 66 66 7C 00 D830 30 E6 Btll $D818CF18 00 00 3C 60 60 60 3C 00 D832 E8 INXCF20 00 06 06 3E 66 66 3E 00 D833 86 Fl STX $FlCF28 00 00 3C 66 7E 60 3C 00 D835 DO El BNE $D818CF30 00 DE 18 3E 18 18 18 00 D837 68 PLACF38 00 00 3E 66 66 3E 06 7C D838 A6 Fl LDX $FlCF40 00 60 60 7C 66 66 66 00 D8H 10 02 BPL $D83ECF48 00 18 00 38 18 18 3C 00 D83C E6 ED INC $EDCF50 00 06 00 06 06 06 06 3C D83E 4C 18 D8 JMP $D818CF58 00 60 60 6C 78 6C 66 00 D841 60 RTSCF60 00 38 18 18 18 18 3C 00 D842 C9 2E CMP 1$2ECF68 00 00 66 7F 7F 6B 63 00 D844 FO 14 BEQ $D85ACF70 00 00 7C 66 66 66 66 00 D846 C9 45 CMP #$45CF78 00 00 3C 66 66 66 3C 00 D848 FO 19 BEQ $D863CF80 00 00 7C 66 66 7C 60 60 D84A A6 FO LDX $FOCF88 00 00 3E 66 66 3E 06 06 D84C DO 68 BNE $D8B6CF90 00 00 7C 66 60 60 60 00 D84E C9 2B CMP 1$2BCF98 00 00 3E 60 3C 06 7C 00 D850 FO C6 BEQ $D818CFAO 00 18 7E 18 18 18 DE 00 D852 C9 2D CMP #$2DCFA8 00 00 66 66 66 66 3E 00 D854 FO 00 BEQ $D856CFBO 00 00 66 66 66 3C 18 00 D856 85 BE STA $EECFB8 00 00 63 6B 7F 3E 36 00 D858 FO BE BEQ $D818CFCO 00 00 66 3C 18 3C 66 00 D85A A6 Fl LDX $FlCFC8 00 00 66 66 66 3B DC 78 D85C 10 58 BPL $D8B6CFDO 00 00 7E DC 18 30 7E 00 D85E E8 INXCFD8 66 66 18 3C 66 7E 66 00 D85F 86 Fl STX $FlCFEO 18 18 18 18 18 18 18 18 D861 FO B5 BEQ $D818CFE8 00 7E 78 7C 6E 66 06 00 D863 A5 F2 LDA $F2CFFO 08 18 38 78 38 18 08 00 D865 85 EC STA $ECCFF8 10 18 lC IE lC 18 10 00 D867 20 94 DB JSR $DB94
D86A BO 37 BCS $D8A30800 20 Al DB JSR $DBAI D86C AA TAX(C) ASCII TO FP D86D A5 ED LDA $EDD803 20 BB DB JSR SDBBB D86F 48 PHA(C) CONVERSION D870 86 ED STX $ED0806 BO 39 BCS $0841 D872 20 94 DB JSR $DB94

Page 314

"PPENDIX E6:

D875 BO 17 BCS $D88E D8D8 BO OB BCS $D8E5
D877 48 PHA D80A A6 EE LOX $EE
D878 A5 ED LDA $ED 080C FO 06 BEQ $D8E4
D87A OA ASL A D8DE A5 D4 LDA $D4
D87B 85 ED STA $EO D8EO 09 80 ORA #$80
D87D OA ASL A D8E2 85 D4 STA $D4
D87E OA ASL A D8E4 18 CLC
D87F 65 ED ADC $ED D8E5 60 RTS
D881 85 ED STA $ED 08E6 20 51 DA JSR $DA51
D883 68 PLA (C) FP TO ASCII
D884 18 CLC D8E9 A9 30 LDA #$30
D885 65 ED ADC $ED (C) CONVERSION
0887 85 ED STA $ED D8EB 8D 7F 05 STA $057F
D889 A4 F2 LOY $F2 08EE A5 D4 LOA $04
D88B 20 90 DB JSR $DB9D D8FO FO 28 BEQ $D91A
D88E A5 EF LDA $EF D8F2 29 7F AND 1$7FD890 FO 09 BEQ $D89B D8F4 C9 3F CI1P #$3F
D892 A5 ED LDA $ED D8F6 90 28 BCC $D920D894 49 FF EOR #$FF D8F8 C9 45 CI1P #$45
D896 18 CLC D8FA BO 24 BCS $D920
D897 69 01 ADC #$01 D8FC 38 SEC
D899 85 ED STA $ED D8FD E9 3F SBC #$3P
D89B 68 PLA D8FF 20 70 DC JSR $DC70D89C 18 CLC D902 20 A4 DC JSR $DCA4D89D 65 ED ADC $ED D905 09 80 ORA #$80
D89F 85 ED STA $ED D907 9D 80 05 STA $0580,XD8Al DO 13 BNE $D8B6 D90A AD 80 05 LDA $0580D8A3 C9 2B CMP #$2B D90D C9 2E CI1P #$2ED8A5 FO 06 BEQ $D8AD D90F FO 03 BEQ $D914D8A7 C9 2D CI1P #$2D D911 4C 88 D9 JI1P $D988D8A9 DO 07 BNE $08B2 D914 20 C1 DC JSR $DCCID8AB 85 EF STA $EF D917 4C 9C D9 JI1P $D99CD8AD 20 94 DB JSR $DB94 D91A A9 BO LDA #$BOD8BO 90 BA BCC $D86C D91C 8D 80 05 STA $0580D8B2 A5 EC LOA $EC D91F 60 RTS
D8B4 85 F2 STA $F2 D920 A9 01 LDA #$01D8B6 C6 F2 DEC $F2 D922 20 70 DC JSR $DC70D8B8 A5 ED LDA $ED D925 20 A4 DC JSR $DCA4D8BA A6 FI LDX HI D928 E8 INXD8BC 30 05 BMI $D8C3 D929 86 F2 STX $F2D8BE FO 03 BEQ $D8C3 DnB A5 D4 LDA $D4D8CO 38 SEC Dno OA ASL AD8CI E5 FI SBC $FI D92E 38 SECD8C3 48 PHA 092F E9 80 SBC #$80D8C4 2A ROL A D931 AE 80 05 LDX $0580D8C5 68 PLA D934 EO 30 CPX #$30D8C6 6A ROR A D936 FO 17 BEQ $D94FD8C7 85 ED STA $ED D938 AE 81 05 LDX $0581D8C9 90 03 BCC $D8CE D93B AC 82 05 LDY $0582D8CB 20 EB DB JSR $DBEB D93E 8E 82 05 STX $0582D8CE A5 ED LDA $ED D941 8C 81 05 STY $0581D8DO 18 CLC D944 A6 F2 LDX $F2D8DI 69 44 ADC #$44 D946 EO 02 CPX #$02D8D3 85 D4 STA $D4 D948 DO 02 BNE $D94CD8D5 20 00 DC JSR $DCOO D94A E6 F2 INC $P2

Page 315

E6:

094C 18 CLC 09B2 20 44 OA JSR $OA44
0940 69 01 AOC #$01 09B5 F8 SEO
094F 85 ED STA $EO 09B6 AO 10 LOY #$10
0951 A9 45 LOA #$45 09B8 06 F8 ASL $F8
0953 A4 F2 LOY $F2 09BA 26 F7 ROL $F7
0955 20 9F DC JSR $OC9F 09BC A2 03 LOX #$03
0958 84 F2 STY $F2 09BE B5 04 LOA $04.X
095A A5 EO LOA $EO 09CO 75 04 AOC $04.X
095C 10 OB BPL $0969 09C2 95 D4 STA $D4.X095E A9 00 LDA #$00 09C4 CA DEX
D960 38 SEC 09C5 DO F7 BNE $D9BE
D961 E5 ED SBC $ED 09C7 88 OEY
0963 85 EO STA $EO 09C8 DO EE BNE $09B8
D965 A9 2D LDA #$20 D9CA 08 CLD
0967 00 02 BNE $D96B D9CB A9 42 LOA #$42
0969 A9 2B LDA #$2B D9CD 85 D4 STA $04
096B 20 9F DC JSR $OC9F 09CF 4C 00 DC JI'IP $DCOO
D96E A2 00 LOX #$00 D9D2 A9 00 LOA #$00
0970 A5 EO LOA $ED (C) FP TO INTEGER
0972 38 SEC 0904 85 F7 STA $F7
0973 E9 OA SDC #$OA (C) CONVERSION
D975 90 03 BCC $097A 0906 85 F8 STA $F8
0977 E8 INX 0908 A5 04 LOA $04
D978 DO F8 BNE $D972 090A 30 66 BI'II $OA42
097A 18 CLC 09DC C9 43 CI'IP #$43
D97B 69 OA AOC #$OA 09DE DO 62 BCS $OA42
D97D 48 PHA D9EO 38 SEC
D97E 8A TXA 09EI E9 40 SDC #$40
D97F 20 9D DC JSR $OC90 D9E3 90 3F DCC $OA24
0982 68 PLA D9E5 69 00 AOC #$00
D983 09 80 ORA #$80 09E7 OA ASL A
D985 20 9D DC JSR $OC9D D9E8 85 F5 STA $F5
D988 AD 80 05 LDA $0580 D9EA 20 5A OA JSR $DA5A
D98B C9 30 CI'IP #$30 D9ED BO 53 BCS $DA42
D98D DO 00 BNE $D99C 09EF A5 F7 LDA $F7
D98F 18 CLC 09FI 85 F9 STA $F9
0990 A5 F3 LDA $F3 D9F3 A5 F8 LDA $F8
D992 69 01 AOC #$01 D9F5 85 FA STA $FA
D994 85 F3 STA $F3 D9F7 20 5A DA JSR $DA5A
D996 A5 F4 LDA $F4 D9FA BO 46 BCS $OA42
D998 69 00 AOC #$00 D9FC 20 5A DA JSR $OA5A
D99A 85 F4 STA $F4 09FF DO 41 BCS $DA42
D99C A5 04 LDA $04 DAOI 18 CLC
D99E 10 09 BPL $D9A9 OA02 A5 F8 LDA $F8
D9AO 20 CI DC JSR $DCCI DA04 65 FA ADC $FA
D9A3 AO 00 LDY #$00 DA06 85 F8 STA $F8
D9A5 A9 2D LDA #$2D DA08 A5 F7 LDA $F7
D9A7 9t F3 STA ($F3).Y DAOA 65 F9 ADC $F9
D9A9 60 RTS DAOC 85 F7 STA $F7
D9AA A5 D4 LDA $D4 DAOE BO 32 DCS $DU2
(C) INTEGER TO FP DAIO 20 B9 DC JSR $DCB9
D9AC 85 F8 STA $F8 DAI3 18 CLC
(C) CONVERSION DAI4 65 F8 ADC $F8
D9AE A5 D5 LDA $D5 DAI6 85 F8 STA $F8
D9BO 85 F7 STA $F7 DAt8 A5 F7 LDA $F7

Pille 316

, APPENDIX E6:

DAtA 69 00 ADC #$00 DA75 A2 05 LDX #$05
DAIC BO 24 BCS $DA42 DA77 B5 D4 LDA $D4,X
DAlE 85 F7 STA $F7 DA79 B4 EO LDY $EO,X
DA20 C6 F5 DEC $F5 DA7B 95 EO STA $EO,X
DA22 DO C6 BNE $D9EA DA7D 98 TYA
DA24 20 B9 DC JSR $DCB9 DA7E 95 D4 STA $D4,X
DA27 C9 05 CttP #$05 DA80 CA DEX
DA29 90 OD BCC $DA38 DA81 10 F4 BPL $DA77
DA2B 18 CLC DA83 30 El Bttl $DA66
DA2C A5 F8 LDA $P8 DA85 FO 07 BEQ $DA8E
DA2E 69 01 ADC #$01 DA87 C9 05 CttP #$05
DA30 85 F8 STA $F8 DA89 BO 19 BCS $DAA4
DA32 A5 F7 LDA $F7 DA8B 20 3E DC JSR $DC3E
DA34 69 00 ADC #$00 DA8E F8 SED
DA36 85 F7 STA $F7 DA8F A5 D4 LDA $D4
DA38 A5 F8 LDA $F8 DA91 45 EO EOR $EO
DA3A 85 D4 STA $D4 DA93 30 IE Bttl $DAB3
DA3C A5 F7 LDA $F7 DA95 A2 04 LDX #$04
DA3E 85 D5 STA $D5 DA97 18 CLC
DA40 18 CLC DA98 B5 D5 LDA $D5,X
DA41 60 RTS DA9A 75 El ADC $El,X
DA42 38 SEC DA9C 95 D5 STA $D5,X
DA43 60 RTS DA9E CA DEX
DM4 A2 D4 LDX #$D4 DA9F 10 F7 BPL $DA98
(e) CLEAR FRO DAAI D8 CLD
DA46 AO 06 LDY #$06 DAA2 BO 03 BCS $DU7
(C) CLEAR FRI DAA4 4C 00 DC JttP $DCOO
DA48 A9 00 LDA #$00 DAA7 A9 01 LDA #$01
DA4A 95 00 STA $OO,X DAA9 20 3A DC JSR $DCH
DA4C E8 INX DAAC A9 01 LDA #$01
DA4D 88 DEY DAAE 85 D5 STA $D5
DA4E DO FA BNE $DA4A DABO 4C 00 DC JttP $DCOO
DA50 60 RTS DAB3 A2 04 LDX #$04
DA51 A9 05 LDA #$05 DAB5 38 SEC
DA53 85 F4 STA $F4 DAB6 B5 D5 LDA $D5.XDA55 A9 80 LDA 1$80 DAB8 F5 El SBC $EI ,X
DA57 85 F3 STA $F3 DABA 95 D5 STA $D5,X
DA59 60 RTS DABC CA DEX
DA5A 18 CLC DABD 10 F7 BPL $DAB6
DA5B 26 F8 ROL $1'8 DABF 90 04 BCC $DAC5
DA5D 26 F7 ItOL $F] DACI D8 CLD
DA5F 60 RTS DAC2 4C 00 DC JttP $DCOO
DA60 A5 EO LDA $EO DAC5 A5 D4 LDA $D4
(C) FP SUBTRACT DAC7 49 80 EOR #$80
DA62 49 80 EOR #$80 DAC9 85 D4 STA $D4DA64 85 EO STA $EO DACB 38 SEC
DA66 A5 EO LDA $EO DACC A2 04 LDX 1$04
(C) FP ADDITION DACE A9 00 LDA 1$00
DA68 29 7F AND 1$7F DADO F5 D5 SBC $D5,XDA6A 85 F7 STA $F7 DAD2 95 D5 STA $D5.XDA6C A5 D4 LDA $D4 DAD4 CA DEX
DA6E 29 7F AND #$7F DAD5 10 F7 BPL $DACEDA70 38 SEC DAD7 D8 CLD
DA71 E5 F7 SBC $F7 DAD8 4C 00 DC JttP $DCOODA73 10 10 BPL $DA85

Page 317

:

DADB AS D4 LDA $D4 DB45 B5 D5 LDA $D5,X(Cl fP MULTIPLICATION DB47 95 D4 STA $D4, XDADD FO 45 IIEQ $DB24 DB49 E8 INXDADF A5 EO LDA $EO DB4A EO OC CPX #$OCDAEI FO 3E BEQ $DB21 DII4C DO F7 BNE $DB45DAE3 20 CF DC JSR $DCCF DB4E AO 05 LDY #$05DAE6 38 SEC DB50 38 SECDAE7 E9 40 SBC #$40 DB51 F8 SEDDAE9 38 SEC DB52 B9 DA 00 LDA $OODA,YDAEA 65 EO ADC $EO DB55 F9 E6 00 SBC $00E6,YDAEC 30 38 Bl11 $DB26 DB58 99 DA 00 STA $OODA,YDAEE 20 EO DC JSR $DCEO DB5B 88 DEYDAFI A5 OF LDA $DF DB5C 10 F4 BPL $DB52DAF3 29 OF AND #$OF DII5E D8 CLDDAF5 85 F6 STA $F6 DB5F 90 04 BCC $DB65DAF7 C6 F6 DEC $F6 DII61 E6 D9 INC $D9DAF9 30 06 Bl11 $DIIOI DB63 DO E9 BNE $DB4EDAFB 20 01 DD JSR $DDOI DII65 20 OF DD JSR $DDOFDAFE 4C F7 DA Jl1P $DAFl DB68 06 D9 ASL $D9DBOI A5 DF LDA $DF DB6A 06 D9 ASL $D9DB03 4A LSR A DB6C 06 D9 ASL $D9DB04 4A LSR A DB6E 06 D9 ASL $D9DB05 4A LSR A DB70 AO 05 LDY #$05DB06 4A LSR A DB72 38 SECDB07 65 F6 STA $F6 DB73 F8 SEDDB09 C6 F6 DEC $F6 DB74 B9 DA 00 LDA $OODA,YDBOB 30 06 Bl11 $DBI3 DB77 F9 EO 00 SBC $OORO,YDBOD 20 05 DD JSR $DD05 DB7A 99 DA 00 STA $OODA,YDBI0 4C 09 DB Jl1P $DB09 DB7D 88 DEYDB13 20 62 DC JSR $DC62 DB7E 10 F4 BPL $DB74DBI6 C6 F5 DEC $F5 DB80 D8 CLDDBI8 DO D7 BNE $DAPI DB81 90 04 BCC $DB87DBIA A5 ED LDA $ED DB83 E6 D9 INC $D9DDIC 85 D4 STA $D4 DB65 DO E9 BNE $DB70DBIE 4C 04 DC Jl1P $DC04 DB87 20 09 DD JSR $DD09DB21 20 44 DA JSR $DA44 DB8A C6 F5 DEC $F5DB24 16 CLC DB8C DO B5 BNE $DB43DB25 60 RTS DB6E 20 62 DC JSR $DC62DB26 38 SEC DB91 4C IA DB JMP $DBIADB27 60 RTS DB94 20 AF DB JSR $DBAFDB26 A5 EO LDA $EO DB97 A4 F2 LDY $F2(C) FP DIVISION DB99 90 02 BCC $DB9DDB2A FO FA BEQ $DB26 DB9B BI F3 LDA ($F3),YDB2C A5 D4 LDA $D4 DB9D C8 INYDB2E FO F4 BEQ $DB24 DB9E 84 F2 STY $F2DB30 20 CF DC JSR $DeCF DBAO 60 RTSDB33 38 SEC DBAI A4 F2 LDY $F2DB34 E5 EO SBC $EO DBA3 A9 20 LDA #$20DB36 18 CLC DBA5 Dl F3 Cl1P ($F3),YDB37 69 40 ADe #$40 DBA7 DO 03 BNE $DBACDB39 30 EB Bl11 $DB26 DBA9 C8 INYDB3B 20 EO DC JSR $DCEO DBAA DO F9 BNE $DBA5DB3E E6 F5 INC $F5 DBAC 84 F2 STY $F2DB40 4C 4E DB Jl1P $DB4E DBAE 60 RTSDB43 A2 00 LDX #$00 DBAF A4 F2 LDY $F2

Page 316

APPENDIX E6:

DBBI BI F3 LDA ($F3),Y DCI7 CO 05 CPY 1$05
DBB3 38 SEC DCI9 90 F5 BCC $DCIO
DBB4 E9 30 SBC 1$30 DCIB C6 D4 DEC $D4
DBB6 90 18 BCC $DBDO DCID CA DEX
DBB8 C9 OA CtfP I$OA DCIE DO EA BNE $DCOA
DBBA 60 RTS DC20 A5 D5 LDA $D5
DBBB A5 F2 LDA $F2 DC22 DO 04 BNE $DC28
DBBD 48 PHA DC24 85 D4 STA $D4
DBBE 20 94 DB JSR $DB94 DC26 18 CLC
DBCI 90 IF BCC $DBE2 DC27 60 RTS
DBC3 C9 2E CtfP 1$2E DC28 A5 D4 LDA $D4
DBC5 FO 14 BEQ $DBDB DC2A 29 7F AND I$H
DBC7 C9 2B CMP 1$2B DC2C C9 71 CtfP 1$71
DBC9 FO 07 BEQ $DBD2 DC2E 90 01 BCC $DC3)
DBCB C9 2D CtfP 1$2D DC30 60 RTS
DBCD FO 03 BEQ $DBD2 DC31 C9 OF CMP I$OF
DBCF 68 PLA DC33 BO 03 BCS $DC38
DBDO 38 SEC DC35 20 44 DA JSR $DA44
DBDI 60 RTS DC38 18 CLC
DBD2 20 94 DB JSR $DB94 DC39 60 RTS
DBD5 90 OB BCC $DBE2 DC3A A2 D4 LDX I$D4
DBD7 C9 2E CtfP 1$2E DC3C DO 02 BNE $DC40
DBD9 DO F4 BNE $DBCF DC3E A2 EO LDX I$EO
DBDB 20 94 DB JSR $DB94 DC40 86 F9 STX $F9
DBDE 90 02 BCC $DBE2 DC42 85 F7 STA $F7
D8EO BO ED BCS $DBCF DC44 85 F8 STA $F8
DBE2 68 PLA DC46 AO 04 LDY 1$04
DBE3 85 F2 STA $F2 DC48 B5 04 LDA $04,X
DBE5 18 CLC DC4A 95 05 STA $05,X
DBE6 60 RTS DC4C CA DEX
DBE7 A2 E7 LDX I$E7 DC4D 88 DEY
DBE9 DO 02 BNE $DBED DC4E DO F8 BNE $DC48
DBEB A2 D5 LDX I$D5 DC50 A9 00 LDA 1$00
DBED AO 04 LDY 1$04 DC52 95 05 STA $05,X
DBEF 18 CLC DC54 A6 F9 LDX $F9
DBFO 36 04 ROL $04,X DC56 C6 F7 DEC $F7
DBF2 36 03 ROL $03,X DC58 DO EC BNE $DC46
DBF4 36 02 ROL $02,X DC5A B5 00 LDA $00,1
DBF6 36 01 ROL $OI,X DC5C 18 CLC
DBF8 36 00 ROL $OO,X DC5D 65 F8 ADC $F8
DBFA 26 EC ROL $EC DC5F 95 00 STA $OO,X
DBFC 88 DEY DC61 60 RTS
DBFD DO FO BNE $DBEF DC62 A2 OA LDX I$OA
DBFF 60 RTS DC64 B5 D4 LDA $D4,X
DCOO A2 00 LDX 1$00 DC66 95 D5 STA $D5,X
DC02 86 DA STX $DA DC68 CA DEX
DC04 A2 04 LDX 1$04 DC69 10 F9 BPL $DC64
DC06 A5 D4 LDA $D4 DC6B A9 00 LDA 1$00
DC08 FO 2E BEQ $DC38 DC6D 85 D4 STA $D4
DCOA A5 D5 LDA $D5 DC6F 60 RTS
DCOC DO lA BNE $DC28 DC70 85 F7 STA $F7
DCOE AO 00 LDY 1$00 DC72 A2 00 LDX #$00
DCIO B9 D6 00 LDA $00D6,Y DC74 AO 00 LDY 1$00
DCI3 99 D5 00 STA $00D5,Y DC76 20 93 DC JSR $DC93
DCI6 C8 INY DC79 38 SEC

Page 319

AJ'.l'jHt!LLL..

DC7A E9 01 SBC '$01 DCEO 05 EE ORA $EE
DC7C 85 F7 STA SF7 DCE2 85 ED STA SED
DC7E B5 D5 LDA SD5,X DCE4 A9 00 LDA #SOO
DC80 4A LSR A DCE6 85 D4 STA $D4
DC81 4A LSR A DCE8 85 EO STA $EO
DC82 4A LSR A DCEA 20 28 DD JSR $DD28
DC83 4A LSR A DCED 20 E7 DB JSR $DBE7
DC84 20 9D DC JSR $DC9D DCFO A5 EC LDA SEC
DC87 B5 D5 LDA SD5,X DCP2 29 OF AND #SOF
DC89 29 OF AND #$OF DCF4 85 E6 STA $E6
DC8B 20 9D DC JSR $DC9D DCF6 A9 05 LDA #$05
DC8E E8 INX DCF8 85 F5 STA $F5
DC8P EO 05 CPX #$05 DCFA 20 34 DD JSR SDD34
DC91 90 83 BCC $DC76 DCFD 20 44 DA JSR $DA44
DC93 A5 F7 LDA $P7 DDOO 60 RTS
DC95 DO 05 BNE $DC9C DDOI A2 D9 LDX #$D9
DC97 A9 2E LDA #$2E DD03 DO 06 BNE $DDOB
DC99 20 9F DC JSR $DC9P DD05 A2 D9 LDX #$D9
DC9C 60 RTS DD07 DO 08 BNE $DDII
DC9D 09 30 ORA #$30 DD09 A2 DF LDX #$DF
DC9F 99 80 05 STA $0580,Y DDOB AO E5 LDY #$E5
DCA2 C8 INY DDOD DO 04 DNE $DD13
DCA3 60 RTS DDOF A2 DF LDX #$DF
DCA4 A2 OA LDX #SOA DDII AO EB LDY #$ED
DCA6 DD 80 05 LDA $0580,X DDI3 A9 05 LDA #S05
DCA9 C9 2E CtlP #$2E DDI5 85 F7 STA $F7
DCAD FO 07 BEQ $DCB4 DD17 18 CLC
DCAD C9 30 CtlP #$30 DDI8 F8 SED
DCAF DO 07 BNE $DCD8 DDI9 B5 00 LDA $OO,X
DCBl CA DEX DDIB 79 00 00 ADC $OOOO,Y
DCD2 DO F2 BNE $DCA6 DDlE 95 00 STA $OO.X
DCB4 CA DEX DD20 CA DEX
DCB5 BD 80 05 LDA $0580,X DD21 88 DEY
DCB8 60 RTS DD22 C6 F7 DEC $F7
DCB9 20 EB DB JSR $DBEB DD24 10 P3 BPL $DDI9
DCBC A5 EC LDA $EC DD26 D8 CLD
DCBE 29 OF AND #$OF DD27 60 RTS
DCCO 60 RTS DD28 AO 05 LDY #$05
DCCI 38 SEC DD2A D9 EO 00 LDA $OOEO,Y
DCC2 A5 F3 LDA $F3 DD2D 99 E6 00 STA $00E6,Y
DCC4 E9 01 SBC #$01 DD30 88 DEY
DCC6 85 F3 STA $F3 DD31 10 F7 BPL $DD2A
DCC8 A5 F4 LDA $F4 DD33 60 RTS
DCCA E9 00 SBC #$00 DD34 AO 05 LDY #$05
DCCC 85 F4 STA $F4 DD36 B9 D4 00 LDA $00D4.Y
DCCE 60 RTS DD39 99 DA 00 STA $OODA.Y
DCCF A5 D4 LDA $D4 DD3C 88 DEY
DCDI 45 EO EOR $EO DD3D 10 F7 BPL $DD36
DCD3 29 80 AND #$80 DD3F 60 RTS
DCD5 85 EE STA $EE DD40 86 FE STX $FE
DCD7 06 EO ASL $EO (C) FP POLYNOtlIAL EVALUATION
DCD9 46 EO LSR $EO DD42 84 FF STY $FF
DCDB A5 D4 LDA $D4 DD44 85 EF STA $EF
DCDD 29 7F AND #$7F DD46 A2 EO LDX #$EO
DCDF 60 RTS DD48 AO 05 LDY #$05

Page 320

APPENDIX E6:

DD4A 20 A7 DD JSR $DDA7 DDA9 84 FD STY $FD
DD4D 20 B6 DD JSR $DDB6 (C) 6502 X & Y
DD50 A6 FE LDX $FE DDAB AO 05 LDY #$05
DD52 A4 FF LDY $FF (C) STORE FRO USING FLPTR
DD54 20 89 DD JSR $DD89 DDAD B9 D4 00 LDA $00D4,Y
DD57 C6 EF DEC $EF DDBO 91 FC STA ($FC),Y
DD59 FO 2D BEQ $DD88 DDB2 88 DEY
DD5B 20 DB DA JSR $DADB DDB3 10 F8 BPL $DDAD
DD5E BO 28 BCS $DD88 DDB5 60 RTS
DD60 18 CLC DDB6 A2 05 LDX #$05
DD61 A5 FE LDA $FE (C) 1t0VE FROIt FRO TO FRI
DD63 69 06 ADC #$06 DDB8 B5 D4 LDA $D4,X
DD65 85 FE STA $FE DDBA 95 EO STA $EO,X
DD67 90 06 BCC $DD6F DDBe CA DEX
DD69 A5 FF LDA $FF DDBD 10 F9 BPL $DDB8
DD6B 69 00 ADC #$00 DDBF 60 RTS
DD6D 85 FF STA $FF DDCO A2 89 LDX #$89
DD6F A6 FE LDX $FE (C) BASE e EXPONENTIATION
DD71 A4 FF LDY $FF DDC2 AO DE LDY #$DB
DD73 20 98 DD JSR $DD98 DDC4 20 98 DD JSR $DD98
DD76 20 66 DA JSR $DA66 DDC7 20 DB DA JSR $DADB
DD79 BO OD BCS $DD88 DDCA BO 7F BCS $DE4B
DD7B C6 EF DEC $BF DDCC A9 00 LDA #$00
DD7D FO 09 BEQ $DD88 (C) BASE 10 EXPONENTIATION
DD7F A2 EO LDX #$EO DDCE 85 FI STA $Fl
DD81 AO 05 LDY #$05 DDDO A5 D4 LDA $D4
DD83 20 98 DD JSR $DD98 DDD2 85 FO STA $FO
DD66 30 D3 BItI $DD5B DDD4 29 7F AND #$7F
DD88 60 RTS DDD6 85 D4 STA $D4
DD89 66 FC STX $FC DDD8 38 SEC
(C) LOAD FRO WITH FP DDD9 E9 40 SBC #$40
DD8B 84 FD STY $FD DDDB 30 26 Bltl $DE03
(C) FROIt 6502 X & Y DDDD C9 04 CItP #$04
DD6D AO 05 LDY #$05 DDDF 10 6A BPL $DE4B
(C) LOAD FRO WITH FP DDEI A2 E6 LDX #$E6
DD6F BI FC LDA ($FC),Y DDE3 AO 05 LDY #$05
(C) FROM USER ROUTINE DDE5 20 A7 DD JSR $DDA7
DD91 99 D4 00 STA $00D4,Y DDE6 20 D2 D9 JSR $D9D2
DD94 68 DEY DDEB A5 D4 LDA $D4
DD95 10 F6 BPL $DD6F DDED 65 Fl STA $FI
DD97 60 RTS DDEF A5 D5 LDA $D5
DD96 86 FC STX $FC DDFI DO 58 BNE $DE4B
(C) LOAD FRI WITH FP DDF3 20 AA D9 JSR $D9AA
DD9A 84 FD STY $FD DDF6 20 B6 DD JSR $DDB6
(C) FROIt 6502 X & Y DDF9 A2 E6 LDX #$E6
DD9C AO 05 LDY #$05 DDFB AO 05 LDY #$05
(C) LOAD FRI WITH FP DDFD 20 69 DD JSR $DD89
DD9E Bl FC LDA ($FC),Y DEOO 20 60 DA JSR $DA60
(C) f'ROM USER ROUTINE DE03 A9 OA LDA #$OA
DDAO 99 EO 00 STA $OOEO,Y DE05 A2 4D LDX #$4D
DDA3 88 DEY DE07 AO DE LDY #$DB
DDA4 10 F8 BPL $DD9E DE09 20 40 DD JSR $DD40
DDA6 60 RTS DEOC 20 B6 DD JSR $DDB6
DDA7 86 FC STX $FC DEOF 20 DB DA JSR $DADB
(C) STORE FRO INTO DEI2 A5 FI LDA $FI

