ATARI LOGO

Reference
Manual

This product was developed
and manufactured for

Atari, Inc., by Logo Computer
Systems, Inc.

lIIII"lIlIII.IIII'll'lllll.lq\'...'.l....l

ATARI LOGO

Reference
Manual

Disclaimer of all Warranties and Liabilities

Logo Computer Systems, Inc., makes no warranties, expressed or implied,
concerning the quality, performance, merchantability or fitness of use for any
particular purpose of this manual and the software described in this manual. This
manual and the software described in this manual are sold “‘asis . The entire
risk as to the quality and performance of these goods is with the buyer; if the
goods shall prove defective following their purchase, the buyer and not the
manufacturer, distributor or retailer assumes the entire cost of all necessary
servicing, repair and replacement and any incidental or consequential damages.
In no event will Logo Computer Systems, Inc. be responsible for direct, indirect,
incidental or consequential damages relating to the purchase or use of these
goods, even if Logo Computer Systems, Inc. has been advised of the possibility
of such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

Notice

Logo Computer Systems, Inc. and ATARI, Inc., reserve the right to make any
improvements and changes in the product described in this manual at any time
and without notice.

Copyright and Trademark Notices

This product and all software and documentation in this package (ROM
cartridge, Manuals and Reference Guide) are copyrighted under United States
Copyright laws by Logo Computer Systems, Inc.

© 1983 Logo Computer Systems, Inc.

ATARI is a registered trademark of Atari, Inc. (a Warner Communications
Company), used by permission.

Table of Contents

Preface

Getting Started
The Keyboard

Logo Grammar

Procedures

Inputs to Procedures

Quotes, Colons, and Brackets

The Difference Between Commands and Operations
Variables

The Difference Between Global and Local Variables
Understanding a Logo Line

How Primitives are Described
How We Describe Formats
Input Words

Chapter 1: Turtle Graphics
Turtle Shape Editor

Chapter 2: Words and Lists
Chapter 3: Variables
Chapter 4: Arithmetic Operations

Chapter 5: Defining and Editing Procedures
ATARI Logo Editor

Chapter 6: Flow of Control and Conditionals
Table of Collisions and Events

Chapter 7: Logical Operations
Chapter 8: The Outside World

Chapter 9: Workspace Management

51

73

Vi

91
92

101
104

119

125

137

Chapter 10:

Chapter 11:

Appendix A:
Appendix B:
Appendix C:

Appendix D:

Appendix E:

Appendix F:
Appendix G:

Appendix H:

Index

Files

Special Primitives
Error Messages
Special Keys
Useful Tools
Memory Space

How It Works

How Space is Used
Space Saving Hints
Parsing

Delimiters

Infix Procedures
Brackets and Parentheses
Quotes and Delimiters
The minus Sign
ASCII Code

Logo Vocabulary

Glossary

145
153
157
161
165
171
172
173
173
175
176
177
177
T
178
181
191
195

209

Preface

The ATARI Logo Reference Manual should be used for
reference rather than as a guide for new users. If you've
worked with another version of Logo, this book will help
familiarize you with ATARI Logo's special features. First
time Logo users should start with the companion manual
Introduction to Programming Through Turtle Graphics.

The ATARI Logo Reference Manual describes Logo primitives,
simple commands built into the language, and provides
sample programs. Refer to the Table of Contents for
organization of the primitives.

There are two useful sections in the front of this manual. The
first gives an introduction to Logo grammar. The second
explains the conventions used to define the primitives.

There are several ways to use this manual. If you want to know
what a specific primitive does, look it up in the index. For quick
reference, look at Appendix G or H or the Reference Guide. If
you want to find a primitive to perform a particular task, look at
the chapter headings or index.

Appendices include: messages that appear on the screen,
handy procedures, technical information, ASCIl Codes, and a
glossary of ATARI Logo primitives.

Throughout this manual, orange text is used to represent what
you type on the computer. Black text is used to represent what
the computer displays. Words that are inputs to primitives are
in jtalics.

Getting Started

To use the ATARI Logo Cartridge, you need an ATARI Home
Computer and a TV set or monitor. If you want to save
programs, you need an ATARI Disk Drive or ATARI Program
Recorder.

For specific questions about the operation of your ATARI
Home Computer, refer to the computer owner’s guide. You'll
find your computer and ATARI Logo easy to operate. To load
ATARI Logo into your computer:

1. With the computer off, turn on your TV set or monitor. If you
have one, turn on your ATARI Disk Drive and wait for the
busy light to go off. If you are not using a disk drive, skip to
step 3.

2. Insert the ATARI Master Diskette in the disk drive and close
the disk drive door. You may also use a data diskette if it
contains DOS (Disk Operating System) files.

3. Insert the ATARI Logo Cartridge into the console’s
cartridge slot and turn the computer on.

After a moment you'll see on the screen:

(C) 1983 LCSI ALL RIGHTS RESERVED
WELCOME TO ATARI LOGO.
71

The 2 (question mark) is the prompt symbol. When 7 is on the
screen, you can type something. The B is the cursor. It shows
where the next character you type will appear.

The Keyboard

The ATARI Home Computer keyboard is set up like a
typewriter.

Character Keys
Character keys — A, B, C, 7, ;, $, etc. They include letters of the
alphabet, numbers and punctuation marks.

RETURN

In Logo, the RETURN key serves a programming function. It
tells Logo: “Now do what | just typed.”’ Press the RETURN key
when you want Logo to obey your instructions.

SPACE BAR

The SPACE BAR prints an invisible but important character
called space. Logo uses spaces as word separators. For
example, Logo would interpret THISISAWORD as a single word
and would interpret THIS IS A WORD as four words.

SHIFT

Holding down SHIFT, while pressing some character keys,
changes that particular character key’s meaning in Logo. For
example, if you hold the SHIFT key down and press], Logo will
print] (close bracket) on the screen.

The bracket, [], symbols are very important in Logo. Do not
confuse them with parentheses, (), which are SHIFT (and
SHIFT).

To make a shift character, always press the SHIFT key first and
then hold it down while typing the other key.

CTRL (CONTROL)

The CTRL key can change character keys into function keys.
Press it alone and nothing happens; hold it down and press a
certain character key, and something happens. These key
combinations do not always print out on the screen, but Logo
responds to them.

|

00B6N6606B0EEED | -

2000000000068 | -

CO0000000008880 | -

EB0000000080ER0 | -
1 R

HELP

CTRL Arrow Keys
CTRL < will move the cursor one space to the left and CTRL —
will move the cursor one space to the right.

The arrow keys are useful editing keys. They move the cursor
in the direction in which they point without affecting the text
already there. Note: CTRL T and CTRL { only work in the
ATARI Logo Editor. Once the cursor is positioned, you can
insert or delete characters. To insert text, simply position the
cursor and begin typing.

DELETE BACK S (DELETE BACK SPACE)
Erases the character to the left of the cursor.

BREAK

The BREAK key tells Logo to stop whatever it is doing. It will
also get you out of the ATARI Logo Editor without executing
the changes. When you press BREAK, Logo types

STOPPED!
21

then, lets you type the next instruction.

ESC

The ESC (ESCape) key is used to exit the ATARI Logo Editor.
This key is discussed, along with other special editing keys, in
Chapter 5.

ATARI Key () or Reverse Video Key (%)

If you press the (I\) or (B key and then type a character key,
the character appears in reverse video on the screen (dark
character on a light background). You can return to the regular
display by pressing the key a second time.

CAPS LOWR (CAPS)

When you first turn on your ATARI Home Computer, anything
you type will appear in all uppercase letters. Press the CAPS
LOWR key, now only lowercase letters are produced. ATARI
Logo primitives must all be typed in uppercase letters.
Therefore, if you accidentally press the CAPS LOWR key, Logo
will no longer understand your instructions.

SHIFT CAPS LOWR Combination
To lock the keyboard in uppercase, simply hold the SHIFT key
and then press the CAPS LOWR key.

SYSTEM RESET (RESET)
Do not use this key once you have booted Logo. You will lose
everything in memory.

Logo Grammar

The Logo language is made up of building blocks that can be
put together in a number of ways and obey certain rules.
These rules are the “‘grammar”’ of the language. In order for
Logo to understand what you want it to do, you must learn to
give proper instructions by following the guidelines that we
describe in this section.

Procedures

The building blocks of Logo are procedures and inputs to
procedures. Some procedures Logo always knows because
they are built into the Logo system. These are called primitives.
There is a complete list of them in Appendix G.

For example, if you type
CT

the text is cleared from the screen. You haven’t defined CT, but
Logo already knows what to do.

There are also procedures, that you define for yourself, using
the TO or EDIT commands. There are many examples in both of
the manuals.

Here is a procedure definition.

TO WELCOME
PRINT "H1
END

The first and last lines follow special rules. The first line is called
the title line. It must always begin with TO followed by the name
of a procedure. The last line must contain only the word END.

There is an important difference between *‘defining” a
procedure and asking Logo to “‘execute’ it. When we ask
Logo to run a procedure, we say that we have made a
procedure call.

For example, WELCOME contains a request to run a procedure
(which happens to be a primitive) PRINT.

There is another way of asking Logo to make a procedure call.
The name is typed in when Logo is at top level (indicated by
the question mark prompt at the left of the screen). We have
already seen an example with CT. Here is another example.

WELCOME
HI

If you type in a word and Logo cannot find its definition, you
get an error message. Suppose, for example, you haven't
defined a procedure called TALK.

TALK
I DON'T KNOW HOW TO TALK

Within a procedure definition, you can, of course, make a call
to a procedure you have previously defined.

TO COME.AND.GO

WELCOME

PRINT "BYE
END

COME.AND.GO
HI
BYE

We say that WELCOME is a subprocedure of COME.AND.GO.
COME.AND.GO is a superprocedure of WELCOME.

Inputs to Procedures

Some procedures need inputs. For example,

PRINT "HI
HI

The word "Hl is the input to PRINT. The quote mark () tells
Logo that you mean the word Hi as itself, not as the name of
another procedure. Here is what happens if you don’t include
the input:

PRINT

NOT ENOUGH INPUTS TO PRINT

You can use a sentence, instead of a word, for the input to
PRINT by putting square brackets around it.

PRINT [HAVE A NICE DAY]
HAVE A NICE DAY

The procedures that you define can also have inputs. When a
procedure you've defined is executed, its inputs are put into
variables. A variable is like a box which has a name, and which
can hold an object (a word or a list, as in the examples of
inputs to PRINT before). When you define a procedure with
which you want to use inputs, you must provide a variable to
“hold” each input. Their names must be written on the title line
after the name of the procedure. Each name must have a
colon in front. For example,

TO BIGWELCOME :NAME

PR -H]

PR :NAME

PR [HAVE A NICE DAY]
END

The title line tells Logo that the procedure BIGWELCOME has a
single input whose name is NAME. The body of the procedure
contains three calls of the procedure PRINT (PR is the short form
of PRINT). The second of these uses the input NAME. Here is an
example of a request to execute BIGWELCOME at top level.
BIGWELCOME "JANE

HI

JANE
HAVE A NICE DAY

Here, the input to BIGWELCOME is JANE. Logo makes this the
value of NAME when it executes the procedure. Thus, PRINT
:NAME does the same thing (in this case) as PRINT ”JANE.

Quotes, Colons, and Brackets

When you ask Logo to execute a procedure, you must be very
careful about how you write the inputs. A good rule of thumb is
that Logo understands every word as a request to run a

10

procedure unless you specifically indicate that it is not. For
example,

BIGWELCOME JANE
I DON'T KNOW HOW TO JANE

Logo thinks that JANE is a procedure. But since Logo can't find
its definition, it doesn’t know how to execute it. Here is an
example where Logo is able to find the definition.

BIGWELCOME SUM 31 28

HI

59
HAVE A NICE DAY

SUM is a procedure that adds its inputs. It is a primitive,
therefore Logo knows how to do it even though you haven't
written a definition for it. We will have more to say about using
procedures as inputs in the next section.

In order to tell Logo that an input is not a request to run a
procedure, you need to use certain characters in a special
way.

A word beginning with a quote (for example, ”JANE) tells Logo
that the input is the word itself and nothing else. We call this a
literal word. Note that numbers are like literal words but don't
need to be quoted.

A word beginning with a colon (for example, :N) tells Logo that
the word is the name of a variable and that the input is to be
the value of the variable.

A sequence of words surrounded by square brackets (for
example, [HAVE A NICE DAY]) indicates that the input is a fist.

The use of these four special characters is illustrated in the
definition of BIGWELCOME.

PRINT “Hl tells Logo to display the word Hi.

PRINT :N tells Logo to display whatever is the value of N when
the procedure is executed.

11

PRINT [HAVE A NICE DAY] tells Logo to display the list HAVE A
NICE DAY. Note that, PRINT leaves out the square brackets in its
display. If you want to see the brackets, use SHOW.

The Difference Between Commands and Operations

There are two kinds of procedures in Logo. Those that output a
value (like SuM) are called operations. Those that do not output
a value (like PRINT) are called commands. This distinction is so
important that we indicate whether each primitive is a
command or an operation.

One of the main reasons for this distinction is the fact that an
operation can only be written as an input to a procedure. This
means that, in every Logo line, the first word must be a
command.

We have already seen an example with PRINT SUM 31 28. Here
are some more examples:

PRINT RANDOM 2

1

The output of RANDOM 2 is the input to PRINT. The input to
RANDOM is 2. When RANDOM 2 is executed, the result is
communicated to PRINT.

PRINT SUM 3 2

a

The result of computing the procedure SUM with inputs 3 and 2
is communicated to PRINT.

PRINT SUM 3 PRODUCT 5 2

13

The output of PRODUCT is the second input to SUM.

If you try to use a command as an input, this is what happens:

PRINT FORWARD 25
FORWARD DIDN'T OUTPUT TO PRINT

You get the error message because FORWARD is a command.

12

Up to now, we have only considered Logo primitives.
However, all of the procedures you define yourself are also
either commands or operations. For example, the procedure
BIGWELCOME (defined previously) is a command. The
procedure FLIP is an operation.

TO FLIP

IF (RANDOM 2) = @ [OUTPUT "HEADS] [OU—

TPUT "TAILS]
END

This outputs the word HEADS if RANDOM 2 outputs @ or the word
TAILS if RANDOM 2 outputs 1. As with primitives, typing only the
procedure name alone yields anerror message.

FLIP
I DON'T KNOW WHAT TO DO WITH HEADS

or
I DON'T KNOW WHAT TO DO WITH TAILS

On the other hand, we have

PRINT FLIP
HEADS

or
TAILS

Almost all the procedures in the Introduction Manual are
commands. On the other hand, procedures involving words,
lists, and numbers are frequently operations. To construct your
own operations, you will always use the OUTPUT command. For
more information, see OUTPUT in Chapter 6.

Variables

The best way to understand variables in Logo is to view them
as containers with names on the outside and contents inside.
The colon in front of a word tells Logo to make its contents
available to the procedure. If you type

PRINT :JOHN

13

Logo looks for a container named JOHN. If it finds one, it looks
inside the container and makes whatever it finds available to
PRINT. PRINT then displays the contents (value) of JOHN on the
screen. If it finds nothing, Logo prints the error message:

JOHN HAS NO VALUE

There are two ways of putting things or placing values inside
these containers. The first, which we have already discussed, is
by using procedures with inputs. The second is by using the
MAKE command.

MAKE '"JOHN 25

PRINT :JOHN
23

MAKE is a procedure needing two inputs: a word, and a value
which can be a word, a list, or a number. Here, it creates a
container called JOHN and places 25 inside it. Note that MAKE
does not display anything on the screen. It is PRINT that
displays this value.

We have here a good illustration of the difference between a
quote and a colon. The first input to MAKE is ” JOHN because
the word JOHN itself is the input, which gives MAKE the name of
a variable. The input to PRINT is :JOHN because we want to
display the value of JOHN.

Here is another example:
MAKE "X "JOHN

PRINT :X
JOHN

PRINT :JOHN
25

In this case, MAKE has two quoted words as inputs. It puts the
literal word JOHN inside the container X. The contents of the
variable named JOHN from the MAKE of the previous example
are left undisturbed.

14

The Difference Between Global and Local Variables

When Logo is at top level, and you create a variable with MAKE,
that variable will remain in your workspace until you erase it.
For this reason, it is called a global variable. There are also
variables that remain in the workspace only as long as a
procedure is being executed. These are called local variables.
Variables that are defined as inputs to procedures are always
local variables.

To see the difference, let us modify BIGWELCOME so that it
prints the date.

TO BIGWELCOME :NAME

PR :DATE

PR "HI

PR :NAME

PR [HAVE A NICE DAY]
END

Here, DATE could be a global variable which we haven't
defined yet. If we try to run BIGWELCOME, we will get the error
message

DATE HAS NO VALUE IN BIGWELCOME

We can use MAKE at top level to give DATE a value.

MAKE "DATE [JUNE 23 1983]
BIGWELCOME ''BRIAN

JUNE 23 1983

HI

BRIAN

HAVE A NICE DAY

On the other hand, NAME is a local variable because it is an
input to a procedure. It only contains the word BRIAN while the
procedure BIGWELCOME is being executed.

15

It is easy to forget that you have created a global variable. You
can always check which are in your workspace with the
command PONS. You can erase them with ERN. Here is an
example, that shows that NAME is truly local whereas DATE is
truly global.

ERN "DATE

MAKE "DATE [JULY 1 1983]

BIGWELCOME '"'SEYMOUR

JULY 1 1983

HI

SEYMOUR

HAVE A NICE DAY

PONS
MAKE "DATE [JULY 1 1983]

There is no value displayed for NAME because NAME has
disappeared after BIGWELCOME stops executing.

When you use MAKE inside a procedure definition, the variable
can be either local or global. If it is an input to a running
procedure then it is local. If it is not an input then it is global.

Note that a procedure does not stop running when a
subprocedure is called. Hence a variable that is local to a
procedure can be used by its subprocedures.

Understanding a Logo Line

Procedure definitions consist of lines of instructions. We call
these Logo lines because they can be much longer than the
lines you see on your screen. For example:

MAKE "MANYNAMES [BILL MARY JOHN JOE —
FRANK JUDY]

16

The arrow (—) indicates that the next screen line is a
continuation of the first Logo line. You get long lines like this by
continuing to type without pressing the RETURN key. The
right-arrow is automatically displayed and the instruction
continues on the next line. The Logo line ends as soon as you
press RETURN.

Here are some guidelines or rules-of-thumb to help you
interpret a complex Logo line.

1. Whenever you see a procedure name, be sure you know
(@) how many inputs it has
(b) whether it is a command or operation.

The first word of a Logo line must always be a command.
An operation is always the input to another procedure.
Be sure to account for every input to a procedure.

When the inputs to a command have been accounted for,
the next procedure must be another command.

el

Here is an example of a complex Logo line. It is part of a
procedure COMMENT that illustrates the use of the operation
BUTLAST in Chapter 2.

PRINT SE [I AM] WORD BUTLAST :WD "IER
Let us see how our guidelines help in understanding the line.

PRINT is a command with a single input. This must be the
output of SE, which is an operation with two inputs.

The first input to SE is the list [I| AM]. The second is the output of
the operation WORD. The latter is, once again, an operation with
two inputs. The first must be the operation BUTLAST, which has
a single input :wb. The second input to WORD must therefore
be "IER.

17

Since there are no more procedure names and every input on
the line has been accounted for, we have finished. The
following diagram summarizes what we have done.

PRINT

| - |

[I AM] ’*WOHD—[
BUTLAST "IER
:W|'D

So, for example, if the value of WD is HAPPY then the line would
print | AM HAPPIER.

18

How Primitives are Described

The rest of this manual consists of a description of each
primitive of ATARI Logo.

In bold face at the beginning of each description, you will find
the name of the primitive and its short form if one exists. We
indicate on the same line whether the primitive is a command,
an operation or an infix operation. The difference between a
command and an operation is described in Logo Grammar. An
infix operation is one that is placed between its inputs. All other
primitives are written in front of their inputs.

Below this, we indicate the name of the primitive, followed by
the type of each input. All primitives must be entered in
uppercase letters. You are to supply all inputs (shown in italics).

This is followed by general information about the primitive and
illustrations of how to use the primitive.

How We Describe Formats

If a primitive has more than one format, we write one below the
other, with the simplest or most commonly used on the top line.
You will see that, with some primitives (such as SUM), an
optional format is surrounded by parentheses. This indicates
that the primitive will accept as many inputs as you wish. When
using more than two inputs with such a primitive, you must
always put a left parenthesis before its name and a right
parenthesis after the last input.

When we describe the kind of input that a primitive requires,
we are not speaking about the way the input is written when
you define the procedure, the rules for which were described
in Logo Grammar. Logo tries to understand a written input by
evaluating it and changing it to something else. Table 1 shows
what these changes are. For example, if we write

MAKE [:X 22 '+ 23

and X contains the word JOHN, then the real inputs to MAKE are
the word JOHN and the number 45.

