

BASIC
REFERENCE
MANUAL

Dlh,
ATARI

E rr. 'y o' ' ort r , i~ t , • " " . ((I i ' ' i , . r " I ' o ' ' ' ! , r r , r , : I , . r ,o,:Ir 'i , f(, ' (t ' ' ' ' ' (
.

' (' . i' or o' ' ' i A IT(fr l
tr(.,' ' ' , ; (.' tr (A A P I , i rx l I- o f " i ' C ((1 ' ' o ' r ' ' . 6 J (' " . i ' t ((, r . . (r i , 'r .o f ',:''I v

r".O r (' r;; .i r " u t ! o , i t r i (, i , r i ; i r " O . ; i r i " , . . . i ,r i O ' i , i "o:, r A TA f i l If~I x i i, i „ i i r„ i„ i , rr I i o I ' rr
..Or i(' O' O ' i ' I (O ' ' r: : ' r . ' r r : ' '. . ' I ' r ' (I : i Of (; , .O „ : r ' (O ! , r! O O i (I i « ' i„, ' , fo r . t ; , i i o ! ' r'r '(' o
o r' .',. (0' ' ,

i !!Ir i ATAPI RC A I ' „ " " , . r
N;) rr "' o o „o I i ' i ; r t ' r ' I " : ' i i ,i o' ir oo'' I i ' ' ' ' I' ' (r i ' r tx 4 , :I l c r . (!EJ .'. r r J. I ~ I)r=oi i .' . I I t r ' i " I ' r o ' 8 ' I Q '
of A APi I x IC;

ERROR CODES
ERROR
CODE ERROR CODE MESSAGE

2 3 4 5
Memory Insufficient
Value Error
Too Many Variables
String Length Error

6 7 Out of Data Error
Number greater than 32767

8 9 10
Input Statement Error
Array or String DIM Error
Argument Stack Overflow

11 Floating Point Overflow/
Underflow Error

12 Line Not Found
13 No Matching FOR Statement
14 Line Too Long Error
15 GOSUB or FOR Line Deleted
16 RETURN Error
17 Syntax Error
18 Invalid String Character
19 LOAD program Too Long
20 Device Number Larger
21 LOAD File Error
128 BREAK Abort
129 IOCB
131 IOCB Write Only
132 Invalid Command
133 Device or File not Open
134 BAD IOCB Number
135 IOCB Read Only Error
136 EOF
137 Truncated Record
138 Dewce Timeout
139 Device NAK
140 Serial Bus
141 Cursor Out of Range
142 Serial Bus Data Frame Overrun
143 Serial Bus Data Frame Checksum Error
144 Device Done Error
145 Bad Screen Mode Error
146 Function Not Implemented
147 Insufficient RAM
160 Drive Number Error
161 Too many OPEN Files
162 Disk Full
163 Unrecoverable System Data I/O Error
164 File Number Mismatch
165 File Name Error
166 POINT Data Length Error
167 File Locked
168 Command Invalid
169 Directory Full
170 File Not Found
171 POINT Invalid

For explanation of Error Messages see Appendix B.

CONTENTS

PREFACE

GENERAL INFORMATION
Terminology 1
Special Notations Used ln This Manual 4
Abbreviations Used ln This Manual
Operating Modes 5 6
Special Function Keys
1200XL Keys and Indicators 6 7
1200XL Self Test
Arithmetic Operators 8 9
Logical Operators 9
Operator Precedence 10
Built-In Functions 10
Graphics 10
Sound and Games 10
Wraparound and Keyboard Rollover 11
Error Messages 11

COMMANDS
BYE 12
CONT 12
END 12
LET 13
LIST 13
NEW 14
REM 14
RUN 14
STOP 14

EDIT FEATURES
Screen Editing 15
Control (CTRL) Key 15
Shift Key 15

Double Key Functions 16
Cursor Control Keys 16
Keys Used With CTRL Key 16
Keys Used With Shift Key 16

Special Function Keys 16
Break Key 16
Escape Key 16

ATARI 1200XL Key Functions 17

PROGRAM STATEMENTS
FOR/N EXT/STE P 18
GOSU B/RETURN 19
GOTO 21
IF/THEN 22
ON/GOSUB 24
ON/GOTO 24
POP 25
RESTORE 27
TRAP 28

INPUT/OUTPUT COMMANDS
Input/Output Devices 29
CLOAD 30
CSAVE 30
DOS 31
ENTER 31
INPUT 31
LOAD 32

C C C C C C C C C C C

LPR I NT 32
NOTE 33
OPEN/CLOSE 33 C C
POI NT 34
PRINT 34
PUT/GET 35
READ/DATA 35
SAVE 36

C C C

STATUS 36
X IO 37 C'
Chaining Programs 38
Modifying a BASIC Program on Disk 38

C
FUNCTION LIBRARY
Arithmetic Functions 40
ABS 40 0 C
CLOG 40
EXP 40
I NT 41
LOG 41
RND 41
SGN 41
SQR 41

C C C C

Trigonometric Functions 42
ATN 42
COS 42

C C
S I N 42
D EG/RAD 42

Special Purpose Functions 42
ADR 42
FRE 42
PEEK 43
POKE 43
USR 43

STRINGS
ASC 45
CHR$ 45
LEN 46
STR$ 46
VAL 46
String manioulations 47

ARRAYS AND MATRICES
D I M 50
CLR 51

GRAPHICS MODES AND COMMA N DS
GRAPHICS 52
Graphics Modes 52

Mode 0 53
Modes 1 and 2 54
Modes 3. 5. and 7 55
Modes 4 and 6 55
Mode 8 55
Mode 9, 10 and 11 55

COLOR 56
D RAWTO 56
LOCATE 56
PLOT 57
POS I T ION 57
PUT/GET 57
SETCOLOR 58
XIO ISoec!al Fili Application) 61

1 SOUND AND GAME CONTROLLERS
SOUND 66
PADDLE 68
PTR I G 69
STICK 69
STR I G 69

1 ADVANCED PROGRAMMING TECHNIQUES
Memory Conservation 70Programming In Machine Language 71

APPENDIX A BASIC RESERVED WORDS 76

APPENDIX B ERROR MESSAGES 81

APPENDIX C ATASCII CHARACTER SET WITH DECIMAL/
HEXADECIMAL LOCATIONS 84

APPENDIX D ATARI 400/800/1200XL MEMORY MAP 93

APPENDIX E DERIVED FUNCTIONS 96

APPENDIX F PRINTED VERSIONS OF CONTROL CHARACTERS 97

APPENDIX G GLOSSARY 98

APPENDIX H USER PROGRAMS 102

APPENDIX I MEMORY LOCATIONS 119

APPENDIX J TABLE OF MODES AND SCREEN FORMATS 121

INDEX 123

PREFACE

This manual is not intended to "teach" BASIC It is a reference guide to the com-
mands, statements, functions, and special applications of ATARI'' BASIC.

Many of the programs and partial programming examples used in this manual
are photostats of listings printed on an ATARI printer. Some of the special symbols
in the ATARI character set do not appear the same on the printer; e.g., the clear
screen symbol " 1 " a ppears as a " l " . The examples in the text were chosen
to illustrate a particular function — not necessarily "good" programming tech-
niques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of ATARI BASIC. For instance, Section 9 contains
all the statements pertaining to the unique graphics capabilities of ATARI Home
Computers. The appendices include quick references to terms, error messages,
BASIC keywords. memory locations, and the ATASCII character set.

As there is no one specified application for the ATARI Home Computer System,
this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the ATARI computer system's
capabilities.

This revision of the manual includes information on the ATARI 1200 XL Home
Computer and the GTIA graphic modes. The ATARI 400/800 Home Computers may
not contain all the features in this manual.

GENERAL
INFORMATION

ThiS SeCtiOn explainS BASIC terminology, special notations, and abbreviations used
in this manual, and the spec ial keys on the ATARI Home Computer keyboard
also points to other sect ions where BASIC commands deal with specific applica-
I ions

TERMINOLOGY
BASIC: Beginner's All-purpose Symbolic Instruction Code

3 BASIC Keyword: Any reserved word "legal" in the BASIC language. May be used
in a statement, as a command. or for any other purpose (See Appendix A for a l ist
of all "reserved words" or keywords in ATARI BASIC.)
BASIC Statement: Usually begins with a keyword, like LET, PRINT, or RUN.
Keywords are shown in heavy cap ital letterS.

Command String: Multiple commands (or program statements) placed on the
same numbered line if statement numbers are used, or the same log ical line if
direct mode is used. The commands must be separated by colons.

Constant: A constant is a value expressed as a number rather than represented
by a variable name For example, in the statement X = 100. X is a variable and

3 j 100 is a constant. (See Variable)
Expression: An expression is any legal comb ination of variables. constants,
operators. and functions used together to compute a value Express ions can be
either arithmetic, logical, or string
Floating Point Number: A number contain ing an integer part. a decimal point. and
a fractional part. The total number of significant digits in a floating point number,
excluding the exponent, is nine

j

GENERAL INFORMATION i

— |

Function: A function is a computation built into the computer so that it can be
called for by the user's program. A function is NOT a statement, it is part of an ex-
pression. It is really a subroutine used to compute a value which is then
"returned" to the main program when the subroutine returns. COS (Cosine), RND
(random). FRE (unused memory space), and INT (integer) are examples of func-
tions In many cases the value is simply assigned to a variable (stored in a
variable) for later use In other cases it may be printed out on the screen im-
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are.

! rl [' f ' .'T i'!T i I ' ! I.) ~.' ()) (print out the random
number returned) C C

'I !! 'i",::::I Il O.l f":f'),".', (""i',"' } (add the value re-returned
tO 100 and StOre the tOtal
in variable X)

Logical Line: A logical line consists of one to three physical lines, and is ter-
minated either by the RETURN key or automatically when the maximum logical
line limit is reached. Each numbered line in a BASIC program consists of one
logical line when displayed on the screen. When entering a line which is longer
than One physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. If RETURN is
not entered, then both physical lines will be part of the same logical line.
Operator: Operators are used in expressions Operators include addition (+), sub.
traction (-) , multiplication (*), division (I), exponentiafion (A), greater than (>),
less than (() , equal lo (=), greater than or equal lo (> =) , less than or equal
lo ((=) , and no(equal lo ((>) . The logical keywords AND, NOT and OR are
also operators The + and — operators can also be used as unary operators, e.g.,
-3. Do nol put more than one unary operator in a row, e.g., --3, as the computer
may interpret it incorrectly.
Physical Line: One line of characters as displayed on a television screen.
String: A string is a group of characters enclosed in quotation marks.
"ABRACADABRA" is a string So are "ATARI MAKES GREAT COMPUTERS" and
"123456789". A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the character $.
For example, the string "ATARI COMPUTER" may be assigned to a variable called
A$ using (optional) LET like this:

:I. 0 I. T.;:T ii ' . I':-:"iiil I'iF f' (: ;()I'il: II "('[.:.'I,'" (note quotation marks)
,c.'. (I I I$: := I - ' I Tit['. I (: (.)H[''LJTI::::I.","

(LET is optional; the
quotes are required.)