Page 321

OEI4 FO 23 BEQ $OE39 OEB5 20 69 00 JSR $DD69
DEI6 16 CLC DEB6 A6 FE LDX $FF.
DEI7 6A ROR A DEBA A4 FF LDY $FF
DEI6 65 EO STA $EO DEBC 20 96 DD JSR $DD96\)EIA A9 01 LOA 1$01 DEBF 20 60 DA JSR $DA60
DEIC 90 02 BCC $DE20 DEC2 A2 E6 LDX I$E6
DElE A9 10 LDA 1$10 DEC4 AO 05 LDY 1$05
DE20 85 EI STA $EI DEC6 20 98 DD JSR $D\)96
DE22 A2 04 LOX 1$04 DEC9 20 26 DB JSR $DB26DE24 A9 00 LOA 1$00 DECC 60 RTS
OE26 95 E2 STA $E2.X DECD A9 01 LDA 1$01
DE28 CA DEX (C) NATURAL LOGARITHI'I
DE29 10 FB BPL $DE26 DECF DO 02 BNE $DED3DE2B A5 EO LDA $EO DEDI A9 00 LDA 1$00
DE2D 18 CLC (C) BASE 10 LOGARITHM
DE2E 69 40 ADC 1$40 DED3 85 FO STA $FODE30 BO 19 BCS $DE4B DED5 A5 D4 LDA $D4
DE32 30 17 BMI $DE4B DED7 FO 05 BEQ $DEDEDE34 85 EO STA $EO DED9 30 03 BMI $DEDEDE36 20 DB DA JSR $DADB DEDB 4C F6 OF JMP $DFF6
DE39 A5 FO LDA $FO DEDE 38 SEC
DE3B 10 OD BPL $DE4A DEDF 60 RTS
DE3D 20 B6 DD JSR $DDB6 DEEO E9 40 SBC 1$40
DE40 A2 8F LDX 1$8F DEE2 OA ASL A
DE42 AO DE LDY I$DE DEE3 65 FI STA $FI
DE44 20 89 DD JSR $DD89 DEE5 A5 D5 LDA $05
DE47 20 28 DB JSR $DB28 DEE7 29 FO AND I$FO
DE4A 60 RTS DEE9 DO 04 BNE $DEEF
DE4B 38 SEC DEEB A9 01 LDA 1$01
DE4C 60 RTS DEED DO 04 BNE $DEF3

DEEF E6 FI INC $FI
DE4D 3D 17 94 19 00 00 3D 57 DEFI A9 10 LDA 1$10
DE55 33 05 00 00 3E 05 54 76 DEF3 85 Et STA $Et
DE5D 62 00 3E 32 t9 62 27 00 DEF5 A2 04 LDX 1$04
DE65 3F Ot 68 60 30 36 3F 07 DEF7 A9 00 LDA 1$00
DE6D 32 03 27 41 3F 25 43 34 DEF9 95 E2 STA $E2.X
DE75 56 75 3F 66 27 37 30 50 DEFB CA DEX
DE7D 40 Ot 15 t2 92 55 3F 99 DEFC to FB BPL $DEF9
DE85 99 99 99 99 3F 43 42 94 DEFE 20 28 DB JSR $DB28
DE8D 48 t9 40 Ot 00 00 00 00 DFOI A2 66 LDX 1$66

DF03 AO DF LDY I$DF
DE95 86 FE STX $FE DF05 20 95 DE JSR $OE95
DE97 84 FF STY $FF DF06 A2 E6 LDX I$E6
DE99 A2 EO LDX I$EO DFOA AO 05 LDY 1$05
DE9B AO 05 LDY 1$05 DFOC 20 A7 DD JSR $DDA7
DE9D 20 A7 DD JSR $DDA7 DFOF 20 B6 DD JSR $DDB6
DEAO A6 FE LDX $FE DFI2 20 DB DA JSR $DADB
DEA2 A4 FF LDY $FF DFI5 A9 OA LDA I$OA
DEA4 20 98 DD JSR $DD98 DFt7 A2 72 LDX 1$72
DEA7 20 66 DA JSR $DA66 DFt9 AO DF LDY I$DF
DEAA A2 E6 LDX I$E6 DFIB 20 40 DD JSR $DD40
DEAC AO 05 LDY 1$00 DFIE A2 E6 LDX I$E6
DEAE 20 A7 DD JSR $DDA7 DF20 AO 05 LDY 1$05
DEBI A2 EO LDX I$EO DF22 20 98 DD JSR $DD98
DEB3 AO 05 LDY 1$05 DF25 20 DB DA JSR $DADB

Page 322

APPENDIX E6:

DF28 A2 6C LDX 1$6C EOOO 00 00 00 00 00 00 00 00
DF2A AO DF LDY I$DF (C) STANDARD
DF2C 20 98 DD JSR $DD98 E008 00 18 18 18 18 00 18 00
DF2F 20 66 DA JSR $DA66 (C) CHARACTER-SET
DF32 20 B6 DD JSR $DDB6 EOIO 00 66 66 66 00 00 00 00
DF35 A9 00 LDA 1$00 EOl8 00 66 FF 66 66 FF 66 00
DF37 85 D5 STA $D5 E020 18 3E 60 3C 06 7C 18 00
DF39 A5 FI LDA $FI E028 00 66 6C 18 30 66 46 00
DF3B 85 D4 STA $D4 E030 IC 36 IC 38 6F 66 3B 00
DF3D 10 07 BPL $DF46 E038 00 18 18 18 00 00 00 00
DF3F 49 FF EOR I$FF E040 00 OE I C 18 18 IC OE 00
DF41 18 CLC E048 00 70 38 18 18 38 70 00
DF42 69 01 ADC 1$01 E050 00 66 3C FF 3C 66 00 00
DF44 85 D4 STA $D4 E058 00 18 18 7E 18 18 00 00
DF46 20 AA D9 JSR $D9AA E060 00 00 00 00 00 18 18 30
DF49 24 Fl BIT $FI E068 00 00 00 7E 00 00 00 00
DF4B 10 06 BPL $DF53 E070 00 00 00 00 00 18 18 00
DF4D A9 80 LDA 1$80 E078 00 06 OC 18 30 60 40 00
DF4F 05 D4 ORA $D4 E080 00 3C 66 6E 76 66 3C 00
DF51 85 D4 STA $D4 E088 00 18 38 18 18 18 7E 00
DF53 20 66 DA JSR $DA66 E090 00 3C 66 OC 18 30 7E 00
DF56 A5 FO LDA $FO E098 00 7E OC 18 OC 66 3C 00
DF58 FO OA BEQ $DF64 EOAO 00 OC lC 3C 6C 7E OC 00
DF5A A2 89 LDX 1$89 EOA8 00 7E 60 7C 06 66 3C 00
DF5C AO DE LDY I$DE EOBO 00 3C 60 7C 66 66 3C 00
DF5E 20 98 DD JSR $DD98 EOB6 00 7E 06 DC 18 30 30 00
DF61 20 26 DB JSR $DB26 EOCO 00 3C 66 3C 66 66 3C 00
DF64 16 CLC EOC6 00 3C 66 3E 06 OC 36 00
DF65 60 RTS EODO 00 00 16 18 00 16 16 00

EOD6 00 00 16 18 00 18 16 30
DF66 40 03 16 22 77 66 3F 50 EOEO 06 OC 18 30 18 OC 06 00
DF6E 00 00 00 00 3F 49 15 57 EOE6 00 00 7E 00 00 7E 00 00
DF76 I 1 06 BF 51 70 49 47 06 EOFO 60 30 16 OC 16 30 60 00
DF7E 3F 39 20 57 61 95 BF 04 EOF8 00 3C 66 OC 16 00 16 00
DF66 39 63 03 55 3F 10 09 30 EIOO 00 3C 66 6E 6E 60 3E 00
DF6E 12 64 3F 09 39 06 04 60 EI06 00 18 3C 66 66 7E 66 00
DF96 3F 12 42 56 47 42 3F 17 EIIO 00 7C 66 7C 66 66 7C 00
DF9E 37 12 06 06 3F 26 95 29 EI16 00 3C 66 60 60 66 3C 00
DFA6 71 17 3F 66 65 66 96 44 EI20 00 76 6C 66 66 6C 78 00
DFAE 3E 16 05 44 49 00 BE 95 EI28 00 7E 60 7C 60 60 7E 00
DFB6 66 36 45 00 3F 02 68 79 EI30 00 7E 60 7C 60 60 60 00
DFBE 94 16 BF 04 92 78 90 60 EI38 00 3E 60 60 6E 66 3E 00
DFC6 3F 07 03 15 20 00 BF 06 EI40 00 66 66 7E 66 66 66 00
DFCE 92 29 12 44 3F II 06 40 EI48 00 7E 16 16 16 18 7E 00
DFD6 09 II BF 14 26 31 56 04 EI50 00 06 06 06 06 66 3C 00
DFDE 3F 19 99 96 77 44 BF 33 EI58 00 66 6C 78 78 6C 66 00
DFE6 33 33 31 13 3F 99 99 99 EI60 00 60 60 60 60 60 7E 00
DFEE 99 99 3F 76 53 96 16 34 EI66 00 63 77 7F 6B 63 63 00

E170 00 66 76 7E 7E 6E 66 00
DFF6 A5 D4 LDA $D4 EI78 00 3C 66 66 66 66 3C 00
DFF6 65 EO STA $EO E160 00 7C 66 66 7C 60 60 00
DFFA 38 SEC EI66 00 3C 66 66 66 6C 36 00
DFFB 4C EO DE JMP $DEEO EI90 00 7C 66 66 7C 6C 66 00

EI96 00 3C 60 3C 06 06 3C 00
DFFE 00 00 EIAO 00 7E 16 18 18 18 16 00

Page 323

I, M'PEf:jDI

EIA8 00 66 66 66 66 66 7E 00 E360 00 38 18 18 18 18 3C 00
EIBO 00 66 66 66 66 3C 18 00 E368 00 00 66 7F 7F 6B 63 00
EIB8 00 63 63 6B 7F 77 63 00 E370 00 00 7C 66 66 66 66 00
EICO 00 66 66 3C 3C 66 66 00 D78 00 00 3C 66 66 66 3C 00
EIC8 00 66 66 3C 18 18 18 00 E380 00 00 7C 66 66 7C 60 60
EIDO 00 7E DC 18 30 60 7E 00 E388 00 00 3E 66 66 3E 06 06
EID8 00 IE 18 18 18 18 IE 00 E390 00 00 7C 66 60 60 60 00
ElEO 00 40 60 30 18 OC 06 00 E398 00 00 3E 60 3C 06 7C 00
EIE8 00 78 18 18 18 18 78 00 E3AO 00 18 7E 18 18 18 DE 00
EIFO 00 08 IC 36 63 00 00 00 DA8 00 00 66 66 66 66 3E 00
EIF8 00 00 00 00 00 00 FF 00 E3BO 00 00 66 66 66 3C 18 00
E200 00 36 7F 7F 3E I C 08 00 E3B8 00 00 63 6B 7F 3E 36 00
E208 18 18 18 IF IF 18 18 18 E3CO 00 00 66 3C 18 3C 66 00
E210 03 03 03 03 03 03 03 03 E3C8 00 00 66 66 66 3E DC 78
E218 18 18 18 F8 F8 00 00 00 E3DO 00 00 7E DC 18 30 7E 00
E220 18 18 18 F8 F8 18 18 18 E3D8 00 18 3C 7E 7E 18 3C 00
E228 00 00 00 F8 F8 18 18 18 E3EO 18 18 18 18 18 18 18 18
E230 03 07 DE IC 38 70 EO CO E3E8 00 7E 78 7C 6E 66 06 00
E238 CO EO 70 38 lC OE 07 03 E3FO 08 18 38 78 38 18 08 00
E240 01 03 07 OF IF 3F 7F FF E3F8 10 18 IC IE IC 18 10 00
E248 00 00 00 00 OF OF OF OF
E250 80 CO EO FO F8 FC FE FF E400 93 EF 2D F2 49 F2 AF F2
E258 OF OF OF OF 00 00 00 00 (C) E: HANDLER VECTORS
B260 FO FO FO FO 00 00 00 00 E408 ID F2 2C F2 4C 6E EF 00
E268 FF FF 00 00 00 00 00 00 E410 8D EF 2D F2 7F Fl A3 FI
E270 00 00 00 00 00 00 FF FF (C) S:
E278 00 00 00 00 FO FO FO FO E418 ID F2 AE F9 4C 6E EF 00
E280 00 lC lC 77 77 08 I C 00 E420 ID F2 I D F2 FC F2 2C F2
E288 00 00 00 IF IF 18 18 18 (C) K:
E290 00 00 00 FF FF 00 00 00 E428 ID F2 2C F2 4C 6E EF 00
E298 18 18 18 FF FF 18 18 18 E430 C1 FE 06 FF CO FE CA FE
E2AO 00 00 3C 7E 7E 7E 3C 00 (C) P:
E2A8 00 00 00 00 FF FF FF FF E438 A2 FE CO FE 4C 99 FE 00
E2BO CO CO CO CO CO CO CO CO E440 E5 FC CE FD 79 FD B3 FD
E2B8 00 00 00 FF FF 18 18 18 (C) C:
E2CO 18 18 18 FF FF 00 00 00 E448 CB FD E4 FC 4C DB FC 00
E2C8 FO FO FO FO FO FO FO FO
E2DO 18 18 18 IF IF 00 00 00 E450 4C A3 C6 JI1P $C6A3
E2D8 78 60 78 60 7E 18 IE 00 (C) DISK IN IT VECTOR
E2EO 00 18 3C 7E 18 18 18 00 E453 4C B3 C6 JI1P $C6B3
E2E8 00 18 18 18 7E 3C 18 00 (C) DISK I/O
EHO 00 18 30 7E 30 18 00 00 E456 4C DF E4 JI1P $E4DF
E2F8 00 18 OC 7B OC 18 00 00 (C) CIO ENTRY
E300 00 18 3C 7E 7E 3C 18 00 E459 4C 33 C9 JI1P $C933
E308 00 00 3C 06 3E 66 3E 00 (C) SIO
E310 00 60 60 7C 66 66 7C 00 E45C 4C 72 C2 JI1P $C272
E318 00 00 3C 60 60 60 3C 00 (C) SET VBLANK PARAI1ETERS
E320 00 06 06 3E 66 66 3E 00 E45F 4C E2 CO JI1P $COE2
E328 00 00 3C 66 7E 60 3C 00 (C) STAGE-l VBLANK ENTRY
E330 00 DE 18 3E 18 18 18 00 E462 4C 8A C2 JI1P $C28A
E338 00 00 3E 66 66 3E 06 7C (C) EXIT FROI1 VBLANK
8340 00 60 60 7C 66 66 66 00 E465 4C 5C E9 JI1P $E95C
E348 00 18 00 38 18 18 3C 00 (C) SID INIT VECTOR
E350 00 06 00 06 06 06 06 3C E468 4C 17 EC JI1P $ECI7
E358 00 60 60 6C 78 6C 66 00 (C) SEND ENABLE ENTRY

Page 324

APPENDIX E6:

E46B 4C OC CO JMP $COOC E4CF 9D 47 03 STA $0347,X
(C) INTERRUPT HANDLER ENTRY E4D2 8A TXA
E46E 4C Cl E4 JMP $E4Cl E4D3 18 CLC
(C) CIO IN IT VECTOR E4D4 69 10 ADC 1$10
E471 4C 23 F2 JMP $F223 E4D6 AA TAX
(C) SELF-TEST E4D7 C9 80 CMP 1$80
E474 4C 90 C2 JMP $C290 E4D9 90 E8 BCC $E4C3
(C) IIARMSTART E4DB 60 RTS
E477 4C C8 C2 JMP $C2C8 E4DC AO 85 LDY 1$85
(C) COLDSTART VECTOR (C) IOCB NOT OPEN ERROR
E47A 4C 8D FD JMP $FD8D E4DE 60 RTS
(C) CASSETTE READ-BLOCK E4DF 85 2F STA $2F
E47D 4C F7 FC JMP $FCF7 (C) CIO
(C) CASSETTE OPEN FOR INPUT E4El 86 2E STX $2E
E480 4C 23 F2 JMP $F223 E4E3 8A TXA
(C) PUPDIV ENTRY E4E4 29 OF AND I$OF
E483 4C 00 50 JMP $5000 E4E6 DO 04 BNE $E4EC
(C) SELF-TEST VECTOR E4E8 EO 80 CPX 1$80
E486 4C BC EE JMP $EEBC E4EA 90 05 BCC $E4Fl
(C) PENT VECTOR E4EC AO 86 LDY 1$86
E489 4C 15 E9 JMP $E915 E4EE 4C 70 E6 JMP $E670
(C) PHUNL E4Fl AO 00 LDY 1$00
E48C 4C 98 E8 JMP $E898 E4F3 BD 40 03 LDA $0340,X
(C) PHINI VECTOR E4F6 99 20 00 STA $0020,Y

E4F9 E8 INX
E48F 90 C9 E4FA C8 INY
(C) GPDV OPEN VECTOR E4FB CO OC CPY I$OC
E491 95 C9 E4FD 90 F4 BCC $E4F3
(C) CLOSE E4FF A5 20 LDA $20
E493 9A C9 E501 C9 7F CMP I$7F
(C) GET E503 DO 15 BNE $E5lA
E495 9F C9 E505 A5 22 LDA $22
(C) PUT E507 C9 OC CMP #$OC
E497 A4 C9 E509 FO 71 BEQ $E57C
(C) STATUS E50B AD E9 02 LDA $02E9
E499 A9 C9 E50E DO 05 BNE $E515
(C) XIO E510 AO 82 LDY 1$82
E49B 4C OC C9 JMP $C90C (C) NONEXISTENT DEVICE
(C) INIT E512 4C 70 E6 JMP $E670

E515 20 29 CA JSR $CA29
E49E 00 00 00 00 00 00 00 00 (C) LOAD PERIPHERAL HANDLER
(C) UNUSED E518 30 F8 BMI $E512
E4A6 00 00 00 00 00 00 00 00 (C) FOR OPEN
E4AE 00 00 00 00 00 00 00 00 E51A AO 84 LDY 1$84
E4B6 00 00 00 00 00 00 00 00 (C) PERFORM CIa COMMAND
E4BE 00 00 E51C A5 22 LDA $22

E51E C9 03 CMP 1$03
E4CO 60 RTS E520 90 25 BCC $E547
E4Cl A2 00 LDX ISOO E522 A8 TAY
(C) INITIALIZE CIa E523 CO OE CPY ISOE
E4C3 A9 FF LDA #$FF E525 90 02 BCC $E529
E4C5 9D 40 03 STA $0340,X E527 AO OE LDY #SOE
E4C8 A9 DB LDA #$DB E529 84 17 STY $17
E4CA 9D 46 03 STA $0346, X E52B B9 2A E7 LDA SE72A,Y
E4CD A9 E4 LDA #SE4 E52E FO OF BEQ $E53F

Page 325

Ml'_IDjDIX E6:

E530 C9 02 CMP #$02 E5A5 20 EA E6 JSR $E6EA
ES32 FO 48 BEQ $ES7C ESA8 A6 2E LDX $2E
ES34 C9 08 eMP #$08 ESAA BD 40 03 LDA $0340,X
ES36 BO SF BCS $E597 ESAD 8S 20 STA $20
E538 C9 04 CMP #$04 E5AP 4C 72 E6 JMP $E672
ES3A FO 76 BEQ $ESB2 E5B2 A5 22 LDA $22
E53C 4C IE E6 JMP $E61E E5B4 25 2A AND $2A
E53F A5 20 LDA $20 E5B6 DO 05 BNE $E5BD
(C) EXECUTE OPEN COMMAND E5B8 AO 83 LDY 1$83
E541 C9 FF CMP #$FF E5BA 4C 70 E6 JMP $E670
E543 FO 05 8EQ $E54A E58D 20 95 E6 JSR $E695
£545 AO 81 LDY #$81 E5CO 80 F8 BCS $E58A
E547 4C 70 E6 JMP $E670 E5C2 A5 28 LDA $28
E54A AD E9 02 LDA $02E9 E5C4 05 29 ORA $29
E54D DO 27 8NE $E576 E5C6 DO 08 BNE $E5DO
E54F 20 FF E6 JSR $E6FF E5C8 20 EA E6 JSR $E6EA
E552 80 22 BCS $E576 E5CB 85 2F STA $2F
E554 A9 00 LDA #$00 E5CD 4C 72 E6 JMP $E672
E556 8D EA 02 STA $02EA E5DO 20 EA E6 JSR $E6EA
E559 8D EB 02 STA $02EB E5D3 85 2F STA $2F
E55C 20 95 E6 JSR $E695 ESD5 30 41 8MI $E618
(C) INIT IOCB FOR OPEN E5D7 AO 00 LDY #$00
E55F BO E6 BCS $E547 E5D9 91 24 STA ($24), Y
E561 20 EA E6 JSR $E6EA E5D8 20 DI E6 JSR $E6DI
E564 A9 OB LDA #$OB E5DE A5 22 LDA $22
E566 85 17 STA $17 E5EO 29 02 AND #$02
E568 20 95 E6 JSR $E695 E5E2 DO OC BNE $E5FO
E56B A5 2C LDA $2C E5E4 A5 2F LDA $2F
E56D 85 26 STA $26 E5E6 C9 9B CMP #$9B
E56F A5 2D LDA $2D E5E8 DO 06 BNE $E5FO
E571 85 27 STA $27 E5EA 20 BB E6 JSR $E6BB
E573 4C 72 E6 JMP $E672 E5ED 4C 18 E6 JMP $E618
E576 20 F9 EE JSR $EEF9 E5FO 20 BB E6 JSR $E6BB
(C) POLL PERIPH FOR OPEN E5F3 DO DB BNE $E5DO
E579 4C 70 E6 JMP $E670 E5P5 A5 22 LDA $22
E57C AO 01 LDY #$01 E5F7 29 02 AND #$02
(C) EXECUTE CLOSE COMMAND E5F9 DO ID BNE $E618
E57E 84 23 STY $23 E5FB 20 EA E6 JSR $E6EA
E580 20 95 E6 JSR $E695 E5FE 85 2F STA $2F
E583 BO 03 BCS $E588 E600 30 OA BMI $E60C
E585 20 EA E6 JSR $E6EA E602 A5 2F LDA $2F
E588 A9 FF LDA I$FF E604 C9 9B CMP #$9B
E58A 85 20 STA $20 E606 DO P3 BNE $E5PB
E58C A9 E4 LDA #$E4 E608 A9 89 LDA #$89
E58E 85 27 STA $27 E60A 85 23 STA $23
E590 A9 DB LDA #$DB E60C 20 C8 E6 JSR $E6C8
E592 85 26 STA $26 E60F AO 00 LDY #$00
E594 4C 72 E6 JMP $E672 E611 A9 9B LDA #$9B
E597 A5 20 LDA $20 E613 91 24 STA ($24),Y
(C) EXECUTE GET COMMAND E615 20 Dl E6 JSR $E6Dl
E599 C9 FF CMP #$FF R618 20 D8 E6 JSR $E6D8
E59B DO 05 BNE $E5A2 E61B 4C 72 E6 JMP $E672
E59D 20 FP E6 JSR $E6FF E61E A5 22 LDA $22
E5AO BO A5 BCS $E547 (C) EXECUTE PUT COMMAND
E5A2 20 95 E6 JSR $E695 E620 25 2A AND $2A

Pase 326

APPENDIX E6:

E622 DO 05 BNE $E629 E694 60 RTS
E624 AO 87 LDY #$87 E695 A4 20 LDY $20
E626 4C 70 E6 JMP $E670 (C) COMPUTE HANDLER ENTRY
E629 20 95 E6 JSR $E695 E697 CO 22 CPY #$22
E62C BO F8 BCS $E626 E699 90 04 BCC $E69F
E62E A5 28 LDA $28 E69B AO 85 LDY 1$85
E630 05 29 ORA $29 E69D BO I B BCS $E6BA
E632 DO 06 BNE $E6JA E69F B9 I B 03 LDA $031B,Y
E634 A5 2F LDA $2F E6A2 85 2C STA $2C
E636 E6 28 INC $28 E6A4 B9 IC 03 LDA $031C,Y
E638 DO 06 BNE $E640 E6A7 85 2D STA $2D
E6JA AO 00 LDY #$00 E6A9 A4 17 LDY $17
E63C BI 24 LDA ($24), Y E6AB B9 2A E7 LDA $E72A,Y
E63E 85 2F STA $2F E6AE A8 TAY
E640 20 EA E6 JSR $E6EA E6AF BI 2C LDA ($2C),Y
E643 08 PUP E6BI AA TAX
E644 20 DI E6 JSR $E6Dl E6B2 C8 INY
E647 20 BB E6 JSR $E6BB E6B3 BI 2C LDA ($2C), Y
E64A 28 PLP E6B5 85 2D STA $2D
E64B 30 ID BMI $E66A E6B7 86 2C STX $2C
E64D A5 22 LDA $22 E6B9 18 CLC
E64F 29 02 AND 1$02 E6BA 60 RTS
E651 DO 06 BNE $E659 E6BB A5 28 LDA $28
E653 A5 2F LDA $2f' (C) DECREMENT BUFFER LENGTH
E655 C9 9B CMP I$9B E6BD DO 02 BNE $E6CI
E657 FO 1I BEQ $E66A E6BF C6 29 DEC $29
E659 A5 28 LDA $28 E6CI C6 28 DEC $28
E65B 05 29 ORA $29 E6C3 A5 28 LDA $28
E65D DO DB BNE $E63A E6C5 05 29 ORA $29
E65F A5 22 LDA $22 E6C7 60 RTS
E661 29 02 AND #$02 E6C8 A5 24 LDA $24
E663 DO 05 BNE $E66A (C) DECREMENT BUFFER POINTER
E665 A9 9B LDA #$9B E6CA DO 02 BNE $E6CE
E667 20 EA E6 JSR $E6EA E6CC C6 25 DEC $25
E66A 20 D8 E6 JSR $E6D8 E6CE C6 24 DEC $24
E66D 4C 72 E6 JMP $E672 E6DO 60 RTS
E670 84 23 STY $23 E6DI E6 24 INC $24
(C) SET STATUS (C) INCREMENT 8UFFER POINTER
E672 A4 2E LDY $2E E6D3 DO 02 BNE $E6D7
(C) COMPLETE CIO OPERATION E6D5 E6 25 INC $25
E674 B9 44 03 LDA $0344,Y E6D7 60 RTS
E677 85 24 STA $24 E6D8 A6 2E LDX $2E
E679 B9 45 03 LDA $0345,Y (C) SET FINAL BUFFER LENGTH
E67C 85 25 STA $25 E6DA 38 SEC
E67E A2 00 LDX #$00 E6DB BD 48 03 LDA $0348,X
E680 8E E9 02 STX $02E9 E6DE E5 28 SBC $28
E683 B5 20 LDA $20,X E6EO 85 28 STA $28
E685 99 40 03 STA $0340,Y E6E2 BD 49 03 LDA $0349,X
E688 E8 INX E6E5 E5 29 SBC $29
E689 C8 INY E6E7 85 29 STA $29
E68A EO OC CPX I$OC E6E9 60 RTS
E68C 90 F5 BCC $E683 E6EA AO 92 LDY 1$92
E68E A5 2F LDA $2F (C) EXECUTE HANDLER COMMAND
E690 A6 2E LDX $2E E6EC 20 F4 E6 JSR $E6F4
E692 A4 23 LDY $23 E6EF 84 23 STY $23

Page 327

!li..LE6 :

E6FI CO 00 CPY #$00 E74A AA TAX
E6F3 60 RTS E74B C8 INY
E61'4 AA TAX E74C 71 4A ADC ($4A).Y(C) INVOKE DEVICE HANDLER E74E 1'0 26 BEQ $E776E6F5 A5 2D LDA $2D E750 Bl 4A LDA ($4A),Y
£61'7 48 PHA E752 85 4B STA $4B
E6F8 A5 2C LDA $2C E754 86 4A STX $4A
E6FA 48 PHA E756 20 56 CB JSR $CB56
E6FB 8A TXA E759 DO IB BNE $E776E6FC A6 2E LDX $2E E75B 20 94 E8 JSR $E894
E6FE 60 RTS E75E BO 16 BCS $E776E6FP 38 SEC E760 90 E3 BCC $E745
(C) SEARCH HANDLER TABLE E762 A9 00 LDA #$00E700 AO 01 LDY #$01 E764 8D FB 03 STA $03FB
E702 BI 24 LDA ($24). Y E767 8D FC 03 STA $03FCE704 E9 31 SBC #$31 E76A A9 41' LDA #$41'
E706 30 04 BMI $E70C E76C DO 2D BNE $E79BE708 C9 09 CMP #$09 E76E A9 00 LDA #$00
E70A 90 02 BCC $E70E E770 A8 TAY
E70C A9 00 LDA #$00 E771 20 BE E7 JSR $E7BE
E70E 85 21 STA $21 E774 10 01 BPL $E777E710 E6 21 INC $21 E776 60 RTS
E712 AO 00 LDY #$00 E777 18 CLC
E714 BI 24 LDA ($24).Y E778 AD E7 02 LDA $02E7
E716 1'0 OC BEQ $E724 E77B 6D EA 02 ADC $02EA
(C) FIND DEVICE HANDLER E77E 8D 12 03 STA $0312
E718 AO 21 LDY #$21 E781 AD E8 02 LDA $02E8
E71A D9 1A 03 CMP $031A,Y E784 6D EB 02 ADC $02EB
E71D 1'0 09 BEQ $E728 E787 8D 13 03 STA $0313E71F 88 DEY E78A 38 SEC
E720 88 DEY E78B AD E5 02 LDA $02E5
E721 88 DEY E78E ED 12 03 SBC $0312
E722 10 1'6 BPL $E71A E791 AD E6 02 LDA $02E6
E724 AO 82 LDY #$82 E794 ED 13 03 SBC $0313
E726 38 SEC E797 BO 09 BCS $ElA2
E727 60 RTS E799 A9 4E LDA #$4E
E728 98 TYA E79B A8 TAY
E729 85 20 STA $20 E79C 20 BE E7 JSR $E7BE
E72B 18 CLC E79F 4C 6E E7 JMP $E76E
E72C 60 RTS E7A2 AD EC 02 LDA $02EC

E7A5 AE E7 02 LDX $02E7
E72D 00 04 04 04 04 06 06 06 E7A8 8E EC 02 STX $02EC
E735 06 02 08 OA ElAB AE E8 02 LDX $02E8

E7AE 8E ED 02 STX $02ED
E739 A5 08 LDA $08 E7Bl 20 DE E7 JSR $E7DE
(C) PERIPHERAL HANDLER E7B4 30 E3 BtU $E799E73B 1'0 25 BEQ $E762 E7B6 38 SEC
(C) LOADER INITIALIZATION E7B7 20 9E E8 JSR $E89EE73D A9 E9 LDA #$E9 E7BA BO DD BCS $E799£731' 85 4A STA $4A E7BC 90 BO BCC $E76EE741 A9 03 LDA #$03 E7BE 48 PHA
E743 85 4B STA $4B (C) PERFORM POLL
E745 AO 12 LDY #$12 E7BF A2 09 LDX #$09
E747 18 CLC E7CI BD D4 E7 LDA $E7D4,X
E748 Bl 4A LDA ($4A). Y E7C4 9D 00 03 STA $0300,X

Pale 328

APPENDIX E6:

