

LIMITED SOFTWARE WARRANTY
This warranty applies only to the software portion of this product. If you purchased
this book by itself, without the companion diskette or cassette tape, then this section
does not apply to you.
For a period of ninety (90) days from the date of original purchase at retail, the
warrantor, identified below, warrants this software to load and run as a basic program
for the indicated microcomputer model, to be free from defects in material and
workmanship and to be merchantable and suitable for its stated purpose for the
period of this warranty. This warranty may not be enlarged except in writing, signed
by warrantor. THE WARRANTOR EXPRESSLY DISCLAIMS ANY IMPLIED
WARRANTY INCLUDING THE WARRANTY OF MERCHANTABILITY AND
THE WARRANTY THAT THE SOFTWARE IS SUITABLE FOR ITS STATED
PURPOSE AS OF THE DATE NINETY (90) DAYS FROM THE ORIGINAL PUR-
CHASE OF THE SOFTWARE AT RETAIL.
In the event of defect, malfunction or failure of the software to conform with this
warranty, the warrantor will repair or replace the software at no cost to you. For
warranty service, you should return the software to the warrantor, Howard W. Sams
& Co., Inc., Attn: Sams Software, 4300W. 62nd Street, Indianapolis, Indiana 46268.
Software received damaged as a result of shipping will require you to file a claim
with the carrier. This warranty gives you specific legal rights and you may also have
some other rights which vary from state to state.
THIS WARRANTY IS LIMITED SOLELY TO THE ABOVE AND THIS. WAR-
RANTY AND ANY WARRANTIES IMPLIED BY STATE LAW WILL APPLY ONLY
FOR THE PERIOD SET FORTH. (SOME STATES DO NOT ALLOW LIMITA-
TION ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU.) THE WARRANTOR WILL NOT BE
LIABLE FOR ANY LOSS, DAMAGE, INCIDENTAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND, WHETHER BASED UPON WARRANTY CON-
TRACT OR NEGLIGENCE, AND ARISING IN CONNECTION WITH THE SALE,
USE OR REPAIR OF THE SOFTWARE. (SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YOU.) UNLESS OTHERWISE CONTRARY TO STATE LAW GOVERNING
THE PURCHASE, THE WARRANTOR'S LIABILITY SHALL NOT IN ANY CASE
EXCEED THE CONTRACT PRICE FOR THE SOFTWARE CLAIMED TO BE
DEFECTIVE OR UNSUITABLE.
WARNING: THE UNAUTHORIZED USE, REPRODUCTION OR DUPLICATION OF
THIS MATERIAL, OR ITS PUBLIC PERFORMANCE OR DISPLAY, BY ANY
MEANS IN ANY MEDIA FOR ANY PURPOSE, WHETHER IN WHOLE OR IN
PART, IS STRICTLY PROHIBITED. VIOLATORS WILL BE SUBJECT TO ALL CIVIL
AND CRIMINAL PENALTIES.

Atari" Trivia Data Base

James F. Hunter is currently Director of Publishing for Howard
w.Sams & Co., Inc. (ITT). A graduate of the University of Califor-
nia (Riverside), Jim is a veteran of seven years' experience in the
personal computer field. In his spare time, he plays all board
games with an enthusiasm and facility that sometimes astonish
his opponents.

Troy Rondot, a1983graduate of Indiana Universitywith a B.S. in
Quantitative Business Analysis, is a computer consultant. He
has worked with micros for the past six years. In addition to
being a computer "hacker," Troy enjoys camping and hiking
with his wife and daughter.

Atari'" Trivia
Data Base

by

James F. Hunter and Troy Rondot

Howard W.Sams &Co., Inc.
A Publishing Subsidiary of ITT

4300West 62ndStreet, Indianapolis, Indiana 46268U.S.A.

© 1984by Howard W. Sams & Co., Inc.
A publishing subsidiary of ITT

FIRSTEDITION
FIRSTPRINTING-1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without
written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages
resulting from the use of the information contained
herein.

International Standard Book Number: 0-672-22397-X
Library of Congress Catalog Card Number: 84-51541

Edited by Susan Pink Bussiere

Illustrated by John E. Hopper

Printed in the United States of America.

Atari is a registered trademark of Atari, Inc.

Preface
All computers, including micros, are designed to emulate

processes of the human mind. It is, after all, we who have
defined the tasks assigned to computers, with the goal of free-
ing ourselves from tedious and repetitious tasks that can be
done more quickly and efficiently by an electronic device.
It is not unexpected that, after working with computers for a

while, we begin to regard them as intelligent living entities.
While not accurate technically, such an attitude can be of use in
discussing what the programs in this book are designed to do.
We need not be intimidated by the speed with which a com-

puter can do repetitious tasks and calculations. Remember that,
while doing those calculations, the computer need not be con-
cerned with satisfying superiors on the job, raising children,
paying bills, or trying to achieve goals set for itself, by itself. In
short, a computer is not distracted by the state of being human.
For its part, the computer does not enjoy some of the very

positive attributes of a human. It cannot think or feel or play. We
can. Playing a data retrieval game against a computer would be
no fun. The computer would always win. It is our own lack of
perfection at manipulating and retrieving data that has
accounted for the tremendous success of games like Trivial
Pursuit?": As we shall learn, the process of information storage
and retrieval in a computer is exact and describable. Not so with
us humans.
How many times have you heard someone say, "That reminds

me of a story." Why? What is the mechanism that links one
thought or event to another in the human mind? I don't have the
answer, but I do believe that the lack of exact precision in
describing those links can be a source of entertainment for
people.
We are by nature curious. In the exercise of that curiosity we

amass tremendous quantities of information, some of which
might not be of immediate or even long-term use. In an effort to
justify the acquisition and retention of such bits of knowledge,
we name them trivia and proudly proclaim ourselves true foun-

Trivial Pursuit is a Horn Abbot game licensed by Horn Abbot Ltd. , owner of the
registered trademark Trivial Pursuit.

tains of useless information. In simpler terms, we try to express
our belief that knowing things for their own sake is rewarding
and fun,': "
The purposes of this book, and the included programs, are

simple. The first purpose is to learn about the concept of a data
base program on a computer, how it is developed, and how it
works, The second and perhaps more important purpose is to
take advantage of the given data base by using it as a pool from
which to draw questions for the random inquiry trivia game
program. Its third purpose is for you just to have fun. It is our
hope that you will find both educational benefit and enjoyment
in this book.

JAMES F. HUNTER

A note to the reader
The programs in this book were not written as applications

software but as educational examples of what your personal
computer can do. All of the programs have been tested and
work on the machine configuration for which they were
designed. The programs, or subroutines, are unprotected. This
means that you can modify them to better understand how they
work or to fit a different machine configuration.

What is a Combo Pack?
Atari Trivia DataBase is available in two formats-as abook and

asa book and disk combination, called aCombo Pack.A Combo
Pack is a step beyond your average technical book. While many
books give you programming examples through printed listings
(which we do here), Combo Packs also provide the listings
recorded on magnetic media, either disk, cassette tape, or both.
If you purchased the book only, you can type the programs
listed.
Every effort has been made to be clear, concise, and infor-

mative. If you experience any difficulty with the software opera-
tions, the solution can be found in the book or in your computer
manuals.
We are rather proud of the time and effort that went into

preparing the Combo Pack. If you have purchased the Combo
Packand have enjoyed using it, let us know your thoughts. Your
comments will be valuable in preparing future Combo Packs.

Loading instructions
If you bought this book as part of a Combo Pack, a disk is

included. This disk contains the program listings printed in the
book and a file of sample trivia questions. You must first make a
working copy of the Combo Pack disk. To make aworking copy,
do the following:

ToMake a Working Copy

1. Turn off the power to the computer and all peripherals.
Turn on the disk drive.

2. When the red light goes out, insert the Atari DOS 2.0S
disk into the drive and turn the door lever down.

3. When the red light goes out, turn on the computer. Type
DOS and press <RETURN> to start the disk operating
system.

4. Remove the DOS disk and insert a blank disk into the disk
drive. (Label the blank disk "Working Copy" disk.) Close
the door lever.

5. When the red light goes out, type I and press <RETURN>
to format the Working Copy disk.

6. The screen displays WHICH DRIVE TO FORMAT? Type 1
and press <RETURN> for drive #1.

7. The message TYPE "Y" TO FORMAT DISK 1 appears on
the screen. Type Y and press <RETURN>

8. When the red light goes out, remove the Working Copy
disk and place the Combo Pack disk into the drive. Close
the door lever.

9. When the red light goes out, type Jand press <RETURN>
to duplicate the disk.

10. The computer displays DUP DISK-SOURCE,DEST
DRIVES?Type 01,01 and press <RETURN>

11. The instruction INSERT SOURCE DISK,TYPE RETURN is
shown on the screen. Press <RETURN>

12. After a few moments, the message INSERToESTINATlON
DISK, TYPE RETURN is displayed. Remove the Combo

Pack disk and insert the Working Copy disk. Close the
door lever.

13. When the red light goes out, press <RETURN>

14. After a few moments, the instruction INSERT SOURCE
DISK,TYPERETURN is shown. Remove the Working Copy
disk and insert the Combo Pack disk. Close the door
lever.

15. When the red light goes out, press <RETURN>

16. After a few moments, the screen displays INSERT DESTJ-
NATJON DISK,TYPE RETURN. Remove the Combo Pack
disk and insert the Working Copy disk. Close the door
lever.

17. When the red light goes out, press <RETURN>

18. This completes the copying of the files on the Combo
Pack disk to the Working Copy disk. Put the Combo Pack
disk in a safe place.

19. Type H and press <RETURN> to tranfer the DOS files to
your Working Copy disk.

20. The question DRIVETO WRITEDOS FILES TO? appears on
the screen. Type 1 and press <RETURN>

21. The message TYPE "Y" TO WRITE DOS FILES TO DRIVE 1
is displayed. Type Y and press <RETURN>

22. When the computer is finished writing and the red light
goes out, remove the Working Copy disk. You can now
use the Working Copy disk to boot (start the program
without using the DOS master disk).

To load the programs from the Working Copy disk, perform
the following steps:

To load the Programs

1. Insert the Working Copy disk into the drive and close the
door lever.

2. When the red light goes out, type Band press <RETURN>
to run Atari BASIC.

3. Type RUN"D:DATABASE" (you must type the quotes) to
run the data base program.

OR

4. Type RUN"D:GAME" (you must type the quotes) to play
the trivia game.

Contents
Chapter 1

INTRODUCTION••......••......•......•.•.... 15

Chapter 2
WHAT Is A DATA BASE? 19

Chapter 3
WHERE Do WE BEGIN?•................. 23

Chapter 4
DESCRIPTION OF THE PROGRAMS•.............. 27

Trivia Data Base 27
Trivia Game 29

Chapter 5
MAIN MENU•................................... 31

Initialization 31
Displaying the Main Menu 33
Loading an old file 34
Creating a new file 35
Deleting a file 37
Exiting the program 38

Chapter 6
EDIT MENU•........•...........................•.. 41

Displaying the Edit Menu 41
Entering Data 42
Entering first line of the question 43
Entering second line of the question 46
Entering the answer 47

Editing Data 48
Edit Options 50

Summary 53

Chapter 7
DATA BASE SUBROUTINES ..•.•....•.••.•.•.••.•......•.••. 55

Key input routine 55
File counting routine 56
Screen printing routine 56
Question number routine 58
Blanking routine 58
Control key routine 58
File name routine 59
Question print routine 59
Number length routine 60
Error trapping routine 60

Chapter 8
GAME ANALYSIS .•....• , ...••.•..•.•..•.••.•...........•. 63

Initialization 63
Choosing a file 64
Entering names 66
Playing the game 67
Exiting the program 71

Chapter 9
GAME SUBROUTINES ..•.......••.•.•..•.................. 73

Key input routine 73
File counting routine 73
Screen printing routine 74
Score printing routine 75
Blanking routine 76
Timer key routine 76
File name routine 77
Question print routine 77
Error trapping routine 77

Chapter 10
USING THE DATA BASE ..••..........•............•..•..... 79

#1. Load File 80
#2. Create New File 80
#3. Delete File 80
#4. Exit Program 81

Enter and Edit Data 81
#1. Enter Data 81
#2. Edit Data 83
#3. Return to Main Menu 84

Chapter 11
PLAYING THE GAME ...•••••......•••.....••••.....•••.... 85

Overview 85
Beginning the Game 85
Playing the Game 86
Exiting the Game 87

Chapter 12
IN CONCLUSION••••......•••.......•••......••.... 89

Appendix A
VARIABLE DESCRIPTIONS••.......•......••......••. 91

Data Base 91
String variables 91
Array variables 91
Number variables 91

Game 92
String variables 92
Array variables 92
Number variables 93

Appendix B
DATA BASE PROGRAM LISTING

(SEE FLOWCHARTS 1-A THROUGH 1-1) 95

Appendix C
GAME PROGRAM LISTING

(SEE FLOWCHARTS 2-A THROUGH 2-E) 103

Chapter 2

What is a Data Base?

The term data base in itself is quite descriptive. A collection of
information arranged in some non-random and accessible order
is a data base. Your telephone white pages are a data base. The
phone book gives multiple iterations of the same types of infor-
mation for many listees-Iast name, first name, address, and
telephone number. The Joy of Cooking cookbook is a collection
of recipes, each of which has ingredients and step-by-step direc-
tions for the preparation of particular dishes. It, too, is a data
base. Given just these two examples, think about what other
everyday sources of information could be regarded as data
bases.
To better understand what electronic (computerized) data

bases consist of and do, the following analogy to a commonly
used manual system of maintaining a data base may be helpful.
That system is the ever present 3 x 5 filing card system. Many
such index card systems are the result of our desire to collect.
Once ou r collection reaches a sign ificant size, we need to have
control of its contents. This control can be used to trade, to sell,
to insure, to value, or for any number of other activities. For
whatever reason, we definitely need to control the collection's
contents.
Let's suppose that we collect cassette tapes of old-time radio

show broadcasts, and we want to be able to share them with
friends. Our collection has grown to over 600 shows, and mem-
ory alone will not suffice to summon up the exact details of each
show. Our friends ask if we have any Jack Benny shows. We
know there are two, but where? Time for an index file! Time,
indeed, for a data base!

19

20 Atari TriviaData Base

Simply writing down the information about a show, in para-
graph form for instance, quickly proves of limited use. For
example:

The Jack Benny show broadcast June 4, 1938.Guest stars
include Edgar Bergen and Charlie McCarthy. The show
was sponsored by Lucky Strike, and is currently located
in my upper left-hand desk drawer, on the Sony tape
with the red and black label.

This card certainly has all the information we want, but after
we have finished ten cards or so, we begin to file them. How?
Alphabetically, of course. But alphabetically by what criteria? For
starters, let's do it by the name of the show. What is the name of
the show: "T" for the, "1" for Jack, or "B" for Benny? We
obviously need some standard procedures. Also, when flipping
through the cards, we need to be able to find the information on
the show name quickly. Let's put the show name on a separate
line at the top of the card.
The next thing we need to read on the card is the date of

broadcast. Let's put it in the upper right-hand corner. And the
guests ... second line, left-hand side. We are quickly design-
ing a format for the information. Ultimately, it could end up
looking like this:

Show title:

Guests:

Location:

Additional Comments:

Bdcst Date:

Sponsor:

Running time:

At this point, let's digress for just a moment to point out
another phenomenon resulting from the increasing use of
microcomputers. It has been dubbed computerphobia, and it is
often seen in the following form: the media has convinced us all
thatwe must be "computer literate" if we are to survive econom-
ically and socially in the next decade. We also are "required," if
we would be thought "good parents," to provide "computer

What is a Data Base? 21

literacy" for our children. Otherwise, perhaps we could be seen
as impeding their intellectual advancement and success poten-
tial as they grow up and enter a world controlled by computers.
However, we sometimes feel inadequate (if not plain stupid)
because we don't understand microcomputers. If we admit it by
asking questions, people will then learn the worst-we really are
stupid.
Fortunately, this is not at all the case. Most often, it is not the

concept that we do not understand, it is the jargon used to
describe computers and their uses. An example may help to
shed light on this point: following are two versions of a para-
graph describing the use of our filing card system. The first uses
terms with which we are all familiar, thus the description and
concept are easily understood. The second, however, sub-
stitutes terms that would be used to describe the same data base
if it were in a computer environment. By comparing the two, you
see that (1) you can understand concepts of microcomputer
usage, and (2) you are definitely not stupid.

Ordinary version
Now that we have the information layout, we can begin

to fill out cards for each specific show. We can then file
them alphabetically by show title. After all of the cards have
been filled out, we can use the newly formed card file. If, as
time goes by, we change our collection, we can remove
cards, change cards, or insert cards to reflect those
changes. We can also decide to file them alphabetically by
another bit of information on each card, such as Guest
Stars, and re-sort them for location using that new cate-
gory.

Computerese version
Now that we have the format, we can begin to enter data

for each specific show. We can then sort the data records
by show title. After all of the records have been entered,
we can access the newly formed data base. If, as time goes
by, we change our collection, we can delete records, mod-
ify or edit records, or add records to reflect those changes.
We can also decide to sort them alphabetically by another
field, such asGuest Stars, and resave all records for access
using the new key field.

22 Atari TriviaData Base

In general terms, then, a computerized data base does the
same things as a card system. So why bother with creating and
maintaining adata base? Because a computerized system can do
many other things that the card system can't; it can also do them
far more quickly and easily. For example, let's suppose we
wanted to find a show that was exactly 28 minutes long. Using
the filing card system, we would have to check each card by
hand or re-sort the cards by show length, from shortest to
longest or vice versa. On the computer, we een search on the
part of the card (field) that has the information until such a show
is found, and then read (access) that whole record. Such sorts
and searches, using a variety of keystrokes, are the backbone of
an electronic data base.
Next, let us suppose we also had established a dollar value for

each show, and entered that value in our format in its own
location (field). A sophisticated data base would also allow us to
add all ofthe values, thus giving us a total val ue forthe collection
at any point in time.
Finally, we shall assume that our insurance company wants

limited information on each show in order to issue a policy on
the collection. Using the filing card system, we would have to
copy the cards. With an electronic data base, we could design a
new format for printing the data, in columns for example, and
summarize all of our shows on a few pages.
In summary, an electronic data base allows the creation of data

entry and output formats, and the actual entry, storing, retrieval,
editing, deletion, searching, and sorting of records.
In addition to these features, our trivia data base will be

complemented by a random inquiry program. Our data in the
trivia data base program will consist of questions and answers.
The second program (the trivia game) will randomly select ques-
tions from the data entered into the data base program itself,
compare our answers to the answers in the data base, and then
score us on the speed and accuracy of our replies.

