THE COMPLETE
AND
ESSENTIAL MAP
FOR THE
XL /7 XE

JI\ I\

ATARI ATARI

Written by
ANDREW C. THOMPSON ©®1994

Published and Distributed by
TWAUG PUBLISHING™ ©1994

PART 1




Welcome to a new book. It is based upon Mapping the Atari-Revised

by Ian Chadwick. This book has been written to cover the XL/XE

Machines only, in Mapping the Atari there is only a small part that
had been revised to cover the XL/XE Machines.

I have corrected in this book all incorrect information and errors
and I've included a fair bit more information that is not covered in
Mapping the Atari. In addition to the MAP section, you will find an
XL/XE Operating System source listing with descriptive remarks
alongside and there are several appendices that I hope will expand
your knowledge and be readily available for future reference. Most
of the information in the MAP section that references other sources
in Mapping the Atari, you will find amongst the appendices.

I hope this book will help the beginners and intermediate
programmers, by explaining the subjects with small straight forward
Basic programs. The book should also be a indispensable reference
manual for the more advanced programmer.

M! e Bh"hlg - The author and publishers have made every effort to

ensure the accuracy of the programs and information in this book.
However, we do not accept any responsibility nor liability for any
damage caused or allegedly caused directly or indirectly by the
programs or information in this book.

The author - ANDREW C. THOMPSON

Publishers - TWAUG PUBLISHING



CONTENTS

PART 1

Subject: Page:

APPENDIX LIST
PROGRAM LISTINGS IN MAP

INTRODUCTION 1-1.5
MAP 2-166
ANTIC 139-147
Attract mode 11
Basic 106-109
Basic disable/enable 87
Basic errors 26
Cartridges 106
Character sets 66-69
Colour 55-59
Console keys 122
Device Control Block 72-75
Display List (DL) 39-41
DMA 38
DOsS 87-104
pup 104~-106
Floating Point package 28-30
Graphics priority 46
GTIA 112~-123
Handler address tables 77-79
Hardware memory 112-147
Help key 60
I0CB's 79-86
IRQ's 32-35, 42
Joysticks 48-49
Keyboard disable/enable 45
Key definition table 19
Light pen 146
Margins 12
NMI's 31, 36
0S ROM 110-111, 148-165
0S variables, vectors 30
Paddles 47, 49
Page-0 (Loc's 0-255) 2-30
Page-6 (Loc's 1536-1791) 89
PIA 133-139
PMG's 113-121
POKEY 123-132
Realtime clock 5
Scrolling 141-144
Self test 106
Sound 124-128, 132
Stack 30
Top of free memory 17
Variable name table 21
VTOC sector 98
INDEX BY LABEL IBC
INDEX BY SUBJECT IBC
PART 11

APPENDICES 167 onward



APPENDIKX LI1IST

Here's the appendices which make up the reverse half of the book.
Appendix E06 is quite a big one as you can imagine, since it is
the Operating System source listing for the XL and XE machines.

APC NANE: APC NAME:

A0l Basic Keywords D01 Vertical-Blank Processes

A02 Basic Tokenization D02 Critical Timings

A03 Basic Alterations D03 Cycle Stealing

A04 Program Improvement D04 Machine-Language

A05 Turbo Basic D05 Vertical-Blank Interrupts

A06 Handy Tricks D06 Register/Location Loading

BO1 Sound and Music EO1 Enhancements and Bugs

B0O2 Volume-Only Sound E02 Changing a RAM 0S

BO3 Pokey in Stereo EO0O3 130XE Memory Management
E0O4 DOS 2.5 Memory

CO01 Character Codes E05 Free Bytes

C02 Number Systeas E0O6 XL/XE OS Source Listing

C03 LSBs and MSBs

C04 Boundaries FO1 Hardware Chips

C05 Boolean Expressions FO2 1050 Specifications

C06 Logic F03 Pinouts

C07 Error Codes F04 Port Input

C08 Trigonometric Formulas

C09 Display Modes GO1 Other Software

C10 Player/Missile Graphics G02 Atari Support
C1l1 Display List Interrupts G03 Glossary

C12 Boot Process G04 Useful Listings
C13 Graphics 12 and 13

Cl14 Display Lists



PROGRAMN LI STINGS

Here are all the listings from the map section of the book only.
I've given the page number, location and a small explanation of

the listing found there.

PAGE LOC DESCRIPTION PAGE LOC DESCRIPTION

5 20 Timing 13 87 GTIA T/Window

13 88 Display Memory 14 88 Bulk memory clearer
14 Picture loading 17 106 Protecting memory
19 121 Unkown editors 21 131 Variable displayer
22 134 Variable valuer 22 131 String clearing

23 136 Line addr. finder 24 138 Program protection
24 140 Strings vs Arrays 26 186 Error detection

31 512 DLI action 34 Hardware timers

36 546 Immediate VBI 46 623 GTIA interraction
47 623 GTIA modes 53 675 TAB setting

57 710 Artifacting 58 710 Artifacting extra
58 712 Rainbow border 61 736 Binary file control
63 743 Hiding low memory 65 755 Inverse flashing

66 755 Flashing cursor 67 756 Character decoding
68 756 Characterset copy 68 756 Character redefining
68 756 Font file creator 69 756 Font file loader

70 764 Key detection 71 764 RAVW key converter
74 779 Sector loading 75 779 Formatting

77 794 Null handler 80 832 LIST output toggler
80 832 Return key mode 85 OPENing graphics

86 M/Code drawing 96 3889 DOS 3 corrector

97 File un-deleter 107 Statement token list
113 53248 PMG horizontals 116 53261 PMG without DMA

117 53261 PMG non DMA 2 122 53279 Console speaker

126 53768 8+ Octave sound 127 53768 Filtering

132 Default checks 135 RAM 0S

138 RAM Basic/S-Test 140 54272 Screen bending

141 54276 Coarse Hscrol 141 54276 Fine Hscrol

142 54276 Hscrol timing 142 54277 Mode 0 Vscrol

143 54277 Fine Vscrol 144 54277 Split-font mode

146 Diagonal scroller 145 Horizontal sync

146 Vertical sync 152 Mode 8 text

152 360' printing






I NTRODUCTION

Greetings fellow Atarian dudes and Welcome to the biggest
brain killing book released in ages. This book as some of
you will already know by now is heavily based upon the
Revised version of Mapping the Atari, but fear not ay
indulgent beings for you have not wasted your cool
investment, in fact you have made a most excellent step in
your life as you know it (or at least as you will know it)!
If you own an Atari XL or XE system and you're into
programming in a big way then you WILL need this book. It is
essential to all levels of programmers.

IN THE BEGINNING:

11 minutes after midnight on Tuesday the 20th of April 1993
saw the beginning of this book, and being a nocturnal kind
of guy there «couldn't be anytime better! What the next 9
months had in store for me I never would have known although
I could guess what I was letting myself in for. The initial
phase of writing this book was the MAP itself since this was
the main aim of the book, to create a REAL XL/XE MAP
reference book. Of course, for this I had to rely heavily on
the Revised version of Mapping the Atari, but, at the same
time I had to check and compare every location within the
MAP section of that book with its appendices 11 and 12;
"Addenda and errata to the first edition" and "The XL/XE
memory map", but as you might realize, this was only the
beginning. To cut a long story short there involved much
inclusion of missing material as well as a whole hogwash of
extracted information from many books and magazines. Some of
these sources include Technical Reference Notes, many of
Compute!'s books, De Re Atari, Inside Atari DOS, Your Atari
Computer, the DOS 2.5 manual, the XL handbook and a whole
host of other magazines and sources including Atari User,
Page-6's New Atari User, Megamagazine, TWAUG newsletter and
last but not least, a few of my penfriends even supplied me
with little titbits here and there. My thanks to you all.

THE APPENDICES:

In addition to the MAP section, you will find perhaps one of
the most comprehensive appendices selections ever produced,
and whilst there may be 43 appendices, they have been broken
down into 7 groups as follows:

Group A: Basic

The first group relates directly to Basic. Here you'll find
a complete list of standard and Turbo Basic commands with a
short description; some techniques to improving your Basic
programs, the tokenizing process, some handy tricks that you
can use in your programs and in addition I've included some

information as to altering the Basic language itself.

Page 1.1



Grouyp B: Sound

The second group is entirely to do with sound. Here you'll
tind some very useful information which will take you from
simple sound affects, through fairly complex music and into
the way digitized speech 1is achieved. You'll also find a
fairly straightforward machine-code program to play 2
samples simultaneously. Upgrading your system to stereo is

also possible and here you'll find an appendix to do just
this.

Group C: Common Reference

Group C is the biggest of all, summing 14 appendices. Here
you'll find the explanation of commonly used subjects such
as decimal to hex. conversions, DL and PMG boundaries, logic
structures etc.. In addition you'll find you may be
referencing this group time and time again, since there is a
complete 1list of error codes for Basic and DOS, a chart of
trigonometric formulas, a complete list of character codes,

display wmodes and display lists memory usage and assignment
etc..

G D: Mac ~Code

This one is probably the most technical, describing
everything relating to machine-code and critical timings
within the working system. The Vertical Blank process is
explained along with information to <creating a Vertical
Blank Interrupt yourself. There 1is also some explicitly
detailed reference information relating to cycle loss per
frame depending on which graphics mode you are using. Also
in this group 1is the most detailed machine-code reference
charts you will ever see.

Group E: Memor 0S Listing

Relates to a few selected subjects including information
about the Operating System, any bugs it's now overcomed and
130XE memory management. There are 2 appendices giving an
in-depth list of correct DOS 2.5 addresses and free bytes in
your machine depending upon the programming environement.
Last, but not least you'll find a complete XL/XE Operating
System source listing with descriptive remarks alongside.

Gr F: Hardware

Involves information at the hardware 1level, including
descriptions of the hardware 1inside the computer and the
specifications of the 1050 disk drive. You'll also find some
information relating to the use of the joystick ports (for

1/0) and the pinouts of the various ports connected to the
Atari.

Page 1.2



Group G: Miscellaneous

The final group explains multiple uses for various items of
software, it gives a list of presently supporting companies
still alive and kicking and a glossary of any terms used in
this book that you might not be familiar with. The very last
appendix of this group and indeed the book contains some
program listings that you might have some use for.

Well, this is my first ever book and to be honest with you I
almost took on too much. You see, as I was creating the MAP
section I was writing down any relevant appendices that I
would 1like to include in the book. 0f course, I went about
this by including comments throughout the MAP such as
"...see the so-and-so appendix" whilst jotting a small note
down on paper about what appendix I now had to write! I kept
this wup throughout the MAP and got just a bit carried
away... I had an A4 sheet of paper full of appendices names
and comments and stuff I had to put in each one, it's just
as well I never lost that sheet eh!? Anyway, looking at the
work I had to do a few months ago wasn't very funny, but now
I am very pleased with myself it is finally finished. Little
did I realise when 1 had all those appendices to write that
I still had to totally re-write 2 decent index's and fully
error-check the book because Mappings index's were for the
old map (one serious letdown). Even a lot of its programs
wouldn't work as shown. But you shouldn't find that with any
of the listings in this book, since they have all been typed
and RUN, and knowing that they work fine they were then
LISTed to disk and merged directly into the books files,
thus avoiding any typing or editing errors.

A little torment:

Still on the subject of problems, some of the appendices
proved to be a right pain in the neck to write. One such
appendix is to do with CYCLE STEALING. I used Technical
Reference Notes and De Re Atari as reference, but they were
just not accurate enough to obtain a proper explanation.
Another one is the MACHINE-CODE reference appendix. For me
to assemble the illegal OP~CODES into a table alike the
standard ones I had to know how many cycles each illegal
instruction took to process. The sad thing is that this
information did not exist (until now). I had to work these
out myself and the way I went about this was quite unique 1
think. I wrote a small assembly program as such:

Page 1.3



10 *=$600

15 LDA #500
20 STA 710

25 L LDA $D4OB
30 CMP #530
35 BNE L

40 LDA #SFF
45 LDX #$00
50 STA  $D4OA

55 JSR W sKILL TIME TO
60 JSR W s SHOW FLYSCAN
65 STA $DO18

70 NOP i TIMED INSTR.

75 LDX #$00
80 STX §Dbo1ls
85 STX $D40A
90 JMP L

95 W RTS

What it does is to bring the flyscan to a clear and visible
area on the screen. It then places a small coloured line of
a particular length. This small 1length of colour can be
considered as 2 machine-cycles, now to time all the illegal
instructions you must firstly make chalk marks on your TV
screen at the point where the colour ends. Repeat this
process for not just one NOP instruction, but for 2, 3 and
even 4 of them. This way the chalk marks on your screen will
represent timed lengths of 2 cycles, 4 cycles and so on. You
can now replace the NOP instruction/s with any single
illegal instruction to time 1it. You should note that the
chalk marks are NOT at regular distances from each other,
you needn't concern yourself too much with this phenomena
but 1if you really want to know, then consult the CYCLE
STEALING appendix. To type illegal instructions replace the
NOP's with a line like: .BYTE $BF,$FF,S$FF. Anyhow, I'm sure
you understand the method.

And now, I've aired my mind and I've nothing much else to
say. Hopmm, A thought just occured to me about how I used to
think games were made (a long time ago). Good grief....Get a
load of this:

create manl; red shirt, blue trousers
position manl at screen-centre
make manl wave and then walk to left edge of screen

I doubt you'd believe me in a million years, but this is
seriously how I thought you'd program a computer. It's not
exact, since [ can't remember over 10 years ago, although,
it does <carry certain principles how I thought; such as:
create a man, wave and move him left etc.. If only it was...
I'd have made a thousand games by now!! '

Page 1.4



CREDITS:

Anyway, credits for this book must go to the anonymous Joe
XXXX in London who's help has proved too valuable to
mention, the TWAUG team who have kept my ego alive (and the
producers of this book), Ann 0. who did try to think up some
tips that I hadn't compiled, the rest of my penfriends who
didn't lend a hand whatsoever, Derek Fern because I liked
his quick service, Phil A. coz I liked his attitude and last
but not least, I would like to thank my cup of coffee who
was always there for me (thanks mum).

There aren't any anti-credits except those to my printer. 1
had this introduction and 3 other sheets of paper to print
out to complete this book and the printer decides it wants
my cup of coffee. 1In getting it fixed my platten decides
that it doesn't want to feed the paper through correctly so
I decide to hand feed it myself (get it!?), anyway, as 1
start succeeding in this the printer ribbon decided to go
fady. And if that's not enough the power switch shorted out!
A sad case of Murphy's law don't you think?

Rightyo, if you want to get in contact with me about
anything in this book then write to me at this address
only:

"Concerning the book"

MR. AC. BOOK
135 HENLLYS WAY
CWMBRAN

GWENT NP44 7NF
SOUTH WALES

Page 1.5



COMPLETE & ESSENTIAL MAP

00 - 06

This is where the map takes the 1st step and where-else than
at the lowest number upwards.

Locations O - 255 are Page O and is probably the most
important page of the entire memory except for the ROM
because it is especially fast to access for machine-code
programmers. Time is a «critical factor for wus Atari
programmers and should be a point of note for programmers
wishing to learn machine-code.

Locations O - 127 are reserved for the Operating system
(0S), they can be wused as RAM, but a strict control of
non-interrupt and direct processing must be achieved. This
is also only possible in machine-code. Locations 128 - 255
are used by Basic when installed including the Floating
point (FP) package and user RAM. They can be used as RAM if
the FP package isn't used and if Basic is not used.

00 00 LNFLG
Used by the Atari in-house debugging programs when they were
clearing the 0S from bed bugs, also used during power-up.

01 0t NGFLAG

Used for memory testing during power-up, if zero then a
memory failure is present.

02,3 02,3 CASINI

Cassette initialization vector. If Cassette boot is
successful, O0S JSR's through here. This vector comes from
bytes 5 and 6 of the cassette boot record. See the BOOT
appendix for further information on the importance of the
I1st 6 bytes of a boot file.

04,5 04,5 RAMLO

RAM pointer for the memory test during power-up. Also used
to store the disk boot address - normally 1798 ($706) for
the boot continuation routine.

06 06 TRAMSZ

Temporarily wused for RAM size during power—-up. This is the
value wmoved to RAMTOP, Location 106 ($6A). It reads 1 when
Basic is on.

Page 2



COMPLETE & ESSENTIAL MAP

07

13

07 07 CMCMD

Command flag for 835 and 1030 modems. Set to nonzero to pass
commands to the modenmn.

08 08 WARMST

Warmstart reads O during power-up. Set to 255 on pressing
Reset. Warmstart normally vectors to 58484 ($SE474). WARMST
is checked by the NMI status register at 54287 ($D40OF) when
Reset is pressed to see whether to re-initialise the softare
in memory or to re-boot the disk, cassette or Basic.

09 09 BOOT

Boot flag success indicator. If set to 1 then disk-boot was
successful, 2 means cassette-boot and 3 means both were
successful. It reads 0 if no peripheral was booted.

1f wuser-set to 255 then pressing Reset will lock-up the
system. By setting this location to 2, location 2 to 52 and
location 3 to 185 then the Reset key can be TRAPped in Basic
to run at any particular line-number. Machine-code user's
simply use locations 2 and 3 as a vector for Reset when
having set this location to 2.

10,11 0A,B DOSVEC

Start vector for disk or non-cartridge software. Also the
address Basic jumps to when DOS is called. This address can
be user-set, but Reset will return DOSVEC to it's original
address unless the values placed here are also loaded into
locations 5446 and 5450 ($1546 and $154A). Locations 10 and
1t are normally set to 159 and 23, Without DOS loaded,
typing DOS will pass control to the inbuilt Selftest at
58481 ($E471).

12,13 oc,D DOSINI

Initialization address for the disk boot, bytes 5 and 6 of
the 1st sector. Also wused to store the cassette boot RUN
address which is then moved to CASINI (2 and 3). Set to O if
no peripheral was booted.

You can also wuse these locations as a vector on pressing
Reset alike Locations 9,2 and 3.

Page 3



COMPLETE & ESSENTIAL MAP
14 - 16
14,15 OE,F APPHMII

Applications memory high 1limit and pointer to the end of
your Basic program, used by 0S and Basic. This contains the
lowest address you can use to set up a screen and display
list (DL) (which is also the highest address usable for
programs and data below which the display memory (DM) may
not be placed). The screen handler will not open the "S:"
device if it would extend the screen RAM or the DL below
this address; memory above this address may be used for the
screen display and other data (PMG's etc.).

If an attempted screen mode change would extend the screen
memory below APPMHI, then the screen is set up for Graphics
0; MEMTOP (741, 742) is updated and an error is returned to
the wuser. Otherwise the memory is not too small for the
screen editor, the mode change will take affect and MEMTOP
will be wupdated. This is one of 5 locations used by the 0S
to keep track of the user and DM.

1f you wuse the area below the DL for your character sets,
PMG's etc. then be sure to set APPMHI above the last address
used so that the DL data will not descend and destroy your
own data. See RAMTOP at 106, MEMTOP at 741 and 742, PMBASE
at 54279 and CHBASE at 54281.

16 10 POKMSK

Pokey interrupts: the 1IRQ service uses and alters this
location. Shadow for 53774 ($SD20E). Poke with 112 ($70; also
poke 53774 wWwith the same value) to disable the Break key.
The bits in this register have the following purpose (!
meaning enable and 0 meaning disable):

BIT: DEC: ACTION:

7 128 Break key enable.

6 64 ‘'Other—key' enable,

5 32 Serial input data ready enable,

4 16 Serial output data required enable,

3 8 Serial out transmission finish enable,
2 4 Pokey timer 4 enable,

] 2 Pokey timer 2 enable,

0 1 Pokey timer 1 enable.

Timer interrupt enable means that the associated AUDF
registers are used as timers and will generate an interrupt
request when they have counted down to 0. See locations 528
- 53% ($210 - $217) and the Pokey chip locations 53760
($D200) onward for a further explanation. Default value is
192 (sC0).

Break is re-enabled on Reset, the first Print statement to
the screen, any Open statement that addresses "S:" or "E:"
and any Graphics <call. The Break interrupt bit should
therefore be checked regularly in order to retain it
disabled. Also see locations 566 and 567 ($236 and $237)
about writing a new vector routine for the Break key.

Page 4



COMPLETE & ESSENTIAL MAP

17 - 22

17 11 BRKKEY

Nonzero means the Break key is pressed, 0 otherwise. Break
during 1/0 returns the value 128. The Break key abort status
code is stored in STATUS at 48 ($30). It's also checked
during all 1/0 and scroll/draw routines. During the keyboard
handler routine the status code is stored in DSTAT at 76
($4C). BRKKEY is turned off at power-up and the abort status
is flagged by setting bit-7 of 53774 ($D20E). See location
16 ($10), above.

18,19, 20 12,13,14 RTCLOK

Internal realtime clock. Location 20 increments every stage
one VBl (1/50th second = 1 jiffy) until it reaches 255; then
location 19 is incremented and 20 is reset to 0 (every 5.12

seconds). When location 19 reaches 255, it and 20 are reset
to O and location 18 is incremented (every 21.84 minutes or
65536 TV frames). You can use these locations as a timer,
thus:

TIME = INT ((PEEK(18)*65536+PEEK(19)*256+PEEK(20))/50)

To see the count in jiffies, eliminate the "/50". To see the
count in minutes, change "/50" to "/300". The maximum value
of RTCLOK is 16,777,215. When it reaches this value it will
be reset to 0 at the next VBI. This value is the result of
cubing 256 - 1 (i.e. 256 * 256 * 256 -1), the maximum number
of increments in each clock register. The RTCLOK is always
updated every VBl regardless of the time-critical nature of
the code being processed.

[n the Atari' terms, a jiffy is 'almost forever'. It can
perform up to a maximum of 35568 machine cycles in this
time. That's an approximate average of over 9000 machine

code instructions!

You can poke these timers with your own suitable values, use
them as a delay timer or whatever, ie:

10 POKE 20,1
20 IF PEEK(20) THEN 20

This example will wait at line 20 for 5.1 seconds.
21,22 15,16 BUFADR

Indirect buffer address register. This is used as a
temporary pointer to the current disk buffer.

Page 5



23 17 TCCOMT

Command for CIO vector. Stores the CIO command which is used
to find the offset in the command table for the correct
vector to the handler routine.

24,25 18,19 DSKFMS

Disk file manager pointer. Called JMPTBL by DOS; used as
vector to FMS.

26,27 1A,1B DSKUTL

This is the disk utilities pointer, called BUFADR by DOS. 1t
points to the reserved buffer from the DUP package at DBUF,
or for the program area pointer at MEMLO.

28-31 1C-1F ABUFPT

These bytes were intended as buffer pointers, though are

actually unused.

Locations 32 -~ 47 are the Page 0 1/0 control block (Z10OCB).
Z10CB is wused to communicate data between the CIO and the
device handlers. When a CIO operation is executed, the 10CH
channel information 1is loaded down to here to be used by
C10. Upon completion of the operation, ZIOCB 1is then
transferred back to the correct 10CB.

32 20 ICHIDZ

Handler index number. Set by the 0S as an index to the
device name table for the currently open file. If there is
no file open on this 10CB then the I0CB is free and ICHiIDZ
will equal 255,

33 21 1CDNOZ

The current device number.
34 22 I1CCOMZ

Command code byte. See ICCOM, byte 2 of 10CB for further
breakdown.

Page 6



COMPLETE & ESSENTIAL MAP

35 - 46

35 23 ICSTAZ

Status of the last 10CB action, set by the 0S.

36,37 24,25 ICBALZ/HZ

Buffer address for data transfer, also used for filename
address pointer for Open, Status etc. commands.

38,39 26,27 ICPTLZ/HZ

Put byte routine address set by the 0S. It's the address-1
of the ‘'put one byte' routine. On the Close statement, it
points to "I10CB not OPEN".

40,41 28,29 ICBLLZ/HZ

Buffer 1length byte count used for Put and Get operations.
This length is decremented every call. When it reaches 0
then the operation is complete, though, if in the event of a
Get operation, EOF is found but this value is still greater
than 0 then an error is returned and the file I0CB status
remains Open.

42 2A ICAX1Z

Auxiliary operation Ist byte. In an Open operation the #1 is
the 10CB channel wused, the next number which is the file
access is ICAX1Z.

43 2B 1CAX2Z

Auxiliary 2nd byte. Also used by some serial port
functions.

44,45 2C,2D 1CAX3Z/42

These auxiliary bytes are used by Basic Note and Point
commands for the transfer of disk sector numbers. These last
4 ZIOCB bytes are also labelled ICSPRZ and are spare bytes
for local Cl0 use.

46 2E I1CAXS5Z
This refers to the byte being accessed in the sector (noted

in ICAX3Z/42). Also used for the I0CB index number
multiplied by 16.

Page 7



COMPLETE & ESSENTIAL MAP

47 - 53

47 2F 1CAX6Z

Spare. Also labelled CIOCHR, it is the temporary storage for
the character byte in the current Put operation.

The reason why so many auxiliary bytes exist is for the
possible need that future hardware add-ons may need.

Location 48 - 75 are user and 0S variables for the Atari 1/0
routines.

48 30 STATUS

Internal status storage. S10 uses this byte as the status of
the current SIO operation. See the ERRORS appendix for
status values. STATUS uses location 793 ($319) as temporary
storage. STATUS 1is also wused as a storage timeout, Break
abort and error values during SIO operations.

49 31 CHKSUM

Data-frame checksum used by SI0: single byte sum with carry
to the LSB. Checksum 1is the value of the number of bytes
transmitted. When the npumber of transmitted bytes equals the
checksum, a checksum sent flag is set at 59 ($3B). Uses
53773 and 56 ($D20D and $38) for comparison of values.

50,51 32,33 BUFRLO/HI

Pointer to the data buffer. Used by SIO and the device
control ©block (DCB), and points to the i1st byte of the data
to send or area to receive. Bytes are transferred to the
8-bit serial output holding register or from the input
holding register at 53773 ($D20D). Location 53773 is used to
hold the 8-bits which will be transmitted 1 at a time to or
from the device. Note that the bits are only transmitted

when the register is full, when empty it is updated with
another byte.

52,53 34,35 BFENLO/HI

This 1is the next byte past the end of the SIO/DCB data
buffer described in BUFRLO/HI.

Page B



COMPLETE & ESSENTIAL MAP

54 - 62

54,55 36 ,37 LTEMP

Temporary buffers for the general purpose peripheral handler
loader routines (PHLR). The PHLR helps the 0S deal with new
handlers and peripherals which load their own handlers. All
locations marked as being used by the peripheral handler or
loader are for O0S wuse only and should be left alone. As
stated earlier, they can be used as RAM, but a very strict
programming environment MUST be achieved.

56 38 BUFRFL

Data buffer full flag. 255 equals full.

57 39 RECVDN

Data received done—-flag. 255 equals done.

58 3A XMTDON

Transmission done flag. 255 is done.

59 3B CHKSNT

Checksum sent flag. 255 equals sent, 0 if not.

60 3C NOCKSM

Flag for "no checksum follows data". Nonzero means no
checksum follows, O means checksum follows transmission
data.

61 k) BPTR

Cassette buffer pointer: record data index into the portion
of data being read or written. Ranges between 0 and the
current value at 650 ($28A). When these values are equal,
the buffer at 1021 ($3FD) is empty/full depending on the 1/0
operation. Initialized to 128.

62 3E FTYPE

Inter record gap type (IRG). Copied up from ZIOCB location
43. Normal IRG's have a nonzero number, while the rarer used
continuous gaps show up as 0.

Page 9



COMPLETE & ESSENTIAL MAP

63 - 76

63 3F FEOF

Cassette end-of-file flag (EOF). O means the EOF has not
been reached, nonzero means it has. An EOF record has been

reached when the command byte of a data record equals 254.
See 1021.

64 40 FREQ

Beep count retain register. Counts the amount of beeps
required by the cassette handler during the Open command for

Play or Record operations; 1 beep for play and 2 for
record.

65 41 SOUNDR

Noisy 1/0 flag used by SIO to signal the beeping heard
during cassette and disk operations. 0 makes the beep
Quieter, while nonzero blurts it through the TV speaker. To
completely silence the noise then the sound register updates
must be removed from the ROM at $EC58 - $EC83.

66 42 CRITIC

Critical flag. When CRITIC is nonzero then the deferred VBI
is disabled. This means that all shadow registers are not
updated at the stage-2 VBlank. See the VBLANK appendix for a
description of the stage~-2 VBlank. When O, then both

standard VBI's are enabled, which 1is also the default
value.

67-73 43-49 FMZSPG

Disk file management system (FMS) variables. Re—-initialized
by FMS each time it takes control.

74,75 4A,4B ZCHAIN

Temporary storage registers for the general purpose
peripheral handler loader.

76 4c DSTAT

Display status and keyboard register used by the display
handler. Also used for: screen memory too small, cursor out
of range and Break abort status.

Page 10



COMPLETE & ESSENTIAL MAP

77 - 81

77 4p ATRACT

Attract mode timer and flag. The Attract mode rotates the
display colours at 1low 1levels when there has been no
keyboard input for approx. 10 minutes. This helps save the
TV screen from ‘'burn-out' damage caused from leaving the
computer unused for long periods of time. The keyboard IRQ
resets ATRACT to 0 when a key 1is pressed, otherwise
incremented every 5 seconds by VBlank (see 18,19 and 20).
When ATRACT reaches 127 it is changed to 254 which is the
flag indicating to rotate colours whilst it is sitting idle.
You can poke a value greater than 126 to see the affect
immediately.

DLI colour —changes will not be attracted. To reset it in a
program then poke here with 0. [f the attract mode is not
wanted in programs then it should be cleared regularly.

78 4E DRKMSK

bDark attract mask; Initialized to 254 for normal brightness
of <colours when attract mode is not activated. Set to 246
when ATRACT is enabled to ensure screen luminances do not
exceed 50%.

79 4F COLRSH

Colour shift mask. The colour registers are EOR'd with
DRKMSK and COLRSH at the stage-2 VBlank. When set to 0 and
DRKMSK to 246, <colour luminance 1is reduced 50%. COLRSH
currently equals location 19, thus changes colour every 5.12
seconds.

Locations 80 - 122 are used by the screen editor and display
handler.
80 50 TEMP

Temporarily used by the display handler for moving data to
and from screen. Also called TMPCHR.

81 51 HOLD1

Alike TEMP, this holds the number of display list entries.

Page 11



82 - 86
82 52 LMARGN
Left margin column. Initialized to 2 and has a range 0 to

39. It's useful to set this to 0 when typing in large Basic
listings in order to have 6 extra spaces per logic line (1
logic line is 3 physical display lines).

83 53 RMARGN

Right margin column. 1Initialized to 39. When altering
margins, it should be known that the screen edit commands
like shift+delete don't change from 40 byte line operations
to the new columns total according to the setting of the
margins. This also applies to narrow and wide screens (see
location 559). Although the screen widths alter, the screen
handler still operates as if there are 40 coluamns per
physical line.

84 54 ROWCRS

Current graphics/text screen row ranges between 0 - 191
depending on the Graphic mode in use. ROWCRS and COLCRS
define the next element to be read/written to the screen.

To draw lines in wmachine-code you need to use the Draw
command on an 10CB channel in conjunction with ROWCRS,
COL.CRS, OLDROW, OLDCOL also FILFLG and ATACHR. See page 85
in the map for further information.

85,86 55,56 COLCRS

Current graphics/text mode cursor column ranges between 0 -
319 depending on Graphics mode in use. For the text window,
values in locations 656 - 667 are exchanged with the current
values in 1locations 84 - 95 and location 123 is set to 255
to indicate swap has taken place.

Basics Locate command not only examines the screen when
used, but also moves the cursor forward one position by
updating these locations. To avoid this you need to take
note of ROWCRS and COLCRS before the Locate command and
replace the values afterwards.

Page 12



COMPLETE & ESSENTIAL MAP

87 - 89

87 57 DINDEX

Display mode index to screen mode. DINDEX contains the low
4-bits of the most recent Open AUX1 byte. It can be set to
any graphics mode. You can fool the 0S into thinking it's in
a different Graphics mode by Pokeing the mode you want into
DINDEX. Try <calling Graphics 8 and Pokeing 7 here, you'll
have a split screen of mode 7 on top and mode 8 below. You
need to change location 89 to point to the area of the
screen you wish to draw 1in. You may get some unexpected
‘cursor out of range' errors changing modes in this manner
also so be careful.

You can get a text window in the GTIA modes with this
program:

10 GRAPHICS 9
20 POKE 87,0:POKE 623,64:POKE 703,4
30 GOTO 30

Location 623 can be Poked with 64, 128 or 192 for GTIA modes
9, 10 or 11. You won't be able to read the text in the
window but will be able to write to it. It is possible to
create a true text window but you have to use a DLI. See the
DLI appendix.

88,89 58,59 SAVMSC

The lowest address of screen memory corresponding to the
upper left corner of the graphics/text screen. The upper
left corner of the text window is at locations 660 and 661.
You can check this with:

10 GRAPHICS 1

20 SCREEN=PEEK(88)+256*PEEK(89)
30 WINDOW=PEEK (660)+256*PEEK(661)
40 POKE SCREEN,51:POKE WINDOW,55

How is each mode configured? Well, take a look at the chart
below:

GRAPHIC ROWS COLUMNS BYTES SCREEN DL

MODE full / split /line /line MEMORY MEMORY
0 24 20 40 40 960/960 32/na
1 24 20 20 20 480/640 32/34
2 12 10 20 20 240/400 20/24
3 24 20 40 10 240/400 32/34
4 48 40 80 10 480/640 56/54
5 48 40 80 20 960/1120 56/54
6 96 80 160 20 192072080 104/94
7 96 80 160 40 3840/4096 104/94
8 192 160 320 40 7680/7936 202/176

Page 13



COMPLETE & ESSENTIAL MAP

88,89 cont.

9 192 160 80 40 7680/7936 202

10 192 160 80 40 7680/7936 202

11 192 160 80 40 7680/7936 202

12 24 20 40 40 960/1120 32/34

13 12 10 40 40 480/640 20/24

14 192 160 160 20 384074096 200/174
15 192 160 160 40 7680/7936 202/176

Note, that the 1st number in the Screen memory is the amount
of memory actually needed, where the 2nd number defines the
amount set aside due to handler calculations and boundaries.
The 1st DI. number is the amount of full-screen instructions,
the 2nd being the split-screen amount. When the screen clear
function 1is executed the display handler clears the memory
between the address given by SAVMSC and RAMTOP. The old-bug
of RAM being cleared above RAMTOP with the Screen-CLEAR
function and the scrolling of the text-window is now been
eradicated, so feel free to protect RAM directly above
RAMTOP without any worries of it being lost. SAVMSC and
RAMTOP can also be used in your own programs to clear bulks
of memory fast. This is especially useful in clearing PMG's
or strings, ie:

10 POKE 88,0:POKE 89,40
20 POKE 106,PEEK(106)
30 ? CHR$(125):GRAPHICS O

This clears all the memory from location 10240 (40 * 256) to
RAMTOP - 1. Be sure to call a graphics mode afterwards so
that the screen write address is returned to normal.

Here's a wuseful routine that can be included in your own
programs. It will load a picture file into the Graphics mode
in use:

10 GRAPHICS 15+16:MEM=7680

20 DATA 104,104,104,170,76,86,228

30 FOR I=0 TO 6

40 READ D:POKE 1536+1,D:NEXT 1

50 HI=INT(MEM/256) :L.O=MEM-HI*256

60 OPEN #1,4,0,"D:FILENAME.PIC"

70 POKE 849,1:POKE 850,7:POKE 852,PEEK(88) : POKE
853, PEEK(89)

80 POKE 856,LO0:POKE 857,H1:POKE 858,4
90 X=USR(1536)

95 CLOSE #1

If you wish to save the picture to disk, then you need to
alter it to:

60 OPEN #1,8,0,"D:FILENAME.PIC"

Line 70 should POKE 850,11 and line 80 should POKE 858,8

Page 14



COMPLETE & ESSENTIAL MAP

90 - 97

The program loads/writes MEM amount of bytes, thus, if you
change the Graphics mode then you should also alter the MEM
variable according to the memory chart on the previous

page.

Note that the colour registers are not saved to the file, so
these should be saved by the user. It's recommended to save
them at the end of the file to keep it compatible with most
graphic packages including XL ART and MICROPAINTER, because
you can then use these packages to load your pictures.

90 5A OLDROW

Previous graphics cursor row updated from ROWCRS before
every operation. Used to determine the starting row for
DRAWTO or FILL. See the 10CB DRAW appendix.

91,92 5B, 5C OLDCOL

Previous graphics cursor column updated from COLCRS before
every operation. See page 97 of the map.

93 5D OLDCHR

Retains the character under the cursor. Used to restore that
character after the cursor has moved.

94,95 S5E, 5F OLDADR

Retains the memory location where the cursor currently is.
Also used with OLDCHR in the replacing of the character
under the cursor.

96,97 60,61 FKDEF

The 1200XL has 4 redefinable function keys. FKDEF points to
64529 ($FC11) which is their definition table. An B8-byte
table for keys F1 - F4. Each value is in internal codes and
not Ascii which are values 138 - 141, but you must not
assign a key it's own value since it will generate an

endless loop.

KEY combination:

F1 Cursor up, Atascii 28,
F2 Cursor down, code 29,
F3 Cursor left, code 30,
F4 Cursor right, code 31.

Page 15



98 - 105
With SHIFT:
Fl Home (Cursor to top-left),
F2 Cursor to lower left corner,
F3 Cursor to start of physical line,
F4 Cursor to right of physical line.
With CONTROL:
Fi Keyboard enable/disable toggle,
F2 Screen display enable/disable,
F3 Key click on/off,
F4 Domestic/International character-set toggle.

This also appears in the 800XL, but there are no function
keys! The HOME function also exists in all XL's and XE's but
is not on the keyboard, see 764, 121 and 122.

98 62 PALNTS

Flag to determine PAL or NTSC and (I think) SECAM also. O

means North American Standard, 1 means PAL, but SECAM
otherwise.

99 63 LOGCOL
Position of the cursor within a logical line. A logical line

is 3 physical 1lines whatever their width between 1 and 40
columns. The maximum range of LOGCOL is 0 - 119.

100,101 64,65 ADRESS

Temporary storage used by the display handler for the
display list address; line buffer, new MEMTOP value after DL
entry, row column address, DMASK value, data to the right of
the cursor, scroll, delete, clear screen routine and for the
screen address memory.

102,103 66,67 MLTTHMP

Also called OPNTMP and TOADR; first byte used in Open as
temporary storage, also used by the display handler.

104,105 68,69 SAVADR

Also <called FRMADR, used temporarily with ADRESS for the
data under the cursor and in moving line data on the
screen.

Page 16



COMPLETE & ESSENTIAL MAP

106 - 108
106 6A RAMTOP

Pointer to the top of RAM (RAM size). Defined by the
power—up sequence and passed here from TRAMSZ. The value
here 1is the amount of PAGES free in your machine, where 1
page is 256 bytes.

In the 48K Atari, this is initialized to 160 with Basic, 192
without. Note that MEMTOP should not extend below this value
otherwise the DL and display memory can destroy program or
data memory.

You can fool the 0S into thinking it has less RAM than it
really does by lowering this value. This technique is useful
to protect data loaded into memory from being overwritten by
program memory. This 1s widely used for placing character
sets behind or PMG's, see SAVMSC at 88 and 89.

If you wish to protect data behind RAMTOP, then you need to
POKE 106,PEEK(106)-X where X is the amount of pages to be
protected, ie:

10 POKE 106 ,PEEK(106)-1
20 GRAPHICS 0
30 PADR=PEEK(106)*256

Where after protecting 256 bytes of memory, PADR equals the
1st address of the reserved area. Character-sets require 4
pages, PMG's take 4 Pages for double line resolution and 8
for single line res. See PMBASE and the BOUNDARY appendix
also.

If you do use RAMTOP to protect memory, you should call the
graphics mode in use immediately afterwads so the 0S can
re~calculate the DL and Display Memory into it's new area.
One caution: apparently, Basic cannot always handle setting
up a DL and DM for Graphics 7 and 8 when you modify this
location by 1less than 4K (16 pages). Some bizarre results
occur if you wuse PEEK(106)-8 in these modes, for example.
Use a minimum of 4K to avoid trouble. This could explain why
some people have had trouble with PMG's in these modes.

An alternative to reserving/protecting memory in high RAM is
to making an area below MEMLO at 743. See also MEMTOP at
741.

107 6B BUFCNT

Buffer count; the screen editor current logical line size
counter.

108 6C ‘e

According to Mapping, this 1location and location 109 is
BUFSTR which is the display editor GETCH routine pointer and
temporary storage for the character pointed to by BUFCNT,
however, I find that in my 800XL, this is the pointer to the
current cursor row,.

Page 17



COMPLETE & ESSENTIAL MAP

109 - 120

109 6D

See above. Initialized to 2, user alterable but restored on
Reset.

110 6E BITHSK

Bit wask wused in bit mapping routines by the 0S display
handler. Also a display handler temporary storage register.
111 6F SHFAMT

Pixel justification: the amount to shift the right justified
pixel data on output or the amount to shift the input data
to right justify it. Prior to justification, the value is
always the same as that in location 672.

112,113 70,71 ROWAC

ROWAC and COLAC are both working accumulators for the
control of row and column point plotting and the increment
and decrement functions.

114,115 72,73 COLAC

Controls column point plotting.

