
THE COMPLETE

AND

ESSENTIAL MAP

FOR THE

XL / XE

Jil. Jil.
ATARI ATARI

­............... -_ --_ -_ _.-- -•

....

JWt'Cl\111

Written by
ANDREW C. THOMPSON ~1994

Published and Distributed by
TWAUG PUBLISHING"' ~ 1994

PART I

welcome to a new book. It is based upon Mapping the Atari-Revised

by Ian Chadwick. This book has been written to cover the XL/XE
Machines only, in Mapping the Atari there is only a small part that
had been revised to cover the XL/XE Machines.

I have corrected in this book all incorrect information and errors
and I've inclUded a fair bit more information that is not covered in
Mapping the Atari. In addition to the MAP section, you will find an
XL/XE Operating System source listing with descriptive remarks
alongside and there are several appendices that I hope will expand
your knowledge and be readily available for future reference. Most
of the information in the MAP section that references other sources
in Mapping the Atari, you will find amongst the appendices.

I hope this book will help the beginners and intermediate
programmers, by explaining the SUbjects with small straight forward
Basic programs. The book should also be a indispensable reference
manual for the more advanced programmer.

WARNING - The author and pUblishers have made every effort to

ensure the accuracy of the programs and information in this book.
However, we do not accept any responsibility nor liability for any
damage caused or allegedly caused directly or indirectly by the
programs or information in this book.

The author - ANDREW C. THOMPSON

Publishers - TWAUG PUBLISHING

PART

CON TEN T S

Subject:

APPENDIX LIST
PROGRAH LISTINGS IN HAP
INTRODUCTION
HAP

ANTIC
Attract mode
Basic
Basic disable/enable
Basic errors
Cartridges
Character sets
Colour
Console keys
Device Control Block
Display List (DL)
DHA
DOS
DUP
Floating Point package
Graphics priority
GTIA
Handler address tables
Hardware memory
Help key
10CB's
IRQ's
Joysticks
Keyboard disable/enable
Key definition table
Light pen
Hargins
NHI's
OS ROH
OS variables, vectors
Paddles
Page-O (Loc's 0-255)
Page-6 (Loc's 1536-1791)
PIA
PHG's
POKEY
Real time clock
Scroll ing
Self test
Sound
Stack
Top of free memory
Variable name table
VTOC sector

INDEX BY LABEL
INDEX BY SUBJECT

PART II

APPENDICES

1-1.5
2-166

139-147
11
106-109
87
26
106
66-69
55-59
122
72-75
39-41
38
87-104
104-106
28-30
46
112-123
77-79
112-147
60
79-86
32-35, 42
48-49
45
19
146
12
31, 36
110-111. 14B-165
30
47, 49
2-30
89
133-139
113-121
123-132
5
141-144
106
124-128, 132
30
17
21
98

IDC
IBC

167 onward

A P P E N 0 x LIS T

Here's the appendices which make up the reverse half of the book.
Appendix E06 is quite a big one as you can imagine, since it is
the Operating System source listing for the XL and XE machines.

AOI
A02
A03
A04
A05
A06

BOI
B02
B03

COl
C02
C03
C04
C05
C06
COl
C08
C09
CIO
Cll
Cl2
Cl3
Cl4

Basic Keywords
Basic Tokenization
Basic Alterations
Program I_provement
Turbo Basic
Handy Tricks

Sound and !'Iusic
Volume-Only Sound
Pokey in Stereo

Character Codes
Number Systems
LSBs and !'ISBs
Boundaries
Boolean Expressions
Logic
Error Codes
Trigonometric Formulas
Display !'lodes
Player/!'Iissile Graphics
Display List Interrupts
Boot Process
Graphics 12 and 13
Display Lists

Af.Q

DOl
002
D03
D04
D05
006

EOI
E02
E03
E04
E05
E06

FOI
F02
F03
F04

GOI
G02
G03
G04

Vertical-Blank Processes
Critical Timings
Cycle Steal ing
!'lachine-Language
Vertical-Blank Interrupts
Register/Location Loading

Enhancements and Bugs
Changing a RA!'I OS
130XE !'Iemory !'Ianagement
DOS 2.5 !'Iemory
Free Bytes
XL/XE OS Source Listing

Hardware Chips
1050 Specifications
Pinouts
Port Input

Other Software
Atari Support
Glossary
Useful Listings

PRO G RAM LIS TIN G S

Here are all the listings from the map section of the book only.
I've given the page number, location and a small explanation of
the listing found there.

LOC

5 20
13 88
14
19 121
22 134
23 136
24 140
31 512
36 546
47 623
57 710
58 712
63 743
66 755
68 756
68 756
70 764
74 779
77 794
80 832
86
97
113 53248
117 53261
126 53768
132
138
141 54276
142 54276
143 54277
146
146
152

DESCRIPTION

Timing
Display Memory
Picture loading
Unkown editors
Variable valuer
Line addr. finder
Strings vs Arrays
DLI action
Immediate VBI
GTIA modes
Arti facting
Rainbow border
Hiding low memory
Flashing cursor
Characterset copy
Font file creator
Key detection
Sector loading
Null handler
Return key mode
M/Code drawing
Fi l e un-deleter
PMG horizontals
PMG non DMA 2
8+ Octave sound
Delaul t checks
RAM Basic/S-Test
Coarse Hscrol
Hscrol timing
Fine Vscrol
Diagonal scroller
Vertical sync
360' printing

PAGE 1Q.!;.

13 87
14 88
17 106
21 131
22 131
24 138
26 186
34
46 623
53 675
58 710
61 736
65 755
67 756
68 756
69 756
71 764
75 779
80 832
85
96 3889
107
116 53261
122 53279
127 53768
135
140 54272
141 54276
142 54277
144 54277
145
152

DESCRIPTION

GTIA T/Window
Bulk memory clearer
Protecting memory
Variable displayer
String clearing
Program protection
Error detection
Hardware timers
GTIA interraction
TAB setting
Artifacting extra
Binary file control
Inverse flashing
Character decoding
Character redefining
Font file loader
RAW key converter
Formatting
LIST output toggler
OPENing graphics
DOS 3 corrector
Statement token list
PMG without DM!
Console speaker
Fi 1tering
RAM OS
Screen bending
Fine Hscrol
Mode 0 Vscrol
Split-font mode
Horizontal sync
Mode 8 text

I N T ROD U C T ION

Greetings fellow Atarian dudes and Welcome to the biggest
brain killing book released in ages. This book as some of
you will already know by now is heavily based upon the
Revised version of Mapping the Atari, but fear not my
indulgent beings for you have not wasted your cool
investment, in fact you have made a most excellent step in
your life as you know it (or at least as you will know it)1
If you own an Atari XL or XE system and you're into
programming in a big way then you WILL need this book. It is
essential to all levels of programmers.

IN THE BEGINNING:

11 minutes after midnight on Tuesday the 20th of April 1993
saw the beginning of this book, and being a nocturnal kind
of guy there couldn't be anytime betterl What the next 9
months had in store for me I never would have known although
I could guess what I was letting myself in for. The initial
phase of writing this book was the MAP itself since this was
the main aim of the book, to create a REAL XL/XE MAP
reference book. Of course. for this I had to rely heavily on
the Revised version of Mapping the Atari. but, at the same
time I had to check and compare every location within the
MAP section of that book with its appendices 11 and 12;
"Addenda and errata to the first edition" and "The XL/XE
memory map", but as you might realize, this was only the
beginning. To cut a long story short there involved much
inclusion of missing material as well as a whole hogwash of
extracted information from many books and magazines. Some of
these sources include Technical Reference Notes, many of
Compute! 's books, De Re Atari, Inside Atari DOS. Your Atari
Computer. the DOS 2.5 manual. the XL handbook and a whole
host of other magazines and sources including Atari User.
Page-6's New Atari User. Megamagazine, TWAUG newsletter and
last but not least, a few of my penfriends even supplied me
with little titbits here and there. My thanks to you all.

THE APPENDICES:

In addition to the MAP section. you will find perhaps one of
the most comprehensive appendices selections ever produced.
and whilst there may be 43 appendices, they have been broken
down into 7 groups as follows:

Group A: Basic

The first group relates directly to Basic. Here you'll find
a complete list of standard and Turbo Basic commands with a
short description; some techniques to improving your Basic
programs. the tokenizing process, some handy tricks that you
can use in your programs and in addition I've included some
information as to altering the Basic language itself.

Page 1.1

The second group is entirely to do with sound. Here you'll
find some very useful information which will take you from
simple sound affects. through fairly complex music and into
the way digitized speech is achieved. You'll also find a
fairly straightforward machine-code program to play 2
samples simultaneously. Upgrading your system to stereo is
also possible and here you'll find an appendix to do just
this .

Group Cj Cogmon Reference

Group C is the biggest of all. summing 14 appendices. Here
you'll find the explanation of commonly used subjects such
as decimal to hex. conversions. DL and PKG boundaries. logic
structures etc .. In addition you'll find you may be
referencing this group time and time again. since there is a
complete list of error codes for Basic and DOS. a chart of
trigonometric formulas. a complete list of character codes,
display modes and display lists memory usage and assignment
etc ..

Group D: Kachine-Code

This one is probably the most technical. describing
everything relating to machine-code and critical timings
within the working system. The Vertical Blank process is
explained along with information to creating a Vertical
Blank Interrupt yourself. There is also some explicitly
detailed reference information relating to cycle loss per
frame depending on which graphics mode you are using. Also
in this group is the most detailed machine-code reference
charts you will ever see.

Group E: Kemory & OS

Relates to a few selected subjects including information
about the Operating System. any bugs it's now overcomed and
130XE memory management. There are 2 appendices giving an
in-depth list of correct DOS 2.5 addresses and free bytes in
your machine depending upon the programming environment.
Last. but not least you'll find a complete XL/XE Operating
System source listing with descriptive remarks alongside.

Group F: Hardware

Involves information at the hardware level. including
descriptions of the hardware inside the computer and the
specifications of the 1050 disk drive. You'll also find some
information relating to the use of the joystick ports (for
I/O) and the pinouts of the various ports connected to the
Atari.

Page 1.2

Group G: Miscellaneous

The final group explains multiple uses for various items of
software, it gives a list of presently supporting companies
still alive and kicking and a glossary of any terms used in
this book that you might not be familiar with. The very last
appendix of this group and indeed the book contains some
program listings that you might have some use for.

Well, this is my first ever book and to be honest with you I
almost took on too much. You see, as I was creating the MAP
section I was writing down any relevant appendices that I
would like to include in the book. Of course, I went about
this by including comments throughout the MAP such as
" ... see the so-and-so appendix" whilst jotting a small note
down on paper about what appendix I now had to write! I kept
this up throughout the MAP and got just a bit carried
away ... I had an A4 sheet of paper full of appendices names
and comments and stuff I had to put in each one, it's just
as well I never lost that sheet eh!? Anyway, looking at the
work I had to do a few months ago wasn't very funny. but now
I am very pleased with myself it is finally finished. Little
did I realise when I had all those appendices to write that
I still had to totally re-write 2 decent index's and fully
error-check the book because Mappings index's were for the
old map (one serious letdown). Even a lot of its programs
wouldn't work as shown. But you shouldn't find that with any
of the listings in this book. since they have all been typed
and RUN, and knowing that they work fine they were then
LISTed to disk and merged directly into the books files.
thus avoiding any typing or editing errors.

A little torment:

Still on the subject of problems, some of the appendices
proved to be a right pain in the neck to write. One such
appendix is to do with CYCLE STEALING. I used Technical
Reference Notes and De Re Atari as reference. but they were
just not accurate enough to obtain a proper explanation.
Another one is the MACHINE-CODE reference appendix. For me
to assemble the illegal OP-CODES into a table alike the
standard ones I had to know how many cycles each illegal
instruction took to process. The sad thing is that this
information did not exist (until now). I had to work these
out myself and the way I went about this was quite unique I
think. I wrote a small assembly program as such:

Page 1.3

10 *-$600
15 LDA #$00
20 STA 710
25 L LDA $D40B
30 CI1P #$30
35 BNE L
40 LDA #$FF
45 LDX #$00
50 STA $D40A
55 JSR W ;KILL TII1E TO
60 JSR W ;SHOW FLYSCAN
65 STA $DOI8
70 NOP ; TI I1ED I NSTR.
75 LDX #$00
80 STX $DOI8
85 STX $D40A
90 JI1P L
95 W RTS

What it does is to bring the flyscan to a clear and visible
area on the screen. It then places a small coloured line of
a particular length. This small length of colour can be
considered as 2 machine-cycles, now to time all the illegal
instructions you must firstly make chalk marks on your TV
screen at the point where the colour ends. Repeat this
process for not just one NOP instruction, but for 2, 3 and
even 4 of them. This way the chalk marks on your screen will
represent timed lengths of 2 cycles, 4 cycles and so on. You
can now replace the NOP instruction/s with any single
illegal instruction to time it. You should note that the
chalk marks are NOT at regular distances from each other,
you needn't concern yourself too much with this phenomena
but if you really want to know, then consult the CYCLE
STEALING appendix. To type illegal instructions replace the
NOP's with aline like: . BYTE $BF, $FF, $FF. Anyhow, I'm sure
you understand the method.

And now, I've aired my mind and I've nothing much else to
say. Hmmm, A thought just occured to me about how I used to
think games were made (a long time ago). Good grief Get a
load of this:

create manl; red shirt, blue trousers
position manl at screen-centre
make manl wave and then walk to left edge of screen

I doubt you'd believe me in a million years, but this is
seriously how I thought you'd program a computer. It's not
exact, since I can't remember over 10 years ago, although,
it does carry certain principles how I thought; such as:
create a man, wave and move him left etc .. If only it was ...
I'd have made a thousand games by now!!

Page 1.4

CREDITS:

Anyway, credits for this book must go to the anonymous Joe
XXXX in London who's help has proved too valuable to
mention, the TWAUG team who have kept my ego alive (and the
producers of this book), Ann O. who did try to think up some
tips that I hadn't compiled, the rest of my penfriends who
didn't lend a hand whatsoever, Derek Fern because I liked
his quick service, Phil A. coz I liked his attitude and last
but not least, I would like to thank my cup of coffee who
was always there for me (thanks mum).

There aren't any anti-credits except those to my printer. I
had this introduction and 3 other sheets of paper to print
out to complete this book and the printer decides it wants
my cup of coffee. In getting it fixed my platten decides
that it doesn't want to feed the paper through correctly so
I decide to hand feed it myself (get itl?), anyway, as I
start succeeding in this the printer ribbon decided to go
fady. And if that's not enough the power switch shorted out!
A sad case of Murphy's law don't you think?

Right yo, if you want to get in contact with me about
anything in this book then write to me at this address
only:

"Concerning the book"

MR. AC. BOOK
135 HENLLYS WAY
CWMBRAN
GWENT NP44 7NF
SOUTH WALES

Page 1.5

00 - 06

This is where the map takes the 1st step and where-else than
at the lowest number upwards.

Locations 0 255 are Page 0 and is probably the most
important page of the entire memory except for the ROM
because it is especially fast to access for machine-code
programmers. Time is a critical factor for us Atari
programmers and should be a point of note for programmers
wishing to learn machine-code.

Locations 0 127 are reserved for the Operating system
(OS). they can be used as RAM, but a strict control of
non-interrupt and direct processing must be achieved. This
is also only possible in machine-code. Locations 128 - 255
are used by Basic when installed including the Floating
point (FP) package and user RAM. They can be used as RAM if
the PP package isn't used and if Basic is not used.

00 00 LNFLG

Used by the Atari in-house debugging programs when they were
clearing the OS from bed bugs, also used during power-up.

01 01 NGFLAG

Used for memory testing during power-up, if zero then a
memory failure is present.

02,3 02.3 CASINI

Cassette initialization vector. If Cassette boot is
successful. OS JSR's through here. This vector comes from
bytes 5 and 6 of the cassette boot record. See the BOOT
appendix for further information on the importance of the
1st 6 bytes of a boot file.

04.5 04.5 RAMLO

RAM pointer for the memory test during power-up. Also used
to store the disk boot address - normally 1798 ($706) for
the boot continuation routine.

06 06 TRAMSZ

Temporarily
value moved
Basic is on.

used for RAM size during power-up. This is the
to RAMTOP. Location 106 ($6A). It reads 1 when

Page 2

07 - 13

07 07 CMCMD

Command flag for 835 and 1030 modems. Set to nonzero to pass
commands to the modem.

08 08 WARMST

Warmstart reads 0 during power-up. Set to 255 on pressing
Reset. Warmstart normally vectors to 58484 ($E474). WARMST
is checked by the NMI status register at 54287 ($D40F) when
Reset is pressed to see whether to re-initialise the softare
in memory or to re-boot the disk, cassette or Basic.

09 09 ROOT

Boot flag success indicator. If set to I then disk-boot was
successful, 2 means cassette-boot and 3 means both were
successful. It reads 0 if no peripheral was booted.
If user-set to 255 then pressing Reset will lock-up the
system. By setting this location to 2, location 2 to 52 and
location 3 to 185 then the Reset key can be TRAPped in Basic
to run at any particular line-number. Machine-code user's
simply use locations 2 and 3 as a vector for Reset when
having set this location to 2.

10 , I I OA,B DOSVEC

Start vector for disk or non-cartridge software. Also the
address Basic jumps to when DOS is called. This address can
be user-set, but Reset will return DOSVEC to it's original
address unless the values placed here are also loaded into
locations 5446 and 5450 ($1546 and $154A). Locations 10 and
II are normally set to 159 and 23. Without DOS loaded,
typing DOS will pass control to the inbuilt Self test at
58481 ($E471).

12, 13 OC,D DOSINI

Initialization address for the disk boot, bytes 5 and 6 of
the 1st sector. Also used to store the cassette boot RUN
address which is then moved to CASINI (2 and 3). Set to 0 if
no peripheral was booted.
You can also use these locations as a vector on pressing
Reset alike Locations 9,2 and 3.

Page 3

COMPLinE &. ESSENTIAL MAP

14 - 16

14,15 OE.F APPMIII

Applications memory high limit and pointer to the end of
your Basic program, used by OS and Basic. This contains the
lowest address you can use to set up a screen and display
list (DL) (which is also the highest address usable for
programs and data below which the display memory (DM) may
not be placed). The screen handler will not open the "S:"
device if it would extend the screen RAM or the DL below
this address; memory above this address may be used for the
screen display and other data (PMG's etc.).
If an attempted screen mode change would extend the screen
memory below APPMHl, then the screen is set up for Graphics
0; MEMTOP (741. 742) is updated and an error is returned to
the user. Otherwise the memory is not too small for the
screen editor. the mode change will take affect and MEMTOP
will be updated. This is one of 5 locations used by the OS
to keep track of the user and DM.
If you use the area below the DL for your character sets,
PMG's etc. then be sure to set APPMHI above the last address
used so that the DL data will not descend and destroy your
own data. See RAMTOP at 106, MEMTOP at 741 and 742, PMBASE
at 54279 and CHBASE at 54281.

16 10 POKMSK

Pokey interrupts: the IRQ service uses and alters this
location. Shadow for 53774 ($D20E). Poke with 112 ($70; also
poke 53774 with the same value) to disable the Break key.
The bits in this register have the following purpose (I
meaning enable and 0 meaning disable):

BIT:
7
6
5
4
3
2
I
o

DEC:
128
64
32
16
8
4
2
I

ACTION:
Break key enable.
'Other-key' enable,
Serial input data ready enable,
Serial output data required enable,
Serial out transmission finish enable,
Pokey timer 4 enable.
Pokey timer 2 enable,
Pokey timer I enable.

Timer interrupt enable means that the associated AUDF
registers are used as timers and will generate an interrupt
request when they have counted down to O. See locations 528

535 ($210 $217) and the Pokey chip locations 53760
($D200) onward for a further explanation. Default value is
192 ($CO).
Break is re-enabled on Reset, the first Print statement to
the screen, any Open statement that addresses "S:" or "E:"
and any Graphics call. The Break interrupt bit should
therefore be checked regularly in order to retain it
disabled. Also see locations 566 and 567 ($236 and $237)
about writing a new vector routine for the Break key.

Page 4

17 - 22

17 II BRKKEY

Nonzero means the Break key is pressed, 0 otherwise. Break
during I/O returns the value 12B. The Break key abort status
code is stored in STATUS at 48 ($30). It's also checked
during all I/O and scroll/draw routines. During the keyboard
handler routine the status code is stored in DSTAT at 76
($4C). BRKKEY is turned off at power-up and the abort status
is flagged by setting bit-7 of 53774 ($D20E). See location
16 ($10). above.

18.19,20 12,13.14 RTCI.OK

Internal realtime clock. Location 20 increments every stage
one VBI (1/50th second = I jiffy) until it reaches 255; then
location 19 is incremented and 20 is reset to 0 (every 5.12
seconds). When location 19 reaches 255, it and 20 are reset
to 0 and location 18 is incremented (every 21.B4 minutes or
65536 TV frames). You can use these locations as a timer,
thus:

TIME = INT «PEEK(IB)*65536+PEEK(J9)*256+PEEK(20»/50)

To see the count in jiffies. eliminate the "/50". To see the
count in minutes, change "/50" to "/300". The maxillum value
of RTCLOK is 16,777,215. When it reaches this value it will
be reset to 0 at the next VBI. This value is the result of
cubing 256 - J (i.e. 256 * 256 * 256 -I), the maximum number
of increments in each clock register. The RTCLOK is always
updated every VBI regardless of the time-critical nature of
the code being processed.

In the Atari' terms, a jiffy is 'almost forever', It can
perform up to a maximum of 35568 machine cycles in this
time. That's an approximate average of over 9000 machine
code instructions!

You can poke these timers with your own suitable values, use
them as a delay timer or whatever, ie:

10 POKE 20,1
2U IF PEEK(2U) THEN 20

This example will wait at line 20 for 5.1 seconds.

21 ,22 15,16 BUFADR

Indirect buffer address register. This is used as a
temporary pointer to the current disk buffer.

Page 5

23 - 34

17 ICCOMT

Command for CIO vector. stores the CIO command which is used
to find the offset in the command table for the correct
vector to the handler routine.

24,25 18,19 DSKFMS

Disk file manager pointer. Called JMPTHL by DOS; used as
vector to FMS.

26,27 1A, 18 DSKUTL

This is the disk utilities pointer, called BUFADR by DOS. It
poInts to the reserved buffer from the DUP package at DBUF,
or for the program area pointer at MEMLO.

28-31 lC-1F ABUFPT

These bytes were intended as buffer pointers, though are
actually unused.

Locations 32 - 47 are the Page 0 1/0 control block (ZIOCH).
ZIOCH is used to communicate data between the CIO and the
device handlers. When a CID operation is executed, the 10CB
channel information is loaded down to here to be used by
CIO. Upon completion of the operation, ZIOCB is then
transferred back to the correct 10CB.

32 20 ICHIDZ

Handler index number. Set by the OS as an index to the
device name table for the currently open file. If there is
no file open on this 10CB then the 10CB is free and ICHIDZ
will equal 255.

33 21 ICDNOZ

The current device number.

34 22 ICCOMZ

Command code byte. See ICCOM, byte 2 of IDCB for further
breakdown.

Page 6

COMPLETE & ESSENTIAL MAP

35 - 46

35 23 ICSTAZ

status of the last 10CB action, set by the OS.

36,37 24,25 ICBALZ/HZ

Buffer address for data transfer, also used for filename
address pointer for Open, status etc. commands.

38,39 26,27 ICPTLZ/HZ

Put byte routine address set by the OS. It's the address-I
of the 'put one byte' routine. On the Close statement, it
points to "IOCB not OPEN".

40,4\ 28,29 ICBLLZ/HZ

Buffer length byte count used for Put and Get operations.
This length is decremented every call. When it reaches 0
then the operation is complete, though, if in the event of a
Get operation, EOF is found but this value is still greater
than 0 then an error is returned and the file IOCB status
remains Open.

42 2A ICAX1Z

Auxiliary operation 1st byte. In an Open operation the #1 is
the IOCB channel used, the next number which is the file
access is ICAX1Z.

43 2" ICAX2Z

Auxiliary 2nd
functions.

byte. Also used by some serial port

44,45 2C,2D ICAX3Z/4Z

These auxiliary bytes are used by Basic Note and Point
commands for the transfer of disk sector numbers. These last
4 ZIOCB bytes are also labelled ICSPHZ and are spare bytes
for local CIO use.

46 2E ICAX5Z

This refers to the byte being accessed in the sector (noted
in ICAX3Z/4Z). Also used for the IOCB index number
multiplied by 16.

Page 7

corU'LEIE &. ESSENTIAL t1AP

47 - 53

47 2F ICAX6Z

Spare. Also labelled CIOCHR, it is the temporary storage for
the character byte in the current Put operation.
The reason why so many auxiliary bytes exist is for the
possible need that future hardware add-ons may need.

Location 48 - 75 are user and OS variables for the Atari I/O
routines.

48 30 STATUS

Internal status storage. SIO uses this byte as the status of
the current SIO operation. See the ERRORS appendix for
status values. STATUS uses location 793 ($319) as temporary
storage. STATUS is also used as a storage timeout, Break
abort and error values during SIO operations.

49 31 CHKSUti

Data-frame checksum used by SIO: single byte sum with carry
to the LSB. Checksum is the value of the number of bytes
transmitted. When the number of transmitted bytes equals the
checksum, a checksum sent flag is set at 59 ($3B). Uses
53773 and 56 ($D20D and $38) for comparison of values.

50,51 32,33 BUFRLO/HI

Pointer to the data buffer. Used by SIO and the device
control block (DCB), and points to the 1st byte of the data
to send or area to receive. Bytes are transferred to the
8-bit serial output holding register or from the input
holding register at 53773 ($D20D). Location 53773 is used to
hold the 8-bits which will be transmitted 1 at a time to or
from the device. Note that the bits are only transmitted
when the register is full, when empty it is updated with
another byte.

52,53 34,35 BFENLO/HI

This is the next byte past the end of the SIO/DCB data
buffer described in BUFRLO/HI.

Page 8

COMPLETE & ESSENTIAL MAP

54 - 62

54.55 36 .37 LTEMP

Temporary buffers for the general purpose peripheral handler
loader routines (PHLR). The PHLR helps the OS deal with new
handlers and peripherals which load their own handlers. All
locations marked as being used by the peripheral handler or
loader are for OS use only and should be left alone. As
stated earlier. they can be used as RAM. but a very strict
programming environment MUST be achieved.

56 38 BUFRFL

Data buffer full flag. 255 equals full.

57 39 RECVDN

Data received done-flag. 255 equals done.

58 3A XMTDON

Transmission done flag. 255 is done.

59 3B CHKSNT

Checksum sent flag. 255 equals sent. 0 if not.

60 3C NOCKSM

Flag for
checksum
data.

"no checksum follows data". Nonzero means no
follows. 0 means checksum follows transmission

61 3D BPTR

Cassette buffer pointer: record data index into the portion
of data being read or written. Ranges between 0 and the
current value at 650 ($28A). When these values are equal,
the buffer at 1021 ($3FD) is empty/full depending on the I/O
operation. Initialized to 128.

62 3E FTYPE

Inter record gap type (IRG). Copied up from ZIOCB location
43. Normal IRG's have a nonzero number. while the rarer used
continuous gaps show up as O.

Page 9

63 - 76

63 3F FEOF

Cassette end-of-file flag (EOF). 0 means the EOF has not
been reached, nonzero means it has. An EOF record has been
reached when the command byte of a data record equals 254.
See 1021.

64 40 FREQ

Beep count retain register. Counts the amount of beeps
required by the cassette handler during the Open command for
Play or Record operations; 1 beep for play and 2 for
record.

65 41 SOUNDR

Noisy I/O flag used by SIO to signal the beeping heard
during cassette and disk operations. 0 makes the beep
Quieter, while nonzero blurts it through the TV speaker. To
completely silence the noise then the sound register updates
must be removed from the ROM at $EC58 - $EC83.

66 42 CRITIC

Critical flag. When CRITIC is nonzero then the deferred VBI
is disabled. This means that all shadow registers are not
updated at the stage-2 VBlank. See the VBLANK appendix for a
description of the stage-2 VBlank. When O. then both
standard VBI's are enabled. which is also the default
value.

67-73 43-49 FMZSPG

Disk file management system (FMS) variables. Re-initialized
by FMS each time it takes control.

74.75 4A,4B ZCHAIN

Temporary storage registers
peripheral handler loader.

for the general purpose

76 4C DSTAT

Display status and keyboard register used by the display
handler. Also used for: screen memory too small. cursor out
of range and Break abort status.

Page 10

COMPLETE & ESSENTIAL_MAP

77 - 81

77 4D ATHACT

Attract mode timer and flag. The Attract mode rotates the
display colours at low levels when there has been no
keyboard input for approx. 10 minutes. This helps save the
TV screen from 'burn-out' damage caused from leaving the
computer unused for long periods of time. The keyboard IRQ
resets ATHACT to 0 when a key is pressed, otherwise
incremented every 5 seconds by VBlank (see 18,19 and 20).
When ATHACT reaches 127 it is changed to 254 which is the
flag indicating to rotate colours whilst it is sitting idle.
You can poke a value greater than 126 to see the affect
immediately.
DLI colour changes will not be attracted. To reset it in a
program then poke here with O. If the attract mode is not
wanted in programs then it should be cleared regularly.

78 4E DRKMSK

Dark attract mask; Initialized to 254 for normal brightness
of colours when attract mode is not activated. Set to 246
when ATRACT is enabled to ensure screen luminances do not
exceed

79 4F COLRSH

Colour shift mask. The colour registers are EOR'd with
DRKMSK and COLRSH at the stage-2 VBlank. When set to 0 and
DRKMSK to 246, colour luminance is reduced COLRSH
currently equals location 19, thus changes colour every 5.12
seconds.

Locations 80 - 122 are used by the screen editor and display
handler.

80 50 TEMP

Temporarily used by the display handler for moving data to
and from screen. Also called TMPCHR.

81 51 HOLDI

Alike TEMP, this holds the number of display list entries.

Page 11

82 - 86

82 52 LMAHGN

Left margin column. Initialized to 2 and has a range 0 to
39. It's useful to set this to 0 when typing in large Basic
listings in order to have 6 extra spaces per logic line (1
logic line is 3 physical display lines).

83 53 RMARGN

Right margin column. Initialized to 39. When altering
margins, it should be known that the screen edit commands
like shift+delete don't change from 40 byte line operations
to the new columns total according to the setting of the
margins. This also applies to narrow and wide screens (see
location 559). Although the screen widths alter. the screen
handler still operates as if there are 40 columns per
physical line.

84 54 ROWCRS

Current graphics/text screen row ranges between 0 - 191
depending on the Graphic mode in use. ROWCRS and COLeRS
define the next element to be read/written to the screen.
To draw lines in machine-code you need to use the Draw
command on an lOCB channel in conjunction with ROWCRS.
COLCRS, OLDROW, OLDCOL also FILFLG and ATACHR. See page 85
in the map for further information.

85.86 55.56 COLCRS

Current graphics/text mode cursor column ranges between 0 -
319 depending on Graphics mode in use. For the text window,
values in locations 656 - 667 are exchanged with the current
values in locations 84 - 95 and location 123 is set to 255
to indicate swap has taken place.
Basics Locate command not only examines the screen when
used. but also moves the cursor forward one position by
updating these locations. To avoid this you need to take
note of ROWCRS and COLCRS before the Locate command and
replace the values afterwards.

Page 12

COMPLETE & ESSENTIAL MAP

87 - 89

87 57 DINDEX

Display mode index to screen mode. DINDEX contains the low
4-bits of the most recent Open AUXI byte. It can be set to
any graphics mode. You can fool the OS into thinking it's in
a different Graphics mode by Pokeing the mode you want into
DINDEX. Try calling Graphics 8 and Pokeing 7 here. you'll
have a split screen of mode 7 on top and mode 8 below. You
need to change location 89 to point to the area of the
screen you wish to draw in. You may get some unexpected
'cursor out of range' errors changing modes in this manner
also so be careful.
You can get a text window in the GTIA modes with this
program:

10 GRAPHICS 9
20 POKE 87,O:POKE 623,64:POKE 703,4
30 GOTO 30

Location 623 can be Poked with 64, 128 or 192 for GTIA modes
9, 10 or 11. You won't be able to read the text in the
window but will be able to write to it. It is possible to
create a true text window but you have to use a DLI. See the
DLI appendix.

88.89 58,59 SAVMSC

The lowest address of
upper left corner of
left corner of the text
You can check this with:

screen memory corresponding to the
the graphics/text screen. The upper
window is at locations 660 and 661.

10 GRAPHICS 1
20 SCREEN=PEEK(88)+256*PEEK(89)
30 WINDOW=PEEK(660)+256*PEEK(661)
40 POKE SCREEN,51:POKE WINDOW.55

How is each mode configured? Well, take a look at the chart
below:

GRAPHIC ROWS COLUMNS BYTES SCREEN DL
MODE full / s p I it /l ine /line MEMORY PlEPlORY
0 24 20 40 40 960/960 32/na
1 24 20 20 20 480/640 32/34
2 12 10 20 20 240/400 20/24
3 24 20 40 10 240/400 32/34
4 48 40 80 10 480/640 56/54
5 48 40 80 20 960/1120 56/54
6 96 80 160 20 1920/2080 104/94
7 96 80 160 40 3840/4096 104/94
8 192 160 320 40 7680/7936 202/176

Page 13

811,89 cOllt.

9
10
I I
12
13
14
15

192
192
192
24
12
192
192

160
160
160
20
10
16ll
160

80
8ll
80,,0
40
16ll
160

40
40
40
40
40
20
40

7680/7936
7680/7936
7680/7936
96ll/112ll
480/640
3840/4096
7680/7936

202
202
202
32/34
20/24
200/174
202/176

Note, that the 1st number in the Screen memory is the amount
of memory actually needed, where the 2nd number defines the
amount set aside due to handler calculations and boundaries.
The 1st DI. number is the amount of full-screen instructions,
the 2nd being the split-screen amount. When the screen clear
function is executed the display handler clears the memory
between the address given by SAVMSC and RAMTOP. The old-bug
of RAM being cleared above RAMTOP with the Screen-CLEAR
function and the scrolling of the text-window is now been
eradicated, so feel free to protect RAM directly above
RAMTOP without any worries of it being lost. SAVMSC and
RAMTOP can also be used in your own programs to clear bulks
of memory fast. This is especially useful in clearing PMG's
or strings, ie:

10 POKE 88,O:POKE 89,40
20 POKE 106,PEEK(106)
30 ? CHR$(125) :GRAPHICS 0

This clears all the memory from location 10240 (40 * 256) to
RAMTOP I. Be sure to call a graphics mode afterwards so
that the screen write address is returned to normal.

Here's a
programs.
in use:

useful routine that can be included in your own
It will load a picture file into the Graphics mode

10 GRAPHICS 15+16:MEM=7680
20 DATA 104,104,104,170,76,86,228
30 FOR 1=0 TO 6
40 READ D:POKE 1536+I,D:NEXT I
50 HI=INT(MEM/256):I.0=MEM-HI*256
60 OPEN 11,4,O,"D:FILENAME.PIC"
70 POKE 849,I:POKE 850,7:POKE 852,PEEK(88) :POKE
853,PEEK(89)
80 POKE 856,LO:POKE 857,HI:POKE 858,4
90 X=USR(t536)
95 CLOSE #1

If you wish to save the picture to disk, then you need to
alter it to:
60 OPEN #I,8,O,"D:FILENAME.PIC"
Line 70 should POKE 85ll,ll and line 80 should POKE 858,8

Page 14

COMPLETE & ESSENTIAL MAP

90 - 97

The program loads/writes MEM amount of bytes, thus, if you
change the Graphics mode then you should also alter the MEM
variable according to the memory chart on the previous
page.
Note that the colour registers are not saved to the file, so
these should be saved by the user. It's recommended to save
them at the end of the file to keep it compatible with most
graphic packages including XL ART and MICROPAINTER, because
you can then use these packages to load your pictures.

90 SA OLDROW

Previous graphics cursor row updated from ROWCRS before
every operation. Used to determine the starting row for
DRAWTO or FILL. See the 10CB DRAW appendix.

91,92 5B,5C OLDCOL

Previous graphics cursor column updated from COLCRS before
every operation. See page 97 of the map.

93 5D OLDCHR

Retains the character under the cursor. Used to restore that
character after the cursor has moved.

94,95 5E,5F OLDADR

Retains the memory location where the cursor currently is.
Also used with OLDCHR in the replacing of the character
under the cursor.

96,97 60,61 FKDEF

The 1200XL has 4 redefinable function keys. FKDEF points to
64529 ($FCll) which is their definition table. An 8-byte
table for keys Fl - F4. Each value is in internal codes and
not Ascii which are values 138 - 141, but you must not
assign a key it's own value since it will generate an
endless loop.

KEY combination:
Fl Cursor up, Atascii 28,
F2 Cursor down, code 29,
F3 Cursor left, code 30,
F4 Cursor right, code 31.

Page 15

98 - 105

With SHIFT:
f'l Home (Cursor to top-left) ,
F2 Cursor to lower left corner.
F3 Cursor to start of physical line,
F4 Cursor to right of physical line.

With
FI
F2
F3
F4

CONTROL:
Keyboard enable/disable toggle,
Screen display enable/disable,
Key click on/off,
Domestic/International character-set toggle.

This also appears in the 800XL. but there are no function
keys! The HOME function also exists in all XL's and XE's but
is not on the keyboard. see 764, 121 and 122.

96 62 PALNTS

Flag to determine PAL or NTSC and (I think) SECAM also. 0
means North American Standard, I means PAL, but SECAM
otherwise.

99 63 LOGCOL

Position of the cursor within a logical line. A logical line
is 3 physical lines whatever their width between I and 40
columns. The maximum range of LOGCOL is 0 - 119.

100,101 64,65 ADRESS

Temporary storage used by the display handler for the
display list address; line buffer. new MEMTOP value after DL
entry, row column address, DMASK value. data to the right of
the cursor, scroll, delete, clear screen routine and for the
screen address memory.

102,103 66.67 MLTTMP

Also called OPNTMP and TOADR; first byte used in Open as
temporary storage, also used by the display handler.

104,105 68,69 SAVADR

Also called
data under
screen.

FRMADR, used temporarily with ADRESS for the
the cursor and in moving line data on the

Page 16

COMPLETE & ESSENTIAL MAP

106 - 108

106 6A RAMTOP

Pointer to the top of RAM (RAM size). Defined by the
power-up sequence and passed here from TRAMSZ. The value
here is the amount of PAGES free in your machine, where I
page is 256 bytes.
In the 48K Atari, this is initialized to 160 with Basic, 192
without. Note that MEMTOP should not extend below this value
otherwise the DL and display memory can destroy program or
data memory.
You can fool the OS into thinking it has less RAM than it
really does by lowering this value. This technique is useful
to protect data loaded into memory from being overwritten by
program memory. This is widely used for placing character
sets behind or PMG's, see SAVMSC at 88 and 89.
If you wish to protect data behind RAMTOP, then you need to
POKE 106,PEEK(106)-X where X is the amount of pages to be
protected, ie:

10 POKE 106,PEEK(106)-1
20 GRAPHICS 0
30 PADR=PEEK(106)*256

Where after protecting 256 bytes of memory, PADR equals the
1st address of the reserved area. Character-sets require 4
pages, PMG's take 4 Pages for double line resolution and 8
for single line res. See PMBASE and the BOUNDARY appendix
also.
If you do use RAMTOP to protect memory, you should call the
graphics mode in use immediately afterwads so the OS can
re-calculate the DL and Display Memory into it's new area.
One caution: apparently, Basic cannot always handle setting
up a DL and DM for Graphics 7 and 8 when you modify this
location by less than 4K (16 pages). Some bizarre results
occur if you use PEEK(106)-8 in these modes, for example.
Use a minimum of 4K to avoid trouble. This could explain why
some people have had trouble with PMG's in these modes.
An alternative to reserving/protecting memory in high RAM is
to making an area below MEMLO at 743. See also MEMTOP at
741.

107 6B BUFCNT

Buffer count; the screen editor current logical line size
counter.

108 6C

According to Mapping, this location and location 109 is
BUFSTR which is the display editor GETCH routine pointer and
temporary storage for the character pointed to by BUFCNT,
however, I find that in my 800XL, this is the pointer to the
current cursor

Page 17

109

109 - 120

6D

See above. Initialized to 2, user alterable but restored on
Reset.

110 6E BITtlSK

Bit mask used in bit mapping routines by the OS display
handler. Also a display handler temporary storage register.

III 6F SHFAtlT

Pixel justification: the amount to shift the right justified
pixel data on output or the amount to shift the input data
to right justify it. Prior to justification, the value is
always the same as that in location 672.

112,113 70,71 ROWAC

ROWAC and COLAC are both working accumulators for the
control of row and column point plotting and the increment
and decrement functions.

114,115 72,73 COLAC

Controls column point plotting.

116,117 74,75 ENDPT

End point of the line to be drawn. Contains the larger value
of either DELTAR or DELTAC to be used along with ROWAC and
COLAC to control the plotting of line points.

118 76 DELTAR

This is the change of vertical position when drawing a
sloped line.