E7C7 CA DEX E841 8E OA 03 STX $030A
E7C8 10 F7 BPL $E7Cl E844 E8 INX
E7CA 8C OB 03 STY $030B E845 8E 12 03 STX $0312
E7CD 68 PLA E848 AD 13 03 LDA $0313
E7CE 8D OA 03 STA $030A E84B 8D 00 03 STA $0300
E7Dl 4C 59 E4 JI'lP $E459 E84E 4C 59 E4 Jl'lP $E459

E7D4 4F 01 40 40 EA 02 IE 00 E851 00 01 26 40 FD 03 IE 00
E7DC 04 00 E859 80 00 00 00

E7DE 8D 13 03 STA $0313 E85D 8C 12 03 STY $0312
(C) LOAD HANDLER (C) SEARCH HANDLER CHAIN
E7El A2 00 LDX #$00 E860 8D 13 03 STA $0313
E7E3 8E 12 03 STX $0312 E863 A9 E9 LDA #$E9
E7E6 CA DEX E865 85 4A STA $4A
E7E7 8E 15 03 STX $0315 E867 A9 03 LDA #$03
E7EA AD EC 02 LDA $02EC E869 85 4B STA $4B
E7ED 6A ROR A E86B AO 12 LDY #$12
E7EE 90 08 BCC $E7F8 E86D Bl 4A LDA ($4A),Y
E7FO EE EC 02 INC $02EC E86F AA TAX
E7F3 DO 03 BNE $E7F8 EB70 C8 INY
E7F5 EE ED 02 INC $02ED EB71 BI 4A LDA ($4A), Y
E7F8 AD EC 02 LDA $02EC EB73 CD 13 03 CtiP $0313
E7F8 BD Dl 02 STA $02DI E876 DO 07 8NE $E87F
E7FE AD ED 02 LDA $02ED E87B EC 12 03 CPX $0312
EBOI BD D2 02 STA $02D2 E878 DO 02 BNE $E87F
EB04 A9 16 LDA #$16 EB7D 18 CLC
E806 BD CF 02 STA $02CF E87E 60 RTS
E809 A9 E8 LDA #$E8 E87F C9 00 CtiP #$00
EB08 8D DO 02 STA $02DO E881 DO 06 BNE $E889
E80E A9 80 LDA #$80 E883 EO 00 CPX #$00
EBIO 8D D3 02 STA $02D3 E885 DO 02 8NE $E889
E813 4C 45 C7 JtlP $C745 E887 38 SEC
EBI6 AE 15 03 LDX $0315 E888 60 RTS
(C) GET BYTE E889 86 4A STX $4A
EBI9 E8 INX E888 85 48 STA $48
E81A 8E 15 03 STX $0315 EB8D 20 56 CB JSR $CB56
EBID FO 08 8EQ $E827 E890 DO F5 8NE $E887
E81F AE 15 03 LDX $0315 EB92 FO D7 8EQ $E868
EB22 BD 7D 03 LDA $037D,X E894 38 SEC
E825 18 CLC (C) HANDLER WARtiSTART INIT
EB26 60 RTS E895 08 PHP
E827 A9 80 LDA #$80 EB96 BO 28 8CS $E8CO
E829 8D 15 03 STA $0315 E89B 8D ED 02 STA $02ED
EB2C 20 33 E8 JSR $E833 (C) WARtiSTART INIT WITH
E82F 10 EE 8PL $EBIF E898 8e EC 02 STY $02EC
E831 38 SEC (C) CHAINING
E832 60 RTS E89E 08 PHP
E833 A2 08 LDX #$OB (C) COLDSTART INIT
(C) GET NEXT LOAD 8LOCK E89F A9 00 LDA #$00
E835 8D 51 E8 LDA $E851,X EBAI A8 TAY
E838 9D 00 03 STA $0300,X E8A2 20 5D E8 JSR $EB5D
E838 CA DEX E8A5 BO 27 BCS $E8CE
EB3C 10 F7 8PL $E835 E8A7 AO 12 LDY #$12
E83E AE 12 03 LDX $0312 E8A9 AD EC 02 LDA $02EC

Page 329

AJ'PE

E8AC 91 4A STA ($4A),Y E915 20 5D E8 JSR $E85D
E8AE AA TAX (C) HANDLER UNLINKING
E8AF C8 INY E918 BO 3B BCS $E955
E8BO AD ED 02 LDA $02ED E91A A8 TAY
E8ll3 91 4A STA ($4A).Y E91B A5 4A LDA $4A
E8B5 86 4A STX $4A E91D 48 PHA
E8B7 85 48 STA $4B E91E A5 4B LDA $4B
E8B9 A9 00 LDA 1$00 E920 48 PHA
E88ll 91 4A STA ($4A),Y E921 86 4A STX $4A
E8BD 88 DEY E923 84 4B STY $4B
E8BE 91 4A STA ($4A).Y E925 AD 44 02 LDA $0244
E8CO 20 00 E9 JSR $E900 E928 DO OF BNE $E939
(C) INIT HANDLER & UPDATE E92A AO 10 LDY 1$10
E8C3 90 OC BCC $E8D1 E92C 18 CLC
(C) MEMLO E92D B1 4A LDA ($4A),Y
E8C5 AD ED 02 LDA $02ED E92F C8 INY
E8C8 AC EC 02 LDY $02EC E930 71 4A ADC ($4A).Y
E8CB 20 15 E9 JSR $E915 E932 DO IF BNE $E953
E8CE 28 PLP E934 20 56 CB JSR $CB56
E8CF 38 SEC E937 DO 1A 8NE $E953
E8DO 60 RTS E939 AO 12 LDY 1$12
E8Dl 28 PLP E938 81 4A LDA ($4A),Y
E8D2 BO 09 Bes $E8DD E93D AA TAX
E8D4 A9 00 LDA 1$00 E93E C8 INY
E8D6 AO 10 LDY 1$10 E93F Bl 4A LDA ($4A),Y
E8D8 91 4A STA ($4A).Y E941 A8 TAY
E8DA C8 INY E942 68 PLA
E8DB 91 4A STA ($4A).Y E943 85 48 STA $48
E8DD 18 CLC E945 68 PLA
E8DE AO 10 LDY 1$10 E946 85 4A STA $4A
E8EO AD E7 02 LDA $02E7 E948 98 TYA
E8E3 71 4A ADC ($4A),Y E949 AO 13 LDY 1$13
E8E5 80 E7 02 STA $02E7 E94B 91 4A STA ($4A),Y
E8E8 C8 INY E94D 88 DEY
E8E9 AD E8 02 LDA $02E8 E94E 8A TXA
E8EC 71 4A ADC ($4A),Y E94F 91 4A STA ($4A).Y
E8EE 8D E8 02 STA $02E8 E951 18 CLC
E8Fl AO OF LDY I$OF E952 60 RTS
E8F3 A9 00 LDA #$00 E953 68 PLA
E8F5 91 4A STA ($4A),Y E954 68 PLA
E8F7 20 56 CB JSR $CB56 E955 38 SEC
E8FA AO OF LDY I$OF E956 60 RTS
E8FC 91 4A STA ($4A),Y
E8FE 18 CLC E957 00 00
E8FF 60 RTS (C) UNUSED
E900 18 CLC
(C) INITIALIZE HANDLER E959 4C 33 C9 JtlP $C933
E901 A5 4A LDA $4A E95C A9 3C LDA 1$3C
E903 69 OC ADC I$OC (C)li SIO INIT
E905 8D 12 03 STA $0312 E95E 8D 02 D3 STA $D302
E908 A5 4B LDA $4B E961 A9 3C LDA 1$3C
E90A 69 00 ADC 1$00 E963 8D 03 D3 STA $D303
E90C 8D 13 03 STA $0313 E966 A9 03 LOA 1$03
E90F 6C 12 03 JtlP ($0312) E968 80 32 02 STA $0232
E912 4C 72 C2 JtlP $C272 E96B 85 41 STA $41

Pase 330

APPENDIX E6:

E96D 8D OF D2 STA $D20F EAIA 85 30 STA $30
E970 60 RTS EAIC A5 30 LDA $30
E971 BA TSX EAIE C9 01 CI1P 1$01
(C) SIO I1AIN ROUTINE EA20 FO 08 BEQ $EA2A
E972 8E 18 03 STX $0318 EA22 CE BD 02 DEC $02BD
E975 A9 01 LDA 1$01 EA25 30 03 BtU $EA2A
E977 05 42 STA $42 EA27 4C 8D E9 JI1P $E98D
E979 AD 00 03 LDA $0300 EA2A 20 84 EC JSR $EC84
E97C C9 60 CI1P 1$60 (C) COI1PLETE SIO OPERATION
E97E DO 03 BNE $E983 EA2D A9 00 LDA 1$00
E980 4C 9D EB JI1P $EB9D EA2F 85 42 STA $42
E983 A9 00 LDA 1$00 EA31 A4 30 LDY $30
E985 8D OF 03 STA $030F EA33 8C 03 03 STY $0303
E988 A9 01 LDA 1$01 EA36 60 RTS
E98A 8D BO 02 STA $02BD EA37 A9 00 LDA 1$00
E98D A9 OD LDA I$OD (C) WAIT FOR COnPLETION
E90F OD 9C 02 STA $029C EA39 8D 3F 02 STA $023F
E992 A9 28 LDA 1$28 (C) OR ACK
E994 OD 04 D2 STA $D204 EA3C 18 CLC
E997 A9 00 LDA 1$00 EA3D A9 3E LDA I$3E
E999 80 06 D2 STA $0206 EA3F 85 32 STA $32
E99C 18 CLC EA41 69 01 ADC 1$01
E99D AD 00 03 LDA $0300 EA43 85 34 STA $34
E9AO 60 01 03 ADC $0301 EA45 A9 02 LOA 1$02
E9A3 69 FF AOC I$FF EA47 85 33 STA $33
E9A5 OD 3A 02 STA $023A EA49 85 35 STA $35
E9A8 AO 02 03 LDA $0302 EA4B A9 FF LDA #$FF
E9AB 80 3B 02 STA $023B EA40 85 3C STA $3C
E9AE AO OA 03 LDA $030A EA4F 20 FO EA JSR $EAFD
E9Bl 8D 3C 02 STA $023C EA52 AO FF LDY #$FF
E9B4 AD OB 03 LOA $030B EA54 A5 30 LDA $30
E9B7 8D 3D 02 STA $0230 EA56 C9 01 cnp #$01
E98A 18 eLC EA58 00 19 BNE $EA73
E9BB A9 3A LOA 1$3A EA5A AD 3E 02 LOA $023E
E98D 85 32 STA $32 EA5D C9 41 CI1P #$41
E9BF 69 04 ADC #$04 EA5F FO 21 BEQ $EA82
E9CI 85 34 STA $34 EA61 C9 43 cnp #$43
E9C3 A9 02 LOA #$02 EA63 FO ID BEQ $EA82
E9C5 85 33 STA $33 EA65 C9 45 CI1P #$45
E9C7 85 35 22 EA67 00 06 8NE $EA6F
E9F3 20 9A EC JSR $EC9A EA69 A9 90 LOA #$90
E9F6 A9 00 LDA #$00 EA6B 85 30 STA $30
E9F8 8D 3F 02 STA $023F EA6D 00 04 BNE $EA73
E9FB 20 CO EC JSR $ECCO EA6F A9 8B LDA #$8B
E9FE FO 12 8EQ $EAI2 EA71 85 30 STA $30
£AOO 2C 03 03 BIT $0303 EA73 A5 30 LOA $30
EA03 70 07 BVS $EAOC EA75 C9 8A CI1P I$8A
EA05 AO 3F 02 LOA $023F EA77 FO 07 BEQ $EA80
EAOO 00 18 BNE $EA22 EA79 A9 FF LDA #$FF
EAOA FO IE BEQ $EA2A EA7B 80 3F 02 STA $023F
EAOC 20 87 EB JSR $EB87 EA7E 00 02 BNE $EA82
EAOF 20 FO EA JSR $EAFD EA80 AO 00 LOY 1$00
EA12 AO 3F 02 LDA $023F EA82 A5 30 LDA $30
EAI5 FO 05 BEQ $EAIC EA84 8D 19 03 STA $0319
EAll AO 19 03 LDA $0319 EA87 60 RTS

Pa g e 331

EABB A9 01 LDA #$01 EAEE FO OB BEQ $EAPB
(Cl SEND BUFFER TO EHO 85]A STA $3A
EA8A 85 30 STA $30 EAF2 A5 10 LDA $10
(Cl SERIAL BUS EAF4 29 F7 AND #$F7
EA8C 20 17 EC JSR $ECI7 EAF6 85 10 STA $10
EA8F AO 00 LDY 1$00 EAF8 8D OE D2 STA $D2OE
EA91 84 31 STY $31 EHB 68 PLA
EA93 84 3B STY $3B EAFC 40 RT!
EA95 84 3A STY $3A EAFD A9 00 LDA #$00
EA97 BI 32 LDA ($32). Y (Cl RECEIVE
EA99 8D OD D2 STA $D20D EAFF AC OF 03 LDY $030F
EA9C B5 31 STA $31 EB02 DO 02 BNE $EB06
EA9E A5 II LDA $11 EB04 85 31 STA $31
EAAO DO 03 BNE $EAA5 EB06 B5 38 STA $38
EAA2 4C C7 ED JMP $EDC7 EB08 85 39 STA $39
EAA5 AS 3A LDA $3A EBOA A9 01 LDA #$01
EAA7 FO F5 BEQ $EA9E EBOC 85 30 STA $30
EAA9 20 84 EC JSR $EC84 EBOE 20 40 EC JSR $EC40
EAAC 60 RTS EBII A9 3C LDA 1$3C
EAAD 98 TYA EBI3 8D 03 D3 STA $D303
(Cl SERIAL O/P READY IRQ EBI6 A5 II LDA $11
EAAE 48 PHA EB18 DO 03 BNE $EBID
EAAF E6 32 INC $32 EBIA 4C C7 ED JMP $EDC7
EABI DO 02 BNE $EAB5 EBID AD 17 03 LDA $0317
EAB3 E6 33 INC $33 EB20 FO 05 BEQ $EB27
EAB5 A5 32 LDA $32 EB22 A5 39 LDA $39
EAB7 C5 34 CMP $34 EB24 FO FO BEQ $EBI6
EAB9 A5 33 LDA $33 EB26 60 RTS
EABB E5 35 SBC $35 EB27 A9 8A LDA 1$8A
EABD 90 IC BCC $EADB (C) INDICATE TIMEOUT
EABF AS 3B LDA $3B EB29 85 30 STA $30
EACI DO OB BNE $EACE EB2B 60 RTS
EAC3 A5 31 LDA $31 EB2C 98 TYA
EAC5 8D OD D2 STA $D20D (C) SERIAL liP READY IRQ
EAC8 A9 FF LDA #$H EB2D 48 PHA
EACA 85 3B STA $3B EB2E AD OF D2 LDA $D20F
EACC DO 09 BNE $EAD7 EB31 8D OA D2 STA $D20A
EACE A5 10 LDA $10 EB34 30 04 BMI $EB3A
EADO 09 08 ORA #$08 EB36 AO 8C LDY 1$8C
EAD2 85 10 STA $10 EB38 84 30 STY $30
EAD4 8D OE D2 STA $D20E EB3A 29 20 AND 1$20
EAD7 68 PLA EB3C DO 04 BNE $EB42
EAD8 A8 TAY EB3E AO 8E LDY 1$8E
EAD9 68 PLA EB40 84 30 STY $30
EADA 40 RT! EB42 A5 38 LDA $38
EADB AO 00 LDY 1$00 EB44 FO 13 BEQ $EB59
EADD Bl 32 LDA ($32). Y EB46 AD OD D2 LDA $D20D
EADF 8D OD D2 STA $D20D EB49 C5 31 CMP $31
EAE2 18 CLC EB4B FO 04 BEQ $EB51
EAE3 65 31 ADC $31 EB4D AO 8F LDY 1$8F
EAE5 69 00 ADC 1$00 EB4F 84 30 STY $30
EAE7 85 31 STA $31 EB51 A9 FF LDA I$FF
EAE9 4C D7 EA JMP $EAD7 EB53 85 39 STA $39
EAEC A5 3B LDA $3B EB55 68 PLA
(C) SERIAL 0IP COMPLETE E856 A8 TAY

Page 332

APPENDIX E6:

EB57 68 PLA EBCB 20 87 EB JSR $EB87
EB58 40 RTI EBCE 20 88 EA JSR $EA88
EB59 AD OD D2 LDA $D20D EBDI 4C 04 EC JtlP $EC04
EB5C AO 00 LDY 1$00 EBD4 A9 FF LDA I$FF
EB5E 91 32 STA ($32), Y EBD6 8D OF 03 STA $030F
EB60 18 CLC EBD9 A6 62 LDX $62
EB61 65 31 ADC $31 EBDB BC 17 EE LDY $EEI7.X
EB63 69 00 ADC 1$00 EBDE AD OB 03 LDA $030B
EB65 85 31 STA $31 EBEI 30 03 BtlI $EBE6
EB67 E6 32 INC $32 EBE3 BC 13 EE LDY $EEI3.X
EB69 DO 02 BNE $EB6D EBE6 A2 00 LDX 1$00
EB6B E6 33 INC $33 EBE8 20 E2 ED JSR $EDE2
EB6D A5 32 LDA $32 EBEB A9 34 LDA 1$34
EB6F C5 34 CtlP $34 EBED 8D 02 D3 STA $D302
EB71 A5 33 LDA $33 EBFO AD 17 03 LDA $0317
EB73 E5 35 SBC $35 EBF3 DO FB BNE $EBFO
EB75 90 DE BCC $EB55 EBF5 20 87 EB JSR $EB87
EB77 A5 3C LDA $3C EBF8 20 9A EC JSR $EC9A
EB79 FO 06 BEQ $EB81 EBFB 20 E2 ED JSR $EDE2
EB7B A9 00 LDA 1$00 EBFE 20 3D ED JSR $ED3D
EB7D 85 3C STA $3C ECOI 20 FD EA JSR $EAFD
EB7F FO DO BEQ $EB51 EC04 AD OB 03 LDA $030B
EB81 A9 FF LOA I$H EC07 30 05 BtlI $ECOE
EB83 85 38 STA $38 EC09 A9 3C LDA 1$3C
EB85 DO CE BNE $EB55 ECOB 8D 02 D3 STA $D302
EB87 18 CLC ECOE 4C 2A EA JtlP $EA2A
(C) SET BUFFER POINTERS ECII A9 00 LDA 1$00
EB88 AD 04 03 LDA $0304 (C) TIMER EXPIRATION
EB8B 85 32 STA $32 EC13 8D 17 03 STA $0317
EB8D 6D 08 03 ADC $0308 ECI6 60 RTS
EB90 85 34 STA $34 EC17 A9 07 LDA 1$07
EBn AD 05 03 LDA $0305 (C) ENABLE SIO SEND
EB95 85 33 STA $33 EC19 2D 32 02 AND $0232
EB97 6D 09 03 ADC $0309 EC1C 09 20 ORA 1$20
EB9A 85 35 STA $35 EC1E AC 00 03 LDY $0300
EB9C 60 RTS EC21 CO 60 CPY 1$60
EB9D AD 03 03 LDA $0303 EC23 DO OC BNE $EC31
(C) CASSETTE I/O EC25 09 08 ORA 1$08
EBAO 10 32 BPL $EBD4 EC27 AO 07 LDY 1$07
EBA2 A9 CC LDA I$CC EC29 8C 02 D2 STY $D202
EBA4 8D 04 02 STA $D204 EC2C AO 05 LDY 1$05
EBA7 A9 05 LDA 1$05 EC2E 8C 00 D2 STY $D200
EBA9 80 06 02 STA $D206 EC31 8D 32 02 STA $0232
EBAC 20 17 EC JSR $ECI7 EC34 8D OF 02 STA $D20F
EBAF A6 62 LDX $62 EC37 A9 C7 LDA I$C7
EBBI BC 15 EE LDY $EEI5.X EC39 25 10 AND $10
EBB4 AD OB 03 LOA $030B EC3B 09 10 ORA 1$10
EBB7 30 03 BtlI $EBBC EC3D 4C 56 EC JtlP $EC56
EBB9 BC II EE LDY $EEll,X EC40 A9 07 LDA 1$07
EBBC A2 00 LDX 1$00 (C) ENABLE SIO RECEIVE
EBBE 20 E2 ED JSR $EDE2 EC42 2D 32 02 AND $0232
EBCI A9 34 LDA 1$34 EC45 09 10 ORA 1$10
EBC3 8D 02 D3 STA $D302 EC47 8D 32 02 STA $0232
EBC6 AD 17 03 LDA $0317 EC4A 8D OF D2 STA $D20F
EBC9 DO FB BNE $EBC6 EC4D 8D OA D2 STA $D20A

Page 333

HPEtilllX- E6:

EC50 A9 C7 LOA #$C7 ECAF A2 01 LOX #$01
EC52 25 10 AND $10 (C) SEND TO INTELLIGENT
EC54 09 20 ORA #$20 ECBI AO FF LOY #$FF
EC56 85 10 STA $10 (C) DEVICE
(C) SET FOR SEND OR RECEIVE ECB3 88 DEY
EC58 8D OE D2 STA $D20E ECB4 DO FD BNE $ECB3
EC5B A9 28 LDA #$28 ECB6 CA DEX
EC5D 80 08 D2 STA $D208 ECB7 DO F8 ONE $ECBI
EC60 A2 06 LDX #$06 ECB9 20 88 EA JSR $EA88
EC62 A9 A8 LDA #$A8 ECBC AO 02 LDY #$02
EC64 A4 41 LDY $41 ECBE A2 00 LDX #$00
EC66 DO 02 BNE $EC6A ECCO 20 E2 ED JSR $EDE2
EC68 A9 AO LDA #$AO (C) SET TIMER & WAIT
EC6A 9D 01 D2 STA $D201,X ECC3 20 37 EA JSR $EA37
EC6D CA DEX ECC6 98 TYA
EC6E CA DEX ECC7 60 RTS
EC6F 10 F9 BPL $EC6A ECC8 8D 10 03 STA $0310
EC71 A9 AO LDA '$AO (C) COMPUTE BAUD RATE
EC73 8D 05 D2 STA $D205 ECCB 8C II 03 STY $0311
EC76 AC 00 03 LDY $0300 ECCE 20 2E ED JSR $ED2E
EC79 CO 60 CPY #$60 ECDI 8D 10 03 STA $0310
EC7B FO 06 BEQ $EC83 ECD4 AD OC 03 LOA $030C
EC7D 8D 01 D2 STA $D201 ECD7 20 2E ED JSR $ED2E
EC80 8D 03 D2 STA $D203 ECDA 8D OC 03 STA $030C
EC83 60 RTS ECDD AD 10 03 LDA $0310
EC84 EA NOP ECEO 38 SEC
(C) DISABLE SEND OR RECEIVE ECEI ED OC 03 SBC $030C
EC85 A9 C7 LDA #$C7 ECE4 8D 12 03 STA $0312
EC87 25 10 AND $10 ECE7 AD II 03 LDA $0311
EC89 85 10 STA $10 ECEA 38 SEC
EC8B 8D OE D2 STA $D20E ECEB ED OD 03 SBC $030D
EC8E A2 06 LDX #$06 ECEE A8 TAY
EC90 A9 00 LDA #$00 ECEF A6 62 LDX $62
EC92 9D 01 D2 STA $D201,X ECFI A9 00 LDA #$00
EC95 CA DEX ECF3 38 SEC
EC96 CA DEX ECF4 FD 19 EE SBC $EEI9,X
EC97 10 F9 BPL sscsz ECF7 18 CLC
EC99 60 RTS ECF8 7D 19 EE ADC $EEI9,X
EC9A AD 06 03 LDA $0306 ECFB 88 DEY
(C) GET DEVICE TIMEOUT ECFC 10 F9 BPL $ECF7
EC9D 6A ROR A ECFE 18 CLC
EC9E 6A ROR A ECFF 6D 12 03 ADC $0312
EC9F A8 TAY ED02 A8 TAY
ECAO 29 3F AND #$3F ED03 4A LSR A
ECA2 AA TAX ED04 4A LSR A
ECA3 98 TYA ED05 4A LSR A
ECA4 6A ROR A ED06 OA ASL A
ECA5 29 CO AND #$CO ED07 38 SEC
ECA7 A8 TAY ED08 E9 16 SBC #$16
ECA8 60 RTS EDOA AA TAX

EDOB 98 TVA
ECA9 2C EB AD EA EC EA EDOC 29 07 AND #$07
(C) SIO INTERRUPT HANDLERS EDOE A8 TAY

EDOF A9 F5 LDA #$F5
EDII 18 CLC

Page 334

APPENDIX E6:

ED12 69 OB ADC #$OB ED82 88 DEY
ED14 88 DEY ED83 DO E3 BNE $ED68
ED15 10 FA BPL $EDll ED85 CE 15 03 DEC $0315
ED17 AO 00 LDY #$00 ED88 30 OC BMI $ED96
ED19 38 SEC ED8A AD OB D4 LDA $D40B
ED1A E9 07 SBC #$07 ED8D A4 14 LDY $14
ED1C 10 01 BPL $ED1F ED8F 20 C8 EC JSR $ECC8
ED1E 88 DEY ED92 AO 09 LDY #$09
ED1F 18 CLC ED94 DO D2 BNE $ED68
ED20 7D F9 ED ADC $EDF9,X ED96 AD EE 02 LDA $02EE
ED23 8D EE 02 STA $02EE ED99 8D 04 D2 STA $D204
ED26 98 TYA ED9C AD EF 02 LDA $02EF
ED27 7D FA ED ADC $EDFA,X ED9F 8D 06 D2 STA $D206
ED2A 8D EF 02 STA $02EF EDA2 A9 00 LDA #$00
ED2D 60 RTS EDA4 8D OF D2 STA $D20F
ED2E C9 7C CMP #$7C EDA7 AD 32 02 LDA $0232
(C) ADJUST VCOUNT VALUE EDAA 8D OF D2 STA $D20F
ED30 30 04 BMI $ED36 EDAD A9 55 LDA #$55
ED32 38 SEC EDAF 91 32 STA ($32),Y
ED33 E9 7C SBC #$7C EDBI C8 INY
ED35 60 RTS EDB2 91 32 STA ($32),Y
ED36 18 CLC EDB4 A9 AA LDA #$AA
ED37 A6 62 LDX $62 EOB6 85 31 STA $31
ED39 7D lB EE ADC $EE1B,X EDB8 18 CLC
ED3C 60 RTS EOB9 AS 32 LDA $32
ED3D A5 11 LDA $11 EOBB 69 02 ADC #$02
(C) SET 1N1TI AL BAUD RATE EOBO 85 32 STA $32
ED3F 00 03 BNE $E044 EOBF A5 33 LDA $33
E041 4C C7 EO JMP $EOC7 EOCI 69 00 ADC #$00
E044 78 SEI EOC3 85 33 STA $33
E045 AD 17 03 LDA $0317 EOC5 58 CLI
ED48 DO 02 BNE $ED4C EOC6 60 RTS
E04A FO 25 BEQ $E071 EDC7 20 84 EC JSR $EC84
ED4C AD OF 02 LOA $020F (C) PROCESS BREAK-KEY
E04F 29 10 ANO #$10 EOCA A9 3C LOA #$3C
E051 DO EA BNE $E03D EOCC 8D 02 D3 STA $0302
ED53 8D 16 03 STA $0316 EDCF A9 3C LOA #$3C
ED56 AE OB D4 LDX $040B EOOI 8D 03 D3 STA $0303
E059 A4 14 LOY $14 ED04 A9 80 LOA #$80
E05B 8E OC 03 STX $030C E006 85 311 STA $30
E05E 8C 00 03 STY $0300 ED08 AE 18 03 LOX $0318
E061 A2 01 LOX #$01 EODB 9A TXS
ED63 8E 15 03 STX $0315 EOOC C6 I 1 OEC $11
E066 AO OA LOY #$OA EOOE 58 CLI
E068 AS II LOA $11 EDOF 4C 2A EA JMP $EA2A
E06A FO 5B BEQ $EOC7 EOE2 A9 11 LDA #$11
E06C AO 17 03 LOA $0317 (C) SET SIO VBLANK
E06F DO 04 BNE $ED75 EOE4 8D 26 02 STA $0226
E071 58 CLI (C) PARAMETERS
E072 4C 27 EB JMP $EB27 EOE7 A9 EC LOA #$EC
E075 AO OF 02 LOA $D20F EOE9 8D 27 02 STA $0227
E078 29 10 AND #$10 EOEC A9 01 LOA #$01
E07A CD 16 03 CMP $0316 EOEE 78 SEI
ED7D FO E9 BEQ $ED68 EOEF 20 5C E4 JSR $E45C
E07F 80 16 03 STA $0316 EDF2 A9 01 LDA #$01

Page 335

Al'PENJ!lX-ll-!.-

EDF4 8D 17 03 STA $0317 EEC9 E8 INX
EDF7 58 CLI EECA EO 22 CPX #$22
EOF8 60 RTS EECC 30 F4 BtIl $EEC2

EECE A2 00 LOX #$00
EDF9 E8 03 43 04 9E 04 F9 04 EEOO A8 TAY
(C) POKEY FREQUENCY EEDI A9 00 LOA 1$00
EEOI 54 05 AF 05 OA 06 65 06 EE03 DO IA 03 CMP $03IA,X
(C) VALUES EE06 FO 13 BEQ $EEEB
EE09 CO 06 lA 07 75 07 DO 07 EE08 E6 INX

EED9 E8 INX
EEll B4 96 78 64 OF OD OA 06 EEDA E6 INX
(C) NTSC/PAL CONSTANT EEDB EO 22 CPX 1$22
EEI9 83 9C 07 20 18 10 OA OA EEDO 30 F4 BMI $EE03
(C) VALUES EEOF 66 PLA

EEEO 66 PLA
EEID 18 10 OA OA 10 IC 34 64 EEEI AO FF LOY I$FF
(C) SCREEN MEMORY ALLOC. EEE3 38 SEC
EE25 C4 C4 C4 C4 IC 10 64 C4 EEE4 60 RTS
EE2D 17 17 OB 17 2F 2F 5F 5F EEE5 68 PLA
(C) DL ENTRY COUNTS EEE6 A6 TAY
EE35 61 61 61 61 17 OB BF 61 EEE7 68 PLA
EE3D 13 13 09 13 27 27 4F 4F EEE8 E8 INX
EE45 41 41 41 41 13 09 9F 41 EEE9 36 SEC
EE4D 02 06 07 06 09 OA OB OD EEEA 60 RTS
(C) ANTIC GRAPHIC MODES EEEB 96 TYA
EE55 OF OF OF OF 04 05 OC OE EEEC 9D lA 03 STA $031A,X
EE5D 00 00 00 00 00 00 00 01 EEEF 68 PLA
(C) DL VULNERABILITY EEFO 9D IB 03 STA $03IB,X
EE65 01 01 0 I 01 00 00 01 01 EEF3 68 PLA
EE6D 03 02 02 01 01 02 02 03 EEF4 9D lC 03 STA $031C,X
(C) LEFT SHIFT COLUMNS EEF7 18 CLC
EE75 03 03 03 03 03 03 02 03 EEF8 60 RTS
EE7D 28 14 14 28 50 50 AO AO EEF9 AO 00 LDY 1$00
(C) MODE COLUMN COUNTS (C) PERIPHERAL HANDLER
EE85 40 50 50 50 28 26 AO AO EEFB B1 24 LDA ($24),Y
EE8D 18 16 OC 18 30 30 60 60 (C) POLL AT OPEN
(C) MODE ROW COUNTS EEFD A4 21 LDY $21
EE95 CO CO CO CO 18 OC CO CO EEFF 20 BE E7 JSR $E7BE
EE9D 00 00 00 02 03 02 03 02 EF02 10 03 BPL $EF07
(C) RIGHT SHIFT COUNTS EF04 AO 82 LDY 1$82
EEA5 03 01 01 01 00 00 03 02 EF06 60 RTS
EEAD FF FO OF CO 30 OC 03 80 EF07 A9 7F LDA 1$7F
(C) DISPLAY MASKS EF09 85 20 STA $20
EEB5 40 20 10 08 04 02 01 EFOB A9 25 LDA 1$25