2 GENERAL INFORMATION

Quotation marks may not be used within a string. However, the closing quotation
can be omitted if it is the last character on a logical l ine. (See Section 7-
STRINGS).
Variable: A variable is the name for a numer ical or other quantity, which may (or
may not) change. Variable names may be up to 120 characters long However. a
variable name must start with an alphabetic letter, and may contain only cap ital let-
ters and numerical digits. Do no/ use a keyword as a variable name or as the first
part of a variable name as it is not interpreted correctly. Examples of stor ing a
value in a variable

:! n> i...r:. f (:::t::-:,r)I,IF'.:.":I
,':' ('I I F.'; T V it F", I i'-if:.'L I:.::L:L .' ':-':: l ('~';" .",.I "(3
;"! () I,E T i" .i::.-1
'.I 0 I. F.:. T F. ';.iTI-I-': ~': <",.'!
';:! 0 L..F:.T Tl-I I B i ' I(:):.-'!'.!","+ ('! ll'i!

Note: LET is optional and may be omitted
Variable Name Limit: ATARI BASIC limits the user to 128 var iable names. To
bypass this problem, use ind ividual elements of an array instead of having separate
variable names. BASIC keeps all references to a var iable that has been deleted
from a program, and the name st ill remains in the variable name table.

If the screen displays an ERROR-4 (Too Many Variables) message, use the
following procedure to make room for new var iable names:

l.. I:.":! T I' : i.:I. i-:."=". I- E:. c.

I IF::li

I.::r~a F.::.F; i":L:L:e.:: R::: c

The LIST filespec writes the untoken ized version of the program onto a disk or
cassette NEW clears the program and the table areas. The program is then re.
entered, re-tokenized, and a new variable table is built. (The tokenized version is
Atari BASIC's internal format. The untokenized version is in ATASCII, which is the
version displayed on the screen).
Arrays and Array Variables: An array is a l ist of places where data can be filed
for future use. Each of these places is called an e/ement, and the whole array or
any element is an array variable. For example, define "Array A" as having 6
elements. These elements are referred to by the use of subscr ipted variables such
as A(2), A(3), A(4), etc. A number can be stored in each element. This may be ac-
complished element by element (using the LET statement), or as a part of a
FOR/NEXT loop (see Chapter 8).
Note: Never leave blanks between the element number in parentheses and the
name of the array
Correct Inco r rect
A(23) A (23)
A RRAY(3) A RRAY (3)
X123(38) X1 23 (38)

GE NE RAL INFORMATION 3

SPECIAL NOTATIONS
USED IN THIS MANUAL
Line Format: In deferred mode. the format of a line in a BASIC program includes
a line number (abbreviated Io Iineno) at the beginning of the line followed by a C
Statement keywOrd. fOIIOwed by the bOdy Of the Statement and ending with a line
terminator command (RETURN key) In an actual program, the four elements
might look like this:

STATEMENT
C C C

Line Number K eyword Body Terminator
100 PRINT A/X * (Z + 4.567) R E TU R N key

Several statements can be typed on the same line provided they are separated by
colons (.) See IF/THEN in Section 4 In direct mode, the format is identicat, except
that nO line number is used. and the statement is processed immediately after the
RETURN key is pressed
Bold Capital Letters: In this manual. denote keywords to be typed by the user in
upper case form exactly as they are printed in this text Here are a few examples

C C C C C

P R INT INPUT LIST END GOTO G OSU B FO R NEXT IF

Capital Letters: In this manual. are used to identify keys on the keyboard. such as
RETURN, SELECT, etc

C C

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables (var),
expressions (exp). and the like The abbreviations used for these classes of items
are ShOwn in Table 1-1
Items in Brackets: Brackets. [] . contain optional items which may be used. but
are not required If the item enclosed in brackets is followed by three dots [,exp...],
it means that any number of expressions may be entered. but none are required
Items stacked vertically in braces: Items stacked vertically in braces indicate
that any one of the stacked items may be used. but that only one at a time is per-
missibie In the exampie below. type either the GOTO or the GOSUB.

GOTO00 GOSU B 2000 C C

Command abbreviations in headings: If a command or statement has an ab
breviation associated with it. the abbreviation is placed following the full name of
the command in the heading. e g LET (L.)

4 GENERAL INFORMATION

ABBREVIATIONS USED
IN THIS MANUAL
The following table explains the abbreviations used throughout this manual
TA B LE 1.1 A B B R EV I AT I 0 N S
AVAR Arithmetic Variable: A location where a numeriC value is stored Var iable

ndmes may be from I 10 120 alphanumeric characters, but must start w ith an
alphabetic character. and all characters must be unreversed and all alpha
characters must be upper case

SVAR String Variable: A location where a str ing Of Characters may be stored The
same name rules as avar apply except that the last character in the var iable
name must be a S String variables may be subscripted See Section 7,
STRINGS.

MVAR Matrix Variable: AISo called a Subscrrpfed Vaiiable An element Of an array Or
matrix The variable name for the array or matrix as a whole may be any legal
variable name such as A, X, Y, ZIP, or K. The subscripted var iable (name tor
the particular element) StartS with the matrix variable. and lnen uses a number
variable or expression in parentheses immediately following the array or
matrix variable For example. A(ROW), A(1), A(X + 1).

VAR Variable: Any Variable May be MVAR AVAR. Or SVAR
AOP Arithmetic operator. (+ - ' I A)
LOP Logical operator. (NOT AND OR)
AEXP Arithmetic Expression: Generally composed of a variable. funct ion, constant.

or lwo dr lliifnelic expi essions separated by an arithmetic operator
LEXP Logical Expression: Generally composed of two aritlimetic or String expreS.

sions separated by a logical operator Such an expression evaluales lo either a
1 (logical true) or a 0 (logical false)
For example. the expression I (2 e v a luates to the value I (true) while the ex
pression ' I EMON" = "ORANGE ' evaluateS to a zerO (false) as tlie twO
strings are nol equal

SEXP String Expression: Can consist of a string variable. string literal (conStant). Or
a function that returns a string value

EXP Any expression. whether Sexp Or aexp
LIN END Line Number: A constant that ident ifies a particular program line in a deferred

mode BASIC program Must be any integer from 0 through 32767 L ine
numbering determines the order of program execution

ADATA ATASCII Data: Any ATASCII character excluding commas and carriage
returns (See Appendix C)

FILESPEC File Specification: A string expression that refers to a dev ice such as the
keyboard or to a disk file l t contains information on the type of IIO dev ice. its
number, a colon, an optional file name and an opt ional filename extender
ISee OPEN, Section 5)
Example fileSpeC: "Dt NATALIE ED"

GENERAL INFORMATION 5

OPERATING MODES

Direct Mode: Uses no line numbers and executes instruction immediately after
RETURN key is pressed eDeferred Mode: Uses line numbers and delays execution of instruction(s) unt il the
RUN command is entered

Execute Mode: Sometimes called RUN mode After RUN command is entered,
each program line is processed and executed

e C
Memo Pad Mode: A non-programmable mode that allowS the user to exper iment e
with the keyboard or to leave messages on the screen. Nothing written while in
Memo Pad mode affects the RAM.resident program. C

SPECIAL FUNCTION KEYS
Reverse (Inverse) Video key, or "ATARl LOGO KEY". This ekey is used on the 400/800 Pressing this key causes the text
to be reversed on the screen (dark text on light background).
Press key a second time to return to normal text.
Reverse (Inverse) video key. This key is used on the 1200xL.
Pressing this key causes the text to be reversed on the e e
screen (dark text on light background). Press key a second
time to return to normal text.

CAPS/LOWR LOWer CaSe key: PreSSing thiS key On the 400/800 ShiftS the
screen characters from upper case (cap itals) to lower case
To restore the characters to upper case, press the SHIFT key
and the CAPS/LOWR key simultaneouSly.

0 0 0

CAPS Upper/Lower Case key: Pressing this key on the 1200XL 0changes the screen characters from upper to lower or the
reverse each time it is pressed The SHIFT key is no/ used.

ESC Escape key: Pressing this key causes a command to be 0 0
entered into a program for later execution
Example: To clear the screen, you would enter:
10 PRINT "ESC CTRL CLEAR"
and press RETURN.

0 0
Escape is also used in conlunct ion with other keys to print
special graphic control characters. See Appendix F for the
specific keys and their screen-character representations. 0 C'

BREAK Break key: Pressing this key dur ing program execution
causes execution to stop. Execution may be resumed by typ-
ing CONT followed by pressing RETURN C C

SYSTEM RESET System Reset key: Similar to BREAK in that pressing this
key stops program execution. Also returns the screen display C'
to Graphics mode 0, clears the screen, and returns margins
and other variables to their default values. C

6 GENERAL INFORMATION

SET-CLR-TAB Tab key: Press SHIFT and the SET-CLR-TAB keys
simultaneously to set a tab To clear a tab, press the CTRL
and SET-CLR.TAB keys simultaneously. Used alone, the
SET-CLR-TAB advances the cursor to the next tab position
In Deferred mode, set and clear tabs by preceding the above
with a line number, the command PRINT, a quotation mark,
and press the ESC key.
Examples:
100 PRINT "ESC SHIFT SET-CLR-TAB'
200 PRINT "ESC CTRL SET-CLR-TAB"
Default tab settings are placed at columns 7, 15, 23, 31, and
39 The leftmost screen position is column 0. but entry beg ins
in column 2. A total of 38 columns (or character positions)
can be shown in one line on the screen.

INSERT Insert key: Press the SHIFT and INSERT keys simultane.
ously to insert a line. To insert a single character, press the
CTRL and INSERT keys simultaneously.

DELETE BACK Delete key: Press the SHIFT and DELETE keys
simultaneously to delete a line. To delete a single character,
press CTRL and DELETE simultaneously.

DELETE BACK Back Space key: Pressing this key replaces the character to
the left of the cursor with a space and moves cursor back
one space

CLEAR Clear key: Pressing this key while holding down the SHIFT or
CTRL key blanks the screen and puts the cursor in the upper
left corner.

RETURN Return key: Terminator to indicate an end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted
and added to a BASIC program RAM An unnumbered line (in
Direct mode) is interpreted and executed immediately Any
variables are placed in a variable table

1200XL KEYS AND INDICATORS
The keys and indicators described in this section are for the 1200XL only.
POWER-ON This indicator is on when power to the computer is on.
INDICATOR
L1 INDICATOR The co r n u ter ke board is disabled when this indicatorp y IS

on. Refer to function key F1.
L2 INDICATOR The computer has the European character set enabled

when this indicator is on. Refer to function key F4.
FUNCTION KEY F1 This key moves the cursor up in one-line increments. It

repeats if held down. If used with the shift key, the cursor
moves to the upper left corner (also called "home
position") of the screen. If used with the control key, it acts
as a toggle to enable or disable the keyboard LED 1 is
lighted when the keyboard is disabled.