Chapter 3

Where Do We Begin?
Now that we understand something of what a generalized

electronic data base is and what it does, we can begin to con-
struct our own specialized random inquiry version of a data
base. Beginning with Chapter 5, the method of this book is as
follows: first, define the aspect of our data base program to be
dealt with; and second, present and explain the BASIC language
code that achieves the result. As a tool for following the logical
flow of both programs, we use standard flowcharting
techniques.
Such a process of program development is referred to as

modular programming. Each task has its own section of code;
and when we put them all together, we will have a program that
meets our original design specifications.
Before we begin, however, let's review in more detail what we

want our program to do. First, we want to be able to enter trivia
data questions and answers (in pairs). Next, we want to be able
to edit (add and alter) those entries until we are satisfied with the
results. Finally, we want a second program that enables the
computer to ask us those questions randomly, and give us
individual and comparative scores for our efforts.
Perhaps a few comments on programming techniques and

style would be helpful at this time. With regard to structure, the
BASIC language can be something of a trap for the unwary. If we
are not careful, the necessity to access subroutines in other
parts of our program could result in the creation of "spaghetti
code" (a term meaning program code written in such a haphaz-
ard fashion that it "wanders" up and down, and decreases pro-
gram efficiency and legibility as it goes).
Top down, or structured, programming is much to be pre-

ferred. It means to start at the top (the beginning) of the program
and work out the details in a logical, sequential manner. This
requires that we have a very precise idea of how the logic of the
program will work before we write a single line of program code.
The assignment of variable names within the program is also

of great importance. You can prepare a logical scheme for these

23

24 Atari TriviaData Base

variables by giving each variable a form that can be recalled
easily. In other words, make the variable names mnemonic. For
example, in the data base program the variable A$ stands for the
answer; Q$ for the question. Mnemonics are a great help aswe
reuse variables throughout the program.
REMark statements within the program help remind us of the

function of modules. They also aid other programmers, who
might at some later date be working with the program, in under-
standing the logic we are using.
Finally, we cannot always assume that a user will follow our

directions. We must therefore allow for circumstances in which
the input of the user is entered at the wrong time or is entered in
an invalid form. The process of accounting for such events is
called "error trapping." This process is nothing more nor less
than anticipating inappropriate actions by the program users,
and preventing those incorrect actions from causing the pro-
gram to fail, or "bomb" as we say in the trade.
We are now ready to build the skeleton of the program. Next

stop, the flowchart.
One popular misconception about computers (although you

don't buy it for a minute!) is that they can think. Computers
cannot think. They can only be programmed to evaluate a spe-
cific situation according to exact guidelines, and then perform
certain calculations based on those guidelines. An example may
be of some help here.
Let's suppose that we want to create a program that receives as

input from a user his sex, height, weight, and age. Then we want
to program the computer to return a message as to whether the
person who input the data is underweight, at a healthy weight
(for him or her), or overweight. Before we can begin writing
BASIC code, we must define the process by which the computer
can output the appropriate response.
For a first pass, let's assume we have a chart of appropriate

weights for adults. We can program the computer to retain that
chart, and look up (based on the user input) an appropriate
weight based on sex, height, and age. For now, let's just assume
that a program exists that will accomplish this task. We now
have, in the computer's memory area, the target weight and the
actual weight of our suject. Now we come to the kind of logical
branching activities computers can be programmed for, and
which lead people to believe that computers can indeed think.

Where Do We Begin? 25

Actually, all that takes place are tests on the data, with selection
of the correct message based on the results of those tests.

Look uptrue
weight from
tables based
onsex, height
andage

Fig. 3-1. Flowchart of the weight example program.

26 Atari TriviaData Base

For the sake of this example, let us further assume that anyone
who is plus or minus 5% of his best weight is close enough, and
will receive a positive message. If his weight is less than 95% of
his target weight, he will get a "skinny" message, and if he is
over 105% of his best weight, he will read a "fat" message.
The preceding description of program flow is wordy, awk-

ward, and not easily understood at a glance. There must be a
better way, and there is. What we have here is a sequence of
tests, decisions, and actions that can be represented nicely by a
flowchart.
A flowchart is an outline of all the major steps necessary to

perform a given task. Referring to Fig. 3-1, it is now clear that we
receive input from a user, compare the actual and target
weights, and then choose one of three messages to display on
the screen. Even in this simple example, the value of the
flowcharting tool is evident. In more complex programs (such as
we are describing here), flowcharting is an invaluable aid to
understanding what is happening in the program. Using
Flowcharts 1-A through 1-1 and Flowcharts 2-A through 2-E
(which fold out of the back of this book), we will give an over-
view of the data base program and the trivia game program.

Chapter 4

Description of the Programs
Trivia Data Base
In the complete program listings (which appear in Appen-

dices B and C) and variable listings (which are in Appendix A),
you will note that this package actually consists of two different
programs: a data base management program for file (question
and answer) maintenance, and a game that utilizes those files.
On the disk (included in the Combo Packversion), the laborious
task of entering all of the code listed in the book has been
eliminated, and both programs appear in final useable form.
Let's now look at the heart of our data base program (pull out

Flowchart1-A for simultaneous viewing). From the standpoint of
the user (that's you), your first decision will be to load an existing
data file, create a new one, or delete a file. If you choose to load
an existing file or create a new one, you will be given three
additional choices (decisions, decisions!). These lists of choices
presented on the computer screen are called menus, and a
program that always has menu options available on the screen is
said to be menu driven (and sometimes even "user friendly").
The first menu that appears is the Main Menu. See Flowchart

1-C. Based on which option is selected, there are three different
subprograms that are called into play. First, you can load an
existing file, in order to add to, edit, or delete from the file in
question. Next, you can create a new file, to handle questions
about a different category, or replace an old group of questions.
Finally, you can opt to delete a file, because after awhile you will
learn all of the answers, and the game wouldn't be fun anymore.
These options are illustrated on Flowcharts 1-0, 1-E, and 1-F,
respectively.
If you choose to delete a file, or load an existing file, the File

Choice Menu is displayed on the screen. This menu lists the
existing files from which you may choose. If you want to create a
new file, you are prompted to enter the file name.
After you have chosen an existing file or created a new one,

the Edit Menu is displayed. You again have three choices. On
Flowchart1-G, these options are to enter new data, edit old data,

27

28 Atari Trivia Data Base

Fig. 4-1. Mr. User Friendly.

or return to the Main Menu. For the program flow for the first
two options, see Flowcharts 1-H or 1-1, respectively.
If you choose option #1, enter data, the Question Entry

screen appears. You can enter new questions and answers,
which are simultaneously saved to disk, for use with the game
program.
If you choose option #2, edit data, the Question Edit screen is

displayed. You can choose the question and answer (the record)
to edit by having the program search forward or backward in the
file, or "jump" to a specified record number. After you have
edited the question and/or the answer, the changes can be
saved.
After all of this, you have a data base from which the game can

randomly call forth questions, and score you and your friends
(at least when the game starts, they're your friends) on your
knowledge of the subject area.

Description of the Programs

Trivia Game

29

Aside from the instructional value of learning programming
concepts through the development of both programs, the trivia
data base and trivia game serve some other purposes.
First, everyone who has wanted to play catch with a football,

but couldn't find a playing partner, will attest that such under-
takings aren't much fun alone. With these programs, however, it
is possible to practice (cheat?) and improve one's skills. Also, the
record and time keeping chores in such a fast-paced undertak-
ing as the trivia game is handled by the computer, leaving the
contestants free to deal with more trivial matters.
So, let's look at how the game works. Pleasepullout Flowchart

l-A for simultaneous viewing. Pretty simple, isn't it! Variable
initialization is done internally by the machine, then you choose
a data file (which was created with the data base program), enter
the number and names of players, and then you're off to the
races.
In order to assure that none of the players (with a good

memory) has an advantage, the order of the questions is
scrambled. Fortu nately, the correspondi ng answers are kept
with the questions. Then a player is put on notice that a question
is forthcoming. Ready! Set! Go! A timer starts, and the player
must enter the correct answer. If the answer is correct, points
will be awarded based on the elapsed time between question
and answer. Obviously, if the answer is incorrect, no points are
awarded. Each player will be asked five questions per game, and
the highest total score wins.
A file containing 100 sample questions is included if you

bought the Combo Pack. Not only has the recent interest in
trivia resulted in several board games, there is even a magazine
with oodles of new questions every month. Additional sources
for data base material can come from schools, club activities, or
any other aspect of life wherein rote learning is required.
That, then, is what this pair of programs is about. Chapters 5,

6, and 7 deal with an evaluation and discussion of the flowchart
for the trivia data base program, and the resultant BASIC code
that achieves that flow. Chapters 8 and 9 describe the code for
the trivia game.
We hope that you find the program logic and code generation

enlightening, and that you have as much fun using the program
as we had in testing it.

Chapter 5

Main Menu
Let's now look at the data base program in detail. For descrip-

tions of the variables, refer to Appendix A. Flowchart 1-A is an
overview of the program. Chapter 7 explains all of the sub-
routines used in the data base program.

Initialization
The beginning of the program, the program initialization, sets

up the key conversion routine, and initializes the variables and
error trapping. See Flowchart1-B. The key conversion routine is
made necessary by internal protocols of the Atari. The Atari also
requires that space be dimensioned (reserved) for all string
variables used in the program. Error trapping is required in
order to prevent unforseen errors, such as a "disk reading"
error.

100 DIM KEY1$(64),KEY2$(64)
1112! KEY1$="LJ; K+*O PU I-=V C BXZ4 36 521, •
N MI R EY TWQ9 12!7 8<>FHD GSA"
1212! KEY2$="LJ: 1<\-""'0 PU I_IV C BXZ$ 'l. I []

N M? R EY TWQ(). @ FHD GSA"
130 KS=PEEK(141)*256+PEEK(1412!)
1412! POKE KS+94,34
150 DIM DIR$(212!) ,Q$(54) ,A$(25) ,B$(54) ,F$(S) ,S(
112112l) , B (1 i2l12!) ,N$ (3)
160 FOR L=1 TO 54:B$(L,U=" L:Q$=B$:A$=
B:t (1 ,25)
1712! GRAPHICS 0:TRAP 712!10
1812! GOSUB 61112l
1912! POKE 16,64:POKE 53774,64

Line 100 reserves 128 spaces in memory by dimensioning two
strings (KEY1$ and KEY2$, which each contain 64 characters).
Lines 110 and 120 fill these spaces with characters in accordance
to the following rules:
• The position of all the characters is determined by their Atari
keyboard scan codes. Each character's position represents
its keypress scan code plus one. The scan code for an

31

32 Atari TriviaData Base

uppercase character is 64 plus the scan code for its lower-
case counterpart. (A cu rsory perusal of an ATASCII chart wi II
show why this is true.)

• All lowercase letters are converted to uppercase because
only uppercase letters are used while the program is run-
ning. This facilitates reading of the key scan codes .

• Spaces are used for special keys, such as <TAB>,
<CLEAR>, and <RETURN> because these keys cannot be
represented by a single character.

Perhaps some examples will make this more understandable.
The scan code for a lowercase letter "I" is 0, thus, an uppercase
letter "L" is placed in KEY1$ in position 1. (Position 1 is the value
of its scan code plus 1.) The scan code for <RETURN> is12, thus
a space is placed in position 13. And finally, the scan code for an
uppercase "T" is 109, thus an uppercase letter "T" is placed in
position 110 (in KEY2$).
Because KEY1$ and KEY2$ are string variables, when lines

110-120 are executed ATASCII characters are placed in memory
exactly as shown in KEY1$ and KEY2$. If you are typing the
listings into the computer, you must type KEY1$ and KEY2$
exactly as shown (including the spaces).
Line 130 loads the starting location of these dimensioned

characters into variable KS (the memory location where ATASCII
characters are stored). This is done because the memory loca-
tion of an ATASCII character can be derived by adding its scan
code (K) to KS and PEEKing into memory. This operation is
necessary because the scan codes do not follow in logical order.
If all of this sounds confusing, it's probably because it is. How-
ever, do not despair. This procedure is a peculiarity of the Atari,
and has little to do with the actual logic of the programs we're
discussing. If you choose not to master the process of key
conversion, just chalk it up to Magic, and let's move on.
Line 140puts the ATASCII representation for a quote mark into

the reserved area. The quote mark is used as a beginning and
end delimiter (mark) for KEY1$ and KEY2$. If you placed a quote
in either of these strings in the same way that the characters are
placed in the strings, the quote would indicate to the program
that it had reached the end of the string. Therefore, the quote
must be placed into the reserved area using a POKE.
Lines 150 and 160 initialize the string and array variables that

are used by the program. The string variables must be initialized
to blanks because this is not an automatic feature of the Atari.

Main Menu 33

Line 170 sets the screen defaults to mode 0 and turns on the
error trapping routine at line 7010 (see Chapter 7). Line 180 calls
the file counting subroutine at line 6110, which counts the
number of data files on the disk. Finally, line 190 disables the
break key. This ensures that the program can't be stopped
accidentally.

Displaying the Main Menu
When the program begins, the Main Menu is displayed (see

Fig. 5-1 and Flowchart 1-C).

TRIVIA DATA BASE

MAIN MENU

I. LOAD OLD FILE
2.CREATE NEW FILE
3. DELETE FILE
4.EXIT PROGRAM

PRESS (1-4)

Fig. 5-1. Main Menu.

The code for this section is:

REM *** MAIN MENU
1e POf>:E 752, 1 : PR I NT ""r"

FOSITION 11.2: PRINT "TRI'JIA DATA BASE"
POSITION 14.5:FRINT "MAIN MENU"

240 POSITION 11,8:PRINT "1. LOAD OLD FILE"
F'OSITION 11,13: FRINT "2. CF:EATE NEW FILE"
POSITION 11,12:F'RINT "3. DELETE FILE"

270 POSITION 11,14:FRINT "4. EXIT F'ROGRAM"
=80 PO,3 I T I ON 14. 17: PR I NT "PRESS (1-4)"
290 GOSUB 6010:IF K2<49 OR K2>52 THEN 290
320 ON GOTO

Line 210 turns off the cursor and clears the screen. Lines
220-280 print the menu on the screen,

34 Atari Trivia Data Base

Line 290 calls the key input routine at line 6010, and checks to
make sure the keypress (K2) is valid (i.e., less than 49 or greater
than 52, which is an ATASCII representation of a key input of 1
through 4). If the keypress isn't valid, the program returns to the
key input routine to get another keypress.
If the user's input is valid, line 300 directs the program flow to

the appropriate section. If option #1 (load an old data file) is
chosen the program continues at line 1010. If option #2 (create a
new data file) is chosen the program continues at line 2010. If
either option #3 (delete a file) or option #4 (exit the program) is
chosen, the program continues at lines 5010or 8010.

Loading an old file
The code for choice #1, load an existing file, is as follows:

1800 REM *** FILE CHOICE MENU
1010 FRHrr- "'l''':F'OSITIoN 12,3:F'RINT "FILE CHoIC
ES II

1015 IF THEN F=9
1020 IF F=0 THEN 1100
1030 OPEN #4,6,0,"D:*.TDB":FoR L=1 TO F:INPUT
#4.DIR$:F'OSITION 12,L+5:PRINT L; ". ":DIR$(3,10

L:CLOSE #4
1035 FOSITION 12,F+7:PRINT "0. EXIT"
1040 POSITION 12,F+9:F'RINT "PRESS (Ill-";F:")"
1050 GoSUB 6!2110:IF K2<48 OR K2>F+48 THEN 1050
1055 IFK2=48 THEN 210
1060 OPEN #5,6,12I,"D:*.TDB"
107121 FOR L=l TO K2-48:INPUT #5,DIR$:NEXT L:CLo
SE #5:F$=DIR$(3.11)
108e! IF F$(LEN(F$),LEN(F:t»)=" " THEN F:t=Ft(l,L
EN(F$)-l):GoTo le!8e!
109e! GOSUB 6710:oPEN #5,4,e!.DIR:t:INPUT #5;N:t:C
LOSE #5:N=VAL(N:t):GoTo 41211121
1100 POSITION 7,6:PRINT "NO OLD DATA FILES ON
DISK": POS I T ION 12,8: F'RINT "F'RESS ANY f<EY"
llle! GoSUB 6010:GoTo 21e!

See Flowchart 1-D. Lines 1010-1040 display the File Choice
Menu (see Fig. 5-2). First, line 1010 clears the screen and displays
"File Choices." Then line 1015 sets the maximum number of files
to nine.
If there are no files on disk (F = 0), line 1020 transfers control

to lines 1100-1110. This section displays a "no files" message,

Main Menu 35

waits for a user prompt to continue, and returns the program to
the Main Menu.
If there are one or more files on disk, line 1030 opens the

directory for file names with the extension "T08" and uses a
FOR... NEXT loop to display these file names. It then closes the
directory. Lines 1035-1040 print the exit option on the screen and
the message to press a key.

FILE CHOICES

L filename
2, filename

n EXIT

PRESS (0 n]

Fig. 5-2. File Choice Menu.

Line 1050 calls the key input routine at line 6010 to get your
choice. It then checks the validity of the keypress. If you r choice
is invalid (i.e., not one of the choices displayed) the key input
routine is again called. If you pressed 0, line 1055 returns the
program to the Main Menu.
If your choice is valid and your input is not zero, the following

occurs. Line 1060 re-opens the directory. Line 1070 reads in the
file name you chose (F$), and line 1080 removes the blanks in the
file name. Line 1090 calls the file name routine at line 6710.When
the program returns from this routine, line 1090 inputs the
number of questions in the file and then transfers control to the
Edit Menu.

Creating a new file
The code for choice #2, create a new file, is:

2000 REM *** NEW FILE CHOICE
2010 PRINT" ":POKE 752,0:F$=""

cant. an next page

36 Atari Trivia Data Base

IF F)=9 THEN 2090
2020 POSITION 7,5:PRINT "NEW FILE NAME ";:INPU
T F$
2023 IF F:t="" THEN 212170
2025 FOR L=1 TO LEN(F:t):IF ASC(F$(L,L»{65 OR
ASC(F$(L,L»)90 THEN 2070
2027 NEXT L
212130 POKE 752,I:TRAP 212l60:0PEN #5,6,0,"0:*.*"
212l412l INPUT #5,DIR$:IF OIR$(3,LEN(F:t)+2)=F:t THE
1'1 CLOSE #5:GOTO 2070
212l512l GOTO 212l412l
212160 CLOSE #5:TRAP 712l10:GOSUB 67112l:0PEN #5,8,0
,DIR:t:N=I2l:N$="12l ":PRINT #5;N$:CLOSE #5:F=F+l:
GOTD 41211121
::21712l F'OKE 752,1: F'OS I TI ON 3,8: PRI NT "ILLEGAL OR
DUPLICATE FILE NAME":POSITION 11,11:PRINT "PR
ESS ANY r.·.EY"
212l812l GOSUB 612l112l:GOTO 210

pm:E 752,1:POSITION 8.8:PRINT "TOO MANY F
ILES ON OISk":POSITION 12.11:F'RINT "PRESS ANY

2112l12l GOSUB 612l10:GOTO 2112l

Refer to Flowchart 1-E. First, line 2010 clears the screen and
turns off the cursor. It then sets F$(the file name) to null because
we are creating a new file name. If there are nine or more files on
disk (F>8), line 2015 transfers control to lines 2090-2100. This
section displays a "too many files" message, waits for you to
press a key to continue, and returns the program to the Main
Menu.
If there are less than nine files on the disk (F<9), line 2020

accepts the user input of the new file name (F$). Line 2023 checks
to see if F$ is blank. If so, control is transferred to lines
2070-2080, which print an "illegal or duplicate file name" mes-
sage and the prompt to press a key to continue. Control is then
returned to the Main Menu. Lines 2025-2027 check to see if the
file name is valid (i.e., the file name contains only letters). If the
file name is not valid, control is transferred to lines 2070-2080
(see above).
Line 2030 changes the location of where the program will

continue if an error occurs from its original location (at 7010) to
line 2060. (We will explain why in a moment.) It then opens the
directory so it can be read.
Lines 2040-2050 read and compare each file name to F$ to

search for duplicate file names. If there is a duplicate, control is

Main Menu 37

tranferred to 2070-2080(see above). The program then goes back
to read the next file name. When the program reaches the end of
the last file, an error occurs. But because we have changed the
location of the error trapping routine, the error trap at line 2060
gets program control. We have changed the location of the error
trapping routine because we want the program to handle this
error differently than other errors. It must be noted, because we
have all been taught that "errors" are bad things, that in this
context an error can be used constructively to assist in the
direction of program control during execution. I had an Apple II
customer who once was sure someone had broken his new
computer, because "Syntax Error" appeared on the screen.
Thank goodness you are much too sophisticated to have such a
negative reaction to our programming friend, the Error.
Line 2060 closes the directory. It then calls the file name

routine at 6710, which converts F$ to DIR$, and opens the data
file (DIR$). Upon return from the file name routine, line 2060sets
N$ (the string representation of N) and N (number of questions)
to zero, and prints N$ as the first record of the file. It then closes
the file, adds one to the number of files (F), and transfers control
to the Edit Menu.