19

Table 1

Written Input Real Input

Word with quotes in front Word

Word with colon in front Contents of word. This can be
a word, a list or a number.

Number Number

List List

Procedure with inputs Output of procedure. This can

be a word, a list or a number.

In this chapter and throughout the rest of the book, when we
describe the kind of input that a primitive requires, we are
speaking about the real input. With many primitives, an input
can be anything you want. In other words, the real input can
be a word, a list, or a number. We call this a Logo object. If you
look up MAKE, you will see that it must have the following form:

MAKE name object

This uses two input words: name and object. Name means that
the first input must be a word (we call a word a name if it is to
be the name of something like a variable or a procedure) and
object is an abbreviation for a Logo object. Going back to our
example, we see that JOHN is a word and 45 is a Logo object,
so we do have the correct inputs.

All of the words that we use in describing the inputs to the
Logo primitives are explained on the next few pages.

20

Input Words
byte

character

colornumber

condnumber

filename

degrees

device

distance

duration
freq

inputs

instructionlist
joysticknumber
list

n.a. byx. v
name

namelist

A unit of data used by the computer. An
integer from @ through 255.

Letters of the alphabet, numbers, and
punctuation marks.

An integer from @ through 127.

An integer from @ through 21. (See COND and
WHEN in Chapter 6.)

A file name. (See Chapter 10.)

Degrees of an angle. A real number between
—9999.9999 and 9999.9999. The command
REPEAT can be used to exceed this limit.

A device name. “C: is Cassette, “D: is Disk, and
"P:is Printer. The ” (quote mark) and : (colon)
are required at all times.

A number from —9999.9999 through
9999.9999. The command REPEAT can be
used to exceed this limit.

An integer from @ through 255.
An integer from 14 through 64,000 in Hz.

Words with colons in front. Used in conjunction
with TO.

A list of procedures that Logo can execute.
An integer from @ through 3.

Information enclosed in [] brackets.

A number.

A word naming a procedure or a variable.

A list of names.

21

object
paddlenumber
pennumber

position, pos

pred

shapenumber

shapespec

turtlenumber
voice
volume

word

A Logo object (a word, a list or a number).
An integer from @ through 7.
An integer from @ through 2.

A list of two numbers giving the coordinates of
the turtle or the cursor.

A predicate, which is an operation that outputs
either the word TRUE or the word FALSE.

An integer from @ through 15.

A list of 16 numbers representing the shape
grid.

An integer from 0 through 3.
An integer, either @ or 1.
An integer from 0 through 15.

A sequence of characters (not including a
space).

22

When you use any primitive or procedure that refers to the
turtle, Logo shows you the graphics screen.

We give here a complete list of the commands that change
what you see on the graphics screen. Also included are a
number of operations that give you information about the
turtle’s state. Most of them are discussed in the Introduction to
Programming through Turtle Graphics Manual.

ATARI Logo has four turtles that can perform dynamic actions.
They are briefly mentioned in the Introduction Manual.

O Multiple Turtles
With ATARI Logo, you can use up to four turtles at once.
You can talk to the turtles together or separately. Four
primitives allow you to address specific turtles. They are
TELL, ASK, EACH and WHO.

J Dynamic Movement
You can set the turtles in motion at the speed you choose
by the command SETSP. SPEED tells you the speed of the
current turtle(s).

(] Changing the Turtle’s Appearance
The turtles’ shapes and colors can be changed. You can
create an unlimited amount of shapes in addition to the
predefined turtle shape. The shape editor is used to design
any shape you would like to use in place of the original
turtle shape. The EDSH command starts the shape editor.
SETSH and SETC allow you set the shape and color of the
current turtle, whereas SHAPE and COLOR output the
appearance of the turtle you are currently talking to.

[0 Collision Detection
Another feature that affects the extended turtle graphics
capabilities is collision detection. The primitives relating to
this feature are discussed in Chapter 6 (WHEN, COND,
OVER, TOUCHING) and Chapter 9 (POD, PODS).

24

.o . Chapter 1

Turtle Graphics

ASK command or operation

ASK turtlenumber instructionlist
ASK turtlenumberlist instructionlist

Asks the turtle(s) specified by turtlenumber(list) to run the
instructions in the second input. This does not affect the turtle(s)
you are currently giving commands to (that is the turtles
addressed with TELL). If instructionlist is an operation, ASK
outputs whatever the operation outputs. Turtlenumber is an
integer from @ to 3.

EXAMPLE

These instructions tell turtle 2 to point to the same heading as
turtle 1.

TELL (1 iST

TELL 2 ST

PR WHO

2

PU SETPOS [-30 @]
SETH 180

SETH ASK 1 [HEADING]
PR WHO

2

BACK, BK command

BACK distance

Moves the turtle distance steps back. Its heading does not
change. Note that BACK @ (with PENDOWN) displays a single dot
at the turtle’s current position without moving the turtle. It is an
error if distance is greater than 9999.9999 or less than
—9999.9999.

25

BG operation

BG

Stands for BackGround. Outputs a number representing the
color of the current background. When Logo starts, BG is light
blue (74). See SETBG for setting the background colors. The
ATARI computer has 16 colors, each having 8 possible
shades, totaling 128 colors to choose from.

0 — 7 gray

8 — 15 light orange (gold)
16 — 283 orange

24 — 31 red-orange
32 — 39 pink

40 — 47 purple

48 — 55 purple-blue
56 — 63 blue

64 — 71 blue

72 — 79 light blue

80 — 87 turquoise

88 — 95 green-blue
96 — 103 green
104 — 111 yellow-green
112 — 119 orange-green
120 — 127 light-orange

For each color, the lowest number is the darkest shade of that
color, and the highest number is the lightest shade of the color.
For example, 0 is black and 7 is white.

Note: Colors may vary depending upon the type of TV, monitor,
condition, and color adjustments.Colors on PAL systems may be
different than the chart above.

26

.o . Chapter 1

Turtle Graphics

CLEAN command

CLEAN

Erases the graphics screen without changing the turtle’s state
or the text displayed.

CLEAN

COLOR operation

COLOR

Outputs a number representing the turtle’s current color. This
can be any integer from @ to 127. When Logo starts, turtle @ is
white (7), turtle 1 is orange (20), turtle 2 is purple (44), and turtle
3 is blue (68). See BG for a chart of colors. See SETC for
changing the turtle’s color.

(o] command

CSs

Stands for Clear Screen. Erases the graphics screen, puts the
current turtle(s) at position [@ @] (the center of the screen), and
sets the turtles’ heading to @ (north). Cs also clears any WHEN
demons that are in action (see WHEN in Chapter 6). CS does not
clear the text (see CT in Chapter 8).

EACH command

EACH /nstructionlist

Makes each turtle, currently in use, separately run the
commands in instructionlist. If there is more than one active
turtle, the first turtle executes all the commands in instructionlist
before the second turtle does anything. This command is
useful when you want each turtle to do slightly different things.

EXAMPLES

The following instructions make all the turtles line up 20 turtle
steps apart and set their colors to the ones corresponding to
their numbers.

TELL L y23]

HOME

EACH [SETX WHO * 2@]
EACH [SETC WHO * 81

WHO outputs the identification number corresponding to each
turtle. Thus, turtle @ will do SETX @ and SETC o, turtle 1 SETX 20
and SETC 8, and so on.

EACH, like ASK, does not change which turtle(s) you are
currently addressing. The difference is that ASK runs each
instruction for each turtle at the same time. EACH runs the
instructions for one turtle after the other. The following example
illustrates this:

28

.o . Chapter 1

Turtle Graphics

TO SETUP

CS TELL 19 1 2 3]
EACH [RT 90 * WHOI
END

SETUP

ASK [@ 1 2 3] [REPEAT 4 [FD 50 RT 90—
1]

SETUP

EACH [REPEAT 4 [FD 5@ RT 9011

EDSH command

EDSH shapenumber

Stands for EDit SHape. Starts up the Logo shape editor which
allows you to make up your own shapes. EDSH brings the
shape corresponding to the shapenumber into the editor,
shapenumber being an integer from 1 to 15. Note that shape
number 0 is the normal turtle shape and can't be edited. See
the description at the end of this chapter for more information
on the Turtle Shape Editor.

FORWARD, FD command

FORWARD distance

Moves the turtle forward distance steps in the direction in
which it is heading. Note that FORWARD @ (with PENDOWN)
displays a single dot at the turtle’s current position without
moving the turtle. It is an error if distance is greater than
9999.9999 or less than —9999.9999.

GETSH operation

GETSH shapenumber

Outputs a list of 16 numbers representing the grid of the
shapenumber (an integer from 1 through 15). Note that
shapenumber can't be 0. Each shape consists of an 8 column
by 16 row grid. Each element in the list is the sum of the bit
values for a row of the shape.

128 64 32 16 8 4 2 1 column value
7 6 5 4 3 2 1 0 columnnumber

A

EEEEEEEE

row number

i
it
il

Note that each column has a number and a value. The number
is the power of 2 which corresponds to the value. For instance,
2 to the power of 2 is 4.

The first element in the list corresponds to the first row of the
shape. If the whole row is filled in, this number is 255, the sum
of all the column values. Each possible sum is unique. If only
the right-most position of this row is filled in, this number is 1. If
only the fifth position from the right is filled in, this number is 16.

.0 . Chapter 1

Turtle Graphics

GETSH is useful for saving shapes on a disk or cassette. You
must first store the shapes in variables and then save the
workspace. (See Chapter 16 in the Introduction Manual for
details.)

EXAMPLES

Let’s suppose that shape number 1 is a filled-in box and shape
number 2 is the outline of a box.
PR GETSH 1

295 2355 255 255 235 235 2595 %5 55>
255 255 255 255 235 255 255

PR GETSH 2
235 29 129 1 189129 129 129 129~
129 129129 1291129 129 255

31

HEADING operation

HEADING

Outputs the turtle’s heading, a number greater than or equal to
0 and less than 360. Logo follows the compass system where
north is a heading of @ degrees, east 90 degrees, south 180
degrees, and west 270 degrees. When you start Logo, the
turtle has a heading of 0 (straight up).

North
00
West 270"----.....‘..E....‘...‘...g@c East
180°
South
i command

HOME

Moves the turtle to the center of the screen and sets its heading
to @. This command is equivalent to SETPOS [@ 0] SETH 0. If the
turtle’s pen is down, the turtle draws a line from its current
position to HOME.

HOME

32

.o . Chapter 1

Turtle Graphics

HT command

HT

Stands for Hide Turtle. Makes the turtle invisible, although it
can still draw.

LEFT, LT command

LEFT degrees

Turns the turtle left (counterclockwise) the specified number of
degrees. It is an error if degrees is greaisr than 9999.9999 or
less than —9999.9999.

EXAMPLES
LEFT 45 (turns the turtle 45 degrees left)

LEFT 45

LEFT —45 (turns the turtle 45 degrees right)

LEFT —45

33

PC operation

PC pennumber

Stands for Pen Color. Outputs a number representing the color
of the current pennumber 0, 1, or 2.

When Logo first starts, PC @ is 15 (gold), PC 1 is 47 (purple), and
PC2is 121 (orange).

P command

PE

Stands for Pen Erase. Puts the turtle’s eraser down. When the
turtle moves, it will erase any previously drawn lines it passes
over. To lift the eraser, use either PD, PU, or PX.

PEN operation

PEN

Outputs a word describing the current state of the turtle’s pen:
PD, PU, PE, or PX. (See individual entries for further information.)
When Logo first starts up, PEN outputs PD.

PENDOWN, PD command

PENDOWN

Puts the turtle’s pen down: when the turtle moves, it draws a

line in the current pen color. The turtle begins with its pen
down.

PENUP, PU command

PENUP

Lifts the pen up: when the turtle moves, it does not draw lines.

34

.o . Chapter 1

Turtle Graphics

PN operation

PN

Stands for Pen Number. Outputs an integer (@, 1 or 2)
representing the current pen number in use. ATARI turtles can
use one of the three pens to draw. When Logo starts, PN is @.
SETPN is the command to tell the turtle which pen it should use.
The color of each pen can be changed by the SETPC
command.

POS operation

POS

Stands for POSition. Outputs the coordinates of the current
position of the turtle in the form of a list [x y]. When you start
Logo, the turtle is at [@ @], the center of the turtle field. See
SETPOS for setting the turtle’'s position.

120

: Due to aspect ratio this graph may not
—H9 be the same. The correct aspect ratio
for this graph is .SETSCR.8

PUTSH command

PUTSH shapenumber shapespec

Gives shapenumber the specified shapespec as its shape. The
output of GETSH can be the input shapespec, in PUTSH.

PUTSH allows you to define shapes under program control, as
an alternative to using the shape editor.

35

EXAMPLES

Using the REPLACE procedure, you can change a row in an

- already-defined shape.

TO REPLACE :POS :NEWROW :SH

IF :POS = 1 [OP SE :NEWROW BF :SH]

OP SE FIRST :SH REPLACE :POS - 1 :NEW—
ROW BF :SH

END

PR GETSH 1
255 255 255 255 255 255 255 255 255—
255 255 255 255 255 255 255

Shapenumber 1 is a filled-in box.
PUTSH 1 REPLACE 8 @ GETSH 1

will put an empty line in the middle.

Filled-in box New Shape

TO CHANGESH :SH :POS :N
IPSPOS = 16 [OP :SH]

OP SE (FIRST :SH) - :N CHANGESH BF :S—
H . *POS5 %+ '1 =N
END

If shapenumber 1 is still a filled-in box,
PUTSH 1 CHANGESH GETSH 1 1 15

will halve the size of each row.

.® . Chapter 1

Turtle Graphics

PX command

PX

Puts the “‘reversing pen” down: when the turtle moves, it
draws where there aren't lines and erases where there are.

The exact effect of this reversal can be complex: what it looks
like on the screen depends on the pen color, background
color, and whether lines are horizontal or vertical. The best
results are on a black background. To pick up the reversing
pen, use PD, PU, or PE.

PX will work with SETSP but the results are very inconsistent.
Using these two primitives together is not recommended.

RIGHT, RT command

RIGHT degrees

Turns the turtle right (clockwise) the specified number of
degrees. It is an error if degrees is greater than 9999.9999 or
less than —9999.9999.

EXAMPLES
RIGHT 45 (turns the turtle 45 degrees right)

RT 45

RIGHT — 45 (turns the turtle 45 degrees left)

RT —45

37

SETBG command

SETBG colornumber

Stands for SET BackGround. Sets the background color to the
color represented by colornumber. There are 128 background
colors to choose from (@ through 127).

EXAMPLE

The following procedure cycles through all the possible
background colors.

TO CHANGEBG

IF BG = 127 [SETBG @ WAIT 30)
SETBG 1 + BG

PR BG WAIT 3@

CHANGEBG

END

CHANGEBG

To stop this procedure, press the BREAK key.

SETC command

SETC colornumber

Stands for SET turtle’s Color. Sets the color of the current turtle
to colornumber (an integer from @ through 127).

SETH command

SETH degrees

Stands for SETHeading. Turns the turtle at its position so that it
is heading in the direction degrees. Positive numbers are
clockwise from north. Note that RIGHT and LEFT produce turns
relative to the turtle’s heading, but SETH sets an absolute
heading without reference to its prior heading. It is an error if
degrees is greater than 9999.9999 or less than —9999.9999.

See HEADING.

38

.0 . Chapter 1

Turtle Graphics

EXAMPLES

SETH 45 Heads the turtle northeast.
SETH -45 Heads the turtle northwest.
PRINT HEADING

315

SETH 45 SETH — 45

SETPC command

SETPC pennumber colornumber

Stands for SET Pen Color. Sets the color of the pennumber (0,
1, 2) to colornumber (® through 127). You can change the
color of an already-drawn shape by changing its pen number
or by assigning a new colornumber to that particular
pennumber.

You must assign a pennumber with SETPN prior to using SETPC
unless you are changing the current pen number.

EXAMPLE

REPEAT 4 [FD 20 RT 901
SETPC 0 120

If the above is done on starting Logo, the square will change
color from gold to orange.

39

SETPN command

SETPN pennumber

Stands for SET Pen Number. Sets the pen, that the current
turtle(s) are using, to pennumber. There are three pens to
choose from (@, 1, 2). This determines which pen the turtle
uses to draw. Use SETPC to set the pen’s color. When Logo
starts, the turtle(s) use(s) pen number 0.

SETPOS command

SETPOS position

Stands for SET POSition. Moves the turtle to the position
indicated by a list of two numbers, [x and y coordinates]. (See
POS). Both x and y take a maximum input of 9999.9999
whether in WINDOW or WRAP. If the turtle’s pen is down, the
turtle leaves a trace between its original and new positions.

EXAMPLE
SETPOS [80 0]

moves the turtle to a point half way down the right edge of the
screen.

SETPOS [80 0]

.o . Chapter 1

Turtle Graphics

SETSH command

SETSH shapenumber

Stands for SET SHape. Sets the shape of the current turtle to
the shape specified by shapenumber, which must be an
integer in the range of @ through 15. You create your own
shapes using EDSH or PUTSH. Shape 0, the turtle shape, cannot
be changed. Shape numbers 1 through 15 start out blank
every time Logo is booted. For more information, see the Turtle
Shape Editor at the end of this chapter.

EXAMPLE

If you've changed the turtles to another shape this command
changes every turtle to its normal shape:

TELL [@ 1 2 3] SETSH @

SETSP command

SETSP speed

Stands for SET SPeed. Sets the current turtle’s speed (without
altering its heading). If speed is greater than @, the turtle will
move forward. If speed is less than 0, the turtle will move
backwards. If speed is equal to @, the turtle stops moving. It is
an error if speed is greater than 200, or less than —200. Note
that SETSP’s input does not need to be an integer.

EXAMPLE

This procedure makes each turtle move eastward at a random
speed from 1 to 30:

TO EASTWARD

TELLILE 7 2 33 ST

SETH 90

EACH [SETSP 1 + RANDOM 301
END

4

SETX command

SETX X

Puts the turtle at a point with x-coordinate x (y-coordinate is
unchanged). If the turtle’s pen is down, it will leave a horizontal
trace.

SETX /=158

moves the turtle horizontally to the left edge of the screen.

||||||||||I iiiiii{iiiil

SETX — 158 SETX 2 * XCOR

SETY command

SETY y

Puts the turtle at a point with y-coordinate y (x-coordinate is
unchanged).

SEIY =719

moves the turtle vertically down to the lower edge of the
screen.

¥R

SETY —119 SETY 2 * YCOR

42

.o . Chapter 1

Turtle Graphics

SHAPE operation

SHAPE

Outputs the number representing the shape of the current
turtle. The normal turtle shape is 0. Note that the shape
numbers are not the same as the turtle numbers (see example).

EXAMPLE

PUTSH 12 [255 255 255 255 255 255 25—
5 255 255 255 255 255 255 255 255 25—
5]

TELLEBSETSH f2

PRINT SHAPE

12

PRINT WHO

3

SHOWNP operation

SHOWNP

Outputs TRUE if the turtle is visible, FALSE otherwise. Logo
thinks the turtle is visible (even if you can’t see it) as long as it is
within its boundaries. If the boundaries are set by wiNDow and
you can'’t see the turtle, SHOWNP will still output TRUE.

SPEED operation

SPEED

Outputs the current turtle’s speed. Note that speed is defined
as turtle steps per 16/60th’s of a second.

SPEED may not output the exact speed that you originally gave
as input to SETSP. This has to do with the way Logo handles its
arithmetic.

EXAMPLE

This procedure halts any turtle that is exceeding the ‘‘speed
limit””:

TO HALT.AT :SPEED.LIMIT

EACH [IF SPEED > :SPEED.LIMIT [SETSP —

911

END

TELL 1812 3]
EACH [PU SETSP 10 + 20 * WHO]
HALT.AT 40

EACH is used because we want Logo to check each turtle’s
speed.

ST command

ST
Stands for Show Turtle. Makes the turtle visible. See also HT.

Note that if you have set the turtle’s shape to an undefined
shape, (GETSH outputs a list of zeros), ST will not make the turtle
visible.

TELL command

TELL turtlenumber
TELL turtlenumberlist

Announces to Logo which turtle(s) you want to use. Unless you
use TELL to specify otherwise, the turtle commands you give
will be addressed to turtle 0.

The first time you address the other turtles with TELL after Logo
starts, they appear on the screen without having used the
command ST. This is the only time that TELL has this effect.

g .. Chapter 1

Turtle Graphics

EXAMPLES
The following instructions make turtle 3 red (40) and turtles 1,
2, and 0 blue (70):

TELL 3
SETC 40
TELL [1 2 9]
SETC 70

TELL can take a list of the same turtle numbers as its input.

TELL [0 0 @ @]
FD 10

In this case FD 10 is repeated four times.

WHO operation

WHO

Outputs the turtle number(s) you are currently talking to. The
output is an integer or a list of integers from @ through 3
representing the four turtles available in ATARI Logo.

This operation is useful with the EACH command when you
want each turtle to carry out different instructions at the same
time.