116,117 74,75 ENDPT

End point of the line to be drawn. Contains the larger value
of either DELTAR or DELTAC to be used along with ROWAC and
COLAC to control the plotting of line points.

118 76 DELTAR

This 1is the change of vertical position when drawing a
sloped line.

119,120 77,78 DELTAC

Delta column; contains the absolute value of NEWCOL minus
the value in COLCRS. These delta register values along with
ROWINC and COLINC are used to define the slope of the line
to be drawn.

Page 18



COMPLETE & ESSENTIAL MAP

121,122 79,7A KEYDEF

Pointer to the keyboard definition table, initialized to
64337 ($FB51), where the system keyboard table resides. You
can redefine the keyboard by writing a 192-byte table and
POKEing 1its address here; the table consists of 3 64-byte
portions: lowercase keys, SHIFTed keys and CTRLed keys,
assigned in the manner below:

060 1 16 v 32 , 48 9

01 j 17 HELP 33 SPACE 49 (128)
02 H 18 ¢ 34 . 50 0

03 Fi1 19 F3 35 n 51 7

04 F2 20 F4 36 (128) 52 B/SPACE
05 k 21 b 37 m 53 8

06 + 22« 38 / 54 «(

07 * 23 =z 39 INVERSE 55 >

08 o 24 4 40 r 56 f

09 (128) 25  (128) 41 (128) 57 h

10 p 26 3 42 e 58 d

11 u 27 6 43  y 59 (128)
12 RETURN 28 ESC 44 TAB 60 CAPS

13 i 29 5 45 t 61 g

14 - 30 2 46 w 62 s

15 = 3t 1 47 q 63 a

The next 64 characters are SHIFTed, ie. a becomes A, §
becomes % etc. Followed after that are the CTRLed
characters: many graphics characters.

Several values have specific meaning to the keyboard
decoder, thus:

ATASCII: USE:

128 Unused; invalid value

129 Inverse output

130 Upper/lower case toggle

131 Caps lock

132 CTRL key lock

133 End of file (EOF)

137 Keyboard click toggle

138 - 141 1200XL function keys F1-F4

142 Cursor HOME

143 Cursor to bottom left

144 Cursor to left margin

145 Cursor to right margin

You can create your own table, or better still, just include
those normally unobtainable keyboard functions to the
standard table. Type in the program on the next page and try
pressing CTRL and a number key between 4 and 8.

Page 19



COMPLETE & ESSENTIAL HAP

123 - 127

10 KEYDEF=PEEK(121)+256*PEEK(122)
20 FOR I=0 TO 191

30 POKE 1536+1,PEEK(KEYDEF+I)

40 NEXT 1

50 POKE 121,0:POKE 122,6

60 POKE 1536+128+24,142

70 POKE 1536+128+29,143

80 POKE 1536+128+27,144

90 POKE 1536+128+51,145

92 POKE 1536+128+53,137

You will now find that you have the following keyboard
functions:

CTRL+4 Cursor HOME

CTRL+5 Cursor to bottom left

CTRL+6 Cursor to left margin

CTRL+7 Cursor to right margin
CTRL+8 Keyboard click toggle

The new keyboard table occupies page 6 of memory (locations
1536 - 1791), but you can turn the ROM into RAM and alter
the original table. See the RAM-0S appendix.

123 7B SWPFLG

Split-screen cursor control. Equal to 255 in the text window
RAM and regular screen RAM are swapped; otherwise equal to
0. In split screen modes, the graphics cursor data and the
text window data are frequently swapped in order to get the
values associated with the area being accessed into the 0S
data-base at locations 84 - 95. SWPFLG helps to keep a track
of which data set is in these locations.

124 79 HOLDCH

The keyboard character value is moved here before the CTRL
and SHIFT logic are processed for it.

125 7A INSDAT

Temporarily wused by the display handler for the character
under the cursor and the end of line (EOL) detection.

126,127 7B,7C COUNTR

Counter for the amount of iterations/steps to draw a line.
As each point of the line is drawn, this value is
decremented. 0 means the line is complete.

Page 20



COMPLETE & ESSENTIAL MAP
128 - 131

128,129 7D,7E LOMEM

Pointer the Basics 1low memory which is at the end of the
RAM. The 1st 256 bytes pointed to are the TOKEN output
buffer, which 1is used by Basic to convert Basic statements
into numeric representation. See STMTAB and the TOKENIZATION
appendix.

This value is 1loaded down from MEMLO on initialization or
the execution of a NEW command. Remember to update LOMEM
when changing MEMLO in reserving memory space.

When a Basic SAVE is initiated, two blocks of information
are written to the output device: the 1st block is the 7
pointers from LOMEM to STARP at 140,141. The value of LOMEM
is subtracted from each of these 2-byte pointers in the
process, thus, the 1st two bytes written will be 0's (LOMEM
- LOMEM). The 2nd block contains: the variable name table,
the variable value table, the Basic program in its TOKENized
form and lastly the immediate mode line number, which is
32768 (1 number higher than the highest accessible line
number). When the Basic LOAD is initiated, Basic adds the
value at MEMLO to each of the 2-byte pointers as in the
reverse of the SAVE operation. The pointers are placed back
in page-0 and the values in RUNSTK at 142,143 and MEMTOP at
144,145 are set to the value in STARP. Next, 256 bytes are
reserved above the value in MEMLO for the token output
buffer, and the program is read in to the memory following
this buffer.

Without DOS loaded, LOMEM points to 1792, but points to 7676
with DoOsS. Changing the drive and data~buffers will
raise/lower this value by 128 bytes per buffer accordingly.
The RS232 takes a further 1728 bytes.

LOMEM 1is called ARGOPS by Basic when used in expression
evaluation. When Basic encounters any kind of expression, it
puts the immediate results into a stack. ARGOPS points to
the same 256 byte area; for this operation it is reserved
for both the argument and operator stack. It's also called
OUTBUFF for another operation pointing to the same 256 byte
area as ARGOPS. Used by Basic when checking a line for
syntax and TOKEN conversion. Also temporary token store.

130,131 82,83 VNTP

Beginning address of the variable name table. Variable names
are stored in the order they are entered into your Basic
program, in Atascii format. You can have up to 128 variable
names and these are stored as tokens representing the
variable number within the tokenized Basic program, numbered
128 - 255.

The table continues to store all variables: from immediate
mode, program mode, even deleted ones remain in memory.

Page 21



COMPLETE & ESSENTIAL MAP

132 - 135

it is not cleared upon SAVE, but is replaced with the VNT
obtained from a LOAbed file. The only way to renew the table
is by first LISTing your program to the output device as
this stores the file in a difterent manner and does not save
the VNT. Then you can ENTER the file, to SAVE it with it's
new VNT. Before ENTERing the file back in, be sure to use a
NEW statement to erase the old program and VNT, or better
still, give the Atari a coldstart.

With numeric (scalar) variables, bit-7 (the MSB) is set on
the 1last character in the name. String variables have a "§"
for the last character with the MSB set. Array variables
have a "(" for the last character also with the MSB set.
With the MSB being set, it just inverses the character
mentioned in each case.

Here's a short routine to display all the variables of a
resident program:

10 POKE 203,PEEK(130):POKE 204,PEEK(131)

11 1F PEEK(203)=PEEK(132) AND PEEK(204)=PEEK(133) THEN STOP
12 7 CHRS (PEEK(PEEK(203)+256*PEEK(204))):

13 IF (PEEK(PEEK(203)+256 * PEEK(204)))-127 THEN ?

14 IF PEEK(203)=255 THEN POK.203,0:POKE

204 ,PEEK(204)+1:G0.11

15 POKE 203,PEEK(203)+1:GOTO 11

You <can also directly change the variable names by POKEing
the Atascii values accordingly. If you renamed the variable
in the Basic program, the old name would still exist which
is occupying 1 of the 128 variables allowed.

132,133 84,85 VNTD

Pointer to the ending address of the variable name table +
1. When less than 128 variables are present, then it points
to a 0 value.

134,135 86,87 VVTP

Address of the variable value table. 8-bytes are allocated
for each variable in the name table as follows:

BYTE 1 2 3 4 5 6 7 8
VARIABLE
Scalar 00 var# six byte BCD constant
Array; DIMed 65 var# offset first second
unDIMed 64 from DIM+1 DIM+1
STARP
String; DIMed 129 var# offset length DIM
unDIMed 128 from
STARP

Page 22



COMPLETE & ESSENTIAL MAP

135 - 137

In scalar (unDIMensioned numeric), bytes 3-8 are the FP
number; byte-3 1is the exponent, byte-4 contains the least
significant 2 decimal digits and byte-8 contains the most
significant 2 decimal digits.

In array variables, bytes 5 and 6 contain the size+l of the
1st dimension of the array (DIM+1; LSB/MSB) while bytes 7
and 8 contain the size+l of the 2nd dimension (the 2nd
DIM+1; LSB/MSB).

String variables bytes 5 and 6 contain the current length of
the variable (LSB/MSB) while bytes 7 and 8 contain the
actual dimension (up to 32767).

In all cases, the first byte is always one of the numbers
listed on the chart above (you will rarely see the
undimensioned values in a program). This number defines what
type of variable information will follow. The next byte,
var# (variable number), is in the range 0 - 127. Offset is
the number of bytes from the beginning of STARP at 140,141,
Since each variable is 8-bytes, you can find the values for
each variable by:

10 VVTP=PEEK(134)+256*PEEK(135)
11 7 "ENTER VARIABLE NUMBER ";
12 INPUT VAR

13 FOR L=0 TO 7

14 ? PEEK(VVTP+8*VAR+L);

15 NEXT L

A very handy and widely used technique to clearing a string
or assigning a particular character throughout each element
within a string can be achieved with this program:

10 DIM TESTS$(100)
20 TESTS$="*":TESTS(100)=TESTS:TEST$(2)=TESTS$
30 ? TESTS

136,137 88,89 STMTAB

Address of the statement table which is also the beginning
of your Basic program, containing all the TOKENized lines of
code including the immediate mode lines entered by the user.
Line numbers are stored as 2-byte integers, while immediate
mode lines are given the default value of 32768. The
structure of a TOKEN line is as follows:

BYTE:
1-2 Program line number
3 Dummy, reserved for byte count/offest

from the start of this line to the start
of the next.

4 2nd counter for the start of this line to
the start of the next statement. These count
values are set only when tokenization for the
line and statement are complete.

Page 23



138 - 141

To see the starting address of your Basic line numbers, use
this routine:

10 STMTAB=PEEK (136)+256*PEEK(137)
20 NUM=PEEK(STMTAB)+256*PEEK(STMTAB+1)
30 IF NUM=32768 THEN STOP

40 ? "LINE NUMBER - ";NUM;", ADDRESS ";STMTAB
50 STMTAB=STMTAB+PEEK(STMTAB+2)

60 GOTO 20

138,139 8A,8A STMCUR

Current Basic statement pointer, used to access the tokens
currently being processed within a line of the statement
table. While Basic is awaiting input, this pointer is set to
32768. Using the address of the variable name table, the
length and the current statement you can protect your Basic
programs from being listed or even loaded. They can only be
RUN! Be sure to save an unchanged version of your program
because this process is irreversable once done:

32763 FOR V=PEEK(130)+256*PEEK(131) TO
PEEK(131)+256*PEEK(132)

32764 POKE V,155:NEXT V

32765 POKE PEEK(138)+256*PEEK(139)+2,0
32766 SAVE"D:FILENAME.EXT"

32767 NEW

Include this on your program to protect. Note, in future,
you must RUN it directly from disk.

140,141 8C,8D STARP

The string and array table address and a pointer to the end
of your Basic program. The address of the strings in the
table are the same 4as those returned by the Basic ADR
function. Always wuse this function under program control,
since the addresses in the table change along with your
program size. Each dimension of an array requires 6 bytes,
thus, DIM A(100) takes up 100*6 = 600 bytes, because each
element of the array can store a number of up to 6 figures
in length.

A string of the same format, DIM A$(100) only requires 100
bytes because each element is just the 1 byte. It would save
considerable memory to use strings as opposed to arrays,
ie:

10 DIM A(2)

20 A(0)=36:A(1)=9:A(2)=8
30 ? A(1)+A(2),A(0)

Page 24



COMPLETE & ESSENTIAL MAP

142 - 147

10 DIM AS$(4)
20 A$="3698"
30 ? VAL(AS(3,3))+VAL(AS$(4,4)),VAL(AS(1,2))

The 1st program takes 6*10 = 60 bytes for array memory, but
the 2nd program just takes 10 bytes for string memory.

142,143 8E,8F RUNSTK

Address of the runtime stack which holds the GOSUB entries
(4-bytes) and the FOR/NEXT loops (l6-bytes).

The structure of the GOSUB is: byte-1 = 0, bytes 2 and 3 =
line number on which the actual GOSUB call exists and byte 4
= an offset so that the Basic RETURN statement can return to
the correct position in the GOSUB line.

FOR/NEXT is structured as: bytes | to 6 = counter variable
limit, bytes 7 to 12 = the step increment, byte 13 = counter
variable number with the MSB set, byte 14 and 15 = is the
FOR part line number and byte-16 = is the offset for the
line where the FOR is so that the next statement on the same
line (if one exists) can be executed.

RUNSTK is also called ENDSTAR by Basic to point to the end
of the string/array space pointed to by STARP.

144,145 90,91 MEMTOP

Pointer to the top of Basic memory, the end of the space the
program takes up. There may still be space between this
address and the display 1list which is also the value
returned by the Basic FRE command. This is also called
TOPSTK; it points to the top of the stack space pointed to
by RUNSTK.

146 92 MEOLFLG

Basics modified EOL flag register. The Atari BASIC
source-book (pages 144 — 147) lists all the RAM locations
used by Basic, 1if I had the book 1 would have listed them
here, but unfortunately it's one of the few I don't have.

147 93

Unused (apparently).

Page 25



COMPLETE & ESSENTIAL MAP
tag - 147

148,149 94,95

This 1is one from my own book, [ don't think it's purpose is
meant to be, but it's the address of the screen editor entry
point. Weird.

149,150 95,96 POKADR

According to mapping (which 1'm sure is right), this is the
address of the 1last POKE location. 1f no POKE command has
been given then it is the address of the last operator token
(often 155 for EOL).

I find that when [ tried to find out what this was, it's
address points directly to the 2nd of the 2 Basic statement

tables. The 1st 1is at 42145. Turbo Basics is at 60251 and
63857.

Locations 146 =~ 202 are reserved for the 8K BASIC ROM.
Locations 176 - 207 are reserved by the Assembler/Editor
cartridge for the user's Page-0 use. The DEBUG routine also
reserves 30 bytes in page-0, the locations are: $A4, $AS,
$AD, SAE, $DB - S$ES5, SEA - S$F1, $F5, $F6, $F9 - $¥B, SFE and
$FF. Should you affect these locations and re-enter the
Editor then don't expect the system to be kind to you.

182 Be DATAD

The data element being read. Registers the number of the
element in the DATA line.

183,184 B7,B8 DATALN

Data statement 1line number; the Basic line number of the
DATA statement currently being read. The RESTORE statement
resets DATAD and DATALN back to O.

186,187 BA,BB STOPLN

This is the line where a Basic program stopped either due to
an error or the use of the Break key. Also due to a Basic
STOP or where a TRAP statement occured. Try the following:

10 TRAP 30

20 ;this is a deliberate error

30 LINE=PEEK(186)+256*PEEK(187)

40 7 "Are you aware of error ";PEEK(195);" at line ";LINE
50 TRAP 40000

Page 26



COMPLETE & ESSENTIAL MAP

190 - 202

190 BE SAVCUR

Saves current line address.

192 co 10CMD

I/0 command.

193 Cc1 10DVC
1/0 device.
194 c2 PROMPT

Prompt character.

195 c3 ERRSAVE

This is the most recent error. See STOPLN.

200 CA COLOUR

Stores the colour number used in a Plot or Drawto operation.
The statement COLOR X can be replaced with POKE 200,X. Same
as 763, except that Basic takes the value from here to load
into 763.

201 8D PTABW

This location specifies the number of columns between TAB
stops. The 1st tab is at PEEK(201), the default is 10. Note
that this is the value wused by the "," after the PRINT
statement and NOT the actual tab stops used by the TAB key.
The minimum value here 1is 3, a 2 POKEd here will give 4
spaces and 1 is treated as 3. A POKE 201,0 will cause the
system to hang at the next PRINT statement using the ",".

202 CA LOADFLG

Load in progress flag. lnitialized to 0, if you POKE here
with 1 within your Basic program then the program will wipe
itself from memory upon return to direct mode (program
break).

Page 27



COHMPLETE & ESSENTIAL MAP
203 - 229

203-209 CB-41

Unused; free for use.

210,211 D2,D3

Basics floating point work area; $D2 is wused for the

variable type and $D3 for the variable number and length of
the mantissa.

212,217 D4,D5 FRO

Used by the USR command to return a 2-byte number to Basic.
If you store nothing here (212 and 213), then the equation:
“I=USR(address,variables)" returns the address of the USR
subroutine. Otherwise, you can store an integer (range 0 -
65535) here which becomes the value of the USR function.

To wuse 16-bit values in FP, you would place the 2-bytes of
the number into the least 2-bytes of FRO at 212 and 213, and
then do a JSR $D9AA, which will convert the integer to its
FP representation, leaving the result in FRO. To reverse the
operation, do a JSR $D9D2.

Locations 212 -~ 255 are reserved for page-0 floating point
package use. The FP routines are in ROM at 55296 - 57393
($SDB800 - $SEO031). These page-0 locations may be used if the

FP package is not called by the users program, however, do
not use these locations for an interrupt routine since such
routines might occur during an FP routine called by Basic
which will cause the system to crash.

Floating point uses a 6-byte precision. The 1lst byte of the
Binary Coded Decimal (BCD) number is the exponent (where if
bit-7 equals 0, the number is positive, and 1 for negative).
The next 5-bytes are the mantissa. See De Re Atari for an
explanation of BCD (or take up a City and Guilds 223
course!). Also see the NUMBER SYSTEMS appendix

218-223 DA-DF FRE

FP extra register (7).

224-229 EO-E5 FR1

FP register 1; holds a 6-byte internal form of the FP number
as does FRO. The FP package frequently transfers data
between these 2 registers and wuses both for 2 number
arithmetic operations.

Page 28



COMPLETE & ESSENTIAL MAP

230 - 246

230-235 E6-EB FR2

FP register 2.

236 EC FRX

FP spare register.

237 ED EEXP

The value of E (the exponent).

238 EE NSIGN

The sign of the FP number.

239 EF ESIGN

The sign of the exponent.

240 FoO FCHRFLG

The 1st character flag.

241 F1 DIGRT

The number of digits to the right of the decimal.

242 F2 CIX

Character (current input) index. Used as an offset to the
input text buffer pointed to by INBUFF.

243,244 F3,F4 INBUFF

Input Ascii text buffer pointer; the users program line
input buffer, used in the translation of Atascii code to FP
values. The result output buffer is at 1408 - 1535 ($580 -
$SFF).

245,246 F5,F6 ZTEMP1

Temporary register.

Page 29



COMPLETE & ESSENTIAL MAP

247 - 511

247,248 F7,F8 ZTEMPS

Temporary register.

249,250 F9,FA ZTEMP3

Temporary register.

251 FB RADFLG
Also called DEGFLG. When set to 0, all trigonometric

functions are performed in radians; when set to 6, they are

done in degrees. Basics NEW command and Reset restore RADFLG
to radians.

252,253 FC,FD FLPTR

Points to the users FP number.

254,255 FE,FF FPTR2

Pointer to the wusers 2nd FP npumber to be wused in an

operation.

END_OF PAGE-0O RAM

PAGE-1: THE STACK

Locations 256 - 511 ($100 - $1FF) is the stack area for the
0S8, DOS and BASIC. Machine language JSR, PHA, PHP and
interrupts all cause data to be written to the stack, while
RTS, PLA, and PLP instructions all cause data to be read
from the stack. Upon power-up, the stack-pointer points to

location 9511, but as items are pushed onto the stack the
pointer is 1lowered and the item is pushed on top. In the
case of the pointer going below location 256, it is

wrapped-around to point back to location 511.

PAGES 2 - 4

Locations 512 - 1151 ($200 - $47F) are used by the 0S for
working variables, tables and data buffers. In this area,
512 - 553 are used for interrupt vectors, 554 - 623 are for

Page 30



COMPLETE & ESSENTIAL MAP

512 - 513

miscellaneous use. Much of pages 2 - 5 cannot be used except
by the 0S unless specifically noted.

There are 2 types of interrupts: Non-Maskable Interrupts
(NMI) processed by the ANTIC chip, and Interrupt ReQuests
(IRQ) processed by POKEY and PIA. NMI's are for the Vertical
Blank Interrupt (VBI), Display List Interrupt (DLI) and
Reset Key Interrupt (RKI) at locations 546 - 549, 512 - 513,
and 12 - 13, respectively.

IRQ's are for the TIMER interrupts, peripheral and
serial-bus interrupts, break and 'other' key interrupts. See
NMIST at 54287 and IRQEN at 53774.

512,513 200,201 VDSLST

Vector for the NMI display list interrupts; containing the
address of the instructions to be executed during a DLI.
It's needless me trying to explain DLI's to you if you don't
understand them because they are for the people who know
what they are doing! If you want to find out about them then
you should get hold of a good book such as DE RE ATARI
(which is now out of print, like most Atari books really!),
on the other hand, you <can write to me and ask for my
TUTORIAL on DLI's for the Basic programmer which I consider
to be a good introduction to DLI's. Anyway, a DLI is best
used in altering COLOUR registers at various points across
or down the screen, hence, you can have more than 4 colours
in GRAPHICS 15 or whatever mode you like.

The 0S doesn't use DLI's, they uwmust be user enabled at
$D4OE, written into protected memory (such like Page-6) and
Vectored to through VDSLST.

VDSLST is initialized to 49358 which 1is just an RTI
instruction. As an example for those who are really
enthusiastic about learning DLI'S, try this program:

10 GRAPHICS O

20 DL=PEEK(560)+256*PEEK(561)

30 FOR I=0 TO 13

40 READ D:POKE 1536+41,D:NEXT I

50 DATA 72,173,10,210,41,240,141,10,212,141,24,208,104,64
60 POKE DL+2,240:POKE DL+3,194

70 FOR I=6 TO 28:POKE DL+I,130:NEXT I

80 POKE 512,0:POKE 513,6

90 POKE 54286,192

You may notice that after running the program, when you
press a key, the colours tend to flick down one line. This
is because the keyboard interrupt stores a value into WSYNC
at 54282. There are several solutions, see the DLI
appendix.

Page 31



COMPLETE & ESSENTIAL MAP
514 - 523

There is only the 1 DLI vector, so if you wished to execute
more than 1 DLI you must include within each DLI, address
changes to VDSLST to link the DLI's.

514,515 202,203 VPRCED

Serial (peripheral) proceed line vector, initialized to
49357 which is PLA, RT1. It is used when an IRQ interrupt
occurs due to the serial 1/0 bus proceed line which is
available for peripheral use. This interrupt is handled by
the PIA <chip and can be used to provide more control over
external devices.

516,517 204, 205 VINTER

Serial (peripheral) interrupt vector, initialized to 49357.
Used for the IRQ interrupt due to a serial bus 1/0
interrupt. Processed by PIA.

518,519 206,207 VBREAK

Software break instruction vector for the 6502 BRK command.
This IRQ vector is normally used for setting break points in
an assembly language debug operation. You can use it when
executing a BRK instruction in your own machine language
programs, very handy for LOSING hackers trying to hack your
machine~code program, just take program flow into a BRK
instruction, ensuring that you have setup this vector. Only
the more knowledgeable hackers will realise where to go when
a DEAD-END is encountered (the BRK instruction).

520,521 208,209 VKEYBD

POKEY keyboard interrupt vector, used for an interrupt
generated when any keyboard key is pressed excluding the
Break key and the Console buttons. The 0S doesn't generate
an interrupt for the console keys, see 53279.

VKEYBD can be wused to process the key-code prior to it
undergoing Atascii conversion. Initialized to the 08§
keyboard IRQ routine at 64537.

522,523 20A,20B VSERIN

POKEY 1TRQ serial input ready vector, initialized to 60204
which is the O0S routine to place a byte from the serial
input port into a buffer. Called INTRVEC by DOS, it is used
as an interrupt vector 1location for an SIO patch. DOS
changes this vector to point to 6691, the start of the DOS
interrupt ready service routine.

Page 32



COMPLETE & ESSENTIAL MAP

524 - 531

524,525 20C, 20D VSEROR

POKEY IRQ serial output ready vector, initialized to 60077
which is the 0S routine to provide the next byte in a buffer
to the serial output port. DOS changes this vector to 6630,
the start of the DOS output needed interrupt routine.

526,527 20E, 20F VSEROC

POKEY IRQ serial bus transmit complete interrupt vector,
initialized to 60140 which sets a transmission done flag
after the checksum byte is sent.

SI0 uses VSERIN, VSEROR and VSEROC to control serial bus
communication with the serial bus devices. During serial bus
communication all program execution is paused. Only stage-1
VBlank and the various IRQ's are constant, even DLI's are
inactive during actual! transmission of bits. The actual
serial 1/0 is interrupt driven; POKEY waits and watches for
a flag to be set when the requested 1/0 operation is
complete. During this wait, POKEY is sending/receiving bits
along the serial bus. When an entire byte has been
transmitted the necessary IRQ 1is generated according to
data-flow, causing the next byte to be transmitted until the
entire buffer has been sent/received whereby the
"transmission done" flag is set. At this time SIO exits back
to the <calling routine, re-enabling DLI's and stage-2 VBI.
I1f the buffer is greater than "X" bytes then there will be a
momentary update in any activated DLI's. Where "X" is the
seperation of a sector for a disk device (128 bytes) or a
record for a cassette device (132 bytes) etc..

It can also be seen that S10 is a serious time-waster where
it waits for POKEY to handle its 1/0 of bits.

528,529 210,211 VT1MR1

POKEY IRQ timer-1 interrupt vector initialized to 49357
(PLLA, RTI). Timer interrupts are executed (if enabled at
1RQEN) when their associated AUDF register counts down and
reaches 0. VTIMR1 uses AUDFl at 53760. Values in the AUDF
registers are loaded into STIMER at 53769 according to
mapping, but you can't read it because it has a different
purpose.

530,531 212,213 VIIMR2

POKEY IRQ timer-2 interrupt vector for AUDF2. Initialized to
49357. AUDF2 is its associated counter.

Page 33



COMPLETE & ESSENTIAL MAP

532 - 533

532,533 214,215 VTIMR4

POKEY IRQ timer-4 interrupt vector for AUDF4, initialized to
49357, Associated counter is AUDF4.

The HARDWARE-TIMERS are used to count intervals less than a
jiffy (1 fiftieth of a second). They count down from a user
set value wuntil they reach 0 whereby they vector to the

appropriate address. These are very handy for many
applications including mwmusic durations, game 1I/0 clock,
colour alterations, timing and even digitized speech (see

the VOLUME-BIT appendix).
On the next page there is a series of steps helping you to
make your own hardware interrupt. 1I've also written a

program that wuses hardware timer-1 where other manuals
couldn't be bothered:

10 POKE 53768,0

20 FOR I=0 TO 12

30 READ D:POKE 1536+1,D:NEXT I

40 DATA 173,10,210,41,240,141,10,212,141,24,208,104,64
50 POKE 528,0:POKE 529,6

60 POKE 53760,30

70 POKE 16,193:POKE 53774,193

80 POKE 53769,1

1. POKE AUDCTL with the clock frequency you wish to
operate in: 0=64KHz, 1=15KHz and 96=1.79MHz.

The PAL system actually works at 2.217MHz, but
it seems that POKEYs IRQ' are strapped to this
strict timing circuit! (It doesn't seem possible
to disable Pokeys internal clock for faster
processing IRQ'!77).

2. Mapping says to set the channel control register
at 53761, to what and why it doesn't say, but when 1
was fiddling around with it I found that it
has no use at all!

3. Place your machine-language interrupt routine into
a safe place of memory making sure it ends with
a PLA and RTI. Note that if you use the X or Y
registers then you should PHA them and restore
them at the end of the interrupt.

4. Address your routine with the appropriate
Timer-vector.

5. POKE a value between 0 - 255 into the relevant
AUDF register. This is the delay (in clock-pulses)
before the interrupt routine is re-executed.

You should be very careful with this value because
if it is shorter than the amount of time your
interrupt-routine needs to fully execute then you
are dicing with trouble. The system can CRASH.

Page 34



COMPLETE & ESSENTIAL MAP

534 - 541

6. Enable your interrupt by setting its bit in IRQEN
at 53774 and its shadow POKMSK at 16.

7. Finally, POKE a nonzero value into STIMER
at 53769 so that your counter (the AUDF register)
is reset to the value you poked here in step-5.

Hows that for a full description of the hardware timers? Why
couldn't mapping do this!

534,535 216,217 VIMIRQ

The IRQ IMMEDIATE vector (general), initialized to 49200.
This interrupt 1is used by the 0S to determine the cause of
the IRQ so that it can process the correct one.

When playing a sampled file (digitized sounds), the VIMIRQ
IRQ can be used quite affectively. See the VOLUME-BIT
appendix.

Locations 536 - 558 exluding VVBLK!, VVBLKD, SRTIMR and
INTEMP are used for the SOFTWARE-TIMERS. These timers are
used to count intervals in jiffies (frames). When they are
set, their counters are decremented every 50th of a second
and when 0 is reached then depending on the timer, either a
flag will be set or a JMP to address will be executed.

536,537 218,219 CDTMV1

System Timer-1 value. This timer is decremented every
stage-~1 VBlank. When it reaches 0, a flag is set and a JSR
is made through the address in CDTMAl at 550,551. Since the
0S wuses this timer for its SIO routines, it's best to avoid
use of this timer. If you have to use it then do not have it
interfering with SIO operations.

538,539 21A,21B CDTMV2

System Timer-2 value. Decremented every stage~2 VBlank. It
can be decremented every stage-1 VBlank, subject to the
status of CRITIC at 66. This timer may miss (skip) a count
when time-critical code 1is being executed, see the VBI
appendix. CDTMV2 performs a JSR through CDTMA2 at 552,553
when its value is 0.

540,541 21C,21D CDTMV3

System Timer-3 value. Same as CDTMV2, timers 2, 3, 4 and 5
are all stopped (from decrementing) when CRITIC is nonzero.
0f course, you can write your own VBI and change any of the
software timers so that they all use stage-1 (never CRITICal
code and always active) VBlanks. CDTMV3 is used by the 0S to
Open the cassette recorder and also to set the length of
time to read/write tape headers.

Page 35



COMPLETE & ESSENTIAL MAP

542 - 547

542,543 21E,21F CDTMV4

System Timer-4; Same as CDTMV2 except that this timer sets a
flag to indicate its counted to 0.

544,545 220,221 CDTMVS

System Timer-5; Same as CDTMV4. NOTE that timers 3, 4 and 5
set flags when they have reached 0, where the Ist 2 timers
JSR through its appropriate address.

546,547 222,223 VVBLKI

VBlank 1immediate vector. Initialized to 49378 which is the
0S NMI interrupt processor routine. The NMI status register
NMIST at 54287 is tested by the hardware to find the cause
of the NMI. If the cause is the DLI NMI then vector through
VDSLST. If not, then a test is made to see if it's the VBI
NMI, if so, then vector through VVBLKI which in turn vectors
through VVBLKD if CRITIC is 0. If the NMI isn't any of the
above then process the Reset-key routine and vector through
DOSVEC.

See the VBlank appendix for a full description of the 0S
VBlank processes.

If you wish to write your own immediate VBI, then you should
put its address here and enable the VBI bit in NMIEN at
54286. Note, however, that to set the address in VVBLKI, you
should 1load the Accumulator with 6, the X register with the
HI byte, the Y register with the LO byte and JSR SETVBV at
$E45C. Your interrupt program doesn't need to PHA or PLA any
registers, but it does need to exit the routine with a JMP
to SYSVBV at S$E45F. Also see appendix D5.

10 DATA 173,242,2,141,26,208,76,98,228

20 DATA 104,169,6,162,6,160,0,32,92,228,96
30 FOR I=0 TO 19

40 READ D:POKE 1536+1,D:NEXT I

50 X=USR(1545)

60 POKE 54286,64

This program sets up an immediate VBI to use the value of
the last key pressed as a BORDER colour. Not a very
ingenious program for a stage-1 VBI, but nonetheless, quite
affective. Because the program disables the original stage-1
VBlank, you will notice that the Real-Time Clock is not
updated and all the other stage-1 functions are not
implemented: for instance, try several PEEKs at location
20.

Page 36



COMPLETE & ESSENTIAL MAP

548 - 555

548,549 224,225 VVBLKD

VBlank deferred vector. Initialized to 49802. You can use
the above program in the deferred register by changing the
1st occurrence of 6 placed in the Accumulator to a 7, thus,
retaining all the original stage~1 processes AND stage-2.
See the TIMINGS appendix for time calculations.

550,551 226,227 CDTMAL

System Timer-1 JuMP address is initialized to 60433. When
locations 536,537 have counted down and reached 0, the 0S
vectors through here. The 0S uses this timer from stage-1
VBlank so you can either use another timer so as to reduce
any 0S conflicts or you can reconfigure the VBlank so that
it doesn't use this timer (the latter is probably best
avoided!).

Mapping says that you should avoid using numbers greater
than 255 because a VBI could occur when the LSB goes
negative and the MSB is to be updated, but 1 fail to see how
this is possible because the timers are decremented DURING
the VBI, thus, telling us that unless it takes a whole frame
to decrement 2 locations then this has no possibility of
happening and is undersight by lan Chadwick.

552,553 228,229 CDTMA2

System Timer-2 JuMP address. Unused by the 0S and free for
you to write the address of your machine-language routine
here. Initialized to 0 on power-up.

554 22A CDTMF3

System Timer-3 FLAG; set positive when CDTMV3 has reached 0.
This register is also used by DOS as a time-out flag.

555 22B SRTIMR

Software repeat timer, controlled by the IRQ device routine.
It establishes the 1initial half-second delay before a key
will repeat itself if depressed. Stage-2 VBlank establishes
the initial 0.8 of a second repeat rate, decrements SRTIMR
and implements auto repeat logic. Every time a key is
pressed, SRTIMR is loaded with 40. Whenever SRTIMR reaches 0
and a key 1is still pressed, the value of that key is
continually stored in CH at 764.

Page 37



COMPLETE & ESSENTIAL_MAP

556 - 559

556 22C CDTMF4

System Timer~4 FLAG; set when CDTMV4 counts down and reaches
0.

557 22D INTEMP

Temporary register used by the SETVBL routine at 58460.

558 22E CDTHMF5

System Timer-5 FLAG; set when CDTMV5 counts down and reaches
0.

559 22F SDMCTL

Direct Memory Access (DMA) enable, initialized to 34. Shadow
location for 54272 ($D400), POKE with 0 to turn ANTIC off
(including the display) to speed processing up 30%. If your
performing a routine that needs speeding-up, but you still
require some display then there are 2 ways of achieving
this: the Ist is simply by replacing the mode lines that you
don't need with Blank-Scan Lines (BSL's) or even just
shrinking the DL. The other method is to use 1 or more DLI's
to turn Antic off during the area's of the screen that is
unused.

Here's a list of the bits in this register, just add up the
value's to achieve what you want. Note that you can only
have 1 playfield:

BITS: DEC: OPTION:

No playfield

Narrow playfield

Standard playfield

Wide playfield

Enable missile DMA

Enable player DMA

Enable missile and player DMA
One line player resolution
(double-line res. if not set)
5 32 Enable "DMA FETCH INSTRUCTION"

ENWNO—=O0O0
-
PRV WNN=O

1
1

Note that the Double-line res. is default if the Single-line
res. is not chosen. Also, if you wish the playfield or the

PMG DMA to appear then you must set bit-5 along with the
bits you need.

Page 38



COMPLETE & ESSENTIAL MAP

560 - 561

The playfield 1is the text/graphics area of the screen.
Narrow playfield 1is 128 colour clocks (there are 4 colour
clocks to 1 Graphics O byte in width), thus, giving 32
columns. The standard playfield is 160 colour clocks and 40
columns across. Wide playfield is 192 colour clocks and 48
columns wide.

A colour-clock is a physical measure of horizontal distance
across the screen, there are a total of 228 colour-clocks
across 1 scan-line, but only around 176 are visible. A pixel
on the other hand is a logical unit which varies in colour
clocks depending on the Graphics mode you choose.

Bit-5 should be enabled so that Antic can use its DMA to
fetch the DL instructions, the memory bytes and the PMG
data. If it's not set, then there will be no display and the
processor will work 30% faster as mentioned earlier.

Bits-6 and 7 don't seem to be used for anything and are
clear.

560,561 230,231 SDLSTL/H

Starting address of the Display List (DL). The DL is an
instruction-set which tells Antic where the screen-data is
and how to display it. Shadow for DLISTL/H at 54274,5. You
can find the DL 1-byte above free memory by using:

DL=PEEK(741)+256*PEEK(742)

But, don't get into the habit of using that particular
method, the method you should always use is:

DL=PEEK (560)+256*PEEK (561)

When you <call a Graphics mode, the appropriate display is
created from the tables at 60957. See locations 88 and 89.
You can create your own DL with mixed text/graphic displays,
fine-scrolling, BSL's and DLI's. See the table below:

BITS: DEC: FUNCTION:
128 Display-List Interrupt (DLI)
.1 65 Jump and wait for vertical blank (JVP)
64 Load Memory Scan (LMS)
kY Vertical fine-scroll
16 Horizontal fine-scroll
1 Jump code (JMP) ;not 6502 JMP

QPPN
(%4
LS

The above is a list of the functions available on the DL,
the text/graphic modes are in bits 0, 1, 2 and 3 and
described on the next page.

Page 39



561 cont.

BITS 3-0: DEC: GRAPHICS:

0010 2 0
0011 3 0.5
0100 4 12
0101 5 13
0110 6 1
0111 7 2
1000 8 3

1 001 9 4

1 010 10 5
1011 11 6
1100 12 14
1101 13 7
1110 14 15
1111 15 8,9,10 and 11

The text modes have bit-3 clear, while the graphic modes
have bit-3 set. Graphics 0.5 has 10 rows to a byte rather
than 8 and is especially useful for true descenders in text.
Graphics 9,10 and 11 are obtained by selecting this code,
but also by setting the appropriate bits in location 623,
See this location for further information.

There are also Blank-Scan Lines (BSL's) in the DL
instruction set:

BSL's
(amount): DEC: BITS:
1 0 none
2 16 4
3 32 5
4 48 4,5
5 64 6
6 80 4,6
7 96 5,6
8 112 4,5,6

You'll notice that the DL instructions are contradictory in
some of the bits, for example: fine-scrolling is on bits 4
and 5 whilst 2 and 3 BSL's uses those bits too. This is
quite right, but you should know that the fine-scrolling
bits are only so, when a text/graphics mode is active. If no
mode bits are selected, then they are treated as BSL's. This
is also the case for several other bits, and because of the
detail needed to describe the DL, this is only meant as a
reference. If you want a good explanation of the DL, then
you should get hold of De Re Atari or Your Atari computer by
Lon Poole. There is also a good tutorial on DL's in Page-6
magazine, issues 18 - 20 by Steve Pedler.

Page 40



COMPLETE & ESSENTIAL MAP

562

1f your making a DL of your own you should put your DL in a
safe area of memory and POKE its address here, you should
also ensure that the DL instructions follow the FACT table
below:

DEC: BIT: FUNCTION:

128 7 This value is the DLI request. It can
be an instruction of its own or SET with
any other bits and still means the same.

64 6 This value without any mode bits selected
means 5 BSL's, with bit-0 set (65) it
becomes the JVP instruction which must always
end every DL. You must follow this
instruction with the LSB/MSB start address of
the DL (the contents of SDLST). If set with
mode bits, then it becomes the LMS instruction.
LMS is used to point to which memory is to be
displayed. It should also be followed with the
LSB/MSB address of display memory (usually the
address found in SAVMSC at 88,89).

32 5 This value without any mode bits selected means
3 BSL's, with mode bits set it becomes the
Vertical fine-scroll enable bit.
16 4 This value without any mode bits set means

2 BSL's, with mode bits set it becomes the
Horizontal fine-scroll enable bit.

1 0 This value without bit-6 set is the Antic
JMP-instruction, it is used to tell Antic that
the DL continues at the address given in
the next 2 bytes (LSB/MSB). This must be used
to stop your DL going through a 1K boundary.
See the BOUNDARIES appendix.

DL's are restored on Reset and Graphics calls, replace yours
by re-POKEing its address here.

562 232 SSKCTL
Serial port control register, initialized to 19 which sets
bits 0, 1 and 4. Shadow for 53775. The bits in this register

are:

BIT: DEC: FUNCTION:

0 1 Enable keyboard debounce circuit,
1 2 Enable the keyboard scanning circuit,
2 4 The POT-scan completes a read within
2 scan-lines instead of the usual 1-frame time.
3 8 Serial output transmitted as 2-tone mode

instead of logic true/false (POKEY 2-tone mode)
4-6 16-64 Serial port mode control.
7 128 Force BReaK; serial output to O.

Page 41



COMPLETE & ESSENTIAL MAP
563 - 571

563 233 SPARE

Temporary counter for the peripheral handler loader.