GENERAL INFORMATION 7

FUNCTION KEY F2 This key moves the cursor down in one-line increments
repeats if held down. If used with the shift key, the cursor
moves to the lower left corner of the screen If used with
the COntrOI key. it aCtS aS a 1Oggle tO enable Or d iSable the
Video presentation When the v ideo presentation is dl S
abled, the processing speed of the 1200XL is increased

FUNCTION KEY F3 This key moves the curSOr tO the left in One-space in-

C C C C

crementS lt repeats if held down It used w ith the shift key
the cursor moves to the left s ide of the screen. If used with
the control key. it acts as a toggle to enable or disable the
key click sound

FUNCTION KEY F4 This key moves the cursor to the right in one-space in.
crements l t repeats if held down I f used w ith the shift key,
the cursor moves to the r ight side of the screen I f used
with the control key. it allows the user IO Select either the

C C

domestic or European character set Each time the 1200XL
is powered up, the domestic character set is selected by
the operating system When the European character set is
selected (by the user), LED 2 is lighted

C C
HELP KEY This key provides user access to additional informat ion on

the operation currently in progress, if the programming for
that function has been implemented C C

ATARI 1200XL SELF TEST
The self. test function allows the user tO verify that the 1200XL is fully operational
To begin the test. remove any cartridge and turn off any d isk drive Press SYSTEM C
RESET. A dynamic rainbow ATARI should appear on the screen. Press HELP to
view the self-test menu

Use the SELECT key to pick any or all of the tests The selection that is flashing C C
is the current selection Press START to beg in the test The test cycles repeatedly
until either the HELP key or the SYSTEM RESET key is pressed The HELP key
returns to the menu, the SYSTEM RESET key reboots the system and d isplays the
rainbow ATARI again

The memory test displays two long bars in l ine Each bar represents one of the
8K ROMs that contain the operating system If a bar turns green, the correspond.

C C C

ing ROM is good. if the bar turns red. the ROM is bad Immediately below the ROM
test display. the RAM test is d isplayed in three segmented lines e

The RAM test displays a total of 48 color segments. each representing 1K of
RAM As each 1K segment is tested it is shown in wh ite, and if it is good it turns to
green If a segment turns to red. the correspond ing 1K of RAM is bad As each
segment of RAM is tested. LED1 and LED2 are turned on alternately. prov iding a
teSt fOr them alSO
The keyboard test displays a keyboard on the screen As each key is pressed.

the "key" on the screen is shown in inverse video and a tone is generated
The audio. visual test displays a mus ical staff containing Six noteS. The test

cycles through four "voices" of six notes each. generat ing a tone as each nOte is
displayed

If the ALL TEST iS SeleCted. the 1200 CyCleS thrOugh the entire range Of teStS
continuouSly The keyboard test is performed by the computer using a random

C C C C f f

selection of 10 to 20 keys being tested on the screen

8 GENERAL INFORMATION

ARITHMETIC OPERATORS

The ATARI Home Computer System uses f ive arithmetic operators:
+ addition (also unary plus; e g., + 5)

subtraction (also unary minus: e.g., — 5)
* multiplication
/ d ivision
A exponentiation

LOGICAL OPERATORS
The logical operators consist of two types: unary and binary. The unary operator is
NOT. The binary operators are:
AND Log i cal AND
OR Logi c al OR
Examples:

1 0 T.l-' I"I '" .L ..'. I"li'!() " I :::: 0 1 I-ii::.i'! Both expressions must be
I: I i:'i: i'! T " (. (:I (.1!.) " true before GOOD is

printed.

If both expressions true,
A = + 1 , o therwise
A = 0 .

i"i--- (f"'+ '('! f';I! ', (i'I-- '(, '! If either expression true,
A = + 1 : o therwise
A = 0 .

''! '.) I'":I-- i' (I,! I" ((. i:I.) If expression is false.
A = + 1 , o therwise
A = O

The rest of the binary operators are relational.
The first expression is less than the second expression.
The first expression is greater than the second.
The expressions are equal to each other.
The first expression is less than or equal to the second.
The first expression is greater than or equal to the second.
The two expressions are not equal to each other.

These operators are most frequently used in IF/THEN statements and logical
arithmetic.

GENERAL INFORMATION 9

OPERATOR PRECEDENCE
Operations within the innermost set of parentheses are performed first and pro-
ceed out to the next level When sets of parentheses are enclosed in another set,
they are said to be "nested." Operations on the same nest ing level are performed
in the following order:
Highest <, >. =, < =,> = , < > Re l a t ional operators used in string expres-
precedence sions have same precedence and are per.

formed from left to right.
Unary minus
Exponentiation.

', I Mul t ipl ication and division have the same
precedence level and are performed from
left to right.

+, — Addition and subtraction have the same
precedence level and are performed from
left to right.
Relational operations in numeric expres-
sions have the same precedence level from
left to right.

NOT Unary operator
AND Logical AND

Lowest OR L o g ical OR
precedence

BUILT-IN FUNCTIONS
The section titled FUNCTION LIBRARY explains the arithmetic and special func-
tions incorporated into ATARI BASIC.

G RAP HICS
ATARI graphics include 16 graphics modes for the ATARI 1200, and 12 graph ics
modes for the ATARI 400 and 800 if the GTIA chip is installed, and 9 modes if the
CTIA chip is installed The commands have been designed to allow maximum flex-
ibility in color choice and pattern variety. Section 9 explains each command and
gives examples of the many ways to use each.

SOUND AND GAMES CONTROLLERS

The ATARI Home Computer is capable of emitting a large variety of sounds in-
cluding simulated explosions, electronic music, and "raspberries." Section 10
defines the commands for using the SOUND funct ion and for controlling paddle,
Ioystick, and keyboard controllers.

io GENERAL INFORMATION

WRAPAROUND, KEYBOARD ROLLOVER, AND KEY REPEAT

The ATARI Home Computer System has screen wraparound thus allowing greater
flexibility. It also allows the user to type one key ahead. If the user presses and
holds any key, it begins repeating after 1/2 second.

ERROR MESSAGES
If a data entry error is made, the screen display shows the line reprinted preceded
by the message ERROR- and the offending character is highlighted. After correct-
ing the character in the original line, delete the line containing the ERROR- before
pressing RETURN. Appendix B contains a list of all the error messages and their
definitions.

If the error line contains deferred screen edit function keys, the error message
may become disoriented. Use the LIST command to edit error line.

GENERAL INFORMATION 11

END
Format: END
Example: 10 00 END
This command terminates program execution and is used in Deferred mode. In
ATARI BASIC, an END is not required at the end of a program. When the end of
the program is reached, ATARI BASIC automat ically closes all files and turns off
sounds (if any). END may also be used in Direct mode to close files and turn off
sounds.

LET (LE.)
Format: [LET] var = exp
Example: LET X = 3 1 42 * 16

LETX = 2
The keyword LET in the example above is optional in defining variables It can lust
as easily be left out of the statement. It is often used to set a variable name equal
to a value.

LIST (L.)
Format LIST [lineno [, lineno]]

LIST [filespec [,lineno [,lineno]]]
Examples: LIST

LIST 10
LIST 10,100
LIST "P",20,100
LIST "P
LIST " D ' D E MO. LST"

This command causes the computer to display the source vers ion of all lines cur-
rently in memory if the command is entered without line number(s), or to d isplay a
specified line or lines. For example, LIST 10,100 displays lines 10 through 100 on
the screen, If the user has not typed the lines into the computer in numerical order,
a LIST will automatically place them in order.

Typing L "P." will print the RAM-resident program on the printer.
LIST can be used in Deferred mode as part of an error trapping routine (See

TRAP in Section 4),
The LIST command is also used in recording programs on cassette tape. The

second format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified
Example: L IST "C1"

1000 LIST "C1"

COMMANDS 13

NEW
Format: NEW
E xample: N E W
This command erases the program stored in RAM. Therefore, before typing NEW,
either SAVE or CSAVE any programs to be recovered and used later. NEW clears
BASIC's internal symbol table so that no arrays (See Section 8) or strings (See Sec-
tion 7) are defined. Used in Direct mode.

REM (R. OR SPACE.)
Format: REM te x t
Examples: 10 REM ROUTINE TO CALCULATE X

10(SPACE). ROUTINE FOR DATA (" SPACE" means one press of the
SPACE bar)

This command and the text following it are for the user's information only. It is ig-
nored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line that occurs after a
REM statement is ignored

RUN (RU.)
Format: RUN [f i lespecj
Examples: RUN

RUN "D.MENU"
This command causes the computer to begin executing a program. If no filespec is
specified, the current RAM-resident program begins execution. If a filespec is in.
eluded, the computer retrieves the specified, tokenized program from the spec ified
file and executes it.

All variables are set to zero and all open files and peripherals are closed All
arrays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used. an error message is displayed if any error is detected
during execution and the program halts.

RUN can be used in Deferred mode.
Example: 10 PRINT "OVER AND OVER AGAIN."

20 RUN
Type RUN and press RETURN. To end, press BREAK.

To begin program execution at a point other than the first line number, type
GOTO followed by the specific line number, then press RETURN.

STOP (STO.)
Format: STOP
Example: 10 0 STOP
When the STOP command is executed in a program, BASIC displays the message
STOPPED AT LINE , terminates program execution, and returns to Direct
mode. The STOP command does not close files or turn off sounds, so the program
can be resumed by typing CONT and pressing the RETURN key.

id COMMANDS

EDIT
FEATURES

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilit ies. These keys are used in con-
function with the SHIFT or CTRL keys

The following key functions are descr ibed in this section

CTRL CTR L I N SERT CTRL 1 CTR L F1 SHIFT F1
SHIFT C T R L DELETE CTRL 2 CTR L F2 SHIFT F2
CTRL SHI F T INSERT CTRL 3 CTR L F3 SHIFT F3
CTRL SHI F T DELETE BREAK CTR L F4 SHIFT F4
CTRL SHIFT CAPS/LOWR ESC F1
CTRL F2

F3
F4

SCREEN EDITING
The keyboard and display are logically comb ined for a mode of operation known as
screen editing Each time a change is completed on the screen, the RETURN key
must be pressed Otherw ise, the change is not made to the program in RAM.
Example:

'I. 0 f''.[i4 I:."I,'t ",'!:-' I"'.I:.::.TLJI''I'i ' : FTI:::I' L..l tNI' I:.:.:I. IT
", ',! I: r,' 'I fN T; I-' I".' t N T
",:) f) I: F','Ti'IT " T l - I '.:!i I , ": i L ' l l ' j l : . : i . I :) i l ! i C: I l t::.i:.i~ •"

To delete line 20 from the program, type the l ine number and press the RETURN
key. Merely deleting the line from the screen d isplay does not delete it from the
program

The screen and keyboard as I/O devices are described in Sect ion 5

CTRL Control key. Striking this key in conlunction with the arrow
keys produces the cursor control functions that allow the
user to move the cursor anywhere on the screen w ithout
changing any characters already on the screen Othe i key
combinations control the sett ing and clearing of tabs,
halting and restarting program lists, and the graphics con-
trol symbols Striking a key while holding the CTRL key will
produce the upper-left symbol on those keys hav ing three
functions.
Shift key: This key is used in conlunction with the numeric
keys to display the symbols shown on the upper half of
those keys. It is also used in conlunct ion with other keys to
insert and delete l ines, return to a normal, upper case let-
ter display. and to display the function symbols above the
subtraction, equals. add ition, and multiplication operators
as well as the brackets, [j, and question mark,~

EDIT FEATURES 15

DOUBLE-KEY FUNCTIONS
Cursor Control Keys
CTRL Moves cursor up one physical line without changing the

program or display
CTRL Moves cursor one space to the right without disturbing the

program or display
CTRL Moves cursor down one physical line without changing the

program or display
Moves cursor one space to the left without disturbing the
program or display.