EFOD 65 26 STA $26
EEBC 46 PHA EFOF A9 EF LDA I$EF
(C) PERIPHERAL HANDLER ENTRY EFII 85 27 STA $27
EEBD 96 TYA EF13 AD EC 02 LDA $02EC
EEBE 48 PHA EFI6 AE 2E 00 LOX $002E
EEBF 8A TXA EFI9 9D 4D 03 STA $034D.X
EECO A2 00 LDX 1$00 EFIC AO 00 LDY 1$00
EEC2 DD IA 03 CMP $031A,X EFIE Bl 24 LDA ($24),Y
EEC5 FO IE BEQ $EEE5 EF20 9D 4C 03 STA $034C,X
EEC7 E8 INX EF23 AO 01 LDY 1$01
EEC6 E8 INX EF25 60 RTS

Page 336

APPENDIX E6:

EF26 48 PHA EF83 85 7A STA $7A
(C) PUT BYTE FOR EF85 A9 I 1 LOA #$11
EF27 8A TXA EF87 85 60 STA $60
(C) PROVISIONALLY OPEN EF89 A9 FC LOA #$FC
EF28 48 PHA EF8B 85 61 STA $61
(C) 10CB EF80 60 RTS
EF29 29 OF AND I$OF EF8E AS 2B LOA $2B
EF2B DO 10 BNE $EF30 (C) SCREEN OPEN
EF20 EO 80 CPX #$80 EF90 29 OF AND #$OF
EF2F 10 OC BPL $EF30 EF92 DO 08 BNE $EF9C
EDI AD E9 02 LDA $02E9 EF94 AS 2A LDA $2A
EF34 DO OB BNE $EF41 (C) EDITOR OPEN
EF36 AO 82 LOY #$82 EF96 29 OF AND #$OF
EF38 68 PLA EF98 85 2A STA $2A
EF39 68 PLA EF9A A9 00 LOA 1$00
EF3A CO 00 CPY #$00 EF9C 85 57 STA $57
EF3C 60 RTS (C) COMPLETE OPEN
EF3D AO 86 LDY #$86 EF9E C9 10 CMP #$10
EDF 30 F7 BMI $EF38 EFAO 90 05 BCC $EFA7
EF41 8E 2E 00 STX $002E EFA2 A9 91 LDA #$91
EF44 AO 00 LOY #$00 EFA4 4C 54 FI JItP $F154
EF46 BO 40 03 LOA $0340,X EFA7 A9 EO LDA #$EO
EF49 99 20 00 STA $0020,Y EFA9 8D F4 02 STA $02F4
EF4C E8 INX EFAC A9 CC LOA #$CC
EF40 C8 INY EFAE 8D 6B 02 STA $026B
EF4E CO OC CPY I$OC EFBI A9 02 LDA #$02
EF50 30 F4 BMI $EF46 EFB3 8D F3 02 STA $02F3
EF52 20 29 CA JSR $CA29 EFB6 8D 2F 02 STA $022F
EP55 30 EI BMI $EF38 EFB9 A9 01 LOA #$01
EF57 68 PLA EFBB 85 4C STA $4C
EF58 AA TAX EFBD A9 CO LDA #$CO
EF59 68 PLA EFBP 05 10 ORA $10
EF5A A8 TAY EFCI 85 10 STA $10
EF5B A5 27 LDA $27 EFC3 8D OE D2 STA $D20E
EF5D 48 PHA EFC6 A9 40 LOA 1$40
EF5E A5 26 LDA $26 EFC8 8D OE 04 STA $D40E
EF60 48 PHA EFCB 2C 6E 02 BIT $026E
EF61 98 TYA EFCE 10 OC BPL $EFDC
EF62 AO 92 LDY #$92 EFOO A9 C4 LDA #$C4
EF64 60 RTS EFD2 80 00 02 STA $0200

EF05 A9 FC LOA I$FC
EF65 00 00 00 00 00 00 EFD7 80 01 02 STA $0201
(C) UNUSED EFOA A9 CO LDA I$CO

EFOC 80 OE D4 STA $D40E
EF6B 4C 05 rn JMP $FD05 EFOF A9 00 LDA #$00
EF6E A9 FF LDA I$FF EFEI 8D 93 02 STA $0293
(C) INITIALIZE SCREEN EFE4 85 64 STA $64
EF70 8D FC 02 STA $02FC EFE6 85 7B STA $7B
EF73 AD E4 02 LOA $02E4 EFE8 80 FO 02 STA $02FO
EF76 85 6A STA $6A EFEB AO OE LDY I$OE
EF78 A9 40 LDA #$40 EFED A9 01 LOA 1$01
EF7A 80 BE 02 STA $02BE EFEF 99 A3 02 STA $02A3,Y
EF7D A9 51 LDA 1$51 EFF2 88 DEY
EF7F 85 79 STA $79 EFF3 10 FA BPL $EFEF
EF81 A9 FB LDA #$FB EFF5 A2 04 LDX #$04

Page 337

H.PIDIIUL E6 :

EFF7 DD 08 FB LDA SFD08,X F06A C6 65 DEC S65EFFA 9D C4 02 STA S02C4,X F06C 20 65 F5 JSR $F565EFFD CA VEX F06F A5 64 LDA $64EHE 10 F7 BPL $EFF7 F071 85 68 STA $68FOOO A4 6A LDY S6A F073 A5 65 LDA S65F002 88 DEY F075 85 69 STA $69F003 8C 95 02 STY $0295 FOn A9 41 LDA 1$41F006 A9 60 LDA 1$60 F079 20 70 F5 JSR $F570F008 8D 94 02 STA $0294 F07C 86 66 STX $66FOOD A6 57 LDX $57 FOn A9 18 LDA 1$18FOOD DD 4D EE LDA $EE4D,X F080 8D DF 02 STA S02DFFOIO 85 51 STA S51 F083 A5 57 LDA $57FOl2 AS 6A LDA S6A F085 C9 OC CMP I$OCF014 85 65 STA S65 F087 DO 04 BCS SF08DFOl6 BC ID EE LDY $EEID,X F089 C9 09 CMP 1$09FOl9 A9 28 LDA 1$28 F08D DO 39 BCS SFOC6FOlD 20 7A F5 JSR $F57A F08D A5 2A LDA $2AFOIE 88 DEY F08F 29 10 AND 'SIOFOIF DO F8 BNE $FOI9 F091 FO 33 BEQ $FOC6F021 AD 6F 02 LDA $026F F093 A9 04 LDA #$04F024 29 3F AND IS3F F095 8D DF 02 STA S02BFF026 85 67 STA $67 F098 A2 02 LDX IS02F028 A8 TAY F09A AD 6E 02 LOA S026EF029 EO 08 CPX 1$08 F090 FO 03 DEQ $FOA2F02B 90 IF DCC $F04C F09F 20 AO F5 JSR $F5AOF02D EO OF CPX ISOF FOA2 A9 02 LOA #S02F02F FO OD DEQ SF03E FOA4 20 69 F5 JSR $F569F031 EO OC CPX #SOC FOA7 CA OEX
F033 DO 17 BCS $F04C FOA8 10 F8 DPL $FOA2F035 8A TXA FOAA A4 6A LDY $6AF036 6A ROR A FOAC 88 DEY
F037 6A ROR A FOAO 98 TYA
F038 6A ROR A FOAE 20 70 F5 JSR SF570F039 29 CO AND #SCO FODI A9 60 LOA #S60F03B 05 67 ORA $67 FOD3 20 70 F5 JSR SF570F03D A8 TAY FOD6 A9 42 LDA IS42F03E A9 10 LDA #S10 FOD8 20 69 F5 JSR SF569F040 20 7A F5 JSR $F57A FOBB 18 CLC
F043 EO OB CPX #$OB FOBC A9 10 LDA #SIOF045 DO 05 BNE $F04C FODE 65 66 AOC S66F047 A9 06 LDA #S06 FOCO A8 TAY
F049 8D C8 02 STA S02C8 FOCI DE 20 EE LDX SEE2D,YF04C 8C 6F 02 STY S026F FOC4 DO 15 BNE SFODBF04F AS 64 LDA $64 FOC6 A4 66 LDY S66F051 85 58 STA $58 FOC8 DE 2D EE LDX $EE2D.YF053 AS 65 LDA S65 FOCB AS 57 LDA S57F055 85 59 STA S59 FOCD DO OC BNE $FODBF057 AD OB D4 LDA $040B FOCF AD 6E 02 LDA $026EF05A C9 7A CMP #$7A FOD2 FO 07 BEQ $FODBF05C DO F9 BNE $F057 FOD4 20 AO F5 JSR $F5AOF05E 20 78 F5 JSR $F578 FOD7 A9 22 LDA #$22
F061 DD 5D EE LDA $EE5D,X FOD9 85 51 STA $51F064 FO 06 BEQ SF06C FODB AS 51 LDA $51F066 A9 FF LDA #$FF FODD 20 70 F5 JSR $F570
F068 85 64 STA $64 FOEO CA DEX

Page 338

APPENDIX E6:

FOEI DO F8 BNE SFODB FI5F 8C EC 03 STY S03ECFOE3 A5 57 LDA S57 FI62 A8 TAY
FOE5 C9 08 CMP IS08 FI63 60 RTS
FOE7 90 26 BCC SFIOF F164 A5 2A LDA $2A
FOE9 C9 OF CMP I$OF F166 29 20 AND IS20FOEB FO 04 BEQ SFOFI FI68 DO OB BNE $F175FOED C9 OC CMP I$OC FI6A 20 20 F4 JSR $F420
FOEF BO IE BCS $FIOF FI6D 8D 90 02 STA $0290
FOFI A2 5D LDX I$5D F170 A5 52 LDA $52
FOF3 A5 6A LDA $6A FI72 8D 91 02 STA $0291
FOF5 38 SEC FI75 A9 22 LDA 1$22
FOF6 E9 10 SBC 1$10 Fin OD 2F 02 ORA $022F
FOF8 20 70 F5 JSR $F570 F17A 8D 2F 02 STA S022F
FOFB A9 00 LDA ISOO F17D 4C OB F2 JMP $F20B
FOFD 20 70 F5 JSR SF570 F180 20 CA F6 JSR $F6CA
Fl00 A5 51 LDA $51 (C) SCREEN GET BYTE
FI02 09 40 ORA IS40 F183 20 8F FI JSR $Fl8FFl04 20 70 F5 JSR $F570 FI86 20 6A F7 JSR $F76A
FI07 A5 51 LDA S51 F189 20 OA F6 JSR $F60A
Fl09 20 70 F5 JSR SF570 FI8C 4C IE F2 JMP $F2IE
FlOC CA DEX F18F 20 AC F5 JSR $F5ACFIOD DO F8 BNE SF107 (C) GET DATA UNDER CURSOR
FIOF A5 59 LDA $59 Fl92 Bl 64 LDA (S64).Y
Fill 20 70 F5 JSR $F570 FI94 2D AO 02 AND $OUO
FII4 A5 58 LDA S58 F197 46 6F LSR $6F
Fl16 20 70 F5 JSR $F570 F199 BO 03 BCS $FI9EFI19 A5 51 LDA S51 Fl9B 4A LSR AFIIB 09 40 ORA IS40 FI9C 10 F9 BPL $F197FlI D 20 70 F5 JSR SF570 FI9E 8D FA 02 STA $02FAFl20 A9 70 LDA IS70 FIAI C9 00 CMP ISOOF122 20 70 F5 JSR SF570 FIA3 60 RTSFl25 A9 70 LDA IS70 FIA4 8D FB 02 STA S02FBFl27 20 70 F5 JSR SF570 (C) SCREEN PUT BYTE
FlU A5 64 LDA S64 FIA7 C9 7D CMP I$7DFl2C 8D 30 02 STA S0230 FIA9 DO 06 BNE SFIBIFl2F A5 65 LDA S65 FlAB 20 20 F4 JSR SF420FI31 80 31 02 STA S0231 FIAE 4C OB F2 JMP SF20BFl34 A9 70 LOA IS70 FIBI 20 CA F6 JSR SF6CAFl36 20 70 F5 JSR SF570 (C) CHECK FOR END-OF-LINE
Fl39 A5 64 LOA S64 FIB4 AD FB 02 LDA S02FBFI3B 8D E5 02 STA S02E5 FIB7 C9 9B CMP IS9BFI3E A5 65 LDA S65 FIB9 DO 06 BNE SFICIFI40 8D E6 02 STA S02E6 FIBB 20 61 F6 JSR SF661FI43 AO 01 LDY ISOI FIBE 4C OB F2 JMP SF20BFl45 AD 30 02 LDA S0230 FICI 20 CA Fl JSR SFICAFI48 91 68 STA (S68).Y FIC4 20 OE F6 JSR $F60EFI4A C8 INY FIC7 4C OB F2 JMP SF20BFl4B AD 31 02 LDA S0231 FICA AD FF 02 LDA $02FFFl4E 91 68 STA (S68).Y (C) PLOT POINT
FI50 A5 4C LDA S4C FICD DO FB BNE SFICAFl52 10 10 BPL SFl64 FICF A2 02 LDX IS02Fl54 8D EC 03 STA S03EC FIDI B5 54 LDA S54.XFl57 20 94 EF JSR SEF94 FID3 95 5A STA S5A.XFl5A AD EC 03 LOA S03EC FID5 CA DEXFl5D AO 00 LDY ISOO F1D6 10 F9 BPL SFIDI

Pase 339

APPENDIX E6j

FID8 AD FB 02 LOA $02FB F242 A9 CO LOA I$CO
FIOII A8 TAY F244 80 01 02 STA $0201
FlOC 2A ROL A F247 4C 94 EF JHP $EF94
FIDD 2A ROL A F24A 20 62 F9 JSR $F962
FIDE U ROL A (C) EDITOR GET BYTE
FIDF 2A ROL A F24D 20 BC HI JSR $F6BC
FlEa 29 03 AND #$03 F250 A5 6B LOA $6B
FIE2 U TAX F252 DO 34 BNE $F288
FIE3 98 TVA F254 A5 54 LOA $54
FIE4 29 9F AND #$9F F256 85 6C STA $6C
FIE6 10 49 FB ORA $FB49,X F258 A5 55 LOA $55
FIE9 80 FA 02 STA $02FA F25A 85 60 STA $60
(C) DISPLAY F25C 20 FO F2 JSR $F2FD
FIEC 20 AC F5 JSR $F5AC F25F 84 4C STY $4C
FIEF AD FA 02 LDA $02FA F261 AD FB 02 LDA $02FB
FIF2 46 6F LSR $oF F264 C9 9B CMP #$9B
FIF4 BO 04 BCS $FlFA F206 FO 12 BEQ $F27A
FIFo OA ASL A F208 20 BE F2 JSR $F2BE
FIF7 4C F2 FI JMP $FIF2 F26B 20 62 F9 JSR $F962
FIFA 2D AO 02 AND $OUO F20E A5 63 LOA $63
FIFD 85 50 STA $50 F270 C9 71 CMP #$71
FIFF AD AO 02 LDA $OUO F272 DO 03 BNE $F277
F202 49 FF EOR #$H F274 20 56 F5 JSR $F556
F204 31 64 AND ($64), Y F277 4C 5C F2 JMP $F25C
F206 05 50 ORA $50 F27A 20 18 F7 JSR $F718
F208 91 64 STA ($64),Y F27D 20 BI F8 JSR $F8BI
(C) SET EXIT CONDITIONS F280 A5 6C LDA $6C
F20A 60 RTS F282 85 54 STA $54
F20B 20 8F FI JSR $FI8F F284 A5 6D LDA $6D
F20E 85 5D STA $5D F286 85 55 STA $55
F210 A6 57 LDX $57 F288 A5 6B LDA $6B
F212 DO OA BNE $F2IE F28A FO II BEQ $F29D
F214 AE FO 02 LDX $02FO F28C C6 6B DEC $6B
F217 DO 05 BNE $F2IE F28E FO OD BEQ $F29D
F219 49 80 EOR #$80 F290 A5 4C LOA $4C
F21B 20 E9 FI JSR $FIE9 F292 30 F8 BtlI $F28C
F21E A4 4C LDY $4C F294 20 80 FI JSR $F180
(C) SCREEN STATUS F297 8D FB 02 STA $02FB
F220 4C 26 F2 JMP $F226 F29A 4C 62 F9 JHP $F962
F223 4C FC C8 JHP $C8FC F29D 20 61 F6 JSR $F661
(C) EXECUTE SELF-TEST F2AO A9 9B LDA #$9B
F226 A9 01 LOA #$01 F2A2 8D FB 02 STA $02FB
F228 85 4C STA $4C F2A5 20 OB F2 JSR $F20B
F22A AD FB 02 LDA $02FB F2A8 84 4C STY $4C
F22D 60 RTS F2U 4C 62 F9 JHP $F962
(C) SCREEN EDITOR SPECIAL F2AD 6C 64 00 JMP ($0064)
F22E 2C 6E 02 BIT $026E F2BO 80 FB 02 STA $02FB
(C) SCREEN EDITOR CLOSE (C) EDITOR PUT BYTE
F231 10 EB BPL $F21E F2B3 20 62 F9 JSR $F962
F233 A9 40 LDA #$40 F2B6 20 BC F6 JSR $F6BC
F235 80 OE 04 STA $D40E F2B9 A9 00 LDA #$00
F238 A9 00 LDA #$00 F2BB 80 E8 03 STA $03E8
F23A 80 6E 02 STA $026E F2BE 20 18 F7 JSR $F718
F23D A9 CE LOA #$CE (C) PROCESS CHARACTER
F23F 80 00 02 STA $0200 F2Cl 20 3C F9 JSR $F93C

Pase 340

APPENDIX E6:

F2C4 FO 09 BEQ $F2CF F339 DO OA BNE $F345
F2C6 OE A2 02 ASL $02A2 F33B AD B6 02 LDA $02B6
F2C9 20 B4 F1 JSR $F1B4 F33E 49 80 EOR #$80
F2CC 4C 62 F9 JtlP $F962 1'340 8D B6 02 STA $02B6
F2C1' AD FE 02 LDA $02FE F343 BO B3 BCS $F2F8
F2D2 OD A2 02 ORA $02A2 F345 C9 82 CtlP #$82
F2D5 DO EF BNE $F2C6 1'347 DO OC BNE $F355
F2D7 OE A2 02 ASL $02A2 1'349 AD BE 02 LDA $02BE
F2DA E8 INX F34C FO OB BEQ $1'359
F2DB AD E8 03 LDA $03E8 F34E A9 00 LDA #$00
F2DE 1'0 05 BEQ $F2E5 1'350 8D BE 02 STA $02BE
F2EO 8A TXA F353 1'0 A3 BEQ $F2F8
F2El 18 CLC F355 C9 83 CtlP #$83
F2E2 69 2D ADC #$2D F357 DO 07 BNE $F360
F2E4 AA TAX 1'359 A9 40 LDA #$40
F2E5 BD OD FB LDA $FBOD,X F35B 8D BE 02 STA $02BE
F2E8 85 64 STA $64 F35E DO 98 BNE $1'21'8
F2EA BD OE FB LDA $FBOE,X 1'360 C9 84 CtlP #$84
F2ED 85 65 STA $65 F362 DO 08 BNE $F36C
F2EF 20 AD 1'2 JSR $F2AD 1'364 A9 80 LDA #$80
F2F2 20 OB 1'2 JSR $F20B F366 8D BE 02 STA $02BE
F2F5 4C 62 F9 JtlP $1'962 1'369 4C F8 1'2 JtlP $F2F8
F2F8 A9 FF LDA #$FF F36C C9 85 CtlP #$85
(C) IGNORE CHARACTER F36E DO OB BNE $F37B
F2FA 8D FC 02 STA $02FC F370 A9 88 LDA #$88
(C) AND PERFORti F372 85 4C STA $4C
F2FD A9 00 LDA #$00 1'374 85 11 STA $11
(C) KEYBOARD GET BYTE 1'376 A9 9B LDA #$9B
F2FF 8D E8 03 STA $03E8 F378 4C DA 1'3 JtlP $F3DA
F302 A5 2A LDA $2A F37B C9 89 CMP #$89
F304 4A LSR A F37D DO 10 BNE $F38F
F305 BO 61' BCS $F376 1'371' AD DB 02 LDA $02DB
1'307 A9 80 LDA #$80 1'382 49 1'1' EOR #$F1'
F309 A6 11 LDX $11 1'384 8D DB 02 STA $02DB
1'30B 1'0 65 BEQ $1'372 1'387 DO 03 BNE $1'38C
FJOD AD FC 02 LDA $021'C 1'389 20 83 1'9 JSR $1'983
1'310 C9 FF CMP #$FF 1'38C 4C 1'8 1'2 JMP $F2F8
1'312 1'0 E9 BEQ $1'2FD 1'381' C9 8E CMP #$8E
F314 85 7C STA $7C 1'391 BO 12 BCS $1'3A5
1'316 A2 FF LDX #$H 1'393 C9 8A CMP #$8A
1'318 8E FC 02 STX $02FC 1'395 90 1'5 BCC $F38C
FJIB AE DB 02 LDX $02DB 1'397 E9 8A SBC #$8A
F31E DO 03 BNE $1'323 F399 06 7C ASL $7C
1'320 20 83 1'9 JSR $1'983 1'39B 10 02 BPL $F391'
1'323 A8 TAY F39D 09 04 ORA #$04
1'324 CO CO CPY #$CO 1'39F A8 TAY
1'326 80 DO BCS $1'21'8 F3AO B1 60 LDA ($60),Y
1'328 Bl 79 LDA ($79), Y 1'3A2 4C 2A 1'3 JMP $F32A
F32A 8D FB 02 STA $021'B F3A5 C9 92 CMP #$92
F32D AA TAX 1'3A7 BO OB BCS $F3B4
F32E 30 03 BMI $1'333 FJA9 C9 8E CMP #$8E
1'330 4C B4 1'3 JPlP $F3B4 FJAB 90 D1' BCC $F38C
F333 C9 80 CMP #$80 1'3AD E9 72 SBC #$72
1'335 1'0 Cl BEQ $F21'8 F3A1' EE E8 03 INC $03E81'337 C9 81 CPlP #$81 FJB2 DO 26 BNE $F3DA

Page 341

FJB4 A5 7C LDA $7C F41D 4C OC F4 JMP $F40C
F31l6 C9 40 CMP 1$40 F'420 20 A6 F9 JSR $F9A6
F3B8 BO 15 IlCS $F3CF (C) CLEAR SCREEN
F3IlA AD FB 02 LDA $02FB F423 A4 64 LDY $64
F3BD C9 61 CMP 1$61 F425 A9 00 LDA 1$00
F3BF 90 OE BCC $F3CF F427 85 64 5TA $64
F3CI C9 7B CMP 1$7B F429 91 64 5TA ($64) ,Y
F3C3 BO OA BCS $F3CF F42B C8 INY
F3C5 AD BE 02 LDA $02BE F42C DO FB BNE $F429
F3CB FO 05 BEQ $F3CF F42E E6 65 INC $65
F3CA 05 7C ORA $7C F430 A6 65 LDX $65ncc 4C 23 F3 JMP $F323 F432 E4 6A CPX $6A
F3CF 20 3C F9 JSR $F93C F434 90 F3 BCC $F429
F3D2 FO 09 BEQ $F3DD F436 A9 FF LDA I$FF
F3D4 AD FB 02 LDA $02FB F438 99 B2 02 STA $02B2,Y
F3D7 4D B6 02 EOR $02B6 F43B C8 INY
F3DA 8D FB 02 STA $02FB F43C CO 04 CPY 1$04
F3DD 4C IE F2 JMP $F2IE F43E 90 F8 BCC $F438
F3EO A9 80 LDA 1$80 F440 20 97 F9 JSR $F997
(C) ESCAPE CHARACTER HANDLER (C) MOVE CURSOR HOME
F3E2 8D A2 02 STA $02A2 F443 85 63 STA $63
F3E5 60 RTS F445 85 6D STA $6D
F3E6 C6 54 DEC $54 F447 A9 00 LDA 1$00
(C) MOVE CURSOR UP F449 85 54 STA $54
F3E8 10 06 BPL $F3FO F44B 85 56 STA $56
F3EA AE BF 02 LDX $02BF F44D 85 6C STA $6C
F3ED CA DEX F44F 60 RTS
F3EE 86 54 STX $54 F450 A5 63 LDA $63
F3FO 4C OC F9 JMP $F90C F452 C5 52 CMP $52
F3F3 E6 54 INC $54 F454 FO 21 BEQ $F477
(C) MOVE CURSOR DOWN F456 A5 55 LDA $55
F3P5 A5 54 LDA $54 F458 C5 52 CMP $52
F3F7 CD BF 02 CMP $02BF F45A DO 03 BNE $F45F
F3FA 90 F4 BCC $F3FO F45C 20 23 F9 JSR $F923
F3FC A2 00 LDX 1$00 F45F 20 00 F4 JSR $F400
P3FE FO EE BEQ $F3EE F462 A5 55 LDA $55
F400 C6 55 DEC $55 P464 C5 53 CMP $53
(C) MOVE CURSOR LEFT F466 DO 07 BNE $F46F
F402 A5 55 LDA $55 F468 A5 54 LDA $54
F404 30 04 BMI $F40A F46A FO 03 BEQ $F46F
F406 C5 52 CMP $52 F46C 20 E6 F3 JSR $F3E6
F408 BO 04 BCS $F40E F46F A9 20 LDA 1$20
F40A A5 53 LDA $53 F471 8D FB 02 STA $02FB
(C) CURSOR TO RIGHT MARGIN F474 20 CA FI JSR $F1CA
F40C 85 55 STA $55 F477 4C 8E F8 JMP $FB8E
(C) SET CURSOR COLUMN F47A 20 II F4 JSR $F411
F40E 4C 8E F8 JMP $F88E (C) TAB CHARACTER HANDLER
F411 E6 55 INC $55 F47D A5 55 LDA $55
(C) MOVE CURSOR POINT F47F C5 52 CMP $52
F413 A5 55 LDA $55 F481 DO 08 BNE $F48B
F415 C5 53 CMP $53 F483 20 65 F6 JSR $F665
F417 90 F5 BCC $F40E F486 20 58 F7 JSR $F758
F419 FO F3 BEQ $F40E F4B9 BO 07 BCS $F492
F41B A5 52 LDA $52 F48B A5 63 LDA $63
(C) CURSOR TO LEFT MARGIN F48D 20 5D F7 JSR $F75D

Page 342

APPENDIX E6:

1'490 90 E8 BCC $F47A 1'501 91 68 STA ($68),Y
1'492 4C 8E 1'8 JtlP $F88E 1'503 20 18 1'9 JSR $1'918
1'495 A5 63 LDA $63 1'506 20 57 1'9 JSR $1'957
(C) SET TAB 1'509 4C 8E 1'8 JtlP $F88E
1'497 4C 3E 1'7 JtlP $F73E F50C 38 SEC
F49A A5 63 LOA $63 (C) INSERT LINE
(C) CLEAR TAB 1'500 20 C2 1'7 JSR $F7C2
F49C 4C 4A 1'7 JtlP $F74A 1'510 A5 52 LOA $52
1'491' 20 4C 1'9 JSR $F94C 1'512 85 55 STA $55
(C) INSERT CHARACTER 1'514 20 AC 1'5 JSR $F5AC
F4A2 20 81' 1'1 JSR $1'181' 1'517 20 8E 1'7 JSR $F78E
F4A5 85 70 STA $7D F51A 20 E2 1'7 JSR $F7E2
F4A7 A9 00 LDA #$00 1'510 4C 8E 1'8 JtlP $F88E
F4A9 80 BB 02 STA $02BB 1'520 20 8E 1'8 JSR $F88E
F4AC 20 E9 1'1 JSR $F1E9 (C) OELETE LINE
F4AF A5 63 LDA $63 1'523 A4 51 LDY $51
F4B1 48 PHA 1'525 84 54 STY $54
F4B2 20 12 1'6 JSR $1'612 1'527 A4 54 LDY $54
F4B5 68 PLA 1'529 98 TYA
F4B6 C5 63 CtlP $63 F52A 38 SEC
F4B8 BO OC BCS $F4C6 F52B 20 5B 1'7 JSR $F75B
F4BA A5 70 LOA $70 F52E 08 PHP
F4BC 48 PHA 1'521' 98 TYA
F4BO 20 81' 1'1 JSR $1'181' 1'530 18 CLC
F4CO 85 70 STA $70 1'531 69 78 ADC #$78
F4C2 68 PLA 1'533 28 PLP
F4C3 4C AC 1'4 JtlP $F4AC 1'534 20 3C 1'7 JSR $F73C
F4C6 20 57 1'9 JSR $1-'957 1'537 C8 {NY
F4C9 CE BB 02 OEC $02BB 1'538 CO 18 CPY #$18
F4CC 30 04 BtlI $1'402 F53A 00 EO BNE $1'529
F4CE C6 54 OEC $54 F53C AD B4 02 LDA $02B4
1'400 00 1'7 BNE $F4C9 1'531' 09 01 ORA #$01
F4D2 4C 8E 1'8 JtlP $F88E 1'541 80 B4 02 STA $02B4
1'405 20 4C 1'9 JSR $F94C 1'544 A9 00 LOA #$00
(C) DELETE CHARACTER 1'546 85 55 STA $55
1'408 20 AC 1'5 JSR $F5AC 1'548 20 AC 1'5 JSR $F5AC
F40B A5 64 LOA $64 F54B 20 2A 1'8 JSR $F82A
1'400 85 68 STA $68 F54E 20 58 1'7 JSR $1'758
1'401' A5 65 LOA $65 1'551 90 D4 BCC $1'527
F4E1 85 69 STA $69 1'553 4C 1B 1'4 JtlP $F41B
F4E3 A5 63 LOA $63 1'556 AO 20 LOY #$20
F4E5 48 PHA (C) SOUND BELL
F4E6 20 OA 1'6 JSR $F60A 1'558 20 83 1'9 JSR $1'983
F4E9 68 PLA F55B 88 OEY
F4EA C5 63 CtlP $63 F55C 10 FA BPL $1'558
F4EC BO 10 BCS $F4FE F55E 60 RTS
F4EE A5 54 LOA $54 1'551' 20 40 1'4 JSR $1'440
1'41'0 CD BF 02 CtlP $02BF (C) CURSOR TO BOTTOtl-LEFT
1'41'3 BO 09 BCS $F4FE 1'562 4C E6 1'3 JtlP $F3E6
1'41'5 20 81' Fl JSR $1'181' 1'565 A9 02 LOA #$02
1'41'8 AO 00 LOY #$00 (C) OOUBLE-BYTE DOUBLE-DEC
F4FA 91 68 STA ($68),Y 1'567 DO 11 BNE $F57A
F4FC 1'0 OA BEQ $F4D8 1'569 AC 6E 02 LDY $026E
F4FE AO 00 LDY #$00 (C) STORE OATA FOR FINE
1'500 98 TYA

Page 343

Q.lL E6 :