564 234 LPENH

lLight-pen horizontal value; shadow for 54284, values range
between 0 - 227.

565 235 LPENV

Light-pen vertical value; shadow for 54285. The values here
are the same as the VCOUNT register for two-line resolution.
Both 1light-pen values are modified when the trigger is
pressed (pulled 1low). The light-pen positions are not the
same &as the normal screen row and column positions. There
are just 96 vertical positions, numbered from 16 at the top
to 111 at the bottom, each one equivalent to a scan-line.
There are 228 horizontal positions numbered from 67 at the
left. When the LPENH value reaches 255, it is reset to 0 and
begins counting again by one to the rightmost edge, which is
a value of 7.

Obviously, because of the number of positions readable and
the small size of each, some leeway must be given by the

programmer when using light-pen read-outs in a progranm.

566,567 236,237 BRKKEY
BREAK-key 1RQ interrupt vector, initialized to 49298. This

vector can be used for your own machine-language routine,
remember to end your routine with a PLA and RTI sequence.

568,569 238,239 RELADR/VPIRQ
In the 1200XL, this 1is the address of the relocatable
handler routine. In all other XL's and XE's, it's the vector

for parallel bus interrupt request and points to 51566 which
is the vector for any initialized generic parallel device.

570 23A CDEVIC
The current SI0 bus ID (device) number.
571 23B CCOMND

The SI10 bus command code.

Page 42



COMPLETE & ESSENTIAL MAP

572 - 580

572 23C CAUX1

Command auxiliary byte-1, loaded down from 778 by SIO.

573 23D CAUX2

Command auxiliary

Command auxiliary byte-2, loaded down from 779 by SIO.
574 23E TEMP

Temporary RAM register used by SIO.

575 23F ERRFLG

SI0O error flag; any device error except the time-out error
(time = 0).

576 240 DFLAGS

Disk flags read from the ist byte of the boot file (sector
1) of the disk.

577 241 DBSECT

The number of disk-boot sectors read from byte-2 of the 1st
sector.

578,579 242,243 BOOTAD
This is the beginning address in memory to put the disk-boot
program. This address 1is read from bytes 3 and 4 from the

Ist sector on a disk. DOS normally has 1792 as its start
address. The O0S routine to load the disk program is called
DOBOOT and is located at 50571.

580 244 COLDST

Coldstart flag. If this register is 0 then pressing Reset
results in a warmstart, however, POKEing here with nonzero
and pressing Reset results in coldstart (re-booting of the
computer).

1f you create an AUTORUN.SYS file, it should end with an
RTS. 1f not, then it should clear 580 and set location 9
with 1. You can make any binary file automatically load when
booting a DOS disk by renaming it to AUTORUN.SYS.

Page 43



COMPLETE & ESSENTLAL MAF

581 - 584

Be careful not to have more than 1 filename in the directory

under the same name, because when you use the delete-file
option from DOS, it deletes everything under the name you
give to it. 1o case you do have 2 files on the disk under
the same name, then you can POKE 3118 with 0 and then use

the rename option of DOS. It will only change the name of
the 1st match of the name you give, thus, when you have the
2 {iles wunder seperate names, you can delete just the one
you don't want.

COLDST can also be used along with locations 16, 566, 567,
138, 139 and 202 to achieve a very affective protection for
Basic programs. They can be protected from listing and
breaking into. Copy protection is another matter, however,
it is really a case of having the right hardware so that
particular areas of the disk containing the protected
program are unformatted, and even in some cases formatted in
an uncopyable manner.

581 245 RECLEN
Relocatable loader routine variable for record length.
582 246 DSKTIM

Disk time-out register (address of the 0S5's worst time-out).
Default 1is 160, giving a total time-out period of 2 minutes

50 seconds. [t's updated after each disk status request to
contain the value of the 3rd byte of the status frame
(location 748). All disk operations have a 7 second

time-out. The old ROMS had a real irritating delay which was
a BED-BUG. 1t occured in the FORMAT operation as well as
printers.

Locations 583 - 618 are unused on the 1200XL and therefore
free for use. On other XL's/XE's, they are as follows:

583 247 PDVMSK

Shadow mask for the device selection register at 53759,
active only when the 0S deselects the FP ROM by writing to
that address. You can run up to 8 parallel devices through
the bus, each bit in this register corresponds to 1 device.
The mask must be set for the proper device before the 0S
will allow an IRQ to be sent to that device.

584 248 SHPDVS
Shadow for the parallel bus register; each bit represents 1
of the 8 parallel devices. This allows the 0S to service

VBl's while running the device masked by the appropriate
bit.

Page 44



COMPLETE & ESSENTI1AL MAP

585 - 622

585 249 PDMSK

Parallel bus interrupt mask; allows the 0S to service TRQ's
from the device masked by the bit in this register.

586,587 24A,24B RELADR

Relocatable loader relative address.

588,589 24C, 24D PPTMPA, PPTMPX

1 byte temporary storage registers for the relocatable
loader.

590-618 24E-26A
Unused; free for use.
619 26B CHSALT

Alternate character set pointer for the 1200XL, initialized
to 204 to point to the international character-set as the
next set to display on the F4-key toggle. The XL/XE have 2
character sets, the 1st at 52224 and the other at 57344.

620 26C VSFLAG
Fine-scroll temporary register.
621 26D KEYDIS

Keyboard disable. POKE with 255 to disable the keyboard and
0 to re-enable. You have to press Reset to re-enable the
keyboard if in Basic except on the 1200XL where you can
press CTRL+F1. This is also one cure for removing the DLI
flicker. If you disable the keyboard, the 0S does not
execute the keyboard routine, thus, it does not store any
value into WSYNC.

622 261 FINE

Fine-scroll enable for Graphics 0. Poke with O for coarse
scrolling (default), or with nonzero for fine scrolling. Try
POKE 622,255 and calling Graphics 0. When you list a long
program Yyou will notice something quite unique when the
listing scrolls up the screen. The 0S places the address
64708 of a DL1 at 512 and 513, replacing any DL1 you might
already have there. The colour register at 53271 is altered
for the last visible screen line.

Page 45



COMPLETE & ESSENTIAL M

If you enable fine-scrolling here and go to DOS, you'll see

that it remains enabled if you display a directory to the
screen.
623 26F GPRIOR

Priority selection register. Shadow for 53275. Priority
options select which screen objects will be in front of
others. It also allows you to combine the 5 Missiles into a
5th player, certain overlapped players can have an EOR'd
colour too. Here are the bit functions:

BITS: DEC: FUNCTION:
(priorities)

0 1 Players 0-3, playfields 0-3, Backbround,
1 2 Players 0-t, playfields 0-3, players 2-3,
background,

Playfields 0-3, players 0-3, background,
8 Playfields 0-1, players 0-3, playfields 2-3,
background.
(Other options)
16 4 missiles assume same colour for 5th player,
32 Overlap of players have 3rd colour,
GTIA mode 9
128 GTIA mode 10
.7 192 GTIA mode 11

w8
&

aNOU; S
[
&

You should normally select only 1 of the priorities,
although, if you select more than 1 then any priorities at
the same level will just black-out when overlapped. I can't
see any useful application to put this to, but ['m sure it
can be of some use.

With the 3rd colour overlap you can achieve a multicolour
player by wusing more than | player above each other. The
overlapping of colours 1is done on players (0 with 1 and 2
with 3, only these combinations are allowed, thus, you will
not get a 3rd colour by overlapping players 0 with 2 or 3,
and 1 with 2 or 3. All you will get is a black-out.

Bits 6 and 7 have a completely different meaning, they are
used to obtain the GTIA modes. See SDLST at 560,1. When
changing the DL to obtain the GTIA modes, you should use the
Antic code given in the table and use the appropriate POKE
here. The really good thing with this method of achieving
GT1A modes 1is that you don't have to setup the GTIA DL for
these POKE values to work. Why not try:

Page 46



10 GRAPHICS 2+16

20 DL=PEEK(560)+256*PEEK(561)

30 DM=PEEK(DL+4)+256*PEEK (DL+5)

40 FOR 1=1 TO 20%t2

50 POKE DM+]-1,PEEK(53770) :NEXT I

60 FOR 1=64 T0 255

70 IF 1/64=INT(1/64) THEN POKE 623,1]
80 NEXT I

90 GOTO 60

Here's a program you can use to see all the GTIA modes in
action, just change the mode between 9 - 1t1:

10 GRAPHICS 9

20 FOR 1=0 TO 6

30 POKE 705+[,1%32+8

40 NEXT 1

50 FOR I=0 TO 79

60 COLOR INT(1/5.26)

70 PLOT I, [:DRAWTO 79-1,1

80 DRAWTO 79-1,191-1:DRAWTO 1,191-1
90 DRANWTO I,1

94 GOTO 94

GT1A mode pixels are long and flat, their ratio being 2:1
(colour clocks to scan-lines), which isn't a very good
horizontal resolution for detailed work, curves or circles,
but they have a 1lot of colours/shades which when used
affectively can give some remarkable graphic affects! Have
you seen the Atari' graphics demonstration disk? There is
the Robot and the Spaceship demo which are excellant
examples. There are also digitised photo's that give many
more colours and shades on the screen at one time. If 1 had
a copy of the program, then I would have found out exactly
how 1it's done and given some introduction to it here, but I
don't have it so what can 1 do. I do know that it sets the
fast pot-scan at location 53775, though.

Locations 624 - 647 are used for the games controllers:

624 270 PADDLO

The value returned from the position of PADDLE(0). Paddles
are also called POTS (short for Potentiometer). The values
range between 0 =~ 228, increasing as the knob is turned
counter-clockwise. All PADDLE registers are shadows for
POKEY locations 53760 - 53767.

625 271 PADDL1

Same as 624 but for PADDLE(1), which is also on the same
controller jack (0).

Page 47



COMPLETE & ESSENTIAL MAP

626 - 637

626 272 PADDL2

PADDLE(2); which is on controller jack 1.

627 273 PADDL3
PADDLE(3); also on controller jack 1.

Locations 628 -~ 631 are repeats of the last 4 locations,
copied here during VBlank stage-2.

632 278 STICKO

This is the value returned from the Joystick in port 0. All
joystick locations are shadow for ©PlA location 54016.
Depending on the ©position of the joystick, the following
values are returned:

5 = DOWN-RIGHT 6 = UP-RIGHT
7 = RIGHT 11 = LEFT

9 = DOWN-LEFT 10 = UP-LEFT
13 = DOWN 14 = UP

15 = CENTRE

633 279 STICK1

Same as 632 except for joystick port 1.

Locations 634 - 635 are repeats of 632 - 633 and are copied
here during stage-2 VBlank.

636 27C PTRIGO

Paddle trigger 0. Used to determine if the trigger/button is
pressed (returning 0) or released (returning 1). Since these
use the same controller port lines as the jostick left and
right directions, you <could if wanted use PTRIG for
horizontal movement. This 1is a wuseful addition that lan
Chadwick wrote in mapping. When this register returns a
value of 1, a value of 7 is placed into STICK(0), while a 0
returned here returns an 11 to STICK(0O). The PTRIG registers
are shadows for 54016.

637 27D PTRIG1

Same as 636, but for PTRIG(1).

Page 48



COMPLETE & ESSENTIAL MAP

638 - 650

638 27E PTRIG2

PTRIG(2) register.

639 27F PTRIG3

PTRIG(3) register.

LLocations 640 - 643 are repeats of locations 636 - 639 and
copied there from stage-2 VBlank.

644 284 STR1GO

Stick trigger 0. This register returns the same values as
the PTRIG register, except for the joystick. STRIGs are
shadows for 53264 - 53267.

645 285 STRIG1

Same as 644 but for STRIG(1).

l.ocations 646 - 647 are repeats of locations 644 - 645
copied there by the stage-2 VBlank.

648 288 HIBYTE

Hi-byte register for relocatable loader routine.

649 289 WMODE
Flag to indicate to the cassette handler which mode to be
in: READ = 0 and WRITE = 128.
650 28A BLIM
Cassette data record buffer size; contains the amount of

active/used bytes in the cassette buffer for the record
being read or written at location 1021. Values here range

between the size of the cassette record, 0 - 127. The
pointer to the actual byte being read/written is at location
61. The value for BLIM is drawn from the control bytes

preceding every cassette record, as explained in location
1021.

Page 49



COMPLETE & ESSEN

651 - 658

651 288 IMASK

Mapping calls this IMASK, but also says that it's unused.

652 28C JVECK

Temporary jump vector; unused otherwise.

653 26D

Unused; free for use.

654,655 26E, 26F NEWADK

Used by the relocatable loader routine; new address vector.

lLocations 656 - 703 are used for the screen RAM display
handler (depending on the Graphics mode). In split-screen
mode, the text-window 1is controlled by the screen editor

(E:), while the graphics region is controlled by the display
handler (S:), wusing 2 seperate IOCB's, even if you have a
text-window in Graphics O (see location 703). 2 seperate
cursors are also maintained, though, only the text-window
one is visible.

656 290 TXTROW

Text-window cursor row; this value ranges between 0 - 3 coz
there are only 4 lines in it. TXTROW specifies the next row
to print on or even read from.

657,658 291,292 TXTCOL

Text-window cursor column; values range from 0 - 39, unless
changed by the user at 82 and 83. Location 658 will always
be O unless you change the mode-lines of the text-window by
altering them in the DL, see SDLST. However, if you don't
change the mode, then location 658 is unused and free for
use.

Since Position, Plot and Locate all refer to the upper
screen (not text-window), you'll have to use POKE statements
to achieve anything you may not be able to get with the
Print or CHRS$ functions in the text-window.

Page 50



COMPLETE & ESSENTIAL MAP

659 - 671

659 293 TINDEX
Similar to DINDEX, except for the text-window. This is
always O when location 128 is 0 and is initialized to 0.

Remember to put the same mode number here if you change the
text-window DL, see above.

660,661 294,295 TXTMSC

Address of the wupper left corner of the text-window,
obtained with this expression:

DMW=PEEK (660) +256*PEEK (661)

See locations 88 and 89 also.

662-667 296-29B TXTOLD

These locations are the split-screen equivalents of OLDROW,
OLDCOL, OLDCHR and OLDADR.

668 29C CRETRY

Number of command retries; Initialized to 13, this is the
number of times a device will attempt to carry out a command
such like sector read.

669 29D HOLD3

Temporary register use.

670 29E SUBTMP

Temporary storage.

671 29F HOLD2

Temporary register use.

Page 51



COMPLETE & ESSENTIAL MAP

672

672 2A0 DMASK

Pixel location mask. DMASK contains the value of the
specific pixel last operated upon (from a Plot, Drawto or
Poke) within the screen display byte, leaving the unused
pixel/s (bits) equal to 0 and the used bits or pixel/s equal
to 1. The size of the pixel, or amount of bits, depends on
the Graphics mode being used, as follows:

PIXEL GRAPHIC

SI1ZE: MODES:

it 0, 1, 2, 12 and 13
These modes use all the bits of each screen
display byte per pixel.

11110000 9, 10 and 11
GTIA modes are configured this way, having
2 pixels per byte. You must note, however, that
the screen X-co Plot position 0 sets the high
4-bits, whilst the 2nd pixel sets the low 4-bits.
The next pixel sets the high 4-bits, but in the
next screen byte, etc..

11000000 3, 5, 7 and 15
These modes are 4 pixels per byte, thus, the 1st
pixel in each byte is as shown, the next
is 00110000 and so on.

10000000 4, 6, 8 and 14
These have 8 pixels per byte, whereby the 2nd
pixel returns 01000000 and so on.

Here's a chart for all the Graphics pixel details:

GR.MODE 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
SCAN LINES
PER _PIXEL 8 8 16 8 4 4 2 2 1 1 1
1 8 16 1 1
BITS
PER PIXEL 8 8 8 2 1 2 1 2 1 4 4

COLOURCLOCKS

PER PIXEL AN to4 2 2 1 1 N 2 2
2 1 1 11

BYTES

PER_LINE 40 20 20 10 10 20 20 40 40 40 40

40 40 40 20 40

Also see location 559 for playfield size.

Page 52



COMPLETE & ESSENTIAL_ MAP

673 - 689

673 2A1 THPLBT

Temporary storage for the bit-mask.

674 2A2 ESCFLG

Escape flag. Normally 0, it 1is set to 128 when ESC is
pressed. 1t is reset to 0 after the next keypress. See
location 766 for forced ESC mode.

675-689 2A3-2B1 TABMAP

Map of the TAB-stop positions. There are 15 bytes (15%8 =
120 bits), each bit corresponds to 1 column in a logical
line, where a value of 1 means the TAB is set and a 0 means
otherwise. [If you wish to clear all the TAB stops then you
can either poke all these locations with O or press the TAB
key to 1land on each tab-stop and press CTRL+TAB, likewise,
if you wish to create one then position the cursor where you
want the tab-stop and press SHIFT+TAB (or POKE the
appropriate bits in). Try the following program:

10 DIM C$(8)

16 DATA 128,64,32,16,8,4,2,1

22 FOR I=1 T0 8

28 READ D:CS$(I,I)=CHRS(D):NEXT I
34 FOR J=1 TO 15

40 POKE 675+(J-1),0:NEXT J

46 FOR TAB=1 TO 120 STEP 3

52 GOSUB 70

58 NEXT TAB

64 STOP

70 BYTE=(TAB-1)/8

76 BlT=((BYTE-INT(BYTE))*8)+1

82 V=ASC(CS(BIT,BIT))

88 BYTE=INT(BYTE)

94 POKE 675+BYTE,PEEK(675+BYTE)+V
98 RETURN

You can use this program to set any TAB positions you wish.
The GOSUB routine between lines 70 - 98 actually sets any
TAB-stops given to it by the TAB variable (columns are
between 1 - 120). In this case, a TAB-stop is set every 3
positions, try changing the FOR/NEXT loop STEP at line 46.
If you wish to revert to normal, just hit Reset or call a
Graphics mode.

Page 53



COMPLETE & ESSENTIAL MAP

690 - 699

690-693 2B2-285 LOGMAP

Logical line start bit-pmap. The 1st 3 bytes are used to
indicate which physical line is the beginning of a logical
line. 3 bytes give 24 bits (3%8 = 24), the amount of

physical lines on a Graphics 0 display. Where a bit is set,
a logical line begins:

LOC: BIT: 7 6 5 4 3 2 1 0

690 LINE: 0 1 2 3 4 5 6 7
691 8 9 10 11 12 13 14 15
692 16 17 18 19 20 21 22 23

Location 693 is unused and therefore free for use. All the
map bits are set to 1 when the screen is OPENed or CLEARed,
when a Graphics call is made or when Reset is pressed. The

map is wupdated as logical lines are entered, edited or
deleted.

694 2B6 INVFLG

Inverse character flag, initialized to 0. 1f you wish to
torce inverse character mode then POKE with 128. This is
also the 0S technique when you press the inverse key. The
display handler EORs the Atascii codes with the value here
at all times. See location 702.

You can poke other values here and mix the keyboard
characters around.

695 2B7 FILFLG

Screen Fill or Draw flag. 0 means the current operation is
DRAW, nonzero means FILL. Use this localtion in conjunction
with ROWCRS, COLCRS, OLDROW, OLDCOL and ATACHR.

696 2B8 TMPROW

Temporary register for row, used by ROWCRS.

697,698 2B9,2BA TMPCOL

Temporary registers for column, used by COLCRS.

699 2BB SCRFLG

Scroll flag; set if a scroll occurs. It counts the number of
physical lines minus 1 that were deleted from the top of the
screen. This moves the entire screen up 1 physical line ftor

each line scrolled off the top. Since a logical line is 3
physical lines, SCRFLG ranges between 0 - 2.

Page 54



COMPLETE & ESSENTIAL MAP

700 - 703

Scrolling the text window mnow only scrolls the correct
amount of memory, freeing the system of a nasty bug which
used to wipe-out memory above RAMTOP!

700 2BC HOLD4

Temporary register used in the DRAW command only; it's used
to save and restore the value in ATACHR during the FILL
process.

701 2BD DRETRY

Number of device retries.

702 2BE SHFLOK

Flag for the SHIFT and CTRL keys. 0 means lowercase mode, 64
is uppercase mode and 128 is Control lock mode. Other values

POKEd here may cause the system to crash. See also location
Q94 .
703 2BF BOTSCR

Flag for the number of text rows available for printing. In
Graphics mode O this is 24, while it is 4 for the text
window.

You can add a text window in any mode by POKEing here with

4, DOS does this on the DUP.SYS menu when awaiting your
input.

Locations 704 - 712 are the shadow colour registers for
players, missiles and playfields. The hardware registers are
at 93266 - 53274 ($D012 - $DO1A). For the playfield
registers, tocations 708 - 712, you can use the SETCOLOR

command from Basic. The other registers you'll need to POKE
directly.
The format for POKEing the colour registers is:

COLOUR = HUE*i6 + SHADE

Although, you have 16 colours and 16 shades of each colour
in the XL/XE, you are {imited to the use of these depending
on what mode your in. Graphics 0 and 8 are mono-modes, you
can normally only have 2 colours in these modes and a 3rd
colour which must be a luminance from 1 of the other 2. All
other Graphics modes allow a maximum of 5 colours except for
the GTIA modes. 1In the GTIA modes you can either have 16
shades of 1 colour, 9 different colours or shades, or 16
colours of 1 shade. 1t 1is possible to actually have all
colours and all shades in a GTIA mode if you perfect a
technique with the POT-SCAN at location 53775 ($D20F), see
GPRIOR.

Page 55



COMPLETE & ESSENTIAL _MAP
703 cont.

You can also use Dl.I's and the Hardware-timers to change the
colour registers "on the fly", thus, enabling you to achieve
many more colours down and across the screen display (even
on the mono modes). The amount to which you can go to is
really unknown.

Another method of obtaining more colour in Graphics 8 is by
using a technique known as artifacting. See De Re Atari for
further info. on this and location 710,

The 16 colours inside the classic Atari are as shown in the
table below:

COL. COL.
NUM: VALUES: DARK - MEDPIUM - LIGHT
1 0 - 15 Black through grey to white
16 - 31t Dk browny orange through to pale orange
3 32 - 47 Red brown, deep pink to light orangy pink
4 48 - 63 Med brown, reddish brown to pale pink
5 64 - 79 Red through to rich pink
6 80 - 95 Purple through to pale pink
7 96 - 111 Cobalt blue, pale purple to bluey violet
8 112 - 127 Ultramarine to light blue
9 128 - 143 Dk blue to pale blue

10 144 - 159 Dk cyan to pale cyan

11 160 - 175 Dk green to pale green

12 176 - 191 Med green to shallow green

13 192 - 207 Olive green to light green

14 208 - 223 Browny green to yellow green

15 224 - 239 Browny orange to yellow

16 240 - 255 Dk browny orange through to pale orange

You'll notice that colours 2 and 16 are exactly the same, so
does this mean that there are only 15 colours on the Atari?
You may also notice that by POKEing the values into the

registers, only every other value changes the shade, thus,
only giving 8 shades of each colour. So, you should see that
there are only 15*%8 = 120 shades allowed in every mode

except GTIA modes. Whether or not you can obtain all the
colours in non-GTIA modes, I don't know, but the Atari does
have 256 shades accessible in the GT1A modes.

This 1is a very briefly described topic 1in every Atari
manual, and should really be investigated further. As you
can see, 1in mapping, colours 2 and 16 are labelled
differently which is not the case. My choice of colours are
not the same as others, but I believe that they are more
explicit because when the shades get lighter, the colour
tends to shift very slightly also.

Page 56



COMPLETE & ESSENT1AL MAP

704 - 710

704 2C€0 PCOLRO

Colour of player 0, missile 0 and the background colour for
GTIA mode 10. Shadow for 53266. You cannot use the SETCOLOR
command to change any of the PCOLR registers so you'll have
to POKE directly to them.

705 2C1 PCOLR1

Colour for player and missile 1. Shadow for 53267.

706 2C2 PCOLR2

Colour for player and missile 2. Shadow for 53268,

707 2C3 PCOLR3

Colour for player and missile 3. Shadow for 53269.

708 2C4 COLOURO

Colour register O which is playfield O, controlled by
SETCOLOR 0. In Graphics 1 and 2, it is the colour of all
uppercase letters. Shadow for 53270 ($D0O16).

709 2C5 COLOUR1

Same as 708, except for playfield 1, controlled by SETCOLOR
1. In Graphics 1 and 2, it is the colour of all lowercase
letters. Shadow for 53271 ($D017).

710 2Co6 COLOUR2

Same as 708, except for playfield 2, controlled by SETCOLOR
2. Graphics t and 2 Inverse-uppercase register and
background colour 1in Graphics O and 8. Shadow for 53272
($D018).

Despite the official limitations of colour selection in
Graphics 8, it is possible to generate additional colours by
"ARTIFACTING", turning on specific pixels (\ colour-clock
each) on the screen. Taking advantage of the physical
structure of the TV-set itself, we can see the affects with
the following program quite affectively:

Page 57



COMPLETE & ESSENTLIAL MAP

7110 - 712

10 GRAPHICS 8+16

20 POKE 710,0:POKE 709,15

30 COLOR 1

40 FOR I=0 TO 319 STEP 3

50 PLOT 160+1/3,191:DRAWTO 1,90
60 DRAWTO 160+1/3,0

70 NEXT 1

80 GOTO 80

You should be able to make out 6 colours in this example;
white, grey, red, cyan, yellow and blue (7 including the
black background). 1In my opinion, this technique is useful
as a background affect to foreground text. Try adding the
following routine into the above program:

20 POKE 710,0:POKE 709,6

80 FOR I=0 TO 33

82 READ D:POKE 1536+1,D:NEXT 1

84 DATA 104,173,11,212,201,40,208,249,169,192,141,27,208
86 DATA 141,10,212,173,11,212,201,84,208,249,169,0

88 DATA 141,27,208,141,10,212,76,1,6

90 X=USR(1536)

For further information about the artifacting process, get
hold of De Re Atari or BYTE 1982 (!!).

711 2C7 COLOUR3

Playfield 3 register, controlled by the SETCOLOR 3 command.
Inverse-lowercase colour in Graphics 1 and 2. Shadow for
53273 ($D019).

712 2C8 COLOUR4

Playfield 4 register, controlled by the SETCOLOR 4 command.
Shadow for 53274 ($D01A). This is the border in Graphics 0
and 8, and the background in all other modes except GTIA 10.
In GTIA 10, 712 becomes a normal colour register.

Here's a program showing extra colours in the border on
Graphics 0:

10 GRAPHICS O
20 FOR I=0 TO 15

30 READ D:POKE 1536+1,D:NEXT I
40 DATA 104,173,11,212,74,101,20,141,10,212,141,26,208,76,1

50 X=USR(1536)

Page 58



The default values for the SETCOLOR registers 0 - 4 are:

REGISTER: COLOUR: = HUE: LUM:

0- 708 40 2 8
1- 709 202 12 10
2- 710 148 9 4
3- 711 70 4 6
4- 712 0 0 0
713,714 2€9, 2CA RUNADR

Run address register for the relocatable loader routine.

715,716 208, 2CC H1USED

Used by the relocatable loader routine.

717,718 2Ch, 2CE ZHIUSE

Used by the relocatable loader routine.

719,720 2CF, 2b0 GBYTEA

HRelocatable loader use.

721,722 2D1,2D2 LOADAD

Relocatable loader use.

723,724 2b3,2h4 ZLOADA

Relocatable loader use.

725,726 2D5, 2h6 DSCTLN

Disk sector size register; default of 128 bytes, but can be
altered to a length from 0 - 65535. Your drive may not
support other sizes, however, you can have different drive
chips such 1ike the Archiver which will allow you to
configure the disk in different ways.

727,728 2Db7,2D8 ACMISR

Interrupt service routine address; unused.

Page 59



COMPLETE & ESSENTLAL MAP

729 - 733
729 2b9 KRPDEIL
Auto-delay rate; the time elapsed before keyboard repeat

begins, initially set at 40 (but 48 on NTSC) for 0.8
seconds. You can POKE this with the amount of stage-2 VBlank

intervals before repeat begins. A value of 50 would be a
I-second delay, where a value of 0 turns the key-repeat
off.

730 2DA KEYREP

The rate of key-repeat, initialized to 5 which means 10

characters per second (1 each 5 stage-2 VBlank intervals),
POKE with the number of VBlank intervals between repeats; a
value of 't gives 50 characters per second. A value of O
provides | key-repeat only per key press.

Try POKE 729,11 and POKE 730,2 in Basic and hold-down a few
keys. 1 find these delays very suitable for my patience when
typing large scripts (such like this one).

731 2DhB NOCLIK

This is the keyboard click enable/disable register. 0 equals
enable, while nonzero equals disable. On the 1200XL, CTRL+F3
can perform this task. Other XL/XE users might like to know
that my program at locations 121 and 122 also puls this
click-toggle on a single keypress by adding to the existing
key-definition table.

732 2DC HELPFG

HELP-key status: A value of 17 here means the help key has
been pressed, 81 means shift and help, while 145 means
control and help. A rare value of 209 can be found in this
location and means all control, shift and help keys have
been pressed, but the shift and control keys must be pressed
exactly simultaneously (!).

I1f detecting for the help key in a program, you must
remember to clear it before reading and afterwards because
it acts similarly to 764 in retaining the value of the last
key combination.

733 2pD DMASAV

DMA toggle value. The value from location 559 is saved here
when you turn the screen off on the 1200XL with the CTRL+F2
keypress, so that it can be restored at the next toggled
press. On other XL/XE's, if you POKE any value here at the
next keystroke, the value is moved into location 559.

Page 60



734

Print buffer

735

Print buffer

COMPLETE_& ESSENTIAL MAP

734 - 737

2DE PBPNT

pointer.

2DF PBUFSZ

size.

736-739 2E0-2E3 GI.BABS
Without

when DOS

DOS, these bytes are unused and free for use,
is present they are used as follows:

but

736,737 2E0, 2E1 RUNAD
Used
bytes
it can
loaded.
A BINARY

DOS for the file
and 3 of sector-1
be the

by
2

run-address which can either be
with a value of 6 added to it, or
run address read from the binary file last

FILE has the following structure:

FF;
FF;

the tst 2 bytes in a Binary-file MUST be
($FF's) which indicate that it is loaded
DOS menu option L.

l.oad-address; LSB: DOS
l.oad~address; MSB: DOs
Full address 0+256%7
End-address; LSB: DOS 252 (SFC).
End~-address; MSB: DOS 28 ($1C).
Full address 252+256%28 7420,

255's
from the

LLSB
LMSB

0 (500).
7 (507).
1792.

ELSB
EMSB

With the above information,
Machine-language program. The amount of data "end-address”
"load~address" bytes, and when all the data has been
loaded DOS then searches for more load/end addresses. This
is where you should put locations 736 and 737; Ld-address
224 and 2 (SEO and $02), End-address 225 and 2 ($E1 and
$02). TFollow this with 2-bytes which is the Run-address of
the machine-language file loaded.

0f course, you should be able to see that the Binary-file
can load several bulks ot code or data into various parts of
memory before actually initiating at a particular address.
If you don't place the RUNAD addresses along with the
Run-address itself at the end of the file, then control will
pass back to DOS when load is complete.

hos then loads the

However, should you put the RUNAD addresses at the end of
the file, and leave out the 2-bytes indicating the address
to jump to, then DOS will return an End-of-File (EOF) error.

This also applies to truncated data/code.

Page 61



COMPLETE & ESSENTIAL MAP

738 - 740

Within DOS, you can specify the Start, End, Initiation and
Run addresses when you use Binary-save option K by typing:
"FILENAME.EXT,Start,End,[nit,Run". If you wish to load a
Binary-file into wemory without running it, then type: "/N"
after the filename on the Binary load option L.

The following program will create a tile that can be loaded
from DPOS Binary-iocad option L:

10 DATA 255,255

12 DATA 0,6

14 DATA 16,6

16 DATA 173,11,212,141,10,212
18 DATA 141,24,208,173,31,208,201,6
20 DATA 208,240,96

22 DATA 224,2

24 DATA 225,2

26 DATA 0,6

30 OPEN #1,8,0,"D:COLR.OBJ"

40 FOR 1=0 TO 28

50 READ D:? #1;CHRS$(D); :NEXT 1
60 CLOSE #1

Line 10 contains the 255's, line 12 is the Load-~address,
line 14 is the End-address, lines 16, 18 and 20 are a
machine-language program, line 22 is the RUNAD location 736,
line 24 is RUNAD location 737 and line 26 is the actual
Run-address. You can exit the routine by pressing START.

If a boot-file 1is appended to another boct-file, then the
FF' beginning the file are not deleted.

738,739 2E2,2E3 INITAD

Initialization address read from the disk. An autoboot file
must load an address value into either RUNAD or [NITAD. The
code pointed to by INITAD will be executed as soon as that
location is loaded, where the code pointed to by RUNAD will
only be executed when the entire load process is complete.
To return to DOS after the execution of your program, end
your code with an RTS instruction.

740 2E4 RAMS1Z

RAM size, high byte only; this is the number of pages of
available RAM, where each page is 256 bytes. The value here
is the same as RAMTOP, passed here from TRAMSZ. Space/memory
saved by moving RAMSIZ or RAMTOP has the advantage of being
above the display memory (DM), initialized to 160 with Basic
and 192 without in the 800XL.

Page 62



COMPLETE & ESSENTIAL MAP

741 - 744

741,742 2E5, 2E6 MEMTOP

Pointer to the top of free memory, used by both Basic (which
calls it HIMEM) and the 0S, passed here from TRAMSZ after
power—-up. This address is the highest free location in RANM
for programs and data. This value is updated on power-up,
Reset, Graphics calls and when J0CB's are opened. The
display list (DL) starts at the next byte above MEMTOP.

The screem handler will only open the S: device if no RAM is
needed below this value (i.e; there is enough free RAM below
here to accommodate the requested Graphis change). Also note
that, if a screen mode change extends the screen mode memory
below APPMHI, then the screen is set to Graphics 0, MEMTOP
is wupdated and an error is returned to the user, otherwise
all is ok and the mode change will take place.

Space saved by lowering MEMTOP is below the DL. Be careful
not to overwrite it if you change Graphics modes in
mid-program. Also ensure that you set APPMHI above your data
to avoid having the screen data descend inte it and
destroying it.

743,744 2E7,2E8 MEMLO

Pointer to the bottom of free memory, initialized to 1792
and updated by the presence of DUOS to 7420. It is used by
the 0S; BASICs pointer to the bottom of free memory is LOMEM
at 128,129, The value in MEMLO is never altered by the 0S
after power-up.

This is the address of the 1st free byte of RAM available
for program use. Set after all FMS buffers have been
allocated (see 1801 and 1802). The address of the last
sector buffer is incremented by 128 (the buffer size in
bytes) and the value 1is placed in MEMLO. This value is
passed back to LOMEM on the execution of the Basic NEW
command .

If you are reserving space for your own device driver/s or
buffers, you load your routine into the address specified by
MEMLO and add the size of your routine to the MEMLO value,
and POKE the new value + 1 back to MEMLO.

You <can alter MEMLO to protect an area of memory below your
program as an alternative to protecting an area above
RAMTOP. This way can be used to avoid the problems of the
screen CLEAR function and the text-window scrolling which
destroy data above RAMTOP. However, wunless you create a
MEM.SAV file, the data will be wiped out when DOS is called.
To alter MEMLO, you start by POKEing WARMST at location 8
with 0, then doing a USR to the BASIC entry point at 40960
($A000) after defining the area to protect, for example:

Page 63



COMPLETE & ESSENTIAL MAP
746 - 752

10 MEMLO=BYTES+PEEK (743)+256*PEEK (744)
20 HI=INT(MEMLO/256)

30 LO=MEMLO-H1*256

40 POKE 743,LO:POKE 744 ,H1

50 POKE 128,L0:POKE 129,H1

60 POKE 8,0

70 X=USRk(40960)

The program will erase itself when run so be sure to save it
first. 7The amount of memory protected from the TRUE bottom
of RAM to the new MEMLO is given by the BYTES variable, just

give it a value according to how many bytes you wish to
reserve. ‘

746-749 2EA-2ED DVSTAT

Additional device status registers to contain information
returned to the computer by the peripheral after the new
type-3 and 4 polls. The bytes are as follows:

746,747 LSB/MSB handler size, must be an even number
748 Device S10 address used for loading
749 Peripheral revision number

The new poll types are fully explained in the 1200XL 0OS
manual; earlier polls you'll find explained in the old-Atari
Hardware-manual. Basically, type-3 1is an "Are you there?"
poll (device address $4F, command byte $40, AUX! S$4F, AUX2
$4F, checksum normal), and the type~4 poll is a Null-poll

(values $4F, $40, S$4E and $4E, respectively; checksun
normal).

750,751 2EE, 2EF CBAUDL/H

Cassette baud rates low and high bytes, initialized to 1484
which represents a nominal 600 baud (bits per second). After
baud rate calculations, these locations will contain POKEY
values for the corrected baud rate. The baud rate is also
adjusted by SI0 to account for motor variations, tape
stretch etc.. The beginning of every cassette record
contains a pattern of alternating bits (0 and 1, off and on)
which are used solely for this baud (speed) correction.

752 2F0 CRSINH

Cursor inhibit flag. O turns the cursor on at the next
print, and a nonzero value turns it off at the next print.
The <cursor 1is restored to its default value 0 upon Reset,
Break or an OPEN to the S: or E: devices (which includes
Graphics «calls). See location 755 for additional cursor and
text alterations.

Page 64



COMPLETE & ESSENTIAL_ MAP

753 - 755

753 2F1 KEYDEL

Key delay flag or key debounce counter; used to see if any
key has been pressed. A value of O is returned if no key is
pressed. A value 3 is returned if a key is pressed. This
value is decremented by the stage-2 VBlank until it reaches
0. 1f a key is pressed while KEYDEL is greater than 0 then
it is ignored and considered as "bounce".

754 2F2 CH1

Prior keyboard character <code (most recently read and
accepted). This is the previous value passed from 764. If
the value of the new key code equals the value in CH1, then
the code is accepted only when a suitable key-debounce delay
has taken place since the prior value was accepted, see
DEYDEL.

755 2F3 CHACT

Character mode register, initialized to 2. Shadow for 54273.
See the table of bit functions:

BIT: DEC: FUNCTION:

0 1 Blank inverse

1 2 Normal characters

0,1 3 Solid inverse characters
2 4 Invert text

This register also controls the transparency of the cursor
because the cursor is simply an inverse space character. By
toggling bit-0 on and off, you can make the cursor flash,
note that this also flashes all inversed characters on the
screen. Try the following program:

10 GRAPHICS 0

20 FOR I=0 TO 19

30 X=INT(RND(0)*40):Y=INT(RND(0)*24)
40 POSITION X,Y:? CHRS(128+X);

50 NEXT 1

60 POKE 755, (PEEK(20)]128)+1:G0OTO 60

This program is ok to see the affect in action, but it
doesn't keep going while you type. So here is a VBlank
cursor flashing routine:

Page 65



COMPLETE & ESSENTIAL MAP

10 FOR =0 T0O 31

20 READ D:POKE 1536+1,D:NEXT [

30 DATA 104,169,7,162,6,160,11,32,92,228,96

40 DATA 165,203,208,12,169,2,77,243,2,141,243,2
50 DATA 169,25,133,203,198,203,76,98,228

60 X=USR(1536)

70 POKE 54286,64

This program uses location 203 as the flashing timer
variable, so if you use this routine in your own programs,
don't use this location. If you want to change the type of
inverse flashing, then change the Ist occurence of the value
2 in line 40, no other occurence! You can also change the
speed at which the cursor flashes by changing the value 25.
This initial value is a half-second delay for each status of
the cursor (on and then off). A value of 12 would be a
gquarter of a second flash rate.

756 2F4 CHBAS

Character base register, shadow for 54281 ($Db4a09).
Initialized to 224 which is the address (224%256 = 57344,
the standard character set). To obtain the lowercase and
graphics characters in Graphics modes 1 and 2 then POKE here
with 226. For the international character set POKE here with
204. In Graphics 0, this character set replaces the graphics
characters. On the 1200XL, the value here is switched with
that in CHSALT at 619 when CTRI+F4 is used to toggle between
these sets.

You can <create your own character—-set and point to it with
this location. Each character is made up of 8 numbers, where
each number is the Binary-sum of 8 SET Bits which define the
shape. Note that these bits are for each rtow of the
character, in Graphics 0 there are 8 rows per character, the
letter "A" looks like this:

BIT: 76543210 DEC:
00000000 = 0 ;no Bits set
00011000 = 24 ;Bits 4,3
00111100 = 60 ;Bits 5,4,3,2
01100110 = 102 ;Bits 6,5,2,1
01100110 = 102 ;Bits 6,5,2,1
01111110 = 126 ;Bits 6,5,4,3,2,1
01100110 = 102 ;Bits 6,5,2,1
00000000 = 0 ;no Bits set

The decimal values are derived from the sum of the SET Bits,
where Bit-7 = 128, Bit-6 = 64, Bit-5 = 32, Bit-4 = 16, Bit-3
=8, Bit-2 = 4, Bit-t = 2 and Bit-0 = 1.

Page 66



COMPLETE & ESSENTIAI _MAP

756 cont.