Like the other keys on the ATARI keyboard, holding the cursor control keys for
more than t/2 second causes the keys to repeat

t C C t'

Keys Used With CTRL
CTRL INSERT Inserts one character space.
CTRL DELETE Deletes one character or space.
CTRL 1 Stops temporarily and restarts screen display without

"breaking out" of the program.
CTRL 2 Rings buzzer.
CTRL 3 Indicates end-of-file.
Keys Used With SHIFT
SHIFT INSERT Inserts one physical line.

C C C C C

SHIFT DELETE Deletes one physical line.
SHIFT CAPS/LOWR R e turns screen display to upper-case alphabetic

characters.
Special Function Keys
BREAK Stops program execution or program list, prints a

C C C

STOPPED AT LINE on the screen, and displays cursor.
ESC Allows commands normally used in Direct mode to be

placed in Deferred mode; e.g., in Direct mode,
CTRL CLEAR clears the screen display. To clear the
screen in Deferred mode, type the following after the pro-

C C C
gram line number. Press ESC then press CTRL and
CLEAR together.
PRINT "ESC CTRL CLEAR" C C

C C f f

16 EDIT FEATURES

ATARI 1200XL KEY FUNCTIONS
Keys Used With CTRL
CTRL F1 * Enables or disables keyboard.
CTRL F2 Enables or disables display.
CTRL F3 Enables or disables key click sound.
CTRL F4 Selects domestic or European character set.
Keys Used Alone
F1 Moves cursor up in one-line increments.
F2 Moves cursor down in one-line increments.
F3 Moves cursor to left in one-space increments.
F4 Moves cursor to right in one-space increments.
Keys Used With SHIFT
SHIFT F1 Moves cursor to upper left (home position) corner.
SHIFT F2 Moves cursor to lower left corner.
SHIFT F3 Moves cursor to left side of current line.
SHIFT F4 Moves cursor to right side of current line.

"Function Key

EDIT FEATURES '7

PROGRAM
STATEMENTS

This section explains the commands associated with loops, conditional and uncon-
ditional branches, error traps, and subroutines and their retrieval. It also explainS
the means of accessing data and the optional command used for defining
variables. The following commands are described in this section:
FOR, TO, STEP/NEXT IF/THEN POP
GOSUB/RETURN ON, GOSU B RES TORE
GOTO ON, GOTO TRAP

FOR (F.), TO, STEP/NEXT (N.)
Format: FOR av ar = a exp1 TO aexp2 [STEP aexp3j

NEXT avar
Examples: FOR X = 1 TO 10

NEXT X
FOR Y = 10 TO 20 STEP 2
NEXT Y
FOR INDEX = Z TO 100 ' Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is ex-
ecuted. The loop variable (avar) is initialized to the value of aexp1. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers If there is no STEP aexp3 command, the loop in-
crements by one. When the loop completes the limit as defined by aexp2, it stops
and the program proceeds to the statement immed iately following the NEXT state-
ment, it may be on the same line or on the next sequent ial line.

All lOOPS are exeCuted at least once. Loops can be nested, one within another,
In this case, the innermost loop is completed before returning to the outer loop.
Figure 4-1 illustrates a nested loop program.

:I () F (:) I",' X:::: 1. I'i.)
'„" (1 FxF"..Ii! T " (:! I.l') F::I"'. L (:)i! F "

,.:- 0
:) () '7

: .
- "i..+ i .

'i ll Fr (IF,' 't'-'-':L 'I'(.! ";.'i !:I T I:::: I 7."'. o F F"./:IIT " II ! i !F.:.:F'' I. (:)L)F "
'? (1 I'Ir:-..",T Y
()0 IAF:.XT X
(„ f'! r:::I'lr..

Figure 4-1. Nested Loop Program

18 PROGRAM STATEMENTS

In Figure 4-1, the outer loop will complete three passes (X = 1 to 3). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner loop must precede the
NEXT statement for the outer loop. In the example, the inner loop's number of
passes is determined by the STEP statement (STEP Z). In this case, Z has been
defined as 0, then redefined as Z + 2. Using this data, the computer must com-
plete three passes through the inner loop before returning to the outer loop. The
aexp3 in the step statement could also have been defined as the numerical
value 2.

The program run is illustrated in Figure 4-2.

F". I.l i'4
C) I) T E F", L i') ClF

T.i'li'! E F", Lof)F
;T' i'! I ! E';; R I 0 (') F'
I N I'I E:. F'. L 0 C) F'

C) I.) T I-::: F'.'. I... C!C3 Fx
IN I'! E (.". L C) C! F'
I i'! i'! E.. h I... C) C) F
I i'! i I E:. I ' I .. C) C! Fx

(3(.) CE:,;F.'. I„,f)I'.)F
T.i! NF F''. I..OC)F
Ii '!I'IE::I"'. LOC!I"'
li ' ! i ,iE:.:F~. I...C)C)F:

Figure 4-2. Nested Loop Execution

The return address for the loops are placed in a special group of memory ad-
dresses referred to as a stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack (see POP).

GOSUB (GOS.), RETURN (RET.)
Format: GOSUB lineno

line no
RETURN

Example: 100 GOSUB 2000
2000 PRINT "SUBROUTINE"
2010 RETURN

PROGRAM STATEMENTS 19

A subroutine * i s a program or routine used to compute a certain value, etc. It is
generally used when an operation must be replaced several times within a program
sequence using the same or different values. This command allows the user to
"call" the subroutine, if necessary The last line of the subroutine must contain a
RETURN statement. The RETURN statement goes back to the next logical state-
ment following the GOSUB statement

Like the preceding FOR/NEXT command, the GOSUB/RETURN command se-
quence uses a stack for its return address. If the subroutine is not allowed to corn.
piete normally, e g., a GOTO lineno before a RETURN, the GOSUB address must
be "popped" off the stack (see POP) or it could cause future errors.

To prevent accidental triggering of a subroutine (which normally follows the main
program), place an END statement preceding the subroutine. Figure 4-3
demonstrates the use of subroutines.

:L 0 FaFiIMT (Clear screen)
.0 F'.'F N I:-..Xr'~i'IF I. F.. L)";:tl: OF (iO!" LJF..",rl,'ETLJF'id

,30 X:--1 0 0
9 0 I :>OS(.)E : L 0 0 0
'.> 0 X: -':L '.: 0
c'. 0 C.> ('! F~ I) F:I. ;L 0 0 0
: (i X : --';:n
F) 0 tr>(:! c) I.) F." .1 0 0 0
":.' 0
10 0 0 Y n=3'4:X
'L lj 'I (j X:::: X+ Y
: i. 0.'".0 F I' L'I'!T X , Y
1 ij 30 F,'Fs TlJI..'Nt

Figure 4.3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three times
to compute and print out different values of X and Y. Figure 4-4 illustrates the
results of executing this program,

F'.' I, I I I

.c) fj 0
.3('t 0
1'..; 0

r F. istFJY
Figure 4-4. GOSUB/RETURN Program Run

Generally. a subroutine can do anything that can be done in a program It is used to save memory and
program entering time. and to make programs easier to read and debug

20 PROGRAM STATEMENTS

GOTO (G.)
Format: f GO TO a exp

1 GOTO
Examples: 100 GOTO 50

500 GOTO (X + Y)
The GOTO command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target l ine number
or arbitrary expression However, using anything other than a constant will make
renumbering the program difficult If the target line number is non-existent, an error
results Any GOTO statement that branches to a preceding line may result in an
"endless" loop. Statements following a GOTO statement will not be executed.
Note that a conditional branching statement (see IF/THEN) can be used to break
out of a GOTO loop. Figure 4-5 illustrates two uses of the GOTO command

'I 0 F F I i 'JT
.".0 F F".Ii'JT ; F I ' . T.:i'!'I "C)IJF""
'.,:1 il F I"''I;i'!'7 " 'I IJ('1''
"0 F 'F'.'.Ii'!T " T l !F,'I':.:L:.""
'.-i 0 F FJIIJ 7 "I 'OLIF,"
r.', f! F: I I l ' IT " l:TIVF.:.:"

CiC. T(.J:L 0 0
i" 0 F'' F'(T:I'I T ' ' ib "b ':b ':b 'b 'I 'ib ':b 'b ':v 'I' ib ':b ':b il ib 'b ''
(30 F Fi T.l'JT " : "..:":.",'; ';;",':;,",," !" : .,"'Z'. i ';;i ' ;;!.'"
(') I'I f ' f ' f LJT I I 2) ' 2 ') " 8 " ') "0 ; 4 'r ') 'r a P ') l l

V;:i r::.Nr.)
:L 0 0 F F'(IIN'7' "(: I '<',"

:I.:L 0 F FiI<'JT " ! : rl:.:.:VL:::I'J"
;I.''0 F F''Ii'JT "L:::7:C'I-IT"
:L:;: fJ F Fi'.IN "I" "N.L.iJI:,","
1"";0 F F:7:I'JT " f l . ::i'J"
: I.50 (,C)TO 70

Figure 4-5. GOTO Program Listing

Upon execution, the numbers in the above listing will be listed first followed by the
three rows of symbols. The symbols listed on lines 70. 80, and 90 are ignored tem-
porarily while the program executes the GOTO 100 command. It proceeds with the
printing of the numbers "SIX" through "TEN", then executes the second GOTO
statement which transfers program control back to line 70. (This is lust an exam-
ple. This program could be rewritten so that no GOTO statements were used.) The
results of the program run are shown in Figure 4-6.

PROGRAM STATEMENTS 21
' •

f,"! Ii;I

C C C C

C

C C C C

Figure 4-6. GOTO Program Run C C

IF/THEN
Format: IF ae xp THEN / lineno

[statement [: statement...] /
Examples: IF X = 100 THEN 150

IF A$ = "ATARI" THEN 200
IF AA = 145 and BB = 1 THEN PRINT AA, BB
IF X = 100 THEN X = 0

The IF/THEN statement is a conditional branch statement. This type of branch oc-
curs only if certain conditions are met. These conditions may be either arithmetic
or logical. If the aexp following the IF statement is true (non-zero), the program ex-
ecutes the THEN part of the statement. If, however, the aexp is false (a logical 0),
the rest of the statement is ignored and program control passes to the next
numbered line.

C C C C C C'

In the format, IF aexp THEN lineno, lineno must be a constant, not an expres-
sion and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be executed
if and only if the expression is true. Several IF statements may be nested on the
same line. For example:
'I 0 TI:r :: : ".' ' !-ll': I'i ,"/'f Y::::;;.i "I'I-II:::.!'! I':..: " ': (::;0T(! : L (I 0

The statements R = 9: GOTO 100 will be executed only if X = 5 and Y = 3. The
statement IF Y = 3 wi ll be executed if X = 5 .