I 19, 1 20 77,78 DELTAC

Delta column; contains the absolute value of NEWCOL minus
the value in COLCRS. These delta register values along with
ROWINC and COLINC are used to define the slope of the line
to be drawn.

Page 18

COMPLETE & ESSENTIAL MAP

121 - 122

121. I 22 79,7A KEYUEF

Pointer to the keyboard definition table. initialized to
64337 ($FH51), where the system keyboard table resides. You
can redefine the keyboard by writing a 192-byte table and
POKEing its address here; the table consists of 3 64-byte
portions: lowercase keys, SHIFTed keys and CTRLed keys,
assigned in the manner below:

no 16 v 32 , 48 9
01 17 HELP 33 SPACE 9 (128)
02 18 c 34 50 0
03 1'1 19 F3 35 n 51 7
04 1'2 20 1'4 36 (128) 52 Il/SPACE
05 k 21 b 37 m 53 8
06 + 22 x 38 / 54 <
07 * 23 z 39 INVERSE 55 >
08 0 24 4 40 r 56 f
09 (128) 25 (128) 41 (128) 57 h
)0 p 26 3 42 e 58 d
II u 27 6 43 Y 59 (128)
12 RETUHN 28 ESC 44 TAB 60 CAPS
13 29 5 45 t 61 g
14 30 2 46 w 62 s
15 31 I 47 q 63 a

The next 64 characters are SHIFTed, ie. a becomes A. 5
becomes " etc. Followed after that are the CTRLed
characters: many graphics characters.
Several values have specific meaning to the keyboard
decoder. thus:

ATASCII:
128
129
130
131
132
133
137
138 - 141
142
143
144
145

USE:
Unused; invalid value
Inverse output
Upper/lower case toggle
Caps lock
CTRl key lock
End of file (EOI')
Keyboard click toggle
1200XL function keys 1'1-1'4
Cursor HOME
Cursor to bottom left
Cursor to left margin
Cursor to right margin

You can create your own table. or better still. just include
those normally unobtainable keyboard functions to the
standard table. Type in the program on the next page and try
pressing CTRL and a number key between 4 and 8.

Page 19

& ESSENTIAL MAP

123 - 127

10
20 FOR 1=0 TO 191
30 POKE 1536+I,PEEK(KEYDEF+I)
40 NEXT 1
50 POKE 121.0:POKE 122,6
60 POKE 1536+128+24,142
70 POKE 1536+128+29,143
80 POKE 1536+128+27.144
90 POKE 1536+128+51,145
92 POKE 1536+128+53,137

You will now find that you have the following keyboard
functions:

CTRL+4
CTRL+5
CTRL+6
CTRL+7
CTRL+8

Cursor HOME
Cursor to bottom left
Cursor to left margin
Cursor to right margin
Keyboard click toggle

The new keyboard table occupies page 6 of memory (locations
1536 1791). but you can turn the ROM into RAM and alter
the original table. See the RAM-OS appendix.

123 7B SWPFLG

Split-screen cursor control. Equal to 255 in the text window
RAM and regular screen RAM are swapped; otherwise equal to
O. In split screen modes. the graphics cursor data and the
text window data are frequently swapped in order to get the
values associated with the area being accessed into the OS
data-base at locations 84 - 95. SWPFLG helps to keep a track
of which data set is in these locations.

124 79 HOLDCH

The keyboard character value is moved here before the CTRL
and SHIFT logic are processed for it.

125 7A INSDAT

Temporarily used by the display handler for the character
under the cursor and the end of line (EOL) detection.

126.127 7B,7C COUNTR

Counter for the amount of iterations/steps to draw a line.
As each point of the line is drawn, this value is
decremented. 0 means the line is complete.

Page 20

COMPLETE & ESSENTIAL MAP

128 - 131

128,129 7D,7E LOMEM

Pointer the Basics low memory which is at the end of the
RAM. The 1st 256 bytes pointed to are the TOKEN output
buffer, which is used by Basic to convert Basic statements
into numeric representation. See STMTAB and the TOKENIZATION
appendix.
This value is loaded down from MEMLO on initialization or
the execution of a NEW command. Remember to update LOMEM
when changing MEMLO in reserving memory space.
When a Basic SAVE is initiated, two blocks of information
are written to the output device: the 1st block is the 7
pointers from LOMEM to STARP at 140,141. The value of LOMEM
is subtracted from each of these 2-byte pointers in the
process, thus, the 1st two bytes written will be O's (LOMEM

LOMEM). The 2nd block contains: the variable name table,
the variable value table, the Basic program in its TOKENized
form and lastly the immediate mode line number, which is
32768 (1 number higher than the highest accessible line
number). When the Basic LOAD is initiated, Basic adds the
value at MEMLO to each of the 2-byte pointers as in the
reverse of the SAVE operation. The pointers are placed back
in page-O and the values in RUNSTK at 142,143 and MEMTOP at
144,145 are set to the value in STARP. Next, 256 bytes are
reserved above the value in MEMLO for the token output
buffer, and the program is read in to the memory following
this buffer.
Without DOS loaded, LOMEM points to 1792, but points to 7676
with DOS. Changing the drive and data-buffers will
raise/lower this value by 128 bytes per buffer accordingly.
The RS232 takes a further 1728 bytes.
LOMEM is called ARGOPS by Basic when used in expression
evaluation. When Basic encounters any kind of expression, it
puts the immediate results into a stack. ARGOPS points to
the same 256 byte area; for this operation it is reserved
for both the argument and operator stack. It's also called
OUTBUFF for another operation pointing to the same 256 byte
area as ARGOPS. Used by Basic when checking a line for
syntax and TOKEN conversion. Also temporary token store.

130,131 82,83 VNTP

Beginning address of the variable name table. Variable names
are stored in the order they are entered into your Basic
program, in Atascii format. You can have up to 128 variable
names and these are stored as tokens representing the
variable number within the tokenized Basic program, numbered
128 - 255.
The table continues to store all variables: from immediate
mode, program mode, even deleted ones remain in memory.

Page 21

It is not cleared upon SAVE, but is replaced with the VNT
obtained from a LOAlled file. The only way to renew the table
is by first LISTing your program to the output device as
this stores the file in a difterent manner and does not save
the VNT. Then you can ENTEH the file, to SAVE it with it's
new VNT. Before ENTEHing the file back in, be sure to use a
NEW statement to erase the old program and VNT, or better
still, give the Atari a coldstart.
With numeric (scalar) variables, bit-7 (the MSB) is set on
the last character in the name. String variables have a "$"
fur the last character with the MSB set. Array variables
have a "(" for the last character also with the MSB set.
With the MSB being set, it just inverses the character
mentioned in each case.
Here's a short routine to display all the variables of a
resident program:

10 POKE 203,PEEK(130):POKE 204,PEEK(131)
II IF PEEK(203)=PEEK(132) AND PEEK(204)=PEEK(133) THEN STOP
12 7 CHH$(PEEK(PEEK(203)+256*PEEK(204»);
13 IF (PEEK(PEEK(203)+256 * PEEK(204»)-127 THEN 7
14 IF PEEK(203)=255 THEN POK.203,O:POKE
204.PEEK(204)+I:GO.ll
15 POKE 203,PEEK(203)+I:GOTO II

You can also directly change the variable names by POKEing
the Atascii values accordingly. If you renamed the variable
in the Basic program, the old name would still exist which
is occupying I of the 128 variables allowed.

132,133 84,85 VNTD

Pointer to the ending address of the variable name table +
1. When less than 128 variables are present, then it points
to a 0 value.

134,135 86,87 VVTP

Address of the variable value table. 8-bytes are allocated
for each variable in the name table as follows:

BYTE 2 3 4 5 6 7 8
VARIABLE
Scalar 00 var" six byte BCD constant
Array; DIMed 65 var" offset fi r s t second

unDIMed 64 from DIM+I DIM+I
STARP

String; DIMed 129 var# offset length DIM
unDIMed 128 from

STARP

Page 22

COMPLETE & ESSENTIAL_MAE

135 - 137

In scalar (unDIMensioned numeric), bytes 3-B are the FP
number; byte-3 is the exponent, byte-4 contains the least
significant 2 decimal digits and byte-B contains the most
significant 2 decimal digits.
In array variables, bytes 5 and 6 conlain the size+1 of the
1st dimension of the array (DIM+I; LSB/MSB) while bytes 7
and B contain the size+1 of the 2nd dimension (the 2nd
DIM+I; LSB/MSB).
String variables bytes 5 and 6 contain the current length of
the variable (LSB/MSB) while bytes 7 and B contain the
actual dimension (up to 32767).
In all cases, the first byte is always one of the numbers
listed on the chart above (you will rarely see the
undimensioned values in a program). This number defines what
type of variable information will follow. The next byte,
var# (variable number), is in the range 0 - 127. Offset is
the number of bytes from the beginning of STARP at 140,141.
Since each variable is B-bytes, you can find the values for
each variable by:

10 VVTP=PEEK(134)+256*PEEK(135)
II ? "ENTER VARIABLE NUMDER ";
12 INPUT VAR
13 FOR L=O TO 7
14 ? PEEK(VVTP+B*VAR+L);
15 NEXT L

A very handy and widely used technique to clearing a string
or assigning a particular character throughout each element
within a string can be achieved with this program:

10 DIM TEST$(IOO)
20 TEST$="*":TEST$(100)=TEST$:TEST$(2)=TEST$
30 ? TEST$

136,137 B8,89 STMTAB

Address of the statement table which is also the beginning
of your Basic program, containing all the TOKENized lines of
code including the immediate mode lines entered by the user.
Line numbers are stored as 2-byte integers, while immediate
mode lines are given the default value of 3276B. The
structure of a TOKEN line is as follows:

BYTE:
1-2
3

4

Program line number
Dummy, reserved for byte count/offest
from the start of this line to the start
of the next.
2nd counter for the start of this line to
the start of the next statement. These count
values are set only when tokenization for the
line and statement are complete.

Page 23

Ll8 - 141

To see the starting address of your Basic line numbers, use
this routine:

10 STMTAB=PEEK(136)+256*PEEK(137)
20 NUM=PEEK(STMTAB)+256*PEEK(STMTAB+I)
30 IF NUM-32768 THEN STOP
40 ? "t.INE NUMBER - ";NUM;", ADDRESS ";STMTAB
50 STMTAB=STMTAB+PEEK(STMTAB+2)
60 GOTO 20

138,139 8A.8A STMCUR

Current Basic statement pointer, used to access the tokens
currently being processed within a line of the statement
table. While Basic is awaiting input, this pointer is set to
32768. Using the address of the variable name table, the
length and the current statement you can protect your Basic
programs from being listed or even loaded. They can only be
RUN! Be sure to save an unchanged version of your program
because this process is irreversable once done:

32763 FOR V=PEEK(130)+256*PEEK(131) TO
PEEK(131)+256*PEEK(132)
32764 POKE V,155:NEXT V
32765 POKE PEEK(138)+256*PEEK(139)+2,O
32766 SAVE"D:FILENAME.EXT"
32767 NEW

Include this on your program to protect. Note. in future,
you must RUN it directly from disk.

140,141 8C,8D STARP

the same format. DIM A$(100) only requires 100
each element is just the 1 byte. It would save
memory to use strings as opposed to arrays,

The string and array table address and a pointer to the end
of your Basic program. The address of the strings in the
table are the same as those returned by the Basic ADR
function. Always use this function under program control,
since the addresses in the table change along with your
program size. Each dimension of an array requires 6 bytes.
thus, DIM A(100) takes up 100*6 = 600 bytes, because each
element of the array can store a number of up to 6 figures
in length.
A string of
bytes because
considerable
ie:

10 DIM A(2)
20 A(0)=36:A(I)=9:A(2)=8
30 ? A(I)+A(2),A(0)

Page 24

142 - 147

10 DIM A$(4)
20 A$="3698"
30 ? VAL(A$(3,3»+VAL(A$(4,4»,VAL(A$(I,2»

The 1st program takes 6*10 = 60 bytes for array memory. but
the 2nd program just takes 10 bytes for string memory.

142,143 8E,8F RUNSTK

Address of the runtime stack which holds the GOSUB entries
(4-bytes) and the FOR/NEXT loops (16-bytes).
The structure of the GOSUB is: byte-I = 0, bytes 2 and 3 =
line number on which the actual GOSU» call exists and byte 4
= an offset so that the Basic RETURN statement can return to
the correct position in the GOSUB line.
FOR/NEXT is structured as: bytes I to 6 = counter variable
limit, bytes 7 to 12 = the step increment, byte 13 = counter
variable number with the MSB set, byte 14 and 15 = is the
FOR part line number and byte-16 = is the offset for the
line where the FOR is so that the next statement on the same
line (if one exists) can be executed.

RUNSTK is also called ENDSTAH by Basic to point to the end
of the string/array space pointed to by STARP.

144,145 90,91 MEMTOP

Pointer to the top of Basic memory, the end of the space the
program takes up. There may still be space between this
address and the display list which is also the value
returned by the Basic FRE command. This is also called
TOPSTK; it points to the top of the stack space pointed to
by RUNSTK.

146 92 MEOLFLG

Basics modified EOL flag register. The Atari BASIC
source-book (pages 144 - 147) lists all the RAM locations
used by Basic, if I had the book I would have listed them
here, but unfortunately it's one of the few I don't have.

147 93

Unused (apparently).

Page 25

148.149

COMPI.ETE .MAP

94.95

This is one from my own book. I don't think it's purpose is
meant to be. but it's the address of the screen editor entry
point. Weird.

149.150 95.96 POKADR

According to mapping (which I'm sure is right). this is the
address of the last POKE location. If no POKE command has
been given then it is the address of the last operator token
(often 155 for EOL).
I find that when I tried to find out what this was. it's
address points directly to the 2nd of the 2 Basic statement
tables. The 1st is at 42145. Turbo Basics is at 60251 and
63857.

Locations 146 202 are reserved for the 8K BASIC ROM.
Locations 176 207 are reserved by the Assembler/Editor
cartridge for the user's Page-O use. The DEBUG routine also
reserves 30 bytes in page-rG, the locations are: $A4. $A5.
$AD. $AE. $DB - $E5. $EA - $FI. $F5. $F6. $F9 - $FB. $FE and
$FF. Should you affect these locations and re-enter the
Editor then don't expect the system to be kind to you.

182 li6 DATAD

The data element being read. Registers the number of the
element in the DATA line.

183. 184 B7.B8 DATALN

Data statement line number; the Basic line number of the
DATA statement currently being read. The RESTORE statement
resets DATAD and DATALN back to O.

186.187 BA,BB STOPLN

This is the line where a Basic program stopped either due to
an error or the use of the Break key. Also due to a Basic
STOP or where a TRAP statement occured. Try the following:

10 TRAP 30
20 ;this is a deliberate error
30 LINE-PEEK(186)+256*PEEK(187)
40 7 "Are you aware of error ";PEEK(l95);" at line ";LINE
50 TRAP 40000

Page 26

190 - 202

190 BE SAVCUR

Saves current line address.

192

I/O command.

193

I/O device.

194

co

CI

C2

10CMO

IOOVC

PROMPT

Prompt character.

195 C3 ERRS AVE

This is the most recent error. See STOPLN.

200 CA COLOUR

Stores the colour number used in a Plot or Drawto operation.
The statement COLOR X can be replaced with POKE 200,X. Same
as 763, except that Basic takes the value from here to load
into 763.

201 60 PTABW

This location specifies the number of columns between TAB
stops. The r s t tab is at PEEK(201), the default is 10. Note
that this is the value used by the "," after the PRINT
statement and NOT the actual tab stops used by the TAB key.
The minimum value here is 3, a 2 POKEd here will give 4
spaces and 1 is treated as 3. A POKE 201,0 will cause the
system to hang at the next PRINT statement using the

202 CA LOADFLG

Load in progress flag. Initialized to 0, if you POKE here
with I within your Basic program then the program will wipe
itself from memory upon return to direct mode (program
break).

Page 27

& ESSENTIAL nAP

203 - 229

203-209 CB-41

Unused; free for use.

210,211 D2,D3

Basics floating point work area; $D2 is used for the
variable type and $D3 for the variable number and length of
the mantissa.

212.217 D4,D5 FRO

Used by the USR command to return a 2-byte number to Basic.
If you store nothing here (212 and 213), then the equation:
"I-USR(address.variables)" returns the address of the USR
subroutine. Otherwise, you can store an integer (range 0 -
65535) here which becomes the value of the USR function.
To use 16-bit values in FP. you would place the 2-bytes of
the number into the least 2-bytes of FRO at 212 and 213. and
then do a JSR $D9AA. which will convert the integer to its
FP representation. leaving the result in FRO. To reverse the
operation, do a JSR $D9D2.

Locations 212 - 255 are reserved for page-O floating point
package use. The FP routines are in Ron at 55296 - 57393
($D800 $E031). These page-O locations may be used if the
FP package is not called by the users program. however, do
not use these locations for an interrupt routine since such
routines might occur during an FP routine called by Basic
which will cause the system to crash.
Floating point uses a 6-byte precision. The 1st byte of the
Binary Coded Decimal (BCD) number is the exponent (where if
bit-7 equals O. the number is positive. and I for negative).
The next 5-bytes are the mantissa. See De Re Atari for an
explanation of BCD (or take up a City and Guilds 223
course1). Also see the NunBER SYSTEnS appendix

218-223 DA-DF FRE

FP extra register (1).

224-229 EO-E5 FRI

FP register I; holds a 6-byte internal form of the FP number
as does FRO. The FP package frequently transfers data
between these 2 registers and uses both for 2 number
arithmetic operations.

Page 28

230 - 246

230-235 E6-EB FR2

FP register 2.

236 EC FRX

FP spare register.

237 ED EEXP

The value of E (the exponent).

238 EE NSIGN

The sign of the FP number.

239 EF ESIGN

The sign of the exponent.

240 FO FCHRFLG

The 1st character flag.

241 FI DIGRT

The number of digits to the right of the decimal.

242 F2 CIX

Character (current input) index. Used as an offset to the
input text buffer pointed to by INBUFF.

243,244 F3,F4 INBIJFF

Input Ascii text buffer pointer: the users program line
input buffer, used in the translation of Atascii code to FP
values. The result output buffer is at 1408 - 1535 ($580 -
$5FF) .

245,246 F5,F6 ZTEMPI

Temporary register.

Page 29

2117 - 511

247,2[18 n,F8 ZTEMP4

Temporary register.

249,250 F9,FA ZTEMP3

Temporary register.

251 FB RADFLG

Also called DEGFLG. When set to 0, all trigonometric
functions are performed in radians; when set to 6, they are
done in degrees. Hasics NEW command and Reset restore RADFLG
to radians.

252,253 FC,FD FLPTR

Points to the users FP number.

254,255 FE,FF FPTR2

Pointer to the users 2nd FP number to be used in an
operation.

END OF PAGE-O RAM

PAGE-I: THE STACK

Locations 256 - 511 ($100 - $IFF) is the stack area for the
OS, DOS and BASIC. Machine language JSR, PHA, PHP and
interrupts all cause data to be written to the stack, while
RTS, PLA, and PLP ins truc t ions a II cause data to be read
from the stack. Upon power-up. the stack-pointer points to
location 511, but as items are pushed onto the stack the
pointer is lowered and the item is pushed on top. In the
case of the pointer going below location 256. it is
wrapped-around to point back to location 511.

PAGES 2 - 4

Locations 512 1151 ($200 - $47F) are used by the OS for
working variables. tables and data buffers. In this area.
512 - 553 are used for interrupt vectors, 554 - 623 are for

Page 30

COMPLETE & ESSENTIAL MAP

512 - 513

miscellaneous use. Much of pages 2 - 5 cannot be used except
by the OS unless specifically noted.

There are 2 types of interrupts: Non-Maskable Interrupts
(NMI) processed by the ANTIC chip, and Interrupt ReQuests
(IRQ) processed by POKEY and PIA. NMI's are for the Vertical
Blank Interrupt (VBI), Display List Interrupt (DLI) and
Reset Key Interrupt (RKI) at locations 546 - 549. 512 - 513.
and 12 - 13. respectively.
IRQ's are for the TIMER interrupts, peripheral and
serial-bus interrupts, break and 'other' key interrupts. See
NMIST at 54287 and IRQEN at 53774.

512,513 200,201 VDSLST

an RTI
really

Vector for the NMI display list interrupts; containing the
address of the instructions to be executed during a DLI.
It's needless me trying to explain DLI's to you if you don't
understand them because they are for the people who know
what they are doing! If you want to find out about thea then
you should get hold of a good book such as DE RE ATARI
(which is now out of print, like most Atari books really!),
on the other hand, you can write to me and ask for my
TUTORIAL on DLI's for the Basic programmer which I consider
to be a good introduction to DLI's. Anyway, a DLI is best
used in altering COLOUR registers at various points across
or down the screen. hence, you can have more than 4 colours
in GRAPHICS 15 or whatever mode you like.
The OS doesn't use DLI's, they must be user enabled at
$D40E. written into protected memory (such like Page-6) and
Vectored to through VDSLST.
VDSLST is initialized to 49358 which is just
instruction. As an example for those who are
enthusiastic about learning DLI'S, try this program:

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEK(561)
30 FOR 1=0 TO 13
40 READ D:POKE 1536+I.D:NEXT I
50 DATA 72,173,10,210,41,240,141,10.212,141.24,208.104,64
60 POKE DL+2,240:POKE DL+3,194
70 FOR 1=6 TO 28:POKE DL+I,130:NEXT
80 POKE 512,O:POKE 513,6
90 POKE 54286.192

You may notice that after running the program, when you
press a key, the colours tend to flick down one line. This
is because the keyboard interrupt stores a value into WSYNC
at 54282. There are several solutions. see the DLI
appendix.

Page 31

514 - 523

There is only the I DLI vector, so if you wished to execute
more than t DI.I you must include within each IlLI, address
changes to VDSLST to link the IlLI's.

5l4,5l5 202.203 VPRCED

Serial (peripheral) proceed line vector, initialized to
49357 which is PI.A, HTI. It is used when an IRQ interrupt
occurs due to the serial I/O bus proceed line which is
available for peripheral use. This interrupt is handled by
the PIA chip and can be used to provide more control over
external devices.

516,517 204,205 VINTt:R

Serial (peripheral) interrupt vector, initialized to 49357.
Used for the IRQ interrupt due to a serial bus I/O
interrupt. Processed by PIA.

518,519 206,207 VBREAK

Software break instruction vector for the 6502 BRK command.
This IRQ vector is normally used for setting break points in
an assembly language debug operation. You can use it when
executing a BRK instruction in your own machine language
programs. very handy for LOSING hackers trying to hack your
machine-code program, just take program flow into a BHK
instruction, ensuring that you have setup this vector. Only
the more knowledgeable hackers will realise where to go when
a DEAD-END is encountered (the BRK instruction).

520,521 208,209 VKEYBD

POKEY keyboard interrupt vector, used for an interrupt
generated when any keyboard key is pressed excluding the
Break key and the Console buttons. The OS doesn't generate
an interrupt for the console keys, see 53279.
VKEYBD can be used to process the key-code prior to it
undergoing Atascii conversion. Initialized to the OS
keyboard IRQ routine at 64537.

522,523 20A,20B VSERIN

POKEY IRQ serial input ready vector, initialized to 60204
which is the OS routine to place a byte from the serial
input port into a buffer. Called INTRVEC by DOS, it is used
as an interrupt vector location for an SIO patch. DOS
changes this vector to point to 6691, the start of the DOS
interrupt ready service routine.

Page 32

COMPLETE & ESSENTIAL MAP

524 - 531

524,525 20C,20D VSEROR

POKEY IRQ serial output ready vector, initialized to 60077
which is the OS routine to provide the next byte in a buffer
to the serial output port. DOS changes this vector to 6630,
the start of the DOS output needed interrupt routine.

526,527 20E,20F VSEROC

POKEY IRQ serial bus transmit complete interrupt vector,
initialized to 60140 which sets a transmission done flag
after the checksum byte is sent.
SIO uses VSERIN, VSEROR and VSEROC to control serial bus
communication with the serial bus devices. During serial bus
communication all program execution is paused. Only stage-I
VBlank and the various IRQ's are constant, even DLI's are
inactive during actual transmission of bits. The actual
serial I/O is interrupt driven; POKEY waits and watches for
a flag to be set when the requested I/O operation is
complete. During this wait, POKEY is sending/receiving bits
along the serial bus. When an entire byte has been
transmitted the necessary IRQ is generated according to
data-flow. causing the next byte to be transmitted until the
entire buffer has been sent/received whereby the
"transmission done" flag is set. At this time SIO exits back
to the calling routine, re-enabling DLI's and stage-2 VBI.
If the buffer is greater than "X" bytes then there will be a
momentary update in any activated DLI's. Where "X" is the
seperation of a sector for a disk device (128 bytes) or a
record for a cassette device (132 bytes) etc ..
It can also be seen that SIO is a serious time-waster where
it waits for POKEY to handle its I/O of bits.

528,529 210,211 VTlMRI

POKEY IRQ timer-I interrupt vector initialized to 49357
(PLA, RTI). Timer interrupts are executed (if enabled at
lRQEN) when their associated AUDF register counts down and
reaches O. VTIMRI uses AUDFI at 53760. Values in the AUDF
registers are loaded into STIMER at 53769 according to
mapping, but you can't read it because it has a different
purpose.

530,531 212,213 VTIMR2

POKEY IRQ timer-2 interrupt vector for AUDF2. Initialized to .
49357. AUDF2 is its associated counter.

Page 33

ESSENTIAL tlAP

532 - 533

532,533 214,215 VTItlR4

POKEY IRQ timer-4 interrupt vector for AUDF4. initialized to
49357. Associated counter is AUDF4.

The HARDWARE-TItlERS are used to count intervals less than a
jiffy (1 fiftieth of a second). They count down from a user
set value until they reach 0 whereby they vector to the
appropriate address. These are very handy for many
applications including music durations, game I/O clock,
colour alterations, timing and even digitized speech (see
the VOLUtlE-BIT appendix).
On the next page there is a series of steps helping you to
make your own hardware interrupt. I've also written a
program that uses hardware timer-1 where other manuals
couldn't be bothered:

10 POKE 53768.0
20 FOR 1.. 0 TO 12
30 READ D:POKE 1536+I.D:NEXT I
40 DATA 173,10.210.41.240.141.10,212,141.24,208,104,64
50 POKE 528,O:POKE 529.6
60 POKE 53760.30
70 POKE 16.193:POKE 53774.193
80 POKE 53769.1

1. POKE AUDCTL with the clock frequency you wish to
operate in: 0=64KHz, 1=15KHz and 96"1.79t1Hz.
The PAL system actually works at 2.217t1Hz. but
it seems that POKEYs IRQ' are strapped to this
strict timing circuit! (It doesn't seem possible
to disable Pokeys internal clock for faster
processing IRQ'I??).

2. tlapping says to set the channel control register
at 53761, to what and why it doesn't say. but when
was fiddling around with it I found that it
has no use at all!

3. Place your machine-language interrupt routine into
a safe place of memory making sure it ends with
a PLA and RTI. Note that if you use the X or Y
registers then you should PHA them and restore
them at the end of the interrupt.

4. Address your routine with the appropriate
Timer-vector.

5. POKE a value between 0 - 255 into the relevant
AUDF register. This is the delay (in clock-pulses)
before the interrupt routine is re-executed.
You should be very careful with this value because
if it is shorter than the amount of time your
interrupt-routine needs to fully execute then you
are dicing with trouble. The system can CRASH.

Page 34

COMPLETE & ESSENTIAL MAP

534 - 541

6. Enable your interrupt by setting its bit in IRQEN
at 53774 and its shadow POKMSK at 16.

7. Finally. POKE a nonzero value into STIMER
at 53769 so that your counter (the AUDF register)
is reset to the value you poked here in step-5.

Hows that for a full description of the hardware timers? Why
couldn't mapping do this!

534.535 216.217 VIMIRQ

The IRQ IMMEDIATE vector (general). initialized to 49200.
This interrupt is used by the OS to determine the cause of
the IRQ so that it can process the correct one.
When playing a sampled file (digitized sounds). the VIMIRQ
IRQ can be used quite affectively. See the VOLUME-BIT
appendix.

Locations 536 558 exluding VVBLKI. VVBLKD. SRTIMR and
INTEMP are used for the SOFTWARE-TIMERS. These timers are
used to count intervals in jiffies (frames). When they are
set. their counters are decremented every 50th of a second
and when 0 is reached then depending on the timer. either a
flag will be set or a JMP to address will be executed.

536.537 218.219 CDTMVI

System Timer-l value. This timer is decremented every
stage-l VBlank. When it reaches O. a flag is set and a JSR
is made through the address in CDTMAI at 550.551. Since the
OS uses this timer for its SIO routines. it's best to avoid
use of this timer. If you have to use it then do not have it
interfering with SID operations.

538.539 21A.21B CDTMV2

System Timer-2 value. Decremented every stage-2 VBlank. It
can be decremented every stage-I VBlank. subject to the
status of CRITIC at 66. This timer may miss (skip) a count
when time-critical code is being executed. see the VBI
appendix. CDTMV2 performs a JSR through CDTMA2 at 552.553
when its value is O.

540.541 21C.21D CDTMV3

System Timer-3 value. Same as CDTMV2. timers 2. 3. 4 and 5
are all stopped (from decrementing) when CRITIC is nonzero.
Of course. you can write your own VBI and change any of the
software timers so that they all use stage-l (never CRITICal
code and always active) VBlanks. CDTMV3 is used by the OS to
Open the cassette recorder and also to set the length of
time to read/write tape headers.

Page 35

COIU'LETE &. ESSENTIAL MAP

542 - 547

542.543 21E,21F CDTMV4

System Timer-4; Same as CDTMV2 except that this timer sets a
flag to indicate its counted to O.

544,545 220.221 CDTMV5

System Timer-5; Same as CDTMV4. NOTE that timers 3. 4 and 5
set flags when they have reached 0, where the 1st 2 timers
JSR through its appropriate address.

546.547 222.223 VVBLKI

VBlank immediate vector. Initialized to 49378 which is the
OS NMI interrupt processor routine. The NMI status register
NMIST at 54287 is tested by the hardware to find the cause
of the NMI. If the cause is the DLI NMI then vector through
VDSLST. If not. then a test is made to see if it's the VBI
NMI. if so, then vector through VVBLKI which in turn vectors
through VVBLKD if CRITIC is O. If the NMI isn't any of the
above then process the Reset-key routine and vector through
DOSVEC.
See the VBIank appendix for a full description of the OS
V81ank processes.
If you wish to write your own immediate VBI. then you should
put its address here and enable the VBI bit in NMIEN at
54286. Note. however. that to set the address in VVBLKI, you
should load the Accumulator with 6, the X register with the
HI byte, the Y register with the LO byte and JSR SETVBV at
$E45C. Your interrupt program doesn't need to PHA or PLA any
registers. but it does need to exit the routine with a JMP
to SYSVBV at $E45F. Also see appendix D5.

10 DATA 173.242,2.141,26,208.76.98.228
20 DATA 104.169.6,162.6,160,0,32,92,228,96
30 FOR 1=0 TO 19
40 READ D:POKE 1536+I.D:NEXT
50 X=USR(t545)
60 POKE 54286,64

This program sets up an immediate VBI to use the value of
the last key pressed as a BORDER colour. Not a very
ingenious program for a stage-l VBI, but nonetheless, quite
affective. Because the program disables the original stage-I
VBlank, you will notice that the Real-Time Clock is not
updated and all the other stage-l functions are not
implemented: for instance, try several PEEKs at location
20.

Page 36

COMPLETE & ESSENTIAL MAP

548 - 555

548,549 224,225 VVBLKD

VBlank deferred vector. Initialized to 49802. You can use
the above program in the deferred register by changing the
1st occurrence of 6 placed in the Accumulator to a 7, thus,
retaining all the original processes AND stage-2.
See the TIMINGS appendix for time calculations.

550,551 226,227 CDTMAI

System Timer-I JuMP address is initialized to 60433. When
locations 536,537 have counted down and reached O. the OS
vectors through here. The OS uses this timer from stage-l
VBlank so you can either use another timer so as to reduce
any OS conflicts or you can reconfigure the VBlank so that
it doesn't use this timer (the latter is probably best
avoided!).
Mapping says that you should avoid using numbers greater
than 255 because a VBI could occur when the LSB goes
negative and the MSB is to be updated, but I fail to see how
this is possible because the timers are decremented DURING
the VBI, thus, telling us that unless it takes a whole frame
to decrement 2 locations then this has no possibility of
happening and is undersight by Ian Chadwick.

552,553 228.229 CDTMA2

System Timer-2 JuMP address. Unused by the OS and free for
you to write the address of your machine-language routine
here. Initialized to 0 on power-up.

554 22A CDTMF3

System Timer-3 FLAG; set positive when CDTMV3 has reached O.
This register is also used by DOS as a time-out flag.

555 22B SRTIMR

Software repeat timer. controlled by the IRQ device routine.
It establishes the initial half-second delay before a key
will repeat itself if depressed. Stage-2 VB lank establishes
the initial 0.8 of a second repeat rate. decrements SRTIMR
and implements auto repeat logic. Every time a key is
pressed, SRTIMR is loaded with 40. Whenever SRTIMR reaches 0
and a key is still pressed, the value of that key is
continually stored in CH at 764.

Page 37

& ESSENTIAL MAP

556 - 559

556 22C CDTMF4

System Timer-4 FLAG; set when CDTMV4 counts down and reaches
O.

557 22D INTEMP

Temporary register used by the SETVBL routine at 58460.

558 22E CDTMF5

System Timer-5 FLAG; set when CDTMV5 counts down and reaches
O.

559 22F SDHCTL

Direct Memory Access (DMA) enable, initialized to 34. Shadow
location for 54272 ($D400), POKE with 0 to turn ANTIC off
(including the display) to speed processing up If your
performing a routine that needs speeding-up, but you still
require some display then there are 2 ways of achieving
this: the 1st is simply by replacing the mode lines that you
don't need with Blank-Scan Lines (BSL's) or even just
shrinking the DL. The other method is to use 1 or more DLI's
to turn Antic off during the area's of the screen that is
unused.
Here's a list of the bits in this register, just add up the
value's to achieve what you want. Note that you can only
have 1 playfield:

BITS:
o
o
1
0,1
2
3
2,3
4

5

DEC:
o
1
2
3
4
8
12
16

32

OPTION:
No playfield
Narrow playfield
Standard playfield
Wide playfield
Enable missile DMA
Enable player DMA
Enable missile and player DMA
One line player resolution
(double-line res. if not set)
Enable "DHA FETCH INSTRUCTION"

Note
res.
PHG
bits

that
is

DHA
you

the Double-line res.
not chosen. Also, if
to appear then you
need.

is default if the Single-line
you wish the playfield or the
must set bit-5 along with the

Page 38

!,:OMPLETE & ESSENTIAL ttH

560 - 561

The playfield is the text/graphics area of the screen.
Narrow playfield is 128 colour clocks (there are 4 colour
clocks to I Graphics 0 byte in width), thus, giving 32
columns. The standard playfield is 160 colour clocks and 40
columns across. Wide playfield is 192 colour clocks and 48
columns wide.
A colour-clock is a physical measure of horizontal distance
across the screen, there are a total of 228 colour-clocks
across I scan-line, but only around 176 are visible. A pixel
on the other hand is a logical unit which varies in colour
clocks depending on the Graphics mode you choose.
Bit-5 should be enabled so that Antic can use its DMA to
fetch the DL instructions, the memory bytes and the PMG
data. If it's not set, then there will be no display and t.he
processor will work 30% faster as mentioned earlier.
Bits-6 and 7 don't seem to be used for anything and are
clear.

560,561 230,231 SDLSTL/H

Starting address of the Display List (DL). The DL is an
instruction-set which tells Antic where the screen-data is
and how to display it. Shadow for DLISTL/H at 54274.5. You
can find the DL I-byte above free memory by using:

DL=PEEK(741)+256*PEEK(742)

But, don't get into the habit of using that particular
method, the method you should always use is:

DL=PEEK(560)+256*PEEK(561)

When you call a Graphics mode, the appropriate display is
created from the tables at 60957. See locations 88 and 89.
You can create your own DL with mixed text/graphic displays,
fine-scrolling, BSL's and DLI's. See the table below:

BITS:
7
6, I
6
5
4
o

DEC:
128
65
64
32
16
I

FUNCTION:
Display-List Interrupt (DLI)
Jump and wait for vertical blank (JVP)
Load Memory Scan (LMS)
Vertical fine-scroll
Horizontal fine-scroll
Jump code (JMP) ;not 6502 JMP

The above is a list of the functions available on the DL,
the text/graphic modes are in bits 0, I, 2 and 3 and
described on the next page.

Page 39

GQMP!·t:n: s LMA!'

561 con t .

BITS 3-0: DEC: GkAPIIICS:

0 0 I 0 2 0
0 0 1 I 3 0.5
0 I 0 0 4 12
0 I 0 I 5 13
0 I I 0 6 I
0 I I I 7 2
I 0 0 0 8 3
I 0 0 I 9 4
I 0 I 0 10 5
I 0 I 1 11 6
1 1 0 0 12 14
1 I 0 I 13 7
I I I () 14 15
I I I I 15 8.9,10 and I 1

The text modes have bit-3 clear, while the graphic modes
have bit-3 set. Graphics 0.5 has 10 rows to a byte rather
than 8 and is especially useful for true descenders in text.
Graphics 9,10 and 11 are obtained by selecting this code,
but also by setting the appropriate bits in location 623.
See this location for further information.
There are also Blank-Scan Lines (BSL's) in the DL
instruction set:

BSL's
(amount) : DEC: BITS:
1 0 none
2 16 4
3 32 5
4 48 4,5
5 64 6
6 80 4,6
7 96 5,6
8 112 4,5,6

You'll notice that the DL instructions are contradictory in
some of the bits, for example: fine-scrolling is on bits 4
and 5 whilst 2 and 3 BSL's uses those bits too. This is
quite right, but you should know that the fine-scrolling
bits are only so, when a text/graphics mode is active. If no
mode bits are selected, then they are treated as 8SL's. This
is also the case for several other bits, and because of the
detail needed to describe the DL, this is only meant as a
reference. If you want a good explanation of the DL, then
you should get hold of De Re Atari or Your Atari computer by
Lon Poole. There is also a good tutorial on DL's in Page-6
magazine, issues 18 - 20 by steve Pedler.

Page 40

COMPLETE & ESSENTIAL MAP

562

If your making a DL of your own you should put your DL in a
safe area of memory and POKE its address here. you should
also ensure that the DL instructions follow the FACT table
below:

DEC: BIT: FUNCTION:
128 7 This value is the DLI request. It can

be an instruction of its own or SET with
any other bits and still means the same.

64 6 This value without any mode bits selected
means 5 BSL's, with bit-O set (65) it
becomes the JVP instruction which must always
end every DL. You must follow this
instruction with the LSB/MSB start address of
the DL (the contents of SDLST). If set with
mode bits, then it becomes the LMS instruction.
LMS is used to point to which memory is to be
displayed. It should also be followed with the
LSB/MSB address of display memory (usually the
address found in SAVMSC at 88,89).

32 5 This value without any mode bits selected means
3 BSL's, with mode bits set it becomes the
Vertical fine-scroll enable bit.

16 4 This value without any mode bits set means
2 BSL's, with mode bits set it becomes the
Horizontal fine-scroll enable bit.

o This value without bit-6 set is the Antic
JMP-instruction, it is used to tell Antic that
the DL continues at the address given in
the next 2 bytes (LSB/MSB). This must be used
to stop your DL going through a IK boundary.
See the BOUNDARIES appendix.

DL's are restored on Reset and Graphics calls. replace yours
by re-POKEing its address here.

562 232 SSKCTL

Serial port control register, initialized to 19 which sets
bits O. I and 4. Shadow for 53775. The bits in this register
are:

BIT: DEC:
o I
I 2
2 4

3 8

4-6 16-64
7 128

FUNCTION:
Enable keyboard debounce circuit.
Enable the keyboard scanning circuit,
The POT-scan completes a read within
2 scan-lines instead of the usual I-frame time.
Serial output transmitted as 2-tone mode
instead of logic true/false (POKEY 2-tone mode)
Serial port mode control.
Force BReaK; serial output to O.

Page 41

563 - 571

563 233 SPAIlE

Temporary counter for the peripheral handler loader.

564 234 LPENH

Light-pen horizontal value; shadow for 54284, values range
between 0 - 227.

565 235 LPENV

Light-pen vertical value; shadow for 54285. The values here
are the same as the VCOUNT register for two-line resolution.
Both light-pen values are modified when the trigger is
pressed (pulled low). The light-pen positions are not the
same as the normal screen row and column positions. There
are just 96 vertical positions, numbered from 16 at the tup
to III at the buttom, each one equivalent to a scan-line.
There are 228 horizontal positions numbered from 67 at the
left. When the LPENH value reaches 255, it is reset to 0 and
begins counting again by one to the rightmost edge, which is
a value of 7.
Obviously, because of the number of positions readable and
the small size of each, some leeway must be given by the
programmer when using light-pen read-outs in a program.

566,567 236.237 BRKKEY

BREAK-key IRQ interrupt vector. initialized to 49298. This
vector can be used for your own machine-language routine,
remember to end your routine with a PLA and RTI sequence.