F56C FO 02 BEQ $F570 FSCD DO F9 BNE $F5C8
(C) SCROLLI NG f'5CF A5 56 LDA $56
F56E 09 20 ORA #$20 F5DI 4A LSR A
F570 A4 4C LDY $4C F51l2 A5 55 LDA $55
F572 30 2B BMI $F59F F5D4 BE 9D EE LDX $EE9D,Y
F574 AO 00 LDY #$00 F51l7 FO 06 BEQ $F5DF
F576 91 64 STA ($64). Y F5D9 6A ROR A
F578 A9 01 LDA #$01 F5DA 06 66 ASL $66
(C) DOUBLE-BYTE SINGLE-DEC F5DC CA DEX
F57A 8D 9E 02 STA $029E F5DD DO FA BNE $F5D9
F57D A5 4C LDA $4C F5DF 65 64 ADC $64
F57F 30 IE IIMI $F59F F5EI 90 02 BCC $F5E5
F581 A5 64 LilA $64 F5E3 E6 65 INC $65
F583 38 SEC F5E5 18 CLC
F584 ED 9E 02 SBC $029E F5E6 65 58 ADC $58
F587 85 64 STA $64 F5E8 85 64 STA $64
F589 110 02 BCS $F58D F5EA 85 5E STA $5E
F58B C6 65 DEC $65 F5EC A5 65 LDA $65
F58D A5 OF LDA $OF F5EE 65 59 ADC $59
F58F C5 65 CMP $65 F5FO 85 65 STA $65
F591 90 OC BCC $F59F F5F2 85 SF STA $5F
F593 DO 06 BNE $F59B F5F4 BE 9D EE LDX $EE9D,Y
F595 A5 OE LDA $OE F5F7 BD 04 FB LDA $FB04,X
F597 C5 64 CMP $64 F5FA 25 55 AND $55
F599 90 04 BCC $F59F F5FC 65 66 ADC $66
F59B A9 93 LDA #$93 F5FE A8 TAY
F59D 85 4C STA $4C F5FF B9 AC EE LDA $EEAC,Y
F59F 60 RTS F602 8D AO 02 STA $02AO
F5AO A9 02 LDA #$02 F605 85 6F STA $6F
(C) SET SCROLLING DL ENTRY F607 AO 00 LDY #$00
F5A2 20 70 F5 JSR $F570 H09 60 RTS
F5A5 A9 A2 LDA #$A2 F60A A9 00 LDA #$00
F5A7 20 70 F5 JSR $F570 (C) ADVANCE CURSOR
F5AA CA DEX HOC FO 02 BEQ $F610
F5AB 60 RTS F60E A9 9B LDA #$9B
F5AC A2 01 LDX #$01 F610 85 7D STA $7D
(C) CONVERT CURSOR ROWI F612 E6 63 INC $63
F5AE 86 66 STX $66 F614 E6 55 INC $55
(C) COLUMN TO ADDRESS F616 DO 02 BNE $F61A
F5BO CA DEX F618 E6 56 INC $56
F5Bl 86 65 STX $65 F61A A5 55 LDA $55
F5B3 A5 54 LDA $54 F61C A6 57 LDX $57
F5B5 OA ASL A F61E DD 7D EE CMP $EE7D,X
F5B6 26 65 ROL $65 F621 FO OA BEQ $F62D
F5B8 OA ASL A F623 EO 00 CPX #$00
F5B9 26 65 ROL $65 F625 DO E2 BNE $F609
F5BB 65 54 ADC $54 F627 C5 53 CMP $53
F5BD 85 64 STA $64 F629 FO DE BEQ $F609
F5BF 90 02 BCC $F5C3 F62B 90 DC BCC $F609
F5Cl E6 65 INC $65 F62D EO 08 CPX #$08
F5C3 A4 57 LDY $57 F62F DO 04 BNE $F635
F5C5 BE 6D EE LDX $EE6D,Y F631 A5 56 LDA $56
F5C8 06 64 ASL $64 F633 FO D4 BEQ $F609
F5CA 26 65 ROL $65 F635 A5 57 LDA $57
F5CC CA DEX F637 DO 2C BNE $F665

Page 344

APPENDIX E6i

F639 A5 63 LDA $63 F6AB 4C 8E F8 JtlP $F88E
F63B C9 51 CtlP #$51 F6AE 38 SEC
F63D 90 OA BCC $F649 (C) SUBTRACT END POINT
F63F A5 7D LDA $7D F6AF B5 70 LDA $70,X
F641 FO 22 BEQ $F665 F6B1 E5 74 SBC $74
F643 20 61 F6 JSR $F661 F6B3 95 70 STA $70,X
F646 4C AB F6 JtlP $F6AB F6B5 B5 71 LDA $71. X
F649 20 65 F6 JSR $F665 F6B7 E5 75 SBC $75
F64C A5 54 LDA $54 F6B9 95 71 STA s71, X
F64E 18 CLC F6BB 60 RTS
F64F 69 78 ADC #$78 F6BC AD BF 02 LDA $02BF
F651 20 5D F7 JSR $F75D (C) CHECK CURSOR RANGE
F654 90 08 BCC $F65E F6BF C9 04 CtlP #$04
F656 A5 7D LDA $7D F6C1 FO 07 BEQ $F6CA
F658 FO 04 BEQ $F65E F6C3 A5 57 LDA $57
F65A 18 CLC F6C5 FO 03 BEQ $F6CA
F65B 20 OD F5 JSR $F50D F6C7 20 94 EF JSR $EF94
F65E 4C 8E F8 JtlP $F88E F6CA A9 27 LDA #$27
F661 A9 9B LDA #$9B F6CC C5 53 CtlP $53
(C) RETURN WITH SCROLLING F6CE BO 02 BCS $F6D2
F663 85 7D STA $7D F6DO 85 53 STA $53
F665 20 97 F9 JSR $F997 F6D2 A6 57 LDX $57
(C) RETURN F6D4 BD 8D EE LDA $EE8D,X
F666 A9 00 LDA #$00 F6D7 C5 54 CtlP $54
F66A 65 56 STA $56 F6D9 90 2A BCC $F705
F66C E6 54 INC $54 F6DB FO 28 BEQ $Fl05
F66E A6 57 LDX $57 F6DD EO 06 CPX #$08
F670 AO 18 LDY #$16 F6DF DO OA BNE $F6EB
F672 24 7B BIT $7B F6E1 A5 56 LDA $56
F674 10 05 BPL $F67B F6E3 FO 13 BEQ $F6F6
F676 AO 04 LDY #$04 F6E5 C9 01 CtlP #$01
F678 98 TYA F6E7 DO 1C BNE $F705F679 DO 03 BNE $F67E F6E9 FO 04 BEQ $F6EF
F67B BD 8D EE LDA $EE6D,X F6EB A5 56 LDA $56
F67E C5 54 CtlP $54 F6ED DO 16 BNE $F705
F660 DO 29 BNE $F6AB F6EF BD 7D EE LDA $EE7D,X
F682 8C 9D 02 STY $029D F6F2 C5 55 CtlP $55
F665 6A TXA F6F4 90 OF BCC $F705
F666 DO 23 BNE $F6AB F6F6 FO OD BEQ $F705
F668 A5 7D LDA $7D F6F6 A9 01 LDA #$01
F66A FO 1F BEQ $F6AB F6FA 65 4C STA $4C
F66C C9 9B CtlP #$9B F6FC A9 80 LDA #$80
F68E FO 01 BEQ $F691 F6FE A6 11 LDX $11
F690 16 CLC F700 65 11 STA $11F691 20 F7 F7 JSR $FlF7 F702 FO 06 BEQ $F70AF694 EE BB 02 INC $02BB F704 60 RTS
F697 C6 6C DEC $6C F705 20 40 F4 JSR $F440F699 10 02 BPL $F69D F706 A9 6D LDA #$6D
F69B E6 6C INC $6C F70A 65 4C STA $4CF69D CE 9D 02 DEC $029D F70C 68 PLAF6AO AD B2 02 LDA $02B2 F70D 68 PLAF6A3 36 SEC FlOE A5 7B LDA $7BF6A4 10 EB BPL $F691 F710 10 03 BPL $F715F6A6 AD 9D 02 LDA $029D F712 4C 62 F9 JtlP $F962F6A9 65 54 STA $54 F715 4C 1E F2 JtlP $F21E

Page 345

F718 AO 00 LDY 1$00 F77D 2A ROL A
(C) RESTORE OLD CURSOR DATA F77E 2A ROL A
F71A A5 SF LOA $5F F77F 29 03 AND 1$03
F7IC FO 04 BEQ $F722 F781 AA TAX
F71 E A5 50 LOA $5D F782 AD FA 02 LDA $02FA
F720 91 5E STA ($5E),Y F785 29 9F AND f$9F
F722 60 RTS F787 ID 4D FB ORA $FB4D. X
F723 48 PHA F78A 8D FB 02 STA $02FB
(C) E:/S: BITtlAP ROUTINES F78D 60 RTS
F724 29 07 AND #$07 F78E A6 6A LDX $6A
F726 AA TAX F790 CA DEX
F727 BO B4 EE LDA $EEB4,X F791 86 69 STX $69
F72A 85 6E STA $6E F793 86 67 STX $67
F72C 68 PLA F795 A9 BO LDA I$BO
F72D 4A LSR A F797 85 68 STA $68
F72E 4A LSR A F799 A9 D8 LDA #$D8
F72F 4A LSR A F79B 85 66 STA $66
F730 AA TAX F79D A6 54 LDX $54
F731 60 RTS F79F E8 INX
F732 2E B4 02 ROL $02B4 F7AO EC BF 02 CPX $02BF
F735 2E B3 02 ROL $02B3 F7A3 FO E8 BEQ $F780
F738 2E B2 02 ROL $02B2 F7A5 AO 27 LOY #$27
F73B 60 RTS F7A7 Bl 68 LDA ($68).Y
F73C 90 OC BCC $F74A F7A9 91 66 STA ($66).Y
F73E 20 23 F7 JSR $F723 F7AB 88 DEY
F741 BD A3 02 LDA $02A3.X F7AC 10 F9 BPL $F7A7
F744 05 6E ORA $6E F7AE 38 SEC
F746 9D A3 02 STA $02A3.X F7AF A5 68 LOA $68
F749 60 RTS F7Bl 85 66 STA $66
F74A 20 23 F7 JSR $F723 F7B3 E9 28 SBC 1$28
F74D A5 6E LOA $6E F7B5 85 68 STA $68
F74F 49 FF EOR #$FF F7B7 A5 69 LOA $69
F751 3D A3 02 AND $02A3.X F7B9 85 67 STA $67
F754 9D A3 02 STA $02A3.X F7BB E9 00 SBC 1$00
F757 60 RTS F7BD 85 69 STA $69
F758 A5 54 LDA $54 F7BF 4C 9F F7 JtlP $F79F
F75A 18 CLC F7C2 08 PHP
F75B 69 78 ADC #$78 F7C3 AO 16 LDY #$16
F75D 20 23 F7 JSR $F723 F7C5 98 TYA
F760 18 CLC F7C6 20 5A F7 JSR $F75A
F761 BD A3 02 LDA $02A3. X F7C9 08 PHP
F764 25 6E AND $6E F7CA 98 TYA
F766 FO 01 BEQ $F769 F7CB 18 CLC
F768 38 SEC F7CC 69 79 ADC #$79
F769 60 RTS F7CE 28 PLP
F76A AD FA 02 LDA $02FA F7CF 20 3C F7 JSR $F73C
F76D A4 57 LDY $57 F7D2 88 DEY
F76F CO OE CPY #$OE F7D3 30 04 BtlI $F7D9
F771 BO 17 BCS $F78A F7D5 C4 54 CPY $54
F773 CO OC CPY #$OC F7D7 BO EC BCS $F7C5
F775 BO 04 BCS $F77B F7D9 A5 54 LDA $54
F777 CO 03 CPY #$03 F7DB 18 CLC
F779 BO OF BCS $F78A F7DC 69 78 ADC #$78
F77B 2A ROL A F7DE 28 PLP
F77C 2A ROL A F7DF 4C 3C F7 JtlP $F73C

Pale 346

APPENDIX E6:

F7E2 A5 52 LDA $52 F84F 85 64 STA $64
F7E4 85 55 STA $55 F851 BO 02 BCS $F855
F7E6 20 AC F5 JSR $F5AC F853 C6 65 DEC $65
F7E9 38 SEC F855 A5 64 LDA $64
F7EA A5 53 LDA $53 F857 18 CLC
F7EC E5 52 SBC $52 F858 69 28 ADC 1$28
F7EE A8 TAY F85A 85 7E STA $7E
F7EF A9 00 LDA 1$00 F85C A5 65 LDA $65
F7Fl 91 64 STA ($64).Y F85E 69 00 ADC 1$00
F7F3 88 DEY F860 85 7F STA $7F
FlF4 10 FB BPL $FlFl F862 Bl 7E LDA ($7E),Y
FlF6 60 RTS F864 91 64 STA ($64),Y
F7F7 20 32 F7 JSR $F732 F866 C8 INY
(C) SCREEN SCROLL F867 DO F9 BNE $F862
FlFA AD 6E 02 LDA $026E F869 AO 10 LDY 1$10
F7FD FO 28 BEQ $F827 F86B A5 64 LDA $64
F7FF AD 6C 02 LDA $026C F86D C9 D8 CMP #$D8
F802 DO FB BNE $F7FF F86F FO OB BEQ $F87C
F804 A9 08 LDA #$08 F871 18 CLC
F806 8D 6C 02 STA $026C F872 69 FO ADC I$FO
F809 AD 6C 02 LDA $026C F874 85 64 STA $64
F80C C9 01 CMP #$01 F876 90 DD BCC $F855
F80E DO F9 BNE $F809 F878 E6 65 INC $65
F810 AD OB D4 LDA $D40B F87A DO D9 BNE $F855
F813 C9 40 CMP 1$40 F87C A6 6A LDX $6A
F815 BO F9 BCS $F810 F87E CA DEX
F817 A2 OD LDX #$OD F87F 86 7F STX $7F
F819 AD BF 02 LDA $02BF F881 A2 D8 LDX #$D8
F81C C9 04 CMP 1$04 F883 86 7E STX $7E
F81E DO 02 BNE $F822 F885 A9 00 LDA 1$00
F820 A2 70 LDX #$70 F887 AO 27 LDY 1$27
F822 EC OB D4 CPX $D40B F889 91 7E STA ($7E),Y
F825 BO FB DCS $F822 F88B 88 DEY
F827 20 A6 F9 JSR $F9A6 F88C 10 FB BPL $FB89
FB2A A5 64 LDA $64 F88E A9 00 LDA 1$00
F82C A6 65 LDX $65 F890 85 63 STA $63
F82E E8 INX F892 A5 54 LDA $54
F82F E4 6A CPX $6A F894 85 51 STA $51
F831 FO 06 BEQ $F839 F896 A5 51 LDA $51
F833 38 SEC F898 20 5A F7 JSR $F75A
FB34 E9 10 SBC 1$10 F89B BO OC BCS $FBA9
F836 4C 2E F8 JMP $F82E F89D A5 63 LDA $63
F839 69 27 ADC 1$27 F89F 18 CLC
F83B DO OA BNE $F847 F8AO 69 28 ADC #$28
F83D A6 65 LDX $65 FBA2 85 63 STA $63
F83F E8 INX F8A4 C6 51 DEC $51
F840 E4 6A CPX $6A FBA6 4C 96 FB JMP $FB96
FB42 FO 38 BEQ $Y87C F8A9 18 CLC
F844 18 CLC F8AA A5 63 LDA $63
F845 69 10 ADC #$10 F8AC 65 55 ADC $55
F847 A8 TAY F8AE B5 63 STA $63
F848 85 7E STA $7E F8BO 60 . RTS
F84A 38 SEC F8BI 20 4C F9 JSR $F94C
F84B A5 64 LDA $64 (C) COMPUTE BUFFER COUNT
F84D E5 7E SBC $7E F8B4 A5 63 LDA $63

Pase 347

F8B6 48 PHA F927 FO EE BEQ $F917F8B7 A5 6C LDA $6C F929 20 AC F5 JSR $F5ACF8B9 85 54 STA $54 F92C A5 53 LDA $53F8BB A5 6D LDA $6D F92E 38 SECr80D 85 55 STA $55 F92F E5 52 SBC $52F8BF A9 01 LDA #$01 F931 A8 TAY
F8CI 85 6B STA $6B F932 BI 64 LDA ($64),YF8C3 A2 17 LDX #$17 F934 DO EI BNE $F917F8C5 A5 7B LDA $7B F936 88 DEYF8C7 10 02 BPL $F8CB F937 10 F9 BPL $F932F8C9 A2 03 LDX #$03 F939 4C 27 F5 JMP $F527F8CB E4 54 CPX $54 F93C A2 2D LDX #$2DF8CD DO 00 BNE $F8DA (C) CHECK FOR CONTROL
F8CF A5 55 LDA $55 F93E BD OD FB LDA $FBOD,XF8DI C5 53 CMP $53 F941 CD FB 02 CMP $02FBF8D3 DO 05 BNE $F8DA F944 FO 05 BEQ $F94BF8D5 E6 6B INC $6B F946 CA DEXF8D7 4C EA F8 JMP $F8EA F947 CA DEX
F8DA 20 OA F6 JSR $F60A F948 CA DEX
F8DD E6 6B INC $6B F949 10 F3 BPL $F93EF8DF A5 63 LDA $63 F94B 60 RTSF8EI C5 52 CMP $52 F94C A2 02 LDX 1$02F8E3 DO DE BNE $F8C3 (C) SAVE ROW & COLUMNF8E5 C6 54 DEC $54 F94E B5 54 LDA $54,XF8E7 20 00 F4 JSR $F400 F950 9D B8 02 STA $02B8,XF8EA 20 8F FI JSR $FI8F F953 CA DEXF8ED DO 17 BNE $F906 F954 10 F8 BPL $F94EF8EF C6 6B DEC $6B F956 60 RTSF8FI A5 63 LDA $63 F957 A2 02 LDX 1$02F8F3 C5 52 CMP $52 F959 BD B8 02 LDA $02B8,XF8F5 FO OF BEQ $F906 F95C 95 54 STA $54,XF8F7 20 00 F4 JSR $F400 F95E CA DEXF8FA A5 55 LDA $55 F95F 10 F8 BPL $F959F8FC C5 53 CMP $53 F961 60 RTSF8FE DO 02 BNE $F902 F962 AD BF 02 LDA $02BFF900 C6 54 DEC $54 (C) SWAP CURSOR WITH
F902 A5 6B LDA $6B F965 C9 18 CMP #$18F904 DO E4 BNE $F8EA (C) REGULAR CURSOR POSITIONF906 68 PLA F967 FO 17 BEQ $F980F907 85 63 STA $63 F969 A2 OB LDX I$OBF909 4C 57 F9 JMP $F957 F96B B5 54 LDA $54,XF90C 20 8E F8 JSR $F88E F96D 48 PHA
F90F A5 51 LDA $51 F96E BD 90 02 LDA $0290,XF911 85 6C STA $6C F971 95 54 STA $54, XF913 A5 52 LDA $52 F973 68 PLAF915 85 6D STA $6D F974 9D 90 02 STA $0290,XF917 60 RTS F977 CA DEX
F918 A5 63 LDA $63 F978 10 Fl BPL $F96B(C) DELETE LINE F97A A5 7B LDA $7BF91A C5 52 CMP $52 F97C 49 FF EOR I$FFF91C DO 02 BNE $F920 F97E 85 7B STA $7BF91E C6 54 DEC $54 F980 4C IE F2 JMP $F21EF920 20 8E F8 JSR $F88E F983 A2 7E LDX 1$7EF923 A5 63 LDA $63 (C) SOUND KEY CLICK
F925 C5 52 CMP $52 F985 48 PHA

Paae 348

APPENDlX..Jll

F986 8E IF DO STX $DOIF F9ED 69 01 ADC 1$01
F989 AD OB D4 LDA $D40B F9EF 85 76 STA $76
F98C CD OB D4 CMP $D40B F9FI 38 SEC
F98F FO FB BEQ $F98C F9F2 AD F6 02 LDA $02F6
F991 CA DEX F9F5 E5 5B SBC $5B
F992 CA DEX F9F7 85 77 STA $77
F993 10 FI BPL $F986 F9F9 AD F7 02 LDA $02F7
F995 68 PLA F9FC E5 5C SBC $5C
F996 60 RTS F9FE 85 78 STA $78
F997 A9 00 LDA 1$00 FAOO BO 17 BCS $FAI9
(C) CURSOR TO LEFT EDGE FA02 A9 FF LDA I$FF
F999 A6 7B LDX $7B FA04 8D F9 02 STA $02F9
F99B DO 04 BNE $F9AI FA07 A5 77 LDA $77
F99D A6 57 LDX $57 FA09 49 FF EOR I$FF
F99F DO 02 BNE $F9A3 FAOB 85 77 STA $77
F9AI A5 52 LDA $52 HOD A5 78 LDA $78
F9A3 85 55 STA $55 FAOF 49 FF EOR I$FF
F9A5 60 RTS FAil 85 78 STA $78
F9A6 A5 58 LDA $58 FA 13 E6 77 INC $77
(C) SET MEMORY SCAN FAI5 DO 02 BNE $FAI9
F9A8 85 64 STA $64 FAI7 E6 78 INC $78
(C) COUNTER ADDRESS FAI9 A2 02 LDX 1$02
F9AA A5 59 LDA $59 FAIB AO 00 LDY 1$00
F9AC 85 65 STA $65 FAID 84 73 STY $73
F9AE 60 RTS FA IF 98 TVA
F9AF A2 00 LDX 1$00 FA20 95 70 STA $70,X
(C) SCREEN XIO COMMAND FA22 B5 5A LDA $5A,X
F9BI A5 22 LDA $22 FA24 95 54 STA $54,X
F9B3 C9 II CMP #$11 FA26 CA DEX
F9B5 FO 08 BEQ $F9BF FA27 10 F6 BPL $FAIF
F9B7 C9 12 CMP #$12 FA29 A5 77 LDA $77
F9B9 FO 03 BEQ $F9BE FA2B E8 INX
F9BB AD 84 LDY #$84 FA2C A8 TAY
F9BD 60 RTS FA2D A5 78 LDA $78
F9BE E8 INX FA2F 85 7F STA $7F
F9BF 8E B7 02 STX $02B7 FA31 85 75 STA $75
F9C2 A5 54 LDA $54 FA33 DO OB BNE $FA40
F9C4 8D F5 02 STA $02F5 FA35 A5 77 LDA $77
F9C7 A5 55 LDA $55 FA37 C5 76 CMP $76
F9C9 8D F6 02 STA $02F6 FA39 BO 05 BCS $FA40
F9CC A5 56 LDA $56 FA3B A5 76 LDA $76
F9CE 8D F7 02 STA $02F7 FA3D A2 02 LDX #$02
F9DI A9 01 LDA #$01 FA3F A8 TAY
F9D3 8D F8 02 STA $02F8 FA40 98 TVA
F9D6 8D F9 02 STA $02F9 FA41 85 7E STA $7E
F9D9 38 SEC FA43 85 74 STA $74
F9DA AD F5 02 LDA $02F5 FU5 48 PHA
F9DD E5 5A SBC $5A FA46 A5 75 LDA $75
F9DF 85 76 STA $76 FA48 4A LSR A
F9El BO OE BCS $F9FI FA49 68 PLA
F9E3 A9 FF LDA #$H FA4A 6A ROR A
F9E5 8D F8 02 STA $02F8 FA4B 95 70 STA $70,X
F9E8 A5 76 LDA $76 FA4D A5 7E LDA $7E
F9EA 49 FF EaR #$FF FA4F 05 7F ORA $7F
F9EC 18 CLC FA51 DO 03 BNE $FA56

Page 349

:

FA53 4C 01 FB JMP $FBOI FAC9 A5 54 LDA $54FA56 18 CLC FACB 48 PHAFA57 A5 70 LDA $70 FACC 20 12 F6 JSR $F612FA59 65 76 ADC $76 FACF 68 PLAFA5B 85 70 STA $70 FAOO 85 54 STA $54FA5D 90 02 BCC $FA61 FAD2 20 CA F6 JSR $F6CAFA5F E6 71 INC $71 FA05 20 8F FI JSR $FI8FFA61 A5 71 LDA $71 FAD8 DO OC BNE $FAE6FA63 C5 75 eMP $75 FADA AD FD 02 LDA $02FDFA65 90 15 BCC $FA7C FA DO 8D FB 02 STA $02FBFA67 DO 06 BNE $FA6F FAEO 20 CA FI JSR $FICAFA69 A5 70 LDA $70 FAE3 4C C9 FA JMP $FAC9FA6B C5 74 CMP $74 FAE6 AD BC 02 LOA $02BCFA6D 90 OD BCC $FA7C FAE9 80 FB 02 STA $02FBFA6F 18 CLC FAEC 20 57 F9 JSR $F957FA70 A5 54 LOA $54 FAEF 38 SECFA72 60 F8 02 AOC $02F8 FAPO A5 7E LOA $7EFA75 85 54 STA $54 FAF2 E9 01 SBC #$01FA77 A2 00 LOX #$00 FAF4 85 7E STA $7EFA79 20 AE F6 JSR $F6AE FAF6 A5 7F LDA $7FFA7C 18 CLC FAF8 E9 00 SBC 1$00FA7D A5 72 LDA $72 FAPA 85 7F STA $7FFA7F 65 77 ADC $77 FAPC 30 03 BMI $FBOIFA81 85 72 STA $72 FAFE 4C 4D FA JMP $FA4DFA83 A5 73 LDA $73 FBUI 4C IE F2 JMP $F2IEFA85 65 78 AOC $78
FA87 85 73 STA $73 FB04 00 0 I 03 07
FA89 C5 75 CMP $75 (C) BIT MASKS
FA8B 90 28 BCC $FAB5 FB08 28 CA 94 46 00
FA8D DO 06 BNE $FA95 (C) SCREEN COLOURS
FA8F A5 72 LDA $72
FA91 C5 74 CMP $74 FBOD IB EO F3
FA93 90 20 BCC $FAB5 FBIO IC E6 F3
FA95 2C F9 02 BIT $02F9 FBI3 10 F3 F3
FA98 10 10 BPL $FAAA FBI6 IE 00 F4
FA9A C6 55 OEC $55 FBI9 IF I I F4
FA9C A5 55 LDA $55 FBIC 7D 20 F4
FA9E C9 FF CMP I$FF FBIF 7E 50 F4
FAAO DO OE BNE $FABO FB22 7F 7A F4
FAA2 A5 56 LDA $56 FB25 9B 61 F6
FAA4 FO OA BEQ $FABO FB28 9C 20 F5
FAA6 C6 56 DEC $56 FB2B 9D OC F5
FAA8 10 06 BPL $FABO FB2E 9E 9A F4
FAAA E6 55 INC $55 FB31 9F 95 F4
FUC 00 02 BNE $FABO FB34 FD 56 F5
FAAE E6 56 INC $56 FB37 FE D5 F4
FABO A2 02 LDX 1$02 FB3A FF 9F F4
FAB2 20 AE F6 JSR $F6AE
FAB5 20 CA F6 JSR $F6CA FB3D lC 40 F4
FAB8 20 CA FI JSR $FICA FB40 ID 5F F5
FABB AD B7 02 LDA $02B7 FB43 IE IB F4
FABE FO 2F BEQ $FAEF FB46 IF OA F4
FACO 20 4C F9 JSR $F94C
FAC3 AD FB 02 LDA $02FB
FAC6 8D BC 02 STA $02BC

Page 350

APPENDIX E6:

FB49 40 00 20 60 FC3D 09 04 ORA #$04
(C) ASCII - INTERNAL FC3F DO 03 BNE $FC44
(C) CONVERSION CONSTANTS FC41 98 TYA
FB4D 20 40 00 60 FC42 29 FB AND #$FB
(C) VICE VERSA FC44 A8 TAY

FC45 BO 26 BCS $FC6D
FB51 6C 6A 3B 8A 8B 6B 2B 2A FC47 8A TXA
KEYBOOARD DEFINITION FC48 DO 3D BNE $FC87
FB59 6F 80 70 75 9B 69 2D 3D FC4A AD 09 D2 LDA $D209
TABLE FC4D AA TAX
FB61 76 80 63 8C 8D 62 78 7A FC4E C9 9F CtlP #$9F
FB69 34 80 33 36 IB 35 32 31 FC50 DO OA BNE $FC5C
FB71 2C 20 2E 6E 80 6D 2F 81 FC52 AD FF 02 LDA $02FF
FB79 72 80 65 79 7F 74 77 71 FC55 49 FF EOR #$FF
FB81 39 80 30 37 7E 38 3C 3E FC57 8D FF 02 STA $02FF
FB89 66 68 64 80 82 67 73 61 FC5A BO I I BCS $FC6D
FB91 4C 4A 3A 8A 8B 4B 5C 5E FC5C 29 3F AND #$3F
FB99 4F 80 50 55 9B 49 5F 7C FC5E C9 II CtlP #$11
FBAI 56 80 43 8C 8D 42 58 5A FC60 DO 2E BNE $FC90
FBA9 24 80 23 26 IB 25 22 21 FC62 8E DC 02 STX $02DC
FBBI 5B 20 50 4E 80 4D 3F 81 FC65 FO 06 BEQ $FC6D
FBB9 52 80 45 59 9F 54 57 51 FC67 8E FC 02 STX $02FC
FBCI 28 80 29 27 9C 40 7D 90 FC6A 8E F2 02 STX $02F2
FBC9 46 48 44 80 83 47 53 41 FC6D A9 03 LOA #$03
FBDI OC OA 7B 80 80 OB IE IF FC6F 80 FI 02 STA $02Fl
FBD9 OF 80 10 15 9B 09 I C 10 FC72 A9 00 LOA #$00
FBEI 16 80 03 89 80 02 18 I A FC74 85 40 STA $40
FBE9 80 80 85 80 IB 80 I'D 80 FC76 AD D9 02 LDA $02D9
FBFI 00 20 60 OE 80 OD 80 81 FC79 8D 2B 02 STA $022B
FBF9 12 80 05 19 9E 14 17 I 1 FC7C AD 2F 02 LDA $022F
FCOI 80 80 80 80 FE 80 7D FF FC7F DO 06 BNE $FC87
FC09 06 08 04 80 84 07 13 01 FC81 AD DD 02 LDA $02DD

FC84 80 2F 02 STA $022F
FC II lC ID IE IF 8E 8F 90 91 FC87 8C 01 D3 STY $0301
FUNCTION KEY DEFINITIONS FC8A 68 PLA

FC8B A8 TAY
FCI9 8A TXA FC8C 68 PLA
KEYBOARD IRQ FC8D AA TAX
FCIA 48 PHA FC8E 68 PLA
FCIB 98 TYA FC8F 40 RTI
FCIC 48 PHA FC90 EO 84 CPX #$84
FCID AC 01 03 LDY $0301 FCn FO 21 BEQ $FCB5
FC20 AD 09 D2 LDA $D209 FC94 EO 94 CPX #$94
FC23 CD F2 02 CtlP $02F2 FC96 DO CF BNE $FC67
FC26 DO 05 BNE $FC2D FC98 AD F4 02 LDA $02F4
FC28 AE Fl 02 LDX $02FI FC9B AE 6B 02 LOX $026B
FC2B DO 49 BNE $FC76 FC9E 8D 6B 02 STA $026B
FC2D AE 60 02 LDX $0260 FCAI 8E F4 02 STX $02F4
FC30 C9 83 CriP #$83 FCA4 EO CC CPX #$CC
FC32 DO 13 BNE $FC47 FCA6 FO 06 BEQ $FCAE
FC34 8A TXA FCA8 98 TYA
FC35 49 FF EOR #$FF FCA9 09 08 ORA #$08
FC37 80 60 02 STA $0260 FCAB A8 TAY
FC3A DO 05 BNE $FC41 FCAC DO BF BNE $FC6D
FC3C 98 TYA FCAE 98 TYA

