Staryi L.ogo Programming Examoles

1) INTRODUCTION
2) VIDEO TURTLE
3) BETREAD and SETWRITE
4) LIST PROCESSING
a) FRENCH QUIZ
b) TAPETIME
o) FLASHCARDS (with global variables)
d) FLASHCARDS {with local variables)
5) ATARI LOGO RESOQURCE GUIDE

ATARI INC, .
CONSUMER PRODUCT SERVICE - : - STt
PRODUCT SUPPORT GROUP
1212 Crossman Ave,
Sunnyvale, CA 74022

200~672-1404 inside CA e
800-5328-854% putside CA _ s s -

With many thanks to Brian Harvey at Atari Research and Development for his time,
: patience and encouragement,

DEMOPAC # 11
REV.1 JG/11/83

ATARI LOGO PROGRAMMING EXAMPLES
Introduction
JG/10/23

Frogramming in Logo is quite different from programming in a line oriented language
like BASIC, Logo is a structured language. Because of this structure, it is easy for a
person working in Logo to break down a problem into smaller problems and write
procedures that solve each step of the smaller problem. The main procedure for a
Logo program that draws a house might look like thiss

TO HOUSE
WALLS
DOOR
"WINDOW
ROQF

END

Each of the tasks required to solve the problem can be broken down into smaller tasks.
A procedure can then be written and tested independently of the main program. This
modular approach to problem solving is one of the characteristics that make Logo such
an excellent "language for learning."

The key to programming in Logo is understanding Logo grammar. A Logo program can
be thought of as a sequence of procedures {(all Logo primitives are considered to be
built-in procedures). Each procedure takes one or more inputs and produces one output.
The procedure takes the input, processes it according to its definition and produces an
output, This output can then be used as an input to another procedure, (See the Atari
Logo Reference Guide for examples and further discussion.) '

Programming in Logo consists of defining new procedures. Each newly defined
procedure is treated by Logo exactly like a built in primitive, The ability to define
new procedures is sometimes called extensibility. This extensibility is responsible
for much of Logo’s power and beauty.

Since there are many books written on Logo turtle graphics (see the Atari Logo
Resource Guide), the enclosed programs demonstrate various aspects of Logo
programming that are difficult to understand, not documented in the Atari Logo
manuals, or are unique to Atari Logo, Most of the programs written for other versions
of Logo will work in Atari Logo with little, if any, modification, Exceptions could
occur with programs using list processing and/or local variables. Atari Logo differs
from other Logos in its use of the LIST operation and in the ways it can handle local
variables. The following discussions on list processing and local variables should
help in converting programs written for other Logos and creating programs in Atari
Logo.

LOCAL AND GLOBAL VARIABLES

Cne of Logo’s more important features is that it supports local as well as global
variables, Global variables are variables that remain in existence throughout the
execution of a program. All variables in BASIC, for example, are global, Local
variables, however, are local to the procedure that calls them, and only exist while the
procedure is running. If we MAKE "NAME JOHN at toplevel, then JOHN will always
be the thing in MNAME. MNAME is now a global variable, To use MAME as a local
variable, NAME must be used as an input to a procedure as in the following procedure!

TO GREET INAME
PR SE [HI THERE] {NAME
END

GREET will use a local variable NAME which takes on the value of the object that is
input to GREET. Thus, if we type GREET BIGWIG then GREET will output the
sentence "HI THERE BIGWIG", If we then type PR !NAME, Logo will print "TOHN*,
JOHN is still the thing in MAME because NAME was made a global variable with the
above statement MAKE "NAME JOHN,

If NAME is a global variable and JOHN was the thing in MAME, why did GREET output
"HI THERE BIGWIG" instead of "HI THERE JOHN?" The reason is that GREET takes
a variable as an input, Whenever a variable is an input to a procedure, it becomes a
local variable and creates its own private "library", While the procedure GREET is
run, the input to GREET will become the thing in NAME. When the procedure is
completed, NAME regains the status that it had before GREET was executed, In this
case, JOHN again becomes the thing in NAME because that is what it was bhefore
GREET was called,

Local variables are an essential aspect of structured programming and they are
necessary to take full advantage of the modular structure of Logo., In some versions
of Logo, a local variable can be created as an input to a procedure (as in the abave
example) ar by using the primitive "LOCAL" as follows:

TO GREET
LOCAL "NAME

PR [WHAT I5 YOUR NAME?]
MAKE "NAME RL
PR SE [HI THERE] INAME
END

The advantage of using the "LOCAL" primitive is that the user can use MAKE to
assign values to local variables without requiring the variable to be an input toa
procedure. Because Atari Logo does not contain the "LOCAL" primitive, using local
variables interactively can require more steps as the following example illustrates!

TO GREETING

PR [WHAT I5 YOUR NAKE?]
PRINTMNAME EL

END

TO PRINTNAME INAME
PR SE [HI THERE] !NAME
END

In Atari Logo a local variable must be an input to a procadure, In the example above,
GREETING reads a list from the keyboard and passes it as an input to the procesaure
FRIKTHAME, While PRINTNAME is running !NAME has the value of the list enrered
from the keyboard, When PRINTNAME is finished it returns to GREETING and MAME
becomas whatever it was before GREET was executed.