EXAMPLES

TELL b1 £
PR WHO
1 2

45

The following instructions make the four turtles go forward in
four directions at once.

TELL [9 12 3]

HOME

EACH [SETH 98 * WHO]
FD 30

WINDOW command

WINDOW

Makes the turtle field unbounded: what you see is a portion of
the turtle field as if you were looking through a small window
around the center of the screen. When the turtle moves

beyond the visible bounds of the screen, it continues to move
but can’t be seen.

The entire turtle field is 25119 steps high and 19841 steps
wide. To hit the boundaries of WiINDOW, you must repeat FD (or
BK) a number of times with its highest input (9999.9999).

When you give the WINDOW command, the screen is cleared.
See also WRAP.

To create a smaller turtle field, use collision detection.

EXAMPLE

WINDOW

€S RT 5

FD 500

PRINT POS

43.57787 498.09735

.o . Chapter 1

Turtle Graphics

WRAP command

WRAP

Makes the turtle field wrap around the edges of the screen: if
the turtle moves beyond one edge of the screen it appears and
continues from the opposite edge. The turtle never leaves the
visible bounds of the screen; when it tries to, it “‘wraps
around’’. Thus, the turtle can move FORWARD (or BACK) an
infinite amount of times without hitting the limits of the turtle
field.

When you give the WRAP command, the screen is cleared. See
also WINDOW.

EXAMPLE

WRAP

CS RT 5

FD 500

PRINT POS
43.57787 18.09735

XCOR operation

XCOR

Outputs the x-coordinate of the current position of the turtle.

YCOR operation

YCOR
Outputs the y-coordinate of the current position of the turtle.

EXAMPLES

CS PRINT YCOR
0

FD 100

PRINT YCOR
100

47

The following procedure outputs the sine of an angle. The
result is equivalent to the primitive SIN.

TO SINE :ANGLE

HOME

SETH 90

LEFT :ANGLE

FORWARD 100

OUTPUT YCOR / 100

END

PRINT SINE 30
0.5000021362

Turtle Shape Editor

You can create as many shapes as you want using the shape
editor. But there are sixteen possible turtle shapes available at
one time. Shape 0, the turtle shape cannot be changed.

EDSH is the command to start the Logo shape editor. Its input is
the shapenumber (1 through 15). These shapes start out blank
every time Logo starts up. EDSH brings that shapenumber into
the editor. Note that if you are defining shapenumber for the
first time, the shape will be a large rectangular grid made out of
8 by 16 small empty boxes. For example:

EDSH 1
S
el

i
i

i
T
T

.9 . Chapter 1

Turtle Graphics

There is no prompt character, but the cursor shows you where
you are working. When you enter the shape editor, the cursor
is in the top left box.

Once you start the shape editor, you can move the cursor
anywhere in the shape. You are able to pass over the boxes,
and can create a shape by filling in the boxes or erasing them
again using the SPACE BAR.

Moving the Cursor and Changing the Shape

Use the CTRL arrow keys to move the cursor around without
changing the shape. To change what is under the cursor,
press the SPACE BAR: a blank spot will become filled and a
filled spot will become blank. This is how you define your
shape. Remember to position the cursor before pressing the
SPACE BAR.

CTRL — Moves the cursor right one space.
CTRL < Moves the cursor left one space.
CTRL T Moves the cursor up one line.
CTRL { Moves the cursor down one line.

On those ATARI Home Computers that are equipped with
them, the function keys F1, F2, F3 and F4 can be used to control
the cursor.

Do not press the ATARI key()or reverse video key () while
in the shape editor. It disables the SPACE BAR function.

Leaving the Shape Editor

To leave the shape editor, press either ESC or BREAK.

ESC Exits the shape editor saving the changes you
have made.

BREAK Aborts the shape editor without saving any
changes.

See Chapter 16 of the Introduction Manual for an example of
using the Shape Editor.

49

1.3,...

There are two types of objects in Logo: words and lists. There
are primitives to put them together, take them apart, and
examine them.

A word is made up of characters.

EXAMPLES

HELLO

X

314

3.14

R2D2
PIGLATIN
PIG.LATIN
HEN3RY
WHO?
INOW!

These are all words. Each character is an element of the word.
The word HEN3RY contains six elements:

H s g R o

A word is usually delimited by spaces. That is, there is a space
before the word and a space after the word: they set the word
off from the rest of the line. There are a few other delimiting
characters:

B0 I - S R S
To treat any of these characters as a normal alphabetic
character, put a backslash ‘“\ " before it.

EXAMPLE
PR “PIG \ — LATIN
PIG-LATIN

Note that quotation marks (”) and colon (:) are not word
delimiters.

52

.9 . Chapter 2

Words
and Lists

A list is made up of Logo objects, each of which is a word or
another fist. We indicate that something is a fist by enclosing it
in square brackets. The following are all fists:

[HELLO THERE, OLD CHAP]

XYZ]

[HELLO]

[[HOUSE MAISON] [WINDOW FENETRE] [DOG CHIEN])]

[HAL [C3PO R2D2] [QRZ] [ROBBIE SHAKEY]]

2772

(1

The list [HELLO THERE, OLD CHAP] contains four elements:

HELLO
THERE,
OoLD
CHAP

Note that the /ist [1 [1 2] [17 [17 2]]] contains only three elements
not six; the second and third elements are themselves lists:

Element 1: 1
Element 2: [12]
Element 3: [17[17 2]

The list [1, a list with no elements, is the empty list. There also
exists an empty word, which is a word with no elements. You
type in the empty word by typing a quotation mark, ”, followed
by a space. See entry for EMPTYP for examples of both the
empty /ist and the empty word.

53

The operations FIRST, BUTFIRST (BF), LAST and BUTLAST (BL),
are used to break words and lists into pieces. The following
chart shows how they work. If you want to try out the operations
in the table below use the command SHOW.

Operation Input Output
FIRST ” JOHN d

BF ” JOHN OHN

FIRST [MARY JOHN BILL] MARY

BF [MARY JOHN BILL] [JOHN BILL]
FIRST [[MARY JOHN] BILL] [MARY JOHN]
BF [[MARY JOHN] BILL) [BILL]

FIRST [lor” error

BF [:]or" error

LAST and BUTLAST (BL) work in the same way separating the
last element.

Logo uses five operations to put words and lists together.
These are FPUT, LPUT, LIST, SE, and WORD. The following chart
compares these five primitives:

Operation input 1 input 2 output
FPUT " LOGO " TIME error
LIST "LOGO "TIME [LOGO TIME]
LPUT ”LOGO " TIME error
SE "LOGO "TIME [LOGO TIME]
WORD "LOGO "TIME LOGOTIME
FPUT [AND MORE] [TO COME] [[AND MORE] TO COME]
LIST [AND MORE] [TO COME] [[AND MORE] [TO COME]]
LPUT [AND MORE] [TO COME) [TO COME [AND MORE]]
SE [AND MORE] [TO COME] [AND MORE TO COME]
WORD [AND MORE] [TO COME] error

54

.9 . Chapter 2

Words
and Lists

AScClIl operation

ASCII character

Outputs the ASCII code for character. Appendix F contains a
chart of all ASCII codes. If the input word contains more than
one character, ASCII uses only its first character. See also
CHAR.

EXAMPLE

The procedure SECRETCODE makes a new word by using the
Caesar cipher (adding 3 to each letter):

TO SECRETCODE :WD
IF EMPTYP :WD [OUTPUT "]

OUTPUT WORD CODE FIRST :WP SECRETCODE—
BF :WD
END

T0 CODE =LET

MAKE '""NUM (ASCII :LET) + 3

IF :NUM > ASCII "Z [MAKE "NUM :NUM - —
26]

OUTPUT CHAR :NUM

END

PRINT SECRETCODE ''CAT
FDW

PRINT SECRETCODE '"'CRAYON
FUDBRQ

55

BUTFIRST, BF operation

BUTFIRST object

Outputs all but the first element of object. BUTFIRST of the
empty word or the empty list is an error.

EXAMPLES

SHOW BF [BRIAN J. SMITH]
[J. SMITH]

SHOW BF ''DOGS
0GS

SHOW BF [DOGS]
[:] The empty list

SHOW BF [[THE A AN] [DOG CAT MOUSE] —
[BARKS MEOWS]]
[[DOG CAT MOUSE] [BARKS MEOWS]]

PRINT BF *
BF DOESN'T LIKE AS INPUT

PRINT BF [1]
BF DOESN'T LIKE [1 AS INPUT

The following procedure removes one element at a time from a
word or a list.

TO TRIANGLE :MESSAGE

IF EMPTYP :MESSAGE [STOP]
PRINT :MESSAGE

TRIANGLE BF :MESSAGE

END

TRIANGLE "STROLL
STROLL

TROLL

ROLL

oLL

Is1

L

.9 . Chapter 2

Words
and Lists

TRIANGLE [KANGAROOS JUMP GRACEFULLY]
KANGAROOS JUMP GRACEFULLY

JUMP GRACEFULLY

GRACEFULLY

BUTLAST, BL operation

BUTLAST object

Outputs all but the last element of object. BUTLAST of an empty
word or an empty list is an error.

EXAMPLES

SHOW BL [I YOU HE SHE IT]
[I YOU HE SHE]

SHOW BL "FLOWER
FLOWE

SHOW BL [FLOWER]
L

The input to the following procedure should be an adjective
ending in Y:

TO COMMENT :WD

PR SE [YOU ARE] :WD

PR SE [I AM] WORD BUTLAST :WD "IER
END

COMMENT "FUNNY
YOU ARE FUNNY
I AM FUNNIER

57

CHAR operation

CHARnN

Outputs the character whose ASCII code is n, an integer from @
through 255. Appendix F contains a chart of all ASCII codes.

The ASCII codes are organized as follows:

® — 31 graphic characters
32 — 47 punctuation
48 — 57 digits
58 — 64 punctuation
65 — 90 upper-case alphabet
91 — 96 punctuation
97 — 122 lower-case alphabet
123 — 127 graphic characters
128 — 255 reverse video of characters 0 to 127

EXAMPLE

TO LOWERCASE :LETTER

MAKE “LC 352 + ASCII :LETTER

IF AND cLC p 96 210 < 1P 0P ICHAR i
€l [OP :LETTER]

END

This procedure outputs the lowercase of an alphabet
character. If you give it a character other than a letter of the
alphabet, it outputs the same character.

PRINT LOWERCASE "A
a

PRINT LOWERCASE "R
&

58

.9 . Chapter 2

Words
and Lists

COUNT operation

COUNT object

Outputs the number of elements in a word or a list.
EXAMPLES

PRINT COUNT [A QUICK BROWN FOX]
A

PRINT COUNT [A [QUICK BROWN] FOX]
3

PRINT COUNT "COMPUTER
8

MAKE "CLASS [PAT JENNY CHRIS SCOT TO—
M MARY JUDY]

PRINT COUNT :CLASS

T

The following procedure prints a random element of its input:

TO RANPICK :DATA

PR ITEM (1 + RANDOM COUNT :DATA) :DAT—
A

END

TO ITEM :N :0BJECTY
IF :N =1 [OUTPUT FIRST :0BJECT]
OUTPUT ITEM :N - 1 BF :0BJECT

END

RANPICK :CLASS see list CLASS above
SCOT

RANPICK "COMPUTER

M

59

EMPTYP operation

EMPTYP object

Outputs TRUE if object is the empty word or the empty list;
otherwise FALSE.

EXAMPLES

PR EMPTYP "
TRUE

PR EMPTYP @
FALSE

PR EMPTYP BF '"UNICORN
FALSE

PR EMPTYP BL "U
TRUE

PR EMPTYP BF [UNICORNI]
TRUE

The procedure, TALK, matches animal sounds to animals:

TO TALK :ANIMALS :SOUNDS

IF OR EMPTYP :SOUNDS EMPTYP :ANIMALS —
[PR [THAT'S ALL THERE IS!] STOP]

PR SE FIRST :ANIMALS FIRST :SOUNDS
TALK BF :ANIMALS BF :SOUNDS

END

TALK [DOGS BIRDS PIGS] [BARK CHIRP 0—
INK]

DOGS BARK

BIRDS CHIRP

PIGS OINK

THAT'S ALL THERE IS!

60

.o . Chapter 2

Words
and Lists

EQUALP operation

EQUALP object1 object?2

Outputs TRUE if object? and object2 are equal numbers,
identical words, or identical lists; otherwise outputs FALSE.
Equivalent to =, an infix operation.

EXAMPLES

PR EQUALP '"RED FIRST [RED YELLOW]
TRUE

PR EQUALP 100 50 = 2
TRUE

PR EQUALP [THE A AN] [THE Al
FALSE

PR EQUALP " []
FALSE

(The empty word and the empty list are not identical.)

The following operation outputs the position that the first input
has in the second input and outputs @ if it is not an element of
the second.

TO RANK :ONE :ALL

IF EMPTYP :ALL [OUTPUT 0]

IF EQUALP :ONE LAST :ALL [OUTPUT COUN—
T sALL)

OUTPUT RANK :ONE BL :ALL

END

PRINT RANK "TWO [ONE TWO THREE]
2

PRINT RANK 'S "PERSONAL
4

61

FIRST operation

FIRST object

Outputs the first element of object. Note that FIRST of a word is
a single character; FIRST of a list can be a word or a list. It is an
error if the input is the empty word or empty list.

EXAMPLES

SHOW FIRST '"HOUSE
H

SHOW FIRST [HOUSE]
HOUSE

SHOW FIRST [[THE A AN] [UNICORN RHIN—
0] [SWIMS FLIES GROWLS RUNS]I]
[THE A AN]

The procedure ITEM outputs the :Nth element of its second
input.
TO ITEM :N :0BJECT

IF :N = 1 [OUTPUT FIRST :0BJECT]
QUEPUT ITEM N — 1 BE :0BJECY

END

PR ITEM 3 [CUP PUT TUB BUD]
TuB

PR ITEM 4 "STRAWBERRY

A

62

.0 . Chapter 2

Words
and Lists

FPUT operation

FPUT object list

Stands for First PUT. Outputs a new list formed by putting
object at the beginning of list. See the chart at the beginning of
this chapter comparing FPUT with other operations that
combine words and lists.

EXAMPLE

The procedure REV puts the elements of the input list in reverse
order.

TO REV :LIST

£ EMPIYP 2 LIST TOUTRUE (1)

OUTPUT FPUT LAST :LIST REV BL :LIST
END

SHOW REV [[FD 281 PU [RT 901 [FD 2061
PD [BK 201]

([BK 201 PD [FD 201 [RT 901 PU [FD 2—

01]

LAST operation

LAST object

Outputs the last element of object. LAST of the empty word or
the empty list is an error.

EXAMPLES

SHOW LAST [JUDY SUSAN BRIAN]
BRIAN

SHOW LAST "VANILLA

A

SHOW LAST [L[THE A] FLAVOR IS [VANILL—
A CHOCOLATE STRAWBERRY]]
[VANILLA CHOCOLATE STRAWBERRY]

The following procedure prints a word in reverse order.

TO PRINTBACK :INPUT

IF EMPTYP :INPUT [STOP]
TYPE LAST :INPUT
PRINTBACK BL :INPUT

END

PRINTBACK '"REVERSE
ESREVER

LIST operation

LIST object1 object2

Outputs a list whose elements are object?, object2. Each input
of LIST can be a word or a list.

EXAMPLES

SHOW LIST "ROSE [TULIP IRIS]
[ROSE [TULIP IRISI]

SHOW LIST [ROSE] [TULIP IRIS]
[[ROSE] [TULIP IRIS]]

..‘l' Chapter 2

Words
and Lists

LISTP

operation

LISTP object

Outputs TRUE if object is a list; otherwise FALSE.
EXAMPLES

PRINT
FALSE

PRINT
TRUE

PRINT
TRUE

PRINT
FALSE

PRINT
TRUE

PRINT
FALSE

PRINT
TRUE

LISTP

LISTP

LISTP

LISTP

LISTP

LISTP

LISTP

[AB C[DE) [F [6]]]

BF "CHOCOLATE

BF [CHOCOLATE]

65

LPUT operation

LPUT object list

Stands for Last PUT. Outputs a new list formed by putting
object at the end of list. See chart at the beginning of the
chapter comparing LPUT with other primitives that combine
words and lists.

EXAMPLE

The following procedure adds a new entry to an
English-Spanish dictionary:

TO NEWENTRY :ENTRY

MAKE "DICTIONARY LPUT :ENTRY :DICTION—
ARY

END

MAKE "DICTIONARY [[HOUSE CASA] [SPAN—
ISH ESPANOL] [HOW COMO1]]

SHOW :DICTIONARY

[[HOUSE CASA] [SPANISH ESPANOL] [HOW—
COMO11

NEWENTRY [TABLE MESA]

SHOW :DICTIONARY

[[HOUSE CASA] [SPANISH ESPANOL] [HOW—
COMO] [TABLE MESA]]

Y . Chapter 2

Words
and Lists

MEMBERP operation

MEMBERP object list

Outputs TRUE if object is an element of list; otherwise outputs
FALSE.

EXAMPLES

PRINT MEMBERP 3 [2 5 3 6]
TRUE

PRINT MEMBERP 3 [2 5 [3] 6]
FALSE

PRINT MEMBERP [2 5] [2 5 3 6]
FALSE

PRINT MEMBERP BF "FOG [OE FO 0G OH]
TRUE

The following procedure determines whether its input is a
vowel:

TO VOWELP :LETTER
OUTPUT MEMBERP :LETTER [A E I 0 U]

END

PRINT VOWELP "F
FALSE

PRINT VOWELP "A
TRUE

67

NUMBERP operation

NUMBERP object

Outputs TRUE if object is a number; otherwise FALSE.

EXAMPLES

PRINT NUMBERP 3
TRUE

PRINT NUMBERP [3]
FALSE

PRINT NUMBERP "7PM
FALSE

PRINT NUMBERP "
FALSE

PRINT NUMBERP BF 3165.2
TRUE

SE operation

SE object1 object2
(SE object1 object2 object3 ...

Stands for SEntence. Outputs a list made up of the elements
included in its inputs. See the chart at the beginning of this
chapter comparing SE with other operations that combine
words and lists.

EXAMPLES

SHOW SE "PAPER 'BOOKS
[PAPER BOOKS]

SHOW SE "APPLE [PEAR PLUM BANANA]
[APPLE PEAR PLUM BANANAI

SHOW SE [TIME AND TIDE] [WAIT FOR NO—
PERSON]

[TIME AND TIDE WAIT FOR NO PERSON]

.o . Chapter 2

Words
and Lists

If SE has more than two inputs, you must enclose SE and its
inputs in parentheses.

SHOW (SE "HOP "STEP "JUMP)
[HOP STEP JUMPI]

SHOW SE "BONNIE [1
[BONNIE]

The following procedure prints a birth anouncement:

TO ANNOUNCE :FIRSTNAME :LASTNAME

PRINT [WE'RE HAPPY TO ANNOUNCE THE BI—
RTH OF]

PRINT (SE :FIRSTNAME "Q. :LASTNAME)
PRINT [5 POUNDS 14 02Z]

END

ANNOUNCE ''RALPH '"DOE

WE'RE HAPPY TO ANNOUNCE THE BIRTH OF
RALPH Q. DOE

5 POUNDS 14 0z

WORD operation

WORD word1 word?2
(WORD word1 word2 word3 . .)

Outputs a word made up of its inputs. If WORD has more than
two inputs, you must enclose WORD and its inputs in
parentheses. WORD does not work with a list as its input.

EXAMPLES

PRINT WORD '"SUN "SHINE
SUNSHINE

PRINT (WORD "CHEESE "BURG "ER)
CHEESEBURGER

PRINT WORD "BURG [ER]
WORD DOESN'T LIKE [ER] AS INPUT

The procedure SUFFIX puts AY at the end of its input:

TO SUFFIX :WD
OUTPUT WORD :WD "AY
END

PRINT SUFFIX "ANTEATER
ANTEATERAY

The essence of the procedure SUFFIX is incorporated into PIG
and LATIN, which translate into a dialect of Pig Latin:

TO LATIN :SENT

1F EMPTYP :SENT [OP T 1]

OP SE PIG FIRST :SENT LATIN BF :SENT
END

TO PIG :WORD

1F MEMBERP FIRST :=WORD [A E'1 O0'U] [0~
P WORD :WORD '"AY]

OP PIG WORD BF :WORD FIRST :WORD

END

PRINT LATIN [NO PIGS HAVE EVER SPOKE—
N PIG LATIN AMONG HUMANS]

ONAY IGSPAY AVEHAY EVERAY OKENSPAY I—
GPAY ATINLAY AMONGAY UMANSHAY

WORDP operation

WORDP object

Outputs TRUE if object is a word; otherwise FALSE.
EXAMPLES

PRINT WORDP '"'ZAM
TRUE

PRINT WORDP 3
TRUE

PRINT WORDP [3]
FALSE

PRINT WORDP [E GRESS]
FALSE

70

.o . Chapter 2

Words
and Lists

= (Equal Sign) infix operation

object! = object2

Outputs TRUE if object? and object2 are equal numbers,
identical words, or identical lists; otherwise outputs FALSE.
Equivalent to EQUALP, a prefix operation.