Page 351

FCAF 29 F7 AND #$F7 .'024 80 llA 02 STA $028A
FCBI A8 TAY FU27 4C 77 FD JMP $FD77
FCB2 4C 6D FC JMP $FC6D FD2A AO 80 LOY #$80
FCB5 AD 2F 02 LOA $022F F02C C6 II DEC $11
FCB8 FO CO BEQ $FCIl7 FD2E A9 00 LDA #$00
FCBA 80 DO 02 STA $0200 FD30 80 89 02 STA $0289
FCBO A9 00 LOA #$00 F033 60 RTS
FCBF 80 2F 02 STA $022F F034 A9 80 LOA #$80
FCC2 FO C3 BEQ HC87 F036 80 89 02 STA $0289
FCC4 48 PHA F039 A9 02 LOA #$02
(C) FINE-SCROLL OLI F03B 20 FC FO JSR $FOFC
FCC5 AO C6 02 LOA $02C6 FD3E 30 EE BMI $F02E
FCC8 40 4F 00 EOR $004F F040 A9 CC LOA #$CC
FCCB 20 4E 00 ANO $004E F042 80 04 02 STA $0204
FCCE 80 OA 04 STA $040A FD45 A9 05 LOA #$05
FCDI 80 17 00 STA $0017 F047 80 06 02 STA $0206
FC04 68 PLA F04A A9 60 LOA #$60
FCD5 40 RTI F04C 80 00 03 STA $0300
FC06 00 F04F 20 68 E4 JSR $E468
FC07 00 F052 A9 34 LOA #$34
FC08 4C 83 F9 HIP $F983 F054 80 02 03 STA $0302
(C) CASSETTE INITIALIZE F057 A6 62 LOX $62
FCOB A9 CC LOA #$CC F059 BC 8F FE LOY $FE8F,X
FCOO 80 EE 02 STA $02EE FD5C BO 80 FE LOA $FE80,X
FCEO A9 05 LOA #$05 F05F AA TAX
FCE2 80 EF 02 STA $02EF F060 A9 03 LOA #$03
FCE5 60 RTS F062 20 5C E4 JSR $E45C
FCE6 A5 2B LOA $2B F065 A9 FF LOA #$FF
FCE8 85 3E STA $3E F067 80 2A 02 STA $022A
FCEA A5 2A LOA $2A F06A A5 II LOA $11
FCEC 29 OC ANO #$OC F06C FO BC BEQ $F02A
FCEE C9 04 CMP #$04 F06E AO 2A 02 LOA $022A
FCFO FO 05 BEQ $FCF7 F071 00 F7 BNE $F06A
FCF2 C9 08 CMP #$08 F073 A9 00 LOA #$00
FCF4 FO 3E BEQ $F034 F075 85 30 STA $30
FCF6 60 RTS F077 AO 01 LOY #$01
FCF7 A9 00 LOA #$00 F079 60 RTS
FCF9 80 89 02 STA $0289 F07A A5 3F LOA $3F
FCFC 85 3F STA $3F F07C 30 33 BtlI $FOBI
FCFE A9 01 LOA #$01 F07E A6 30 LOX $30
FOOO 20 FC FO JSR $FOFC F080 EC 8A 02 CPX $028A
F003 30 29 BMI $F02E F083 FO 08 BEQ $F080
F005 A9 34 LOA #$34 F085 BO 00 04 LOA $0400.X
F007 80 02 03 STA $0302 F088 E6 30 INC $30
FOOA A6 62 LOX $62 F08A AO 01 LOY #$01
FOOC BC 93 FE LOY $FE93,X F08C 60 RTS
FOOF BO 91 FE LOA $FE91,X F080 A9 52 LOA #$52
FOl2 AA TAX F08F 20 3F FE JSR $FE3F
FOl3 A9 03 LOA #$03 FOn 98 TYA
FOl5 80 2A 02 STA $022A F093 30 F7 BMI $F08C
FOl8 20 5C E4 JSR $E45C F095 A9 00 LOA #$00
FOIB AO 2A 02 LOA $022A F097 85 30 STA $30
F01E 00 FB BNE $FOIB F099 A2 80 LOX #$80
F020 A9 80 LOA #$80 F09B AO FF 03 LOA $03FF
F022 85 30 STA $30 F09E C9 FE CMP #$FE

Page 352

APPENDIX E6:

FDAO FO OD BEQ $FDAF FEI3 8D IF DO STA $DOIF
FDA2 C9 FA CMP I$FA FEI6 AO FO LDY I$FO
Fl>A4 DO 03 BNE $FDA9 FEI8 88 DEY
FDA6 AE 7F 04 LDX $047F FEI9 DO FD BNE $FEI8
FDA9 8E 8A 02 STX $028A FEIB E4 14 CPX $14
FDAC 4C 7A FD JMP $FD7A FEID DO E8 BNE $FE07
FDAF C6 3F DEC $3F FEIF C6 40 DEC $40
FDBI AO 88 LDY 1$88 FE21 FO OE BEQ $FE31
FDB3 60 RTS FE23 8A TXA
FDB4 A6 3D LDX $3D FE24 18 CLC
FDB6 9D 00 04 STA $0400,X FE25 A6 62 LDX $62
FDB9 E6 3D INC $3D FE27 7D 97 FE ADC $FE97, X
FDBB AO 01 LDY #$01 FEU AA TAX
FDBD EO 7F CPX 1$7F FE2B E4 14 CPX $14
FDBF FO 01 BEQ $FDC2 FE2D DO FC BNE $FE2B
FDCI 60 RTS FE2F FO CD BEQ $FDFE
FDC2 A9 FC LDA I$FC FE31 20 36 FE JSR $FE36
FDC4 20 7C FE JSR $FE7C FE34 98 TYA
FDC7 A9 00 LDA 1$00 FE35 60 RTS
FDC9 85 3D STA $3D FE36 AD 25 E4 LDA $E425
FDCB 60 RTS FE39 48 PHA
FDCC AO 01 LDY 1$01 FEJA AD 24 E4 LDA $E424
FDCE 60 RTS FE3D 48 PHA
FDCF AD 89 02 LDA $0289 FE3E 60 RTS
Fl>D2 30 08 BMI $FDDC FE3F 8D 02 03 STA $0302
FDD4 AO 01 LDY 1$01 FE42 A9 00 LDA #$00
FDD6 A9 3C LDA 1$3C FE44 8D 09 03 STA $0309
FDD8 8D 02 D3 STA $D302 FE47 A9 83 LDA 1$83
FDDD 60 RTS FE49 8D 08 03 STA $0308
FDDC A6 3D LDX $3D FE4C A9 03 LDA 1$03
FDDE FO OA BEQ $FDEA FE4E 8D 05 03 STA $0305
FDEO 8E 7F 04 STX $047F FE51 A9 FD LDA I$FD
FDE3 A9 FA LDA #$PA FE53 8D 04 03 STA $0304
FDE5 20 7C FE JSR $FE7C FE56 A9 60 LDA 1$60
FDE8 30 EC BMI $FDD6 FE58 8D 00 03 STA $0300
FDEA A2 7F LDX 1$7F FE5D A9 00 LDA 1$00
FDEC A9 00 LDA 1$00 FE5D 8D 01 03 STA $0301
FDEE 9D 00 04 STA $0400,X FE60 A9 23 LDA 1$23
FDFI CA DEX FE62 8D 06 03 STA $0306
FDF2 10 FA BPL $FDEE FE65 AD 02 03 LDA $0302
FDF4 A9 FE LDA I$FE FE68 AO 40 LDY 1$40
FDF6 20 7C FE JSR $FE7C FE6A C9 52 CMP #$52
FDF9 4C D6 FD JMP $FDD6 FE6C FO 02 BEQ $FE70
FDFC 85 40 STA $40 FE6E AO 80 LDY 1$80
FDFE A5 14 LDA $14 FE70 8C 03 03 STY $0303
FEOO 18 CLC FE73 A5 3E LDA $3E
FE01 A6 62 LDX $62 FE75 8D OB 03 STA $030B
FE03 7D 95 FE ADC $FE95,X FE78 20 59 E4 JSR $E459
FE06 AA TAX FE7D 60 RTS
FE07 A9 FF LDA I$FF FE7C 8D FF 03 STA $03FF
FE09 8D IF DO STA $DOIF FE7F A9 55 LDA 1$55
FEOC A9 00 LDA #$00 FE81 8D FD 03 STA $03FD
FEOE AO FO LDY #$FO FE84 8D FE 03 STA $03FE
FEIO 88 DEY FE87 A9 57 LDA 1$57
FEll DO FD BNE $FEIO FE89 20 3F FE JSR $FE3F

Page 353

M'I't:lmu

H8C 60 RTS FEFE AC A2 FE LOY $FEA2
HOI 20 14 H JSR $FF14

FEBO 04 03 BO CO 02 01 40 EO FF04 4C 59 E4 JMP $E459
FE95 IE 19 OA 08 FF07 20 4B FF JSR $FF4B

(C) PRINTER CLOSE
FE99 A9 IE LDA I$IE FFOA A9 9B LOA 1$9B
(C) PRINTER INITIALIZE FFOC AE DE 02 LOX $020E
FE9B 80 14 03 STA $0314 FFOF DO DC BNE $FEEO
FE9E 60 RTS FFII AO 01 LOY #$01

FFI3 60 RTS
FE9F EA 02 CO 03 HI4 8E 04 03 STX $0304

(C) SETUP PRINTER OCB
t'EA3 A9 04 LOA 1$04 FFI7 8C 05 03 STY $0305
FEA5 80 DF 02 STA $020F FFIA A9 40 LOA #$40
FEA8 AE 9F FE LOX $FE9F FF1C 80 00 03 STA $0300
FEAB AC AO FE LOY $FEAO FF1F A5 21 LOA $21
FEAE A9 53 LDA #$53 H21 80 01 03 STA $0301
FEBO 80 02 03 STA $0302 FF24 A9 80 LOA #$80
FEB3 80 OA 03 STA $030A FF26 AE 02 01 LOX $0302
FEB6 20 14 FF JSR $FFI4 FF29 EO 53 CPX #$53
FEB9 20 59 E4 JSR $E459 H2O DO 02 ONE $FF2F
FEBC 30 03 BMI $FEC1 FF20 A9 40 LDA #$40
FEBE 20 44 FF JSR $FF44 H2F 8D 03 03 STA $0303
FECI 60 RTS FF32 AD DF 02 LDA $02DF
FEC2 20 A3 FE JSR $FEA3 FF35 8D 08 03 STA $0308
(C) PRINTER OPEN FF38 A9 00 LDA #$00
FEC5 A9 00 LDA #$00 FF3A 8D 09 03 STA $0309
FEC7 8D DE 02 STA $02DE FF3D AD 14 03 LDA $0314
FECA 60 RTs FF40 80 06 03 STA $0306
FECB 48 PHA FF43 60 RTS
(C) PRINTER PUT BYTE FF44 AD EC 02 LDA $02EC
FECC BD 41 03 LDA $0341, X (C) PRINTER STATUS TIMEOUT
FECF 85 21 STA $21 FF47 8D 14 03 STA $0314
FEDI 20 4B FF JSR $FF4B FF4A 60 RTS
FED4 AE DE 02 LDX $02DE FF4B AO 57 LDY #$57
FED7 68 PLA (Cl PRINT MODE
FED8 9D CO 03 STA $03CO.X FF4D A5 2B LDA $2B
FEDB E8 INX FF4F C9 4E CMP #$4E
FEDC EC DF 02 CPX $02DF FF51 DO 04 BNE $FF57
FEDF FO 15 BEQ $FEF6 FF53 A2 28 LDX #$28
FEEl 8E DE 02 STX $02DE FF55 DO OE BNE $FF65
FEE4 C9 9B CMP #$9B FF57 C9 44 CMP #$44
FEE6 FO 03 BEQ $FEEB FF59 DO 04 BNE $FF5F
FEE8 AO 01 LDY #$01 FF5B A2 14 LDX #$14
FEEA 60 RTS FF5D DO 06 ONE $FF65
FEEB A9 20 LDA #$20 FF5F C9 53 CMP #$53
(C) SPACE PRINTER BUFFER FF61 DO OC BNE $FF6F
FEED 9D CO 03 STA $03CO,X FF63 A2 I D LDX #$ID
FEFO E8 INX FF65 8E DF 02 STX $020F
FEFI EC DF 02 CPX $020F FF68 8C 02 03 STY $0302
FEF4 DO F7 BNE $FEEO FF6B 8D OA 03 STA $030A
FEF6 A9 00 LOA #$00 FF6E 60 RTS
(Cl PRINTER PUT FF6F A9 4E LDA #$4E
FEF8 80 DE 02 STA $02DE FF71 DO DC BNE $FF4F
FEFB AE Al FE LOX $FEAI

Pale 354

APPENDIX E6:

FF73 A2 00 LDX #SOO FFEE 10 05 83 02 42 42 00 00
(C) 1ST CHECKSUM VERIFY (C) CHECKSUM & ID
FF75 86 8B STX S8B FFE6 01 02 8C 6C
FF77 86 8C STX S8C
FF79 20 A9 FF JSR SFFA9 FFFA 18 CO
FF7C EO OC CPX #SOC (C) NMI VECTOR
FF7E DO F9 BNE SFF79 FFFC AA C2
FF80 AD 00 CO LDA SCOOO (C) RESET
FF83 AE 01 CO LDX SCOOI FFFE 2C CO
FF86 C5 8B CMP S8B (C) IRQ
FF88 DO 06 BNE SFF90
FF8A E4 8C CPX $8C
FF8C DO 02 BNE $FF90
FF8E 18 CLC
FF8F 60 RTS
FF90 38 SEC
FF91 60 RTS
FF92 A2 00 LOX #SOO
(C) 2NO CHECKSUM VERIFY
FF94 86 8B STX S8B
FF96 86 8C STX S8C
FF98 A2 OC LOX #SOC
FF9A 20 A9 FF JSR SFFA9
FF90 20 A9 FF JSR $FFA9
FFAO AO F8 FF LOA SFFF8
FFA3 AE F9 FF LOX SFFF9
FFA6 4C 86 FF JMP $FF86
FFA9 AO 00 LOY #SOO
FFAB BO 07 FF LOA SFF07. X
FFAE 99 9E 00 STA SOO9E.Y
FFBI E8 INX
FFB2 C8 INY
FFB3 CO 04 CPY #S04
FFB5 00 F4 BNE $FFAB
FFB7 AD 00 LOY #SOO
FFB9 18 CLC
FFBA BI 9E LOA ($9E). Y
FFBC 65 8B AOC S8B
FFBE 85 8B STA S8B
FFCO 90 02 BCC SFFC4
FFC2 E6 8C INC S8C
FFC4 E6 9E INC S9E
FFC6 00 02 BNE SFFCA
FFC8 E6 9F INC S9F
FFCA A5 9E LOA S9E
FFCC C5 AO CMP SAO
FFCE 00 E9 BNE SFFB9
FFDO A5 9F LOA S9F
FFD2 C5 AI CMP SAl
FFD4 DO E3 BNE SFFB9
FF06 60 RTS

FF07 02 CO 00 00 00 50 00 58
FFOF 00 D8 00 EO 00 EO F8 FF
FFE7 FA FF 00 00 00 00 00

Page 355

Well, that's the 14K Operating System Source listing of the
Atari XL/XE. Of course, there's no reason why you couldn't
change and improve the OS now, I'll leave it in your
competent hands.

Before I
out that
different
Spectrum,

finish this Appendix, you might be pleased to find
you could (if wanted), turn your At a r i into a
8-bit machine such as a ZX81, BBC, Vic 20, Oric,
Dragon or Commodore 64.

What would I want to do this for, I hear you say? Well, it
does offer some potentialsl

You see, if all those unreleased games won't come to the
Atari, then why not take the Atari to the games!? By
re-writing the entire OS we can achieve just this. The
Commodore 64, Vic 20 and BBC are the easier systems to
imitate, because they use the 6502 CPU. I'm not sure about
Dragon and Oric, but the ZX81 and Spectrum use the Z80 CPU.
ZX81 conversion should be easy, but Spectrum conversion does
bring difficulty because it uses the Z80' faster processing
power to graphics advantage, by achieving up to 8 colours
horizontally on an equivalent of Atari' Graphics 8
resolution.

I think it would be good if a group of people could get
together on this subject to create the necessary OS and
hardware porting equipment, and should any capable person be
taking this seriously, then get in touch with me.

Page 356

APPENDIX F

APPENDIX Fl:

THE HARDWARE CHIPS.

Inside your trustworthy Atari classic there is quite a lot
of power, by power I mean that it is capable of achieving
excellent results in a wide and varied field of subjects.
Whether you are word-processing, programming, on the BBS or
utilizing the computer for a specific subject, the Atari
classic is without hype, a very affective tool.

This power is all available due to the Hardware chips
installed underneath the shell. In our Atari, there is the
6502 Central Processing Unit (CPU), 4 I/O chips, the
Operating System (OS) ROM, expandable RAM and several MSI
(Medium Scale Integration) chips for address decoding and
databus buffering.

The CPU isn't the best of its kind, far from it. It wasn't
bad in its day. Nowadays, on its own it isn't a scratch on
latest RISK processors, but when it's used in conjunction
with the special 4 I/O chips in the Atari, the odds differ.
The as is 14K of controlling program which basically
converts the computer from a machine into a home-computer.
It's the permanently residing program that helps interface
the user with his hardware and software. RAM expansion in
the XI. is usually 64K (64*1024 bytes) which generally means
that you coutd have an average of 1092 names and
phone-numbers stored in your computer at once. The 130XE
offers l28K, twice as much. In addition to this, you can
have memory expansion. The amount to which you can expand is
really determinate on the Electronics brain behind the
creation. To date, a IMeg (I Million bytes) expansion is
possible. Of course, in addition to onboard RAM, you have
floppy disks, elephant disks and even hard-disk storage
which can keep tremendous amounts of stored RAM, accessible
within seconds.

The 4 I/O chips have been named; ANTIC, GTIA, POKEY and PIA.
These are the main chips responsible for interfacing the
computer itself to any device connected to any of the ports,
which includes the creation of sound and vision.

All of these 4 I/O chips are what is known as Large Scale
Intergration (LSI) and they occupy the memory range 53248 -
55295; $UUUO - $D7FF. Overleaf is a short description about
which chip does what.

Page 357

ANTIC $0400 OMA (Direct Memory Access)
NMI (Non-Maskable Interrupts)
Vertical & Horizontal fine-scrolling
Light-Pen position registers
TV Vertical line counter
WSYNC (Wait for horizontal SYNC)

GTIA $0000 Playfield priority control
Colour and Luminance imaging
Player/Missile Graphics (PMGs)
Graphics registers
Size control
Horizontal position
Playfield collision detection
Switches and triggers (misc. I/O functions)

POKEY $0200 Keyboard scan and control
Serial communication port (bi-directional)
POT scan (4 POT digitization)
Audio generation (4 channels)
System Timers
IRQ (maskahle interrupt requests) to/from
peripherals
Random number generation

PIA $D300 Controller jacks (joysticks) I/O
Peripheral control and interrupt lines
IRQ (maskable) control to/from peripherals

You may see that the ANTIC chip is majoritly in control of
graphics, although GTIA actually interfaces with the TV.
POKEY is mainly for sound, although along with PIA, they
control IRQ's which are for device control. GTIA also
supports PMG's, which are the proto version of hardware
sprites/bobs. NMI's and DMA are mainly concerned with the
screen display. Although NMI's are non-maskable, meaning
that they can't be disabled, in the Atari - they can! At
least 2 out of 3. The reason behind this is that they are
truly non-maskable to the CPU, but ANTIC is a very special
Atari-only chip which is a CPU in its own right. It has its
own instruction-set and it is this chip that masks the
NMI 's.

Anyway, without any more information to supply on the
interior of the Atari, I think that's it! The only thing I
haven't covered is the question of the GTIA. Is it really
Georges Television Interface Adapter?

Page 358

APPENDIX F2:

1050 SPECifiCATIONS:

The 1050 drive uses the 6507 Microprocessor, formats in
either of single or dual densities, uses 5 1/4" disks each
of which can hold a maximum of 260K uncondensed. Operating
temperature is between 75.6-129.6F within the altitute
0-9842.5 feet. Besides, who on earth would take it up that
high! Transfer rate is 19200 BAUD.

DENSITY-

DUAL:
40
26

1040
1023
13

1010
128
3

SINGLE:
40
18
720
719
12
707
128
3

RAMDISK:
n/a
n/a
512
511
12
499
128
3

DESCRIPTION:
Tracks
Sectors/track
Total sectors
Sectors available to DOS
DOS overhead, sectors
Sectors to user
Bytes/sector
Overhead bytes/sector

If you have a US-Doubler or similar chip fitted in your
drive, then it offers true double-density, giving you 256
bytes per sector with a transfer rate of 70000 BAUD.
A good feature when using a double-density DOS, such as
SUPERDOS with the US-Doubler fitted, is the high 128 bytes
of each of the directory sectors 361 - 368. As they are not
utilized, you can use them to give your files a clearer
name. One such program that does do this is a program
utility called PICODOS. It reads all the .COM files on a
disk, and allows you to give a better description which is
then displayed on the screen when booting the disk. If you
allow 40 bytes per filename for its 'better name', then
there is room for 25 new-names. But, whether it is likely
that you'll fit 25 .COM files on I side of a disk is another
story. Every file would have to be 40 or less (d/density)
sec tors long.

Protection of your disks is sometimes quite a tedious job.
Normally, they should be kept in their sleeves away from
dust and sunlight when unused. Bending should be avoided,
they should be inserted in the drive the correct way only,
no prodding the exposed oxide surfaces. Temperature ranges
between 10-52C, and magnetic areas like TVs should be
avoided. I have broken all these laws and disks have still
worked! I leave them allover the place, including on top of
the TV. I've put them in the drive the wrong way, exposed
them to sunlight, dropped them in the rain carrying them up
and down from friends houses. This last point does tend to
do the worst damage. You need to give it about 2-3 days to
dry off at room temperature. Don't put it near a Warmth
Output System WOS (a fire), or the format warps and NO drive
for ANY computer will understand which system the disk was
FORMATted wi th!

Page 359

PINOliTS.

Here's diagrams and reference information to all of the
Atar i' 1/0 jacks.

* ** 2 3 4 5 *
* ** 6 7 8 9 *
* ******************

PIN FUNCTION

I Joystick Forward
2 Back
3 Le f t
4 Right
5 B Potentionmeter (Paddle-1/3)
6 Joystick Trigger
7 +5Volts Output
8 Ground
9 A Potentionmeter (Paddle-0/2)

Moni tor jack:

3 *

5 4

2

PIN FUNCTION

I Composite Luminance
2 Ground
3 Audio Output
4 Composite Video
5 Composite Chroma

Page 360

APPENDIX F3:

Serial I/O jack:

* ** 2 4 6 8 10 12 *

* ** 3 5 7 9 II 13 *
* ***************************************

PIN FUNCTION

I Clock Input
2 Output
3 Data Input
4 Ground
5 Data Output
6 Ground
7 Command
8 Motor Control
9 Proceed
10 +5V/Ready
I I Audio Input
12 +12V
13 Interrupt

The Enhanced Cart

The Parallel Hu s is on the next leaf, however, in the 130XE
it is called the ECI. The only difference is the 14-pin
addition explained here:

* ** ABC D E F G *
* ** 234 567 *
* ********************

PIN FUNCTION

External Device select?

2 System RESET RST
3 Chip Select at Dlxx
4 Math Pack disable MPD
5 External Audio Input

6 Present Cycle is Refresh REF
7 Second dc supply +5Volts

AI5
GND

A Reserved
EXSEL
B Inter. Req. IRQ
C Antic Halt sig.
D Address Line AI3
E Address Line AI4
AUDIO
F Address Line
H Ground
+5V

PIN FUNCTION

Page 361

* ** ABC D E F H J K L M N P R 5 *
* ** 2 3 4 5 6 7 8 9 10 II 12 13 14 15 *
* **

Looking at the Cartridge slot from the reverse of your
machine. the setup is above:

PIN FUNCTION PIN FUNCTION

A ROM Present
54
B Ground
A3
C Address Line
A2
D Address Line
AI
E Address Line
AD
F Address Line
D4
H Address Line
D5
J Address Line
D2
K Address Line
DI
L Data Line
DO
M Data Line
D6
N Address Line
55
P Address Line
+5V
R CPU Read/Write
RD5
5 System Clock
CCTL

RD4

GND 2

A4 3

A5 4

A6 5

A7 6

A8 7

A9 8

AI2 9

D3 10

D7 II

All 12

AIO 13

R/W 14

B2 15

Chip# $8000-$9FFF

Address Line

Address Line

Address Line

Address Line

Data Line

Data Line

Data Line

Data Line

Data Line

Data Line

Chip# $AOOO-$BFFF

+5Volts DC

ROM Present

ROM Bank Ctrl Sel.

Well, that's it. The Atari 65XE doesn't have the PBI or ECI,
so don't go buying one if you want this port!

Page 362

APPENDIX F3:

The Parallel Bus Interface (PBI)

* ** 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 3941 43 45 47 49 *
* *
* ** 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 *
* **

TOP PIN PIN BOTTOM

Ground GND I 2 External Select
Address OIP AO 3 4 Al

A2 5 6 A3
A4 7 8 A5
A6 9 10 GND
A7 II 12 A8
A9 13 14 AIO
AII 15 16 A12
AI3 17 18 Al4
GND 19 20 AI5

Data Lines DO 21 22 DI
(Ili-Directional) 1J2 23 24 D3

D4 25 26 D5
D6 27 28 D7

GND 29 30 GND
Phase-2 Cl.K OIP 3 I 32 GND
Reserved NC 33 34 RESET Output
1nterr. Request IRQ 35 36 Ready Input

NC 37 38 External decoder Output
NC 39 40 Refresh Output

Column Address OIP 41 42 GND
Mathpack disable liP 43 44 Ruw Address strobe

GND 45 46 Latch ReadlWrite out
(+5V dc?) NC 47 48 NC (+5V de?)
Audio Input 49 50 GND

Page 363

PORT INPUT.

The voltages in the ports of the Atari classic ain't that
significant, like most DC applications really. The joystick
ports give +5 Volts on pin-7. The amperage is insignificant
at around 50mAmps maximum. The potentionmeter pins 5 and 9
return a value of 228 for a full 5Volts on the line, while
the lowest value of 0 is returned for the trigger voltage
(almost IVolt) being on the line (or is it the other way
around?). It is actually possible to use these
potentionmeter pins to input voice tracks from music tapes
into the computer. You'll need to create your own lead and
software. I'm not actually sure how to go about it as 1
haven't really looked into it. I don't even know how (if)
any commercial packages do it this way, such as the REPLAY
sound sampling system because I don't possess any. What 1 do
know off hand, is that you'll need to either set bit-2 of
SKCTL location 53775; $D20F or start and restart the pot
scan via location $D20B. The pot scan should be read every
2-scan lines in fast mode, or prior to it being restarted.
The lead would have to take about lVolt plus the speaker
voltage (music sound) into the potentionmeter port with a
feed off back to the music system. Please don't take the
facts I've given as accurate or even correct, because I'm
really unsure. 50 don't go damaging thinls accidentally,
this is merely my assumption, although I know that it is
possible to put samples into the Atari this way. Anyway,
pin-8 of the port is ground.

The Serial I/O port passes +5Volts dc/ready on pin-IO and
+12Volts de on pin-12. Ground lines are pins 4 and 6. Music
can also be input from the cassette via pin-II. The Atari
already offers an IRQ to obtain the bits from bit-4 of
5KSTAT location 53775; $D20F, which are collected and placed
in 5ERIN location 53773; $D20D. I did once try to input
music from the cassette and play it back. but without
success unfortunatly. The music I recorded turned out to be
the background "noise", so I 'taped' the wrong track (the
data-in) where I should have recorded the audio-in, I never
had any success finding the audio-in bit, so I quit. Perhaps
someone does know .ore on this subject. If so, it could be a
good appendix addition to this bookl?

On the next leaf is all the information I can supply:

POTGO location 53771; $D20B is POKEd to begin the POT scan
sequence, the POT values should be read firstly. The write
strobe then causes the following steps:

Page 364

I. The Scan counter is cleared to O.
2. Tile Capacitor dump transistors are turned off.
3. The Scan counter begins counting.
4. The counter value is captured in each at 4 POT (NOT 8)
registers as each POT line crosses trigger voltage,

5. When the counter reaches 228. the capacitor dump
transistors are switched on.

The PIA (6520/6820) gives TTL levels, I load for both input
and output. The circuits are as follows:

PORT A:

6520
------------:

I I
I I

A:----220R-------:
Por t : ::

------------,I

Jack-O

.001f

PORT-B:

------------: 0+5
6520 : 4.7K :

B:----220R-------: Jack-l
Port: ::

------------:

.001f

Here's the "Trigger" Port c i r c u i I:

GTIA Trig.
------------:

I I
I I

:----220R-------:
I I I
I I I

------ 1
I

Jack

.OOlf

The parallel bus. the enhanced cartridge interface and
indeed the above mentioned ports are fully described in the
PINOUTS appendix.

Page 365

APPENDIX G

OTHER PIWGRAMS.

Obviously. the Atari' memory as it stands is a very large
subject. but what's in it and where. when various programs
are loaded. This subject in itself can comprise of many
books as you can imagine. In addition to this, what uses can
you put particular programs too? Anyway, without further
ado. here's a few words about a couple of subjects.

A very quick tip is for the BOULDERDASH construction kit.
Some of you will have noticed that there have been many
screens designed for this game, and in particular, some of
these caves and intermissions are 'different' in ways such
as pertaining more than I exit etc .. Well, you too can
achieve simple tasks such as this. the general idea is to
design a cave so that you can just put I object inside it.
You then load this cave file into a word-processor such as
SPEEDSCRIPT or TEXTPRO. Hmmm. All the characters look the
same apart from the I (the object you put in the screen).
Hmmm, I wonder? I'll leave you to ponder over that one.
There are a lot more tips on this one, a whole lot morel

If you file your program collection on MJ Hughes DATABASE
program. and you posess either a Basic program called
QUICK-VIEW Creator by someone called KRACTWERK, or 2 other
programs called TOMO #2: MJDB VIEW and MJDB converter, then
you can convert your program data to any of 2 types of quick
reference boatable files. The 2 TOMO programs are a little
harder to get hold of, but they can create a better
view-file.

Boatable menu's including Multi-Boot XL and HOWFEN are very
handy. If you want to write your own programs to convert
from I menu to another, then where is the information you
need? The only real way of obtaining the information is to
HACK the menu etc., unless of course ... Yeap! Unless of
course I give you it.

The HOWFEN menu can hold a maximum of 20 files, the amount
of files plus I presently on the disk is shown at byte 41 on
sector 7. The name table and sector counts is in internal
format beginning at byte 12 of sector 2. The screen is
narrow width. so each file entry line is 32 spaces apart.
The start sectors of each file begin at bytes 42 and 62 of
sector 7 for LSBs and MSBs, respectively. The length of a
file is found by subtract ins the start sector of the file
wanted with the start sector of the next file on the menu.
If there isn't another file on the menu. then it doesn't
matter. since the next free sector should be present which
is the same principle.