To use 'MAKE' with local variables we could do the folloawing:

TO GREETING

PR [WHAT IS YOUR NAME?]
PRINTNAME RL

END

TO PRINTNAME {NAME

MAKE "NAME SE INAME "COMPUTERS
PR SE [HI THERE] INAME

END

If we type ATARI in response to the prompt WHAT IS YOUR NAME? the zhove
procecure PRINTNAME outputs the sentence "HI THERE ATARI COMPUTERS",
Without the LOCAL primitive, all local variables must be passed as inputs to a
procedure. When MAKE is used with a variable that is an input to a procedure as in
the above example, the variable remains local. If MAKE is used at toplevel or with a
varianle that is not an input to a procedure, then a global variable is created. A major
advantage of using local variables in procedure definations is that a Logo library or
tool kit may be created. Since each variable is local to the procedure that usss it,
there is no problem with conflicting variable names. Thus once a procedure is defined
with local variatles, it can become part of the programmers library and used in other
programs when the need arises. For a more detailed study of the uses of local and
global variables, refer to the FLASHCARDS examples in the list processing sectan of
this document. For an in-depth study of logo grammar refer to Harold Ableson‘s book
Appie Loga. Details of it and other useful resources are listed in the inclosed Atari
Logo Resource Guide,

NOTE TO ADVANCED PROGRAMMERS

The manner in which Atari Logo interfaces with the Operating System is very different
from BASIC or PILOT, BASIC, and to a lesser extent PILOT, allow a high degree of
access to the Operating System (0S)., Atari Logo overides many of the OS capabilties
and renders them inaccessible to the user. Alternate text and graphics modes,

changing screen margins, etc,, are some of the OS optians that are not avaiiable to
simple . DEPOSITS (POKES), Logo does support an assemoly language .CALL command
which may make it possible to overide some of the defaults of the O&,

VIDEQ TURTLE

The Joystick and the Turtle
JG/3780

VIDEO TURTLE is a program that teaches the turtle to "listern" to the joystick, The
turtle will respond to the commands from the joystick to set its heading to any
increment of 43 degrees and then take five steps forward, Pressing the joystick
trigger will change the turtle and pen to the next of three preset colors and all
following commands will then be carried out in the current turtle and pen color until
the trigger is pressed again. (The preset pen and turtle colors in this version are red,
yellow and blua,)

Tha pen and turtle colors are changed by using a WHEM demon in the SETUP procadure,
The WHEN demon enables the Atari Logo collision detection and sets up a demon to
constantly check for a collision or event, In this case the event is the pressing of the
joystick trigger, one of the 20 types of collisions or events that WHEN demons can
detect.

To make this program usable to younger turtle fans and to give more variety to the
turtle’s activities, a HELP menu is included when the program is started. The HELP
menu can be removed any time a full screen graphics display is desired. While the
basic draw and turn commands are given with the joystick, the HELP menu suggests
other commands that may be given through keyboard entry, The DRAW procedure
contains the KEYP predicate that checks for a keypress and executes the desired
instruction via the PEN,UP,.DOWN procedure.

VIDEO TURTLE
JG/7E3

TO START
INSTRUCTIONS
SETUP

HELP

DRAW 3

END

TO INSTRUCTIONS

SETBG 1

TS CT SETCURSOR [10 21

PR [VIDEQ TURTLE 1

PRIIPRI]

PR [PLUG IN A JOYSTICK IN PORT #1113

PRI1])

PR [TO CHANGE THE TURTLE'S PENCOLOR PRESS THE JOYSTICK BUTTON]
PR [1

PR [THE TURTLE STARTS WITH THE YELLOW PEN DOWN]
PRITIPRI]

PR [TO RECALL COMMANDS PRESS H_ FOR HELP]
SETCURSOR [4 201

FR [# PRESS ANY KEY TO BEGIN #]

KEYPRESS RC

END

TO KEYPRESS (ANYKEY
END

TO SETUP

CTCSFSST TELL O

SETPN O

SETPC 175

SETPC 2 35

SETBG 1

SETC 15

WHEN 3 [CHANGEPN CHANGETURT.CLRI
END

TO HELP

CT S5 :

PR [U PICKS UP THE PEN]

PR [D PUTS DOWN THE PEN]

PR {_X PUTS REVERSING PEN DOWN]
PR [C_CLEARS SCREEN]

PR [E_ERASE HELPI]

- END

TO DRAW ISTEP

IF KEYP [PEN.,UP,DOWN RC]
CHECKJOY JOY O

DRAW ISTEP

END

VIDEOQ TURTLE

[y %
<

TO CHECKJOY POS
IF POS < 0 [5TOP]
SETH 45 * {POS

FD ISTEP

END

TO CHANGEFN

IF PN = 2 [SETPN 0 STCF]
SETPN (PN + 1)

