AVON CAMELOT

BABUC FUN WOUH BRAPHOES THE ATARITM war

BASOE FLON WOTFI BRAOMOE® The ATAR ${ }^{\text {an }}$ WAY

Other Avon Camelot Books by Margaret Ann Zuanich and Susan Drake Lipscomb

Basic Beginnings
Basic Fun: Computer Games, Puzzles and Problems Children Can Write
Basic Fun with Graphics: The Apple ${ }^{\bullet}$ Computer Way
Basic Fun with Graphics: The IBM PC © Computer Way

MARGARET ANN ZUANICH and SUSAN DRAKE LIPSCOMB have a unique combination of skills that contributed to the creation of BASIC FUN WITH GRAPHICS. Margaret Zuanich's experience in the computer field has included everything from programming to management consulting. She earned her Master's Degree in Business and is now involved in computer systems training. Susan Lipscomb holds a Master's Degree in Education and has spent fourteen years in the area of language and learning disabilities. They both live in Palo Alto, California.

> Avon Books are available at special quantity discounts for bulk purchases for sales promotions, premiums, fund raising or educational use. Special books, or book excerpts, can also be created to fit specific needs. For details write or telephone the office of the Director of Special Markets, Avon Books, Dept. FP, 1790 Broadway, New York, New York $10019,212-399-1357$.

BAOMBLSNM
 WOTTM GRAOMOCO THE $\underset{\text { ATARI }}{\text { OMPTEE }}$ WAY

MARGARETANW ZUANICH AND SUSAN DRAKE LIPSCOMB

5th grade reading level has been determined by using the Fry Readability Scale.
BASIC FUN WITH GRAPHICS: THE ATARI ${ }^{\circ}$ COMPUTER WAY is an original publication of Avon Books. This work has never before appeared in book form.
This book is published by Avon Books which is not affiliated with Atari, Inc. and Atari is not responsible for any inaccuracies.
ATARI is a registered trademark of Atari, Inc. and 800 is a trademark of Atari, Inc.

AVON BOOKS

A division of
The Hearst Corporation
1790 Broadway
New York, New York 10019
Copyright © 1983 by Margaret Ann Zuanich and Susan Drake Lipscomb
Cover photograph by Aram Gesar
Published by arrangement with the authors Library of Congress Catalog Card Number: 83-15528 ISBN: 0-380-85050-8

All rights reserved, which includes the right to reproduce this book or portions thereof in any form whatsoever except as provided by the U. S. Copyright Law. For information address Avon Books.

```
Library of Congress Cataloging in Publication Data
Zuanich, Margaret Ann.
    Basic fun with graphics, the Atari computer way.
    (An Avon/Camelot book)
    Summary: Instructions for graphics programming on an
Atari computer using BASIC.
    1. Computer graphics-Juvenil literature.
2. Atari computer-Programming-Juvenile literature.
[1. Computer graphics. 2. Programming (Computers)
3. Atari computer-Programming. 4. Basic (Computer
programming language)] I. Lipscomb, Susan Drake.
II. Title
T385.Z8 1983 001.55'3 83-15528
ISBN 0-380-85050-8
```

First Camelot Printing, November, 1983
camelot trademark reg. u. S. pat. off. and in other countries, marca registrada, hecho en u. s. A.

Printed in the U. S. A.
DON 10987654321

TABLE Of CONTENTS

Introduction 7
How to use BASIC Fun With Graphics: The Atari Way 9
1 PRINT: 11

1. Warmups 12
2. House 14
3. Ocean Liner 16
4. Space Fleet 17
5. Bugs 19
6. Rocket Ship 21
7. Bicycle 24
2 POSITION 25
8. Warmups 26
9. Face 28
10. Christmas Tree 30
11. Candy Jar 32
12. Tower 34
13. Grove 35
14. Hide-and-Seek 36
3 PLOT and DRAWTO 39
15. Warmups 40
16. Christmas Lights 45
17. Jet Plane 47
18. House 48
19. Flag 49
20. 3-D Room 51
21. Train 52
22. Skier 53
4 GRAPHICS MODES, COLOR, and SETCOLOR 55
23. Warmups 56
24. Fish 76
25. Car 77
26. Fishing Boat 79
27. Windmill 81
28. Snowflakes 83
29. Sailboat 85
30. Campground 87
31. Picture 89
5 ANIMATION 93
32. Warmups 94
33. Walking Figure 98
34. Flying Bird 100
35. Jumping Fish 102
36. Helicopter 104
6 FUN WITH GEOMETRY 107
37. Warmups 108
38. Apple Tree Harvest 115
39. Leaping Fish 118
40. Bird and Flower 120
41. Fancy Graphics 123
Glossary 125

INTRODUCTION

Are you ready for the fun and challenge of graphics programming? Do you want to use your computer to create your own pictures and designs, move objects around on the screen, or design your own video game? BASIC Fun With Graphics: The Atari Way gets you started, using the graphics programming statements on your computer. Each chapter includes exercises that show how the graphics statements work and simple BASIC programs that demonstrate exciting and fun ways to use these statements.

BASIC Fun With Graphics: The Atari Way presents a systematic yet entertaining approach to learning graphics programming. First you type in the exercises and programs exactly as they appear in the book. Then you experiment and change them, using your own ideas. Finally, you create your own designs and pictures, using those in the book as a guide.

BASIC Fun With Graphics: The Atari Way covers the beginning and intermediate graphics statements available in Atari Basic, as well as a chapter for "hotshots" that uses higher-level mathematical functions to create geometric figures and generate new and unique designs. It stops short of commands that directly address memory, like PEEK and POKE statements, and shape tables used in sophisticated graphics and animation. When you're ready for this level of programming, your computer's BASIC reference guide has a comprehensive discussion of how to proceed.

BASIC Fun With Graphics: The Atari Way is written in BASIC for the Atari 400 or 800 equipped with a BASIC cartridge. The programs will run on either a color or monochrome monitor. For visual appeal, SETCOLOR statements are included in many of the programs. To run on a monochrome or
black and white display, omit the SETCOLOR statements, but not the COLOR statements, from the program.

We found that experimenting with the graphics statements and creating designs and pictures on the screen was great fun. We hope you get as many "oohs," "aaahs," and chuckles as we have.

HOW TO USE BASIC FUN WITH GRAPHICS

1. Start up your Atari with the BASIC cartridge in it.
2. Type in each program line by line, including the line numbers, exactly as shown in the Program Listing. Press the RETURN key after each line.
3. Once you have a program entered onto your computer, type RUN and press Return. The computer will Run your program and display the results on the sceen. It should look like the example in the book.
4. To check the programming statements, press RESET, type LIST and press Return. The computer will list your program.
5. Now try making the changes suggested in the text, or experiment with others, using ours as a guide.
6. When you're ready to save your program, use the SAVE or CSAVE command. To retrieve a program from the disk or cassette, use the LOAD or CLOAD command.
7. Before you enter another program, type NEW to erase anything currently in memory.
8. The Warmup exercises at the beginning of most chapters contain directions and examples using each graphics statement. Read these and work through the exercises before you proceed to the programs.
9. The pictures used as examples in this book were drawn using the screen display as a guide. The actual display on your screen may vary slightly from these examples.
10. If you have difficulties making a program work, check your program, line by line, against the listing in the book. All the programs and exercises were tested on an Atari 400 and an Atari 800.

PRINT

Use this program statement to tell the computer what to print on the screen or paper.

PROGRAMS

1. Warmups
2. House
3. Ocean Liner
4. Space Fleet
5. Bugs
6. Rocket Ship
7. Bicycle

WARMUPS

The format for the PRINT programming statement is:

```
PRINT " " or PR." " or ?" "
```

You can use any combination of letters, numbers, and special characters in a PRINT statement.

Your computer has nine display modes: 3 text modes and 6 graphics modes. This chapter shows you how to use the GRAPHICS 0 text mode to draw shapes and objects.

In GRAPHICS 0 , you have 24 rows and 40 columns. The rows are numbered from top to bottom, the columns from left to right, on your screen. If you think of your screen as a piece of graph paper, then the top left square is 0,0 and the bottom right square is 39,23 . The Atari default margin in GRAPHICS 0 is 2,1 (column 2, row 1), where "READY" appears.

The graphics mode statement sets the display type. The format is:
GRAPHICS N or GR. N
where N is a number that determines the display type, as follows:

Type	Mode	Rows	Columns	Full Rows	Text Window
0	Text	24	40	24	No
1	Text	20	20	24	Yes
2	Text	10	20	12	Yes
3	Graphics	20	40	24	Yes
4	Graphics	40	80	48	Yes
5	Graphics	40	80	48	Yes
6	Graphics	80	160	96	Yes
7	Graphics	80	160	96	Yes
8	Graphics	160	320	192	Yes

The GRAPHICS statement can be abbreviated when you are typing to GR. N. GRAPHICS can be used either in a program or in immediate mode.

If you want to use the full screen in modes 1 through 8 , thereby eliminating the text window, add 16 to the GRAPHICS N statement. Then make the last statement of your program a continuous loop, so you have to BREAK the program to end it. For example:

```
100 gRaFHICS 3 + 1s
999 00T0 999
```

These two statements will allow you to use 24 rows and 40 columns for your graphic commands in graphics mode 3 .

Atari's graphic modes will be discussed in greater detail in Chapter 4.

HOUS

Use PRINT to draw a house. Put this program in your computer by typing each line exactly as shown in the Program Listing.

Once you have this program up and running, try adding a chimney by using the Atari's edit keys ($\uparrow, \downarrow, \leftarrow, \rightarrow$, INS, DEL).

PROGRAM LISTING

100 ERAPHTCS

NOTES

Line 100: GRAPHICS 0 puts the program run in graphics mode 0 .
Lines 110-190: When the program runs, the PRINT statement tells
the computer to print out everything between the two " marks on each line exactly as it is shown in the program.

OCEAN LINER

Draw an ocean liner with this program.

Now add some portholes or another deck to make your own ship.

PROGRAM LISTING

100 GFAFHICS O
110 FFINT "
120 FRTNT '
± 3 FEINT "
140 FRJNT " 150 FRINT
160 FFINT "

SPACE fL $\in \in T$

Create a fleet of different kinds of spacecraft.

$\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$

$$
\begin{aligned}
& \begin{array}{ll}
1 \\
11 \\
11 \\
11 \\
9
\end{array} \\
& \text { EGGもO } \\
& \text { / \#\#\#\#\#\#\#, } \\
& \text { 1******** }
\end{aligned}
$$

PROGRAM LISTING

100 GFAFHICS 9

200	FFINT	1	$11^{\prime \prime}$		
210	FFINT	1	\prime＇${ }^{\prime \prime}$		
220	FFINT	11		＇${ }^{\prime \prime}$	
930	FFINT	\because		11＂	
240	FFINT	1		$11^{\prime \prime}$	
250	FRINT	\because		$11^{\prime \prime}$	
260	FFINT	1		＇${ }^{\prime \prime}$	
270	FFiINT	＂			或可司果＂
280	FFINT	1			
290	FFINT	1			$1 * * * * * * * * 11$
300	FFINT	＂	1		$\cdots \cdots 1$

NOTE

You can use any of the special characters on the keyboard in a PRINT statement．Experiment with these characters and make some of your own spaceships．

BUGS

Here is a swarm of bugs.

Can you come up with some species of your own?

互\#\#\#\#\#\#\#\#\#
!!!!!!!!