When altering the <character-set, it's 1important to know
which characters to alter and which ones not to. The
character-set is stored 1in memory in a particular order,
this order is neither Atascii or the RAW-code order, see 764
and 121,122 for these orders. This order of characters is
shown below. Remember, that each character requires 8 values
for it's design, so you must multiply the given
character-code by 8 to arrive at the data for the character
that you want to change, for example, to arrive at the data
for the letter "A" and prove that the above information is
correct you should perform the following task:

10 GRAPHICS 0O

20 CHAR=PEEK(756)*256+(33%8)
30 FOR 1=0 TO 7

40 ? PEEK(CHAR+1)

50 NEXT 1

You should find these values exactly the same as those
listed earlier.
Here's the table of character codes:

CODES: _CHARACTERS:

0 SPACE

1-9 ! " s % & ! « )
10-15 * o+ y - . /

16-25 Numbers 0 - 9

26-32 : H < = > 7 @

33-58 Capital letters A - Z
59-63 L N 1 ° _

64 CTRL+","

65-90 CTRL+Letter~keys A/a - Z/z
91 ESCape character

92-95 Up, Down, Left, Right arrows
96 CTRL+"."

97-122 Lowercase letters a - z
123-124 CTRL+";" !

125 Clear-screen character
126-127 Delete-character Tab-char.

It is possible to alter the character-set where it is in the
ROM, but you need to see location 54017. Otherwise, you'll
need to transfer it down into RAM, preferably a protected
area. In Basic you would setup a FOR/NEXT loop to copy the
ROM into RAM, but because this is quite slow, ['ve dug-up a
routine that will transfer the set using machine-code:

Page 67



COMPLETE & ESSENTIAL
756 cont.

10 POKE 106,PEEK(106)-4

20 GRAPHICS O

30 NEUSET=PEEK(106)*256

40 FOR 1=0 TO 31

50 READ D:POKE 1536+1,D:NEXT 1

60 DATA 104,104,133,204,104,133,203,169,224,133,206
70 DATA 160,0,132,205,162,4,177,205
80 DATA 145,203,136,208,249,230,204
90 DATA 230,206,202,208,242,96

94 X=USR(1536,NEUSET)

96 POKE 106 ,NEUSET/256

The program protects 4-pages of memory above RAMTOP, and
transfers the standard ROM character-set into this area. You
don't really need to transfer the old-set down, especially
if your going to change the complete character-set, but with
this method, the characters that you don't change will at
least show up as what they're supposed to be instead of
blank spaces. If you'd rather copy the international-set
down instead of the standard one, then you can change the
value 224 in line 60 to 204,

A simple routine to add to the last program to alter the
characters is:

100 READ CH:IF CH=-1 THEN STOP

110 FOR I=0 TO 7

120 READ BITSUM

130 POKE NEUSET+(CH*8)+1,BITSUM

140 NEXT 1

150 GOTO 100

160 DATA 0,129,66,36,8,16,36,66,129
999 DATA -1

The DATA mwmust end with a value of -1 to indicate no more
characters are to be altered. Also note, if you wish to use
this yourselt, then the i1st number on the DATA-line is the
code of the character to change, while the remaining 8
numbers is the actual data for the new character shape.

If your changing the whole character-set, then you can
always erase line 100 and setup a nested-loop, for example:

100 FOR CH=0 TO 127
150 NEXT CH

This way, the DATA needn't have the character-code on, but
you must define all the <characters in the correct order
shown in the table on the previous page. When you design
your characters, you might find it easier to use graph
paper.

Page 68



757 - 759

Note also, that the above program reserves 4-pages for your
character-set. This 1is because there are 128 different
characters as distinguished in the table on page 78. Each
character takes 8 bytes (Binary-sums) to define, thus, 8%128
= 1024 bytes of memory. Each page is 256 bytes, so 1024/256
= 4 Pages.

Note that when you press Reset or issue a Graphics call,
tocation 756 is re-initiated to point to the standard
character-set in ROM, so just re-POKE 756 with the Page
number that your character-set is on to re-enable it.

LListed below is a routine that will save your altered
character-set as a 9-sector tile, just run your program that
defines your character-set and then type-in and RUN the
program here:

DATA 104,104,104,170,76,86,228

FOR 1=0 TO 6

READ D:POKE 1536+71,D:NEXT 1

OPEN #1,8,0,"D:NAME.FNT"

POKE 849,1:POKE 850,11:POKE 852,0:POKE 853,PEEK(106)
POKE 856,0:POKE 857,4:POKE 858,8

X=USR(1536)

CLOSE #1

NS WwNe~0

On the other hand, if you wish to use this routine in your
own programs to load your 9-sector character-set file, then
use the following program:

10 POKE 106, PEEK (106) -4

20 GRAPHICS ©

30 FOR 1=0 TO 6

40 READ D:POKE 1536+I,D:NEXT 1

50 DATA 106,104,104,170,76,86,228
60 OPEN #1,4,0,"D:NAME.FNT"

70 POKE 849,1:POKE 850,7:POKE 852,0:POKE 853, PEEK(106)
80 POKE 856,0:POKE 857,4:POKE 858,4
90 X=USK(1536)

94 CLOSE #1

96 POKE 756,PEEK(106)

757 2F5 NEWROW

Point/Row to which DRAWTO and Fill (X10 18) will go.

758,759 2F6,2F7 NEWCOL

Point/column to which DRAWTO and Fill (XI0 18) will go.
NEWROW and NEWCOL are initialized to the values in ROWCRS
and COLCRS, which represent the destination end point of the

Draw/Fill command wused. This 1is done so that ROWCRS and
COLCRS can be altered during the operation being performed.

Page 69



COMPLETE & ESSENTIAL MAP
760 - 764

760 2F8 ROWINC

This is the Row increment or decrement value.

761 2F9 COLINC

The column increment/decrement value. ROWINC and COLINC are
used for the line direction. The values represent the signs
derived tfrom the value NEWROW minus ROWCRS, and the value
NEWCOL minus COLCRS.

762 2FA CHAR

Internal code value for the most recent character read or
written (internal code for ATACHR). This register is
difficult to wuse with PEEK statements since it returns the
most recent character which is most often the cursor value
128 when visible, and 0 when invisible.

763 2FB ATACHR

Returns the last Atascii character read or written, or the
value of a graphics point. ATACHR is used in converting the
Atascii code to its internal character code passed to or
from CIO. The Fill and DRAWTO commands use this location for
the colour of the 1line drawn, ATACHR being temporarily
loaded with the value in location 765. To force a colour
change in the line, POKE the desired COLOR number here.
I1t'll then be taken from location 200. Since Basic performs
this process, this process won't happen within a
machine-language routine.

764 2F9 CH

Internal Hardware value for the 1last key pressed. The
default value here is 255, which also means that no key has
been pressed. The keyboard handler gets all of its
information from CH, processes all the SHIFT and CTRL codes
for the key and passes the keycode value to location 754. T1f¢
the value in CH is the same as that in CH1, then the key
will only be accepted if a suitable key-debounce time-delay
has transpired. 1If the keypress 1is a CTRL+"1" then the
start/stop flag at location 767 is complemented, but the
value is not stored in CH.

This is neither the Atascii or the internal code value; it
is the RAW keyboard matrix code for the key pressed. The
translation table 1is in KEYDEF at 121 and 122. Try the
following program:

Page 70



COMPLETE & ESSENT1AL MAP

765 - 767

10 POKE 764,255

20 V=PEEK(764)

30 1IF V-254 THEN 20
40 ? CHRS$(V);:G0TO 10

RUN the program and type some characters; you'll notice that
the keyboard is very mixed up. There is a simple way to
overcome this problem with the aid of KEYDEF at locations
12t and 122. As an example, try the next program:

10 KEYDEF=PEEK (121)+256%PEEK(122)
20 POKE 764,255

30 IF PEEK(764)=255 THEN 30

40 CH=PEEK(KEYDEF+PEEK(764))

50 ? CHR$(CH);

60 GOTO 20

Due to the use of the Key~definition table, you can now have
an easy access to the RAW characters.

765 2FD FILDAT

Colour register number for the XIO Fill command.

766 2FE DSPFLG

Display flag; used in displaying the control codes not

associated with the ESC character, see location 674. If 0O is
POKEd here, then pressing the keys of the Atascii codes 27 -

31, 123 - 127, 187 - 191 and 251 - 255 perform their normal
screen control functions (ie. clear-screen, delete/insert
line, cursor move etc.), however, if any nonzero value is

POKEd here, then the actual character itself is displayed
(alike pressing ESC first). Try POKEing here with a nonzero
number and then pressing CTRL and the arrow keys.

767 2FF SSFLAG

Start/Stop display screen flag, used to stop the scrolling
of the screen during a Draw command or Graphics routine, a
L1STing or PRINTing, or when INPUT is awaited and a key is
pressed. When the value here is 0, then the screen output is
not stopped. When the value here is 255 (the "Ones
complement"), then the screen output is stopped, or rather
paused until the flag 1is cleared, either by toggling it
onf/off with the CTRL+"1" keypress, clearing this location
with a POKE, or pressing the Break-key. If you wish to
prevent this flag being set in any case, then you can expand
to the stage-2 VBlank. See locations 546 - 549,

Page 71



Locations 768 - 828 are used for the device handler and
vectors to the handler routines (devices S:, P:, E:, D:, C:,
R: and K:). A device handler is a routine used by the 0S to
control the transfer of data in that particular device for
the task allotted (such like Read, Save etc.). The resident
D: does not conform entirely with the other handler - SIO
calling routines. Instead, you have to use the
Device-Control Block (DCB) to communicate directly with the
disk handler. The device handler for the R: is loaded in
from the 850 interface module. See De Re Atari, the 850
interface manual and the 0S listing pages 64 and 65.

lLocations 768 - 779 ($300 -~ $30B) are the resident DCB
addresses, used by SIO (I/0 operations that require the
serial-bus). DUP.SYS also uses this block to interface the
FMS with the disk handler. The Old Atari disk-drive uses a
serial access rate of 19200 baud (bits per second). It has
its own microprocessor, a 6507, plus 128 bytes of RAM, a
2316 2K masked ROM chip (like a 2716), a 2332 RAM I/0
timer-chip with another 128 bytes of RAM (like the PIA chip)
and a WD1771FD controller chip. See the 1050 SPECS appendix
concerning this drive. With the US-doubler fitted, you get
true-double density which gives 720 sectors, but each sector
is 256 bytes instead of 128. Another improvement is its
speed, which is 4-5 times faster. If you have the IS-Plate,
however, then the transfer rate is fastest of all, being

118000 baud. Some of this information was from Moje Atari
Magazine, Poland.

All of the parameters passed to SIO are contained in the
DCB. SI0 uses the DCB information and returns a status back
to the DCB's 4th byte at location 771.

768 300 DDEVIC

Device serial bus ID (serial device type) set by the
handler, not user alterable. Vaues are:

Disk~drives D1 - D4 49 - 52
Printer P1,P2 64,79
RS232 Ports R1 - R4 80 - 83
769 301 DUNIT

Device number currently being used.
770 302 DCOMND

The Command-code for the device operation to be performed,
set by the wuser or by the device-handler prior to calling
S10. The Serial-bus commands are:

Page 72



COMPLETE & ESSENTIAL MAP
771 - 775
OPERATION: DEC: HEX: Here's the US doubler codes.
Read 82 52 You'll have to work these out
Write (verify) 87 57 yourselt!
Status 83 53
Put (no verity) 80 50 DEC: HEX: OPERATION:
Format single 33 21 63 3F
Format duatl 34 22 72 48
Download 32 20 78 a4k
Read-address 84 54 79 4F
Read-spin 81 51 102 66
Motor On 85 55 128 80
Verify sector 86 56 129 81

Note, that Dual-density format is the new density offered by
the 1050 disk~drive. The single-density only offers 720
sectors, each comprising of 128 bytes, dual offers 1040
sectors also 128 bytes each sector.

771 303 DSTATS

The status code upon return from S10 to the user. A value of
I means good status. This is also used to set the
data-direction; whether the device is to send or receive a
data-frame. This byte is used by the device handler to
indicate to S10 what to do after the command-frame is sent
and acknowledged. Prior to the SI0 call, the handler
examines Bits 6 and 7. If Bit-6 (Dec 64) is SET, then
receive data. If Bit-7 is SET, then send data. If both Bits
are clear, then no data transfer is associated with the
operation. Both Bits being SET is invalid.

772,773 304,305 DBUFLO/HL

Data-buffer address for the source or destination of the
data to be transferred. Setup by the user, this need not be
set if the operation doesn't require data transfer, as in a
Status operation.

774 306 DTIMLO

The Time-out value of the handler. The cassette Time-out
value is 35, which is 37 seconds. The Timer-values are
64~seconds per 60-units. Initialized to 3t.

775 307 DUNUSE

Unused byte; free for use.

Page 73



COMPLETE & ESSENTIAL MAP
776 - 779

776,777 308,309 DBYTELO,HI

The number of bytes transferred to or from the data-buffer
from the 1last operation, set by the handler. Also used for
the count of Bad-sector data.

778,779 30A,308B DAUX1/2

Used for device specific information such as the disk sector
nupber in read and write operations. Loaded down to 572 and
573 by SI0.

There are only 5 commands supported by the disk-handler;
Read, write, put, status and format (see DCOMND). There is
no way to format particular sectors of a disk, only the
whole disk which in the old 810 drive was done with the
non-user accessible INS1771-1 formatter/controller <chip.
Apparently, there was an "E" chip-revision which allowed for
selective formatting but what happened to it I don't know.
The Archiver chip certainly allows this (is this the "E"
chip??). Try this:

10 SCTS=10:BUF=PEEK(106)-SCTS/2

14 BUF=BUF-(NOT BUF=INT(BUF))

18 POKE 106,BUF

22 GRAPHICS ©

26 FOR I=0 TO 34

30 READ D:POKE 1536+I,D:NEXT I

34 DATA 104,32,83,228,48,251,24,173,4,3,105,128
36 DATA 141,4,3,144,3,238,5,3,24,238,10,3,144,3
38 DATA 238,11,3,206,7,3,208,223,96

42 SSEC=1

46 SHI=INT(SSEC/256):SLO=SSEC-SHI*256

50 POKE 769,1:POKE 770,82

54 POKE 772,0:POKE 773,BUF

58 POKE 778,SLO:POKE 779,SHI

62 POKE 775,SCTS:X=USR(1536)

The program above will load the i1st 10 sectors of a given
disk into a protected area of memory above RAMTOP. You can
use it for your own routine to load various information for
a game off the disk. Just set the SCTS variable for the
amount of sectors you wish to load, and set SSEC for the
starting sector on the disk. If on the other hand, you'd
like to use the routine for saving to sectors, then you need
to change the POKE 770,82 on line 50, to POKE 770,80. This
way, the example shown would save 10 sectors of protected
memory. In this case, there is nothing there, so you would
have to put some data into this protected area first. Be

sure that you do not wuse a disk that has not Dbeen
formatted.

Page 74



COMPLETE & ESSENTIAL MAP

780 - 785

If you try reading or writing to a disk that hasn't been
formatted, then the drive will need to be turned off and on.
You can format a disk with the following routine, but be
sure that the disk you place in the drive has no information
on it that you may want, because once formatted, it is
completely wiped clean. This 1is not the same as a DOS
format, a DOS format also writes several sectors on the
disk, where as this format doesn't:

10 FOR I=0 TO 4

20 READ D:POKE 1536+I,D:NEXT I
30 DATA 104,32,83,228,96

40 POKE 769,1:POKE 770,33

50 X=USR(1536)

The machine-code on line 30 is just 3 instructions: PLA, JSR
$E453 and RTS.

Normal formatted sectors have 128 bytes free for use, but a
DOS sector gives you only 125 bytes. This is because the
last 3 bytes of every sector is used by DOS. See the BOOT
appendix for further information on this.

There are 1loads of public domain programs that use SIO to
edit disk sectors, copy them, even repair them. There was
also an SIO tutorial 1in some back 1issues of Page-6
magazine.

780,781 30C,30D TIMER1

Initial baud-rate timer value.

782 30E ADDCOR

Addition correction flag for the baud-rate calculations
involving the timer registers.
783 30F CASFLG
Cassette mode when set. Used by SIO to control the program

flow through shared code. A value of 0 means standard SIO
operations. When nonzero, it is a cassette operation.

784,785 310,311 TIMER2

Final timer value. TIMER! and TIMER2 contain reference times
for the start and end of the fixed bit pattern receive
period.

Page 75



COMPLETE & ESSENTIAL MAP
786 - 793

The 1st byte of each timer contains the VCOUNT value from
location 54283 ($D40B), while the 2nd byte contains the
current realtime clock value from location 20. The
difference between the timer values is used in a lookup
table to compute the interval for the new values for the
baud-rate passed on to locations 750 and 751.

786,787 312,313 TEMP1

2-byte temporary storage register used by S10 for the VCOUNT
calculation during baud timer routines.

788 314 TEMP2

Temporary storage register.

789 315 TEMP3
Ditto.
790 316 SAVIO

Save serial data-in port used to detect, and updated after,
each bit arrival. Used to retain the state of Bit-4 of 53775
($D20F; serial data-in register).

791 317 TIMFLG

Time-out flag for baud-rate correction, used to define an
unsuccessful baud-rate value. Initially set to 1, it is
decremented during the 1/0 operation. If it reaches 0 (after
2 seconds)) before the Ist byte of the cassette record is
read, the operation is aborted.

792 318 STACKP

SI0 stack pointer register. 1Tt points to the byte in the
stack being wused by the current operation. The stack takes
up Page-1 of memory, locations 256 - 511 ($100 - S$1FF).

793 319 TSTAT

Temporary status holder for location 48 ($30).

Page 76



COMPLETE & ESSENT[AL MAP

794 - 828

Locations 794 - 828 are the Handler-address tables. There
are only 5 handlers normally present in the Atari. They are
the Printer (P:), the Cassette (C:), the bisplay~Editor
(E:), the Screen-handler (S:) and the Keyboard (K:).

When DOS is loaded, the D: handler is installed, and the R:
handler is installed with the 850 interface connected.

794-828 31A-33C HATABS

Handler address table. 35 bytes are reserved here for up to
11 entries of 3 bytes per handler. The last 2 bytes are 0'd
(nulled). On power-up, the HATABS table is copied from ROM.
Devices to be booted, such as the disk-drive, add their
handler information to the end of the table. Each entry has
the character device name (C, D, E, K, P, S, R) in Atascii
code and the handler address (LSB/MSB). Unused bytes are all
set to 0. FMS searches HATABS from the top for a device "D:"
entry, and when it doesn't find it, it then sets the device
vector at the end of the table to point to the FMS vector at
1995. C10 searches for a handler character from the bottom
up. This allows new handlers to have precedence over the
resident ones. Pressing Reset clears HATABS of all but the
resident handler entries. The handler entry points are:

LOCATION:

DEC: HEX: HANDLER: VECT.to:
794 31A Printer (P:) 58416
797 31D Cassette (C:) 58432

800 320 Disp.editor (E:) 58368

803 323 Screen Disp.(S:) 58384

806 326 Keyboard (K:) 58400

809 329 unused

812 32C unused

815 23F unused

818 332 unused

821 335 unused

824 338 unused

827,8 33B,C nulled 2-bytes; always 0'd

If you wish to create your own handler, then you should put
the Atascii code of the Device name into the handlers 1Ist
byte and the address of your handler routine into the
handlers 2nd and 3rd bytes. Example; POKE 809,ASC("X") where
"X" is the device-character. POKE 810,0 and POKE 811,6 would
have the X-device handler pointing to Page-6 of memory
(0+256%6 = 1536 ;$0600). At this address, you must place a
table of vectors; the vectors are as follows:

Page 77



828 ont.

OPEN vector
CLOSE vector
GET vector

PUT vector
STATUS vector
XI0 vector

JMP INIT vector

The 1st 6 vectors are 2 bytes each, which point to the
address of the associated routine minus 1. The JMP INIT
vector points directly to the routine that is executed upon
initialization of the handler only, which can just be an RTS
command .

1t doesn't matter what [IOCB channel 1is used, because
whatever operation of your device handler is executed, all
the associated bytes used in the command are loaded down to
the Page-0 10CB, ZI10CB at locations 32 - 47. Upon EXIT of
your device operations, you should load the Y register with
a value of 1 for good status, or the error code if not good
status. Also, end all your routines with an RTS command.

The best explanation of handlers 1've seen is in the 0Ol1d
Atari user magazine, Volume 3 number 2. Also see De Re Atari
and the 0S source-listing manual.

Try the following program:

10 DATA 14,6,14,6,16,6,14,6,14,6,16,6
20 DATA 76,14,6,160,1,96

30 FOR I=0 TO 17

40 READ D:POKE 1536+1,D:NEXT 1

50 Y=794

60 IF PEEK(Y) THEN Y=Y+3:GOTO 60

70 POKE Y,ASC("N")

80 POKE Y+1,0:POKE Y+2,6

This is a 'Null' handler, it does absolutely nothing! Iit's
useful for De-bugging routines, just set it up and replace
all device calls 1in a program that you want debugged with

the "N" device-character. If you wish to include your own
routines, then just replace the addresses with the addresses
of your own routines - 1. My routine simply performs: LDY #1

and RTS. The GET and X10 operations are directed to the RTS,
skipping the LDY #1 instruction. This shows thal they have
been chosen as unused. You can change their addresses from
16,6 in the data line to 14,6.

You can change the addresses of the routines to your own if
you like, try changing the two 16's in line-10 to 14's,
change line-20 to read:

20 DATA 76,14,6,165,20,141,200,2,160,1,96

and change the FOR/NEXT loop in line-30 to go from 0 to 22.
Press Reset and re-run the program. Type OPEN #1,4,0,"N:"
and GET #1,B. You'll notice the new border colours are in
the variable B.

Page 78



Try the LIST "N:" command. You'll notice 2 border changes,
this 1is because LIST uses 2 vectors; GET and PUT. You can
use the X110 command vector to perform different tasks
depending on the value if you like, ie; if you type X10
3,#1,0,0,"N:". The command-value 3 will be passed to the
Z10OCB location ICCOMZ at 34. Just read this location in your
X10 vector routine and perform X-task for X-number. You can
achieve many tasks by writing new handlers, perhaps even
altering the existing handlers. One such task is creating
new Basic commands. See back issues of Page-6 magazine.

829-831 33D~33F PUPBT1-3
Power-up and Reset wvalidation registers 1 - 3, used on
warmstart to verify the integrity of memory. The O0S

initializes these locations to 92, 147 and 37. When Reset is
pressed, these bytes are checked and if they're the same as
initialized a warmstart is done, otherwise a coldstart
occurs.

Locations 832 - 959 are reserved for the 8 Inpul Ouput
Control Blocks (10CB's). JOCB's are channels for the
transfer of information into and out of the Atari, and even
from 1 area of memory to another.

Every time you use commands, such like, PRINT, SAVE, LOAD,
LIST etc. you are wusing an 10CB. Some of the IOCB's are
dedicated for special purposes, such as I0CB-0 which is used
for the screen display. When you use the OPEN command, the
parameters following it tel!l C10 which direction the data is
to be transmitted. It is SI0 and the device handlers that do
the actual transfer of data.

You don't have to wuse Basic commands to access CI0O, for

example the OPEN #1,4,0,"D:" command can be implemented with
several POKEs and a JSR to the CIO entry point at 58454
($E456). 1t's useful to use CIO directly sometimes, because

Basics INPUT command can only access 120 bytes at a time,
where a4 single call to Cl10 can fil! the whole RAM from the
input device or vice versa. This transfer of bytes,
ofcourse, is also at machine-language level which is much
faster.

These blocks are used the same way as ZIOCB. The 0S takes
the information here, and moves it to the ZI0CB for use by
CIO, it also returns the updated information back to the
user area when the operation is complete.

Note that when Basic encounters the DOS command, all
channels are closed except for channel-0 (10CB-0).

Page 79



COMPLETE & ESSENTIAL MAP
832 - 847
832-847 340-34F 10CBO

IOCB-0. Normally wused for the screen editor (E:). You can
send all the screen output to the printer with POKE 838,202
and POKE 839,254, 7To send everything back to the screen,
POKE 838,175 and POKE 839,242. You can use the program on
the next page to toggle output back and fore with the
SHIFT+HELP and CTRL+HELP keys. Note, that the program is
written in the VBlank, so if you LIST a long program,
pressing the «console keys will react exactly on the bytes
presently being displayed/printed etc.

10 FOR I=0 TO 47

20 READ D:POKE 1536+1,D:NEXT I

30 DATA 104,169,7,160,11,162,6,32,92,228,96

40 DATA 173,220,2,201,145,208,13

50 DATA 169,202,141,70,3,169,254,141,71,3,76,98,228
60 DATA 201,81,208,10

70 DATA 169,175,141,70,3,169,242,141,71,3,76,98,228
80 X=USR(1536)

90 POKE 54286,64

Another very wuseful application for these locations, is
something called "Return-key mode". Try POKE 842,13. You'll
notice the cursor is shuffling off down the screen! It's
actually pressing the Return-key over anything it might come
across on the screen. This is a very useful technique for
adding or deleting lines to a program, from within the
program! For example;

10 GRAPHICS O

20 POSITION 2,5

30 FOR 1=0 TO 6

40 7 100+1;" REM ADDED LINE ";1I
50 NEXT 1

60 ? “CONT"

70 POSITION 2,0

80 POKE 842,13:STOP

90 POKE 842,12

96 GOTO 96

You'll notice that the program itself actually adds lines
100 - 106. The Return-key mode is activated on Jine-80 and
the program is STOPped. The program is CONTinued when the
cursor runs over the CONT command printed to the screen from
line~-60. Line-90 then turns the Return-key mode off and
holds program execution at line-96.

If you LIST a file to cassette or disk, you can edit the
file with a word processor and insert Basic commands in
direct-mode (without line-numbers). When the file is loaded,
the direct lines are executed straight away. This is very
useful for protecting your Basic programs.

Page 80



COMPLETE & ESSENTIAL MAP

848 - 959

You can even automatically RUN your Basic programs from disk
or cassette with the wuse of the Return-key mode and
direct-mode command entry. This applies to both types of
saved files: 1.LISTed and SAVEd.

When you are in a Graphics mode other than 0, channel-0 is
opened by the 0S for the text-window. If the text-window is
turned off and you OPEN channel-0, Graphics 0 will be
called. The NEW and RUN commands close all channels except
channel~0.

848-863 350-35F 10CB1

I10CB~1; unused.

864-879 360-36F 10cB2

[OCB-2; unused.

880-895 370-37F 10CB3

10CB-3; unused.

896-911 380-38F 10CB4

10CB-4; unused.

912-927 390-39F 10CB5

I0CB-5; unused.

928-943 3A0-3AF 10CB6

{0CB-6; The Graphics statement OPENs channel-6 for the
screen display (S:), so once you are out of Graphics 0, you
cannot use channel~-6 wunless you firstly issue a CLOSE #6

statement. If you do clouse this channel, however, you will
not be able to use DRAWTO, PLOT or LOCATE until you reOPEN
it. The LOAD command closes all channels, even #6, except
for #0.

944-959 3B0O-3BF 10CB7

10CB-7; LPRINT automatically wuses this channel. If the
channel is already open when an LPRINT is issued, then an
error will occur.

Page 81



COMPLETE & ESSENTIAL MAP

The LIST command also uses this channel and closes it after
use. LOAD wuses this channel to transfer programs between
cassette and disk. LIST (except to the screen), LOAD and

LPRINT also close the sound-voices. RUN and SAVE also use
this channel.

Each byte 1in the 1[10CB's all have a particular meaning,
explained in the chart below:

LABEL OFFSET __ BYTES

ICHID 0 1

Index into the device-name table for the currently open
file. Set by the 0S. If not in use, the value = 255 which is
also initiation value.

ICDNO 1 1

Device number; 1 for D1:, 2 for D2: etc.. Set by the 0S.
1CCOM 2 1

Device Command, set by the user. This is the 1st variable
after the channel-number in an OPEN command. See the COMMAND
chart overleaf for a full summary of these codes.

ICSTA 3 1

Device status, returned by the 0S. See the chart overleaf.
ICBAL/H 4,5 2

Buffer address for data transfer, also the address of the
filename for the OPEN and STATUS commands etc..

ICPTL/H 6,7 2

Address of the devices "put-one-byte" routine -1. Set by the
0S on OPEN, but only used by Basic. Points to CIO's "10CB
NOT OPEN" message at power-up.

ICBLL/H 8,9 2

Buffer length, set to the amount of bytes to transfer in PUT
and GET operations. Decremented by 1 for each byte
transferred; updated after each READ and WRITE operation.
Records the number of bytes actually transferred in and out
of the buffer after each operation.

1CAX1 10 1

Auxiliary byte 1 (AUX1). Used with the OPEN statement to
specify the type of file access. See the table on Page-96
for a full list of codes you can use with what devices.
ICAX2 11 1

Aux byte 2. Special use by each device driver; some serial
port functions may use this byte.

1CAX3/4 12,13 2

Aux bytes 3 and 4, used to keep a record of the disk sector
number with NOTE and POINT.

ICAXS 14 1
Pointer to the byte within a sector NOTEd/POINTed to. Value
ranges O - 124. The last 3 bytes have special use by DOS,
see location 1792,
ICAX6 15 1

Spare Aux byte.

Page 82



COMPLETE & ESSENTIAL MAP

Here's the SIO sStatus byte values,
command byte values:
STATUS: EXPLANATION:

i Operation complete; Status 0K.
138 Device timeout (no response).
139 Device NAK
140 Serial-bus input framing error.
142 Serial-bus data-frame over-run
143 Serial-bus data-frame checksunm
144 Device done error.

COMMAND: DEC: HEX:
OPEN channel 3 3
GET text-record line (INPUT) 5 5
GET Binary record (buffer) 7 7
PUT text-record line 9 9
PUT Binary record (buffer) 1t B
CLOSE channel 12 C
Dynamic (channel) status 13 D
Basic uses an I0OCB

command .

Disk-File Management (FMS) commands
use:

Rename 32 20
Erase 33 21
Protect/lock 35 23
Unprotect/unlock 36 24
POINT 37 25
NOTE 38 26
Format single 253 FD
Format double 254 FE
In addition, XIO also supports:

GET character 7 7
PUT character 11 B
Draw line 17 11
Fill area; XIO 18,#1,0,0,"S:" 18 12

Fill requires the PLOT and
POSITION commands, also its
colour at location 765.

For the RS232 (R:), XIO supports:

Output partial block 32 20
Control RTS, XMT, DTR 34 22
BAUD, Stop-Bits, Word-size 36 24
Translation mode 38 26
Concurrent mode 40 28

below them, the 1CCOM

error.
error.

"put-byte" vector for the PRINT #n,A$

(Basic XI0 commands)



CI0 treats any command byte value greater than 13 ($0D) as a

special case (XI0 case), and transfers control over to the
device handler for processing.

Here's a 1list of the ICAX1 bytes, associated also with the
1st parameter given in the OPEN statement:

DEVICE: TASK# DESCRIPTION:

Cassette 4 Read

8 Write

Disk 4 Read

6 Directory (S/dens)

7 Directory (D/dens). This shows up
all files that use the sharp brackets.

8 Write new file. Any file OPENed in
this mode will be deleted, and the
1st byte next written is at the start
of the file.

9 Write - Append. In this mode, the
file is left intact, but all data
written to the file will start at
the end of the existing data

12 Read and Write - update. Bytes read
or written will start at the beginning
of the file
Screen- 8 Screen output
Editor 12 Keyboard input and screen ouput
E: 13 Screen input and output. Which is
also known as "Return—-key mode"
Keyboard 4 Read
Printer a Write
RS232 5 Concurrent read

8 Block write

9 Concurrent write

13 Concurrent read and write
Clear Text Read
Screen Window oper-
on GR. also ation

Screen- 8 yes no no
Display 12 yes no yes
: 24 yes yes no

28 yes yes yes

40 no no no
44 no no yes
56 no ves no
60 no yes yes

Note, that with S:, the screen is always cleared in Graphics
0 and there is no text-window unless you specifically POKE
it there, by POKE 703,4.

Page 84



Without the screen clear, the previous material will remain
on-screen between Graphics mode changes, but will not
necessarily be legible in other modes, or even within
displtay memory view. The values with S: are placed in the
1st auxiliary byte of the 10CB, Also, all of the screen
values back overleaf are a write operation.

The 2nd parameter in an OPEN statement (placed in the AUX2
byte) is far more restricted in its use. Usually set to 0.
1f set to 128 for the cassette, it changes from normal to
short Inter-Record-Gaps (IRG). With the O0ld Atari 820
printer, a value of 83 means sideways characters. Other
printer variabes are: 70 for normal 40-column printing, and
87 for wide printing mode. You can also call a Graphics mode
with OPEN and other relevant codes, for example:

0100 *=$600

0110 ;

0120 C1O = 58454

0130 COMMAND = 834

0140 BUFFER = 836

0150 AUX = 842

0160 AUX2 = 843

0170 ;

0180 LhX #32

0190 LDA #3 s OPEN
0200 STA COMMAND, X

0210 LDA #24 s CLRSCRN
0220 STA AUX,X

0230 I.LDA #8 yMODE
0240 STA AUX2,X

0250 LLDA #NAME&255

0260 STA BUFFER,X

0270 LDA #NAME/256

0280 STA BUFFER+1,X

0290 JSR CI0

0300 BRK

0305 ;

0310 NAME .BYTE "s:"

You can select the Graphics mode by changing the number
loaded into the Accumulator on line-230. Also set the mode
to clear or not, have a text-window etc., with the value in
line-210, which is taken from the table pre-leafed.

If you want to know how to draw a line in machine-language,
then you can add the routine overleaf to the program above:

Page 85



COMPLETE & ESSENTIAL MAP

960 - 1000
0300 JMP DRAW
0320 ;
0330 DRAW LDbA #17 T DRAW
0340 STA COMMAND, X
0350 LDA #8 WRITE
0360 STA AUX,X
0370 ;
0380 LDA #1 s COLOUR
0390 STA 763
0400 LDA #50 PLOT
0410 STA 84 s ROW
0415 LDA #90 H
0420 STA 85 ; COLUMN
0423 LDA #0 H
0426 STA 86 sy LO/HI
0430 ;
0440 LDA #90 sDRAWTO
0450 STA 96 s ROW
0460 LLDA #50 H
0470 STA 97 s COLUMN
0480 LDA #0 H
0490 STA 98 yLO/HI
0500 ;
0510 JSR CI10
0520 ;
0530 LDA #12 ;CLOSE
0540 STA COMMAND, X ;s CHANNEL
0550 JSR C10
0560 ;
0570 BRK

The whole program is fairly straightforward and comes into 3
parts. The 1st part is the Graphics call, the 2nd part is
the actual draw-line routine and the final part is to CLOSE
the OPEN channel. As you can see, it is quite large compared
to its equivalent in Basic!

For more information on 10CB's, you could get hold of De Re
Atari, the 0S users manual or take a look at back issues of
Old Atari user and Page-6 magazine.

960-999 3C0-3E7 PRNBUF

Printer buffer. The printer handler collects output from the
LPRINT statement here, sending it all to the printer when an
EOL occurs, or when the buffer is full. The old bug is now
gone.

1000 3E8 SUPERY
Screen editor register; cleared on entry to the "put-byte"

routine, the editor changes key-codes 142 - 145 to codes 28
= 31 and sets SUPERF to nonzero. See locations 121,122.

Page 86



COMPLETE & ESSENTIAL MAP

1001 - 1017

1001 3E9 CKEY

Cassette boot request flag on coldstart. Checks to see if
the START key is pressed, and if so, CKEY is set. Autoboot
cassettes are loaded by pressing the START key, pressing
Play on the tape and pressing return. You can disable Basic
by holding OPTION along with START.

1002 JEA CASSBT

Cassette boot flag. The Atari attempts both cassette and
disk boots simultaneously. 0 here means no cassette-boot was
successful. See location 9.

1003 3EB CARTCK

Cartridge checksum. A checksum of page-1 of the cartridge.
The checksum is recalculated each VBlank and checked against
the register. [f not the same, the 0S assumes the cartridge
isn't there any more (was pulled out) and does a coldstart;
1200XL only. Unused in other XL/XE's.

1004 JEC DERRF

Screen OPEN error flag; if 0, then there is no error. If
nonzero, then the 0SS can't initialize the screen editor.
1005-1015 3ED-3F7 ACMVAR

Reserved for 0SS variables; on power-up, all variables
between 1005 - 1023 are 0'd, but unchanged on warmstart.
1016 3F8 BASICF

Shadow for the current status of Basic. 0 means that the ROM
Basic is enabled, while nonzero means it is disabled. Must
be in sync with disabling of ROM Basic. To disable Basic,
set BASICF to nonzero and press Reset. DOS will tell you
there is no Basic when you try to return to it.

1017 3F9 MINTLK

Although labelled, mapping states this to be unused.

Page 87



COMPLETE & ESSENTIAL MAP

1318 - 1405

1018 3FA GINTLK

Cartridge interlock register; the complement of BASICF. 1t
reads 1 when an external cartridge is installed, and 0 when
not (or Basic is in use). The value of TRIG3 at 53267
($D103) is loaded here by the 0S initialization routine. If

at any time, the external cartridge is pulled, the system
crashes.
1019,1020 3FB, 3FC CHLINK

Relocatable bhandier chain use; allows chaining of portions
of handler routines.

1021-1151 3FD,47F CASBUF

Cassette buffer. These locations are used by the cassette
handler to read data from and write data to the tape
recorder. The 128 data bytes for each cassette record are
stored here beginning at 1024 ($400 - Page-4). The current
buffer size is found at BLIM in 650. Location 61 points to
the current byte being read or written.

CASBUF is also used to store the lst sector in a disk-boot
(beginning at 1024) before being transferred to its correct
address, given by bytes 3 and 4. See the BOOT appendice.

A cassette record consists of 132 bytes: 2 control bytes set
to 85 ($55; alternating 0's and 1's) for speed measurement
in the baud-rate correction routine; 1| control byte which is
explained on the next leaf; 128 data-bytes, and a checksunm
byte. Note, that only the data-bytes are stored in this
cassette buffer.

CONTROL-BYTE Values:

VALUE: EXPLANATION:
250 ($FA) Partial record; the actual number of bytes
is stored in the last byte (127) of the record,
252 Record full; 128 bytes follow,
254 End-0f-File (EOF) record; followed by 128
zero bytes.

1152-1405 480-57D STACK
Basic uses these 254-bytes as a syntax checking stack; $480

is a Basic input index; $48! an output index and $482 is a
program counter.

Page 88



COMPLETE & ESSENTIAL MAP

1406 - 1791

1f you are not using Basic, then you have these 253 bytes
free for use. If you don't use the FP package, then you also
have a further 129 bytes from 1406 - 1535. Should you use
the FP package, then it is as follows:

1406 57E LBPRI1

LBUFF prefix 1;

1407 57F LBPR2

LBUFF prefix 2;

1408-1535 580~-5FF LBUFF
Basic line-buffer; 128 bytes. Used as an output result

buffer for the FP to ASCII conversion routine. The input
buffer is pointed to by locations 243 and 244.

1504 5EQ PLYARG

Polynomial arguments (FP use).

1510-1515 5E6-5EB FPSCR

FP scratch-pad use.

1516-1535 5EC-5FF FPSCR1

Ditto. The end of the buffer is named LBFEND.

1536-1791 600-6FF PAGE6

Page-6 is a very useful 256 bytes of free memory,
specifically protected so that programmers can use this area
safely in Basic/Assembly or machine-language. Besides being
used to name a very good magazine, which now goes under the
name 'New Atari-user', Page-6 can be used to store quick
machine-language subroutines for wuse by Basic programs.
You'll notice that all my programs in this book use this
page in this way.

Page 89



COMPLETE & ESSENTIAL MAP

1792 - 7548 +

There 1is, however, one snag. If you use the Basic INPUT
statement when inputting data, then you should ensure that
the data you are INPUTing has an EOL flag (RETURN character
~ ATASCII 155) at a maximum of 128 bytes apart. If an EOL
flag doesn't exist, then Basic will continue loading the
data, past the Basic line buffer LBUFF at 1408 and on into
Page~-6, overwriting any 'thought-of' protected data
presently residing there. It will keep going until either it
reaches the 126th byte into page-6 (location 1662) where it
places an EOL character, or until it reaches an End-0f-File
(EOF) character (ATASCII 136, or CTRL+3).

Free RAM begins in all XL/XE's at location 1792, pointed to
by MEMLO at 743 and 744. When DOS 2.0 is loaded, MEMLO is
updated to point to 1location 7420. For DOS 2.5 see the

relevent appendix. DOS is organized in the following
manner:

1792-5377 700-1501

FMS provides the interface between Basic, DUP and the
Disk-Drive. It is a sophisticated device driver for all 1/0
operations involving the D: device-name. It allows disk
users to wuse the Basic' special XIO disk commands (see the
I0OCB area at 832 ~ 959). It also resides below Basic RAM and
provides entry to DUP when called with the DOS command.

5440-13062 1540-3306

DUP.SYS area. The top will vary with the amount of buffer
storage space allocated to the drive and sector buffers.

6780-7547 1A7C-1D7B

Drive buffers and sector-data buffers. The amount of memory

will vary according to the amount of buffers allocated
etc..