END

TO CHANGETURT.CLR
IF PN = 0 [SETC 151
IF PN =1 [5ETC 73]
IF PN = 2 [BETC 333
END

TO PENL.UP.DOWN {UPDOWN
IF {UPDOWN = "E [CT FS]
IF {UPDOWN = "H [(HELP]
IF {UPDOWN = "X [PX]
IF {UPDOWN = "C [SETUP]
IF {UPDOWN = "U [PU1]

IF {WUFDQWN = "D (FD]
END

USING SETREAD AMD SETWRITE
More Than Just Dribbling
JG/a/ 23

The Atari Logo Reference Manual states that SETREAD and SETWRITE may be used to
create a "dribble" file by recording the screen output to either a printer, disk or
cassette, There is another use for SETWRITE that is not menticned in the Atari
manual, SETREAD and SETWRITE function like the "OPEN" command in ATARI BASIC,
They open an Input Output Control Block (IOCB) for reddmg or writing to a device
(casette, disk or printer)

The Atari Logo Reference Manual describes the SAVE command for saving the contents
of the workspace to a specified device. The drawback to using this method when
saving thz workspace is that the procedures are saved in the order that they were
written in, not in the logical order in which they are used. This can make for hard to

read programs. The following program uses the procedure PRINTER to print readable
listings to the printer!

TO PRINTER

SETWRITE "P:

PRITITLE]

PRI}

PRINAME AND DATE]
PRI1]

PO [PROCEDURE NAMES]
SETWRITE [3

END

PRINTER opens a channel to the printer with the SETWRITE "P! command. The next
line prints any title for the heading of the listing, PR [1 prints a blank line for
formatting purposes., Then the name and date are printed, Another blank line and then
the command PO [FPROCEDURE MAMES] prints cut the procedures names in the order
listed inside the brackets. This allows control over the sequence of the procedures in
the printout. If three procedures "OME, TWO, and THREE" were created in the order
THREE, TWO and ONE and thay were printed to the printer using the SAVE "P! they
would be printed in the sequence THREE TWO ONE. But if they were printed using the
PRINTER procedure, PO [ONE TWO THREE], they would be listed in the sequence ONE
TWO THREE. The SETWRITE [1 command is used to close the file and return output
back to the screen. It is important to use the SETWRITE and SETREAD commands
within a procedure to avoid the "dribble" effect mentioned abave.

SETWRITE can also be used when saving procedures to disk. If you have ten
procedures in your workspace and you want to save three of them to a disk file
SETWRITE can be quite useful. Instead of erasing all the procedures you don’t want
and then using the SAVE command to save the three you want the following procedure
can be used:

SETREAD and SETWRITE

—

TO SAVE.DISK
SETWRITE "IXDEMO
PO [ONE TWO THREE]
SETWRITE []

END

The file DEMO now contains the desired three procedures. Files created with the
above procedure can be LOADed just like a file saved using the SAVE command, It is
not necessary to use SETREAD to read files saved in the above manner.

LIST PROCESSING
Life Euyond Turtle Graphics
JG/10/ES

The programs that follow will help you understand and use some of the beauty and
pawer of the less known aspects of Atari Logo. There are a great number of books and
articles on turtle graphics, (see the Atari Logo Resource Guide) but very few if any on
Loga’s non-graphics capabilities. It is the intention of this document to help fill that
gap. Please experiment with changing the programs to learn how they work. After all,
experimentation and discovery are what Lego is all about,

FREHNCH QUIZ

FRENCH QUIZ is an example of using Logo’s list processing to make a simple quiz, In
BASIC this could be done with READ DATA locp. (See inclosed examples The
procedure QUIZ puts the data to be used in the quiz into a list, QUIZ then calls the
procedure QUES and passes the list to QUES. The data list is stored in the local
variable WORDLIST in QUES,

The line "IF EMPTYP !WORDLIST..." tests to see if the list WORD is empty. If
‘WORDLIST is not empty, the program continues, The next line "PR [WHAT IS
FRENCH FORL.." tells Logo to find the first item of the first list in {WORDLIST and
print it as part of the sentence [WHAT IS FRENCH FORIl... The first item in
‘WORDLIST ie [BOX BOITE] and the first of the first item is BOX, Logo now prints
the sentence WHAT IS FRENCH FOR BOX?, The next line IF EQUALP (FIRST
RL)wchecks to see if the answer typed in (FIRST RL) is the same as the (LAST FIRST
{WORDLIST).

The first time through the program the answer typed in would be compared to BOITE,
which is the last of the first item in IWORDLIST, If the word typed in is not BOITE
then EQUALP evaluates as "false". The program then goes to the naxt line and prints
"TRY AGAIN", The recursive call QUES {WORDLIST sends WORDLIST back to the top
of the procedure QUES where the process is repeated until BOITE is typed in.