The program in Figures 4-7 and 4-8 demonstrates the IF/THEN statement.

22 PROGRAM STATEMENTS

yy ("f' , F ktTf' c ft * "P + "P I I I Fr I:) I:. !1(:1"
:I. 0 '".' "' '" ."E'.:i'! Tl":::F''. f-t'' "' " '.I;I'IF" I...IT f."I
::.0 T.F I "1:::::I T i -IF:.it t 0 i I.".'.E:I'f i"II.JI...TII: I. E ! . Tf"- TE:<IE
t~T,:. k!E:.F;F:. I!Il...i... i'!E::VE.F. E:.E': E::XE':C:(.JTI:::n. .

;:,:.'I 0 " f .- "I"~ I , : I I : !(:) T :I. + E:..Xi:.:.:(,I.JTIOi'I (: Oi'! T:Ki>! 0
F.:.:":i I-IE.F''F.::. I!I-IE..I'! TI-IF,:. I:.:,:XF'F''I:..!i!)ION I ! I F "- L!iE.:.:"
9 0 I F r I ' : - ::1. Tkl i::.i'! " . ; "' "A::::'J," i". " YE:5 I T I

F",E';:,LI. Y:I., " t F,"E:N III.JI... TII: L..E:.:,":iT,"- TE:::I"IE I'(T!' I-I
E::F''F... I!II...I... E:.'E:. E..XEf.:IJTE:li OWL Y IFr '":::::I.!!
! 'i0 " . ' : " . " FXF.:.:(,LJTI(::Ii'! (:;OI'iiTINIJE:.;: FREFiE I ! r ft
::::::I. f)F; ;-~F:FE:.:F; 'Yi:.::,:.:,. I i I .; , F ':E ':i...L Y:i.
E11',:.. F: L YE::.E)"
f'.) (1 f.: (.) T (.1 :L 0

Figure 4-7. IF/THEN Program

r.: E:.ii(:I

E-. i'I T E:.' F (entered 3)

I"I I ' .;: i'! ('1 T;L „ I ' ;; X E:.. I . LI T I () I'! (;;. I',) ij"!' I I'! I,JI' ':,i I"I I:. !i',i,::,; !<
I-iL:.i'.I Ti-IE.:: E.:. F F E.,::,,::,.II")I..! ".(:,:,:; F,'-',L„,l:..

",
',.'.,E:.:f;IIT X;f)i'! (. ('I i !T'X:I'.!IJF:,.;:,:, I-IE. I.'.E.:.: TF::; ::.:::.i, OF'l;.":,F

f(:::F:, yYi::.'.„ I T I ": : . F;E:.:,!..L..';>.y r.,::.; I:)I;:.::,F:i... rYE':I:.

E:.NTI::.:F; '"' :L (entered t)

f-1:::: L
Y I::;!:.Ir I T 1 3 F" ,E ('cl. L Y 1 +

E:.:XE:.f.:(.JTlf)» C.OI! rT.I!LJE:.;:.: k!E':F',E: IF: et':::::L OF; ' :Fr
"I : .:"-, I T I ,: : F ;E:.." i...L Y I. ' I , . : . O l , ' F:L I.YE-::E.

E I'ITI:::F'.' A7

Figure 4.8. IF/THEN Program Execution

PROGRAM STATEMENTS 23

ON/GOSUB/RETURN ON/GOTO

Format: ON ae x p (GOTO $ lineno [,lineno..]
GOSUB J

Examples: 100 ON X GOTO 200, 300, 400
100 ON A GOSUB 1000, 2000
100 ON SQR(X) GOTO 30, 10, 100

Note: GOSUB and GOTO may not be abbreviated.
C C

These two statements are also conditional branch statements like the IF/THEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number, which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is 1, then program control passes
to the first lineno in the list following the GOSUB or GOTO If the resulting number

C C C
is 2, program control passes to the second lineno in the list, and so on. If the
resulting number is 0 or is greater than the number of linenos in the list, the condi-
tions are not met and program control passes to the next statement which may or
may not be located on the same line. With ON/GOSUB, the selected subroutine is
executed and then control passes to the next statement. The program in Figures
4-9 and 4-10 demonstrates the ON/GOTO statement:

C C C

: I ii X - ::X ' 1
. .0 C)N X C;C)TC) 10i ! , ' ..Cio, .'00 , - ' ;00 , 5 0 0 C C
.":)0 I I - ' X : : :! : T l - IE:.N F F,'D~T " (: : () i't i E E::TE::": E::I'!f)
:IO C;DT(:):!.0
;;:0 E:.Nn
1 0 0 F F''DlT " I TIC)F/ F! C)F'I''.KWC"T L.;):NE: 1 0 0"

C C C

:I.:I. il C', C) T()
;.C!0 F:F;T.IIT " INC)H NDF I: I 'NC; (' T L . I N E:. .00" C
:.) 0 C;(3T(l : I . 0 C: :.IO0 F:F,II/T " I ' IC)I4 I/nr I ' l l ' IC ' r ! . I I I E "OO"
31 0 GC) TC):i. 0
I 0 0 F F''T.l'.lT " I ' ! C)I4 WC)F''I''Ii ' I(." (' T I .I N E ''F 0 0"

:I:I 0 C',i)TO:I. 0
' :'ff 0 I-'F'' JILT " N C))j H C)i 'I : I i l (r": T LEONE !"'0 0" C C
;:310 C'C)T 0 10

Figure 4.9 ON/GOTO Program Listing C C

24 PROGRAM STATEMENTS

When the program is executed, it looks l ike the following

foal.li/
lN(:)W Wi:)F I',II'ff . ' :T (T. l/IF.:.:I.00
1 g(') tg I;.1(1 jj',I(T I'! C' j.":i) i "I' l,l $ '.' (! (I
Vf.)! « ' IOF,'F''.I;I'4(" l" 1 I . I f ' ! I::.:;:.'.0(1
l'! ()l/ lJC.IF",I:;Xi'! f. r"-i T I...:I I'! I':. '1 0 0
I 'If)If ! I f)F >;I / ! ("T I ... T.;t'!F;; ';:.I0(1
(:; (:) I"I F I... E:. T E:

F; t. ': r.:1"

Figure 4.10 ON/GOTO Program Execution

POP
Format: POP
Example: 10 00 POP
In the description of the FOR/NEXT statement. the stack was defined as a group
of memory addresses reserved for return addresses The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers If another GOSUB
is executed, that top location needs to be cleared. To prepare the stack for a new
GOSUB, use a POP to clear the data from the top location in the stack
The POP command must be used according to the following rules:

1. It must be in the execution path of the program.
2 l t must follow the execution of any GOSUB statement that is not brought back

to the main program by a RETURN statement
The prOgram in Figure 4-11 demonstrates the use of the POP command with a
GOSUB when the RETURN is not executed

;! (f I ' i; i' I ' ! I I '!'.!.:. F l.'.(ll:::I'.'i'ii'I I ! I.:. i I(!l'!';:: T F:i': 1'I.:.'..: 'I I II'.
': i! i 'I 'I'i 1 I.'-':,I ' i"',:r ' ', i ll'' ' ! , r "('') I",' ' (" ('1'. L!!:1 '
;3 (1 F'F j'j l ' ! j II::.I'! i ' i ' l i' I:: "I" ll i" j! ' f .';3 j".Il' I I i";I I !
:; f'! I .' I'" j'I "j' i": I: x ..1 I i-'i r'-', I l I ' I'; ("i I i j' 'j I'I
'."; f) (':; l l", I„II . ':,"' 0 0

F I"'. .:I'! "j' "f F.'(."tf I:rfi' l l ' ; :F: (!I ' I () " ' 'I:i!':ll..!I''.I::;:i"
"0 F F''.:T.'.I'lT " " I I ll:: I'I.'.(:!(I.", 'I'I ! ! Cl.. I... I.'I::.:"I Lll')'!"

1 i) I 'Fi'):i'I "I' " '1' (:! 1 I I:I.'; I' ll:.::!::.".:..': i:: I:::, "

"-' ll ! 2 'r l I 1
r (I I 'f I'$ V '4' "4.''i" XX''4 >r':XX:>'r:.'0 'l'"

:I (', ll I:::! 'i''i '.I.'» I ';:: i..f[.,F; r"il! "j '1 j,!F"
' I ' l,1 } .' I I ' ' j)X ''";:Xr>:"'xr:'f;' l;'Xr'l»X;f '0'
',:.0/ I'F':1:lx! I' "F..:;XF..::(:;:IITII ! t..! : I . ',: "l' !: Lll:.1F.'.(:!I.! i::(.j!j::.:."
<" ,I I'i F: I . I' !:! "I'

PROGRAM STATE ME N TS 25

Figure 4.11. GOSUB Statement With POP

26 PROGRAM STATEMENTS

RESTORE (RES.)
Format: RES T ORE [aexp]
Example: 10 0 RESTORE
The ATARI Home Computer System contains an internal "pointer" that keeps track
of the DATA statement item to be read next. Used without the optional aexp, the
RESTORE statement resets that pointer to the first data item in the program. Used
with the optional aexp, the RESTORE statement sets the pointer to the first data
item on the line specified by the value of the aexp. This statement permits
repetitive use of the same data. (Figure 4-12).

I n FrOF.' IN'-:l ' (r !
;::n F;F::,"-,r!,"-,
;:.l 0 Fi',F;.!:.iT(;1r. F:.
'0 F;Frr~r~ F:.
':.i 0 I'1:::: i'":i+ I:.:.I
;!;rf F F I t'.lT " T (:)T". l.. E. (1(.I '1I.';:.i", i.l
" 0 NF. .'; T i'!

c;".I 0 F..: I'! I i
7 0 I:) I'4 Ti'-i 30 , ; I . ! !
Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line 60
will print TOTAL EQUALS 60, but on the second pass, A will equal 15 and B,
because of the RESTORE statement, will still equal 30. Therefore, the PRINT
statement in line 60 will display TOTAL EQUALS 45.

The RESTORE statement will not generate an error if the line number referenc-
ed does not exist. Instead it will RESTORE to the next larger line number in the
program, Care should be taken to update RESTORE statements when renumbering
a BASIC program,

PROGRAM STATEMENTS 27

TRAP (T.)
Format: TRA P aexp
Example: i00 TRAP)20
The TRAP statement is used to direct the program to a specified line number if an
error is detected Without a TRAP statement, the program stops executing when
an error is encountered and displays an error message on the screen.

The TRAP statement works on any error that may occur after it has been ex-
ecuted. but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command This TRAP command may be placed at the
beginning of the section of code that handles input from the keyboard so that the
TRAP is reset after each error. PEEK(195) will give you an error message (see
Appendix B). 256 *PEEK(187)+ PEEK(186) will give you the number of the line
where the error occurred. The TRAP may be cleared by executing a TRAP state-
ment with an aexp whose value is from 32767 to 65535 (e.g 40000)

28 PROGRAM STATEMENTS

INPUTIOUTP UT
COMMANDS AND DEVICES

This section describes the input/output devices and how data is moved between
them. The commands explained in this section are those that allow access to the
Input/output devices The input commands are those associated with getting data
into the RAM and the devices geared for accepting input. The output commands
are those associated with retrieving data from RAM and the devices geared for
generating output.