Deleting a file
Choice #3, delete a file, is accomplished with the following

code:

5000 REM *** FILE DELETION
5010 F'RINT "'1": POSITION 12,3: PRINT "FILE DELET
ION"
5020 IF F=0 THEN 5120
5030 OPEN #4,6,0,"D:*.TDB":FOR L=l TO F:INPUT
#4, DI R$: POS I T I ON 12, L+5: PR I NT L;". "; DI R$ (3, 10
):NEXT L:CLOSE #4
5035 POSITION 12,F+7:PRINT "0. EXIT"
504121 POSITION 9,F+9:PRINT "DELETE WHICH FILE':'''
:POSITION 12,F+1121:PRINT "PRESS (f2I-";F;")"
5f215f21 GOSUB 6f2110:IF K2<48 OR K2>F+48 THEN 5050
5055 IF K2=48 THEN 210
5060 OPEN #4,6,0,"D:*.TDB":FOR L=l TO K2-48:IN
PUT #4,DIR$:NEXT L:CLOSE #4:F$=DIR$(3,ll)
5070 IF F$(LEN(F$),LEN(F$»=" " THEN F$=F$(l,L
EN(F$)-l):GOTO 5070

cant. an next page

38 Atari Trivia Data Base

51218121 PRINT ""f":PoS1TIoN 12,1121:PRINT "DELETE ";
F$;"?":PoSITIoN 12,12:PRINT "PRESS Y OR N"
51219121 GoSUB 612110: IF K2=78 THEN 21121
51121121 IF K2=89 THEN GoSUB 671121:XIo 33,#1,121,121,01
R$:F=F-1:GoTo 21121
511121 GoTo 51219121
512121 POSITION 1I21,6:PRINT "NO FILES TO DELETE":
POSITION 12,8:PRINT "PRESS ANY KEY"
513121 GoSUB 61211121:GOTo 21121

See Flowchart1-F. First, line 5010 clears the screen and displays
the message "file deletion." If there are no files on disk (F = 0),
line 5020 transfers control to lines 5120-5130. This section dis-
plays a "no files" message, waits for you to press a key to
continue, and returns the program to the Main Menu. If there
are one or more files on disk, line 5030 opens the directory for
file names with the extension "TOB" and uses a FOR... NEXT
loop to display these file names. It then closes the directory.
Lines 5035-5040 print the exit option on the screen and the

prompt message to press a key.
Line 5050 calls the key input routine at line 6010 to get your

choice. Then it checks the validity of the keypress. If your choice
is not one of the options displayed, the key input routine is
called again. If you pressed 0, line 5055 returns the program to
the Main Menu.
If your choice is valid and your input is not zero, the following

lines are executed. Line 5060 re-opens the directory, inputs the
file name chosen (F$), and closes the file. Line 5070 removes the
blanks in the file name. Line 5080 clears the screen and prints a
confirmation message. Line 5090calls the key input routine for a
keypress; if the keypress is "N," control is transferred to the
Main Menu. If the keypress is "Y," line 5100 deletes the file using
an XIO command, subtracts one from the number of files, and
transfers control to the Main Menu. If neither "Y" nor "N" was
pressed, line 5110 returns to the key input routine.

Exiting the program
Choice #4 exits the program. Program flow is directed to

statement 8010.

8121121121 REM *** EXIT
81Zl10 PRINT "'I":F'OKE 16,192:Po1<E 53774,247:Pol<:E
752,0:END

Main Menu 39

Line 8010 clears the screen and turns on the cursor. It also
enables the break key (which was disabled to prevent someone
from accidentally ending the program) and ends the program.
That's it for the explanation of the program initialization and

Main Menu. By now you're probably used to simultaneously
viewing the flowcharts and program notes. In the next chapter,
we describe the Edit Menu and how it works.

Chapter 6

Edit Menu
There are three choices in the Edit Menu. You can enter new

data or edit existing data in the data base, or return to the Main
Menu. The entry and edit modules are undoubtedly the most
complex in the data base program.

Displaying the Edit Menu
If you choose option #1 or #2 from the Main Menu (load an

old file or create a new one), the next menu you see is the Edit
Menu. See Fig. 6-1.

TRIVIA DATA BASE

CURRENT FILE - filename
OF QUESTIONS - n

EDIT MENU

1 ENTER DATA
2. EDIT DATA
3.RETURN TO

MAIN MENU

PRESS (1-3)

Fig. 6-1. Edit Menu.

The following code displays the Edit Menu:

4000 REM *** EDIT MENU
'1-010 POKE 752,1: PRINT "'I'''
4020 POSITION 11,2:PRINT "TRIVIA DATA BASE"
403121 F'OS!T!ON 9,4: PRINT "CUF:F:ENT FILE - "; F$: P
OS! T! ON 9,5: F'RI NT "# OF QUEST IONS - "; N
4040 POSITION 14,8:PRINT "EDIT MENU"
4050 POSITION 11,11:PRINT "1. ENTER DATA"
4060 POSITION 11,13:PRINT "2. EDIT DATA"

cant. an next page
41

42 Atari Trivia Data Base

4070 POSITION 11,15:PRINT "3. F:ETURN To":PoSIT
ION 14,16:PRINT "MAIN MENU"
4080 POSITION 13,19:PRINT "PRESS (1-3)"
4100 GoSUB 6010:IF K2<49 OR K2>51 THEN 4100
4110 ON K2-48 GOTo 3010,4120,210

Refer to Flowchart 1-G. line 4010 turns off the cursor and
clears the screen. Lines 4020-4080display the current file name
(F$), the number of questions in that file (N), and the Edit Menu
options.
Line 4100 calls the key input routine at line 6010 (see Chapter 7)

and checks to make sure that the keypress was a 1,2, or 3. You
have three choices. You can enter new data (#1), edit old data
(#2), or return to the Main Menu (#3). Line 4110 directs the
program flow to choices 1, 2, or 3, lines 3010, 4120, or 210,
respectively.
Now let's look at the three choices on the Edit Menu in detail.

Entering data
If you choose option #1 from the Edit Menu, the following

code is executed. Pull out Flowchart 1-H for simultaneous refer-
ence, refer to Appendix A for variable descriptions, and let's
look at the logic for entering data. Remember, subroutines for
this program are in Chapter 7.
3000 REM *** QUESTION ENTRY
3010 IF N>=100 THEN 3600
3020 GOSUB 6210:PoSITION 13,3:PF:INT "QUESTION
ENTRY":N=N+l:GoSUB 6410
3030 POSITION 9,21:PRINT ""R:RESTART"E:EXIT
" .,
3180 OPEN #5,9,0,DIR$:Q$=B$:A$=B$(l,25)

Line 3010 checks to see if the number of questions is greater
than or equal to 100. If so, the program transfers to lines
3600-3610.

3600 F'RINT "'T":pm':E 752.1:POSITION 14,8:PRINT
"FILE FULL":POSITION 12,II:PRINT "PRESS ANY f<E

3610 SOSUB 6010:CLOSE #5:0PEN #5,12,0,DIR$:GOS
UB 6910:PRINT #5;N$:CLOSE #5:GOTO 4010

EditMenu 43

Line 3600 prints a "file full" message and prompts the
user to continue. Line 3610 closes the data file and opens it
at the beginning of the file. It then calls the number length
routine at line 6910. Upon returning from this routine, line
3610 prints the number of questions in the file, closes the
file, and transfers control to line 3010 for a different edit
option.

Line 3020calls the screen printing routine at 6210, which prints
the question entry screen (see Fig. 6-2). Line 3020 then incre-
ments N (the number of questions) by one and transfers to the
question number routine at line 6410, which prints the number
of questions.
Line 3030 prints the entry control options CR: Restart and' E:

Exit). Line 3180 opens the data file for input and output, and
blanks the current question and answer.

TRIVIA DATA BASE
QUESTION ENTRY

QUESTION Nn FILE NAME filename

QUESTION'

ANSWER'

/\ R: RESTART /\E: EXIT

Fig. 6-2. Question Entry screen.

Entering first line of the question
As Fig. 6-2 illustrates, there are two lines on which to enter the

question. Entering characters on the first line is handled some-
what differently than entering characters on the second line.
The next section of code and program description deals with
entering characters on the first line of the question. We will
describe the code for entering characters on the second line
afterwards.

44 Atari TriviaData Base

3190 POKE 752,0:F'OSITION 13,9:PRINT 1111;
3195 IF N)1Ql0 THEN N=10Ql:GOTO 3600
3200 T=0:S=0
3210 R=3220:GOTO 3700
3220 IF K=12 AND FL=1 THEN 4610
3230 IF K=12 THEN 3450
3240 IF K=52 AND T>0 THEN POSITION T+13,9:PRIN
T II +";:Q$(T,T)=" ":T=T-1:GOTO 321121
3270 IF K2=32 AND K<>33 THEN 3210
3280 T=T+1:Q$(T,TI=CHR$(K2):POSITION T+13,9:PR
INT CHR$ (K2) ;
3300 IF T<22 THEN 3210
3310 IF K2=32 THEN POSITION 4,11:F'RINT II 4-";:G
OTO 3370
332121 FOR 5=22 TO 1 STEP -1:IF Q$(S,S)=" II THEN

...:..-.:.•.

3330 NEXT S
3335 S=22-S:T=22+S:POKE 752,1
334121 FOR L=l TO S:Q$(22+L,22+L)=Q$(22-S+L,22-S
+L):POSITION L+3,11:PRINT Q$(22+L,22+L);
3350 Q$(22-S+L,22-S+Ll=" ":POSITION 35-S+L,9:P
RINT .. ";:NEXT L

Line 3190 turns on the cursor and places it at the first location
on the question line, Line 3195 checks to see if the new number
of questions (N) is greater than or equal to 100. If so, the program
transfers to lines 3600-3610 (as above). If N is less than 100, line
3200 resets the number of characters in the question (T) and the
number of spaces atthe end ofthe first line of the question (5) to
zero.
Line 3210 sets R (the line number to which the program will

return) to 3220. (This means that when a GOTO R is reached, the
program will return to line 3220.) Then, line 3210 transfers con-
trol to a routine at lines 3700-3730. This routine first calls the
control key routine at line 6610. After the control key routine is
executed, control is transferred back to the calling routine at
line 3700, which is a control key handling routine for question
and answer entry.

3700 GOSUB 6610: IF THEN 3730
3710 IF V=168 THEN Q$=B$:A$=B$(1,25):GOSUB 651
0:GOTO 3190
3720 IF K=170 THEN CLOSE #5:0PEN #5,12,0,OIR$:

Edit Menu 45

N=N-l:GOSUB 6910:PRINT #5;N$:CLOSE #5:GOTO 401
o
3730 GOTO R

The code for entering data is also used by the edit
section of the program. Therefore, FLis a flag that indicates
if the entry routine is currently being used by the edit
routine. A flag is simply a two-position switch, which can
help us keep track of the status of program execution.
If FL (flag) = 1 (indicating the entry routine has been

called by the editing routine), then the next two program
lines (lines 3710 and 3720) are skipped because control keys
are not allowed when we are editing a question.
If K = 168 (which indicates that AR, restart, was pressed),

line 3710 blanks the question and answer and clears a
portion of the screen using the blanking routine at line
6510. Line 3710 then transfers control back to line 3190 to
start entering the question again (restart).
If K = 170 (which indicates that AE, exit, was pressed) line

3720 is executed. It closes the file and opens it again at the
beginning of the file. Line 3720 then calls the number
length routine at 6910. Upon return from this routine, line
3720 prints the number of questions to the file, closes the
file, and returns control to the Edit Menu.
Line 3730 returns to location R (line number R as spec-

ified earlier, line 3220).

If <RETURN> is pressed and FL = 1 (indicating this is a
question edit), line 3220 transfers control back to the edit
options at line 4610. If <RETURN> is pressed (FL <> 1, which
indicates that this is a new entry), line 3230 transfers control to
line 3450 to enter the answer.
If <BACKSPACE> is pressed and T (number of characters) > 0,

line 3240 prints a backspace. Then the character that was back-
spaced over is blanked from the question, T is decremented
(one is subtracted from T), and control is transferred to line 3210
to get a new keypress.
Line 3270 checks to make sure that when K2 (the ATASCII

keypress) equals 32 (a space), K (the key's scan code) equals 33
(scan code for a space). This is done to ensure that if the
returned ATASCII keypress is 32, the space bar was pressed and
not a special key, such as <TAB> or <CLEAR>. (See the Ini-
tialization section in Chapter 5.) If K2 doesn't equal 32 and K

46 Atari TriviaData Base

doesn't equal 33, control is transferred to line 3210 to get
another keypress.
Line 3280 increments the number of characters (T), adds the

keypress (CHR$(K2)) to the question string (Q$), and prints the
character to the screen.
Line 3300 checks to see if you are at the last character on the

first line of the question (T = 22). If not, control transfers to 3210
for another keypress.
If you are at the end of the first question line, lines 3310-3350

are executed. Line 3310 checks to see if the last character typed
was a space. If it was a space, the cursor is moved to the second
line of the question and control is transferred to 3360 for input of
the second line of the question.
If the last character typed wasn't a space, the word you are

typing won't fit on the first line, and must be moved to the
second line. The following occurs. Lines 3320-3330 count back
through the number of characters until a space is reached. Line
3335adjusts S (number of spaces at the end of the first line) and T
(number of characters in the question) to reflect the number of
actual spaces that must be added to the end of the first line to
force the partial word to the second line. It then turns off the
cursor. Lines 3340-3350contain a FOR... NEXT loop, which moves
the partial word to the second line, inserts spaces into Q$ (the
question), and displays the moved word on the second line.
To be sure, such attention to aesthetics is not mandatory, but I

don't like wrapped-around words, and I'll bet you don't either!

Entering second line of the question
This section is almost identical to the code for entering char-

acters on the first line of the question. The only differences are
in how the program handles a <BACKSPACE> keypress and the
last character on the line. Therefore, we will only describe the
sections of code that perform these functions.

33613 POI<E 752,13:POSITION T-18,11:PRINT " +";
33713 R=3372:GOTO 37013
3372 IF K=12 AND FL=1 THEN 46113
3375 IF K=12 THEN 34513
33813 IF K<>52 THEN 3397
3385 IF T)S+22 THEN POSITION T-19,11:PRINT " ..
";:Q$(T,T>=" ":T=T-1:GOTO 33713

Edit Menu 47

3390 POKE 752,1:FOR L=l TO S:Q$(22-S+L,22-S+L)
=Q$(22+L,22+L):POSITION 35-S+L,9:PRINT Q$(22-S
+L, 22-S+L) ;
3395 Q$(22+L,22+L)=" ":POSITION L+3,11:PRINT"
" ; : NEXT L: Q$ (22,22) =" ": F'OI<E 752,0: POS I T I ON 3
5,9:PRINT " +";
3396 S=0:T=21:GOTO 3210
3397 IF T=54 THEN 3370
3400 IF K2=32 AND K<>33 THEN 3370
3410 T=T+l:Q$(T,T)=CHR$(K2):POSITION T-19,11:P
RINT CHR$CK2,::GOTO 3370

Line 3360 turns on the cursor and positions it on the second
line.
If <BACKSPACE> is pressed, the following occurs. If you were

typing a word on the second line and pressed <BACKSPACE>,
line 3385 checks to see if the word (or partial word) will now fit
on the end of the first line. If the number of characters on the
second line (T - 22) is greater than the number of spaces available
on the end of the first line (S), line 3385 performs a "normal"
backspace and control is transferred to 3370 to get the next
keypress. If the number of characters on the second line is less
than or equal to the number of spaces available on the end of the
first line, the FOR..,NEXT loop at lines 3390-3396 is executed.
This loop moves the characters from the second line into the
spaces at the end of the first line, updates Q$, and positions the
cursor at the end of the first line. Line 3396 sets S (the number of
spaces) = 0, sets T (the number of characters) = 21, and trans-
fers control to line 3210 for first line input.
The second difference between first and second line question

entry is that when you reach the end of the second line (T = 54),
the only characters accepted are <RETURN> and
<BACKSPACE>.
The preceding sections on wraparound control can have

future applications in programs you might write. You may want
to mark them for future detailed review.

Entering the answer

Coming up next is a description of the code for entering the
answer into the data base. This section is similar to the section
for entering the question, except the answer is entered on only
one line (and not two). Again, only the differences are
described.

48 Atari Trivia Data Base

When entering answers, <BACKSPACE> is always a "normal"
backspace (and not handled as it is on the second line of ques-
tion entry). Also, only 25 characters (and not 54 characters) can
be entered.

3450 T=I<":F'OSITION 10,17:PRINT " ";
3460 R=3471ZJ:GoTo 371<"0
3471<" IF K=12 AND FL=l THEN 4630
3480 IF K=12 THEN 3561<"
3490 IF K=52 AND T)0 THEN POSITION T+10,17:PRI

" +-":: A$ CT, T) =" ": T=T-l: GOTO 3460
3500 IF T=25 THEN 3460
3510 IF K2=32 AND K<)33 THEN 3461<"
3520 T=T+l:A$(T.T)=CHR$(K2):POSITION T+10,17:P
RINT CHR$(K2);:GOTo 3460
3560 PRINT #5;Q$:PRINT #5:A$:N=N+l:G05UB 6411<":
Q$=P$:A$=P$(l,25):GoSUB 6511ZJ:GOTO 3191<"

One of the neat (or frustrating, depending on your point of
view) things about computer programs is that they are never
done. You can always think of more features to add. If you are so
inclined after a first runthrough of this book, here are a couple
of suggestions for improving the answer input routine. First, you
could make sure that the answer is no more than two words
long. Second, you could eliminate any occurences of articles
such as "a," "an," or "the." In this way, the playerwould not have
to type the article to get a correct answer. For example, suppose
you enter "the Constitution" as the answer to a question in the
data base program, and the program doesn't eliminate "the." A
trivia game player would have to answer the question as "the
Constitution," even though "Constitution" is also correct.
Finally, you could add a section of code that would make sure
that some answer (at least one character) is entered before
saving the question and answer to disk.
That, then, comprises the code for the entering data section

of the program. But, as noted earlier, nobody is perfect, and
even after we have entered what we think is correct information,
we sometimes will have to change it. Time to look at the editing
process, and that is next.