PRINT 3 = FIRST "3.1416

TRUE

PRINT [THE A AN] = [THE Al

FALSE

PRINT 7. = 7 A decimal number is equivalent to the
TRUE corresponding integer.

PRINT " = [] The empty word and the empty list are

FALSE not identical.

71

A Logo word can be used as a variable; a variable is a
“‘container’ that holds a Logo object. This object is called the
word'’s value. A variable can be assigned a value either by
using MAKE or by using procedure inputs.

MAKE command

MAKE name object

Creates the variable name and gives it the value object. Once
the variable is created, you can have access to its value by
THING name. The abbreviation :name means THING ” name.
The : (colon) means “‘the thing that is called”’.

EXAMPLES

MAKE "NATIONS [CANADA USA FRANCE GER-—
MANY ITALY]

PRINT :NATIONS

CANADA USA FRANCE GERMANY ITALY

PRINT "NATIONS
NATIONS

PRINT THING '"NATIONS
CANADA USA FRANCE GERMANY ITALY

MAKE "USA [WASHINGTONI]
PRINT :USA
WASHINGTON

PRINT THING FIRST BUTFIRST :NATIONS
WASHINGTON

FIRST BUTFIRST :NATIONS is the second word in the nation list
which is USA, and the value of THING ”USA is WASHINGTON.

MAKE "CANADA [OTTAWAI
PRINT FIRST :NATIONS
CANADA

PRINT THING FIRST :NATIONS
OTTAWA

74

.o . Chapter 3

Variables

The following procedure CAPITAL asks for the capital cities of
given countries.

TO CAPITAL :NATIONS

IF EMPTYP :NATIONS [STOPI

MAKE "COUNTRY FIRST :NATIONS

PR SE [THE CAPITAL OF] :COUNTRY

MAKE "ANSWER RL

IF :ANSWER = THING :COUNTRY [PR [CORR—
ECT!]] [PR [OH! SINCE WHEN?]]

CAPITAL BF :NATIONS

END

CAPITAL :NATIONS

THE CAPITAL OF CANADA
OTTAWA

CORRECT!

THE CAPITAL OF USA
NEW YORK

OH! SINCE WHEN?

NAMEP operation

NAMEP name

Outputs TRUE if name has a value, that is, if :name exists,
FALSE otherwise.

EXAMPLES

PRINT :ANIMAL
ANIMAL HAS NO VALUE

PRINT NAMEP "ANIMAL
FALSE

MAKE "ANIMAL "AARDVARK
PRINT NAMEP '"ANIMAL

TRUE
PRINT :ANIMAL
AARDVARK

The procedure INC listed under THING below shows a use of
NAMEP.

75

THING operation

THING name

Outputs the thing (or value) associated with the variable name.

THING " ANY is equivalent to :ANY. The variable can be created

by the command MAKE or by defining a procedure with inputs.

EXAMPLES

MAKE "WINNER "COMPUTER
MAKE '"COMPUTER (160 POINTS]
PRINT THING "WINNER
COMPUTER

PRINT :WINNER
COMPUTER

PRINT THING :WINNER
100 POINTS

This procedure increments (adds 1 to) the value of a variable:
TO INC :X
IF NOT NAMEP :X [STOP]

IF NUMBERP THING :X [MAKE :X 1 + THIN—
B iX]
END

Note: the use of MAKE :X rather than MAKE ”X. It is not X that's
being incremented. The value of X is not a number, but the
name of another variable. It is that second variable that is
incremented.

MAKE "TOTAL 7
PRINT :TOTAL

7
INC "TOTAL
PRINT :TOTAL
8

INC “TOTAL
PRINT :TOTAL
9

For other examples, see entry for MAKE.

76

Chapter 4
Arithmeti
Operations

Logo has integer and decimal numbers:

3is an integer.
3.14is a decimal number.

Logo provides primitives that let you add, subtract, multiply,
and divide numbers. You can find sines, cosines, and square
roots; and you can test whether a number is equal to, less
than, or greater than another number.

Some arithmetic operations (INT, RANDOM, REMAINDER, ROUND)
always output integers while others vary by the result of the
operation.

Decimal numbers with more than six digits are converted into
exponential form (scientific notation). For example:

2E6 means 2 times 106, or 2,00%.00@;
2.59E-2means 2.59 times 10 <, or 0.0259

Exponents range from —99 to 97.

Logo truncates a decimal number if it contains more than nine
digits. For example, the number 2718281828459.045 is converted
0 2.71828182E + 12.

Addition, subtraction, multiplication, and division are available
in infix notation; that is, the operation goes between its inputs,
not before them. Addition and multiplication are also provided
in prefix form as Logo operations taking two or more inputs.
For example, the following expressions are equivalent:

2+1
SUM 21

In addition to those listed here, the primitive EQUALP is often
used in conjunction with arithmetic operations. It is described in
Chapter 2 — Words and Lists. The infix operation = (Equal
Sign) is equivalent to EQUALP.

78

.0 . Chapter 4

Arithmetic
Operations

cos operation

cosn

Outputs the cosine of n degrees. It is an error if n is greater
than 9999.9999 or less than -9999.9999

EXAMPLES

PRINT COS 45
0.70714

PRINT COS 30
0.86605

Here is a definition of the tangent function:

TO TAN :ANGLE

OUTPUT (SIN :ANGLE) / COS :ANGLE
END

PRINT TAN 45
1

INT operation

INT N
Outputs the integer portion of n (by removing the decimal
portion, if any). See also ROUND.

EXAMPLES

PRINT INT 5.2129
2

PRINT INT 5.5129
5

PRINT INT 5
5

PRINT INT -5.8
=3

PRINT INT =12.3
=12

79

The procedure INTP tells whether its input is an integer:

TO INTP :N

IF NOT NUMBERP :N [OUTPUT [NOT A NUMB—
ER1]

OUTPUT :N = INT :N

END

PRINT INTP 17
TRUE :

PRINT INTP 100 / 8
FALSE

PRINT INTP '"ONE
NOT A NUMBER

PRINT INTP SQRT 5@
FALSE

PRODUCT operation

PRODUCT a b
(PRODUCTabec...)

Outputs the product of its inputs. Equivalent to *, an infix
operation. If PRODUCT has more than two inputs, you must put
parentheses around PRODUCT and its inputs.

EXAMPLES

PRINT PRODUCT 6 2
12

PRINT (PRODUCT 2 3 4)
24

PRINT PRODUCT 2.5 4
10

PRINT PRODUCT 2.5 2.5
6.25

.0 . Chapter 4

Arithmetic
Operations

RANDOM operation

RANDOM n

Outputs a random non-negative integer less than n.

EXAMPLE
RANDOM 6 could output 0, 1, 2, 3, 4, or 5. The following program
simulates a roll of a six-sided die:

TO D6
OUTPUT 1 + RANDOM 6
END

PRINT D6
3

PRINT D6
=)

PRINT D6
6

Note: The outputs of D6 printed here are just possible
numbers and will change because of RANDOM.

REMAINDER operation

REMAINDER a b

Divides a by b and outputs the remainder obtained. It is an
error if b is Q.

EXAMPLES

PRINT REMAINDER 13 5
3

13 divided by 5 is 2 and the remainder is 3.

PRINT REMAINDER 13 15
13

PRINT REMAINDER -13 5
-3

81

The following procedure tells you whether its input is even:

TO EVENP :NUMBER

OUTPUT @ = REMAINDER :NUMBER 2
END

PRINT EVENP 5
FALSE

PRINT EVENP 12462
TRUE

RERANDOM command

RERANDOM

Makes RANDOM behave reproducibly. Once you run
RERANDOM, Logo will remember the sequence of numbers
obtained by the next RANDOM calls. After that, each time you
run RERANDOM, RANDOM restarts the same sequence of
random numbers from the beginning. (The input to RANDOM
must be the same as the first time RERANDOM was run.)

EXAMPLES

REPEAT 4 [PR RANDOM 10)
5
2
8
4

RERANDOM REPEAT 4 [PR RANDOM 10]
8
2
3
2

RERANDOM REPEAT 4 [PR RANDOM 18]

MWW 00

82

.9 . Chapter 4

Arithmetic
Operations

ROUND operation

ROUND n

Outputs n rounded off to the nearest integer. Compare with
examples under INT.

EXAMPLES

PRINT ROUND 5.2129
5

PRINT ROUND 5.5129
6

INT works differently.

PRINT INT 5.5129
<

PRINT ROUND .5
1

PRINT ROUND -5.8
=0

PRINT ROUND -12.3
=12

SIN operation

SINN
Outputs the sine value of n degrees. See also COS.

EXAMPLE

PRINT SIN 45
0.70714

83

SQRT operation

SQRT N

Outputs the square root of n. It is an error if n is negative.

EXAMPLES

PRINT SQRT 25
=

PRINT SQRT 259
16.093477

The following procedure outputs the distance from the turtle’s
position to HOME.

TO FROM.HOME

OP ROUND SQRT SUM XCOR * XCOR YCOR * —
YCOR

END

FD 50
PR FROM.HOME
50

The procedure DISTANCE takes any two positions as inputs,
and outputs the distance between them:

TO DISTANCE :P0S1 :P0OS2

MAKE "X (FIRST :POS1)-FIRST :P0OS2
MAKE "Y (LAST :POS1)-LAST :P0OS?2
OUTPUT SQRT :X * X + :Y % :Y

END

PRINT DISTANCE [-70 10] [50 601
129.9999

.o . Chapter 4

Arithmetic

Operations
SUM operation
SuMab
(SUMabc..)

Outputs the sum of its inputs. Equivalent to +, an infix
operation. If SUM has more than two inputs, SUM and its inputs
must be enclosed in parentheses.

EXAMPLES

PRINT SUM 5 2
7

PRINT (SUM 1 3 2 -1)
5

PRINT SUM 2.3 2.561
4.861

+ (Plus Sign) infix operation

a+ b

Outputs the sum of its inputs, a and b. This is equivalent to
SUM, a prefix operation.
EXAMPLES

PRINT 5 » 2
7

AT B L s . S S S I8
7

BRINT 2.54 + 12.3
14.84

— (Minus Sign) infix operation

a—- b

Outputs the result of subtracting b from a. It may be used as
the sign for a negative number.

EXAMPLES

PRINT .f =1

6

PRINT 7-1

6

PRINT PRODUCT 7 -1

=T

PRINT -XCOR

=50 This number varies according to the
PRINT - 3 turtle’s position.
=5

PRINT =% — =2

Note that there could be a confusion between the negative sign
with one input and the minus sign with two inputs. Logo
resolves this as follows:

PRINT 3 » =4 3 times negative 4

=12

PRINT 5 & & =5 3 plus 4 minus 5

2

If there is a space before the *“ — " and a number immediately

after it, Logo reads that as a negative number. So 7 — 1is 6
but 7 —1 is the pair of numbers 7 and —1.

86

Lo . Chapter 4

Arithmetic
Operations

The procedure ABS outputs the absolute value of its input:

TO ABS :NUM
OUTPUT IF :NUM < @ [=:NUM] [:NUM]
END

PRINT ABS -35
35

PRINT ABS 35
55

* (Multiplication Sign) infix operation

ax b

Outputs the product of its inputs a and b. This is equivalent to
PRODUCT, a prefix operation.

EXAMPLES

PRINT 6 * 2
12

PRINT 2 + 3 = &
14

PRINT 1.3 » =1.3
*1.69

PRINT &8 * (.3 + _2)
24

The procedure FACTORIAL outputs the factorial of its input. For
example, FACTORIAL 5 outputs the result of 5 * 4 * 3 * 2 * 1 (120).
TO FACTORIAL :N

IF :N = @ [OUTPUT 11

OUTPUT :N * FACTORIAL :N - 1
END

PRINT FACTORIAL 4
24

PRINT FACTORIAL 1
1

87

7 (Division Sign) infix operation

a-~.b
Outputs the result of a divided by b.

EXAMPLES

PRINT &6 [/ 3
2

PRINT 8 / 3
2.66666666

PRINT ‘2.5 fwxi 8
-0.6578947368

PRINT S T
0

It gives an error if b is e.

PRINT 7 / @
/ DOESN'T LIKE @ AS INPUT

< (Less Than Sign) infix operation

a< b

Outputs TRUE if a is less than b; otherwise outputs FALSE.

EXAMPLES

PRINT 2 < 3
TRUE

PRINT =7 < =18
FALSE

.® . Chapter 4

Arithmetic
Operations

= (Equal Sign) infix operation

gE—h

Outputs TRUE if a and b are equal numbers, identical words, or
identical lists; otherwise outputs FALSE. Equivalent to EQUALP, a
prefix operation.

EXAMPLES

PRINT 100 = 50 x 2
TRUE

PRINY 5 = FIRST "3.1416
TRUE

PRINT 7. & 7 A decimal number is equivalent to the
TRUE corresponding integer.

PRINT " [] The empty word and the empty list are
FALSE not identical.

n

> (Greater Than Sign) infix operation

a =D

Outputs TRUE if a is greater than b; otherwise outputs FALSE.

EXAMPLES

PRINT 4 > 3
TRUE

The procedure BETWEEN outputs TRUE if the number given as
the first input is greater than the second input and less than the
third.

TO BETWEEN :N :LOW :HI
OP AND :N > :LOW :HI > :N

END

PRINT BETWEEN 15 @ 16
TRUE

PRINT BETWEEN -5 -2 5
FALSE

89

Chapter5
Defining
and Editing
Procedures

91

There are two ways to define procedures. One way is with TO
and the other is with EDIT. TO allows you to define a new
procedure at top level without disrupting the graphics screen.
EDIT allows you to use an interactive screen-oriented text editor
but at the same time you lose your graphics. You may define
more than one procedure at a time in the editor. This is more
flexible and convenient when you need to make some
modifications. Although the editor is more extensively used,
each method has its advantages and it is up to you to decide
which one to use.

ATARI Logo Editor

How the Editor Works
When the editor is called, the screen changes. For example
EDIT '"POLY

f0 POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

ATARI LOGO EDITOR

There is no prompt character, but the cursor shows you where
you are typing.

You can move the cursor anywhere in the text using the cursor
control keys. You can also delete and insert characters using
the appropriate keys described in this section.

92

.o . Chapter 5

Defining
and Editing
Procedures

You can have more characters on a line of text than fit across
the screen. When you get to the end of the line on the screen,
simply continue typing without pressing the RETURN key. An
arrow (—) will appear at the end of the line (column 37) and the
cursor will move to the next line. Logo does the same thing
outside of the editor. While in the editor you can type lines of
any length. Outside the editor, a Logo line has a maximum
length of 110 characters.

This is how a long line would appear on the screen:

TO PRINTMESSAGE :PERSON

PRINT SE :PERSON [, I AM GOING TO TYP—
E A VERY LONG MESSAGE FOR YOU]

END

The editor has a line buffer called the delete buffer. SHIFT
DELETE BACK S deletes a line of text and puts it in this buffer.
CTRL Y reinserts this line of text later at the place marked by the
cursor. The delete buffer can hold a maximum of 110
characters.

The text that you edit is in an edit buffer. The buffer has a
capacity of 3840 characters.

The arrow keys, CTRL or SHIFT function keys and some CTRL
character key combinations have special meanings to help you
edit.

93

Editing Actions
When you are in the editor, you can use the following editing
keys:

*The star represents editing keys that work both inside and
outside the ATARI Logo Editor.

Cursor Motion

*CTRL — Moves the cursor right one space.
*CTRL « Moves the cursor left one space.
CTRL Moves the cursor down to the next line.
CTRL T Moves the cursor up to the previous line.
*CTRLA Moves the cursor to the beginning of the
current line.
*CTRLE Moves the cursor to the end of the current
line.
CTRL X Moves the cursor to the beginning of the
editor.
CTRL Z Moves the cursor to the end of the editor.

Note: Any time you try to make the cursor go where there is no
text, Logo will beep.

.0 . Chapter

Defining
and Editing
Procedures

Inserting and Deleting

*RETURN

*CTRL INSERT

*DELETE BACK S

*CTRL DELETE

BACK S

*CTRL CLEAR

SCTHLY

*SHIFT DELETE
BACK S

*SHIFT INSERT

RETURN creates a new line at the current
cursor position and moves the cursor to the
beginning of the new line.

Opens a new line at the position of the
cursor but does not move the cursor.

Erases the character to the left of the
cursor.

Erases the character at the cursor
position. Compare with DELETE BACK S.

Deletes text from the cursor position to the
end of the current line. This text is placed in
the delete buffer, which can hold up to 110
characters.

Inserts the text that is currently in the delete
buffer.

Same as CTRL CLEAR.

Same as CTRL INSERT.

Scrolling the Screen

*CTRL1

CTRLV

CTRLW

Makes Logo stop scrolling until CTRL 1 is
pressed again.

Scrolls the screen to the next page in the
editor.

Scrolls the screen back to the previous
page in the editor.

95

Exiting From the Editor

ESC

BREAK

ESC is the standard way to exit from the
editor.

When you exit from the editor by pressing
ESC, Logo reads each line in the edit buffer
as though you had typed it outside the
editor.

If you forgot to type the END at the end of
the definition, Logo inserts END for you.

You can define more than one procedure
while in the editor, as long as each
procedure is terminated by END.

If there are Logo instructions in the edit
buffer that are not contained in the
procedure definition (within TO . . . END),
Logo carries them out as you exit from the
editor just as if you had typed them in at
top level (outside the editor). Logo will not
carry out any graphics commands or
editing commands.

Aborts editing. Use it if you don't like the
changes you are making, or if you decide
not to make changes. If you were defining
a procedure, the definition will be the same
as before you started editing.

96

-9 . Chapter 5

Defining

and Editing
Procedures
EDIT, ED command
EDIT name
EDIT namelist

Starts up the ATARI Logo Editor. If an input is given, the editor
starts up with the definition(s) of the given procedure(s) in the
edit buffer. The input to EDIT can be a list of procedure names
instead of a single name. In this case, all the procedure
definitions will be brought into the editor.

If the procedure name has not been previously defined, the
edit buffer contains only the title line: TO name. If no input is
given, the edit buffer has the same procedures as the last time

you used the editor, or is empty if it is the first time you have
used the editor.

Press the ESC key to complete the definition and exit the editor.
Logo reads every line from the edit buffer as though you had
typed it outside the editor. If the end of the buffer is reached
while there is a procedure definition in the editor, Logo
completes the procedure definition and inserts END.

97

EDNS command

EDNS

Stands for EDit NameS. Starts up the Logo Editor with all
names and their values in it. These variables’ names and
values can then be edited. When you exit the editor the MAKE
commands are run, so whatever variables and values have
been changed in the editor are changed in Logo.

EXAMPLE

Type
EDNS

The screen now looks like:

MAKE "ANIMAL "GIBBON
MAKE '"'SPEED 55
MAKE '"AIRCRAFT [JET HELICOPTER]

Edit the names so they will look like the list below. Then press
ESC to exit the editor.

MAKE "ANIMAL "GRYFFIN
MAKE "SPEED 55
MAKE "AIRCRAFT [JET HELICOPTER BLIMP]

Then

PONS

MAKE '""ANIMAL "GRYFFIN

MAKE "SPEED 55

MAKE "AIRCRAFT [JET HELICOPTER BLIMP]

END special word

END

END is necessary, when you are using TO, to tell Logo that you
are done defining the procedure. It must be on a line by itself.
END also must be used to separate procedures when defining
multiple procedures in the Logo Editor.

98

.9 . Chapter 5

Defining
and Editing
Procedures

TO command

TO name input1 input?2...

?T0 GREET

>PRINT [HI THERE]
>END

GREET DEFINED

71

?T0 SQUARE :SIDE
>FD :SIDE

>RT 90

>FD :SIDE

>RT 90

>FD :SIDE

>RT 90

>FD :SIDE

>RT 90

>END

SQUARE DEFINED
21

TO tells Logo that you are defining a procedure called name,
with inputs (if any) as indicated. (It is not necessary to quote
name, since TO quotes it automatically.) The prompt changes
from “?"" to *“>"" to remind you that you are defining a
procedure. While defining a procedure Logo does not carry
out the instructions that you type; it makes them part of the
procedure definition.

To complete the procedure and return Logo to top level, type
the word END as the last line of the procedure. The special
word END must be used alone on the last line of the procedure
to stop defining a procedure and return Logo to top level.

If you change your mind while defining a procedure with TO,
press the BREAK key to abort the definition. If a procedure is

already defined, you can’t change the definition with TO. You
must use EDIT or erase the old definition first with ER.

99

100

Flow of Control
and Conditionals

Chapter 6

101

Logo reads procedure definitions line by line, following the
instructions. If a procedure contains a subprocedure, Logo
reads the lines of the subprocedure before continuing in the
superprocedure. Flow of control refers to the order in which
Logo follows instructions. There are times you want to alter
Logo’s normal flow of control. There are several ways to do it.

conditionals “if such-and-such is true, do one thing;
otherwise, do something else."”

repetition “run a list of instructions one or more times. "

halting "‘stop this procedure before it reaches the
END."”

