

BASIC
Exercises

for the
ATARI

BASIC
Exercises

for the
ATARr

Jean-Pierre Lamoitier

Berkeley. Paris· DUsseldorf

Cover art by Daniel Le Noury
Layout and design by Sharon Leong

Atari is a registered trademark of Atari, Inc.
Atari 400/800 is a trademark of Atari Inc.
Apple is a registered trademark of the Apple Computer Corporation
IBM is a registered trademark of International Business Machines Corporation
TRS-80 is a trademark of Tandy Corporation
PET and CBM are registered trademarks of Commodore, Inc.

Every effort has been made to supply complete and accurate information. However, Sybex
assumes no responsibility for its use, nor for any infringements of patents or other rights of
third parties which would result.

© 1 983 SYBEX Inc ., 2344 Sixth Street, Berkeley, CA 94710. World Rights reserved . No part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without the
prior agreement and written permission of the publisher.

Library of Congress Card Number: 82-63019
ISBN 0-89588-101-2
Printed in the United States of America
10987654321

Acknowledgements

The author would like to thank Mark S. Bilk, who contributed many
improvements to this book and provided valuable assistance with program
development and verification, and Donna Scanlon who provided valuable
organizational assistance.

Contents

INTRODUCTION

1 YOUR FIRST PROGRAM IN BASIC

1.1 Computing Taxable Income 1
1.2 Another Way to Calculate Taxable Income 3

2 flOWCHARTS

2.1 The Purpose of the Flowchart 8
2.1.1 Different Types of Flowcharts 8
2.1.2 Standards 8

2.2 The Maximum of Two Numbers, A and B 9
2.3 Example of a Complete Flowchart:

The Largest Element of an Array 11
2.4 How to Verify a Flowchart 13
2.5 Decision Points 16
2.6 A "Flip-Flop" Technique for Branching 17
2.7 The Implementation of a P-stage Round Robin 20

3 EXERCISES USING INTEGERS

3.1
3.2
3.3
3.4
3.5
3.6

Integers Satisfyi ng N + B2 = C2 26
Armstrong Numbers 34
Partitioning a Fraction into Egyptian Fractions
Prime Numbers 42
Decomposition into Prime Factors 48
Conversion from Base Ten to Another Base
3.6.1 Conversion to a Base Less than Ten
3.6.2 Conversion to a Base Greater than Ten

4 ELEMENTARY EXERCISES IN GEOMETRY

4.1 The Area and Perimeter of a Triangle 64
4.2 Determination of a Circle Passing

Through Three Given Points 66
4.3 Computing the Length of a Fence 69
4.4 Plotting a Curve 72

36

53
54

58

xi

1

7

25

63

vii

viii

5 EXERCISES INVOLVING DATA PROCESSING 79

5.1 Shell Sort 79
5.2 Merging Two Arrays 82
5.3 The Day of the Week 88
5.4 The Time Elapsed Between Two Dates 93
5.5 A Telephone Directory 95

5.5.1 Exercise 1: Creating a Directory 96
5.5.2 Exercise 2: Creating a Directory 99

6 MATH EMA TICAL COMPUTATIONS 109

6.1 Synthetic Division of a Polynomial by (X - S) 110
6.2 The Calculation of a Definite Integral 112
6.3 Calculation of 7r Using Regular Polygons 118
6.4 Solving an Equation by Dichotomy 125
6.5 Numerical Evaluation of Polynomials 129

7 FINANCIAL COMPUTATIONS 133

7.1 Sales Forecasting 133
7.2.1 First Method of Payment: Annuity 136
7.2.2 Second Method of Payment:

Fixed Monthly Payments 140
7.3 Calculation of the Rate of Growth 144
7.4 More on I ncome Taxes 148
7.5 The Effect of Additional Income

on Purchasing Power 154

8 GAMES 161

8.1 The Game: TOO LOW!TOO HIGH 162
8.2 Finding an Unknown Number by Bracketing 168
8.3 The Matchstick Game 171
8.4 The Game of Craps 1 74

9 OPERATIONS RESEARCH 181

9 .1 Topological Sort 181
9.2 The Critical Path in a Graph 185
9.3 The Traveling Salesman Problem 192

ix

1 0 STATISTICS 207

10.1 The Average of a Sequence of Measurements 207
10.2 Mean, Variance and Standard Deviation 209
10.3 Linear Regression 215
10.4 The Distribution of Random Numbers Obtained

from the RND Function 220

11 MISCELLANEOUS 225

11.1 The Signs of the Zodiac 225
11.2 The Eight Queens Problem 229

APPENDICES

APPENDIXA

The Alphabet of BASIC 237

APPENDIX B

Main Syntax Rules 239

APPENDIXC

The Standard ASCII Character Set 247

INDEX 249

Introduction

BASIC has become the most widely used programming language for small
computers, and, as such, is an important tool for all computer users.

The most effective way of learning a programming language is through
actual practice. This book has been designed to teach BASIC through gradu
ated exercises. It is written for all readers who have a minimum scientific or
technical background and who want to learn through actual experience, by
studying realistic examples, how to program in BASIC.

All the programs in this book are written in Atari® BASIC. They will execute
directly on an Atari® 400™ or an Atari® 800™.

Each exercise is presented in a progressive manner and includes: statement
of the problem to be solved, analysis of the problem, solution with flowchart
and comments, corresponding program, and sample run . This systematic
presentation allows readers to check their understanding and progress at
every step. Further, this method teaches the reader how to solve a problem in
a "top-down" manner: sub-problems are identified and solved separately,
leading to a modular program that is easy to read and modify.

Beyond the opportunity to learn BASIC programming in an effective man
ner, BASIC Exercises for the Atari offers a wealth of information and demon
strates valuable techniques for use in a broad range of applications. The fol
lowing are brief descriptions of the topics covered in each chapter:

Chapter 7 -Introductory Lesson: A quick look at how a BASIC pro
gram is developed using a pertinent example from the income tax
form 1040.

Chapter 2-Flowcharting: How to get a solid, organized start on
writing any BASIC program. The rest of the book shows the impor
tance of working with a good flowchart.

Chapter 3-lntegers: Pursues programming in earnest with an unu
sual set of exercises using whole numbers. The applications range
from ancient mathematics (Egyptian fractions) to modern computer
science (integer base conversions).

Chapter 4-Geometry: Shows how BASIC can be used to program
some fairly complicated formulas from analytic geometry, and how
to apply such computations to a practical problem in fence building.
Also shows how to put together a simple, useful program to enable
you to use your terminal to plot curves.

xi

xii

Chapter 5-0ata Processing: More complex business-oriented exer
cises on sorting, merging files and report generation, including such
useful routines as a simple program that tells the day of the week for
any date.

Chapter 6-Scientific Programming: Using common formulas from
algebra and calculus, this chapter contains exercises for evaluating
polynomials and integrals and solving equations. Includes insights
into an important issue in small computer programming: the validity
and range of accuracy of numerical results.

Chapter 7-Finance: Includes exercises involving sales and growth
forecasting, loan payments and interest computations, as well as
more advanced income tax applications.

Chapter 8-Games: A little light programming after the solid core of
the previous chapters. An exercise in increasing the level of com
puter involvement in playing a game. The use of random numbers in
BASIC, demonstrated in the program for Craps.

Chapter 9-Operations Research: Offers more advanced exercises
emphasizing the use of arrays and subscripts in BASIC: task schedul
ing, project management (PERT), and optimal trip planning.

Chapter 7O-Statistics: All the usual in statistics-mean, variance,
and standard deviation, plus two more exotic measurements, skew
ness and kurtosis. An exercise in linear regression and a program
that measures the behavior of the BASIC random number generator,
RND.

Chapter 77 -Miscellaneous: Two final exercises illustrating the power
of a systematic approach to the preparation of BASIC programs.

The author hopes that this book will encourage all readers to learn BASIC
by actually using it, and welcomes all comments and suggestions for
improvements.

CHAPTER 1

Introduction

Your First
Program in BASIC

Anyone can learn to program a computer in BASIC by working through
some practical exercises. This chapter will demonstrate that programming is
not just for professionals. Starting with a simple exercise, you will be taught
the rudimentary instructions and rules of the BASIC language and shown
ways to improve upon a program after it has been written. No prior knowl
edge of BASIC is needed to understand the information presented in this
chapter.

Although you can build up your command of BASIC by reading a textbook,
it is more interesting to learn BASIC by creating actual programs. This method
provides invaluable programming experience. If you work through the exer
cises presented in this chapter and each subsequent chapter, you will gain a
sound working knowledge of BASIC.

1.1 Computing Taxable Income

As our first exercise, we will calculate taxable income from the following
formula, which is commonly used in figuring income taxes:

TAXABLE INCOME = GROSS INCOME - N*1000

where N stands for the number of dependents.

2 BASIC EXERCISES FOR THE ATARI

This can be accomplished in a few lines of BASIC as follows:

40 INPUT G,N
50 T=G-N*1000
60 PRINT T
70 END

Read in gross income and N.
Calculate gross income - N x 7000.
Print out the result.

Although simple, this program brings up several points about the format of
BASIC instructions:

Each line has a line number.

Each line carries an instruction.

The read instruction, i .e. , the INPUT instruction, is used to get infor
mation into the computer.

In the instruction on line 50, multiplication is represented by an
asterisk.

The program is terminated by an END instruction, but this is
optional.

If the program we have just written is run on a computer, the following
dialogue between the program and the user will take place:

?21160,5
16160

This is typed by the user.
This is typed by the computer.

When the computer executes an INPUT instruction, the computer types out
a question mark to indicate to the user that it is waiting for some input.

In the previous dialogue, the user typed 21160 and 5. In the program, since
the variable names that follow INPUT are G and N, the first value typed in,
21160, was assumed by the computer to be for G, and the second value,S,
was assumed to be for N. Using these va lues, the computer then carried out
the calculation indicated on line 50 of our program and printed the result,
16160.

This result is mathematically correct, but the meaning of the dialogue is
obscure. Let's change the program to present a better picture of what is going
on, and print some explanatory text. For text to be printed, the text should be
placed in double quotes and written after a PRINT instruction. The improved

YOUR FIRST PROGRAM IN BASIC 3

program now reads:

10 PRINT "GROSS INCOME ";
20 INPUT G
30 PRINT "DEPENDENTS ";
40 INPUT N
50 T=G-N*1000
60 PRINT
70 PRINT "TAXABLE INCOME IS ";T
80 END

The semicolon suppresses
an otherwise automatic
carriage return and
linefeed at these points.

Now, the dialogue between the user and the computer is more easily under
stood:

GROSS INCOME ?21'60
DEPENDENTS ?5

When the program waits for data, it displays a ',?".

In many BASICs the first four instructions, 10 through 40, could be com
bined into one instruction by writing:

40 INPUT "GROSS INCOME, NUMBER OF DEPENDENTS? ";G,N

ATARI BASIC, however, does not permit print strings in input statements.

1.2 Another Way to Calculate Taxable Income

If we look at a real Internal Revenue Service (IRS) Form 1040 for 1981, we
will find that the GROSS INCOME, G, of the program above is actually:

Adjusted Gross Income (line 31 of the Form 1040)

Looking a little closer, we see that this adjusted gross income is the difference
between :

Total Income (line 21 of the Form 1040)
and

Tota I Adjustments (line 30 of the Form 1040)

4 BASIC EXERCISES FOR THE ATARI

Reading further through the Form 1040, we also come upon a more
detailed calculation for the TAXABLE INCOME, T:

where:

T = G - D - N * 1000

G is adjusted gross income.
D is total deductions.
N is number of dependents (as before) .

After we incorporate this new information, our refined program reads:

10 PRINT "TOTAL INCOME ";
15 INPUT I
20 PRINT "TOTAL ADJUSTMENTS ";
25 INPUT A
30 G=I-A
40 PRINT "TOTAL DEDUCTIONS ";
45 INPUT D
50 PRINT "NUMBER OF DEPENDENTS ";
55 INPUT N
60 T=G-D-N*1000
65 PRINT
70 PRINT "THE TAXABLE INCOME IS ";
75 PRINT T
80 END

The dialogue between the computer and the user would now look like this:

TOTAL INCOME ?27624
TOTAL ADJUSTMENTS ?1737
TOTAL DEDUCTIONS ?4727
NUMBER OF DEPENDENTS 75

THE TAXABLE INCOME IS 16160

In this example, each variable in the program has a name associated with it.
In computer science jargon, this name is called an " identifier." Let us go back
and list the identifiers used in this program:

Total Income
A Total Adjustments
D Total Deductions
G Adjusted Gross Income
N Number of Dependents
T Taxable Income

Using single-letter names as identifiers is in keeping with the standard BASIC
limitation (common in "Home Computer" BASICs) that identifiers may only

YOUR FIRST PROGRAM IN BASIC 5

be a single letter or a letter and a digit. ATARI BASIC, however, has been
extended to accept names up to 114 characters long (the maximum line
length). On the ATARI, the readability of the program can be improved then,
by assigning more descriptive names, for example:

I-INCOMTOT
A-ADJUSTOT
D-DEDUCTOT
G-GROSSINC
N-NOFDEPEN
T-TAXINCOM

Conclusion

This elementary example shows how to design a simple program in BASIC.
To undertake the writing of more ambitious programs, we must first learn
techniques for analyzing a program and designing a "flowchart." These two
skills will be developed in the next chapter.

The example on computing taxable income that we presented in this chap
terwill be pursued and expanded in Chapter 7to computethe actual tax due.

CHAPTER 2

Flowcharts

Introduction

In the first chapter of this book, we learned the rudiments of the BASIC
language and saw how to write a simple program . In the following chapters,
the exercises will become more complex and the method we learned for
writing programs (i .e., writing out the program directly) will no longer be
feasible. As more complex problems are presented, it will be necessary to
analyze the problem first, and then draw a " flowchart" before the program
listing is coded. Indeed, experience has shown that flowcharting is an invalu
able aid in programming, especially for the beginner.

The goal of this chapter is to demonstrate the proper technique for con
structing a flowchart. The following chapters will provide many opportunities
for applying the information learned here and for practicing the techniques of
flowcharting.

Later on, with experience, it will become possible to reduce the amount of
time spent designing flowcharts, but this practice is not advisable for the
beginner.

8 BASIC EXERCISES FOR TH E ATARI

2.1 The Purpose of the Flowchart

The flowchart is a graphic representation of the procedure proposed to
solve the problem. At the present state of the art, the flowchart is only useful
to the programmer, as it is incomprehensible to computers. Because of this,
we might question the value of the flowchart. However, the flowchart pro
vides a means to verify that some crucial part of the problem was not over
looked when the problem was analyzed . The flowchart may also facilitate
communication between the various people working on a programming pro
ject. All in all , for the beginner, a detailed flowchart constitutes a first stage
that promotes good programming.

2.1.1 Different Types of Flowcharts

In practice there are three types of flowcharts:

1. A system flowchart: principally used in data processing applications.
This flowchart shows the connections between files and programs.

2. A conceptual flowchart: often used to present a macroscopic view
of large programs that involve the interaction of multiple algorithms.
Such flowcharts are of limited use for small programs.

3. A detailed flowchart : constitutes a complete and precise representa
tion of the planned procedure. This type of flowchart removes all
potential ambiguities and makes programming easier.

Note, however, that the flowchart should always be as independent of the
programming language as possible.

2.1.2 Standards

Flowcharting standards and symbols have been promulgated by ANSI , the
American National Standards Institute. Templates for drawing all of the stan
dard flowcharting symbols are produced by IBM® and other companies, and
are generally available. A table of the principal symbols used in flowcharting
programs appears on the following page.

We should note here that there are many methods that can be used to
describe algorithms, programs and systems. To list a few: metalanguage,
pseudocode, structure charts, data flow diagrams, Warnier diagrams, "input
process-output" (IPO), hierarchicallPO (HIPO), etc. Manyofthese methods
have great merit and warrant further study, but understanding them is an

THE ElEMENTS OF A FLOWCHART:

General processing

Call to a subroutine

Test

Entry or exit point

(start, stop , or return)

Input or Output

(general symbol)

Input from a keyboard

Output to a printer

Transfer or continuation point

FLOWCHARTS 9

II II

<>
()

/ 7
c:J
D

o
involved process that presupposes a good acquaintance with programming.
For the beginning programmer, the flowcharting method has the advantage
of being very accessible and widely understood.

We will begin our exposition of flowcharting with a simple " mini
flowchart," which allows us to ascertain that in programming, solutions are
not unique. We will then go on to study more complicated situations.

2.2 The Maximum of Two Numbers, A and B

We want X to assume the value of the larger of two numbers A and B. How
can we obtain a solution whi le minimizing the number of instructions that
must be written?

10 BASIC EXERCISES FOR THE ATARI

First solution: We compare A and B. If A ~ B, we store the value of A in X,
otherwise, we store the value of B in X. This method can be represented by
means of a flowchart (see Figure 2.1) that consists of a diamond in which the
comparison "A ~ B" is located, and two rectangles that correspond to the
"assignments." The corresponding sequence of BASIC instructions is listed in
Figure 2.2.

Figure 2.1: first flowchart Example: finding the Larger of Two Numbers

100 IF A>=B THEN 130
110 X=B
120 GOlO 140
130 X=A

figure 2.2: Program Written from First flowchart ------.-----'

If we use a more advanced BASIC, we can write:

100 IFA>= BTHENX = AELSEX = B

Second solution: To avoid the branching on line 120, we change the
flowchart shown in Figure 2.1 by moving one of the assignment instructions.
This gives us the flowchart shown in Figure 2.3. The corresponding BASIC is
shown in Figure 2.4.

In this solution we have omitted a GOTO instruction, and, therefore, have
somewhat simplified the program . With an advanced BASIC we have:

100 X = A

101 IF B > A THEN X = B

FLOWCHARTS 11

L..-____________ figure 2.3: A More Efficient flowchart

110 IF A>=8 THEN 13C
120 X=8

100 X=A J
L..-_______________ figure 2.4: A Shorter Program

Third solution: Unfortunately only a few BASIC interpreters include the
functions MAX and MIN. If these functions are available, we only need to
write:

100 X = MAX (A,S)

At the present time the functions MAX and MIN are only rarely available on
home computers.

Note: When these two functions are available, they often accept an arbi
trary number of parameters. For example, we could write:

Y = MAX(X,3,Z,C)
or even

2.3 Example of a Complete Flowchart: The Largest Element
of an Array

Assume we want to find the largest number in an array, A, of 100 numbers.
The method we propose is the following:

- Set X = A(l)

12 BASIC EXERCISES FOR TH E ATARI

Give I the values 2,3,4, successively, up to 100

Compare X and A(I)

If X< A(I) transfer the value of A(I) into X, otherwise, continue.

When we finish , X will contain the largest value. This method is repre
sented in the flowchart shown in Figure 2.5 .

.-- Input

.-- Computation

Comparison ----.

-- Output

~ Loop (or repealing
the comparisons.

Figure 2.5: Flowchart for Finding the Largest Element of an Array -------------'

FLOWCHARTS 13

The diagram in Figure 2.5 illustrates the following conventions:

Input or output instructions are enclosed in a parallelogram.

Computational instructions are enclosed in a rectangle.

Comparison instructions are enclosed in a diamond.

We also note an expression that may seem odd to a person who has not
been involved with programming:

1=1+1

Expressed in its most general form, a computational instruction may be written:

variable = < expression>

This instruction means that the numerical value of thE: expression will be
computed and assigned for storage to the variable on the left of the equal
sign. For this reason, an instruction of this form is called an "assignment
statement." The character" =" acts here as the symbol for assignment. How
ever, within a diamond, the instruction:

I = 100

means "compare I to 100 and see if they have the same value." Under no
circumstances does this imply that the value 100 is to be stored in I. In other
words, in a diamond the character" =" acts as the symbol for comparison.

2.4 How to Verify a Flowchart

If a program is derived from an erroneous flowchart, it will not yield the
proper results . We should be as certain as possible that the flowchart is cor
rect before we enter into the programming phase.

To do this, we can "desk check" the flowchart. This is done by simulating
the operations of a computer and tracing the paths of the flowchart, step-by
step, to insure that the ordering is correct, and checking (by hand) the calcu
lations involved.

Let us go back to the previous flowchart shown in Figure 2.5 and imagine a
smaller array of, for example, five numbers.

At the outset, we set X = A(l), so X will take the value 3 (see Figure 2.6).

4

2 4 -I 6

'---------------- Figure 2.6: Array of Five Elements

14 BASIC EXERCISES FOR THE ATARI

Now we will go once around the loop. The table given in Figure 2.7 shows
how the contents of X change as a function of I.

A(I) X

2 2 3--. We compa re A(2) to X and X is larger.

3 4 4--. Since A(3) is larger than X we store A3 in X.

• 4 -1 4--. - 7 is smaller than 4 .

5 6 6--. 6 is larger than X so we copy 6 into X.

Figure 2.7: Comparing the Elements ______________J

We observe that by using this method, X is indeed being converted into the
largest element of the array. Therefore, we can go ahead and program this
flowchart.

Note: This method can only be used with fairly simple flowcharts.

The flowchart in Figure 2.5 can be translated into BASIC in various ways.
An example of one way is shown in Figure 2.B.

100 DIM A(100)
110 FOR 1=1 TO 100
120 READ Y:A(I)=Y
130 NEXT I
140 X=A(1)
150 FOR 1=2 TO 100
160 IF X>=A(I) THEN 180
170 X=A<I)
180 NEXT I
190 PRINT "THE LARGEST ";
195 PRINT "ELEMENT IN THE ";
197 PRINT "ARRAY = ";X
200 DATA
210 DATA
410 END

Figure 2.B: Largest-Element Program ______________ ...J

FLOWCHARTS 15

This is not the best possible version, but it is easy to understand:

Lines 110 to 130 read in the entire array.

Lines 140 to 180 correspond to the search for the largest element in
the array.

Lines 200,210, etc., would normally hold the actual values of the
100 elements to be read into the array.

Note that ATARI BASIC will not permit a subscripted variable in a READ state
ment, so an extra variable (y) is used in line 120.

Criticism of this program: This program will not work unless the array con
tains exactly 100 elements. It is often preferable to read a number, N, initially,
that is the actual number of elements in the array. We can then provide a
program that adapts itself to handle an array of any size, N, up to 100. The
program given in Figure 2.9 is much better from this point of view.

100 DIM A(100)
105 READ N
110 FOR 1=1 TO N
120 READ Y:A(I)=Y
130 NEXT I
140 X=A (1)

150 FOR 1=2 TO N
160 IF X>=A(I) THEN 180
170 X=A(I)
180 NEXT I
190 PRINT "THE LARGEST "i
195 PRINT "ELEMENT IN THE "i
197 PRINT "ARRAY ="iX
200 DATA 5
210 DATA 3,-2,34,5,0
410 END

RUN
THE LARGEST ELEMENT IN THE ARRAY = 34

'------------ figure 2.9: Modified l.argest-Element Program

Comments: Looking in detail at this program we see that:

Instruction 105 reads the number, N, of elements in the array.

Line 200 holds the value 5 corresponding here to 5 elements.

Line 210 holds the values of the 5 elements.

This version of the program is limited by the instruction DIM A(l 00)
to 100 elements. By modifying this instruction the program can be
adapted to have a larger or smaller maximum capacity.

16 BASIC EXERCISES FOR THE ATARI

- This type of organization makes the program less expensive to mod
ify and easier to read.

Note: It is a general rule with FOR loops that the terminal value should be a
variable rather than a constant.

2.5 Decision Points

On a flowchart, a decision point has one entry and two or three exits.
Figure 2.10 illustrates this point. The symbol /f?/f is used as a symbol for com
parison.

2 Exits

3 Exits < >

figure 2.10: Decision Points: 2 and 3 Exits -------------'

There are instances where a decision point in a flowchart could have more
than three exits. This might happen because the flowchart must represent a
general class of algorithms. The standard flowcharting procedure does not
specify a representation of a decision point with more than three exits, but
Figure 2.11 shows how numerous exits might be represented .

figure 2.11: Decision Points: Multiple Exits -------------1

FLOWCHARTS 17

2.6 A "Flip-Flop" Technique for Branching

How can we flowchart a loop so that the left side of the flowchart is exe
cuted on each odd passage through the loop and the right side is executed on
each even passage? This alternation should be continued until the conditions
are right for leaving the loop (see Figure 2.12) .

A simple method that might accomplish this task would be to use an auxil
iary variable. The value of this auxiliary variable could control this "flip-flop"
function . For example, the value 0 could be assigned to a variable S before
entering the loop. In the loop a test on B would select the left branch if B is
zero. In the left branch an instruction, B = 1, would be inserted, so that on
the next test, the right branch would be taken . In this branch, a B = 0 will be
placed, which will cause a switch back to the left side for the next run
through. This method is incorporated into the flowchart displayed in Figure
2.13.

NO

L..-_____ Figure 2.12: Conceptual Flowchart for Flip-Flop Branching

The flowchart is easily turned into BASIC, as the code in Figure 2.14 shows.
The line numbers are included for purposes of the example.

18 BASIC EXERCISES FOR THE ATARI

YES

Figure 2.13: Detailed Flowchart for Flip-Flop Branching ______ ---1

999
1000

1500

2000

B = a
If B = a THEN 1500
B=O

G
GO TO 2000
B=l

G
G
If .. . THEN 1000

Figure 2.14: Flip-Flop Branching Program --------------1

FLOWCHARTS 19

Note: As points of interest to the reader:

1. Figure 2.15 shows how the last example could be written in FOR
TRAN 77.

2. Figure 2.16 shows how it could be written in CBASIC .

(Note that for this example we have not included all of the line numbers that
are required by CBASIC; they are not needed to understand the example.)

999

1000
B=O
IF (B .EQ.O)

part C

IF(...)

THEN
B = 1

part A

ELSE
B=O
part B

ENDIF

GOTO 1000

'----------- Figure 2.15: Flip-Flop Branching in FORTRAN 77

999 B = 0

1000 IFB = 0

part C

IF(...)

THEN
B = 1

part A

ELSE
B=O
part B

THEN 1000

'------------- Figure 2.16: Flip-Flop Branching in CBAStC

I1lCBASIC is a registered trademark of Software Systems, Inc. It denotes an extended BASIC, w hich
operates under the CP/M monitor, ava ilable on compatible INTEL 8080, INTEL 8085, and Zi log Z80
based systems.

20 BASIC EXERCISES FOR THE ATARI

2.7 The Implementation of a P-Stage Round Robin

For this example, we want the first cycle through the flowchart to follow
branch one, the second cycle to follow branch two, the pth cycle to follow
branch p, and the p + 1 st cycle to follow branch 1, and so on, indefinitely. In
more mathematical terms, the ith cycle should be through branch i modulo p
(see Figure 2.17).

BRANCH 1 BRANCH 2 BRANCH P

Figure 2.17: "Round Robin" Flowchart ---------------------'

It is not possible to represent the best method for doing this in a concise
way (i.e., through a flowchart) , because we want to use the "computed
GOTO" statement, rather than a series of tests. A first solution is given by the
code sketched in Figure 2.18.

Note that we can go through the sequence properly, with a centralized
section of code at the common exit that uses a single assignment, B = B + 1,
and a test for handling the recycling. This implementation is sketched in
Figure 2.19.

999 B = 1

1000 ON B GOTO 1100, 1300, 1500, 1600

1100 B = 2

Branch 1

GOTO 1800

1300 B = 3

Branch 2

GOTO 1800

1500 B = 4

Branch 3

GOTO 1800

1600 B = 1

Branch 4

1800

part C

IF ... THEN 1000

FLOWCHARTS 21

1..-___________ Figure 2.18: "Round Robin" Program

999 B = 1

1000 ON B GOTO 1100, 1300, 1500, 1600

1100 Branch 1

GOTO 1800

1300 Branch 2

GOTO 1800

1500 Branch 3

GOTO 1800

1600 Branch 4

1800 B = B + 1

IF B > 4 THEN B = 1

partC

IF ... THEN 1000

L...-_______ Figure 2.19: More Efficient "Round Robin" Program

22 BASIC EXERCISES FOR THE ATARI

Conclusion

In this chapterwe have covered the rudiments offlowcharting. Section 2.7,
however, presented a more advanced branching technique that is not re
quired knowledge for the beginning programmer but can be useful when
more complex problems are attempted .

As we study the exercises in the following chapters, we will be able to
perfect our general knowledge of flowcharts and, above all , learn how to
construct them.

CHAPTER 3

Introduction

Exercises
Using Integers

This chapter will present exercises that demonstrate the use of whole num
bers in BASIC. The corresponding flowcharts, some more complicated than
others, will provide the reader with additional insights into the nature of
problem solving. If you experience difficulty with some of the exercises in this
chapter, do not spend a great amount of time trying to complete them; in
stead, move on to the following chapters and return to this chapter again at a
later time.

The solutions given for the exercises presented here are valid for "standard"
BASIC interpreters. Most of the words and symbols in all BASIC interpreters
are the same, although there are exceptions. Various computer manufac
turers may vary a particular instruction or symbol. Some BASIC interpreters
may include features not available in other interpreters. For example, it is
now becoming common practice for some BASIC interpreters to accept
"true" integers: A %, B%. (This is not, however, true of ATARI.) The % tells the
BASIC interpreter to store and treat this variable as a computer integer (usu
ally 16 bits), rather than a "floating point" number, which is encoded in 32
bits. It is important to keep in mind that although features may vary, the
concept remains the same.

26 BASIC EXERCISES FOR THE ATARI

The convention followed in these exercises is that the value of the integer
variables will never exceed 32,767111 . This constraint allows the use of "inte
ger" BASICs to reduce execution time and use less memory. However, not all
systems have integer variables and, furthermore, such standard functions as
SIN, COS, SQR, etc., are rarely available for integer variable arguments .

One difficulty often encountered when completing exercises using inte
gers is the need to carry out "integer division" and calculate remainders. For
example, we might want to determine the value of Q and R such that:

A=B*Q+R

To do this, we must perform the integer division AlB for which BASIC has
no special operator. In this case, we would use the function INT and write:

Q = INT(A/B)

R = A - Q*B

To obtain the quotient Q and the remainder R when integer variables are
available, we simply write:

Q% = A%/B%

R% = A% - B%*Q%

Or, if we are only interested in the remainder, we write:

With ordinary variables:

R = A - B*INT(A/B)

With integer variables:

R% = A% - B% *(A%/B%)

3.1 Integers Satisfying N + 82
= e

Exercise: Find all integers A and B between 1 and 100 such that A2 + B2 is
a perfect square.

In order to solve this problem, we will complete the following tasks:

Analyze the problem.

Decide on a method to use, and draw a flowchart.

Write the corresponding BASIC program.

(1)This is usually the maximum integer that can be represented on most micro· and minicomputers
that have only 16-b it integer arithm et ic. Larger integers are available on " megaminis" or main frame

computers.

EXERCISES USING INTEGERS 27

Analysis: Before we begin our analysis, it should be noted that solutions
that differ only by a permutation are to be considered identical.

For example:

A=3 A=4
B = 4 and B = 3
C=5 C=5

constitute two identical solutions.
To avoid repeating identical solutions, we will seek solutions such that B>A.

Thus, let us determine if 12 + f is a perfect square by giving the variable I a
value from 1 to 99 and the variable J a value from I + 1 to 100. Two different
approaches can be used to obtain the solution.

first approach: Increment a variable K starting from J + 1. Then,

If 12 + f = K2 we have found a solution.

If 12 + f> K2 increment K by one and try again.

If 12 + f < K2 there is no solution for I and J.

Second approach: Calculate:

K = vr;Ji
If K is an integer, we have a solution; if it is not an integer, there is no solution
for I and J. To determine whether or not K is an integer, we simply compare K
with INT(K).

These two approaches are indicated in the flowcharts drawn in Figures 3.1
and 3.2 (respectively) . In both of these flowcharts we see:

An outer loop varying I from 1 to 99

An inner loop varyingJ from 1+ 1 to 100.

Using the two flowcharts shown in Figures 3.1 and 3.2, we can easily con
struct the programs shown in Figures 3.3 and 3.4.

It is necessary to become aware of the degree of precision invoked when
using floating point computations in ATARI BASIC. Let's examine line 40 of
the program in Figure 3.4. Here we compare the value K, known to be the
product of the floating point arithmetic operation SQR(I *1 + J * J) , with INT(K),
known to be an integer. We must be careful when testing for equality be
tween these two values for K, since we have entered the area of potential
round-off errors. For example, the SQR function may have computed the
value of K to be 51.0000001 or 50.9999999; this is very close to the correct
value and sufficiently accurate for most practical purposes. On the other

28 BASIC EXERCISES FOR THE ATARI

First Approach:

<

Or:

<

>

>

Alternatives for the section of the
flowchart that differs between First
and Second Approach (see Second
Approach for complete flowchart) .

Figure 3.1: Flowchart Segments: Integer Solutions for A2 + If = C2 ___________ -1

EXERCISES USING INTEGERS 29

Second Approach:

YES

NO

YES

YES

'---- Figure 3.2: Complete Flowchart: Integer Solutions for A2 + If = C2

30 BASIC EXERCISES FOR THE ATARI

hand, the INT function has changed all digits following the decimal point to
zero (i.e., 51.0000000 or 50.0000000) . The instruction in line 40 will find
these two values unequal and, consequently, our program will fail to show
242 + 452

= 5f as a possible solution. Therefore, to resolve the round-off
errors, line 40 in Figure 3.4 becomes:

40 IF ABS(K - INT(K + .5)) > 1 E - 7 THEN 60

The program in Figure 3.3, using the first approach, avoids these diffi
culties. Throughout the program, only positive integer exponents of integers
are used. Also, given the limited range of the values of A and B, the highest
number to be represented is 20,OOO-a number well within the nine digits of
precision supplied by ATARI BASIC.

Note: The topic of round-off errors is discussed in detail in Chapter 6.

5 N=1GO
10 FOR 1=1 TO N
20 FOR J=I+1 TO N
30 S=I*I+J*J
40 K=J
50 K=K +1
60 K2=K*K
70 IF K2<S THEN 50

\

80 IF K2>S THEN 10C
90 PRINT" ";1;" II;J;
95 PRINT" ";K
100 NEXT J
110 NEXT I
120 END

Figure 3.3: Program Using the First Approach __________ --...1

5 N=1 CO
10 FOR 1=1 TO N-1
20 FOR J=I+1 TO N
30 K=SQR(I*I+J*J)
40 IF K<>JNT(K) THEN 60
50 PRINT" ";J;" ";J;
55 PRINT" ";INT(K)
60 NEXT J
70 NEXT I
80 END

Figure 3.4: Program Using the Second Approach -----------1

345
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
11 60 61
12 16 20
12 35 37
13 84 85
14 48 5(1
15 20 25
15 36 39
16 30 34
16 63 65
18 24 30
1 8 ~O 82
20 21 29
20 48 52
20 99 101
21 28 35
21 72 75
24 32 40
24 45 51
24 70 74
25 60 65
27 36 45
28 45 53
28 96 100
30 40 50
30 72 78
32 60 68
33 44 55
33 56 65
~5 84 91
36 4E 60
36 77 85
39 52 65
39 80 89
40 42 58
40 75 85
40 96 104
42 56 70
45 ~O 75
48 55 73
4e 64 80
48 90 102
51 68 85
54 72 90
56 90 106
57 76 95
6(\ 63 87
60 80 100
60 91 1(19
63 84 105
65 72 97
66 88 11r
69 92 115
72 96 120
75 100 125
80 84 116

EXERCISES USING INTEGERS 31

L-_______ Figure 3.5: Output of Integer Solutions for A2 + If = C2

32 BASIC EXERCISES FOR TH EAT ARI

The output shown in Figure 3.5 is produced by a program that displays
output in a linearfashion . This method makes reading and understanding the
output very inconvenient. To reduce the excessive length of the printout, we
can display multiple solutions per line. For example, we can add an output
control variable B that will cause the program to print three sets of numbers
across the page, before advancing to the next line. To do this, we must slightly
modify the earlierflowcharts, as shown in Figure 3.6. This modification leads
to the listing and output displayed in Figures 3.7 and 3.8, respectively. Since
ATARI BASIC lacks the usual TAB() command for cursor positioning, vertical
alignment of output is accomplished by embedding the numbers (varying
from one to three digits) in strings of fixed length.

B=l

NO

YES

Figure 3.6: Flowchart for Improving Output Format ________ -1

90 DIM V$(10)
100 N=100
105 B=1
11 0 FOR 1=1 TO N
120 FOR J=I+1 TO N
130 S=I*I+J*J
140 K=J
150 K=K+1
160 K2=K*K
170 IF K2<S THEN 150
180 IF K2>S THEN 200
191 V=I:W=2:GOSUB 1000
192 V=J:W=4:GOSUB 1000
193 V=K:W=4:GOSUB 1000
195 IF B<=2 THEN PR INT " I ";
196 B=B+1
197 IF B<=3 THEN 200
198 PRINT
199 B=1
200 NEXT
210 NEXT I
400 END

EXERCISES USING INTEGERS 33

1000 REM
1010 REM
1020 REM
1025 REM
1030 V$="

SUBROUTINE TO RIGHT-
JUSTIFY A VAL UE,V, IN
A FIELD OF WIDTH WAND
PRINT IT.

1040 V$(W-LEN(STR$(V»+1,W)=STR$(V)
1045 PRINT V$(1,W);
1050 RETURN

L-______ Figure 3.7: Program Modified for Improved Output Format

3 4 5 5 12 13 6 8 10
7 24 25 8 15 17 9 12 15
9 40 41 10 24 26 11 60 61

12 16 20 12 35 37 13 84 85
14 48 50 15 20 25 15 36 39
16 30 34 16 63 65 18 24 30
18 80 82 20 21 29 20 48 52
20 99 101 21 28 35 21 72 75
24 32 40 24 45 51 24 70 74
25 60 65 27 36 45 28 45 53
28 96 100 30 40 50 30 72 78
32 60 68 33 44 55 33 56 65
35 84 91 36 48 60 36 77 85
39 52 65 39 80 89 40 42 58
40 75 85 40 96 104 42 56 70
45 60 75 48 55 73 48 64 80
48 90 102 51 68 85 54 72 90
56 90 106 57 76 95 60 63 87
60 80 100 I 60 91 109 63 84 105
65 72 97 66 88 110 69 92 115
72 96 120 75 100 125 80 84 116

Figure 3.8: Improved Output Format

34 BASIC EXERCISES FOR TH EAT ARI

3.2 Armstrong Numbers

Numbers that are equal to the sum ofthe cubes oftheir digits are known as
Armstrong numbers. For example, 153 is an Armstrong number, since

Exercise: Write a program that outputs all Armstrong numbers between 1
and 2,000.

Analysis: To determine whether or not a number is an Armstrong number,
we must take each of the digits making up the number (e.g., 1, 5 and 3) and
then calculate the sum of the cubes of those digits.

To obtain the ones digit, we compute the remainder of the number, after it
has been divided by ten. For example, if I is the number, we calculate:

Q = INT(I/10)

R = I - 10*Q

and R is now the ones digit.
To get the tens digit, we repeat the same ca Iculation using Q:

Q1 = INT(Q/10)

R = I - 10*Q1

and R is now the tens digit.
This same process is repeated until we get a zero quotient. If we limit our

selves to numbers up to 2,000, we will never exceed four digits.
Rather than calculating Q1 , Q2, Q3 and so on, the operation may be car

ried out as follows:

1. Set K = I and S = 0

2. Compute Q = INT(KilO)
R = K - lO*Q

Set S = S + R3
Set K = Q for the next iteration
If K > 0 go back to 2; if not, go to 3.