PROGRAM LISTING

100 EFAFHTCS
120 FRINT "
130 FRTNT "
14 P FRTAT "
150 FRINT "
160 FFINT "
170 FFINT "

190 FFINT
"
190 FFINT " Vi \%"
200 FFINT " \quad "
210 FRINT " / "

22E FRINT " 2 SO FFINT " 240 FFINT " 250 FRTNT "

 Fig FFIFHT

111111111

ROCKET SHIP

This rocket is drawn by the computer and then blasts off the screen, leaving a trail of fire.

You can do the same thing with your own spaceships.

PROGRAM LISTING

NOTE

Lines 620-640: This is a FOR . . . NEXT loop, which allows you to repeat part of your program as many times as you want. The FOR statement begins the loop and the NEXT statement ends it. In this program, it repeats Line 630, which PRINTs a blank line, 40 times, making the rocket move up the screen so it appears to blast off.

BICYCLE

Now you can create a ten-speed bicycle. Can you design a racer or dirt bike of your own?

PROGRAM LISTING
100 GRAPHICS o
110 FFINT " I......"

POSITION

The POSITION statement tells the computer in which column and row to locate the cursor.

PROGRAMS

1. Warmups
2. Face
3. Christmas Tree
4. Candy Jar
5. Tower
6. Grove
7. Hide-and-Seek

UARMUPS

The format of the POSITION statement is:
POSITION column, row where column is column position, 0 through 39 in GRAPHICS 0 row is row position, 0 through 23 in GRAPHICS 0

The values used in the POSITION statement vary with the screen format of each graphic mode for the Atari. The cursor doesn't actually move until a command which involves the screen is used. If you specify coordinates outside the available format for the mode you've selected, you will get an Error Message that says ERROR 141 (cursor out of range for particular mode) for the line following your POSITION statement which uses the screen, when you try to run your program.

EXERCISE 1

Use POSITION to put a character at various locations on your screen.
10 gRaphics o
20 FOSITION 19.12
SO FFINT "*"
*
This exercise puts an $*$ at location column 19, row 12 . Try placing the $*$ at other locations on the screen.

EXERCISE 2

Use the POSITION statement to center text.

```
10 BRAFHICS O
20 FOGITION 5,11
```

OG FFINT "THIS GHOULD EE CENTEFED"
40 FOSITION 12, 12
50 FFINT "IN 40 COLUMN TEXT"
60 FRINT "IN 40 COLUMN TEXT"

> THIS SHOULD EE CENTEFED IN 40 COLUMN TEXT

POSITION 9,11 locates the cursor on column 9, row 11 when the program executes the following PRINT statement. POSITION 12,12 puts it on column 12, row 12 for the next PRINT statement.

fACE

Draw a girl's face and then add features. You can change her expression by altering Lines 210, 230, and 270.

PROGRAM LISTING

1. 0 FRTMT " $/ \% / 1 /$

120 FRTNT " || ||"
130 FETNT " || ||'
$\begin{array}{lll}140 \text { FFTNT " } & 11 & 11 " \\ 150 \text { FRTNT " } & 11\end{array}$

200 FOSTTXON 9,2
210 FFINT "^ ^"
220 FOSTTCON 9,3
230 FRTNT "0 0"
2.40 FOSTTION 10.3
$2 \Xi 0$ FFTNT "^"
260 FOGTMXON 10.6
270 FFINT "..."
230 FOSTTLON 1,15

NOTES

Line 100: GRAPHICS 0 tells the computer to start the program run in graphics mode 0 .

Lines 200, 220, 240, 260: POSITION tells the computer to put the cursor at the column, row position you want. This statement must correspond to the parameters of your screen mode ($0-39$ columns by $0-23$ rows in GRAPHICS 0). Otherwise you will get an Error Message, ERROR 141, which means the cursor is out of range for a particular mode, when you try to run your program.
The default margin in GRAPHICS 0 is in column 2, row 1. You may need to take this into account when you set your position coordinates.

Line 280: POSITION 1,15 puts the cursor below the bottom of the picture, at row 15. Otherwise, the "Ready" prompt and cursor appear immediately below the last line printed, in this case the mouth.

CHRISTMAS TREE

Draw a Christmas tree, then go back and decorate it. Add ornaments of your own to the program.

PROGRAM LISTING

240	FOSITION 20,14	
250	FREINT "\| ${ }^{\prime \prime}$	
260	FEM *** DECOFATE	TREE
$\because 70$	GOSUE 400	
280	FOSTTION 21, 1	
290	FFiINT "*"	
300	GOSUE 400	
310	FOSITION 21,4	
320	FFINT "! "	
330	GOSUE 400	
340	FOSITION 18,7	
350	FFINT "* *"	
360	GOSUE 400	
370	FOSITIUN 15,10	
380	FFINT "! o a	Q ! '
390	GOTO 430	
400	FOR W=1 TO 400	
410	NEXT W	
420	FETUFN	
425	FOSITION 1,20	
430	END	

NOTES

Line 270: GOSUB tells the computer to leave the program and go to a subroutine, in this case Line 400.

Line 390: GOTO tells the computer to go to a designated line number, in this case Line 430.

Lines 400-420: Subroutines are small programs within a larger program that are used over and over. When the subroutine is finished, a RETURN statement tells the computer to go back to where it came from in the main program. Here the subroutine is a Wait Loop, which simply makes the computer pause before it continues to decorate the tree.

Line 430: The END statement tells the computer that it is the last line in the program. It stops the Run.

CANDY JAR

This program draws a candy jar and fills it with jelly beans. Design your own container and fill it with marbles.

PROGRAM LISTING

100 めたAFHTES
110 FGSITIUN 2,
120 FGTMT "
130 FMTT "
140 FFIMT "
150 FFINT "
160 FRTNT "
170 FRINT "
180 FFINT "
190 FKINT "
200 FFINT "
210 FOF $Y=14$ TO 11 STEF -1
220 FOK $X=7$ TO 12
230 FOSTTXON $X+Y$
240 FFTNT "0"
250 NEXT X
260 GOSUE 290
270 NEXT Y
280 GOTO 320
290 FOF $T=1$ TO 200

```
300 NEXT T
310 FETUFN
320 FOSITION 1,20
```

330 END

NOTE

Lines 210-270: These lines form two nested FOR . . . NEXT loops, to fill the jar from the bottom up. The Y loop sets the rows and the X loop sets the columns to print " 0 ".

Line 210: The loop of lines is incremented by the number in the STEP statement, in this case-1, so the program counts backwards from 14 to 11. If there is no STEP statement, the loop is incremented by one's.

TOWER

Build a tower, using one of Atari's special ATASCII characters.
Can you change the program to build a pyramid, using a different character?

PROGRAM LISTING

100 GWAFHCS 0
110 FOR , $=00$ TO 10 STEF - 1
120 FOF $x=19$ TO 21
130 FOSTTION Iqd

$1 世 0$ NEXT X
160-NEXT J
170 FOSITION 1,1

NOTE

Line 140: CHR\$(21) means the ATASCII character numbered 21. On the Atari this character is a ${ }^{\text {a }}$.

GROVE

"Grove" draws identical trees in evenly spaced columns and rows on your screen.

Can you change the orchard pattern or design of the trees?

PROGRAM LISTING

100 GRAMHCS 0
110 FOR $\rfloor=6$ TO 10 STEF 2
120 FOR $\mathrm{X}=10 \mathrm{TO} \quad 20$ STEF 2
130 FOSTTION IsJ
140 FFTNT CHF*(16)
150 NEXT X
160 NEXT J
170 FOSxTcoN 1.20

HIDE-AND-SEEK

Here's a hide-and-seek game you play with the computer. Guess which tree X is hiding behind and the computer will show you if you're right.

$$
\begin{gathered}
5 \\
-1-1
\end{gathered}
$$

WHEFE IS X HIDING?
EEHIND TREE 1,2,3,4 OR 5? 4
SORFY ... BEHIND TREE 2 !
YOU'RE STILL "IT"!
WANT TO FLAY AGAIN (Y OR N)? N

PROGRAM LISTING

1.00 Dİi N\& (3)

110 6FAFHCO 0

$130 \mathrm{FOK} L=1 \quad$ TO
$140 \quad \mathrm{x}=\operatorname{INT}(\mathrm{KND}(1) \times 20+10)$
$1 \% 0 \quad \gamma=\operatorname{TMT}(F N D(1) * 1 世+1)$
180 FOSTTION X, Y
$36 \cdot$ BASIC FUN WITH GRAPHICS: THE ATARI WAY

```
190 FFINT " ^"
2 0 0 ~ F O S I T I O N ~ X , ( Y + 1 )
210 FFINT "/";L.;"\"
220 FOSTHTON }X,(Y+2
230 FFINT "--1-"
240 IFF A=L. THEN 270
250 NEXT L.
260 G0T0 290
270 XI=X:YJ=Y
280 GOTO 250
290 FOSITION 2.18
300 FRINT "WHEFE IS X HIDING?"
310 FFINT "EEHTND TFEE 1,2,3,4 OFF E?"
320 INFUT N
330 IF N=A THEN 370
340 FFRINT "SOFFY...EEHIND TREE";A;"!"
3S0 FFFINT "YOU'FE: STXLL 'IT'!"
360 GOTO 380
370 FFFTNT "YOU'FEE FIGHT!!!"
380 FFINT "THEFE HE IS!"
390 X1=(X1+2):Y1=(Y1+1)
400 FOSITION XI,Y1
410 FFINT "X"
4 2 0 ~ F O S T T I O N ~ 2 . 2 2 ~
4 3 0 ~ F F I I N T ~ " W A N T ~ T O ~ F L A Y ~ A G A I N ~ ( Y ~ O R ~ N ) ? " ; ~
440 INFUT N$
450 IF Nक="Y" THEN 110
460 END
```


NOTES

Line 100: String variables on the Atari must be dimensioned. DIM $\mathrm{N} \$(3)$ saves three spaces for $\mathrm{N} \$$.

Lines 120, 140, 150: RND(1) or RND is a random-number function, which generates random numbers from 0 to 9999 . INT is an integer function, which changes decimal numbers to whole numbers by dropping the fractional part of the number. The statement $A=$ INT
(RND(1)*5+1) tells the computer, "Let A be a random number between 1 and 5."

Lines 320, 440: The INPUT programming statement allows you to enter different numbers or words into your program each time it runs.

Lines 330, 450: The IF . . . THEN programming statement makes the computer decide which line number to execute next. IF the condition is true, THEN the program goes to the line number indicated. Otherwise it goes to the following line number.

3
 PLOT and DRAUTO

The PLOT and DRAWTO graphics commands are used to draw a point or a line on the screen or paper.

PROGRAMS

1. Warmups
2. Christmas Lights
3. Jet Plane
4. House
5. Flag
6. 3-D Room
7. Train
8. Skier

UARMUPS

Now you are ready to explore the graphics capabilities of your computer. The programs and exercises included in this chapter use the GRAPHICS 8 mode. This mode uses a grid of 310 columns across and 160 rows down, with a four-line text window at the bottom of the screen. If you think of the screen as an X, Y axis, then X corresponds to the columns and Y to the rows. The top left point on the screen is $(0,0)$ the bottom right is $(319,159)$. X increases as you move to the right across the screen, and Y increases as you move down.

GRAPHICS 8 Mode

The statement GRAPHICS 8 puts your computer into this resolution mode. Once you type this in, you will stay in GRAPHICS 8 until you press RESET or type in another GRAPHICS statement.

When BASIC is first powered up, all the color data is 0 . Thus, when graphics statements are executed, nothing seems to happen. Correct this by typing COLOR 1 and hitting RETURN.

To examine your program listing, hit RESET or type GR. 0 to get back to a full-screen text mode. Then type LIST.

