

Thomas McNair
2315 E. Meadow Creek Dr.

Meridian, ED 83642

Atari Graphics
& Arcade Game
Design
by
Jeffrey Stanton
& Daniel Pinal

ARRAl,IS, Inc.
The Book Division

11 223 S. lIindry Ave. Los Angeles, CA 90045

2

ACKNOWLEDGEMENTS

A technical book like this was a long, time-consuming undertaking. The book
took much longer than we ever anticipated because we wanted to write the definitive
book on the subject with both meaningful examples and technical accuracy. We
wanted a book that was free of errors and with listings that worked.

We are indebted to the authors of De Re Atari and the Atari Personal Computer
Hardware Manual (Atari Computer, Inc.) who shed light on the inner workings of
the computer, and to the author of Mapping the Atari (Compute Books) who
produced a comprehensive and valuable reference ,to all of the memory locations
inside the Atari computers. Thanks to Michael Mellin who edited the manuscript
without meddling with the content, and to Estela Montesinos who without
complaint redid the numerous changes in my diagrams again and again until we got
it right.

Trademarks, corporate names, or other designations are used for reference purposes
only.

ISBN 0-912003-05-7

Copyright © 1984 by Jeffrey Stanton and Arrays, Inc'/The Book Division. All rights
reserved. Printed in the United States of America. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

TABLE OF CONTENTS
Preface - 6

CHAPTER 1 GRAPHICS MODES AND COLOR REGISTERS - 9

1. Capabilities of the Atari computer
2. Introduction to display modes
3. How televisions work
4. Computer memory map
5. Color
6. Graphics modes
7. GTIA modes
8. GTIA trick

CHAPTER 2 DISPLAY LISTS - 37

1. ANTIC's instruction set
2. A typical Graphics 0 display list
3. Mixing graphics modes
4. Moving the text window
5. Designing custom display lists

CHAPTER 3 CHARACTER SET GRAPHICS - 51

1. Character sets and bit patterns
2. Changing the character set
3. Character set editor
4. Character set loader
5. Multi-color characters
6. Character graphics animation

CHAPTER 4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN -79

1. Basic assembly language
2. Breakout game (BASIC)
3. Breakout game (Assembly language)
4. BASIC graphics commands from assembly language

CHAPTER 5 PLAYER-MISSILE GRAPHICS - III

1. Introduction to player-missile graphics
2. A player-missile machine language move subroutine
3. Dynamics of objects in motion
4. Moving players and firing missiles using P 1M subroutine
5. Priority registers
6. Explanation of how P 1M subroutine works
7. Two ship Space War game (BASIC using subroutines)
8. Collision registers and explosions
9. Shoot bricks game (Combines player-missile & playfield graphics)

3

10. Space War game (Assembly language)
11. Dynamics of motion with acceleration
12. Player-missile editor
13. Player-missile movement using strings

CHAPTER 6 VERTICAL BLANK & DISPLAY LIST INTERRUPTS - 201

1. Vertical blank interrupts
2. Display list interrupts
3. Kernels (multicolor players)
4. Using DLIs to split screen horizontally
5. Using DLIs to create animation

CHAPTER 7 GAMES THAT SCROLL - 221
1. Coarse vertical & horizontal scrolling
2. Eight way scrolling - Special case
3. Eight way scrolling - General case
4. Strike Force - a horizontal scrolling game

CHAPTER 8 RASTER GRAPHICS AND SOUND - 313

1. Raster graphics
2. Bit mapping the shapes
3. XDrawing Shapes
4. Large blimp shape example
5. Sound (BASIC)
6. Sound (Assembly Language)
7. Background music during games
8. Sound effects

CHAPTER 9 ADVANCED ARCADE TECHNIQUES - 357

1. Maze game theory
2. Alphabet Maze game
3. Tank game (2 player version)

CHAPTER 10 GAME DESIGN THEORY - 447

1. What makes a good game
2. Example arcade games
3. What can go wrong

APPENDIX - 459

A. Useful PEEKs and POKEs
B. A T ASCII Character Set
C. Assembler Comparisons
D. Binary File Loader
E. Source Code for Chapters 3 & 5

4

5

6

Preface

Computer owners, who view stunning graphic effects or play visually exciting
games, rarely consider the effort or techniques required to achieve those images.
They don't realize that a programmer's ability to create Atari graphics can be
compared to an artist's ability using a sketchpad or an animator's skill using
animation techniques. In fact, an arcade game is basically an interactive cartoon in
which the player controls a character or object that influences the action of the
remaining computer-controlled objects on the screen. This action, like in a movie,
consists of individual frames viewed at high speed to produce fluid motion. The
objects in a game can be animated by either moving them from one screen position to
another without changing their shape, or by changing their shapes between frames.
In either case, the effect is the same-a feeling of motion.

Atari computers are wonderful graphics machines capable of extraordinary visual
effects. Unfortunately, few of these can be implemented directly from Atari BASIC
without a thorough knowledge of Machine language and the architecture of the
machine. Those who understand the techniques and have mastered them are mostly
too busy writing programs to share their knowledge.

This book will allow you to enter the world of Atari graphics in which your most
imaginative ideas can be animated. The various chapters will present a comprehen
sive course in both Atari graphics and high-speed arcade animation techniques.
While at least half of the book requires the ability to program in Assembly language,
we were careful to begin the book with the simplest graphics concepts in Atari
BASIC. The book aims to increase the novice programmer's skill. It assumes no
prior knowledge of either Atari graphics or Assembly language. Since we know that
many of our readers will be young teenagers, we made every attempt to include
BASIC program examples, some with Machine language subroutines, in most of the
chapters. We felt that concepts like custom display lists, color indirection, scrolling,
character set animation, and player-missile graphics can be learned by beginners,
but we didn't neglect the advanced programmer either. We cover the most advanced
topics possible on a Machine language level. We discuss vertical blank and display
list interrupts, kemals, bit-mapped graphics, sound, scrolling, and player-missile
graphics, and use these techniques to develop four complete Assembly language
games.

The only requirements for this book are an inquisitive mind, perseverance, and a
good Assembler. Although prior Assembly language programming experience isn't
necessary, you won't be able to write code without an Assembler.

We will attempt to explain the ideas in this book through a combination of text,
drawings, flow charts, and working code. The concepts in this book may seem easy at
times, and somewhat difficult at other times. The Atari is a complex machine with
many idiosyncrasies. The hardware sometimes makes game design relatively easy,
yet the concept of an interrupt-driven machine with its timing problems can make
advanced programming frustrating. Our advice is to read the book in stages and try
the examples. Learn how they work.

While our goal for presenting the material was to educate a new generation of
arcade game designers, I dread the proliferation of copy cat games. The world
doesn't need an eighth Pac-Man or a tenth Q"'Bert. They have been done. We hope
that programmers both young and old will use their imaginations to create some
thing novel and exciting.

JEFFREY STANTON
VENICE, CALIFORNIA
JULY 14, 1984

PROGRAM LISTINGS A V AILABLE ON DISK

All of the code listed in this book is available on diskette to readers who disdain
typing long computer programs. We barely managed to cram all of the listings
without DOS on three disk sides, one side BASIC and two sides assembly language.
These disks and files are unprotected. We decided to offer readers a choice of buying
all three sides, just the BASIC programs, just the Assembly language source code and
game object files, or a disk containing all of the games for those who only wish to
play them.

The cost of these disks is nominal and can be ordered using the card in the back of
the book from Stanton Products, 3710 Pacific Avenue #16, Marina del Rey,
California 90292. The prices are as follows:

1) BASIC program listings only - $10.00
2) Assembly language listings only - $15.00
3) All program listings (2 disks) - $20.00
4) Playable games only - $12.50

Include $1.50 postage. California residents add 6~% sales tax.

The F-S Macro Assembler 40/ 80, a completely compatible upgrade to SYNAS
SEMBLER, is also available from Stanton Products under a licensing agreement
with Funsoft and S-C Software. It is a disk based co-resident assembler, well suited to
both beginners and professional programmers. It comes in two versions on the disk;
40 and 80 column achieved entirely through software. Its powerful macro and
conditional assembly features makes it one of the most powerful assemblers avail
able for both the newer XL series of Atari computers and the older 400/800 compu
ters . There are 25 pseudo-ops and 31 commands, designed to make life easier for the
programmer. With the ability to chain source files and assemble object code to disk,
the programmer is only limited by the amount of online disk storage. It is available,
as all development tools should be, on an unprotected disk. A 45-page manual is
included. It sells for $50.00 plus $1.50 postage and any applicable sales tax. It can
also be ordered using the coupon in the back of this book.

7

8

CHAPTER 1

GRAPHICS MODES
AND COLOR REGISTERS

The ATARI 400/ 600/ 800/ 1200/ 1400 home computers are some of the most
impressive graphics machines available at prices under $1000. Each of these very
special machines, in addition to containing a 6502B microprocessor that runs at
nearly twice the speed of many competing computers, also contains a number of
custom hardware chips. One of these is a separate graphics microprocessor called
ANTIC. These powerful chips free the 6502B to do what it was designed to do,
calculate.

The computer was built to be extremely flexible with multiple graphics modes,
rede£inable character sets, indirect color registers, player-missile graphics, collision
registers, display list interrupts, fine scrolling, and a built-in sound generator. These
features give a polished, smooth, colorful look to the display, almost an arcade look.
The effect isn't a coincidence, for the computer is nearly a clone of the hardware used
in some of Atari's arcade machines like Missile Command.

Skilled Assembly language programmers can harness many of the Atari's capabil
ities, but less skilled or even beginning programmers may find the machine's
flexiblity downright intimidating. Atari BASIC limits the programmer's choices,
but it also eliminates much of the error prone graphics initialization that might
produce wacky displays. Fortunately, capabilities like player-missile graphics and
four-voice sound can still be accessed by PEEKing and POKEing to the machine's
hardware addresses.

Most computers limit their graphics display to one or two modes because they are
hardware dependent and memory specific. The Apple lIe, for instance, has Lo-Res
and Hi-Res graphics. The 8K block of Hi-Res graphics is hard wired to specific
memory locations $2000-$3FFF. Each byte (7 pixels) in display memory contains
both pixel and color information that hardware uses to raster color dots on the
television screen. If you move an object, you must change all of the bytes at both the
old and new loca tions in screen memory withou t erasing the background. Worse yet,
if you want to change an entire blue screen to red, you need to rewrite a1l8K bytes of
screen data. Similarly, scrolling requires a memory shuffle and at best results in
slow, jerky motion.

The Atari, on the other hand, uses the ANTIC graphics microprocessor to inter
pret the graphics data in screen memory and another chip, the CTIA/ GTIA, to plot
the color information. Each of the fourteen differen t graphics modes (six textl char
acter and eight graphic) uses differing amounts of screen memory for display. As a
rule of thumb, the higher the resolution and the more colors available for display,
the more memory required. Essentially, you need one bit of information for each
pixel displayed plus additional bits for color information. Required screen memory,
including the accompanying display list, can be as little as 261 bytes for double

9

10

1 GRAPHICS MODES AND COLOR

width, double height text, or as much as 7891 bytes for a hi-resolution 320 x 192
pixels screen. The screen can be placed nearly anywhere in memory as long as you
tell ANTIC where to obtain its data.

The programmer can mix graphics modes because he can instruct ANTIC to
display data from a specific part of memory in a particular graphics mode. This
means you can have medium resolution graphics at the top of the screen, text in the
middle and hi-resolution graphics at the bottom, if you like. The display is stacked
in horizontal bands that stretch across the entire width of the screen. Any combina
tion of display modes can be choosen as long as the entire display does not exceed 192
scan lines.

You are not even limited to using just the graphics characters in the ROM
character set for your play field graphics . A new character set can be customized with
a character set editor. The computer will substitute the new set when you set the
character set pointer to its address.

The unique way that the Atari computer handles color information through a
series of addressable color registers gives the programmer added flexiblity. Each
screen pixel is assigned to one of four playfield color registers when it is plotted.
Simply changing the color value in one of these registers changes the color of every
pixel assigned to that register. An entire background can be changed from red to blue
with one simple POKE.

Although you can choose from 128 colors, you can work with only four at a time.
Fortunately, you can gain extra colors either by adding different colored players to
the display, or by changing the colors in mid-display using display list interrupts.
Moreover, the addition of three GTIA modes allows either sixteen colors with one
luminance, or one color with sixteen luminances, or nine colors. Although these
modes sacrifice resolution to some extent, they are useful for three-dimensional
shading, or adding a lot of color to the screen easi ly.

Perhaps the most powerful and useful graphics feature on the Atari is the player
missile graphics. Since these objects are completely independent of playfield
memory, they can move smoothly over the display without affecting it. If the
programmer wishes, he can set the priority so that one or more of the four players
(five without missiles) can pass behind other players or playfield objects. Each player
can be of different color, height and width, with a maximum width of eight pixels.
In addition each player and each missile has individual collision registers that keep
track of any collisions between each other and the playfields.

The Atari computer was the first home computer with player-missile or sprite
graphics. It unfortunately doesn ' t allow true X, Y positioning. While the horizontal
position can be set with a single POKE, the player 's data must be shifted within a 128
or 256 (depending on the resolution) block of player memory to obtain true vertical
positioning. In addition, although players can be plotted in double or quadruple
width, the basic width of eight pixels imposes further limitations on the pro
grammer.

Certainly, the use of player-missile graphics makes programming smooth ani
mated graphics light years easier than on non-sprite-oriented computers like the

GRAPHICS MODES AND COLOR REGISTERS 1

Apple. But some of the newer computers like the Commodore 64 have eight players,
each 24 x 21 pixels with true X,Y positioning, and both Coleco's Adam and the
Texas Instrument's TI-99A have thity-two sprites, each 32 x 32 pixels with true X,Y
positioning. While it may be easier to program these computers using players
exclusively, each has only three or four graphics modes that can't be mixed, and none
can smooth-scroll the play field without extensive memory shuffling.

The Atari's ability to fine scroll the graphics display either horizontally or verti
cally sets the Atari apart from all other home computers. The Atari does this easily
because the ANTIC chip can begin with data anywhere in memory and automati
cally map to the screen sequential memory bytes on a line by line basis. To vertically
rough scroll a 40-character per line text screen you only need to change by 40 bytes
the start of the memory area from which ANTIC gets display data. You can scroll the
screen less, just a few scan lines at a time or a portion of one character, by setting the
vertical fine scroll register. Horizontal scrolling is done similarly, but the data
structure is much more difficult to set up because the data lines do not follow
sequentially in memory but have gaps to store the off-screen image. To move any
row requires only resetting the memory pointer by one byte; however, the reset must
be performed for each row or mode line that you want to scroll.

Since the Atari computer is interrupt driven, time critical program code can be
executed during the computer's vertical blank period at a rate of exactly 60 times a
second. It is also the perfect time to scroll the screen, move players, and check
collisions, for discontinuous screen jumps can't occur when the electron beam is
between frames .

The Atari computer has many powerful graphics features that overall far surpass
any home computer on the market today. We will explain each of these features in
greater detail through working arcade game examples in the appropriate chapters in
this book.

Display Modes

The Atari computer's fourteen display modes includes six text or character gra
phics modes, and eight bit-mapped graphics modes of varying resolution. In addi
tion, computers containing the GTIA color chip have three extra graphics modes
which are special cases of the highest resolution bit-mapped graphics mode.

Programmers using the Atari BASIC cartridge from non-XL machines can easily
access only nine of these fourteen display modes. Although XL machines can access
four of these five additional modes directly from BASIC, these extra modes, which
include several multi-colored character set modes requiring custom character sets,
are best left to the Assembly language programmer.

The character graphics modes 0, 1, and 2 are easy to understand. The normal text
display is graphics O. It consists of twenty-four rows of forty characters. Each
character is eight dots wide by eight dots or television scan lines high. Graphics
mode 1 characters are just graphics mode 0 characters stretched twice as wide; only
twenty of these characters fit on any row. Graphics 2 characters are as wide as

II

12

1 GRAPHICS MODES AND COLOR

graphics one characters but are twice as deep. Since each character is sixteen scan
lines high, only twelve rows would fit on the screen in the full screen mode.

Normally a text window occupies the bottom four rows (32 scan lines) in all
BASIC graphics modes except the GTIA modes. If you were to set the display for
graphics mode 2 characters, ten rows of these characters would be displayed above
four rows of graphics 0 characters . The display can be set to full screen by adding 16
to the graphics mode. Thus, invoking GRAPHICS 2+ 16 sets up a full screen display
consisting of twelve rows of graphics 2 characters.

Graphics modes 3 thru 8 are bit-mapped graphics modes that don't involve
characters. Instead they plot colored dots or pixels of varying resol ution. A pixel can
be as large as eight dots by eight dots in graphics mode 3, be four dots by four dots in
graphics mode 5, two dots by two dots in graphics 7, or be as small as one single dot
in graphics mode 8. The finest resolution in graphics mode 8 gives us complete
control over every dot on the screen.

Obviously, there are more reasons to use each of these modes beyond the varying
degrees of resolution. As the graphics modes increase in resolution, more memory is
required for display. Bigger pixels simply fill up the screen faster and therefore
require less memory. For example, a graphics 3 screen that has pixels the size of a
character and a screen resolution of forty pixels by twenty-four, requires only 480
bytes for screen memory. A graphics 8 screen that stores groups of eight pixel-sized
dots in one byte, requires 7680 bytes of screen memory. A programmer using this
mode on a 16K Atari 400 or 600XL would have very little room for his program.

The number of colors available is another reason for choosing a particular
graphics mode. As a rule, more memory is required to display more color because the
color information must be encoded within the screen data. For example, the only
difference between the two color graphics modes 4 and 6, and the four color modes 3,
5, and 7 is in the amount of memory required. Graphics modes 4 and 5 have the same
resolution (80 x 48), but graphics mode 4 uses only half as much memory. Graphics
mode 5 must use two bits to encode the color for each pixel, where only one bit is
needed to tell the computer how to display graphics mode 4 pixels. A similar
relationship exists between graphics modes 6 and 7.

You have probably noticed that each graphics mode is displayed in a series of
rows. A full-screen graphics 5 screen consists of forty-eight vertically stacked rows of
pixels, each four scan lines high. A graphics seven screen consists of ninety-six
vertically stacked rows of pixels, each two scan lines high. In each case there are 192
scan lines displayed on the screen. This number is no accident but is determined by
the way television sets draw or scan a picture.

How Televisions Work

Most television sets, including the ones on which you actually watch TV, are
raster scan devices. A moving electron beam strikes the individual phosphors that are
painted on the inside front surface of the television tube. Each time an electron
strikes a phosphor, it glows momentarily. If the beam continues to strike the same
phosphor it will glow continously.

GRAPHICS MODES AND COLOR REGISTERS 1

Cathode

Fourescent Screen

In order to draw an entire screen full of glowing dots the electron beam has to
move in a series of accurate sweeps across the picture tube. A charged deflection plate
bends the electron beam so that the stream of electrons strikes a series of adjacent
phosphors along a straight horizontal line. These closely packed individual dots
appear to be a solid line. The electron beam starts at the top of the screen and scans
from left to right. When it finishes a line, it shuts down briefly while it returns to the
left edge and drops down to the next scan line. This period is known as the
"horizontal blank." The electron beam does this 192 times in a process known as
"raster scan." When the beam finishes it returns to the top of the screen in a time
period known as "vertical blank."

Obviously, if the pixels are to remain lit for longer than a brief moment the screen
will have to be refreshed quite often. The electron beam retraces its 192 line path
sixty times a second. A television set actually scans 262 scan lines, but the average set
can only display slightly more than 200 lines. The area above and below your
rectangular playfield contains some of these extra lines.

In order to get an image other than solid white, the electron beam's intensity is
varied while it is scanning. By varying the intensity or the number of electrons that
hit individual phosphors, different brightness levels are achieved. This gives us
shading on black and white television sets that ranges from black through various
shades of grey to pure white.

The process of producing a color image is only slightly different. The electron
beam scans as usual from left to right over the playfield's 192 scan lines at sixty times

13

14

1 GRAPHICS MODES AND COLOR

per second. The difference is in the phosphors on the screen's surface. Each dot
consists of a triangular pattern of three sub dots; one blue, one green and one red.
Instead of one electron beam there are three beams, one for each color. Each beam is
aimed very precisely through a mask at the subdots containing its color. Thus, when
the Atari sends to the television set or color monitor color (frequency) and luminance
(amplitude) information at a particular time during the scanning process, the
electron beams will produce the desired display. The Atari doesn't tell the electron
beams where to display information on the screen, but instead when to display
information. The Atari's special hardware chips wait until the electron beams reach
a particular point on the screen before immediately sending the proper color and
luminance information.

The time unit used to determine when to send color information is called the color
clock. This is the amount of time it takes to change the frequency between the
different colors. The electron beam has time to send 228 color clocks on one scan line.
Again some of the information is plotted off screen so that the Atari displays only 160
color clocks. The color information is transmitted to the TV in the form of a square
wave. When the signal is high during one clock cycle, you get one color, and when it
is low you get the complementary color. Other colors are obtained by phase shifting
the signal slightly.

Memory Map

It is best at this time to develop an understanding of where the Atari computer
stores your BASIC computer program and the location of display memory. All
6502-based Atari computers, address 64K bytes of memory whether physical memory
exists or not. The computer is divided into RAM (Random Access Memory) and
ROM (Read Only Memory). You can store things like your BASIC program in RAM
memory. Atari 400's and 600XL's contain 16K of RAM memory, while the larger
800's, 1200's and 1400's contain 48K or 64K of RAM memory. Most of the area above
48K, from 52K to 64K is reserved for the computer's Operating System (OS), and the
use of various hardware chips ANTIC, POKEY, CTIA/ GTIAand PIA. The OS and
all of these chips are in ROM. Locations in them can be read, but only a very few
hardware locations in some of the chips can be written to. Since many of these
writable hardware locations can't hold information for longer than 1/60 of a second,
they are "shadowed" by RAM memory locations in the lower portion of the com
puter's memory. These "shadowed" memory locations, that contain information
such as joystick/paddle values for each of the registers, are copied to the appropriate
RAM locations during the vertical blank period between television frames. Color
information "shadowed" in RAM is copied to the hardware registers at the same
time. This not only saves you the trouble of refreshing the hardware each cycle, but
allows you to read the "shadowed" values.

The lowest section of memory contains zero page, BASIC and OS system RAM, the
stack, and the keyboard buffer. All of this occupies the space between 0 and 1535
($000-$5FF). The area between 1536 and 1791 ($600-$6FF) known as page six is free
for user Machine language subroutines. The area above 1792 to location 7420 or
LOMEM is reserved for the DOS File Management System. LOMEM drops to 1792

GRAPHICS MODES AND COLOR REGISTERS 1

in computers that don't use a disk drive or interface module.

The 8K ROM BASIC cartridge occupies memory from 40K to 48K regardless of
memory configuration. When the cartridge is engaged, RAMTOP or HIMEM drops
to 40959 in 48K and 64K machines and remains at 16384 in 16K machines. The
memory between LOMEM and HIMEM is the area available for running and
storing your BASIC language programs.

BASIC programs are stored beginning at LOMEM. The program along with its
buffers, tables, and run time stack build upwards in memory. When a graphics mode
is invoked, BASIC reserves the area just below HIMEM for the graphics screen and
text window if there is one. It stores a small program called the display list just below
the graphics screen. This display list, which we will discuss in greater detail in the
next chapter, tells ANTIC where to find display data and in which graphics moce to
display it. In brief, the list contains an instruction for each row of graphics data, plus

56K

48K

(106) RAMTOP 40K

MEMTOP (741, 742)

32K

16K

LOMEN 7420
(128,129)

OPERATING SYSTEM
ROM

FLOATING POINT ROUTINES

ANTIC/POKEY /GTIA/ PIA

BASIC CARTRIDGE
ROM

GRAPHICS 0 SCREEN

+ BUILDS
BASIC UPWARD

PROGRAM

INCLUDE BUFFERS, TABLES
& RUN TIME STACK

DOS FMS

8K BASIC & O,S RAM

NOTE: 1536-1792 FREE Ram Pg . 6
NOTE: LOMEM 3341 without DOS

40959

10879
DOS WHEN PRESENT

1792

15

16

1 GRAPHICS MODES AND COLOR

...... 1----40 bytes ----~~

1
96 ROW!S t-________ 8_0_R..L.~O_W_S_t .!...

32
L-.---------~T

instructions about the number of blank lines to skip before plotting plus the
locations of the screen's data and the beginning of its own display list.

For example, if we set up a full screen graphics 7 screen (40 x 96), BASIC places the
beginning of screen memory automatically a t 36960 for a 48K machine. The screen's
memory is 3840 bytes. The I 04-byte display list is placed at memory location 36760. If
we choose instead a graphics 7 screen with a text window (40 x 80), only 3200 bytes of
screen memory are required. BASIC puts screen memory at the same location but
leaves the top 640 bytes empty. It stores the data for the 160 byte (4 line) text screen
beginning at 40800. The display list is 10 bytes shorter and begins at location 36770
for 48K machines. The diagram below shows the appropriate addresses for 16K
machines.

The advantage of having BASIC set up your graphics screen and display list is that
it avoids errors that might produce weird displ ays . This includes displaying the
proper screen data in the wrong graphics mode, or displaying a section of memory
that isn't your screen da ta. The disadvantage is tha t you can' t mix graphics modes or
custom design a display. You are limited to displaying a single graphics mode with
or without a four line text screen at the bottom.

GRAPHICS 7 GRAPHICS 7+16
16K 48K

(16384) 40960-

TEXT 160 BYTES

40800-

EMPTY

640 BYTES

3840

3200 BYTES

(12384) 36960 36960-

DL=94 BYTES DL=104 BYTES

(12194) 36770 36760-

GRAPHICS MODES AND COLOR REGISTERS 1

Color

The Atari uses a very flexible method to display color. Instead of storing the color
of each pixel directly in display memory, the Atari refers the color information to a
specific color register. Each pixel has the color register number stored rather than a
specific color. This method, is extremely flexible, but it allows only a maximum of
five colors on the screen at anyone time. In an effort to save screen memory at most
only two bits are used to specify a pixel's color. On the other hand, if you wish to
change the background color or the color and I uminence of all the pixels referring to
a particular color register, you need only to change the color value in that one color
register.

There are five available color registers numbered 0 through 4. Color register 4 is
also known as the background color register because it specifies the color and
luminance for any place on the screen where nothing else is written. In the bit
mapped graphics modes 3-8, this means the color between any of the plotted pixels.
In text mode 0 it means the border area, not the color behind the character.

The color registers are each one byte long. The upper four bits determine the color
(0-15), and the lower four specify the brightness. Only the highest three of the four
luminance bits are used, so that there are eight levels of brightness. Sixteen different
colors and eight levels of brightness create 128 shades of color. The arangement for
each color is in groups of sixteen. Values 0-15 are for color #0 in different intensities,
16-31 for color #1, etc. The table below lists the values for many of the common
colors.

As we said, there are five different color registers. Think of these as paint pots. You
can put a color into anyone of these color registers and then draw points (pixels) and
lines using that color register. It is similar to drawing on a canvas with a brush. The
difference is that if you draw a green line five pixels long with color register 0, screen
memory doesn't store it as green, green, green, green, green, but as a series of bits 01
0101 01 01. When ANTIC fetches screen data and feeds it to the CTIA/ GTIA chip,
this color chip looks to the appropriate color register to determine which color is to
be put on the screen for each separate pixel. For most of the four color graphics
modes the bit pattern is as follows:

00 BACKGROUND
01 REGISTER #0
10 REGISTER #1
I 1 REGISTER #2

Thus, if we had the following screen data for eight pixels, the colors drawn by the
color chip would reflect the values stored in the different color registers. In the
example below, black is in the background color register and red, blue and yellow are
in the other color registers.

These five color registers are located in hardware in the actual CTIA/ GTIA chip.
Each time ANTIC feeds it data , it looks to these hardware locations before plotting
the color. Even what appears to be a blank empty screen is still generated from the
CTIA/ GTIA's interpretation of the data. Even all zero bits indicate that the entire

17

18

1 GRAPHICS MODES AND COLOR

screen is just background. The chip looks to these registers thousands of times
during the refresh process of upda ting the screen.

The operating syste.m a lso maintains copies of these color registers in RAM
memory. These are called shadow color registers. They are maintained because the
hardware locations are "write only" locations. Since they can't be read, we need
RAM locations where they can be read. At the beginning of each refresh cycle, these
five shadowed regis ters are copied into the hardware locations.

CTIA REGISTER O.S. SHADOW REG.

PLAYFIELD #0 /COLOR REG #0 708 ($2C4)
PLAYFIELD #1 / COLOR REG #1 709 ($2C5)
PLAYFIELD #2 / COLOR REG #2 710 ($2C6)
PLA YFIELD #3 / COLOR REG #3 711 ($2C7)
PLAYFIELD #4 /COLOR REG #4 712 ($2C8)
(BACKGROUND)

I 01 10 I 01 1 00 I 10 1 10 1
L ~ I

I ANTIC

-f ,,-U ~ ~ ~ 1'\

r "\ '\

11

53270 ($DOI6)
53271 ($DO I7)
53272 ($DO I8)
53273 ($DOI9)
53274 ($DOIA)

01 I PIXEL DATA

CTIA/GTIA

COLOR REGO RED

COLOR REG1 BLUE

COLOR REG2 YELLOW

COLOR REG3 -----

COLOR REG4 BLACK

l RED I BLUE RED I BLACK I BLUE I BLUE YELLOW RED

GRAPHICS MODES AND COLOR REGISTERS 1

BASIC uses the SETCOLOR command to set up the color registers. It is in the
form of SETCOLOR (color reg #), (color #),(luminance #). A direct POKE to the
O.S . shadow register is equivalent to SETCOLOR and is faster. For example
SETCOLOR 1,3,8 is the same as POKE 709,(3*16)+8 or POKE 709,56.

COLOR VALUES FOR COLOR REGISTERS

VALl iE H{ IE U Tj\lII - VAl.UF Hl ' F l.l ' M I ·
;\lANCE ;\IA;\ICF

BLACK 0 ($00) 0 0 MACE;\IT,\ H2 ($.')2) :l 2
DARK GREY 4 ($04) 0 -I PlJRPL~: 96 ($60) (i 0
GREY 6 ($06) 0 6 1.r\V ENDER 102 ($66) Ii (i
WHITE 14 ($OE) 0 1·1 BL UE 11 6 ($7 1) 7 -I
GOLD 20 ($ 11) ·1 LT BLUE 120 ($7H) 7 H
YELLOW 24 ($ 18) 8 TURQUOISF 164 ($NI) 10 ·1
BROWN 34 ($22) 2 2 GREEN 196 ($CI) 12 I
TAN 36 ($2-1) 2 4 LIGHT CREEN 200 ($Ol) 12 H
ORANGE .')4 ($36) 3 6 YELLOvVGRFEN 2 14 ($DG) 1:1 (i

RED 66 ($42) 4 2 OLIVE GREEN 228 ($E'I) 1'1 I
PINK 72 ($48) 4 8 PE AC H 246 ($F6) I.") (i

Atari BASIC's COLOR command, used to specify a particular playfield register
that plots points or draws lines, is probably the most confusing aspect of Atari
graphics. When you choose a COLOR #, it selects a color register ass igned to a
playfield. It uses that color register to plot with until a new color register is chosen .
The problem is that the COLOR # often doesn ' t correspond to the color register #,
and varies with the graphics mode.

There is a logical explanation for the discrepancy, but it is more apparent to the
Assembly language programmer than to the casual BASIC programmer. Remember
that in most modes two bits are used to specify the color. This is true in a ll of the
bit-mapped graphics modes. Color #0 is usually background because a Machine
language 00 written into display memory usually plots nothing. If COLOR # is I it
writes a 01 in display memory for that pixel, if equa l to a 2 it writes a 10, and if equal
to a 3 it writes an II. Unfortunately, if you refer to the table above, bits 01 corres
ponds to color register #0, bits 10 to color register #1, and bits II to color register #2.
On the other hand, the two color modes use only COLOR #1 to plot points because
just a single bit is used to direct the CTIA to the color register.

The character t;raphics modes, 0,1, and 2 are even more confusing. The upper two
bits in each character not only determine which color register is selected, but effect
which character is displayed. Essentially, parts of the character set appear in differ
ent colors. For example, if you are using the computer's default colors and you are in
character mode # 1, a 20 character per line mode, upper case letters appear in orange,
lower case in light green, inverse upper case characters in dark blue, and inverse
lower case graphics characters in red.

19

20

1 GRAPHICS MODES AND COLOR

ATAscrr

Uppercase alphabet (A-Z) 39-90
numbers, punctuation

Lowercase alphabet 61-122

Inverse uppercase alphabet 160-218
numbers, punctuation

Inverse lowercase alphabet 225-250

COLOR
REGISTER

0

1

2

3

Since the relationships between the COLOR # and the play field it refers to differ in
many of the graphics modes, beginners will do best by refering to the table below or
the one in their BASIC reference manual. The concept of drawing lines and shapes
using color registers as paint pots is best illustrated with the following demonstra
tion. We will draw in graphics mode 7 full screen. This is a four color mode with
three foreground colors and one background color. Initially, we will fill our paint
pots or color registers with dark gray, green, blue and red.

COLOR REG. #0
COLOR REG. #1
COLOR REG. #2
COLOR REG. #4

GREEN
BLUE
RED
DARK. GREY

COLOR #1
COLOR #2
COLOR #3
COLOR #0

We will draw our rectangular paint pots at the bottom of the screen and one shape
in its color above each pot. We will also draw another shape or line above one of the
other paint pots. When we are finished we will have six shapes above three paint
pots. The solid shapes are filled in using the standard XIO color fill command in
BASIC.

The XIO fill command is designed to work with four-sided figures, but if you are
careful it will work with triangles. In general you plot a point in the lower right
hand corner of the figure and use DRA WTO statements to reach the upper right
hand corner of the figure. You next use the position statement to move the cursor to
the lower right hand corner and use the POKE statement to place a number, equal to
the COLOR number to be used for plotting into memory location 765. Last, you
perform a XIO 18, #6,0,0,"S". The fill commands works from left to right and will
fill the figure until it encounters any illuminated pixel between the left and right
sides of the figure being filled. For example:

20 GRAPHICS 7+16
50 SETCOLOR 1,7,2:REM BLUE
80 COLOR 2
140 PLOT 35,90:DRAWTO 35,80:DRAWTO 5,80
150 POSITION 5,90
160 POKE 765,2
170 XIO 18,#6,0,0,"S"
180 GOTO 180

GRAPHICS MODES AND COLOR REGISTERS 1

When you fill a triangle, two sides of the figure are drawn. While you may not be at
the top of the figure when you finish, you will be on the left side when you reposition
the cursor to the bottom right. Usually, the color fill works properly; but, if you look
at the blue triangle, you will notice that we repositioned the cursor at the bottom one
pixel to the left. This is because when the last line fills on the bottom it must have a
right boundary to fill to. If the boundaries are equal, the line will begin filling from
there to the right edge of the screen.

The colored bar above the paint pot indicates which paint pot or color register can
be adjusted by the joystick. You can select an individual paint pot with the select key.
When the bar is to the far right beyond the last paint pot, it points to the paint pot
used to color the background. You can adjust the color in the paint pot by moving
the joystick up or down. If you begin at the first paint pot, which is intially green,
and change the color, you will notice that the two shapes that were green ~anged to
the new color in the paint pot. It doesn't matter if the shape is above the paint pot or
somewhere else on the screen. What matters is which color register or paint pot was
in effect when the shape was drawn, for those pixels contain data that point to a
particular color register.

You can play with the four paint pots and watch the various shapes change color.
When you change the background color one or more of the other shapes will vanish
if the two paint pots are identical. The shape is still there, but the pixels instruct the
CTIA/ GTIA chip to produce the same color as the background. The shape just
blends in to become invisible.

w

~ ::J ~'tv --l
en

~
<vQ

0

I I

I GREEN I BLUE RED BLACK

21

22

1 GRAPHICS MODES AND COLOR

10 REM COLOR PAINT POT DEI-tO
20 GRAPHICS 7+16
30 SETCOLOR 4,0,2:REM DARK GREY
40 SETCOLOR 0,12,2:REM GREEN
50 SETCOLOR 1, 7,2:REM BLUE
60 SETCOLOR 2,4,2:REM RED
70 REI-I DRAW SCREEN IN THRE E COLORS
80 COLOR 1
90 PLOT 95,10:DRAI.JT0 135,30
100 PLOT 35,50:DRAWTO 30,40
110 POSITION 5,50
120 POKE 765,1
130 XIO 18,#6,0,0,"S"
140 PLOT 35,90:DRAWTO 35,80:DRAWTO 5,80
150 POSITION 5,90
160 POKE 765,1
170 XIO 18,#6,0,0, "s"
180 REM DRAW IN SECOND COLOR
190 COLOR 2
200 PLOT 55,31:DRAWTO 75,15:DRAWTO 55,15
210 POSITION 55,30
220 POKE 765,2
230 XIO 18,#6,0,0,"S"
240 PLOT 20,10:DRAI.JT0 20 ,35
250 PLOT 80,90:DRAWTO 80,80:DRAWTO 50,80
260 POSITION 50 ,90
270 POKE 765,2
280 XIO 18,#6,0,0, "S"
290 RE1'l DRAW IN THIRD COLOR
300 COLOR 3
305 PLOT 55,65:DRAI.JT0 75,45
308 PLOT 55,60 : DRAI.JTO 75,40
310 PLOT 130,70:DRAI.JT0 11 5,45:DRAI.JT0 100,70
315 DRAWTO 135,55:DRAWTO 95,55:DRAI.JT0 130,70
320 PLOT 130,90:DRAWTO 130,80:DRAI.JT0 100,80
330 POSITION 100,90
340 POKE 765,3
350 XIO 18,#6,0,0, "s"
351 REM DRAW INITIAL POSITION COLOR BAR
352 C=l:COLOR 1:CSET=INT(PEEK(708)/16)
354 PLOT 10,75:DRAI.JT0 30,75
360 REM MAIN PROGRAM LOOP
370 IF PEEK(53279) <>5 THEN 500
380 REM SHIFT COLOR BAR TO NEXT BLOCK
382 IF C=l THEN 390
384 IF C=2 THEN 410
386 IF C=3 THEN 430
388 IF C=4 THEN 450
390 COLOR O:PLOT 10, 75:DRAI.JTO 30,75
400 COLOR l:PLOT 55,75:DRAWTO 75,75:C=2:POT=1
402 CSET=INT(PEEK(709)/16)
405 GOTO 500
410 COLOR O:PLOT 55,75:DRA\.JT0 75 ,75
420 COLOR l:PLOT 105,75:DRAWTO 125,75:C=3:POT=2
422 CSET=INT(PEEK(710)/16)
425 GOTO 500
430 COLOR O:PLOT 105,75:DRAWTO 125,75
440 COLOR l:PLOT 140,75:DRAWTO 159,75:C=4:POT=4
442 CSET=INT(PEEK(712)/16)
445 GOTO 500
450 COLOR O:PLOT 140,75: DRAI.JT0 159,75
460 COLOR l:PLOT 10,75:DRAWTO 30,75:C=1:POT=0

GRAPHICS MODES AND COLOR REGISTERS 1

462 CSETo=INT(PEEK(708)!16)
500 FOR DE=1 TO 5:NEXT DE
510 REM CHANGE COLOR PAINT POT WITH JOYSTICK
520 IF STICK(0)<13 OR STICK(0)=15 THEN 700
530 IF STICK(0)=13 THEN 600
540 REM SHIFT SELECTED PAINT POT COLOR
550 CSET=CSET+l:IF CSET=16 THEN CSET=O
560 SETCOLOR POT,CSET,2
570 GOTO 700
600 CSET=CSET-l:IF CSET<O THEN CSET=15
610 SETCOLOR POT,CSET,2
700 FOR DE=1 TO 20:NEXT DE:GOTO 370

Graphics Modes

AT ARI computers can display fourteen graphics modes of which nine can be
directly accessed from BASIC on older machines and thirteen on the newer XL units.
This section of the book will explain each of the various graphics modes, their
resolution or size, the method by which they are mapped to the screen, and how
colors are generated.

Graphics Mode 0 (ANTIC 2)

This is the normal-sized character or text mode that the computer defaults to on
start up. Being a character mode, screen memory consists of bytes that represent
individual characters in either the ROM or a custom character set. ANTIC displays
forty of these 8 x 8 sized characters on each of twenty-four lines.

Graphics 0 is a l Y2 color mode. Color register #2 is used as the background color
register. Color register #1 sets the luminance of the characters against the back
ground. Setting the color has no effect. Bits within a character are turned on in pairs
to produce the luminace color. Otherwise single bits tend to produce colored
artifacts on the high resolution screen. These colors depend on whether the com
puter has a CTIA or GTIA chip, and the color of the background.

Graphics 1 (ANTIC 6)

This is one the expanded text modes. Each characters is 8 x 8 but the pixels are one
color clock in width instead of the 112 co lor clock mode of Graphics 0 making the
characters twice as wide. Only twenty characters fit on any line. A graphics 1 screen
has twenty rows while the full screen mode has twenty-four rows of characters.

The two high bits of each AT ASCII character, that normally identify lowercase or
inverse video text in Graphics 1, set the color register for the 64 character set. Decimal
character numbers 0-63 use color register zero, while those same 64 characters if given
character numbers 64-127 use color register #1. If you are typing from the Atari
keyboard, the uppercase letters A-Z AT ASCII 65-90 (Internal # 33-58) are assigned to
color register zero, while the lowercase numbers 97 -1 22 (Internal # 97-122) are
assigned to register # 1.

23

GRAPHICS MODES
GRAPHICS ANTIC DISPLAY AVAILABLE SCREEN SIZE SCAN LINES

MODE MODE TYPE COLORS Columns x Rows MODE

U) 0 2 Standard 1 Color & 40 x 24 8
w Text 2 Luminances
c
0 1 6 Double- 5 20 x 20 (Split) 8
:E Width Text 20 x 24 (Full)
l-x 2 7 Double-Width 5 20 x 10 (Split) 16 w
I- Double-Height Text 5 20 x 12 (Full)

3 8 4 40 x 20 (Split) 8
40 x 24 (Full)

5 A FOUR 4 80 40 (Split) 4
COLOR

x

GRAPHICS
80 x 48 (Full)

U)
w 7 D 4 160 x 80 (Split) 2
c 160 x 96 (Full) 0
:E 4 9 2 80 x 40 (Split) 4
-I TWO w 80 x 48 (Full)
~ COLOR
11. 6 B GRAPHICS 2 160 x 80 (Split) 2

160 x 96 (Full)

8 F High 1 Color 320 x 160 (Split) 1
Resolution 2 Luminances 320 x 192 (Full)
Graphics

9 - 16 Luminance 1 Color 80 x 192 (Full) 1
Medium ~6 Luminance

U) Resolution w
c 10 9 Color 9 80 x 192 (Full) 1 0 -
:E Medium
oCt
i=

Resolution

(!J 11 - 16 Color 16 80 x 192 (Full) 1
Medium

Resolution
a: 12' 4 Multi-Color 4 40 x 20 (Split) 8 LLI
I-
0 Character 40 x 24 (Full)
< a: 13' 5 Double High 4 40 x 10 (Split) 16 <
:J:
0 Multi-Color Char. 40 x 12 (Full)

c 14' C Two Color 2 160 x 160 (Split) 2 w
11. Bit-Mapped 160 x 192 (Full)
11.
oCt 15' E Four Color 2 160 x 160 (Split) 2 :E
I- Bit Mapped 160 x 192 (Full)
iii

*' BASIC modes on XL machines on ly

24

GRAPHICS MODES AND COLOR REGISTERS 1

BYTES/ MEMORY COLOR REGISTER NUMBERS COLOR SHADOW
LINE USED FOREGROUND BACKGROUND BORDER REGISTER REGISTER

(Bytes) NUMBER

40 992 1 (color is 2 4 - -
not selectable)

20 674 0,1,2,3 4 4 See Table -
672

20 424 0,1,2,3 4 4 See Table -
420

10 434 0,1,2 4 4 Color 0 Register 4 712
432

20 1174 0,1,2 4 4 Color 1 Register 0 708
1176

40 4190 0,1,2 4 4 Color 2 Register 1 710
4200 Color 3 Register 2 709

10 694 0 4 4 Color 0 712
696 Register 4

20 2174 0 4 4 Color 1 708
2184 Register 0

40 8112 1 (color is 2 4 Color 0 Register 2 710
8138 not selectable) Color 1 Register 2 709

40 8138 4 - - Color 0-15= 712
Luminance

Register 4=Color

40 8138 1-8 0 0 Set Registers 712
By Pokes

40 8138 0-15 - - Color 0-15=Color 712
Register 4=
Luminance

40 1154 0,1,2,3 4 4 Register 0 708
1152 Register 1 709

40 664 0,1,2,3 4 4 Register 2 710

660

20 4270 0 4 4 Register 0 708
4296

40 8112 0,1,2 4 4 Register 0 708
8138 Register 1 709

Register 2 710

25

26

1 GRAPHICS MODES AND COLOR

Graphics 2 (ANTIC 7)

This text mode is bas ically the same as the previous mode except that each row of
pixels is two scan lines high. Thus 12 rows of 20 characters are displayed on a full
screen. Only ten rows fit on a split screen .

Graphics 3 (ANTIC 8)

This four-color graphics mode turns a split screen into 20 rows of 40 graphics cells
or pixels. Each pixel is 8 x 8 or the size of a normal character. The data in each pixel is
encoded as two bit pairs, four per byte. The four possible bit pair combinations 00,
01, 10, and 11 poin t to one of the four color registers. T he bits 00 is assigned to the
background color register and the rest refer to the three foreground color registers .
When the CTIA/GTIA chip interprets the data for the four adjacent pixels stored
within the byte, it refers to the color register encoded in the bit pattern to plot the
color.

Graphics 4 (ANTIC 9)

This is a two-color graphics mode with four times the resolution of GRAPHICS 3.
The pixels are 4 x 4, and 48 rows of 80 pixels fit on a full screen. A single bit is used to
store each pixel's color register. A zero refers to the background color register and a
one to the foreground color register. The mode is used primarily to conserve screen
memory. Only one bit is used for the color, so eight adjacent pixels are encoded
within one byte, and only ha lf as much screen memory is needed for a display of
similiar-sized pixels.

Graphics 5 (ANTIC A or 10)

This is the four color eq uivalen t of GRAPHICS 4 sized pixels. The pixels are 4 x 4,
but two bits are required to address the four color registers. With only four adjacent
pixels encoded within a byte, the screen uses twice as much memory, about lK.

Graphics 6 (ANTIC B or 11)

This two color graphics mode has reasonably fine resolution. The 2 x 2 sized pixels
allow 96 rows of 160 pixels to fit on a full screen. Although only a single bit is used to
encode the color, screen memory still requires approximately 2K.

Graphics 7 (ANTIC D or 13)

This is the four color equivalent to GRAPHICS mode 6. It is the finest resolution
four color mode and naturally the most popular. The color is encoded in two bit

GRAPHICS MODES AND COLOR REGISTERS 1

pairs exactly the same way as in GRAPHICS 3. The memory requirements of course
is much greater as there are 96 rows of 160 - 2 x 2 sized pixels. It requires 3840 bytes
of screen memory with another 104 bytes for the display list.

Graphics 8 (ANTIC F or 15)

This mode is definitely the finest resolution available on the Atari. Individual
dot-sized pixels can be addressed in this one-color, two-luminance mode. There are
192 rows of 320 dots in the full screen mode. Graphics 8 is memory intensive; it takes
8K bytes (eight pixels/ byte) to address an entire screen.

The color scheme is quite similar to that in GRAPHICS mode O. Color register #2
sets the background color. Color register #1 sets the luminance. Changing the color
in this register has no effect, but, this doesn't mean that you are limited to just one
color.

Fortunately, the pixels are each one half of a color clock. It takes two pixels to span
one color clock made up of alternating columns of complementary colors. If the
background is set to black, these columns consist of blue and green stripes. If only the
odd-columned pixels are plotted, you get blue pixels. If only the odd-columned
pixels are plotted, you get green pixels. And if pairs of adjacent pixels are plotted,
you get white. So by cleverly stagering the pixel patterns, you can achieve three
colors. This method is called artifacting. This all depends on background color and
luminance.

The following five graphics modes have no equivalent in BASIC on older
machine but if indicated do correspond to an equivalent graphics mode on the newer
XL models.

Antic 3

This rarely used text mode is sometimes called the lowercase descenders mode.
Each of the forty characters per line are ten scan lines high, but since each of the
characters are only eight scan lines high, the lower two scan lines are normally left
empty. However, if you use the last quarter of the character set, the top two lines
remain blank, allowing you to create lowercase characters with descenders.

Antic 4 (Graphics 12-XL computers only)

This very powerful character graphics mode supports four colors while using
relatively little screen memory (1 K). In addition its 4 x 8 sized characters have the
same horizontal resolution as GRAPHICS 7, yet twice the vertical resolution. A
large number of games with colorful and detailed playfields use this mode.

These characters differ considerably from ANTIC 6 (BASIC 2) characters, in that
each character contains pixels of four different colors, not just a choice of one color
determined by the character number. Each byte in the character is broken into four

27

28

1 GRAPHICS MODES AND COLOR

RELATIVE PIXEL SIZES OF DIFFERENT GRAPHIC MODES

Graphics 3
Antic 8

GTIA
Graphics 9,10,11

Graphics 4
Antic 9

Graphics 6
Antic B

Graphic 7
Antic 0

Graphics 8
Antic F

Graphics 14(XL) Graphics 15(XL)
Antic C Antic E

GRAPHICS 2
ANTIC 7

Graphics 4
Antic A

GRAPHICS MODES AND COLOR REGISTERS 1

GRAPHICS 0
ANTIC 2

.. ~".
GRAPHICS 12 (XL)

ANTIC 4

GRAPHICS 1
ANTIC 6

.'

1:1J •
GRAPHICS

13 (XL)
ANTIC

5

29

30

1 GRAPHICS MODES AND COLOR

bit pairs, each of which selects the color register for the pixel. That is why the
horizontal resolution is only four bits. A special character set generator is used to
form these characters.

Antic 5 (Graphics 13-XL computers only)

This mode is essentially the same as ANTIC 4 except that each character is sixteen
scan lines high. The character set data is still eight bytes high so ANTIC double plots
each scan line.

Antic C (Graphics 14-XL computers only)

This two-color, bit-mapped mode the eight bits correspond directly to the pixels
on the screen. If a pixel is lit it receives its color information from color register #0,
otherwise the color is set to the background color register #4. Each pixel is one scan
line high and one color clock wide. This mode's advantages are that it only uses 4K of
screen memory and doesn't have artifacting problems.

Antic E (Graphics 15-XL computers only)

This four-color, bit-mapped mode is sometimes known as BASIC 7l1. Its resolu
tion is 160 x 192 or twice tha t of GRAPHIC 7. Each byte is di vided in to four pairs of
bits. Like the character data in ANTIC 4, the bit pairs point to a particular color
register. The screen data, however, is not character data but individual bytes. The
user has a lot more control, but this mode uses a lot more memory, approximately
SK.

GTIA
There are three additional graphics modes in the GTIA chip that are actually

special interpretations of ANTIC mode $F, a high resolution graphics mode. They
are designed to add a lot more color to the screen without sacrificing too much
resolution. Graphics mode 9 is a one-color, sixteen luminance mode. Mode 10 is a
nine-color mode with independent luminance setting, and mode II offers sixteen
colors set at one luminance. Each mode has a resolution of SO columns by 192 rows.
There is no split screen in these modes.

The GTIA modes are selected by the upper two bits in the priority register
shadowed at location 623 ($26F). BASIC programmers can reach any of these GTIA
modes by normal graphics statements GRAPHICS 9, 10, or 11. Others will need to
POKE the correct bit. Graphics mode 9 can be activated by turning on bit 6 with a
POKE 623,64. GRAPHICS lOis activated by turning on bit 7 with a POKE 623, 12S.
Both bits 6 and 7 need to be set with a POKE 623,192 to activate graphics mode 11.
These values will disturb the other bits in GPRIOR that set various functions, so

GRAPHICS MODES AND COLOR REGISTERS 1

take care if you have set any other bits previously by POKEing a value that combines
both. These other bits a llow the combination of all four missiles into a fifth player,
es tablish player-missile and playfield priorities, and enable multiple-colored or
overlapping players.

The GTIA chip was not standard eq uipment on Atari computers until December,
1981. Those with older computers may wonder if this chip is installed. If you are on
the text screen (GR.O) and do a POKE 623,64, the screen will go black and become
unreadable with the GTIA chip. If nothing happens, you have the CTIA chip. Your
machine can be updated to the newer GTIA chip by your Atari dealer if you desire.

Since GTIA modes allow a lot more color while using the same screen memory as
GRAPHICS 8, more bits are needed to keep track of the color. In fact sixteen colors
require four bits, so that only two pixels are encoded within a byte instead of the
usual eight. This is the reason the horizontal resolution drops from 320 pixels to 80
pixels per scan line. The pixels are elongated instead of square. Also, since there are
only nine color registers in the computer, the sixteen colors are bit mapped to the
screen as in other computers, instead of by the Atari method of color indirection .

Graphics 9

GRAPHICS mode 9 produces up to sixteen different luminances of the same hue.
This is quite useful for drawing pictures that require alot of shading, or for digitiz
ing pictures. The main color is set by the background color register #4. You can use
the SETCOLOR command to set the color value in the upper four bits (nybble), and
the luminance in the lower four bits to zero. The COLOR command is used to vary
the luminance. What actually happens is that the pixel data from ANTIC is logi
cally ORed with the lower nybble of the background color register to set the
luminance that appears on the screen. A quick little program that will demonstrate
the mode is listed below.

10 GRAPHICS 9
20 SETCOLOR 4,1,0
30 FOR I=O TO 15
40 COLOR I
50 PLOT I+20,lO
60 DRAWTO I+20,40
70 NEXT I
80 GOTO 80

Graphics 11

GRAPHICS 11 is a one luminance, 16 color mode. The luminance this time is set
by the background color register #4. The SETCOLOR command is used to set up the
single luminance value in the lower nybble of this register, while zeros representing
the hue are placed in the upper nybble. The COLOR command is used in this mode
to select the various colors. This time ANTIC's pixel data is logically ORed with the

31

32

1 GRAPHICS MODES AND COLOR

upper nybble of the background color register to set the hue that appears on the
screen. A typical example follows:

10 GRAPHICS 11
20 SETCOLOR 4,0,6:REM LUMINANCE 6
30 FOR 1=0 TO 15
40 COLOR I
50 PLOT 1+20,10
60 DRAWTO 1+20,40
70 NEXT I
80 GOTO 80

This sixteen-color mode doesn't use the four playfield color registers for color
indirection. The colors on the screen are determined directly by the data bits stored in
memory. Each pixel has the value for the hue stored in memory. For example, a blue
hue, which is number 7, has a bit value 0111. This is what is stored in the nybble.
Two adjacent pixels, which are stored in the same byte have a value of 01110111 or
119 decimal ($77). All have the luminance assigned to the background color register.

There is a slight advantage to not using the color registers in either GRAPHICS 9
or 11: even more color can be added to the screen by adding players of different colors.
The disadvantage is that the collision registers are useless in both modes.

Graphics 10

GRAPHICS 10 is probably the most versatile of the GTIA modes. While it only
has nine colors with variable luminance, it does use color indirection to produce its
color. This means that the screen data points to one of the five playfield-color
registers and the four player-color registers to obtain its color information rather
than storing the color data on the screen as in the other two GTIA modes. Since
players use the same color as part of the background, you must be careful. They will
blend in when they coincide with that portion of the playfield using the same color.
Collision registers don't work in this mode either. We believe ANTIC's collision
registers are bypassed in all GTIA modes. A typical GRAPHICS 10 example follows;

10 GRAPHICS 10
20 FOR 1=0 TO 8
30 N=I
40 POKE 704+I,N*16+6
50 COLOR I
60 PLOT 1*2+20,10
70 DRAWTO 1*2+20,30
80 NEXT I
90 POKE 704,0:REM FOR BLACK BACKGROUND
100 GOTO 100

GRAPHICS MODES AND COLOR REGISTERS 1

When you choose the color register via the COLOR statement in BASIC, 16
different values can be used but only the first nine are valid. The remainder just
repeat various playfield registers. The chart is listed below. You will notice that
COLOR 4 no longer sets the background color. Instead it is set by player O's color in
register number 704. It is best to use POKEs to set the color registers rather than
SETCOLOR.

COLOR REGISTER PLAYFIELD
STATEMENT #

0 704 PCOLORO
1 705 PCOLORI
2 706 PCOLOR2
3 707 PCOLOR3
4 708 PLAYFIELD 0
5 709 PLAYFIELD 1
6 710 PLAYFIELD 2
7 711 PLAYFIELD 3
8 712 PLAYFIELD 4

You can achieve some really nice animation effects when using this mode through
the power of color indirection. If you don't count the background, you can rotate
eight colors through the color registers to create a sense of motion.

30,0

GTIAMOVE

704 BACKGROUND

m
~

710

q 713=TEMP

ROTATE COLOR
REGISTERS

33

34

1 GRAPHICS MODES AND COLOR

The example below draws a very colorful rectangular box in perspective. Part of
one side was left open so that you can see more of the left and back sides. The different
color registers or paint pots are set up in a bucket brigade. Since location 713 isn't
used for anything, we used this as a temporary storage location. The color or paint
from register 705 is firstput into this temporary bucket or storage location, then shift
the rest of the colors by moving them from the higher color register to the next lower
one. This is done in a FOR ... NEXT loop. We POKE the lower color register with the
value we find in the next higher color register.

10 GRAPHICS 10
20 REM LOAD COLOR REGISTERS
30 POKE 704,0:POKE 705,82
40 POKE 706,116:POKE 707,196
50 POKE 708,54:POKE 709,68
60 POKE 710,24:POKE 711,102
70 POKE 712,34
80 FOR K=O TO 19
90 FOR 1=0 TO 8
100 COLOR I
110 PLOT 10+K,(40-K*2)+I*10
120 DRAWTO 10+K,(50-K*2)+I*10
130 NEXT I:NEXT K
150 FOR K=O TO 29
160 FOR 1=0 TO 8
170 COLOR I
180 PLOT 30+K,(K*2)+I*10
190 DRAWTO 30+K,(10+K*2)+I*10
200 NEXT I:NEXT K
210 FOR K=O TO 19
220 FOR 1=1 TO 8
230 COLOR I
240 PLOT 60-K,(60+K*2)+I*10
250 DRAWTO 60-K,(70+K*2)+I*10
260 NEXT I:NEXT K
270 FOR K=O TO 19
280 FOR 1=1 TO 8
290 COLOR I
300 PLOT 40-K,(100-K*2)+I*10
310 DRAWTO 40-K,(110-K*2)+I*10
320 NEXT I:NEXT K
325 FOR DE=1 TO 200:NEXT DE
330 POKE 713,PEEK(705)
340 FOR 1=0 TO 7
350 POKE 705+I,PEEK(706+I)
360 NEXT I
370 FOR DE=1 TO 15:NEXT DE
380 GOTO 330

GTIA Trick

The GTIA modes, because they are special cases of GRAPHICS mode 8, require a
considerable amount of display memory, approximately 8K. Graphics mode 0, a text
mode, in many respects is very much like our high resolution mode. It is a 1 liz color
mode, and the individual pixels within a character are the same.

GRAPHICS MODES AND COLOR REGISTERS 1

If you turn on G TIA mode 11 from G RAPHI CS 0 by PO KIN G 623,192 the screen
turns black and you get weird colored pixel patterns where your characters were.
Recall from the above discussion that the color pixel patterns are directly bit mapped
in screen memory in pairs of four bits, or nybbles, two per byte. If we .could rewrite
the character set so that the sixteen possible nybble pairs were in the first sixteen
characters in the set, we could plot colored blocks the size of characters. While it
wouldn't be as fine a resolution as in normal GRAPHICS 11, it would only require
960 bytes of screen memory, quite a substantial savings.

The bit pattern that is used to set color registers is the same one that we need to set
up our pair of nybbles in each row of our character. The chart is listed below.

BITS VALUE COLOR
0000 0 grey (no color)
0001 1 light orange
0010 2 orange
0011 3 red orange
0100 4 pink
0101 5 purple
0110 6 purple blue
0111 7 blue
1000 8 blue
1001 9 light blue
1010 10 turquoise
1011 11 blue green
1100 12 green
1101 13 yellow green
1110 14 orange green
III 1 15 light orange

We need to POKE a $00 into each of the bytes of the Oth character, a $11 (decimal
34) into the bytes for the 1st character, a $22 (decimal 34) into the bytes of the third
character, etc. The values are seventeen apart so that it is simple to put the correct
color nybble values into an array CT(16). Then it is a straightforward affair to
method of POKEing the values in eight at a time into the proper character position
in the new character set.

Any of these special G TIA color characters can be plotted to the screen at a specific
position by calculating the offset from the beginning of screen memory. This
location is stored at locations 88 and 89.

SCREEN = PEEK(88)+PEEK(89)*256
OFFSET = (40 x row #) + column #
LOCATION = SCREEN + OFFSET

So if you want to plot a purple pixel at character location (2,2) you do a POKE
SCREEN + 82, 85. The luminance is set by the background color register 712.

35

36

1 GRAPHICS MODES AND COLOR

An example of putting a row of sixteen different-colored GTIA pixels in

GRAPHICS 0 is shown below.

10 REH DEHO OF G'fIA COLORS IN GRAPHICS MODE 0
15 REH MOVE TOP MEHORY DOWNWARD TO FIT CHARACTER SET
20 POKE 106,PEEK(106)-4
30 CB=PEEK(106):REH NEW CHARACTER SET LOCATION-HI BYTE
40 GRAPHICS 0
50 CHRSET=CB*256:REM ACTUAL RAM LOCATION OF CHARACTER SET
55 REH SET UP ARRAY OF SPECIAL CHARACTER VALUES
60 DIM CT(16)
70 FOR 1=0 TO 15:CT(I)=17*I:NEXT I
SO REM WRITE GTIA COLOR CHARACTERS (0-15) IN NEW CHARACTER SET
90 FOR 1=0 TO 15
100 FOR J=O TO 7
110 POKE CHRSET+I*S+J,CT(I)
120 NEXT J:NEXT I
140 REM FIND SCREEN MEHORY & WRITE CHARACTERS
141 SCREEN=PEEK(SS)+PEEK(S9)*256
150 FOR 1=0 TO 15:POKE SCREEN+I,I:NEXT I
160 POKE 756,CB:REM NEW CHARACTER SET LOCATION - HI BYTE
170 POKE 623,192:REM TURN ON GTIA MODE 11 (16 COLOR)
ISO POKE 712,S:REM CONTROLS LUMINANCE
190 GOTO 190

CHAPTER 2

DISPLAY LISTS

We introduced you briefly in chapter I to a graphics microprocessor called
ANTIC that is capable of displaying any of fourteen graphics modes. Since any
screen actually consists of a collection or vertical stack of these individual graphics
modes, ANTIC looks to a program called the display list to determine in which
graphics mode it should display the screen data. The fact that there is something
resembling a graphics display instruction set makes the computer extremely flexi
ble. It becomes possible to display any collection of graphics modes from data in
screen memory that can be stored virtually anywhere within the computer's RAM
memory. This flexibility allows the user to mix graphics modes and even scroll the
screen in any direction by al tering the portion of screen memory displayed.

ANTIC, like most true microprocessors, has an instruction set that is used to write
the display list program. The display list specifies three things: where the screen data
is located, what display modes to use to interpret the screen data, and what special
display options, if any, to implement.

Antic Instruction Set

ANTIC has a simple instruction set with only four basic instruction types. There
are map mode instructions, character mode instructions, blank line instructions,
and jump instructions. Map mode instructions instruct ANTIC to display a mode
line as colored pixels, while character mode instructions tell ANTIC to display a
mode line with character data either from its internal ROM or from your own
custom designed set. Blank line instructions instruct ANTIC to display a number of
horizontal scan lines with solid background color. Like GOTO statements in
BASIC, jump instructions change the value in ANTIC's program counter so that it
looks for its next opcode somewhere else.

Special Options or Modifiers

ANTIC also has a number of special options or modifiers to its map and character
mode instructions. These are specified by setting one of four high bits in the
instruction set. These options are load memory scan (LMS), display list interrupt
(DLI), vertical scroll, and horizontal scroll.

The load memory scan option is the most frequently used option for it occurs at
least once in every display list. It specifies where the screen data is stored in memory.

37

38

2 DISPLAY LISTS

Technically, only one of these instructions is actually needed in any series of display
modes because screen memory is usually continuous. However, if memory isn't
continuous, either within a particular display mode or at the boundry between
different modes , an LMS instruction is needed each time a new section of memory is
used. Another instance where an additional LMS instruction is required, is in
ANTIC modes E and F (GRAPHICS 8) where continuous screen memory crosses a
4K boundary. The load memory scan option is invoked by adding a decimal 64 ($40)
to the map or character in the mode instruction. This is equivalent to setting the
sixth bit in the instruction. LMS instructions are three bytes long. The first byte is
the opcode specifying the mode and the las t two bytes contain the address of screen
memory in low byte, high byte order.

The other three modifiers are sometimes used by Assembly language programmers
to achieve special effects. Setting bit 7 or adding 128 to the opcode enables a display
list interrupt. Execution of this instruction causes ANTIC to force the 6502 to
generate an interrupt. The interrupt service routine will be at the address pointed to
in memory locations 512,513 decimal ($200,201). Display list interrupts are often
used to change the colors in the color registers over part of a screen or to change
between character sets midway down the screen. We will discuss these uses in detail
in chapter 6 and 4, respectively.

Horizontal scrolling can be set up by adding 16 to the opcode or setting bit 4.
Likewise, you enable vertical scrolling by adding 32 to the opcode or by setting bit
five. These modifiers allow you to fine scroll the screen in either direction. Naturally
if you are planning to scroll through memory by changing the start of screen
memory, you will need to combine your scroll modifier with a load memory scan
modifier. This technique will be shown in more detail in chapter 7.

GRAPHICS MODE INSTRUCTIONS

Mode LMS Vertical LMS with LMS with Comment
Dec Hex Only Scrolling Horiz. Horiz. & Vert.

I I Dec Hex Only Scrolling Scrolling

2 2 66 42 34 22 82 52 114 72 Text Mode 0

3 3 67 43 35 23 83 53 115 73 10-Scan Line Character
4 4 68 44 36 24 84 54 116 74 Multicolored Character
5 5 69 45 37 25 85 55 117 75 Double High Multicolored Character

6 6 70 46 38 26 86 56 118 76 Text Mode 1
7 7 71 47 39 27 87 57 119 77 Text Mode 2
8 8 72 48 40 28 88 58 120 78 Graphics Mode 3
9 9 73 49 41 29 89 59 121 79 Graphics Mode 4

10 A 74 4A 42 2A 90 SA 122 7A Graphics Mode 5
11 B 75 4B 43 2B 91 5B 123 7B Graphics Mode 6
12 C 76 4C 44 2C 92 5C 124 7C Two-Color Bit Mapped
13 0 77 40 45 20 93 50 125 70 Graphics Mode 7
14 E 78 4E 46 2E 94 5E 126 7E Four-Color Bit Mapped
15 F 79 4F 47 2F 95 SF 127 7F Graphics Mode 8

Note:
1) Display List Interrupts can be enabled by adding 128 decimal , $80 Hex to above values
2) Since it is impractical to do horizontal scrolling without a LMS instruction values are not referenced.

DISPLAY LISTS 2

Blanking Instructions

The blanking instructions generate a certain number of blank scan lines in the
color and luminance of the background or border color. From I to 8 blank scan lines
can be generated by these opcodes. They are primarily used to correct the overscan on
a television set.

Jump Instructions

There are two jump instructions. The first (JMP) tells ANTIC to continue
looking for instructions at a different address. It is equivalent to a GOTO in the
display list. It is a three byte instruction with the address in low byte, high byte order
following the opcode. Its only function is to provide a solution to the display list's
inability to cross a IK boundary. If for any reason your display list must cross a lK
boundary, then it must use a JMP instruction. Otherwise, don't worry about this
instruction.

The second jump instruction (JVB)-Jump and wait for Vertical Blank-is used in
every display list. It is a three byte instruction; the address in low byte, high byte
order follows the opcode. JVB tells ANTIC to jump to the start of the display list and
wait for a new screen refresh to begin. Surprisingly, this address doesn't have to be
accurate, because the OS keeps track of the top of the display list and passes it to
ANTIC during the vertical blank. However, you should try to maintain the real
address because if you use any SIO functions such as the disk drive or the printer,
ANTIC won't be updated properly and the jump will be to the address that you
specify in the instruction.

ANTIC INSTRUCTION SET

Instruction Comment
Decimal Hex

0 0 1 Blank Line

16 10 2 Blank Lines

32 20 3 Blank Lines

48 30 4 Blank Lines

64 40 5 Blank Lines

80 50 6 Blank Lines

96 60 7 Blank Lines

112 70 8 Blank Lines

1 1 Jump to Location

65 41 Jump & Wait for VBlank

39

40

2 DISPLAY LISTS

Typical Graphics 0 Display List

Let us look at the display list for a typical Graphics #0 screen, the standard text
mode. If you look at the chart below, you wi ll see that this is ANTIC mode 2. It is a
character mode with forty bytes per line. Each row is eight scan lines high, and there
are twenty-four rows of characters. To produce an entire screen of text, twenty-four
mode lines of ANTIC mode 2 will be required.

In BASIC the display list is setup automatically in memory just below screen
memory. The memory pointers to the top of the display list are shadowed at
locations 560, 561 decimal in low byte, high byte order. Thus:

DLIST = PEEK(560)+256*PEEK(561)

It is possible to look at the display list if, we write a short program to print the
entire list to either the screen or a line printer. Display lists are easy to view if there are
at least four lines of text 0; but viewing display lists for full screen graphics modes,
and especially custom graphics modes, can be a problem without a printer. The
reason is that you must PEEK the values in the display list while you are in the
appropriate mode, and not when you return to text mode O. A method to avoid the
problem is to store the PEEKed display list elsewhere in memory and print it after
you return to the text mode. A safe spot depending on circumstance might be 256 or
more bytes below the desired display list.

The following program will print the display list for GRAPHICS 0 to the screen.

10 GRAPHICS 0
20 DLIST=PEEK(560) +256*PEEK(561)
30 FOR 1=0 TO 40
40 PRINT PEEK(DLIST+I);" ";
50 NEXT I
60 GOTO 60

If you choose to print the list to the line printer then change line 40 to;

40 LPRINT PEEK(DLIST+I)

It is quite useless to attempt to get an 80-column printer to print the display list
across severa l rows instead of in a vertical column. Putting in a semi-colon at the end
of the print line does little more than place two values on one line and this becomes
confusing. The fault lies in the Operating System's printer driver.

The 32 byte long display li st appears as follows for a 40K or larger computer with
BASIC present;

112
112
112

66)
64

156
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

65)
32

156

DISPLAY LISTS 2

Blank 8 scan lines to provide for overscan

Display ANTIC mode 2 (BASIC 0) 64+2
Screen memory starts at
64+ 156*256 = 40000
Display ANTIC mode 2 for second mode line

22 more ANTIC mode 2 modes

JVB-Jump and wait for Vertical Blank
to display list address which starts at
32+256*156 = 39968

The first thing you notice is that every display list begins with three "blank 8
lines" instructions. This is to defeat the television's overscan by starting the display
twenty-four scan lines down. The next instruction is a load memory scan (LMS).
The ANTIC mode number is added to 64. The next two bytes are the low, high byte
address to the beginning of display memory. Since the LMS instruction counts as the
first display mode, only twenty-three more display ANTIC mode 2 instructions are
needed. Finally there is a JVB instruction that resets the program counter to the top
of the display list at loacation 39968.

The display list for a 16K machine is similar. The differences are in the locations of
the top of the display list and the start of screen memory. The start of screen memory
is at 15424 decimal. The low byte after the LMS instruction is 64 and the high byte is
60. The top of display list is at 15392 decimal. The low byte after the JVB instruction
is 32 and the high byte is 60.

41

42

2 DISPlAY LISTS

Mixing Graphics Modes

You are not always stuck with a homogenous stack of display modes. After all,
splitting text and graphics is mixing modes. It is very easy to mix display modes just
by changing a single display mode instruction in the display list. For example, we
could change the twelfth row of GRAPHICS 0 text in the program below to a
GRAPHICS 1 elongated text mode (ANTIC 6) characters by changing the 12th
display instruction in the display list.

20 GRAPHICS 0
30 DLIST=PEEK(560)+PEEK(561)*256
40 FOR 1=1 TO 24
50 PRINT "LINE";I; " THIS ROW HAS FORTY CHARACTERS"; :IF 1(24 THEN?
60 NEXT I
1000 GOTO 1000

If we coun t down the display list starting with the Oth byte, a POKE DLIST+ 16,6
would change the text characters to GRAPHICS 1 characters. Do this by adding; 70
POKE DLIST + 16,6. The trouble is that everything below our new mode line is
offset by half a row or twenty bytes. To understand why this occurs you need to
understand what happens when ANTIC receives instructions to display a particular
mode.

When ANTIC gets an instruction to display a particular graphics or character
mode it automatically goes to display memory and gets the precise number of bytes
of data necessary to display that mode line. When it sees an ANTIC 2 (GRAPHICS 0)
display mode it retrieves forty bytes and interprets them in the proper display mode.
When it sees another ANTIC 2 display mode it retrieves the next forty bytes in
sequence from display memory. If instead it sees an ANTIC 6 (GRAPHICS 1)
display mode, it only retrieves twenty bytes. Upon encountering the next ANTIC 2
display mode ANTIC retrieves another forty bytes. The trouble is that each of our
print statements start at intervals of exactly forty bytes from the beginning of screen
memory. When ANTIC only retrieved twenty bytes, it displayed only half of our
printed line. The next ANTIC 2 display mode retrieves memory beginning with the
last half of our line of text and displays it on the next line. Each of the ANTIC mode 2
lines on subsequent lines are also off by twenty bytes. You could correct this by
adding another ANTIC 6 mode instruction immediately below the first one. Add
line 80 POKE DLIST+ 17,6 to the program. The text for the twelfth row is now split
between the two display lines of elongated text. Since we retrieved forty bytes less
memory in producing the screen, the last row in memory isn't displayed.

You can experiment by changing any display instruction to any desired mode. If
you try substituting BASIC GRAPHICS 2 (ANTIC 7) characters for those same two
lines by POKEing a 7 instead;

70 POKE DLIST+16,7
80 POKE DLIST+17,7

the bottom of the display gets pushed downward, partially off screen.

DISPLAY LISTS 2

What has happened is that we are now displaying more than 192 scan lines, 208
lines to be exact. While this isn't a major problem, it is possible to confuse the
television screen's timing and the picture may begin to roll. As a rule of thumb, you
shouldn't have more than 192 scan lines in your display. Displaying fewer scan lines
will cause no problems. In fact it will decrease the 6502 execution time by reducing
the number of cycles stolen by ANTIC to display the screen data.

Moving The Text Window

In BASIC, whenever you specify mixed text in any graphics mode, the four lines of
text are automatically placed at the bottom of the screen. This is rarely the best
location for it. It is often preferable when designing games to put your scoring
information at the top. The text window is easy to move if you rewrite the display
lis t.

If you look at a GRAPHICS 3 display list you will obtain the following values.
The display list on the left is the one BASIC defaults to, and the one on the right is the
display list we need to have four lines of text at the top and a GRAPHICS 3 screen
below.

112 Blank 8 lines
112
112
72} LMS display ANTIC 8

112 Screen memory starts at
158 112+(158*256)

8 Display ANTIC 2 (GR.O)
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

66} LMS display ANTIC 2
96 Text memory starts at

112 Blank 8 lines
112 to provide for overscan
112
66} LMS display ANTIC 2 (GR.O)
96 Text memory starts at

159 96+(159*256)
2
2
2

72} LMS display ANTIC 8 (GR.3)
112 Screen memory starts at
158 112+(158*256)

8
8
8
8
8
8
8
8
8
8
8
8
8
8

43

44

2 DISPlAY LISTS

159) 96+(159*256)
2 Display ANTIC 2
2
2

8
8
8
8

65 }lVB
78 Address to top of DUST 78 Address to top of DUST

65} lVB

158 78+(158*256) 158 78+)158*256)

There are two ways to modify the display list. The first method changes only the
groups of bytes that need to be modified. If the change is simple, you need rewrite
only a fraction of an entire display list. In this example we are only shifting sections
of the display list in order to change the position of the text window, so we can move
blocks of display list data around if we are careful not to overwrite data. The diagram
shows the sequence of the three moves. The actual move is accomplished in three
short FOR-NEXT loops. The three data bytes at DLIST+3, 4, and 5 are read and
POKEd into locations DLIST+9, 10, and 11. The other two moves are similar.

20 GRAPHICS 3
30 DLIST=PEEK(560)+PEEK(561)*256
35 REM MODIFY DISPLAY LIST
40 FOR 1=0 TO 2:POKE DLIST+9+I,PEEK(DLIST+3+I):NEXT I
50 FOR 1=0 TO 5:POKE DLIST+3+I,PEEK(DLIST+25+I):NEXT I
60 FOR 1=0 TO 5:POKE DLIST+25+I,8:NEXT I
70 REM PLOT GR. 3
80 PRINT "HI TEXT IS UP HERE"
90 SETCOLOR 0,12,4:REM SET COLOR 1 TO GREEN
100 SETCOLOR 2,4,6:REM SET COLOR 3 TO PINK
110 COLOR l:PLOT O,O:DRAWTO 10,10
120 COLOR 3:PLOT 12,12:DRAI.JT0 19,0
1000 GOTO 1000

HI TEXT IS UP HERE

GRAPHICS 3

DISPLAY LISTS 2

BASIC doesn't even notice the change. It keeps internal pointers to the locations of
both text memory and screen memory. Since we didn't change these values text is
printed correctly to the text area, and graphics are plotted correctly on the shifted
screen. You might observe that when we set the colors for plotting in GRAPHICS 3,
we affected the background of the text window. This is because SETCOLOR 2
affects the text background. We avoided plotting with SETCOLOR 1 because this
register affects the luminance of the letters. We won't have any problem if we set this
color register as long as we keep in mind that the luminance must be 6 or greater for
readablity.

The second method and sometimes the easier method when rewriting the display
list is to put the new list in data statements. Then it is only a matter of reading the list
and POKEing the values into memory starting at the top of the old display list. Since
the screen does act funny during the change, ANTIC can be temporarily disabled by
writing a zero into SDMCTL at location 559 ($22F). After the list has been POKEd
into position, you turn ANTIC back on with a POKE 559,34. If you did it right, the
screen will appear exactly as you set it up. If for some strange reason you decide to
move the display list, remember to tell the operating system by POKEing the address
to the top of the list in locations 560 and 561 ($230,231), low and high bytes
respectively.

20 GRAPHICS 3
30 DLIST=PEEK(560)+PEEK(561)*256
35 REM MODIFY DISPLAY LIST
40 FOR 1=0 TO 33
50 READ A:POKE DLIST+I,A:NEXT I
55 SETCOLOR 1,5,8
60 COLOR 2
70 PLOT 2,2
80 DRAWTO 10, lO
90 PRINT "HELLO"
100 DATA 112, 112,112,66,96,159,2,2,2,72,112,158,8,8
110 DATA 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,65,78,158

HELLO
READY

GRAPHI CS 3

45

46

2 DISPLAY LISTS

Custom Display List For Mixing Graphics Modes

The last example is a custom designed display list with two graphics modes split
by a row of expanded text. Whenever you decide to design any custom screen it is best
to layout the design on paper, and translate it into a sequence of mode lines. Once
you have looked up the number of scan lines required for each mode line, you must
double check the line count so that it does not exceed 192 scan lines. You then
translate the sequence of mode lines into a sequence of ANTIC mode bytes.

Our display will consist of sixteen mode lines or rows of GRAPHICS 5 (ANTIC
10) pixels followed by a row of enlarged GRAPHICS 2 (ANTIC 7) text, followed by
fourteen mode lines or rows of GRAPHICS 3 (ANTIC 8) pixels. Since each of the
GRAPHICS 5 pixels are four scan lines high, this portion of the screen requires 16 x
4 = 64 scan lines. The one line of GRAPHICS 2 text requires sixteen scan lines.
GRAPHICS 3 mode lines are eight scan lines high. The fourteen rows at the bottom
require 14 x 8 = 112 scan lines. This gives us a total of 192 scan lines.

ODD
DOD

DO
DOD

DOD 0

GRAPHICS 5

GRAPHIC 2 TEST GRAPHICS 2 OLiST 4

DD
DD

DD
GRAPHICS 3

In BASIC it is sometimes easier to let the system set up the memory area for your
screen and display list. Since you need to be careful that the screen memory require
ments don ' t collide with the top of memory, you always choose a graphics mode that
uses at least as much screen memory as the one you are custom designing. Obviously
a GRAPHICS mode 5 screen is larger in memory than one that is partially GRA
PHICS 5 and partially GRAPHICS 3. GRAPHICS 5 screens require 960 bytes of
memory while GRAPHICS 3 screens require only 240 bytes.

The location of screen memory for any GRAPHICS mode can be found at
locations 88 and 89. SCREEN = PEEK(88)+ PEEK(89)*256. The individual values of
the low byte and high bytes for a GRAPHICS 5 screen in a 40K+ machine are 160 and
155 respectively. This is the lowest address of screen memory corresponding to the
upper left corner of the screen. Memory builds upwards towards the top of memory.

DISPLAY LISTS 2

Each of our sixteen mode lines of GRAPHICS 5 pixels requires twenty bytes.
Therefore that portion of the screen requires 16 x 20 = 320 bytes. If we add 320 bytes to
the beginning of screen memory, the next byte (the beginning of our text memory) in
low byte/ high byte order is at:

+

or

High Byte
155

155

156

Low Byte
160
320

480

224

reduce to a value (0-255)

The reason for the apparently nonsensical decimal math is that when you com
plete the addi tion of 320 and 160 in the low order byte the resul ting decimal value 480
is larger than the·storage capacity of one byte (255 decimal or 11111111 binary). The
carry bit is set and the high order bit of the low byte is carried to the low order bit of
the high byte. The resulting address is the beginning of text memory for our
GRAPHICS 2 text. Since it requires only twenty bytes of display memory, the
beginning of our GRAPHICS 3 memory is at 244 for the low byte and 156 for our
high byte. With this information it is now possible for us to create a display list. That
display list is shown below.

112 Blank 8 lines
112
112
74} LMS Display ANTIC mode 10 (GR.5)

160 Screen memory starts at
155 160+(155*256)

10 Display ANTIC mode 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
71l LMS Display ANTIC mode 7 (GR.2)

47

48

2 DISPLAY LISTS

224}
156

72l 244
156

8
8
8
8
8
8
8
8
8
8
8
8
8
8

65l 104
155

Text memory starts at
224+(156*256)
LMS Display ANTIC mode 8 (GR.3)
Screen memory starts at
244+(156*256)
Display ANTIC mode 8

JVC (Jump and Wait for VBLANK)
Address of top of display list
104+(155*256)

Great care should be taken when designing a display list. One of the most frequent
sources for error is forgetting that the LMS instruction is your first mode line for a
particular graphics type. Forgetting this will cause you to have too many scan lines.
The second source of error is incorrectly calculating the address for display memory.
Once you begin looking at the wrong portion of memory, nothing appears that you
print, plot, or POKE to.

Plotting Points & Lines Using A Custom Design

Plotting GRAPHICS 5 pixels on the top portion of our display is straightforward.
All that you need to do is choose a color register, then PLOT. But on the lower
portions of the screen, the Operating System must first be told which graphics mode
to plot in and where screen memory is located. The current display mode is stored in
memory location 87. Many programmers use this location to fool the OS into
thinking that it is in a different GRAPHICS mode by POKEing it with a number
from 0 to 11. This value is the same as the BASIC graphics mode number. In
addition, the lowest address of screen memory stored at locations 88 and 89 must be
changed.

In our example, when we wanted to plot to the GRAPHICS 3 portion of the
screen, we POKED a 3 into location 87. We then put the beginning of the screen
address into locations 88 and 89. These are the same values as our LMS address for

DISPLAY LISTS 2

this portion of the screen. If you don't perform this operation the OS will incorrectly
calculate the memory addresses to plot your pixel or line of pixels. Similarly the OS
needs to be informed when we print our message in GRAPHICS mode 2 characters.
A POSITION statement must also be included because the OS automatically does a
position each time it plots. The #6 type print statement must be used because this is
screen memory, not text memory.

In summary, the ability to design a custom display list is very valuable. It gives you
flexiblity that is not available on other computer systems. By customizing the
display you can give the screen a personality all your own.

20 GRAPHICS 5+16
30 DLIST=PEEK(560)+PEEK(561)*256
35 REM MODIFY DISPLAY LIST
40 FOR 1=0 TO 42
50 READ A:POKE DLIST+I,A:NEXT I
100 COLOR 3:PLOT 10,0:DRAWTO 60,15
110 REM
120 POKE 88,244:POKE 89, 156:POKE 87,3
130 COLOR 2:PLOT 19,0:DRAWTO 0,8
140 POKE 88,224:POKE 89,156:POKE 87,2
145 REM POSITION STATEMENT NEEDED FOR THE O.S. TO KNOW WHERE TO PUT CHARACTERS
150 POSITION 0,0
160 REM THE O.S. AUTOMATICALLY DOES A "POSITION" EACH TIME A PLOT IS DONE
170 ? #6;" GRAPHICS 2 TEST"
500 DATA 112,112,112,74,160,155
510 DATA 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
520 DATA 71,224,156
530 DATA 72,244,156
540 DATA 8,8,8,8,8,8,8,8,8,8,8,8,8
550 DATA 65,104,155
1000 GOTO 1000
5100 DATA 112,112,112,74,160,155

49

50

CHAPTER 3

CHARACTER SET GRAPHICS

The Atari computer is one of the few machines endowed with enormous flexibility
when it comes to handling character set graphics. Most computers have a set of
character shapes stored permanently in Read Only Memory (ROM). The Atari is no
exception. In addition to the usual upper and lowercase letters and numbers,
twenty-nine control keys represent graphics symbols. These include a heart, dia
mond, spade, and club useful for creating playing cards, and a number of triangles,
small squares, and diagonal and edge lines suitable for creating geometric graphic
displays. While special characters can be useful in some playfield designs, it is
impossible to achieve widely varied playfield designs using characters on most
computers without resorting to slower bit-mapped character shapes.

The Atari, fortunately , takes the concept of character graphics one step further and
allows the user to redefine the character shapes to create colorful and varied back
grounds. A hardware register and its shadow register in RAM keeps track of the
location of the character set currently being used. Normally the register defaults to
the set stored in ROM at $EOOO, but you can give it any RAM address that falls on a
I K boundary. When ANTIC is given instructions to put character data on the screen
it fetches character data from the character set stored at this location.

A character set consists of a maximum of 128 eight-byte shapes. Each character is
represen ted on the screen as a grou p of 8 x 8 dots or pixels. When reading text on the
screen it appears that there are gaps between characters, but there aren't. The gaps
are provided by leaving blank space near the edge of the block alloted to the
individual characters. Since there is no space otherwise defined between characters,
it is possible to create larger shapes consisting of groups of adjacent characters, or
background with no breaks in it.

If we take a look at a single character like the capital letter A from the ROM
character set, it forms a pattern of on-off dots as illustrated below. The pixels in each
of the eight rows, numbered here from 0 -7, are represented in the character set as a
value from 0 -255 ($OO-$FF). The positions of the individual pixels in the row
determine the value.

Pixel values are calculated using a base two numbering system. If a pixel is in the
rightmost column of a row, the bit is set, and it has a value of one. If the lit pixel is in
the next column to the left, that bit is set, and it has a value of two. The values
increase by a factor of two until we reach the left most column which has a value of
128. Thus, if you want to determine the value of the row in a character you add up the
individual bit values for the lit pixels. If we look at row #1 in the letter A we find that
the fourth and fifth pixels are lit. The value of the set bits is 8+ 16 = 24 ($18). If all the
pixels were lit we would have 128+64+32+ 16+8+4+2+ 1 = 255 ($FF).

51

52

3 CHARACTER SET GRAPHICS

HEX 8 4 2 1 I 8 4 2 1 HEX DEC

ROWS 0 $ 0.0 00

$ 1 8 24

2 $ 3C 60

3 $ 66 102

4 $ 66 102

5 $ 7E 126

6 $ 66 102

7 $ 00 00

DEC 128 64 32 16 I 8 4 2 1

CHARACTER #33 INTERNAL

#65 ATASCII

Each character is stored sequentially in the character set as groups of eight values.
The first character is stored in the first eight memory locations (0-7) in the character
set, the second character is stored in the second eight memory locations (8-15), etc.
The first character is called the 0 th internal character, the second the first, etc. Eight
values times 128 characters requires 1024 bytes of memory. If you look in your BASIC
book you will see that internal character values 128-255 produce inverse characters.
These characters are the same as the ones in the internal character set except the
seventh or leftmost bit of the character number is set or turned on. This is equivalent
to adding 128 to the internal character number. If the high bit is set, ANTIC
automatically interpretes the character as inverse, and it plots it on the screen.

Since the computer can only store numbers from 0-255, all characters are assigned
AT ASCII (Atari ASCII) numbers. For example the letter A is assigned the ATASCII
value 65. If you look at the individual characters stored internally from 0-127 in the
character set and then compare them to the AT ASCII values you will find them out
of order. In fact the order is as follows:

TYPE ATASCII MEMORY
ORDER ORDER

uppercase
numbers, 32-95 0-63
punctuation

graphics 0-31 64-95
characters

lowercase, 96-127 96-127
some graphics

CHARACTER SET GRAPHICS 3

Essentially, Atari moved the graphics characters and placed them between the
uppercase and lowercase letters. It may seem illogical at first since it complicates the
calculation of the memory locations for any ATASCII character value, but it actually
enables you to choose between upper and lowercase graphics in modes one and two.
In both of these enlarged text modes only sixty-four characters are available, and the
set is only 512 bytes long. They use the leftmost two bits of each byte to point to the
color register for that character. The uppercase characters in internal positions 0-63
use color register #0. If you attempt to print lowercase characters to the screen, you
still get uppercase characters but using a different color register. The letter "A" is
internal character 33 while the letter "a" is internal character 97. This is equivalent
to 33 + 64 or toggling one of the two high bits. The same is true for inverse. This can
be demonstrated in the following program.

10 GRAPHICS 2+16
20 PRINT #6;"HELLO hello"
30 PRINT #6; '~_Q i~~it~"
100 GOTO 100

The result is the word HELLO printed in capital letters to the screen in four
different colors. This occurs because the half-size, 512-byte character set doesn't
contain any inverse or lowercase letters. The computer interprets only the lower six
bits of the ASCII character as the character number and the upper two bits as the
color register. Uppercase letters use color register 0 so they appear in orange.
Lowercase characters are interpreted as color register 1 and appear in aqua. Inverse
uppercase characters, which appear in the second line, use color register 2 and are
blue, while inverse lowercase uses color register 3 and are light red. Remember that
these colors are the computer 's default values and the user can change them. The
PRINT #6 prints to the graphics portion of the screen. Regular PRINT statements
print to the text window, if there is one.

COLOR REG 0

(ORANGE) ""

COLOR REG 2
(BLUE)

HELLO

HELLO
,/

COLOR REG 1
/ (AQUA)

HELLO

HELLO
"- COLOR REG 3

(LIGHT RED)

There is a method of obtaining lowercase letters on the screen, but if you use it you
can't have uppercase characters, too. Since lowercase characters are in the upper 512
bytes of the character set, you can tell the computer that this is your new character set
by changing the character set address pointer to an address that is 512 bytes higher.
Location 756, the character base shadow register, normally points to the character set
at $EOOO and has a value for the high byte of 224 ($EO). If you add the line

40 POKE 756,226

53

54

3 CHARACTER SET GRAPHICS

the characters will be printed from this alternate se t. They will all appear as
lowercase in different colors. If you want to mix upper and lowercase letters you will
need to move the character set into RAM and copy the lowercase characters into the
locations occupied by the numbers and symbols.

Finding Your Character Within a Set

If you are going to move or change characters you have to be able to find them in
memory by either interna l or ATASCII value. Finding them by internal value is
simple. Each character is 8 bytes long. The formula is;

MEMORY LOCATION = START+ 8 * INTERNAL VALUE

Finding them by ATASCII value is more difficult because the graphics characters
have been sandwiched between the upper and lowercase letters. The three formulas
are as follows. Please remember that the starting val ue of the character set defined by
START should be on a 1 K boundary. That value is 57344 if you are using the ROM
character set.

ATASCII
VALUE (AV)

32-95

0-31

96-127

Changing the Character Set

STARTING MEMORY
LOCATION

START +(A V -32)*8

START+(AV+64)*8

START+(AV*8)

The easiest method of customizing a character se t is to copy the ROM character set
to RAM and change individual characters within it. To do this from BASIC you will
need to reserve 1 K or four pages of memory at the top of memory so that the set will
reside in a safe place and not be wiped out by either your program or the display area
of memory. The top of memory for any computer is found at decimal location 106.
The actual value is PEEK(l06)*256. If we move this high byte pointer down four
pages there will be a new top of memory. We then POKE this value back into
location 106 so that BASIC won't put anything above this. The RAM character set
begins at this new top of memory. Do a graphics call after changing location 106.

We must now inform ANTIC of the new location for the character set. Location
756 ($2F4) is the character base shadow register. The value in this location is copied
into the character base hardware register at location 54281 ($D409) every sixtieth of a
second during the vertical blank period. We can't store this value directly in the
hardware address, or it will be overwritten during the next vertical blank period.

Moving the character set requires reading a byte from ROM and storing it in the
appropriate position in RAM. In our case CHROM is 57344 ($EOOO) and CHRAM =

CHARACTER SET GRAPHICS 3

NMEMTOP*256. To accomplish this PEEK the values in ROM and POKE them
into RAM during a FOR-NEXT loop from 0 to 1023. Once you have copied the set
you can then modify specific characters and use these in PRINT statements to the
screen. Or if you wish, you can alternately POKE their internal character numbers
directly into screen memory. This will require a calculation to determine the correct
position.

In order to show the power of a redefined character set, we will create a large
Halloween pumpkin that consists of four adjacent lowercase characters, the letters a,
b, c and d. The diagram below shows a magnified view of the pumpkin's lit pixels
along with the screen arrangement of the four characters or letters that they repres
ent. The letter "a" when redefined shows only the upper left quarter of our pump
kin. Similarly, the letter " b" shows only the upper right portion of our pumpkin.

LOWER CASE

\ ['J INTERNAL 97-100

c d ATASCII 97-100

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2

$ 0 0 # 0 0

$ 0 0 $ 0 0

$ 0 $ 0 8

$ 3 C $ 3 8

$ 3 F $ F C

$ 6 7 $ E 6

$ 4 2 $ 4 2

$ E 6 $ 6 7

$ F C $ 3 F

$ F F $ F F

$ F 5 $ A F

$ 7 0 $ 0 E

$ 7 8 $ 1 E

3 F $ F C

$ 1 F $ F 8

$ 0 7 $ E 0

55

56

3 CHARACTER SET GRAPHICS

Once the pixel positions in the eight rows of each character are translated into
numerical data equivalent to our drawing, they are then POKEd into the appro
priate position in the RAM character set as replacements to the existing characters.
The four lowercase letters are internal characters 97 -100. Since the four are next to
each other, we can POKE in a ll four characters together in a FOR-NEXT loop. The
starting location of the ninety-seventh character is the starting location of the RAM
character set offset by 8 bytes x 97 characters. Therefore

START = NMEMTOP*256 + (8*97)

Copying the character set into RAM using a FOR-NEXT loop is quite slow and
requires ten seconds. Normally, you copy the set first and then change the character
set pointer at decimal loca tion 756. I thought it might be more fun to watch the set
being copied so I listed the program to the screen and changed the character base
pointer before the copy loop. At first the listing appears fine but when the character
set points to a garbage section of RAM it degenerates into random dots. As the ROM
set is copied more and more of the listing becomes legible. The numbers and symbols
appear first, followed by the uppercase letters. The lowercase letters form last, since
they are in the last quarter of the ROM character set. If you stare at the lowercase
letters in our two PRINT statements listed on lines 160 and 170, you will see them
change into a pumpkin. The pumpkin will then be printed in the upper left corner
of the screen. Each time that you wish to draw a pumpkin you have to use two
PRINT statements on the screen. The POSITION statement can be used to PRINT
the four characters that represent the pumpkin in the correct spot, but you will need
a POSITION statement for each of the two lines representing the upper and lower
halves.

10 NMEMTOP=PEEK(106)-4
20 POKE 106,NMEMTOP
30 GRAPHICS 0
40 CHROM=PEEK(756)*256
50 CHRAM=NMEMTOP*256
55 LIST
56 POKE 756,NMEMTOP
60 REM COPY ROM CHARACTER SET TO RAM
70 FOR 1=0 TO 1023
80 POKE CHRAM+I,PEEK(CHROM+I):NEXT I
90 REM MODIFY CHARACTER SET POINTER
100 POKE 756,NMEMTOP
110 START=NMEMTOP*256+(8*97)
130 FOR 1=0 TO 31
140 READ A:POKE START+I,A:NEXT I
150 REM PRINT PUMPKIN ON SCREEN
160 PRINT "ab"
170 PRINT "cd"
200 DATA 0,0,16,60,63,103,66,230
210 DATA 0,0,8,56,252,230,66,103
220 DATA 252,255,245,112,120,63,31,7
230 DATA 63,255,175,14,30,252,248,224

CHARACTER SET GRAPHICS 3

Many games use character set playfields as backgrounds in either BASIC mode 2
(ANTIC 7) or ANTIC mode 4. The latter allows small but detailed four-color
characters four pixels wide by eight deep but requires nearly 2K of screen memory.
While individual characters are limited to a single color in BASIC mode 2, they have
an advantage in that these large characters don't require much memory. With twelve
rows of twenty characters a screen requires only 240 bytes of memory. Each character
position can be plotted in one of four colors, determined by toggling the two high
bits of the internal character number.

The next example is similar to the last, except that the redefined characters are
plotted as BASIC mode 2 characters. Again, space is reserved above the top of
memory by moving down the top of memory pointer four pages (1024 bytes). The
ROM character se t is copied as before, but only half of the set, or 512 bytes, is used in
this graphics mode. The shortened set doesn't contain both upper and lowercase
letters. If you use the lower half of the set, you get uppercase letters only, even if you
print lowercase letters. To print the four redefined lower case letters you will need to
change the character set pointer to the upper half of the RAM character set. This can
be accomplished in line 100 by adding two pages to NMEMTOP and POKEing it
into the character set pointer at location 756.

r-I----->,,--I-~-I-~---t'--",.__,f-~+-_+_ GR EEN (709) PLA YFI ELD 1
(lowercase letters)

~-k-~=..~","=:---+--ORANGE (708) PLAYFIELD 0
(uppercase letters)

,....,~r---I-~-++---,~,.---I-~---tr....---t- RED (711) PLA YFI ELD 3
(inverse lowercase)

-::oI''-I:::''''''''''=''''''~'''---T- BLUE (710) PLAYFIELD 2
(inverse uppercase-

text color in normal text mode)

57

58

3 CHARACTER SET GRAPHICS

10 NMEMTOP=PEEK(106)-4
20 POKE 106,NMEMTOP
30 GRAPHICS 2
40 CHROM=PEEK(756)*256
50 CHRAM=NMEMTOP*256
55 LIST
56 POKE 756,NMEMTOP
60 REM COPY ROM CHARACTER SET TO RAM
70 FOR 1=0 TO 1023
80 POKE CHRAM+I,PEEK(CHROM+I):NEXT I
90 REM MODIFY CHARACTER SET POINTER
95 REM GRAPHICS 2 CHARCTER SET ONLY 512 BYTES
96 REM AND LOWER CASE IS DISPLAYED AS UPPER CASE LETTERS
97 REM TO REACH UPPER HALF OF SET ADD 2 PAGES TO NMEMTOP
100 POKE 756,NMEMTOP+2
110 START=NMEMTOP*256+(8*97)
130 FOR 1=0 TO 31
140 READ A:POKE START+I,A:NEXT I
150 REM PRINT PUMPKIN ON SCREEN
155 POSITION 2,2
160 PRINT #6;"ab"
165 POSITION 2,3
170 PRINT #6;"cd"
175 POSITION 5,2
180 PRINT #6;"AB"
185 POSITION 5,3
190 PRINT #6;"CD"
195 POSITION 2,5
200 PRINT #6;"ab"
205 POSITION 2,6
210 PRINT #6; "cd"
215 POSITION 5,5
220 PRINT #6;"AB"
225 POSITION 5,6
230 PRINT #6;"CD"
240 DATA 0,0,16,60,63,103,66,230
250 DATA 0,0,8,56,252,230,66,103
260 DATA 252,255,245,112,120,63,31,7
270 DATA 63,255,175,14,30,252,248,224

The pumpkin is printed to the screen in four separate positions. By using all of the
uppercase and lowercase normal and inverse combinations for the letters a, b, c, and
d, the pumpkin will appear in four different colors determined by the playfield color
registers 0-3. The background is controlled by playfield 4 and can be changed by a
POKE 712, COLOR VALUE. You will notice that the pumpkins are completely
surrounded by yellow colored hearts. This occurs because screen memory contains
zeros everywhere except where we placed pumpkins. ANTIC interpretes the Oth
character in the lower half of the character set as a heart. The hearts can be removed
from sight by POKING the color in playfield 0 to zero, but one of the pumpkins will
also fade from sight. Therefore, it is best to create a blank character by POKEing
zeros into this Oth character. To do this, add the following lines .

234 START=(NMEMTOP+2)*256
235 FOR 1=0 TO 7
236 POKE START+1,0:NEXT I

CHARACTER SET GRAPHICS 3

Copying the ROM character set is the slowest part of the program. This operation
could be speeded up a hundred or more times by substituting a Machine language
subroutine that can be called by BASIC's USR function. In order to make the routine
versatile, the user is given the option of either relocating the full 1024 byte ROM
character set to RAM, or just the upper 512 bytes as might be needed in a Graphics 2
display. The routine is also fully relocatable and presently resides in the upper half
of page six in memory. Its calling format is A= USR(1664,CHRAMH, 1 or 2). The
number 1664 is the starting location of the Machine languge subroutine. CHRAMH
is the high byte value of the relocated RAM character set. This should be on a lK
page boundary for full sized (1024 byte) character sets and on a ~K page boundary for
half size (512 byte) character sets. The value one tells the routine to move all 1024
bytes of the ROM character set to the new RAM location, while a two tells the routine
to skip the first 512 bytes of the ROM character set and just move the last half of the
set to the new RAM location. The Graphics 0 mode pumpkin example is repeated
below to show you the obvious speed advantage in using the Machine language
subroutine.

10 NMEMTOP=PEEK(106)-4
20 POKE 106,NMEMTOP
30 GRAPHICS 0
40 LIST
50 POKE 756,NMEMTOP
60 REM READ IN CHARNOVE SUBROUTINE
70 FOR 1=0 TO 49
80 READ A:POKE 1664+I,A: NEXT I
90 A=USR(1664,NMEMTOP,1,4)
100 REM MODIFY CHARACTERS a,b,c,d INTERNAL 97-100
110 START=NMEMTOP*256+(8*97)
120 FOR 1=0 TO 31
130 READ A:POKE START+I,A:NEXT I
140 REM PRINT PUMPKIN ON SCREEN
150 PRINT "ab"
160 PRINT "cd"
890 REM DATA FOR MACHINE LANGUAGE MOVE ROUTINE
900 DATA 104,169,224,133,206,104,104,133,204,104,104,201,1,240,4,230
910 DATA 206,230,204,104,104,141,176,6,169,0,133,205
920 DATA 133,203,168,177,205,145,203,200,208,249,230
930 DATA 206,230,204,206,176,6,208,240,96,0,0
990 REM DATA FOR 4 PUMPKIN CHARACTERS
1000 DATA 0,0,16,60,63,103,66,230
1010 DATA 0,0,8,56,252,230,66,103
1020 DATA 252,255,245,112,120,63,31,7
1030 DATA 63,255,175,14,30,252,248,224

Note: Assembly language listing of subroutine in appendix

Character Editor

Customizing a character set can be rather tedious, if you don't use a character set
editor. We have furnished a simple one that you can operate by either keyboard or
joystick control. The editor allows you to design single-color characters and after
wards save your custom set to a disk for later use in your own program.

The screen displays an enlarged 8 x 8 grid at the top for editing or designing your

59

60

3 CHARACTER SET GRAPHICS

characters. The entire 128 character set is displayed below. Newly edited characters
are also displayed in their proper position within the set. A character is chosen for
editing by giving the internal character number. You should use the appendix in the
back of this book to choose the correct character. The CTRL CLEAR key will erase
the bit pattern of the present character if you wish to design rather than modify an
old character. A white square above the enlarged grid indicates that you are in the
Draw mode. It can be turned off and will erase by pressing the U key for Undraw. It
can be toggled back by pressing the D key. You can move the cursor without affecting
anything by moving the joystick or by using the arrow keys. Each time that you want
to draw a pixel you can either press the joystick button or the space bar. Since
pressing the space bar for each pixel is tedious, I recommend that you edit using a
joystick. When you are finished editing the character, just hit return to enter it. You
can avoid entering a newly edited character by pressing the ESC key.

Once you are completely satisfied with your custom set, you can save it to the disk
by pressing the S key for Save. You only need give it a file name, and it will be saved to
disk. If you are re-editing a previous set, you can load one from disk using the L key
for Load. You don't have to worry about loading a set to edit the first time you use the
utility, because the program automatically defaults to the ROM character set which
it has copied into RAM.

5 REM CHARACTER SET EDITOR - BY DAN PINAL
10 REM HIT RESET BEFORE RERUNNING
20 REM SO MEHTOP IS RESET
30 POKE 106,PEEK(106)-16:GRAPHICS O:REM RESERVE ROOM FOR 2 CHR SETS & PMG
40 PMBASE=PEEK(106):DLIST=PEEK(560)+256*PEEK(561):CBl=PEEK(106)+8:CB2=PEEK(106)+12
50 SETl=CB1*256:SET2=CB2*256
60 GOSUB 1000
70 POKE 559,62:POKE 54279,PMBASE:POKE 53277,3
80 POKE 703,4:POKE 752,1
90 DRAW=l
100 REM COMMAND
110 7 "SAVE, LOAD, OR EDIT"
120 GET #l,X
130 IF X=69 THEN 300:REM EDIT
140 IF X=76 THEN C$="L" :CMD=4:GOTO 170
150 IF X=83 THEN C$="S":CMD=8:GOTO 170
160 GOTO 120
170 7 "NAME OF FILE";:INPUT Q$
180 F$="D:":IF Q$="" THEN 170
190 IF Q$(l,I)=I:" OR Q$(2,2)=":" THEN F$=Q$:GOTO 210
200 F$(3)=Q$:REM OTHERWISE DEFAULT TO DRIVE
210 TRAP 250:IOCB=2:0PEN #IOCB,CMD,O,F$
220 X=USR(CIO ,IOCB, SET1,1024,ADR(C$»
240 CLOSE HIOCB:GOTO 100
250 CLOSE #IOCB:? "I /O ERROR":GOTO 100
300 REM
310 TRAP 100:7 "CHARACTER # TO EDIT OR RETURN";:INPUT CH:TRAP 40000
320 IF CH<O OR CH>127 THEN 300
330 FOR L1=0 TO 7
340 TEMP=PEEK(SETl+CH*8+Ll)
350 FOR L2=0 TO 7
360 X=L1*8+L2+1
370 B$(X,X)=CHR$(33):REM ASSUME BLANK (!)
380 IF TEMP>=BIT(L2) THEN B$(X,X)=CHR$(34):TEMP=TEMP-BIT(L2):REM (")
390 NEXT L2
400 POSITION 2,2+L1:? #6;B$(L1*8+1,L1*8+8);

410 NEXT L1
420 H=O:V=O

CHARACTER SET GRAPHICS 3

430 ? " t ~ -+ ... , SPACE BAR TO DRAW OR JOYSTICK"
440 ? "DRAW,UNDRAW, CTL CLEAR TO ERASE"
450 ? "ESC TO EXIT"
500 X=USR(PCURSOR,H,PLAYERO+V):S=S(STICK(O»:IF S>O THEN POKE 764,S
505 IF NOT STRIG(O) THEN POKE 764,33
510 IF PEEK(764)=255 THEN 500
520 GET #l,X
530 IF X<>45 THEN 550:REM UP
540 V=V-(V-1>=0):GOTO 500
550 IF X<>61 THEN 570:REM DOWN
560 V=V+(V+1<8):GOTO 500
570 IF X<>43 THEN 590:REM LEFT
580 H=H-(H-1>=0):GOTO 500
590 IF X<>42 THEN 610:REM RIGHT
600 H=H+(H+1<8):GOTO 500
610 IF X<>28 THEN 630:REM CTL UP
620 V=V-(V-1>=0):H=H+(H+1 <8):GOTO 500
630 IF X<>29 THEN 650:REM CTL DOWN
640 V=V+(V+1<8):H=H-(H-1>=0):GOTO 500
650 IF X<>30 THEN 670:REM CTL LEFT
660 V=V-(V-1>=0):H=H-(H-1>=0):GOTO 500
670 IF X<>31 THEN 690:REM CTL RIGHT
680 V=V+(V+1<8):H=H+(H+1<8):GOTO 500
690 IF X<>32 THEN 710:REM SPACE
700 B$(V*8+H+1,V*8+H+1)=CHR$(33+DRAW):POSITION 2,2+V:? H6;B$(V*8+1,V*8+8);
701 BYTE=O:FOR L1=0 TO 7:X=V*8+L1+1
702 IF ASC(B$(X,X»-33 THEN BYTE=BYTE+BIT(L1)
703 NEXT L1:POKE SET1+CH*8+V,BYTE:GOTO 500
710 IF X<>68 THEN 730:REM D
720 DRAW=l:POKE SCREEN+2,128:GOTO 500
730 IF X<>85 THEN 750:REM U
740 DRAW=O:POKE SCREEN+2,0:GOTO 500
750 IF X<>125 THEN 770:REl-1 CLEAR
760 FOR L1=0 TO 7:POKE SET1+CH*8+L1,0:NEXT L1
765 GOTO 330
770 IF X<>27 THEN 500:REM ESC
998 GOTO 100
999 STOP
1000 REM DLI& SETUP ARE 75 BYTES STARTING AT 1536
1010 DATA 104,169,6,162,6,160,11,32,92,228,96,169,48,141,0,2,169,6,141,1,2,169,192,141,14
1020 DATA 212,174,254,6,165,20,41,7,208,10,165,20,41,15,240,1,138,141,0,208,76,95,

228,72,173
1030 DATA 255,6,141,9,212,169,67,141,0,2,169,6,141,1,2,104,64,72,169,224,141,9,212,104,64
1040 REM THIS CIO SUB. IS 49 BYTES
1050 DATA 104,104,104,10,10,10,10,170,104,157,69,3,104,157,68,3,104,157,73,3,104,

157,72,3,104
1060 DATA 133,213,104,133, 212,160,0,177,212,160,7,201,83,208,2,160,11,152,157,66,3,

76,86,228
1070 REM OPEN HIOCB,IO,O,FILE$:X=USR(CIO,IOCB,BUFADR,BUFLEN,ADR("S" or"L"»
1080 REM SET MOVE IS 34 BYTES
1090 DATA 104,104,133,212,104,133 ,213,169,0,133,206,169,224,133,207,162,4,160,0,

1 77 , 206, 145
1100 DATA 212,200,208,249,230,207,230,213,202,208,242,96
1110 REM PCURSOR 41 BYTES
1120 DATA 104,104,104,10,10,105,56,141,254,6,104,133,213,169,0,133,212,168,145,212,

200,208,251
1130 DATA 104,10,10,10,105,48, 133,212,160,7,169,240,145,212,136,16,251,96
1132 REM CLEAR PM AREA SUBROUTINE
1134 DATA 104,104,133, 213,104,133,212,162,0,160,0,169,0,145,212

61

62

3 CHARACTER SET GRAPHICS

1136 DATA 200,208,251,230,213,232,224,8,144,240,96
1140 SETUP=1536:CIO=SETUP+75:SETMOVE=CI0t49:PCURSOR=SETMOVE+34:CLEAR=PCURSOR+41
1150 FOR L1=1536 TO 1760:READ X:POKE L1,X:NEXT L1
1160 POKE 756,CB2:POKE 1791,CB1
1170 X=USR(SETMOVE,CB1):X=USR(SETMOVE,CB2)
1180 FOR L1=SET2 TO SET2+23
1190 READ X:POKE L1,X:NEXT L1
1200 POKE DLIST+14,130:POKE DLIST+24,130
1210 REM
1220 X=USR(SETUP)
1230 REM
1240 DATA 0,0,0,0,0,0,0,0
1250 DATA 255,129,129,129,129,129,129,255
1260 DATA 255,129,189,189,189,189,129,255
1270 POKE 703,4:POKE 752,1
1280 COLOR 33:FOR L1=2 TO 9
1290 PLOT L1,2:DRAWTO L1,9
1300 NEXT L1
1310 SCREEN=PEEK(DL1ST+4)+256*PEEK(DL1ST+5)
1320 ADDR=SCREEN+40*11+2
1330 FOR L1=0 TO 7:FOR L2=0 TO 31
1340 POKE ADDR,L1*32+L2:ADDR=ADDR+1
1350 NEXT L2:ADDR=ADDR+8:NEXT L1
1360 OPEN #1,4,0,"K:"
1370 DIM F$(16),Q$(16),C$(1),B$(64),BIT(7),BYTE(7),S(15)
1380 B$="I":B$(64)="I":B$(2)=B$
1390 B1T(0)=128:B1T(1)=64:B1T(2)=32:BIT(3)=16:BIT(4)=8:BIT(5)=4:B1T(6)=2:B1T(7)=1
1400 FOR L1=0 TO 15:S(L1)=0:NEXT L1
1410 S(5)=135:S(6)=142:S(7)=7
1420 S(9)=143:S(10)=(134):S(11)=6
1430 S(13)=15:S(14)=14
1440 POKE 704,10:POKE 705,70:POKE 706,70:POKE 707,70
1445 X=USR(CLEAR,PMBASE*256):REM CLEAR PM AREA
1450 PLAYERO=PMBASE*256+1024:PLAYER1=PLAYEROt256:PLAYER2=PLAYERl+256:PLAYER3=PLAYER2+25(
1460 FOR L1=44 TO 115
1470 POKE PLAYER2+Ll,15:POKE PLAYER3+L1,15:NEXT L1
1480 FOR L1=0 TO 3:POKE PLAYER1+44+L1,255:POKE PLAYER1+112+L1,255:NEXT L1
1490 POKE 53257,3:POKE 53249,56:POKE 53250,48:POKE 53251,84
1500 RETURN

Character Set Loader

In order to use these custom character sets you will need a Machine language
routine to load your custom character set into memory from disk. The subroutine
can be accessed through a USR call. The format is U=USR(CALL,IOCB,
SET,LENGTH,CMD). If you are placing it into page six, CALL = 1536. IOCB = I
for a read. The device # tha t was opened is for the file (like open # I, etc.). The set is
placed at SET=CB*256 where CB is the high byte location of the character set, and
LENGTH =1024. The format CMD=ADR("L") is somewhat unusual. The subrou
tine was designd to accept either an "L" or "s" letter command. The statement
physically passes the address where the letter is and the computer looks and finds the
actual letter stored at that address.

The program asks for the name of the file. The "D:" doesn't need to precede the
name because this string is included at the beginning of F$. The input name string

CHARACTER SET GRAPHICS 3

is Q$. The statement F$(3)=Q$ tacks the name of the file to the "D:". The one last
thing that you have to do before you call the subroutine is to open the channel to
access the drive. This is in the form OPEN #IOCB, 10,0,F$. 10CB=1 ,10=4, and the ° is unused. I won't go into details of the actual Machine language routine. The
listing, however, is provided for Machine language programmers; my comments
accompany it.

10 REM CIO CALL TO LOAD DATA FROM ANY FILE - DAN PINAL
20 POKE 106,PEEK(106)-8:GRAPHICS O:REM MOVE RAMTOP DOWN 2K
30 DIM Q$(l4),F$(l4):F$="D:":REM ASSUME A DISK LOAD
40 CB=PEEK(106)+4:SET=CB*256:CALL=1536
45 REM POKE IN MACHINE LANGUAGE ROUTINE INTO PAGE 6
50 FOR L1=0 TO 48:READ X:POKE 1536+L1,X:NEXT L1
60 ? "NAME OF FILE TO LOAD";:INPUT Q$:F$(3)=Q$
65 REM SET PARAMETERS FOR OPEN ROUTINE AND USR CALL
70 IOCB=l: IO=4: CMD=ADR("L") : LENGTH=1024
80 OPEN #IOCB,IO,O,F$
90 U=USR(CALL,IOCB,SET,LENGTH,CMD)
100 REM THAT'S IT. POKE 756,CB TO TURN ON YOUR SET
110 FOR L1=0 TO 255:? CHR$(27);CHR$(L1);:NEXT L1:POKE 756,CB
10000 DATA 104,104,104,10,10,10,10,170,104,157,69,3,104,157,68
10005 DATA 3,104,157,73,3,104,157,72,3,104
10010 DATA 133,213,104,133,212,160,0,177,212,160,7,201,83,208
10015 DATA 2,160, 11,152,157,66,3,76,86,228
10020 REM OPEN #IOCB,IO,O,FILE$:X=USR(CIO,IOCB,BUFADR,BUFLEN,ADR("S" or"L"))
Note: Assembly language listing in appendix

Multi-Color Characters

There are two important character graphics modes that are not supported directly
by OS. Both ANTIC modes 4 and 5 use characters that are only four pixels wide
instead of the usual eight pixels. Each byte is broken up into four bit pairs. The
advantage is that each pixel can be of four different colors, counting the background
color. Since each pixel is addressed by two bits instead of one, the value of each bit
pair can determine from which color register the pixel derives its color. This
becomes a very clever use of color indirection. Note that if the high bit of the
character number is set, you get a fifth playfield color. The bit pair order and its
associated playfield color register are as follows:

BIT PAIR

° ° ° I
1 ° I I
I 1 {

character #
high bit set

PLAYFIELD

4 (Bkd)

° 1
2
3

COLOR REGISTER

712
708
709
710
71I

Multi-colored characters in ANTIC mode 4 can be used to create colorful and
detailed playfields. They are also useful in games in which a large number of
multicolored animated objects are required. While it is always tempting to use
player-missile animation because it is easier, large detailed multicolored players
aren't always available unless you overIap or combine your relatively few available
players.

63

64

3 CHARACTER SET GRAPHICS

Most multi-colored ANTIC 4 shapes require a number of adjacent redefined
characters since 4 x 8 pixel sized characters are tiny and don't allow for much detail.
This group of characters is called a matrix.

To give you an example of the detail possible we are going to create a multi
colored boat using four ANTIC mode 4 characters. The boat is 8 pixels high by 16
pixels wide and consists of three colors; yellow, red and green. The black back
ground is actually the fourth color in our character. Each group of 4 horizontal

ROW

2

3

4

5

6

7

2 3

I ~

,

4

§YELLOW

RED

GREEN

pixels makes up an individual character. Each column of colored pixels is then
expanded into a double column bit pair. These eight columns make up a normal
byte of character data. Each color pixel is then translated into its appropriate bit
pairs so that they point to the proper color registers. Green pixels set the low bit of
the pair, red pixels set the high bit of the pair, and yellow pixels set both bits. No bits
are set when using the background color register. While the background is blank in
our example, it can be set to a non-black color if the background register is part of the
character shape. This occurs quite frequently if you are producing a map from a
character set.

BLACK

GREEN

712,0 PLA YFI ELD 4

708,216 0

RED 709,52

YELLOW 710,250 2

The first column of the first character of our ship contains only one red pixel in the
second row. Since the left col umn of the character uses the two high bits of each byte,
only the high bit is set in the second row. If the pixel would have been yellow, both
high bits would have been set in that row. You will notice that after the appropriate
bits in the bit pairs have been set for each character, the resultant pattern doesn't
necessarily resemble the original image. Once you have finished the translation the

CHARACTER SET GRAPHICS 3

final character data is then obtained by adding up all of the set bits in each byte as you
would ordinarily do if they were single color characters.

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 ,
$20 32 $00 0

$20 32 $00 0

$AO 160 $33 51

$14 20 $OC 12

$OA 10 $83 131

$01 1 $54 84

$00 0 $AA 170

$00 0 $15 21

2

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
HEX DEC

$3F 63 $00 0
$33 51 $00 0
$33 51 $33 51
$04 4 $OC 12
$2A 42 $30 48
$55 85 $40 64
$A8 168 $00 0
$50 80 $00 0

3 4

It is very easy to modify a BASIC 0 (ANTIC 2) display list to produce an ANTIC 4
screen. Both text modes consist of 24 rows of 40 characters. Only the interpretation of
the character data by ANTIC is different. Since both display lists are identical in
length, all that has to be changed is the LMS instruction and the 23 mode line
instructions that follow . The LMS instruction for an ANTIC 4 screen is 64+4 =68.
This follows the three instructions that blank 8 scan lines. Therefore we need only
POKE this new value into location DLIST+3 where DLIST is the beginning of the
display list. The following two bytes in the display list are just the address of the first
byte of screen data. We ignore these two bytes. The 23 bytes following this are mode
instructions. We need only change these to the value 4 in a FOR-NEXT loop in
which we go from DLIST+6 to DLIST+28

T h e rest of the example is essentia lly the same as in the pumpkin example. We
copy the character set into RAM, ch ange the character set pointer, then read in the
four ANTIC 4 characters. They are p laced in the 97th -IOOth internal character
positions so that they represen t the letters "a" through "d". The ship is placed on the
screen by printing the string "abcd" at position 5,5.

65

66

3 CHARACTER SET GRAPHICS

o NMEMTOP=PEEK(106)-4
10 POKE 106,NMEMTOP
20 GRAPHICS 0
30 DLIST=PEEK(560)+256*PEEK(561)
40 POKE DLIST+3,68
50 FOR I=DLIST+6 TO DLIST+28:POKE I,4:NEXT I
60 POKE 708,216:POKE 709,52:POKE 710, 250
70 CHROM=PEEK(756)*256
80 CHRAM=NMEMTOP'~256
90 REM COPY ROM CHARACTER SET TO RAM
100 FOR I=O TO 1023
llO POKE CHRAM+I, PEEK(CHRm1+I): NEXT I
120 REM MODIFY CHARACTER SET POINTER
130 POKE 756,NMEMTOP
140 START=NMEMTOP*256+(8*97)
150 FOR 1=0 TO 31
160 READ A:POKE START+I,A:NEXT I
170 REM PRINT SHIP ON SCREEN
180 POSITION 5,5
190 PRINT "abed "
200 GOTO 200
210 DATA 32,32,160,20,10,1,0,0
220 DATA 0,0,51,12,131,84,170,21
230 DATA 63,51,51,4,42,85,168,80
240 DATA 0,0,51,12,48,64,0,0

Designing an ANTIC 4 character set is quite laborious and prone to error when
done by hand as in this example. It is best accomplished by using a character set
generator like the one furnished in this book for single color characters. If you are
planning to use multi-colored character sets frequently, we would suggest that you
buy one of the commercial packages. The best one that we have found is Datasoft's
"Graphic Generator" for $24.95. It will design character sets in all text modes
including single color, two color and four color sets. It allows you to design a block
of characters called a matrix on the screen at one time. The matrix can be set to any
group of characters that you choose.

Character Graphics Animation

There are two methods for achieving character set animation. The easier, but least
memory-efficient, method is to rotate through a series of different character sets. The
characters that are printed to the screen change, if there are distinct differences
between the character data for a particular character number in each of the sets. You
don't have to reprint the individual characters to the screen since the animation
occurs by substituting the character data from another set rather than by changing
the character itself. The change requires only a single POKE to the character set
pointer at decimal location 756. The disadvantages is that each set required lK of
memory. Since animation sequences require at least 4K of memory to store the
various character sets. This is a waste of space unless you are using a large number of
characters. In that event this method certainly becomes the best one.

CHARACTER SET GRAPHICS 3

Rotating Character Sets

We have written a very simple example to illustrate the simplicity of the tech
nique. The example rotates through four different character sets. In order to create
the first three from the ROM character set, we just offset them by varying degrees
during the copy stage. The goal was to create different sets in which the four graphics
characters, which have a small dot in four different corners, line up. These four
characters are internal characters numbers 9,11, 12, and 15. If we offset the lowest set
in memory by six characters of forty-eight bytes, internal character #9 from that set
will line up with character #15 from the ROM set. The other two sets need to be offset
by only two and three characters respectively for the graphics symbols to all line up.

ROM
RAMI
RAM2
RAM3

01234567891011 1213 1415
0123456789

01234567891011
o 1 23456 7 8 9 10 11 12

Now when you print CHR$(15), internal character #15, the equivalent of internal
character #9, will appear when the character set pointer points to the set at RAMI,
and at #11 when using the RAM2 set, and at #12 when using the RAM3 set. This
arrangement also causes internal numbers 17,19,20, and 23 to line up in the various
sets when you print CHR$(23).

The various sets are copies into RAM memory in an area made safe by effectively
lowering the actual top of memory by twelve pages or 3K. The starting address is set
at the new top of memory and the others are offset by 1 K each. Since the first character
set is offset by eight characters or forty-eight bytes, it is best to zero out these missing
characters or garbage may appear in the Oth character, which is a blank or null
character, and clutter most of the screen in one or more of the RAM character sets.
Copying the sets takes thirty seconds, so be patient.

The actual animation is remarkably simple once you have printed several charac
ters to the screen. You just cycle through the various frames by changing the
character set pointer at decimal location 756 ($2F4) to each of the four different
character sets. A brief delay is placed between set changes, of the animation would be
too fast to see.

o NMEMTOP=PEEK (1 06) - 12
10 POKE 106,NMEMTOP
20 GRAPHICS 0
30 REM CALCULATE STARTING ADDRESS FOR 4 CHARACTER SETS
40 CHROM=PEEK(756)*256
50 CHRAM1=NMEMTOP*256
60 CHRAM2=CHRAM1+1024
70 CHRAM3=CHRAM2+1024
80 REM CALCULATE HIGH BYTE OF 4 CHARACTER SETS
90 C1H=NMEMTOP
100 C2H=C1H+4

67

68

3 CHARACTER SET GRAPHICS

llO C3H=CIH+S
120 C4H=PEEK(756)
130 PRINT " COPYING CHARACTER SETS"
140 REM COPY ROM CHARACTER SETS TO RAM
150 FOR 1=0 TO 975
160 POKE CHRAMl+4S+I,PEEK(CHROM+I):NEXT I
170 FOR 1=0 TO 991
ISO POKE CHRAM2+32+I,PEEK(CHROM+I):NEXT I
190 FOR 1=0 TO 999
200 POKE CHRAM3+24+I,PEEK(CHROM+I):NEXT I
210 REM CLEAR MISSING CHARACTERS TO ZERO
220 FOR 1=0 TO 47:POKE CHRAMl+I,O:NEXT I
230 FOR 1=0 TO 31:POKE CHRAM2+I,0:NEXT I
240 FOR 1=0 TO 23:POKE CHRAM3+I,0:NEXT I
250 REM PRINT CHARACTERS TO SCREEN
260 POSITION 8,8:PRINT CHR$(15)
270 POSITION 19, 8:PRINT CHR$(23)
280 POSITION 30,8:PRINT "7"
290 REM ROTATE CHARACTER SETS
300 POKE 756,CIH
310 FOR DE=l TO 200:NEXT DE
320 POKE 756,C2H
330 FOR DE=l TO 200:NEXT DE
340 POKE 756,C3H
350 FOR DE=l TO 200:NEXT DE
360 POKE 756,C4H
370 FOR DE=l TO 200:NEXT DE
3S0 GOTO 300

Animation Using Different Characters

The second and more common method of achieving character set animation is to
rewrite different characters to the screen in the same location. Of course this either
requires a new print statement each time or a new character value POKEd directly
into screen memory. The advantage of this method is that you can have as many
variations as you like in the animation cycle without requiring many different
character sets.

As a first example we have designed a simple ANTIC 4 character demonstration
that places a random number of eggs on the screen. Each of these eggs begins to hatch
into one of five different bug shapes before it eventually explodes. The complete life
to death cycle requires thirteen animation frames, or fourteen, if you count the blank
character needed to erase it at the end. The eggs, insects, and explosions consist of
character pairs set side by side, and they are basically printed to the screen as
character strings in a fixed position.

The program setup is quite similar to earlier examples. Space is reserved for the
RAM character set by moving the top of memory downward, and a Graphics 0
display list is modified to ANTIC 4. Once the characters are read in through data
statements and written into the RAM character set, they are transferred into strings to
facilitate printing them quickly.

H$, BUG$, and BOOM$, contain the various character pairs for hatching, bug
shape, and explosions respectively. Both the hatching and explosion animation is

CHARACTER SET GRAPHICS 3

produced by printing two characters out of the string to the screen. This occurs in a
loop in which the character pair shifts down the string until the sequence is
completed. The egg-hatching string consists of the following characters;

B

B

B

B

H$ = "10123456789:;<=>"

B

B

B

B

B

B

B

15
/

B

19
3

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Y

Y

B

B

B

B

B B

B B

B B

B B

B B

B B

B

B

B B

B B

Y B

Y B

B B

B B

B

16

~

20
4

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

17
1

21
5

B B

B B

B B

B B

B B

B B

B B

B B

B G

B G

B B

B B

B

B

B

B

B

B

B

B

G

G

B

B

B

B

B

B

B

B

B

B

B

18
2

B

B

B

22
6

B

B

B

B

B

B

B

B

B

B

B

B

69

70

3 CHARACTER SET GRAPHICS

B

B B

B B G

B B G G

B B G G

B B G

B B

B

23
7

B

B B

B B G

B B G

B B G

B B G

B B

B

27

B

B

G

G

G

G

B

B

B

B

G

G

B

B

B

B

G

G

B

B

B

B

G

G

B

B

24
8

28
<

B

B B

B B

B

B

B B

B B

B

B B B

B Y Y

B Y Y

B Y Y

B Y Y

B B B

25
9

B B B

B Y

B Y

B Y

B Y

B B B

29

B B

Y Y

Y Y

Y Y

Y Y

B B

B B

Y

Y

Y

Y

B B

26

30
>

B

B

B

B

B

B

B

B

B

B

B

B

T hey are printed immediately to the screen as pairs without pause in order to have
the eggs look like they are wobbling. If we examine the series of characters printed in
the loop containing lines 330 and 340, they wi ll be as follows:

1 st cycle " / 0"
2nd cycle " 12"
3rd cycle "34"
4th cycle "56"
8th cycle "=>"

There are five random bug pairs contained in the string BUG$. BUG$
"!"#$%&'()*" . Lines 370-379 print one random bug on the screen.

y

B

B

B

G

G

G

B

B

y

B

B

B

G

G

G

y

B

B

B

5

%

9

)

y

y

y

Y Y

Y Y

Y

B

G Y

G Y

Y

G Y

G

G

y G

B G

B G

y

y

y

Y

Y

B

G

G

G

G

G

G

G

G

y

B

B

B

G

G

G

Y

B

B

2

6
&

10

*

y

B

B

B

G

G

G

Y

B

B

B

B

B

CHARACTER SET GRAPHICS 3

G

B

B

B

Y

Y

Y

G

B

B

B

Y

Y

Y

3

7

G

G G

Y

G G

G G

G

G

G B

G

Y G

Y G

Y G

G

G

Y G

G B

G B

B

G

B G

G

G Y

G Y

G Y

4

$

8

(

G

B

B

B

Y

Y

Y

Y

Y

Y

71

3 CHARACTER SET GRAPHICS

B G Y

Y Y

B B

G

B

Y

B B

Y B Y

37 38
E F

y y

y y

y G G Y

Y G G Y

Y G G Y

Y G G Y

Y G G Y

Y Y

35 36
c o

72

31

33
A

39
G

B

B Y

Y

Y

y

Y

G

B

Y

G

B

B

G

G

B

Y

Y

B

Y

G

Y

32
@

34
B

40
H

CHARACTER SET GRAPHICS 3

The routine that steps through the character strings BOOM$ to print each of the
character pairs that make up the explosion sequence is quite similar to the egg
hatching one. There is a little more lag, since we are only printing one set at a time. If
we examine the sequence of characters printed in the loop in line 460 they are as
follows:

BOOM$ = "?@ABCDEFGH"

I Sl cycle "?@"
2nd cycle" AB "
3rd cycle "CD"
4th cycle "EF"
5th cycle "GH"

After the bugs disappear, a caterpillar-like bug dashes across the screen. This is the
same shape as the ship from our previous ANTIC 4 example in the last section of this
chapter. This shape is four characters wide. The string M$ = " +, -." contains a blank
as the first character so that is erases the left character of the shape as it moves
rightward across the screen. Essentially we print the string on top of the previous one
but shifted slightly to the left. As we repeat this pattern in a continuous loop, the
result is animation.

10 REM CHARACTER DEMO - DAN PINAL
15 POKE 106,PEEK(106)-S:SET=(PEEK(106)+4)*256:GRAPHICS O:POKE 756,SET/256:POKE 752,
20 DLIST=PEEK(560)+256*PEEK(561):POKE DLIST+3,6S
25 FOR L1=DLIST+6 TO DLIST+2S:POKE L1,4:NEXT L1
30 FOR L1=0 TO 327:READ X:POKE SET+L1,X:NEXT L1
40 DIM COUNT(20,1),BUG$(10),H$(16),BOOM$(10),E$(2),M$(5)
50 FOR L1=33 TO 42:BUG$(Ll-32)=CHR$(L1):NEXT L1
60 FOR L1=47 TO 62:H$(Ll-46)=CHR$(L1):NEXT L1
70 BOOM$="?@ABCDEFGH":E$=H$
SO M$=" +,-."
90 POKE 70S,216:POKE 709,52:POKE 710,250
200 COUNT=INT(RND(0)*20+1)
210 FOR L1=1 TO COUNT
220 H=INT(13*RND(0»*2+5:COUNT(Ll,0)=H
230 V=INT(17*RND(0)+1):COUNT(L1, 1)=V
240 IF L1=1 THEN 2S0
250 FOR L2=1 TO L1-1
260 IF COUNT(L1,0)=COUNT(L2,0) AND COUNT(L1,1)=COUNT(L2,1) THEN POP :GOTO 220
270 NEXT L2
2S0 POSITION H,V:? E$:NEXT L1
290 FOR L1=1 TO COUNT
300 X=COUNT(L1,0):Y=COUNT(Ll,1)
310 FOR L2=1 TO 4
320 FOR L3=1 TO 4
330 POSITION X,Y:? H$«L2-1)*4+1,(L2-1)*4+2)
340 POSITION X,Y:? H$«L2-1)*4+3,(L2-1)*4+4)
350 SOUND 0,155- L2,10,S+L2:S0UND 1,155-L2,10,S+L2:POKE 5376S,192:NEXT L3:NEXT L2
360 SOUND O,O,O,O:SOUND 1,0,0,0
370 CHAR=INT(5*RND(0»:CHAR=CHAR*2+1
3S0 POSITION X,Y
390 ? BUG$(CHAR,CHAR+1);
400 NEXT L1
410 FOR L1=1 TO COUNT

73

74

3 CHARACTER SET GRAPHICS

420 H=COUNT(L1,0):V=COUNT(L1,1)
430 FOR L2=0 TO 4
440 SOUND 0,20,8,14-2*L2
450 SOUND 1,227,6,14-L2
460 POSITION H,V:? BOOM$(L2*2+1,L2*2+2);
470 FOR W=l TO 5 :NEXT W
480 NEXT L2
490 SOUND O,O,O,O:SOUND 1,0,0, 0
500 NEXT L1
510 H=0:V=INT(20*RND(0»
520 FOR L1=0 TO 35 :POSITION H+L1,V : ? M$
530 SOUND 0,100+L1,12,8:S0UND 1,135-L1,12,8:POKE 53768,192
540 NEXT 11
550 SOUND O,O,O,O:SOUND 1, 0,0,0:POSITION 35,V:? "
560 GOTO 200

"

10000 DATA 0,0,0,0,0,0,0,0,4,69,20,53,245,241,192,0,64,68,80,112,124,60,12,0,8
10010 DATA 138,38 ,58,250 , 242,192,0, 128, 136,96, 176,188,60, 12,0,128
10015 DATA 44,9,169,1,9,40,136,8,224
10020 DATA 128 ,1 68 ,0,128 ,160,1 36,8, 11, 2,6, 22,86,80,64 , 32,224 ,128
10025 DATA 144,148 ,149, 5, 1, 0,0,22
10030 DATA 14, 62,242 ,240,0, 0,0 ,148, 176 ,1 88,143, 15,0,8,8 ,1 68,21
10035 DATA 10,1,0,0,0,0,17,4
10040 DATA 129, 84 ,170,21,63,59,59 ,4,21, 85,170,84,0,0 ,17, 4,16,64
10045 DATA 0,0,3,15,63,255,255
10050 DATA 63,15,3,192,240,252,255,255,252,240,192,0,63,63,63
10055 DATA 63,63,63,0,0,252,252,252,252,252
10060 DATA 252,0,3,15,63,253,253,63,15,3,192,240,252,127,127
10065 DATA 252,240,192,0,63,63,62,62,63,63
10070 DATA 0,0,252,252,188,188,252,252,0,3,15,62,250,250,62,15
10075 DATA 3,192,240,188,175,175,188,240,192
10080 DATA 0,63,53,53,53,53 , 63 ,0,0,252,92,92,92,92,252 ,0,3,15
10085 DATA 62,248,248,62,15,3,192
10090 DATA 240,188,47,47,188,240,192,0,63,49,52,52,49,63,0,0
10095 DATA 252,76,28,28,76,252,0,0,0
10100 DATA 12,13,1,0,1, 0,0, 192,192,0 ,16,1 28 ,1 28,0,0,1,4,8,12 ,4, 2,0,0, 192,48
10110 DATA 16,32,16, 64,0, 16, 64,66,72,72,72,66, 16,4,1,129,33,33
10115 DATA 33,129,4,14,32,192,0
10120 DATA 48,0,192,4,16,4,48,2,0,1,12,208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Animated Birds

The final example is one of animated birds. The animation sequence consists of
four different wing positions, so that the birds appear to be flapping their wings in
flight. To give the feeling that the birds are ac tually hovering rather than glued in
place, they moved randomly about the screen.