3. Check to see if S = I

This leads us to the flowchart shown in Figure 3.9.
The listing given in Figure 3.10 corresponds to the flowchart in Figure 3.9.

The sample output displayed in Figure 3.11 shows that Armstrong numbers
are not numerous.

R is one the digits of I. We add R cubed to 5 (5
is the sum of the cubes of the previous digits).

When K - 0 we have gone through all the
digits of 1.

Q = KilO
R=K-IO·Q

S = S + R'
K=Q

NO

EXERCISES USING INTEGERS 35

NO

YES

YES

'---------------- Figure 3.9: Flowchart for Determining Armstrong Numbers

36 BASIC EXERCISES FOR THE ATARI

10 N=2000
20 PRINT "ARMSTRONG NUMBERS"
25 PRINT "BETWEEN 1 AND 2000"
30 PRINT
40 FOR 1=1 TO N
50 S=O
60 K=I
70 Q=INT(K/10)
80 R=K-10*Q
90 S=S+R*R*R
100 K=Q
110 IF K<>O THEN 70
120 IF I<>S THEN 130
125 PRINT I
130 NEXT I
140 END

Figure 3.10: Armstrong Numbers Program ____________ ...J

ARMSTRONG NUMBERS
BETWEEN 1 AND 2000

1
153
370
371
407

Figure 3.11: Output of Armstrong Numbers -------------1

3.3 Partitioning a Fraction into Egyptian Fractions

A fraction that has a numerator of 1 is sa id to be an Egyptian fraction(2! (for

example, t, 110 etc) .
A fraction that has a numerator that is smaller than its denominator is called

a proper fraction .

Exercise: Partition a proper fraction into a sum of Egyptian fractions.

Analysis: We propose to use the Fibonacci maximal algorithm()! to solve
this problem.

(2!Such fractions were used by the ancient Egyptians, beca use they lacked practi ca l methods for han
dling other types of fractions.

()IFibonacci: Leonardo da Pisa, known by the name of Fibonacc i, was born in Pisa aroun d 11 75 and
publi shed this algorithm in 1202 .

EXERCISES USING INTEGERS 37

Let us assume that you are given the fraction ~ to decompose. To deter
mine the first fraction of the decomposition we will use the largest Egyptian
fraction that has a value lower than ~. We will subtract this fraction from ~
and continue this process until a a remainder is encountered.

In this example:

A=2 B =3 ~=2
B 3

the largest Egyptian fraction occurring here isr, i.e.:

A 2 1 ---=---=-
B 2 326

This gives the desired partition :

2=~+~
326

The decomposition is not always as simple as in the previous example. For
example, for the fraction 1~ we obtain:

~=~+~+~+_1_
11 2 5 55 110

Exercise: Construct a program that partitions a fraction into Egyptian frac
tions using the Fibonacci algorithm . Pay particular attention to formatting the
output. We will soon discuss the limitations of this program and some precau
tions to be taken .

Solution: At first this problem appears to be very simple. We must:

- Find the largest Egyptian fraction less than ~ .

- Calculate the remainder fraction.