7548-MEMLO 1D7C-3306 (maximum)

Non-resident portion of DUP.SYS, DOS utility routines. DUP
provides the wutilities chosen from the DOS menu page, not
from Basic. It is not resident in RAM when you are using
Basic or another cartridge, rather it is loaded when DOS is
called from Basic or on an autoboot powerup with the
option-key depressed, thus, disabling Basic. When DUP is
loaded, it overwrites the lower portion of memory. If you
wish to save your program from destruction, you must have
created a MEM.SAV file on the disk before you called DOS, or
even simpler, just SAVEd it to the disk.

Page 90



COMPLETE & ESSENTIAL MAP

1792 - 1812

When software is booted, the MEMLO pointer points to the 1st
free memory location above that software; otherwise, it's
not affected and remains pointing to location 1792. The DUP
portion of DOS is partly resident here, starting at 5440 and
running up to 13062. DOS 2.5 takes up the 1st 78 sectors of
a disk; the 1st sector is the boot sector, sectors 2 - 40
are the FMS portion and the remaining sectors 41 - 78 are
the DUP.SYS portion of DOS. For full information on DOS, see
the DOS and OS source listings including Inside Atari DOS.

FMS, DOS.SYS and DUP.SYS

Disk boot records (sector 1 of a DOS disk) are read into
1792, starting from this address the format of bytes is
explained overleaf. Note, that the 1st 6 bytes of any disk
are special-informatory bytes to the 0S, explained fully in
the BOOT-appendix, they tell the computer how much data to
load, where to put it and where to execute within it.

BYTE HEX LABEL and USE:
0 700 BFLAG:

Boot-flag equals 0 (unused),
1 701 BRCNT:

Number of consecutive sectors to read,
Set to 3 by DOS 2.X,
2,3 702,3 BLDADR:
Boot sector load address, DOS
points to 1792 ($700),

4,5 704,5 BINTARR:
Initialization address,
6 706 JMP XBCONT:

Boot continuatin vector, JMP ($4C); JMP
command to the address in bytes 7 and 8,
7.8 707,8 Boot read continuation address,
9 709 SABYTE:
Maximum number of concurrently open files,
defaulted to 3,
10 70A DRVBYT:
Drive bits, the maximum number of drives
attatched to your system. Default is 2,
11 70B Unused:
Buffer allocation direction, set to 0.
12,3 70C,D SASA:
Buffer allocation start address at 1995,
14 70E DSFLG:
DOS flag equals nonzero. It must be nonzero
for the 2nd phase of boot process. It
indicates that the DO0S.SYS has been
written on the disk, 0 means no DO0S.SYS,
1 = 128-byte sector and 2 = 256-bytes,
15,6 70F,10 DFLINK:
Pointer to DO0S.SYS' 1st sector on disk,

Page 91



1801 - 1906

17 711 BLDISP:
Displacement to the sector-link bytes
(last 3). The sector link bytes point
to the next disk-sector to be read. If 0,
then EOF has been reached,
18,9 712,3 DFLADR
Address for the start of the D0S.SYS file,
20+ 714+ Continuation of the boot-load file,
see the 0S users manual for more info.

Data from the boot sector 1is placed in locations 1792 -
1916. Data from the rest of DOS.SYS is located starting from
1917 ($77D). All binary file-loads start with 255 twice, the
next 4 bytes are the start and end addresses, see locations
736 and 737 for a full breakdown of this.

Here's a further explanation of locations 1801 and 1802:

1801 709 SABYTE

This records the limit for the number of files that can be
OPEN simultaneously. Usually set to 3, the maximum is 7 (1
for each 1I0CB). Each available file takes 128 bytes for a
buffer, so if you increase the number of buffers, you
decrease your RAM space accordingly. If you make any changes
to this register or any of the other registers following,
then to keep the changes permanent, you should go to DOS and
re-write the DOS files to a new blank formatted disk.

1802 70A DRVBYT

The maximum number of disk-drives in your system, default
being 2. The least 4-bits are used to record which drives
are available, so if you have drives 1, 2 and 4, the
location would read:

00001011; decimal = 11,

Each drive has a seperate buffer of 128 bytes reserved for
it, thus, including more drives in your system, decreases
your RAM availability.

1900 76C BS10

Entry point to the FMS disk sector I1/0 routines.

1906 772 BSIOR

Entry point to the FMS disk handler routines.

Page 92



COMPLETE & ESSENTIAL MAP

1913 - 2773

1913 779

Write verify flag for disk [/0 operations. POKE with 80 to
turn off the verify function, 87 to turn it back on.
Disk-write is much faster without verify.

1923 783

Stores the drive number for the DUP.SYS file. Tf you POKE
here with the ASC!I equivalent of the drive number (ie. POKE
1923,50 for drive-2), when you call DOS from Basic, DUP.SYS
will be loaded from the drive specified rather than the
default D1:. HRemember, permanent changes can be made by
saving an altered DOS file to a new blank disk.

1995 7C8B DFMSDH

Entry point of a 21-byte FMS disk handler. The address of
this handler is placed in HATABS by the FMS initialization
routine. When €10 needs to call an FMS function, it will
locate the address of that function via the handler address
table. See chapters 8-11 of Inside Atari DOS. Note, the data
stored here is different with DOS 2.0 and DOS 2.5.

2016 7E0 DINT

FMS initialization routine. The entry point is 1995. DUP
calls FMS at this poinl. K-DOS uses the same location tor
its initialization routine.

2219 8AB DFMOPN

OPEN routines, including open for append, update and
output.

2508 900 bDFMPUT

PUT byte routines.

2591 AlF WTBUR

Burst 1/0 routines.

2592-2773 A20-AD5

fn DOS 2.0, there is a burst 1/0 occurrence bug which takes

place when a file 1is OPENed for update. This bug can be
exterminated by:

Page 93



COMPLETE & ESSENTIAL MAP

2751 = 3122

POKE 2592,130

POKE 2593,19

POKE 2594,73

POKE 2595,12

POKE 2596, 240

POKE 2597, 36

POKE 2598,106

POKE 2599, 234

POKE 2625,16

POKE 2773, 31

You <can completely disable burst 1/0 with a POKE 2606,0.
This makes J.0AD and SAVE operations considerably slower,
though, so 1T wouldn't recommend saving it as a permanent
change.

2751 ABF DFMGET

GET byte routines, including GET file routines.

2817 BO1 DFMSTA

Disk STATUS routines.

2837 B15 DFMCLS

[OCB CLOSE routines.

2983 BA7 DFMDDC

Start of the device-dependent command routines, including
the Basic XIO special commands.

3033 BD9 XRENAME

Rename file routine.

3118 C2E

POKE with O to force the rename routine to change only the
Ist occurrence of files bearing the same name. POKE with 184
to revert to normal.

3122 C32 XDELETE

Delete file routine.

Page 94



COMPLETE & ESSENTIAL MAP
3196 - 3783
3196 c7¢C XLOCK, XUNLOCK

lLock file routine. Unltock file routine begins at 3203
($C83).

3258 CBA XPOINT

Basic POLINT command routine.

3331 DoO3 XNOTE

Basic NOTE command routine.

3352 Dts XFOKMAT

Format disk routine.

3460 D84

De-allocation bytes of the VTOC and directory; see 4226,
4229, 4264, and 4266.

3501 DAD LISTDIR

List directory routine.

3742 E9E FNDCODE

Filename decode, including wildcard wvalidity test. The
current tilename is pointed to by ZBUFP at 67 and 68 ($43
and $44).

3783 EC7

By POKEing the desired ATASCII value here, you can change
the "*" wildcard character used by DOS. Don't forget that
changes can be made permanent by re-writing D0S. Either goto
the DOS menu and use option H, or OPEN #1,8,0,"D:D0OS.SYS"
and CLOSE #1 from Basic.

Page 95



COMPLETE & ESSENTIAL MAP

3818 - 42006

3818,13822 EEA, EEE

By POKEing 3818 with 33 and 3822 with 123, you can modify
DOS to accept filenames with punctuation, numbers and
lowercase as valid. 33 is the low range code and 123 for the
high range. O0Of course, you could change the range of
accepting characters from 0 - 255, but you will have
problems with spaces and the wildcards. Be sure that the
wildcard character is not in this range.

3850 FOA FDSCHAR

Store the file name characters that result from the filename
decode routine.

3873 F21 SFDIR

Directory search routine; search for the user-specified
filename.

3889 F31 DOS3

If you PEEK here and get 76 ($4C), you have an early version
of DOS 3, the later version will read 78. To correct some
errors in the eartier version, type:

10 FOR I=1 TO 9

20 READ A,D:POKE A,D:NEXT 1

30 DATA 3889,78,3923,78,3943,78,3929,76,3895,76

40 DATA 3901,77,3935,77,3955,77,2117,240

Better yet, to eradicate such a stupid move, chuck DUOS 3 in
the bin and get hold of DOS 2.5. DOS 3 is a serious
space-waster!

3988 Fo4 WRTNXS

Write data sector routine.

4111 100F RDNXTS

Read data sector routine.

4206 106E RDDIR

Read and write directory sector routines.

Page 96



COMPLETE & ESSENTIAL MAP

4226 - 4229
4226 1082

LSB of the current directory sector. The directory is
normally located in sectors 361 - 368. Default here is 105.

4229 1085 e

MSB of the current directory sector. To change the location
of the directory, copy the B directory sectors from 361 -
368 into your desired area on the disk and POKE the address
of the 1st sector into 4226 and 4229. Finally, write the
value of the new sector number (sector/8+10) into 3460,
The FORMAT of a directory entry is comprised of 16 bytes.
The bytes are as explained:
BYTE: USE:
0 Flag

$00 Entry new (never used)

$01 File currently OPEN

$02 File created by DOS 2

$20 File locked

$40 File normal status

$80 File deleted
1-2 Number of sectors in the file
3-4 Starting sector of the file
5-12 Filename (space or $20 if blank)
13-15 Extension
If you've deleted a file, but later you regret it, you can
usually wundelete it (bring it back to life) by using a
sector editor. When a file is deleted, the actual data and
filename remains on the disk, if you write something else on
the disk, then the deleted file data will be overwritten,
but if you have not written over the disk, then you should
be able to reinstate your file by clearing bit-7 ($80) in
byte 0 of the directory entry in the directory sectors. If
you want to undelete any files that have been deleted on
your DOS 2.X disk, then use this program:
10 X=0
12 DATA 104,32,83,228,96
14 FOR I=0 TO 4
18 READ D:POKE 1536+1,D:NEXT 1
22 POKE 769,1
26 POKE 772,253:POKE 773,3
30 FOR K=361 TO 368
34 SHI=INT(K/256) :SLO=K-(SHI*256)
38 POKE 778,SLO:POKE 779,SHI
42 POKE 770,82
46 X=USR(1536)
50 FOR I=0 TO 127 STEP 16
54 BYT=PEEK(1021+I+X)
58 IF BYT-127 THEN BYT=BYT-128
62 POKE 1021+[+X,BYT
66 NEXT 1
70 POKE 770,80
74 X=USR(1536)
78 NEXT K

Page 97



4235 - 42066

Sometimes, your files <c¢an be accidentally left OPEN and,
thus, are unretainable. l've lost a lot of my files in the
past through drive problems. Usually, the drive writes a
file to the disk, but doesn't close it properly. If this
happens, then you <can use the program re-leafed to bring
them back. Just alter line 58 to read:

58 IF NOT BYT/2=INT(BYT/2) THEN BYT=BYT-1

1f you still get problems, then the last effort to regain as
much of your file is to use a sector editor, and alter the
2nd and 3rd bytes of the appropriate directory entry to
$FF's. This way, as much as possible of the existing file
will be regained when loaded

4235 108B RDVTOC

Read or write the volume table of contents (VTOC) sectors.

4264 10A8

LSB of the current VTOC sector.

4266 10AA

MSB of the current VTOC sector, which is normally sector
360. The VTOC sector is a bitmap of the disk contents; atter
the initial status bytes, each of the following bits
represents 1 sector on the disk in sequential order. There
are 720 sectors on the single-density disk. The 1st 4 are
reserved 'BOOT' sectors on DOS, sectors 360 -~ 368 are
reserved for VTOC and the directory, leaving 707 free for
use, You can move VTOC in the same way as the directory.

If you change the directory location, ensuring the
destination for the new directory uses unused sectors, you
should also alter the VTOC sector to de-allocate the
original directory sectors (by setting these bits), and
clear the bits of the new directory area to protect it from
being overwritten.

You can also use this technique to lock out particular
sectors on a disk for miscellaneous use.

The FORMAT of the VTOC sector is as follows:

Page 98



COMPLETE & ESSENTIAL MAP

4293 - 4618

BYTE: USE:

0 DOS code (0 = DOS 2.0)
(2 = DOS 2.5)
1-2 Total number of sectors;

707 single density
1010 dual density
3-4 Number of currently unused sectors
5-9 Unused
10-99 Bitmap: ! bit for cach sector:
0=in use/locked, 1=unpused/free
The leftmost bit of byte 10 is
sector 0 (unaccessable), the next
bit is sector 1 and so on, until
the rightmost bit of byte 99, which
is sector 719.
Sector 720 is unused on any DOS 2.X disk
100+ Bytes 100 - 127 are unused

Within the bitmap area of used and unused sectors, the VTOC
is the leftmost bit of byte 55, and the directory sectors
are the remainder of the same byte and the 1st bit of byte
56. The leftmost 4-bits of byte 10 are the boot sectors, and
the remainder of the bytes up to and including the leftmost
7-bits of byte 24 is taken by the DOS and DUP files. Disk
directories and the VIOC are discussed in Inside Atari DOS.

4293 10C5 FRESECT

Free sectors routine; returns the amount of free sectors
available on a disk.

4358 1106 GETSECTOR

Get sector routine; retrieves the lowest unused sector for
use off the disk.

4452 1164 SETUP
SETUP - initialization of the FMS parameters. Prepares FMS

to deal with the operation to be performed and to access a
particular file. See lInside Atari DOS, chapter 7.

4618 120A WRTDOS

Write new D0OS.SYS file to disk routine, including new FMS.
file to DUP.SYS file.

Page 99



COMPLETE & ESSENTIAL MAP

4789 - 5377

4789 12B5 ERRNO

Start of the FMS error number table.

4856-4978 12F8-1372

Miscellaneous FMS storage area; sector length, drive type,
stack level, file-number etc..

4993-5120 1381-1400 FCB

Start of the FMS file Control Blocks (FCB's). FCB's are used
to store information about files currently being processed.
The 8 FCB's are 16-bytes each in length and correspond to a
one-~on-one manner with the 1I10CB's. Each FCB takes the
following format:

LABEL: BYT: USE:

FCBFNO 1 Current file-number being processed

FCBOTC 1 File OPEN mode: l=append, 2=directory,
4=input, 8=output and 12=update

SPARE 1 Unused

FCBSLT 1 Sector length type flag: 128 or 256 bytes,

FCBFLG 1 Work flag: 128= file OPEN for output and

64= buffer sector should be output,

FCBMLN 1 Max. sector data length: 125 or 253,
FCBDLN 1 Current byte for read/edit in the sector,
FCBBUF 1 Tells FMS which buffer is used by the file,
FCBCSN 2 Sector number in the buffer of the

file in use,
FCBLSN 2 Next sector number in the chain-link,
FCBSSN 2 Start sector for file appending data,
FCBCNT 2 Sector count for the current file.

PUP doesn't use these FCB's; it writes to the IOCB's
directly. CIO transfers the control to FMS as the operation
demands, then onto SIO.

5121 1401 FILDIR

File directory, a 256-byte sequential buffer for entries to
the disk directory.

5377 1501 ENDFMS

Disk directory (VTOC) buffer. 64-bytes are reserved, l-byte
for each possible file. It also marks the end of FMS.

Page 100



COMPLETE & ESSENT]AL _MAP

5440 -

The VTOC (sector 360; $168) is a sequential bitmap of each
of the 720 sectors on a DOS 2.0 disk. 1t starts at byte 10
and continues to byte 99. See 4264 and 4266.

5440 1540 bos

DUP.SYS initialization address. Beginning of mini-D0OS; the
RAM-resident portion of DUP. Used for the same purpose in
K-DOS.

5446,5450 1546,154A

Contains the address stored in DOSVEC at tocations 10 and
11. This points to the address Basic jumps to upon execution
of the DOS command.

5533 159D DUPFLG

Flag to test if DUP is already resident in memory. 0 means
it's not.

5534 159E OPT

Uised to store the value of the disk menu option chosen by
the user.

5535 159F LOADFLG

If this location reads 128, then a memory file (MEM.SAV)
doesn't have to be loaded.

5540 5A4 SFLOAD

Routine to load a MEM.SAV file if it is present on the
disk.

5576 15C8

You can run some machine-language files from Basic with OPEN
#1,4,0,"D:FILENAME.EXT" and then doing a USR to this
address.

5888 1700 USRDOS

Listed 1in the DUP.SYS equates file but not explained in the
listings.

Page 101



COMPLETE & ESSENTIAL MAP
5899 - (518

5899 1708 MEMILDD

Flags that the MEM.SAV file has been loaded. 0 means it
hasn'i been loaded.

5947 1738

The MEM.SAV file «c¢reation routine begins here, 1t starls
with the filename "MEM.SAV" stored in ATASCILI format. The
write routines begin at MWRITE in 5958. The DOS utility
MEMSAVE copies the lower 6000 bytes of memory to disk to
save your Basic program from being destroyed when you call
DOS, which then loads DUP.SYS into that area of memory
afterwards.

6044-6045 179C-179D  INISAV

DOSINI  vector save location, transferred down to locations
12 and 13. Entry point to DOS called from Basic.

6046 179E MEMFLG

Flag to show if memory has been written to disk using a
MEM.SAV file.

6418 1912 CLMJMP

Test to see if DOS must load MEM.SAV from the disk before it
does a run at cartridge address, then jumps to the cartridge
afterwards.

6432 1920 LMTR

Test to see if DOS must load MEM.SAV before it performs a
run at address command from the DOS menu.

6457 1939 LDMEM

MEMSAVE load routines, for the MEM.SAV file.

6518 1979 INITIO

DUP.SYS warmstart entry. An apparently excellent program to
eliminate the need for DUP.SYS and MEM.SAV was presented in
COMPUTE!, July 1982 called Microb0S. See also "The Atari
Wedge", COMPUTE! December 1982. )

Page 102



COMPLETE & ESSENT(AL MAP

6630 - 7668
6630 19E6 [SRODN

Start of the serial interrupt service routine to
"output-data needed’' routines in DUP.SYS.

6691 1423 I1SRS1R

Start of the serial interrupt ready service routines in
bUP.SYS.

6781 1A7D

Start of the drive and data buffers. Drive buffers are
numbered sequentially 1 -~ 4, data buffers are 1 - 8,
assuming that many are allocated for ecach. Normally, the 1ist
2 buffers are allocated for drives and the next 3 for data.
Buffers are 128 bytes long each and begin at 6908, 7036,
7162 and 7292 ($S1AFC, S1B7C, $1BFA and $1C7C). See locations
1801 and 1802,

7420 1CFC

MEMLO at 743,744 points here when DOS is resident unless the
buffer allocation has been altered. MEMLO will point to 7164
for a 1-drive, 2 data buffer setup, a saving of 256 bytes.
l.oading the RS-232 handler from the 850 interface will raise
MEMILO an extra 1728 bytes. The RS-232 handler in the 850
interface will only boot (load into memory) if you first
boot the AUTORUN.SYS file on the original DOS
masterdiskette. The RS-232 handler will boot-up into memory
if you don't have a disk-drive attached assuming you have
turned it on prior to the computer. Whether the RS-232
handler is booted or not, you can still use the printer
parallel port on the 850.

7548 1Db7¢C

Beginning ot the non-resident portion of DUP; 40-byte
parameter buffer.

7588 1DA4 ILINE

80-byte line buffer.

7668 1DF4 DBUF

256~byte data buffer for the COPY routines. Copy routines

work in 125-byte passes, equal to the number of data-bytes
in each DOS sector on the disk.

Page 103



COMPLETE & ESSENTIAL MAP

7924 - 8990
There are 256-bytes because Atari accounted for the now
existing double-density which gives 253 data-bytes per DOS
seclor. The US-boubler is such an example modification o
your disk-drive well worth making giving you the true-double
density and accelerated speed.

7924 1EF4

Miscellaneous variable storage area and data buffers.

7951-8278 IFOF-2056 DMENU

Disk~menu screen display data is stored here.

8191 1FFF

This is the top of minimum RAM required for operation (8K),
to use DOS you must have a minimum of 16K.

DUP.SYS ROUTINES:

Locations 8192 - 32767 ($2000 - S$7FFF) are the largest part
of the RAM expansion area; this space is geunerally for your
own use. If you have DOS.SYS or DUP.SYS loaded in, they also
use a portion of this area to 13062 ($3306) below:

8309 2075 DOSOS

Start of the DOS utility monitor, including the utilities
called when a menu selection fuction is completed and the
display of the "Select item" prompt.

8505 2139 DIRLST

Directory listing.

8649 21C9 DELFIL

Delete a file.

8990 231E

Copy a file. This area starts with the copy messages. The
copy routines themselves begin at PYFIL in 9080 ($2378).

Page 104



COMPLETE & ESSENTIAL MAP

9783 - 10690
9783 2637 RENFIL

Rename a disk-file routine.

9856 2680 FMTDSK
Format the entire disk. There is no way to format specific

sectors in the standard 810s or 1050s. The Archiver chip
allows you to do this, however, if you have one fitted.

9966 26EE STCAR

Execute a cartridge.

10060 274C BRUN

Run a binary-file at the user specified address.

10111 277F

Start of the write MEM.SAV file to disk routine. The entry
point is at MEMSAV in 10138 (§279A).

10201 27D9 WBOOT

Write DOS/DUP files to the disk.

10483 28F3 TESTVER2

Test for version 2 DOS.

10522 2914A LDFLL

Load a binary file into memory. 1f it has a run-address
specified in the file, it will autoboot, unless you append
"/A" to the binary load option L from the DOS menu.

10608 2970 LKFIL, ULFIL

Lock and unlock files on disk.

10690 29C2 DDMG

Duplicate a disk.

Page 105



COMPLETE & ESSENTIAL MAP
11528 - 49151
11528 2b08 DFFM

Duplicate a file.

11841 2E41

Miscellaneous routines.

13062 3306

End of DUP.SYS

20480-22527 5000-57FF SELFTEST

Self-test ROM when enabled. The Self-test ROM is switched
into these addresses when you clear bit-7 in PORTB at
location 54017 ($D301), thus, losing 2K of RAM in the
process.

It's normally located under the Hardware memory at 53248 -
55295 ($h200 - $SD7FF), and re-addressed, as above, when you
type BYE in Basic, or turn the computer on with OPT1ON
pressed without a disk~drive attached.

Location 13063 is the 1st free RAM location with DOS
installed. The eternally free RAM memory expands up to 32767
($7FFF) within Basic. Without Basic, you can safely use up
to 40959 ($9FFF). Free RAM depends on what cariridge you are
using; Basic or Assembly etc.. It also depends on the
Graphics mode in use.

32768-40959 8000-9FFF CARTRIDGE-B

In the old Atari 800, this wused to «contain the right
cartridge when present, and RAM otherwise. In the XL/XE's,
this can now be considered as the lower of the 2 8K banks at
the top end of RAM. When Basic 1is enabled, this area
contains the Display List (DL) and Display Memory (DM). But,
when Basic is disabled, this extra 8K is free RAM and the DI
and DM occupy the higher of these 2 8K banks. This applies
to the Assembler/Editor cartridge as well, or any other
cartridge for that matter.

40960~-49151 AQOOO-BFFF CARTRIDGE-A
This was the left-cartridge slot in the old Atari 800, but

can now be considered as the higher of the 2 8K banks at the
top end of RAM.

Page 106



COMPLETE & ESSENTIAL MAP

40960 -~ 43631

When Basic 1is disabled, this area contains the DL and DM,
but when Basic is enabled, the 8K RAM is switched-out and
the 8K Basic-ROM is switched-in. You can convert the ROM
Basic to a RAM Basic alike the 0S, see location 54017 and
create your own Basic commands. Another method of achieving
this is to trap the keystrokes before they get passed to the
Basic editor. You can find further information about this in
COMPUTE!'s 3rd book of Atari.

A USR call here will coldstart the Basic cartridge when
enabled, or any other cartridge inserted for that matter.
Listed below are the Basic routines and their addresses:

40960-41036 A000-A04C Coldstart

41037-41055 A04D-AO5F Warmstart

41056-42081 A060-A461 Syntax checking routines
42082-42158 A462-A4AE Search routines
42159-42508 A4AF-A60C Statement name table

The statement TOKEN list begins at 42161 ($A4B1) and can be
listed with this program:

10 XDRS=42161:TO0K=0

20 IF NOT PEEK(XDRS) THEN ? :END

30 ? ToOK,

40 BYT=PEEK(XDRS) :XDRS=XDRS+1

50 IF NOT BYT-127 THEN ? CHR$(BYT);:GOTO 40
60 ? CHRS$(BYT-128)

70 XDRS=XDRS+2:TOK=TOK+1

80 GOTO 20

42509-43134 A60D-AB87E Syntax tables

The OPERATOR token list begins at 42979 ($A7E3) and can be
listed with the ©previous program if you change TOK in
line-10 to TOK=16, XDRS to 42979 and line-70 should only
read TOK=TOK+1.

See the Basic TOKEN appendix for further information.
43135-43358 A87F-A95E Memory manager

If you PEEK location 43234 ($SA8E2) and get back 96, you have
Revision B ROM, B stands for BUGS, so you should try to get
hold of Revision C. In all my experiences, the B ROM tends
to come with the flatter (older) XL keyboards.

43359-43519 A95F-A9FF Execute CONT statement

43520-43631 AAOO-AA6F Statement table

Page 107



COMPLETE & ESSENTIAL MAP
43632 - 48869

43632-43743 AA70-AADF  Operator table

43744-44094 AAHO—ACJE Execute Expression routine
44095-44163 AC3F~-ACB83 Operator precedence routine
44164-45001 ACB4~AFCY Execute operator routine
45002-45320 AFCA-B108 Execute function routine
45321-47127 B109-B817 Execute statement routine
47128-47381 B818-B915 CONT statement subroutines
47382-47542 B916-B9B6 Error handling routines
47543-47732 BYB7-BA74 Graphics handling routines
47733-48548 BA75-BDA4 1/0 routines

48549-49145 BDAS-BFF9 Floating-point routines:
48551 BDA7 SIN

Calculate SIN(FREO). Checks DEGFLG at 251 to see if
trigonometric calculations are in radians or degrees.

48561 BDbB1 cos

Calculate COSine(FRO) with carry. FRO is Floating-Point
register 0, locations 212 - 217. See FP entry points from
55296 onward.

48759 BE77 ATAN

Calculate Atangent using FRO, with carry.

48869 BEES SQR

Calculate square root (FRO) with carry. Note, that there is
some conflict of addresses for the above routines. The
addresses given are from De Re Atari. The 0§ Source-code

listing gives the following entry-point addresses for these
FP routines:

SIN 48513 ($BD81)
Ccos 48499  ($BD73)
ATAN 48707 ($HBE43)
SQR 48817 ($BEB1)

These are the ones to ignore! Because they are WRONG!

Page 108



COMPLETE & ESSENTIAL MAP

49146,7 - 49150,1

49146,7 BFFA,B

Cartridge start address.

49148 BFFC

A nonzero value here tells the 0S there is no cartridge
installed (7).

49149 BFFD PN

Option byte. A cartridge which does not specify a disk-boot
may wuse all the memory from 1152 ($480) to MEMTOP any way
possible.

49150,1 BFFE,F e
Cartridge initialization address.

When a Basic program is SAVEd, only 14 of the more than 50
Page-0 locations Basic uses are written to the disk/cassette
along with the program. The rest are all re-calculated with
a NEW or SAVE command, sometimes with RUN and GOTO. These 14
locations are:

128,129 80,81 LOMEM
130,131 82,83 VNTP
132,133 84,85 VNTD
134,135 86,87 VVTP
136,137 88,89 STMTAB
138,139 8A,8B STMCUR
140,141 8C,8D STARP

The string/array space is not loaded; STARP is included only
to point to the end of the Basic program.

The 2 other «critical Basic Page—-0 pointers, which are not
SAVEd, are:

142,143 8E,8F RUNSTK
144,145 90,91 MEMTOP

For more information concerning Atari Basic, get hold of a
2nd hand copy of a good book such 1like: The Atari XL
Handbook by Lupton & Robinson, Your Atari computer by Lon
Poole or any of the fine COMPUTE! books such as 2nd book of
Atari Graphics or 1st and 2nd books of Atari. You should
also browse through the BASIC appendix given in this book.

Page 109



COMPLETE & ESSENTIAL MAP

49152 - 49808

49152-53247 CO00-CFFF  OSROM

This 4K block was wunused and unuseable in the old Atari'
(very sad), but, thanks to Atari, this Pain-up-the-rear is
now sorted! You can use any of the Translator disks to
revert back to the old 0S, in doing so, this area becomes 4K
of user accessible RAM, Great EH!

Anyway, the C-Block now contains various interrupt handlers
(vectored here from Page-2) and other routines:

49164-52223 COOC-CBFF Interrupt handlers

A lot of interrupt vectors are set to jump to 49357 ($COCD)
or 49358 ($COCE). The former contains a PLA and an RT1. The
net result is a simple return back into the program without
any other activity taking place.

Bytes 49152 - 49163 ($C000 - $COOB) are used to identify the
computer and the ROM in the $C000 - $DFFF block.

BYTE: USE:

49152,3/C000,1 Checksum of all the bytes in ROM
except the actual checksum bytes.

49154/C002 Revision date, stored in the fornm
DDMMYY. This is DD, day.

49155/C003 Revision date, month.

49156/C004 Revision date, year.

49157/C005 Reserved option byte, reads 0 for
1200XL, 800XL and 130XE.

49158/0C006 Part number, in the form AANNNNNN

AA = Ascii character, and the
NNNNNN = 4-bit BCD digit; byte-aAl.

49159,62/C007,A Part number, bytes A2, Ni-Neo

(each byte has 2 N values of 4-bits).
49163/C00B Revision number.
49164/C00C Interrupt handler initialization.
49176/C018 NM1 initialization.

Interrupt handlers and other routines in the C-block:

ENTRY: HANDLER/USE:

49196/C02C IRQ Processor

49298/C092 BREAK key IRQ

49312/C0AOQ Continue IRQ processing

49359/COCF Table of IRQ types and offsets (16-bytes)
49378/C0E2 Immediate VBLANK NMI processing
49743 /C24F Process countdown timer-1 expiration
49746/C252 Process countdown timer-2 expiration
49749/C255 Decrement countdown timer

49778/C272 Set VBLANK parameters

49802/C28A Process deferred VBLANK NMI
49808/C290 Perform Warmstart

Page 110



ENTRY:

49834 /C2AA
49864 /C2C8
49866/C2CA
50217/C429
50220/C42C
50237/C43D
50248/C448
50251 /C448

50289/C471

50394 /C4DA
50485/C535
50571/C588
50619/C5BB
50633/05C9
50729/C629
50747/C638
50750/C63E
50777/C659
50798/C66F
50851/C6A3
50867/C6K3
51002/C73A
51013/C745
51093/C795
51151/C7CF
51154/C7D2
51157/C7D5
51281/C851
51309/C86D
51346/C892
51452/C8FC
51468/L90C
51507/€933

51631/C9AF
51658/C9CA
51753/CA29
51799/CA57

52054 /CB56
52069/CB65

COMPLETE & ESSENTIAL MAP

49834 - 52069

HANDLER/USE:

Process RESET

Perform Coldstart

Preset memory; cold/warm start continuation
Initialize cartridge software

Process ACMl interrupt

BOOT-ERROR message

Screen-editor specification; E:

Table of interrupt handlers in the same order
as RAM vectors at 512 - 549; $200 - $225
Miscellaneous initialization routines:
OPTION-key checked at 50330/8C49A

HBasic enabled at 50337/$C4Al

Hardware initialization

Software and RAM variable initialization
Attempt disk-boot

Boot and initialize disk

Complete boot and initialize

Execute boot leoader

Initialize booted software

Display BOUOT-ERROR message

Get next sector routine

Attempt cassette boot

Initialize D10; Disk 1/0

pP10; Disk T/0

Set buffer address

Relocate relocatable routine to new address
Handle end record type

Get byte

Execute Run-at-address

Handle text record

Relocate text into memory

Handle word reference record type

Handle low-byte and 1-byte record type
Select and execute Self-test

Initialize generic parallel device
Pl{O-Parallel device 1/0; PIO vector tables
(see 58368; SE400) begin at 51601; $C991
Sselect next parallel device

Invoke parallel device handler

Load and initialize peripheral handler
Start of the Self-test offsets and text
(uses hardware values for character display)
Checksum linkage table

Empty/zeroed

Page 111



COMPLETE & ESSENTIAL MAP

52224 - 53505

52224-53247 CCO0-CFFF CHARSET2

International character-set, assembled in the same manner as
the standard character-set at 57344 (SE000). There are 2
character-sets in the XL/XE, and you can change between thenm
with POKE 756,224 for the standard one and POKE 756,204 for
the 1international one. The only difference is the CTRL-key
characters. Standard gives you graphics characters, while
the international one gives you the phonetic symbols for
writing in other languages.

Locations 53248 - 55295 ($D000 - $D7FF) are the ROM special
I/0 Large—~Scale Integration (LSI) chips that give the XL/XE
it's power. There is the GTIA, POKEY, PIA and ANTIC. GTIA
uses 53248 - 53503 ($D000 - $DOFF), POKEY uses 53760 - 54015
($D200 - $D2FF), PIA uses 54016 - 54271 ($D300 - $D3FF) and
ANTIC wuses 54272 - 54783 ($D400 - $D5FF). For the most
extensive description of these chips, see the Atari Hardware
manual, or checkout my HARDWARE-CHIPS appendix.

Many of the following registers can't be read directly,
since they are hardware registers. Writing to them can often
be difficult because in most cases the registers are updated
every stage-1 or stage-2 VBlank. The values in these
locations are copied up from their shadow registers in RAM.
To affect any permanent change, you'll need to POKE the
shadow registers themselves. This way, the hardware
register/s will be wupdated at the next stage-1 or stage-2
VBlank. Defaults are returned on RESET by transferring the
appropriate values from the actual ROM in higher memory.
Another feature of the hardware memory is the dual purpose
of registers. Some registers are PEEKed for one purpose, but
POKEd to for a completely different purpose. For this
reason, you should avoid performing Basic expressions such
like: POKE 53248,PEEK(53248)+1. This will not consecutively
increment this memory location. Where a register is used for
2 different purposes, it is indicated with a (R) and a (W)
for READ and WRITE, respectively. Where (R) or (W) is on its
own, then this is all you can do; Read from it OR Write to
it.

53248-53505 DOOO-DOFF GTIA

GTIA is a special television interface <chip designed
exclusively for the Atari to process the video signal. ANTIC
controls most of the GTIA <chip functions. The GTIA chip
shifts the display 1/2 a colour-clock so that players and
playfields can overlap perfectly. This, however, results in
a very slight colour difference from the older CTIA chip
(wow) .

Page 112



COMPLETE & ESSENTIAL MAP

53248

GTIA modes don't normally offer a text-window, but there are
ways of obtaining one. For convenience, you can call your
GTIA mode and POKE 703,4. The text isn't readable like this,
but as I say, it gives the convenience of stopping program
execution without returning to a Graphics 0 screen. You
should also be able to get a full screen in any mode, by
adding 16 to the mode number prior to POKEing 703 with 4.
The Display memory for the window is 1-byte above the main
screen memory.

On the other hand, if you would like a readable text-window
in a GTIA mode, then you can achieve this with a DLI. See
the DLI appendix about this.

By the way, Mapping states that GTIA stands for "George'
Television Interface Adapter".

In the following 1list of hardware registers, the shadow
registers are enclosed in parentheses; you can see these
locations for additional information or programs in some
cases.

53248 Dooo (W) HPOSPO
(R) MOPF

(W) Horizontal position of Player #0. Values from 0 - 227
are possible here, but depending on the playfield size,
visible areas <change. In the standard width playfield (see
location 559), the left-edge to the right is 48 - 208. Other
positions are off-screen. POKEing the players to a
0-position is a way of affectively turning the players off
when not wusing PMBASE. See this 1location at 54279 for
further details.

The players are usually tall and thin. They are only 8-bits
wide, although, each bit can be echoed between 1 and 3
colour-clocks, see the SIZE registers. They stretch from the
very top of the screen to the very bottom, in single line
resolution the range is 32 - 224, in double line resolution
the range is 16 - 112, See the PMG appendix for full details
on Player/Missile Graphics.

As soon as you POKE this register with the horizontal
position for the player, this value is 'no longer'. You
cannot perform: POKE 53248,PEEK(53248)+1 to move the player,
you must keep a recorded position in RAM or in a variable.
Try:

10 POKE 53261,255:POKE 53256,1

20 XCO0=50

30 S=STICK(0)

40 POKE 53248, XCO

50 V=(S=7 AND (NOT XC0-227))-(S=11 AND (NOT XCO))
60 XCO=XCO+V

70 GOTO 30

Page 113



COMPLETE & ESSENTIAL MAP

53249 - 53252

For vertical movement of players/missiles, see the PMG
appendix.

(R) The PEEK purpose of this register is to detect Missile
#0 to playfield collision. This tells you which playfield is
in collision with missile #0:

BIT: DEC: USE:

7-4 unused. ..

3 8 Playfield #3
2 4 " #2
1 2 " #1
0 1 " #0

All the 4 HPOSP/M#PL registers take the same format as
described above. Also, see HITCLR at 53278 about
collisions.

53249 DOO1 (W) HPOSPI1
(R) MI1PF

(W) Horizontal position of player #1.
(R) Missile #1 to playfield collisions.

53250 D002 (W) HPOSP2
(R) M2PF

(W) Horizontal position of player #2.
(R) Missile #2 to playfield collisions.

53251 D003 (W) HPOSP3
(R) M3PF

(W) Horizontal position of player #3.
(R) Missile #3 to playfield collisions.

53252 D004 (W) HPOSMO
(R) POPF

(W) Horizontal position of missile #0. Missiles are alike
players, although are only made of 2-bits in width.

(R) Player #0 to playfield collisions. There can be some
confusion and problems wusing collision detection and
prioritizing in GTIA Graphics modes because the collision
playfields only apply to registers 53270 - 53273 ($D0O16 -
$D019). In Graphics 10, playfield colours are set by PCOLRO
- 3 (704 - 707) and they behave 1like players where
priorities are concerned. The background register also
changes from shadow register 712 to register 704.

In some cases, a player to playfield collision also shows up
in the P#PL register, because the registers in use are the
same.

Page 114



53253 - 53257

The bit wuse is exactly the same format as with the MOPF
collision register at 53248 except for Player #0 to
playfields.

53253 DOOS (W) HPOSM1
(R) P1PF

(W) Horizontal position of missile #1.
(R) Playver #1 to playfield collisions.

53254 DOO06 (W) HPOSMZ
(R) p2p¥

(W) Horizontal position of missile #2.
(R) Player #2 to playfield collisions.

53255 nGo7 (W) HPOSM3
(R) PIPF

(W) Horizontal position of missile #3.
(R) Playver #3 to playtield collisions.

53256 poos (W) SIZEPO
(R) MOPL

(W) Size of player #0. POKE wilh 0 or 2 for normal size, 1
for double width aud 3 for quadruple width. Each player can
have its own width, bit use is:

BIT: DEC: WIDTH:
7- unused., ..

1-0 0 0 0 Normal; 8 colour-clocks
1 0O 1 Double; 106 " "
2 I 0 Normal
3 1 1 Quadruple; 32 " "

(R) Missile #0 to player collisions. Again, the same format
as 53248 except for missiles to players.

53257 D009 (W) SITZEP]
(R) M1PL

(W) Size of player #1.
(R) Missile #1 to player collisions.

Page 115



COMPLETE & ESSENTIAL M

|2

P

53258 - 53261

53258 DOOA (W) SIZEP2
(R) M2PL

(W) Size of player #2.
(R) Missile #2 to player collisions.

53259 DOOB (W) SIZFKP3
(R) M3PL

(W) Size of player #3.
(R) Missile #3 to player collisions.

53260 boocC (W) SI1ZEM
(R) POPL

(W) Size of all 4 missiles; each missile only requires
2-bits each, so all these are set in just the 1-byte:

BIT: 76 54 32 10
M# -3- -2- -1- -0-

The size selection works the same way as in S1ZEPO at 53256,
except for the particular bit-pair, which denote the
missile#.

If you wanted to select double width in missiles #1 and #3,
then you would set bits 3 and 7, thus, give decimal values 8
+ 128 = 136.

BIT-pair:

0 and 0: normal size - 2 colour-clocks wide
0 and 1: double size - 4 " "

1 and 0: normal

1 and 1: Quadruple size - 8 " "

(R) Player #0 to player collisions. Again, the bit use is
alike all other collision registers, except for player #0 to
player collisions.

53261 DOOD (W) GRAFPO
(R) P1PL

(W) Graphics shape for player #0 written directly to the
player graphics register. 1In wusing these registers, you
bypass ANTIC. You only use the GRAFP# registers when you are
not wusing Direct Memory Access (DMA) (see GRACTL at 53277
for DMA).

Page 116



COMPLETE & ESSENTIAL MAP

53261 cont.