Alike HOWFEN .enu, Multi-Boot XL's start sectors are LSBs
and MSBs and besin at bytes 10 and 20 of sector 48.
respectively. This menu keeps file lengths besinning at byte
o of the same sector. The name table begins at byte 30 of
this salle sector asain. Since the file lengths are kept in
single bytes, this menu can only retain files which have a

Page 366

APPENDIX GI:

sector length of 255. There are
but we won't cover them in this book.

several other

Musical bars is a nice addition to programs, but how do you
get the information that they need. If you own 1 of the
serious music packages such as BlACK MAGIC COMPOSER (BMC),
or the SOUNDMONITOR by Benjy, then you may be surprised to
find that it is relatively easy to discover where in memory
the programs keeps its frequency, distortion and volume
controls before these values are loaded into the hardware
channel registers. Benjy's SOUNDHONITOR is very explanatory,
though, if you're unsure, all you have to do is to pack a
music file and use the various Basic listings to start the
music. Note, that just before you start the music, try
changing the Display Lists DM pointer of the Graphics 0
screen. You can actually display the memory being altered
and find out all the exact addresses by timing what you hear
with what you see. Obviously, the more complex the tune the
harder it is to compare, so try simple, slow tunes until
you've found your bytes. BMC is based on this technique,
although, you'll need to be familiar with machine-code to
achieve any success. If you don't know MIC, then there is
another method. but even this way. you'll need to possess a
program called the FREEZER, and you need to get aquainted
with the complexities of BMC and the Vertical Blank
Interrupt.

Moving onto the subject of pictures. if you own the KOALA or
ATARI touch tablet. then drawing pictures is made easier
than having a joystick. A program called GRAPHIC ARTS
DEPARTMENT has a good velocity mode for joystick users, but
besides this, owning the touch tablet does make things
easier. Your pictures probably come out best if you firstly
draw them on paper, and then slip the paper under the
plastic cover of the tablet. After tracing your own picture
with the tablet pen, only a little touching up is needed for
a picture that really shows your drawing ability. You can
save these pictures to disk either using the SAVE option, or
by pressing the 'greater-than' symbol on the 'insert' key.
The first method saves in condensed mode, the latter in
normal mode. If you wish to load the latter saved pictures,
then use the 'less-than' symbol on the 'clear' key. The
file-name of this file is always the same name, PICTURE, so
be careful not to overwrite old ones - rename them.

Converting DOS saved pictures to your own machine-code
boatable programs is another subject. There are many
utilities in the public domain that do this, like a very
good picture converter created by someone no longer on the
8-bit Atari (?) known as the MOCKINGBIRD. But, this is not
the only use for such a utility. You can also convert ANY
DOS file to boot-sectors so long as that file doesn't exceed
62 sectors. It's all experimentation. and here I leave you
in ponderment for all those utilities - what else can they
do!??

Page 367

ATARI SUPPORT.

This is
include
the rear
User.

a list of addresses that 1 felt it necessary to
in this book. The addresses are mainly taken from
of Page-6 magazine, or otherwise known as NEW Atari

Software Infinity
642 East Waring Avenue
state College, PA 16801
Good PO selection and are
now marketing commercial
games overseas.

OataQue Software
PO Box 134
Ontario, OH 44862
Turbo-816 16-bit upgrade
board. Transkey hardware
for using keyboards
on the 8-bit, and more.

B&C ComputerVisions
2730 Scott Boulevard
Santa Clara. CA 95050
Tel. (408) 986 9960
Huge selection of software
and hardware items. Also
some commercial games
unavailable elsewhere.

Sagamore Software
2104 Arapahoe Dr
Lafayette, IN 47905
Good PO/shareware
selection with extensive
documentation.

Change In Heat
12 Bella Vista Place
Iowa City, Iowa 52245
Independent programmer
has produced 2 excellent
commercial quality games
for the 8-bit.

Bresnik Software
555 Ware Street

02048
Another independent
producing good
educational software.

UltraBasic
10 East lOth Street
Bloomsburg
PA 17815
8-bit specialty software

NERDS Software
18 Wendy Drive
Farmingville. NY 11738
Printshop related software

IB Computers
9244 SW Beaverton Hills
Hwy, Valley Plaza
Shopping Centre
Beaverton. Oregon 97005
Tel. (503) 297 8425

BellCom
PO Box 1043
Peterborough. Ontario
Canada K9J7A5
The largest PO/shareware
selection.

Compsult
PO Box 5160
San Luis Obispo
CA 93403-5160
Closeout items galore

No Frills software
800 East 23rd Street
Kearney, NE 68847
Closeouts & Printshop
graphics.

Better Software
219/221 Cannock Road
Chadsmoor, Cannock
Staffordshire WS11 200

of Software
for 8-bit and 16-bit.

Page 368

APPENDIX G2:

Bacmun Software
1671 East 16th Street
Suite 629, Brooklyn
NY 11229
PD theme disks.

Alpha Systems
1012 Skyland Drive
Macedonia, OH 44056
utility Software and
Hardware.

American Technavision
15338 Inverness Street
San Leandro, CA 94579
Tel. (510) 352 5639
Large selection of
commercial software at
closeout prices and
hardware replacements.

Best Electronics
2021 The Alameda,
Suite 290, San Jose
CA 95126
Tel. (408) 243 6950
Known as THE Atari
hardware store. If these
don't have the part you
need, nobody does.

BRE Software
Markets a new 8-bit game
352 West Bedford Avenue
Suite 104, Fresno
CA 93711
PD/Shareware.

C&T ComputerActive
PO Box 893
Clinton, OK 73601

Phantoms Atari 8-bit
Box 331, Levisa Road
Mouthcard KY 41548

Newell Industries
PO Box 253
Wylit, TX 75098
Tel. (214) 442 6612

Innovative Concepts
31172 Shawn Drive
Warren MI 48093
Tel. (313) 293 0730
Accessories, hardware
PD software.

CSS
PO Box 17660
Rochester NY 14617
Tel. (716) 429 5639
Specialty hardware
and 8-bit repairing.

San Jose Computers
640 Blossom Hill Road
San Jose CA 95123
Tel (408) 995 5080
New and reconditioned
hardware and software

East Hartford Computers
202 Robert Street
East Hartford CT 06108
Discontinued software
for all computers.

Aerion Software
PO Box 1222
Riverdale Station
NY 10471-1222

Toad Computers
556 Baltimore Annapolis Blvd
Severna Park, Maryland 21146
Tel. (301) 544 6943
Software and reconditioned
hardware.

Gra1in International
11 Shilito Road
Poole, Dorset BH12 2BN
Hardware and Software
including ICD products

Page 369

TWAUG
PO Box 8
Wallsend, Tyne'n'Wear
NE28 6DQ
Regular newsletter with
disk, also hardware
repairs.

NOSAUG
Stuart Murray
71 Walker Road
Torry, Aberdeen ABI 3DL
Regular Futura disk
also on tape.

Atar! Classics
170 Sproul Road/Rt.352
Frazer PA 19355-1958
A recently formed
magazine by dedicated
8-bit users.

Current Notes
122 North Johnson Road
Sterling VA 22170
A top quality 8-bit and
16-bit magazine.

ANG Software
Puttershoeks estraat 63a
3114 PK Schiedam
Holland
Tel. (0) 10 4735987
Parts for the Pokey
stereo upgrade as well
as MegaMag. I believe.

Micro Discount
265 Chester Road
Streetly, W. Midlands
Tel. (021) 3535730
Large selection of
commercial software, also
hardware replacements.

Tiger Developments
26 Menziers Avenue
Walmer, Kent CTI4 7QZ
Commercial 8-bit software

Atari Interface
3487 Braeburn Circle
Ann Arbor til 48108
Tel. (313) 973 8825
8-bit and 16-bit magazine
with disk, with input from
groups allover.

NEW Atari User (Page-6)
PO Box 54
Stafford STI6 IDR
A professionally produced
magazine for 8-bit and 16-bit
with large PD on 8-bit and
16-bit, including
commercial software.

There are still many more existing sources on the Atari
8-bit, of which seem a little less known. There is an
excellent German games company called KE-Soft, as well as
many other magazine and newsletters still alive. There is
Moje Polish magazine, the New Aladdin. Phoenix (risen from
the ashes). even a good quality free disk called The Grim
Reaper by John E.

There is also a compilation of British demos which is in the
making at the same time of this book. I haven't worked out
what to do with this disk at the moment. but by the time
that your reading this, it will have been sorted out.
Perhaps. it may be obtainable through TWAUG, who knows as
yet?

Page 370

GLOSSARY:

ANTIC, GTIA. PIA, POKEY: Special At a r i chips controlling the
XL/XE's graphics. colour and screen resolution. controller
jacks and sound. repectiveIy. Located in ROM at 53248 -
54783. ANTIC also processes the NMI 's and POKEY processes
the IRQ's.

ATTRACT MODE: The feature included in the Operating System
to protect the TV from burn-out.

BACKGROUND: The area of the screen for typing in Graphics 0,
Memory display etc ..

BCD: Binary Coded Decimal. see the LOGIC appendice for a
full explanation.

BORDER: That area of the screen which surrounds the
Background. normally black on Graphics O.

BIT, BYTE: A BIT is the smallest size division of memory in
the computer. It is so small that it can only retain a
status of being off or on, 0 or 1, low or high. 4 BITS are a
NYBBLE. while a BITS, or 2 NYIJIJLES, form I BYTE. Every
memory location within the Atari XL/XE's are 1 BYTE in size.
hence, the name: Atari a-BIT computers. This means that
every memory location can have a value within the range 0 -
255.

CHARACTER GRAPHICS: The
character sets, usually
graphical display.

technique
in Graphics

of
1 :2
using redefined
or 13 to create

CHARACTER SET:
characters in
57344.

The term used for
a particular order.

a particular set of
See location 756 and

CIO: Central Input/Output routines located in ROM. Controls
the I/O Control Block (IOCB) operations. In brief, CIO
handles the data I/O through the device driver/s (or device
handlers), then passes control to those drivers. It's a
single interface with which to access all peripherals in a
device-independent manner (i.e. uniformed handling of data
with no regard to which device is being accessed). As an
example: writing data to a disk file is treated in an
identical manner as writing data to the screen; commas
insert blanks between elements and both commas and
semi-colons surpress the End of Line (EOL) character.

COLDSTART: The
computer off and

term
on.

used which simply means to turn the

COLOUR CLOCK: The
across a scan-line.

smallest unit of horizontal distance
See the TIMINGS appendix.

Page 371

CTlA: The elder chip to the GTlA.

CYCLE STEALING: A process carried out by ANTIC in order to
create the screen display.

DCB: Device Control Block, used by SIO.

DISPLAY LIST: This is the set of ANTIC instructions
detailing the whereabouts of the screen memory and also in
which way it is to be displayed.

DISPLAY LIST INTERRUPT: A DLI is, usually, a very short
machine language routine that is executed during a
Horizontal Blank on the TV frame.

DOS: Disk Operating System. The software loaded from disk
file DOS.SYS that controls all disk I/O. If you are using
DOS I or 3, then chuck it in the bin and get DOS 2.5.

DMA:
order
CPU.

Direct Memory Access. The process of the Antic chip in
to obtain data from memory without the use of the

DUP: Disk Utilities Package. The software loaded from the
disk file DUP.SYS that handles all of the DOS menu
functions.

EOL: An End Of Line character having the code $9B (The
RETURN key).

FMS/DFMS: Disk File Management System portion of DOS; a
dedicated device driver that controls all I/O operations for
device "0:".

FONT: See CHARACTER SET.

FP: Floating Point mathematical package in ROM.

FUNCTION: A Basic instruction which returns a value back to
the program.

HORIZONTAL BLANK: The time
electron-beam is switched off
screen. to when it is switched
the screen. 1 scan-line lower.

period from when the TV
at the right edge of the
back on at the left edge of

IMMEDIATE MODE: A Basic line input without the use of a line
number.

I/O: Input/Output.

Page 372

APPENDIX G3:

10CB: Input/Output Control Block. Area of RAM (locations 832
959) used by CIO to define operations to devices such as

the disk drive (D:). printer (P:). screen display (S:),
screen editor (E:), keyboard (K:). cassette recorder (C:)
and RS232 (R:). ZIOCB is the Page-O 10CB.

IRQ: Interrupt ReQuest used for the
communication, peripheral devices, timing
input. IRQ's are processed by the POKEY chip.

serial port
and keyboard

LSB: The Lowest Significant Byte, or Bit. See the LSBs/MSBs
appendice.

MODE LINE: A
the Graphics
per mode-line.

particular amount of scan-lines depending on
mode in use. Graphics mode 0 has 8 scan-lines

MSB: The Most Significant Byte. or Bit. See the LSBs/MSBs
appendice.

NMI: Non-Maskable Interrupt; used for video display and Hard
RESET. NMI's are processed by the ANTIC chip.

OS: Operating System. The resident system that runs the
Atari. The OS is 14K and resides at 49152 - 53247 and 55296
- 65535.

PIA: The Peripheral Interface Adapter chip which interfaces
the 6502 CPU with external devices. It also interfaces the
joystick ports.

PIXEL: The smallest 2 dimensional unit of a Graphics mode.
In Graphics 15, the pixel is 1:1; I colour clock in width
and I scan-line in depth.

PMG, PM Graphics: Player/Missile Graphics. Players and
Missiles are special moveable. user-defined, coloured screen
objects otherwise known as Hardware sprites or bobs. They
are often used for games, animation or various other
special-FX. PMG's are also unique in that you can establish
the manner (priority) in which they interact with the rest
of the screen display as well as each other.

RAM: Random Access Memory. All memory from location 0 -
49151. which is used for storage, programs. buffers,
cartridges, DOS, 10CB's. shadow registers and the registers
for the special Atari chips. Random Access means you can get
to and from these locations at random. and not that they
store information randomly!

ROM: Read Only Memory. Locations 49152 - 65535 is the ROM.
ROM is also used to describe cartridge memory which cannot
be user altered. even the ROM Basic package which is
switched in when enabled. You cannot alter ROM. except for
various locations of the Hardware memory found in the
D-block.

Page 373

HPENDIX G3:

SCANLINE: A horizontal distance of 228 colour clocks. See
the TIMINGS appendice.

SECTOR: This is a 128 byte area on a disk.

SHADOW REGISTERS: Used to monitor the contents of write-only
hardware registers.

SIO: Serial Input/Output routines located in ROM. Controls
serial operations including the 850 interface (R:) and
cassette recorder (C:). Briefly, SIO controls the Atari's
peripherals as per request placed in its DCB by the proper
device driver. It is also accessed by FMS for data
transfer.

TEXT WINDOW: This is the 4 lines of Graphics 0 which appear
at the bottom of the screen after a call such as Graphics
I.

VERTICAL BLANK: This is the interval between the time the TV
electron-beam turns off after reaching the bottom right
corner of the screen and returning to the top left corner
and turns back on again. See VBI. There are 2 VBLANK stages;
stage-I is every 50th of a second, while a stage-2 VBLANK
can be any relation to a 50th of a second divisable by 2;
ie. 25th of a second. 12\th of a second etc., depending when
you set and clear CRITIC at location 66.

VBI: Vertical Blank Interrupt. A VBI
pr ogr a a of limited 'time' that is
Vertical Blank interval.

is a machine-language
processed during the

WARMSTART: The term which simply means to press the Reset
key.

ZERO PAGE: This is memory in the range 0 - 255; $00 - $FF,
which can be accessed by just an LSB.

Page 374

PROGRAM LISTINGS.

This is the very last
very last one to be
useful listings and
have seen before.

appendix of the book, and is also the
compiled. Here you'll find just a few
programming techniques you might not

I'm going to kick off with a program to help your graphics
angles. Triangles, squares, circles and even elipses are all
user creatable of course, but how do you create some of
these more complex ones? Well, with Turbo Basic, circles and
simple elipses can be achieved with the CIRCLE command, but
if you haven't got this Basic, why not try my first
program:

10 GRAPHICS 15+16
20 COLOR I
30 DEG
40 FOR 1=0 TO 540 STEP 3
50 C=(COS(I-(1/3»*50)+80
60 S=(SIN(I+(1/3»*50)+96
70 PLOT C,S
80 NEXT I
90 GOTO 90

Not bad eh!? If you want the Basic circle, then remove the
"-(I/3)" and "+(1/3)" strings in lines 50 and 60. The size
of circle/eclipse is achieved with the value 50 on both the
sine and cosine curves. Co-ordinate 80,96 is the dead centre
of the curve. Now, if you're after more complex eclipses, or
different shapes like octagons, then you'll need to fiddle
around with the string arguments (explained above). These
parameters are the secrets. Oh, you might find changing the
DEG command to the RAD command quite interesting too!?

Keeping on the subject of circulism, the program on the next
page stores the sine and cosine values of a circle into an
array, which are then used as X,Y positions for text.

The text that is plotted is reversely typed into TS, but
you'll have to have a copy of Turbo Basic (TB from now on)
to run this program because I've used TDs TEXT command,
which happens to be a very useful command. The purpose that
I've put it to is just an example as you'll realize with the
speed of Basic, but there's no reason why the program can't
display the text in steps of 2 or more. You will have
problems with a trail of bits being left behind, but it can
be overcome. One method is by redefining the character-set!

Page 375

100 GRAPHICS 8
110 POKE 710,0
120 DIM C(360) ,S(360) ,T$(30)
130 COLOR I
140 DEG
150 FOR 1-0 TO 360 STEP
160 C=(COS(I)*50)+80
170 S-(SIN(I)*50)+96
180 C(I)-C:S(I)-S
190 PLOT C,S
200 NEXT 1
210 T$-" EREHT IH"
220 G-15:1-300
230 1-1+(1 [360 AND J-I)-«I)359)*360)
240 J-J+(J[9)-((J)8)*8)
244 N-I+J*G:N-N-360*(N)360)
250 TEXT C(N),S(N).T$(J,J)
280 GOTO 230

Well, as you'll know if you've typed the listing in, in it's
present form it is very slow, but I leave you to work
something out with it.

In addition to the use of the program, you might not have
come across lines like 230, 240 and 244. Believe it or not,
lines 230 and 240 are a boolean style nested FOR/NEXT loop.

goes from 0 to 360, and J goes from I to 9. Both in steps
of I (in this case). Line 244 shows variable N, which is
used to extract the X and Y co-ordinates for each character
in T$. For more information on this Boolean style
programming, and its reasons, consult my relating
appendice.

Again, here's a listing with some Boolean expressions, but
this time they're used to guide a rolling square around the
graphics mode 8 screen.

100 GRAPHICS 8:POKE 710,0
110 X-O:Y-O
120 1-1+(1[30)-(1-30)*29)
130 V-O:GOSUB 180:V-I:GOSUB 180
140 X-X+(X[IOO AND Y-O)
142 Y-Y+(X-IOO)
144 X-X-(Y-IOO)
146 Y-Y-(Y]O AND X-O)
160 GOTO 120
170
180 COLOR NOT V
190 PLOT X+30+V-I,Y
200 DRAWTO X,Y+I-V
210 DRAWTO X+I-V,Y+30
220 DRAWTO X+30,Y+30+V-I
230 DRAWTO X+30+V-I,Y
240 RETURN

Page 376

APPENDIX G4:

Advanced programmers, and they know who they are! like
to use the previous program for other reasons. One that
comes straight to mind is creating the characters for a
large font out of the moire effect created here. Who's bold
enough to go for it!7

How about
One such
example;

plain
method

and simple tidyness of a program display.
is to add borders to a wide screen. For

10 POKE 559,35
12 POKE 53256,3:POKE 53257,3
14 POKE 53261,255:POKE 53262,255
16 POKE 704,O:POKE 705,0
18 POKE 53248,24:POKE 53249,203

That's not the only use, though, it could be used
deceptively to make some people think that you can place
graphics 0 text on the border! Hmmm, I wonder if I've given
the secret away7

Another aspect of program improvement is the special effects
department. Here's a simple one to wet your appetite:

100 GRAPHICS 0
110 POKE 82,0:POKE 710,0
120 FOR 1"0 TO 80:7 ";
130 NEXT I
140 Dl=PEEK(560)+256*PEEK(561)
150 AFFECT=240
160
170 ZalI2:VI-0:V2-l6:Ql-0:Q2=-255
180 GOSUB AFFECT
190
200 Z-0:Vl=16:V2=0:Ql=+255:Q2-112
210 GOSUB AFFECT
220 GOTO 170
230
240 FOR 1=6 TO 28 STEP 2
250 POKE DL+I,Z
260 NEXT I
270 Z=Z+Vl-V2
280 FOR DcO TO 49:NEXT D
290 IF Z)"QI OR Z[-Q2 THEN 240
300 RETURN

There is so
tried to keep
same FOR/NEXT
display.

much
the
loop

that you can do. You may also notice I
listing short, since I've utilized the
to expand and reduce the graphics 0

Page 377

Again, not only from the special effects department but also
from Page-6 magazine issue 41. Here's a very famous Atari
effect:

12 GRAPHICS 0
14 POKE 710,O:POKE 623,1
16 POKE 53256.0:POKE 53261,1
18 FOR JmO TO 33
20 READ D:POKE 1536+I,D
22 NEXT I
24 DATA 72.162,216,189,0,129,56.253,0
26 DATA 130,157,0,129,141,10,212.141
28 DATA 0,208,42,41,240,9.15,141,18
30 DATA 208,202,224,0,208.227,104,64
32 ------------------------------
34 DL-PEEK(560)+256*PEEK(561)
36 POKE 512,O:POKE 513,6:POKE DL,128
40 FOR 1-0 TO 255
42 POKE 33024+I.PEEK(53770)
44 POKE 33280+I,INT(RND(O)*3)+1
46 POKE 33792+1,1
48 ? 255-1
50 NEXT I
52 POKE 54286,192
54 LIST

The original version of this program was done by Edward
Brooksbank, but I've made some modifications and come up
with this version above. You'll find that you can type Basic
commands in, but it's best if you avoid this because the
method in which the display is created is very time
consumingl I would have written a fast method. but I think I
was held back by a slight case of bone-idleness! Perhaps
next time.

Away from special effects now and into the bits of the
bytes. or the shapes of the character-set. This following
program will take a single key input and return you with the
making of that character you pressed.

The key you press is initially read from location 764. This
value found in variable RAW is known as the hardware
key-matrix value and is of no particular order. The ascii
equivalent of this character is found via the use of the DFT
and RAW variables. and ends up in variable K. But. since the
program is meant to print out the bits of the character. we
must still convert it to its internal code value. We do this
on line 20. On reaching line 20. K is the ascii code, but on
processing line 20, K becomes the internal code.

Page 378

10 GRAPHICS O:POKE 752,1
12 DFT=PEEK(121)+256*PEEK(122)
14 POKE 764,255
16 RAW=PEEK(764) :GOTO 16+(RAW[255)*2
18 K=PEEK(DFT+RAW)
20 K=K+(K[32)*64-«Kj31)-(Kj95»*32
22 ADDR=52224+K*8
24 FOR 1=0 TO 7
26 V=PEEK(ADDR+l)
28 ?
30 B=128
32 IF V-Bj=O THEN 38
34 ? "> ":
36 GOTO 42
38 V=V-B
40 ? "* II;
42 B=INT(B/2)
44 IF BjO THEN 32
46 NEXT I
48 ?
50 GOTO 14

As you can see, line 20 is the boolean technique for the
ascII to internal character code conversion. It might be
useful to remember these boolean expressions, since they not
only take up less program space, they execute faster and
become inter-dependable on only I program line. You do not
need to initiate variables used in boolean expressions
because if the expression is done good enough, it will
initiate itself. You can prove what I'm trying to explain
with a program listed earlier in this appendix.

The disk directory is another task. Try this one:

10 OPEN #1,7,0,"0:*.*"
20 TRAP 60
30 GET #I,1l
40 ? CHR$(Il);
50 GOTO 30
60 TRAP 40000
70 CLOSE III

Steering clear 01 TRAP, why not try:

10 DIM A$(20)
20 OPEN 111,7,0,"0:*.*"
30 INPUT #1 ;A$
40 ? A$
50 IF A$(I,3)["000" THEN 30
60 CLOSE #1

Page 379

And 110101 for something completely d i f f e r e n t. Here's a useful
program for those uf yuu who like the game noulderdash and
ollly have a I drive system:

I 10 REM *- IIOULDERDASIl SCREEN
112 REM *- COPIER AND ORGANISER
114 REM
116 REM *- ANDREW C. THOMPSON
IIIl REM *- ORIGINAL VERSION
120 REM *- FEB'91
122 REM
124 REM *- MODIFIED FAST VERSION
126 REM *- MAR'92
128 REM
130 REM
132 REM *- INIT
134 REM
136 DIM D$(l9) ,E$(l5) ,CIO$(7) ,L$(82)
138 DIM G$(640),F$(40*13+8),S$(I)
140 REM
142 REM *- INSTRUCTIONS
144 REM
146 GRAPHICS 0
148 LIST 110,126
150 'I
152 'I "This wi II copy any
Boulderdash"
154 'I "game and its screens in"
156 'I "one disk pass."
158 'I
160 'I "The destination copy will be"
162 'I "best organized so as to
reduce"
164 'I "wear and tear on the
dri ve-head"
166 'I "when the files are loaded."
168 REM
170 REM *- SOURCE
172 REM
174 1=1
176 GOTO 178+4*(1)0)
178 'I
180 ? "NO GAMES ON THIS DISK"
182 ?
184 ? "INSERT YOUR BOULDERDASH"
186 ? "GAME DISK"
188 ?
190 ? "PRESS RETURN";
192 KEY=155
194 GOSUB 468
196 GOSUB 484
198 GOTO 178+28*(1)0)
200 REM
202 REM *- GET GAME NAME

204 REM
206 D$="DI:"
208 7
210 ? "GAME NAME- ";D$;
212 INPUT #16;E$
214 D$(4)=E$
216 REM
211l REM *- CIO CALL ROUTINE
220 REM
221 DATA 104,I62,I6,32,Il6,228,96
222 FOR 1=0 TO 6
223 READ D:POKE ADR(CIO$)+I,D:NEXT
224 REM
226 REM PLA
228 REM LOX #$10
230 REM JSR $E456
232 REM RTS
234 REM
236 REM
238 REM *- GET GAME-FI LES
240 REM
242 A=ADR(G$)
244 AUXI=4
246 ICCOM=7
248 1.1=252
250 L2=252
252 CLINE=254:GOTO 510
254 L$(I)=CHR$(PEEK(856»
256 L$(2)=CIlR$(PEEK(857»
258 REM
260 REM *- FIND AMOUNT OF SCREENS
262 REM
264 1=8
266 S=O
268 GOTO 270+2*(PEEK(A+I) [)46)
270 S=S+I
272 1=1+13
274 GOTO 268+14*(1)40*13+8-1)
276 REM
278 REM *- ZERO SCREENS CHECK
280 REM
282 ?
284 COTO 286+12*(S)O)
286 ? "THERE ARE NO SCREENS IN THIS"
288 ? "GAME FILE!"
290 STOP
292 REM
294 REM *- GET SCREEN NAME
296 REM
298 B=A

Page 380

APPENDIX G4j

300 A-ADR(S$)
302 e-o
304 F$-''''
306 D$....DI: ..
308 1-0
310 GOTO 312+40*(C)S-I)
312 W3PEEK(B+C*13+1)
314 GOTO 316+2*(W-32)
316 D$(LEN(D$)+I)=CHR$(W)
318 1..1+1
320 GOTO 312+10*(1)11)
322 F$(C*12+1)=D$(4)
324 F$(LEN(F$)+I)-"
326 7 ,D$(4)
328 REM
330 REM *- GET SCREEN
332 REM
334 CLINEa336:GOTO 510
336
338 L$(LEN(L$)+I)=CHR$(PEEK(857»
340 A-A+505
342 C=C+I
344 GOTO 306
346 REM
348 REM *- DESTINATION
350 REM
352 7
354 7 "INSERT YOUR DESTINATION"
356 7 "OOS-FORMAT DISK"
358 7
360 7 "PRESS RETURN"
362 K-155
364 GOSUB 468
366 REM
368 REM *- CONFIRM
370 REM
372 7 "CONFIRM! WRITE7)";
374 KEY-89
376 GOSUB 468
378 7
380 REM
382 REM *- PUT GAME-FILE
384 REM
386
388 D$(4)..E$
390 A-ADR(G$)
392 AUXlm8
394 ICCOM-l1
396 Ll=ASC(L$(I»
398 L2-ASC(L$(2»
400 CLINEa408:GOTO 510
402 REM
404 REM *- PUT SCREENS
406 REM
408 7

410 A-ADR(S$)
412 C=O
414 D$....DI: ..
416 D$(4)-F$(C*12+I,C*12+1+11)
418 7 ,D$(4)
420 LI-ASC(L$(C*2+3»
422 L2-ASC(L$(C*2+4»
424 CLINEa426:GOTO 510
426 A-A+505
428 C-e+1
430 GOTO 414+24*(C)S-I)
432 REM
434 REM *- WRITE AGAIN7
436 REM
438 7
440 7 E$;" HAS BEEN COPIED"
442 7 "WRITE AGAIN7] ..
444 KEY"89
446 GET 13,K
448 IF K=89 THEN GOTO 352
450 RUN
452 REM
454 REM *- SUBROUTINES
456 REM *- -----------
458 REM
460 REM
462 REM
464 REM *- GET KEY
466 REM
468 CLOSE 13
470 OPEN 13,4,O,"K:"
472 GET 13,K
474 GOTO 472+4*(KEY-K)
476 RETURN
478 REM
480 REM *- DIRECTORY
482 REM
484 CLOSE 12
486 OPEN #2,7,O,"D:*.GAM"
488 IK{)
490 7
492 INPUT 12;D$
494 GOTO 496+6*(D${1,3))3"000")
496 1-1+1
498 7 ,D$
500 GOTO 492
502 RETURN
504 REM
506 REM *- CIO EXECUTE
508 REM
510 HI-INT(A/256)
512 LO-A-(HI*256)
514 CLOSE II
516 OPEN 'I,AUXI,O,D$
518 POKE 850,ICCOM
520 POKE 852,LO

Page 381

522 POKE 853,HI
524 POKE 856,LI
526 POKE 857,L2
528 X-USR(ADR(CIO$»
530 CLOSE #1
532 GOTO CLINE

If you've made any screens with the Boulderdash Construction
Kit, then this program will make a copy of them screens In I
disk pass. Just RUN the program up, type In the name of the
game file you want to copy and leave it to read in all the
files. When you insert a DOS formatted destination disk, the
program will then write all those screens in I go.