PLOT

The PLOT graphics statement plots a point on the screen. The format for the statement is:

PLOT X1,Y1 or PL. X1,Y1 where:
$\mathrm{X} 1, \mathrm{Y} 1$ are the X, Y coordinates of the point on the graphics screen.

You can abbreviate PLOT when typing to PL.
PLOT is most frequently used to determine the point on the screen where a shape begins. Then DRAWTO is used to draw the shape.

DRAWTO

The DRAWTO graphics statement draws a line on the screen. The format for the statement is:

DRAWTO X1,Y1 or DR. X1,Y1 where:
$\mathrm{X} 1, \mathrm{Y} 1$ are the X, Y coordinates of the ending points of the line. This uses the last point drawn as the starting point and $\mathrm{X} 1, \mathrm{Y} 1$ as the ending point.

DRAWTO is used in all modes on the Atari, and can be abbreviated when typing as DR. X1,Y1.

EXERCISE 1

Use PLOT to place a point in the middle of the screen.
gFAFHICS B
COLOR 1
GETCOLOR $1,1: 14$
FLOT 160, 30

This example uses COLOR 1. If no COLOR is specified when you start up the system with BASIC, COLOR is 0 , the color of the background, and appears invisible. Set COLOR 1,1,14 makes the point as bright as possible against the background. These statements are explained in detail in Chapter 4.

Now erase this point, using COLOR 0 .
COLOR O
FLOT 160,80

EXERCISE 2

Draw a line, using PLOT.

```
10 GRAFHICS8
20 COLOR 1
30 SETCOLOR 1,1,14
40 FOR }X=10 T0 50
50 FLOT X,50
6O NEXT X
```

Notice that you can use a numeric variable as the X or Y coordinate in PLOT.

EXERCISE 3

Use the PLOT and DRAWTO statement to draw a line on the screen.

NEW
GRAFHICS 9
COLOR 1
SETCOLOF 1:1:14
FLOT 140,100
DFAWTO 180,140

Now draw a line from the end of the first line to $(220,100)$.

DRAWTO 220,100

The DRAWTO statement uses the last point drawn on the screen as the starting point.

CHRISTMAS LIGHTS

Use this program to draw a small Christmas tree and put on some lights.

Add some more lights to the tree once you get this program up and running.

PROGRAM LISTING

```
100 कलaphme% %
```



```
120 DKAdTO 160,100
190 FLOT 00,100SDRAWTO 2.E.100
140 DF#N:O & % , 2%0
40 DRmNTO 128, %%0
160 DEAWTO 12O. 100
170 DFAWTO 160,100
160 FLIOT 120,80
190 FLOT 110,90
200 FLOT 140,90
```


NOTES

Line 100: GRAPHICS 8 puts the computer into graphics mode 8.
Line 105: COLOR 1 makes the graphics points visible in GR. 8. SETCOLOR $1,1,14$ makes them as bright as possible against the background. These statements are explained in detail in the following chapter.

Line 110: The PLOT statement draws a point at $(80,100)$. DRAWTO draws a line from there to 123,55 .

Line 120: This DRAWTO statement continues from the last point drawn to 160,100 .
Line 180: PLOT puts a point at 120,80 .

JET PLANE

The computer can draw a jet liner with this program.
Can you improve upon the design?

PROGRAM LISTING

```
100 GRAFHTCS 8,COLOK 1%SETCOLOL is, & A
110 FI.OT O0, 100*DFANTO 240,100
120 DFANTO 260, 11:%
130 DEAWTO 200, 11%
140 DFAMTO 1G0, 150
150 DFAWTO 1%0,11:G
160 DFAWTG 90,11:
170 DKAWTO 70,90
180 DRAWTO 100,100
190 FLOT L7G, 100:DRAWTO 200,7%
200 DRAWTO 210,100
```


NOTE

Lines 120-180: Notice that these DRAWTO statements all use the prior point as the starting point.

HOUSE

Here is a small house. See if you can add windows or a chimney.

PROGRAM LISTING

1 ± 0 FLOT 00,100 SDRAWTO 160,100
120 DFA以TO $160,14050 \mathrm{OWHTO} \mathrm{BO}, 1.40$
130 DFAWTO $80,100+\mathrm{OKmWTO} 120,60$
140 DFAWTO 160.100
150 FILOT $110,110 \%$ DFAWTO 130.118
160 FILOT $110,110 \% \mathrm{ERAWTO} 110,140$
170 F'LOT $130,113: \mathrm{DFADTO} 130,1.40$

FLAG

This program draws a flag with 66 stars and 13 stripes.

Can you change it to draw the America flag?

PROGRAM LISTING

105 世世TOLOR $1,1,14$
110^{\prime} FLOT $100,100 * D R A W T O 240 ; 100$
11 DFAMTO 240, $1: \%$
117 DFAMTO $100,15 \%$ DRAWTO 100,100
120 FLOT 160,100 : DRAWTO 160,121
125 DFAWTO 100.121
130 FLOT $160,100: D K A W T O 240,100$
$135 \mathrm{FLOT} 160,103: \mathrm{DFAWTO} 240,103$
140 FLOT $160,1095 \mathrm{BRAWTO} 240,109$
145 FI. OT $160,112: D \mathrm{EAHTO} 240,112$
150 FIOT $160,118: D \mathrm{FAWTO} 240,118$
$15 \mathrm{FLLOT} 160,121: D \mathrm{FAWTO} 240,12 \mathrm{~d}$
160 FIOT $100,127:$ DFFWTO 240, 127
165 FIOT $100,130: \mathrm{DFAMTO} 240,130$
170 FIOT $100,136 \%$ DFAWTO 240,136
$175 \mathrm{FLOT} 100,139 \div \mathrm{DRAWTO} 240,139$
100 FLOT $100,145:$ DRFWTO 240,145
$185 \mathrm{FLOT} 100,148: \mathrm{DRAWTO} 240,1.46$

```
190 FLOT 100,1 世4:DRAWTO 240,154
\(195 \mathrm{FLOT} 100,167: \mathrm{DRAWTO} 240,157\)
\(200 \quad Y=0\)
210 FOR \(X=\leftrightarrows\) TO \(5 G \quad\) GTEF
220 FLOT \(100+X, 103+Y\)
230 NEXT \(X\)
\(240 \quad Y=Y+3\)
\(2 \# 0\) IF Yの18 THEN 270
260 GOTO 210
270 END
```


NOTES

Line 250: This IF . . . THEN statement tells the computer, IF the row is greater than 18, THEN go to LINE 270, the END of the program. Otherwise, go to the next line, which sends the program back to print another row of stars.

Line 270: The END statement terminates the execution of the program and returns control to the user.

3-D ROOM

The computer draws a 3-dimensional room with a door in the far wall.

Change the program so the far wall seems even farther away.

PROGRAM LISTING


```
1tE DEAWTO C0.1F9,DFAWTO 00.100
120 FLOT 190, 122&DRMUTO 1%0.122
125 DFAWTO 1%0.1SO+0RmWTO 130.130
127 DFWWTO 100,120
130 FLOT GO.1005DRAWTO 130.122
140 F゙LOT 80,160:DRAWTO 130,138
150 FLOT 220,1005DRAWTO 170,122
160 FIOT 220, 160 $DRAWTO 170,138
170 FLOT 1E0,J27:0FFWWO 160,127
172 DRAWTO 160,138
175 DFAWTO 150,130:DFAWTO 150,12%
150 FLOT 153,133
```


TRAIN

Here is a steam engine ready to chug down the tracks.
Try designing a moden locomotive or a race car.

PROGRAM LISTING

100 ©

120 DFAWTO 40,16
130 ゆFANTG $00,1.6$
140 एसAMTO 00,56
450 БFANTO 6,70
160 DKAWTO 60,70
170 DRAWTO 60,74
180 DKANTO 40,74
190 DKAWTO 40,70
200 DFANTO 36,70
210 DFAWTO $\omega, \pi 4$
220 DKAWTO 20,74
290 DFAWTO 20,70
240 DFAWTO 0,70
250 DFAWTO O, 46

SKIER

This skier is set to take off down the slopes.
See if you can design a person on a sled to substitute for the skier.

PROGRAM LISTING

100	CRamHTCE GVOOLOR 1 SEETCOLUE
102	WEM ***DRAW HEAD
104	FLOT 150.62:0RAWTO 151.63
106	DRADTG 122, 64
108	DFAWTO 1.63,65:DRAWTO 152,66
110	ORAWTO 151.67
112	DRAWTO 150,68:DFAWTU 1.49,6\%
114	DFAWTO 148,66
116	DRAWTO 147.65:DRAWTO 148.64
117	DRAWTO 149.63
118	DRAWTO 150,62
120	FEM ***DRAW EODY
125	Flot 150.6E:DRAWTO 150.78
130	DRAWTO 14E, 100
140	Flot 160,78
150	DFAWTO 15: 100
160	Flot 150,68
170	DFAWTO 146.68
180	DRAWTO 143,75

190 DFAWTO 135,70
200 FLOT 136,68
210 DFAWTO 125,100
220 FLOT 150,68
230 DFAWTO 154,68
240 DFAWTO 157,75
250 DFAWTO 165,70
260 FLOT 166,68
270 DFAWTO 155,100
290 FLOT 140,96
290 DFAWTO 157,110
300 FLOT 150,96
310 DFAWTO 167,110

GRAPHICS MODES, COLOR, and S \in TCOLOR

Different GRAPHICS, COLOR, and SETCOLOR statements produce unique shapes, colors, and pictures on your Atari screen.

PROGRAMS

1. Warmups
2. Fish
3. Car
4. Fishing Boat
5. Windmill
6. Snowflakes
7. Sailboat
8. Campground
9. Picture

WARMUPS

The Atari has 128 possible color-luminance combinations with which to alter your screen display. Depending upon the graphics mode you select, not more than 5 colors can be displayed at any one time. Each graphics mode has its own set of default colors. In text modes GR. 0,1 , and 2, a different set of colors is enabled by the SETCOLOR statement. In graphics modes GR. 3 through GR. 8, the COLOR and SETCOLOR statements together set the color of the points to be plotted.

No SETCOLOR statement is required in modes GR. 0 through GR. 8 if the default set of colors is used. However, COLOR is required in modes GR. 3 through GR. 7 for any graphics statement to appear on the screen, as all the color data is set to 0 when BASIC is first powered up.

In GR. 0, GR. 1, and GR. 2, Atari's text modes, the COLOR statement determines the ATASCII character to be displayed by PLOT and DRAWTO statements.

The format is:

COLOR X or C. X where:

X is the numeric variable for an ATASCII character stored in that location for that graphics mode.

EXERCISE 1

This program prints a row of hearts across the top of the screen.

10 GRAFHICS 0
20 COLOR 0
30 FLOT 2,I:DFAMTO 17,1
40 FOSITICN 10,12
50 FFINT "HOW DO YOU LIKE THIS?"
In Line 20, COLOR 0 tells the computer to use the ATASCII character with the value of 0 in GR. 0 , a heart, for the following PLOT and DRAWTO statement.
To get a row of \$ characters, change Line 20:
20 COLOR 36

Try other values in the COLOR statement. Your BASIC reference manual has a table of Atari's internal character set and a character/color assignment chart for GR. 0, GR. 1 and GR. 2.

Experiment by changing Line 10 :

10 GRAPHICS 1

Watch the text window for these modes print at the bottom of the screen. Note how the size and shape of the characters change on the screen according to each screen mode's dimensions.

10 GRAFHICS 2

58•BASIC FUN WITH GRAPHICS: THE ATARI WAY

EXERCISE 2

The SETCOLOR statement determines the colors you can use in GR. 0, GR. 1, and GR. 2.