The commands described in this section are
CLOAD INPUT OPEN /CLOSE R E AD/DATA
CSAVE L OA D POINT SAVE
D OS LPRI N T PRI N T STATUS
ENTER N OT E PUT/ G ET XIO

INPUT/OUTPUT DEVICES

The hardware configuration of each of the following devices is illustrated in the in-
dividual manuals furnished with each The Central Input/Output (CIQ) subsystem
prOvideS the uSer with a Single interfaCe tO aCCeSS all Of the SyStem peripheral
devices in a (largely) independent manner This meanS there is a single entry point
and a device-independent calling sequence Each device has a symbolic device
name used to identify it; e.g., K: for the keyboard Each device must be opened
before access and each must be assigned to an Input/Output Control Block (IOCB).
From then on, the device is referred to by its IOCB number.

ATARI BASIC contains 8 blocks in RAM which identifies to the Operating System
the information it needs to perform an I/O operation. This information includes the
command, buffer length, buffer address. and two auxiliary control variables. ATARI
BASIC sets up the IQCBs, but the user must specify which IOCB to use BASIC
reserves IOCB ¹0 for I/O to the Screen Editor, therefore the user may not request
IOCB ¹0. The GRAPHICS statement (see Section 9) opens IOCB ¹6 for input and
output to the screen. (This is the graphics window S:). IOCB ¹7 is used by BASIC
for the LPRINT, CLOAD, and CSAVE commands. The IQCB number may also be
referred to as the device (or file) number IOCBs 1 through 5 are used in open ing
Ihe other devices for input/output operations If IQCB ¹7 is in use, it prevents
LPRINT or some of the other BASIC I/O statements from being performed
Keyboard: (K:) Input only device The keyboard allows the user to read the con-
verted (ATASCII) keyboard data as each key is pressed
Line Printer: (P:) output only device. The l ine printer prints ATAscll characters, a
line at a time. It recognizes no control characters.
Program Recorder: (C:) input and Output device. The recorder is a read/wr ite
device which can be used as e ither, but never as both simultaneously. The
cassette has two tracks for sound and program record ing purposes The audio
track cannot be recorded from the ATARI system, but may be played back through
the television speaker.

INPUT/OUTPUT COMMANDS 29

Disk Drives: (D1:, D2:, D3:, D4:) Input and Output devices If 16K of RAM is in-
stalled, the ATARI can use from one to four disk drives If only one disk dr ive is at-
tached, there is no need to add a number after the symbolic device code D If D. 1$
used, with no drive number specified, the ATARI system defaults to drive 1.
Screen Editor: (E:) Input and Output device. This device uses the keyboard and
display (see TV Monitor) to simulate a screen editing terminal. Writing to this
device causes data to appear on the display starting at the current cursor pos ition.
Reading from this device activates the screen editing process and allows the user
to enter and edit data. Whenever the RETURN key is pressed, the entire logical
line within which the cursor resides is selected as the current record to be trans-
ferred by CIO to the user program. (See Section 9).
Tv Monitor: (s:) Input and output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the screen
addressing mechanism. Both text and graphics operations are supported. See Sec.
tion 9 for a complete description of the graphics modes.
Interface, RS-232: (R:) The RS-232 device enables the ATARI system to interface
with RS-232-compatible devices such as printers, terminals, and plotters. It con-
tains a parallel port to which the 80-column printer can be attached. If a printer is
attached to the parallel port, the R is not required, and P: can be used as it is with
other printers.

C LOAD (CLOA.)
F ormat: CLO A D
Examples: CLOAD

100 CLOAD
This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD. a buzzer sounds
to indicate that the PLAY button needs to be pressed followed by the RETURN
key. However, do not press PLAY until after the tape has been positioned. Specific
instructions for CLOADing a program are contained in the ATARI Program
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CHAINING PROGRAMS at the end of this section.

CSAVE (CS.)
F ormat: CSA V E
Examples: CSAVE

100 CSAVE
100 CS.

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version of the program. On enter-
ing CSAVE two buzzers sound to indicate that the PLAY and RECORD buttons
must be pressed followed by the RETURN key. Do not. however, press the buttons
until the tape has been positioned. It is faster to save a program using this com-
mand rather than a SAVE "C" (see SAVE) because short inter-record gaps
are used
Notes: Tapes saved using the two commands, SAVE and CSAVE. are not
compatible.

30 INPUT/OUTPUT COMMANDS

It may be necessary to enter an LPRINT (see LPRINT) before using CSAVE.
Otherwise, CSAVE may not work properly.
For specific instructions on how to connect and operate the hardware, cue the
tape, etc., see the ATARI Program Recorder Manual.

DOS (DO.)
Format: DOS
E xample: D O S
The DOS command is used to go from BASIC to the Disk Operating System (DOS)
If the Disk Operating System has not been booted into memory, the computer will
go into Memo Pad mode (or power-on display in 1200XL) and the user must press
SYSTEM RESET to return to Direct mode. If the Disk Operat ing System has been
booted, the DOS Menu is displayed. To clear the DOS Menu from the screen,
press SYSTEM RESET. Control then passes to BASIC. Control can also be re-
turned to BASIC by selecting B (Run Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the ATARI DOS Manual.

ENTER (E.)
Format: ENT E R fi lespec
Examples: ENTER "C

ENTER "D:DEMOPR.INS"
This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un-
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the old
and new programs. The ENTER statement is usually used in Direct mode

INPUT (I.)

Format: INP UT ¹ aexp ; svar , svar
Examples: 100 INPUT X

100 IN P UT N $
100 PRINT "ENTER THE VALUE OF X": INPUT X
110 INPUT X

This statement requests keyboard data from the user. In execution, the computer
displays a? prompt when the program encounters an INPUT statement. It is
usually preceded by a PRINT statement that prompts the user as to the type of in-
formation being requested.

String variables are allowed only if they are not subscr ipted Matrix variables are
not allowed.

INPUT/OUTPUT COMMANDS 31

The ¹aexp is optional and is used to specify the file or device number from
which the data is to be input (see Input/Output Devices) If no ¹aexp is spec ified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
RETURN, type the next string, RETURN, etc Arithmetic numbers can be typed on
the same line separated by commas. A typical input program is shown in
Figure 5-1.

.L 0 " . E :.N 1 I::.I".;;j I ' I I.)i(l.::L li".,:i (I) k L ',i L)i'1l'll: L)
. ;;0 I ':(:)Fi i l =::I Ti)
",;. 0 I N F I.) ') X
q 0 (;--r+X
' ;:il') itE ''T N
(') 0 ". "TI-IE:.. (:!i!i'I (:)Fr 'I'I-IE i'I(li(F E::Foci:I:(:.r
7 0 E::i'ID

Figure 5.1 Input Program Listing

When executing an INPUT from the screen, avoid moving the cursor away from
and then back to the same line; otherwise, the wrong data may be input.

If a string of 128-255 characters is INPUT, then RAM locations 1536-1664 will
be overwritten. This area is normally reserved for storage of programs or data To
INPUT strings of more than 127 characters, use the GET command and store the
values into a string (see Section 5, OPEN/CLOSE and PUT/GET commands).
Note: The maximum number of characters that can be INPUT from the screen is
120 The maximum for other devices is 255.

LOAD (LO.)
Format: LOA D fi lespec
Example: L OAD "D1.JANINE BRY"
ThiS COmmand is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token-
ized version of the program. When uSing Only one d isk drive, it is not necessary to
specify a number after the "D" because the default is disk drive ¹1.

LPRINT (LP.)

Format: LPR INT]exp] , exp. . .
Example: LPRINT "PROGRAM TO CALCULATE X"

100 LPRINT X." " ,Y:" " ,Z
ThiS Statement cauSeS the computer to pr int data on the line printer rather than on
the screen. It can be used in either D irect or Deferred modes. It requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB ¹7.) To
print a program listing on the line printer, see LIST.

32 INPUT/OUTPUT COMMANDS

Note: An LPRINT command with a semicolon at the end causes various results
depending on the printer in use To use the semicolon effectively, use the OPEN
statement for the printer, then wr ite to the printer with a PRINT statement (see
OPEN/CLOSE and PRINT commands, Section 5)

NOTE (NO.)
Format: NOT E ¹a exp, avar, avar
Example: 10 0 NOTE ¹1, X, Y
This command is used to store the current d isk sector number in the first avar and
the current byte number within the sector in the second avar. This is the current
read or write position in the spec ified file where the next byte to be read or written
is located. This NOTE command is used when writing data to a disk file (see
POINT). The informat ion in the NOTE command can be written into a second file
which is then used as an index into the first f ile.

OPEN (O.), CLOSE (CL.)
OPEN ¹aexp,aexpl.aexp2, filespec
CLOSE ¹aexp

Examples: 1 00 OPEN ¹2,8,0," D1 ATARI.BAS"
100 A$ = ''D1 ATARI BAS"
110 OPEN ¹2.8,0,A$
150 CLOSE ¹2

Before a device can be accessed. it must be opened. This "opening" process
links a specific IQCB to the appropr iate device handler, initializes any CIQ-related
control variables, and passes any device-specific options to the device handler.
The parameters for the OPEN command are defined as follows:
¹ Mandatory character that must be entered by1he user
aexp Refe r ence IQCB or file number to same parameters for future use (asin

CLOSE command). Number may be 1 through 7.
aexp1 Code number to determine input or output operation.

Code 4 = inp u t operation
8 = o u tput operation

12 = i n put and output operation
6 = di s k d i rectory input operation (In this case, the filespec is

the search specification)
9 = e nd.of-file append (output) operation. Append is also used

for a special screen editor input mode This mode allows a
program to input the next l ine from E: without waiting for
the user to press RETURN.

aexp2 Device. dependent auxiliary code An 83 in this parameter indicates
sideways printing on a printer (see appropriate manuals for control
codes).

filespec S p ec i fic file designation. Must be enclosed in quotation marks. The for-
mat for the filespec parameter is shown in F igure 5-2.

INPUT/OUTPUT COMMANDS 33

"D1 : A T A R I . B A S"

Device
Code

Device
Number
(optional)
Required
Colon

File name
(up to 8
characters-
must begin
with alphabetic
character)
Period required
as separator if
extender is used.

Extender
(optional)-
Includes
0-3 characters

Note: Filenames are not
used with the program
recorder.

Figure 5.2 Filename Breakdown

Note: Be sure to include the closing quotation marks on a filespec parameter,
especially when putting multiple statements on one line. For example,
OPEN ¹1, 4, 0, "D:TEST".STOP will work, but
OPEN ¹1, 4, 0, "D:TEST:STOP will not function correctly.
The CLOSE command simply closes files that have been previously opened with
an OPEN command Note in the example that the aexp following the mandatory
¹ character must be the same as the aexp reference number in the OPEN state-
ment.

POINT (P.)
Format: POl N T ¹aexp, avar, avar
Example: 100 POlNT ¹2, A,B
This command is used when reading a file into RAM or writing a file from RAM.
The first avar specifies the sector number and the second avar specifies the byte
within that sector where the next byte will be read or written. Essentially, it moves
a software-controlled pointer to the specified location in the file. This gives the user
"random" access to the data stored on a disk file. The POlNT and NOTE com-
mands are discussed in more detail in the DOS Manual.
Note: To update a file, you must open it with a 12 in aexp1.