Each of the shapes consists of an array of characters, six across by three high. Since
each shape uses it takes an array of eighteen characters, each of the four animated
figures are placed eighteen characters apart in the character set.

An animation sequence like 0 -1 -2 -3 -0 -1 ... which we would call circular, would
produce a discontinuity in the motion. The bird 's wings are moving downward
during the four cycles but if we went back to the Oth frame again, the bird's wings
would suddenly be at the top. Therefore, the motion must be oscillatory so that the
wings begin moving upward after reaching the botton. The sequence is 0 -1 -2 -3 -2-1
-0 -1 -2 Line 40 in the program accomplishes this.

CHARACTER SET GRAPHICS 3

ANIMATE

o 2 3

ANIMATION SEQUENCE

Printing a matrix of characters is usually tedious using normal print statements. If
there is more than one row of characters involved, you will need several print and
position statements. Certainly, an easier method would be to develop a Machine
language subroutine in which you only had to specify the first character in the
matrix, the height and depth of the matrix, and the position on the screen that you
wish to print it.

The subroutine is called MCYCLER and it is stored in this example as a string,
Since some users may prefer to POKE it into page six or even somewhere else, it is
written as fully relocatable code. It is called with a USR statement. X = USR(
MCYCLER, ROW, COL, MATRIXH, MATRIXV, STARTING CHARACTER #
). MATRIXH and MATRIXV are just the horizontal and vertical size of the matrix.
In the bird example they are six and three respectively. MCYCLER is the starting
address of the subroutine, but since it is stored as a string, the value is ADR
(MCYCLER$). The subroutine will print the matrix to the screen, except when the
starting character # is zero. This feature is needed to erase the previous matrix in its
last position before you draw the next frame.

X,Y _ I
POSITION I-MATRIX H-,

I I [AI"

Erasing one frame and drawing the next is accomplished in lines 80 and 90. The
old location of the matrix is at BX (LI), BY (LI), and the new location is at NX (LI),
NY (L2). Notice that the starting character during the draw stage depends on which

75

76

3 CHARACTER SET GRAPHICS

frame, B(Ll), we are drawing, and that each matrix is eighteen characters apart in the
set. The value of one is added since the Oth character is actually a blank or null
character. After the subroutine draws the matrix, the old location is transferred to the
new location. This is necessary since the last figure drawn must be erased from its old
position BX(LI), BY(Ll) before the next one is drawn at a new random position
NX(Ll), NY(Ll).

We thought it might be instructive to see which internal characters are actually
being printed to the screen. You can toggle between the ANTIC 4 bird set in RAM
and the normal ROM set by pressing the SELECT key. The OPTION key resets it.

10 REM CHARACTER ANIMATION - DAN PINAL
15 ? "HOW MANY BIRDS (1-4)"; : INPUT N:N=N-1
20 GOSUB 10000:REM INITIALIZE
30 FOR L1=0 TO N
40 B(L1)=B(L1)+F(L1):IF B(L1)=3 OR B(L1)=0 THEN F(L1)=-F(L1)
SO R:INT(3*RND(0))-1:NX(L1)=BX(L1)+R*(BX(L1)+R>0 AND BX(L1)+R<35)
60 R=INT(3*RND(0))-1INY(L1)cBY(L1)+R*(BY(L1)+R>0 AND BY(L1)+R<20)
80 X=USR(ADR(MCYCLER$),BY(L1),BX(L1),6,3,O)
90 X=USR(ADR(MCYCLER$),NY(L1),NX(L1),6,3,B(L1)*18+1):BX(Ll)=NX(Ll):BY(Ll)=NY(Ll)
95 NEXT Ll
96 IF PEEK(53279)=5 THEN POKE 756,224
97 IF PEEK(53279)=3 THEN POKE 756,CB
100 GOTO 30
10000 DATA 104,104,104,168,166,89,104,104,24,101,88,144,1,232
10005 DATA 136,48,8,24,105,40,144,248,232,208,245
10010 DATA 133,212,134,213,104,104,133,206,104,104,133,207,104,104
10015 DATA 170,160,0,145,212,201,0,240,2,232,138
10020 DATA 200,196,206,208,243,24,169,40,101,212,133,212,144
10025 DATA 2,230,213,138,198,207,208,225,96
10030 DIM MCYCLER$(72):FOR L=l TO 72:READ X:MCYCLER$(L,L)=CHR$(X):NEXT L
10040 POKE 106,PEEK(106)-9:GRAPHICS O:POKE 709,170:POKE 710,10:POKE 712,130
10050 POKE 752,l:CB=PEEK(106)+1:CHRSET=CB*256
10060 DLIST=PEEK(560)+256*PEEK(561)
10070 POKE DLIST+3,68:REM LMS ANTIC 4
10080 FOR Ll=DLIST+6 TO DLIST+28:POKE Ll,4:NEXT Ll:REM CHANGE DLIST FROM GR.

o TO ANTIC 4
10090 POKE 756,CB:REM SET POINTER TO OUR NEW CHRSET.
10100 REM NOW POKE IN NEW CHRSET
10110 FOR Ll=O TO 583:READ X:POKE CHRSET+L1,X:NEXT Ll
10200 DIM B(3),BX(3),BY(3),NX(3),NY(3),F(3)
10210 FOR L1=0 TO 3:B(L1)=L1:BX(L1)=L1*10:BY(L1)=5:F(L1)=1:NEXT L1:F(3)=-1
10220 RETURN
20000 DATA 0,0,0,0,0,0,0,0
20001 DATA 0,0,0,0,0,0,0,0
20002 DATA 2,2,2,2,2,2,2,2
20003 DATA 0,0,0,0,0,128,128,128
20004 DATA 0,0,0,0,0,0,0,0
20005 DATA 32,32,32,32,32,160,160,160
20006 DATA 0,0,0,0,0,0,0,0
20007 DATA 0,0,0,0,0,0,0,0
20008 DATA 2,0,0,0,0,0,0,0
20009 DATA 128,160,160,163,160,34,42,42
20010 DATA 0,2,2,242,194,98,106,170
20011 DATA 160,128,128,128,0,0,0,0
20012 DATA 0,0,0,0,0,0,0,0
20013 DATA 0,0,0,0,0,0,0,0
20014 DATA 0,0,0,0,0,0,0,0

CHARACTER SET GRAPHICS 3

20015 DATA 42,10,9,6,4,4,4,17
20016 DATA 170,168,152,164,4,4,4,17
20017 DATA 0,0,0,0,0,0,0,0
20018 DATA 0,0,0,0,0,0,0,0
20019 DATA 0,0,0,32,8,2,2,0
20020 DATA 0,0,0,0,0,0,128,160
20021 DATA 0,0,0,0,0,0,0,3
20022 DATA 0,0,0,0,0,0,0,240
20023 DATA 0,0,0,0,0,0,0,2
20024 DATA 0,0,0,2,8,32,160,128
20025 DATA 0,0,0,0,0,0,0,0
20026 DATA 40,42,10,2,0,0,0,0
20027 DATA 0,2,130,170,170,42,9,6
20028 DATA 192,96,96,170,170,170,152,164
20029 DATA 10,42,168,160,128,0,0,0
20030 DATA 0,0,0,0,0,0,0,0
20031 DATA 0,0,0,0,0,0,0,0
20032 DATA 0,0,0,0,0,0,0,0
20033 DATA 4,4,4,17,0,0,0,0
20034 DATA 4,4,4,17,0,0,0,0
20035 DATA 0,0,0,0,0,0,0,0
20036 DATA 0,0,0,0,0,0,0,0
20037 DATA 0,0,0,0,0,0,0,0
20038 DATA 0,0,0,0,0,0,0,0
20039 DATA 0,0,0,3,0,2,2,10
20040 DATA 0,0,0,240,192,96,96,168
20041 DATA 0,0,0,0,0,0,0,0
20042 DATA 0,0,0,0,0,0,0,0
20043 DATA 0,0,0,0,0,0,0,0
20044 DATA 0,0,2,2,10,8,40,160
20045 DATA 42,170,169,134,4,4,4,17
20046 DATA 170,170,154,164,4,4,4,17
20047 DATA 0,128,160,160,40,40,10,2
20048 DATA 0,0,0,0,0,0,0,0
20049 DATA 0,2,2,2,0,0,0,0
20050 DATA 128,128,0,0,0,0,0,0
20051 DATA 0,0,0,0,0,0,0,0
20052 DATA 0,0,0,0,0,0,0,0
20053 DATA 2,0,0,0,0,0,0,0
20054 DATA 128,160,32,32,0,0,0,0
20055 DATA 0,0,0,0,0,0,0,0
20056 DATA 0,0,0,0,0,0,0,0
20057 DATA 3,0,2,2,10,42,42,169
20058 DATA 240,192,96,96,168,170,170,154
20059 DATA 0,0,0,0,0,0,0,128
20060 DATA 0,0,0,0,0,0,0,0
20061 DATA 0,0,0,0,0,0,0,0
20062 DATA 0,0,2,2,2,2,2,0
20063 DATA 166,164,164,132,145,128,128,160
20064 DATA 166,6,6,4,17,0,0,2
20065 DATA 128,128,160,160,160,160,128,128
20066 DATA 0,0,0,0,0,0,0,0
20067 DATA 0,0,0,0,0,0,0,0
20068 DATA 0,0,0,0,0,0,0,0
20069 DATA 160,32,32,40,40,8,8,2
20070 DATA 2,2,2,10,10,8,8,32
20071 DATA 128,0,0,0,0,0,0,0
20072 DATA 0,0,0,0,0,0,0,0

77

78

CHAPTER 4

ASSEMBLY LANGUAGE APPLIED
TO GAME DESIGN

The words, Machine language and/ or Assembly language, evoke visions of inde
cipherable code to the novice BASIC programmer. The code looks unfamiliar. But
so was BASIC when you were first learning it. While BASIC has its roots in the
English Language and algebraic expressions, Assembly language appears to consist
of unfamiliar op codes or mnemonics that are used in conjunction with an unfamil
iar base 16 number system called hexadecimal.

It is our intent in this chapter to teach you the fundamentals of Assembly language
programming by comparing it to similar code written in BASIC. Rather than teach
you all aspects of the language, we will concentrate only on the operations needed to
do simple game graphics.

A good Assembler is needed to write Assembly language programs. An assembler
merely translates mnemonics like]MP, which is equivalent to a GOTO, into
hexadecimal opcodes that the computer understands. Most Assemblers have an
editor, an Assembler, and a debugger. The editor allows you to enter Assembly
language code usually by line number and later edit, delete, or insert particular lines.
The Assembler portion converts your source listing into Machine Code in a two-pass
operation. Since any line of code can have a label in its first field, the Assembler will
automatically calculate the branches or GOTOs to lines referenced with these labels.
Also, if you want to store a variable called ZAP, the Assembler which assigns a
memory storage location for the variable will automatically furnish the correct
memory address for any subsequent store or load operations using that variable.
Last, there is a Machine language monitor or debugger that helps locate errors. It
allows you to examine and change both memory and internal registers. It also
includes step and trace features that allow you to step through your code one
instruction at a time.

Readers who already own assemblers may use the one they have. We have provided
a translation table in the Appendix in the back of this book to aid you in converting
our SYNASSEMBLER source code to that used in your assembler. We chose
SYNASSEMBLER when we began this book in the Spring of 1983 because it was
co-resident (screen editor, assembler, and debugger are in memory simultaneously)
and was available in cartridge form .

For those of you who are new programmers, or are unhappy with their present
assembler, we recommend either the F-S Macro Assembler 40180 from Stanton
Products (See coupon in back of book), an enhanced disk version of the now
discontinued SYNASSEMBLER, or MAC 65 from Optimized Systems Software.
Both of these assemblers are fast (2000 lines/ minute), are co-resident assemblers,

79

80

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

allow source files to be chained, and offer a choice of assembling to either disk or
memory. Both of these are professional packages and are used as development tools
in various software houses. The F-S Macro Assemb ler 40/80 and the discontinued
SYNASSEMBLER are both derived from the S-C family of assemblers on the Apple
II computer. Whereas the new F-S Macro Aseembler 40 180 is compatible with the
new XL series of computers, unpatched versions of SYNASSEMBLER are not. The
F-S Macro Assembler 40180 is completely compatible with SYNASSEMBLER
source files with the exception of the way it handles AT ASCII string data. A simple
global replace will suffice. (see note in Appendix on assemblers differences.)

Our readers will certain ly want to know why we don't use the more popular Atari
Editor Assembler cartridge. First, it is very, very slow, often taking ten minutes to
assemble a 1000 line program. Second, it doesn't allow chaining of files, nor
assembly to the disk. Third, it is full of bugs. It remains popular mostly to beginner
programmers who want to try to write a very short Assembly language subroutine
that wi ll interface to their BASIC programs.

Basic Assembly Language

The Atari computers contain a central processing unit (CPU), a 6502A micropro
cessor that operates at 1. 8 Mhz. It accepts instructions to perform various operations,
like taking a value and storing it somewhere in memory, adding a number to another
number located in one of its internal registers, or comparing two values. What makes
programming in Assembly language rather difficult (or at least tedious) is that the
computer can only execute one tiny instruction at a time, and only perform its
opera tions in three internal registers . These three addressable registers are known as
the X register, Y register, and Accumulator. Each can hold eight binary digits called
bits, which are individually valued at 0 or 1. The eight bits, collectively called a byte,
have values ranging from 0 to 255 decimal or ($00 to $FF in hexadecimal notation).

Essentially, the computer, which is an eight-bit microprocessor, can manipulate
data whose values range from all eight bits off (00000000) to all eight bits on
(1 1111111). The average person has great difficulty in thinking of values represented
by O's and l 's. Fortunately, someone invented a number system called hexadecimal,
which is base 16 instead of binary or base 2.

Hexadecimal Numbers

Since 16 is 2x2x2x2, we can divide our eight bits into two four -bit groups. If you
determine each of the decimal equivalents of all the combinations of base two
representations, you obtain the following table. These values range from 0 to 15
decimal. In the hexadecimal numbering system, values above 9 are represented by
the letters A-F. In order to prevent confusion between decimal and hexadecimal
numbers, hexadecimal numbers are preceded by a "$".

ASSEMBLY lANGUAGE APPLIED TO GAME DESIGN 4

BINARY DECIMAL HEXADECIMAL
0000 0 $0
0001 I $1
0010 2 $2
0011 3 $3
0100 4 $4
0101 5 $5
OlIO 6 $6
0111 7 $7
1000 8 $8
1001 9 $9
1010 10 $A
lOll II $B
1100 12 $C
1101 13 $D
1110 14 $E
1111 IS $F

Hexadecimal numbers are very much like decimal numbers. They can be added
and subtracted in like manner. The only difference is that instead of having units,
tens, hundreds, etc, the hexadecimal numbers have units, sixteens, 256's, and so
forth. Each successive digit is sixteen times the position to the right instead of ten
times as in our decimal system.

DECIMAL

165

HUNDRED
6 TENS

6 ONES

x (l00) = 100
+ 6 x (10) 60
+ 5 x (1) 5

165 DECIMAL

HEXADECIMAL

$ 1 3 A

1- 256
3 SIXTEENS

A-ONES

1 x (256) = 256
+ 3 x (16) = 48
+ A x (1) = 10

$ 13A = 312 DECIMAL

Hexadecimal numbers are used to address the Atari's 48000+ memory locations.
Each group of 256 bytes ($00 - $FF) is called a page, starting with page zero. In 48K
Atari computers, memory is directly addressable from locations $0000 to $BFFF (0
-49151). Locations above $BFFF are also addressable, but these locations don't
contain RAM. The area from $DOOO to $D7FF contain custom hardware chips such

81

82

4 ASSEMBLY lANGUAGE APPLIED TO GAME DESIGN

as the GTIA, POKEY, PIA, and ANTIC microprocessor. Some of these hardware
locations can be read and some written to. The area above that, $D800 to $FFFF,
contain the 10K operating system ROMS.

Memory Considerations in Assembly Language

The bottom of RAM, pages 0 thru 5 ($0000 - $05FF) are generally off limits for
program storage. Zero page ($00 - $FF) is a very specia l area. There are a number of
zero page addressing instructions that execute faster because they require only two
instructions instead of the usual three. This is because they only need to address a
memory location from $00 to $FF instead of $0000 to $FFFF. These locations are
used extensively by the Operating System.

Only the last few bytes of zero page are available to the user. In fact, if you are using
Synassembler only locations $FO - $FF are totally free. You can a lso use $D6 - $EF, if
you don't mind if your data is altered by the floating point package each time
arithmetic operations are performed by BASIC. And if you are writing a subroutine
to be accessed from BASIC, only locations $CB - $D I (203-209) are available. $D4 and
$D5 can be used to send variables back to BASIC via the USR function.

Page one of memory ($ 100 - $ IFF) is reserved for the stack. It is used by a special
purpose register in the 6502A microprocessor for keeping track of return addresses
when calling subroutines. This scratch area for the Stack Pointer is sometimes used
for temporary register storage.

Pages two and three are used for various 110 operations, and operating system
shadow registers, page four for the cassette buffer, page five for the keyboard buffer,
and pages seven through twenty-eight for DOS 2.0's file management system.
Essentially the area below 7420 ($1 CFC), wi th the exception of page six, is off limi ts
to programmers using DOS. However, if DOS isn't resident, you can begin storing at
1792 ($700) safely. A pointer to the low end of memory, MEMLO, can be read at
locations 743,744 ($2F7,2F8).

Program Counter & Program Status Word

When a microprocessor processes a Machine language program, it keeps track of
which instruction it is executing with an internal16-bit register called the program
counter. The program counter contains the current address of the instruction that is
being processed. When the computer finishes with an instruction, it sets a flag or
condition in a 7-bit, Program Status Word, which is another register. For example, if
you want to test if a value in the Accumulator is equal to zero, you compare the value
in the Accumulator to zero. If this value is equal to zero, the zero flag will be set and
the next instruction, Branch Equal to Zero (BEQ), wi ll be executed. Other flags that
can be set are the carry flag, and the negative flag. A diagram of the Program Status
Word is shown below.

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

7 6 5 4 3 2 o

N v B D Z C

SIGN Overflow Break Decimal Interrupt Zero Carry

PROGRAM STATUS WORD

OP Codes

The 6502A microprocessor accepts only Machine language instructions. These are
called opcodes. When the computer encounters a $4C, it performs an equivalent to a
GOTO in BASIC. The Machine language instruction $4C 00 08 tells the computer to
jump to memory location $800. (Remember, addresses require two bytes. The low
order byte in this case contains $00 and the high order byte, $08-in effect, the reverse
order of the actual values.) Unfortunately, Machine language is difficult to
remember, so programmers invented a substitute called Assembly language, where
in each opcode is assigned a mnemonic such as]MP, BRK, or LDA. The above
example looks like this:]MP $0800.

If you were to type the following Machine Code into the monitor in your
Assembler, you would see how the monitor disassambler interprets the code, as in the
following example:

4000: A9 30 8D 00 41 CE 00 41 AD 00 41 C900
DO F6 60 <CR>

If you enter a 4000L from the Synassembler monitor you will see the following:

4000: A9 30 00030 LDA #$30
4002: 8D 00 41 00040 STA $4100
4005: CE 00 41 00050 DEC $4100
4008: AD 00 41 00060 LDA $4100
400B: C9 00 00070 CMP #$00
400D: DO F6 00080 BNE $4005
400F: 60 00090 RTS

The disassembler translates the Machine Code to more easily understood mne
monics. In the first line of code, LDA is the mnemonic for Load Accumulator. It is
the instruction for the 6502 to load the Accumulator with an immediate value-in
this case, $30. The # sign signifies that it is an "immediate" instruction; the ($30) is
the data portion of the instruction. The STAin line two is an "absolute" instruction.
It specifies the address in memory for storing the byte of data that is in the
Accumulator.

The difference between "immediate" and '.'absolute" instructions is an important
point. Let us take the example LDA #$30. In this "immediate" instruction, the
computer takes the operand ($30) as a value and places it in the Accumulator.

83

84

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

However, LDA $30 is an "absolute" instruction, so the computer takes the operand
as an address from which to load data into the Accumulator. In both cases, we get a
value in the Accumulator. You can tell the modes apart because "immediate"
instructions have a # sign before the operand.

You might wonder, what does this code do? It is a time delay subroutine. It puts a
decimal 48 in memory location $4100. Line two stores it there, then the value stored
at that memory location is decremented by one in line three. It IS then reloaded into
the Accumulator to be compared against the value zero. If it is zero it falls through to
the return-from-subroutine instruction and ends; but if it isn't zero it branches back
to memory location $4005. That location tells the computer to decrement the value
in $4100 once again. The code wi ll perform this small loop until the value in $4100
becomes zero. At that time, the test for a zero becomes true and the program returns to
the line after the]SR in the program that called it.

Does it work? First type 400E:00 <CR> to change the RTS to a BRK. This will
return us to the monitor when we are finished. Then type 4100:AA <CR> to place
something in that memory location so that if you look at it later you wi ll believe the
program did something. Finally, do type 4000G <CR> to start the routine. The code
returns you back to the monitor when it finishes a split second later. Now type 4100
<CR> and a 00 is returned. This is the value in memory location $4100. You can do a
4000S <CR> and an S <CR> each time to watch the code single step, or you can
trace the entire operation by typing a 4000T <CR>' The strange numbers that
appear below each line of code are the values in the internal registers. A is for
Accum ulator, X for X register, Y for Y register, P is the Program Status Word, and S
is the Stack Pointer.

This program has a direct analogy to the following BASIC program:

10 X=48
20 X=X-l
30 IF X<>O THEN 20
40 RETURN

The major differences between the two programs is that in Assembly language
there are no line numbers used within the code (line numbers are used only by the
editor to place your text in order, and you have to take care of every minute detail.
BASIC automatically assigns the storage locations of all variables and the location of
each instruction in memory. In Assembly language programming, we have to assign
the X variable to memory location $4100, and have to calculate the relative branch or
GOTO so that it references the memory location $4005. This is done by branching
back $F6 bytes or- 8 bytes to the proper address. Yet many of these details can be
greatly simplified if we use an Assembler to do our programming.

The same program using an Assemb ler looks like the following:

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

LINE LABEL INSTRUCTION COMMENT
FIELD FIELD FIELD

00010
00020 X
00030
00040
00050 LOOP
00060
00070
00080
00090

.OR $4000

.EQ $4100
LDA #$30
STA X
DEC X
LDA X
CMF #$00
BNE LOOP
RTS

;ASSEMBLE CODE AT $4000
;X IS STORED AT $4100

;X=X-l

; DONE?

The Assembler generates identical Machine Code, but many of the tedious details
are simplified. Once X is equated to the memory location in line 2, references to that
variable in lines 4 through 6 are handled automatically. If X were assigned to a
different memory location because we lengthened our program, you would only
have to change line 2. Also, labels act like line numbers in BASIC. Since the
Assembler assigns the line of code labeled LOOP to a particular memory location, it
can calculate the correct branch automatically when it encounters line 8 during
assembly. The .OR in line I is a pseudo-op, understood only by the Assembler. This
does not generate code but tells the Assembler where the code is to be run and stored.
The pseudo-op .TF causes the generated code to be stored to the disk rather than to
memory.

Addressing Modes

Now that you have had a taste of Assembly language programming and have seen
that it isn't as bad as you thought, there are a number of fundamental operations that
must be learned. The most important operation is to move numbers from one
memory location to another. This can be accomplished by loading a value into any
one of three internal 6502 registers-the Accumulator, X, or Y registers-and storing
that number somewhere in memory. A LDA (Load Accumulator) instruction can be
carried out in several different ways depending on its addressing mode. First we can
load the Accumulator with a real hexadecimal value (LDA #$05). This is called
Immediate Mode Addressing. Sometimes we need to be able to load the Accumulator
with a variable stored in a memory location (LDA $4100). This is called Absolute
Addressing.

The only other addressing method that we will discuss for the time being is the
Indexed Addressing mode. It takes the form of LDA $4100,X or LDA $4100,Y
depending on whether the X or Y register is used as an index. If, for example, the X
register contains a #$05, then the instruction above loads the value from location
$4100 + $05 or $4105. This addressing mode is used primarily for indexing into tables
stored at particular memory locations. There is no problem with the tables crossing
page bounderies. For example, if your table began at $4080 and the X-register
contained a $90, then the instruction LDA $4080,X would fetch the value in memory
location $4080 + $90 or $4110.

85

86

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

EFFECTIVE ADDRESS = ABSOLUTE ADDRESS + X

EFFECTIVE ADDRESS = ABSOLUTE ADDRESS + Y

Store operations are similar to load operations. You can store a value into an
"absolute" memory location, or you can store indirectly into a memory location,
offset by the value contained in either the X or Y register.

In summary, the table below shows the various load and store operations.

LOAD

STORE

ACCUMULATOR X REGISTER

LDA #$05
LDA $4100
LDA $4l00,X
LDA $4l00,Y

STA $4100
STA $4100,X
STA $4 l00, Y

LDX #$05
LDX $4100

LDX $4l00,Y

STX $4100

STX $4l00,Y *

Y REGISTER

LDY #$05
LDY $4100
LDY $4l00,X

STY $4100
STY $4l00,X *

*Both indirect operations involve zero page addressing only.

Incrementing & Decrementing

Sometimes it is necessary when counting cycles or looping through code to
increment or decrement a value directly similar to a FOR-NEXT loop in BASIC. In
Assembly language, either the X and Y registers or any memory location can be
incremented or decremented. If the X register contained a $FE, then it would contain
$FF when incremented. But if it contained a $FF, it would wrap around to become
$00. The computer informs you by setting a zero flag in its Program Status Register.

INCBY\
DEC BY 1

ACCUMULATOR

NOT A V AILABLE
NOT AVAILABLE

Stack Instructions

X-REG

INX
DEX

Y-REG

INY
DEY

MEMORY LOCATION

INC $4100
DEC $4 100

There is a special area in the computer ($100 - $1 FF) that is used quite frequently
by an internal register called the Stack Pointer. The computer uses this area to save
return addresses when handling either interrupts or subroutines . The stack is like a
dish dispenser. Bytes are pushed on the stack in order, and pulled off in reverse order.
The first byte stored is the last byte to be pulled off. The Stack Pointer always points
to the next free byte in the stack. Since the stack is only 256 bytes long, only 128
address pairs can be stored at anyone time.

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

Normally the stack would be of little interest to programmers except that it can
also be used to temporarily store data. If you were worried about your three registers
being altered in a subroutine, you could push all three values onto the stack before
calling the subroutine, and then pull them back off when you return from the
subroutine. BASIC also uses the stack to transfer data in the USR function when
calling a Machine language subroutine. The top byte in the stack contains the
number of variables being passed. The values follow in two byte pairs in hi byte
low byte order.

Two basic Machine language instructions provide key tools for using the stack.
PHA pushes the value in the Accumulator on the Stack. PLA pulls the top value of
the stack and places it in the Accumulator. Since these instructions only involve the
Accumulator, you would need to transfer the value in the X register to the Accumula
tor (TXA) in order to save the X register on the stack. Similarly you would transfer
the Y register to the Accumulator (TY A) first before a PHA to the stack. Be careful
when working with the stack. For instance, if you push data onto the stack while in a
subroutine and don't pull it back off, when the subroutine reaches the RTS instruc
tion it will return to the main program at the wrong address.

Al tering Program Flow

Program flow can be altered, as in BASIC, with instructions that resemble GOTO,
GO SUB, and IF ... THEN statements. The]MP instruction is equivalent to a GOTO
statement; it can transfer control to any location in the machine to continue execut
ing code.]MP $8D6C instructs the computer to continue executing code beginning
at address $8D6C. The GOSUB statement is identical to a]SR (Jump Subroutine) in
Machine language. When the computer reaches the instruction $5A83, it pushes the
two-byte memory address of the instruction onto the stack, so that when it returns
from the subroutine via an RTS (ReTurn from Subroutine), it will know the address
where it will continue the program. When it returns, it pulls the return address off
the stack and increments it by one so that it points to the next executable instruction.

The IF .. . THEN statem~nt is analogous to a number of branch instructions which
test the Program Status Register to see which flags are set. Usually, you use compare
operations to set flags . You can compare a value against the value stored in either the
Accumulator, the X or the Y Registers. The mnemonics are CMP, CPX and CPY,
respectively. For example,

LDA $4100
CMF #$05

jLOAD ACCUMULATOR WITH VALUE AT $4100

Different flags are set depending on the result.

Branch instructions are very similar to a]MP instruction (which is an uncondi
tional branch), except that only under certain circumstances will they cause pro
gram flow to continue at a different location . For example, if we were to testfor that

87

88

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

wraparound case when we incremented the X-register that contained $FF, we would
want to test the Zero Flag with a Branch Equal Zero (BEQ) instruction, and go to
some label if the condition is true.

SKIP

LDX $4100
INX
BEQ SKIP
RTS
LDA #$04

;LOAD X REGISTER WITH VALUE IN MEMORY
;INCREMENT X - REGISTER
;TEST IF 0, AND IF TRUE GOTO SKIP
; RETURN TO MAIN PROGRAM

This short example loads a value from the memory location into the X register,
then increments it. If wraparound occurs, the test for a zero flag causes the program
to jump to a label called SKIP, <lnd the code does not return to the program that
ca lled it via the RTS. There are numerous tests on each of the flags in the Program
Status Register. A summary is shown below.

BCS Branch if the carry flag is set. C I
BCC Branch if the carry flag is clear. C 0
BEQ Branch if the zero flag is set. Z I
BNE Branch if the zero flag is clear. Z 0
BMI Branch if mInus. N I
BPL Branch if plus. N = 0
BVS Branch if overflow IS set. V
BVC Branch if overflow IS clear. V = 0

Most Assemblers offer alternative mnemonics for BCC and BCS. Since, during
comparisons, the carry flag is set when the value in the appropria te register is equal
or greater than the value compared, BCS might be called BGE (Branch Greater or
Equal). Likewise, BCC is equivalent to BLT (Branch Less Than). Why use these
a lternatives? Because they are easier to remember and visualize, and they make it
clear that you are doing logical comparisons, rather than testing the results of an
addition or subtraction.

There is one other important concept that should be understood when doing
comparisons. I implied that the subsequent branch was like a GOTO in BASIC or
like a]MP in Assembly language. This is not entirely true, since the range of the
branch cannot exceed- 126 to +129 bytes. This is because the branch instruction is
only two bytes long. The first byte is the instruction code and the second the relative
address. It takes a two byte address to branch to any place in memory (Except Page
Zero). The]MP instruction has the advantage that it is three bytes long. In most
cases, this limitation will not cause problems. But if a "branch out of range error"
occurs, you must reverse the test so that it will reach the required destination via a
]MP instruction.

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

Example: If BEQ SKIP is out of range then substitute the following:

BNE *+$5
JMP SKIP

or BNE B
JMP SKIP
B NOP

This change causes the program to drop through the JMP instruction if the zero
flag was set, and then jump to location SKIP. However, if the zero flag is not set, it
will advance ahead five bytes to the instruction following the JMP. All other branch
instructions work in a similar manner. This gives the equivalent of a Long Branch.

Addition & Subtraction

Simple addition and subtraction of unsigned numbers is easily accomplished in
Machine language. All additions and subtractions must be performed one byte at a
time. Thus, large numbers or multi-byte numbers (those that exceed $FF), must be
added or subtracted one byte at a time, and the carry flag must be accounted for. It's
actually not much different from addition of two multi-digit decimal numbers.
Those numbers have a digit in the ones column, another in the tens, etc. If you add 65
to 78, you add the ones column first. Five plus eight equals 13. The value in the ones
column is 3; you then carry the one "ten" into the tens digit column before you add
the two numbers in the tens column. Hexadecimal addition is similar. You clear the
carry before you add. If the sum of the two values exceeds $FF, the carry is set. Since
you don't clear the carry when adding the next higher byte, the resultant answer will
be the sum plus the previously computed carry, as in the following example:

EXAMPLE: +CARRY
63

+ 02
F4

+ 16

66 OA ;SETS CARRY

The code for addition and subtractions is as follow:

ADDITIONS

CLC
LDA #$F4
ADC #$16
STA LOW
LDA #$63
ADC #$02
STA HIGH

;CLEAR CARRY
;LOAD LOW ORDER BYTE
;ADD WITH CARRY
;STORE LOW BYTE
;LOAD HIGH ORDER BYTE
;ADD WITH CARRY (NOTE DON'T CLEAR CARRY)
;STORE HIGH BYTE

89

90

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

SUBTRACTIONS

SEC
LDA #$F4
SBC #$16
STA VALUE

;SET CARRY FLAG
;LOAD VALUE
;SUBTRACT WITH CARRY
;STORE RESULT

You should be aware that the rules for subtraction are different from the ones for
addition. The carry must be set first. This is equivalent to a borrow in subtraction.
After the subtraction operation, the carry will be clear if an underflow (borrow)
occurred. The carry will be set otherwise. Setting the carry is very important, a step
that many beginners forget. The results are invaria bly incorrect if this step is
skipped- and possibly even " random ," since the status of the carry flag can be on or
off when the subtraction operation is performed. This can make debugging difficult.

Breakout Game (BASIC)

The "Breakout" game involves the simplest animation technique avai lable on the
Atari, moving individual pixels from one position to a new position. We have a
Graphics 5 pixel-sized ball that bounces around the screen. It will ricochet off a
movable paddle, the walls, or any of the 2 pixel-high by 5 pixel-wide colored bricks.
Movement is accomplished by erasing the ball at its old position and redrawing it at
its new position. The ball is very predictable. It changes direction only upon
collision, and in all cases (except contact with the paddle) simply reverses direction.
The point of contact with the joystick-controlled paddle determines the ball 's
direction. Balls striking the left end travel upwards and to the left at a 45 degree
angle, while balls striking the inside left travel in the same direction but at a 60
degree angle. Balls striking the paddle 's right side travel at similar angles, but to the
righ t.

Once you have the design description, in this case a game that is an old classic, the
next step is to translate it into a logical sequence of events and their consequences.
This can best be accomplished by drawing a flow chart that shows the possible
pathways for each module in the program. Each of these modules can be as small as a
single statement, or can consist of entire subroutines. No matter how detailed or
general you make it, the flowchart must accurately represent the game's logic. While
it is a good tool for learning to think logically, a flowchart isn't necessary or required
in all cases. Many good programmers have never drawn one. They obviously have
the ability to flowchart unconsciously in their minds.

The game should be programmed in small steps rather than as a complete entity.
This way you get to see results early. Besides, it is easier to debug a small section, such
as the ball bouncing off the paddle and moving around the screen, than to attempt to
debug a complete program that is full of errors. The most successful programmer
will be one who can debug by watching what goes wrong on the screen.

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

o 79

I Breakout Game I
0-

Block - Color 0

3-
3 Rows x 16 Bricks (2 x 5 Pixels)

Yellow - Color 1

6-

Green - Color 2

9-

Blue - Color 3

12-
/

/

/'
/

/
/

BY DX,DY

BX-~/ (Velocity direction)

/
/

PX /
I /

35 - 1
1 I 1 I

47-
Balls=3 Score=20

Paddle Position

Determining where the ball strikes the paddle is easy in our "Breakout" game. The
paddle is always drawn two-pixels wide at row 36 decimal or $24, and the first pixel
begins at PX, a variable con trolled indirectly by the joystick. Actually the new
paddle position is P = P + D where D depends on the direction of movement and
whether the button is being pressed. If the joystick is pushed to the left, D='-l , while if
it is pushed to the right, D=l. When the button is pushed, D = D'*'3, and the paddle
moves at triple speed. The Boolean logic in line 230, ((P +D»O AND P+D<76) gives
a value of true=l or false=O depending on whether the paddle has exceeded the screen
bounds after movement. If it hasn ' t, the result is P = P+D'*'(I), and there is a new
paddle position. If it has, the resu lt is P = P+ D(O) and the paddle remains stationary.

91

92

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

Ball's Position & Velocity

It is easy to compare the ball 's new vertical position NX to that of the paddle's
leftmost position PX. The difference NX-CX is C. You can use this value to index
into a table to obtain the new horizontal velocity; OX = C(C). These values vary with
position. The two outside blocks give a OX of + lor -1, and the two inside blocks give
a OX of +Y:! or - Y:!. The vertical velocity, OY is equal to -1 since the ball is always
travelling upwards after striking the paddle.

DX=-1 \ DX=-OS DX=+O.S / DX=1
DY=-1 o DY=-1 DY=-1 0 DY=-1

'\ " / 0/ 0 8] 0 , I I /

[2] 0 IT] IT] , , ,/ /

0 00 0
, I I /

[i][}][:][2J

I I I I I
C(O) C(1) C(2) C(3)

In order to update the ball's position, we take the old ball's position and add the
change in position or its directional velocity. The format is :

NEW POSITION = OLO POSITION + CHANGE IN POSITION

NX = BX + OX
NY = BY + OY

Incrementing or decrementing the ball's position by Y:! in the X direction is not
physically possible since screen positions are whole numbers. The ball's position is
truncated to the nearest integer value with the INT function. The result is that the
ball remains stationary in the X direction during one frame, then moves one whole
pixel position during the next frame or cycle.

Collisions with Bricks

As the ball bounces around the screen it will soon collide with one of the colored 2
by 5 pixel-sized bricks at the top of the screen. It is possible to test for a collision by
using the LOCATE function. This function, which returns the color register at the
ball 's position, works only in BASIC Graphics modes 3-8. Non-zero values in this

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

example indicate a collision with one of the three colored bricks (Playfields #1-3).

If there is a collision, the correct block needs to be removed. This is quite simple to
calculate for the X direction:

C = INT(NX/ 5)'*'5

You still need to determine if the ball hit the brick in an even or odd pixel row. It
might appear that the ball would always collide with the bottom or odd row of pixels
first, but if there are gaps between bricks as occurs later in the game, the ball can
approach from the side and strike the brick along the top or even row of pixels. If the
ball strikes the bottom row, you will need to adjust the position to the brick's top row
in order to erase one complete brick. The test is a very simple Boolean function in
line 320. For example if the ball's new vertical position, NY=9, then NY / 2 '#
INT(NY / 2) would reduce to 9/ 2 '# 4 which is true. We would then decrement NY to
an even number in order to erase the complete block. The top left corner of the 2 pixel
by 5 pixel brick is C,NY. Five pixels are erased from C,NY to C+4,NY in each of its
two rows.

The brick's score depends on its playfield color. SCORE = SCORE + SCORE(C),
where C is the value returned by the locate function . The yellow (playfield #1) bricks
at the top are worth ten points, the green (playfield #2) bricks in the middle are worth
five points, and the blue (play field #3) bricks at the bottom are worth only three
points.

The ball's vertical direction of travel reverses upon collision with a brick. It
continues in the horizontal direction until it reaches either the left or right playfield
boundary at BX=O or BX=79. It reverses direction there so that DX = -DX. If the ball
reaches the top of the playfield at BY = 0, it will reverse its vertical direction. But if the
ball reaches the bottom it is lost and we begin again with a new ball. The game will
end when we have run out of either bricks or balls.

5 REM BREAKOUT GAME - BY DAN PINAL
10 DIM C(3),SCORE(3)
20 C(0)=-0.5:C(1)=-1:C (2)=1:C(3)=0.5 :SCORE(0)=0:SCORE(1)=10:SCORE(2)=5:SCORE(3)=3
30 GRAPHICS 5:POKE 752,1
40 FOR L1=0 TO 3:COLOR L1
50 FOR L2=0 TO 2 STEP 2
60 PLOT 0,L2+L1*4:DRAWTO 79,L2+L1*4
70 PLOT 0,L2+L1*4+1:DRAWTO 79,L2+L1*4+1
80 NEXT L2:NEXT L1
90 BALL=5:BRICKS=96
100 P=38:BX=INT(80*RND(0»:BY=17:DX=C(INT(4*RND(0»):DY=1:TX=BX
110 COLOR l:PLOT BX,BY:GOSUB 1100
120 D=O:S=STICK(O):IF S>8 AND S<12 THEN D=-l
130 IF S>4 AND S<8 THEN D=l
140 IF NOT STRIG(O) THEN D=D*3
150 P=P+D*«P+D»O AND P+D<76)
160 COLOR O:PLOT PX,36:DRAWTO PX+3,36
170 COLOR l:PX=P:PLOT PX,36:DRAWTO PX+3,36
180 IF STRIG(O)=O AND STICK(0)=15 THEN 200
190 GOTO 120
200 D=O:S=STICK(O):IF S>8 AND S<12 THEN D=-l

93

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

Breakout Game

I
DRAW COLOR TARGET

I 'I
BLOCKS & FIELDS IF COLOR = 0 (BLACK)

YES

I to
I BALL = 5 I 270 I YES BRICKS = 90 BY <35?

100 I to
I INITIALIZE START POSITION OF BALL I 290

CALCULATE WHICH OF

I
4 POSITIONS HIT ON

rl I
PADDLE C=NX-PX

DRAW INITIAL POSITION OF BALL
J

I
280

REFLECT BALL IN

I I
APPROPRIATE DIRECTION

DRAW INITIAL POSITION OF PADDLE VY=-l VX=C(C)
VY=-1 VX=C(C)

I I

~ I I
BUTTON PRESSED? I I UPDATE SCORE I

, YES I

rl READ STICK & BUTTON I BRICKS=BRICKS-l

230 I 310 I

I CALCULATE NEW I CALCULATE WHICH BLOCK
POSITION OF PADDLE ACTUALL Y IS HIT

235 I
330 I

I

I
ERASE OLD POSITION

I
REMOVE BLOCK I

OF BALLS & PADDLE J
240 I I VY=-VY J

I
DRAW NEW POSITION

I l
OF PADDLE

I

I
350

250 TEST IF BALL HIT YES
REVERSE VX

I UPDATE POSITION OF BALL I
LEFT OR RIGHT SIDE

I 260 I N°I

~ TEST BY LOCATE FUNCTION

J 360' I
YES IF BALL HIT COLOR BLOCK TEST IF BALL HIT TOP REVERSE VY

i- NOI I

370 I
YES BALL=BALL-l

TEST IF BALL HIT BOTTOM
I

tNo BALL=O?

I PLOT NEW POSITION BALL I I YES

I BRICKS=O
YES

END GAME
lEND J GAME

N°I

94

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

210 IF S>4 AND S<8 THEN D=l
220 IF NOT STRIG(O) THEN D=D*3
230 P=P+D*((P+D»O AND P+D<76)
235 COLOR O:PLOT TX,BY:PLOT PX,36:DRAWTO PX+3,36
240 COLOR l:PX=P:PLOT PX,36:DRAWTO PX+3,36
250 BX=BX+DX:BY=BY+DY:TX=INT(BX):NX=INT(BX+DX*(BX+DX<80 AND BX+DX>=O»:NY=BY+DY*

(BY+DY>=O)
260 LOCATE NX,NY,C:IF NOT C THEN 350
270 IF BY<35 THEN 300
280 C=NX-PX:DY=-l:DX=C(C):GOSUB 1000:GOTO 350
300 SCORE=SCORE+SCORE(C):BRICKS=BRICKS-1:GOSUB 1000
310 C=INT(NX/5)*5:COLOR O:DY=-DY
320 IF NY/2<>INT(NY/2) THEN NY=NY-1
330 FOR L1=0 TO l:PLOT C,NY+L1:DRAWTO C+4,NY+L1:NEXT L1
340 GOSUB 1100
350 IF BX<l OR BX>78 THEN DX=- DX:GOSUB 1000
360 IF BY=O THEN DY=l:GOSUB 1000
370 IF BY=39 THEN 400
380 COLOR l:PLOT TX,BY
390 IF BRICKS THEN 200
395 ? " PERFECT":GOSUB 1300:GOTO 420
400 GOSUB 1200:BALL=BALL-1:IF BALL THEN 100
410 GOSUB 1100:? " GAME OVER"
420 IF PEEK(53279)=6 THEN RUN
430 GOTO 420
1000 FOR L1=15 TO 0 STEP -1
1010 SOUND O,30,10,L1
1020 NEXT L1:RETURN
1100 ? "} BALLS: "; BALL; " SCORE: "; SCORE: RETURN
1200 FOR L1=80 TO 255:S0UND O,L1,10,L1/8:NEXT L1:RETURN
1300 FOR L1=100 TO 10 STEP -5
1310 FOR L2=L1 TO 0 STEP -4
1320 SOUND O,L2,10,6:NEXT L2:NEXT L1:S0UND O,O,O,O:RETURN

Breakout Game (Assembly Language)

The "Breakout" game is quite easy to translate into Assembly language once you
understand how BASIC handles its graphics commands. The Operating System
(OS) implements each of these commands through the CIO (Central Input/ Output)
subroutine located at $E456. When a program calls the OS through this location, the
OS expects to be given the address of a properly formatted 10CB (Input Output
Control Block). There are eight of these, each sixteen bytes long. These are located
from $340 to $3BF. The appropriate 10CB number times 16 is passed to the subrou
tine in the X-register. The full details of how the internals actually work are really
not important, especially to the beginning Assembly language programmer. Let's
just say that we developed a set of graphics subroutines that mirror their BASIC
language counterpart. We have commen ted on each of these in the listing for anyone
who would like to study them.

Graphics Commands

The five graphics commands that we need for our game are: GRAPHICS #,
POSITION H,V; PLOTH,V; DRAWTO H,V;andLOCATE H,V,Color. Wesetup

95

96

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

each by inputting certain parameters into the Accumulator, X-register, and Y
register. Once you've set up the registers you need only JSR to that subroutine. The
table below shows what you need to input into each of the registers.

Function Accumulator X-register V-register

GRAPHICS Mode # ----- - - ---

POSITION Vertical Horizontal Horizontal
High byte Low byte

PLOT Vertical Horizontal Horizontal
High byte Low byte

DRAWTO Vertical Horizontal Horizontal
High byte Low byte

LOCATE Vertical Horizontal Horizontal
High byte Low byte

Has color
value on
return.

For example, if we wish to set up a Graphics 5 screen and draw a blue (play field #3
default color) line from 10,15 to 30,15 our program would be as follows:

LDA #$05 ;GRAPHICS 5 SCREEN
JSR GRAPHICS
LDA #$03 ;PLAYFIELD #3
STA COLOR
LDA #$OF
LDX #$00
LDY #$OA
JSR PLOT
LDA #$OF
LDX #$00
LDY #$ lE
JSR DRAWTO

Breakout Game

;VERTICAL=15
;HORIZONTAL HIGH BYTE
;HORIZONTAL LOW BYTE
;PLOT PIXEL
;VERTICAL=15
;HORIZONTAL HIGH BYTE
;HORIZONTAL LOW BYTE
;DRAW LINE

Once you understand the simplicity of duplicating the BASIC graphics statements
in Assembly language you can proceed with developing the game.

The "Breakout" game is a very close translation of the BASIC version with a few
subtle differences. One of the problems in working with Assembly language is that
all numbers are whole integer numbers. In the BASIC version the ball's horizontal
direction (DX) became +)1 or -)1 when it hit the inner portion of the paddle. Since
incrementing the ball's position by +)1 would be impossible in Assembly language,
DX and BALLX, a temporary value for the ball's horizontal position, are doubled in
value. If we then divide BALLX by two before plotting the ball's true position, TX,

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

the fractional part, will vanish. In essence the ball will move horizontally every other
frame.

BALLX = BALLX + DX (doubl ed values)
TX = BALLX / 2

ASL and LSR Instructions

Multiplication and division by powers of two is easy in Machine language. The
mnemonic ASL is used for multiplication by two. The Arithmetic Shift Left (ASL)
instruction shifts all of the bits in the Accumulator one position to the left. Thus, bi t
o is shifted into bit 1, bit 1 into bit 2, etc. Bit 7 is shifted into the carry bit so that you
can use the BCC and BCS instructions to tes t for overflows. For example, if only bit 2
was on (4 decimal) and we did an ASL, the bit would be shifted to bit 3 (8 decimal).
Thus, it is easy to multiply by powers of two by p erforming repeated ASL
instructions.

Conversely, division is performed by the Logical Shift Right (LSR) instruction.
Bits are shifted to the right and the bit 0 is shifted into the carry. This is equivalent to
dividing by two with loss of the fractional part.

ASL 7 6 5 4 3 2 1 0

c+?f±?f?t?t ± ±+o

LDA #$05
LSR
STA $4000

;LOAD ACCUMULATOR WITH 5
;DIVIDE BY 2
;VALUE STORED IN $4000 IS 2

Ball's Direction After Paddle Collision

The table of directional values for the four possible collision positions with the
paddle are stored in VX. The two negative values in the table are stored in their two's
complement form because it is easier to add two positive numbers rather than to test
for a negative number and subtract.

Oth 1st 2nd 3rd

VX $FE $FF $01 $02

For example, #$FE (-2)+ #$03 = #$01. The offset position from the paddle's left
edge is placed in the X register to get the new horizontal velocity.

97

98

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

LDA TX
SBC PX
TAX
LDA VX,X
STA DX

;COMPARE PADDLE HORIZ. WITH BALL HORIZ.
; DIFFERENCE

;FETCH VELOCITY VALUE FROM TABLE
;THIS IS DOUBLED VALUE

We ca lculate the ball 's new position as follows;

CLC
LDA BALLX
ADC DX
STA BALLX
LSR
STA TX

;OLD BALL POSITION (DOUBLED)
;NEW HORIZ. VELOCITY DOUBLED

;DIVIDE BY 2
;BALL'S TRUE HORIZ. POSITION

Scorekeeping

The scorekeeping routine also deserves an explanation. It differs substantially
from the routines used in the other Machine language games in this book. It takes
advantage of the 6502's ability to work in a numbering system called Binary Coded
Decimal, or BCD. This system uses the lower four bits or low-order nibble to
represent the low-order decimal digit, and the high-order nibble to represent the
high -order decimal digit. The advantage is that the numbering system resembles
decimal. The disadvantage is that it requires some advanced programming tech
nique to isolate the digits in order to print them to the screen.

DECIMAL BINARY HEX
(BCD)

07 0000 0111 .$07
10 0001 0000 .$ 10
16 0001 0110 .$ 16
42 0100 0010 .$42

To ge t to this mode you must set the decimal flag with a SED (Set Decimal Mode)
command. It remains in effect until it is cleared by a CLD (Clear Decimal Mode)
command.

A pair of bytes, SCORE and SCORE + 1 are used to store the four score digits. These
are updated by adding POINTS,X to SCORE+ 1 each time a brick is removed. The
X-register contains the color value of the block hit so that we need only index into a
table of point values. We didn't clear the carry when we added #.$00 to SCORE
(highby te). However, it there was an overflow in SCORE+ 1 (low byte) during the
first addition, the carry would be included in the resulting value in SCORE. Each of
the four nibbles must be separated, translated into an internal character #, and
finally placed into the appropriate position in the text window. The byte's high
nibble is first shifted to the low nibble by four successive LSR instructions and then
translated into an internal character number. Digits in the internal character set
begin at #.$10. Internal character #16 decimal = 0, 17 decimal = 1, etc. The ORA #.$10

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

instruction, which combines the individual bits in its operand with those in the
Accumulator, is just a fancy way of adding $10 to the value of our digit. The value of
the low nibble is isolated by ANDing it with #$OF. It is then ORed with #$10 to
obtain the internal character and stored in the next screen position. We have
effectively stored the thousands and hundreds digits in the screen window. The code
loops back again to obtain the val ue for the two nibbles in SCORE + 1. These contain
the tens and units digits . All of the store operations are done using indirect indexed
addressing of the form STA(WINDOW),Y. We will discuss this at greater length in
later chapters. Meanwhile, it a llows us to index rapidly into a memory area whose
two-byte address is stored in zero page.

If you're confused or lost at this point, don't worry. Just read on. Our intention
was merely to show how a simple game like "Breakout" could be translated into
Assembly language using graphics subroutines. It is not necessary to understand all
of the details but to be able to roughly follow the code as it pertains to the game's flow
chart. Many of the subtle tricks we mentioned in the previous discussion we will
discuss in much greater detail in subsequent chapters.

00020 *BREAKOUT GAME - BY DAN PINAL
00030 *ZERO PAGE EQUATES

OOFO: 00040 WINDOW . EQ $FO
00F2: 00050 MSG . EQ $F2
00F4: 00060 LINE2 . EQ $F4
00F6: 00070 PO . EQ $F6

00080 *MISC EQUATES
0014: 00090 RTCLOC .EQ $14
004D: 00100 ATRACT . EQ $4D
0230: 00110 SDLSTL . EQ $230
0278: 00120 STICKO . EQ $278
0284: 00130 STRIGO . EQ $284
D200: 00140 AUDFl . EQ $D200 PITCH 1
D201: 00150 AUDC1 .EQ $D201 DISTORTION/VOLUME
D20A: 00160 RANDOM .EQ $D20A
E45C: 00170 SETVBV . EQ $E45C SET VBLANK ROUTINE
E462 : 00180 XITVBV . EQ $E462 DEFFERED VBLANK EXIT
D01F: 00190 CONSOL . EQ $D01F

00200 * EQUATES FOR CIO
E456: 00210 CIOV . EQ $E456 ENTRY VECTOR

00220 * COMMANDS *
0003: 00230 OPEN . EQ $03 OPEN FOR INPUT/OUTPUT
0005: 00240 GETREC . EQ $05 GET RECORD
0007: 00250 GETCHR . EQ $07 GET CHARACTER(S)
0009: 00260 PUTREC . EQ $09 PUT RECORD
OOOB: 00270 PUTCHR . EQ $OB PUT CHARACTER(S)
OOOC: 00280 CLOSE . EQ SOC CLOSE DEVICE
OOOD: 00290 STA~IS . EQ $OD STATUS REQUEST
OOOE: 00300 SPECIL . EQ $OE BEGINNING OF SPECIAL ENTRY CO~!MANDS

00310 *
00320 * SPECIAL COMMANDS *
00330 *

0011: 00340 DRAWLN .EQ $11 DRAW LINE
0012: 00350 FILLIN .EQ $12 DRAW LINE WITH RIGHT FILL

00360 *
00370 * AUX1 VALUES *
00380 *

99

100

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

0001 :
0004 :
0008:
OOOC :
0010:
0020:

0054:
0055:
02FB:

0340:
0341:
0342 :
0343:
0344 :
0345 :
0346:
0347:
0348 :
0349 :
034A :
034B:

00390 APPEND
00400 OPNIN
00410 OPNOT
00420 OPNINO
00430 MXDMOD
00440 INSCLR
00450 *

. EO $01 ; OPEN FOR WRITE APPEND

. EO $04 ; OPEN FOR I NPUT

.EO $08 ; OPEN FOR OUTPUT

. EO OPNIN+OPNOT ; OPEN FOR INPUT AND OUTPUT

.EO $10 ; OPEN FOR MIXED MODE (E : ,S :)

.EO $20 ; OPEN WITHOUT CLEARING SCREEN (E : ,S :)

00460 * O.S. RAM EQUATES
00470 *1/0 CONTROL BLOCK EQUATES
00480 ROWCRS .EQ $54 CURRENT GRAPHICS CURSOR ROW
00490 COLCRS .EQ $55 & $56. LSB MSB OF CURRENT GRAPHICS CURSOR COLUMN
00500 ATACHR .EQ $2FB LAST GRAPHICS CHARACTER READ OR WRITTEN
00510 *
00520 ICHID
00530 ICDNO
00540 ICCOM
00550 ICSTA
00560 ICBAL
00570 ICBAH
00580 ICPTL
00590 ICPTH
00600 ICBLL
00610 ICBLH
00620 ICAUX I
00630 ICAUX2
00640 *

. EO $340

. EO $34 1

. EO $342

.EO $343

. EQ $344

.EO $345

. EQ $346

.EQ $347

.EQ $348

.EQ $349

.EQ $34A

.EQ $34B

HANDLER INDEX SET BY O.S .
DEVICE # AS IN Dl : ,D2 : ETC
COMMAND
STATUS RETURNED
BUFFER ADDRESS LO
BUFFER ADDRESS HI
PUT ONE BYTE VECTOR LO
PUT ONE BYTE VECTOR HI
BUFFER LENGTH LO
BUFFER LENGTH HI
AUXl
AUX2

4000: 4C 30 42 00650 JMP START ; SKIP PAST SUBROUTINES

4003: 48
4004: A2 60
4006 : A9 OC

00660 * GRAPHICS CALLS TO O.S. *
00670 *
00680 ; GRAPHICS
00690 ; ACC=GR. MODE
00700 GRAPHICS PHA
007 10 LOX #$60
00720 LOA #CLOSE

; SAVE MODE
; IOCB #6 FOR GRAPHICS
;CLOSE #6 FOR SAFETY (CAN'T OPEN AN ALREADY

OPEN DEVICE)
4008 : 9D 42 03 00730 STA ICCOM,X
400B: 20 56 E4 00740 JSR CIOV
400E: A9 03 00750 LDA #OPEN
4010 : 9D 42 03 00760 STA ICCm1,X
4013: A9 AC 00770 LDA #FNAME FILENAME IS S:
4015: 9D 44 03 00780 STA ICBAL,X
4018 : A9 41 00790 LDA /FNAME
401A : 9D 45 03 00800 STA ICBAH,X
401D: 68 00810 PLA ; GR. MODE
401E: 9D 4B 03 00820 STA ICAUX2,X
4021 : 29 FO 00830 AND #$FO ; KEEP UPPER NIBBLE FOR FULLSCREEN

00835 * ;& NO SCREEN ERASE FLAGS(+16 & +32)
00840 " O. S. FULL SCREEN FLAG IS THE OPPOSITE OF THE \oJAY BASIC USES IT.
00845 *i.e. +16 = SPLIT SCREEN NOT FULL SCREEN

4023: 49 10 00850 EOR #$10 ; FLIP-FLOP IT LIKE BASIC
4025 : 09 OC 00860 ORA #OPNINO ; OPEN S: FOR READING & \oJRITING
4027: 9D 4A 03 00870 STA ICAUXl,X
402A: 4C 56 E4 00880 JMP CIOV GO DO IT IT WILL RTS FROM THERE

00890
00900 POSITION
00910 EVEN THOUGH THIS IS SIMPLE IT IS HERE AS A SUBROUTINE
00920 BECAUSE IT IS USED OFTEN BY OTHER ROUTINES
00930 ACC. = VERT .
00940 ; X = HORIZ . HI : Y = HORIZ. LO
00950 POSITION

4020: 84 55 00960 STY COLCRS ; CURSOR COLUMN LO
402F : 86 56 00970 STX COLCRS+l ;CURSOR COLUMN HI

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

4031: 85 54
4033: 60

00980
00990
01000
01010
01020
01030
01040 ;

PLOT

STA ROWCRS
RTS

CURSOR ROW

ENTRY REG . ARE SAME AS POSITION
WILL PLOT A POINT USING VALUE IN COLOR

20 2D 40 01050 PLOT JSR POSITION
LDX #$60 A2 60 01060

A9 OB 01070 LDA #PUTCHR
STA ICCml,X
LDA #$0

IOCB #6

o BUFFER LENGTH

CIO WILL DEFAULT TO VALUE IN ACC

4034:
4037 :
4039:
403B :
403E:
4040 :
4043:
4046 :
4049 :

9D 42 03 01080
A9 00 01090
9D 48 03 01100
9D 49 03 01110
AD 15 42 01120
4C 56 E4 01130

STA ICBLL,X
STA ICBLH,X
LDA COLOR
JMP CIOV & SEND IT TO SCREEN (IT WILL RTS TO PROGRAM FROM CIO

404C :
404F :
4052 :
4055 :
4057:
4059 :
405C :
405E :
4061:
4063:
4066:

4069:
406C :
406E:
4070:
4073 :
4075:
4078:
407B:
407E:
4081 :

4082:
4085 :
4088:
4089 :
408B :
408E :
408F :
4092:
4094:
4097:

01140
01150 DRAWTO
01 160 ; ENTRY SETUP SAME AS POSITION

20 2D 40 01170 DRAWTO JSR POSITION
AD 15 42 01180 LDA COLOR
8D FB 02 01190 STA ATACHR
A2 60 01200 LDX #$60
A9 11 01210 LDA #DRAWLN
9D 42 03 01220 STA ICCOM,X
A9 OC 01230 LDA HOPNINO

TELL O. S.
IOCB #6
DRAWTO HAS ITS OWN SPECIAL COMMAND

9D 4A 03 01240 STA ICAUX1,X; MAKE SURE O.S . KNOWS IYHAT IT IS SUPPOSED TO DO
A9 00 01250 LDA #$0
9D 4B 03 01260 STA ICAUX2,X
4C 56 E4 01270 JMP CIOV GO DO IT & RTS TO PROGRAM FROM THERE

01280
01290 LOCATE
01 300 SETUP SAME AS POSITION
01 310 ; ACC. & COLOR HAVE VALUE LOCATED

20 2D 40 01320 LOCATE JSR POSITION
A2 60 01330 LDX #$60
A9 07 01340 LDA #GETCHR
9D 42 03 01350 STA ICCOM,X
A9 00 .. 01360 LDA #$0
9D 48 03 01370 STA ICBLL,X
9D 49 03 01380 STA ICBLH,X
20 56 E4 01390 JSR CIOV
8D 15 42 01400 STA COLOR
60 01410 RTS

01420 ;
01430 * MISC . ROUTINES
01440 * 8 BIT DIVISION
01450 X= NUM TO DIVIDE BY

roCB #6

o OUT BUFFER LENGTH

THIS WORKS EXACTLY THE OPPOSITE OF PLOT

01460 ; A= LOBYTE OF NUM TO DIVIDE INTO
01470 ; Y= HI BYTE OF NUM TO DIVIDE INTO
01480 ; RESULT & REMAI N HAVE ANSWER ON EXIT
01490 ; A=REMAINDER

8D 16 42 01500 DIVIDE STA RESULT
8E 18 42 01510 STX DIVISOR
98 01520 TYA
A2 08 01530 LDX #$08
OE 16 42 01540 .1 ASL RESULT
2A 01550 ROL
CD 18 42 01560 CMP DIVISOR
90 06 01570 BCC .2
ED 18 42 01580 SBC DIVISOR
EE 16 42 01590 INC RESULT

101

102

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

409A : CA 01600 .2
409B: DO EE 01610
4090: 80 17 42 01620
40AO: 60 01630

01640

DEX
BNE .1
STA RENAIN
RTS

01650 8 BIT NULTIPLY
01660 NULTIPLIES ACC BY X REG .
01670 ; STORES RESULT (L ,H) IN RESULT & RESULT+1

40A1: 80 19 42 01680 NULTIPLY STA N1 NULTIPLIER
40A4 : 8E 1A 42 01690 STX N2 NULTIPLICANO
40A7: A9 00 01700 LOA #$0
40A9: 80 16 42 01710 STA RESULT
40AC: 80 17 42 01720 STA RESULT+1
40AF : A2 08 01730 LOX #$08
40B1 : OE 16 42 01740 .1 ASL RESULT
40B4: 2E 17 42 01750 ROL RESULT+1
40B7 : OE 1A 42 01760 ASL N2
40BA : 90 OF 01770 BCC .2
40BC: 18 01780 CLC
40BD: AD 16 42 01790 LOA RESULT
40CO: 60 19 42 01800 AOC N1
40C3: 80 16 42 01810 STA RESULT
40C6: 90 03 01820 BCC .2
40C8: EE 17 42 01830 INC RESULT+1
40CB: CA 01840 . 2 OEX
40CC : DO E3 01850 BNE .1
40CE: 60 01860 RTS

01870 ;
40CF : A9 01 01880 NEWBALL
4001 : 80 15 42 01890
4004: 18 01900
4005 : AD OA 02 01910

LOA #$01
STA COLOR
CLC

BALL COLOR

4008 : 29 7F 01920
40DA : 69 10 01930

LOA RANDOM
AND #$7F ;
ADC #$ 10 ;
STA BALLX;
LSR

0-1 28
16- 144

40DC : 80 20 42 01940
40DF: 4A 01950
40EO : 80 25 42 01960

BALL HORIZ. POS . IS DOUBLED SO IT CAN BE MOVED IN HALF INC
/2 FOR ACTUAL BALL POSITION

40E3: A8 01970
40E4: A2 00 01980
40E6: A9 11 01990
40E8 : 80 21 42 02000
40EB: 80 26 42 02010
40EE: 20 34 40 02020
40F1: A901 02030
40F3 : 80 23 42 02040
40F6 : AD OA 02 02050
40F9 : 29 03 02060
40FB: AA 02070
40FC: BD 00 42 02080
40FF: 80 22 42 02090
4102: A9 26 02100
4104: 80 27 42 02110
4107: 20 17 41 02120 .1
410A : AD 78 02 021 30
4100 : C9 OF 02140
410F: DO F6 02150
411 1: AD 84 02 02160
41 14: DO F1 02170
41 16: 60 02180

02190 *

STA OLD X
TAY
LOX #$00
LOA #$11
STA BALLY
STA OLDY
JSR PLOT
LOA 11$01
STA DY
LOA RANDOM
AND #$03
TAX
LOA VX,X
STA OX
LOA #$26
STA PADDLE
JSR DOPA DOLE
LOA STICKO
CMP #$OF
BNE . 1
LOA STRIGO
BNE .1
RTS

4117: AE 78 02 02200 DOPA DOLE LOX STICKO
41 1A: AD 84 02 02210 LOA STRIGO

17

PUT NEW BALL STARTING POS. ON SCREEN

SET FOR DOWN

0- 3

PICK RANDOM HORIZ. VECTOR
SAVE IT
38
REPOS ITION TO MIDDLE OF SCREEN

STICK CENTER?
WAIT TILL IT IS.
BUTTON PRESSSED?
WAIT TI LL TRIGGER PRESSED

GET STICK VALUE
BUTTON PRESSED

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

411D : DO 06 02220 BNE .1 ; USE NORMAL SPEED PADDLE MOVEMENT
411F : BD FD 41 02230 LDA FHOFFS ,X ; TRIPLE SPEED TABLE
4122 : 4C 28 41 02240 JHP . 2
4125 : BD ED 41 02250 . 1 LDA HOFFS, X NORMAL SPEED TABLE
4128: A2 00 02260 . 2 LDX #$00 PADDLE MINIMUH
412A: AO 4C 02270 LDY #$4C 76 PADDLE MAXIMUM

12C : 18 02280 CLC
412D: 6D 27 42 02290 ADC PA DDLE
4130: 10 01 02300 BPL . 3
4132 : 8A 02310 TXA PADDLE H. CAN ' T GO LESS THAN 0 SO SET IT TO 0
4133: C9 4D 02320 . 3 CMP #$4D 77 GONE PAST UPPER LIMIT
4135: 90 01 02330 BCC .4 OK IF <
4137 : 98 02340 TYA
4138: 8D 27 42 02350 . 4 STA PADDLE

02360 >, NOW ERASE OLD PADDLE & DRA\~ NEW
413B: A9 00 02370 LDA #$00
413D: 8D 15 42 02380 STA COLOR
4140: 20 52 41 02390 J SR DRPADDLE
4143 : AD 27 42 02400 LDA PADDLE
4146: 8D 28 42 02410 STA PX
4149 : A9 01 02420 LDA #$01
414B: 8D 15 42 02430 STA COLOR
414E : 20 52 41 02440 JSR DRPADDLE,
4151: 60 02450 RTS

02460 *
02470 * DRAW PADDLE

4152 : A9 24 02480 DRPADDLE LDA #$24 36TH ROW
4154: AC 28 42 02490 LDY PX PADDLE H.
4157 : A2 00 02500 LDX #$00 HI BYTE OF PADDLE H. ALWAYS 0 UNLESS GR. 8
4159 : 20 34 40 02510 JSR PLOT
415C : 18 02520 CLC
415D: AD 28 42 02530 LDA PX
4160 : 69 03 02540 ADC #$03 END OF PADDLE IS PADDLE H. + 3
4162: A8 02550 TAY SET UP FOR DRAWTO CALL
4163: A2 00 02560 LDX #$00
4165: A9 24 02570 LDA #$24
4167: 20 4C 40 02580 JSR DRAWTO
416A : 60 02590 RTS

02600 *
02610 *EBRICK
02620 * ERASES BRICK ONE LINE AT A TIME

416B : A2 00 02630 EBRICK LDX #$00
416D : 8E 15 42 02640 STX COLOR
4170: AD 2C 42 02650 LDA BRICKY
4173 : AC 2B 42 02660 LDY BRICKX
4176: 20 34 40 02670 JSR PLOT
4179 : 18 02680 CLC
417A : AD 2B 42 02690 LDA BRICKX
417D : 69 04 02700 ADC #$04
417F : A8 02710 TAY
4180: A2 00 02720 LDX #$00
4182 : AD 2C 42 02730 LDA BRICKY
4185: 20 4C 40 02740 JSR DRAWTO
4188: 60 02750 RTS

02760 *
4189 : A5 14 02770 JDELAY LDA RTCLOC
418B : C5 14 02780. 1 CNP RTCLOC
418D : FO FC 02790 BEQ .1
418F: CA 02800 DEX
4190 : DO F7 02810 BNE JDELAY
4192: 60 02820 RTS

02830 *

103

104

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

02840 * VBI ROUTINE IS USED SO SOUND DOES NOT INTERFERE WITH PLAY
02850 VBI

4193: D8 02860
4194: AD 2F 42 02870
4197 : FO 10 02880
4199: CE 2F 42 02890
419C; AD 2F 42 02900
419F; 09 AO 02910
41Al; 8D 01 D2 02920
41A4; A9 20 02930
41A6; 8D 00 D2 02940

02950 XVBI
41A9 ; 4C 62 E4 02960

02970 "

CLD
LDA TIMER
8EQ XVBI
DEC TIMER
LDA TIMER
ORA I/$AO
STA AUDCl
LDA 1/$20
STA AUDFI

JMP XITVBV

SOUND TO DO
NO. LEAVE
COUNTOOIYN
USE TIMER AS VOLUME
DISTORTION 10
TELL POKEY

02980 * PROGRAM DATA
02990 *

41AC ; 53 3A 03000 FNAME
41AE: 913 03010
41AF ; 27 21 2D
41132 ; 25 00 2F
4185 : 36 25 32 03020 MSGO
41138: 00 30 25
4188 : 32 26 25
41BE; 23 34 01 03030 MSGI
41Cl: AF 41 88

. AS "S; "

.HS 913

.AT "GAME OVER"

.AT " PERFECT !"

41C4: 41 03040 ~lSGTAB . DA ~l SGO, MSGI
41C5: 00 00 22
41C8: 21 2C 2C
41CB: lA 00 10
41CE : 00 00 00
41Dl: 00 00 00
41D4; 00 00 00
41D7: 00 00 03050 TOPLINE . AT" BALL: 0
41D9 ; 00 00 00
41DC: 00 00 00
41DF: 00 00 33
41E2: 23 2F 32
41E5: 25 lA 00
41E8: 10 10 10
41E8 : 10 00 03060 .AT " SCORE ; 0000 "
41ED: 00 00 00
41FO : 00 00 01
41F3: 01 01 03070 HOFFS .HS 0000000000010101
41F5: 00 FF FF
41F8: FF 00 00
41FB: 00 00 03080 .HS OOFFFFFFOOOOOOOO
41FD: 00 00 00
4200: 00 00 03
4203: 03 03 03090 FHOFFS .HS 0000000000030303
4205: 00 FD FD
4208 : FD 00 00
42013 : 00 00 03100
420D : FE FF 01
4210: 02 03110 VX
4211: 00 10 05
4214 : 03 03120 POINTS
4215: 03130 COLOR
4216; 03140 RESULT
4217: 03150 REMAIN
4218: 03160 DIVISOR
4219 ; 03170 HI
421A ; 03180 M2

. HS OOFDFDFDOOOOOOOO

.HS FEFFOI02

.HS 00100503

.BS 1

.BS 1

. BS 1

.BS 1

.BS 1

. BS 1

RES ULT & REMAIN MUST STAY
NEXT TO EACH OTHER

ASSEMBLY lANGUAGE APPLIED TO GAME DESIGN 4

421B : 03190 TEHP1 .BS 1
421C : 03200 TEHP2 .BS 1
421D: 03210 TEHP3 .BS 1
421E : 03220 TEHP4 .BS 1
421F: 03230 ROW .BS 1
4220: 03240 BALLX .BS 1 ;BALL' S X POSITION (DOUBLED)
4221 : 03250 BALLY .BS 1 ;BALL' S Y POSITION
4222 : 03260 DX .BS 1 ;DOUBLED HORIZONTAL DIRECTION VALUE
4223: 03270 DY .BS 1 ;VERTICAL DIRECTION VALUE
4224: 03280 TX .BS 1 ;TRUE HORIZONTAL DIRECTION VALUE
4225 : 03290 OLDX .BS 1 ;BALL'S OLD HORIZ POSITION
4226: 03300 OLDY .BS 1 ;BALL' S OLD VERTICAL POSITION
4227: 03310 PADDLE .BS 1 ;HORIZ PADDLE POSITION
4228 : 03320 PX . BS 1 ; NEW HORIZ PADDLE POSITION
4229: 03330 BALLS .BS 1
422A: 03340 BRICKS . BS 1
42 2B : 03350 BRICKX .BS 1 ;HORIZ POSITION OF BRICK TO BE REMOVED
422C: 03360 BRICKY .BS 1 ;VERTICAL POSITION
422D: 03370 SCORE .BS 2
422F: 03380 TIMER .BS 1

03390 ;
03400 *BEGINNING OF ~lAIN PROGRAM

4230 : A9 07 03410 START LDA 11$07 DEFFERED
4232: AO 93 03420 LDY IIVBI
4234: A2 41 03430 LDX IVB I
4236: 20 5C E4 03440 JSR SETVBV ENABLE SOUND ROUTINE
4239: A9 05 03450 LDA #$05 START WITH GRAPHICS 5
423B: 20 03 40 03460 JSR GRAPHICS
423E: AD 30 02 03470 LDA SDLSTL ; FIND DISPLAY LIST
4241: 85 F6 03480 STA PO
4243: AD 31 02 03490 LDA SDLSTL+l
4246 : 85 F7 03500 STA PO+l
4248 : AO 2F 03510 LDY #$2F
424A: Bl F6 03520 LDA (PO),Y ; FIND OUT WHERE IT PUT TEXT WINDOW
424C : 85 Fl 03530 STA WINDOW+1
424E: 85 F5 03540 STA LINE2+1
4250 : 88 03550 DEY
4251 : Bl F6 03560 LDA (PO),Y
4253: 85 FO 03570 STA WINDOW
4255: 18 03580 CLC
4256: 69 38 03590 ADC #$38 56 ALMOST HALFWAY INTO 2ND LINE OF TEXT WINDOW
4258: 85 F4 03600 STA LINE2
425A : 90 02 03610 BLT .1
425C : E6 F5 03620 INC LINE2+1
425E : AO 27 03630. 1 LDY #$27 ; 39
4260: B9 C5 41 03640 .2 LDA TOPLINE, Y BLOCK MOVE THE TOPLINE INTO TEXT WINDOW
4263: 91 FO 03650 STA (WI NDOW) ,Y
4265: 88 03660 DEY
4266: 10 F8 03670 BPL .2

03680 * No\.J DRAIV BRICKS
4268 : A9 03 03690 DOBRICKS LDA #$03
426A: 8D IB 42 03700 STA TEHPI
426D: AD IB 42 03710 . 1 LDA TEHPI
4270 : 8D 15 42 03720 STA COLOR
4273: A9 02 03730 LDA #$02
4275 : 8D lC 42 03740 STA TEHP2
4278: AD IB 42 03750 .2 LDA TEHPI
427B: OA 03760 ASL X 2
427C: OA 03770 ASL X 4
427D : 18 03780 CLC
427E : 6D lC 42 03790 ADC TEHP2
4281: 8D IF 42 03800 STA ROW

105

106

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

4284: A9 02 03810 LOA #$02
4286 : 80 10 42 03820 STA TEMP3
4289: AO IF 42 03830 .3 LOA ROW
428C : A2 00 03840 LOX #$00
428E : AO 00 03850 LOY #$00
4290 : 20 34 40 03860 JSR PLOT PLOT 0, ROI~
4293 : AO IF 42 03870 LDA ROW
4296: A2 00 03880 LOX #$0
4298: AO 4F 03890 LDY #$4F 79
429A: 20 4C 40 03900 JSR ORAWTO ORAWTO 79,ROW
429D: EE IF 42 03910 INC ROW
42AO: CE 10 42 03920 DEC TEMP3
42A3: 00 E4 03930 BNE . 3 TWO ROWS PER BRICK
42A5: CE lC 42 03940 OEC TEMP2
42A8: CE lC 42 03950 DEC TEMP2
42AB : 10 CB 03960 BPI. . 2 TI~O ROIVS OF BRICKS PER COLOR
42AD: CE 113 42 03970 DEC Tl:}lP 1
42BO : DO 813 03980 BNE . 1 3 COLORS OF BR[CKS
42132 : A9 01 03990 LOA #$01
42B4: 8D 29 42 04000 STA BAL LS
42137: 09 10 0401 0 ORA #$ 10 MAKE [NTERNERNAL CHR
42139 : AO 08 04020 LOY #$08
421313: 91 FO 04030 STA (IHc.JDOIV),Y
42BD: A9 60 04040 LDA #$60 ; 96 6 ROWS OF 16 BR[CKS
42BF : 8D 2A 42 04050 STA BRICKS
42C2 : A9 00 04060 LOA #$00
42C4: 80 2D 42 04070 STA SCORE
42C7: 8D 2E 42 04080 STA SCORE+l

04090 * MAIN GAME LOOP BEGINS HER E
04100 *

42CA : 20 CF 40 04110 GAME JSR NEI~BALL ; INITIALIZE NEI~ BALL DATA & WAIT FOR BUTTON PRESS
42CO : A2 08 04 120 GANELOOP LDX #$08
42CF : 86 40 041 30 STX ATRACT
42D l: 20 89 41 04140 JSR JDELAY
4204 : 20 17 41 041 50 JSR DOPADOLE UPDATE PADDLE POS.

04160 * GET NEW BALL POS .
42D7: 18 04170 OOBALL CLC
4208: AD 20 42 04180 LOA BALLX
42DB : 6D 22 42 04190 ADC OX I-IOR EONTAL CHANGE. - 2 TO +2
420E: C9 FO 04200 CMP #$FO
42EO: 90 02 04210 BCC . 0
42E2: A9 00 04220 LDA 11$00
42E4 : C9 AO 04230 . 0 C~IP #$AO
42E6 : 90 02 04240 BCC .10
42E8 : A9 9F 04250 LDA #$9F
42EA : 80 20 42 04260 .10 STA BALLX
42EO : 4A 04270 LSR TRUE H. POS.
42EE : 8D 24 42 04280 STA TX
42Fl: FO 04 04290 BEQ .1
42F3: C9 4F 04300 C~lP #$4F 79 AT RIGHT EDGE ?
42F5: 90 10 04310 BLT . 2 OK H' <
42F7 : CE 22 42 04320 .1 DEC OX
42FA : AD 22 42 04330 LDA OX
42FO: 49 FF 04340 EOR #$FF REVERSE HORIZONTAL
42FF : 80 22 42 04350 STA OX
4302: A9 10 04360 LOA #$ 10
4304 : 80 2F 42 04370 STA TIMER PING!
4307 : 18 04380 . 2 CLC
4308 : AD 21 42 04390 LDA BALLY
430B: 60 23 42 04400 ADC DY
430E: 8D 21 42 04410 STA BALLY

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

4311 :
4313:
4315:
4317:
431A:
431C:
431F:
4321:
4323:
4325:

,
4328:
432A:
432D:
4330:
4332:
4334:
4337:
4339:
433C:
433F:
4341 :
4343:
4346:
4349:
434A:
434D:
4350:
4352:
4355:

4358:
4359:
435A:
435D:
4360:
4363:
4365:
4368:
436B:

436C:
436E:
4370:
4373:
4374:
4375:
4376:
4377:
4379:
437B:
437C:
437F:
4381 :
4383:
4385:
4386:
4387 :
4389:

C9 02 04420 CMF #$02
BO OC 04430 BGE .3
A9 01 04440 LDA #$01
8D 23 42 04450 STA DY
A9 10 04460 LDA #$10
8D 2F 42 04470 STA TIMER
DO 07 04480 BNE HITCK
C9 27 04490.3 CMP #$27
90 03 04500 BLT HITCK
4C ED 43 04510 JMP ENDBALL

04520 ; ACC HAS V.
A2 00 04530 HITCK LDX #$00
AC 24 42 04540 LDY TX
20 69 40 04550 JSR LOCATE
C9 00 04560 CMP #$00
DO 03 04570 BNE .1
4C C4 43 04580 JMP XHITCK
AO 10 04590.1 LDY #$10
8C 2F 42 04600 STY TIMER
AC 21 42 04610 LDY BALLY
CO 20 04620 CPY #$20
90 15 04630 BCC .2
AD 24 42 04640 LDA TX
ED 28 42 04650 SBC PX
AA 04660 TAX
BD OD 42 04670 LDA VX,X
8D 22 42 04680 STA DX
A9 FF 04690 LDA #$FF

AT TOP
SET VERTICAL DIRECTION TO DOWN

PING!
BRANCH ALlv A YS
PAST PADDLE?
OK IF <

ACC. HAS COLOR VALUE OF PIXEL

PING!

HAS IT HIT PADDLE OR BRICKS?
BRICKS
CO~IPARE PADDLE H. TO BALL H.
DIFFERENCE IS 0-3
AND WILL DECIDE NEW HORIZ. VELOCITY

; STORE NElv HORIZ VELOCITY

8D 23 42 04700 STA DY ; SET VERTICAL DIRECTION TO UP
4C C4 43 04710 JMP XHITCK ; LEAVE

04720 * ACC. STILL HAS COLOR VALUE HIT. USE IT TO GET BRICK VALUE
AA 04730 .2 TAX
F8 04740 SED
AD 2E 42 04750 LDA SCORE+l ;LOAD TWO LOW DIGITS
7D 11 42 04760 ADC POINTS,X ;ADD POINT VALUE OF BRICK
8D 2E 42 04770 STA SCORE+l
A9 00 04780 LDA #$00 ;WILL ALSO ADD CARRY BIT IF NECESSARY
6D 2D 42 04790 ADC SCORE
8D 2D 42 04800 STA SCORE
D8 04810 CLD

04820 * NOW PRINT NEW SCORE ON SCREEN
04830 DOSCORE

A2 00 04841 . LDX #$00
AO 23 04850 LDY #$23
BD 2D 42 04860 .1 LDA SCORE,X
4A 04870 LSR EACH BYTE HOLDS 2 NUMBERS
4A 04880 LSR SHIFT UPPER NIBBLE OVER
4A 04890 LSR AND DO IT
4A 04900 LSR FIRST.
09 10 04910 ORA #$10 ; TRANSLATE NUMBER INTO INTERNAL CHARACTER
91 FO 04920 STA (WINDOW),Y ;STORE HIGHER DIGIT OF PAIR IN TEXT AREA
C8 04930 INY ; NEXT
BD 2D 42 04940 LDA SCORE ,X
29 OF 04950 AND #$OF ; NOW DO LOWER NIBBLE
09 10 04960 ORA #$10 ; MAKE A CHR
91 FO 04970 STA (WINDOW),Y ;STORE LOWER DIGIT OF PAIR IN TEXT AREA
C8 04980 INY
E8 04990 INX
EO 02 05000 CPX #$02 ; DONE BOTH BYTES? (ALL 4 SCORE DIGITS)
DO E5 05010 BNE .1

05020 * NOW CALCULATE BRI CK POSITION

107

4 ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN

05030 * BRICK HORIZONTAL I S THE INTEGER OF TX/5
43813 : AD 24 42 05040 LDA TX
438E : AO 00 05050 LDY #$00 ; TX HAS NO HI BYTE SO Y=O
4390 : A2 05 05060 LDX #$05 ; # TO DIVIDE BY
4392: 20 82 40 05070 JSR DIVIDE
4395: AD 16 42 05080 LDA RESULT
4398 : A2 05 05090 LDX #$05
439A: 20 Al 40 05 100 JSR MULTIPLY
439D: AD 16 42 05 110 LDA RESULT
43AO: 8D 213 42 05 120 STA BRICKX
43A3 : AD 21 42 05 130 LDA BALLY ; BALL VERT .
43A6 : 4A 05140 LSR ; /2
43A 7: OA 05150 ASL ; X2 THIS INSURES AN EVEN NUMBER
43A8: 8D 2C 42 05 160 STA BRICKY THE TOP OF AN Y BRICK IS AN EVEN ROH .
43AB : 20 613 4 1 05170 JSR EBIHCK ; ERASE TOP LINE OF BRICK
4JAE: EE 2C 42 05180 INC BRICKY ; BRICKS AI~I\ 2 LINES HIGfl
43Bl: 20 613 4 1 05 190 JSR EBRICK ; ERA SE SECOND LINE

05200 * ORICK IS GONE
05210 * FLIP FLOP VERTICAL IlII{ECnON

43134: CE 23 42 05220 DEC DY
43137: AD 23 42 05230 LDA DY
43BA: 49 FF 05240 EOR 1/ $FF
43BC: 8D 23 42 05250 STA OY
43131" : CE 2A 42 05260 DEC BRICKS ONE LESS BRI CK
43C2 : 1"0 4A 05270 BEQ ENDGAME IF ALL ARE GONE END GAME

05280 XlllTCK
43C4 : A9 00 05290 LDA #$0
43C6: 8D 15 42 05300 STA COI"OR
43C9: AD 26 42 05310 LDA OLDY
43CC : A2 00 05320 LIlX #$00
43CE: AC 25 42 05330 LDY OLDX
43Dl : 20 34 40 05340 JSR PLOT ERASE OLD OALL
4304: A9 01 05350 LDA #$01
43D6 : 3D 15 42 05360 STA COLOR
4309: AD 21 42 05370 LDA BALLY
43DC : 80 26 42 05380 ~rA OLDY
43DF: A2 00 05390 LDX 1/$00
43El: AC 24 42 05400 LDY TX
43E4: 8C 25 42 05410 STY OLDX
43E7 : 20 34 40 05420 JSR PLOT PUT OALL ON IN NE\.J POSITION
43EA: 4C CD 42 05430 J~1P GAMELOOP ; DO IT AGAIN
43ED: A2 00 05440 ENDBALL LDX #$00
43EF: 8E 15 42 05450 STX COLOR
431"2 : AC 25 42 05460 LDY OLDX
431"5 : AD 26 42 05470 LDA OLDY
431"8: 20 34 40 05480 JSR PLOT ERASE BALL
431"13 : EE 29 42 05490 INC BALLS
431"£: AD 29 42 05500 LDA BALLS 2-6
4401: C9 06 05510 C~IP #$06
4403: 130 09 05520 BCS ENDGAME
4405: 09 10 05530 ORA #$ 10 MAKE I~rO CHR .
4407: AO 08 05540 LDY '$08
4409: 91 1"0 05550 STA (\HNDOW), Y
4400 : 4C CA 42 05560 Jt'lP GM1E ; GO BACK TO NEHBALL ROUTINE

05570 ENDGAME
440E: A2 00 05580 LDX #$00
44 10: AD 2A 42 05590 LDA BRICKS
4413: DO 01 05600 I3NE .1
4415 : 1':8 056 10 INX THEN 2ND MESSAGE
4416 : 8A 05620 .1 TXA
4417: OA 05630 ASL

108

ASSEMBLY LANGUAGE APPLIED TO GAME DESIGN 4

4418: AA 05640 TAX
4419: ED Cl 41 05650 LDA MSGTAB,X
441C: 85 F2 05660 STA MSG
441E: ED C2 41 05670 LDA MSGTAB+l,X
4421: 85 F3 05680 STA MSG+l
4423: AO 08 05690 LDY #$08
4425 : Bl F2 05700 . 2 LDA (MSG) , Y
4427: 91 F4 05710 STA (LINE2),Y
4429: 88 05720 DEY
442A: 10 F9 05730 BPL . 2
442C: AD IF DO 05740 .3 LDA CON SOL
442F : C9 06 05750 CMP #$06
4431 : DO F9 05760 BNE . 3
4433: 4C 30 42 05770 JMP START

109

llO

CHAPTER 5

PLAYER-MISSILE GRAPHICS

Player-missile graphics differ from playfield graphics in two distinct ways. First,
the players, which appear as semi-transparent overlays against the background, are
memory independent of the playfield graphics. Thus, these sprites, as player
missiles are sometimes called, don't overwrite playfield memory and don't destroy
the background graphics as they move around the screen. Second, since they are
directly mapped to the screen by the CTIA/ GTIA and the ANTIC hardware chips,
positioning a sprite on the screen is extremely fast and accurate. They were designed
with fast smooth motion in mind.

As we learned from character graphics, the screen is a two-dimensional image; the
screen RAM is organized one-dimensionally as one long string of bytes. Animating a
character requires erasing the old character image, calculating a new position, then
writing a new character image at the new position. Unfortunately, if the motion is
vertical, the new position must be some multiple of twenty or forty bytes apart from
the original in memory. The necessary calculations are time consuming. Moreover,
character graphics animation with 8 x 8 pixel sized characters isn't smooth unless
you use numerous transitional shapes. Also the background needs to be restored after
each move.

Atari engineers thought of a simpler and better method to achieve smooth anima
tion. They created a graphics image that was both one-dimensional on the screen
and one-dimensional in memory. This image appears as a vertical stripe one byte or
eight pixels wide extending from the very top of the screen to the very bottom. The
image or player appears in RAM as a table of bytes that is either 128 or 256 bytes long.
Each byte, depending on the programmer's choice of resolution, is mapped into
either one or two horizontal scan lines.

The two hardware chips, the CTIA/ GTIA and ANTIC, automatically place a
sprite on the screen. While the GTIA is busy putting color pixels on the screen based
on graphics information furnished by ANTIC, it simultaneously keeps track of its
current horizontal position on the screen. If it finds that the current horizontal
position equals the value of the horizontal position register for the player, it asks
ANTIC to give it a byte from the player-missile area of memory corresponding to the
current scan line. It then interprets that byte as a series of on-off pixels or points,
starting with the high bit on the left, and plots them in the selected player color. If
the bit in the byte is on, it illuminates or plots a pixel, and if it is off it skips plotting
the pixel. Areas of the player stripe that contains zeros or no player data are
transparent to the background or playfield graphics. Scan lines that contain data
form a solid image that overlays but does not affect the background image.

III

11 2

5 PLAYER MISSILE GRAPHICS

P layer data is mapped in much the same way as character data is mapped in a
character se t. Where a character is limited to eight rows of data, a player stripe,
depending on p layer reso lu tion, consists of either 128 or 256 rows. Each byte
corresponds to a row, and each of its eight-bit positions corresponds to the eight
pixels tha t collectively form part of the player image. A bit that is on or has a one in it
lights the corresponding pixel which maps from left to right, high bit to low bit. For
exam p le

D1SPLA Y OF PLA YER & SCREEN MEMORY

39936 ..-------------.., 38272 1~1--+-1)---.----'--1 ------,-----,I /5 '---------15 -----,------,-------,138291

40036 40037

41 216

1 o 0 1 1 001
1 o 0 1 1 o 0 1
1 o 1 1 1 1 0 1
1 o 1 1 1 1 0 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 o 1 1 1 1 o 1
1 o 1 1 1 1 0 1
1 001 1 001
1 001 1 001

~

------PLAYER
ME MO RY

SCR EEN 38292 MEMORY

~ ~ 153 I
153 I r
189
189
255 256
255

lines 189
~ or

189 bytes
153
153

C

~
J/

T his data tab le, which is stored in the player-missile area of memory, is 256 bytes
long. Actually, only 192 bytes corresponding to the screen's 192 scan lines are
effectively used. A 256-byte area was chosen since it is one page of computer memory,
and it is easier to find the start of a p layer's data when it begins on a page boundary.

PLAYER MISSILE GRAPHICS 5

The vertical starting position depends on the position in player memory. However,
the Oth or first byte is mapped automatically by hardware to an area offscreen past
where ANTIC is generating display list scan lines. Therefore, the first twenty or so
bytes and the last thirty or so bytes are beyond the normal raster scan of a television
set. A player that begins in the thirty-fourth position in player-missile memory will
map to the screen starting at the second scan line. Players move vertically by moving
the player data through the 256-byte page of player memory. The higher a player
image is stored in memory, the lower it appears on the screen.

Atari's player-missile system consists of four players and four missiles that reside
In a 2K block of memory known as the player-missile memory area. Think of

PMBASE

+128

+256

+384

Missiles

+512

+640

+768

+896

+1024

double-line
resolution

unused

M31 M21 M1 I
Player 0

Player 1

Player 2

Player 3

MO

M3

single-line
resolution

unused

M2 M1

Player 0

Player 1

Player 2

Player 3

MO

PM BASE

+768

Missiles

+1024

+1280

+1536

+1792

+2048

11 3

114

5 PLAYER MISSILE GRAPHICS

missiles as narrow players two pixels wide instead of eight pixels wide. Each of the
four players has its own player-missile area of memory. Single-resolution players use
256 bytes or one page of memory, while double-resolution players use 128 bytes or
half a page of memory. They are arranged sequentially so that player one follows
pl ayer zero, etc. The four missiles, on the other hand, a re stored in the same block of
memory just below player zero. They are arranged in two-bit pairs with the Oth
missile occupying the rightmost or lowest two bits, a nd the third missile the leftmost
or highest two bits. While this arrangement is handy if you want to combine all four
missiles to enable a fifth player, it presents a problem when moving a single missile
vertica ll y on the screen. If the missile data is moved in memory to correspond with a
missile's screen movement, then portions of data for the other missiles that reside in
those same bytes will also be moved. There is a Machine language solution to the
problem that requires masking the bytes during movement, but this technique is
unavailable from BASIC except by a complex USR fun ction. Fortunately, horizon
tal movement is much easier. The designers incorporated a separate horizontal
position register for each player and each missile. Even if all missiles are combined to
enable a fifth player, each two-bit-wide missile band must be still set individually.
Essentia ll y, the fifth player is kept as a unit when it is moved, if each missile is
positioned two units apart in the horizontal ax is when it is moved.

BIT 7 6

MISSILE
#3

5 4

MISSILE
#2

3 2

MISSILE
#1

o

MISSILE
#0

The color and size of each player and its associated missile can also be specified.
Size only affects the horizontal width of the player or missile. Widths can be normal,
double, or quadruple size. For example, in double width, the GTIA chip begins
double plotting the bytes on bits when it reaches the horizontal position register of
the player or missile. Color is assigned to four shadowed player-missile color
registers. Since these four additional color registers are independent of the playfield
color registers, more colors can appear on the screen at anyone time. While each
player can have a different color, each missile is assigned the color of its correspond
ing player. Thus, if player three is green, missile three will also be green. The only
exception to the rule is that if a fifth player is enabled, the four combined missiles use
the color in playfield three's color register. There is rarely a conflict since playfield
three is only used in four graphics modes. Since the GTIA plots both the player and
playfield color pixels simultaneously, it can detect any overlap between graphics
images on the screen.

Player priority can be set so that all or half of the players are in front of the
play field graphics, a ll are behind the playfield graphics, or some of the playfield
colors are in front of the players with the rest behind. Any overlaps in position are of
course returned in a series of read -onl y hardware loca tions called collision registers.

PLAYER MISSILE GRAPHICS 5

T hese a re quite useful in game design. You can a lso enable bit 5 in the priority
register (POKE 623 ,32) so that you ob ta in a third color when players 0 and 1 or 2 and
3 overlap. If you don't se t the overlap option , the area of overlap will be black.

PLA YER-MISSILE REGISTERS
PLAYER #0

PLAYER COLOR 704 ($2CO)

PLAYER SIZE
O=normal
1 =double 53256 ($0008)
3=quadruple

HORIZONTAL
POSITION 53248 ($0000)

COLLISION (Read) 53260 ($OOOC)
PLAYER
TO PLAYER -----

Player #1=2
Player #3=8

COLLISION (Read)
PLAYER TO
PLAYFIELO 53252 ($0004)
Playfield #0=1
Playfield #1 =2
Playfield #2=4
Playfield #3=8

MISSILE #0

MISSILE COLOR Same as player

MISSILE SIZE 53260 ($OOOC)
O=normal O=normal
1=double 1 =double
3=quadruple 3=quadruple

HORIZONTAL
POSITION 53252 ($0004)

COLLISION (Read)
MISSILETO

PLAYER
Player #0=1 53256 ($0008)
Player #1=2
Player #2=4
Player #3=8

COLLISION (Read)
MISSILE TO
PLAYFIELO 53248 ($0000)
Playfield #0=1
Playfield #1 =2
Playfield #2=4
Playfield #3=8

NOTE: Above values will set all missiles
the same size,

PLAYER #1

705 ($2C1)

53257 ($0009)

53249 ($0001)

53261 ($0000)

Player #0=1

Player #3=8

53253 ($0005)

MISSILE #1

Same as player

8=normal
4=double

12=quadruple

53253 ($0005)

53257 ($0009)

53249 ($0001)

NOTE: If missile sizes are set individually, then add the
four different values, The combination is poked into ($DOOC),

PLAYER #2

707 ($2C3)

53258 ($OOOA)

53250 ($0002)

53262 ($OOOE)

Player #0=1
Player #1=2
Player #3=8

53254 ($0006)

MISSILE #2

Same as player

32 = normal
16=double
48=quadruple

53254 ($0006)

53258 ($OOOA)

53250 ($0002)

PLAYER #3

53259 ($0008)

53251 ($0003)

53263 ($OOOF)

Player #0=1
Player #1 =2

53255 ($0007)

MISSILE #3

Same as player

128 = normal
64=double

192=quadruple

53255 ($0007)

53259 ($0008)

53251 ($0003)

115

11 6

5 PLAYER MISSILE GRAPHICS

Enabling Player-Missile Graphics

There are numerous steps involved to enable p layer-missile graphics from both
BASIC and Machine language. Beginners see it as a long list of mysterious POKEs,
but there is a logical and explainable reason for each. First there are two electrical
switches between Antic, GTIA, memory and the world, which tell them whether to
do DMA (Direct Memory Access) automatically. The first, called DMACTL (Direct
Memory Access Control), is shadowed at location 559 decimal ($22F). It enab les
ANTIC to fetch bytes automatically and plot them to the screen. When it is turned
off with a zero, the screen is turned off because ANTIC can no longer fetch bytes from
memory. It defaults normally to standard playfield graphics with double-line reso
lution for player-missiles turned off. This value is 34 decimal. The table below,
which depends on which bit positions are set in DMACTL, summarizes the various
modes.

BIT 7 6

OMACTL
54272 ($0400)

OMA OFF
PM / OFF
PM / OFF
PM / OFF

5 4

Enable One-line
DMA Player

Resolution
(ON)

PM / ON DOUBLE-LINE RESOLUTION

3 2 o

Enable
Player
DMA

Enable
Missile
DMA

Enable Enable
Standard Narrow
Playfield Playfield

NO GRAPHICS

Both Bits (ON)
Wide Playfield

NARROW PLA YFIELD
STANDARD PLA YFIELD
WIDE PLA YFIELD
ST ANDARD PLA YFIELD

0

33
34
35
46

PM / ON DOUBLE-LINE RESOLUTION WIDE PLA YFIELD 47
PM / ON SIN GLE-LINE RESOLUTION ST ANDARD PLA YFIELD 62
PM / ON SINGLE-LINE RESOLUTION WIDE PLA YFIELD 63

The second switch GRACTL (Graphics Control) physically enables player
missile graphics. If we POKE a three into decimal location 54279 (lDOID), both
players and missiles are turned on. In addition, we will need to set color, width, and
horizontal positions for each player.

Next we need to reserve space for our 2K player-missile area in memory assuming
we are using single-resolution P/ M graphics. Since it needs to be on a 2K memory
boundary, it is best to reserve space and put it above the screen and display list areas
beginning at eight pages (2K) below the top of memory. This is accomplished by
simply adjusting the top of memory pointer at location 106 decimal with a new value
that is eight less than the original value. The computer now thinks top of memory is
2K lower than it actually is, and assigns screen memory and its accompanying
display list below that when any graphics mode is set up.

PlAYER MISSILE GRAPHICS 5

The 2K player-missile area (single-line resolution) begins at the new top of
memory which we just POKEd into location 106. Since ANTIC needs to know where
we have put our P/ M storage area, we need to POKE this value into location 54279
($D407) known as PMBASE. This is the high byte value of the location. The low byte
value is assumed to be zero since it is on a 2K page boundary.

The memory area assigned to player-missile graphics mayor may not contail).
miscellaneous data which will appear as garbage in the P/ M stripes. The 2K area
should be cleared to zeros. However, since a long series of POKEs in BASIC is rather
slow, it is faster to clear only the P 1M memory that you will actually use. In the
example below, only player #0 is used. Therefore, only the area from PMBASE+ 1024
to PMBASE+ 1280 is set to zero. In the worst case where you were using the missiles
and all the players, the unused first 768 bytes in single-line resolution or the first 384
bytes in double-line resolution need not be cleared.

Space Ship Example

Player #0 is a spaceship originally five scan lines high. To make it appear larger
each scan line is plotted twice and the width is doubled. In addition, a pair of zeros
has been placed at both the top and bottom of the player image for a total of fourteen
bytes. The reason for this will shortly be clear. The fourteen player-missile data bytes
are then POKEd into the proper P/ M memory area for player #0. By POKEing the
data starting at SPOT = PMBASE+ 1024+ 100 the player will begin 100 scan lines
from the top. Since the first thirty-two scan lines are above the top line of text on the
screen, our image begins sixty-eight lines from the top. Accounting for the two blank
or zero lines of our image, our ship actually begins at the seventieth scan line.

4t T 206
32- .-_______ -----il

1.100 SCAN LINES

~

224-

PLAYFIELD
/BOUNDARY

For a player to move vertically, all of its data needs to be shifted in memory. Players
can move downward on the screen by shifting the data upward in memory. Con
versely a player moves upward on the screen by moving its data downward in
memory. The lat'er case is definitely the easier direction because data can be moved
from top to bottom without the danger of overwriting any of the bytes during the
move. All fourteen bytes of data are shifted upward two scan lines from SPOT + I to
SPOT+I-2. The two extra zero bytes on the end serve to erase the bottom two bytes of
the ship's shape in its previous position. If this isn't done, the bottom sliver of the
ship will remain as ~,creen garbage after the move.

117

118

5 PLAYER MISSILE GRAPHICS

x
x

0

0

153

153

189

f
189

153

123

0

0

X

Current
Ship Data

In PIM
Memory

X

SEQUENTIAL PI M MEMORY
LOWER BYTES AT TOP

0

0

153

153

189

189

255

~
153

0

0

X

X

X

X

moving
Player

Upwards On
Screen

(Downward
In Memory)

X

X

0

0

153

153

189

l
189

153

153

0

0

X

X

Moving
Player

Downwards
On Screen
(Upwards

In Memory)

Moving the ship down the screen or upward in memory is slightly harder. If we
start a t the top of the shape as before, the first byte (0) would replace the third byte
(153), and the second byte (0) would replace thefourth byte (153). Fine, but when we
try to move the third byte to the fifth position, the original data (153) has been
overwritten by the first move. Eventually all of the bytes will contain zeros and the
shape will disappear. The solution to this dilemma is to start at the bottom of the
shape and move each of the bytes upward in memory two places. Since you don ' t
overwrite any shape information during the move, the shape remains intact. Again,
th e two extra zeros at the top serve to erase the tiny two-line sliver that would have
remained after the move. It might seem strange that we deliberately added two zero
bytes at the top and two at the bottom of our player when the rest of the storage area is
obviously full of zeros. However, these could only be used if more bytes than that of
our actual shape were moved, and only if we adjusted where the top or bottom of our
shape begins. If we need to go to this trouble, it is easier to add extra leading and
trailing zeros.

PLAYER MISSILE GRAPHICS 5

5 REM FIRST plM EXAMPLE - MOVING A SHIP VERTICALLY UPWARDS FROM BASIC
10 POKE 106,PEEK(106)-8
20 PM=PEEK(106):PMBASE=PM*256
30 GRAPHICS 1+16
40 POKE 559,62:REM SET DMACTL - SINGLE LINE & STANDARD PLAYFIELD
50 POKE 53277,3:REM SET GRACTL - PLAYERS & MISSILES
60 POKE 54279,PM:REM TELL ANTIC PMBASE
70 POKE 53256,1:REM PLAYER #0 DOUBLE WIDTH
80 POKE 53248,100:REM PLAYER #0 HORIZONTAL POSITION
90 POKE 704,88:REM PLAYER #0 COLOR PINK
100 REM CLEAR OUT plM AREA FOR PLAYER #0 ONLY
110 FOR I=PMBASE+1024 TO PMBASE+1280:POKE I,O:NEXT I
120 REM READ PLAYER #0 DATA INTO PLAYER AREA BUT STARTING 100 BYTES INTO PAGE
130 SPOT=PMBASE+I024+100
140 FOR 1=0 TO 13:READ A:POKE SPOT+I,A:NEXT I
150 REM DELAY LOOP
160 FOR DE=l TO l000:NEXT DE
170 REM MOVE PLAYER DATA UP TWO SCAN LINES AT A TIME - TEN TIMES
180 FOR J=l TO 10
190 FOR 1=0 TO 13
200 POKE SPOT-2+I ,PEEK(SPOT+I)
210 NEXT I
220 SPOT=SPOT- 2:REM CURRENT PLAYER MEMORY LOCATION
230 NEXT J
235 REM MOVE PLAYER DATA DOWN TWO SCAN LINES AT A TIME - TWENTY TIMES
240 FOR J=l TO 20
250 FOR 1=13 TO 0 STEP -1
260 POKE SPOT+2+I,PEEK(SPOT+I)
270 NEXT I
280 SPOT=SPOT+2:REM CURRENT PLAYER MEMORY LOCATION
290 NEXT J
300 REM MOVE PLAYER HORIZONTALLY RIGHT
310 FOR 1=100 TO 180
320 POKE 53248,I:NEXT I
330 GOTO 330
1000 REM PLAYER #0 DATA - SHIP
1005 DATA 0,0,153,153,189,189,255,255,189,189,153,153,0,0

A Player-Missile Machine Language Move Subroutine

It becomes apparent from this simple example that moving a player vertically
using POKEs in BASIC is very slow. However, moving a player horizontally is fast
because a horizontal position register was built into the hardware.

One clever approach to moving players fast vertically is to take advantage of
BASIC's fast string-handling capabilities. These routines are just high speed
Assembly language copy routines. The trick to u sing these routines is to fool the
Atari into assigning the player-missile string data to the memory area assigned to
player-missile graphics. Then player-missile graphics data can be moved simply
with P$ = S$ type statements. While this technique allows the programmer to avoid
Machine language subroutines, it is not the easiest method to learn or understand.
Since the example and explanation would be intimidating to beginners, we will
delay it until much later in this chapter.

Player-missile graphics can be speeded up tremendously if Machine language

119

120

5 PlAYER MISSILE GRAPHICS

subroutines are used. There have been numerous vertical blank player-missile
subroutines published in the magazines. While most are effective in rapidly moving
players vertically by one of several techniques, nearly all have neglected missile
movement. This is unfortunate since moving one missile without disturbing the
others requires using AND and ORA machine instructions on a bit level to mask off
the other missiles during vertical movement. This is something that is beyond the
capabilities of BASIC.

We have developed an easy-to-use Machine language subroutine that can handle
both players and missiles simultaneously. The subroutine resides in page six of
memory but is relocatable to virtually any free area of memory.

There has been much controversy on whether page six of memory is actually a safe
area for placing user subroutines for BASIC programs. While it is true that inputting
more than 128 characters into the text buffer will overwrite the beginning of page
six, any program-especially a game that remains in control throughout-has no
problem. In any case, the second half of page six $680-$6FF is always safe.

Our subroutine was designed for single-line resolution player-missile graphics. It
requires the input of five variables: player number, player length, the old Y (vertical)
position, the new Y position, and the new X (horizontal) position. The format is:

A = USR (1536, PLAYER #, PLAYER LENGTH, OLD Y, NEW Y, NEW X)

The number 1536 ($600) is the starting location of our subroutine. The players are
numbered 0-3 and the missiles 4-7. Player #4 in our subroutine is actually missile #0,
etc. The player length can only be as large as sixty-four lines. This limitation will
become clear when we explain how the subroutine works. The values for both the X
and Y positions can be anything from 0-255. However, you should be aware that only
X values in the range of 48-207 and Y values in the range 32-223 are within the
bounds of the 40 by 24 text screen or playfield graphics area. The range is actually
slightly larger, but visibility depends on the overscan of your television set. While
the OLDY value is the programmer's choice upon initialization, it must be set equal
to the NEWY position after each USR call.lf OLDY isn't set to NEWY immediately
after the subroutine call, unpredictable graphics will begin to appear in the player
stripe when the subroutine is used again. The reason is that the subroutine zeros out
the shape at its previous position OLDY before drawing the shape again at its new
position NEWY. If OLDY isn ' t set to the player's last vertical position, the subrou
tine will miss zeroing the shape at the old position. Most likely, you will get two
shapes or, worse yet, a sliver left at the previous position.

A Player-Missile Example

The next example is a simple demonstration of the speed, versatility and ease of
use of our player-missile subroutine. This two-part example is instructive in several
regards. First, it shows how a simple spaceship capable of firing missiles can be
joystick controlled. Even its simple in-line code, which allows either the ship to
move or the missile to move, but not both simultaneously, gives some insight into

PLAYER MISSILE GRAPHICS 5

the difficulty in designing even the simplest games. Second, the concept of priority,
or which player or playfield is to be drawn in front of another is demonstrated. But
first I think a discussion of how objects move might be helpful, especially to
beginners.

Dynamics of Objects in Motion

Any object in motion, whether it is simulated on a video screen or moves in the real
world, is subject to the laws of physics. Readers will immediately cringe at the
thought of advanced mathematics, mainly calculus. But calculus is merely a method
of calculation that involves the summation of many small bits and pieces of a body's
velocity and acceleration to determine the actual distance an object travels. For
tunately, the computer automatically divides our time frame into analogously small
units, or animation frames.

Let's examine an object in simple linear motion. The object is initially at rest. It is
then given a horizontal velocity of one unit to the right. Thus the velocity is + I
unit/ time frame. During each animation frame, the object moves + I units to the
right.

An object's direction of travel and its magnitude is represented by a line segment
called a vector. An object's velocity always points in the direction of travel. Our
object shown below has a velocity of + I units/ time frame, so that the velocity is
pointing to the right. Since the velocity vector is to the right, the object moves to the
right + I unit/ frame.

y

j Vx=+1 •• ..
I
I
I
I
I
I
I

3 4 5 ..
FRAME #2

/

>-
I-
(3
0
....J
W
>

x
/

x

/
VELOCITY CONSTANT
IN ONLY X DIRECTION

2
FRAMES

VELOCITY=CONSTANT

X-X-X-X-

2 3 4
FRAMES

121

122

5 PLAYER MISSILE GRAPHICS

Similarly, an object that moves diagonally downward and to the right has a
positive velocity vector in both the X and Y directions. This velocity vector is a
combination of the velocity components in both the X and Y directions. The object
will continue moving in the direction of the velocity vector until either VX or VY
changes. For example, if VX becomes zero, the object will begin to move straight
down in the direction of the new velocity vector.

This can be formalized into eq uat ions for each of the two screen directions X and Y.

VX +1
X == X + VX

Likewise:

VY +1
Y == Y + VY

(X,Y)
(3,6)

Velocity is cons tant in X direction.
New position is the old position plus the change
in position (velocity).

Velocity is cons tant in Y direction.
New position is the old position plus the change
in position (velocity).

y

7

"" Vx=+1
~VY=+1

I (X,Y)
(4,7)

3 4

FRAME #1

'" Vx=+1
~VY=+1

3 4

FRAME #2

VELOCITY CONSTANT IN BOTH X & Y DIRECTION

5

6 X FRAME #1

~X FRAME#2

VELOCITY=CONSTANT

7

~
X FRAME#3 8

9 ~X FRAME#4

10 ~X FRAME #5

3 4 5 6 7

Vx
1r----r----r---~--~-----

2 3 4

FRAME

VY

2 3 4

FRAME

PLAYER MISSILE GRAPHICS 5

While this simplistic method of moving objects by instantaneous changes in
direction and velocity works on the video screen, objects in the real world don't
behave this way. Take the family car for example. You step on the gas pedal, and the
car's velocity begins to climb steadily. The distance traveled each second begins to
increase as the velocity increases . When the car is only going 15 MPH the car travels
only 22 feet each second, but when the car reaches 60 MPH it travels 88 feet each
second.

The driving force that speeds up our car is called acceleration (V = V + A).
Acceleration can be constant as in a rocket's thrust, or like gravity which pulls a
falling object to Earth. For a screen object's motion to appear realistic, especially in
the case of a falling bomb, acceleration must be taken into account. When a bomb
drops, its vertical velocity increases with time. If there were no wind resistance, the
bomb's vertical velocity would increase until its impact on the target.

If a constant force was suddenly applied to a stationary object such that it
accelerated downward with an increase in velocity.of one unit/ frame, the distances
moved would grow substantially.

TIME VELOCITY POSITION (distance)

0 0 0
I I 1
2 2 3
3 3 6 VX VX + 1
4 4 10 X X + VX
5 5 15
6 6 21

5 /x 15 X

/ 4
X 12

X/ UJ
r u X
t: 3 ~ 9 / u

X/
I-

0 en
-' 0 UJ
> /

2

X/
6 /x
3 /X

X

2 3 4 5 2 3 4 5

z TIME TIME

0
i=
Cf)

0
a...
x

5 10 15 20
Y POSITION

123

124

5 PLAYER MISSILE GRAPHICS

The plot of the trajectory of a falling bomb is shown below. The trajectory,
neglecting wind resistance, forms a curve that is called "parabolic." There are two
components to the velocity vector. VX in the X direction is a constant set equal to the
plane 's forward velocity. VY in the Y direction grows larger with time as gravity
accelerates it in the downward direction. This same effect can be observed by
dropping a ball from the second or third story of a building. At first, the ball falls
slowly, but then it begins falling faster. Observers at ground level will note the
acceleration of the moving ball just before it bounces. The summation of the two
velocity vectors determines the resultant direction of an object's motion for each
animation frame. Since the VY vector grows larger with each frame, the total velocity
vector begins to point downward. Eventually, the bomb will be falling almost
straight down. Thus:

VX = CONST
VY = VY + GRAVITY

I
Y

- -" K VX

" Vy "-
"-

X = X + VX
Y = Y + VY

1\vx
Vy \

\
\

BOMB TRAJECTORY

~vx
V \ VTOTAL

YI
I

x

In the above cases, the acceleration was non-existent or constant. However, as we
will see at the end of this chapter, even simple games involving a steerable spaceship
that can be thrust in the direction that it is headed, must use variable acceleration.
The rate or value may remain constant but the direction changes. While only the
beginning of the discussion above is necessary to follow the second example, I hope
it will give you some insight into how an obj ec t's motion is simu lated on the Atari's
video screen.

PLAYER MISSILE GRAPHICS 5

Program Initialization

Our first example, a joystick-controlled single ship capable of firing missiles in
eight directions, takes advantage of our player-missile Machine language subrou
tine. As in the first example in this chapter, a 2K block of memory needs to be
reserved for player-missile graphics. The top of memory pointers are moved down
eight pages, and the player-missile base PMBASE is set equal to the top of memory.
BASIC then sets up the screen area and its display list just below. Graphics I was
chosen because it uses little screen memory and because we will need to write some
large characters to the screen for the second part of our example.

Next, our two Machine language subroutines need to be POKEd or placed into
memory. The first subroutine is the player-missile subroutine. It is 151 bytes long.
Since it begins at the start of page six ($600) or 1536 decimal, a simple FOR ... NEXT
loop that reads the data statements and POKEs memory, will do the job. The second
Machine language subroutine is a clear memory routine. It will automatically clear
player-missile memory to zero in a fraction of a second. It replaces a slow thirty
second long FOR .. . NEXT loop which would POKE a zero into each sequential
memory location from PMBASE+O to PMBASE+2047. It also resides in page six of
memory, beginning at $6AO or 1696 decimal. It is twenty-six bytes long.

We must activate player-missile graphics next. We will set DMACTL for single
line resolution and GRACTL for both players and missiles. Player #0 is set to double
width by writing a zero to location 53256, and player #2, which will be used in the
second part of this example, is set to double width by writing a one to location 53258.
The missiles are set to regular width, and the color of each of the players is selected.
The priority GPRIOR shadowed at location 623 decimal is set so that player #0 is in
front of the p layfield graphics and player #2 is behind. We will talk more about this
location during the discussion of the second half of this example. Last, we tell
ANTIC our player-missile address by writing it to PMBASE at decimal location
54279. Since our subroutine also needs the location of PMBASE, its high byte is
POKEd into location 1686 which is the last memory location of our subroutine. We
could have passed it to the subroutine via the USR function, but then you would
have had to type the value in each time you used the subroutine.

Player Shapes Using the P 1M Subroutine

We then store the two player shapes in our player shape storage area. You will
recognize the first shape from the first example. It is our spaceship. The second shape
is a solid block ten bytes high . Normally, you would want to POKE your shapes into
the proper place in the player-missile memory area. However, when we designed the
subroutine, we felt that the best and fastest approach would be to erase the shape at
its old location before redrawing it at the new location. The traditional approach
was to do a memory move of the entire shape including leading and trailing zero
bytes, to insure pieces aren't left behind. If a shape were moved vertically more than
one or two scan lines, a series of small memory moves had to be done sequentially.

125

126

5 PLAYER MISSILE GRAPHICS

In order to use our faster subroutine, we had to find a safe place to store our shapes
in memory, no matter where you put our subroutine, the player-missile area, and
screen memory. Fortunately, the first 768 bytes of the player-missile memory area are
unused. We decided to use the first page or 256 bytes for the player storage area. This
limits the size of each of the four players to sixty-four bytes. Since sixty-four bytes or
scan lines make up nearly one-third of the screen, this limitation really doesn ' t cause
any problems.

PMBASE

PLAYER #0 DATA

PLAYER #1 DATA

PLAYER #2 DATA

PLAYER #3 DATA

EMPTY

~

0-63

64-127

128-197

198-255

PLAYER STORAGE AREA

SINGLE RESOLUTION

Before any shapes are stored in this "safe" area, player-missile memory should be
cleared or zeroed with the Machin,: language subroutine stored in page six of
memory at 1536 decima l. The only parameter passed via the USR function is the
starting memory address PMBASE. This routine was specifically designed to clear
eight pages of memory , precisely that of a 2K block of player-missile memory. If you
neglect to clear it, random patterns will most likely surround your shapes in the
player missile stripes.

The first shape, our spaceship, which is player #0, is POKEd into the first ten bytes
of the player-missile storage area from PMBASE+O to PMBASE+9. The second
shape, the solid block, which is player #2, is stored beginning at PMBASE+128.

153
~+-~-+~~+--r-+~

153

189
r-+-~-+--r-+-~-+~

189

255
r-+-~-+--r-+-~-+~

~~~-+--~+--r-+~ 

PLAYER#O 

255 

189 

189 

153 

153 

PLAYER #2 

255 

255 

255 

255 

255 

255 

255 

255 

255 

255 



PlAYER MISSILE GRAPHICS 5 

The spaceship (player #0) must have an initial starting position and starting 
velocity. While it is obvious that the present position XO=100, YO=80 is important, its 
previous Y axis position must have an initial value despite the fact that there 
couldn't have been a previous one. Setting YOOLD=80, the value of our present Y 
position, will suffice. Likewise, the same is true for player #O's missile. YMOOLD=IO, 
a val ue that insures tha tit is off screen. 

Joystick Controlled Ship Movement 

The spaceship's velocity is joys tick-controlled. Pushing the stick in any direction 
instantaneously changes the ship's velocity. If the stick is pushed to the right, the 
ship is given a horizontal velocity of 2 units/ frame. Since there is no vertical 
component to the ship 's velocity, the ship will move to the right 2 units/ frame . It 
will continue in that direction until either it collides with the screen's boundary, or a 
new joystick input gives the ship a new velocity vector. The equations that control 
the ship's X and Y position are as follows. 

XO = XO + VXO 
YO = YO + VYO 

There is a separate pair of velocity vectors for each of the eight possible joystick 
directions. The absolute values on each of the axis are not the same because pixel size 
is rectangular rather than square. Objects with equal velocities along both axis tend 
to move faster along the horizontal axis than along the vertical axis. To compensate 
for this, we set VX = 2 and VY = 3. Diagonal velocities, which are the vector sum of the 
two velocity components, are faster than anticipated. While it appears that you 
could correct this by using fractional values for both velocity vectors on the diago
nals, you can't move part of a pixel position in either axis. However, if the velocity 
vectors were much larger you could correct the diagonal velocity by using smaller 
whole numbers. The diagram below shows the velocity component values for each 
of the joystick directions. 

VX=-2 

VY=-3 

VX=-2 
VY=O 11 

VX=-2 

VY=3 

VX=o 

VY=-3 VX=2 

14 VY=-3 
10 6 

~'5/ VX~2 
9/~5 7vy~a 

13 
VX=O 

VY=3 

VX=2 

VY=3 

Joystick Direction 
& Velocity Vectors 

127 



128 

5 PLAYER MISSILE GRAPHICS 

The only way to se t the ship's two velocity vectors for each joystick direction is to 
tes t the value of ZO = STICK(O) against each of its possible values. When the stick is 
centered (ZO=15) the velocity remains the same and we skip the remainder of the tests. 
The other eight possiblities are tested in a series of IF statements. If a match is found 
for any direction, new velocity vectors are substituted. While it appears to be a 
cumbersome method, there is no better method. 

I 'm sure many readers wonder why Atari BASIC returns such a strange and 
illogical set of values for joystick directions. STICK(O) through STICK(3) reflect 
va lues returned in the PIA chips locations 54016 and 54017 ($D300,$D301). When the 
joys ticks are centered, each of the four bit locations for each joystick are on (set to 
one). When the joys tick is pushed in any direction, its appropria te bit position is 
turned off (set to zero). For example, if the joystick is pushed to the right, the fourth 
bit from the right is turned off. The remaining three on bits add up to seven. 
Diagonal joystick movements have some combina tion of two bits turned off. The 
diagram below shows all of the possible bit patterns. 

1110 

1010"" /0"0 
1011 1111 0111 

1001/ ~0101 
1101 

CENTERED 

UP 

DOWN 

LEFT 

RIGHT 

8 

Right 

1 

1 

1 

1 

0 

4 

Left 

1 

1 

1 

0 

1 

2 

Down 

1 

1 

0 

1 

1 

Up 

1 

0 

1 

1 

1 

15 $OF 

14 $OE 

13 SOD 

11 SOB 

7 $07 

After the joystick is read, the player 's position is updated and checked so that it 
does not exceed the screen boundaries in ei ther direction. A USR call to our player
missile Machine language subroutine will move the player shape into the proper 
place in memory so that it appears at the choosen X,Y screen coordinates. The 
format as discussed earlier is A = USR (1536, PLAYER # , PLAYER LENGTH, OLD 
Y, NEW Y, NEWX). The player length is 10, OLDY equals YOOLD in this example, 
NEWY equals YO, and NEWX equals XO. Immediately after the USR call, update 
the OLDY position with the NEWY position so that you don 't have to worry about 
losing this value when you calculate your new position during the next frame. 

O~DY OL~Y I 

I E!!t I D Nri.i 
SHAPE AT 

OLDY DRAW SHAPE 
AT NEWY 



PLAYER MISSILE GRAPHICS 5 

Missile Movement 

Pressing the joystick button fires a missile. STRIG (0) is normally set to a one 
value when the button isn't pressed. But when the button is pressed it becomes zero 
and the program branches to a second joystick read routine at line 185. It is nearly 
identical to the first , with the exception that the velocity vectors are nearly double in 
value; VXMO=5 and VYMO=6. This ratio produces nearly identical apparent speeds 
in both the horizontal and vertical axis. Since the missile needs to be given a 
direction to fire, it branches past the missile routine if the joystick is centered. 

The missile's initial starting position is at the center of our ship. Since XO, YO are 
the coordinates of the ship's missile at the center of the ship, the missile's initial 
position equals the current ship's position plus the correction. Thus, XMO=XO+3 
and YMO=YO+4. The missile's position is upda ted each frame the same way the 

XO+3 

X 0, YO -.-""T"""-,--.I ---.---r---r---r--, 

ship's position is updated each frame. The new position equals the old position plus 
the missile's velocity vector. 

XMO=XMO+VXMO 
YMO=YMO+VYMO 

Unlike the ship, however, the missile 's velocity vector can't be changed once the 
missile is fired. Missile movement is in a closed loop that exits only when the missile 
reaches the boundaries of the screen. This closed loop not only prevents you from 
firing a second missile before the first has reached the end of its travel, it also prevents 
the ship from moving while the missile is in motion. This is a good example of how 
simplistic code that branches to either one even t or the other creates an unrealistic 
effect. The sol ution, which will be explained in the next example, requires the ship's 
movement code to be placed in line with the missile's movement code, and con
versely the missile's movement code to be placed in line with the player's movement 
code. This apparent overkill, in fact, allows the ship to be steered once the missile is 
launched. 

The missile is plotted via the USR call to our player-missile subroutine. Missile 
#0, which is two pixels wide, is player #4 and its height is set to two scan lines to make 

129 



130 

5 PLAYER MISSILE GRAPHICS 

it sq uare shaped. Its OLDY position is YMOOLD, and its new position NEWX, 
NEWY is XMO, YMO. Again, once the subroutine is called via the USR call , it is 
important to immediately set the missi le's old position equal to its present position. 

Finally, if the missile does reach the screen boundaries, it is necessary to place it 
out of view beyond the scan of the te levision se t. Since the missiles can't be simply 
shut off, you should set the horizonta l register to either a small number or a large 
number. Since XMO=lO is offscreen, it wi ll suffice. 

Priority Demonstration 

The second part of the example is a demonstration of p layer versu s play field 
priority. Whenever two independent objec ts such as two p layers or a player and a 
playfield object appear at the same spot on the screen, the GTIA must decide who 
ge ts displayed first and who second. This is known as priority. There is a register 
call ed GPRIOR shadowed at location 623 decimal ($26F) that selects which screen 
obj ect is in fromt of the others. There are actually on ly four possible selections. 
Either a ll of the p layers are in front of the p layfield, a ll of the playfields arein front of 
the p layers, players #0 and #1 are in front of the p layfields with players #2 and #3 
behind , or playfields #0 and #1 are in front of all the p layers with playfields #2 and #3 
behind. 

Lower number p layers take precedence over higher number players and, likewise, 
lower number play fields take precedence over higher number playfields. Actually, 
there is no way for two p layfie lds to occupy the same space, since each color pixel is 
assigned to a specific color register. In fa ct, only the on bits, or those portions that 
show in the p layer-miss ile stripe, actually are involved in the priority conflic t. The 
off bits are ignored by the system. Obviously, if a p layer has the shape of a donut, the 
background or another higher numbered player set behind it will show through the 
hole. 

POKE 623,1 
BIT 0 SET 

POKE 623,2 
BIT 1 SET 

POKE 623,4 
BIT 2 SET 

POKE 623,8 
BIT 3 SET 

ORDER OF INCREASING PRIORITY 

HIGHEST .... cr---------- --------.......... LOWEST 

-Ax,«-. -Ax,«-. -Ax,«-. -Ax,«-. 
~\,<::) ~\,<::) ~\,<::) ~\,<::) 

-A'<."-:. -A'<."-:. -A'<."-:. -A'<."-:. 
'X\''r ~\) 'X\''r ~'\ 'X\''r ~'\, 'X\''r ~o, 'X\''r ~\) 'X\''r ~'\ 'X\''r ~'\, 'X\''r ~o, 

-Ax,«-. -Ax,«-. ~,,<::) ~,,<::) ~\,<::) ~\,<::) -Ax,«-. -Ax,«-. 
-A'<."-:. -A'<."-:. -A'<."-:. -A'<."-:. 'X,,'r ~o, 

'X\,'r ~\) 'X\,'r ~'\ 'X\''r ~\) 'X\,'r ~'\ 'X\''r ~'\, 'X"'r ~o, 'X\''r ~'\, 

~\,<::) ~\,<::) ~\,<::) ~\,<::) -Ax,«-. -Ax,«-. -Ax,«-. -Ax,«-. 
-A'<."-:. -A'<."-:. -A'<."-:. -A'<."-:. 

'X"'r ~\) 'X\''r ~'\ 'X"'r ~'\, 'X\''r ~o, 
'X\''r ~\) 'X\''r ~'\ 'X\,'r ~'\, 'X\''r ~o, 

~\,<::) ~\,<::) -Ax,«-. -Ax,«-. -Ax,«-. -Ax,«-. ~\,<::) <::) 

-A'<."-:. -A'<."-:. 'X\''r ~\) 'X\,'r ~'\ 'X\''r ~'\, 'X\''r ~o, -A'<."-:. -A'<.~\; 
'X\''r ~\) 'X\''r ~'\ 'X\''r ~'\, 'X\''r ~o, 



PLAYER MISSILE GRAPHICS 5 

Unfortunately, player #0 always has priority over the other three players. There is 
no method to change the priority between the individual players other than to switch 
the player data between player-associated areas of memory. 

The great advantage of priority control is that you can control what happens to 
players when they meet the background color display. Perhaps you have an aerial 
combat game. You may want the plane to fly behind clouds, yet always remain in 
front of the scrolling ground far below. Setting bit three in GPRIOR will give two of 
the playfields higher priority than the players, and the remaining two playfields the 
lowest priority. 

In our example, we have the word AT ARI written in playfield #0, a spaceship 
(player #0), and a moving block (player #2). Initially, bit 1 is set in GPRIOR (POKE 
623,2) so that player #0 moves in front of the letters while player #2 moves behind the 
letters. This part of the example can be reached by pressing the START key. The IF 
statement in line 175 tests for this possibility. The spaceship is joystick-controlled 
exactly like the first part; however, the missiles have been disabled . 

... 1 __ ---7 bytes--_'~I 

OTH ROW 

1ST ROW 

2N D ROW .. .. 

3RD ROW 
-- -[3EJ- - - - - - -

PLAYER ATARI 
--- #2 ------

4TH ROW 

Pressing the SELECT key sets the color of the letters to the same color as the 
background. However, since the pixels in the letters still refer to playfield #0, and 
player #2 had a lower priority than all of the play fields, that player is masked by the 
invisible play field object as it moves behind it. Our much larger player shows 
through the spaces around the individual letters, thus illuminating the darkened 
object. 

Pressing the OPTION key does two different things. First, it restores the playfield 
#O's color to its default color and luminance. Second, it changes the GPRIOR to 1 so 
that all players have priority over all play fields. Now both our block and our 
spaceship are in front of the letters. The ship (player #0) still has priority over the 
moving block (player #2). 

131 



5 PLAYER MISSILE GRAPHICS 

PRIOR EX 

PUT SUBROUTINES 
IN MEMORY 

I 
INITIALIZE SYSTEM 

105 I YES r-1 JOYSTICK BUTTON PRESSED? 

110 ,NO 

READ JOYSTICK 
185 

120 I READ JOYSTICK 195 

I 165 AT CENTER? 1 NO MOVE MISSILE 
CONTINUE AT CENTER? f~ IN DESIRED f+-

125 , NO r MOVING IN DIRECTION 
CHANGE DIRECTION YES 

OF MOVEMENT 
SAME DIRECTION 

t PLOT SHIP IN j NEW POSITION HIT SCREEN ~ en I BOUNDARY w r START BUTTON PRESSED? I 
INO 

rES 

(-
400 , 

WRITE "ATAR I" ON SCREEN I TOP OF MEMORY-
1 

INITIALIZE PLAYERS I PIM MEMORY 

17 

500 I 
READ JOYSTICK I 620 CHARACTER SET 5 

I 

~ 
CONTINUE 

AT CENTER? MOVING IN 

INO 
SAME DIRECTION 

530 SCREEN MEMORY 

CHANGE DIRECTION 

I 
GR1 

OF MOVEMENT 

I DISPLAY LIST 
I 

PLOT SHIP IN I NEW POSITION 

I 
MOVE PLAYER #2 (BLOCK) 

BACK & FORTH HORIZONTALLY 
AT SAMEY POSITION AS LETTERS 730 

720 I J SET LETTERS TO J---YES BACKGROUND COLOR (INVISIBLE) 
SELECT KEY PRESSED? I 

74 YES 750, 
CHANGE PRIORITY TO I OPTION KEY PRESSED? 

I PLAYERS ABOVE PLAYFIELD 
INO 1 

132 



PLAYER MISSILE GRAPHICS 5 

5 REM DOUBLE EXAMPLE - ONE SHIP FIRING MISSILES & PRIORITY DEMONSTRATION 
10 POKE 106,PEEK(106)-8 
20 GOTO 1000 
49 REM INITILIZE STARTING POSITIONS 
50 XO=100 :YO=80 
57 VXO=O:VYO=O 
99 REM PLAYER #0 
105 IF STRIG(O)=O THEN 185 
110 ZO=STICK(O) 
120 IF ZO=15 THEN 165 
124 REM UPDATE VELOCITY VECTORS 
125 IF ZO=14 THEN VXO=0:VYO=-3 
130 IF ZO=13 THEN VXO=0:VYO=3 
135 IF ZO=10 THEN VXO=-2:VYO=-3 
140 IF ZO=9 THEN VXO=-2:VYO=3 
145 IF ZO=ll THEN VXO=-2:VYO=0 
150 IF ZO=7 THEN VXO=2:VYO=O 
155 IF ZO=6 THEN VXO=2:VYO=-3 
160 IF ZO=5 THEN VXO=2:VYO=3 
164 REM UPDATE POSITION PLAYERO 
165 XO=XO+VXO:YO=YO+VYO 
166 IF XO<46 THEN XO=46 
167 IF XO>198 THEN XO=198 
168 IF YO<24 THEN YO=24 
169 IF YO>216 THEN YO=216 
172 A=USR(1536,0,10,YOOLD,YO,XO) 
173 YOOLD=YO 
175 IF PEEK(53279)=6 THEN 400:REM IF START PRESSED GOTO 2ND PART DEMO 
180 GOTO 105 
184 REM FIRE MISSILE 
185 ZO=STICK(O) 
190 IF ZO=15 THEN 270 
195 IF ZO=14 THEN VXMO=0:VYMO=-6 
200 IF ZO=13 THEN VXMO=0:VYMO=6 
205 IF ZO=10 THEN VXMO=-5:VYMO=-6 
210 IF ZO=9 THEN VXMO=-5:VYMO=6 
215 IF ZO=ll THEN VXMO=-5:VYMO=0 
220 IF ZO=7 THEN VXMO=5:VYMO=0 
225 IF ZO=6 THEN VXMO=5:VYMO=-6 
230 IF ZO=5 THEN VXMO=5:VYMO=6 
237 XMO=X0+3:YMO=Y0+4:REM CORRECTS MISSILE START TO CENTER OF SHIP 
239 REM UPDATE POSITION MISSILE 0 
240 XMO=XMO+VXMO:YMO=YMO+VYMO 
245 IF XMO<40 THEN 260 
246 IF XMO>207 THEN 260 
247 IF YMO<20 THEN 260 
248 IF YMO>2 20 THEN 260 
250 A=USR(1536,4,2,YMOOLD,YMO,XMO) 
255 YMOOLD=YMO:GOTO 240 
259 REM REMOVE MISSILE TO OFF SCREEN 
260 A=USR(1536,4,2,YMOOLD,YMOOLD,10) 
270 GOTO 105 
398 REM 2ND PART OF DEMO - PRIORITY 
399 REM WRITE "ATARI" ON SCREEN 
400 SCREEN=PEEK(88)+PEEK(89)*256 
410 OFFSET=20*3+7 
412 POKE SCREEN+OFFSET,33:POKE SCREEN+OFFSET+l,52:POKE SCREEN+OFFSET+2,33 
415 POKE SCREEN+OFFSET+3,50:POKE SCREEN+OFFSET+4,41 
420 REM INITILIZE PLAYERS 
425 XO=100:YO=150:VXO=0:VYO=0 
430 X2=70:Y2=56:VX2=4 

133 



134 

5 PLAYER MISSILE GRAPHICS 

435 X20LD=80 
500 ZO=STICK(O) 
510 IF ZO=15 THEN 620 
520 REM UPDATE VELOCITY VECTORS 
530 IF ZO=14 THEN VXO=0:VYO=-3 
540 IF ZO=13 THEN VXO=0:VYO=3 
550 IF ZO=10 THEN VXO=-2:VYO=-3 
560 IF ZO=9 THEN VXO=-2:VYO=3 
570 IF ZO=ll THEN VXO=-2:VYO=0 
580 IF ZO=7 THEN VXO=2:VY1=0 
590 IF ZO=6 THEN VXO=2:VYO=-3 
600 IF ZO=5 THEN VXO=2:VY0=3 
610 REM UPDATE POSITION PLAYERO 
620 XO=XO+VXO:YO=YO+VYO 
625 IF XO<46 THEN XO=46 
630 IF XO>198 THEN XO=198 
635 IF YO<24 THEN YO=24 
640 IF YO>216 THEN YO=216 
650 A=USR(1536,0,10,YOOLD,YO,XO) 
660 YOOLD=YO 
670 REM MOVE BLOCK (PLAYER#2) 
680 X2=X2+VX2 
690 IF X2>180 THEN VX2=-4 
700 IF X2<70 THEN VX2=4 
710 A=USR(1536,2,10,Y20LD,Y2,X2) 
719 REM TEST IF SELECT KEY PRESSED & IF SO SET LETTERS TO BACKGROUND COLOR 
720 IF PEEK(53279) <>5 THEN 740 
730 POKE 708,PEEK(712) 
739 REM TEST IF OPTION KEY PRESSED & IF SO CHANGE PRIORITY 
740 IF PEEK(53279)<>3 THEN 500 
750 POKE 623,1 
760 POKE 708,40:REM DEFAULT COLOR 
770 GOTO 500 
1000 REM SETUP 
1005 PM=PEEK(106):PMBASE=PM*256 
1010 GRAPHICS 1+16 
1020 SETCOLOR 2,0,0:REM SET BACKGROUND BLACK 
1052 REM POKE IN PM ROUTINE 
1053 FOR 1=0 TO 150:READ X:POKE 1536+I,X:NEXT I 
1055 REM POKE IN PM CLEAR ROUTINE 
1056 FOR 1=0 TO 25:READ X:POKE 1696+I,X:NEXT I 
1270 REM ACTIVATE PIM 
1300 POKE 559,62:REM SET DMACTL -SINGLE LINE 
1302 POKE 53277,3:REM SET GRACTL -PLAYERS&MISSILES 
1320 POKE 53256,0:POKE 53258,1:REM PLAYER 0 REGULAR WIDTH; PLAYER 2 DOUBLE WIDTH 
1325 POKE 53260,0:REM MISSILES REGULAR WIDTH 
1330 POKE 704,152:REM PLAYERO BLUE GREEN LUM 8 
1332 POKE 706,52:REM PLAYER2 RED ORANGE LUM 4 
1334 POKE 623,2:REM PRIORITY SELECTED HAS PLAYER 0,1 PLAYFIELD THEN PLAYER 2,3 & BACKGROUND 
1335 POKE 54279,PM:REM TELL ANTIC PMBASE 
1340 POKE 1686,PM:REM POKE HI BYTE P~ffiASE INTO SUBROUTINE 
1350 A=USR(1696,PMBASE):REM CLEAR PM MEMORY 
1359 REM READ PLAYER DATA INTO STORAGE AREA 
1360 FOR 1=0 TO 9 
1370 READ VAL:POKE PMBASE+I,VAL:NEXT I 
1380 FOR 1=0 TO 9 
1390 READ VAL:POKE PMBASE+128+I,VAL:NEXT I 
1399 REM INITILAZATION 1ST TIME ONLY 
1400 YOOLD=80:YMOOLD=10 
1410 GOTO 50 
10000 REM PLAYER SUBROUTINE DATA 



PLAYER MISSILE GRAPHICS 5 

10005 DATA 104,162,0,104,104,157,145,6,232,224,5,208,246,173,149 
10006 DATA 6,174,145,6,157,0,208,173,150,6 
10010 DATA 133,213,24,105,4,133,207,173,145,6,201,4,176,47,170 
10015 DATA 189,133,6,133,212,202,48,4,230,207 
10020 DATA 208,249,173,147,6,133,206,169,0,168,145,206,200,204 
10025 DATA 146,6,144,248,173,148,6,133,206,160,0 
10030 DATA 177,212,145,206,200,204,146,6,144,246,96,56,233,4,170 
10035 DATA 198,207,173,147,6,133,206,160,0,177 
10040 DATA 206,61,137,6,145,206,200,204,146,6,144,243,173,148,6 
10045 DATA 133,206,160,0,177,206,29,141,6,145 
10050 DATA 206,200,204,146,6,144,243,96,0,64,128,192,252,243 
10055 DATA 207,63,3,12,48,192,0,0,0,0,0,0 
10069 REM CLEAR PM AREA ROUTINE DATA 
10070 DATA 104,104,133,213,104,133,212,162,0,160,0,169,0,145,212 
10075 DATA 200,208,251,230,213,232,224,8,144,240,96 . 
10105 R~~ PLAYER DATA 
10110 DATA 153,153,189,189,255,255,189,189.153,153 
10115 DATA 255,255,255,255,255,255,255,255,255,255 

Explanation of Player-Missile Subroutine 

The player-missile subroutine was designed to handle both players and missiles 
simultaneously. In order to do this while retaining compact and relocatable code, 
several compromises were made. First, only single-line player resolution is offered. 
We felt that the coarser, double-line resolution could be simulated by setting the 
player-missile stripe at double width, then double plotting each of the shape's bytes. 
An attempt to give you a choice of resolution modes would have created a long and 
messy algorithm since the memory requirements of each are quite different mathe
matically. In single-line resolution the actual memory storage areas for each player 
are exactly ~me page or 256 bytes apart. This makes setting the pointers to the 
memory area easy since only the high byte is involved. But in double-line resolution 
the memory areas are 128 bytes apart. A much more complicated multi-byte add is 
required to set the pointers. 

Second, we decided to erase the old shape completely before drawing the player 
shape in its new position. It is a faster technique since the more traditional method 
needs to do a series of block memory moves to shift the shape more than one line at a 
time. Our method requires storing the shapes in a permanent safe spot. We choose 
the first 256 bytes of the player-missile area. Since there are four player shapes, each 
shape is limited to 64 bytes or scan lines. 

Advanced Assembly language programmers will notice that we did not write the 
subroutine in VBLANK. We felt that BASIC was slow enough without adding small 
delays while waiting for the VBLANK interrupt to begin our subroutine. Moving 
several players and their corresponding missiles on the screen at the same time could 
slow the game down. Motion smoothness is another reason for using VBLANK for 
player-missile graphics. However, as you will see in the following game examples, 
the animation frame rate is not fast enough to produce smooth animation with or 
without VBLANK. 

135 



136 

5 PLAYER MISSILE GRAPHICS 

The subroutine is divided into three parts: a routine to interpret and store the 
passed parameters in the USR function; a rou tine for erasing and drawing the player 
shape; and a routine for erasing and drawing a missile. Once the parameters are 
stored, a test on the player number determines if it is actually a missile, and if so, 
branches to that part of the code. 

Interpreting USR Parameters 

A USR function in BASIC pushes a ll of its parameters onto the stack before it 
enters the Machine language subroutine. The stack is like a dish dispenser in that the 
last va lue placed on the stack must be pull ed off first. The first byte contains the 
number of passed parameters, a usel ess value, and one to be discarded. The other 
param eters are stored in two-byte pairs, high-byte first, in the order that you passed 
th em. The high-bytes in our example are useless since none of our values exceeds 
255. The five pairs are pulled off the stack in an indexed loop using the X register. 
They are pulled two bytes at a time. Only the second, or low byte is stored sequen
tially at PLAYNUM,X ($691, X). Thus loca tion $69 1 contains the player number, 
$692 the player length, $693 the va lue for OLDY, etc. 

STACK 

# OF ARGUMENT 

PLAYER # - HI 

PLAYER # - LO 

PLAYER LENGTH - HI 

PLAYER LENGTH - LO 

OLDY - HI 

OLDY - LO 

NEWY- HI 

NEWY - LO 

NEWX- HI 

NEWX - LO 

PLAYER STORAGE AREA 
SINGLE RESOLUTION 

PLAYER #0 DATA 

PLAYER #1 DATA 

PLAYER #2 DATA 

PLAYER #3 DATA 

EMPTY 

~'----" 

0-63 

64-127 

128-197 

198-255 

Erasing and Storing Player Shapes 

The pointers to move our player or missile shape from their storage area to the 
proper player-missile memory area are set up next. The shape is stored at SHAPEL, 
SHAPEH. The high byte BASE is just the beginning of the P 1M storage area which 
was POKEd into location 1686 decimal ($696) from BASIC. The low byte is obtained 



PLAYER MISSILE GRAPHICS 5 

from a table called INDEX. Each of the values in this four-byte table are sixty-four 
bytes ($40) apart. The actual memory location that the shape is to be stored at in the 
P 1M area is SHPML, SHPMH. Since each player is 256 bytes or a page apart in 
memory, we added #$04 to BASE in order to set it for player #0. We then did a cute 
little trick. We put it in a loop and incremented SHPMH for each player number. 

Erasing the old player shape from memory could be handled quite easily with 
simple indexing in the form ST A ADDRESS, Y if only one single player were 
involved. ADDRESS would be the absolute address of that player's P/M memory, 
and the Y register would contain the value YOLD. Unfortunately, the high byte of 
each player's P/ M memory area is different. Rather than try to update ADDRESS 
each·time, it is more efficient if the two-byte page address is stored in zero page. Then 
indirect index addressing in the form ST A (SHPML), Y can be used either to erase or 
plot player-missile data. 

If the computer finds a $00 in location iCE (SHPML), and a $9C in location $CF 
(SHPMH), then the base address is $9COO. The Y register contains the value of the 
OLDY position. If the shape was thirty-two scan lines down the screen, then the Y 
register = $20. If the computer wished to erase the shape, then it would store a #$00 in 
the Accumulator into memory location $9COO + $20, or $9C20 as shown: 

INDIRECT INDEX ADDRESSING 

STA (SHPML),Y 

INDIRECT ADDRESS l
$CE 

#CF 

Y 

A 

/#9COO 

+\ 
$9C20 

$00 

$9C 
t------4 

BASE NUMBER 

EFFECTIVE 
ADDRESS 

The actual code to erase the player shape is reiterated in a loop PLAYLEN times. 
Since it is easier to increment the Y register from zero until it is equal to PLAYLEN, 
the vertical screen offset is stored in SHPML in zero page. The address SHPML, 
SHPMH is now the address of the beginning of the player-missile shape. The Y 
register offsets into the shape. The code is shown below. 

137 



138 

5 PLAYER MISSILE GRAPHICS 

ERASE 

.1 

LDA OLDY 
STA SHPML 
LDA #$00 
TAY 
STA(SHPML), Y 
CPY PLAYLEN 
BLT .1 

;Y VALUE 

;ERASE WITH 0 
;Y REGISTER = 0 
;STORE IN PROPER plM AREA 
;OONE? 

The code for drawing our shape is quite similar, except that instead of storing 
zeros in P 1M memory, we transfer the player shape from its storage area to its proper 
place in P/ M memory. The pointers to its storage area, SHAPEL, SHAPEH were 
previously set up in zero page. We need update only SHPML, the low byte pointer to 
the place we are actually moving our player, with the NEWY position. The high 
byte SHPMH remains the same. The code follows: 

LDA NEWY ;NEW Y VALUE 
STA SHPML ;SETUP POINTER TO PLOT 
LDY #$00 

DRAW LDA (SHAPEL),Y;LOAD BYTE FROM PLAYER SHAPE TABLE 
STA (SHPML),Y ;STORE IN PROPER PIM PLAYER AREA 
INY ;NEXT BYTE 
CPY PLAYLEN ;OONE? 
BLT DRAW 

Handling Missiles 

Player numbers 4-7 refer to missi les 0-3 respectively in our player-missile subrou
tine. If we didn ' t use different numbers, the user would have to type in a letter M or P 
to differentiate between the two different kinds of spri tes. 

While missiles are just narrow players, all four reside in the same 256-byte block or 
page of memory. The missiles, each of which is two bits wide, are arranged parallel 
to each other. Essentially, all four two-bit pairs for each scan line are in the same byte 
of data. This makes moving one missile but not others somewhat difficult. 

Missile #0 uses the first two or lowes t two bits of the byte, missile #1 bits three and 
four , missile #2 the fifth and sixth, and missile #3 the two highest bits. While the data 
in one byte determines which pixels are lit for all four missiles on any scan line, each 
missile has an independent horizontal position register. Thus, each of the missiles 
can have movement completely independent of the others. 

As we mentioned, moving one missile vertically without changing the other 
missiles' data can be a problem. If we had just two missiles initially on the same scan 
line, and we attempted to move missile #0 downward one scan line, either a memory 
move or an erase before redrawing would affect the missile # I as well. In the first case, 
missile #1 would move in tandem with missile #0, while in the second case missile #1 
would be erased. The solution is to mask off the other missile's bits during the erase, 
and to draw the missile's new position using another masking operation that will 
not affect the remaining bits. 



PLAYER MISSILE GRAPHICS 5 

ORA Instruction 

This drawing technique uses the OR memory with Accumulator (ORA) instruc
tion. It works on the bit level. If the bits in either memory or the Accumulator are on, 
then the result is one. If neither is on, the result is zero. 

ACCUMULATOR 
BIT 

MEMORY RESULT BIT IN 
ACCUMULATOR BIT 

o o o 
ORA o 

o 

If missile #0 was already on a particular scan line and you wanted missile #1 to be 
on the same scan line you would ORA missile #1 with the byte in P/ M memory. 

ORA 
00000011 
00001100 

o 0 0 0 I I I 

AND Instruction 

MEMORY 
MISSILE SHAPE 

RESULT 

Another selective drawing technique is the And Memory with Accumulator 
(AND) instruction. It too works on a bit level and is used to filter or mask out certain 
bits in the Accumulator. Both the memory bit and the Accumulator bits must be set 
(on) for the result to be one. If either memory bit is off, or both bits are off, the result is 
zero. We put ones where we don 't want to change bit values, and zeroes where we do. 
We can erase one missile at a time without affecting the others. 

AND 

ACCUMULATOR 
BIT 

o 
o 

MEMORY 
BIT 

o 
I 
o 

RESULT BIT IN 
ACCUMULATOR 

o 
o 
o 

If you wish to erase only one of the two missiles on the same scan line, you AND 
the data byte with a mask that always produces a zero bit result in the missile bits to 
be erased, and a one in all the other bits. For example, to erase missile #0 and not 
missile #2, the mask with which you AND the data bit is $FC. 

139 



140 

5 PLAYER MISSILE GRAPHICS 

AND 
o 0 
1 1 

o 0 

o 0 1 1 
1 1 0 0 

o 0 0 0 

MEMORY $33 
MASK $FC 

RESULT $30 

There are four different missile masks: 

Missile mask #0 1 1 I 0 0 $FC 
Missile mask #1 1 1 1 I 0 0 $F3 
Missile mask #2 I 1 0 0 1 1 1 $CF 
Missile mask #3 o 0 I 1 1 I I $3F 

Likewise, there are four different missile shapes. For simplicity and visibility we 
made each missile two pixels wide. The height is controlled by the length, which is 
nominally two bytes . However, missiles can assume tall, thin dimensions if the user 
chooses a length of four or more bytes. 

Missile shape #0 
Missi le shape #1 
Missile shape #2 
Missile shape #3 

00000011 
00001100 
00110000 
11000000 

$03 
$OC 
$30 
$CO 

The data for the above two tables appears in our player-missile subroutine as 
MASKS and SHOTS. 

The heart of the missile routine is the erase and draw code. Each is a mere three 
lines long. The selected missile is erased by ANDing memory with the proper mask. 

LDA (SHPML),Y ;LOAD OLD MISSILE DATA 
AND MASKS,X ;ERASE IT BUT DON'T DISTURB OTHER MISSILES 
STA (SHPML),Y ;STORE RESULT BACK IN MEMORY 

The selected missile redrawn in its new position with the following three lines of 
code. 

LDA (SHPML),Y ;LOAD OLD MISSILE DATA 
ORA SHOTS,X ;MERGE SHOT DATA WITH OTHER MISSILES 
STA (SHPML),Y ;STORE NEW COMBINED MISSILE BYTE IN MEMORY 

The technique is best illustrated with an example where we have three missiles on 
the screen. Missiles #0 and # 1 are on the same two scan lines. Missile #2 is on the same 
scan line where we wish to move our missile. 



PLAYER MISSILE GRAPHICS 5 

MISSILES 

_~#"",O"..",.".." ERASE BY 

I II '----II'------l� III 1 ... · ............ ·~....... I----. 0 0 0 0 1 1 1 1 $OF 

#3 #2 #1 

00::~ ..... 1 ----I...~I I I I III III ~ ~ ~ ~ ~ ~ :: :~~ 
~ ~ I I IIi.i;~1 I I II '----II---JI wl+~N~lsK 

----------

~I '-----'-------,I I I I 
~~~~~ I I I I I I i •••••••••• ~ •.••••.••••••• ~ ••••••• ~ 

I-..........J,.I III I I I
III
III DRtw

o 0 1 1 0 0 0 0 $30
o 0 0 0 0 0 1 1 $03

o 0 1 1 0 0 1 1 $33

ORA Each missile is 2 pixels wide
Height controlled by length (nominally 2 bytes [square)) WITH MISSILE

SHAPE

00010 *PLAYER MISSILE INTERFACE TO BASIC
00015 *CODE BY JEFF STANTON & DAN PINAL
00020 *PLAYER SHAPES ARE STORED IN PAGE ONE p/M AREA
00030 *MAX LENGTH 64 BYTES EACH

DOOO:
OOD4:
OOD5:
OOCE:
OOCF:

00035 *
00040 HPOSPO
00050 SHAPEL
00060 SHAPEH
00070 SHPML
00080 SHPMH
00090 *

.EQ $DOOO

.EQ $D4

.EQ $D5

.EQ $CE

.EQ $CF

00100 * CALL FROM BASIC

;LO BYTE WHERE SHAPE IS STORED
;HI BYTE
;LO BYTE TO DRAW OR ERASE SHAPE IN p/M AREA
;HI BYTE

00110 * A=USR(1536, PLAYER #,PLAYER LEN,OLD Y,NEW Y,NEW X)
00120 .OR $600
00130 .TF "D:PMSUB.OBJ"
00135 *TRANSFER VALUES IN USR FUNCTION THAT ARE STORED ON STACK TO SUBROUTINE

0600: 68 00150 START PLA PULL # OF ARG'S OFF STACK
0601: A2 00 00160 LDX #$00
0603: 68 00180 PULL PLA ; DISCARD THE HIBYTE IT'S USELESS
0604: 68 00190 PLA ; GET VALUE
0605: 9D 91 06 00200 STA PLAYNUM,X
0608: E8 00210 INX
0609: EO 05 00220 CPX #$05 ; GOT ALL 5 YET?
060B: DO F6 00230 BNE PULL

00240 *SETUP POINTERS TO MOVE SHAPE FROM STORAGE PLACE TO PLACE IN P/M AREA
060D: AD 95 06 00250 LDA NEWX HORIZONTAL POSITION
0610: AE 91 06 00260 LDX PLAYNUM
0613: 9D 00 DO 00270 STA HPOSPO,X ; TELL ANTIC NEWX
0616: AD 96 06 00280 LDA BASE HIBYTE OF PMBASE
0619: 85 D5 00290 STA SHAPEH
061B: 18 00300 CLC
061C: 69 04 00310 ADC #$04 SET FOR PLAYER 0 ADDRESS
061E: 85 CF 00320 STA SHPMH
0620: AD 91 06 00330 LDA PLAYNUM PLAYER #
0623: C9 04 00340 CMF #$04 MISSILES?
0625: BO 2F 00350 BGE MISSILES
0627: AA 00360 TAX ;PLAYER # BECOMES INDEX

141

5 PlAYER MISSILE GRAPHICS

FLOW CHART FOR INTERFACE

GET PLAYER# I
I
STORE PLAYLEN

OLDY
NEWY
NEWX

I
SET UP POINTERS

TO PIM AREA FOR DESIRED PLAYER
& WHERE PLAYER SHAPE IS ACTUALLY STORED

I
tYES MISSILE?