568.569 238,239 RELADR/VPIRQ

In the 1200XL, this is the address of the relocatable
handler routine. In all other XL's and XE's, it's the vector
for parallel bus interrupt request and points to 51566 which
is the vector for any initialized generic parallel device.

570 23A CDEVIC

The current SIO bus ID (device) number.

571 238 CCOMND

The SIO bus command code.

Page 42

COMPLETE & ESSENTIAL MAr

572 - 580

572 23C CAUX1

Command auxiliary byte-I, loaded down from 778 by SID.

573 23D CAUX2

Command auxiliary
Command auxiliary byte-2, loaded down from 779 by SIO.

574 23E TEMP

Temporary HAM register used by SIO.

575 2JF ERRFLG

SID error flag; any device error except the time-out error
(time = 0).

576 240 DFLAGS

Disk flags read from the 1st byte of the boot file (sector
I) of the disk.

577 241 DRSECT

The number of disk-boot sectors read from byte-2 of the 1st
sector.

578,579 242.243 ROOTAD
This is the beginning address in memory to put the disk-boot
program. This address is read from bytes 3 and 4 from the
1st sector on a disk. DOS normally has 1792 as its start
address. The OS routine to load the disk program is called
DOHOOT and is located at 50571.

580 244 COLDST

Coldstart flag. If this register is 0 then pressing Reset
results in a warmstart. however. POKEing here with nonzero
and pressing Reset results in coldstart (re-booting of the
computer) .
If you create an AUTOHUN.SYS file. it should end with an
RTS. If not. then it should clear 580 and set location 9
with 1. You can make any binary file automatically load when
booting a DOS disk by renaming it to AUTORUN.SYS.

Page 43

58 I - 5114

He careful not to have mure than I filename in the directory
under the same name, because when you use the delete-file
uption trom DOS, it deletes everything under the name you
give to it. In case you do have 2 files on the disk under
the same name, then you can POKE 3118 with ° and then use
the r e na ere option of DOS. It will on l y change the name of
the 1st match of the name you give, thus. when you have the
2 files ullder seperate names. you can delete just the one
you don't want.
COI.DST can also be used along with locations 16, 566, 567.
138, 139 and 202 to achieve a very affective protection for
Basic programs. They can be protected from listing and
breaking into. Copy protection is another matter, however,
it is really a case of having the right hardware so that
particular areas of the disk containing the protected
program are unformatted, and even in some cases formatted ill
an uncopyable manner.

581 245 RECLEN

Relocatable loader routine variable for record length.

582 246 DSKTlM

Disk time-out register (address of the OS's worst time-uut).
Default is 160, giving a total time-out period of 2 minutes
50 seconds. It's updated after each disk status request to
contain the value of the 3rd byte of the status frame
(location 748). All disk operations have a 7 second
time-out. The old HOMS had a real irritating delay which was
a BED-HUG. It occured in the FORMAT operation as well as
printers.

Locations 583 - 618 are unused on the 1200XL and therefore
free for use. On other XL's/XE's, they are as follows:

583 247 PDVMSK

Shadow mask for the device selection register at 53759,
active only when the OS deselects the FP ROM by writing to
that address. You can run up to fl parallel devices through
the bus, each bit in this register corresponds to I device.
The mask must be set for the proper device before the OS
will allow an IRQ to be sent to that device.

584 248 SHPDVS

Shadow for the parallel bus register; each bit represents 1
of the 8 parallel devices. This allows the OS to service
VBl's while running the device masked by the appropriate
bi t.

Page 44

COMPLETE & ESSENTIAL MAf

585 - 622

585 249 PDMSK

Parallel bus interrupt mask; allows the OS to service IRQ's
from the device masked by the bit in this register.

586,587 24A,24B RELADR

Relocatable loader relative address.

588,589 24C,24D PPTMI'A,PPTMPX

1 byte temporary storage registers for the relocatable
loader.

590-618 24E-26A

Unused; free for use.

619 26B CHSALT

Alternate character set pointer for the 1200XL, initialized
to 204 to point to the international character-set as the
next set to display on the F4-key toggle. The XL/XE have 2
character sets, the 1st at 52224 and the other at 57344.

620 26C VSFLAG

Fine-scroll temporary register.

621 26D KEYDIS

Keyboard disable. POKE with 255 to disable the keyboard and
o to re-enable. You have to press Reset to re-enable the
keyboard if in Basic except on the 1200XL where you can
press CTRL+Fl. This is also one cure for removing the DLI
flicker. If you disable the keyboard, the as does not
execute the keyboard routine, thus, it does not store any
value into WSYNC.

622 261 FINE

Fine-scroll enable for Graphics O. Poke with 0 for coarse
scrolling (default), or with nonzero for fine scrolling. Try
POKE 622,255 and calling Graphics O. When you list a long
program you will notice something quite unique when the
listing scrolls up the screen. The OS places the address
64708 of a DLI at 512 and 513, replacing any DLI you might
already have there. The colour register at 53271 is altered
for the last visible screen line.

Page 45

623

It you enable tine-scrolling here and go to DOS, you'll see
thut it remains enabled it you display a directory to the
screen.

623 26F GPRIOR

Priority selection register. Shadow tor 53275. Priority
options select which screen objects will be in front of
others. It also allows you to combine the 5 Missiles inlo a
5th player, certain overlapped players can have an EOR'd
colour too. Here are the bit functions:

BITS: DEC:

o 1
1 2

2 4
3 8

4 16
5 32
6 64
7 128
6,7 192

FUNCTION:
(priorities)
Players 0-3, playfields 0-3, Backbround,
Players 0-1, playfields 0-3, players 2-3,
background,
Playfields 0-3, players 0-3, background,
Playfields 0-1, players 0-3, playfields 2-3,
background.
(Other op t i ons)
4 missiles assume same colour for 5th player,
Overlap of players have 3rd colour,
GTIA mode 9
GTIA mode 10
GTIA mode II

I of the priorities,
I then any priorities at
when overlapped. I can't
this to, but I'm sure it

You should normally select only
although, if you select more than
the same level wi 11 just black-out
see any useful application to put
can be of some use.
With the 3rd colour overlap you can achieve a multicolour
player by using more than I player above each other. The
overlapping of colours is done on players 0 with I and 2
with 3, only these combinations are allowed, thus, you will
not get a 3rd colour by overlapping players 0 with 2 or 3,
and 1 with 2 or 3. All you will get is a black-out.
Bits 6 and 7 have a completely different meaning, they are
used to obtain the GTIA modes. See SDLST at 560,1. When
changing the DL to obtain the GTIA modes, you should use the
Antic code given in the table and use the appropriate POKE
here. The really good thing with this method of achieving
GT1A modes is that you don't have to setup the GTIA DL for
these POKE values to work. Why not try:

Page 46

624 - 625

10 GRAPHICS 2+16
20 DL=PEEK(560)+256*PEEK(561)
30 DM=PEEK(DL+4)+256*PEEK(DL+5)
40 FOR 1=1 TO 20*12
50 POKE DM+I-I.PEEK(53770):NEXT
60 FOR 1=64 TO 255
70 IF 1/64=INT(I/64) THEN POKE 623.1
HO NEXT I
90 (;OTO 60

Here's
action.

a program you can use to see all the GTIA modes in
just change the mode between 9 - II:

10 GRAPHICS 9
20 FOR I =0 TO 6
30 POKE 705+1.1*32+H
40 NEXT I
50 FOR 1=0 TO 79
60 COLOR INT(I/5.26)
70 PLOT I. I: DRAWTO 79-1. I
80 DRAWTO 79-I.191-I:DRAWTO 1.191-1
90 DRAWTO 1.1
94 GOTO 94

GTIA mode pixels are long and flat. their ratio being 2:1
(colour clocks to scan-lines). which isn't a very good
horizontal resolution for detailed work. curves or circles,
but they have a lot of colours/shades which when used
affectively can give some remarkable graphic affects! Have
you seen the Atari' graphics demonstration disk? There is
the Robot and the Spaceship demo which are excellant
examples. There are also digitised photo's that give many
more colours and shades on the screen at one time. If I had
a copy of the program. then I would have found out exactly
how it's done and given some introduction to it here. but 1
don't have it so what can I do. I do know that it sets the
fast pot-scan at location 53775. though.

Locations 624 - 647 are used tor the games controllers:

624 270 PADDLO

The value returned tram the position ot PADDI.E(O). Paddles
are also called POTS (short for Potentiometer). The values
range between 0 228. increasing as the knob is turned
counter-clockwise. All PADDLE registers are shadows for
POKEY locations 53760 - 53767.

625 271 PADDLl

Same as 624 but for PADDLE(I), which is also on the same
controller jack (0).

Page 47

bl6 - 6J7

626 272 PAlJIlL2

PAIlDLE(2); which Is on controller jack I.

627 273 PADDLJ

PADDLE(J); also on controller jack I.

Locations 628 631 are repeats of the last 4 locations,
copied here during VOlank stage-2.

632 278 STICKO

This is the value returned from the Joystick in port O. All
joystick locations are shadow for PIA location 54016.
Depending on the position of the joystick, the following
values are returned:

5 = DOWN-RIGHT
7 RIGHT
9 = 1l0WN-LEFT
13 DOWN
15 = CENTRE

6
II
10
14

UP-RIGHT
LEFT
UP-LEFT
UP

633 279 STICKI

Same as 632 except for joystick port I.

Locations 634 - 635 are repeats of 632 - 633 and are copied
here during stage-2 VOlank.

636 27C PTRIGO

Paddle trigger O. Used to determine if the trigger/button is
pressed (returning 0) or released (returning I). Since these
use the same controller port lines as the jostick left and
right directions, you could if wanted use PTRIG for
horizontal movement. This is a useful addition that Ian
Chadwick wrote in mapping. When this register returns a
value of I. a value of 7 is placed into STICK(O), while a 0
returned here returns an II to STICK(O). The PTRIG registers
are shadows for 54016.

637 27D PTRIGI

Same as 636, but for PTRIG(I).

Page 48

638 - 650

638 27E PTRlG2

PTRIG(2) register.

639 27F PTRlG3

PTRlG(3) register.

Locations 640 - 643 are repeats of locations 636 - 639 and
copied there from stage-2 VHlank.

644 284 STRIGO

stick trigger O. This register returns the same values as
the PTRIG register, except for the joystick. STRIGs are
shadows for 5:1264 - 53267.

645 285 STRIGI

Same as 644 but for STRlG(I).

Locations 646 647 are repeats of locations 644 - 645
copied there by the stage-2 VBlank.

288 HI BYTE

Hi-byte register for relocatable loader routine.

649 WMOllE

Flag to indicate to the cassette handler which mode to be
in: READ = 0 and WRITE = 128.

650 28A BLIM

Cassette data record buffer size; contains the amount of
active/used bytes in the cassette buffer for the record
being read or written at location 1021. Values here range
between the size of the cassette record, 0 - 127. The
pointer to the actual byte being read/written is at location
61. The value for BLIM is drawn from the control bytes
preceding every cassette record, as explained in location
1021.

Page 49

651 - 658

651 28B IMASK

Mapping calls this IMASK, but also says that it's unused.

652 28C JVECK

Temporary jump vector; unused otherwise.

653 26D

Unused; free for use.

654,655 26E,26F NEWADR

Used by the relocatable loader routine; new address vector.

Locations 656 703 are used for the screen RAM display
handler (depending on the Graphics mode). In split-screen
mode, the text-window is controlled by the screen editor
(E:), while the graphics region is controlled by the display
handler (S:), using 2 seperate IOCB's, even if you have a
text-window in Graphics 0 (see location 703). 2 seperate
cursors are also maintained, though, only the text-window
one is visible.

656 290 TXTROW

Text-window cursor row; this value ranges between 0 - 3 coz
there are only 4 lines in it. TXTROW specifies the next row
to print on or even read from.

657,658 291,292 TXTCOL

Text-window cursor column; values range from 0 - 39, unless
changed by the user at 82 and 83. Location 658 will always
be 0 unless you change the mode-lines of the text-window by
altering them in the DL, see SDLST. However, if you don't
change the mode, then location 658 is unused and free for
use.
Since Position, Plot and Locate all refer to the upper
screen (not text-window), you'll have to use POKE statements
to achieve anything you may not be able to get with the
Print or CHR$ functions in the text-window.

Page 50

659 - 671

659 293 TINDEX

Similar to DINDEX, except for the text-window. This is
always 0 when location 128 is 0 and is initialized to O.
Remember to put the same mode number here if you change the
text-window DL. see above.

660.661 294.295 TXTMSC

Address of the upper left corner of the text-window,
obtained with this expression:

DMW=PEEK(660)+256*PEEK(661)

See locations 88 and 89 also.

662-667 296-298 TXTOLD

These locations are the split-screen equivalents of OLDROW,
OLDCOL. OLDCHR and OLDADR.

668 29C CRETllY

Number of command retries; Initialized to 13, this is the
number of times a device will attempt to carry out a command
such like sector read.

669 29D HOLD3

Temporary register use.

670 29E SUBTMP

Temporary storage.

671 29F 1I0LD2

Temporary register use.

Page 51

672

672 2AO DMASK

Pixel location mask. DMASK contains the value of the
specific pixel last operated upon (from a Plot, Drawto or
Puke) within the screen display byte, leaving the unused
pixel/s (bits) equal to 0 and the used bits or pixel/s equal
to I. The size of the pixel, or amount of bits, depends on
the Graphics mode being used, as follows:

PIXEL
SIZE:
11I11111

11110000

11000000

10000000

GRAPHIC
MODES:
0, I, 2, 12 and 13
These modes use all the bits of each screen
display byte per pixel.
9, 10 and 11
GTIA modes are configured this way, having
2 pixels per byte. You must note, however, that
the screen X-co Plot position 0 sets the high
4-bits, whilst the 2nd pixel sets the low 4-bits.
The next pixel sets the high 4-bits, but in the
next screen byte, etc ..
3, 5, 7 and 15
These modes are 4 pixels per byte, thus, the 1st
pixel in each byte is as shown, the next
is 00110000 and so on.
4, 6, 8 and 14
These have 8 pixels per byte, whereby the 2nd
pixel returns 01000000 and so on.

Here's a chart for all the Graphics pixel details:

GR.J\ODf; 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15

SCAN LINES
8 8 16 8 4 4 2 2

8 16

BITS
ff;fLfIXEL 8 8 8 2 2 2 4 4

4 8 8 2

COLOURCLOCKS
ff;fL£l.HL \ 4 2 2 \ 2 2

2

BYTES
I NE 40 20 20 10 10 20 20 40 40 40 40

40 40 40 20 40

Also see location 559 for playfield size.

Page 52

673 - 689

673 2Al TMPLI3T

Temporary storage for the bit-mask.

674 2A2 ESCFLG

Escape flag. Normally 0, it is set to 128 when ESC is
pressed. It is reset to 0 after the next keypress. See
location 766 for forced ESC mode.

675-689 2A3-2BI TABMAP

Map of the TAB-stop positions. There are 15 bytes (15*8 •
120 bits), each bit corresponds to I column in a logical
line, where a value of I means the TAB is set and a 0 means
otherwise. If you wish to clear all the TAB stops then you
can either poke all these locations with 0 or press the TAB
key to land on each tab-stop and press CTRL+TAB, likewise,
if you wish to create one then position the cursor where you
want the tab-stop and press SHIFT+TAB (or POKE the
appropriate bits in). Try the following program:

10 DIM C$(8)
16 DATA 128,64,32,16,8,4,2,1
22 FOil 1=1 TO 8
28 IlEAD D:C$(I,I)=C"R$(D):NEXT
34 FOil J=I TO 15
40 POKE 675+(J-I),0:NEXT J
46 FOR TAB=I TO 120 STEP 3
52 GOSUB 70
58 NEXT TAB
64 STOP
70 BYTE=(TAB-I)/8
76 BIT=«BYTE-INT(BYTE»*8)+1
82 V=ASC(C$(BIT,BIT»
88 BYTE=INT(BYTE)
94 POKE 675+BYTE,PEEK(675+BYTE)+V
98 HETURN

You can use this program to set any TAB positions you wish.
The GOSUB routine between lines 70 - 98 actually sets any
TAB-stops given to it by the TAB variable (columns are
between I 120). In this case, a TAB-stop is set every 3
positions, try changing the FOR/NEXT loop STEP at line 46.
If you wish to revert to normal, just hit Reset or call a
Graphics mode.

Page 53

COM I'LET E 6. AI. MA I'

h9(J - VJ9

690-&93 2H2-2/l5 1.0GMAP

Logical
indicate
line.]
physical
a logical

line start hit-map. The 1st 3 bytes are used to
which physical line is the beginning of a logical
bytes give 24 bits (].a 24), the amount of
lines on a Graphics (J display. Where a bit is set,
line be g i ns :

690 LINE: 0 I 2 3 4 5 6 7
691 H 9 I (J I I 12 13 15
692 16 17 IB 19 20 21 22 23

Location 693 is
map bits are set
when a Graphics
map is updated
deleted.

unused and therefore free for use. All the
to I when the screen is OPENed or CLEARed,
call is made or when Reset is pressed. The
as logical lines are entered, edited or

694 2136 INVFLG

Inverse character flag, initialized to O. If you wish to
torce inverse character mode then POKE with 128. This is
also the OS technique when you press the inverse key. The
display handler EORs the Atascii codes with the value here
at all times. See location 702.
You can poke other values here and mix the keyboard
characters around.

695 2137 FILFLG

Screen Fill or Draw flag. 0 means the current operation is
DRAW, nonzero means FILL. Use this location in conjunction
with ROWCRS, COLCRS, Ol.llROW, OI.DeOL and ATACHR.

696 2BB TMPROW

Temporary register for row, used by ROWCRS.

697,698 2B9,213A TMPCOL

Temporary registers for column, used by COLCRS.

699 21313 SCRFLG

Scroll flag; set if a scroll occurs. It counts the number of
physical lines minus I that were deleted tram the top of the
screen. This moves the entire screen up I physical line for
each line scrolled off the top. Since a logical line is 3
physical lines, SCRFLG ranges between 0 - 2.

Page 54

700 - 703

Scrol ling the text window now only scrolls the correct
amount of memory, freeing the system of a nasty bug which
used to wipe-out memory above RAMTOP!

700 2BC 1I0l.04

Temporary
to save
process.

register used in the ORAW command only; it's used
and restore the value in ATACIIR during the PIl.l.

701 2110 ORETRY

Number of device retries.

702 21lE SIIFl.OK

Flag for the SIIIFT and CrRI. keys. a means lowercase mode, 64
is uppercase mode and 128 is Control lock mode. Other values
POKEd here may cause the system to crash. See also location
Q94.

703 21lF BorSCR

Flag for
Graphics
window.
You can
4. nos
input.

the number of text rows available for printing. In
mode 0 this is 24, while it is 4 for the text

add a text window in any mode by POKEing here with
does this on the DUP.SYS menu when awaiting your

Locations 704 712 are the shadow colour registers for
players, missiles and playfields. The hardware registers are
at 53266 53274 ($0012 $OOIA). For the playfield
registers, locations 70B 712, you can use the SETCOl.OR
command from Basic. The other registers you'll need to POKE
directly.
The format for POKEing the colour registers is:

COl.OUR = IIOE*16 + SIIADE

Although, you have 16 colours and 16 shades of each colour
in the Xl./XE, you are I imited to the use of these depending
on what mode your in. Graphics 0 and B are mono-modes, you
can normally only have 2 colours in these modes and a 3rd
colour which must be a luminance from I of the other 2. All
other Graphics modes allow a maximum of 5 colours except for
the GTIA modes. In the GTIA modes you can either have 16
shades of I colour, 9 different colours or shades, or 16
colours of I shade. It is possible to actually have all
colours and all shades in a GTIA mode if you perfect a
technique with the POT-SCAN at location 53775 ($0201'), see
GPRIOR.

Page 55

703 cont.

You can also use DI.['s and the Hardware-timers to change the
colour registers "on the fly", thus, e na b l i ng you to achieve
many more colours down and across the screen display (even
on the mono modes). The amount to which you can go to is
really unknown.
Another method of obtaining more colour in Graphics 8 is by
using a technique known as artifacting. See De He Atari for
further info. on this and location 710.

The 16 colours inside the classic Atari are as shown in the
table below:

COL. COL.
NUM: VALUES: DARK MEDIUM LIGHT
I () - 15 Black through grey to white
2 16 - 31 Ok brawny orange through to pale orange
3 32 - 47 Red brown, deep pink to light orangy pink
4 48 - 63 Med brown, reddish brown to pale pink
5 64 - 79 Hed through to rich pink
6 80 - 95 Purple through to pale pink
7 96 111 Cobalt blue, pale purple to bluey violet
8 112 - 127 Ultramarine to light blue
9 128 - 143 Dk blue to pale blue
10 144 - 159 Dk cyan to pale cyan
I 1 160 - 175 Dk green to pa le green
12 176 - 191 Med green to shallow green
13 192 - 207 Olive green to light green
14 208 - 223 Browny green to yellow green
15 224 - 239 Browny orange to yellow
16 240 - 255 Dk brawny orange through to pale orange

You'll notice that colours 2 and 16 are exactly the same, so
does this mean that there are only 15 colours on the Atari?
You may also notice that by POKEing the values into the
registers, only every other value changes the shade, thus,
only giving 8 shades of each colour. So, you should see that
there are only 15*8 120 shades allowed in every mode
except GTIA modes. Whether or not you can obtain all the
colours in non-GTIA modes, I don't know, but the Atari does
have 256 shades accessible in the GTIA modes.

This is a very brieflY described topic in every Atari
manual, and should really be investigated further. As you
can see, in mapping, colours 2 and 16 are labelled
differently which is not the case. My choice of colours are
not the same as others, but I believe that they are more
explicit because when the shades get lighter, the colour
tends to shift very slightly also.

Page 56

LOMPLJ;:TE & ESSENTiAL MAE

704 - 710

704 2CO PCOLHO

Colour of player 0, missile 0 and the background colour for
GTlA mode 10. Shadow for 53266. You cannot use the SETCOLOIl
command to change any of the PCOLH registers so you'll have
to POKE directly to them.

705 2CI PCOLHI

Colour for player and missile I. Shadow for 53267.

706 2C2 PCOLH2

Colour for player and missile 2. Shadow for 53268.

707 2C3 PCOLH3

Colour for player and missile 3. Shadow for 53269.

708 2C4 COLOUHO

Colour register 0 which is playfield 0, controlled by
SETCOI.OR O. In Graphics I and 2, It is the colour of all
uppercase letters. Shadow for 53270 ($DOI6).

709 2C5 COLOUHI

Same as 708, except for playfield I, controlled by SETCOLOIl
I. In Graphics I and 2. it Is the colour of all lowercase
letters. Shadow for 53271 ($DUI?).

710 2Ct.> COLQUH2

Same as 708, except for playfield 2, controlled by SETCOLOIl
2. Graphics I and 2 Inverse-uppercase register and
background colour in Graphics 0 and 8. Shadow for 53272
($0018).
Despite the official limitations of colour selection in
Graphics 8, It is possible to generate additional colours by
"ARTlFACTlNG", turning on specific pixels (\ colour-clock
each) on the screen. Taking advantage of the physical
structure of the TV-set itself, we can see the affects with
the following program quite affectively:

Page 57

711 - 71:l

10 GHAPHICS 8+16
2U POKE 7lU,U:POKE 709,15
30 COI.OH I
4U YOH 1=0 TO 319 STEP 3
50 PLOT 160+1/3,191:DHAWTO 1,90
60 DHAWTO 160+1/3,0
70 NEXT I
80 GOTO 80

You should be able to make out 6 colours in this example;
white, grey, red, cyan, yellow and blue (7 including the
black background). In my opinion, this technique is useful
as a background affect to foreground text. Try adding the
following routine into the above program:

20 POKE 710,O:POKE 709,6
80 FOH 1=0 TO 33
82 READ D:POKE 1536+I,D:NEXT I
84 DATA 104,173,11,212,201,40,208,249,169,192 ,141,27,208
86 DATA 141,IU,212,173,11,212,201,84,208,249,I69,O
88 DATA 141,27,208,141,10,212,76,1,6
90 X=lJSll(1536)

For further information about the artifacting process, get
hold of De Re Atari or BYTE 1982 (!!).

711 2C7 COLOUR3

Playfield 3 register, controlled by the SETCOLOH 3 command.
Inverse-lowercase colour in Graphics 1 and 2. Shadow for
53273 ($0019).

712 2C8 COLOUR4

Playfield 4 register, controlled by the SETCOJ.OR 4 command.
Shadow for 53274 ($D01A). This is the border in Graphics 0
and 8, and the background in all other modes except GTIA 10.
In GTIA 10, 712 becomes a normal colour register.
Here's a program showing extra colours in the border on
Graphics 0:

10 GRAPHICS 0
20 FOR I =0 TO 15
30 READ O:POKE 1536+I,D:NEXT I
40 DATA 104,173,11,212,74,101,20,141,10,212,141,26,208,76,1
,6
50 X=USR(1536)

Page 58

7 I J - 728

The default values for the SETCOLOH registers 0 - 4 are:

REGISTER: COLOUR: HUE: LUM:
0- 708 40 2 8
1- 709 202 12 10
2- 710 148 9 4
J- 71 I 70 II 6
4- 712 0 0 0

713,714 2C9,2CA RUNADR

Run address register for the relocatable loader routine.

715,716 2CB,2CC HIUSED

Used by the relocatable loader routine.

717,718 2CD,2CE ZIIIUSE

Used by the relocatable loader routine.

719,720 2CF,2DU GBYTEA

Relocatable loader use.

721,722 2DI,2D2 LOADAD

Relocatable loader use.

723,724 2D3, ZLOADA

Relocatable loader use.

725,726 2D5,2D6 \)SCTLN

Disk sector size register; default of 128 bytes, but can be
altered to a length from 0 - 65535. Your drive may not
support other sizes, however, you can have different drive
chips such like the Archiver which will allow you to
configure the disk in different ways.

727,728 2D7,2D8 ACMISR

Interrupt service routine address; unused.

Page 59

7'I.'J - 7J:l

7'1. 'J 2D9 KRPIlEI.

Auto-delay rate; the time elapsed before keyboard repeat
begins, initially set at 40 (but 48 on NTSC) for 0.8
seconds. You can POKE this with the amount of stage-2 VBlank
intervals before repeat begins. A value of 50 would be a
I-second delay, where a value of 0 turns the key-repeat
of f.

730 20A KEYREP

The rate of key-repeat, initialized to 5 which means 10
characters per second (1 each 5 stage-2 VB lank intervals),
POKE with the number of VBlank intervals between repeats; a
value of 1 gives 50 characters per second. A value of 0
provides 1 key-repeat only per key press.
Try POKE 729,11 and POKE 730,2 in Basic and hold-down a few
keys. I find these delays very suitable for my patience when
typing large scripts (such like this one).

731 20B NOCLI K

This is the keyboard click enable/disable register. 0 equals
enable, while nonzero equals disable. On the 1200XL, CTHL+F3
can perform this task. Other XL/XE users might like to know
that my program at locations 121 and 122 also puts this
click-toggle on a single keypress by adding to the existing
key-definition table.

732 20C HELPFG

HELP-key status: A value of 17 here means the help key has
been pressed, 81 means shift and help, while 145 means
control and help. A rare value of 209 can be found In this
location and means all control, shift and help keys have
been pressed, but the shift and control keys mllst be pressed
exactly simultaneously (!).
If detecting for the help key in a program, you must
remember to clear it before reading and afterwards because
it acts similarly to 764 In retaining the value of the last
key combination.

733 2DD DMASAV

DMA toggle value. The value from location 559 is saved here
when you turn the screen off on the 1200XL with the CTHL+F2
keypress, so that it can be restored at the next toggled
press. On other XL/XE's, if you POKE any value here at the
next keystroke, the value is moved into location 559.

Page 60

7:J4 - 737

734 2DE PBPNT

Print buffer pointer.

735 2DF PBUFSZ

Print buffer size.

736-739 2EO-2E3 GLBABS

Without DOS, these bytes are unused and free for use, but
when DOS is present they are used as follows:

736,737 2EO,2E1 RUNAD

FILE has the following structure:

Used by DOS for the file run-address which can either be
bytes 2 and 3 of sector-I with a value of 6 added to it, or
it can be the run address read from the binary file last
loaded.
A BINARY

FF;
FF;

LLSB
LMSB

E1.SB
EMSB

lhe lsI 2 byles in a Binary-file MUST be 255's
(SFF's) which indicate lhal it is loaded from the
DOS menu option L.
Load-address; LSB: DOS 0 (SUO).
Load-address; MSB: DOS 7 (SO]).
Full address = 0+256*7 1792.
End-address; LSIl: OOS = 252 ($Fe).
End-address; MSIl: DOS = 28 (SIC).
Full address 252+256*28 = 7420.

with the above information, DOS then loads the
Machine-language program. The amounl of data = "end-address"

"load-address" bytes, and when all the data has been
loaded OOS then searches for more load/end addresses. This
is where you should put locations 736 and 737; Ld-address =
224 and 2 (SED and S02), End-address = 225 and 2 (SE1 and
S02). Follow lhis with 2-bytes which is the Run-address of
the machine-language file loaded.
Of course, you should be able to see that the Binary-file
can load several bulks at code or data into various parts of
memory before actually initiating at a particular address.
If you don't place the RUNAO addresses along with lhe
Run-address itself at the end of the file, then control will
pass back to DOS when load is complete.
However, should you put the RUNAD addresses at the end of
the file, and leave out the 2-byles indicating the address
to jump to, then DOS will return an End-of-File (EOF) error.
This also applies to truncated data/code.

Page 61

Within DOS, you can specify t.he start, End, Initiation and
Hun addresses when you use Hinary-save option K by typing:
"fILENAME.EXT,Start,End,lnit,Hun". If you wish t.o load a
Biliary-file into memory without running it, then type: "/N"
after the filename on the Binary load option L.
The following program will create a tile that can be loaded
from DOS Binary-load option L:

10 DATA 255,255
12 DATA 0,6
14 DATA 16,6
16 DATA 17 J, 11 ,212, 141 , 10,212
18 DATA 141,24,208,173,31,208,201,6
20 DATA 208,240,96
22 \lATA 224,2
24 DATA 225,2
26 DATA 0,6
30 OPEN 11,8,O,"D:COLR.OBJ"
40 FOR 1=0 TO 28
50 READ D:? #I;CHR$(D);:NEXT
60 CLOSE II

Line 10 contains the 255's, line 12 is the Load-address,
line 14 is the End-address, lines 16, 18 and :1O are a
machine-language program, line 22 is the RUNAD location 736,
line 24 is RUNAD locatioll 737 and line 26 is the actual
Run-address. You can exit the routine by pressing STAHT.
If a boot-file is appended to another boot-file, then the
FF' beginning the file are not deleted.

738,739 2E2,2E3 INITAD

Initialization address read from the disk. An autoboot file
must load an address value into either HUNAD or INITAD. The
code pointed to by INITAD will be executed as soon as that
location is loaded, where the code pointed to by RUNAD will
only be executed when the entire load process is complete.
To return to DOS after the executioll of your program, end
your code with an RTS instruction.

740 2E4 RAMSIZ

RAM size, high byte only; this is the number of pages of
available RAM, where each page is 256 bytes. The value here
is the same as RAMTOP, passed here from TRAMSZ. Space/memory
saved by moving RAMSIZ or RAMTOP has the advantage of being
above the display memory (DM), initialized to 160 with Basic
and 192 without ill the 800XL.

Page 62

7/11 - 744

741,742 2E5,2E6 MEMTOP

Pointer to the top of free memory, used by both Basic (which
calls it HIMEM) and the OS, passed here from TRAMSZ after
power-up. This address is the highest free location in RAM
for programs and data. This value is updated on power-up,
Reset, Graphics calls and when 10CB's are opened. The
display list (DL) starts at the next byte above MEMTOP.
The screem handler will only open the S: device if no RAM is
needed below this value (i .e; there is enough free RAM below
here to accommodate the requested Graphis change). Also note
that, if a screen mode change extends the screen mode memory
below APPMHI, then the screen is set to Graphics 0, MEMTOP
is updaLed and an error is returned Lo Lhe user, otherwise
all is ok and Lhe mode change will take place.
Space saved by lowering MEMTOP is below the DL. Be careful
not to overwrite it if you change Graphics modes in
mid-program. Also ensure that you set APPMHI above your data
to avoid having the screen data descend into it and
destroying it.

743,744 2E7,2E8 MEMLO

Pointer to the bottom of free memory, initialized to 1792
and updated by the presence of DOS to 7420. It is used by
the OS: BASICs pointer to the bottom of free memory is LUMEM
at 128,129. The value in MEMLO is never altered by the os
after power-up.
This is the address of the 1st free byte of RAM available
for program use. Set after all FMS buffers have been
allocated (see 1801 and 18(2). The address of the last
seclor buffer is incremented by 128 (the buffer size in
bytes) and the value is placed in MEMLO. This value is
passed back to LOMEM on the execution of the Basic NEW
command.
If you are reserving space for your own device driverls or
buffers, you load your routine into the address specified by
MEMLO and add the size of your routine to the MEMLO value,
and POKE the new value + 1 back to MEMLO.
You can alter MEMLO to protect an area of memory below your
program as an alternative to protecting an area above
RAMTOP. This way can be used to avoid the problems of the
screen CLEAR function and the text-window scrolling which
destroy data above RAMTOP. However, unless you create a
MEM.SAV file, the data will be wiped out when DOS is called.
To alter MEMLO, you start by POKEing WARMST at location 8
with 0, then doing a USR La the BASIC entry point at 40960
(SAUOO) afLer defining the area to proLect, for example:

Page 63

r.OMI'LHE

746 - 752

10 MEMLO=IlYTES+PEEK (743) +256*PEEK (744)
211 1I1=INT(MEML0/256)
30 LO=MEMLO-III*256
411 POKE 743,1.0:POKE 744,111
50 POKE 128,1.0:POKE 129,111
60 POKE 8,0
70 X=IlSIl(40960)

The program will erase itself when run so be sure to save it
first. The amount of memory protected from the TRUE bottom
of HAM to the new MEMLO is given by the BYTES variable, just
give it a value according to how many bytes you wish to
reserve.

746-749 2EA-2ED DVSTAT

Additional device status registers to contain information
returned to the computer by the peripheral after the new
type-] and 4 polls. The bytes are as follows:

746,747
748
749

LSB/MSB handler size, must be an even number
Device S/O address used for loading
Peripheral revision number

The new poll types are fully explained in the 1200XL OS
manual; earlier polls you'll find explained in the old-Atari
lIardware-manual. Basically, type-) is an "Are you there?"
poll (device address $4F, command byte $40, AUXI $4F, AIlX2
$4F, checksum normal), and the type-4 poll is a Null-poll
(values $4F, $40, $4E and $4E, respectively; checksum
normal) .

750,751 2EE,2EF CBAUDI./H

Cassette baud rates low and high bytes, initialized to Iltll4
which represents a nominal 600 baud (bits per second). After
baud rate calculations, these locations will contain POKEY
values for the corrected baud rate. The baud rate is also
adjusted by SID to account for motor variations, tape
stretch etc .. The beginning of every cassette record
contains a pattern of alternating bits (0 and I, off and on)
which are used solely for this baud (speed) correction.

752 2FO CRSINH

Cursor inhibit flag. 0 turns the cursor on at the next
print, and a nonzero value turns it off at the next print.
The cursor is restored to its default value 0 upon Reset,
Break or an OPEN to the S: or E: devices (which includes
Graphics calls). See location 755 for additional cursor and
text alterations.

Page 64

753 - 755

753 2FI KEY DEL

Key delay flag or key debounce counter; used to see if any
key has been pressed. A value of 0 is returned if no key is
pressed. A value 3 is returned if a key is pressed. This
value is decremented by the stage-2 VBlank until it reaches
o. If a key is pressed while KEynEL is greater than 0 then
it is ignored and considered as "bounce".

754 2F2 CHI

Prior keyboard character code (most recently read and
accepted). This is the previous value passed from 764. If
the value of the new key code equals the value in CHI, then
the code is accepted only when a suitable key-debounce delay
has taken place since the prior value was accepted, see
DEYDEL.

755 2F3 CHACT

Character mode register, initialized to 2. Shadow for 54273.
See the table of bit functions:

BIT:
o
I
0, I
2

nEC:
I
2
3
4

FUNCTION:
Blank inverse
Normal characters
Solid inverse characters
Invert text

This register also controls the transparency of the cursor
because the cursor is simply an inverse space character. By
toggling bit-O on and off, you can make the cursor flash,
note that this also flashes all inversed characters on the
screen. Try the following program:

10 GIlAPHICS 0
20 FOR 1=0 TO 19
30 X=INT(RNn(O)*40) :Y=INT(RNn(O)*24)
40 POSITION X,Y:? CHR$(128+X);
50 NEXT I
60 POKE 755, (PEEK(20)]128)+I:GOTO 60

This program is ok to see the affect in action, but it
doesn't keep going while you type. So here is a VBlank
cursor flashing routine:

Page 65

COMf'l.ETE I.. I AI. MAl'

756

10 FOH I=0 TO
10 HEAl) Il:POKE 1'i3b+l,I):NEXT [
30 IJATA III II , I 6 ') , 7 , I 6 2 , 6 , I 6(), 1 I , 32 , 9 2 , :.12 /l , 96
4ll DATA 165,203,1011,12,169,2,77,243,2,141,:.143,2
50 nATA 169,25,133,203,198,2(n,76,9/l,228
6ll X=lJSIl(15:16)
70 POKE 54286,64

This program uses location 203 as the flashing timer
variable, so if you use this routine in your own programs,
don't use this location. If you want to change the type of
inverse flashing, then change the 1st occurence of the value
2 in line 40, no (I ther occurence! You can a I so change the
speed at which the cursor flashes by changing the value 25.
This initial value is a half-second delay for each status of
the cursor (on and then of f). A va I ue of 12 wou Id be a
quarter of a second flash rate.

756 2F4 CHBAS

Character base register, shadow for 54281 ($D4ll'J).
Initialized to 224 which is the address (224*256 = 57344,
the standard character set). To obtain the lowercase and
graphics characters in Graphics modes I and 2 then POKE here
with 226. For the international character set POKE here with
204. In Graphics 0, this character set replaces the graphics
characters. On the 1200XI., the value here is switched with
that in CllSALT at 619 when CTRI.+F4 is used to toggle between
these sets.
You can create your own character-set and point to it with
this location. Each character is made up of 8 numbers, where
each number is the Binary-sum of 8 SET Bits which define the
shape. Note that these bits are for each row of the
character, in Graphics 0 there are 8 rows per character, the
letter "A" looks like this:

BIT: 76543210
OOOOllOOll
00011000
00111100
01100110
01100110
01111110
01100110
00000000

DEC:
o ;no Bits set
24 ;Bits 4,3
60 ;Bits 5,4,3,2
102 ;Bits 6,5,2,1
102 ;Bits 6,5,2,1
126 ;Bits 6,5,4,3,2,1
Ill2 ;I\its 6,5,2,1
o ;no Bits set

The decimal values are derived from the sum of the SET Bits,
where Bit-7 = 128, Bit-6 = 64, Bit-5 = 32, Bit-4 = 16, Bit-3
= 8, Bit-2 = 4, Bit-I = 2 and Bit-O = I.

Page 66

756 cant.

When altering the character-set. it's important to know
which characters to alter and which ones not to. The
character-set is stored in memory in a particular order,
this order is neither Atascii or Ihe HAW-code order. see 764
and 121,122 for these orders. This order of characters is
shown below. Hemember, that each character requires 8 values
tor it's design. so you must multiply the given
character-code by 8 to arrive at the data for the charact.er
that you want to change, tor e xampl e , to arrive at the data
tor the letler "A" and prove that the above information is
correct you should perform the following task:

10 (;HAPHICS 0
20 CHAR=PEEK(756)*256+(33*8)
30 FOH 1=0 TO 7
40 ? PEEK(CHAH+l)
50 NEXT I

You should find these values exactly the same as those
lislpd earlier.
Herp's the table of character codes:

SPACE
&
/

$

0-9
) ? @

letters A - Z

#
* + ,
Numbers

<
Capital
[\ I
CTHL+"."
CTRL+Letter-keys A/a - Z/z
ESCape character
Up, Down. Left. Right arrows
CTRL+"."
Lowercase letters a - z
CTIlL+";" :
Clear-screen character
Delete-character Tab-char.

o
1-9
10-15
16-25
26-32
33-58
59-63
64
65-90
91
92-95
96
97-122
123-124
125
126-127

It is possible to alter the character-set where it is in the
ROM, but you need to see location 54017. Otherwise, you'll
need to transfer it down into RAM, preferably a protected
area. In Hasic you would setup a FOil/NEXT loop to copy the
ROM into RAM. but because this is quite slow, I've dug-up a
routine that will transfer the set using machine-code:

Page 67

756 COIlt.

10 POKE 106,PEEK(I06)-4
20 GIlAPIIICS 0
30 NElISET=PEEK(l06)*256
40 FOil 1=0 TO 31
50 READ D:POKE 1536+I,D:NEXT I
60 DATA 104,104,133,204,104,133,203,169,224,133,206
70 DATA 160,0,132,205,162,4,177,205
80 DATA 145,203,136,208,249,230,204
90 DATA 230,206,202,208,242,96
94 X=USH(1536.NEUSET)
96 POKE 106,NEUSET/256

The program protects 4-pages of memory above RAMTOP, and
transfers the standard HOM character-set into this area. You
don't really need to transfer the old-set down, especially
if your going to change the complete character-set, but with
this method, the characters that you don't change will at
least show up as what they're supposed to be instead of
blank spaces. If you'd rather copy the international-set
down instead of the standard one, then you can change the
value 224 in line 60 to 204.