Editing data
Pull out Flowchart 1-1 for simultaneous reference, refer to

Appendix A, and let's look at the logic for option #2 from the

Edit Menu 49

Edit Menu, edit data. Subroutines are in Chapter 7. This option
allows you to edit data that is already entered into the data base.
You can edit the question and/or the answer.
The next section of code indexes the records, and prints the

Question Entry screen and edit options. It then sets up the
program to allow the use of the edit options. The code is:
412121 PFUNT ""''': IF N=12l THEN POSITION 11.9: PRINT
"NO DATA IN FILE":POSITION 12,11:FRINT "PRESS
ANY KEY"
41312l IF N=12l THEN GOSUB 61211121:GOTO 41211121
414121 POSITION 11.11:PRINT " .•.. PLEASE WAIT"
415121 OPEN #4,12,I2I,DIR$:INPUT #4.N$:N=VAL(N$):F
OR L=1 TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y:INPUT #4

L
417121 M=1 : POKE 752, 1 : PR I NT "': " : GOSUB 621121:POS I T
ION 13,3:PRINT "QUESTION EDIT"
418121 POSITION 2.21:PRINT " ""F:FWD ····R:REV "'J:JM
P AC:CHG AE:EXT "
4200 POINT #4,S(M),B(M):INPUT #4,Q$.A$:N$=STR$
(M):IF M<100 THEN N$(3,3)=" ":IF M<1fZ1 THEN N$(
2,2)=11 II

4210 POSITION 13,5:PRINT N$;:GOSUB 68112l:GOSUB
6820

Line 4120 clears the screen and checks to see if there are no
questions in the file (N = 0). If N = 0, the rest of line 4120 and
line 4130 print a "no data in file" message, prompt to continue,
and return control to the Edit Menu section of the program.
If N > 0 (there are questions in the file), the following lines are

executed. Line 4140 prints a "please wait" message because
indexing the records can take up to 22 seconds. A quick and easy
method of customizing the program is to alter the "pacifier"
message in line 4140. Line 4150 opens the file and uses a
FOR... NEXT loop to record the sector and byte location of each
question in variables 5(100) and B(100). These are linear array
variables, and can be thought of as a single column look-up
table. Line 4170 sets M (the current question number) = 1 and
calls the screen printing routine at 6210,which prints the Ques-
tion Edit screen (see Fig. 6-3). Line 4180 prints the edit options.
Line 4200 points to the location on the disk of the current

record; it then inputs that record into Q$ (question) and A$
(answer), and converts the current question number (M) into a
string of length 3 (N$). Line 4210 prints the record number, the
question, and the answer to the screen.

so Atari Trivia Data Base

TRIVIA DATA BASE
QUESTION EDIT

QUESTION #n FILE NAME filename

QUESTION'

ANSWER'

1\ F:FWD 1\ R: REV 1\ J: JMP 1\ C: CHG 1\ E: EXT

Fig 6-3. Question Edit screen.

Edit options
We now have several options: we can choose to search the file

forward one record at at time, backwards one record at a time,
jump to a record, change a record, or exit. See Fig. 6-3. But first
we have to get your choice.

4220 GOSUE 6610:IF K=168 AND M>1 THEN M=M-l:GO
SUB 6510:GOTO 4200
4230 IF K=184 AND M<N THEN M=M+l:GOSUB 6510:GO
TO 4200
4240 IF K=129 THEN 4400
4250 IF K=146 THEN 4500
4260 IF K=170 THEN CLOSE #4:GOTO 4010
4270 GOTO 4220

Line 4220 calls the control key routine at line 6610, which gets
your input.
The first option the program checks for is -R:REV (reverse),

which is the command to look at the previous record. After
control is returned from the control key routine, line 4220
checks to see if K = 168 CR) and if M (current record) > 1. If so,
M is decremented by one, the screen is blanked by the blanking
routine at 6510, and control is transferred to line 4200to print the
current information (question, answer, and question number)
to the screen.

Edit Menu 51

Likewise, we can look at the next record. This option is
the 'F:FWD (forward) command. If K = 184 CF) and M < N, line
4230 increments M by one, blanks the screen, and control is
transferred to line 4200, which prints the new (current) informa-
tion to the screen.
Another option is to "jump" to a specified record. This is the

'j :jMP command. With up to 100 records in a file, it would take
forever to step through from the beginning to the end (i.e., if
you were at record 2, and wanted to go to record 88); thus, the
jump option. If K = 129 C1), line 4240 transfers control to line
4400, which is a jump routine. The jump routine is described
near the end of this chapter.
We can also change a record. The command for this is

'C:CHG. We can then redo the question CQ:QUESTION) or
the answer ('A:ANSWER). If K = 146 CC), line 4250 transfers
control to line 4500. This section of code will also be described
shortly.
Finally, we can choose to exit this module and return to the

Main Menu. The command forthis function is 'E:EXT. If K = 170
CE),line 4260 closes the file and transfers control back to the Edit
Menu (line 4010).
If K was not equal to a valid edit option, then line 4270 trans-

fers control back to line 4220 to get another keypress.
Now on to the two portions of code that are executed from the

edit options section. They are the jump routine and the change
option.
As described earlier, if you choose the' j (jump) option, then

K = 129. Line 4240 transfers control to the jump routine at line
4400.

TRAP 3,21:PRINT B$(1,36);:P
OSITION 2,21:PRINT " JUMP TO WHICH RECORD ";:1
NPUT M

IF M{l OR M>N THEN
POSITION 38,21:PRINT CHR$(124);:TRAP 7010

:GoTo 4180

Line 4400 first sets the error trap to line 4400 in case there is an
entry error. It blanks the bottom line on the screen and prompts
the user to input the number of the record to jump to (M). Line
4410 makes sure that M is not less than 1or greater than N. If M <
1 or M > N, control is transferred to 4400 to get another record
number to jump to. Otherwise M is valid; line 4420 resets the

52 Atari Trivia Data Base

error trap to line 7010 and transfers control to 4180to update the
screen.
If you choose the 'C (change) option, then K = 146. Line 4250

transfers control to line 4500.

4500 POKE 752,l:POSITION 2,21:PRINT" AQ:QUES
TION AA:ANSWER AE:EXIT
4510 GOSUB 6610:IF K=175 THEN 4600
4520 IF K=191 THEN 4620
4530 IF K<}170 THEN 4510
4540 GOTO 4180
4600 POSITION 2,21:PRINT B$(1,35):Q$=B$:GOSUB
6810:FL=I:GOTO 3190

#4,S(M) ,B(M):PRINT #4;Q$:PRINT
#4;A$:GOTO
4620 POSITION 2,21:PRINT B$(1,35):A$=B$(1,25):
GOSUB 6820:FL=I:POKE 752,0:GOTO 3450
4630 FL=0:POINT #4,S(M),B(M):PRINT #4;Q$:PRINT
#4;H$:GOTO 4500

Line 4500 turns off the cursor and prints the change options
on the screen. See Fig. 6-4. Line4510 calls the control key routine
at line 6610.

I 1\ Q: QUESTION 1\ A:ANSWER 1\ E EXIT I

Fig. 6-4. Change options.

If K = 175CQ, question edit) upon returning from the control
key routine, line 4510 transfers control to line 4600. Line 4600
blanks the question, sets FL = 1 (to signify an edit), and transfers
control to line 3190 for question entry. Upon return from the
question entry section, line 4610 updates the file with the new
question and transfers control back to the change options (line
4500).
However, if K = 191 ('A, answer edit) upon returning from the

control key routine, line 4520 transfers control to line 4620. Line
4620 blanks the answer, sets FL = 1 (to signify an edit), and

EditMenu 53

transfers control to line 3450 for answer entry. Upon return from
the answer entry section, line 4630 updates the file with the new
answer and transfers control back to the change options (line
4500).

If K <> 170 (not AE, exit) upon returning from the control key
routine, line 4530 transfers control back to line 4510 to get a
different key because the keypress was not a valid choice.
Otherwise, K = 170 (AE, exit), and line 4540 transfers control

back to the edit options (line 4180).

Summary
In Chapter 5 we learned about the Main Menu. We described

that menu, and the initial program flow for options #1 (load a
file) and #2 (create a new file). In addition, options #3 (delete a
file) and #4 (exit the program) were described.
This chapter outlined the program flow if you choose option

#1 or #2 from the Main Menu. If either of these options is
chosen, the program proceeds to the Edit Menu. We then
described, in detail, the three options in the Edit Menu. They are
options #1 (enter data), #2 (edit data), and #3 (return to the
Main Menu).
In the next chapter (Chapter 7) we'll learn about the sub-

routines in the data base program.

Chapter 7

Data Base Subroutines
Subroutines are of great value to the programmer because

quite often a particular action is repeated throughout a pro-
gram. Rather than copy the same code over and over, that action
is identified as a subroutine. Then when the action is required,
the subroutine is invoked, or called, eliminating many lines of
code. The key input routine, used extensively up to this point, is
a prime example.

Key input routine
The key input routine gets an input from the keyboard and

converts it to an ATASCII character, which can be used by the
data base program. The code that accomplishes this is:

6000 REM *** KEY INPUT ROUTINE
6010 K=PEEK(764):IF K>127 THEN 6010
6020 POKE 764,255:K2=PEEKCK+KS):RETURN

Line 6010 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K = 255. If K > 127, a
control key or no key (which are not valid keypresses in this
instance) was pressed and the routine calls itself (is repeated).
After a valid key is pressed (thus, K has a value less than or

equal to 127), line 6020 places a value of 255 into location 764,
which signifies that we have already read the keypress. It then
adds K to our KS (keystart) and we PEEK to find the ATASCII code
(K2) corresponding to the keystroke. Finally, line 6020 transfers
control to the line which called the key input routine.
The commands PEEK and POKE are not mysterious actions

with cute names. If you visualize the memory of your Atari as
little compartments in a desk, PEEKing allows you to look at the
current contents, and POKEing allows you to put something into
the compartment. Now you can amaze your friends by talking
computerese when you work the terms PEEK and POKE into your
cocktail party conversation!

55

56 Atari Trivia Data Base

File counting routine
The file counting routine counts the number of data files on

the disk. This routine is necessary because the information on
the number of data files is used by other parts of the program.
This code is as follows:

REM *** FILE COUNTING ROUTINE
TRAP

6120 OPEN #4,6,0,"D:-!!-.*"
6130 INPUT #4,DIRt:IF DIR$(11,13J<>"TDB" THEN

6140 F=F+1:GOTO 6130
6150 CLOSE #4:IF PEEK(195J()136 THEN 7010
6160 TRAP 7010:RETURN

Line 6110 changes the location where the program will con-
tinue if an error occurs from its original location at 7010 to line
6150 (the reason for this will be explained in a moment). It then
sets the file counter (F) to zero.
Line 6120 opens the directory so it can be read. Lines 6130-6140

read the directory entries sequentially until the end of the last
file is reached. If the directory listing has the file name extension
"TDB," one is added to the file counter (F). The program then
goes back to read the next listing. When the program reaches
the end of the directory, an error occurs. But we have changed
the location of the error trapping routine to line 6150, so the
program transfers to this line. This is a forced error (remember,
errors can be our programming friends). We use a forced error
because the directory length is not known, and because we want
this type of error to be handled differently than the other errors.
Lines 6150-6160 close the directory, double check to make sure

there was an "end of file" error, reset the error trapping routine
to line 7010,and return control back to the line that called the file
counting routine.

Screen printing routine
The screen printing routine prints a "generic" screen, which is

used by the Question Entry and Question Edit screens. After the
program executes the screen printing routine, the line which
called it displays the additional information that corresponds to
the particular screen. For example, suppose the Question Entry
section of the program calls this routine. Upon returning from
the screen printing routine, the program displays the words

Data Base Subroutines 57

"Question Entry" and the command line CR:Restart and
'E: Exit), which are those parts of the screen different from the
Question Edit screen.
Following is the code for the screen printing routine:

6200 REM *** SCREEN PRINTING ROUTINE
621Ql PRINT" ":F'OI<E 752,l:POSITION l,l:PRINT "
",,";:POSITION 1.22:PRINT
6220 FOR C=2 TO 37:POSITION C,l:PRINT "-";:POS
ITION C,22:F'RINT "".... ;:NEXT C
6230 POSITION 38,l:PRINT ",";:POSITION 38,22:P
RINT " ";
624121 FOR R=2 TO 21:POSITION 1,R:PRINT CHR$(124
);:POSITION 38,R:PRINT CHR$(124);:NEXT R
625121 POSITION 12,2:PRINT "TRIVIA DATA BASE"
6260 POS I T I ON 1,4: PR I NT .. !," ; : FOR C=2 TO 37: PR I
NT ",,";:NEXT C:PRINT " ..
6270 POSITION 3,5:PRINT "QUESTION #":POSITION
19,5:PRINT "FILE NAME ";F$
6280 POS I T I ON 1,6: PR I NT ":''';: FOR C=2 TO 37: PR I
NT «... ";:NEXT C:PRINT
6290 POSITION 3,9:PRINT "QUESTION? ..
6300 POSITION 14,10:FOR C=l TO 22:PRINT "-";:N
EXT C
63112l POSITION 4,12:FOR C=l TO 32:PRINT "-''';:NE
XT C
63212l POSITION l,14:PRINT C=2 TO 37:PR
INT .. ·.... ;:NEXT C:PRINT " ..;"
6330 POSITION 3,17:PRINT "ANSWER? ..
6340 POSITION 11,18:FOR C=l TO 25:PRINT
EXT C
6::5121 FOSITION 1,2121:PRINT .. !.« ; :FOR C=2 TO 37:PR
INT NEXT C: PRINT "'1"
636121 RETURN

Line 6210 clears the screen, turns off the cursor, and prints the
upper left-hand corner and lower left-hand corner symbols.
Line 6220 uses a FOR... NEXT loop to draw a line across the top
and bottom of the screen. Line 6230draws the upper right-hand
corner and lower right-hand corner symbols. Line 6240 draws
vertical lines down the sides of the screen.
Line 6250 prints "Trivia Data Base." Line 6260 uses a

FOR... NEXT loop to draw a line across the middle of the screen.
Line 6270 prints "Question #" and "Filename," and then prints
the actual file name (F$). Line 6280 uses a FOR... NEXT loop to
draw a line across the screen.

58 Atari Trivia Data Base

Line 6290 displays "Question?". Lines 6300-6310 contain a
FOR... NEXT loop that draws the two lines for the question. Line
6320 uses a FOR... NEXT loop to draw a line across the screen.
Line 6330 displays "Answer?". Line 6340 prints the line for the

answer. Line 6350 uses a FOR... NEXT loop to draw a line across
the screen. Line 6360 returns control to the line that called the
screen printing routine.

Question number routine
This routine prints the number of questions to the screen,

using the following code:

6400 REM *** QUESTION NUMBER ROUTINE
6410 POKE 752,l:POSITION 13,5:PRINT N:
642121 RETURN

Line 6410 turns off the cursor. Then using variable N (the
number of questions), it displays the number of questions in the
appropriate position on the screen. Line 6420 returns control to
the line that called this routine.

Blanking routine
The blanking routine blanks the portion of the screen that is

directly above the question and answer line. The code is:

651210 REM *** BLANKING ROUTINE
651121 POKE 752,1:POSITION 14,9:PRINT B$(1,22);:
POSITION 4,11:PRINT B$(1,32);:POSITION 11,17:P
RINT B$(1,25);
6520 RETURN

Line 6510 turns off the cursor and blanks the screen above the
question and answer lines by printing a blank string (B$). Con-
trol is then transferred back to the line that called this routine in
line 6520.

Control key routine
The control key routine gets an input from the keyboard and

converts it to an ATASCII character, which can be used by the
data base program. This code is similar to the code for the key
input routine, exceptthis routine also allows the input of control
keys. The code that accomplishes this is:

66l21l21 REM *** CONTROL KEY ROUTINE
6610 K=PEEK(764):IF K=255 THEN 6610

Data Base Subroutines

6620 POKE 764.255:K2=PEEK(K+KS)
6630 RETURN

59

=11

Line 6610 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K is equal to 255 and the
routine calls itself (is repeated).
After a key has been pressed (thus, K has a value not equal to

255), line 6620 puts a value of 255 into location 764 to signify that
we have already read the keypress. Then line 6620 adds K to our
KS (keystart) and PEEKs to find the ATASCII code (K2) corre-
sponding to the keystroke. Line 6330transfers control to the line
that called the control key routine.

File name routine
The file name routine converts the file name you chose when

you loaded an old file, created a new file, or deleted an old file to
a file name that can be used by the data base program. The code
is:

6700 REM *** FILE NAME ROUTINE
6710 DIR$(1,2)="D:":DIR$(3,LEN(F$)+3)=F$:DIR$(
LEN (F$) +3, LEN (F$) +7) =". TDE": DIR$ (LEN (F$) +7,20)

"
6720 RETURN

Line 6710 converts F$into a valid name (DIR$) that can be used
to open the data file. Line 6720 transfers control to the line that
called the file name routine.

Question print routine
The question print routine is actually two short routines that

print the question or the answer to the screen. These two
routines are:

6800 REM *** QUESTION PRINT ROUTINE
6810 POKE 752.1:POSITION 14,9:PRINT 0$(1,22);:
POSITION 4,11:PRINT Q$(23,54);:RETURN
6820 POKE 752,l:POSITION 11,17:PRINT A$;:RETUR
N

Line 6810 turns off the cursor, prints both lines of the question
(Q$) to the screen, and then transfers control to the line that
called the question print routine.

60 Atari Trivia Data Base

Line 6820 turns off the cursor, prints the answer (A$) to the
screen, and then transfers control to the line that called this
routine.

Number length routine
The number length routine converts the number of questions

in a file into a string variable that is three characters long. (A
string variable can be identified by the fact that it ends with a "$"
character. Simply put, a string variable can contain alphabetic or
numeric characters that are not interpreted numerically.
Another type of variable is numeric. This type of variable can't
have letters or words assigned to it. Thus, a numeric string
assigned a value of "1" can be used for calculations, whereas a
string variable assigned a value of "1" regards the "1" not as a
quantity but as a character. But, I digress). The string variable is
three characters long because the first record of the file is always
three spaces long; if we print a number out to the file that is less
than three characters, the file structure will be destroyed. The
code for the number length routine follows:

6900 REM *** NUMBER LENGTH ROUTINE
6910 N$=STR$(N):IF N<100 THEN N$(3,3)=" ":IF N
<10 THEN N$(2,2)=" "
6920 F:ETUF:N

Line 6910 converts N, the number of questions, to N$, the
string representation of the number of questions. Line 6920
transfers control back to the line that called the number length
routine.

Error trapping routine
This routine "traps" any execution errors, except for forced

errors or input errors (where the error trap has been temporarily
set to a different line number).

7000 REM *** DISK ERROR ROUTINE
7010 TRAP 7060:POKE 752,I:PRINT "'I"":E=PEEI«195
):POSITION 7,6:PRINT "ERROR ";E;" AT LINE ";PE
EK(186)+PEEK(187)*256
7020 IF E=162 THEN POSITION 14,8:PRINT "DISI< F
ULL":GOTO 7040
7030 IF E>18 THEN POSITION 13,8:PRINT "DISI< ER
ROR"
7040 POSITION 12,II:PRINT "PRESS ANY I<EY":POI<E
764,255:GOSUB 6010:CLOSE #4:CLOSE #5

Data Base Subroutines

7050 IF E=144 THEN 8010
7060 RUN

61

Line 7010 first sets an error trap that will re-run the data base
program if there is an error while this routine is running. It then
prints the error number (E) and the line where the error
occurred. If E = 162, then it's a "disk full" error and line 7020
prints "disk full." If E> 18, then it's a "disk error" and line 7030
prints "disk error." Line 7040 then prompts to continue the
program.
If E = 144, it's a "disk not present" or "disk write-protected"

error and line 7050 causes the program to end. If it's not either
error, line 7060 re-runs the program. Consult your Atari manual
for actual error codes to determine the problem.
This completes the code explanation for the data base pro-

gram. Next, we will look at the random inquiry and scorekeep-
ing program (the trivia game) using the same techniques
employed in the preceding chapters. We're having some fun
now!

Chapter 8

Game Analysis
Now we'll examine the trivia game program in detail. Refer to

Apppendix A and Flowchart 2-A. Subroutines are described in
Chapter 9.

Initial ization
The beginning of the trivia game program is the initialization.

This section of code sets up the key conversion routine, and
initializes the variables and error trapping.