Music Is an essential
pictures and graphics
straightforward assembly
from a friend (Hiya Phil)

addition to programs as well as
affects, here's a relatively

program that I originally received
several months back. Try it:

100 ;ASSEMBLER MUSIC
160
164
170 RTCLOK - $12
180 TIMER .. $CB
190 AUDFI - $D200
200 AUDCI .. $D201
210 AUDF2 - $D202
220 AUDC2 - $D203
230 AUDF3 .. $D204
240 AUDC3 .. $D205
250 AUDCTL - $D208
260 SKCTL .. $D20F
270
280 ""-$4000 ;START ADR
290
300 LDA #0 ; INIT
310 STA AUDCTL
320 LDA #3
330 STA SKCTL
340 LDA #168
350 STA AUDCI
360 STA AUDC2
370 STA AUDC3
380
430 LDX #0 ;LOAD
450 NEXTNOTE LDA CHANI, X ;NOTES
460 STA AUDFI
470 LDA CHAN2.X
480 STA AUDF2
490 LDA CHAN3,X
500 STA AUDF3
510 LDA #8 ;SET

Page 382

APPENDIX G4:

520 STA TII1ER ;TII1ER
530 LDA #0
540 STA TII1ER+I
550 JSR DELAY ;WAIT
560 INX
570 LDA CHANl, X ;LOAD
580 STA AUDFI ;NOTES
590 LDA CHAN2,X
600 STA AUDF2
610 LDA CHAN3,X
620 STA AUDF3
630 LDA #5 ;SET
640 STA TII1ER ;TII1ER
650 JSR DELAY ;WAIT
660 LDA #0
670 STA AUDFI ;CLEAR
680 STA AUDF2 ;CHANNELS
690 STA AUDF3
700 LDA #3 ;SET
710 STA TII1ER ;TII1ER
720 JSR DELAY ;WAIT
730 INX
740 CPX #26 ;FINISHED?
750 BNE NEXTNOTE ;NOPE
760 BRK ;YEAP
770 ,
790 DELAY LDA #0
800 STA RTCLOK+l
810 STA RTCLOK+2
830 LOOPI LDA RTCLOK+I
840 CI1P TII1ER+I
850 BNE TOOPI
870 LOOP2 LDA RTCLOK+2
880 CI1P THIER
890 BNE LOOP2
900 RTS
910
930 CHANI .BYTE 60,53,60,64,68,68,47,47
940 . BYTE 45,45,60,60,68,68,60,60
950 .BYTE 72,72,60,60,81,81
960 .BYTE 60,60,91,91
980 CHAN2 . BYTE 0,0,0,0,0,0,60,60,60,60,0
990 .BYTE 0,0,0,0,0,121,121,136,136
1000 .BYTE 144,144,162,162,182,182
1020 CHAN3 .BYTE 0,0,0,0,0,0,68,68,72,72
1030 . BYTE 0,0,0,0,0,0,0,0
1040 .BYTE 0,0,0,0,0,0,0,0
1050 END

It's not bad is it. The listing is fairly well remarked,
including the numbers in the data (.BYTE). Try changing some
of the values and see how good you can compose.

Page 383

Have you ever
Basic? Well,
prOgram:

APPENDIX G4:

wondered how to load machine-code files from
one method would be with the following

10 CLOSE II
20 OPEN 1I,4,O,"D:FILENAME.EXT"
30 X-USR(5576)

This is usually very effective, but it doesn't always work.
Some machine-code files are very awkward and they just won't
load. Well, there is a solution to this problem, and you'll
find it looks something like:

10 DATA 162,16,169,3,157,66,3.169,1,157,65,3,169,4,157,74.3
20 DATA 169,33,157,68,3,169,6,157,69,3,32,86,228,76,200,21
30 DATA 68,49,58,69,71,79,46,67,79,77,155,-1
40 FOR 1-0 TO 43:READ D:POKE 1536+I,D
50 NEXT I:POKE 5446,O:POKE 5450,6
60 POKE 1016,I:X-USR(58484)

In fact, believe it or not, the 2nd program does exactly
what the 1st program does. The only difference is that the
2nd program disables Basic. which is the reason why some
machine-code files wouldn't previously load, they need the
space that Basic normally occupys!

The file that is OPENed for loading off the disk is all in
ascii codes on line 30. The present line translates to:
DI:EGO.COM (CR). The (CR) is a carriage-return character,
code 155.

Here's a handy program for users of MJ and DW's DATABASE
program. It will printout your data to a 1029.

110 REM ** "DATABASE" FILE
114 REM ** 1029 PRINTOUT UTILITY
118 REM ** ANDREW C. THOMPSON
122 REM ** APR'92
126 REM
140 GRAPHICS O:LIST 110,134
144 ? :?
146 ? "Insert DATABASE program"
148 7 "in drive #1 and prepare 1029."
150 ?
152 ? "Program will print during"
154 ? "input of data file."
156 ?
158 DIM I$(23),P$(76)
160 ? "Press RETURN";
162 INPUT 116;P$
164 CLOSE II: OPEN 11.4,O,"D:PROGDAT.DAT"
170 c-o
172 INPUT II;I$:REM 2*ascii-OO RIDDER

Page 384

APPENDIX G4:

174 TRAP 220
176 P$-"

178 INPUT 11; 1$
180 P$(I)"I$(l,3) :P$(5)-I$(4)
182 INPUT 11;1$
184 P$(27)-I$(l,3) :P$(31)-I$(4)
186 INPUT 11;1$
188 P$(53)-I$(l,3) :P$(57)=I$(4)
200 LPRINT P$
202 C.. C+1
204 IF C/63-INT(C/63) THEN LPRINT :LPRINT :LPRINT
210 IF PEEK(53279)-3 THEN 300
214 GOTO 176
220 LPRINT P$
230 CLOSE II
232 1 :1 "The DATABASE file is printed."
236 END
300 IF PEEK(53279) [J5 THEN 300
302 GOTO 214

OK then, here's perhaps a very useful listing. It will
convert a Revision-B ROM into a Revision-C one.

100 REM ** 64K+ XL/XE REV. B(UGS)
102 REM ** TO REV. C BASIC CONVERTER.
104 REM ** MATT RATCLIFF 4.5.85
106 -----------------------------
120 RESTORE
130 DIM A$(I0)
140 GRAPHICS 0
150 1 "Prepare DOS disk for the"
160 1 "destination AUTORUN.SYS file."
162 1
164 1 "Press RETURN";
170 TRAP 300
180 INPUT 116;A$
190 OPEN II,8,O,"D:AUTORUN.SYS"
200 READ A
210 IF A[O THEN 240
220 PUT #I,A
230 GOTO 200
240 CLOSE #1
250 1
260 1 "** ALL DONE **"
270 1 "Don't forget to save this file"
280 1 "for backup also!"
290 GOTO 320
300 1 "ERROR- ";PEEK(195);"AT LINE";
310 1 PEEK(186)+256*PEEK(187)
320 STOP
330 -----------------------------

Page 385

400 DATA 255,255,0,6,130,6
402 DATA 169,0,133,2,169,6,133,3
404 DATA 173,250,3,240,1,96,169,0
406 DATA 133,206,169,160,133,217,160,0
408 DATA 173,1,211,41,253,141,1,211
410 DATA 177,216,72,173,1,211,9,2
412 DATA 141,1,211,104,145,216,230,216
414 DATA 208,228,230,217,165,217
416 DATA 201,192,208,220,162,0,169,12
418 DATA 133,218,160,0,189,95,6,133,216
420 DATA 232,189,95,6,133,217,232
422 DATA 189,95,6,145,216,232,198
424 DATA 218,208,232,165,9,9,2,133,9,96
426 DATA 223,168,234,224,168,240,225
428 DATA 168,17,226,168,234,41
430 DATA 187,0,243,191,0,244
432 DATA 191,0,245,191,0,246
434 DATA 191,0,247,191,0,248
436 DATA 191,0,249,191,0
438 DATA 226,2,227,2,0,6,-1

C at last! No more bugs for you now thanks to Matt Ratcliff'
program.

A database program is next, this RKM Filer #3 will retain a
wide range of data, whatever you want to throw at it. The
original version was written for my brother to file his
heavy metal records. Here's the latest and last version I
care to make of it. Use it for what you will:

110 REM ** RKM FILER-#3
120 REM ** PROGRAMMED 1991 BY
130 REM ** ANDREW C. THOMPSON
140 REM ** THE MODIFIED VERSION
150 REM ** ON THE BASIS OF
160 REM ** RKM FILER-#2 VER.2
170 REM ** PROGRAMMED EARLY 1985
180 REM ** RKM FROM PAGE-6 ISS.8
190 REM
200 REM ** INITIALISE
202 REM
210 GRAPHICS 0
220 POKE 82,I:POKE 83,38
230 POKE 709,12:POKE 710,132
240 POKE 729,48:POKE 730,3
250 POKE 731,0
260 REM
270 REM ** VARS
280 DIM E$(102),P$(102)
290 REM
300 REM ** OPEN GLOBAL CHANNELS
310 OPEN #1,4,O,"K:"
320 REM
330 REM ** DISPLAY MAIN-MENU

Page 386

APPENDIX G4:

340 7 CHR$ (25)
350 7 "RKI1 FILER-13, APRIL 1991"
360 7 "THE 110DIFIED VERSION OF"
370 7 "RK/1 FILER-12, EARLY 1985"
380 7 :7
390 7 "(l) INPUT FROM DEVICE"
400 7 "(2) OUTPUT TO DEVICE"
410 7 "(3) DISPLAY ENTRIE/S"
420 7 "(4) ADD ENTRIE/S"
430 7 "(5) CHANGE ENTRIE/S"
440 7 :7
450 7 "THIS RK/1 FILER CAN BE USED"
460 7 "FOR STORING MISCALLANEOUS"
470 7 "DATA LIKE A RECORD LIST"
480 7
490 7 "NOTE THAT WHEN ADDING ANY"
500 7 "ENTRIES, YOU CANNOT USE"
510 7 "THE COr1l1A, REFER TO USING"
520 7 "A SEMI-COLON (;) INSTEAD"
530 7 "FREE MEMORY "''';FRE(O)
540 REM
550 REM ** GET KEY
560 KHI-5
570 GOSUB 750
580 ON K GOTO 870,1090,1340,1960,2250
590 GOTO 560
600 REM
610 REM ** PROMPf
620 7
630 7 "READY APPROPRIATE I1EDIA"
640 7 "PRESS START"
650 IF PEEK(53279)[)6 THEN 650
660 RETURN
670 REM
680 REM ** I/O MENU
690 7
700 7 .. (l) DI: RKI1F3"
710 7 "(2) Cl:RKI1F3"
720 RETURN
730 REM
740 REM ** KEY LIMITER
750 GET II,K
760 IF K=27 THEN 790
770 K=K-48
780 IF K[I OR K)KHI THEN 750
790 RETURN
800 REM
810 REM ** SPECIAL-CHECK
820 K2-PEEK(764)
830 K2-NOT (K2-255)
840 RETURN
850 REM
860 REM ** LOAD RK/1 FI3
870 7 CHR$(l25)
880 7 "(l) INPUT FROM DEVICE"

890 GOSUB 690
900 KHI=2
910 GOSUB 750
920 IF K-27 THEN 340
930 GOSUB 620
940 GOTO 940+(K*10)
950 RUN "D:RKI1FIL3.SAV"
960 7 CHR$(l25)
970 POSITION 1,16
980 7 "POKE 842,12:POKE 764,12"
990 7 :7
1000 7 "RUN"
1010 POSITION 1,0
1020 7 "PLEASE WAIT"
1030 7 "PROGRAM LOADING"
1040 POKE 764, 12
1050 POKE 842,13
1060 CLOAD
1070 REM
1080 REM ** SAVE RK/1 FI3
1090 7 CHR$(l25)
1100 7 "(2) OUTPUT TO DEVICE"
1110 GOSUB 690
1120 7 "(3) HARDCOPY"
1130 KHI=3
1140 GOSUB 750
1150 IF K-27 THEN 340
1160 GOSUB 620
1170 ON K GOTO 1180,1200,1220
1180 SAVE "D:RKr1FIL3.SAV"
1190 GOTO 340
1200 CSAVE
1210 GOTO 340
1220 RESTORE 9970
1230 READ LI
1240 C=10000
1250 RESTORE C
1260 READ E$
1270 IF E$....*.. THEN 1290:REM * - inverse
1280 LPRINT E$
1290 C=C+2
1300 IF C[=LI THEN 1250
1310 GOTO 340
1320 REM
1330 REM ** VIEWER
1340 7 CHR$(l25)
1350 7 "(3) DISPLAY ENTRIE/S"
1360 7
1370 7 ..(l) DISPLAY ALL DATA"
1380 7 "(2) DISPLAY BY PREFIX"
1390 KHI=2
1400 GOSUB 750
1410 ON K GOTO 1550,1720
1420 GOTO 340
1430 REM

Pase 387

1440 REM ** DATA-CHECK
1450 RESTORE 9970
1460 READ LI
1470 IF LI]IOOOO THEN 1520
1480 7
1490 7 "THERE ARE NO ENTRIES!"
1500 7 :7
1510 LI-<l
1520 RETURN
1530 REM
1540 REM ** VIEW ALL
1550 GOSUB 1450
1560 IF LI THEN 1560
1570 GOTO 1350
1560 7
1590 C=10000
1600 POKE 764,255
1610 RESTORE C
1620 READ E$
1630 7 E$
1640 GOSUB 820
1650 e-c+2
1660 GOTO 1670+(K2*10)
1670 IF C[LI THEN 1610
1680 7 :7
1690 GOTO 1350
1700 REM
1710 REM ** PREFIX
1720 GOSUB 1450
1730 IF LI THEN 1750
1740 GOTO 1350
1750 7
1760 7 "[ESC] [ESC] [RETURN] = EXIT"
1770 7 "PLEASE TYPE CHARACTER PREFIX"
1780 INPUT P$
1790 IF P$-'''' THEN 1750
1600 IF P$-"[ESC]" THEN 1340
1610 L=LEN(P$)
1620 RESTORE 9970
1630 READ LI
1640 c;..10000
1650 RESTORE C
1660 READ E$
1670 IF LEN(E$)]-L THEN 1920
1660 C=C+2
1690 IF C[LI THEN 1650
1900 7 :7
1910 GOTO 1350
1920 IF P$=E$(I,L) THEN 7 E$
1930 GOTO 1880
1940 REM
1950 REM ** ENTRY ADDITION
1960 7 CHR$ (125)
1970 7 "(4) ADD ENTRIE/S"
1960 7

1990 7 "[ESC] [ESC] [RETURN] '" EXIT"
2000 7 "ENTER NEW ENTRY"
2010 INPUT P$
2020 IF P$="" THEN 1980
2030 IF P$="[ESC]" THEN 340
2040 IF FRE(0)-135 THEN 2110
2050 7
2060 7 "OUT OF MEMORY!"
2070 7 "INITIATE ANOTHER FILE!"
2060 GOSUB 620
2090 IF NOT K2 THEN 2060
2100 GOTO 340
2110 RESTORE 9970
2120 READ 1.1
2130 7 CHR$(125)
2140 7
2150 7 9970;" DATA ";LI+2
21607 LI;" DATA ";P$
2170 7 "CONT"
2160 POSITION 0,0
2190 POKE 642,13
2200 STOP
2210 POKE 642.12
2220 GOTO 1960
2230 REM
2240 REM ** ENTRY CHANGES
2250 7 CHR$ (125)
2260 7 "(5) CHANGE ENTRIE/S"
2270 7
2280 7 "[ESC] [ESC) [RhTURN] - EXIT"
2290 7 "CHANGE WHICH ENTRY"
2300 INPUT '16;P$
2310 IF P$="" THEN 2270
2320 IF P$-" [ESC]" THEN 340
2330 L=LEN(P$)
2340 RESTORE 9970
2350 READ LI
2360 C=10000
2370 RESTORE C
2360 READ E$
2390 IF LEN(E$)]-L THEN 2430
2400 C=C+2
2410 IF C[LI THEN 2370
2420 GOTO 2270
2430 IF P$[]E$(I.L) THEN 2400
2440 7 :7
2450 7 E$
2460 7 "[ESC] [ESC] [RETURN] '" EXIT"
2470 7 "CHANGE ABOVE ENTRY TO"
2480 INPUT '16;P$
2490 IF P$="" THEN P$-"*":REM * '" inverse
2500 IF P$-" [ESC]" THEN 2270
2510 7 CHR$(125)
2520 7
2530 7 C;" DATA" ;P$

Page 388

APPENDIX G4:

2540 7 "CONT"
2550 POSITION 0,0
2560 POKE 842,13
2570 STOP
2580 POKE 842,12
2590 7 :7
2600 GOTO 2270
9950 REI1
9960 RE/'I ** WRITE-POINTER
9970 DATA 10000
9980 RE/'I
9990 REI1 ** FILE
10000 DATA DEFAULT
32767 STOP

This particular filer appends any inputted information at
the end of the actual program listing. It does this with the
use of what's known as the Return Key /'lode (RK/'I) which I
first read about in issue #6 of Page-6 magazine (the very
1st issue I bought too!). For more information about this RK
mode, take a visit to page-60 in the /'lAP section of this
book.

And finally, to end this appendix and indeed this
programming reference book, I leave you with the
disassembling program that I wrote to disassemble the Atari'
Operating system.

100 GOTO 150
101 ------------------------------
102 HI-INT(BI/16):LO=Bl-HI*16
1047 #1;H$(HI+l,HI+I);H$(LO+I,LO+I);
106 RETURN
107 ------------------------------
106 HI-INT(B2/16):LO=B2-HI*16
110 7 #1;H$(HI+I,HI+l);H$(LO+l,LO+I);
112 RETURN
113 ------------------------------
114 HI-INT(LOC/4096):RLOC-LOC-HI*4096
116111=INT(RLOC/256):RLOC=RLOC-/'Il*256
116/'12-INT(RLOC/16):LO-RLOC-/'I2*16
1227 #1;H$(HI+l,HI+l);H$(/'II+I,111+1);
124 7 #1;H$(112+I,/'I2+1);H$(LO+l,LO+I);
126 RETURN
127 ------------------------------
126 HI=INT(/'ICI/16):LO-I1CI-HI*16
130 7 #1;H$(HI+l ,HI+l);H$(LO+l,LO+l);
132 RETURN
133 ------------------------------
134 HI-INT(NLOC/4096)
136 SLOC=NLOC-HI*4096
136/'11-INT(SLOC/256):SLOC-SLOC-/'Il*256
140 /'I2-INT(SLOC/16)

Page 389

142 LO=SLOC-M2*16
1447'1;1I$(1I1+1,1I1+1);II$(M1+1,111+1);
1467 #1;1I$(M2+1,M2+1);II$(1.0+1,LO+1);
148 RETURN
149 ------------------------- _
150 DIM AI$(3) .11$(16)
152 1I$-"0123456789ABCDEF"
154 OPEN #I,8.0,"S:"
156 POKE 752,0
157 7 "START ADDRESS [DEC) ";: INPUT S
158 IF S--1 TIIEN CLOSE 'I:STOP
160 7" END ADDRESS [DEC) "j : INPUT E
162 7
163 POKE 752,1
164 FOR LOC-S TO E
166 MCI-PEEK(LOC)
168 RESTORE 626+I1CI
170 READ MODE,AI$
172 GOSUB 114:7 #1;" ";
173 GOSUB 128:7 #1;" ";
174 B1-PEEK(LOC+I)
176 B2-PEEK(LOC+2)
178 GOSUB 186+(MODE*10)
180 NEXT LOC
182 7 #1
183 GOTO 156
184 ------------------------------
186 GOSUB 102
1877'1;" ";AI$;" '$";
188 GOSUB 102:7 'I:LOC-LOC+1
190 RETURN
196 GOSUB 102:7 #1;" ";:GOSUB 108
1987#1;" ";AI$;" $";:GOSUB 108
200 GOSUB 102:7 'I:LOC-LOC+2
202 RETURN
206 GOSUB 102
2077'1;" ";AI$;" $";
208 GOSUB 102:7 'I:LOC-LOC+I
210 RETURN
216 7 #1;" ";AI$;" A"
218 RETURN
2267#1;" ";AI$
228 RETURN
236 GOSUB 102
237 7 #1;" ";AI$;" ($";
238 GOSUB 102:7 'I;",X)":LOC-LOC+I
240 RETURN
246 GOSUB 102
2477#1;" ";AI$;" ($";
248 GOSUB 102:7 #I;"),Y":LOC-LOC+I
250 RETURN
256 GOSUB 102
257 7 #1;" ";AI$;" $";
258 GOSUB 102:7 #I;".X":LOC-LOC+I
260 RETURN

Pase 390

APPENDIX G4:

266 GOSUB 102:7 '1: tI "; :GOSUB 108
268 7 '1; It II; AI s:" $";:GOSUB 108
270 GOSUB 102:7 #1;",X":LOC-LOC+2
272 RETURN
276 GOSUB 102:7 #1; " ";:GOSUB 108
278 7 #1: II II; AIS: II $";:GOSUB 108
280 GOSUB 102:7 #1;",Y":LOC-LOC+2
282 RETURN
286 GOSUB 102
287 7 #1; II t1;AI$; It S";
288 IF BI)I27 THEN 291
289 NLOC-LOC+2+BI:GOSUB 134:7 #1
290 GOTO 293
291 NLOC-LOC+I-(255-BI):GOSUB 134
292 7 #1
293 LOC-LOC+!
294 RETURN
296 GOSUB 102:7 #1: " "; :GOSUB 108
298 7 #1; II " ; AI s : II ($";:GOSUB 108
300 GOSUB 102:7 #1 ;")":LOC-LOC+2
302 RETURN
306 GOSUB 102
307 7 #1 : II " ; AI $; " $ II :

308 GOSUB 102:7 #I;",Y":LOC-LOC+I
310 RETURN
616 ------------------------------
626 DATA 4,BRK
627 DATA 5,ORA 655 DATA 8,ORA
628 DATA 4,777 656 DATA 8,ASL
629 DATA 4,777 657 DATA 4,777
630 DATA 4,777 658 DATA I, JSR
631 DATA 2,ORA 659 DATA 5,AND
632 DATA 2,ASL 660 DATA 4,777
633 DATA 4,777 661 DATA 4,777
634 DATA 4,PIIP 662 DATA 2,BIT
635 DATA O,ORA 663 DATA 2,AND
636 DATA 3,ASL 664 DATA 2,ROL
637 DATA 4,777 665 DATA 4,777
638 DATA 4,777 666 DATA 4, PLP
639 DATA I, ORA 667 DATA O,AND
640 DATA I, ASL 668 DATA 3,ROL
64\ DATA 4,777 669 DATA 4,777
642 DATA 10, BPL 670 DATA I, BIT
643 DATA 6,ORA 671 DATA I, AND
644 DATA 4,777 672 DATA I, ROL
645 DATA 4,777 673 DATA 4,777
646 DATA 4,777 674 DATA 10,BMI
647 DATA 7,ORA 675 DATA 6,AND
648 DATA 7,ASL 676 DATA 4,777
649 DATA 4, ?77 677 DATA 4,777
650 DATA 4,CLC 678 DATA 4,777
651 DATA 9,ORA 679 DATA 7,AND
652 DATA 4, ?77 680 DATA 7,ROL
653 DATA 4,777 681 DATA 4,777
654 DATA 4,777 682 DATA 4,SEC

683 DATA 9,AND

Page 391

684 DATA 4.777 739 DATA 6.ADC685 DATA 4.777 740 DATA 4.777686 DATA 4.777 741 DATA 4.777687 DATA 8.AND 742 DATA 4.777688 DATA 8,HOL 743 DATA 7.ADC689 DATA 4,777 744 DATA 7.HOR690 DATA 4. RTI 745 DATA 4,777691 DATA 5,EOR 746 DATA 4,SEI692 DATA 4,777 747 DATA 9,ADC693 DATA 4.777 748 DATA 4,777694 DATA 4,777 749 DATA 4.777695 DATA 2,EOR 750 DATA 4.777696 DATA 2.LSR 751 DATA 8.ADC697 DATA 4.777 752 DATA 8,ROR698 DATA 4,PHA 753 DATA 4.777699 DATA O,EOR 754 DATA 4,777700 DATA 3,LSR 755 DATA 5.STA701 DATA 4.777 756 DATA 4.777702 DATA 1, JMP 757 DATA 4.777703 DATA I,EOR 758 DATA 2. STY704 DATA I. LSR 759 DATA 2,STA705 DATA 4,777 760 DATA 2.STX706 DATA 10.BVC 761 DATA 4,777707 DATA 6.EOR 762 DATA 4.DEY708 DATA 4,777 763 DATA 4,777709 DATA 4.777 764 DATA 4.TXA710 DATA 4.777 765 DATA 4,777711 DATA 7.EOR 766 DATA I,STY712 DATA 7.LSR 767 DATA I, STA713 DATA 4,777 768 DATA I. STX714 DATA 4,CLI 769 DATA 4.777715 DATA 9.EOR 770 DATA IO.BCC716 DATA 4.777 771 DATA 6.STA717 DATA 4.777 772 DATA 4,777718 DATA 4,777 773 DATA 4.777719 DATA 8.EOR 774 DATA 7,STY720 DATA 8.LSR 775 DATA 7.STA721 DATA 4.777 776 DATA 7.STX722 DATA 4.RTS 777 DATA 4,777723 DATA 5.ADC 778 DATA 4, TYA724 DATA 4,777 779 DATA 9,STA725 DATA 4,777 780 DATA 4.TXS726 DATA 4,777 781 DATA 4.777727 DATA 2,ADC 782 DATA 4.777728 DATA 2.ROR 783 DATA 8,STA729 DATA 4,777 784 DATA 4.777730 DATA 4.PLA 785 DATA 4,777731 DATA O,ADC 786 DATA O,LDY732 DATA 3.ROR 787 DATA 5,LDA733 DATA 4,777 788 DATA O,LDX734 DATA II,JMP 789 DATA 4,777735 DATA r •ADC 790 DATA 2,LDY736 DATA I.ROR 791 DATA 2,LDA737 DATA 4.777 792 DATA 2.LDX738 DATA 10,BVS 793 DATA 4,777

Page 392

APPENDIX G4:

794 DATA 4,TAY 849 DATA 4.711
795 DATA O.LDA 850 DATA O,CPX
796 DATA 4,TAX 851 DATA 5,SBC
797 DATA 4,171 852 DATA 4.711
798 DATA I, LDY 853 DATA 4,711
799 DATA I, LDA 854 DATA 2,CPX
800 DATA I. LDX 855 DATA 2,SBC
801 DATA 4,711 856 DATA 2, INC
802 DATA 10,BCS 857 DATA 4,711
803 DATA 6,LDA 858 DATA 4.INX
804 DATA 4.711 859 DATA O,SBC
805 DATA 4,171 860 DATA 4,NOP
806 DATA 7,LDY 861 DATA 4.711
807 DATA 7.LDA 862 DATA I,CPX
808 DATA 7,LDX 863 DATA I.SBC
809 DATA 4.111 864 DATA I,INC
810 DATA 4,CLV 865 DATA 4,171
811 DATA 9,LDA 866 DATA 10,BEQ
812 DATA 4,TSX 867 DATA 6,SBC
813 DATA 4,711 868 DATA 4,711
814 DATA 8,LDY 869 DATA 4,171
815 DATA 8,LDA 870 DATA 4,771
816 DATA 9,LDX 871 DATA 7,SBC
817 DATA 4,1'1? 872 DATA 7, INC
818 DATA O,CPY 873 DATA 4,771
819 DATA 5,CMP 874 DATA 4,SED
820 DATA 4,171 875 DATA 9,SBC
821 DATA 4,711 876 DATA 4,717
822 DATA 2,CPY 877 DATA 4,171
823 DATA 2,CMP 878 DATA 4,177
824 DATA 2,DEC 879 DATA 8,SBC
825 DATA 4.171 880 DATA 8, INC
826 DATA 4,INY 881 DATA 4.111
827 DATA O,CMP
828 DATA 4,DEX
829 DATA 4.711
830 DATA I, CPY
831 DATA I, CMP
832 DATA I,DEC
833 DATA 4,171
834 DATA 10,BNE
835 DATA 6,CMP
836 DATA 4,711
837 DATA 4.717
838 DATA 4,171
839 DATA 7,CMP
840 DATA 7,DEC
841 DATA 4.717
842 DATA 4,CLD
843 DATA 9,CMP
844 DATA 4.717
845 DATA 4,717
846 DATA 4,771
847 DATA 8,CMP
848 DATA 8,DEC

Page 393

In it's
screen.
anothpr
put the

present form it will d i s a s s emb l e from memory to
but should you want to have your disassembly on
media such as the printer, or cassette then simply
necessary alteration in line 154.

The DATA statements tram lines 626 to 881 are the actual
assembly instructions and their addressing mode. You'll
notice that there are many??? instructions. These are
illegal codes, and if you wish to include the actual illegal
instruction names and modes then you can gather the
information from the machine-code appendix. Also, if you
want to know what each instructions decimal code is then
simply take 626 off the line number and voila, there you
have it!

Well, that about brings this last of the last appendices to
an end.

very nearly forgot
demonstrating Graphics
this appendix, and
introduction) too.

to include a particular program,
mode 0.5! I was just about to finish
indeed the book (excluding an

Here it is folks, Graphics 0.5 with true descenders and some
quirky positioned characters: see next page.

Page 394

APPENDIX G4:

10 POKE 106,PEEK(106)-4
12 GRAPHICS 0
14 DL=PEEK(560)+256*PEEK(561)
16 POKE DL+3,64+3
18 FOR I m6 TO 24
20 POKE DL+I,3
22 NEXT I
24 FOR 1-0 TO 2
26 POKE DL+25+I,PEEK(DL+29+1)
28 NEXT I
34 NSET-PEEK(106)
36 FOR 1-0 TO 1023
38 POKE NSET*256+I,PEEK(57344+1)
40 NEXT I
42 POKE 756,NSET
44 FOR 1=0 TO 12
46 READ CH
48 FOR J=O TO 7
50 READ ROW
52 POKE NSET*256+CH*8+J,ROW
54 NEXT J
56 NEXT I
58 ? "abcdefghijkImnopqrstuvwxyz"
60 STOP
70 DATA 98,0,0,96,96,124,102,102,124
72 DATA 100,0,0,6,6,62,102,102,62
74 DATA 102,0,0,14,24,62,24,24,24
76 DATA 103,6,124,0,62,102,102,62,6
78 DATA 104,0,0,96,96,124,102,102,102
80 DATA 105,0,0,24,0,56,24,24,60
82 DATA 106,6,60,6,0,6,6,6,6
84 DATA 107,0,0,96,96,108,120,108,102
86 DATA 108,0,0,56,24,24,24,24,60
88 DATA 112,96,96,0,124,102,102,124,96
90 DATA 113,6,6,0,62,102,102,62,6
92 DATA 116,0,0,24,126,24,24,24,14
94 DATA 121,6,126,0,102,102,102,126,6

Don't forget now, you can also use this special mode with
the international character-set to allow you more room for
the umlauts and all that stuff above the characters.

Now then, is this really the end? I think so ... Well, I
reckon I'll use that last full-stop now, happy programming
and good luck in the future to all my contacts and the rest
of you Atari 8-BIT freaks.

Page 395

COMPLETE & ESSENTIAL MAP

for the

XL/XE

BOOK CORRECTIONS

After reading through the booK we have unfortunately found a
few page references that do not correspond with the pages
indicated in the booK.

On page 15 in the paragraph under location 91,92 it indicates to
refer to page 97, unfortunately it should read: "See page 85 of
the map".

On page 140 in the first paragraph, under location 54272, it
reads (Page-45) but it should read "Page-3S".

In part two of the booK on page 170 in the OPEN paragraph it
reads: (See the table on page 96), this is another mistaKe, it
should read "See the table on page 84".

These mistaKes occurred when the author's Master Copy
was set up and re-printed as it is now. There were too many
large gaps between the lines and some pages had only a few
line on them, it would have pushed the cost up too high. Plea,se
notify TWAUG with any other errors found in the booK, the page
references above are the only ones I've found up to now.

The author wasn't able to print the "lesser than < and greater
than> characters with his printer, in place he used the square
bracKets [J. Again some of these characters were overlooKed,
you will find these square bracKets in some of the BASIC
program listings, mostly in the appendix pages. Please replace
these square bracKets [J with the lesser than and greater than
<> characters, or the programmes wont run.

If we find further mistaKes we will update this 'BooK correction
leaflet' and post it out to our customers. Please Keep this
leaflet clipped to your booK.

TYNE&WEAR
ll'A)j

ATARi
USER CROUP

P.O.Box No.8, WALLSEND
Tyne 8. Wear NE28 6DQ

Publishers