If we start with the calculation C = INT(*), then

~~~ 
C B 

In this calculation, C will be very close to the desired denominator. So we just 
makeC = C + 1 until 

~<~ 
C B 

and then we will have the desired fraction . The remainder fraction is given by 

A 1 ---= 
B C 



38 BASIC EXERCISES FOR THE ATARI 

On the basis of this analysis, we can sketch an initial flowchart. We are also 
ready to make one important observation: this computation can give rise to 
some integer variables that are large enough to cause overflow and meaning
less output. The representation of integers used in any computer is of limited 
precision, so we must provide tests to insure that we do not exceed the 
precision of the computer system that we are using. In general, these tests 
would have to be made after every multiplication A*B or B*C; but, since 
B > A, we need only test the second multiplication. This brings us to the 
flowcharts shown in Figures 3.12 and 3.13. The algorithm we have designed 
will terminate successfully when the new A is zero and unsuccessfully if the 
new B exceeds the precision of the machine. 

Note: As in the previous problems, integer variables can be used on sys
tems that permit them . However, with microcomputers they generally have 
fewer significant digits than floating point numbers. Therefore, it is preferable 
to work with ordinary variables. 

We will divide our program shown in Figure 3.14 into two parts: 

1. a main program that carries out the input/output and some condi
tional tests. 

2. a subprogram that searches (on each " iteration" ) for the largest ad
missible Egyptian fraction and computes the remainder fraction for 
the following iteration. 

By dividing the program into two parts we have increased the number of 
program statements. It does, however, make the program easier to write and 
follow. 

The flowchart shown in Figure 3.12 includes a variable L, which takes on 
one of two values: 0 or 1. By assigning L a value of 0 at the beginning of the 
program, we will avoid printing the plus sign (+) in front of the first fraction 
that is found. Subsequently, the variable is set to 1, and the output of each 
following fraction is preceded with a plus sign. 

Comments on the program: The precision with which a number may be 
represented is fixed for any given computer. The maximum integer number 
possible in a computer is a constant. The program should include a parame
ter mechanism that can be used to protect the integrity of the output. By 
varying the setting of the parameter, the program may execute on computers 
that have different capacity limitations. Listed below are two ways to accom
plish the setting of this parameter. We may either: 

1. Indicate the largest integer admissible in the system using an assign
ment instruction or a READ/DATA instruction. (We have chosen the 
READ/DATA method.) 



EXERCISES USING INTEGERS 39 

.. 
PRINT THE 

EGYPTI AN FRACTION 
JU ST OBT AINED 

/ 

PRINT / 
" +" 

~..........---J 

1..-_______________ Figure 3.12: Main Flowchart for Partitioning Fractions 



40 BASIC EXERCISES FOR THE ATARI 

or: 
2. Request that the user indicate at execution time the largest admissi

ble integer. (This alternative is less practical.) 

Toterminatethe program, input two numbers A and B, such that A ~B. Figure 
3.15 shows a sample dialogue. 

NO 

Figure 3.13: Flowchart for the Partitioning Subroutine ---------' 

100 PRINT "PARTITION INTO "; 
1 01 PR INT "EGYPTIAN FRACTIONS" 
105 READ P 
110 PRINT 
120 PRINT 
130 PRINT "NUMERATOR, "; 
135 PRINT "DENOMINATOR "; 
140 INPUT A,B 
150 IF A>=B THEN 800 
160 L=O 
170 PRINT 
180 PRINT "FRACTION ";A;"I";B;" = "; 
190 IF A=O THEN 110 

Figure 3.14: Egyptian Fractions Program (continues) ----------' 



200 GOSU8 500 
210 IF L=O THEN 230 
220 PRINT" + "; 
230 PRINT "1/";C; 
235 L=1 
240 IF B<P THEN 190 
300 PRINT 
303 PRINT "NEXT DENOMINATOR "; 
305 PRINT "TOO BIG TO COMPUTE" 
310 GOTO 110 
500 IF A>1 THEN 600 
510 C =B 
520 A=O 
530 RETURN 
600 C=INT(B/ A) 
605 A1=A/B 
610 IF 1/C<=A1 THEN 640 
620 C =C+1 
630 GOTO 610 
640 A=A*C-B 
650 B=B*C 
670 RETURN 

EXERCISES USING INTEGERS 41 

700 DATA 999999999 
800 END 

1.-____________ Figure 3.14: Egyptian Fradions Program 

PARTITION INTO EGYPTIAN FRACTIONS 

NUMERATOR, DENOMINATOR 12,3 

FRACTION 2/3 = 1/2 + 1/6 

NUMERATOR, DENOMINATOR 13,7 

FRACTION 3/7 = 1/3 + 1/11 + 1/231 

NUMERATOR, DENOMINATOR 17,13 

FRACTION 7/13 = 1/2 + 1/26 

NUMERATOR, DENOMINATOR 116,17 

FRACTION 16/17 = 1/2 + 1/3 + 1/10 + 1/128 + 1/32640 
NEXT DENOMINATOR TOO BIG TO COMPUTE 

NUMERATOR, DENOMINATOR 13,2 
L..-____________ Figure 3. 15: Output of Egyptian Fradions 

Suggestion : Design another interactive version of this program that will al
low the user to partition a proper fraction without having to do the arithmetic 
for each step. In response to the input of each successive Egyptian fraction , 
the program will compute and display the resulting remainder fraction . 



42 BASIC EXERCISES FOR TH E ATARI 

3.4 Prime Numbers 

One way to find prime numbers is to search for those odd numbers, start
ing with the number three, that cannot be divided by any other number 
except themselves and one. We will first explain this method and then go on 
to study a more refined method. 

First method: Write a program that prints the first N primes. N will vary 
between 10 and 60. Later, focus on improving the output format. 

Solution: The overall structure of the program corresponds to the flow
chart shown in Figure 3.16. The instructions are as follows: 

- Print the numbers 1, 2 and 3. 

NO 

Figure 3.16: Flowchart for Finding Prime Numbers ________ -.1 



EXERCISES USING INTEGERS 43 

- Then, find the other prime numbers, successively, by incrementing I 
by 2's since after 2 all prime numbers are odd. 

To determine if I is prime, we will conduct successive tests using odd num-
bers until one of the following circumstances occurs: 

We get a zero remainder, which means that I is not prime. 

We get a non-zero remainder and a quotient less than or equal to the 
divisor, which means that I is prime. 

Therefore, to answer the question, "Is I prime?", we must carry out the 
steps shown in the section of the flowchart displayed in Figure 3.17. We can 
then design a more detailed flowchart and write the program (see Figure 
3.18) . Figure 3.19 shows a sample output of this program. 

Second method: Starting with the number five, all primes are of the form 
6n ± 1, with n being an integer. Furthermore, we may choose all divisors 
from the set of primes already found . Write a program that takes these two 
observations into account. 

I IS NOT PRIME 

YES 

I IS PRIME 

L..-___ Figure 3.17: Detailed Flowchart Segment: Finding Prime Numbers 



44 BASIC EXERCISES FOR THE ATARI 

100 N=60 
110 PRINT :PRINT "THE FIRST "; 
115 PRINT N;" PRIME NUMBERS "; 
117 PRINT "ARE:":PRINT 
120 PRINT 1,2,3 
130 1=3 
140 FOR J=1 TO N-3 
150 1=1 +2 
160 K=3 
170 Q=INHI/K) 
180 R=I-Q*K 
190 IF R=O THEN 150 
200 IF Q(=K THEN 230 
210 K=K+2 
220 GOTO 170 
230 PRINT I, 
234 REM PRINT IN THREE COLUMNS 
235 IF J-3*INT(J/3)=0 THEN PRINT 
240 NEXT J 
250 END 

Figure 3.18: Prime Numbers Program 

THE FIRST 60 PR IME NUMBERS ARE: 

1 2 3 
5 7 11 
13 17 19 
2~ 29 71 
37 41 43 
47 53 59 
61 67 71 
73 79 83 
89 97 101 
103 107 109 
113 127 131 
137 139 149 
151 157 163 
167 173 179 
181 191 193 
197 199 211 
223 227 229 
233 239 241 
251 257 263 
269 271 277 

Figure 3.19: Output of Prime Numbers 

Solution: I n order to confine the search for possible divisors to the primes 
already found, we must be able to store or save the primes. This requires 
using an array, and the dimensions of that array will limit the maximum num
ber of primes that can be investigated . To use the fact that the numbers 



EXERCISES USING INTEGERS 45 

are all of the form 6n ± 1, we should note that the numbers we are seeking 
are not divisible by 2 or 3; hence, we need only check for divisors from 5 
upward. We will divide our work into two sections: 

1. a main program that initializes the first few entries in the array T of 
trial divisors, then computes the values of the variable A, and calls a 
subroutine. 

2. a subroutine that checks to see if the value of the variable A is prime, 
and, if it is prime, stores it in the array T (When T is full, its contents 
are printed out.) 

This discussion leads us to the flowcharts presented in Figures 3.20 and 3.21 . 
The program is shown in Figure 3.22 and the sample output is displayed in 

Figure 3.23. 

T( 1) - 1 T(2) - 2 
T(3) - 3 T(4) - 5 
N - 95 I - 3 
A - 5 

L...-__ Figure 3.20: Flowchart: Second Approach to Finding Prime Numbers 



46 BASIC EXERCISES FOR THE ATARI 

NO 

NO 

Figure 3.21: Flowchart: Subroutine for Finding Prime Numbers -------------' 



10 N=95 
90 PRINT "THE FOLLOWING LIST" ; 
95 PRINT" CONTAINS" 
97 PRINT N;" PRIME NUMBERS:" 
100 PRINT 

EXERCISES USING INTEGERS 47 

104 POKE 201,7:REM SET PRINTOUT TAB 
105 REM • INCREMENT = 7 
110 PRINT 1,2, 3, 
140 DIM T(N) 
150 T(1)=1:T(2)=2:T(3)=3:T(4)=5 
160 A=5: 1=3 
170 GOSUB 500 
180 A=A+2 
190 GOSUB 500 
200 A=A+4 
210 GOTO 170 
495 REM 
500 REM • SUBROUTINE 
505 J=4 
510 u=T(J) 
520 IF (U*U>A) THEN 560 
530 R=A-INT(A/U)*U 
540 IF R=O THEN RETURN 
550 J=J+1:GOTO 510 
560 1=1+1 
570 T(J)=A 
635 PRINT A, 
650 REM FORMAT OUTPUT INTO 5 COLUMNS 
660 IF 1-5*INT(I/5)=0 THEN PRINT 
670 IF I<N THEN RETURN 
680 END 

'------------- Figure 3.22: Second Prime Numbers Program 

THE FOLLOWING LIST CONTAINS 
95 PRIME NUMBERS: 

1 2 3 5 
11 13 17 19 
29 31 37 41 
47 53 59 61 
71 73 79 83 
97 101 103 107 
113 127 131 137 
149 151 157 163 
173 179 181 191 
197 199 211 223 
229 233 239 241 
257 263 269 271 
281 283 293 307 
313 317 331 337 
349 353 359 367 
379 383 389 397 
409 419 421 431 
439 443 41,9 457 
463 467 479 487 

7 
23 
43 
67 
89 
109 
139 
167 
193 
227 
251 
277 
311 
347 
373 
401 
433 
461 
491 

Figure 3.23: Prime Numbers Output, Second Approach 



48 BASIC EXERCISES FOR THE ATARI 

3.5 Decomposition into Prime Factors 

Dividing a number into prime factors means finding all of the prime num
ber divisors for that number. 

Elementary approach: Starting with the number two, we will look for 
divisors. When we find a proper divisor, we will print it out. If a divisor does 
not work or no longer works, we will go on to the next number. 

If we encounter a quotient that is smaller than the divisor, then one of the 
following is true. 

If the dividend is the given number, then the given number is prime. 

If the dividend is less than the given number, then this dividend is a 
prime number and a divisor for that number. 

Exercise: Design a program that carries out this factorization and con
tinues to ask for another number until it receives either a negative number or 
a zero. 

Solution: The genera I structu re of the program is shown in the flowchart 
in Figure 3.24. 

Let us now work out the " FACTORIZATION" section of the flowchart in 
detail. To implement this factorization, we can use the following algorithm: 

1. Save N in N1. 

2. Set the values 2, 3,4, 5, etc. (successively), for I: 
2a. Check to see if I is a divisor of N: 

Let Q be the value of the quotient: 
If I is a proper divisor, then print I; set N = Q, and go to 2a. 
If I is not a divisor, then go to 2b. 

2b. If Q > I, increment I and go back to 2. If the quotient Q ~ I then : 
If N = 1, the process terminates. 
If N = N1 , then N is prime. 
If N < N1 , then N is a divisor, and must be printed. 

This approach is illustrated in the flowchart in Figure 3.25 from which we 
derive (with no difficulty) the actual program shown in Figure 3.26. The sam
ple dialogue is shown in Figure 3.27. 



EXERCISES USING INTEGERS 49 

L..-_______ Figure 3.24: Conceptual Flowchart for Factorization 

An advanced approach: The purpose of this exercise is to take the pre· 
vious program example and, by providing additional information, obtain the 
improved output display that appears in Figure 3.28. 

Solution: We begin by modifying the flowchart in Figure 3.25 to print only 
when the divisor is completely divided out. (The section of the flowchart 
enclosed in the dashed rectangle in Figure 3.25 should be replaced by the 
section of the flowchart that appears in Figure 3.29.) 



50 BASIC EXERCISES FOR THE ATARI 

Nl = N 
1= 1 

Figure 3.25: Flowchart for the Factorization Subroutine -----------------' 



EXERCISES USING INTEGERS 51 

120 PR INT "DECOMPOSITION INTO"; 
125 PRINT" PRIME FACTORS" 
130 PRINT 
140 PRINT "THE NUMBER TO FACTOR "; 
145 INPUT N 
150 IF N<=O THEN END 
160 N1=N 
170 1=1 
180 1=1+1 
200 Q=INT<N/I> 
210 R=N-Q*I 
220 IF R<>O THEN 290 
230 N=Q 
240 PRINT" ";1;" ": 
250 GOTO 200 
290 IF Q>I THEN 180 
300 IF N=1 THEN 350 
310 IF N<>N1 THEN 340 
320 PRINT" IS PRIME." 
330 GOTO 350 
340 PRINT" ";N;" "; 
350 PRINT 
360 GOTO 130 
370 END 

1.--_______________ Figure 3.26: Factorization Program 

DECOMPOSITION INTO PRIME FACTORS 

THE NUMBER TO FACTOR 712 
2 2 3 

THE NUMBER TO FACTOR ?8192 
2 2 2 2 2 2 2 2 2 2 2 2 2 

THE NUMBER TO FACTOR 765784 
2 2 2 3 2741 

THE NUMBER TO FACTOR 71217 
IS PRIME. 

THE NUMBER TO FACTOR 70 

'----------- Figure 3.27: Output from the Factorization Program 



52 BASIC EXERCISES FOR THE ATARI 

DECOMPOSITION INTO PRIME FACTORS 

THE NUMBER TO FACTOR ?65784 
IS DIVISIBLE BY 2 3 TIMES. 
IS DIVISIBLE BY 3 1 TIMES. 
IS DIVISIBLE BY 2741 1 TIME. 

THE NUMBER TO FACTOR ?1217 
IS PRIME. 

THE NUMBER TO FACTOR ?35427 
IS DIVISIBLE BY 3 1 
IS DIVISIBLE BY 7 2 
IS DIVISIBLE BY 241 1 

THE NUMBER TO FACTOR ?81n 
IS DIVISIBLE BY 2 13 

THE NUMBER TO FACTOR ?19 
IS PRIME. 

THE NUMBER TO FACTOR ?14 
IS DIVISIBLE BY 2 1 
IS DIVISIBLE BY 7 1 

THE NUMBER TO FACTOR '0 

TIMES. 
TIMES. 
TIME. 

TIMES. 

TIMES. 
TIME. 

Figure 3.28: Desired Output from the Advanced Approach to Factorization 

YES 

Figure 3.29: Flowchart for the Advanced Factorization Subroutine ------' 



EXERCISES USING INTEGERS 53 

We can now use the previous program to design a new program. In addi
tion to the modifications indicated in Figure 3.29, we will modify the print 
instructions to obtain a printout like the one in Figure 3.28. 

120 PRINT "DECOMPOSITION INTO"; 
125 PRINT" PRIME FACTORS" 
130 PRINT 
135 POKE 201,6:REM SET COLUMN WIDTH 
140 PRINT "THE NUMBER TO FACTOR "; 
145 INPUT N 
150 N1=N 
160 IF N<=O THEN END 
170 1=1 
180 1=1+1 
190 J =0 
20e Q=INTCNII) 
210 R=N-Q*I 
220 IF R<>O THEN 260 
230 N=Q 
240 J=J+1 
250 GOTO 200 
260 IF J=O THEN 290 
270 PRINT" IS DIVISIBLE BY"; 
275 PRINT I, 
277 PRINT J,"TIMES." 
280 GOTO 180 
290 IF Q>I THEN 180 
300 IF N=1 THEN 350 
310 IF N<>N1 THEN 340 
320 PRINT" IS PRIME." 
330 GOTO 350 
340 PRINT" IS DIVISIBLE BY"; 
345 PRINT N,"1","TIME." 
350 PRINT 
360 GOT a 130 
370 END 

'------------- Figure 3.30: Advanced Factorization Program 

3.6 Conversion from Base Ten to Another Base 

Representing numbers in different number systems (base 10, base 8, base 
2, etc.) is, for " the man on the street," an exercise in mathematics with no 
practical va lue. However, quite the contrary is true for people who are in
volved with programming. A task of this sort has real application, especially 
for those programming in assembly language. 



54 BASIC EXERCISES FOR THE ATARI 

The principle of conversion includes the following steps: 

Carry out successive divisions by the new base until a quotient is 
obtained that is less than the new base. 

As an example, let us look at the conversion of 83 (base 10) into 
base 8. 

10 

8 r;;-
80 

3 

B 

The ones digit corresponds to the first remainder. The next digit cor
responds to the remai nder after the quotient has been divided by the 
base again. The most significant digit is the first quotient less than the 
base. 

Thus: 83 (base 10) is 123 (base 8) 
83 (base 10) is 146 (base 7) 

11 

7 f83 
7 

13 
7 

6 

1 -----I~~ 1 4 6 

7 ~ 
7 

4 

3.6.1 Conversion to a Base Less Than Ten 

Exercise: Write a program that prints a conversion table for a range of 
numbers between two numbers F and L, as specified by the user. The conver
sion will be made from base 10 to some other base, B, which is less than 10. 

Solution: As we shall see a little later on, the construction of this program 
has much in common with that of the preceding programs. For example: 

the use of "integer division" 

the computation of remainders 

the use of arrays. 

To set off the general structure ofthe algorithm proper in a clear fashion, we 



EXERCISES USING INTEGERS 55 

will, as before, break the program into two parts: the main program, that will 
handle the necessary inputs and outputs, and a subroutine, that will handle 
the actual base conversion. 

The conceptual flowchart shown in Figure 3.31 is quite straightforward . 

1..-_______ Figure 3.31: Conceptual Flowchart for Base Conversion 

On the other hand, the flowchart shown in Figure 3.32 requires some expla
nation. For example: 

When starting a conversion, we often do not know in advance the 
number of digits the converted number will have. Thus, we should 
store the digits in the order that we compute them. 



56 BASIC EXERCISES FOR TH E ATARI 

The proposed approach will give the ones digit first, then the tens 
digit (or, more exactly, the coefficient of the base to the power 1), and 
so on. To store each digit in the array A, we initially set J = 1, and 
then increment J for each digit as it is found : 

A(J) = R 
J = J + 1 (for storing the next digit) 

However, for the last digit, we assign: 

A(J) = Q 

Q = INT (ll / B) 
R=Il-B'Q 

11 = Q 

A(J) = R 
J = J + 1 

figure 3.32: Detailed Flowchart for Base Conversion _______ ----l 

We now understand the flowchart presented in Figure 3.32, showing the 
conversion subroutine and can go on to write the complete program. When 



EXERCISES USING INTEGERS 57 

printing out the converted number, we must operate in the opposite order 
from the order in which the digits were obtained. For example, if the con
verted number is 127, then table A would contain : 

A(l) = 7 
A(2) = 2 

A(3) = 1 and J = 3 

To print this out in the proper order, we would write the following instruc
tions: 

FOR 0 = J TO 1 STEP - 1 

PRINT A(O); To keep on the same line. 

NEXT 0 

PRINT To move onto the next line. 

The program appears in Figure 3.33 and the sample run appears in Figure 
3.34. 

95 DIM A(15) 
100 PR INT "THE NEW BASE "; 
110 INPUT B 
120 PRINT "FIRST AND LAST NUMBER TO" 
125 PRINT "CONVERT "; 
130 INPUT F,L 
135 POKE 201,8:REM SET COLUMN WIDTH 
140 FOR I=F TO L 
150 PRINT 
160 GOSUB 1500 
170 REM PRINT A TABLE ENTRY 
180 PRINT" ";1, 
190 FOR D=J TO 1 STEP -1 
200 PRINT" ";A(O);" "; 
210 NEXT 0 
220 NEXT I 
230 END 
1500 11=1 
1510 J=1 
1520 Q=INT(I1/B) 
1530 R=I1-Q*B 
1535 I1=Q 
1540 A(J)=R 
1545 J=J+1 
1550 IF Q>=B THEN 1520 
1560 A (J )=Q 
1570 RETURN 
1580 END 

L..-______ Figure 3.33: Conversion Program for Bases Less Than 10 



58 BASIC EXERCISES FOR THE ATARI 

THE NEW BASE ?2 
FIRST AND LAST NUMBER TO 
CONVERT ?260,280 

260 1 0 0 0 0 0 1 0 0 
261 1 0 0 0 0 0 1 0 1 
262 1 0 0 0 0 0 1 1 0 
263 1 0 0 0 0 0 1 1 1 
264 1 0 0 0 0 1 0 0 0 
265 1 0 0 0 0 1 0 0 1 
266 1 0 0 0 0 1 0 1 0 
267 1 0 0 0 0 1 0 1 1 
268 1 0 0 0 0 .1 1 0 0 
269 1 0 0 0 0 1 1 0 1 
270 1 0 0 0 0 1 1 1 0 
271 1 0 0 0 0 1 1 1 1 
272 1 0 0 0 1 0 0 0 0 
273 1 0 0 0 1 0 0 0 1 
274 1 0 0 0 1 0 0 1 0 
275 1 0 0 0 1 0 0 1 1 
276 1 0 0 0 1 0 1 0 0 
277 1 0 0 0 1 0 1 0 1 
278 1 0 0 0 1 0 1 1 0 
279 1 0 0 0 0 1 1 1 
280 1 0 0 0 1 0 0 0 

figure 3.34: Output-Conversion to iJase 2 

3.6.2 Conversion to a Base Greater Than Ten 

Exercise: Extend the program to convert and print a conversion table for a 
base greater than 10. In this case, represent the "digit" 10 by the letter A, 11 
by the letter B, and so on . 

Solution: For this problem we will use character strings. For example, we 
can create a string, B$, such that: 

B$ = "0123456789ABCDEF" 

To obtain the proper "digit" to print for the value A(L) (of the preceding 
example), we simply extract the character in position A(L) + 1 of the string 
B$. (The digit a corresponds to the first character of B$.) In most BASICs, but 
notATARl, this is done by using string functions, such as SUBSTR or MID$ (the 
function used depends upon the BASIC system used) . In some BASICs, we 
could write: 

PRINT MID$ (B$,A(L) + 1,1); 

to print out the appropriate character. The results are represented in the pro
gram shown in Figure 3.35. A sample run is shown in Figure 3.36. 



EXERCISES USING INTEGERS 59 

10 REM BASE CONVERSION PROGRAM 
50 DIM A(15) 
90 BS = "0123456789ABCDEFGHIJKLMN" 
1 00 INPUT" THE NEW BASE? "; B 
120 PR INT "FIRST AND LAST"; 
125 PR INT " NUMBER TO" 
130 INPUT "CONVERT? ";F,L 
140 FOR I = F TO L 
150 PRINT 
160 GOSUB 1500 
170 REM PRINT A TABLE ENTRY 
180 PRINT" ";1; TAB( 7>; 
190 FOR D = J TO 1 STEP - 1 
200 PRINT MIDS (BS,A(D) + 1,1); 
210 NEXT D 
220 NEXT I 
230 STOP 
1480 REM BASE CONVERSION 
150011=1 
1510J=1 
1520 Q = INT (11 / B) 
1530 R = 11 - Q * B 
1535 11 = Q 
1540 A(J) = R 
1545 J = J + 1 
1550 IF Q> B THEN 1520 
1560 A(J) = Q 

1570 RETURN 
1580 END 

Figure 3.35: 
Conversion Program for Bases Greater Than 10 in Microsoft-type BASIC 

THE NEW BASE? 16 
FIRST AND LAST NUMBER TO 
CONVERT? 1023,1035 

1023 3FF 
1024 400 
1025 401 
1026 402 
1027 403 
1028 404 
1029 405 
1030 406 
1031 407 
1032 408 
1033 409 
1034 40A 
1035 40B 

'---------- Figure 3.36: Sample Output from Conversion Program 



60 BASIC EXERCISES FOR THE ATARI 

A TARI case: Some systems, including ATARI , do not provide the fu nctions 
SUBSTR or MID$. Instead, they provide another feature: after declaring a 
maximum length for the string B$ at the beginning of the program, a substring 
may be extracted by writing the expression: 

B$(I,J) 

in which I represents the position of the first character in the substring and J 
represents the position of the last character in the substring. In a system with 
this feature we write: 

A1 = A(L) + 1 

PRINT B$(A 1 ,A 1) 

to printout a single character. The program and output, shown in Figures 3.37 
and 3.38, illustrate this approach. 

10 REM BASE CONVERSION PROGRAM 
20 REM AUTHOR: J. P. LAMOITIER 
30 DIM A(15),BS(30) 
40 BS="0123456789ABCDEFGHIJKLMNOPQR" 
95 PRINT "THE NEW BASE "; 
100 INPUT B 
110 PRINT 
120 PRINT "FIRST AND LAST NUMBER TO" 
122 PRINT "CONVERT "; 
123 INPUT F,L 
125 PRINT 
130 PR INT "BASE 10 BASE";B 
135 POKE 201,12 
140 FOR I=F TO L 
150 PRINT 
160 GOSUB 1500 
170 REM PRINT A TABLE ENTRY 
180 PRINT" ";1, 
190 FOR D=J TO 1 STEP -1 
195 A1=A(D)+1 
200 PRINT BS(A1,A1); 
210 NEXT D 
220 NEXT I 
230 END 
1480 REM BASE CONVERSION 
1500 11=1 
1510 J =1 
1520 Q=INT(I1/B) 
1530 R=I1-G*B 
1535 I1=Q 
1540 A(J)=R 
1545 J=J+1 
1550 IF Q>=B THEN 1520 
1560 A(J)=Q 
1570 RETURN 
1580 END 

Figure 3.37: Conversion Program for ATARI ___________ ...J 



THE NEW BASE 116 

FIRST AND LAST NUMBER TO 
CONVERT 112,20 

BASE 10 BASE 16 

12 OC 
13 OD 
14 OE 
15 OF 
16 10 
17 11 
18 12 
19 13 
20 14 

EXERCISES USING INTEGERS 61 

L..-_______ Figure 3.38: Output from Revised Conversion Program 

Conclusion 

The exercises of varying difficulties presented in this chapter illustrate the 
usefulness of constructing flowcharts section by section. If possible, it is best 
to proceed from the general structure of the problem, progressivelyelaborat
ing the flowchart(s) until the point is reached where a program follows easily. 

For any particular problem, the solution is, in general, not unique in either 
the method or the program used . The programs presented in this book are 
not necessarily designed to be efficient; instead, they are designed to be 
easily understood and to correspond very closely to a flowchart. As you gain 
experience, you may reduce the time spent drawing flowcharts by proceed
ing directly from a conceptual flowchart to the design of a program. 



.' . 

CHAPTER 4 



Elementary 
Exercises in Geometry 

Introduction 

Euclidean geometry has few numerical applications, but analytic geometry 
offers many opportunities for such calculations. This chapter will present 
elementary exercises from analytic geometry which will highlight the capa
bilities of a computer. 

The exercises were designed for their practical application and simplicity. 
The flowcharts and programs presented with the exercises are straightfor
ward and easy to construct. The calculations involved in performing the exer
cises, however, must be accurate, which is sometimes a difficult task if per
formed manually. On the other hand, a computer can be used to perform the 
calculations rapidly and with a high degree of accuracy. 

After completing the exercises in this chapter, the advanced programmer 
may go on to design exercises that are more complex or better-suited to a 
particular application. 



64 BASIC EXERCISES FOR TH E ATARI 

4.1 The Area and Perimeter of a Triangle 

To calculate the area of a given triangle we will first measure the length of 
each side of the triangle and then apply Hero's formula : 

A = V S (S - A) (S - B) (S - C) 

where A, B, and C are the lengths of the three sides and 

S= A+B+C 
2 

Exercise: Given A, B, and C, write a program that computes the perimeter 
and area of the triangle. 

Solution: Since we know A, B, and C, the calculation is st raightforward. 
The perimeter is computed using P = A + B + C. Then, the half-perimeter is 
calculated, and Hero's formula is applied. In the program shown in Figure 
4.1, P first represents the perimeter and then the half-perimeter. 

A sample run is provided in Figure 4.2. 

10 PRINT "THE LENGTHS OF "; 
12 PRINT "THE SIDES OF A" 
15 PR INT "TR IANGLE "; 
20 INPUT A,B,C 
30 P=A+B+C 
40 PRINT "PERIMETER = ";P 
45 PRINT 
50 P=0.5*P 
60 S=5GR(P*(P-A)*(P-B)*(P-C» 
70 PRINT "AREA = ";5 
80 END 

Figure 4.1: Program for Computing the Area of a Triangle ---------' 

THE LENGTHS OF THE SIDES OF A 
TRIANGLE ?4,5,7 
PERIMETER = 16 

AREA = 9.79795897 

Figure 4.2: Sample Run for Program Computing the Area of a Triangle ---' 



ELEMENTARY EXERCISES IN GEOMETRY 65 

Comments: To learn more about the conventions of BASIC, let us take a 
closer look at the program in Figure 4.1: 

Line 10: A semicolon or comma placed at the end of the 
line supresses the automatic carriage return and 
line-feed, allowing the input to be typed on the 
same line. 

Line 40: PRINT " PERIMETER = " ;P.ln this case, the semico
lon is used to cause the numerical value of P to 
print out immediately next to the space following 
the equal sign . 

Line 45: A PRINT instruction with no parameters produces 
a blank line. This practice avoids overcrowded or 
cramped printouts. 

Line 50: After the value of the perimeter has been printed, 
P is no longer needed, thus, it can be used to store 
the half-perimeter needed for the next calculation. 

Criticism of this program: If the lengths given for A, B, and C in the program 
shown in Figure 4.1 are not valid lengths for the sides of a triangle (for exam
ple, if the sides given were 10, 20 and 40), there would be no way for the 
computer to indicate this error. Instead, the program would attempt to find 
the square root of a negative number, which, in general, would be detected 
by the computer in some inconvenient way. 

To remedy this problem, we need to insert a validity check: the length of 
the longest side should not exceed the sum of the lengths of the two other 
sides. A test for this condition could be added, or, more directly, we might 
check that: 

(S - A) (S - B)(S - C) > 0 

Figure 4.3 shows the program in Figure 4.1 after such a test has been added. 
A sample run appears in Figure 4.4. 

10 PRINT "THE LENGTHS OF THE "i 
15 PRINT "SIDES OF A" 
18 PRINT "TRIANGLE "i 
20 INPUT A,B,C 
30 P=A+B+C 
40 PRINT "PERIMETER = "iP 
45 PRINT 
50 P=O.5*P 

L..-______ Figure 4.3: Program with Data Validity Check (continues) 



66 BASIC EXERCISES FOR THE ATARI 

54 P1=(P-A)*(P-8)*(P-C) 
56 IF P1>=0 THEN 60 
57 PR INT "IMPOSS 18LE SET OF"; 
58 PRINT" SIDES" 
59 GO TO 80 
60 S=SQR(P*(P-A)*(P-8) *(P-C» 
70 PRINT "AREA = ";S 
80 END 

Figure 4.3: Program with Data Validity Check __________ --1 

THE LENGTHS OF THE SIDES OF A 
TRIANGLE ?10,20,40 
PERIMETER = 70 

IMPOSSI8LE SET OF SIDES 

Figure 4.4: Sample Run for Data Validity Check Program --------' 

4.2 Determination of a Circle Passing Through 
Three Given Points 

Exercise: Given the Cartesian coordinates of three points Mi l M 21 and M 31 

determine the circle that passes through the three points; i.e" find the coordi
nates of the center and the length of the radius. 

Mathematical analysis: Let (XI I YI), (X21 Y2) and (X31 Y3) be the coordinates 
of Mi l M 21 and M31 respectively. The slope of the straight line that joins M, and 
M 2 is given by: 

Thus, the slope of the perpendicular to this line is given by: 

The equation of the bisector of the segment M IM2 is: 

Y= YI + Y2 _ X2 - XI (X _ XI + X2 ) 
2 Y2 - YI 2 



ELEMENTARY EXERCISES IN GEOMETRY 67 

Similarly, the equation of the bisector of the segment MIM3 is: 

Y= 

These two equations can be written in the form : 

where: 

Y = K2X + H 2 

Y = K3X + H3 

K3 = -
X3 - XI 
Y3 - YI 

H2 = 
YI + Y2 

2 
+ 

H3= 
YI + Y2 

2 
+ 

X/ - X/ 
2(Y2 - YI) 

X/ - X/ 
2(Y2 - YI) 

Solving this set of simultaneous linear equations, we can write th~ coordi
nates of the center, I, of the circle as follows: 

><0= 

From the coordinates (X o, Yo) of the center I we obtain the length, R, of the 
radius: 

Flowchart: Constructing a flowchart for this problem is not difficult; we 
simply follow the order of the calculations (see Figure 4.5). Figure 4.6 shows 
the program. A sample run appears in Figure 4.7. 



68 BASIC EXERCISES FOR THE ATARI 

COMPUTE 
K, 
K, 
H, 
H, 

COMPUTE 

Figure 4.5: Flowchart for Finding the Circle that Passes Through Three Points 

100 PRINT "DETERMINATION OF "; 
102 PRINT "A CIRCLE PASSING" 
104 PRINT "THROUGH 3 POINTS" 
110 PRINT 
120 REM THE COORDINATES OF THE 
122 REM 3 POINTS MUST BE PLACED 
124 REM IN A DATA INSTRUCTION 
126 REM PRIOR TO EXECUTION 
127 REM 

Figure 4.6: Circle Program (continues) _____________ ---1 



ELEMENTARY EXERCISES IN GEOMETRY 69 

130 READ X1,Y1,X2,Y2,X3,Y3 
140 K2=-(X2-X1)/(Y2-Y1) 
150 K3=-(X3-X1)/(Y3-Y1) 
155 D=K3-K2 
160 IF 0=0 THEN 230 
170 H2=O.5*(Y1+Y2+(X2*X2-X1*X1)/(Y2-Y1» 
180 H3=0.5*(Y1+Y3+(X3*X3-X1*X1)/(Y3-Y1» 
190 XO=(H2-H3)/D 
200 YO=(K3*H2-K2*H3)/D 
210 R=SQR«X1-XO)"2+(Y1-YO)"2) 
220 PRINT "XO= ";XO; 
222 PRINT" YO=";YO; 
224 PRINT" R=";R 
225 GOTO 250 
230 PRINT "COLLINEAR POINTS, "; 
235 PRINT "HENCE NO SOLUTION" 
240 DATA 2,-1,0,1,2,3 
250 END 

"------------------ Figure 4.6: Circle Program 

DETERMINATION OF A CIRCLE PASSING 
THROUGH 3 POINTS 

Xo= 2 Y 0=1 R=1 . 99999999 

'-------------- Figure 4.7: Output from Circle Program 

4.3 Computing the Length of a Fence 

Often fi elds and plots of land have a geometrical form corresponding to a 
polygon (a rectangle, for example) . Let us assume it is necessary to know the 
length of the perimeter, for example, in orderto determine the cost of a fence 
for a specific plot of land. 

Exercise: We have been given the Cartesian coordinates of each of the 
vertices (corners) of a polygonal field . We now want to write a program that 
computes the amount of fencing needed in order to enclose the field . 

Solution: This exercise consists of calculating the length of each side and 
then computing the sum of the sides. If X(I) ,Y(I) are the coordinates of the 
vertex I, the length of the boundary between I and I + 1 is as follows: 

V(Y(I + 1) - Y(IW + (X(I + 1) - X(I))2 



70 BASIC EXERCISES FOR THE ATARI 

Therefore, we first need to read the number of vertices, N, which is equal 
to the number of sides, and then read successively the pairs (X(I) ,Y(I)). After 
that we can do the computation. 

We must not forget that the last side has as its ends the vertices Nand 1. This 
information is shown in the flowchart in Figure 4.8. 

CALCULATE THE 
LENGTH L(I) OF 

THE SIDE 
BETWEEN 

I AND I + 1 
P = P + L(I) 

1=1+1 

CALCULATE THE 
LENGTH L(N) OF 

THE SIDE 
BETWEEN N & 1 
P=P+L(N) 

YES 

Figure 4.8: Flowchart for Computing the Perimeter of a Polygon ____ ...J 



ELEMENTARY EXERCISES IN GEOMETRY 71 

The program shown in Figure 4.9 is divided into several parts: 

a main program, which does not include any of the functions that 
appear in the flowchart. 

three subroutines, which do the following: 
- read the data 
- calculate the length of each side and the perimeter 
- print the data and results. 

100 REM COMPUTATION OF THE 
105 REM LENGTH OF A FENCE 
110 REM 
120 DIM X(100),Y(100),L(100) 
130 PRINT "THE PERIMETER OF A"; 
140 PRINT" POLYGON":PRINT 
150 GOSUB 400 
160 GOS UB 500 
170 GOSUB 600 
180 DATA 5 
190 DATA 1,3,4,6,8,6,11,5,11,0 
200 END 
390 REM READ THE VERTICES 
400 READ N 
410 FOR 1=1 TO N 
420 READ X,Y:X(I)=X:Y(I)=Y 
430 NEXT I 
440 RETURN 
490 REM COMPUTE THE LENGTH 
495 REM OF THE PERIMETER 
500 P=O 
510 FOR 1=1 TO N-1 
520 L(I)=SQR«X(I)-X(I+1»"2+(Y(I+1)-Y(I»"2) 
530 P=P+L(I) 
540 NEXT I 
550 L(N)=SQR«X(N)-X(1»"2+(Y(N)-Y(1» "2) 
560 P=P+L(N) 
570 RETURN 
590 REM PRINT OUT THE RESULTS 
595 POKE 201,8:REM TABS EVERY 8 COLS. 
600 POKE 201,8:REM TABS EVERY 8 COLS. 
605 PRINT "VERTEX","X","Y","LENGTH" 
610 PRINT 
620 FOR 1=1 TO N 
630 PRINT" ";I,X(J),Y(I),UJ) 
640 NEXT I 
650 PRINT 
660 PRINT 
675 PRINT, " PERIMETER ";P 
680 RETURN 
690 END 

L..-________________ figure 4.9: Perimeter Program 



72 BASIC EXERCISES FOR THE ATARI 

This type of organization was not real ly necessa ry for the short, simple pro
gram presented here. It was used to serve as a guide for handling longer 
programs. 

Note: In the program the symbol /\ is used to indicate powers of a number. 
Another equivalent form is t . Other BASICs use * *. 

Figure 4.10 shows a sample run . 

THE PER IMETER OF A POLYGON 

VERTE X X Y LENGTH 

1 1 3 4.24264065 
2 4 6 3.99999995 
3 8 6 3. 16227764 
4 11 5 4.99999993 
5 11 0 10.4403064 6 

PER IMETER = 26.84522463 

Figure 4.10: Output from Perimeter Program __________ --1 

4.4 Plotting a Curve 

A printer or a typewriter may sometimes be used to plot data when an 
actual plotter is not available. The problem is to find a method that will pro
duce reasonably good graphs. 

Exercise: Write a program for plotting curves in the fo llowing stages : 

1. Determ ine the easiest way to plot a curve Y = F(X) with X varying 
between two given values XMIN and XMAX. How can the operation 
be performed to minimize round-off errors? 

2. Construct a flowchart; then w rite the program. 

3. Try to plot different functions such as: 
-x 

e- 2- cos 2X 

_X2 

e 2 

sin x --x 

for X from 0 to 10 

fo r X from - 2 to + 2 

for X from - 311" to + 311" 
(plotted by Figure 4.12) 



ELEMENTARY EXERCISES IN GEOMETRY 73 

Solution: First, keep in mind that with a printer it is impossible, except in 
special cases, to " roll back" the paper. However, we want to be able to 
increment X. The simplest method is to choose the Y-axis to be horizontal and 
pointing toward the right and the X-axis to be vertical and pointing toward the 
bottom of the page (as shown in Figure 4.11). 

o y 

x 

1-.-____ Figure 4.11: Orientation of X- and Y-Axes for Plotting a Curve 

The following problems must be addressed: 

scaling the axes 

finding a way to determine for a given value of Y, the number of 
blanks to issue before printing a point. 

These two questions require rounding the data to the nearest print position 
because the standard printer or typewriter can only move an integral number 
of columns. For example, if we needed to advance a distance of YDIST = 

8.60 spaces, we would actually have to advance the printer or typewriter 
nine spaces. If on the other hand, YDIST = 8.40, the typewriter or printer 
would advance only eight spaces. Thus, in computing the column number, 
the following calculation is necessary: 

yeOl = INT(YDIST + .5) 

to obtain the appropriate rounding. 
Second, before drawing the flowchart we must determine the position of 

the axes and the scaling factor: how do we pass from the theoretical Y to the 
actual Yon the terminal? 



74 BASIC EXERCISES FOR THE ATARI 

As Y varies from YMIN to YMAX, YDIST must vary proportionately from 1 
to L (the maximum number of characters per line). The (linear) relation is: 

Y - YMIN 
YDIST = YMAX _ YMIN (L - 1) + 1 

or 

( 
L - 1 ) 

YMAX - YMIN * Y + 
~ 

(
-YMIN(L-1) ) 
YMAX - YMIN + 1 

'"-----..v ) 
YDIST = 

A C 
which is of the form 

YDIST = A * Y + C 

with A and C constant. 
Applying the rounding formula: 

YCOL = INT (YDIST + .5) = INT (A * Y + C + .5) 

YCOL = INT(A * Y + 8) 

which is used in the program in Figure 4.12. Notice that the constants, A and 
B, are calculated only once (outside the loop) to save time. 

AXCOL is the column number of the X axis, (i .e. , the line Y = 0). If it is off 
the paper (lines 240- 250), then it is flagged (set = -1) and not plotted (line 
620). Lines 630- 635 plot the Y axis when (and if) X = O. (See Figure 4.13.) 

100 REM PROGRAM TO PLOT CURVES 
105 REM ON THE TERMINAL 
107 REM 
110 REM THE FUNCTION Y=F(X) IN THE 
115 REM SUBROUTINE AT LINE 140 
120 REM DEFINES THE CURVE TO PLOT 
130 GOTO 154 
140 REM THE FUNCTION TO PLOT 
142 IF X=O THEN Y=1:GOTO 150 
145 Y=SIN(X)!X 
150 RETURN 
152 REM 
154 PI=3.14159 
155 XM IN=-3*PI 
160 XMAX=3*PI 
165 XINC=0.2*PI 
170 YMIN=-0.4 
175 YMAX=1.2 

Figure 4.12: Curve-Plotting Program (continues) ----------' 



ELEMENTARY EXERCISES IN GEOMETRY 75 

180 L=37:REM MAX COLUMNS PER LINE 
185 DIM BL$(L),PRS(L) 
190 FOR 1=1 TO L:BL$(I)=" ":NEXT I 
200 A=(L-1)/(YMAX-YMIN) 
210 B=-YMIN*A+1.5 
230 AXCOL=INT(B) 
240 IF O<=AXCOL AND AXCOL<=L THEN 500 
250 AXCOL=-1 
500 REM PLOT THE FUNCTION 
530 FOR X=XMIN TO XMAX STEP XINC 
560 GOSUB 140 
580 YCOL=INT(A*Y+B) 
600 PRS=BLS 
620 IFAXCOL<>-1 THEN PRS(AXCOL,AXCOL)="!" 
630 IF X<>O THEN 640 
635 FOR 1=1 TO L:PRS(I,Il="-":NEXT 
637 PRS(AXCOL,AXCOL)="O" 
640 PRS(YCOL, YCOL)="*" 
680 PR INT PRS 
700 NEXT X 
800 END 

...... -------------- figure 4.12: Curve-Plotting Program 

* 
! * 

* 
* 

! * 
* 

* ! 

* 
* 
* 

* 
* 

* 
* 

* 
---------0----------------------*----

* 
* 
'* 

* 

* 

! 

* 
! 

! 

* 

* 
* 

* 
* 

* 
* 
* 

* 