A simple routine to add to the last program to alter the
characters is:

100 HEAD CH:IF CH=-l THEN STOP
110 FOR 1=0 TO 7
120 HEAD BITSUM
130 POKE NEUSET+(CH*8)+I,BITSUM
140 NEXT I
150 GOTO 100
160 DATA 0,129,66,36,8,16,36,66,129
999 DATA -I

The DATA must end with a value of -I to indicate no more
characters are to be altered. Also 1I0te, if you wish to use
this yourself, then the 1st number on the DATA-line is the
code of the character to change, while the remaining 8
numbers is the actual data for the new character shape.
Jf your changing the whole character-set, then you can
always erase line 100 and setup a nested-loop, for example:

100 FOR CH=O TO 127
150 NEXT CH

This way, the DATA needn't have the character-code on, but
you must define all the characters in the correct order
shown in the table on the previous page. When you design
your characters, you might find it easier to use graph
paper.

Page 68

757 - 759

Note also, that the above program reserves 4-pages for your
character-set. This is because there are 128 different
characters as distinguished in the table on page 78. Each
character takes 8 bytes (Binary-sums) to define, thus, 8*128

102 11 bytes of memory. Each page is 256 by t e s , so 1024/256
= 4 Pages.
Note that when you press Reset or issue a Graphics call,
location 756 is re-initiated to point to the standard
character-set in ROM, so just re-POKE 756 with the Page
number that your character-set is on to re-enable it.

Listed below
character-set
defines your
program here:

is a routine that will save your altered
as a 9-sector tile, just run your program that
character-set and then type-in and RUN the

o DATA 104,104,104,170,76,86,228
I FOR 1=0 TO 6
2 READ D:POKE 1536+I,D:NEXT I
3 OPEN
4 POKE 849,1 :POKE 850,11 :POKE 852,O:POKE 853,PEEK(106)
5 POKE 856,O:POKE l\57,4:POKE 858,8
6 X=IJSR(1536)
7 CLOSE

On the other hand, if you wish to use this routine in your
own programs to load your 9-sector character-set fi Ie, then
use the following program:

10 POKE 106,PEEK(106)-4
20 GRAPHICS 0
30 FOR 1=0 TO 6
40 READ D:POKE 1536+I,D:NEXT I
50 DATA 104,104,104,170,76,86,228
60 OPEN #I,4,O,"D:NAME.FNT"
70 POKE 849,I:POKE 850,7:POKE 852,O:POKE 853,PEEK(106)
80 POKE 856,O:POKE 857,4:POKE 858,4
90 X=USR(1536)
94 CLOSE #1
96 POKE 756,PEEK(106)

757 21'5 NEWIWW

Point/Row to which DRAWTO and Fill (XIO 18) will go.

758,759 21'6,21'7 NEWCOL

Point/column to which DHAWTO and Fill (XIO 18) will go.
NEWROW and NEWCOL are initialized to the values in ROWCRS
and COLCRS, which represent the destination end point of the
Draw/Fill command used. This is done so that ROWCRS and
COLCRS can be altered during the operation being performed.

Page 69

760 - 764

760 2F8 IlOWINC

This is the Row increment or decrement value.

761 2F9 COLINC

The column increment/decrement value. ROWINC and COLINC are
used for the line direction. The values represent the signs
derived trom the value NEWHOW minus HOWCRS, and the value
NEWCOL minus COLCRS.

762 2FA CHAR

Internal code value for the most recent character read or
written (internal code for ATACHH). This register is
difficult to use with PEEK statements since it returns the
most recent character which is most often the cursor value
128 when visible. and 0 when invisible.

763 2FB ATACHH

Returns the last Atascii character read or written. or the
value of a graphics point. ATACHR is used in converting the
Atascii code to its internal character code passed to or
from CIO. The Fill and DHAWTO commands use this location for
the colour of the line drawn. ATACHR being temporarily
loaded with the value in location 765. To force a colour
change in the line. POKE the desired COLOR number here.
It'll then be taken from location 200. Since Basic performs
this process, this process won't happen within a
machine-language routine.

764 2F9 CH

Internal Hardware value for the last key pressed. The
default value here is 255. which also means that no key has
been pressed. The keyboard handler gets all of its
information from CH. processes all the SHIFT and CTRL codes
for the key and passes the keycode value to location 754. [f
the value in CH is the same as that in CHI. then the key
will only be accepted if a suitable key-debounce time-delay
has transpired. If the keypress is a CTRL+"I" then the
start/stop flag at location 767 is complemented. but the
value is not stored in CH.
This is neither the Atascii or the internal code value; it
is the RAW keyboard matrix code for the key pressed. The
translation table is in KEYDEF at 121 and 122. Try the
following program:

Page 70

765 - 767

10 POKE 764,255
20 V=PEEK (764)
30 IF V-254 THEN 20
40 ? CHR$(V);:GOTO 10

RUN the program and type some characters; you'll notice that
the keyboard is very mixed up. There is a simple way to
overcome this problem with the aid of KEYDEP at locations
121 and 122. As an example. try the next program:

10 KEYDEF=PEEK(121)+256*PEEK(122)
2U POKE 764,255
30 IF PEEK(764)=255 THEN 30
4U CH=PEEK(KEYDEF+PEEK(764»
50 ? CHR$(CH);
60 GOTO 2U

Due to the use of the Key-definition table, you can now have
an easy access to the RAW characters.

765 2PD FI LDAT

Colour register number for the XIO Fill command.

766 2FE DSPFLG

Display flag; used In displaying the control codes not
associated with the ESC character, see location 674. If 0 is
POKEd here, then pressing the keys of the Atascll codes 27 -
31, 123 - 127, 187 - IYI and 251 - 255 perform their normal
screen control functions (ie. clear-screen, delete/insert
line, cursor move etc.), however, if any nonzero value is
POKEd here, then the actual character itself is displayed
(alike pressing ESC first). Try POKElng here with a nonzero
number and then pressing CTRL and the arrow keys.

767 2FF SSFLAG

Starl/Stop display screen flag, used to stop the scrolling
of the screen during a Draw command or Graphics routine, a
LISTing or PRINTing, or when INPUT is awaited and a key is
pressed. When the value here Is 0, then the screen output is
not stopped. When the value here is 255 (the "Ones
complement"), then the screen output is stopped, or rather
paused until the flag is cleared, either by toggling it
on/off with the CTRL+"I" keypress, clearing this location
with a POKE. or pressing the Break-key. If you wish to
prevent this flag being set in any case, then you can expand
to the stage-2 VRlank. See locations 546 - 549.

Page 71

768 - 770

Locations 768 828 are used for the device handler and
vectors to the handler routines (devices S:, P:, E:, D:. C:,
R: and K:). A device handler is a routine used by the OS to
control the transfer of data in that particular device for
the task allotted (such like Read, Save etc.). The resident
D: does not conform entirely with the other handler - SIO
calling routines. Instead, you have to use the
Device-Control Block (DCB) to communicate directly with the
disk handler. The device handler for the R: is loaded in
from the 850 interface module. See De Re Atari, the 850
interface manual and the OS listing pages 64 and 65.
Locations 768 779 ($300 $30B) are the resident DCB
addresses. used by SIO (I/O operations that require the
serial-bus). DUP.SYS also uses this block to interface the
FMS with the disk handler. The Old Atari disk-drive uses a
serial access rate of 19200 baud (bits per second). It has
its own microprocessor, a 6507, plus 128 bytes of RAM, a
2316 2K masked ROM chip (like a 2716), a 2332 RAM I/O
timer-chip with another 128 bytes of RAM (like the PIA chip)
and a WD1771FD controller chip. See the 1050 SPECS appendix
concerning this drive. With the US-doubler fitted, you get
true-double density which gives 720 sectors, but each sector
is 256 bytes instead of 128. Another improvement is its
speed, which is 4-5 times faster. If you have the IS-Plate,
however, then the transfer rate is fastest of all, being
118000 baud. Some of this information was from Moje Atari
Magazine, Poland.

All of the parameters passed to SIO are contained in the
DCB. SIO uses the DCB information and returns a status back
to the DCB's 4th byte at location 771.

768 300 DDEVIC

Device serial bus ID (serial device type) set by the
handler, not user alterable. Vaues are:

Disk-drives
Printer
RS232 Ports

769 301

Dl - D4
Pl,P2
R1 - R4

49 - 52
64,79
80 - 83

DUN IT

Device number currently being used.

770 302 DCOMND

The Command-code for the device operation to be performed,
set by the user or by the device-handler prior to calling
SIO. The Serial-bus commands are:

Page 72

771 - 775

DEC:
H2
H7
H3
80
:J:J
34
:l2
84
III
85
86

Here's Iht" liS doublpr codes.
You'll have 10 work these out
yoursel t!

OPEHAT10N:
Hpad
Write (verify)
status
Put (no verity)
Format single
Format dual
Download
Head-address
Head-spin
Motor On
Verify spctor

HEX:
52
57
53
50
21
22
20
54
51
55
56

DEC:
63
72
711
79
lll2
118
129

HEX:
3F
48
It E
41'
66
Ull
III

OPEHATION:

Note, that Dual-density format is the new density offered by
the 1050 disk-drive. The single-density only offers 720
sectors, each comprising of 118 bytes, dual offers 1040
sectors also l211 bytes each sector.

771 3113 DSTATS

The status codp upon return from SIll to the user. A value of
I means good status. This is also used to set the
data-direction: whether the device is to send or receive a
dala-frame. This byte is used by the device handter to
indicate to SIO what to do after the command-frame is sent
and acknowledged. Prior to the SIO call, Ihe handler
examines Ilits 6 and 7. If 13it-6 (Dec 6 1,) is SET, then
receive data. If Bit-7 is SET, Ihen send data. If both Bits
are clear, then no data transfer is associated with the
operation. Both Bits being SET is invalid.

772.773 30 lt,305 DIlIiFLO/lIl

Data-buffer address for the source or destination of the
data to be transferred. Setup by the user, this need not be
set if the operation doesn't require data transfer, as in a
status operation.

774 306 DTIMLO

The Time-out value of the handler. The cassette Time-out
value is 35, which is 37 seconds. The Timer-values are
64-seconds per 60-unils. Initialized to 31.

775 307 DIINIJSE

Unused byte: free for use.

Page 73

776 - 779

776,777 3011.309 DIlYTE\.O.1I I

The number of bytes transferred to or from the data-buffer
from the last operation. set by the handler. Also used for
the count of Dad-sector data.

7711.779 30A.30B DAliXI/2

Used for device specific information such as the disk sector
number in read and write operations. Loaded down to 572 and
573 by SIO.
There are only 5 commands supported by the disk-handler;
Read. write, put, status and format (see DCOMND). There is
no way to format particular sectors of a disk, only the
whole disk which in the old 810 drive was done with the
non-user accessible INS1771-1 formatter/controller chip.
Apparently, there was an "E" chip-revision which allowed for
selective formatting but what happened to it I don't know.
The Archiver chip certainly allows this (is this the "E"
chip'l?). Try this:

10 SCTS-IO:BUF-PEEK(106)-SCTS/2
14 BUF-BUF-(NOT BUF-INT(BUF»
III POKE I06.lIUF
22 GRAPHICS 0
26 FOR 1-0 TO 34
30 READ D:POKE 1536+I,D:NEXT I
34 DATA 104,32.83,228,48,251.24,173,4,3,105.128
36 DATA 141,4,3,144,3,238,5,3,24,2311,10,3,144,3
311 DATA 2311.11,3,206,7,3.208,223,96
42 SSEC-I
46 SHI=INT(SSEC/256):SLO=SSEC-SHI*256
50 POKE 769.I:POKE 770,112
54 POKE 772,O:POKE 773.BUF
58 POKE 77I1,SLO:POKE 779,5111
62 POKE 775,SCTS:X=USR(1536)

The program above will load the 1st 10 sectors of a given
disk into a protected area of memory above RAMTOP. Vou can
use it for your own routine to load various information for
a game off the disk. Just set the seTS variable for the
amount of sectors you wish to load, and set SSEC for the
starting sector on the disk. If on the other hand. you'd
like to use the routine for saving to sectors, then you need
to change the POKE 770,82 on line 50, to POKE 770,80. This
way, the example shown would save 10 sectors of protected
memory. In this case, there is nothing there, so you would
have to put some data into this protected area first. Be
sure that you do not use a disk that has not been
formatted.

Page 74

COMPLETE & ESSENTIAL MAP

780 - 785

If you try reading or writing to a disk that hasn't been
formatted, then the drive will need to be turned off and on.
You can format a disk with the following routine, but be
sure that the disk you place in the drive has no information
on it that you may want, because once formatted, it is
completely wiped clean. This is not the same as a DOS
format, a DOS format also writes several sectors on the
disk, where as this format doesn't:

10 FOR 1=0 TO 4
20 READ D:POKE 1536+I,D:NEXT
30 DATA 104,32,83,228,96
40 POKE 769,I:POKE 770,33
50 X=USR(1536)

The machine-code on line 30 is just 3 instructions: PLA, JSR
$E453 and RTS.

Normal formatted sectors have 128 bytes free for use, but a
DOS sector gives you only 125 bytes. This is because the
last 3 bytes of every sector is used by DOS. See the BOOT
appendix for further information on this.

There are
edit disk
also an
magazine.

loads of public domain programs that use SID to
sectors, copy them, even repair them. There was
SID tutorial in some back issues of Page-6

780,781 30C,30D TIMERI

Initial baud-rate timer value.

782 30E ADDCOR

Addition correction flag for the baud-rate calculations
involving the timer registers.

783 30F CASFLG

Cassette mode when set. Used by SID to control the program
flow through shared code. A value of 0 means standard SIO
operations. When nonzero, it is a cassette operation.

784,785 310,311 TIMER2

Final timer value. TIMERI and TIMER2 contain reference times
for the start and end of the fixed bit pattern receive
period.

Page 75

786 - 7')]

The 1st byte of each timer contains the VCOUNT value from
location SII:l83 ($D40H), while the 2nd byte contains the
current realtime clock value from location 20. The
difference between the timer values is used in a lookup
table til compute the interval for the new values for the
baud-rate passed on to locations 750 and 751.

786,787 312,313 TEMPI

2-byte temporary storage register used by SID for the VCOUNT
calculation during baud timer routines.

788 314 TEMP2

Temporary storage register.

789

Ditto.

790

315

316

TEMP3

SAVIO

Save serial data-in port used to detect, and updated after,
each bit arrival. Used to retain the state of Bit-4 of 53775
($D20F; serial data-in register).

791 317 TIMFLG

Time-out flag for baud-rate correction, used to define an
unsuccessful baud-rate value. Initially set to I, it is
decremented during the I/O operation. If it reaches 0 (after
2 seconds» before the 1st byte of the cassette record is
read, the operation is aborted.

792 318 STACKP

SIO stack pointer register. It points to the byte in the
stack being used by the current operation. The stack takes
up Page-1 of memory, locations :l56 - 511 ($100 - $lI'F).

793 319 TSTAT

Temporary status holder for location 48 ($30).

Page 76

COMPLETE & ESSEN'UAL MAP

794 - B28

Locations 794 828 are the "andler-address tables. There
are only 5 handlers normally present in the Atari. They are
the Printer (1':), the Cassette (C:), the Oisplay-Editor
(E:), the Screen-handler (S:) and the Keyboard (K:).
When DOS is loaded, the D: handler is installed, and the R:
handler is installed with the 850 interface connected.

794-828 31A-33C HATABS

Handler address table. 35 bytes are reserved here for up to
II entries of 3 bytes per handler. The last 2 bytes are O'd
(nulled). On power-up, the HATABS table is copied from ROM.
Devices to be booted, such as the disk-drive, add their
handler information to the end of the table. Each entry has
the character device name (C, n, E, K, P, S, R) in Atascii
code and the handler address (LSB/MSB). Unused bytes are all
set to O. FMS searches "ATABS from the top for a device "0:"
entry, and when it doesn't find it, it then sets the device
vector at the end of the table to point to the FMS vector at
1995. CIO searches for a handler character from the bottom
up. This alluws new handlers to have precedence over the
resident ones. Pressing Reset clears HATABS of all but the
resident handler entries. The handler entry points are:

VECT.to:
58416
58432
58368
58384
58400

LOCATION:
DEC: "EX:
794 31A
797 310
800 320
803 323
806 326
809 329
812 32C
815 23F
818 332
821 335
824 338
827,8 33B,C

HANDLER:
Printer (1':)
Cassette (r.:)
Disp.editor (E:)
Screen Di s p . (S:)
Keyboard (K:)
unused
unused
unused
unused
unused
unused
nulled 2-bytes; always O'd

If you wish to create your own handler, then you should put
the Atascii code of the Device name into the handlers 1st
byte and the address of your handler routine into the
handlers 2nd and 3rd bytes. Example; POKE 809,ASC("X") where
"X" is the device-character. POKE 810,0 and POKE Bli ,6 would
have the X-device handler pointing to Page-6 of memory
(0+256*6 1536 ;$0600). At this address, you must place a
table of vectors; the vectors are as follows:

Page 77

Il:lll 0111.

OPEN vpctor
CI.OSE ve c t o r
GET vector
PliT vector
STATUS vector
XIO vector
.IMP INIT vector

The 1st 6 vectors are 2 bytes each, which point to the
address of the associated routine minus I. The .IMP INIT
vector points directly to the routine that is executed upon
initialization of the handler only, which can just be an HTS
command.
It doesn't matter what 10CB channel is used, because
whatever operation of your device handler is executed, all
the associated bytes used in the command are loaded down to
the Page-O 10CB, ZIOCB at locations 32 - 47. Upon EXIT of
your device operations, you should load the Y register with
a value of I for good status, or the error code if not good
status. Also, end all your routines with an RTS command.
The best explanation of handlers I've seen is in the Old
Atari user magazine, Volume 3 number 2. Also see De Re Atari
and the OS source-listing manual.
Try the following program:

10 DATA 14,6,14,6,16,6,14,6,14,6,16,6
20 DATA 76,14,6,160,1,96
30 FOH I=0 TO 17
40 READ D:POKE 1536+I,D:NEXT
50 Y=794
60 IF PEEK(Y) THEN Y=Y+3:GOTO 60
70 POKE Y,ASC("N")
80 POKE Y+l ,O:POKE Y+2,6

This is a 'Null' handler, it does absolutely nothing! It's
useful for De-bugging routines, just set it up and replace
uII device calls in a program that you want debugged with
the "N" device-character. If you wish to include your own
routines, then just replace the addresses with the addresses
of your own routines - I. My routine simply performs: LOY #1
and HTS. The GET and XIO operations are directed to the HTS,
skipping the LOY #1 instruction. This shows that they have
been chosen as unused. You can change their addresses from
16,6 in the data line to 14,6.
You can change the addresses of the routines to your own if
you like, try changing the two 16's in line-IO to 14's,
change line-20 to read:
20 DATA 76,14,6,165,20,141,200,2,160,1,96
and change the FOR/NEXT loop in line-30 to go from 0 to 22.
Press Reset and re-run the program. Type OPEN 4F1,4,O,"N:"
and GET #I,B. You'll notice the new border colours are in
the variable B.

Page 78

829 - 8:11

Try the LIST "N:" command. You'll notice 2 border changes,
this is because LIST uses 2 vectors; GET and PUT. You can
use the XIO command vector to perform different tasks
depending on the value if you like, ie; if you type XIO
3,itl,O,O,"N:". The command-value 3 will be passed to the
ZIOCB location ICCOMZ at :14. Just read this location in your
XIO vector rouline and perform X-task for X-number. You can
achieve many tasks by writing new handlers, perhaps even
altering the existing handlers. One such task is creating
new Basic commands. See back issues of Page-b magazine.

829-831 33D-33F PIIPBTI-3

Power-up and Heset validation registers - 3, used on
warmslart 10 verify lhe integrity of memory. The OS
initializes these locations to 92. 147 and 37. When Reset is
pressed, these bytes are checked and if they're the same as
initialized a warmstart is done, otherwise a coldstart
occurs.

Locations 832 959 are reserved for the 8 Input Ouput
Control Blocks (IOCB's). 10CB's are channels for the
transfer of information into and out of the Atari, and even
from I area of memory to another.
Every time you use commands, such like, PRINT, SAVE, LOAD,
LIST etc. you are using an 10CfI. Some of the 10CB's are
dedicated for special purposes, such as 10CB-0 which is used
for the screen display. When you use the OPEN command, the
parameters following it tell CIO which direction the data is
to be transmitted. It is SIO and the device handlers that do
the actual transfer of data.
You don't have to use Basic commands to access CIO, for
example the OPEN #I,f<,O,"D:" command can he implemented with
several POKEs and a JSR to the CIO entry point at 58454
($E45b). It's useful to use CIO directly sometimes, because
Basics INPUT command can only access 120 bytes at a time,
where a single call to CIO can fill the whole RAM from the
input device or vice versa. This transfer of bytes,
of course , is also at machine-language level which is much
faster.
These blocks are used the same way as ZIOCB. The OS takes
the information here, and moves it to the ZIOCD for use by
CIO, it also returns the updated information back to the
user area when the operation is complete.
Note that when Basic encounters the DOS command, all
channels are closed except for channel-O (IOCB-O).

Page 79

WI:.! - 1147

1J:l:.!-1l47 340-34F lUClllJ

IUCIl-lJ. Nurmally used (or the screen editor (E:). You can
send all the screen output tu the printer with POKE 838,202
and POKE 839.254. To send everything back to the screen,
POKE 1l38,175 and POKE 839,242. You can use the program on
the next page to toggle outpul back and fore with the
SHlfT+HEI.P and CTIlL,+HELP keys. Note. that the program is
written in the VBlank, so if you LIST a long program,
pressing the console keys will react exactly on the bytes
presently being displayed/printed etc.

10 FOil 1=0 TO 47
20 READ D:POKE 1536+l.D:NEXT I
30 DATA 104,169.7,160,11.162.6,32,92,22Il,96
4lJ DATA 173,220.2.201.145,208.13
50 DATA 169,202,141,70,3,169.254,141,71,3,76,98,228
60 DATA 201,81,208.10
70 DATA 169,175,141,70.3,169,242,141,71,3,76,98.228
80 X=USR(1536)
90 POKE 54286,64

Another very useful application for these locations, is
something called "Return-key mode". Try POKE 842.13. You'll
notice the cursor is shuffling off down the screen! It's
actually pressing the Return-key over anything it might come
across on the screen. This is a very useful technique for
adding or deleting lines to a program. from within the
program! For example;

10 GRAPHICS 0
20 POSITION 2.5
30 FOR 1=0 TO 6
40 ? 100+1;" IlEM ADDED LINE ";1
50 NEXT 1
60 ? "CONT"
70 POSITION 2.0
80 POKE 842, 13:STUP
90 POKE 842.12
96 GOTO 96

You'll notice that the program itself actually adds lines
100 106. The Return-key mude is activated on line-80 and
the program is STOPped. The program is CONTinued when the
cursor runs over the CONT command printed to the screen from
line-60. Line-90 then turns the Return-key mode off and
holds program execution at line-96.
If you LIST a file to cassette or disk, you can edit the
file with a word processor and insert Ilasic commands in
direct-mode (without line-numbers). When the file is loaded,
the direct lines are executed straight away. This is very
useful for protecting your Basic programs.

Page 80

848 - 959

You can even
or cilssette
dirert-mode
saved files:

automatically RUN your Basic programs from disk
with the use of the Return-key mode ilnd
command entry. This applies to both types of
l.ISTed and SAVEd.

a Graphics mode other than 0, channel-O is
for the text-window. If the text-window is
you OPEN channel-O, Graphics 0 will be
and RUN commands close all channels except

are in
the OS
and
NEW

When you
opened by
turned off
called. The
channel-O.

848-863 :\'i0-35F 10CBI

10CB-I; unused.

864-879 360-JbF IOCII2

IOCII-2; unused.

1380-1\95 370-371' IOCB3

IOCB-3; unu5"d.

896-911 380-381' IOCB4

IOCB-4; unused.

912-927 390-391' IOCBS

IOCB-5; unused.

928-943 JAO-3AF IOCB6

IOCB-6; The Graphics statement OPENs channel-6 for the
screen display (S:), so once you are out of Graphics 0, you
cannot use channel-6 unless you firstly issue a CLOSE '6
statement. If you do close this channel, however, you will
not be able to use IJRAWTO, PLOT or l.OCATE until you reOPEN
it. The LOAD command closes all channels, even *6, except
for 1;0.

944-959 3BO-38F IOCB7

10C8-7; LPRINT automatically uses this channel. If the
channel is already open when an l.PRINT is issued, then an
error will occur.

Page 81

The LIST command also uses this channel and closes it after
use. LOAD uses this channel to transfer programs between
cassette and disk. LIST (except to the screen), LOAD and
LPRINT also close the sound-voices. RUN and SAVE also use
this channel.

Each byte in the IOCB's all have a particular meaning,
explained in the chart below:

I.ABEL OFFSET BYTES

(AUXI). Used with the OPEN statement to
of file access. See the table on Page-96
codes you can use with what devices.

ICIIID 0 I
Index into the device-name table for the currently open
file. Set by the OS. If not in use, the value = 255 which is
also initiation value.
ICDNO I I
Device number; I for DI:, 2 for D2: etc .. Set by the OS.
ICCUM 2 I
Device Command, set by the user. This is the 1st variable
after the channel-number in an OPEN command. See the COMMAND
chart overleaf for a full summary of these codes.
ICSTA 3 I
Device status, returned by the OS. See the chart overleaf.
ICBAL/H 4,5 2
Buffer address for data transfer, also the address of the
filename for the OPEN and STATUS commands etc ..
ICPTL/II 6,7 2
Address of the devices "put-one-byte" routine -I. Set by the
OS on OPEN, but only used by Basic. Points to CIO's "IOCB
NOT OPEN" message at power-up.
ICBLL/H 8,9 2
Buffer length, set to the amount of bytes to transfer in PUT
and GET operations. Decremented by 1 for each byte
transferred; updated after each READ and WRITE operation.
Records the number of bytes actually transferred in and out
of the buffer after each operation.
ICAXI 10 I
Auxiliary byte I
specify the type
for a full list of
ICAX2 II I
Aux byte 2. Special use by each device driver; some serial
port functions may use this byte.
ICAX3/4 12,13 2
Aux bytes 3 and 4, used to keep a record of the disk sector
number with NOTE and POINT.
ICAX5 14 1
Pointer to the byte within a sector NOTEd/POINTed to. Value
ranges 0 124. The last 3 bytes have special use by DOS,
see location 1792.
ICAX6 15 1
Spare Aux byte.

Page 82

COMPLETE & ESSENTIAL MAP

Here's the SIO Status byte values, below them, the ICCOM
command byte values:

STATUS:
I

138
139
140
142
143
144

EXPLANATION:
Operation complete; Status OK.
Device timeout (no response).
Device NAK
Serial-bus input framing error.
Serial-bus data-frame over-run error.
Serial-bus data-frame checksum error.
Device done error.

COMMAND:
OPEN channel
GET text-record line (INPUT)
GET Binary record (buffer)
PUT text-record line
PUT Binary record (buffer)
CLOSE channel
Dynamic (channel) status

DEC:
3
5
7
9
11
12
13

HEX:
3
5
7
9
B
C
D

Basic uses an IOCB "put-byte" vector for the PRINT "n,A$
command.
Disk-File Management (FMS) commands (Basic XIO commands)
use:

Rename 32 20
Erase 33 21
Protect/lock 35 23
Unprotectjunlock 36 24
POINT 37 25
NOTE 38 26
Format single 253 FD
Format double 254 FE

In addition, XIO also supports:

GET charac ter 7 7
PUT character II B
Draw line 17 11
r i t t area; XIO 18,11,0,0,"S:" 18 12
Fill requires the PLOT and
POSITION commands, also its
colour at location 765.

For the RS232 (R:), XIO supports:

output partial block
Control RTS, XMT, DTR
BAUD, Stop-Bits, Word-size
Translation mode
Concurrent mode

32
34
36
38
40

Page 83

20
22
24
26
28

CIO treats any command byte value greater than 13 ($OD) as a
special case (XIO case), and transfers control over to the
device handler for processing.

Here's a list of the ICAXI bytes, associated also with the
1st parameter given in the OPEN statement:

DEVICE: TASKit
Cassette 4

8
Disk 4

6
7

8

9

12

Screen- 8
Editor 12
E: 13

Keyboard 4
Printer 8
RS232 5

8
9
13

DESCRIPTION:
Read
Write
Read
Directory (S/dens)
Directory (D/dens). This shows up
all files that use the sharp brackets.
Write new file. Any file OPENed in
this mode will be deleted, and the
1st byte next written is at the start
of the file.
Write - Append. In this mode, the
file is left intact, but all data
written to the file will start at
the end of the existing data
Read and Write - update. Bytes read
or written will start at the beginning
of the fi l e
Screen output
Keyboard input and screen ouput
Screen input and output. Which is
also known as "Return-key mode"
Read
Write
Concurrent read
Block write
Concurrent write
Concurrent read and write
Clear Text Read
Screen Window oper-
on GR. also a t i on

Screen- 8
Display 12
S: 24

28
40
44
56
60

yes
yes
yes
yes
no
no
no
no

no
no
yes
yes
no
no
yes
yes

no
yes
no
yes
no
yes
no
yes

Note, that with S:, the screen is always cleared in Graphics
o and there is no text-window unless you specifically POKE
it there, by POKE 703,4.

Page 84

Wi thout t ho screen clear, the previous material wi II remain
on-screen between Gr a ph i c s mode changes, but will not
necessarily he legible in o t he r modes, or even within
display memory view. The values with S: are placed in the
l s t auxiliary byte of the 10CIl. Also, all of the screen
values back overleaf are a write operation.
The 2nd parameter in an OPEN statement (placed in the AUX2
byte) is far more restricted in its use. Usually set to O.
If set to 12H for the cassette, it changes from normal to
shurt Inter-Hecord-Gaps «(HG). With the Old Atari H20
printer, a value of 83 means sideways characters. Other
printer variabes are: 70 for normal 40-column printing, and
87 for wide printing mode. You can also call a Graphics mode
with OPEN and other relevant codes, for example:

0100 *=$600
0110
0120 CIO
0130 COMMAND H:14
01(10 BUFFEH ll:l6
0150 AUX 842
Ol6ll AlIX2 H4J
0170
01BO LUX #:12
Ol'lll LIJA tt3 ;OPEN
0200 STA COMMAND,X
0210 LDA #24 ;CLHSCRN
0220 STA AUX,X
0:l30 LOA tt8 ;MOOE
0240 STA AUX2,X
0250 LilA #NAME&255
0260 Sl'A BUFFEll, X
0270 LOA #NAME/256
0280 STA BUHEH+I,X
0290 JSH CIO
0300 BilK
0305
0310 NAME . BYTE "S: "

You can select the Graphics mode by changing the number
loaded into the Accumulator on line-2JO. Also set the mode
to clear or not, have a text-window etc. with the value in
line-liD, which is taken from the table pre-leafed.

If you want to know how to draw a line in machine-language,
then you can add the routine overleaf to the program above:

Page 85

C;(lMyu:n: .!! HI.. M!'

960 - JOOO

0300 JMP OIlAW
O:lZO
0)10 DRAW LOA 4t1 7 ;J)IlAW0]/,0 STA COMMANO,X
0350 LDA #8 ;WRlTE
0360 STA AtJX,X
0370
0380 LDA #1 ;COLOUR0190 STA 763
0400 LOA #50 ;PLOT0410 STA 84 ;1I0W0415 LOA #90
0420 STA 85 ;COLUMN0423 LDA #0 ,
0426 STA 86 ;LO/HI0430
0440 LDA #90 ;OIlAWTO0450 STA 96 ;HOW0/,60 LOA #50
0470 STA 97 ;COLUMN0480 LDA #0
0490 STA 98 ;LO/HI0500
OSlO JSH GIO
0520
0530 LOA #12 ;CLOSE05/,0 STA COMMANIl,X ;CHANNEL
0550 JSR GIO
0560
0570 BRK

The whole program is fairly straightforward and comes into 3
parts. The 1st part is Ihe Graphics call, the 2nd part is
the actual draw-line routine and the final part is to CLOSE
the OPEN channel. As you can see, it is quite large compared
to its equivalent in Basic!
For more information on 10CB's, you could get hold of De lie
Atari, the as users manual or take a look at back issues of
Old Atari user and Page-6 magazine.

960-999 3GO-3E7 PRNBliF

Printer buffer. The printer handler collects output from the
LPRINT statement here, sending it all to the printer when an
EOL occurs, or when the buffer is full. The old bug is now
gone.

1000 3E8 SUPERF

Screen editor register; cleared on entry to the "put-byte"
routine, the editor changes key-codes 142 - 145 to codes 28
- 31 and sets SUPERF to nonzero. See locations 121,122.

Page 86

1001 - 1017

1001 3E9 CKEY

Cassette boot request flag on coldstart. Checks to see if
the START key is pressed, and if so, CKEY is set. Autoboot
cassettes are loaded by pressing the START key, pressing
Play on the tape and pressing return. You can disable Basic
by holding OPTION along with START.

1002 3EA CASSBT

Cassette boot flag. The Atari attempts both cassette and
disk boots simultaneously. 0 here means no cassette-boot was
successful. See location 9.

1003 3EB CARTCK

Cartridge checksum. A checksum of page-I of the cartridge.
The checksum is recalculated each VBlank and checked against
the register. If not the same, the OS assumes the cartridge
isn't there any more (was pulled out) and does a coldstart;
1200XL o n l y , Unused in other XL/XE's.

1004 :lEC DERRF

Screen OPEN error flag; if 0, then there is no error. If
nonzero, then the OS can't initialize the screen editor.

1005-1015 3ED-3F7 ACMVAIl

Reserved for OS variables; on power-up, all variables
between 1005 - 1023 are O'd, but ullchanged on warmstart.

1016 3F8 BASICF

Shadow for the current status of Basic. 0 means that the ROM
Basic is enabled, while nonzero means it is disabled. Must
be in sync with disabling of ROM Basic. To disable Basic,
set BASICF to nonzero and press Reset. DOS will tell you
there is no Basic when you try to returll to it.

1017 3F9 MINTLK

Although labelled, mapping states this to be unused.

Page 87

1018 - 1405

1018 JFA GINTLK

Cartridge interlock register; the complement of BASICF. It
reads I when an external cartridge is installed, and 0 when
not (or Uasic is in use). The value of TRIG3 at 53267
($0103) is loaded here by the OS initialization routine. If
at any time, the external cartridge is pulled, the system
crashes.

1019,1020 3FB,3FC CHLI NK

Relocatable handler chain use; allows chaining of portions
of handler routines.

1021-1151 3FO,47F CASBUF

Cassette buffer. These locations are used by the cassette
handler to read data from and write data to the tape
recorder. The 128 data bytes for each cassette record are
stored here beginning at 1024 ($400 - Page-4). The current
buffer size is found at BLIM in 650. Location 61 points to
the current byte being read or written.
CASBUF is also used to store the 1st sector in a disk-boot
(beginning at 1024) before being transferred to its correct
address, given by bytes 3 and 4. See the BOOT appendice.

A cassette record consists of 132 bytes: 2 control bytes set
to 85 ($55; alternating O's and I's) for speed measurement
in the baud-rate correction routine; I control byte which is
explained on the next leaf; 128 data-bytes, and a checksum
byte. Note, that only the data-bytes are stored in this
cassette buffer.

CONTROL-BYTE Values:

VALliE:
250 ($FA)

252
254

EXPLANATION:
Partial record; the actual number of bytes
is stored in the last byte (127) of the record,
Record full; 128 bytes follow,
End-Of-File (EOF) record; followed by 128
zero bytes.

1152-1405 480-570 STACK

Basic uses these 254-bytes as a syntax checking stack; $480
is a Basic input index; $481 an output index and $482 is a
program counter.

Page 88

1406 - 1791

If you are not using Basic, then you have these 253 bytes
free for use. If you don't use the FP package, then you also
have a further 129 bytes from 1406 - 1535. Should you use
the FP package, then it is as tollows:

1406 57E LBPfll

LBIIFF pretix I;

571'

LBUFF prefix 2;

LBPfl2

1408-1535 51l0-5FF LBU1'1'

Basic line-buffer; 128 bytes. Used as an output result
buffer for the FP to ASCII conversion routine. The input
buffer is pointed to by locations 243 and 244.

I 5EO PLYAflG

Polynomial arguments (1'P use).

1510-1515 5E6-5Ell FPSC\{

FP scratch-pad use.

1516-1535 5E(;-51'1' 1'PSCRI

Ditto. The end of the buffer is named LBFEND.

1536-1791 600-6FF PAGE6

Page-6 is a very useful 256 bytes of free memory,
specifically protected so that programmers can use this area
safely in Basic/Assembly or machine-language. Besides being
used to name a very good magazine, which now goes under the
name 'New Atari-user', Page-6 can be used to store quick
machine-language subroutines for use by Basic programs.
You'll notice that all my programs in this book use this
page in this way.

Page 89

& ESSENTIAL MAP

1792 - 7548 +

There is, however, one snag. If you use the Basic INPUT
statement when inputting data, then you should ensure that
the data you are INPUTing has an EOL flag (RETURN character

ATASCII 155) at a maximum of 128 bytes apart. If an EOL
flag doesn't exist, then Basic will continue loading the
data, past the Basic line buffer LBUFF at 1408 and on into
Page-6, overwriting any 'thought-of' protected data
presently residing there. It will keep going until either it
reaches the 126th byte into page-6 (location 1662) where it
places an EOL character, or until it reaches an End-Of-File
(EOF) character (ATASCII 136, or CTRL+3).

Free RAM begins in all XL/XE's at location 1792, pointed to
by MEMLO at 743 and 744. When DOS 2.0 is loaded, MEMLO is
updated to point to location 7420. For DOS 2.5 see the
relevent appendix. DOS is organized in the following
manner:

1792-5377 700-1501

FMS provides the interface between Basic, DUP and the
Disk-Drive. It is a sophisticated device driver for all I/O
operations involving the D: device-name. It allows disk
users to use the Basic' special XIO disk commands (see the
IOCB area at 832 - 959). It also resides below Basic RAM and
provides entry to DUP when called with the DOS command.

5440-13062 1540-3306

DUP.SYS area. The top will vary with the amount of buffer
storage space allocated to the drive and sector buffers.

6780-7547 lA7C-ID7B

Drive
will
etc ..

buffers and sector-data buffers. The amount of memory
vary according to the amount of buffers allocated

7548-MEMLO ID7C-3306 (maximum)

Non-resident portion of DUP.SYS, DOS utility routines. DUP
provides the utilities chosen from the DOS menu page, not
from Basic. It is not resident in RAM when you are using
Basic or another cartridge, rather it is loaded when DOS is
called from Basic or on an autoboot powerup with the
option-key depressed, thus, disabling Basic. When DUP is
loaded, it overwrites the lower portion of memory. If you
wish to save your program from destruction, you must have
created a MEM.SAV file on the disk before you called DOS, or
even simpler, just SAVEd it to the disk.

Page 90

COMPLETE & ESSENTIAL MAP

1792 - 1812

When software is booted, the MEMLO pointer points to the 1st
free memory location above that software; otherwise, it's
not affected and remains pointing to location 1792. The DUP
portion of DOS is partly resident here, starting at 5440 and
running up to 13062. DOS 2.5 takes up the 1st 78 sectors of
a disk; the 1st sector is the boot sector, sectors 2 - 40
are the FMS portion and the remaining sectors 41 - 78 are
the DUP.SYS portion of DOS. For full information on DOS, see
the DOS and OS source listings including Inside Atari DOS.

FMS, DOS.SYS and DUP.SYS

Disk boot records (sector 1 of a DOS disk) are read into
1792, starting from this address the format of bytes is
explained overleaf. Note, that the 1st 6 bytes of any disk
are special-informatory bytes to the OS, explained fully in
the BOOT-appendix, they tell the computer how much data to
load, where to put it and where to execute within it.

BYTE HEX
0 700

701

2,3 702,3

4,5 704,5

6 706

7.8 707,8
9 709

10 70A

11 70B

12,3 70C,D

14 70E

15,6 70F,10

LABEL and USE:
BFLAG:
Boot-flag equals 0 (unused),
BRCNT:
Number of consecutive sectors to read,
Set to 3 by DOS 2.X,
BLDADR:
Boot sector load address, DOS
points to 1792 ($700),
BIWTARR:
Initialization address,
JMP XBCONT:
Boot continuatin vector, JMP ($4C): JMP
command to the address in bytes 7 and 8,
Boot read continuation address,
SABYTE:
Maximum number of concurrently open files,
defaulted to 3,
DRVBYT:
Drive bits, the maximum number of drives
attatched to your system. Default is 2,
Unused:
Buffer allocation direction, set to O.
SASA:
Buffer allocation start address at 1995,
DSFLG:
DOS flag equals nonzero. It must be nonzero
for the 2nd phase of boot process. It
indicates that the DOS.SYS has been
written on the disk, 0 means no DOS.SYS,
1 = 128-byte sector and 2 = 256-bytes,
DFLINK:
Pointer to DOS.SYS' 1st sector on disk,

Page 91

17 711

18.9 712,3

20+ 714+

1110 I - 1906

llI.lJISP:
Displacement to the sector-link bytes
(last 3). The sector link bytes point
to the next disk-sector to be read. If O.
then EOF has been reached.
DFLADR
Address for the start of the DOS.SYS file,
Continuation of the boot-load file.
see the as users manual for more info.