The format in GRAPHICS 0 is:
SETCOLOR X, Y, Z or SE. X, Y, Z where:
X is the color register:
When $\mathrm{X}=1$, the statement affects the luminance of the characters that are the same color as the background.
When $\mathrm{X}=2$, the statement affects the background.
When $X=4$, the statement affects the border.
Y is a color variable from 0 to 15 :

0 - gray
1 - gold
2 - orange
3 -red-orange
4 - pink
5 - purple-blue
6 -red
7 -blue

8 - blue
9 - light blue
10 - turquoise
11 - green-blue
12 - green
13 - yellow-green
14 - orange-green
15 - light orange
Z is the luminance variable of the color, from 0 to 14 in even increments, where 0 is the dullest and 14 is the brightest.

Let's add a background color of green to our previous program, Exercise 1, in GR. 0.

15 SETCOLOF $2,12,0$

In Line 15 the SETCOLOR statement tells the computer to fill color register 2, which effects GR. 0 mode's background, with color 12 (green), with average luminance (8).

Now make the characters as bright as possible to stand out against the background. Add:

16 SETCOLOR $1,0,14$

This SETCOLOR statement tells the computer to change the character luminance in register 1 to the brightest, 14 . The color used is automatically set to the background color, regardless of the colorvariable value.

Now add a horder color of blue to your screen.

```
17 SETCOLOF 4,9,6
```


Here SETCOLOR tells the computer to fill color register 4, the border, in GRAPHICS 0 , with blue (8), in average luminance (8).

Finally, experiment with other background and border colors and luminances in GRAPHICS 0 by changing the color and luminance variables in Line 15 and Line 17.

EXERCISE 3

In GR. 1 and GR. 2, the COLOR statement functions in the same way as in GR. 0. However, the color registers of the SETCOLOR statement affect different parts of the screen than in GR. 0 .

In GR. 1 and GR. 2 the format is:
SETCOLOR X, Y, Z or SE. X, Y, Z where:

X is the color register.
When $\mathrm{X}=0$ the statement affects the color and luminance of the characters on the graphics screen.
When $\mathrm{X}=2$ the statement affects the color and luminance of the background of the text window.
When $X=4$ the statement affects the color and luminance of the graphic screen background and border.
Y is the color variable 0 through 15.
Z is the luminance variable 0 through 14 , in even increments.
Try this program, which prints an X of pink "fences" (the number sign).

10 GFAPHICS 1
20 COLOR 35
30 SETCDLOF O, 4,14
40 FLOT 2,2:DFAWTO 18,8
50 FLOT 2.8:DFAWTO 18.2
60 FRINT "HOW" 5 THAT?"
In Line 20, COLOR 35 tells the computer to use the ATASCII character 35 (\# in GR. 1 and GR. 2) in the two following graphics statements, Lines 40 and 50.

In Line 30, SETCOLOR $0,4,14$ tells the computer to fill the color
register which displays the graphics screen characters, 0 , with bright pink.

To change the text window's background and characters to green, add:

SS SETCOLOR 2,12.14

Now change the graphics screen background and border to blue.
37 SETCOLOR 4,3.12

To watch the dimensions of your characters change, alter Line 10.

10 GFAFHICS 2

Take the time to experiment with color and luminance combinations you like by changing those variables in Lines 30, 35, and 37.

EXERCISE 4

In graphics modes 3 through 8, the values used in the COLOR statement affect the color variable in the SETCOLOR statement. In GR. 3, 5 and 7, COLOR 1 enables the color variable in the SETCOLOR statement. COLOR 2 and COLOR 3 alter the color result and COLOR 0 makes the plotted points the same color as the background, so they appear invisible.
In GR. 3, 5, and 7 the format is:

COLOR X or C. X where:

X enables the color variable of SETCOLOR.
When $\mathrm{X}=1 \quad$ the color variable adheres to the color chart.
When $X=2 \quad$ the color is altered.
When $X=3$ the color is altered.
When $\mathrm{X}=0 \quad$ the color is the same color as the background.

GRAPHICS FROM CHAPTER 4

CAR from page 77

Using COLOR 1 in GR. 3, 5, or 7 affects the SETCOLOR statement as follows:

SETCOLOR X, Y, Z or SE. X, Y, Z where:
X is the color register.
When $\mathrm{X}=0 \quad$ the graphics on the graphics screen are color Y , luminance Z .
When $\mathrm{X}=1 \quad$ the colors are altered.
When $\mathrm{X}=2$ the text window background and characters are color Y , luminance Z .
When $\mathrm{X}=3$ the default colors are used.
When $X=4$ the graphics screen background and border are color Y , luminance Z .

Our programs use COLOR 1 and SETCOLOR statements with a color register variable of 0,2 , or 4 -altering graphics characters, text window or graphic screen and border background and luminance.
This program demonstrates some of your color options:

10 GRAFHICS 3
20 COLOR 1
30 FLOT 0,10:DFAWTO 20,10
40 FRINT "HOW'S THAT?"

A gold bar appears on the black graphics screen, with the print message in a blue text window.

Change Line 20 and watch the results.
20 COLOR 2

Now the bar is green.
20 COLOR 3

Now blue.

20 COLOF O

Now it is invisible, as it is the background color.
Make these changes to alter the bar's color according to the Atari hue color chart.

20	COLOF 1
22	SETCOLOR $0,4,14$

SETCOLOR tells the computer to put bright pink into register 0 , which displays the graphics statements in GR. 3, 5, and 7. The bar is pink.

Add this to change the background and character color in the text window to bright green.

24 SETCOLOR 2,12,14

This SETCOLOR statement changes the graphics background and border to the color and luminance you specify, but also affects the hue of your graphics statements.

27 SETCOLOR 4, 8, 1.4

This makes the background and border blue, but also changes the bar to orange.

Now change the color and luminance variables in Lines 25, 26, and 27 to see what color combinations you prefer.
Also change Line 10 to see how your graphics look in the dimensions of GR. 5 and GR. 7 modes.

EXERCISE 5

In graphics modes 4 and 6 the SETCOLOR statement affects the same screen parameters as in GR. 3, 5 and 7 , but only functions with COLOR 1 or COLOR 0 . COLOR 0 sets the graphics point to the background color, so the points seem invisible. COLOR 1 enables the points to be seen.

The format in GR. 4 or GR. 6 is:
COLOR X or C. X where:
X enables color in the SETCOLOR statement.
When $\mathrm{X}=0 \quad$ the graphic points are the same color as the background and appear invisible.
When $\mathrm{X}=1$ the graphic points are visible.
This program displays a box in GRAPHICS 4's default colors.


```
10 ORAFHICS4
```

20 COLOF 1
30 FLOT $20,20 \div D F A W T U Z 0,20$

```40 DFAAWTO \(30,30 \pm D F A W T O 20,30\)
5 0 ~ D F A W T O ~ 2 0 , 2 0 ~
60 FFINT "LIKE IT?"
```

The box is outlined in orange on a black graphics screen background. The printed message appears in the blue text window.

Now change Line 10.
10 GRAFHICS b

You should see the same program in GR. 6's screen mode parameters.

Now change Line 20.
20 COLOR O

70 • BASIC FUN WITH GRAPHICS: THE ATARI WAY

The graphic image disappears, as it is displayed in the background color, black.

Now make these changes and additions:

15	COLOR 1
20 SETCOLOR 0,4,14	

The SETCOLOR statement tells the computer to set the graphic points to bright pink. The COLOR 1 statement makes them visible.

Add this:
25 SETCOLOR 2.1.1.4

GRAPHICS MODES, COLOR, and SETCOLOR • 71

This SETCOLOR statement changes the text window background and characters to green.
Now add:

```
27 SETCOLOR 4,2,14
```


In Line 27, SETCOLOR changes color register 4, the graphics' screen background and border, to bright orange-which in turn affects the hue of the graphics points.

Experiment with the color and luminance variable in Lines 25, 26, and 27 to see what combinations you like. Change Line 10 from GR. 6 to GR. 4 and see how the dimensions of the graphics modes affect the result.

EXERCISE 6

In the GRAPHICS 8 mode, Atari's highest screen resolution, the COLOR statement serves the same function as in GR. 4 and GR. 6. The COLOR 1 statement enables a visible graphics display. COLOR 0 makes the plotted points appear invisible.

This program prints a faint diamond near the center of the screen.

10 GRGFHICS 8
20 COLOR 1
30 FLOT 100,80:DKAWTO 120,100
40 DFAWTO 140, 80:DRAWTO 120.60
50 DFAWTO 100,80
60 FRINT MHERE IT IS!"
The graphics screen and text window in GRAPHICS 8 share the same background color. Here they are in blue, the default color. In GRAPHICS 8, the SETCOLOR format is:

SETCOLOR X, Y, Z or SE. X,Y,Z
X is the color register.
When $\mathrm{X}=1$ the luminance of the plotted points is affected.
When $\mathrm{X}=2$ the graphic screen, points, text windows, and characters are set to color Y , luminance 2.

When $\mathrm{X}=4$ the border is set to color Y , luminance Z .
Y is the color variable, from 0 to 14 .
Z is the luminance variable, from 0 to 14 in even increments.

Add this line to your program:
25 SETCOLOR $1,8,0$

In GRAPHICS 8 the SETCOLOR statement affecting color register 1, regardless of the color variable, changes the luminance of the graphics points and the text characters. Here it makes them as dark as possible, to contrast with the background.

Now add this:
26 SETCOLOR 2,4,14

This SETCOLOR statement sets the graphic screen background, graphic points, text window, and text characters to bright pink. Add:

27 SETCOLOR 4,9,9

This last SETCOLOR statement fills the border, color register 4, with blue.

Try different color and luminance variables in Lines 26 and 27 to find the combinations that appeal to you.

FISH

Use this program to make a fish.
Can you change the size of this fish and add others to the picture? '

PROGRAM LISTING


```
10% COLOK 1
110 Fl..UT 32.7%
11% EETCOLOF 0,11,0
120 DFSMTO 48,70
130 DFAWTO 5%,7%
140 DF&WTO 48,79
150 DFAWTO 31,72
160 DEAWTO 32,75
170 FFLOT W1,74
180 GOTO 180
```


NOTES

Line 100: GRAPHICS $7+16$ tells the computer to use the full screen of graphics mode 7 to run this program.

Line 105: COLOR 1 says use COLOR 1 to enable SETCOLOR statements.

Line 117: SETCOLOR says fill the color register 0 , the graphics points on the screen, with color 11 , blue-green, with a luminance of 8 average brightness.

Line 180: GOTO tells the computer to keep the program in a continuous loop, enabling graphic mode 7's full screen, until you BREAK the run.

CAR

Here is a car ready to drive across the screen.
Try to design your favorite sports car or a racing model.

PROGRAM LISTING

100	GRAFHTCS 7
105	COLOR 1:GETCOLOR $0,2,14$
107	¢ETCOLOR 4,3,6
109	REM w wDRM CAE
110	Flat m0,30
120	DRAWTO 60,30:DFAWTO 6E,25
130	DRAWTO 85. 2 E
1.40	DRawro 90.30
150	DFAWTO 98,30
160	DRAWTO 98,35
170	DRAWTO 50,35
180	DRAWTO 50,30
185	FEM ***DRAW TTFES
190	FLOT 56,35:DFAWTO. 60,32
195	DFAWTO 64,35
200	DRAWTO 59, 38:DFEMTO 56,35
210	FLOT 86,35:DRAWTO 90,32
220	DRAWTO 94,35
	DFAWTO 89,35:DFAWTO 86,35

NOTE

Line 100: GRAPHICS 7 puts the program run in the regular graphics 7 mode, with a text window.