,NO

ERASE PLAYER SHAPE
I STARTING AT OLDY POSITION

I
DRAW PLAYER SHAPE

I STARTING AT NEWY POSITION

I
RTS I

I
MISSILE#=PLAYER#-4

I
SET POINTERS TO PIM AREA FOR

MISSILES
SET INDEX FOR PROPER
MISSILE SHAPE & MASKS

I
ERASE MISSILE AT OLDY POS

BY ANDing WITH PROPER MASK

I
DRAW MISSILE SHAPE

STARTING AT NEW Y POSITION
BY ORAING SHAPE WITH REST

OF MISSILES

I
RTS I

142

PlAYER MISSILE GRAPHICS 5

0628: BD 85 06 00370
062B: 85 D4 00380
062D: CA 00400 .1
062E: 30 04 00410
0630: E6 CF 00420
0632: DO F9 00430

00440 ERASE

LDA INDEX,X
STA SHAPEL
DEX
BMI ERASE
INC SHPMH
BNE .1

0634: AD 93 06 00450 LDA OLDY
0637: 85 CE 00460 STA SHPML

;WE INCREMENT SHPMH FOR EACH PLAYER # UNLESS 0

;EACH INDIVIDUAL P/M AREA 256 BYTES APART
ALWAYS

; Y

0639: A9 00 00470 LDA #$00 ;ERASE WITH 0
063B: A8 00480 TAY ; Y=O
063C: 91 CE 00490.1 STA (SHPML),Y ;STORE IN PROPER P/M AREA
063E: C8 00500 INY ;NEXT BYTE
063F: CC 92 06 00510 CPY PLAYLEN ; DONE?
0642: 90 F8 00520 BLT .1
0644: AD 94 06 00530 LDA NEWY ; NEW Y
0647: 85 CE 00540 STA SHPML ;SETUP POINTER TO PLOT
0649: AO 00 00550 LDY #$00
064B: B1 D4 00570 DRAW LDA (SHAPEL),Y ;LOAD BYTE FROM PLAYER SHAPE TABLE
064D: 91 CE 00580 STA (SHPML),Y ;STORE IN PROPEl< P/M PLAYER AREA
064F: C8 00590 INY ;NEXT BYTE
0650: CC 92 06 00600 CPY PLAYLEN ;DONE?
0653: 90 F6 00610 BLT DRA\O/
0655: 60 00620 RTS

00650 *COMES HERE WITH ACC=MISSILE# PLUS 4
0656: 38 00660 MISSILES SEC
0657: E9 04 00670 SBC #$04
0659: AA 00680 TAX
065A: C6 CF 00690 DEC SHPMH
065C: AD 93 06 00700 LDA OLDY
065F: 85 CE 00710 STA SHPML
0661: AO 00 00720 LDY #$00

GET PROPER MISSILE # (0-3)
SET INDEX FOR MISSILE MASKS
SHPMH WAS SET FOR PLAYERO, MISSILES ARE 1
OLD/CURRENT Y POS. \ PAGE LOWER

0663: B1 CE 00740 UNDRAW LDA (SHPML),Y ;LOAD OLD MISSILES DATA
0665: 3D 89 06 00750 AND MASKS,X ; ERASE IT BUT DON'T DISTURB OTHER MISSILES
0668: 91 CE 00760 STA (SHPML),Y ;STORE COMBINED MISSILE DATA IN P/M AREA
066A: C8 00770 INY ; NEXT BYTE
066B: CC 92 06 00780 CPY PLAYLEN DONE?
066E: 90 F3 00790 BLT UNDRAW
0670: AD 94 06 00800 LDA NEWY ; NEW Y POS.
0673: 85 CE 00810 STA SHPML
0675: AO 00 00820 LDY #$00
0677: B1 CE 00840 MDRAW LDA (SHPML),Y ;LOAD OLD MISSILES DATA
0679: 1D 8D 06 00850 ORA SHOTS,X ; MERGE SHOT DATA WITH OTHER MISSILES
067C: 91 CE 00860 STA (SHPML),Y ;STORE NEW COMBINED MISSILE BYTE
067E: C8 00870 INY ;NEXT BYTE
067F: CC 92 06 00880 CPY PLAYLEN ;DONE?
0682: 90 F3 00890 BLT MDRAW
0684: 60 00900 RTS

00910
0685: 00 40 80
0688: CO 00920 INDEX
0689: FC F3 CF
068C: 3F 00930 MASKS
068D: 03 DC 30
0690: CO 00940 SHOTS
0691: 00950 PLAYNUM
0692: 00960 PLAYLEN
0693: 00970 OLDY
0694: 00980 NEWY
0695: 00990 NEWX
0696: 01000 BASE

.HS 004080CO ;LO BYTE OF STORED PLAYER SHAPES

.HS FCF3CF3F ;MISSILE MASKS

.HS 030C30CO

.BS 1

.BS 1

.BS 1

.BS 1

.BS 1

.BS 1

;MISSILE SHAPES

;HI BYTE PMBASE IS BOKED IN FROM BASIC

143

144

5 PlAYER MISSILE GRAPHICS

Two Ship Example

We can write a simple two-player shoot-'em-up game in BASIC if we use our
player-missile subroutine to provide enough animation frame or speed for playability.
The code for the second ship is nearly identical to that for the first ship. In fact, with
the exception of using variables having a I at the tail end of the variable names, the
code is the same, line for line. The code for player #2 follows the code for player #l.

The code for each player includes: a joystick read routine to determine the ship's
new velocity vector and to update its position; a similar routine to determine the
missile's velocity and direction; and logic to prevent either the ship or the missile
from leaving the screen boundaries. The ship in our previous example stopped dead
while the missile moved. These ships, however, not only continue in their present
course during the missile flight; they even alter course to evade enemy missiles.

~-

,

In the previous example, if the missile movement code was executed, it branched
past the player movement code. In this example, the missile code updates the player
position, and the player position code updates the missile position. This enables the
player to continue moving or maneuvering while the missile is in flight.

If you look at the game 's flow chart for each player, you will notice that the two
possible paths are decided by whether the joystick button is pressed. Pressing the
button fires a missile in the desired direction, only if there isn't another missile
already on the screen. Of course, if you don't give it a direction (joystick centered), it
skips firing the missile and just updates the ship's position based on its current
heading. When it fires the missile, it turns the missile flag on (MOFLAG = 1). To
prevent it from firing again before the missile reaches the edge of the playfield, the
program tests MOFLAG in line 430. If the flag is on, it just updates t,he missile's
position based on its current trajectory. Finally, once the missile reaches the screen
edge, it turns the flag off (MOFLAG = 0) and plots the missile offscreen .

When the joystick button isn't pressed, the program code reaches line 110, the
beginning of the joystick read routine which determines the ship's new velocity
vector. This enables the ship to change direction. Thus, if a player wishes to change
direction immediately upon firing his missile, he must release the button quickly, so
that it reaches this code on the next animation frame.

PLAYER MISSILE GRAPHICS 5

ATTACK
~ INITIALIZE PLAYER POSITIONS I

I 180

r---i BUTTON 0 PRESSED' YES IS MISSILEIO I YES

NO I ALREAOY ON SCREEN I
l NO

I READ JOYSTICK 10 I
I

1
READ JOYSTICKIO

1 I AT CENTER'
YES FOR DES IR ED DIRECTION

NO I
YES AT CENTER' I 125

1
UPDATE VELOCITY VECTORS

J ~NO PLAYER 10

1
UPDATE MISS ILE 0

1 VELOCITY VECTOR

I UPDATE POSITION PLAYERIO I I

1
TURN ON MISSILE ON FLAG

1 I PREVENT LEAVING SCREEN I & SET MISSILE AT PLAYER

I PLOT PLAYERIO I J~ UPDATE MISSILE 0 POSITION t--
YES

J I MISS ILE ON SCREEN'

--.1
MISSILE STILL ON SCR EEN' 260

NO 'I TURN OFF

i MISSI LE ON FLAG I

1
UPDATE PLAYER POSITION & I YES I

1 I
IS BUTTON

PLOT MISSILE I I I I 1 PREVENT LEAVING SCR EEN I I PRESSED' t PLOT MISSILE 0
, N OFF SCREEN

L BUTTON 1 PRESSED'
YES I IS MISSILE #1 I YES

I ALR EADY ON SCREEN I t NO
~NO I READ JOYSTICK '1 I

I
1

READ JOYSTICK #0

1 I AT CENTER'
YES FOR DESIRED DIRECTION

NO I
YES

AT CENTER' I
1

UPDATE VELOCITY VECTORS

1
.NO PLAYER'1

I
UPDATE MISSILE 0

I VELOCITY VECTOR

I UPDATE POSITION PLAYER'1 I I

1
TURN ON MISS ILE ON FLAG

1 I PREVENT LEAVING SCREEN I & SET MISSILE AT PLAYER

I PLOT PLAYER 11 I I ~ UPDATE MISSILE 0 POSITION 1--

I
YES

1
MISSILE STILL ON SCREEN' J NO MISSILE ON SCREEN?

NO "-----t 1 TURN OFF ,I
t MISSILE ON FLAG

I
UPDATE PLAYER POSITION & I YESI IS BUTTON

1 I I + PREVENT LEAVING SCREEN I I PRESSED'
PLOT MISSILE 11

+ I PLOT MISSILE 1 1
OFF SCREEN

I DETECT COLLISJON YES REMOVE BOTH r-BETWEEN SHIPS' SH IPS

NO

1
DETECT COLLISION YES REMOVE ~ MISSI LE 0 WITH PLAYER 1 PLAYER 1

+ NO

1

DETECT COLLISION YES REMOVE

~ ,MISSILE 1 WITH PLAYER 0 PLAYER 0

I
UPDATE SCORES I

145

146

5 PLAYER MISSILE GRAPHICS

Once a missile has been launched , it will continue on its path even while the ship
is being maneuvered . Therefore, the miss ile's position needs to be updated in this
pa thway, too. This is do ne immedia tely after the ship' s position has been updated ,
but only if the missile is on the screen.

Collision and Explosions

A game wouldn ' t be complete if we couldn ' t de tec t if o ne or the other ship were
kill ed in comba t. T here a re two ways to die in this type of game-by collision with
the opponent 's ship or by missil e fire. T he collision register at decimal 53260
($DOOC) detects pl ayer #0 to pl ayer collisions. If it returns a value greater than zero ,
two players have collided . Likewise, collision registers a t 53256 ($D008) and 53257
($ D009) detect collisions between missiles and pl ayers. T he first will return the value
2 if mi ssile #0 collides with p layer #1, and the la tter will return the value I if missile
#1 collides with pl ayer #0. It is important tha t these collision registers are cleared to
ze ro before plotting pl ayers and missil es on the SGreen . You do this via the HITCLR
register a t decima l 53278 (DOl E) in line 90. T his line a t the beginning o f the
anima tion frame loop clears a ll of the collision registers before any players or
mi ss il es are placed on the screen.

T he ra ther simplistic expl osio ns are linked to the sound routine. Each ship
brightens from luminance 4 to luminance 14 in its own color, then blacks out
quickl y. The luminance cha nges within a low, rumbling sound loop. The formul as
in lines 1570 and 1580 were designed to prevent I NT (10-1*0.66) from becoming
la rger than the value 10. If the ship 's luminance o f 4 when added to this value became
la rger than 15, the ship 's co lor and luminance wo uld change as the color value
wo uld wrap to the next hig her color w ith a low luminance.

Recall that the so und sta tement is SOU ND (Voice, Pitch, Distortion , Volume).
T he pitch is set to 250, a very low tone, with a distortion value of 4. The even
numbered distortion levels 0,2,4,8,12 introduce different amounts of noise into the
pure tones, 10 and 14. T h e FOR ... NEXT loop (lines 11 50-1 580) decreases the volume
level very slowly.

T his example' s slow anima tion fram e ra te p roduces a game lacking smoothness.
BASIC is slow even with the use of Machine language subroutines. There are a lot of
IF .. . THEN sta tements tha t slow the game down. The game, however, will run a
littl e faster if all of the R EM sta tements are deleted . Arcade games really need to be
written entirely in Assembly language to achieve fas t, smooth animation. The Space
War game that is develo ped a t the end of the chapter is a very similar game, but
smoo ther and more controll able.

10 POKE 106,PEEK (106) -1 2
20 GOTO 1860
30 REM INITILIZE STARTING POSITIONS
40 XO=100:YO=80
50 Xl=150: Yl=160
60 VXO=O:VYO=O :VXl=O:VYl=O

70 MOFLAG=0:M1FLAG=0
80 REM PLAYER #0

PLAYER MISSILE GRAPHICS 5

90 POKE 53278,0:REM CLEAR COLLISION REGISTER
100 IF STRIG(O)=O THEN 430
no ZO=STICK(O)
120 IF ZO=15 THEN 230
130 REM UPDATE VELOCITY VECTORS
140 IF ZO=14 THEN VXO=0:VYO=-3
150 IF ZO=13 THEN VXO=0:VYO=3
160 IF ZO=10 THEN VXO=-2:VYO=-3
170 IF ZO=9 THEN VXO=-2:VYO=3
180 IF ZO=ll THEN VXO=-2:VYO=0
190 IF ZO=7 THEN VXO=2:VY1=0
200 IF Z0=6 THEN VXO=2:VYO=-3
210 IF ZO=5 THEN VXO=2:VYO=3
220 REM UPDATE POSITION PLAYERO
230 XO=XO+VXO:YO=YO+VYO
240 IF XO<46 THEN XO=46
250 IF XO>198 THEN XO=198
260 IF YO<24 THEN YO=24
270 IF YO>216 THEN YO=216
280 A=USR(1536,0,10,YOOLD,YO,XO)
290 YOOLD=YO
300 IF MOFLAG=O THEN 780
310 REM UPDATE POSITION MISSILE 0
320 XMO=XMO+ VXMO: YMO= YMO+ VYMO
330 IF XMO<40 THEN 400
340 IF XMO>207 THEN 400
350 IF YMO<20 THEN 400
360 IF YMO>220 THEN 400
370 A=USR(1536,4,2,YMOOLD,YMO,XMO)
380 YMOOLD=YMO:GOTO 420
390 REM REMOVE MISSILE TO OFF SCREEN
400 MOFLAG=O
410 A=USR(1536,4,2,YMOOLD,YMOOLD, 10)
420 GOTO 780
430 IF MOFLAG=l THEN 590
440 ZO=STICK(O)
450 IF ZO=15 THEN 690
460 IF ZO=14 THEN VXMO=0:VYMO=-6
470 IF ZO=13 THEN VXMO=0:VYMO=6
480 IF ZO=lO THEN VXMO=-5:VYMO=-6
490 IF ZO=9 THEN VXMO=-5:VYMO=6
500 IF ZO=ll THEN VXMO=-5:VYMO=0
510 IF ZO=7 THEN VXMO=5:VYMO=0
520 IF ZO=6 THEN VXMO=5:VYMO=-6
530 IF ZO=5 THEN VXMO=5:VYMO=6
540 MOFLAG=l
550 XMO=X0+4:YMO=Y0+2
560 FOR 1=15 TO 0 STEP -0.25
570 SOUND O,lO,O,I:NEXT I
580 REM UPDATE POSITION MISSILE 0
590 XMO=XMO+VXMO:YMO=YMO+VYMO
600 IF XMO<40 THEN 670
610 IF XMO>207 THEN 670
620 IF YMO<20 THEN 670
630 IF YMO>220 THEN 670
640 A=USR(1536,4,2,YMOOLD,YMO,XMO)
650 YMOOLD=YMO:GOTO 700
660 REM REMOVE MISSILE TO OFF SCREEN
670 MOFLAG=O

147

148

5 PLAYER MISSILE GRAPHICS

680 A=USR(l s36,4,2,YMOOLD,YMOOLD,10)
690 REM UPDATE POSITION PLAYERO
700 XO=XO+VXO:YO=YO+VYO
710 IF XO<46 THEN XO=46
720 IF XO> 198 THEN XO=198
730 IF YO<24 THEN YO=24
740 IF YO >2 16 THEN YO=21 6
750 A=USR(ls36,0,10,YOOLD,YO,XO)
760 YOOLD=YO
770 REM PLAYER #1
780 IF STRIG(l)=O THEN 1110
790 Zl=STICK(l)
800 IF Zl=ls THEN 910
810 REM UPDATE VELOCITY VECTORS
820 IF Zl=14 THEN VX1=0:VY1=-3
830 IF Zl=13 THEN VX1 =0:VY1=3
840 IF Zl=10 THEN VX1=- 2:VY1=-3
850 IF Zl=9 THEN VX1=-2:VY1=3
860 IF Zl=ll THEN VX1=-2:VY1=0
870 IF Zl=7 THEN VX1=2:VY1=0
880 IF 21=6 THEN VX1 =2:VY1=-3
890 IF 21=5 THEN VX1=2:VY1=3
900 REM UPDATE POSITION PLAYER 1
910 X1=X1+VX1 :Y1=Y1+VY1
920 IF X1 <46 THEN X1=46
930 IF X1>198 THEN X1=198
940 IF Y1<24 THEN Y1=24
950 IF Y1 >216 THEN Y1=216
960 A=USR(1536 ,1,10, Y10LD,Y1,X1)
970 YlOLD=Yl
980 REM UPDATE POSITION MISSILE
990 XM 1=XM1 +VXM1:YM1=YMl+VYM l
1000 IF XMl <40 THEN 1070
1010 IF XM1>207 THEN 1070
1020 IF YM1<20 THEN 1070
1030 IF YM1>220 THEN 1070
1040 A=USR(ls36,s,2,YMI0LD,YMl,XMl)
1050 YM10LD=YMl:GOTO 1100
1060 REM REMOVE MISSILE TO OFF SCREEN
1070 M1FLAG=0
1080 A=USR(ls36,5,2,YM10LD,YM10LD,10)
1090 IF M1FLAG=0 THEN 1470
1100 GOTO 1270
1110 IF M1FLAG=1 THEN 1270
1120 Zl=STICK(l)
1130 IF 21=15 THEN 1380
1140 IF 21=14 TH EN VXM1=0:VYM1=- 6
1150 IF Zl=13 THEN VXM1=0:VYM1=6
1160 IF Zl=10 THEN VXMl =- 5:VYM1=-6
1170 IF Zl=9 THEN VXM1=-5:VYM1=0
1180 IF Zl=11 THEN VXM1=-s:VYMl=0
1190 IF Zl=7 THEN VXMl=s:VYM1 =0
1200 IF Zl=6 THEN VXMl=s :VYMl=-6
1210 IF Zl=5 THEN VXMl=5:VYMl =6
1220 MIFLAG=l
1230 XMl=X 1+4: YMl=Yl+2
1240 FOR 1=15 TO 0 STEP - 0.25
1250 SOUND 1,10,0,I:NEXT I
1260 REM UPDATE POSITION MISSILE 1
1270 XM1=XMl+VXM1:YMl=YMl+VYMl
1280 IF XMl <40 THEN 1350

1290 IF XM1>207 THEN 1350
1300 IF YM1 <20 THEN 1350
1310 IF YM1>220 THEN 1350

PLAYER MISSILE GRAPHICS 5

1320 A=USR(1536,5,2,YM10LD,YM1,XM1)
1330 YM10LD=YM1:GOTO 1370
1340 R~l REMOVE MISSILE TO OFF SCREEN
1350 M1FLAG=0
1360 A=USR(1536,5,2,YM10LD,YM10LD,10)
1370 IF STRIG(l)=l THEN 1470
1380 REM UPDATE POSITION PLAYERI
1390 Xl=X 1+VX1:Y1 =Y1+VY1
1400 IF X1<46 THEN X1=46
1410 IF X1>198 THEN X1=198
1420 IF Y1<24 THEN Y1=24
1430 IF Yl >216 THEN Y1=216
1440 A=USR(1536 ,1,10,YI0LD,Y1, X1)
1450 YlOLD=Yl
1460 REM DETECT COLLISIONS BETWEEN SHIPS
1470 IF PEEK(53260»0 THEN 1530
1480 REM DETECT MISSILE 0 COLLISION PLAYER
1490 IF PEEK(53256)=2 THEN 1750
1500 REM DETECT MISSILE 1 COLLISION PLAYER 0
1510 IF PEEK(53257)=1 THEN 1640
1520 GOTO 90
1530 REM REMOVE SHIPS #0&1 IN A DUAL SHIP COLLISION
1540 X1 =10: XO=10
1550 FOR 1=15 TO 0 STEP -0. 2
1560 SOUND 0,250,4,I:FOR W=1 TO 5:NEXT W
1570 POKE 704,148+INT(10-I*0.66)
1580 POKE 705,52+INT(10-I*0.66):NEXT I
1590 A=USR(1536,0,10,YOOLD,YOOLD,XO)
1600 A=USR(1536,1,10,YI0LD,Y10LD,Xl)
1610 A=USR(1536,4,2,YMOOLD,YMOOLD, 10)
1620 FOR DE=1 TO 200:NEXT DE
1630 GOTO 40
1640 REM REMOVE SHIP #0
1650 FOR 1=15 TO 0 STEP -0. 2
1660 SOUND 0,250,4,I:FOR W=1 TO 5:NEXT W
1670 POKE 704,148+INT(10-I*0.66):NEXT I
1680 XO=IO
1690 A=USR(1536,0,10,YOOLD,YOOLD,XO)
1700 A=USR(1536,5,2,YM10LD,YMIOLD,10)
1710 A=USR(1536,4,2,YMOOLD,YMOOLD,10)
1720 FOR DE=1 TO 200:NEXT DE
1730 POKE 704,152
1740 GOTO 40
1750 REM REMOVE SHIP #1
1760 FOR 1=15 TO 0 STEP -0. 2
1770 SOUND 0,250,4,I:FOR \v=1 TO 5:NEXT W
1780 POKE 705,52+INT(10-I*0.66):NEXT I
1790 Xl=10
1800 A=USR(1536,1,10,YI0LD,YI0LD,XI)
1810 A=USR(l536,4,2,YNOOLD,YMOOLD,1O)
1820 A=USR(1536,5,2,YMI0LD,YM10LD,10)
1830 FOR DE=l TO 200:NEXT DE
1840 POKE 705,56
1850 GOTO 40
1860 CB=PEEK(106):CHRSET=CB*256
1870 PM=PEEK(106)+4:PMBASE=PM*256
1880 GRAPHICS 1+16
1890 REM POKE IN PM ROUTINE

149

150

5 PLAYER MISSILE GRAPHICS

1900 FOR 1=0 TO 150:READ X:POKE 1536+I,X :NEXT I
1910 REM POKE IN PM CLEAR ROUTINE
1920 FOR 1=0 TO 25:READ X:POKE 1696+I,X : NEXT I
1930 REM ACTIVATE plM
1940 SETCOLOR 2,0,0
1950 POKE 559 ,62:REM SET DMACTL - SINGLE LINE
1960 POKE 53277 ,3:REM SET GRACTL -PLAYERS&MISSILES
1970 A=USR(1696,PMBASE)
1980 POKE 53256 ,0:POKE 53257,0:REM PLAYERS REGULAR WIDTH
1990 POKE 53260,0:REM MISSILES REGULAR WIDTH
2000 POKE 704,152:REM PLAYERO BLUE GREEN LUM 8
2010 POKE' 705,56:REM PLAYER1 RED ORANGE LUM 8
2020 POKE 54279,PM:REM TELL ANTIC PMBASE
2030 POKE 1686 ,PM:REM POKE HI BYTE PMBASE INTO SUBROUTINE
2040 REM READ PLAYER DATA INTO STORAGE AREA
2050 FOR 1=0 TO 9
2060 READ VAL:POKE PMBASE+I,VAL:NEXT I
2070 FOR 1=0 TO 9
2080 READ VAL:POKE PMBASE+64+I,VAL:NEXT I
2090 REM INITILAZATION 1ST TIME ONLY
2100 YOOLD=80:Y10LD=160:YMOOLD=10:YM10LD=10
2110 GOTO 40
2120 REM PLAYER SUBROUTINE DATA
2130 DATA 104,162,0,104,104 ,157,145, 6,232,224 ,5,208,246,173,149
2135 DATA 6,174,145,6,157,0,208,173,150,6
2140 DATA 133,213,24,105,4,133,207,173,145,6,201,4,176,47,170
2145 DATA 189, 133,6,133 ,21 2, 202,48,4 , 230,207
2150 DATA 208,249,173,147,6,133,206,169,0,168,145,206,200,204
2155 DATA 146,6,144, 248 ,1 73,148 ,6,1 33,206 ,160,0
2160 DATA 177,212,145,206,200,204,146,6,144,246,96,56,233,4
2165 DATA 170,198,207,173,147,6,133, 206 ,160,0,1
2170 DATA 206 ,61,137,6,145, 206 ,200,204,146,6,144,243,173,148
2175 DATA 6,133,206,160,0,177,206,29,141,6,145
2180 DATA 206,200 ,204,146,6,144 ,243,96 ,0, 64 ,128 ,192, 252,243
2185 DATA 207 ,63,3,12,4.8,192 ,0,0,0,0,0,0
2190 REM CLEAR PM AREA ROUTINE DATA
2200 DATA 104,104,133,213,104,133,212,162,0,160,0,169,0,145
2205 DATA 212,200,208,251,230,213,232,224,8,144,240,96
2210 REM PLAYER DATA
2220 DATA 153 ,153,1 89, 189,255,255 ,189, 189,153 ,1 53
2230 DATA 153,153,189,189,255,255,189,189,153,153

Shoot Bricks Game

The next example uses both playfield and player-missile graphics in a timed game
in which the object is to survive the longest between two crushing brick walls. The
joystick-manueverable player can use a pistol to shoot any of the bricks out in the ten
rows on either side of him. The bricks are replenished randomly at a rate slightly
faster than the player can remove them. Thus, it becomes a matter of strategy and
endurance to last for any reasonable length of time.

When designing a game like this, you must anticipate the player's strategy. The
player, when confronted with the impossiblity of keeping the entire wall back, will
retrea t to either the top or bottom and shoot just at the blocks immediately surround
ing him. If the bricks were still placed on the screen randomly even after a row of
bricks closed completely, the player would have plenty of time to shoot at the few

PLAYER MISSILE GRAPHICS 5

random blocks appearing in the rows adjacent to him. However, if the random
blocks are not put on the screen in the already closed rows, bricks would appear more
rapidly in the few open rows. This makes the game fast-paced and somewhat
challenging. The game itself has little play depth, so don't expect it to hold your
interest as a game. It was primarily designed to teach programming technique.

It is desirable to have a different color for each of the ten rows of bricks, but there is
a maximum of on ly four color registers in the non-GTIA graphics modes. There
fore, we use display list interrupts to change a single color register while ANTIC is
drawing the screen. It wou ld be easier to use GTIA mode 11 , but, unfortunately, this
mode does not support collision registers.

We choose to do the display in ANTIC 5, one of the non-BASIC graphics modes,
because the four-color characters are sixteen scan lines high. Each of the lines
contains forty characters. The blocks are four color dots wide by 16 scan lines tall.
The bricks are added and removed in adjacent pairs (two characters) so that they
appear to be square-shaped. The availability of the extra colors had little to do with
the initial programming design, but when we put in a scorekeeping timer at the
bottom of the screen, we were able to draw the characters using a different color
register from that of the blocks. A collision is never detected when the player touches
the score line.

o

2

3

4

5

6

7

8

9

10

TIME 1:31

I 0 11 I 12 BLOCKS 27 I 28 39 I

151

152

5 PLAYER MISSILE GRAPHICS

Setting Up Display List

The screen resides just below the top of memory which has been lowered twelve
pages to make room for both the p layer-missile memory and new character set. We
choose to modify the display list for a Graphics I screen because the display memory
(20 columns x 24 rows) is the same as ANTIC 5 (40 columns x 12 rows), and our
disp lay list is slightly shorter. The start of the display list, which is shadowed at
locations 560 and 561, is exactly the same for both graphics modes. Therefore, it is
easy to POKE in our new display list a t DUST = PEEK(560)+PEEK(561)*256. This
va lue is 37216 for 48K machines. If we substitute the following 20-byte display list for
the original, we will have an ANTIC 5 screen.

TOP OF MEMORY

PLAYER-MISSILE
2K

CHARACTER SET
1K

SCREEN
ANTIC5

JOYSTICK CONTROL

MOVE UP

DISPLAY LIST
TURN PLAYER LEFT ~ __ +-__ ~ TURN PLAYER RIGHT

& MOVE LEFT & MOVE RIGHT
EMPTY

BASIC MOVE DOWN
PROGRAM

LOMEM
DOS

(if present)

112 These three instructions print
11 2 24 blank scan lines a t the top
112 of the screen
69 ~ ANTIC 5 with a LMS instruction added

128 Address of the first line of screen data
145 145*256 +128 = 37248
133 Display the rest of the data in
133 ANTIC 5 with a DU added
133 We have a total of II Antic 5 lines
133
133
133
133
133
133
133

PLAYER MISSILE GRAPHICS 5

7 Text mode 2 for timer display
65l Jump and wait for vertical blank
96 Address of vertical display list itself

145 145*256 + 96 = 37216
(return to the lOp of this list)

Initialization

The initialization for this game resembles our previous example. The player
missile, clear memory, and display list interrupt subroutines are each POKEd into
memory in their appropriate places in page 6. The code is stored as DATA state
ments. The first half of the character set (512 bytes) is then moved to its new location,
just above the top of memory, starting at location CHRSET which is equal to
PEEK(106)*256. Only the first two characters are used to generate the screen. The Oth
character is a blank and is used where there are no blocks . This includes our empty
Oth row at the very top. The first character is rewritten as a solid shape using color
register I. The bit pattern for each line in the character is I 0 I 0 1 0 1 0 decimal 170 or
$AA. Using this bit pattern for color register 1 is a deliberate choice. The characters
in the score line use color register 2. Thus, a collision with our score letters and
numbers (playfield 2) will not produce the same value as a collision with a block
(playfield I).

Blocks are placed initially on the screen in rows 1 through 10 for columns 0 to 11
and 28 to 39. There are six pairs of blocks situated on each side of the player on each
row. The offset into screen memory for any block is OFFSET = 40*R + C, where R
and C are the row and column respectively. The location of the screen is shadowed at
locations decimal 88 and 89. With SCREEN = PEEK(88) + PEEK(89)*256, the actual
memory location of any block is SCREEN + OFFSET.

Player-missile graphics appear to be double-line resolution set at double width,
but they are actually single-line resolution with each byte doubled. Two different
players are used for the man. Player #0 faces left, and player #1 faces right. They are
the same color and have the same vertical position. Player #1 is placed on the screen
initially at X=125, Y=50.

The two levels of difficulty are selected with the SELECT key. It toggles between
putting blocks on the screen at one-half second intervals and one second intervals.
An asterisk (*) at the bottom right of the screen denotes the easier level. The START
key starts the game.

Main Game Loop

The game loop tests when to place a block randomly on the screen at one-half or
one second intervals. VBLANK increments the timer at decimal 20 every sixtieth of a
second. When it overflows (TIMER >255), location 19 is incremented. If we set
TIMER = 195, after sixty cycles occur (one second), location 19 becomes 1. This

153

154

5 PLAYER MISSILE GRAPHICS

PLAYER #0 PLAYER #1

24 24
24 24

126 126
126 126
24 24
24 24
28 56
28 56
24 24
24 24
16 8
16 8
56 28
56 28
56 28
56 28
63 252
63 252
60 60
60 60
56 28
56 28
16 8
16 8
16 a
16 8
16 8
16 8
28 56
28 56

makes a convenient test to determine when one second has elapsed. Likewise if
T IMER is set to 225 with the SELECT key, after one-ha lf second location 19 wou ld
be incremented. T he"test at line 210, IF PEEK(19)=0 THEN 344, skips putting a new
block on the screen and updating the scoring timer unless the proper timing interva l
has elapsed .

T here are two pointer arrays, L(10) and R(1 0), that keep track of the inside wall
boundaries closes t to the player for each row. Initia lly each of the L(I) elements are
se t to II and each of the R(I) elements are set to 28. As blocks are added and
su btracted , these values begin to change by multiples of two. For example, if a block
were added to both the left and right sides of row 3, then L(3)=13 and R(3)=26. If
blocks were added just to the left side, eventually the sides would touch when L(3)=25
a nd R (3)=26. Since we don ' t wan t to add a block to a row that is already touching, we
could tes t if R(I)-L(I)= l. If it equa ls 1, then we choose a different random row and
random side LO try to place another block. Eventually, we find a place even if it is in
one of the rows to the rig ht or left of our p layer.

T he gun fighter can be maneuvered around the vacant area of the playfield by a

PLAYER MISSILE GRAPHICS 5

player using a joystick. When the joystick is positioned up or down, the man moves
vertica lly up or down by four units. When the joystick is pushed left, a left-facing
figure appears and moves two units leftward. Similarly, a right-facing figure
appears and moves rightward two units when the joystick is pushed right. The
routine also supports diagonal movements incorporating combinations of vertical
and horizontal movement. Each of the joystick movements sets the variable PLAY to
zero or one to indicate which player is to be placed on the screen through our
player-missile subroutine. The player that does not appear on the screen is placed
offscreen at X=lO. Again remember to set the old Y position equal to the new Y
position (YOLD=Y) just after the subroutine is used.

Collision Test

A collision between either player and the playfield #1 blocks has to be tested in two
different places in the game code. Obviously the test must be done just after the
player moves, but it also has to be done just after a new random block is placed on the
screen. A collision is detected in either case if the value 2 is set in player #O's collision
register 53252 ($D004) or player #1 's collision register 53253 ($0005). Since the bricks
appear to be crushing our man , it is effective to squash him by setting the player
width back to normal. When this happens, it appears that the man is compressed
towards the left. This occurs because the player image is always plotted from left to
right and begins at the value in the horizontal position register. The GTIA just
double plots player pixels when set to double width. The player struck by the left
wall remains in contact with the wall when it is compressed, but the player struck by
the right wall will shift to the left, or away from the wall, eight pixels. If we just
correct the X position by adding 8, it will remain in contact with the right wall and
look like i~ was also crushed by the block.

While a collision between a missile and a block isn't difficult to detect, the
program must determine which block was hit. Obviously, the block must be in the
row directly in line with the pistol. If you look at the diagram below, you will see that
the pistol is sixteen scan lines below the top of the man. Since the top left position of
the man is at X, Y, then YM = Y + 16. The bullet fires from the tip of the gun at XM = X
when facing left, and at XM = X + 8 when facing right. The movement routine
prevents the pistol from going beyond the top of the first row of blocks. When the
pistol is at the top of the first row of blocks (YM = 48) the man is at Y=32. Therefore,
the formula ROW =INT((YM -32)/ 16) determines which row the bullet travels. If we
substitute YM = Y+ 16 the expression simplifies to ROW = INT((Y -16)116). For
example, if the man is at the very top (Y=32) then his pistol is aimed along ROW =
INT (32-16)116 or ROW = 1 as expected. The bullet moves 2 pixels horizontally each
frame until it eventually collides with a block. The pairs of blocks are then removed
from the side the player faces. Since the player can't move while the bullet is in
motion, there is no ambiguity possible. For example, if the player (PLAY=O) were
facing left on row 2, and the left block pointer L(2)= 9 , then blocks 2,9 and 2,8 are
removed. You need only POKE a 0 into locations SCREEN+OFFSET and
SCREEN+OFFSET -1 where OFFSET = 40*ROW + L(ROW). Likewise, if a player

155

156

5 PLAYER MISSILE GRAPHICS

X,Y= location top left of man
Xm,Ym=location of gun
Ym=Y+16
Xm=X+10 when facing right
Xm=X when facing left
Row=INT Y-16 row gun is at

--r-j ----- 32 TOP SCREEN
I
I

----l 4r-
T
16 6 .lc

0
0 0

- 48 TOP BLOCK

1 iii -.J co

6 6
0 0
-.J iii co

~ ~

CM_ 206 BOTTOM BLOCK

were facing right (PLAY=I), the two blocks that need to be removed are at locations
SCREEN+OFFSETandSCREEN+OFFSET+ I where OFFSET = 40*ROW + R(ROW).

The game naturally ends when the player runs out of space. The stopped timer
indicates the time elapsed. At this point everything has to be reset for the next game.
The blocks on the screen are reset for the next game. The blocks on the screen are
reset slowly due to Atari BASIC's naturally slow implementation of the POKE
statement. This does give a breather between games. The timer is reset, then the
player. A button press is all that you need to begin a new game_

Extra Colors via a Display List Interrupt Subroutine

Some of the advanced programmers might find the display list interrupt subrou
tine to be of interest. It changes the color value in color register 1 ($2C5) each time
ANTIC taIls it via a display list interrupt. Since it keeps an internal counter called
PLACE for its X register index, it must know when to reset its pointer. It does this by
checking the value in the vertical line counter which increments by one for every two
scan lines. When it is equal to line 50, which is two scan lines beyond the beginning
of row #1, it resets PLACE to O. It loads PLACE into the X register, indexes into the
color table, and stores it in the color register. Now PLACE is incremented by one.
The next DLI just loads the next color in the table into the color register. The pushes
and pulls on the stack at the beginning and end of our subroutine save the current X
register and Accumulator so that they are restored upon return to your program.

PLAYER MISSILE GRAPHICS 5

SHOOT BLOCKS GAME

PUT BLOCKS ON SCREEN

1
INITIALIZE PLAYER

I
NO

TIMER AT EVEN SECOND? I

t
PUT NEW BLOCK

ON SCREEN AT RANDOM
ROW EVERY SECOND

J
UPDATE SCORE TIMER

I
I

COLLISION WITH NEW BLOCK?

t NO ~YES

READ JOYSTICK I
I

I END GAME J

l MOVE PLAYER J
J

INO

l TRIGGER PRESSED? J
--t YES

FIRE MISSILE & MOVE
BULLET IN DIRECTION

MAN IS FACING

J
INO l COLLISION WITH WALL? J

i YES

I REMOVE BLOCK J
l~

1

I COLLISION PLAYER 1 YES I END GAME I WITH BLOCK? I I
~ NO

J CLEAR COLLISION I I REGISTERS

157

158

5 PLAYER MISSILE GRAPHICS

10 REM - SHOOT BLOCKS GAME - BY JEFFREY STANTON
12 POKE 106,PEEK(106)-12
15 DIM CT(16),L(10),R(10)
20 GOTO 1000
199 REM PUT RANDOM BLOCK ON SCREEN ONCE EVERY SECOND
200 POKE 20,TIMER:POKE 19,0
210 IF PEEK(19)=0 TH EN 344
212 POKE 20,TIMER:POKE 19,0
21 3 REM UP TIMER & PRINT
214 IF TIMER=195 THEN 217
215 HSEC=HSEC+l
216 IF HSEC<2 THEN 220
217 SEC=SEC+l:HSEC=O
220 IF SEC<10 THEN 224
222 SECD=SECD+l:SEC=O:POKE 77,O:REH STOP ATRACT
224 IF SECD<6 THEN 228
226 MIN=MIN+I:SEC=O: SECD=O
228 POKE SCREEN+450,HIN+16:POKE SCREEN+452,SECD+16:POKE SCREEN+453,SEC+1 6
230 IF RND(0»0.5 THEN 270
235 RR=INT(RND(0)*10+1)
240 OFFSET=40'~RR+L(RR)+1
245 C=L(RR):D=R(RR):IF D-C=1 THEN 230
250 POKE SCREEN+OFFSET,1
260 POKE SCREEN+OFFSET+l,1
265 L(RR)=L(RR)+2
267 GOTO 344
270 RR=INT(RND(0)*10+1)
280 OFFSET=40*RR+R(RR) -1
285 C=L(RR):D=R(RR):IF D-C=1 THEN 270
290 POKE SCREEN+OFFSET, 1
300 POKE SCREEN+OFFSET-l,1
305 R(RR)=R(RR)-2
309 REM CHECK IF ANY NEW BLOCK HITS PLAYER
310 IF PEEK(53252» 1 THEN 320 :REM PLAYER 0 AGAINST PLAYFIELD
315 IF PEEK(53253) <>2 THEN 344:REM PLAYER 1 AGAINST PLAYFIELD
319 REM SQUASH PLAYER - SINGLE WIDTH
320 IF PLAY=O THEN 322
321 POKE 53257,O:POKE 53249,Xl+8:REM MOVES PLAYER 1 RT 8 UNITS
322 POKE 53256,0
325 FOR DE=1 TO 500:NEXT DE
330 GOTO 1500
343 REM READ JOYSTICK & CALCULATE NEW POSITION
344 Z=STICK(O)
345 IF Z=1 5 THEN 360
346 IF Z=5 THEN X=X+2:Y=YOLD+4:?LAY=1
347 IF Z=7 THEN X=X+2:PLAY=l
348 IF Z=6 THEN X=X+2 :Y=YOLD-4:PLAY=1
349 IF Z=14 THEN Y=YOLD-4
350 IF Z=10 THEN Y=YOLD-4:X=X-2:PLAY=0
351 IF Z=11 THEN X=X-2:PLAY=0
352 IF Z=9 THEN Y=YO'"D+4 :X=X-2:PLAY=0
353 IF Z=13 THEN Y=YOLD+4
359 REM SET UP CORRECT PLAYER PLOT & CHECK DOESN 'T EXIT SCREEN
360 IF Y>32 THEN 364
362 Y=32 :GOTO 368
364 IF Y<191 THEN 368
366 Y=190
368 IF X>46 THEN 372
370 X=46:GOTO 380
372 IF X<207 THEN 380
374 X=206

PLAYER MISSILE GRAPHICS 5

380 IF PLAY=l THEN XO=1 0:X1=X:GOTO 384
382 XO=X:Xl=lO
384 A=USR(1536,0,30,YOLD,Y,XO)
386 A=USR(1536,1,30,YOLD,Y,X1)
390 YOLD=Y
392 REM CHECK IF PLAYER HITS ANY BLOCK AFTER MOVE
394 IF PEEK(53252»1 THEN 398:REM PLAYER 0 AGAINST PLAYFIELD 1
396 IF PEEK(53253)<>2 THEN 410:REM PLAYER 1 AGAINST PLAYFIELD 1
397 REM SQUASH PLAYER - SINGLE WIDTH
398 IF PLAY=O THEN 322
399 POKE 53257,0:POKE 53249,X1+8:REM MOVES PLAYER 1 RT 8 UNITS
400 POKE 53256,0
402 FOR DE=l TO 500:NEXT DE
405 GOTO 1500
409 REM FI RE MISSILE
410 IF STRIG(O)<>O THEN 600
411 FOR L1=10 TO 4 STEP - 0.25
412 SOUND 0,10,0,L1:NEXT L1
413 POKE 77,0
415 ROW=INT«Y-16)/16)
420 IF PLAY=O THEN 470
430 XM=X+10:YM=Y+16
435 FOR J=l TO 100
440 XM=XM+2
445 A=USR(1536,4,2,YMOLD,YM , XM)
446 YMOLD=YM
448 IF XM>206 THEN 597
450 IF PEEK(53248»0 THEN 500
455 NEXT J:GOTO 597
470 XM=X:YM=Y+1 6
475 FOR J=l TO 100
480 XM=XM- 2
485 A=USR(1536,4,2, YMOLD,YM , XM)
486 YMOLD=YM
488 IF XM<47 THEN 597
490 IF PEEK(53248»0 THEN 500
495 NEXT J:GOTO 596
499 REM TO REMOVE SHOT BLOCK
500 ROW=INT«Y-16)/16)
502 FOR L1=15 TO 0 STEP - 0 .5
503 SOUND 0,20,2,L1:NEXT L1
505 POKE 53278,0:REM CLEAR COLLISION REGISTER
510 IF PLAY=l THEN 560
520 C=L(ROW)
525 IF C=-l THEN 600
530 OFFSET=40*ROW+C
540 POKE SCREEN+OFFSET,O
550 POKE SCREEN+OFFSET-1, 0
554 L(ROW)=L(ROW)-2
555 POKE 53278,0:YM=5
556 A=USR(1536,4,2,YMOLD,YM,10) :REM REMOVE MISSILE TO EDGE
557 YMOLD=YM:GOTO 600
560 C=R(ROW)
565 IF C=40 THEN 600
570 OFFSET=40*ROW+C
580 POKE SCREEN+OFFSET,O
590 POKE SCREEN+OFFSET+l ,O
595 R(ROI4) =R (ROW)+2
596 POKE 53278,0:YM=5
597 A=USR(1536,4,2,YMOLD,YM,10) :REM REMOVE MISSILE TO EDGE
598 YMOLD=YM

159

160

5 PLAYER MISSILE GRAPHICS

600 GOTO 210
1000 CB=PEEK(106):CHRSET=CB*256
1005 PM=PEEK(106)+4:PMBASE=PM*256
1010 GRAPHICS 1+16
1020 DLIST=PEEK(560)+PEEK(561)*256
1030 REM CHANGE DISPLAY LIST TO ANTIC 5
1040 FOR 1=0 TO 19
1050 READ A:POKE DLIST+I,A:NEXT I
1052 REM POKE IN PM ROUTINE
1053 FOR 1=0 TO 150:READ X:POKE 1536+I, X:NEXT I
1055 REM POKE IN PM CLEAR ROUTINE
1056 FOR 1=0 TO 25:READ X:POKE 1696+I,X:NEXT I
1059 REM POKE IN HOR DISPLAY LIST INTERUPT ROUTINE
1060 FOR 1=0 TO 41:READ X:POKE 1728+I,X:NEXT I
1070 FOR L1=0 TO 511:POKE CHRSET+L1,PEEK(57344+L1):NEXT L1
1075 REM REWRITE 1ST CHARACTER; NOTE 1ST CHARACTER IS NOT THE OTH CHARACTER
1080 FOR C2=CHRSET+8 TO CHRSET+15:POKE C2, 170:NEXT C2
1139 REM SET UP SCREEN
1140 SCREEN=PEEK(88) +PEEK(89)*256
1150 FOR R=1 TO 10:REM OTH ROW EMPTY
1160 FOR C=O TO 11
1170 OFFSET=40*R+C
1180 POKE SCREEN+OFFSET,1
1190 NEXT C
1200 FOR C=28 TO 39
1210 OFFSET=40*R+C
1220 POKE SCREEN+OFFSET,1
1230 NEXT C:NEXT R
1232 REM READ TIME DATA LINE
1234 FOR 1=0 TO 13: READ A:POKE SCREEN+440+I,A:NEXT I
1236 TIMER=195:HSEC=0
1240 FOR 1=1 TO 10
1250 L(I)=II:R(I)=28:NEXT I
1260 POKE 756,CB
1265 POKE 512,192:POKE 513,6:REM VECTOR TO CODE LOCATION FOR DLI
1266 POKE 54286,192:REM ENABLE DISPLAY LIST INTERUPT
1270 REM ACTIVATE P/M
1280 PLAY=l
1290 SETCOLOR 2,0,0
1300 POKE 559,62:REM SET DMACTL - SINGLE LINE
1302 POKE 53277,3:REM SET GRACTL -PLAYERS&MISSILES
1310 A=USR(1696 ,PMBASE)
1320 POKE 53256,1:POKE 53257, I: REM PLAYERS DOUBLE WIDTH
1325 POKE 53260,1:REM MISSILE 0 DOUBLE WIDTH
1330 POKE 704,216:POKE 705,216:REM PLAYER COLORS
1335 POKE 54279,PM:REM TELL ANTIC PMBASE
1340 POKE 1686,PM:REM POKE HI BYTE PMBASE INTO SUBROUTINE
1350 Y=50:YOLD=50:XO=10:X1=125:X=125
1359 REM READ PM DATA INTO STORAGE AREA
1360 FOR 1=0 TO 29
1370 READ VAL:POKE PMBASE+I,VAL:NEXT I
1380 FOR 1=0 TO 29
1390 READ VAL:POKE PMBASE+64+I,VAL:NEXT I
1400 REM SELECT KEY CHANGES LEVEL & START BEGINS GAME
1401 REM TIMER=195 SLOW 1 SEC/BLOCK
1402 REM TIMER=225 FAST 1/2 SEC/BLOCK
1403 REM * MARKS DIFFICULT LEVEL
1405 IF PEEK(53279) <>5 THEN 1420
1410 IF TIMER=195 THEN TlMER=225:POKE SCREEN+440,10:GOTO 1420
1415 IF TlMER=225 THEN TlMER=195:POKE SCREEN+440,0

1420 IF PEEK(53279)=6 THEN 1450
1425 FOR DE=l TO 10:NEXT DE:GOTO 1405
1450 GOTO 200
1499 REM RESET SCREEN FOR REPLAY
1500 FOR R=l TO 10
1510 FOR C=O TO 11
1520 OFFSET=40*R+C
1530 POKE SCREEN+OFFSET,l
1540 NEXT C
1550 FOR C=12 TO 27
1560 OFFSET=40*R+C
1570 POKE SCREEN+OFFSET,O
1580 NEXT C
1590 FOR C=28 TO 39
1600 OFFSET=40*R+C
1610 POKE SCREEN+OFFSET,l
1620 NEXT C:NEXT R
1630 FOR 1=1 TO 10
1640 L(I)=11:R(I)=28:NEXT I

PLAYER MISSILE GRAPHICS 5

1650 REM RESET PLAYER TO DOUBLE WIDTH AT CENTER
1670 POKE 53256,1:POKE 53257,1:REM DOUBLE WIDTH
1680 XO=10:Xl=125:Y=50:PLAY=1:X=125
1685 HSEC=O:SEC=O:SECD=O:MIN=O
1687 POKE SCREEN+450,MIN+16:POKE SCREEN+452,SECDt16:POKE SCREEN+453,SEC+16
1690 A=USR(1536,0,30,YOLD,Y,XO)
1700 A=USR(1536,1,30,YOLD,Y,Xl)
1705 POKE 53278,0:REM CLEAR COLLISION
1710 GOTO 200
1999 REM DISPLAY LIST DATA
2000 DATA 112,112,112,69,128,145,133,133,133,133,133,133,133,133,133,133,7,65,96,145
10000 REM PLAYER SUBROUTINE DATA
10005 DATA 104,162,0,104,104,157,145,6,232,224,5,208,246,173,149,6,174
10006 DATA 145,6,157,0,208,173,150,6
10010 DATA 133,213,24,105,4,133,207,173,145,6,201,4,176,47,170,189,133
10015 DATA 6,133,212,202,48,4,230,207
10020 DATA 208,249,173,147,6,133,206,169,0,168,145,206,200,204,146,6
10025 DATA 144,248,173,148,6,133,206,160,0
10030 DATA 177,212,145,206,200,204,146,6,144,246,96,56,233,4,170,198
10035 DATA 207,173,147,6,133,206,160,0,177
10040 DATA 206,61,137,6,145,206,200,204,146,6,144,243,173,148,6,133,206
10045 DATA 160,0,177,206,29,141,6,145
10050 DATA 206,200,204,146,6,144,243,96,0,64,128,192,252,243,207,63
10055 DATA 3,12,48,192,0,0,0,0,0,0
10069 REM CLEAR PM AREA ROUTINE DATA
10070 DATA 104,104,133,213,104,133,212,162,0,160,0,169,0,145,212,200
10075 DATA 208,251,230,213,232,224,8,144,240,96
10079 REM HOR DISPLAY LIST ROUTINE DATA
10080 DATA 72,138,72,173,11,212,201,32,176,5,169,0,141,223
10085 DATA 6,174,223,6,189,224,6,141,23,208,238
10090 DATA 223,6,104,170,104,64,0
10094 REM COLOR DATA IN ROUTINE
10095 DATA 68,148,20,242,36,180,116,52,164,100
10099 REM "TIME 0:00" DATA
10100 DATA 0,0,0,0,0,52,41,45,37,0,16,26,16,16
10105 REM PLAYER DATA
10110 DATA 24,24,126,126,24,24,56,56,24,24,8,8,28,28,28
10115 DATA 28,252,252,60,60,28,28,8,8,8,8,8,8,56,56
10120 DATA 24,24,126,126,24,24,28,28,24,24,16,16,56,56,56
10125 DATA 56,63,63,60,60,56,56,16,16,16,16,16,16,28,28

161

l62

5 PLAYER MISSILE GRAPHICS

Space War Game

Space War, the first game with a fully steerable spaceship, was developed at MIT.
While most of the newer computer owners won't remember this game, practically
everyone is famili ar wi th Asteroids. Most versions of this game have a fully steerable
spaceship that can be thrust in the direction that it is headed. Although some
versions invoke an automatic deceleration mode, some Asteroid games require the
player to turn his ship around so that it thrusts in the opposite direction to slow
down.

Dynamics of Motion with Acceleration

We demonstrated earlier in this chapter that objects move in the direction of their
velocity vector. An object's new position is its old position plus its change in
position due to velocity.

Using the Atari's screen coordinate system for the example above, VY is negative
and VX is positive. Therefore,

x = X + VX
y=Y+(-VY)

While the velocity vector may remain constant for many animation cycles, so that
a ship will continue to move in the same direction, sooner or later a new velocity
vector will be input to change th e object's course. This new velocity is the vector sum
of the old velocity vector and the new velocity vector.

Those readers who have taken Physics will recall that the velocity of a body in
motion changes due to ex ternal forces on it while it is in motion. In spaceships, that
force is thrust. Thrust ca uses an acceleration of the object's mass as shown in the
equation.

When thrust is applied to a spaceship, it accelerates. If a ship is light and has a big
engine with considerable thrust, it will accelera te quickly. But if it is heavy, it will
accelerate much slower. Acceleration is essentially caused by a change in the object's
velocity if you ignore the object 's mass.

Unless you are doing an actual simulation, in which the values of thrust or force
and an object's mass are important, only acceleration values need to be considered.
Suitable values for arcade games are small and scaled, so that objects don't move fast
relative to their size, or fly off the screen in the blink of an eye.

If we consider a spaceship that is in motion for three frames, then thrust only
during the fourth frame, it will change direction depending on the vector sum of its
old and new velocity vectors. This is illustrated below. The applied thrust is straight

PLAYER MISSILE GRAPHICS 5

X4. Y4

VNEW

y

t

x
upwards, so that VX = 0 and VY = - 2. The ship's new velocity vectors for each
direction are calculated as follows:

VX = VX(old) + .1VX = 2 + 0 = 2
VY = VY(old) + .1VY =-1+(-2) =-3

Likewise, the ship's new position is equal to its old position plus its change in
position due to velocity for that animation frame. This breaks down into compo
nents for the X and Y directions.

X = X(old) + VX
Y = Y(old) + VY

The ship's new velocity vector causes it to move two units in the X direction and
three in the negative Y direction during each frame until a new thrust vector is
applied. The resultant position can be summarized in the table below .

FRAME X Y .1VX .1VY

0 10 100 2 -1
1 12 99 2 -1
2 14 98 2 -1
3 16 97 2 -3 Thrust applied here
4 18 94 2 -3
5 20 91 2 -3

Now, when the acceleration on an object is sustained over many animation
frames, the increase in velocity is cumulative. For example, if thrust were applied to
a stationary object in the positive X direction with a force of 1 unit/ frame, the new
VX would increase from zero by units of one for each animation frame.

163

164

5 PLAYER MISSILE GRAPHICS

CYCLE VX X CYCLE VY Y

0 0 0 0 0 0
I I I I 2 2

VX=I 2 2 3 Similarly VY=2 2 4 6
3 3 6 3 6 12
4 4 10 4 8 20

Our example makes it clear that if you accelerate for too many animation frames,
the spaceship will be moving too fast. A limit should be set on the velocity vector for
both directions. Just what the limit should be depends on the effect you wish to
achieve. Obviously, if your animation rate is that of VBLANK, 60 frames per second,
a ship velocity of 5 units/ cycle will race across the screen in one-half second.

Joystick Routine

A joystick will control the ship's direction in our game. Pushing to the left or right
rotates the ship to one of eight directions. Pushing up thrusts the ship. The joystick
is read in the VBLANK routine every 1160th of a second. While a Machine language
subroutine is more than equal to the task of keeping up with the update, its speed
creates a small problem. If a player turns his ship by pushing left or right on his
joystick, the ship will spin rapidly , making 118 of a turn every 1/ 60 of a second. That
translates to 7 and 1/ 2 turns per second, a speed that is obviously uncontrollable.
The joystick must be read less often, say every sixth VBLANK cycle if the ship is to
turn slowly enough to steer.

Machine language joystick routines are inherently simpler because only four bit
positions for up, down, left and right, need to be tested. Diagonals are usually
ignored because they nearly always represent combinations of commands. For
example, a diagonal up and right command in our game means thrust while turning
right. The joystick read subroutine will detect the bit pattern twice, once when
testing the up bit to determine if it should reset the velocity, and a second time when
testing the right bit to determine if it should turn the ship. The bit pattern is as
follows .

X X X

128 64 32

X

16

RIGHT LEFT DOWN UP

8 4 2

All of the bits are normally set when the joystick is centered or in the neutral position
(I I I I) . When the joystick is pushed in any direction its particular bit position is
turned off, as illustrated in the diagram below.

To test a particular bit position you only need to AND it with that bit. For
example, to test if the left bit is turned off:

PLAYER MISSILE GRAPHICS 5

1110

101O~ /0110
1011 1111 0111

1001/ ~0101
1101

o 0 0 0 1 0 1 0 Diagonal left & up
00000 1 00 AND #$04

000000 0 0 Result = 0

The result is zero if the bit is turned off when the joystick is being pushed in that
direction. If the joystick were in the neutral position, the third bit would be on, and
the result after the AND operation would be non-zero. When the result is zero we
want to decrement DIR, the ship's direction, and make sure that if it becomes
negative ($FF) it is reset to #$07. The code is as follows . All of the code is indexed with
the player number in the X register.

CHKLF

.1
CHKRT

LDA STICK,X
AND #$04
BNE CHKLF
DEC DIR,X
LDA DIR,X
CMP #$FF
BNE .1
LDA #$07
STA DIR,X
JMP CHKFD
LDA STICK,X

;READ JOYSTICK
;LEFT BIT
;BRANCH IF NOT ZERO
;DECREMENT THE SHIP'S DIRECTION
;CHECK IF NEGATIVE

;SET DIR=7

;CAN'T BE RIGHT IF PUSHED LEFT

Pushing forward on the joystick thrusts the spaceship. ANDing the joystick value
with #$01 tests the up bit. If the result is zero, the joystick has been pushed up. The
acceleration or thrust vector depends on the ship's direction. If the ship points to the
right, DIR = 2, then VXT = 1, and VYT = o. If the ship points diagonally upward and
to the left, DIR = 7, then VXT = -1, and VYT = -1.

165

5 PLAYER MISSILE GRAPHICS

JOYSTICK

CHKRT.--__I... __ ---.

GET X(DIR) THRUST VECTOR

ADD VX (OLD VELOCITY)

GET Y(DIR) THRUST VECTOR

ADD VY OLD VELOCITY

166

PLAYER MISSILE GRAPHICS 5

Ship's Direction and Velocity Vectors

Note that many of our ship's directions produce negative velocity values, while
others produce positive values. Separate routines are required for adding and
subtracting in Machine language. BASIC, however, just adds a negative number (X =
5+ (-1)). That's the clue. Adding a negative number is exactly the same as adding a
positive number in Machine language. The difference is that negative numbers, like
-1, are represented by the two 's complement which for -1 is $FF. There is a limit for
signed numbers of + or -127, because the BMI instruction tests the carry bit and
considers the value if set. With the simplification of our thrust vector addition
problem, we can construct a table of velocity vectors for each DIR value.

TRUST VECTOR

DIR 0 1 2 3 4 5 6 7

VTX 00 01 01 01 00 FF FF FF

VTY FF FF 00 01 01 01 00 FF

The equations for the ship's two velocity vector components are as follows:

VXP = VX(old) + VTX(DIR)
VYP = VY(old) + VTY(DIR)

A speed brake can be incorporated into the algorithm to prevent the velocity from
exceeding a preset value. This would be analogous to wind resistance on a fast
moving automobile. It prevents a vehicle's speed from increasing infinitely. I choose
a maximum velocity of 5 units per frame. It is based on keeping the animation
smooth and the speed in bounds. The code for the X direction is as follows:

.5

.6

LDA DIR,X
TAY
CLC
LDA VTX,Y
ADC VX
CMP #$FA
BNE .5
LDA #$FB
CMP #$06
BNE .6
LDA #$05
STA VX
STA VXP,X

;GET PLAYER DIR

;GET X(DIR) THRUST VECTOR
;ADD OLD VELOCITY VECTOR
;IS IT -6?

;CLIP TO -5

;CLIP TO 5

;STORE NEW SHIP VELOCITY IN X DIRECTION

167

168

5 PlAYER MISSILE GRAPHICS

Addressing the Correct Shape Table

Now that we can control our ship in eight directions, we need shape tables for each
of these directions. That m eans eight separate shapes, each twelve bytes long. The
plot subroutine that places the shape in the player-missile memory area is virtually
the same as that used in our player-missile subroutine discussed earlier in the
chapter.

The zero page pointers to our shape and to its eventual storage location in
player-missile graphics memory are set up in a subroutine called PLOTSETO for
player #0 and PLOTSETI for player #1. Since our drawing routine takes the
direction into consideration in order to obtain the correctly rotated shape from our
shape table, we can find the correct low byte of the shape by the following formula:

SHPL = SHPLO(DIR)

The shape number DIR, which is a lso our direction, is placed in the Y register so
that we can find the low byte pointer to our shape stored in a table called SHPLO.
Each of the values in that table are twelve bytes apart starting at #$00. The high byte
is constant for all shapes.

LDY DIR
LDA SHPLO,Y
STA SHPL
LDA /SHAPEO
STA SHPH

;VALUE FOR DIRECTION OF ROTATED SHAPE
;AS INDEX TO PROPER LOW BYTE OF SHAPE
;STORE LOW BYTE POINTER IN ZERO PAGE
;HIGH BYTE
;STORE HIGH BYTE IN ZERO PAGE

SHPLO
SHAPE

o $00 $4000 oth Shape 6

$OC $400C 1 st Shape 6.

$16 $4018 2nd Shape C>

$24 $4024 3rd Shape
L....--

-----,r 23
Y REG =

DIR

• • • •
• • • •
• • • •

7 $54 $4054 7th Shape \/

PLAYER MISSILE GRAPHICS 5

If the ship were turned so that it was pointing right, then DIR = 2 and SHPLO(2) =
$18. This low byte of the shape table is stored as SHPL. The drawing routine will
now p lot the second shape from our shape table.

Smoothing the Ship'S Movement

Recall tha t when we updated our ship's position in our last BASIC example,
movemen t wasn't very smooth because of the slow animation frame rate. Poten
tia lly, we face a very similar problem here because the ship's velocity vector that
controls its next posi tion is only updated every sixth frame. If the ship's posi tion is
updated in the same loop as the ship's velocity, it will appear to have very jerky
movement, sometimes moving as much as five pixels per frame. It would be better to
move the ship in smaller increments more often, even as fast as the scan rate of sixty
times per second. Of course, at slower velocities the ship would have to be moved less
often. The trick is to control the rate.

If the ship were moving in a direction at full speed, VX = 5, we would wan t to
update the position every frame, but if the ship were moving slowly, VX = 1, we
would want to update the screen every fifth or sixth cycle. This means that we should
skip plotting the ship at its new posi tion un til a number of frames has passed. We
cou ld use a counter called SKFLAG to check when we should plot. Naturally, it
wou ld be different for each velocity and could be stored in a lookup table for easy
access. Its values would nearly be the reciprocal of the velocity. At VXP = 5 we would
want to replot each frame so SKFLAG = 1, and when VXP = 1 we would wan t to
replot every fifth or sixth cycle or SKFLAG = 6. The relationship between the ship's
movement and its actual velocity VXP isn ' t exactly linear. If you look in the table
you will notice tha t it is fairly linear at slow speeds, but jumps from twenty pixels
every sixty frames at VXP = 3, to thirty pixels every sixty frames at VXP = 4, to a
whopping sixty pixels every sixty frames at VXP = 5. Fortunately, this is only a game,
and the discrepancy is not noticeable.

IN DEX 0 1 2 3 4 5 6 7 8 9 10

SKFLAG 01 02 03 04 06 06 06 04 03 02 01

VELOCITY -5 - 4 - 3 - 2 -1 0 1 2 3 4 5
VXP o r VYP F(FB) (FC) (FD) (FE) (FF)

MOVEMENT IN
60 20 30 15 10 0 10 15 20 30 60

60 FRAMES

169

170

5 PLAYER MISSILE GRAPHICS

1 2

2

3

4

5 2

6

7

8

9 2

10

11

12

13 2

3

J
I > -- - -

SKFLAG=4
So moves 2

_ pixels every
4th frame

I 3

3

4

4

4

>

\

SKFLAG=2
So moves 3
pixels every
3rd frame

- THRUST IN Y DIRECTION

~
SKFLAG=2
So moves 4
pixels every
2nd frame

The code that determines when the ship is to be moved and replotted for each
direction is quite simple. The number of frames to skip, SKFLAG, is obtained from
our table based on the ship's current ve locity and direction. Five has been added to
the velocity so that nega tive VXP, and VYP values can be indexed, too, using the Y
register. Counters for each axis, SCRCNTX and SCRCNTY, that keep track of the
number of frames elapsed since the last screen upda te, are incremented. They are
then compared against the values from our tabl e. When it matches, that counter is
reset to zero, and the player's position for that axis is updated and plotted. The code
for the X axis is listed below.

UPDATEX

.1

CLC
LDA VXP,X
TAY
LDA SKFLAG,X
INC SCRCNTX,X
CMP SCRCNTX,X
BGE .1
JMP EE
LDA #$00
STA SCRCNTX,X
LDA VXP,X

;LOAD PLAYER'S HORIZ. VELOCITY
;SO NEG #'S APPEAR IN TABLE TOO
;USE AS INDEX
;GET VALUE FROM TABLE
;INC. COUNTER FROM LAST UPDATE
;AT UPDATE TIME?

;NO! DON'T UPDATE
;RESET COUNTER

;BEGIN UPDATING PLAYER POSITION

PlAYER MISSILE GRAPHICS 5

r----------L----------~ NO

PLOT SHIP AT NEW POSITION

TOEE

Each time the player's position is updated in either axis, the player moves one
pixel position in the proper direction. If the velocity is negative, the player moves
either to the left or up depending on which axis is being updated. If the velocity is
positive, the player moves down or to the right. Remember we decided to move the
ship only a single pixel at a time because moving the player in finer increments at
higher frame rates produces smoother animation than discontinuous jumps at slow
frame rates. The ship 's overall velocity is the same, but the ship doesn't strobe as it
moves.

The screen has a wraparound feature in this game. This means that when a ship
reaches the right side of the screen and exits, it reappears on the left side with its
velocity and direction the same. This is true in the vertical direction, too. A ship
leaving the top of the screen will reappear at the bottom. All that is needed is a simple
check to determine if the ship has reached the screen boundary. If it has, its position
is reset to the opposite screen boundary. Since the boundaries of the play field screen
don't quite reach the edges of the television set, we extended the screen boundary
coordinates by eight pixels in all directions. The ship's vanishing point should be
nearly at the edge. If a ship is traveling to the right, it will vanish at X = 216 ($D8) and
reappear at X = 40 ($28). Don't confuse player-missile coordinates with the screen
coordinates used in PLOT and DRA WTO statements. The top left corner of the
playfield in player-missile coordinates is X = 48, Y = 32. Coordinate 0,0 is offscreen.

Missile Movement

The missiles in this game are controlled entirely by a separate subroutine. The
subroutine needs only the player number inputted in the X register to operate
correctly. It decides if a new missile can be fired or if one is already on the screen, then
moves the missiles appropriately. There is no need to read a joystick for missile

171

172

5 PLAYER MISSILE GRAPHICS

direction as in our earlier game, because the missile fires and moves in the direction,
DIR, that our ship faces. Also we don't need to worry about updating the ship's
position while in the missile subroutine, since the main program loop takes care of
this.

The subroutine's initial decision is whether the joystick trigger STRIGO,X
($284,X) is being pressed. When the button is pressed, the subroutine returns a zero,
and, if untouched, a one. There are also timers TMIS,X for each missile, to count the
number of screen cycles that a missile travels. The actual values are unimportant,
except whether they are zero or not. When TMIS,X is greater than zero, the missile is
already on the screen and merely has to be moved while checking for screen edge
boundaries. However, if TMIS,X is zero, the missile has to be placed initially at the
ship's position, and the firing sound started.

Since we only have one missile per player, we can't have rapid fire missiles or more
than one missile on the screen at a time. Games that allow a train of five or six missile
tracks on the screen at one time are using character set animation or bit mapping, not
missiles. We could have allowed the player to reset his missile track each time he
pressed the trigger, but instead we decided that you couldn't refire until the missile
reached the screen's edge or hit its target. Since many players might hold the trigger
down indefinitely we had to test in both branches for whether the missile was already
on the screen. If we had omitted this test, the missile track would reset each time a
player pressed the trigger. If you wish to change the game to this mode of firing, just
remove the test.

TRIGGER
.1

NO NO
PRESSED? IS TMIS>O?

0= ON, 1 = OFF

YES
.2

I YES MOVE MISSILE
IS TMIS>O I

IN PROPER
DIRECTION

START GUN SOUND
HAS MISSILE YES
HITEDGE OF

~ SCREEN?
INC TMIS (TIMER) t NO

ERASE MISSILE
INC TMIS FROM SCREEN

ERASE OFLD ERASE (ACTUALL Y PLOT
MISSILE & PUT OFF SCREEN

AT SHIP POSITION ERASE MISSILE
& RE PLOT I

TMIS = 0

EXIT T

PLAYER MISSILE GRAPHICS 5

Once a missile is launched, it must continue to move in the initial direction,
regardless of a change in course of the mother ship. We accomplish this by storing its
initial direction at launch DIR,X as DIRMO,X. This direction is used to look up the
missile velocity vectors VTX and VTY from tab les. The position is updated by the
following formula:

XMIS(new) = XMIS(old)+VTX(DIRMO)
YMIS(new) = YMIS(old)+VTY(DIRMO)

The code is as follows:

.2 LDY DIRMO,X
LDA VTX,Y
ASL
CLC
ADC XMISO,X
STA XMISO,X
LDA VTY,Y
ASL
CLC
ADC YMISO,X
STA XMISO,X

;LOAD Y REG. WITH MISSILE'S DIRECTION
;LOOK UP X DIRECTION VELOCITY VECTOR
;DOUBLE VELOCITY VECTOR

;ADD MISSILE'S OLD X POSITION
;STORE NEW X POSITION
;LOOK UP Y DIRECTION VELOCITY VECTOR

;ADD MISSILE'S OLD Y POSITION
;STORE NEW Y POSITION

These missile shapes are not the square 2 by 2 blocks of our earlier example. They
are two pixels set vertically, horizonta lly, or diagonally in the direction of travel. A
chart of their shapes follows :

0

-7 • 1 • ~. 0 0 / 0 0
0 0

6--00· + ·00 2

() • • 0 ,0 0 0
5

0 ~3
+
4

MISSILE

#3 #2 #1 #0

rn OJ rn IT]
CD IT] UJ CD

I

DIRECTION \ DIRECTION
o 1 2 3

Ij~~~
02 01 03 02
02 02 00 01

457

Ijlj~~
DIRECTION

o 2 3

02
02

IB~IB~.
08
08

04
08

00
00

08
04

4 5 6 7

Ijlj~~
08 04 00 08
08 08 00 04

01
02

03
00

02
01

173

174

5 PLAYER MISSILE GRAPHICS

First, notice that each missile has a different set of numerical values. Missile shape
#0 uses the first two bits in the byte, and missile #1 uses the third and fourth bit
positions. Therefore, there is a shape table for each missile. The shapes are stored in
two-byte pairs for the two scan line high shapes. There is also an index to the low
byte to each of these shapes. They are in two tables called MISLO and MISLOI for
each missile set respectively.

The missile setup subroutine sets up the zero page pointers to the correct shape
and to the storage location in player-missile memory. This area is just below the
players or . 75K from the start of player-missile memory. In addition, the proper mask
for that player is stored as MASK.

Plotting the missile requires erasing the old missile first by ANDing the byte
containing all four missiles with the proper mask. This step erases only the desired
missile because the mask contains zeros in the missile bits to be erased and ones
elsewhere. We then plot the missile on the screen by ORAing with a byte in the
missile memory that mayor may not contain other missiles. For example, if we wish
to erase missile # 1 in a byte that contains missile #0, we AND it with the mask $FG

00001010 MEMORY
AND 1 1 I I 1 0 0 0 MASK

00 0 0 1 000 RESULT

If we move missile #1 to a scan line that contains missile #3 then we ORA its shape
with the byte in missile memory for that scan line.

ORA

#3

00000100 MEMORY
00000010 SHAPE

o 0 0 0 0 I 1 0 RESULT

#2 #1

I I 1

II
I

The code is shown below:

#0 ERASE

=,.= ".....1--.1_ 0 0 0 0 1 0 1 0
(M'D)11111100

= •••• = •••• • •••.••• c;LI)--I1 0 0 0 0 1 0 0 0

"""",=,,""_-, 0 RAW

~ ••• ""';;""'·· ••••• ~L-.----JI- 0 0 0 0 0 1 0 0
~ ___ ~(ffiA.) 0000001 0

"'" ••• ~ ••••••••• ~IIL----JI 0 0 0 0 0 1 1 0

MPLOT
.1

.2

PLAYER MISSILE GRAPHICS 5

LDY #$00
LDA (SHPMOL),Y;LOAD OLD SHAPE
AND MASK ;MASK WITH PROPER MISSILE BEING MOVED
STA (SHPMOL),Y;STORING IT DOESN'T ERASE OTHER MISSILES
INY ;NEXT BYTE
CPY #$02 ;MISSILE 2 BYTES HIGH
BLT .1
LDY #$00
LDA (SHPL),Y
ORA (SHPML),Y
STA (SHPML),Y
INY
CPY #$02
BLT .2

;GET BYTE FROM CORRECT SHAPE TABLE
;ORA AGAINST OTHER MISSILES ON SCAN LINE
;PUT IN MISSILE AREA
;NEXT BYTE

Derez Style Explosion

There are many types of explosions suitable for destroying a killed spaceship. One
of the more effective methods is to de-rez the object. This technique makes the object
appear to slowly disintegrate by randomly flickering the individual pixels until
most of the pixels vanish.

The trick is to take the ship and store it into a temporary shape table called
DEREZ. We load a random number, then ORA it with another random number to
insure that we don't get a number with a few of bits "on". We then AND it with the
shape in DEREZ and store it there. If we then AND the original ship's shape with
this value three times, we get a significantly degraded image of the ship. We then
ORA this with our degraded temporary shape in DEREZ so that we get a less
degraded shape than we would get if we performed only the first of the two previous
steps. Since we wanted this effect to last at least 30 cycles or half a second, the routine
was largely experimentally determined. The image begins to degrade slightly during
each cycle but isn't quite steady. Any byte's image can improve slightly but
randomly in any frame, but the overall effect is continued degradation. The loop is
48 cycles long, but the image usually vanishes completely after 30 cycles. An example
of two separate passes for a single byte is shown below.

COLLISION HITCLR

TEST PLAYER 0 AGAINST PLAYER 1

NO

TEST PLAYER 1 AGAI NST PLAYER O.

NO

TEST MISSILE 0 AGAINST PLAYER 1

NO

TEST MISSILE 1 AGAINST PLAYER 0

175

5 PLAYER MISSILE GRAPHICS

DEREZ EXPLOSION

DEREZ

I I I I I I I
I LDA (SHPL),Y

STA DEREZ

1ST PASS 2ND PASS

I I I I I I I LDA $D20A I I I I I I

I I I I I I lORA $D20A I I I I I I

I I I I I I I RESULT I I I I I

I I I I I I I AND DEREZ I I I I I

I I I STA DEREZ

I I I I I I I LDA (SHPL),Y I I I I
I I I I I I I AND $D20A I I I I
I I I I I I I RESULT I I I I
I I I I I I I AND $D20A I I I I
I I I I I I RESULT I I I
I I I I I I AND $D20A I I I
I I I I I I I I RESULT I I I I I
I I I I I I I lORA DEREZ I I I I I I I
I I I I I I I I STA IN P/ M AREA I I I I I I I

176

PLAYER MISSILE GRAPHICS 5

The explosion sound gives the effect of a slow rumble that slowly decreases in
volume. We are working with a fairly low frequency and a distortion of zero in
channel one and a distortion of 8 in channel 2. The use of two channels with these
distortion and frequency values was determined experimentally to produce the best
effect. ORing SBANG/ 4 with $EO gives us a range of frequencies $EO-$EF. These are
stored in AUDFI and AUDF2. Since both AUDCl and AUDC2 use the lower nibble
for volume control, the value for AUDCl can be obtained by ANDing the frequency
with #$OF to mask out $EO. Since the upper nibble is the distortion, then a distortion
of 8 can be obtained in AUDC2 by ORing AUDCl with #$80. The equivalent sound
routine in BASIC is as follows:

10 FOR SBANG=64 TO 0 STEP -1
20 X=INT(SBANG/4)
30 SOUND 0,224+X,0,X
40 SOUND 1,224+X,8,X
50 NEXT SBANG

Scorekeeping

The score line is written directly into GRAPHICS 1 (ANTIC 2) playfield memory
beginning at the top of the screen memory. These loca tions SCREEN to SCREEN+ 19
contain internal character code valves stored initially in a table called SCLINE.
During initialization they are moved into screen memory and the scoring digits,
SCREEN+7, SCREEN+8 (tens digit, ones digit) for ship #0 and SCREEN+18,
SCREEN+ 19 (tens digit, one 's digit) for ship #1 are updtated during the game. A
diagram showing the score line and its internal character data is illustrated below.

Internal
Characters

(HEX)
Decimal

Sc reen
+X

133128129130 1 03 111 1 00 110 110 1 00 1 00 133128129130 1 03 112 1 00 110 110 1

51 40 41 48 0 3 17 0 16 16 0 51 40 41 48 0 18 0 16 16

o 2

SH

I I I I
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P # 1 -0 0 S HIP # 2 - 0 0

177

178

5 PLAYER MISSILE GRAPHICS

Flow Chart & Game Code

OFFSET TO READ
ONE CYCLE LATER

YES UPDATE
SCORE

00010 *SPACE WAR GAME - BY .JEFFREY STANTON
00020 . OR $4000
00030 *ZERO PAGE EQUATES

OOFO: 00040 SHPL . EQ $FO
00F1: 00050 SHPH .EQ $F1
00F2: 00060 SHPML .EQ $F2
00F3: 00070 SHPMH .EQ $F3
00F4: 00080 SHPMOL .EQ $F4
00F5: 00090 SHPMOH .EQ $F5
00F6: 00100 SL . EQ $F6
00F7: 00110 SH .EQ $F7

00120 *PLAYER MISSILE EQUATES
D407: 00130 PMBASE .EQ $D407
8800: 00140 PDATA .EQ $8800
DOID: 00150 GRACTL .EQ $DOID
022F: 00160 DMACTL .EQ $22F
D008: 00170 SIZEPO .EQ $D008
D009: 00180 SIZEPl .EQ $D009
02CO: 00190 COLPMO .EQ $2CO
02C1: 00200 COLPM1 .EQ $2C1
DOOO: 00210 HPOSPO .EQ $DOOO
D001: 00220 HPOSPl . EQ $DOO l
D004: 00230 HPOSMO .EQ $D004
DOOS: 00240 HPOSMl .EQ $D005
OOCO: 00250 PMADR .EQ $CO
DOlE: 00260 HITCLR .EQ $DOIE

SUBTRACT
ONE SHIP

D008:
D009:
DOOC:

9400 :
9000:
02C4:
02C6:
02C8:
E45C:
E462:
0284:
0278:
D20A:
D200:
D201:
D202:
D203:

4000 :
4003 :
4006:
4009:
400C:
400F:
4012:
4015:
4018 :
401B:
401E:
4021 :
4024:
4027:
402A:
402D:
4030:
4033:
4036:
4039:
403C:
403F:
4042:
4045:
4048:
404B:
404E:
4051:
4054:
4057:
405A:
405D:
4060:
4063:
4066:
4068:
406B:
406E:
4070:
4073:
4076:
4078:

08 08 08
lC lC lC
3E 3E 22

PLAYER MISSILE GRAPHICS 5

00270 *COLLISIONS
00280 MOPL .EQ $D008
00290 M1PL .EQ $D009
00300 POPL .EQ $DOOC
00310 *MISC EQUATES
00320 NDLIST .EQ $9400 ;ADR OF NEW DISPLAY LIST
00330 SCREEN .EQ $9000
00340 COLORO .EQ $2C4
00350 COLOR2 . EQ $2C6
00360 COLOR4 .EQ $2C8
00370 SETVBK .EQ $E45C
00380 XITVBK .EQ $E462
00390 STRIGO .EQ $284
00400 STICK .EQ $278
00410 RANDOM . EQ $D20A
00420 AUDFI .EQ $D200
00430 AUDCl .EQ $D201
00440 AUDF2 .EQ $D202
00450 AUDC2 .EQ $D203
00460 *DATA

22 00 00 00470 SHAPEO .HS 0808081C1CIC3E3E22220000
00 00 01
OE IE 2E
04 04 08
00 00 00 00480 .HS 0000010EIE2E040408000000
00 00 00
70 3C 3F
3C 70 00
00 00 00 00490 .HS 000000703C3F3C7000000000
00 00 08
04 04 2E
IE OE 01
00 00 00 00500 .HS 00000804042EIEOEOI000000
00 22 22
3E 3E lC
lC lC 08
08 08 00 00510 .HS 0022223E3EIC1CIC08080800
00 00 08
10 10 3A
3C 38 40
00 00 00 00520 .HS 00000810103A3C3840000000
00 00 00
07 1E 7E
1E 07 00
00 00 00 00530 .HS 000000071E7E1E0700000000
00 00 40
38 3C 3A
10 10 08
00 00 00 00540 .HS 000040383C3AI0I008000000
00 OC 18
24 30 3C
48 54 00550 SHPLO .HS 000C1824303C4854
02 02 01
02 03 00
02 01 00560 MSHAPE .HS 0202010203000201
02 02 01
02 03 00
02 01 00570 . HS 0202010203000201
08 08 04

179

5 PLAYER MISSILE GRAPHICS

407B: 08 OC 00
407E: 08 04 00580 .HS 080804080COO0804
4080: 08 08 04
4083: 08 OC 00
4086: 08 04 00590 .HS 080804080COO0804
4088 : 68 6A 6C
408B: 6E 70 72
408E: 74 76 00600 MISLO .HS 686A6C6E70727476
4090: 78 7A 7C
4093: 7E 80 82
4096: 84 86 00610 MISL01 .HS 787A7C7E80828486
4098: 01 02 03
409B: 04 05 05
409E: 05 04 03
40A1: 02 01 00620 SKFLAG .HS 0102030405050504030201
40A3: 70 70 70
40A6: 47 00 90
.40A9: 02 02 00630 DLIST .HS 7070704700900202
40AB: 02 02 02
40AE: 02 02 02
40B1 : 02 02 00640 .HS 0202020202020202
40B3: 02 02 02
40B6: 02 02 02
40B9: 02 02 00650 .HS 0202020202020202
40BB: 02 02 02
40BE: 02 02 41
40C1: 00 94 00660 .HS 0202020202410094
40C3: 00 01 01
40C6: 01 00 FF
40C9: FF FF 00670 VTX .HS 0001010100FFFFFF ;THRUST VECTORS
40CB: FF FF 00
40CE: 01 01 01
40D1: ooFF 00680 VTY .HS FFFFOO01010100FF
40D3: 33 28 29
40D6: 30 03 11
40D9: 00 10 10
40DC: 00 00690 SCLINE .HS 33282930031100101000 ;SCORE LINE DATA
40DD: 00 33 28
40EO: 29 30 03
40E3: 12 00 10
40E6: 10 00700 .HS 00332829300312001010
40E7: DD DD 6B
40EA: 6B AA AA
40ED: E6 E6 00710 DERES .HS DDDD6B6BAAAAE6E6
40EF: 55 55 AA
40F2: AA 4A 4A
40F5: 35 35 00720 .HS 5555AAAA4A4A3535
40F7: 4A 4A 64
40FA: 64 92 92
40FD: 25 25 00730 .HS 4A4A646492922525
40FF: 11 11 48
4102: 48 00740 .HS 11114848

00750 *VARIABLES
4103: 00 00760 VX .DA #0 ;SHIP VELOCITY-HORIZ.
4104: 00 00770 VXl .DA #0
4105: 00 00780 VY .DA #0 ;SHIP VELOCITY-VERT.
4106: 00 00790 VYl .DA #0
4107: 00 00800 VXP .DA #0 ;SHIP VELOCITY-ALTERNATIVE
4108: 00 00810 VXPI .DA #0
4109: 00 00820 VYP .DA #0
410A: 00 00830 VYP1 .DA #0
41OB: 00840 XPMO .BS 1 ;CURRENT X POS SHIP

180

PLAYER MISSILE GRAPHICS 5

41OC: 00850 XPMl .BS 1
410D: OA 00860 YOLDPMO .DA #10 ;OLD Y POS SHIP
410E: OA 00870 YOLDPMl .DA #10
410F: 00880 YMISOLDO .BS 1 ;OLD MISSILE Y POS
4110: 00890 YMISOLDI .BS 1
4111 : 00900 YPMO . BS 1 ;CURRENT Y POS SHIP
4112: 00910 YPMl . BS 1
4113: 00 00920 DIR .DA #0 ; SHIP DIRECTION
4114: 00 00930 DIRI .DA #0
4115: 00940 DIRMO .BS 1 ;MISSILE TRAVEL DIRECTION
4116: 00950 DIRMI .BS 1
4117: 00 00960 COUNT .DA #0 ;COUNTER FOR JOYSTICK
4118: 00 00970 SCRCNTX .DA #0 ;SCREEN X COUNTERS
4119: 01 00980 SCRCNTX l .DA #1
411A: 00 00990 SCRCNTY .DA #0 ;SCREEN Y COUNTERS
411B: 01 01 000 SCRCNTYl .DA #1
411C: 01010 FLAG .BS 1 ;STICK BACK FLAG
411D: 01020 SKIPX .BS 1 ;CONTROLS RATE OF SHIP UPDATE - HORIZ.
411E: 01030 SKIPXl .BS 1
411F: 01040 SKIPY .BS 1 ;CONTROLS RATE OF SHIP UPDATE - VERT.
4120: 01050 SKIPYl .BS 1
4121: 01060 MASK .BS 1
4122: FC 01070 MASKO .DA #$FC ;MISSILE MASKS
4123: F3 01080 MASKI .DA #$F3
4124: 01090 XMISO .BS 1 ;HORIZ MISSILE POSITIONS
4125: 01100 XMISI .BS 1
4126: 01110 YMISO .BS 1 ;VERTICAL MISSILE POSITIONS
4127: 01120 YMISI .BS 1
4128: 01130 TMISO .BS 1 ;MISSILE TIMERS
4129: 01140 TMISI .BS 1
412A: 01150 SCOREOD .BS 1 ;DIGITS
412B: 01160 SCOREOT .BS 1 ;TENS
412C: 01170 SCOREID .BS 1
412D: 01180 SCOREIT .BS 1
412E: 01190 EXCOUNT .BS 1
412F: 01200 KILLO .BS 1 ;KILL FLAG
4130: 01210 KILLI .BS 1
4131: 01220 MBANG .BS 2 ;SOUND COUNTERS-MISSILES
4133: 01230 SBANG .BS 1 ;SOUND COUNTER
4134: 01240 DEREZ .BS 12 ;TEMP STORAGE DURING DEREZ ROUTINE

01250 START
01260 *SETUP DLIST

4140: A9 00 01270 LDA #$00 ; NORMAL WIDTH
4142: 8D 09 DO 01280 STA SIZEPI
4145: A2 00 01290 LDX #$00
4147: BD A3 40 01300 DLOOP LDA DLIST ,X
414A: 9D 00 94 01310 STA NDLIST,X
414D: E8 01320 INX
414E: EO 20 01330 CPX #$20 ;32 ELEMENTS
4150: DO F5 01340 BNE DLOOP
4152: A9 00 01350 LDA #NDLIST
4154: 8D 30 02 01360 STA 560
4157: A9 94 01370 LDA /NDLIST
4159: 8D 31 02 01380 STA 561

01390 *CLEAR SCREEN - lK
415C: A9 00 01400 CLRSCR LDA #SCREEN ;SETUP POINTERS TO CLEAR SCREEN
415E: 85 F6 01410 STA SL
4160: A9 90 01420 LDA /SCREEN
4162: 85 F7 01430 STA SH
4164: AO 00 01440 LDY #$00
4166: 98 01450 TYA
4167: A2 04 01460 LDX #$04

181

5 PLAYER MISSILE GRAPHICS

4169: 91 F6 01470 .2 STA (SL), Y
416B: C8 01480 INY
416C: 00 FE 01490 BNE .2 ;CONTINUE UNTIL OONE WITH 256 BYTES
416E: E6 F7 01500 INC SH ;00 NEXT PAGE
4170: CA 01510 OEX
4171: 00 F6 01520 BNE .2

01530 *INITILIZE SCORE LINE
4173: A2 00 01540 LOX #$00
4175: BO 03 40 01550 .1 LOA SCLINE, X
4178: 90 00 90 01560 STA SCREEN,X
417B: E8 01570 INX
417C: EO 14 01580 CPX #$14
417E: 00 F5 01590 BNE .1
4180: A9 00 01600 LOA #$00 ;ZERO OUT SCORE
4182: 80 2A 41 01610 STA SCOREOO
4185: 80 2B 41 01620 STA SCOREOT
4188: 80 2C 41 01630 STA SCORE10
418B: 80 20 41 01640 STA SCORElT
418E: A9 28 01650 LOA #$28 ;YELLOW LETTERS
4190: 80 C4 02 01660 STA COLORO
4193: A9 00 01670 LOA #$00 ;BLACK BACKGROUNO & BOROER
4195: 80 C6 02 01680 STA COLOR2
4198: 80 C8 02 01690 STA COLOR4
419B: A9 00 01700 RESTART LOA #$00
4190: 80 2E 41 01710 STA EXCOUNT
41AO: 80 2F 41 01720 STA KILLO
41A3: 80 30 41 01730 STA KILLI

01740 *INITILIZE P/M GRAPHICS
41A6: A9 88 01750 LOA #$88
41A8: 80 07 04 01760 STA PMBASE
41AB: A9 03 01770 LOA #$03 ;SET P/M GRAPHICS
41AO: 80 10 00 01780 STA GRACTL
41BO: A9 3E 01790 LOA #$3E ;ENABLE P/M OMA SINGLE LINE
41B2: 80 2F 02 01800 STA OMACTL

01810 *INITILIZE SHIP 0
41B5: A9 00 01820 LOA #$00 ; NORMAL WIDTH
41B7: 80 08 00 01 830 STA SIZEPO
41BA : A9 7A 01840 LOA #$7A ;PLAYER #0 122 BLUE-LUM 10
41BC: 80 CO 02 01850 STA COLPMO
41BF : A9 50 01860 LOA #$50 ; INITIAL POS SHIP X=72
41Cl : 80 OB 41 01870 STA XPMO
41C4: 80 00 00 01880 STA HPOSPO ; TELL ANTIC
41C7: A9 40 01890 LOA #$40 ;INITIAL POS SHIP Y=64
41C9: 18 01900 CLC
41CA: 69 25 01910 AOC #$25 ;32+CENTER PM SHAPE 5 BELOW TOP
41CC: 80 11 41 01920 STA YPMO

01930 *INITILIZE SHIP 1
41CF: A9 38 01940 LOA #$38 ;PLAYER #1 58 REO-LUM 8
4101: 80 C1 02 01950 STA COLPM1
4104: A9 AO 01960 LOA #$AO ;INITIAL POS SHIP X=144
4106: 80 OC 41 01970 STA XPMl
4109: 80 01 00 01980 STA HPOSP1
410C: A9 60 01990 LOA #$60 ;INITIAL POS SHIP Y=96
410E: 18 02000 CLC
410F: 69 25 02010 AOC #$25
41E1: 80 12 41 02020 STA YPM1

02030 *CLEAR P/M AREA
41E4: A9 00 02040 LOA #$00 ;POATAL
41E6: 85 CO 02050 STA PMADR
41E8: A9 88 02060 LOA IpOATA
41EA: 85 C1 02070 STA PMADR+1
41EC: AO 00 02080 LOY #$00

182

PLAYER MISSILE GRAPHICS 5

41EE: 98 02090 TYA
41EF: A2 08 02100 LDX #$08
41Fl: 91 CO 02110.3 STA (PMADR),Y
41F3: C8 02120 INY
41F4: DO FB 02130 BNE .3
41F6: E6 Cl 02140 INC PMADR+l ;NEXT 256 BYTES
41F8: CA 02150 DEX
41F9: DO F6 02160 BNE .3

02170 *SET VBLANK
41FB: A9 07 02180 LDA #07
41FD: A2 42 02190 LDX / FRAME ;HI BYTE VBLANK ROUTINE
41FF: AO 09 02200 LDY #FRAME ;LO BYTE
4201: 20 5C E4 02210 JSR SETVBK
4204: A9 00 02220 LDA #$00

02230 *READ STICK
4206: 4C 06 42 02240 FOREVER JMP FOREVER
4209: EA 02250 FRAME NOP

02260 *READ STICK EVERY 6 TIMES
420A: EE 17 41 02270 CHKSTK INC COUNT
420D: AD 17 41 02280 LDA COUNT
4210 : C9 05 02290 CMP #$05 ;READ STICK ONLY EVERY 6TH TIME
4212: FO 03 02300 BEQ .4
4214: 4C 28 42 02310 JMP PI

02320 *SETUP CALL TO JOYSTICK- PLAYER 0
4217: A2 00 02330.4 LDX #$00 ;PLAYER 0
4219: BD 07 41 02340 LDA VXP,X ;SET PLAYER'S NEW VELOCITY TO OLD VELOCITY
421C: 8D 03 41 02350 STA VX
421F: BD 09 41 02360 LDA VYP,X
4222: 8D 05 41 02370 STA VY
4225: 20 2C 43 02380 JSR JOYSTK

02390 *UPDATE X & Y POSITIONS PLAYER #0
4228: A2 00 02400 PI LDX #$00
422A: 20 A6 43 02410 JSR UPDATE
422D: 20 42 44 02420 .5 JSR PLOTSETO ;PLOT PLAYER 0
4230: 20 82 44 02430 JSR PLOT
4233: A5 F4 02440 LDA SHPMOL ;STORE AS OLD Y POS FOR NEXT CYCLE
4235: 8D OD 41 02450 STA YOLDPMO
4238: AD 17 41 02460 CHKSTKI LDA COUNT
423B: C9 06 02470 CMP #$06 READ STICK ONLY EVERY 6TH TIME
423D: FO 03 02480 BEQ .4
423F: 4C 58 42 02490 JMP P2

02500 *SETUP CALL TO JOYSTICK-PLAYER 1
4242: A2 01 02510.4 LDX #$01 ;PLAYER 1
4244: BD 07 41 02520 LDA VXP,X
4247: 8D 03 41 02530 STA VX
424A: BD 09 41 02540 LDA VYP,X
424D: 8D 05 41 02550 STA VY
4250: 20 2C 43 02560 JSR JOYSTK
4253: A9 00 02570 LDA #$00 ;RESET 4 CYCLE COUNTER
4255 : 8D 17 41 02580 STA COUNT

02590 *UPDATE X & Y POSITIONS PLAYER #1
4258: A2 01 02600 P2 LDX #$01
425A: 20 A6 43 02610 JSR UPDATE
425D: 20 62 44 02620 .5 JSR PLOTSETI ;PLOT PLAYER 1
4260: 20 82 44 02630 JSR PLOT
4263: A5 F4 02640 LDA SHPMOL ;STORE AS OLD Y POS FOR NEXT CYCLE
4265: 8D OE 41 02650 STA YOLDPMl

02660 *FIRE MISSILE
4268: A2 00 02670 LDX #$00
426A: 20 OB 45 02680 JSR MISSILE
426D: A2 01 02690 LDX #$01
426F: 20 OB 45 02700 JSR MISSILE

183

5 PLAYER MISSILE GRAPHICS

02710 *CHECK COLLISION
02720 *CHECK FOR OLD COLLISION FIRST

4272: AD 2F 41 02730 LDA KILLO ;FIRST TEST FOR 2 PLAYER COLLISION
4275: C9 00 02740 CMP #$00
4277: FO 07 02750 BEQ .10 ;CAN 'T BE 2 PLAYER COLLISION
4279: AD 30 41 02760 LDA KILLI
427C: C9 00 02770 CMP #$00
427E: DO 24 02780 BNE REMOVE
4280: AD 30 41 02790 .10 LDA KILLI ;TEST FOR DERES PLAYER#l
4283 : C9 00 02800 CMP #$00
4285: DO 31 02810 BNE REMOVE 1
4287: AD 2F 41 02820 LDA KILLO ;TEST FOR DERES PLAYER#O
428A: C9 00 02830 CMF #$00
428C: DO 3D 02840 BNE REMOVEO

02850 *CHECK FOR NEW COLLISION
428E: AD OC DO 02860 LDA POPL ;TEST P#O AGAINST P#l
4291: DO 11 02870 BNE REMOVE
4293: AD 08 DO 02880 LDA MOPL ;TEST M#O AGAINST P#l
4296: C9 02 02890 CMP #$02
4298: FO IE 02900 BEQ REMOVEI
429A: AD 09 DO 02910 LDA MIPL ;TEST M#l AGAINST P#O
429D: C9 01 02920 CMF #$01
429F: FO 2A 02930 BEQ REMOVEO
42Al: 4C DB 42 02940 1MP TESTE
42A4: A9 01 02950 REMOVE LDA #01
42A6: 8D 2F 41 02960 STA KILLO
42A9: 8D 30 41 02970 STA KILLI
42AC: 20 DB 45 02980 JSR EXPLODEO
42AF: 20 E7 45 02990 JSR EXPLODE 1
42B2: EE 2E Lfl 03000 INC EXCOUNT ;NEXT EXPLOSION FRAME
42B5: 4C DB 42 03010 JMP TESTE ;TEST IF EXPLOSION FINISHED
42B8: A9 01 03020 REMOVE 1 LDA #$01
42BA: 8D 30 41 03030 STA KILLI
42BD: A9 FO 03040 LDA #$FO ;PUT MISSILE OFF SCREEN
42BF: 8D 05 DO 03050 STA HPOSM1
42C2 : 20 E7 45 03060 JSR EXPLODE 1
42C5: EE 2E 41 03070 INC EXCOUNT
42C8: 4C DB 42 03080 1MP TESTE
42CB: A9 01 03090 REMOVEO LDA #$01
42CD: 8D 2F 41 03100 STA KILLO
42DO: A9 FO 03110 LDA #$FO ;PUT MISSILE OFF SCREEN
42D2: 8D 04 DO 03120 STA HPOSMO
42D5: 20 DB 45 03130 JSR EX PLOD EO
42D8: EE 2E 41 03140 INC EXCOUNT
42DB: AD 2E 41 03150 TESTE LDA EXCOUNT ;TEST IF DONE WITH DERES CYCLE
42DE: C9 30 03160 CMF #$30
42EO: DO 41 03170 BNE ENDCYCLE
42E2: A9 00 03180 LDA #$00 ; SHUT OFF EXPLOSION SOUND
42E4: 8D 01 D2 03190 STA AUDCl
42E7: 8D 03 D2 03200 STA AUDC2
42EA: 8D 33 41 03210 STA SBANG
42ED: 20 39 46 03220 JSR SCORE ;UPDATE SCORE
42FO: A 9 00 03230 LDA #$00 ; RESET
42F2: 8D 2E 41 03240 STA EXCOUNT
42F5: 8D 2F 41 03250 STA KILLO
42F8: 8D 30 41 03260 STA KILLI

03270 *REPOSITION SHIP AFTER KILL
42FB: A9 50 03280 LDA #$50 ;SHIP 0
42FD: 8D OB 41 03290 STA XPMO
4300: 8D 00 DO 03300 STA HPOSPO
4303: A9 65 03310 LDA #$65
4305: 8D 11 41 03320 STA YPMO

184

PLAYER MISSILE GRAPHICS 5

4308: A9 AO 03330 LDA #$AO ;SHIP 1
430A: 8D OC 41 03340 STA XPMl
430D: 8D 01 DO 03350 STA HPOSP1
4310: A9 85 03360 LDA #$85
4312: 8D 12 41 03370 STA YPMl
4315: A9 00 03380 LDA #$00
4317: 8D 07 41 03390 STA VXP
431A: 8D 08 41 03400 STA VXPI
431D: 8D 09 41 03410 STA VYP
4320: 8D OA 41 03420 STA VYPI
4323: 8D IE DO 03430 ENDCYCLE STA HITCLR ;WRITING ANYTHING CLEARS COLLISION REGISTER
4326: 20 8C 46 03440 JSR DOSOUND
4329: 4C 62 E4 03450 JMP XITVBK

03460 *
03470 *SUBROUTINE READ JOYSTICK
03480 *INPUT X REG- # OF PLAYER
03490 *VX,VY CURRENT PLAYER VELOCITY
03500 *OUTPUT VXP,VYP PLAYER VELOCITY

432C: BD 78 02 03510 JOYSTK LDA STICK,X
432F: 29 02 03520 AND #$02 ; DOWN BIT?
4331: DO 05 03530 BNE CHKLF
4333: A9 01 03540 LDA #01
4335: 8D lC 41 03550 STA FLAG ;YES STICK BACK
4338: BD 78 02 03560 CHKLF LDA STICK,X
433B: 29 04 03570 AND #$04 ;LEFT BIT?
433D: DO 12 03580 BNE CHKRT
433F: DE 13 41 03590 DEC DIR,X
4342: BD 13 41 03600 LDA DIR,X
4345: C9 FF 03610 CMP #$FF
4347: DO 05 03620 BNE .1
4349: A9 07 03630 LDA #$07 ;SET DIR TO 7
434B: 9D 13 41 03640 STA DIR,X
434E: 4C 68 43 03650 .1 JMP CHKFD
4351: BD 78 02 03660 CHKRT LDA STICK,X
4354: 29 08 03670 AND #$08 ;RIGHT BIT?
4356: DO 10 03680 BNE CHKFD
4358: FE 13 41 03690 INC DIR,X
435B: BD 13 41 03700 LDA DIR,X
435E: C9 08 03710 CMF #$08
4360: DO 05 03720 BNE .2
4362: A9 00 03730 LDA #$00 ;SET DIR TO 0
4364: 9D 13 41 03740 STA DIR,X
4367: EA 03750 .2 NOP
4368: BD 78 02 03760 CHKFD LDA STICK,X
436B: 29 01 03770 AND #$01 ;UP BIT?
436D: DO 36 03780 BNE .9

03790 *SET TO FREE FLOAT
436F: BD 13 41 03800 LDA DIR,X
4372: A8 03810 TAY
4373: 18 03820 CLC
4374: B9 C3 40 03830 LDA VTX,Y ;GET X(DIR)THRUST VECTOR
4377: 6D 03 41 03840 ADC VX
437A: C9 FA 03850 CMP #$FA
437C: DO 02 03860 BNE .5
437E: A9 FB 03870 LDA #$FB ;CLIP TO -5
4380: C9 06 03880.5 CMF #$06
4382: DO 02 03890 BNE .6
4384: A9 05 03900 LDA #$05 ;CLIP TO 5
4386: 8D 03 41 03910 .6 STA VX ;STORE OLD OR CLIPPED VALUE
4389: 9D 07 41 03920 STA VXP,X
438C: 18 03930 CLC
438D: B9 CB 40 03940 LDA VTY,Y ;GET Y(DIR) THRUST VECTOR

185

186

5 PLAYER MISSILE GRAPHICS

4390:
4393:
4395:
4397:
4399:
439B:
439D:
439F:
43A2:
43A5:

43A6:

43A7:
43A8:
43AB:
43AD:
43AE:
43Bl :
43B4:
43B7:
43BA:
43BD:
43BF:

43C2:
43C4:
43C7:
43CA:
43CC:
43CE:
43DO:
43D3:
43D6:
43D8:
43DA:
43DC:
43DF:
43E2:
43E5:
43E8:
43EA:
43EC:
43EE:

43Fl:
43F2:
43F5:
43F7:
43F8:
43FB:
43FE:
4401 :
4404:
4407:
4409:

440C:
440E:
4411:
4414:

6D 05 41 03950 ADC VY
C9 FA 03960 CMP #$FA
DO 02 03970 BNE .7
A9 FB 03980 LDA #$FB ;CLIP TO -5
C9 06 03990.7 CMF #$06
DO 02 04000 BNE .8
A9 05 04010 LDA #$05 ;CLIP TO 5
8D 05 41 04020 .8 STA VY ;STORE OLD OR CLIPPED VALUE
9D 09 41 04030 STA VYP,X
60 04040 .9 RTS

04050 *SUBROUTINE TO UPDATE X & Y POSITIONS
EA 04060 UPDATE NOP

04070 *UPDATE Y POS, VARIABLE # TIMES
04080 *TEST WHEN TO UPDATE

18 04090 UPDATEY CLC
BD 09 41 04100 LDA VYP,X
69 05 04110 ADC #$05 ;SO NEGATIVE #'S IN TABLE TOO
~ MIW TIY
B9 98 40 04130 LDA SKFLAG,Y ;#TIMES TO SKIP IS RECIPRICAL OF SPEED
9D IF 41 04140 STA SK IPY, X
FE lA 41 04150 INC SCRCNTY,X ;INCREMENT Y COUNTER
BD lA 41 04160 LDA SCRCNTY,X
DD IF 41 04170 CMF SKIPY,X ;IF MATCH UPDATE Y POS
BO 03 04180 BGE .1
4C Fl 43 04190 JMP UPDATEX

04200 *UPDATE Y PLAYER POSITION
A9 00 04210.1 LDA #$00 ;PERFORM Y UPDATE
9D lA 41 04220 STA SCRCNTY,X
BD 09 41 04230 LDA V¥P,X
C9 00 04240 CMF #$00 ;IF HASN'T MOVED DON'T UPDATE
FO 23 04250 BEQ UPDATEX
30 12 04260 BMI . 2
FE 11 41 04270 INC YPMO,X
BD 11 41 04280 LDA YPMO,X
C9 EO 04290 CMP #$EO ;HIT BOTTOM?
90 05 04300 BLT .3
A9 18 04310 LDA #$18 ;WRAP TO TOP
9D 11 41 04320 STA YPMO,X
4C Fl 43 04330 .3 JMP UPDATEX
DE 11 41 04340 .2 DEC YPMO,X
BD 11 41 04350 LDA YPMO,X
C9 18 04360 CMF #$18 ; HIT TOP?
BO 05 04370 BGE UPDATEX
A9 EO 04380 LDA #$EO ;WRAP TO BOTTOM
9D 11 41 04390 STA YPMO,X

04400 *UPDATE X POS VARIABLE # TIMES
18 04410 UPDATEX CLC
BD 07 41 04420 LDA VXP,X
69 05 04430 ADC #$05 ;SO NEG # ' S IN TABLE TOO
A8 04440 TAY
B9 98 40 04450 LDA SKFLAG,Y
9D ID 41 04460 STA SKIPX,X
FE 18 41 04470 INC SCRCNTX ,X
BD 18 41 04480 LDA SCRCNTX,X
DD ID 41 04490 CMF SKIPX,X ;UPDATESCREEN POSITION EVERY SKIP TIME
BO 03 04500 BGE .1
4C 41 44 04510 JMP EE

04520 *UPDATE X PLAYER POSITION
A9 00 04530.1 LDA #$00
9D 18 41 04540 STA SCRCNTX,X
BD 07 41 04550 LDA VXP,X
C9 00 04560 CMF #$00

PLAYER MISSILE GRAPHICS 5

4416: FO 23 04570 BEQ .3
4418: 30 12 04580 BMI .2
441A: FE OB 41 04590 INC XPMO,X
441D: BD OB 41 04600 LDA XPMO,X
4420: C9 D8 04610 CMP #$D8 ;HIT RT SIDE?
4422: 90 05 04620 BLT .4
4424: A9 28 04630 LDA #$28 ;WRAP TO LEFT
4426: 9D OB 41 04640 STA XPMO,X
4429: 4C 3B 44 04650 .4 JMP .3
442C: DE OB 41 04660 .2 DEC XPMO,X
442F: BD OB 41 04670 LDA XPMO,X
4432: C9 28 04680 CMP #$28 ;HIT LEFT?
4434: BO 05 04690 BGE .3
4436: A9 D8 04700 LDA #$D8 ;WRAP TO RIGHT
4438: 9D OB 41 04710 STA XPMO,X
443B: BD OB 41 04720 .3 LDA XPMO,X ; NEW VALUE
443E: 9D 00 DO 04730 STA HPOSPO,X ; UPDATE ANTIC PLAYER HORIZ
4441: 60 04740 EE RTS

04750 *PLOT PLAYERO SETUP
4442: AD 11 41 04760 PLOTSETO LDA YPMO
4445: 85 F2 04770 STA SHPML
4447: A9 88 04780 LDA IPDATA
4449: 18 04790 CLC
444A: 69 04 04800 ADC #$04
444C: 85 F3 04810 STA SHPMH
444E: 85 F5 04820 STA SHPMOH
4450: AC 13 41 04830 LDY DIR

;CORRECTED YPOS

;PLAYERO IS lK BEYOND START

4453: B9 60 40 04840 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
4456: 85 FO 04850 STA SHPL
4458: A9 40 04860 LDA ISHAPEO ;HI BYTE
445A: 85 Fl 04870 STA SHPH
445C: AD OD 41 04880 LDA YOLDPMO
445F: 85 F4 04890 STA SHPMOL
4461: 60 04900 RTS

04910 *PLOT PLAYER 1 SETUP
4462: AD 12 41 04920 PLOTSETI LDA YPMl
4465: 85 F2 04930 STA SHPML
4467: A9 88 04940 LDA IPDATA
4469: 18 04950 CLC
446A: 69 05 04960 ADC #$05
446C: 85 F3 04970 STA SHPMH
446E: 85 F5 04980 STA SHPMOH
4470: AC 14 41 04990 LDY DIRI

;CORRECTED YPOS

;PLAYERI IS 1.25K BEYOND START

4473: B9 60 40 05000 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
4476: 85 FO 05010 STA SHPL
4478: A9 40 05020 LDA IS HAPEO ;HI BYTE ;BOTH PLAYER SHAPES SAME
447A: 85 Fl 05030 STA SHPH
447C: AD OE 41 05040 LDA YOLDPMl
447F: 85 F4 05050 STA SHPMOL
4481: 60 05060 RTS

4482:
4484:
4486:
4488:
4489:
448B:
448D:
448F:
4491:
4493:

AO 00
A9 00
91 F4
C8
CO OC
90 F9
AO 00
Bl FO
91 F2
A5 F2

05070 *PUT SHAPE IN P/M AREA
05080 PLOT LDY #$00 ; COUNTER
05090 LDA #$00 ;NEED 0 TO ERASE EACH TIME
05100 .1 STA (SHPMOL),Y ;ERASE OLD SHAPE FIRST
05110 INY
05120 CPY #$OC
05130 BLT .1
05140 LDY #$00
05150 . 2 LDA (SHPL),Y ;GET BYTE FROM PROPER SHAPE TABLE
05160 STA (SHPML),Y ;PUT IN p/M AREA
05170 LDA SHPML ;TRANSFER NEW P/M pos TO OLD pos

187

188

5 PLAYER MISSILE GRAPHICS

4495: C8 05180 INY
4496: CO OC 05190 CPY #$OC
4498: 90 F5 05200 BLT .2
449A: A5 F2 05210 LDA SHPML ;TRANSFER NEW P/M POS TO OLD POS
449C: 85 F4 05220 STA SHPMOL
449E: A5 F3 05230 LDA SHPMH
44AO: 85 F5 05240 STA SHPMOH
44A2: 60 05250 RTS

05260 *SETUP TO PLOT MISSILE 0
44A3: AD 26 41 05270 MISSETO LDA YMISO ;MISSILE POSITION CORRECTED
44A6: 85 F2 05280 STA SHPML
44A8: A9 88 05290 LDA /PDATA
44AA: 18 05300 CLC
44AB: 69 03 05310 ADC #$03 ;MISSILES .75K BEYOND START
44AD: 85 F3 05320 STA SHPMH
44AF: 85 F5 05330 STA SHPMOH
44Bl: AC 15 41 05340 LDY DIRMO
44B4: B9 88 40 05350 LDA MISLO,Y ;POINTER TO CORRECT MISSILE SHAPE
44B7: 85 FO 05360 STA SHPL
44B9: A9 40 05370 LDA /MSHAPE ;HI BYTE-BOTH P/M SHAPES SAME
44BB: 85 Fl 05380 STA SHPH
44BD: AD OF 41 05390 LDA YMISOLDO
44CO: 85 F4 05400 STA SHPMOL
44C2: AD 22 41 05410 LDA MASKO
44C5: 8D 21 41 05420 STA MASK
44C8: 20 B7 45 05430 JSR MPLOT
44CB: A5 F4 05440 LDA SHPMOL
44CD: 8D OF 41 05450 STA YMISOLDO
44DO: AD 24 41 05460 LDA XMISO
44D3 : 8D 04 DO 05470 STA HPOSMO ;MISSILE 0 HORIZ POS
44D6: 60 05480 RTS

05490 *SETUP TO PLOT MISSILE 1
44D7: AD 27 41 05500 MISSETI LDA YMISI ;MISSILE POSITION CORRECTED
44DA: 85 F2 05510 STA SHPML
44DC: A9 88 05520 LDA /PDATA
44DE: 18 05530 CLC
44DF: 69 03 05540 ADC #$03 ;MISSILES .75K BEYOND START
44El: 85 F3 05550 STA SHPMH
44E3: 85 F5 05560 STA SHPMOH
44E5: AC 16 41 05570 LDY DIRMI
44E8: B9 90 40 05580 LDA MISLOl,Y ;POINTER TO CORRECT MISSILE SHAPE
44EB: 85 FO 05590 STA SHPL
44ED: A9 40 05600 LDA /MSHAPE ;HI BYTE-BOTH P/M SHAPES SAME
44EF : 85 Fl 05610 STA SHPH
44Fl: AD 10 41 05620 LDA YMISOLDI
44F4: 85 F4 05630 STA SHPMOL
44F6: AD 23 41 05640 LDA MASKI
44F9: 8D 21 41 05650 STA MASK
44FC: 20 B7 45 05660 JSR MPLOT
44FF: A5 F4 05670 LDA SHPMOL
4501: 8D 10 41 05680 STA YMISOLDI
4504: AD 25 41 05690 LDA XMISI
4507: 8D 05 DO 05700 STA HPOSMI ;MISSILE 1 HORIZ POS
450A: 60 05710 RTS

05720 *MISSILE SUBROUTINE -MISSILE TRACK ENDS AT COLLSION OR SCREEN ED(
450B: BD 84 02 05730 MISSILE LDA STRIGO ,X
450E: C9 00 05740 CMP #$00
4510: DO 37 05750 BNE .1
4512: BD 28 41 05760 LDA TMISO,X
4515: C9 00 05770 CMP #$00
4517: DO 3A 05780 BNE .2

PLAYER MISSILE GRAPHICS 5

4519: A9 10 05790 LDA #$10 ; FLAG & INITIAL VOLUME FOR SHOT SOUND
451B: 9D 31 41 05800 STA MBANG,X
451E: FE 28 41 05810 INC TMISO,X ;INCREMENT TIMER

05820 *ERASE OLD MISSILE & PUT AT SHIP
4521: BD 13 41 05830 LDA DIR,X
4524: 9D 15 41 05840 STA DIRMO,X ;DIR MISSILE TO MOVE THROUGHOUT TRAVEL
4527: BD 11 41 05850 LDA YPMO,X
452A: 18 05860 CLC
452B: 69 06 05870 ADC #$06 ;CORRECT TO SHIP CENTER
452D: 9D 26 41 05880 STA YMISO,X
4530: BD OB 41 05890 LDA XPMO,X
4533: 18 05900 CLC
4534: 69 04 05910 ADC #$04 ;CORRECT TO SHIP CENTER
4536: 9D 24 41 05920 STA XMISO,X
4539: EO 00 05930 CPX #$00
453B: DO 06 05940 BNE .10
453D: 20 A3 44 05950 JSR MISSETO ;TO MISSILE PLOT SETUP & PLOT
4540: 4C B6 45 05960 JMP EXIT
4543: 20 D7 44 05970 .10 JSR MISSETI
4546: 4C B6 45 05980 JMP EXIT
4549: BD 28 41 05990 .1 LDA TMISO,X
454C: C9 00 06000 CMF #$00
454E: DO 03 06010 BNE .2
4550: 4C B6 45 06020 JMP EXIT

06030 *MOVE MISSILE IN PROPER DIRECTION
4553: BC 15 41 06040 .2 LDY DIRMO,X
4556: B9 C3 4006050 LDA VTX,Y
4559: OA 06060 ASL ; DOUBLE VELOCITY VECTOR
455A: 18 06070 CLC
455B: 7D 24 41 06080 ADC XMISO,X
455E: 9D 24 41 06090 STA XMISO,X
4561: B9 CB 4006100 LDA VTY,Y
4564: OA 06110 ASL ;DOUBLE VELOCITY VECTOR
4565: 18 06120 CLC
4566: 7D 26 41 06130 ADC YMISO,X
4569: 9D 26 41 06140 STA YMISO,X

06150 *HAS MISSILE HIT SCREEN EDGE
456C: C9 20 06160 CMF #$20
456E: BO 03 06170 BGE .3
4570: 4C 9F 45 06180 JMP ERAS EM
4573: C9 D8 06190.3 CMF #$D8
4575: 90 03 06200 BLT .4
4577: 4C 9F 45 06210 JMP ERASEM
457A: BD 24 41 06220 .4 LDA XMISO,X
457D: C9 30 06230 CMF #$30
457F: BO 03 06240 BGE .5
4581: 4C 9F 45 06250 JMP ERASEM
4584: C9 DO 06260.5 CMF #$DO
4586: 90 03 06270 BLT .6
4588: 4C 9F 45 06280 JMP ERASEM
458B: EA 06290 .6 NOP
458C : FE 28 41 06300 INC TMISO,X

06310 *ERASE & REPLOT MISSILE
458F: EO 00 06320 ERASE CPX #$00
4591: DO 06 06330 BNE .8
4593: 20 A3 44 06340 JSR MISSETO
4596: 4C B6 45 06350 JMP EXIT
4599: 20 D7 44 06360 .8 JSR MISSETI
459C: 4C B6 45 06370 JMP EXIT

06380 *ERASE MISSILE OFF SCREEN
459F: A9 EO 06390 ERASEM LDA #$EO

189

190

5 PLAYER MISSILE GRAPHICS

45Al: 9D 24 41 06400 STA XMISO,X ;PLOT OFF SCREEN
45A4: EO 00 06410 CPX #$00
45A6: DO 06 06420 BNE .71
45A8: 20 A3 44 06430 JSR MISSETO
45AB: 4C Bl 45 06440 JMP .7
45AE: 20 D7 44 06450 .71 JSR MISSETI
45Bl: A900 06460.7 LDA #$00
45B3: 9D 28 41 06470 STA TMISO,X
45B6: 60 06480 EXIT RTS

06490 *PUT MISSILE SHAPE IN p/M AREA SUBROUTINE
45B7: AO 00 06500 MPLOT LDY #$00
45B9: Bl F4 06510.1 LDA (SHPMOL),Y ;LOAD OLD SHAPE
45BB: 2D 21 41 06520 AND MASK ;MASK WITH PROPER MISSILE BEING MOVED
45BE: 91 F4 06530 STA (SHPMOL),Y ;STOREING IT DOESN'T ERASE OTHER MISSILES
45CO: C8 06540 INY
45Cl: CO 02 06550 CPY #$02
45C3: 90 F4 06560 BLT .1
45C5: AO 00 06570 LDY #$00
45C7: Bl FO 06580.2 LDA (SHPL),Y ;GET BYTE FROM CORRECT MISSILE SHAPE TABLE
45C9: 11 F2 06590 ORA (SHPML),Y ;OR AGAINST CURRENT OTHER MISSILES
45CB: 91 F2 06600 STA (SHPML),Y ;PUT IN MISSILE AREA
45CD: C8 06610 INY
45CE: CO 02 06620 CPY #$02
45DO: 90 F5 06630 BLT .2
45D2: AS F2 06640 LDA SHPML ;TRANSFER TO OLD POINTERS
45D4: 85 F4 06650 STA SHPMOL
45D6: AS F3 06660 LDA SHPMH
45D8: 85 F5 06670 STA SHPMOH
45DA: 60 06680 RTS

06690 *SUBROUTINES TO EXPLODE SHIPS
45DB: 20 42 44 06700 EXPLODEO JSR PLOTSETO
45DE: 20 F3 45 06710 JSR EXPLODE
45El: AS F4 06720 LDA SHPMOL
45E3: 8D OD 41 06730 STA YOLDPMO
45E6: 60 06740 RTS
45E7: 20 62 44 06750 EXPLODEl JSR PLOTSETI
45EA: 20 F3 45 06760 JSR EXPLODE
45ED: AS F4 06770 LDA SHPMOL
45EF: 8D OE 41 06780 STA YOLDPMl
45F2: 60 06790 RTS

06800 *DE-RES SHAPE
45F3: AO 00 06810 EXPLODE LDY #$00 ; COUNTER
45F5: A9 00 06820 LDA #$00 ;NEED 0 TO ERASE EACH TIME
45F7: 91 F4 06830.1 STA (SHPMOL),Y ;ERASE OLD SHAPE FIRST
45F9: C8 06840 INY
45FA: CO OC 06850 CPY #$OC
45FC: 90 F9 06860 BLT .1
45FE: AE 2E 41 06870 LDX EXCOUNT ;COUNTER
4601: AO 00 06880 LDY #$00 ;START WITH OTH BYTE IN SHAPE
4603: EO 00 06890.2 CPX #$00 ;FIRST TIME?
4605: DO 05 06900 BNE .22
4607: Bl FO 06910 LDA (SHPL),Y;GET BYTE FROM PROPER SHAPE TABLE
4609: 99 34 41 06920 STA DEREZ,Y ;DO THIS ONLY FIRST TIME
460C: AD OA D2 06930 .22 LDA RANDOM
460F: OD OA D2 06940 ORA RANDOM ;DEGRADE IMAGE RANDONILY
4612: 39 34 41 06950 AND DEREZ,Y
4615: 99 34 41 06960 STA DEREZ,Y ;TEMP STORE DEGRADED IMAGE
4618: Bl FO 06970 LDA (SHPL),Y
461A: 2D OA D2 06980 AND RANDOM ;DEGRADE IMAGE RANDOMILY
461D: 2D OA D2 06990 AND RANDOM
4620: 2D OA D2 07000 AND RANDOM

PLAYER MISSILE GRAPHICS 5

4623: 2D OA D2 07010 AND RANDOM
4626: 19 34 41 07020 ORA DEREZ,Y ;COMBINE 2 DEGRADED IMAGES SO LESS DEGRADED
4629: 91 F2 07030 STA (SHPML),Y ;PUT IN P/M AREA
462B: C8 07040 INY ;NEXT BYTE IN SHAPE
462C: CO OC 07050 CPY #$OC ; DONE?
462E: 90 D3 07060 BLT .2
4630: A5 F2 07070 LDA SHPML ;TRANSFER NEW P/M POS TO OLD POS
4632: 85 F4 07080 STA SHPMOL
4634: A5 F3 07090 LDA SHPMH
4636: 85 F5 07100 STA SHPMOH
4638: 60 07110 RTS

07120 *SCORE SUBROUTINE
4639: AD 2F 41 07130 SCORE LDA KILLO
463C: FO 12 07140 BEQ .1
463E: EE 2A 41 07150 INC SCOREOD ;INC DIGITS #0
4641: AD 2A 41 07160 LDA SCOREOD ;TEST IF >9
4644: C9 OA 07170 CMF #$OA
4646: DO 08 07180 BNE .1
4648: EE 2B 41 07190 INC SCOREOT ;INC TENS #0
464B: A9 00 07200 LDA #$00
464D: 8D 2A 41 07210 STA SCOREOD ;ZERO DIGITS #0
4650: AD 30 41 07220 .1 LDA KILLI
4653: FO 12 07230 BEQ .2
4655: EE 2C 41 07240 INC SCOREID ;INC DIGITS #1
4658:~ AD 2C 41 07250 LDA SCOREID
465B: C9 OA 07260 CMF #$OA
465D: DO 08 07270 BNE .2
465F: EE 2D 41 07280 INC SCORE IT
4662: A9 00 07290 LDA #$00
4664: 8D 2C 41 07300 STA SCOREID
4667: AD 2B 41 07310 .2 LDA SCOREOT
466A: 18 07320 CLC
466B: 69 10 07330 ADC #$10
466D: 8D 07 90 07340 STA SCREEN+7 ;PLACE IN SCREEN MEMORY
4670: AD 2A 41 07350 LDA SCOREOD
4673: 18 07360 CLC
4674: 69 10 07370 ADC #$10
4676: 8D 08 90 07380 STA SCREEN+8
4679: AD 2D 41 07390 LDA SCOREIT
467C: 18 07400 CLC
467D: 69 10 07410 ADC #$10
467F: 8D 12 90 07420 STA SCREEN+18
4682: AD 2C 41 07430 LDA SCOREID
4685: 18 07440 CLC
4686: 69 10 07450 ADC #$10
4688: 8D 13 90 07460 STA SCREEN+19
468B: 60 07470 RTS

07480 DOSOUND
468C: AD 2E 41 07490
468F: FO 24 07500
4691: C9 01 07510
4693: DO 05 07520
4695: A9 40 07530
4697: 8D 33 41 07540

469A: CE 33 41 07550 .1
469D: AD 33 41 07560
46AO: 4A 07570
46Al: 4A 07580
46A2: 09 EO 07590
46A4: 8D 00 D2 07600
46A7: 8D 02 D2 07610

LDA EXCOUNT
BEQ MSOUND
CMP #$01
BNE .1
LDA #$40
STA SBANG

DEC SBANG
LDA SBANG
LSR
LSR
ORA #$EO
STA AUDFI
STA AUDF2

SHIP EXPLODING?
NO? THEN GO CHECK FOR SHOT SOUNDS
IS IT 1ST TIME

;THIS WILL BE DIVIDED BY 4 SO
;VOLUME GOES FROM $10 TO 0 IN STEPS OF

EVERY 4 VBLANKS

LOWER IT
AUDFI
AUDF2

191

192

5 PlAYER MISSILE GRAPHICS

46AA: 29 OF 07620
46AC: 8D 01 D2 07630
46AF: 09 80 07640
46B1: 8D 03 D2 07650
46B4: 60 07660

07670 MSOUND
46B5: A2 01 07680
46B7: AO 02 07690
46B9: BD 31 41 07700 .1
46BC: FO OE 07710
46BE: DE 31 41 07720
46C1: BD 31 41 07730
46C4: 99 01 D2 07740
46C7: A9 00 07750
46C9: 99 00 D2 07760
46CC: 88 07770 .2
46CD: 88 07780
46CE: CA 07790
46CF: 10 E8 07800
46D1: 60 07810

AND #$OF
STA AUDC1
ORA #$80
STA AUDC2
RTS

LDX #$01
LDY #$02
LDA MBANG,X
BEQ .2
DEC MBANG,X
LDA MBANG,X
STA AUDC1,Y
LDA #$00
STA AUDF1,Y
DEY
DEY
DEX
BPL .1
RTS

Player Missile Editor

iKEEP VOLUME
iDISTORTION 0
iDISTORTION 8

iAUDC1 & AUDC2 ARE 2 BYTES APART

iIF 0 THEN NO SOUND
LET IT COUNTDOWN TO 0 EVERY CYCLE

i AUDC

We have included a player-missile editor that will make designing player shapes
easy. The grid on the left hand side of the screen supports a shape twenty-two scan
lines high in the single-resolution mode. Each of the enlarged blocks is the same
shape as the individual pixels on the screen.