L..-___________ figure 4.13: The Points of the Plotted Curve 



76 BASIC EXERCISES FOR THE ATARI 

Conclusion 

After working out the preceding exercises, the reader might think that pro
gramming mathematical formulas can present few, if any, problems. This is 
the case if only assignment statements are needed and the flowcharts remain 
simple and linear. But programming mathematical formulas can become 
complicated, as was demonstrated in the example on plotting curves. This 
example involved more advanced analysis and additional thought when 
handling the output. 

Later in this book we will encounter more complex programs that require 
significant subscript manipulation or involve numerous tests. The "Eight 
Queens" exercise in Chapter 11 , concerning positions on a chessboard, is an 
example of such a complicated program. 





CHAPTERS 



Introduction 

Exercises I nvolvi ng 
Data Processing 

This chapter will present simple exercises in data processing that are both 
practical and educational. In data processing applications there is a continual 
need to SORT or MERGE arrays, files, etc. The exercises in this chapter answer 
that need. Later they can be incorporated into more ambitious programs. For 
example, the SORT sequence shown in Section 5.1 can be used to generalize 
the MERGE program discussed in Section 5.2 and also improve the telephone 
directory program provided in Section 5.3. 

5.1 Shell Sort 

There are many ways to arrange or sort data in the main memory. The 
simplest technique is known as the bubble sort. It will not be discussed here, 

--



80 BASIC EXERCISES FOR THE ATARI 

but it is described in other texts. In this chapter we will utilize the Shell sort, 
because this method speeds up execution by reducing the number of com
parisons that need to be made. Also, the Shell method is relatively simple to 
use. For example, if an array of N numbers needs to be sorted, a Shell sort 
would operate as follows: 

1. Determine K such that: 

Then a variable D would be initialized to the value 2K-1. 

2. Perform the first step of the sort by varying the subscript I from 1 to 
N - D. 

2.1 Check for A(I) ~ A(I + D) 
If yes, go to the next step (3) 
If no, exchange A(I) and A(I + D) 

Set K = I and go to step 2.1 

2.2 Check for A(K - D) ~A(K) 
If yes, go to the next step (3) 
If no, exchange A(K) and A(K - D), 

Set K = K - D and return to step 2. 

3. Increment I and continue the comparisons. When I reaches the 
value Nand D > 0, set D = INT D 2" 1 and return to step 2. 

When D = 0, the sort has been completed . 

Exercise: First, design a flowchart for a SORT subroutine. Then, write a 
program that reads a non-sorted array and calls the SORT subroutine. 

Solution: A program can be easily written using the previous description 
of the Shell technique. We must first understand, however, how to exchange 
two numbers. 

To exchange Y and K we simply give Y the value of Z and Z the value of Y. 
Thus, we might be tempted to write: 

500 Y = Z 

510 Z = Y 

But the value of Y was modified in the first instruction, so the second state
ment would not produce the expected result (i.e., the value of Z would 
remain unchanged). The contents ofY must be saved in an auxiliary variable 



EXERCISES INVOLVING DATA PROCESSING 81 

X, as in the following sequence: 

490 X = Y 

500 Y = Z 

510 Z = X 

This type of exchange occurs in the program shown in Figure 5.1 (lines 590 
to 610) and also in the second program presented on preparing a telephone 
directory (in Section 5.5.2). A sample run for the program in Figure 5.1 
appears in Figure 5.2. 

100 DIM A(11) 
110 N=11 
120 PRINT "INITIAL LIST" 
130 PRINT 
140 FOR 1=1 TO N 
150 READ A:A(I)=A 
160 PR INT A (I);" "; 

170 NEXT I 
180 GOSUB 500 
190 PRINT 
195 PRINT 
200 PRINT "SORTED LIST" 
210 PRINT 
220 FOR 1=1 TO N 
230 PR INT A (I) ;" "; 

240 NEXT I 
250 END 
500 0=1 
510 0=2*0 
520 IF O<=N THEN 510 
530 D=INT«D-1)/2) 
540 IF 0=0 THEN 700 
550 FOR 1=1 TO N-D 
560 J=I 
570 L=J+O 
580 IF A(J)<=A(L) THEN 640 
590 X=A(J) 
600 A(J)=A(L) 
610 A(L)=X 
620 J=J-O 
630 IF J>O THEN 570 
640 NEXT I 
650 GOTO 530 
700 RETURN 
800 DATA 3,-1,4,10,8,9,5,-10,-5 
810 DATA 25,22 
900 END 

'------------------- Figure 5.1: Sort Program 



82 BASIC EXERCISES FOR THE ATARI 

INITIAL LIST 

3 -1 4 10 8 9 5 -10 -5 25 22 

SORTED LIST 

-10 -5 -1 3 4 5 8 9 10 22 25 

Figure 5.2: Output from Sort Program _____________ ....1 

5.2 Merging Two Arrays 

We wantto merge two vectors(l) A and B, arranged in ascending order, into 
a third vector, C, also arranged in ascending order. For example, we have: 

A = 3,4,6,18 
B = -1,0,5 

and we want to obtain: 

C = -1,0,3,4,5,6,18 

Solution: Use three subscripts I, J and K for each of the vectors; each of 
these subscripts is initialized to 1. 

If AI ~ B
J 
store AI in C

K 

Increment I and K 

If AI> BJ store BJ in CK 

IncrementJ and K. 

When one of the vectors A or B has been completely transferred to C, then 
the remainder of the other vector is copied into C. 

Exercise: Design a flowchart showing the technique just described . Write 
a subroutine in BASIC to merge two vectors. 

Questions: 

a) What should be done if A and B are not sorted? 

b) How can the program be adapted to merge two sorted sequential 
files? 

Solution: The method we propose is shown in the conceptual flowchart 
presented in Figure 5.3 . This flowchart, however, will need more work before 

(1) An array of one dimension is often referred to as a "vector." 



EXERCISES INVOLVING DATA PROCESSING 83 

it will be useful for programming. The transformation of this flowchart into a 
more detailed flowchart (Figure 5.4) is easily done; it will use three separate 
subscripts: 

I, the subscript for A 

J, the subscript for B 

K, the subscript for C 

NO 

COpy A(I) 
INTO C 

1= 1+ I 

COPY THE 
REMAINDER OF 

B INTO C 

( STOP) 

COpy B(J) 
INTO C 

J=J+l 

COPY THE 
REMAINDER OF 

A INTO C 

NO 

1-.-__________ Figure 5.3: Flowchart for Merging Two Arrays 



84 BASIC EXERCISES FOR THE ATARI 

To avoid using a GOTO statement in the program, initialize K to zero, then 
place the instruction K = K + 1 at the begin ning of the loop, rather than at the 
end. This works because K must be incremented no matter which way the 
first test goes (see Figure 5.4). 

K=K+I 
C( K) = B(J) 
J=J+ I 

NO 

( RETURN) 

NO 

YE S 

' ...... I-----i0 

NO 

YES 

o 

K=K+l 
C(K) = A(I) 

1=1+1 

NO 

( RETURN) 

Figure 5.4: More Detailed Flowchart for Merge Program ______________ ---1 



EXERCISES INVOLVING DATA PROCESSING 85 

Simi larly, the two small loops at the end of the main loop can then be 
written with an auxiliary subscript variable, using the instructions FOR and 
NEXT (see Figure 5.5). 

100 DIM A(100),8(100),C(200) 
120 READ M 
130 PRINT "LIST A:" 
140 FeR 1=1 TO M 
150 READ A:A(I)=A 
153 PRINT" ";A<I);" "; 
157 NEXT I 
160 PRINT 
170 PRINT 
180 REM READ LIST 8 
190 PRINT "LIST 8:" 
200 READ N 
210 FOR 1=1 TO N 
220 READ 8:8(1)=8 
223 PRINT II ";8(1);" "; 
227 NEXT I 
230 PRINT 
240 PRINT 
250 GOSU8 300 
260 PRINT "MERGED LIST:" 
270 FOR 1=1 TO M+N 
280 PR INT " "; C <I);" "; 
285 NEXT I 
290 END 
295 REM ROUTINE TO MERGE A & 8 
300 1=1: J=1: K=1 
310 IF A(I»=8(J) THEN 350 
320 C(K)=A(I):I=I+1 
330 IF I>M THEN 390 
340 K=K+1:GOTO 310 
350 C(K)=8(J):J=J+1 
360 IF J<=N THEN 340 
365 REM COpy REST OF A TO C 
370 K=K+1:C(K)=A(I) 
375 1=1+1 
380 IF I<=M THEN 370 
381 RETURN 
385 REM COPY REST OF 8 TO C 
390 K=K+1:C(K)=8(J) 
395 J=J+1 
400 IF J<=N THEN 390 
401 RETURN 
410 DATA 5 
420 DATA 4,7,9,12,45 
430 DATA 4 
44Q DATA -1,5,6,60 
450 END 

L-__________________ Figure 5.5: Merge Program 



86 BASIC EXERCISES FOR THE ATARI 

A sample run is shown in Figure 5.6. We might now begin to think about 
extending this program. 

LIST A: 
4 7 9 12 45 

LIST B: 
-1 5 6 60 

MERGED LIST: 
-1 4 5 6 7 9 12 45 60 

figure 5.6: Output from Merge Program ------------...... 

First extension: Let us look at some ways to adapt the program to hand Ie 
two unsorted vectors. The first way might be to combine the vectors into a 
single unsorted vector (C) and then to perform a sort. This method takes 
longer to sort than a second method, which is to sort each of the two vectors 
(A and B) first, and then to perform a mergeYI 

For these preliminary sorts we can use a section of code from the previous 
exercise (i .e., lines 500 through 700 of Figure 5.1). These instructions must be 
copied twice: the first time to sort the vector A, and the second time to sort 
the vector B. This is done because most BASIC compilers and interpreters do 
not provide subroutines that pass parameters. 13I 

Second extension: The second extension involves merging two sequential 
files. The flowchart shown in Figure 5.3 is an excellent starting point for this 
extension. However, read and write instructions will have to be added. But, 
remember that the actual humber of items in a file is rarely known in ad
vance, so periodic checks must be provided to detect the end ofthe file. 

This extension is sketched in the conceptual flowchart shown in Figure 5.7. 
The actual programming will be highly system dependent, because file ma
nipulation is not standardized in BASIC. 

(2l For more details, consult books specializing in SORT algorithm s. 

(3lThe inability to handle subroutines with parameters is one of the limitations of BASIC. The fact that 
FORTRAN offers this feature is one of the most important differences between FORTRAN and BASIC. 



EXERCISES INVOLVING DATA PROCESSING 87 

L.-_________________ 5.7: Flowchart for Merging Two Sequential Files 



88 BASIC EXERCISES FOR TH EAT ARI 

5.3 The Day of the Week 

Given a date, i.e., the MONTH, DAY, YEAR, determine the corresponding 
day of the week. Numerous methods for doing this have been proposed. We 
suggest the following: 

Compute a correction term, N. In most cases, N = 0, but, if the 
month is January or February, N has the value: 

if the year is a leap year 

2 if the year is not a leap year. 

Next, compute the " Day Code," C: 

C = INT(365.25*Y2) + INT(30.56*M) + D + N 

where: 
Y1 is the value of the first two digits of the year 

Y2 is the value of the last two digits of the year, 
for example, for 1980 Y1 = 19 and Y2 = 80 

M is the month 

D is the day of the month. 

Finally, calculate the number of the day of the week, W, by: 

W = C + 3 - 7 * I NT (C ; 2) 
W = 1 corresponds to Monday. 

W = 2 corresponds to Tuesday. 

W = 7 corresponds to Sunday. 

Note: A year is a leap year if: 

Either YUO and Y2 is divisible by four, 

or Y2 = 0 and Y1 is divisible by four. 

For example: 

1900 is not a leap year, because 19 is not divisible by 4. 

1984 is a leap year, because 84 is divisible by 4. 

Note also that the computation for C does not incorporate Y1 and applies 
only to the twentieth century. 

Exercise: Write a program that accepts a date, M , D, Y, and prints out the 
corresponding day of the week. 



EXERCISES INVOLVING DATA PROCESSING 89 

Solution: The proposed method translates easily into a f lowchart (see Fig
ure 5.8). (For convenience we have designed a program that continues to ask 
for a new date until the day input is either negative or zero.) 

YE S 

YI AND Y2 
N= O 

L...-_______ figure 5.8: flowchart for finding the Day of the Week 



90 BASIC EXERCISES FOR TH EAT ARI 

However, before we can program we must first know: 

- How to compute Yl and Y2 

- How to determine if Y is a leap year. 

Note that Yl is equal to the quotient of the " integer division of Y by 100," 
that is: 

Y1 = INT(Y/100) 

Y2 is the remainder of this integer division, and, thus: 

Y2 = Y - 100*Y1 

To determine whether or not Y2 is divisible by four, compute a remainder, R, 
as follows: 

A = Y2 - 4*INT(Y2/4) 

Note: This type of computation occurs throughout Chapter 3. 
We are now able to write the computational part of the program up 

through the calculation of W. The next part of the problem is to determine 
how the output is presented . We will consider two cases. 

first case: This method may be used if the system allows arrays of charac
ter strings (ATARI does not). In this case, the following instructions could be 
used to process the actual day of the week: 

DIM D$(7) 

D$(1) = " MONDAY" 

D$(7) = "SUNDAY" 

To pri nt out the day of the week we write: 

PAINT D$(W) 

Second case: This method may be used if the system does not support 
string arrays. We may then assign a character string that is long enough to 
hold all the names of the days of the week. The day of the week with the most 
letters is WEDNESDAY, which contains nine letters. A string of length 9*7 or 
63 characters would suffice to hold a uniform representation of each of the 
days. When this string has been suitably initialized, the substring containing 
the day of the week can be printed with an instruction of the following type: 

PAINT MID$(D$,9 * W - 8,9) 
or 

PAINT D$(9*W - 8,9*W) 



EXERCISES INVOLVING DATA PROCESSING 91 

for the ATARI BASIC system. Figure 5.9 shows the program and Figure 5.10 
shows a sample dialogue. 

90 DIM D~(63) 
95 D$="MONDAY TUESDAY WEDNESDAY" 
96 D$(28)="THURSDAY fRIDAY 
97 D$(46)="SATURDAY SUNDAY 
100 REM DAY-Of-WEEK COMPUTATION 
110 REM W IS # Of WEEKDAY 
115 REM (1 fOR MON •• 7 fOR SUN) 
120 PRINT "DATE (MM,DD,YYYY) "; 
122 INPUT M,D,Y 
125 If 0<=0 THEN END 
130 Y1=INT(Y/10C) 
140 Y2=Y-100*Y1 
150 N=O 
160 If M>2 THEN 300 
165 N=2 
170 If Y2=0 THEN 220 
180 R=Y2-4*INT(Y2/4) 
190 If R<>O THEN 300 
200 N=1 
210 GOTO 300 
220 R=Y1-4*INT(Y1/4) 
230 If R=C THEN N=1 
300 C=INT(365.25 *Y2)+INT(30.56*M)+N+D 
310 w=3+C-7*INT«C+2)/7) 
320 PRINT D$(9*W-8,9*W) 
330 PRINT 
340 GOTO 120 

'--------------- Figure 5.9: Day of the Week Program 

DATE (MM,DD, YYYY> ?05, 13, 1981 
WEDNESDAY 

DATE (MM,DD,YYYY) ?07,04,1981 
SATURDAY 

DATE (MM,DD, YYYV> ?04,14,1983 
THURSDAY 

DATE (MM,DD,YYYY) ?07,14,19E2 
WEDNESDAY 

DATE (MM,!lD, YYYY) ?03,01,1982 
MONDAY 

DATE (MM,DD,YYYY) ?OO,OO,OO 

'------- Figure 5.10: Sample Output from Day of the Week Program 



92 BASIC EXERCISES FOR THE ATARI 

Note: In the program given in Section 5.4, we will define a user function to 
reduce the number of program statements needed. 

Program for analysis: The program in Figure 5.11 shows another method 
that can be used to obtain the day of the week. Figure 5.12 is a sample run. 

80 REM PROGRAM TO CALCULATE 
85 REM THE DAY OF THE WEEK 
90 DIM OS (63) 
95 DS="MONDAY TUESDAY WEDNESDAY" 
96 DS(28)="THURSDAY FRIDAY 
97 D$(46)="SATURDAY SUNDAY 
190 PRINT "DATE (MM,DD,YYY) 
200 INPUT M,D,Y 
205 IF 0<=0 THEN END 
210 GOS UB 500 
220 PRINT DS(9*Z-8,9*Z) 
230 GOTO 190 
500 IF Y<=1752 THEN 620 
510 N=INT(0.6+1/M) 
520 L=Y-N 
530 P=M+12*N 
540 C=Ll100 
550 Y1=INHc) 
560 Z 1=INHC/4) 
570 Z3=INT(5*L/4) 
580 Z4=INT(13*(P+1)/S) 
590 Z=Z4+Z3-Y1+Z1+D+S 
600 Z=Z-(7*INT(Z/7»+1 
610 RETURN 
620 PRINT "THE YEAR MUST "; 
625 PRINT "BE AFTER 1752" 
640 END 

". , 

Figure 5.11: Another Approach to the Day of the Week Program ____ ..J 

DATE (MM,DD,YVY) ?5, 13, 1981 
WEDNES DAY 
DATE (MM,DD,YYY) ?5, 15, 1981 
FRIDAY 
DATE (MM,DD,YYYl ?4,12,1982 
MONDAY 
DATE (MM,DD,YYY) 73,1S,1982 
MONDAY 
DATE (MM,DD, YYYl ?1, 12, 1982 
TUESDA Y 
DATE (MM,DD,YYYl ?6,6,1982 
SUNDAY 
DATE (MM,DD,YYY) ?4, 13, 1700 
THE YEAR MUST BE AFTER 1752 

Figure 5.12: Sample Output from Second Day of the Week Program ___ ....I 



EXERCISES INVOLVING DATA PROCESSING 93 

Questions: Looking at the program in Figure 5.11, let us consider the fol-
lowing questions: 

1. What does instruction 510 do? 

2. How is line 530 to be interpreted? 

3. Can the number of program statements be reduced without modify
ing the method used or increasing the number of program opera
tions? 

Answers: 

1. In statement 510: 

- If M is equal to 1 or 2, then N takes the value INT(0.6 + 1) or 
INT(0.6 + r), which results in 1 in both cases. 

- If M is equal to 3, 4, etc., N takes the value o. 
This section of the program is comparable to the previous program 
up to the point where the consequences of the leap year are taken 
into account. 

2. In statement 530: 

- P corresponds to the number of the month if the month is 
March, April , etc., up to December. For January and February, 
P will take the values 13 and 14, respectively. 

- Y1 in statement 590 is such that the expression C - Y1 has a 
value V, such that V = 0 if the year is an even century. In any 
other year: 

O<V<l 

3. Since the variables Yl , Zl, Z3 and Z4 are only used in the calcula
tion of Z in statement 590, statements 560, 570 and 580 can be 
eliminated if 590 is written in the following way: 

590 Z = INT(13*(p + 1)/5) + INT(5*Ll4) - INT(C) + INT(C/4) + D + 5 

5.4 The Time Elapsed Between Two Dates 

To determine the interval between two dates, calculate the "day code" of 
each date and then find the difference. The result is the number of days 
between the given dates. This type of information is critical in the computa
tion of interest. 

Exercise: Utilizing the preceding program, develop a program that com
putes the time elapsed between two dates. 



94 BASIC EXERCISES FOR THE ATARI 

Solution: The value of subroutines can be truly appreciated in this prob
lem. Because the day code must be calculated twice, it could be advanta
geous to build a day code subroutine. The flowchart shown in Figure 5.13 
was constructed with this point in mind . 

..... ..--- - Save the first resul t. 

Se t the results up to be used in 
... ~---- some external computation. 

- C3 is the desired interva l. 

Figure 5.13: Flowchart for Finding the Interval Between Two Dates ---.... 

By taking the section of the program shown in Figure 5.9 that calculates the 
day code, we can more easily write the progam in Figure 5.14. Figure 5.15 
displays a sample of the program dialogue. 



EXERCISES INVOLVING DATA PROCESSING 95 

100 REM COMPUTATION OF INTERVAL 
101 REM BETWEEN TWO DATES 
110 PRINT "FIRST DATE "; 
115 PRINT "(MM,DD,YYy) "; 
120 INPUT M,D,Y 
130 GOSUB 500 
140 C 1 =C 
150 PRINT "SECOND DATE "; 
155 PRINT "(MM,DD,YYYY) "; 
160 INPUT M,D,Y 
170 GOSUB 500 
180 C2=C 
185 PRINT 
190 C3=C2-C1 
195 PRINT "TIME ELAPSED "; 
196 PRINT "BETWEEN DATES IS:" 
197 PRINT 
198 PRINT "C3;" DAYS" 
200 END 
500 A=Y :B=1 00 
506 GOSUB 1000:Y2=F 
510 N=O 
520 IF M>2 THEN 570 
525 N=2 
530 IF Y2=0 THEN 550 
535 A=Y2:B=4 
536 GOSUB 1000:R=F 
540 IF R<>O THEN 570 
545 GOTO 560 
550 A=Y1:B=4 
551 GOSUB 1000 
552 IF F<>O THEN 570 
560 N=1 
570 C=INT(365.25*Y2)+INT(30.65*M)+N+D 
580 RETURN 
590 END 
1000 F=A-B*INT(A/B) 
1010 RETURN 
9999 END 

L-________________ Figure 5.14: Interval Program 

FIRST DATE (MM,DD,YYY) ?2,23,1981 
SECOND DATE (MM,DD,YYYY) ?6,30,1982 

TIME ELAPSED BETWEEN DATES IS: 

492 DAYS 
L-_________ Figure 5.15: Sample Output from Interval Program 

5.5 A Telephone Directory 

BASIC has certain advantages over a language like FORTRAN. One exam
ple is BASICs ability to handle character strings easily. The two exercises that 
follow show how character strings can be readily manipulated in practical 
applications. 



96 BASIC EXERCISES FOR THE ATARI 

5.5.1 Exercise 1: Creating a Directory 

Exercise: Write a program that reads DATA statements, each of wh ich 
shou ld contain the following items: last name, first name, room number and 
telephone extension. The lines should be printed in a specified format. Assign 
the names L$, F$, R$ and T (respectively) to the items and assume that the 
data list is presented in alphabetical order. 

Solution: The conceptual flowchart is quite simple as it only reads and 
prints and does no data manipulation . The most difficult part of this exercise 
is determining when the last DATA line has been read. There are two methods 
to do this: 

1. Place a dummy entry to "flag" the end of the data statements. 

2. Use the IF END instruction that is provided in some BASICs. 

We will use the first method since it applies to all systems, whereas the 
second method is system-dependent. 

At the end of the data list we add a special name, "ZZZ", which will be 
readily detected in our program and will mark the end of the data. This 
method is shown in the flowchart in Figure 5.16. 

figure 5.16: flowchart for Creating a Telephone Directory --------' 



EXERCISES INVOLVING DATA PROCESSING 97 

The flowchart in Figure 5.16 contains a variable I that "counts" the actual 
number of entries in the data list. Counting the number of lines of output this 
way makes it possible to intersperse page ejects at appropriate places, so that 
important lists can be presented in a neater and clearer way. 

The program is shown in Figure 5.17 and the sample run in Figure 5.18. 
Although this program does not sort, it will nonetheless produce an ordered 
list if the DATA statements are already sorted. For this reason the lines are 
numbered by tens, so that lines may be inserted where they belong. 

100 REM PHONE DIRECTORY PROGRAM 
110 REM 
120 DIM L$(20),F$(20),R$(20) 
130 REM 
140 REM 
150 PRINT" 
160 PR INT 

TELEPHONE DIRECTOR Y" 

FIRST" 170 PRINT "LAST 
175 PRINT "NAME 
177 PR INT "ROOM 
180 PR INT 

NAME "; 
EXTENSION" 

190 1=0 
200 READ L$,F$,R$,T 
210 IF L$="ZZZ" THEN 250 
220 PRINT L$,F$,R$,T 
230 1=1+1 
240 GOTO 200 
250 PRINT 
260 PRINT "NUMBER OF ENTRIES"; 
261 PRINT" = ";1 
265 END 
270 DATA DUBOIS,ANDREW,3,310 
280 DATA DUBOIS,JOHN,3,340 
290 DATA DUPONT,JOHN , 5,400 
300 DATA GABDEZ,LARRY,4,360 
900 DATA ZZZ,Z,3,4 
910 END 

1....-___________ Figure 5.17: Telephone Directory Program 

TELEPHONE DIRECTORY 

LAST FIRST 
NAME NAME ROOM EXTENSION 

DUBOIS ANDREW 3 310 
DUBOIS JOHN 3 340 
DUPONT JOHN 5 400 
GABDEZ LARRY 4 360 

NUMBER OF ENTRIES = 4 

1....-___ Figure 5.18: Sample Output from the Telephone Directory Program 



98 BASIC EXERCISES FOR TH EAT ARI 

With some minor modifications (at the READ instruction level) we cou ld 
work with a sequential file. With such a file, the length of the directory would 
not have to be limited . 

Note: Some versions of BASIC provide an IF END instruction to detect an 
end of file. This instruction avoids the necessity of providing a dummy record 
(here flagged by the name ilZ). Under these circumstances the flowchart 
would take the form displayed in Figure 5.19. 

NO 

Figure 5.19: Flowchart Illustrating the "End-of-File" Option _____ -1 



EXERCISES INVOLVING DATA PROCE~ 

5.5.2 Exercise 2: Creating a Directory 

c c .-

We now want to create a more ambitious program that presents a "menu" 
from which the user may choose one of the following commands: 

SORT on last name 

SORT on last name and first name 

SORT on first name only 

SORT on telephone extension 

LIST all persons at a specific extension. 

EXIT 

To do the SORT in this context, we will modify some of the sorting tech
niques demonstrated in the exercise at the beginning of this chapter. 

Exercise: Construct a program that reads the DATA statements in the pro
gram and then prints out the above " menu." 

Depending upon the response given by the user, the program then performs 
the selected task and displays the menu once again . 

Note: BASIC does not generally permit subroutines to pass parameters as 
other languages, such as ALGOL and FORTRAN, do; thus, we are going to 
have trouble constructing a SORT subroutine that operates the way we want 
it to in all cases. One solution is to pass the "SORT key" in a dedicated array. 

Solution: This should present no major problems, provided we work 
methodically. Let us first construct a general flowchart without including any 
of the details. This flowchart is shown in Figure 5.20. 

In order to use the same SORT subroutine for all of the sort options, we 
have set up the input arguments prior to the call . To do this we have chosen 
the following convention . Let us assume that the data are: 

L$(I) Last name 

F$(I) First name 

R$(I) Room 

T(I) Extension 

A separate array B$(I) is first loaded with the elements to be sorted, and 
then the sort is carried out. For example, before a sort is performed on " Last 

-



BASIC EXERCISES FOR THE ATARI 

1= 1 1=2 

SORT BY 
LAST NAME 
AND FIRST 

NAME 

1=3 

A 

READ IN THE 
LAST NAME S. 
FIR ST NAMES. 

ROOM NUMBERS, 
fXTENSIONS 

1=4 1=5 OTHER 

do 

Figure 5.20: Flowchart for Sorting a Telephone Directory ------------------' 



EXERCISES INVOLVING DATA PROCESSING 101 

name," we first execute the following: 

8$ = L$ 

This statement presumes that we are going to do an alphabetic sort, which 
BASIC does without difficulty on ASCII strings. 

To perform a sort on last name and first name, we load B$ with the concate
nation L$ + F$. This could, however, present a problem. Consider the fol
lowing case: 

SMIT JAN 

SMITH JOHN 

On simple concatenation we have: 

SMITJAN 

SMITHJOHN 

and the comparison will give: 

SMITHJOHN < SMIT JAN 

To avoid this situation, we insert a "blank" character between the last name 
and the first name. A blank character in ASCII precedes the letter A in the 
collating sequence. After concatenation we will then have: 

SMIT JAN 

SMITH JOHN 

so that the comparison will indeed produce the desired result. To insert the 
necessary blank character, we would write (with string arrays): 

8$(1) = L$(I) ? " + F$(I) 

a blank character 

The ATARI code in lines 465 - 485 has the same effect. The telephone direc
tory program is shown in Figure 5.21 . Figure 5.22 displays sample dialogue. 

100 REM PHONE DIRECTORY PROGRAM 
110 REM 
115 NN=15:REM MAX # OF NAMES 
120 DIM LS(10*NN),FS(10*NN) 
121 DIM RS(5*NN),T(NN) 
122 DIM BS(21*NN),NA(NN) 
124 DIM XS(20),YS(20) 
130 GOSUB 270 
140 PRINT "SELECT DESIRED "; 
141 PRINT "OPTION" 
150 PRINT "1 = SORT BY"; 
151 PRINT "LAST NAME" 
160 PRINT "2 = SORT BY LAST "; 
161 PRINT "AND FIRST NAME" 
170 PR INT "3 = SORT BY "; 

'------- Figure 5.21: Telephone Directory Sort Program (continues) 



102 BASIC EXERCISES FOR THE ATARI 

171 PRINT "FIRST NAME" 
180 PRINT "4 = SORT BY"; 
181 PRINT "TELEPHONE EXTENSION" 
190 PRINT "5 = LIST ALL "; 
191 PRINT "PERSONS IN A "; 
192 PRINT "GIVEN ROOM?" 
193 PRINT "6 = EXIT" 
195 TRAP 260 
200 INPUT I:TRAP 40000 
250 REM SELECT OPERATION 
255 ON I GOTO 390,450,510,570,630,3000 
260 GOTO 140 
270 REM ********** LOAD DATA 
272 REM SUBROUTINE 
275 I P=1 
277 NA(IP)=IP 
280 SIZE=10 
285 GOSUB 325:LS(BEG,FIN)=XS 
290 IF YS="ZZZ" THEN N=IP-1: GOTO 320 
295 GOSUB 325:FS(BEG,FIN)=XS 
300 SIZE=5 
305 GOSUB 325:RS(BEG,FIN)=XS 
310 READ T:T(IP)=T 
315 IP=IP+1:GOTO 277 
320 RETURN 
325 REM ******** READ, TRUNCATE, & PAD 
330 READ Y$ 

335 XS=" ":XS=X$(1,SIZE) 
340 MIN=SIZE:IF LEN(YS)<SIZE THEN MIN=LEN(YS) 
345 XS(1,MIN)=YS(1,MIN) 
350 REM ******* COMPUTE ARRAY INDICES 
355 BEG=1+SIZE*(NA(IP)-1) 
360 FIN=SIZE*NA(IP) 
365 RETURN 
390 REM ********** SORT ON LAST NAME 
400 BSIZ=10 
410 BS=LS 
430 GOTO 1000 
450 REM ********** SORT LAST & FIRST 
451 REM NAMES 
460 FOR 1=1 TO N 
465 BBEG=1+21*(I-1) 
·470 LBEG=1+10*(I-1):LFIN=10*I 
480 B$(BBEG,BBEG+9)=L~(LBEG,LFIN) 
482 B$(BBEG+10,e8EG+10)=" " 
485 BS(BBEG+11,BBEG+20)=FS(LBEG,LFIN) 
487 NEXT I 
490 BSIZ=21 
495 GOTO 10CO 
510 REM ********** SORT ON FIRST NAME 
530 BS=FS 
540 BSIZ=10 
550 GOTO 1000 
570 REM ********** SORT ON EXTENSION 
580 FOR IP=1 TO N 
584 YS=STRS(T(IP»:SIZE=5:NA(IP)=IP 

Figure 5.21: Telephone Directory Sort Program (continues) -------' 



EXERCISES INVOLVING DATA PROCESSING 103 

590 GOSUB 335:B$(BEG,FIN)=X$ 
600 NEXT IP 
605 BSIZ=5 
610 GOTO 1000 
630 REM ********** LIST ALL 
631 REM PERSONS IN GIVEN ROOM 
640 PRINT "WHICH ROOM "; 
660 INPUT YS 
670 SIZE=5:GOSUB 335 
680 PRINT :PRINT "LIST OF ALL OCCU"; 
681 PRINT "PANTS OF ROOM ";XS 
695 GOTO 1503 
990 REM ********** SHELL SORT 
1000 D=1 
1010 D=2*D 
1020 IF D<=N THEN 1010 
1030D=INT«D-1)/2) 
1040 IF D=O THEN 1500 
1050 FOR 1=1 TO N-D 
1060 FOR J=I TO 1 STEP -D 
1070 L=J+D 
1072 BJBEG=1+BSIZ*(NA(J)-1) 
1073 BJFIN=BSIZ*NA(J) 
1074 BLBEG=1+BSIZ*(NA(L)-1) 
1075 BLFIN=BSIZ*NA(L) 
1080 IF BS(BJBEG,BJFIN)<=BS(BLBEG,BLFIN) THEN 1220 
1180 X=NA(J) 
1190 NA(J)=NA(U 
1200 NA(U=X 
1210 NEXT J 
1220 NEXT I 
1230 GOTO 1030 
1490 REM ********* AND PRINT THE DATA 
1500 XS="" 
1503 J =0 
1505 PRINT 
1510 PRINT "LAST NAME FIRST "; 
1511 PR INT "NAME ROOM EXTENS ION" 
1520 FOR IP=1 TO N 
1522 IF X!="" THEN 1527 
152~ SIZE=5:GOSUB 350 
1525 IF RS(BEG,FIN)<>X$ THEN 1560 
1527 SIZE=10 
1530 GOSUB 350:PRINT LS(BEG,FIN);" "; 
1535 GOSUB 350:PRINT FS(BEG,FIN);" "; 
1537 SIZE=5 
15~0 GOSUB 350:PRINT R$(BEG,FIN);" "; 
1545 PRINT T(NA(IP» 
1550 J=J+1 
1560 NEXT IP 
1570 PRINT :PRINT "A TOTAL OF ";J; 
1571 PRINT" PERSONS FOUND":PRINT 
1580 GOTO 140 
2010 DATA DUPONT,PETER,BE,100 
2020 DATA DURAND,JOHN,BE,110 
2030 DATA LEFEBURE, RICHARD 

1.-______ Figure 5.21: Telephone Directory Sort Program (continues) 



104 BASIC EXERCISES FOR TH EAT ARI 

2031 DATA LABO,310 
2040 DATA DUPONT,PAUL,FA,115 
2050 DATA TALLOW,ARNOLD,COM,300 
2060 DATA DUBOIS,AGNES,SEC,3C1 
2070 DATA ZZZ 
3000 END 

Figure 5.21: Telephone Directory Sort Program -------------' 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 
2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
?1 

LAST NAME FIRST NAME 
DUBOIS AGNES 
DUPONT PETER 
DUPONT PAUL 
DURAND JOHN 
LEFEBURE RICHARD 
TALLOW ARNOLD 

A TOTAL OF 6 PERSONS 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 

ROOM EXTENSION 
SEC 301 
BE 100 
FA 115 
BE 110 
LABO 310 
COM 300 

FOUND 

2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
72 

LAST NAME FIRST NAME 
DUBOIS AGNES 
DUPONT PAUL 
DUPONT PETER 
DURAND JOHN 
LEFEBURE RICHARD 
TALLOW ARNOLD 

A TOTAL OF 6 PERSONS 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 

ROOM EXTENSION 
SEC 301 
FA 115 
BE 100 
BE 110 
LABO 310 
COM 300 

FOUND 

2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
?3 

Figure 5.22: Dialogue from Telephone Directory Sort Program (continues) 



EXERCISES INVOLVING DATA PROCESSING 105 

LAST NAME FIR ST NAME ROOM EXTENSION 
DUBOIS AGNES SEC 301 
TALLOW ARNOLD COM 300 
DURAND JOHN BE 110 
DUPONT PAUL FA 115 
DUPONT PETER BE 100 
LEFEBURE RICHARD LABO 310 

A TOTAL OF 6 PERSONS FOUND 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 
2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
?4 

LAST NAME FIRST NAME ROOM EXTENSION 
DUPONT PETER 
DURAND JOHN 
DUPONT PAUL 
TALLOW ARNOLD 
DUBOIS AGNES 
LEFEBURE RICHARD 

A TOTAL OF 6 PERSONS 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 

BE 100 
BE 110 
FA 115 
COM 300 
SEC 301 
LABO 310 

FOUND 

2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
?5 
WHICH ROOM ?BE 

LIST OF ALL OCCUPANTS 

LAST NAME FIRST NAME 
DUPONT PETER 
DURAND JOHN 

A TOTAL OF 2 PERSONS 

SELECT DESIRED OPTION 
1 = SORT BY LAST NAME 

OF ROOM BE 

ROOM EXTENSION 
BE 100 
BE 110 

FOUND 

2 = SORT BY LAST AND FIRST NAME 
3 = SORT BY FIRST NAME 
4 = SORT BY TELEPHONE EXTENSION 
5 = LIST ALL PERSONS IN A GIVEN ROOM? 
6 = EXIT 
?6 

L..-____ Figure 5.22: Dialogue from Telephone Directory Sort Program 



106 BASIC EXERCISES FOR THE ATARI 

This technique works well for an alphabetic sort, but in order to perform a 
numeric sort (e.g., perform a sort on telephone extensions), we must first 
convert these numbers into character strings, as in the statement below (line 
590 of the program) : 

584 Y$ = STR$(T(IP)) .. . 

Note that this character string-based numeric sort will provide a list of tele
phone extensions in true numerical order when all the extension numbers 
have the same number of digits. 

The sort code presented here is very simi lar to the code shown in Exercise 
5.1 . In this case, however, the exchanges must be done on L$, F$, R$, and 1; 
as well as on B$. Instead of actua lly swapping the entries, we maintain an 
array, NA, of indices (pointers) to the entries, and swap them. Since both the 
sort and output routines access entry number NA(I) when they need entry I, 
the effect is the same as exchanging the entries, but with much less computa
tional work. Because ATARI BASIC does not allow string arrays, we have 
packed all the last names into a single string L$, the first names into F$, etc. 
Since the size of each field is made constant by padding with spaces in lines 
335- 345 (first and last names allowed 10 each and room name allowed 5), 
the beginning and finish of a field of an entry can be computed by using 
simple formulas (lines 355- 360 do it for the read and print routines) . 

Criticism of this program: The major shortcoming of this program is the 
size limitation imposed on the directory by the inclusion of the data within 
the text of the program. This text must reside entirely in main memory 
throughout the program execution . Another version of the program could be 
written that would work out of an external file, without abandoning the gen
era I structure of the program. However, in th is situation special attention wou Id 
have to be given to minimizing the number of times the externa l storage device 
is accessed. 

Conclusion 

The preceding exercises on data processing have been relatively straight
forward , because only a limited amount or quantity of data was processed. 

Often, however, large files need to be processed and processing these files 
can present a realm of problems beyond the scope of this text. Even so, the 
basic techniques remain the same in most cases; data still need to be sorted, 
merged and printed out in an organized manner. Flowcharts to process input 
files are not difficult to design. Due to the disparity among BASIC interpreters, 
however, a programmer must become familiar with the peculiarities of a 
particular BASIC system, in order to write file access programs. 





CHAPTER 6 



Introduction 

Mathematical 
Computations 

The BASIC language was developed for programming simple mathemati
cal calculations . The flowcharts and programs used to carry out such calcula
tions are generally straightforward and easy to design . In some cases, how
ever, an accumulation of rounding errors can result in imprecise answers. 

The calculation of 71' presented in this chapter will illustrate the problems 
associated with round-off errors. The method used is that of inscribed and 
circumscribed polygons. 

To avoid the possibility of error accumulation, the following techniques 
should be considered: 

At the outset, select algorithms that do not lend themselves to 
round-off errors . In practice, however, this is not always easy to do. 

Program the selected algorithms so that loss of precision is as limited 
as possible. 

It is not possible, in a book of exercises, to cover this important topic in 
great detail. The interested reader can consult any number of books on nu
merical analysis. 



110 BASIC EXERCISES FOR THE ATARI 

6.1 Synthetic Division of a Polynomial by (X - S) 

Consider a polygon P(X) of degree N with known coefficients: 

P(X) = AaXN + A1X
N- 1 + A2X

N- 2 + . .. + AN_1X + AN 

Find a polynomial Q(X) of degree N - 1 such that: 

P(X) = (X - S)Q(X) + R 

where the remainder, R, is a constant. If we set: 

Q(X) = B
O
XN- 1 + B1X

N- 2 + . . . + BN_
2
X + BN_1 

we will have: 

B1 = A1 + SBI _ 1 

and 

Exercise: Write a program that computes the coefficients of Q(X) from the 
coefficients of P(X) and (X - A 1) . A 1 is the variable in BASIC into which the 
value of S is read . 

Solution: The computational part of this problem is particularly simple. 
Varying I from 1 to N - 1, we can write: 

[

B(I) = 1(1) + Ah~ - 1) 

Coefficients of P~ 

Coefficients of Q(X) 

We can even compute B(N) from this formula by making: 

R = B(N) 

The difficult part of this problem is the input/output (1/0) . One solution to 
this problem is the program shown in Figure 6.1. Obviously, there are also 
other ways to handle the printout. A sample run of the program is shown in 
Figure 6.2. 



20 REM DIVISION OF A 
25 REM POLYNOMIAL BY X-A1 
30 REM N = THE DEGREE OF 
35 REM THE POLYNOMIAL 

MATHEMATICAL COMPUTATIONS 111 

40 REM THE ARRAY A CONTAINS 
45 REM COEFFICIENTS OF P(X) 
50 REM THE ARRAY B HOLDS 
52 REM THE COMPUTED 
55 REM COEFFICIENTS OF Q(X) 
70 DIM A(50),B(50) 
105 REM READ AN INPUT 
110 READ N,A1 
115 PRINT "SYNTHETIC DIVISION"; 
116 PRINT" OF P(X) BY (X - "; 
117 PRINT A1;")" 
118 PRINT 
120 FOR 1=0 TO N 
130 READ A:A(I)=A 
140 NEXT I 
145 REM COMPUTATION OF THE 
146 REM COEFFICIENTS OF Q(X) 
150 B(Q)=A(O) 
160 FOR 1=1 TO N-1 
170 8(I)=A(I)+A1*B(I-1) 
180 NEXT I 
190 R=A(N)+A1*B(N-1) 
195 REM PRINTOUT OF RESULTS 
200 PRINT "P(X) COEFFICIENTS:"; 
210 FOR 1=0 TO N 
220 PRINT " ";A(Il; 
230 NEXT I 
240 PRINT 
250 PRINT 
260 PRINT "Q(X) COEFFICIENTS:"; 
270 FOR 1=0 TO N-1 
280 PRINT" ";BO);" "; 
290 NEXT I 
300 PRINT 
310 PRINT 
320 PRINT "REMAINDER: ";R 
330 END 
340 DATA 6,1 
350 DATA 3,2,-1,5,6,4,1 
360 END 

'--------------- Figure 6.1: Polynomial Division Program 

SYNTHETIC DIVISION OF P(X) BY (X - 1) 

P(X) COEFFICIENTS: 3 2 -1 5 6 4 1 

Q(X) COEFFICIENTS: 3 5 4 9 15 19 

REMA INDER: 2C 

'----------- Figure 6.2: Output of Coefficients and Remainder 



112 BASIC EXERCISES FOR THE ATARI 

We can easily verify the solution: 

3X6 + 2Xs - X4 + 5X3 + 6X2 + 4X + 1 = 

(X - 1 )(3Xs + 5X4 + 4X3 + 9X2 + 15X + 19) + 20 

Comments: Note the following observations: 

1. In some systems a BASE 0 instruction causes arrays to be indexed 
from O. This instruction is not available with all systems. For example, 
according to the ANSI standard, " BASE 0/1 would be written as "OP
TION BASE 0./1 (In our program the function is performed automati
cally when the FOR loop range is specified from 0 to N in line 120.) 

2. For a version of BASIC that requires that subscripts begin with 1, 
simply subtract 1 from the subscripts in the program in Figure 6.1. 

3. The format used in printing the output could be modified to produce 
many types of outputs. Obviously, however, blank lines will be nec
essary in all cases to set off the results. 

6.2 The Calculation of a Definite Integral 

Although there are numerous methods available for calculating the defi
nite integral of a continuous and bounded function on a bounded interval, 
we suggest the following methods: 

Simpson's Rule 

Weddle's Method 

These two methods are relatively easy to program. They will serve as the basis 
for the next two exercises. 

Simpson's Rule: To evaluate a definite integral: 

First, select an even number, N, then divide the interval [A,B] into N intervals 