Line 105: SETCOLOR sets the color and luminance of the graphic points.
Line 107: Here SETCOLOR sets the color and luminance of the graphic screen's background.
Lines 109, 185: The Remark (REM) statement includes nonexecutable statements in the body of the program, which can only be seen in program listing, for the benefit of the user.

FISHING BOAT

This fisherman is hoping a fish will come along.
See if you can change the program to make his boat look like a cabin cruiser, or add some fish to the picture.

PROGRAM LISTING

100 GR\&FHICG
$110 \mathrm{COLOF} \quad, ~$ WETCOLOF $0, \ldots, 14$
120 SETCOLOR $4,8,0$
130 उETCOLOE $2,3,14$
$13 E \mathrm{FEM}$ स सDKAN EOAT
140 FLOT 20,20, WRAWTO 30,20
150 DFAWTO $30,7: D R A W T U \quad 34,7$
160 DFAWYO $34,20 \div D F A W T O W 4+20$
170 DFAWTO 49,26
180 DFAWTO 26.26
190 DFAWTO 20,20
195 FEM सकDRAW MAN
200 FLOT $45,12 \pm D F A W T O$ 4 210
210 DFAWTO $48,8: \mathrm{DFAWTO} 48,10$

```
220 DFAWTO 4E, 工:DFAWTO 4%,20
230 DFAWTO 4%,17:DFAWTO 49,13
2.40 DFFMWTO 78,36
```


NOTES

Line 100: This program runs in graphics mode 5.
Line 110: This SETCOLOR statement assigns color and luminance to the graphic points.

Line 120: Here SETCOLOR assigns color and luminance to the graphic screen's background.

Line 130: This SETCOLOR statement affects the text window background and characters.

UINDMILL

The computer draws the arms of a windmill.
Add to the program to make it a pinwheel or propellor.

PROGRAM LISTING

± 00	CRAmHTCe
11.0	
120	
130	Fhor $10,20 \leqslant \square \mathrm{AdT0}$ W0,20
140	DFAWTO 0,10 , WFAWTO 20,30
150	DFANTG 10, 20
160	FLOT 30,6 DFAWTO 30,35
170	DFAWTO 42, 30:DRAWTO 18, 10
176	DEAWTO 30,
180	FLOT 14,20:DFAWTO 22,20
190	FLOT 19, 20: DFAWTO $2 \mathrm{E}, 2 \mathrm{~W}$
200	FLOT 47,20 5 DFAWTO 39, 12
210	

220 FLOT 30.9:DFAWTO 21,12
230 FLOT 30,12:DRAWTO 24, 1.4
240 FLIOT 30,33:DRAWTO 40,28
250 FLOT 30,30:DRAWTO 36,26

SNOWFLAKES

Fill the screen with different-sized snowflakes.
Change the program to print out even more random snowflakes on your screen.

*

*

*

$$
\begin{aligned}
& W \\
& H
\end{aligned}
$$

PROGRAM LISTING

100 BRAFHTCS
110 COLOR 3 SETCOLOF $1, ~\rfloor, ~ J .4$
112 SETWOLOF $2,8,2$
114 SETCOLOR $4,4,14$
110 FOR T… TO

$130 \times=\mathrm{XNT}(\mathrm{RND}(1) \times 280+20)$
$140 \quad Y=\mathrm{TNT}(\mathrm{FND}(\mathrm{L}) * 120+20)$
150 FOLOT $X \cdots+, Y$, DFAWTU $X+L, Y$
100 F゙LOT $X, Y-L: D F B W T O X, Y+L$
$170 \mathrm{~L}=\mathrm{L}=\mathrm{L}-3$
180 SX=X-L-SY=Y-L
200 FIOT SX, SY:DFOMTO $5 X+(2 X L), S Y+(2 * L)$
$2105 Y=Y+L$
220 FIOT SX, SY DRAWTO $\mathrm{OX}+(2 * \mathrm{~L}), ~ S Y \cdots(2 * L)$
230 NEXT T

NOTES

Line 100: GRAPHICS 8 puts this program run in graphics mode 8.
Line 110: SETCOLOR 1,1,14 makes the graphic points as bright as possible.

Line 112: This SETCOLOR statement sets the background and text window color.

Line 114: Here SETCOLOR affects the border of the screen.
Line 120: This RND statement finds a random number between 3 and 15 to change the size of the flakes.
Line 130: This RND statement finds a random number between 20 and 280 for the starting position on the X axis.

Line 140: The RND statement here finds a random number between 20 and 120 for the starting position on the Y axis.

Line 150: PLOT is used to position the snowflakes. The X, Y coordinates are set to the numeric variables in Lines 130 and 140 .

SAILBOAT

Draw a picture on your screen of a sailboat.
Can you add some sea gulls to the picture?

PROGRAM LISTING

```
100 0RAFHTCS E+16
102 पOLOR N:SETCOLOR 0,3,8
104 SETCOLOR 4,8,2
106 FEM ***DRAD EOAT
110 FIOT 30,35:DRAWT0 65,35
115 DRAWTO 60,39
120 DFAWTO 35,39
125 DRAWTO 30,3E
130 FLOT 53,35:DFAWTO 53,6
135 DEAWTO F0,9:DFAWTO 5%,9
1.40 FIOT S3,10:DRAWTO 31,33
145 DEAWTO 64,33:DRAWTO 53,10
147 FEM ***DRAW HORIZON
150 FLOT 0,20:DFAMTO 42,20
1ES FLOT 50,20:DRAWTO 79,20
157 REM ***DRAW MOON
160 FIOT 9,2:DRAWTO 13,2
165 DRAWTO 15,3:DRAWTO 15,4
170 DRAWTO 13,6:DRAWTO 9,6
17G DRAWTO 7,5:DFEAWTO 7,4%DFAWTO 9,3
180 coto 180
```


NOTE

Line 100: This program runs in the full screen of graphics mode 5. Since there is no text window, no SETCOLOR statement for color register 2 is needed.

CAMPGROUND

Here's a campground scene.

Try adding some figures or trees to the picture.

PROGRAM LISTING

```
\00 ORAFHTCS 7+16
110 कETCOLON 1, 9, 145COLOE J
112 SETCOLOR 4,9,0
114 EEM ***DFAW HOETzON
120 FLOT 0, 20:DFAWTO 159,20
12G FEM WXNDFAW MOON
130 FLOT 12E,3%DFANTO 130,3
140 DFAWTO 134, 5$DFAWTO 134.7
150 DFAWTO 130,10:DFAWTO 125,10
160 DFAWTO 121,7:DFAWTO 121,5:DFAWTO 125,3
165 X=25:Y=35:5=1.
170 GOSUE 400
180 X=90:Y=45:S=2
190 GOSUE 400
```

```
200 X=:55:Y=70;5=2,5
210 GOSUE FU0
220 X==130;Y=90:5=-2.75
230 GOSUE:500
240 GOTO 900
390 FEEM ***ANGLE 1
400 FLGT X,Y:DFAWTO X,Y-(5*S)
410 DFANTO X+(B*S),Y-(11*S)
420 DFAWTO X+(15*S),Y-(5*S)
430 DFAWTO X+(8*S),Y
4 4 0 \text { DFANTO X-(5*S),Y}
450 DFAWTO X,Y-(5*S)
460 DFAWTO X+(8*S),Y
470 FETUFN
490 FEM ***ANCLE 2
500 FLLOT X,Y:DRAWTO X,Y-(5*S)
G10 DFAWTO X-(8*S),Y-(11*S)
520 DFAWTO X-(15*S),Y-(5*S)
530 DFAWT0 X-(8*S),Y
540 DFAWTO X+(E*S),Y
SG0 DFAWTO X,Y-(E*S)
G60 DFANTO X-(8*S),Y
50 FETUFN
900 [OTO 900
```


NOTES

Line 100: This program runs in graphic mode 7's full screen.
Lines 165, 180, 200, 220: X and Y are set as the starting coordinates of each tent. S is the size variable.

Lines 400-470, 500-570: These are subroutines, which draw the tents angled to face toward the left or the right.

PICTURE

Draw this picture with your computer．

What additions can you make to the scene？

PROGRAM LISTING

100 G以品以世 $7+16$
$\therefore 10$ COLOF 1 ： 5 ：TCOMOF $1,0,0$
112 E世TCOLOF $4, ~ B, 2$
1．
$120 \quad x=120 \div Y=10 \div 5=1$
130 6050F 600
$150 \quad X=30: Y=50 \div 5=1.75$
1.60 GOSUE 600

200 FEM＊＊HOFIZON

2.40 FEEM＊※HOUSE：

265 FEM **WINDOWS \& DOOF
270 DFAWTO 85,32, DFAWTO 107, 58
280 FLOT $70,48:$ DFAWTO 70,42
290 DFAWTO. $73,42:$ DRAWTO 73.4
300 FLUT 70,65:DFAWTO 77,6世
310 DFAWTO 77,70:DFAWTO 70,70:DFAWTO 70.65
320 FLOT 90,65:DFAWTO 97,65
330 DRAWTO 97,70:DFAWTO 90,70:DFAWTO 90, 65
350 FLOT $80,85 \div$ DFANTO 80,73
360 DKAWTO 87,73:DFAWTO 87.85
390 FEEM **MAN
400 FLOT 120,77:DRAWTO 124,77
410 DFAWTO 124,80\$DFAWTO 120,80:DFAWTO 120,77
420 FLOT 122,79:DRAWTO 122,87
430 FLOT 122,81:DFAWTO 118,86
440 FLOT 122,81:DFAWTO 126.86
450 FLOT 119,93:DFAWTO 122,87
460 DFAWTO 125.93
490 FEM ***DOG
500 FLOT 140,87:DFAWTO 138,87:DFAWTO 140,85
510 DFAWTO 148,94
520 FLOT 140,94:DFAWTO 144.90
530 DFAWTO 150,90:DFAWTO 155,94
540 FLOT 145,94\$DFAWTO 15E,88
ES0 REM **SUN
560 FLLOT 30,3:DFAWTO 34,3
$565 \quad X=34: Y=3$
570 FOK I $=1$ TO 3 :DRAWTO $X+I, Y+I: N E X T$ I
572 DFAWTO 37,8
$575 \times 1=37$: Y $=8:=8$ FOR $I=1$ TO 3
576 DFANTO $X 1-I, Y 1+I: N E X T$ I
580 DFANTO $30,11: X=30: Y=11$
582 FOF $\mathrm{I}=1$ TO $3:$ DRAWTO $X-I, Y-I: N E X T I$
585 DFAWTO 27,5
$587 X=27$: $Y=5$
590 FOK $I=1$ TO $3: D R A W T O X+I, Y-I$
595 GOTO 900
600 FEEM ***TREES FROUTINE
605 FLOT $X, Y: D F A W T O X-(10 ※ S), Y+(10 \approx S)$
610 DFAWTO $X-(5 * S), Y+(10 * S)$
620 DFAWTO $X-(16 * S), Y+(18 * S)$
630 DFAWTO $X-(2 * S), Y+(1 . \sigma * S)$

```
640 DFAWTO X-(2*S),Y+(22*S)
650 DFAWTO X+(2*S),Y+(22*S)
660 DFAWTO X+(2*S),Y+(1.8*S)
670 DFAWTO X+(16*S),Y+(18*@)
680 DRAWTO X+(5*S),Y+(10*S)
700 DRAWTO X+(10*S),Y+(10*G)
7 1 0 \text { DFAWTO X,Y}
720 RETUFN
900 GOT0.900
```

COLOR 1 and COLOR 0 statements make it easy to move objects around on the screen.