If DMA is enabled, then the graphics registers will be
toaded automatically each single or double scan-line with
the users given data, pointed to by PMBASE at 54279,

Without PMBASLE, the GRAFP# registers can only echo the same
"bit-shape' wvalue throughout the graphic (top to bottom).
For example:

10 POKE 574248,160:P0KE 704,245
20 POKE 53256,3
30 POKE 53261,PEEK(20):60TO 30

To remove the data from the screen, but retain the present
horizontal position ot the graphic, just POKE 53261 with 0.
Fach bit set in this register runs the entire height of the
screen  as  you'll see with the example program. The handy
thing with using the GRAFP# registers is that you can use a
PMG  for screen boundaries. You don't have to use PMBASE to
change the shape of a graphic either, if you just want to
create several blocks (with the same graphic) at different
positions on the screen, then you can use the following
program. This can also be very handy for selecting the
coloured bars to choose a menu opltion on the screen:

10 DATA 72,138,772

12 DATA 166,203,189,64,6,141,0,208
14 DATA 41,240,5,204,141,18,208

16 DATA 198,203,16,4,169,24,133,203
18 DATA 104,170,104,64

20 TFOR 1=0 TO 29

22 READ D:POKE 153641 ,D:NEXT |

30 FOR K=2 TO 28:1F K=4 THEN K=6

32 POKE DL+K,PEEK(DL+K)+128:NEXT K
40 POKE 704,120:POKE 203,24 :POKE 204,0
42 POKE 53256,3:POKE 53261,255

50 POKE 512,0:POKE 513,6

52 POKE 54286,192

60 FOR COL=0 TO 24

62 POKE 1624-COl.,48+COL*4 :NEXT COI.

The program is tairly straightforward; the DLl is POKEd into
wemory and the DI. has the DILI-bit set on every line. The DLIJ
uses location 203 as a line-count, so don't wuse this
tocation. Location 204 is a luminance control and
colour-shifter for the graphic. The 1line and colunmn is
achieved on lines 60 -~ 62 of the program. The column takes
the formula: 48+COLUMN*4, just substitute the column number
in the expression. The line that your on depends on the
memory location you POKE the column into. Locations 1600 -
1624 are used for the 24 on-screen lines and the position of
the graphic on the border. Note, that the lines are actually
reversed; hence, the top-line is at location 1624 and the
bottom-line is at 1601, Location 1600 is the border position
of the graphic.

Page 117



COMPLETE & KSSENTIAL_MAP
53262 - 53265
(R) Player #1 to player collisions.
53262 DOOE (W) GRAFPI

(R) P2PL

(W) Graphic for player #1.
(R) Player #2 to player collisions.

53263 DOOF (W) GRAFP2
(R) P3PL

(W) Graphic for player #2.
(R) Player 3 to player collisions.

53264 poto (W) GRAFP3
(R) TRIGO

(W) Graphic for player #3.

(R) Joystick trigger O (location 644). Controller jack 1,
pin-6. For all the triggers, 0 means trigger is pressed and
1 means released. It Bit-2 of GRACTL at 53277 is set to 1,
then all TRIG bit-0's are latched (set to 0) when any
trigger button 1is pressed, and are only reset to 1 (not
pressed) when the latch bit is cleared at GRACTL. This
affect of latching triggers is to return a 'constant button
pressed’' value until the latch-bit is cleared.

53265 DOl (W) GRAFM
(R) TRIGI

(W) Graphics for all missiles, not used with DMA (same as
players). GRAFM works in the same way as GRAFPO described
earlier. Each pair of bits represents one missile as
missiles are only 2-bits wide:

BIT: 76 54 32 10
M# -3~ -2~ -1- -0-
1
26 31

84 26 84 21

Each bit will create a vertical line down the TV screen. To
turn off any missiles, just disable (clear) the bit-pair for
the missile you wish to disable. If you wished to make
missile #3 2-bits wide and missile #1! just 1-bit wide, you
would set bits: 7, 6 and 3 (or bit-2 instead of 3); thus,
128 + 64 + 8 = 200. POKE 53265,200.

Page 118



COMPLETE & ESSENTIAL MAP

53266 - 53271

(R) Joystick trigger 1 (645). Controller jack 2, pin-6.

53266 D012 (W) COLPMO
(R) TRIG2

(W) Colour and luminance of player and missile #0 (704).
Missiles share the same colours as their associated players,
except when joined together to make the 5th player with
bit-4 of GPRIOR (623), in which case, the 4-missiles then
assume the colour stored at location 53733 (711).

(R) TRIG2; No longer used.

53267 DO13 (W) COLPM1
(R) TRIG3

(W) Colour and luminance of player and missile #1 (705).
(R) TRIG3; No longer used.

53268 Do14 (W) CcoLPM2
(R) PAL

(W) Colour and luminance of player and missile #2 (706).

(R) Denotes whether your Atari is PAL (European and Israeli
TV compatible when value here is 0) or NTSC (North American
compatible when value here is 13). PAL Atari' TV frames are
refreshed every 50th of a second (12% slower than NTSC),
where NTSC refreshes its frames every 60th of a second. For
this reason, the 6502 microprocessor in PAL Atari' works at
2.217 MHz, which is 19% faster than the 1.79MHz NTSC 6502.
Also, their $E000 and $F000 ROMS are different, so there may
be some incompatibilities in the cassette handling routines.
There is a 3rd TV standard called SECAM, used in France,
USSR and parts of Africa. If Atari supports SECAM, I don't
know. See the PAL/NTSC appendix.

53269 DO15 COLPM3

(W) Colour and luminance of player and missile #3 (707).

53270 D016 COLPFO
(W) Colour and luminance of playfield #0 (708).
53271 D017 COLPF1

(W) Colour and luminance of playfield #1 (709).

Page 119



COMPLETE & ESSENTIAL MAP

53272 - 53276

53272 po18 COLPF2

(W) Colour and luminance of playfield #2 (710).

53273 bo19 COLPF3

(W) Colour and luminance of playfield #3 (711). This is also
the 5th player colour register COLPM5.

53274 DO1A COLBK

(W) Colour and luminance of playfield #4/border (712).

53275 DO1B (W) PRIOR

(W) Priority selection register. PRIOR establishes which
objects on the screen (players, missiles and playfields)
will be in-front of other objects. Values here are also
described at 623; $26F, the shadow register. If you set
multiple bits, then conflicting priorities at the same level
turn black in overlapping regions:

BIT: 3 2 1 0

DEC: 8 4 2 1
PRIORITY:

HIGH PFO PFO PMO PMO

PF1 PF1 PM1 PM1

o PF2 PFO PM2

PM1  P5/PF3 PF1 PM3

PM2 PMO PF2 PFO

PM3 PM1  P5/PF3 PF1

PF2 PM2 PM2 PF2

P5/PF3 PM3 PM3  P5/PF3

LOw BAK/G BAK/G BAK/G BAK/G

For example; if you set bits 3 and 1, then PMO and 1 will
blackout with PFO and 1 of the same level. This is what you
could call a power cut.

(R) Reset to 15.

53276 ~ boic VDELAY

(W) Vertical delay register. Used to give | line resolution
movement capability in the vertical positioning of an object
when the 2 line resolution display is enabled. Setting a bit
in VDELAY to 1 moves the corresponding object down 1 TV
scan—-line.

Page 120



COMPLETE & ESSENTIAL MAP

53277 - 53278

If DMA is enabled, then moving an object by more than 1 line
is accomplished by moving bits in the memory map instead,
see the PMG appendix. -

BIT: 7 6 5 4 3 2 1 0
DEC: 128 64 32 16 8 4 2 i
PM#: P3 P2 P1 PO M3 M2 M1 MO

(R) Reset to 15.

53277 DO1D GRACTL

(W) Used with DMACTL at 54272; $D400, to latch all stick and
paddle triggers. Also used to turn on players and missiles.
Bit use is:

BIT: DEC: USE:

0 i Turn missiles on
1 2 Turn players on
2 4 Latch all trigger inputs

To revoke P/M authorization and turn off both players and
missiles, POKE 53277 with 0. Once latched, triggers will
give a continuous 'button pressed' status until this latch
bit is cleared (set to 0).

1f you've ever pressed BREAK during a game using
player/missile graphics, then you'll have noticed that the
players/missiles are still 1left on screen, and in some
cases, they turn into flickering blocks. You can get rid of
this junk by POKEing O into this location or by POKEing 559
with 34. If for some reason, it does not dissappear, then
there is an active interrupt working; POKE 580,0 and hit
RESET should do the trick. You can also use POKE 623,4 to
prioritise playfields over players and missiles.

(R) Reset to 15.

53278 DO1E HITCLR

(W) POKE with any value to clear all player/missile
collision registers. It is important to clear this register
often in a program which frequently checks for collisions,
otherwise, o0ld collision values may remain and confuse the
program. A simple way to accomplish this is to clear the
collision registers prior to every joystick check, this way,
if a <collision is detected, then it is due to the most
recent joystick input.

(R) Reset to 15.

Page 121



COMPLETE & ESSENTIAIL MAP

53279 - 53503

53279 DO1F CONSOL

(W/R) Used to see if any of the silver consol keys have been
pressed, although, not RESET and HELP. For Reset, see
locations 10 and 11, see location 732 for the HELP key.

Depending on which key you press from OPTION, SELECT or

START, a value is returned to this register as shown in the
table:

KEY/S PRESSED: DEC:
OPTION SFELECT START

yes yes yes 0

yes yes no 1

yes no yes 2

yes no no 3

no yes yes 4

no yes no 5

no no yes 6

no no no 7; Default

CONSOL is normally 7 (no keys pressed) and is updated every
stage—-2 VBlank. The OPTION key is also used to disable Basic
by holding it down while turning-on your Atari XL/XE. You
should normally only need to hold OPTION down until the
blue-screen appears, or just a couple of seconds.

It is possible to wuse the consol speaker to generate
different sounds, try the following program:

10 DATA 104,162,255,169,255,141,31,208
20 DATA 169,0,160,240,136,208,253

30 DATA 141,31,208,160,240,136,208,253
40 DATA 202,208,233,96

50 FOR I=0 TO 26

60 READ D:POKE 1536+1,D:NEXT 1

70 X=USR(1536)

To change the tone, you POKE 1547 and 1555 with a higher or
lower value (both are presently 240). To change the tone
duration, you POKE 1538 with a lower value (it's set to
255). Apart from changing the tone, you can also create some
wicked sways in the notes, for example, try POKE 1546,164 -
POKE 1547,20 and POKE 1555,80. You could also put the
program in an endless loop with a GOTO 70 statement for a
fuller sounding affect.

53280-53503 D020-DOFF REPEAT MEMORY

These 1locations are repeats of locations 53248 - 53279
($D000 - S$DO1F). Mapping states that you cannot use these
locations, but 1in fact, you can. Whether or not, they hold
any other secrets, I don't know for sure. They appear to be
exactly 'timed' repetitions of the earlier locations.

Page 122



COMPLETE & ESSENTIAL MAP

53504 - 54015
53504-53759 D100-D1FF

Unused by the 0S, this area is switched out when an external
device connected to the expansion bus is selected and the
device memory is switched in. The situation is reversed when
the device 1/0 is completed:

53504-53758 D100-DIFE Device registers

53504 D100 Hardware get and put register
(HWGET/HWPUT) data from the
device on the bus is stored here

53505 D101 Hardware RESET and status register
(HWRSET = write; this resets
the get/put register HWSTAT
for read)

53759 DIFF Hardware select register, shadow
byte is 583 ($247). Bit-0 is
device-0, Bit-1 is device-1 etc.
Writing to this byte deselects
the FP ROM and selects device ROM
(try looking at it and
subsequent locations with MAC/65's
DDT or a similar tool while
altering $H1FF)

This area is normally $FF'd (completely comprised of 255's)
and is not alterable at all.

53760-54015 D200-D2FF POKEY

POKEY 1is a digital I1/0 <chip that controls the audio
trequency and control registers; frequency dividers, poly
noise counters, pot (paddle) controllers, the randem number
generator, keyboard scan, serial port 1/0 and the IRQ
interrupts.

The AUDF# (audio frequency) locations are used for the pitch
for the corresponding sound channels, while the AUDC# (audio
control) locations are the volume and distortion values for
those same channels.

Frequency values range from 0 - 255, although the value is
increased by | by the computer to range from I to 256. Note,
that the sum of the volumes should not exceed 32, since
volume is controlled by the 1least 4-bits, volumes also
distort if the sum of all the channels output volumes to the
speaker 1is greater than 32 because POKEY only controls the
speaker cone at 16 different positions from resting position
(inclusive). The range is set from O - 15. You can POKE it
with 16 (Volume only, Bit-4) and a sound will be forced out
(the speaker cone gets pushed out to its furthest position
causing a slight 'pop' sound). The highest 3-bits are used
for distortion: 192 gives pure-digital tone, other values
range from 32 - 192 in steps of 16.

Page 123



COMPLETE & ESSENTIAL MAP

53760 - 53761

The AUDF# registers are also used as the POKEY hardware
timers. These are generally used for counting intervals less
than 1 VBlank (see the explanation in VTIMR4 at 532,533).
For longer intervals, use the software timers.

VBl's and DLI's occasionally have painful results if they
conflict with the hardware interrupts. These results can
occur if your DLI's are too long, the 6502 interrupt flag is
not set or a STA WSYNC occurs at an awkward time.

POT values are for paddles, ranging from 0 - 228, increasing
as the knob is turned counterclockwise, but values less than
40 and greater than 200 represent an area on either edge of
the TV screen that may not be visible on all TV sets or
monitors.

53760 D200 (W) AUDF1
(R) POTO

(W) Audio channel-1 frequency. This is actually a number (N)
used in a "divide by N circuit"; which, for every N pulses
coming 1in (as set by the POKEY clock), 1 pulse goes out. As
N gets larger, output pulses will decrease and the sound
produced will be of lower tone. As N gets lower, the reverse
happens.

Try POKE 53761,168 and POKE 53760,200. This is the same as
the Basic SOUND statement: SOUND 0,200,10,8.

(R) POT (paddle) O (624); POT is short for potentiometer
(variable resister). Turning the paddle knob clockwise
results in decreasing pot values. When reading paddles in
machine-language, the POT values are only valid 228 scan
lines after the POTGO command, or after ALLPOT changes (see
53768 and 53771).

POT registers continually count down to 0, decrementing
every scan line. They are reset to 228 when they reach 0 or
by the values read from the shadow registers. This makes
them wuseful as system timers too. COMPUTE!, February 1982
shows this use.

The POTGO sequence (see 53771) resets the POT registers to
0, then reads them 228 scan lines later. For the fast
pot-scan, Bit-2 of SKCTL at 53775 must be set.

53761 D201 (W) AUDC1
(R) POT1

(W) Audio channel-1 control. Each AUDF register has an
associated control register which sets volume and distortion
levels. The bit use is:

BIT: 7 6 5 4 3 2 1 0
DEC: 128 64 32 16 8 4 2 1

Page 124



COMPLETE & ESSENTIAL MAP

53762 - 53763

Distortion Volume Volume

(noise) only level

0 0 0 0 0 0 0 o Lowest

0o 0 1 0 o0 0 1

etc.to: etc.to:

| I T | 1 11 1 1 Highest
Forced
output

The values for the distortion bits are as follows. The 1st
process is to divide the clock value by the frequency, then
mask the output wusing the polys in the order below, and
finally, the result 1is divided by 2. The various sound
affects are also given, they vary depending on low or high
frequencies:

BIT: BIT-POLYS: DISTORTION

765 Low freq. to high:

000 5 then 17 geiger-counter to steam

001 5 machine-gun to power—-transformer
010 5 then 4 calm—fire to car-engine

011 5 machine-gun to power-transformer
1 00 17 crashing~building to waterfall

1 01 none pure tones

110 4 airplane to electric-razor

1 1t none pure tones

In general, the tones become more regular (a recognizable

droning becomes apparent) with fewer and lower polys masking
the output. This is all the more obvious at low frequencies.
POKE with 160 or 224 plus the volume for pure tones. De Re
Atari gives a good explanation of sound.
(R) POT-1 register (625).
53762 D202 (W) AUDF2

(R) POT2

(W) Audio channel~-2 frequency. Also used with AUDF3 to store
the 19200 baud rate for S10.

(R) Pot-2 (626).

53763 D203 (W) AUDC2
(R) POT3

(W) Audio channel-2 control.
(R) Pot-3 (627).

Page 125



COMPLETE & ESSENTIAL MAP

53764 - 53768

53764 D204 (W) AUDF3
(R) POT4

(W) Audio channel-3 frequency. Used with AUDF2 and AUDF4 to
store the 600 baud rate for SIO.

(R) Pot-4. Since there are no more than 4 Paddles on the
XL/XE series, POT's 4 ~ 7 are repeats of POT's 0 - 3.

53765 D205 (W) AUDC3
(R) POT5

(W) Audio channel-3 control.
(R) POTS; repeat of POT-1.

AUD#2 and 3 <can be altered in a program to point to AUD#6
and 7 to have stereo output if you have made the stereo
upgrade in your Atari. See the STEREO appendix for full
information. It's well worth the modification.

53766 D206 (W) AUDF4
(R) POT6

(W) Audio channel-4 frequency.
(R) POT6; repeat of POT-2.

53767 D207 (W) AUDC4
(R) POT?

(W) Audio channel-4 control.
(R) POT7; repeat of POT-3.

53768 D208 (W) AUDCTL
(R) ALLPOT

(W) Audio control. To properly initialize the POKEY sound
capabilities, POKE AUDCTL with 0 and POKE 53775,3. These 2
POKEs are the equivalent of Basics SOUND 0,0,0,0. AUDCTL is
the option byte which affects all sound channels. This bit
asignment is:

BIT: DEC: DESCRIPTION:
7 128 Makes the 17-Bit poly into a 9-Bit poly
(see below)

6 64 Clock channel-1 with 1.79MHz

5 32 Clock channel-3 with 1.,79MHz

4 16 Join channels 1 and 2 (16-Bit)

3 8 Join channels 3 and 4 (16-Bit)

2 4 Insert High-pass filter into channel-1, clocked
by channel-3

1 2 Insert High—-pass filter into channel-2, clocked
by channel-4

0 1 Switch main clock-base from 64KHz to 15KHz

Page 126



COMPLETE & ESSENTIAL MAP

53768 cont.

Poly (polynomial) counters are used as a source of randon
pulses for noise generation. There are 3 polys; 4-Bits,
5-Bits and 17-Bits 1long. The shorter polys create more
repetitive sound patterns, while the 1longer poly has no
apparent repetition. Therefore, setting Bit-7 above, making
the 17-Bit poly into a 9-Bit poly will make the pattern in
the distortion more evident. You select which polys you wish
by setting the high 3-Bits in the AUDC# registers. The
17-Bit poly is also used to generate the random—-number at
location 53770; S$D20A.

The clock-bits allow you to speed-up or slow-down the
clock-timers, respectively, making higher or lower frequency
ranges possible. Setting the channels to 1.79MHz will
produce a very much higher sound, the 64KHz clock is far
lower, while the 15KHz clock is the lowest. The main-clock
is also used when setting the frequency for the
hardware-timers.

Bits 3 and 4 (decimal 8 and 16) allow you to combine
channels 1 and 2, or 3 and 4 to obtain much higher or lower
frequencies within a 9-octave range, instead of the usual 5.
Try the following exampie:

10 POKE 53768,80

20 POKE 53761,160:POKE 53763,168

30 POKE 20,0:POKE 19,0

40 POKE 53760,PEEK(20):POKE 53762,PEEK(19) :G0TO 40

lf you have a set of paddles, then you can use them to alter
the frequency, just substitute line 40 for:

40 POKE 53760,PADDLE(O) : POKE 53762,PADDLE(1):GOTO 40
Or, if you only have a joyslick:

40 S=STICK(O)

50 F=(S=7 AND (NOT X-255))-(S=11 AND X)
60 C=(S=13 AND(NOT Y-255))-(S=14 AND Y)
70 X=X+F:Y=Y+C

80 POKE 53760,X:POKE 53762,Y:G0TO 40

Where the left paddle (stick left and right) is for fine
adjustment and the right one (stick up and down) is for
coarse adjustment.

High-pass filters only allow frequencies higher than the
clock value to pass through, which 1is very handy for
creating dynamic sounds with no updates. This method is also
handy for making special affects:

10 POKE 53768,4

20 POKE 53761,168:POKE 53765,168
30 POKE 53760,254:POKE 53764,127
40 GOTO 40

Page 127



COMPLETE & ESSENTIAL MAP

53769 ~ 53770

Break the program and do a POKE 53768,5. Now, try POKE
53764,255. The possibilities are wide and varied.

There 1is a very good sound article in De Re Atari, and the
Hardware manual is worth seeing.

The actual frequencies described pre-leaf are all rounded
off; 64KHz is actually 63.921 KHz, 15KHz is really 15.6999
KHz and 1.79MHz is 1.78979MHz. You can correctly calculate
the POKEY interrupt frequency with:

INTFREQ = clock-freq / (2 * (1 + AUDF# value))

See COMPUTE!'s 3rd book of Atari, or the VOLUME-BIT appendix
in this book.

(R) ALLPOT; 8-line POT port state; reads all 8 POTs
together. The lower 4 bits represent the paddles of the same
number, the higher 4-bits are repeats of the lower 4. Bits
are set to 1 if valid (paddle in use). ALLPOT is used with
the POTGO command at 53771; $D20B.

53769 D209 (W) STIMER
(R) KBCODE

(W) Start the POKEY timers (the AUDF registers). You POKE
any non-zero value here to load and start the timers; the
value itself isn't used in the calculations. This resets all
of the audio frequency dividers to their AUDF values. If
enabled by IRQEN below, these AUDF registers generate timer
interrupts when they count down from the number you POKEd
there to 0. The vectors for the AUDF1, AUDF2 and AUDF4 timer
interrupts are located between 528 and 533; $210 - $215.

(R) KBCODE holds the keyboard code which is then loaded into
the shadow register 764; $2FC when a key is hit. Usually
read in response to the keyboard interrupt. Compares the
value with that in CH1 at 754, and if both the values are
the same, then the new code is accepted only if a suitable
key debounce delay has transpired. The routines which test
to see if the. keycode will be accepted start at 64537;
$FC19.

53770 D20A (W) SKREST
(R) RANDOM

(W) Reset bits 5 - 7 of the serial port status register at
53775 to 1.

Page 128



COMPLETE & ESSENTIAL MAP

53771 - 53773

(R) RANDOM; When this location is read, it acts as a random
nunber generator. [t reads the high order 8-Bits of the
17-Bit polynomial counter (9-Bit if Bit-7 of AUDCTL is set)
for the value of the number. You can PEEK this register in a
program to generate a random integer between 0 - 255. If you
want a random number between 0 -~ 65535, Lhen you can use: ?
PEEK(53786)*256+PEEK(53770). The Basic equivalent uses the
INT and RND statements as: ? INT(RND(0)*65536).

53771 D20B POTGO

(W) Start the POT scan sequence. You must read your POT
values 1Ist and then start the scan sequence, since POTGO
resets the POT registers to 0. Written by the stage-2
VBlank.

53772 D20C

Unused and unalterable; set to 255. Most of the hardwares
unused memory is set to 255,

53773 D20D (W) SEROUT
(R) SERIN

(W) Serial port data output. Usually written to in the event
of a serial data out interrupt. Writes to the 8-Bit (1-byte)
parallel holding register that is transferred to the serial
shift register when a full byte of data has Dbeen
transmitted. This 'holding' register is used to contain the
bits to be transmitted 1 at a time (serially) as a 1-byte
unit before transmission.

(R) Serial port input. Reads the 1-byte parallel holding
register that 1is loaded when a full byte of serial input
data has been received. As above, this holding register is
used to hold the bits as they are coming in I at a time
until a full byte has passed. This byte is then taken by the
computer for processing. Also used to verify the checksum
value at location 49; $31.

The serial bus is the port on the Atari into which you plug
the cassette or disk cable. For the pin descriptions, see
the PINOUTS appendice.

Page 129



COMPLETE & ESSENTIAL_MAP

53774

53774 D20E (W) TRQEN
(R) IRQST

(W) Interrupt request enable. POKE with 0 to turn off all
interrupts, or with the appropriate values to enable the
desired interrupt. Bit use is:

BiT: DEC: INTERRUPT: VECTOR:
0 1 Timer-1 enable VTIMRI1
528; $210
1 2 Timer-2 " VTIMR2
530; $212
2 4 Timer-4 " VTIMR4
532; $214
3 8 Serial O/P transmitted VSEROC
526; $20E
4 16 Serial 0/P data needed VSEROR
524; $20C
5 32 Serial 1/P data ready VSERIN
522; $20A
6 64 Other—-key enable VKEYBD
520; $208
7 128 Break-key " BRKKY
566; $236

When a bit is set or cleared, that interrupt is enabled or
disabled. For example, if you enable the ©break key
interrupt, the vector BRKKY is only taken when the break key
is pressed. When you set the timer interrupts, then their
associated timers are decremented, and when they reach 0,
the Atari vectors through its associated interrupt vector.
These timer bits are not set on power—-up, so should be set
by the user before enabling the processor IRQ.

There is 1 other interrupt, processed by PIA, generated over
the serial bus proceed and interrupt lines, set by PACTL at
54018; $D302. See this register for further details.

(R) IRQST; Interrupt request status. Bit functions are the
same as IRQEN except that they register the interrupt
request status; ie. timers are read as 1 when they count
down and reach 0, rather than the enable bit when it is set.
IRQST is wused to determine the cause of the interrupt
request with IRQEN and PACTL described above.

All IRQ interrupts are normally vectored through 65534;
SFFFE to the 1IRQ service routine at 49196; $C02C which
determines the cause of the interrupt. The IRQ global RAM
vector VIMIRQ at 534; $216 ordinarily points to the IRQ
processor at 49200; $C030. This processor routine then
examines 53774; $D20E and the PIA register 54018 to
determine the cause of the interrupt. Once determined, the
routine vectors through 1 of the IRQ RAM vectors on Page-3.

Page 130



COMPLETE & ESSENTIAL MAP

53775

53775 D20F (W) SKCTL
(R) SKSTAT

(W) Serial port control. Holds the value 255 if no key is
pressed, 251 for most other keys, 247 for the shift key.
This also stores the help key detection, the help key, when
read here, also has the auto-repeat feature. POKE with 3 to
stop the occasional noise from the cassette unit after 1/0
to bring POKEY out of 2~tone mode. Shadow register is 562.
See SKSTAT also, for bit use.

(R) SKSTAT; reads the serial port status. It also returns
values governed by a signal on the digital track of the
cassette tape. You <can generate certain values using the
SOUND command and a PEEK to SKSTAT: SOUND 0,5,10,15 returns
a value of 255 here, but 127 on occasion. SOUND 0,8,10,3
returns a value of 239. This is handy for adding a voice
track to your Atari tapes. You use the left channel for your
voice track and the right channel for the tones you want to
use as cueing marks. You can use your TV speaker to generate
the tones by placing a microphone directly in front of it.
The computer will register these tones in this register when
it encounters them in a later cassette load. See COMPUTE!,
July 1981 for some other ways of doing this. Remember, you
can turn the cassette off by POKE 54018,60 and back on with
a value of 52,

SKCTL bits are normally O and perform the functions below
when set. The status when used as SKSTAT (R) are also listed
here, below the (W) function:

BIT: DEC: MODE/FUNCTION:

0 1 (W) Keyboard debounce circuit enable
1 2 (W) Keyboard scanning circuit "
(R) Serial I/P shift register busy
2 4 (W) Fast pot-scan enable; the pot-scan counter

completes its sequence in 2-~TV scan-lines
instead of l1-frame time (228 scan-lines)
not as accurate as the normal pot-scan
(R) Last key is still pressed
3 8 (W) Serial O/P is transmitted as a 2-tone signal
rather than logic on/off. POKEY 2-tone mode
(R) Shift key is pressed

4,5,6 (W) Serial port mode control, see next page

4 16 (R) Audio I/P; data can be read here
ignoring the shift register

5 32 (R) Serial data I/P over-run, see next page

6 64 (R) Keyboard over-run, see next page

7 128 (W) Force break; serial O/P to 0

(R) Serial data I/P frame error caused by
missing or extra bits, see next page

Page 131



COMPLETE & ESSENTIAL MAP

53776 - 54015

Bit-2 is 1st set- to 0 to reset POT registers to 0O (dumping
the capacitors to change the POT registers). Then Bit-2 is
set to 1 to enable the fast scan. This is not as accurate as
the normal scan. This Bit wmust be reset to 0 to enable
normal scan-mode; otherwise, the capacitors will never dump.
This Bit has also been used in a small machine-language
routine in the Atari' Graphics demo-disk. With a few other
locations, it can be wused to achieve full colour GTIA
photograph displays as it 1is done on this demo-disk. You
should be able to get hold of the disk at various
PD-libraries.

Write (W) bits 4, 5 and 6 are used to set the bi-directional
clock-lines so that you can either receive external
clock-data or provide <clock-data to external devices; see
Hardware manual p.I1.27. There are 2 pins on the serial port
for Clock—-IN and Clock-OUT. See the 0S Users manual p.146.
The whole of section-9 describes this area. Bits 5 and 6 are
listed the other way round in Mapping and most other
manuals, and in fact they are wrong. The bit assignment in
this book is the correct one; see Page-6 mailbag, issue 60.
Bits 5 -~ 7 (latches) can also be reset to 1| by using SKRES
at 53770; $D20A.

53776-54015 D210-D2FF REPEAT-MEMORY

These locations are repeats of locations 53760 - 53775,
although, you will find that many of them have different
default values when PEEKing them. Enter Basic and try this
program:

10 DL=PEEK(560)+256*PEEK(561)
20 POKE DL+4,0:POKE DL+5,210

You should see all the (R) locations. The Random number is
different for all its repeated locations, and if you press a
key and hold it down, particular groups of locations
flicker. These groups are the same locations, only repeats,
but they have different default values.

53776-53791 D210-D21F POKEY2

If you've got the stereo sound upgrade in your Atari, then
these locations are the new AUD# registers etc., see the
STEREQ appendix for complete details.

Page 132



COMPLETE & ESSENTIAL MAP

54016

54016-54271 D300-D3FF PIA: 6520

The peripheral interface adapter (PIA) integrated circuit is
a special microprocessor used to control the Atari ports,
controller jacks | and 2. Ports can be used for both input
and output simultaneously or alternately. The ports can be
used, and are used for a4 wide variety of purposes on the
XL/XE series; from a thermostat control to a video-camera
input or speech/music digitizing. These ports are a major
resource for external and internal control and expansion.
PIA also processes ROM configurations at 54017; $D301, and 2
of the IRQ interrupts: VPRCED and VINTER, vectored at
locations 514 - 517; $202 - $205. These interrupts are not
used by the 0S, but do provide greater control over external
devices.

54016 D300 PORTA

(W/R) Reads or writes data from controller jacks 1 or 2 if
Bit-2 of PACTL is set to 1. Writes to 'direction-control' if
Bit-2 of PACTL is O.

This register also controls the direction of data-flow to
the port, if the controller register PACTL has bits 4 and 5
set (POKEd with 48), then, if the bits here read 0, it is in
input (R) mode; if they read 1, then it is in output (W)
mode. A O POKEd here makes all bits input, a 255 makes all
bits output. Bits 0 - 3 address pins 1 - 4 on jack 1, while
bits 4 - 7 address pins 1 - 4 on jack 2. POKE 54018 with 52
to make this register into a data register again. Shadow
registers are 632; $278 for STICK(0), 633; $279 for STICK(1)
and 636 ~ 639; $27C - $27F for PTRIGO-3.

Bits used as a data-register:
7 6 5 4 3 2 1 0

--Jack-0-- --Jack-1--

~STICK(0)- -STICK(1)-

Forward: Bits 0 and 4 = 1
Backward: 1" 5 = 4
Left: 20" 6 =1
Right: "3 " 7 =1
Neutral: All 4 jack bits =1

PORTA is also used to test if the paddle 0 - 3 triggers
(PTRIG) have been pressed, using these bits:

BIT: 7 6 5 4 3 2 1 0
PTRIG: 3 2 - -1 0 - -

Page 133



COMPLETE & ESSENTIAL MAP

54017

The PORTA register is also used in the keyboard controller
(used with a keypad) operation where:

BIT: 7 6 5 4 3 2 1 0
ROW: 4 3 2 TOP 4 3 2 TOP
JACK: ...... 2000000 ... 1......

Columns for the keyboard operation are read through the POT
(PADDL) and TRIG registers. See micro, May 1982 and the
Hardware manual for more information on jacks and ports.

54017 D301 PORTB

(W/R) Since the XL/XE series no longer have a PORTB (on the
old Atari', this was for ports 3 and 4, giving 4 joysticks!
Why ever did Atari drop the 4 ports?), this register is used
for 1200XL LED control, 130XE bank switching as well as
XL/XE memory management in particular.

You can disable the ROM between 49152 - 53247; $C000 - SCFFF
and 55296 - 65535; $D800 - SFFFF by clearing Bit-0 to O.
These 2 ROM areas are switched-out and RAM is switched-in.
Note, that the Hardware memory between $D000 - S$D7¥F remains
intact and is not switchable. When you do switch the
ROM-out, wunless another 0S has been provided, the system
will crash at the next interrupt (a maximum of 1/50th second
later), for this reason, if you do switch this ROM out for
another ROM, you should disable all NMI and IRQ interrupts.
Do this with:

LDA #$0
STA $D40OE ;disable NMI's
SEI ;disable IRQ's

Bit-1 controls Basic; If 0, Basic is enabled, if 1, then it
is disabled and the 8K region between $A000 - $BFFF is
available as RAM. If you disable Basic from within a Basic
program using any Basic keyword, then the system will
lock-up.

Bits 2 and 3 control the 1200X1 LED'; O means on and 1 means
off. LED-1 1is the keyboard enable/disable; LED-2 is the
character-set selected. 1In the 130XE, these bits are used
for bank switching 16K blocks of RAM. You can use this extra
memory as video memory or program/data memory. See the 130XE
BANK-SWITCHING appendix.

Bits 4 - 6 are unused in the XL' and 65XE. In the 130XE,
bits 4 and 5 are used to enable bank switching.

Page 134



COMPLETE & ESSENTIAL MAP

Bit 7 <controls the RAM region 20480 - 22527; $5000 - $57FF
which is normally enabled (set to 1). When this bit is
cleared to 0, the OS-ROM in this area is enabled and access
provided to the Self-test code moved from 53248 - 55295;
$D000 - $D7FF (under the Hardware memory).

Try this: POKE 54017,PEEK(54017)~-128 to enable the Self-test
ROM. Now type X=USR(20480). The Self-test screen appears.
The RAM in this area 1is restored on Reset/warmstart or
cold-start. Of course, you really only have to type BYE in
Basic to access the Self-test routine, but when you enter
the Self-test this way, the system also sets the COLDSTart
flag at location 580 to 255, so pressing Reset actually
coldstarts the system.

Here's a program from Joe Miller of Koala technologies which
copies the OS-ROM in 2 portions (skipping the $D000 - $D7FF
block) into RAM, disables the ROM, and then moves the 0S
back to its original address area, but giving a RAM-0S:

100 REM RAMROM - Install RAM-based

110 REM 0SS in an XL/XE computer

120 REM by Joe Miller

130 REM March 23rd, 1985

180 REM

190 ? CHRS$(125)

200 ? "Moving OS-ROM into RAM...";

205 RESTORE 300

210 FOR I=1536 TO 1635

220 READ B:POKE I,B:NEXT I

230 X=USR(1536)

240 ? "0OS moved back to original"

250 ? "area, but is now RAM-0S."

260 ? "Press RETURN for a proof-test";
? 7

280 ? "POKE 57344,1

290 POSITION 2,5

300 DATA 169,0,133,203,133,205,169,192
310 DATA 133,204,169,64,,133,206,160,0
320 DATA 177,203,145,205, 200, 208, 249
330 DATA 230,206,230,204,240,12,165,204
340 DATA 165,204,201,208,208,237

350 DATA 169,216,133,204,208,231,8,120
360 DATA 173,14,212,72,169,0,141,14,212
370 DATA 173,1,211,41,254,141,1,211

380 DATA 169,192,133,206,169,64,133,204
390 DATA 177,203,145, 205,200,208, 249
400 DATA 230,204,230,206,240,12,165,206
410 DATA 201,208,208,237,169,216,133,206
420 DATA 208,231,104,141,14,212,40,104,96

Page 135



COMPLETE & ESSENTIAL_MAP

You can make this program into an
changing the 1loop at 1line 1610 to:

AUTORUN.SYS file by
FOR I=1536 to 1634,

removing the last occurrence of the number 104 in line 420

and deleting the USR call at line 230.

Re-run the progranm,

and then goto DUS and wuse the Binary-save option K,

type:

Filename.ext,0600,0662,0600

This way, every time you boot this disk up,
become a RAM-0S occupying the same area of memory it usually

does. Here's the Source listing:

iMove XL 0S ROM into RAM

s RAMROM-Installs the XL ROM-based 0S
yin RAM at the same address space. This
;is useful for making small patches to
;the 0S or for experimenting with new-
1design concepts such as; multi-tasking
;or window management etc..

by Joe Miller
;This version is configured as an
sAUTORUN.SYS file

s
SOURCE EQU $CB ;Page-0 useage
DEST EQU SOURCE+2
START EQU $0600 ystart addr
OSROM EQU s$CO000 ;0S-ROM start
OSRAM EQU $4000 ;ROM dest addr
NMEIN EQU $D4OE ;NMI register
PORTB EQU $D301 ;Memory CTL

ORG START

LDA #low OSROM

STA SOURCE

STA DEST ;init copy addr

LDA #high OSROM

STA DEST+1

LDY #0

;repeat

PASS! LDA (SOURCE),Y ;copy ROM - RAM

STA (DEST),Y

INY

BNE PASS1

INC DEST+1

INC SOURCE+1

BEQ SWAP ;if done

Page 136

the ROM-0S will



COMPLETE & ESSENTIAL MAP

LDA SOURCE+1

CMP #$DO

BNE PASS1 ;skip D-block

LDA #$D8

STA SOURCE+1

BNE PASS1 yuntil SOURCE=$0000
SWAP PHP ;save proc.stat

SEI ;disable IRQ'

LDA NMEIN

PHA ;save NMEIN

LDA #$O

STA NMEIN ;disable NMI'

LDA PORTB

AND #S$SFE ;disable ROM'

STA PORTB ;BASIC unchanged

LDA #high OSROM

STA DEST+1 ;setup block copy

LDA #high OSRAM
STA SOURCE+1
srepeat
PASS2 LDA (SOURCE),Y ;return 0S
STA (DEST),Y

BNE PASS2

INC SOURCE+1 ;next page

INC DEST+1

BEQ ENABLE ;when complete

LDA DEST+1

CMP #$DO

BNE PASS2 ;skip D-block

LDA #$D8

STA DEST+1

BNE PASS2 suntil DEST=$0000
ENABLE PLA

STA NMEIN ;enable NMI'

PLP ;enable IRQ'

END START

Altering the ROM-0S into a RAM-0S can be a REAL bonus,
because now that the 0S is RAM, you can alter anything you
like; you <can alter any of the 2 character-sets in the
original locations, thus, saving 2K of memory, you could
re-write the handlers, interrupts or any other routine you
desire. For a Reset-key trap, see the PROGRAMS appendix.

As well as turning the ROM-0S into a RAM-0S, you can also
switch the ROM Basic and Self-test to their RAM equivalents
residing in their original locations of course. The program
on the next page will perform these tasks:

Page 137



COMPLETE & ESSENTIAL MAP

54018

The program 1in its present form will enable the Self-test
ROM, transfer it into RAM, switch the Self-test ROM into RAM
and copy the Self-test package from lower RAM, back up into
its original locations:

10 DATA 173,1,211,41,127,141,1,211

12 DATA 169,80,133,204,169,40,133,206

14 DATA 169,0,133,203,133,205,160,0

16 DATA 177,203,145,205,200,208,249

18 DATA 230,204,230,206,165,204,201,88,208,239
20 DATA 173,1,211,9,128,141,1,211

22 DATA 169,40,133,204,169,80,133,206

24 DATA 169,0,133,203,133,205,160,0

26 DATA 177,203,145,205,200,208, 249

28 DATA 230,204,230,206,165,206,201,88,208,239
30 DATA 104,96,-1

40 I=0

50 READ D:IF D+1 THEN POKE 1536+1,D:I=I+1:G60T0 50
60 X=USR(1536)

If you want to do the same thing with the Basic ROM, then
make the following changes:

Change 41,127 in line 10, to 41,253
" 80 in line 12, to 160

. " 88 in line 18, to 192

9,128 in line 20, to 9,2

. " 80 in line 22, to 160

. Lastly, change 88 in line 28, to 192

LW~

With the Basic turned to RAM, try the following POKEs:

POKE 42223,ASC("H")
POKE 42224,ASC("E")

What you've actually done with these 2 POKEs, is to have
altered a Basic keyword. The keyword was TRAP, but it is now
called HEAP. If you don't believe me, type: TRAP 40000.
You'll get an error because Basic doesn't understand the
word TRAP anymore, it now thinks it's called HEAP. Type:
HEAP 40000. All is taken fine.

Instead of altering the keyword names themselves, you can
alter the tasks performed by the keyword. See the ALTERING
BASIC appendix.

54018 D302 PACTL

(W/R) PORTA controller. POKE with 52 to turn the cassette
motor on, and with 60 to turn it back off. You can play a
music tape through the TV speaker using this method, handy
when programming in the early hours of the morning without
waking the whole house up with your getto-blaster!