When the word typed in is BOITE then EQUALP evaluates as "true" and executes the
instructionlist [PR [YOU GOT IT!] QUES BF {WORDLIST1, First "YOU GOT IT™ is
printed on the screen, Hext the first item in WORDLIST [BOX BOITE] is removed as
WORDLIST becomes BF WORDLIST, WORDLIST now contains the list [[PEN PLUME]
[WINDOW] [FENETREl]. Finally the new WORDLIST is sent back to the top of the
procedure with the recursive call QUES BF (WORDLIST, This process is repeated until
‘WORDLIST is empty, When EMPTYP {WORDLIST evalutes to "true" (empty) then "END
OF QUIZ" is printed to the screen and the procedure QUES stops. The program now
returns to the calling procedure QUIZ and executes the next line EMD which ends the
program, :

The basic routine of creating a list, looping through the list, displaying selected items
in the list, and testing the list for a match or an empty list, can be used in a wide

List Procssing

-7
4

variety of Logo list processing applications.
TAPETIME

TAPETIME allows the user to enter in the names and times of songs on a record album.
The program then prints a list of all the songs and their times along with a list of the
total time of the album. TAPETIME follows the general pattern of FRENCH QUIZ but
is a little more intricate in that the lists are created by receiving input from the
keyboard, In FREMCH QUIZ the list was created by the programmer in the QUIZ
procedure, '

Tha procedure START is the main procedure for TAPETIME. The rest of the
procedures, INSTRUCTIONS, SETUP, etc,, are the subprocedures that are called by
START. After each subprocedure is called and executed, the program returns to the
main procedure (START) and then calls and executes the next subprocedure, Some Logo
programmers prefer to name the main procedure something functional like START or
BEGIN while others like to title the main procedure the same name as the program (in
this case TAPETIME), In this example; I have chosen START to designate the main
orocedure,

The first subprocedure INSTRUCTIONS clears the screen and prints the instructions
for using the program. The procedure SETUP initializes variables SOMGLIST,
TOTMINUTES and TOTSECOMDS, SONGLIST is given the value of an empty list ‘[
while TOTOMIMUTES and TOTSECOMDS are given the value 0. In ENTERSONG, if we
attempt to MAKE "SONGLIST LPUT 50NG SOMGLIST we will get an error telling us
that {SONGLIST has has no value. By giving the value of an empty list to "SONGLIST
the error is avoided, Whenever a list is used it must have a value. Ifit hasnot
received one earlier in the program, it must be assigned as an empty list before it can
be used. Although they are not lists; the same basic rule applies for TOTMINUTES
and TOTSECONDS. They must have a value in order to be used in a program.

ENTERSONG is the subprocedure that creates the user-generated list, After the song
title, minutes and seconds are entered into their respective variabls by the user, the
program puts them into a sentence and the sentence into a variable called SONG with
the program line MAKE “"SONG (SE 5OMNG MINUTES [!] !SECONDS), Then The next
statement MAKE "SONGLIST LPUT (SONG iSONGLIST, makes the song and time in
SONG the last item in the list SONGLIST, The minutes are added to the total minutes
and the seconds are added to the total seconds. The process repeats until RETURN is
pressed signaling the end of the song entries,

PTEST then asks if the total list - .ld be sent to the screen or the printer and
stores the device name (P or S) in th: -iable DEVICE. PTEST then passes the device
selection to ENDRECORDS, ENDREC -'DS then prints the album title to the selected
device (screen or printer) and then ca. s PRINTLIST and passes the list SONGLIST to
PRINTLIST. PRINTLIST tests to see if LIST is empty, It then prints the first item,
makes the list all but the first item, and then repeats the process until LIST is emtpy.
The program then returns te ENDRECORDS where the next procedure COMPUTE,TIME
is called,

List Procsesing

COMPUTE.TIME receives as its input a value for the total seconds of all the songs
(TSECS) and then displays the total time in minutes and seconds,

FLASHCARDS

FLASHCARDS is a program that functions as electronic flashcards, The program is
presented twice; once with local and once with global variahles, Both versions of
FLASHCARDS are similar to TAPETIME in their general structure with the addition
that FLASHCARDS also makes use of the material discussed in SETREAD and
SETWRITE to create data files, ’

To create the data for FLASHCARDS the main procedure MAKEQUIZ is used, The data
is entered in ENTER.NAMES follows the general format discussed in TAPETIME.
AVE.QUIILIST creates the data file. First the screen is cleared and the cursor is set
to the middle of the screen. The message "SAVING TO DISK" is then printed to the
screen. After a pause of one second (WAIT 40) the screen display is turned off with a
DEPOSIT $3% 0. The screen display is turned off to prevent the data in QUIZLIST
from being displayed on the screen while the file is being saved to the disk. (When
using SETWRITE the data saved is normally displayed on the screen,) SETWRITE
"DIQUIILIST creates a file on the disk called QUIZLIST. The nextline, PR !QUIILIST
stores the list QUIZLIST on the diksette, SETWRITE [1] closes the file., The cursor is
then positioned in the center of the screen, the screen display is turned on, and the
message "SAVE COMPLETED" is displayed,