Data from the boot sector is placed in locations 1792 -
1916. Data from the rest of DOS.SYS is located starting from
1917 ($77D). All binary file-loads start with 255 twice, the
next 4 bytes are the start and end addresses. see locations
736 and 737 for a full breakdown of this.

Here's a further explanation of locations 1801 and 1802:

1801 709 SABYTE

This records the limit for the number of files that can be
OPEN simultaneously. Usually set to 3, the maximum is 7 (I
for each 10CB). Each available file takes 128 bytes for a
buffer, so if you increase the number of buffers. you
decrease your RAM space accordingly. If you make any changes
to this register or any of the other registers following.
then to keep the changes permanent. you should go to DOS and
re-write the DOS files to a new blank formatted disk.

1802 70A DRVBYT

The maximum number of disk-drives in your system. default
being 2. The least 4-bits are used to record which drives
are available. so if you have drives I. 2 and 4, the
location would read:

00001011; decimal· II.

Each drive has a seperate buffer of 128 bytes reserved for
it, thus. including more drives in your system. decreases
your RAM availability.

1900 76C BSlO

Entry point to the FMS disk sector I/O routines.

1906 772 BSlOR

Entry point to the FMS disk handler routines.

Page 92

I'll :I

1913 - 277:1

779

Write verify flag for disk I/O operations. POKE with 80 to
turn off the verify function, 87 to turn it back on.
Disk-write is much laster without verify.

78:1

stores lhe drive numhe r for thp DUP.SYS file. If you POKE
here with the ASCII equivalenl of the drive number (ie. POKE
192:1,50 for drive-2), when you call nos from Ha s i c , DUP.SYS
will be loaded from the drive s pe c i f i e d rather than t.he
default DI:. Reme mbe r , p e rma n e n t c h a n g e s can be made by
saving an a l t.e r cd DOS t i l e to a n e w blank disk.

7cn DFMSDII

Entry point of a 21-byte FMS disk handler. The address of
this handler is placed in HATAHS by t.h « FMS initialization
r o u ti n e . When CIO needs to cal) an FMS function, it will
l o c a t e lhe a d d r os s of that f uu c t i on via t h e ha nd l e r address
table. See c h.i p te r s 8-1\ of l n s i d e Atari DOS. Note, t h e data
s t o r e d h e r e is d i t f e r e n t. with DOS 2.0 and DOS 2.5.

2016 7 EO DINT

FMS i n i t i a l i z a t i o n r o u ti n e . The e n t r y point is 1995. DUP
calls EMS a t lids point. K-DOS uses the same location tor
its initialization r ou t i n o .

2219 BAil DFMOPN

OPEN routines,
output.

including open for append, update and

25011 900 IJFMPliT

Pill' byte r o u l i n e s ,

2591 AIF WTBUH

Burst I/O routines.

2592-2773 A20-AD5

In DOS 2.0, there is a burst I/O o c c u r r e n c e bug wh i c h takes
place when a file is OPENed for update. This bug ran be
exterminated by:

Page 93

:l751 - :lIn

POKE 25 'J2 , 1:IlJ
POKE 25')],19
POKE 259 fl , 7:l
POKE 25')5,12
POKE 2596,240
POKE 2597,36
POKE 2598,106
POKE 2599,2:14
POKE 2625,16
POKE 2773,31

You can completely disable burst 1/0 with a POKE 2606,0.
This makes LOAO and SAVE operations c ons i de r a b l y slower,
though, so T wouldn't recommend saving it as a permanent
change.

2751 ABF DFMGET

GET byte routines, including GET file routines.

2817 B01 DFMSTA

Oisk STATUS routines.

2837 B15 IlFMCLS

IOCB CLOSE routines.

2983 BA7 DFMDDC

Start of the device-dependent command routines, including
the Basic XID special commands.

3033 BD9 XRENAME

Rename file routine.

3118 e2E

POKE with 0 to force the rename routine to change only the
1st occurrence of files bearing the same name. POKE with 184
to revert to normal.

3122 C32 XDHETE

Delete file routine.

Page 94

31')6 - :17tH

3196 C7C XLOCK,XlINLOCK

Lock fill' r ou t i ne . lInlock file routine begins at 3203
($C83) .

32511 eRA XPOINT

Basic POINT command routine.

3331 D03 XNOTF.

Basic NOTE command routine.

:1:152 Dill XFOIlMAT

Vormat disk routine.

01\4

De-allocation bytes of the VTOC and directory; see 4226,
4229, 4264, and 4266.

3501 DAD 1.1STDlll

List directory routine.

3742 E'IE VNDCODE

Vilename decode,
c u r r en I t i l e n a me
and $44).

including wildcard validity test. The
is p oi n I e d to by ZIWFP at 67 and 68 ($43

:171\3 EC7

By POKEing the desired ATASCII value hete, you can change
the "*" wi l d ca r d character used by DOS. Don' I. forget that
changes can be made by re-writing DOS. Either goto
the DOS menu and use option H, or OPEN ttl,8,O,"D:DOS,SYS"
and CLOSE ttl from Basi c.

Page 95

311111,3112:l

311111 - 42116

EEA,EEE

Hy POKEing 111111 with 33 and 31122 with 123, you can modify
DOS to accept filenames with punctuation, numbers and
lowercase as valid. 33 is the low range code and 123 for the
high range. Of course, you could change the range of
accepting characters from D 255, but you wi I I have
problems with spaces and the wildcards. He sure that the
wi l d ca r d character is not in this range.

3850 FDA FDSCIIAH

store the file name characters that result from the filename
decode routine.

3873 F21 SFDIR

Directory search routine; search for the user-specified
f i I ename .

3889 F31 DOS3

If you PEEK here and get 76 ($4C), you have an early version
of DOS 3, the later version will read 78. To correct some
errors in the earlier version, type:

10 FOR 1=1 TO 9
20 READ A,D:POKE A,D:NEXT I
30 DATA 3889,78,3923,78,3943,78,3929,76,3895,76
40 DATA 3901,77,3935,77,3955,77.2117,240

Better yet, to eradicate such /I stupid move,
the bin and get hold of DOS 2.5. DOS
space-waster!

chuck DOS 3 in
:I is a serious

3988 F94 WRTNXS

Write data sector routine.

4111 IOOF RDNXTS

Read data sector routine.

4206 106E RDDIR

Read and write directory sector routines.

Page 96

COMPLETE & ESSENTIAL MAP

4226 - 4229

4226 1082

LSB of the current directory
normally located in sectors 361

sector. The directory is
368. Default here is 105.

4229 1085

MSB of the current directory sector. To change the location
of the directory. copy the 8 directory sectors from 361 -
368 into your desired area on the disk and POKE the address
of the 1st sector into 4226 and 4229. Finally. write the
value of the new sector number (sector/8+10) into 3460.
The FORMAT of a directory entry is comprised of 16 bytes.
The bytes are as explained:
BYTE: USE:
o Flag

$00 Entry new (never used)
$01 file currently OPEN
$02 File created by DOS 2
$20 File locked
$40 File normal status
$80 File deleted

1-2 Number of sectors in the file
3-4 Starting sector of the file
5-12 Filename (space or $20 if blank)
13-15 Extension
If you've deleted a file, but later you regret it. you can
usually undelete it (bring it back to life) by using a
sector editor. When a file is deleted. the actual data and
filename remains on the disk. if you write something else on
the disk. then the deleted file data will be overwritten.
but if you have not written over the disk. then you should
be able to reinstate your file by clearing bit-7 ($80) in
byte 0 of the directory entry in the directory sectors. If
you want to undelete any files that have been deleted on
your DOS 2.X disk. then use this program:
10 x=o
12 DATA 104.32.83,228,96
14 FOR 1=0 TO 4
18 READ D:POKE 1536+I.D:NEXT
22 POKE 769.1
26 POKE 772.253:POKE 773,3
30 FOR K=361 TO 368
34 SHI=INT(K/256) :SLO=K-(SHI*256)
38 POKE 778.SLO:POKE 779,SHI
42 POKE 770.82
46 X=lISR(1536)
50 FOR 1=0 TO 127 STEP 16
54 BYT=PEEK(1021+I+X)
58 IF BYT-127 THEN BYT=RYT-128
62 POKE 1021+I+X.BYT
66 NEXT I
70 POKE 770,80
74 X=USR(l536)
78 NEXT K

Page 97

42J5 - 4266

Sometimes, your files can be accidentally left OPEN and,
thus, are unr e t a i uab l e . I've lost a lot of my fi les in the
past through drfve problems. Usually, the drive writes a
file to the disk. but doesn't close it properly. If this
happens, then you can use the program re-leafed to bring
them back. Just alter line 58 to read:

58 IF NOT BYT/2=INT(BYT/2) THEN BYT=8YT-I

If you still get problems, then the last effort to regain as
much of your file is to use a sector editor. and alter the
2nd and Jrd bytes of the appropriate directory entry to
SFF's. This way. as much as possible of the existing file
will be regained when loaded

4235 108B RDVTOC

Read or write the volume table of contents (VTOC) sectors.

4264 10A8

LSB of the current VTOC sector.

4266 10AA

MSB of the current VTOC sector, which is normally sector
360. The VTOC sector is a bitmap of the disk contents; atter
the initial status bytes. each of the following bits
represents I sector on the disk in sequential order. There
are 720 sectors on the single-density disk. The 1st 4 are
reserved 'BOOT' sec tors on DOS, sec tors 360 - 368 are
reserved for VTOC and the directory, leaving 707 free for
use. You can move VTOC in the same way as the directory.
If you change the directory location, ensuring the
destination for the new directory uses unused sectors. you
should also alter the VTOC sector to de-allocate the
original directory sectors (by setting these bits), and
clear the bits of the new directory area to protect it trom
being overwritten.

You can also use this technique to lock out particular
sectors on a disk for miscellaneous use.

The FORMAT of the VTOC sector is as follows:

Page 98

BYTE:
o
1-2

)-4
5-9
10-99

100+

/1293 - 4618

USE:
DOS code (0 = DOS 2.0)

rz = DOS 2.5)
Total number of sectors;
707 single density
1010 dual density
Number of currently unused sectors
Unused
Bitmap: I bit for each sector:
O=in use/locked, I=unused/free
The leftmost bit of byte 10 is
sector 0 (unaccessable), the next
bit is sector I and so on, until
the rightmost bit of byte 99, which
is sector 719.
Sector 720 is unus ed on any DOS 2.X disk
Bytes 100 - 127 are unused

Within the bitmap area of used and unused sectors, the VTOC
is the leftmost bit of byte 55, and the directory sectors
are the remainder of the same byte and the 1st bit of byte
56. The leftmost 4-bits of byte 10 are the boot sectors. and
the remainder of the bytes up to and including the leftmost
7-bits of byte 2/1 is taken by the DOS and DUI' files. Di s k
directories and the VToe are discussed in Inside Atari DOS.

4293 IOC5 FHESECT

Free sectors routine; returns the amount of free sectors
available on il disk.

4358 1106 GETSECTOH

Get sector routine; retrieves the lowest unused sector for
use off the disk.

1164 SETUP

SETUP initialization of the FMS parameters. Prepares FMS
to deal with the operation to be performed and to access a
particular file. See Inside Atari DOS, chapter 7.

4618 120A WRTDOS

Write new DOS.SYS file to disk routine, including new FMS.
file to DUP.SYS file.

Page 99

& ESSENTIAL MAP

4789 - 5:177

4789 12B5 EIIIINO

start of the PMS error number table.

4856-4978 12F8-1372

Miscellaneous FMS storage area; sector length, drive type,
stack level, file-number etc ..

4993-5120 1381-1400 FCB

Start of the FMS file Control Blocks (FCB's). FCB's are used
to store information about files currently being processed.
The 8 FCB's are 16-bytes each in length and correspond to a
one-on-one manner with the 10CB's. Each FCB takes the
following format:

LABEL:
FCBFNO
FCBOTC

SPARE
FCBSLT
FCBFLG

FCBMLN
FCBDLN
FCBBUF
FCBCSN

FCBLSN
FCBSSN
FCBCNT

BYT:
I
1

I
I
I
2

2
2
2

USE:
Current file-number being processed
File OPEN mode: I=append, 2=directory,
4=input, 8=output and 12=update
Unused
Sector length type flag: 128 or 256 bytes,
Work flag: 128= file OPEN for output and
64= buffer sector should be output.
Max. sector data length: 125 or 253,
Current byte for read/edit in the sector,
Tells FMS which buffer is used by the file.
Sector number in the buffer of the
file in use,
Next sector number in the chain-link,
Start sector for file appending data,
Sector count for the current file.

DUP doesn't use these FCB's; it writes to the 10CB's
directly. CIa transfers the control to FMS as the operation
demands. then onto SID.

5121 1401 FILDIR

File directory, a 256-byte sequential buffer for entries to
the disk directory.

5377 1501 ENDFMS

Disk directory (VTOC) buffer. 64-bytes are reserved. I-byte
for each possible file. It also marks the end of FMS.

Page 100

5440 -

The VTOr, (sector 300; SIbil) is a s e q u e n t i a l bitmap of each
of the 720 sectors on a DOS 2.0 disk. It starts at byte 10
and continues to byte 99. See 4264 and 4266.

544ll 154ll DOS

DUP.SYS initialization address. Beginning of mini-DOS; the
HAM-resident portion of Dill'. Used for the same purpose in
K-DOS.

5446,5450 1546,I54A

Contains the address stored in DOSVEC at locations 10 and
II. This points to the a d d r e s s Basic jumps to upon execution
of the DOS command.

5533 159)) DUPfLG

Flag to test if DUP is already resident in memory. 0 means
it's not.

5534 159E OPT

IIsed to store the value of the disk menu option chosen by
the user.

5535 1591' I,OADFLG

If this location reads 121l, then a memory file (MEM.SAV)
doesn't have fo fw l oa d e d ,

5540 SFLOA\)

Houfine to load a MEM.SAV file if it is present on the
disk.

5576 15C8

You can run some machine-language files from Basic with OPEN
#l,4,O,"D:FILENAME.EXT" and then doing a usn to this
address.

5888 1700 IISIWOS

Listed in fhe DIIP.SYS equates file but not explained in the
list.ings.

Page 101

COMI'II.II 1,. AI. MAl'

'ifJIJI) - (,'i I B

'i1l'J9

Flags
hasn'l

5'147

that
Iwpn

170B

the MEM.SAV
IUdded.

1731l

MEMl.lllJ

file has been l oa d nd . 0 nua ns it

The MEM.SAV file c r e a t.Lo n r ou t i ne be g i ns here. It starts
with Ihe f i I e naue "MEM.SAV" stored in ArAsell format. 'lh«
write routines begin at MWIlITE in ')'.158. The DOS utility
MEMSAVE copies the l owo r bOOO by t e s of memory to disk to
s a ve y ou r Basic program from being d e s t r oy ed when you c a l l
DOS, which then loads DIIP.SYS i n to that a r e a of mr-mu r y
afterwards.

179C-1791l INISAV

DOSJNI vector save location, transferrE'd down 10 locations
12 and 13. Entry point to DOS called from Basic.

b046 179E MEMFLG

Flag to show if memory has been written to disk using a
MEM.SAV file.

6418 1912 CJ.M.JMP

Test to see if DOS must load MEM.SAV from the disk before il
does a run at cartridge address, then jumps 10 the cartridge
aftprwards.

6432 1920 LMTR

Test to see if DOS must load MEM.SAV before it perflJrms a
run at address command from the DOS menu.

1939 LDMEM

MEMSAVE load routines, for the MEM.SAV file.

6518 1979 INITIO

DUP.SYS warms tart entry. An apparE'ntIy excellent program to
eliminate the need for DUP.SYS and MEM.SAV was presented in
COMPUTE!, July 1982 called MicroDOS. See also "The Atari
Wedge", COMPUTE! December 1982.

Page 102

6630 - 7668

663U 19E6 ISRODN

Slart of Ihe serial interrupt service routine to
'output-data needed' roulines in DUP.SYS.

t>6') I IA2) ISRSIR

start of the serial interrupt ready service routines in
DUI'.SYS.

6781 IA7D

starl of the drive and data huffers. Drive buffers are
numbered sequentially I 4, dala buffers are I - 8,
assuming that many are allocated for each. Normally, the 1st
2 buffers are allocated for drives and the next 3 for data.
Buffers are 1211 bytes long e a c h and he g i n at 6908, 7036,
7162 and 7292 (SIAFC, SIB7C, $IIJFA and Sle7C). See locations
1801 and 1802.

ICFC

MEMI.O at 743,74 1j points here when DOS is resident unless the
huffer allocation has heen altered. MEMLO will point to 7164
for a I-drive, 2 datil buffer s e l u p , a saving of 256 bytes.
Loading the f<S-232 handler from Ihe 8'iO interface will raise
MEMI.O illl extra 172H by t.c s . The IlS-212 handler in the 850
i n t.e r t a c e will only boot (loild inlo me mor y) if you first
boot the AIJTOllUN. SYS t i l « Oil t tH. or i gina I DOS
na s t.e r d i s k e t t e . The h a nd l e r wi J 1 boot-up into memory
if you don't have a d ls k e d r i ve attached assuming you have
turned it on prior to t h e computer. Whether the IlS-232
handl .. r is booted or not. you can s t i II use the printer
paral leI port on t h e H50.

754H

Beginnillg
parameter

7588

I D7e

of the
bu t fer.

I DA4

non-resident

LINE

portion of DUP; 40-byte

80-byte line buffer.

7668 IlJF4 1J IHI F

256-byte data buffer for the COPY routines. Copy routines
work in 125-byte passes, equal to the number of data-bytes
in each DOS sec lor on the disk.

Page 103

'l'he r e a r e L56-byt ..-s bpcilllse Alari iiCCOIIIII"d tor the now
ex i s t i ng d ouh l n vd r-n s i t y which gives L'd d a t a-iby t e s per DUS
sector. The liS-Doubler is such all example modification to
your disk-drive w,dl worth making giving you the true-double
d e ns i Iy a nd a c c e l e r a ted speed.

7924 IEF4

Miscellaneous variable storage area and data buffers.

7951-B278 11'01'-2056 DMENlI

Disk-mellu screen display data is stored here.

11191 IFH

This is the top of minimum HAM required for operation (8K).
to use DOS you must have a minimum of 16K.

DUP.SYS HOUTINES:
Locations 8192 - 32767 ($2000 - $71'1'1') are the largest part
of the HAM expansion area; this space is generally for your
own use. If you have lJOS.SYS or DUP.SYS loaded in. t he y also
usP. a portion of this area to 13062 ($3306) helow:

8309 2075 DOSOS

start of the DOS utility monitor. including the utilities
called when a menu selection fuction is completed and the
display of the "Sel"ct Item" prompt.

8505 2139 DI IlLST

lJirectory listing.

8649

Ilelete a file.

8990

21C9

231E

DELFIL

Copy a file. This area starts with the copy messages. The
copy routines themselves begin at PYFIL in 9080 ($2378).

Page 104

97!l:l - 10690

9783 2637 RENFIL

Rename a disk-file routine.

9856 2680 FMTDSK

format the entire disk. There is no way to format specific
sectors in the standard 810s or 1050s. The Archiver chip
allows you to do this, however. if you have one fitted.

9966 26££ STCAR

Execute a cartridge.

10060 274C BRlIN

Run il binary-file at the user specified address.

10111

Start
point

277F

of the write MEM.SAV file to disk routine. The entry
is at M£MSAV in 10138 ($279A).

IU20l 27D9 WIJOOT

Write DOS/DliP f i I es to the disk.

10483 281'3 TESTVER2

Test for version 2 DOS.

10522 291A LUFII.

Load a binary file into memory. If it has a run-address
specified in the file, it will autoboot, unless you a ppe nd
"/A" to the binary load option I. t r om the DOS menu.

1060!l 2970 I.KFlL. ULF I L

Lock and unlock tiles on disk.

10690 29C2 DDMG

Duplicate a disk.

Page lOS

ll'i2B - 4'1151

I 1521l 2DO/l DFFM

Dup I i c a tea f i l e ,

11841 2E41

Miscellaneous routines.

13062

End of DlJP.SYS

20480-22527

3306

5000-57FF SELFTEST

is switched
in PORTH at
HAM in the

Self-test HOM when enabled. The Self-test HOM
into these addresses when you clear bit-7
location 54017 ($D301), thus. losing 2K of
process.
It's normally located under the Hardware memory at 53248 -
55295 ($D200 - $D7FF). and re-addressed. as above, when you
type BYE in Basic, or turn the computer on with OPTION
pressed without a disk-drive attached.

Location 13063 is the 1st free RAM location with nos
installed. The eternally free RAM memory expands up to 32767
($7FFF) within Basic. Without Basic, you can safely use up
to It0959 ($9FFF). Free RAM depends on what cartridge you are
using; Basic or Assembly etc.. It also depends on the
Graphics mode in use.

32768-40959 8000-9FFF CARTRIDGE-H

Ln the old Atari 800, this used to contain the right
cartridge when present, and RAM otherwise. In the XL/XE's,
this can now be considered as the lower of the 2 8K banks at
the top end of RAM. When Basic is enabled, this area
contains the Display List (DL) and DispLay Memory (DM). Hut,
when Basic is disabled, this extra 8K is free RAM and the DL
and DM occupy the higher of these 2 8K banks. This applies
to the Assembler/Editor cartridge as well, or any other
cartridge for that matter.

40960-49151 AOOO-BFFF CARTRIDGE-A

This was the left-cartridge slot in the old Atari 800, but
can now be considered as the higher of the 2 8K banks at the
top end of HAM.

Page 106

COMPLETE & ESSENTIAL MAP

40960 - 43631

When Basic is disabled, this area contains the DL and DM,
but when Basic is enabled, the 8K RAM is switched-out and
the 8K Basic-ROM is switched-in. You can convert the ROM
Basic to a RAM Basic alike the OS, see location 54017 and
create your own Basic commands. Another method of achieving
this is to trap the keystrokes before they get passed to the
Basic editor. You can find further information about this in
COMPUTEI 's 3rd book of Atari.
A USR call here will coldstart the Basic cartridge when
enabled, or any other cartridge inserted for that matter.
Listed below are the Basic routines and their addresses:

40960-41036

41037-41055

41056-42081

42082-42158

42159-42508

AOOO-A04C Colds tart

A04D-A05F Warmstart

A060-A461 Syntax checking routines

A462-A4AE Search routines

A4AF-A60C statement name table

The statement TOKEN list begins at 42161 ($A4Bl) and can be
listed with this program:

10 XDRS=42161:TOK=0
20 IF NOT PEEK(XDRS) THEN? :END
30 ? TOK,
40 BYT=PEEK(XDRS):XDRS=XDRS+l
50 IF NOT BYT-127 THEN? CHR$(BYT); :GOTO 40
60 ? CHR$(BYT-128)
70 XDRS=XDRS+2:TOK=TOK+l
80 GOTO 20

42509-43134 A60D-A87E Syntax tables

The OPERATOR token list begins at 42979
listed with the previous program if
line-l0 to TOK=16, XDRS to 42979 and
read TOK=TOK+I.
See the Basic TOKEN appendix for further

($A7E3) and can be
you change TOK in
line-70 should only

information.

43135-43358 A87F-A95E Memory manager

If you PEEK location 43234 ($A8E2) and get back 96, you have
Revision B ROM. B stands for BUGS, so you should try to get
hold of Revision C. In all my experiences, the B ROM tends
to come with the flatter (older) XL keyboards.

43359-43519

43520-43631

A95F-A9FF Execute CONT statement

AAOO-AA6F Statement table

Page 107

ld6J2-437ld AA70-AAIlF Operator tablp

4:1744-4/illY4 AAEO-AC:lE Execute Exprpssion routine

44095-4 lI16] AClF-ACIlJ Operator precedence routine

4/.164- /1500 I ACIl4-AFC'J Execute op o r a to r routine

45002-45320 AFCA-BIOfl Execute function routine

45321-47127 DIO'J-B817 Execute s t a t.ume n t routine

47121l-47:l1l1 B811l-D915 CONT statement subroutines

47:182-47542 B916-B91l6 Error handling routinps

47543-47732 1l91l7-BA74 Graphics handling routines

47733-41l541l BA75-BOA4 I/O routines

48549-49145 BOA5-IlFF9 floating-point routines:

48551 BIlA7 SIN

Calculate SIN(FREO). Checks DEGFLG at 251 to see if
trigonometric calculations are in radians or degrees.

411561 BDBI cos
Calculate COSine(FRO)
register O. locations
55296 onward.

with carry. FRO is Floating-Point
212 - 217. See FP entry points from

48759 IlE77 ATAN

Calculate Atangent using FRO, with carry.

481169 HEE5 SQR

Calculate square root (FRO) with carry. Note, that there is
some conflict of addresses for the above routines. The
addresses given are from Ile Re Atari. The as Source-code
listing gives the following entry-point addresses for these
FP routines:

SIN
COS
ATAN
SQR

48513
41\49')
411707
48817

($Il081)
($B07:l)
($IlE43)
($BEIlI)

These are the ones to ignore! Because they are WRONGl

Page 108

COMPLETE & ESSENTIAL MAP

49146,7 - 49150,1

49146,7 BFFA,B

Cartridge start address.

49148 BFFC

A nonzero value here tells the OS there is no cartridge
installed (7).

49149 BFFD

Option byte. A cartridge which does not specify a disk-boot
may use all the memory from 1152 ($480) to MEMTOP any way
possible.

49150,1 BFFE,F

Cartridge initialization address.

When a Basic program is SAVEd, only 14 of the more than 50
Page-O locations Basic uses are written to the disk/cassette
along with the program. The rest are all re-calculated with
a NEW or SAVE command, sometimes with RUN and GOTO. These 14
locations are:

128,129
130,131
132,133
134,135
136,137
138,139
140,141

80,81
82,83
84,85
86,87
88,89
8A,8B
8C,8D

LOMEM
VNTP
VNTD
VVTP
STMTAB
STMCUR
STARP

The string/array space is not loaded; STARP is included only
to point to the end of the Basic program.
The 2 other critical Basic Page-O pointers, which are not
SAVEd, are:

142,143
144,145

8E,8F
90,91

RUNSTK
MEMTOP

For more information concerning Atari Basic, get hold of a
2nd hand copy of a good book such like: The Atari XL
Handbook by Lupton & Robinson, Your Atari computer by Lon
Poole or any of the fine COMPUTEl books such as 2nd book of
Atari Graphics or 1st and 2nd books of Atari. You should
also browse through the BASIC appendix given in this book.

Page 109

4')J 52-53247 COOO-CFFF OSIWM

This III(block was unus ed and unuseable ill the old Atari'
(very sad), but, t ha nks 10 Atari, this Pain-up-the-rear is
1I0W s o r t ud l You call use any of the Translator disks to
revert back to tbe old OS, in doing so, this area becomes 4K
of user accessible HAM, Great EH!
Anyway, the C-Block now cOlltains various interrupt handlers
(vectored here from Page-2) and other routines:

49164-52223 COUC-CBFF Interrupt handlers

A lot of interrupt vectors are set to jump to 49357 ($COCD)
or 49358 ($COCE). The former contains a PLA and an RTI. The
net result is a simple return back into the program without
any other activity taking place.

Bytes 49152 - 49163 ($COOO - SCOOB) are used to identify the
computer and the ROM in the $COOO - $DFFF block.

BYTE:
49152,3/COOO,1

49154/C002

49155/C003
49156/C004
49157/C005

49158/C006

49159,62/C007,A

49t63/COOB
49164/COOC
49176/C018

USE:
Checksum of all the bytes in ROM
except the actual checksum bytes.
Revision d a t a , stored in the form
DDMMYY. This is DD, day.
Revision date, month.
Revision dale, year.
Reserved option byte, reads 0 for
1200XL, 800XL and 130XE.
Part number, in the form AANNNNNN
AA = Ascii character, and the
NNNNNN = 4-bit BCD digit; byte-AI.
Part n umbe r , bytes A2, NI-No
(eacb byte has 2 N values of 4-bits).
Revision number.
Interrupt handler initialization.
NMI initialization.

Interrupt handlers and other routines in the C-block:

ENTRY:
49196/C02C
49298/C092
49312/COAO
49359/COCF
49378/COE2
49743/C24F
49746/C252
49749/C255
49778/C272
49802/C28A
49808/(;290

HANDLER/USE:
IRQ Processor
BIlEAK key IRQ
Continue IRQ processing
Table of IRQ types and offsets (16-bytes)
Immediate VBLANK NMI processing
Process countdown timer-l expiration
Process countdown timer-2 expiration
Decrement countdown timer
Set VBLANK parameters
Process deferred VBLANK NMI
Perform Warms tart

Page lID

ENTRY:

49864/C2C8
491l66/C2CA
50217/CI,29
502l0/C42C
50217/CII3D
S0241l/C44U
50251/C44B

5028Y/C471

50394/C41lA
SOI,fl5/CS35
SOS71/CSIlII
S0619/CSIlIl
50633/CSC9
S0729/C62'J
50747/Cldll
S0750/C61E
50777/C659
507YIl/C66E
501lS1/C6A3
50867/C6113
51002/C73A
51013/C745
51093/C795
51151/00'
51154/C7D2
51157/C7D5
51281/Cfl51
51309/C86D
51346/C892
S1452/C8FC
SI468/C<)UC
51507/C931

51611/C9AF
5165fl/C9CA
51751/CA29
S1799/CA57

52054/C1l56
S2069/C1l65

49834 - 52069

HANDLEIl/IISE:
Process IlESET
Perform Coldstart
Preset memory; c o Ldyva r m start continuation
Initialize cartridge software
Process ACMI interrupt
BOOT-EIlIlOIl message
Scref,n-editor specification; E:
Table of i n t o r r up t ha ud l e r s in the same order
as RAM vectors at 512 - S49; $200 - $225
Miscellaneous initialization routines:
OPTION-key checked at 5O:I30/$CI,9A
Basic enabled at 5U337/$C4AI
Hardware initialization
Software and IlAM variable initialization
Attempt disk-boot
Bout and initialize disk
Complete hoot and initialize
Ex r-ru te bon l loader
tnitialize hooted software
Display llOOT-EIlIlOR message
Get next sector routine
Attempt cassette bout
Initialize DIO; Disk I/O
DIO; Disk I/O
Set hufter address
Relocate relocatable routine to new address
lIandle end rpcord type
Get hyte
Execute Run-at-addrpss
Handle text record
Relocate text into memory
Handle word reference record type
lIandle low-byte and I-byte record type
Select and execute Selt-test
Initialize generic parallel device
PIO-Parallel device I/O; PIO vector tables
(see S8168; $E400) bo g i n at S1601; $(;991
Select next parallel device
Invoke parallel device handler
Load and initialize peripheral handler
start of thp Self-test offsets and text
(uses hardware values for character display)
Checksum linkage table
Empty/zeroed

Page 111

COMPLETE & ESSENTIAL MAP

52224 - 53505

52224-53247 CCOO-CFFF CHARSET2

International character-set, assembled in the same manner as
the standard character-set at 57344 ($EOOO). There are 2
character-sets in the XL/XE, and you can change between them
with POKE 756,224 for the standard one and POKE 756,204 for
the international one. The only difference is the CTRL-key
characters. Standard gives you graphics characters, while
the international one gives you the phonetic symbols for
writing in other languages.

Locations 53248 - 55295 ($DOOO - $D7FF) are the ROM special
I/O Large-Scale Integration (LSI) chips that give the XL/XE
it's power. There is the GTIA, POKEY, PIA and ANTIC. GTIA
uses 53248 - 53503 ($DOOO - $DOFF), POKEY uses 53760 - 54015
($D200 - $D2FF), PIA uses 54016 - 54271 ($D300 - $D3FF) and
ANTIC uses 54272 54783 ($D400 - $D5FF). For the most
extensive description of these chips, see the Atari Hardware
manual, or checkout my HARDWARE-CHIPS appendix.

Many of the following registers can't be read directly,
since they are hardware registers. Writing to them can often
be difficult because in most cases the registers are updated
every stage-lor stage-2 VBlank. The values in these
locations are copied up from their shadow registers in RAM.
To affect any permanent change, you'll need to POKE the
shadow registers themselves. This way, the hardware
register/s will be updated at the next stage-lor stage-2
VBlank. Defaults are returned on RESET by transferring the
appropriate values from the actual ROM in higher memory.
Another feature of the hardware memory is the dual purpose
of registers. Some registers are PEEKed for one purpose, but
POKEd to for a completely different purpose. For this
reason, you should avoid performing Basic expressions such
like: POKE 53248,PEEK(53248)+I. This will not consecutively
increment this memory location. Where a register is used for
2 different purposes, it is indicated with a (R) and a (W)
for READ and WRITE, respectively. Where (R) or (W) is on its
own, then this is all you can do; Read from it OR Write to
it.

53248-53505 DOOO-DOFF GTIA

GTIA is a special television interface chip designed
exclusively for the Atari to process the video signal. ANTIC
controls most of the GTIA chip functions. The GTIA chip
shifts the display 1/2 a colour-clock so that players and
playfields can overlap perfectly. This, however, results in
a very slight colour difference from the older CTIA chip
(wow).

Page 112

COMPLETE & ESSENTIAL MAP

53248

GTIA modes don't normally offer a text-window, but there are
ways of obtaining one. For convenience, you can call your
GTIA mode and POKE 703,4. The text isn't readable like this.
but as I say. it gives the convenience of stopping program
execution without returning to a Graphics 0 screen. You
should also be able to get a full screen in any mode, by
adding 16 to the mode number prior to POKEing 703 with 4.
The Display memory for the window is I-byte above the main
screen memory.
On the other hand. if you would like a readable text-window
in a GTIA mode. then you can achieve this with a DLI. See
the DLI appendix about this.
By the way. Mapping states that GTIA stands for "George'
Television Interface Adapter".

In the following list of hardware registers. the shadow
registers are enclosed in parentheses; you can see these
locations for additional information or programs in some
cases.

53248 DOOO (W) HPOSPO
(R) MOPF

(W) Horizontal position of Player #0. Values from 0 - 227
are possible here, but depending on the playfield size,
visible areas change. In the standard width playfield (see
location 559), the left-edge to the right is 48 - 208. Other
positions are off-screen. POKEing the players to a
O-position is a way of affectively turning the players off
when not using PMBASE. See this location at 54279 for
further details.
The players are usually tall and thin. They are only 8-bits
wide, although, each bit can be echoed between I and 3
colour-clocks, see the SIZE registers. They stretch from the
very top of the screen to the very bottom, in single line
resolution the range is 32 - 224, in double line resolution
the range is 16 - 112. See the PMG appendix for full details
on Player/Missile Graphics.
As soon as you POKE this register with the horizontal
position for the player. this value is 'no longer'. You
cannot perform: POKE 53248,PEEK(53248)+1 to move the player,
you must keep a recorded position in RAM or in a variable.
Try:

10 POKE 53261.255:POKE 53256.1
20 XCO=50
30 S=STICK(O)
40 POKE 53248,XCO
50 V=(S=7 AND (NOT XCO-227»-(S=11 AND (NOT XCO»
60 XCO=XCO+V
70 GOTO 30

Page 113

& ESSENTIAL MAP

532/19 - 53252

For vertical movement of players/missiles, see the PMG
appendix.

(R) The PEEK purpose of this register is to detect Missile
#0 to playfield collision. This tells you which playfield is
in collision with missile #0:

BIT: DEC: USE:
7-4 unused ...
3 8 PLay f ield #3
2 4 #2
1 2 II
0 I #0

All the 4
described
collisions.

HPOSP/MIPL registers
above. Also, see

take
HITCLR

the same format as
at 53278 about

53249 0001 (W) HPOSPI
(R) MIPF

(W) Horizontal position of player #1.
(R) Missile #1 to playfield collisions.

53250 0002 (W) HPOSP2
(R) M2PF

(W) Horizontal position of player #2.
(R) Missile #2 to playfield collisions.

53251 0003 (W) HPOSP3
(R) M3PF

(W) Horizontal position of player #3.
(R) Missile #3 to playfield collisions.

53252 0004 (W) HPOSMO
(R) POPF

(W) Horizontal position of missile #0. Missiles are alike
players, although are only made of 2-bits in width.

(R) Player #0 to playfield collisions. There can be some
confusion and problems using collision detection and
prioritizing in GTIA Graphics modes because the collision
playfields only apply to registers 53270 - 53273 ($0016 -
$0019). In Graphics 10, playfield colours are set by PCOLRO

3 (704 707) and they behave like players where
priorities are concerned. The background register also
changes from shadow register 712 to register 704.
In some cases, a player to playfield collision also shows up
in the PIPL register. because the registers in use are the
same.

Page 114

5:125J - 5:1257

use is exa('tly the same format as with the MOPf
register at 'i:l24H eXCl'pl lor Playpr itO 10

1'11(' bit
('0 II is i on
playfields.

53253 D005 (\01) IIPOSMI
(H) 1'1 PI'

(\01) Ho r i z o n t a I position of missile 111.
(H) Player ill to p l av f i n l d r o l l is i o n s ,

53254 D006 (\01) IlPOSM2
(H) 1'21'1'

(\01) Hu r i z o n t a l position of missile i12.
(H) Player itl. to p l a y f i nl d r ol I i s i o n s ,

';]25 'j !l007 (\01) IIPOSWI
(10 I'JPF

(\01) ll or i z o n t.a l p o s i t i o n of mi s s i l « in.
(H) Playpr it'l to p l a yt i u l d colI i s i o n s .

53256 D008 (W) SIZEPO
(H) MOI'1.

(\01) Size of player itO. POKE wilh 0 or 2 for normal size, I
for d o u b l e width a nd 3 lor q ua d r u p l o width. Each player can
have its owu width, hit use is:

BIT: DEC:
7-2
1-0 0

1
2
3

WIDTII:
un u s o d ...
00 Normal; II colour-clocks
o 1 Do u b l e : 16
I 0 Normal
1 I Quadruple; 32 "

(H) Missile itO to p l a y ur collisions. Again, the same format
as 53248 except tor missiles 10 players.

53257 D009 (101) S rHPJ
(H) MIPI.

(101) Si ze 01 player it!.
(R) Missile ill to player collisions.

Page 115

53258 DOOA (101) SIZEP2
(Il) M2PI.

(101) Sizp of player '2.
(Il) Missi Ie '2 to player rollisions.

53259 DOOIl (101) SIZEI'3
(Il) MJPL

(101) Size of player '3.
(Il) Missile '3 to player collisions.

53260 DOOC (101) SlUM
(Il) POPL

(101) Size of all 4 missiles; each missile only requires
2-bits e a c h , so all these are set in just the I-byte:

IlIT: 7 6 5 4 3 2 I 0
M' -3- -2- -1- -0-
DEC: I

2 6 3 1
8 4 2 6 8 4 2 1

The size selection works the same way as in SIZEI'O at 53256,
except for the particular bit-pair. which denole the
mi s s i l e e .
If you wanted 10 select double width in missiles '1 and '3,
then you would set bils J and 7, thus, give decimal values 8
+ 128 = 136.

BIT-pair:
o and 0: normal size - 2 colour-clocks wide
o and 1: double size - 4
I and 0: normal
1 and I: Quadruple size - 8

(Il) Player '0 to player collisions. Again. the bit usp is
alike all other collision registers. except for player '0 to
player collisions.

53261 DOOD (101) GRAFPO
(Il) PIPL

(101) Graphics shape for player 10 written directly to the
player graphics register. In using these registers, you
bypass ANTIC. You only use the GRAFPI registers when you are
not using Direct Memory Access (DMA) (see GRACTL at 53277
for DMA).

Page 116

5:12hl r on t .

If ImA is enabled, then the graphics r e g i s t e r s will be
10illlf'cI a u t oma t r c a l l y each single or double scan-line with
the users given datil, pointed to by PMBASE at 54279.
Without I'MBASE, t hr- t;IlAFl'it r e g i s l e r s can Oldy echo the same
"b i t r s h a p e ' value throughout the graphic (t.op to bott.om).
For example:

10 POKE 5l248,160:POKE 704,245
20 POKE ,3
30 POKE 5:12h I, PEEK (20) : GOTO 30

To remove t h e data from the s r r e en , but r e l a i n the present
ho ri z o n t a l position o t the graphic, just POKE 53261 with O.
Each bit set in this r e g i s t e r runs the entire height of the
s c r e en as you'll Sl'e with th •.> example program. The ha nd y
thing with using the GIlAFl'it registers is that you can use a
PMG for s c r e o n boundaries. You don't have to use PMBASE to
change the s hu p e of a graph ice it ho r , if you just want to
create s e v e r a l blocks (with the sam!' graphic) at different
positions on the scree-n, then you can use the following
program. This can also be very handy for selecting the
coloured bars to rh o o s e a nu-uu option on the screen:

10 DATA 72, DB, 72
12 DATA 16('.2(1:\.181),6il,I>,141,0,20B
1il DA'I'A ill, 24 U , 5 , 20 il ,Ill 1 , I H, 2 (J 8
I 6 (JATAt 9B , 203 , 16 , il , 169 , 24 , I J:l , 20:1
i s IlATA 104,170,IOil,6/1
20 FOil 1=0 TO 29
22 HEAIl Il:POKE 15:16+1,Il:NEXT
30 FOil K=2 TO 2B: [I' K=il THEN K=h
:12 POKE IlI.+K,PEEK(DL+K)+128:NEXT K
40 POKE 7 (ll, , I :l(l : POKE 2()] , 2 II : POKE 204, 0
42 POKE 5:1256,:1: POKE 255
50 POKE 512,O;POKE 5[3,6
52 POKE 5428h,I92
60 FOil COL=O TO 24
62 POKE It.2 /1-COJ.,41l+COr.*4:NEXT COr.