as follows: 

H = B - A 
N 



MATH EMATICAL COMPUTATIONS 113 

After that, calculate: 

S = ~ [F(Xo) + 4F(XI) + 2F(X2) + 4F(X3) + 

2F(X4) + .. . + 4F(XN _ I) + F(XN) 

where: 

Xo = A, .. . ,XI = XI_I + H, ... , XN = B 

Weddle's Method: In this case we select a number, N, which is a multiple 
of six, then we ca lculate H as before. For example, if N = 6, we evaluate: 

S = ..l.!:::!..-[F(A) + SF(A + H) + F(A + 2H) + 
10 

6F(A + 3H) + F(A + 4H) + SF(A + SH) + F(B)] 

and, if N = 12, 18, etc., we write: 

S = ..l.!:::!..-[F(A) + SF(A + H) + F(A + 2H) + 6F(A + 3H) + 
10 

F(A + 4H) + SF(A + SH) + 2F(A + 6H) + ... + F(B)] 

Exercise 1: Using Simpson's rule, write a subroutine that evaluates a 
definite integral. Then, write a main program that calls this subroutine to 
eva luate: 

S = f -;11" cos x dx 
2 

The cosine function was chosen to illustrate the programs because the inte
gral has a simple value: 

f ~1I"COS X dx = sin x I 
11" 

2 = 1 - (-1) = 2 
- 11" 

T 

Perform the calcu lation with N = 6, 12, 18, 24, 30; however, do not take 
into account that S is an "even" function . 

Exercise 2: Repeat Exercise 1, but replace Simpson's Rule with Weddle's 
Method. Com pare the resu Its of the two exercises. 

Exercise 1 solution: In order to perform the entire computation within a 
single loop, we add all of the terms that are to be multiplied by four into the 



114 BASIC EXERCISES FOR THE ATARI 

variable S 1, and all of the terms that are to be multiplied by 2 into the variable 
S2 . We will then have: 

Sl = F(X,) + F(X3) + ... + F(XN _ ,) 

S2 = F(X) + F(X4) + . . . + F(XN _ ) 

and 

S = ~ (4S1 + 2S2 + F(A) + F(B)) 

The flowchart for the computational part of the program is easy to write 
(see Figure 6.3) . Remember that Sl will normally have one more term than 
S2 . Therefore, if both Sl and S2 are to be computed in a common loop, an 
F(XN _ ,) term will have to be added at the end. 

N 
N2 = '2 - I 

SI = S2 = 0 
X = A I = I 

X= X +H 
SI=SI+F(X) 

X=X+H 
S2 = S2 + F(X) 

1= 1+ I 

~ Corresp onding to F(XN _ Ii 

Figure 6.3: Flowchart for Simpson 's Method of Evaluating an Integra/---' 



MATH EMATICAL COMPUTATIONS 115 

Exercise 2 solution: The same method used to obtain the solution for 
Exercise 1 should be used to obtain the solution for Exercise 2. However, 
there is a difference. In Exercise 2 we accumulate partial sums in the loop, 
and make one final sum upon exit from the loop. These additional calculations 
lengthen the program considerably, but do not make it any more complex. 
For this reason we have not redrawn the corresponding flowchart for this 
exercise. 

The program and sample run in Figures 6.4 and 6.5 show Simpson's Rule, 
and the program and sample run in Figures 6.6 and 6.7 show Weddle's 
Method. 

10 DIM S$(15),N$(15),PS(40) 
15 REM EVALUATION OF AN INTE-
17 REM GRAL BY SIMPSON'S RULE 
50 PRINT "APPROXIMATION OF A"; 
51 PRINT" DEF INITE INTEGRAL" 
55 PRINT "BY SIMPSON'S RULE" 
60 PRINT 
70 PR INT "INTERVALS INTEGRAL" 
80 PRINT 
100 PI=3.14159265 
102 GOTO 112 
105 REM ********FUNCTION TO INTEGRATE 
110 Y=COS(X) 
111 RETURN 
112 A=-PII2 
113 B=PII2 
115 FOR N=6 TO 30 STEP 6 
120 GOSUB 3500 
130 GOSUB 4000 
140 NEXT N 
150 END 
3400 REM SUBROUTINE TO COMPUTE 
3410 REM DEFINITE INTEGRAL BY 
3415 REM SIMPSON'S RULE 
3420 REM H REPRESENTS THE STEP 
3425 REM INTEGRATION SIZE 
3500 IF INT(N/2)<>N/2 THEN 3640 
3510 N2=N/2-1 
3520 H=(B-A)/N 
3530 S1=0 
3540 S2=0 
3550 X=A 
3560 FOR 1=1 TO N2 
3570 X=X+H 
3575 GOS UB 105 
3580 S1=S1+Y 
3590 X=X+H 
3595 GOSUB 105 
3600 S 2=S 2+Y 
3610 NEXT I 
3612 X=X+H:GOSUB 105:YH=Y 

L.-__________ Figure 6.4: Simpson's Rule Program (continues) 



116 BASIC EXERCISES FOR TH E ATARI 

3614 X=A:GOSU8 105:YA=Y 
3616 X=8:GOSU8 105:Y8=Y 
3620 S=(4*(S1+YH)+2*S2+YA+Y8)*H/3 
3630 RETURN 
3640 PR INT "ERROR TERM INA TJON"; 
3645 PRINT": ODD # OF "; 
3647 PRINT "INTERVALS" 
3650 END 
3990 REM OUTPUT SU8ROUTINE 
4000 P$=" 
4005 N$=STR$(N) 
4010 S$=STR$(S) 
4020 P$(3-LEN(N$»=N$ 
4050 P$(13)=S$ 
4070 PRINT P$ 
4100 RETURN 
9999 END 

figure 6.4: Simpson's Rule Program _______________ ...J 

APPROXIMATION OF A DEFINITE INTEGRAL 
8Y SIMPSON'S RULE 

INTERVALS INTEGRAL 

6 2.0008632 
12 2.00005263 
18 2.00001035 
24 2.00000327 
30 2.00000135 

figure 6.5: Output of Integral Values --------------....1 

10 DIM S$(15),N$(15),P$(40) 
15 REM EVALUATION OF AN INTE-
20 REM GRAL 8Y WEDDLE'S METHOD 
80 PRINT "APPROXIMATION OF A "; 
81 PR INT "DEF INITE INTEGRAL" 
85 PRINT "8Y WEDDLE'S METHOD" 
90 PRINT 
100 PI=3 . 14159265 
102 GOTO 120 
105 REM ********FUNCTION TO INTEGRATE 
110 Y=COS(Q) 
115 RETURN 
120 A=-PI/2 
130 8=PII2 
140 PRINT "INTERVALS "; 
141 PRINT "INTEGRAL" 
145 PRINT 
150 FOR N=6 TO 30 STEP 6 
160 GOSUB 3500 
170 GOSU8 4000 

figure 6.6: Weddle's Method Program (continues) -----------' 



175 NEXT N 
180 END 

MATH EMATICAL COMPUTATIONS 117 

3500 IF N-6*INT(N/6)<>0 THEN 3700 
3510 P=N/6 
3520 X=A 
3530 H= (B-A)lN 
3540 S1=0 
3550 S2=0 
3560 S3=0 
3570 S6=0 
3600 FOR 1=1 TO P 
3610 Q=X+H:GOSUB 105:S1=S1+Y 
3620 Q=X+2*H:GOSUB 105:S2=S2+Y 
3630 Q=X+3*H:GOSUB 105:S3=S3+Y 
3640 Q=X+4*H:GOSUB 105:S2=S2+Y 
3650 Q=X+5*H:GOSUB 105:S1=S1+Y 
3660 Q=X+6*H:GOSUB 105:S6=S6+Y 
3665 X=X+6*H 
3670 NEXT I 
3675 Q=A:GOSUB 105:YA=Y 
3677 Q=B:GOSUB 105:YB=Y 
3680 S=0.3*H*(YA-YB+5*S1+S2+6*S3+2*S6) 
3690 RETURN 
3700 PR INT "ERROR TERMINATION"; 
3701 PRINT ": ";N;" IS NOT "; 
3702 PRINT "A MULTIPLE OF SIX." 
3720 END 
4000 REM OUTPUT SUBROUTINE 
4004 P$=" 
4005 N$=STR$(N) 
4010 S$=STR$(S) 
4020 P$(3-LEN(N$»=N$ 
405C P$(13)=S$ 
4070 PR INT P$ 
4100 RETURN 
9999 END 

'--------------- Figure 6.6: Weddle's Method Program 

APPROXIMATION OF A DEFINITE INTEGRAL 
BY WEDDLE'S METHOD 

INTERVALS INTEGRAL 

6 1.99994587 
12 1.99999922 
18 1.99999994 
24 1.99999999 
30 1.99999999 

L-______________ Figure 6.7: Output of Integral Values 

Comparison of results: The exact result of the calcu lation is known from 
theory to be 2.0. The following table shows how the results are obtained 
using the two methods. 



118 BASIC EXERCISES FOR THE ATARI 

N SIMPSON WEDDLE 

6 2.0008632 1.99994587 
12 2.00005263 1.99999922 
18 2.00001035 1.99999994 
24 2.00000327 1.99999999 
30 2.00000135 1.99999999 

This table shows that (at least for the cosine function) Wedd le's method 
converges much more rapidly than Simpson's, and that round-off errors are 
not a problem even at 30 intervals. 

6.3 Calculation of 7r Using Regular Polygons 

A close approximation of 11' can be obtained by comparing the perimeter of 
a regular polygon to the circumference of the inscribed or circumscribed 
circle. By doubling the sides of the polygons before each iteration, the perim
eters of the polygons will eventually approximate (by an upper and lower 
bound) the perimeter of the circle, which itself can be considered as a polygon 
with an infinite number of sides. 

The first polygon is a square. From the square we can ca lculate two esti
mates of values for 11'; one greater than 11' , and one less than 11' . After each 
iteration, these two values move closer to each other and the two computa
tions are repeated, until the values are no longer moving closer to each other 
due to round-off errors. These computations are: 

1. ca lculation of the length of the side 
2. estimation of 11'. 

Analysis of the exercise: We will now study the two cases of the inscribed 
and circumscribed polygons separately. 

The inscribed polygon: Given a circle of radius 1 (see Figure 6.8), the length 
of the side,S, of the inscribed square is given by: 

S2 = AB2 = oN + OB2 = 1 + 1 
hence, 

AB = S = 2. 

We will now calculate the length, AC, of the side of an inscribed octagon: 

AC2 
= IA2 + IC2 (*) 

with 
IA = S/2 
IC = OC - 01 



MATHEMATICAL COMPUTATIONS 119 

c 

'----------------- Figure 6.8: Inscribed Square 

01 is given by: 
52 

012 = ON - IN = 1 - -
4 

By substituting the above calculation into the part of the above equation 
marked by (* ), we have 

AC2 = (~ r + ~ - V 1 _ !2) 2 

52 ( \ r--5i ( 52)) =4+ 1-2 V1 -t+ 1 4 

= ~2 + (2 _ 2 V 1 _ ~2 _ ~2) 
\~ 

=2-2V l -4 
Now we can estimate 11' by equating the circumference of the circle to the 

perimeter of the inscribed octagon : 

8*AC = 211'*OC 

Thus, the general equation to approximate 11', given a circle of radius 1 and a 
regular inscribed polygon of N sides, is: 

n= Perimeter N 
2 = "'2 * (length of one side) 



120 BASIC EXERCISES FOR THE ATARI 

Preliminary flowchart: The flowchart displayed in Figure 6.9 shows the 
initialization corresponding to the square, and an iterative calculation for 
polygons of a higher order. 

The circumscribed polygon: As before, we will use a circle with a radius 1 
(see Figure 6.10). Initially, the length of the side of the circumscribed square is 
defined as: 

AB = 2AJ = 20J 

P=~ 
2 

PI = P N = 2N 

5=V2-2 ~ 
4 

P=~ 
2 

NO 

Figure 6.9: Preliminary Flowchart for Estimating 1T : Inscribed Polygons 



MATHEMATICAL COMPUTATIONS 121 

and, therefore: 

AB = S = 2 

The length, HK, ofthe circumscribed octagon must now be determined. To 
do this we note: 

IK2 = AK2 _ IA2 (* *l 
with AK = i - IK since IK = KJ 

therefore: 

AK2 = ~ - S*IK 
4 

ON =~ + 1 
4 

therefore : 

\~ 
IA = V' + 4- 1 

IN = 2 + ~ - 2 V, + ~ 
4 4 

By substituting the above calculation into the equation noted by (**l, we 
obtain: 

A K B 

H 

L..-____________ Figure 6.10: Circumscribed Square 



122 BASIC EXERCISES FOR THE ATARI 

Hence, the length of a side of the new circumscribed octagon is: 

HK = 21K = ~ (V1 + ~2 - 1) 

We will approximate 1T by writing NHK = 21T. 

Modified flowchart: A new flowchart depicting this method is shown in 
Figure 6.11. This flowchart closely resembles the flowchart in Figure 6.9. The 

N=4 
T=2 

Q= NT 
2 

Ql =Q N=2N 

T=f (v'1+-f- 1 ) 

Q = NT 
2 

NO 

Figure 6.11: Modified Flowchart for fstimating1T: Circumscribed Polygons 



MATH EMATICAL COMPUTATIONS 123 

approach shown in this flowchart yields values greater than 1T, as opposed to 
the flowchart in Figure 6.9, where the calculated values are less than 1T . 

Final flowchart: We can combine the two temporary flowcharts to obtain 
a final flowchart (see Figure 6.12), which, at each iteration, brackets 1T in a 
diminishing interval. Writing a program from this flowchart is not very diffi
cult (see Figure 6.13). Experience shows, however, that the effect of round-off 
errors can be very large, and results can become distorted very quickly. For 
this reason, we compute the difference between the higher and lower esti
mates by: 

E = Q - P 

N=4 S= 2 
T=2 

p=.!!i 
2 

Q =!!! 
2 

P1 = P Q1 = Q 
N = 2N 
S = '1'--2 ---2 -";""1=-=_=" 

~ 

T= +v 1+ 1f -1 

P= ~ Q= ¥ 

YES 

When~ 5 - ,j 2 -~ 

Wh en' T - + ,j 4 + l' - 4 

'------------ Figure 6.12: final flowchart for Estimating 1T 



124 BASIC EXERCISES FOR THE ATARI 

100 REM COMPUTATION OF PI BY THE 
101 REM METHOD OF INSCRIBED POLYGON 
102 REM AND CIRCUMSCRIBED POLYGON. 
105 DIM L$(40),E$(20),ERR(20) 
110 1=1 :N=4 
120 C=SGR(2) 
130 D=2 
140 P=0.5*N*C 
150 G=0.5*N*D 
152 M=0.5*(P+G) 
155 E=Q-P 
160 PRINT :PRINT "SIDES LOW-PI"; 
165 PRINT" HIGH-PI MEAN-PI" 
167 PRINT 
170 GOSUB 400 
180 P1=P 
190 G1=Q 
200 N=2*N 
210 C=SGR(2-2*SGR(1-0.25*C*C}) 
220 D=4*(SQR(1+0.25*D*D)-1)/D 
230 P=0.5*N*C 
240 Q=0.5*N*D 
242 M=0.5*(P+Q) 
245 E=Q-P 
250 GOSUB 400 
255 IF E<O THEN E$="E<O":GOTO 280 
260 IF P1=P THEN E$="P1=P":GOTO 280 
270 IF Q1<>Q THEN 180 
280 REM ************PRINT ERROR TABLE 
282 S=4 
285 PR INT : PR INT "SI DES ERROR"; 
290 PRINT" STOPPED WHEN ";E$ 
291 PRINT 
292 FOR J=2 TO I 
293 L$=" 
294 LS(1)=STRS(S) 
295 LS(5}=STRS(1+ABS(ERR(J») 
296 LS(5,5}=" ":PRINT L$ 
297 S=2*S 
298 NEXT J 
300 END 
400 REM ****************PRINT RESULTS 
405 A=5:B=11 
407 L$=" 
410 LS(1)=STRS(N) 
412 LS(A)=STR$(P} 
414 LS(A+B)=STRS(Q) 
416 LS(A+2*B)=STRS(M) 
420 PRINT LS 
425I=I+1:ERR(I)=M-3.14159265 
439 RETURN 

Figure 6.13: 1f-Calculation Program _______________ ....1 



MATHEMATICAL COMPUTATIONS 125 

When E becomes negative the iterations are stopped because they are no 
longer accurate. 

We can also calculate a mean estimate for 11" based on the average of the P 
and Q results . With this method, the mean converges to 11" quite rapidly. 
Although the calculations were done with great precision, the true values 
beginning with the numbers: 

11" = 3.141592653589793 . . . 

cannot be approximated precisely by using this method because the ninth 
digit of the mean value of E is not correct. This is due to the computational 
process, which accumulates round-off errors in a calculation of this type. If 
this process is continued much further, it will lead to extremely inaccurate 
results. 

A sample run on the ATARI is shown in Figure 6.14. It should be noted 
that microcomputers can often match the accuracy (but not the speed) of 
large machines, particularly if their interpreters or compilers permit double 
precision . 

SIDES LOW-PI HIGH-PI MEAN-PI 

4 2.82842712 4 3.41421356 
8 3.06146743 3.31370848 3.18758795 
16 3.1214451 3.18259749 3.15202129 
32 3.13654852 3.15172396 3.14413624 
64 3.14033007 3.14411128 3.14222067 
128 3.14127882 3.1421878 3.14173331 
256 3.14153306 3.1416606 3.14159683 
512 3.14161128 3.14114478 3.14137803 

SIDES ERROR 

4 .27262091 
8 .0459953 
16 .01042864 
32 .00254359 
64 .00062802 
128 .00014066 
256 .00000418 
512 .00021462 

STOPPED WHEN E<O 

L..-_____________ figure 6.14: Output of Estimates of 11" 

6.4 Solving an Equation by Dichotomy 

Given an equation F(X) = 0, assume that at least one root is found in the 
interval (A, B). Assume also that the function is continuous and bounded in 
that interval, and that F(A) and F(B) are of opposite signs. 



126 BASIC EXERCISES FOR THE ATARI 

Algorithm: Obtain a solution by continually cutting the interval in half 
and always choosing, for the next iteration, the half in which the function 
changes sign. For example: 

1. Compute: X = A + B 
2 

Y = F(X) 

2. If F(A) and Yare of the same sign: 
set A = X and go to 3 

If not 
set B = X and go to 3 

3. Test for one of the following conditions: 
IYI ~El 
IB - AI ~E2 

El and E2 having been specified in advance. 

- If neither condition is met, go to 1 and continue the iteration 
- If either condition occurs, terminate the iteration. 

Exercise: Using the algorithm and assumptions given above, write a sub
routine that solves an equation. 

Solution: The subroutine that is used must be able to operate, regardless 
of the function defined or input given by the user. In particular, if two points A 
and B are given such that F(A) and F(B) are of the same sign, the subroutine 
should be able to detect that fact and display an error message. This leads to 
the first validity check. In the example given here, we use a variable, L, to 
which one of three possible values is assigned: 

• - 1, if F(A) and F(B) are of the same sign 

• 0, if, after one or more iterations, I F(X) I ~ El 

• 1, if an interval such that I B - AI ~ E2 is specified, after one or more 
iterations. 

Note that in the solution example we have assumed that the user has as
signed positive values to El and E2. 

So that the values of A and B will not be modified in the subroutine, we use 
two auxiliary variables, Xl and X2, which represent the end points of the 
interval. The midpoint is designated as XM, and the values of the function at 
these points are Yl, Y2 and YM. This is shown in the flowchart in Figure 6.15. 
The program listing is shown in Figure 6.16. 



NO 

YES 

MATHEMATICAL COMPUTATIONS 127 

Xl + X2 
XM=-2-

YM = F(XM) 

YES 

'------- Figure 6. 15: Flowchart for Solving an Equation by Dichotomy 



128 BASIC EXERCISES FOR THE ATARI 

On line 1050 in the program in Figure 6.16, the division by 2 was replaced 
by multiplication by 0.5 . This type of computation is faster for ordinary "float
ing point" computations. In the test run, shown in Figure 6.17, the root value 
produced by the computation differed from the exact root value by less than 
.000002%. The root of this transcendental equation is the number which 
equals ten times its own natural logarithm. 

80 DI~ LS(40),QSC10) 
90 GOTO 110 
100 RE~ *********** FUNCTION TO SOLVE 
105 Y=10*LOG(X)-X 
108 RETURN 
110 E1=1E-D8:E2=1E-08 
120 A=1 :B=4 
130 GOSUB 1000 
140 IF L=-1 THEN 300 
150 PRINT "L = ";L 
160 PRINT "SOLUTION FOUND" 
170 PRINT "X = ";X~;" Y = ";YM 
180 PRINT "INTERVAL=C";X1;",";X2;")" 
190 END 
300 PRINT "NO SOLUTION; F(A)"; 
301 PRINT" AND FCB) HAVE THE" 
305 PRINT " SA~E SIGN" 
310 END 
1000 PRINT "PRINT INTERMEDIATE "; 
1002 PRINT "RESULTS (Y OR N)" 
1004 PR=O:INPUT QS:IF QS="Y" THEN PR=1 
1010 X1 =A: X2=B 
1020 X=X1:GOSUB 100:Y1=Y 
1030 X=X2:GOSUB 100:Y2=Y 
1040 IF Y1*Y2>0 THEN L=-1:RETURN 
1050 x~=0.5*(X1+X2) 
1060 X=X~:GOSUB 100:YM=Y 
1062 L$="X= Y= 
1064 LS(3)=STRS(XM) 
1066 IF YM<O THEN 1068 
1067 LS(19)=STRS(YM):GOTO 1069 
1068 LS(18)=STRS(YM) 
1069 IF PR THEN PRINT LS 
1070 IF ABS(YM)<=E1 THEN L=O:RETURN 
1080 IF Y1*YM<0 THEN 1120 
1090 X1=XM:Y1=YM 
1100 GOTO 1140 
1120 X2=XM:Y2=YM 
1140 IF ABS(X2-X1»E2 THEN 1050 
1150 L=1:RETURN 
1200 END 

Figure 6.16: Program: Solving an Equation by Dichotomy --------' 



MATHEMATICAL COMPUTATIONS 129 

PRINT INTERMEDIATE RESULTS (Y OR N 
?Y 
X=2.5 
X=1.75 
X=1.375 
X=1.1875 
X=1.09375 
X=1.140625 
X=1.1171875 
X=1.12890625 
X=1.12304687 
X=1.12011718 
X=1.11865234 
X =1 • 11791 992 
X=1.11828613 
X=1.11846923 
X=1.11837768 
X=1.1183319 
X=1.11830901 
X=1.11832045 
X=1.11832617 
X=1.11832331 
X=1.11832474 
X=1.11832545 
x=1.11832581 
X=1.11832563 
x=1.11832554 
X=1.11832558 
X=1.1183256 
X=1.11832559 
L = 1 
SOLUTION FOUND 

y= 6.66290731 
y= 3.84615787 
y= 1.80953731 
y= 0.53100257 
Y=-0.19762841 
Y= 0.17513857 
Y=-9.04384E-03 
Y= 0.08358618 
Y= 0.03740724 
Y= 0.01421586 
Y= 2.59459E-03 
Y=-3.22248E-03 
Y=-3.1341 E-04 
Y= 1.14068E-03 
Y= 4.1367E-04 
Y= 5.01E-05 
Y=-1.3169E-04 
Y=-4.084E-05 
Y= 4.59E-06 
Y=-1.812E-05 
Y=-6.76E-06 
Y =-1 • 13E -06 
Y= 1.73E-06 
Y= 3.1E-07 
Y=-4.1E-07 
Y=-9E-08 
Y= 7E-08 
Y=-2E-D8 

X = 1.11832559 Y = -2E-D8 
INTERVAL=(1.11832559,1.1183256) 

L...-__________ Figure 6.17: Output of Solution and Interval 

6.S Numerical Evaluations of Polynomials 

We wish to calculate the numerical value for a given X of a polynomial P(X) 
with known coefficients. To do this we use an approach that minimizes the 
number of operations required. To evaluate the value of P(X), given by: 

P(X) = AoXN + A1X
N- 1 + ... +AN_1 X + AN 

we compute: 

Exercise: Write a program that evaluates P(X) in a subroutine using the 
values of X provided by the main program . 



130 BASIC EXERCISES FOR THE ATARI 

Solution: The formula presented previously entails the following se
quence of computations: 

P = Ao; then P = PX + A1; then P = PX + A2; and so forth, until 

finally, P = PX + AN' 

Based on the calculations presented above, make an iteration like the fol
lowing: 

P = A(O) 

FOR 1= 1 TON 

p = p * X + A(I) 

NEXT I 

The complete program is given in Figure 6.18. The subroutine consists of only 
five instructions (lines 1000 to 1040) including the return command . Figure 
6.19 shows a sample run . 

100 REM NUMERICAL VALUE OF A 
102 REM POLYNOMIAL USING 
105 REM HORNER'S APPROACH 
110 DIM A(100) 
115 PRINT "INPUT DEGREE OF "; 
117 PR INT "POL YNOM IAL "; 
120 INPUT N 
130 PR INT "INPUT THE ";N+1; 
132 PRINT" COEFFICIENTS IN" 
135 PRINT "DESCENDING ORDER" 
140 FOR 1=0 TO N 
150 INPUT A:A(I)=A 
160 NEXT I 
170 PR INT "INPUT THE VALUE OF"; 
172 PR INT " X FOR WHICH YOU" 
180 PR INT "WOULD LIKE THE "; 
182 PRINT "POLYNOMIAL VALUE "; 
190 INPUT X 
200 IF X=O THEN END 
210 GOSUB 1000 
220 PRINT 
230 PRINT "POLYNOMIAL VALUE "; 
232 PRINT P 
240 PRINT 
250 GOTO 170 
990 REM POLYNOMIAL EVALUATION 
992 REM USING HORNER'S 
995 REM APPROACH 
1000 P=A(O) 
1010 FOR 1=1 TO N 
1020 P=P*X+A(I) 
1030 NEXT I 
1040 RETURN 
1050 END 

Figure 6.18: Polynomial Evaluation Program __________ ----J 



MATH EMATICAL COMPUTATIONS 131 

INPUT DEGREE OF POLYNOMIAL ?2 
INPUT THE 3 COEFFICIENTS IN 
DESCENDING ORDER 
?1 
?1 
?-6 
INPUT THE VALUE OF X FOR WHICH YOU 
WOULD LIKE THE POLYNOMIAL VALUE ?1 

POLYNOMIAL VALUE -4 

INPUT THE VALUE OF X FOR WHICH YOU 
WOULD LIKE THE POLYNOMIAL VALUE ?2 

POLYNOMIAL VALUE 0 

INPUT THE VALUE OF X FOR WHICH YOU 
WOULD LIKE THE POLYNOMIAL VALUE ?3 

POLYNOMIAL VALUE 6 

INPUT THE VALUE OF X FOR WHICH YOU 
WOULD LIKE THE POLYNOMIAL VALUE ?O 

L...-___________ Figure 6.19: Output of Polynomial Values 

Conclusion 

The exercises presented in this chapter have shown that problems in "the 
mathematics of the continuous" (the definite integral, solving an equation, 
etc.) may be solved with few programming difficulties. In fact, the various 
flowcharts presented in this chapter are actually less complex than those for 
the integer arithmetic exercises in Chapter 3. It was also noted in this chapter 
that many iterations are often necessary to obtain an adequate precision for 
these types of problems. Normally, a computer is well-suited to this type of 
processing. The programmer must, however, consider the validity of results 
obtained when certain techniques are used. Round-off errors can have serious 
effects on the accuracy of the calculation, especially when the calculation is 
extensive. 

Several excellent books have been written on " numerical analysis" for 
computers. Interested readers can consult these texts for more information 
on the effect of errors in computation and methods of calculation to use on 
computers. 



CHAPTER 7 



Introduction 

Financial 
Computations 

This chapter will present several examples of accounting and financial 
applications. These examples are relatively easy to program but, in the gen
eral form presented here, some of them may be difficult to apply to actual 
situations. They can be useful, however, as a basis from which to derive 
programs for specific applications. 

7.1 Sales Forecasting 

In this exercise we want to predict the progress in gross sales, given the rate 
of growth. Two examples will be considered. 



134 BASIC EXERCISES FOR THE ATARI 

Exercise 1: A company has achieved a given figure, S, of gross sales and is 
predicting a growth rate, R, for the next N years. Determine future gross sales 
figures using the following inputs: 

Y = Current year 
S = Sales for the year Y 
R = Rate of growth expressed as a percent 
N = Number of years for which we w ant sales forecasts . 

For example: 

Y = 1980 
S = 20,000 
R = 20% 
N=5 

Solution: The only difficult part of this problem is arranging the output on 
the page. We must take into account the fact that a rate expressed as a percent 
will give rise to a multiplier, R1 , of the form : 

R1 = 1 + R/100 

The program listing is shown in Figure 7. 1 and the sample dialogue is shown 
in Figure 7.2. 

100 PRINT "SALES FORECAST" 
110 PRINT 
120 PRINT "CURRENT YEAR AND"; 
125 PRINT" SALES "; 
130 INPUT Y, S 
140 PRINT 
150 PRINT "RATE OF GROWTH "; 
160 INPUT R 
170 PRINT 
180 PR INT "NUMBER OF YEARS TO"; 
185 PRINT " FORECAST "; 
190 INPUT N 
200 PRINT 
210 PRINT" YEAR"i 
215 PR INT " SALE S" 
220 PRINT 
230 PRINT" ";Y,S 
240 R1=1+O . 01*R 
250 FOR 1=1 TO N 
260 Y=Y+1 
270 S=S*R1 
280 PRINT " "iY,S 
290 NEXT I 
300 END 

Figure 7.1: Sales Forecast Program ----------------' 



FINANCIAL COMPUTATIONS 135 

SALES FORECAST 

CURRENT YEAR AND SALES ?1983,1220 

RATE OF GROWTH ?13 

NUMBER OF YEARS TO FORECAST ?6 

YEAR SALES 

1983 1220 
1984 1378.6 
1985 1557.818 
1986 1760.33434 
1987 1989.177804 
1988 2247.770918 
1989 2539.981137 

L..-_____ Figure 7.2: Sample Dialogue from the Sales Forecast Program 

Exercise 2: In this exercise we are given two basic figures: gross sales and 
sales volume. We anticipate an increased sa les volume of Q percent and an 
annual inflation rate of I percent. We wantto forecast the gross sales and sales 
volume for the next N years. 

The inputs are: 

Y = Year from which to start forecasting 
V = Volume of sales that year 
S = Sales that year 
Q = Growth of vol u me in percent per year 
I = Inflation in percent per year 
N = Number of years to forecast 

Solution: We can use the program presented in Figure 7.1 as a model. For 
this exercise, however, we must account for two rates of increase (see Figure 
7.3) . Figure 7.4 shows the sample dialogue. 

90 DIM L$ (40) 
100 PRINT "YEAR, VOLUME AND"; 
105 PRINT" GROSS SALES?" 
110 INPUT Y,V,S 
120 PRINT "RATES 00 OF INCRE"; 
125 PR INT "ASE IN VOLUME, AND " 
127 PRINT "INFLATION "; 
130 INPUT G, I 
140 PRINT "NUMBER OF YEARS"; 
145 PRINT" TO FORECAST "; 
150 INPUT N 
160 G1 =1 +0. OhG 
170 I1=G1*(1+0.01*I) 
180 PRINT 
190 PRINT" YEAR VOLUME"; 

Figure 7.3: Expanded Sales Forecast Program (continues) 



136 BASIC EXERCISES FOR TH E ATARI 

195 PR INT " GROSS SALES" 
200 PRINT 
210 GOSUB 400 
220 FOR J=1 TO N 
230 Y=Y+1 
240 V=V*Q1 
250 S=S*I1 
260 GOSUB 400 
270 NEXT J 
280 END 
400 REM OUTPUT ROUTINE 
410 LS=" 
420 LS(2)=STRS(Y) 
430 LS(12)=STR$(V) 
440 L$(24)=STR$(S) 
445 PRINT LS 
450 RETURN 

Figure 7.3: Expanded Sales Forecast Program -------------' 

YEAR, VOLUME AND GROSS SALES? 
?1983,100,15000 
RATES (r.) OF INCREASE IN VOLUME, AND 
INFLATION ?5,10 
NUMBER OF YEARS TO FORECAST ?6 

YEAR 

1983 
1984 
1985 
1986 

VOLUME 

100 
105 
110.25 
115.7625 

GROSS SALES 

15000 
17325 
20010.375 
23111. 9831 

1987 121 .550625 26694 .3404 
1988 127.628156 30831.9631 
1989 134.009563 35610.9173 

Figure 7.4: Expanded Sales Forecast Output -------------' 

Note: In an actual situation, we would use a data formatting subroutine to 
produce more sophisticated output. 

7.2 Repayment of Loans 

A loan may be repaid in a number of ways. This exercise presents two 
relatively simple and easily programmed methods for calculating payments. 

7.2.1 First Method of Payment: Annuity 

A loan, L, is repaid over N years . At the end of each year a fixed fraction of 
the face value of the note is paid, plus interest on the unpaid balance. For 



example, if: 

L = Loan amount 
N = Number of years to pay 
R = Rate of interest 

FINANCIAL COMPUTATIONS 137 

then, at the end of the first year the payment is: 

~ + L*R 
N 

At the end of the second year the payment is: 

~ + (L - ~ )*R 

and so on . 

Exercise: Write a program that computes the payments due, and prints 
out the sum of all the payments to be made. 

Solution: We will use the following variables: 

R1 = ~ , the fraction or portion of the loan payment made each year 

I = The amount of interest paid each year 

R2 = The total payment made each year (R2 = R1 + I) 

To calculate I, we need to know the unpaid balance of the loan. Let U 
representthe amount of the unpaid balance. Initially, U is equal to L, but each 
year after the first year, U is diminished by R1 (the amount of the principal 
repaid) . This logic leads us to the following procedure: 

Initial 

values 

Then, for 

each year 

{ 

R = R/100, since I is given as a percent 

R1 =..l. 
N 

U = L 

{

I=U*R 

R2 = R1 + I 

U = U - Rl 

We can calculate the total payments made in one of two ways. We may 
either: 

1. keep a running total of the annual payments; Q = 0 initia lly, and 
thereafter, Q = Q + R2, or 

2. keep a running total of the principal plus interest expense; Q = L 
initially, and thereafter, Q = Q + I. 



138 BASIC EXERCISES FOR THE ATARI 

From a theoretical point of view, these two methods are identical. But be
cause the first method is less sensitive to round-off and truncation errors, it is 
the superior method in this case. The flowchart and resulting program are 
given in Figures 7.5 and 7.6, respectively. A sample run appears in Figure 7.7. 

R = 0.01 • R 
Q=L 
U=L 

RI = LI N 
J = I 

1= U • R 
R2 = R I + I 
Q=Q+l 

U = U - Rl 

STOP 

Figure 7.5: Flowchart for Annuity Program -------------' 



FINANCIAL COMPUTATIONS 139 

100 REM PROGRAM TO COMPUTE AN 
103 REM ANNUITY : EACH YEAR THE 
105 REM SAME FRACTION OF THE 
110 REM PRINCIPAL IS PAID. 
115 DIM LS(40) 
120 PR INT "AMOUNT OF LOAN, "; 
121 PRINT "RATE OF INTEREST &" 
122 PRINT "YEARS TO PAY"; 
125 INPUT L,R,N 
127 IF L=O THEN END 
130 R =R*O. 01 
140 Q=L:U=L 
150 R1=LlN 
160 PRINT 
170 PRINT "PAYMENT 1/ INTEREST"; 
175 PR INT" TOTAL AMOUNT DUE" 
180 FOR J=1 TO N 
190 I =U*R 
200 R2=R1+I 
210 Q=Q+I 
220 U=U-R1 
222 L:t=" 
224 L$(4)=STR$(J):L!(11)=STRS(I) 
226 L$(24)=STR~(R2) 
230 PRINT L$ 
240 NEXT J 
250 PRINT 
251 PRINT "SUM TOTAL PAID"; 
252 PRINT" OUT = ";Q 
255 PRINT :GOTO 120 
260 END 

L-_________________ Figure 7.6: Annuity Program 

AMOUNT OF LOAN, RATE OF INTEREST & 
YEARS TO PAY 110000,10,10 

PAYMENT 1/ INTEREST TOTAL AMOUNT DUE 
1 1000 2000 
2 900 1900 
3 800 1800 
4 700 1700 
5 600 1600 
6 500 1500 
7 400 1400 
8 300 1300 
9 200 1200 
10 100 1100 

SUM TOTAL PAID OUT 15500 

L-____ figure 7.7: Sample Output from the Annuity Program (continues) 



140 BASIC EXERCISES FOR TH EAT ARI 

AMOUNT OF LOAN, RATE OF INTEREST & 
YEARS TO PAY ?10000.12.7 

PAYMENT # INTEREST TOTAL AMOUNT DUE 
1 1200 2628.571428 
2 1028.571432 2457.14286 
3 857.14286 2285.714288 
4 685.714289 2114.285717 
5 514.285717 1942.857145 
6 342.857146 1771.428574 
7 171.428575 1600.000003 

SUM TOTAL PAID OUT = 14799.9997 

AMOUNT OF LOAN, RATE OF INTEREST & 
YEARS TO PAY ?O,O,O 

Figure 7.7: Sample Output from Annuity Program -----------' 

7.2.2 Second Method of Payment: Fixed Monthly Payments 

A loan, L, is taken at an annual interest rate of I. The loan is to be paid off in 
N equal monthly payments. Compute the amount of a monthly payment. 
Also, calculate for a given range of months the amount of each month's 
payment applied to paying off the principal and the amount paid as interest. 

To do this we take the following approach. First, compute the equivalent 
monthly interest rate 11 that corresponds to the annual interest rate, I. This is 
defined by the relation: 

(1 + 11)12 = 1 + I 

thus: 1 

11 = (1 + 1)12 - 1 

(If I is given as percent, we will divide it by 100.) 
Note that banks often apply a different formula, which is more favorable to 

them: 

1 11 =-
12 

Now compute the amount of the monthly payment given by 

M=L* 11(1+ll)N 
(1 + 11)N - 1 

Finally, upon request, compute a detailed analysis of the payments. The 
amount of the payment to be applied to the principal is determined by 



FINANCIAL COMPUTATIONS 141 

employing a simple line of reasoning: 

On the first payment, the amount of interest is L*ll ; thus, the 
amount used to pay off the principal is M - L*ll . The balance L -
(M - L* 11) serves to compute the interest portion of the second 
payment, and so forth. 

Problem: Write a program that: 

1. Reads the following data: 

the loan amount 

the annual rate of interest expressed as a percent 

the number of monthly payments. 

2. Performs the calculations and prints: 

the equivalent monthly interest rate 

the amount of the monthly payment 

the total amount to be paid out. 

3. Inquires if the user wants to see a breakdown of the payments. If yes, 
asks for the first and last payments the user wants displayed. 

Solution: The first part of the program follows directly from the discussion 
and the formulas given above, provided that: 

I is input as a percent 

I is then set to 1/100 

11 is maintained internally as a decimal value, but is multiplied by 
100 on output, so that it will be expressed as a percent. 

For the second part of the program, we design a flowchart (Figure 7.8) in 
which A and B represent the numbers of the first and last monthly payments 
(respectively) to be analyzed in detail. 

In Figure 7.8 the unpaid principal is represented by L 1. In the flowchart we 
provided a loop on K from 1 to N. This was done in case there is a need for 
future extension . Strictly speaking, in the context of the problem as stated, it 
would have been sufficient to vary K from 1 to B, which would have allowed 
the test K >B to be eliminated. The program and sample run appear in Figures 
7.9 and 7.10. 



142 BASIC EXERCISES FOR THE ATARI 

R1 = 11 • L1 
R2 = M - R1 

L 1 = L - R2 
K=K+1 

YES 

Figure 7.8: Section of Flowchart for Monthly Loan Payments --------" 

100 REM COMPUTATION OF MONTHLY 
105 REM PAYMENTS ON A LOAN 
106 DIM R$(10).LS(40) 
110 PRINT "AMOUNT OF THE LOAN: ": 
115 INPUT L 
120 PRINT "ANNUAL INTEREST IN X: "; 
125 INPUT I 
130 PR INT "NUMBER OF MONTHLY"; 

Figure 7.9: Monthly Loan Payment Program (continues) ---------' 



FINANCIAL COMPUTATIONS 143 

132 PRINT "PAYMENTS: "; 
135 INPUT N 
140 11=(1+1/100)"(1/12)-1 
150 M=L*11/(1-C1+11)"C-N» 
160 PRINT 
170 PRINT "EQUIVALENT MONTHLY" 
175 PRINT "INTEREST: "; 
177 PRINT 100*11;"%" 
180 PRINT 
190 PRINT "MONTHLY PAYMENT: ";M 
200 PRINT 
210 PRINT "PRINT TOTAL SUM "; 
215 PRINT "PAID OUT: ";M*N 
220 PRINT 
230 PRINT "WOULD YOU LIKE "; 
231 PRINT "SOME PAYMENTS" 
232 PRINT "DETAlL~D 
235 INPUT RS 
240 IF RSC1,1)<>"Y" THEN END 
250 PRINT "NUMBERS OF THE "; 
251 PR INT "FIRST AND LAST " 
252 PRINT "PAYMENTS "; 
253 PRINT "THAT INTEREST YOU: "; 
255 INPUT A,B 
260 PRINT 
261 PRINT "PAYMENT "; 
262 PRINT "INTEREST "; 
263 PRINT "PRINCIPA~' 
270 PRINT :L1=L 
280 FOR K=1 TO N 
290 IF K>B THEN 350 
300 R1=11*L1:R2=M-R1 
310 IF A>K THEN 330 
315 LS=" 
316 LS(2)=STRSCK):LSC10)=STRSCR1) 
318 LS(22)=STRS(R2) 
320 PRINT LS 
330 L1=L1-R2 
340 NEXT K 
350 END 

L... ___________ Figure 7.9: Monthly Loan Payment Program 

AMOUNT OF THE LOAN: ?33322 
ANNUAL INTEREST IN %: ?6 
NUMBER OF MONTHLY PAYMENTS: ?144 

EQUIVALENT MONTHLY 
INTEREST: 0.486754% 

MONTHLY PAYMENT: 322.438415 

PRINT TOTAL SUM PAID OUT: 46431.1317 

Figure 7.10: 
L-___ Sample Dialogue from Monthly Loan Payment Program (continues) 



144 BASIC EXERCISES FOR THE ATARI 

WOULD YOU LIKE SOME PAYMENTS 
DETAILED 
?YES 
NUMBERS OF THE FIRST AND LAST 
PAYMENTS THAT INTEREST YOU : ?50,55 

PAYMENT INTEREST 

50 119.151672 
51 118.162165 
52 117.167843 
53 116.16868 
54 115.164654 
55 114.155741 

PRINCIPAL 

203.286743 
204.27625 
205.270572 
206.269735 
207.273761 
208.282674 

Figure 7.10: Sample Dialogue from Monthly Loan Payment Program -----' 

7.3 Calculation of the Rate of Growth 

A company's annual sales are usually known over a period of several 
years. The growth of sales generally follows a mathematical law expressed 
by: 

C*(1 + R)' 

where C is a constant, R is the rate of growth, and I is the current year. 
The problem is to determine C and R, and then predict the gross sales for 

the next few years. For our purposes the forecast is limited to a five-year 
period. 

Mathematical analysis: To simplify the problem, we will deviate slightly 
from a strict mathematical viewpoint. We will try to determine C and R; 
however, rather than minimizing: 

r(C(l + R)' - Y(I))2 
I 

we will minimize: 

Q = r(ln [C(l + R)'] - In Y(I)) 2 
I 

= r(ln C + 1*ln (1 + R) - In Y(I)) 2 
I 

We designate: 

In C by B 
In YI by ZI 

In (1 + R) by A 

Now we must minimize the quantity 

Q = r(B + IA - ZI) 2 
I 



FINANCIAL COMPUTATIONS 145 

Note: This exercise shou ld be attempted after the program in Section 10.3 
(Chapter 10) on linear regression has been worked through. 

Exercise: Based on the program presented in Section 10.3, construct a 
program that computes the rate of growth R, then produces a five-year sales 
forecast. In this program, R is represented by the variable RO. We assume that 
the years are read into an array T and the correspondi ng gross sales figures 
are read into an array X. 

Solution: This program proceeds in three distinct phases: 

1. The reading of the input data N and the arrays T and X, and the 
computation of: 

Y(I) = In (X(I)) 

2. The ca lling of a subroutine to do the linear regression and the com
putation of the coefficients C and RO. These coefficients are com
puted from A and B (computed by the subroutine) with the follow
ing formulas: 

C = eB 

and 
RO = eA 

- 1 

3. The printing out of RO and the results : 

- for each known year, the actua l and the estimated gross sales 
- for each of the five years to come, the estimated gross sales only. 

To avoid printing insignificant decimal places the estimated gross sales, Z, is 
replaced by: 

INT (100 * Z)/1 00 

The high-level flowchart shown in Figure 7.11 is actua lly quite simple. 
The program shown in Figure 7.12 serves as an example of what may be 

written. This program cou ld be improved by having it print out: 

a corre lation coefficient 

a measure of confidence for the forecasted figures. (This would be 
useful, but it wou ld complicate the program .) 

Warn ing: This type of forecasting shou ld not be used in an actual situation 
without reservation. In reality, actual sales depend on many things, notably 
the economic situation and the competition. These and other factors can 
significantly alter events beyond the predictive power of simple regression . 

A sample run is shown in Figure 7.13. 



146 BASIC EXERCISES FOR THE ATARI 

Lines 170 to 750 

Lines 755 to 780 and 7000 to 7 740 

Lines 270 to 290 

Lines 300 to 340 

Figure 7.11: High-level Flowchart for Growth Rate Program _____ --1 

100 DIM T(15),X(15),Y(15) 
110 READ N 
120 FOR 1=1 TO N 
130 READ T,X:T(I)=T:X(I) =X 
140 Y(I)=LOG(X(I» 
150 NEXT I 
155 NO=T(1) 
160 GOSUB 1000 
170 C=EXP(B) 
180 TO=EXP(A)-1 
190 PRINT "ESTIMATED GROWTH"· 
195 PRINT "RATE: " ; 1000*TO 
200 PRINT 
210 T2=1+TO 
220 PRINT " YEAR "; 
221 PRINT "ACTUAL SALES"; 
223 PRINT " PREDICTED SALES" 
230 PRINT 

Figure 7.12: Growth Rate Program (continues) ___________ ...J 



240 Z=C 
260 FOR 1=1 TO N 
280 PRINT" ";T<I), 
281 PRINT XCI), 
282 PRINT INTC100*Zl/100 
285 Z=Z*T2 
290 NEXT I 
300 FOR 1=1 TO 5 
310 T3=T<Nl+I 
320 Z=Z*T2 
330 PRINT" ";T3" 
331 PRINT INTC100*Zl/100 
340 NEXT I 
400 DATA 6 
410 DATA 1975,99.2,1976.110 
420 DATA 1977.121.3,1978,133.1 
430 DATA 1979,146.3.1980,160 
500 END 
1000 U1=0 
1010 U2=0 
1020 V1=0:V2=0 
1040 w=O 
1050 FOR 1=1 TO N 
1055 T4=T<I)-NO 
1060 U1=U1+T4 
1070 V1=V1+YCI) 
1080 U2=U2+T4*T4 
1090 V2=V2+YCIl+YCIl 
1100 W=W+T4*YCIl 
1110 NEXT I 
1120 A=CW-U1*V1/Nl/CU2-U1*U1/Nl 
1130 B=CV1-A*U1)/N 
1140 RETURN 
1150 END 

FINANCIAL COMPUTATIONS 147 

L..-______________ Figure 7.12: Growth Rate Program 

ESTIMATED GROWTH RATE: 100.08464 

YEAR ACTUAL SALES PREDICTED SALES 

1975 99.2 99.76 
1976 110 109.75 
1977 121.3 120.73 