PROGRAMS

1. Warmups
2. Walking Figure
3. Flying Bird
4. Jumping Fish
5. Helicopter

UARMUPS

Moving a shape across the screen requires 3 steps:

1. Draw the shape.
2. Erase the shape.
3. Draw it in a new location.

The faster the computer can do steps 1,2 , and 3 , the faster the shape will move. If there is a delay between steps 2 and 3 , the shape will flicker as it moves.

Any of the graphics statements can be used to draw the shape with COLOR 1. Then, to erase it, use the same statements, but set the COLOR statement to 0 , the background color.

EXERCISE 1

Use the PLOT statement to draw a block of color and then move it across the screen.

10 GFAFHICS 4
20 FOF $X=1$ TO 79
30 COLOF $1 ; F \operatorname{LOT} X, 30$
40 FOF $I=1$ TO EO:NEXT I
50 COLOF $0: F L O T X, 30$
60 NEXT X

Take out the Wait Loop in Line 40 and see how fast the block moves across the screen.
Change the program to move the block up the screen.

10 GEAFHICS 4
20 FOR $Y=39$ TO 1 STEF -1
30 COLOR 1:FLOT $40, Y$
40 FOF I=1 TO EO:NEXT I
50 COLOR $0: F L O T$ 40,Y
60 NEXT Y

EXERCISE 2
Now draw a rocket in graphics mode 8 and make it blast up the screen


```
10 GRAFHICS B:X=100
20 FOF Y=150 ro 40 STEF-10
30 COLOE 3:GOSUE 70
40 IF Y=100 THEN END
50 COLOR 0:GOSUE 70
60 NE:XT Y
70 FEM ***DFAN FOUCKET
80 FLOT X,Y:DFAWTO X,Y-30
90 DFAWTO X+3,Y-35:DFAWTO X+6,Y-30
100 DFAWTO X+6,Y:DFAWTO X+3,Y-以
IIO DFAWTO X,Y
120 FETUF゙N
```

Line 30 sets COLOR to 1 and then calls the subroutine that draws the rocket. Line 50 erases the rocket by setting COLOR to 0 , or the background color, before calling the same subroutine. Repeating these steps moves the rocket up the screen.

Add a Wait Loop between Lines 40 and 50 and see if you like the result.

EXERCISE 3

This exercise moves a car across the screen.


```
10 GFAFHICS
8
EF Y=100
20 FOF X=230 TO 25 STEF-1E
30 COLOF 1:GOSUE 80
40 COLOF 0:GOSUE 80
50 NEXT X
60 END
70 FEM **DFAW CAFI
80 FLOT X,Y:DFAWTO X+20,Y
90 DFAWTO X+27,Y+8:DFAWTO X+38,Y+8
100 DFAWTO X+3B,Y+15#DFFWTO X-22,Y+1E
110 DFAWTO X-22,Y+8:DFAWTO X - 10,Y+8
120 DFAWTO X,Y
130 FLIOT X-12,Y+16:DFFAWT0 X-12,Y+18
140 FLOT X-11,Y+19:DRAWTO X-7,Y+19
150 FLOT X-6,Y+18;DFAWTO X-6,Y+1.6
160 FLLOT X+18,Y+16;DFAWTO X+18,Y+18
170 FLOT X+19,Y+19%DFAWTO X+23,Y+19
180 FILOT X+24,Y+18:DFAWTO X+24,Y+16
190 FETUFN
```


UALKING FIGURE

Make a simple cartoon character walk across the screen.
To make your own figure, just draw your character in two or more walking positions and then alternate the positions as you move your figure across the screen.

Try making an animal walk or run across the screen.

PROGRAM LISTING

1. ERAFHICS 0

100 GFAFHTCS 8
110 COLOK $1:$ SETCOLOR $1,1,0$
112 SETCOLOF $2,4,2$
115 SETCOLOF $2,4,10$
$1.20 \quad X=30 \div Y=50$
$150 \mathrm{FOF} X=30$ TO 250 STEF 15
160 COLOF 1:00SUE 210
165 COLOR 0:OOSUE 210
180 COLOF 1:GOSUE 310
185 COLOF O:GOSUE 310
190 NEXT \times
200 STOF
205 FEM ***DFAW FOSITION 1
210 FLOT $X-G, Y+8: D F A W T O X-10, Y+6$
215 DRAWTO $X-10, Y-2: D F A W T O X+10, Y-2$
217 DFAWTO $X+10, Y+8 ; D F A W T O X-5, Y+8$
220 FLOT $X-5, Y+8 ; D F A W T O X-15, Y+20$
230 DFAWTO $X+15, Y+20$
240 DFAWTO $X+5, Y+8$

250 FLOT $X-5, Y+20 \div D F A W T O X+5, Y+20$
$25 \mathrm{DFAWTO} X+5, Y+25+D F A W T O X-5, Y+2 \mathrm{E}$
257 DFAWTO $X-5+Y+20$
260 FLOT $X, Y+20: D R A W T O X+E, Y+20$
265 DFAWTO $X+5, Y+25: D F A W T O X, Y+25$
267 DFAWTO $X, Y+20$
270 FLOT $X-5, Y+25: D F A W T O X+10, Y+25$
280 DRAWTO $X+10, Y+30: D F A W T O X-5, Y+30$
290 DFAAWTO $X-5, Y+25$
300 FETUKN
305 REM ***DFAW FOSITION 2
310 FLOT $X \cdots, Y+8:$ DFAWTO $X-10, Y+8$
315 DFAWTO $X-10, Y-2 ; D F A W T O X+10, Y \cdots Z$
317 DFAWTO $X+10, Y+8: D F A W T O X-5, Y+8$
320 FIIOT $X-\Xi, Y+8: D F A W T O X-15, Y+20$
330 DFAWTO $X+15, Y+20$
340 DFAWTO $X+5, Y+8$
350 FILOT $X-5, Y+20: D F A W T O X-10, Y+20$
$35 \mathrm{DFAWTO} X-10, Y+25: D F A W T O X-5, Y+2 E$
357 DFAWTO $X-G, Y+20$
360 FLLOT $X-10, Y+2$ EDFAWTO $X, Y+2=$
365 DFAWTO $X, Y+30: D F F W T O X-10, Y+30$
367 DRAWTO $X-10, Y+25$
370 「FLOT X+10,Y+20 $\mathrm{X}+\mathrm{DFAWTO} X+15, Y+20$
375 DFAWTO $X+1: Y+2 W: D F A W T O X+10, Y+25$
377 DFAWTO $X+10, Y+20$
380 FLOT $X+10, Y+2 E+D F A W T O X+20, Y+2 E$
390 DRAWTO $X+20, Y+30$:DRAWTO $X+10 ; Y+30$
400 DRAWTO $x+10, \gamma+26$
410 FEETUFN

NOTE

Lines 160-185: The drawings of the figure are placed in subroutines starting on Lines 210 and 310 . This helps the programmer separate the action part of the program from the initial drawings. First each position is drawn with COLOR 1 , making it visible. Then it is drawn with COLOR 0 , and disappears into the background color.

FLYING BIRD

Make a bird fly across the screen. This program uses three positions of the bird's wings in order to simulate motion.

Try making a bird or a butterfly of your own.

PROGRAM LISTING

```
100 GRAFHXC% O
## COLOF & FSETOOLOK &, J.0
A"# SETCOLOE 2,0,14
120 Y=40
130 FEM ***POUE ACRUSG
140 FOF X=1% TO 200 STEF 1%
1G0 COLOF 1:FLOT X,Y:GOSUE 19G
15S COLOF 0;FLOT X,Y*GOSUE 19%
160 COLOF 1:FLOT X-*%Y-W*GOSUE 2क0
1.5 COLOF 0:FLOT X--5,Y-G%GOSUE 250
170 COLOOF 1+FLOT X-W,Y-10:G0SUE S1U
17E COLOF O:FLOT X-G,Y-10:GOSUE 310
180 NEXT X
190 GTOF
19E REM ***FOSITMON I
200 DFAWTO X+2E,Y-10
210 DFSAWTO X+3G,Y+10
220 DFAWTO X+4G,Y-10
230 DFAWTO X+70,Y
2 4 0 ~ R E T U R N
2E0 FEM ***FOSITLON 2
260 DFAWTO X+25,Y-10
270 DFAWTO X+30,Y+10
280 DRAWTO X+45,Y\cdotsG
```

```
290 DFAWTO X+70,Y-5
300 FETUKN
3A0 FEM ***FOSITION 3
320 DFAAWTO X+35,Y+1U
330 DRAWTO X+70,Y\cdots10
340 FEETUFN
```


NOTE

Lines 150-170: Each pair of GOSUB statements displays a different position of the bird's wings.

JUMPING FISH

This fish swims across the screen and also jumps out of the water until you hit the BREAK key．

Change the speed he swims by changing the step increments on Lines 160 and 300.

PROGRAM LISTING

100 क币 AFMTC

120 5世TCOLOF $2,8,12$

14．

160 FOF $X=6 \%$ TO 16 ETEF 10
170 COLOF $1+F \mathrm{LOT} X+Y:$ GOSUE $3 \% 0$
160 COLOF 0：FLOT X，YヶGOSOE $3 \% 0$
190 REXT X
196 FEM жжж，UMF UF
200 FOF Y $=140$ TO 40 GTEF－-5
210 COLOF I FFLOT $X, Y: G O Q U E \quad 350$
220 COLOF 0：FLOT X，Y：GOSUE $3 G 0$
230 NEXT Y

240 FOF Y $=40$ TO 140 STEF
250 COLOF $1: F \operatorname{LOT} X, Y: G O S U E \quad 300$
260 COLOF 0：FFUT X，Y：GOSUE 3 O
270 NEXT Y

275	FEM ***FEDFAW FISH \& WATEF
280	COLOE 1:FLOT X,Y:GOSUE: 350
290	COLOR 1:FLOT 0,80:DFAWTO 319,80
295	FEM ***MOUE ACFOSS
300	FOF $\mathrm{X}=17 \mathrm{E}$ TO 26 E STEF 10
310	COLOF 1:FLOT X, Y:GOSUE 3W0
320	COLOF 0:FLOT $X, Y: G O S U E$ 3E0
330	NEXT X
340	GOTO 145
350	FEM ***DFMW FXSH
360	DFFAWTO $X+31, Y-10$: DFAWT0 $X+45, Y$
370	DFFWTO $X+3 \mathrm{~J}, Y+8:$ DFAWTO $X-3, Y-3$
380	DFAWTO $X, Y \pm F \angle O Y X+38, Y-2$
390	FETUFN

NOTES

Lines 155-190: Move the fish across the screen.
Lines 195-230: Make the fish jump up.
Lines 235-270: Make the fish jump down.
Lines 295-330: Move the fish the rest of the way across the screen.
Lines 350-390: Subroutine that draws the fish.

HELICOPTER

Watch your computer draw a helicopter flying above a city skyline and landing on a building in this program.

Once you get this program up and running, try adding some windows to the buildings.