The cursor appears in the upper left hand corner. The message at the upper right
initially is set in the NOPLOT mode. To put the cursor in the PLOT mode, press the
letter P, for the ERASE mode, press the letter E, or return to the NOPLOT mode by
pressing N. Pressing any of the arrow keys without the control key moves the cursor.
Move the cursor to your desired starting position, and press P for plot. A block fills
for each position of the shape, and the byte's decimal and hexadecimal value appears
to the side.

As your shape forms , you will begin to see an actual sized player shape emerge in
the lower right portion of the screen. You can toggle the player width by pressing the
W key. It will progress from single width to double width to quadruple width before
returning to single width. Likewise, toggle the player resolution from single-line
resolution to double-line resolution by pressing the R key. If you wish to clear the
entire screen of your shape, just press SHIFT CLEAR.

The editor, which is written in BASIC, is somewhat slow. Most of its slowness is
due to our decision to write it in graphics mode 8, so that we could plot accurately
while simutaneously incorporating text on the screen. Machine language pro
grammers need the hexadecimal val ues of the player shapes for their shape tables.
Owners of the ABC BASIC compiler by Monarch Data Systems will find that the
program compiles with no modification,and runs significantly faster.

PLAYER MISSILE GRAPHICS 5

• 128 80

• • • • • 248 F8

• 008 08

• 008 08

• • • • 015 OF

+

L.r-Lr--Lr-~,--l.---

5 REM PLAYER MISSILE SHAPE EDITOR Jeff Stanton
10 POKE 106,PEEK(106)-16:GRAPHICS 8+16
11 POKE 559,0
12 GOSUB 1000
13 GOSUB 2000
14 POKE 559,62

PLOT

15 DIM MG(8,22),VALUE$(22),VALUE(22),V$(3),T$(3),W$(6),VH$(I),VL$(1),VT$(2)
16 VALUE$="":VALUE$(22)="":VALUE$(2)=VALUE$
17 POKE 710,0:GOSUB 815
77 REM READ KEYBOARD
78 OPEN #2,4,0,"K:"
79 ZZ=USR(ADR(PMPOKE$),ADR(VALUE$),PLAYERO,RES)
80 CH=l:GET #2,CHR:XO=X:YO=Y
81 IF CHR=45 THEN 205:REM UP
85 IF CHR=61 THEN 225:REM DOWN
90 IF CHR=43 THEN 245:REM LEFT
95 IF CHR=42 THEN 265:REM RIGHT
100 IF CHR=80 THEN 125:REM P
105 IF CHR=69 THEN 145:REM E
110 IF CHR=78 THEN 135:REM N
III IF CHR=82 THEN 1100:REM R
112 IF CHR=87 THEN 1200:REM W
113 IF CHR=125 THEN 3000:REM }
US GOTO 79

193

194

5 PLAYER MISSILE GRAPHICS

120 REM SET FLAGS FOR P,E,N KEYS
125 PLT=I:ERASE=O:W$="PLOT ":GOSUB 700:GOTO 330
135 PLT=O:ERASE=O:W$="NOPLOT":GOSUB 700:GOTO 79
145 PLT=O:ERASE=I:W$="ERASE ":GOSUB 700:GOTO 365
200 REM MOVE CURSOR UP
205 Y=Y-l:IF Y=O THEN CH=O
210 IF Y=O THEN Y=1
215 GOTO 300
220 REM MOVE CURSOR DOWN
225 Y=Y+l:IF Y=23 THEN CH=O
230 IF Y=23 THEN Y=22
235 GOTO 300
240 REM MOVE CURSOR LEFT
245 X=X-l:IF X=O THEN CH=O
250 IF X=O THEN X=1
255 GOTO 300
260 REM MOVE CURSOR RIGHT
265 X=X+l:IF X=9 THEN CH=O
270 IF X=9 THEN X=S
275 GOTO 300
300 REM CHANGE MATRIX AND PLOT OR ERASE AS NEEDED
305 IF CH=O THEN 79
310 IF PLT=1 THEN 330
315 IF ERASE=1 THEN 365
320 GOSUB 400:GOTO 79
325 REM PLOT BLOCK AND INVERSE CURSOR
330 FOR I=1 TO 7:FOR J=1 TO 5:BX=IS+X*II:BY=Y*S
345 PLOT BX+I,BY+J:NEXT J:NEXT I
355 MG(X,Y)=I:GOSUB 400:GOTO 500
360 REM ERASE BLOCK
365 COLOR O:FOR I=1 TO 7:FOR J=1 TO 5
3S0 BX=IS+X*II:BY=Y*S
3S5 PLOT BX+I,BY+J:NEXT J:NEXT I:COLOR 1
396 MG(X,Y)=O:GOSUB 400:GOTO 500
400 REM PLOT NEW CURSOR POSITION AFTER ERASING OLD
405 C=MG(XO,YO):IF C=1 THEN 415
410 COLOR 0
415 CX=19+XO*II:CY=3+YO*S
425 PLOT CX,CY:DRAWTO CX+4,CY
430 PLOT CX+2,CY-2:DRAWTO CX+2,CY+2
435 COLOR I:C=MG(X,Y):IF C=O THEN 445
440 COLOR 0
445 CX=19+X*II:CY=3+Y*S
455 PLOT CX,CY:DRAWrO CX+4,CY
460 PLOT CX+2,CY-2:DRAWTO CX+2,CY+2
465 COLOR I:RETURN
500 REM CALCULATE NEW VALUE ROW
510 IF PLT=O AND ERASE=O THEN 79
515 VALUE(Y)=MG(I,Y)*12S+MG(2,Y)*64+MG(3,Y)*32+MG(4,Y)*16+MG(5,Y)*S
516 VALUE(Y)=VALUE(Y)+MG(6,Y)*4+MG(7,Y)*2+MG(S,Y)
517 VALUE$(Y)=CHR$(VALUE(Y»
520 GOSUB 600:GOTO 79
600 REM POKES OR PRINTS VALUE ON SCREEN
605 YP=Y*S:XP=17:V$="000":T$=STR$(VALUE(Y»
619 REM GIVES A THREE CHARACTER NUMBER WITH LEADING O'S
620 V$(4-LEN(T$»=T$
625 FOR U=1 TO 3
629 REM FIND POSITION IN CHARACTER SET
630 I2=57344+«ASC(V$(U,U»-32)*S)
635 I3=Il+YP*40+XP+U-l
639 REM POKE CHARACTER ON SCREEN (S BYTES DEEP)
640 FOR Z=O TO 7:POKE I3+Z*40,PEEK(I2+Z):NEXT Z

PLAYER MISSILE GRAPHICS 5

645 NEXT U
650 REM PLOTS TWO DIGIT HEX VALUE OF ROW
652 XP=22:Vl=INT(VALUE(Y)!16)
654 V2=VALUE(Y)-(16*VI)
656 IF V1=10 THEN VH$="A"
658 IF VI=ll THEN VH$="B"
660 IF V1=12 THEN VH$="C"
662 IF VI=13 THEN VH$="D"
664 IF VI=14 THEN VH$="E"
666 IF Vl=15 THEN VH$="F"
668 IF VI<lO THEN VH$=STR$(VI)
670 IF V2=10 THEN VL$="A"
6 72 IF V2=1l THEN VL$="B"
674 IF V2=12 THEN VL$="C"
676 IF V2=13 THEN VL$="D"
678 IF V2=14 THEN VL$="E"
680 IF V2=15 THEN VL$="F"
682 IF V2<10 THEN VL$=STR$(V2)
686 VT$=VH$:VT$(LEN(VT$)+l)=VL$
687 FOR U=l TO 2
689 I2=57344+«ASC(VT$(U,U»-32)*8)
690 I3=I1+YP*40+XP+U-1
695 FOR Z=O TO 7:POKE I3+Z*40,PEEK(I2+Z):NEXT Z
697 NEXT U
699 RETURN
700 REM PRINTS WORDS ERASE, NOPLOT, & PLOT AT BOTTOM
705 YP=16:XP=32:FOR U=l TO 6
715 I2=57344+«ASC(W$(U,U»-32)*8)
720 I3=Il+YP*40+XP+U-1
725 FOR Z=O TO 7:POKE I3+Z*40,PEEK(I2+Z):NEXT Z
730 NEXT U:RETURN
815 REM INITILIZE AND DRAW GRID
817 IO=PEEK(560)+PEEK(561)*256:I1=PEEK(IO+4)+P.EEK(IO+5)*256
818 PLT=O:ERASE=O
819 W$="NOPLOT":GOSUB 700
820 REM DRAW GRID
825 COLOR 1
830 FOR J=l TO 9
835 X=16+11*J:PLOT X,7:DRAWTO X,183
840 NEXT J
845 FOR 1=1 TO 23
850 Y=-1+8*I:PLOT 26,Y:DRAWTO 114,Y
855 NEXT I
860 REM CLEAR MATRIX
865 FOR 1=1 TO 8:FOR J=l TO 22:MG(I,J)=0:NEXT J:NEXT I
867 FOR J=l TO 22:VALUE(J)=0:NEXT J
869 REM PLOT INITIAL CURSOR POSITION
870 X=l:Y=l
872 PLOT 30,11:DRAWTO 34,11
873 PLOT 32,9:DRAWTO 32,13
875 RETURN
1000 REM INITIALIZE PMG
1010 PMBASE=PEEK(106):SDMCTL=559:SINGLE=62:DOUBLE=46
1020 POKE 53277,3:POKE 54279,PMBASE:POKE 704,200:POKE 53248,175
1030 REM CLEAR PLAYER 0 RAM
1040 DATA 104,104,133,207,104,133,206,169,0,170,168,145,206,200,192
1042 DATA 0,208,249,230,207,232,224,4,208,242,96
1045 DIM CLEAR$(26):FOR L1=1 TO 26:READ X:CLEAR$(L1,L1)=CHR$(X):NEXT L1
1050 X=USR(ADR(CLEAR$),PMBASE*256+1024)
1060 RETURN
1100 REM CHANGE PLAYER FROM SINGLE TO DOUBLE LINE RESOLUTION
1110 RES=ABS(RES- 2)+1

195

196

5 PLAYER MISSILE GRAPHICS

1120 ZZ=USR(ADR(PMPOKE$),ADR(VALUE$),PLAYERO,RES)
1130 GOTO 79
1200 REM CHANGE PLAYERO WIDTH
1210 WIDTH=WIDTH+I:IF WIDTH>3 THEN WIDTH=O
1220 IF WIDTH=2 THEN WIDTH=3
1230 POKE 53256,WIDTH:GOTO 79
2000 DATA 104,104,133,207,104,133,206 ,104,133,209,104,133,208 ,104
2005 DATA 104,141,0,6,169,0,168,145,208 ,200,192
2010 DATA 44,208,249,160,0,141,2,6,141,3,6,162,0,172,2,6,177
2015 DATA 206,172,3,6,145,208,232,238
2020 DATA 3,6,236,0,6,208,237,238,2,6,173,2,6,201,22,208,225,96
2030 DIM PMPOKE$(68):FOR L1=1 TO 68:READ X:PMPOKE$(Ll,Ll)=CHR$(X):NEXT Ll
2040 RES=I:PLAYERO=PMBASE*256+1124
2050 RETURN
3000 REM RECLEAR SCREEN
3005 ? #6;")";
3010 VALUE$="":VALUE$(22) ="":VALUE$(2)=VALUE$
3020 GOSUB 815
3030 GOTO 79

Player-Missile Movement Using Strings

An alternate method of moving player shapes vertically at close to Machine
language speed is to take advantage of Atari BASIC's string manipulation routines.
One in particular in the form of PO$(N)=SO$ will take a smaller string such as
SO$=" ABCD" and place it starting at the Nth position of the larger string PO$. Thus,
if N=6, PO$ would be as follows:

BYTE
I
2
3
4
5
6
7
8
9

10
II

VALUE
o
o
o
o
o

ASCII A
ASCII B
ASCII C
ASCII D

o
o

The shorter string could just as easily be our player shape. It would be very easy to
move it just by changing the value of N. The only hitch is that we would have to erase
its previous position before we moved it, or the player string would begin to repeat
itself, or parts of itself, within the larger (256 byte) player area string. Since there is no
need to move the player more than two bytes at a time, we can easily accomplish the
erase by overwriting the trailing or leading edge of our last position with two
trailing null or zero characters at each end.

PLAYER MISSILE GRAPHICS 5

How BASIC Stores Strings

The biggest problem in this method is to fool Atari BASIC into assigning the
player-missile display area as a string variable. In order to understand how to do this,
it is necessary to know how Atari BASIC stores variables in memory. Two areas are
set aside in memory. The first, the Variable Value Table Pointer (VVTP), stores
eight bytes of information for each variable declared in your BASIC program. The
second, the String Array Table, reserves space in memory according to the size
specified when you dimension an array. The VVTP table is arranged as in the
following example. If it were for a string dimensioned as PO$(255) it would have
these values:

2 3 4 5 6 7 8

129 00 00 00 255 00 255 00

Variable Variable ~ ~~
Type Number Low High Current length Dimensioned

Offset from
of string length

string/ array
data area
(STARP)

Every time BASIC has to access information in a string it goes to the VVPT to find
the current address of the string. Byte 1 contains the variable type which is 129 for a
string. Byte 2 contains the variable number. BASIC tokenizes variables and refers to
them by numbers, not names. Bytes 3 and 4 contain the value of the offset from the
string/ array area (STARP) where BASIC reserves memory for all dimensioned
variables. The values are in low byte, high byte order. Thus the address of your string
is ST ARP + Byte 3 + 256·Byte 4.

If we change the pointers to bytes 3 and 4 so that they now point to the player
missile area for player #0, we could use string move commands to move our player.
To do this we will need to calculate the difference between the player-missile area
and where BASIC was planning to store our string in ST ARP.

VVTP= PEEK(l34) + 256·PEEK(l35)
STARP = PEEK(l40) + 256·PEEK(l41)

PLAYERO =PMBASE·256 + 1024
so

OFFSET=PLAYERO-STARP

If we take this OFFSET value and divide it into its low and high byte values, then
POKE them into bytes 3 and 4, BASIC would think that our strings were actually in
the player-missile area. Since we have four players, we have to do this for each group
of eight bytes in the VVTP table. Your dimensioned player strings should be the first
variables in the program; otherwise, you will have to scan through the table looking
for a match.

197

198

5 PLAYER MISSILE GRAPHICS

The following example uses this technique to move four players vertically.
Horizontal movemen t is of course done by setting the player's horizontal position
register. The example has four randomly moving, bouncing balls which reverse
direction upon collision with another ball or the playfield boundary.

Just to give you a rough idea of the actual memory locations and the change we
need to make in the VVTP table for player #0, the values for the examPle are listed
below:

VVTP =7760
ST ARP = 1 0932
PMBASE = 38912 (High byte = 152)
PLA YERO = 39936

so that OFFSET = PLA YERO-STARP = 29004 then LO = 76 and HI = 113 and they
are POKED into bytes 3 and 4 respectively.

10 REM DAN PINAL'S PM-STRING DEMO
20 REM FOR SANITY'S SAKE IF YOU INTEND TO OFFSET A STRING FROM ITS
25 REM ASSIGNED LOCATION REMEMBER:
30 REM 1: MAKE SURE THE STRING'S OFFSET WILL BE THE FIRST ONES FOUND
35 REM IN THE TABLE I.E. DIMENSION THEM FIRST
40 REM 2: OFFSET THE STRINGS BEFORE YOU PUT DATA IN THEM
50 REM 3: IF FOR SOME SOME REASEON YOU BLOW IT LIST THE PROGRAM TO
55 REM THE DISK,POWER DOWN AND ENTER IT BACK
60 REM START
70 CLR
80 DIM PO$(256),P1$(256),P2$(256),P3$(256)
90 DIM SO$(16),Sl$(16),S2$(16),S3$(16),X(3),Y(3),DX(3),DY(3)
100 POKE 106,PEEK(106)-8:GRAPHICS 3+16:PMBASE=PEEK(106):PLAYERO=PMBASE*256+1024
110 DLIST=PEEK(560)+256*PEEK(561)
120 SCREEN=PEEK(DLIST+4)+256*PEEK(DLIST+5)
130 STARP=PEEK(140)+256*PEEK(141)
140 VVTP=PEEK(134)+256*PEEK(135)
150 OFFSET=PLAYERO-STARP
160 REM TRICKS IT INTO PM AREA
170 FOR L1=2 TO 26 STEP 8
180 HI=INT(OFFSET!256):LO=OFFSET-HI*256
190 POKE VVTP+L1,LO:POKE VVTP+L1+1,HI
200 OFFSET=OFFSET+256
210 NEXT L1
220 REM TURN ON PLAYERS BUT TURN OFF PLAYFIELD
230 POKE 559,30:POKE 53277,3:POKE 54279,PMBASE
240 POKE 704,200:POKE 705,70:POKE 706,154:POKE 707,254
250 REM CLEAR OUT STRINGS
260 PO$="":PO$(256)="":PO$(2)=PO$
270 P1$="":P1$(256)="":P1$(2)=P1$
280 P2$="":P2$(256)="":P2$(2)=P2$
290 P3$="": P3$(256)='"': P3$(2)=P3$
300 REM READ IN PLAYERS
310 FOR L1=0 TO 15:READ X:SO$(L1+1)=CHR$(X):NEXT L1
320 FOR L1=0 TO 15:READ X:S1$(L1+1)=CHR$(X):NEXT L1
330 FOR L1=0 TO 15:READ X:S2$(L1+1)=CHR$(X):NEXT L1
340 FOR L1=0 TO 15:READ X:S3$(L1+1)=CHR$(X):NEXT L1
350 REM EACH GETS INITIAL RANDOM VELOCITY - POSITION IS SET ON DIAGONAL
360 FOR L1=0 TO 3
370 N=2*RND(0):DX(L1)=N:IF INT(2*RND(0» THEN DX(L1)=-DX(L1)

PLAYER MISSILE GRAPHICS 5

3S0 N=2*RND(0):DY(L1)=N:IF INT(2*RND(0)) THEN DY(L1)=-DY(L1)
390 X(L1)=4S+30*L1:Y(L1)=32+40*L1
400 NEXT L1
410 FOR L1=0 TO 3
420 REM COLLISION TEST - IF COLLIDE REVERSE DIRECTION
430 IF PEEK(53260+L1) THEN DX(L1)=-DX(L1):DY(L1)=-DY(L1):SOUND L1,PEEK(53770),10,6
440 X(L1)=X(L1)+DX(L1):Y(L1)=Y(L1)+DY(L1)
450 REM REVERSE DIRECTION IF HITS PLAYFIELD BOUNDARY
460 IF X(LI)<4S THEN X(L1)=4S:DX(L1)=ABS(DX(L1)):SOUND L1,PEEK(53770),10,6
470 IF X(L1»lS3 THEN X(L1)=lS3:DX(L1)=-ABS(DX(L1)):SOUND L1,PEEK(53770),10,6
4S0 IF Y(L1)<32 THEN Y(L1)=32:DY(L1)=ABS(DY(L1)):SOUND L1,PEEK(53770),10,6
490 IF Y(L1»207 THEN Y(L1)=207:DY(L1)=-ABS(DY(L1)):SOUND L1,PEEK(53770),10,6
500 POKE 5324S+L1,X(L1):GOTO 520+L1
510 REM SHIFT STRINGS IN PM AREA
520 PO$(Y(L1))=SO$:GOTO 560
521 P1$(Y(L1))=Sl$:GOTO 560
522 P2$(Y(L1))=S2$:GOTO 560
523 P3$(Y(L1))=S3$
560 SOUND L1,0,0,0:NEXT L1:POKE 5327S,0:GOTO 410
1000 REM PLAYER DATA
1010 DATA 0,0,60,126,11S,231,247,247,247,247,247,11S,126,60,0,0
1020 DATA 0,0,60,126,102,219,251,251,247,239,223,66,126,60,0,0
1030 DATA 0,0,60,126,66,247,239,199,251,251,219,102,126,60,0,0
1040 DATA 0,0,60,126,102,231,215,215,195,247,247,11S,126,60,0,0

While this is a clever method of obtaining fast vertical motion for players, there is
no easy way to animate more than a single missile when using strings. The tech
nique is shown more for completeness than for usefulness. We suggest that you use
our player-missile subroutine for your games and avoid the complications of using
string manipulation.

199

200

CHAPTER 6

VERTICAL BLANK & DISPLAY
LIST INTERRUPTS

In this chapter you will learn to use Vertical Blank and Display List Interrupts.
These interrupts are a powerful aid to the game programmer, who can use them to
smooth animation, to enable players to be re-used in the bottom portion of the
frame, to allow character sets and color registers to be changed mid-screen, and of
course much more.

As you learned in the first chapter, " Vertical Blank" refers to the period of time the
television set takes to reposition the electron beam back to the top left edge of the
screen after raster scanning or drawing one television frame. Since television frames
are generated every 1I60th of a second, there are sixty Vertical Blank periods a
second, one for each frame.

Since nothing is happening on the television screen during the Vertical Blank
period, it presents an ideal opportunity for a program to change the positions of
objects on the screen in order to animate them. If you only knew when the Vertical
Blank period occurred, you could take advantage of this time to create smooth and
flicker-free animation.

The ANTIC chip in the computer lets you do just that. Since it and the GTIAI
CTIA chip generate the television image, they need to know what is happening on
the screen at all times. When Vertical Blank occurs, an interrupt is generated on the
Atari's 6502 CPU.

An interrupt is simply a way of telling the computer to stop what it is doing,
handle something more important, then return to what it was previously doing. The
6502 checks the interrupt status after executing an instruction. If an interrupt
occurred, it saves the Program Counter (marking its current place in the program)
and the processor status register onto the stack. It then jumps through one of a
number of preset vectors, depending on the type of interrupt that occurred. Once the
interrupt has been handled, the program will RTI (return from interrupt instruc
tion) back to the instruction that was to be executed before the interruption.

ANTIC also generates Display List Interrupts. If you recall the discussion on
display lists, you remember that the display list is really a program for ANTIC. Each
byte in the display list is part of a series of instructions that lets ANTIC know what
type of information is to be displayed. Setting the high bit in an instruction in the
display list will trigger an interrupt when it is time for the television beam to display
the information for the last scan line in that graphics mode line. This type of
interrupt is sometimes called a "Raster Interrupt." Remember that the interrupt
does not stop the TV raster process but causes the 6502 to execute a series of
instructions at this specific time.

201

202

6 VERTICAL BLANK AND DISPLAY LIST INTERRUPTS

Vertical Blank and Display List Interrupts (DLI's) are sent to the 6502 Non
Maskable Interrupt (NMI) vector at $FFFA. It is called non-maskable because these
interrupts cannot be disabled on the 6502 CPU as can other types of interrupts. Three
interrupts go to the NMI vector. They are Vertical Blank, DLI's, and System Reset.
Although these interrupts cannot be masked off on the 6502, ANTIC filters the first
two. A memory-mapped hardware register in ANTIC, NMIEN ($D40E), allows the
programmer to enable or disable Vertical Blank and Display List Interrupts.
Another register, NMIST ($D40F), shows which interrupt actually occurred. When
an NMI occurs, the 6502 goes to an OS routine to find out what caused the interrupt.
If a DLI occurred, this routine vectors through page-two vectors to a DLI service
routine that changes one or more graphics registers which control display. On the
other hand, if a VBI occurred, the OS routine saves the Accumulator, X and Y
registers on the stack, then jumps through the appropriate page-two vector to the
Vertical Blank routine. And if System Reset was pressed, it goes directly to the OS
warm start vector for system reset ($E474) .

Vertical Blank Interrupts

The Atari computers use the Vertical Blank Interrupt for many housekeeping
chores. When the Atari is first powered up under normal conditions, the Vertical
Blank Interrupt is enabled. A special list of vectors is placed in page two of memory.
The operating system places the list of vectors in page two because these are RAM
locations and the user can change their contents to point to his own interrupt service
routine. System Reset is the only interrupt that cannot be routed through page two.

The operating system's Vertical Blank Interrupt (VBI) service routine is a two
stage process. When an interrupt occurs, the computer is sent to a vector in the
operating system, which in turn sends it to a routine to determine what type of
interrupt has occurred. It then jumps through the appropriate vector on page two. It
is called two-stage because it goes through two vectors on page two. This allows the
programmer to use either his own VBI routine or that of the OS, or both.

The OS uses the VBI routine to transfer data from some of the special hardware
registers in Atari's custom chips to shadowed locations in RAM and vice versa. For
example, it reads the color register information, the location of the display list, and
other graphics control information placed in RAM by the user, and writes them to
their hardware addresses. It also reads many hardware registers such as game con
trollers and light pen and places them in RAM for the user. It updates the clock at
locations 18-20 ($12-$14), and updates the timer for the attract mode which cycles the
colors if a key has not been pressed for several minutes. It even takes care of the repeat
action on the keyboard keys. Because the VBI routine updates many registers that are
used by the average program, most programmers don't wish to replace it entirely by
their own routine, since in many cases it would mean duplicating at least some of the
procedures that are handled automatically by the OS.

The vectors are called Immediate VB lank and Deferred VB lank. Atari engineers
split the Vertical Blank period into two separate sections because a VBI can extend
for about 20,000 cycles or nearly all the time available before the next VBI. The

VERTICAL BlANK AND DISPlAY LIST INTERRUPTS 6

Immediate VBlank portion refers to the time critical period when the electron beam
is actually offscreen. It is here that shadowing and hardware registers are updated.
Once the OS VBI routine has completed its housekeeping chores, it jumps through
the Deferred VBlank vector, which is set by the OS to point to a routine that will
restore the registers and return the computer to its position before the interrupt. The
OS VBI routine will abort if the computer was in the middle of a time critical 110
routine such as sending data to a cassette or disk drive. In such a case, the Deferred
VB lank vector is bypassed. Unless you are using disk 110 where your code must be
short enough not to delay shadowing updating, you can use Deferred VBlank
without being concerned.

A major question asked by many programmers is: How much time do I have in the
VBI routine to execute my code? To answer this we must examine the TV process
agam.

A television image is composed of 525 lines. Because of what is called interlacing,
only half are drawn per frame, and some of these are offscreen due to normal vertical
overscan. It takes the TV 63.5 microseconds to draw a single line. This includes the
time it takes to shut the electron beam off and reposition it back on the left edge one
scan line below. The length of Vertical Blank is equivalent to 22 scan lines or
roughly 1400 microseconds. With the Atari's 6502B CPU running at 1.79 MHz, 1400
microseconds is equivalent to approximately 2500 machine cycles (1400 X 1. 79 =
2506). So, how much can you do " inside" the Vertical Blank period? Not very much,
if you are trying to accomplish things like moving players and scrolling the screen
solely inside the Vertical Blank period. The important thing to remember is thatone
television frame is]/60th of a second, which is equivalent to 16,666 microseconds or
just about 30,000 machine cycles. This means that there is a maximum of approxi
mately 30,000 machine cycles BETWEEN Vertical Blanks. ANTIC delays processor
time in order to fetch screen data and look up character data during the screen
drawing process. A programmer using an extensive Vertical Blank Interrupt routine
will want to be sure that the routine is finished before the next VBI occurs; otherwise,
his routine will be aborted in the middle unless very special precautions are taken. A
programmer will also want to be sure that his VBlank routine is not so long that it
causes serious delays to the program code that is running outside VBlank.

Programmers often ask if the 2500 cycle VB lank time constraint seriously limits
the amount of time for smooth offscreen animation and updating. The answer is No!
True, all of the graphics updating must be performed while the beam is offscreen,
but you can also gain some additional time. Remember what a normal display list
looks like. It begins with 24 blank lines. That gives 24 by 63.5 microseconds/ line or
another 2728 cycles that can be considered offscreen . High scores, player scores and
messages generally cover the top few lines too. This adds additional time offscreen.
Obviously if your Vertical Blank routine is even longer, you should be OK as long as
you do all of your graphics updating within the first 5200 cycles of your routine.
Figure that you have a maximum of 20,000 cycles (4500 instructions) in Deferred
VBlank, but you must finish before the next VBI or your program will crash.

While programmers have written entire games in Deferred VBlank, only certain
operations should be put in VBlank. All graphics updating, including scrolling the
screen, moving player-missile objects, and changing color registers, should defi-

203

204

6 VERTICAL BlANK AND DISPlAY LIST INTERRUPTS

nitely be done in VBlank. In addition, collisions should be checked, and joysticks or
paddles should be read. This is also the best place to implement time critical sound
routines. Everything else, including calculations, should be in your main code
outside VBlank.

Setting up a Vertical Blank Interrupt is a simple process since the OS has a routine
to set up the vector for you . All it involves is storing the address of your VBI routine
in the vector table on page two of RAM. If a VBI has occurred between the time the
two bytes that make up the vector were stored in the table, the 6502 would jump
through an erroneous address, and the program would become erroneously lost. The
OS setup routine automatically assures this never happens.

Setting up the routine is simple. Load the Accumulator with 7 if you are setting a
Deferred VBlank routine, and 6 if you are setting an Immediate VBlank routine. The
X register is loaded with the high order byte of your routine, the Y register with the
low order byte. You then]SR to the OS SETVBV routine at $E45G

Example:

SETVBV .EQ $E45C
LDA #$07
LDX /VBLANK
LDY #VBLANK
JSR SETVBV

; DEFERRED
;HIGH BYTE OF USER ROUTINE
;LOH BYTE

There are two possible exit points from a VBlank routine depending on whether
Immediate or Deferred VBlank is used. If the programmer uses the Immediate one
and sti ll desires to use the OS VBI routine, the vector is $E45F (SYSVBV). If the
Deferred VBlank is used or th.e programmer does not want the OS VBI routine to
execute the vector, then it is $E462 (XITVBV). The XITVBV routine pulls the
registers off the stack and does a RTI (Return from Interrupt).

Display List Interrupts

Display list interrupts are generally used to change the color registers mid-screen
or sw itch character sets in use. These changes can be made very rapidly since they are
short and usually modify only a few bytes. Take care so that changes of this type are
offscreen during Horizontal Blank, or they will appear crude and annoying. When
ANTIC encounters the DLI instruction, it completes the last scan line for the mode it
is drawing, then services the interrupt. This means in effect that the interrupt must
be set during the mode line above the one you want the interrupt to effect.

The period of Horizontal Blank is seven microseconds. Horizontal Overscan is
another 3.3 1 microseconds. These 10.31 microseconds mean approximately eighteen
machine cycles offscreen. In order for an interrupt routine to synchronize with
Horizontal Blank, a special hardware register in ANTIC freezes the 6502 until
Horizontal Blank occurs. ThiS register at $D40A is known as WSYNG Writing to
this location pulls down the ready line on the CPU until Horizontal Sync. If you
insert a STA WSYNC instruction, then change the value in a color register, color

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

won't be changed in the middle of the current line but will go into effect when the
beam is off the left edge of the screen one scan line lower.

What if eighteen cycles are not enough time to make all the changes you need?
There are several approaches that can be taken, and the proper one depends of course
upon the situation.

As with the VBI, you need not worry about crashing the program because the code
does not fit in the Horizontal Blank time or even within the time it takes to do the
entire scan line. Only if the code is so long that another DLI occurs before the
previous one has finished would you be likely to run into problems and crash the
program. There is no reason to believe that you must complete the interrupt routine
by the end of the scan line. There are some programs that have one DLI set at the top
of the screen and do not return from the interrupt until the entire screen has been
drawn, hundreds of scan lines and thousands of machine cycles later. The interrupt
routine is used to control graphics information to the screen, line by line. A DLI
rou tine written in this manner is called a kernel.

Programmers using DLI's for simple screen changes should decide if all of them
must be made on a single line. Perhaps only a few changes need be made imme
diately. The rest can be made on the next line by waiting again for Horizontal Sync.
All the changes must be made on a single line, if there is a major screen division
between the score line and the playfield requiring different colors and character set.
In this case, it might be practical to insert a zero in the display list. A zero is the blank
line instruction in a display list. Changes could be made past Horizontal Blank on
this line while the raster beam is drawing it and still be invisible to the viewer.

There is one more important point for those readers who still need to count cycles.
Although a horizontal line takes 63.5 mic;roseconds, you do not have 113 cycles per
line (63.5 x 1.79 = 113.6) . This is because ANTIC's Direct Memory Access (DMA)
ability allows it to freeze the 6502 CPU and steal cycles in order to get screen data
from screen memory, player/ missile data from player/ missile memory, and to look
up character set data. It even steals cycles to look at the display list so it knows what
type of information to display. The amount of time stolen per scan line can vary.
ANTIC steals a cycle for each byte in memory it must access. This DMA is controlled
by a hardware register called DMACTL at $D400 (54272 decimal). The OS VBlank
routine rewrites the value found at its shadow (SDMCTL) at $22F (559 decimal)
every VBI. By setting bits in SDMCTL, the program can control screen width from
either 128, 160, or 228 color clocks. Selecting screen width tells ANTIC it may steal
cycles from the 6502 to access the display list and screen memory in order to display
information. Bits are also set here so that ANTIC may steal cycles to look up player
and/ or missile data in memory.

If you want an idea of how much time you lose from DMA, try the following
example in BASIC.

10 FOR Ll=l TO 1000:NEXT Ll

Then try:

10 POKE 559,0:FOR Ll=l TO 1000:NEXT Ll:POKE 559,32

205

206

6 VERTICAL BlANK AND DISPlAY LIST INTERRUPTS

The second example is approximately 30% faster. The first POKE disables
ANTIC's DMA, and the screen becomes black. The second POKE restores DMA after
the loop is completed so we know how long it takes. If you were to try the first
example in different graphic modes, you would find Graphics 8 the worst case. This
is beca use Gra phics 8 uses much more memory, so ANTIC must stea I more cycles in
order to access more screen memory. However, the Graphics 0 tex t mode isn ' t much
faster beca use ANTIC also stea ls cycles while retrieving the characters set.

Display List Interrupts are even simpler to set up than Vertical Blank Interrupts.
Since there is no DLI enabled when the program takes control, the program simply
has to store the low byte-high byte address of the routine into the vector on page two
(VDSLST - $200,$201). Once the vector has been stored and the display list is set for
an interrupt, NMIEN is set to enable DLI's. Bit 7 of NMIEN enables DLI's. Bit 6
enables VEl's. Storing a $CO (192 decimal) is all that is needed to enable the DLI.

Example:

VDSLST
NMIEN

*

.EQ $200

.EQ $D40E
LDA #VBI
STA VDSLST

;DISPLAY LIST INTERRUPT VECTOR

;LOW BYTE OF DLI ROUTINE

LDA !VBI ;HIGH BYTE OF DLI ROUTINE
STA VDLIST+l
LDA #$CO
STA NMIEN ;ENABLE DLI'S

;WITHOUT DISABLING VBI'S

Since the OS does not save the Accumulator, X and Y registers for a DLI as it does
for a VBI, the user must save any registers used in the DLI routine on the stack upon
entering the interrupt routine and restore them before exiting. If this is not done, the
program will unquestionably crash.

The power of DLI's is obvious. With a DLI, a program can easily switch character
bases from the standard ROM text set to a redefined character graphics set. Without a
DLI, the programmer could only redefine characters that would not be used in the
text display. DLI's enable you to change color registers mid-screen. A good example
is a game like Sea Wolf (a submarine game) in which the background color changes
from sky blue to ocean blue partway down the screen. Without a DLI to change the
background color, one other playfield color register would have to be used for either
the sky or ocean, thus limiting further the amount of color available for the screen.
Multiple DLI's can be used to control screen scrolling in games like Frogger in
which different bands on the screen scroll in different directions at different speeds.

DLI's can change player/ missile horizontal positions and colors so players can be
reused down the screen as long as vertical positions do not need to overlap in the
same player. A player, which is actually a long vertical stripe, can have several
different smaller images. The DLI allows you to snip the strip apart and reposition
those pieces in the lower portion by changing the player's horizontal position
register. If vertical movement is required, you must be careful that the different
images don't cross the boundary. Since collision registers are set by the hardware
when collision occurs, collision registers can be read within the interrupt routine so

VERTICAL BlANK AND DISPlAY LIST INTERRUPTS 6

that hardware collision detection is not lost by reusing the players. A good example
of reusing the players is the Atari Galaxian cartridge.

BASIC can use a DLI to change one or more color registers at a particular spot
mid-screen, if a short Machine language routine is added. The example below
changes the background color register in the text mode to orange and darkens the
color of the characters so they show up against the background. This is controlled by
the color in playfield 2. The change occurs in line 12 so that the interrupt is set in the
mode line preceding the change. The modified display list is as follows.

112
112 Blank 24 scan lines
112
66} LMS for BASIC 0 (ANTIC 2) (64+2)
64 Low byte of screen memory

156 High byte of screen memory
2 second mode line
2
2
2
2
2
2
2
2

130 Eleventh mode line + DU (128+2)
2
2

Since the display List is virtually identical, except for the modification in the
eleventh mode line, we need only change that byte to activate our DLI. This is at the
DUST + 15 byte.

BLUE GRAPHICS 0 DLI 1COLR
TEXT SCREEN

ORANGE GRAPHICS 0
TEXT SCREEN

207

208

6 VERTICAL BLANK AND DISPLAY LIST INTERRUPTS

5 REM FIND DISPLAY LIST
10 DLIST=PEEK(560)+256*PEEK(561)
15 REM INSERT INTERRUPT INSTRUCTION
20 POKE DLIST+15,130
25 REM READ IN DLI SERVICE ROUTINE
30 FOR 1=0 TO 19
40 READ A:POKE 1536+I,A:NEXT I
50 REM POKE IN INTERRUPT VECTOR
60 POKE 512,0:POKE 513,6
70 REM ENABLE DLI
80 POKE 54286, 192
90 DATA 72,138,72,169,38,162,90
100 DATA 141,10,212,141,26,208
110 DATA 141,24,208, 104,170,104,64

The actual Machine language DLI service routine is as follows:

D01A:
D018:
D40A:
4000:
4001 :
4002:
4003:
4005:
4007:
400A:
400D:
4010:
4011 :
4012:
4013:

00010 COLBK
00020 COLPF2
00030 WSYNC

48 00040
8A 00050
48 00060
A9 52 00070
A2 26 00080
8D OA D4 00090
8D 1A DO 00100
8D 18 DO 00110
68 00120
AA 00130
68 00140
40 00150

.EQ $DOlA

.EQ $D018

.EQ $D40A
PHA
TXA
PHA
LDA #$52
LDX #$26
STA WSYNC
STA COLBK
STA COLPF2
PLA
TAX
PLA
RTI

;SAVE ACCUMULATOR

;SAVE X-REGISTER
;DARK COLOR FOR CHARACTERS
;ORANGE BACKGROUND
;WAIT
;STORE COLOR
;STORE COLOR

Care must be taken when using multiple DLI's. There is only one vector for a DLI.
Setting NMIEN enables DLI's immediately and therefore does not wait for the next
frame. Your program must insure that the proper routine will be executed. Three
methods are avai lable. The first method is to use a variable as an index that is
incremented by each DLI. The program then branches to the appropriate routine
depending on the value o f the index. The second method is to read the vertical line
counter and branch to the appropriate routine. The third method is the cleanest.
Each DLI routine resets the DLI vector on page two (VDSLST) to point to the next.
The DLI is enabled within Vertical Blank and VDSLST is rese t to point to the first
DLI routine in VBlank.

The following example is a simple DLI routine to change the background color of
a text screen similar to the Sea Wolf example .

00010 VDSLST
00020 SDLSTL
00030 WSYNC
00040 NMIEN
00050 COLPF2
00060 PAGEO

. EQ $200

.EQ $230

.EQ $D40A

.EQ $D40E

.EQ $D018

.EQ $FO

;DISPLAY LIST INTERRUPT VECTOR
;STARTING ADDRESS OF DISPLAY LIST

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220 *
00230 DLI
00240
00250
00260
00270
00280

LDA SDLSTL
STA PAGEO
LDA SDLSTL+1

;FIND DISPLAY LSIT
;DISPLAY LIST LOW BYTE

STA PAGEO+1 ;SAVE HIGH BYTE
LDY #$08 ;3RD TEXT LINE INA A GRAPHICS 0 DISPLAY LIST
LDA (PAGEO),Y ;GET DISPLAY LSIT INSTRUCTION
ORA #%10000000;TURN ON HIGH BIT ($80)
STA (PAGEO),Y ;AND STORE IT BACK IN THE DISPLAY LIST
LDA #DLI ;DLI LOW BYTE
STA VDSLST ;STORE LOW BYTE OF OUR ROUTINE IN DLI VECTOR
LDA /VBI ;GET HIGH BYTE OF OUR DLI ROUTINE
STA VDSLST+1 ;STORE HIGH BYTE OF VECTOR
LDA #%11000000; ENABLE DLI AND KEEP VBI ($CO)
STA NMIEN
RTS

PHA
LDA #$A2
STA WSYNC
STA COLPF2
PLA
RTI

;AN RTS SHOULD RETURN THE PROGRAM
;BACK TO THE DEBUGGER WHEN RUN
;SAVE ANY REGISTER THAT WILL BE USED
;DEEP BLUE
;WAIT FOR SYNC FOR NEXT LINE

;RESTORE ACCUMULATOR
;RETURN TO MAIN PROGRAM

Binary representation was used for clarity in this example.

Kernels

A kernel is a special DLI routine designed to control graphics information on a
line-by-line basis for the entire screen. It does this by monitoring the VCOUNT
(vertical line counter) register. The most frequent use is for producing multi-colored
players. Even the player width can be changed on a line-by-line basis. For example, a
cowboy image could be made out of one player; a broad white hat defined at double
width changes a few scan lines down to a slim pink face, then changes a few scan
lines down to a brown cowboy suit and finally to black boots; four colors and two
different resolutions in a single player. Another example is the players in Atari's
Basketball cartridge. You cannot create multi-colored players like these without
Display List Interrupts because DLI's are keyed to playfield vertical positions, not
player positions.

Kernels are difficult to use because graphics information changes only during
Horizontal Blank. Kernels also drastically reduce the amount of time available for
program logic, since most of the 6502's time is spent writing graphics information
and waiting for Horizontal Sync on the next line. Since virtually no computation
time is available during display time, and only about 4000 cycles are available during
Vertical Blank and overscan time, kernels are limited to simple skill and action
games.

209

210

6 VERTICAL BLANK AND DISPLAY LIST INTERRUPTS

Multi-Colored Joystick Controlled Player

The following exa mple illustrates the use of a kernel to produce a joystick
movable, multi-colored player. The player is 15 bytes high , but it also includes two
zero bytes on each side so that it erases itself as it moves. There is no actual erase
fea ture in this example. The player is controlled by a joystick. This is not the
standard routine but an al ternate one that uses table lookup to determine its horizon
tal and vertical movement. The formulas are as follows:

PLAYRH = PLA YRH + HOFF(STICK)
PLAYRV = PLAYRV + VOFF(STICK)

For example, if the joystick points to the right and up, STICK has the value 6.
HOFF(6)=$02, and VOFF(6)=$FE or a -2. The player position changes to a location
two scan lines up and two pixels right.

The kernel itself is designed to change the player 's color four different times. To
accomplish this it must wait fOJ' the vertical line counter to reach the player 's
position. Since this counter, called VCOUNT, actually increments every other scan
line, we divide the player's vertical position by two. We add one because we actually
want to start one line later. We have to wait for each horizontal scan to test for
whether VCOUNT has reached our player's position. If it has, we then begin
fetching color to put in the player's color register. Since the color changes every three
scan lines, we must wait for three more horizontal scan lines before changing colors.
The fact that we have to do a WSYNC for each scan line prevents us from doing any
ca lculations ouside of Vertical Blank.

6000:
D407:
0230:
DOOO:
02CO:
0012:
D40A:
D40B:
D20E:
D40E:
0200:
0224:
022F:

WHITE

ORANGE
GREEN
BLUE

'--rr-"'TT--'-''''''''''''''
RED

00010 *KERNEL EXAMPLE - MULTICOLORED PLAYER -MOVES WITH JOYSTICK
00020 *CODED BY DAN PINAL
00040 PDATA . EQ $6000
00050 PMBASE .EQ $D407
00060 SDLSTL .EQ $230
00070 HPOSPO .EQ $DOOO
00080 PCOLRO .EQ $2CO
00090 COLPMO .EQ $D012
00100 WSYNC .EQ $D40A
00110 VCOUNT .EQ $D40B
00120 IRQEN .EQ $D20E
00130 NMIEN .EQ $D40E
00140 VDSLST .EQ $200
00150 VVBLKD .EQ $224
00160 SDMCTL .EQ $22F

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

D400: 00170 DMACTL .EQ $D400
DOID: 00180 GRACTL .EQ $DOlD
E45C: 00190 SETVBV .EQ $E45C
E462: 00200 xrTVBV .EQ $E462
6300: 00210 MISSLO .EQ PDATA+$300
6400: 00220 PLAYRO .EQ MISSLO+$lOO
6500: 00230 PLAYRI .EQ PLAYRO+$100
6600: 00240 PLAYR2 .EQ PLAYRl+$lOO
6700: 00250 PLAYR3 .EQ PLAYR2+$100
0278: 00260 STICKO .EQ $278

00270 *ZERO PAGE EQUATES
OOFO: 00280 VTEMPO .EQ $FO
00F1: 00290 VTEMP1 .EQ $F1
00F8: 00300 POTMPO .EQ $F8
00F9: 00310 POTMPI .EQ $F9

00340 *
00350 *
00360 INIT

4000: A9 F9 00370 LDA #DLIST
4002: 8D 30 02 00380 STA SDLSTL
4005: A9 40 00390 LDA /DLIST
4007: 8D 31 02 00400 STA SDLSTL+l
400A: A9 98 00410 LDA #KERNEL ; SET DISPLAY LIST INTERRUPT
400C: 8D 00 02 00420 STA VDSLST
400F: A9 40 00430 LDA /KERNEL
4011: 8D 01 02 00440 STA VDSLST+1
4014: AO 56 00450 LDY #VBLANK SET VERTICAL BLANK
4016: A2 40 00460 LDX /VBLANK
4018: A9 07 00470 LDA #$07 ;DEFFERRED
401A: 20 5C E4 00480 JSR SETVBV
401D: A9 60 00490 LDA /PDATA ; INIT PM GRAPHICS
401F: 8D 07 D4 00500 STA PMBASE
4022: A9 3E 00510 LDA #$3E
4024: 8D 2F 02 00520 STA SDMCTL
4027: A9 03 00530 LDA #03
4029: 8D ID DO 00540 STA GRACTL
402C: A9 63 00550 LDA /MISSLO CLEAR PLAYER/MISSILE RAM
402E: 85 F9 00560 STA POTMPI
4030: A9 00 00570 LDA #00
4032: 85 F8 00580 STA POTMPO
4034: A8 00590 TAY
4035: A2 05 00600 LDX #$05 ; 5 PAGES

00610 CLEARP
4037: 91 F8 00620 STA (POTMPO), Y
4039: C8 00630 INY
403A: DO FB 00640 BNE CLEARP
403C: E6 F9 00650 INC POTMP1
403E: CA 00660 DEX
403F: DO F6 00670 BNE CLEARP
4041: A9 OE 00680 LDA #$OE WHITE
4043: 8D CO 02 00690 STA PCOLRO
4046: A9 80 00700 LDA #$80
4048: 8D FD 40 00710 STA PLAYRH
404B: 8D FE 40 00720 STA PLAYRV

00730 ENABLE INTERRUPTS
404E: A9 CO 00740 LDA #$CO
4050: 8D OE D4 00750 STA NMIEN

00760 HERE
4053: 4C 53 40 00770 JMP HERE ;ENDLESS LOOP OUTSIDE VBLANK

00780 *VBLANK ROUTINE
00790 VBLANK

4056: A9 CO 00800 LDA #$CO

211

6 VERTICAL BLANK AND DISPLAY LIST INTERRUPTS

4058: 8D OE D4 00810 STA NMIEN REENABLE DLI (FOR REV. A O.S.)
405B: AE 78 02 00820 LDX STICKO JOYSTICKO VALUE
405E: 18 00830 CLC
405F: AD FD 40 00840 LDA PLAYRH LOAD OLD HORIZ. PLAYER POS
4062: 7D D5 40 00850 ADC HOFF,X ADD HORIZ DIRECTION VECTOR
4065: C9 30 00860 CMP #$30

00870 * CHECK IF PAST RIGHT OR LEFT EDGE
4067: 90 OA 00880 BCC NEWV
4069: C9 DO 00890 CMF #$DO
406B: BO 06 00900 BCS NEWV
406D: 8D FD 40 00910 STA PLAYRH ;STORE NEW HORIZ PLAYER POSITION
4070: 8D 00 DO 00920 STA HPOSPO ;TELL ANTIC

00930 NEW
4073: 18 00940 CLC
4074: AD FE 40 00950 LDA PLAYRV ;LOAD OLD VERT PLAYER POS
4077: 7D E5 40 00960 ADC VOFF,X ;ADD VERT DIRECTION VECTOR

00970 * CHECK IF PAST TOP OR BOTTOM
407A: C9 22 00980 CMF #$22
407C: 90 17 00990 BCC XVBLANK
407E: C9 DO 01000 CMF #$DO
4080: BO 13 01010 BCS XVBLANK
4082: 8D FE 40 01020 STA PLAYRV ;STORE NEW VERT POSITION
4085: 85 FO 01030 STA VTEMPO ;LO BYTE OF P/M AREA
4087: A9 64 01040 LDA IPLAYRO
4089: 85 Fl 01050 STA VTEMPI ;HI BYTE OF plM AREA
408B: AO 13 01060 LDY #$13 ;20 ELEMENTS

01070 PDRAW
408D: B9 C2 40 01080 LDA lMAGE,Y ;GET BYTE FROM SHAPE TABLE
4090: 91 FO 01090 STA (VTEMPO),Y ;STORE BYTE IN P/M AREA
4092: 88 01100 DEY ;NEXT BYTE
4093: 10 F8 01110 BPL PDRAW ;DONE?

01120 XVBLANK
4095: 4C 62 E4 01130 JMP XITVBV

01140 *
01150 KERNEL

4098: 48 01160 PHA SAVE REGISTERS
4099: 8A 01170 TXA
409A: 48 01180 PHA
409B: 98 01190 TYA
409C: 48 01200 PHA
409D: A2 03 01210 LDX #$03 USE X FOR INDEX TO COLOR TABLE
409F: AD FE 40 01220 LDA PLAYRV GET VERT. POS.
40A2: 4A 01230 LSR VCOUNT COUNTS EVERY OTHER LINE
40A3: A8 01240 TAY
40A4: C8 01250 INY

01260 UNTIL
40A5: 8D OA D4 01270 STA WSYNC ;WAIT TILL OFF SCREEN
40A8: CC OB D4 01280 CPY VCOUNT ;ARE WE AT LINE TO BEGIN CHANGING (
40AB: BO F8 01290 BCS UNTIL ;NO HAVEN'T REACHED IT-BRANCH

01300 CHANGE
40AD: BD F5 40 01310 LDA COLOR,X GET COLOR
40BO: 8D 12 DO 01320 STA COLPMO STUFF COLOR
40B3: 8D OA D4 01330 STA WSYNC WAIT 3 LINES # DO NEXT CHANGE
40B6: 8D OA D4 01340 STA WSYNC
40B9: 8D OA D4 01350 STA WSYNC
40BC: CA 01360 DEX
40BD: 10 EE 01370 BPL CHANGE GO BACK TILL ALL CHANGES MADE
40BF: 4C 62 E4 01380 JMP XITVBV LET O.S. RESTORE REGISTERS

01390 *
40C2: 00 00 10
40C5: 10 10 10

212

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

40C8: 38 38 01400 IMAGE .HS 0000101010103838
40CA: 38 38 7C
40CD: 7C 7C FE
40DO: FE 54 01410 .HS 38387C7C7CFEFE54
40D2: 54 00 00 01420 .HS 540000
40D5: 00 00 00
40D8: 00 00 02
40DB: 02 02 01430 HOFF .HS 0000000000020202
40DD: 00 FE FE
40EO: FE 00 00
40E3: 00 00 01440 .HS OOFEFEFEOOOOOOOO
40E5: 00 00 00
40E8: 00 00 02
40EB: FE 00 01450 VOFF .HS 000000000002FEOO
40ED: 00 02 FE
40FO: 00 00 02
40F3: FE 00 01460 .HS 0002FEOOOO02FEOO
40F5: 44 76 B8
40F8: 3A 01470 COLOR .HS 4476B83A
40F9: 80 41 01480 DLIST .HS 8041
40FB: F9 40 01490 .DA DLIST
40FD: 00 01500 PLAYRH .HS 00
40FE: 00 01510 PLAYRV .HS 00

Splitting Screen Horizontally Using DLIs

Our second example of a kernel produces a split color screen, but this time the split
is across the vertical axis wi th the left portion of the screen black and the right pink.
The kernel takes advantage of a careful timing loop after a WSYNC instruction. It
waits until the beam is offscreen for each scan line, so the beam always reaches the
same horizontal position before changing the background color register to pink.
The loop is a simple countdown from six to zero. The background is restored to
black for the next scan line immediately after the WSYNG Notice that the color
change is fed directly to the hardware color register. Remember that the kernel
operates outside of VBlank, and the shadowed background color register doesn't get
copied until VBlank. Thus, color changes must feed directly to hardware. We do
have a joystick-controlled player-missile routine operating in VBlank in order to
show that the kernel and it are entirely independent.

BLACK

RED

MULTICOLORED
PLAYER

KERNEL2.SRC

213

214

6 VERTICAL BLANK A ND DISPLAY LIST INTERRUPTS

6000 :
0407 :
0230:
0000 :
02CO:
D012 :
D01A :
D40A :
D40B:
020E:
D40E :
0200:
0224 :
022F:
0400:
DOlO :
E45C :
E462 :
6300:
6400 :
6500 :
6600 :
6700 :
0278:

OOFO :
00F1 :
OOFS:
00F9 :

4000 :
4002 :
4005 :
4007 :
400A :
400C :
400F:
4011 :
4014 :
4016 :
4018:
401A :
4010 :
401F :
4022 :
4024 :
4027:
4029 :
402C :
402E:
4030 :
4032:
4034:
4035 :

00010 *KERNEL EXAMPLE - BY DAN PINAL
00020 * KERNEL CHANGES COLOR :1IDSCREEN DURING EACH SCAN LINE
00040 PDATA .EQ $6000
00050 PMBASE .EQ $D407
00060 SDLSTL . EQ $230
00070 HPOSPO .EQ $DOOO
00080 PCOLRO .EQ $2CO
00090 COLPMO . EQ $D01 2
00100 COLBAK . EQ $D01A
00110 \.JSYNC • EQ $D40A
00120 VCOUNT .EQ $D40B
00130 IRQEN . EQ $D20E
00140 NMII~N . EQ $D40E
00150 VDSLST .EQ $200
00160 VVI3LKD .EQ $224
00170 SDMCTL .EQ $22F
00180 D~lACTL . EQ $D400
00190 GRACTL .EQ $D01D
00200 SETVBV . EQ $E45C
00210 XITVI3V .EQ $E462
00220 MISSLO .EQ PDATA+$300
00230 PLAYRO .EQ MISSLO+$100
00240 PLAYRI .EQ PLAYRO+$l OO
00250 PLAYR2 .EQ PLAYR1+$100
00260 PLAYR3 .EQ PLAYR2+$100
00270 STICKO • EQ $278
00280 *ZERO PAGE EQUATES
00290 VTEMPO .EQ $FO
00300 VTEMP1 • EQ $F!
00310 POTMPO .EQ $F8
00320 POTMP1 .EQ $F9
00350 *
00360 *
00370 INIT

A9 FB 00380
8D 30 02 00390
A9 40 00400
80 31 02 00410
A9 98 00420
8D 00 02 00430
A9 40 00440
8D 01 02 00450
AO 56 00460
A2 40 00470
A9 07 00480
20 5C E4 00490
A9 60 00500
8D 07 D4 00510
A9 3E 00520
8D 2F 02 00530
A9 03 00540
80 ID 00 00550
A9 63 00560
85 F9 00570
A9 00 00580
85 F8 00590
A8 00600
A2 05 00610

LDA #OLIST
STA SDLSTL
LDA /DLIST
STA SDLSTL+l
LDA #KERNEL ; SET DISPLAY LIST INTERRUPT
STA VDSLST
LDA /KERNEL
STA VDSLST+l
LDY #VBLANK SET VERTICAL BLANK
LDX / VBLANK
LOA 11$07
JSR SETVBV

; OEFFERRED

LDA /PDATA ; INIT PM GRAPHICS
STA PMBASE
LOA #$3E
STA SOMCTL
LOA #03
STA GRACTL
LOA /MISSLO CLEAR PLAYER/MISSILE RAM
STA POTMPI
LDA #00
STA POTMPO
TAY
["OX 11$05 ; 5 PAGES

4037 : 91 F8
4039 : C8

00620 CLEARP
00630
00640

STA (POTMPO) , Y
INY

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

403A: DO FB 00650 BNE CLEARP
403C : E6 F9 00660 INC POTMP1
403E : CA 00670 DEX
403F : DO F6 00680 BNE CLEARP
4041: A90E 00690 LDA #$OE
4043 : 8D CO 02 00700 STA PCOLRO
4046 : A9 80 00710 LDA #$80
4048: 8D FF 40 00720 STA PLAYRH
404B: 8D 00 41 00730 STA PLAYRV

00740 * ENABLE INTERRUPTS
404E : A9 CO 00750 LDA #$CO
4050: 8D OE D4 00760 STA NMIEN

00770 HERE
4053 : 4C 53 40 00780

00790 *
00800 VBLANK

4056: A9 CO 00810

JMP HERE

LDA #$CO

WHITE

4058 : 8D OE D4 00820
405B: AE 78 02 00830

STA NMIEN ; 'REENABLE DLI (FOR REV. A O. S.)
LDX STICKO

405E: 18 00840
405F: AD FF 40 00850
4062: 7D D7 40 00860
4065: C9 30 00870

CLC
LDA PLAYRH
ADC HOFF,X
CMF #$30

00880 * CHECK
4067: 90 OA 00890

IF PAST RIGHT OR LEFT EDGE
BCC NE\~V

4069: C9 DO 00900
406B : BO 06 00910
406D : 8D FF 40 00920
4070: 8D 00 DO 00930

00940 NEW

CMP #$DO
BCS NEWV
STA PLAYRH
STA HPOSPO

4073 : 18 00950 CLC
4074: AD 00 41 00960 LDA PLAYRV
4077: 7D E7 40 00970 ADC VOFF,X

TELL ANTIC

00980 * CHECK IF PAST TOP OR BOTTOM
C9 22
90 17
C9 DO
BO 13
8D 00 41
85 FO
A9 64
85 F1

00990 CHP #$22
01000 BCC XVBLANK
01010 CMF #$DO
01020 BCS XVBLANK
01030 STA PLAYRV
01040 STA VTEMPO
01050 LDA /PLAYRO
01060 STA VTEMP1

407A:
407C:
407E:
4080 :
4082 :
4085 :
4087:
4089:
408B : AO 13 01070 LDY #$ 13 ; 20 ELEMENTS

01080 PDRAW
408D: B9 C4 40 01090
4090: 91 FO 01100
4092: 88 01 110
4093: 10 F8 01 120

01130 XV BLANK
4095: 4C 62 E4 01140

4098:
4099:
409A:
409B:
409C:
409D:

48
8A
48
98
48
AO 70

01150 ;
01160 KERNEL
01170
01180
01190
01200
01210
01220
01230 DALOOP

409F: 8D OA D4 01240
40A2: A9 00 01250

LDA Il1AGE,Y
STA (VTEMPO), Y
DEY
BPL PDRAW

JMP XITVBV

PHA
TXA
PHA
TYA
PHA
LDY #$70

STA WSYNC
LDA #$00

SAVE REGISTERS

WAIT TILL BEAM OFFSCREEN
BLACK

215

2 16

6 VERTICAL BLANK AND DISPLAY LIST INTERRUPTS

40A4 : A2 06 01260 LDX #$06 DELAY TIMER
01270 UNTIL

40A6: CC OB D4 01280 CPY VCOUNT STILL ON SCREEN?
40A9: 90 OE 01290 BCC XKERNEL LEAVE IF TOO LOW
40AB : 8D 1A DO 01300 STA COLBAK TURN BACKGRON D TO BLACK

01310 HANGON
40AE: CA 01320 DEX COUNTDOWN FROM 6 TO 0
40AF : DO FD 01330 BNE HANGON BEAM MID-LINE YET
40B1 : A2 44 01340 LDX #$44 PINK
40B3: 8E 1A DO 01350 STX COLBAK TURN SCREEN PINK
40B6 : 4C 9F 40 01 360 JMP DALOOP GO GET READY FOR NEXT LI NE

01370 XKERNEL
40B9: A9 00 01380 LDA #$00 TURN SCREEN BLACK
40BB : 8D 1A DO 01390 STA COLBAK
40BE : 68 01400 PLA RESTORE THE REG ISTERS & LEAVE
40BF : A8 01410 TAY
40CO : 68 01420 PLA
40Cl: AA 01430 TAX
40C2: 68 01440 PLA
40C3: 40 01450 RTI

01460 *
40C4 : 00 00 10
40C7 : 10 10 10
40CA: 38 38 01470 IMAGE . HS 0000101010103838
40CC : 38 38 7C
40CF: 7C 7C FE
40D2: FE 54 01480 .I-IS 38387C7C7CFEFE54
40D4 : 54 00 00 01490 . I-IS 540000
40D7: 00 00 00
40DA: 00 00 02
40DD: 02 02 01500 HOV'F .HS 0000000000020202
40DF : 00 FE FE
40E2 : FE 00 00
40E5: 00 00 01510 . I-IS OOFEFEFEOOOOOOOO
40E7: 00 00 00
40EA: 00 00 02
40ED: FE 00 01520 VOFF' .HS 000000000002FEOO
40EF: 00 02 FE
40F2 : 00 00 02
40F5: FE 00 01530 . I-IS 0002fEOOOO02FEOO
40F7 : 44 76 B8
40FA : 3A 01540 COLOR .I-IS 44761383A
4017B : 80 41 01550 DLIST .I-IS 8041
40FD: FB 40 01560 .DA DLIST
401"17: 01570 PLAYRI-I . 5S 1
4100: 01580 PLAYRV . 5S 1

Using DLls to Create Animation

The third example shows a motorboa t crossing water. A kernel controls an
eight-scan line segment a t the surface so that it appears that the water has waves. The
in terrupt occurs on the fourth tex t line. Essentially, each bit of an eight-bit random
number is sequentially shifted rig ht into the carry bit while in a loop. If the bit is set,
the routine changes the background color register to light blue. If it isn't, it remains
da rk blue. Once the eight sca n lines a re drawn, the routine sets the background color
to dark blue for the remainder of the screen . A new wave pattern is picked every eight
VBl anks; otherwise, the waves would change too quickly.

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

DLl4.SRC

The white motorboat consists of two players set side by side. It is moved in the
VBlank interrupt routine which also provides the new random number every eighth
cycle. The sequence is clocked through the internal clock at $14 called RTCLOC.
ANDing the value with #$07 produces a positive value if you don't have an exact
even multiple of eight because some combination of the lowest three bits (1-7) is set.
In that case, the routine branches to a new random number.

There are many other possible examples using kernels . Advanced programmers
might attempt to modify the second example so that a non-joystick-controlled
player might have its horizontal position changed during the horizontal scan for
each line. It is possible, using tight timing loops, to reuse the player on the same scan
line.

0014:
0200:
022F:
0230:
02CO:
02Cl:
02C6:
DODO:
0001:
IXHS:
DOlO:
D20A:
D407:
D40A:
D40E:
E45C:
E462:
OOFO:
5000:
5400:
5500:

4000: A9 03

00010 *DLI EXAMPLE - BOAT & WAVES - DAN PINAL
00015 *SYSTEM EQUATES
00020 RTCLOC .EQ $14
00030 VDSLST • EQ $ 200
00040 SDMCTL • EQ $22F
00050 SDLSTL .EQ $230
00060 PCOLRO .EQ $2CO
00070 PCOLRl .EQ $2Cl
OOOSO COLOR2 .EQ $2C6
00090 HPOSPO • EQ $DOOO
00100 HPOSPl • EQ $DOOl
00110 COLPF2 .EQ $OOIS
00120 GRACTL • EQ $DOID
OOl30 RANDOM .EQ $D20A
00140 PMBASE • EQ $D407
00150 WSYNC .EQ $D40A
OOl60 NMIEN • EQ $D40E
00170 SETVBV .EQ $E45C
OOlSO XITVBV .EQ $E462
OOl90 PAGEO .EQ $FO
00200 PDATA • EQ $5000
00210 PLAYERO .EQ PDATA+$400
00220 PLAYERl .EQ PDATA+$500
00230 ;
00240 • OR $4000
00250 START
00260 LDA #$03 SET UP PLAYER/MISSILE GRAPHICS

217

6 VERTICAL BLANK AND DISPlAY LIST INTERRUPTS

4002: 8D ID DO 00270 STA GRAcrL
4005: A9 50 00280 LOA /PDATA
4007: 8D 07 D4 00290 STA PMBASE
400A: A9 3E 00300 LDA #$3E
400C: 8D 2F 02 00310 STA SDMGrL
400F: A9 00 00320 LDA #$00 ; CLEAR PLAYER RAM
4011 : AA 00330 TAX

00340 .1
4012: 9D 00 54 00350 STA PLAYERO,X
4015: 9D 00 55 00360 STA PLAYERl,X
4018: CA 00370 OEX
4019: DO F7 00380 BNE .1
401B: A2 07 00390 LDX #$07

00400 .2
401D: BD C2 40 00410 LDA LHALF,X ;PUT LEFT HALF OF BOAT ON SCREEN
4020: 9D 3C 54 00420 STA PLAYERO+$3C,X
4023: BD CA 40 00430 LDA RHALF,X ; PUT RIGHT HLAF OF BOAT ON SCREEN
4026: 9D 3C 55 00440 STA PLAYERl+$3C ,X
4029: CA 00450 DEX
402A: 10 Fl 00460 BPL . 2
402C: A9 94 00470 LOA #$94 BLUE
402E: 8D C6 02 00480 STA COLOR2 TEXT BACKGROUND
4031 : A9 OE 00490 LDA #$OE WHITE
4033: 8D CO 02 00500 STA PCOLRO MAKE BOAT WHITE
4036: 8D Cl 02 00510 STA PCOLRI
4039: A9 00 00520 LDA #$00 SET HORIZONTAL POS. TO 0
403B: 8D D4 40 00530 STA POH
403E: A9 08 00540 LDA #$08 RIGHT HALF OF BOAT HORIZ. POS. IS 8 GREATER -
4040: 8D D5 40 00550 STA PIH - THAN LEFT HALF
4043: AD 30 02 00560 LDA SDLSTL MAKE A PAGE 0 POINTER TO CURRENT DISPLAY LIST
4046: 85 FO 00570 STA PAGEO
4048: AD 31 02 00580 LDA SDLSTL+l
404B: 85 Fl 00590 STA PAGEO+l
404D: AO 08 00600 LDY #$08 ; FIND THE 4TH TEXT LINE
404F: Bl FO 00610 LDA (PAGEO), Y
4051: 09 80 00620 ORA #%10000000 TURN ON HIGH BIT FOR INTERRUPT
4053: 91 FO 00630 STA (PAGEO), Y STORE IT BACK
4055: A9 00 00640 LDA #$00
4057: 8D D2 40 00650 STA WAVE
405A: A9 73 00660 LDA #DLI STORE ADDRESS OF DLI IN PAGE 2 VECTOR
405C: 8D 00 02 00670 STA VDSLST
405F: A9 40 00680 LDA /DLI
4061: 8D 01 02 00690 STA VDSLST+l
4064: A9 CO 00700 LOA #%11000000 ; TELL ANTIC TO OK DLI
4066: 8D OE D4 00710 STA NMIEN
4069: A9 07 00720 LDA #$07 ; SET UP DEFFERRED VBLANK
406B: AO 9B 00730 LDY #VBI
406D: A2 40 00740 LDX /VBI
406F: 20 5C E4 00750 JSR SETVBV
4072: 60 00760 RTS THIS SHOULD RTS BACK TO YOUR ASSEMBLER DEBUGGER

00770 DLI
4073: 48 00780 PHA
4074: 8A 00790 TXA
4075: 48 00800 PHA
4076: 98 00810 TYA
4077: 48 00820 PHA
4078: A9 A2 00830 LDA #$A2 DARK BLUE
407A: AO A6 00840 LDY #$A6 LIGHT BLUE
407C: A2 08 00850 LDX #$08 WE ARE GOING TO PLAY WITH THE NEXT 8 SCAN LINES

00860 .1
407E: 4E D3 40 00870 LSR TWAVE CHECK NEXT BIT OF OUR RANDOM NUMBER

218

VERTICAL BLANK AND DISPLAY LIST INTERRUPTS 6

4081: 8D OA D4 00880 STA WSYNC WAIT TILL BEAM OFFSCREEN
4084: 8D 18 DO 00890 STA COLPF2 ASSUME DARK BLUE
4087: 90 03 00900 BCC .2 IF RANDOM # BIT WAS OFF
4089: 8C 18 DO 00910 STY COLPF2 IF ON TURN LIGHT BLUE

00920 .2
408C: CA 00930 DEX
408D: DO EF 00940 BNE .1 ; TILL ALL 8 LINES DONE
408F: 8D OA D4 00950 STA WSYNC ; WAIT TILL OFF SCREEN
4092: 8D 18 DO 00960 STA COLPF2 ; TURN SCREEN DARK BLUE FOR REMAINDER OF SCREEN
4095: 68 00970 PLA ; RESTORE REGISTERS & LEAVE
4096: A8 00980 TAY
4097: 68 00990 PLA
4098: AA 01000 TAX
4099: 68 01010 PLA
409A: 40 01020 RTI

01030 VBI
409B: A5 14 01040 LDA RTCLOC
409D: 29 07 01050 AND #$07 A NEW WAVE PATTERN IS PICKED EVERY 8TH VBLANK -
409F: DO 06 01060 BNE .1 - OTHERWISE IT WOULD CHANGE TOO FAST
40A1: AD OA D2 01070 LDA RANDOM GET A NEW WAVE VALUE
40A4: 8D D2 40 01080 STA WAVE

01090 .1
40A7: AD D2 40 OllOO LDA WAVE GET CURRENT WAVE VALUE
40AA: 8D D3 40 01110 STA TWAVE ; PASS TO DLI VARIABLE
40AD: EE D4 40 Oll20 INC POH ; MOVE BOAT ACCROSS SCREEN
40BO: EE D5 40 01130 INC P1H
40B3: AD D4 40 01140 LDA POH
40B6: 8D 00 DO 01150 STA HPOSPO ; TELL ANTIC NEW POS.
40B9: AD D5 40 01160 LDA P1H
40BC: 8D 01 DO Oll70 STA HPOSP1
40BF: 4C 62 E4 01180 JMP XITVBV

Oll90 ;
01200 LHALF

40C2: 00 00 60
40C5: EF EF 5F
40C8: 40 CO 01210 .HS 000060EFEF5F40CO

01220 RHALF
40CA: 80 40 20
40CD: FF FC FO
40DO: ()() 00 01230 .HS 804020FFFCFOOOOO

01240 ;
40D2: 01250 WAVE .BS 1
40D3: 01260 TWAVE .BS 1
40D4: 01270 POH .BS 1
40D5: 01280 P1H .BS 1

219

220

CHAPTER 7

GAMES THAT SCROLL

An effective means of showing a much larger environment than can actually fit on
the screen at anyone time is to scroll the screen. Examples where only a portion of
the total information can be shown are numerous, and range from the simple listing
of a long BASIC program to the scanning of a large terrain map such as those used in
the war game Eastern Front .

Perhaps its best use , however, is the dynamic feel that it gives to scrolling arcade
games like Super Cobra, Zaxxon, and Caverns of Mars. These -games have multi
screen worlds which scroll on or off the screen as a player's ship moves. These games
show only a window or part of the entire background world at one time. They differ
from games that have background stars and aliens that appear to be traveling toward
you from top to bottom. Scrolling games have objects or terrain in relatively stable
positions within the game's world. They can be reached by traveling to that particu
lar section of the world.

There are two ways to scroll screen data. Most conventional micro-computers
move the data through a fixed screen area. This requires an enormous memory
shuffle involving many thousands of bytes. In the case of an Apple computer, rough
horizontal scrolling can be achieved by shuffling all 8K of screen memory data.
Other computers that are endowed with character set graphics can reduce the
workload to a manageable I K of screen data. In nearly all cases, scrolling is coarse
and jerky because individual bytes of data represent either seven or eight individual
pixels. Moving one byte moves many pixels at one time.

An easier method, and the one the Atari engineers chose, is to move the screen
window or screen area over the data. Luckily, the ANTIC graphics microprocessor
uses the Load Memory Scan (LMS) instruction to determine where it finds its screen
data. A normal display list will have one LMS instruction at its beginning. The
RAM area that it points to has the screen data in linear sequence. If we change the
starting screen address by manipulating the operand bytes of the LMS instruction, a
primitive coarse scroll can be achieved. In effect, we have moved the screen window
over the data just by changing two address bytes. This is exactly equivalent to the
conventional method of moving all of screen RAM.

Atari computers are also equipped with both vertical and horizontal fine scrolling
registers . These enable the computer to scroll the screen in steps smaller than
character or pixel size. While the effect is impressive, the technique requires imple
mentation at a Machine language level and will be discussed later.

221

222

7 GAMES THAT SCROLL

Coarse Vertical Scrolling

Coarse vertical scrolling, similar to the way a long BASIC program listing scrolls,
is quite easy to implement from BASIC. If we consider a Graphics 0 playfield, each
row of character data consists of forty characters. The second row of data begins forty
bytes beyond the first row of data. When ANTIC begins fetching display data from
screen RAM , it begins with the first row, using data beginning at the address in the
opera nd of its LMS instruction. It fetches forty bytes sequentially for each of the
twenty-four lines of character data.

It would be very easy to modify the two-byte operand of the LMS instruction so
that it begins fetching screen data beginning with the RAM screen address of the
second line or forty bytes later. To do this we need only modify the fourth and fifth
bytes of our display list. The Oth, first, and second bytes are blank 8 scan-line
instructions, the third is the LMS instruction, the fourth and fifth bytes are the low
byte and high byte address of screen data respectively. Each time we scroll the screen
upward one mode line, we need to advance the LMS address by forty bytes. You need
only make sure that the low byte doesn ' t exceed a value of 255. If it does, you adjust
the low byte by subtracti ng 256, and increment the high byte by one. The example
below begins its scrolling at the very boltom of memory and scrolls until near the top
of memory.

10 REM VERTICAL SCROLLING EXAMPLE
15 GRAPHICS 0
20 DLIST=PEEK(560)+256*PEEK(561)
30 LMSLO=DLIST+4
40 ll1SHI=DLIST+5
50 SCREENLO=O:SCREENHI=O
60 REM SCROLL TO NEXT LINE
70 SCREENLO=SCREENLO+40
80 REM CHECK FOR OVERFLOW & ADJUST
90 IF SCREENLO<256 THEN 140
100 SCREENLO=SCREENLO-256
110 SCREENHI=SCREENHI+1
120 IF SCREENHI=160 THEN END
130 REM ADJUST LMS POINTERS
140 POKE LMSLO,SCREENLO
150 POKE LMSHI,SCREENHI
160 FOR DE=l TO 50:NEXT DE
170 GOTO 70

As you watch the screen scroll upward, you will notice sometimes that the
scrolling becomes momentarily discontinuous. This is a problem that occurs only in
BASIC when scrolling is done outside the Vertical Blank period. Sometimes BASIC
hasn't had time to POKE both the high and low bytes into the display list before the
interrupt occurs. In the even t that only one byte has been POKEd, the starting
address in the LMS instruction is incorrect and the screen jerks. A more serious
discontinuity occurs at 4K boundaries because ANTIC can't cross a 4K boundary
using a single LMS instruction. Using LMS instructions for each mode line should
solve the problem.

GAMES THAT SCROLL 7

Coarse Horizontal Scrolling

Horizontal scrolling is much more difficult to do than vertical scrolling. The
problem is that screen data is organized serially. Attempting to scroll to the right
causes the computer to try to display data in the first line that would normally
belong in the second line. We begin to get a snaking scroll throughout the entire
display as the leftmost byte on each line will be scrolled into the rightmost position
of the next higher line, and the following bytes shift one to the left.

The solution is to expand the screen data area and break it up into a series of
independent horizontal data areas for each mode line. Each RAM area is sti ll
one-dimensional and serial in nature, but it extends much further than the screen
shows. Since the purpose in scrolling a screen is to show more information than the
screen can hold, we have allotted extra RAM for each mode line to hold this
information. Now, if we move the screen window over the screen data, the data
moves into view without affecting the data in any of the subsequent mode lines.

$000

$100
$200

$300
$AOO
$800

COARSE $09
SCROLL I ~

...

""'"-

#31

1 ---
40 bytes---+-

I~DISPLAY AREA....j I
,~ 4-------- SCREEN MEMORY ----------'l.~

As a first step, you will need to organize your screen data by allocating a certain
number of bytes of RAM for each mode line. Since the LMS operand consists of a low
and a high byte, it is much easier to calculate addresses if each subsequent mode line
is exactly 256 bytes long. This simplifies calculations since the high byte screen
address for each mode line is a page, or one unit, apart. Since each mode line accesses
a different page of screen memory, a special display list must be constructed that has
an LMS for each mode line. As an example, we will horizontal!y scroll a BASIC
mode 2 (ANTIC 7) screen. There are twelve mode lines on the screen, each using 256
bytes of memory, or a total of 3K of RAM memory. Since ANTIC displays twenty
bytes per line, our world consists of nearly twenty-three screens of data arranged end
to end horizontally. If we choose to use the lowest portion of RAM beginning with
zero page which we know has interesting data, the display list is as follows:

223

224

7 GAMES THAT SCROLL

112
112
112

7i (
7H
7i (

7~ t
II \

6~ (

8 blank scan lines

LMS for Oth row BASIC 2 (64+7)
Low byte screen memory
High byte starting zero page
LMS for first row
low byte
High byte starting page one

LMS for eleventh row
Low byte
High byte
JMP to beginning of display list
Low byte
High byte page six

To execute a horizontal scroll, each and every LMS operand in the display list
must be incremented for a rightward scroll and decremented for a leftward scroll.
Since we set up screen memory one page per mode line, only the low byte address
need be changed. Also, since the entire screen scrolls as a unit, at least in our case, all
of the low byte operands are changed at the same time and have the same value.
Program logic should a lso insure that the image doesn't scroll beyond the limits of
the a llocated RAM areas, otherwise the display will become garbaged.

The following example uses the preceding display list to scroll our screen
horizontally through the lowest twelve pages of memory used by the OS and DOS.
We have also placed our display list in page six (sixth row of our display) so that you
can watch the data in the list change as the screen actually scrolls. Changes are made
to each of the low byte operands of the LMS instructions via a FOR .. . NEXT loop.
They are the fourth, seventh, tenth, etc., positions in the display list. This is at
DLIST + (3*J)+ 1 where J goes from I to 12. Also, since we can't scroll into screen
RAM beyond the end of each page without messing up the display, program logic
dictates that the right edge of our window does not exceed 255. Therefore, the left
edge must not exceed 255-20 == 235 bytes. The screen is scrolled from 0 to 235.

10 REM HORIZONTAL SCROLLING EXAMPLE
20 REM READ IN DISPLAY LIST TO PAGE 6
25 DLIST=1536
30 FOR 1=0 TO 41
40 READ A:POKE DLIST+I,A:NEXT I
50 REM TELL ANTIC WHERE DISPLAY LIST IS
60 POKE 560,0:POKE 561,6
70 REM SCROLL SCREEN HORIZONTALLY
80 FOR 1=0 TO 235

90 FOR J=l TO 12
100 POKE DLIST+(3*J)+1,I
110 NEXT J
115 FOR DE=l TO 75:NEXT DE
120 NEXT I
130 FOR DE=l TO 1000:NEXT DE
140 GOTO 80

GAMES THAT SCROLL 7

200 DATA 112,112,112,71,0,0,71,0,1,71,0,2,71,0,3,71,0,4,71,0,5,71,0,6
210 DATA 71,0,7,71,0,8,71,0,9,71,0,10,71,0,11,65,0,6

Obviously, the technique doesn't produce smooth wraparound, although the
program repeats itself by beginning again at the left edge of screen RAM. The fault
isn't with the technique but in the screen data. If you want wraparound, the data on
the last screen must match that of the first screen. This would mean in our example
that the last twenty bytes of each line exactly match the first twenty bytes of each line.

It wouldn't be difficult to combine horizontal scrolling with vertical scrolling to
get diagonal scrolling. Since we achieve scrolling by adding or subtracting one from
the LMS operand, and vertical scrolling by adding or subtracting the line length
from the LMS operand, diagonal scrolling occurs when both operations are done
simultaneously. If we wish to scroll down and to the left we would add 256 bytes to
the high byte and I byte to the low byte of each scan line. While this might appear to
be a simple procedure in this special case, any other configuration of screen RAM
will involve two-byte additions.

Fine Scrolling

We can create much finer scrolling in steps smaller than pixel or character size by
enabling the fine scrolling registers. There are two of these, one for horizontal
scrolling (HSCROL) at $D404, and one for vertical scrolling (VSCROL) at $D405.
They are enabled by setting appropriate bits in the display list instruction bytes for
the mode lines in which we want fine scrolling. Vertical fine scrolling is enabled by
setting bit 5 in the instruction bit. Similarly, horizontal fine scrolling is enabled by
setting bit 4 in the instruction byte.

Function set add add
bit decimal hex

Load Memory Scan 6 64 40

Vertical scroll 5 32 20

Horizontal scroll 4 16 10

For example, if we were to enable fine horizontal scrolling in our example above,
each of the LMS instructions would be 64+7+ 16 = 87.

The two fine scroll registers each have a limited range equal to 16 scan lines (0-15)
in the vertical direction, and 16 color clocks (0-15) in the horizontal direction. If we

225

226

7 GAMES THAT SCROLL

attempt to scroll beyond these values, ANTIC simply ignores the higher bits of the
scroll registers. In order to achieve fine scrolling over a wider range, we need to
combine fine scrolling with coarse scrolling. The technique is to fine scroll the
image until the amount of fine scrolling equals the size of the pixel or character.
Then you reset the fine scrolling register back to zero and coarse scroll the screen one
unit. An example of fine scrolling in the vertical direction is shown in the following
picture:

CHAPTER 7

R
R

one step
~

R
R

Start FS=1 FS=2 FS=3 FS=4 FS=5 FS=6 FS=7 FS=O coarse
position scroll

A minor problem occurs when you attempt to fine scroll data into the bottom
mode line. Images tend to pop in suddenly rather than scroll in smoothly because
there is no buffer of da ta for the next line. To get proper fine scrolling you will need
to dedicate one mode line to act as a buffer. This can be done by simply not setting the
vertical scroll bit in the display list instruction in the last mode line. The window
will now scroll without the unpleasant jerk, but will be shortened by one mode line.

Fine scrolling in the horizontal direction is complicated by the fact that ANTIC
sets aside a buffer on either end of the mode line so that portions of the pixel or
character can scroll on or off the screen smoothly. When fine scrolling is enabled in
the horizontal direction, ANTIC fetches more information (8 bytes/ mode line) than
the normal play field (160 color clocks wide. It sets aside a buffer of sixteen color
clocks on each side and retrieves forty-eight bytes of information per line rather than
the usual forty bytes. This is usually not a problem if the programmer has organized
his screen data in long horizontal rows. If, on the other hand, the fine scroll register is
set to zero, the window is actually lookng at the sixteen color clock buffer rather than
the first byte in the display for that mode line. For example, in a BASIC mode two
(ANTIC 7) line where each character is eight color clocks wide, ANTIC places the
first two bytes of the mode line in the buffer so that the first two bytes or sixteen color
clocks aren't displayed in the screen window. BASIC mode 0 (ANTIC 2) and ANTIC
mode four displays, that use characters only four color clocks wide, will be offset by
four bytes . This problem can be virtually corrected by advancing the vertical fine
scroll register by fifteen color clocks. You will still be off by one color clock, but since
you are planning to scroll the screen anyway, it doesn ' t matter.

The example illustrated below shows what is involved in fine scrolling ANTIC 2
(BASIC 0) or ANTIC 4 characters horizonta lly. Each of these characters is only four
color clocks wide so tha t it requires only four fine scroll increments before you need

GAMES THAT SCROLL 7

to coarse scroll and reset the fine scroll register. The fine scroll register goes back
ward from 15 to 12 before being reset to 15. The top row shows that ANTIC actually
places the first character into the buffer rather than into the first visible screen
position if the fine scroll register is set to zero. The second row shows the correction
obtained by setting the fine scroll register to 15. While it seems that a value of 16
should correct it totally, in fact the high bit would be ignored, and you would obtain
the result of the top row.

$6000 $6001 $6002 $6003 $6004

~ I i I I FS"O CS=O

I $6000 $6001

I I 1111z~ I I
FS=15 CS=O

I

I I Illzm~1 I FS=14 CS=O

I

I I I I~~~II I I FS"13 CS=O

I
I

I I I ~m~1111 I FS"12 CS=O

I

I I III ~m~! I
I FS"15 CS=l

LEFT
SCREEN
EDGE

227

228

7 GAMES THAT SCROLL

Whether the movement be vertical, horizontal, or diagonal, the most difficult
aspect of using Machine language to scroll the screen is calculating the LMS
addresses for each of the mode lines. Mu ltiplication of numbers other than powers of
two, requires a complicated and time-consuming subroutine. Fortunately, several
special or contrived scrolling cases make the calculation fairly easy. We will discuss
these si tua tions firs t.

Vertical Scrolling

Pure vertical scrolling is obvious ly the easies t case. It requires only one LMS
instruction because screen memory is continous throu ghout the display. Still, if we
had to calcu late the starting address of the display from scra tch each time we scrolled,
we wou ld sti ll need an elaborate multiplica tion subroutine because multiplication
by forty bytes or #$28 is not an easy feat. Luckily, rough scrolling is usually done a
line at a time. Since we know th e current address of the screen, we need only add forty
bytes to this address to scroll the screen upwards, or subtract forty bytes to scroll the
screen downwards. This only requires a double-byte add or double-byte subtraction.

Horizontal Scrolling

Pure horizontal scrolling, on the other hand, can become very complicated and
require dozens of multiplications, if the screen size isn't a special case. The most
common special case is one where each mode line is exactly 256 bytes or one page in
memory. The LMS address for the subsequent mode lines are exactly $lOO apart in
memory. This becomes very convenient since you don't need to do an addition or
subtraction on each of the current LMS addresses in order the rough scroll. Instead
you can merely store the new value of the horizontal rough scroll offset into each of
the low byte addresses for the LMS instructions. If you are in GRAPHICS I (ANTIC
6), this means that you have to complete twenty-four store operations in a simple
loop. Perhaps the best example of this is our scrolling game example in the fin al
section of this chapter. There are twenty-two rows of ANTIC 6 characters, each one
page in length for a total of 5 Y:!K of screen memory. The variable XS determines the
rough scroll position and the variab le FS, the fine scroll position. Fine scroll
naturally progresses from 0 to 7 before there is a need to increment XS. However, as
we discussed earlier, the actual value placed into the fin e scroll hardware register is
HSCROL = 15-FS. Wraparound in this example is at XS = 235. When XS exceeds
235, XS is reset to O.

All twenty-two low byte addresses are updated in the display list during VBlank.
The first of these addresses is a t NDLIST +8. The next address is three bytes later. We
can take advantage of indirec t addressing using the Y register if we increase the Y
register by 3 between store operations. The code below illustrates the technique.

.4
LDY #$00
LDA XS
STA NDLIST+8,Y
INY
INY
INY
CPY #$4B
BNE .4

GAMES THAT SCROLL 7

; COUNTER
;POSITION AT SCREEN LEFT
;LOACATION OF FIRST LOW BYTE ADDRESS
;LOW BYTES ARE THREE APART

;END OF LIST?
;NEXT ELEMENT

Obviously, if we choose to include vertical scrolling as well, we need only incre
ment each of the high byte addresses of the LMS instruction to rough scroll the
screen upwards by o ne mode line. The main problem is that a screen 256 bytes wide
(s ix plus screens) uses a very great amount of screen memory. A depth of two screens
in GRAPHICS 1 (ANTIC 6) would require 12K, and six screens would require 36K.
This is an enourmous amount of screen memory in addition to the game code, even
for a 48K Atari.

Eight Way Scrolling - Special Case

A simple but contrived eigh t-way scrolling example could be developed that has a
width of 128 bytes. The depth of course will be determined by the amount of screen
memory available. The advantage of a l28-byte width over a 256-byte width is that it
will allow a deeper scrolling playfield without requiring a complicated muti
plication subroutine. Even so, the calculation is not as simple as the example above.
First, it requires calculating the display address of the initial LMS instruction based
on the rough scroll position YS. Each subsequent LMS address is determined by
adding $80 to the previous one, then adding the horizontal rough scroll position XS
to that.

ADDRESS = SCREEN + (YS*$80) + XS

We used a trick to avoid the initial multiplication usually needed to find the first
LMS address. Since the high byte of the address increases every time our vertical
rough scroll position (YS) increases by two, then:

SCHI = SCREEN / 256 + YS / 2

Odd values of YS set the carry bit after the division. If that occurs #$80 is added to
the low byte of the first instruction. Afterwards the horizontal rough scroll offset XS
is added.

SCLO = Screen address low byte + #$80 + XS (if carry set after division)

SCLO = Screen address low byte + XS (if carry clear after division)

Since each of the mode lines are scrolled equally horizontally, you only need to add
#$80 in a double-byte addition to find the starting address of the next mode line.
Again, this whole operation can be performed using indirect indexing. The first

229

230

7 GAMES THAT SCROLL

LMS low byte address is at NDLIST+7, and the high byte address is at NDLIST+8.
We can index both of these addresses using the Y register, then increment the Y
register by 3 in a loop to reach subsequent LMS address pairs. The routine exits the
loop when all of the mode line addresses have been calculated or when the Y register
equals (#ROWS "" 3)-3.

00010 *TEST CASE FOR MODIFYING DLIST 8 WAY SCROLLING
00020 .OR $4000

5000: 00030 SCREEN .EQ $5000
4900: 00040 NDLIST .EQ $4900
4000: 70 70 70
4003: 47 00 50
4006: 47 80 50 00050 DLIST .HS 707070470050478050
4009: 47 00 51
4OOC: 47 80 51
400F: 47 00 52 00060 .HS 470051478051470052
4012: 47 80 52
4015: 47 00 53
4018: 47 80 53 00070 .HS 478052470053478053
401B: 47 00 54
401E: 47 80 54
4021: 47 00 48 00080 .HS 470054478054470048
4024: 47 80 48
4027: 41 00 49 00090 .HS 478048410049

00100 *VARIABLES
402A: 00110 XS .BS
402B: 00120 YS .BS
402C: 00130 SCLO .BS
402D: 00140 SCHI . BS
402E: 00150 TEMPH .BS 1

00160 *MAIN PROGRAM
402F: A905 00170 START LDA #$05 ;TEST VALUES - INPUT YOUR OWN XS,YS
4031: 8D 2A 40 00180 STA XS
4034: A9 03 00190 LDA #$03
4036: 8D 2B 40 00200 STA YS

00210 *MOVE DLIST
4039: A2 00 00220 LDX #$00
403B: BD 00 40 00230 DLOOP LDA DLIST,X
403E: 9D 00 49 00240 STA NDLIST,X
4041: E8 00250 INX
4042: EO 2A 00260 CPX #$2A ;44 ELEMENTS
4044: DO F5 00270 BNE DLooP
4046: 20 4C 40 00280 JSR MODLIST ;MODIFY DISPLAY LIST
4049: 4C 49 40 00290 FOREVER JMP FOREVER ;ENDLESS LOOP

00300 *
00310 *SUBROUTINE TO MODIFY DISPLAY LIST FOR 8 WAY SCROLLING
00320 * - 128 (#$80) BYTES WIDE
00330 *INPUT ROUGH SCROLL COORDINATES XS,YS

404C: A9 00 00340 MODLIST LDA #SCREEN
404E: 8D 2C 40 00350 STA SCLO
4051: A9 50 00360 LDA /SCREEN
4053: 8D 2D 40 00370 STA SCHI
4056: AD 2B 40 00380 LDA YS
4059: 4A 00390 LSR ; DIVIDE/2
405A: 8D 2E 40 00400 STA TEMPH
405D: 90 05 00410 BCC .1 ;SKIP IF EVEN
405F: A9 80 00420 LDA #$80 ;ODD THEN LO BYTE ADDRESS BEGINS WITH #$80
4061: 8D 2C 40 00430 STA SCLO
4064: 18 00440 .1 CLC

4065: AD 2D 40 00450
4068: 6D 2E 40 00460
406B: SD 2D 40 00470
406E: SD 05 49 004S0
4071: IS 00490
4072: AD 2C 40 00500
4075: 6D 2A 40 00510
407S: 8D 2C 40 00520
407B: SD 04 49 00530
407E: AO 00 00540
40S0 : IS 00550 .2
40S1: AD 2C 40 00560
40S4: 69 SO 00570
40S6: SD 2C 40 005S0
40S9: 99 07 49 00590
40SC: AD 2D 40 00600
408F: 69 00 00610
4091: SD 2D 40 00620
4094: 99 OS 49 00630
4097: CS 00640
409S: CS 00650
4099: CS 00660
409A: CO 21 00670
409C: 90 E2 006S0
409E: 60 00690

LDA SCHI
ADC TEMPH

GAMES THAT SCROLL 7

STA SCHI ;NEW HI BYTE
STA NDLIST+5
CLC
LDA SCLO
ADC XS
STA SCLO ;NEW LO BYTE
STA NDLIST+4
LDY #$00
CLC
LDA SCLO ;ADD #$SO TO EACH MODE LINE ADDRESS
ADC #$SO ;STARTING WITH SECOND LINE
STA SCLO
STA NDLIST+7,Y
LDA SCHI
ADC #$00
STA SCHI
STA NDLIST+S,Y
INY ;INCREMENT BY 3 TO REACH NEXT ADDRESS PAIR
INY
INY
CPY #$ 21 ; (12ROWS*3)-3
BLT .2 ; DONE?
RTS

The subroutine that updates the display list is driven by an eight-direction
joystick routine. This routine calculates both the fine scrolling and rough scrolling
values. The rough scrolling values XS and YS are inputted to the subroutine. The
boundaries of the screen are indicated by the variables TOP, BOTTOM, LEFT, and
RIGHT. Both TOP and LEFT are equal to xero and RIGHT is #$80. BOTTOM is
user definable but must be equal or less than screen memory in bytes divided by 128.
The flow chart is shown below.

LEFT

XS, YS

DISPLAY

AREA

ON MONITOR

I-- COLUMNS--t

T
ROWS

1
SCREEN MEMORY

-TOP

-BOTTOM

= End of Screen
memory/128 -Rows

RIGHT = #80-columns

231

7 GAMES THAT SCROLL

I
JOYSTICK DOWN?

YES INC FSV J
MEANS SCR EEN SCROLLS UP I I NO

NO I FS>7

pES

I
FS;O J
1

I INC YS I

I YES DEC YS

I YS>BOTTOM? DEC FSV

t NO
FS=7

I
YES

DEC FSV I JOYSTICK UP?

I MEANS SCREEN SCROLLS DOWN I
NO I FS<O

NO

I YES

I FS;7 I

I
I DEC YS J

I YES INC YS

I YS<TOP INC FSV

INO
FS=O

I JOYSTICK LEFT?
YES DEC FSH I

MEANS SCREEN SCROLLS RIGHT I I
NO I FSH<O? NO

rES

I FSH=7 J
I

I DEC XS I
I YES INCXS I XS<LEFT FSH=O
l NO

I
I HSCROL;15-FSH I

I JOYSTICK RIGHT? YES
INC FSH J MEANS SCREEN SCROLLS LEFT I I

NO L FSH>)? NO

tYES

I FSH=O I
1

I INCXS I
I YES

l
DECXS XS>RIGHT FSH=7

INO

I HSCROL;15-FSH I

232

GAMES THAT SCROLL 7

Use of Lookup Tables to Determine LMS Screen Addresses

Another technique that would give you more flexibility in sizing your screen
would be to use lookup tables to determine the LMS addresses for any given vertical
scrolling offset YS . You can use each of the two tables, one containing the low byte
address, the other the high byte address for each of the possible scrolled positions. By
indexing into the start of the tables with YS, you can lookup each of your LMS
addresses, then add the horizontal offset. The two tables are LMSHI and LMSLO.
Both are formed by calculating all possible LMS addresses for the entire screen
memory of your scrolling range.

LOOP

LDY #$00
LDX YS
LDA LMSHI
STA NDLIST+5,Y
LDA LMSLO
CLC
ADC XS
STA NDLIST+4,Y
LDA NDLIST+5,Y
ADC #$00
STA NDLIST+5,Y
INY
INY
INY
CPX #$16
BLT LOOP

;ROUGH VERTICAL SCROLL OFFSET
;HIGH BYTE ADDRESS FROM TABLE
;HIGH BYTE LMS
;LOW BYTE ADDRESS FROM TABLE

;ADD HORIZONTAL OFFSET
;LOW BYTE LMS

;REST OF DOUBLE BYTE ADD

;LMS INSTRUCTIONS-THREE BYTES APART

;FINISHEDWITH # OF MODE LINES?

General Case Eight-Way Scrolling

We have developed a general case eight-way scrolling example in which the
programmer can define his own screen dimensions. Screens can be any width or
height as long as the product of the height and width does not exceed the memory in
the computer, in this case 64K. The following example is in GRAPHICS 0 (ANTIC
2), but there is no reason that you can't modify the display list to use a different
graphics mode. Each mode line in the example is 1024 bytes in width and there are 64
rows of data. Thus, you are able to observe the entire memory of the Atari computer
by scrolling with a joystick.

The routine is not exceptionally fast because it is the general case. It makes
extensive use of sixteen-bit multiplication, thus wasting considerable time doing
calculations. We don't recommend it for standard arcade games in which the screen
is updated sixty times a second, but it is quite useful in tactical war games or other
types of displays in which the screen changes less frequently. Both the flowchart and
code follow.

233

7 GAMES THAT SCROLL

I CHECK ENABLE
OFF

EXIT I
ON

L READ STICK I

I GET HOFF & VOFF I

CHECKH
YES I HOFF=O?

NO

I CALCULATE NEW FINEH I

YES TIME TO CRUDE SCROLL LEFT? I
NO

/'"~ CHECK FOR RIGHT? I

I SAVE FINEH

LSHIFT
~ MAP ALL THE WAYTO LEFT? YES

NO

I SET MAPH & FINEH

RSHIFT
MAP ALL THE WAYTO RIGHT? YES

NO

I SET CRUDEH & FINEH I

CHECK V

234

GAMES THAT SCROLL 7

CHECK V

I NOFF=O? YES

+NO

I GET NEW FINEV J
YES I

TIME TO CRUDE SCROLL UP? I to
YES
~ TIME TO CRUDE SCROLL DOWN? 1---

~NO
I SAVE FINE V

DSHIFT
YES ----" "--f MAP ALL THE WAY UP?

~ NO

I SET MAPV & FINEV

USHIFT
YES

MAP ALL THE WAY DOWN? I

~NO
l SET MAPV & FINEV I

CKLIST I
I DLiST NEED TO BE REWRITTEN? ~

~YES

I CALCULATE MAP COORDINATES I
I

I WRITE DLiST I
I
I

I EXIT VBLANK J

235

236

7 GAMES THAT SCROLL

0230:
027S:
D402:
D404:
D405:
E45C:
E462:

0000:
0400:
0040:
002S:
0014:
9F60:

4000:
4002 :

4005:
400S:
400B:
400E :
4011:
4014:
4017:
4019:
401C:

401F:
4021:
4024:
4026:
4029:

402C :
402E:
4031:
4033:

4036:
403S :
403A:
403C:
403F:
4041:
4044 :

4045:
4046:
4049:
404B:

404E:
4051 :
4054:
4057:
405A:

00010 *EIGHT WAY SCROLLI NG - DAN PINAL
00015 *EQUATES
00020 SDLSTL
00030 STICKO
00040 DLISTL
00050 HSCROL
00060 VSCROL
00070 SETVBV
00080 XITVBV
00090 *
00100 SCREEN
00110 WIDTH
00120 HEIGHT
00130 SCREENH
00140 SCREENV
00150 WINDOW
00160 *
00170 START

.EQ $230

.EQ $27S

.EQ $D402

.EQ $D404

.EQ $D405

.EQ $E45C

.EQ $E462

.EQ $0000

.EQ $0400

.EQ $0040

.EQ 40

. EQ 20

.EQ $9C40+S00

A9 00 00180 LDA #$00

FOR A 40K OR 4SK COMPUTER WITH CARTRIDGE

SD 5D 42 00190 STA ENABLE ; SET VBI FLAG TO OFF
00200 * INIT SCROLL VARIABLES TO STARTUP VALUES

SD 4E 42 00210 STA MAPH SET SCREEN COORD. TO 0
SD 4F 42 00220 STA MAPH+l
SD 50 42 00230 STA MAPV
SD 51 42 00240 STA MAPV+l
8D 59 42 00250 STA FINEV
SD 05 D4 00260 STA VSCROL
A9 OC 00270 LDA #$OC
SD 5S 42 002S0 STA FINER
SD 04 D4 00290 STA HSCROL

00300 * INIT BASE ADDRESS TO SCREEN ADDRESS
A9 00 00310 LDA #SCREEN
8D 56 42 00320 STA BASE
A9 00 00330 LDA ISCREEN
SD 57 42 00340 STA BASE+l
20 BB 41 00350 JSR WRITEDL ; WRITE NEW DISPLAY LIST

00360 * TELL ANTIC WHERE NEW DLIST IS
A9 02 00370 LDA #NDLIST
SD 30 02 00380 STA SDLSTL
A9 42 00390 LDA INDLIST
8D 31 02 00400 STA SDLSTL+l

00410 * SETUP VBLANK
A9 07 00420 LDA #$07 DEFFERED VBI
AO 45 00430 LDY #VBI
A2 40 00440 LDX IVBI
20 5C E4 00450 JSR SETVBV
A9 01 00460 LDA #$01
SD 5D 42 00470 STA ENABLE ; TURN VBLANK FLAG TO ON
60 00480 RTS BACK TO YOUR MONITOR

00490 *
00500 VBI

DS 00510
AD 5D 42 00520
DO 03 00530
4C B8 41 00540

00550 CKSTK

CLD
LDA ENABLE
BNE CKSTK
JMP XVBI

JUST A PRECAUTION
CHECK THE SOFTWARE FLAG
OK
LEAVE VBI

00560 COPY OLD MAP VARIABLES IN CASE NEW VALUES ARE INVALID
AD 5S 42 00570 LDA FINER
SD SA 42 005S0 STA NEWFH
AD 59 42 00590 LDA FINEV
8D 5B 42 00600 STA NEWFV
A9 00 00610 LDA #$00

GAMES THAT SCROLL 7

405C: 8D 5C 42 00620 STA CHANGE ; SET CHANGE FLAG TO 0
00630 * USE JOYSTICK VALUE TO INDEX INTO TABLE OF +1,0, OR -1

405F: AE 78 02 00640 LDX STICKO
4062: BD E2 41 00650 LDA HOFFS,X
4065: 8D 52 42 00660 STA HOFF
4068: BD F2 41 00670 LDA VOFFS,X
406B: 8D 54 42 00680 STA VOFF

00690 CHECKH
406E: AD 52 42 00700 LDA HOFF
4071: FO 6C 00710 BEQ CHECK V IF 0 NO CHANGE LEAVE

00720 * ADD OFFSET TO FINEH
4073: 18 00730 CLC
4074: AD 5A 42 00740 LDA NEWFH
4077: 6D 52 42 00750 ADC HOFF
407A: 8D 5A 42 00760 STA NEWFH
407D: C9 10 00770 CMP #$10 TIME TO CRUDE SCROLL?
407F: FO OD 00780 BEQ RSHIFT
4081 : C9 OB 00790 CMP #$OB TIME TO CRUDE SCROLL?
4083: FO 30 00800 BEQ LSHIFT
4085: 8D 58 42 00810 STA FINEH
4088: 8D 04 D4 00820 STA HSCROL
408B: 4C DF 40 00830 JMP CHECKV GO CHECK VERTICAL

00840 RSHIFT
408E: AD 4E 42 00850 LDA MAPH CHECK IF HORIZONTAL ALREADY AT O?
4091: OD 4F 42 00860 ORA MAPH+l
4094: FO 49 00870 BEQ CHECKV ; CAN'T GO LESS THAN 0
4096: 38 00880 SEC
4097: AD 4E 42 00890 LDA MAPH
409A: E9 01 00900 SBC #$01
409C: 8D 4E 42 00910 STA MAPH
409F: AD 4F 42 00920 LDA MAPH+l
40A2: E9 00 00930 SBC #$00
40A4: 8D 4F 42 00940 STA MAPH+l
40A7: A9 OC 00950 LDA #$OC
40A9: 8D 58 42 00960 STA FINEH
40AC: 8D 04 D4 00970 STA HSCROL
40AF: EE 5C 42 00980 INC CHANGE ; SET FLAG TO WRITE NEW DISPLAY LIST
40B2: 4C DF 40 00990 JMP CHECKV

01000 LSHIFT
01010 FIRST CHECK IF ALREADY AT LIMIT

40B5: AD 4E 42 01020 LDA MAPH
40B8: C9 D8 01030 CMP #WIDTH- SCREENH
40BA: DO 07 01040 BNE .1
40BC: AD 4F 42 01050 LDA MAPH+l
40BF: C9 03 01060 CMP /WIDTH- SCREENH
40Cl: FO lC 01070 BEQ CI-IECKV

01080 .1
01090 * CHANGE MAPH & SET FINE SCROLL

40C3: 18 01100 CLC
40C4: AD 4E 42 01110 LDA MAPH
40C7: 69 01 01120 ADC #$01
40C9: 8D 4E 42 01130 STA MAPH
40CC: AD 4F 42 01140 LDA MAPH+l
40CF: 69 00 01150 ADC #$00
40Dl: 8D 4F 42 01160 STA MAPH+l
40D4: A9 OF 01170 LDA #$OF
40D6: 8D 58 42 01180 STA FINEH
40D9: 8D 04 D4 01190 STA HSCROL
40DC: EE 5C 42 01200 INC CHANGE ; SET FLAG FOR CKLIST

01210 CHECKV
01220 * VERTICAL WORKS SAME AS HORIZONTAL

40DF: AD 54 42 01230 LDA VOFF

237

7 GAMES THAT SCROLL

40E2: FO 6F 01240 BEQ CKLIST ; LEAVE IF NO CHANGES TO MAKE
01250 * ADD OFFSET TO FINE SCROLL VALUE

40E4: 18 01260 CLC
40E5: 6D 5B 42 01270 ADC NEWFV
40E8: 8D 5B 42 01280 STA NEWFV

01290 * CHECK TO SEE IF IT'S TIME TO CRUDE SCROLL
40EB: C9 08 01300 CMP #$08
40ED: FO OD 01310 BEQ DSHIFT
40EF: C9 FF 01320 CMP #$FF
40F1: FO 39 01330 BEQ USHIFT
40F3: 8D 59 42 01340 STA FINEV
40F6: 8D 05 D4 01350 STA VSCROL
40F9: 4C 53 41 01360 1MP CKLIST

01370 DSHIFT
01380 * CHECK TO SEE IF MAP IS AT LIMIT

40FC: AD 50 42 01390 LDA MAPV
40FF: C9 2C 01400 CMP #HEIGHT-SCREENV
4101: DO 07 01410 BNE .1
4103: AD 51 42 01420 LDA MAPV+1
4106: C9 00 01430 CMP /HEIGHT-SCREENV
4108: FO 49 01440 BEQ CKLIST

01450 .1
01460 * SET MAP VERT. OFFSET & RESET FINE SCROLL VALUE

410A: 18 01470 CLC
410B: AD 50 42 01480 LDA MAPV
410E: 69 01 01490 ADC #$01
4110: 8D 50 42 01500 STA MAPV
4113: AD 51 42 01510 LDA MAPV+1
4116: 69 00 01520 ADC #$00
4118: 8D 51 42 01530 STA MAPV+1
411B: AD 5B 42 01540 LDA NEWFV
411E: 29 07 01550 AND #$07
4120: 8D 59 42 01560 STA FINEV
4123: 8D 05 D4 01570 STA VSCROL
4126: EE 5C 42 01580 INC CHANGE
4129: 4C 53 41 01590 1MP CKLIST

01600 USHIFT
01610 * CHECK FOR MAP AT LIMIT

412C: AD 50 42 01620 LDA MAPV
412F: OD 51 42 01630 ORA MAPV+1
4132: FO IF 01640 BEQ CKLIST
4134: 38 01650 SEC
4135: AD 50 42 01660 LDA MAPV
4138: E9 01 01670 SBC #$01
413A: 8D 50 42 01680 STA MAPV
413D: AD 51 42 01690 LDA MAPV+1
4140: E9 00 01700 SBC #$00
4142: 8D 51 42 01710 STA MAPV+1
4145: AD 5B 42 01720 LDA NEWFV
4148: 29 07 01730 AND #$07
414A: 8D 59 42 01740 STA FINEV
414D: 8D 05 D4 01750 STA VSCROL
4150: EE 5C 42 01760 INC CHANGE

01770 CKLIST
4153: AD 5C 42 01780 LDA CHANGE; CHECK IF MAP HORIZONTAL OR VERTICAL HAS BEEN CHANGE
4156: FO 60 01790 BEQ XVBI ; NO NEED TO REWRITE DISPLAY LIST IF NO CHANGE

01800 * SET UP TO MULTIPLY WIDTH X MAP VERTICAL OFFSET
4158: A9 00 01810 LDA #WIDTH
415A: 8D 4A 42 01820 STA RESULT
415D: A9 04 01830 LDA /WIDTH
415F: 8D 4B 42 01840 STA RESULT+1
4162: A9 00 01850 LDA #$00 OVERFLOW SHOULD NOT BE NEEDED BUT ITS HERE ANYWAY

238

4164: 8D 4C 42 01860
4167: 8D 4D 42 01870
416A: A2 11 01880
416C: 18 01890

STA OVERFL
STA OVERFL+1
LDX #$11
CLC

GAMES THAT SCROLL 7

01900 * THIS
01910 MULT16

416D: 6E 4D 42 01920

IS A 16 BIT MULTIPLY TO CALCULATE OFFSET FROM STARTING MAP

4170: 6E 4C 42 01930
4173: 6E 4B 42 01940
4176: 6E 4A 42 01950
4179: 90 13 01960
417B: 18 01970
417C: AD 50 42 01980
417F: 6D 4C 42 01990
4182: 8D 4C 42 02000
4185: AD 51 42 02010
4188: 6D 4D 42 02020
418B: 8D 4D 42 02030

02040 .1

ROR OVERFL+1
ROR OVERFL
ROR RESULT+1
ROR RESULT
BCC .1
CLC
LDA MAPV
ADC OVERFL
STA OVERFL
LDA MAPV+1
ADC OVERFL+ 1
STA OVERFL+1

418E: CA
41BF: DO DC

02050 DEX
02060 BNE MULT16
02070 * NOW SCREEN ADDRESS IS ADDED

4191: 18 02080 CLC
4192: A9 00 02090 LDA #SCREEN
4194: 6D 4A 42 02100 ADC RESULT
4197: 8D 56 42 02110 STA BASE
419A: A9 00 02120 LDA /SCREEN
419C: 6D 4B 42 02130 ADC RESULT+1
419F: 8D 57 42 02140 STA BASE+1

02150 * NOW THE COLUMN OFFSET IS ADDED TO FORM THE NEW BASE ADDRESS
41A2: 18 02160 CLC FOR THE TOP
41A3: AD 56 42 02170 LDA BASE
41A6: 6D 4E 42 02180 ADC MAPH
41A9: 8D 56 42 02190 STA BASE
41AC: AD 57 42 02200 LDA BASE+1
41AF: 6D 4F 42 02210 ADC MAPH+1
41B2: 8D 57 42 02220 STA BASE+1

02230 *
41B5: 20 BB 41 02240

02250 XVBI
41B8: 4C 62 E4 02260

02270 *
02280 WRITEDL

JSR WRITEDL

JMP XITVBV

WRITE NEW DISPLAY LIST

02290 * SPOT POINTS TO THE FIRST ADDRESS IN THE DISPLAY LIST
41BB: A2 00 02300 LDX #$00

02310 .1
02320 * STORE NEW ADDRESS IN DISPLAY LIST

41BD: AD 56 42 02330 LDA BASE
41CO: 9D 06 42 02340 STA SPOT,X
41C3: AD 57 42 02350 LDA BASE+1
41C6: 9D 07 42 02360 STA SPOT+1,X

02370 * ADD MAP WIDTH TO GET ADDRESS OF NEXT LINE
41C9: 18 02380 CLC
41CA: A9 00 02390 LDA #WIDTH
41CC: 6D 56 42 02400 ADC BASE
41CF: 8D 56 42 02410 STA BASE
41D2: A9 04 02420 LDA /WIDTH
41D4: 6D 57 42 02430 ADC BASE+1
41D7: 8D 57 42 02440 STA BASE+1

4IDA: E8
41DB: EB

02450 * SET TO POINT TO NEXT SET OFF ADDRESSES IN DLIST
02460 INX
02470 INX

239

7 GAMES THAT SCROLL

41DC: E8 02480 INX
41DD: EO 3C 02490 CPX #60
41DF : DO DC 02500 BNE .1
41E1: 60 02510 RTS

02520 *
02530 HOFFS

41E2: 00 00 00
41E5: 00 00 01
41E8: 01 01 02540 .HS 0000000000010101
41EA: 00 FF FF
41ED: FF 00 00
41FO: 00 00 02550 .HS OOFFFFFFOOOOOOOO

02560 VOFFS
41F2: 00 00 00
41F5: 00 00 01
41F8: FF 00 02570 .HS 000000000001FFOO
41FA: 00 01 FF
41FD: 00 00 01
4200: FF 00 02580 .HS 0001FFOOOOOIFFOO

02590 NDLIST
4202: 70 70 70 02600 .HS 707070
4205: 72 02610 .HS 72

02620 SPOT
4206: 00 00 02630 .HS 0000
4208: 72 00 00 02640 .HS 720000
420B: 72 00 00 02650 .HS 720000
420E: 72 00 00 02660 .HS 720000
4211: 72 00 00 02670 .HS 720000
4214: 72 00 00 02680 .HS 720000
4217: 72 00 00 02690 .HS 720000
421A: 72 00 00 02700 .HS 720000
421D: 72 00 00 02710 .HS 720000
4220: 72 00 00 02720 .HS 720000
4223: 72 00 00 02730 .HS 720000
4226 : 72 00 00 02740 .HS 720000
4229 : 72 00 00 02750 .HS 720000
422C: 72 00 00 02760 .HS 720000
422F : 72 00 00 02770 .HS 720000
4232: 72 00 00 02780 .HS 720000
4235: 72 00 00 02790 .HS 720000
4238: 72 00 00 02800 .HS 720000
423B: 72 00 00 02810 .HS 720000
423E: 52 00 00 02820 .HS 520000
4241: 42 02830 .HS 42
4242: 60 9F 02840 .DA WINDOW
4244: 02 02 02 02850 .HS 020202
4247 : 41 02860 .HS 41
4248: 02 42 02870 .DA NDLIST

02880 *
424A: 02890 RESULT . BS 2
424C: 02900 OVERFL .BS 2
424E: 02910 MAPH .BS 2
4250: 02920 MAPV .BS 2
4252: 02930 HOFF .BS 2
4254: 02940 VOFF .BS 2
4256: 02950 BASE .BS 2
4258: 02960 FINEH .BS 1
4259: 02970 FINEV .BS 1
425A: 02980 NEWFH .BS 1
425B: 02990 NEWFV .BS 1
425C: 03000 CHANGE .BS 1
425D: 03010 ENABLE .BS 1

240

GAMES THAT SCROLL 7

Strike Force-A Scrolling Game

Since horizontally scrolling shoot- 'em-up arcade games like Super Cobra and
Scrambler are immensely popular and not difficult to implement on the Atari, we
included one called Strike Force as an example. The game involves flying an attack
ship in a mission of destruction against an enemy attack fleet and their ground
installations. The joystick-controlled ship is armed with bombs and lasers. It can fly
at two speeds forward but can ' t reverse direction. Up and down joystick movements
control altitude, while pushing the stick forward doubles the speed. The trigger fires
the ship's lasers, except when the stick is pushed to the left. That drops bombs.

The continuously scrolling terrain stretches over thirteen screens. The last screen
is a duplicate of the first to allow for wraparound. The tan-colored terrain consists of
redefined Graphics 1 (ANTIC 6) characters using playfield register #0. The screen
data for each of the twenty-two mode lines is 256 bytes or one page of memory. Screen
memory requires 5Y2K.

Four active laser bases and seven missile bases populate the mountainous terrain.
These redefined characters reference playfield register #1. They are red in color.
While the missile bases don't launch their rockets, the laser bases produce deadly
laser fire which should be avoided.

The player's ship, player #0, is double-width and light blue. Its singie-width
bombs use player #3 . The aliens, one green and one red, use players #1 and #2
respectively. Since the ship's laser fire consists of quadruple-width missiles and the
aliens use single-width projectiles, we can't combine the missiles to make an extra
player. This limits the number of aliens on the screen at anyone time to two.

SCROLLING GAME

*
.. :I'

o 19 20

I
IDUPLICATE OF
I FIRST SCREEN

I

235 236 255

While a two-prong alien attack can be handled quite skillfully by seasoned players
who quickly learn patterns, the aliens in this game are chosen randomly from five
different shapes and five different pre-programmed attack patterns. Thus, an alien
shape doesn't necessarily correspond to a specific attack pattern. This subtlety makes
learning the game difficult. Also, since games should increase in difficulty as they
progress, alien firepower increases at 400 points, and again at 2000 points, until the
game becomes nearly impossible for the average player.

241

242

7 GAMES THAT SCROLL

Memory Layout

Once you have defined the basic design concept of your game, you need to decide
where to put your program code, screen memory, display list, character set, and
player-missile area. There aren't many constraints to where you put things in the
Atari, except that the player-missile area must be on a 2K boundary, and the
character set must be on a I K boundary, and you shou ld avoid the lower portion of
memory, especiall y if DOS is used to load the program. The fact that Synassembler
resides from $9COO to $BFFF forces us to locate everything below that area. There-

#9400

$9000

$8800

$8700

$7000

$6FOO

$47CF

$399A

$3909

$3000

MEMORY MAP

DISPLAY LIST

CHARACTER SET (1 K)

PLAYER-MISSILE
(2K)

EMPTY

SCREEN AREA
FOR MAP

(5.5K)

SCORING & TITLE AREA

EMPTY

PROGRAM
CODE

VARIABLES

DATA

fore, we choose to locate our p layer-missile area at $8000, the character set above that
a t $9000 and our display list at the top at $9400. The two lines of scoring information
begin a t $6FOO and the 5Y2 K of screen area extends from $7000 to $8700.

We assembled our code at $3000, but we could h ave moved it higher in memory. It
really doesn't make any difference in this case since our program code contains the
data for the screen, character se t, and disp lay list. It wouldn 'l be any shorter if
every thing were pushed closer together in memory.

GAMES THAT SCROLL 7

Display List

The display list is quite simi lar to the one developed earlier in the chapter for the
rough horizontal scrolling example in BASIC. Separate LMS instructions are
required for each of the twenty-two scrolling mode lines. In addition, there are two
stationary ANTIC 6 mode lines used for scoring data at the top of the display. Since
these lines use the ROM character set while the remainder of the display uses a
custom character set, we need to do a Display List Interrupt on the second line in
order for it to take effect in the third mode line. Each scrolling mode line is 256 bytes
or one page apart so that the high-byte operands of each LMS instruction are one
apart.

$70
70
70

46 ~ 00

8 blank scan lines

LMS ANTIC mode 6 -no scroll
Low byte score screen area
High byte 6F

86

56 ~ 00

2nd score line -no scroll & DLI to take place next line
LMS ANTIC mode 6 horiz. scroll

72
Low byte of 1st or top row scrolling terrain
High byte
LMS

56 ~ 00
73

Low byte of 2nd row
High byte

56 ~ LMS
00 Low byte of 22nd row scrolling terrain
86 High byte
41 f Jump and wait for VBlank
00 Low byte address of display list
94 High byte

$6FOO

$6F28

$7200

$7300

•
•
•
•

$8700

GR.1 (ANTIC 6) Stationary

GR.1 (ANTIC 6) Stationary

GR.1 (ANTIC 6) Scrolling

GR.1 (ANTIC 6) Scrolling

• • •
• • •
• • •
• • •

GR .1 (ANTIC 6) Scrolling

~

256 bytes

22 rows

243

7 GAMES THAT SCROLL

Main Loop-Overall Flowchart

I HIGH SCORE = 0 J
I

RESET I UNPACK & CREATE I LONG SCREEN DISPLAY

f
INITIALIZE VARIABLES I

& PLAYER MISSILE GRAPHICS

l CREATE FLASHING TITLES I
& SCORE LINE

I SCORE = 0 I
J FIRE GROUND LASERS I

CHECK COLLISIONS YES I REMOVE SHIP I AGAINST SHIP L & SET DELAY

NO I NO I # SHIPS=O?
I

,YES
CHECK COLLISIONS YES IUPDATE HIGH SCORE~

AGAINST ALIENS

NO REMOVE ALIEN I
& SCORE POINTS I

CHECK COLLISIONS
YES I REMOVE TARGET l AGAINST GROUND

TARGETS L & SCORE POINTS I
NO

SCORE >SET AMOUNT? ~
YES

INCREASE DIFFICULTY
BY INCREASING ALIEN

FIRE POWER

I -.
WAIT FOR VBLANK
FLAG TO BE SET

- IN VBLANK

244

GAMES THAT SCROLL 7

VERTICAL BLANK OVERALL FLOWCHART

I DELAY=1? I YES
DEREZ SHIP

NO & KEEP OFF
SCREEN 4 SECONDS

I READ JOYSTICK J

I MOVE SHIP UP & DOWN I & SET SPEED

I YES I DELAY=1? I

tNO

I BUTTON PRESSED? I

I
STICK BACK? l YES DROP BOMBS J

l FIRE SHIP LASER I

I
MOVE MISSILE RT J

I
I

I
REZ FLAG=1?

I YES

i NO

I PLOT SHIP I
I
I

I SCROLL SCREEN I

I READ ALIEN #1 PROGRAM CODEI

I I MOVE ALIEN & FIRE MISSILE I
IF ORDERED

I
IREAD ALIEN #2 PROGRAM COD~

I
I MOVE ALIEN & FIRE MISSILE I

IF ORDERED

I

245

246

7 GAMES THAT SCROLL

The overall flowchart of the game is divided into Vertical Blank code and a main
code loop outside Vertical Blank. The two sections are synchronized so that the main
loop code will execute once, then wait in a tight loop for a flag to be set, signaling
that the Vertical Blank code is finished. Although in retrospect it appears that the
entire game could have been placed in Deferred VBlank, doing it this way assured
that in the event the code became too long, the next Vertical Blank Interrupt
wouldn't occur while the program was sti ll in the previous one, thereby crashing.

The Vertical Blank code includes code that reads the joystick, controls all the
ship's functions, including lasers and bomb drops, and interprets and executes the
programmable code for the two aliens. The code in the main loop checks collisions
in all combinations and takes appropriate action. This includes removing shot
aliens and ground targets, derezing the player's ship when necessary, and updating
the score. In addition, laser base fire, and the checks that control and increase the
difficulty, are controlled here.

Unscramble Screen Data Routine

Normally, one would use some sort of homemade scrolling map editor to create
the screen data necessary to form a 12-screen world. But these editors, if designed
properly, automatically save the data to disk as a data file. In order to allow the reader
to type in the required 5Y2K of screen data without supplying an editor, the data was
compacted to a mere 550 bytes. We simply took into account that the upper half of
the screen was blank, and that large sections of the lower portion had sequences of
similar characters.

Two tables were set up . One called VALUE contains the value of a particular
sequence of blocks, and the other table called BLOCKS contains the number of those
characters in a row. The small four-row sample illustrated below shows how the data
for the two tables is obtained.

0 0 0 0 4 1 9 0 0 0

0 0 0 4 1 1 1 10 0 0

0 3 2 1 1 1 1 11 0 0

1 1 1 1 1 1 1 1 1 1

Row #1 Row #2
Value # Blocks Value # Blocks

In a row In a row

0 4 0 3
4 4 I
I I 3
9 1 10 1
0 3 0 2

GAMES THAT SCROLL 7

The unpacking routine tha t places the character da ta into screen memory is
extremely sensitive to data errors in which the length o f a single row isn't exactly 256
bytes, the length of one mode line. If a mistake occurs , data in the following rows
isn ' t just offset, but it often doesn't even appear. The routine assumes that it will
fini sh storing the number of repeat character bytes at exactly the same time that the Y
register, which has meanwhile been keeping track of its position along the row,
reaches the end (zero). At that point it jumps to the next row. Unfortunately, the Y
register counter is being incremen ted in a loop while the number of characters in a
row is being decremented in the X register. For example, if the number of blocks in a
row were one too many for the 256-block row, the Y register would have passed the
zero point and the test for the end of the row would be missed. The row wouldn't be
incremented and the rest of the data would overwrite previous character data on the
same mode line. While I thought of fixing it by testing whether the Y register became
zero while in the loop, I'm not sure which case is worse, knowing that you made a
mistake in the data for that row, or observing a completely weird display afterward.

Custom Character Set

The display uses a custom character set composed of twelve combinations of
sloping terra in. Character #0 is blank. Since these are internal characters 0-11 , they
use color register #0 to set their color. We chose tan. The rockets, laser base, and its
moving laser beam are a lso cu stom characters. Since we wanted to use a different
color, we placed them in the upper half of the character set. Internal characters
64-127 refer to color register # 1. The two high bits of the character number select the
color register. The rockets are internal characters #63 and #64, the laser bases are
characters #60 and #61, and the beam is character #62. We chose red primaril y so that
the laser beam showed up as red. Since the remainder of the character set was of no

#0 #1 #2 #3

DDtJD
M ~ ~ ~

[2J[2J[2J[3
#8 #9 #10 #11

D[SJ[]D
247

248

7 GAMES THAT SCROLL

UNSCRAMBLE SCREEN DATA

l

SET UP POINTERS TO
SCREEN & 2 DATA AREAS

I COUNT=O I
Y REGISTER=O J

LOOPJ LOAD # OF BLOCKS I
I
I

I INA ROW

USE IN X-REG AS A COUNTER

LOADTHEBLOCKVALUE

I SAVE ON STACK I
I

I TEMP=Y REGISTER J
I Y REG=COUNT I

I RETRIEVE BLOCK VALUE I
FROM STACK

.1_1
STORE IN SCREEN MAP I I

I INC Y REG I
I DEC X REG I

NO I X REG=O? I I

I COUNT=Y REG

NO I END OF ROW? I I Y REG=O?

I YES

l NEXT ROW I
I DONE ALL 22 ROWS?

.2

l Y REG=TEMP I
I NEXT Y I

I CROSSED PAGE? I
Y REG=O? I

I

I

I
I

I

I
I

YES I
I

YES J
L

DONE I

INC VALUEH
INC BLOCK H I

GAMES THAT SCROLL 7

interest, it wasn't copied from ROM and then modified. Instead, the character data
was copied from tables directly into the specified positions in character set memory.

However, since we did need the letters for the GAME OVER message which scrolls
across the playfield at the conclusion of the game, the data for these letters are stored
as characters $65-$7 1. They too, appear in red. All of these tab les occupy only 192
bytes of program memory.

80 ,.
C1

67

3F

1F

1F

3F

3F

#60

80

40

20

10

08

04

02

01

#62

3C

3C

3C

3C

7E

7E

FF

C3

#61

I
#63

#65

00

CO

FO

F8

F8

FC

FC

FE

18

18

18

18

18

18

3C

3C

00

3E

60

60

6E

66

3E

00

249

250

7 GAMES THAT SCROLL

Ship Operation

The joystick-controlled spaceship, while stationary on the horizontal axis during
scrolling, can be moved vertically to adjust altitude. Pushing forward or to the left on
the stick doubles the speed and consequently the rate of scrolling and horizontal
speed of the attacking aliens. The latter is necessary to maintain the alien's posi tion
above the faster scrolling terrain. When the stick is pushed forward, the variable
SPEED is set to one, otherwise it remains zero. There are a lso two different engine

U P

BACK &

BUTTON FORWARD
DROPS !----+--..... DO UB LE SPEED
BOMBS

BUTTON FIRES LASERS

DOW N

sounds depending on the speed. Keeping the ship stationary in the horizontal
direction was supposed to keep the programming simpler. Still, it wouldn 't have
a ltered the code much if the ship were free to move in that axis, as long as it was
restrained from approaching too closely to the right edge of the screen. This is
necessary to prevent the bombs from falling beyond the screen boundary. Introduc
ing this motion might make an interesting exercise for those who understand the
program.

SHIP (DOUBLE WIDTH)

::~ I
$C O I I I I I I I I::: $FS

$F2 BOBM
$F6 (SINGLE WIDTH)

$F7

$F7E

Ship's Laser

Pressing the joystick trigger activates the ship's lasers . This works in any of the
neutral or forward stick positions. The laser is a quadruple-width missile #0. The
size can be set independently of the normal-size alien missiles by setting both of the
lower two bits in SIZEM ($DOOC = 3). This hardware register is divided into bit pairs
for each of the four missiles. The missile shape is just one pixel high by two pixels
wide.

XPMO
I

GAMES THAT SCROLL 7

o YPMO - ~______ -!-

r-3~r---12,..--.y--"--"'I-x"""Tl-x--'1 I ... - D ~~ XM, YM
.......I...-......L-$....I

O
-
O
-
O
L
C
-=-'-3.....J._l....-..J r---- 16 ----I.~I

Sets Missi le 0 = Quadruple width
Reset normal width

Only one ship's missile or laser beam can be on the screen at anyone time. To
prevent it from refiring before it either strikes its target or exits screen right, a flag
called TMISO is set. TMISO = 0 the first time through the routine so that it adjusts the
missile's position to fire initially from the ship's nose and plots it there. It then resets
the flag to 1 and turns on the laser fire sound timer. During subsequent cycles
through the routine, the TMISO flag causes it to branch to the code that moves the

SHIP MISSILE OR LASER

I
YES

DELAY=1? ON? I
I .15

I BUTTON PRESSED?
I NO I TMISO=1? ON?