1978 133.1 132.82 
1979 146. ::: 146.11 
1980 160 160.73 
1981 194.52 
1982 213.99 
1983 2~5.4 

1984 258.96 
1985 284.88 

L..-_____ Figure 7.13: Sample Output from the Growth Rate Program 



148 BASIC EXERCISES FOR THEATARI 

7.4 More on Income Taxes 

Using the information from the TAXABLE INCOME program presented in 
Chapter 1, we will now compute the actual tax due, using various tables. We 
wi ll limit our discussion to the case of married persons fi ling a joint return . 
Additiona l cases, though, cou ld be readily added to the program . 

The table shown in Figure 7.14, taken from an Internal Revenue Service 
Form 1040, wi ll be used to compute the tax for this case. 

Ta x-Ra te Schedules 

SCHEDULE Y 

MARRIED INDIVIDUALS, SURVIVING SPOUSES 

Taxable Inc ome Tax On Excess 
Over NolOver Pay + Over Over 

$ 3,400 
$ 3,400 5,500 14% $ 3,400 

5,500 7,600 294 16 % 5,500 
7,600 11 ,900 630 18% 7,600 

11,900 16,000 1,404 21% 11 ,900 
16,000 20,200 2,265 24% 16,000 
20,200 24 ,600 3,273 28% 20,200 
24,600 29,900 4,505 32% 24,600 
29,900 35,200 6,20 1 37% 29,900 
35,200 45,800 8,162 43 % 35,200 
45,800 60,000 12,720 49 % 45,800 
60,000 85,600 19,678 54% 60,000 
85,600 109,400 33,502 59 % 85 ,600 

109,400 162,400 47 ,544 64% 109,400 
162,400 215,400 81,464 68% 162,400 
215,400 117,504 70% 215,400 

- Figure 7.14: Tax Table from IRS Form 1040 ------------

Exercise: Construct a program that computes tax due using the table 
given previously. 

Solution: The initial input is a figure specifying the amount of TAXABLE 
INCOME. This figure may be either input directly or calculated by means of 
the program developed in Chapter 1. Next a table is needed that gives the 
base tax and the tax rate for each tax bracket. Since this same table is used 
for all the necessary ca lculations, it is read only once. A tax computation sub
routine is then used. This leads us to the conceptual flowchart shown in 
Figure 7.1 5. 



FINANCIAL COMPUTATIONS 149 

L-____ Figure 7.15: Conceptual Flowchart for Income Tax Calculation 

A READ-DATA subroutine should be provided with the program, so that 
the tax table wil l not have to be entered from the keyboard each time the 
program is run. Since this table is va lid for an entire year, it is appropriate to 
incorporate the table into the program source. This could be done using 
DATA instructions (see the flowchart in Figure 7.16) . 

This leads to the subroutine that appears as lines 500 to 710 of the program 
shown in Figure 7.1 8. 

We are now ready to calcu late the tax. We must first define the arrays that 



150 BASIC EXERCISES FOR TH E ATARI 

Figure 7.16: Flowchart for READ-DATA Subroutine --------...... 

are indexed by the tax brackets: 

B(I) = The lowest (base) income in tax bracket I 
T(I) = The tax corresponding to B(I) 
R(I) = The tax rate for this bracket. 

If a TAXABLE INCOME, TI, is in bracket I, that is : 

B(I) ~TI < B(I + 1) 

then the tax, 1; is given by: 

T = B(I) + (TI - B(I» * R(I) 

To determine the proper tax bracket, we perform a series of tests until we find 
TI < B(I) . At this point we know that I now exceeds the actual bracket by one. 
This is incorporated into the flowchart displayed in Figure 7.1 7. 



FINANCIAL COMPUTATIONS 151 

L-. _________ figure 7.17: flowchart for Income Tax Program 



152 BASIC EXERCISES FOR TH E ATARI 

This flowchart is realized in lines 800 to 870 of the program shown in Figure 
7.18. Sample dialogue appears in Figure 7.19. 

100 REM TAX COMPUTATION 
110 REM 
120 REM AUTHOR : JEAN-PIERRE 
125 REM LAMOITIER 
127 DIM RS(10) 
130 REM READING OF DATA 
140 GOSUB 500 
145 PRINT "TAXABLE INCOME "; 
150 INPUT T1 
160 REM COMPUTATION OF TAX 
170 GOSUB 800 
190 PRINT "TAX = ";X 
200 PRINT "ANOTHER "; 
201 PRINT "COMPUTATION"; 
202 PRINT " (Y OR N) "; 
205 INPUT RS 
210 IF RS="Y" THEN 145 
220 IF RS="N" THEN END 
230 GOTO 200 
490 REM READ IN TAX TABLE 
500 READ N 
510 DIM B(N),R(N),T(N) 
520 FOR 1=2 TO N 
530 READ B,T,R:B(I)=B:T(I)=T:R(I)=R 
540 NEXT I 
550 DATA 15 
560 DATA 3400,0,14 
570 DATA 5500,294,16 
580 DATA 7600,630,18 
590 DATA 11900,1404,21 
600 DATA 16000,2265,24 
610 DATA 20200,3273,28 
620 DATA 24600,4505,32 
630 DATA 29900,6201,37 
640 DATA 35200,8162,43 
650 DATA 45800,12720,49 
660 DATA 60000,19678,54 
670 DATA 85600,33502,59 
680 DATA 109400,81464,68 
690 DATA 162400,117504,70 
700 DATA 215400,117504,70 
710 RETURN 
800 X=O 
810 IF T1<8(1) THEN RETURN 
820 FOR 1=2 TO N 
830 IF T1<8(1) THEN 850 
840 NEXT I 
850 1=1-1 
860 X=T(I)+(T1-B(I»*R(ll/100 
870 RETURN 

figure 7.18: Income Tax Calculation Program __________ ----l 



FI NANCIAL COMPUTATIONS 153 

By changing only a few instructions, we can merge the program presented 
in Chapter 1 with the program shown in Figure 7.18. The outcome of this 
union-a single, more complete tax program-is shown in Figure 7.20. 

TAXABLE INCOME ?100000 
TAX = 41998 
ANOTHER COMPUTATION (Y OR N) ?Y 
TAXABLE INCOME ?50000 
TAX = 14778 
ANOTHER COMPUTATION CY OR N) ?Y 
TAXABLE INCOME ?18000 
TAX = 2745 
ANOTHER COMPUTATION (Y OR N) ?N 

'------- Figure 7.19: Sample Dialogue from the Income Tax Program 

100 REM TAX COMPUTATION 
110 REM 
120 REM AUTHOR : JEAN-PIERRE 
125 REM LAMOITIER 
127 DIM RS(9) 
130 REM READING OF DATA 
140 GOSUB 500 
1 50 GOS UB 900 
160 REM COMPUTATION OF TAX 
170 GOSUB 800 
190 PRINT "TAX = ";TX 
200 PRINT "ANOTHER "; 
201 PRINT "COMPUTATION'" 
202 PRINT" CY OR N) ,,~ 
205 INPUT R$ 
210 IF R$="Y" THEN 150 
220 IF R$="N" THEN END 
230 GOTO 200 
490 REM READ IN TAX TABLE 
500 READ ND 
510 DIM BCND),RCND),TCND) 
520 FOR 1=1 TO ND 
530 READ B,T,R:B(I)=B:TCI)=T:RCI)=R 
540 NEXT I 
550 DATA 15 
560 DATA 3400,0,14 
570 DATA 5500,294,16 
580 DATA 7600,630,18 
590 DATA 11900,1404,21 
600 DATA 16000,2265,24 
610 DATA 20200,3273,28 
620 DATA 24600,4505,32 
630 DATA 29900,6201,37 
640 DATA 35200,8162,43 
650 DATA 45800,12720,49 
660 DATA 60000,19678,54 
670 DATA 85600,33502,59 

'--------- Figure 7.20: A More Complete Tax Program (continues) 



154 BASIC EXERCISES FOR THE ATARI 

680 DATA 109400,81464,68 
690 DATA 162400,117504,70 
700 DATA 215400,117504,70 
710 RETURN 
800 TX=O 
810 IF TI<B(1) THEN RETURN 
820 FOR 1=2 TO NO 
830 IF TI<8(I) THEN S5G 
840 NEXT I 
850 1=1-1 
860 TX=T(I)+(TI-B(I»*R(I)/100 
870 RETURN 
900 PRINT "TOTAL INCOME "; 
905 I NPUT I 
910 PRINT "TOTAL ADJUSTMENTS "; 
915 INPUT A 
920 G=I-A 
930 PRINT "TOTAL DEDUCTIONS "; 
935 INPUT D 
940 PRINT "NUMBER OF "; 
942 PRINT "DEPENDENTS "; 
945 INPUT N 
950 TI=G-D-N*1000 
960 PR INT "THE TAXABLE "; 
965 PRINT "INCOME IS ";TI 
970 RETURN 

figure 7.20: A More Complete Tax Program -------------' 

This program was derived from Figure 7.18 by replacing 

150 INPUT "TAXABLE INCOME? ";T1 
with 

150 GOSUB900 

and adding lines 900 to 970 from Chapter 1. Figure 7.21 shows the sample 
dialogue. 

TOTAL INCOME 127624 
TOTAL ADJUSTMENTS 11737 
TOTAL DEDUCTIONS 14727 
NUMBER OF DEPENDENTS 15 
THE TAXABLE INCOME IS 16160 
TAX = 2303.4 
ANOTHER COMPUTATION (Y OR N) 1N 

figure 7.21: Dialogue from the Complete Tax Program ---------' 

7.5 The Effect of Additional Income on Purchasing Power 

An individual does extra work to earn additional income. The following 
question arises: given the additional expenses associated with doing the work 



FINANCIAL COMPUTATIONS 155 

and the additional tax resulting from the extra income, what has been the 
actual increase in purchasing power? 

Problem: Modify the program in Figure 7.20 to request the following 
information: 

ADDITIONAL INCOME (AI) 
and 

ADDITIONAL ADJUSTMENTS (AA) 

after the original tax computation has been completed. After this new data 
has been added, add the computation of true increase in purchasing power, 
which is given by: 

AI - (AA + (new tax - old tax) 

Solution: After completing line 190 of the program shown in Figure 7.20, 
input the new data to AI and AA, then compute the new tax. To do this we 
insert as line 195 a call to a subroutine by writing: 

195 GOSUB 1000 

Starting with line 1000 we write a subroutine that: 

inputs AI and AA 

computes a new TAXABLE INCOME 

saves the old tax in a variable T1 

calls the tax computation subroutine on line 800 

outputs the information relevant to true purchasing power. 

This all translates into the lines of BASIC displayed in Figure 7.22 . 

100 REM TAX COMPUTATION 
110 REM 
120 REM AUTHOR : JEAN-PIERRE 
125 REM LAMOITIER 
127 DIM R1(9) 
130 REM READING OF DATA 
140 GOSUB 500 
150 GOSUB 900 
160 REM COMPUTATION OF TAX 
170 GOSUB 800 
180 PRINT 
190 PRINT "TAX = ";TX 

Figure 7.22: Program Calculating the 
L--____ Effect of Additional Income on Purchasing Power (continues) 



156 BASIC EXERCISES FOR TH E ATARI 

195 GOSUB 1000 
200 PRINT "ANOTHER "; 
201 PRINT "COMPUTATION"; 
202 PR INT " (Y OR N) "; 
205 INPUT R$ 
210 IF R$="Y" THEN 150 
220 IF R$="N" THEN END 
230 GOTO 200 
490 REM READ IN TAX TABLE 
500 READ ND 
510 DIM B(ND),R(ND),T(ND) 
520 FOR 1=1 TO ND 
530 READ B,T,R:B(I)=B:T(I)=T:R(I)=R 
540 NEXT I 
550 DATA 15 
560 DATA 3400,0,14 
570 DATA 5500,294,16 
580 DATA 7600,630,18 
590 DATA 11900,1404,21 
600 DATA 16000,2265,24 
610 DATA 20200,3273,28 
620 DATA 24600,4505,32 
630 DATA 29900,6201,37 
640 DATA 35200,8162,43 
650 DATA 45800,12720,49 
660 DATA 60000,19678,54 
670 DATA 85600,33502,59 
680 DATA 109400,47544,64 
690 DATA 162~00,81464,68 
700 DATA 215400,117504,70 
710 RETURN 
800 TX=O 
810 IF TI<B(1) THEN RETURN 
820 FOR 1=2 TO ND 
830 IF TI<B(I) THEN 850 
840 NEXT I 
850 1=1-1 
860 TX=T(I)+(TI-B(I»*R(I)/100 
870 RETURN 
900 PRINT "TOTAL INCOME "; 
905 INPUT I 
910 PRINT "TOTAL ADJUSTMENTS "; 
915 INPUT A 
920 G=I-A 
930 PR INT "TOTAL DEDUCTIONS "; 
935 INPUT D 
940 PRINT "NUMBER OF "; 
942 PRINT "DEPENDENTS "; 
945 INPUT N 
950 TI=G-D-N*1000 
960 PRINT "THE TAXABLE "; 
965 PRINT "INCOME IS ";TI 
970 RETURN 
990 REM COMPUTATION OF NEW TAX 
1000 PRINT "ADDITIONAL "; 
1002 PRINT "INCOME "; 

Figure 7.22: Program Calculating the 
Effect of Additional Income on Purchasing Power (continues) --------' 



FINANCIAL COMPUTATIONS 157 

1005 INPUT AI 
1010 PRINT "ADDITIONAL ". , 
1012 PRINT "ADJUSTMENTS ". , 
1 015 INPUT AA 
1020 TI=TI+AI-AA 
1030 PRINT 
1032 PRINT "NEW TAXABLE ". , 
1035 PRINT "INCOME: ";TI 
1040 T1 =TX 
1050 GOSUB 800 
1060 PRINT "NEW TA X: ";TX 
1070 PRINT 
1080 PRINT "INCREASE IN PURCH"; 
1082 PRINT "ASING POWER: ". , 
1085 PRINT AI-AA-TX+T1 
1090 PRINT 
1100 RETURN 

Figure 7.22: Program Calculating the 
'----------- Effect of Additional Income on Purchasing Power 

A sample dialogue with this final enhanced version of the program shown in 
Figure 7. 20 appears in Figure 7.23. 

TOTAL INCOME ?18000 
TOTAL ADJUSTMENTS ?2000 
TOTAL DEDUCTIONS ?1500 
NUMBER OF DEPENDENTS ?2 
THE TAXABLE INCOME IS 12500 

TAX = 1530 
ADDITIONAL INCOME ?4000 
ADDITIONAL ADJUSTMENTS ?500 

NEW TAXABLE INCOME : 16000 
NEW TA X: 2265 

INCREASE IN PURCHASING POWER: 2765 

ANOTHER COMPUTATION (Y OR N) ?Y 
TOTAL INCOME ?150000 
TOTAL ADJUSTMENTS ?5000 
TOTAL DEDUCTIONS ?10000 
NUMBER OF DEPENDENTS ?4 
THE TAXABLE INCOME IS 131000 

TAX = 61368 
ADDITIONAL INCOME ?25000 
ADDITIONAL ADJUSTMENTS ?4000 

NEW TAXABLE INCOME: 152000 
NEW TA X: 74808 

I NCREASE IN PURCHASING POWER : 7560 

AN OTHER COMPUTATION (Y OR N) ?N 

'----------- Figure 7.23: Sample Dialogue on Purchasing Power 



158 BASIC EXERCISES FOR THE ATARI 

This program demonstrates that: 

1. the increase in purchasing power is less than the amount of ADDI
TIONAL INCOME; 

2. the higher the income tax bracket, the greater the discrepancy 
between ADDITIONAL INCOME and actual increase in purchasing 
power. 

Conclusion 

This chapter has presented exercises on the following topics: predicting the 
progress in gross sales, calculating loan payments, calculating rate of growth 
and computing income tax payments. These exercises may be useful for 
designing programs for similar applications. 





CHAPTER 8 



Games 

Introduction 

Experience has shown that the writing of game programs is a long and 
difficult process that, in most cases, is beyond the abilities of a beginning 
programmer. This is obviously the case with a game like chess. Programming 
a computer to play chess would be a difficult task for even the most experi
enced programmer. Trying to computerize even simple games can result in 
long programs that do not play well and run very slowly. This, in itself, 
removes an important aspect from the enjoyment of the game. 

Some games, however, can be programmed easily because either (1) there 
is a minimum of strategy involved in the program (for example, the game 
"TOO LOW!TOO HIGH" ), or (2) the strategy can be expressed as a simple 
algorithm (for example, NIM). It should be noted that as soon as the strategy 
becomes even a little more complex, the size of the program will increase 
significantly. 



162 BASIC EXERCISES FOR THE ATARI 

The four programs presented in this chapter qualify in one of these two 
categories. 

8.1 The Game: Too Low/Too High 

First part: The object of the game TOO LOW/TOO HIGH is to guess an 
integer, N, between a and A, that has been randomly selected by the com
puter. The player inputs a guess, X, and the computer determines whether or 
not the player's guess is correct. This is done by comparing X to the random 
number, N, in the following manner: 

If X = N, the computer prints: 

"YOU GOT IT IN I TRIES." 

where I is the number of guesses input by the player. 
If X < N, the computer prints: 

"TOO LOW ... " 

If X> N, the computer prints: 

"TOO HIGH ... " 

Analysis: Four variables are needed for this program: 

A = The largest legal number that can be chosen 
N = The number to be guessed 
X = The number currently guessed 

= The number of guesses made 

The variable A is not indispensable, but it offers an effective means to vary 
the units of the game with minimal change to the program. 

The variable I is actually a "counter" that is incremented by one at each 
new guess. This variable keeps track of the number of tries made by the 
player. 

Flowchart: There are many ways to approach this problem. The flow
chart displayed in Figure 8.1 shows one of the simplest approaches. 

The program (shown in Figure 8.2) must select a random integer, N, in the 
interval [a,A] . To do this, we write: 

N = INT((A+1)*RNO(X)) 

since a < RND(X) < 1. Note that the exact form of thi s statement may vary 
from one system to another. 



PICK N AT RANDOM 
IN [0 , Al 

I INPUT X 7 
+ 

GAMES 163 

L..-_______ Figure 8.1: Flowchart for TOO LOW!TOO HIGH Game 

100 PRINT "THE HIGHEST NUMBER"; 
102 PRINT" TO USE "; 
105 INPUT A 
110 PRINT 
120 PRINT "GUESS THE NUMBER "; 
125 PRINT "BETWEEN 0 AND";A 
130 PRINT 
140 PRINT "WHAT DO YOU GUESS" 

1..-______ Figure 8.2: TOO LOW!TOO HIGH Program (continues) 



164 BASIC EXERCISES FOR THE ATARI 

150 N=INT«A+1)*RND(X» 
160 1=0 
170 1=1+1 
180 INPUT X 
190 IF X=N THEN GOTO 220 
200 IF X<N THEN 203 
201 PRINT "TOO HIGH ..... 
202 GOTO 170 
203 PR INT "TOO LOW .. . .. 
210 GOTO 170 
220 PR INT "YOU GOT IT IN "; 
225 PRINT I;" TRIES." 
230 END 

Figure 8.2: TOO L.OW!TOO HIGH Program ------------' 

Second part: After playing the game a few times, the player usually real
izes that it is advantageous to remember, at each turn, the current interval 
from which the number should be guessed. The game is usually played by 
narrowing the interval until the exact number is found. To make this process 
easier, the program could output after each unsuccessful guess the most 
recently established interval from which the number should now be guessed. 

Analysis: To provide this additional enhancement to the program, we 
need two new variables, C and O. These variables will hold the currently 
known boundaries for the number to be guessed . 

Initially, C = 0 and 0 = A. After each unsuccessful guess: 

If X < N, set C = MAX(C,X) 
If X> N, set 0 = MIN(O,X) 

If the program could be assured that the player (being rational and incapable 
of error) would never guess a number outside the currently known boundary 
for N, we could simply write C = X and 0 = X. 

The PRINT statement is the same after any unsuccessful guess, since both 
upper and lower boundary values will always be printed. 

Flowchart: The new flowchart (shown in Figure 8.3) can be easily derived 
from the flowchart in Figure 8.1. 

Third part: One way to find the desired number quickly is to guess, at 
each stage, a number in the middle of the currently known range. In fact, the 
program can be modified to do the calculation and then print the number. 
This would reduce the number of guesses. 



GAMES 165 

PRINT "GUESS THE 

< > 

~--- Figure 8.3: Flowchart for Expanded TOO L.OW/TOO HIGH Game 

Analysis: All that is necessary to do this is to add the expression (C + 0)/2 
to the PRINT instruction . Figure 8.4 shows this version of the program . 

Fourth part: The program could also be modified so that when the 
player uses the number suggested by the computer, the computer takes 



166 BASIC EXERCISES FOR THE ATARI 

10 PRINT "THE HIGHEST NUMBER"; 
12 PRINT" TO USE "; 
15 INPUT A 
20 PRINT 
30 PRINT "GUESS THE NUMBER "; 
35 PRINT "BETWEEN 0 AND ";A 
40 PRINT 
50 PRINT "WHAT DO YOU GUESS" 
60 N=INTeeA+1)*RNOeX» 
70 I=O:C=O:D=A 
80 1=1+1 
90 INPUT X 
100 IF X=N THEN GOTO 130 
110 IF X>=N THEN GOTO 116 
112 IF X<=C THEN 116 
114 C=X:GOTO 118 
116 IF X<O THEN O=X 
118 PRINT "BETWEEN ";C; 
119 PRINT" AND ";0; 
120 PRINT" AVERAGE = "; 
121 PRINT eC+D)/2 
122 GOTO 80 
130 PRINT "YOU GOT IT IN "; I ; 
135 PRINT" TRIES." 

Figure 8.4: Expanded TOO LOW/TOO HIGH Program _______ ...J 

overthe game and plays it out. However, the player would then become only 
a spectator. 

Analysis: Few changes would be needed to the flowchart to modify the 
program in this way. The instruction that accepts X would be replaced by: 

X = INT«C + D)/2 
or 

X = INT((C + D + 1)/2) 

and the instruction that prints out the new boundaries could be eliminated. 
On the other hand, if the player wants to see the " moves" made by the 
computer, then an instruction must be added to print out X at each cycle. 

Note: A program that is operating in an automatic output mode (such as the 
one proposed above) will produce output at great speed, especially if a CRT 
screen is used. In some BASIC systems, we could add a " SLEEP 5" instruction, 
which would give the user the time necessary to read each line. The "SLEEP 5" 



GAMES 167 

instruction suspends the execution of the program for five seconds after each 
move. This feature is not available on all systems, but generally the same 
result can be obtained on other BASICs by: 

using a "WAIT" instruction, if available 

inserting a compute-bound " delay loop" that must execute a certain 
number of times before proceeding to the next move. For example, 
in ATARI BASIC: 

FOR T = 1 TO 500:NEXT T 

as in line 85 in the program in Figure 8.5. Each five hundred iterations of this 
simple loop provides approximately one second of delay. 

One version of this program is shown in Figure 8.5. 

10 PRINT "THE HIGHEST NUMBER"; 
12 PRINT" TO USE "; 
15 INPUT A 
20 PRINT 
30 PRINT "GUESS THE NUMBER "; 
35 PRINT "BETWEEN 0 ANO";A 
40 PRINT 
50 PRINT "WHAT DO YOU GUESS" 
60 N=INT«A+1)*RNO(1» 
70 I=O:C=O:O=A 
80 1=1+1 
85 FOR T=1 TO 500:NEXT T 
90 X=INT«C+0)/2) 
100 IF X=N THEN GOTO 130 
110 IF X>N THEN GOTO 116 
112 IF X<=C THEN 116 
114 C=X:GOTO 118 
116 IF X<O THEN O=X 
118 PRINT "BETWEEN ";C; 
119 PRINT" AND ";0; 
120 PRINT" AVERAGE = "; 
121 PRINT (C+0)/2 
122 GOTO 80 
130 PRINT "YOU GOT IT IN ";1; 
132 PRINT" TRIES." 
135 GOTO 50 
140 END 

Figure 8.5: TOO LOW/TOO HIGH Program in Automatic Output Mode 



168 BASIC EXERCISES FOR THE ATARI 

8.2 Finding an Unknown Number by Bracketing 

This game, which is a variation on the previous game, consists of finding an 
unknown, randomly chosen number by bracketing it between two numbers 
supplied by the player. On receiving the two numbers the program will 
indicate: 

if the number has been bracketed 

if the interval is too low 

if the interval is too high. 

For example, if the random number is 55, and the player inputs 18 and 24, 
then the program should respond "TOO LOW ... " 

Exercise 1: Design a simple program that implements this game and 
keeps track of the number of tries made by the player. 

Exercise 2: Propose a more sophisticated program that determines 
whether or not the player has made a reasonable guess. 

Exercise 1 solution: For this program we w ill need the following variables: 

A = The largest lega l number that can be chosen 
N = The computer's selected number 
X,Y = The limits of the bracket guessed by the player 
I = The number of guesses made by the player. 

Flowchart: Let us study the flowchart shown in Figure 8.6. This flowchart 
leads to the program in Figure 8.7. As before, the program could be en
hanced to provide suggestions to the player or even carry out the rest of the 
play. A sample round appears in Figure 8.8. 

Note: The best way to determine a number within the framework of this 
game is to subdivide the total range of numbers into three equal intervals and 
then guess the middle interval. For example, with [0,1000] try [333,666]. If the 
computer's response is "TOO LOW ... [667,1000]" then try [778,889] next. 
With this strategy the player can obtain the maximum amount of information 
possible with each attempt, thereby providing the best path to the solution. 



GAMES 169 

) 

L...-------------------Figure 8.6: Flowchart for the Bracketing Game 



170 BASIC EXERCISES FOR THE ATARI 

100 REM A GAME TO FIND A 
105 REM NUMBER BY BRACKETING 
108 DIM R$(9) 
110 A=1000 
115 N=INT«A+1)*RND(1» 
120 1=0 
130 PRINT "FIND THE NUMBER "; 
132 PRINT "BETWEEN 0 AND" 
135 PRINT" ";A;" BY"; 
137 PRINT "BRACKETING (X, Y)?" 
140 INPUT X, Y 
145 1=1+1 
150 IF X<=Y THEN 180 
160 PRINT "X MUST BE LESS "; 
165 PRINT "THAN OR EQUAL TO Y." 
170 GOTO 140 
180 IF N<X THEN 210 
190 IF N>Y THEN 220 
200 IF X=Y THEN 230 
205 PRINT "BRACKETED" 
207 GOTO 140 
210 PRINT "TOO HIGH ••• " 
215 GOTO 140 
220 PRINT "TOO LOW ••• " 
225 GOTO 140 
230 PRINT "YOU GOT IT IN "; I; 
235 PRINT" TRIES.":PRINT 
240 PRINT "ANOTHER ROUND "; 
245 INPUT R$ 
250 IF R$(1,1>="Y" THEN 115 
260 END 

Figure 8.7: Bracketing Game Program ---------------' 

FIND THE NUMBER BETWEEN 0 AND 
1000 BY BRACKETING (X,Y)? 

?0,500 
TOO LOW ••• 
?500,800 
TOO LOW ••• 
?850,950 
TOO HIGH ••• 
?825,830 
TOO HIGH ••• 
?810,825 
BRACKETED 
?8915,815 
X MUST BE LESS THAN OR EQUAL TO Y. 
?815,815 
TOO LOW ••• 
?820,823 

Figure 8.8: Sample Dialogue from the Bracketing Game Program (continues) 



TOO HIGH ••• 
?815,819 
BRACKETED 
?816,816 
YOU GOT IT IN 10 TRIES. 

ANOTHER ROUND ?NO 

GAMES 171 

L...-___ Figure 8.8: Sample Dialogue from the Bracketing Game Program 

8.3 The Matchstick Game 

This simple game provides the knowledgeable player with a sure win if he 
or she is playing second. Let us look at the rules of the game. 

The game begins with two players and a pile of 21 matches. The players 
alternate turns and at each turn each player may remove from one to four 
matches from the pile. The player to pick up the last match loses the game. 

The winning strategy for player 2 is to pick up just enough matches to 
obtain a sum offive by adding the number of matches picked up by player 1 
to the number of matches player 2 plans to remove. Thus, no matter what 
player 1 does, he or she will be faced with a pile of 21, 16, 11 , 6 and 1 matches 
and will eventually be forced to remove the last match. For example: 

FIRST PLAYER SECOND PLAYER PILE 

Removes Removes Contains 
21 

3 2 16 
2 3 11 
4 6 

4 
1 and loses 

Exercise: Construct a program in which the computer always plays sec
ond, and apply the winning strategy to that program. The program must be 
able to detect any cheating attempted by the first player. 

Solution: The algorithm can be represented by the conceptual flowchart 
shown in Figure 8.9. 

To check for possible cheating we add two tests that will: 

- insure that I is an integer 
- insure that I is a number from one to four, inclusive. 

If either of these tests fails, the program should display an error message 
and go back to input I, so that the player can make a legal move. 



172 BASIC EXERCISES FOR TH E ATARI 

The program displayed in Figure 8.10 was derived from the flowchart in 
Figure 8.9. This program incorporates two "cheat" tests at lines 200 and 210. 
The corresponding error messages are listed at lines 400 and 430, along with 
a return control to the input-move instruction in line 190. 

Figure 8.9: Conceptual Flowchart for the Matchstick Game ______ -1 

100 REM THE GAME FROM THE LAST 
105 REM YEAR AT MARIENBAD 
110 REM 
120 DIM RS(9) 
160 PRINT "WE START WITH 21 "; 
165 PRINT "MATCHES. WE WILL" 
170 PR INT " ALTERNATE TURNS " ; 
175 PRINT "REMOVING MATCHES:" 
180 PRINT "UP TO FOUR PER "; 
181 PRINT "TURN. IF YOU HAVE " 
182 PRINT "TO PICK UP THE "; 

Figure 8.10: Matchstick Game Program (continues) ------------1 



183 PRINT "LAST MATCH YOU "; 
184 PRINT "LOSE." 
185 PRINT :N=21 
190 PRINT "HOW MANY WILL YOU TAKE 
195 INPUT I 
200 IF I<>INT(I) THEN 400 
210 IF 1<1 OR 1>4 THEN 430 
220 N=N-5 
230 PRINT" I TAKE ";5-1; 
235 PRINT" THAT LEAVES ";N 
240 IF N>1 THEN 190 
250 PRINT "AND PICK UP "; 
255 PRINT "THE LAST ONE" 
260 PRINT 
270 PRINT "I WIN . ":PRINT 
280 PRINT "ANOTHER ROUND "; 
285 INPUT Rt 
290 IF R$(1,1)="Y" THEN 185 
300 END 
400 PRINT "WHOLE NUMBERS ONLY." 
410 GOTO 190 
430 PRINT "DO NOT TRY TO "; 
432 PRINT "CHEAT. YOU MUST" 
435 PRINT "TAKE 1,2,3, OR 4'" 
440 GOTO 190 

". , 

GAMES 173 

L.---------------Figure 8.10: Matchstick Game Program 

Figure 8.11 displays a sample game. 

WE START WITH 21 MATCHES. WE WILL 
ALTERNATE TURNS REMOVING MATCHES: 
UP TO FOUR PER TURN. If YOU HAVE 
TO PICK UP THE LAST MATCH YOU LOSE. 

HOW MANY WILL YOU TAKE ?3 
I TAKE 2 THAT LEAVES 16 

HOW MANY WILL YOU TAKE ?4 
I TAKE 1 THAT LEAVES 11 

HOW MANY WILL YOU TAKE ?6 
DO NOT TRY TO CHEAT. YOU MUST 
TAKE 1,2,3, OR 4' 
HOW MANY WILL YOU TAKE ?4 

I TAKE 1 THAT LEAVES 6 
HOW MANY WILL YOU TAKE ?4 

I TAKE 1 THAT LEAVES 1 
AND uICK UP THE LAST ONE 

I WIN. 

ANOTHER ROUND ?NO 

'----- figure 8.11: Sample Dialogue from the Matchstick Game Program 



174 BASIC EXERCISES FOR TH E ATARI 

8.4 The Game of Craps 

The game of Craps is played with a pair of dice and has the following rules: 

The dice are thrown . Ifthe numbers showing on the dice add upto 7 
or 11, the player wins . If the numbers add upto 2, 3, or 12, the player 
loses. Ifthey add up to some number other than 7, 11 , 2,3 or 12, this 
number becomes the "point" and the player continues throwing 
until either: 

- The dice total 7, and the player loses 
- The point comes up, and the player wins. 

Exercise 1: Construct a program that will play the game of Craps N times 
and then compute the proportion of games won to the total games played. 

Exercise 2: Extend the program to compute the average number of throws 
per point. 

Solution: First, we want to simulate a throw of the dice. To do this we use 
the random number generating function , RNO, which normally returns a 
random number uniformly distributed in the interval [0,1] . To obtain a ran
dom integer in the interval [1,6] we must write: 

INT(6*RND(X)) + 1 

In some BASICs, such as Microsoft's MBASIC, RNO does not need a 
parameter and we can write: 

INT(6*RND) + 1 

Note: In ATARI BASIC, the parameter X has no effect on the random 
number. 

To simulate the throwing of two dice, we might be tempted to write: 

2*(INT(6*RND(1)) + 1) 

but the computer would then be acting as if both dice always had the same 
value. The correct simulation requires the instruction : 

(INT(6*RND(1)) + 1) + (INT(6*RND(1)) + 1) 

or the instruction: 

INT(6*RND(1)) + INT(6*RND(1)) + 2 

Let us now look at the flowchart presented in Figure 8.12. 



GAMES 175 

F = INT(6.RND(1)) + INT(6·RND(1)) + 2 

S = INT(6.RND(1)) + INT(6.RND(1)) + 2 

YES NO 

A 

L---------Figure 8. 12: Flowchart for the Game of Craps Program 



176 BASIC EXERCISES FOR TH E ATARI 

Programming this exercise presents no particular problems. The program 
derived from the flowchart in Figure 8.12 is very simple (see Figure 8.13). It 
can be shown mathematically that the true probability of winning is: 

244 = 0.4929 
495 

If the average of the result obtained varies significantly from this figure (i n a 
large number of trials), the random number generator is defective. 

The average number of throws per game is given by J/N , where J is the total 
number of throws. We can solve Exercise 2 by extending the program shown 

100 REM CRAPS SIMULATOR 
110 REM AUTHOR: J . P. 
115 REM LAMOITIER 
118 DIM R$(9) 
120 PRINT :PRINT "NUMBER OF GAMES "; 
122 PRINT "TO PLAY"; 
125 INPUT N 
130 101=0 
140 FOR 1=1 TO N 
150 F=INT(6*RND(1»+INT(6*RND(1»+2 
160 IF F=7 OR F=11 THEN 210 
170 IF F=2 OR F=3 OR F=12 THEN 220 
180 S=INT(6*RND(1»+INT(6*RND(1»+2 
19Q IF S=7 THEN 220 
200 IF S<>F THEN 180 
210 101=101+1 
220 NEXT I 
230 PRINT" GAMES = ";N; 
232 PRINT" WINS = ";101 
235 PRINT" PROPORTION = ";W/N 
240 PRINT "PLAY AGAIN "; : INPUT R$ 
250 IF R$(1,1)="Y" THEN 120 
260 END 

figure 8.13: Game of Craps Program -----------------' 

NUMBER OF GAMES TO PLAY ?50 
GAMES = 50 WINS = 24 

PROPORTION = 0. 48 
PLAY AGAIN ?Y 

NUMBER OF GAMES TO PLAY ?100 
GAMES = 100 WINS = 51 

PROPORTION = 0.51 
PLAY AGAIN ?Y 

NUMBER OF GAMES TO PLAY ?200 
GAMES = 200 WINS = 95 

PROPORTION = 0.475 
PLAY AGAIN ?N 

figure 8.14: Sample Rounds from the Craps Program ------------' 



GAMES 177 

in Figure 8.13 and adding: 

J=O 

o = J + 1 (twice) 

and a corresponding output statement. This leads to the program shown in 
Figure 8.15, which, when executed, yields the results given in Figure 8.16. 

100 REM CRAPS SIMULATOR 
110 REM AUTHOR: J. P. 
115 REM LAMOITIER 
118 DIM R$(9) 
120 PRINT :PRINT "NUMBER OF GAMES "; 
122 PRINT "TO PLAY"; 
125 INPUT N 
130 W=O:J=O 
140 FOR 1=1 TO N 
150 F=INT(6*RND(1»+INT(6*RND(1»+2 
160 IF F=7 OR F=11 THEN 210 
170 IF F=2 OR F=3 OR F=12 THEN 220 
180 S=INT(6*RND(1»+INT(6*RND(1»+2 
185 J=J+1 
190 IF S=7 THEN 220 
200 IF S<>F THEN 180 
210 W=W+1 
220 NEXT I 
230 PRINT "GAMES = ";N; 
232 PRINT" WINS ";W 
235 PRINT "PROPORTION = ";W/N 
240 PRINT 
250 PRINT "AVERAGE NUMBER OF THROWS" 
255 PRINT "PER GAME = "; 
260 PRINT J/N 
270 PRINT "PLAY AGAIN ";:INPUT R$ 
280 IF RS(1, 1)="Y" THEN 120 
290 END 

L...---------------Figure 8.15: Modified Craps Program 

NUMBER OF GAMES TO PLAY ?100 
GAMES = 100 WINS = 51 
PROPORTION = 0.51 

AVERAGE NUMBER OF THROWS 
PER GAME = 1.98 
PLAY AGAIN ?Y 

NUMBER OF GAMES TO PLAY ?200 
GAMES = 2eO WINS 89 
PROPORTION = 0.445 

AVERAGE NUMBER OF THROWS 
PER GAME = 2.26 
PLAY AGAIN ?~I 

L...-------Figure 8.16: Sample Rounds from Modified Craps Program 



178 BASIC EXERCISES FOR TH E ATARI 

Conclusion 

The four games presented in this chapter were particularly easy to program 
for two reasons. There was either: 

1. an absence of strategy, or a very elementary strategy 

or 

2. no strategic position to evaluate. 

For any game that is played on a board (e.g. , Othello, Checkers, Chess) the 
manipulation of position coordinates will add still another layer of complexity 
to any strategy program . 

We would advise anyone who is interested in programming games to begin 
with simple games and then gradually build on this experience before at
tempting a task such as a Chess program. 

The following suggestions should give the game enthusiast a good basis in 
game programming: 

the game of NIM (like the Matchstick game but with several piles of 
matches) 

the game of MasterMind 

the game of Othello (beginning with a simple strategy, and then re
fining the strategy, progressively). 





CHAPTER 9 



Introduction 

Operations 
Research 

Problems in operations research often involve the manipulations of graphs. 
The Traveling Salesman Problem, PERT, and the topological sort all involve 
the use of graphs in one way or another. 

When working with graphs, the management of subscripts (coordinates) is 
quite subtle and can be difficult for even the most experienced programmer. 
Since subscripts usually have integer values, BASIC interpreters that support 
integer variables in addition to "floating point" variables (such as MICRO
SOFT BASIC and XY BASIC) perform well in this type of application, since the 
arrays occupy less memory. 

Because of their subtlety, the following exercises should not be attempted 
until the previous exercises have been thoroughly understood. 

9.1 Topological Sort 

Let T1, T2, • . • TN represent tasks that must be carried out in an order subject 
to precedence constraints. These constraints are entered as pairs (I,)) , which 



182 BASIC EXERCISES FOR THE ATARI 

indicate that task T
J 
cannot be started until task TI has been completed. The 

pair (0,0) will terminate the list of precedence constraints. 

Exercise: Given the following data-a set of tasks and a list of precedence 
constraints (I,j)-find an order for executing the tasks that satisfies the con

strai nts. 

Analysis: The following approach should be taken: 

Initialize an array T to zero. As the list of pairs (I ,j) is read, place a 1 in 
the corresponding array element T(I,j) 

After T is set up, search for a task that either has no constraints or has 
constraints that have been previously satisfied. Such a task, K, is 
characterized by: 

T(I ,K) = 0 for alii 

The execution of this task satisfies, in turn, some constraints. To denote this, 

set: 
T(K,J) = 0 for all J 

Thetask (K) should now be "checked off" and its number should be output to 

indicate that it has been completed. Now set: 

T(K,K) = 1 

so that the same task will not be considered again . Continue the process for 
unconstrained tasks until all tasks have been completed . At this point one of 
the following situations must be the case: 

Case 1: After counting the number of completed tasks, we find that 
all N tasks have been processed. In this case, we have a solution to 
the problem. 

Case 2: After counting the number of completed tasks, we find that 
the number is less than N. In this case, the problem has no solution 
and an appropriate message should be output. 

Now apply the program to the example given by the directed graph pre
sented in Figure 9.1. In this graph we can see that an arrow goes (for example) 
from node 8 to node 5. This arrow signifies that task 5 cannot be started until 
task 8 is completed. This graph is represented in the program by the DATA 
statements listed in Figure 9.2. 

Solution: Break the problem into three parts as suggested in the analysis: 

1. Initialize the array T to zero. 
2. Read the data and set up the array T. 
3. Execute the algorithm. 



OPERATIONS RESEARCH 183 

3 

5 

2 

4 

L..-____________ figure 9.1: Directed Graph Illustrating Precedence Constraints 

1000 DATA 8 
1010 DATA 1,3 
1020 DATA 2,3 
1030 DATA 8,3 
1040 DATA 3,5 
1050 DATA 4,6 
1060 DATA 6,7 
1070 DATA 6,8 
1080 DATA 2,4 
1090 DATA 8,5 
1100 DATA 7,8 
1110 DATA 0,0 

L..-_______ figure 9.2: Data Statements for Precedence Constraints 

These three parts correspond to the subroutines illustrated in Figure 9.3. 
Let us take a closer look at each part: 

Initialization section: Some BASIC interpreters automatically initialize all 
variables to zero, but, since this should never be relied on, it should be done 
explicitly as in lines 500 to 540 of the program. 

Set-up section: As the input data are read, the task numbers are checked, 
and constraints are verified to consist of distinct components (otherwise, a 
task would have to be preceded by itself) . If an error is detected, a message is 
output. If a constraint (K,L) is accepted we set: 

T(K,L) = 1 

This is done in lines 600 to 730 of the program . 



184 BASIC EXERCISES FOR THE ATARI 

Execution section : The algorithm is carried out in lines 800 to 960. This 
portion of the program is shorter than the set-up section, because the algo
rithm is simple and there is only one output instruction. 

We note that for a graph consisting of N tasks, there are at most N(N 2- 1) 

constraints. This fact is used in the FOR instruction on line 605 of the pro
gram. Figure 9.4 shows a sample run . 

100 REM THIS TOPOLOGICAL SORT 
102 REM PROGRAM DETERMINES THE 
105 REM ORDER IN WHICH TO DO A 
107 REM SET OF TASKS TO CERTAIN 
110 REM PRECEDENCE CONSTRAINTS 
120 PRINT "TOPOLOGICAL SORT" 
125 PRINT 
150 DIM T(20,20):N9=20 
170 REM INITIALIZE ARRAY T 
180 GOSUB 500 
190 REM READ, VALIDATE AND 
195 REM PRINT DATA. 
200 GOSUB 600 
210 REM INVOKE ALGORITHM 
220 GOSUB 800 
225 PRINT 
230 END 
500 FOR 1=1 TO N9 
510 FOR J=1 TO N9 
520 HI,J)=O 
530 NEXT J 
540 NEXT I:RETURN 
600 READ N 
601 PR INT "NUMBER OF TASKS = "; 
602 PRINT N:PRINT 
603 PRINT "LIST OF PRECEDENCE"; 
604 PRINT" CONSTRAINTS":PRINT 
605 FOR 1=1 TO N*(N-1)/2 
610 READ K,L 
620 IF K=O AND L=O THEN 720 
630 IF K<>L THEN 650 
640 PRINT "ERROR: TWO TASKS "; 
642 PRINT "HAVE THE SAME "; 
644 PRINT "NUMBER: ";K:STOP 
650 IF K>O AND K<N9 THEN 670 
660 PRINT "ILLEGAL FIRST TASK"; 
665 PRINT" NUMBER: ";K:STOP 
670 IF L>O AND L<N9 THEN 690 
680 PRINT "ILLEGAL LAST TASK"; 
685 PRINT" NUMBER: ";L:STOP 
690 HK,U=1 
695 PRINT" ";K;" ";L 
700 NEXT I 
710 PRINT "ERROR IN THE DATA." 
715 STOP 
720 C=I-1:PRINT 
730 PRINT "NUMBER OF "; 

Figure 9.3: Topological Sort Program (continues) _________ ..--1 



732 PRINT "CONSTRAINTS: ";C 
734 RETURN 
800 PRINT 
802 PRINT "THE ORDER OF THE "; 
804 PRINT "TASKS IS:":I=O 
810 K=1 
820 FOR J=1 TO N 
830 IF T(J,K)=1 THEN 920 
840 NEXT J 
850 1=1+1 
855 PRINT K;" "; 
860 FOR J=1 TO N 
870 T<K,J)=O 
880 NEXT J 
890 T(K,K)=1:GOTO 810 
920 K=K+1 
922 IF K<=N THEN 820 
930 IF I=N THEN RETURN 
940 PRINT "NO SOLUTION. "; 
942 PRINT N-I;" TASKS "; 
944 PRINT "CANNOT BE" 
946 PRINT "CARRIED OUT." 
960 STOP 

OPERATIONS RESEARCH 185 

L..-______________ Figure 9.3: Topological Sort Program 

TOPOLOGICAL SORT 

NUMBER OF TASKS = 8 

LIST OF PRECEDENCE CONSTRAINTS 

1 3 
2 3 
8 3 
3 5 
4 6 
6 7 
6 8 
2 4 
8 5 
7 8 

NUMBER OF CONSTRAINTS: 10 

THE ORDER OF THE TASKS IS: 
12467835 

L..-______________ Figure 9.4: Output of Ordered Tasks 

9.2 The Critical Path in a Graph 