The program is fairly straightforwdrd; the IlLI is POKEd into
ue no r y anti the- IJL h a s the OLI-bit s e t on every line. The DLJ
uses location 21l] as a l i uu-r r o un L, so don't use this
l ora ti o n , Location 20 /1 is a luminance control a rid
colour-shifter lor the graphic. The l j n e and column is
a c h i e v e d on lines (,O - 62 of the p r o g r a m, The column takes
the formula: lo!l+COLlIMN"/I, just substitute t h« column number
in the expression. The line that your on de-pends on the
memory l o c a t i o n you POKE the column into. Locations 1600 -
1624 are used for the 24 on-screen lines ilnd the position of
the graphic on the border. Note, that the lines are a c t ua l l y
reverse-d; hence, the top-line is at location 1624 and the'
bottom-line is at IbOI. Location 1600 is the border position
of the graphic.

Pa g e 117

5JL62 - 5\265

(Il) Player #1 to player collisions.

DOOE (W) GIlAFPI
(Il) P2PL

(W) Graphic for player #1.
(N) Player #2 to player collisions.

53263 DOOF (W) GIlAFP2
(Il) P3PL

(W) Graphic for player #2.
(H) Player 3 to player collisions.

5:3264 DOlO (W) GHAt'P3
(Il) TlllGO

(W) Graphic for player #3.

(R) Joystick trigger 0 (location 644). Controller jack I,
pin-6. For all the triggers, 0 means trigger is pressed and
I means released. It Bit-2 of GHACTL at 53277 is set to I,
then all TRIG bit-O's are latched (set to 0) when any
trigger button is pressed, and are only reset to I (not
pressed) when the latch bit is cleared at GIlACTL. This
affect of latching triggers is to return a 'constant button
pressed' value until the latch-bit is cleared.

53265 DOli (W) GRAFM
(Il) TRIG!

(W) Graphics for all
players). GIlAfM works
earlier. Each pair of
missiles are only 2-bits

BIT: 7 6 5 4 3 2 I 0
M# -3- -2- -1- -0-

I
2 6 3 I
B 4 2 6 8 4 2 I

missiles, not us ed with rHlA (same as
in the same way as GIlAfPO described
bits represents one missile as
wide:

Each bit will create a vertical line down the TV screen. To
turn off any missiles, just disable (clear) the bit-pair for
the missile you wish to disable. If you wished to make
missile #3 2-bits wide and missile #1 just I-bit wide, you
would set bits: 7,6 and 3 (or bit-2 instead of 3); thus,
128 + 64 + 8 = 200. POKE 53265,200.

Page 118

COMPLETE & ESSENTIAL MAP

53266 - 53271

(R) Joystick trigger I (645). Controller jack 2, pin-6.

53266 DOl2 (W) COLPMO
(R) TRIG2

(W) Colour and luminance of player and missile #0 (704).
Missiles share the same colours as their associated players,
except when joined together to make the 5th player with
bit-4 of GPRIOR (623), in which case, the 4-missiles then
assume the colour stored at location 53733 (711).

(R) TRIG2; No longer used.

53267 DOl3 (W) COLPMI
(R) TRIG3

(W) Colour and luminance of player and missile #1 (705).
(R) TRIG3; No longer used.

53268 DOl4 (W) COLPM2
(R) PAL

(W) Colour and luminance of player and missile #2 (706).

(R) Denotes whether your Atari is PAL (European and Israeli
TV compatible when value here is 0) or NTSC (North American
compatible when value here is 13). PAL Atari' TV frames are
refreshed every 50th of a second (121 slower than NTSC).
where NTSC refreshes its frames every 60th of a second. For
this reason, the 6502 microprocessor in PAL Atari' works at
2.217 MHz, which is 191 faster than the 1.79MHz NTSC 6502.
Also, their $EOOO and $FOOO ROMS are different, so there may
be some incompatibilities in the cassette handling routines.
There is a 3rd TV standard called SECAM, used in France,
USSR and parts of Africa. If Atari supports SECAM, I don't
know. See the PAL/NTSC appendix.

53269 DOl5 COLPM3

(W) Colour and luminance of player and missile #3 (707).

53270 DOl6 COLPFO

(W) Colour and luminance of playfield #0 (708) .

53271 DOl7 COLPFI

(W) Colour and luminance of playfield #1 (709) .

Page 119

..1-... J!M'

5]272 - 53276

53272 IJOIH COLPF2

(W) Colour and luminance of playfield it2 (lIO).

53273 IJUI9 COLPF3

(W) Colour and luminance of playfield #3 (711). This is also
the 5th player colour register COLPM5.

53274 DOIA COLBK

(W) Colour and luminance of playfield it4/border (712).

53275 DOIB (W) PRIOR

(W) Priority selection register. PRIOR establishes which
objects on the screen (players, missiles and playfields)
will be in-front of other objects. Values here are also
described at 623; $26F, the shadow register. [f you set
multiple bits, then conflicting priorities at the same level
turn black in overlapping regions:

BIT: 3 2 I a
DEC: 8 4 2 I
PRIORITY:
HIGH PFO PFO PMO PMO

PEl PFI PMI PMI
PMO 1'1'2 1'1'0 PM2
pMI p5/PF3 HI PM:l
pM2 PMO PE2 PEa
PM3 PMl p5/pF3 PFI
1'1'2 PM2 PM2 pF2

p5/pE:l pM3 pM3 P5/PF3
LOW BAK/G BAK/G BAK/G BAK/G

For example; if you set bits 3 and I, then pMO and I will
blackout with PFO and 1 of the same level. This is what you
could call a power cut.

(R) Reset to 15.

53276 DOIC VDELAY

(W) Vertical delay register. Used to give 1 line resolution
movement capability in the vertical positioning of an object
when the 2 line resolution display is enabled. Setting a bit
in VDELAY to 1 moves the corresponding object down I TV
scan-line.

Page 120

COMPLETE & ESSENTIAL MAP

53277 - 53278

If DMA is enabled, then moving an object by more than I line
is accomplished by moving bits in the memory map instead,
see the PMG appendix.

BIT: 7 6 5 4 3 2 I 0
DEC: 128 64 32 16 8 4 2 I
PM#:: P3 P2 PI PO M3 M2 MI MO

(R) Reset to 15.

53277 DOID GRACTL

(W) Used with DMACTL at 54272; $D400, to latch all stick and
paddle triggers. Also used to turn on players and missiles.
Bit use is:

BIT:
o
I
2

DEC:
I
2
4

USE:
Turn missiles on
Turn players on
Latch all trigger inputs

To revoke P/M authorization and turn off both players and
missiles, POKE 53277 with O. Once latched, triggers will
give a continuous 'button pressed' status until this latch
bit is cleared (set to 0).
If you've ever pressed BREAK during a game using
player/missile graphics, then you'll have noticed that the
players/missiles are still left on screen, and in some
cases, they turn into flickering blocks. You can get rid of
this junk by POKEing 0 into this location or by POKEing 559
with 34. If for some reason, it does not dissappear, then
there is an active interrupt working; POKE 580,0 and hit
RESET should do the trick. You can also use POKE 623,4 to
prioritise playfields over players and missiles.

(R) Reset to 15.

53278 DOlE HITCLR

(W) POKE with any value to clear all player/missile
collision registers. It is important to clear this register
often in a program which frequently checks for collisions,
otherwise, old collision values may remain and confuse the
program. A simple way to accomplish this is to clear the
collision registers prior to every joystick check, this way,
if a collision is detected, then it is due to the most
recent joystick input.

(R) Reset to 15.

Page 121

53279 - 53503

53279 DOIF CONSOL

(W/R) Used to see if any of the silver consol keys have been
pressed, although, not RESET and HELP. For Reset, see
locations 10 and II, see location 732 for the HELP key.
Depending on which key you press from OPTION, SELECT or
START, a value is returned to this register as shown in the
table:

KEY/S PRESSED:
OPTION SELECT
yes yes
yes yes
yes no
yes no
no yes
no yes
no no
no no

START
yes
no
yes
no
yes
no
yes
no

DEC:

o
I
2
3
4
5
6
7; Default

CONSOL is normally 7 (no keys pressed) and is updated every
stage-2 VBlank. The OPTION key is also used to disable Basic
by holding it down while turning-on your Atari XL/XE. You
should normally only need to hold OPTION down until the
blue-screen appears, or just a couple of seconds.
It is possible to use the consol speaker to generate
different sounds, try the following program:

10 DATA 104,162,255,169,255,141,31,208
20 DATA 169,0,160,240,136,208,253
30 DATA 141.31,208,160,240.136,208,253
40 DATA 202,208,233.96
50 FOR 1=0 TO 26
60 READ D:POKE 1536+I,D:NEXT
70 X=lJSR(l536)

To change the tone, you POKE 1547 and 1555 with a higher or
lower value (both are presently 240). To change the tone
duration, you POKE 1538 with a lower value (it's set to
255). Apart from changing the tone, you can also create some
wicked sways in the notes, for example, try POKE 1546,164 -
POKE 1547,20 and POKE 1555,80. You could also put the
program in an endless loop with a GOTO 70 statement for a
fuller sounding affect.

53280-53503 D020-DOFF REPEAT MEMORY

These locations are repeats of locations 53248 - 53279
($0000 $DOIF). Mapping states that you cannot use these
locations, but in fact. you can. Whether or not, they hold
any other secrets, I don't know for sure. They appear to be
exactly 'timed' repetitions of the earlier locations.

Page 122

COMPLETE & ESSENTIAL MAP

53504 - 54015

53504-53759 DIOO-DIFF

Unused by the OS, this area is switched out when an external
device connected to the expansion bus is selected and the
device memory is switched in. The situation is reversed when
the device I/O is completed:

53504-53758
53504

53505

53759

DIOO-DIFE
DIOO

DIOI

DIFF

Device registers
Hardware get and put register
(HWGET/HWPUT) data from the
device on the bus is stored here
Hardware RESET and status register
(HWRSET = write; this resets
the get/put register HWSTAT
for read)
Hardware select register. shadow
byte is 583 ($247). Bit-O is
device-O, Bit-I is device-I etc.
Writing to this byte deselects
the FP ROM and selects device ROM
(try looking at it and
subsequent locations with MAC/65's
DDT or a similar tool while
altering $DIFF)

This area is normally $FF'd (completely comprised of 255's)
and is not alterable at all.

53760-54015 D200-D2FF POKEY

POKEY is a digital I/O chip that controls the audio
frequency and control registers; frequency dividers. poly
noise counters. pot (paddle) controllers, the random number
generator. keyboard scan, serial port I/O and the IRQ
interrupts.
The AUDF# (audio frequency) locations are used for the pitch
for the corresponding sound channels, while the AUDC# (audio
control) locations are the volume and distortion values for
those same channels.

Frequency values range from 0 - 255, although the value is
increased by I by the computer to range from 1 to 256. Note.
that the sum of the volumes should not exceed 32. since
volume is controlled by the least 4-bits. volumes also
distort if the sum of all the channels output volumes to the
speaker is greater than 32 because POKEY only controls the
speaker cone at 16 different positions from resting position
(inclusive). The range is set from 0 - 15. You can POKE it
with 16 (Volume only. Bit-4) and a sound will be forced out
(the speaker cone gets pushed out to its furthest position
causing a slight 'pop' sound). The highest 3-bits are used·
for distortion; 192 gives pure-digital tone, other values
range from 32 - 192 in steps of 16.

Page 123

53760 - 53761

The AUDF# registers are also used as the POKEY hardware
timers. These are generally used for counting intervals less
than I VBlank (see the explanation in VTIMR4 at 532,533).
For longer intervals, use the software timers.
VBI's and DLI's occasionally have painful results if they
conflict with the hardware interrupts. These results can
occur if your DLI's are too long, the 6502 interrupt flag is
not set or a STA WSYNC occurs at an awkward time.

POT values are for paddles, ranging from 0 - 228, increasing
as the knob is turned counterclockwise, but values less than
40 and greater than 200 represent an area on either edge of
the TV screen that may not be visible on all TV sets or
monitors.

53760 D200 (W) AUDF1
(R) POTO

(W) Audio channel-I frequency. This is actually a number (N)
used in a "divide by N circuit"; which, for every N pulses
coming in (as set by the POKEY clock), I pulse goes out. As
N gets larger, output pulses will decrease and the sound
produced will be of lower tone. As N gets lower, the reverse
happens.
Try POKE 53761,168 and POKE 53760,200. This is the same as
the Basic SOUND statement: SOUND 0,200,10,8.

(R) POT (paddle) 0 (624); POT is short for potentiometer
(variable resister). Turning the paddle knob clockwise
results in decreasing pot values. When reading paddles in
machine-language. the POT values are only valid 228 scan
lines after the POTGO command. or after ALLPOT changes (see
53768 and 53771).
POT registers continually count down to O. decrementing
every scan line. They are reset to 228 when they reach 0 or
by the values read from the shadow registers. This makes
them useful as system timers too. COMPUTE!, February 1982
shows this use.
The POTGO sequence (see 53771) resets the POT registers to
O. then reads them 228 scan lines later. For the fast
pot-scan. Bit-2 of SKCTL at 53775 must be set.

53761 D201 (W) AUDCI
(R) POTI

(W) Audio channel-I control. Each AUDF register has an
associated control register which sets volume and distortion
levels. The bit use is:

BIT: 7 6 5
DEC: 128 64 32

4
16

3 2
8 4

I 0
2 I

Page 124

COMPLETE & ESSENTIAL MAP

53762 - 5376:1

Distortion
(noise)

000
001

etc.to:

Volume
only

o

I
Forced
output

Volume
level

o 0 0 0
000 I

etc.to:

Lowest

Highest

The values for the distortion bits are as follows. The 1st
process is to divide the clock value by the frequency, then
mask the output using the polys in the order below, and
finally, the result is divided by 2. The various sound
affects are also given, they vary depending on low or high
frequencies:

BIT: BIT-POLYS:
7 6 5
0 0 0 5 then 17
0 0 I 5
0 I 0 5 then 4
0 I I 5
I 0 0 17
I 0 I none
I I 0 4
I I I none

DISTORTION
Low freq. to high:
geiger-counter to steam
machine-gun to power-transformer
calm-fire to car-engine
machine-gun to power-transformer
crashing-building to waterfall
pure tones
airplane to electric-razor
pure tones

In general, the tones become more regular (a recognizable
droning becomes apparent) with fewer and lower polys masking
the output. This is all the more obvious at low frequencies.
POKE with 160 or 224 plus the volume for pure tones. De Re
Atari gives a good explanation of sound.

(R) I'OT-I register (625).

53762 D202 (W) AlJDF2
(H) POT2

(W) Audio channel-2 frequency. Also used with AlJDF3 to store
the 19200 baud rate for SIO.

(H) Pot-2 (626).

53763 D203 (W) AUDC2
(R) POT3

(W) Audio channel-2 control.
(R) Pot-3 (627).

Page 125

COMPLETE & ESSENTIAL MAP

53764 - 53768

53764 D204 (II) AUDF3
(R) POT4

(II) Audio channel-3 frequency. Used with AUDF2 and AUDF4 to
store the 600 baud rate for SIO.

(R) Pot-4. Since there are no more than 4 Paddles on the
XL/XE series, POT's 4 - 7 are repeats of POT's 0 - 3.

53765 D205 (II) AUDC3
(R) POT5

AUD#2 and
and 7 to
upgrade in
information.

(II) Audio channel-3 control.
(R) POT5; repeat of POT-I.

3 can be altered in a program to point to AUD'6
have stereo output if you have made the stereo
your Atari. See the STEREO appendix for full
It's well worth the modification.

53766 D206 (II) AUDF4
(R) POT6

(II) Audio channel-4 frequency.
(R) POT6; repeat of POT-2.

53767 D207 (II) AUDC4
(R) POT7

(II) Audio channel-4 control.
(R) POT7; repeat of POT-3.

53768 D208 (II) AUDCTL
(R) ALLPOT

(II) Audio control. To properly initialize the POKEY sound
capabilities, POKE AUDCTL with 0 and POKE 53775,3. These 2
POKEs are the equivalent of Basics SOUND 0,0,0.0. AUDCTL is
the option byte which affects all sound channels. This bit
asignment is:

BIT: DEC:
7 128

6 64
5 32
4 16
3 8
2 4

2

o

DESCRIPTION:
Makes the 17-Bit poly into a 9-Bit poly
(see below)
Clock channel-l with 1.79MHz
Clock channel-3 with 1.79MHz
Join channels 1 and 2 (16-Bit)
Join channels 3 and 4 (16-Bit)
Insert High-pass filter into channel-I, clocked
by channel-3
Insert High-pass filter into channel-2, clocked
by channel-4
Switch main clock-base from 64KHz to 15KHz

Page 126

and 16) allow you to combine
10 obtain much higher or lower
range, instead of the usual 5.

COMPLETE & ESSENTIAL MAy

53768 cant.

Poly (polynomial) counters are used as a source of random
pulses for noise generation. There are 3 polys; 4-llits,
5-llits and 17-llits long. The shorter polys create more
repetitive sound patterns, while the longer poly has no
apparent repetition. Therefore, setting llit-7 above, making
the 17-llit poly into a 9-Bit poly will make the pattern in
the distortion more evident. You select which polys you wish
by setting the high 3-llits in the AUDC# registers. The
17-Bit poly is also used to generate the random-number at
location 53770; $020A.

The clock-bits allow you to speed-up or slow-down the
clock-timers, respectively, making higher or lower frequency
ranges possible. Setting the channels to 1.79MHz will
produce a very much higher sound, the 64KHz clock is far
lower, while the 15KHz clock is the lowest. The main-clock
is also used when setting the frequency for the
hardware-timers.
Bils 3 and 4 (decimal 8
channels I and 2, or 3 and 4
frequencies within a 9-octave
Try the fol lowing example:

10 POKE 53768,80
20 POKE 53761,160:POKE 53763,168
30 POKE 20,O:POKE 19,0
40 POKE 53760,PEEK(20) : POKE 53762,PEEK(19) :GOTO 40

If you have a set of paddles, then you can use them to alter
the frequency, just substitut.e line 40 for:

40 POKE 53760,PADOLE(0) :POKE 53762,PADDLE(I):GOTO 40

Or, if you only have a joyslick:

40 S=STICK(O)
50 F=(S=7 AND (NOT X-255»-(S=11 AND X)
60 C=(S=13 AND(NOT Y-255»-(S=14 AND Y)
70 X=X+F:Y=Y+C
80 POKE 53760,X:POKE 53762,Y:GOTO 40

Where the left paddle (stick left and right) is for fine
adjustment and the right one (stick up and down) is for
coarse adjust.ment.
High-pass filters only allow frequencies higher than the
clock value to pass through, which is very handy for
creat.ing dynamic sounds with no updates. This method is also
handy for making special affects:

10 POKE 53768,4
20 POKE 53761,168:POKE 53765,168
30 POKE 53760,254:POKE 53764,127
40 GOTO 40

Page 127

53769 - 53770

Break the program and do a POKE 53768,5. Now, try POKE
53764,255. The possibilities are wide and varied.
There is a very good sound article in De Re Atari, and the
Hardware manual is worth seeing.

The actual frequencies described pre-leaf are all rounded
off; 64KHz is actually 63.921 KHz, 15KHz is really 15.6999
KHz and 1.79MHz is 1.78979MHz. You can correctly calculate
the POKEY interrupt frequency with:

INTFREQ m clock-freq / (2 * (1 + AUDF# value»

See COMPUTE! 's 3rd book of Atari, or the VOLUME-BIT appendix
in this book.

(R) ALLPOT; 8-1 ine POT port state; reads all 8 POTs
together. The lower 4 bits represent the paddles of the same
number. the higher 4-bits are repeats of the lower 4. Bits
are set to 1 if valid (paddle in use). ALLPOT is used with
the POTGO command at 53771; $D20B.

53769 D209 (W) STIMER
(R) KBCODE

(W) Start the POKEY timers (the AUDF registers). You POKE
any non-zero value here to load and start the timers; the
value itself isn't used in the calculations. This resets all
of the audio frequency dividers to their AUDF values. If
enabled by IRQEN below, these AUDF registers generate timer
interrupts when they count down from the number you POKEd
there to O. The vectors for the AUDFI. AUDF2 and AUDF4 timer
interrupts are located between 528 and 533; $210 - $215.

(R) KBCODE holds the keyboard code which is then loaded into
the shadow register 764; $2FC when a key is hit. Usually
read in response to the keyboard interrupt. Compares the
value with that in CHI at 754, and if both the values are
the same, then the new code is accepted only if a suitable
key debounce delay has transpired. The routines which test
to see if the keycode will be accepted start at 64537;
$FCI9.

53770 D20A (W) SKREST
(R) RANDOM

(W) Reset bits 5 - 7 of the serial port status register at
53775 to 1.

Page 128

COMPLETE & ESSENTIAL MAP

53771 - 53773

(R) RANDOM; When this location is read, it acts as a random
number generator. It reads the high order 8-Hits of the
17-Bit polynomial counter (9-Bit if Bit-7 of AUDCTL is set)
for the value of the number. You can PEEK this register in a
program to generate a random integer between 0 - 255. If you
want a random number between 0 - 65535, then you can use: ?
PEEK(53786)*256+PEEK(53770). The Basic equivalent uses the
[NT and RND statements as: ? INT(RND(0)*65536).

53771 D20B POTGO

(W) Start
values 1st
resets the
VBlank.

the
and
POT

POT scan sequence. You must read your POT
then start the scan sequence, since POTGO
registers to O. Written by the stage-2

53772 D20C

Unused and unalterable; set to 255. Most of the hardwares
unused memory is set to 255.

53773 0200 (W) SEROUT
(R) SERIN

(W) Serial port data output. Usually written to in the event
of a serial data out interrupt. Writes to the 8-Bit (I-byte)
parallel holding register Ihat is transferred to the serial
shift register when a full byte of data has been
transmitted. This 'holding' register is used to contain the
bits 10 be transmitted I at a time (serially) as a I-byte
unit before transmission.

(R) Serial port input. Reads the I-byte parallel holding
register that is loaded when a full byte of serial input
data has been received. As above, this holding register is
used to hold the bits as they are coming in I at a time
unlil a full byte has passed. This byte is then taken by the
computer for processing. Also used to verify the checksum
value at location 49; $31.

The serial bus is the port on the Atari into which you plug
the cassette or disk cable. For the pin descriptions, see
the PINOUTS appendice.

Page 129

53774

53774 D20E (W) IHQEN
(R) IRQST

(W) Interrupt request enable. POKE with 0 to turn off all
interrupts, or with the appropriate values to enable the
desired interrupt. Bit use is:

BIT: DEC: INTERRUPT: VECTOR:
0 1 Timer-1 enable VTl MR 1

528; $210
2 Timer-2 VTlMR2

530; $212
2 4 Timer-4 VTIMR4

532; $214
3 8 Serial OIP transmitted VSEROC

526; $20E
4 16 Serial OIP data needed VSEROR

524; $20C
5 32 Serial liP data ready VSERIN

522; $20A
6 64 Other-key enable VKEYBD

520; $208
7 128 Break-key BRKKY

566; $236

When a bit is set or cleared, that interrupt is enabled or
disabled. For example, if you enable the break key
interrupt, the vector BRKKY is only taken when the break key
is pressed. When you set the timer interrupts, then their
associated timers are decremented, and when they reach 0,
the Atari vectors through its associated interrupt vector.
These timer bits are not set on power-up, so should be set
by the user before enabling the processor IRQ.
There is 1 other interrupt. processed by PIA. generated over
the serial bus proceed and interrupt lines. set by PACTL at
54018; $D302. See this register for further details.

(R) IRQST; Interrupt request status. Bit functions are the
same as IRQEN except that they register the interrupt
request status; ie. timers are read as 1 when they count
down and reach O. rather than the enable bit when it is set.
IRQST is used to determine the cause of the interrupt
request with IRQEN and PACTL described above.
All IRQ interrupts are normally vectored through 65534;
$FFFE to the IRQ service routine at 49196; $C02C which
determines the cause of the interrupt. The IRQ global RAM
vector VIMIRQ at 534; $216 ordinarily points to the IRQ
processor at 49200; $C030. This processor routine then
examines 53774; $D20E and the PIA register 54018 to
determine the cause of the interrupt. Once determined, the
routine vectors through 1 of the IRQ RAM vectors on Page-3.

Page 130

COMPLETE & ESSENTIAL MAP

53775

53775 D20F (W) SKCTL
(R) SKSTAT

(W) Serial port control. Holds the value 255 if no key is
pressed, 251 for most other keys, 247 for the shift key.
This also stores the help key detection, the help key, when
read here, also has the auto-repeat feature. POKE with 3 to
stop the occasional noise from the cassette unit after I/O
to bring POKEY out of 2-tone mode. Shadow register is 562.
See SKSTAT also, for bit use.

(R) SKSTAT; reads the serial port status. It also returns
values governed by a signal on the digital track of the
cassette tape. You can generate certain values using the
SOUND command and a PEEK to SKSTAT: SOUND 0,5,10,15 returns
a value of 255 here, but 127 on occasion. SOUND 0,8,10,3
returns a value of 239. This is handy for adding a voice
track to your Atari tapes. You use the left channel for your
voice track and the right channel for the tones you want to
use as cueing marks. You can use your TV speaker to generate
the tones by placing a microphone directly in front of it.
The computer will register these tones in this register when
it encounters them in a later cassette load. See COMPUTE!,
July 1981 for some other ways of doing this. Remember, you
can turn the cassette off by POKE 54018,60 and back on with
a value of 52.
SKCTL bits are normally 0 and perform the functions below
when set. The status when used as SKSTAT (R) are also listed
here, below the (W) function:

BIT: DEC: MODE/FUNCTION:
0 I (W) Keyboard debounce circuit enable
I 2 (W) Keyboard scanning circuit

(R) Serial l/P shi ft register busy
2 4 (W) Fast pot-scan enable; the pot-scan counter

completes its sequence in 2-TV scan-lines
instead of I-frame time (228 scan-lines)
not as accurate as the normal pot-scan

(R) Last key is sti I I pressed
3 II (W) Serial OIP is transmitted as a 2-tone signal

rather than logic on/off. POKEY 2-tone mode
(R) Shi ft key is pressed

4,5,6 (W) Serial port mode control, see next page
4 16 (R) Audio I/P; data can be read here

ignoring the shi f t register
5 32 (R) Serial data liP over-run, see next page
6 64 (R) Keyboard over-run, see next page
7 128 (W) Force break; serial OIP to 0

(R) Serial data liP frame error caused by
missing or extra bits, see next page

Page 131

COMPLETE & ESSENTIAL MAP

53776 - 54015

Bit-2 is 1st set to 0 to reset POT registers to 0 (dumping
the capacitors to change the POT registers). Then Bit-2 is
set to I to enable the fast scan. This is not as accurate as
the normal scan. This Bit must be reset to 0 to enable
normal scan-mode; otherwise, the capacitors will never dump.
This Bit has also been used in a small machine-language
routine in the Atari' Graphics demo-disk. With a few other
locations, it can be used to achieve full colour GTIA
photograph displays as it is done on this demo-disk. You
should be able to get hold of the disk at various
PD-libraries.

Write (W) bits 4, 5 and 6 are used to set the bi-directional
clock-lines so that you can either receive external
clock-data or provide clock-data to external devices; see
Hardware manual p.II.27. There are 2 pins on the serial port
for Clock-IN and Clock-OUT. See the OS Users manual p.146.
The whole of section-9 describes this area. Bits 5 and 6 are
listed the other way round in Mapping and most other
manuals, and in fact they are wrong. The bit assignment in
this book is the correct one; see Page-6 mailbag, issue 60.
Bits 5 - 7 (latches) can also be reset to I by using SKRES
at 53770; $D20A.

53776-54015 D210-D2FF REPEAT-MEMORY

These locations are
although, you will
default values when
program:

repeats of locations 53760 - 53775,
find that many of them have different
PEEKing them. Enter Basic and try this

10 DL=PEEK(560)+256*PEEK(561)
20 POKE DL+4,0:POKE DL+5.210

You should see all the (R) locations. The Random number is
different for all its repeated locations, and if you press a
key and hold it down, particular groups of locations
flicker. These groups are the same locations, only repeats,
but they have different default values.

53776-53791 D210-D21F POKEY2

If you've got the stereo sound upgrade in your Atari, then
these locations are the new AUDt registers etc .• see the
STEREO appendix for complete details.

Page 132

COMPLETE & ESSENTIAL MAP

54016

54016-54271 D300-D3FF PIA: 6520

The peripheral interface adapter (PIA) integrated circuit is
a special microprocessor used to control the Atari ports,
controller jacks I and 2. Ports can be used for both input
and output simultaneously or alternately. The ports can be
used. and are used for a wide variety of purposes on the
XL/XE series; from a thermostat control to a video-camera
input or speech/music digitizing. These ports are a major
resource for external and internal control and expansion.
PIA also processes NOM configurations at 54017; $D30I, and 2
of the IRQ interrupts: VPNCED and VINTER, vectored at
locations 514 - 517; $2U2 - $205. These interrupts are not
used by the OS, but do provide greater control over external
devices.

54016 D300 PORTA

(WIN) Heads or writes data from controller jacks I or 2 if
Bit-2 of PACT\. is set to I. Writes to 'direction-control' if
Bit-2 of PACTL is O.
This register also controls the direction of data-flow to
the port, if the controller register PACTI. has bits 4 and 5
set (POKEd with 48), then. if the bits here read 0, it is in
input (N) mode; if they read I, then it is in output (W)
mode. A 0 POKEd here makes all bits input, a 255 makes all
bits output. Bits 0 - 3 address pins I - 4 on jack 1, while
bits 4 - 7 address pins 1 - 4 on jack 2. POKE 54018 with 52
to make this register into a data register again. Shadow
registers are 632; $278 for STICK(O). 633; $279 for STICK(I)
and 636 - 639; $27C - $27F for PTRIGO-3.

Bits used as a data-register:
7 6 5 4 3 2 I 0
--Jack-O-- --Jack-I--
-STICK(O)- -STICK(I)-

Forward: Bits 0 and 4 1
Backward: I 5 1
Left: 2 6 I
Right: 3 7 I
Neutral: AII 4 jack bits =1

PORTA is also used to test if the paddle 0 - 3 triggers
(PTRIG) have been pressed. using these bits:

BIT:
PTRIG:

7 6 543 2
3 2 1 0

o

Page 133

COMPLETE & ESSENTIAL MAP

54017

The PORTA register is also used in the keyboard controller
(used with a keypad) operation where:

BIT:
ROW:
JACK:

7 6 5 4
4 3 2 TOP
•.•..• 2 ••••.•

321 a
4 3 2 TOP
. ••... 1 •••••.

Columns for the keyboard operation are read through the POT
(PADDL) and TRIG registers. See micro, May 1982 and the
Hardware manual for more information on jacks and ports.

54017 D301 PORTB

(W/R) Since the XL/XE series no longer have a PORTB (on the
old Atari', this was for ports 3 and 4, giving 4 joysticks!
Why ever did Atari drop the 4 ports?), this register is used
for 1200XL LED control, 130XE bank switching as well as
XL/XE memory management in particular.
You can disable the ROM between 49152 - 53247; $COOO - $CFFF
and 55296 65535; $D800 - $FFFF by clearing Bit-O to O.
These 2 ROM areas are switched-out and RAM is switched-in.
Note, that the Hardware memory between $DOOO - $D7fF remains
intact and is not switchable. When you do switch the
ROM-out, unless another OS has been provided, the system
will crash at the next interrupt (a maximum of 1/50th second
later), for this reason, if you do switch this ROM out for
another ROM, you should disable all NMI and IRQ interrupts.
Do this with:

LDA 1$0
STA $D40E
SEI

;disable NMI's
;disable IRQ's

Bit-l controls Basic; If 0, Basic is enabled, if I, then it
is disabled and the 8K region between $AOOO - $BFFF is
available as RAM. If you disable Basic from within a Basic
program using any Basic keyword, then the system will
lock-up.

Bits 2 and 3 control the 1200Xl LED'; 0 means on and I means
off. LED-l is the keyboard enable/disable; LED-2 is the
character-set selected. In the 130XE, these bits are used
for bank switching 16K blocks of RAM. You can use this extra
memory as video memory or program/data memory. See the 130XE
BANK-SWITCHING appendix.

Bits 4 6 are unused in the XL' and 65XE. In the 130XE,
bits 4 and 5 are used to enable bank switching.

Page 134

COMPLETE & ESSENTIAL MAP

Bit 7 controls the RAM region 20480 - 22527; $5000 - $57FF
which is normally enabled (set to 1). When this bit is
cleared to 0, the OS-ROM in this area is enabled and access
provided to the Self-test code moved from 53248 - 55295;
$DOOO - $D7FF (under the Hardware memory).

Try this: POKE 54017,PEEK(54017)-128 to enable the Self-test
ROM. Now type X=USR(20480). The Self-test screen appears.
The RAM in this area is restored on Reset/warmstart or
cold-start. Of course, you really only have to type BYE in
Basic to access the Self-test routine, but when you enter
the Self-test this way, the system also sets the COLDSTart
flag at location 580 to 255, so pressing Reset actually
coldstarts the system.
Here's a program from Joe Miller of Koala technologies which
copies the OS-ROM in 2 portions (skipping the $DOOO - $D7FF
block) into RAM, disables the ROM, and then moves the OS
back to its original address area, but giving a RAM-OS:

100 REM RAMROM - Install RAM-based
110 REM OS in an XL/XE computer
120 REM by Joe Miller
130 REM March 23rd, 1985
180 REM
1907 CHR$(I25)
200 7 "Moving OS-ROM into RAM ... ";
205 RESTORE 300
210 FOR 1=1536 TO 1635
220 READ B:POKE I,B:NEXT I
230 X=USR(l536)
240 7 "OS moved back to original"
250 7 "area, but is now RAM-OS."
260 7 "Press RETURN for a proof-test";
270 7 :7
280 7 "POKE 57344,1
290 POSITION 2,5
300 DATA 169,0,133,203,133,205,169,192
310 DATA 133,204,169,64, ,133,206,160,0
320 DATA 177,203,145,205,200,208,249
330 DATA 230,206,230,204,240,12,165,204
340 DATA 165,204,201,208.208,237
350 DATA 169.216,133,204,208,231,8,120
360 DATA 173,14,212,72,169,0,141,14,212
370 DATA 173,1,211,41,254,141,1.211
380 DATA 169,192,133,206,169,64,133,204
390 DATA 177,203,145,205,200,208,249
400 DATA 230,204,230,206,240,12,165,206
410 DATA 201,208,208,237,169,216,133,206
420 DATA 208,231,104,141,14,212,40,104,96

Page 135

You can make this program
changing the loop at line
removing the last occurrence
and deleting the USH call at
and then go to DOS and use
type:

Filename.ext,0600,0662,0600

into an AUTOHUN.SYS file by
1610 to: FOR 1=1536 to 1634,
of the number 104 in line 420
line 230. Re-run the program,
the Binary-save option K, and

This way, every time you boot this disk up, the ROM-OS will
become a RAM-OS occupying the same area of memory it usually
does. Here's the Source listing:

;Move XL OS ROM into RAM

;RAMROM-Installs the XL ROM-based OS
;in RAM at the same address space. This
;is useful for making small patches to
;the OS or for experimenting with new-
;design concepts such as; multi-tasking
;or window management etc ..

;by Joe Miller

;This version is configured as an
;AUTORUN.SYS file

SOURCE EQU $CB
DEST EQU SOURCE+2
START EQU $0600
OS ROM EQU $COOO
OSRAM EQU $4000
NMEIN EQU $D40E
PORTB EQU $D301

ORG START
LDA #low OSROM
STA SOURCE
STA DEST
LDA #high OS ROM
STA DEST+I
LDY #0

PASSI LDA (SOURCE) ,Y
STA (DEST) •Y
INY
BNE PASSI
INC DEST+I
INC SOURCE+I
BEQ SWAP

;Page-O useage

;start addr
;OS-ROM start
;HOM dest. addr
;NMI register
;Memory CTL

; i n i t copy addr

;repeat
;copy ROM - RAM

; if done

Page 136

COMPLETE & ESSENTIAL MAP

LDA SOURCE+l
CMP I$DO
BNE PASSI ;skip D-block
LDA #$UIl
STA SOURCE+l
BNE PASSI ; unti I SOURCE=$OOOO

SWAP PHP ;save proc.stat
SEI ;disable IRQ'
LUA NMEIN
PHA ;save NMEIN
LDA 1$0
STA NMEIN ;disable NMI'
LDA PORTB
AND I$FE ;disable ROM'
STA PORTB ;BASIC unchanged
LDA #high OSROM
STA DEST+l ;setup block copy
LDA #high OSRAM
STA SOURCE+l

;repeat
PASS2 LDA (SOURCE),Y ;return OS

STA (DEST).Y
INY
BNE PASS2
INC SOURCE+l ;next page
INC DEST+l
BEQ ENABLE ;when complete
LDA DEST+\
GMP #$DO
BNE PASS2 ;skip D-block
LDA I$D8
STA DEST+l
BNE PASS2 ;until DEST=$OOOO

ENABLE PLA
STA NMEIN ;enable NMI'
PLP ;enable IRQ'
RTS
END START

Altering the ROM-OS into a RAM-OS can be a REAL bonus.
because now that the OS is RAM. you can alter anything you
like; you can alter any of the 2 character-sets in the
original locations, thus. saving 2K of memory. you could
re-write the handlers. interrupts or any other routine you
desire. For a Reset-key trap, see the PROGRAMS appendix.

As well as turning the ROM-OS into a RAM-OS. you can also
switch the ROM Basic and Self-test to their RAM equivalents
residing in their original locations of course. The program
on the next page will perform these tasks:

Page 137

& ESSENTIAL MAP

54018

The program in its present form will enable the Self-test
ROM, transfer it into RAM, switch the Self-test ROM into RAM
and copy the Self-test package from lower RAM, back up into
its original locations:

10 DATA 173,1.211,41,127,141,1,211
12 DATA 169,80,133,204.169,40,133,206
14 DATA 169,0,133,203,133.205,160.0
16 DATA 177.203.145,205,200,208,249
18 DATA 230,204,230,206,165.204,201,88,208,239
20 DATA 173.1.211,9.128,141,1,211
22 DATA 169.40,133,204.169.80,133,206
24 DATA 169.0,133,203,133,205,160,0
26 DATA 177,203,145,205,200,208.249
28 DATA 230.204.230,206,165.206,201,88.208.239
30 DATA 104,96,-1
40 1=0
50 READ D:IF D+1 THEN POKE 1536+I,D:I=I+1:GOTO 50
60 X=USR(l536)

If you want to do the same thing with the Basic RON, then
make the following changes:

1. Change 41.127 in line 10. to 41,253
2. 80 in line 12. to 160
3. 88 in line 18, to 192
4. 9,128 in line 20, to 9,2
5. 80 in line 22, to 160
6. Lastly, change 88 in line 28, to 192

With the Basic turned to RAN. try the following POKEs:

POKE 42223.ASC("H")
POKE 42224,ASC("E")

What you've actually done with these 2 POKEs, is to have
altered a Basic keyword. The keyword was TRAP. but it is now
called HEAP. If you don't believe me, type: TRAP 40000.
You'll get an error because Basic doesn't understand the
word TRAP anymore. it now thinks it's called HEAP. Type:
HEAP 40000. All is taken fine.
Instead of altering the keyword names themselves, you can
alter the tasks performed by the keyword. See the ALTERING
BASIC appendix.

54018 D302 PACTL

(W/R) PORTA controller. POKE with 52 to turn the cassette
motor on, and with 60 to turn it back off. You can playa
music tape through the TV speaker using this method, handy
when programming in the early hours of the morning without
waking the whole house up with your getto-blaster!

Page 138

COMPLETE & ESSENTIAL MAP

54019 - 54783

PACTL can be used for other external applications by the
user, Bit use is:

FUNCTION:
Peripheral-A interrupt (IRQ) status; only read
Zero forced; unalterable
Set to 1
Set to I
Peripheral motor control line; write only
Set to 1 for PORTA addressing, direction control
register when 0; write only
Set to 0; this is alterable
Peripheral-A interrupt (IRQ) enable. 1 enable
Set by the OS, but available for use; write only

BIT: DEC:
7 128
6 64
5 32
4 16
3 8
2 4

I 2
0 1

54019 D303 PBCTL

(W/R) Originally for the PORTB controller, but since there
is no PORTB anymore, this register is unused, however, it
still has Bit-6 forced to O. You can use this as an extra
RAM register, so long as whatever value you place here does
not require Bit-6 to be set. Hence, you cannot store decimal
values: 64 - 127, and 192 - 255 here.
Get hold of COMPUTEl February 1981 for an article showing
you how to use the joystick ports as a printer port.