PROGRAM LISTING

210	Flot 250,10
220	DFFWTO 260,10
230	DFAWTO 264,13
240	DFAWTO 266.16
250	DFAWTO 260,19
260	DFAWTO 268,21
270	DFAWTO 266.24
276	DFAWTO 264.27
280	DRAWTO 260,27
285	DRAWTO 250,27
290	DFAWTO 246,24
291	DFAWTO 244,21
292	DRAWTO 242,19
293	DFAWTO 242,16
294	DFAWTO 244,13
295	DRAWTO 246,11
296	DFAWTO 250,10
298	FEM ***YOUE ACRIOSS
300	FOF $X=20$ TO 260 STEF 20
305	$Y=30$
310	COLOR 1:GOSUE 400
320	Coldof o:GOsue 400
325	NEXT \times
327	FEEM ***POUE DOW
330	FOF $Y=40$ TO 90 STEF 10
335	$X=280$
340	COLOR 1:cosue 400
350	COLOR 0:GOSUE 400
360	NEXT Y
370	COLOR 1:GOSUE 400
380	STOF
390	REM ***DFAW COFTER
400	FLOT X, Y
410	DFAWTO $X+6, Y-4$
411	FLLOT X, Y \#DRAWTO $X+8, Y$
41.2	F'LOT $X, Y \pm D \mathrm{~A}$ AWTO $X \cdots-8, Y$
413	FILOT $X, Y: D F A W T O X-6, Y+4$

415 FLOT $X, Y: D F A W T O X, Y+6$
416 DFAWTO $X-3, Y+6$ DDFAWTO $X+6, Y+6$
417 DFAWTO $X+6, Y+8 \div$ DFAWTO $X+8, Y+8$
418 DFAWTO $X-6, Y+8: D F A W T O X-6, Y+10$
419 DFAWTO $X-10, Y+10$:DFAWTO $X+10, Y+10$
420 FLLOT $X, Y+10:$ DFAWTO $X, Y+16$
421 DFEAWO $X-8, Y+16: D F A W T O X+B, Y+16$
425 FETUKN

FUN WITH G OMETRY

You can use the built-in functions SIN and COS to draw many geometric shapes, such as a square, triangle, or circle. You can even make flowers and fancy designs.

PROGRAMS

1. Warmups
2. Apple Tree Harvest
3. Leaping Fish
4. Bird and Flower
5. Fancy Graphics

WARMUPS

EXERCISE 1

Use the SIN function to draw a wave across the top of your screen.

100 GRAFHICS $9:$ COLOR 1
$110 H=10: D=20: C=1: A=0: B=20$
120 FLOT $A_{5} D$
130 FOR $X=A$ TO E GTEF C
$140 \quad Y=\operatorname{SIN}(X) * H+D$
150 DFAWTO $X * H, Y$
160 NEXT X
The numeric variables on Line 110 are used as follows:
H : height of wave
D: location on Y axis
A: beginning point on X axis
B: last point on X axis
C: size of step along X axis
Experiment with different values for these variables and see how the wave changes.

Replace the SIN function with the COS function on Line 140 and see how the wave changes.

EXERCISE 2

We can use the SIN and COS functions to draw any angle we want. This example draws 0 degrees, 45 degrees, 90 degrees, and 135 degrees.

100 GFAFHICS 8:COLOF 1
110 FRINT"INFUT LENGTH OF LINE:ANGLE"
120 INFUT R.A
$130 \quad A R=A *(3.14159 / 100)$
$140 \times 1=R * C O S(A R)+100$
$150 \quad Y 1=-\mathrm{F} * 5 \mathrm{IN}(\mathrm{AR})+100$
15O FLOT 1OO,10Q:DRAWTO X1,Y1
170 GOTO 120
Experiment with different values of R and A and see what angles you make.

Line 130 converts the angle A from degrees to radians, using the equation:

Radians $=$ degrees $*(\mathrm{PI} / 180)$ for $\mathrm{PI}=3.14159$
Lines 140 and 150 determine the ending X, Y coordinate for the line and add these values to the point 100,100 . This translates the 0,0 point from the top left point on the screen to 100,100 .

Line 150 uses a negative R because the Y coordinate on your screen is the reverse of the Y coordinate on a normal X, Y axis. The Y coordinate on your screen increases as you move down rather than up. Therefore, you must change the sign of Y in order to make it the same as a normal X, Y axis.

EXERCISE 3

Draw a circle using the SIN and COS functions. These equations:

$$
\begin{aligned}
& X=R * \operatorname{COS}(I)+X C \\
& Y=-R * \operatorname{SIN}(I)+Y C
\end{aligned}
$$

give the X, Y coordinates for any point on the circumference of a circle with a radius of R and center at XC, YC.

1OO GFAFHICS 8:COLOF 1 $110 \times C=100$: $Y C=75: ~ R=30:$
$115 \mathrm{~S}=0: \mathrm{E}=\mathrm{S} .6: \mathrm{J}=\mathrm{J}$
120 FLOT XC+Fi, YC
130 FOF I $=5$ TO E STEF I
$140 x=\mathrm{F} * \operatorname{COS}(I)+X C$
$150 \quad Y=-\mathrm{F} * \mathrm{E} I N(I)+Y C$
160 DRAWTO X, Y
170 NEXT I

The numeric variables on Line 110 are used as follows:

XC: center of circle X-axis
YC: center of circle Y-axis
R : radius of circle
S : radians to begin drawing
E: radians to end drawing
J : increment to step while drawing
S and E determine which part of the circle is drawn. To make a complete circle, set $\mathrm{S}=0$ and $\mathrm{E}=6.6$. To draw a part of the circle, change S or E to any number between 0 and 6.6. Experiment with different combinations for S and E and see which part of the circle you make. Just be sure to make E larger than S

Change the value of J and see how it affects your circle.
To make an ellipse, make R different for X than Y .
$150 \mathrm{Y}=-1.5 * \mathrm{R} * \operatorname{Cos}(\mathrm{I})+\mathrm{YC}$
Vary the shape of the ellipse by changing the radius R for X and Y .

EXERCISE 4
Draw a flower using the SIN and COS functions.

100 GRAFHICS $5: C O L O R 1$
$110 \mathrm{~N}=4: \mathrm{A}=50$: $\mathrm{FI}=3.14159$
$120 \mathrm{M}=\mathrm{N} * \mathrm{FI} * 2.5$
130 FLOT 100, 100
140 FOR $\mathrm{I}=0$ TO M STEF . 05
$150 \cdot \mathrm{R}=\mathrm{A} * S I \mathrm{~S}(\mathrm{~N} * \mathrm{I})$
$160 X=\mathrm{F} * \cos (\mathrm{I})+100$
$170 \mathrm{Y}=-\mathrm{R} *$ SIN(I)+100
180 DRAWTO X, Y
190 NEXT I

The numeric variables on Line 110 are used as follows:
A: size of the flower
N : number of petals drawn
If N is even, flower has $2 * \mathrm{~N}$ petals
If N is odd, flower has N petals
Change the value of N and see what your flower looks like. Try using a decimal number for N and see what you get.

Line 150 uses an equation called " N -leaved rose" to find a value for R. Notice that R changes each time the FOR . . . NEXT loop executes.

EXERCISE 5

We can use these equations to draw geometric shapes also. To make a triangle, we need to draw 3 sides, turning 120 degrees each time.

$$
\begin{aligned}
& 100 \text { GFAPHICS 8:COLOR } 1 \\
& 110 \mathrm{~A}=120 *(3.14159 / 180) \\
& 120 \mathrm{~F}=40: \quad \mathrm{AF}=\mathrm{A} \\
& 130 \times 2=F * \operatorname{COS}(A F)+100 \\
& 140 \quad \mathrm{Y} 2=-\mathrm{R} * S I N(\mathrm{AR})+100 \\
& 145 \text { FIEM**DRAW SIDE } 1 \\
& 150 \text { FLOT 100. } 100: \text { DRAWTO } \times 2, Y 2 \\
& 160 \quad \mathrm{AR}=\mathrm{AF}+\mathrm{A}: \mathrm{X} 1=\mathrm{X} 2: \quad \mathrm{Y} 1=\mathrm{Y} 2 \\
& 170 \times 2=\mathrm{R} * \mathrm{COS}(\mathrm{AR})+X 1 \\
& 180 \quad Y 2=-F * S I N(A R)+Y 1 \\
& 185 \text { FEM**DFAW SIDE } 2 \\
& 190 \text { FLOT X1,Y1:DFAWTO X2.Y2 } \\
& 195 \text { FEM**DFAW SIDE 3 } \\
& 200 \text { FLOT } X 2, Y 2: D F A W T O 100,100
\end{aligned}
$$

The numeric variables are used as follows:
A: angle in degrees
AR: angle in radians
R : length of side
$\mathrm{X} 1, \mathrm{Y} 1: \mathrm{X}, \mathrm{Y}$ coordinates for start of line
$\mathrm{X} 2, \mathrm{Y} 2: \mathrm{X}, \mathrm{Y}$ coordinates for end of line.
Lines 130,140 and 170,180 add the new values of X, Y to the starting coordinates $\mathrm{X} 1, \mathrm{Y} 1$. This moves the origin each time to the starting point of the line.

EXERCISE 6

To draw a square, draw 4 sides and turn 90 degrees.

100 GRAFHICS B:COLDR 1
$110 \mathrm{~A}=360 / 4$
$120 \mathrm{AF}=\mathrm{A} *(3.14159 / 180)$
$130 \times 1=150: \quad \mathrm{Y} 1=150: \mathrm{R}=20$
1.40 FLOT X1,Y1
$150 \mathrm{FOR} I=0$ TO 3
$160 \times 2=\mathrm{R} * \cos (\mathrm{AR} * \mathrm{I})+\mathrm{X} 1$
$170 \quad \mathrm{Y} 2=-\mathrm{R} * \mathrm{SIN}(\mathrm{AR} * I)+\mathrm{Y}_{1}$
180 DRAWTO $\times 2, Y 2$
$190 \times 1=\times 2$: $Y 1=Y 2$
200 NEXT I
This program is a more efficient version of Exercise 5. The sides are drawn inside the FOR . . . NEXT loop on Lines 150-200.

EXERCISE 7

Now you can draw a N -sided shape just by changing Exercise 6 as follows:

```
1OS INFUT N
```

$110 \mathrm{~A}=360 / \mathrm{N}$
150 FOR I=0 TO N-1
Try different values of N and see what shapes you make. How large must N be before your shape looks like a circle?

Now try using these ideas in some programs.

APPLE TRE HARVEST

Use the equations for an ellipse to draw an apple tree. This tree starts out with 10 apples, but some fall off.

Create your own picture by adding other figures to this one.

PROGRAM LISTING

```
100 GRAFHTCS O
102 COLOR N:SETCOLOR 1.j.1.4
104 SETCOLOR 4,8,0
106 SETCOLOR 2,6,2
110 DTM X(10),Y(10)
120 हX=75:&Y=45:X0=152:YC=5G:Fx=3.14159
130 FIOT XC, BY+YC
13E REM ***DRAW TREE
140 FOR I=-0.3 T0 2xFI STEF 0.3
150 S=F\*GIN(I)+XC
155 T=FY%COS(I)+YC
1.60 DRAWTO S,T
165 NEXT I
167 DFGWTO S,T+50:DRFWTO S+2G.T+50
169 DRAWTO S+25,T
170 REM ***FUT ON AFFLES
180 FOR C=: TO 10
190 A=TNT(FND(1)*85)+115
195 E=INT(FND(1)*65)+20
200 FLOT A,E-3:DRAWTO A+3,E-2
202 DRAWTO A+5,E:DRAWTO A+3,E+2
2 0 4 ~ D F A W T O ~ A , E + 3
206 DRAWTO A-3,E+1:DRAWTO A-F,E
2 0 8 ~ D R A W T O ~ A - 3 , E - 2 : D R A W T O ~ A , E - 马 ~
209 X(C)==A:Y(C)=E
210 NEXT C
212 FEM **綗FFLEES FALL
215 FOF C=10 TO 1 STEF -2
216 A=X(C):E=Y(C)
220 FOF D=Y(C) TO 150 STEF 3
230 COLOF O
240 COSUE 300
241 E=D
245 COLOF 1
250 cosue 300
25S NEXT D
```

```
260 NEXT C
275 STOF
300 FLOT A, E-3:DFAWTO A+3,E-2
302 DFAWTO A+5, E;DFAWTO A+3, \(\mathrm{E}+2\)
304 DFAWTO A,E+3
306 DFAWTO A-3, E + 1 : DFAWTO A - 它, E
308 DFAWTO A \(-3, E-2: D F A W T O\) A,E-3
309 FETURN
```


NOTES

Lines 140-165: Draw an ellipse for the tree.
Lines 180-210: Put apples on the tree and save the X, Y coordinates for each apple in arrays X and Y . Line 190 finds a random X location for the apple within the circumference of the ellipse. Line 195 finds a random Y location.