The program presented here handles the ordering of a sequence of tasks of 
known duration. The tasks have been numbered in ascending order to simplify 



186 BASIC EXERCISES FOR THE ATARI 

the programming and to allow reasonably good output even on a micro
computer-based system . 

In view of the complexity of the problem, we will not formally state it as 
an exercise; instead, we will proceed directly to the implementation of a 
solution . 

Representation of the data: The set of tasks may be represented as 
a directed graph having one entry node and, in principle, one exit. This 
directed graph must not contain any cycles. An example of a legal graph 
appears in Figure 9.5. 

2 

4 

3 

figure 9.5: Directed Graph for Critical Path Analysis ---------' 

In this graph each arrow corresponds to a task having a certain duration. 
For example, the arrow between nodes 2 and 5 represents a task of duration 
4. 

Each task is characterized by: 

a starting node number 

an ending node number 

a duration (in arbitrary units) 

a caption . 

Thus, the graph shown in Figure 9.5 corresponds to the task list displayed in 
Figure 9.6. 

2010 DATA 1,2,5,JACK UP 
2020 DATA 1,3,9,REMOVE WHEEL 
2030 DATA 2,3,5,WHEEL EXCHANGE 
2040 DATA 2,S,4,BOLT ON WHEEL 
2050 DATA 3,4,6,LET DOWN 
2060 DATA 4,5,1,TIGHTEN UP 

figure 9.6: Data Statements for Critical Path Analysis --------..... 



OPERATIONS RESEARCH 187 

We will read the data into three arrays: 

1. Array S will contain the start nodes for each task. 
2. Array F will contain the finish nodes for each task. 
3. Array D will contain a duration for each task. 

A character string of C$ will hold the captions. We limit the program to 
problems involving a maximum of twenty tasks. To simplify the input of data, 
a string variable D$ (with a maximum length of twenty characters) will be 
used to receive the caption field of each task. Thus, all the captions will 
be limited to twenty characters. The string C$ will have a length of 20 x 20 = 

400 characters. 
The read subroutine will: 

Read the input data. 
Detect end-of-data coded by N1 = N2 = O. 
Verify that N 1 < N2. 
Initialize certain arrays. 
Accumulate the number of tasks. The total is stored in the vari
able N. 
Print out the input data. 

In this subroutine, which is listed in Figure 9.7, the variables will have the 
following significance: 

N9: a variable that is set to the maximum number of tasks at the 
beginning of the main program. 
N 1 and N2: the variables into which the numbers of the starting and 
finishing nodes are read . N 1 and N2 are ultimately transferred to the 
arrays Sand F. 
Array E: the earliest possible starting time for each task. E is initialized 
to zero. 
Array L: the latest possible starting time for a task without delaying 
project completion. L is initialized to zero. 

After calling the read subroutine displayed above, the main program will 
compute the earliest possible starting time for each task. 

Consider the example from the graph shown in Figure 9.5. The task going 
from node 3 to node 4 cannot start unless the tasks that terminate at node 3 
have been completed . This time E(3) is characterized by 

9 ~ E(3) l. which implies E(3) = 10 
5 + 5 ~E(3j 

For the genera I case, we start with E(l) = 0 and make the followi ng compu
tation: 

E(F(I)) = MAX [E(F(I)),(E(S(I)) + 0(1)] 



188 BASIC EXERCISES FOR THE ATARI 

950 REM SUBROUTINE TO READ AND 
960 REM PRINT DATA AND 
970 REM INITIALIZE 
980 PRINT "FROM TO "; 
985 PRINT "DURATION TASK" 
990 PRINT 
1000 FOR 1=1 TO N9 
1010 READ N1,N2,0,OS:0(I)=0 
1020 IF N1=0 AND N2=0 THEN 1100 
1025 IF N1<N2 THEN 1050 
1030 PRINT "TASKS MUST BE IN "; 
1035 PRINT "ASCENDING ORDER" 
1040 STOP 
1050 ECN1)=0:ECN2)=0 
1055 L(N1)=0:LCN2)=0 
1060 SCI)=N1:FCI)=N2 
1062 LS=" 
1063 LSC1,LENCOS»=OS 
1065 C$C20*1-19)=LS 
1070 PRINT" ";SO);" 
1072 PRINT FCI);" 
1074 PRINT OCI);" 
1080 NEXT I 
1090 N=N9:GOTO 1110 
1100 N=I-1 
1110 PRINT 
1120 PRINT "NUMBER OF 
1125 PRINT" = ";N 
1130 RETURN 

". , 
" . , 

";0$ 

TASKS" ; 

Figure 9.7: Read Subroutine for Critical Path Analysis --------..... 

which is implemented in lines 270 to 300 of the program given in Figure 9.9. 
To compute the latest acceptable time for finishing a task, we work in the 

opposite direction. For the exit node we have: 

L(F(N)) = E(F(N)) 

where L is the array of latest acceptable finishing times. Working backwards: 

L(S(I)) = MIN[L(S(I)),(L(F(I)) - D(I))] 

This calculation is realized in lines 320 to 360 of the program shown in Figure 
9.9. 

As soon as we know the following information for each task: 

E(S(I)) , the earliest starting time 

- L(F(I)), the latest finishing time 

- 0(1)' the normal duration 

we can obtain the maximum delay permitted for each task. This time is given 
by: 

F1 (I) = L(F(I)) - E(S(I) - D(I)) 



OPERATIONS RESEARCH 189 

If F1 (I) = 0, then any delay in the completion of this task will delay the entire 
project. The variable C1 is used to count these "critical" tasks. This count is 
carried out in lines 410 to 440 of the program in Figure 9.9. 

We can now print out the following information for each task: 

Number of the starting nOde} 
Number of the finishing node 
Duration 

Earliest starting time 
Latest finishing time } 
Maximum admissible delay 

Input Data 

Results of the 
Computation 

This output is done in lines 495 to 550 of the program shown in Figure 9.9. 
The calculation of the total duration of the critical path is defined by the 

variable C3 (which was initialized to zero) in lines 570 to 590: 

C3 = MAX(C3,L(F(I))) 

Since the critical path consists of only those tasks with admissible delays of 
zero, the path can be output starting from the entry node (lines 595 to 720) as 
follows: 

Find the initial task (lines 640 to 660). 

Print the task (lines 670 and 675) . 

Find the next task (lines 700 to 720), printthe task, and continue until 
the end is reached . 

The flowchart for this example is displayed in Figure 9.B. The program 
listing is shown in Figure 9.9. 

When the program is executed its output consists of three parts (see Figure 
9.10): 

1. the display of the inputs and the total number of tasks 

2. the critical path analysis; i.e., for each task: 

- the start task node number 

- the finish task node number 

- the earliest possible start date 

- the latest possible completion date without delaying project 
completion 

- the time available for "slippage" 

3. the critical path . 



190 BASIC EXERCISES FOR THE ATARI 

fiND STARTING TASK 

NO 

YES 

NO 

YES 

Figure 9.8: Flowchart for the Critical Path Program ---------------------" 



100 REM THE CRITICAL PATH IN 
105 REM A GRAPH 

OPERATIONS RESEARCH 191 

110 DIM S(20),F(20),E(20),L(20),L$(40) 
112 DIM F1(20),C$(400),D$(20),D(20) 
115 N9=6 
120 REM 
130 REM READ AND PRINT DATA 
150 GOSUB 980 
250 REM INITIALIZE AND COMPUTE 
255 REM EARLIEST START DATE 
260 C1=0:C2=0:C3=0 
270 FOR 1=1 TO N 
280 M1=E(S(I»+D(I) 
290 IF E(F(I»<=M1 THEN E(F(I»=M1 
300 NEXT I 
310 REM 
320 L(F(N»=E(F(N» 
330 FOR I=N TO 1 STEP -1 
340 L 1=S (Il 
345 M2=L(F(I» - D(I) 
350 IF L(L1»=M2 OR L(L1)=0 THEN L(L1)=M2 
360 NEXT I 
400 REM 
410 FOR 1=1 TO N 
420 F1 (Il=UF(I»-E(S(I»-D(I) 
430 IF F1(I)=0 THEN C1=C1+1 
440 NEXT I 
495 PRINT 
500 PRINT "CRITICAL PATH "; 
510 PRINT "ANALYSIS":PRINT 
520 PRINT "FROM TO START"; 
525 PRINT "DONE STOP TASK":PRINT 
530 FOR 1=1 TO N 
532 L$=" 
535 L$(2)=STR$(S(I» 
536 L$(6)=STR$(F(I» 
540 L$(11)=STR$(E(S(I») 
542 LS(16)=STRS(L(F(I») 
544 LS(21l=STRS(F1<I» 
546 LS(24,37)=CS(20*I-19,20*I) 
548 PR INT LS 
550 NEXT I 
560 REM 
570 FOR 1=1 TO N 
580 IF L(F(I»>C3 THEN C3=L(F(I» 
590 NEXT I 
595 PR INT 
600 PRINT "THE LENGTH OF THE "; 
602 PRINT "CRITICAL PATH IS "; 
604 PRINT C3 
610 PRINT 
620 PRINT "IT GOES FROM TO" 
630 PRINT 
640 FOR 1=1 TO N 
650 IF F1 (I )=0 THEN 670 
660 NEXT I 

'------------- Figure 9.9: Critical Path Program (continues) 



192 BASIC EXERCISES FOR THE ATARI 

670 PRINT" ";S(I); 
675 PRINT" ";FCI) 
680 C 2=C 2+1 
690 IF I>N THEN 730 
700 FOR J=1 TO N 
710 IF S(J)<>F(I) OR F1(J)<>0 THEN 720 
715 I=J:GOTO 670 
720 NEXT J 
730 IF C1=C2 THEN 740 
732 PRINT "MORE THAN ONE "; 
734 PR INT "CR IT !CAL PATH." 
740 PRINT 
80C END 

Figure 9.9: Critical Path Program ------------------' 

FROM TO DURATION TASK 

1 2 5 JACK UP 
1 3 9 REMOVE WHEEL 
2 3 5 WHEEL EXCHANGE 
2 5 4 BOL T ON WHEEL 
:3 4 6 LET DOWN 
4 5 1 TIGHTEN UP 

NlJIIIBER OF TASKS = 6 

CRITICAL PATH ANALYSIS 

FROM TO START DONE STOP TASK 

1 2 0 5 0 JACK UP 
1 :3 0 10 1 REMOVE WHEEL 
2 3 5 10 0 WHEEL EXCHANGE 
2 5 5 17 8 BOl T ON WHEEL 
3 4 10 16 0 lET DOWN 
4 5 16 17 0 TIGHTEN UP 

THE lENGTH OF THE CRITICAL PATH IS 17 

IT GOES FROM TO 

1 2 
2 3 
3 4 
4 5 

Figure 9.10: Output from the Critical Path Program -----------1 
9.3 The Traveling Salesman Problem 

A salesman must visit customers living in N cities. He must decide in which 
order he should visit his customers, so that he can minimize the total cost of 
the trip . In this version of the problem the salesman must return to his original 



OPERATIONS RESEARCH 193 

starting point. A graph showing the locations of the cities that must be visited 
is shown in Figure 9.11. 

Gross Volley 

Sacramento 

'--------- Figure 9.11: Cities for the Traveling Salesman Program 

Note: The costs, O(l,J) of traveling from city I to city J are known for this 
problem. These costs can be expressed as distances in miles or in other units. 

Suggested method: For this problem we will not use the general solution, 
which is complex and slow to run. Instead, we will use the following heuristic 
method: 

1. Select a city as the starting point. 

2. Go to the next closest city. 

3. Go from that city to the next closest city not yet visited and so on 
until all of the cities have been visited . Then return to the starting city. 

4. Note the cost of this route. Repeat the process, using each of the 
other cities in tu rn as the starti ng city. 

Exercise: There are four steps to this problem: 

1. Analyze the problem by breaking it up into small sections. 

2. Construct a concise flowchart, detailed to the level of subroutine 
calls . 

3. Construct detailed flowcharts for each subroutine. 

4. Write the program. 



194 BASIC EXERCISES FOR THE ATARI 

For this problem we will use the following variables: 

V$ = an array of character strings containing the names of the cities 
to be visited. 

o = a two-dimensional array containing the costs (distances): 

O(l,J) is the cost of going from city I to city J 

0(1,1) = o. 
T = an array containing the route currently being constructed. 

T1 = an array containing the best route yet found. 

S = a variable containing the cost of the best route yet found. 

C = a variable containing the cost of the route currently being 
constructed. 

Solution: As usual, this problem is not difficult provided it is attacked me-
thodically. The complete program will contain several parts: 

Read the data. 

Print the data. 

Find the best itinerary (the computational part). 

Print this itinerary. 

As an aid in evaluating an algorithm, we might want to see the provisional 
itineraries displayed. For this reason it is desirable to use a subroutine to print 
the output. Thus, we could insert a COSUB instruction when a display of the 
output is desired. 

The "cost matrix," 0 , may be either symmetrical or asymmetrical. We will 
address both cases in the section that reads the data. The user's data prepara
tion can be simplified when the cost matrix is symmetrical. This line of attack 
leads to the conceptual flowchart shown in Figure 9.12. 

The output display of a cost matrix is the same whether or not the matrix is 
symmetrical , but the length of the lines must be taken into account. 

To obtain a suitable printout we use the string array, V$, which contains the 
names of the cities visited. The cost matrix is represented by a square array 
containing rows and columns captioned with the names of the cities. 

In the flowchart shown in Figure 9.12, the structure of the algorithm was 
not revealed . Let us try to fill it in progressively. First, we must put together an 
itinerary, and then compare the cost of that itinerary to the cost of a different 
itinerary. To do this, we will use the following variables: 

an array, T, that contains the sequence of city numbers in the order 
that they were visited on the itinerary. 



OPERATIONS RESEARCH 195 

Call subroutine 1000 to read data. 
Call suhroutine 1500 to display data. 

Ca ll subroutine 2000. 

Ca ll subroutine 3000. 

Figure 9.12: Conceptual Flowchart for the Traveling Salesman Program 

a constant, C, that represents the cost of an itinerary. The constant C 
is given by: 

N - 1 

C = L O(T(I) ,T(I + 1)) + O(T(N),T(l)) 
1=1 

We are now at the point where we can construct a more detailed flowchart 
(see Figure 9.13) . This flowchart will not, however, indicate the method used 
to select the next city. To determine this final detail, let us consider what 
happens in the course of working out an itinerary. We will assume that L - 1 
cities have been selected, and their numbers have been moved into (T)l 
through T(L - 1) . We then successively examine all cities, j, such that 

) ". T(K) for K = 1, 2, . .. , L - 1 

and retain the city for which the cost O(T(L - 1 ),)) is the least. This) is then 
stored in T(L) . This leads us, finally, to the flowchart shown in Figure 9.14, 
which is now detai led enough to be used for programming. 

The program, shown in Figure 9.15, has been divided into subroutines to 



196 BASIC EXERCISES FOR THE ATARI 

fntitiafize to maximum cost .. 

Construction of a 
route starting from I 
node f • 

Go back an start ---.. 
from this no~e (city) 

C = 0 
T( I ) = I 

L = 2 

LOOK fOR THE 
NE XT CI TY 

LET LI BE ITS /I 
LET C I Bf THE COST 

REMEMBER T(L) = LI 
ACCUMULATE C = C + CI 

L = L+I 

S TORAC-,E Of THIS 

ROlJTE If IT IS THE 
LEAST EXPEN SIVE 

ROUTE SO fAR 

YES 

Figure 9.13: More Detailed Flowchart for the Traveling Salesman Program ------------' 



Initialize to 
maximum cost. 

OPERATIONS RESEARCH 197 

r------------------, 
I I 
I . Has city I already I 
I been chosen? I 
I I 
I I 
I I 
I I 

YE S 

YE S 

YES 

L..... ____________ Figure 9.14: Final Flowchart for the Traveling Salesman Program 



198 BASIC EXERCISES FOR THE ATARI 

20 REM VS HOLDS THE NAMES OF 
22 REM THE CITIES 
25 REM T = WORKING TABLE OF THE 
30 REM CITIES ALREADY ON 
32 REM THE ROUTE 
35 REM T1 CONTAINS THE NUMBERS 
37 REM OF THE CITIES OF THE 
40 REM LEAST COSTLY TRIP YET 
42 REM DEVISED 
45 REM D = THE MATRIX OF 
47 REM DISTANCES OR COSTS 
90 DIM VS(60),TC20),T1C20),SSC9) 
95 DIM DC20,20),NSC9),LSC40) 
100 PRINT "THE TRAVELING "; 
105 PRINT "SALESMAN PROGRAM" 
110 PRINT 
120 READ SS 
125 1 F SS="SYM" THEN 129 
126 GOSUB 800 
127 GOTO 130 
129 GOSUB 995 
130 GOSUB 1500 
140 GOSUB 2000 
150 GOSUB 3000 
780 END 
790 REM READ AN UNSYMETRIC 
795 REM COST MATRIX 
800 READ N 
810 FOR 1=1 TO N 
820 READ NS:CIT=I:GOSUB 4rrr 
822 VSCB,E)=NS 
825 NEXT I 
827 FOR 1=1 TO N 
830 FOR J=1 TO N 
840 READ D:DCI,J)=D 
850 NEXT J 
860 NEXT I 
870 RETURN 
990 REM READ A SYMETRIC 
992 REM COST MATRIX 
995 READ N 
1000 FOR 1=1 TO N 
1010 READ NS:CIT=I:GOSUB 4000 
1015 VSCB,E)=N$ 
1020 NEXT I 
1030 FOR 1=1 TO N 
1040 D CI, 1>=0 
1050 IF I+1>N THEN 1090 
1055 FOR J=I+1 TO N 
1060 READ D:DCI,J)=D 
1070 DCJ,I)=DCI,J) 
1080 NEXT J 
1090 NEXT I 
1100 RETURN 
1480 REM 
1490 REM SUBROUTINE TO PRINT 

Figure 9.15: Traveling Salesman Program (continues) -----------' 



1495 REM COST MATRIX 
1500 PRINT "THE COST OF TRAV"; 
1505 PRINT "EL BETWEEN CITIES:" 
1510 PRINT :PRINT" "; 
1520 FOR 1=1 TO N 
1530 CIT=I:GOSUB 4000 
1535 PRINT VS(B,E);" "; 
1540 NEXT I 
1550 PRINT 
1555 PR INT 
1560 FOR 1=1 TO N 
1562 LS=" 
1565 CIT=I:GOSUB 4000 
1570 LS(1)=VS(B,E) 
1580 FOR J=1 TO N 
1595 LS(4*J+2)=STRS(D(I,J» 
1600 NEXT J 
1605 PR INT LS 
1608 PRINT 
1610 NEXT I 
1620 RETURN 
1970 REM 
1980 REM BEGIN ALGORITHM TO 
1985 REM FIND THE BEST ROUTE 
1990 REM 
2000 S=1E+38 
2002 FOR 1=1 TO N 
2005 C=O 
2010 T(1 )=1 
2020 FOR L=2 TO N 
2030 GOSUB 2500 
2040 T(U=L 1 
2050 C=C+C1 
2060 NEXT L 
2065 C=C+D(T(N),T(1») 
2070 GOSUB 2700 
2090 NEXT I 
2470 REM 
2480 REM SELECT THE NEXT 
2485 REM CITY TO VISIT 
2490 REM 
2500 C1=1E+38 
2510 FOR J=1 TO N 
2515 FOR K=1 TO L-1 
2520 IF T<K )=J THEN 2560 
2525 NEXT K 
2530 IF D(TCL-1),J»=C1 THEN 2560 
2540 C1=D(T<L-1l,J) 
2550 L 1=J 
2560 NEXT J 
2570 RETURN 
2670 REM 
2680 REM IS SOLUTION THE BEST 
2685 REM SO FAR? IF SO, SAVE 
2690 REM T IN T1 AND C IN S. 
2700 IF S<=C THEN 2750 

OPERATIONS RESEARCH 199 

1-. ________ Figure 9.15: Traveling Salesman Program (continues) 



200 BASIC EXERCISES FOR THE ATARI 

2710 5=C 
2720 FOR K=1 TO N 
2730 T1CK)=T(K) 
2740 NEXT K 
2750 RETURN 
3000 PRINT 
3010 PR INT " REC OM" ; 
3012 PRINT "MENDED ITINERARY:" 
3015 PRINT 
3020 FOR L=1 TO N-1 
3025 CIT=T1CL):G05UB 4000 
3030 PRINT VSCB,E); 
3031 CIT=T1CL+1):G05UB 4000 
3032 PRINT" TO ";VSCB,E); 
3034 PRINT " "; 
~036 PRINT DCT1CL),T1CL+1» 
3040 PRINT 
3050 NEXT L 
3051 CIT=T1CN):G05UB 4000 
3052 PRINT VSCB,E); 
3054 CIT=T1(1):GOSUB 4000 
3056 PRINT" TO ";VSCB,El; 
3057 PRINT" "; 
3058 PRINT DCT1(N),T1(1» 
3060 PRINT 
3070 PRINT "TOTAL COST:"; 
3075 PRINT" ";5 
3080 RETURN 
4000 REM STRING INDEXING SUBROUTINE 
4010 B=3*(CIT-1)+1 
4020 E=3*CIT 
4030 RETURN 
5000 END 

Figure 9.15: Traveling Salesman Program ____________ -1 

make it easier to understand. The main program does little more than call the 
four subroutines: 

800 or 995 
1500 
2000 
3000 

Read the cost matrix. 
Display the cost matrix. 
Perform the computation. 
Display the solution found. 

The computation subroutine then calls two other subroutines: 

2500 Select the next city 
2700 Check to see if the itinerary just constructed is better 

than the previous itineraries. If so, store it. 

Let us now look at two sample runs in Figures 9.16 and 9.17. 



THE TRAVELING SALESMAN PROGRAM 

THE COST OF TRAVEL BETWEEN CITIES: 

SAC MVL OAK GVL VAL CLK SF 

SAC 0 45 67 13 40 68 89 

MVL 47 0 29 37 22 23 41 

OAK 68 30 0 73 21 24 12 

GVL 13 36 74 0 42 60 95 

VAL 40 24 22 43 0 36 33 

ClK 67 23 25 60 35 0 36 

SF 89 40 13 98 35 36 0 

UKH 81 36 37 75 48 15 46 

RECOMMENDED ITINERARY: 

GVL TO SAC 13 

SAC TO VAL 40 

VAL TO OAK 22 

OAK TO SF 12 

SF TO ClK 36 

ClK TO UKH 13 

UKH TO MVl 36 

MVl TO GVl 37 

TOTAL COST: 209 

6155 DATA NON,8 
6160 DATA SAC,MVL,OAK,GVL,VAl 
6165 DATA ClK,SF ,UKH 
6170 DATA 0,45,67,13,40,68,89,81 
6180 DATA 47,0,29,37,22,23,41,36 
6190 DATA 68,30,0,73,21,24,12,37 
6200 DATA 13,36,74,0,42,60,95,73 
6210 DATA 40,24,22,43,0,36,33,49 
6220 DATA 67,23,25,60,35,0,36,13 
6230 DATA 89,40,13,98,35,36,0,47 
6240 DATA 81,36,37,75,48,15,46,0 

UKH 

81 

36 

37 

73 

49 

13 

47 

0 

OPERATIONS RESEARCH 201 

'--------- Figure 9.16: First Run of the Traveling Salesman Program -



202 BASIC EXERCISES FOR THE ATARI 

THE TRAVELING SALESMAN PROGRAM 

THE COST OF TRAVEL BETWEEN CITIES: 

SAC MVl OAK GVl VAL ClK SF UKH 

SAC 0 45 67 13 40 68 89 81 

MVL 45 0 29 37 22 23 41 36 

OAK 67 29 0 73 21 24 12 37 

GVL 13 37 73 0 42 60 95 73 

VAL 40 22 21 42 0 36 33 49 

ClK 68 23 24 60 36 0 36 13 

SF 89 41 12 95 33 36 0 47 

UKH 81 36 37 73 49 13 47 0 

RECOMMENDED IT INERARY: 

GVl TO SAC 13 

SAC TO VAL 40 

VAL TO OAK 21 

OAK TO SF 12 

SF TO ClK 36 

ClK TO UKH 13 

UKH TO MVl 36 

MVl TO GVl 37 

TOTAL COST: 208 

6155 DATA SYM,8 
6160 DATA SAC,MVl,OAK,GVl,VAl,ClK 
6165 DATA SF ,UKH 
6170 DATA 45,67,13,40,68,89,81 
6180 DATA 29,37,22,23,41,36 
6190 DATA 73,21,24,12,37 
6200 DATA 42,60,95,73 
6210 DATA 36,33,49 
6220 DATA 36,13 
6230 DATA 47 

'-- Figure 9.17: Second Run of the Traveling Salesman Program --------' 



OPERATIONS RESEARCH 203 

Figure 9.18 shows the route that corresponds to the sample run in Figure 
9.17. 

Ukiah 

Marysville 
....... -.:.-.------_ Gross Volley 

Sacramento 

1..-. ___________ figure 9.18: Route Calculated by first Run 

This result is not actually the trip that would be the least expensive. More 
elaborate methods would have to be used to find the least expensive trip. 
This trip is shown in Figure 9.19. The cost associated with this itinerary is 206. 

Ukiah 

Marysv ille 
- ..... :..:.::.;.:..:.:.~:.....-----..... Grass Volley 

Sacramento 

1-.-------------- figure 9.19: Least Expensive Route 



204 BASIC EXERCISES FOR THE ATARI 

Note: The following information should be considered : 

If one city is "equidistant" from two other cities and if the costs are 
minimal, the algorithm we programmed does not perform succes
sive attempts with each city in turn. Instead, it systematically selects 
the city that comes first, in the order of subscripting. 

To force the program to attempt a route from the second city, the cost 
of the transit to the first city must be increased artificially by a small 
amount. The program must then be run a second time. 

To increase the algorithm's execution speed, the program could 
be made more elaborate; this would involve forcing the program 
to consider the byways required to make up a truly minimal cost 
itinerary. 

Conclusion 

We have studied three simple programs in operations research. You have 
probably seen that, although the problems seemed simple, the correspond
ing programs were lengthy and sometimes quite complicated. Generally 
speaking, each time we had to "walk a graph" we ended up with a subtle 
subscript-handling operation that made the programming a challenge. 

If you find this subject interesting, we recommend studying the following 
problems: 

1. Kruskal 's algorithm 

2. the Transportation Problem 

3. flow optimization in a graph (the Ford-Fulkerson algorithm) 

4. linear programming (the simplex method). 





CHAPTER 10 



Statistics 

Introduction 

The computer is a prime tool for handling problems that involve statistics 
and statistical applications because it can provide high-speed computations 
and rapid access to large amounts of data. 

This chapter will present simple, but extremely useful, statistics programs. 
As an example of their usefulness, note that the linear regression subroutine 
explained in this chapter has already been applied to the rate of growth 
computation studied in Chapter 7. 

The number of exercises presented here has been limited to maintain a 
balance with the rest of the book. It should be realized, however, that a large 
number of programs have been written in this domain. 

10.1 The Average of a Sequence of Measurements 

We want to compute the arithmetic mean, M, of a sequence of measure
ments. In this exercise al l the data are assumed to be incorporated into the 
program. A numerical value of - 999 signals the end of the data. 



208 BASIC EXERCISES FOR THE ATARI 

Exercise: First, analyze the problem. Then, draw a flowchart, and, finally, 
write the program. 

Solution: Each sample measurement is used only once in the course of 
computing the sum M. Therefore, there is no need to use an array. The total 
number of samples will betallied in a variable, N, which will be available later 
for the division. So that the dummy va lue - 999 is not added to M , the follow
ing test for end-of-data must be carried out: 

If A '* - 999, then continue the accumulation: 

M=M+A 
N = N + 1 

If A = - 999, then all the data have been read and we must com
plete the computation with the division: 

M = MIN 

This leads to the flowchart shown in Figure 10.1. 

Figure 10.1: Flowchart for Calculating Arithmetic Mean ______ ---1 



STATISTICS 209 

Programming this flowchart is easy (see Figure 10.2) . The only complica
tion lies in seeing that the results are presented clearly (as in Figure 10.3) . 

10 M=O: N=O 
110 READ A 
120 IF A=-999 THEN 170 
130 N=N+1 
140 M=M+A 
150 GOTO 110 
170 M=M/N 
180 PRINT "NUMBER OF "; 
185 PRINT "SAMPLES = ";N 
190 PRINT 
200 PRINT "MEAN 
205 PRINT "= ";M 
210 DATA 12,25,15,0,-999 
220 END 

". , 

L..-____________ Figure 10.2: Arithmetic Mean Program 

NUMBER OF SAMPLES = 4 J 
MEAN = 13 

L..-________ Figure 10.3: Output from Arithmetic Mean Program 

10.2 Mean, Variance and Standard Deviation 

We can use the following formulas to calculate the mean, variance, and 
standard deviation of a series of N measurements: 

1 N 
Mean M = - l Am 

N 1=1 

1 N 
Variance V = -N-- L (A(I) - M)2 

- 1 1 = 1 

Standard Deviation S = Vv 
As was done in the preceding program, the data is incorporated into the 

program, and the va lue - 999 signals the end ofthe data (similarto an end-of
file indicator) . 

Exercise 1: Given a series of measurements (assumed to be contained in 
the program), compute the mean, variance, and standard deviation, using 
the preceding formulas . Consider the exercise in three phases: 

Phase A: Draw a flow chart that describes the computation of the three 
quantities. 

Phase 8: Modify the formula for V, so that the flowchart will contain only 
one loop. 

Phase C: Write a program that corresponds to the second flowchart. 



210 BASIC EXERCISES FOR THE ATARI 

Solution: Let us look at the three phases in detail. 
Phase A: It seems natural to construct the flowchart in two parts: 

1. to compute the mean 

2. to compute the variance and standard deviation . 

This yields the flowchart shown in Figure 10.4 that incorporates two loops 
and two passes over the data . 

V=_V_ 
N-) 

Figure 10.4: Flowchart with Two l.oops for Mean, Variance and Standard Deviation ------' 



STATISTICS 211 

When the amount of data is small, reading the data twice is not a problem. 
Quite the contrary is true, however, in practical applications when large files 
of data are being handled: two passes over the data would approximately 
double the execution time in a multiprogramming environment. 

More importantly, though, in a time-sharing environment, other programs 
would be much slower in their response time. For this reason, we attempt to 
minimize the number of file accesses. 

Phase B: Expanding the formula for V we obtain: 

V ~ N ~ 1 [~, All)' - 2~~,A(r) + NMJ 

and since: 

N 

2 A(I) = NM 
1 = 1 

we can simplify the equation, giving: 

V = -'- [i A(I)2 - NM~ 
N-'I = I J 

This formula allows M and V to be computed within a single loop. This is 
illustrated by the flowchart in Figure 10.5. 

Phase C: This flowchart is simple and straightforward to program. As usual, 
an effort should be made to obtain a careful and clear display of the results . 
The program is shown in Figure' 0.6. The sample run is shown in Figure 10.7. 

Exercise 2: Modify the program in Figure 10.6 to compute the numeric 
value of the following indicators of sample dispersion: 

Skewness: S = --'- i (A(I) - M)3 
N(SI)3 1 = I 

Kurtosis: K = --'- i ( A(I) - M)4 
N(SI)4 I = I 

where SI equals standard deviation . 

Solution: We note that the second-order moment is written : 

, N 

M2 = - 2 (A(I) - M)2 
N 1=1 

It corresponds to a "biased" estimator of variance. 



212 BASIC EXERCISES FOR TH E ATARI 

M = MIN 

V = A2 - N . M • M 

N-l 

s=Vv 

M=O 
N=O 

A2 = 0 

NO 

N=N+l 
M=M+A 

A2 = A2 + A • A 

Figure 10.5: Flowchart with One Loop for Mean, Variance and Standard Deviation _____ --1 

100 M=O 
110 N=O 
120 A 2=0 
130 READ A 
140 IF A=-999 THEN 190 
150 N=N+1 
160 M=M+A 
170 A2=A2+A*A 
180 GOTO 130 
190 M=M/N 
200 V=(A2- N*M*M)/(N-1) 
210 S=SQR(V) 
220 PRINT "NUMBER OF "; 
225 PRINT "SAMPLES = ";N 

Figure 10.6: Mean, Variance and Standard Deviation Program (continues 



230 PRINT " 
235 PRINT "MEAN = "iM 
240 PRINT" "i 

". , 

245 PRINT "VARIANCE = "iV 
250 PRINT "STANDARD ". 
255 PRINT "DEVIATION ~ ''is 
260 END 
300 DATA 
310 DATA 
320 DATA 
330 END 

9,9.9,10,8.5,9,10.1 
10,9.8,10.2 
-999 

STATISTICS 213 

L..-____ Figure 10.6: Mean, Variance and Standard Deviation Program 

NUMBER OF SAMPLES = 9 
MEAN = 9.61111111 

VARIANCE = 0.37361125 
STANDARD DEVIATION = 0.6112374743 

L..-_______________ Figure 10.7: Statistical Output 

Let us define: 

N 
VI = L (A(I) - M)2 

I = I 

We have: 

V -'- V = N _, I 

, 
M 2 = -VI 

N 
We can now expand the two formulas for Sand K: 

S= 

K= 

= 

N (~I) + 

N (~) 2 

N 

V/ 

( L A(I)4 - 4M L A(I)3 + 6M2 LAW 

- 4M3 L A(I) + NM4) 



214 BASIC EXERCISES FOR THE ATARI 

Now we need to insert the calculations l: A(1)3 and I A(I)4 into the loop. If 
we accumulate them in variables A3 and A4, respectively, we can obtain S 
and K by: 

S= 

K = ;2 (A4 - 4M A3 + 6M2 A2 - 3NM4) 

The program shown in Figure 10.8 can now be written with no further 
difficulty. A sample run of that program is shown in Figure 10.9a. Figure 10.9b 
shows another set of data with the corresponding printout. 

100 N=O 
110 A1=O 
120 A2=0 
125 A3=0 
127 A4=0 
130 READ A 
140 IF A=-999 THEN 190 
150 N=N+1 
155 A 1=A1+A 
160 X=A*A 
162 A2=A2+X 
165 A3=A3+X*A 
167 A4=A4+X*X 
180 GOTO 130 
190M=A1/N 
200 V=(A2-N*M*M)/(N-1) 
210 S=SQR (V) 
220 PR INT "NUMBER OF "; 
225 PRINT "SAMPLES = ";N 
230 PRINT" "; 
235 PRINT "MEAN = ";1'1 
240 PR INT " "; 
245 PRINT "VARIANCE = ";V 
250 PRINT "STANDARD "; 
252 PRINT "DEVIATION = ";S 
253 M2=1'1*M 
255 S1=(A3-3*M*A2+2*M2*A1)/(N*V*S) 
260 K=(A4-4*M*A3+6*M2*A2-3*N*M2*M2)/(N*V*V) 
270 PRINT "SKEWNESS = ";S1 
280 PRINT "KURTOSIS = ";K 
285 END 
300 DATA 1,2,3,4,5 
310 DATA -999 
330 END 

Figure 10.8: Program for Skewness and Kurtosis _________ ---1 



NUMBER OF SAMPLES = 5 
MEAN = 3 

VARIANCE = 2.5 
STANDARD DEVIATION = 1.58113883 
SKEWNESS = 0 
KURTOSIS = 1.088 

STATISTICS 215 

'------------ Figure 10.9a: Skewness and Kurtosis Output 

300 DATA 2,2.5,3,3.5,4 
NUMBER OF SAMPLES = 5 

MEAN = 3 
VARIANCE = 0.625 

STANDARD DEVIATION = 0.790569415 
SKEWNESS = 0 
KURTOS IS = 1.088 

'---------- Figure 1O.9b: Another Run and the Data Analyzed 

Notes: 

Skewness and kurtosis should be used with caution as they are not 
valid estimators for all populations. 
The skewness is zero if the distribution is symmetrical. 
The kurtosis increases in magnitude with the flatness of the density 
function. 

10.3 Linear Regression 

Find the straight line that "best" fits through a set of experimental points 
(X,Y) . The criterion generally used is that of " least squares," which consists of 
determining coefficients A and B, such that 

N 

L (A * X(I) + B - Y(I))2 
1= 1 

is minimized. 
To minimize this sum, we must compute A and B so that: 

A= 

B= 

N L X(I) * Y(I) - (L X(I)) (L Y(I)) 
N L X(I) - (L X(I)) 2 

N L X(I) - AL X(I) 

To assess the "statisticai validity" of the computation, we can compute the 
coefficient R given by: 

R = (sign of B) 



216 BASIC EXERCISES FOR THE ATARI 

If R is close to one, then the regression is statistically valid; if it is not, then 
linear regression is not well suited to the distribution of data points. 

A variance may be calculated and confidence limits established on A and B. 

Exercise: Write a subroutine that fits a regression line to the data in arrays 
T(100) and Y(l 00) and computes the coefficient R. 

The computation of the coefficients A and B is done in the subroutine 
starting at line 1000. The coefficient R is to be computed in a subroutine 
starting at line 600 (Figure 10.14). 

Solution: The part ofthe program that computes A and B follows from the 
formulas developed above. In a single program loop 

~ T(I), ~ Y(I), ~ X(I) 2 and ~ X(I) *Y(I) 

are computed, and the values of A and B can be determined from the results. 
This is expressed in the flowchart in Figure 10.10. 

A= 

B= 

w _ UI • VI 

N 

U2- ~ 
N 

VI - A • UI 

N 

UI = UI + T(I) 
VI = VI + Y(I) 

U2 = U2 + T(I) • T(I) 
w = W + T(I) • Y(I) 

I = I + I 

NO YES 

Figure 10.10: Flowchart for Calculating Coefficients A and B ------" 



STATISTICS 217 

R is computed on another loop, which is shown in Figure 10.11 , appearing 
below. 

A program written from the flowchart in Figure 10.10 is presented in Figure 
10.12. This program was written as a linear regression without the coefficient 
R. The sample run appears in Figure 10.13. 

The program shown in Figure 10.14 combines the information from both 
Figures 10.10 and 10.11 and includes the calculation for R. This program is 
the complete computation of the coefficients A and B and the coefficient R. 
Sample runs using different sets of data are shown in Figure 10.15. The results 
of the sample runs show the sensitivity of the correlation coefficient R. 

Ul = Ul + (Y(I) - A • T( I) - 8) ' 

U2 = U2 + (A • T(I) + 8 - ~)l 
N 

I = 1+1 

YES 

R = SIGN (8) • V l-~ 
U2 

L..-_______ Figure 10.11: Flowchart for Calculating Coefficient R 



218 BASIC EXERCISES FOR THE ATARI 

100 DIM T(100),Y(100) 
110 READ N 
120 FOR 1=1 TO N 
130 READ T,Y:T(I)=T:Y(I)=Y 
140 NEXT I 
150 GOSUB 1000 
160 PRINT" SLOPE ";A 
170 PRINT "y INTERCEPT ";B 
180 PRINT 
190 PRINT" T Y "; 
192 PRINT "MEASURED "; 
194 PRINT "y CALCULATED" 
200 PRINT 
210 FOR 1=1 TO N 
220 Y1 =A*T<I)+B 
230 PRINT" ";T 0) , 
232 PR INT Y( 1) , 

234 PRINT Y1 
240 NEXT I 
245 END 
250 DATA 5 
260 DATA 0,1,1,1.5,2,2,4,3,6,4 
1000 U1 =0 
1010 U2=0 
1020 V1 =0 
1030 V2=0 
104(1 w=o 
1050 FOR 1=1 TO N 
1060 U1=U1+T 0) 

1070 V1=V1+Y(I) 
1080 U2=U2+T(I)*T(I) 
1090 V2=V2+Y(I)*Y(I) 
1100 W=W+T(I)*Y(I) 
1110 NEXT I 
1120 A=(W-U1*V1/N)/(U2-U1 *U1/N) 
1130 B=(V1-A*U1)/N 
1140 RETURN 
1200 END 

Figure 10.12: Linear Regression Program without Coefficient R -----..... 

SLOPE = 0.5 
Y INTERCEPT = 1 

T Y MEASURED 

0 1 
1 1.5 
2 2 
4 3 
6 4 

Y CALCULATED 

1 
1.5 
2 
3 
4 

Figure 10.13: Sample Run without Coefficient R -----------' 



100 DIM T(100),V(100) 
110 READ N 
120 FOR 1=1 TO N 
130 READ T,V:T(I)=T:V(I)=V 
140 NEXT I 
150 GOSUB 1000 
155 GOSUB 600 
160 PRINT" SLOPE ";A 
170 PRINT "V INTERCEPT ";B 
175 PRINT "COEFFICIENT R = ";R 
180 PRINT 
190 PR INT "T V"; 
192 PRINT "MEASURED "; 
194 PRINT "V CALCULATED" 
200 PRINT 
210 FOR 1=1 TO N 
220 V1=A*T(Il+B 
230 PRINT" ";T(I), 
232 PRINT YO), 
234 PR INT V1 
240 NEXT 
245 END 
600 U1=0 
605 U2=0 
610 FOR 1=1 TO N 
620 U1=U1+(V(I)-A*T(I)-B)"2 
630 U2=U2+(A*T(I)+B-V1/N)"2 
640 NEXT I 
650 R=SGN(B)*SQR(1-U1/U2) 
660 RETURN 
1000 U1=0 
1010 U2=0 
1020 V1=0 
1030 V2=0 
1040 w=o 
1050 FOR 1=1 TO N 
1060 U1 =U 1 +T(I) 
1070 V1=V1+V (Il 
1080 U2=U2+T(I)*T(I) 
1090 V2=V2+V(I)*V(I) 
1100 W=W+T(I)*V(I) 
1110 NEXT I 
1120 A=(W-U1*V1/N)/(U2-U1*U1/N) 
1130 B=(V1-A*U1)/N 
1140 RETURN 
1200 END 
2000 DATA 5 
2010 DATA 0,1,1,1.5,2,2,4,3,6,4 
2020 REM DATA 0,.95,1,1.55,2,2.05,4,2.95,4,3.05 
2030 REM DATA 0,.95,1,1.55,2,2.95,4,3.05,6,4 

STATISTICS 219 

L-______ Figure 10.14: Linear Regression Program with Coefficient R 



220 BASIC EXERCISES FOR THE ATARI 

SLOPE = 0.5 
Y INTERCEPT = 1 
COEFFICIENT R = 1 

T Y MEASURED Y CALCULATED 

o 1 1 
1 1.5 1.5 
2 2 2 
4 3 3 
6 4 4 

SLOPE = 0.503125 
Y INTERCEPT = 1.003125 
COEFFICIENT R = 0.9981658279 

T Y MEASURED Y CALCULATED 

0 0.95 1. 003125 
1 1.55 1.50625 
2 2.05 2.009375 
4 2.95 3.015625 
4 3.05 3.015625 

SLOPE = 0. 4806034482 
Y INTERCEPT = 1.25043103 
COEFFICIENT R = 0.9322739458 

T Y MEASURED Y CALCULATED 

0 0.95 1.25043103 
1 1.55 1.73103447 
2 2.95 2.21163792 
4 3.05 3.17284482 
6 4 4.13405171 

- Figure 10.14: Linear Regression Program with Coefficient R _____ --1 

10.4 The Distribution of Random Numbers Obtained From 
the Fu nction RN D 

The random number generating function , RND, is very useful in some 
applications. However, before we use any source of random numbers, it is 
important to assess the quality of that source. Since this is not a statistics book, 
we will merely construct a program that will reveal how the numbers 
produced are actually distributed. 

Specification: The BASIC function RND normally provides a random 
number uniformly distributed in the open interval (0,1) . The problem is to 
divide this interval into C classes of the same length . After that we want to 



STATISTICS 221 

generate a specified number, N, of random numbers and, finally, print a list 
showing the number of random numbers that fit into each class. Figure 10.16 
shows examples of the type of output we want to obtain. 

NUMBER OF CLASSES ?10 
NUMBER OF RANDOM NUMBERS TO 
PRODUCE ?10 

1 1 
2 0 
3 3 
4 2 
5 0 
6 1 
7 1 
8 0 
9 
10 

NUMBER OF CLASSES ?10 
NUMBER OF RANDOM NUMBERS TO 
PRODUCE ?100 
1 12 
2 12 
3 8 
4 11 
5 9 
6 11 
7 11 
8 10 
9 7 
10 9 

NUMBER OF CLASSES ?10 
NUMBER OF RANDOM NUMBERS TO 
PRODUCE ?1000 
1 102 
2 104 
3 98 
4 96 
5 96 
6 102 
7 102 
8 106 
9 106 
10 88 

'------- Figure 10.16: Desired Output from Analysis of Function RND -

Solution: One method that we might use involves making a series of tests 
on each random number to determine the class to which it belongs. This 
method, however, is too slow. 

Another method might beto derive, from each random number, an integer 
that corresponds to the class to which the number belongs. 



222 BASIC EXERCISES FOR THE ATARI 

With C classes we need a number that runs from 1 to C. This number can 
be obtained by using: 

between 0 and 1 

X = INT(C*'RND(1))'+ 1 
'----v---J 

between 0 and C - 1 

Then we simply write: 
A(X) = A(X) + 1 

where A is an array of counts, one element for each class. A is initialized to 
zero when the number of classes is specified by the user. This leads to the 
flowchart shown in Figure 10.17. 

x = INT(C • RND) + I 
A(X ) = A(X) + I 

I = I + I 

Figure 10.17: Flowchart for the Analysis of Function RND ______ -J 



STATISTICS 223 

The program displayed in Figure 1 O.lB is written in ATARI BASIC, which 
allows the size in a dimension statement to be expressed as a variable (line 
130). 

100 RE~ TEST OF THE DISTRIBU-
102 RE~ TION OF THE RANDO~ 

105 RE~ NU~BER GENERATOR 
110 RE~ AUTHOR : J. P. 
115 RE~ LA~OITIER 
120 PRINT "NU~BER OF CLASSES "; 
125 INPUT C 
130 DI~ A(C) 
140 FOR 1=1 TO C 
150 A(J)=O 
160 NEXT I 
170 PRINT "NU~BER OF RANDO~"; 
172 PRINT " NUMBERS TO" 
173 PRINT "PRODUCE "; 
175 INPUT N 
180 FOR 1=1 TO N 
190 X=INT(RND(1)*C)+1 
200 A<X)=A(X)+1 
210 NEXT I 
220 FOR 1=1 TO C 
230 PRINT" ";1, 
235 PRINT A(J) 
240 NEXT I 

L-... _____________ Figure 10.18: Function RND Program 

If you are using a BASIC that does not allow this syntax, you can simply 
dimension A statically, for example: 

100 DIM A(1 00) 

INPUT . .. C 

(must not exceed 100) 

Conclusion 

The exercises in this chapter demonstrate that programming elementary 