DIM KEY1$(64),KEY2$(64)
KEY1$="LJ; 1<+*0 PU I-=V C BXZ4 36 521,

N MI R EY TW09 8<>FHD GSA"
KEY2$="LJ: 1<\--"0 PU I _ IV C BXZ$ #& /. I []

N M'7 R EY TWO()' @ FHD GSA"

POKE KS+94,34
DIM ,A$(25) ,B$(54) ,F$(8) ,S(

1ee: ,B (1 ,G$ (25) , N$ (3)
DIM ,NM
,P(4)

FOR L=l TO 54: B$ (L ,U =" ": NEXT L: Q$=B$: A$=

GRAPHICS
POKE 16,64:POKE 53774,64

Now, pull out Flowchart 2-B. We first set up the key conver-
sion routine (lines 100-140). (See the Initialization section in
Chapter 5 for a more complete description.) Line 100 dimen-
sions 128 spaces in memory. ATASCII character are put into the
space (lines 110-120); their position is determined by their Atari
keyboard scan codes. Line 130 loads the starting location of
these dimensioned characters in variable KS (the memory loca-
tion where ATASCII characters are stored). This is done because
the memory location of an ATASCII character can be derived by
adding its scan code (K) to KS and PEEKing into memory. We
have to do this because the scan codes do not follow in logical
order. Line 140 places the ATASCII representation for a quote
mark into the reserved area.

63

64 Atari Trivia Data Base

Lines 150-170 initialize the string and array variables that are
used by the program. The string variables must be initialized to
blanks because this is not done automatically by the Atari.
Line 180 sets the screen defaults to mode 0 and turns on the

error trapping routine at line 7010. Line 190 disables the break
key. This ensures that the program will not be stopped
accidentally.

Choosing a file
When the program begins, we are presented with the File

Choice Menu (see Fig. 8-1 and Flowchart 2-C).

TRIVIA GAME

FILE CHOICES

1. filename
2. filename

O. EXIT

PRESS (O'nl

Fig. 8-1. File Choice Menu.

The code that displays the menu and allows the file choice is:

REM *** FILE CHOICE MENU
1010 F'OKE 752,1:PF:INT ""!":POSITION 12,2:PRINT
"TF:I \j I A GAME"
1015 POSITION 12,4:PRINT "FILE CHOICES":GOSUB
6110:IF F>9 THEN F=9
1020 IF F=0 THEN 1200
1030 OPEN #4,6,0,"D:*.TDB":FOR L=1 TO F:INPUT
#4,DIR:t:POSITION 12,L+5:PRINT L;". ";DIR$(3,10
):NEXT L:CLOSE #4
1035 POSITION 12,F+7:PRINT "0. EXIT"
1040 POSITION 12,F+9:PRINT "PRESS (0-";F;")"
1050 GOSUB 6010:IF K2<48 OR K2>F+48 THEN 1050
1055 IF K2=48 THEN 8010
1060 OPEN #5,6,0,"D:*.TDB"

Game Analysis 65

FOR L=l TO K2-48:INPUT #5,DIR$:NEXT L:CLO
SE #5:F$=DIR$(3,11)

IF F$(LEN(F$) ,LEN(F$»=" " THEN F$=F$(l,L
EN(F$)-l):GOTO

GOSUB #5;N$:C
LOSE #5:N=VAL(N$):IF THEN

GOTO
POSITION 8,6:PRINT "NO DATA FILES ON DISI<

":POSITION 5,9:PRINT "YOU MUST SWITCH DATA DIS
KS"

POSITION "AND TYPE 'RUN' AGAIN
":POSITION 17,12:PRINT "OR"

POSITION 12,14:PRINT "LOAD AND RUN":POSIT
ION 8,15:PRINT "THE DATA BASE PROGRAM"

POSITION 12,19:PRINT "PRESS ANY KEY":GOSU
B
1250 PRINT "'r": POSITION 5,8: PRINT "TOO FEW QUE
STIONS IN THE FILE":POSITION 12,9:PRINT "TO PL
AY A GAME"

POSITION 12,11:PRINT "PRESS ANY KEY":GOSU
B

First, line 1010 clears the screen and displays "Trivia Game."
Line 1015 displays "File Choices," calls the routine at line 6110 to
count the number of files on the disk, and sets the maximum
number of files to nine.
If there are no files on disk (F = 0), line 1020 transfers control

to lines 1200-1230. This section displays a "no files" message,
gives you the options at this point, waits for a keypress to
continue, and transfers control to line 8010 to exit the program.
If there are one or more files on disk, line 1030 opens the
directory for file names with the extension "TD8" and uses a
FOR... NEXT loop to display these file names. It then closes the
directory.
Lines 1035-1040 print the exit option on the screen and the

prompt message to press a key.
Line 1050 calls the key input routine at line 6010 to get your

choice. Itthen checks the validity of the keypress. If your choice
is invalid (i.e., not one of the choices displayed) the key input
routine is again called. If you pressed option 0, line 1055 trans-
fers control to line 8010 to exit the program.
If your choice is valid and your input is not zero, the following

lines are executed. Line 1060 re-opens the directory. Line 1070
reads in the file name you chose (F$), and line 1080 removes the

66 Atari TriviaData Base

blanks in the file name. Line 1090 calls the file name routine at
line 6710.
Upon return from the routine, line 1090 opens the data file,

inputs the number of questions, and checks to see if N (the
number of questions) is greater than 19. If it's not, control is
transferred to lines 1250-1260, which print a "too few questions
to play game" message, prompt the user to press a key to
continue, and then return to the File Choice Menu. If N is
greater than 19, line 1100 transfers control to line 2010 for name
entry.

Entering names
After you choose a file, the trivia game program prompts you

to enter the players' names.
The code for entering names is:

2000 REM *** NAME ENTRY
201121 POKE 752,1:PRINT "Of"
2020 POSITION 13,2:PRINT "TRIVIA GAME"
203121 POSITION 4,5:PRINT "HOW MANY PLAYERS? PR
ESS 1 TO 4"
21214121 GoSUB 61211121:P=K2-48:IF P<1 OR P>4 THEN 21214
e
2£115£11 POSITION 2,2Q1:PRINT "NAMES MAY ONLY BE 10
CHARACTERS LoNG":PoKE 752,121

206£11 TRAP 2060:POSITIoN 3,8:PRINT "ENTER PLAYE
R l'S NAME ";:INPUT NM1$:IF NM1$="" THEN 2060
2070 IF P=l THEN 2130
208£11 TRAP 208121:F'oSITIoN 3,10:PRINT "ENTER PLAY
ER 2'S NAME ";:INPUT NM2$:IF NM2$="" THEN 208£11
21219121 IF P=2 THEN 213121
211210 TRAP 21Q1Q1:PoSITION 3,12:PRINT "ENTER PLAY
ER 3'S NAME ";:INPUT NM3$:IF NM3$="" THEN 210121
211121 IF P=3 THEN 213£11
212121 TRAP 2120:PoSITION 3,14:PRINT "ENTER PLAY
ER 4'S NAME ";:INPUT NM4$:IF NM4$="" THEN 212£11
213121 TRAP 701121:POKE 752,I:NM$(I,II21)=NM1$:NM$(1
1,20)=NM2$:NMS(21,30)=NM3$:NM$(31,4Q1)=NM4$

See Flowchart 2-D. Line 2010 turns off the cursor and clears the
screen. Line 2020 prints the introductory message "Trivia
Game." Line 2030asks "How many players?" and prompts you to
press a key from 1 to 4. Line 2040 calls the key input routine at
line 6010, which gets your input. Upon returning from this

Game Analysis 67

routine, line 2040 then converts the ATASCII keypress (K2) into a
number of players variable (P), and checks to make sure P is
between 1 and 4. If P isn't between 1and 4, line 2040calls the key
input routine again. If P is between 1 and 4, line 2050 prints a
message at the bottom of the screen that reminds the users that
the players' names cannot be longer than 10 characters. It then
turns on the cursor.
Line 2060 inputs the first player's name into variable NM1$; if

NM1$ is blank, the line is re-run. If there is only one player, line
2070 transfers control to line 2130. Line 2080 places the second
player's name into variable NM2$; if NM2$ is blank, the line is re-
run. If there are only two players, line 2090 transfers control to
line 2130. Line 2100 inputs the third player's name into variable
NM3$; if NM3$ is blank, the line is re-run. If there are only three
players, line 2110 transfers control to line 2130. Line 2120 puts the
fourth player's name into variable NM4$; if NM4$ is blank, the
line is re-run.
Each of the above input lines (2060,2080,2100,2120) is trapped

to itself in case of an input error. That is, if there is an input error,
control will not transfer to the error trapping routine, instead
the question will be asked again. Line 2130 resets the error trap
to line 7010. It then turns off the cursor and stores all the names
into one string called NM$.

Playing the game
Now on to the code for the actual play of the trivia game:

3000 REM *** GAME
301 £11 POKE 752, 1: PR I NT "'r"
3l2!2el POSITION 11,8:PRINT PLEASE WAIT":PO
SITION 12,11:PRINT "INDEXING DATA"
3el3l2! OPEN #4,12,el,DIR$:INPUT #4,N$:N=VAL(N$):F
OR L=l TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y:INPUT #4
,Q$,A$:NEXT L
3£114£11 POSITION lel,14:PRINT "ORDERING QUESTIONS"
305£11 FOR L=l TO N:S(e!)=S(L):B(0)=B(L):R=INT(RN
D(1)*N)+1:S(L)=S(R):B(L)=B(R):S(R)=S(0):B(R)=B
(0) : NEXT L
31216£11 PRINT .. '[": GOSUB 6210: M,:,0: P (1) =0: P (2) =Ql: P (
3)=Ql:P(4)=e!
31217121 FOR L=l TO P*5:GOSUB 6410
3075 FL=l:IF RND(1)<12I.1 THEN FL=2:POSITION 10,
15:PRINT "BONUS POINT QUESTION"

cant. an next page

68 Atari Trivia Data Base

M=M+1:IF M=P+1 THEN M=l
POSITION 3,4:PRINT "GET READY

0=1 TO 0
POSITION 3,4:PRINT "GET SET ";NM$(M*1(1)-9,

M*llZI) ; i, ": FOR 0=1 TO 2121(1): NEXT 0
311(1) POSITION 3,4:PRINT "GO ";NM$(M*1(1)-9,M*1121). ",
312121 POINT #4,S(L),B(L):INPUT #4,Q$,A$:GOSUB 6

313(1) T=I2I:Z=5(1)0:POKE 752,(1):POSITION 1121,12:PRINT
II fl.,

314(1) GOSUB 661(1): IF Z=(1) THEN 32(1)121
315(1) IF K=12 THEN
316121 IF K=52 AND THEN POSITION T+1(1),12:PRI
NT " ;:G$(T,T)= .. ":T=T-1:GOTO

IF T=25 THEN 314121
318(1) IF K2=32 AND K<>33 THEN 314(1)

T=T+1:G$(T,T)=CHR$(K2):POSITION T+1(1),12:P
RINT CHR$(K2);:GOTO 314121

POKE 752,1:IF G$<>A$ THEN 322(1)
321(1) POSITION 7,15:PRINT "CORRECT - ";INT(Z*FL

POINTS
OSUB 641121:GOTO 33121(1)
322(1) POSITION 10,15:PRINT " INCORRECT ANSWER

33(1)121 FOR 0=1 TO 2(1)(1):NEXT D:POSITION 3,15:PRINT
B$(1,34):G$=B$(1,25):GOSUB 651121:POSITION 33,4
:PRINT 25
331(1) NEXT L
332121 POSITION 6,15:PRINT "GAME OVER --- PRESS
ANY KEY":POKE 764,255:GOSUB 61211121:CLOSE #4

PR I NT : POS I T I ON 14, 5: PR I NT "RANKI NG"
334(1) FOR L=l TO P:POSITION 1(1),L+6:M=1:FOR L2=1
TO P:IF P(L2')P(M) THEN M=L2

NEXT L2:PRINT ";P(M)
:P(M)=-l:NEXT L
336121 POSITION 12,P+8:PRINT "PRESS ANY KEY":POK
E 764,255:GOSUB 6(1)1(1)
337(1) PRINT ""f":POSITION 5,5:PRINT "PLAY AGAIN?
PRESS Y OR N"

338121 GOSUB K2=78 THEN
IF K2<>89 THEN
POSITION 2,8:PRINT "SAME PLAYERS AND FILE

') PRESS Y OR N"
341(1) GOSUB K2=78 THEN RUN
342121 IF K2<>89 THEN 341(1)
343(1) OPEN

Game Analysis 69

Refer to Flowchart 2-E. First, line 3010 turns off the cursor and
clears the screen. Lines 3020-3050 set up the data. Line 3020
prints a "please wait" message and an "indexing data" message.
Line 3030 opens the file and uses a FOR... NEXT loop to index

the data by recording the sector and byte location of each
question in variables 5(100) and B(100). Line 3040 prints an
"ordering questions" message. Here is another "pacifier" mes-
sage, which you can easily customize with virtual impunity. Line
3050 uses a FOR... NEXT loop and the random number R to
randomly order the questions. Then line 3060 clears the screen
and prints the trivia Game screen (see Fig. 8-2). It then sets the
current player number (M) to zero and resets the players' scores
P(1), P(2), P(3), and P(4).

TRIVIA GAME
GO name TIMER: n

QUESTION:

ANSWER'

PLAYER'S NAME SCORE
HARRY 40
JOE 85

Fig. 8-2. Game screen.

Line 3070 starts the FOR... NEXT loop for 5 questions per
player per game. It then calls the routine at line 6410, which is a
score printing routine.
Line 3075 sets the flag (FLo) = 1 for keeping score. Then, if the

random number (RND(1)) is less than .1, FL is set to 2 (for double
score), and a "bonus point" message is printed. Briefly stated,
the function RND(1) will generate a random number between 0
and 1. If you want more frequent bonus questions, change the
test on RND(1). As listed, 10% of the questions will be double
score value. Line 3080 increments the current player number (M)
and, if M is greater than P (number of players), then M is set to
one.

70 Atari Trivia Data Base

Line 3090 prints a "get ready" message and pauses with a
FOR... NEXT loop. Line 3100 prints a "get set" message and
pauses with a FOR... NEXT loop. Line 3110 prints a "go" message.
Line 3120 inputs the current (L) question (Q$) and answer (A$),
and calls the routine at 6810 to print the question to the screen.
Line 3130 sets the number of characters in the guess (T) to

zero, sets the timer variable (Z) to 500, turns the cursor on, and
locates the cursor on the guess (answer) line. Line 3140 calls the
control key timer routine at line 6610, which gets the keypress
and keeps track of the time remaining. If Z = 0 (time has
expired) upon return from the routine, line 3140 transfers con-
trol to line 3200.
If <RETURN> is pressed (K = 12), line 3150 transfers control to

line 3200.
If <BACKSPACE> is pressed and T > 0 (number of characters

in guess greater than zero), line 3160 prints a backspace. Then
the character that was backspaced over is blanked from the
guess, T is decremented, and control is transferred to line 3140
to get a new keypress.
Line 3170 only allows a <8ACKSPACE> or <RETURN> if T =

25 (the guess line is full). Line 3180 checks to make sure that,
when K2 (the ATASCII keypress) equals 32 (a space), K (the key's
scan code) equals 33 (scan code for a space). This ensures that
when the returned ATASCII keypress is 32, the space bar was
pressed and not a special key, such as <TAB> (see the Initializa-
tion section in Chapter 5). If K2 doesn't equal 32 and K doesn't
equal 33,. control is transferred to line 3140 to get another
keypress.
Line 3190 increments the number of characters (T), adds the

keypress (CHR$(K2)) to the guess string (G$), and prints the
character to the screen. It then transfers control to 3140 to get
another keypress.
Line 3200 turns off the cursor and compares G$ and A$. If they

are not equal, control is transferred to line 3220. Once you feel
really comfortable with the existing code and get an ambitious
urge, try modifying the code to allow for a beginner's and
expert's game as follows. Parse (dissect) the input answer, and
compare itwith word one and word two of the correct answer. In
a beginner's game, only one word has to match. For experts, it
must be exactly correct. For example, let's say the correct answer
is "John Brown." The beginner's version would give credit for

GameAnalysis 71

either word; the expert would have to have both answers cor-
rect. But back to the explanation of the code as written.
Line 3210prints a "correct" and "points scored" message, and

increases the player's score. It then updates the screen with the
score printing routine (see Chapter 9), and transfers control to
line 3300.
Line 3220 prints an "incorrect answer" message. Here is

another candidate for code modification. You may wish to show
the correct answer at this point. Line 3300 delays, blanks the
message that was printed and the guess, and calls the blanking
routine at line 6510. Line 3300 then prints the timer back to 25.
Line 3310 is the point where the decision is made as to whether
the FOR... NEXT loop is completed. It goes back to line 3070 if
the loop has not been completed; line 3320 is executed if it has.
Line 3320 prints the "game over" message, prompts you to

press a key to continue, and closes the file.
Line 3330 clears the screen and prints a "ranking" message.

Lines 3340-3350 use a double FOR... NEXT loop to print the
players' names and scores in the proper ranking (descending
order).
Line 3360 prompts you to press a key to continue. Line 3370

clears the screen and prompts you to play again by pressing Y or
N. Line 3380 calls the input routine and, ifthe choice is "N", exits
the program. If the choice was not "Y", line 3390 calls the input
routine again (because it was an invalid input).
Line 3400 ("Y" was pressed) prompts the user to see if the

same names and file will be used. Line 3410 calls the input
routine and, if the choice is "N", re-runs the program. If the
choice was not "Y", line 3420 calls the input routine again
(because it was an invalid input). Line 3430 re-opens the file and
transfers control to line 3040 to re-order the questions and play
again.

Exiting the program
And, at last, here's the code for ending the program:

REM *** EXIT
PRINT ".,.":POKE 16.192:POKE 53774.247:POKE

Line 8010 clears the screen, turns on the cursor, enables the
<BREAK> key, and ends the program.

72 Atari Trivia Data Base

This completes the explanation of the trivia game program. In
the next chapter, we'll describe the subroutines used by the
trivia game.

Chapter 9

Game Subroutines
Bywriting our subroutines as globally as possible, we are able

to reuse many of them from the data base program in the game
program. Any similarities are intentional.

Key input routine
The key input routine gets an input from the keyboard and

converts it to an ATASCII character, which can be used by the
trivia game program. The code that accomplishes this is:

6000 REM *** KEY INPUT ROUTINE
6010 K=PEEK(764):IF K>127 THEN 6010
6020 POKE 764,255:K2=PEEKCK+KS):RETURN

Line 6010 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K = 255. If K > 127, a
control key or no key (which are not valid keypresses in this
instance) was pressed and the routine calls itself (is repeated).
After a valid key is pressed (thus, K has a value less than or

equal to 127), line 6020 places a value of 255 into location 764,
which signifies that we have already read the keypress. Then line
6020 adds K to our KS (keystart) and we PEEK to find the ATASCII
code (K2) corresponding to the keystroke. Line 6020 then
returns to the line that called the key input routine.