I NO

I I I
.1 I YES YES

I BACK=1? I YES

.2 I NO

I
YES

TMISO=1? I
,

.3\ MOVE MISSILE I I NO RT (2 UNITS/CYCLE)

I ADJUST MISSILE TO I FIRE FROM SHIPS NOSE

I HIT RT EDGE I
I OF SCREEN? I YES

l PLOT MISSILE INITIALLY I NO

AT SHIPS NOSE .4

I REMOVE MISSILE

I TMISO=1 I OFF SCREEN

I
TO LEFT

l TURN ON LASER SOUND I TMISO=O

BM I

251

252

7 GAMES THAT SCROLL

beam 2 units/ cycle to the right. The position is tested against the screen boundary on
the right side. If it hits it, the missile is removed and placed offscreen to the far left
and TMISO is set to zero. Collisions, of course, cause the same effect, but they are
tested elsewhere. To prevent the laser from being fired while the ship is offscreen
after a derez, a DELA Y flag is tested. The missile can't be fired if the flag is set, but a
missile fired previously will continue along its track.

Bomb Drop

In a realistic bomb drop, the bomb arcs slowly at first and then accelerates rapidly
downward until it falls almost entirely vertically. You can implement such a drop on
the Atari with only a minimal knowledge of physics. Gravity or acceleration only
acts on the bomb in the Y direction. While the velocity in the Y direction increases
with time, the velocity in the X direction remains constant, if we neglect air
resistance. An object that has a velocity in a particular direction will move in that
direction. Its new position is equal to its old position plus its change in position
during that period (velocity). We can summarize this as follows:

VY = VY + GRAVITY
VX = CONSTANT

YB = YB + VY
XB = XB + VX

Choosing a realistic acceleration value is largely experimental. Even an accelera
tion of + lIframe would cause the vertical velocity to grow enormous over as little as
15 animation frames (\4 second). If the bomb is to arc slowly, VY will have to be
somewhat smaller than VX = 2 during the first few frames, yet not grow too much
larger later, or the bomb will drop like a lead weight. In order for VY to increase
slowly every fourth frame, the acceleration must be less than unity. A clever
approach is to increment a variable called VTEMP and divide by 4 each time. It will
take four cycles to increase VY by one unit/ frame. This keeps the bomb from
accelerating too fast, but it still will fall too rapidly from great heights. The solution
is to clip VY so that it doesn't become too high. While the values are largely
experimental, a maximum value of VY = 3 produces realistic-looking bomb
trajectories.

XPMO = 80, YPMO = 96

X B = 86 t:::::'""L-.
YB = 106 c.....r-" "-

"-

§ , ,
\

2J::l
\

CYCLE XB

1 85
2 87
3 89
4 91
5 93
6 95
7 97
8 99
9 101

10 103
11 105
12 107
13 109

YB VY

106 0
106 0
106 0
107 1
108 1
109 1
110 1
112 2
114 2
116 2
118 2
121 3
124 3

GAMES THAT SCROLL 7

The bomb subroutine uses a flag ca ll ed BOMBON to determine if it sho uld plot
the bomb initially directly beneath the p lane, or accelerate and move it as it falls. The
bomb must begin its descent from the cen ter of our plane becau se bomb bays are
loca ted a t the plane's center of gravity. Therefore, the bomb needs repositioning
from the ship 's coordinates XPMO, YPMO at the tip of the tail. YB = YPMO+ 10 and
XB = XPMO+5. The bomb is plotted there, and the BOMBON fl ag is set to I.

When the bomb subroutine is entered on subsequ en t frames, it branches to the
bomb falling code where the bomb's velocity and position for each direction is
calculated. It is then plotted in that position. Of course, the bomb is removed during
the collision tes t if it strikes either the ground or any of the laser base or missile
targets, but that occurs elsewhere in the main line code. The BOMBON fl ag is reset
to zero there, so that another bomb can be dropped if the trigger is pressed wh ile the
stick is pushed back or to the left.

BOMB DROP FLOW CHART

BUTTON PRESSED?
NO

J
.2 YES .1

BACK = 1?
I NO J BOMBON = 1?

I NO
I L I

.3 JYES YES

IS BOMB STILL FALLING YES
BOMBON = 1? .4

,NO I VY3 = VY# + ACCEL

DROP BOMB
YB = YPMO + 10 I VY3 ~ 3? ~ VY3 =0
XB = XPNO + 5 NO

I VY3 = 3 I
BOMBON = 1 .45 I

I NEW HORIZ POSITION
YB = YB + VX3

PLOT BOMB AT
INITIAL POSITION

I
NEW VERTICAL POSITION

XB = XB + VX3

I PLOT BOMB AT
NEW POSITION

EBM

253

254

7 GAMES THAT SCROLL

Ship's Explosion and Delay

The player's ship explodes upon collision with the terrain, an alien, or enemy fire
from either the laser bases or alien craft. Although there are many methods to
explode a ship, we choose to use the deresolution method employed earlier in the
Space War game in Chapter 5. The appearance is of a ship that is slowly disintegrat
ing. As you recall, it uses a random number generator to degrade a duplicate of the
ship's shape. It is a fairly complicated routine that uses a series of AND and ORA
instructions to control the image 's rate of degradation so that the random flickering
of the individual pixels lasts at least forty-eight cycles. We aren't going to explain the
routine again, so we suggest you look at it in the last section of Chapter 5.

Since their should be a several second rest between the ship's deresolution and its
reappearance to battle once again, many of the subroutines that operate on a per
cycle basis should be shut off during this period. These include the start of another
enemy attack once they clear the screen, and the ability to fire lasers and drop bombs
once your ship is killed. While it might be easier to set one delay flag during the
explosion and branch past all of the code, you need to be selective in what is shut
down, otherwise laser beams and falling bombs might vanish in mid-flight and the
screen would suddenly stop scrolling with aliens frozen in position. The game
should go on. After.all, it is only your ship that has been destroyed; everyone else is
still alive.

TURN ON SHIP
EXPLOSION TIMER

XSHIP

SET DELAY FOR
ALIENS TO REAPPEAR

GAMES THAT SCROLL 7

We need to se t several fl ags in the XSH IP subroutine that is called whenever the
ship collides with an ything. Se tting REZFLAG = I turns on the actual explosio n
subroutine. Setting DELAY = I starts the four second delay. In addition , this
lengthens the timer del ays, NDELAY I and NDELAY2, that control when the nex t
se t of a liens reappear. If we are out of ships, the words "Game Over" are written into
screen memory just beyond the right edge of the screen .

There is a section of code at the beginning o f the Vertical Blank Interrupt routine
tha t ac tually monitors a ll of these fl ags so that the ship is derezed first and then
removed from the screen until the four second delay ends. It keeps track of the tim er
at location $13 . This loca tion is incremented roughly every four seconds. When it is

DELAY

I DELAY=1? (ON)
INO
J

,YES

l TIMER$13=1?
INO
I

YES

J I #S HIPS=O? I YES JMP I
J I RESTART

NO

I PUT SHIP BACK I

I DELAY=O I
REZ t

l REZ FLAG=1 ?
INO
I

YES

I EXCOUNT=#$30?
INO

I ,
YES I MOVE SHIP I .1 OFF SCREEN

I I JSR EXPLODE NO
EXCOUNT=#$31 ? I

I YES

I INC EXCOUNT I I REZFLAG=O I EXCOUNT=O

CHKSTK I
NOTES: Delay Flag-Keeps Sh ip Ofr Screen

RezFlag- Says Explos ion On (I)
Excount-Keeps Track of Explos ion Frames
=0 Explosion Off

255

256

7 GAMES THAT SCROLL

non-zero, the routine checks if any ships are left, and if so, puts the ship back and
resets the delay timer to zero. Obviously, if we are out of ships, the game is over, and it
is time to jump to the very beginning of the game code.

Long before the timer at $13 ever becomes non-zero, the routine determines where
it is in the derez cycle via a counter called EXCOUNT. The explosion subroutine
increments EXCOUNT after each cycle. When EXCOUNT reaches 48 cycles, the
ship is virtually disintegrated. This is done one cycle earlier than the cycle that resets
REZFLAG = O. If at least one of the ship's pixels is in contact with the playfield, a
collision value will be returned even though we just ordered the ship offscreen. The
computer updates it 's collision registers before we have time to move our ship. If we
don't delay setting REZFLAG = 0 by one cycle, our collision test may detect a bogus
collision and the player loses another ship. The ship is then moved off the screen.
This is done one cycle earlier than the cycle that resets REZFLAG = 0 because if at
least one of the ship's pixels is in contact with the playfield, a collision value will be
returned even though we just ordered the ship off screen. The computer updates it's
collision registers before we have time to move our ship. If we don't delay setting
REZFLAG = 0 by one cycle, our collision test may detect a bogus collision and the
player loses another ship.

Scrolling

The screen scrolls leftward at a constant rate of one color clock per second except
when the control stick is pushed to the right. It then scrolls at two color clocks per
second so that it appears that the ship is fl ying at twice the speed. To scroll the screen
smoothly you need to alternate between adjusting the fine scroll register over eight
color clocks, and rough scrolling the screen by adjusting the LMS operands of all
twenty-two ANTIC 6 mode lines.

In our case, we increment a variable called FS, short for fine scroll, each cycle. This
variable goes from 0-7 , and is backwards from the horizontal fine scrolling register
HSCROL at $D404. HSCROL is initially set at 15 when FS eq uals 0 and counts
down as FS increases. Thus, HSCROL = 15-FS. The fine scroll register is reset every
eight clock cycles and the rough scroll variable XS is incremented. When the screen
has been rough scrolled 235 times, it is time to stop and reset the rough scroll register
XS back to zero. If we try to go further, for example to XS = 236, ANTIC will fetch the
first nineteen bytes of that scan line correctl y, but the twentieth will be data for the
following scan line. This obviously produces a faulty display that becomes worse the
further we move into the wraparound zone. This end zone should be an exact
duplicate of the first screen so that when we jump from XS=235 to XS=O, the screen
will remain unchanged.

GAMES THAT SCROLL 7

SCROLL SCREEN

HSCROL=15-F5

NO

Programmable Aliens

It usually requires an ex tensive amount of program logic to achieve a variety of
enemy patterns within a game. Some games, like this one, use preset patterns that are
independent of the player's action, while others react to evasive techniques used by
the player. Obviously, the computer 's reaction to the player 's actions produces more
challenging games, but if the programmer isn't careful he may design a game in
which it is impossibl e to survive.

For example, in thi s game aliens follow some sort of zig-zag pattern, change their
speed, and shoot in predetermined directions as they close on your position. It would
be quite easy to program them to home in on your position with their guns or just on
your vertical position for even tual collision . There would be on ly two possible
res ults: you would either be ab le to shoo t them easily if they matched your vertical
position quickly for they would a lways be directly in your line of fire; or they would
home in on you at the last split second and you would have no chance of survival.
Likewise, you cou ld never evade their guns, if they were programmed to shoot with
uncanny accuracy. Perhaps a better method might be to make random variations on
a predetermined path.

257

258

7 GAMES THAT SCROLL

We chose a slightly different tack to solve the problem of easy programmability,
while still offering enough variations to make learning the alien attack patterns
difficult. We actually developed five different patterns for each alien player, and to
make it easy to change wrote a scheduling routine that bases all enemy actions on an
internal timer and a set of tables.

The first three bytes in the table contain the Xl, Yl starting position of the alien,
followed by the value NDELA Y 1, which is the delay in cycles before the next alien
a ppears after the current one is killed or exi ts the screen. Each grou p of six bytes tha t
follows is an instruction containing the high-and- low-byte time to read the next
instruction (TIMElL,TIMEIH), the alien velocity (VXl,VYl), whether to shoot or
not (SHOOTl), and the direction of the shot (DIR1). We are limited to eight
different instructions for each programmable alien because five different patterns are
stored in one 256-byte page of memory. Thus, each complete program occupies 6;;8 +
3 = 51 bytes of memory. We have set aside two blocks of memory, one for each player.

If you look at the data in our table ENEMYI for the Oth shape, it is as follows:

Xl Yl NDELAYI
$DO $50 $30

TIMEIL TIMElH VXl VYI SHOOT DIR

$28 $00 $FF $00 $00 $00
$50 $00 $FF $01 $00 $00
$70 $00 $FF $00 $01 $07
$FF $00 $FF $00 $00 $00

If you match it against the diagram below, you will see that the alien enters the
screen at X=$DO, Y=$50. These are player-missile screen coordinates and are com
pletely independent of the scrolling play field. The value NDELAYI = $30 means
that there will be a delay of forty-eight screen cycles between one programmable
alien using player #2 leaving the screen, and the next one entering. The alien begins
moving leftward in step with the scrolling terrain below until the internal timer
(TIMER1) reaches $28. It then reads in the next six-byte instruction. This instruc
tion tells it to begin moving diagonally downward. VXI=$FF and VYl=$Ol. It also
obtains a new timer value of $50 so that the next instruction isn ' t read until its
internal timer reaches $50. At that time VYI = 0 and the alien continues its path
along the horizontal axis. Its gun is turned on, and it shoots in a direction of 7, up
and to the left. It reads its last instruction at TIMEI =$70 and shuts off its guns. It will
continue moving horizontally until it exits screen left.

There is a delay timer, TDELAYl, that prevents a new alien from appearing
immediately after the first. The value of NDELAY I that was looked up in the tables
by the prior alien is transferred to TDELAYI after that alien exits the screen. If
TDELAYI is positive when it enters the routine that reads the programmable alien
code, it branches past it and just decrements this timer once each cycle. There is a
secondary flag called ONSCRN 1 that is set to one during alien initialization after the

®
" Easy ,

'\..

0 CD

Enemy #1 (Green) #0 Sequence

D

Enemy #1 (Green) #1 Sequence

D
® , , ,

Easy " jI Easy

Enemy #1 (Green) #2 Sequence

GAMES THAT SCROLL 7

CD 2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

x Y NOELAY

100150130 I

TL TH VX VY SHOOT OIR

28 00 FF 00 00 00

50 00 FE 01 00 00

70 00 FF 00 01 07

FF 00 FF 00 00 00

x Y NOELAY

1001751401

TL TH VX VY SHOOT OIR

30

55

65

75

80

98

FF

00 FF FF 00

00 00 01 00

00 FF FF 00

00 FF FF 01

00 FF 01 01

00 FF FF 00

00 00 FF 01

x Y NOELAY

1501321251

00

00

00

06

05

00

03

TL TH VX VY SHOOT OIR

15 00 01 01 00 00

30 00 01 01 01 05

40 00 01 00 01 06

53 00 01 00 00 00

70 00 01 FF 00 00

80 00 FF 00 00 00

A8 00 FF 01 01 05

FF 01 FF 00 01 03

259

7 GAMES THAT SCROLL

Enemy #1 (Green) #3 Sequence

/
/ Hard

n

Enemy #1 (Green) #4 Sequence

®
\

Easy \,

R

Enemy #2 (Red) #0 Sequence

260

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

x Y NOELAY

1001701351

TL TH VX VY SHOOT OIR

20 00 FF FF 00 00

40 00 FF 01 00 00

60 00 FF FF 01 06

80 00 FF 01 01 06

98 00 FF 01 01 07

FF 00 FF FF 01 01

x Y NOELAY

1001651151

TL TH VX VY SHOOT OIR

25

40

60

80

AO

FF

00 FF 00 00

00 FF 01 00

00 FF FF 01

00 00 FF 01

00 FF 01 01

00 FF 00 01

x Y NOELAY

100 1401501

00

00

06

06

05

01

TL TH VX VY SHOOT OIR

38 00 FF 01 00 00

50 00 FF FF 01 06

68 00 FF FF 00 00

78 00 FF 01 00 00

90 00 FF 00 01 03

FF 00 FF

D

Enemy #2 (Red) #1 Sequence

D

Enemy #2 (Red) #2 Sequence

6 5

Hard' Easy ,

" JI

D

Enemy #2 (Red) #3 Sequence

GAMES THAT SCROLL 7

0

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

x Y NOELAY

100135120 I
TL TH VX VY SHOOT OIR

18 00 FF 01 00 00

30 00 FF FF 00 00

40 00 FF 00 00 00

60 00 FF 01 01 06

70 00 01 00 01 07

80 00 FF FF 01 07

FF 00 FF 01 01 03

x Y NOELAY

100180120 I
TL TH VX VY SHOOT OIR

30 00 FF 00 00 00

50 00 FF FF 00 00

60 00 FF FF 01 07

78 00 FF 01 01 05

FF 00 FF FF 01 03

x Y NOELAY

100155120 I

TL TH VX VY SHOOT OIR

15 00 FF 01 00 00

35 00 FE 00 00 00

45 00 01 FF 00 00

55 00 FF 00 01 06

70 00 FF 00 00 00

95 00 FF 00 01 05

FF 00 FF 00 01 03

261

262

7 GAMES THAT SCROLL

D

Enemy #2 (Red) #4 Sequence

2

3

4

5

6

7

8

x Y NOELAY

100165120 I
TL TH VX VY SHOOT OIR

20 00 FF 00 00 00

38 00 FF FF 00 00

50 00 FF 01 01 06

68 00 FF 00 01 05

78 00 FF FF 01 03

FF 00 FF 01 00 00

delay has ended. Once this flag is se t, the program com pares its timer, TIMERI , to
that of TIME I which it obtained from the first set of instructions. If it is equal , the
program looks up the nex t se t of in structions. It th en moves the alien, jumps to a
separate subroutine to fire the miss ile, checks if the alien is still on the screen, and
finally plots the a lien .

During initia lization , o ne of five sets of pointers to the programmable da ta is
chosen randomly. Then, one of five a lien shapes is randomly picked. This prevents
the player from predetermining the pattern from the a lien 's shape. The ONSCRN
fl ag is then set and the initi a l va lues for X l, YI, NTDELA YI , VXI, VYI, TIMELl,
TIMEHI, SHOOTl , and DIRI are obtained.

The obvious advantage of developing this routine was that we were able to crea te
an a ttack pattern, tes t it, then modify it until it became sufficiently challenging. Of
course, when we did this , we hadn ' t put in the CHANCE subroutine. Therefore, it
was easier to control which program mable a lien code we were working with. Since
the X-register determin es which program is loaded , it is fa irly easy to skip the
CHANCE subroutine and load the X-register with a value from 0 to 4.

The ga me turned out to be much more difficult than anticipa ted because the level
of a lien firepower was too intense. It was relatively easy to cut the firepower a t the
beginning of the game, and then ra ise it as the player's score increased. The ga me
shifts to intermediate level at 400 points, then to expert level a t 2000 points. Most of
th e shoo t fl ags in th e programmable tables are set to zero at the beginning of the
game and then restored as the game progresses. Consequently, it was quite easy to
develop a game tha t increases in difficulty with the player's skill.

GAMES THAT SCROLL 7

ALIEN #1 CODE

IS TDELA Y 1:>0 YES
-..1

.0 5 NO

ONSCRN1=0? L YES
J t

.1 I JSR CHANCE I INC TIMER1 I I

I SET UP POINTER

J TO READ PROGRAM DATA

I

.2 l JSR CHANCE

J r TO PICK SHAPE
TIMER 1=TIME1? 1

I RDSH1=LUCK I
LOOK UP NEXT I

VX,VY,TIME I ONSCRN1=1 I
SHOOT, DIR

I TIMER1=0 I
I

I I LOOKUP X1 ,Y1
NTDELAY 1

1

.3
I LOOK UP VX, VY TIME J I SHOOT, DIR

MOVE ALIEN SHIP

1 DEC TDELAY1 I
YES J SPEED=1 (FAST) MOVE ALIEN LEFT [TIMER1=0 J

I r l IS TMIS1 >0
JSR MISSILE

YES

1 I JSR MISSILE I ALIEN STILL ON ~ I ONSCRN1=0
SCREEN?

A

1 YES

I TDELAY1 =NTDELA Y1 J PLOT ALIEN
1

I PLOT ALIEN OFF SCREEN J
I

263

264

7 GAMES THAT SCROLL

Ground Lasers

The fo ur ground lasers use animated charac ter graphics to move their laser beams.
The segment of the beam uses internal character #62. Each base uses two flags to keep
track of the status o f the base and two timers to slow the beam down and delay it
between firings.

The main loop code performs a simple test to determine if it should call the
subroutine LASER. A timer called LDELA Y is set to #$50 after each shot to insure
tha tit rests slightly more than one second before refiring. The timer decrements once
each cycle, so eventually it will reach zero and call the LASER subroutine.

Since it is possible to destroy one or more bases, the GALIVE flag keeps track of
ac tive bases. Bases are a live when GALIVE = 1. The LASON flag is used to prevent
the routine from reinitializing the beam after it begins its track from just above and
to the left of the laser base. When LASON = I, it skips the initialization and proceeds
with the movement each tim e LCOUNT reaches zero until the beam, which is
plotted at GROUNDL,GROUNDH , reaches the top mode line at GROUNDH =
#$70.

The beam, which is trave ling at a forty-five degree a ngle, is first erased at its old
pos ition GROUNDL,GROUNDH by writing a blank character #0. The new posi
tion is one character to the left and one mode line (256 bytes) lower in memory.
Therefore, the new position is atGROUNDL-I,GROUNDH-I, and we plot internal
character #62 in this position of screen memory . The beam would move much too
rapidly if it were moved every cycle. We ca n slow it down and move it every third
cycle by our usual cou ntdown tim er method. LCOUNT is reset to 3 each time the
beam is moved and then decremented with each cycle. The beam is moved only when
LCOUNT reaches zero, thus slowing the beam down.

#68

#67

GAMES THAT SCROLL 7

LASER BASE
LASER

I LASON=1 lYES
r

INO

NOI
GALlVE=1? I 1

I YES

INITIALIZE POINTERS I
I (MAIN LOOP CODE)

I LCOUNT=3 I FLASER

I I LDELAY>O I , YES

PLOT INITIAL POSITION
NO BEAM JUST ABOVE & LEFT OF GUN

I I JSR LASER I
.1 r

l DEC LCOUNT 1
I

I LCOUNT=O? 1
IYES

GROUNDH=#$70.
YES

ERASE LASER BEAM I
2 ~ NO

ERASE LASER BEAM AT
OLD PLACE

I
DEC GROUNDH
DEC GROUNDL

I
PLOT LASER BEAM AT

NEW PLACE

I
I LCOUNT=3 I I LDELAY=80 I

EL I

265

266

7 GAMES THAT SCROLL

Collision Tests

T here is a long series o f co lli sion tes ts in the ma in code loop that cover every
poss ible interac tion betw een an y two screen obj ects. The tes ts can be performed
o uts ide the VBlank beca use the main code on ly execu tes once every VBlank cycle and
will do the test after the collision registers have been set from the previous frame.

The first few tes ts invol ve co lli sions o f our ship w ith the p lay fi eld , enemy aliens,
and th eir missil es. Cround-based lase r fire is considered playfield in the tes ts. In a ll
cases, co lli sions resu lt in the el i min a ti on o f our ship via the XSHIP subroutine. We
on Iy score po ints in the case where o ur ship collides w ith an enemy ship. A kill of any
na tme is worth points even if it cos ts you dearly. T he ex plosio n sound timers are also
se t here.

T he seco nd series of tes ts in vo lve co lli sions o f the two a liens with the playfield and
o ur ship 's lase r. All cases result in the elimi nat ion o f the a lien ship. Po ints are onl y
scored if the ali en craft are kill ed by o ur ship's laser fire.

The fin a l series of tes ts in vo lve colli sions of bombs and o ur ship's laser fire with
the pl ay fi eld. Co ll isions w ith th e ground (play fi eld #0) are simple and o nl y resu lt in
the remova l of the weapon. Co lli sio ns with gro und targe ts (playfie ld #1), however,
are more complica ted because we need to calcul ate "" hich targe t is to be removed in
the subroutin e RTARGET.

Fortuna te ly, a ll o f the targe ts are widely spaced so that we basica ll y onl y need to
compare th e position o f o ur laser or bomb wi th th a t of the playfield benea th. To
con vert the pl ayer position o f the mi ss il e or bom b (POS) to that of the p layfie ld
requ ires us to first determine how many character positions are between it and the
pla y fi eld 's left screen edge, a nd add the ro ug h scrolling offset into the play fi eld map,
XS. T he formul a is:

BTARGET = XS + INT(POS/ 8)

Us ing this formul a p roduces inaccurac ies because we don't ta ke into considera
ti on the possibility th a t either the fin e scrolling register or the left edge of the bomb
may clip the far edge of th e targe t in its a rc, and thus throw off our calcula tion.
Obvio usly, if we a re tes ting for an exact horizonta l m a tch between the weapon' s
pos i ti o n a nd a ll o f the ava ilabl e ground ta rge ts, we a re going to miss occasionally. If
we expa nd the tes t to include the BTARGET-I a nd BTAR GET+l , a m a tch would
always be ass ured.

Our subroutine decrements BT AR GET and first compares it to horizontal posi
tions of each of the four laser bases. It removes it if it finds a ma tch and se ts a fl ag
STRIKE = 1. It co ntinues to do the sam e tes t with the seven miss ile bases. If STRIKE
doesn ' t eq ua l one w hen it is fini shed , it incremen ts BTARGET and tries the tests
aga in. It wi ll eventua ll y find its targe t on one of the three passes, remove it, trip the
expl os ion sound time, score some points, and exit the subroutine.

GAMES THAT SCROLL 7

COLLISIONS

SET EXPLOSION
SOUND TIMER

SET EXPLISION
SOUND TIMER

cc------~------------------------------~----------~

267

7 GAMES THAT SCROLL

BOMB COLLISION

BCOL

~
CHECK COLLISION WITH I YES
GROUND-PLAYFIELD #0 I

.80 + NO

l CHECK COLLISION WITH I NO
TARGET -PLA YFIELD #1 I

RTARGET t YES

I CALCULATE PLAYFIELD I POSITION OF BOMB (BTARGET)
I l DEC BTARGET BECAUSE I

NEED TO CHECK ON BOTH SIDES I REMOVE BOMB I I

LBl STRIKE=O I I J I BOMBON=O

COMPARE BTARGET TO NO
HORIZ POSITION OF 4

LASER BASES

t YES

REMOVE APPROPRIATE
LASER BASE

LBEND l I
JSR SCORE 3 1

l TURN ON EXPLOSION SOUND TIMER I
I

I INC BTARGET J l STRIKE=1 I
MB

COMPARE BTARGET TO NO
HORIZ POSITION OF 7

MISSILE BASES

t YES

REMOVE APPROPRIATE
MISSILE BASE

I

l JSR SCORE 1 1
I TURN ON EXPLOSION SOUND TIMER I

INC MBCOUNT I
l STRIKE=1 I
MBEND I

NO I
STRIKE=1? I L

.82 ~YES

268

GAMES THAT SCROLL 7

Scoring

The scoring subroutine differs lilli e from those of many of the others used in this
book. It and others keep track of the different decimal digits separately so that they
do n 't have to convert an internal hexadecima l score to decimal. There are separate
co un ters for the tens d igi t, hundreds digi t, thousands digi t, etc. Carrys are performed
into the next higher digit whenever one or more of these digits exceeds a value of
ni ne. The actua l positions of each of these counters in the score line is shown below.

The scoring values for each target in th e game are worth differing point values.
Missile bases are worth 10 po ints, a lien ships 20 points, and laser bases 30 points.
Fairly high scores can be ach ieved by pla ye rs since there are an unlimited number of
a liens, and missile bases are replenished after a ll seven have been destroyed.

There are three separate entrance points to the subroutine. Notice that the first
three blocks of each in the flowchart are identical. Each of these small sections
increments the tens digit SRI 0 by one, and takes care of a carry to the hundreds digit
if necessary. When 20 points are awarded for a target it enters at SCORE2, a lower
point in the subroutine, and increments this digit twice. By entering at SCORE3, 30
points are scored since it passes through all three sections of the same code.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/ \
DISPLAY+ I 35 I 36 37 38 39

SR10T SR1000 SR100 SR10

Retaining the player's high score turned out to be especially important in Strike
Force. Many players had difficulty with the game, scored low, and refused to play it
after two or three tries. When the high score feature was added, they would play for
much longer periods to beat their last high score. Since the game resets automatically
through the System Reset Vector, it was necessary to place the initialization for the
high score digits or variables prior to that address in the game. The score variables
for the last game aren't reset until after the START key is pressed. This makes it
possible to see both the high score and the score for the previous game while in the
"attack mode." Space was tight in the two-line display so that the two scores
alternate in the display's slow-blinking cycle.

The high score is updated in the subroutine XSHIP when the game is over. Each
of the current high score digits, starting with the highest, is subtracted from each of
the score digits. If any become negative in the process, it means we haven't reached a
new high score and the routine aborts. It updates only when it detects a positive
result. Zero results are ignored. Once a positive or negative result is obtained, the rest
of the lower digits are ignored for they would only confuse the routine. For example,

269

270

7 GAMES THAT SCROLL

if SCORE were 00630, and HISCORE were 00580, it would get a positive number in
the hundreds digit. This means we have a new high score. If we were to continue the
test we would get a negative number in the tens digit. This would mean we don't
have a new high score. Since only the first positve or negative result is meaningful, it
is best to ignore the remaining digits.

SCORE

SCORE3 --~

~----~------~NO

SCORE2--~

,....-----'----....., NO

SCORE----I~

,....-__ --1. ___, NO
1-------.

r-----~------~NO
1-------.

GAMES THAT SCROLL 7

TITLES

MKTITLE

PUT NAME TITLE IN PLACE

STOP
~------~r-------~---------'YES

START KEY PRESSED? 1----------...,

MYTITLE
~----------~-------------

PUT AUTHOR TITLE & HIGH SCORE IN PLACE

MTTITLE1

PUT NAME TITLE
IN PLACE

Sound

T he ga m e uses a ll fou r so und channels. Ch annel on e is used for the laser fire
sound, channel two for the short explosio n sounds o f the a lien s and ground targe ts,
channel three for the engine sound, and channel four for the sound of the ship 's
lo nger ex plosion. Fo ur separa te cha nn els are required so that one sound doesn ' t
interfere with ano ther in th e event that severa l occur simultaneously.

The sound sub rout ine res ides and o perates in the VB lank routine. They a re
essentia ll y a lways on but requ ire se tting a positive value in a fl ag to trip them. For
exa mpl e, the laser sound ca n be tr ipped by setting SLTIME = I . Each of the routines,
whi ch are described m ore full y in the sou nd section in ch apter eight, use interna l
co untdown timers to g radu a ll y lower the tone and volume. The engine sound, on
the o ther hand , just produces a continuous sound using some distortion. The
frequency is changed to a hi g her p itch w hen the ship speeds up.

271

272

7 GAMES THAT SCROLL

CHANGE DIFFICULTY LEVELS

.1

.2

FOR EVER

HARD=1?

~ NO

MEDIUM=1?

~ NO

SR100=4?

~YES

TURN ON SOME
OF ALIEN GUNS

I
MEDIUM=1

I
J

SR1000=Z?

tYES

TURN ON MORE
OF ALIEN GUNS

I YES

I HARD=1 I
I

MEDIUM @ 400 plS

HARD @ 2000 plS

MEDIUM=Q (OFF)

lYES

L YES -"

L NO

r-

00015 *STRIKE FORCE-COPYRIGHT 1984 - BY JEFFREY STANTON
00020 *PART 1 SCROLLING GAME
00025 .OR $4000
00030 • TF "D: SCROLL. OBJ"
00035 *ZERO PAGE EQUATES

ooFO: 00040 SHPL .EQ $FO
ooF1: 00045 SHPH • EQ $F1
00F2: 00050 SHPML • EQ $F2
00F3: 00055 SHPMH • EQ $F3
00F4: 00060 SHPMOL .EQ $F4
00F5: 00065 SHPMOH • EQ $F5
ooF6: 00070 GROUNDL .EQ $F6
ooF7: 00075 GROUNDH .EQ $F7
00F8: 00080 VALUEL • EQ $F8
00F9: 00085 VALUEH .EQ $F9
ooFA: 00090 BLOCKL .EQ $FA
OOFB: 00095 BLOCKH .EQ $FB
OOFC: 00100 PMADR .EQ $FC

OOFC:
OOFE:
OOF8:
OOF9:
OOFA:
OOFB:
00F6:
OOF7:

7000:
6900:
9400:
9000:

D407:
8800:
D01D:
022F:
DOOC:
0008:
02CO:
02C1:
02C2:
02C3:
DOOO:
0001:
D002:
0003:
0004:
0005:
0006:
0007:

0000:
D004:
0005:
D006:
0007:
D008:
0009:
DOOA:
OOOC:
DOlE:

E45C:
E462:
0278:
0284:
D01F:
D409:
D404:
D40A:
D20A:
02C4:
02C5:
02C8:
D200:
D201:
D202:
D203:
D204:

GAMES THAT SCROLL 7

00105 CHSET .EQ $FC
00110 CHADR .EQ $FE
00115 ElL .EQ $F8
00120 E1H .EQ $F9
00125 E2L .EQ $FA
00130 E2H .EQ $FB
00135 HEZL .EQ $F6
00140 HEZH • EQ $F7
00145 *LOCATION EQUATES
00150 SCREEN .EQ $7000 ;ADR OF MAP
00155 INFO .EQ $6900
00160 NDLIST .EQ $9400 ;ADR OF NEW DISPLAY LIST
00165 CHRSET .EQ $9000 ;ADR OF CHARACTER SET
00170 *PLAYER MISSILE EQUATES
00175 PMBASE .EQ $D407
00180 PDATA .EQ $8800
00185 GRACTL .EQ $D01D
00190 DMACTL .EQ $22F
00195 SIZEM .EQ $DOOC
00200 SIZEPO .EQ $D008
00205 PCOLRO .EQ $2CO
00210 PCOLR1 .EQ $2C1
00215 PCOLR2 .EQ $2C2
00220 PCOLR3 .EQ $2C3
00225 HPOSPO .EQ $DOOO
00230 HPOSP1 .EQ $D001
00235 HPOSP2 .EQ $D002
00240 HPOSP3 .EQ $D003
00245 HPOSMO .EQ $D004
00250 HPOSM1 .EQ $D005
00255 HPOSM2 .EQ $D006
00260 HPOSM3 .EQ $D007
00265 *COLLISIONS
00270 MOPF .EQ $DOOO
00275 POPF .EQ $D004
00280 P1PF .EQ $D005
00285 P2PF .EQ $D006
00290 P3PF .EQ $D007
00295 MOPL .EQ $D008
00300 M1PL .EQ $D009
00305 M2PL .EQ $DOOA
00310 POPL .EQ $DOOC
00315 HITCLR .EQ $D01E
00320 *MISC EQUATES
00325 SETVBK .EQ $E45C
00330 XITVBK .EQ $E462
00335 STICK .EQ $278
00340 STRIGO . EQ $284
00345 CONSOL .EQ $D01F
00350 CHBASE .EQ $D409
00355 HSCROL .EQ $D404
00360 WSYNC .EQ $D40A
00365 RANOOM .EQ $D20A
00370 COLORO .EQ $2C4
00375 COLOR1 .EQ $2C5
00380 COLOR4 .EQ $2C8
00385 AUDF1 .EQ $D200 ;USE FOR LASER
00390 AUDC1 .EQ $D201
00395 AUDF2 .EQ $D202 ;USE FOR EXPLOSIONS ALIENS & TARGETS
00400 AUDC2 .EQ $D203
00405 AUDF3 .EQ $D204 ;USE FOR SHIP ENGINE

273

274

7 GAMES THAT SCROLL

D205:
D206:
D207:
D208:
D20F:

4000:
4002:
4004:
4006:
4008:
400A:
400C:
400E:
4010:
4012:
4014:
4016:
4018:
401A:
401D:
4020:
4021:
4024:
4026:
4029:
402C:
402E:
4030:
4033:
4036:
4038:
403B:
403E:
4040:
4043:
4046:
4047:
404A:
404D:
404F:
4052:
4055:
4057:
405A:
405D:
405F:
4062:
4065:
4068:
406B:
406D:
4070:
4073:
4075:
4078:
407B:
407D:
4080:
4083:
4086:

00410 AUDC3 .EQ $D205
00415 AUDF4 .EQ $D206 ;USE FOR SHIP EXPLOSION
00420 AUDC4 .EQ $D207
00425 AUDCTL .EQ $D208
00430 SKCTL .EQ $D20F
00435 *SCREEN ENCODED DATA

00 00 00440 VALUE .HS 0000
00 00 00445 .HS 0000
00 00 00450 .HS 0000
00 00 00455 .HS 0000
00 00 00460 • HS 0000
00 00 00465 .HS 0000
00 00 00470 .HS 0000
00 00 00475 .HS 0000
00 00 00480 .HS 0000
00 00 00485 .HS 0000
00 00 00490 .HS 0000
00 00 00495 .HS 0000
00 00 00500 . HS 0000
00 03 04
01 07 08
00 00505 .HS 00030401070800
00 04 01
09 00 00510 .HS 0004010900
00 03 02
01 OA 00

;ROW 0
;ROW 1
;ROW 2
;ROW 3
;ROW 4
;ROW 5
;ROW 6
;ROW 7
;ROW 8
;ROW 9
;ROW 10
;ROW 11
;ROW 12

;ROW 13

;ROW 14

04 01 00515
09 00 00520

.HS 000302010A000401 ;ROW 15

.HS 0900
00 04 07
08 00 03
02 OA 00525
00 03 02
01 OB 00
04 01 00530
09 00 04
OA 05 OA
00 00535
00 04 01
09 00 05
01 OB 00540
00 04 01
OA 00 04
09 00 00545
05 01 09
00 03 02
OA 00 00550
04 01 OB
06 OB 00 00555
00 05 01
09 00 06
01 07 00560
08 00 04
01 OB 00
03 02 00565
01 09 00
06 01 OA
00 05 00570
01 OB 04
01 OA 00 00575
00 06 01
09 00 04

.HS 000407080003020A ;ROW 16

.HS 000302010B000401

.HS 0900040A050AOO

.HS 000401090005010B ;ROW 17

.HS 0004010A00040900

.HS 0501090003020AOO

.HS 04010B060BOO

.HS 0005010900060107 ;ROW 18

.HS 080004010B000302

.HS 01090006010A0005

.HS 010B04010AOO

GAMES THAT SCROLL 7
4089: 01 09 00580 .HS 0006010900040109 ;ROW 19
408B: 00 01 07
408E: 08 00 03
4091 : 02 01 00585 .HS 0001070800030201
4093: 09 00 04
4096: 01 OB 00
4099: 06 01 00590 .HS 090004010BOO0601
409B: OB 00 00595 .HS OBOO
409D: 00 03 02
40AO: 09 00 03
40A3: 02 OA 00600 .HS 000302090003020A ;ROW 20
40A5: 00 04 01
40A8: 07 08 00
40AB: 03 02 00605 .HS 0004010708000302
40AD: 01 09 00
40BO: 03 02 07
40B3': 08 00 00610 .HS 0109000302070800
40B5: OC 01 09
40B8: 00 04 01
40BB: OA 00 00615 .HS OC01090004010AOO
40BD: 03 02 01
40CO: OA 00 05
40C3: 01 07 00620 .HS 0302010AOO050107
40C5: 08 00 03
40C8: 02 09 00 00625 .HS 080003020900
40CB: 00 04 01
40CE: 09 00 04
40D1: 01 OB 00630 .HS 000401090004010B ;ROW 21
40D3: 00 05 01
40D6: 09 00 04
40D9: 01 00 00635 .HS 0005010900040100
40DB: OC 01 09
40DE: 00 04 01
40E1: OB 00 00640 .HS OC01090004010BOO
40E3: 05 01 OB
40E6: 00 06 01
40E9: OA 00 00645 .HS 05010BOO06010AOO
40EB: 04 09 04
40EE: 09 00 04
40F1: 01 09 00650 .HS 0409040900040109
40F3: 00 03 02
40F6: 01 07 08
40F9: 00 04 00655 .HS 0003020107080004 ;ROW 22
40FB: 01 07 08
40FE: ;;0 04 01
4101: 00 04 00660 .HS 0107080004010004
4103: 01 09 00
4106: 04 01 07
4109: 08 00 00665 .HS 0109000401070800
410B: 06 01 OB
41OE: 04 01 09
4111 : 00 03 00670 .HS 06010B0401090003
4113: 02 01 00675 .HS 0201
4115: 01 01 00680 .HS 0101 ;ROW 23
4117: 00685 .BS $E9
4200: FF 01 00690 BLOCKS .HS FF01 ;ROW 0
4202: FF 01 00695 .HS FF01 ;ROW 1
4204: FF 01 00700 .HS FF01 ;ROW 2
4206: FF 01 00705 .HS FF01 ;ROW 3
4208: FF 01 00710 .HS FF01 ;ROW 4
420A: FF 01 00715 .HS FF01 ;ROW 5

275

7 GAMES THAT SCROLL

420C: FF 01 00720 .HS FF01 ;ROW 6
420E: FF 01 00725 .HS FF01 ;ROW 7
4210: FF 01 00730 .HS FF01 ;ROW 8
42l2: FF 01 00735 .HS FF01 ; ROI.J 9
4214: FF 01 00740 .HS FF01 ;ROW 10
4216: FF 01 00745 .HS FF01 ;ROW 11
4218: FF 01 00750 .HS FF01 ;ROW 12
421A: B7 01 01
421D: 05 01 01
4220: 40 00755 .HS B7010105010140 ;ROW 13
4221: B6 01 09
4224: 01 3F 00760 • HS B60109013F ;ROW 14
4226: n 01 01
4229: 07 01 34
422C: 01 OB 00765 .HS 770101070134010B ;ROW IS
422E: 01 3E oono .HS 013E
4230: 30 01 01
4233: 01 OF 01
4236: 01 01 00n5 .HS 300101010F010101 ;ROW 16
4238: 2E 01 01
423B: OB 01 33
423E: 01 OD 00780 .HS 2E01010B0133010D
4240: 01 19 01
4243: 01 01 01
4246: 20 00785 .HS 01190101010120
4247: 2F Q1 03
424A: 01 OD 01
424D: 02 01 00790 .HS 2F0103010D010201 ; ROI.J 17
424F: 2D 01 OE
4252: 01 OE 01
4255: 01 21 00795 .HS 2D010E010E010121
4257: 01 OF 01
425A: 13 01 01
425D: 01 01 00800 .HS 010FOl1301010101
425F: 01 01 01
4262: 01 01 20 00805 .HS 010101010120
4265: 2E 01 05
4268: 01 OC 01
426B: 03 01 00810 .HS 2E0105010C010301 ;ROW 18
426D: 01 29 01
4270: 10 01 OC
4273:' 01 01 00815 .HS 01290110010C0101
4275: 02 01 20
4278: 01 10 01
427B: 11 01 00820 .HS 0201200110011101
427D: 02 01 01
4280: 05 01 IF 00825 .HS 02010105011F
4283: 2E 01 06
4286: 01 OA 01
4289: 06 01 00830 .HS 2E0106010AOI0601 ;ROlV 19
428B: 28 12 01
428E: 01 08 01
4291: 01 05 00835 .HS 2812010108010105
4293: 01 17 01
4296: 18 01 11
4299: 01 09 00840 . HS 0117011801110109
429B: 01 IF 00845 .HS 011F
429D: 10 01 01
42AO: 01 OC 01
42A3: 01 01 00850 .HS 100101010COI0101 ;ROW 20
42A5: OB 01 08

276

GAMES THAT SCROLL 7

42A8: 01 01 04
42AB: 01 01 00855 .HS OBOI080101040101
42AD: OA 01 IB
42BO: 01 01 01
42B3: 01 08 00860 .HS OAOIIBOI0I0I0I08
42B5: 01 23 01
42B8: 15 01 lA
42BB: 01 08 00865 .HS 01230115011AOI08
42BD: 01 01 02
42CO: 01 02 01
42C3: OB 01 00870 .HS 0101020102010BOl
42C5: 01 19 01
42C8: 01 01 01 00875 .HS 011901010101
42CB: OF 01 03
42CE : 01 OA 01
42Dl : 02 01 00880 .HS OFOI03010AOI0201 ;ROW 21
42D3: OA 01 lC
42D6: 01 19 01
42D9: 04 OB 00885 .HS OAOIICOl1901040B
42DB: 01 21 01
42DE: OC 01 22
42El : 01 07 00890 .HS 0121010C01220107
42E3: 01 04 01
42E6: 02 01 OD
42E9: 01 01 00895 .HS 01040102010DOI0l
42EB: 01 01 01
42EE: 01 12 01
42Fl: 03 01 00900 .HS 0101010112010301
42F3: OD 01 01
42F6: 05 01 01
42F9: 07 01 00905 .HS ODOI0I0501010701 ;ROW 22
42FB: 3A 01 01
42FE: 08 01 05
4301: OB 01 00910 .HS 3AOI0I0801050BOl
4303: 28 01 04
4306: 01 24 01
4309: 01 05 00915 .HS 2801040124010105
430B: 01 15 01
430E: 01 04 01
4311: OF 01 00920 .HS 0115010104010F01
4313: 01 05 00925 .HS 0105
4315: FF 01 00930 .HS FFOI ;ROW 23
4317: 00935 .BS $E9

00940 *CHARACTER SET 512 BYTES LONG
4400: 00 00 00
4403: 00 00 00
4406: 00 00 00945 SETCHAR .HS 0000000000000000
4408: FF FF FF
440B: FF FF FF
440E: FF FF 00950 .HS FFFFFFFFFFFFFFFF
4410: 03 OF 3F
4413: FF FF FF
4416: FF FF 00955 . HS 030F3FFFFFFFFFFF
4418: 00 00 00
441B: 00 03 OF
441E: 3F FF 00960 .HS 00000000030F3FFF
4420: 01 03 07
4423: OF IF 3F
4426: 7F FF 00965 .HS 0103070FIF3F7FFF
4428: 01 01 03
442B: 03 07 07

277

7 GAMES THAT SCROLL

442E: OF OF 00970 .HS 0101030307070FOF ;#5
4430: IF IF 3F
4433: 3F 7F 7F
4436: FF FF 00975 .HS 1F1F3F3F7F7FFFFF
4438: CO FO FC
443B: FF FF FF
443E: FF FF 00980 .HS COFOFCFFFFFFFFFF
4440: 00 00 00
4443: 00 CO FO
4446: FC FF 00985 .HS OOOOOOOOCOFOFCFF
4448: 80 CO EO
444B: FO F8 FC
444E: FE FF 00990 .HS 80COEOFOF8FCFEFF
4450: 80 80 CO
4453: CO EO EO
4456: FO FO 00995 .HS 8080COCOEOEOFOFO ;#10
4458: F8 F8 FC
445B: FC FE FE
445E: FF FF 01000 .HS F8F8FCFCFEFEFFFF
4460: FF 7F 3F
4463: IF OF 07
4466: 03 01 01005 .HS FF7F3F1FOF070301
4468: 01010 .BS $98
4500: 80 C1 67
4503: 3F IF IF
4506: 3F 3F 01015 .HS 80C1673F1F1F3F3F ;#32
4508: 00 CO FO
450B: F8 F8 FC
450E: FC FE 01020 .HS 00COFOF8F8FCFCFE
4510: 80 40 20
4513: 10 08 04
4516: 02 01 01025 .HS 8040201008040201
4518: 3C 3C 3C
451B: 3C 7E 7E
451E: FF C3 01030 .HS 3C3C3C3C7E7EFFC3
4520: 18 18 18
4523: 18 18 18
4526: 3C 3C 01035 .HS 1818181818183C3C
4528: 00 3E 60
452B: 60 6E 66
452E: 3E 00 01040 .HS 003E60606E663EOO ;G
4530: 00 18 3C
4533: 66 66 7E
4536: 66 00 01045 .HS 00183C66667E6600 ;A
4538: 00 63 77
453B: 7F 6B 63
453E: 63 00 01050 .HS 0063777F6B636300 ;M
4540: 00 7E 60
4543: 7C 60 60
4546: 7E 00 01055 .HS 007E607C60607EOO ;E
4548: 00 3C 66
454B: 66 66 66
454E: 3C 00 01060 .HS 003C666666663COO ;0
4550: 00 66 66
4553: 66 66 3C
4556: 18 00 01065 .HS 00666666663C1800 ;V
4558: 00 7C 66
455B: 66 7C 6C
455E: 66 00 01070 .HS 007C66667C6C6600 ;R
4560: 01075 .BS $AO

01080 *PLAYER#l PROGRAMABLE BLOCK

278

GAMES THAT SCROLL 7

4600: DO 50 30 01085 ENEMYI .HS D05030 ;X,Y,DELAY
4603: 28 00 FF
4606: 00 00 00 01090 .HS 2800FFOOOOOO ;SHAPE#O
4609: 50 00 FF
460C: 01 00 00 01095 .HS 5000FFOI0000
460F: 70 00 FF
4612: 00 01 07 01100 .HS 7000FFOOOI07
4615: FF 00 FF
4618: 00 00 00 01105 .HS FFOOFFOOOOOO
461B: 00 00 00
461E: 00 00 00 01110 .HS 000000000000
4621: 00 00 00
4624: 00 00 00 01115 .HS 000000000000
4627: 00 00 00
462A: 00 00 00 01120 .HS 000000000000
462D: 00 00 00
4630: 00 00 00 01125 .HS 000000000000
4633: DO 75 40 01130 .HS D07540 ;SHAPE#l
4636: 30 00 FF
4639: FF 00 00 01135 .HS 3000FFFFOOOO
463C: 55 00 00
463F: 01 00 00 01140 .HS 550000010000
4642: 65 00 FF
4645: FF 00 00 01145 .HS 6500FFFFOOOO
4648: 75 00 FF
464B: FF 01 06 01150 .HS 7500FFFF0106
464E: 80 00 FF
4651: 01 01 05 01155 .HS 8000FFOI0I05
4654: 98 00 FF
4657: FF 00 00 01160 .HS 9800FFFFOOOO
465A: FF 00 00
465D: FF 01 03 01165 .HS FFOOOOFF0103
4660: 00 00 00
4663: 00 00 00 01170 .HS 000000000000
4666: 50 32 25 01175 .HS 503225 ;SHAPE#2
4669 : 15 00 01
466C: 01 00 00 01180 .HS 150001010000
466F: 30 00 01
4672: 01 01 05 01185 .HS 300001010105
4675: 40 00 01
4678: 00 01 06 01190 .HS 400001000106
467B: 53 00 01
467E: 00 00 00 01195 .HS 530001000000
4681: 70 00 01
4684: FF 00 00 01200 .HS 700001FFOOOO
4687: 80 00 FF
468A: 00 00 00 01205 .HS 8000FFOOOOOO
468D: A8 00 FF
4690: 01 01 05 01210 .HS A800FFOI0105
4693: FF 01 FF
4696: 00 01 03 01215 .HS FFOIFFOOOI03
4699: DO 70 35 01220 .HS D07035 ;SHAPE#3
469C: 20 00 FF
469F: FF 00 00 01225 .HS 2000FFFFOOOO
46A2: 40 00 FF
46A5: 01 00 00 01230 .HS 4000FFOlOOOO
46A8: 60 00 FF
46AB: FF 01 06 01235 .HS 6000FFFFOI06
46AE: 80 00 FF
46Bl: FF 01 06 01240 .HS 8000FFFFOI06
46B4: 98 00 FF

279

7 GAMES THAT SCROLL

46B7: 01 01 07 01245 .HS 9800FFOI0I07
46BA: FF 00 FF
46BD: FF 01 01 01250 .HS FFOOFFFFOI0l
46CO: 00 00 00
46C3: 00 00 00 01255 .HS 000000000000
46C6: 00 00 00
46C9: 00 00 00 01260 .HS 000000000000
46CC: DO 65 15 01265 .HS D06515 ;SHAPE#4
46CF: 25 00 FF
46D2: 00 00 00 01270 .HS 2500FFOOOOOO
46D5: 40 00 FF
46D8: 01 00 00 01275 .HS 4000FFOI0000
46DB: 60 00 FF
46DE: FF 01 06 01280 .HS 6000FFFF0106
46El: 80 00 00
46E4: FF 01 06 01285 .HS 800000FFOI06
46E7: AO 00 FF
46EA: 01 01 05 01290 .HS AOOOFFOI0I05
46ED: FF 00 FF
46FO: 00 01 01 01295 .HS FFOOFFOOOI0l
46F3: 00 00 00
46F6: 00 00 00 01300 .HS 000000000000
46F9: 00 00 00
46FC: 00 00 00
46FF: 00 01305 .HS 00000000000000
4700: DO 40 50 01310 ENEMY2 .HS D04050 ;X,Y,DELAY
4703: 38 00 FF
4706: 01 00 00 01315 .HS 3800FFOI0000 ;SHAPE#O
4709: 50 00 FE
470C: FF 01 06 01320 .HS 5000FEFFOI06
470F: 68 00 FF
4712: FF 00 00 01325 .HS 6800FFFFOOOO
4715: 78 00 FF
4718: 01 00 00 01330 .HS 7800FFOI0000
471B: 90 00 FF
471E: 00 01 03 01335 .HS 9000FFOOOI03
4721: FF 00 FF
4724: 00 00 00 01340 .HS FFOOFFOOOOOO
4727: 00 00 00
472A: 00 00 00 01345 .HS 000000000000
472D: 00 00 00
4730: ·00 00 00 01350 .HS 000000000000
4733: DO 35 20 01355 .HS D03520 ;SHAPE#1
4736: 18 00 FF
4739: 01 00 00 01360 .HS 1800FFOI0000
473C: 30 00 FF
473F: FF 00 00 01365 .HS 3000FFFFOOOO
4742: 40 00 FF
4745: 00 00 00 01370 .HS 4000FFOOOOOO
4748: 60 00 FF
474B: 01 01 06 01375 .HS 6000FFOI0I06
474E: 70 00 01
4751: 00 01 07 01380 .HS 700001000107
4754: 80 00 FF
4757: FF 01 07 01385 .HS 8000FFFFOI07
475A: FF 00 FF
475D: 01 01 03 01390 .HS FFOOFFOI0103
4760: 00 00 00
4763: 00 00 00 01395 .HS 000000000000
4766: DO 80 20 01400 .HS D08020 ;SHAPE#2
4769: 30 00 FF

280

GAMES THAT SCROLL 7
476C: 00 00 00 01405 .HS 3000FFOOOOOO
476F: 50 00 FF
4772: FF 00 00 01410 .HS 5000FFFFOOOO
4775: 60 00 FF
4778: FF 01 07 01415 .HS 6000FFFF0107
4778: 78 00 FF
477E: 01 01 05 01420 .HS 7800FF010105
4781: FF 00 FF
4784: FF 01 03 01425 .HS FFOOFFFF0103
4787: 00 00 00
478A: 00 00 00 01430 .HS 000000000000
478D: 00 00 00
4790: 00 00 00 01435 .HS 000000000000
4793: 00 00 00
4796: 00 00 00 01440 .HS 000000000000
4799: DO 55 20 01445 .HS D05520 ;SHAPE#3
479C: 15 00 FF
479F: 01 00 00 01450 .HS 1500FF010000
47A2: 35 00 FE
47A5: 00 00 00 01455 .HS 3500FEOOOOOO
47A8: 45 00 01
47AB: FF 00 00 01460 .HS 450001FFOOOO
47AE: 55 00 00
4781: FF 01 06 01465 .HS 550000FF0106
47B4: 70 00 FF
4787: 00 00 00 01470 .HS 7000FFOOOOOO
47BA: 95 00 FF
47BD: 00 01 05 01475 .HS 9500FFOO0105
47CO: FF 00 FF
47C3: 00 01 03 01480 .HS FFOOFFOO0103
47C6: 00 00 00
47C9: 00 00 00 01485 .HS 000000000000
47CC: DO 65 20 01490 .HS D06520 ;SHAPE#4
47CF: 20 00 FF
47D2: 00 00 00 01495 .HS 2000FFOOOOOO
47D5: 38 00 FF
47D8: FF 00 00 01500 .HS 3800FFFFOOOO
47DB: 50 00 FF
47DE: 01 01 06 01505 .HS 5000FF010106
47E1: 68 00 FF
47E4: 00 01 05 01510 .HS 6800FFOOOI05
47E7: 78 00 FF
47EA: FF 01 03 01515 .HS 7800FFFF0103
47ED: FF 00 FF
47FO: 01 00 00 01520 .HS FFOOFF010000
47F3: 00 00 00
47F6: 00 00 00 01525 .HS 000000000000
47F9: 00 00 00
47FC: 00 00 00
47FF: 00 01530 .HS 00000000000000
4800: 70 70 70
4803: 46 00 69
4806: 86 56 01535 DLIST .HS 7070704600698656
4808: 00 72 56
480B: 00 73 56
480E: 00 74 01540 .HS 0072560073560074
4810: 56 00 75
4813: 56 00 76
4816: 56 00 01545 .HS 5600755600765600
4818: 77 56 00
481B: 78 56 00

281

282

7 GAMES THAT SCROLL

481E: 79 56 01550 .HS 7756007856007956
4820: 00 7A 56
4823: 00 7B 56
4826: 00 7C 01555 .HS 007A56007B56007C
4828: 56 00 7D
482B: 56 00 7E
482E: 56 00 01560 . HS 56007D56007E5600
4830: 7F 56 00
4833: 80 56 00
4836: 81 56 01565 .HS 7F56008056008156
4838: 00 82 56
483B: 00 83 56
483E: 00 84 01570 .HS 0082560083560084
4840: 56 00 85
4843: 56 00 86
4846: 56 00 01575 .HS 5600855600865600
4848: 87 41 00
484B: 94 01580 .HS 87410094
484C: 80 80 CO
484F: FC F6 7F
4852: 7E 00 01585 SHIP .HS 8080COFCF67F7EOO
4854: 3C 3C 3C
4857: 7E DB DB
485A: DB DB 01590 ALIEN .HS 3C3C3C7EDBDBDBDB
485C: 81 42 3C
485F: 3C 3C 3C
4862: 42 81 01595 .HS 81423C3C3C3C4281
4864: 3C 3C 18
4867: 18 99 FF
486A: C3 81 01600 • HS 3C3C181899FFC381
486C: 91 7E 46
486F: C2 43 62
4872 : 7E 89 01605 .HS 917E46C243627E89
4874: 00 00 3C
4877: 7E FF 7E
487A : 3C 00 01610 .HS 00003C7EFF7E3COO
487C: 54 5C 64
487F: 6C 74 01615 ALIENPT .HS 545C646C74
4881: 00 33 66
4884 : 99 CC 01620 E1PT .HS 00336699CC
4886 : 00 33 66
4889: 99 CC 01625 E2PT .HS 00336699CC
488B: 03 00 OC
488E: OC 30 30
4891: CO CO 01630 MSHAPE .HS 03000COC3030COCO ;4 MISSILES EACH TWO HIGH
4893: 8B 8D 8F
4896: 91 01635 MISLO .HS 8B8D8F91
4897: F8 3E F8
489A: 00 00 00
489D: 00 00 01640 BOMBSH .HS F83EF80000000000
489F: 00 01 01
48A2 : 01 00 FF
48A5: FF FF 01645 VMX .HS 0001010100FFFFFF
48A7: FF FF 00
48AA : 01 01 01
48AD: 00 FF 01650 VMY .HS FFFF0001010100FF
48AF: 2B 4A 69
48B2: 84 97 A9
48B5: D3 01655 MBPOSL .HS 2B4A698497A9D3
48B6: 84 84 85
48B9: 82 84 83

GAMES THAT SCROLL 7

48BC:
48BD:
48CO:
48C3:
48C6:
48C9:
48CC:
48CF:
48D1 :
48D4:
48D7:
48DA:
48DD:
48EO:
48E3:
48E5:
48E8:
48EB:
48EE:
48EF:
48F2:
48F5:
48F8:
48F9:
4900:
4903:
4906:

84 01660 MBPOSH .HS 84848582848384
00 00 00
00 33 34
32 29 2B
25 00 26
2F 32 23
25 00 00
00 00 01665 TITLE .AT ' STRIKE FORCE
33 28 29
30 33 00
10 00 00
33 23 2F
32 25 00
10 10 10
10 10 01670 .AT 'SHIPS 0 SCORE 00000'
20 42 59
20 4A 45
46 46 52
45 01675 TITLE1 .HS 204259204A4546465245
59 20 53
54 41 4E
54 4F 4E
20 01680

01685
65 66 67
68 00 69

.HS 59205354414E544F4E20

.BS $07

6A 68 6B 01690 GOVER .HS 6566676800696A686B ;GAME OVER

4909:
490A:
490B:
490C:
490D:
490E: 00
490F:
4910:
4911 :
4912:
4913:
4914: 00
4915:
4916: 00
4917:
4918:
4919:
491B:
491C: 00
491D: 00
491E: 28
491F:
4920:
4921:
4922:
4923:
4924:
4925:
4926:
4927:
4928:
4929:
492A:

00 00

01695 *VARIABLES
01700 XPMO .BS 1
01705 YPMO .BS 1
01710 XPL .BS 1
01715 XPH .BS 1
01720 XS .BS 1
01725 FS .DA #0
01730 YMISOLDO .BS 1
01735 YMISOLD1 .BS 1
01740 YMISOLD2 .BS 1
01745 INDEX1 .BS 1
01750 INDEX2 .BS 1
01755 COUNT .DA #0
01760 TEMP .BS 1
01765 BACK .DA #0
01770 SPEED .BS 1
01775 BOMBON .BS 1
01780 VBFLAG .DA 0
01785 XSP .BS 1
01790 ONSCRN1 .DA #0
01795 ONSCRN2 .DA #0

;ACTUAL X POS ON SCREEN
;ACTUAL Y POS ON SCREEN
;SHIP POS IN \.JORLD 0-1060

;BACKGROUND AT LEFT EDGE
;FINE SCROLL REG
;OLD Y VALUE FOR MISSILE #0

;USED FOR TEMP STORAGE

;COUNTER DURING DATA UNPACK
;TEMP STORAGE
;STICK BACK FLAG
;SHIP SPEED FLAG - FAST OR SLOW
;FLAG SET WHEN BOMB DROPPING
;FLAG ON UPON ENTERING VBLANK
;BACKGROUND AT SHIP
;ALIEN SHIP ON SCREEN FLAG

01800 TDELAY1 .DA #40 ;CURRENT DELAY BEFORE ALIEN APPEARS
01805 TDELAY2 .BS 1
01810 NDELAY1 .BS 1
01815 NDELAY2 .BS 1
01820 TIMER1L .BS 1
01825 TIMER1H .BS 1
01830 TIMER2L .BS 1
01835 TIMER2H .BS 1
01840 TIME1L .BS 1
01845 TIME2L .BS 1
01850 TIME1H .BS 1
01855 TlME2H .BS 1
01860 TrIISO . BS 1

;DELAY FOR NEXT ALIEN TO APPEAR

;ALIEN SHIP #1 TIMER

;ALIEN SHIP #2 TIMER

;WHEN TO READ NEXT ALIEN#l INSTRUCTION

283

7 GAMES THAT SCROLL

492B: 01865 TMIS1 .BS 1 jALIEN #1 MISSILE TIMER
492C: 01870 TMIS2 .BS 1
492D: 01 875 VXO .BS 1
492E: 01880 VXl .BS 1 jVELOCITY ALIEN #1
492F: 01885 VX2 .BS 1
4930: 01890 VX3 .BS 1 jVELOCITY BOMB
4931 : 01895 VYO .BS 1
4932: 01900 VYl .BS 1 jVELOCITY ALIEN #1
4933: 01905 VY2 .BS 1
4934: 01910 VY 3 .BS 1 jVELOCITY BOMB
4935: 01915 VTEMP .BS 1
4936: 01920 ACCEL .BS 1 jBOMB ACCELERATION
4937: 01925 XO .BS 1
4938: 01930 Xl .BS 1 jALIEN #1 POSITION
4939: 01935 X2 .BS 1
493A: 01940 XB .BS 1 jHORIZ POSITION BOMB
493B: 01945 YO .BS 1
493C: 01950 Yl .BS 1 jALIEN #1 POSITION
493D: 01955 Y2 .BS 1
493E: 01960 YB .BS 1 jVERT POSITION BOMB
493F: 01965 XOM .BS 1 jHORIZ MISSILE #0 POSITION
4940: 01970 XlM .BS 1
4941: 01975 X2M .BS 1
4942: 01980 YOM .BS 1 jVERT MISSILE #0 POSITION
4943: 01985 YlM .BS 1
4944: 01990 Y2M .BS 1
4945: 01995 SHOOTO .BS 1
4946: 02000 SHOOT1 .BS 1 jFLAG FOR ALIEN #1 TO SHOOT
4947: 02005 SHOOT2 .BS 1
4948: 02010 TEMPL .BS 4 JTEMP STORAGE DURING PLOTTING
494C: 02015 TEMPI-! .BS 4
4950: 02020 DIRO • BS 1
4951 : 02025 DIR1 .BS 1 jDIRECTION TO SHOOT ALIEN #1
4952: 02030 DIR2 .BS 1
4953 : 02035 MDIRO . BS 1
4954: 02040 MDIR1 .BS 1 JTEMP STORAGE DURING MISSILE TRACK
4955: 02045 MDIR2 .BS 1
4956: 02050 MASK .BS 1 ;MISSILE #0 MASK
4957: FC 02055 MASKO .DA #$FC ;MISSILE #0 MASK
4958: F3 02060 MASK1 .DA #$F3
4959: CF 02065 MASK2 .DA #$CF
495A: 02070 LASON .BS 4 jLASER ON FLAG
495E: 02075 LPOSL .BS 4 ;ACTUAL SCREEN POSITION OF LASER -LO
4962: 02080 LPOSH .BS 4
4966: 02085 LDELAY .BS 4 ;DELAY UNTIL LASER BASE REFIRES
496A: 02090 LCOUNT .BS 4 jDELAY BETWEEN MOVEMENT OF LASER BEAM
496E: 02095 GALIVE .BS 4 jLASER BASE ON FLAG
4972: 02100 YG .BS 4 ;LASER BASE Y POSITION
4976: 02105 XG .BS 4 jLASER BASE X POSITION
497A: 02110 SR10 .BS 1 ;SCORE 10'S DIGIT
497B: 02115 SR100 .BS 1
497C: 02120 SR1000 .BS 1
497D: 02125 SR10T .BS 1
497E: 02130 HSRlO .BS 1 ;HIGH SCORE 10' S DIGIT
497F: 02135 HSR100 .BS 1
4980: 02140 HSR1000 .BS 1
4981: 02145 HSR10T .BS 1
4982: 02150 DELAY .BS 1 ;DELAY FLAG ON WHEN SHIP EXPLODES
4983: 02155 SHIPNUM .BS 1 ;NUMBER OF SHIPS
4984: 02160 BTARGET • BS 1 jPLAYFIELD POSITION OF BOMB
4985: 02165 STRIKE .BS 1 ;COUNTER FOR TARGET HIT

284

4986:
4987:
4988:
4989:
498A:
498B:
498C:
498D: 04
498E:
498F:
4990:
4991:
4992:
4993:
4994:
4995:
4996:

02170 MBCOUNT .BS 1
02175 LUCK .BS 1
02180 RDSHPI .BS 1
02185 RDSHP2 .BS 1
02190 POS .BS 1
02195 T .BS 1
02200 OVER • BS 1
02205 DELAY 1 .HS 04

GAMES THAT SCROLL 7

; # MISSILE BASES HIT
;RANDOM # 0-4
;RANDOM SHAPE # ALIEN #1

;HORIZ BOMB POSITION
;FLAG FOR WHICH PART OF TITLE IS ON SCREEN
;OFFSET TO WHERE GAME OVER TITLE IS WRITTEN

02210 SLTlME .BS 1 ;COUNTDOWN TIMER FOR LASER SOUND
02215 SLTlMEl .BS 1
02220 SETIME .BS 1 ;COUNTDOWN TIMER FOR EXPLOSION
02225 SEXTlME .BS 1 ;COUNTDOWN TIMER FOR SHIP EXPLOSION
02230 REZFLAG .BS 1 ;DEREZ ON FLAG
02235 EXCOUNT .BS 1 ;COUNTER DURING DEREZ
02240 MEDIUM .BS 1 ;PLAY MEDIUM DIFFICULTY FLAG
02245 HARD .BS 1 ;PLAY HARD DIFFICULTY
02250 DEREZ .BS 8 ;DUMMY AREA FOR SHUP DURING DEREZ
02255 . IN "D: SCROLLlB"
02500 *PART 2 OF SCROLLING GAME
02505 *ZERO HIGH SCORE & SCORE

499E:
49AO:
49A3:
49A6:
49A9:
49AC:
49AF:
49B2:
49B5:

A9 10 02510 LDA #$10 ;SCORES ARE OFFSET BY #$10 TO MATCH CHARACTER SET

49B8:
49BA:
49BC:
49BE:
49CO:
49C2:
49C4:

49C7:
49C9:
49CB:
49CD:
49CF:
49D1 :
49D3:
49D5:
49D7:
L,9D9:
49DB:
49DD:
49DF:
49E1:
49E4:
49E6:
49E8:
49E9:
49EB:
49EC:
49ED:
49FO:

8D 7A 49 02515 STA SRI0
8D 7B 49 02520 STA SR100
8D 7C 49 02525 STA SRI000
8D 7D 49 02530 STA SRI0T
8D 7E 49 02535 STA HSRI0
8D 7F 49 02540 STA HSRI00
8D 80 49 02545 STA HSR1000
8D 81 49 02550 STA HSRI0T

02555 *SET SYSTEM RESET VECTOR
A9 49 02560 LDA /START
85 03 02565 STA $03
A9 C7 02570 LDA #START
85 02 02575 STA $02
A9 02 02580 LDA #$02 ;TELLS SYS RESET A CASSETTE
85 09 02585 STA $09
4C 74 E4 02590 JMP $E474 ;SYSTEM RESET VECTOR

02595 *PART 2 OF SCROLLING GAME
02600 *TERRAIN GENERATOR ROUTINE

A9 70 02605 START LDA #$70 ;SCREEN AT $7000
85 F7 02610 STA GROUNDH
A9 00 02615 LDA #$00
85 F6 02620 STA GROUNDL
A9 40 02625 LDA /VALUE
85 F9 02630 STA VALUEH
A9 00 02635 LDA #VALUE
85 F8 02640 STA VALUEL
A9 42 02645 LDA /BLOCKS
85 FB 02650 STA BLOCKH
A9 00 02655 LDA #BLOCKS
85 FA 02660 STA BLOCKL
A9 00 02665 LDA #$00
8D 14 49 02670 STA COUNT
AO 00 02675 LDY #$00
Bl FA 02680 LOOP LDA (BLOCKL),Y ;#BLOCKS IN AROW
AA 02685 TAX ;USE AS COUNTER
Bl F8 02690 LDA (VALUEL),Y ;LOAD BLOCK VALUE
48 02695 PHA
98 02700 TYA
8D 15 49 02705 STA TEMP ;SAVE Y REGISTER
AC 14 49 02710 LDY COUNT ;BYTE COUNTER FOR ROW

285

7 GAMES THAT SCROLL

49F3: 68 02715 PLA
49F4: 91 F6 02720 .1 STA (GROUNDL),Y iSTORE ON SCREEN MAP
49F6: C8 02725 INY iFOR NEXT LOCATION
49F7: CA 02730 DEX
49F8: DO FA 02735 BNE .1 iLOOP TILL DONE WITH # BLOCKS IN AROW
49FA: 98 02740 TYA
49FB: 8D 14 49 02745 STA COUNT
49FE: CO 00 02750 CPY #$00 iEND OF ROW?
4AOO: DO 08 02755 BNE .2
4A02: E6 F7 02760 INC GROUNDH iNEXT ROW
4A04: A5 F7 02765 LDA GROUNDH
4A06: C9 88 02770 CMP #$88 iDONE WITH ALL 22 ROWS
4A08: BO OF 02775 BGE DONE
4AOA: AC 15 49 02780 .2 LDY TEMP iRESTORE INDEX
4AOD: C8 02785 INY iUP INDEX FOR VALUES IN TABLES
4AOE: CO 00 02790 CPY #$00 iCROSSED PAGE?
4AI0: DO D4 02795 BNE LOOP
4A12: E6 F9 02800 INC VALUEH iYES NEXT PAGE
4A14: E6 FB 02805 INC BLOCKH
4A16: 4C E6 49 02810 JMP LOOP
4A19: EA 02815 DONE NOP

02820 *SETUP DLIST
4AIA: A2 00 02825 LDX #$00
4AIC: BD 00 48 02830 DLOOP LDA DLIST,X
4AIF: 9D 00 94 02835 STA NDLIST,X
4A22: E8 02840 INX
4A23: EO 4C 02845 CPX #$4C i76 ELEMENTS
4A25: DO F5 02850 BNE DLOOP
4A27: A9 00 02855 LDA #NDLIST
4A29: 8D 30 02 02860 STA 560
4A2C: A9 94 02865 LDA INDLIST
4A2E: 8D 31 02 02870 STA 561

02875 *INITILIZE SHIP
4A31: A9 88 02880 LDA #$88
4A33: 8D 07 D4 02885 STA PMBASE
4A36: A9 19 02890 LDA #$19 i9 SHIPS
4A38: 8D 83 49 02895 STA SHIPNUM
4A3B: A9 03 02900 LDA #$03 iSET P/M GRAPHICS
4A3D: 8D ID DO 02905 STA GRACTL
4A40: A9 3E 02910 LDA #$3E iENABLE P/M DMA SINGLE LINE
4A42: 8D 2F 02 02915 STA DMACTL
4A45: A9 01 02920 LDA #$01 iDOUBLE WIDTH
4A47: 8D 08 DO 02925 STA SIZEPO
4A4A: A9 7A 02930 LDA #$7A iPLAYER #0 122 BLUE-LUM 10
4A4C: 8D CO 02 02935 STA PCOLRO
4A4F: A9 00 02940 LDA #$00 iINITIAL SCREEN LEFT
4A51: 8D OD 49 02945 STA XS
4A54: A9 50 02950 LDA #$50 iINITIAL POS SHIP X=80
4A56: 8D 09 49 02955 STA XPMO
4A59: 8D 00 DO 02960 STA HPOSPO i TELL ANTIC
4A5C: A9 60 02965 LDA #$60 iINITIAL POS SHIP Y=96
4A5E: 8D OA 49 02970 STA YPMO
4A61: A9 88 02975 LDA IPDATA
4A63: 18 02980 CLC
4A64: 69 04 02985 ADC #$04
4A66: 85 F5 02990 STA SHPMOH

02995 *OTHER P/M CONSTANTS
4A68: A9 C6 03000 LDA #$C6 iGREEN ALIEN
4A6A: 8D Cl 02 03005 STA PCOLRI
4A6D: A9 44 03010 LDA #$44 iRED ALIEN
4A6F: 8D C2 02 03015 STA PCOLR2

286

GAMES THAT SCROLL 7

4A72: A9 7A 03020 LDA #$7A ;BLUE BOMB
4A74: 8D C3 02 03025 STA PCOLR3
4A77: A9 E8 03030 LDA #$E8 ;INITIAL POSITIONS OF ALIENS
4A79: 8D 01 DO 03035 STA HPOSPI
4A7C: 8D 02 DO 03040 STA HPOSP2
4A7F: A9 03 03045 LDA #$03 ;MISSILE 0 QUADRUPLE-REST NORMAL
4A81: 8D OC DO 03050 STA SIZEM

03055 *CLEAR P/ M AREA
4A84: A9 00 03060 LDA #$00 ;PDATAL
4A86: 85 FC 03065 STA PMADR
4A88: A9 88 03070 LDA /PDATA
4A8A: 85 FD 03075 STA PMADR+l
4A8C: AO 00 03080 LDY #$00
4A8E: 98 03085 TYA
4A8F: A2 08 03090 LDX #$08
4A91: 91 FC 03095 .1 STA (PMADR), Y
4A93: C8 03100 INY
4A94: DO FB 03105 BNE .1
4A96: E6 FD 03110 INC PMADR+1 ;NEXT 256 BYTES
4A98: CA 03115 DEX
4A99: DO F6 03120 BNE .1

03125 *PUT CHARACTER SET IN POSITION
4A9B: A9 00 03130 MC LDA #$00
4A9D: 85 FE 03135 STA CHADR
4A9F: 85 FC 03140 STA CHSET
4AAl: A9 90 03145 LDA /CHRSET
4AA3: 85 FF 03150 STA CHADR+l
4AA5: A9 44 03155 LDA / SETCHAR
4AA7: 85 FD 03160 STA CHSET+l
4AA9: A2 02 03165 LDX #$02
4AAB: AO 00 03170 LDY #$00
4AAD: Bl FC 03175 .1 LDA (CHSET),Y
4AAF: 91 FE 03180 STA (CHADR),Y
4ABl: C8 03185 INY
4AB2: DO F9 03190 BNE .1
4AB4: E6 FD 03195 INC CHSET+l
4AB6: E6 FF 03200 INC CHADR+l
4AB8: CA 03205 DEX
4AB9: DO F2 03210 BNE .1

03215 *SETUP LASER BASES
4ABB: A9 3E 03220 LDA #$3E
4ABD: 8D 76 49 03225 STA XG
4ACO: A9 13 03230 LDA #$13
4AC2: 8D 72 49 03235 STA YG
4AC5: A9 71 03240 LDA #$71
4AC7: 8D 77 49 03245 STA XG+l
4ACA: A9 16 03250 LDA #$16
4ACC: 8D 73 49 03255 STA YG+l
4ACF: A9 9E 03260 LDA #$9E
4ADl: 8D 78 49 03265 STA XG+2
4AD4: A9 16 03270 LDA #$16
4AD6: 8D 74 49 03275 STA YG+2
4AD9: A9 CB 03280 LDA #$CB
4ADB: 8D 79 49 03285 STA XG+3
4ADE: A9 16 03290 LDA #$16
4AEO: 8D 75 49 03295 STA YG+3
4AE3: A9 00 03300 LDA #$00
4AE5: 8D 5A 49 03305 STA LASON
4AE8: 8D 5B 49 03310 STA LASON+l
4AEB: 8D 5C 49 03315 STA LASON+2
4AEE: 8D 5D 49 03320 STA LASON+3

287

7 GAMES THAT SCROLL

4AFl: A9 01 03325 LDA #$01 ;LASERS SET ALIVE
4AF3: 8D 6E 49 03330 STA GALIVE
4AF6: 8D 6F 49 03335 STA GALIVE+l
4AF9: 8D 70 49 03340 STA GALIVE+2
4AFC: 8D 71 49 03345 STA GALIVE+3

03350 *SETUP COLOR REGISTERS
4AFF: A9 00 03355 LDA #$00 ;BACKGROUND BLACK
4BOl: 8D C8 02 03360 STA COLOR4
4B04: A9 24 03365 LDA #$24 ;TAN FOR PLAYFIELD#O
4B06: 8D C4 02 03370 STA COL ORO
4B09: A9 46 03375 LDA #$46 ;LT RED FOR PLAYFIELD #1
4BOB: 8D C5 02 03380 STA COLOR 1

03385 *MISC
4BOE: A9 08 03390 LDA #$08 ;SET FINE SCROLL HI SO SCREEN LEFT EDGE
4BI0: 8D 04 D4 03395 STA HSCROL
4B13: A9 00 03400 LDA #$00
4B15: 8D 8E 49 03405 STA SLTIME
4B18: 8D 8F 49 03410 STA SLTIMEI
4BIB: 8D 90 49 03415 STA SETIME
4BIE: 8D 92 49 03420 STA REZFLAG
4B21: 8D 93 49 03425 STA EXCOUNT
4B24: A9 00 03430 LDA #$00
4B26: 8D 05 D2 03435 STA AUDC3
4B29: 8D 08 D2 03440 STA AUDCTL ;INITILIZE SOUND REGISTERS
4B2C: A9 03 03445 LDA #$03
4B2E: 8D OF D2 03450 STA SKCTL
4B31: A9 30 03455 LDA #$30
4B33: 8D IE 49 03460 STA TDELAYI
4B36: A9 50 03465 LDA #$50
4B38: 8D IF 49 03470 STA TDELAY2
4B3B: A9 00 03475 LDA #$00
4B3D: 8D 2A 49 03480 STA TMISO
4B40: 8D 2B 49 03485 STA TMISI
4B43: 8D 2C 49 03490 STA TMIS2
4B46: 8D 82 49 03495 STA DELAY
4B49: 8D IE DO 03500 STA HITCLR ;CLEAR COLLISION REGISTERS
4B4C: 8D 18 49 03505 STA BOMBON ;BOMB OFF

03510 *PUT IN GROUND TARGETS
4B4F: A9 60 03515 LDA #$60 ; LASERS
4B51: 8D 3E 83 03520 STA $833E
4B54: 8D 71 86 03525 STA $8671
4B57: 8D 9E 86 03530 STA $869E
4B5A: 8D CB 86 03535 STA $86CB
4B5D: A9 61 03540 LDA #$61
4B5F: 8D 3F 83 03545 STA $833F
4B62: 8D 72 86 03550 STA $8672
4B65: 8D 9F 86 03555 STA $869F
4B68: 8D CC 86 03560 STA $86CC
4B6B: 20 D6 56 03565 JSR MBSUB
4B6E: A9 OA 03570 LDA #$OA
4B70: 8D 66 49 03575 STA LDELAY
4B73: 8D 67 49 03580 STA LDELAY+l
4B76: 8D 68 49 03585 STA LDELAY+2
4B79: 8D 69 49 03590 STA LDELAY+3
4B7C: A9 00 03595 LDA #$00 ;INTIALLY EASY
4B7E: 8D 94 49 03600 STA MEDIUM
4B81: 8D 95 49 03605 STA HARD
4B84: 8D 4C 46 03610 STA ENEMYl+$4C
4B87: 8D 91 46 03615 STA ENEMYl+$91
4B8A: 8D 9F 46 03620 STA ENEMYl+$9F
4B8D: 8D E5 46 03625 STA ENEMYl+$E5

288

GAMES THAT SCROLL 7

4B90: 8D IF 47 03630 STA ENEMY2+$lF
4B93: 8D 4C 47 03635 STA ENEMY2+$4C
4B96: 8D 79 47 03640 STA ENEMY2+$79
4B99: 8D B2 47 03645 STA ENEMY2+$B2
4B9C: 8D E5 47 03650 STA ENEMY2+$E5
4B9F: 8D 52 46 03655 STA ENEMYl+$52
4BA2: 8D 5E 46 03660 STA ENEMYl+$5E
4BA5: 8D 73 46 03665 STA ENEMYl+$73
4BA8: 8D 97 46 03670 STA ENEMYl+$97
4BAB: 8D B2 46 03675 STA ENEMYl+$B2
4BAE: 8D B8 46 03680 STA ENEMYl+$B8
4BBl: 8D EB 46 03685 STA ENEMYl+$EB
4BB4: 8D Fl 46 03690 STA ENEMYl+$Fl
4BB7: 8D 52 47 03695 STA ENEMY2+$52
4BBA: 8D 58 47 03700 STA ENEMY2+$58
4BBD: 8D 5E 47 03705 STA ENEMY2+$5E
4BCO: 8D 7F 47 03710 STA ENEMY2+$7F
4BC3: 8D 85 47 03715 STA ENEMY2+$85
4BC6: 8D C4 47 03720 STA ENEMY2+$C4
4BC9: 8D DF 47 03725 STA ENEMY2+$DF
4BCC: 8D EB 47 03730 STA ENEMY2+$EB

03735 *ENABLE DISPLAY LIST INTERRlWT
4BCF: A9 CO 03740 LDA #$CO
4BDl: 8D OE D4 03745 STA $D40E
4BD4: A9 71 03750 LDA #DLI
4BD6: 80 00 02 03755 STA $200
4BD9: A9 52 03760 LDA /DLI
4BDB: 8D 01 02 03765 STA $201

03770 *PUT TITLE INFO IN PLACE
4BDE: AO 00 03775 MKTITLE LDY #$00
4BEO: B9 BD 48 03780 .1 LDA TITLE,Y
4BE3: 99 00 69 03785 STA INFO,Y
4BE6: C8 03790 INY
4BE7: CO ID 03795 CPY #$lD
4BE9: 90 F5 03800 BLT .1
4BEB: AD 83 49 03805 LDA SHIPNUM
4BEE: 8D 1A 69 03810 STA INF0+26
4BFl: A9 33 03815 LDA #$33 iPRINT 'SCORE'
4BF3: 8D ID 69 03820 STA INF0+29
4BF6: A9 23 03825 LDA #$23
4BF8: 8D IE 69 03830 STA INF0+30
4BFB: A9 2F 03835 LDA #$2F
4BFD: 8D IF 69 03840 STA INF0+31
4COO: A9 32 03845 LDA #$32
4C02: 8D 20 69 03850 STA INF0+32
4C05: A9 25 03855 LDA #$25
4C07: 8D 21 69 03860 STA INF0+33
4COA: A9 00 03865 LDA #$00
4COC: 8D 22 69 03870 STA INF0+34
4COF: A9 10 03875 LDA #$10 iPRINT LAST ZERO DIGIT
4Cll: 8D 27 69 03880 STA INF0+39
4C14: AD 7D 49 03885 LDA SRIOT
4C17: 8D 23 69 03890 STA INF0+35
4CIA: AD 7C 49 03895 LDA SRIOOO
4CID: 8D 24 69 03900 STA INF0+36
4C20: AD 7B 49 03905 LDA SRIOO
4C23: 8D 25 69 03910 STA INF0+37
4C26: AD 7A 49 03915 LDA SRI0
4C29: 8D 26 69 03920 STA INF0+38
4C2C: A9 80 03925 LDA #$80
4C2E: 85 14 03930 STA $14

289

7 GAMES THAT SCROLL

4C30: A9 00 03935 LDA #$00
4C32: 85 13 03940 STA $13
4C34: 8D 8B 49 03945 STA T
4C37: AD IF DO 03950 STOP LDA CONSOL
4C3A: C9 06 03955 CMP #06 START KEY
4C3C: FO 5A 03960 BEQ MTITLEI
4C3E: A5 13 03965 LDA $13
4C40: FO F5 03970 BEQ STOP
4C42: AD 8B 49 03975 LDA T
4C45: DO 97 03980 BNE MKTITLE
4C47: AO 00 03985 MYTITLE LOY #$00
4C49: B9 E5 48 03990 .1 LOA TITLEl,Y
4C4C: 38 03995 SEC
4C40: E9 20 04000 SBC #$20
4C4F: 99 00 69 04005 STA INFO,Y
4C52: C8 04010 INY
4C53: CO 14 04015 CPY #$14
4C55: 90 F2 04020 BLT .1
4C57: A9 00 04025 LOA #$00 ; STORE , HIGH'
4C59: 8D ID 69 04030 STA INF0+29
4C5C: A9 28 04035 LOA #$28
4C5E: 80 IE 69 04040 STA INF0+30
4C61: A9 29 04045 LOA #$29
4C63: 80 IF 69 04050 STA INFO+31
4C66: A9 27 04055 LOA #$27
4C68: 8D 20 69 04060 STA INF0+32
4C6B: A9 28 04065 LOA #$28
4C60: 80 21 69 04070 STA INFO+33
4C70: AO 81 49 04075 LOA HSRIOT
4C73: 8D 23 69 04080 STA INF0+35
4C76: AO ao 49 04085 LOA HSRI000
4C79: 80 24 69 04090 STA INF0+36
4C7~· AO 7F 49 04095 LDA HSRI00
4Cii: 8D 25 69 04100 STA INF0+37
4C82: AO 7E 49 04105 LOA HSRI0
4C85: 80 26 69 04110 STA INF0+38
4C88: A9 80 04115 LOA #$80
4C8A: 85 14 04120 STA $14
4C8C: A9 00 04125 LOA #$00
4C8E: 85 13 04130 STA $13
4C90: A9 01 04135 LOA #$01
4C92: 8D 8B 49 04140 STA T
4C95: 4C 37 4C 04145 JMP STOP
4C98: AO 00 04150 MTITLEI LDY#$OO
4C9A: B9 BO 48 04155 . 1 LOA TITLE,Y
4C90: 99 00 69 04160 STA INFO,Y
4CAO: C8 04165 INY
4CAl: CO 28 04170 CPY #$28
4CA3: 90 F5 04175 BLT .1
4CA5: AO 83 49 04180 LOA SHIPNUM
4CA8: 8D 1A 69 04185 STA INF0+26

04190 *ZERO OUT SCORE
4CAB: A9 10 041 ~: LDil #$ 10
4CAO: 8D 7A 49 04200 STA SRI0
4CBO: 80 7B 49 04205 STA SR100
4CB3: 8D 7C 49 04210 STA SR100G
4CB6: 8D 7D 49 04215 STA SR10T
4CB9: A9 30 04220 LDA #$30 ;REG ENGINE SOUNO
4CBB: 8D 04 D2 04225 STA AUDF3
4CBE: A9 86 04230 LOA #$86 ; DISTORTION 8 ,VOLUME 6
4CCO: 8D 05 D2 04235 STA AUOC3

290

04240 *SET VBLANK
4CC3: A9 07 04245 FRAME LDA #07

GAMES THAT SCROLL 7

4CC5: A2 4E 04250 LDX /VBCODE iHI BYTE VBLANK ROUTINE
4CC7: AO BB 04255 LDY #VBCODE iLO BYTE
4CC9: 20 5C E4 04260 JSR SETVBK

04265 *MAIN LOOP CODE
4CCC: . A9 00 04270 LooPH LDA #$00
4CCE: 8D 19 49 04275 STA VBFLAG

04280 *FIRE GROUND LASER
4CDl: A2 03 04285.2 LDX #$03
4CD3: BD 66 49 04290 FLASER LDA LDELAY,X
4CD6: DO 08 04295 BNE .1
4CD8: AO 00 04300 LDY #$00
4CDA: 20 A7 54 04305 JSR LASER
4CDD: 4C E3 4C 04310 JMP CONT
4CEO: DE 66 49 04315 .1 DEC LDELAY,X
4CE3: CA 04320 CONT DEX
4CE4: 10 ED 04325 BPL FLASER

04330 *DETECT SHIP COLLISIONS
4CE6: AD 92 49 04335 COLLIDE LDA REZFLAG iDON'T ALLOW COLLISION DURING DEREZ
4CE9: DO 69 04340 BNE .4
4CEB: AD 04 DO 04345 LDA POPF iCOLLISION WITH PLAYFIELD?
4CEE: FO 06 04350 BEQ .1
4CFO: 20 OA 56 04355 JSR XSHIP
4CF3: 4C 54 4D 04360 JMP .4
4CF6: AD 09 DO 04365 .1 LDA MIPL iCOLLISION WITH MISSILE#I?
4CF9: C9 01 04370 CMP #$01
4CFB: DO 06 04375 BNE .2
4CFD: 20 OA 56 04380 JSR XSHIP
4DOO: 4C 54 4D 04385 JHP .4
4D03: AD OA DO 04390 .2 LDA M2PL iCOLLISION WITH MISSILE#2?
4D06: C9 01 04395 CMP #$01
4D08: DO 06 04400 BNE .3
4DOA: 20 OA 56 04405 JSR XSHIP
4DOD: 4C 54 4D 04410 JMP .4
4DI0: AD OC DO 04415 .3 LDA POPL iCOLLISION WITH PLAYER#I?
4D13: C9 02 04420 CMP #$02
4D15: DO IE 04425 BNE .35
4D17: A9 EO 04430 LDA #$EO iREMOVE ALIEN#1
4D19: 8D 01 DO 04435 STA HPOSPI
4DIC: A9 20 04440 LDA #$20 iTURN ON EXPLOSION SOUND
4DIE: 8D 90 49 04445 STA SETIHE
4D21: A900 04450 LDA #$00
4D23: 8D lC 49 04455 STA ONSCRNI
4D26: AD 20 49 04460 LDA NDELAYI
4D29: 8D IE 49 04465 STA TDELAYI
4D2C: 20 Cl 55 04470 JSR SCORE
4D2F: 20 OA 56 04475 JSR XSHIP
4D32: 4C 54 4D 04480 JMP .4
4D35: AD OC DO 04485 .35 LDA POPL iCOLLISION WITH PLAYER#2?
4D38: C9 04 04490 CMP #$04
4D3A: DO 18 04495 BNE .4
4D3C: A9 EO 04500 LDA #$EO iREMOVE ALIEN#2
4D3E: 8D 02 DO 04505 STA HPOSP2
4D41: A9 20 04510 LDA #$20 iTURN ON EXPLOSION SOUND
4D43: 8D 90 49 04515 STA SETIHE
4D46: A9 00 04520 LDA #$00
4D48: 8D ID 49 04525 STA ONSCRN2
4D4B: AD 21 49 04530 LDA NDELAY2
4D4E: 8D IF 49 04535 STA TDELAY2
4D51: 20 OA 56 04540 JSR XSHIP

291

7 GAMES THAT SCROLL

4D54: AD OS DO 04545 .4 LDA MOPL ;COLLISION ALIEN#1 WITH MISSILE?
4D57: C9 02 04550 CMF #$02
4D59: DO 22 04555 BNE .5
4D5B: A9 EO 04560 LDA #$EO ;REMOVE ALIEN#1
4D5D: SD 01 DO 04565 STA HPOSPI
4D60: A9 20 04570 LDA #$20 ;TURN ON EXPLOSION SOUND
4D62: 8D 90 49 04575 STA SETIME
4D65: A9 00 04580 LDA #$00
4D67: 8D lC 49 04585 STA ONSCRNI
4D6A: AD 20 49 04590 LDA NDELAYI
4D6D: SD IE 49 04595 STA TDELAYl
4D70: 20 AF 55 04600 JSR SCORE2
4D73: A9 00 04605 LDA #$00 ;REMOVE MISSILE
4D75: SD 04 DO 04610 STA HPOSMO
4D7S: A9 00 04615 LDA #$00 ;RESET TIMER
4D7A: SD 2A 49 04620 STA TMISO
4D7D: AD 05 DO 04625 .5 LDA PIPF ;ALIEN#1 COLLISION WITH PLAYFIELD?
4DSO: FO 15 04630 BEQ .6
4DS2: A9 EO 04635 LDA #$EO ; REI-lOVE ALIEN#1
4DS4: 8D 01 DO 04640 STA HPOSPI
4DS7: A9 20 04645 LDA #$20 ;TURN ON EXPLOSION SOUND
4DS9: SD 90 49 04650 STA SETIME
4DSC: A9 00 04655 LDA #$00
4DSE: SD lC 49 04660 STA ONSCRNI
4D91: AD 20 49 04665 LDA NDELAYl
4D94: SD IE 49 04670 STA TDELAYl
4D97: AD OS DO 04675 .6 LDA MOPL ;COLLISION ALIEN#2 WITH SHIP MISSILE?
4D9A: C9 04 046S0 CMP #$04
4D9C: DO 22 046S5 BNE .7
4D9E: A9 EO 04690 LDA #$EO ;REMOVE ALIEN#2
4DAO: SD 02 DO 04695 STA HPOSP2
4DA3: A9 20 04700 LDA #$20 ;TURN ON EXPLOSION SOUND
4DA5: SD 90 49 04705 STA SETIME
4DAS: A9 00 04710 LDA #$00
4DAA: SD ID 49 04715 STA ONSCRN2
4DAD: AD 21 49 04720 LDA NDELAY2
4DBO: SD IF 49 04725 STA TDELAY2
4DB3: 20 AF 55 04730 JSR SCORE2
4DB6: A9 00 04735 LDA #$00 ;REMOVE MISSILE
4DBS: SD 04 DO 04740 STA HPOSMO
4DBB: A9 00 04745 LDA #$00
4DBD: SD 2A 49 04750 STA TMISO
4DCO: AD 06 DO 04755 .7 LDA P2PF ;ALIEN#2 COLLISION WITH PLAYFIELD?
4DC3: FO 15 04760 BEQ BCOL
4DC5: A9 EO 04765 LDA #$EO ;REMOVE ALIEN #2
4DC7: SD 02 DO 04770 STA HPOSP2
4DCA: A9 20 04775 LDA #$20 ;TURN ON EXPLOSION SOUND
4DCC: SD 90 49 047S0 STA SETIME
4DCF: A9 00 047S5 LDA #$00
4DDl: SD ID 49 04790 STA ONSCRN2
4DD4: AD 21 49 04795 LDA NDELAY2
4DD7: SD IF 49 04S00 STA TDELAY2

04S05 *TARGETS ARE PLAYFIELD#1 ;TERRAIN PLAYFIELD #0
4DDA: AD 07 DO 04S10 BCOL LDA P3PF ;TEST BO~rn COLLISION PLAYFIELD #0
4DDD: C9 01 04S15 CHP #$01
4DDF: DO OD 04S20 BNE .SO
4DEI : A9 00 04S25 LDA #$00 ; REMOVE BOMB
4DE3: SD 03 DO 04S30 STA HPOSP3
4DE6: A9 00 04S35 LDA #$00
4DES: SD IS 49 04S40 STA BOMBON
4DEB: 4C OS 4E 04S45 JMP .82 ;JUST IN CASE MISSILE & BOMB ON SCREEN

292

GAMES THAT SCROLL 7

4DEE: C9 02 04B50 .BO CMF #$02 ;TEST BOMB AGAINST PLAYFIELD #1
4DFO: FO 03 04B55 BEQ .Bl
4DF2: 4C OB 4E 04860 JHP .82
4DF5: AD 3A 49 04865 .81 LDA XB
4DFB: 8D 8A 49 04870 STA POS
4DFB: 20 OA 57 04875 JSR RTARGET
4DFE: A9 00 04880 LDA #$00 ; REHOVE BOMB
4EOO: 8D 03 DO 048B5 STA HPOSP3
4E03: A9 00 04890 LDA #$00
4E05: 8D IB 49 04895 STA BOMBON
4EOB: AD 00 DO 04900 .B2 LDA HOPF ;TEST MISSILE COLLISION PLAYFIELD #0
4EOB: C9 01 04905 CMF #$01
4EOD: DO OD 04910 BNE .B3
4EOF: A9 00 04915 LDA #$00 ;REHOVE HISSILE
4Ell: 8D 04 DO 04920 STA HPOSHO
4E14: A9 00 04925 LDA #$00
4E16: BD 2A 49 04930 STA THISO
4E19: 4C 36 4E 04935 JMP CC
4EIC: C9 02 04940 .83 CMF #$02 ;TEST MISSILE COLLISION PLAYFIELD #1
4EIE: FO 03 04945 BEQ .B4
4E20: 4C 36 4E 04950 JMP CC
4E23: AD 3F 49 04955 .B4 LDA XOM
4E26: BD 8A 49 04960 STA POS
4E29: 20 OA 57 04965 JSR RTARGET
4E2C: A9 00 04970 LDA #$00 ;REHOVE MISSILE
4E2E: BD 04 DO 04975 STA HPOSMO
4E31: A9 00 049BO LDA #$00
4E33: BD 2A 49 04985 STA THISO
4E36: BD IE DO 04990 CC STA HITCLR ; CLEAR COLLISIONS
4E39: A9 00 04995 LDA #$00 ;STOP ATTRACT HODE
4E3B: 85 4D 05000 STA $4D
4E3D: AD 95 49 05005 NASTY LDA HARD ;ON HARD SETTING?
4E40: DO 6C 05010 BNE FOREVER
4E42: AD 94 49 05015 LDA MEDIUH ;ON HEDIUM SETTING?
4E45: DO 29 05020 BNE .1
4E47: AD 7B 49 05025 LDA SR IOO ;AT 400 PTS
4E4A: C9 14 05030 CMF #$14 ;VALUE OFFSET BY #$10
4E4C: DO 22 05035 BNE .1
4E4E: A9 01 05040 LDA #$01 ;TURN ON SO~ffi ALIEN GUNS
4E50: BD 4C 46 05045 STA ENEMYl+$4C
4E53: BD 91 46 05050 STA ENEHYl+$91
4E56: 8D 9F 46 05055 STA ENEMYl+$9F
4E59: BD E5 46 05060 STA ENEHYl+$E5
4E5C: 8D IF 47 05065 STA ENEMY2+$IF
4E5F: 8D 4C 47 05070 STA ENEHY2+$4C
4E62: BD 79 47 05075 STA ENEMY2+$79
4E65: BD B2 47 050BO STA ENEMY2+$B2
4E6B: BD E5 47 050B5 STA ENEHY2+$E5
4E6B: A9 01 05090 LDA #$01
4E6D: BD 94 49 05095 STA MEDIUH
4E70: AD 7C 49 05100 .1 LDA SR1000 ;AT 2000 PTS?
4E73: C9 12 05105 CMP #$12
4E75: DO 37 05110 BNE FOREVER
4E77: A9 01 05115 LDA #$01 ;TURN ON MORE ALIEN GUNS
4E79: 8D 52 46 05120 STA ENEHYl+$52
4E7C: BD 5E 46 05125 STA ENEMYl+$5E
4E7F: BD 73 46 05130 STA ENEMYl+$73
4E82: 8D 97 46 05135 STA ENEHYl+$97
4EB5: 8D B2 46 05140 STA ENEHYl+$B2
4EBB: BD B8 46 05145 STA ENEMYl+$B8
4EBB : BD EB 46 05150 STA ENEHYl+$EB

293

7 GAMES THAT SCROLL

4E8E: 8D F1 46 05155 STA ENEMY1+$F1
4E91: 8D 52 47 05160 STA ENEMY2+$52
4E94: 8D 58 47 05165 STA ENEMY2+$58
4E97: 8D 5E 47 05170 STA ENEMY2+$5E
4E9A: 8D 7F 47 05175 STA ENEMY2+$7F
4E9D: 8D 85 47 05180 STA ENEMY2+$85
4EAO: 8D C4 47 05185 STA ENEMY2+$C4
4EA3: 8D DF 47 05190 STA ENEMY2+$DF
4EA6: 8D EB 47 05195 STA ENEMY2+$EB
4EA9: A9 01 05200 LDA #$01
4EAB: 8D 95 49 05205 STA HARD
4EAE: AD 19 49 05210 FOREVER LDA VBFLAG
4EB1: C9 01 05215 CNP #$01
4EB3: DO 03 05220 BNE .1
4EB5: 4C CC 4C 05225 JMP LOOPM
4EB8: 4C AE 4E 05230 .1 JMP FOREVER

05235 *TEST IF DELAY SET BY XSHIP
4EBB: A9 01 05240 VBCODE LDA #$01
4EBD: 8D 19 49 05245 STA VBFLAG
4ECO: AD 82 49 05250 LDA DELAY
4EC3: FO 4E 05255 BEQ CHKSTK
4EC5: A5 13 05260 LDA $13
4EC7: FO 21 05265 BEQ REZ
4EC9: AD 83 49 05270 LDA SHIPNUM
4ECC: C9 10 05275 CMF #$10 jCOMPARE TO ZERO SHIPS
4ECE: DO OB 05280 BNE . 1
4EDO: A9 49 05285 LDA /START j SET RESET JMP VECTOR
4ED2: 85 03 05290 STA $03
4ED4: A9 C7 05295 LDA #START
4ED6: 85 02 05300 STA $02
4ED8: 4C 74 E4 05305 JMP $E474 jSYSTEM RESET VECTOR
4EDB: A9 50 05310.1 LDA #$50 j PUT SHIP BACK
4EDD: 8D 00 DO 05315 STA HPOSPO
4EEO: A9 60 05320 LDA #$60
4EE2: 8D OA 49 05325 STA YPMO
4EE5: A9 00 05330 LDA #$00
4EE7: 8D 82 49 05335 STA DELAY
4EEA: AD 92 49 05340 REZ LDA REZFLAG
4EED: FO 24 05345 BEQ CHKSTK
4EEF: AD 93 49 05350 LDA EXCOUNT
4EF2: C9 30 05355 CMF #$30
4EF4: 90 17 05360 BLT .1
4EF6: A9 00 05365 LDA #$00 jMOVE SHIP OFF SCREEN LEIT
4EF8: 8D 00 DO 05366 STA HPOSPO
4EFB: AD 93 49 05367 LDA EXCOUNT
4EFE: C9 31 05368 CMF #$31 jDON'T RESET REZFLAG UNTIL NEXT CYCLE BECAUSE
4FOO: DO OB 05369 BNE .1 jCOULD GET COLLISION AGAINST PLAYFIELD IF ANY
4F02: A9 00 05370 LDA #$00 jPIXELS LEFT IN SHIP SHAPE BEFORE MOVE
4F04: 8D 92 49 05380 STA REZFLAG
4F07: 8D 93 49 05385 STA EXCOUNT
4FOA: 4C 13 4F 05390 JMP CHKSTK
4FOD: 20 F6 57 05395 .1 JSR EXPLODE
4F10: EE 93 49 05400 INC EXCOUNT

05405 *READ STICK
4F13: AD 78 02 05410 CHKSTK LDA STICK
4F16: 29 01 05415 AND #$01 jUP BIT?
4F18: DO 12 05420 BNE CHKDN
4F1A: CE OA 49 05425 DEC YPMO
4F1D: CE OA 49 05430 DEC YPMO
4F20: AD OA 49 05435 LDA YP~IO j TOP?
4F23: C9 30 05440 CMP #$30

294

GAMES THAT SCROLL 7

4F25: BO 05 05445 BGE CHKDN
4F27: A9 30 05450 LDA #$30 ;CLIP AT TOP
4F29: 8D OA 49 05455 STA YPMO
4F2C: AD 78 02 05460 CHKDN LDA STICK
4F2F: 29 02 05465 AND #$02 ;DOWN BIT?
4F31: DO 12 05470 BNE CHKRT
4F33: EE OA 49 05475 INC YPMO
4F36: EE OA 49 05480 INC YPMO
4F39: AD OA 49 05485 LDA YPMO ; BOTTOM?
4F3C: C9 CO 05490 CMP #$CO
4F3E: 90 05 05495 BLT CHKRT
4F40: A9 CO 05500 LDA #$CO ;CLIP AT BOTTOM
4F42: 8D OA 49 05505 STA YPMO
4F45: AD 78 02 05510 CHKRT LDA STICK
4F48: 29 08 05515 AND #$08 ;RIGHT BIT?
4F4A: DO 12 05520 BNE .1
4F4C: A9 01 05525 LDA #$01 ;FAST SPEED
4F4E: 8D 17 49 05530 STA SPEED
4F51 : A9 20 05535 LDA #$20 ;FAST ENGINE SOUND
4F53: 8D 04 D2 05540 STA AUDF3
4F56: A9 86 05545 LDA #$86
4F58: 8D 05 D2 05550 STA AUDC3
4F5B: 4C 6D 4F 05555 JMP CHKFD
4F5E: A9 00 05560 .1 LDA #$00 ;REGlJLAR SPEED
4F60: 8D 17 49 05565 STA SPEED
4F63: A9 30 05570 LDA #$30 ;REG ENGINE SOUND
4F65: 3D 04 D2 05575 STA AUDF3
4F68: A9 86 05580 LDA #$86
4F6A: 8D 05 D2 05585 STA AUDC3
4F6D: A9 00 05590 CHKFD LDA #$00
4F6F: 8D 16 49 05595 STA BACK
4F72: AD 78 02 05600 LDA STICK
4F75: 29 04 05605 AND #$04 ;LEFT BIT
4F77 : DO 05 05610 BNE .1
4F79: A9 01 05615 LDA #$01 ;YES STICK BACK
4F7B: 8D 16 49 05620 STA BACK
4F7E: AD 82 49 05625 .1 LDA DELAY ;STOP SHIP SOUND IF IN DELAY
4F81: FO 05 05630 BEQ BUTTON
4F83: A9 00 05635 LDA #$00
4F85: 8D 05 D2 05640 STA AUDC3

05645 *FIRE SHIP LASER
4F88: AD 82 49 05650 BUTTON LDA DELAY ;PREVENT MISSILE FIRING DURING DELAY
4F8B : DO 05 05655 BNE .15
4F8D: AD 84 02 05660 LDA STRIGO ;BUTTON PRESSED=O
4F90: FO 08 05665 BEQ .1
4F92: AD 2A 49 05670 .15 LDA TMISO ;MISSILE ALREADY IN FLIGHT?
4F95: DO 34 05675 BNE . 3
4F97 : 4C EA 4F 05680 JMP BM
4F9A: AD 16 49 05685 .1 LDA BACK ;STICK BACK?
4F9D : FO 03 05690 BEQ .2
4F9F: 4C 92 4F 05695 JMP .15
4FA2: AD 2A 49 05700 . 2 LDA TMISO ;MISSILE ALREADY IN FLIGHT?
4FA5: DO 24 05705 BNE .3
4FA7: AD 09 49 05710 LDA XPMO ; ADJUST LASER TO FIRE FRml SHIP I S NOSE
4FAA: 18 05715 CLC
4FAB: 69 10 05720 ADC #$ 10
4FAD: 8D 3F 49 05725 STA Xml
4FBO: AD OA 49 05730 LDA YP~10

4FB3: 18 05735 CLC
4FB4: 69 05 05740 ADC #$05
4FB6: 8D 42 49 05745 STA YOM

295

296

7 GAMES THAT SCROLL

4FB9: A2 00 05750 LDX #$00
4FBB: 20 76 54 05755 JSR MISSETO ;PLOT MISSILf
4FBE: A9 01 05760 LDA #$01 ;TURN ON MISSILE MOVI~8 FLAG
4FCO: 8D 2A 49 05765 STA TMISO
4FC3: A9 01 05770 LDA #$01 ;TURN ON LASER SOUND
4FC5: 8D 8E 49 05775 STA SLTIME
4FC8: 4C EA 4F 05780 JMP BM

05785 *MOVE MISSILE RIGHT
4FCB: EE 3F 49 05790 .3 INC XON
4FCE: EE 3F 49 05795 INC XOM
4FD1: AD 3F 49 05800 LDA XON
4FD4: C9 D8 05805 C~W #$D8
4FD6: BO 08 05810 BGE .4
4FD8: A2 00 05815 LDX #$00
4FDA: 20 76 54 05820 JSR MISSETO
4FDD: 4C EA 4F 05825 ~W BM
4FEO: A9 00 05830.4 LDA #$00 ;REMOVE MISSILE TO LEFT
4FE2: 8D 2A 49 05835 STA TMISO
4FE5: A9 00 05840 LDA #$00
4FE7: 8D 04 DO 05845 STA HPOSMO

05850 *DROP BOMB
4FEA: 20 30 55 05855 BM JSR BOMB
4FED: AD 92 49 05860 LDA REZFLAG ;DON'T PLOT SHIP WHILE IN DEREZ
4FFO: DO 03 05865 BNE .1
4FF2: 20 9F 52 05870 JSR PLOTSET

05875 *FINE SCROLL SCREEN
4FF5: AD 17 49 05880 .1 LDA SPEED
4FF8: FO 03 05885 BEQ SCROLL1
4FFA: EE OE 49 05890 SCROLL INC FS
4FFD: EE OE 49 05895 SCROLL 1 INC FS
5000: AD OE 49 05900 LDA FS
5003: C9 08 05905 CMP #$08 ;GREATER 0-7 RANGE?
5005: BO 09 05910 BGE .1
5007: 38 05915 SEC
5008: E9 08 05920 SBC #$08
500A: 8D OE 49 05925 STA FS
500D: EE OD 49 05930 INC XS ;UP ROUGH SCROLL
5010: 38 05935 .1 SEC
5011: A9 OF 05940 LDA #$OF ;CORRECT 12 CLOCK CYCLES
5013: ED OE 49 05945 SBC FS
5016 : 8D 04 D4 05950 STA HSCROL
5019: AD OD 49 05955 LDA XS ;NEW XS
501C: C9 EC 05960 Ct'P ;1$EC ;TEST WRAPAROUND @ 236
SOlE: 90 OF 05965 BLT .2
5020: A9 00 05970 LDA #$00
5022: 8D OD 49 05975 STA XS
5025: AD 86 49 05980 LDA MBCOUNT ;IF ALL 7 BASES DESTROYED THEN REBUILD
5028: C9 07 05985 eM? #$07
502A: DO 03 05990 BNE .2
502C: 20 D6 56 05995 JSR MBSUB
502F: EA 06000 .2 NOP

06005 *UPDATE DLIST 22 LO BYTES FOR EACH LMS
5030: AO 00 06010 LDY #$00 ; COUNTER
5032: AD OD 49 06015 .4 LDA XS ;POSITION AT SCREEN LEFT
5035: 99 08 94 06020 STA NDLIST+8,Y
5038: C8 06025 INY ;LO BYTES ARE 3 APART
5039: C8 06030 INY
503A: C8 06035 INY
503B: CO 4B 06040 CPY #$4B ;END OF LIST?
503D: DO F3 06045 BNE .4 ;NEXT ELEMENT
503F: A9 EO 06050 LDA #$EO

GAMES THAT SCROLL 7

5041: 8D F4 02 06055 STA 756
06060 *PROGRAMABLE ALIENS

5044: AD IE 49 06065 ATTACK LDA TDELAYl jSTILL IN DELAY?
5047: FO 15 06070 BEQ .05
5049: CE IE 49 06075 DEC TDELAYl
504C: A9 00 06080 LDA #$00
504E: 8D 22 49 06085 STA TIMER1L
5051: AD 2B 49 06090 LDA TMIS1
5054: FO 05 06095 BEQ .08
5056: A2 01 06100 LDX #$01
5058: 20 49 53 06105 JSR MISSILE
505B: 4C 57 51 06110 .08 JMP EE
505E: AD 1C 49 06115 .05 LDA ONSCRN1 jALIEN #1 ON SCREEN?
5061: FO 03 06120 BEQ .07
5063: 4C C6 50 06125 JMP .1
5066: 20 E6 57 06130 .07 JSR CHANCE
5069: AE 87 49 06135 LDX LUCK jPLAYER #l,SHAPE#LUCK PATTERN
506C: BD 81 48 06140 LDA E1PT,X ;SETUP TO READ DATA
506F: 85 F8 06145 STA ElL
5071: A9 46 06150 LDA /ENEMY1
5073: 85 F9 06155 STA E1H
5075: 20 E6 57 06160 JSR CHANCE ;CHOOSE RANDOM SHAPE PIXIER#l
5078: AD 87 49 06165 LDA LUCK
507B: 8D 88 49 06170 STA RDSHP1
507E: A9 01 06175 LDA #$01 ;SET FLAG ON
5080: 8D 1C 49 06180 STA ONSCRN1
5083: A9 00 06185 LDA #$00 jRESET TIMER
5085: 8D 22 49 06190 STA TIMER1L
5088: 8D 23 49 06195 STA TIMER1H
508B: AO 00 06200 LDY #$00
508D: B1 F8 06205 LDA (E1L),Y ;READ INITIAL STARTING VALUES
508F: 8D 38 49 06210 STA Xl
5092: C8 06215 INY
5093: B1 F8 06220 LDA (E1L),Y
5095: 8D 3C 49 06225 STA Yl
5098: C8 06230 INY
5099: B1 F8 06235 LDA (E1L),Y
509B: 8D 20 49 06240 STA NDELAYl
509E: C8 06245 INY
509F: B1 F8 06250 LDA (E1L),Y
50A1: 8D 26 49 06255 STA TIME1L
50A4: C8 06260 INY
50A5: B1 F8 06265 LDA (E1L),Y
50A7: 8D 28 49 06270 STA TIME1H
50AA: C8 06275 INY
50AB: B1 F8 06280 LDA (E1L),Y
50AD: 8D 2E 49 06285 STA VXl
50BO: C8 06290 INY
50B1: B1 F8 06295 LDA (E1L),Y
50B3: 8D 32 49 06300 STA VYl
50B6: C8 06305 INY
50B7: B1 F8 06310 LDA (E1L),Y
50B9: 8D 46 49 06315 STA SHOOT1
50BC: C8 06320 INY ;SKIP DIR
50BD: C8 06325 INY
50BE: 98 06330 TYA ;SAVE Y REGISTER
50BF: 8D 12 49 06335 STA INDEXl
5OC2: 4C OA 51 06340 JMP .3
50C5: EA 06345 NOP
5OC6: EE 22 49 06350 .1 INC TIMER1L
5OC9: AD 22 49 06355 LDA TIMER1L ;CHECK IF TIMER HITS 256

297

7 GAMES THAT SCROLL

50CC: DO 03 06360 BNE .2
5OCE: EE 23 49 06365 INC TIMER1H
50D1: CD 26 49 06370 .2 CMP TIME1L ;TIME TO READ NEXT SET INSTRUCTIONS?
50D4: DO 34 06375 BNE .3
50D6: AD 23 49 06380 LDA TIMER1H
50D9: CD 28 49 06385 CMP TIME1H
50DC: DO 2C 06390 BNE .3
50DE: AD 12 49 06395 LDA INDEX 1 ;RESTORE Y REGISTER
50E1: A8 06400 TAY
50E2: B1 F8 06405 LDA (E1L),Y
50E4: 8D 26 49 06410 STA TIME1L
50E7: C8 06415 INY
50E8: B1 F8 06420 LDA (E1L),Y
50EA: 8D 28 49 06425 STA TIME1H
50ED: C8 06430 INY
50EE: B1 F8 06435 LDA (E1L),Y
50FO: 8D 2E 49 06440 STA VX1
50F3: C8 06445 INY
50F4: B1 F8 06450 LDA (E1L),Y
50F6: 8D 32 49 06455 STA VY1
50F9: C8 06460 INY
SOFA: B1 F8 06465 LDA (E1L),Y
50FC: 8D 46 49 06470 STA SHOOT1
50FF: C8 06475 INY
5100: B1 F8 06480 LDA (E1L),Y
5102: 8D 51 49 06485 STA DIR1
5105: C8 06490 INY
5106: 98 06495 TYA ;SAVE Y REGISTER
5107: 8D 12 49 06500 STA INDEX 1

06505 *MOVE ENEMY SHIP
510A: AD 38 49 06510 .3 LDA Xl
510D: 18 06515 CLC
SlOE: 6D 2E 49 06520 ADC VX1
5111: 8D 38 49 06525 STA Xl
5114: AD 17 49 06530 LDA SPEED ;MOVE ALIENS DOUBLE SPEED IF SHIP SPEEDING
5117: FO 03 06535 BEQ .35
5119: CE 38 49 06540 DEC Xl
511C: AD 3C 49 06545 .35 LDA Y1
511F: 18 06550 CLC
5120: 6D 32 49 06555 ADC VY1
5123: 8D 3C 49 06560 STA Y1
5126: A2 01 06565 LDX #$01
5128: 20 49 53 06570 JSR MISSILE

06575 *SHIP STILL ON SCREEN
512B: AD 38 49 06580 Al LDA Xl
512E: C9 30 06585 CMP #$30 ;X<48
5130: 90 15 06590 BLT .6
5132: C9 D1 06595 CMP #$D1 ;X>208
5134: BO 11 06600 BGE .6
5136: AD 3C 49 06605 LDA Y1
5139: C9 30 06610 CMP #$30 ;Y<48
513B: 90 OA 06615 BLT .6
513D: C9 E1 06620 CMP #$E1 ;Y>224
513F: BO 06 06625 BGE .6
5141: 20 C3 52 06630 JSR PLOTSET1
5144: 4C 57 51 06635 1MP EE
5147: A9 00 06640.6 LDA #$00
5149: 8D 1C 49 06645 STA ONSCRN1
514C: AD 20 49 06650 LDA NDELAY1
514F: 8D IE 49 06655 STA TDELAY1
5152: A9 EO 06660 LDA #$EO ;REMOVE ALIEN FROM SCREEN

298

GAMES THAT SCROLL 7

5154: 80 01 00 06665 STA HPOSP1
5157: EA 06670 EE NOP
5158: AO IF 49 06675 ATTACK2 LOA TOELAY2 ;STILL IN OELAY?
515B: FO 15 06680 BEQ .05
5150: CE IF 49 06685 OEC TOELAY2
5160: A9 00 06690 LOA #$00
5162: 80 24 49 06695 STA TIMER2L
5165: AO 2C 49 06700 LOA TMIS2
5168: FO 05 06705 BEQ .08
516A: A2 02 06710 LOX #$02
516C: 20 49 53 06715 JSR MISSILE
516F: 4C 6B 52 06720 .08 JMP EE2
5172: AO 10 49 06725 .05 LOA ONSCRN2 ;ALIEN #1 ON SCREEN?
5175: FO 03 06730 BEQ .07
5177: 4C OA 51 06735 JMP .1
517A: 20 E6 57 06740 .07 JSR CHANCE
5170: AE 87 49 06745 LOX LUCK ;PLAYER #2,SHAPE#LUCK PATTERN
5180: BO 86 48 06750 LOA E2PT,X ;SETUP TO REAO OATA
5183: 85 FA 06755 STA E2L
5185: A9 47 06760 LOA /ENEMY2
5187: 85 FB 06765 STA E2H
5189: A9 01 06770 LOA #$01 ;SET FLAG ON
518B: 80 10 49 06775 STA ONSCRN2
518E: 20 E6 57 06780 JSR CHANCE ;CHOOSE RANDOH SHAPE PLAYER#2
5191: AO 87 49 06785 LOA LUCK
5194: 80 89 49 06790 STA ROSHP2
5197: A9 00 06795 LOA #$00 ;RESET TIMER
5199: 80 24 49 06800 STA TIMER2L
519C: 80 25 49 06805 STA TIMER2H
519F: AO 00 06810 LOY #$00
SIAl: B1 FA 06815 LOA (E2L),Y ;REAO INITIAL STARTING VALUES
51A3: 80 39 49 06820 STA X2
51A6 : C8 06825 INY
51A7: B1 FA 06830 LOA (E2L),Y
51A9: 80 30 49 06835 STA Y2
51AC: C8 06840 INY
51AO: B1 FA 06845 LOA (E2L), Y
51AF: 80 21 49 06850 STA NOELAY2
51B2: C8 06855 INY
51B3: B1 FA 06860 LOA (E2L), Y
SIBS: 80 27 49 06865 STA TIHE2L
51B8: C8 06870 INY
51B9: B1 FA 06875 LOA (E2L),Y
51BB: 80 29 49 06880 STA TIHE2H
51BE: C8 06885 INY
51BF: B1 FA 06890 LOA (E2L),Y
51C1: 80 2F 49 06895 STA VX2
51C4 : C8 06900 INY
SICS: B1 FA 06905 LOA (E2L), Y
51C7: 80 33 49 06910 STA VY2
SICA : C8 06915 INY
51CB: Bl FA 06920 LOA (E2L),Y
51CO: 80 47 49 06925 STA SHOOT2
5100: C8 06930 INY ;SKIP OIR
5101: C8 06935 INY
5102: 98 06940 TYA ;SAVE Y REGISTER
5103 : 80 13 49 06945 STA INOEX2
5106: 4C IE 52 06950 JMP .3
5109: EA 06955 NOP
510A: EE 24 49 06960 .1 INC TIMER2L
5100: AO 24 49 06965 LOA TIMER2L ;CHECK IF TIHER HITS 256

299

7 GAMES THAT SCROLL

51EO: DO 03 06970 BNE .2
51E2: EE 25 49 06975 INC TIMER2H
51E5: CD 27 49 06980 .2 CMP TIME2L ;TIME TO READ NEXT SET INSTRUCTIONS?
51E8: DO 34 06985 BNE .3
51EA: AD 25 49 06990 LDA TIMER2H
SlED: CD 29 49 06995 CMP TIME2H
51FO: DO 2C 07000 BNE . 3
51F2: AD 13 49 07005 LDA INDEX2 ;RESTORE Y REGISTER
51F5: A8 07010 TAY
51F6: B1 FA 07015 LDA (E2L),Y
51F8: 8D 27 49 07020 STA TIME2L
51FB : C8 07025 INY
51FC: B1 FA 07030 LDA (E2L),Y
51FE: 8D 29 49 07035 STA TIME2H
5201: C8 07040 INY
5202: B1 FA 07045 LDA (E2L),Y
5204: 8D 2F 49 07050 STA VX2
5207: C8 07055 INY
5208: B1 FA 07060 LDA (E2L),Y
520A: 8D 33 49 07065 STA VY2
520D: C8 07070 INY
520E: B1 FA 07075 LDA (E2L),Y
5210: 8D 47 49 07080 STA SHOOT2
5213: C8 07085 INY
5214: B1 FA 07090 LDA (E2L), Y
5216: 8D 52 49 07095 STA DIR2
5219: C8 07100 INY
521A: 98 07105 TYA ;SAVE Y REGISTER
521B: 8D 13 49 07110 STA I NDEX2

07115 *MOVE ENEMY SHIP
521E: AD 39 49 07120 .3 LDA X2
5221: 18 07125 CLC
5222: 6D 2F 49 07130 ADC VX2
5225: 8D 39 49 07135 STA X2
5228: AD 17 49 07140 LDA SPEED ;MOVE ALIENS DOUBLE SPEED IF SHIP SPEEDING
522B: FO 03 07145 BEQ .35
522D: CE 39 49 07150 DEC X2
5230: AD 3D 49 07155 .35 LDA Y2
5233: 18 07160 CLC
5234: 6D 33 49 07165 ADC VY2
5237: 8D 3D 49 07170 STA Y2
523A: A2 02 07175 LDX #$02
523C: 20 49 53 07180 JSR MISSILE

07185 *SHIP STILL ON SCREEN
523F: AD 39 49 07190 A2 LDA X2
5242: C9 30 07195 CMP #$30 ;X<48
5244 : 90 15 07200 BLT . 6
5246: C9 D1 07205 CMP #$Dl ;X>208
5248: BO 11 07210 BGE .6
524A: AD 3D 49 07215 LDA Y2
524D: C9 30 07220 CMP #$30 ;Y<48
524F: 90 OA 07225 BLT .6
5251: C9 E1 07230 CMP #$E1 ;Y>224
5253: BO 06 07235 BGE .6
5255 : 20 F1 52 07240 JSR PLOTSET2
5258: 4C 6B 52 07245 JMP EE2
525B: A9 00 07250 .6 LDA #$00
525D: 8D 1D 49 07255 STA ONSCRN2
5260: AD 21 49 07260 LDA NDELAY2
5263: 8D IF 49 07265 STA TDELAY2
5266: A9 EO 07270 LDA #$EO ;REMOVE ALIEN FROM SCREEN

300

GAMES THAT SCROLL 7

5268: 8D 02 DO 07275 STA HPOSP2
526B: 20 5C 58 07280 EE2 JSR SOUND
526E: 4C 62 E4 07285 PAST JMP XITVBK

02260 • IN "D: SCROLL1C"
07500 *PART 3 OF SCROLLING GAME
07505 *DISPLAY LIST INTERUPT ROUTINE

5271: 48 07510 DLI PHA
5272: A9 90 07515 LDA #$90 ;HI BYTE OF CUSTOM SET
5274: 8D OA D4 07520 STA WSYNC
5277: 8D 09 D4 07525 STA CHBASE
527A: 68 07530 PLA
527B: 40 07535 RTI

07540 *PUT SHAPE I N P/M AREA
527C: AO 00 07545 PLOT LDY #$00 ; COUNTER
527E: 91 F2 07550 STA (SHPML),Y ;PUT IN P/M AREA
5280: A9 00 07555 LDA #$00 ;NEED 0 TO ERASE EACH TIME
5282: 91 F4 07560.1 STA (SHPMOL),Y ;ERASE OLD SHAPE FIRST
5284: C8 07565 INY
5285: CO 08 07570 CPY #$08
5287: 90 F9 07575 BLT .1
5289: AO 00 07580 LDY #$00
528B: B1 FO 07585.2 LDA (SHPL),Y ;GET BYTE FROM PROPER SHAPE TABLE
528D: 91 F2 07590 STA (SHPML),Y ;PUT IN P/M AREA
528F: C8 07595 INY
5290: CO 08 07600 CPY #$08
5292: 90 F7 07605 BLT . 2
5294: A5 F2 07610 LDA SHPML ;TRANSFER NEW P/M POS TO OLD POS
5296: 9D 48 49 07615 STA TEMPL,X
5299: A5 F3 07620 LDA SHPMH
529B: 9D 4C 49 07625 STA TEMPH,X
529E: 60 07630 RTS
529F: AD OA 49 07635 PLOTSET LDA YPMO ;CORRECTED YPOS
52A2: 85 F2 07640 STA SHPML
52A4: A9 88 07645 LDA /PDATA
52A6: 18 07650 CLC
52A7: 69 04 07655 ADC #$04 ;PLAYERO IS 1K BEYOND START
52A9: 85 F3 07660 STA SHPMH
52AB: A9 48 07665 LDA /SHIP
52AD: 85 F1 07670 STA SHPH
52AF: A9 4C 07675 LDA #SHIP
52B1: 85 FO 07680 STA SHPL
5233: A2 00 07685 LDX #$00
52B5: BD 48 49 07690 LDA TEMPL,X
52B8: 85 F4 07695 STA SHPMOL
52BA: BD 4C 49 07700 LDA TEMPH,X
52BD: 85 F5 07705 STA SHPMOH
52BF: 20 7C 52 07710 JSR PLOT
52C2: 60 07715 RTS

07720 *PLOTSET1 SUBROUTINE
52C3: AD 38 49 07725 PLOTSET1 LDA Xl
52C6: 8D 01 DO 07730 STA HPOSP1
52C9: AD 3C 49 07735 LDA Y1
52CC: 85 F2 07740 STA SHPML
52CE: A9 88 07745 LDA / PDATA
52DO: 18 07750 CLC
52D1: 69 05 07755 ADC #$05 ;PLAYER#l IS 1.25K BEYOND START
52D3: 85 F3 07760 STA SHPMH
52D5: A9 48 07765 LDA /ALIEN
52D7: 85 F1 07770 STA SHPH
52D9: AE 88 49 07775 LDX RDSHP1
52DC: BD 7C 48 07780 LDA ALIENPT,X

301

302

7 GAMES THAT SCROLL

52DF: 85 FO 07785 STA SHPL
52El: A2 01 07790 LDX #$01
52E3: BD 48 49 07795 LDA TEMPL,X
52E6: 85 F4 07800 STA SHPMOL
52E8: BD 4C 49 07805 LDA TEMPH,X
52EB: 85 F5 07810 STA SHPHOH
52ED: 20 7C 52 07815 JSR PLOT
52FO: 60 07820 RTS
52Fl: AD 39 49 07825 PLOTSET2 LDA X2
52F4: 8D 02 DO 07830 STA HPOSP2
52F7: AD 3D 49 07835 LDA Y2
52FA: 85 F2 07840 STA SHPML
52FC: A9 88 07845 LDA /PDATA
52FE: 18 07850 CLC
52FF: 69 06 07855 ADC #$06 ;PLAYER#l IS 1.5K BEYOND START
5301: 85 F3 07860 STA SHPMH
5303: A9 48 07865 LDA /ALIEN
5305: 85 F1 07870 STA SHPH
5307: AE 89 49 07875 LDX RDSHP2
530A: BD 7C 48 07880 LDA ALIENPT,X
530D: 85 FO 07885 STA SHPL
530F: A2 02 07890 LDX #$02
5311: BD 48 49 07895 LDA TEMPL,X
5314: 85 F4 07900 STA SHPMOL
5316: BD 4C 49 07905 LDA TEMPH,X
5319: 85 F5 07910 STA SHPMOH
531B: 20 7C 52 07915 JSR PLOT
531E: 60 07920 RTS
531F: AD 3A 49 07925 PLOTSET3 LDA XB
5322: 8D 03 DO 07930 STA HPOSP3
5325: AD 3E 49 07935 LDA YB
5328: 85 F2 07940 STA SHPML
532A: A9 88 07945 LDA / PDATA
532C: 18 07950 CLC
532D: 69 07 07955 ADC #$07 ;PLAYER#l I S 1.75K BEYOND START
532F: 85 F3 07960 STA SHPMH
5331: A9 48 07965 LDA /BOMBSH
5333: 85 Fl 07970 STA SHPH
5335: A9 97 07975 LDA #BOMBSH
5337: 85 FO 07980 STA SHPL
5339: A2 03 07985 LDX #$03
533B: BD 48 49 07990 LDA TEMPL,X
533E: 85 F4 07995 STA SHPMOL
5340: BD 4C 49 08000 LDA TEMPH, X
5343: 85 F5 08005 STA SHPHOH
5345: 20 7C 52 08010 JSR PLOT
5348: 60 08015 RTS

08020 *MISSILE SUBROUTINE
5349: BD 45 49 08025 MISSILE LDA SHOOTO,X
534C: FO 30 08030 BEQ .08
534E: BD 2A 49 08035 LDA TMISO,X
5351: DO 33 08040 BNE .1
5353: FE 2A 49 08045 INC TMISO,X ;INCREMENT TIMER
5356: BD 50 49 08050 LDA DIRO,X ;SAVE TABLE DIRECTION
5359: 9D 53 49 08055 STA MDIRO,X

08060 *ERASE OLD MISSILE & PUT AT SHIP
535C: BD 3B 49 08065 LDA YO,X
535F: 18 08070 CLC
5360: 69 04 08075 ADC #$04 ;CORRECT TO SHIP CENTER
5362: 9D 42 49 08080 STA YOM,X
5365: BD 37 49 08085 LDA XO,X

GAMES THAT SCROLL 7

5368: 18 08090 CLC
5369: 69 04 08095 ADC #$04
536B: 9D 3F 49 08100 STA XOM,X
536E: EO 02 08105 CPX #$02
5370: FO 06 08110 BEQ .05
5372: 20 14 54 08115 JSR MISSET1
5375: 4C EF 53 08120 JHP DD
5378: 20 45 54 08125 .05 JSR MISSET2
537B: 4C EF 53 08130 JMP DD
537E: BD 2A 49 08135 .08 LDA THISO,X
5381: DO 03 08140 BNE .1
5383: 4C EF 53 08145 JMP DD
5386: BD 2A 49 08150 .1 LDA THISO,X
5389: C9 IE 08155 CMF #$lE jMISSILE CAN ONLY MOVE 30 CYCLES
538B: BO 4B 08160 BGE E

08165 *MOVE MISSILE IN PROPER DIRECTION
538D: BC 53 49 08170 .2 LDY MDIRO,X
5390: B9 9F 48 08175 LDA VMX,Y
5393: OA 08180 ASL jDOUBLE VELOCITY
5394: 18 08185 CLC
5395: 7D 3F 49 08190 ADC XOM ,X
5398: 9D 3F 49 08195 STA XOM,X
539B: B9 A7 48 08200 LDA VMY,Y
539E: OA 08205 ASL jDOUBLE VELOCITY
539F: 18 08210 CLC
53AO: 7D 42 49 08215 ADC YOM,X
53A3: 9D 42 49 08220 STA YOM,X

08225 *HAS MISSILE HIT SCREEN EDGE
53A6: C9 30 08230 CMP #$30
53A8: BO 03 08235 BGE .23
53AA: 4C D8 53 08240 JMP E
53AD: C9 D8 08245 .23 CMP #$D8
53AF: 90 03 08250 BLT .24
53B1: 4C D8 53 08255 JMP E
53B4: BD 3F 49 08260 .24 LDA XOM,X
53B7: C9 30 08265 CMP #$30
53B9: BO 03 08270 BGE .25
53BB: 4C D8 53 08275 JMP E
53BE: C9 DO 08280 .25 CMP #$DO
53CO: 90 03 08285 BLT .26
53C2: 4C D8 53 08290 JMP E
53C5: FE 2A 49 08295 .26 INC TMISO,X

08300 *ERASE & REPLOT MISSILE
53C8: EO 02 08305 ERASE CPX #$02
53CA: FO 06 08310 BEQ .28
53CC: 20 14 54 08315 JSR MISSET1
53CF: 4C EF 53 08320 JNP DD
53D2: 20 45 54 08325 .28 JSR MISSET2
53D5: 4C EF 53 08330 JMP DD

08335 *ERASE MISSILE OFF SCREEN
08340 *MISSILES BOMBS & SHIPS PUT ON FAR LEFT TO PREVENT COLLISIONS
08345 *WITH ALIENS & THEIR MISSILES PUT AT FAR RIGHT

53D8: A9 E8 08350 E LDA #$E8
53DA: 9D 3F 49 08355 STA XOM,X jPLOT OFF SCREEN
53DD: EO 02 08360 CPX #$02
53DF: FO 06 08365 BEQ .31
53E1: 20 14 54 08370 JSR MISSET1
53E4: 4C EA 53 08375 JMP .7
53E7: 20 45 54 08380 .31 JSR MISSET2
53EA: A900 08385.7 LDA #$00
53EC: 9D 2A 49 08390 STA THISO,X

303

304

7 GAMES THAT SCROLL

53EF: 60 08395 DD RTS
08400 *PUT MISSILE SHAPE IN P/M AREA SUBROUTINE

53FO: AO 00 08405 MPLOT LDY #$00
53F2 : Bl F4 08410.1 LDA (SHPMOL),Y
53F4 : 2D 56 49 08415 AND MASK
53F7 : 91 F4 08420 STA (SHPMOL),Y
53F9 : C8 08425 INY
53FA: CO 02 08430 CPY #$02
53FC: 90 F4 08435 BLT .1
53FE: AO 00 08440 LDY #$00
5400: Bl FO 08445.2 LDA (SHPL),Y
5402: 11 F2 08450 ORA (SHPML) ,Y
5404: 91 F2 08455 STA (SHPML),Y
5406: C8 08460 INY
5407: CO 02 08465 CPY #$02
5409: 90 F5 08470 BLT .2
540B : A5 F2 08475 LDA SHPML
540D: 85 F4 08480 STA SHPMOL
540F: A5 F3 08485 LDA SHPMH
5411: 85 F5 08490 STA SHPMOH
5413: 60 08495 RTS

08500 *SETUP TO PLOT MISSILE 1
5414: AD 43 49 08505 MISSETI LDA YIM ;MISSILE POSITION CORRECTED
5417: 85 F2 08510 STA SHPML
5419: A9 88 08515 LDA /PDATA
541B: 18 08520 CLC
541C: 69 03 08525 ADC #$03 ;MISSILES . 75K BEYOND START
541E: 85 F3 08530 STA SHPMH
5420 : 85 F5 08535 STA SHPMOH
5422 : BD 93 48 08540 LDA MISLO,X ;POINTER TO CORRECT MISSILE SHAPE
5425: 85 FO 08545 STA SHPL
5427: A9 48 08550 LDA /MSHAPE ;HI BYTE BOTH P/M SHAPES SAME
5429: 85 Fl 08555 STA SHPH
542B: AD 10 49 08560 LDA YMISOLDI
542E: 85 F4 08565 STA SHPMOL
5430: AD 58 49 08570 LDA MASK I
5433: 8D 56 49 08575 STA MASK
5436 : 20 FO 53 08580 JSR MPLOT
5439 : A5 F4 08585 LDA SHPMOL
543B: 8D 10 49 08590 STA YMISOLDI
543E: AD 40 49 08595 LDA XIM
5441: 8D 05 DO 08600 STA HPOSMI ;MISSILE 1 HORIZ POS
5444 : 60 08605 RTS