Lines 215-260: Move every other apple to the bottom of the screen.

LEAPING FISH

Make our fish program from Chapter 5 more realistic by changing the line to a wave and making the fish jump in an arc instead of straight up.

Add some other fish or sea life and create your own underwater picture.

PROGRAM LISTING

100 CFAFMTO $3+C O L O F$ 1:SETCOLOF 1., 1. 44
115 कЕTCOLOF $2,9,1$
117 SETCOLOK $4,7,1$
120 COSUE 320
$140 \quad F T=3.14169: 5=50$
$150 \quad Y=80: Y 0=80$
L5 FEM *жжMOVE ACEUSS
$160 \mathrm{FOF} \times=10 \quad 70 \quad 100$ GTEF 10
170 COLOR $1: G O S U E 390$
175 COLOF 0 : BOSUE 390
180 NEXT X
$190 \times 0=x+50$
19 EFFM ***, JMF UF
200 FOF I=3 TO $2.0 \mathrm{TEF}-0.3$
$210 \quad X=\mathrm{F} * \mathrm{COS}(\mathrm{I})+\mathrm{XC}$
$220 \quad Y=-\cdots * S T N(X) * 1, E+Y 0$
230 COLOR 1 ©GOSUE 390
235 COLOF 0 ©OSUE 390

```
260 NEXT I
265 Y=80
267 REM ***MOVE ACROSS
270 FOF X=160 TO 200 STEF 10
280 COLOR 1:GOSUE 390
285 COLOF 0:GOSUE 390
290 NEXT X
310 STOF
320 REM ***DRAW WAVE
330 Flot 1,50
340 FOR X=1 TO 20 STEF 1
350 Y==SIN(X)*10+50
360 DFMWTO X*14,Y
370 NEXT X
380 RETURN
385 REM ***DFAN FISH
390 FLOT X,Y
400 DRAWTO X + 31,Y-10:DFAWTO X+4E,Y
405 DFAWTO X+31,Y+8:DRAWTO X--3,Y-5
408 DRAWTO X,Y
4 1 0 ~ F L O T ~ X + 3 B , Y - 2 ~
420 RETURN
```


NOTES

Lines 200-260: Use the equations for a circle to make the fish jump in an arc.

Lines 330-370: Use the SIN function to draw a wave across the screen.

Lines 390-420: Draw the fish.

BIRD AND FLOWER

Make the bird from Chapter 5 fly to a flower.
Change the value of N on Line 130 and see how the flower changes.

PROGRAM LISTING

100	
A. 10	Q! OR 15 SETCOLOK 2.1 .4
1.	QETCOLQK $2,4,1.4$
11.7	बETGOLOM $4,8,8$
120	
1.30	N=1.
140	FEM ***DEAW Fl. OWE:
14%	FLOT X, Y

```
LE FOF I=0 TO G*FI STEF 0.1
160 F=00*STN(N*T)
170 C=FxCOS(I)+X
180 D=:-F*WIN(I)+Y
190 DFAWTO CO,D
200 NEXT I
210 FEM ***MOUE EIFD
220 E=30
230 FOF X=10 TO 90 STEF &
240 Y:=(\sigma/1#)*X+E
250 COLOF 1:GOSUE 300
25E COLOF 0:GOSUE 300
260 COLOF 1:COSUE 360
265 COLOF 0:GOSUE 360
270 COLOF 1:COSUE 420
27% COLOF 0;BOSUE 420
280 NEXT X
285 COLOF 1;GOSUE 420
270 GOTO 2.90
300 FEM ***FOSYTION 1
305 FLOT X,Y
3L0 DFANWTO X+25,Y-10
320 DFEAWTO X+3E,Y+10
330 DFAWTO X+45+Y-10
340 DFAWTO X+60,Y
350 RETUFN
360 FEM ***FUSITIUN 2
36G FLOT X-W,Y-ES
370 DFAWTO X+2S,Y-5
380 DFAWTO X+35,Y+10
390 DFAWTO X+70,Y--5
400 FEETUFN
420 FEM ***FOSITION 3
42E FLOT X--", Y-10
430 DKAWTO X+35,Y+10
440 DFAWTO X+70,Y-10
450 FETUKN
```


NOTE

Lines 230-280: Move the bird in a straight line from the point 10,30 to the top of the flower. Line 240 calculates the Y coordinate using the equation of a straight line as follows:

$$
\begin{aligned}
& Y=M * X+B \\
& \text { where } M=\text { slope of line, } B=Y \text { intercept. } \\
& \text { In this case, } M=6 / 15 \text { and } B=30 \text {. }
\end{aligned}
$$

FANCY GRAPHICS

Make your own spirals and fancy designs. Input 7, 123, 3 when this program runs to get this design.

Experiment with different input values and see what fancy designs you can make.

PROGRAM LISTING


```
1.0:5 BETCOLOF }2,6,
A.0 FRTNT "GNFUT STDE, ANGLE, XNCREMENT"
A14 SETCOLOF 2,0,0
120 TNFUT R,A,D
130 N=360/A
140 A=A*(3+14167/180)
150 FLOT 100,100
160 X1=100%Y1=100
170 T:=0
180 X2=w*OOS(AWI)+X1
1.90 Y%=-F*SIN(A*X)+Y1
200 IF X2%0 OF X2`319 THEN END
*10 IF Y%<0 OR Y2%1.59 THFN END
220 DFAWTO X2,Y2
250 X1=X2$YL=Y2
240 F=F%+C
250 I=I+1
260 G0T0 100
```


NOTES

Line 140: Converts angle A to radians.
Lines 180, 190: Determine next X, Y coordinates.
Lines 200, 210: Stop the program when the design reaches the limits of the screen.

Line 240: Increments the length of side by D.

GLOSSARY

Term	Definition	Example	Page First Used
CHR\$(65)	Returns the character corresponding to the ATASCII code in the argument.	CHR\$ (65) $=\mathrm{A}$	p. 34
$\begin{aligned} & \text { COLOR } 1 \\ & \text { (C.) } \end{aligned}$	Determines the data to be stored in display memory for all subsequent PLOT and DRAWTO statements until the next COLOR statement is executed. In graphics modes 0 through 2 , the data is an ATASCII character. In graphics modes 3 through 8 , the data enables color.	In Graphics 2, Color $36=\$$ In Graphics 3 COLOR 1 = gold	$\begin{aligned} & \text { p. } 56 \\ & \text { p. } 64 \end{aligned}$
Cursor	Marker or symbol on the screen that marks where the user's next action will take effect or where the next character typed from the keyboard will appear.		p. 26
cos	Returns the trigonometric cosine of the argument.	$\operatorname{COS}(5)=.2836624$	$\begin{gathered} \text { p. } \\ 108 \end{gathered}$
Default	A value, action, or setting that is automatically used by the computer system when no other explicit information has been given.	${ }^{\prime}$	p. 12
DIM A\$ (20) (DI.)	Sets aside space for a string variable (here called $\mathrm{A} \$$), or for an array.	DIM A\$ (20)	p. 37

DRAWTO 25, 17 (DR.)	Causes a line to be drawn from the last point displayed by a PLOT statement, to the location specified by the DRAWTO statement.	DR. 220,100	p. 41
END	Terminates the execution of the program and returns control to the user.	END	p. 50
$\begin{aligned} & \text { FOR I }=1 \\ & \text { TO } 4 \\ & \text { (F.) } \end{aligned}$	Allows you to repeat lines between the FOR and the NEXT statement four times.	$\text { FORI = } 1 \text { TO } 4$	p. 33
NEXT I (N.)		NEXT 1	
STEP	The loop of lines is incremented by the number in the STEP statement. If there is no STEP statement, the loop is incremented by one's.	FORI = 1 TO 4 STEP - 1 NEXT I	
$\begin{aligned} & \text { GOSUB } 250 \\ & \text { (GOS.) } \end{aligned}$	Executes the subroutine which begins at line 250.	GOSUB 250	p. 31
$\begin{aligned} & \text { GOTO } 200 \\ & \text { (G.) } \end{aligned}$	Branches to line 200.	GOTO 200	p. 31
GRAPHICS (GR.)	This command is used to select one of the nine Atari graphics modes.	GRAPHICS 3	p. 12
$\begin{aligned} & \text { GRAPHICS } \\ & 0 \end{aligned}$	This command is also used as a clear screen command, either in Direct or Deferred mode. It terminates any previously selected graphics mode and returns the screen to the default mode (GR.0).	GRAPHICS 0	p. 12

IF. . .THEN	Executes or skips one or more statements, depending on the truth of the stated condition. In this example IF $A=10$, THEN line 200 is executed next. Otherwise the line after the IF. . .THEN statement is executed.	IF A $=10$ THEN 200	p. 38
INPUT A (I.)	Reads a line of input from the current input device.	PRINT "ENTER NUMBER" INPUT A	Ap. 38
INT (9.5)	Returns the largest whole number less than or equal to the argument.	INT (9.5) $=9$	p. 37
$\begin{aligned} & \text { PLOT } \\ & \text { (PL.) } \end{aligned}$	Plots a single block at the specified location on the screen.	PLOT 10,20	p. 41
POSITION (POS.)	Places the invisible graphics window cursor at a specified location on the screen. The cursor does not actually move until an input or output command which uses the screen is issued.	POSITION 20,30	p. 26
PRINT A (PR. or ?)	Writes a line of output to the current display device. This example writes the value of $\mathrm{A} \$, \mathrm{~B}$ and C .	PRINT A\$,B,C	p. 12
REM	Includes remarks in the body of the program for the benefit of the user.	REM This is a remark	p. 78
RETURN (RET.)	Returns control from a subroutine to the statement following the GOSUB that called the subroutine	RETURN	p. 31

RND	Returns a random number between 0 and 1.	RND (1)	p. 37
SETCOLOR	Chooses the particular hue and luminance to be stored	SETCOLOR 1,1,114	p. 41
(SE.)	p. 59 in the specified color regis- ter.	p. 64	
	Returns the trigonometric sine of the argument.	SIN (') $=.90929$	p.
SIN		108	

Once you've explored the many capabilities of your Atari computer, you'll definitely want to take the next step to graphics. This book covers the beginning and intermediate graphics programming statements available in Atari BASIC. By following the exercises, you'll be able to decorate a Christmas tree, build a pyramid, play hide and seek, and create an amazing amount of complex and beautiful artwork. And after you've familiarized yourself with these programs, you can experiment and generate your own new and unique designs.
includes an introduction, an explanation on how to use this book, and warm up exercises at the beginning of each chapter. It also has a chapter that focuses on the color capabilities of your computer.
is written in BASIC for the Atari 400 or 800 Home Computer equipped with a BASIC cartridge. The programs will run on either a color or monochrome monitor.
The possibilities, discoveries, and fun are limitless. All you have to do is sit down at your computer and start creating!

> AVON CAMELOT
> ISBN D-380-85050-8