There is
sources
actually
$E9CB.

other
say that
stores a

point to note about this register. All
this is now unused, but in fact, SIO
value here. See Appendix E6, address

54020-54271 D304-D3FF REPEAT-MEMORY

These locations are repeats of 54016
$D303.

54019; $D300 -

54272-54783 D400-D5FF ANTIC

ANTIC is a special, seperate micro-processor in the Atari to
control GTIA, the screen-display and other screen related
functions including the NMI interrupts. It uses its own
'instruction-set', called the 'Display-List' (DL), which
tells ANTIC where to find the screen data in RAM and how to
display it. ANTIC also uses an internal 4-bit counter called
the Delta-counter (DCTR) to control the vertical dimensions
of each block.

Page 139

54272 - 54274,5

54272 D400 DMACTL

(W) Direct Memory Access (DMA) control. This is used to
define I or 2 line resolution for PMG's as well as to turn
them onto the screen. Values should normally be POKEd into
the shadow register 559; $22F, and the bits are fully
described there (Page-45).
For the experienced machine-language user, you might be
interested to know that you can cause some queer affects by
successively altering this register whilst retaining the
normally enabled status of the VBlanks; for instance:

10 DATA 169,5,141,0,212,76,0,6
20 FOR 1=:0 TO 7
30 READ D:POKE 1536+I,D:NEXT I
40 X=USR(1536)

If nothing happens at 1st, just press Reset and re-run the
program, or alter the value 5 loaded into the Accumulator
until something does happen. You'll notice the screen turns
into chaos, but there are several important things that you
should note: Istly, the 2 very-small borders at the very
roof and the very floor of the TV tube do not exist.
Another, more important point is that the frame is twisted.
This, I hope, will give you some insight as to bending
screen images without italicising them in the memory. You
can have a lot of fun with this technique.

54273 D401 CHACTL

(W) Character mode control. See its shadow register 755 for
values. Only the least 3-bits are active in this register,
higher bits simply duplicate the lower bits. With this
register, you can affect any text when inversed, or turn all
text upside down. Inverse alterations also affect the
cursor, because the cursor is only an inversed 'space'
character anyway.

54274,5 D402,3 DLISTL/H

Display
Display
and RAM
details.

list pointer. Tells the OS the start address of the
List (DL), which distinguishes the screen mode(s)
to display. See SDLST at 560 and 561 for full

Page 140

COMPLETE & ESSENTIAL MAP

54276

54276 D404 HSCROL

(W) Horizontal fine-scroll offset. HSCROL is the Hardwares
horizontal fine-scroll register, which can offset the DM up
to a maximum of 16 colour-clocks (4 Graphics 0 bytes) from
its LMS origin. See SDLST at 560 and 561 for information on
LMS. Controlled by Bit-4 of the DL pointed to by SDLST.
When you scroll memory horizontally, you must re-calculate
it, similar to the way shown in the following program:

10 FOR 1=0 TO 33
20 READ D:POKE 1536+I,D:NEXT I
30 DATA 112,66,0,255,112,66,64,156,2,2
40 DATA 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
50 DATA 2,2,2,2,2,41,0,6
60 POKE 560,O:POKE 561,6
70 FOR K=O TO 255 STEP .02
80 POKE 1538,K:NEXT K

You can see that each byte of the extra line at the top of
the screen moves in chunks (coarsely). To enable the
fine-scroll register, then add a value of 16 to the
mode-line, in this case, change the 1st 66 in line-30 to 82.
Now try taking out lines 70 and 80, and adding the
f o l I vov i ng lines:

70 FOil [=0 TO 15 STEP .5
80 POKE 54276,I:NEXT I
85 FOR 1=15 TO 0 STEP -.5
90 POKE 54276,1 :NEXT 1
95 (;01'0 70

You'll see the fine-scrolling in action. If you want to
successively move through the memory, then you should
fine-scroll a whole byte, and then, simultaneously, restore
the HSGROL value and update the LMS display byte/so You
could do this in Basic, but it is flicky. This is because
lISCROI. is not reset in the same trame that the LMS DM byte
is restored; you may think if you executed the Basic line:

XX POKE 1538,PEEK(1538)+I:POKE 54276,3

It is simultaneous, but, you should realise that each I of
these POKEs takes approx. half of a frame to decode and
process. For this reason, you'll see that Basic is too slow,
ie; take out lines 70 - 95 of the previous program, and
add:

70 FOR J=O TO 255
75 FOR 1=3 TO 0 STEP -.2
80 POKE 54276,1:NEXT I
85 POKE 54276,3:POKE 1538,J
90 NEXT J

Page 141

COMPLETE & ESSENTIAL MAP

54277

To remove
execute in
machine-code
program:

the flicker,
good timing.
routine for

the 2 POKEs on line 85 need to
so you really need to execute a
this. add the following to the

62 FOR Q=O TO 11
64 READ D:POKE 1600+Q.D:NEXT Q
66 DATA 169.3,141,4.212,165,203
68 DATA 141.2.6.104,96
85 POKE 203.J:X=USR(1600)

Now. try the program again.

If you didn't organize the memory in the manner of this
program, a wraparound affect would occur. this is where the
memory from the adjacent line would wrap onto the scrolling
line. You can. of course, use HSCROL to scroll the entire
display horizontally. or perhaps add a DLI. and scroll the 2
halves of the screen in different directions.
The real power of any of the Atari' capabilities are
normally only accessible from machine-language. or from
using machine-language routines from Basic, but if you don't
understand 6502 machine-code. there are quite a lot of
sources that can help you: Page-6 magazine. machine-code
tutor by Paul Bunn (program) which is excellent.
machine-language for beginners by COMPUTE! books. also any
of the assembler packages, such like Atari Assembler/Editor
or MAC65. Also see my relating appendix.

54277 D405 VSCROL

(W) Vertical scroll offset. VSCROL is the Hardwares vertical
fine-scroll register. which can offset the DM of up to 16
scan-lines from the LMS origin. Controlled by Bit-5 of the
DL pointed to by SDLST. For an example of vertical
fine-scroll of a Graphics 0 screen. try this program:

10 GRAPHICS 0
15 LIST
20 DL=PEEK(560)+256*PEEK(561)
30 FOR 1=3 TO 28
40 IF 1=4 THEN 1=6
50 POKE DL+I,PEEK(DL+I)+32:NEXT
60 FOR 1=0 TO 7 STEP 0.2
70 POKE 54277,1:NEXT I
80 FOR 1=7 TO 0 STEP -0.2
90 POKE 54277,1:NEXT I
95 GOTO 60

Page 142

Should you wish to move the memory forward, then you should
add 40 bytes to the origin LMS whilst restoring VSCROL.
Similar to HSCROL, these functions must be achieved
simultaneously. You can use the following program for this:

10 GRAPHICS O:LIST
15 FOR 1=0 TO 16
20 READ D:POKE 1536+I,D:NEXT I
25 DATA 104,169,0,141,5,212,165,203
30 DATA 141,0,0,165,204,141,0,0,96
35 DL=PEEK(560)+256*PEEK(561)
40 DM=PEEK(DL+4)+256*PEEK(DL+5)
45 POR 1=3 TO 27:IP 1=4 THEN 1=6
50 POKE DL+I,PEEK(DL+I)+32:NEXT I
55 POKE 1545,PEEK(560)+4
60 POKE 1550,PEEK(560)+5
65 POKE 1546,PEEK(561)
70 POKE 155I,PEEK(561)
75 POKE DI.+28,2
80 POR J=DM TO 255*256 STEP 40
85 JH1=INT(J/256) :JLO=J-.1Hl*256
90 FOR Q=O TO 7 STEP 0.2
92 POKE 54277,Q:NEXT Q
94 POKE 20:l,JI.O:POKE 204,.1111
96 X=lJSR(1536)
98 NEXT .1

There is also another fine feature that you can use the
VSCROL register for, try the following program for example:

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEK(561)
:10 POKE DL+3,2+32+64:POKE DL+7,2+32
35 POKE DI.+9,2+32
40 POKE 54277 ,4
45 ?
50 ? "Y+fa+j2*E*F3SHMSSkYYAOIIQK4/1l"
60 ? "sX[OTD/xCIEOsLWJ)OI.Z7HIT&044P"

You'll notice that the screen on mode lines 2 and 3 have
been somewhat merged together. You can use any of the 15
Graphics modes in combination with any other, you are not
limited to just Graphics 0 as I've used, this is merely to
show you what you can achieve with text. Try changing the
value in 54277 also. It is also possible to horizontally
shift the top or the bottom part of the displaying line so
that the text appears italicised.
This technique, as shown with the program, is very powerful.
It not only gives you infinite character possibilities, but
also saves you memory, whereas normally you'd have to
reserve lK for each additional character-set.

Page 143

54271l

The HSCROL and VSCROL registers offer another type of
scrolling when used together. This is diagonal scrolling,
for an example, just try this program:

10 GIlAPHICS O:POKE 752,I:S=0.2:7
15 DL=PEEK(560)+256*PEEK(561)
20 POKE DL+7,PEEK(OL+7)+J2+16
25 7 "GOBBLEDEGOOK. ... GOBBLEDEGOOK"
30 POS ITlON 5,2
35 7 "DIAGONAL SCROLLING EXAMPLE";
40 POSITION 1:1,3
45 7 "BIlING OUT THE BRANSTON"
50 FOR 1=0 TO 7 STEP S
52 POKE 54276,1+8:POKE 54277,1
54 NEXT I
56 FOR 1=7 TO 0 STEP -S
58 POKE 54276,1+8:POKE 54277,1
60 NEXT 1
62 FOR 1=7 TO 0 STEP -S
64 POKE 54276,1:POKE 54277,7-1
66 NEXT 1
68 FOR 1=0 TO 7 STEP S
70 POKE 54276,1:POKE 54277,7-1
72 NEXT I
74 GOTO 50

In affect, you can achieve scrolling in all 360 degrees, but
to achieve this, you need to give HSCIWL and VSCIlOI.
different step ratios.
There is one other type of scrolling that can be achieved
with the XL/XE's, this is known as 3D scrolling, where the
screen appears to come toward you, or away. There isn't any
registers that will control the OM in this manner, so to
achieve this, you need to display the 'on-screen' memory in
a particular fashion. l f you take as an example, Atari' Pole
Position. The track appears to come toward your car. In
fact, what is happening, is that the dat.a (racing track) in
the lower part of the screen is displayed larger, both
vertically and horizontally, than the data in the higher
part of the screen, hence, giving the affect t.hat t.he higher
part of the screen is more distant. than the lower part.
There are other ways of getting around this, and a good
example would be seen in: The Great American Cross Country
Road Race. This program, which I find highly addictive,
actually uses PMG's for oncoming objects whilst. keeps the
track static!

54278 0406

Unused; (R) set to 255.

Page 144

COMPLETE & ESSENTIAL MAP

54279 - 54282

54279 D407 PMBASE

(W) MSB of the Player/missile base address used to locate
the graphics for your players and missiles, where the
address is PMBASE*256. Player missile graphics can be quite
difficult when trying to manipulate various images, as in
animation or just vertical movement, because there are no
Basic commands to support their use, which I find very
dissapointing (slap slap, Atari).
PMG' must reside on either a IK or 2K boundary, depending
whether they use double or single line resolution,
respectively. So when you set the page number for PMBASE
residence, use this formula: POKE PMBASE,PAGE*4 for double,
and POKE PMBASE,PAGE*8 for single line resolution.
Horizontal position, colouring and size particulars are all
very simple to process, but shaping, vertical movement
and/or animation is far more difficult.
See the PMG appendix, or TWAUG newsletter issue #2 for a
full PMG discussion.

54280 D408

Unused; (R) set to 255.

54281 D409 CHBASE

(W) Character base address; the location for the start of
the current character-set, which is either the standard-set
(224; SEO) at 57344; SEOOO. the international-set (204; SCC)
at 52224; SCCOO or a user defined one which can begin at any
1K boundary within the computer, ie. the correct formula for
CHBASE is POKE CHBASE,PAGE*4. Shadow location is 756. See
the ROM at 57344 and 52224 also.

54282 D40A WSYNC

(W) Wait for horizontal synchronization. Allows the OS to
synchronize the vertical TV display by causing the 6502 CPU
to halt and restart 7 machine-cycles before the beginning of
the next TV scan-line. It is also used to synchronize VBI'
or DLI' with the screen display.
Here's a direct machine-language routine to show you the
affect:

10 DATA 104,173,11,212,201,50,208,249
12 DATA 165, 20, 141 , 10,212, 141 ,24,208
13 DATA 141,10,212,173,198,2
14 DATA 141,24,208,76,1,6,-1
20 READ D:IF D+1 THEN POKE 1536+I,D:I=I+I:GOTO 20
30 X=USR(l536)

Page 145

You don't necessarily have to use the WSYNC register in
order to achieve the timing 01 colour changes etc., in fact
you can use the NOP command (code 234; SEA) which wastes 2
machine-cycles of time, or just JSH around the bush (6
cycles wasted, and an additional 6 cycles for HTS) until the
desired amount of time is up.
Note, that the keyboard handler sets WSYNC repeatedly while
generating the keyboard click on the console speaker at
53279; SDOIF. To bypass this. examine the VCOUNT register on
the next page and delay your interrupt processing by I line
when no WSYNe delay has occurred. You could also, only
enable the keyboard in a lower part of the screen. below the
area where any WSYNC problems may occur. and ensure the
keyboard is disabled above this area.

54283 D40B veOONT

(R) Vertical TV scan-line counter. Used to keep track 01
which line is currently being generated on the screen. This
can be used during DLI' to change colours or Graphics modes.
PEEKing here returns the line count divided by 2, ranging
from 0 156 on PAL systems, and 0 - 131 on NTse systems.
The following program gives a colourful demonstration. which
uses the VeOUNT register position as a colour:

10 DATA 104,173.11.212.141.24.208.76,1.6
20 F'OR 1=0 TO 9
30 READ D:POKE 1536+I.D:NEXT I
40 X=lJSR(1536)

The colour you see at each vertical position on the screen
is the actual scan-line value where VCOUNT currently is.
Since, the TV frame is refreshed every 50th second rate.
it's not surprising that al I the colour appears
simultaneously!

54284 D40e PENH

(H) Light-Pen horizontal position (564). Holds the
horizontal colour clock count when the trigger is pressed.

54285 D40D PENV

(R) Light-Pen vertical position (565). Holds the veOUNT
value when the pen trigger is being pressed. See the
Hardware manual p.II-32 for a description of the light-pen
operation.

Page 146

COMPLETE & ESSENTIAL MAP

54286 - 55295

54286 D40E NMIEN

(W) Non-Maskable Interrupt (NMI) enable. POKE with 192 to
enable both the VBI and DLI'. When Bi t-7 is set to I, it
means the DL instruction interrupt, and any DL instruction
that has Bit-7 set will cause this interrupt to execute at
the start of the last scan-line of the relative mode-line.
When Bit-6 is I, the Vertical Blank interrupt is enabled.
Bit-5 is enable forced and unalterable, it it used for the
RESET interrupt. NMIEN is set to 64; $40 by the OS IRQ code
on power-up, enabling just the VBl. All NMI' are vectored
through 65530; $FFFA to the NMI service routine at 49176;
$COI8 to determine their cause.

54287 D40F (W) NMIRES
(R) NMIST

(W) Reset for NMIST; clears the interrupt request register.
resetting all of the NMI status' together.

(R) NMIST; NMI status. Holds the cause for the NMI interrupt
in Bits 5. 6 and 7, corresponding to the same bits in NMIEN
on the previous page. If a DLI is pending, then a JMP is
made through the global RAM vector VDSLST at 512 and 513.
The OS doesn't use DLI', so 512 and 513 point to an RTI
instruction.
If the interrupt is not due to a DLI, then a test is made to
see if the interrupt was caused by pressing the RESET key.
and if so, a jump is made to 58484; $E474. If not a RESET
interrupt, then the system assumes the interrupt was a
VBLANK interrupt, and a jump is made through VVBLKI at 546.
547 which normally points to the stage-I VBLANK processor.
From there, it checks the CRITIC flag at 66 and, if not from
a critical section, jumps through VVBLKD at 548, 549 to the
VBLANK exit routine. See the VBLANKS appendix for further
information on these. For IRQ', see location 53744; $D20E.

54288-54527 D410-D4FF REPEAT-MEMORY

These locations are repeats of locations 54272 - 54287;
$D400 - $D40F.

54528-54783 D500-D5FF

Although unused memory, mapping states that if you read or
write from/to any of these addresses, the cartridge control
line (CCNTL) is enabled. (R) Normally cleared with 255's.

54784-55295 D600-D7FF

This memory appears to be unused, which like above is·
cleared with 255's. Not user alterable.

Page 147

55296 - 65535

55296-65535 D600-FFFF OS-ROM

This 10K of memory is the OS-ROM, containing the Floating
Point (FP) package, the 2 in-built character-sets, device
handlers, CIO, SIO, NM1', IRQ' etc .. It differs from the
older Atari's OS', so some older programs will not load on
XL/XE'. In these cases, you can use the translator disks
such as XL FIX, which is all Public-Domain (PD) software.

55296-57343 D800-DFFF FP-PACKAGE

points to some of the subroutines; unless
they use the FP register 0 (FRO at 212 -

This is the Floating Point mathematics package. There are
also other areas used by FP in page-O at 212 - 254, and in
page-5 at 1406 1535. There are also trigonometric
functions in the Basic ROM located from 48549 - 49145 which
the the FP routines. See De Re Atari for additional
information.
Here are the entry
otherwise noted,
217) :

55296 D800 AFP

ASCII to FP conversion.

55526 D8E6 FASC

FP value to ASCII conversion.

55722 D9AA IFP

Integer to FP conversion.

55762 D9D2 FPI

FP to integer conversion.

55876 DA44 ZFRO

Clear FRO at 212 - 217 by setting all bytes to O.

Page 148

COMPLETE & ESSENTIAL MAP

55878 - 56732

55!!7!! DA46 ZF1

Clear the FP number from FRI, locations 224 - 229 by setting
all bytes to O. Also called AFI by De He Atari.

55904 DA60 FSUB

FP subtract routine; the value in FRO minus the value in
FH I.

5591U DA66 FADD

FP addition routine; FRO plus FRI.

56027 DADB FMlIL

FP multiplication routine; FRO timez fRI.

56104 D1l2!! FDIV

FP division routine; FRO divided by fRl.

56640 IlD40 PLYEVL

FP polynomial evaluation.

5671 3 DD89 FLDOR

Load the FP number into FRO from the 6502 X and Y
registers.

56717 DD!!D FLDOP

Load the FP number into FRO from the user routine, using
FLPTR at 252.

56728 DD98 FLDIR

Load the FP number into FRI from the 6502 X and Y
registers.

56732 DD9C FLDlP

Load the FP number into FRI from the user routine, using
FLPTR at 252.

Page 149

5674J - 5726'2

56743 DDA7 FSTOIl

store the FP number into the 6502 X and Y registers from
FIlO.

56747 DDAII FSTOP

store the FP number from FRO, using FLPTR.

56758 DDB6 FMOVE

Move the FP number from FRO to FRI.

56768 DDCO EXP

FP base e exponentiation.

56780 DDCe EXPIO

FP base 10 exponentiation.

56909 DE4D PIOeOET

Power of 10 coefficients table.

57037 DECD LOG

FP natural logarithm.

57041 DEDI LOGIO

FP base 10 logarithm.

57202 DF72 LOGCOET

Logarithm coefficients table.

57262 DFAE ARCOET

Arctangent coef f icients table.

This FP area also has another purpose. It is addressable by
the device when the OS switches out ROM to perform I/O on a
device connected to the expansion slot (Parallel Bus
Interface; PBI), whilst switching it back when finished.
This means an external device cannot use FP, or any software
which does (such as Basic).

On a coldstart, the as polls for parallel devices, and if it
finds I, JMPs through 55321; $D819 to the INIT routine at
55322/55323; $D8IA/$D8IB which places the address of the
generic parallel device handler into the handler tables with
the device name.

Page 150

COMPLETE & ESSENTIAL MAP

55296 - 58367

The 1st 26 bytes of the hardware ROM vector area when the OS
ROM is deselected are as follows:

BYTE:
55296/55297
55298
55299
55300
55301
55302/55303
55304
55305/55306
55307
55308
55309/55310
55311/55312
55313/55314
55315/55316
55317/55318
55319/55320
55321
55322/55323
55324

57344-58367

HEX:
D800/D801
D802
D803
D804
D805
D806/D807
D808
D809/D80A
D80B
D80C
D80D/D80E
D80F/D810
D811/D812
D813/D814
D815/D816
D817/D818
D819
D81A/D81B
D81C

EOOO-E3FF

USE:
ROM checksum LSB/MSB; optional
ROM revision number; optional
I D number; 128 $80
Device type; optional
JMP instruction; 76 $4C
I/O vector LSB/MSB
JMP instruction
Interrupt vector LSB/MSB
ID number; 145 $91
Device name in ASCII; optional
OPEN vector LSB-l/MSB
CLOSE vector LSB-l/MSB
GET byte vector LSB-I/MSB
PUT byte vector LSB-I/MSB
STATUS vector LSB-l/MSB
XIO special vector LSB-I/MSB
JMP instruction
INIT vector LSB/MSB
unused ..

CHARSETI

Standard (domestic) character-set. See location 756 for a
full description of making your own character sets. The
character-set here is the default upon power-up and Reset,
it holds the special characters, punctuation and numbers at
$EOOO, the capital letters begin at 57600; $EI00, the
special graphics characters at 57856; $E200 and the
lowercase letters at 58112; $E300.

There are 1024 bytes here. each character requires 8 bytes.
gtvlng 128 characters. Inverse characters are obtained by
inverting the bits of the standard character. or EORing with
128; $80, which is the value found at 694; $2B6. In Graphics
modes I and 2. only the 1st 64 characters are accessible. so
to obtain the 2nd half of this character-set in these modes.
then POKE 756 with 226, 2 pages more than the default 224.
This trick also applies with the international character-set
found at 52224; $CCOO.

Besides redesigning the character-set for use in text modes,
you can use the data to POKE into any of the 'MAP' modes.
Graphics 8 would be ideal. Try the programs on the next page
(the 2nd program is put to good use in the STEREO
appendix).

Page 151

10 GHAPIIICS Il:POKE 709, 12:POKE 710,4
15 POKE 756,124
20 DJ.=I'EEK(56lJ)+256*PEEK(561)
25 DM=PEEK(DL+4)+256*PEEK(DL+5)
30 COLOR I
35 SET=PEEK(756)*256
40 X=INT(RND(0)*40)
45 Y=INT(HND(O)*152)
50 CII=INT(RND(0)*12B)
55 FOR 1=0 TO 7
60 AHEA=DM+X+Y*40+1*40
65 POKE AREA,PEEK(SET+CH*8+I):NEXT
70 GOTO 35

This shows you how to use the character-set as a good means
to placing text on Graphics 8. Try changing the POKE value
224 in line 15 with 204, or even other values! X and Yare
the screen co-ordinates, while CH is the randomly chosen
character.

Here's a better example of Graphics 8 text, which allows
text to print in any of 360 degrees:

10 GRAPHICS 8:POKE 709,12:POKE 710,4
12 POKE 756.224
14 DIM A$(20)
16 DL=PEEK(560)+256*PEEK(561)
18 DM=PEEK(DL+4)+256*PEEK(DL+5)
20 COLOR I
22 SET=PEEK(756)*256
24 A$="RED RED WINE"
26 DIR=41:X=5:Y=50
28 FOR J=I TO LEN(A$)
30 C=ASC(A$(J,J»
32 NC=C
34 IF SGN(C-96)=-1 THEN NC=C-32
36 IF SGN(C-32)=-1 THEN NC=C+64
38 CH=SET+NC*8
40 FOR 1=0 TO 7
42 AREA=DM+J*DIR+I*40+X+Y*40
44 POKE AREA,PEEK(CH+I)
46 NEXT I
48 NEXT J

Just put any comment you wish in A$ and RUN the program up.
DIR is the direction of print, which can also go in steps
greater than I if required. Try using different values in
this variable such like: 1,2,161 and 320. Lines 32 - 36
merely convert the characters in A$, from their ASCII codes
to their equivalent INTERNAL codes. To do this, Ascii codes
o to 31 have 64 added, codes 32 - 95 have 32 subtracted and
codes 96 to 127 remain the same.

Page 152

COMPLETE & ESSENTIAL MAP

58368 - 58454

58368-58447 E400-E44F HANDLER VECTORS

These are the vector tables for all the resident handlers in
ROM. Each handler consists of a 15-byte table; 2 bytes each
for OPEN, CLOSE, GET byte, PUT byte, STATUS and XIO special
routine addresses. Following those LSB/MSD vectors, there is
a JMP instruction (76; $4C) and the address of the
initialization routine for that handler. The 16th byte of
each handler is zeroed and unused. Below, is a table showing
all the handlers vector addresses. You should also note that
all the vectors, except JMP, all point to the address of the
routine minus I:

Device & Loc: OPEN CLOSE GET PUT STATUS XIO JMP
E: 58368/E400 EF93 F22D F249 F2At' F21D F22C EFbE
S: 58384/E410 EF8D F22D FI7F FIA3 F21D F9AE EF6E
K: 58400/E420 F21D F211l F2FC F22C F21D F2:.!C EF6E
P: 58416/E430 FECI FF06 FECO FECA FEA2 FECD FE99
c· 58432/E440 FCE5 FDCE FIl79 FIlB3 FIlCB FCE4 FCDB

58448-58511 El150-E48F VECTORS

Here's some more vectors, the
remain at the same address as
different locations:

address of these vectors
the old OS, but point to

58488 £450 DISKIV

Disk handler initialization vector, initialized to 50851;
$C6A3.

58451 E453 IJISKINV

Disk handler (interface) entry which basically checks the
disk status, you can JuMP here in your own routine to
perform other functions, but you'll need to reset the data
direction bits in location 771; $303 before every call.
Points to 50867; $C6B3.

58454 £456 CIOV

Central Input/Output (CIO) utility entry point. Initialized
to 58591; $E4DF. CIO is responsible for all I/O operations
and data transfers. To use CIO, you should set up your 10CB
and JuMP here. Note, however, that the X register should.
contain the IOCB number multiplied by 16, so 10CB #0 would
be 0, 10CB #1 would be 16, #2 is 32 and so on ...

Page 153

58/157 - 58460

Once CIO is initiated, the appropriate [OCB i n f or mat i on is
passed to the Device Control Block (DCB), t.his then calls up
SIO (below) to cont.rol the actual peripherals. CIO treats
all I/O in this same manner, device independant.

You jump here to use the handler routines in the OS HOM.
Basic it.self doesn't support t.hese rout.ines (buffer I/O),
that's why its device I/O operations are slower, however,
with a short machine-code routine you can use this 1/0
method in your Basic programs. All you'll need to do is OPEN
your device/file on your selected channel, set the
appropriate values in the OPENed 10CB channel (locations 832
- 959) and then execute the following machine-code routine:

PLA, PLA, PLA, TAX, JMP $E456
104, 104, 104, 170, 76, 86, 228
$68, $68, $68, $AA, $4C, $56, $E4

or even X=USll(ADll("hhh*LVd"». Note; the "*" and "d"
characters should be inversed.

58457 E459 SIOV

Serial Input/Output (SIO) utility entry point. Initialized
to 51507; $C933. SIO drives the serial bus and the
peripherals connected to it. When a request is placed in the
Device Control Block (DCB), either by a device handler or by
the user, SIO takes control and uses the data in the DCB t.o
perform the operation desired. CIO is reponsible for the
packaging of the data transfers before the actual
transision, which is accomplished by SIO. When CIO utilizes
SIO, it does so many times to accomplish the task asked of
it. The DCB is locations 768 - 779; $300 - $3013.
The SIO routines peripheral poll is achieved by firstly
sending a command frame which is consisted of 5 bytes
(locations 570 - 574); the device 10 code, command byte, 2
aux bytes for device-specific information and a checksum
byte which is the sum of the 1st 4 bytes. If the device
polled acknowledges and responds to the command frame, it is
followed by, if necessary, a data frame of fixed length,
depending upon the device; cassette record, disk sector
etc ..

58460 E45C SETVBV

Set system timers during Vertical Blank routine. Initialized
to 49778; $C272. When you set up your own Vertical Blank,
it's address should be loaded into the Immediate or Deferred
vector in page-3, however, you must load both low and high
bytes before the next VBlank executes.

Page 154

COMPLETE & ESSENTIAL MAP

58463 - 58472

If only I of the 2 address bytes were loaded when the VB lank
routine was executed, the actual jump address will be
incorrect and the system will probably crash. Of course, one
method would be to wait for the flyscan to be in a safe
place on the screen, however, this is the other way to go
about it:

LDA ;fID
LDX #HI-byte (MSB)
LDY ILO-byte (LSB)
JSR SE45C

A9 I D
A2 HI
AD LO
20 5C E4

or for the USR routine from Basic, use the data: 104, 169,
ID, 162, HI. 160, LO, 32, 92, 228, 96

where HI is the MSB, LO is the LSB and ID is either 6 or 7
depending on whether you want to set the Immediate or
Deferred VBlank vector, respectively. Using this method, the
appropriate vector will be set during the next Vertical
Blank. Also see page-3 of memory and the relating VBlank
appendices.

58463 E45F SYSVBV

Stage-one VB lank entry point. It performs the processing of
a VBlank interrupt. The 2nd and 3rd bytes is the same as the
address found in VVBLKI, locations 546 and 547. It is
initialized to 49378; SCOE2.

58466 E462 XITVBV

Exit from the VBlank routine, entry point. Used to restore
the system to its pre-interrupt state and resume normal
processing. The 2nd and 3rd bytes is the same as the
deferred interrupt address at VVBLKD, locations 548 and 549.
It is initialized to 49802 SC28A.

58469 E465 SIOINV

SIO utility initialization entry point. Initialized to 59740
SE95C. OS use only.

58472 E468 SENDEV

Send enable routine. Initialized to 60439; SECI7. OS use
only.

Page 155

511475 -

5fl475 E46B INTINV

Illterrupt handler initialization.
$eOoe. os use only.

Initialized to 49164;

58478 E46E GIOINV

CIO utility initialization. Initialized to 58561; $E4CI.

584111 E471 SELFSV

Self-test mode entry. Initialized to 61987; $F223. The
self-test mode can be executed with a JMP here, a (ISR here,
typing BYE in Basic, typing DOS in Basic when DOS has not
been loaded and turning the computer on with the option key
depressed with the disk drive turned off.
This area used to be what was known as the "Illackboard"
mode, which no longer exists in the XL/XE's, however, you
can simulate it! In Turbo-Rasic it is easily simulated by
typing ENTER "E:" (I t h i nkz) , but in normal Ata r i Dasic the
situation differs. You can use LOAD "E:", but an error
occurs after about 12 bytes have been inputted with the use
of the return key. You can overcome this with: 0 TRAP O:LOAD
"E:", this way, whenever an error occurs the screen clears.
Not brilliant, but affective. Perhaps someone knows of a
solution. I'm pretty sure a few simple POKEs could rectify
it. Anyhow, here's a more suitable simulation of the mode:

o OPEN # 1 ,4,0, "E: "
1 GET #I,K:? GHR$(K); :GOTO

This will work fine, for an almost perfect simulation, add a
TRAP and disable the BREAK key.

58484 E474 WARMSV

Warmstart entry point routine (Reset button vector).
Initialized to 49808; $C290 which initializes the OS RAM
region. The Reset key causes an NMI interrupt and a
chip-reset (GR). This interrupt seems to be at hardware
level only so it appears that you cannot disable the action
of the Reset-key. I have often wondered what would happen if
you switch the ROM OS into a RAM OS, then when you press
Reset, will the system execute your RAM OS Reset routine OR
will the original ROM OS be switched back in before the
Reset routine is executed? I've never tried it so I'm not
sure, but I would probably expect the ROM OS to be switched
back in first. You can also USR here to simulate the press
of the Reset key.

Page 156

COMPLETE & ESSENTIAL MAP

511487 - 58511

58487 E477 COLDSV

Coldstart (power-up) entry point. Initialized to 49864;
$C2C8 which initializes the OS and user RAM regions wiping
out any programs etc .. You can perform power-up by USR'ing
here.

58490 E47A RllLOKV

Cassette read block routine entry point. Initialized to
64909; $FD8D. OS use only.

58493 E47D CSOPIV

Cassette OPEN for input vector. Initialized to 64759; $FCF7.
OS use only.

58496 £480 PlIPDIV

Entry to power-on display (Self-Test mode in all XL/XEs
except the 1200XI.; Atari logo screen in 1200XL. Initialized
to 61987; $F223. Try USR' ing to this address.

51:1499 £483 SELFTSV

Entry to Self-Test mode once switched into low memory at
20480; $5000.

58502 E486 PENTV

Entry point to the handler uploaded from the disk-drive or a
peripheral. Initialized to 61116; $EEBC.

58505 E489 PHlINLV

Entry point to the uploaded handler unlink routine.
Initialized to 59669; $E915.

511508 E48C PHINIV

Entry point to the uploaded handler initialization routine.
Points to 59544; $ E898.

58511 E48F GPDVV

Generic parallel device handler general purpose vector. This
can be used to interact with any device connected to the
expansion port. simply copy this address into HATABS.
locations 794 828 along with an appropriate device name
character such as V:. G: or T:.

Page 157

58526 - 59192

For more information on the
relating appendix. Note that
corresponding to the vector
$E400.

58526-58559 E49E-E4BF

expansion bus then see the
there are 7 vectors here,
tables residing at 58368;

Unused, zero forced. This area is available if your ROM OS
is used as a RAM OS, and indeed so are any other relating
areas above this address.

58560 E4CO

Seems to be unused, just a $60 code.

58561 E4Cl ICIO

Initialize CIO.

58588 E4DC lIN

10CB not OPEN error routine.

58591 E4DF CIO

This is the CIO, it includes the following routines:

Address:

58640 $E510
58645 $E515
58650 $E51A
58687 $E53F
58716 $E55C
58742 $E576
58748 $E57C
58775 $E597
58802 $E5B2
58910 $E61E
58992 $E670
58994 $E672
59029 $E695
59067 $E6BB
59080 $E6C8
59089 $E6Dl
59096 $E6D8
59114 $E6EA
59124 $E6F4
59135 $E6FF
59158 $E716

Routine:

Nonexistant device error
Load peripheral handler for OPEN
Perform CIO command
Execute OPEN command
Initialize 10CB for OPEN
Poll peripheral for OPEN
Execute CLOSE command
Execute STATUS and SPECIAL (XIO) commands
Execute GET command
Execute PUT command
Set status
Complete CIO operation
Compute handler entry point
Decrement buffer length
Decrement buffer pointer
Increment buffer pointer
Set final buffer length
Execute handler command
Invoke device handler
Search handler table
Find device handler

Page 158

COMPLETE & ESSENTIAL MAP

59193 - 6092ll

59193 E739 PHR

Peripheral handler loader routines are:

5919:\ $E739
59326 $E7BE
59350 $E7DE
59414 $E816
59443 $E833
59405 $E85D
5954ll $E894
59544 $E898
59550 $E89E
59584 $E8CO
59648 $E900
59669 $E915

Routine:

lni t i a l ization
Perform poll
Load handler
Get byte routine
Get next load block
Search handler chain
Handler warm-start initialization
Warm-start initialization with chaining
Cold-start initialization
Initialize handler and update MEMLO
Initialize handler
Handler unlinking

5971<0 E95C S]O

The SIO routines include:

59740 $E95C
59761 $E971
59946 $EA2A
59'159 $EA37
(,0040 $EA81l
60077 $EAAll
60140 $EAEC
60157 $EAI'D
60199 $E827
60204 $EB2C
611295 $E887
60317 $EB'JD
604:13 $ECII
60/139 $ECI7
60/,/lll $£C40
60502 $EC56
605/,8 $£(;84
60570 $EC9A
60585 $ECA9
60591 $ECAF
6060/1 $ECCll
60616 $ECC8
60718 $ED2E
60733 $ED3D
60871 $EllC7
608'J8 $EDE2

Ln i t ial i za t ion
SIO main routine
Complete Sill operation
Wait for completion or ACK
Send buffer to serial bus
Process serial output ready IRQ
Process serial output complete
Receive
Indicate timeout
Process serial input ready IRQ
Set buffer pointers
Process cassette 1/0
Timer expiration
Enable SIO send
Enable SIO receive
Set for send or receive
llisable send or receive
Get device timeout
Table of SIO interrupt handlers
Send to intelligent device
Set timer and wait
Compute baud rate
Adjust VCOUNT value
Set initial baud rate
Process BREAK key
Set SIO VBLANK parameters

Page 159

6()'J:ll - 61293

60921 ElJF9 TPFV

Table 01 POKEY frequency values (24 bytes).

60945 EEl I NTSC/PAL

Table of constant values.

60957 EEID TABLES

Screen memory and DL tables:

60957 $EEID
60973 $EE2lJ
61005 $EE4D
61021 $EE5D
61037 $EE6D
61053 $EE7D
61069 $EE8D
61085 $EE9D
61101 $EEAD

Screen memory allocation
Display list entry counts
ANTIC graphics modes
Display list vulnerability
Left shift columns
Mode column counts
Mode row counts
Right shift counts
Display masks

61116 EEBC PHE

Peripheral handler entry routines:

61116 $EEBC
61177 $EEF9
61222 $EF26

Peripheral handler entry
Peripheral poll at OPEN
Put byte for provisionally OPEN 10CB

61294 EF6E SIN

Screen .nitialization routines. including other screen
handler routines:

Page 160

COMPLETE & ESSENTI AL MH

61294 - 62199

61294 $Ef6E
61326 $EFOE
61332 $EF94
61:140 $EF9C
61824 $F180
61839 $FI8F
61860 $FIA4
61873 $F1B1
611198 $FICA
61929 $F1E'J
61960 $F208
619112 $F21E
619117 $F223
61997 $F22D
61998 $F22E
62026 $F24A
62128 $F2BO
62142 $F2llE

Initialization
Perform screen OPEN
Perform editor OPEN
Complete OPEN command
Screen GET byte
Get data under cursor
Screen PliT byte
Check for end-of-line (EOL)
Plot poi nt
Display
Set exit conditions
Screen STATUS
Self-Test entry point
Screen editor special (just an RTS)
Screen editor CLOSE
Editor GET byte (see GETCHAR below)
Editor PUT hyte (see OlJTCIIAR below)
Process character

62026 F24A GETCHAR

JSR here to tetch a keypress from the keyboard, this acts
just like the Basic GET 'I,K operation where channel .1 has
OPENed the ke y boa r d for input, ie: OPEN itl,4,O,"K:". The
Atascii value of the character pressed is returned in the
Accumulator. Note that this is a very tamiliar
incompatibi lity problem between old 4/800 software and the
XL/XEs, since this routine used to reside at locations
63038: $F63E (EGETCH).

62128 F2BO OliTCIIAR

This is the PliT character routine which used to reside at
63140; $F6A4 (EOUTCH). Used to put the Atascii character in
the Accumulator onto the screen in the next print location.
As described above, this character output routine is also
incompatible with some older sofware, since illegal calls
are sometimes made directly to these routines, at their old
addresses!

Page 161

62200 - 63266

62200 FH8 IGN

Exactly the same as the GETCHAR routine on the previous
page, except that any keyboard character pressed prior to
the call of this routine is not cleared. The routine knows
if the character has not been cleared when the value in
location 764 is not equal to 255.

62205 F2FD KGB

Keyboard GET byte routine. The keyboard handler includes
these routines:

Address:

62432 $F:lEO
62438 $F3E6
62451 $1'31'3
62464 $1'400
62474 $F40A
62476 $F40C
62481 $1'411
62491 $F4IB
62496 $F420
62528 $1'440
62586 $F47A
62613 $1'495
62618 $F49A
62623 $1'491'
62677 $F4D5
62732 $F50C
62752 $F520
62806 $1'556
62815 $F55F
62821 $F565
62825 $F569
62640 $1'576
62880 $F5AO
62892 $F5AC
62986 $F60A
63073 $1'661
63077 $F665
63150 $F6AE
63164 $F6BC
63256 $1'718

ESCape character handler
Cursor up
Cursor down
Cursor left
Cursor to right margin
Set cursor column
Move cursor point
Cursor to left margin
Clear screen
Cursor home (top-left corner)
TAB character handler
Set TAB
Clear TAB
Insert character
Delete character
Insert line
Delete line
Sound bell (CTRL-3)
Cursor to bottom
Double-byte double decrement
Store data for fine scrolling
Double-byte single decrement
Set scrolling display list entry
Convert cursor row/column to address
Advance cursor
RETURN with scrolling
RETURN
Subtract end point
Check cursor range
Restore old data under cursor

Page 162

63267 - 64336

63267 F723 IJMI

Bitmap routines for the editor and screen handler.