Conditionals enable Logo to carry out different instructions,
depending on whether a condition is met. Logo predicates,
operations that output TRUE or FALSE, create this condition,
which is the first input to IF.

Repetition can be done by using REPEAT or a recursive
procedure. There are many examples of such procedures
throughout this manual. (See RUN for examples of some
complex repetitive procedures.)

You can halt a procedure before it reaches an END statement.
The commands STOP and OUTPUT are used for this. Control is
then transferred back to its calling procedure (the procedure
using it) or to top level. As described in Logo Grammar,
OUTPUT can communicate information to the calling procedure.
Note that these commands (STOP and OUTPUT) only halt the
procedure they appear in.

The WHEN demon is a completely different way to alter the flow
of control. It is a global condition that needs to be set up only
once. Whenever that condition is met within any procedure, or
at top level, a set of instructions is run.

You can think of the WHEN demon as sitting inside the Logo
world, spending all its time watching for a certain event.
Whenever this event occurs, it jumps up and tells Logo to run a
list of instructions. Then the WHEN demon resumes its watch.

102

.9 . Chapter 6

Flow of Control
and Conditionals

The primitive that sets up the demon is called WHEN. The
events that WHEN can check are listed in the following table.

If you forget the number corresponding to an event, there are
two primitives, OVER and TOUCHING, that can help you (see
Appendix B in the Introduction Manual for examples).

COND is another primitive which can check these events. Unlike
WHEN, COND can only check an event at the moment Logo
reads the line containing it.

103

Table of Collisions and Events

Code Number Inputs

Collision Special Turtle Pen— Description
event number number of event

)] (0] 0

1 0 bR
% 0 2 e i
_ 3 : Button on Joystick is pressed

4 e 0 | B
e : ; Bl d

6 : 1 2
G i Once per second
T 2) : :

9 2 1
f e 2 o
e ; * Not used
T T 3 SLlawd
13 3 1 5
14 3. 0
e —15_ : bestick position is cha-r-wged :
Collision Turtle Turtle
number number number
16 3 ()]
17 o 3 1
R e, o
19+ 0 1 T
20 Ay =
Rt 1 2 S

104

.9 . Chapter 6

Flow of Control
and Conditionals

Each number in the table is a symbol for a collision or event.
For example, collision number @ stands for a collision between
turtle @ and a line drawn by pen number @. Event number 3
stands for whether a button on a joystick is pressed.

Note: It is best to work with a full screen of graphics (FS) when
using WHEN demons 2, 6, 18 and 14. In SS (splitscreen), the
turtle(s) may collide with text.

COND operation

COND condnumber

Outputs TRUE if the collision or event specified by condnumber
is happening at the exact time COND is run, otherwise FALSE.
The input is an integer between @ and 21 indicating which
collision or event you want to check (see the table page 104).
COND is most useful when you want to check for an event only
once. Compare with WHEN.

EXAMPLE

In the following example, shape number 1 is a filled-in box that
acts as a target. COND checks whether you have hit the target
by looking for a collision between turtle @ and turtle 1.

TO SHOOT

SETUP

PR [HOW MUCH DO YOU WANT TO TURN RIGH—

i o)

Ri EIRST RL

PR [HOW MUCH DO YOU WANT TO MOVE?)
FDFIRST RL

IF COND 19 [PR L[YOU GOT IT!JILPR [BAD—
LUCKI]

END

105

TO SETUP

TELL 18 11.CS 57
TELL ® PU

RT RANDOM 360

FD RANDOM 84
SETH @ PD

SETSH 1

i E S s

END

SHOOT

HOW MUCH DO YOU WANT TO TURN RIGHT?
45

HOW MUCH DO YOU WANT TO MOVE?

50

BAD LUCK

IF command or operation

IF pred instructionlist
IF pred instructionlist1 instructionlist2

The first input, pred, is a predicate or condition that IF tests to
be TRUE or FALSE. If pred is TRUE, instructionlist1 is run. If pred
is FALSE, instructionlist2 is run. (Nothing is done if there is no
instructionlist2.)

In either case, if the selected instructionlist outputs, then IF
outputs the same thing. If the list does not output, neither does
IF. Note that if you use IF with just one instructionlist, and follow
it on the same line with another command, Logo will print an
error message.

106

.o . Chapter 6

Flow of Control
and Conditionals

EXAMPLES

The procedure DECIDE is written in three equivalent ways. The
first two use IF as a command, one version with two inputs to
IF, one with three inputs. The third version of DECIDE uses IF
(with three inputs) as an operation.

IF as a command:

TO DECIDE

IF @ = RANDOM 2 [OP '"YES]

OP "NO

END

TO DECIDE

IF @ = RANDOM 2 [OP "YES] [OP '"NO]
END

IF as an operation:

TO DECIDE
OUTPUT IF @ = RANDOM 2 ["YES] ['NO]
END

You will get the answer YES or NO with any definition.

PRINT DECIDE
YES

IF can be used inside of another IF clause. For example,

TO POSITIVE :NUM

IF NUMBERP :NUM [IF :NUM > @ [PR [POS—
ITIVE NUMBER]] [PR [NEGATIVE NUMBER]1]1—
JIPR [NOT A NUMBERI]]

END

OUTPUT, OP command

OUTPUT object

This command can be used only within a procedure, not at top
level. It makes object the output of this procedure and returns
control to the caller. Note that OUTPUT is itself a command, but
the procedure containing it is an operation because the
procedure is made to output (compare with STOP).

107

EXAMPLES

TO MARK.TWAIN

OUTPUT [SAMUEL CLEMENS]
END

PR SE MARK.TWAIN [IS A GREAT AUTHOR]
SAMUEL CLEMENS IS A GREAT AUTHOR

ITEM outputs the nth element in the list:

TO ITEM :N :08J

IF EMPTYP :0BJ [OUTPUT ')
IF N = 1 [OP FIRST :08J]
OP ITEM :N-1 BF :0BJ

END

MAKE "VOWELS LA E 1L.G U]
PR ITEM 2 :VOWELS
E

PR ITEM 5 :VOWELS
u

PR ITEM 6 :VOWELS

The following procedure tells whether its first input is a subset
of its second input. It outputs TRUE or FALSE. This is how you
make your own predicate.

TO SUBSET :=SUB :=ALL

IF EMPTYP :SUB [OUTPUT "TRUE]

IF MEMBERP FIRST :SUB :ALL [OP SUBSET—
BF :SUB :ALL] [OP "FALSE]

END

PRINT SUBSET [W E] [A E I 0 U]
FALSE

IF SUBSET [I E]l [A E I 0 Ul [PR "VOWEL—
Sl

VOWELS

108

.o . Chapter 6

Flow of Control
and Conditionals

OVER operation

OVER turtlenumber pennumber

Outputs number symbolizing a collision between turtlenumber
and pennumber. (See table of collisions and events at the
beginning of this chapter.) OVER can be used as an input to
WHEN or COND.

EXAMPLE

PR OVER 1 0
4

REPEAT command

REPEAT n instructionlist

Runs a list of instructions the specified number of times. It is an
error if n is negative. If n is not an integer it is truncated to an
integer.

EXAMPLES
REPEAT 4 [FD 808 RT 90]

draws a square 80 turtle steps on a side.

REPEAT 4[FD 80 RT 90]
REPEAT 5 [PRINT RANDOM 201

Prints 5 random numbers from @ to 19.

109

The following procedure draws polygons:

TO POLY :SIDE :ANGLE

REPEAT 360 / :ANGLE [FD :SIDE RT :ANG—
LE]

END

POLY 50 120

POLY 50 120

RUN command or operation

RUN instructionlist

Runs the specified list of instructions as if it were typed in
directly. If instructionlist is an operation, then RUN outputs
whatever instructionlist outputs.

EXAMPLES
The following procedure simulates a calculator:

TO CALCULATOR
PRINT RUN RL

PRINT []
CALCULATOR

END

CALCULATOR

2 +3

5

17.5 %3

52.5

42 = 8 » 7
FALSE
REMAINDER 12 5
2

110

% .. Chapter 6

Flow of Control
and Conditionals

Press the BREAK key to stop.

The procedure WHILE runs a list of instructions while a specified
condition is true:

TO WHILE :CONDITION :INSTRUCTIONLIST
IF NOT RUN :CONDITION [STOP]

RUN :INSTRUCTIONLIST

WHILE :CONDITION :INSTRUCTIONLIST
END

RT 9@
WHILE [XCOR < 1001 [FD 25 PR POS]
25 @
50 0
75 0
100 @

The following procedure applies a command to each element
of alistin turn:

TO MAP :CMD :LIST
ik ENP YR SLIST -[STOP]

RUN LIST :CMD WORD "' FIRST :LIST
MAP :CMD BF :LIST
END

TO SQUARE :SIDE
REPEAT 4 [FD :SIDE RT 90]
END

MAP "SQUARE [10 20 40 80]

MAKE "NEW.ENGLAND [ME NH VT MA RI1]
MAP "PRINT :NEW.ENGLAND

ME

NH

vT

MA

RI

111

The following procedure, FOREVER, repeats its input forever
(unless it encounters an error or is stopped with the BREAK
key):

TO FOREVER :INSTRUCTIONLIST

RUN :INSTRUCTIONLIST

FOREVER :INSTRUCTIONLIST
END

The command FOREVER [FD 1 RT 1] tells the turtle to draw a
circle.

FOREVER [FD1 RT1]

The command, FOREVER [PR RUN RL PR []] is equivalent to the
CALCULATOR procedure defined above.

RUN RL runs any commands or operations typed in by the user.

PR RUN RL prints the output from any expression typed in by
the user.

STOP command

STOP

Stops the procedure that is running and returns control to the
caller. This command is meaningful only when it is within a
procedure — not at top level. Note that a procedure containing
STOP is a command (compare OUTPUT).

EXAMPLE

TO COUNTDOWN :NUM

PR :NUM

IF :NUM = @ [PR [BLAST OFF!] STOP]
COUNTDOWN :NUM - 1

END

112

.o . Chapter 6

Flow of Control
and Conditionals

COUNTDOWN 4
A
5
2
1
@
B

LAST OFF!

TOUCHING operation

TOUCHING turtlenumber1 turtlenumber?

Outputs the number symbolizing a collision between
turtlenumber1 and turtlenumber2. (See table at the beginning
of the chapter.) TOUCHING can be used as an input to WHEN or
COND.

EXAMPLE

PR TOUCHING 2 3
18

WAIT command

WAIT n

Tells Logo to wait for n 60ths of a second.

EXAMPLE

The procedure SLOWFD makes the turtle go forward very
slowly.

TO SLOWFD :DIST

REPEAT :DIST [FD 1 WALIT 1]
END

SLOWFD 80
£S
REPEAT 4 [SLOWFD 80 RT 901

113

WHEN command

WHEN condnumber instructionlist
WHEN condnumber [|

Sets up a WHEN demon for detecting a collision or event
condnumber. (See table at the beginning of the chapter.)
Condnumber is an integer from 0 to 21 symbolizing an event.
When this event occurs, instructionlist is run. If the instructionlist
includes turtle commands, the current turtle(s) carries them out.

The WHEN command must be given while in splitscreen or
fullscreen.

Note that WHEN's effect is global: this command needs to be
given only once. See POD and PODS in Chapter 9 for checking
which demons are in action.

WHEN condnumber []

Since most condnumbers refer to a graphics command, it may
be impossible to work in the textscreen mode while a WHEN
demon is still alive. There are two ways you can clear a WHEN
demon so that it no longer watches for an event or collision.
The simplest way is to give the s command. A side-effect is
your design on the graphics screen is also cleared. The best
method is to give the command WHEN condnumber [], since a
demon is inactive if it has no task to perform. For example, if
you want to clear WHEN demons @ and 4, type

WHEN @ []
WHEN 4 [1]

PODS allows you to check if these demons are still active,
PODS

There are no active demons.

Note: an error message or the EDIT command will automatically
clear the active demons.

114

.o . Chapter 6

Flow of Control
and Conditionals

It is possible to give more than one WHEN command at one
time, but the demons will not be active simultaneously. Their
speed in detecting a collision or event depends on their
strength. WHEN demon 0 is the strongest and therefore the
fastest demon; WHEN demon 21 is the weakest and slowest.
When one demon is busy (its event is occurring), the other
demons go to sleep and don't wake up until the first demon
has completed its task.

When setting up a game or project using demons, it is helpful
to follow these guidelines:

1. Try to give a WHEN demon a task (instructionlist) that can
be executed as fast as possible.

2. The best way to use WHEN demons is to give the instruction
SETSP 0 and then use a helping procedure to examine
each turtle’s state.

3. The helping procedure shouldn’t do anything except watch
for a condition, and call a collision processing procedure if
the collision occurred.

4. The collision processing procedure must always leave the
turtle affected by a WHEN demon out of a collision situation.
If not, the turtle could be caught on a line and eventually
escape its bounds.

EXAMPLES

Whenever the joystick changes position (event number 15),
JOYH is executed, allowing you to draw with the joystick.

TO JOYH

IF (JOY @) < @ [STOP]
SETH 45 * JOY @

oS

JOYH

END

WHEN 15 [JOYH]

115

The following program sets the turtle in motion. When you
press the button on your joystick (event number 3), the turtle
acts like a spring.

TO PLAY

CS ST PD

REPEAT 4 [FD 100 RT 901
PU SETPOS [50 501

WHEN 3 [SPRING 100]
SETSP 10

END

TO SPRING :SPEED

1F :SPEED < J ESTOp]

FD :SPEED WAIT 5@ BACK :SPEED
SPRING :SPEED/2

END

PLAY

Here is a set of procedures that makes a square and keeps
four turtles inside it.

TO SETUP

VELL LB) "2 33£S ST PU
SETPN @ SETPC @ 120

ASK @ [SETPOS [-58 -58] PD REPEAT &4 [—
FD 106 RT 901 PUI

ASK @ [SETPOS [-20 -2011]
ASK 1 [SETPOS [-20 201]
ASK 2 [SETPOS [20 -201]
ASK 3 [SETPOS [20 2011
EACH [RT 90 * WHOI

END

TO DEMONS.TASK
WHEN @ [(SETSP @1
WHEN 4 [SETSP 01
WHEN 8 [SETSP @]
WHEN 12 [SETSP @]
END

116

-9 . Chapter 6

Flow of Control
and Conditionals

TO WATCH

IF SPEED = @ [FIND.THEM]
WATCH

END

TO FIND.THEM

IF COND @ [ASK @ [BK 10 RT 18011]
IF COND 4 [ASK 1 [BK 10 RT 1801)
IF COND 8 [ASK 2 [BK 10 RT 18011
IF COND 12 [ASK 3 [BK 18 RT 18011

SETSP 30
END

SETUP
DEMONS.TASK
WATCH

SETUP sets up the square and the four turtles in it.
DEMONS.TASK sets up the WHEN demons. WATCH is a helping

procedure that calls the collision processing procedure,
FIND.THEM.

117

118

Chapter?7
Logical
Operations

119

Recall that predicates are operations that output only TRUE or
FALSE. Most of their names end in P.

There are some Logo predicates whose inputs must be TRUE
or FALSE. These are called logical operations. Their names do
not end in P. The designers of ATARI Logo have chosen to
retain the traditional names AND, OR, and NOT for these logical
operations. They are used to combine predicates into logical
expressions. This is similar to the way in which arithmetic
operations form arithmetic expressions. Just as arithmetic
operations receive and output only numbers, so logical
operations receive and output only TRUE or FALSE.

The inputs to logical operations are usually predicates.
Predicates are found throughout the other chapters of this
manual.

Predicate Chapter

COND
EMPTYP
EQUALP
JOYB
KEYP
LISTP
MEMBERP
NAMEP
NUMBERP
PADDLEB
SHOWNP
WORDP

e

AR LONLONDNODOMNDMND

Vol

120

.o . Chapter 7

Logical
Operations

AND operation

AND pred1 pred?2
(AND pred1 pred?2 pred3 . . .)

Receives two or more inputs. AND outputs TRUE if all its inputs
are true, FALSE otherwise.
EXAMPLES

PRINT AND "TRUE "TRUE
TRUE

PRINT AND "TRUE '"'FALSE
FALSE

PRINT AND "FALSE '"FALSE
FALSE

PRINT (AND '"TRUE "TRUE "FALSE "TRUE)
FALSE

PRINT AND 5 7
7 IS NOT TRUE OR FALSE

PRINT AND (PC 1) = @ BG = @
FALSE

(The infix operation = returns TRUE or FALSE to AND.)
The following procedure, DECIMALP, tells whether its input is a
decimal number:

TO DECIMALP :0BJ

OP AND NUMBERP :0BJ CHECK :0BJ
END

TO CHECK :0BJ
IF EMPTYP :0BJ [OP "FALSE]

IF EQUALP FIRST :0BJ '". [OP "TRUE]
OP CHECK BF :0BJ

END

PRINT DECIMALP 17

FALSE

PRINT DECIMALP 17.0

FALSE

121

Note that Logo interprets a number as an integer if it ends with
a decimal point and a zero or just a decimal point.

PRINT DECIMALP 48.098
TRUE

PRINT DECIMALP '"STOP.
FALSE

FALSE special word

FALSE

FALSE is a special input for AND, IF, NOT and OR.

NOT operation

NOT pred

Outputs TRUE if pred is FALSE; outputs FALSE if pred is TRUE.
EXAMPLES
PRINT NOT EQUALP "A "B

TRUE

PRINT NOT EQUALP "A "A
FALSE

PRINT NOT "A = FIRST '"DOG
TRUE

PRINT NOT "A
A IS NOT TRUE OR FALSE

If WORDP were not a primitive, it could be defined as follows:

TO WORD? :0BJ
OUTPUT NOT LISTP :0BJ
END

122

.® . Chapter 7

Logical
Operations

The following procedure tells whether its input is a *‘word that
isn't a number':

TO REALWORDP :0BJ

OUTPUT AND WORDP :0BJ NOT NUMBERP :0B—
J

END

PRINT REALWORDP HEADING
FALSE

PRINT REALWORDP "KANGAROO
TRUE

PRINT REALWORDP PEN
TRUE

OR operation

OR pred1 pred2
(OR pred1 pred2 pred3 ...)

Outputs TRUE if any of its inputs are true, FALSE otherwise.

EXAMPLES

PRINT OR "TRUE "TRUE
TRUE

PRINT OR "TRUE "FALSE
TRUE

PRINT OR "FALSE '"FALSE
FALSE

PRINT OR 5 7
7 IS NOT TRUE OR FALSE

123

The procedure MOUNTAINS draws ‘‘mountains’’:

TO MOUNTAINS
€S

RT 45
SUBMOUNTAIN
END

TO SUBMOUNTAIN

FD 5 + RANDOM 10

IF OR YCOR > 50 YCOR < @ [SETH 180
HEADING]

SUBMOUNTAIN

END

MOUNTAINS

TRUE

special word

TRUE
TRUE is a special input for AND, IF, NOT, and OR.

124

Chapter 8
The Outside
World

125

This chapter describes primitives for communicating with
various devices through the computer. The devices include the
keyboard, the TV screen and special purpose devices such as
joysticks. If you are using a television or a monitor with volume
control, you can also take advantage of the ATARI Logo music
primitives, TOOT and SETENV.

The ATARI Computer has 24 lines of text on the screen, with
38 characters on each line. The screen can be used entirely for
text or entirely for graphics. You can also split the screen using
the top nineteen lines for graphics and the bottom five lines for
text. When you start up Logo, the entire screen is available for
text. The cursor on the text screen is similar to the turtle on the
graphics screen. You can put characters anywhere on the text
screen by setting the cursor at the desired place.

In addition to those primitives described in this section, the
commands SAVE, LOAD, SETREAD, and SETWRITE are related to
communication with the outside world. They are described in
Chapter 10.

CcT command

CT

Stands for Clear Text. Clears the text from the screen and puts
the cursor at the upper left corner of the text part of the screen.

FS command

FS

Stands for Full Screen. Devotes the entire screen to graphics.
Only the turtle graphics show; any text you type will be invisible
to you, although Logo will still carry out your instructions. The
text will reappear when you switch back to SS or TS mode.

If Logo needs to type an error message while you are in Fs, it
automatically goes back to ss.

126

.9 . Chapter 8

The Outside
World

The CTRL F key combination has the same effect as FSs. In
addition, CTRL F can be pressed while a procedure is running,
whereas you must wait to get the ? (prompt) in order to type Fs.

Note that if you give the CT command when the screen has
been switched to FS, the cursor goes to the top of the
textscreen. When you switch the screen back to ss
(splitscreen), the cursor will be hidden by the graphics portion
of the screen.

Joy operation

JOY joysticknurmnber

Outputs a number between — 1 and 7 representing the
position of the joystick.