File counting routine
The file counting routine counts the number of data files on

the disk. This routine is necessary because if there are no files on
disk, you can't play the game. The code is:

6100 REM *** FILE COUNTING ROUTINE
6110 TRAP 6150:F=0
6120 OPEN #4,6,0,"0:*.*"
613121 INPUT #4,OIR$:IF OIR$Cl1,13)<>"TOS" THEN
6130
6140 F=F+1:GOTO 6130
615121 CLOSE #4:IF PEEKC195><>136 THEN 701121
6160 TRAP 7010:RETURN

73

74 Atari Trivia Data Base

Line 6110 changes the location where the program will con-
tinue if an error occurs from its original location at 7010 to line
6150 (the reason for this will be explained in a moment). It then
sets the file counter (F) to zero.
Line 6120 opens the directory so it can be read. Lines 6130-6140

read the directory entries sequentially until the end of the last
file is read. If the directory listing has the file name extension
"TDB", one is added to the file counter (F). The program then
goes back to read the next listing. When the program reads the
end of the last file, an error occurs. This causes the error trap at
line 6150 to get program control. This is a forced error, which
must be used because we don't know the length of the
directory.
Lines 6150-6160 close the directory, double check to make sure

there was an "end of file" error, reset the error trapping routine
to line 7010,and return control back to the line that called the file
counting routine.
Screen printing routine
This routine prints the Game screen using the following code:

6200 REM *** SCREEN PRINTING ROUTINE
6210 PR I NT POKE 752, 1 : POS I T I ON 1. 1 : F'RI NT "
w''';: POSITION 1,22: PRINT
622121 FOR C=2 TO 37: POSITION C, 1: PRINT ".''';: POS
ITION C,22:PRINT "-";:NEXT C
623121 POSITION 38,I:PRINT ",";:F'OSITION 38,22:P
RINT " ..I";
624121 FOR R=2 TO 21:POSITION 1,R:PRINT CHR$(124
);:POSITION 38,R:PRINT CHR$(124);:NEXT R
6250 POSITION 15,2:PRINT "TRIVIA GAME"
6260 POSITION 1,3:PRINT :FOR C=2 TO 37:PRI
NT C:PRINT ""I"
6270 POSITION 25,4:PRINT "TIMER: 25"
6280 POSITION 1,5:PRINT ",",";:FOR C=2 TO 37:PRI
NT "·-";:NEXT C:PRINT ""1"
6290 POSITION 3,7:PRINT "QUESTION:"
6300 POSITION 14,8:FOR C=1 TO 22:PRINT II-";:NE
XT C
6310 POSITION 4,10:FOR C=1 TO 32:PRINT II_II;:NE
XT C
6320 POSITION 1,14:PRINT "I-";:FOR C=2 TO 37:PR
INT "-";:NEXT C:PRINT ",i"
6330 POSITION 3,12:PRINT "ANSWER?":POSITION 11
,13:FOR C=1 TO 25:PRINT "-";:NEXT C

GameSubroutines 75

6340 POSITION 1,16:PRINT ".";:FOR C=2 TO 37:PR
INT """.";: NEXT C: PRINT ",I"
635121 POSITION 5,17:PRINT "PLAYER'S NAME","SCOR
E"
636121 POSITION 8,18:PRINT NM1$:POSITION 8,19:PR
INT NM2$:POSITION 8,2l21:PRINT NM3$:POSITION 8,2
I:PRINT NM4$
637121 RETURN
Line 6210 clears the screen, turns off the cursor, and prints the

upper left-hand corner and lower left-hand corner symbols.
Line 6220 uses a FOR... NEXT loop to draw a line across the top
and bottom of the screen. Line 6230draws the upper right-hand
and lower right-hand corner symbols. Line 6240 draws vertical
lines down the sides of the screen.
Line 6250 prints "Trivia Game." Line 6260 uses FOR... NEXT

loops to draw a line across the middle of the screen. Line 6270
prints "Timer: 25". Line 6280 uses a FOR... NEXT loop to draw a
line across the screen. Line 6290 displays "Question:". Lines
6300-6310 use a FOR... NEXT loop to draw the two lines for the
question. Line 6320 uses a FOR... NEXT loop to draw a line across
the screen. Line 6330 displays "Answer?" and the line for the
guess. Line 6340 uses a FOR... NEXT loop to draw a line across the
screen. Line 6350 prints "Player's Name" and "Score." Line 6360
prints the players' names (NM1$, NM2$, NM3$, and NM4$, to
the screen. Line 6370 returns control to the line that called the
screen printing routine.
Score printing routine
This routine updates the current score to the screen. The code

follows:

64121121 REM *** SCORE PRINTING ROUTINE
641121 POkE 752,l:POSITION 26,18:PRINT P(I):IF P
>1 THEN POSITION 26,19:PRINT P(2)
642121 IF P>2 THEN POSITION 26,2l21:PRINT P(3):IF
P>3 THEN POSITION 26,21:PRINT P(4)
643121 F:ETURN

Line 6410 turns off the cursor, prints the first player's score
(P(1)), and if there is a second player, it prints the second player's
score (P(2)). If there is a third player, line 6420 prints the third
player's score (P(3)); if there's a fourth player, it also prints the
fourth player's score (P(4)). Line 6430 returns control to the line
that called this routine.

76 Atari Trivia Data Base

Blanking routine
The blanking routine blanks the portion of the screen that is

directly above the question and answer line. The code is:

6500 REM *** BLANKING ROUTINE
6510 POKE 752,I:POSITION 14,7:PRINT B$(1,22);:
POSITION 4,9:PRINT B$(1,32);:POSITION 11,12:PR
INT B$(1,25);
6520 RETURN

line 6510 turns off the cursor and blanks the screen above the
question and answer lines by printing a blank string (B$). Line
6520 transfers control back to the line that called this routine.

Timer key routine
The timer key routine gets an input from the keyboard and

converts it to an ATASCII character, which can be used by the
trivia game. This code is similar to the code for the key input
routine, except this routine keeps track of the elapsed time
between when the question was printed and <RETURN> was
pressed. The code that accomplishes this is:

6600 REM *** TIMER-KEY ROUTINE
6610 K=PEEK(764):Z=Z-I:POKE 752,I:POSITION 33,
4:PRINT INT(Z/20);" u;:POKE 752,0:POSITIDN T+
11,12:PRINT "
6620 IF Z=0 THEN 6650
6630 IF K=255 THEN 6610
6640 K2=PEEK(K+KS)
6650 POKE 764,255:RETURN

line 6610 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. It then decrements the time counter (Z), turns
off the cursor, and prints the time remaining (INT(Z/20)). Line
6610 then turns on the cursor and places it on the guess line.
line 6620 checks to see if Z = O. If so, control is transferred to
6650. If no key was pressed, K = 255 and line 6630 re-calls the
routine. The technical term for this condition is "running out of
time."
After a key has been pressed (thus, K has a value not equal to

255), line 6640 adds K to our KS (kevstart) and PEEKs to find the
ATASCII code (K2) corresponding to the keystroke. line 6650
POKEsa255 into location 764 to signifythatwe have already read

GameSubroutines 77

the keypress, and transfers control to the line that called the
timer key routine.

File name routine
The file name you chose to play the trivia game program has to

be converted to a file name that can be used by the game. The
file name routine does this conversion using the following
code:

REM *** FILE NAME ROUTINE
DIRS(1.2)="D:":DIR$(3.LEN(F$)+3)=F$:DIR$(

LEN(F"$)+3.LEN(FS)+7)=".TDB":DIRS(LENCFS)+7,20)
=11 .,

RETURN

Line 6710 converts F$into a valid name (DIR$) that can be used
to open the data file. Line 6720 transfers control to the line that
called this routine.

Question print routine
The question print routine prints the question to the screen.

The code follows:

REM *** QUESTION PRINT ROUTINE
6810 POKE 752,1:POSITION 14,7:PRINT QS(1,22);:
POSITION 4,9:PRINT Q$(23,54);:RETURN

Line 6810 turns off the cursor and prints both lines of the
question to the screen (Q$). Line 6810 transfers control to the
line that called this routine.

Error trapping routine
This routine "traps" any execution errors, except for forced

errors or input errors (where the error trap has been temporarily
set to a different line number).

REM *** DISK ERROR ROUTINE
7010 TRAP 7050:POKE 752,1:PRINT "'f":E=PEEK(195
):POSITION 9,6:PRINT "ERROR ";E;" AT LINE ";PE
EK(186)+PEEK(187)*256
7020 IF E>18 THEN POSITION 13,8:PRINT "DISI< ER
ROR"
7030 POSITION 12,11:PRINT "PRESS ANY I<EY":POI<E
764.255:GOSUB 6010:CLOSE #4:CLOSE #5

cant. an next page

78

7040 IF E=144 THEN 8010
7050 RUN

Atari Trivia Data Base

Line 7010 first sets an error trap that will re-run the trivia game
program if there is an error while this routine is running. It then
prints the error number (E) and the line where the error
occurred. If E > 18, it's a disk error and line 7020 prints "disk
error." Line 7030 then prompts to continue the program.
If it's a "disk not present" error or a "disk write-protected"

error, E = 144and line 7040causes the program to end. If it's not
either error, line 7050 re-runs the program. Consult your Atari
manual for actual error codes to determine the problem.
This completes the code explanation for the trivia game pro-

gram. Because we now have the data base program and game
program under our belt, it's time to use them! So, let's look at
the instructions for using the data base program (Chapter 10)
and playing the game (Chapter 11). We're really going to have
some fun now, boy.

Chapter 10

Using the Data Base
As noted earlier, the Trivia Data Base is the program used to

store your questions and answers. You can have up to 100
questions per file, and usually up to 8 files on a disk. This
chapter demonstrates how easy the program is to use.
The data base is totally menu driven. This means that you are

able to select the process that you want to perform on the data
base. Type RUN "D:DATABASE" and press <RETURN> to run
the database program. (See the Loading Instructions section at
the front of the book for more complete instructions.) Once the
program is loaded, you are presented with the Main Menu. See
Fig. 10-1.

TRIVIA DATA BASE

MAIN MENU

1. LDAD DLD FILE
2.CREATE NEW FILE
3.DELETE FILE
4.EXIT PROGRAM

PRESS (1·4)

Fig. 10-1. Main Menu.

From this menu you select whether you want to load and work
on a trivia file that has already been created with this program,
create a new trivia file, delete a trivia file, or exit the data base
program. Because this is your first time using the data base,
you'll want to select option #2, Create New File, but before
doing that, we'll explain each option.

79

80

#1. load file

Atari Trivia Data Base

This option allows you to load a trivia file into memory so you
are able to add new questions to the file or change questions
and answers. Once this option is chosen, the File Choice Menu
is displayed (see Fig. 10-2).After you choose a file, and the file is
loaded, the Edit Menu is displayed. We will describe the Edit
Menu options at the end of this chapter.

FILE CHOICES

1. filename
2. filename

o. EXIT
PRESS (0. nl

Fig.10-2. FileChoice Menu.

#2. Create new file
This option allows you to create a new file. A file can contain

100 questions and answers at most. Go ahead and select this
option now. You will be prompted to enter the name of the file
you want to create. Important Note: file names can only contain
capital letters! After entering the file name, the Edit Menu is
displayed.
We will look at each of the four selections given in Fig. 10-3

subsequently. For now, we will describe the two remaining
options on the data base Main Menu.

3. Delete fiIe
To delete a file, you would choose option #3 from the Main

Menu. After you have chosen this option, the File Choice Menu
is displayed. Refer back to Fig. 10-2. Press the number corre-
sponding to the file you want to delete. The screen will display a
message for you to confirm that you indeed want to delete the

Using the Data Base 81

file (once it's gone, it's gone). If you press "N" the program
returns to the Main Menu. If you press "Y" that file is deleted
and the program returns to the Main Menu.

#4. Exit program
Selection #4 from the Main Menu ends the program. After

you choose this option, the screen will display "Ready." This
indicates that the computer is in Atari BASIC.

Enter and edit data
After you choose option #1 or #2 from the Main Menu, load a

file or create a file, the Edit Menu is displayed. See Fig. 10-3.
From the Edit Menu, you can enter new data into the data base,
edit existing data, or return to the Main Menu.

TRIVIA DATA BASE

CURRENT FILE filename
OF QUESTIONS n

EDIT MENU

1. ENTER DATA
2. EDIT DATA
3 RETURN TO
MAIN MENU

PRESS (1-3)

Fig. 10-3. Edit Menu.

#1. Enter data
This is the first thing you need to do when creating a new file.

This selection allows you to enter new questions and answers to
the trivia file. To let you know how many questions are in the file,
the current question number is always displayed while you are
adding new questions. The screen for adding the questions and
answers is shown in Fig. 10-4.
First take a look at the bottom of the screen shown in Fig. 10-4.

The bottom of this screen contains two keys. They are 'R
(restart) and' E (exit). The' stands for the <CONTROL> key.

82 Atari Trivia Data Base

TRIVIA DATA BASE
QUESTION ENTRY

QUESTION #n FILE NAME filename

QUESTION?

ANSWER'

1\ R: RESTART I\E: EXIT

Fig.10-4. Question Entry screen.

By pressing the <CONTROL> key and the <R> key simul-
taneously, you can restart the entry of the question and answer.
In other words, if you are typing a question or an answer, and
you want to begin over, 'R erases what you have just typed and
places the cursor at the beginning of the question line. The
question or answer you were typing just before pressing 'R is
not saved to disk.
If you press 'E (press the <CONTROL> key and the <E> key

simultaneously), the program returns to the Edit Menu. If you
were in the middle of typing a question or an answer, they are
not saved to disk. You may press anyone of the keys displayed at
the bottom of the screen at any time.
Now you can enter your first question. Do not press

<RETURN> to move the cursor from the first line of the ques-
tion to the second. If you have a question that is more than one
line long, just keep typing. The words will automatically "wrap
around" to the second line, if necessary. When you are finished
with your question, press the <RETURN> key to move the
cursor to the answer line. The cursor then moves down to the
answer field and waits for the answer.
When you have typed in the answer, press <Return> to add

the question and answer to the data base (save them to disk).
Once the question and answer have been saved, another blank
screen is displayed and you can add more questions and
answers.

Using the Data Base 83

When you have finished entering the questions and answers,
press 'E as the first character on the question line. The program
will return to the Edit Menu.

#2. Edit data
This routine allows you to display as well as edit (make

changes) to any question or answer in the file. When you press
option #2 from the Main Menu, a "please wait" message is
displayed because the questions are being indexed, and this can
take up to 22 seconds. Next, you'll see the Question Edit screen
(Fig. 10-5).

TRIVIA DATA BASE
QUESTION EDIT

QUESTION Nn FILE NAME filename

QUESTION?

ANSWER?

/\F: FWD /\ R: REV /\J: JMP /\ C CHG /\ E: EXT

Fig. 10-5. Question Edit screen.

Again, as we noted in Fig. 10-4, there is a command line at the
bottom of the screen. Here, there are five command keys to use.
(Remember that the ' stands for the <CONTROL> key, the
letter just stands for the letter.) 'F (forward) displays the next
question and answer. 'R (reverse) displays the previous ques-
tion and answer. 'J (jump) jumps to a specified record.

'C (change) displays three additional commands, the change
options (see Fig. 10-6). You can change the question CQ),
change the answer CA), or exit CE). When you are finished
editing the question (or answer), press <RETURN> and the
change options will again appear on the screen. Press 'E to exit
and return to the Question Edit screen.

84 Atari TriviaData Base

I 1\ Q: QUESTION 1\ A:ANSWER 1\ E: EXIT I

Fig. 10-6. Change options.

If you press AE when you are in the Question Edit screen, the
program returns to the Edit Menu.

#3. Return to Main Menu
Selection #3 allows you to quit working on the file currently in

memory and return from the Edit Menu to the Main Menu. From
the Main Menu, you can use an old file, create a new one, delete
a file, or end the data base program.
Now that you understand how to enter and edit questions, try

putting some questions and answers in a file so you can play the
trivia game. If you bought the Combo Pack and really can't wait
to play the game, go ahead and load the sample questions
contained on the disk.

Chapter 11

Playing the Game
In Chapter10 you learned howto enter questions and answers

into your trivia data base file. This chapter uses the questions
you entered into the file and allows you to playa trivia game. For
those of you who did not store any questions and answers using
the data base, you can use the sample file called QUIZ (if you
bought the Combo Pack).

Overview
The game itself is much like any other trivia game. You are

asked random questions and you have to answer them. The
object of the game is to gain as many points as possible by
correctly answering the questions. The faster you are able to
answer a question, the more points you receive. The point value
for each question starts at 25 points, but as time goes by the
point value decreases. So it is to your benefit to answer the
questions as fast as possible. There will be times when a ques-
tion will be worth double points. These are the bonus ques-
tions. One important note: the answer you type must match the
correct answer exactly; otherwise, itwill not count asthe correct
answer.
The game can be played by one to four players. If a player

misses a question, he does not receive any points and the next
question is displayed.
The game keeps track of each player's name and current score.

At the end of the game, the players' names and scores are shown
in order, from highest to lowest.

Beginning the game
Type RUN "D:GAME" and press <ENTER> to run the trivia

game. For more detailed information on loading the program,
see the Loading Instructions section at the front of the book.
The first screen you see is the File Choice Menu (Fig. 11-1).

From this menu, choose the number that corresponds to the file
you want to use for the trivia game. You are asked how many

85

86 Atari Trivia Data Base

people plan to play. After entering the number of players, you
enter their names. Then a "please wait" message is displayed
while the program indexes the questions; and an "ordering
questions" message is displayed while the program randomly
orders the questions.

TRIVIA GAME

FILE CHOICES

1. filename
2. filename

O. EXIT

PRESS (O-n)

Fig. 11-1. File Choice Menu.

Playing the game
Once all the questions have been randomized, the game is

ready to begin. The game screen is displayed (Fig. 11-2). Note that
there is a timer in the upper right-hand section of the screen.
This timer indicates how much time is remaining and also how
much the question is worth. The status of all the players is at the
bottom of the screen. It shows the player's name and current
score.
When you press <RETURN> after entering your answer, the

timer stops at the point value shown and the program checks
your answer against the correct answer.
If you are right, the message "correct n points scored" is

displayed (where n is the score), and you receive the number of
points indicated by the timer. Some of the questions are ran-
domly selected to be worth double the point value (the bonus
questions). If it was a bonus question, you receive twice the
points indicated by the timer. If you do not answer the question
correctly, the next question is displayed.

Playing the Game

TRIVIA GAME
GO name TIMER: n

QUESTION:

ANSWER'

PLAYER'S NAME SCORE
HARRY 40
JOE 85

Fig. 11-2. Game screen.

87

Exiting the game
The game ends when five questions per player are asked.

After the game ends, a screen is displayed that shows all the
players' scores in descending (highest to lowest score) order.
You are then asked if you wish to play another game. If you
don't, the program exits. If you want to play again, you are asked
if you want to use the same file and same players' names. If so,
the questions are re-ordered and the game begins again. Other-
wise, you start all over again by loading in another file.
The main point behind the trivia game is for you to enjoy the

game while learning new and different trivia questions. Have
fun!

Chapter 12

In Conclusion
Well, that's it. If you boughtthe Combo Pack, you have sample

questions on the disk. We really strained our brains for those
questions, but now it is up to you. If you have a copy of Trivial
Pursuit (or some such game), you could enter some selected
questions and play with the computer keeping score. If not,
there are some other uses for the data base entry program and
game program.
If you have students who need to drill on facts, they could

have the questions entered (by you?), then practice with the
computer's assistance. If you are studying for a professional
exam, the same sort of assistance is available for you.
Whether you use these two programs for entertainment or

education, it is our hope that you will gain from their purchase.
Also, a thorough examination of the code structure and sub-
routines will be of great assistance in any other data base type
programs that you might wish to write for your Atari computer.
Watch for other entertaining and instructional programs from

us for your Atari.