TAKE.QUIZ is used to retrieve the data from the disk and to present it on the screen
in a flashcard format. READ,QUIZLIST uses SETWRITE "DIQUIZLIST to open the data
filefile QUIZLIST that was created with the SAVE,QUIZLIST procedure. The list
QUIILIST is then put into the variable QUIZILIST with the line MAKE "QUIZLIST RL.
SETREAD [1 closes the file, IMIT puts the first item from QUIZ,LIST into a variable
DISPLAY.LIST. The first item of QUIZLIST contains the data for the first round of
the quiz (.. a president’s name, homestate and what the president is famous for),
DISPLAY.LIST then displays the data in the flashcard format. NEXTLIST prints the
first item of the list and then performs the now familar process of removing the first
item of the list and and storing the rest of the list back into the variable (in this case
DISPLAY.LIST), After cycling through all the data for one round of the quiz,
MOVELIST then drops the first item of QUIZLIST and stores the rest of the data back
into DISPLAY.LIST, Then the next round of data is cycled through the DISPLAY.LIST
procedure, When EMPTYF evaluates te "true” in NEXTLIST and MOVELIST, they
return to DISPLAY,LIST which returns control to TAKE.QUIZ, TAKE.QUIZ then calls
the last procedure END.OF.QUIZ which ends the program.

FLASHCARDS (with local variables) performs the same results as FLASHCARDS (with
global variables)s The difference is that instead of being stored into global variables
with the MAKE command, the data becomes the input to a subprocedure. The
subprocedure then performs the required operation and then returns to the calling
procedure, Sometimes the extra complexity needed to use local variables in a program
may not be worth the gain. The general rule is to use local variables when ever
possibles Although FLASHCARDS (Local) may appear to be more difficult to write, the
advantage is that with a little modification it could be uses as a general quiz program

List Procssing
-

whereas FLASHCARDS (Global) can only be used for one specific quiz (in this case a
gquiz on Presidents,) The local version is also more elegant and takes better
advartage Logo’s procedural structure, For those familar with programming in BASIC,
the gisbal version may be easier to follow, but it is hoped that the local version will
zerve as an example of how to make the most of programming in Atari Logo,

FRENCH QUIZ
JG/E/23

TO QUIZ
CT
QUES [[BOX BOITE] [PEN PLUME] [WINDOW FEMETRE1]

" END

TO QUES {WORDLIST

PRIL1]

IF EMPTYP {WORDLIST [PR [END OF GUIZ1 STOP]

PR (SE [WHAT IS FREMCH FORIJ FIRST FIRST !WORDLIST [?1)

IF EQUALP (FIRST RL) (LAST FIRST {WORDLIST) [PR [YOU GOT IT!'1QUES BF WORDLIST]
[FR [TRY AGAIN] QUES {WORDLIST]

END

FREMNCH QUIZ (BASID)
JG/rasea

10 REM #* ATARI BASIC FRENCH QUIZ %=
20 REM #% INCLUDED IN THE ATARI LOGO PROGRAMMING EXAMPLES
100 OIM ENGLISH$(20),FREMCH$(Z 01, ENGS(30)
110 PRINT "
120 READ EMGLISHS,FRENCHS
120 DATA BOX,BOITE,PEN,FLUME, WTITDDWyPENLTR.E
140 PREINT "WHAT IS FRENCH FOR ";ENGLISH3"?"
150 INPUT ENG3$
160 TRAP 190
170 IF ENG%$=FRENCH$ THEN PRINT "YOU GOT IT!"i{PRINT !GOTO 120
120 IF ENG${>FRENCH#% THEM PRINT "TRY AGAIN™PRINT !GOTO 140
120 PRINT {FRINT "END OF QUIZ"

EMOPAC ##

TO START
INSTRUCTIONS

SETUP

ENTERSONG

PTEST

ENDRECORDS {DEVICE
END

TO INSTRUCTIONS

CT PR [TYPE I¥ THE SONG TITLES AND TIMES AS]

PR [INDICATED,] ’

PR [TO END THE PROGRAM, PRESS RETURN WHENASKED FOR THE SONG TITLE.]
PRIIPRI]

END

TO SETUP

MAKE "SONGLIST [1]

MAKE "TOTMINUTES 0

MAKE "TOTSECONDS ¢

PR [TYPE IN THE TITLE OF THE ALBUM]
PR L1

MAKE "TITLE RL

PRIJIPRI]

END

TO ENTERSONG

PR [TYPE IM SONG TITLE]

MAKE "S50NG RL

IF EMPTYP {S0NG [STOP]

PR [1

PR ETYPE IN MINUTES]

MAKE "MINUTES FIRST RL

IF NOT NUMBERP :MINUTES [PR [NEED NUMBEER,; RE - ENTER PLEASE] PR []
ENTERSONG 5TOP]

PR L]

PR [TYPE IN SECONDS]

MAKE "SECONDS FIRST RL

IF NOT NUMBERP !SECONDS [PR [NEED A NUMBER, RE - ENTER PLEASE] PR []

ENTERSONG STOFP]

PR L]

MAKE "SONG (SE 1SONG ‘MINUTES [:] {SECONDS)

MAKE "SONGLIST LPUT SONG 1SONGLIST

PR S0ONG

PRI]

MAKE "TOTMINUTES {TOTMINUTES + :MINUTES

MAKE "TOTSECONDS !TOTSECONDS + {SECONDS

PR [] ENTERSONG

END

TAPETIME

[y

TO PTEST

PR [TO SCREEN OR PRINTER? TYPE P OR 51
MAKE "DEVICE RC

END

TO ENDRECORDS :DEVICE

IF IDEVICE = "P {SETWRITE "P:]

CTPR(SE ["] {TITLE [{"]1)

PR [CONTAINS THE FOLLOWING SELECTIONS!]