computations like mean, variance, etc., offers few if any problems. It was 
noted that the exercise involving the computation of a linear regression is 
particularly useful. In fact, the calculation is used in Chapter 7 for estimating 
rate of growth. 

The random number generating function, RND, is also useful in many 
applications. It is used, for example, to simulate the throwing of dice in the 
Craps implementation developed in Chapter B. 

On the other hand, when more sophisticated computations are used (for 
example, statistical tests, multiple regression, polynomial regression, etc.), 
the programs will become longer and subject to problems of round-off. 



CHAPTER 11 



Miscellaneous 

Introduction 

This chapter consists of exercises that are of interest from an information
processing point of view, but do not fit under any of the previous chapter 
headings. These exercises are of particular interest because they either 
involve clever programming techniques or because the development of the 
flowchart is not obvious. 

11.1 The Signs of the Zodiac 

Given a month and day of birth, determine the corresponding sign of the 
zodiac. The table shown in Figure 11 .1 gives birth dates and the correspond
ing signs of the zodiac. 



226 BASIC EXERCISES FOR THE ATARI 

SIGN PERIOD 

CAPRICORN DECEMBER 23 TO JAN UARY 19 

AQUARIUS JANUARY 20 TO FEBRUARY 19 

PISCES FEBRUARY 20 TO MARCH 20 

ARIES MARCH 21 TO APRIL 19 

TAURUS APRIL 20 TO MAY 20 

GEMINI MAY 21 TO JUNE 20 

CANCER JUNE 21 TO JULY 21 

LEO JULY 22 TO AUGUST 22 

VIRGO AUGUST 23 TO SEPTEMBER 22 

LIBRA SEPTEMBER 23 TO OCTOBER 22 

SCORPIO OCTOBER 23 TO NOVEMBER 21 

SAGITIARIUS NOVEMBER 22 TO DECEMBER 22 

- Figure 11.1: Signs of the Zodiac ---------------

Exercise 1: Write a program that determines the sign of the zodiac that 
corresponds to an input day and month of birth . Assume that we are using a 
BASIC that allows arrays of character strings. 

Exercise 2: Repeat Exercise 1, but this time assume that we are using 
ATARI BASIC. It does not allow arrays of character strings. 

Exercise 1 solution: To complete Exercise 1, we must compare the day of 
the month, D, with a limit, L, that varies between 20 and 23, depending on 
the month: 

If D < L, use I = M 

If D ~L, use 1= M + 1, except in the case where M + 1 = 13; in this 
case we must set I = 1. This will be the case for a person born 
between the 23rd and the 31 st of December. 

To obtain the correct value for L, we first set L to 20. Then, we use an ON 
GOTO instruction to jump into a cascade of increment L instructions, which 
will establish the correct value for L. This method avoids numerous tests and 
GOTO instructions. 

Figure 11.2 shows a flowchart of this method. 



MISCELLANEOUS 227 

INPUT DAY, MONTH 

NO YES 

8 , 9 , 10, 12 I . 2, 4 

7, I I 3, 5,6 
NO 

L..-____________ Figure 11.2: Flowchart for Determining the Signs of the Zodiac 



228 BASIC EXERCISES FOR THE ATARI 

115 DIM AH132) 
120 A$="CAPRICORN AQUARIUS 
122 A$(23)="PISCES ARIES 
124 A$(45)="TAURUS GEMINI 
126 A$(67)="CANCER LEO 
128 A$(89)="VIRGO LIBRA 
130 A$(111 )="SCORPIO SAGITTARIUS" 
140 PRINT "YOUR BIRTHDAY"; 
142 PRINT "(MONTH,DAY) "; 
145 INPUT M,D 
150 IF M=O THEN END 
180 I=M 
190 L=20 
200 ON M GOTO 600,600,500,600,500,500,400,300,300,300,400,300 
300 L=L+1 
400 L=L+1 
500 L=L +1 
600 IF D<L THEN 610 
605 1=1+1 
610 IF 1<=12 THEN 620 
615 1=1 
620 PRINT "YOUR SIGN IS "; 
625 PRINT A$(11*(I-1)+1,11*I) 
630 PRINT 
650 GOTO 140 
990 END 

Figure 11.3: Zodiac Program ________________ ...J 

Exercise 2 solution: The previous program derived an index, I, which is 
the number of the sign of the zodiac. However, with no string array capability, 
the index I cannot be used directly. 

We observe that the longest name we will have to write is SAGITIARIUS. 
Because "SAGITIARIUS" has eleven characters, we must use a string vari
able, A$, of length 132 = 11 * 12 to hold the names of the signs of the zodiac 
in twelve, eleven-character "fields" (the shorter names are padded with 
blanks) . 

Using the index I computed as before, we print: 

A$(11 *(1 - 1) + 1,11 *1) 

We must see that A$ is set up correctly. There are several possible methods 
that can be used to do this. One such method is: 

115 DIM A$(132) 

120 A$ = "CAPRICORN AQUARIUS " 

122 A$(23) = "PISCES ARIES 



MISCELLANEOUS 229 

124 A$(45) = "TAURUS GEMINI 

126 A$(67) = "CANCER LEO 

128 A$(89) = "VIRGO LIBRA 

130 A$(111) = "SCORPIO SAGITTARIUS" 

By filling out each name with the correct number of blanks, we assure that 
the name of each sign will begin in a regular position (1, 12, 23, 34, 45, . .. 
etc.) and, thus, can be easily selected for printout. Figure 11.4 shows sample 
dialogue. 

The program, shown in Figure 11.3, stops when the given month equals O. 

YOUR BIRTHDAY (MONTH, DAY) ?2,27 
YOUR SIGN IS PISCES 

YOUR BIRTHDAY (MONTH, DAY) ?1,8 
YOUR SIGN IS CAPRICORN 

YOUR BIRTHDAY (MONTH, DAY) ?3,20 
YOUR SIGN IS PISCES 

YOUR BIRTHDAY (MONTH, DAY) ?4,21 
YOUR SIGN IS TAURUS 

YOUR BIRTHDAY (MONTH, DAY) ?1 0, 11 
YOUR SIGN IS LIBRA 

YOUR BIRTHDAY (MONTH, DAY) ?O,O 

'--------- Figure 11.4: Sample Output from the Zodiac Program 

11.2 The Eight Queens Problem 

By now the Eight Queens problem is a classical problem for computer 
science students as well chess players. This problem entails finding all of the 
possible ways to arrange eight queens on a chess board so that no two 
queens are "en prise " (threatening to take one another). 

Exercise: Find all possible solutions to the general N queen problem; ar
range N queens on an "N by N" board so that no two queens are en prise. Let 
N vary from two to eight. 

We will eliminate solutions that can be deduced from other solutions by 
arguments of symmetry. 

Proposed method: One possible solution is shown in Figure 11 .5. 
An array, Q, will hold the position of the queens while a solution is being 

worked out. For example, the solution illustrated in Figure 11 .5 would be 



230 BASIC EXERCISES FOR THE ATARI 

x 

X 

X 

X 

X 

X 

X 

X 

0(1) 0(2)~ 0(8) 

Figure 11.5: One Solution for the fight Queens Problem ------..... 

represented by: 

0(1) = 1 0(5) = 3 

0(2) = 5 0(6) = 7 

0(3) = 8 0(7) = 2 

0(4) = 6 0(8) = 4 

Using this representation of board positions, the following conditions must 
be met in order that no two queens should be en prise: 

Not more than one queen may occupy a column. This is inherent in 
our representation : only one queen can be specified per column. 

Not more than one queen may occupy a given row, which means: 

0(1) i O(J) for any I, J 

Not more than one queen may occupy a given diagonal, which 
means: 

O(J) - 0(1) 'I J - I (450 diagonal) 

O(J) - 0(1) 'I I - J ( - 450 diagonal) 

These last two tests could be more simply stated as: 

ABS(O(I) - O(J)) 'I I - J 



MISCELLANEOUS 231 

Conventions for generating solutions: The following conventions should 
be followed : 

Always start from 0(1) = 1. 

Find an admissable position for 0(2); that is, a position where 0(2) 
(the queen in column 2) is not en prise with 0(1). 

Seek an admissible position for 0(3) and so on, until an admissible 
position has been found for O(N) . At this point we have a solution . 

If no admissible position is found for 0(1), we will try to move 0(1 - 1) to 
some other position satisfying the constraint that 0(1 - 1) is not in a position 
to be taken by any of the preceding queens (0(1), Q(2), ... ,0(1 - 2)). When 
this is done, we try again to find an admissible position for 0(1). 

More precisely stated, the proposed algorithm is the following: 

For I varying from 1 to N: 

1. Set 0(1) = 1 

2. Verify that the new queen 0(1) is not threatened by any of the 
queens that have already been positioned. 
If 0(1) is en prise, go to 3. 

Otherwise, 
If I < N, set I = I + 1 and go to 1. 
If I = N we have a solution, print it out and go on to 3. 

3. Search for another position for 0(1): 
Set 0(1) = 0(1) + 1 

If 0(1) ~ N, go to 2 
If 0(1) > N, then no position will do; set I = I - 1 and go to 2. 

To eliminate the solutions that can be deduced by symmetry from a solu-
tion that has already been found, we should: 

Only try 0(1) in positions 1 through N/2. This eliminates all solutions 
that are symmetrical with respect to the horizontal axis. 

Print no solution for which 0(1) >O(N), because such a solution is 
symmetrical , relative to the vertical axis, to a solution that has al
ready been displayed. 

Flowcharts: The flowchart presented in Figure 11 .6 corresponds to a sub
routine that implements the algorithm described in detail above. 

The flowchart in Figure 11.7 corresponds to the main program. The pro
gram listing is shown in Figure 11.8 and the resulting output is displayed in 
Figure 11.9. 



232 BASIC EXERCISES FOR THE ATARI 

YES 

NO 

NO 

YES 

Figure 11.6: Flowchart for the fight Queens Subroutine --____________ ...1 



MISCELLANEOUS 233 

YES 

'---------- Figure 11.7: Flowchart for the Eight Queens Problem 

100 REM GENERATION OF ALL WAYS 
105 REM TO PLACE N QUEENS ON 
110 REM AN N BY N BOARD 
115 REM WITHOUT ANY TWO QUEENS 
120 REM BEING EN PRISE. 
130 DIM Q(10) 
140 N9=8 
150 FOR N=2 TO N9 
160 S=O 
165 PRINT 
170 PRINT "N = ";N 
175 PRINT 
180 GOSUB 500 
190 NEXT N 
200 END 
500 1=1 
510 N1=INT<N/2) 
520 Q(I)=1 
530 IF 1<>1 THEN 560 
540 IF Q(1)<=N1 THEN 600 
550 GOTO 690 
560 FOR J=1 TO 1-1 
570 IF Q(I)=Q(J) THEN 640 
580 IF ABS(Q(I)-Q(J»=I-J THEN 640 
590 NEXT J 

L...-__________ Figure 11.8: Eight Queens Program (continues) 



234 BASIC EXERCISES FOR THE ATARI 

600 1=1+1 
610 IF I<=N THEN 510 
620 IF Q(N)<=Q(1) THEN 630 
625 GOSUB 700 
630 I =N 
640 IF Q(I)<N THEN 670 
650 1=1-1 
660 GOTO 640 
670 Q (1)=Q (1)+1 

680 GO TO 530 
690 RETURN 
700 FOR L=1 TO N 
710 PRINT" ";Q(U;" "; 
720 NEXT L 
725 PRINT 
730 RETURN 
740 END 

Figure 11.8: Eight Queens Program 

N = 2 

N = 3 

N = 4 

2 4 3 

N = 5 

1 3 5 2 4 
1 4 2 5 3 
2 4 1 3 5 
2 5 3 1 4 

N = 6 

2 4 6 1 3 5 
3 6 2 5 1 4 

N = 7 

1 3 5 7 2 4 6 
1 4 7 3 6 2 5 
1 5 2 6 3 7 4 
1 6 4 2 7 5 3 
2 4 1 7 5 3 6 
2 4 6 1 3 5 7 
2 5 1 4 7 3 6 
2 5 3 1 7 4 6 
2 5 7 4 1 3 6 
2 6 3 7 4 1 5 
2 7 5 3 1 6 4 
3 1 6 2 5 7 4 
3 1 6 4 2 7 5 
3 6 2 5 1 4 7 
3 7 2 4 6 1 5 
3 7 4 1 5 2 6 

Figure 11.9: Output from the Eight Queens Program (continues) 



M ISCELLAN EO US 235 

N = 8 

1 5 8 6 3 7 2 4 
1 6 8 3 7 4 2 5 
1 7 4 6 8 2 5 3 
1 7 5 8 2 4 6 3 
2 4 6 8 3 1 7 5 
2 5 7 1 3 8 6 4 
2 5 7 4 1 8 6 3 
2 6 1 7 4 8 3 5 
2 6 8 3 1 4 7 5 
2 7 3 6 8 5 1 4 
2 7 5 8 1 4 6 3 
2 8 6 1 3 5 7 4 
3 1 7 5 8 2 4 6 
3 5 2 8 1 7 4 6 
3 5 7 1 4 2 8 6 
3 5 8 4 1 7 2 6 
3 6 2 5 8 1 7 4 
3 6 2 7 1 4 8 5 
3 6 2 7 5 1 8 4 
3 6 8 1 5 7 2 4 
3 6 8 2 4 1 7 5 
3 7 2 8 5 1 4 6 
3 7 2 8 6 4 1 5 
3 8 4 7 1 6 2 5 
4 1 5 8 2 7 3 6 
4 2 5 8 6 1 3 7 
4 2 7 3 6 8 1 5 
4 2 8 5 7 1 3 6 
4 2 8 6 1 3 5 7 
4 6 1 5 2 8 3 7 
4 6 8 2 7 1 3 5 
4 7 3 8 2 5 1 6 
4 7 5 2 6 1 3 8 
4 8 1 3 6 2 7 5 
4 8 5 3 1 7 2 6 

Figure 11.9: Output from the Eight Queens Program 

Conclusion 

The exercises we have presented show that program ming itself is not gen-
era lly difficu lt when you first analyze the problem and then draw a f lowchart. 
This is particlarly t rue in the case of the last exercise, devoted to solvi ng the 
Eight Queens problem. 

As we come to the end of this book we wou ld li keto leave the reader with a 
f inal piece of advice: 

Before begi nni ng to write a program: 
Make sure there is not an already existing program you can use. 
Spend suffic ient time preparing the ana lysis and f lowchart before 
starti ng to program. The init ial time spent analyzing a problem is 
quickly rega ined in the cod ing and checkout phases. 



APPENDIXA 



The Alphabet of BASIC 

The BASIC alphabet is made up of the following characters and symbols: 

The upper case letters A through Z 

The digits 

The arithmetic symbols for: 
addition and subtraction 
multiplication and division 
exponentiation 

Parentheses 

The relational symbols: 
equal to 
not equal to 
less than 
less than or equal to 
greater than 
greater than or equal to 

The punctuation marks: 
comma and period 
colon and semicolon 
question mark 

The special characters: 
"blank" 

o through 9 

+ and
* and I 

" 
(and) 

<> 
< 
<= 
> 
>= 

,and. 
:and; 
? 

quotation mark (double quote) " 
dollar sign $ 

Certain implementations of BASIC use a slightly different (or extended) char
acter set. 



APPENDIX B 



Main Syntax Rules 

CONSTANTS AND VARIABLES 

Constants: Numerical constants may be represented by: 

an integer, with or without sign 
Examples: 11 , - 162 

a decimal number without an exponent 
Examples: 3.1415917, - 3., 0.12, .12 

a number with an exponent. 
Examples: 1 E + 5, -1.6E - 19 

Note: In the last example, - 1.6E - 19, the first minus sign is the sign of the 
number itself, and the second minus sign pertains to the exponent: 

-1.6E - 19 represents -1.6*10- 19 

Since virtually all input to computers is constrained to a single line, the 
exponent is set off from the rest of the number by the letter E. 

The computer differentiates between the digit zero and the letter "0." The 
user at the keyboard must take care to make the same distinction. 

Numerical Variables: There are two categories of numerical variables: 

1. simple variables 

2. subscripted variables (variables contained in a table or array) . 

Simple numerical variables are designated by their "name" (or "identifier") , 
which is either: 

a letter A through Z, or 

a letter followed by any number of letters and digits. 
Examples : A, B, AB, FRED, ANGLE90X5 are variable names. 



240 BASIC EXERCISES FOR THE ATARI 

A program in ATARI BASIC may contain at most 128 variables. 
Subscripted variables are designated by a simple variable name followed by 

one or two subscripts enclosed in parentheses. For example: 

A(R,I), B(I), C(I + 10*K) 

The subscript may be a constant, a variable, or an arithmetic expression. 
Before a subscripted variable may be used, the size of the variable must be 

declared by a DIM instruction placed at the beginning of the program. 

Example: DIM A(10,20) 

ARITHMETIC EXPRESSIONS 

Arithmetic expressions are built from: 

variables and constants 

arithmetic operators, + , - , *, /, " 

standard numerical functions (described later) 

user-defined functions 

parentheses. 

Parentheses serve two purposes: 

1. to set off the argument(s) of a function 

2. to specify the order in which expressions must be evaluated. 

Examples: A + B *C will be evaluated A + (B *0 

(A + B) *C will be evaluated (A + B) *C 

A + B *SIN(C + 3).ln this case the parentheses set off the 
argument, which is C + 3. 

Normally, expressions are evaluated uniformly from left to right according 
to "operator precedence." The descending order of precedence is: 

parentheses (highest precedence, i.e., evaluated first) 

functions 

exponentiation 

multiplication and division 

addition and subtraction (lowest precedence, i.e., carried out using 
the results of all operations of higher precedence). 



APPEN DIX B 241 

As an example, the following expression would be evaluated in the order 
indicated : 

Arr
2j:ILtTf 

75 4 3 968 

ASSIGNMENT INSTRUCTIONS 

An assignment instruction should appear in the following form : 

variable = expression 

t 
simple variable or array element 

The meaning of the instruction is to compute the value of the expression on 
the right of the equal sign, and store the result in the variable on the left of the 
equal sign. For example: 

V = 4*3.14159*(RI\3)/3 

X=A 

BRANCHING INSTRUCTIONS 

Unconditional branch: The simplest form of an unconditional branch is 
the GOTO instruction, which might appear as: 

GOTO L 
or: 

GOTO L 

where L is a line number. 
The above instruction causes the execution of the program to go to Ii ne L. 

"Computed" coro: This instruction generally takes on the following 
form : 

ON arithmetic expression GOTO L 1, L2, L3, ... LN 

where L 1, L2, .. . LN are line numbers. 
During execution, this instruction would cause the expression to be evalu

ated. The value then obtained is truncated to an integer and used to select the 



242 BASIC EXERCISES FOR THE ATARI 

branch: 
to line L 1, if the value truncates to 1 

to line L2, if the value truncates to 2 

to line LN, if the value truncates to N. 

Example: ON 1 GOTO 100,200,600,200 
If I is 1 branch to 100 
If I is 2 or 4 
If I is 3 

branch to 200 
branch to 600 

Note: If the truncated value of the expression falls outside the interval 
[l,Nl, the result varies from system to system : 

The branch may be ignored and the next instruction in sequence 
executed. 

The interpreter may issue an error message. 

Conditional branch: The conditioning on this type of branch is carried 
out using the IF instruction, which may take several forms . 

First form : the simplest form of the IF instruction is: 

IF predicate THEN L 

where predicate asserts a relationship between two expressions, and L is a 
line number. 

If the predicate is true, execution branches to line number L; otherwise, the 
next instruction in the sequence is executed. For example: 

IFA< B THEN 600 

IF X = Y + 1 THEN 200 

IFZI\2>XI\2 + yI\2THEN 100 

Predicates may be constructed using the following relational symbols and 
combinations: 

equal to 
<> not equal to 
< less than 
<= less than or equal to 
> greater than 
>= greater than or equal to 

These relational symbols may be used with numerical variables or charac
ter strings. 

Second form : This form is an improvement over the previous form. It is 



APPEN DIX B 243 

written as: 
IF predicate THEN executable instruction 

t 
This instruction may not be a FOR instruction 

(For this form, THEN is optional in some BASICs.) 
If the predicate is true, the instruction after the THEN is executed . If the 

predicate is not true, the instruction after the THEN is not executed. For 
example: 

IF A < B THEN X = B 

IF A < B THEN GOTO 600 

ATARI BASIC allows more than one executable instruction after the THEN . 
For example: 

IF A < B THEN X = B: Y = D 

PROGRAM LOOPS 
Program loops are created by using the FOR and NEXT instructions. 

FOR V = E1 TO E2 STEP E3 

NEXTV 

where V is a numeric variable name and El , E2 and E3 are arithmetic expres

sions. 

El gives the initial value assigned to V 

E2 gives the final value to be assigned to V 

E3 gives the increment: 
If El < E2 then E3 must be >0 
If El > E2 then E3 must be < 0 

El , E2 and E3 are evaluated before they initially enter the loop. 

If the loop increment (E3) is 1, then the STEP clause can be omitted : 

FOR V = E1 TO E2 

For example: 

100 FOR I = 1 TO 10 

110 FORJ = 1 TO 10 

120 A (I,J) = 0 

130 NEXT J 

140 NEXT I 



244 BASIC EXERCISES FOR THE ATARI 

CHARACTER STRINGS 

String constants are formed by enclosing a sequence of characters in dou
ble quotes. For example: 

"ABCD" 

"THIS IS BASIC" 

Blanks are significant within a character string. The maximum allowable 
length for a character string depends upon the system being used. 

String variables are denoted by a variable name followed by a dollar sign. 
For example: 

A$. B$. AB$. SENTRY$ 

Operations Defined on Character Strings 

Comparison: A$ is said to be "less than" B$ if, in alphabetical order, A$ 
precedes B$. For example: 

A$ = "JOHNNY" 

B$ = "APPLESEED" 

Here B$ is less than A$, i.e., B$ < A$. 

Concatenation consists of joining two strings end to end. For example: 

A$ = "JOHN" 

B$ = " DOE" 

N$ = A$ : N$(5) = B$ 

N$ takes the va lue "JOHN DOE". 

Substrings: A section of a string may be denoted by writing its first and last 
indices. For example: 

N$(4.6) 

has the va lue "N D" . 

Special string functions: The following is a list of functions that manipulate 
character strings. This list may vary from one implementation to another, but 
it represents most of the functions available in microcomputer BASICs. 

ASC(X$) 

CHR$(I) 
STR$(I) 

gives the numericvalueoftheASCII codeforX$, e.g., 
ASC (" K) = 65 . 
gives, as a stri ng, the character whose ASCII code is I. 
gives a string containing the decimal value of I. 



APPENDIX B 245 

gives the length of the string A$. LEN(A$) 
VAL(A$) gives the numeric value of the ASCII string, A$. Obvi

ously, this function assumes that the characters of A$ 
actually represent a number. 

I N PUT/OUTPUT 

In order to read " interactive" inputs (e.g., on the keyboard) , the following 
instruction is used: 

INPUT variable list 

i 
simple variables 

The following format should be used to read data included within the 
program : 

READ variable list 

DATA numeric values separated by commas (or blanks in some 

systems) 

RESTORE to "rewind" (i.e., go back to the first DATA instruction for 

the next READ). 

The instruction used to print results is used in the form: 

PRINT variable list 

t 
variables and constants 

In the example 

PRINT "X = ";X,"Y = ";Y 

note that the separators used are a comma and a semicolon. A comma 
causes the next item to be printed starting in the first position of the next 
available tab field. A semicolon concatenates the items, i.e., the next item is 
printed directly afterward with no intervening spaces. 

A separator at the end of a PRINT instruction suppresses the passing to a 
new line, i.e., a final carriage return and linefeed. 



APPENDIXC 



The Standard ASCII 
Character Set 

Consult the ATARI BASIC manual for specia l cursor control characters (e.g. 
155 = end of line) . 

CODE CHAR 

0 NU L 
1 SOH 
2 STX 
3 ETX 
4 EOT 
5 ENQ 
6 ACK 
7 BEL 
8 BS 
9 TAB 

10 IF 
11 VT 
12 FF 
13 CR 
14 SO 
15 51 
16 DlE 
17 DC1 
18 DC2 
19 DC3 
20 DC4 
21 NAK 
22 SYN 
23 ETB 
24 CAN 
25 EM 
26 SUB 
27 ESC 
28 FS 
29 GS 
30 RS 
31 US 

(
11spoce 
'''single quo'e 

CODE CHAR 

32'" 
33 ! 
34 " 

35 # 

36 $ 
37 % 
38 & 
39'" 
40 ( 
41 ) 
42 
43 + 
44'31 
45 -
46 
47 / 
48 0 
49 1 
50 2 
51 3 
52 4 
53 5 
54 6 
55 7 
56 8 
57 9 
58 
59 
60 < 
61 = 
62 > 
63 ? 

f) Jcommo 
(;lIor u nderl i ne 

CODE CHAR 

64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95'" 

(~)occenl mark 
,6'or Al T MODE 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
l 

M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 
\ 
J 
: 
-

CODE CHAR 

9615' 
97 a 
9B b 
99 c 

100 d 
101 e 
102 f 
103 g 
104 h 
105 i 
106 i 
107 k 
108 I 
109 m 
110 n 
111 a 
112 P 
11 3 q 
114 r 

115 s 
116 , 
117 U 

118 v 

119 w 
120 x 
121 Y 
122 l 

123 I 
124 I 
125,6' I 
126 '" 127,71 RU80UT 

'''or DE L 





annual sales, 144 
annuity, 136 
ANSI, 8 
area of a triangle, 64 
arithmetic expressions, 240 
arithmetic mean, 208 
Armstrong numbers, 34 
array, 11 
assignment, 241 
assignment statement, 13 
average, 207 

base conversion, 53 
BASIC alphabet, 237 
best fit, 21 5 
bracketing, 168 
branching, 17, 241 

ca lculation of 1T, 118 
Cartesian coordinates, 66, 69 
character strings, 58, 244 
Chess, 229 
circle determination, 66 

249 

Index 

coefficients, 110 
comparison, 244 
computational instruction, 13 
computed GOTO, 241 
concatenation , 244 
conceptual f lowchart, 8 
conditional branch, 242 
constants, 239 
conversion table, 54 
correlation coefficient, 145 
Craps, 174 
creating a directory, 96, 99 
critical path, 185 
cutting the interval , 126 

data processing, 79 
day of birth, 225 
day of the week, 88 
decision points, 16 
definite integral, 112 
desk check, 13 
dialogue, 2 
dice, 174 



250 BASIC EXERCISES FOR THE ATARI 

dichotomy, 125 
directed graph, 182 
distribution of random numbers, 220 

Egyptian fraction, 36, 37 
Eight Queens problem, 229 
END, 2 
evaluation of polynomials, 129 
exchange, 80 
expression, 13, 240 

factorization, 48, 49 
Fibonacci, 36, 37 
fixed monthly payments, 140 
floating point, 25 
flowchart, 7 
flowcharting standards, 8 

games, 161 
geometry, 63 
GOTO, 10, 241 
guess, 162 

Hero's formula, 64 

identifier, 4 
IF, 10,242 
income taxes, 1, 148 
INPUT, 2 
INPUT/OUTPUT, 245 
instruction, 2 
INT, 26 
integers, 25 
interactive, 245 
interest, 140 
interval between two dates, 93 

largest element of an array, 11 
least expensive route, 203 
least sq uares, 215 
length of a fence, 69 
line number, 2 
linear regression, 216 
loop, 14, 243 

MasterMind, 178 
Matchstick game, 171 
MAX, 11 
maximum of two numbers, 9 
mean, 209 
measure of confidence, 145 
measurements, 218 

MERGE,79 
merging two arrays, 82 
MIN, 11 
multiplication, 2 

NIM, 178 
nodes, 186 

operations research, 204 
Othello, 178 
output, 32 
parentheses, 240 
perfect square, 26 
perimeter of a polygon, 70 
perimeter of a triangle, 64 
plotting a curve, 72 
polygon, 110 
polygonal field, 69 
polynomial, 110 
precedence, 182 
precision, 109 
predicate, 242 
prime, 48 
prime factors, 48 
prime numbers, 42 
PRINT, 65 
program loops, 243 
purchasing power, 155 

question mark, 2 
quotes, 244 
quotient, 26 

radius, 66 
random number, 168 
rate of growth, 144 
regular polygons, 118 
remainder, 26 
repayment of loans, 136 
RND, 220 
round robin, 20 

sales forecast, 145 
sales forecasting, 133 
scaling the axes, 73 
semicolon, 65 
sequential files, 82, 86 
Shell sort, 79 
signs of the zodiac, 226 
simple regression , 145 
Simpson's rule, 112 



slope, 66 
solving an equation, 125 
SORT, 79 
special string functions, 244 
standard deviation, 209 
strategy, 161 
string constants, 244 
string variables, 244 
subprogram, 39 
subroutine, 40 
subscripted variables, 240 
SUBSTR, 60 
sum of the cubes, 34 
synthetic division, 110 
system f lowchart, 8 

tax, 148 
taxable income, 1, 3 
telephone directory, 95 

THEN, 243 
TOO LOWrrOO HIGH, 162 
topological sort, 184-5 
traveling salesman, 192 

unconditional branch, 241 
unpaid principal , 141 
unsorted vectors, 86 

va lue, 12 
variable, 13, 239 
variance, 209 
vectors, 82 

Weddle's method, 113 

zodiac, 225 

$, 244 
%, 25 
1r, 118 

INDEX 251 



The SYBEX Library 

YOUR FIRST COMPUTER 
by Rodnay Zaks 264 pp. , 150 illustr. , Ref. 0-045 
The most popular introduction to small computers and their peripherals: what 
they do and how to buy one. 

DON'T (or How to Care for Your Computer) 
by Rodnay Zaks 222 pp., 100 illustr., Ref. 0-065 
The correct way to handle and care for all elements of a computer system, includ
ing what to do when something doesn' t work. 

I NTE RNATlONAl MICROCOMPUTE R DICTIONARY 
140 pp., Ref. 0-067 
All the definitions and acronyms of microcomputer jargon defined in a handy 
pocket-size edition . Includes translations of the most popular terms into ten 
languages. 

FROM CHIPS TO SYSTEMS: 
AN INTRODUCTION TO MICROPROCESSORS 
by Rodnay Zaks 558 pp. , 400 illustr. , Ref. 0-063 
A simple and comprehensive introduction to microprocessors from both a hard
ware and software standpoint : what they are, how they operate, how to assemble 
them into a complete system. 



YOUR TIMEX SINCLAIR 1000™ AND ZX81™ 
by Douglas Hergert 176 pp., il lustr., Ref. 0-099 
This book exp la ins the set-up, operation, and capabilities of the Timex Sinclair 
1000 and ZXB1 . Includes how to interface peripheral devices, and introduces 
BASIC programming. 

YOUR COLOR COMPUTER 
by Doug Mosher 350 pp., illustr., Ref. 0-097 
Patience and humor guide the reader through purchasing, setting up, program
ming, and using the Radio Shack TRS-BO/TDP Series 100 Color Computer. A com
plete introduct ion to the color computer. 

INTRODUCTION TO WORD PROCESSING 
by Hal Glatzer 216 pp., 140 illustr., Ref. 0-076 
Explains in plain language what a word processor can do, how it improves 
productivity, how to use a word processor and how to buy one wisely. 

THE FOOLPROOF GUIDE TO SCRIPSIT™ 
by Jeff Berner 225 pp. , illustr. , Ref. 0-098 
Everything you need to know about SCRIPSIT-from starting out to mastering 
document editing. This user-friendly gu ide is written in plain English, with a touch 
of wit. 

I NTRODUCTION TO WORDSTAR™ 
by Arthur Naiman 208 pp., 30 illustr., Ref. 0-077 
Makes it easy to learn how to use WordStar, a powerful word processing program 
for personal computers . 

MASTE RI NG VISICALC® 
by Douglas Hergert 224 pp. , 140 illustr., Ref. 0-090 
Explains how to use the VisiCalc " electronic spreadsheet" functions and provides 
examples of each. Makes using this powerful program simple. 

DOING BUSINESS WITH VISICALC® 
by Stanley R. Trost 200 pp., Ref. 0-086 
Presents accounting and management planning applications-from financial 
statements to master budgets; from pricing models to investment strategies. 

DOING BUSINESS WITH SUPERCALCM 

by Stanley R. Trost 300 pp. , illustr. , Ref. 0-095 
Presents accounting and management planning applications-from financial 
statements to master budgets; from pricing models to investment strategies. This is 
for computers with CP/M . 

VISICALC® FOR SCIENCE AND ENGINEERING 
by Stanley R. Trost & Charles Pomernacki 225 pp., illustr. , Ref. 0-096 
More than 50 programs for so lv ing technical problems in the science and engi
neering fields . Applications range from math and statistics to electrical and 
electronic engineering. 

EXECUTIVE PLANNING WITH BASIC 
by X. T. Bui 192 pp. , 19 illu str. , Ref. 0-083 
An important co llection of business management decision models in BASIC, 
including Inventory Management (EOQ), Critical Path Analysis and PERT, 
Financial Ratio Analys is, Portfolio Management, and much more. 



BASIC FOR BUSINESS 
by Douglas Hergert 250 pp. , 15 iliustr., Ref. 0-080 
A logically organized, no-nonsense introduction to BASIC programming for busi
ness applications. Includes many fully-explained accounting programs, and 
shows you how to write them. 

YOUR FIRST BASIC PROGRAM 
by Rodnay Zaks 200 pp. , illustr., Ref. 0-092 
A fully illustrated, easy-to-use, introduction to BASIC programming. Will have the 
reader programming in a matter of hours. 

FIFTY BASIC EXERCISES 
by J. P. Lamoitier 236 pp., 90 illustr. , Ref. 0-056 
Teaches BASIC by actual practice, using graduated exercises drawn from 
everyday applications. All programs written in Microsoft BASIC. 

BASIC EXERCISES FOR THE APPLE 
by J. P. Lamoitier 230 pp., 90 iliustr., Ref. 0-084 
This book is an Apple version of Fifty BASIC Exercises. 

BASIC EXERCISES FOR THE IBM PERSONAL COMPUTER 
by J. P. Lamoitier 232 pp ., 90 illustr. , Ref. 0-088 
This book is an IBM version of Fifty BASIC Exercises. 

INSIDE BASIC GAMES 
by Richard Mateosian 352 pp. , 120 iliustr. , Ref. 0-055 
Teaches interactive BASIC programming through games. Games are written in 
Microsoft BASIC and can run on the TRS-80, Apple II and PET/CBM. 

THE PASCAL HANDBOOK 
By Jacques Tiberghien 492 pp. , 270 iliustr. , Ref. 0-053 
A dictionary of the Pascal language, defining every reserved word, operator, 
procedure and function found in all major versions of Pascal. 

INTRODUCTION TO PASCAL (Including UCSD Pascal™) 
by Rodnay Zaks 422 pp. , 130 iliustr. , Ref. 0-066 
A step-by-step introduction for anyone wanting to learn the Pascal language. 
Describes UCSD and Standard Pascals. No technical background is assumed . 

DOING BUSINESS WITH PASCAL 
by Richard Hergert & Douglas Hergert 380 pp. , illustr., Ref. 0-091 
Highlights the usefulness of Pascal as a business programming language. Includes 
design considerations, language extensions, and applications examples. 

APPLE® PASCAL GAMES 
by Douglas Hergert and Joseph T. Kalash 376 pp. , 40 iliustr. , Ref. 0-074 
A co llection of the most popular computer games in Pascal , challenging the 
reader not only to play but to investigate how games are implemented on the 
computer. 

CELESTIAL BASIC: Astronomy on Your Computer 
By Eric Burgess 320 pp. , 65 iliustr. , Ref. 0-087 
A collection of BASIC programs that rapidly complete the chores of typical astro
nomical computations. It's like having a planetarium in your own home! Displays 
apparent movement of stars, planets and meteor showers. 



PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan R. Miller 378 pp., 120 illustr., Ref. 0-058 
A comprehensive collection of frequently used algorithms for scientific and tech
nical applications, programmed in Pascal. Includes such programs as curve
fitting, integrals and statistical techniques. 

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan R. Miller 326 pp. , 120 illustr., Ref. 0-073 
This second book in the "Programs for Scientists and Engineers" series provides a 
library of problem-solving programs while developing proficiency in BASIC. 

FORTRAN PROGRAMS FOR SCIENTISTS 
AND ENGINEERS 
by Alan R. Miller 320 pp. , 120 iliustr. , Ref. 0-082 
Third in the "Programs for Scientists and Engineers" series. Specific scientific and 
engineering application programs written in FORTRAN. 

PROGRAMMING THE 6809 
by Rodnay Zaks and William labiak 520 pp., 150 illustr. , Ref. 0-078 
This book explains how to program the 6809 in assembly language. No prior 
programming knowledge required. 

PROGRAMMING THE 6502 
by Rodnay Zaks 388 pp. , 160 illustr., Ref. 0-046 
Assembly language programming for the 6502, from basic concepts to advanced 
data structures. 

6502 APPLICATIONS 
by Rodnay Zaks 286 pp., 200 iliustr., Ref. 0-015 
Real-life application techniques: the input/output book for the 6502 

ADVANCED 6502 PROGRAMMING 
by Rodnay Zaks 292 pp., 140 iliustr. , Ref. 0-089 
Third in the 6502 series. Teaches more advanced programming techniques, using 
games as a framework for learning. 

PROGRAMMING THE Z80 
by Rodnay Zaks 626 pp., 200 iliustr., Ref. 0-069 
A complete course in programming the Z80 microprocessor and a thorough intro
duction to assembly language. 

Z80 APPLICATIONS 
by James w. Coffron 300 pp., iliustr. , Ref. 0-094 
Covers techniques and applications for using peripheral devices with a Z80 based 
system. 

PROGRAMMING THE Z8000 
by Richard Mateosian 300 pp., 124 iliustr. , Ref. 0-032 
How to program the Z8000 16-bit microprocessor. Includes a description of the 
architecture and function of the Z8000 and its family of support chips. 

THE CP/M® HANDBOOK (with MP/M™) 
by Rodnay Zaks 324 pp. , 100 illustr., Ref. 0-048 
An indispensable reference and guide to CP/M-the most widely-used operating 
system for small computers. 



MASTERING CP/M® 
by Alan R. Miller 320 pp., Ref. 0-068 
For advanced CP/M users or systems programmers who want maximum use of the 
CP/M operating system ... takes up where our CP/M Handbook leaves off. 

INTRODUCTION TO THE UCSD p-SYSTEM™ 
by Charles W. Grant and Jon Butah 250 pp. , 10 iilustr. , Ref. 0-061 
A simple, clear introduction to the UCSD Pascal Operating System; for beginners 
through experienced programmers 

A MICROPROGRAMMED APllMPlEMENTATION 
by Rodnay Zaks 350 pp., Ref. 0-005 
An expert-level text presenting the complete conceptual analysis and design of an 
APL interpreter, and actual listing of the microcode. 

THE APPlE® CONNECTION 
by James W. Coffron 228 pp. , 120 illustr., Ref. 0-085 
Teaches elementary interfacing and BASIC programming of the Apple for connec
tion to external devices and household appliances. 

MICROPROCESSOR INTERFACING TECHNIQUES 
by Rodnay Zaks and Austin Lesea 458 pp., 400 illustr., Ref. 0-029 
Complete hardware and software interconnect techniques, including 0 to A con
version, peripherals, standard buses and troubleshooting. 

SELF STUDY COURSES 
Recorded live at seminars given by recognized professionals in the microprocessor 
field. 

I NTRODUCTORY SHORT COU RSES: 
Each includes two cassettes plus special coordinated workbook (2!t2 hours). 

S10-INTRODUCTION TO PERSONAL AND BUSINESS 
COMPUTING 
A comprehensive introduction to small computer systems for those planning to use or 
buy one, including peripherals and pitfalls. 

Sl-INTRODUCTION TO MICROPROCESSORS 
How microprocessors work, including basic concepts, applications, advantages and 
disadvantages. 

S2-PROGRAMMING MICROPROCESSORS 
The companion to Sl. How to program any standard microprocessor, and how it 
operates internally. Requires a basic understanding of microprocessors. 

S3-DESIGNING A MICROPROCESSOR SYSTEM 
Learn howto interconnect a complete system, wire by wire. Techniques discussed are 
applicable to all standard microprocessors. 



I NTRODUCTORY COM PREH ENSIVE COU RSES: 
Each includes a 300-500 page seminar book and seven or eight C90 cassettes. 

SB3-MICROPROCESSORS 
This seminarteaches all aspects of microprocessors: from the operation of an MPU to 
the complete interconnect of a system. The basic hardware course (12 hours). 

SB2-MICROPROCESSOR PROGRAMMING 
The basic software confuse step by step through all the important aspects of micro
computer programming (10 hours). 

ADVANCED COURSES: 
Each includes a 300-500 page workbook and three or four C90 cassettes. 

SB3-SEVERE ENVIRONMENT/MILITARY MICROPROCESSOR 
SYSTEMS 
Complete discussion of constra ints, techniques and systems for severe environmental 
applications, including Hughes, Raytheon, Actron and other militarized systems (6 
hours) . 

SBS-BIT-SLICE 
Learn how to build a complete system with bit slices. Also examines innovative appli
cations of bit sl ice techniques (6 hours). 

SB6-INDUSTRIAL MICROPROCESSOR SYSTEMS 
Seminar examines actua l industrial hardware and software techniques, components, 
programs and cost (4Y2 hours). 

SB7-MICROPROCESSOR INTERFACING 
Explains how to assemble, interface and interconnect a system (6 hours). 

SOFTWARE 

BAS 6S™ CROSS-ASSEMBLER IN BASIC 
8" diskette, Ref. BAS 65 
A complete assembler for the 6502, written in standard Microsoft BASIC under 
CP/M® . 

8080 SIMULATORS 
Turns any 6502 into an 8080. Two versions are avai lable for APPLE II. 
APPLE II cassette, Ref. 56580-APL(T) 
APPLE II diskette, Ref. 56580-APL (D) 



FOR A COMPLETE CATALOG 
OF OUR PUBLICATIONS 

u.s.A. 
2344 Sixth Street 
Berkeley, 
California 94710 
Tel: (415) 848-8233 
Telex: 336311 

SYBEX-EUROPE 
4 Place Felix-Eboue 
75583 Paris Cedex 12 
France 
Tel: 1/347-30-20 
Telex: 211801 

SYBEX-VERLAG 
Heyestr. 22 
4000 Dusseldorf 12 
West Germany 
Tel: (0211) 287066 
Telex: 08 588 163 






	Cover
	Contents
	Introduction
	1: Your First Program
	2: Flowcharts
	3: Integers
	4: Elementary Geometry
	5: Data Processing
	6: Mathematical Computations
	7: Financial Computations 
	8: Games
	9: Operations Research 
	10: Statistics
	11: Miscellaneous
	Appendix
	The Alphabet of BASIC
	Main Syntax Rules
	Standard ASCII Set

	Index
	The SYBEX Library