89

Appendix A

Variable Descriptions
Data Base
String variables

KEY1$(64) Reserves 64 spaces in memory to hold ASCII
characters

KEY2$(64) Reserves 64 spaces in memory to hold ASCII
characters

Blank string that has 54 blanks, which are used
to print blanks on the screen and blank the
question and answer
Number of questions (string of length 3)

Used to read in directory listings and to hold
file names for opening data files

Current file name

Current question

Current answer

DIR$(20)

F$(8)

Q$(54)

A$(25)

B$(54)

Sector locations of questions for indexing, S(1),
S(2), S(3).. .5(100)

B(100) Byte locations of questions for indexing, B(1),
B(2), B(3)... B(100)

Number variables

N$(3)

Array variables
S(100)

KS

K

L
F

N
T

Start of KEY1$ and KEY2$ in memory

Key scan code

Loop variable used in FOR... NEXT loops

Number of files on the disk

Number of questions in the file

Number of characters used in question and
answer

S Number of spaces at the end of the first line of
the question

91

92

R

FL

M

R

C

E

Game
String variables

KEY1$(64)

KEY2$(64)

DIR$(20)

F$(8)

Q$(54)

A$(25)

B$(54)

N$(3)

G$(25)

NM1$(10)

NM2$(10)

NM3$(10)

NM4$(10)

NM$(40)

Array variables
5(100)

B(100)

Atari Trivia Data Base

Line number to return to for question and
answer entry

Flag to signify whether an edit or new entry

Current question number in an edit

Loop variable to print horizontal lines on
screen

Loop variable to print vertical lines on screen

Error code number

Reserves 64 spaces in memory to hold ASCII
characters

Reserves 64 spaces in memory to hold ASCII
characters

Used to read in directory listings and to hold
file names for opening data files

Current file name

Current question

Current answer

Blank string that has 54 blanks, which are used
to print blanks on the screen and blank the
question and answer

Number of questions (string of length 3)

Player's guess

Player 1's name

Player 2's name

Player 3's name

Player 4's name

A string that holds all the players' names in a
single string

Sector locations of questions for indexing, 5(1),
5(2), 5(3)... 5(100)

Byte locations of questions for indexing, B(1),
B(2), B(3)... B(100)

Start of KEY1$ and KEY2$ in memory

Key scan code
Loop variable used in FOR... NEXT loops

Number of files on the disk

Number of questions in the file

Number of players
Random number used to order the questions
Number of characters used in question and
answer

Appendix A

P(4) Player's scores, P(1), P(2), P(3), P(4)

Number variables
KS
K
L

F
N

P

R
T

93

FL
M

Z

l2

R

C

D
E

Flag for bonus point questions
Number of the player for the current turn

Number for timer

Loop variable for nested FOR... NEXT loop

Loop variable to print horizontal lines on
screen

Loop variable to print vertical lines on screen

Loop variable for delays
Error code number

Appendix B

Data Base Program Listing
This book has an accompanying disk (this book/disk combina-

tion is called a Combo Pack), which contains the program list-
ings. If you did not buy the Combo Pack, you have to type the
listings into the computer. But before doing so, there are a few
things that are helpful to know.
First, the data base and game program listings contain certain

symbols. These symbols are what is displayed when certain keys
are pressed. Following is a list of all symbols that appear in the
listings, and their corresponding keystrokes.
Symbol Keys to press*

<CONTROL> <A>

<CONTROL> <c>

<CONTROL> <D>

<CONTROL> <E>

<CONTROL> <M>

<CONTROL> <Q>

<CONTROL> <R>

<CONTROL> <Z>

<ESC> and <CONTROL> < + >
Pressand release the <ESC> key

and then press <CONTROL>
< +> simultaneously

<ESC> and <CONTROL>
<CLEARJ< >

*Hold down the <CONTROL> key while pressing the following key.

Also, lines 110 and 120 in the data base and game listings
contain the key conversion routine. When you are typing these
lines, be sure to type them exactly as shown.

95

96 Atari Trivia Data Base

100 DIM KEY1$(64),KEY2$(64)
11121 KEY1$="LJ; K+*O PU I-=V C BXZ4 36 521, .
N MI R EY TWQ9 07 8<>FHD GSA"
12121 KEY2$="LJ: 1'<\"···0 PU I_IV C BXZ$ #t"('Y. ! []
N M? R EY TWQ(). @ FHD GSA"
130 KS=PEEK(141)*256+PEEK(14121)
140 POKE KS+94,34
150 DIM DIR$(20) ,Q$(54) ,A$(25),B$(54) ,F$(8),S(
100) , B (100) , N$ (3)
160 FOR L=1 TO 54:B$(L,L)=" ":NEXT L:Q$=B$:A$=
B$ ci , 25)
170 GRAPHICS 0:TRAP 7010
180 GOSUB 6110
19121 POKE 16,64:POKE 53774,64
21210 REM *** MAIN MENU
210 POI<£ 752,l:PRINT "'1"
220 F'OSITION 11,2: PRINT "TRIVIA DATA BASE"
230 POSITION 14,5:FRINT "MAIN MENU"
24121 POSITION 11,8:PRINT "1. LOAD OLD FILE"
250 POSITION 11,1i2l:FRINT "2. CREATE NEW FILE"
26121 FOSITION 11,12:PRINT "3. DELETE FILE"
27121 POSITION 11,14:FRINT "4. EXIT PROGRAM"
28121 POSITION 14,17:PRINT "PRESS (1-4)"
29121 GOSUB 61211121: IF K2<49 OR K2>52 THEN 29121
3121121 ON K2-48 GOTO 11211121,21211121,51211121,81211121
11211210 REM *** FILE CHOICE MENU
11211121 PRINT "'r": POSI T ION 12,3: PRINT "FILE CHOIC
ES"
112115 IF F>9 THEN F=9
11212121 IF F=0 THEN 111210
112130 OPEN #4,6,I2I,"D:*.TDB":FOR L=1 TO F:INPUT
#4,DIR$:POSITION 12,L+5:PRINT L;". ";DIR$(3,1121
):NEXT L:CLOSE #4
112135 POSITION 12,F+7:PRINT "0. EXIT"
1040 POSITION 12,F+9:PRINT "PRESS (12I-";F;")"
11215121 GOSUB 612110: IF K2<48 OR K2>F+48 THEN 105121
112155 IF K2=48 THEN 21121
11216121 OPEN #5,6,0,"D:*.TDB"
107121 FOR L=1 TO K2-48:INPUT #5,DIR$:NEXT L:CLO
SE #5:F$=DIR$(3,11)
1080 IF F$(LEN(F$) ,LEN(F$»=" " THEN F$=F$(1,L
EN(F$)-1):GOTO 11218121
1090 GOSUB 6710:0PEN #5,4,0,DIR$:INPUT #5;N$:C
LOSE #5:N=VAL(N$):GOTO 412110
110121 POSITION 7,6:PRINT "NO OLD DATA FILES ON
DISK":POSITION 12,8:PRINT "PRESS ANY KEY"
111121 GOSUB 612110:GOTO 21121
212100 REM *** NEW FILE CHOICE
212110 F'RINT ''''I''':POI<E 752,I2I:F$=""

Appendix B 97

2015 IF F>=9 THEN 2090
2020 POSITION 7,5:PRINT "NEW FILE NAME ";:INPU
T F$
2023 IF F$= THEN 2070
2025 FOR L=1 TO LEN(F$):IF ASC(F$(L,L»(65 OR
ASC(F$(L,L»)90 THEN 2070
2027 NEXT L
2030 POKE 752,I:TRAP 2060:0PEN #5,6,0,"D:*.*"
2040 INPUT #5,DIR$:IF DIR$(3,LEN(F$)+2)=F$ THE
N CLOSE #5:GOTO 2070
2050 GOTO 2040
2060 CLOSE #5:TRAP 7010:GOSUB 6710:0PEN #5,8,0
,DIR$:N=0:N$="0 ":PRINT #5;N$:CLOSE #5:F=F+l:
GOTO 4010
2070 POKE 752,I:POSITION 3,8:PRINT "ILLEGAL OR
DUPLICATE FILE NAME":POSITION 11,11:PRINT "PR
ESS ANY KEY"
2080 GOSUB 6010:GOTO 210
2090 POKE 752,I:POSITION 8,8:PRINT "TOO MANY F
ILES ON DISK":POSITION 12,11:PRINT "PRESS ANY
KEY"
2100 GOSUB 6010:GOTO 210
3000 REM *** ENTRY
3010 IF N>=100 THEN 3600
3020 GOSUB 6210:POSITION 13,3:PRINT "QUESTION
El'JTRY":N=N+l:GOSUB 6410
3030 POSITION 9,21:PRINT "'----R:RESTART --'-E:EXIT
ll.,
3180 OPEN #5,9,0,DIR$:Q$=B$:A$=B$(1,25)
3190 POKE 752,0:POSITION 13,9:PRINT " ";
3195 IF N>100 THEN N=100:GOTO 36121121
3200 T=0:S=12l
32112l R=3220:GOTO 37121121
322121 IF K=12 AND FL=1 THEN 4610
3230 IF K=12 THEN 3450
3240 IF K=52 AND T>0 THEN POSITION T+13,9:PRIN
T " .";:Q$(T,T)=" ":T=T-l:GOTO 3210
3270 IF K2=32 AND K<>33 THEN 3210
328121 T=T+l:Q$(T,T)=CHR$(K2):POSITION T+13,9:PR
INT CHR$ 0(2) ;
330121 IF T<22 THEN 321121
3310 IF K2=32 THEN POSITION 4,II:PRINT .. "";:G
OTO 3370
332121 FOR 5=22 TO 1 STEP -1:IF Q$(S,S)=" " THEN
3335
3330 NEXT 5
3335 S=22-S:T=22+S:POKE 752,1
334121 FOR L=1 TO S:Q$(22+L,22+L)=Q$(22-S+L,22-S
+L):POSITION L+3,II:PRINT Q$(22+L,22+L);

98 Atari Trivia Data Base

3350 Q$ (22-S+L,22-S+L) =" ":POSITION 35-S+L,9:P
RINT " ";:NEXT L
33612l POKE 752,0:POSITION T-18,11:PRINT " +";
3370 R=3372:GOTO 3712l12l
3372 IF K=12 AND FL=l THEN 46112l
3375 IF K=12 THEN 34512l
33812l IF K<>52 THEN 3397
3385 IF T>S+22 THEN POSITION T-19,11:PRINT " •
";:Q$(T,T)=" ":T=T-1:GOTO 3370
33912l POKE 752,1:FOR L=l TO S:Q$(22-S+L,22-S+L)
=Q$(22+L,22+L):POSITION 35-S+L,9:PRINT Q$(22-S
+L,22-S+L);
3395 Q$(22+L,22+L)=" ":POSITION L+3,11:PRINT "
";:NEXT L:Q$(22,22)=" ":POKE 752,I2l:POSITION 3
5,9:PRINT " "";
3396 S=I2l:T=21:GOTO 32112l
3397 IF T=54 THEN 337121
3412112l IF K2=32 AND K<>33 THEN 33712l
341121 T=T+1:Q$(T,T)=CHR$(K2):POSITION T-19,11:P
RINT CHR$(K2);:GOTO 33712l
34512l T=I2I:POSITION 1121,17:PRINT " ";
34612l R=3470:GOTO 3712l12l
347121 IF K=12 AND FL=l THEN 463121
34812l IF K=12 THEN 35612l
34912l IF K=52 AND T>0 THEN POSITION T+112l,17:PRI
NT" +";:A$<T,T)=" ":T=T-1:GOTO 34612l
350121 IF T=25 THEN 34612l
351121 IF K2=32 AND K<>33 THEN 346121
35212l T=T+1:A$(T,T)=CHR$(K2):POSITION T+1121,17:P
RINT CHR$(K2);:GOTO 34612l
35612l PRINT #5;Q$:PRINT #5;A$:N=N+1:GOSUB 641121:
Q$=B$:A$=B$(1,25):GOSUB 65112l:GOTO 319121
3600 F'RINT "''''': POKE 752,1: POSITION 14,8: PRINT
"FILE FULL":POSITION 12,11:PRINT "PRESS ANY KE
y"
36112l GOSUB 612110:CLOSE #5:0PEN #5,12,I2l,DIR$:GOS
UB 691121:PRINT #5;N$:CLOSE #5:GOTO 412110
371210 GOSUB 66112l:IF FL=l THEN 37312l
3710 IF K=168 THEN Q$=B$:A$=B$(1,25):GOSUB 651
IZl:GOTO 3190
37212l IF K=1712l THEN CLOSE #5:0PEN #5,12,I2l,DIR$:
N=N-l:GOSUB 69112l:PRINT #5;N$:CLOSE #5:GOTO 41211
IZl
373121 GOTO R
412l12l121 REM *** EDIT MENU
41211121 POKE 752,1: PRINT
41212121 POSITION 11,2:PRINT "TRIVIA DATA BASE"
4121312l POSITION 9,4:PRINT "CURRENT FILE - ";F$:P
OSITION 9,5:PRINT "# OF QUESTIONS - ";N

Appendix B 99

4040 POSITION 14,8:PRINT "EDIT MENU"
4050 POSITION 11,11:PRINT "1. ENTER DATA"
4060 POSITION 11,13:PRINT "2. EDIT DATA"
4Ql70 POSITION. 11,15: PRINT "3. RETURN TO": POSIT
ION 14,16:PRINT "MAIN MENU"
4080 POSITION 13,19:PRINT "PRESS (1-3)"
4100 GOSUB 6010:IF K2<49 OR K2>51 THEN 4100
4110 ON K2-48 GOTO 3010,4120,210
4120 PRINT "''':IF N=0 THEN POSITION 11,9:PRINT
"NO DATA IN FILE":POSITION 12,11:PRINT "PRESS
ANY I<EY"
4130 IF N=0 THEN GoSUB 6010:GoTO 4010
4140 POSITION 11,11:PRINT PLEASE WAIT"
4150 OPEN #4,12,0,DIR$:INPUT #4,N$:N=VAL(N$):F
OR L=l TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y:INPUT #4
,Q$,A$:NEXT L
4170 M=l:PoKE 752,1:PRINT "''':GoSUB 6210:POSIT
ION 13,3:PRINT "QUESTION EDIT"
4180 POSITION 2,21:PRINT .. AF:FWD AR:REV AJ:JM
P AC:CHG AE:EXT ..
4200 POINT #4,S(M),B(M):INPUT #4,Q$,A$:N$=STR$
(M):IF M<100 THEN N$(3,3)=" ":IF M<10 THEN N$(
2,2)=" II

4210 POSITION 13,5:PRINT N$;:GoSUB 6810:GOSUB
6820
4220 GOSUB 6610:IF K=168 AND M>l THEN M=M-l:Go
SUB 6510:GOTO 4200
4230 IF K=184 AND M<N THEN M=M+1:GOSUB 6510:GO
TO 4200
4240 IF K=129 THEN 4400
4250 IF K=146 THEN 4500
4260 IF K=170 THEN CLOSE #4:GOTO 4010
4270 GOTO 4220
4400 TRAP 4400:POSITION 3,21:PRINT B$(1,36);:P
OSITION 2,21:PRINT .. JUMP TO WHICH RECORD ";:1
NPUT M
4410 IF M<1 OR M>N THEN 4400
4420 POSITION 38,21:PRINT CHR$(124);:TRAP 7010
:GOTO 4180
4500 POKE 752,1:POSITION 2,21:PRINT" AQ:QUES
TION AA:ANSWER AE:EXIT
4510 GOSUB 6610:IF K=175 THEN 4600
4520 IF K=191 THEN 4620
4530 IF K<>170 THEN 4510
4540 GOTo 4180
4600 POSITION 2,21:PRINT B$(1,35):Q$=B$:GOSUB
6810:FL=1:GOTo 3190
4610 FL=0:POINT #4,S(M),B(M):PRINT #4;Q$:PRINT
#4;A$:GOTO 4500

100 Atari Trivia Data Base

4620 POSITION 2,21:PRINT B$C1,35):A$=B$C1,25):
GoSUB 6820:FL=1:PoKE 752,0:GoTo 3450
4630 FL=0:PoINT #4,SCM) ,BCM):PRINT #4;Q$:PRINT
#4;A:t:GOTo 4500
5000 REM *** FILE DELETION
5010 PRINT 12,3:PRINT "FILE DELET
ION"
5020 IF F=0 THEN 5120
5030 OPEN #4,6,0,"0:*.TOB":FoR L=1 TO F:INPUT
#4 ,OIR$: POSITION 12,L+5: PRINT L;". "; OIR$ C3,10
):NEXT L:CLOSE #4
5035 POSITION 12,F+7:PRINT "0. EXIT"
5040 POSITION 9,F+9:PRINT "DELETE WHICH FILE?"
:PoSITIoN 12,F+10:PRINT "PRESS (0-";F;")"
5050 GoSUB 6010:IF K2<48 OR K2>F+48 THEN 5050
5055 IF K2=48 THEN 210
5060 OPEN #4,6,0, "0: *. TOB": FOR L=1 TO 1<2-48: IN
PUT #4,DIR$:NEXT L:CLoSE #4:F$=OIR$C3,11)
5070 IF F$CLENCF$),LEN(F$»=" .. THEN F$=F$C1,L
ENCF$)-1):GOTO 5070
5080 PRINT "''f":POSITION 12,10:PRINT "OELETE ";
F$;"?":POSITION 12,12:PRINT "PRESS Y OR N"
5090 GOSUB 6010:IF K2=78 THEN 210
5100 IF K2=89 THEN GOSUB 6710:XIO 33,#1,0,0,01
R$:F=F-1:GOTO 210
5110 GOTO 5090
5120 POSITION 10,6:PRINT "NO FILES TO OELETE":
POSITION 12,8:PRINT "PRESS ANY KEY"
5130 GOSUS 6010:GOTo 210
6000 REM *** KEY INPUT ROUTINE
6010 K=PEEK(764):IF K>127 THEN 6010
6020 POKE 764,255:K2=PEEK(K+KS):RETURN
6100 REM *** FILE COUNTING ROUTINE
6110 TRAP 6150:F=0
6120 OPEN #4,6,0,"0:*.*"
6130 INPUT #4,OIR$:IF OIR$(11,13)<>"TOB" THEN
6130
6140 F=F+1:GOTo 6130
6150 CLOSE #4:IF PEEK(195)<>136 THEN 7010
6160 TRAP 7010:RETURN
6200 REM *** SCREEN PRINTING ROUTINE
6210 PRINT 752,1:PoSITIoN 1,1:PRINT "
r";:poSITION 1,22:PRINT "L";
6220 FOR C=2 TO 37:POSITION C,1:PRINT_.. ;:PoS
ITION C,22:PRINT "-";:NEXT C
6230 POSITION 38,1:PRINT ",";:PoSITION 38,22:P
RINT ".II";
6240 FOR R=2 TO 21:POSITION 1,R:PRINT CHR$(124
';:POSITION 38,R:PRINT CHR$(124);:NEXT R

Appendix B 101

1,14: PRINT FOR C=2 TO 37: PR
C:PRINT "
3,17:PRINT "ANSWER? "
11,18:FoR C=1 TO 25:PRINT "-";:N

=11

POSITION 12,2:PRINT "TRIVIA DATA BASE"
6260 POSITION 1,4:PRINT C=2 TO 37:PRI
NT "-";:NEXT C:PRINT "1"

POSITION 3,5:PRINT "QUESTION #":PoSITIoN
19,5:PRINT "FILE NAME ";FS

POSITION 1,6:PRINT "F'; :FoR C=2 TO 37:PRI
NT ""..,," ; : NEXT C: PRINT " ..I"
6290 POSITION 3,9:PRINT "QUESTION? "

POSITION C=1 TO 22:PRINT "-";:N
EXT C

POSITION 4,12:FoR C=1 TO 32:PRINT "-";:NE
XT C

POSITION
INT ",,-";: NEXT

PoS I TI ON
POSITION

EXT C
POSITION 1,20:PRINT "1-";:FoR C=2 TO 37:PR

INT "-";:NEXT C:PRINT "-I"
6360 RETURN

REM *** QUESTION NUMBER ROUTINE
6410 POKE 752,I:POSITIoN 13,5:PRINT N;
64221 RETURN

REM *** BLANKING ROUTINE
65121 POKE 752,1:PoSITIoN 14,9:PRINT BS(I,22);:
POSITION 4,11:PRINT BSC1,32);:PoSITIoN 11,17:P
RINT as C1,25) ;

RETURN
66210 REM *** CONTROL KEY ROUTINE
6610 K=PEEK(764):IF K=255 THEN 6610
66221 POKE 764,255:K2=PEEKCK+KS)
6630 RETURN
6700 REM *** FILE NAME ROUTINE

DIRS(1,2)="D:":DIRS(3,LEN(FS)+3)=FS:DIR$(
LEN(FS)+3,LENCFS)+7)=".TDB":DIR$CLEN(FS)+7,20)

"
6720 RETURN
6800 REM *** QUESTION PRINT ROUTINE
6810 POKE 752,1:POSITION 14,9:PRINT Q$C1,22);:
POSITION 4,11:PRINT Q$(23,54);:RETURN
6820 POKE 752,1:POSITION 11,17:PRINT A$;:RETUR
N
6900 REM *** NUMBER LENGTH ROUTINE

N$=STR$CN):IF N<100 THEN NSC3,3)=" ":IF N
<10 THEN N$C2,2)=" "

RETURN
REM *** DISK ERROR ROUTINE

102 Atari Trivia Data Base

71211121 TRAP 71216121:POKE 752,1:PRINT "'[":E=PEEK(195
):POSITION 7,6:PRINT "ERROR ";E;" AT LINE ";PE
EK(186)+PEEK(187)*256
71212121 IF E=162 THEN POSITION 14,8:PRINT "DISK F
ULL":GOTO 71214121
71213121 IF E>18 THEN POSITION 13,8:PRINT "DISK ER
ROR"
71214121 POSITION 12,11:PRINT "PRESS ANY KEY":POKE
764,255:GOSUB 61211121:CLOSE #4:CLOSE #5

71215121 IF E=144 THEN 81211121
71216121 RUN
BI2II2I121 REM *** EXIT
81211121 PRINT 16,192:POKE 53774,247:POKE
752,121: END

Appendix C

Game Program Listing
If you are typing the listing for the game program into the

computer, see the notes at the beginning of Appendix B.