0}
® Tx 1 At
64—@—)2
s5T Mg
4

The input must be 0, 1, 2, or 3, that is, the number of the
joystick being used. It is an error if you give any other input. If
the joystick is in its initial position, (you have not moved it), JOY
outputs —1. See Appendix C in the Introduction Manual for
examples.

JOYB operation

JOYB joysticknumber

Outputs TRUE if the button on the specified joystick is down,
FALSE otherwise. The input must be 0, 1, 2, or 3, since there
are 4 joysticks. It is an error if you give any other input. If there
are no joysticks connected, JOYB outputs FALSE. See Appendix
C in the Introduction Manual for examples.

127

KEYP operation

KEYP

Outputs TRUE if there is at least one character waiting to be
read on the keyboard or any other device set by SETREAD,
FALSE if there isn’t any.

EXAMPLE

The following procedures keep the turtle going forward by
small steps. Whenever you press R the turtle turns RT 10; when
you press L the turtle turns LT 10.

TO STEER

FD 2

IF KEYP [TURN RC]
STEER

END

TO TURN :DIR

IF :DIR = “R IRY 18]
IF IR = -V allLT 1
END

PADDLE operation
PADDLE paddlenumber

Outputs a number between @ and 247, representing the
rotation of the dial on the specified paddle. Paddlenumber is an
integer from @ through 7. It is an error if you give any other
input. If there is no paddle connected, PADDLE outputs — 1.

EXAMPLE

The following procedure allows you to draw on the screen by
rotating paddle @ to change the turtle’s heading, and paddile 1
to move the turtle forward.

TO PDRAW

RIGHT (PADDLE @) / 25.6
FORWARD (PADDLE 1) / 25.6
PDRAW

END

128

.o . Chapter 8

The Qutside
World

PADDLEB operation

PADDLEB paddlenumber

Outputs TRUE if the button on the specified paddle is down,
FALSE otherwise. Paddlenumber must be an integer from @
through 7 since there are a maximum of eight paddles. It is an
error if any other input is given. If there are no paddles
connected, PADDLEB outputs FALSE.

EXAMPLE

The procedure DRIVE allows you to control the turtle's
movement by the button. It will turn around in a circle while you
hold down the button of paddie number @, and will go in a
straight line when you release it.

TO DRIVE

IF PADDLEB @ [RIGHT 51

FORWARD 2

DRIVE
END

PRINT, PR command

PRINT object
(PRINT object1 object? . .)

Prints its input(s) on the screen, followed by RETURN. The
outermost brackets of lists are not printed. Compare with TYPE
and SHOW.

EXAMPLES

PRINT "A
A

PRINT "A PRINT [A B C]
A
ABC

(PRINT "A [A B C1)
AABC

PRINY []

129

TO REPRINT :MESSAGE :HOWMANY
IF :HOWMANY < 1 [STOP]

PR :MESSAGE

REPRINT :MESSAGE :HOWMANY - 1
END

REPRINT [TODAY IS FRIDAY!] 4
TODAY IS FRIDAY!
TODAY IS FRIDAY!
TODAY IS FRIDAY!
TODAY IS FRIDAY!

RC operation

RC

Stands for Read Character. Outputs the first character read
from a device or the keyboard. This character can even be a
CTRL character. If no character is waiting to be read, RC waits
until the user types something. This character is not echoed on
the screen. If the end of file position has been reached in a file
being read, RC outputs an empty word. See also KEYP.

EXAMPLE

The following procedure lets the user run certain commands
with a single keystroke (F does FORWARD 5, and R does RIGHT
10). No RETURN is needed.

TO DRIVE

MAKE "CHAR RC

IF- :CHAR =""F [FD 51
IF :CHAR = "R [RT 101
1F SCGRAR =YL TLT 181
DRIVE

END

130

.0 . Chapter 8

The Outside
World

RL operation

RL

Stands for Read List. Outputs as a list the first line of words
read from the keyboard or a device. If no list is waiting to be
read, RL waits for the user to type something. If lists have
already been typed, it outputs the first line that has been typed
but not read. Whatever you type will be echoed on the screen.
If the end-of-file position has been reached in a file being read,
RL outputs an empty list.

EXAMPLES

TO GET.USER

PRINT [WHAT IS YOUR NAME?]

MAKE "USER RL

PRINT SE [WELCOME TO LOGO,] :USER
END

GET.USER

WHAT IS YOUR NAME?
HARRY

WELCOME TO LOGO, HARRY

SETCURSOR command

SETCURSOR position

Sets the cursor to position. The first element of position is the
column number; the second, the line number. Lines on the
screen are numbered from @ to 23 character positions,
columns from 0 to 37.

Itis an error if the line number is not between @ and 23, or if the
column number is not between @ and 37, or if an element of
position is not an integer. Note that column 37 is reserved for
the — (line continuation arrow).

EXAMPLE

SETCURSOR [35 12]
The cursor moves half-way down the right edge of the screen.

131

SETENV command

SETENV voice duration

SETENV is an envelope shaper which reduces the volume of
the given voice (@ or 1) by 1 unit every duration (units of 1/60
second). The default duration is zero, which bypasses this
modification, and consequently “‘sounds just like a computer’”.

EXAMPLE

TO TONE@ :DUR
TOOT @ 448 15 :DUR
END

TO TONE1 :FR :DUR
TOOE T sER $h= LR
END

TO TIMEOUT

TONE® 120 TONE1 110 30 TONE1 220 30
TONE@ 60 TONE1 330 30 TONE1 448 30
END

SETENV @ 6
SETENV 1 2
REPEAT 6 [TIMEOUT]

132

.o . Chapter 8

The Outside
World

SHOW command

SHOW object

Prints object on the screen, followed by a carriage return. If
object is a list, it is printed with brackets around it. Compare
with TYPE and PRINT.

EXAMPLES

SHOW "A
A

SHOW "A SHOW [A B C1
A
[A B C]

TYPE YA CTYPE [A B C)
AA B C

PRINT. A PRINT [A B €]
A
ABC

1 command

SS

Stands for Split Screen. Splits the screen into the turtle field and
the text field. The first graphics command given after you start
up Logo will automatically switch to SS: the top nineteen lines
of the screen are available for graphics, and the bottom five
lines are reserved for text.

The CTRL S key combination gives the same affect as the ss
command. See also Fs and TS.

Note: that if you give the CT command while the screen is in Ss,
the bottom five lines are cleared of text, but the top nineteen
lines on the text screen remain unchanged.

133

TOOT command

TOOT voice frequency volume duration

Generates a tone via audio output specified by voice (@ OR 1).
Frequency is specified in Hertz (cycles per second) and can go
from 14 to above audibility. (440 is the tuning note A.) Volume
may range from @ to 15. Duration may range from @ to 255; it is
measured in units of 1/60 second.

If a second TOOT to the same voice is attempted, Logo will wait
until the first TOOT is finished.

EXAMPLE

TO SOUND.RANGE :FREQ
TOOT & :FREQ 1515

PR :FREQ

SOUND.RANGE :FREQ + 50
END

SOUND.RANGE 14

TS command

TS

Stands for Text Screen. Devotes the entire screen to text; the
turtle field will be temporarily invisible to you until a graphics
procedure is run. The CTRL T key combination is equivalent to
TS. In addition, CTRL T can be used while a procedure is still
running, whereas to type TS, you have to wait until you get the
prompt. See also SS and FS.

134

.9 . Chapter 8

The Outside
World

TYPE command

TYPE object
(TYPE object1 object2 . .)

Prints its input(s) on the screen, not followed by a carriage
return. The outermost brackets of list are not printed. Compare
with PRINT and SHOW.

EXAMPLES

TIRE A

ATTYRE A TYPE LA B 't}
AA B C?(TYPE “A [A B C1)
AA B C?

The procedure PROMPT types a message followed by a space:

TO PROMPT :MESSAGE
TYPE :MESSAGE

TYRE Y Backslash followed by a space.
END
TO MOVE

PROMPT [HOW MANY STEPS SHOULD I TAKE?—
]

FDFIRST RL

MOVE

END

MOVE
HOW MANY STEPS SHOULD I TAKE? 50

HOW MANY STEPS SHOULD I TAKE? 37
HOW MANY STEPS SHOULD I TAKE? 2

HOW MANY STEPS SHOULD I TAKE? 108

135

136

Chapter 9
Workspace
Management

137

Your workspace comprises the variables and procedures that
Logo knows about right now. It does not include primitives.

There are several primitives that let you see what you have in
your workspace. You can also selectively erase procedures
from your workspace.

The workspace is a temporary space. Your procedures and
variables will be erased when you turn off the power of the
computer. If you want to keep them for future use, you must
store them on a diskette or cassette in the form of files. See
Chapter 10 for information on files.

Note that any command starting with ER clears the edit buffer.
If after giving such a command you give the EDIT command
with no input, the editor will not contain any procedures.

ERALL command

ERALL

Stands for ERase ALL. Erases all procedures and variables
from the workspace. This command also frees up all nodes of
the system. Make sure that all the procedures you want to keep
are saved in a file before you use this command.

ERASE command

ERASE name
ERASE namelist

Erases the named procedure(s) from the workspace. This
command does not affect the procedure(s) saved in a file.

EXAMPLES
ERASE ” TRIANGLE
erases the TRIANGLE procedure.

ERASE [TRIANGLE SQUARE]
erases the TRIANGLE and SQUARE procedures.

138

L . Chapter 9

Workspace
Management

ERN command

ERN name
ERN namelist

Stands for ERase Name. Erases the named variable(s) from the
workspace.

EXAMPLES
ERN ”“LENGTH
erases the LENGTH variable,

ERN [LENGTH PI]
erases the LENGTH and PI variables.

ERNS command

ERNS

Stands for ERase NameS. Erases all variables from the
workspace.

ERPS command

ERPS

Stands for ERase ProcedureS. Erases all procedures from the
workspace.

NODES operation

NODES

Outputs the number of free nodes. This gives you an idea of
how much space you have in your workspace for procedures,
variables, and running procedures. If you want to find out

exactly how many nodes you have left, run NODES immediately
after RECYCLE.

139

PO command

PO name
PO namelist

Stands for Print Out. Prints the definitions of the named
procedure(s). You cannot print out any Logo primitives.

EXAMPLES

PO "POLY

T9 PULY. = STDESANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

PO [POLY GREET]

TO POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

TO GREET
PRINT [HI THERE]
END

POALL command

POALL

Stands for Print Out ALL. Prints the definition of every
procedure and the value of every variable in the workspace.

EXAMPLES

POALL

TO POLY :SIDE :ANGLE
ED: =510E

RT :ANGLE

POLY :SIDE :ANGLE
END

140

.® . Chapter 9

Workspace
Management

TO SPI :SIDE :ANGLE :INC

FD:STDE

RT :ANGLE

SPI :SIDE + :INC :ANGLE :INC

END

MAKE '"ANIMAL '"AARDVARK

MAKE "LENGTH 3.98

MAKE "MYNAME "PAT

POD command

POD condnumber

Stands for Print Out Demon. Prints out the condition and action
set up for WHEN demon condnumber. Condnumber stands for
collision number or event number (see table at the beginning of
Chapter 6). See WHEN for setting up a WHEN demon.

EXAMPLES
POD @

There is no WHEN demon 0 set up.

WHEN @ [BK 18]
POD @
WHEN 0 [BK 10@]

PODS command

PODS

Stands for Print Out DemonS. Prints out the conditions and
actions set up for all the WHEN demons.

EXAMPLES

PODS
WHEN @ [BK 18]
WHEN 3 [SETSP @]

141

PONS command

PONS

Stands for Print Out NameS. Prints the name and value of
every variable in the workspace.

EXAMPLE

PONS

MAKE "ANIMAL "AARDVARK
MAKE "LENGTH 3.98

MAKE '"NAMES [LINDA MIKE]

POPS command

POPS

Stands for Print Out ProcedureS. Prints the definition of every
procedure in the workspace.

EXAMPLE

POPS

TQ POLY :=SIDE :=ANGLE
FD :SIDE

RT :ANGLE

POLY ":SIDE :=ANGLE
END

TO GREET
PRINT [HI THERE]
END

T0 SPI :SIDE - =ANGLE"=TN{
FD5sSTOE

RT :ANGLE

SPI :=SIDE + :INC :ANGLE :INC
END

142

S . Chapter 9

Workspace
Management

POTS command

POTS

Stands for Print Out TitleS. Prints the title line of every
procedure in the workspace.

EXAMPLE

POTS

TO POLY :SIDE :ANGLE

TO GREET

TO SPI :SIDE :ANGLE :INC

RECYCLE command

RECYCLE

Performs a garbage collection, freeing as many nodes as
possible. When you don’t use RECYCLE, garbage collections
happen automatically whenever necessary, but each one takes
at least one second. Running RECYCLE before a
time-dependent activity prevents the automatic garbage
collector from slowing things down at an awkward time. See
NODES.

143

144

Chapter 10
Files

145

The procedures and variables you created in the workspace
will be erased when you turn off the power of the computer. If
you want to keep them for future use, you can store them on a
diskette or cassette. The information is organized in files. You
decide what should go into each file.

You can create a file containing a copy of all characters
displayed on the textscreen. This *‘dribble’ file created by the
command SETWRITE gives a record of the interactions between
the person at the keyboard and the computer. You can read
any file line by line with the command SETREAD.

A printer is considered as a special kind of a file. For example,
you can list the contents of the procedures and names in your
workspace by saving them on a printer.

The input for a file command always specifies the device being
used:

C: stands for cassette
D: stands for disk drive 1

Dn: stands for disk drive n (n is a disk drive number from 1
through 4)

P: stands for printer

When D:, D1: or Dn: (disk drive) is the input, a file name must
also be specified. If you use a file name with any other device,
this input will be ignored. The only exception is CATALOG where
D:, D1:, or Dn: is used alone.

A filename can be 1 to 8 characters long with an optional 3
character extension. The first character of the filename must be
a letter. All letters in the filename and extension must be
uppercase. If an extension is used, a period must be used to
separate the filename from the extension.

146

.o . Chapter 10

Files

CATALOG command

CATALOG device:

Prints on the screen the names of all the files on the disk, if
device: is a disk drive. If device: is a cassette ("'C:), all the
procedure definitions and names will be displayed.

EXAMPLES
CATALOG "D:
lists the files on disk in the current drive.

CATALOG “D2:
lists the files on disk in drive 2.

CATALOG “C:
lists all the procedure definitions and names in the cassette file.

ERF command

ERF device:filename

Erases the file named filename from the diskette. It is an error if
there is no file by the name you have specified.

The only device that can be used with ERF is a disk drive. If you
have more than one drive, the drive number must be specified.
EXAMPLE

ERF ”D:BEAR
erases the file called BEAR from your disk.

147

LOAD command

LOAD device:filename

Loads the contents of filename into the workspace, as if typed
in directly. It is an error if filename doesn't exist or if you try to
LOAD from the printer. The BREAK key interrupts LOAD.

After the file is loaded, you can verify the content using various
print out commands. (See Chapter 9 — Workspace
Management.) For specific information on using a cassette to
LOAD or SAVE, see Chapter 5 in the Introduction Manual.

EXAMPLES
ERALL

Your workspace is now empty.

LOAD "'D1:BEAR
EYES DEFINED
PLAY DEFINED
JOYH DEFINED

LOAD: (e

EYES DEFINED
PLAY DEFINED
JOYH DEFINED

SAVE command

SAVE device:filename

Creates a file named filename ani saves in it all procedures
and variables in the workspace.

Never use the BREAK key when a file is being saved: you will
lose your workspace.

Itis good practice to check before SAVE what you are saving
and erase names of the procedures you don't need. See POTS,
PO, POALL and ERASE in Chapter 9.

148

.® . Chapter 10

Files

EXAMPLES

SAVE “D:MARIO.001

saves the contents of the workspace into the file called
MARIO.0@1 on a disk.

SAVE " C:

saves the contents of the workspace onto cassette. (See
Chapter 5 in the Introduction Manual for details on saving files
on a cassette.)

SAVE " P:
prints the contents of the workspace on a printer.

SETREAD command

SETREAD device:filename
SETREAD []

Sets the device: from which to receive input. Filename can be a
program file or a file created by SETWRITE. After the command

SETREAD is given, RC and RL read information from this
device:filename.

SETREAD []
SETREAD [] closes the file being read.

You can only SETREAD to one file at a time but you can open a

file for reading (SETREAD) and writing (SETWRITE) at the same
time.

149

EXAMPLES

SETREAD '""D:BEAR
REPEAT 4 [PR RLI]
TOCEYES

REYE

LEYE

END

The first lines of the BEAR file are printed.
SETREAD [)

The file is closed. Now RL and Rc will be read from the
keyboard.

See SETWRITE for more examples.

SETWRITE command

SETWRITE device:filename
SETWRITE []

Opens file named device:filename and starts the process of
sending a copy of all the characters displayed on the
textscreen to device:filename.

SETWRITE []
SETWRITE [] closes the file.

You can only SETWRITE to one file at a time but you can
SETREAD and SETWRITE at the same time. It is an error if you
SETWRITE to a device that is not connected or turned on after
booting Logo. To read a file created with SETWRITE, use the
command SETREAD.

150

.o . Chapter 10

Files

EXAMPLES

SETWRITE "D:SEPT1

opens a file called SEPT1 on diskette. Now everything
appearing on the textscreen will be sent to the SEPT1 file.
FD 40

RT 90
SETWRITE '"D:SEPT?2

The SEPT1 file is automatically closed and the SEPT2 file is
opened.

FD 30
RT 45
SETWRITE [1]

The SEPT2 file is closed.
SETREAD "D:SEPT1

opens the SEPTH1 file for reading.

REPEAT 4 [PR RLI]
FD 40

RT 90

SETWRITE "D:SEPT2

Everything in the SEPT1 file is printed on the screen.

SETREAD "D:SEPT2
REPEAT 4 [PR RL]
FD 30

RiG 55

SETWRITE [1]

SETREAD []
Everything in the SEPT2 file is printed on the screen.

151

152

ives

Chapter 11
Special
Primi

153

There are some special primitives that may affect the Logo
system itself. They give you the power of directly accessing the
computer memory or modifying what's in it. At the same time
they are dangerous primitives because you can destroy the
contents of your workspace in Logo by using them carelessly.
If that happens, you will need to restart Logo. The names of
these primitives start with a dot to warn you that they are
dangerous. You should save your work before experimenting
with them. For further information see ATAR!’s Technical
Reference Notes.

.CALL command

.CALL N

Tranfers control to the indicated machine language subroutine
starting at address n (decimal).

.DEPOSIT command

.DEPOSIT n byte
Writes byte into machine address n (decimal).

EXAMPLES

The following procedures change the size of the turtle.

TO BIG
+DEPOSIT 53256 1
END

TO SMALL
.DEPOSIT 53256 @
END

TO BIGGER
.DEPOSIT 53256 3
END

154

.9 . Chapter 11

Special
Primitives

.EXAMINE operation

-EXAMINE n

Outputs the contents of machine address n (decimal).

.PRIMITIVES command

.PRIMITIVES

Prints a list of all the Logo primitives.

.SETSCR command

.SETSCR n

Sets the aspect ratio (the ratio of the size of a vertical turtle step
to the size of a horizontal one) to n (— 2 through 2). The screen
is cleared.

.SETSCR .5 makes each vertical turtle step half the length of a
horizontal one.

.SETSCR is intended to be used when ‘‘squares” turn out
looking like rectangles on some particular screens. (An aspect
ratio of .8 is correct for most screens.)

PAL systems will be set for .SETSCR 1.

155

156

Error Messages

Appendix A

157

OUT OF SPACE

Your workspace is almost completely filled. It's best to erase
some procedures and names from your workspace.

YOU DON'T SAY WHAT TO DO WITH OBJECT
A Logo object was given without preceding it by a command.

TOO MUCH INSIDE ()'S

Parentheses were incorrectly placed in a Logo instruction. For
example, parentheses surround more than one Logo
expression.

NOT ENOUGH INPUTS TO PROCEDURE
A procedure or primitive is being run that requires more inputs.

UNEXPECTED ')'

A closing parenthesis has no corresponding opening
parenthesis. A closing parenthesis was found when an input
was expected.

I DON'T KNOW HOW TO PROCEDURE

Logo has tried to execute PROCEDURE but can'’t find its
definition.

PROCEDURE DIDN'T OUTPUT TO PROCEDURE

A procedure or primitive that requires an input was not given
one and was followed on the same line by another procedure
or primitive.

NUMBER TOO BIG

The result of an arithmetic operation is more than 198 (1 098) or
lessthan 1E—98 (10 ™).

158

Appendix A

Error
Messages

PRIMITIVE DOESN'T LIKE OBJECT AS INPUT
An incorrect input was given to a primitive.

WORD HAS NO VALUE
A variable was used that was not given a value.

PRIMITIVE IS A PRIMITIVE
A primitive name was given as an input to TO or EDIT.

PROCEDURE IS ALREADY DEFINED

The name given as an input to TO or EDIT has already been
used as a procedure name.