08610 *SETUP TO PLOT MISSILE 2
5445: AD 44 49 0861 5 MISSET2 LDA Y2M ;HISSILE POSITION CORRECTED
5448: 85 F2 08620 STA SHPML
544A: A9 88 08625 LDA /PDATA
544C: 18 08630 CLC
544D: 69 03 08635 ADC #$03 ;MISSILES .75K BEYOND START
544F : 85 F3 08640 STA SHPMH
5451: 85 F5 08645 STA SHPMOH
5453: BD 93 48 08650 LDA MISLO,X ;POINTER TO CORRECT MISS ILE SHAPE
5456 : 85 FO 08655 STA SHPL
5458 : A9 48 08660 LDA /MSHAPE ;HI BYTE BOTH P/M SHAPES SAME
545A : 85 Fl 08665 STA SHPH
545C : AD 11 49 08670 LDA YMISOLD2
545F: 85 F4 08675 STA SHPMOL
5461 : AD 59 49 08680 LDA MASK2
5464: 8D 56 49 08685 STA MASK
5467 : 20 FO 53 08690 JSR MPLOT
546A: A5 F4 08695 LDA SHPMOL

GAMES THAT SCROLL 7

546C: 8D 11 49 08700 STA YMISOLD2
546F: AD 41 49 08705 LDA X2M
5472 : 8D 06 DO 08710 STA HPOSM2 ;MISSILE 2 HORIZ POS
5475: 60 08715 RTS

08720 *SETUP TO PLOT MISSILE 0
5476: AD 42 49 08725 MISSETO LDA YOH ;MISSILE POSITION CORRECTED
5479: 85 F2 08730 STA SHPML
547B: A9 88 08735 LDA /PDATA
547D: 18 08740 CLC
547E: 69 03 08745 ADC #$03 ;MISS ILES .75K BEYOND START
5480 : 85 F3 08750 STA SHPMH
5482: 85 F5 08755 STA SHPMOH
5484: BD 93 48 08760 LDA MISLO,X ;POINTER TO CORRECT MISSILE SHAPE
5487: 85 FO 08765 STA SHPL
5489: A9 48 08770 LDA /MSHAPE ;HI BYTE BOTH P/M SHAPES SAME
548B: 85 Fl 08775 STA SHPH
548D : AD OF 49 08780 LDA YMISOLDO
5490: 85 F4 08785 STA SHPMOL
5492: AD 57 49 08790 LDA MASKO
5495: 8D 56 49 08795 STA MASK
5498 : 20 FO 53 08800 JSR MPLOT
549B : A5 F4 08805 LDA SHPMOL
549D : 8D OF 49 08810 STA YMISOLDO
54AO: AD 3F 49 08815 LDA XOM
54A3 : 8D 04 DO 08820 STA HPOSMO ;MISSILE 0 HORIZ POS
54A6: 60 08825 RTS
54A7: BD 5A 49 08830 LASER LDA LASON,X
54AA : DO 38 08835 BNE .1
54AC: BD 6E 49 08840 LDA GALIVE,X
54AF : DO 03 08845 BNE .11
54Bl: 4C 2F 55 08850 JMP EL
54B4: A9 01 08855 .11 LDA #$01 ;TURN LASER ON
54B6: 9D 5A 49 08860 STA LASON,X
54B9: A9 70 08865 LDA #$70
54BB: 18 08870 CLC
54BC: 7D 72 49 08875 ADC YG,X
54BF: 9D 62 49 08880 STA LPOSH,X
54C2 : DE 62 49 08885 DEC LPOSH,X ;BEAM STARTS JUST ABOVE GUN
54C5 : BD 76 49 08890 LDA XG,X
54C8: 9D 5E 49 08895 STA LPOSL,X
54CB : DE 5E 49 08900 DEC LPOSL,X
54CE: A9 03 08905 LDA #$03 ;DELAY BETWEEN MOVENTS
54DO: 9D 6A 49 08910 STA LCOUNT,X
54D3: BD 62 49 08915 LDA LPOSH,X
54D6: 85 F7 08920 STA GROUNDH
54D8: BD 5E 49 08925 LDA LPOSL,X
54DB: 85 F6 08930 STA GROUNDL
54DD: A9 62 08935 LDA #$ 62 ;PLOT INITIAL POSITION LASER
54DF: 91 F6 08940 STA (GROUNDL),Y
54El: 4C 2F 55 08945 JMP EL
54E4: DE 6A 49 08950 .1 DEC LCOUNT,X
54E7 : BD 6A 49 08955 LDA LCOUNT, X; MOVE BEMI EVERY 3RD FRAME
54EA: DO 43 08960 BNE EL
54EC: BD 62 49 08965 LDA LPOSH,X ;AT TOP OF SCREEN?
54EF: C9 70 08970 CM? #$70
54Fl: DO IB 08975 BNE .2
54F3: BD 62 49 08980 LDA LPOSH,X
54F6: 85 F7 08985 STA GROUNDH
54F8 : BD 5E 49 08990 LDA LPOSL,X
54FB: 85 F6 08995 STA GROUNDL
54FD: A9 00 09000 LDA #$00 ;ERASE LASER

305

7 GAMES THAT SCROLL

54FF: 91 F6 09005 STA (GROUNDL),Y
5501: A9 00 09010 LDA #$00 ;TURN LASER OFF
5503: 9D 5A 49 09015 STA LASON,X
5506: A9 50 09020 LDA #$50 ;DELAY BETWEEN FIRING
5508 : 9D 66 49 09025 STA LDELAY,X
550B: 4C 2F 55 09030 JMP EL
550E: BD 62 49 09035 .2 LDA LPOSH,X
5511: 85 F7 09040 STA GROUNDH
5513: BD 5E 49 09045 LOA LPOSL,X
5516: 85 F6 09050 STA GROUNDL
5518: A9 00 09055 LDA #$00 ;ERASE OLD POSITION LASER
551A: 91 F6 09060 STA (GROUNDL),Y
551C: C6 F7 09065 DEC GROUNDH
551E : DE 62 49 09070 DEC LPOSH, X
5521: C6 F6 09075 DEC GROUNDL
5523: DE 5E 49 09080 DEC LPOSL,X
5526: A9 62 09085 LDA #$62
5528 : 91 F6 09090 STA (GROUNDL),Y ;PLOT NElv POSITION
552A : A9 03 09095 LDA #$03
552C : 9D 6A 49 09100 STA LCOUNT, X
552F: 60 09105 EL RTS

09110 *BOMB SUBROUTINE
5530 : AD 82 49 09115 BOMB LDA DELAY ;PREVENT BOMB DROP DURING DELAY
5533: DO 05 09120 BNE .1
5535: AD 84 02 09125 LDA STRIGO ; BUTf ON PRESSED=O
5538: FO 08 09130 BEQ .2
553A : AD 18 49 09135 .1 LOA BOMBON
553D: DO 34 09140 BNE .4
553F : 4C 9C 55 09145 JMP EBM
5542: AD 16 49 09150 .2 LDA BACK
5545: FO F3 09155 BEQ .1
5547 : AD 18 49 09160 .3 LDA BOMBON
554A: DO 27 09165 BNE .4

09170 *DROP BOMB INITALLY
554C: AD OA 49 09175 LDA YPMO ;CENTER BOMB UNDER SHIP
554F: 18 09180 CLC
5550: 69 OA 09185 ADC #$OA
5552 : 8D 3E 49 09190 STA YB
5555: AD 09 49 09195 LDA XPMO
5558: 18 09200 CLC
5559: 69 05 09205 ADC #$05
555B: 8D 3A 49 09210 STA XB
555E: A9 00 09215 LDA #$00
5560: 8D 34 49 09220 STA VY3
5563: 8D 35 49 09225 STA VTEMP ; INITILIZE ACCELERATION
5566: A9 01 09230 LDA #$01
5568: 8D 18 49 09235 STA BOMBON
556B : A2 03 09240 LDX #$03
556D: 20 IF 53 09245 JSR PLOTSET3
5570: 4C 9C 55 09250 JMP EBM

09255 *CALCULATE & PLOT NEW BOMB POSITION
5573: EE 35 49 09260 .4 INC VTEMP
5576: AD 35 49 09265 LOA VTEMP
5579: 4A 09270 LSR ; DIVIDE BY 4
557A: 4A 09275 LSR
557B: C9 03 09280 CMF #$03
5570 : 90 02 09285 BLT .45
557F : A9 03 09290 LDA #$03 ;CLIP TO 3
5581: 8D 34 49 09295 .45 STA VY3 ;NEW VY3
5584 : AD 3E 49 09300 LDA YB
5587: 18 09305 CLC

306

GAMES THAT SCROLL 7

5588: 6D 34 49 09310 ADC VY3
558B: 8D 3E 49 09315 STA YB
558E: AD 3A 49 09320 LDA XB
5591: 18 09325 CLC
5592: 69 01 09330 ADC #$01 ;FORWARD VEL=l
5594: 8D 3A 49 09335 STA XB
5597: A2 03 09340 LDX #$03
5599: 20 IF 53 09345 JSR PLOTSET3
559C: 60 09350 EBM RTS

09355 *SCORE SUBROUTINE
559D: EE 7A 49 09360 SCORE3 INC SR10
55AO: AD 7A 49 09365 LDA SR10
55A3: C9 1A 09370 CMP #$lA ;ADD 16 FOR INTERNAL VALUES
55A5: 90 08 09375 BLT SCORE2
55A7: EE 7B 49 09380 INC SR100
55AA: A9 10 09385 LDA #$10 ;CHARACTER 0 IS INTERNAL $10
55AC: 8D 7A 49 09390 STA SR10
55AF: EE 7A 49 09395 SCORE2 INC SR10
55B2: AD 7A 49 09400 LDA SR10
55B5: C9 1A 09405 CMP #$lA
55B7: 90 08 09410 BLT SCORE
55B9: EE 7B 49 09415 INC SR100
55BC: A9 10 09420 LDA #$ 10
55BE: 8D 7A 49 09425 STA SR10
55C1: EE 7A 49 09430 SCORE INC SR10
55C4: AD 7A 49 09435 LDA SR10
55C7: C9 1A 09440 CMP #$lA
55C9: 90 08 09445 BLT .1
55CB: EE 7B 49 09450 INC SR100
55CE: A9 10 09455 LDA #$10
55DO: 8D 7A 49 09460 STA SRI0
55D3: AD 7B 49 09465 .1 LDA SRI00
55D6: C9 lA 09470 CMP iSlA
55D8: 90 08 09475 BLT .2
55DA: EE 7C 49 09480 INC SRI000
55DD: A9 10 09485 LDA #$10
55DF: 8D 7B 49 09490 STA SRI00
55E2: AD 7C 49 09495 .2 LDA SRI000
55E5: C9 1A 09500 CMP #$lA
55E7: 90 08 09505 BLT .3
55E9: EE 7D 49 09510 INC SR10T
55EC: A9 10 09515 LDA #$10
55EE: 8D 7C 49 09520 STA SR1000

09525 *PLACE VALUES IN SCORE LINE
55Fl: AD 7A 49 09530 .3 LDA SR10
55F4: 8D 26 69 09535 STA INFOt38
55F7: AD 7B 49 09540 LDA SR100
55FA: 8D 25 69 09545 STA INFOt37
55FD: AD 7C 49 09550 LDA SRI000
5600: 8D 24 69 09555 STA INFOt36
5603: AD 7D 49 09560 LDA SR10T
5606: 8D 23 69 09565 STA INFOt35
5609: 60 09570 RTS

09575 *ERASE SHIP SUBROUTINE
560A: A9 00 09580 XSHIP LDA #$00
560C: 8D 93 49 09585 STA EXCOUNT
560F: A9 01 09590 LDA #$01 ;TURN DEREZ EXPLOSION ON
5611: 8D 92 49 09595 STA REZFLAG
5614: A9 40 09600 LDA #$40 ;TURN ON SHIP EXPLOSION SOUND
5616: 8D 91 49 09605 STA SEXTIME
5619: CE 83 49 09610 DEC SHIPNUM

307

7 GAMES THAT SCROLL

561C: AD 83 49 09615 LDA SHIPNUM
561F: 8D 1A 69 09620 STA INFO-t26
5622: C9 10 09625 CMP #$10 ;0 SHIPS?
5624: FO 18 09630 BEQ EGAME
5626: A9 01 09635 LDA #$01 ;TURN ON DELAY
5628 : 8D 82 49 09640 STA DELAY
562B: A9 00 09645 LDA #$00 ;4 SECOND DELAY
562D: 85 14 09650 STA $14
562F: A9 00 09655 LDA #$00
5631: 85 13 09660 STA $13
5633: A9 FO 09665 LDA #$FO ;4 SECOND DELAY
5635: 8D 20 49 09670 STA NDELAYl
5638: A9 DO 09675 LDA #$ DO ;3+ SECOND DELAY
563A: 8D 21 49 09680 STA NDELAY2
563D: 60 09685 RTS
563E: AD OD 49 09690 EGAME LDA XS ;END GAME BY WRITEING "END GAME"
5641 : 69 14 09695 ADC #$ 14
5643: 8D 8C 49 09700 STA OVER
5646: AA 09705 TAX
5647 : AO 00 09710 LDY #$00
5649 : B9 00 49 09715 .1 LDA GOVER ,Y
564C : 9D 00 7B 09720 STA $7BOO ,X
564F: E8 09725 INX
5650: C8 09730 INY
5651: CO 09 09735 CPY #$09
5653: 90 F4 09740 BLT .1

09745 *TEST IF NEI,I HIGH SCORE
5655: 38 09750 HIGH SEC
5656: AD 7D 49 09755 LDA SRIOT
5659: ED 81 49 09760 SBC HSRlOT
565C: FO 04 09762 BEQ .1 ;TEST NEXT DIGIT IF 0
565E: 10 25 09765 BPL THIGH ;UPDATE HI SCORE
5660: 30 3B 09770 BMI ED ;SCORE<HI SCORE - EXIT
5662: 38 09775 .1 SEC
5663: AD 7C 49 09780 LDA SRI000
5666: ED 80 49 09785 SBC HSR1000
5669: FO 04 09787 BEQ . 2
566B: 10 18 09790 BPL THIGH
566D: 30 2E 09795 BMI ED
566F: 38 09800 .2 SEC
5670: AD 7B 49 09805 LDA SRI00
5673: ED 7F 49 09810 SBC HSR100
5676: FO 04 09812 BEQ .3
5678: 10 OB 09815 BPL THIGH
567A: 30 21 09820 BMI ED
567C: 38 09825 .3 SEC
567D: AD 7A 49 09830 LDA SRlO
5680: ED 7E 49 09835 SBC HSRI0
5683: 30 18 09840 BMI ED
5685: AD 7A 49 09845 THIGH LDA SR10 ;UPDATE NEloJ HIGH SCORE
5688: 8D 7E 49 09850 STA HSRlO
568B: AD 7B 49 09855 LDA SR100
568E: 8D 7F 49 09860 STA HSRI00
5691: AD 7C 49 09865 LDA SR1000
5694: 8D 80 49 09870 STA HSRlOOO
5697: AD 7D 49 09875 LDA SR10T
569A: 8D 81 49 09880 STA HSR10T
569D: A9 01 09885 ED LDA #$01
569F: 8D 82 49 09890 STA DELAY
56A2: A9 00 09895 LDA #$00 ;4 SECOND DELAY
56A4: 85 14 09900 STA $14

308

GAMES THAT SCROLL 7

56A6: 85 13 09905 STA $13
56A8: 60 09910 RTS

09915 *SUBROUTINE TO REPLACE MISSILE BASES
56A9: 80 2B 85 09920 STA $852B
56AC: 80 4A 85 09925 STA $854A
56AF: 80 69 86 09930 STA $8669
56B2: 80 84 83 09935 STA $8384
56B5: 80 97 85 09940 STA $8597
56B8: 80 A9 84 09945 STA $84A9
56BB: 80 03 85 09950 STA $85D3
56BE: A9 64 09955 LOA #$64
56CO: 80 2B 84 09960 STA $842B
56C3: 80 4A 84 09965 STA $844A
56C6: 80 69 85 09970 STA $8569
56C9: 80 84 82 09975 STA $8284
56CC: 80 97 84 09980 STA $8497
56CF: 80 A9 83 09985 STA $83A9
56D2: 80 03 84 09990 STA $84D3
56D5: EA 09995 NOP
5606: A9 00 10000 MBSUB LDA #$00
56D8: 80 86 49 10005 STA MBCOUNT
56DB: A9 63 10010 LDA #$63 ;MISSILES
56DD: 80 2B 85 10015 STA $852B
56EO: 80 4A 85 10020 STA $854A
56E3: 80 69 86 10025 STA $8669
56E6: 80 84 83 10030 STA $8384
56E9: 80 97 85 10035 STA $8597
56EC: 80 A9 84 10040 STA $84A9
56EF: 80 D3 85 10045 STA $85D3
56F2: A9 64 10050 LDA #$64
56F4: 80 2B 84 10055 STA $842B
56F7: 80 4A 84 10060 STA $844A
56FA: 8D 69 85 10065 STA $8569
56FD: 8D 84 82 10070 STA $8284
5700: 8D 97 84 10075 STA $8497
5703: 8D A9 83 10080 STA $83A9
5706: 8D D3 84 10085 STA $84D3
5709: 60 10090 RTS

10095 *TEST TARGET HIT SUBROUTINE
570A: AD 8A 49 10100 RTARGET LDA POS ;CALC PLAYFIELD POS OF BOMB OR MISSILE
570D: 38 10105 SEC
570E: E9 20 10110 SBC #$20
5710: 18 10115 CLC
5711: 6D OE 49 10120 ADC FS
5714: 4A 10125 LSR ;DIVIDE BY 8
5715: 4A 10130 LSR
5716: 4A 10135 LSR
5717: 18 10140 CLC
5718: 6D OD 49 10145 ADC XS
571B: 8D 84 49 10150 STA BTARGET
571E: CE 84 49 10155 DEC BTARGET ;ALSO TEST VALUE ON EACH SIDE

10160 *CHECK FOR LASER BASE COLLISION
5721: A9 00 10165 LDA #$00
5723: 8D 85 49 10170 STA STRIKE
5726: A9 3E 10175 LB LDA #$3E
5728: CD 84 49 10180 CMP BTARGET
572B: FO 07 10185 BEQ .1
572D: A9 3F 10190 LDA #$3F
572F: CD 84 49 10195 CMF BTARGET
5732: DO OE 10200 BNE .2
5734: A9 00 10205.1 LDA #$00 ;SHUT OFF LASER BASE 1

309

7 GAMES THAT SCROLL

5736: 8D 3E 83 10210 STA $833E
5739: 8D 3F 83 10215 STA $833F
573C: 8D 6E 49 10220 STA GALIVE
573F: 4C 93 57 10225 JMP LBEND
5742: A9 71 10230.2 LDA #$7 1
5744: CD 84 49 10235 CMP BTARGET
5747: FO 07 10240 BEQ .3
5749: A9 72 10245 LDA #$72
574B: CD 84 49 10250 CMF BTARGET
574E: DO OE 10255 BNE .4
5750: A9 00 10260.3 LDA #$00 ;SHUT OFF LASER BASE 2
5752: 8D 71 86 10265 STA $8671
5755: 8D 72 86 10270 STA $8672
5758: 8D 6F 49 10275 STA GALIVE+l
575B: 4C 93 57 10280 JMP LBEND
575E: A9 9E 10285.4 LDA #$9E
5760: CD 84 49 10290 CMF BTARGET
5763: FO 07 10295 BEQ . 5
5765: A9 9F 10300 LDA #$9F
5767: CD 84 49 10305 CMF BTARGET
576A: DO OE 10310 BNE .6
576C: A9 00 10315.5 LDA #$00 ;SHUT OFF LASER BASE 3
576E: 8D 9E 86 10320 STA $869E
5771: 8D 9F 86 10325 STA $869F
5774: 8D 70 49 10330 STA GALIVE+2
5777: 4C 93 57 10335 JMP LBEND
577A: A9 CB 10340.6 LDA #$CB
577C: CD 84 49 10345 CMP BTARGET
577F: FO 07 10350 BEQ .7
5781: A9 CC 10355 LDA #$CC
5783: CD 84 49 10360 CNP BTARGET
5786: DO 18 10365 BNE MB
5788: A9 00 10370.7 LDA #$00 ;SHUT OFF LASER BASE 4
578A: 8D CB 86 10375 STA $86CB
578D: 8D CC 86 10380 STA $86CC
5790: 8D 71 49 10385 STA GALIVE+3
5793: 20 9D 55 10390 LBEND JSR SCORE3
5796: A9 20 10395 LDA #$20 ;TURN ON EXPLOSION SOUND
5798: 8D 90 49 10400 STA SETIME
579B: A9 01 10405 LDA #$01
579D: 8D 85 49 10410 STA STRIKE

10415 *CHECK AGAINST EACH OF 7 MISSILES
57AO : AO 00 10420 NB LDY #$00
57A2: B9 AF 48 10425 .1 LDA MBPOSL,Y
57A5: CD 84 49 10430 CMP BTARGET
57A8: FO 08 10435 BEQ .2
57AA: C8 10440 INY
57AB: CO 07 10445 CPY #$07
57AD: DO F3 10450 BNE .1
57AF : 4C D8 57 10455 JMP MBEND
57B2: B9 AF 48 10460 .2 LDA MBPOSL,Y ;STORE IN 0 PAGE
57B5: 85 F6 10465 STA MBZL
57B7: B9 B6 48 10470 LDA MBPOSH,Y
57BA: 85 F7 10475 STA MBZH
57BC: AO 00 10480 LDY #$00
57BE: A9 00 10485 LDA #$00 ;REMOVE MISSILE BASE
57CO: 91 F6 10490 STA (NBZL),Y
57C2: E6 F7 10495 INC MBZH
57C4: A9 00 10500 LDA #$00
57C6: 91 F6 10505 STA (NBZL),Y
57C8: 20 Cl 55 10510 JSR SCORE

310

GAMES THAT SCROLL 7

57CB: A9 20 10515 LDA #$20 ;TURN ON EXPLOSION SOUND
57CD: 8D 90 49 10520 STA SETIME
57DO: EE 86 49 10525 INC MBCOUNT
57D3: A9 01 10530 LDA #$01
57D5: 8D 85 49 10535 STA STRIKE
57D8: AD 85 49 10540 MBEND LDA STRIKE
57DB: C9 01 10545 CMF #$01 ;TARGET REMOVED?
57DD: FO 06 10550 BEQ .1
57DF: EE 84 49 10555 INC BTARGET
57E2: 4C 26 57 10560 JMP LB
57E5: 60 10565 .1 RTS

10570 *CHANCE SUBROUTINE - 0 TO 4
57E6: AD OA D2 10575 CHANCE LDA RANDOM
57E9: 4A 10580 LSR ; DIVIDE BY 32
57EA : 4A 10585 LSR
57EB: 4A 10590 LSR
57EC: 4A 10595 LSR
57ED: 4A 10600 LSR
57EE: C9 05 10605 CMP #$05
57FO: BO F4 10610 BGE CHANCE ;TOO BIG TRY AGAIN
57F2: 8D 87 49 10615 STA LUCK
57F5: 60 10620 RTS

10625 *DEREZ SUBROUTINE
57F6 : A2 00 10630 EXPLODE LDX #$00
57F8: BD 48 49 10635 LDA TEMPL,X
57FB: 85 F4 10640 STA SHPMOL
57FD: BD 4C 49 10645 LDA TEMPH,X
5800: 85 F5 10650 STA SHPMOH
5802: AD OA 49 10655 LDA YPMO
5805: 85 F2 10660 STA SHPML
5807: A9 88 10665 LDA IPDATA
5809: 18 10670 CLC
580A: 69 04 10675 ADC #$04
580C: 85 F3 10680 STA SHPMH
580E: A9 48 10685 LDA ISHIP
5810: 85 F1 10690 STA SHPH
5812: A9 4C 10695 LDA #SHIP
5814: 85 FO 10700 STA SHPL
5816: AO 00 10705 LDY #$00 ; COUNTER
5818: A9 00 10710 LDA #$00 ;NEED 0 TO ERASE EACH TIME
581A: 91 F4 10715.1 STA (SHPMOL),Y ;ERASE OLD SHAPE FIRST
581C: C8 10720 INY
581D: CO 08 10725 CPY #$08
581F: 90 F9 10730 BLT .1
5821: AO 00 10735 LDY #$00 ;START WITH OTH BYTE IN SHAPE
5823: AD 93 49 10740 .2 LDA EXCOUNT ;FIRST TIME?
5826: DO 05 10745 BNE .22
5828: B1 FO 10750 LDA (SHPL),Y ;GET BYTE FROM PROPER SHAPE TABLE
582A : 99 96 49 10755 STA DEREZ,Y ;DO THIS FIRST TIME
582D: AD OA D2 10760 .22 LDA RANDOM
5830: OD OA D2 10765 ORA RANDOM
5833: 39 96 49 10770 AND DEREZ,Y
5836: 9996 49 10775 STA DEREZ,Y ;TEMP STORE DEGRADED SHAPE
5839: B1 FO 10780 LDA (SHPL),Y
583B: 2D OA D2 10785 AND RANDOM ;DEGRADE IMAGE RANDOMILY
583E: 2D OA D2 10790 AND RANDOM
5841: 2D OA D2 10795 AND RANDOM
5844: 2D OA D2 10800 AND RANDOM
5847: 19 96 49 10805 ORA DEREZ,Y ;COMBINE 2 DEGRADED IMAGES SO LESS DEGRADED
584A: 91 F2 10810 STA (SHPML), Y ;PUT IN P/M AREA
584C: C8 10815 INY ;NEXT BYTE IN SHAPE

311

7 GAMES THAT SCROLL

584D : co 08 10820 CPY #$08 ; DONE?
584F : 90 D2 10825 BLT .2
5851: AS F2 10830 LDA SHP~lL ; TRANSFER NEW P /I-! POS TO OLD POS
5853 : 9D 48 49 10835 STA TEMPL,X
5856: AS F3 10840 LDA SHPMH
5858 : 9D 4C 49 10845 ST A TE~!PH, X
585B : 60 10850 RTS

10855 *SOUND SUBROUTINE
585C: AD 8E 49 10860 SOUND LDA SLTIME ;CHECK LASER TIMER FLAG
585F : FO 2F 10865 BEQ SOUND2 ;IF 0 SKIP
5861 : C9 OF 10870 CMF #$OF ;TIMER GOES FROM 1 TO 15
5863 : DO OB 10875 BNE .1
5865: A9 00 10880 LDA #$00
5867 : 8D 00 D2 10885 STA AUDFl
586A : 8D 01 D2 10890 STA AUDCl
586D: 4C 90 58 10895 lMP SOUND2 ; LEAVE
5870: AD 8F 49 10900 .1 LDA SLTIMEl ;CHECK DELAY TIMER
5873 : DO 09 10905 BNE .2 ;IF NOT 0 COUNTDOWN TILL IT IS
5875 : AD 8D 49 10910 LDA DELAYl ;GET NEly DELAY VALUE
5878 : 8D 8F 49 10915 STA SLTIMEl ;STORE IT
587B : EE 8E 49 10920 INC SLTHlE ;INCRENENT MAIN TIMER (ALSO OUR FREQ. VALUE
587E : CE 8F 49 10925 . 2 DEC SLTIMEl ;COUNTDOWN DELAY TIMER
5881 : AD 8E 49 10930 LDA SLTIME ;OUR FREQ. VALUE
5884: OA 10935 ASL ; MULTIPLY BY 16
5885: OA 10940 ASL
5886 : OA 10945 ASL
5887 : OA 10950 ASL
5888 : 8D 00 D2 10955 STA AUDFl ;NEW TONE VALUE
588B : A9 86 10960 LDA #$86 ;DISTORTION 8 VOLUME 6
588D : 8D 01 D2 10965 STA AUDCl
5890 : AD 90 49 10970 SOUND2 LDA SETIME ;CHECK EXPLOSION TIMER FLAG
5893: FO OC 10975 BEQ SOUND3 ;IF AT 0 NO SOUND
5895 : CE 90 49 10980 DEC SETIME ; COUNTDOIVN
5898: 4A 10985 LSR ;DIVIDE BY 2 TO GET VOLUME 0-16
5899 : 8D 01 D2 10990 STA AUDCl ;TELL POKEY NEly SOUND VOLUME-

10992 ;-UPPER NIBBLE (DISTORTION) IS AT 0
589C : A9 40 10995 LDA #$40 ;TONE
589E : 8D 00 D2 11000 STA AUDFl
58A l : AD 91 49 11005 SOUND3 LDA SEXTIME ;CHECK EXPLOSION TIMER FLAG
58A4: FO OD 11010 BEQ .1 ;IF AT 0 NO SOUND
58A6 : CE 91 49 11015 DEC SEXTIME ; COUNTDOWN
58A9: 4A 11020 LSR ;DIVIDE BY 4 TO GET VOLUME 0-1 6
58AA : 4A 11025 LSR
58AB: 8D 07 D2 11030 STA AUDC4 TELL POKEY NEW SOUND VOLUME-

11032 -UPPER NIBBLE (DISTORTION IS AT 0
58AE : A9 40 11035 LDA #$40 TONE
58BO: 8D 06 D2 11040 STA AUDF4
58B3 : 60 11045 .1 RTS

312

CHAPTER 8

RASTER GRAPHICS & SOUND

Raster graphics is a term we very rarely use in connection with the Atari computer
system . It is a term that describes how individual pixels are mapped on a high
resolution screen. The technique is about the only one possible on computers such
as the Apple II and the IBM Pc. Atari programmers like to use easier and more
colorful techniques like character graphics and player-missile animation, but there
are certainly a number of valid reasons for animating with raster graphics. The two
best reasons are that Graphics mode 8 (ANTIC mode F) screens have the highest
reso lution (320 x 192 pixels), and that very large shapes can be smoothly animated.
The biggest disadvantage is that you can have shapes with three colors at best.

Graphics 8 screens produce color by a method known as artifacting. On computers
with a GTIA chip, pixels in even columns appear blue and those in odd columns
appear green when the background color register is set to black. Obviously, we could
obtain other color combinations by varying the background color register. If you
wish to draw a shape entirely in blue, you need only plot the shape's individual
pixels in the even columns. Similarly, you will obtain an all-green shape if you plot
pixels only in the odd columns. When a blue pixel is next to a green pixel, the pair
appears as white.

You get these al ternating stri pes of color because the Atari sends its color signal as
a series of square wave pulses. One complete cycle is called a color clock. When the
square wave is high you get blue, and when it is low you get green. Other colors are
produced by phase shifting the square waves. These colors have nothing to do with
the positions of the actual phosphors on the television tube.

Pixel information is encoded eight pixels per byte . The screen is made up of 192
rows of forty bytes. Forty bytes times eight pixels per byte gives a horizontal
resolution of 320 pixels. If you are working in color you are really only talking about
half that, or 160 pixel pairs horizontally.

Plotting pixel data is quite anolagous to plotting character data to the screen. In
fac t, if we took the character data for the letter "A" and plotted it on the screen by
ca lculating the byte address for a particular column in the first eight rows, the
character would appear as expected. Of course, it is a lot of trouble to just plot
character data on a Graphics 8 screen, but it only illustrates the technique.

A Graphics 8 screen fortunately can be mapped sequentially in memory if you are
clever. The problem is that a display list cannot address screen memory that crosses a
4K boundary. An additional LMS instruction is needed on the other side of the
boundary. You could fit 102 lines in the lower portion, but that would leave a 16-byte

313

314

8 RASTER GRAPHICS & SOUND

Memory
Location

$8000

$8028

$8050

$8078

$80AO

$80C8

$80FO
$8118

Value

$00

$18

$3C

$66

$66

$7E

$66

$00

ga p between the two sections. Instead , I decided to p lace 102 lines in the foll owing
exam p le in the top 4K o f screen memory and butt the fi rs t ninety lines against it in
the lower 4K secti o n . T hi s leaves 496 bytes o f free mem ory a t the beginning and
a mpl e roo m to p lace the di splay li st. The di splay li st begins a t $6000, and screen
mem ory a t $61 FO. T he Oth or top line star ts a t th at address and the first line begins
fo rty bytes la ter a t $62 18. Each of the 192 1ines is offse t in memory by an additiona l 40
bytes.

To p lo t a by te a t a particular X,Y coord inate on the screen req uires you to
ca lcula te a memory address based on the start ing address of the row and the o ffse t
into the row . T he formul a is:

MEMO R Y ADDRESS = SCREEN MEMOR Y +(Y*40)+(X/ 8)

It isn ' t a diffi cult ca lcul a tion , except tha t in Machine language, multiplica tio n
and di vision o ther tha n by multi p les of eig h t require an enormo us number o f s teps.
If you onl y had to do it o nce, it would be a lr;ght. Unfortuna tely, you need to perform
the ca lcul a tio n a t leas t o nce for each row o f the shape . If you were try ing to do a
Galax ian-type ga me where you had severa l dozen shapes, you would never have
eno ug h tim e to move a nd draw them a ll and achieve a fas t eno ugh anima tio n frame
ra te. A better method is to look u p the star ting address o f the row from a table and just
ca lcula te the horizo nta l o ffse t based on the shape's Y coordina te.

Pl o tting a pi xe l o n the screen a t a part icul ar X, Y coordina te, based on its row and
horizonta l o ffse t, will work onl y if the Y coordinate was a multiple o f eigh t. T he
p ixel wo uld be p hysica ll y a t the left end of the byte a nd would have a va l ue of $FO. If
you want to plo t a pixel one unit further to the right, you need a byte wi th an entirely
different pixel pa ttern. Yo u can ' t phys ica ll y move the byte just anywhere, like a
" tad " to the ri g ht. T he va lue o f that byte is $80. Now, you begin to realize tha t you
need eight different bytes just to cover a ll o f the possibl e X coordinates. Since thi s is
a lso true o f larger shapes, we have a difficult prob lem.

P lott ing a pixe l o n the screen a t a particu lar X, Y coordina te, based on its row and
horizonta l o ffse t, w ill work onl y if the Y coordina te was a multiple of eight. T he
p ixel would be p h ys ica ll y a t the left end of the byte a nd would have a va lue o f $80. If
you wa nt to plo t a pi xel o ne unit to th e ri g ht, you need a byte with an entirely

RASTER GRAPHICS & SOUND 8

GRAPHICS 8

OFFSET=1

X=8

X=9

different pixel pattern. You ca n ' t physica lly move the byte just anywhere, like a
" tad " to the right. The va lue of tha t byte is $40. Now, you begin to realize that you
need eight different bytes just to cover a ll of the possible X coord inates. Since this is
a lso true of larger shapes, we have a difficult prob lem .

Color shapes have another prob lem. If you move them right or left one pixel, they
shift colors. Therefore, you must move them two pixels left or right at a time. While
this sounds compli ca ted, it ac tua ll y reduces the number of shifted shape tables to
four. It has o ne additio na l advantage in that there are only 160 possible horizontal
positions instead o f 320. This reduces the arithmetic to single-byte operations.

B G B G B G B G I B G B G B G B G "Oth Shifted Shape

$15 $00

$15 $00
$11 $00
$44 $40
$44 $40
$44 $40

$44 $40

$44 $40

.-r-,---.....--.----,----,----,r--f-.--..---.-.----,----,---,r----t ' 1 st Shifted S h a pe
$05 $40

$05 $40
$04 $40
$11 $10

$11 $10
$11 $10
$11 $10

315

316

8 RASTER GRAPHICS & SOUND

/ 2nd Shifted Shape

¥ 3rd Shifted Shape

Bit Mapping the Shapes

Drawing a bit-mapped shape table anywhere on the Graphics 8 screen is a simple
procedure, once you understand the basic concept. The shape table is stored sequen
tially in memory, either by rows or columns . The technique, therefore, is to load
each of these bytes, one at a time, into the Accumulator, find the position in memory
for the screen location where you want to plot that byte, then store it in that location.

Memory Location by Table Lookup

The difficulty, as we showed earlier, lies in finding a particular memory location ,
given an X,Y screen coordinate. Table look-u p is obviously the fastest method for
finding the starting address for the first position (leftmost) or Oth offset for each of
the 192 lines. If the screen started a t $61 FO, the first line or line #0 would begin a t this
address, and the second line would begin a t $62 18. Each address takes two bytes. The
first part is the high byte which in the latter case is $62. The second part, $18, is the
low byte. These values can be separated into two tables, one containing the lower
order address of each line (call it YVERTL), and the other containing the higher
order address of each line (call it YVER TH). Each table is 192 bytes long (0 -1 91). In
order that these tables not become specific to a particular screen address, the val ues
are merely offset values from a zero starting address. The GETADR subroutine adds
the high byte of the starting screen address to obtain a specific memory address. Our
only constraint is that the screen start on a page boundary.

RASTER GRAPHICS & SOUND 8

You can access any element in either table by absolute indexed address ing. The
effective address of the operand is com p uted by adding the contents of the Y register
to the address of the instructio n. The format is:

EFFECTIVE ADDR ESS = ABSOLUT E ADDRESS + Y REGISTER

If our YVERTL table were stored a t $4000 and we wanted to find the sta rting
address of line I (remember lines a re numbered 0-191), we would index into the table
one position and load that va lue into the Accumula to r.

4000:FO 1840 6890 B8 YVERT L TABLE

So LDA YVERTL,Y, where the Y register =$01 , will fetch the value $18 fro m
memory location $4000 + $01 = $4001 , a nd pl ace it in the Accumulator.

Simil arly, if YVER TH were stored in the next page fo ll owing our first tabl e, then:

4100:01 02 02 02 02 02 YV ERT H TABLE

If the Y register = $01 , then a LDA YVERTL,Y w ill ta ke the va lue $02 stored in
memo ry loca tion $4 100+ $01 = $4 101 , and pl ace it in the Accumula tor.

Storing the Shape in Screen Memory

Eventua ll y we will wa nt to s tore the first byte fro m the sha pe table into a memory
loca tion. This ca n be do ne effi cientl y if th e two-byte address is stored sequentia lly in
zero page. Let's store the low-byte half o f the address, HIRESL, at location $F2 , and
the high-byte ha lf, HIRES H , a t loca tio n $F3 in ze ro page:

LDY #$01
LDA YVERTH,Y

STA HIRESH
LDA YVERTL,Y
STA HIRESL

;Y REGISTER CONTAI NS LINE #
;LOOKUP HIGH BYTE OF START
;OF ROH I N MEMORY
;STORE I N ZERO PAGE OF MEHORY
; LOOKUP LOH BYE OF ROiv I N HEMORY
;STORE IN ZERO PAGE OF MEMORY

If the computer find s a $00 in loca tio n $F2 (HIRESL) and a $60 in loca tion $F3
(HIRESH), then th e base address is $6000. The Accumula to r stores a value into
memory location $60000+$01 , or laca tion #6001 , as shown on the followin g page.

The final address ing mode tha t we m ust con sider is Indexed Indirect Addressing.
The forma t is:

LDA (S HPL,X)

It is very simila r to the Indirec t Indexed address ing mode except the index is added
to the zero page base address before it retri eves th e effec ti ve address. Its pri mary use is
to index a tabl e of effec ti ve addresses stored in zero page, but in the form we are going
to use it, the X register is se t to O. T hu s, it simpl y find s the base address .

3 17

318

8 RASTER GRAPHICS & SOUND

Y

A

X I

INDIRECT INDEXED ADDRESSING

STA (HIRESL),Y
~

~Dl'::~T ADO:RES; HIRESL
$F3 60 , HIRESH

/ $6000

+

\ $6001 $FF

INDEXED INDIRECT ADDRESSING

LDA (SHPL,X)

BASE ADDRESS

EFFECTIVE
ADDRESS

\+ INDIRECT ADDRESS

$00 ~ 1 $FO $20 LO BYTE (SHPL)

$FI $44 HI BYTE

RASTER GRAPHICS & SOUND 8

We must use this second form of indirect addressing because there is a shortage of
registers in the 6502 microprocessor. We are already using the Y register in the store
operation, and there isn't an indirect indexed addressing mode of the form
LDA(SHPL),X. Thus, we must go to the alternative addressing mode LDA(SHPL,X).

What this all boils down to is that we want to load a byte from a shape table into
the Accumulator and store it on the screen with the following instructions:

LDA (SHPL,X) ;LOAD BYTE FROM SHAPE TABLE
STA (HIRESL),Y ;STORE BYTE ON HI-RES SCREEN

We can index into the shape table by incrementing the low byte SHPL by one each
time, then store that byte into the next screen position on a particular line by
incrementing the Y register. This zero page method is faster than performing the
equivalent code with absolute index addressing, because two-byte addresses can be
handled with fewer instructions, fewer machine cycles, and less memory space.

Obviously, a generalized subroutine must be developed to find the screen memory
address (HIRESL and HIRESH), given a line number and a horizontal displace
ment. We will call this subroutine GETADR, short for Get Address.

Y=o

HORIZ OFFSET

o 1 2 3 4 5 6 7

i I S0~~1

38 39

Each time a row of shape-table bytes is transferred to succesive memory locations
in screen memory, the program will call the subroutine GETADR. The line's
starting memory address is then offset by the horizontal location of the shape on the
screen. Our table of line addresses is only an offset, so it will need to add the actual
starting address of the screen.

Memory address = Line # starting address + horizontal offset

GETADR LDA YVERTL,Y
CLC
ADC HORIZ
STA HIRESL
LDA YVERTH,Y
ADC /SCREEN
STA HIRESH
RTS

;LOOKUP LOW BYTE ADDRESS OF LINE

;ADD HORIZ. OFFSET
;STORE LOW BYTE OF SCREEN ADDRESS
;LOOKUP HIGH BYTE ADDRESS OF LINE
;ADD HIGH BYTE OF SCREEN ADDRESS
;STORE HIGH BYTE SCREEN ADDRESS

319

320

8 RASTER GRAPHICS & SOUND

w here the Y register has a vertical screen va l ue (0-191) .

If you are designing an arcade game, you will probab ly have several different
shapes on the screen a t one time. Keeping track of each shape's variables, which are
in putted into a generalized drawing routine, is generally easier if a set-up routine is
incorporated into your program. This assu res tha t you haven't forgotten to initialize
anythi ng before entering the drawing routine. Only a few variables need to be
defined in the set-up routine: the location of th e shape tab le; the horizontal dis
p lacemen t on the screen; and the width and depth of the shape.

The drawing routine becomes more efficien t the fewer times it accesses the
GETADR subroutine. Therefore, it is much faster to load and store on the same
screen li ne until the end o f the shape's width is reached . Drawing our balloon a byte
a t a time across its width wi ll onl y require ca lling GETADR 31 times. But if we
p lotted down instead , GET ADR wou ld be ca lled for each byte , or 279 times, an
unnecessary waste of time.

As we load and store across a particu lar screen line, we decrement SLNGH, the
ship's width, until SLNGH eq uals zero. When we are finished with a row, we
increment TVERT to the nex t screen line down and decrement the DEPTH. When
DEPTH reaches zero, we have p lo tted a ll rows of the sha pe and we are finished.

DRAW

DRAW2

.1

LDY VERT
JSR GETADR
LDX #$00
LDA TEMP
STA SLNGH
LDY #$00

;VERTICAL POSITION
;FIND BEGINNING OF SCREEN ADDRESS ROW

;RESTORE VALUE OF WIDTH FOR NEXT ROW

LDA (SHPL,X) ;GET BYTE OF SHAPE TABLE
STA (HIRESL),Y;PLOT ON SCREEN
INC SHPL ;NEXT BYTE OF SHAPE TABLE
BNE .1 ;IF CROSS PAGE BOUNDARY?
INC SHPB ;INCREMENT TO NEXT PAGE OF SHAPE
INY ;NEXT POSITION ON SCREEN
DEC SLNGH ;DECREMENT WIDTH
BNE DRAW2 ; FINISHED IVITH ROW YET?
INC VERT ;IF SO, INCREMENT TO NEXT LINE
DEC DEPTH ; DECREMENT DEPTH
BNE DRAW ;FINISHED ALL ROWS?
RTS ;YES, END

0 1 2

3 4 5

6 7 8

9

Map at elements in
shape table as they

appear on the screen

RASTER GRAPHICS & SOUND 8

INPUT:
SHAPE ADDR: SHPL,SHPH

X POSITION: HORIZ
DEPTH OF SHAPE: DEPTH
WIDTH OF SHAPE: SLNGH

& TEMP

I
PUT TVERT(vertical pas.)IN Y REG. I

I

I
JSR TO GETADR

I RETURN WITH HIRESH,HIRESL

I
RESET SLNGH=TEMP

1
J GET BYTE FROM SHAPE TABLE

J I LDA (SHPL,X)

1
I

PLOT ON SCREEN

I STA (HIRESL),Y

I
INC POINTER TO NEXT

SHAPE IN SHAPE TABLE
SHPL = SHPL + 1

I
NEXT SCREEN POSITION

INY

1
I SLNGH = SLNGH - 1 I

NO
I

IS SLNGH = O? J
rES

I
TVERT = TVERT + 1 J DEPTH = DEPTH - 1

NO I
IS DEPTH = O? J

!YES

L DONE I

32 1

322

8 RASTER GRAPHICS & SOUND

AI though the first row of the shape can be plotted at any VERT (0 -191) position, if
VERT began at 190, the computer would attempt to plot the third line at VERT=192.
Indexing into the table tha t far would most likely produce garbage, as you would
index beyond the end of the table. You should always be careful that:

TVERT ~ 192-DEPTH

A simple tes t somewhere before the draw subroutine wou ld suffice , but it might be
incorporated into your joystick read routine.

XDrawing Shapes

Obj ects that move on the screen a re shifted in position by erasing the obj ect's first
position before drawing it at its new position. T he simples t method is to draw the
shape by Exclusive-ORing it before shifting it.

EOR Instruction

T he Exclusive-OR instruction, EOR, is primarily used to determine which bits
differ between two operands, but it can a lso be used to complement selected Accumu
la tor bi ts. The way it works is elementary. If neither of two particular memory bits is
se t or their val ues are zero, the resul t is zero. If either o ne is set, then the resul t is one.
But if bo th are set, they cancel and the res ult is zero.

MEMORY BIT ACCUMULATOR RESULT BIT IN
ACCUMULATOR

o o
EOR 0

BIT
o
I
o 1

o
If we take a byte on the screen and EO R it with the same byte

01100110
01100110

o 0 0 0 0 000

SHAPE ON SCREEN
SHAPE

RESULT

From the shape table, the res ult is zero or a screen erase. A similar effec t would
occur if a blank screen were EORed with a shape, then EO Red again.

EOR

EOR

o 0 0 0 0 000
0110010

o
o

o 0
o 0

o
o

o 0 000 000

BLANK SCREEN
WITH SHAPE

RESULT IS SHAPE ON SCREEN

RESULT IS BLANK SCREEN

RASTER GRAPHICS & SOUND 8

It doesn't damage the background if a shape is EORed on the screen, and then off
again. However it does distort the shape slightly.

EOR

EOR

o 0 0 0 0 0 0 I
00101100

00 0 101

0001100

o 0 0 0 0 0 0 I

BACKGROUND
WITH SHAPE

RESULT ON SCREEN (SHAPE
DISTORTED LAST BIT)

WITH SHAPE

GET BACKGROUND BACK

In the above example, an extra pixel in the shape's last bit position distorts the
shape drawn on the screen. In the example below, the fourth bit position becomes a
hole in the shape.

000 o 0 0 0 BACKGROUND
EOR 0 0 000 WITH SHAPE

0 001 000 RESULT ON SCREEN ,
hole here

EOR 010 I 000 WITH SHAPE

000 000 0

There are some techniques to avoid distorting the shape when the background is
likely to interfere during the drawing process. This involves a combination of
EO Ring and ORing the screen with the background stored in an alternate screen
memory. An alternate method is to store the screen memory bytes in a temporary
table equal in size to your shape, while you draw your shape. When erasing, you
replace the shape with the background stored in your temporary table.

OR Instruction

The OR memory with Accumulator (ORA) instruction differs from the EOR
instruction in that if both memory and Accumulator bits are on, then the result is
one, or on.

MEMORY BIT

o
ORA 0

ACCUMULATOR
BIT
o
1
o

RESULT BIT IN
ACCUMULATOR

o
1

If the background were as follows, and you ORed it with the shape, the shape
remains correct.

323

324

8 RASTER GRAPHICS & SOUND

o 0 0 0 I 0
ORA o I 0 0 0

o 010

BACKGROUND
WITH SHAPE

GET SHAPE + BACKGROUND
WITH NO HOLE IN SHAPE

Unfortunate ly, if you EOR this result with the shape again, the background is
flaw ed.

EOR
o
o

010
000

o 0 0 0 0 0 I 0

SHAPE + BACKGROUND
WITH SHAPE

FLAWED BACKGROUND

We can incorpo!a te the Exclusive-OR instruction in our XDRA W routine. If we
EOR the shape we had previously on the screen, nothing remains.

00010 XORAW
00020
00030
00040
00050
00060 XORAW2
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160

LOY TVERT
JSR GETAOR
LDA TEMP
STA SLNGH
LOX #$00
LOA (SHPL,X)
EOR (HIRESL),Y
STA (HIRESL),Y
INC SHPL
INY
DEC SLNGH
BNE DRAW2
INC TVERT
DEC DEPTH
BNE DRAW
RTS

jVERTICAL POSITION

jRESTORE VALUE OF WIDTH FOR NEXT ROW

jGET BYTE FROM SHAPE TABLE
jEOR WITH BYTE ALREADY ON SCREEN
jDRAW ON SCREEN
jNEXT BYTE OF SHAPE TABLE

j DECREMENT IYIOTH
jFINISHED WITH ROW?
;IF SO, INCREMENT TO NEXT LINE
;DECREMENT DEPTH
jFINISHED ALL ROWS?
jYES, END ROUTINE

Now that we know how to DRA Wand XDRA W a bit-mapped shape anywhere on
a Graphics mode 8 screen, the principle for animating them is simple. A shape is
erased from the screen, its new position is calculated, then it is redrawn at its new
position. The procedure is outlined below.

INITIALIZE STARTING POSITION

RASTER GRAPHICS & SOUND 8

A delay has been inserted between the DRA Wand the XDRA W to a llow the object
to be on the screen longer than it is off. Without the delay, the object is erased
immedia tely after it is drawn. This does not give the shape's image sufficient time to
remain on screen during one animation frame. The resull is a badly-flickering
image. A small delay can be inserted by checking the internal clock at $14 for so many
jiffies. Experiments show that 3/ 60 seconds is a good va lue.

Whenever a shape is moved horizontally, the bit pattern within a screen memory
byte shifts and sometimes even intrudes into the adjacent byte. To avoid color shifts
due to the odd-even column artifacting, shapes must be moved h orizontally two
columns at a time. If we consider the four-pixel-wide shape in the diagram below
and move it right two bits at a time, it retains the same shape and color pattern, but
the va lue in its shape table changes. If we shift the shape far enough, some of the bits
run into the next byte. By the time we have shifted it the fourth time, the pattern
repeats itself as if it were in the same starting position but one byte over. So if we are
going to be ab le to move a shape anywhere on the screen, we will need four sh ifted
shape tables each one byte wider than the origina l shape. And since we need to move
the shape horizontally two pixels or color clocks at a time, it would be easier to work
with a coordinate system that goes from 0-159 instead of 0-319.

SHAPE
TABLE#
(XOFF,X)

X COORDINATE
SYSTEM

ACTUAL
SCREEN

XPOS

$BO $00

$2C $00

$OB $00

$02 $CO

$00 $BO

o 2345678 9ABCDE F

IVIGIVIGIVIGIVIGIVIGIVIGIVIGIVIG

0 2 3 4 5 6 7

I I I I I I I
0 2 3 0 2 3

I I

325

326

8 RASTER GRAPHICS & SOUND

It would be nice if there were a relationship between the horizontal position (X)
and the shape #. The mathematical relationship is as follows :

TEMP = INT (X/ 4)
SHAPE# = X - TEMP'*'4

Actually, it is a lot faster to look the value up in a table called XOFF. This table has
the shape table # for each possible X position. You can retrieve the shape table
number by indirectly indexing into the table with the X position in the Y-register.
We use another small table SHPLO to store the low byte starting positions of each of
the shape tables, and another called SHPHI if the combined length of the four
shapes crosses a page boundary. The code to set up the pointers to the proper shape is
as follows:

LDY X
LDX XOFF, Y
LDA SHPLO,X
STA SHPL
LDA SHPHI,X
STA SHPH

;HORIZONTAL POSITION (0-159)
;INDEX TO FIND SHAPE #
;INDEX TO GET LOW BYTE OF SHAPE TABLE
;STORE LOW BYTE IN ZERO PAGE
;GET HIGH BYTE OF SHAPE TABLE
;STORE HIGH BYTE IN ZERO PAGE

The drawing routine is exactly the one described earlier. Once the pointers to the
proper shape tabl e are in putted with both the shape's vertica l position and horizon
tal offset, bytes can be tra nsferred to screen memory from the appropriate shape
table.

The XDRA W subroutine differs from our drawing routine in only one instruc
tion . Instead of just fetching a byte from our shape table and placing it directly in
screen memory, this routine EORs it with the byte a lready on the screen before
storing it there. The bits are effectively erased if the screen image byte and the shape
table byte are a match.

LDA (SHPL,X) ;GET BYTE FROM SHAPE TABLE
EOR (HIRESL),Y ;EOR WITH SCREEN IMAGE
STA (HIRESL),Y ;PLOT ON SCREEN

Collision Detection

Detecting collisions between raster shapes isn ' t easy. There aren't any collision
registers to query as you can when working with player-missi le shapes. Instead,
when drawing the shape, you must simultaneously tes t for any other pixels within
that byte's (or pixel's) screen location . The tes t is performed using the AND
instruction.

RASTER GRAPHICS & SOUND 8

The AND Instruction

The truth table for the AND instruction is as follows:

ACe.
o
o

MEMORY
o
I
o

RESULT
o
o
o

Both Accumulator and memory must be on (set) for the result to be on (set).

If we take a screen memory location that has an object in it and AND it with a byte
from our shape table, any duplication in any bit location where something is already
on the screen will give a non-zero result.

o I I
AND 000

000

000
I I I

000

Background
Shape

Result $18 > Zero

Drawing While Testing for Collision

Usually, in any game, if a collision is detected, the object is to be removed. Your
first instinct is to stop drawing the object since it is to be removed anyway. But if you
are Exclusive-ORing (EORing) the screen and you stop in the middle of your shape,
you are going to leave a mess. It is much better to set a collision flag, finish drawing
the shape, then remove the object later by completely EO Ring the shape off the
screen.

DRAW

LDA (SHPL,X)
AND (HIRESL),Y
BEQ DRAW
LDA #$01
STA ESET
LDA (SHPL,X)
EOR (HIRESL),Y
STA (HIRESL),Y

;GET BYTE FROM SHAPE TABLE
;AND WITH SCREEN IMAGE
;BRANCH ON NO COLLISION
;SET COLLISION FLAG

;GET BYTE FROM SHAPE TABLE
;EOR WITH SCREEN IMAGE
;PLOT ON SCREEN

Collision Detection - A Special Case

Any two objects of byte size or larger should have no problem with collision
detection, especially if you are working with solid white objects. But there is a
specific case involving artifacting in which collision detection would not work. Let
us assume that we have a blue spaceship and a green alien that appear to collide. If
we examine their bit patterns, you will notice that they never coincide.

327

328

8 RASTER GRAPHICS & SOUND

BGBGBGBGBGBG

o 0 1 0 1 0 1 0 1 0 1 0 SHIP
AND o 0 0 1 0 I 0 1 0 1 0 0 ALIEN

o 0 0 0 0 0 0 0 0 0 0 0 RESULT 0

The solution is to test the ship against screen memory with what is caled a "mask"
of the ship's shape, as if the ship were solid white. We take this mask of the ship,
which has both blue and green pixels lit, and AND it against the alien occupying the
same screen locations. A collision will be detected in this case. We set a flag, and then
take the appropriate byte from the blue ship's shape table and EOR it against the
screen.

Blimp Example

A good raster graphics example would be one that would be difficult or impossible
to do with either animated character graphics or player-missile graphics. The large
elongated blimp shape in this example is eight bytes wide (nine if you count the byte
needed for the offset shapes), and thirty-one scan lines deep. By artifacting, we are
able to produce a shape of three different colors: blue, green, and white. The shape is
outlined below.

The blimp is joystick-controlled and therefore free to move anywhere on the
screen. You have to be very careful that you don't try to plot the shape beyond the
screen boundaries. While plotting bytes beyond the right edge would produce a
wraparound effect at the left edge one scan line lower, plotting beyond scan line 191
could create severe problems by wiping out some portion of memory. If we exceed
the bounds of our YVERTL, YVERTH tables, unknown pointers to our plotting
position in screen memory would be placed in zero page. In this case, the vertical
position cannot exceed 192-31 = 161. All of these tests are incorporated in the joystick
subroutine.

Flickering Problem with Large Raster Shapes

The first time we attempted the example, we placed the raster drawing code
outside of VBlank and the music routine in VB lank. Unfortunately, the rastered
image flickered badly because the image, after remaining on the screen for several
frames, has to be erased at some point before it is redrawn at its new position. Since
this takes place when the electron beam is on the screen, there is a slight gap, possibly
as long as a frame, before the redrawn image is in place. This never seems to be a
problem on other computers like the Apple II, but then they use interlacing tech
niques to produce their television images while the Atari does not.

We then felt that the animation should become flicker -free if we moved the raster
drawing routines inside VElank. This way the rastered image could be erased and

RASTER GRAPHICS & SOUND 8

redrawn while the electron beam was mostly off-screen. We arranged the code so that
the shape is drawn initially, remains stationary on the screen for three television
frames, then is erased, moved, and redrawn on the fourth frame. A timer called
TDELA Y is set to zero after each erasure, and increments with each frame. A test will
cause a branch past the erase-move-redraw code when TDELAY is not equal to three.
When it is equal, it will erase the shape, read the joystick, calculate its new position,
then redraw it in that position.

We feared that the code might be too long to fit within one Deferred VBlank cycle
because the shape was nine bytes by thirty-one scan lines. Having never encountered
the problem before, I became confused with the buggy results. The code was
arranged differently within the Vblank at the time. The sound routine was last, and I
was drawing the raster shape on each frame. The routine invariably drew the shape
then hung the first time it was run after assembly, but would actually execute the
code after a system reset. A more serious problem was that six complete scan lines
directly beneath the shape were garbaged. The routines worked when the code was
outside VBlank.

Testing Whether Code Finishes Before VBlank Ends

After many wasted hours, we decided that a test would be needed to determine if
and when the end of the VBlank code was ever reached. Obviously, if we reached the
end we wouldn't have a problem; however, if we didn't, we would have to finish iton
the next cycle. Let's assume that we haven't finished it when the computer says it's
time for a new VBlank Interrupt to occur. It saves all of the registers and its position
within the code just like it was outside VBlank. Now when a new VBlank Interrupt
occurs, it begins again from the top. Fine, it executes the sound routine but when it
tests if VBFLAG = 0, it discovers that it never finished the last VBlank and exits
through the exit VBlank subroutine at $E462. The computer restores the registers
and its position in the code when it was interrupted. It then finishes the VBlank
routine. While this is a good example of how to correct the problem of VB lank
routines that are too long, it fails to completely smooth out the animation. However,
it is slightly better than when the raster code was completely outside VBlank.

If you would like to observe what happens if the above method isn't incorporated
within your program, try removing the]MP $E462 statement. The result is a screen
that has gone wacko. The rastered shape is plotted in pieces on different scan lines,
and the display begins to roll.

Background Sound

The background sound throughout our raster example is a familiar tune. The
sound routine, which is explained in the next section, reads the individual notes and
their length from a table. It runs in VBlank because the length of the notes uses the
system timers.

329

330

8 RASTER GRAPHICS & SOUND

o

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0

0123456701234567012345670123456

02 I AA
I AA I AA

OA I AA I AA I AA

2A I AA I AA I AA

2A I AA I AA I AA

AA I AA I AA I AA

AA AA I AA I AA

2A I, AA ;1, AA I AA

2A I AA I
AA I AA

OA I AA
I AA I AA

00 I 00 I
01 I 55

00 I
03 I 81 I

55

00 03 I 80
I 55

00 ; 01 I 00
I 15

00
I 07 I 80 I 18

00
I 01 I 80 I 18

40
I

07 I AA I 8A

50
I 1F I 02 I AA

50 I 1C I 00 I AA

54 I 00 I 00 I OA

55 I 07
I FF I FF

55 \ OF FF I FF

55
I

5F I FF FF I

50 I 40 I 00 18

50 I 50 I 00 18

40 I 10 I 00
I 18

00 I 14 I 00 I 18

00 I 05 I 00 I 18

00 I 05 I 40 I
54

00 I 01 I 55
I

55
00 I 00 I 55 55 I

: 00 I 15 I 01

,
1

RASTER GRAPHICS & SOUND 8

1234567012345670123456701234567

AA ; AA

AA _L AA

AA • AA

AA AA

AA AA

AA J AA

AA -.l AA

AA I AA

AA I AA

I 40 00

40 J 00

00
I

00

00 I 00

00 00

00 I 00

80 I 00

80 1 00

80 i 00

80 i
00

FF
I FD

FF I E5

FF D4

00 I 10

00 50

00 I 40

01 40

01 I 00

05 I 00

54 J 00

54 J 00

50 1 00

I 80 I

1 A8 :
1 AA I

1 AA I

i AA I

I AA I
I AA I
1 AA

I

I A8 I

1 00 I
00 I

I 00 I
I 00

~

J 00 I

I 00 I
I

CO I
I C2 1
I E2

I EA I

I EA I
I E2 I
I 02 I

00

I 00 I

I 00 I
I 00 I
I 00 I

I 00
I

I 00 I
j 00 1
I 00 I

00

00

00

80

80

80

80

00

00

00

00

00

00

00

00

AD

A8

AS

AS

AS

AS

A8

AD

00

00

00

00

00

00

00

00

I

I

I
I
J
I

I
I

I

I
I

J

I

I
J
I

I

I
I
I

I

I
J

I
I

I
I
I

o

6

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

33 1

332

8 RASTER GRAPHICS & SOUND

$7FFO
DISPLAY MEMORY

LAST 102 SCAN LINES
$7000

DISPLAY MEMORY
FIRST 90 SCAN LINES

$610F - 4K BOUNDARY

DISPLAY LIST

$6000

EMPTY

$4BBB

PROGRAM CODE

$49EF
MUSICAL NOTES

& VARIABLES
$4900

BLIMP SHAPES

$4000

HORIZ. OFFSET TABLE

$4100

STORED DISPLAY LIST

$4200
LOOKUP TABLE YUERTH

SCREEN ADDRESS (HI BYTE)
$4300

LOOKUP TABLE YUERTL

$4400
SCREEN ADDRESS (LOW BYTE)

00010 *RASTER GRAPHICS - GR .8 EXAMPLE - WITH MUSIC- JEFF STANTON
00020 . OR $4000
00030 *ZERO PAGE EQUATES

OOFO : 00040 SHPL . EQ $FO
00F1: 00050 SHPH . EQ $Fl
00F2 : 00060 HIRESL .EQ $F2
00F3 : 00070 HIRESH . EQ $F3
00F4: 00080 SL . EQ $F4
00F5: 00090 SH .EQ $F5

00100 *OTHER EQUATES
6000 : 00110 SCREEN .EQ $6000 ;SCREEN IS ACTUALLY OFFSET 496 BYTES @ $61FO
6000: 00120 NDLIST . EQ $6000 ;ADR OF DISPLAY LIST
0278 : 00130 STICK . EQ $278
02C5 : 00140 COLOR 1 .EQ $2C5
02C6 : 00150 COLOR2 .EQ $2C6
D201: 00160 AUDC1 . EQ $D20l
D200 : 00170 AUDFl . EQ $D200
00F6: 00180 NOTEL . EQ $F6
00F7: 00190 NOTEH .EQ $F7
E45C: 00200 SETVBK .EQ $E45C
E462 : 00210 XITVBK . EQ $E462

RASTER GRAPHICS & SOUND 8

00220 *LINE LOOKUP TABLE - LO BYTE - STARTS AT $4000
4000 : FO 18 40
4003: 68 90 B8
4006: EO 08 00230 YVERTL .HS F018406890B8E008
4008 : 30 58 80
400B: A8 DO F8
400E: 20 48 00240 .HS 305880A8DOF82048
4010: 70 98 CO
4013: E8 10 38
4016: 60 88 00250 .HS 7098COE810386088
4018 : BO D8 00
401B: 28 50 78
401E: AO C8 00260 .HS BOD800285078AOC8
4020: FO 18 40
4023 : 68 90 B8
4026 : EO 08 00270 .HS F018406890B8E008
4028: 30 58 80
402B : A8 DO F8
402E : 20 48 00280 . HS 305880A8DOF82048
4030 : 70 98 CO
4033 : E8 10 38
4036 : 60 88 00290 . HS 7098COE810386088
4038 : BO D8 00
403B : 28 50 78
403E: AO C8 00300 . HS BOD800285078AOC8

BLIMP -FLOW CHART
FRAME

l
YES

VBFLAG = O? I
I

l JMP $E462

I XITVBK

I
OK [

[DRAW SHAPE J
I

NO I TDELAY = 3? I t YES

[XDRAW SHAPE I
I

I READY JOYSTICK I
I

r SET TDELAY = 0 J
J

.1

I INC TDELAY
I
J

SOUND I
SOUND SUBROUTINE I

I XITUBK I

333

334

8 RASTER GRAPHICS & SOUND

4040:
4043 :
4046 :
4048 :
404B:
404E :
4050 :
4053 :
4056 :
4058 :
405B:
405E :
4060:
4063:
4066 :
4068 :
406B:
406E :
4070:
4073:
4076 :
4078:
407B:
407E :
4080 :
4083 :
4086:
4088:
408B :
408E :
4090:
4093 :
4096 :
4098:
409B :
409E :
40AO :
40A3 :
40A6 :
40A8:
40AB :
40AE :
40BO:
40B3 :
40B6 :
40B8:
40BB :
40BE :
40CO :

4100 :
4103:
4106:
4108 :
410B :
41OE:
4110:
411 3 :
4116:
4118 :
411B:
411E:

FO 18 40
68 90 B8
EO 08 00310 .HS F018406890B8E008
30 58 80
A8 DO F8
20 48 00320 .HS 305880A8DOF82048
70 98 CO
E8 10 38
60 88 00330 . HS 7098COE810386088
BO D8 00
28 50 78
AO C8 00340 . HS BOD800285078AOC8
FO 18 40
68 90 B8
EO 08 00350 .HS F018406890B8E008
30 58 80
A8 DO F8
20 48 00360 . HS 305880A8DOF82048
70 98 CO
E8 10 38
60 88 00370 . HS 7098COE810386088
BO D8 00
28 50 78
AO C8 00380 .HS BOD800285078AOC8
FO 18 40
68 90 B8
EO 08 00390 .HS F018406890B8E008
30 58 80
A8 DO F8
20 48 00400 . HS 305880A8DOF82048
70 98 CO
E8 10 38
60 88 004 10 .HS 7098COE810386088
BO D8 00
28 50 78
AO C8 00420 .HS BOD800285078AOC8
FO 18 40
68 90 B8
EO 08 00430 . HS F018406890B8E008
30 58 80
A8 DO F8
20 48 00440 .HS 305880A8DOF82048
70 98 CO
E8 10 38
60 88 00450 . HS 7098COE8 10386088
BO D8 00
28 50 78
AO C8 00460 .HS BOD800285078AOC8

00470 . BS $40
00480 *LINE LOOKUP TABLE - HI BYTE STARTS AT $4 100

01 02 02
02 02 02
02 03 00490 YVERTH .HS 0102020202020203
03 03 03
03 03 03
04 04 00500 .HS 0303030303030404
04 04 04
04 05 05
05 05 005 10 .HS 0404040405050505
05 05 06
06 06 06
06 06 00520 . HS 0505060606060606

RASTER GRAPHICS & SOUND 8

4120: 06 07 07
4123: 07 07 07
4126: 07 08 00530 .HS 0607070707070708
4128: 08 08 08
412B: 08 08 08
412E: 09 09 00540 .HS 0808080808080909
4l30: 09 09 09
4l33: 09 OA OA
4136: OA OA 00550 .HS 090909090AOAOAOA
4138: OA OA OB
413B: OB OB OB
413E: OB OB 00560 .HS OAOAOBOBOBOBOBOB
4140: OB OC OC
4143: OC OC OC
4146: OC OD 00570 .HS OBOCOCOCOCOCOCOD
4148: OD OD OD
414B: OD OD OD
414E: OE OE 00580 .HS ODODODODODODOEOE
4150: OE OE OE
4153: OE OF OF
4156: OF OF 00590 .HS OEOEOEOEOFOFOFOF
4158: OF OF 10
415B: 10 10 10
415E: 10 10 00600 .HS OFOFI0I0I0I0I0I0
4160: 10 11 11
4163: 111111
4166: 11 12 00610 .HS 1011111111111112
4168: 12 12 12
416B: 12 12 12
416E: l3l3 00620 .HS 1212121212121313
4170: 13 13 l3
4173: 13 14 14
4176: 14 14 00630 .HS 1313131314141414
4178: 14 14 15
417B: 15 15 15
417E: 15 15 00640 .HS 1414151515151515
4180: 15 16 16
4183: 16 16 16
4186: 16 17 00650 .HS 1516161616161617
4188: 17 17 17
418B: 17 17 17
418E: 18 18 00660 .HS 1717171717171818
4190: 18 18 18
4193: 18 19 19
4196: 19 19 00670 .HS 1818181819191919
4198: 19 19 lA
419B: lA lA lA
419E: lA lA 00680 .HS 19191AIAIAIAIAIA
41AO: lA IB IB
41A3: IB IB IB
41A6: IB lC 00690 .HS lAIBIBIBIBIBIBIC
41A8: lC lC lC
41AB: lC lC lC
41AE: ID ID 00700 .HS lCICICICICICIDID
41BO: ID ID ID
41B3: ID IE IE
41B6: IE IE 00710 .HS IDIDIDIDIEIEIEIE
41B8: IE IE IF
41BB: IF IF IF
41BE: IF IF 00720 .HS lEIEIFIFIFIFIFIF
41CO: 00730 .BS $40

335

8 RASTER GRAPHICS & SOUND

00740 *DISPLAY LIST STARTS AT $4200
4200 : 70 70 70
4203: 4F FO 61
4206 : OF OF 00750 DLIST .HS 7070704FF0610FOF
4208: OF OF OF
420B: OF OF OF
420E : OF OF 00760 .HS OFOFOFOFOFOFOFOF
4210: OF OF OF
4213: OF OF OF
4216: OF OF 00770 .HS OFOFOFOFOFOFOFOF
4218: OF OF OF
421B: OF OF OF
421E : OF OF 00780 .HS OFOFOFOFOFOFOFOF
4220 : OF OF OF
4223: OF OF OF
4226: OF OF 00790 .HS OFOFOFOFOFOFOFOF
4228 : OF OF OF
422B : OF OF OF
422E : OF OF 00800 .HS OFOFOFOFOFOFOFOF
4230: OF OF OF
4233: OF OF OF
4236: OF OF 00810 .HS OFOFOFOFOFOFOFOF
4238 : OF OF OF
423B: OF OF OF
423E: OF OF 00820 .HS OFOFOFOFOFOFOFOF
4240 : OF OF OF
4243: OF OF OF
4246: OF OF 00830 .HS OFOFOFOFOFOFOFOF
4248: OF OF OF
424B: OF OF OF
424E: OF OF 00840 .HS OFOFOFOFOFOFOFOF
4250: OF OF OF
4253: OF OF OF
4256 : OF OF 00850 .HS OFOFOFOFOFOFOFOF
4258: OF OF OF
425B : OF OF OF
425E: OF 4F 00860 .HS OFOFOFOFOFOFOF4F
4260: 00 70 OF
4263: OF OF OF
4266: OF OF 00870 .HS 00700FOFOFOFOFOF
4268 : OF OF OF
426B: OF OF OF
426E: OF OF 00880 .HS OFOFOFOFOFOFOFOF
4270: OF OF OF
4273: OF OF OF
4276: OF OF 00890 .HS OFOFOFOFOFOFOFOF
4278: OF OF OF
427B: OF OF OF
427E: OF OF 00900 .HS OFOFOFOFOFOFOFOF
4280: OF OF OF
4283: OF OF OF
4286: OF OF 00910 .HS OFOFOFOFOFOFOFOF
4288 : OF OF OF
428B: OF OF OF
428E: OF OF 00920 .HS OFOFOFOFOFOFOFOF
4290: OF OF OF
4293: OF OF OF
4296: OF OF 00930 .HS OFOFOFOFOFOFOFOF
4298 : OF OF OF
429B: OF OF OF
429E: OF OF 00940 .HS OFOFOFOFOFOFOFOF
42AO : OF OF OF

336

RASTER GRAPHICS & SOUND 8

42A3: OF OF OF
42A6: OF OF 00950 .HS OFOFOFOFOFOFOFOF
42A8: OF OF OF
42AB: OF OF OF
42AE: OF OF 00960 .HS OFOFOFOFOFOFOFOF
42BO: OF OF OF
42B3: OF OF OF
42B6: OF OF 00970 .HS OFOFOFOFOFOFOFOF
42B8: OF OF OF
42BB: OF OF OF
42BE: OF OF 00980 .HS OFOFOFOFOFOFOFOF
42CO: OF OF OF
42C3: OF OF OF
42C6: OF 41 00990 .HS OFOFOFOFOFOFOF41
42C8: 00 60 01000 .HS 0060
42CA: 01010 .BS $36

01020 *HORIZONTAL OFFSET TABLE - START AT $4300
01030 *THIS POINTS TO PROPER OFFSET SHAPE FOR EACH X POS (0--159)

4300: 00 01 02
4303: 03 00 01
4306: 02 03 01040 XOFF .HS 0001020300010203
4308: 00 01 02
430B: 03 00 01
430E: 02 03 01050 .HS 0001020300010203
4310: 00 01 02
4313: 03 00 01
4316 : 02 03 01060 .HS 0001020300010203
4318: 00 01 02
431B: 03 00 01
431E: 02 03 01070 .HS 0001020300010203
4320: 00 01 02
4323: 03 00 01
4326: 02 03 01080 .HS 0001020300010203
4328: 00 01 02
432B: 03 00 01
432E: 02 03 01090 .HS 0001020300010203
4330: 00 01 02
4333: 03 00 01
4336: 02 03 01100 .HS 0001020300010203
4338: 00 01 02
433B: 03 00 01
433E: 02 03 01110 .HS 0001020300010203
4340: 00 01 02
4343: 03 00 01
4346: 02 03 01120 .HS 0001020300010203
4348: 00 01 02
434B: 03 00 01
434E: 02 03 01130 .HS 0001020300010203
4350: 00 01 02
4353: 03 00 01
4356: 02 03 01140 .HS 0001020300010203
4358: 00 01 02
435B: 03 00 01
435E : 02 03 01150 .HS 0001020300010203
4360: 00 01 02
4363: 03 00 01
4366: 02 03 01160 .HS 0001020300010203
4368: 00 01 02
436B: 03 00 01
436E: 02 03 01170 .HS 0001020300010203
4370: 00 01 02
4373: 03 00 01

337

338

8 RASTER GRAPHICS & SOUND

4376: 02 03 01180 .HS 0001020300010203
4378: 00 01 02
437B: 03 00 01
437E: 02 03 01190 .HS 0001020300010203
4380: 00 01 02
4383: 03 00 01
4386: 02 03 01200 .HS 0001020300010203
4388: 00 01 02
438B: 03 00 01
438E: 02 03 01210 .HS 0001020300010203
4390: 00 01 02
4393: 03 00 01
4396: 02 03 01220 .HS 0001020300010203
4398: 00 01 02
439B: 03 00 01
439E: 02 03 01230 .HS 0001020300010203

01240 *SHPLO CONTAINS LO ORDER BYTE ADDRESS OF OUR 4 SHAPES
43AO: 00 17 2E
43A3: 45 01250 SHPLO .HS 00172E45

01260 *SHPHI CONTAINS HI ORDER BYTE ADDRESS OF OUR 4 SHAPES
43A4: 44 45 46
43A7: 47 01270 SHPHI .HS 44454647
43A8: 01280 .BS $58

01290 *SHAPES MUST BEGIN AT $4400
01300 *SHAPEO

4400: 02 AA AA
4403: AA AA AA
4406: 80 00 00 01310 SHAPES .HS 02AAAAAAAAAA800000
4409: OA AA AA
440C: AA AA AA
440F: A8 00 00 01320 .HS OAAAAAAAAAAAA80000
4412: 2A AA AA
4415:
4418:
441B:
441E:
4421 :
4424:
4427:
442A:
442D:
4430:
4433:
4436:
4439:
443C:
443F:
4442:
4445:
4448:
444B:
444E:
4451 :
4454:
4457:
445A:
445D:
4460:
4463:
4466:
4469:
446C:

AA AA AA
AA 00 00 01330
2A AA AA
AA AA AA
AA 80 00 01340
AA AA AA
AA AA AA
AA 80 00 01350
AA AA AA
AA AA AA
AA 80 00 01360
2A AA AA
AA AA AA
AA 80 00 01370
2A AA AA
AA AA AA
AA 00 00 01380
OA AA AA
AA AA AA
A8 00 00 01390
00 00 01
55 40 00
00 00 00 01400
00 03 81
55 40 00
00 00 00 01410
00 03 80
55 00 00
00 00 00 01420
00 01 00

.HS 2AAAAAAAAAAAAAOOOO

.HS 2AAAAAAAAAAAAA8000

.HS AAAAAAAAAAAAAA8000

.HS AAAAAAAAAAAAAA8000

.HS 2AAAAAAAAAAAAA8000

.HS 2AAAAAAAAAAAAAOOOO

.HS OAAAAAAAAAAAA80000

.HS 000001554000000000

.HS 000381554000000000

.HS 000380550000000000

RASTER GRAPHICS & SOUND 8

446F: 15 00 00
4472: 00 00 00 01430 .HS 000100150000000000
4475: 00 07 80
4478: 18 00 00
447B: 00 00 00 01440 .HS 000780180000000000
447E: 00 01 80
4481: 18 00 00
4484: 00 00 00 01450 .HS 000180180000000000
4487: 40 07 AA
448A: 8A 80 00
448D: CO AO 00 01460 .HS 4007AA8A8000COAOOO
4490: 50 IF 02
4493: AA 80 00
4496: C2 A8 00 01470 .HS 501F02AA8000C2A800
4499: 50 1C 00
449C: AA 80 00
449F: E2 AB 00 01480 .HS 501COOAA8000E2ABOO
44A2: 54 00 00
44A5: OA 80 00
44A8: EA AB 00 01490 .HS 5400000A8000EAABOO
44AB: 55 07 FF
44AE: FF FF FD
44B1: EA AB 00 01500 .HS 5507FFFFFFFDEAABOO
44B4: 55 OF FF
44B7: FF FF E5
44BA: E2 AB 00 01510 .HS 550FFFFFFFE5E2ABOO
44BD: 55 5F FF
44CO: FF FF D4
44C3: 02 A8 00 01520 .HS 555FFFFFFFD402A800
44C6: 55 40 00
44C9: 18 00 10
44CC: 00 AO 00 01530 .HS 55400018001000AOOO
44CF: 50 50 00
44D2: 18 00 50
44D5: 00 00 00 01540 .!-IS 505000180050000000
44D8: 50 10 00
44DB: 18 00 40
44DE: 00 00 00 01550 .HS 501000180040000000
44E1: 40 14 00
44E4: 18 01 40
44E7: 00 00 00 01560 .HS 401400180140000000
44EA: 00 05 00
44ED: 18 01 00
44FO: 00 00 00 01570 .HS 000500180100000000
44F3: 00 05 40
44F6: 54 05 00
44F9: 00 00 00 01580 .!-IS 000540540500000000
44FC: 00 01 55
44FF: 55 54 00
4502: 00 00 00 01590 .HS 000155555400000000
4505: 00 00 55
4508: 55 54 00
450B: 00 00 00 01600 .HS 000055555400000000
450E: 00 00 15
4511: 01 50 00
4514: 00 00 00 01610 .HS 000015015000000000

01620 *SHAPE #1 SHIFTED RT 2 PIXELS
4517: 00 AA AA
451A: AA AA AA
451D: AO 00 00 01630 .HS OOAAAAAAAAAAAOOOOO
4520: 02 AA AA
4523: AA AA AA

339

8 RASTER GRAPHICS & SOUND

4526 : AA 00 00 01640 .HS 02AAAAAAAAAAAAOOOO
45 29 : OA AA AA
452C : AA AA AA
452F : AA 80 00 01650 .HS OAAAAAAAAAAAAA8000
4532 : OA AA AA
4535: AA AA AA
4538 : AA AO 00 01660 .HS OAAAAAAAAAAAAAAOOO
453B: 2A AA AA
453E : AA AA AA
4541 : AA AO 00 01670 .HS 2AAAAAAAAAAAAAAOOO
4544: 2A AA AA
4547 : AA AA AA
454A : AA AO 00 01680 .HS 2AAAAAAAAAAAAAAOOO
454D: OA AA AA
4550 : AA AA AA
4553: AA AO 00 01690 .HS OAAAAAAAAAAAAAAOOO
4556: OA AA AA
4559 : AA AA AA
455C : AA 80 00 01700 .HS OAAAAAAAAAAAAA8000
455F: 02 AA AA
4562: AA AA AA
4565: AA 00 00 01710 . HS 02AAAAAAAAAAAAOOOO
4568: 00 00 00
456B : 55 50 00
456E: 00 00 00 01720 .HS 000000555000000000
4571 : 00 00 EO
4574: 55 50 00
4577: 00 00 00 01730 .HS 0000E0555000000000
457A : 00 00 EO
457D: 15 40 00
4580: 00 00 00 01740 .HS 0000E0154000000000
4583 : 00 00 40
4586 : 05 40 00
4589 : 00 00 00 01750 .HS 000040054000000000
458C: 00 01 EO
458F : 06 00 00
4592: 00 00 00 01760 .HS 0001E0060000000000
4595 : 00 00 60
4598 : 06 00 00
459B: 00 30 00 01770 .HS 000060060000003000
459E: 10 01 EA
45Al: A2 AO 00
45A4: 30 28 00 01780 .HS 1001EAA2AOO0302800
45A7: 14 07 CO
45AA: AA AO 00
45AD: 30 28 00 01790 .HS 1407COAAAOO0302800
45BO: 14 07 00
45B3: AA AO 00
45B6 : 30 AA CO 01800 . HS 140700AAAOO030AACO
45B9: 15 00 00
45BC: 02 AO 00
45BF : 78 AA CO 01810 .HS 15000002AOO078AACO
45C2: 15 01 FF
45C5: FF FF FF
45C8 : 7A AA CO 01820 .HS 1501FFFFFFFF7AAACO
45CB: 15 03 FF
45CE: FF FF F9
45Dl : 78 AA CO 01830 .HS 1503FFFFFFF978AACO
45D4: 15 57 FF
45D7: FF FF F5
45DA: 00 AA 00 01840 .HS 1557FFFFFFF500AAOO

340

RASTER GRAPHICS & SOUND 8

45DD: 15 50 00
45EO: 06 00 04
45E3 : 00 28 00 01850 .HS 155000060004002800
45E6: 14 14 00
45E9: 06 00 14
45EC: 00 00 00 01 860 .HS 141400060014000000
45EF: 14 04 00
45F2 : 06 00 10
45FS: 00 00 00 01870 .HS 140400060010000000
45F8: 10 05 00
45FB: 06 00 50
45FE: 00 00 00 01880 .HS 100500060050000000
4601 : 00 01 40
4604: 06 00 40
4607: 00 00 00 01890 .HS 000140060040000000
460A: 00 01 50
460D: 15 01 40
4610: 00 00 00 01900 .HS 000150150140000000
4613: 00 00 55
4616: 55 55 00
4619: 00 00 00 01910 .HS 000055555500000000
461C: 00 00 15
461F: 55 55 00
4622: 00 00 00 01920 .HS 000015555500000000
4625: 00 00 05
4628: 40 54 00
462B: 00 00 00 01930 .HS 000005405400000000

01940 *SHAPE #2 SHIFTER RT 4 PIXELS
462E: 00 2A AA
4631: AA AA AA
4634: A8 00 00 01950 .HS 002AAAAAAAAAA80000
4637: 00 AA AA
463A: AA AA AA
463D: AA 80 00 01960 .HS 00AAAAAAAAAAAA8000
4640: 02 AA AA
4643: AA AA AA
4646: AA AO 00 01970 .HS 02AAAAAAAAAAAAAOOO
4649: 02 AA AA
464C: AA AA AA
464F: AA A8 00 01980 .HS 02AAAAAAAAAAAAA800
4652: OA AA AA
4655: AA AA AA
4658: AA A8 00 01990 .HS OAAAAAAAAAAAAAA800
465B: OA AA AA
465E: AA AA AA
4661 : AA A8 00 02000 .HS OAAAAAAAAAAAAAA800
4664: 02 AA AA
4667: AA AA AA
466A: AA A8 00 02010 .HS 02AAAAAAAAAAAAA800
466D: 02 AA AA
4670: AA AA AA
4673: AA AO 00 02020 .HS 02AAAAAAAAAAAAAOOO
4676: 00 AA AA
4679: AA AA AA
467C: AA 80 00 02030 .HS 00AAAAAAAAAAAA8000
467F: 00 00 00
4682: 15 54 00
4685: 00 00 00 02040 .HS 000000155400000000
4688: 00 00 38
468B: 15 54 00
468E: 00 00 00 02050 .HS 000038155400000000

341

34 2

8 RASTER GRAPHICS & SOUND

4691: 00 00 38
4694: 05 50 00
4697: 00 00 00 02060 . HS 000038055000000000
469A : 00 00 10
469D: 01 50 00
46AO : 00 00 00 02070 .HS 000010015000000000
46A3: 00 00 78
46A6 : 01 80 00
46A9 : 00 00 00 02080 .HS 000078018000000000
46AC: 00 00 18
46AF: 01 80 00
46B2 : 00 00 00 02090 . HS 000018018000000000
46B5: 04 00 7E
46B8 : E8 A8 00
46BB: OC OA 00 02100 .HS 04007EE8A8000COAOO
46BE: 05 01 FO
46C l: 6A A8 00
46C4: OC 2A 80 02110 .HS 0501F06AA8000C2A80
46C7: 05 01 CO
46CA : OA A8 00
46CD: IE 2A BO 02120 .HS 0501COOAA8001E2ABO
46DO: 05 40 00
46D3 : 00 A8 00
46D6: I E AA BO 02130 .HS 05400000A8001 EAABO
46D9 : 05 50 7F
46DC: FF FF 1'1'
46DF: DE AA BO 02140 .HS 05507FFFFFFFDEAABO
46E2 : 05 50 FF
46E5: FF 1'1' FE
46E8 : 5E 2A BO 02150 .HS 0550FFFFFFFE5E2ABO
46EB: 05 55 1'1'
46EE : FF 1'1' I'D
46Fl : 40 2A 80 02160 .HS 0555FFFFFFFD402A80
46F4: 05 54 00
461'7: 01 80 01
46FA: 00 OA 00 02170 .HS 055400018001000AOO
46FD : 05 05 00
4700 : 01 80 05
4703: 00 00 00 02180 .HS 050500018005000000
4706: 05 01 00
4709 : 01 80 04
470C : 00 00 00 02190 .HS 050100018004000000
470F : 04 01 40
471 2: 01 80 14
4715: 00 00 00 02200 .HS 040140018014000000
4718: 00 00 50
471B: 01 80 10
471E : 00 00 00 02210 . HS 000050018010000000
472 1: 00 00 54
4724: 05 40 50
4727 : 00 00 00 02220 .HS 000054054050000000
472A : 00 00 15
472D : 55 55 40
4730: 00 00 00 02230 . HS 000015555540000000
4733: 00 00 05
4736: 55 55 40
4739: 00 00 00 02240 .HS 000005555540000000
473C: 00 00 01
473F : 50 15 00
4742 : 00 00 00 02250 .HS 000001501500000000

02260 *SHAPE #3 SHIFTED RT 6 PIXELS

RASTER GRAPHICS & SOUND 8

4745: 00 OA AA
4748: AA AA AA
474B: AA 00 00 02270 .HS OOOAAAAAAAAAAAOOOO
474E: 00 2A AA
4751: AA AA AA
4754 : AA AO 00 02280 .HS 002AAAAAAAAAAAAOOO
4757: 00 AA AA
475A: AA AA AA
475D: AA A8 00 02290 .HS 00AAAAAAAAAAAAA800
4760: 00 AA AA
4763: AA AA AA
4766: AA AA 00 02300 .HS OOAAAAAAAAAAAAAAOO
4769: 02 AA AA
476C : AA AA AA
476F: AA AA 00 02310 .HS 02AAAAAAAAAAAAAAOO
4772: 02 AA AA
4775: AA AA AA
4778 : AA AA 00 02320 .HS 02AAAAAAAAAAAAAAOO
477B: 00 AA AA
477E : AA AA AA
4781: AA AA 00 02330 .HS OOAAAAAAAAAAAAAAOO
4784: 00 AA AA
4787: AA AA AA
478A: AA A8 00 02340 .HS 00AAAAAAAAAAAAA800
478D: 00 2A AA
4790: AA AA AA
4793 : AA AO 00 02350 .HS 002AAAAAAAAAAAAOOO
4796 : 00 00 00
4799: 05 55 00
479C: 00 00 00 02360 .HS 000000055500000000
479F : 00 00 OE
47A2: 05 55 00
47A5: 00 00 00 02370 .HS 00000E055500000000
47A8: 00 00 OE
47AB: 01 54 00
47AE: 00 00 00 02380 .HS 00000E015400000000
47Bl : 00 00 04
47B4: 00 54 00
47B7: 00 00 00 02390 .HS 000004005400000000
47BA: 00 00 IE
47BD: 00 60 00
47CO: 00 00 00 02400 .HS 00001E006000000000
47C3: 00 00 06
47C6: 00 60 00
47C9: 00 00 00 02410 .HS 000006006000000000
47CC: 01 00 IE
47CF: AA 2A 00
47D2: 03 02 80 02420 .HS 01001EAA2AOO030280
47D5: 01 40 7C
47D8: OA AA 00
47DB: 03 OA AO 02430 .HS 01407COAAAOO030AAO
47DE: 01 40 70
47El: 02 AA 00
47E4: 07 8A AC 02440 .HS 01407002AAOO078AAC
47E7: 01 50 00
47EA : 00 2A 00
47ED: 07 AA AC 02450 .HS 015000002AOO07AAAC
47FO: 01 54 1F
47F3 : FF FF FF
47F6: F7 AA AC 02460 .HS 01541FFFFFFFF7AAAC
47F9: 01 54 3F

343

8 RASTER GRAPHICS & SOUND

47FC : FF FF FF
47FF: 97 8A AC 02470 .HS 01543FFFFFFF978AAC
4802: 01 55 7F
4805: FF FF FF
4808: 50 OA AO 02480 .HS 01557FFFFFFF500AAO
480B: 01 55 00
480E: 00 60 00
4811: 40 02 80 02490 .HS 015500006000400280
4814: 01 41 40
4817: 00 60 01
481A: 40 00 00 02500 .HS 014140006001400000
481D: 01 40 40
4820: 00 60 01
4823: 00 00 00 02510 .HS 014040006001000000
4826: 01 00 50
4829: 00 60 05
482C: 00 00 00 02520 .HS 010050006005000000
482F: 00 00 14
4832: 00 60 04
4835: 00 00 00 02530 .HS 000014006004000000
4838: 00 00 15
483B: 01 50 14
483E: 00 00 00 02540 .HS 000015015014000000
4841: 00 00 05
4844: 55 55 50
4847: 00 00 00 02550 .HS 000005555550000000
484A: 00 00 01
484D: 55 55 50
4850: 00 00 00 02560 .HS 000001555550000000
4853: 00 00 00
4856: 54 05 40
4859: 00 00 00 02570 .HS 000000540540000000

02580 *START TABLE ON EVEN PAGE BOUNDARY
485C: 02590 . BS $A4
4900: 43 10 3F
4903: 08 38 20
4906: 00 14 02600 NOTES .HS 43103F0838200014 ;P1Ml
4908: 43 08 4B
490B: 10 43 08
490E: 54 40 02610 .HS 43084Bl043085440
4910: 43 10 43
4913: 08 4B 10
4916: 54 08 02620 .HS 431043084Bl05408
4918: 65 20 00
491B: 10 65 08
491E: 43 10 02630 .HS 6520001065084310 ;P1M2
4920: 43 08 4B
4923: 20 00 10 02640 .HS 43084B200010
4926: 43 10 3F
4929 : 08 38 20
492C: 00 14 02650 .HS 43103F0838200014 ;P1Ml
492E: 43 08 4B
4931: 10 43 08
4934: 54 40 02660 .HS 43084Bl043085440
4936: 43 10 43
4939: 08 4B 10
493C: 54 08 02670 .HS 431043084Bl05408
493E: 65 20 00
4941: 10 65 08
4944: 43 10 02680 .HS 6520001065084310 ;P1M2
4946: 43 08 4B

344

RASTER GRAPHICS & SOUND 8

4949: 20 00 10 02690 .HS 43084B200010
494C: 38 20 00
494F: 02 38 20
4952: 00 02 38
4955: 20 38 10 02700 .HS 382000023820000238203810 ;P2Ml
4958: 00 02 38
495B: 10 32 08
495E: 4B 10 00
4961 : 02 02710 .HS 0002381032084BI00002
4962: 4B 08 00
4965: 02 4B 10
4968: 00 02 4B
496B: 08 00 02
496E: 4B 40 00
4971: 02 4B 10 02720 .HS 4B0800024BI000024B0800024B4000024BI0 ;P2M2
4974: 00 02 4B
4977: 08 00 02
497A: 4B 10 00
497D: 02 4B 08
4980: 00 02 4B
4983: 40 02730 .HS 00024B0800024BI000024B0800024B40
4984: 54 10 00
4987: 02 54 08
498A: 00 02 54
498D: 10 00 02
4990: 54 08 00
4993: 02 54 40 02740 .HS 541000025408000254100002540800025440 ;P2M3
4996: 38 20 00
4999: 02 38 20
499C: 00 02 38
499F: 20 38 10 02750 .HS 382000023820000238203810 ;P2Ml
49A2: 00 02 38
49A5: 10 32 08
49A8: 4B 10 00
49AB: 02 02760 .HS 0002381032084B100002
49AC : 4B 08 00
49AF: 02 4B 10
49B2: 00 02 4B
49B5: 08 00 02
49B8: 4B 40 00
49BB: 02 4B 10 02770 .HS 4B0800024BI000024B0800024B4000024BI0 ;P2M2
49BE: 00 02 4B
49Cl: 08 00 02
49C4: 4B 10 00
49C7: 02 4B 08
49CA: 00 02 4B
49CD: 40 02780 .HS 00024B0800024BI000024B0800024B40
49CE: 54 10 00
49Dl: 02 54 08
49D4: 00 02 54
49D7: 10 00 02
49DA: 54 08 00
49DD: 02 54 40 02790 .HS 541000025408000254100002540800025440 ;P2M3
49EO: 00 15 FF 02800 .HS 0015FF ;REST & REPEAT

02810 *VARIABLES
49E3: 02820 X .BS 1
49E4: 02830 Y .BS 1
49E5: 02840 HORIZ .BS 1
49E6: 02850 TEMP .BS 1
49E7: 02860 DEPTH .BS 1
49E8: 02870 SLNGH .BS 1

345

8 RASTER GRAPHICS & SOUND

49E9: 02880 VERT • BS 1
49EA: 02890 OFFSET .BS 1
49EB: 02900 POINTER .BS 1
49EC: 02910 TIME .BS 1
49ED: 02920 TDELAY .BS 1
49EE: 02925 VBFLAG .BS 1

02930 *CLEAR SCREEN 8K INCLUDING NDLIST AREA
49EF: A9 00 02940 CLRSCR LDA #SCREEN ;SETUP POINTERS TO CLEAR SCREEN
49F1: 85 F4 02950 STA SL
49F3: A9 60 02960 LDA /SCREEN
49F5: 85 F5 02970 STA SH
49F7: AO 00 02980 LDY #$00
49F9: 98 02990 TYA
49FA: A2 20 03000 LDX #$20 ;32 PAGES (8K)
49FC: 91 F4 03010.2 STA (SL),Y
49FE: C8 03020 INY
49FF: DO FB 03030 BNE .2 ;CONTINUE UNTIL DONE WITH 256 BYTES
4A01: E6 F5 03040 INC SH ; DO NEXT PAGE
4A03: CA 03050 DEX
4A04: DO F6 03060 BNE .2

03070 *SETUP DLIST
4A06: A2 00 03080 LDX #$00
4A08: BD 00 42 03090 DLOOP LDA DLIST,X
4AOB: 9D 00 60 03100 STA NDLIST,X
4AOE: E8 03110 INX
4AOF: EO CC 03120 CPX #$CC ; 204 ELEMENTS
4A11: DO F5 03130 BNE DLOOP
4A13: A9 00 03140 LDA #NDLIST
4A15: 8D 30 02 03150 STA 560
4A18: A9 60 03160 LDA /NDLIST
4A1A: 8D 31 02 03170 STA 561

03180 *INITILIZE
4A1D: A9 OB 03190 LDA #$OB
4A1F: 8D C5 02 03200 STA COLOR 1
4A22: A9 00 03210 LDA #$00
4A24: 8D C6 02 03220 STA COLOR2
4A27: A9 40 03230 LDA #$40
4A29: 8D E3 49 03240 STA X
4A2C: A9 20 03250 LDA #$20
4A2E: 8D E4 49 03260 STA Y
4A31: 8D E9 49 03270 STA VERT
4A34: A9 00 03280 LDA #$00
4A36: 8D ED 49 03290 STA TDELAY
4A39: A9 00 03300 LDA #NOTES ;GET LO BYTE OF TABLE
4A3B: 85 F6 03310 STA NOTEL
4A3D: A9 49 03320 LDA /NOTES ;GET HI BYTE OF TABLE
4A3F: 85 F7 03330 STA NOTEH
4A41: A9 00 03340 LDA #$00 ;CLEAR TIMER
4A43: 85 14 03350 STA $14
4A45: A9 01 03360 LDA #$01
4A47: 8D EC 49 03370 STA TIME
4A4A: A9 EA 03380 LDA #$EA ;PURE TONE - VOLUME 10
4A4C: 8D 01 D2 03390 STA AUDCl
4A4F: AO 00 03400 LDY #$00
4A51: 8C EB 49 03410 STY POINTER

03420 *SET VBLANK
4A54: A9 07 03430 LDA #$07
4A56: A2 4A 03440 LDX /FRAME
4A58: AO 60 03450 LDY #FRAME
4A5A: 20 5C E4 03460 JSR SETVBK
4A5D: 4C 5D 4A 03465 FOREVER JMP FOREVER

346

4A60:
4A63:
4A65:
4A68:
4A6A:
4A6D:
4A70 :
4A71 :
4A72:
4A75:
4A78 :
4A7B:
4A7E:
4A80:
4A82:
4A85:
4A88:
4A8B:
4A8E:
4A8F:
4A90:
4A93:
4A96:
4A99:
4A9B:
4A9E:
4AAI :
4AA4:
4AA7:
4AA9:

4AAB:
4AAD:
4ABO:
4AB2:
4AB5:

RASTER GRAPHICS & SOUND 8
03470 *VBLANK ROUTINE

AD EE 49 03472 FRAME LDA VBFLAG
FO 03 03473 BEQ OK
4C 62 E4 03474 JMP $E462
A9 01 03475 OK LDA #$01
8D EE 49 03476 STA VBrLAG
AD E3 49 03480 LDA X ;CALC NEW HORIZ OFFSET
4A 03490 LSR ;DIVIDE BY 4 TO GET HORIZ BYTE
4A 03500 LSR
8D E5 49 03510 STA HORIZ
20 E7 4A 03520 JSR SETUP
20 OB 4B 03530 JSR DRAW ;DRAW SHAPE
AD ED 49 03540 LDA TDELAY ;DELAY 3/60 TH SEC
C9 03 03550 CMP #$03
DO IF 03560 BNE .1
20 E7 4A 03570 JSR SETUP
20 90 4B 03580 JSR XDRAW
20 45 4B 03590 JSR JOYSTK
AD E3 49 03600 LDA X
4A 03610 LSR
4A 03620 LSR
8D E5 49 03630 STA HORIZ
20 E7 4A 03640 JSR SETUP
20 OB 4B 03650 JSR DRAW
A9 00 03660 LDA #$00
8D ED 49 03670 STA TDELAY
4C A4 4A 03680 JMP SOUND
EE ED 49 03690 .1 INC TDELAY
AD EC 49 03700 SOUND LDA TIME
C5 14 03710 CMP $14
BO 34 03720 BGE .2

;XDRAW SHAPE
;READ JOYSTICK
;CALC NEW HORIZ OFFSET

;IMMEDIATELY REDRAW SHAPE
;RESET DELAY

03730 *STOP NOTE - EQUIVALENT TO SOUND 0,0,0,0
A9 00 03740 LDA #$00
8D 08 D2 03750 STA $D208
A9 03 03760 LDA #$03
8D OF D2 03770 STA $D20F
AC EB 49 03780 LDY POINTER

03790 *LOAD NEXT NOTE
4AB8: Bl F6
4ABA: C9 FF
4ABC: DO 09

03800 LDA (NOTEL),Y
03810 CMP #$FF ;LAST NOTE?
03820 BNE .3

4ABE:
4ACO:
4AC3:
4AC5:

4AC7:
4ACA :
4ACB:
4ACE:
4ADO:
4AD3:
4AD4:
4AD7:
4AD9 :
4ADB:
4ADD:
4ADF:
4AE1:
4AE4 :

03830 *RESET TO BEGINNING NOTE
AO 00 03840 LDY #$00
8C EB 49 03850 STY POINTER
A9 49 03860 LDA /NOTES
85 F7 03870 STA NOTEH

03880 *CONTINUE READING NOTES & STORING VALUES IN SOUND REGISTERS
8D 00 D2 03890 .3 STA AUDFI ;STORE FREQUENCY OF NEXT NOTE
C8 03900 INY
EE EB 49 03910 INC POINTER
B1 F6 03920 LDA (NOTEL),Y
8D EC 49 03930 STA TIME ;STORE LENGTH OF NOTE
C8 03940 INY
EE EB 49 03950 INC POINTER
DO 02 03960 BNE .1
E6 F7 03970 INC NOTEH
A900 03980.1 LDA #$00
85 14 03990 STA $14
A9 00 03995.2 LDA #$00
8D EE 49 03996 STA VBFLAG
4C 62 E4 04000 JMP XITVBK

;CAN ONLY HAPPEN ON AN EVEN NUMBER
;NEXT PAGE OF NOTES
;CLEAR TIMER AT BEGI INING OF EACH NEW NOTE

347

348

8 RASTER GRAPHICS & SOUND

4AE7:
4AEA :
4AEO:
4AFO:
4AF2:
4AF5:
4AF7:
4AFA:
4AFO :
4AFF:
4B02:
4B04:
4B07:

04010 *SUBROUTINES
04020 *ORAWING SETUP SUBROUTINE

AC E3 49 04030 SETUP LOY X ;HORIZONTAL POSITION (0-159)
BE 00 43 04040 LDX XOFF,Y ;INDEX TO FIND SHAPE #
BD AO 43 04050 LDA SHPLO,X ;INDEX TO GET LO BYTE OF SHAPE TABLE
85 FO 04060 STA SHPL ;STORE LO BYTE IN ZERO PAGE
BD A4 43 04070 LDA SHPHI,X ;GET HI BYTE OF SHAPE TABLE
85 Fl 04080 STA SHPH
AD E4 49 04090 LDA Y
8D E9 49 04100 STA VERT
A9 IF 04110 LDA #$IF
80 E7 49 04120 STA DEPTH ;SHAPE IS 31 LINES DEEP
A9 09 04130 LDA #$09
80 E8 49 04140 STA SLNGH ;SHAPE IS 9 BYTES WIDE
80 E6 49 04150 STA TEMP ;STORED HERE ALSO BECAUSE DRAWING

ROUTINE DECREMENTS SLNGH 0
04160 * ;AND VARIABLE MUST BE RESTORED AT START OF NEXT ROW

4BOA: 60 04170 RTS

4BOB:
4BOE:
4Bll:
4B13 :
4B16 :
4B19:
4BIB:
4BI0:
4BIF:
4B21 :
4B23:
4B25:
4B26:
4B29:
4B2B:
4B2E:
4B31:
4B33:

4B34 :
4B37 :
4B38:
4B3B:
4B3D:
4B40:
4B42:
4B44:

4B45:
4B48 :
4B4A:
4B4C:
4B4F:
4B51 :
4B53:
4B56:
4B59 :
4B5C:
4B5E:
4B60 :
4B63:
4B65 :

04180 *DRAW SHAPE SUBROUTINE
AC E9 49 04190 DRAI, LDY VERT ; VERTICAL POSITION
20 34 4B 04200 JSR GETADR ;FIND BEGINNING OF SCREEN ADDRESS OF ROW
A2 00 04210 LDX #$00
AD E6 49 04220 LDA TEMP
80 E8 49 04230 STA SLNGH ;RESTORE VALUE OF WIDTH FOR NEXT ROW
AO 00 04240 LDY #$00
Al FO 04250 DRAl0J2 LDA (SHPL,X);GET BYTE OF SHAPE TABLE
91 F2 04260 STA (HIRESL),Y ;PLOT ON SCREEN
E6 FO 04270 INC SHPL ;NEXT BYTE OF SHAPE TABLE
DO 02 04280 BNE .1 ; IF CROSS PAGE BOUNDARY?
E6 Fl 04290 INC SHPH ;INCREMENT TO NEXT PAGE OF SHAPE
C8 04300 .1 INY ;NEXT POSITION ON SCREEN
CE E8 49 04310 DEC SLNGH ;DECREMENT WIDTH
DO FO 04320 BNE DRAW2 ;FINISHED WITH ROW YET
EE E9 49 04330 INC VERT ;IF SO , I NCREMENT TO NEXT LINE
CE E7 49 04340 DEC DEPTH ;DECREMENT DEPTH
DO D8 04350 BNE DRAI, ; FINISHED ALL ROWS?
60 04360 RTS ; YES, END

1J4370 *GETADR SUI)!WUTIN E FOR FINDING STARTING SCREEN ADDRESS
TO PLOT BYTES

B9 00 40 04380 GETADR LDA YVERTL,Y ;LOOKUP LO BYTE OF LINE
18 04390 CLC
6D E5 49 04400 ADC HORIZ ; ADD HORI Z OFFSET
85 F2 04410 STA HIRESL ;STORE LO BYTE SCREEN ADDRESS
B9 00 41 04420 LDA YVERTH,Y ;LOOKUP HI BYTE LINE
69 60 04430 ADC /SCREEN ;ADD HI BYTE OF SCREEN
85 F3 04440 STA HIRESH ;STORE HI BYTE SCREEN ADDRESS
60 04450 RTS

04460 *JOYSTICK ROUTINE
AD 78 02 04470 JOYSTK LOA STICK
29 02 04480 AND #$02 ;DOWN BIT?
00 00 04490 BNE CHKLF
AD E4 49 04500 LDA Y ;PREVENT SHAPE FROM EXITING BOTTOM SCREEN
C9 AO 04510 CMP #$AO
FO 06 04520 BEQ CHKLF
EE E4 49 04530 INC Y ;MOV E TWO LINES
EE E4 49 04540 INC Y
AD 78 02 04550 CHKLF LDA STICK
29 04 04560 AND #$04 ;LEFT BIT?
DO OA 04570 BNE CHKRT
AD E3 49 04580 LOA X ;PREVENT SHAPE FROM EXITING SCREEN LEFT
C9 00 04590 CMP #$00
FO 03 04600 BEQ CHKRT

RASTER GRAPHICS & SOUND 8

4B67 : CE E3 49 04610 DEC X ;THIS MOVES TWO PIXELS
4B6A: AD 78 02 04620 CHKRT LDA STICK
4B6D: 29 08 04630 AND #$08 ;RIGHT BIT?
4B6F : DO OA 04640 BNE CHKUP
4B7 1: AD E3 49 04650 LDA X ;PREVENT SHAPE FROM EXITING SCREEN RIGHT
4B74 : C9 7C 04660 C~1P #$7C
4B76: FO 03 04670 BEQ CHKUP
4B78: EE E3 49 04680 INC X
4B7B: AD 78 02 04690 CHKUP LDA STICK
4B7E: 29 01 04700 AND #$01 ;UP BIT
4B80 : DO OD 04710 BNE . 1
4B82: AD E4 49 04720 LDA Y ; PREVENT SHAPE FROM EXITING TOP SCREEN
4B85: C9 00 04730 CMP #$00
4B87: FO 06 04740 BEQ .1
4B89: CE E4 49 04750 DEC Y
4B8C: CE E4 49 04760 DEC Y
4B8F: 60 04770 .1 RTS

04780 *XDRA\, SHAPE SUBROUTINE
4B90: AC E9 49 04790 XDRAW LDY VERT ;VERTICAL POSITION
4B93 : 20 34 4B 04800 JSR GETADR ;FIND BEGINNING OF SCREEN ADDRESS OF ROW
4B96: A2 00 04810 LDX #$00
4B98: AD E6 49 04820 LDA TEMP
4B9B: 8D E8 49 04830 STA SLNGH ;RESTORE VALUE OF WIDTH FOR NEXT ROW
4B9E: AO 00 04840 LDY #$00
4BAO: Al FO 04850 XDRAW2 LDA (SHPL,X);GET BYTE OF SHAPE TABLE
4BA2: 51 F2 04860 EOR (HIRESL),Y ;EOR WITH SCREEN IMAGE
4BA4: 91 F2 04870 STA (HIRESL),Y ;PLOT ON SCREEN
4BA6 : E6 FO 04880 INC SHPL ;NEXT BYTE OF SHAPE TABLE
4BA8: DO 02 04890 BNE .1 ;IF CROSS PAGE BOUNDARY?
4BAA : E6 Fl 04900 INC SHPH ;INCREMENT TO NEXT PAGE OF SHAPE
4BAC: C8 04910 .1 INY ;NEXT POSITION ON SCREEN
4BAD: CE E8 49 04920 DEC SLNGH ;DECREMENT WIDTH
4BBO: DO EE 04930 BNE XDRAW2 ;FINISHED WITH ROW YET
4BB2: EE E9 49 04940 INC VERT ;IF SO, INCREMENT TO NEXT LINE
4BB5: CE E7 49 04950 DEC DEPTH ;DECREMENT DEPTH
4BB8 : DO D6 04960 BNE XDRAW
4BBA: 60 04970 RTS ; YES, END

Sound
Sound complements graphics in near ly all arcade-style games. Whi le most people

think of sound effects as the o nl y n ecessary sound, the addition of an original
background score can contribute great ly lO a game's overall popu larity. In either
case, the Atari, with its four-voice sound chip, is well -suited to the task.

The Atari computer has four independent voices that can vary in pitch by more
than three octaves. The lOne can vary from very pure to highly distorted. In addition,
each voice has its own loudness level, compl ete ly independent of the te levision's
vo lum e setting.

BASIC's Sound Statment

In BASIC, th e SOUND statement takes the following form:

SOUND Vo ice, Pitch , Distortion , Loudness

349

350

8 RASTER GRAPHICS & SOUND

TI](' first parameler Voice is simplt'. T here are [our voices or channe ls whose
Illlmlll'l.-; range flOlll 0-:), It takes a sepa ra te sound sta temen t to acti vate each chann el.
111 i l id lI y, at least ill BASI C, l hey arc <I II off at any ti m e, bu t anyone can be selecti vely
lllll1l'l1 oft by setting Pitch , Di stortion. and Loudness for that voice to a ll zeros.

Pitch can vary between 0 -255. The value 'N ' is used in a divide circuit. For every N
pulses coming in, one pulse goes out. As N gets larger, the output pulses become less
frequent and make a lower note. A value of 121 produces a middle C tone. A pitch of
60 produces a C tone one octave higher, and a pitch of 243 produces a C tone one
octave lower. Pitch values around 3 approach the edge of human hearing and may
not be audible on a television speaker that lacks a tweeter.

T he Atari compul('J plOduces both pllle a nd distorted tones . The term distortion
is actua ll y a misnomer. All of th e sound waves on the Atari are square waves.
ni stonion doesn ' I occu r beca use of a dcgrada tion o[the wave form Ii ke in harmon ic
;Illciio, but by selectively removing pulses from the waveform . A more appropriate
l('Jm wou ld be noise. Distortion va lu es o[10 and 14 generate pure tones. Other
l'ven-numbered distortion va lues (0,2,4,6 , and 12) introduce different amounts o[
noise into the pure ton e. The quality of th e sound depends on both the pitch and the
distortion. Some comb inations, mainl y di stortion 12, combine to produce an undis
toned secondary tone with harmoni c overtones.

Loudness is con troll ed by the fourth number in the SOUND statement. The valu e
vari es from 0 (silent) to 15 (loudest) and is fairly linear for a single voice. The
apparent loudness is affected by pitch. High-pitched sounds seem quieter than
low-p itched sounds. If you are working with multi-channels, the sum of all four
chan nels should not exceed thirty-two or it wil l overmodu late the audio output. The
sound produced tends to actua lly lose volume and assume a buzzing quality.

Sound Duration

Since the SOUND statement lacks a duration parameter, sound can be turned on
and then offby using an empty FOR ... NEXT loop as a delay. It is largely experimen
ta l but empty FOR .. . NEXT loops iterate at approximately 450 times per second. A
loop that goes from 1-225 would cause a delay of half a second. Thus, the following
three lines would turn on a tone, let it sound for one-half second, then turn it off.

100 SOUND 0,121,10,10
110 FOR 1=1 TO 225:NEXT I
120 SOUND 0,0,0,0

Sound Effects

Simple sound effects are created largely by trial and error. Many use FOR ... NEXT
loops to either vary the pitch or vary the volume. Some do both. The pistol sound in
the blocks game in Chapter 5 varies the volume. The bonk sound of the brick being

RASTER GRAPHICS & SOUND 8

removed is similar but at another low pitch. Both sounds use distortion or noise to
achieve their effect.

100 REM - PISTOL SOUND
110 FOR L=10 TO 4 STEP -0.25
120 SOUND 0,10,0,L
130 NEXT L

100 REM - BONK SOUND FOR KNOCKING OUT BRICK
110 FOR L=15 TO 0 STEP -0.5
120 SOUND 0,20,2,L
130 NEXT L

It is also possible to vary both the pitch and the volume simultaneously in a loop.
The following example simulates the sound of a falling bomb. It begins with a high
pitch and gradually changes to a low pitch, followed by the thumping sound of an
explosion.

100 REM - FALLING OBJECT
110 FOR L=30 TO 200 STEP 3
120 SOUND 0,L,10,L/25
130 FOR K=l TO L/10:NEXT K
140 NEXT L
150 SOUND 0,20,0,14
160 SOUND 1,255,10,15
170 FOR K=l TO 150:NEXT K
180 SOUND 1,0,0,0

Most sound effects have to be placed in a larger loop with the graphics or
player-missile commands, or motion will stop while the sound routine runs. The
problem is that this method often alters the time delays and preset durations of the
sound effects. Worse yet, the location of these routines within the program changes
the result. This occurs because BASIC must search its line number list whenever it
encounters a branch or GOTO instruction. Obviously, it finds line numbers at the
beginning of the program before it finds line numbers near the end. The only real
solution to the problem is to run your sound routines in the VBlank period, and this
approach requires Machine language programming skills.

Sound-Assembly Language

The POKEY digital 110 chip controls the audio frequency and the audio control
registers for all four sound channels. The AUDF# (audio frequency) locations are
used to control pitch, and the AUDC# (audio control) locations are used to control
distortion and volume. The sound locations are as follows, and they are write
registers only:

351

352

8 RASTER GRAPHICS & SOUND

AUDFI
AUDF2
AUDF3
AUDF4

$DOOO
$D002
$D004
$D006

AUDCI
AUDC2
AUDC3
AUDC4

$DOOI
$D003
$D005
$D007

Frequency values range from $00 to $FF. POKEY actually increments this number
by one before sending it to its divide by UN" circuit. For every N pulses coming in,
o ne pulse comes out. Thus, the higher the value of N, the lower the tone. The rate of
the pulses depends on the POKEY clock.

AUDCl-4 Sound Registers

The AUDCI-4 locations control both distortion a nd volume. The bit pattern is as
follows:

$0201 1
7 6 5 4 3 2 0

'- ..- "- /

Distortion Volume
example: $EA Noise Level

Volume pure tone, volume 10

The lower four bits control the volume level (0-15). Zero means no volume, while
15 means as loud as possible. The only constraint here is that the total volume for all
four sound channels does not exceed thirty-two. Bit 4 is a volume-only control.
Turning this bit on will force the speaker cone out. Trouble is that this by itself
won't produce a tone since a tone is produced by repeatedly forcing the cone in and
out rapidly. This bit can be useful to advanced sound programmers.

The upper three bits control the distortion . Distortion is produced by first divid
ing the clock value by the freq uency, then masking the output using the various poly
counters specified by the bit pattern. The result is finally divided by two. Poly
counters or polynomial counters are actually shift registers that produce various
degrees of distortion in random but repea table sequences. Since they are repeatable,
they are predictable and a re useful for generating sound effects. In general, the tones
become more regular or recognizable with fewer and lower poly counters masking
the output. The 17-bit pol y cou nter is useful for white noise effects like a waterfall,
while the 4-bit poly counter is useful for a motor sound.

BIT 7
o
o
o
o

6
o
o

I
o
o

5
o
I
o
I
o
I
o

5-bit, then 17-bit polys
5-bit poly only
5-bi t, then 4-bi t polys
5-bit poly only
17-bit poly only
no poly counters (pure tone)
4-bit poly only
00 poly counters (pure tone)

RASTER GRAPHICS & SOUND 8

A UDCTL Register

In addi tion to the independent channel can trol bytes (AUDCI-4), there is one
other register, AUDCTL at 53768 or $D208, that affects all of the channels. Each bit
in A UDCTL is assigned a specific fun ction.

Bit Description
7 Makes the 17-bit poly counter into a 9-bit poly
6 Clock channel one with 1.79 MHz
5 Clock channel three with I. 79 MHz
4 Join channels one and two (16 bi t)
3 Join channels three and four (16 bits)
2 Insert high pass filter into channel one, clocked by

channel two
Insert high pass filt er into channel two, clocked by
channel four ° Switch main clock base from 64 KHz to 15 KHz

Shifting the 17-bit pol y counters to 9-bit poly counters by setting bit 7, will create
more repeatable sound patterns rather than white noise-type patterns. Setting the
channels to a higher clock frequency (se tting bits 5 and 6), will produce higher tones.
Likewise, setting the bit 7 from 64 KHz to 15 KHz will produce much lower tones.

If you couple two of the sound channels by setting either bits 3 or 4, you reduce the
number of channels to two but gain increased tonal range. Normally, you get a five
octave range using the eight bits of a single channel, but the combinedl6-bit register
increases the tonal range to nine octaves.

Sometimes you may encounter problems POKEing sounds in BASIC or in
Machine language without initializing the sound registers. BASIC requires a null
sound statement, i. e., SOUND 0,0,0,0. In Machine language you need to store a ° at
AUDCTL ($D208), and a 3 at SKCTL ($D20F) .

Background Music

One of the most pleasing uses of sound is to play musical tunes quietly in the
background, during ma n y games or at least use them to enhance an animated title
page. Such routines normally run in the Vertical Blank period so that the note
lengths remain accurate. Generally, you store the notes and durations of the tune in a
tabl e. The Atari reads the note and its corresponding dura tion from the table. It then
turns on the note and sustains it until the timer at $14, which counts in jiffies,
reach es the value set by the duration. At that point the note shuts off and the
computer reads the next note and duration . Two consecutive notes with the same
pitch sound like they run together as a much longer note. It is often necessary to
p lace a zero pitch las ting two jiffies between the notes. With this method, it is very
sim pie to play an en tire musical score withou t affecting the play mechanics or speed
of a game. Be carefu l that you don ' t use and reset that timer elsewhere in the game.

353

354

8 RASTER GRAPHICS & SOUND

We use the value of $FF for the note as a flag to indicate the tune is finished . While
it could be used to cond ude the piece, we use it to reset the pointers to the table so that
the music repeats endless ly.

The lengths of the different notes is summarized in the table below:

NOTE
Sixteenth
Eighth
Quarter
Half
Rest

JIFFIES
8

15
30
60
60

code here (see code on blimp example page?)

SOUND [IN VBLANKj

I
l COMPARE NOTE LENGTH WITH TIMEP INO

I
tYES (EQUAL)

I STOP SOUND I
I

l LOAD NOTE I
I

l NOTE =$FF LYES

I

~NO

I LOAD LENGTH

I
I CLEAR 18 DECIMAL TIMER

I
I

I XITVBK I
C# Eb F# Ab Bb

C D E F G

LOW
C

I

I

C# Eb

MIDDLE
C

RESET TO MUSIC
BEGINNING

F# Ab Bb
-,.---

B C

HIGH
C

RASTER GRAPHICS & SOUND 8

''a • b.

K b. • #

I~ b

\. ~ b #

,,/ #

b b

/'" """ ~ 1
/-

/
182 173 162 153 136 128 121 114 108 102 96 91 85 81 76 72 68 64 60 57 53 50 47 45 42 40

I I
MIDDLE HIGH

C C

Sound Effects

Explosion sounds are simple to implement in Machine language within the
Vertical Blank routine. Basically, you need a very irregular rumbling sound that
slowly decreases in volume. Setting the distortion to zero sets up 17-bit poly counters
that produce quite irregular sound. The duration of the sound is controlled by a
timer that counts down every jiffy. This timer can also control the volume level so
that it decreases as a function of the value of the timer. For instance, if the sound is to
take one second, SEXTIME, short for Set Explosion Timer, is initially set to 64 and
is decremented every jiffy. If VOLUME = SEXTIME / 4, then the volume will
decrease from 16 to 0 as SEXTIME counts down to O. The code follows:

SOUND3

*
.1

LDA SEXTIME
BEQ .1
DEC SEXTIME
LSR
LSR
STA AUDC4

LDA #$40
RTS

;CHECK EXPLOSION TIMER FLAG
;IF AT 0, NO SOUND
; COUNTDOWN
;DIVIDE BY 4 TO GET VOLUME 16-0

;TELL POKEY NEW SOUND VOLUME
;UPPER NIBBLE (DISTORTION = 0)
;TONE

Laser fire can be simulated by rapidly changing the frequency from a high pitch to
a lower one in discontinuous jumps while using a distortion set at 6. This produces a
more staccato sound than a smooth frequency transition. You can implement this
effect by making the timer, SL TIME, short for Set Laser Timer, a function of the
frequency. If Frequency = SLTIME '*' 16, then each time SLTIME is incremented, the
tone will jump in increments of 16. Remember, the higher the N in the divide by N
circuit, the lower the tone. The problem here is that the sound is much too short if
allowed to increment simply from 1 to 15. Therefore, a secondary loop delays each

355

356

8 RASTER GRAPHICS & SOUND

tonal jump by 4 cycles. The entire sound routine takes 60 jiffies rather than just 15
jiffies. The flowchart and code are below:

SOUND

.1

,
.2

.3

SOUND

LDA SLTIME
BEQ .3
CMP #$OF
BNE .1
LDA #$00
STA AUDFl
STA AUOCI
RTS
LDA SLTIMEI
BNE .2
LDA DELAYl
STA SLTIMEI
INC SLTIME

DEC SLTIMEI
ASL
ASL
ASL
ASL
STA AUDFl
LDA #$86
STA AUOCI
RTS

;CHECK LASER TIMER FLAG
;IF 0 EXIT
;TIMER GOES FROM 1 TO 15

;TURN SOUND OFF

;CHECK DELAY TIMER
;IF NOT 0 COUNTDOWN TILL IT IS
;GET NEW DELAY VALUE
;STORE IT
;INCREMENT MAIN TIMER
;(THIS IS ALSO OUR FREQUENCY VALUE)
;OUR FREQUENCY VALUE
;MULTIPLY BY 16

;NEW TONE VALUE
;DISTORTION 8, VOLUME 6

1 2 3 4 5 6

16

SLTIME

7 8 9 10 11 12 13 14 15

distortion B volume f

CHAPTER 9

ADVANCED ARCADE
TECHNIQUES

Maze Games

Maze ga mes achieved the height o f pop ul arity with the debut of ea t-the-dot games
like Pacman and Ms Pacman. They weren' t the first eat-the dots ga mes: that honor
goes to a car game call ed H ead-on. They were, however , the first games to transpose
the usual open field chase or pursuit games to the narrow confine of maze corridors.

Topographicall y, a maze is merely a network o f interconnecting paths. These
pathways constrain the player 's movement. In a sense each individua l section of the
maze gives the player a set of movem ent rules . The passage walls that are open allow
the p layer to reach the nex t section , while the closed walls block movement in other
direc tions.

The maze can be divided into a number of small blocks, each the height and width
o f the passageway . Depending on the graphics mode, each of these blocks cou ld
ass ume the size of a character. That way each charac ter becomes one of the blocks in
the maze. The characters can be open blocks, with various combinations of open
ex terior walls, or they can be floors and ladders for use in a climbing, jumping arcade
game. While most people do not think of games like Donkey Kong and Apple Panic
as maze games, they too require a set of movement rules to keep the player confined
to floors and ladders.

Floor & Ladder Blocks

Passageway Blocks

357

358

9 ADVANCED ARCADE TECHNIQUES

The instructions that guide a player about the maze can be very complicated, or
they can be quite simple. They can take thousands of bytes or just several hundred.
Naturally, each individual block needs to be a part of the play field and requires one
byte per block. If we drew our maze in graphics one characters (eight dots by eight
rows), we could have a maze twenty blocks wide by twelve rows deep. That takes 240
bytes of memory. Next we need instructio ns to tell the player if he can move up,
down , left or right from the cen ter of the block where he is. That could take as many
as four bytes per block. These could all be placed in tables so that if we knew which
block we were in, we could index into each table look up the legal moves for that
block.

Storing a zero for an open pathway and a one for a closed pathway doesn't use a
memory location to its capacity. Only the lowest bit is used . If we could combine all
four directions into one byte, with each direction using one bit, we would only use a
fourth as much memory and still have half of the byte left. With Left using the lowest
bitorOth bit, Right the first bit, Up the second, and Down the third, wecan test each
of these bits by ANDing with a MASK that contains a 1 bit in the bit position we wish
to test and 0 bits everywhere else.

LEFT
RIGHT
UP
DOWN

CLOSED
CLOSED
CLOSED
CLOSED

0000 0001
0000 0010
0000 0100
0000]000

Thus to tes t if the up direction is closed we AND th e instruction byte with $04. In the
following example only the right direction is open.

0000 I I 0 1 INSTRUCTION BYTE
00 0 0 0 I 0 0 AND #$04

00000 I 00 RESULT IS POSITIVE IF
UP DIRECTION IS CLOSED

We could set a flag for the gates that we find open. If we did the above test and found
the result positive, or the up direction closed, we could set FLAGU = 1. Thefour flags
FLAG U, FLAGD, FLAGL, and FLAGR, would be set to 0 if found open and to 1 if
closed.

Since we need to design a character set to visually show which walls are open and
which ones are closed, it would be beneficial to mirror the byte value of the block 's
instruction byte. Thus, if a character had the only the left wall closed, its instruction
byte would have a value of one. Therefore, we will design the first character in the
character set to have only the left wall closed. The Oth character has no walls closed,
and the fifteenth character in our tabl e has a ll four walls closed. The instruction byte
that reflects this has a value of 15 ($OF). Each of the characters in our set is shown
below.

The play field consists of twelve rows, each with twenty of these characters. As a
whole they make up an entire maze. A player in the top left hand block in the maze is
in the Oth position of the character data tha t ANTIC uses to generate the playfield or
maze. If the player moves one row down to position XB, YB (0,1) it is at the twentieth

ADVANCED ARCADE TECHNIQUES 9

INTERNAL CHARACTER NUMBERS

r----,
[-$~i [$2] [$3]

z l-

I $0 I ~ I I-
a C) u.

L __ -l __ -.J a.. w
0 =:l a:: ~

1 0

I
[$5 J L $6] [$7] /= OPEN SIDE

I $4 I
L __ J

1 = CLOSED SIDE

r---,
[$91 :- $A J [$8 J I $8 I

I I

$C ~ G 0
position of the character data; and one position to the right (1, 1), the twenty-first
position position in the data. This can be formalized as:

BLOCK = (YB*20) + XB

If we index into the screen data, SCREEN,Y where the Y register con tains the value
of the character at the player's position. That number is the same as the sum of the
individual instruction bits for legal movement in each of the four directions. The
fact that only one table is needed for both the screen data and the legal movement
instructions is not a coincidence. It is simply a clever way to condense data.

I 0

3

3

3

3

3

3

3

2 3 4 5

C C C C C

5 C C 4 C

li 5

A F F 9 2

C C C C 2

F F F F

5 C C C 2

1-@rC

: I 3 I F F

3

9

9 C 6 9 C

9 C C 8 C C

D

6 7 8 11 12

C C 6 5 C

C C 0 0 C

C C 2 C

C C 2

4 4 2

C C 2 3 3 El
C C A 3 3 9 C

13 14

C C

C fG'
C 6

15 16 17 18 19

C C C C 6 0

4 C C 6 3 1

~ A F F 9

3 2

2 3

C C C C 2 4

F F F 3 5
'------1

C C 6 3 6

C~2 37

F F I 3 3 8

5 C A 3 9
I '-----------'

C C C A 9 C C C C C 8 C C IAI 10

LEVEL 1-MAZE GAME

359

360

9 ADVANCED ARCADE TECHNIQUES

The design of any maze game should include a simple premise with a simple set of
rules. The object of PacMan is to ea t all of the dots on the maze floor in order to
advance to the next level. The object of the maze game is for the player's letter to
chase two higher letters in the a lphabet. The player ca tches the next higher letter in
order to become that letter as it advances toward the letter Z and a harder maze. Just as
the four ghosts are the adversaries in PacMan, the red minus sign is the adversary
here. It constantly pursues your player and if it ca tches it, your letter value decreases
by one. Thus, the game begins with th e letter A chasing letters Band C. If it catches
th e B, it becomes a B and continues chas ing a C and D. If the minus sign catches your
player a t that point, it reverts back one let ter to the letter A.

There is no point scorekeeping system for this game. The progress you make
during the game becomes a visual scorekeeping system. The goal is to progress
forward, not to gain points. If we were to award 100 points for each letter gained, and
50 points for each letter lost, pl aye rs might prolong the game indefinitely, advancing
several letters than losing a few.

All the players move at exactl y the same speed. This forces strategic play, since you
can't catch the fl ee ing letters by simply tailing them. The game must appear
winnable, so we never make the player start the game over when he is caught by the
minus sign. The game would become frustrating if a player advanced to the letterT
and reverted back to an A just because the minus sign caught him repeatedl y.
Beginners would also find the game frustrating if the minus sign caught them and
put them in another random position in the maze, just as they were about to trap a
letter.

The maze game code is much too long to run within the time frame provided by
vertical blank. Since I had tested my theory of maze game logic with a single player
within th e vertical blank period , I decided to place the remainder of the game code
outside the vertical bl ank time, but sychronized with it. Normally code entirely
within VBLANK run s in a endless loop (FOREVER JMP FOREVER) and only
lea ves this loop during th e interrupt period. \<\' h en your code runs outside VBLANK
it runs until the VBLANK interupts it , then executes the code in the interupt routine.
At th e end of the vertical blank period it returns to where it left off in the code. With
the 6502 runing at 1.8 MHz a moderately short program is likely to cycle through
twenty or thirty passes between VBLANK interupts. The only solution to syn
chronize the two pieces of code is to a llow the code to run once then wait in a tight
loop tes ting for some flag that can on ly be set if th e program reaches the vertical
bl a nk routine. This is precisely what we did. Our VBLANK routine sets a flag call
VBFLAG = 1. The main program code sits in an end less loop tes ting this flag. It can
only ex it the loop to the beginning of the program code when VBFLAG = I.

FOREVER LDA VBFLAG ;TEST FLAG
eMF #$01
BNE .1
JMP LOOPM ;EXrTS WHEN VBFLAG=1

.1 JMP FOREVER

ADVANCED ARCADE TECHNIQUES 9

MAZE GAME OVERALL FLOWCHART

INITIALIZE GAME

1
~ CHECK COLLISIONS

NO I ,
PLAYER #1-CHECK FOR

LEGAL MOVES AND
FLEE FROM PLAYER #0

I
PLOT PLAYER #1

I
PLAYER #2-CHECK FOR

LEGAL MOVES AND
CHASE PLAYER #0

1
PLOT PLAYER #2

I
PLA YER #3-CHECK FOR

LEGAL MOVES AND
CHASE PLAYER #0

I
PLOT PLAYER #3

I
WAIT IN CLOSED LOOP

UNTIL THE VBLANK
CODE IS COMPLETED

J

YES
PLA YER #0 WITH r----- SUBTRACT LETTER
#3 (MINUS SIGN) FROM EACH PLAYER r

NO

YES ADVANCE LETTER CHECK PLAYER #0 WITH
PLAYER #2 & LETTER CLOSEST TO IT - r

TWO LETTERS FOR

NO
PLA YER CAUGHT

VBLANK ROUTINE

LEGAL MOVE SUBROUTINE I
I

PLAYER #0 ~ TEST & RESET AT CENTER OF LEGAL MOVE FLAG
BLOCK?

INO

t
READ JOYSTICK #0

I
CENTERED? ~

~NO

TEST OTHER
DIRECTIONS AND

MOVE PLAYER
APPROPRIATEL Y

PLOT PLAYER #0

I
I

CONTINUE MOVING
IN SAME DIRECTION

UNTIL BLOCKED

S

361

362

9 ADVANCED ARCADE TECHNIQUES

Player Movement

The player is joystick guided. When a player orders his player to move in a certain
direction a number of things happen . First the program checks if the player is at the
center of a block and if so checks which movement directions are legal. For example
if a player initially started at the top left corner, it can only move right or down. If the
player began moving down, he could no longer move left, but only back in the
direction he came from, at leas t until he reached the center of the next block. So once
a player begins moving the legal direc tion flags must be reset to reflect the legal
moves between adjacent blocks . Second, since player movement should be automatic
once a player begins moving in the desired direction, a auto flags denoted as DR, DL,
DU, and DD must be set. The auto flag is on when set to I and off when set to O. So if
our player is heading downwards, DD=l.

Joystick Subroutine

The joystick subroutine is similar to other joysticks routines except in its treat
ment of diagonals. Only a single bit has to be tested if it is off to determine the desired
direction for the up, down, left and right positions. But in the four diagonal
directions two bits are off. Since we can only move horizontally or vertically in the
maze, a decision must be made to which direc tion the player means. If a player were
moving right and he wanted to turn up a t the next intersection he would likely point
his stick diagonally up and right. Since he is travelling right in an automatic mode,
he probably doesn ' t mean to order his player right but instead up. So if the right auto
flag is on DR=I, it means that he is already travel ling right and intends to go up the
next time he reaches a block that allows him to move in that direction. Similarily, if
he is moving up, DU=1 so he would probably intend to go right at the next
intersection.

IF DL=1 (ON) THEN WANT TO GO UP
IF DU=1 THEN WANT TO GO LEFT

IF DL=1 THEN WANT TO GO DOWN
IF DD=1 THEN WANT TO GO LEFT

IF DR=1 (ON) THEN WANT TO GO UP
IF DU=1 THEN WANT TO GO RIGHT

IF DR=1 THEN WANT TO GO DOWN
IF DD=1 THEN WANT TO GO RIGHT

If you look at the flow chart for the joystick subroutine, you will notice that in
addition to setting auto fl ags and reseting legal flags for each of the four primary
joystick directions, a flag ca ll ed INHIBIT is set sometimes in the diagonal test. This
is necessary because if for exa mple we had an up and right diagonal and we were

INHIBIT=O

ADVANCED ARCADE TECHNIQUES 9

OL=O FLAGL = 0
OU =0 FLAGU = 1
00 =0 FLAGO = 1
OR =1

OR = 0 FLAGR = 0
OU = 0 FLAGU = 1
00 = 0 FLAGO =1
OL = 1

00 =0
OR = 0
OL = 1
OU = 0

OU=O
OR=O
OL=O
00=1

l-~2S~TA~Y~ ________ 1-________ 1-____________ ~==~--~

363

. 364

9 ADVANCED ARCADE TECHNIQUES

traveling up, the logic would say tha t we want to tes t for a right move. Since the right
bit is off, the apropriate fags will be se t correctly, but when it reaches the up bit test
that bit is also off so that it will try to se t latches for that direction too. But if it has to
pass a INHIBIT = I? tes t, it will prevent the program from reaching the second bit
position test. The INHIBIT flags are only set for situations where the code will
branch to the right and left bit tes ts first. Code that branches to either the up or down
bit tes ts can not reach the left and right bit tests to cause problems.

Whenever a joystick command is given to change the player's direction, the
joystick routine checks to see if the p layer can move in that direction from its current
position. It checks to see if the legal move direction flag is open or closed in the
desired direction. If it is open (0), it shuts off a ll the auto flags except the one for the
new direction. Finall y it resets the legal move flags so that it can only go forward or
reverse between blocks, and then moves the player one unit forward. If you try to
command the player to move in a direction tha t it can't go, it wi ll keep on going
forward automatically if it can.

Auto Mode Code
The auto mode is what makes the joystick routine particularly smooth and

responsive. If it didn 't exist, you would have to exert more effort to get your man to
steer properly. Besides a lways needing to push the joystick one way or the other, you
would have to be carefu l to reach the exact center of a block before successfully
negoiating a turn.

The auto mode code simply checks to see which a uto fl ag is on and checks if it is
legal to continue moving in that direction. If not the player stops until it receives a
new command .

ADVANCED ARCADE TECHNIQUES 9

Legal Move Subroutine

A subroutine appropriately called LEGAL determines in which directions the
player is allowed to move. You input the player # in the X-register and its current X
and Y positions, and it sets the legal move flags FLAGL,X , FLAGR,X, FLAGU,X,
and FLAGD,X for the approprate player. It is a two step process. First it decides if the
player is at the center of a block. Each block is 8 pixels wide by 16 pixels deep. For a
player to be at the center of a block it must be at an exact multiple of 8 horizontally
and an exact multiple of 16 vertically. The player's position is in player-missile
coordinates. The top left corner of the maze is at location 48,32. And the 8 scan line
high pla'yer is initially 4 scan lines lower in order to center it in a 16 scan line high

(48,32)

I~

PLAYER #0 BLUE A
PLAYER #1 GREEN B
PLAYER #2 GREEN C
PLAYER #3 RED_

block. We can get two values TEMPX and TEMPY by subtracting 48 and 36 from the
player's horizontal and vertical positions respectively. The coordinates of the block
XB,YB that the player is currently in are calculated as follows.