63479 1'71'7 SCR

Screen scroll routines.

63665 F8ll1 CBC

Huffer count computation routines; various keyboard, editor
and screen routines follow also:

63768 $1'911:1
631:104 $F93C
63820 $F94C
63831 $F957
63842 $F962
63875 $F983
63895 $F997
6:l910 $F9A6
63919 $F9AF

Delete line
Control character check
Save row/column values
Restore row and column
Swap cursor with regular cursor position
Sound key click
Set cursor at left edge
Set memory scan counter address
Perform screen special command

64260 FlI04 TMSK

Various screen and keyboard tables:

64260 $F1J04
64264 $FB08
64269 $FBOIl

64317 $FB311
64329 $FB49
64333 $FB4D
64337 $FB51
64529 $FCII

Bit masks
Default screen colours (708 - 712)
Control character routines. Each entry is 3
bytes; the control character and the 2 byte
routine address
Shifted function keys (1200XL)
Atascii to internal conversion constants
Internal to Atascii conversion constants
Keyboard definition table (see next page)
Function key definitions

Page 163

64))7 1'1151 KDT

192-byte keyboard definition table. See 121 and 122.

64537 FC19 KIHQ

Keyboard IHQ processing routines (nothing to do with
StarTrek); Character checking and processing, Control-I.
HELP key, Control and function keys (1200XI.). The 1200XL
routines also remain in other XL and XE's OS's, although.
they appear to be unused.

64708 FCC4 FDL

Process display list interrupt for fine scrolling.

64728 FCD8 CIN

Cassette initialization routine. including cassette I/O
routines and NTSC/PAL constants for file leader length and
beep duration.

65177 FE99 PIN

Printer initialization and I/O routines including:

Address:

65218 $FEC2
65227 $FECB
65259 $FEEB
65270 $FEF6
65287 $F1'07
65300 $1'1'14
65348 $1'1'44
65355 $FF4B

Routine:

Printer OPEN
Printer PUT byte
Fill printer buffer
Perform printer PUT
Printer CLOSE
Setup DCB for printer
Printer timeout from STATUS
Process print mode

Page 164

COMPLETE & ESSENTIAL MAP

65395 - 65535

65395 FF73 VFR

ROM checksum verify routines for 1st 8K bank.

65426 1"1"92 VSR

Verify routines for ROM che c ks um, 2nd 8K bank, inclusive of
routines to examine checksum region and table of addresses
to verify.

65518-65529 Ff'EE-Ff'F9

Checksum and identification for the ROM area 57344 - 65535;
SEOOO SFFFF. See 49152; SCOOO also.

65518 SFf'EE
65519 SHEF
65520 SFFFO
65521 SFFf'1
65522-26 SFFF2-6
65527 SFFF7
65528-9 SFFF8-9

Revision date DI and D2 (4-bit BCD)
Revision date MI and M2
Revision date YI and Y2
Option byte: 1= 1200XL 2 = 800XL
Part number in the form AANNNNNN
Revision number (my 800XL is 2)
Checksum bytes (LSB/MSB)

65527 should read I for the 600XL and 2 for the 800XL. For
the 1200XL, 64728 should not read 162.

65530-65535 FFFA-FFFF Machine Vectors

Contains NMI, RESET (power-up) and IRQ service vectors.
Initialized to 49176; SCOl8, 49834; SC2AA and 49196; SC02C,
respectively.

Page 165

A sma 11 comment.

Well, there you have it fellow Atarians. The whole truth and
nothing but ... about the XL and XE 8-bit machines. If you're
an amateur programmer, then you will find most of the
information in this book very tedious so you'll need a lot
of patience. It might be a good idea to send off for one of
the various Atari newsletters or disk magazines. A very good
disk magazine is called "THE GRIM REAPER" and the editor
goes by the name JOHN E. This address and several others are
in a supporting appendix. The more experienced programmers
amoung you will probably be glad for the publication of this
book. Even you advanced programmers might find some
interesting information in this book. I'm no 'know-it all'
by the way, there is quite a lot of stuff that I've never
delved into, in fact I don't think I'll ever stop learning!
One thing I would like to be is less lazy, so if you think
this book is good, or bodatiously amazing (!), or perhaps
just crap, why not let me know and tell me why you think so
and what I could have extended on etc .. Who knows, I might
even write another book! This is my 1st and it took me
several months.

The master copy of this
printed by T.W.A.U.G.,
STAR/LC24-100.

book
using

has
a

been re-arranged and
24 pin printer the

Page 166

INDEX BY LABEL.

OK then, here's the 1st index which gives the locations
involved according to the alphabetically listed name, either
of a single location or group.

NAME

ABUFPT
ACMISR
ACMVAR
ADDCOR
ADRESS
AFP
ULPOT
ANTIC
APPMHI
ARCOET
ATACIIR
ATAN
ATRACT
AIJDCI-4
AUI)CTL
AlJDFI-4
IlASICF
BASICVER
BFENLO/HI
BFLAG
BITMSK
BIWTARR
BLI)ADR
IlLI)ISP
ar.rM
BMI
BOOT
BOOTAD
800TERROR
BPTR
BRCNT
BRKKEY
IlRKKEY
BRUN
8510
BSIOR
IlUFAI)R
8IJFADRS
BUFCNT
BIJFRFL
BUFRLO/HI
BUFSTilM
CARTA
CIO
CIOCHR
CIOINT
CIOINV
CIOV
CIX
CKEY
CLEARSCRN

LOCATION

28-31
727,728
1005-1015
782
100,101
55296
53768
54272-54783
14,15
57262
763
48759
77
53761-53767
53768
53760-53766
1016
43234
52,53
1792
110
1796,1797
1794,1795
1809
650
63267
09
578,579
50237
61
1793
17
566,567
10060
1900
1906
21,22
51002
107
56
50,51
108,109
40960-49151
58591
47
58561
58478
58454
242
1001
62496

NAME

CARTB
CARTCK
CARTFLG
CARTINI
CARTINIT
CARTLD
CARl'OPT
CASBUF
CASETV
CASFLG
CASINI
CASSBOOT
CASSBT
CAIJXI
CBAUDL/H
CBC
CCNTLEN
CCOMND
CDEVIC
CDTMA1
CDTMA2
C[)l'MF3
CI)TMF4
CDTMF5
CDTMV1
CDTMV2
CI)TMV3
CDTMV4
CDTMV5
eH
Cll1
CHACT
CHACTL
CHAR
CIIARSET1
CHARSET2
ClIBAS
CHBASE
CHKSNT
CHKSUM
CHL!NK
CHSALT
CIN
DFLADR
DFLAGS
DFLINK
DFMCLS
DFMDDC
DFMGET
DFMOPN
DFMPUT

I. b. L. Page

LOCATION

32768-40959
1003
49148
49150,49151
50217
49146,49147
49149
1021-1151
58432
783
02,3
50798
1002
572
750,751
63665
54528-54783
571
570
550,551
552,553
554
556
558
536,537
538,539
540,541
542,543
544,545
764
754
755
54273
762
57344-58367
52224-53247
756
54281
59
49
1019,1020
619
64728
1810,1811
576
1807,1808
2837
2983
2751
2219
2508

CLMJMP 6418 DFMSDH 1995
CMCMD 07 DFMSTA 2817
COI.AC 114,115 DltEAll1l 576-579
COLilK 53274 DIGRT 241
COLCRS 85,86 DINDEX 87
COLDST 580 DINIT 50851
COLDSV 5114117 DINT 2016
COLINC 761 DIRLST 8505
COl.OR 200 DISKBOOT 50571
COLOUH 200 DISKINV 58451
COLOUIlO 708 DISKIV 58448
COLOURI 709 Dl.ISTL/H 54274,54275
COLOUR2 710 DLRAM 39967
COl.OUR3 711 DMACTL 54272
COLOUR4 712 DMASAV 733
COLOURS 704-712 DMASK 672
COLPFO-3 53270-53273 DMENU 7951-8278
COLPMO-3 53266-53269 DMRAM 39967-40959
COLRSH 79 DOS 5440
CONSOL 53279 DOS3 3889
COS 48561 DOSINI 12,13
COUNTR 126,127 DOSINIDL 6044.6045
CPHIL 8990 DOSOS 8309
CRETRY 668 DOSUSE 1792-7419
CRITIC 66 DOSVEC 10, II
CRSINH 752 DOSVECDL 5446,5450
CRSROW 108 IlRETRY 701
CRVTSL/H 4264.4266 DRKMSK 78
CSOPIV 58493 DRVBUF 6780-7547
CURDSl./H 4226,4229 DRVBYT 1802
DATAD 182 DSCTLN 725,726
DATALN 183.184 DSFLG 1806
IlAUXI/2 778.779 DSKFMS 24,25
DBSECT 577 DSKTIM 582
DBUF 7668 DSKUTL 26,27
DBUFLO/HI 772.773 DSPFl.G 766
DBYTEL/ll 776.777 DSTAT 76
DCB 768-779 DSTATS 771
DCOMND 770 DTI MLO 774
DDCC 56780 DUNIT 769
DDEVIC 768 DUNUSE 775
DDMG 10690 DUPDSK 10690
DECTIMR 49749 DUPEND 13062
DEGFLG 251 DUPFIL 11528
DELFIL 8649 DUPFLG 5533
DELTAC 119,120 DUPSYS 5440-13062
DELTAR 118 DVSTAT 746-749
DERRF 1004 EDITRV 58368
DEVMEM 53504-53759 EEXP 237
DFFM 11528 EGETCH 62026
ENDFMS 5377 GPRIOR 623
ENDPT 116.117 GRACTL 53277
EOUTCH 62128 GRAFMO-3 53265
ERRFLG 575 GRAFPO-3 53261-53264
ERRNO 4789 GTIA 53248-53503
ERRSAV 195 HARDI 50394
ESCFLG 674 HARDWARE 53248-55295

I, b. L. Page 2

INDEX BY LABEL.

ESIGN 2:19 HATABS 794-826
EXP 56766 HEL.PFG 732
FADIl 55910 III BYTE 648
FASC 55526 HIMEM 741,742
FCB 4993-5120 IIITCLH 53276
FCIIRFLG 240 HIlISED 715,716
FDIV 56104 IINDLRVCTR 51U68-58447
FDL 64708 1I0LDI 81
FDSCHAR 3650 HOLD2 671
FEOF 63 nOLIl3 669
FILIlAT 765 HOLD4 700
FIJ.DIR 5121 1I0LDCH 124
FILELD 5576 IIPOSMO-3 53252-53255
1'1LFLG 695 HPOSPO-3 53248-53251
FINE 622 IISCROL 54276
FKDEF 96,97 ICAXIZ 42
FLDOP 56717 ICAX2Z 43
FLDOR 56713 ICAX3Z/4Z 44,45
FLDIP 56732 lCAX5Z 46
FLDIR 56728 ICAX6Z 47
FLPTR 252,253 ICBH/HZ 36,37
FMOVE 56756 ICCOMT 23
FMSRAM 1792-5377 ICCOMZ 34
FMTDSK 9656 lCDNOZ 33
FMlIL 56027 ICHIDZ 32
FMZSPG 67-73 ICIO 58561
FNDCODE 3742 ICSPRZ 44-47
FPI 55762 ICSTAZ 35
FPROM 55296-573/,3 IFP 55722
FPSCH 1510-1515 IGN 62200
FPSCRI 1516-1535 I IN 58588
FPTR2 254,255 IMASK 651
FRO 212-217 INBIJFF 243,244
FRI 224-229 INISAV 6044,6045
FR2 230-235 INITAD 738,739
FRE 218-223 IN ITIO 6518
FREQ 64 INITPDEV 51468
FRESECT 4293 INSDAT 125
FRMADR 10 /" 105 INTEMP 557
FRX 236 INTHNDLRS 49152-52223
FSTOP 56747 I NT!NV 58475
FSTOR 56743 INTRHINI 49164
FSlIll 5590/, INTRVEC 522,523
FTYPE 62 INVFLG 694
GAMCTL 624-647 10CBO 832-847
GBYTEA 719,720 10CBI 848-863
GETCHAR 62026 IOCB2 864-879
GETS ECTOR 4358 IOCB3 880-895
GINTLK 1018 IOCB4 896-911
GLBABS 736-739 IOCB5 912-927
GPDVV 58511 IOCB6 928-943
IOCB7 944-959 NEWCOL 758,759
lOCBS 832-959 NEWROW 757
10CMD 192 NGFLAG 01
IODVC 193 NMIEN 54286
IRQEN 53774 NMIINIT 49176
IRQST 53774 NMIRES 54287

l.b.L.Page 3

UillEX BY LABEL.

ISIWDN 6630 NMIST 54287
ISHSIR 6691 NOCKSM 60
.JMPTIIL 24,25 NOCLIK 731
.JVECK 652 NSIGN 238
KIlCODE 5:1769 NTSC/PAL 60945
KDEFTBL 64337 OLDADR 94,95
KEYBDV 511400 OLDCIIR 93
KEYCLICK 63875 OLDCOL 91,92
KEYDEF 121,122 OLDROW 90
KEYDEL 753 OPNTMP 102,103
KEYDIS 621 OPT 5534
KEYREP 730 OSDBIIFS 512-1151
KGB 62205 OSRAM 0-127
KIRQ 64537 OSROMHI 55296-65535
KRPDEL 729 OSROMLO 49152-53247
LBPRI 1406 OSTABLS 512-1151
LBPR2 1407 OSVARS 512-1151
LBUFF 1408-1535 OUTCIIAR 62128
LDFIL 10522 PfPF 53252-53255
LDMEM 6457 P#PL 53260-53263
LEDCTL 54017 PIOCOET 56909
LINE 7588 PACTL 54018
LISTDIR 3501 PADDLO 624
LKFIL 10608 PADDLI 625
LMARGN 82 PADDL2 626
LMTR 6432 PADDL3 627
LNFLG 00 PAGEO 0-255
LOADAD 721.722 PAGEl 256-511
LOADFLG 202 PAGE6 1536-1791
LOADFLG 5535 PAL 53268
LOG 57037 PALNTS 98
LOGIO 57041 PBCTL 54019
LOGCOET 57202 PBPNT 734
LOGCOL 99 PBUFSZ 735
LOGMAP 690-693 PCOLRO 704
LOMEM 128.129 PCOLRI 705
LPENH 564 PCOLR2 706
LPENV 565 PCOLR3 707
LSICHIPS 53248-55295 PDMSK 585
LTEMP 54.55 PDVMSK 583
M#PF 53248-53251 PENH 54284
MIPL 53256-53259 PENTV 58502
MEMFLG 6046 PENV 54285
MEMLDD 5899 PilE 61116
MEMLO 743.744 PHINIV 58508
MEMSFC 5947 PHR 59193
MEMTOP 144.145 PHUNLV 58505
MEMTOP 741,742 PIA 54016-54271
MEOLFLG 146 PIN 65177
MINTLK 1017 PIO 51507
MLTTMP 102.103 PIRQQ 64537
NEWADR 654.655 PLYARG 1504
PLYEVL 56640 SAVADR 104.105
PMBASE 54278 SAVCUR 190
POKADR 149.150 SAVIO 790
POKEY 53760-54015 SAVMSC 88.89
POKEY2 53760-54015 SBUSCOtl 522-527

I.b.L.Page 4

INDEX BY LABEL.

POKMSK 16 SCR 63479
PORTA 54016 SCREENV 58384
PORTB 54017 SCRFLG 699
POTO-3 53760-53767 SCRNEDP 148,149
POTGO 53771 SCRNRAM 656-703
PPTMPA 588 SCROLL 63479
PPTMPX 589 SDLSTL/H 560,561
PRINTV 58416 SDMCTL 559
PRIOR 53275 SELFSV 58481
PRNBUF 960-999 SELFTEST 20/.80-22527
PROMPT 194 SELFTSEL 51452
PTABW 201 SENDEV 58472
PTRIGO 636 SERIN 53773
PTRIG1 637 SEROUT 53773
PTRIG2 638 SETUP 4452
PTRIG3 639 SETVBL 49778
PUPBTI-3 829-831 SETVBV 58460
PUPDIV 58496 SFDIR 3873
PZASMV 176-207 SFLOAD 5540
PZBASV 146-202 SFTTIMR 536-558
PZERO 0-255 SHFAMT III
PZRAM 0-255 SHFLOK 702
PZUNUSD 203-209 SHPDVS 584
RADFLG 251 SIN 48551
RAMLO 04,5 SIN 61294
RAMSIZ 740 SIO 59740
RAMSWTCH 54017 SIOINV 58469
RAMTOP 106 SIOORG 59740
RANDOM 53770 SIOV 58457
RBLOKV 58490 SIZEMO-3 53260
RDDIR 4206 SIZEPO-3 53256-53259
RDNXTS 4111 SKCTL 53775
RDVTOC 4235 SKREST 53770
RECLEN 51\1 SKSTAT 53775
RECVDN 57 SI.FTSV 58499
RELADR 568,569 SOUNDBELL 62806
RELADR 586,587 SOUNDR 65
RENFJ L 9783 SPARE 563
RESET 59544 SQR 48869
REV DATE 65518-65520 SRTIMR 555
REVISION 49163 SSFLAG 767
RMARGN 83 SSKCTL 562
ROMVCTRS 65530-65535 STACK 256-511
ROWAC 112,113 STACK2 1152-1405
RoweRS 84 STACKP 792
ROWINC 760 STARP 140,141
RTCLOK 18,19,20 STATUS 48
RUNAI) 736,737 STCAR 9966
RUNADR 713,714 STICKO 632
RIINADREN 51154 STICK1 63]
RUNSTK 142,143 STl MER 53769
SABYTE 1801 STMCUR 131\,139
SASA 1804,1805 STMTAB 136,137
STOFFSETS 51799 VSCROL 54277
STOPJ.N 11\6,11\7 VSERIN 522,523
STRIGO 644 VSEROC 526,527
STRIG1 645 VSEROR 524,525

I.b.L.Page 5

SUIITMI'
SlJl'EHF
SWPFl.G
SYSVBL
SYSVRV
TABLES
TABMAP
TEMP
TEMP
TEMPI
TEMP2
TEMP3
TEMPCIIH
TESTVEIl2
TIMEHI
TIMER2
TIMFLG
TINDEX
TMPCOL
TMPLBT
TMPROW
TMSK
TOADR
TOLDADH
TOLDCIIR
TOLDCOL
TOLDROW
TPFV
TRAMSZ
TRIGO-I
TSTAT
TXTCOL
TXTMSC
TXTOLIl
TXTROW
ULFIL
USRDOS
VARNOLE
VARSTG
VARTYPE
VAUX2
VRREAK
VCOUNT
VDELAY
VDSLST
VERIFY
VFR
VIMIRQ
VINTER
VKEYBD
VNTD
VNTP
VPIRQ
VPRCED

67lJ
1000
123
119378
511463
60957
675-689
574
80
786,787
7116
789
80
10463
760.761
764,785
791
659
697.698
673
696
64260
102.103
&&&.667
665
663.664
662
60921
06
53264-53265
793
657.656
660.661
662-667
656
10608
5888
211
7924
210
573
518.519
54283
53276
512.513
1913
65395
534.535
516.517
520.521
132.133
130.131
568.569
514.515

VSFl.AG
VSR
VTIMRI
VTIMR2
VTlMH4
VVBLKD
VVBLKI
VVTP
WAIlMST
WAIlMSV
WROOT
WILD*
WMODE
WHTDOS
WRTMEMS
WRTNXS
WSYNC
WTBIJR
XBCONT
XDELETE
XFNME
XFORMAT
XITVRV
XLOCK
XMTIlON
XNOTE
XPOINT
XIlENAME
XIJNLOCK
ZCHAIN
ZFI
ZFRO
ZHIUSE
ZIOCB
ZIOVARS
ZLOADA
ZPFP
ZTEMPI
ZTEMP3
ZTEMP4

620
65426
528.529
530.531
532.533
5 /t8.549
546.547
134.135
08
58484
10201
3783
6/,9
4618
10111
3988
54282
2591
1799,1800
3122
3818,3822
3352
58466
3196
58
3331
3258
3033
3203
74.75
55878
55876
717,718
32-47
48-75
723.724
212-255
245.246
249.250
247.248

I . b. L. Page 6

COMPLETE & ESSENTIAL

INDEX BY SUBJECT

This 2nd and final index is organized by subject. This is one
thing Ian Chadwick should have included when he made the XL/XE
version of Mapping the Atari: a FULL XL/XE subject index!

LOCATIONSSUBJE.-"C-'-T

ANTIC
direct memory access (DMA)
instruction set pointer
interrupts
mode numbers
PIM graphics
ROM

559, 54272
560, 561
512, 513
87
559, 54272
54272-54783

BASIC
array table
blackboard mode
cartridge
disable
error codes and lines
Floating Point routines (FP)
GOTO and GOSUB
graphics modes
jump to DOS
line numbers
machine-code file load
memory pointers
OPERATOR list
page zero
program
program end
runtime stack
stack
statement pointer and table
stopped at line action
string table
TOKEN list
variable name, value tables

140, 141
no longer exists
40960-49151
1016
186, 187, 195
48549-49145
142, 143
87
10, 11, 6040
136, 137
5576
128, 129, 144, 145, 740-744
42509
128-209
14, 15, 136-139
14, 15, 144, 145
142, 143
256-511
136-139
186, 187
140, 141
42159
130-135

BLACKBOARD MODE no longer exists

BOOT
cassette
disk boot initialization
disk boot routine
DOS vector
self-test package
success flag indicator
system lockup

9, 12, 1002
12, 13
4, 5, 50571
10, 11. 5446, 5450
20480,58481
9
9

Page 1.1

UOHDEH
colour registers
disable/enable/enlarge
rainbow

BREAK KEY
disable
enable
flag
forced
interrupt
restored
shadow register
status
vector

BUFFERS
cassette
command frame
data
device (5[0 data)
disk
line
printer
ZIOCB

CARTRIDGES
A (left) cartridge
B (right) cartridge
Basic (see A cartridge)
DOS boot flag
initialization vector
load address vector
test for presence

CASSETTE
baud rate
beep count
boot
buffer
buffer size
buzzer
end of file
handler routines
handler vector
initialization vector
inter-record gap (IRG)
load
mode
motor control
OPEN for input
read block entry
record size
run address
status register
voice track

Page 1.2

70'1, 712
559
712

16, 53774
16, 53774
17,53774
53775
16, 53774
16, 53774
16, 53774
17, 48
566, 567

1021-1151
570-573
50-53, 56
772, 773
1024
735, 1408
734, 960-999
36,37,40,41

40960-49151
32768-40959
40960-49151
'19 149
49150-49151
49146-49147
6, 50289

750, 751
64, 65
2, 3, 9, 1001, 1002
61. 1021-1151
650
65020
63
64728-65176
58432
2, 3
62
2, 3
649, 783
54018
64759
64742
1021
10, I I, 12. 13
7
53775

COMPLETE & ESSENTIAL MAP

CHARACTER
ATASCII
auto repeat logic
bit mapping
blinking text
character sets
character set address
colours
control codes
control key
control register
cursor inhibit
hardware code
internal code
inverse
invisible inverse
last character read, written
lowercase outside graphics 0
logic processing
mode
move set into RAM
printer output
prior character code
HOM routines
screen location
shadow
s h t t t key
tests
translation of codes
under cursor
uppercase outside graphics 0
upside down

CHECKSUM

CIO
command
JOCBs
utility initialization
variables
vector

CLOCK
attract mode
CPU
realtime
serial clock lines
sound use

COLOSTART
cassette boot
disk boot
entry point
flag
power-up

Page 1.3

763, 52224, 57344
729, 730, 761,
52224, 57344
548, 549, 755
756,52224,57344
756, 54281
708-712, 756
766
702, 764
674, 694, 755
752, 755
764
762, 764
694
755
763
756
124
755, 54273
756
?
754
62205-63266
87, 88, 89
756
702, 53775
64537
52224, 57344
93
756
512, 513, 755, 54273

49, 59, 60

23
832-959
58561
43
58454

77-79
APC 002
18-20
53775
53768, 53784

9, 100 I
9
58487
580
49864

COLOUR
artifaeting
attract mode
default values
GTIA registers
player/missile shadows
playfield shadows
rotating
screen mode

CONSOLE KEYS
basic disable
basic enable
cassette boot
detection
disk boot
self-test package

CPU
clock rate
instruction set

710
77-79
708-712. 64264-64268
704-7\2.
704-707
708-712
77, 703
87, 560, 56\

53279. 54017
53279, 54017
53279
53279
53279
20480, 54017, 58481

APC 02
APC 04

CURSOR
advance 85, 86
character under 93, 125
click 731,
column 85, 86
current position 84-86, 94, 95
end of line (EOL) 125
flash 755
graphics 90-92
home 121, 122, 62528
inhibit (disable) 752
LOCATE 85, 86
logical line 99
move to left margin 121, 122, 62491
move to right margin 121 , 122, 62474
move to bottom-left corner 121, 122, 62815
opaque, transparent 755, 54273
out of range error 87
pause toggle 767
previous position 90-92
row 84
tab stops 675-689
tab width using the comma 20\
text window 85, 86, 123

Page I. 4

COMPLETE & ESSENTIAL MAP

DEVICE
buf fer
byte transfer
command
command frame retries
Device Control Block (DCB)
drivers (adding)
error status
HANDLER address table
routines
vectors

memory
retries
status registers
timeout value
vector tables
ZIOCB number

DIRECT MEMORY ACCESS (DMA)
graphics control
ROM
shadow

DISK
beep during I/O
boot
boot load address
boot continuation
boot initiation address
boot routine
buffer
flags
FMS page zero
FMS pointer
handler commands
handler routines
handler vector
header bytes
initialization address
records OPEN
retries
run address
start vector
timeout
utilities
vector
verify routines

Page 1. 5

772, 773
776. 777
770
668
768-779
794-828
746-749
794-828
58591-59192
794-828, 58368-58447
55296-55323
701
746-749
747
58368, 58447
33

53277
54272
559

65, 60504
9-13, 1001, 1002
578, 579
4. 5
12. 13
50571, 50619
21, 22, 1802
576. 577
67-73
24, 24
778
50851-51001
58448, 58451
576-579
12, 13
1801
668
736-739
10, II
582
26, 27
10, II
1913

COtlPJ,EIE & ESSENTIAL MAP

DISPLAY
HANDLER
routi nes
vector

LIST
address
enable
entries
instructions
interrupts
location
lowest address
pointer
reserving memory
ROM tables
screen mode
scrolling
size
vertical line counter

logical line map
memory
pixel mask
RAM
registers
routines
text window

DLI
address
disable
enable
vector

DOS
boot address
boot record
buffers
burst I/O
drives in system
DUP.SYS RAM
filename change
files reserved
FMS RAM
ini tial ization
run address
start vector
wildcard character

DRAW
colour of line
cursor
endpoint of line
flag
graphics 0
ROM rou ti nes
screen mode

Page 1.6

61294
58384

100, 101, 560, 561
559, 54286
81, 560, 561
559-561
512, 513, 54286, 64708
560, 561, 65530, 65531
14, 15, 106, 560, 561
560, 561
106, 560, 561
60957
87, 559, 560, 561, 623
560, 561, 54276, 54277
81, 560, 561
54283
690-693
14, 15
672
656-703
76,80,81,99-105,107-127
61294
656-667

512, 513
54286
54286
512, 513

10, II, 578, 579
1792
6780-7547, 7588-7923
2592-2773
1802
5440-13062
3818, 3822
1801
1792-5377
12, 13, 738, 739
736, 737
9-11
3783

763
90-92
84-86, 757-759
695
87
?
87

DUP.SYS
load

ERRORS
BASIC
device
disk I/O
SIO

COMPLETE & ESSENTIAL MAP

10, 11

186, 187, 195
746
73
575

ESCAPE KEY
control codes (without ESC)
flag
forced

FILE
header bytes
initialization address
load address
run address

FILL
colour of fill area
colour of line
endpoint of line
flag

FLOATING POINT
BASIC ROM
degree/radians flag
page zero
pointers
RAM page five
registers
ROM (OS)
trig functions

FMS
page zero buffer
pointer
RAM

GRAPHICS
display mode
DRAW, DRAWTO and FILL
IOCB
I ine plotting
memory use
mode 8 text
pixel
players/missiles
row and column plotting
screen memory
scroll
tab width
XIO commands

766
674
766

576-579
738, 739
578, 579
736, 737

765
763
84-86, 757-759
695

48549-49145
251
210-255
252-255
1406-1535
212-217, 224-229
55296-57343
251

67-73
24, 25
1792-5377

87, 659
85, 86, 757-759
928-943
112-120, 760, 761
88, 89, 106
57344
672
53261-53265
112-120, 760, 761
14, 15, 123, 126, 127
622, 54276, 54277
201
757-759

Page 1.7

GTlA
collisions
console keys
console speaker
examples
mode selection
ROM
stick triggers
test
text window
trigger latching

HANDLERS
interrupt routines
RESET
ROM routines

HARDWARE
memory

HELl' KEY
detection

INTERRUPTS
BREAK key disabled
BREAK key vector
display list (DLI)
enabled
handler routines
IRQ
NMI

I'IA (peri peral)
POKEY
RAM
serial
status request
timer
Vertical Blank (VBI)

IOCB
graphics screen
LIST, LOAD and LI'RINT
move
page zero
RAM
screen editor

IRQ
BREAK key vector
service routines
vectors

JIFFY
realtime clock
vertical scan-line counter

53248-53263, 53278
53279
53279
623
87,659,559,623
53248-53503
53264-53265
623
623, APC Cl1
53277

49164
794
58561

53248-55295

732

16
566, 567
512, 513
16, 53774, 54286
49164
16, 514-535, 53774, 49196
512, 513, 546-549, 54286
49176, 49378, 49802
54018, 54019
16, 53774
512-535, 546-549, 566, 567
16
53774
16
546-549, 54286, 58460-58468
49378, 49802

928-943
944-959
58609
32-47
832-959
832-847

566, 567
49196, 64537
514-535

18-20
54283

Page 1.8

COMPLETE & ESSENTIAL

KEYBOARD
code
console keys
control key flag
controller
delay flag
debounce delay
display flag
enable debounce and scanning
ESCape key flag
handler routines
handler vector
interrupts
inverse toggle
option, select and stop keys
repeat rate
SHIFT key flag
start, stop flag (CTHL-I)
status
synchronization
timer delay

Ll GHT PEN
horizontal value
vertical value

LINE
bit map
buffer
cursor
logical line
margins
plotting
screen editor
tabs

LUMINANCE
attract mode

MACHINE LANGUAGE
illegal instruction set
instruction set
page six

MARGINS
border
bottom
ed i ti ng
ini tial ization
left
playfield size
right
scrolling
top

764, 53769
9, 580, 732, 53279
702, 53769
54016
555, 729, 730, 753
729, 730
766
562, 53775
674
62205-63266
58400
16, 53774
694
53279
555, 729, 730
702, 53769
767
76
54282
555

564, 5/1284
565, 54285

690-693
1/108-1535
99
83
82, 83
112-120, 126, 760-761
107
201, 675-689

77-79

APC D4
APC D4
153(,-1791

82, 83, 559
84, 560, 561
82, 83
82, 83
82
559
83
82, 83, 54276, 54277
84, 560, 561

Page 1.9

MEMOI{Y
bank switching
hardware
HAM

ROM

MONITOR
handler routines

NMI
DLI
reset register
service routines
status
VBI
vectors

OPERATING SYSTEM
character sets
Floating Point (FP)
handlers
ROM
vectors

PAGE ZERO
BASIC use
buffer
Floating Point use
FMS registers
IOCB (ZIOCB)
RAM
unused RAM (unconditionally)

PERIPHERAL
controllers
interrupts
ports

PIA
ROM
stick
paddle (pot) triggers
ports

PLAYER/MISSILE GHAPHICS
character base
collision clear
collision detection
colour registers
disable

54017
53248-55295
0-32767, 32768-40959
110960-49151, 49152-532/17
55296-65535
49152-53247, 55296-65535

49864

512, 513, 560, 561, 54286
5 /1287
49176
54287
546-549, 54286
512, 513, 546-549

52224, 57344
55296
58591-
49152-53247, 55296-65535
58368-58533

128-202
21,22
210-255
67-73
32-47
20:1-209, 0-255
28-31,147,20)-209

54018, 54019
5:1774
54016

54016-54271
54016
54016
54016, 54018-54019

54279
53278
53248-53263
704-707
559, 53277

Page 1.10

COMPLETE & ESSENTIAL MAP

DMA
enable
fifth player
graphic shape
horizontal movement
horizontal position
location
memory reservation
movement
multicoloured
overlap
priority
resolution (line)
screen boundaries
size and width
using DLls with PMGs
vertical delay
vertical movement

PLAYFIELD
colours
DMA
enable
priority
scrolling
size

POKEY
enable
interrupts
pots
ROM
sound channels
sound control
stereo upgrade

POLYNOMIALS
random numbers
sound dividers

POTS
fast-scan enable
POKEY registers
port state read
shadows
start read sequence
trigger latch
triggers
values

POWER-UP
RAM size
ROM stability test
warmstart

559, 54272
559, 53277
623, 53275
53261-53265
53248
53248-53255
54279
54279
53248
623, 53275
623. 53275
623. 53275
559, 54272
559, 53248
53256-')3260
53261
53276
APC CIO

7011-712
559
559
623, 53275
54276. 54277
559

53768, 53775
16. 514-535
53760-53767
53760-54015
53760-53767
53768, 53775
APC B3

53770
53761, 53768

562, 53775
53760-53767
53768
624-631
53771
53277
636-643, 54016
624

6, 740
50289, 50394. 65395, 65426
8, 9, 580

Page 1.11

PRINTER
buffer
character output
handler routines
handler vector
IOCB use
sideways printing
status
timeout

PRIORITY
ROM
shadow

RAM
clear memory
free memory

monitor
page zero
pointer. bottom
pointer, top
pointers, general
protected area (Page-$6)
RAM top
reserving
screen
size
stack
test
vector table

RANDOM NUMBER GENERATION
register
control

RESET KEY
coldstart
DOS
flag
handler routines
handler tables
interrupt
lockup
margins
vector
warms tart

SCREEN
bit mapping
boundaries
buffer
clear memory
clear screen
colour clocks

734, 735, 960-999
?
65177
58416
944-959
735
788, 735
788

53275
623

88. 89, 106
0-32767, 32768-40959
40960-49151, 49152-53247
55296-65535
0, 1
28-31, 147, 203-209, 0-255
743, 744, 1792
106, 741,742
4, 5, 15, 128, 129
1536-1791
106, 740-742
106, 743, 744
88, 89
106, 740
512-767
4-7
58496

53770
53768

580, 58467
10, 11
580
49634, 56464
794
54266
9
62, 63
9, 65530
8, 580, 56484

110
53246
107
86, 89, 106
66
672

Page 1.12

COMPLETE & ESSENTIAL MAP

control codes
display address
display mode
graphics modes
handler vector
lOeB use
line buffer
logical line map
lowest address
memory restrictions
memory use
mode
page zero RAM
PAL compatible
pixel justification
pixel mask
rows
save routines
screen modes
scrolling

size
split screen
TAB map
text rows
vertical line counter
wait synchronization

SELF-TEST
address
enable
vector

SERIAL PORT
control
data port
input/output
interrupts
reset status
shadow
status

SIO
checksum
command frame buffer
data buffer
device control block
disk flags
error flag
flags
interrupt handler
interrupts
routines
send enable
stack pointer
status

766
560, 561
87, 659
87-89, 106
58368
832, 928
1408-1535
690-693
14, 15, 88, 89
741, 742
88
87, 659
80-120
53268
11 1
672
703
88, 89
560, 561
88, 89, 106, 622, 699, 767
54276, 54277
76, 88, 89, 559, 672
123
675-689
703
54283
54282

20480
54017
58481

562, 53775
790
16, 53773
16, 53774
53770
562
53775

49
570-573
50-53, 56
768-779
576, 577
575
56-60
49164
514-527
59740
58472
792
48

Page 1.13

& ESSENTIAL MAP

timeouts
transmission flags
utility initialization
vector

SOFTWARE
initiation address
run address
timers

SOUND
audio control
audio frequency
beeps
buzzer (CTRL-2)
cassette buzzer
clock frequency
console register
CTRL-2 buzzer
distortion
filters
I/O beeps
keyboard speaker
margins
octave range
poly counters

STACK
page one
runtime

STATUS
device
display
printer timeout
SIO
ZIOCB

STICK
attract mode
PIA register
read routines
shadows
trigger latch
triggers
values

TABS
comma spacing
stop map

TEXT
colour
size
status flag
upside down

788
56-60, 701
58469
58457

738, 739
736, 737
536-545

53761-53768
53760-53768
64. 65
62806
?
53768
53279
66, 62806
53761
53768
65, 60504-60547
53279
83
53768
53761

256-511
142, 143

747
76
788
48
35

77
54016
632
632-635
53277
644-647
632

201
675-689

708-711
87
752, 755
755

Page 1.14

& ESSENTIAL MAP

WINDOW
address
cursor
enabled on mode 0
GTIA
margins
mode
plot
rows available
scrolling
tab width

TIMEOUT
baudrate correction
device
disk
printer
storage
value

TIMERS
attract mode
baud rate
critical code
hardware (POKEY)
interrupt enable
jump vectors
realtime clock
repeat
software (system)
start hardware
suspended
VBLANK
vectors

TRANSMISSION FLAGS

TRIGGERS
GTIA registers
latches
paddle (POT)
PIA register
stick (joystick)

VARIABLE
assigning values
list
name table (VNT)
statement table
string and array table
value table

656-667, 703
660, 661
123, 656-658
703
87
82, 83
659
87
703
622. 699
201

791
748
582
788
48
788

77
780-782, 784-787
66
16, 528-533, 53768
16, 53774
550-553
18-20
555
536-558
53769
66
66
550-558

56-60

53264-53265
53277
636-643
54016
644-647

134
132
130-133
136, 137
140, 141
134. 135

Page 1.15

&. ESSENTIAL MAP

VERTICAL BLANK
attract mode
clock
critical section
entry point
exit
interrupts
interrupt status
key delay
set timers
timer value

VECTOR
BREAK key interrupt
break instruction IBRK)
cassette handler

CIO
command
device handlers
disk
disk handler
display handler
DLI
immediate IRQ
keyboard handler
RESET key interrupt
serial interrupt
serial proceed line
serial receive data ready
serial transmit complete
serial transmit ready
software timer-l
software timer-2
timer-I interrupt
timer-2 interrupt
timer-4 interrupt
VBI

WARMSTART
entry point
flag
NMI check

77-79
18-20
66
58463
58466
546-549, 54286
54287
729, 730, 753
18,58460
0, I

566, 567
518, 519
58432

58454
23
794-828, 58368-58477
10, 11
58448, 58451
58384
512, 513
534, 535
58400
49834, 58484, 65532
516, 517
514,515
522, 523
526, 527
524. 525
550, 551
552, 553
528, 529
530, 531
532, 533
546-549

58484, 49808
8, 580
8, 54287

Page 1.16

COMPLETE & ESSENTIAL MAP

for the

XL/XE

BOOK CORRECTIONS

After reading through the booK we have unfortunately found a
few page references that do not correspond with the pages
indicated in the booK.

On page 15 in the paragraph under location 91,92 it indicates to
refer to page 97, unfortunately it should read: "See page 85 of
the map".

On page 140 in the first paragraph, under location 54272, it
reads (Page-45) but it should read "Page-3S".

In part two of the booK on page 170 in the OPEN paragraph it
reads: (See the table on page 96), this is another mistaKe, it
should read "See the table on page 84".

These mistaKes occurred when the author's Master Copy
was set up and re-printed as it is now. There were too many
large gaps between the lines and some pages had only a few
line on them, it would have pushed the cost up too high. Plea,se
notify TWAUG with any other errors found in the booK, the page
references above are the only ones I've found up to now.

The author wasn't able to print the "lesser than < and greater
than> characters with his printer, in place he used the square
bracKets [J. Again some of these characters were overlooKed,
you will find these square bracKets in some of the BASIC
program listings, mostly in the appendix pages. Please replace
these square bracKets [J with the lesser than and greater than
<> characters, or the programmes wont run.

If we find further mistaKes we will update this 'BooK correction
leaflet' and post it out to our customers. Please Keep this
leaflet clipped to your booK.

TYNE&WEAR
ll'A)j

ATARi
USER CROUP

P.O.Box No.8, WALLSEND

Tyne 8. Wear NE28 6DQ
Publishers

TWAUG publications presents

THE

Atari XL/XE

Complete And Essential MAP

Including Probably The Most
Comprehensive Appendice
Selection Ever Produced

Written by
Andrew C. Thompson

This Book Contains Information
Never Released AnyWhere Before

And Is Heavily Based And
Expanded On Mapping The Atari - Revised

THIS BOOK IS COPVRIGHTEO AND ALL RIGHTS ARE RESERVED.

ANDREW C. THOMPSON ~ 1994

and

TWAUG PUBLISHING"'~ 1994

The publishers of this book have the sole right for distribution.

Any unauthorized copyinq, duplicating, selling or otherwise distributing
of this product is hereby expressly forbidden.

TYNE&WEAR

ATARI
USER GROUP

T.W.A.U.G.
P.D.Box No.8

Wallsend
TYNE s, WEAR

NE286DQ