OBJECT IS NOT TRUE OR FALSE

An input was given to IF, AND, OR, or NOT that was not a
predicate (didn’t output TRUE or FALSE).

FILE NAMENOT FOUND
The file name given as input to LOAD or SETREAD is nonexistent.

I CAN'T OPEN DEVICEFILENAME

The input to SAVE, LOAD, SETREAD or SETWRITE is incorrect. For
example, the device was not specified.

YOU'RE AT TOPLEVEL

The command STOP or OUTPUT was used outside of a
procedure.

STOPPED!

The BREAK key was pressed, interrupting whatever was
running.

159

160

Appendix B
Special Keys

161

An asterisk () indicates an editing command which works both

inside and outside of the editor.

*BREAK

*CTRL —
*CTRL
CTRL 1
CTRL |

*CTRL 1

*CTRL A

*CTRL CLEAR

*CTRL DELETE
BACK S

*CTRL E

CTRLF
CTRL INSERT

CTRL S

CTRLT
CTRLV
CTRL W

Aborts whatever Logo is doing. If editing,
changes made in the edit buffer will be
ignored.

Moves the cursor one position to the right.
Moves the cursor one position to the left.
Moves the cursor up to the previous line.
Moves the cursor down to the next line.

Makes Logo stop scrolling until CTRL 1 is
typed again.

Moves the cursor to the beginning of the
current line.

Deletes text from the cursor position to the
end of the current line.

Erases the character at the cursor
position.

Moves the cursor to the end of the current
line.

Devotes full screen to graphics.

Opens a new line at the position of the
cursor.

Split screen: top for graphics, bottom for
text.

Devotes entire screen to text.
Scrolls screen to next page in editor.

Scrolls screen back to previous page in
editor.

162

Appendix B

Special
Keys

CTRL X
*CTRLY
CTRL Z
“DELETE BACK S
ESC
*RETURN

*SHIFT DELETE
BACK S

SHIFT INSERT

\ (Backslash)

Moves the cursor to beginning of editor.
Inserts the contents of the delete buffer.
Moves the cursor to end of editor.

Erases the character to the left of the cursor.
Completes editing and exits to top level.

Completes the line and puts the cursor to
the beginning of the next line.

Deletes text from the cursor position to the
end of the current line.

Opens a new line at the position of the
cursor.

Tells Logo to interpret the character that
follows it literally as a character, rather than
keeping some special meaning it might
have. You have to backslash [,], (,), +, —,
* /7, =, <, >, and itself.

Other special keys are listed in Getting Started.

163

164

Appendix C
Useful Tools

165

The procedures collected here in alphabetical order are likely
to be useful in constructing your own procedures. Examples of
the use of some of these procedures appear in this manual
(refer to the Index). The other procedures appear here for the
first time.

ABS outputs the absolute value of its input.

TO ABS :NUM
OP IF :NUM < @ [-:NUM] [:NUMI
END

CLEAR.DEMONS clears all the WHEN demons if given the input
of 21.(The Collision Detection Chart can be found on pg. 104.)

TO CLEAR.DEMONS :DEMON
IF :DEMON < @ [STOP]
WHEN :DEMON [1]
CLEAR.DEMONS :DEMON - 1
END

COPYDEF copies the definition of an “‘old"’ procedure name
onto a “'new’’ procedure name. COPYDEF ”SQ ” SQUARE would
copy the definition of SQUARE onto the name sQ. Note that
COPYDEF uses DEFINE and TEXT (page 169).

TO COPYDEF :NEW :0LD

MAKE '"OLD TEXT :0LD

DEFINE :NEW BF BF FIRST :0LD BF :0LD
END

DEFINE makes a list the definition of the name you give as
input.

TO DEFINE :NAME :INPUT :LIST
SETWRITE '"D:PROG

PR (SE "TO :NAME :INPUT)
PRLOUT sLIST

PR "END

SETWRITE [1

LOAD "D:PROG

ERF "D:PROG

END

166

Appendix C

Useful Tools

FOPR.OUT. = LIST
AEEMBIYP =LIST [STOP)
EREFIRST CLIST

PR.OUT BF :LIST

END

DEFINE '"SQUARE ":SIZE [[REPEAT 4 [FD—
olZE RT 98111

gives SQUARE this definition:

TO SQUARE :SIZE
REPEAT 4 [FD :SIZE RT 94)
END

DIVISORP indicates whether its first input divides evenly into its
second.

TO DIVISORP :A :B
OP @ = REMAINDER :B :A
END

DOT places a dot on the screen at the position given as input.
Note that the turtle is left in the same state as before DOT is run.

TO DOT :POS

ASK FIRST WHO [DOT1 POS :POS PEN SHOW—
NP]

END

TO DOT1 :0LDPOS :POS :PEN :SHOWNP
HT PU

SETPOS :POS

PD FD @ PU

SETPOS :0LDPOS

RUNEPUT tPEN []

IF :SHOWNP [ST]

END

FOREVER runs a list of instructions until the BREAK key is
pressed or the power is turned off.

TO FOREVER :INSTRUCTIONLIST
RUN :INSTRUCTIONLIST
FOREVER :INSTRUCTIONLIST
END

167

INIT.TURTLE clears the screen of all the turtles, just leaving
turtle @ in the regular turtle shape.

TO INIT.TURTLE
TELL I8 1 2 5Jurs

SETSH @ HT
TELE 23T
END

ITEM outputs the :Nth element of a word or a list.

TO ITEM :N :0BJECT

IF EMPTYP. 0BJECT [Op-tt]

IF :N =1 [OP FIRST :=0BJECT]
OP ITEM :N-1 BF :0BJECT

END

SORT takes a list of words and outputs them alphabetically.

SUPERSORT arranges them in a flat list.

TO SORT :ARG :LIST

IF EMPTYP :ARG-[OP :LIST]

MAKE "LIST INSERT FIRST :ARG :LIST
OP SORT BF :ARG :LIST

END

TO. INSERT A i

I1F EMPTYP L [OP-FPUT L] LIST A [1]

IF BEFORE :A FIRST BF :L [OP FPUT INS—
ERT: A FIRST il BE :L]

OP LPUT INSERT sAh EAST "*L BL L

END

TO BEFORE :A :B

IF OR EMPTYP :A EMPTYP :B [OP EMPTYP —
:Al

IF NOT EQUALP FIRST :A FIRST :B [OP (—
ASCIT =2A)= CASCII =B)1

OP BEFORE BF :A BF :B

END

TO SUPERSORT :L

LFECEMPTYPR L QP11

OP (SE SUPERSORT FIRST :L FIRST BF :—
L SUPERSORT LAST :L)

END

168

Appendix C

Useful Tools

Try this:

MAKE "SORTLIST SORT [ADE FT C 2] —
[]

PR SUPERSORT :SORTLIST
e BRI = S

Then type

MAKE "'SORTLIST SORT [FOO BAR BAZ] :S—
ORTLIST

PR SUPERSORT :SORTLIST

A BAR BAZ C D EF FOO T 2

TEXT outputs the definition of a procedure name. TEXT
”SQUARE could output [[TO SQUARE :SIZE] [REPEAT 4 [FD :SIZE
RT 90]]]

TO TEXT :NAME
SETWRITE "D:PROG

PO :NAME

SETWRITE []

SETREAD "D:PROG

OP READLINE LIST RL "
END

TO READLINE :TX
MAKE "LINE RL

IF [END] = :LINE [ERF "D:PROG OP :TX]
OP READLINE LPUT :LINE :TX
END

WHICH outputs which position an element has in its list. WHICH
”C [A B C] outputs 3. Complement to the procedure ITEM.

TO WHICH :MEMBER :LIST

LE-EMPEYP :LIST LOP D)

IF 2MEMBER = FIRST :LIST [OUTPUT 11
OUTPUT 1 + WHICH :MEMBER BF :LIST
END

169

WHILE repeats a group of instructions until :CONDITION
becomes FALSE.

TO WHILE :CONDITION :INSTRUCTIONLIST
IF NOT RUN :CONDITION [STOP]

RUN :INSTRUCTIONLIST

WHILE :CONDITION :INSTRUCTIONLIST
END

170

Appendix D
Memory Space

171

Logo procedures and variables take up space; more space is
used when the procedures are run.

Some Logo users may wish to know how space is used in
Logo and how to conserve it. In general, saving space is not
something you should worry about. Instead you should try to
write procedures as clearly and elegantly as possible.
However, we recognize that ATARI Logo has only a finite
memory. This appendix discusses how space is allocated in
Logo and how you can use less of it.

How It Works

Space in Logo is allocated in nodes, each of which is five bytes
long. All Logo objects and procedures are built out of nodes.
The internal workings of Logo also use nodes. The interpreter
knows about certain free nodes that are available for use.
When there are no more free nodes, a special part of Logo
called the garbage collector looks through all the nodes and
reclaims any nodes that are not being used.

For example, during execution of the following statements

MAKE '"'NUMBER 7
MAKE "NUMBER 90

after you say MAKE “NUMBER 7, NUMBER is assigned to two
nodes that hold the value 7. After executing MAKE “NUMBER 90
the nodes containing the 7 can be reused, and they will be
reclaimed as free nodes the next time the garbage collector
runs. The garbage collector runs automatically when
necessary, but you can make it run with the Logo command
RECYCLE.

The operation NODES outputs the number of free nodes:
however, if you really want to find out how much space you
have, you should do something like the following:

RECYCLE PRINT NODES
1259

172

Appendix D

Memory Space

How Space Is Used

Every Logo word used is stored only once: all occurrences of
that word are actually pointers to the word. A word takes up
two nodes, plus one node for every two letters in its name.

A number, whether integer or decimal, takes up two nodes
(exponent and mantissa). A list takes up one node for each
element (plus the size of the element itself).

Space Saving Hints

b

It is important to remember that it is bad form to save space
by writing procedures that are less readable because of the
use of short or obscure words.

Rewrite the program. Use procedures to replace repetitive
sections of the program.

Space can be saved in Logo by not creating new words.
The names of inputs of procedures can be the same as
names of inputs of other procedures. The names of
procedures and primitives can also be used as variable
names.

It should be noted that misspellings, typing errors, and
words that are no longer being used are not destroyed.

PRIMT "FOO
I DON'T KNOW HOW TO PRIMT
KISS

I DON'T KNOW HOW TO KISS

The words PRIMT, FOO, and KISS will be created and will
not go away. However, if a word has no value or
procedure definition, it will not be written out to a file. So if
you are running out of space and have a lot of these words
(sometimes known as truly worthless atoms) you can write
out your workspace to a file and then read it into a freshly
started Logo.

173

174

Appendix E
Parsing

175

When you type a line in Logo, it recognizes the characters as
words and lists, and builds a list which is Logo's internal
representation of the line. This process is called parsing. This
appendix will help you understand how lines are parsed. To
see the parsing effect, type the line in a procedure definition

with the command To and use the Logo editor to see the result.

Delimiters

A word is usually delimited by spaces. That is, there is a space
before the word and a space after the word: they set the word
off from the rest of line. There are a few other delimiting
characters:

== Sis o

There is no need to type a space between a word and any of
these characters. For example, to find out how this line is
parsed:

IF 1<2[PRINT(3+4)/51[PRINT :X+6]

Type
TO TEST

IF 1<2[PRINT(3+4)/5]1[PRINT :X+6]
END

ED"TEST

The screen will look like this:

TOETEEST

TF < 20EPRINT {3 +4 Yl 5] [PRINT—
o8 2|
END

To treat any of the characters mentioned above as a normal
alphabetic character, put a backslash ““ \ " before it. For
example:

PRINT '"'SAN\ FRANCISCO
SAN FRANCISCO

176

Appendix E

Parsing

Infix Procedures

The characters =,<,>+,—,*,/ are the names of infix
procedures. They are treated as procedures with two inputs,
but the name is written between the two inputs.

Brackets and Parentheses

Left bracket "'["" and right bracket *‘]"" indicate the start and end
of a list or sublist.

Parentheses () group things in ways Logo ordinarily would not,
and vary the number of inputs for certain primitives.

If the end of a Logo line is reached (that is, the RETURN key is
pressed) and brackets or parentheses are still open, all sublists
or expressions are closed. For example:

REPEAT 4 [PRINT [THIS [IS [A [TEST

THIS EIS [A [TESTII)

THIS LIS [A [TEST]Y)

THIS LIS [A [TESTI1]
HHIS LIS TA [LTESTI])

If a right bracket is found for which there was no
corresponding left bracket, Logo stops execution of the rest of
the line or procedure. For example:

JPRINT "ABC
Logo prints an empty line.

Quotes and Delimiters

Normally, you have to put a backslash before the characters [,
LG+, —.% 7, =, <, >, and \ itself. But the first
character after a quote (”) does not need to have a backslash
preceding it. For example:

PRINT '*
*

If a delimiter is occupying any position but the first after the
quote, it must have a backslash preceding it. For example:

PRINT "#axx
NOT ENOUGH INPUTS TO =*

i

The only exception to the above general rule is [] (brackets).
You must always precede a bracket that is being quoted by the
backslash.

PRINT "I[
YOU DON'T SAY WHAT TO DO WITH []

PRINT "\I[
L

The Minus Sign

The way in which the minus sign *“ - is parsed is an unusual
case. The problem here is that one character is used to
represent three different things:

1. Part of a number to indicate that it is negative, as in —3.

2. A procedure of one input, called unary minus, which
outputs the additive inverse of its input, as in — XCOR or
— :DISTANCE.

3. A procedure of two inputs, which outputs the difference
between its first input and its second, asin 7 — 3and
XCOR — YCOR.

The parser tries to be clever about this potential ambiguity and
figure out which one was meant by the following rules:

1. Ifthe " —" immediately precedes a number, and follows
any delimiter (including a space) except right parenthesis
)", the number is parsed as a negative number. This
allows the following behavior:

PRINT3 * —1 (parses as 3 times negative 1)
PRINT 3*—4 (parses as 3 times negative 4)
FIRST[— 3 4] (outputs —1)
FIRST[—3 4] (outputs —3)

178

Appendix E
Parsing
2. If " —""is preceded by a numeric expression, it works like
an infix "' ="',
PR 3—-4is —1
PR XCOR — YCOR
3. If*—=""is not preceded by a numeric expression, it works
like a unary minus.
PR —XCOR
PR —(3+4)

179

180

Appendix F
ASCII Code

181

S i s S i s i s e i S W 4 e e e

s

ui

3]

wE

3% O CO0CO0sCCO0EmdNMER

83 +

o0

mid

=

=w

oa

wo 5 RS o B B . e it = S 0 RS o b L, T, g Gt - Rt R i (R ¢ - MO e SRR - - PR E

oo e g e o 5 e o S RO T e B e e P A R e 5 SRR T il e S L i T R S T NS T et 7 L S S
o
[+=]

T

w

| =

2

W o

Qg

83 OO0 SVENIDE

[SXF]

il

<<

=w

28

] S =

00 R e Tl T e P S e [e R s S e e R A s S

Appendix F
ASCIl Code
DECIMAL CODE DECIMAL CODE
CODE CHARACTER CODE CHARACTER

30 s he
. R
32 Space 47
= um = 0
P = N
= iD > OB
£ im o8
2 =, ug
. B = L0
T « @
S S
AR | = @
I A
o S
« I

R R R R EEEEEEESSEEEE=S—=NS—————————

|
|
14
|
TI
2
ﬁ....n
=
oo
|
<
Sw
oD
wo) w r~ foo] m =] = o o« = D [{e] M~ @ (o))
Qo M~ M~ M~ ~ ~ @ @ @ @ @ @ @ @ @ eo] if
©
|
|
oo
w
—I
2
W
QO
|
=
<
= w
oo
w o o = oy 3] <t Te) © N~ 9] [o)] o = [V ™ <t
Qo «© (s} w (s} w w (e} w ©w (s} M~ M~ M~ M~ M~

|
o] X
w gl &
& ol
areRell B
o ol BZ
o SOH
< <| 5O
. |
<
=w
[E]=] 7 SRR |+ SNSRI T - S . IR - e - SRS L T R - B e
wo e e SRRy R S e O Sy L B e e e R e e s e e s R e e R i S D
oo T R RN, s s R Tttt R R R T o e el R B R e e e e e gl
c
w
3
<
ug
33 OG0 00O0DBOD0DO0000D6
oo
|
<<
2w
oQ 2 = N ;=
wo o SRS, - SRR +, FRNCRENE - SRR E. - AR * » SIS - - NSRS . MR -« BN - SR S e WS e T R e A e T T
Do & - 4. & . & 1B s ER al D en E e

14
L
3
<
8% » "
83 7| Y i =] |l | [[%] [~] [T] [+] [®] [}
-
<
=y
OD
ie) [Te} {a] ~ o o o — o (] < 9] {s] ~ @ @
0o ™ o ™ o ™ el < <t - < <t < < <t <
5 = -— = - - e - — - and — = e w0
@0
1
w
3]
wE _I_
o< - = ,
L N] i
-l
<
=w
ooQ o - o ™ <t D w r~ s9])] o — o (3] =t
Mw aY] 8] [aY] [aY] ™ (Y] o o o o ™ ™ ™ ™ o
i : o A L o - -— o e - = -— — ~— .l

Appendix F
ASCII Code

DECIMAL CODE DECIMAL CODE

CODE CHARACTER CODE CHARACTER

150 | 165 %

151 T 166 &

152 pe 167 ’

153 I 168 (

154 L 169)

(EOL)

155 170 *

156 1 171 *

157 + 172 ’

158 E 173 -

159 K 174 :I

160 Space 175 /

161 II 176 0

162 » 177 1

163 # 178 2

164 $ 179 3

187

DECIMAL CODE DECIMAL CODE

CODE CHARACTER CODE CHARACTER
180 4 195 C

181 5 196 D

182 6 197 E

183 7 198 4

184 8 199 G

185 9 200 H

186 : 201 |

187 202 J

188 3 203 K
EI

189 204 L

190 > 205 M

191 ? 206 N

192 @ 207 o

193 II 208 P

194 B 209 Q
188

Appendix F
ASCII Code
DECIMAL CODE DECIMAL CODE
CODE CHARACTER CODE CHARACTER
210 R 225 a
211 S 226 b
212 ;3 227 c
213 u 228 d
214 \' 229 B
215 w 230 f
216 X 231 9
217 Y 232 h
218 Z 233 i
219 ! 234 j
220 \ 235 k
221] 236 |
222 A 237 m
223 e 238 E
224 E 239 o
189

ggc[:)gm gEEFEACTEFl gECDI!'EdAL ggEFIEACTEH
240 P 248 X

241 q 249 y

542 r 250 z

243 s 251 &

244 t 252 II

245 u 253 N

246 b 254 4

247 w 255 .‘
ASCIl* CODE

The white characters in black squares represent normal video
characters. Black characters in white squares represent
reverse video characters.

*For the special characters found on the ATARI Computer, an
extended version of ASCII code is used.

190

Appendix G
Vocabulary

Logo

191

Turtle
Graphics

ASK
BACK, BK
BG
CLEAN
COLOR
CSs

EACH
EDSH
FORWARD, FD
GETSH
HEADING
HOME

HT

LERT I
PC

PE

PEN
PENDOWN, PD
PENUP, PU
PN

POS
PUTSH
PX
RIGHT, RT
SETBG
SETC
SETH
SETPC
SETPN
SETPOS
SETSH
SETSP
SETX
SETY

SHAPE
SHOWNP
SPEED
ST

TELL
WHO
WINDOW
WRAP
XCOR
YCOR

Words

and Lists
ASCII
BUTFIRST, BF
BUTLAST, BL
CHAR
COUNT
EMPTYP
EQUALP
FIRST

FPUT

LAST

LIST

LISTP

LPUT
MEMBERP
NUMBERP
SE

WORD
WORDP
obj1 = obj2

Variables
MAKE
NAMEP
THING

Arithmetic
Operations
cos

INT
PRODUCT
RANDOM
REMAINDER
RERANDOM
ROUND

SIN

SQRT

SUM

+

Lo oo oD
AN %
o O O OriCF O O

>

Defining
and Editing
Procedures
EDIT, ED
EDNS

END

TO

Flow of Control
and Conditionals

COND

IF
OUTPUT, OP
OVER
REPEAT
RUN

STOP

192

Appendix G

Logo Vocabulary

TOUCHING
WAIT
WHEN
WHEN []

Logical
Operations
AND

FALSE

NOT

OR

TRUE

The Outside
World

CT

FS

JOY

JOYB
KEYE
PADDLE
PADDLEB
PRINT, PR
RC

RL
SETCURSOR
SETENV
SHOW

S8

TOOT

TS

TYPE

Workspace
Management

ERALL
ERASE, ER
ERN

ERNS
ERPS

NODES
PO
POALL
POD
PODS
PONS
POPS
POTS
RECYCLE

Files
CATALOG
ERF

LOAD

SAVE
SETREAD
SETREAD []
SETWRITE
SETWRITE []

Special
Primitives

.CALL
.DEPOSIT
.EXAMINE
.PRIMITIVES
.SETSCR

Special
Keys
BREAK
CTRL —
CTRL «
CTRL 1
CTRL |
CTRL 1
CTRLA
CTRL CLEAR

CTRL DELETE BACK S

CTRLE

CTRLF

CTRL INSERT
CTRL S
CTRLT
CTRLV
CTRLW
CTRL X
CTRLY

CTRL Z
DELETE BACK S
ESC

RETURN

SHIFT DELETE BACK S

SHIFT INSERT
\ (Backslash)

Note: See glossary
for definitions and
required inputs.