TEMPX = XP-48
XB =TEMPX/ 8

TEMPY = YP-36
YB = TEMPY 1 16

BLOCK = YB*20 + XB

It is quite simple to determine if the player is at the center of the block by checking
the values in TEMPX and TEMPY. If any of the first three bit positions in TEMPX
containing anything (a remainder) we have a value that is not an exact multiple of 8.
You can AND with #$07 to check the first three positions of TEMPX for a non zero
value. For example:

00001001
00000111

00000001

TEMPX = #$09
AND #$07

RESULT positive

Similarly we can AND with #$OF to test the first four positions of TEMPY for a
non-zero value or a remainder.

365

366

9 ADVANCED ARCADE TECHNIQUES

(SUBROUTINE LEGAL)

INPUT XP,YP PLAYER POSITIONS
OUTPUT FLAGL, FLAGR, FLAGU, FLAGD

O-OPEN I-CLOSE

l TEMPX=PLAYER HOR POS-48 I
XB=TEMPX/8

l TEMPY=PLAYER VERT POS-36 I
YB=TEMPY/16

I CENTER OF BLOCK Y DIRECTION? INO
I

YES

I CENTER OF BLOCK X DIRECTION? I NO

YES

I BLOCK=YB'20tXB I
OPEN ALL FLAGS

FLAGL=O FLAGR=O
FLAGU=O FLAGD=Q

I LOAD DSCREEN(BLOCK) I
I TEST FOR EACH LEGAL I

MOVE & SET FLAGS ACCORDINGLY

DONE

NO

.2

.3

DU,X=?

.4

DD,X=1?

ADVANCED ARCADE TECHNIQUES 9

MAZE GAME

IS THERE A DIRECTION AVAILABLE OTHER THAN
DIRECTION TRAVELING OR REVERSE?

OUTPUTS FLAGL', FLAGR', FLAGU', FLAGD'

REWRITE LEGAL
SO X REG HOLDS

PLAYER #

367

368

9 ADVANCED ARCADE TECHNIQUES

If the above two tes ts prove that we are at the center of the blocks, we can test the
individual direction bits for the character number for that block. We open all of the
flags before testing each direction. The address to the screen data or maze map has
previously been put in zero page at locations MAPL, MAPH. The code for testing if
the block 's left direction is open is shown below.

.2

LDY BLOCK
LDA (MAPL),Y
AND #$01
BEQ
LDA #$01
STA FLAG,X
LDA (MAPL),Y

;BLOCK WE TEST IS USED AS INDEX INTO TABLE
;GET VALUE OF BLOCK
;TEST LEFT DIRECTION
;IF RESULT 0 THEN LEAVE FLAG OPEN
;SET FLAG CLOSED
;X REG. CONTAINS PLAYER #

Computer Controlled Players

The three other p layers, the two letters and the minus sign, are computer con
trolled. T he two letters must continua ll y flee from the player 's joystick con trolled
letter, whi le the minus sign homes in on the position of the player's letter.

Each of the computer controlled sprites must determine the direction or directions
that they wish to travel relative to the player's letter in order to either seek it or flee
from it. If the playfield were completely open the logic would be rather simple. The
minus sign would approach the p layer in one of two random directions, horizon
tally or vertically until it was even in that axis, then move towards it in along the
opposite axis. A letter fleeing from the player's letter wou ld would move away from
the p layer along one axis until it reached the play field boundary, then move towards
the corner opposite that of the player's letter. Of course it would get trapped in the
corner.

Mazes have lots of corners where fl eeing letters and pursuing minus signs cou ld
become trapped. A pursuing player that found itself in a parallel corridor would
closely fo ll ow your motions as you moved back and forth safe but nex t to it. There
might not even be an escape since you and it wou ld reach the next turn at exactly the
same time. On the o ther hand, a p layer that fl ed would often get stuck in a corner
awa iting for you to becom e parallel with it a long one corridor before fl eeing a long
the other. As many maze game des igners will testify, the only practical solution is to
force both the pursueing and fl eeing computer controll ed p layers to always move
forward in the corridors, never in reve rse.

The logic needed to keep a player moving forward is not a lways simple, for
sometimes it disobeys the general rules given to each type of p layer to either pursue
or flee from the joystick controlled letter. In general, if a player is at a decision
making point, the center of a block, it must decide if there is a direction avai lable
other than the direction it is traveling in or reverse. If it doesn ' t have a choice it just
continues in its current direction. But if there is a choice it must decide if one of those
directions is a better choice than the direction it is currently travelling.

ADVANCED ARCADE TECHNIQUES 9

A set of four relative direction flags, RELL,X ,RELR,X ,RELU,X and RELD,X,
can be set to indicate whether the computer controlled letters and minus sign should
move towards our letter or not. Each of their X and Y coordinates are checked against
the joystick controlled letter 's X, Y coordinate. Obviously if the player's letter is to
the left of the minus sign, the minus sign would want to move left so RELL,X is set
to 1. The minus sign is player #3 (X-register = 3) so that RELL,3 = 1. The minus sign
would also like to move up so that RELU,3 =1. On the other hand, the letter B, which
has a similiar relative positioning as the - sign in the diagram below, wants to
escape and move in the exact opposite direction . The testing algorithm is the same
for both types of players but instead of setting RELU,I=1 the letter B would like
RELU, I = -1. If it wants to go the opposite direction it is much simpler to just set the
flag for the opposite direction than to test for negative relative flags. Thus RELD, 1=1
is the exact equivalent and the letter subsequently flees.

A
RELU,1=O

RELL,1 =0 B RELR,1=1

RELD,1=1
RELU,3=1

RELL,3=1
-I---RELR,3=O ---~

RELD,3=O

The next step is to decide if any of these relative direction flags match any of the
legal direction movement flags. For example if RELL,I=1 and FLAGL,I=1 then
either the fleeing letters or the pursuing minus sign can take the turn. If the move is
possible it sets a move flag MFLAGL, I = I for that direction . The reader at this point
is probably muttering, "Not another flag!" It is actually necessary because there can
be more than one possible direction to move. In that case the program will have to
choose one direction to move. There is a counter called NUM that increments each
time it sets a move flag. If NUM > 1 we will have to choose a direction randomly. The
choice of directions are arranged in pairs left-right and up-down. Depending on the
random number value, the test will be on either the vertical or horiziontal direction
first. There is no danger that the program will miss finding a set move flag if it

369

370

9 ADVANCED ARCADE TECHNIQUES

MAZE GAME (OTHER 3 PLAYERS)

AT CENTER OF IYES
IS THERE A DIRECTION ~ CONTINUE IN BLOCK I AVAILABLE OTHER THAN SAME DIRECTION h

+NO DIRECTION TRAVELING OR UNLESS BLOCKED
REVERSE. THEN REVERSE

AUTO YESt CONTINUE MOVING TESTRX
IN SAME DIRECTION

TEST RELATIVE POSITIONS TO CENTER NEXT BLOCK
AND SET REL FLAGS (4)

I a nothing 1 chase

COR~ I
CANWE NO YES

GO FORWARD TEST IF DIRECTION AVAILABLE
MATCHES REL FLAG

NO tYES

DON'T REVERSE ~ IS MATCH REVERSE I ,GTOP
BUT MAKE LAST DIRECTION

AVAILABLE TURN + YES THEN 2

I INO SO RANDOMLY PICK
ONE ONLY

I
1 DIRECTION

MOVE IN THAT
DIRECTION ~YES I

MOVE IN I MOVE IN THAT DIRECTION I THAT DIRECTION

I I EE

branches past the horizontal axis since it on ly occurs when NUM =2. The two flags
that have been set can't be both left and right since a fleeing or pursuing player
would choose only one direction to move in any axis. Once it determines which
move flag has been set it resets th e auto flag and moves in the appropriate new
direction.

There are cases especia lly in corners where the relative flags and the legal flags
don ' t match. In these cases where th e p layer would become trapped, the player must
be forced to make the only legal turn even if it means moving the wrong way towards
the joystick controll ed letter. I ca lled the subroutine CORECT. The routine,
realizing that the player was moving forward when it became stuck, tests which auto
flag is set and compares it with the legal move flag for that direction. If it can
continue moving forward it goes to AUTOP, the automatic mode for the player, and
bypasses the code to force it to make the corner against its will. However, if it
becomes stuck, it, it tests the lega l move flags for the two directions along the
opposite axis. For example if it were heading right and became stuck it would check
FLAGU,X and FLAGD,X. There is no need to check the FLAGL,X because the
player is not a ll owed to reverse itself. Once we have determined the new direction we
reset the auto flags and move it one pixel in that direction.

ADVANCED ARCADE TECHNIQUES 9

TEST & SET RELATIVE FLAGS

SET ALL REL ;X FLAGS~O

.3 .--_--'-_----,

TEST IF DIRECTION A .. V~AI=LA~B=LE~===d~~==== ___ J MATCHES REL FLAG ..

RELD,X;1
RELU,X;1

RELU,X~ tl

371

372

9 ADVANCED ARCADE TECHNIQUES

CORRECT

Player Collisions

Eventually, either the joystick controlled letter is going to catch the next higher
letter or the minus sign is going to catch it. When a ny two players overlap a collision
register is set which we can test. If the joys tick con trolled letter catches the next
higher letter it must become the nex t higher letter and the letter that was just caught
becomes a letter two higher than it was. Thus letter A which catches B becomes a
letter B, letter C remains the same, and letter B becomes a D. The caught letter must
be repositioned somewhere else on the screen preferably a t the opposite end of the

ADVANCED ARCADE TECHNIQUES 9

PLACE ,3

PLAYER#O LEFT SIDE BOARD?
XB=O to 9?

NO

,2 .4

EX I T ___ ------IL-_______ L-_____ L..-____ -'

screen, If our hero is at the bottom left of the maze, we put the new letter at the top
right. The four possible placemem positions aren't random but in specific spots
with specific starting directions, The actual repositioning is accomplished in a
subroutine called PLACE. It is very simple and clearcut routine. It does randomize
the left-right starting positions for the bottom two locations because occasionally
two letters are caught almost simultaneously in either of the top two outer pathways.

A collision of your letter with the minus sign results in a decrement of one letter
except when you are the letter A. In fact all three letters are decrememed one letter so
that if you are the letter C chasing a D, after the collision with the minus sign you are
a B chasing a C in exactly the same position. Although the minus sign is
repositioned at the bottom of the screen on the opposite side of the maze from the
player, it was felt that penalizing your player by repositioning it at the top corner
was frustrating to beginners who got caught a ll too often and felt that it was like
starting over.

Each of the three lettered players has a variable that points to which letter it
currently is. POINTO refers to the joystick controlled letter, and POINTI and
POINT2 refer to the two fl eeing letters. This variable also controls which letter
shape is taken from the shape table during the PLOTSET subroutine. The shapes
are arranged in numerical order. Shape #0 is the minus sign. The 26 letters follow in
sequential order. Two blanks are placed at the end so that when the player reaches Y
it is chasing only a Z and one invisible player. When the player reaches Z there are
two invisible players still on the screen.

While it is possible to test whether player #1 or player #2 has collided with our
joystick controlled letter, you can ' t be sure that the collision is with the next higher
letter because that letter alternates between the two players. Therefore a test
comparing the values of the two colliding letters must also be done to determine if
the two letters are one apart. Say our player is an E (POINTO=5) and it collides
mistakenly with player #1 that currently is a G (POINTl=7). The test POINTl
-POINTO gives a value greater than 1. Therefore we ignore the collision. But if we
collide with player #2 that is an F (POINT2=6) then POINT2-POINTO is equal to 1.
We then increment POINTO our player to a F and increment POINT2 twice to H.
Now we have a F chasing a G and H.

373

374

9 ADVANCED ARCADE TECHNIQUES

I
I YES ~ CHECK COLLISON I IS POINT1 - POINT2 = 1?

PLA YER 0 WITH PLAYER 1 I I
t YES NO

I INC POINTO
INC POINT 1 (TWICE) J

I

~
PUT PLAYER #1

J ELSEWHERE IN MAZE

I
.1

I CHECK COLLISON I YES
IS POINT2 - POINTO =1 ~ I I PLAYERO WITH PLAYER3 t YES

NO

[
INC POINTO

J INC POINT 2 (TWICE)

I

l
PUT PLA YER #2 I ELSEWHERE IN MAZE

1
.2

I CHECK COLLISION YES NO
POINTO=1? ~ PLA YER 0 WITH PLAYER 2 ONCE = 1?

YES YES
DEC POINT 0
DEC POINT 1
DEC POINT2

I PUT PLAYER 0 AT TOP LEFT .1
PUT PLAYER 3 AT BOTTOM RIGHT

Second Maze Level

Eventually the player reaches the letter Z in the game. There is a four second pause
before a new maze appears . Setting up the screen is simple. The 220 bytes of character
da ta for the second screen is moved into screen memory starting at location
SCREEN. The zero page pointers MAPL and MAPH, which are used by the
subroutine LEGAL to obtain the value of a particular block, are also set to point to

the character data at DSCREEN2.

SLOOPl
LDX #$00
LDA DSCREEN2,X
STA SCREEN,X
CPX #$FO
BNE SLooPl
LDA #DSCREEN2
STA MAPL
LDA /DSCREEN2
STA MAPH

;LOAD NEW MAZE DATA
;STORE ON SCREEN
jDONE?
;NEXT BLOCK
;SETUP ZERO PAGE POINTERS TO DATA

ADVANCED ARCADE TECHNIQUES 9

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C C 6 o 5 C

2

I 5

3jJ33~5480
333 3 1'A~3
1 A 3 3 3 ~ 2

3 5 4 4

3

4

C C C C C C 6 ~ 5 C

C C C C 611 C 8--4-4--6-13

I ~ I: : I ~ I : I : I : :': II: : I : I :
F F F F 1 6 F 3 3 3 ~ 2

C C

5 C 2 9 8 C 8 o C C C C 0 8 C 8 A

6

7

8

9

10 9 8 8 C C C C C C C C 8 8

LEVEL 2-MAZE GAME

The layout of the second maze was designed to be quite harder. The only open
pathways are along the bottom and two sides. The interior pathways are designed so
tha t if you don't concentrate and choose your pathways with care, a wrong turn will
nearly always give the pursued letter a bigger lead.

It is possible to add many more levels to the game. If there is only a few you could
uuplicate the above code and by testing which level you have just finished branch to
the appropriate block of code to put the maze character data in screen memory. More
advanced programmers shou ld set up an indexed table for the hi byte pointer to each
256 byte block of character maze data if there are more than four maze levels.

ALPHABET MAZE

BY JEFFREY STANTON

SELECT: EASY*
HARD

$9400

$9000
$8800
$8700

$47FB

$3CEB

$3COO

$3B14
$3BOO

DISPLAY LIST
CHARACTER SET

PIM
SCREEN

BLANK

GAME CODE

PIM DATA
VARIABLES

DATA

375

376

9 ADVANCED ARCADE TECHNIQUES

Pause Feature

TITLE SCREEN & START
GAME FLOWCHART

MAIN PROGRAM

WRITE' AT HARD
SLOW = 0

A pause game feature is important to most arcade games, especially one in which
the game might last more than several minutes. The problem with an Atari is that
game code within the vertical blank executes 60 times per second regardless of any
pause con trol in the main program loop. If the game is to stop, the pause code must
branch past the game code within vertical blank to XITVBK. In our case, if we
branch past the VBLANK flag which we use to syncronize the non-vertical blank
code, the rest of the game action will also stop. The pause code shown in the flow
char t below is placed at the very beginning of vertical blank.

KEY PRESSED?

~-------L------~NO

SPACE BAR?

PAUSE = 1?

SET PAUSE = 1

NOTE: PAUSE = 1 STOPS PROGRAM

.3

SET PAUSE = 0

XITVBK

ADVANCED ARCADE TECHNIQUES 9

00010 *ALPHABET MAZE - COPYRIGHT 1984 - BY JEFFREY STANTON
00015 .OR $3800
00017 • TF "D:MAZE. OBJ"
00020 *ZERO PAGE EQUATES

OOFO: 00025 SHPL . EQ $FO
OOFl: 00030 SHPH . EQ $Fl
00F2: 00035 SHPML .EQ $F2
00F3: 00040 SHPMH • EQ $F3
00F4: 00045 SHPMOL . EQ $F4
00F5: 00050 SHPMOH . EQ $F5
00F6: 00055 PMADR . EQ $F6
00F8: 00060 MAPL .EQ $F8
00F9: 00065 MAPH . EQ $F9

00070 *OTHER EQUATES
8700: 00075 SCREEN .EQ $8700 ;ADR OF SCREEN
9400: OOOBO NDLIST .EQ $9400 ;ADR OF DISPLAY LIST
9000: 00085 CHRSET .EQ $9000 ;ADR OF CHARACTER SET
0400: 00090 SETSIZ . EQ 1024
E45C: 00095 SETVBK .EQ $E45C
E462: 00100 XITVBK . EQ $E462
0278: 00105 STICK .EQ $27B
02F4: 00107 CHBAS .EQ $2F4 ;CHARACTER SET BASE
02CB: 0010B COLOR4 .EQ $2CB

00110 *PLAYER MISSILE EQUATES
D407: 00115 PMBASE .EQ $D407
B800: 00120 PDATA .EQ $B800 ;ADR OF P/M AREA
D01D: 00125 GRACTL .EQ $D01D
022F: 00130 DMACTL .EQ $22F
DOlE: 00135 HITCLR .EQ $D01E
DOOB: 00140 SIZEPO .EQ $DOOB ;PLAYER SIZES
D009: 00145 SIZEP1 .EQ $D009
DOOA: 00150 SIZEP2 .EQ $DOOA
DOOB: 00155 SIZEP3 .EQ $DOOB
02CO: 00160 COLPMO .EQ $2CO ;PLAYER COLORS
02C1: 00165 COLPM1 .EQ $2C1
02C2: 00170 COLPM2 .EQ $2C2
02C3: 00175 COLPM3 .EQ $2C3
DOOO: 001BO HPOSPO .EQ $DOOO ;HORIZ PLAYER POSITIONS
D001: 00185 HPOSP1 .EQ $D001
D002: 00190 HPOSP2 .EQ $D002
D003: 00192 HPOSP3 .EQ $D003
DOOC: 00193 POPL .EQ $DOOC ;PLAYER TO PLAYER COLLISIONS
D20A: 00195 RANDOM .EQ $D20A
D01F: 00205 CON SOL .EQ $D01F

00210 *
3BOO: 05 OC OC
3803: OC OC OC
3B06: OC OC 06
3809: OF 00215 DSCREEN .HS 050COCOCOCOCOCOC060F
380A: OF 05 OC
3BOD: OC OC OC
3B10: OC OC OC
3813: 06 00220 .HS OF050COCOCOCOCOCOC06
3814: 03 05 OC
3817: OC 04 OC
381A: OC OC 00
3B1D: OC 00225 .HS 03050COC040COCOCOOOC
381E: OC 00 OC
3821: OC OC 04
3824: OC OC 06
3827: 03 00230 .HS OCOOOCOCOC040COC0603
3828: 03 03 OF

377

9 ADVANCED ARCADE TECHNIQUES

382B: OF 03 05
382E: DC DC 02
3831: OF 00235 .HS 03030FOF03050COC020F
3832: OF 01 OC
3835: DC 06 03
3838: OF OF 03
383B: 03 00240 .HS OFOI0COC06030FOF0303
383C: 01 OA OF
383F: OF 09 02
3842: OF OF 01
3845: OC 00245 .HS 010AOFOF09020FOFOI0C
3846: DC 02 OF
3849: OF 01 OA
384C: OF OF 09
384F: 02 00250 .HS OC020FOFOI0AOFOF0902
3850: 01 DC OC
3853: OC OC 02
3856: OF 05 OA
3859: OF 00255 .HS 010COCOCOC020F050AOF
385A: OF 09 06
385D: OF 01 OC
3860: OC DC OC
3863: 02 00260 .HS OF09060FOI0COCOCOC02
3864: 03 OF OF
3867: OF OF 01
386A: OC 02 OF
386D: OF 00265 .HS 030FOFOFOFOI0C020FOF
386E: OF OF 01
3871: OC 02 OF
3874: OF OF OF
3877: 03 00270 .HS OFOFOI0C020FOFOFOF03
3878: 03 05 OC
387B: OC OC 02
387E: OF 09 06
3881: OF 00275 .HS 03050COCOC020F09060F
3882: OF 05 OA
3885: OF 01 OC
3888: OC OC 06
388B: 03 00280 . HS OF050AOFOI0COCOC0603
388C: 03 01 OC
388F: OC 06 03
3892: OF OF 01
3895: 04 00285 .HS 03010COC06030FOFOI04
3896: 04 02 OF
3899: OF 03 05
389C: OC OC 02
389F: 03 00290 .HS 04020FOF03050COC0203
38AO: 03 03 OF
38A3: OF 03 09
38A6: OC OC 02
38A9: 03 00295 .HS 03030FOF03090COC0203
38AA: 03 01 OC
38AD: OC OA 03
38BO: OF OF 03
38B3: 03 00300 .HS 03010COCOA030FOF0303
38B4: 03 09 OC
38B7: 06 09 OC
38BA: OC OC OA
38BD: 03 00305 .HS 03090C06090COCOCOA03
38BE : 03 09 OC
38Cl: OC OC OA
38C4 : 05 OC OA

378

ADVANCED ARCADE TECHNIQUES 9

38C7: 03 00310 .HS 03090COCOCOA050COA03
38C8: 09 OC OC
38CB: 08 OC OC
38CE: OC OC OC
38D1: OA 00315 .HS 090COC080COCOCOCOCOA
38D2: 09 OC OC
38D5: OC OC OC
38D8: 08 OC OC
38DB: OA 00320 .HS 090COCOCOCOC080COCOA
38DC: 00 00 00
38DF: 00 00 00
38E2: 00 00 00
38E5: 00 00325 .HS 00000000000000000000
38E6: 00 00 00
38E9: 00 00 00
38EC: 00 00 00
38EF: 00 00330 .HS 00000000000000000000
38FO: 00335 .BS $10
3900: 05 OC OC
3903: OC 06 OF
3906: 05 OC OC
3909: OC 00340 DSCREEN2 .HS 050COCOC060F050COCOC
390A: OC OC OC
390D: 06 OF 05
3910: OC OC OC
3913: 06 00345 .HS OCOCOC060F050COCOC06
3914: 01 04 04
3917: 04 08 OC
391A: 02 05 OC
391D: OC 00350 .HS 01040404080C02050COC
391E: OC OC 06
3921: 01 OC 08
3924: 04 04 04
3927: 02 00355 .HS OCOC06010C0804040402
3928: 03 03 03
392B: 03 05 04
392E: 08 00 OC
3931: 04 00360 .HS 03030303050408000C04
3932: 04 OC 00
3935: 08 04 06
3938: 03 03 03
393B: 03 00365 .HS 040COO08040603030303
393C: 03 03 03
393F: 03 01 OA
3942: OF 03 OF
3945: 09 00370 .HS 03030303010AOF030F09
3946: OA OF 03
3949: OF 09 02
394C: 03 03 03
394F: 03 00375 .HS OAOF030F090203030303
3950: 01 OA 03
3953: 03 03 OF
3956: 05 02 OF
3959: OF 00380 .HS 010A0303030F05020FOF
395A: OF OF 01
395D: 06 OF 03
3960: 03 03 09
3963: 02 00385 .HS OFOF01060F0303030902
3964: 01 OC 02
3967: 09 08 OC
396A: 08 00 OC
396D: OC 00390 .HS 010C0209080C08000COC

379

9 ADVANCED ARCADE TECHNIQUES

396E: OC OC 00
397 1: 08 OC 08
3974: OA 01 OC
3977: 02 00395 .HS OCOCOO080C080A010C02
3978: 03 OF 01
397B: OC OC OC
397E: OC 02 OF
3981: OF 00400 .HS 030F010COCOCOC020FOF
3982: OF OF 01
3985: OC OC OC
3988 : OC OA OF
398B: 03 00405 .HS OFOF010COCOCOCOAOF03
398C: 01 04 08
398F: 04 OC OC
3992: OC 02 OF
3995: 05 00410 .HS 010408040COCOC020F05
3996: 06 OF 01
3999: OC OC OC
399C: 04 OC 04
399F : 02 0041 5 .HS 060F010COCOC040C0402
39AO: 01 OA OF
39A3: 03 05 OC
39A6: OC 08 OC
39A9: 02 00420 .HS 010AOF03050COC080C02
39AA: 01 OC 08
39AD: OC OC 06
39BO : 03 OF 09
39B3: 02 00425 .HS 010C080COC06030F0902
39B4: 03 OF 05
39B7: 02 03 05
39BA: OC OC OC
39BD: OA 00430 .HS 030F050203050COCOCOA
39BE: 09 OC OC
39C1 : OC 06 03
39C4: 01 06 OF
39C7: 03 00435 .HS 090COCOC060301060F03
39C8: 09 OC 08
39CB: 08 08 08
39CE: OC OC OC
39D1: OC 00440 .HS 090C080808080COCOCOC
39D2: OC OC OC
39D5 : OC 08 08
39D8: 08 08 OC
39DB: OA 00445 .HS OCOCOCOC080808080COA
39DC: 00 00 00
39DF: 00 00 00
39E2 : 00 00 00
39E5: 00 00450 .HS 00000000000000000000
39E6: 00 00 00
39E9: 00 00 00
39EC: 00 00 00
39EF : 00 00455 .HS 00000000000000000000
39FO: 00460 .BS $10
3AOO: 70 70 70
3A03 : 47 00 87
3A06 : 07 07 00465 DLIST .HS 7070704700870707
3A08: 07 07 07
3AOB: 07 07 07
3AOE: 07 07 00470 .HS 0707070707070707
3A10: 07 41 00
3A13 : 94 00475 .HS 07410094

00480 *MAP CHARACTER DATA

380

ADVANCED ARCADE TECHNIQUES 9

3A14: 00 00 00
3A17: 00 00 00
3AIA: 00 00 00485 DCHAR .HS 0000000000000000
3AIC: 80 80 80
3AIF: 80 80 80
3A22: 80 80 00490 .HS 8080808080808080
3A24: 01 01 01
3A27: 01 01 01
3A2A: 01 01 00495 .HS 0101010101010101
3A2C: 81 81 81
3A2F: 81 81 81
3A32: 81 81 00500 .HS 8181818181818181
3A34: FF 00 00
3A37: 00 00 00
3A3A: 00 00 00505 .HS FFOOOOOOOOOOOOOO
3A3C: FF 80 80
3A3F: 80 80 80
3A42: 80 80 00510 .HS FF80808080808080
3A44: FF 01 01
3A47: 01 01 01
3A4A: 01 01 00515 .HS FFOI0I0I0I0I0I01
3A4C: FF 81 81
3A4F: 81 81 81
3A52: 81 81 00520 .HS FF81818181818181
3A54: 00 00 00
3A57: 00 00 00
3A5A: 00 FF 00525 .HS OOOOOOOOOOOOOOFF
3A5C: 80 80 80
3A5F: 80 80 80
3A62: 80 FF 00530 .HS 80808080808080FF
3A64: 01 01 01
3A67: 01 01 01
3A6A: 01 FF 00535 .HS 01010101010101FF
3A6C: 81 81 81
3A6F: 81 81 81
3A72: 81 FF 00540 .HS 81818181818181FF
3A74: FF 00 00
3A77: 00 00 00
3A7A: 00 FF 00545 .HS FFOOOOOOOOOOOOFF
3A7C: FF 80 80
3A7F: 80 80 80
3A82: 80 FF 00550 .HS FF808080808080FF
3A84: FF 01 01
3A87: 01 01 01
3A8A: 01 FF 00555 .HS FFOI0I01OI0I0IFF
3A8C: FF FF FF
3A8F: FF FF FF
3A92: FF FF 00560 .HS FFFFFFFFFFFFFFFF
3A94: 20 20 20
3A97: 41 4C 50
3A9A: 48 41 42
3A9D: 45 00565 TITLE .HS 202020414C5048414245
3A9E: 54 20 4D
3AAI : 41 5A 45
3AA4: 20 20 20
3AA7: 20 00566 .HS 54204D415A4520202020
3AA8: 20 20 20
3AAB: 20 20 20
3AAE: 20 20 20
3ABI : 20 00570 .HS 20202020202020202020
3AB2: 20 20 20
3AB5: 20 20 20

381

9 ADVANCED ARCADE TECHNIQUES

3AB8: 20 20 20
3ABB: 20 00571 .HS 20202020202020202020
3ABC: 20 42 59
3ABF: 20 4A 45
3AC2: 46 46 52
3AC5: 45 00575 .HS 204259204A4546465245
3AC6: 59 20 53
3AC9: 54 41 4E
3ACC: 54 4F 4E
3ACF: 20 00576 .HS 59205354414E544F4E20
3ADO: 00 00 00
3AD3: 33 25 2C
3AD6: 25 23 34
3AD9: lA 00 25
3ADC: 21 33 39
3ADF: 00 00 00
3AE2: 00 00 00580 TITLE 1 .AT ' SELECT: EASY
3AE4: 00 00 00
3AE7: 00 00 00
3AEA: 00 00 00
3AED: 00 00 28
3AFO: 21 32 24
3AF3: 00 00 00
3AF6: 00 00 00585 .AT ' HARD
3AF8: 00590 .BS $08
3BOO: 00 00 00
3B03: 00 00 2E
3B06: 25 38 34
3B09: 00 2C 25
3BOC: 36 25 2C
3BOF: 00 00 00
3B12: 00 00 00595 TITLE2 .AT ' NEXT LEVEL

00600 *VARIABLES
3B14: 00605 XO .BS 1 jPLAYER'S MAN POSITION
3B15: 00610 X .BS 4 JREST OF PLAYER POSITIONS
3B19: 00615 YO .BS 1
3BIA: 00620 Y .BS 4 JREST OF PLAYER POSITIONS
3BIE: 00625 XB .BS 4 jBLOCK EACH PLAYER IN
3B22: 00630 YB .BS 4
3B26: 00635 FLAGL .BS 4 jLEGAL MOVE FLAGS FOR EACH PLAYER
3B2A: 00640 FLAGR .BS 4
3B2E: 00645 FLAGU .BS 4
3B32: 00650 FLAGD .BS 4
3B36: 00655 RELL .BS 4 jDIRECTION WANT TO MOVE IN FLAGS
3B3A: 00660 RELR .BS 4
3B3E: 00665 RELU .BS 4
3B42: 00670 RELD .BS 4
3B46: 00675 MFLAGL .BS 4 jMATCH FLAGS
3B4A: 00680 MFLAGR .BS 4
3B4E: 00685 MFLAGU .BS 4
3B52: 00690 MFLAGD .BS 4
3B56: 00695 TEMPX .BS 1
3B57: 00700 TEMPY .BS 1
3B58: 00705 TEMPL .BS 4
3B5C: 00710 TEMPH .BS 4
3B60: 00715 BLOCK .BS 1 jOFFSET IN SCREEN MEMORY OF CURRENT BLOCK
3B61: 01 00720 POINTO .DA #1 jSHAPE # PLAYER 0
3B62: 02 00725 POINTl .DA #2
3B63: 03 00730 POINT2 .DA #3
3B64: 00 00735 POINT3 .DA #0
3B65: 00740 DL .BS 4 jAUTO FLAGS
3B69: 00745 DR .BS 4

382

ADVANCED ARCADE TECHNIQUES 9

3B6D:
3B71:
3B75: 00
3B76: 00
3B77: 00
3B78: 00
3B79: 00
3B7A: 00
3B7B: 00
3B7C:
3B7D:

00750 DU .BS 4
00755 DD .BS 4
00820 INHIBIT .DA #0
00825 VBFLAG .DA #0
00830 LFLAG .DA #0
00835 NUM .DA #0
00840 PAUSE .DA #0
00845 SLOW .DA #0
00850 HALF .DA #0
00855 LEVEL .BS 1
00857 ONCE .BS 1

;PREVENTS OBTAINING TWO JOYSTICK DIRECTIONS
;VBLANK FINISHED FLAG \ON DIAGONAL
;INDICATES WHETHER AT CENTER OF BLOCK
;NUMBER OF DIRECTION MATCH FLAGS
;PAUSE FLAG
;SETS MINUS SIGN TO HALF SPEED
;COUNTER WHEN PLAYER MOVES AT HALF SPEED
;MAZE LEVEL
;PREVENTS DOUBLE COLLISIONS @ HALF SPEED

3B7E:
3B81:
3B84:
3B86:
3B89:
3B8C:
3B8E:
3B91 :
3B94:
3B96:
3B99:
3B9B:

3COO:
3C03:
3C06:
3C08:
3COB:
3COE:
3CI0:
3Cl3:
3C16:
3C18:
3C1B:
3C1E:
3C20:
3C23:
3C26:
3C28:
3C2B:
3C2E:
3C30:
3C33:
3C36:
3C38:
3C3B:
3C3E:
3C40:
3C43:
3C46:
3C48:
3C4B:
3C4E:
3C50:
3C53:
3C56:
3C58:
3C5B:
3C5E:

00860 *POINTERS TO PM DATA
00 08 10
18 20 28
30 38 00865 SHPLO .HS 0008101820283038
40 48 50
58 60 68
70 78 00870 .HS 4048505860687078
80 88 90
98 AO A8
BO B8 00875 .HS 80889098AOA8BOB8
CO C8 DO
D8 EO 00880 • HS COC8DOD8EO

00885 .BS $65
00890 *MAKE SURE STARTS @$2COO
00895 *PLAYER MISSILE DATA

00 00 00
3C 3C 00
00 00 00900 SHAPES .HS 0000003C3COOOOOO ;MINUS SIGN
18 3C 66
42 7E 42
42 42 00905 .HS 183C66427E424242 ;LETTER A
7C 42 42
7C 42 42
42 7C 00910 .HS 7C42427C4242427C ;B
IE 20 40
40 40 40
20 IE 00915 .HS 1E2040404040201E ;C
78 44 42
42 42 42
44 78 00920 .HS 7844424242424478 ;D
7E 40 40
7C 40 40
40 7E 00925 .HS 7E40407C4040407E ;E
7E 40 40
7C 40 40
40 40 00930 .HS 7E40407C40404040 ;F
IE 20 40
40 4E 42
22 lC 00935 .HS 1E2040404E42221C ;G
42 42 42
7E 42 42
42 42 00940 .HS 4242427E42424242 ;H
7C 10 10
10 10 10
10 7C 00945 .HS 7C1010101010107C ;1
04 04 04
04 04 44
44 38 00950 .HS 0404040404444438 ;J
44 48 50
60 60 50
48 44 00955 .HS 4448506060504844 ;K

383

9 ADVANCED ARCADE TECHNIQUES

3C60: 40 40 40
3C63: 40 40 40
3C66: 40 7E 00960 .HS 404040404040407E ;L
3C68: 41 63 55
3C6B: 49 41 41
3C6E: 41 41 00965 .HS 4163554941414141 ;M
3C70: 62 62 52
3C73: 52 4A 4A
3C76: 46 46 00970 .HS 626252524A4A4646 ;N
3C78: 18 24 42
3C7B : 42 42 42
3C7E: 24 18 00975 .HS 1824424242422418 ;0
3C80: 7C 42 42
3C83: 42 7C 40
3C86: 40 40 00980 .!-IS 7C4242427C404040 ;P
3C88: 18 24 42
3C8B: 42 42 42
3C8E: 26 1B 00985 .HS 182442424242261B ;Q
3C90: 7C 42 42
3C93: 42 7C 44
3C96: 42 41 00990 .!-IS 7C4242427C444241 ;R
3C98: 3E 40 40
3C9B : 40 3C 02
3C9E : 02 7C 00995 .!-IS 3E4040403C02027C ;S
3CAO: FE 10 10
3CA3: 10 10 10
3CA6: 10 10 01000 .!-IS FE10101010101010 ;T
3CA8: 42 42 42
3CAB: 42 42 42
3CAE: 42 3C 01005 .!-IS 424242424242423C ;U
3CBO: 82 82 82
3CB3: 82 44 44
3CB6: 28 10 01010 .HS 8282828244442810 ;V
3CB8 : 41 41 41
3CBB: 41 49 55
3CBE: 63 41 01015 .HS 4141414149556341 ;W
3CCO: 41 22 14
3CC3: 08 14 22
3CC6: 41 00 01020 .HS 4122140814224100 ;X
3CC8: 42 42 24
3CCB: 18 10 20
3CCE: 40 40 01025 .HS 4242241810204040 ;Y
3CDO: 7F 02 04
3CD3: 08 10 20
3CD6: 7F 00 01030 .!-IS 7F02040810207FOO ;2
3CD8: 00 00 00
3CDB: 00 00 00
3CDE: 00 00 01035 .HS 0000000000000000 ; BLANK
3CEO: 00 00 00
3CE3: 00 00 00
3CE6: 00 00 01040 .!-IS 0000000000000000 ; BLANK

01045 *SETUP DLIST
01050 BEGIN

3CE8: A2 00 01055 LDX #$00
3CEA: BD 00 3A 01060 DLOOP LDA DLIST,X
3CED: 9D 00 94 01065 STA NDLIST,X
3CFO: E8 01070 INX
3CF1: EO 15 01075 CPX #$15 21 ELEMENTS
3CF3: DO F5 01080 BNE DLOOP
3CF5: A9 00 01085 LDA #NDLIST ;LOCATION OF DISPLAY LIST 3CF7: 8D 30 02 01090 STA $230
3CFA: A9 94 01095 LDA /NDLIST

384

ADVANCED ARCADE TECHNIQUES 9

3CFC: 8D 31 02 01100 STA $231
01105 *ERASE SCREEN

3CFF: A2 00 01110 START LDX #$00
3D01: A9 00 01115 LDA #$00
3D03: 9D 00 87 01120 ALooP STA SCREEN ,X
3D06 : E8 01125 INX
3D07: DO FA 01130 BNE ALOOP

01135 *WRITE TITLE & AUTHOR
3D09 : A9 EO 01140 LDA #$EO ;ROM CHARACTER SET
3DOB: 8D F4 02 01145 STA CHBAS
3DOE: A2 00 011 50 LDX #$00
3D10: BD 94 3A 01155 BLOOP LDA TITLE,X
3D13: 38 01157 SEC
3D14: E9 20 01158 SBC #$20
3D1 6: 9D 3C 87 01160 STA $873C ,X
3D19: E8 01165 INX
3D1A: EO 3C 01170 CPX #$3C
3D1 C: DO F2 01175 BNE BLOOP

01180 *WRITE SELECT EASY & HARD
3D1 E: A2 00 01185 LDX #$00
3D20: BD DO 3A 01190 HLooP LDA TITLE1,X ;PUT IN 8TH ROW
3D23 : 9D AO 87 01195 STA $87AO ,X
3D26: E8 01200 INX
3D27: EO 28 01205 CPX #$28
3D29 : DO F5 01210 BNE HLOOP
3D2B: A9 OA 01215 LDA #$OA ;WRITE * BESIDE HARD
3D2D: 8D C3 87 01220 STA $87C3

01225 *READ CONSOLE KEYS
3D30: A9 00 01230 LDA #$00
3D32 : 8D 7A 3B 01235 STA SLOW
3D35: 8D 7C 3B 01240 STA LEVEL
3D38 : AD IF DO 01245 KEY LDA CONSOL
3D3B: C9 06 01250 CMP #$06
3D3D: FO 39 01 255 BEQ MAIN
3D3F : C9 05 01260 CMP #$05
3D41: DO F5 01265 BNE KEY
3D43: AD 7A 3B 01270 LDA SLOW
3D46: DO 12 01275 BNE . 2
3D48 : A9 OA 01280.1 LDA #$OA ;WRITE * BESIDE EASY
3D4A: 8D AF 87 01285 STA $87AF
3D4D: A9 00 01290 LDA #$00 ;ERASE * BES IDE HARD
3D4F: 8D C3 87 01295 STA $87C3
3D52: A9 01 01300 LDA #$01
3D54: 8D 7A 3B 01305 STA SLOW
3D57: 4C 69 3D 01310 JMP .3
3D5A: A9 OA 01315.2 LDA #$OA ;WRITE * BESIDE HARD
3D5C: 8D C3 87 01320 STA $87C3
3D5F: A9 00 01325 LDA #$00 ;ERASE * BESIDE EASY
3D61: 8D AF 87 01330 STA $87AF
3D64: A9 00 01335 LDA #$00
3D66: 8D 7A 3B 01 340 STA SLOW
3D69: A9 E8 01345.3 LDA #$E8
3D6B: 85 14 01350 STA $14
3D6D: A9 00 01355 LDA #$00
3D6F: 85 13 01360 STA $13
3D71: AS 13 01365.4 LDA $13 ;DELAY 24 JIFFIES
3D73: FO FC 01370 BEQ . 4
3D75: 4C 38 3D 01375 JMP KEY

01380 *SETUP CHARACTER SET
3D78: A2 00 01385 MAI N LDX #$00
3D7A: BD 14 3A 01390 CLooP LDA DCHAR, X
3D7D: 9D 00 90 01395 STA CHRSET, X

385

9 ADVANCED ARCADE TECHNIQUES

3D80: E8 01400 INX
3D81: EO 80 01405 CPX #$80
3D83: DO F5 01410 BNE CLOOP
3D85: A9 90 01415 LDA /CHRSET
3D87: 8D F4 02 01420 STA CHBAS

01425 *SETUP SCREEN
3D8A: A2 00 01430 LDX #$00
3D8C: BD 00 38 01435 SLOOP LDA DSCREEN,X
3D8F: 9D 00 87 01440 STA SCREEN,X
3D92: E8 01445 INX
3D93: EO FO 01450 CPX #$FO ;220 BYTES
3D95: DO F5 01455 BNE SLOOP
3D97: A9 00 01460 LDA #DSCREEN
3D99: 85 F8 01465 STA MAPL
3D9B: A9 38 01470 LDA /DSCREEN
3D9D: 85 F9 01475 STA MAPH
3D9F: A9 00 01480 LDA #$00 ;BACKGROUND BLACK
3DA1: 8D C8 02 01485 STA COLOR4

01490 *INITALIZE PLAYERS
3DA4: A9 88 01495 LDA #$88
3DA6: 8D 07 D4 01500 STA PMBASE
3DA9: A9 03 01505 LDA #$03
3DAB: 8D 1D DO 01510 STA GRACTL
3DAE: A9 3E 01515 LDA #$3E
3DBO: 8D 2F 02 01520 STA DMACTL
3DB3: A9 00 01525 LDA #$00
3DB5: 8D 08 DO 01530 STA SIZEPO
3DB8: 8D 09 DO 01535 STA SIZEP1
3DBB: 8D OA DO 01540 STA SIZEP2
3DBE: 8D OB DO 01545 STA SIZEP3
3DC1: 8D IE DO 01550 RESTART STA HITCLR ;CLEAR COLLISION REG

01555 *PLAYER #0
3DC4: A9 7A 01560 LDA #$7A ;PLAYER #0 122 BLUE LUM10
3DC6: 8D CO 02 01565 STA COLPMO
3DC9: A9 30 01570 LDA #$30 ;INITIAL POS X=48,Y=36
3DCB: 8D 14 3B 01575 STA XO
3DCE: 8D 15 3B 01580 STA X
3DD1: 8D 00 DO 01585 STA HPOSPO ;TELL ANTIC
3DD4: A9 24 01590 LDA #$24
3DD6: 8D 19 3B 01595 STA YO
3DD9: 8D 1A 3B 01600 STA Y

01605 *INITIAL OLD PLAYER #0 MEMORY POINTERS
3DDC: A9 40 01610 LDA #$40
3DDE: 8D 58 3B 01615 STA TEMPL
3DE1: A9 88 01620 LDA /PDATA
3DE3: 18 01625 CLC
3DE4: 69 04 01630 ADC #$04
3DE6: 8D 5C 3B 01635 STA TEMPH

01640 *PLAYER #1
3DE9: A2 01 01645 LDX #$01
3DEB: A9 C8 01650 LDA #$C8 ;PLAYER #1 200 GREEN LUM8
3DED: 8D C1 02 01655 STA COLPM1
3DFO: A9 88 01660 LDA #$88 ;INITIAL POSITION X=136,Y=164
3DF2: 9D 15 3B 01665 STA X,X
3DF5: 8D 01 DO 01670 STA HPOSPI
3DF8: A9 A4 01675 LDA #$A4
3DFA: 9D lA 3B 01680 STA Y,X

01685 *OLD PLAYER #1 MEMORY POINTERS
3DFD: A9 40 01690 LDA #$40
3DFF: 9D 58 3B 01695 STA TEMPL,X
3E02: A9 88 01700 LDA /PDATA
3E04: 18 01705 CLC

386

ADVANCED ARCADE TECHNIQUES 9

3E05: 69 05 01710 ADC #$05
3E07 : 9D 5C 3B 01715 STA TE1'lPH, X

01720 *PLAYER #2
3EOA: A2 02 01725 LDX #$02
3EOC : A9 C8 01730 LDA #$C8 ;PLAYER #2 200 GREEN LUM8
3EOE: 8D C2 02 01735 STA COLPM2
3E11: A9 AO 01740 LDA #$AO ;INITIAL POSITION X=160,Y=52
3E13: 9D 15 3B 01745 STA X,X
3E16: 8D 02 DO 01750 STA HPOSP2
3E19: A9 34 01755 LDA #$34
3E1B: 9D 1A 3B 01760 STA Y,X

01765 *OLD PLAYER #2 HEMORY POINTERS
3E1E: A9 40 01770 LDA #$40
3E20 : 9D 58 3B 01775 STA TEMPL,X
3E23: A9 88 01780 LDA /PDATA
3E25: 18 01785 CLC
3E26: 69 06 01790 ADC #$06
3E28: 9D 5C 3B 01795 STA TEMPH,X

01800 *PLAYER #3
3E2B: A2 03 01805 LDX #$03
3E2D: A9 44 01810 LDA #$44 ;PLAYER #3 68 RED LUM4
3E2F: 8D C3 02 01815 STA COLPM3
3E32: A9 C8 01820 LDA #$C8 ;INITIAL POSITION X=200,Y=196
3E34: 9D 15 3B 01825 STA X,X
3E37: 8D 03 DO 01830 STA HPOSP3
3E3A: A9 C4 01835 LDA #$C4
3E3C: 9D 1A 3B 01840 STA Y,X

01845 *OLD PLAYER #3 MEMORY POINTERS
3E3F: A9 40 01850 LDA #$40
3E41: 9D 58 3B 01855 STA TEMPL,X
3E44: A9 88 01860 LDA /PDATA
3E46: 18 01865 CLC
3E47: 69 07 01870 ADC #$07
3E49: 9D 5C 3B 01875 STA TEMPH,X

01880 *INIT POINT# VALUES
3E4C: A9 01 01885 LDA #$01
3E4E: 8D 61 3B 01890 STA POINTO
3E51: A9 02 01895 LDA #$02
3E53: 8D 62 3B 01900 STA POINT 1
3E56: A9 03 01905 LDA #$03
3E58: 8D 63 3B 01910 STA POINT2
3E5B: A9 00 01915 LDA #$00
3E5D: 8D 64 3B 01920 STA POINT3
3E60: 8D 7D 3B 01922 STA ONCE

01925 *INIT AUTO FLAGS
3E63: A2 00 01930 INAUTO LDX #$00
3E65: A9 00 01935 LDA #$00
3E67: 9D 65 3B 01940 .1 STA DL,X
3E6A: 9D 69 3B 01945 STA DR,X
3E6D: 9D 6D 3B 01950 STA DU,X
3E70: 9D 71 3B 01955 STA DD,X
3E73 : E8 01960 INX
3E74: EO 04 01965 CPX #$04
3E76: DO EF 01970 BNE .1

01975 *START PLAYERS HOVING
3E78: A9 01 01980 LDA #$01
3E7A: 8D 6A 3B 01985 STA DR+1
3E7D: 8D 6B 3B 01990 STA DR+2
3E80: 8D 68 3B 01995 STA DL+3

02000 *CLEAR P/M AREA
3E83: A9 00 02005 CLEAR LDA #$00 ;PDATL
3E85: 85 F6 02010 STA P~1ADR

387

388

9 ADVANCED ARCADE TECHNIQUES

A9 88
85 F7
AO 00
98

02015 LDA /PDATA
02020 STA PMADR+1
02025 LDY #$00
02030 TYA
02035 LDX #$08

3E87:
3E89:
3E8B:
3E8D:
3E8E:
3E90:
3E92:
3E93:
3E95:
3E97:
3E98:

A2 08
91 F6
C8

02040 .1 STA (PMADR),Y
02045 INY
02050 BNE .1 DO FB

E6 F7
CA

02055 INC PMADR+1 ;NEXT 256 BYTES
02060 DEX

DO F6 02065 BNE .1
02070 *PLOT INITIAL PLAYER POSITIONS

3E9A: A2 00 02075 LDX #$00
3E9C: 20 FE 44 02080 JSR PLOTSETO
3E9F: A2 01 02085 LDX #$01
3EA1: 20 03 46 02090 JSR PLOTSET1

02095 *SET VBLANK
3EA4: A9 07 02100 LDA #$07
3EA6: A2 42 02105 LDX /FRAME ; HI BYTE VBLANK ROUTINE
3EA8: AO Al 02110 LDY #FRAME ;LO BYTE
3EAA: 20 5C E4 02115 JSR SETVBK

02120 *MAIN CODE LOOP
3EAD: A9 00 02125 LOOPM LDA #$00
3EAF: 8D 76 3B 02130 STA VBFLAG

02135 *CHECK COLLISIONS
3EB2: AD OC DO 02140 LDA POPL ;CHECK COLLISION PLAYER 0&1
3EB5: C9 02 02145 CMP #$02
3EB7: DO 19 02150 BNE .1
3EB9: 38 02155 SEC
3EBA: AD 62 3B 02160 LDA POINT 1 ;IS THERE A 1 LETTER DIFFERENCE
3EBD: ED 61 3B 02165 SBC POINTO
3ECO: C9 02 02170 CMP #$02
3EC2: BO OE 02175 BGE .1
3EC4: EE 61 3B 02180 INC POINTO ;PLAYER BECOMES NEXT LETTER
3EC7: EE 62 3B 02185 INC POINT1 ;OLD LETTER JUMPS 2 LETTERS
3ECA: EE 62 3B 02190 INC POINT1
3ECD: AO 01 02195 LDY #$01
3ECF: 20 7A 47 02200 JSR PLACE ;PUT PLAYER#l IN NEW PLACE
3ED2: AD OC DO 02205 .1 LDA POPL ;CHECK COLLISION PLAYER 0&2
3ED5: C9 04 02210 CMP #$04
3ED7: DO 19 02215 BNE .2
3ED9: 38 02220 SEC
3EDA: AD 63 3B 02225 LDA POINT2 ;IS THERE A 1 LETTER DIFFERENCE
3EDD: ED 61 3B 02230 SBC POINTO
3EEO: C9 02 02235 CMP #$02
3EE2: BO OE 02240 BGE .2
3EE4: EE 61 3B 02245 INC POINTO
3EE7: EE 63 3B 02250 INC POINT2
3EEA: EE 63 3B 02255 INC POINT2
3EED: AO 02 02260 LDY #$02
3EEF: 20 7A 47 02265 JSR PLACE
3EF2: AD OC DO 02270 .2 LDA POPL
3EF5: C9 08 02275 CMP #$08
3EF7: DO 58 02280 BNE .3
3EF9: AD 7D 3B 02282 LDA ONCE
3EFC: DO 53 02283 BNE .3
3EFE: AD 61 3B 02285 LDA POINTO
3F01: C9 01 02290 CMP #$01
3F03: FO OC 02295 BEQ .25
3F05: CE 61 3B 02300 DEC POINTO
3F08: CE 62 3B 02305 DEC POINT 1
3FOB: CE 63 3B 02310 DEC POINT2

;CHECK COLLISION PLAYER 0&3

;MUST MOVE PLAYER #3 BEFORE TESTING
\FOR NEW COLLISION

ADVANCED ARCADE TECHNIQUES 9

3FOE: EE 7D 3B 02312 INC ONCE
3Fll: AO 03 02315 .25 LDY #$03
3F13: AD lE 3B 02320 LDA XB jPUT PLAYER #3 OPPOSITE SIDE AS PLAYER #0
3F16: C9 OA 02325 C~!p #$OA
3F18: BO lD 02330 BGE .27
3F1A: A9 C8 02335 LDA #$C8 jPUT PLAYER #3 · AT BOTTOM LEFT (200,196)
3F1C: 99 15 3B 02340 STA X,Y
3F1F: A9 C4 02345 LDA #$C4
3F21: 99 lA 3B 02350 STA Y,Y
3F24: A9 00 02355 LDA #$00
3F26: 99 6D 3B 02360 STA DU,Y
3F29: 99 69 3B 02365 STA DR,Y
3F2C: 99 71 3B 02370 STA DD,Y
3F2F: A9 01 02375 LDA #$01
3F31: 99 65 3B 02380 STA DL,Y
3F34: 4C 51 3F 02385 JMP .3
3F37: A9 40 02390 .27 LDA #$40
3F39: 99 15 3B 02395 STA X,Y jPUT PLAYER #3 AT BOTTOM RT (48,196)
3F3C: A9 C4 02400 LDA #$C4
3F3E: 99 lA 3B 02405 STA Y,Y
3F41: A9 00 02410 LDA #$00
3F43: 99 6D 3B 02415 STA DU,Y
3F46: 99 71 3B 02420 STA DD,Y
3F49: 99 65 3B 02425 STA DL,Y
3F4C: A9 01 02430 LDA #$01
3F4E: 99 69 3B 02435 STA DR,Y
3F51: 8D lE DO 02440 .3 STA HITCLR
3F54: A9 00 02445 LDA #$00 jSTOP ATTRACT MODE
3F56: 85 4D 02450 STA $4D

02455 *PLAYER #1 CODE
3F58: A2 01 02460 LDX #$01
3F5A: 20 06 40 02465 JSR MOVEPL
3F5D: 20 03 46 02470 JSR PLOTSETl

02475 *PLAYER #2
3F60: A2 02 02480 LDX #$02
3F62: 20 06 40 02485 JSR MOVEPL
3F65: 20 31 46 02490 JSR PLOTSET2

02495 *PLAYER3
3F68: AD 7A 3B 02500 LDA SLOW
3F6B: C9 00 02505 CMF #$00
3F6D: FO 09 02510 BEQ P3
3F6F: EE 7B 3B 02515 INC HALF jINCREMENT COUNTER
3F72: AD 7B 3B 02520 LDA HALF
3F75: 4A 02525 LSR j DIVIDE BY 2
3~76: 90 OD 02530 BCC RESET jSKIPS ON EVEN CYCLES
3F78: A2 03 02535 P3 LDX #$03
3F7A: 20 06 40 02540 JSR MOVEPL
3F7D: 20 5F 46 02545 JSR PLOTSET3
3F80: A9 00 02546 LDA #$00
3F82: 8D 7D 3B 02547 STA ONCE

02550 *IF PLAYER #0 BECOMES Z RESET TO SECOND SCREEN
3F85: AD 61 3B 02555 RESET LDA POINTO
3F88: C9 1A 02560 CMF #$lA
3F8A: DO 6D 02565 BNE FOREVER
3F8C: A9 80 02570 LDA #$80
3F8E: 85 14 02575 STA $14
3F90: A5 14 02580 DELAY LDA $14 jABOUT 2 SEC
3F92: DO FC 02585 BNE DELAY

02590 *MOVE PLAYERS T~ OFF SCREEN
3F94: A9 00 02595 LDA #$00
3F96: 8D CO 02 02600 STA COLPNO jT~ BLACKOUT PLAYER#O IN VBLANK
3F99: 8D 01 DO 02605 STA HPOSPl

389

9 ADVANCED ARCADE TECHNIQUES

3F9C : 8D 02 DO 02610 STA HPOSP2
3F9F: 8D 03 DO 02615 STA HPOSP3

02620 *DONE WITH 2ND LEVEL
3FA2 : AD 7C 3B 02625 LDA LEVEL
3FA5: C9 01 02630 CMF #$01
3FA7 : DO 03 02635 BNE .1
3FA9: 4C FF 3C 02640 JMP START

02645 *ERASE SCREEN
3FAC: A2 00 02650.1 LDX #$00
3FAE: A9 00 02655 LDA #$00
3FBO : 9D 00 87 02660 FLooP STA SCREEN,X
3FB3: E8 02665 INX
3FB4 : DO FA 02670 BNE FLooP

02675 *WRITE ' NEXT LEVEL'
3FB6: A9 EO 02680 LDA #$EO jBACK TO ROM CHARACTER SET
3FB8: 8D F4 02 02685 STA CHBAS
3FBB: EE 7C 3B 02690 INC LEVEL
3FBE: A2 00 02695 LDX #$00
3FCO: BD 00 3B 02700 GLOOP LDA TITLE2,X
3FC3 : 9D 8C 87 02705 STA $878C,X
3FC6: E8 02710 INX
3FC7: EO 14 02715 CPX #$14
3FC9 : DO F5 02720 BNE GLOOP
3FCB: A9 80 02725 LDA #$80
3FCD: 85 14 02730 STA $14 j2 SECOND DELAY
3FCF: A9 00 02735 LDA #$00
3FD1 : 85 13 02740 STA $13
3FD3: "A5 13 02745.1 LDA $13
3FD5: FO FC 02750 BEQ .1
3FD7: A9 90 02755 LDA /CHRSET jRAM CHARACTER SET
3FD9: 8D F4 02 02760 STA CHBAS

02765 *SETUP SECOND SCREEN
3FDC: A2 00 02770 LDX #$00
3FDE : BD 00 39 02775 SLooPl LDA DSCREEN2, X
3FE1: 9D 00 87 02780 STA SCREEN,X
3FE4: E8 02785 INX
3FE5 : EO FO 02790 CPX #$FO
3FE7 : DO F5 02795 BNE SLooP1
3FE9 : A9 00 02800 LDA #DSCREEN2
3FEB: 85 F8 02805 STA MAPL
3FED: A9 39 02810 LDA /DSCREEN2
3FEF: 85 F9 02815 STA MAPH
3FF1: A9 7A 02820 LDA #$7A jRESTORE PLAYER #0 COLOR
3FF3: 8D CO 02 02822 STA COLPMO
3FF6: 4C C1 3D 02823 JHP RESTART
3FF9: AD 76 3B 02825 FOREVER LDA VBFLAG jSTAYS IN THIS LOOP UNTIL
3FFC: C9 01 02830 C~W #$01 jVBLANK ROUTINE SETS VBFLAG=l
3FFE : DO 03 02835 BNE .1
4000: 4C AD 3E 02840 JMP LooPM
4003: 4C F9 3F 02845 .1 ~W FOREVER
4006: 20 50 44 02850 MOVEPL JSR LEGAL
4009: AD 77 3B 02855 LDA LFLAG jEQUAL TO 1 IF AT CENTER OF BLOCK
400C: DO 06 02860 BNE . 1
400E: 20 B5 45 02865 JSR AUTOP
4011: 4C D1 40 02870 JMP FIN

02875 *IS THERE AN AVAILABLE DIRECTION OTHER THAN FORWARD OR REVERSE
4014: BD 65 3B 02880 .1 LDA DL, X
4017: FO 2B 02885 BEQ .2
4019: BD 2E 3B 02890 LDA FLAGU,X
401C: DO 03 02895 BNE .11
401E: 4C D4 40 02900 JMP YES

390

ADVANCED ARCADE TECHNIQUES 9
4021: BD 32 3B 02905 .11 LDA FLAGD,X
4024: DO 03 02910 BNE .12
4026: 4C D4 40 02915 JMP YES

02920 *CONTINUE MOVING IN SAME DIRECTION UNLESS BLOCKED
4029: BD 26 3B 02925 .12 LDA FLAGL,X
402C: DO 06 02930 BNE .13
402E: DE 15 3B 02935 DEC X, X
4031: 4C D1 40 02940 JMP FIN
4034: A9 00 02945 .13 LDA #$00 ;REVERSE DIRECTION
4036: 9D 65 3B 02950 STA DL,X
4039: A9 01 02955 LDA #$01
403B: 9D 69 3B 02960 STA DR,X
403E: FE 15 3B 02965 INC X,X
4041: 4C D1 40 02970 JMP FIN
4044: BD 69 3B 02975 .2 LDA DR,X
4047: FO 2B 02980 BEQ .3
4049: BD 2E 3B 02985 LDA FLAGU,X
404C: DO 03 02990 BNE .21
404E: 4C D4 40 02995 JMP YES
4051: BD 32 3B 03000 .21 LDA FLAGD,X
4054: DO 03 03005 BNE .22
4056: 4C D4 40 03010 JNP YES
4059: BD 2A 3B 03015 .22 LDA FLAGR,X
405C: DO 06 03020 BNE .23
405E: FE 15 3B 03025 INC X,X
4061: 4C D1 40 03030 JMP FIN
4064: A9 00 03035 .23 LDA #$00 ;REVERSE DIRECTION
4066: 9D 69 3B 03040 STA DR,X
4069: A9 01 03045 LDA #$01
406B: 9D 65 3B 03050 STA DL,X
406E: DE 15 3B 03055 DEC X,X
4071: 4C D1 40 03060 JMP FIN
4074: BD 6D 3B 03065 .3 LDA DU,X
4077: FO 2B 03070 BEQ .4
4079: BD 26 3B 03075 LDA FLAGL,X
407C: DO 03 03080 BNE .31
407E: 4C D4 40 03085 JNP YES
4081: BD 2A 3B 03090 .31 LDA FLAGR,X
4084: DO 03 03095 BNE .32
4086: 4C D4 40 03100 JMP YES
4089: BD 2E 3B 03105 .32 LDA FLAGU,X
408C: DO 06 03110 BNE .33
408E: DE 1A 3B 03115 DEC Y,X
4091: 4C D1 40 03120 JMP FIN
4094: A9 00 03125 .33 LDA #$00 ;REVERSE DIRECTION
4096: 9D 6D 3B 03130 STA DU,X
4099: A9 01 03135 LDA #$01
409B: 9D 71 3B 03140 STA DD,X
409E: FE 1A 3B 03145 INC Y,X
40A1: 4C D1 40 03150 JMP FIN
40A4: BD 71 3B 03155 .4 LDA DD,X
40A7: FO 28 03160 BEQ FIN
40A9: BD 26 3B 03165 LDA FLAGL,X
40AC: DO 03 03170 BNE .41
40AE: 4C D4 40 03175 JMP YES
40B1 : BD 2A 3B 03180 .41 LDA FLAGR,X
40B4: DO 03 03185 BNE .42
40B6: 4C D4 40 03190 JMP YES
40B9: BD 32 33 03195 .42 LDA FLAGD,X
40BC: DO 06 03200 BNE .43
40BE: FE 1A 3B 03205 INC Y,X

391

392

9 ADVANCED ARCADE TECHNIQUES

40Cl:
4OC4:
40C6:
4OC9:
4OCB:
40CE:
40Dl:
40D4:

40D5:
40D7:
40DA:
40DD:
40EO:
40E3:
40E6:
40E7:
40EA:
40EC:
40EE:
40FO:
40F2:
40F4:
40F7:
40FA:
40FC:
40FF:
4102:
4104:
4106:
4108:
41OB:
41OE:
4110:
4113:
4116:
4118:
411A:
411C:
411F:
4122:
4125:
4126:
4129:
412B:
412D:
412F:
4131 :
4133:
4136:
4139:
413B:
413E:
4141:
4143:
4145:
4147:
414A:
414D:

4C Dl 40 03210 JMP FIN
A9 00 03215 .43 LDA #$00 ;REVERSE DIRECTION
9D 71 3B 03220 STA DD,X
A9 01 03225 LDA #$01
9D 6D 3B 03230 STA DU,X
DE lA 3B 03235 DEC Y,X
4C AO 42 03240 FIN JMP EE
EA 03245 YES NOP

03250 *SET ALL REL,X FLAGS
03255 *VALUE OF 0 WOULDN'T WANT TO MOVE BUT VALUE OF 1 WOULD HOME
03260 *PLAYER 1&2 FLEES - PLAYER 3 CHASES \IN ON PLAYER

A9 00 03265 TESTRX LDA #$00 ;ZERO REL,X FLAGS
9D 36 3B 03270 STA RELL,X
9D 3A 3B 03275 STA RELR,X
9D 42 3B 03280 STA RELD,X
9D 3E 3B 03285 STA RELU,X
BD IE 3B 03290 LDA XB,X
38 03295 SEC
ED IE 3B 03300 SBC XB
FO 2A 03302 BEQ .4
10 14 03305 BPL .1
EO 03 03310 CPX #$03
FO 08 03315 BEQ . 2
A9 01 03320 LDA #$01
9D 36 3B 03325 STA RELL,X ;ACTUALLY RELR,X=-1 BUT RELL,X=1
4C 22 41 03330 JMP TESTRY
A9 01 03335.2 LDA #$01
9D 3A 3B 03340 STA RELR,X
4C 22 41 03345 JMP TESTRY
EO 03 03350 . 1 CPX #$03
FO 08 03355 BEQ . 3
A9 01 03360 LDA #$01
9D 3A 3B 03365
4C 22 41 03370
A9 01 03375.3
9D 36 3B 03376
4C 22 41 03377
EO 03 03378.4
FO 08 03379
A9 01 03380
9D 36 3B 03381
9D 3A 3B 03382
BD 22 3B 03385 TESTRY
38 03390
ED 22 3B 03395
10 16 03400
FO 2B 03402
EO 03 03405
FO 08 03410
A9 01 03415
9D 3E 3B 03420
4C 64 41 03425
A9 01 03430.2
9D 42 3B 03435
4C 64 41 03440
EO 03 03445.1
FO 08 03450
A9 01 03455
9D 42 3B 03460
4C 64 41 03465
A9 01 03470.3

STA RELR ,X ;ACTUALLY RELL,X=-1
JMP TESTRY
LDA #$01
STA RELL,X
JMP TESTRY
CPX #$03
BEQ TESTRY
LDA #$01
STA RELL,X
STA RELR,X
LDA YB,X
SEC
SBC YB
BPL .1
BEQ .4
CPX #$03
BEQ .2
LDA #$01
STA RELU,X ;ACTUALLY RELD,X=-1
JMP MATCHT
LDA #$01
STA RELD,X
JMP MATCHT
CPX #$03
BEQ .3
LDA #$01
STA RELD,X ;ACTUALLY RELU,X=-1
JMP MATCHT
LDA #$01

ADVANCED ARCADE TECHNIQUES 9

414F: 9D 3E 3B 03475 STA RELU,X
4152: 9D 3E 3B 03476 STA RELU,X
4155: 4C 64 41 03477 J}W MATCHT
4158: EO 03 03478.4 CPX #$03
415A: FO 08 03479 BEQ MATCHT
415C: A9 01 03480 LDA #$01
415E: 9D 42 3B 03481 STA RELD,X
4161: 9D 3E 3B 03482 STA RELU ,X
4164: A9 00 03485 MATCHT LDA #$00
4166: 8D 78 3B 03490 STA NUM
4169: 9D 46 3B 03495 STA MFLAGL,X
416C: 9D 4A 3B 03500 STA MFLAGR,X
416F: 9D 4E 3B 03505 STA MFLAGU,X
4172: 9D 52 3B 03510 STA MFLAGD,X
4175: BD 26 3B 03515 LDA FLAGL,X
4178: DO OF 03520 BNE .2
417A: BD 36 3B 03525 LDA RELL,X
417D: C9 01 03530 CMP #$01
417F: DO 08 03535 BNE .2
4181: EE 78 3B 03540 INC NUM
4184: A9 01 03545 LDA #$01
4186: 9D 46 3B 03550 STA MFLAGL,X ;SET MATCH FLAG
4189: BD 2A 3B 03555 .2 LDA FLAGR,X
418C: DO OF 03560 BNE .3
418E: BD 3A 3B 03565 LDA RELR,X
4191: C9 01 03570 CMP #$01
4193: DO 08 03575 BNE .3
4195: EE 78 3B 03580 INC NUM
4198: A9 01 03585 LDA #$01
419A: 9D 4A 3B 03590 STA MFLAGR,X
419D: BD 2E 3B 03595 .3 LDA FLAGU,X
41AO: DO OF 03600 BNE .4
41A2: BD 3E 3B 03605 LDA RELU,X
41A5: C9 01 03610 C~W #$0 1
41A7: DO 08 03615 BNE .4
41A9: EE 78 3B 03620 INC NUM
41AC: A9 01 03625 LDA #$01
41AE: 9D 4E 3B 03630 STA MFLAGU,X
41B1: BD 32 3B 03635 .4 LDA FLAGD,X
41B4: DO OF 03640 BNE PP
41B6: BD 42 3B 03645 LDA RELD,X
41B9: C9 01 03650 C~W #$01
41BB: DO 08 03655 BNE PP
41BD: EE 78 3B 03660 INC NUM
41CO: A9 01 03665 LDA #$01
41C2: 9D 52 3B 03670 STA MFLAGD,X

03675 *IF MATCH CAUSES PLAYER TO REVERSE PREVENT IT
41C5: BD 65 3B 03680 PP LDA DL,X
41C8: FO 10 03685 BEQ .42
41CA: BD 4A 3B 03690 LDA MFLAGR,X
41CD: FO OB 03695 BEQ .42
41CF: A9 00 03700 LDA #$00
41D1: 9D 4A 3B 03705 STA MFLAGR,X
41D4: CE 78 3B 03710 DEC NUM
41D7: 4C 16 42 03715 J}W .5
41DA: BD 69 3B 03720 .42 LDA DR,X
41DD: FO 10 03725 BEQ .43
41DF: BD 46 3B 03730 LDA MFLAGL,X
41E2: FO OB 03735 BEQ .43
41E4: A9 00 03740 LDA #$00
41E6: 9D 46 3B 03745 STA MFLAGL,X

393

9 ADVANCED ARCADE TECHNIQUES

41E9: CE 78 3B 03750 DEC NUM
41EC: 4C 16 42 03755 JMP .5
41EF: BD 6D 3B 03760 .43 LDA DU, X
41F2: FO 10 03765 BEQ .44
41F4: BD 52 3B 03770 LDA MFLAGD,X
41F7: FO OB 03775 BEQ .44
41F9: A9 00 03780 LDA #$00
41FB: 9D 52 3B 03785 STA MFLAGD,X
41FE: CE 78 3B 03790 DEC NUM
4201: 4C 16 42 03795 JMP .5
4204: BD 71 3B 03800 .44 LDA DD, X
4207: FO OD 03805 BEQ .5
4209: BD 4E 3B 03810 LDA t1FLAGU, X
420C: FO 08 03815 BEQ . 5
420E: A9 00 03820 LDA #$00
4210: 9D 4E 3B 03825 STA MFLAGU, X
4213: CE 78 3B 03830 DEC NUM

03835 *IF TWO MATCHES THEN CHOOSE A DIRECTION RANDOMILY -
4216: AD 78 3B 03840 .5 LDA NUM THEN MOVE IN DIRECTION
4219: DO 06 03845 BNE . 55
421B: 20 8D 46 03850 J SR CORECT
421E: 4C AO 42 03855 JMP EE
4221: AD 78 3B 03860 .55 LDA NUM
4224: C9 01 03865 CMP #$01
4226: FO 07 03870 BEQ .6
4228: AD OA D2 03875 LDA RANDOM
422B: C9 50 03880 CMP #80
422D: 90 3A 03885 BLT .8
422F: BD 46 3B 03890 .6 LDA MFLAGL,X
4232: C9 01 03895 CMP #$01
4234: DO 16 03900 BNE .7
4236: A9 01 03905 LDA #$01
4238: 9D 65 3B 03910 STA DL,X
423B: A9 00 03915 LDA #$00
423D: 9D 71 3B 03920 STA DD, X
4240: 9D 69 3B 03925 STA DR, X
4243: 9D 6D 3B 03930 STA DU,X
4246: DE 15 3B 03935 DEC X,X
4249 : 4C AO 42 03940 JMP EE
424C: BD 4A 3B 03945 .7 LDA MFLAGR,X
424F: C9 01 03950 CMP #$01
4251: DO 16 03955 BNE . 8
4253: A9 01 03960 LDA #$01
4255: 9D 69 3B 03965 STA DR, X
4258: A9 00 03970 LDA #$00
425A: 9D 65 3B 03975 STA DL,X
425D: 9D 6D 3B 03980 STA DU, X
4260: 9D 71 3B 03985 STA DD, X
4263: FE 15 3B 03990 INC X,X
4266: 4C AO 42 03995 Jl'1P EE
4269: BD 4E 3B 04000 . 8 LDA MFLAGU, X
426C: C9 01 04005 CMP #$01
426E: DO 16 04010 BNE .9
4270: A9 01 04015 LDA #$01
4272: 9D 6D 3B 04020 STA DU, X
4275: A9 00 04025 LDA #$00
4277: 9D 65 3B 04030 STA DL,X
427A: 9D 69 3B 04035 STA DR,X
427D: 9D 71 3B 04040 STA DD,X
4280: DE lA 3B 04045 DEC Y,X
4283: 4C AO 42 04050 JMP EE
4286: BD 52 3B 04055 . 9 LDA MFLAGD,X

394

ADVANCED ARCADE TECHNIQUES 9

4289: C9 01 04060 CMF #$01
428B: DO 13 04065 BNE EE
428D: A9 01 04070 LDA #$01
428F: 9D 71 3B 04075 STA DD,X
4292: A9 00 04080 LDA #$00
4294: 9D 6D 3B 04085 STA DU,X
4297: 9D 65 3B 04090 STA DL,X
429A: 9D 69 3B 04095 STA DR,X
429D: FE lA 3B 04100 INC Y,X
42AO: 60 04105 EE RTS

04110 *VBLANK ROUTINE
42Al: EA 04115 FR~ffi NOP
42A2: AD FC 02 04120 PAUSEI LDA $2FC ;KEY PRESSED?
42A5: C9 FF 04125 CMF #$FF
42A7: FO 25 04130 BEQ .2
42A9: C9 21 04135 CMP #$21 ;SPACE BAR?
42AB: DO 2B 04140 BNE .3
42AD: AD 79 3B 04145 LDA PAUSE ;PAUSE=I?
42BO: C9 01 04150 CMF #$01
42B2: FO OD 04155 BEQ .1
42B4: A9 01 04160 LDA #$01 ;NOT PAUSED-THEN SET PAUSE
42B6: 8D 79 3B 04165 STA PAUSE
42B9: A9 FF 04170 LDA #$FF
42BB: 8D FC 02 04175 STA $2FC
42BE: 4C 62 E4 04180 1MP XITVBK
42Cl: A9 00 04185.1 LDA #$00 ;PAUSED-THEN RELEASE PAUSE
42C3: 8D 79 3B 04190 STA PAUSE
42C6: A9 FF 04195 LDA #$FF
42C8: 8D FC 02 04200 STA $2FC
42CB: 4C D8 42 04205 JMP .3
42CE: AD 79 3B 04210 .2 LDA PAUSE ;PAUSED?
42D1: C9 01 04215 CMF #$01
42D3: DO 03 04220 BNE .3
42D5: 4C 62 E4 04225 JMP XITVBK
42D8: A9 01 04230.3 LDA #01
42DA: 8D 76 3B 04235 STA VBFLAG
42DD: A2 00 04240 LDX #$00
42DF: 20 50 44 04245 JSR LEGAL

04250 *READ JOYSTICK
42E2: AD 78 02 04255 LDA STICK ;JOYSTICK CENTERED?
42E5: C9 OF 04260 CMF #$OF
42E7: DO 06 04265 BNE DUR
42E9: 20 32 45 04270 JSR AUTO ;IF STICK NOT TOUCHED CONTINUE IN SAME DIR
42EC: 4C 43 44 04275 1MP STAY
42EF: AD 78 02 04280 DUR LDA STICK ;TEST DIAGONAL UP&RT
42F2: C9 06 04285 CMF #$06
42F4: DO IB 04290 BNE DDR
42F6: AD 69 3B 04295 LDA DR
42F9: FO 03 04300 BEQ .01
42FB: 4C E1 43 04305 1MP CHKUP
42FE: AD 6D 3B 04310 .01 LDA DU
4301: DO 06 04315 BNE .02
4303: 20 32 45 04320 JSR AUTO
4306: 4C 43 44 04325 1MP STAY
4309: A9 01 04330 .02 LDA #$01 ;SET TO RT ONLY
430B: 8D 75 3B 04335 STA INHIBIT
430E: 4C 77 43 04340 JMP CHKRT
4311: AD 78 02 04345 DDR LDA STICK ;TEST DIAGONAL DOWN&RT
4314: C9 05 04350 CMF #$05
4316: DO IB 04355 BNE DUL
4318: AD 69 3B 04360 LDA DR
431B: FO 03 04365 BEQ .03

395

9 ADVANCED ARCADE TECHNIQUES

431D: 4C 12 44 04370 JMP CHKDN
4320: AD 71 3B 04375 .03 LDA DD
4323: DO 06 04380 BNE .04
4325: 20 32 45 04385 JSR AUTO
4328: 4C 43 44 04390 JMP STAY
432B: A9 01 04395 .04 LDA #$01 ;SET TO RT ONLY
432D: 8D 75 3B 04400 STA INHIBIT
4330: 4C 77 43 04Lf05 JMP CHKRT
4333: AD 78 02 04410 DUL LDA STICK ;TEST DIAGONAL UP&LEFT
4336: C9 OA 04415 CMP #$OA
4338: DO IB 04420 BNE DDL
433A: AD 65 3B 04425 LDA DL
433D: FO 03 04430 BEQ .05
433F: 4C El 43 04435 JMP CHKUP
4342: AD 6D 3B 04440 .05 LDA DU
4345: DO 06 04445 BNE .06
4347: 20 32 45 04450 JSR AUTO
434A: 4C 43 44 04455 JMP STAY
434D: A9 01 04460 .06 LDA #$01 ;SET TO LEFT ONLY
434F: 8D 75 3B 04465 STA INHIBIT
4352: 4C A8 43 04470 JMP CHKLF
4355: AD 78 02 04475 DDL LDA STICK ;TEST DIAGONAL DOWN&LEFT
4358: C9 09 04480 CMP #$09
435A: DO IB 04485 BNE CHKRT
435C: AD 65 3B 04490 LDA DL
435F: FO 03 04495 BEQ .07
4361: 4C 12 44 04500 JMP CHKDN
4364: AD 71 3B 04505 .07 LDA DD
4367: DO 06 04510 BNE .08
4369: 20 32 45 04515 JSR AUTO
436C: 4C 43 44 04520 JMP STAY
436F: A9 01 04525 .08 LDA #$01 ;SET TO LEFT ONLY
4371: 8D 75 3B 04530 STA INHIBIT
4374: 4C A8 43 04535 JMP CHKLF
4377: AD 78 02 04540 CHKRT LDA STICK
437A: 29 08 04545 AND #$08 ;RT BIT?
437C: DO 2A 04550 BNE CHKLF
437E: AD 2A 3B 04555 LDA FLAGR
4381: FO 06 04560 BEQ .2
4383: 20 32 45 04565 JSR AUTO
4386: 4C 43 44 04570 JMP STAY
4389: A9 00 04575 .2 LDA #$00
438B: 8D 65 3B 04580 STA DL ;SHUT OFF AUTO FLAGS
438E: 8D 6D 3B 04585 STA DU
4391: 8D 71 3B 04590 STA DD
4394: 8D 26 3B 04595 STA FLAGL ;RESET LEGAL FLAGS-ONLY CAN TRAVEL
4397: A9 01 04600 LDA #$01 \BETWEEN TWO BLOCKS
4399: 8D 2E 3B 04605 STA FLAGU
439C: 8D 32 3B 04610 STA FLAGD
439F: 8D 69 3B 04615 STA DR ;TURN ON AUTOMATIC FLAG
43A2: EE 14 3B 04620 INC XO ;XO=XO+l
43A5: EE 15 3B 04625 INC X
43A8: AD 78 02 04630 CHKLF LDA STICK
43AB: 29 04 04635 AND #$04 ;LEFT BIT
43AD: DO 2A 04640 BNE CHK
43AF: AD 26 3B 04645 LDA FLAGL
43B2: FO 06 04650 BEQ .3
43B4: 20 32 45 04655 JSR AUTO
43B7: 4C 43 44 04660 JMP STAY
43BA: A9 00 04665 .3 LDA #$00
43BC: 8D 69 3B 04670 STA DR
43BF: 8D 6D 3B 04675 STA DU

396

ADVANCED ARCADE TECHNIQUES 9

43C2: 8D 71 3B 04680 STA DD
43C5: 8D 2A 3B 04685 STA FLAGR
43C8: A9 01 04690 LDA #$01
43CA: 8D 2E 3B 04695 STA FLAGU
43CD: 8D 32 3B 04700 STA FLAGD
43DO: 8D 65 3B 04705 STA DL
43D3: CE 14 3B 04710 DEC XO ;XO=XO-l
43D6: CE 15 3B 04715 DEC X
43D9: AD 75 3B 04720 CHK LDA INHIBIT ;THIS PREVENTS GETTING BOTH DIRECTIONS
43DC: FO 03 04725 BEQ CHKUP ON DIAGONAL
43DE: 4C 43 44 04730 JMP STAY
43El: AD 78 02 04735 CHKUP LDA STICK
43E4: 29 01 04740 AND #$01 ;UP BIT?
43E6: DO 2A 04745 BNE CHKDN
43E8: AD 2E 3B 04750 LDA FLAGU
43EB: FO 06 04755 BEQ .4
43ED: 20 32 45 04760 JSR AUTO
43FO: 4C 43 44 04765 JMP STAY
43F3: A9 00 04770.4 LDA #$00
43F5: 8D 71 3B 04775 STA DD
43F8: 8D 69 3B 04780 STA DR
43FB: 8D 65 3B 04785 STA DL
43FE: 8D 32 3B 04790 STA FLAGD
4401: A9 01 04795 LDA #$01
4403 : 8D 26 3B 04800 STA FLAGL
4406: 8D ~A 3B 04805 STA FLAGR
4409: 8D 6D 3B 04810 STA DU
44OC: CE 19 3B 04815 DEC YO ;YO=YO-l
440F: CE lA 3B 04820 DEC Y
4412: AD 78 02 04825 CHKDN LDA STICK
4415: 29 02 04830 AND #$02
4417: DO 2A 04835 BNE STAY
4419: AD 32 3B 04840 LDA FLAGD
441C: FO 06 04845 BEQ .5
441E: 20 32 45 04850 JSR AUTO
4421: 4C 43 44 04855 JMP STAY
4424: A9 00 04860.5 LDA #$00
4426: 8D 6D 3B 04865 STA DU
4429: 8D 69 3B 04870 STA DR
442C: 8D 65 3B 04875 STA DL
442F: 8D 2E 3B 04880 STA FLAGU
4432: A9 01 04885 LDA #$01
4434: 8D 26 3B 04890 STA FLAGL
4437: 8D 2A 3B 04895 STA FLAGR
443A: 8D 71 3B 04900 STA DD
443D: EE 19 3B 04905 INC YO ;YO=YO+l
4440: EE lA 3B 04910 INC Y
4443: A9 00 04915 STAY LDA #$00
4445: 8D 75 3B 04920 STA INHIBIT
4448: A2 00 04925 LDX #$00
444A: 20 FE 44 04930 JSR PLOTSETO
444D: 4C 62 E4 04935 JHP XITVBK

04940 *SUBROUTINE-TEST FOR LEGAL MOVES
04945 *INPUT X,Y PLAYER POSITION; X REG - PLAYER #
04950 *OUTPUT FLAGL,XjFLAGR,XjFLAGU,XjFLAGD,X--O-OPEN,I-CLOSE

4450: A9 00 04955 LEGAL LDA #$00
4452: 8D 77 3B 04960 STA LFLAG
4455: BD 15 3B 04965 LDA X,X ;PLAYER HOR POSITION
4458: 38 04970 SEC
4459: E9 30 04975 SBC #$30 ;SUBTRACT 48
445B: 8D 56 3B 04980 STA TEHPX
445E: 4A 04985 LSR ; DIVIDE BY 8

397

398

9 ADVANCED ARCADE TECHNIQUES

445F: 4A 04990 LSR
4460: 4A 04995 LSR
4461: 90 I E 3B 05000 STA XB,X
4464: BO lA 3B 05005 LOA Y,X jPLAY ER VERT POSITION
4467: 38 05010 SEC
4468 : E9 24 05015 SBC #$24 jSUBTRACT 36
446A : 80 57 3B 05020 STA TEHPY
4460 : 4A 05025 LSR jOIVIOE BY 16
446E: 4A 05030 LSR
446F: 4A 05035 LSR
4470: 4A 05040 LSR
4471: 90 22 3B 05045 STA YB,X

05050 *TEST IF AT CENTER OF BLOCK
4474: AO 57 3B 05055 LOA TEHPY
4477: 29 OF 05060 ANO #$OF jTEST AGAINST FIRST 4 BITS-ONLY HULTIPLE
4479 : 00 61 05065 BNE OONE \OF 16 @CENTER
447B: AO 56 3B 05070 LOA TEHPX
447E : 29 07 05075 ANO #$07 jTEST AGAINST FIRST 3 BITS-ONLY HULTIPLE
4480 : DO 5A 05080 BNE OONE \OF 8 @CENTER
4482: A9 01 05085 LOA #$01
4484: 80 77 3B 05090 STA LFLAG

05095 *AT CENTER- TEST&RESET LEGAL HOVE FLAGS
05100 *BLOCK=(YB*20)+XB

4487 : A9 00 05105 LOA #$00
4489: BC 22 3B 05110 LOY YB,X
448C : CO 00 05115 CPY #$00 jIF 0 SKIP AOO & OECREHENT
448E: FO 08 05120 BEQ .5
4490 : 18 05125 .1 CLC
4491: 69 14 051 30 AOC #$ 14
4493: 88 05 135 OEY
4494: CO 00 05140 CPY #$00
4496: 00 F8 05145 BNE .1
4498 : 18 05150 . 5 CLC
4499: 70 IE 3B 05155 AOC XB , X
449C: 80 60 3B 05160 STA BLOCK
449F: A9 00 05165 LOA #$00 jOPEN ALL FLAGS FOR PLAYER
44Al: 90 26 3B 05170 STA FLAGL,X
44A4: 90 2A 3B 05175 STA FLAGR,X
44A7: 90 2E 3B 05180 STA FLAGU,X
44AA: 90 32 3B 05185 STA FLAGO,X

05190 *TEST BLOCK MAN I N FOR LEGAL HOVES
44AO: AC 60 3B 05195 LOY BLOCK
44BO: Bl F8 05200 LOA (MAPL),Y
44B2 : 29 01 05205 ANO #$01
44B4: FO 05 05210 BEQ .2
44B6: A9 01 05215 LOA #$01
44B8 : 90 26 3B 05220 STA FLAGL,X
44BB : Bl F8 05225.2 LOA (MAPL),Y
44BO : 29 02 05230 ANO #$02
44BF : FO 05 05235 BEQ .3
44Cl: A9 01 05240 LOA #$01
44C3 : 90 2A 3B 05245 STA FLAGR , X
44C6 : Bl F8 05250 . 3 LOA (MAPL),Y
44C8: 29 04 05255 ANO #$04
44CA : FO 05 05260 BEQ . 4
44CC: A9 01 05265 LOA #$01
44CE: 90 2E 3B 05270 STA FLAGU, X
4401: Bl F8 05275.4 LOA (MAPL),Y
4403: 29 08 05280 ANO #$08
4405 : FO 05 05285 BEQ OONE
4407: A9 01 05290 LOA #$01
4409: 90 32 3B 05295 STA FLAGO,X

ADVANCED ARCADE TECHNIQUES 9

44DC: 60 05300 DONE RTS
05305 *PUT SHAPE IN P/M AREA

44DD: AO 00 05310 PLOT LDY #$00 ; COUNTER
44DF: A9 00 05315 LDA #$00 ;NEED 0 TO ERASE EACH TIME
44El: 91 F4 05320.1 STA (SHPMOL),Y;ERASE OLD SHAPE FIRST
44E3: C8 05325 INY
44E4: CO 08 05330 CPY #$08
44E6: 90 F9 05335 BLT .1
44E8: AO 00 05340 LDY #$00
44EA: Bl FO 05345.2 LDA (SHPL),Y;GET BYTE FROM PROPER SHAPE TABLE
44EC: 91 F2 05350 STA (SHPML),Y ;PUT IN p/M AREA
44EE: C8 05355 INY
44EF: CO 08 05360 CPY #$08
44Fl: 90 F7 05365 BLT .2
44F3: AS F2 05370 LDA SHPML ;TRANSFER NEW p/M POS TO OLD POS
44F5: 9D 58 3B 05375 STA T~WL,X
44F8: AS F3 05380 LDA SHPMH
44FA: 9D 5C 3B 05385 STA T~!PH,X
44FD: 60 05390 RTS

05395 *SUBROUTINE PLOTSETO
44FE: AD 14 3B 05400 PLOTSETO LDA XO
4501: 8D 15 3B 05405 STA X
4504: 8D 00 DO 05410 STA HPOSPO
4507: AD 19 3B 05415 LDA YO
450A: 8D lA 3B 05420 STA Y
450D: 85 F2 05425 STA SHPML
450F: A9 88 05430 LDA IPDATA
4511: 18 05435 CLC
4512: 69 04 05440 ADC #$04 ;PLAYER IS 1K BEYOND START
4514: 85 F3 05445 STA SHPMH
4516: AC 61 3B 05450 LDY POINTO
4519: B9 7E 3B 05455 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
451C: 85 FO 05460 STA SHPL
451E: A9 3C 05465 LDA ISHAPES
4520: 85 F1 05470 STA SHPH
4522: A2 00 05475 LDX #$00
4524: BD 58 3B 05480 LDA TEMPL,X
4527: 85 F4 05485 STA SHPMOL
4529: BD 5C 3B 05490 LDA T~H,X
452C: 85 F5 05495 STA SHPHOH
452E: 20 DD 44 05500 JSR PLOT
4531: 60 05505 RTS

05510 *CONTINUE MOVING IN LAST DIR UNLESS HIT WALL
05515 *AUTO ON - #1

4532: AD 69 3B 05520 AUTO LDA DR
4535: C9 01 05525 CMP #$01
4537: Db lA 05530 BNE .1
4539: AD 2A 3B 05535 LDA FLAGR
453C: C9 00 05540 CMF #$00
453E: DO 73 05545 BNE .4
4540: A9 00 05550 LDA #$00
4542: 8D 26 3B 05555 STA FLAGL
4545: A9 01 05560 LDA #$01
4547: 8D 2E 3B 05565 STA FLAGU
454A: 8D 32 3B 05570 STA FLAGD
454D: EE 14 3B 05575 INC XO
4550: 4C B3 45 05580 JMP .4
4553: AD 65 3B 05585 .1 LDA DL
4556: C9 01 05590 CHP #$01
4558: DO lA 05595 BNE .2
455A: AD 26 3B 05600 LDA FLAGL
455D: C9 00 05605 CMF #$00

399

400

9 ADVANCED ARCADE TECHNIQUES

455F: DO 52 05610 BNE .4
4561: A9 00 05615 LDA #$00
4563: 8D 2A 3B 05620 STA FLAGR
4566: A9 01 05625 LDA #$01
4568: 8D 2E 3B 05630 STA FLAGU
456B: 8D 32 3B 05635 STA FLAGD
456E: CE 14 3B 05640 DEC XO
4571: 4C B3 45 05645 JMP .4
4574: AD 6D 3B 05650 .2 LDA DU
4577: C9 01 05655 OlP #$01
4579: DO lA 05660 BNE .3
457B: AD 2E 3B 05665 LDA FLAGU
457E: C9 00 05670 CMF #$00
4580: DO 31 05675 BNE .4
4582: A9 00 05680 LDA #$00
4584: 8D 32 3B 05685 STA FLAGD
4587: A9 01 05690 LDA #$01
4589: 8D 2A 3B 05695 STA FLAGR
458C: 8D 26 3B 05700 STA FLAGL
458F: CE 19 3B 05705 DEC YO
4592: 4C B3 45 05710 JMP .4
4595: AD 71 3B 05715 .3 LDA DD
4598: C9 01 05720 CMF #$01
459A: DO 17 05725 BNE .4
459C: AD 32 3B 05730 LDA FLAGD
459F: C9 00 05735 CMF #$00
45Al: DO 10 05740 BNE .4
45A3: A9 00 05745 LDA #$00
45A5: 8D 2E 3B 05750 STA FLAGU
45A8: A9 01 05755 LDA #$01
45AA: 8D 2A 3B 05760 STA FLAGR
45AD: 8D 26 3B 05765 STA FLAGL
45BO: EE 19 3B 05770 INC YO
45B3: EA 05775 .4 NOP
45B4: 60 05780 RTS

05785 *AUTO CODE FOR PLAYERS 1,2 & 3
05790 *NEEDS PLAYER # IN X-REGISTER
05795 *CODE DOESN'T REQUIRE LATCHES SINCE JOYSTICK CAN'T SEND

45B5: BD 69 3B 05800 AUTOP LDA DR, X \THOSE PLAYERS ORDERS
45B8: C9 01 05805 CMF #$01
45BA: DO OD 05810 BNE .1
45BC: BD 2A 3B 05815 LDA FLAGR,X
45BF: C9 00 05820 CMF #$00
45Cl: DO 3F 05825 BNE .4
45C3: FE 15 3B 05830 INC X,X
45C6: 4C 02 46 05835 JMP .4
45C9: BD 65 3B 05840 .1 LDA DL, X
45CC: C9 01 05845 CMP #$01
45CE: DO OD 05850 BNE .2
45DO: BD 26 3B 05855 LDA FLAGL,X
45D3: C9 00 05860 CMP #$00
45D5: DO 2B 05865 BNE .4
45D7: DE 15 3B 05870 DEC X,X
45DA: 4C 02 46 05875 JMP .4
45DD: BD 6D 3B 05880 .2 LDA DU,X
45EO: C9 01 05885 CMF #$01
45E2: DO OD 05890 BNE .3
45E4: BD 2E 3B 05895 LDA FLAGU,X
45E7: C9 00 05900 CMP #$00
45E9: DO 17 05905 BNE .4
45EB: DE lA 3B 05910 DEC Y,X
45EE: 4C 02 46 05915 JMP .4

ADVANCED ARCADE TECHNIQUES 9

45Fl: BD 71 3B 05920 .3 LDA DD,X
45F4: C9 01 05925 CMP #$01
45F6: DO OA 05930 BNE .4
45F8: BD 32 3B 05935 LDA FLAGD,X
45FB: C9 00 05940 CMF #$00
45FD: DO 03 05945 BNE .4
45FF: FE lA 3B 05950 INC Y,X
4602: 60 05955 .4 RTS

05960 *SUBROUTINE PLOTSETI
4603: BD 15 3B 05965 PLOTSETI LDA X,X
4606: 8D 01 DO 05970 STA HPOSPI
4609: BD lA 3B 05975 LDA Y,X
460C: 85 F2 05980 STA SHPML
460E: A9 88 05985 LDA /PDATA
4610: 18 05990 CLC
4611: 69 05 05995 ADC #$05 ;PLAYER IS 1.25K BEYOND START
4613: 85 F3 06000 STA SHPMH
4615: AC 62 3B 06005 LDY POINT 1
4618: B9 7E 3B 06010 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
461B: 85 FO 06015 STA SHPL
461D: A9 3C 06020 LDA /SHAPES
461F: 85 Fl 06025 STA SHPH
4621: A2 01 06030 LDX #$01
4623: BD 58 3B 06035 LDA TEMPL,X
4626: 85 F4 06040 STA SHPMOL
4628: BD 5C 3B 06045 LDA TEMPH,X
462B: 85 F5 06050 STA SHPMOH
462D: 20 DD 44 06055 JSR PLOT
4630: 60 06060 RTS

06065 *SUBROUTINE PLOTSET2
4631: BD 15 3B 06070 PLOTSET2 LDA X,X
4634: 8D 02 DO 06075 STA HPOSP2
4637: BD lA 3B 06080 LDA Y,X
463A: 85 F2 06085 STA SHPML
463C: A9 88 06090 LDA /PDATA
463E: 18 06095 CLC
463F: 69 06 06100 ADC #$06 ;PLAYER IS 1.5K BEYOND START
4641: 85 F3 06105 STA SHPMH
4643: AC 63 3B 06110 LDY POINT2
4646: B9 7E 3B 06115 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
4649: 85 FO 06120 STA SHPL
464B: A9 3C 06125 LDA /SHAPES
464D: 85 Fl 06130 STA SHPH
464F: A2 02 06135 LDX #$02
4651: BD 58 3B 06140 LDA TEMPL,X
4654: 85 F4 06145 STA SHPMOL
4656: BD 5C 3B 06150 LDA TEMPH,X
4659: 85 F5 06155 STA SHPMOH
465B: 20 DD 44 06160 JSR PLOT
465E: 60 06165 RTS

06170 *SUBROUTINE PLOTSET3
465F: BD 15 3B 06175 PLOTSET3 LDA X,X
4662: 8D 03 DO 06180 STA HPOSP3
4665: BD lA 3B 06185 LDA Y,X
4668: 85 F2 06190 STA SHPML
466A: A9 88 06195 LDA /PDATA
466C: 18 06200 CLC
466D: 69 07 06205 ADC #$07 ;PLAYER IS 1.75K BEYOND START
466F: 85 F3 06210 STA SHPMH
4671: AC 64 3B 06215 LDY POINT3
4674: B9 7E 3B 06220 LDA SHPLO,Y ;POINTER TO CORRECT SHAPE
4677: 85 FO 06225 STA SHPL

401

9 ADVANCED ARCADE TECHNIQUES

4679: A9 3C 06230 LDA /SHAPES
467B: 85 Fl 06235 STA SHPH
467D: A2 03 06240 LDX #$03
467F: BD 58 3B 06245 LDA TEMPL,X
4682: 85 F4 06250 STA SHPMOL
4684: BD 5C 3B 06255 LDA TEMPH,X
4687: 85 F5 06260 STA SHPMOH
4689: 20 DD 44 06265 JSR PLOT
468C: 60 06270 RTS
468D: BD 69 3B 06275 CORECT LDA DR,X
4690: FO 35 06280 BEQ .2
4692: BD 2A 3B 06285 .11 LDA FLAGR,X
4695: DO 06 06290 BNE .12
4697: 20 B5 45 06295 JSR AUTOP
469A: 4C 79 47 06300 JMP FF
469D: BD 2E 3B 06305 .12 LDA FLAGU,X
46AO: DO 10 06310 BNE .13
46A2: DE lA 3B 06315 DEC Y,X
46A5: A9 00 06320 LDA #$00
46A7: 9D 69 3B 06325 STA DR,X
46AA: A9 01 06330 LDA #$01
46AC: 9D 6D 3B 06335 STA DU,X
46AF: 4C 79 47 06340 JMP FF
46B2: BD 32 3B 06345 .13 LDA FLAGD,X
46B5: DO OD 06350 BNE .14
46B7: FE lA 3B 06355 INC Y,X
46BA: A9 00 06360 LDA #$00
46BC: 9D 69 3B 06365 STA DR,X
46BF: A9 01 06370 LDA #$01
46Cl: 9D 71 3B 06375 STA DD,X
46C4: 4C 79 47 06380 .14 JMP FF
46C7: BD 65 3B 06385 .2 LDA DL,X
46CA: FO 35 06390 BEQ .3
46CC: BD 26 3B 06395 .21 LDA FLAGL,X
46CF: DO 06 06400 BNE .22
46Dl: 20 B5 45 06405 JSR AUTOP
46D4: 4C 79 47 06410 JMP FF
46D7: BD 2E 3B 06415 .22 LDA FLAGU,X
46DA: DO 10 06420 BNE .23
46DC: DE lA 3B 06425 DEC Y,X
46DF: A9 00 06430 LDA #$00
46El: 9D 65 3B 06435 STA DL,X
46E4: A9 01 06440 LDA #$01
46E6: 9D 6D 3B 06445 STA DU,X
46E9: 4C 79 47 06450 JMP FF
46EC: BD 2A 3B 06455 .23 LDA FLAGR,X
46EF: DO OD 06460 BNE .24
46Fl: FE lA 3B 06465 INC Y,X
46F4: A9 00 06470 LDA #$00
46F6: 9D 65 3B 06475 STA DL,X
46F9: A9 01 06480 LDA #$01
46FB: 9D 71 3B 064~5 STA DD,X
46FE: 4C 79 47 06490 .24 JMP FF
4701: BD 6D 3B 06495 .3 LDA DU,X
4704: FO 37 06500 BEQ .4
4706: BD 2E 3B 06505 .31 LDA FLAGU,X
4709: DO 06 06510 BNE .32
470B: 20 B5 45 06515 JSR AUTOP
470E: 4C 79 47 06520 JMP FF
4711: BD 26 3B 06525 .32 LDA FLAGL,X
4714: DO 10 06530 BNE .33
4716: DE 15 3B 06535 DEC X,X

402

ADVANCED ARCADE TECHNIQUES 9

4719: A9 00 06540
471B: 9D 6D 3B 06545
471E: A9 01 06550
4720: 9D 65 3B 06555
4723: 4C 79 47 06560
4726: BD 2A 3B 06565 .33
4729: C9 01 06570
472B: FO OD 06575
472D: FE 15 3B 06580
4730: A9 00 06585
4732: 9D 6D 3B 06590
4735: A9 01 06595
4737: 9D 69 3B 06600
473A: 4C 79 47 06605 .34
473D: BD 71 3B 06610 .4
4740: DO 03 06615
4742: 4C 79 47 06620
4745: BD 32 3B 06625 .41
4748: DO 06 06630
474A: 20 B5 45 06635
474D: 4C 79 47 06640
4750: BD 26 3B 06645 .42
4753: DO 10 06650
4755: DE 15 3B 06655
4758: A9 00 06660
475A: 9D 71 3B 06665
475D: A9 01 06670
475F: 9D 65 3B 06675
4762; 4C 79 47 06680
4765: BD 2A 3B 06685 .43
4768: C9 01 06690
476A: FO OD 06695
476C: FE 15 3B 06700
476F: A9 00 06705
4771: 9D 71 3B 06710
4774: A9 01 06715
4776: 9D 69 3B 06720
4779: 60 06725 FF
477A: AD IE 3B 06730 PLACE
477D: C9 OA 06735
477F: BO 5C 06740
4781: AD 22 3B 06745
4784: C9 06 06750
4786: BO 35 06755
4788: A9 B8 06760
478A: 99 15 3B 06765
478D: A9 94 06770
478F: 99 lA 3B 06775
4792: A9 00 06780
4794: 99 6D 3B 06785
4797: 99 71 3B 06790
479A: 99 69 3B 06795
479D: 99 65 3B 06800
47AO: AD OA D2 06805
47A3: C9 80 06810
47A5: 90 OB 06815
47A7: A9 01 06820
47A9: 99 69 3B 06825
47AC: 99 32 3B 06830
47AF: 4C 30 48 06835
47B2: A9 01 06840 .15
47B4: 99 65 3B 06845

LDA #$00
STA DU,X
LDA #$01
STA DL,X
JMP FF
LDA FLAGR,X
CMP #$01
BEQ .34
INC X,X
LDA #$00
STA DU,X
LDA #$01
STA DR,X
JMP FF
LDA DD,X
BNE .41
JMP FF
LDA FLAGD,X
BNE .42
JSR AUTOP
JMP FF
LDA FLAGL,X
BNE .43
DEC X,X
LDA #$00
STA DD,X
LDA #$01
STA DL,X
JMP FF
LDA FLAGR,X
CMP #$01
BEQ FF
INC X,X
LDA #$00
STA DD,X
LDA #$01
STA DR, X
RTS
LDA XB jPLAYER#O ON LEFT SIDE SCREEN?
CMP #$OA
BGE .3
LDA YB jPLAYER #0 ON TOP HALF SCREEN?
CMP #$06
BGE .2
LDA #$B8 jPUT PLAYER AT BLOCK 17,7 (184,148)
STA X,Y
LDA #$94
STA Y,Y
LDA #$00
STA DU,Y
STA DD,Y
STA DR,Y
STA DL,Y
LDA RANDOM jVARY THE START LEFT OR RT
CMP #$80
BLT .15
LDA #$01
STA DR,Y
STA FLAGD,Y
JMP EXIT
LDA #$01
STA DL, Y

403

9 ADVANCED ARCADE TECHNIQUES

47B7: 99 32 3B 06850 STA FLAGD,Y
47BA: 4C 30 48 06855 -iMP EXIT
47BD: A9 A8 06860 .2 LDA #$A8 ;PUT PLAYER AT BLOCK 15, 2 (168 ,68)
47BF: 99 15 3B 06865 STA X,Y
47C2: A9 44 06870 LDA #$44
47C4: 99 1A 3B 06875 STA Y,Y
47C7: A9 00 06880 LDA #$00
47C9: 99 6D 3B 06885 STA DU,Y
47CC: 99 69 3B 06890 STA DR,Y
47CF: 99 65 3B 06895 STA DL,Y
47D2: A9 01 06900 LDA #$01
47D4: 99 71 3B 06905 STA DD,Y
47D7: 99 2A 3B 06910 STA FLAGR,Y
47DA: 4C 30 48 06915 JHP EXIT
47DD: AD 22 3B 06920 .3 LDA YB ;IS PLAYER ON TOP HALF SCREEN?
47EO: C9 06 06925 CHP #$06
47E2: BO 32 06930 BGE . 4
47E4: A9 40 06935 LDA #$40 ;PUT PLAYER AT BLOCK 2,7 (64, 148)
47E6: 99 15 3B 06940 STA X,Y
47E9: A9 94 06945 LDA #$94
47EB: 99 1A 3B 06950 STA Y,Y
47EE: A9 00 06955 LDA #$00
47FO: 99 6D 3B 06960 STA DU, Y
47F3: 99 71 3B 06965 STA DD,Y
47F6: 99 65 3B 06970 STA DL,Y
47F9: 99 69 3B 06975 STA DR,Y
47FC: AD OA D2 06980 LDA RANDOM ;VARY THE START LEFT OR RT
47FF: C9 80 06985 CHP #$80
4801: 90 08 06990 BLT . 35
4803: A9 01 06995 LDA #$01
4805: 99 65 3B 07000 STA DL,Y
4808: 4C 30 48 07005 JHP EXIT
480B: A9 01 07010 .35 LDA #$01
480D: 99 69 3B 07015 STA DR,Y
4810: 99 32 3B 07020 STA FLAGD,Y
4813: 4C 30 48 07025 JHP EXIT
4816: A9 50 07030 .4 LDA #$50 ;PUT PLAYER AT BLOCK 4,2 (80,68)
4818: 99 15 3B 07035 STA X,Y
481B: A9 44 07040 LDA #$44
481D: 99 1A 3B 07045 STA Y,Y
4820: A9 00 07050 LDA #$00
4822: 99 65 3B 07055 STA DL,Y
4825: 99 69 3B 07060 STA DR,Y
4828: 99 6D 3B 07065 STA DU,Y
482B: A9 01 07070 LDA #$01
482D: 99 71 3B 07075 STA DD,Y
4830: 60 07080 EXIT RTS

404

ADVANCED ARCADE TECHNIQUES 9

Tank Game

A tank duel between two or more tanks was one of the first few classic/games
developed for coin -op play in the arcades. It was quickly translated to the Atari 2600
game system under the name Combal, and was supplied with the first four to five
million game systems. Regrettably, it was never rewritten for their home computers.
While the cartridge had some interes ting variations like Tank -Pong, in which the
shells bounced off walls for quite some distance, it was unrealistic in that the tank
turret could only fire in the direction the tank pointed.

Basic Design of Game

Our game, Tank Battle, is des igned to be much more realistic. The tanks, which
ca n turn and drive in eight directions, are equipped with rotatab le turrets so that
they can fire in directions other than the one that they are traveling. The terrain
features or barriers, which are useful for hiding behind, can be blown away by tank
fire. It takes two shots to completely fracture one of the terrain blocks. Tanks that are
blown away are immune to enemy fire for several seconds upon reappearance. This
is necessary since the tank always reappears in the same position and it would be
only fair to a llow the player to move his tank or fire back at a tank waiting in
ambush.

Regrettably, the control system is a compromise. Game design would be so much
easier if joysticks h ad two buttons. The single button serves a dual function for
turning the turret and firing the gun. When the button isn't pressed, the tank is in the
steering-drive mode. Pushing to the left or right rotates the tank, and pushing
forward or back moves the tank in those directions. Since the tank can't penetrate
barriers, it often needs to be backed up to turn away from the obstacle. Pressing the
button puts it into the turret-fire mode. The tank can still be driven forward and
backward, but pushing the stick left or right rotates the turret counterclockwise and
clockwise respectively. The gun is fired when the button ·is released.

FORWARD

TURN TANK + TURN TANK
LEFT RIGHT

REVERSE
BUTTON RELEASED

FORWARD

TURN TURN
TURRET ----+---TURRET

LEFT RIGHT

REVERSE
BUTTON HELD

The use of two players for each tank, one fOl the body and one for the turret,
thwarted any attempts to make it a four player game. We're not saying that it
couldn't be done, but we could just see the flickering that would occur if two tanks
using the same players ended up on the sa me scan lines. Actually, now that we think

405

406

9 ADVANCED ARCADE TECHNIQUES

about it, it could have been done if we sacrificed the distinct second color of the
turret. The turret might not show clearly, but it would reduce each complete tank to
one player. Now you would need sixty-four tank shapes, one for each combination of
tank direction and turret direction. As it is we use eight tank shapes and eight
separate turret shapes for each of our eight joystick-controlled directions.

Only one missile can appear on the screen at a time for each tank. Each missile
continues along its directed pa th until it exits the playfield or reaches either the
enemy tank or a blow-away wall. Since the missile is armed upon pressing the
trigger, it becomes increasingly important to be able to not only adjust the turret's
direction but also the tank's forward and backward position before the shell is
actually fired by releasing the trigger. The inablity to reload and fire before the
previous missile completes its trajectory may be quite realistic in tank warfare, but
can be a liability in an arcade game. Perhaps this forces the game to transcend the
quick reflexes genre to one of strategic play.

The game was virtually designed to run in Deferred Vertical Blank. While colli
sions, explosions, and missile movement are performed for both tanks every VB lank
cycle, reading the joystick and the actual calculation and updating of tank and turret
positions alternate for each tank every VBlank cycle. Tank #0 is updated on even
cycles and tank #1 is updated on odd cycles. This was necessary for it appeared that
there were far too many instructions to fit within the Deferred Vertical Blank period.

Updating the tank's position is one of the more intriguing problems in this game.
Calculating the tank's next position based on the direction that it is moving is quite
straightforward. The formulas are:

PLAYERH = PLAYERH + HOFFS(NEWD)
PLAYERV = PLAYERV + VOFFS(NEWD)

where NEWD is the tank's new direction.

Tank Collision with Playfield

The tank obviously has to be prevented from moving into a wall. We wanted to
avoid the unsightly bounce that occurs in many games that test illegal positions
using player-playfield collisions. The problem is that you can't test the collision
until you actually move there, but once you are there you have to move back from the
illegal position, or in this case, away from the wall.

The solution is to test for a collision at the tank's next calculated position before
the tank is actually moved there. This can be accomplished exactly the same way
collisions are detected when rastering shapes on the screen, by ANDing the player
byte against the playfield byte beneath it. If any two bits overlap, the result is a
positive number. Remember that to do the comparison, the tank doesn't have to be
physically where it is supposed to be. You need only calculate which player and
play field character bytes intersect and compare the data for an overlap.

ADVANCED ARCADE TECHNIQUES 9

By calcu lating the tank's new position NEWH, NEWV, the offset into the
character XOFF, YOFF can be determined simply by ANDing the position with
#$07 . This is equivalent to the expression NEWH -8 (INT(NEWH/ 8)). It masks off
the higher bits above 8 so that only the remainder is left. The actual character
involved in the intersection also has to be obtained. Its position is at CHRX, CHRY
and is obtained by dividing the new player position NEWH, NEWV by 8 in each
axis. Its position in memory is CHRHI*256 + (CHRX +(20*CHR V)) .

When the player shape is offset horizontally into the character, part of its shape is
in that character and the rest extends into the next character to the right. If we are
going to make a comparison in the data, we will need to obtain data from that
character also. The eight bits that we need to compare are beneath the player byte but
span the two different character bytes. If we look at the diagram below, our player
shape is offset into the first character by five bits. Thus, three bits of the first character
byte need to be combined with five bits from the adjacent character. Once we have a
byte we can AND the character data with that of the tank data. The data is tested for
each byte of the vertical overlap or until we detect a collision. If we don't detect a
collision, we clear the carry before exiting the subroutine. However, if we do, we set
the carry before exiting. Upon return we need only perform a BCS instruction to
determine if the desired move is indeed legal.

We intersect by 2 bytes

Oth byte overlapped character data $FFintersects tank data $38
1st byte overlapped character data $FFintersects tank data $C6

LDA (POTMPl),Y
AND BYTE

RESULT >0 (Collision)

$38
$FF

$38

000
1 1 1

000

o
1

o

XOFF::: 5
YOFF::: 2

407

408

9 ADVANCED ARCADE TECHNIQUES

PLA YERI SCREEN COMPARE ROUTINE

LOOK AHEAD

CALCULATE CHARACTER I
POSITION OF TANK

I
SAVE OFFSET INTO CHARACTER POSITION I

BOTH HORIZONTAL AND VERTICAL

I
GET CHARACTER & ADJACENT CHARACTER I

I
CREATE POINTERS INTO DATA FOR CHARACTERS

I
-------1 LOOK UP DATA FOR CHARACTERS I II (INDEXED BY VERTICAL OFFSET INTO CHARACTER POSITION)

~

I
TAKE RIGHTMOST BITS OF CHARACTER#1 DATA

& LEFTMOST BITS OF CHARACTER#2 DATA
TO MAKE ONE BYTE BASED ON PLAYER'S FINE

OFFSET INTO CHARACTER POSITION

I
GET BYTE OF PLAYER DATA I

I
AND WI TH CHARACTER DATA I

I YES

RESUL T NONZERO? FLAG POSITION I
to NO GOOD

I
SETUP FOR NEXT BYTE I I RTS I

I
DONE? I

JES

RTS I

Updating Tank Position and Rotation

The two tanks are updated on different VBlank cycles. While it is true that tank #0
is updated on even cycles and tank #1 is updated on odd cycles, there is a rest of two
additional cycles before they are updated again. Essentially, we are in a four-cycle
loop with two null cycles. If you look at the code beginning with the label UPDATE,
you wi II notice that we loaded the Accumulator with the clock timer value and then
ANDed it with #$02. If you look a t the bit patterns for the numbers 0-3 and perform
the operation, you will get the following:

ADVANCED ARCADE TECHNIQUES 9

ACCUM. 00 01 10 11
AND #$02 10 10 10 10

00 00 10 10

Notice that we obtain non-zero values for the second and third cycles. We could
branch on a non-zero test and skip updating the tank on these two cycles. Inciden
tally, the clock doesn't need to be reset every four cycles. It continues to count to 255.
However, as far as the last two bits are concerned, 4 is the same as 0, and 5 is the same
as 1, etc. We can then determine which tank to update by ANDing the clock
RTCLOC with #$01. The value is either going to be zero or one, and that can be
placed in the X-register to obtain the appropriate tank's variables.

There are several more tests that have to be performed. Obviously, if the tank is
dead, we don't have to worry about updating it. Next we need to decide if we are in
the turret mode. This is important because we need to distinguish between a button
that hasn't been pressed and one that has been just released to fire. In the latter case,
the turret mode is set so it branches past the first button test that would have shunted
it to code to move or rotate the tank, and instead reaches the second button test. If the
button is actually released, it means that the button hadjust been released and it trips
the gun to fire. The turret mode is turned off in that event. However, if the button is
still held down it branches to ROTATE where a new turret direction is calculated
every fourth jiffy.

Tank Rotations

The calculations to rotate either the tank or turret are very straightforward. The
new direction is ei ther incremented or decremented depending on joystick direction.
Both TURRETD, the turret direction, and PLA YERF, the tank direction, have
values between 0 and 7. These direction values are used to obtain the correct shapes to
plot in the player-missile area of memory for both tank and turret. The tank and
turret rotations are coupled such that the turret's position relative to the tank is
constant as the tank is turned. If the turret points out the front of the tank, it must
remain in that position when the tank turns. We update both the tank and turret
directions in the code when turning the tank. You'll notice that we are always
keeping temporary values for movement, including new tank and turret directions.
Since the act of rotating the tank could cause a collision with the wall, it may be
necessary to ignore the new values and simply not rotate the tank or turret.

409

410

9 ADVANCED ARCADE TECHNIQUES

#0

$00
~~~-4--~4-~-4~ 

$00 
~~~-4--~4-~-4~ 

$C6
~~~~--r-~-r~~ 

$38 

$38 

$C6 

$38 

$38 

$C6 

$38 

$38 

$C6 

$38 

$00 

$00 

$00 

$AA 

~4-~-4--~4-~-4~ 

~+-~-+--~+-~-+~ 

~+-~-+--~4-~-+~ 

~+-~-+--~+-~~~ 

~4-~-+--~+-~-+~ 

#2 

~+-~-+--~+-~-+~ 

$AA 
~+-~-+--~+-~-+~ 

$AA 
~+-~-+--~+-~-+~ 

$7C 

$7C 
~~~-4--~4-~-4~ 

$7C ~4-~-+--l---4-~--I--l
$7C

~4-~-4--l--4-~--I--l

$AA
~4--+-4--~4--+--I--l

$AA
~~~-4--~~~-4~ 

$AA 
~;-~-4--~;--r-4~ 

$00 

$00 

#1 

$00 
~4-~~--~+-~-4~ 

$00 
~+-~~--~+-~~~ 

$10 
~+-~~--~+-~-4~ 

$08 
~4-~~--~4-~-4~ 

$20 
~4-~~--~4-~-4~ 

$1A 
~4-~~--~4-~-4~ 

$50 ~-4-~--I--l---4-~~~ 
$3C 

~+-~-4--~+-~-4~ 

$BA 
~4-~-4--~+-~~-4 

$58 

$04 
~+-~-4~~+-~-+~ 

$10 

$08 

$00 

$00 

$00 

$08 

$10 

$04 

$58 

$BA 

~+-~-4~~+-~-+~ 

~+-~~--~+-~-+~ 

#3 

~4--+~~~4-~--I~ 

$3C 
~4--r~--~4-~~~ 

$50 
~4-~~--~4-~-4~ 

$1A 
~4--+~--~4-~--I~ 

$20 
~4--+-4--~-4-~--I~ 

$08 
~4--+-4--~-4-~--I~ 

$10 
~4--+-4--l---4-~--I~ 

$00 



ADVANCED ARCADE TECHNIQUES 9 

#4 

$00 
~1-~~--r-1-~~~ 

$00 
~+-~-+--r-+-~-+~ 

$C6 
r-~~-+--r-~~~~ 

$38 
~+-~-+--r-~~-+~ 

$38 
~+-~~--r-1-~-+~ 

$C6 
~~~-+--r-~~-+~ 

$38
r-~~~--r-~-r~~

$38
r-+-~-+~r-+--r-T~

$C6
~+--r-+~r-~~-+~

$38
~+-~-+--r-~~~~

$38
r-+-~-+~r-+--r-T~

$C6
r-+-~-+--r-+--r-T~

$38
r-+-~~--r-+--r-+~

$00
~~~~--~~~~~ 

#6 

$00 
r-+-~~--r-+--r~~ 

$00 r-+---+-~--r--t--r~~ 
$55 r-+---+---t--t--t--t--t-----1 
$55 ~~~__t--r--+----t------t-----j 

$55 r--t--t---t--t--t--t--t---1 
$3E 

r--t--r--t--t--t--t--t---1 
$3E 

~~~~--r--+--r-----t~ 

$3E I---+--+--+~r-+-~-+~
$3E

~1--r__t--r--+----t------t-----j

$55
r-4---+-~--t--t--r-t~

$55
r-4--r--t--t--t--t--t~

$55
r--t--r--t--r--t--t--t---1

$00
r-4---+-~--r--+--r-t~

$00
~~~~~~~~~~ 

#5 

$00 
1--1--r-4--r-+--+--+~ 

$00 
I--+--+--+~r-+--+--+~ 

$10 
r-4---+-~--r--+--r~~ 

$08 
~-+--r__t--r-+--+--+~ 

$20 
~1--r~--r--+--r~~ 

$1A 
r-4---+-~--r--+--r~~ 

$5D 
~-+--r~--r--+--r~~ 

$3C 
r-4---+--4--~+--+--+~ 

$BA 
r-+---+---t--r--t--r~~ 

$58 

$04 

$10 

$08 

$00 

$00 

$00 

$08 

$10 

$04 

$58 

#7 

1--4--r~r-+--+--+-,~ 

$BA r-+---+-~--r--+--r~~ 
$3C r-+---+-~--r--+--r~-----i 
$5D r-4---+-~--r--+--r~-----i 
$1 A r-+--+---l~r--+--+--1r------1 
$20 

1--4--+~r-+--+--+--~ 

$08 r-+---+-~--~+---t--T---i 
$10 

r-+---+---t--r-+---t--T---i 
$00 
~~~~--~~~~~ 

411

412

9 ADVANCED ARCADE TECHNIQUES

Missile or Tank Fire

The beginning section of the VBlank code con cerns collisions between missiles
and play field, missiles and tanks, and between two ta nks. When a missile strikes the
playfield it has to distinquish between border charac ters and barrier characters. The
character set is as follows :

o -Blank
1-6 -Border characters

7 -Unused
8-15 -Walls (in pairs)

The missile track ends when it hits a border ch arac ter. If you choose to change the
maze so that border characters aren't u sed, you will need to remove the comment field
from some of the statements in lines 2540 to 2760. These sta tements actually test
boundary conditions rather than simpl y character numbers from 1 to 6 to determine
if the missile reaches the border. When the missile strikes a character that makes up a
wall, it decrements it if it is an odd numbered character, or erases it if it is an even
numbered character. The characters are set in pairs. The higher numbered character
is a complete shape while the lower numbered character is the fractured shape.

• • • • • • • • - -- • • ••• - • - • -- -• • ••• • • =1= ••• - - ••• ••• ••• ••• ••• - --I-
• • ••• • • I - -- • - .-... • • - - -• • • • • • • • • • • •

PLAYER # 1 PLAYER #2

02 1 : 2 7 06

ADVANCED ARCADE TECHNIQUES 9

#1 #2 #3

f-- -

#4 #5 #6

10<;;
~o

#7 #8 #9

r

#10 #1 1 #12

#13 #14 # 15

413

414

9 ADVANCED ARCADE TECHNIQUES

Tank Explosions

Of course, it is very likely that the player's missil e will hit its intended target, the
other player's tank. If it does, the hit tank begins to explode. In order to prevent the
tank from reinitiating its explosion by another closely fired missile, we need to test if
CYCLES >0. We also need to determine if the tank is immune from enemy fire just
after it reappears. Again we test for a value IMMUNE >0. Both CYCLES and
IMMUNE are counters that count down every VBlank.

The tank's explosion pattern is a series of horizontal lines that rapidly expand
vertically outward a long the tank 's 8-bit-wide player band. The tank shape is
replaced by a series of horizontal lines. T heir vertical positions are stored in two
arrays, DZAP and UZAP. These two arrays each store the vertical positions of eight
of these horizontal lines. The lines are moved at different rates by adding or subtract
ing different values to their vertical positions. For example, if we consider the eight
lines in the DZAP array, they all begin initally at X=80. Then DZAP(INDEX) =
DZAP(INDEX) + INDEX, where INDEX ranges from 0 to 7 for the eight values in
the table. The higher values in the table move the fastest downward. Eventually all of
the lines exceed the screen boundary at #$CO and the explosion ends. Similarly, the
eight lines in UZAP move upward as UZAP(INDEX) = UZAP(INDEX) -INDEX.
They, too, eventually exceed the screen boundary at #$20 and the explosion sequence
ends.

The collision routine that detects collisions between the two tanks has to be more
selective than usual. If we aren't careful, the debris from the exploding tank could
blow up the other tank if it had a similar horizontal position. This can be avoided by
checking the explosion cycle counter to see if it is greater than zero.

The blown up tank is put back on the screen once the CYCLE counter runs out
after four seconds. The IMMUNITY counter is then set to 255 jiffies or four seconds
so that the enemy tank can't sit in ambush. It does give the defeated tank a slight edge
for several seconds but this can be compensated by having the other tank stay out of
the line of fire.

Game Timer

The game is timed to last three minutes. This is set up initally as two minutes and
sixty seconds, and can be changed to suit the player. The timer operates in the
decimal mode. Both the ones and tens digits for seconds are stored in the lower and
upper nibbles of the variable SECONDS. The nibbles are separated and converted
into character data before being stored in score screen memory at locations
LINE3+ 10 and LINE3+ II. The value for minutes , which is in the lower nibble only,
is easier to obtain. It is eventually stored at LINE3+8. The game ends, GAME=O,
when the timer reaches zero. ENABLE, a VBI flag, is also set to zero at that time so
that the entire VBI routine is skipped when the game isn ' t in progress.

#0

CYCLE #0
#1
#2

ADVANCED ARCADE TECHNIQUES 9

EXPLOSION PATTERN

$80

#1 #2 #3 #4 #5

(0) (1) (2) (3) (4) (5) (6) (7) DZAP

80 80 80 80 80 80 80 80
81 82 83 84 85 86 87 88

82 34 86 88 8A 8C 8E 90

i r r f
Add Add Add Add

+1 +2 +3 +4 etc.

415

9 ADVANCED ARCADE TECHNIOUES

TANK EXPLOSION SUBROUTINE

SET COUNTER FOR 2 TANKSI

11 EXPLOSION ON FLAG ON? NO

pES

l CYCLES=CYCLES-1J

I LAST fIME? YES

lNO

.11IPICK A RANDOM COLOR I
I RESETTANK I

POSITION

~
SET UP LOOP FOR 8 BYTES I I GET IMMUNITY I IN UZAP & DZAP TIMER

INDEX=8

21 ERASE OLD UP EXPLOSION LINE 1
PLAYER UZAP (INDEX)=O

I ERASE OLD DOWN EXPLOSION LlNEJ

l CALCULATE NEW LINE POSITI ON: 'I
UZAP (INDEX)=UZAP (INDEX)-INDEX

l POSITION LEGAL? NO

lYES

1 STORE BACK IN UZAPJ

1 PUT LINE ON SCREEN 1

.3
1

CALCULATE NEW LINE POSITION : ~I
DZAP (INDEX)=DZAP (INDEX)+INDEX

1 POSITION LEGAL? NO

pES

1 STORE NEW VALUE IN DZAP 1

1 PUT LINE ON SCREEN 1

4lINDEX=INDEX-11

NO INDEX=O?J
YES

.5 l SET FOR NEXT TANK I
TANK=TANK-1

NO
TANK $FF? 1 * INDEX IS ADDED OR SUBTRACTED

cmb SO THAT OUTER LINES EXPAND
FASTER THAN INNER LINES

416

ADVANCED ARCADE TECHNIQUES 9

TANK GAME

l DRAW TITLE SCREEN

I
I INITIALIZE GRAPHICS INFO

I
l INITIALIZE VERTICAL BLANK

START I -.t
rl START KEY PRESSED?

~YES ,
I START KEY RELEASED?

+YES

I SETUP GAME SCREEN
& INITIALIZE GAME VARIABLES

I
I GAME OVER? IYES

GAME=O?
NO FOREVER t

~ START KEY PRESSED?

tNO

~ RUN GAME IN

J VERTICAL BLANK

I

-'
J
I

~
NO

I

I

I

$7400

$7000

$6800

$6400

$6300

$6000
$4 B6D

$4B33

$4A26

$4A04

$46 D4

$4000

GAME OVER
MESSAGE

~3t I YE
NO START KEY PRESSED? J

S

TANK GAME
MEMORY MAP

TEXT WINDOW

SCREEN

BLANK

PLAYERS

MISSILES

PDATA=CHRSET

BLANK

VARIABLES

DATA

DISPLAY LIST

DATA

CODE

417

4 18

9 ADVANCED ARCADE TECHNIQUES

TANK VBI ROUTINE (COLLISIONS) 1

CH ECK MISSILE AGAINST PLA YFlELD COLLISION

GET CHARACTER THAT SHOT HIT

.-------'------~ YES

FRACTURE BLOCK OR
ERASE BLOCK IF FRACTURED

1-----

.3 r--------'--------~

IS TANK AL READY HIT (STILL EXPLODING?)
OR DOES IT HAVE IMMUNITY

INITIALIZE EXPLOSION ROUTINE

INITIALIZE EXPLOSION COUNTER

.7r----'--_---..,

I
I CLEAR COLLISIONS 1
.----__ ---'IL-__ """"'I NO I IS TANK EXPLODING?~ I-~

~ YES

I DECREMENT CYCLE COUNTER I
I NO I LAST CYCLE 11-----..
tYES

I PUT TANK BACK ON SCREEN I
I

I IMMUNITY=255 JIFFYS I
.11 I

I DO EXPLOSION I
.5

I NEXTTANK I
I NO

I SHOT IN PROGRESS?

tYES

I ERASE OLD MISSILE I
I

I MOVE MISSILE I
I

I DRAW MISSILE AT NEW POSITION 1
I

I DO NEXT MISSILE I
~
2

ADVANCED ARCADE TECHNIQUES 9

2
UPDATE I

YES I ARE WE ON THE 2ND OR 3RD CYCLE OF A 4 CYCLE LOOP?
I

I SELECT TANK TO DO THE CYCLE

liS TANK DEAD?
YES

tNO

I ARE WE IN TURRET MODE? ~
.NO

NO BUTTON PRESSED? I
YE~

DOTURRET t
~ HAS BUTTON BEEN RELEASED?J

pES

I INITIALIZE NEW SHOT

I
I SET TURET FLAG TURRETF=1 J

I
L CALCULATE NEW TURRET DIRECTION

DOTANK
READ STICK J l RESTORE CURRENT TANK VARIABLES J

I NO I TANK CAN ROTATE EVERY 16TH CYCLE

pES

I CALCULATE NEW TANK & TURRET DIRECTION I
MID
I READ JOYSTICK J
I CALCULATE NEW TANK X & Y J

I
~ NEW POSITION LEGAL? I

pES

I UPDATE TANK VARIABLES I
I

I DRAW TANK BODY I
DRTURRETl

L-.-j DRAW TANK TURRET I
~

I SOUND
~

I UPDATE GAME TIMER I
I END GAME? ~

tYES

I VBFLAG=Q I
I XITVBK J

419

420

9 ADVANCED ARCADE TECHNIQUES

00010 * TANK BATTLE - COPYRIGHT 1984 BY DAN PINAL
00030 * TANK GAME - MASTER FILE
00040 * THIS I S D:TANKMAST. SRC
00050 *
00060 . OR $4000
00070 * .TF "D:TANK.OBJ"
00080 *
00090 .IN "D:EQUATES"
00010 ;
00020 ; EQUATE FILE
00030 ; O.S. EQUATES

0012: 00070 RTCLOK .EQ $12
0014: 00080 RTCLOC .EQ RTCLOK+2
004D: 00090 ATRACT . EQ $4D
0200: 00100 VDSLST .EQ $200 DLI VECTOR
0224: 00110 VVBLKD .EQ $224
022F: 00120 SDMCTL .EQ $22F SHADOW DMACTL
0230: 00130 SDLSTL .EQ $230 SHADOW DISPLAY LIST POINTER
0231: 00140 SDLSTH .EQ $231 SHADOW DLIST HI
026F: 00150 GPRIOR .EQ $26F SHADOW PRIORITY REG.
0278: 00240 STICKO .EQ $278
0284: 00360 STRIGO .EQ $284
02CO: 00400 PCOLRO .EQ $2CO
02Cl: 00410 PCOLRl .EQ $2Cl
02C2: 00420 PCOLR2 .EQ $2C2
02C3: 00430 PCOLR3 .EQ $2C3
02C4: 00440 COLORO .EQ $2C4
02C5: 00450 COLORl .EQ $2C5
02C6: 00460 COLOR2 .EQ $2C6
02C7: 00470 COLOR3 .EQ $2C7
02C8: 00480 COLOR4 .EQ $2C8
02F4: 00490 CHBAS .EQ $2F4 SHADOW CHR BAS
DOOO: 00750 HPOSPO .EQ $DOOO
DOOO: 00760 MOPF .EQ $DOOO
D001: 00770 HPOSPl .EQ $DOOl
0002: 00790 HPOSP2 .EQ $D002
D004: 00830 HPOSMO .EQ $D004
0004: 00840 POPF .EQ $D004
D005: 00850 HPOSMl .EQ $D005
D008: 00920 MOPL . EQ $D008
DOOE: 01040 P2PL .EQ $DOOE
0014: 01150 COLPM2 .EQ $D014
D01D: 01240 GRACTL .EQ $oolD
DOlE: 01250 HITCLR .EQ $D01E
D01F: 01260 CON SOL .EQ $D01F
D200: 01280 AUDFl .EQ $D200
D201: 01290 AUDCl .EQ $D201
D202: 01300 AUDF2 .EQ $D202
D203: 01310 AUDC2 .EQ $D203
D204: 01320 AUDF3 .EQ $D204
D205: 01330 AUDC3 .EQ $D205
D206: 01340 AUDF4 .EQ $D206
D207: 01350 AUDC4 .EQ $D207
D208: 01360 AUDCTL .EQ $D208
D209: 01370 STIMER .EQ $D209 (W) START TIMER (RESET AUD-FREQ DIVIDERS-

01380 ; -TO AUDF VALUES)
D20A: 01390 RANDOM .EQ $D20A
D20F: 01410 SKCTL .EQ $D20F
D407: 01490 PMBASE .EQ $D407
D409: 01500 CHBASE .EQ $D409
D40A: 01510 WSYNC .EQ $D40A
D40E: 01530 NMIEN .EQ $D40E FOR DLI

E45C:
E462:

ADVANCED ARCADE TECHNIQUES 9

015S0 SETVBV .EQ $E4SC
01600 XITVBV .EQ $E462
00100 .IN "D:TANK.EQU"
00010 * GAME EQUATES
00020 * THIS IS TANK.EQU

OOFO:
OOFl:
00F2:
ooF4:
00F6:
ooF7:
OOFS:
ooF9:
OOFA:
OOFB:
OOFC:

6000:
6000:
6300:
6400:
6500:
6600:
6700:
7000:
7190:
7190:
71A4:
71BS:
71CC:
EOOO:

00030 ;
00040 ;
00050 CHRLO
00060 CHRHI
00070 DATAPI
OOOSO DATAP2
00090 POTMPO
00100 POTMPI
00110 POTMP2
00120 POTMP3
00130 POTMP4
00140 POTMPS
00150 POTMP6
00160 ;
00170 ;
oolS0 PDATA
00190 CHRSET
00200 MISSILES
00210 PLAYERO
00220 PLAYERI
00230 PLAYER2
00240 PLAYER3
00250 SCREEN
00260 WINDOW
00270 LINEI
OO2S0 LINE2
00290 LINE3
00300 LINE4
00310 ATARI
00320 ;

.EQ $FO

.EQ $Fl

.EQ $F2

.EQ $F4

.EQ $F6

.EQ $F7

.EQ $FS

.EQ $F9

.EQ $FA

.EQ $FB

.EQ $FC

.EQ $6000

.EQ PDATA

.EQ PDATA+$300

.EQ MISSILES+$100

.EQ PLAYERGt$lOO

.EQ PLAYERl+$lOO

.EQ PLAYER2+$100

.EQ $7000

.EQ SCREEN+400

.EQ WINDOW

.EQ LINEl+20

.EQ LINE2+20

.EQ LINE3+20

.EQ $EOOO INTERNAL CHARACTER SET

00110 .IN "D:TANK.SRC"
00010 j THIS IS D:TANK.SRC
00020 * SET UP SCREEN & PMG
00030 TITLE
00040 j SET UP COLORS

4000: A2 09 00050 LDX #$09
00060 .0

4002: BD 6C 4A 00070
4005: 9D CO 02 00080
4008: CA 00090
4009: 10 F7 00100
400B: A9 07 00110
400D: SD 30 02 00120
4010: A9 4B 00130
4012: 8D 31 02 00140
4015: A2 00 00150
4017: AO 02 00160

4019: AS 14

401B:
401D:
401F:
4020:
4022:
4023:

C5 14
FO FC
CA
DO F7
88
DO F4

00170 .1
00180
00190 .2
00200
00210
00220
00230
00240
00250
00260 SETUP

LDA COLORS,X
STA PCOLRO,X
DEX
BPL .0
LDA #TDLIST
STA SDLSTL
LDA /TDLIST
STA SDLSTH
LDX #$00
LDY #$02

LDA RTCLOC

CMF RTCLOC
BEQ .2
DEX
BNE .1
DEY
BNE .1

; PUT UP TITLE

421

9 ADVANCED ARCADE TECHNIQUES

4025: A9 00 00270 LDA #$00
4027: 8D 08 D2 00280 STA AUDCTL INSURE CLEAN SOUND
402A: A9 03 00290 LDA #$03
402C: 8D OF D2 00300 STA SKCTL CLEAR ANY GARBAGE SOUND
402F: A9 3E 00310 LDA #$3E SINGLE LINE RES. PLAYERS
4031 : 8D 2F 02 00320 STA SDMCTL
4034: A9 03 00330 LDA #$03
4036: 8D ID DO 00340 STA GRACTL
4039: A9 60 00350 LDA /PDATA
403B: 8D 07 D4 00360 STA PMBASE
403E: A9 11 00370 LDA #$11 MISSILE COLOR=COLPF3,PLAYER PRIORITY
4040: 8D 6F 02 00380 STA GPRIOR
4043: A9 2A 00390 LDA #NDLIST
4045: 8D 30 02 00400 STA SDLSTL
4048: A9 4A 00410 LDA /NDLIST
404A: 8D 31 02 00420 STA SDLSTH
404D: A9 00 00430 LDA #$00
404F: 8D 69 4B 00440 STA GAME GAME IN PROGRESS FLAG
4052: 8D 6A 4B 00450 STA ENABLE PAUSE FLAG FOR OUR VERTICAL BLANK
4055: A9 07 00460 LDA #$07 DEFFERED VBI
4057: A2 40 00470 LDX /VBI
4059: AO BA 00480 LDY #VBI
405B: 20 5C E4 00490 JSR SETVBV INIT OUR VERTICAL BLANK.