" PRI

PRINTLIST {SONGLIST

COMPUTE,TIME (!ITOTMINUTES # 40) + {TOTSECONDS
SETWRITE [1]

END

TO PRINTLIST (LIST

IF EMPTYP !LIST [STOP]
PRINT FIRST !LIST
PRINTLIST BF iLIST
END

TO COMPUTE.TIME ITSECS

PRI{1] .
PR (SE [TOTAL TIME IS] INT ({TSECS / &0) [11 REMAINDER {TSECS 40
- END :

FLASHCARDS (Idith Global Variables)
JG/A10/53

TO MAKE.QUIZ
MAKE "QUIILIST []
ENTER.MAMES
SAVE.QUIILIST
END

TO ENTER.NAMES
CT
PR {PRESIDENT'S NAME?]
MAKE "PRESMNAME RL
PRI]
IF EMPTYP (PRESNAME [5TOP]
PR [HOME STATE?]
MAKE "HOMESTATE RL
PR I[1
PR [KNOWN FOR?]
MAXE "ENOWNFOR RL
MAKE "NAMELIST LPUT KNOWNFOR LIST {PRESNAME ‘HDMEQTATE
r‘iAKE "QUIZLIST LPUT {(NAMELIST (QUIILIST
ENTER.MAMES
END

TO SAVE.QUIZILIST

CT SETCURSOR [10 101
PR [GAVING TO DISK]
WAIT &0

DEPOSIT 359
‘SETWRITE "D.QUIZLIST
PR IQUIZLIST
SETWRITE [1
SETCURSOR [10 101
+DEPOSIT 557

PR [SAVE CDMPLETED]
IND

TO TAKE.QUIZ

- READ.QUIZLIST
INIT
DISPLAY.LIST
END.QF.QUIZ
END

TO READ.QUIILIST
SETREAD "DIQUIZLIST
MAKE "QUIZLIST RL
SETREAD {1

END

FLASHCARDS (Global)

-2

TO INIT i
MAKE "DISPLAY.LIST FIRST IQUIZILIS
END

TO DISPLAY,LIST

IF EMPTYP IDISFLAY.LIST [STOPR]
CT

TYPE [PRESIDENT'S MAME >]
HEXTLIST PR L1
PRI1]

PRI]
PR [HOME STATE?]
PRI]
PRI1]

CONTINUE

MEXTLIST PR (13
PRIL1] '
CONTINUE

PRI]

PR [KNOWN FOR?]
PRI]

FR [] CONTINUE
NEXTLIST

CONTINUE

MOVELIST
DISPLAY.LIST

END

TO NEXTLIST

IF EMPTYP {DISPLAY,LIST [STOP]

FR FIRST {DISPLAY,LIST

MAKE "DISPLAY.LIST BF !DISFLAY.LIST
END

TO CONTINUE
MAKE "ANYKEY RC
END o

TO MOVELIST

MAKE "QUIILIST BF {QUIZLIST

IF EMPTYP !QUIILIST [5TOF]

MAKE "DISPLAY.LIST FIRST IQUIZLIST
END

TO END.QF.QUIZ

CT

SETCURSOR {3 10]

PR [+ # ¥ END OF QUIZ * # #]
END

~

FLASHCARDS (With Local Variables)
JTG/10/33

TO MAXE.QUIZ
MAKE "QUIZLIST (1
ENTER.NAMES

AVEWQUIILIST
END

TO EMTER.NAMES

CT

MAKE "MAMELIST [1

READITEM [(PRESIDENT'S NAMET]

IF EMPTYP FIRST !NAMELIST [STOP]
READ.ITEM [HOMETOWN?]

READJITEM [KNOWNFOR?]

MAKE "QUIZLIST LPUT IMAMELIST 'QUIZLIST
ENTERE.NAMES

END

TO READ.ITEM (FROMPT
FRI]

" PR IPROMPT

ADDJITEM RL
END

TO ADD.ITEM ITEM
MAXE "NAMELIST LPUT ITEM .NAMELIST
END

TO SAVE.QUIZLIST

CT SETCURSOR [10 101

PR [SAVING TO DISK]

WAIT &0

DEPOSIT 559 0

SETWRITE "DIQUIZLIST

PR IQUIZILIST

SETWRITE L]

.DEPDSIT 559 98
SETCURSOR [10 101

PR [SAVE COMPLETED]

END

TO TAKE.QUIZ
READ.QUIILIST
DISPLAY.LIST IQUIZLIST
END.OF.QUIZ

END

TO READ.QUIZLIST
SETREAD "DIQUIZLIST
MAKE "QUIZLIST RL
SETREAD [1

END

FLASHCARDS (Local)

-t
i

TO DISPLAY,LIST QUIZLIST
IF EMPTYP IQUIZLIST [STCP]
QUESTIOMNS FIRST IQUIZLIST
DISPLAY,LIST BF QUIZLIST
END

TO QUESTIOMNS [FACTS

CT

TYPE [PRESIDENT > 1

PR FIRST {FACTS

ASKOMNE FIRST BF {FACTS [HOME STATE?]
ASKONE LAST {FACTS [KNOWNFOR?]