Page 138



COMPLETE & ESSENTIAL MAP

54019 - 54783

PACTL can be wused for other external applications by the
user, Bit use is:

BIT: DEC: FUNCTION:

7 128 Peripheral-A interrupt (IRQ) status; only read

6 64 Zero forced; unalterable

5 32 Set to 1

4 16 Set to 1

3 8 Peripheral motor control line; write only

2 4 Set to 1 for PORTA addressing, direction control
register when 0; write only

1 2 Set to 0; this is alterable

0 1 Peripheral-A interrupt (IRQ) enable. 1 = enable
Set by the 0S, but available for use; write only

54019 D303 PBCTL

(W/R) Originally for the PORTB controller, but since there
is no PORTB anymore, this register is unused, however, it
still has Bit-6 forced to 0. You can use this as an extra
RAM register, so long as whatever value you place here does
not require Bit-6 to be set. Hence, you cannot store decimal
values: 64 - 127, and 192 - 255 here.

Get hold of COMPUTE! February 1981 for an article showing
you how to use the joystick ports as a printer port.

There is 1 other point +to note about this register. All
sources say that this is now unused, but in fact, SIO
actually stores a value here. See Appendix E6, address
$E9CB.

54020-54271 D304-D3FF REPEAT-MEMORY

These locations are repeats of 54016 - 54019; $D300 -
$D303.

54272-54783 D400-D5FF ANTIC

ANTIC is a special, seperate micro-processor in the Atari to
control GTIA, the screen-display and other screen related
functions including the NMI interrupts. It uses its own
‘instruction-set', called the 'Display-List’ (DL), which
tells ANTIC where to find the screen data in RAM and how to
display it. ANTIC also uses an internal 4-bit counter called
the Delta-counter (DCTR) to control the vertical dimensions
of each block.

Page 139



COMPLETE & ESSENTIAL MAP

54272 - 54274,5

54272 D400 DMACTL

(W) Direct Memory Access (DMA) control. This is used to
define 1 or 2 line resolution for PMG's as well as to turn
them onto the screen. Values should normally be POKEd into
the shadow register 559; $22F, and the bits are fully
described there (Page-45).

For the experienced machine-language user, you might be
interested to know that you can cause some queer affects by
successively altering this register whilst retaining the
normally enabled status of the VBlanks; for instance:

10 DATA 169,5,141,0,212,76,0,6
20 FOR I=0 TO 7

30 READ D:POKE 1536+1,D:NEXT I
40 X=USR(1536)

If nothing happens at 1st, just press Reset and re-run the
program, or alter the value 5 loaded into the Accumulator
until something does happen. You'll notice the screen turns
into chaos, but there are several important things that you
should note: 1stly, the 2 very-small borders at the very
roof and the very floor of the TV tube do not exist.
Another, more important point is that the frame is twisted.
This, I hope, will give you some insight as to bending
screen images without italicising them in the memory. You
can have a lot of fun with this technique.

54273 D401 CHACTL

(W) Character mode control. See its shadow register 755 for
values. Only the least 3-bits are active in this register,
higher bits simply duplicate the lower bits. With this
register, you can affect any text when inversed, or turn all
text wupside down. Inverse alterations also affect the
cursor, because the cursor 1is only an inversed 'space’
character anyway.

54274,5 D402,3 DLISTL/H

Display 1list pointer. Tells the 0S the start address of the
Display List (DL), which distinguishes the screen mode(s)
and RAM to display. See SDLST at 560 and 561 for full
details.

Page 140



COMPLETE & ESSENTIAL MAP

54276
54276 D404 HSCROL

(W) Horizontal fine-scroll offset. HSCROL is the Hardwares
horizontal fine-scroll register, which can offset the DM up
to a maximum of 16 colour-clocks (4 Graphics 0 bytes) from
its LMS origin. See SDLST at 560 and 561 for information on
LMS. Controlled by Bit-4 of the DL pointed to by SDLST.

When you scroll memory horizontally, you must re-calculate
it, similar to the way shown in the following program:

10 FOR I=0 TO 33

20 READ D:POKE 1536+1,D:NEXT [

30 DATA 112,66,0,255,112,66,64,156,2,2
40 DATA 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
50 DATA 2,2,2,2,2,41,0,6

60 POKE 560,0:POKE 561,06

70 FOR K=0 TO 255 STEP .02

80 POKE 1538,K:NEXT K

You can see that each byte of the extra line at the top of
the screen moves in chunks (coarsely). To enable the
fine-scroll register, then add a value of 16 to the
mode-line, in this case, change the 1st 66 in line-30 to 82.
Now try taking out lines 70 and 80, and adding the
follwowing lines:

70 FOR [=0 TO 15 STEP .5
80 POKE 54276,1:NEXT 1

85 FOR I=15 TO O STEP -.5
90 POKE 54276, 1 :NEXT 1|

95 GOTO 70

You'll see the fine-scrolling in action. If you want to
successively move through the memory, then you should
fine-scroll a whole byte, and then, simultaneously, restore
the HSCROL value and wupdate the 1LMS display byte/s. You
could do this in Basic, but it is flicky. This is because
HSCROL. is not reset in the same frame that the LMS DM byte
is restored; you may think if you executed the Basic line:

XX POKE 1538,PLEK(1538)+1:POKE 54276,3

It is simultaneous, but, you should realise that each 1 of
these POKEs takes approx. half of a frame to decode and
process. For this reason, you'll see that Basic is too slow,
ie; take out lines 70 - 95 of the previous program, and
add:

70 FOR J=0 TO 255

75 FOR I=3 TO O STEP -.2

80 POKE 54276, 1:NEXT 1

85 POKE 54276,3:POKE 1538,)
90 NEXT J

Page 141



COMPLETE & ESSENTIAL MAP

54277

To remove the flicker, the 2 POKEs on line 85 need to
execute in good timing, so you really need to execute a
machine-code routine for this, add the following to the
program:

62 FOR Q=0 TO 11

64 READ D:POKE 1600+Q,D:NEXT Q
66 DATA 169,3,141,4,212,165,203
68 DATA 141,2,6,104,96

85 POKE 203,J:X=USR(1600)

Now, try the program again.

If you didn't organize the memory in the manner of this
program, a wraparound affect would occur, this is where the
memory from the adjacent line would wrap onto the scrolling
line. You can, of course, use HSCROL to scroll the entire
display horizontally, or perhaps add a DLI, and scroll the 2
halves of the screen in different directions.

The real power of any of the Atari' capabilities are
normally only accessible from machine-language, or from
using machine~language routines from Basic, but if you don't
understand 6502 machine-code, there are quite a lot of
sources that <can help you: Page-6 magazine, machine-code
tutor by Paul Bunn (program) which is excellent,
machine-language for Dbeginners by COMPUTE! books, also any
of the assembler packages, such like Atari Assembler/Editor
or MAC65. Also see my relating appendix.

54277 D405 VSCROL

(W) Vertical scroll offset. VSCROL is the Hardwares vertical
fine-scroll register, which can offset the DM of up to 16
scan-lines from the LMS origin. Controlled by Bit-5 of the
DL pointed to by SDLST. For an example of vertical
fine-scroll of a Graphics 0 screen, try this program:

10 GRAPHICS O

15 LIST

20 DL=PEEK(560)+256*PEEK(561)
30 FOR I=3 TO 28

40 IF I=4 THEN I=6

50 POKE DL+I,PEEK(DL+I)+32:NEXT I
60 FOR I=0 TO 7 STEP 0.2

70 POKE 54277 ,I:NEXT I

80 FOR I=7 TO O STEP -0.2

90 POKE 54277,1:NEXT 1

95 GOTO 60

Page 142



COMPLETE & ESSENTIAL MAP

Should you wish to move the memory forward, then you should
add 40 bytes to the origin LMS whilst restoring VSCROL.
Similar to HSCROL, these functions must be achieved
simultaneously. You can use the following program for this:

10 GRAPHICS O:LIST

15 FOR 1=0 TO 16

20 READ D:POKE 1536+1,D:NEXT 1

25 DATA 104,169,0,141,5,212,165,203
30 DATA 141,0,0,165,204,141,0,0,96
35 DL=PEEK(560)+256*PEEK(561)

40 DM=PEEK(DL+4)+256*PFEK(DL+5)
45 FOR I=3 TO 27:1F 1=4 THEN I=6
50 POKE DL+1,PEEK(DL+I)+32:NEXT [
55 POKE 1545,PEEK(560)+4

60 POKE 1550,PEEK(560)+5

65 POKE 1546,PEEK(561)

70 POKE 1551,PEEK(561)

75 POKE DL+28,2

80 FOR J=DM TO 255%256 STEP 40

85 JH1=INT(J/256):JL0=J-JH1%256
90 FOR Q=0 TO 7 STEP 0.2

92 POKE 54277,Q:NEXT Q

94 POKE 203,JLO:POKE 204, Ji1

96 X=USR(1536)

98 NEXT J

There is also anolher fine feature that you can use the
VSCROL register for, try the following program for example:

10 GRAPHICS O
20 DL=PEEK(560)+256*PEEK(561)
30 POKE DL+3,2+432+64:POKE DL+7,2+32
35 POKE DL+9,2+32
40 POKE 54277,4
?

50 ? "Y+fa+/2*E*F3SHMSSKYYAO11QK4/H"
60 ? "sX[OTD/xCIEOSLWDOLZ7A#1T&044P"

You'll notice that the screen on mode lines 2 and 3 have
been somewhat merged together. You can use any of the 15
Graphics modes in combination with any other, you are not
limited to just Graphics 0 as l've used, this is merely to
show you what you can achieve with text. Try changing the
value in 54277 also. It is also possible to horizontally
shift the top or the bottom part of the displaying line so
that the text appears itaticised.

This technique, as shown with the program, is very powerful.
It not only gives you infinite character possibilities, but
also saves you memory, whereas normally you'd have to
reserve 1K for each additional character-set.

Page 143



COMPLETE & ESSENTIAL MAP

54278

The HSCROL and VSCHOL registers offer another type of
scrolling when wused 1ogether. This is diagonal scrolling,
for an example, just try this program:

10 GRAPHICS 0O:POKE 752,1:8=0.2:?
15 DL=PEEK(560)+256*PEEK(561)

20 POKE DL+7,PEEK(DL+7)+32+16

25 ? "GOBBLEDEGOOK....GOBBLEDEGOOK"
30 POSITION 5,2

35 7 "DIAGONAL SCROLLING EXAMPLE";
40 POSITION 13,3

45 ? "BRING OUT THE BRANSTON"

50 FOR 1=0 TO 7 STEP S

52 POKE 54276,1+8:PUKE 54277,1
54 NEXT I

56 FOR 1=7 TO O STEP -S

58 POKE 54276,1+8:POKE 54277,1
60 NEXT 1

62 FOR 1=7 TO O STEP -S

64 POKE 54276,1:POKE 54277,7-1
66 NEXT 1

68 FOR 1=0 TO 7 STEP §

70 POKE 54276,1:POKE 54277,7-1
72 NEXT 1

74 GOTO 50

In affect, you can achieve scrolling in all 360 degrees, but
to achieve this, you need to give HSCROL and VSCROL
different step ratios.

There is one other type of scrolling that can be achieved
with the XL/XE's, this is known as 3D scrolling, where the
screen appears to come toward you, or away. There isn't any
registers that will control the DM in this manner, so to
achieve this, you need to display the 'on-screen' memory in
a particular fashion. If you take as an example, Atari' Pole
Position. The track appears to come toward your car. In
fact, what is happening, is that the data (racing track) in
the lower part of the screen 1is displayed larger, both
vertically and horizontally, +than the data in the higher
part of the screen, hence, giving the affect that the higher
part of the screen 1is more distant than the lower part.
There are other ways of getting around this, and a good
example would be seen in: The Great American Cross Country
Road Race. This program, which I find highly addictive,
actually wuses PMG's for oncoming objects whilst keeps the
track static!

54278 D406

Unused; (R) set to 255.

Page 144



COMPLETE & ESSENTIAL MAP

54279 - 54282

54279 D407 PMBASE

(W) MSB of the Player/missile base address used to locate
the graphics for your players and missiles, where the
address is PMBASE*256. Player missile graphics can be quite
difficult when +trying to manipulate various images, as in
animation or just vertical movement, because there are no
Basic commands to support their wuse, which I find very
dissapointing (slap slap, Atari).

PMG' must reside on either a 1K or 2K boundary, depending
whether they use double or single line resolution,
respectively. So when you set the page number for PMBASE
residence, wuse this formula: POKE PMBASE,PAGE*4 for double,
and POKE PMBASE,PAGE*8 for single line resolution.
Horizontal position, colouring and size particulars are all
very simple to process, but shaping, vertical movement
and/or animation is far more difficult.

See the PMG appendix, or TWAUG newsletter issue #2 for a
full PMG discussion.

54280 D408

Unused; (R) set to 255.

54281 D409 CHBASE

(W) Character base address; the location for the start of
the current character-set, which is either the standard-set
(224; SEO) at 57344; SE000, the international-set (204; $CC)
at 52224; $CCO0 or a user defined one which can begin at any
1K boundary within the computer, ie. the correct formula for
CHBASE is POKE CHBASE,PAGE*4. Shadow location is 756. See
the ROM at 57344 and 52224 also.

54282 D4OCA WSYNC

(W) Wait for horizontal synchronization. Allows the 0S to
synchronize the vertical TV display by causing the 6502 CPU
to halt and restart 7 machine-cycles before the beginning of
the next TV scan-line. It is also used to synchronize VBI'
or DLI' with the screen display.

Here's a direct machine-language routine to show you the
affect:

10 DATA 104,173,11,212,201,50,208,249

12 DATA 165,20,141,10,212,141,24,208

13 DATA 141,10,212,173,198,2

14 DATA 141,24,208,76,1,6,-1

20 READ D:IF D+1 THEN POKE 1536+1,D:I=1+1:G0T0 20
30 X=USR(1536)

Page 145



COMPLETE & ESSENTIAL MAP
54283 ~ 54285

You don't necessarily have to use the WSYNC register in
order Lo achieve the timing of colour changes etc., in fact
you can use the NOP command (code 234; SEA) which wastes 2
machine-cycles of time, or just JSR around the bush (6
cycles wasted, and an additional 6 cycles for RTS) until the
desired amount of time is up.

Note, that the keyboard handler sets WSYNC repeatedly while
generating the keyboard <click on the console speaker at
53279; $DO1F. To bypass this, examine the VCOUNT register on
the next page and delay your interrupt processing by 1 line
when no WSYNC delay has occurred. You could also, only
enable the keyboard in a lower part of the screen, below the
area where any WSYNC problems may occur, and ensure the
keyboard is disabled above this area.

54283 D40B VCOUNT

(R) Vertical 1V scan-line counter. Used to keep track of
which line is currently being generated on the screen. This
can be used during DLI' to change colours or Graphics modes.
PEEKing here returns the line count divided by 2, ranging
from 0O - 156 on PAL systems, and 0 - 131 on NTSC systems.
The following program gives a colourful demonstration, which
uses the VCOUNT register position as a colour:

10 DATA 104,173,11,212,141,24,208,76,1,6
20 FOR 1=0 TO 9

30 READ D:POKE 1536+1,D:NEXT I

40 X=USR(1536)

The colour you see at each vertical position on the screen
is the actual scan-line value where VCOUNT currently is.
Since, the TV frame 1is refreshed every 50th second rate,
it's not surprising that all the colour appears
simultaneously!

54284 D40C PENH

(R) Light-Pen horizontal position (564). Holds the
horizontal colour clock count when the trigger is pressed.

54285 D40D PENV

(R) Light-Pen vertical position (565). Holds the VCOUNT
value when the pen trigger is being pressed. See the
Hardware manual p.I11-32 for a description of the light~pen
operation.

Page 146



COMPLETE & ESSENTIAL MAP

54286 - 55295
54286 D4OE NMIEN

(W) Non-Maskable Interrupt (NMI) enable. POKE with 192 to
enable both the VBI and DLI'. When Bit-7 is set to 1, it
means the DL instruction interrupt, and any DL imnstruction
that has Bit-7 set will cause this interrupt to execute at
the start of the last scan-line of the relative mode-line.
When Bit-6 is 1, the Vertical Blank interrupt is enabled.
Bit-5 is enable forced and unalterable, it it used for the
RESET interrupt. NMIEN is set to 64; $40 by the 0S IRQ code
on power—-up, enabling just the VBI. All NMI' are vectored
through 65530; SFFFA to the NMI service routine at 49176;
$C018 to determine their cause.

54287 D4OF (W) NMIRES
(R) NMIST

(W) Reset for NMIST; clears the interrupt request reéister,
resetting all of the NMI status' together.

(R) NMIST; NMI status. Holds the cause for the NMI interrupt
in Bits 5, 6 and 7, corresponding to the same bits in NMIEN
on the previous page. If a DLI is pending, then a JHP is
made through the global RAM vector VDSLST at 512 and 513.
The OS doesn't use DLI', so 512 and 513 point to an RTI
instruction.

If the interrupt is not due to a DLI, then a test is made to
see 1if the interrupt was caused by pressing the RESET key,
and if so, a jump is made to 58484; S$E474. If not a RESET
interrupt, then the system assumes the interrupt was a
VBLANK interrupt, and a jump is made through VVBLKI at 546,
547 which normally points to the stage-1 VBLANK processor.
From there, it checks the CRITIC flag at 66 and, if not from
a critical section, jumps through VVBLKD at 548, 549 to the
VBLANK exit routine. See the VBLANKS appendix for further
information on these. For IRQ', see location 53744; $D20OE.

54288-54527 D410-D4FF REPEAT-MEMORY

These locations are repeats of locations 54272 - 54287;
$b400 - $D4OF.

54528-54783 D500-D5FF

Although unused memory, mapping states that if you read or
write from/to any of these addresses, the cartridge control
line (CCNTL) is enabled. (R) Normally cleared with 255's.
54784-55295 D600-D7FF

This memory appears to be wunused, which 1like above is’
cleared with 255's. Not user alterable.

Page 147



COMPLETE & ESSENTIAL MAP

55296 - 65535

OPERATING SYSTEM_ ROM:

55296-65535 D60O-FFFF O0S-ROM

This 10K of memory is the 0S-ROM, containing the Floating
Point (FP) package, the 2 in-built character-sets, device
handlers, C10, SI0, NMI', IRQ' etc.. It differs from the
older Atari's O0S', so some older programs will not load on
XL/XE'. In these cases, you can use the translator disks
such as XL F1X, which is all Public-Domain (PD) software.
55296-57343 D80O-DFFF FP-PACKAGE

This is the Floating Point mathematics package. There are
also other areas used by FP in page-0 at 212 - 254, and in
page-5 at 1406 - 1535. There are also trigonometric
functions in the Basic ROM located from 48549 - 49145 which
the the FP routines. See De Re Atari for additional
information.

Here are the entry points to some of the subroutines; unless
otherwise noted, they wuse the FP register 0 (FRO at 212 -
217):

55296 D800 AFP

ASCII to FP conversion.

55526 DBE6 FASC

FP value to ASCII conversion.

55722 D9AA IFP

Integer to FP conversion.

55762 D9b2 FPI

FP to integer conversion.

55876 DA44 ZFRO

Clear FRO at 212 - 217 by setting all bytes to O.

Page 148



COMPLETE & ESSENTIAL MAP

55878 - 56732

55878 DA46 ZF1

Clear the FP number from FR1, locations 224 - 229 by setting
all bytes to 0. Also called AF1 by De Re Atari.

55904 DA6O FSUB

FP subtract routine; the value in FRO minus the value in
FR1.

55910 DAG6G FADD

FP addition routine; FRO plus FR}.

56027 DADB FMUL

FP multiplication routine; FRO timez I'K1.

56104 DB28 FD1V

FP division routine; FRO divided by FRI1.

56640 Db4O PLYEVL

FP polynomial evaluation.

56713 DDb89 FLDOR

Load the FP number into FRO from the 6502 X and Y
registers.

56717 bb8D FLDOP

l.Load the FP number into FRO from the user routine, using
FLPTR at 252.

56728 DD98 FLD1R

Load the FP number into FR1 from the 6502 X and Y
registers.

56732 bD9C FLD1P
Load the FP number 1into FR1 from the user routine, using

FLPTR at 252,

Page 149



COMPLETE

56743 - 57262
56743 DDA7 FSTOR

Store the FP number into the 6502 X and Y registers fron
FRO.

56747 DDAB FSTOP

Store the FP number from FRO, using FLPTR.

56758 DDB6 FMOVE

Move the FP number from FRO to FR1.

56768 DDCO EXP

FP base e exponentiation.

56780 DDCC EXP10

FP base 10 exponentiation.

56909 DE4D P10COET

Power of 10 coefficients table.

57037 DECD LOG

FP natural logarithm.

57041 DED1 LOG10

FP base 10 logarithm.

57202 DF72 LOGCOET

l.ogarithm coefficients table.

57262 DFAE ARCOET

Arctangent coefficients table.

This FP area also has another purpose. It is addressable by
the device when the 0S switches out ROM to perform I/0 on a
device connected to the expansion slot (Parallel Bus
Interface; PBI), whilst switching it back when finished.
This means an external device cannot use FP, or any software
which does (such as Basic).

On a coldstart, the 0S polls for parallel devices, and if it
finds 1, JMPs through 55321; $D819 to the INIT routine at
55322/55323; S$D81A/$DB1B which places the address of the

generic parallel device handler into the handler tables with
the device name.

Page 150



COMPLETE & ESSENTIAL MAP

55296 - 58367

The 1st 26 bytes of the hardware ROM vector area when the 0S
ROM is deselected are as follows:

BYTE: HEX: USE:

55296/55297 p800/D801 ROM checksum LSB/MSB; optional
55298 D802 ROM revision number; optional
55299 D803 ID number; 128 $80

55300 D804 Device type; optional

55301 D805 JMP instruction; 76 $4C
55302/55303 p8o6/b807 1/0 vector LSB/MSB

55304 D808 JMP instruction

55305/55306 D809/D80A Interrupt vector LSB/MSB

55307 D8OB ID number; 145 $91

55308 D8OC Device name in ASCIl; optional

55309/55310 p80OD/DBOE OPEN vector LSB-1/MSB
55311/55312 DB8OF/D810 CLOSE vector LSB-1/MSB
55313/55314 D811/D812 GET byte vector LSB-1/MSB
55315/55316 D813/D814 PUT byte vector LSB-1/MSB
55317/55318 D815/D816 STATUS vector LSB-1/MSB
55319/55320 p817/D818 X100 special vector LSB-1/MSB

55321 D819 JMP instruction
55322/55323 D81A/D81B INIT vector LSB/MSB
55324 D81C unused. .

57344-58367 EOOO-E3FF CHARSETI

Standard (domestic) character-set. See location 756 for a
full description of making your own character sets. The
character-set here 1is the default upon power-up and Reset,
it holds the special characters, punctuation and numbers at
$E000, the <capital 1letters begin at 57600, $E100, the
special graphics characters at 57856; $E200 and the
lowercase letters at 58112; $E300.

There are 1024 bytes here, each character requires 8 bytes,
giving 128 characters. Inverse characters are obtained by
inverting the bits of the standard character, or EORing with
128; $80, which is the value found at 694; $2B6. In Graphics
modes 1 and 2, only the 1st 64 characters are accessible, so
to obtain the 2nd half of this character-set in these modes,
then POKE 756 with 226, 2 pages more than the default 224.
This trick also applies with the international character-set
found at 52224; $CCOO.

Besides redesigning the character-set for use in text modes,
you can use the data to POKE into any of the 'MAP' modes.
Graphics 8 would be ideal. Try the programs on the next page
(the 2nd program is put to good wuse in the STEREO
appendix).

Page 151



COMPLETE & ESSENTIAL MAP

10 GRAPHICS 8:POKE 709,12:POKE 710,4
15 POKE 756,224

20 DL=PELEK(560)+256*PEEK(561)

25 DM=PEEK(DL+4)+256%PEEK(DL+5)

30 COLOR 1

35 SET=PEEK(756)*256

40 X=INT(RND(0)*40)

45 Y=INT(RND(0)*152)

50 CH=INT(RND(0)*128)

55 FOR I=0 TO 7

60 AREA=DM+X+Y*40+1%40

65 POKE AREA,PEEK(SET+CH*8+1):NEXT I
70 GOTO 35

This shows you how to use the character-set as a good means
to placing text on Graphics 8. Try changing the POKE value
224 jin line 15 with 204, or even other values! X and Y are
the screen co-ordinates, while CH is the randomly chosen
character.

Here's a ©better example of Graphics 8 text, which allows
text to print in any of 360 degrees:

10 GRAPHICS 8:POKE 709,12:POKE 710,4
12 POKE 756,224

14 DIM AS$(20)

16 DL=PEEK(560)+256*PEEK(561)
18 DM=PEEK(DL+4)+256*%PEEK (DL+5)
20 COLOR 1

22 SET=PEEK(756)*256

24 A$="RED RED WINE"

26 DIR=41:X=5:Y=50

28 FOR J=1 TO LEN(AS)

30 C=ASC(AS$(J,J))

32 NC=C

34 1F SGN(C-96)=-1 THEN NC=C-32
36 IF SGN(C-32)=-1 THEN NC=C+64
38 CH=SET+NC*8

40 FOR I=0 TO 7

42 AREA=DM+J*DIR+I*40+X+Y*40

44 POKE AREA,PEEK(CH+I)

46 NEXT 1

48 NEXT J

Just put any comment you wish in A$ and RUN the program up.
DIR is the direction of print, which can also go in steps
greater than 1 if required. Try using different values in
this variable such 1like: 1, 2, 161 and 320. Lines 32 - 36
merely convert the characters in AS$, from their ASCII codes
to their equivalent INTERNAL codes. To do this, Ascii codes
0 to 31 have 64 added, codes 32 - 95 have 32 subtracted and
codes 96 to 127 remain the same.

Page 152



COMPLETE & ESSENTIAL MAP

58368 - 58454

58368-58447 E400-E44F HANDLER VECTORS

These are the vector tables for all the resident handlers in
ROM. Each handler consists of a 15-byte table; 2 bytes each
for OPEN, CLOSE, GET byte, PUT byte, STATUS and X10 special
routine addresses. Following those LSB/MSB vectors, there is
a JMP instruction (76; $4C) and the address of the
initialization routine for that handler. The 16th byte of
each handler is zeroed and unused. Below, is a table showing
all the handlers vector addresses. You should also note that
all the vectors, except JMP, all point to the address of the
routine minus 1:

Device & Loc: OPEN CLOSE GET PUT STATUS XIO JMP
: 58368/E400 EF93 F22D F249 F2AF F21D F22C EFe6E
58384/E410 EF8D F22D F17F F1A3 F21D F9AE EF6E
58400/E420 F21) F21D F2FC F22C F21D F22C EF6E
58416/E430 FEC1 FF06 FECO FECA FEAZ2 FECO FE99
58432/E440 FCES FDCE FDbB79 FDB3 FDCB FCE4 FCDB

oo wm

58448-58511 E450-E48F VECTORS

Here's some more vectors, the address of these vectors
remain at the same address as the old 0S5, but point to
ditferent locations:

58488 E450 DISKIV

Disk handler initialization vector, initialized to 50851;
SC6A3,

58451 E453 DISKINV

Disk handler (interface) entry which basically checks the
disk status, you <can JuMP here in your own routine to
perform other functions, but you'll need to reset the data
direction bits in location 771; $303 before every call.
Points to 50867; S$Cé6B3.

58454 E456 cIov

Central Input/Output (CIO) utility entry point. Initialized
to 58591; S$E4DF. Cl0O is responsible for all 1/0 operations
and data transfers. To use Cl0, you should set up your I10CB
and JuMP here. Note, however, that the X register should.
contain the I10CB number multiplied by 16, so I0CB #0 would
be 0, IOCB #1 would be 16, #2 is 32 and so on...

Page 153



COMPLETE & ESSENTIAL MAP

58457 - 58460

Once CI0 is initiated, the appropriate 10CB information is
passed to the Device Control Block (bDCB), this then calls up
SI0 (below) to <control the actual peripherals. CIO treats
all 1/0 in this same manner, device independant.

You jump here to wuse the handler routines in the 0S8 ROM.
Basic itself doesn't support these routines (buffer 1/0),
that's why its device 1/0 operations are slower, however,
with a short machine-code routine you can use this 1/0
method in your Basic programs. All you'll need to do is OPEN
your device/file on your selected channel, set the
appropriate values in the OPENed I0CB channel (locations 832
- 959) and then execute the following machine-code routine:

PLA, PLA, PLA, TAX, JMP $E456
104, 104, 104, 170, 76, 86, 228
$68, $68, $68, $AA, $4C, $56, SE4

or even X=USR(ADR("hhh*LVd")). Note; the "*" and "4d"
characters should be inversed.

58457 E459 S10vV

Serial Input/Output (S10) utility entry point. Initialized
to 51507; $C933. S10 drives the serial bus and the
peripherals connected to it. When a request is placed in the
Device Control Block (DPCB), either by a device handler or by
the wuser, SIO takes control and uses the data in the DCB to
perform the operation desired. Cl0 is reponsible for the
packaging of the data transfers before the actual
transision, which is accomplished by S10. When CIO utilizes
S10, it does so many times to accomplish the task asked of
it. The DCB is locations 768 - 779; $300 - $30B.

The S10 routines peripheral poll 1is achieved by firstly
sending a command frame which is consisted of 5 bytes
(locations 570 - 574); the device 1D code, command byte, 2
aux bytes for device-specific information and a checksum
byte which is the sum of the 1st 4 bytes. If the device
polled acknowledges and responds to the command frame, it is
followed by, if necessary, a data frame of fixed length,
depending upon the device; cassette record, disk sector
etc..

58460 E45C SETVBV

Set system timers during Vertical Blank routine. Initialized
to 49778; $C272. When you set up your own Vertical Blank,
it's address should be loaded into the Immediate or Deferred
vector in page-3, however, you must load both low and high
bytes before the next VBlank executes.

Page 154



COMPLETE & ESSENTIAL MAP

58463 - 58472

If only 1| of the 2 address bytes were loaded when the VBlank
routine was executed, the actual jump address will be
incorrect and the system will probably crash. Of course, one
method would be to wait for the flyscan to be in a safe
place on the screen, however, this is the other way to go
about it:

LDA #ID A9 ID
LDX #HI-byte (MSB) A2 HI
LDY #LO-byte (LSB) A0 LO
JSR $E45C 20 SC E4

or for the USR routine from Basic, use the data: 104, 169,
Ip, 162, H1, 160, LO, 32, 92, 228, 96

where HI is the MSB, LO is the LSB and ID is either 6 or 7
depending on whether you want to set the Immediate or
Deferred VBlank vector, respectively. Using this method, the
appropriate vector will be set during the next Vertical
Blank. Also see page-3 of memory and the relating VBlank
appendices.

58463 E45F SYSVBV

Stage-one VBlank entry point. It performs the processing of
a VBlank interrupt. The 2nd and 3rd bytes is the same as the
address found in VVBLKI, locations 546 and 547. 1t is
initialized to 49378; $COE2.

58466 E462 XITVBV

Exit from the VBlank routine, entry point. Used to restore
the system to its pre-interrupt state and resume normal
processing. The 2nd and 3rd bytes 1is the same as the
deferred interrupt address at VVBLKD, locations 548 and 549.
It is initialized to 49802 $C28A.

58469 E465 SIOINV

SI1I0 utility initialization entry point. Initialized to 59740
$E95C. 0S use only.

58472 E468 SENDEV

Send enable routine. Initialized to 60439; S$EC17. 0S use
only.

Page 155



COMPLETE & ESSENTIAL MAP
58475 - 58484

58475 E46B INTINV

Interrupt handler- initltialization. Initialized to 49164,
$CO0C. 0SS use only.

58478 E46E C10INV

CIO utility initialization. Initialized to 58561; $E4C1.

58481 E471 SELFSV

Self-test mode entry. Initialized to 61987; $F223. The
self-test mode can be executed with a JMP here, a USR here,
typing BYE in Basic, typing DOS in Basic when DOS has not
been loaded and turning the computer on with the option key
depressed with the disk drive turned off.

This area used to be what was known as the "Blackboard"
mode, which no longer exists in the XL/XE's, however, you
can simulate it! 1n Turbo-Basic it is easily simulated by
typing ENTER "E:" (I think?), but in normal Atari Basic the
situation differs. You can wuse LOAD "E:", but an error
occurs after about 12 bytes have been inputted with the use
of the return key. You can overcome this with: 0 TRAP 0O:LOAD
"B, this way, whenever an error occurs the screen clears.
Not brilliant, but affective. Perhaps someone knows of a
solution. I'm pretty sure a few simple POKEs could rectify
it. Anyhow, here's a more suitable simulation of the mode:

0 OPEN #1,4,0,"E:"
1 GET #1,K:? CHR$(K);:60TO 1

This will work fine, for an almost perfect simulation, add a
TRAP and disable the BREAK key.

58484 E474 WARMSV

Warmstart entry point routine (Reset button vector).
Initialized to 49808; $C290 which initializes the 0S RAM
region. The Reset key causes an NMI interrupt and a
chip-reset (CR). This interrupt seems to be at hardware
level only so it appears that you cannot disable the action
of the Reset-key. I have often wondered what would happen if
you switch the ROM OS into a RAM 0S, then when you press
Reset, will the system execute your RAM 0S Reset routine OR
will the original ROM OS be switched back in before the
Reset routine is executed? I've never tried it so I'm not
sure, but I would probably expect the ROM 0S to be switched
back in first. You can also USR here to simulate the press
of the Reset key.

Page 156



COMPLETE & ESSENTIAL MAP

58487 - 58511

58487 E477 COLDSV

Coldstart (power-up) entry point. Initialized to 49864;
$C2€8 which initializes the 0S and user RAM regions wiping
out any programs etc.. You can perform power-up by USR'ing
here.

58490 E47A RBLOKV

Cassette read block routine entry point. Initialized to
64909; SFD8D. 0S use only,.

58493 E47D CSOPIV

Cassette OPEN for input vector. Initialized to 64759; S$FCF7.
0S use only.

58496 E480 PUPDIV

Entry to power-on display (Self-Test mode in all XL/XEs
except the 1200XL; Atari logo screen in 1200XL. Initialized
to 61987; $F¥F223. Try USR'ing to this address.

58499 E483 SELFTSV

Entry to Self-Test mode once switched into low memory at
20480; $5000.

58502 E486 PENTV

Entry point to the handler uploaded from the disk-drive or a
peripheral. Initialized to 61116; SEEBC.

585056 E489 PHUNLV

Entry point to the wuploaded handler wunlink routine.
Initialized to 59669; S$SE915.

58508 E48C PHINIV

Entry point to the uploaded handler initialization routine.
Points to 59544; $ EB98.

58511 E48F GPDVV

Generic parallel device handler general purpose vector. This
can be wused to interact with any device connected to the
expansion port, simply copy this address into HATABS,
locations 794 - 828 along with an appropriate device name
character such as V:, G: or T:.

Page 157



COMPLETE & ESSENTIAL MAP

58526 - 59192

For more information on the expansion bus then see the -
relating appendix. Note that there are 7 vectors here,
corresponding to .-the vector tables residing at 58368;
$E400.

58526-58559 E49E-E4BF

Unused, zero forced. This area is available if your ROM 0S
is used as a RAM 0S, and indeed so are any other relating
areas above this address.

58560 E4CO .

Seems to be unused, just a $60 code.

58561 E4C1 ICIO

Initialize CIO.

58588 E4DC IIN

10CB not OPEN error routine.

58591 E4DF cl0
This is the CIO, it includes the following routines:

Address: Routine:

58640 $SE510 Nonexistant device error

58645 $E515 Load peripheral handler for OPEN

58650 $E51A Perform CIO command

58687 S$E53F Execute OPEN command -
58716 S$E55C Initialize IOCB for OPEN

58742 $E576 Poll peripheral for OPEN

58748 $SE57C Execute CLOSE command B
58775 $E597 Execute STATUS and SPECIAL (XIO) commands
58802 $E5B2 Execute GET command

58910 $E61E Execute PUT command

58992 SE670 Set status

58994 $E672 Complete CIO operation

59029 $E695 Compute handler entry point

59067 SE6BB Decrement buffer length

59080 $E6C8 Decrement buffer pointer

59089 $E6D1 Increment buffer pointer

59096 SE6D8 Set final buffer length

59114 SE6EA Execute handler command

59124 $E6F4 Invoke device handler

59135 $E6FF Search handler table

59158 $E716 Find device handler

Page 158



59193

COMPLETE & ESSENTIAL MAP

59193 - 60920

E739 PHR

Peripheral handler loader routines are:

Address:

59193
59326
59358
59414
59443
59485
59540
59544
59550
59584
59648
59669

59740

SE739
SE7BE
SE7DE
SE816
$E833
SE85D
$E894
$E898
SEB89E
$E8CO
$EJS00
$E915

Routine:

Initialization

Perform poll

Load handler

Get byte routine

Get next load block

Search handler chain

Handler warm-start initialization
Warm-start initialization with chaining
Cold-start initialization
Initialize handler and update MEMLO
[nitialize handler

Handler unlinking

E95C S10

The S10 routines include:

59740
59761
59946
59959
60040
60077
60140
60157
60199
60204
60295
60317
60433
60439
60480
60502
60548
60570
60585
60591
60608
60616
60718
60733
60871
60898

$E95C
$ES71
SEA2A
SEA37
SEAB8
SEAAD
SEAEC
SEAFD
$EB27
SEB2C
SEB87
SEB9D
SECI1
SEC17
SEC40
SEC56
SEC84
SECYA
SECA9
SECAF
SECCO
SECCS8
SED2E
$ED3D
SEDC7
SEDE2

[nitialization

SI10 main routine

Complete S10 operation

Wait for completion or ACK

Send buffer to serial bus
Process serial output ready ITRQ
Process serial output complete
Receive

Ilndicate timeout

Process serial input ready IRQ
Set buffer pointers

Process cassette 1/0

Timer expiration

Enable SI0 send

Enable SI0 receive

Set for send or receijve

Disable send or receive

Get device timeout

Table of S10 interrupt handlers
Send to intelligent device

Set timer and wait

Compute baud rate

Ad just VCOUNT value

Set initial baud rate

Process BREAK key

Set SIO VBLANK parameters

Page 159



COMPLETE & ESSENTIAL MAP

60921 - 61293

60921 EDF9 TPFV

Table of POKEY frequency values (24 bytes).

60945 EE11 NTSC/PAL

Table of constant values.

60957 EE1D TABLES

Screen memory and DL tables:

Address Routine:

60957 SEEID Screen memory allocation
60973 SEE2D Display list entry counts
61005 SEE4D ANTIC graphics modes

61021 SEE5S5D Display list vulnerability
61037 SEE6D Left shift columns

61053 SEE7D Mode column counts

61069 S$EEBD Mode row counts

61085 SEE9D Right shift counts

61101 SEEAD Display masks

61116 EEBC PHE

Peripheral handler entry routines:

Address: Routine:

61116 SEEBC Peripheral handler entry
61177 SEEF9 Peripheral poll at OPEN
61222 $EF26 Put byte for provisionally OPEN I0OCB

61294 EF6E SIN

Screen :nitialization routines, including other screen
handler routines:

Page 160



COMPLETE & ESSENTIAL MAP

61294 - 62199

61294 SEF6E Initialization

61326 SEFBE Perform screen OPEN

61332 SEF94 Perform editor OPEN

61340 SEF9C Complete OPEN command

61824 SF180 Screen GET byte

61839 $F18F Get data under cursor

61860 SF1A4 Screen PUT byte

61873 $FIBl Check for end-of-line (EOL)

61898 SFICA Plot point

61929 $F1E9 Display

61960 $F208 Set exit conditions

61982 $SF21E Screen STATUS

61987 $¥F223 Self-Test entry point

61997 $F22D Screen editor special (just an RTS)
61998 $F22E Screen editor CLOSE

62026 $F24A Editor GET byte (see GETCHAR below)
62128 $F2B0 Editor PUT byte (see OUTCHAR below)
62142 $SF2BE Process character

62026 F24A GETCHAR

JSR here to tetch a keypress from the keyboard, this acts
just like the Basic GET #1,K operation where channel #1 has
OPENed the keyboard for input, ie: OPEN #1,4,0,"K:". The
Atascii value of the character pressed is returned in the
Accumulator. Note that this is a very familiar
incompatibility problem between old 4/800 software and the
X1L./XEs, since this routine used to reside at locations
63038; SF63E (EGETCH).

62128 F2B0O OUTCHAR

This is the PUT character routine which used to reside at
63140; S$SF6A4 (EOUTCH). Used to put the Atascii character in
the Accumulator onto the screen in the next print location.
As described above, this character output routine is also
incompatible with some older sofware, since illegal calls
are sometimes made directly to these routines, at their old
addresses!

Page 161



62200 - 63266

62200 F2F8 IGN

Exactly the same as the GETCHAR routine on the previous
page, except that any keyboard character pressed prior to
the call of this routine is not cleared. The routine knows
if the character has not been cleared when the value in
location 764 is not equal to 255.