103

104 Atari Trivia Data Base

100 DIM KEY1$(64),KEY2$(64)
110 KEY1$="LJ; K+*O PU I-=V C BXZ4 36 521, .
N MI R EY TWQ9 07 8<>FHD GSA"
120 KEY2$="LJ: K\""'-O PU I_ IV C BXZ$ #& Y. ! []
N M? R EY TWQ()' @ FHD GSA"
130 KS=PEEK(141)*256+PEEK(140)
14m POKE KS+94,34
150 DIM DIR$(20) ,Q$(54) ,A$(25) ,B$(54) ,F$(8),S(
10m),B(100),G$(25),N$(3)
160 DIM NM1$(10),NM2$(10),NM3$(10) ,NM4$(10),NM
$ (40) , P (4)
170 FOR L=1 TO 54:B$(L,L'=" ":NEXT L:Q$=B$:A$=
B$(1,25):G$=A$:NM$=B$(1,40)
180 GRAPHICS 7010

POKE 16,64:POKE 53774,64
REM *** FILE CHOICE MENU
POKE 752,1:PRINT "".":POSITION 12,2:PRINT

"TRP.lIA GAME"
POSITION 12,4:PRINT "FILE CHOICES":GOSUB

F>9 THEN F=9
IF THEN 12mm
OPEN L=1 TO F:INPUT

#4, DI R$: POS I T I ON 12, L+5: PR I NT L;". "; DI R$ (3, 10
):NEXT L:CLOSE #4

POSITION 12,F+7:PRINT "0. EXIT"
1m40 POSITION 12,F+9:PRINT "PRESS

GOSUB 6010:IF K2<48 OR K2>F+48 THEN 1050
IF K2=48 THEN
OPEN
FOR L=1 TO K2-48:INPUT #5,DIR$:NEXT L:CLO

SE #5:F$=DIR$(3,11)
IF F$(LEN(F$) ,LEN(F$»=" " THEN F$=F$(1,L

EN(F$)-1):GOTO 1080
GOSUB 6710:0PEN #5,4,0,DIR$:INPUT #5;N$:C

LOSE #5:N=VAL(N$):IF N<20 THEN 1250
GOTO
POSITION 8,6:PRINT "NO DATA FILES ON DIS'<

":POSITION 5,9:PRINT "YOU MUST SWITCH DATA DIS
KS"
1210 POSITION 8,10:PRINT "AND TYPE 'RUN' AGAIN
":POSITION 17,12:PRINT "OR"
1220 POSITION 12,14:PRINT "LOAD AND RUN":POSIT
ION 8,15:PRINT "THE DATA BASE PROGRAM"
1230 POSITION 12,19:PRINT "PRESS ANY KEY":GOSU
B
1250 PR I NT "'r": POS I T I ON 5, 8: PR I NT "TOO FEW QUE
STIONS IN THE FILE":POSITION 12,9:PRINT "TO PL
AY A GAME"

POSITION 12,11:PRINT "PRESS ANY KEY":GOSU
B 1010

Appendix C 105

2000 REM *** NAME ENTRY
2010 POKE 752,l:PRINT
2020 POSITION 13,2:PRINT "TRIVIA GAME"
2030 POSITION 4,5:PRINT "HOW MANY PLAYERS? PR
ESS 1 TO 4"
2040 GOSUB 6010:P=K2-48:IF P<l OR P>4 THEN 204
e
2050 POSITION 2,20:PRINT "NAMES MAY ONLY BE 10
CHARACTERS LONG":POKE 752,0
2060 TRAP 2060:POSITION 3,8:PRINT "ENTER PLAYE
R l"S NAME ";:INPUT NM1$:IF NM1$="" THEN 2060
2070 IF P=l THEN 2130
2080 TRAP 2080:POSITION 3,10:PRINT "ENTER PLAY
ER 2'S NAME ";:INPUT NM2$:IF NM2$="" THEN 2080
2090 IF P=2 THEN 2130
2100 TRAP 2100:POSITION 3,12:PRINT "ENTER PLAY
ER 3'S NAME ";:INPUT NM3$:IF NM3$="" THEN 2100
2110 IF P=3 THEN 2130
2120 TRAP 2120:POSITION 3,14:PRINT "ENTER PLAY
ER 4"S NAME ";:INPUT NM4$:IF NM4$="" THEN 2120
2130 TRAP 7010:POKE 752,I:NM$(I,10)=NM1$:NM$(1
1,20)=NM2$:NM$(21,30)=NM3$:NM$(31,40)=NM4$
3000 REM *** GAME
3010 POKE 752,1: PRINT
.3020 POSITION 11,8: PRINT ".... PLEASE WAIT": PO
SITION 12,II:PRINT "INDEXING DATA"
3030 OPEN #4,12,0,DIR$:INPUT #4,N$:N=VAL(N$):F
OR L=l TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y:INPUT #4
,Q$,A$:NEXT L
3040 POSITION Il21,14:PRINT "ORDERING QUESTIONS"
3050 FOR L=1 TO N:S(0)=S(L):B(0)=B(L):R=INT(RN
D(I)*N)+I:S(L)=S(R):B(L)=B(R):S(R)=S(0):B(R)=B
(0):NEXT L
3060 PRINT "'\"": GOSUB 6210: M=0: P (1) =0: P (2) =0: P (
3)=0:P(4)=0
3070 FOR L=1 TO P*5:GOSUB 6410
3075 FL=I:IF RNO(I)<0.1 THEN FL=2:POSITION 10,
15:PRINT "BONUS POINT QUESTION"
3080 M=M+l:IF M=P+l THEN M=1
3090 POSITION 3,4:PRINT "GET REAOY ";NM$(M*ll21-
9,M*10):FOR 0=1 TO 200:NEXT 0
3100 POSITION 3,4:PRINT "GET SET ";NM$(M*10-9,
M*10);" ":FOR 0=1 TO 200:NEXT 0
3110 POSITION 3,4:PRINT "GO ";NM$(M*10-9,M*10). ",
3120 POINT #4,S(L),B(L):INPUT #4,Q$,A$:GOSUB 6
810
3130 T=0:Z=500:POKE 752,0:POSITION 10,12:PRINT

II " ••3140 GOSUB 6610:IF Z=0 THEN 3200

106 Atari Trivia Data Base

315121 IF K=12 THEN 32121121
316121 IF K=52 AND T>12I THEN POSITION T+II21.12:PRI
NT ;:G$(T.T)= .. ":T=T-l:GOTO 314121
317121 IF T=25 THEN 314121
318121 IF K2=32 AND K<>33 THEN 314121
319121 T=T+l:G$(T.T)=CHR$(K2):POSITION T+II21.12:P
RINT CHR$(K2);:GOTO 314121
32121121 POKE 752.1:IF G$(>A$ THEN 322121
321121 POSITION 7.15:PRINT "CORRECT - ";INT(Z*FL
12121);" POINTS SCORED":P(M)=P(M)+INT(Z*FL/2121):G
OSUB 641121:GOTO 33121121
322121 POSITION 1121.15:PRINT .. INCORRECT ANSWER

33121121 FOR D=1 TO 2121121:NEXT D:POSITION 3.15:PRINT
B$(1.34):G$=B$(1.25):GOSUB 6510:POSITION 33.4
:PRINT 25
331121 NEXT L
332121 POSITION 6.15:PRINT "GAME OVER --- PRESS
ANY KEY":POKE 764.255:GOSUB 61211121:CLOSE #4
3330 PRINT "'f":POSITION 14.5:PRINT "RANKING"
3340 FOR L=1 TO P:POSITION 1121.L+6:M=I:FOR L2=1
TO P:IF P(L2»P(M) THEN M=L2

335121 NEXT L2:PRINT NM$(M*I121-9.M*II21);" ";P(M)
:P(M)=-1:NEXT L
336121 POSITION 12.P+8:PRINT "PRESS ANY KEY":POK
E 764.255:GOSUB 61211121
337121 PRINT "'r":POSITION 5.5:PRINT "PLAY AGAIN?
PRESS Y OR N"

338121 GOSUB 6l211l21:IF K2=78 THEN 8l211l21
339121 IF K2<>89 THEN 3380
340121 F'OSITION 2.8: PRINT "SAME PLAYERS AND FILE
? PRESS Y OR N"
3410 GOSUB 601l21:IF K2=78 THEN RUN
3420 IF K2<>89 THEN 341121
3430 OPEN #4.12.0.DIR$:GOTO 304121
6000 REM *** KEY INPUT ROUTINE
6010 K=PEEK(764):IF K>127 THEN 6l211l21
6020 POKE 764.255:K2=PEEK(K+KS):RETURN
6100 REM *** FILE COUNTING ROUTINE
6110 TRAP 6150:F=0
612121 OPEN #4.6.l2I."D:*.*"
613lZl INPUT #4.DIR$:IF DIR$(11.13)<>"TDB" THEN
613121
614121 F=F+1:GOTO 613121
6150 CLOSE #4:IF PEEK(195)<>136 THEN 712110
616121 TRAP 7l211l21:RETURN
6200 REM *** SCREEN PRINTING ROUTINE
621121 PRINT "'f":POKE 752.1:POSITION 1.1:PRINT "
r";:POSITION 1.22:PRINT "L";

Appendix C 107

622121 FOR C=2 TO 37: POSITION C, 1: PRINT "',-";: POS
ITION C,22:PRINT "-";:NEXT C
623121 POSITION 38,1:PRINT ",";:POSITION 38,22:P
RINT ",J";
624121 FOR R=2 TO 21:POSITION 1,R:PRINT CHR$(124
);:POSITION 38,R:PRINT CHR$(124);:NEXT R
625121 POSITION 15,2:PRINT "TRIVIA GAME"
626121 POSITION 1,3: PRINT "l''';: FOR C=2 TO 37: PRI
NT "-";:NEXT C:PRINT "1"
627121 POSITION 25,4:PRINT "TIMER: 25"
628121 POSITION 1,5:PRINT "I-";:FOR C=2 TO 37:PRI
NT "._";: NEXT C: PRINT ""I"
629121 POSITION 3,7:PRINT "QUESTION:"
63121121 POSITION 14,8:FOR C=1 TO 22:PRINT ""''';:NE
XT C
6310 POSITION 4,121:FOR C=1 TO 32:PRINT u_II;:NE
XT C
632121 POSITION 1,14:PRINT " ; :FOR C=2 TO 37:PR
INT "-";:NEXT C:PRINT ",i"
633121 POSITION 3,12:PRINT "ANSWER?":POSITION 11
, 13: FOR C=1 TO 25: PRINT "-";: NEXT C
634121 POSITION 1,16:PRINT """;:FOR C=2 TO 37:PR
INT "·-"pNEXT C:PRINT "''I''
635121 POSITION 5,17:PRINT "PLAYER'S NAME","SCOR
E"
636121 POSITION 8,18:PRINT NM1$:POSITION 8,19:PR
INT NM2$:POSITION 8,2121:PRINT NM3$:POSITION 8,2
1:PRINT NM4$
637121 RETURN
64121121 REM *** SCORE PRINTING ROUTINE
641121 POKE 752,1:POSITION 26,18:PRINT P(1):IF P
>1 THEN POSITION 26,19:PRINT P(2)
642121 IF P>2 THEN POSITION 26,2121:PRINT P(3):IF
P>3 THEN POSITION 26,21:PRINT P(4)
643121 RETURN
65121121 REM *** BLANKING ROUTINE
651121 POKE 752,1:POSITION 14,7:PRINT B$(1,22);:
POSITION 4,9:PRINT B$(1,32);:POSITION 11,12:PR
INT B$(1,25);
652121 RETURN
66121121 REM *** TIMER-KEY ROUTINE
661121 K=PEEK(764):Z=Z-1:POKE 752,1:POSITION 33,
4:PRINT INT(Z/2121);" ";:POKE 752,I2I:POSITION T+
11,12:PRINT "
662121 IF Z=12I THEN 665121
663121 IF K=255 THEN 661121
664121 K2=PEEK(K+KS)
665121 POKE 764,255:RETURN ,
670121 REM *** FILE NAME ROUTINE

108 Atari Trivia Data Base

6710 DIR$(1,2)=uD: u:DIR$(3,LEN(FS)+3)=F$:DIRS(
LEN(FS)+3,LEN(F$)+7)=u.TDB":DIR$(LEN(F$)+7,20)
=" I'
6720 RETURN
6800 REM *** QUESTION PRINT ROUTINE
6810 POKE 752,1:POSITION 14,7:PRINT Q$(1.22);:
POSITION 4,9:PRINT Q$(23.54);:RETURN
7000 REM *** DISK ERROR ROUTINE
7010 TRAP 7050:POKE 752.1:PRINT "'f":E=PEEK(195
):POSITION 9.6:PRINT "ERROR U;E;" AT LINE ";PE
EK(186)+PEEK(187)*256
7020 IF E>18 THEN POSITION 13.8:PRINT uDISK ER
ROR u
7030 POSITION 12.11:PRINT uPRESS ANY KEyu:POKE
764,255:GOSUB 6010:CLOSE #4:CLOSE #5
7040 IF E=144 THEN 8010
7050 RUN
8000 REM *** EXIT
8010 PRINT "'[u:POKE 16.192:POKE 53774,247:POKE
752.0:END

Data Base Flowchart 1·A Overview
(foldout)

Flowchart 1·A

Initialize
variables

1. Load
an olddata

file

2. Create
a new data

file
3. Delete
a file

4. Exit
the program

1.Enter
new data

2.Edit
old data

3. Return
to Main
Menu

Data Base Flowchart 1·B Initialize variables
(foldout)

Flowchart 1·8

Set upkey
conversion
routine

Initialize
variables

Set up
error

trapping

Count number
ot data files
ondisk

Data Base Flowchart 1·C Main Menu
(foldout)

Flowchart 1·C

Print
options

Call key
input
routine

Go to appropriate
section of
theprogram

Data Base Flowchart 1·0 Load a file
(foldout)

Set maximum
number of
files to 9

Print
file names

Call key
input
routine

Flowchart 1·0

Print no
files message

Return to
Main Menu

Convert
file names

Get number
of questions
in file

Data Base Flowchart 1·E Create a file
(foldout)

Flowchart 1·E

Input new
tile name

Print too
many files
message

Return to
Main Menu

Print 0 as
the tirst
record

N

Data Base Flowchart 1·F Delete a file
(foldout)

Print
file

names

Call key
input
routine

Flowchart 1-F

Print no
files message

Return to
Main Menu

Delete
the file

Data Base Flowchart 1·G Edit Menu
(foldout)

Flowchart 1·G

Print
options

Call key
input
routine

Go to appropriate
section of
theprogram

Return
to Main
Menu

Data Base Flowchart 1-H Enter data
(foldout)

Flowchart 1·H

Print
entry
screen

Open
file

Print
file full
message

Abort
entry

Return
to edit
choices

Close
file

Print
number

of questions
to file

Return
to Edit
Menu

cont.

Data Base Flowchart 1-H cant. Enter data
(foldout)

Blank
current
data

Flowchart 1·H cont.

cont,

Set
count

variables

Call control
key

routine

<RETURN>

cont.

N

<BACKSPACE>

Perform
backspace

letter
or

symbol

Update
question

and screen

Data Base Flowchart 1·H cont. Enter data
(foldout)

Flowchart 1·H cont.

cont.

Set
count

variables

Call
control
key

routine

<BACKSPACE>

Perform
backspace

letter
or

symbol

Update
answer

and screen

Data Base Flowchart 1-1 Edit data
Ci (foldout)

Flowchart 1-1

Print
edit
screen

Set current
record to 1

Input current
record from

file

Prinf current
question and

answer toscreen

Increment
current
record
number

A Call control
key input

cont.

Return
to Edit
Menu

Data Base Flowchart 1-1 cont. Edit datac:: (foldout)

Flowchart 1-1 cont.

cant.

Print
change
options

Set flag
FL=l

Call control
key

routine

Set tlag
FL=O

Set flag
FL=O

I\Q I\A I\E

Call Call
question answer
entry entry
routine routine

Printnew
question
to file

Print
new

answer
to tile

Game Flowchart 2·A Overview
(foldout)

Flowchart 2-A

Initialize
variables

Choose
file

Enter
names

Piay
game

N

N

Exit
program

Game Flowchart 2·8 Initialize variables
(foldout)

Flowchart 2·8

Set upkey
conversion
routine

Initialize
variables

Set up
error

trapping

Count number
of data files
ondisk

Game Flowchart 2·C Choose a file
(foldout)

Set maximum
number of
files to 9

Print
file

names

Call key
input
routine

Flowchart 2·C

Print no
files message

Exit
program

Gel number
of questions
in file

Game Flowchart 2-D Enter names
(foldout)

Flowchart 2-D

Ask number
of players

Call key
input
routine

Input
names

Set up
single string
with all names

N

Game Flowchart 2·E Play the game
(foldout)

A

Flowchart 2-E

Open
file

Index
data

Randomly
order

questions

Print
game
screen

Reset
score

variables

FOR-NEXT
loop to
play game

Set FL
=2

for points

Print
bonus
point

message

Oetermine
player

cont

N

Set FL
=1

for points

Game Flowchart 2-E cont. Play the game
(foldout)

Flowchart 2-E cont.

cent.

Print
getready
messages

Input
question

and answer
from file

Print
question

Call
control
timer
routine

Perform
backspace

Decrement
timer

Print
time

remaining

<RETURN>

cont.

Game Flowchart 2-E cont. Play the game
(foldout)

Flowchart 2-E cont.

cont.

Compare
guess
and

answer

Print
guess
correct
message

Update
score
and
screen

Print
final
ranking

Go to play
again
options

Print
guess
incorrect
message