END

TO ASKONE !ANS IQUES
PR [] |

PRI___]

PR :QUES

PR []
FR[]

CONTINUE

PR !ANS

CONTINUE

END

TO CONTINUE
KEYPRESS RC
END

TO KEYPRESS (ANYKEY
END

TO END.OF.QUIZ

CT

SETCURSOR [& 101

PR [# * % END OF QUIZ # % %]
END ‘ L

OHtari L.ogo PFesource Guide

Atari Logo was developed by Logo Computer Systems Incd(LCSI) of Montreal, Canada.
It is a derivative of and highly compatible with an earlier version of Logo developed
for the Apple computer called Apple Logo. The release of Atari Logo is historically-
significant because it allows for the first time a "full" implementation of Logo on an
inexpensive home computer,

Atari Logo has been designed to take advantage of much of the hardware capabilities
of the Atari system. This has resulted in somg enhancements over previous versions
of Logo, most notably the availahility of four programmable "turtles" with collision
detection and a player—missile "shape" editor. Other enhancements include a 123 color
spectrum, easy access to sound and controllers, and the ability to call assembly
language subroutines. '

Although widely used in early education, Logo is a powerful and sophisticated
language, It was designed to have "no threshold” and "no ceiling”. It is actually.a -
subset of LISP, a language known for its use in the area of artifidal intelligence
research. The Atari Logo version is a full featured Logo and includes advanced_
computer science constructs such as list processing, recursiaon and local variables, -

The Logo Resource Sheet has been compiled to provide additional resources for users

of Atari Logo., Most of the sources mentioned refer to versions of Logo that are

similar to Atari Logo and those resources that refer specifically to Apple Logo will be

the most compatible, The primary difference between Apple and Atari Logo is that

Apple Logo has additional list processing commands while Atari Logo contains an -
enhanced set of turtle graphics commands.,

Currently, only two bocks have be=n announced specifically relating to Atari Loge.
. They are Dan Watt’s book Learning With Atari Logo and David Thornburg’s Computer
Art And Animation! A User’s Guide to Atari Logo (hoth available in early '34)¢ Other

Atari Logo books are forthcoming and they will be included in future updates of this

respurce Guide.

Three books included here deserve special mention! Papert’s Mindstorms, Abelson’s
Turtle Geometry and Abelson’s Apple Logo. Mindstorms is the most comprehensive
expression of the Logo philasophy of education and computing while Abelson’s Apple
Logo is the most useful manual to date for the serious student of the Logo language.
{Do not confuse Apple Logo with Abelson’s Logo for the Apple II. Apple Logo is the
version that is most compatible with Atari Logo. Logo for the Apple II is far the MIT
versions of Logo.) Abelson’s Turtle Geometry is a profound excursion into the realms
of turtle graphics and has been used as a college level text, Many of the resdurces
included here are very useful in preparing a Logo curriculum and for introducing Logo
to beginning students both in and out of a classroom setting.

i

BOOXS

Abelson, Harold. Apple Logo, New York! BYTE Books/McGraw-Hill, 1932, The best
single reference work to date., Features a complete description of Apple Logo which is
70 % compatible with Atari Logo., The book emphasizes the more advanced features
such as list processing, recursion and local variables.

Abelson, Harvold and Andrea diSessa, Turtle Geometrv, Cambridge,MA! MIT Press,
1931, A serious college level text on turtle graphics., Proves that turtle geometry is
not just kid stuFF.

Beardon, Donnas One, Two; Three, My Computer and Me! A Loge Funbook for Kids,
Reston, VA: Reston Publishing Cao., 1933,

Beardon, Donna, Kathleen Martin and Jim Muller. The Turtle’s Sourcebook, Reston,
VA: Reston Publishing Co. 1983, Formally distributed by the Young People’s Logo
Assodation, this book is filled with turtle graphics worksheets and and activities.

Bitter, Gary and Nancy Watson. Apple Loge Primer, Reston VAS Reétnn Publishing Coe
1933,

Burnette, J,» Dale, Logo: An Introduction, Morristown, NJ: Creative Ccmputmq, 1983,
A short collection of turtle geometry explorations,

N

Goldenberg, E. Paul, Special Technology for Spedal Children, Baltimore! University

Park Press, 1979, Describes the use of Logo and computers with special-needs

children,

Minnésota Educational Computing Consortium (MECC.) Apple Logo in the Classroom.
MECC Distribution Center, 2520 Broadway Dr., St. Paul MN 55113, A Logo curriculum
for children in grades S thru ? - includes teachers manual and worksheets.