193

R R

194

Appendix H
Glossary

195

Note: A number sign (#) indicates a procedure which can
take any number of inputs; if you give it other than the
number indicated, you must enclose the entire expression in
parentheses. An asterisk (*) indicates an editing command
which works inside and outside of the editor. For definitions of
Input Words see page 21.

#AND pred1 pred2 Outputs TRUE if all its inputs are

TRUE.

ASCIl char Outputs ASCII code for char.

ASK turtlenumber list Asks the turtlenumber(s)to run
the instructions in list.

BACK, BK distance Moves turtle distance steps
back.

BG Outputs number representing
background color.

BUTFIRST, BF 0bj Outputs all but first element of
obj.

BUTLAST, BL 0bj Outputs all but last element of
obj.

.CALL N Transfers control to a machine

language subroutine starting at
address n (decimal).

CATALOG device: Displays names of all files on
diskette. On cassette, prints
definitions of procedures and
names in the file.

CHAR n Outputs character whose ASCII
code is n.
CLEAN Erases graphics screen without

affecting turtle’s state.

196

Appendix H

Glossary

COLOR

COND condnumber

cosn
COUNT obyj

Cs

CcT

.DEPOSIT n byte

EACH list

EDIT, ED name(s)

EDNS

EDSH shapenumber

EMPTYP 0bj

EQUALP 0bjT obj2

ERALL

ERASE, ER name(s)

Outputs number representing
the turtle color.

Outputs TRUE if condition
condnumber is occurring.

Outputs cosine of n degrees.

Outputs the number of
elements in obj.

Erases screen, moves turtle to
the position [@ 0]. Sets heading
to Q.

Clears text screen.

Writes byte into address n
(decimal).

Makes each turtle separately
run the commands in /ist.

Starts Logo editor with named
procedure(s).

Starts Logo editor with all
variables in the workspace.

Starts the Logo shape editor,
displaying the shape
shapenumber.

Outputs TRUE if obj is empty.

Ends the procedure definition
started out by TO.

Outputs TRUE if its inputs are
equal.

Erases everything from the
workspace.

Erases all named procedure(s).

197

ERF device:filename
ERN name(s)
ERNS

ERPS

.EXAMINE n

FALSE

FIRST obj

FORWARD, FD distance

FPUT 0bj list

FS (CTRL F)

GETSH shapenumber

HEADING

HOME

HT
IF pred list1 (list2)

INT n

Erases filename from device.
Erases all named variables.

Erases variables from the
workspace.

Erases all procedures from the
workspace.

Outputs contents of address n
(decimal).

Special input for AND, IF, NOT
and OR.

Outputs first element of oby.

Moves turtle distance steps
forward.

Outputs list formed by putting
obj on front of list.

Devotes entire screen to
graphics.

Returns a list of 16 numbers;
these numbers correspond to
bits in the shape.

Outputs turtle’s heading.

Moves turtle to [0 @] and sets
heading to 0.

Makes turtle invisible.

If pred is TRUE, runs /ist1,
otherwise list2.

Outputs the integer portion of n.

198

Appendix H

Glossary

JOY joysticknumber

JOYB joysticknumber

KEYP

LAST obj
LEFT, LT degrees

LIST 0bj1 obj2
LISTP obj

LOAD device:filename

LPUT obj list

MAKE name obj
MEMBERP obj list

NAMEP name

NODES
NOT pred
NUMBERP obj

#OR pred1 pred2

OUTPUT, OP 0bj

Outputs current position of
joysticknumber.

Outputs TRUE if the button on
Jjoysticknumber is pressed.

Outputs TRUE if a key has been
typed but not yet read.

Outputs last element of obj.

Turns turtle degrees left
(counter-clockwise).

Outputs list of its inputs.
Outputs TRUE if obj is a list.

Loads file called filename from
device into the computer.

Outputs list formed by putting
obj on end of list.

Makes name refer to obj.

Outputs TRUE if obj is included
in list.

QOutputs TRUE if name has a
value.

Outputs number of free nodes.
Outputs TRUE if pred is FALSE.

Outputs TRUE if obj is a
number.

Outputs TRUE if any of its
inputs are TRUE.

Returns control to caller, with
obj as output.

199

OVER turtlenumber

Outputs number symbolizing

pennumber collision between turtlenumber
and pennumber.

PADDLE paddlenumber Outputs rotation on dial of
paddlenumber.

PADDLEB paddlenumber Outputs TRUE if the button is
pressed on paddlenumber.

PC pennumber Outputs number representing
pen color of pennumber.

PE Puts pen eraser down.

PEN Outputs pen state (PD, PU, PE
or PX).

PENDOWN, PD Puts turtle’s pen down.

PENUP, PU Raises turtle’s pen.

PN Outputs the pen number (0, 1
or 2) being used.

PO name(s) Prints definitions of named
procedures.

POALL Prints definitions of procedures
and names (variables).

POD condnumber Prints WHEN demon
condnumber currently in
action.

PODS Print out all active WHEN
demons.

PONS Prints names and values of all
variables.

POPS Prints definitions of all
procedures.

200

Appendix H

Glossary

POS

POTS
-PRIMITIVES

#PRINT, PR 0bj
#PRODUCT a b
PUTSH shapenumber

shapespec

PX
RANDOM N

RC

RECYCLE

REMAINDER a b

REPEAT n list
RERANDOM

RIGHT, RT degrees

RL

QOutputs coordinates of turtle's
position.

Prints title lines of procedures.

Prints the list of Logo
primitives.

Prints obj followed by carriage
return (strips off outer brackets
of lists).

Outputs product of its inputs.

Gives shapenumber the
form of shapespec, the grid of
bits.

Puts reversing pen down.

Outputs random integer
between @ and n—1.

Outputs character read by the
current device (default is
keyboard). Waits if necessary.

Performs a garbage collection.

Outputs remainder of a divided
by b.
Runs list n times.

Makec RANDOM behave
reproducibly.

Turns turtle degrees right
(clockwise).

Outputs line read by current
device (default is keyboard).
Waits if necessary.

201

ROUND n

RUN /ist

SAVE device:filename

#SE obj1 obj2

SETBG colornumber

SETC colornumber
SETCURSOR pos

SETENV voice duration

SETH degrees

SETPC pennumber
colornumber

SETPN pennumber

SETPOS position

SETREAD device:filename

Outputs n rounded off to
nearest integer.

Runs /ist; outputs what /ist
outputs.

Saves workspace onto the
device.

Outputs list of its inputs.

Sets background to
colornumber.

Sets the turtle's colornumber.
Puts cursor at pos.

Sets envelope of voice for
TOOT so volume reduces by
one unit every duration.

Sets turtle’s heading to
degrees.

Sets pennumber (0, 1 or 2) to
colornumber.

Sets the pen to pennumber (0,
1 0r2).

Moves turtle to position.

Sets the device:filename from
which the output of RC and RL
will be read.

SETREAD [] Closes the file that was opened
with SETREAD.
.SETSCR n Sets aspect ratio to n.
SETSH shapenumber Sets shape of turtle to
shapenumber.
202

Appendix H

Glossary

SETSP speed

SETWRITE device:filename

SETWRITE []

SETX X

SETY y

SHAPE

SHOW 0bj

SHOWNP
SIN n
SPEED

SQRT N

SS (CTRL §)

ST
STOP

SUMa b

TELL turtlenumber(s)

THING name

Sets the turtle’s speed.

Starts the process of sending a
copy of all the characters
displayed on the screen to
device:filename.

Closes the file that was opened
with SETWRITE.

Moves turtle horizontally to
x-coordinate at x.

Moves turtle vertically to
y-coordinate at .

Outputs number representing
shape of the current turtle.

Prints obj followed by RETURN
with brackets for list.

Outputs TRUE if turtle is shown.
Outputs sine of n degrees.
Outputs current turtle’s speed.

Outputs square root of n.

Splits screen: top for graphics,
bottom for text.

Makes the turtle(s) visible.

Stops procedure and returns
control to caller.

Outputs sum of its inputs.

Addresses all following
commands to turtlenumber(s).

Outputs object referred to by
name.

203

TO name (inputs)

TOOT voice freq
volume duration

TOUCHING turtlenumberi
turtlenumber2

TRUE

TS (CTRLT)

#TYPE 0Obj

WAIT n

WHEN condnumber list

WHEN condnumber []

WHO

WINDOW

#WORD word1 word?2

WORDP 0bj

Begins defining procedure
name.

Produces sound on voice of
frequency freq and volume for
duration.

Outputs number symbolizing
collision between
turtlenumber1 and
turtlenumber?.

Special input for AND, IF, NOT
and OR.

Devotes entire screen to text.

Prints obj leaving the cursor at
the end of the printed line.

Pauses for n 60ths of a
second.

Sets up WHEN demon so
whenever condition
condnumber occurs, list is run.

Clears (stops) WHEN demon for
condnumber.

Outputs number of current
turtle.

Makes graphics screen a
window of an expanded turtle
field. Clears screen.

Outputs word made up of its
inputs.

Outputs TRUE if obj is a word.

204

Appendix H

Glossary

WRAP

XCOR

YCOR

v LR < NSRS« SRR+ SR | P -
A ~ *
o GO 2 el o T o o = B

obj1 = obj2

Special Keys

ATARI Key ()
REVERSE VIDEO KEY (I2)

*BREAK

*CTRL —

*CTRL <

Makes turtle field wrap around
edges of screen. Clears
screen.

Outputs x-coordinate of turtle’s
position.

Outputs y-coordinate of turtle’s
position.

Outputs a plus b.

Outputs a minus b.

Outputs a times b.

Outputs a divided by b.
Outputs TRUE if a is less than b.

Outputs TRUE if a is greater
than b.

Outputs TRUE if obj7 is equal to
obj2.

After this key is pressed, all
characters typed appear in
reverse video on the screen.

Aborts whatever Logo is doing.
If editing, changes made in the
edit buffer will be ignored.

Moves the cursor one position
to the right.

Moves the cursor one position
to the left.

205

CTRL T

CTRL |

*CTRL 1

*CTRL A

*CTRL CLEAR

*CTRL DELETE BACK S

*CTRLE

CTRLF
CTRL INSERT

CTRL S

CTRLT
CTRLV

CTRL W

CTRL X

*CTRLY

Moves the cursor up to the
previous line.

Moves the cursor down to the
next line.

Makes Logo stop scrolling until
CTRL 1 is typed again.

Moves the cursor to the
beginning of the current line.

Deletes text from the cursor
position to the end of the
current line.

Erases the character at the
cursor position.

Moves the cursor to the end of
the current line.

Devotes full screen to graphics.

Opens a new line at the
position of the cursor.

Split screen: top for graphics,
bottom for text.

Devotes entire screen to text.

Scrolls screen to next page in
editor.

Scrolls screen back to previous
page in editor.

Moves the cursor to beginning
of editor.

In the editor, CTRL Y inserts the
contents of the delete buffer.
Qutside the editor, inserts the
last command line typed.

206

Appendix H

Glossary

CTRL Z

“DELETE BACK S

ESC

F1,F2, F3, F4

*RETURN

*SHIFT DELETE BACK S

SHIFT INSERT

SYSTEM RESET

\ (Backslash)

Moves the cursor to end of
editor.

Erases the character to the left
of the cursor,

Completes editing and exits to
top level.

Cursor control keys that can be
programmed.

Completes the line and puts
the cursor to the beginning of
the next line.

Deletes text from the cursor
position to the end of the
current line.

Opens a new line at the
position of the cursor.

Reboots Logo, erasing the
memory space.

Tells Logo to interpret the
character that follows it literally
as a character, rather than
keeping some special meaning
it might have. You have to
backslash [,], (,), +, —, *, 7,
=, <, >, and itself.

207

208

Index

209

Index

* 87
+ 85
- 86
ey 17,93
s 88
N\ 52
- 10, 13
< 88
= 71,89
> 89
[10,177
] 10, 177
A

ABS 87, 166
addition 85
AND 121
ANNOUNCE 69
ASCII 55
ASK 25
aspect ratio 158
ATARI key (M) 6, 49
B

BACK, BK 25
backslash, 52, 176, 178
BEFORE 168
BETWEEN 89
BG, background color 26
BIG 154
BIGGER 154
BIGWELCOME 10, 15
brackets, [] 10, 177
BREAK key 6, 49, 96, 99
buffer 93
BUTFIRST, BF 56
BUTLAST, BL 57
byte 21

c

CALCULATOR
.CALL

CAPITAL

CAPS LOWR key
CATALOG
CHANGEBG
CHANGESH
CHAR
character
CHECK

CLEAN
CLEAR.DEMONS
CODE

Collision Detection
colon ()

COLOR

color, background
colornumber
color, pen
COME.AND.GO
command
COMMENT
COND
conditionals
condnumber
COPYDEF

Ccos

COUNT
COUNTDOWN
CS (clearscreen)
CT (cleartext)
CTRL key

CTRL 1

CTRL «+

CTRL —

CTRL 1

110
154
75

7
146,147
38
36
58

21
121
27
166
55
104
10,13
27
26

21
34

12
57
105
102
21
166
79
59
112
27
126

95
6, 49, 94
6, 49, 94
6, 49, 94

CTRL { 6, 49, 94
CTRL CLEAR 95
CTRL DELETE BACK S 95
CTRL INSERT 95
CTRL A 94
CTRLE 94
CTRLF 127
CTRLS 133
CTRLT 134
CTRLV 95
CTRLW 95
CTRL X 94
CTRLY 95
CTRLZ 94
cursor 4
cursor motion 49, 94
D

D6 81
DECIDE 107
decimal number 78
DECIMALP 121
DEFINE 166
degrees 21
DELETE BACK S key 6, 95
delete buffer 93
delimiter 176
device 21
DEMONS.TASK 116
.DEPOSIT 154
difference 86
diskette 4,146, 147
distance 21
DISTANCE 84
division sign () 88
DIVISORP 167
DOT 167
DOT1 167
DRIVE 129, 130
duration 21, 132, 134

E

EACH
EASTWARD
EDIT, ED

edit buffer
EDNS

EDSH

element
empty list
empty word
EMPTYP

END

EQUALP
equals sign (=)
ERALL
ERASE, ER
ERF

ERN

ERNS

ERPS

error message
ESC key
EVENP

EVENT
.EXAMINE
exponent
exponential form
EYES

F

F1, F2, F3, F4
FACTORIAL
FALSE

field
filename
files
FIND.THEM
FIRST

FLIP

28

41
97
93
98
29,48
52
53

53
60
98

61
71,89
138
138
147
16, 139
139
139
158
6, 49, 96, 97
82
104
155
78
78
150

49
87
122
35, 40, 42
21
146
117
62
13

flow of control 102
FOREVER 112, 167
FORWARD, FD 29
FPUT 63
frequency, freq 21, 134
FROM.HOME 84
FS (CTRL F) 126
G

garbage collection 143
garbage collector 143
GET.USER 131
GETSH 30
global variable 15
greater than sign (>) 89
GREET 99
H

halting 102
HEADING 32
HALT.AT 44
HOME 32
home position 25,32
HT (hideturtle) 33
i

IF 106
INC 76
INIT.TURTLE 168
infix procedures 177
inputs 9,21,74
INSERT 168
instructionlist 21
INT (integer) 79
integer portion 79
INTP 80
ITEM 59, 108, 168
J

Joy 127
JOYB 127
JOYH 115
joysticknumber 21

K

KEYP 128
L

LAST 63
LATIN 70
LEFT, LT 33
less than sign (<) 88
literal word 11
LIST 64
list 11, 21,58
LISTP 65
LOAD 148
local variable 15
logical operation 120
logo line 16
logo object 20
LOWERCASE 58
LPUT 66
M

MAKE 14,74
MAP 111
MARK.TWAIN 108
MEMBERP 67
minus sign (=) 86, 178
MOUNTAINS 124
MOVE 135
multiplication sign (*) 87
N

name 15, 21
namelist 21
NAMEP 75
negative numbers 86
NEWENTRY 66
NODES 139
NOT 122
NUMBERP 68

o

object 22
operation 12
OR 123
OUTPUT, OP 107
OVER 103, 109
P

PADDLE 128
PADDLEB 129
paddienumber 22
parentheses () LTT8
PC (pencolor) 34
PDRAW 128
PE (penerase) 34
PEN 34
PENDOWN, PD 34
pennumber 22, 34
PENUP, PU 34
PIG 70
PLAY 116
plus sign (+) 85
PN (pennumber) 35
PO 140
POALL 140
POD 141
PODS 141
POLY 92, 110
PONS 16, 142
POPS 142
POS 35
position, pos 22
POSITIVE 107
POTS 143
pred, predicate 22, 108,120
.PRIMITIVES 155
primitive 8
PRINT, PR 9,129
PRINTBACK 64

PRINTMESSAGE 93
printer 146, 149
procedures 8
PRODUCT 80, 87
prompt 4
PROMPT 135
PR.OUT 167
PUTSH 35
PX (penreverse) 37
Q

quotes 10, 327
R

RANDOM 81
random number 81, 82
RANK 61
RANPICK 59
RC (readchar) 130
READLINE 169
REALWORDP 123
recursion 102
RECYCLE 143
REMAINDER 81
REPEAT 109
repetition 102
REPLACE 36
REPRINT 130
RERANDOM 82
RETURN key 5,95
REV 63
REVERSE VIDEO key ()6, 49
RIGHT, RT 37
RL (readlist) 131
root 84
ROUND 83
RUN 110

S

SAVE "D: 148
SAVE "P: 148
scientific notation 78
screen 126, 133, 134
scrolling 95
SE 68
SECRETCODE 55
SETBG 38
SETC 38
SETCURSOR 131
SETENV 132
SETH (setheading) 38
SETPC 39
SETPN 40
SETPOS 40
SETREAD 149
SETREAD [] 146, 149
.SETSCR 155
SETSH 41
SETSP 41
SETUP 29, 106, 116
SETWRITE 146, 150
SETWRITE [] 150
SETX 42
SETY 42
SHAPE 43
shapenumber 22
shapespec 22
SHIFT key 5

SHIFT CAPS LOWR

7é

SHIFT DELETE BACK S key 95

SHIFT INSERT
SHOOT

SHOwW
SHOWNP

SIN

SINE

95
105
133

43

83

48

SLOWFD
SMALL

SORT
SOUND.RANGE
space

SPACE BAR
SPEED

SPI

SPRING

SQRT (square root)
SQUARE

SS (CTRL S)

ST (showturtle)
STEER

STOP
SUBMOUNTAIN
subprocedure
SUBSET
subtraction
SUFFIX

SUM
superprocedure
SUPERSORT
SYSTEM RESET key
T

TALK

TAN, tangent
TELL

TEST

TEXT

THING
TIMEOUT

title line

TO

TONEO

TONE1

TOOT
TOUCHING

113
154
168
134
173
5,49
43

141
116

84
899,111
133
44
128
112
124

102,

108
86
70
85

168

60
79
44
176
169
76
132
8
99
132
132
134
103; 118

TRIANGLE 56 X

trigonometry 78,79 X-y coordinates 35, 42
TRUE 124 XCOR 47
TS(CTRLT) 134 Y

TURN 128 YCOR 47
turtle field 35, 46, 47

turtlenumber 22 a+b 85
turtle shape editor 48 2 -0 86
TYPE 135 a+*b 87
\') a /b 88
value 11, 74 a<bhb 88
variable 10,13, 74 a>b 89
voice 22 a=>b 89
volume 22

VOWELP 67

w

WAIT 113

WATCH 117

WELCOME 8

WHEN 102, 114

WHEN [] 114

WHICH 169

WHILE 111,170

WHO 45

WINDOW 46

WORD 69

word 11, 22, 52

word delimiter 52

WORD? 122

WORDP 70

workspace 138

WRAP 47

Notes

Notes

| e T s

Every effort has been made to
ensure the accuracy of the pro-
duct documentation in this
manual. However, because we
are constantly improving and
updating our computer software
and documentation, Logo Com-
puter Systems, Inc. is unable

to guarantee the accuracy of
printed material after the date of
publication and disclaims liabili-
ty for changes, errors or
omissions.

No reproduction of this docu-
ment or any portion of its con-
tents is allowed without the

specific written permission of
Logo Computer Systems, Inc.

© 1983 Logo Computer
Systems, Inc.
All rights reserved.

(»Cem)

Logo Computer
Systems, Inc.

9960 Cote de Liesse
Lachine, Quebec
Canada H8T 1A1

© 1983 Atari, Inc.
All Rights Reserved

Printed in Canada
C061589