62205 F2FD KGB
Keyboard GET byte routine. The keyboard handler includes

these routines:

Address: Routine:

62432 $F3EO0 ESCape character handler
62438 $F3E6 Cursor up

62451 SF3F3 Cursor down

62464 $F400 Cursor left

62474 $F40A Cursor to right margin

62476 $F40C Set cursor column

62481 $F411 Move cursor point

62491 $F41B Cursor to left margin

62496 $F420 Clear screen

62528 $F440 Cursor home (top-left corner)
62586 $F47A TAB character handler

62613 $F495 Set TAB

62618 $F49A Clear TAB

62623 $F49F Insert character

62677 SF4D5 Delete character

62732 $F50C 1Insert line

62752 $F520 Delete line

62806 $F556 Sound bell (CTRL-3)

62815 $F55F Cursor to bottom

62821 $F565 Double-byte double decrement
62825 $F569 Store data for fine scrolling
62840 $F578 Double-byte single decrement
62880 $F5A0 Set scrolling display list entry
62892 SF5AC Convert cursor row/column to address
62986 $F60A Advance cursor

63073 $F661 RETURN with scrolling

63077 $F665 RETURN

63150 $F6AE Subtract end point

63164 $F6BC Check cursor range

63256 $F718 Restore old data under cursor

Page 162



COMPLETE & ESSENTIAL_ MAP

63267 - 64336

63267 F723 BMI

Bitmap routines for the editor and screen handler.

63479 F7F7 SCR

Screen scroll routines.

63665 F8B1 CBC

Buf fer count computation routines; various keyboard,
and screen routines follow also:

Address: Routine:

63768 $F918 Delete line

63804 SF93C Control character check
63820 $F94C Save row/column values
63831 $F957 Restore row and column

editor

63842 $F962 Swap cursor with regular cursor position

63875 $F983 Sound key click

63895 $F997 Set cursor at left edge

63910 S$FYA6 Set memory scan counter address
63919 $SF9AF Perform screen special command

64260 FBO4 TMSK
Various screen and keyboard tables:

Address: Routine:

64260 $FB04 Bit masks
64264 SFBO8 Dbefault screen colours (708 - 712)
64269 SFBOD Control character routines. Each entry

is 3

bytes; the control character and the 2 byte

routine address
64317 SFB3D shifted function keys (1200XL)

64329 $FB49 Atascii to internal conversion constants
64333 S$FB4D Internal to Atascii conversion constants
64337 $FB51 Keyboard definition table (see next page)

64529 $FC11 Function key definitions

Page 163



COMPLETE & ESSENTIAL MAP

64337 - 65394

64337 FB51 KDt

192-byte keyboard definition table. See 121 and 122.

64537 FC19 KIRQ

Keyboard TRQ processing routines (nothing to do with
StarTrek); Character checking and processing, Control-1,
HELP key, Control and function keys (1200XL). The 1200XL
routines also remain 1in other XL and XE's 0S's, although,
they appear to be unused.

64708 FCC4 FDL

Process display list interrupt for finme scrolling.

64728 FCD8 CIN

Cassette initialization routine, including cassette 1/0
routines and NTSC/PAL constants for file leader length and
beep duration.

65177 FE99 PIN
Printer initialization and 1/0 routines incliuding:

Address: Routine:

65218 SFEC2 Printer OPEN

65227 SFECB Printer PUT byte

65259 SFEEB Fill printer buffer

65270 SFEF6 Perform printer PUT

65287 $FF07 Printer CLOSE

65300 $FF14 Setup DCB for printer

65348 $FF44 Printer timeout from STATUS
65355 $FF4B Process print mode

Page 164



COMPLETE & ESSENTIAL MAP

65395 - 65535

65395 FF73 VFR

ROM checksum verify routines for ist 8K bank.

65426 FF92 VSR
Verify routines for ROM checksum, 2nd 8K bank, inclusive of

routines to examine checksum region and table of addresses
to verify.

65518-65529 FFEE-FFF9

Checksum and identification for the ROM area 57344 - 65535;
SEQ000 - SFFFF. See 49152, $C000 also.

Byte: Use:

65518 SFFEE Revision date D1 and D2 (4-bit BCD)
65519 SFFEF Revision date M1 and M2

65520 SFFFO Revision date Y1 and Y2

65521 S$FFF1 Option byte: 1 = 1200XL 2 = 800XL
65522-26 S$FFF2-6 Part number in the form AANNNNNN
65527 SFFF7 Revision number (my 800XL is 2)

65528-9 S$FFF8-9 Checksum bytes (LSB/MSB)

65527 should read 1 for the 600XL and 2 for the 800XL. For
the 1200XL, 64728 should not read 162.

65530-65535 FFFA-FFFF Machine Vectors

Contains NMI, RESET (power-up) and 1IRQ service vectors.
Initialized to 49176; $C018, 49834; $C2AA and 49196; $CO02C,
respectively.

Page 165



COMPLETE & ESSENTIAL MAP

A small comment.

Well, there you have it fellow Atarians. The whole truth and
nothing but... about the XL and XE 8-bit machines. If you're
an amateur programmer, then you will find most of the
information in this book very tedious so you'll need a lot
of patience. It might be a good idea to send off for one of
the various Atari newsletters or disk magazines. A very good
disk wmagazine 1is called "THE GRIM REAPER" and the editor
goes by the name JOHN E. This address and several others are
in a supporting appendix. The more experienced programmers
amoung you will probably be glad for the publication of this
book. Even you advanced programmers might find some
interesting information in this book. I'm no 'know-it all’
by the way, there is quite a lot of stuff that I've never
delved into, in fact I don't think I'll ever stop learning!
One thing I would like to be is less lazy, so if you think
this book 1is good, or bodatiously amazing (!), or perhaps
just crap, why not let me know and tell me why you think so
and what I could have extended on etc.. Who knows, I might
even write another book! This is my 1st and it took me
several months.

The master copy of this book has been re-arranged and
printed by T.W.A.U.G., using a 24 pin printer the
STAR/LC24-100.

Page 166



INDEX BY LABEL.

OK then, here's the 1st index which gives the locations
involved according to the alphabetically listed name, either
of a single location or group.

NAME LOCATION NAME LOCATION
ABUFPT 28-31 CARTB 32768-40959
ACMISR 727,728 CARTCK 1003

ACMVAR 1005-1015 CARTFLG 49148
ADDCOR 782 CARTINI 49150,49151
ADRESS 100,101 CARTINIT 50217

AFP 55296 CARTLD 49146,49147
ALLPOT 53768 CARTOPT 49149
ANTIC 54272-54783 CASBUF 1021-1151
APPMHI 14,15 CASETV 58432
ARCOET 57262 CASFLG 783

ATACHR 763 CASINI 02,3

ATAN 48759 CASSBOOT 50798
ATRACT 77 CASSBT 1002
AUDC1-4 53761-53767 CAUX1 572

AUDCTL 53768 CBAUDL/H 750,751
AUDF1-4 53760-53766 CBC 63665
BASICF 1016 CCNTLEN 54528-54783
BASICVER 43234 CCOMND 571
BFENLO/HI 52,53 CDEVIC 570

BFLAG 1792 CDTHAL 550,551
BITMSK 110 CDTMA2 552,553
BIWTARR 1796,1797 CDTMF3 554

BLDADR 1794,1795 CDTMF4 556

BLDISP 1809 CDTMF5 558

BLIM 650 CDTMV1 536,537

BMI 63267 CDTMV2 538,539
BOOT 09 CDTMV3 540,541
BOOTAD 578,579 CDTMV4 542,543
BOOTERROR 50237 CDTMVS 544,545
BPTR 61 CH 764

BRCNT 1793 CH1 754

BRKKEY 17 CHACT 755

BRKKEY 566,567 CHACTL 54273

BRUN 106060 CHAR 762

BS10 1900 CHARSET1 57344-58367
BSIOR 1906 CHARSET2 52224-53247
BUFADR 21,22 CHIIBAS 756

BUFADRS 51002 CHBASE 54281
BUFCNT 107 CHKSNT 59

BUFRFL 56 CHKSUM 49
BUFRLO/HI 50,51 CHLINK 1019,1020
BUFSTRM 108,109 CHSALT 619

CARTA 40960~-49151 CIN 64728

C10 58591 DFLADR 1810,1811
CIOCHR 47 DFLAGS 576

CIOINT 58561 DFLINK 1807,1808
CIOINV 58478 DFMCLS 2837

cIov 58454 DFMDDC 2983

C1X 242 DFMGET 2751

CKEY 1001 DFMOPN 2219
CLEARSCRN 62496 DFMPUT 2508

I.b.L.Page 1



CLMJMP 6418 DFMSDH 1995

CMCMD a7 DFMSTA 2817

COLAC 114,115 DHEADR 576-579
COLBK 53274 DIGRT 241

COLCRS 85,86 DINDEX 87

COLDST 580 DINIT 50851
COLDSV 58487 DINT 20t6
COLINC 761 DIRLST 8505

COLOR 200 DISKBOOT 50571
COLOUR 200 DISKINV 58451
COLOUKRO 708 DISKIV 58448
COLOUR1 709 DLISTL/H 54274,54275
COLOUR2 710 DLRAM 39967
COLOUR3 711 DMACTL 54272
COLOUR4 712 DMASAV 733
COLOURS 704-712 DMASK 672
COLPFO-3 53270-53273 DMENU 7951-8278
COLPMO-3 53266-53269 DMRAM 39967-40959
COLRSH 79 bos 5440
CONSOL 53279 pos3 3889

cos 48561 DOSINI 12,13
COUNTR 126,127 DOSINIDL 6044,6045
CPYFIL 8990 DOSO0S 8309
CRETRY 668 DOSUSE 1792-7419
CRITIC 66 DOSVEC 10,11
CRSINH 752 DOSVECDL 5446,5450
CRSROW 108 DRETRY 701
CRVTSL/H 4264,4266 DRKMSK 78

CSOPIV 58493 DRVBUF 6780-7547
CURDSL/H 4226,4229 DRVBYT 1802

DATAD 182 DSCTLN 725,726
DATALN 183,184 DSFLG 1806
DAUX1/2 778,779 DSKFMS 24,25
DBSECT 577 DSKTIM 582

DBUF 7668 DSKUTL 26,27
DBUFLO/HI 772,773 DSPFLG 766
DBYTEL/H 776,777 DSTAT 76

DCB 768-779 DSTATS 771

DCOMND 770 DTIMLO 774

DbCC 56780 DUNIT 769

DDEVIC 768 DUNUSE 775

DDMG 10690 bDUPDSK 10690
DECTIMR 49749 DUPEND 13062
DEGFLG 251 DUPFIL 11528
DELFIL 8649 DUPFLG 5533
DELTAC 119,120 DUPSYS 5440-13062
DELTAR 118 DVSTAT 746-749
DERRF 1004 EDITRV 58368
DEVMEM 53504-53759 EEXP 237

DFFM 11528 EGETCH 62026
ENDFMS 5377 GPRIOR 623

ENDPT 116,117 GRACTL 53277
EOUTCH 62128 GRAFM0-3 53265
ERRFLG 575 GRAFP0-3 53261~53264
ERRNO 4789 GTIA 53248-53503
ERRSAV 195 HARDI 50394
ESCFLG 674 HARDWARE 53248-55295

I.b.L.Page 2



INDEX BY 1.ABEL.

ESIGN 239 HATABS 794-828
EXP 56768 HELPFG 732
FADD 55910 HTIBYTE 648
FASC 55526 HIMEM 741,742
FCB 4993-5120 HITCLR 53278
FCHRYLG 240 HIUSED 715,716
FbIV 56104 HNDLRVCTR 58368-58447
FDI. 64708 HOLD1 81
FDSCHAR 3850 HOLD2 671
FEOF 63 HOLD3 669
FILDAT 765 HOLD4 700
FILDIR 5121 HOLDCH 124
FILELD 5576 HPOSMO-3 53252-53255
FILFLG 695 HPOSPO-3 53248-53251
FINE 622 HSCROL 54276
FKDEF 96,97 ICAX1Z 42
FLDOP 56717 LCAX2Z 43
FLDOR 56713 1CAX3Z/4Z 44,45
FLD1P 56732 1CAX5Z 46
FLDI1R 56728 ICAX6Z 47
FLPTR 252,253 ICBAL/HZ 36,37
FMOVE 56758 1CCOMT 23
FMSRAM 1792-5377 1cCcoMz 34
FMTDSK 9856 1CDNOZ 33

FMUL 56027 ICHIDZ 32
FMZSPG 67-73 IC10 58561
FNDCODLE 3742 ICSPRZ 44-47
FPI 55762 1CSTAZ 35
FPROM 55296-57343 IFP 55722
FPSCR 1510-1515 IGN 62200
FPSCR1 1516-1535 1IN 58588
FPTR2 254,255 IMASK 651

FRO 212-217 INBUFF 243,244
FR1 224-229 INISAV 6044,6045
FR2 230-235 INITAD 738,739
FRE 218-223 INIT10 6518
FREQ 64 INITPDEV 51468
FRESECT 4293 INSDAT 125
FRMADR 104,105 INTEMP 557

FRX 236 INTHNDLRS 49152-52223
FSTOP 56747 INTINV 58475
FSTOR 56743 INTRRINI 49164
FsuB 55904 INTRVEC 522,523
FTYPE 62 INVFLG 694
GAMCTL 624-647 1OCBO 832-847
GBYTEA 719,720 10CB1 848-863
GETCHAR 62026 10CB2 864-879
GETSECTOR 4358 10CB3 880-895
GINTLK 1018 10CB4 896-911
GLBABS 736-739 10CB5 912-927
GPDVV 58511 10CB6 928-943
10CB7 944-959 NEWCOL 758,759
I0OCBS 832-959 NEWROW 757
10CMD 192 NGFLAG 0t
10DvC 193 NMIEN 54286
IRQEN 53774 NMIINIT 49176
1RQST 53774 NMIRES 54287

I.b.L.Page 3



ISRODN
ISRSIR
JMPTRBL
JVECK
KBCODE
KDEFTBIL
KEYBDV
KEYCLICK
KEYDEF
KEYDEL
KEYDIS
KEYREP
KGB
KIRQ
KRPDEL
LBPR1
LBPR2
LBUFF
LDFIL
LDMEM
LEDCTL
LINE
LISTDIR
LKFIL
LMARGN
LMTR
LNFLG
LOADAD
LOADFLG
LOADFLG
LOG
LOG10
LOGCOET
LoOGCOL
LOGMAP
LOMEM
LPENH
LPENV
LSICHIPS
LTEMP
M#PF
M#PL
MEMFLG
MEMLDD
MEMLO
MEMSFC
MEMTOP
MEMTOP
MEOLFLG
MINTLK
MLTTMP
NEWADR
PLYEVL
PMBASE
POKADR
POKEY
POKEY2

INDEX BY LABEL.

565
53248-55295
54,55
53248-53251
53256-53259
6046

5899
743,744
5947
144,145
741,742

146

1017
102,103
654,655
56640

54278
149,150
53760~-54015
53760-54015

NMIST
NOCKSM
NOCLIK
NSIGN
NTSC/PAL
OLDADR
OLDCHR
OLDCOL
OLDROW
OPNTMP
OPT
OSDBUFS
OSRAM
OSROMHI
OSROMLO
OSTABLS
OSVARS
OUTCHAR
P#PF
P#PL
P10COET
PACTL
PADDLO
PADDL1
PADDL2
PADDL3
PAGEO
PAGE1
PAGE®6
PAL
PALNTS
PBCTL
PBPNT
PBUFSZ
PCOLRO
PCOLR1
PCOLR2
PCOLR3
PDMSK
PDVMSK
PENH
PENTV
PENV
PHE
PHINIV
PHR
PHUNLV
PIA

PIN

PIO
PIRQQ
PLYARG
SAVADR
SAVCUR
SAVIO
SAVMSC
SBUSCOM

54287
60
731
238
60945
94,95

512-1151
0-127
55296-65535
49152-53247
512-1151
512-1151
62128
53252-53255
53260-53263
56909

256-511
1536-1791
53268
98
54019
734

735

704

705

706

707

585

583
54284
58502
54285
61116
58508
59193
58505
54016-54271
65177
51507
64537
1504
104,105
190

790
88,89
522-527

I.b.L.Page 4



POKMSK
PORTA
- PORTB
POTO-3
POTGO
- PPTMPA
PPTMPX
PRINTV
PRIOR
PRNBUF
PRONMPT
PTABW
PTRIGO
- PTRIGI
PTR1G2
PTRIG3
- PUPBT1-3
PUPDIV
PZASHV
- PZBASV
PZERO
PZRAM
PZUNUSD
RADFLG
RAMLO
RAMSIZ
RAMSWTCH
- RAMTOP
RANDOM
RBLOKV
- RDDIR
RDNXTS
RDVTOC
- RECLEN
RECVDN
RELADR
RELADR
RENFIL
RESET
REVDATE
REVISION
- RMARGN
ROMVCTRS
ROWAC
- ROWCRS
ROWINC
RTCLOK
RUNAD
RUNADR
RUNADREN
RUNSTK
SABYTE
SASA
STOFFSETS
STOPLN
STR1GO
STRIGI1

INDEX BY LABEL.

16

54016

54017
53760-53767

639
829-831
58496
176-207
146-202
0-255
0-255
203-209
251
04,5
740
54017
106
53770
58490
4206
4111
4235
581

57
568,569
586,587
9783
59544
65518-65520
49163
83
65530-65535
112,113
84

760
18,19, 20
736,737
713,714
51154
142,143
1801
1804,1805
51799
186,187
644

645

SCR
SCREENV
SCRFLG
SCRNEDP
SCRNRAM
SCROLL
SDLSTL/H
SDMCTL
SELFSV
SELFTEST
SELFTSEL
SENDEV
SERIN
SEROUT
SETUP
SETVBL
SETVBV
SFDIR
SFLOAD
SFTTIMR
SHFAMT
SHFLOK
SHPDVS
SIN

SIN

SI0
SIOINV
S100RG
SIov
SIZEMO-3
S1ZEP0-3
SKCTL
SKREST
SKSTAT
SLFTSV
SOUNDBELL
SOUNDR
SPARE
SQR
SRTIMR
SSFLAG
SSKCTL
STACK
STACK2
STACKP
STARP
STATUS
STCAR
STICKO
STICKI1
STIMER
STMCUR
STMTAB
VSCROL
VSERIN
VSEROC
VSEROR

I.b.L.Page

63479
58384
699
148,149
656-703
63479
560,561
559
58481
20480-22527
51452
58472
53773
53773
4452
49778

58469
59740
58457
53260
53256-53259
53775
53770
53775
58499
62806

65

563

48869

555

767

562
256-511
11521405
792
140,141

524,525

5



SUBTHP
SUPERF
SWPFLG
SYSVBL
SYSVBV
TABLES
TABMAP
TENP
TEMP
TEMP1
TEMP2
TEMP3
TEMPCHR
TESTVER?2
TIMER1
TIMER2
TIMFLG
TINDEX
TMPCOL
THMPLBT
THPROW
TMSK
TOADR
TOLDADR
TOLDCHR
TOLDCOL
TOLDROW
TPFV
TRAMSZ
TRIGO-1
TSTAT
TXTCOL
TXTMSC
TXTOLD
TXTROW
ULFIL
USRDOS
VARNOLE
VARSTG
VARTYPE
VAUX2
VBREAK
VCOUNT
VDELAY
VDSLST
VERIFY
VFR
VIMIRQ
VINTER
VKEYBD
VNTD
VNTP
VPIRQ
VPRCED

514,515

VSR 65426
VTIMR1 528,529
VTIMR2 530,531

VVBLKD 548,549

VVBLKI 546,547
VVTP 134,135
WARMST 08
WARMSV 58484
WBOOT 10201
WILD* 3783
WMODE 649

WRTDOS 4618
WRTMEMS 10111
WRTNXS 3988

WSYNC 54282
WTBUR 2591
XBCONT 1799,1800
XDELETE 3122
XFNME 3818,3822
XFORMAT 3352
XITVBV 58466
XLOCK 3196
XMTDON 58

XNOTE 3331

XPOINT 3258
XRENAME 3033
XUNLOCK 3203

ZCHAIN 74,75
ZF1 55878
ZFRO 55876
ZHIUSE 717,718
ZI0CB 32-47

ZTOVARS 48-75
ZLOADA 723,724

ZPFP 212-255
ZTEMP1 245,246
ZTEMP3 249,250
ZTEMP4 247,248

I.b.L.Page 6



COMPLETE & ESSENTIAL MAP

INDEX BY SUBJECT

This 2nd and final index is organized by subject. This is one
thing lan Chadwick should have included when he made the XL/XE
version of Mapping the Atari: a FULL XL/XE subject index!

SUBJECT LOCATIONS
ANTIC
direct memory access (DMA) 559, 54272
instruction set pointer 560, 561
interrupts 512, 513
mode numbers 87
P/M graphics 559, 54272
ROM 54272-54783
BASIC
array table 140, 141
blackboard mode no longer exists
cartridge 40960-49151
disable 1016
error codes and lines 186, 187, 195
Floating Point routines (FP) 48549-49145
GOTO and GOSUB 142, 143
graphics modes 87
jump to DOS 10, 11, 6040
line numbers 136, 137
machine-code file load 5576
memory pointers 128, 129, t44, 145, 740-744
OPERATOR 1list 42509
page zero 128-209
program ta, 15, 136-139
program end 14, 15, 144, 145
runtime stack 142, 143
stack 256-511
statement pointer and table 136-139
stopped at line action 186, 187
string table 140, 141
TOKEN 1list 42159
variable name, value tables 130-135
BLLACKBOARD MODE no longer exists
BOOT
cassette 9, 12, 1002
disk boot initialization 12, 13
disk boot routine 4, 5, 50571
DOS vector 10, 11, 5446, 5450
self-test package 20480, 58481
success flag indicator 9
system lockup 9

Page 1.1



COMPLETE & ESSENTIAL MAP
BORDER
colour registers 704, 712
disable/enable/enlarge 559
rainbow 712
BREAK KEY
disable 16, 53774
enable 16, 53774
flag 17, 53774
forced 53775
interrupt 16, 53774
restored 16, 53774
shadow register 16, 53774
status 17, 48
vector 566, 567
BUFFERS
cassette 1021-1151
command frame 570-573
data 50-53, 56
device (SIO data) 772, 773
disk 1024
line 735, 1408
printer 734, 960-999
Z10CB 36, 37, 40, 41
CARTRIDGES
A (left) cartridge 40960-49151
B (right) cartridge 32768-40959
Basic (see A cartridge) 40960-49151
DOS boot flag 49149
initialization vector 49150-49151
load address vector 49146-49147
test for presence 6, 50289
CASSETTE
baud rate 750, 751
beep count 64, 65
boot 2, 3, 9, 1001, 1002
buffer 61, 1021-1151
buffer size 650
buzzer 65020
end of file 63
handler routines 64728-65176
handler vector 58432
initialization vector 2, 3
inter-record gap (IRG) 62
load 2, 3
mode 649, 783
motor control 54018
OPEN for input 64759
read block entry 64742
record size 1021
run address 10, 11, 12, 13
status register ?
voice track 53775

Page 1.2



COMPLETE & ESSENTIA

L_MAP

CHARACTER
ATASCI1I
auto repeat logic
bit mapping
blinking text
character sets
character set address
colours
control codes
control key
control register
cursor inhibit
hardware code
internal code
inverse
invisible inverse
last character read, written
lowercase outside graphics 0
logic processing
mode
move set into RAM
printer output
prior character code
ROM routines
screen location
shadow
shift key
tests
translation of codes
under cursor
uppercase outside graphics 0
upside down

CHECKSUM

Cio
command
10CBs
utility initialization
variables
vector

CLOCK
attract mode
CPU
realtime
serial clock lines
sound use

COLDSTART
cassette boot
disk boot
entry point
flag
power—-up

Page 1.3

763,
729,
52224
548,
756,
756,
708-7
766
702,
674,
752,

754
62205
87, 8
756
702,
64537
52224
93
756
512,

49, 5

23
832-9
58561
43
58454

77-79
APC D
18-20
53775
53768

9, 10
9
58487
580
49864

52224, 57344

730, 764
, 57344
549, 755

52224, 57344

54281
12, 756

764
694, 755
755

764

54273

~63266
8, 89

53775

, 57344

513, 755,

9, 60

59

02

, 53784

01

54273



. & ESSENTIAL MAP

COLOUR

artifacting

attract mode

default values

GTIA registers
player/missile shadows
playfield shadows
rotating

screen mode

CONSOLE KEYS

basic disable
basic enable
cassette boot
detection

disk boot
self-test package

CPU

clock rate
instruction set

CURSOR

advance
character under
click

column

current position
end of line (EOL)
flash
graphics
home
inhibit
LOCATE

(disable)

logical
move to
move to
move to
opaque,

line

left margin

right margin
bottom-left corner
transparent

out of range error
pause toggle
previous position
TOow

tab stops

tab width using the comma

text window

Page 1.4

710
77-79
708-712,
704-712,
704-707
708-712
77, 703
87, 560,

64264-64268
5326653274

561

54017
54017

53279,
53279,
53279
53279
53279
20480,

54017, 58481

APC
APC

D2
D4

85,

95

122, 62528

122,
122,
122,
54273

62491
62474
62815

123



COMPLETE & ESSENTIAL MAP

DEVICE

buffer
byte transfer
command
command frame retries
Device Control Block (DCB)
drivers (adding)
error status
HANDLER address table
routines
vectors
memory
retries
status registers
timeout value
vector tables
Z10CB number

DIRECT MEMORY ACCESS (DMA)

graphics control
ROM
shadow

DISK

beep during 1/0
boot

boot load address
boot continuation
boot initiation address
boot routine
buffer

flags

FMS page zero

FMS pointer
handler commands
handler routines
handler vector
header bytes
initialization address
records OPEN
retries

run address

start vector
timeout

utilities

vector

verify routines

772, 773
776, 777

58591-59192

794-828, 58368-58447

55296-55323

58368, 58447
33

53277
54272
559

65, 60504
9-13, 100!,
578, 579

4, 5

12, 13
50571, 50619
21, 22, 1802
576, 577
67-73

24, 24

778
50851-51001
58448, 58451
576-579

12, 13

1801

668

736-739

10, 11

582

26, 27

10, 11

1913

Page I.5



COMPLET

E_& ESSENTIAL MAP

DISPLAY

HANDLER
routines
vector
LIST
address
enable
entries
instructions
interrupts
location
lowest address
pointer
reserving memory
ROM tables
screen mode
scrolling
size
vertical line counter
logical line map
memory
pixel mask
RAM
registers
routines
text window

DLI

address
disable
enable
vector

DOsS

boot address
boot record
buffers

burst I1/0

drives in system
DUP.SYS RAM
filename change
files reserved
FMS RAM
initialization
run address
start vector
wildcard character

DRAW

colour of line
cursor

endpoint of line
flag

graphics 0

ROM routines
screen mode

Page 1.6

61294

58384

100, 101, 560, 561
559, 54286

81, 560, 561

559-561

512, 513, 54286, 64708
560, 561, 65530, 65531
14, 15, 106, 560, 561
560, 561

106, 560, 561

60957

87, 559, 560, 561, 623
560, 561, 54276, 54277
81, 560, 561

54283

690-693

14, 15

672

656-703

76, 80, 81, 99-105,
61294

656-667

512, 513

54286

54286

512, 513

10, 11, 578, 579

1792

6780-7547, 7588-7923
2592-2773

1802

5440-13062

3818, 3822

1801

1792-5377

12, 13, 738, 739

736, 737

9-11

3783

763

90-92

84-86, 757-759

695

87

?

87

107-127



COMPLETE & ESSENTIAL MAP

DUP.SYS
load 10, 11
ERRORS
BASIC 186, 187, 195
device 746
disk 1/0 73
S10 575
ESCAPE KEY
control codes (without ESC) 766
flag 674
forced 766
FILE
header bytes 576~579
initialization address 738, 739
load address 578, 579
run address 736, 737
FILL
colour of fill area 765
colour of line 763
endpoint of line 84-86, 757-759
flag 695
FLOATING POINT
BASIC ROM 48549-49145
degree/radians flag 251
page zero 210-255
pointers 252-255
RAM page five 1406-1535
registers 212-217, 224-229
ROM (0S) 55296-57343
trig functions 251
FMS
page zero buffer 67-73
pointer 24, 25
RAM 1792-5377
GRAPHICS
display mode 87, 659
DRAW, DRAWTO and FILL 85, 86, 757-759
10CB 928-943
line plotting 112-120, 760, 761
memory use 88, 89, 106
mode 8 text 57344
pixel 672
players/missiles 53261-53265
row and column plotting 112-120, 760, 761
screen memory 14, 15, 123, t26, 127
scroll 622, 54276, 54277
tab width 201
XI0 commands 757-759

Page 1.7



COMPLETE & ESSENTIAL MAP

GTIA
collisions 53248-53263, 53278
console keys 53279
console speaker 53279
examples 623
mode selection 87, 659, 559, 623
ROM 53248-53503
stick triggers 53264-53265
test 623
text window 623, APC C11
trigger latching 53277
HANDLERS
interrupt routines 49164
RESET 794
ROM routines 58561
HARDWARE
memory 53248-55295
HELP KEY
detection 732
INTERRUPTS
BREAK key disabled 16
BREAK key vector 566, 567
display list (DLI) 512, 513
enabled 16, 53774, 54286
handler routines 49164
IRQ 16, 514-535, 53774, 49196
NMI 512, 513, 546-549, 54286
49176, 49378, 49802
PIA (periperal) 54018, 54019
POKEY 16, 53774
RAM 512-535, 546-549, 566, 567
serial 16
status request 53774
timer 16
Vertical Blank (VBI) 546-549, 54286, 58460-58468
49378, 49802
[0CB
graphics screen 928-943
LIST, LOAD and LPRINT 944-959
move 58609
page zero 32-47
RAM 832-959
screen editor 832-847
1RQ
BREAK key vector 566, 567
service routines 49196, 64537
vectors 514-535
JIFFY
realtime clock 18-20
vertical scan-line counter 54283

Page 1.8



COMPLETE & ESSENTIAL MAP

KEYBOARD
code
console keys
control key flag
controller
delay flag
debounce delay
display flag
enable debounce and scanning
ESCape key flag
handler routines
handler vector
interrupts
inverse toggle
option, select and stop keys
repeat rate
SHIFT key flag
start, stop flag (CTRL-1)
status
synchronization
timer delay

LIGHT PEN
horizontal value
vertical value

LINE
bitmap
buffer
cursor
logical line
margins
plotting
screen editor
tabs

LUMINANCE
attract mode

MACHINE LANGUAGE
illegal instruction set
instruction set
page six

MARGINS
border
botton
editing
initialization
left
playfield size
right
scrolling
top

764, 53769

9, 580, 732, 53279
702, 53769
54016

555, 729, 730, 753
729, 730

766

562, 53775
674
62205-63266
58400

16, 53774

694

53279

555, 729, 730
702, 53769
767

76

54282

555

564, 54284
565, 54285
690-693
1408-1535

99

83

82, 83
112-120, 126, 760-761
107

201, 675-689
77-79

APC D4

APC D4
1536-1791

82, 83, 559
84, 560, 561
82, 83

82, 83

82

559

83

82, 83, 54276, 54277
84, 560, 561

Page 1.9



COMPLETE & ESSENT1AL MAP

MEMORY
bank switching
hardware
RAM

ROM

MONITOR
handler routines

NM1
DLI
reset register
service routines
status
VBI
vectors

OPERATING SYSTEM
character sets
Floating Point (FP)
handlers
ROM
vectors

PAGE ZERO
BASIC use
buffer
Floating Point use
FMS registers
10CB (ZIOCB)
RAM
unused RAM (unconditionally)

PERTPHERAL
controllers
interrupts
ports

PIA
ROM
stick
paddle (pot) triggers
ports

PLAYER/MISSILE GRAPHICS
character base
collision clear
collision detection
colour registers
disable

54017
53248-55295
0-32767, 32768-40959

40960-49151, 49152-53247
55296-65535

49152-53247, 55296-65535

49864

512, 54286
54287
49176
54287
546-549,

512, 513,

513, 560, 561,

54286
546-549

52224, 57344
55296
58591~
49152-53247,

58368-58533

55296-65535

128-202
21,22
210-255
67-73
32-47
203-209,
28-31,

0-255
147, 203-209

54018, 54019
53774

54016

54016-54271
54016
54016

54016, 54018-54019

54279

53278
53248-53263
704-707
559, 53277

Page 1.10



COMPLETE & ESSENTIAL MAP

DMA

enable

fifth player
graphic shape
horizontal movement
horizontal position
location

memory reservation
movement
multicoloured
overlap

priority

resolution (line)
screen boundaries
size and width
using DLIs with PMGs
vertical delay
vertical movement

PLAYFIELD

colours
DMA
enable
priority
scrolling
size

POKEY

enable
interrupts
pots

ROM

sound channels
sound control
stereo upgrade

POLYNOMIALS

random numbers
sound dividers

POTS

fast-scan enable
POKEY registers
port state read
shadows

start read sequence
trigger latch
triggers

values

POWER-UP

RAM size
ROM stability test
warmstart

559, 54272
559, 53277
623, 53275
53261-53265
53248
53248-53255
54279

54279

53248

623, 53275
623, 53275
623, 53275
559, 54272
559, 53248
53256-53260
53261

53276

APC Cl10

704-712

559

559

623, 53275
54276, 54277
559

53768, 53775
16, 514-535

53760-53767

53760-54015

53760-53767

53768, 53775
APC B3

53770
53761, 53768

562, 53775
53760-53767
53768

624-631

53771

53277

636-643, 54016
624

6, 740
50289, 50394, 65395,
8, 9, 580

Page 1.11

65426



COMPLETE & ESSENTIAL MAP

PRINTER
buffer
character output
handler routines
handler vector
TOCB use
sideways printing
status
timeout

PRIORITY
ROM
shadow

RAM
clear memory
free memory

monitor

page zero
pointer, bottom
pointer, top
pointers, general
protected area (Page-$6)
RAMtop

reserving

screen

size

stack

test

vector table

RANDOM NUMBER GENERATION
register
control

RESET KEY
coldstart
DOS
flag
handler routines
handler tables
interrupt
lockup
margins
vector
warnstart

SCREEN
bit mapping
boundaries
buffer
clear memory
clear screen
colour clocks

734, 735, 960-999
”

65177
58416
944-959
735

788, 735
788

53275
623

88, 89, 106

0-32767, 32768-40959
40960-49151, 49152-53247
55296-65535

0, 1

28-31, 147, 203-209, 0-255
743, 744, 1792

106, 741,742

4, 5, 15, 128, 129
1536-1791

106, 740-742

106, 743, 744

88, 89

106, 740

512-767

4-~7

58496

53770
53768

580, 58487
10, 11

580

49834, 58484
794

54286

9

82, 83

9, 65530

8, 580, 58484

110
53248

88, 89, 106

Page 1.12



COMPLETE & ESSENTIAL MAP

control codes
- display address
display mode
graphics modes
handler vector
IOCB use
line buffer
logical line map
lowest address
memory restrictions
memory use
mode
- page zero RAM
PAL compatible
pixel justification
- pixel mask
rows
save routines
screen modes
scrolling

size

split screen

TAB map

text rows

vertical line counter
- wait synchronization

SELF-TEST

- address
enable

vector

SERIAL PORT
control
data port
input/output
interrupts
reset status
shadow

_ status

SI10
- checksun
command frame buffer
data buffer
- device control block
disk flags
error flag
flags
interrupt handler
interrupts
routines
send enable
stack pointer
status

766

560, 561

87, 659

87-89, 106
58368

832, 928
1408-1535
690-693

14, 15, 88, 89
741, 742

88

87, 659

80-120

53268

111

672

703

88, 89

560, 561

88, 89, 106, 622, 699,
54276, 54277
76, 88, 89, 559, 672
123

675-689

703

54283

54282

20480
54017
58481

562, 53775
790

16, 53773
16, 53774
53770

562

53775

49
570-573
50-53, 56
768-779
576, 577
575
56-60
49164
514-527
59740
58472
792

48

Page 1.13

767



COMPLETE & ESSENTIAL MAP

timeouts

transmission flags
utility initialization
vector

SOFTWARE

initiation address
run address
timers

SOUND

audio control
audio frequency
beeps

buzzer (CTRL-2)
cassette buzzer
clock frequency
console register
CTRL-2 buzzer
distortion
filters

1/0 beeps
keyboard speaker
margins

octave range
poly counters

STACK

page one
runtime

STATUS

device

display

printer timeout
S10

Z10CB

STICK

attract mode
PIA register
read routines
shadows
trigger latch
triggers
values

TABS

comma spacing
stop map

TEXT

colour

size

status flag
upside down

788
56-60,
58469
58457

701

738, 739
736, 737
536-545

53761-53768
53760-53768
64, 65
62806

?

53768

53279

66, 62806
53761

53768

65, 60504-60547
53279

83

53768

53761

256-511
142, 143

747
76
788
48
35

77
54016
632
632-635
53277
644-647
632

201
675-689

708-711
87
752,
755

755

Page 1.14



COMPLETE & ESSENTIAL_ MAP

WINDOW 656-667, 703
address 660, 661
cursor 123, 656-658
enabled on mode 0 703
GTIA 87
margins 82, 83
mode 659
plot 87
rows available 703
scrolling 622, 699
tab width 201

TIMEOUT

baudrate correction 791

device 748

disk 582

printer 788

storage 48

value 788

TIMERS

attract mode 77

baud rate 780-782, 784-787

critical code 66

hardware (POKEY) 16, 528-533, 53768

interrupt enable 16, 53774

jump vectors 550-553

realtime clock 18-20

repeat 555

software (system) 536-558

start hardware 53769

suspended 66

VBLANK 66

vectors 550-558

TRANSMISSION FLAGS 56-60
TRIGGERS

GTIA registers 53264-53265

latches 53277

paddle (POT) 636-643

P1A register 54016

stick (joystick) 644-647

VARTABLE

assigning values 134

list 132

name table (VNT) 130-133

statement table 136, 137

string and array table 140, t41

value table 134, 135

Page 1.15



COMPLETE & ESSENTIAL MAP

VERTICAL BLANK
attract mode
clock
critical section
entry point
exit
interrupts
interrupt status
key delay
set timers
timer value

VECTOR
BREAK key interrupt

break instruction (BRK)

cassette handler

clo

command

device handlers
disk

disk handler
display handler

DLI

immediate IRQ
keyboard handler
RESET key interrupt
serial interrupt
serial proceed line

serial receive data ready
serial transmit complete

serial transmit ready
software timer-1
software timer-2
timer~1 interrupt
timer-2 interrupt
timer-4 interrupt

VBI

WARMSTART
entry point
flag
NMI check

77-79

18-20

66

58463

58466

546-549, 54286
54287

729, 730, 753
18, 58460

0, 1

566, 567
518, 519
58432

58454

23

794-828, 58368-58477
10, 11

58448, 58451

58384

512, 513

534, 535

58400

49834, 58484, 65532
516, 517

514, 515
522, 523
526, 527
524, 525
550, 551
552, 553
528, 529
530, 531
532, 533
546-549

58484, 49808
8, 580
8, 54287

Page 1.16



COMPLETE & ESSENTIAL MAP

for the
XL / XE

BOOK CORRECTIONS

After reading through the book we have unfortunately found a
few page references that do not correspond with the pages
indicated in the book.

On page 1S5 in the paragraph under location 91,92 it indicates to
refer to page 97, unfortunately it should read: “See page 85 of
the map'.

On page 140 in the first paragraph, under location 54272, it
reads (Page-45) but it should read "Page-38".

In part two of the book on page 170 in the OPEN paragraph it
reads: (See the table on page 96), this is another mistake, it
should read '"See the table on page 84'.

These mistakes tpuve occurred when the author's Master Copy
was set up and re-printed as it is now. There were too many
large gaps between the lines and some pages had only a few
line on them, it would have pushed the cost up too high. Please
notify TWAUG with any other errors found in the book, the page
references above are the only ones I've found up to now.

The author wasn't able to print the "lesser than < and greater
than > characters with his printer, in place he used the square
brackets [l. Again some of these characters were overlooked,
you will find these square brackets in some of the BASIC
program listings, mostly in the appendix pages. Please replace
these square brackets [ with the lesser than and greater than
<> characters, or the programmes wont run.

If we find further mistakes we will update this '‘Book correction
leaflet’ and post it out to our customers. Please keep this
leaflet clipped to your book.

TYNEAWERR : memmmmﬁm

N

P.O.Box No.8, WALLSEND
Tyne & Wear NE28 &6DQ

ATARI
USER GROUP

Publishers



TWAUG publications presents

THE
Atari XL/XE
Complete And Essential MAP
Including Probably The Most
Comprehensive Appendice

Selection Ever Produced

Written by
Andrew C. Thompson

This Book Contains Information
Never Released Anywhere Before
And Is Heavily Based And
Expanded On Mapping The Atari - Revised
THIS BOOK IS COPYRIGHTED AND ALL RIGHTS ARE RESERVED.

ANDREW C. THOMPSON © 1994
and
TWAUG PUBLISHING™® 1994

The publishers of this book have the sole right for distribution.

Any unauthorized copying, duplicating, selling or otherwise distributing
of this product is hereby expressly forbidden.

TYNEZWERAR

ATARI ;
USER GROUP

T.W.A.UG.
P.O.Box No.8
Wallsend
TYNE & WEAR
NE28 6DQ

RLOL LT LT L LI LY L LT L LT L L L L [ O | O | I | I | |