MIT Logo Group. Bibliography of Logo Memos.Mit Artificdal Intelligence Laboratory,

545 Technology Square, Cambridge, MA 02137, Capsule descriptions of over &0

publications describing more than ten years of Logo research at MIT,

Papert, Seymour. Mindstorms: Children, Computers and Powerful Ideas, New Yorks

Basic Books, 1920, The philosophy of Logo by its chief proponent, A must for anyone

who wants to understand the Logo educational philosophy.

Ross, Peter, Introducing Logg! For the Apple 1I, TI 99/4, and the Tandy Color

Computer, Reading, MA! Addiscn-Wesley, 1932, Covers list processing and structured

programming as well as turtle graphics. Includes several chapters of projects and
activites to enhance problem solving capabilities. .

Thornburg, David. Discovering Anple Logo, Reading, MA! Addison-Wesley, 1933. The

study of how Logo can relate to art and patterns in nature, Covers such topics as

fractals and the golden mean.

Watt, Daniel. Learning With Logo,; New York! BYTE Books\McGraw-Hill, July 1933, A
hands on guide filled with projects for beginning and intermediate users. Includes
interactive games and list processing.

MAGAZINES

BYTE Magazine, Logo Issue, August 1932, A goad general intrcduction to the various
aspects of Logo programming and philasophy.)

Classroom Computer News, April 1733, An-excellent all Logo issue which features an
excellent article by Tom Lough entitled "Is Therg Logo After Turtle Graphics?",

Computing Teacher, The; November 1932, An all Logo issue featuring "Creating a Logo
Environment" by Tim Riordin. i

Kilobaud Microcomputing, September 1%31, Another all Logo ,_1?5‘-’9 which includes
"Logo and the Great Debate" by Ricky Carter.

The following magazines have regular columns on Logo and/or turtle graphics:
Compute! "Friends of the Turtle" by David Tharnburg. .

Computing Teacher, The; "The Logo Center” by Kathleen Martin and Tim Riordin,

Softalk "Logo, the Voice of the Turtle"” by Jim Muller,

MEWSLETTERS - e

Follk, Friends of LISP/Logo & Kids, a non—-profit organization formed b)(agroup at
San Francisca State University. 434 Arballo Dr., San Francisco CA °41

Logophile, published by the College of Education, MacArthur Hall, Queen’s Univérsity,
Kingston, Ontario K71 3Né&

Matignal Logo Exchange, published by Posy Publications, P.O.Box 35341,
Charlottesville, VA 22903 '

Polyspiral, published by the Boston Computer Soclety, Three Center Flaza, Boston MA
02108

The Logo and Educational Computing Journal, published by Interactive Educational
Foundation, 1320 Stony Brook Road, Stony Brook, NY 117%0 ' . -

Turtle News, published by the ¥ Dung People’s Logo Assodation, 1209 Hillsdale Dnve, '
Richardsan, TX 75201, . - :

PAaPERS

The MIT Logo Group has published a series of memos and reports. They can be
obtained by contacting the MIT Lago Group, 545 Technology Square, Cambridge MA
02139. Some of the titles are as follows!

Abelson and diSessa, "Student Sdence Training Program in Mathematics, Physics, and
Computer Science.” Logo Memo #29, MIT 1976,

Feurzig, Papert, Bloom, Grant, and Solomen, "Pregramming Languages as a Conceptual
Framework for Teaching Mathematics." Report #1389, Bolt, Beranek -and Newman,
Cambridge, MA 1969, -

Papert, “Teaching Children to be Mathematxc:ans VSe Teachmg About Mathematics.”
Logo Meme #4, MIT 1971,

- Papert, "Uses of Technoloagy to Enhance Education," Logo Memo #8, MIT 1973,

. ‘Papert, Ahelson, diSessa, Watt, "Assessment. and Dammentatmn of a Children’s

Camputer Laboratory.”. Logo Mema #48, MIT, 1977,

Papert, diSessa; Watt, Weir, "Final Report for the Brocklme Aogo Project,. Par’cs I, I,

. and IIT" Logo Memos #53 and #54, MIT 1979,

. Papert and Solomon, "Twenty Things to do with a Computer.’ Lago Memo #3,MIT 1978.

" Papert and Weir, "Information Prosthetics for, the Handicapped.'-‘ Logo Memo #3531,

¥

< Weir, "The Uses of Lago for, the Diagnosis of Children’s Abilities in Areas for Spa‘ha.l
»-Reasoning, and the use' of Logo for. Remediation," Internal workmg paper, MIT Lago

Graup, 1979,

- Weir, "Evaluation of Cultivation of Spatial and Linguistic Ablht:.es in Indwxduals with

Cerebral Palsey." Logo-Memo #51, MIT, March 1980, .
Weiry and Emmanuel, "Using Logo to Catalyse Communication in an Autistic Child.,*
Departmient of Artifidal Intelligence Memo #15, University of Edinburgh, S¢otland,
1976, .