00500 SET CHR BASE \ IT WILL INIT DLI
405E: A2 00 00510 LDX #$00

00520 .2
4060: BD FA 46 00530 LDA NEWSET,X
4063: 9D 00 60 00540 STA CHRSET,X
4066: CA 00550 DEX
4067: DO F7 00560 BNE .2
4069: 20 B7 45 00570 JSR DOSCREEN
406C: A9 60 00580 LDA /CHRSET
406E: 8D F4 02 00590 STA CHBAS

00600 START
4071: A9 00 00610 LDA #$00
4073: 8D 6A 4B 00620 STA ENABLE
4076: 8D 69 4B 00630 STA GAME
4079: A9 06 00640 LDA #$06
407B: CD IF DO 00650 CMF CONSOL START PRESSED?
407E: DO Fl 00660 BNE START
4080: A9 07 00670 LDA #$07

00680 .1
4082: CD IF DO 00690 CMF CON SOL RELEASED?
4085: DO FB 00700 BNE .1
4087: 20 36 45 00710 JSR RESTART WAIT TILL START BUTTON RELEASED

00720 FOREVER
408A: AD 69 4B 00730 LDA GAME
408D: FO OC 00740 BEQ ENDGAME
408F: AD IF DO 00750 LDA CONSOL
4092: C9 06 00760 CMP #$06
4094: FO DB 00770 BEQ START
4096: DO F2 00780 BNE FOREVER
4098: 4C 8A 40 00790 JMP FOREVER

00800 ;
00810 ENDGAME

409B: A9 00 00820 LDA #$00
409D: A2 08 00830 LDX #$08

00840 .1
409F: 9D 00 D2 00850 STA AUDF1,X TURN OFF ANY SOUNDS
40A2: CA 00860 DEX
40A3: 10 FA 00870 BPL .1
40A5: A2 13 00880 LDX #$13

422

40A7:
40AA:
40AD:
40AE:
40BO:

40B2 :
40B5:
40B7:

00890 .2
BD C9 4A 00900
9D B8 71 00910
CA 00920
10 F7 00930
A9 06 00940

00950 .3
CD IF DO 00960
DO FB 00970
4C 71 40 00980

00120
00010 ;

ADVANCED ARCADE TECHNIQUES 9

LDA EMSG,X
STA LINE3,X
DEX
BPL .2
LDA #$06

MOVE GAME OVER MESSAGE TO SCREEN

CMP CONSOL ; START PRESSED?
BNE .3 ; WAIT TILL IT IS
JMP START
.IN "D:TANKVBLSRC"

00020 * THIS IS D:TANKVBI.SRC
00030 VBI

40BA: D8 00040

40BB:
40BD:
40CO:
40C2:
40C5:
40C7:
40CA:
40CD:
40CF:

00050
A9 2B 00060
8D 00 02 00070
A9 45 00080
8D 01 02 00090
A9 CO 00100
8D OE D4 00110
AD 6A 4B 00120
DO 03 00130
4C 28 45 00140

CLD ; PRECAUTION
SET UP DLI VECTOR & ENABLE

LDA #DLI
STA VDSLST
LDA / DLI
STA VDSLST+1
LDA #$CO
STA NMIEN
LDA ENABLE
BNE PLAY
JMP XVBI

GAME/PAUSE FLAG
IF ON THEN OK
ELSE GO TO EXIT

00150 PLAY
40D2: A9 70
40D4: 85 4D
40D6: A2 01

00160
00170
00180
00190 .1

40D8:
40DB:
40DD:

BD 8E 4B 00200
FO 03 00210
DE 8E 4B 00220

40EO: CA
40E1: 10 F5

00230 .2
00240
00250
00260 HITCK

LDA #$70
STA ATRACT
LDX #$01

LOA IMMUNE,X
BEQ .2
DEC IMMUNE,X

DEX
BPL . 1

DEFEAT ATTRACT MODE

COUNTDOWN IMMUNITY TIMER IF ON

00270 * COLLISION CHECK
40E3: A2 01 00280 LDX #$01

40E5:
40E8:
40EB:

40ED:
40FO:
40F3:
40F6:
40F9:
40FB:
40FE:
40FF:
4102:
4104:
4105:
4106:
4107:
4109:
41OC:
410D:
4110:
4112:

00290 .1
8E 66 4B 00300
BD 00 DO 00310
FO 4D 00320

00330
BC 87 4B 00340
B9 00 63 00350
3D 7B 4A 00360
99 00 63 00370
A9 00 00380
9D 89 4B 00390
38 00400
BD 87 4B 00410
E9 20 00420
4A 00430
4A 00440
4A 00450
A2 14 00460
20 CC 46 00470
18 00480
AD 59 4B 00490
69 00 00500
85 F7 00510

STX SAVEX
LOA MOPF,X
BEQ .3

GET POSITION

MISSILE HIT WALL?
SKIP IF NO COLLISION

LOY SHOTV,X ; GET SHOT VERTICAL POS.
LOA MISSILES,Y ;GET MISSILE DATA FROM SCREEN
AND SHTMSK,X ; MASK MISSILE OFF
STA MISSILES,Y ; ERASE SHOT
LDA #$00
STA SHOTF,X
SEC
LDA SHOTV,X
SBC #$20
LSR
LSR
LSR
LDX #$14
JSR MULTIPLY
CLC
LDA RESULT
ADC #SCREEN
STA POTMP1

-TOP
/2
/4
/8
20 CHRS PER ROW

; GET OFSET FROM TOP OF SCREEN
ADD TO SCREEN TO GET ADDRESS OF SCREEN ROW

423

9 ADVANCED ARCADE TECHNIQUES

4114: AD 5A 4B 00520 LDA RESULT+1
4117 : 69 70 00530 ADC /SCREEN
4119: 85 F8 00540 STA POTMP2
411B: AE 66 4B 00550 LDX SAVEX GET BACK LOOP COUNTER
411E: 38 00560 SEC
411F: BD 85 4B 00570 LDA SHOTH,X
4122: E9 30 00580 SBC #$30 - LEFT EDGE OFFSET
4124: 4A 00590 LSR /2
4125: 4A 00600 LSR /4
4126: 4A 00610 LSR /8 COLOR COLOR CLOCKS FOR CHR POS.
4127: A8 00620 TAY
4128: B1 F7 00630 LDA (POTMP1), Y
412A: 29 3F 00640 AND #$3F MASK OFF COLOR
412C: C9 07 00650 CMF #$07 BORDER?
412E: 90 OA 00660 BCC .3 NO EFFECT
4130: AA 00670 TAX
4131 : CA 00680 DEX ASSUME A FRACTURE
4132: 4A 00690 LSR EVEN OR ODD?
4133: BO 02 00700 BCS .2 OK
4135: A2 00 00710 LDX #$00 IF ALREADY FRACTURED THEN ERASE

00720 .2
4137: 8A 00730 TXA
4138: 91 F7 00740 STA (POTMP1),Y

00750 . 3
413A: AE 66 4B 00760 LDX SAVEX
413D: CA 00770 DEX
413E: 10 A5 00780 BPL .1

00790 CHECK IF TANK SHOT
4140: A2 01 00800 LDX #$01 ; TANK #
4142: AO 02 00810 LDY #$02 ; TANK # TIMES 2 TO INDEX A TABLE OF 2
4144: 8C 67 4B 00820 STY SAVEY BYTE ADDRESSES

00830 .4
4147: BD 8B 4B 00840 LDA CYCLES,X ; TANK ALREADY HIT?
414A: ID 8E 4B 00850 ORA IMMUNE,X ; OR HAVE TEMPORARY IMMUNITY?
414D: FO 03 00860 BEQ .42
414F: 4C D7 41 00870 JMP .7 DON'T BOTHER

00880 .42
4152: BC 7F 4A 00890 LDY WHO,X GET OPPONENTS TANK #
4155: B9 08 DO 00900 LDA MOPL,Y ; SHOT?
4158: 3D 7D 4A 00910 AND HITMASK,X ; MASK OFF SHOOTING SELF
415B: DO 11 00920 BNE .41
415D: B9 8B 4B 00930 LDA CYCLES ,Y ; OTHER PLAYER BLOWING UP
4160: FO 04 00940 BEQ .40 NO.
4162: C9 FF 00950 CMF #$FF ; FIRST CYCLE?
4164: DO 71 00960 BNE .7 ; NOT FIRST CYCLE, IGNORE DEBRIS COLLISION

00970 .40
4166: BD OE DO 00980 LDA P2PL,X ; CRASHED?
4169: 39 7D 4A 00990 AND HITMASK,Y ; MASK OFF SHOOTING SELF
416C: FO 69 01000 BEQ .7 ; NO HIT

01010 FIND UP ZAP ARRAY AND DOWN ZAP ARRAY
01015 ; AND FILL WITH CURRENT VERTICAL POSITION
01020 .41

416E: F8 01030 SED
416F: 18 01040 CLC
4170: B9 93 4B 01050 LDA SCORE,Y UPDATE SCORE IN DECIMAL
4173: 69 01 01060 ADC #$01
4175: 99 93 4B 01070 STA SCORE ,Y
4178: D8 01080 CLD

01090 THIS SECTION INTIALIZES THE TABLES FOR DZAP AND UZAP
01095 TO THE TANK'S CURRENT VERTICAL POSITION

4179: AC 67 4B 01100 LDY SAVEY
417C: B9 A5 4A 01110 LDA UZTAB,Y

424

417F:
4181:
4184:
4186:
4189:
418B:
418E:
4190:
4192:

85 F7 01120
B9 A6 4A 01130
85 F8 01140
B9 A9 4A 01150
85 F9 01160
B9 AA 4A 01170
85 FA 01180
AO 08 01190
BD 6D 4B 01200

ADVANCED ARCADE TECHNIQUES 9

STA POTMP1
LDA UZTAB+1, Y
STA POTMP2
LDA DZTAB,Y
STA POTMP3
LDA DZTAB+1, Y
STA POTMP4
LDY #$08
LDA PLAYERV,X TANK VERTICAL POS.

4195: 91 F7
4197: 91 F9
4199: 88
419A: DO F9

01210 .5
01220
01230
01240
01250

STA (POTMP1),Y
STA (POTMP3), Y
DEY
BNE .5

UZAP TABLE
DZAP TABLE

419C:
419F:
41A1:
41A4:
41A7:
41AA:
41AD:
41AE:
41BO:

41B3:
41B6:
41B8:
41BA:
41BD:
41BF:
41C2:
41C4:
41C6:

41C8:
41CA:
41CC:
41CD:
41CF:
41D2:
41D4:

41D7:
41DA:
41DD:
41DE:
41EO:

41E3:

41E6:
41E8:
41EB:
41ED:

41FO:
41F3:
41F5:

41F8:

01260
BC 7F 4A 01270
A9 00 01280
99 89 4B 01290
99 85 4B 01300
99 04 DO 01310
B9 87 4B 01320
A8 01330
A9 00 01340
99 00 63 01350

01360
BD 6D 4B 01370
85 F7 01380
85 F9 01390
BD 75 4A 01400
85 F8 01410
BD 77 4A 01420
85 FA 01430
A9 00 01440
AO OF 01450

01460 .6
91 F7 01470
91 F9 01480
88 01490
10 F9 01500
AC 67 4B 01510
A9 FF 01520
9D 8B 4B 01530

01540 .7
CE 67 4B 01550
CE 67 4B 01560
CA 01570
30 03 01580
4C 47 41 01590

IF 1ST PLAYER HIT ERASE 2ND PLAYERS SHOT & VICE VERSA
LDY WHO,X
LDA #$00
STA SHOTF,Y
STA SHOTH,Y
STA HPOSMO,Y
LDA SHOTV,Y
TAY
LDA #$00
STA MISSILES,Y

ERASE HIT TANK
LDA PLAYERV,X
STA POTMP1
STA POTMP3
LDA PLAYTAB,X
STA POTMP2
LDA PLAYTAB2,X
STA POTMP4
LDA #$00
LDY #$OF

STA (POTMP1), Y
STA (POTMP3), Y
DEY
BPL .6
LDY SAVEY
LDA #$FF
STA CYCLES,X

DEC SAVEY
DEC SAVEY
DEX
BMI XHITCK
JMP .4 ; BRANCH OUT OF RANGE, JUMP USED

01600 XHITCK
8D IE DO 01610 STA HITCLR ; CLEAR COLLISIONS

01620 * UPDATE ANY TANK EXPLOSION
01630 EXPLODE

AO 02 01640
8C 67 4B 01650
A2 01 01660
8E 66 4B 01670

01680 .1
BD 8B 4B 01690
DO 03 01700
4C 79 42 01710

01720 .10
DE 8B 4B 01730

LDY #$02
STY SAVEY
LDX #$01
STX SAVEX

LDA CYCLES,X
BNE .10
JMP .5

DEC CYCLES,X

BRANCH OUT OF RANGE, JUMP USED

425

426

9 ADVANCED ARCADE TECHNIQUES

41FB:
41FD:
4200:
4203:
4206:
4209:
420B:
420E:

4210:
4213:

4216:
4219:
421B:
421E:
4220:
4223:
4225:
4228:

422A:
422C:
422E:
4231:
4233:
4235:

4238:
423B:
423D:
423E:
4240:
4242:
4245:
4247:
4248:
424A:
424C:
424F:
4250:
4252:
4255:
4257:
4259:
425B:
425C:
425E:

4260:
4263:
4264:
4266:
4269:
426B:
426D:
426F:
4270:
4272:

DO 13 01740
BD B1 4A 01750
9D 6B 4B 01760
BD B3 4A 01770
9D 6D 4B 01780
A9 FF 01790
9D 8E 4B 01800
DO 69 01810

BNE .11 ; IF NOT LAST TIME THROUGH EXPLOSION CYCLE
LDA STARTH,X ; RESET TANK POS.
STA PLAYERH,X
LDA STARTV,X
STA PLAYERV,X
LDA #$FF SET IMMUNITY TIMER TO APROX. 4 SEC.

01820 .11

STA IMMUNE,X
BNE .5 ALWAYS.

AD OA D2 01830 LDA RANDOM ; PICK A RANDOM COLOR
9D 14 DO 01840 STA COLPM2,X ; USE TO FLASH TANK COLOR (EXPLOSION COLOR)

01850 * GET ADDRESSES OF UZAP AND DZAP TABLES AND PLACE ON PAGE
B9 A5 4A 01860 LDA UZTAB,Y 0 FOR ACCESS
85 F7 01870 STA POTMP1
B9 A6 4A 01880 LDA UZTAB+1,Y
85 F8 01890 STA POTMP2
B9 A9 4A 01900 LDA DZTAB,Y
85 F9 01910 STA POTMP3
B9 AA 4A 01920 LDA DZTAB+1,Y
85 FA 01930 STA POTMP4

01940 * POTMP1&2 HAVE ADDRESS OF UZAP ARRAY,POTMP3&4 HAVE ADDRESS
01950 * SET POTMP5&6 TO ADDRESS OF PLAYER OF DZAP ARRAY.

A9 00 01960 LDA #$00
85 FB 01970 STA POTMP5
BD 75 4A 01980 LDA PLAYTAB,X
85 FC 01990 STA POTMP6
A9 08 02000 LDA #$08
8D 8D 4B 02010 STA INDEX

02020 .2
AC 8D 4B 02030
B1 F7 02040
A8 02050
A9 00 02060
91 FB 02070
AC 8D 4B 02080
Bl F9 02090
A8 02100
A9 00 02110
91 FB 02120
AC 8D 4B 02130
38 02140
Bl F7 02150
ED 8D 4B 02160
C9 20 02170
90 07 02180
91 F7 02190
A8 02200
A9 FF 02210
91 FB 02220

02230 .3

LDY INDEX
LDA (POTMP1),Y
TAY
LDA #$00
STA (POTMP5) , Y
LDY INDEX
LDA (POTMP3), Y
TAY
LDA #$00
STA (POTMP5),Y
LDY INDEX
SEC
LDA (POTMP1),Y
SBC INDEX
CMF #$20
BCC .3
STA (POTMP1),Y
TAY
LDA #$FF
STA (POTMP5),Y

GET VERTICAL POS. OF OLD LINE IN UZAP
USE TO INDEX INTO PLAYER RAM

ERASE OLD LINE

GET VERTICAL POS. OF OLD LINE IN DZAP
FIND OLD BYTE IN PLAYER RAM

ERASE OLD LINE

GET V.POS. OF ELEMENT IN UZAP
CALCULATE NEW POS.
TOO HIGH?

SAVE BACK IN UZAP ARRAY
USE TO INDEX INTO PLAYER RAM
VALUE OF A LINE
PUT NEW LINE ON

02240 * DOWN WORKS THE SAME AS UP EXCEPT THAT THE INDEX IS ADDED TO THE
02245 * ARRAY INSTEAD OF SUBTRACTED

AC 8D 4B 02250 LDY INDEX
18 02260 CLC
Bl F9 02270 LDA (POTMP3),Y
6D 8D 4B 02280 ADC INDEX
C9 CO 02290 CMP #$CO TOO LOW?
BO 07 02300 BCS .4
91 F9 02310 STA (POTMP3),Y
A8 02320 TAY
A9 FF 02330 LDA #$FF
91 FB 02340 STA (POTMP5),Y DRAW NEW LINE

ADVANCED ARCADE TECHNIQUES 9

02350 .4
4274: CE 8D 4B 02360
4277: DO BF 02370

02380 .5

DEC INDEX
BNE .2

4279: AC 67 4B 02390 LDY SAVEY
427C: 88 02400 DEY
427D: 88 02410 DEY
427E: CA 02420 DEX
427F: 30 03 02430 BMI MOVSHELL
4281: 4C FO 41 02440 JMP .1

02450 * MOVE MISSILES
02460 MOVSHELL

4284: A2 01 02470 LDX #$01
02480 .1

4286: BD 89 4B 02490 LDA SHOTF,X
4289: FO 30 02500 BEQ .3
428B: BC 87 4B 02510 LDY SHOTV,X
428E: B9 00 63 02520 LDA MISSILES,Y
4291: 3D 7B 4A 02530 AND SHTMSK,X
4294: 9900 63 02540 STA MISSILES,Y
4297: BC 83 4B 02550 LDY SHOTD,X
429A: 18 02560 CLC

BRANCH OUT OF RANGE, JMP USED

SHOT IN PROGRESS?
NO UPDATE

GET OLD MISSILE BYTE
MASK OFF SHOT KEEP ANY OTHER SHOT IN
SAVE IT BACK
GET SHOT DIRECTION

429B: BD 85 4B 02570 LDA SHOTH,X GET SHOT HORIZ. POS.
429E: 79 5C 4A 02580 ADC HOFFS,Y ; CALCULATE NEW HORZ. POS.

02590 * THE LINES HERE THAT ARE REMed OUT ARE NOT NEEDED AS LONG
02595 * AS THERE IS A SCREEN BORDER FOR THE SHOT TO HIT
02600 ******* CMP #$30 LEFT EDGE
02610 ******* BCC.2
02620 ******* CMP #$C8
02630 ******** BCS .2

42Al: 9D 85 4B 02640 STA SHOTH,X
42A4: 9D 04 DO 02650 STA HPOSMO,X
42A7: 18 02660 CLC
42A8: BD 87 4B 02670 LDA SHOTV,X
42AB: 79 64 4A 02680 ADC VOFFS,Y

02690 ******** CMP #$20
02700 ******** BCC .2
02710 ******** CMP #$BO
02720 ******** BCS .2

42AE: 9D 87 4B 02730 STA SHOTV,X
42Bl: A8 02740 TAY
42B2: BD 79 4A 02750 LDA SHELLS,X
42B5: 19 00 63 02760 ORA MISSILES,Y
42B8: 99 00 63 02770 STA MISSILES,Y

02780 ******* BNE.3
02790 .2
02800 ******** LDA #$00
02810 ******** STA HPOSMO,X
02820 ******** STA SHOTF,X

42BB: CA
42BC: 10 C8

02830 .3
02840
02850
02860 *
02870 *
02880 *
02890 UPDATE

42BE: A5 14 02900
42CO: 29 02 02910
42C2: FO 03 02920
42C4: 4C 55 44 02930

42C7: A5 14
02940 .1
02950

DEX
BPL .1

LDA RTCLOC
AND #$02
BEQ .1
JMP XTANK

LDA RTCLOC

RIGHT EDGE

SAVE NEW SHOT HORIZ. POS.
TELL ANTIC NEW H. POS.

CALCULATE NEW VERT. POS.

SAVE IT BACK
USE TO INDEX INTO MISSILE RAM
DATA FOR SHOT IMAGE
MERGE WITH ANY OTHER MISSILE DATA
PUT ON SCREEN
ALWAYS

427

428

9 ADVANCED ARCADE TECHNIQUES

42C9:
42CB:
42CE:
42CF:
42D2:
42D4:

42D7:
42DA:
42DC:
42DF:
42E1:

42E4:
42E7:

42E9:
42EB:
42EE:
42F1 :
42F3:
42F6:
42F9:

42FB:
42FE:
4300:
4301 :

4303:
4304:
4306:
4309:
430C:
430D:
4310:
4312:
4315:
4316:
4319:
431C:
431F:

4322:
4324:
4327:

432A:
432C:
432F:
4331:
4333:
4335:
4336:
4339:
433C:
433F:
4341:
4344:
4347:
434A:

29 01 02960
8D 68 4B 02970
AA 02980
BD 8B 4B 02990
FO 03 03000
4C 55 44 03010

03020 .2

AND #$01
STA TANK
TAX
LDA CYCLES , X
BEQ .2
JMP XTANK

BD 7D 4B 03030 LDA TURRETF,X
DO 08 03040 BNE DOTURRET
BD 84 02 03050 LDA STRIGO,X
FO 03 03060 BEQ DOTURRET
4C 6E 43 03070 JMP DOTANK

03080 DOTURRET

EACH TANK IS HANDLED EVERY OTHER VBI

DEAD??

CH2CK TURRET FLAG
IF FLAG ON CONTINUE IN TURRET ROUTINE
CHECK IF BUTTON DOWN
BUTTON DOWN

BD 84 02 03090 LDA STRIGO,X IS BUTTON STILL HELD DOWN
FO 41 03100 BEQ ROTATE ; THEN KEEP ROTATING TURRET

03110 * OTHERWISE BUTTON RELEASED-SHOOT
A9 00 03120 LDA #$00
9D 7D 4B 03130 STA TURRETF,X
BD 89 4B 03140 LDA SHOTF ,X
DO 7B 03150 BNE DOTANK
BD 7F 4B 03160 LDA TURRETD,X

RETURN TO NORMAL JOYSTICK MOVEMENT
SHOT IN PROGRESS?
NO SHOT GO TO TANK MODE

9D 83 4B 03170 STA SHOTD,X ; SHOT DIRECTION=TURRET DIRECTION
C9 05 03180 CMP #$05 ; SHOT COMING OUT RIGHT SIDE OF TANK?

03190 * SET SHOT POS. TO CENTER OF TANK
BD 6B 4B 03200 LDA PLAYERH,X
BO 03 03210 BCS .1 IF SHOT OUT OF LEFT SIDE OF TANK
38 03220 SEC
E9 02 03230 SBC #$02 ; START SHOT OVER TO THE LEFT

03240 .1
18 03250 CLC
69 04 03260 ADC #$04
9D 85 4B 03270 STA SHOTH,X
9D 04 DO 03280 STA HPOSMO,X
18 03290 CLC
BD 6D 4B 03300 LDA PLAYERV,X
69 08 03310 ADC #$08
9D 87 4B 03320 STA SHOTV,X
A8 03330 TAY
BD 79 4A 03340 LDA SHELLS ,X
19 00 63 03350 ORA MISSILES,Y
99 00 63 03360 STA MISSILES,Y
9D 89 4B 03370 STA SHOTF,X SET SHOT FLAG TO NON-ZERO

03380 * SET FLAG FOR SHOT SOUND
A9 10 03390 LDA #$10
9D 81 4B 03400 STA SHOTS,X
4C 55 44 03410 JMP XTANK ; LEAVE

03420 ; DRAW TURRET POSITION THIS FRAME
03430 ROTATE

A9 01 03440
9D 7D 4B 03450
A5 14 03460
29 04 03470
DO OF 03480
18 03490
BC 78 02 03500
B9 4C 4A 03510
7D 7F 4B 03520
29 07 03530
9D 7F 4B 03540
BD 6B 4B 03550 .1
8D 73 4B 03560
BD 6D 4B 03570

LDA #$01
STA TURRETF,X
LDA RTCLOC
AND #$04
BNE .1
CLC
LDY STICKO,X
LDA DOFFS,Y
ADC TURRETD,X

; SET TURRET MODE ON
;TURN TURRET EVERY 8TH JIFFY

AND #$07 ; KEEP DIR 0-7
ST A TURRETD, X
LDA PLAYERH,X
STA NEWH ; KEEP TEMP VALUES BECAUSE WE CAN'T CHANGE REAL
LDA PLAYERV,X ; -VALUES BACK IF NEW POS. INVALID

ADVANCED ARCADE TECHNIQUES 9

434D: 8D 74 4B 03580
4350: BD 7F 4B 03590
4353: 8D 77 4B 03600
4356: BD 71 4B 03610
4359: 8D 76 4B 03620
435C: 8D 75 4B 03630
435F: OA 03640
4360: A8 03650
4361: B9 8A 49 03660
4364: 85 F7 03670
4366: B9 8B 49 03680
4369: 85 F8 03690
436B: 4C B8 43 03700

03710
03720 ;
03730 DOTANK

436E: AE 68 4B 03740
4371: BC 78 02 03750
4374: BD 6B 4B 03760
4377: 8D 73 4B 03770
437A: BD 6D 4B 03780
437D: 8D 74 4B 03790
4380: BD 7F 4B 03800
4383: 8D 77 4B 03810
4386: A5 14 03820
4388: 29 lC 03830
438A: 08 03840
438B: BD 71 4B 03850
438E: 28 03860
438F: DO 15 03870
4391: 18 03880
4392: BD 7F 4B 03890
4395: 79 4C 4A 03900
4398: 29 07 03910
439A: 8D 77 4B 03920
439D: 18 03930
439E: BD 71 4B 03940
43Al: 79 4C 4A 03950
43A4: 29 07 03960

03970 .0
43A6: 8D 76 4B 03980
43A9: 8D 75 4B 03990
43AC: OA 04000
43AD: A8 04010
43AE: B9 8A 49 04020
43Bl: 85 F7 04030
43B3: B9 8B 49 04040
43B6: 85 F8 04050
43B8: BD 78 02 04060 MID
43BB: 29 03 04070
43BD: C9 03 04080
43BF: FO 36 04090
43Cl: C9 01 04100
43C3: DO OB 04110
43C5: 18 04120
43C6: AD 76 4B 04130
43C9: 69 04 04140
43CB: 29 07 04150
43CD: 8D 75 4B 04160

04170 .1
43DO: AC 75 4B 04180
43D3: 18 04190

STA NEWV ;
LDA TURRETD,X
STA NEWTD
LDA PLAYERF,X ;GET CURRENT DIRECTION
STA NEWF ;TEMP VALUE
STA NEWD
ASL ; INDEX INTO TANK SHAPES TABLE
TAY
LDA TANKTAB,Y
STA POTMPI
LDA TANKTAB+l, Y
STA POTMPl+l WE NOW HAVE A PAGE 0 POINTER TO NEW
JMP MID \TANK IMAGE

LDX TANK ; INDEX TO WHICH TANK
LDY STICKO ,X ; READ STICK
LDA PLA YERH, X
STA NEWH ; KEEP TEMP VALUES BECAUSE WE CAN'T CHANGE-
LDA PLAYERV,X - REALVALUES BACK IF NEW POS. INVALID
STA NEWV ;
LDA TURRETD,X
STA NEWTD
LDA RTCLOC
AND #$lC ; SLOW DOWN ROTATION OF TANK
PHP ; SAVE PROCESSOR STATUS
LDA PLAYERF,X ; GET CURRENT TANK FACING
PLP ; GET BACK DELAY TIMER STATUS
BNE.O ; LEAVE IF TO SOON TO ROTATE WITH OLD FACING
CLC VALUE IN ACCUM.
LDA TURRETD,X TURRET ROTATES WITH BODY OF TANK
ADC DOFFS,Y +1,0, OR -1
AND #$07 KEEP TURRET DIRECTION 0-7
STA NEWTD
CLC

GET CURRENT DIRECTION LDA PLAYERF,X
ADC DOFFS, Y
AND #$07

ROTATE LEFT OR RIGHT DEPENDING ON STICK
KEEP DIR 0-7

STA NEWF TEMP VALUE
STA NEWD
ASL INDEX INTO TANK SHAPES TABLE
TAY
LDA TANKTAB,Y
STA POTMPI
LDA TANKTAB+l,Y
STA POTMPl+l ; WE NOW HAVE A PAGE 0 POINTER TO NEW TANK IMAGE
LDA STICKO ,X
AND #$03 ; KEEP UID BITS
CMP #$03 ; NEUTRAL
BEQ DRTANK ; DRAW TANK THEN
CMP #$01 DOWN BIT OFF?
BNE .1 NO.
CLC
LDA NEWF
ADC #$04 DIRECTION IS 180 DEG. OPPOSITE FACING
AND #$07 KEEP DIR 0-7
STA NEWD

LDY NEWD
CLC

429

9 ADVANCED ARCADE TECHNIQUES

43D4: BD 6B 4B 04200 LDA PLAYERH,X
43D7: 79 5C 4A 04210 ADC HOFFS,Y
43DA: C9 C8 04220 CMF #$C8 RIGHT EDGE
43DC: BO 71 04230 BCS XTANK
43DE: C9 30 04240 CMF #$30 LEFT EDGE
43EO: 90 73 04250 BCC XTANK
43E2: 8D 73 4B 04260 STA NEWH
43E5: 18 04270 CLC
43E6: BD 6D 4B 04280 LDA PLAYERV,X
43E9: 79 64 4A 04290 ADC VOFFS,Y
43EC: C9 BO 04300 CMF #$BO BaTTOM
43EE: BO 65 04310 BCS XTANK
43FO: C9 20 04320 CMF #$20 TOP
43F2: 90 61 04330 BCC XTANK
43F4: 8D 74 4B 04340 STA NEWV

04350 DRTANK
43F7: 20 10 46 04360 JSR LOOKAHEAD CHECK FOR LEGAL MOVE
43FA: BO 2E 04370 BCS DRTURRET POSITION NO GOOD
43FC: AE 68 4B 04380 LDX TANK
43FF: AD 71 4B 04390 LDA NEWTD
4402: 9D 7F 4B 04400 STA TURRETD,X
4405: AD 76 4B 04410 LDA NEWF
4408: 9D 71 4B 04420 STA PLAYERF,X
440B: AD 73 4B 04430 LDA NEWH
440E: 9D 6B 4B 04440 STA PLAYERH ,X
4411: 9D 00 DO 04450 STA HPOSPO,X TELL ANTIC NEW POS.
4414: AD 74 4B 04460 LDA NEWV
4417: 9D 6D 4B 04470 STA PLAYERV,X
441A: 85 F9 04480 STA ParMP3 BUILD PLAYER ADDRESS ON PAGEO
441C: BD 75 4A 04490 LDA PLAYTAB,X
441F: 85 FA 04500 STA ParMP4
4421: AO OF 04510 LDY #$OF 16 ELEMENTS

04520 .2
4423: B1 F7 04530 LDA (POTMP1),Y GET A BYTE OF TANK DATA
4425: 91 F9 04540 STA (POTMP3),Y PUT IN PLAYER RAM
4427: 88 04550 DEY
4428: 10 F9 04560 BPL .2 TILL ALL BYTES ARE MOVED

04570 ; TANK DRAWN, NOW DO TURRET
04580 DRTURRET

442A: AE 68 4B 04590 LDX TANK
442D: BD 7F 4B 04600 LDA TURRETD,X
4430: OA 04610 ASL
4431: A8 04620 TAY
4432: B9 1A 4A 04630 LDA TURTAB,Y
4435: 85 F7 04640 STA ParMP1
4437: B9 1B 4A 04650 LDA TURTA13+1,Y
443A: 85 F8 04660 STA ParMP2
443C: BD 6D 4B 04670 LDA PLAYERV,X
443F: 85 F9 04680 STA ParMP3
4441: BD 71 4A 04690 LDA PLAYTAB2,X
4444: 85 FA 04700 STA PaTMF4
4446: AO OF 04710 LDY #$OF

04720 .1
4448: B1 F7 04730 LDA (POTMP1), Y GET TURRET DATA
444A: 91 F9 04740 STA (POTMP3), Y STORE IN PLAYER RAM
444C: 88 04750 DEY
444D: 10 F9 04760 BPL .1
444F: BD 6B 4B 04710 LDA PLAYERH,X GET HORIZ. POS.
4452: 9D 02 DO 04780 STA HPOSP2,X TELL ANTIC

04790 ;
04800 XTANK
04810 ;

430

ADVANCED ARCADE TECHNIQUES 9
04820 SOUND

4455: AO 02 04830 LDY #$02
4457: A2 01 04840 LDX #$01

04850 . 1
4459: BD 81 4B 04860 LDA SHOTS,X
445C: FO OE 04870 BEQ .2
445E: DE 81 4B 04880 DEC SHOTS,X
4461: BD 81 4B 04890 LDA SHOTS,X
4464: 99 05 D2 04900 STA AUDC3,Y
4467: A9 20 04910 LDA #$20
4469: 99 04 D2 04920 STA AUDF3,Y

04930 .2
446C: 88 04940 DEY
446D: 88 04950 DEY
446E: CA 04960 DEX
446F: 10 E8 04970 BPL .1

04980 SOUND2
4471: A2 01 04990 LDX #$01
4473: AO 02 05000 LDY #$02

05010 .1
4475: BD 8B 4B 05020 LDA CYCLES,X ; TANK DYING
4478: FO 15 05030 BEQ .2 DO MOTOR SOUND IF NOT
447A: 49 FF 05040 EOR #$FF
447C: 99 00 D2 05050 STA AUDFl,Y
447F : 49 FF 05060 EOR #$FF
4481: 4A 05070 LSR
4482: 4A 05080 LSR
4483: 4A 05090 LSR
4484: 4A 05100 LSR
4485: 4A 05110 LSR
4486: 29 OF 05120 AND #$OF KEEP VOLUME IN RANGE
4488: 09 20 05130 ORA #$20 SET DISTORTION
448A: 99 01 D2 05140 STA AUDCl,Y
448D: DO lA 05150 BNE .3 ALWAYS. SKIP MOTOR SOUND

05160 .2
448F: A5 21 05170 LDA $21 SET DISTORTION, LOW VOLUME
4491: 99 01 D2 05180 STA AUDCl,Y
4494: BD AD 4A 05190 LDA IDLE,X ASSUME IDLE TONE
4497: 99 00 D2 05200 STA AUDFl, Y
449A: BD 78 02 05210 LDA STICKO,X
449D: 29 03 05220 AND #$03 KEEP UP/DOWN BITS
449F: C9 03 05230 CMP #$03 MOVING?
44Al : FO 06 05240 BEQ .3 NO
44A3: BD AF 4A 05250 LDA VROOM,X ENCREASE PITCH
44A6: 99 00 D2 05260 STA AUDFl,Y

05270 .3
44A9: 88 05280 DEY
44AA: 88 05290 DEY
44AB: CA 05300 DEX
44AC: 10 C7 05310 BPL .1

05320 ;
05330 COUNTDOWN

44AE: F8 05340 SED
44AF: AD 91 4B 05350 LDA NINUTES
44B2: OD 92 4B 05360 ORA SECONDS
44B5: FO 50 05370 BEQ XCOUNT LEAVE IF' 0
44B7: CE 90 4B 05380 DEC TIMER
44BA: DO 4B 05390 BNE XCOUNT
44BC: A9 3C 05400 LDA #60
44BE: 8D 90 4B 05410 STA TINER 60 VBLANKS PER SEC.
44Cl: 38 05420 SEC
44C2: AD 92 4B 05430 LDA SECONDS

431

9 ADVANCED ARCADE TECHNIQUES

44C5: E9 01 05440 SBC #$01
44C7: 80 92 4B 05450 STA SECONOS
44CA: 00 1D 05460 BNE . 2
44CC: A9 59 05470 LOA #$59
44CE: 80 92 4B 05480 STA SECONDS RESET # Or SECONDS TO 59 DEC.
44Dl: AD 91 4B 05490 LDA MINUTES CHECK Ir MINUTES ALREADY AT 0
4404: DO OA 05500 BNE .1 OK
44D6: A9 00 05510 LDA #$00
44D8: 8D 69 4B 05520 STA GAHE rLAG GAHE NOT IN PROGRESS
440B: 3D 6A 4B 05530 STA ENABLE SET VBl FLAG TO SKIP GAME ROUTINES
44DE: FO 09 05540 BEQ .2 ALI.JAYS

05550 .1
44EO: 38 05560 SEC
44E1: AD 91 4B 05570 LDA MINUTES
44E4: E9 01 05580 SBC #$01
44E6: 8D 91 4B 05590 STA MINUTES

05600 . 2
44E9: AD 91 4B 05610 LOA MINUTES
44EC: 09 10 05620 ORA #$10 TURN OECIMAL # INTO A CHARACTER
44EE: 8D CO 71 05630 STA LINE3+8
44Fl: AD 92 4B 05640 LOA SECONDS
44F4: 4A 05650 LSR GET 10' 5
44F5: 4A 05660 LSR
44F6: 4A 05670 LSR
44F7: 4A 05680 LSR
44F8: 09 10 05690 ORA #$ 10 MAKE A CHR
44FA: 8D C2 71 05700 STA LINE3+10
44FD: AD 92 4B 05710 LOA SECONDS
4500: 29 OF 05720 AND #$OF GET 1 ' s
4502: 09 10 05730 ORA #$ 10
4504: 8D C3 71 05740 STA LINE3+11

05750 XCOUNT
4507: 08 05760 CLD
4508: A2 01 05770 LOX #$01

05780 .1
450A: BC 05 4B 05790 LOY SCPOS,X
450D: BD 93 4B 05800 LOA SCORE,X PRINT SCORE ON SCREEN
4510: 4A 05810 LSR
4511: 4A 05820 LSR
4512: 4A 05830 LSR
4513: 4A 05840 LSR
4514: ID 57 4B 05850 ORA CSHIIT ,X MAKE CHR+COLOR#
4517: 99 A4 71 05860 STA LINE2,Y
451A: BD 93 4B 05870 LDA SCORE,X
4510: 29 OF 05880 ANO #$OF
451F: ID 57 4B 05890 ORA CSHIIT,X
4522: 99 AS 71 05900 STA LINE2+1,Y
4525: CA 05910 DEX
4526: 10 E2 05920 BPL .1

05930 ;
05940 XVBI

4528: 4C 62 E4 05950 JNP XITVBV
05960 ;
00130 .IN "D:TANKSUBS.SRC"
00010 * MISC TANK SUBROUTINES
00020 * THIS IS D:TANKSUBS.SRC
00030 ;
00040 OLl

452B: 48 00050 PHA
452C: A9 EO 00060 LDA /ATARI
452E: 8D OA D4 00070 STA \.JSYNC
4531: 8D 09 04 00080 STA CHBASE

432

ADVANCED ARCADE TECHNIQUES 9

4534: 68 00090 PLA
4535: 40 00100 RTI

00110 ;
00120 RESTA RT

4536: 20 B7 45 00130 J SR DOSCREEN RESTORE SCREEN MAZE
00140 *
00150 * CLEAR GAME VARIABLES

4539: A9 00 00160 LDA hOO
453B: AA 00170 TAX

00180 .0
453C: 9D 59 4B 00190 STA FIRSTVAR, X
453F: E8 00200 INX
4540: EO 3C 00210 CPX #LASTVAR-FIRSTVAR
4542: 90 F8 00220 BCC .0
4544: FO F6 00230 BEQ .0

00240 *
00250 * REPOSITION TANKS
00260 * FIRST ERASE ANY OLD DATA

4546: A9 00 00270 LDA #$00
4548: AA 00280 TAX

00290 .1
4549: 9D 00 63 00300 STA MISSILES ,X
454C: 9D 00 64 00310 STA PLAYERO,X
454F: 9D 00 65 00320 STA PLAYER1,X
4552: 9D 00 66 00330 STA PLAYER2,X
4555: 9D 00 67 00340 STA PLAYER3,X
4558 : CA 00350 DEX
4559: DO EE 00360 BNE .1
455B: AD B3 4A 00370 LDA STARTV ; MIDSCREEN
455E: 8D 6D 4B 00380 STA PLAYERV
4561: 85 F7 00390 STA POTMP1
4563: AD B4 4A 00400 LDA STARTV+ l
4566: 8D 6E 4B 00410 STA PLAYERV+l
4569: 85 F9 00420 STA POTMP3
456B: A9 64 00430 LDA /PLAYERO
456D: 85 F8 00440 STA POTMP2
456F: A9 65 00450 LDA /PLAYER1
4571: 85 FA 00460 STA POTMP4
4573: AO OF 00470 LDY #$OF

00480 .2
4575: B9 OA 49 00490 LDA TANKO,Y
4578: 91 F7 00500 STA (POTHP1),Y
457A: 91 F9 00510 STA (POTMP3),Y
457C: 88 00520 DEY
457D: 10 F6 00530 BPL .2
457F: AD B1 4A 00540 LDA STARTH
4582: 8D 6B 4B 00550 STA PLAYERH
4585: 8D 00 DO 00560 STA HPOSPO
4588: AD B2 4A 00570 LDA STARTH+1
458B: 8D 6C 4B 00580 STA PLAYERH+1
458E: 8D 01 DO 00590 STA HPOSPI

00600 ;
00610 * SET FLAGS FOR GAME I N PROGRESS

4591: A2 13 00620 LDX #$13
00630 .3

4593 : BD B5 4A 00640 LDA SMSG ,X
4596: 9D B8 71 00650 STA LINE3,X
4599: CA 00660 DEX
459A: 10 F7 00670 BPL . 3
459C: A9 60 00680 LDA #$60
459E: 8D 90 4B 00690 STA THIER
45Al: A9 60 00700 LDA #$60 SET GAME TIME TO 3:00

4~~

9 ADVANCED ARCADE TECHNIQUES

45A3 : 8D 92 4B 00710 STA SECONDS
45A6: A9 02 00720 LDA #$02
45A8: 8D 91 4B 00730 STA l'1INUTES
45AB: A9 01 00740 LDA #$01
45AD: 8D IE DO 00750 STA J-IITCLR CLEAR ANY ERRONEOUS COLLISIONS
45BO: 8D 69 4B 00760 STA GAME
45B3: 8D 6A 4B 00770 STA ENABLE
45B6: 60 00780 RTS

00790 "
00800 DOSCREEN
00810 RESET SCREEN

45B7: A9 7A 00820 LDA #MAZE
45B9: 85 F6 00830 STA POTMPO
45BB: A9 47 00840 LDA /MAZE
45BD: 85 F7 00850 STA POTMP1
45BF: A9 00 00860 LDA #SCREEN
45C1 : 85 1'8 00870 STA POTMP2
45C3: A9 70 00880 LDA /SCREEN
45C5: 85 F9 00890 STA POTMP3
45C7: 18 00900 CLC
45C8: A9 90 00910 LDA #400 SET UP TO ~10VE 400 BYTES TO SCREEN
45CA: 69 00 00920 ADC #SCREEN
45CC: 8D 78 4B 00930 STA TEMPO
45CF: A9 01 00940 LDA /400
45Dl: 69 70 00950 ADC /SCREEN
45D3: 8D 79 4B 00960 STA TEMPI
45D6: AO 00 00970 LOY #$00

00980 .2
45D8: B1 F6 00990 LDA (POTMPO), Y TAKE A BYTE
45DA: 91 F8 01000 STA (POTMP2),Y MOVE TO SCREEN MEM
45DC: E6 F6 01010 INC POTMPO INCREMENT LOAD ADDRESS BY
45DE: DO 02 01020 BNE .3
45EO: E6 F7 01030 INC POTMP1 I NCREMENT HIBYTE IF NECC.

01040 . 3
45E2: E6 F8 01050 INC POTMP2 INCREHENT STORE ADDRESS BY ONE
45E4: DO 02 01060 BNE .4
45E6: E6 F9 01070 INC POTMP3 INCREMENT HI BYTE IF NECCESSARY

01080 .4
45E8: A5 F8 01090 LOA POTMP2
45EA: CD 78 4B 01100 CMP TEMPO IS LOW BYTE=LOWBYTE OF ENDING ADDRESS
45ED: DO E9 01110 J3NE .2 NO? KEEP MOVING THEM
45EF: A5 F9 01120 LDA POTI-1P3
45F1 : CD 79 4B 01130 CMP T~jP 1 HIBYTE=HIBYTE OF ENDING ADDRESS?
45F4: DO E2 01140 BNE .2 KEEP MOVING THEM TILL ENDING ADDRESS REACHED
451'6: A2 13 01150 LDX #$13

01160 .5
45F8: BD DD 4A 01170 LDA LUlSG,X
45FB: 9D 90 71 01180 STA LINE1,X
45FE: BD Fl 4A 01190 LDA L2MSG,X
4601: 9D A4 71 01200 STA LINE2, X
4604: A9 00 01210 LDA #$ 00
4606: 9D B8 71 01220 STA LINE3,X
4609: 9D CC 71 01230 STA LINE4,X
460C: CA 01240 DEX
460D: 10 E9 01250 J3PL .5
460F: 60 01260 RTS

01270 ;
01280 *
01290 LOOKAHEAD

4610: AD 73 4B 01300 LDA NElVH GET HORIZ. POS.
4613: 29 07 01310 AND #$07 GET # OF BITS INTO SCREEN CHR
4615: 8D 5F 413 01320 STA XOFF SAVE IT

434

ADVANCED ARCADE TECHNIQUES 9

4618: AD 74 4B 01330 LDA NEWV
461B: 29 07 01340 AND #$07 GET # OF SCAN LINES DOWN INTO SCREEN CHR
461D: 8D 60 4B 01350 STA YOFF SAVE IT
4620: 38 01360 SEC
4621: AD 73 4B 01370 LDA NEI.JH
4624: E9 30 01380 SBC #$30 -LEFT EDGE
4626: 4A 01390 LSR
4627: 4A 01400 LSR
4628: 4A 01410 LSR /8
4629: 8D 5D 4B 01420 STA CHRX
462C: 38 01430 SEC
462D: AD 74 4B 01440 LDA NEW
4630: E9 20 01450 SBC #$20 -TOP EDGE
4632: 4A 01460 LSR
4633: 4A 01470 LSR
4634: 4A 01480 LSR /8
4635: 8D 5£ 4B 01490 STA CHRY

01500 *
01510 *

4638: A2 14 01520 LDX #$14 20 BYTES/ROW
463A: 20 CC 46 01530 JSR MULTIPLY
463D: 18 01540 CLC
463E: AD 5D 4B 01550 LDA CHRX
4641: 6D 59 4B 01560 ADC RESULT
4644: 85 FO 01570 STA CHRLO
4646: A9 70 01580 LDA /SCREEN
4648: 6D 5A 4B 01590 ADC RESULT+1
464B: 85 F1 01600 STA CHRHI
464D: 20 A5 46 01610 JSR DOCPTR
4650: A9 00 01620 LDA #$00
4652: 8D 65 4B 01630 STA DPOINTER

01640 LABEL
4655: AC 60 4B 01650 LDY YOFF
4658: B1 F2 01660 LDA (DATAP1),Y
465A: 8D 63 4B 01670 STA BYTE
465D: B1 F4 01680 LDA (DATAP2),Y
465F: 8D 64 4B 01690 STA BYTE+1
4662: AC 5F 4B 01700 LDY XOFF
4665: FO 09 01710 BEQ .2

01720 .1
4667: OE 64 4B 01730 ASL BYTE+1 ;COMBINE TWO BYTES
466A: 2E 63 4B 01740 ROL BYTE
466D: 88 01750 DEY
466E: DO F7 01760 BNE .1

01770 .2
4670: AC 65 4B 01780 LDY DPOINTER
4673: B1 F7 01790 LDA (POTMP 1),Y ; GET BYTE OF TANK DATA
4675: 2D 63 4B 01820 AND BYTE ; MASK IT WITH OVERLAPPING 8 BITS OF SCREEN
4678: DO 29 01840 BNE COLLISION ;COLLISION RESULT NON ZERO

01850 * SET FOR NEXT POSITION
01860 .20

467A: EE 60 4B 01870 INC YOFF SET FOR NEXT BYTE OF CHARACTER DATA
467D: AD 60 4B 01880 LDA YOFF
4680: C9 08 01890 C~W #$08 HAVE WE DGONE THROUGH ALL 8 BYTES OF CHAR DATA
4682: DO 13 01900 BNE .4 NO.
4684: A9 00 01910 LDA #$00 SET POINTER FOR 1ST BYTE OF CHR BELOW
4686: 8D 60 4B 01920 STA YOFF
4689: 18 01930 CLC
468A: A5 FO 01940 LDA CHRLO
468C: 69 14 01950 ADC #$ 14 WIDTH
468E: 85 FO 01960 STA CHRLO
4690: 90 02 01970 BCC .3

435

436

9 ADVANCED ARCADE TECHNIQUES

4692: E6 F1 01980
01990 ,

20 A5 46 02000 .3 4694:

4697:
469A:
469D:
469F:
46A1 :
46A2:

02010 .4
EE 65 4B 02020
AD 65 4B 02030
C9 10 02040
DO B4 02050
18 02060
60 02070

02080
02090 ;
02100 COLLISION

INC CHRHI

JSR DOCPTR

INC DPOINTER
LDA DPOINTER
CMF #$10
BNE LABEL
CLC
RTS

46A3: 38
46A4: 60

02110 SEC
02120 RTS
02130
02140
02150
02160
02170
02180 ;

GO GET POINTERS TO CHRDATA FOR CHARACTERS ON
-THE NEXT LINE DOWN

SET FOR NEXT BYTE OF TANK DATA

DONE ALL 16 BYTES OF TANK DATA
GO BACK T~LL THEY ARE ALL DONE
SET FLAG FOR POSITION OK.

FLAG POS. NO GOOD

02190 * GET CHR & ADJACENT CHR

46A5: AO 01
46A7: A2 03

02200 DOCPTR
02210
02220

LDY #$01
LDX #$03

46A9:
46AB:
46AD:
46AF:
46B1 :
46B4:
46B5:
46B7:
46B8:
46BA:
46BB:
46BD:
46BE:
46CO:
46C1:
46C3:
46C5:
46C7:
46C8:
46C9:
46CB:

46CC:
46CF:
46D2:
46D4:
46D7:
46DA:

46DC:
46DF:
46E2:

02230 .1
A9 00 02240
95 F2 02250
B1 FO 02260
29 3F 02270
99 61 4B 02280
OA 02290
36 F2 02300
OA 02310
36 F2 02320
OA 02330
36 F2 02340
CA 02350
95 F2 02360
18 02370
B5 F3 02380
69 60 02390
95 F3 02400
CA 02410
88 02420
10 DE 02430
60 02440

02450

LDA #$00
STA DATAP1,X
LDA (CHRLO), Y
AND #%00111111
STA CHR1,Y
ASL
ROL DATAP1,X
ASL
ROL DATAP1,X
ASL
ROL DATAP1,X
DEX
STA DATAP1,X
CLC
LDA DATAP1+1, X
ADC /CHRSET
STA DATAP1+1,X
DEX
DEY
BPL .1
RTS

02460 3 BIT MULTIPLY

~IASK OFF COLOR BITS

02470 MULTIPLIES ACC BY X REG.
02480 ; STORES RESULT (L,H) IN RESULT & RESULT+l
02490 MULTIPLY

3D 5B 4B 02500 STA M1
8E 5C 'fB 02510 STX M2
A9 00 02520 LDA #$0
8D 59 4B 02530 STA RESULT
8D 5A 4B 02540 STA RESULT+1
A2 08 02550 LDX #$08

02560 .1
OE 59 4B 02570
2E5A 4B 02580
OE 5C 4B 02590

ASL RESULT
ROL RESULT+1
ASL M2

MULTIPLIER
MULTIPLICAND

ADVANCED ARCADE TECHNIQUES 9

46E5: 90 OF 02600 BCC .2
46E7: 18 02610 CLC
46E8: AO 59 4B 02620 LOA RESULT
46EB: 60 5B 4B 02630 ADC M1
46EE: 80 59 4B 02640 STA RESULT
46F1: 90 03 02650 BCC .2
46F3: EE 5A 4B 02660 INC RESULT+1

02670 . 2
46F6: CA 02680 OEX
46F7: 00 E3 02690 BNE .1
46F9: 60 02700 RTS

02710
00140 .IN "O:TANKOATA. SRC"
00010 * TANK OATA
00020 * THIS IS D:TANKOATA.SRC
00030 NElvSET

46FA: 00 00 00
46FO: 00 00 00
4700: 00 00 00040 .HS 0000000000000000
4702: 00 00 00
4705: IF IF 18
4708: 18 18 00050 .HS 0000001F1F181818
470A: 00 00 00
4700: F8 F8 18
4710: 18 18 00060 .HS 000000F8F8181818
4712: 18 18 18
4715: IF IF 00
4718: 00 00 00070 .HS 1818181F1FOOOOOO
471A: 18 18 18
4710: F8 F8 00
4720: 00 00 00080 .HS 181818F8F8000000
4722: 18 18 18
4725: 18 18 18
4728: 18 18 00090 .HS 1818181818181818
472A: 00 00 00
4720: FF FF 00
4730: 00 00 00100 .HS OOOOOOFFFFOOOOOO
4732: 00 00 00
4735: 00 00 00
4738: 00 00 00110 .HS 0000000000000000
473A: 00 7E 5C
4730: 2A 66 5E
4740: 6E 00 00120 .HS 007E5C2A665E6EOO
4742: 00 7E 7E
4745: 7E 7E 7E
4748: 7E 00 00130 .HS 007E7E7E7E7E7EOO
474A: 00 38 76
4740: 36 48 5E
4750: 2C 00 00140 .HS 00387636485E2COO
4752: 00 3C 7E
4755: 7E 7E 7E
4758: 3C 00 00150 .HS 003C7E7E7E7E3COO
475A: 00 34 34
4750: 34 28 2C
4760: 1C 00 00160 .HS 00343434282C1COO
4762: 00 3C 3C
4765: 3C 3C 3C
4768: 3C 00 00170 .HS 003C3C3C3C3C3COO
476A: 00 00 5E
4760: 22 5C 3E
4770: 00 00 00180 .HS 00005E225C3EOOOO
4772: 00 00 7E

437

9 ADVANCED ARCADE TECHNIQUES

4775: 7E 7E 7E
4778: 00 00 00190 .HS 00007E7E7E7EOOOO

00200 ;
00210 MAZE

477A: C1 C6 C6
477D: C6 C6 C6
4780: C6 C6 00220 .HS C1C6C6C6C6C6C6C6
4782: C6 C6 C6
4785 : C6 C6 C6
4788: C6 C6 00230 .HS C6C6C6C6C6C6C6C6
478A: C6 C6 C6
478D: C2 C5 00
4790: 00 00 00240 .HS C6C6C6C2C5000000
4792: 00 OD 00
4795: 00 00 00
4798: 00 00 00250 .HS OOODOOOOOOOOOOOO
479A: 00 00 00
479D: OD 00 00
47AO: 00 C5 00260 .HS 0000000DOOOOOOC5
47A2: C5 00 00
47A5: 00 00 OD
47A8: 00 00 00270 .liS C5000000000DOOOO
47AA: 00 00 00
47AD: 00 00 00
47BO: 00 OD 00280 .liS OOOOOOOOOOOOOOOD
47B2: 00 00 00
47B5: C5 C5 00
47B8: 00 00 00290 . HS 000000C5C5000000
47BA: 00 OD 00
47BD: 00 00 00
47CO: 00 00 00300 .HS OOODOOOOOOOOOOOO
47C2: 00 00 00
47C5: OD 00 00
47C8: 00 C5 00310 .HS 0000000DOOOOOOC5
47CA: C5 00 00
47CD: 00 00 OD
47DO: 00 00 00320 .HS C5000000000DOOOO
47D2: 00 00 00
47D5: 00 00 00
47D8: 00 OD 00330 .HS OOOOOOOOOOOOOOOD
47DA: 00 00 00
47DD: C5 C5 00
47EO: 00 00 00340 .liS 000000C5C5000000
47E2: 00 OD 00
47E5: OD 00 00
47E8: 00 00 00350 .HS OOODOOODOOOOOOOO
47EA: 00 OD 00
47ED: OD 00 00
47FO: 00 C5 00360 .HS 000DOOODOOOOOOC5
47F2: C5 OF OF
47F5: OF 00 OD
47F8: 00 OD 00370 .HS C50FOFOFOOODOOOD
47FA: 00 09 09
47FD: 09 OF OB
4800: OF OD 00380 .HS 000909090FOBOFOD
4802: OF OF OF
4805: C5 C5 00
4808: 00 00 00390 .liS OFOFOFC5C5000000
480A: 00 OD 00
480D: OD 00 09
4810: 09 09 00400 .HS 000DOOODOO090909
4812: 00 OD 00

438

ADVANCED ARCADE TECHNIQUES 9

4815: OD 00 00
4818: 00 C5 00410 .HS 000DOOODOOOOOOC5
481A: C5 00 00
481D: 00 00 00
4820: 00 00 00420 .HS C500000000000000
4822 : 00 09 09
4825 : 09 00 00
4828: 00 00 00430 .HS 0009090900000000
482A: 00 00 00
482D: C5 C5 00
4830: 00 00 00440 .HS 000000C5C5000000
4832 : 00 00 00
4835 : 00 00 09
4838: 09 09 00450 .HS 0000000000090909
483A : 00 00 00
483D: 00 00 00
4840: 00 C5 00460 .HS 00000000000000C5
4842: C5 00 00
4845 : 00 00 00
4848: 00 00 00470 .HS C500000000000000
484A: 00 09 09
484D: 09 00 00
4850: 00 00 00480 .HS 0009090900000000
4852: 00 00 00
4855 : C5 C5 00
4858: 00 00 00490 .HS 000000C5C5000000
485A: 00 00 00
485D: 00 00 09
4860: 09 09 00500 . HS 0000000000090909
4862: 00 00 00
4865: 00 00 00
4868: 00 C5 00510 .HS 00000000000000C5
486A: C5 00 00
486D: 00 00 00
4870: 00 00 00520 . I-!S C500000000000000
4872 : 00 09 09
4875 : 09 00 00
4878: 00 00 00530 .HS 0009090900000000
487A: 00 00 00
4870: C5 C5 00
4880: 00 00 00540 .HS 000000C5C5000000
4882: 00 00 00
4885 : 00 00 09
4888: 09 09 00550 .HS 0000000000090909
488A: 00 00 00
488D: 00 00 00
4890 : 00 C5 00560 .HS 00000000000000C5
4892: C5 00 00
4895: 00 OD 00
4898: 00 OD 00570 . HS C50000000DOOOOOD
489A: 00 09 09
489D: 09 00 OD
48AO: OD 00 00580 .HS 00090909000DODOO
48A2 : 00 00 00
.48A5 : C5 C5 OF
48A8 : OF OF 00590 .HS 000000C5C50FOFOF
48AA: OD 00 OF
48AD: OB OF 09
48BO: 09 09 00600 .HS ODOOOFOBOF090909
48B2: 00 OD OD
48B5 : 00 OF OF
48B8 : OF C5 00610 .HS 000DODOOOFOFOFC5

439

9 ADVANCED ARCADE TECHNIQUES

488A : C5 00 00
48BD: 00 OD 00
48CO: 00 OD 00620 .HS C50000000DOOOOOD
48C2: 00 00 00
48C5: 00 00 OD
48C8: OD 00 00630 .H~ OOOOOOOOOOODODOO
48CA: 00 00 00
48CD: C5 C5 00
48DO: 00 00 00640 .HS 000000C5C5000000
48D2: OD 00 00
48D5: 00 00 00
48D8: 00 00 00650 . HS ODOOOOOOOOOOOOOO
48DA: 00 00 OD
48DD : 00 00 00
48EO: 00 C5 00660 .HS 00000DOOOOOOOOC5
48E2: C5 00 00
48E5: 00 OD 00
48E8: 00 00 00670 .HS C50000000DOOOOOO
48EA : 00 00 00
48ED: 00 00 00
48FO: OD 00 00680 .IIS OOOOOOOOOOOOODOO
48F2: 00 00 00
48F5: C5 C3 C6
48F8: C6 C6 00690 .I-IS 000000C5C3C6C6C6
48FA: C6 C6 C6
48FD: C6 C6 C6
4900: C6 C6 00700 .HS C6C6C6C6C6C6C6C6
4902 : C6 C6 C6
4905: C6 C6 C6
4908: C6 C4 00710 .HS C6C6C6C6C6C6C6C4

00720 ; TANK DATA
00730 TANKO

490A: 00 00 00
490D: C6 38 38
4910: C6 38 00740 .HS 000000C63838C638
4912: 38 C6 38
4915: 38 C6 00
4918: 00 00 00750 .HS 38C63838C6000000

00760 TANK1
491A: 00 00 00
491D: 10 08 20
4920: 1A 5D 00770 .HS 0000001008201A5D
4922: 3C BA 58
4925: 04 10 08
4928 : 00 00 00780 .HS 3CBA580410080000

00790 TANK2
492A: 00 00 00
492D : AA AA AA
4930: 7C 7C 00800 .HS 000000AAAAAA7C7C
4932 : 7C 7C AA
4935: AA AA 00
4938: 00 00 00810 .HS 7C7CAAAAAAOOOOOO

00820 TANK3
493A: 00 00 00
493D: 08 10 04
4940: 58 BA 00830 .I-IS 000000081004588A
4942 : 3C 5D 1A
4945 : 20 08 10
4948: 00 00 00840 .I-IS 3C5D1A2008100000

00850 TANK4
494A: 00 00 00
494D : C6 38 38

440

ADVANCED ARCADE TECHNIQUES 9

4950: C6 3S 00S60 . HS 000000C63S3SC63S
4952: 3S C6 3S
4955: 3S C6 00
495S: 00 00 00S70 .HS 3SC63S3SC6000000

OOSSO TANK5
495A: 00 00 00
4950: 10 OS 20
4960 : lA 50 00S90 .HS 000000100S201A50
4962: 3C BA 5S
4965 : 04 10 OS
496S : 00 00 00900 .HS 3CBA5S04100S0000

00910 TANK6
496A: 00 00 00
4960 : 55 55 55
4970: 3E 3E 00920 .HS 0000005555553E3£
4972 : 3E 3£ 55
4975: 55 55 00
497S : 00 00 00930 .HS 3E3£555555000000

00940 TANK7
497A : 00 00 00
497D : OS 10 04
49S0 : 5S BA 00950 .HS 0000000S10045SBA
49S2: 3C 50 1A
49S5 : 20 OS 10
49SS : 00 00 00960 .HS 3C501A200S100000

00970 TANKTAB
49SA: OA 49 lA
49S0 : 49 2A 49
4990: 3A 49 009S0 .OA TANKO,TANK1 ,TANK2,TANK3
4992 : 4A 49 5A
4995: 49 6A 49
4998: 7A 49 00990 .OA TANK4,TANK5,TANK6,TANK7

01000 TURRETO
499A: 00 3C IS
4990: IS IS IS
49AO: 18 3C 01010 .HS 003C1S1S1S1S1S3C
49A2: 3C IS 00
49A5: 00 00 00
49AS: 00 00 01020 .HS 3C18000000000000

01030 TURRETl
49AA: 00 00 02
49AO: 03 06 OE
49BO : 1C 3C 01040 .HS 00000203060E1C3C
49B2 : 3C IS 00
49B5 : 00 00 00
49B8 : 00 00 01050 .HS 3C18000000000000

01060 TURRET2
49BA : 00 00 00
49BO : 00 00 00
49CO: 19 3F 01070 .HS 000000000000193F
49C2 : 3F 19 00
49C5 : 00 00 00
49CS : 00 00 01080 .HS 3F19000000000000

01090 TURRET3
49CA: 00 00 00
49CO: 00 00 00
4900: 18 3C 01100 .I-!S 000000000000183C
4902: 3C 1C OE
49D5: 06 03 02
49D8: 00 00 011 10 . HS 3C1COE0603020000

01120 TURRET4
49DA: 00 00 00

44 1

9 ADVANCED ARCADE TECHNIQUES

49DD: 00 00 00
49EO : 18 3C 01130 .HS 000000000000183C
49E2: 3C 18 18
49ES: 18 18 18
49E8 : 3C 00 01140 .HS 3C18181818183COO

01150 TURRETS
49EA: 00 00 00
49ED: 00 00 00
49FO: 18 3C 01160 .HS 000000000000183C
49F2 : 3C 38 70
49FS : 60 CO 40
49F8: 00 00 01170 .HS 3C387060C0400000

01180 TURRET6
49FA: 00 00 00
49FD: 00 00 00
4AOO : 98 FC 01190 .HS 00000000000098FC
4A02: FC 98 00
4AOS : 00 00 00
4A08: 00 00 01200 .HS FC98000000000000

01210 TURRET7
4AOA : 00 00 40
4AOD : CO 60 70
4AI0: 38 3C 01220 .HS 000040C06070383C
4A12: 3C 18 00
4AlS: 00 00 00
4A18 : 00 00 01230 .HS 3C18000000000000

01240 TURTAB
4AIA: 9A 49 AA
4AID : 49 BA 49
4A20: CA 49 01250 • DA TURRETO, TURRETl, TURRET2, TURRET3
4A22: DA 49 EA
4A2S: 49 FA 49
4A28: OA 4A 01260 .DA TURRET4 ,TURRET5,TURRET6,TURRET7

01270 ;
01280 NDLIST

4A2A : 70 70 70
4A2D : 46 01290 .HS 70707046
4A2E: 00 70 01300 . DA SCREEN
4A30 : 06 06 06
4A33 : 06 06 06
4A36: 06 06 01310 .I-!S 0606060606060606
4A38: 06 06 06
4A3B: 06 06 06
4A3E : 06 06 01320 .I-!S 0606060606060606
4A40: 06 06 86
4A43: 46 01330 . I-!S 06068646
4A44 : 90 71 01340 .DA WINDOl.J
4A46: 06 06 06
4A49 : 41 01350 .I-!S 06060641
4A4A: 2A 4A 01360 .DA NDLIST

01370 ;
01380 DOFFS

4A4C: 00 00 00
4A4F : 00 00 01
4AS2: 01 01 01390 .I-!S 0000000000010101
4A54: 00 FF FF
4A57: FF 00 00
4A5A : 00 00 01400 .I-!S OOFFFFFFOOOOOOOO

01410 HOFFS
4A5C: 00 01 01
4ASF: 01 00 FF
4A62: FF FF 01420 .I-!S 0001010100FFFFFF

442

ADVANCED ARCADE TECHNIQUES 9

01430 VOFFS
4A64: FF FF 00
4A67: 01 01 01
4A6A: 00 FF 01440 .HS FFFFOOOI010100FF

01450 ;
01460 COLORS

4A6C: 44 94 OE
4A6F: OE 16 46
4A72: 96 4E 01470 .HS 44940EOE1646964E
4A74: 00 01480 .HS 00

01490 PLAYTAB
4A75: 66 67 01500 .DA /PLAYER2,/PLAYER3

01510 PLAYTAB2
4A77: 64 65 01520 .DA /PLAYERO , /PLAYER1

01530 SHELLS
4A79: 01 04 01540 .HS 0104

01550 SHTMSK
4A7B: FE FB 01560 .HS FEFB

01570 HITMASK
4A7D: 04 08 01580 .HS 0408

01590 WHO
4A7F: 01 00 01600 .HS 0100

01610 UZAP
4A81 : 00 00 00
4A84 : 00 00 00
4A87: 00 00 00 01620 .HS 000000000000000000
4A8A: 00 00 00
4A8D: 00 00 00
4A90: 00 00 00 01630 .HS 000000000000000000

01640 DZAP
4A93: 00 00 00
4A96: 00 00 00
4A99: 00 00 00 01650 .HS 000000000000000000
4A9C: 00 00 00
4A9F: 00 00 00
4AA2: 00 00 00 01660 .HS 000000000000000000

01670 UZTAB
4AA5: 81 4A 8A
4AA8: 4A 01680 .DA UZAP ,UZAP+9

01690 DZTAB
4AA9: 93 4A 9C
4AAC: 4A 01700 .DA DZAP,DZAP+9

01710 IDLE
4AAD: EO AO 01720 .HS EOAO

01730 VROOM
4AAF: 80 60 01740 .HS 8060

01750 STARTH
4AB1: 40 BO 01760 .HS 40BO

01770 STARTV
4AB3: 60 80 01780 .HS 6080

01790 SMSG
4AB5: 00 00 00
4AB8: 00 00 00
4ABB: 00 00 01800 . AT " "
4ABD: 13 lA 10
4ACO: 10 00 00
4AC3: 00 00 01810 .AT "3:00 "
4AC5: 00 00 00
4AC8: 00 01820 .AT " "

01830 EMSG
4AC9: 00 00 00
4ACC: 00 00 00

443

9 ADVANCED ARCADE TECHNIQUES

4ACF: 27 21 01840 .AT " GA"
4ADl: 2D 25 00
4AD4: 2F 36 25
4AD7: 32 00 01850 .AT "ME OVER"
4AD9: 00 00 00
4ADC: 00 01860 .AT " "
4ADD: 00 30 2C
4AEO: 21 39 25
4AE3: 32 11 01870 LlMSG .AT " PLAYERl"
4AE5: 00 00 00
4AE8: 00 30 2C
4AEB: 21 39 01880 .AT " PLAY"
4AED: 25 32 12
4AFO: 00 01890 .AT "ER2 "

01900 L2MSG
4AF1: 00 00 00
4AF4: 00 00 10
4AF7: 00 00 01910 .AT " 0 "
4AF9: 00 00 00
4AFC: 00 00 00
4AFF: 00 00 01920 .AT " "
4801: 10 00 00
4804: 00 01930 .AT "0 "

01940 SCPOS
4B05: 04 OF 01950 .HS 040F

01960 TDLIST
4B07: 70 70 70
4BOA: 70 70 70
4BOD: 70 70 01970 .HS 7070707070707070
4BOF: 70 70 46 01980 .HS 707046
4B12: IB 4B 01990 .DA TITLED
4B14: 70 06 70
4B17: 06 41 02000 .I-!S 7006700641
4B19: 07 4B 02010 .DA TDLIST

02020 TITLED
481B: 00 00 00
481E: 00 00 34
4B21: 21 2E 02030 .AT " TAN"
4823: 2B 00 22
4B26: 21 34 34
4B29: 2C 25 02040 .AT "K BATTLE"
4B2B: 00 00 00
4B2E: 00 02050 .AT " "
4B2F: 80 80 Al
4B32: 80 B4 B7
4B35: AF 80 02060 .AT - " A TWO "
4B37: BO AC Al
4B3A: B9 AS B2
4B3D: 80 A7 02070 .AT -"PLAYER G"
4B3F: Al AD AS
4B42: 80 02080 .AT -"Al'1E "
4843: 80 80 80
4B46: 80 E2 F9
4B49: 80 E4 02090 .AT - " by d"
4B4B: El EE 80
4B4E: FO E9 EE
4B51: El EC 02100 .AT -"an pinal"
4853: 80 80 80
4B56: 80 02110 .AT - " "

02120 CSHIFT
4B57: 50 90 02130 .HS 5090

02140 ;

444

ADVANCED ARCADE TECHNIQUES 9
02150 ;
02160 ;
00150 .IN "D:TANKVAR.SRC"
OOOlO * TANK GAl'lE VARIABLE
00020 * THIS IS D:TANKVAR.SRC
00030 FIRSTVAR

4B59: 00040 RESULT .BS 2 PRODUCT
4B58: 00060 Ml .BS 1 MULTIPLIER
4B5C: 00070 N2 . BS 1 HULTIPLICAND
4B5D: 00080 CHRX .BS 1 HORZ. POS. OF CHAR TANK IS ON TOP OF
4B5E: 00090 CHRY .BS 1 VERT. POS. OF CHAR TANK IS ON TOP OF
4135F: 00100 XOFF .BS 1 HOly MANY PIXELS TANK IS OFFSET FRON LEFT EDGE OF CHR
4B60: 00110 YOFF .8S 1 HOly MANY SCAN LINES TANK IS OFFSET FRON TOP OF CHR
4B61 : 00120 CHRI .BS 1 CHAR TANK IS ON TOP OF
4B62: 00130 CHR2 .8S 1 ADJACENT CHARACTER TANK MAY BE ON TOP OF
4B63: 00140 BYTE .BS 2 ACTUAL 8 BITS OF SCREEN DATA TANK IS ON TOP OF
4B65: 00150 DPOINTER .8S 1 DATA POINTER INTO TA;~K DATA
4B66: 00160 SAVEX .BS 1 TEMP. X REG. STORAGE
4B67: 00170 SAVEY .BS 1 TEl-IP. Y REG. STORAGE
4B68: 00180 TANK .8S 1 IVHICH TANK IS BEING DONE
4869: 00190 GAl'1E .8S 1 GAME IN PROGRESS FLAG
486A: 00200 ENABLE .BS 1 FLAG FOR VBI TO SKIP CODE IF GAME NOT RUNNING
4868: 00210 PLAYERH . 8S 2 TANK HORI? . POS .
486D: 00220 PLAYERV .BS 2 TANK VERT. POS.
4B6F: 00230 PLAY ERD .8S 2 TANK DIRECTION OF MOV~~NT
41371: 00240 PLAYERF .BS 2 DIRECTION TANK IS FACING
4873 : 00250 NEWH .8S 1 TEMPORARY COPIES OF TANK POSITIONS
41374: 00260 NEW .BS 1 "
4875 : 00270 NElyD .8S 1
4B76: 00280 NEWF .BS 1 "
4B77 : 00290 NElVTD .8S 1 "
4B78: 00300 TEMPO .BS 1 TEMPORARY STORAGE
4B79: 00310 TEMPI .BS 1 "
4B7A: 00320 TEMP2 .BS 1 "
4B7B: 00330 TEMP3 .BS 1 "
4B7C: 00340 TEMP4 .BS 1 "

00350 ;
4B7D: 00360 TURRETF .BS 2 FLAG FOR TURRET MODE
4B7F: 00370 TURRETD .BS 2 TURRET DIRECTION

00380 ;
4B81 : 00390 SHOTS .BS 2 SHOT SOUND FLAG
4B83: 00400 SHOTD .BS 2 SHOT DIRECTION
4B85: 00410 SHOTH .8S 2 SHOT HORIZ. POS.
4887: 00420 SHOTV .8S 2 SHOT VERT. POS.
4B89: 00430 SHOTF .BS 2 SHOT IN PROGRESS FLAG
4B8B: 00440 CYCLES .BS 2 EXPLOSION SEQUENCE FLAG AND COUNTER
488D: 00450 INDEX .BS 1 AN INDEX
488E: 00460 IMMUNE .8S 2 TEMPORARY TANK IMMUNITY TIMER
4890: 00470 TIMER .BS 1 JIFFY COUNTER
4B91 : 00480 MINUTES .BS 1 TIME
4B92: 00490 SECONDS .8S 1 TIME
4893: 00500 SCORE .BS 2 PLAYER SCORES

00510 ;
00520 ;
00530 LASTVAR
00540 ;
00160 *

445

446

CHAPTER 10

GAME DESIGN THEORY

There is no sure-fire way to predict whether a game will be successful, but there are
certain a ttributes that contribute to success. Certain ly a game should have a goal
without one, what is the point in p laying? Rules should be straightforward and
logica l. The game shou ld also be a cha ll enge; if it requires no sk ill, you will quickly
tire of it. A game shou ld evoke either fantasy or your innate curiosity; if it isn't novel
or puzzling, it becomes boring. And las tly , arcade games, that by definition havea lot
of action, shou ld be easil y controllable.

Game objectives take two different forms. There are games where you gradually
approach the goal , like destroying a fl ee t of invaders in Ga laxian, eating a ll the dots
in Pac Man, or rescuing a ll of the hostages in Chopliiter. There a re other games
where the goa l is to avoid ca tastrophe. Examples of this range from preventing a
nucl ear power plant meltdown in Scram, to sav ing your cities during a nuclear
missi Ie a ttack in iVlissile Command, or preserving a ll of your fuel canisters in Ripoff
Do not confuse these two kinds of game objectives with the simplistic and mindless
ac t of scoring lots of points by shooting everything that moves.

Goa ls must suit a player 's expectations or fantasies. This is why certain people
like certain types of games better than others. The battle lines of good against evil
lurk in the background of many space games, wherein evi l, menacing invaders are
bent on th e destru ction of Earth. It becomes the player 's goa l to protect the Earth as
long as possib le whil e scoring the most points for killing a liens. Other appealing
goa ls range from accumu lating th e most treas ure while exploring a dangerous
cavern, to escaping from a crumbling building before it coll apses or your food runs
out.

Computer game fantasies derive some of their appeal from the emotiona l needs
they satisfy . Different fantasies appeal to different people. Sometimes the fantasy is
s impl y a n adolescent emotional release as in Food Fight, where you battle pie
throwing chefs wi th tabl es full o f messy food. The fantasy of destroying objects
during a game appea ls to others. It can take the form of popping balloons by
bo un cing a clown off a teeter-to tter, as in Clowns and Balloons, or breaking out
bri cks in a wa ll , as in Breakout. In each case, the partiall y-des troyed wall or rows of
ball oons presents a visuall y compelling goa l and a graph ic scorekeeping device as
we ll.

Goa ls in most games imply an end point, e ither when the goa l is reached or when
yo u fa il. It is often important to make sure th e game doesn't just go on and on
forever. Lim its shou ld be set. Sometimes these ta ke the form of time limits or
consta ntl y diminishing amounts of ammunition , ba ll s, or ships. The most wides-

447

448

1 0 GAME DESIGN THEORY

pread I i In i ting fa nor, a t leas t o n ho me compu ters, is speed ing up the ga me. lL is a lso
the most abuse'd. A ga m e tempo, where it is neither hum a nl y nor mecha nica ll y
poss ible to w ithstand the onsla ught o f the computer 's forces, ch ea ts the pla yer.

For a ga me to be considered cha ll enging, it sho u Id have a goa l where th e o u tco me
is un cc rLa in. If the p laye r is ce!"la in to reach th e goa l o r cen a iL not to reach it, the
gamc is unlikel y LO present a cha ll enge, an d the pl ayer will lose interes l. It is ve ry
cas y to introduce' ra nd omn ess into the game eith er by hidin g important informat ion
or by introducing random var ia bl es that draw th e p laye r toward disas ter. Be ca reful
nolto overdo this, sin ce a tota ll y random game lacks a sk ill fac tor. Pl ayers quickl y
discover tha t they have no contro l over the outco me.

On e of th e more impo n a nt des ign elements in a n y ga m e is a logical se t o f rul es.
T he rul es can be ex trem ely simpl e o r utterl y co m p lex, but they must m ake sense.
Si nce th e' game must fo ll ow its th eme, a n y rul es o r variations should stem direc tl y
from th a t theme. lL is pointkss to throw in ga me elements tha t simpl y do n ' t belong
just beca use yo u think tha t co nfu sing th e p layer wo uld make th e ga me more
diffi cull. For insta n ce, Donkey Kong, one of the bes t jumping, climbing a rcade
ga mes, does n't req u i re the pl aye r to shoot everything in s ig h t, just avoid obstacl es to
rcach th e goa l. Simi lar ly, a to ug h , shoot-' em-up ga me li keGalaxian keeps its fluid
ali en attack uncluttered by di strac ting ga me elements.

t\ game I ik e Galaxian is considered asy mm etri c. It is not a ba la nced ga me beca use
both Ihe pla ye r and th e computer 's ali en fl ee t are unba la n ced in stren gth . Yet the
difference's be'tween th e advanl ages and disadva ntages of the two opponents are too
si m i lar to bu ildtri a ngu la r re la ti o nsh i ps tha t make a n a rcade ga m e more in teresting.

The tri angular relat ionship is o ne in which each opponent can defea t one o ther or
bc defeated by th e third. T he rela ti o nship is o ften used in man y games to lure the
pla yer into a trap by sacr ifi cin g a wea kly-armed player. Battlezone is a good exam
pl e. T he co mputer ma n euvers the sa ucer to entice the hum a n in to a poor position
against th e ta nk. Tim e P ilot lures yo u into a poor position more subtl y by p lacing
the bo nu s parachute d irec tl y in line w ith the incoming enem y fighter pack. Other
games use the bo nu s to distrac t you. Sky Blazer nea rl y a lways drops a fu el ca niste r
just at th e tim e tha t your ta rge t appears, a nd bomb ta rgets come up in Xev iaus just
w hen you are engaged in a hea vy fire fight w ith th e a lien a rmada.

A va ri a bl e diffi culty leve l is o ft en u sed to a lter the game's level of play. These
levels, o ften w ith ego-satisfying names like Star Ca'/?'unander or Pilo t , ca n be se t by
th e p layer. Ma ny ga mes are des igned to become ha rder the furth er you progress. The
increas in g skill level requirement p resents a n added cha ll enge, wh ile preventing the
p laye r from growing co mp lacent. Often the technique is to speed up the ga m e or
place additiona l enem y cra ft into ba ttl e. T he pl ayer is required to pl ay fas ter a nd
beller, ho ning hi s refl exes durin g the process. Ano ther varia tion a llows less time to
complete your objec tive as th e diffi culty in creases .

Ca re must be taken so th a t th e ga m e's level o f difficulty progresses evenly from
beg inner to expert level. P laye rs' scores should refl ec t a steady improvement in what
is know n as a positive mo no tonic curve. A game with a relatively fl a t curve is ha rd to

GAME DESIGN THEORY 1 0

lea rn, while a sharp jump means that there is some trick required to master the level.
Games that don't have a positive monotonic curve frustrate players beca use they fail
to provide reasonable opportunities to better one's score.

Any good game should offer a reward for reaching increasingly difficult levels of
p lay. Often, bonus points, extra balls, ships, or more ammu nition are rewarded for
exceeding score thresho lds. It is important that the rewards for winning outweigh
the disappointment of losing. A player 's ego is involved. A person wants to beat a
chall enging game, not be humiliated each time he loses.

The ideal arcade game should foster the illusion of winnability at a ll levels of pl ay.
One important factor is a clean and simple game design. Too much detail or too
many ru les may intimida te the player. If a player believes that his failure was caused
by a fl aw in an overly complex game or by the contro ls, he will consider the game
unfair and quit. On the other hand, if a player perceives failure to be attributed to
correcta ble errors on his part, then he believes the game to be winnable and will play
repeatedly to master the game. It 's as if the player teases himself to play one more
time.

Appea ling to a player 's curios ity effectively keeps a game interes ting. While
novelty is sometimes a crucia l factor in the origina l purchase, if the game has littl e
depth, it becomes repetitious and boring. One method that appeals to many game
designers is to have the game progress to slightly different scenarios. Some games
change the opposition, wh ile others vary the scenery; some do both. The player has
to excel if he is to satisfy his curios ity. Games like Threshold, which progresses
through twenty-four sets of a lien spacecraft, or Vanguard, in which both the scenery
and alien craft changes, offer strong curiosi ty incentives.

These spurs to a player 's interest in the game are ca ll ed "Perks." They are most
important just when the player thinks he has the game figured out. Perks must be
carefully tim ed so that the player does not give up o n the game because not enough
happens soon enough or because everything the game has to offer has been seen too
soon. The most common perk is an extra life. Consider these coin-op video games:
Pac Man, Donkey Kong, Dig Dug, Joust, Mario Bros., a nd Tempest. These games
have multiple screens. The different screens by themselves are a perk, but what these
games have in common is the time at which an extra life is rewarded. The extra lives
genera lly come to the average player a t some point in his third screen . This is hardly
coincidenta l. The screens are scheduled at a specific rate, somewhat dependent on
the player's skill. The extra life on the third screen comes in just before the average
player might become exasperated and so not put in another quarter. The novice
player is usually ou t of lives at this point, too.

Some games use cartoon intermissions to perk up the game. The player's interes t
is renewed with each cartoon. For many players, seeing the next cartoon becomes a
personal goal. Placing hidden features not even hinted at in the rules is another
clever perk. These embellishmen ts are left for the experienced player to discover.
They can even brighten up the earlier levels of a game which has become dull for the
exper t. For example, in the coi n-op version of Star Wars, players hear the voice of
Obi-Wan Kenobi admonishing them to use the Force. Nothing in the game instruc·

449

450

1 0 GAME DESIGN THEORY

tions tell them what to do. On ly by ex perimentati o n will a p layer realize that he must
fl y through th e trench without firing a shot to rece ive a su bstantia l point bonus
upon reac hin g th e exhaus t port. The hi gh score fea ture ca n a lso be considered as a
" perk. " Whil e it doesn ' t renew interes t within the ga me, it is important because it
can ren ew interes t in p lay in g even a mediocre ga me again. The high score itself
presents a personal goa l to reach, whether it be to bea t your own high score or
someone else 's.

Sometimes varying the p layer 's emotional response during the game serves as a
"perk." Tension can be relieved during a tense shoot-'em-up with occasional comic
relief, while cute games sometimes need touching moments. Remember games as
enterta inment need contrast. In sum, the var ieti es of perks are endless, but their
objec tive is the same: renew interes t in the game before the player becomes tired of it.

A game 's contro ll ab iii ty is one o f the more important considerations in design . It
is somet im es referred to as hum an eng ineering. Des igners usually choose between
key board and paddle/ joys ti ck (ontro l. Whi le eye/ ha nd coordination is more effec
tive with paddles or joys ti cks , programmers a ttemptin g to crea te games with too
man y control fun ction s will o pt for a keyboard control sys tem. At times, they
produce a game that requires nine or ten key boa rd controls which, unfortunately ,
onl y a pianist can opera te. Games whose co ntro ls require considerab le time to
master often prove fru stra tin g to p lay.

The ab ility to accurately control th e action is crucia l in the design. If the screen
docs not respond immediate ly to the pl ayer 's input, the pl aye r may end up feeling
out of sy nc a nd becom e fru stra ted with th e game. The programmer must insure
through ca refu l des ig n that the ga me responds properly to the player. The player
shouldn ' t beli eve, for examp le, tha t the co mputer made a wrong turn for him in a
maze ga me.

Apparently, Atari owners like ga m es which pit them against a competitive com
puter opponent. In several multi-player games, groups of two or more simultane
ously co mpete against each o ther. Most of these contests a re sports or card games
involving two to four players. T he cooperative game is rarely seen, except in cases
where the compu ter competitor is much too skillfu l. The arcade game Ripoff
invo lves a computer opponent tha t is more than a match for two players playing
simu ltaneously. The battl e is so fas t and fi erce that the teammate 's ship has to be
protec ted from his partner's bullets . The hom e computer version of Wizard of Wor
offers a choice of competitive or coopera tive play . It is a tough game that really needs
cooperative pl ay if the more advanced game levels a re to be reached, but cooperation
in this game is by agreement, no t by mutual invulnerablity. Your partner is even
worth 1000 points if you mistakenly blunder. It is quite interesting to watch coopera
tion turn into a fiercely competitive game after one player inadvertently walks into
the o ther player 's line of fire.

So far , we have discussed theory and genera lizations that should increase a game's
pl aya bility and appea l to th e public. Co ncre te exa mpl es of the more popular games
shou ld g ive you a mu ch more so lid founda tion fo r your own designs.

GAME DESIGN THEORY 1 0

Example Arcade Games
Space Invaders was the first rea ll y pop ular a rcade game. T h e object is to defend

your turf against an a li en horde of ferocious invaders who a ttack your cas tles and
gun bases with a barrage of undulating bull ets . It is actuall y a timed game, since you
only have a limited period to destroy the entire attacking wave before they descend to
the ground in m arching formations and overrun your lone gun base.

The elimination of each a lien acts as a visua l scorekeeping device. You can never
win, only survive as long as possible (thus gett ing the maximum playtime for your
quarter). Elimination of each attacking wave, however, is an intermedia te goal that
staves o ff your inevitab le doom. Each successive level becomes more difficult since
the aliens, which begin their attack increasingly closer to Earth each round, limit the
amount of time that yo u have to destroy them. T heir cons tant approach to your
mobile gun base decreases the reaction time needed to avoid enemy fire.

Shoot-'em-up ga mes like Sneakers, Galaxian, Thresho ld, and Galaga are ac tually
spin-offs of the Space Invaders theme. Whether they are set in space or on the ground,
each has a variety o f targe ts bent on your des tru ction. The ta rgets or attackers are no
lo nger sta ti c. Either they appear to dodge your fire, or they resort to kamikaze-type
a ttacks.

The strong appeal of these types of ga mes is based on cur ios ity and game depth.
You are inspired to do better w ith each game just to see wh at the a ttackers are going
to look like in the nex t level and what their tac tics might be. The design goal is
var iety, with each successive level slightly harder than the last. Although most offer
an unlimited number of bull ets , Threshold con trols rapid, random, and wasteful
firing by overhea ting your lasers. Thus, yo ur firing must be more accura te and paced
during the game.

The popularity of Pac Man can be attributed to the game's design . First, it satisfies
the fantasy concept of a person's childhood dreams. As children , we dreamt that we
were being chased by evil monsters or ghosts, and we felt powerless to stop them. We

PAC MAN

451

452

1 0 GAME DESIGN THEORY

wished th at there were some way to turn the tabl es, if on ly for a few moments. Pac
Man's four energy dots fulfill tha t fantasy. The game a lso offers the visual feedback
of the number o f rema ining dots to be ea ten at each level. And since clearing each
individual level is an immedi a te goa l, even beginners believe a level can be cleared.
Because Pacman is a ga me o f consumption ra ther than one of destruction, it appea ls
to players of both sexes.

The game becomes a lea rning experi ence for th e more advanced player, since the
ghos ts follow a di scernibl e, non-random pattern. A pl ayer is even tua lly ab le to
predict their movements a nd , conseq uentl y, to develop a technique to clear a ll of the
dots on a particular leve l. The long term goa l is surviva l and the highest score. The
game is designed so that you ga in more p leas ure as you get better. Thus, players are
willing to devote th e tim e and money to mas ter th e game.

Scrolling games, such as Super Cobra, Vanguard, and Tail of Bela Lyrae, wherein
your ship travels over a multi-screen world , benefit strongly from player curiosity
and visual variety. Vanguard, a shoot-'em-up ga me in which a varie ty of enem y
vessels and creatures a ttack you r ship, has an ex tremely lo ng sinuous tunnel wi th
var io us types o f chambers. The game h as so many sections, combined with scro lling
direc tio ns which change fro m horizonta l to di agonal to vert ica l, that it is like
p lay ing ma ny different arcade ga mes at once. The p layer is given the option several
tim es during the game to enter battle with a time-limi ted, energized spacecraft
equipped for ramming the enemy, or merely four pl a in , o ld directiona l lasers . A map
displ ayed in the lower corn er informs the p layer of his progress. The curiosity factor
is so enticing in this game tha t thirty seconds a re provided to lure you into insert ing
another quarter in order to continue from where you left o ff.

VANGUARD

Super Cobra is a class ic game wherein you fl y a helicopter over scrolling a lien
terra in and through heavil y fortifi ed and obstacle-filled narrow tunnels. Initia lly,
you have to survive g round-launched rockets and a few laser bases, but as the game
progresses you must a lso contend with meteors and alien ships. Using either your
bombs or lasers to cl ear the tunnels o f protruding ground targets is crucial to your
surviva l. Bombing accuracy is a lso important. If you don't replenish your fu el
supply by hitting eno ugh fue l depot targe ts, your game wi ll soon be over.

GAME DESIGN THEORY 1 0

Pole Position, a highly competitive game, appeals to many players because it
mixes just the right amount of fantasy with reality. It fulfills the fantasy of being a
race car driver without the inherent danger. Crashes are never fatal and do not end
the game. The goal of the game is to qualify for and complete the race. In a sense, it is
a very realistic simulation requiring shifting gears and precise steering on a scrolling
roadway. The player has a three-dimensional view of the course and his car, as if he
were following it from fifty fee t behind, a sort of out-of-body effect.

POLE POSITION

roJ'
,,['ol<r

n ... e:
(, 1

~P [CO ~ s LO

Joust immediately comes to mind when discussing a pure fantasy game that traces
its roots to th e glamorous days of medieval chiva lry. Instead of presenting two
knights in shining armor dueling on horseback, Joust a llows the player to fly his
ostrich-like mount to do battl e in midair. The player does not shoot his opponents
but defea ts them by ramming his mount and lance into theirs, sometimes delicately,
sometimes violently. The higher mount a lways wins. The player gains the excite
ment of physical contact without a bloody nose.

The game constantly forces the player into action. He must keep hitting the action
button to make his mount fly. When the player takes a short rest between screens, his

JOUST

453

454

1 0 GAME DESIGN THEORY

surrogate also rests and does not continue to fly along a imless ly as it might in other
games. Two players can play simultaneously but a re not forced into partnership.
T he Lava Tro ll on the bottom of th e screen is an additional menace both to the
player and hi s enem ies . It attempts to g rab at anything close enough and drag it into
the lava. This sometimes works to the player 's advantage, since the lava can impri
son an enemy and make it eas ier to destroy. A more formidable enemy, the pterodac
ty I th a t appears on hi gher levels, req u ires the player to discover a way to defeat it. As
an added perk, every fifth screen is a bonus leve l wh ere the player need not fight
anyone but simply pick up the eggs for additiona l points. Many times this earns the
player an ext ra life or at leas t a temporary rest from the game's pace. Physical
CO il tact , or ig in a lity, immediate p laye r involvement, a nd monster interaction are key
parts of t.his game's success.

Some o f the most clever games ca n be classed as novelty games. These are often
"cute" games in volv ing human or animal characters with which the player can
idclltify. T hese novelty games eith er follow th e theme of rescuing someone, or
require the player to develop good manual dexterity and precise timing skills in
order to avoid ca tas trophe or th e demise of the hero.

The resc ue theme appears in games like Donkey Kong, Donkey Kong Junior,
Fantasy, and the Adventures of Roby Rota. In many cases an actual rescue doesn ' t
take place, but the theme carries th e player from one portion of the game to the next.
In both Donkey Kong and Fantasy, the girl is whisked away to the next screen just
before the player reach es her. The objective isn ' t the rescue but to overcome the
obstacles barring your way. Learning the patterns and precise timing through
repeated play hones the p layer's skill.

DONKEY KONG

Although playing the hero is rare in these games, two games have followed this
theme: The Adventures of Rob)! Rota in the arcade, and Choplifter on most micro
computers. The latter is probably th e pures t in theme of the two. The rescue of
sixty-fou r hostages is the one and only goa l. Success is measured in the number of
hostages rescued. The fact that the player may have destroyed twenty-seven enemy
tanks and planes during the mission adds nothing to the score. Thus, while details

GAME DESIGN THEORY 1 0

CHOPLIFTER

like the hostage 's waving builds empathy for the hostages, the appeal is simply the
ego-satisfying role of playing the hero.

In the final group of novelty games, the player must avoid the calamity of losing a
life. The goals and obstacles in these games differ widely. Crazy Climber requires the
player to scale a building while windows close to block the path, and angry tenants,
attemp ting to knock the climber off the building, drop flower pots on his head.
Frogger has the player brave traffic in a test of precise timing ski lls. And playing
Tarzan in Jungle Hunt requires dexterity and timing skills to swing from vine to
vine like a trapeze artist, or risk death in the fall. In each of these games the cuteness is
what first attracts the audience, but it is the development of the player's timing skills
and game depth that keeps him playing. Again, the concept is variety, along with
increasing levels of difficulty.

Arcade games have that indefinable ability to make you feel that your losing is just
a fluke, and that if you play just one more time, you'll beat it. If you can design a
game that is fun and exciting to play, and has that added quality, then you have
designed an addictive game, and wealth beyond your wildest dreams may be yours.

FROGGER

455

456

1 0 GAME DESIGN THEORY

What Can Go Wrong

The bes t piece of adv ice that we can give a game programmer is to carefu lly p lan
out your game before you begin programming it. First decide what results you want
and work backwards to figure out what you have to dn to get them. If it doesn ' t work,
change your concept or goal until you get something you are satisfied with. Make
sure the game follows real-world physical principle, so that it feels right on a gut
level. For example, objects smash or bounce when they fa ll from any height.

Many novice programmers try to get something up on the screen immediately.
Actual I y, there is nothing wrong wi th this technique. After a ll , it does give you some
encouragement to continue. However, most develop their games on a piecemeal
basis, adding something because it looks good or because they need more action. The
result is that they soon run out of players or characters and are forced to do a very
painful rewrite.

Everyone prefers to organize his game differently. Some, like me, prefer the
tight-structured approach of a flowchart; others, like my partner, just write down a
rough outline of the order of events in the game. Whichever approach you prefer, we
strongly recommend that you develop many of your frequently used routines as
independent subroutines. This approach simplifies the logic of the main code loop.

We ca refully planned a ll o f the games in this book before we wrote them. This
means that we considered where items like screen memory, player-missile memory,
th e character set, and the actua l game code were p laced in memory. We roughly
flowcharted the game's main logic loop. We then wrote the code in small chunks,
but in such manner that it a lways ran , or at leas t was supposed to run.

The first priority was to draw the p layfie ld. This generally means that we had to
get the display list right and move the character set data into the correct section of
memory. It may sound like a piece of ca ke, but some terrible things can go wrong.
Sometimes the display list is too long because you forgot that the first LMS instruc
tion is one of the mode lines. The screen ro ll s or goes wacko. Maybe you let the
disp lay list inadvertently cross a I K boundary, or a ll owed screen memory to cross a
4K boundary in the middl e of a mode line. Each of these mistakes can cause the
screen to behave erratically. If you do get a stab le display, and it isn ' t the one you
specified, p erhaps you forgot to tell ANTIC where either your display list or your
RAM character set resides. I tis possib Ie that you didn't place your character set on a
1 K boundary, or on a Y2K boundary if you are in GR. I or GR.2. The fastest method to
troubl es hoot the problem in Assembly language is to enter the monitor and look at
the intended areas for the display li st and character set and to see if they are actually
there. It is quite possible your memory move routine is faulty .

The next step is usuall y to initialize the starting positions of your players.
Sometimes they just don 't appear, so you immediately check to see if the player shape
is actua lly in the proper 256 bytes of player-missile memory. You should also check
that the PMBASE is on a 2K boundary for single-line resolution players (IK boun
dary for double-line resolution), and that you told ANTIC where that is. If that isn't
the fault, some programmers make the mistake of trying to read a player's horizontal

GAME DESIGN THEORY 1 0

position by looking a t the ANTIC horizonta l position register. You may be able to
write a horizontal pos ition to the hardware loca tion, but you read collisions from
these same hardware loca tions . If you are going to increment a player 's horizontal
position, you will need to upda te a RAM location before writing the value into the
hardware register. If this doesn' t appear to be the problem, there are two other
possibilities. First, you may have forgotten to turn on player-missile graphics
switches. But probably the most frequent mistake is to forget to set the player's
shadow color register. If it isn 't se t, it defaults to the background color, blends in
with the background a nd disappears. Always use the shadow color register to change
or set color registers, or the change may only las t o ne television frame because the
hardware registers are updated every VB lank. The only exception to this rule is when
you use a Display List Interrupt to change colors midscreen.

Disp lay List and Vertical Bla nk Interrupts ca n sometimes cause unforeseen prob
lems. Inexperience is u suall y the cu lprit. The first thing to remember is that you
must have a program to interrupt from. Since it is easy to write a simple game
entirely in Deferred Vertical Blank, the main loop can be as short as FOREVERJMP
FOREVER. The machine will hang up if you don't have somewhere to jump back to
a t the end of the VBI. On the o ther hand , if the code is too long, it will be interrupted
by the nex t VBlank before it finishes. U nexpected results, such as a garbaged screen,
may occur. The most commo n problems with Display List Interrupts occur when
you forget to save your registers before entering the routine or forget to res tore them
befo re ex iting. A mistake here w ill lock up the machine. The other problem is when
the interrupt seems to occur o n the wrong mode line. R emember that the interrupt
has to be set on the mode line before the interrupt is to occur.

BASIC programmers who use Machine la ng uage subroutines sometimes encoun
ter strange problems. If you are go ing to incorporate a VBlank routine, make sure
yo u clear the decimal mode a t the beginning. T his is especially important if your
program uses decimal arithmeti c internally. Another problem occurs when you pull
the incorrect number of bytes off the stack. This can lock up the machine on the
return if the return address o n the stack is incorrec t. Unfortunately, these subrou
tines are very difficult to test in Assembly la ng uage without constructing a setup
routine to simulate the stack environment.

BASIC is usuall y very forgiving, so it is unlikely that you will lock up the machine
if you aren ' t using Machine la nguage subroutines. One of the most common display
mistakes is forgetting to se t a graphics mode after you lower RAMTOP to reserve
space for your RAM character se t and player-missile graphics. If you forget, you will
still have a Graphics 0 display just below the old RAMTOP. The new graphics call
will actually place the screen below RAMTOP.

We hope we have sugges ted adeq ua te solutions for the most common errors that
might occur in your games. We have learned many of these by bitter and frustrating
experience. We will admit tha t these weren't the only errors that we encountered
when programming the code in this boo k. However, most of the others were logic
problems that one o f us a lone couldn 't trace. For exa mple, when I was programming
the maze game, I programmed the manual mode for the joystick-controlled letter

457

458

, 0 GAME DESIGN THEORY

first. It worked fin e, but beca me buggy when I added the auto mode. Sometimes the
letter would behave properly, yet at other times it would escape the maze walls . I
single-stepped the code repeatedly and the legal move flags were always set correctly.
Days went by and I couldn't find any cause for the anomaly. My partner discovered
that it on ly happened just after the stick was returned to neutral. While legal moves
were reset at the center of each maze block, moving the stick was required to close
pathways other than those in the direction of movement or in reverse. Nothing was
done in the neutral position because the letter was stopped in the non-auto mode.
Since I had neglected to close gates when I was in th e neutral position , the joystick
controlled letter was now traveling in some direction automatically, so it became
possible to give it a new direction command while it was between blocks . For
exa mple, if it had just passed a block tha t said it could go right, pushing right from
the neutral position would command it to go right even though there was a wall
there. In short, I forgot to close gates when I was in the auto mode, because I
assummed they were set by one of the four non-neutral positions. This is a fine
example of misguided thinking.

In closing, we hope that we have provided you with enough programming
techniques and game theory to create your own arcade games. Remember that
originality, persistence and attention to detail are the keys to success in this industry.
We hope some of our readers will join the ranks of successful Atari game designers. If
you take the easy way out and program a quick game, the results will show in
mediocracy.

APPENDIX
A: Useful PEEKs and POKEs

MEMORY CONFIGURATION

10,11 ($A,$B) Start Vector-Disk Based Software-(DOSVEC)
These locations hold the start vector or run the address for disk based binary load

software. This is also the address BASIC jumps to when you call up DOS.

12,13 ($C,$D) Initialization Address for Disk Boot (DOSINI)
These locations hold the initialization address for the disk handler.

14,15 ($E,$F) Upper Limit of BASIC Program (APPMHI)
These locations contain the memory high limit for your BASIC program. Memory

above that is used for screen display.

88,89 ($58,$59) Screen Memory Address (SA VMSC)
These addresses contain the lowest address of screen memory.

106 ($6A) Top of RAM Address-most significant byte (RAMTOP)
Gives the total number of pages (256 bytes) available. Peek (106)/4 gives the

number of lK blocks available.

741,742 ($2E5,$2E6) Free Memory High Address (MEMTOP)
This address is the highest free location in RAM for program and data. This value

is updated when you press RESET, when you change GRAPHICS mode, or when a
channel (IOCB) is OPENed to the display. The display list starts at the next byte
above MEMTOP.

743,744 ($2E7,$2E8) Free Memory Low Address·(MEMLO)
This is the address of the first free location of RAM for program use. This value

which is normally 1792 ($700) is updated when DOS is present.

DISPLAY SCREEN
77 ($4D) Attract Mode On/ Off (A TRACT)

Setting this location to 0 disables the attract mode, This happens automatically
whenever a key is pressed. Normally this location is increnented every 4 seconds until
the value reaches 127 ($7F), then set to 254 ($FE) until the attract mode is terminated.
The attract mode protects the television screen by rotating the colors when the Atari
is idle.

87 ($57) Display Mode (DINDEX)
This location contains the current BASIC graphics mode (0-11) in non-XL

machines and (0-15) in XL machines. This can be used to fool the OS into thinking it
is in a different graphics mode.

90 ($5A) Starting Graphics Cursor Row (OLDROW)
Used to determine the starting row for DRAWTO and XIO 18 (FILL) command.

459

460

APPENDIX

91,92 ($5R,$5C) Starting Graphics Cursor Column (OLDCOL)
These locations are used by DRAWTO and XIO 18 (FILL) commands to deter

mine the starting column of the DRAW or FILL.

96 ($60) Ending Graphics Cursor Row (NEWROW)
Row to which DRA WTO and FILL wi ll go.

97,98 ($61,$62) Ending Graphics Cursor Column (NEWCOL)
Column to which DRA WTO and FILL wi ll go.

660,661 ($294,$295) Split-screen Text Memory Address (TXTMSC)
Address of upper left corner of the split-screen text window.

708-712 ($2C4-$2C8) Playfield Color Registers (COLORO-COLOR4)
Each of these locations determines the color for the various playfields. You can

change these registers from BASIC via either a POKE or the SETCOLOR command.

752 ($2FO) Cursor Inhibit (CRSINH)
Zero turns the cursor on. Any other number turns the cursor off.

54276 ($D404) Horizontal Fine Scroll Register (HSCROL)
When horizonta l fine scroll is enab led by setting bit 4 in the LMS instruction in

the display list, POKEing this location with a value from zero to 16 clock cycles
(depending on graphics mode) will fine scroll the screen.

54277 ($D405) Vertical Fine Scroll Register (VSCROL)
PO KEing a value from zero to 16 (depending on graphics mode) will fine scroll the

screen one or more scan lines. Vertica l fine scrolling can only be used if bit 5 is set in
the LMS instruction in the display list.

54282 ($D40A) Wait for Horizontal Synchronization (WSYNC)
This location a llows the OS to synchronize the VBI's or DLI's with the screen

display. Simply accessing this location halts the CPU until horizontal sync occurs.

54283 ($D40R) Vertical Line Counter (VCOUNT)
This register keeps track of the current line number currently be drawn on the

screen. PEEKing here returns the line count divided by two; ranging from zero to 130
($82). It is used during Display List Interrupts to change colors or when working
with kernels.

CHARACTER SETS
755 ($2F3) Character Mode Register (CHACT)

This location defaults to a value of 2. Zero means normal inverse characters, one is
blank (invisible) inverse characters , three is solid inverse characters. Four to seven is
the same as zero to three, except the display is printed upside down. For example;
POKE 755,4 will invert the standard character set.

756 ($2F4) Character Rase Register (CHBAS)
This high byte location is used to tell ANTIC where the character set is located. It

normally defaults to 224 ($EO) for upper case characters and numbers. Lower case

APPENDIX

and graphics characters can be selected in graphics modes I and 2 by POKEing
CHBAS with 226 ($E2) .

763 ($2FB) Last AT ASCII Character or Plot Point (AT ACHR)
Returns the last AT ASCII character read or written, or the value of a graphics

point. The FILL and DRAW commands use this location for the color of the line
drawn.

DISPLA Y LISTS
512,513 ($200,$201) Display List Interrupt Vector (VDSLST)

These locations store the address of the instructions to be executed during a
display list interrupt.

559 ($22F) DMA Control Register (SDMCTL)
This location enables or disables direct memory access by ANTIC. T he normal

default value is 34 ($22) which enables DMA for fetching normal playfield display
data. You can turn the display off by POKEing a zero here.

560,561 ($230,$231) Display List Address (SDLSTL)
This is the starting address of the display list.

54286 ($D40E) Non-maskable Interrupt Enable (NMIEN)
This location is used to enable or disable vertical blank and display list interrupts.

It is set to 64 ($40) upon powerup to enab le VBI's. A value of 128 ($80) enables DLI's
and 192 ($CO) enables both. A zero disables both.

KEYBOARD 1/0

16 ($10) POKEY Interrupts (POKMSK)
This location enab les and disables POKEY functions such as its timers, serial

input/ output data ready, and the BREAK key interrupt. The interrupt key can be
disabled by POKEing a 112 to this shadowed location, and at 53774 ($D20E). It is
better for the user to write his own routine for the BREAK key is reenabled whenever
RESET is pressed or when PRINT or OPEN statements address the screen. You can
store the location of your own interrupt routine at locations 566, 567 ($236,$237).

17 ($11) BREAK Key Flag (BRKKEY)
A zero means the BREAK key is pressed; any other number means it isn't.

764 ($2FC) Keyboard Character (CH)
This returns the value of the last key pressed. This value is neither internal or

AT ASCII but "raw" keyboard matrix code. A 255 ($FF) POKEd here clears it.

53279 ($DOIF) Console Keys (CONSOL)
Used to deternime if one of the three yellow console buttons have been pressed. It is

best to clear it first with the value of eight to ensure an accurate reading. A value of 6
indicates the START key has been pressed, a 5 the SELECT key, and a 3 the
OPTION key. The location reads a 7 when no CONSOLE keys are pressed, and a 0
when all are pressed simultaneously.

461

462

APPENDIX

JOYSTICK/PADDLE I/O
624-631 ($270-$277) Paddle Game Controller (PADDLO-PADDL7)

A number between zero and 228 ($E4) is returned in these locations for each of the
seven paddle potentiometers.

632-635 ($278-$27B) Joystick Controller Port (STICKO-4)
These locations return one of nine possible joystick positions for each stick. These

values range from 5-15 ($S-$F) . These values are 15 when the joystick is centered or in
the neutral position.

636-643 ($27C-$283) Paddle Trigger (PTRIGO-PTRIG7)
Used to determine if the button on each paddle is pressed. A zero is returned if it is

pressed and a one is returned when it isn't.

644-647 ($284-$287) Joystick Trigger (STRIGO-STRIG3)
These locations are used to indicate whether the joystick button is pressed. A zero

is returned if it is pressed, and a one is returned when it isn't.

PLAYER-MISSILE GRAPHICS
623 ($26F) Player/Playfield Priorities (GPRIOR)

Priority options select which screen objects will be "in front" of the others. Players
have presendence over all playfields when this location is one. A value of 4 gives the
playfields priority over all of the players, and values 2 and 8 allow only some of the
players to have priority over some of the players. In addition, the value 16 ($10)
allows the four missiles to be combined into a fifth player, and a value of 32 ($20)
allows players to be overlapped to produce a third color. This location is also used to
enable the three GTIA modes.

704-707 ($2CO-$2C3) Player-missile Color Registers (COLPMO-COLPM3)
Each of these locations determines the color of a player and its corresponding

missile.

53248-53251 ($DOOO-$D003) Player Horizontal Position Registers
(HPOSPO-HPOSP3)

These write only registers determine the horizontal positions of each of the four
players. Values range from 0- 277 ($0- $1 16).

53248-53251 (DOOO-$ D003) Missile to Playfield Collision Registers
(MOPF-M3PF)

These read only registers tell you which playfield the missiles have collided with.
The values are as follows; Playfield #0- 1, Playfield #1 -2, Playfield #2 -4, and
Playfield #3- 8.

53252-53255 ($D004-$D007) Player to Playfield Collision Registers
(POPF-P3PF)

These read only registers tell you which playfield the players have collided with.
The values are the same as with the missiles above.

APPENDIX

53252-53255 ($D004-$D007) Missile Horizontal Position Registers
(HPOSMO-HPOSM3)

These write only locations determine the horizontal positions of each of the
missiles. Values range from 0- 277 ($0- $116)

53256-53259 ($D008-$DOOB) Player Width Registers (SIZEO-SIZE3)
These write only locations control the widths of the players. Values 0 and 2

produce normal width players, 1 double width players, and 3 quadruple width
players.

53256-53259 ($D008-$DOOB) Missile to Player Collision Registers
(MOPL-M3PL)

These read on ly registers determine collisions between missiles and players. The
values are as follows; with player #0 -1, player #1 -2, player #2 -4, and with player #3
-8.

53260 ($DOOC) Missile Width Register (SIZEM)
This write only location controls the magnification of all four missiles. While a

value of 0 or 2 displays all of the missiles at normal width, 1 displays all of the
missiles at double width, and 3 displays all of the missiles at quadruple width,
missiles widths can be set individually. Each missile is controlled in two bit pairs
starting with the lowest. The bit values for the Oth missile is the same as above.

53260-53263 ($DOOC-$DOOF) Player to Player Collisions (POPL-P3PL)
These read only registers return non-zero values when players collide. In general,

the registers contain a 1 after a collision with player #0, a 2 after one with player #1, a
4 after one with player #2, and as 8 after one with player #3.

53277 ($DOID) Graphics Control Register (GRACTL)
This, when used in conjunction with DMACTL ($22F) enables player-missile

graphics. A value of 2 enables player DMA only, a value of I enables missile DMA
only, and a value of 3 enables both.

53278 ($DOIE) Clear Player-missile Collision Registers (HITCLR)
You POKE this location with any number to clear the collision registers. This is

normally done at the end of VB LANK after you have tested for all collisions.

54279 ($D407) Player-missile Base Registers (PM BASE)
This location contains the high byte starting address of your player-missile area.

SOUND
65 ($41) Input/Output Noise Control (SOUNDR)

Disk read/ write operations can be silenced by POKEing a zero to this location.

53760,53762,53764,53766 ($D200,$D202,$D204,$D206) Audio Channel
Frequency (AUDFI-3)

These locations control the frequency of the sound channels. The value N is used
in the divide by N circuit. Thus the notes or tone becomes lower when N becomes
larger. N can be in the range 1-256.

463

464

APPENDIX

53761,53763,53765,53767 ($D201,$D203,$D205,$D207) Audio Channel
Control (AUDCI-4)

These registers se t the volume and distortion levels.

53768 ($D208) Audio Control Register (AUDCTL)
This location a llows two channels to be jo ined for grea ter frequency range, and

a llows the user to vary th e poly-counters whi ch control noise, or to switch the clock
base from 64KHz to 15KHz for a change in frequen cy range. To properly initialize
the POKEY sound capabilities POKE AUDCTL with zero and POKE 53775,3
(D02F). This is eq uivalent in BASIC of SOUND 0,0,0,0.

MISCELLANEOUS
18,19,20 ($12,$13,$14) Internal Realtime Clock (RTCLOK)

Locations 20 increments every VBLANK interrupt or 1/60 second until it reaches
255 ($FF). Locatio n 19 is then incremented by one and 20 is reset to zero. Likewise ,
loca tion 18 is incremented when 19 reaches 255 . This happens every 18.2 minutes.

53770 ($D204) Random Number (RANDOM)
This location produces a random number from ° -255 ($0 -$FF) when read.

58454 ($E456) Central Input/ Output (CIO) Utility Entry (CIOV)
This is actually a su broutine in the OS ROM that is u sed to pass 110 operations to

the correct device driver. Once parameters are se t in the correct 10CB's you jump
here to use them. While BASIC onl y supports one byte-at-a-time 10 (GET and
P UT), addressing ClOY direc tly a llows the user to input or output a buffer of
charac ters a t a tim e.

58460 ($E45C) Set Vertical Blank (SETVBK)
This OS routine, which sets system timers during the VBLANK routine, insures

that both bytes of the vector addressed will be updated while VBLANK is enabled.

58466 ($E462) Exit Vertical Blank (XITVBK)
T his OS subroutine is used to restore the computer to its pre-interrupt sta te upon

ex iting the user 's VBLANK rou tin e. The computer can then resume normal
processll1g.

B: A T ASCII Character Set

o

1

2

3

4

5

6

7

8

9

10

11

12

o

1

2

3

4

5

6

7

8

9

A

B

C

C
G
III
g

a
~

~

~

~

1ft
~

iii
~

13

14

15

16

17

18

19

20

2 1

22

23

24

25

o

E

F

10

11

12

13

14

15

16

17

18

19

ii
~

~

D
~

= c
c
~

III
~

~
(]

APPENDIX

26 lA

27 lB

28 lC

29 10

30 lE

31 1F

32 20 Space

33 21

34 22

35 ,23 /I

36 24 $

37 25

38 26

465

APPENDIX

39 27 55 37 7 71 47 G

40 28 56 38 8 72 48 H

41 29 57 39 9 73 49

42 2A * 58 3A 74 4A J

43 2B + 59 3B 75 4B K

44 2C 60 3C < 76 4C L

45 20 61 3D = 77 40 M

46 2E 62 3E > 78 4E N

47 2F / 63 3F ? 79 4F o

48 30 o 64 40 @ 80 50 p

49 31 1 65 41 A 81 51 Q

50 32 2 66 42 B 82 52 R

51 33 3 67 43 C 83 53 s

52 34 4 68 44 o 84 54 T

53 35 5 69 45 E 85 55 u

54 36 6 70 46 F 86 56 v

466

APPENDIX

~ " ~v
$' v~ ~ v~ $' v~

~" 'O~~~ ~6 ~ ~()~ 6 ~ 'O¢'.,,~ ~6 ,,~,,~ ~~ ~"o" ~ ¢~,,~ +~"o ~ ~c; 0" ~ () ~~ +~"o ~ ,,~ ,,0 ~~ ,,~ " () ~ ()
,,~ ,,0 ~~ ,,~

87 57 W 103 67 g 119 77 w

88 58 X 104 68 h 120 78 x

89 59 Y 105 69 121 79 Y

90 SA Z 106 6A j 122 7A z

91 5B [107 6B k 123 7B D
92 5C \ 108 6C 124 7C

93 50] 109 60 m 125 70 IJ
94 5E A 110 6E n 126 7E [)

95 SF 111 6F 0 127 7F D
96 60 C 112 70 P

97 61 a 113 71 q

98 62 b 114 72 r

99 63 c 115 73 s

100 64 d 116 74

101 65 e 117 75 u

102 66 f 118 76 v

467

468

APPENDIX

C: Assembler Comparisons

SYN ASSEMBLER ATARI ASSEMBLER

F-S MACRO

.OR $600 * = $600

.EQ =

.BS 5 * = * + 5

.HS FFFFFF .BYTE $FF,$FF,$FF

.DA #20,#40 .BYTE 20,40

.DA $E474 }

.DA START

.wORD $E474 }

.wORD START

.AT "HELLO" .BYTE Using

(NOTE) internal HEX values

.AS "HELLO" .BYTE "HELLO"

LABEL # LABEL & $FF

I LABEL # LABEL I 256

BGE LABEL BCS LABEL

BLT LABEL BCC LABEL

.IN "D:PARTZ" ---

NOTE: The F-S Macro Assembler uses a .AS 1\ "HELLO"
where the 1\ is a Shift 1fsign.

MAC 65

.OR $600 or

* = $600

.EQ or =

.DS 5

.BYTE $FF,$FF,$FF

.BYTE 20,40

.wORD $E474 }

.wORD START

.SBYTE "HELLO"

.BYTE "HELLO"

#< LABEL

#> LABEL

BCS LABEL

BCC LABEL

.INCLUDE "#D:PARTZ"

ATARI MACRO

ORG $600

EQU or =

DS 5

DB $FF,$FF,$FF

DB 20,40

DW $E474 }
DW START

DB Using

internal HEX values

DB "HELLO"

LOW LABEL

HIGH LABEL

BCS LABEL

BCC LABEL

INCLUDE D:PARTZ

APPENDIX

EASTERN HOUSE MEANING

.BA $600 Define program origin

.DE Define equates

.DS 5 Reserves space for data

.BY $FF,$FF,$FF Define Hex idecimal data

.BY 20 40 Defines bytes

.SI $E474 } Define a two byte word

.SI START low byte, high byte order

.BY Using Define string using internal character values

internal HEX values

.BY "HELLO" Define string using ASC II va lues

#L, LABEL Returns Low byte (LOA # LABEL)

#H, LABEL Returns High byte (LOA / LABEL)

BCS LABEL Branch if > = (After a compare)

BCC LABEL Branch if < (After a compare)

.FI "DI:PARTZ" Include a file for Assembly

469

470

APPENDIX

D: Binary File Autorun

Since assembly language files (object code) generated by Syn-Assembler and many
other assemblers will not run automatically from the DOS menu without specifying
the run address, we have provided a BASIC language utility that will fix the
problem. Files run automatically from Atari DOS if the starting address in low byte,
high byte order is appended to the file, DOS reads these two values into locations
$2EO and $2El (736,737). Upon completion of the binary load, control is normally
passed back to the DOS menu. However, if there is an address in these locations, the
computer will jump to that location .

Our utility will append your fil e automatically, a function that used to be
provided with the / A command in the old DOS 1.0 menu. The program only asks for
the name of the file and its run address in decimal. Assuming the file in on the disk in
the disk drive, the utility will open the fil e, append the run address, then close it. It
will now run automatically when you load it from the DOS menu using the L
command.

10 REM MAKES BINARY FILE AUTO RUN -DAN PINAL
20 REM THE DOS RUN ADDRESS IS AT $2EO & $2E1
30 REM THIS ROUTINE APPENDS A NEW BINARY LOAD HEADER TO LOAD INTO $2EO TILL $2E1
40 REM THEN PUTS THE LOW & HIGH TO THE FILE AND CLOSES IT
50 DIM Q$(14),F$(14):F$="D:"
60 PRINT "NAME OF FILE TO APPEND";
70 INPUT Q$:F$(3)=Q$
80 OPEN #1,9,0,F$
90 REM PUT IN NEW HEADER $2EO - $2E1
100 PUT #1,224:REM $EO
110 PUT #1,2:REM $02
120 PUT #1,225:REM $E1
130 PUT #1,2:REM $02
140 PRINT "INPUT RUN ADDRESS IN DECIMAL";
150 INPUT A
160 HI=INT(A/256):LO=A-HI*256
170 PUT #1,10
180 PUT #l,HI
190 CLOSE #1

E: Source Code for Chapters 3 & 5

00010 *CHARACTER SET MOVE ROUTINE
00020 *A=USR(1664,CHRAMH,l OR 2,PAGES)
00030 *
00040
00050

OOCB : 00060 CHRAML
OOCC: 00070 CHRAMH
OOCD: 00080 CHROML
OOCE: 00090 CHROMH

.OR $680

.TF "D:CHARMOVE.OBJ

.EQ $CB

.EQ $CC

.EQ $CD

APPENDIX

0680: 68 00100 START
0681: 68 00110

.EQ $CE
PLA
PLA

;PULL UNUSED BYTE OFF STACK
;DISCARD 10 BYTE

0682: 68 00120
0683: 85 CC 00130
0685: 68 00140
0686: 68 00150
0687: C9 01 00160
0689: FO 04 00170
068B: E6 CE 00180
068D: E6 CC 00190
068F: 68 00200 .1
0690: 68 00210
0691 : 8D AC 06 00220
0694: A9 00 00230
0696: 85 CE 00240
0698: 85 CC 00250
069A: A8 00260

PLA
STA CHRAMH
PLA
PLA
CMP #$01
BEQ .1
INC CHROMH
INC CHRAMH
PLA
PLA
STA PAGES
LDA #$00
STA CHROMH
STA CHRAMH
TAY

;RAM LOCATION OF CHARACTER SET

;START AT 1ST OR 2ND HALF?

;IF 2 SKIP 2 PAGES

;# PAGES

069B: B1 CD 00270 LOOP LDA (CHROML), Y ; LOAD FROM ROM
STA (CHRAML),Y ;STORE IN Rfu~ 069D: 91 CB 00280

069F: C8 00290
06AO: DO F9 00300
06A2: E6 CE 00310
06A4: E6 CC 00320
06A6: CE AC 06 00330
06A9: DO FO 00340
06AB: 60 00350

I NY
BNE LOOP
INC CHROMH
I NC CHRAMH
DEC PAGES
BNE LOOP
RTS

;DONE WITH 256 BYTE PAGE?
;NEXT ROM PAGE
;NEXT RAM PAGE

; DONE?

06AC: 00360 PAGES .BS 1

00010 *SOURCE CODE FOR LOAD OR SAVE CHARACTER SETS - DAN PINAL
00020 * CIO CALL TO SAVE OR LOAD CHRS
00030 * IOCB MUST BE OPPENED
00040 CIO

68 00050
68 00060
68 00070
OA 00080
OA 00090
OA 00100
OA 00110
AA 00120
68 00130
9D 45 03 00140
68 00150
9D 44 03 00160
68 00170
9D 49 03 00180
68 00190

PLA
PLA
PLA
ASL
ASL
ASL
ASL
TAX
PLA
STA $345,X
PLA
STA $344, X
PLA
STA $349,X
PLA

GET # ARGS OFF STACK
HIBYTE OF IOCB TO USE
IOCB

X16

BUFFER HI

BUFFER LO

LENGTH HI

LENGTH LO

471

APPENDIX

9D 48 03 00200 STA $348,X
68 00210 PLA Q$ HI
85 D5 00220 STA $D5
68 00230 PLA Q$ LO
85 D4 00240 STA $D4
AO 00 00250 LDY #$00
Bl D4 00260 LDA ($D4),Y
AO 07 00270 LDY #$07 FOR LOAD
C9 53 00280 CMP #'S SAVE/LOAD?
DO 02 00290 BNE .1
AO OB 00300 LDY #$OB THEN SAVE

00310 .1
98 00320 TYA
9D 42 03 00330 STA $342,X COMMAND
4C 56 E4 00340 JMP $E456 CIOV

00010 MATRIX CYC LER
00020 DAN PINAL
00030 .TF "D:MCYCLER.OBJ"
00040 .LI OFF
00050 CALL FROM BASIC
00060 X=USR(MCYCLER,ROI.J,COL,NATRI XH ,MATRIXV, STARTING CHARACTER)
00070 IF STARTING CHARACTER=O THEN \.JILL ERASE MATRIX
00080 ;
00090 POT~IPO . EQ $D4
00100 POTMP1 . EQ $D5
00110 HLIMIT . EQ $CE
00120 VLHlIT .EQ $CF
00130 SCREENLO . EQ $58
00140 SCREEN HI . EQ $59
00150 ;
00160 MCYCLER

68 00170 PLA GET # OF ARGS OFF STACK
68 00180 PLA HI BYTE OF ROW - SHOULD BE 0
68 00190 PLA ROI.J
A8 00200 TAY
A6 59 00210 LDX SCREENHI
68 00220 PLA
68 00230 PLA COLU~IN
18 00240 CLC
65 58 00250 ADC SCREENLO
90 01 00260 BCC .1
E8 00270 INX

00280 . 1
88 00290 DEY
30 08 00300 BMI .2 ONLY EXIT
18 00310 CLC
69 28 00320 ADC #$28 +40 FOR NEXT ROW
90 F8 00330 BCC .1
E8 00340 INX
DO F5 00350 BNE . 1 ALl.JAYS

00360 . 2
85 D4 00370 STA POT~IPO
86 D5 00380 STX POTMPI
68 00390 PLA
68 00400 PLA
85 CE 00410 STA HLIMIT
68 00420 PLA
68 00430 PLA
85 CF 00440 STA VLHlIT
68 00450 PLA

472

APPENDIX

MATRIX CYCLER

GET PARAMETERS FROM
BASIC (MATRIX SIZE)

1ST CHARACTER & POSITION

I
CALCULATE SCREEN

ADDRESS OF STARTING
POSITION=40YtX

I
I

I STORE CHAR I ON SCREEN

I
I CHAR=O?

IYES
I

iNO

INCREMENT CHAR
VALUE TO STORE ON
SCREEN NEXT TIME

I
r

I HAVE WE COMPLETED INO
A MATRIX ROW? I

iYES

I ALL MATRIX lNO

iYES

I RETURN TO BASIC 1
68 00460 PLA
AA 00470 TAX

00480 PLOT
AO 00 00490 LDY #$00

00500 . 1
91 D4 00510 STA (POTMPO) , Y
C9 00 00520 GiP #$00 ; ERAS I NG?
FO 02 00530 BEQ . 2
E8 00540 INX
8A 00550 TXA

00560 . 2
C8 00570 INY
C4 CE 00580 CPY HLI~lIT

DO F3 00590 BNE . 1
18 00600 CLC

473

474

APPENDIX

A9 28
65 D4
85 D4
90 02
E6 D5

8A
C6 CF
DO El

60

00D4:
00D5:

06AO:
06A1:
06A2:
06A4:
06A5:
06A7:
06A9:
06AB:
06AD:
06AF:
06BO:

06B2:
06B4:
06B5:
06B7:
06B9:

68
68

00610
00620
00630
00640
00650
00660 .3
00670
00680
00690
00700
00 71 0
00720

LDA #$28
ADC POTNPO
STA POTMPO
BCC . 3
INC POnlPl

TXA
DEC VLnl IT
BNE PLOT

RTS

00010 *PM CLEAR ROUTINE
00020 *A=USR(PMBASE)
00030 PMBASEL .EQ $D4
00040 PMBASEH .EQ $D5
00050 .OR $6AO

+40 FOR NEXT RO\</

00060 . TF "D: CLEAR. OBJ"
00070 CLEAR PLA ;PULL # OF BYTES OFF STACK
00080 PLA ; PULL HI BYTE PMBASE

85 D5 00090 STA PMBASEH
68 00100 PLA ; PULL LO BYTE PMBASE
85 D4 00110 STA PMBASEL
A2 00 00115 LDX #$00 ;PAGE COUNTER
AO 00 00120 .1 LDY #$00 ;PAGE BEGINS AT 0
A9 00 001 30 LDA #$00 ;LOAD ZERO TO ERASE
91 D4 00140 .2 STA (PMBASEL),Y ;STORE IN PM AREA
C8 00150 INY ;NEXT BYTE IN MEMORY
DO FB 00160 BNE .2 ;DO ALL 256 BYTES

00170 *AT 256TH BYTE WRAPS BACK TO 0 IN Y REGISTER; FALLS THROUGH
E6 D5 00180 INC PMBASEH ;DO NEXT PAGE
E8 00190 INX ; UP COUNTER
EO 08 00200 CPX #$08 ;FINISHED WITH 2K BLOCK
90 FO 00210 BLT .1 ;NO, START NEXT 256 BYTE PAGE
60 00220 RTS ; DONE!

INDEX
Addressing modes 85

-Indirect indexed 137,3 18-3 19
-Indexed indirec t 318-3 19

Animation
-bird exa mple 74-77
-by ro ta ting characters se ts 67-68
-by using d ifferent charac ters 68-74

ANTIC
-blankin g in structions 39
- description 9- 17
-DLI instruc tion 38
-jum p instruc tions 39
-instruction set 37
- scro lling instruction 38

Anifac ting 313
Assemblers 79-80
AU DFI-4 35 1-352
AU DC I-4 352
AU DCTL 353
Binary Coded Decimal numbers (BCD) 98
Binary nu mbers 80
Bit mapping shapes 316
Blimp example 328-349
Bomb drop 252-253
Breakout game - BASIC 90-94

Assemb ly Language 95- 109
Character base - hardware & shadow registers 54
Character set

- A T ASCII order 52
- customizing 54
- descri p tion 51
- ed itor 59-63
-loader 62
-mov ing set 54
-multi-colored 63 -66
- redefi ned as p ump kin G R.O 55
- redefined as pum pkin G R.O 57

Charac ters
- color in GR. I & 2 53
- des ign 51
-loca tion in set 54

Collisions - ras tered shapes 327
- scro lling game 266-267

Color
-in charac ter sets 19
-introduction 10
-playfield registers 17
- shadow registers 18
- values for colo rs 19
-multiple color p layer enable 11 5

COLOR command 19
CTIAIGTIA 17
Display list

- custom list 46-48
- G R. 0 40-41
-mixing graphics modes 42
-moving text window 43 -44

Display list interrupts 204-208
DLI subroutine for shoot bricks game 156
DOS 15

475

476

INDEX

DMACTL 11 6
DRAWTO 20
Dynam ics of mo tion

- accelera tion 123- 124, 162-1 64
~ve loc ity 121-1 22

Explosions 146, 175-176, 254-256, 414-4 16
Game des ign

- contro llability 450
- examples 45 1-455
-fantas ies 447
-logica l se t of rul es 448
- obj ectives 447
- " perks" 449
-triangula r rela tionships 448
- var iable diff iculty level 448

Games - Brea kou t 90- 109
-Maze game 357-404
-Scrolling ga me 24 1-3 12
- Shoot bri cks 150-161
- Space War 144- 150, 162-192
-Tank game 405-445

Graphic modes
-descriptio n II , 23 -30
-rela tive sizes 28-29

Graphics commands (OS)
GTIA I CTIA 9
GTIA modes 30-34
GTIA rotat ing co lors 33
GTIA using G R. 0 mode 34-37
GRACTL 116
Hexadecima l numbers 80
In struction s - assemb ly language

- additi on 89
-AND 139,327
- ASL 97
-branch 87-88
-decrement 86
- EOR 322
-increment 86
-jump 87
-LSR 97
- ORA 139,322
- stack 86
- subtract ion 89

Interrupts 20 1
Joyst ick contro l 127 , 164- 165
Kernels 209
Kernels - fo r an ima tion 216-2 19
Kernels - multi-colored players 210-213

-hor izonta l split screen 213-2 16
Lasers - scrolling ga me 250-251 , 264-265
Load Memory Scan (LMS) 37
LONEM 15
Maze game 357-404
Memory - considera tio ns in assemb ly language 82
Memory map 14- 15
Op Codes 6502 83
Pause fea ture 378
Player- mi ss ile g rap hics

- co llision registers 146
- color registers 11 4
- editor 192-196
-hard ware opera tion III
-initialization 125

-introduction 10, 111-11 5
-memory map 11 3
-missil e movement 129
-missiles 11 4, 137- 14 1,171- 174
-movement via strings 196-199
-moving players vertica lly 117
-priority 114, 130-1 3 1
-registers in chart 11 5
- reserving memory 116
-shape data 11 2
-vertical move subroutine 119-120,135-1 43

PLOT 20
Plotting points with custom display li sts 48-49
PMBASE 117
PRINT #6 49
Program Counter 82
Program Status Word 82
Programmable a liens 257-263
RAMTOP 15
Raster graphics 313
SETCOLOR command 19
Scoring - scro lling game 269-271
Screen memory 16 space war game 177
Scrol ling

- coase horizontal 223
- coarse vertical 222
-eightway - genera l case 233-239
-eightway - special case 229
-fine horizontal 228
-fine scrolling registers 225
-fine vertical 228
-game 241-312
-introduction 11 , 221

SETVBK 204
Shoot Bricks game 150- 161
Sound -background 329

-background music 353-354
-BASIC statement 349-350
-effects (Assemb ly) 355-356
-effects (BASIC) 350-351
-scrolling game 271

Spaceship example 117-119
Space War game - BASIC 144-150
Space War game - Assemb ly language 162-192
STICK 128
STRIG 129
Strings - storage in BASIC 197
Table lookup 233,316
Tank game 405-445
Television sets 12-14
Timers 153
USR function and operation 136
Vblank - code finished test 329
Vertical Blank Interrupts 202-204
XDrawing shapes 322
XIO fill command 20
XITBVK 204

INDEX

477

478

ABOUT THE AUTHORS

Jeffrey Stanton received a BME (1967) and a MSME (1969) from Rensselaer
Po lytechnic Institute. H e worked as a con trol systems engineer and mechanical
engineer for the aerospace industry in the early 1970's. His interes t in computer game
design sidetracked his career as a photographer and book illustrator in the late
1970's. In addition to writing several Apple arcade games and doing some occasional
consulting, he is the author of Apple Graphics and Arcade Game Design, and one of
the editor/ reviewers for the books of Apple and A tari Computer Software. He
currently divides his time between writing and reviewing software in the mornings,
and operating a postcard stand on the Venice Beach boardwalk in the afternoons. He
lives in Venice, California.

Dan Pinal, typical of many of the early computer hobbyists, is self educated. He
was o ne of the first to own an Atari computer, and en tered the micro-computer
industry a year later. Dan consulted, taught and did game programming for two
softw are houses at the peak of the game market in 1983. He h as one Atari game
curren tly on the market. Dan currentl y lives in Los Angeles, California.

JEFFREY STANTON DAN PINAL

PROGRAM LISTINGS & ASSEMBLER
The code listed in this book, available on diskette only, and the F-S Macro Assembler

40/ S0 can be ordered using this coupon.
P lease send me:

BASIC program listings only: $10.00 each

Assembly language listings only: $15.00 each

All program listings (2 disks - includes playable games):
$20.00 each

Playable games only: $12.50 each

F-S Macro Assembler 40/ S0: $50.00 each

Sales tax (California residents add 6!1%)

Postage and handling (source listings - $1.50)

Postage and handling (F-S Macro Assembler - $1.50)

TOTAL

] Enclosed is my check or money order (Sorry, no credit cards), payable to

STANTON PRODUCTS.
Name __ ___

Address __ __

City _________________________________ State _____ Zip ___ _

Mai l to: STANTON PRODUCTS
37 10 PACIFIC AVENUE #16
MARINA DEL REY, CALIFORNIA 90292

Other ATARI Books Available from Arrays, Inc. / The Book Division
() The Book of Atari Software - 19S5: $19.95

() The Atari User's Encyclopedia: $19.95

() Atari Color Graphics: A Beginner's Workbook: $12.95

Sales tax (California residents add 6!1%)

(Postage will be paid by Arrays, Inc. / The Book Division)

TOTAL

] Enclosed is my 0 check, 0 money order, 0 Visa or 0 MasterCard
______________ Signature ____________ _

Payable to Arrays, Inc.

Name
Address ___________________________ __

City _________________ State ____ Zip ___ _

Mail to: ARRAYS, INC.lTHE BOOK DIVISION

11223 SOUTH HINDRY AVE.

LOS ANGELES, CALIFORNIA 90045

	Cover
	Contents
	Preface
	1: Graphics Modes and Color Registers
	2: Display lists
	3: Character Set Graphics
	4: Assembly Languge Applied to Game Design
	5: Player/Missle Graphics
	6: Vertical Blank And Display List Interupts
	7: Games that Scroll
	8: Raster Graphics & Sound
	9: Advance Arcade Techniques
	10: Game Design Theory
	Appendix
	A: Useful PEEKs and POKEs
	B: ATASCII Character Set
	C: Assembler Comparisons
	D: Binary file Autorun
	E: Source Code Chapters 3 & 5

	Index