34 INPUT/OUTPUT COMMANDS

PRINT (PR. or?)
Format: PRI NT [¹aexp]
Examples: PRINT X, Y. Z, A$

100 PRINT "THE VALUE OF X IS ";X
100 PRINT "COMMAS", "CAUSE", "COLUMN", "SPACING"
100 PRINT ¹3, A$
100 PRINT 2+ 3+ 4

A PRINT command can be used in e ither Direct or Deferred mode In Direct
mode, this command pr ints whatever information is contained between the quota-
tion marks exactly as it appears. In the first example, PRINT X,Y,Z,A$, the screen
will display the current values of X,Y,Z, and A$ as they appear in the RAM-res ident
program. In the example, PRINT ¹3,A$, the ¹3 is the file specifier (may be any
number between 1 and 7) that controls to which device the value of A$ will be
printed (See Input/Output Devices.)

A comma tabs every ten spaces. Several commas in a row cause several tab
jumps. A semicolon causes the next aexp or sexp to be placed immediately after
the preceding express ion with no spacing. Therefore, in the second example a
space is placed before the ending quotation mark so the value of X will not be
placed immediately after the word "IS" I f no comma or sem icolon is used at the
end of a PRINT statement, then a RETURN is output and the next PRINT starts on
the following line.

However, if the last character to be pr inted (as in a string with quotation marks)
is a CTRL R or CTRL U, then the next PRINT begins at the end of the current line

The PRINT command can be used as a one-line calculator in D irect mode, as
shown in the last example above. In this case the value is computed when the
RETURN key is pressed, and the value is pr inted on the next line
Note: In rare circumstances data printed to a diskette may have part of the BASIC
program embedded in it. If this occurs, retry the operation.

PUT (PU.)/GET (GE.)
Format PUT ¹aexp, aexp

GET ¹aexp, aexp
Examples: 100 PUT ¹6, ASC("A")

200 GET ¹1,X
The PUT and GET are opposites The PUT command outputs a single byte from
0-255 to the file specified by ¹aexp. (¹ is a mandatory character in both these
commands). The GET command reads one byte from 0-255 (using ¹aexp to
designate the file, etc on diskette or elsewhere) and then stores the byte in the
variable avar.

READ (REA.), DATA (D.)
Format: RE A D var [, var..]

DATA adata [, adata...]
Examples: 100 READ A,B,C,D,E

110 DATA 12,13,14,15,16
100 READ A$,B$,C$.D$,E$
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

INPUT/OUTPUT COMMANDS 35

XIO (X.)
Format: XIO cm dno, ¹aexp, aexp1, aexp2, filespec
Example: X IO 18,¹6,12,0,"S "
The XIO command is a general input/output statement used for special operat ions
One example is its use to f ill an area on the screen between plotted points and
lines with a color (see Sect ion 9). When a STATUS REQUEST operation is done on
an OPEN device, the aexp1 used in the STATUS REQUEST must be the same as
the IOCB number used in the OPEN statement for that device: e.g., if the OPEN
was OPEN ¹1,9,0,"D.TEMP.BAS" then the STATUS REQUEST must be XIO
13,¹1,9,0,"D.TEMP BAS" The parameters for the XIO command are def ined as
follows:
(cmdno = Number that stands for the particular command to be performed.)
XIO
cmdno OPERATION EXAMPLE COMMENTS
3 OPEN XIO 3,¹1,4,0,"D TEMP BAS" Sam e as BASIC OPEN
12 CLOSE XIO 12,¹1,0,0,"D " Same as BASIC CLOSE
13 STATUS REQUEST XIO 13,¹1,4,0,"D TEMP BAS" See note below
17 DRAW LINE XIO 17,¹6,12,0,"S " See Section 9
18 FILL XIO 18 ¹6,12,0,"S " See Section 9
32 RENAME FILE XIO 32,¹1,0,0,"D TEMP. CAROL" See nOte belOw
33 DELETE FILE XIO 33,¹1,0,0 "D TEMP.BAS"
35 LOCK FILE XIO 35,¹1,0,0," D. TEMP. BAS"
36 UNLOCK FILE XIO 36,¹1,0,0,"D TEMP BAS"
2 54 FORMA T XI 4 ¹ 10 0 " D "0 25,
aexp Device number (same as in OPEN). Most of the time it is ignored. but

must be preceded by ¹.
aexp1 Two auxiliary control bytes Their usage depends on the particular
aexp2 device and command. In most cases, they are unused and are set to 0

Aexpl should be set to 12 for a DRAW LINE or a FILL operation to
allow color checking later in the program.

filespec S t r ing expression that specifies the device. Must be enclosed in quota-
tion marks. Although some commands, like FILL (Section 9), do not look
at the filespec, it must still be included in the statement. XIO commands
5, 7, 9, and 11, 37, and 38, should not be used, because they are
undefined and unpredictable errors might occur.

NOTE When using the RENAME operat ion, the device code D. should only be
used once.

D.TEMP, CAROL i s correct
D:TEMP,D.CAROL is incorrect

Status Request performs the same act ion as the BASIC STATUS but
does not return the error code in a variable. If an error condition is
detected, it stops the program and prints an error message. To prevent
the stopping of the program use a TRAP before using XIO 13. The only
advantage XIO 13 has over STATUS is that a spec ific file on a disk drive
can be checked by XIO 13 but not by STATUS.

INPUT/OUTPUT COMMANDS 37

CHAINING PROGRAMS

If a program requires more memory than is available, uSe the following steps to
string programs of less than the maximum memory available into one program
1. Type in the first part of the program in the normal way.
2. The last line of the first part of the program should contain only the line

number and the command RUN "C:"
3. Cue the tape to the blank section. Wr ite down the program counter number for

later RUN purposes. Press PLAY ar;d RECORD buttons on the deck so that
both remain down.

4. Type SAVE"C:" and press the RETURN key.
5. When the beeping sound occurs, press RETURN again.
6 When the screen displays "READY" , do not move tape. Type NEW and press

RETURN.
7. Repeat the above instructions for the second part of the program
8. As the second part of the prOgram iS eSSentially a totally new program, it is

possible to re-use the line numbers used in the firSt part Of the program
9. I f there is a third part of the program, make sure the last line of the second

part is a RUN "C:" command
To execute a "chained" program, use the following steps:
1. Cue the tape to the beginn ing of part 1 of the program.
2. Press PLAY button on the recorder.
3. Type RUN "C:"RETURN.
4. When the "beep" sounds, press RETURN again.
The computer automatically loads the first part of the program, runs it, and sounds
a "beep" to indicate when to hit the space bar or RETURN to trigger the tape
motor for the second LOAD/RUN. The loading takes a few seconds.
Note: A one-part program can be recorded and reloaded in the same way or
CSAVE and CLOAD can be used.
Note: Remember to boot DOS before typing in your program if you wish to store
the program on diskette.

MODIFYING A BASIC PROGRAM ON DISK

The procedure for modifying an existing BASIC program stored on a diskette is
demonstrated in the following steps
1. Turn off ATARI console and insert BASIC cartridge.
2. Connect disk drive and turn it on — without inserting diskette.
3. Wait for Busy Light to go out and for the dr ive to stop. Open disk drive door.
4. Insert diskette (with DOS) and close door.
5. Turn on console. DOS should boot in and the screen show READY.
6. To load program from disk, type

LOAD "D:filename.ext
7. Modify program (or type in new program).
8. To save program on disk, type

SAVE "D:filename.ext
9, Always wait for the Busy light to go out before removing diskette.

38 INPUT/OUTPUT COMMANDS

10. To get a Directory listing, leave the diskette in and type
DOS
Press RETURN, and the DOS Menu is displayed. Select command letter A,
type it, and press RETURN twice to list the directory on the screen: or type A
followed by pressing RETURN then type P: and press RETURN to list direc-
tory on the printer.

11. To return to BASIC, type B and press RETURN or press SYSTEM RESET.

INPUT/OUTPUT COMMANDS 39

FUNCTION
LIBRARY

This section describes the arithmetic. trigonometric, and special purpose functions
incorporated into the ATARI BASIC. A function performs a computation and returns
the result (usually a number) for either a print-out or additional computational use.
Included in the trigonometric functions are two statements, radians (RAD) and
degrees (DLG), that are frequently used with trigonometric functions. Each function
described in this section may be used in either Direct or Deferred mode Multiple
functions are perfectly legal.

The following functions and statements are described in this section.
ABS ATN ADR
C LOG C O S FRE
EXP SIN PEEK
INT DEG/RAD PO KE
LOG USR
RND
SGN
SQR

ARITHMETIC FUNCTIONS

ABS
Format: ABS (aexp)
Example: 10 0 AB = ABS (— 190)
Returns the absolute value of a number without regard to whether it is positive or
negative The returned value is always positive.

CLOG
Format: CLO G (aexp)
Example: 10 0 C= CLOG(83)
Returns the logarithm to the base 10 of the variable or expression in paren1heses.
CLOG(0) gives an error and CLOG(1)equals 0.

EXP
Format: EXP (aexp)
Example: 10 0 PRINT EXP(3)
Returns the value of e (approximately 2.71828283), raised to the power specified
by the expression in parentheses In the example given above, the number re-
turned is 20.0855365. In some cases, EXP is accurate only to six significant digits.

40 FUNCTION LIBRARY

INT
Format: INT (a exp)
Examples: 100 I = INT(3445) (3 would be stored in I)

100 X = INT(— 14 66778) (— 15 would be stored in X)
Returns the greatest integer less than or equal to the value of the expression This
IS true whether the expression evaluates lo a positive or negative number Thus, in
our first example above, I is used to store the number 3 In the second example, X

used to store the number — 15 (the first whole number that is less than or equal
IO — 14 66778). ThiS INT function should not be confused with the function used on
calculatorS that simply truncates (cuts off) all decimal places

LOG
Format: LOG (aexp)
Example: 10 0 L= LOG(67 89(2 57)
Returns the natural logarithm of the number or expression in parentheses LOG(0)
gives an error and LOG(1) equals 0.

RND
Format: RND (aexp)
Example: 10 A = RND (0)
Returns a hardware generated random number between 0 and 1, but never returns
1. The variable or expression in parentheses following RND is a dummy and has
no effect on the numbers returned However, the dummy variable must be used
Generally, the RND function is used in combination with other BASIC statements
or functions to return a number for games, decision making, and the like. The
following is a simple routine that returns a random number between 0 and 999

10 X = RND(0)
20 RX = INT(1000 X)
30 PRINT RX

(0 is the dummy variable)

SGN
Format: SGN (aexp)
Example: 10 0 X = SGN(— 199) (— I wou l d be returned)
Returns a — 1 if aexp evaluates to a negative number, a 0 if aexp evaluates to 0,
or a I if aexp evaluates to a positive number

SQR
Format: SQR (aexp)
Example: 10 0 PRINT SQR(100) (10 would be printed)
Returns the square root of the aexp which must be positive

FUNCTION LIBRARY 41

TRIGONOMETRIC FUNCTIONS

ATN
Format: ATN (aexp)
Example: 10 0 X = ATN(65)
Returns the arctangent of the variable or expression in parentheses

COS
Format: COS (aexp)
Example: 10 0 C = COS(X+ Y+ Z)
Note: Presumes X. Y, Z previously definedi
Returns the trigonometric cosine of the expression in parentheses

SIN
Format: SIN (aexp)
Example: 10 0 X = SIN(Y)
Note: Presumes Y previously defined.
Returns the trigonometric sine of the expression in parentheses

DEG/RAD
Format: DEG

RAD
Example: 10 0 DEG

100 RAD
These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless DEG
is specified. Once the DEG statemenl has been executed. RAD must be used to
return to radians.

See Appendix E for the additional trigonometric functions lhat can be derived.

SPECIAL PURPOSE FUNCTIONS

ADR
Format: ADR (svar)
Example: A DR(A$)
Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa-
tion to USR routines, etc. (See USR and Appendix D)

FRE
Format: FRE (aexp)
Examples: PRINT FRE (0)

100 IF FRE (0) (1000 THEN PRINT "MEMORY CRITICAL"
This function returns the number of bytes of user RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

42 FUNCTION LIBRARY

PEEK
Format: PEE K(aexp)
Examples: 1000 IF PEEK(4000) = 255 THEN PRINT "255"

100 PRINT "LEFT MARGIN IS", PEEK (82)
Returns the contents of a spec ified memory address location (aexp). The address
specified must be an integer or an ar ithmetic expression that evaluates to an in.
teger between 0 and 65535 and represents the memory address in decimal nota-
tion (not hexadecimal). The number returned will also be a decimal integer w ith a
range from 0 to 255 This funct ion allows the user to examine either RAM or ROM
locations. In the first example above, the PEEK is used to determine whether loca-
tion 4000 (decimal) contains the number 255 In the second example, the PEEK
function is used to exam ine the left margin.

POKE
Format: POK E aexp1, aexp2
Examples: POKE 82, 10

100 POKE 82, 20
Although this is not a function, it is included in this section because it is closely
associated with the PEEK function The POKE command inserts data into the
memory IOCatiOn Or mOdifies data already stored there. In the above format, aexp1
is the decimal address of the locat ion to be poked and aexp2 is the data to be
poked Note that this number is a decimal number between 0 and 255 POKE can-
not be used to alter ROM locat ions. In gaining familiarity with this command it is
advisable to look at the memory location with a PEEK and write down the contents
of the location. Then, if the POKE doesn't work as ant icipated, the original con-
tents can be poked into the location

The above Direct mode example changes the left screen marg in from its default
position of 2 to a new posit ion of 10 In other words, the new margin w ill be 8
spaces to the right To restore the marg in to its normal default position, press
SYSTEM RESET.

USR
Format: USR (aexp1 [, aexp2] [, aexp3.])
Example: 10 0 RESULT = USR (ADD t,A*2)

This function returns the results of a mach ine-language subroutine The first ex-
pression, aexp1, must be an integer or ar ithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed The input arguments aexp2, aexp3, etc., are optional
These should be arithmetic expressions within a decimal range of 0 through 65535
A non-integer value may be used, however, it will be rounded to the nearest
integer

These values will be converted from BASIC's Binary Coded Decimal (BCD)
floating point number format to a two byte binary number, then pushed onto the
hardware stack, composed of a group of RAM memory locations under direct con-
trol of the 6502 microprocessor chip Figure 6-1 illustrates the structure of the
hardware stack.

FUNCTION LIBRARY 43

N (Number of arguments on the stack-may be 0)
X, (H i gh byte of argument X)
X, (L ow byte of argument X)
Y, (Hi gh byte of argument Y)
Y, (L ow byte of argument Y)
Z, (Hi gh byte of argument Z)
Z, (L ow byte of argument Z)

R, (L ow byte of return address)
R, (H i gh byte of return address)
Figure 6-1. Hardware Stack Definition

Note: X is the argument following the address of the routine. Y is the second, Z is
the third etc. There are N pairs of bytes.
See Section t t for a description of the USR function in machine language pro-
gramming Appendix D def ines the bytes in RAM avai lable for machine language
programming

44 F JNCTION L BRARY

STRINGS

This section describes strings and the funct ions associated with string handling
Each string must be dimens ioned (see DIM statement, Section 8) and each string
variable must end with a $ A st r ing itself is a group of characters "strung"
together The individual characters may be letters, numbers, or symbols (includ ing
the ATARI special keyboard symbols) A substr ing is a part of a longer str ing and
any substring is access ible in ATARI BASIC if the string has been properly dimen.
sioned (see end of sect ion) The characters in a string are indexed from 1 to the
current str ing length. which is less than or equal to the d imensioned length of the
siring

The string functions descr ibed in this section are
ASC STR$ CHR$ VAL LEN

ASC
Format: ASC (sexp)
Examples: 100 A = ASC(AS)
This function returns the ATASCII code number for the first character of Ihe string
expression (sexp). This function can be used in either Direct or Deferred mode
Figure 7.1 is a short program illustrat ing the ASC function

!, 0 [') T<'4
" f t .* ' F.
'..I (! i- ' i-":(t",:I(', (i.'r'.F:'!
'(0 I : FiIINt "f'

Figure 7.1. ASC Function Program

When executed. this program pr ints a 69 which is the ATASCII code for the letter
"E ' Note that when the string itself is used, it must be enclosed in quotation
marks.

CHR$
Format: CH R $ (aexp)
Examples: 100 PRINT CHR$ (65)

100 AS = CHR$ (65)
This character string function returns the character, in str ing format, represented
by the ATASCII code number in parentheses Only one character iS returned In the
above examples, the letter A is returned Us ing the ASC and CHR$ functions, Ihe
prOgram in Figure 7.2 prints the upper case letters of the alphabet

sTRiNGs 45

Figure 7.2. ASC and CHR$ Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.
For example, A = CHR$(1) (C HR$(2) is not a valid operation.

LEN
Format: LEN (sexp)
Example: 10 0 PRINT LEN(AS)
This function returns the length in bytes of the des ignated string This information
may then be printed or used later in a prOgram The length of a string var iable is
simply the index for the character wh ich is currently at the end of the string
Strings have a length of 0 until characters have been stored in them It is poss ible
to store into the middle of the str ing by using subscripting However the beg inning
of the string will contain garbage unless someth ing was stored there prev iously

The routine in Figure 7-3 illustrates one use of the LEN function.

Figure 7.3. LEN Function Example

The result of running the above program would be 5

STR$
Format: STR $ (aexp)
Example: AS = STR$(65)
This string form number funct ion returns the string form of the number in paren-
theses. The above example would return the actual number 65. but it would be
recognized by the computer as a string
Note: There can only be one STR$ in a logical comparison. For exampie.
A = STR$(1)) STR$(2) is not valid and will not work correctly.

VAL
Format: VAL (sexp)
Example: 100 A = VAL(AS)
This function returns a number of the same value as the number stored as a string
This is the opposite of a STR$ function. Usi ng this function, the computer can
perform arithmetic operations on strings as shown in the example program in
Figure 7-4.

46 STRINGS

Figure 7 4. VAL Function Program

Upon execution, the screen displays THE SQUARE ROOT OF 10000 IS 100.
lt is not possible to use the VAL function with a string that does not start with a

number, or that cannot be interpreted by the computer as a number It can,
however, interpret floating point numbers, e.g., VAL(" I E9") would return the
number 1000000000

Only the numeric field will be translated, while the text will be ignored For
example'
A$ = "5 SUM"
VAL(AS)= 5

STRING MANIPULATIONS

Strings can be manipulated in a variety of ways They can be split, concatenated,
rearranged. and sorted The following paragraphs describe the different manipula-
I ion s

STRING CONCATENATION
Concatenation means putting two or more strings together to form one large str ing
Each string to be included in a larger string is called a substring. Each substring
must be dimensioned (see DIM). In ATARI BASIC, a substring can contain up to 99
characters (including spaces). After concatenat ion, the substrings can be stored in
another string variable, printed, or used in later sections of the program Figure 7-5
is a sample program demonstrating string concatenation. In this program, A$, B$,
and C$ are concatenated and placed in A$.

Figure 7.5. String Concatenation Example

STRINGS dr

STRING SPLITTING
The format of a subscript string variable is as follows:
svar(aexp t [.aexp2])

The svar iS uSed to indicate the unsubscripted string variable name (with $).
aexpt indicates the starting location of the substring and aexp2 (if used) indicates
the ending location of the substring If no aexp2 is specified, then the end of the
substring is the current end of the string The starting location cannot be greater
than the current length of the string The two example programs in Figure 7-6 il.
lustrate a split string with no end IOCatiOn indicated and a split string with an
ending location indicated.

I, 0 [; I I'tt ' '.I; ',5) I I.I " ."j. l ' I 5':(' ('::: 0;!
"' ('I "'+:-: " ". F I (' D:(I " ' .,0 ' ;:.!'k:':" I 'i' I'i'::il,'T. (!0 0 I :.:.'i' t!>'((":."
3 0 F F'.'. 1: I'! T,":! t: '. ".) .;:I('! F F,'.(')IT ! :> f> (;. • 8)
"~ tf F..:: i'(D ',I', F 'tP,

Result is BCD¹ Result is 80
(without ending location) (with ending location)

Figure 7.6. Split String Examples

STRING COMPARISONS AND SORTS
In string comparisons. the logical operators are used exactly the way they are with
numbers The second program in Appendix H is a simple example of bubble sort.

In using logical operators, remember that each letter, number. and symbol is
assigned an ATASCII code number. A few general rules apply to these codes
1 ATASCII codes for numbers are sized in order of the numbers' real values and

are always lower than the codes for letters (see Appendix C).
2. Upper case letters have lower numerical values than the lower case letters. To

obtain the ATASCII code for a lower case letter if you know the upper case
value. add 32 to the upper case code.

Note: ATARI BASIC's memory management system moves strings around in
memory to make room for new statements This causes the string address to vary
if a program is modified or Direct mode is used.

48 STRINGS

ARRAYS AND
MATRICES

An array is a one-dimensional list of numbers assigned to subscr ipted variables.
e.g, A(0). A(1), A(2) Subscr ipts range from 0 to the dimensioned value. Figure 8-1
illustrates a 7-element array.

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)

Figure 8.1. Example of an Array

A matrix, in this context, is a two-dimensional table conta ining rows and columns
Rows run horizontally and columns run vertically Matr ix elements are stored by
BASIC in row-ma)or order This means that all the elements of the first row are
stored first. followed by all the elements of the second row, etc Figure 8.2
illustrates a 7 x 4 matrix

Columns

M(0,0) M(0 1) M(0 2) M(0,3)
M(1.0) M(1,1) M(1,2) M(i,3)

M(2,0) M(2 1) M(2,2) M(2. 3)
M(3,0) M(3,1) M(3.2) M(3,3)
M(4 0) M(4,1) M(4,2) M(4,3)
M(5,0) M(5 1) M(5 2) M(5,3)
M(6.0) M(6.1) M(6,2) M(6.3)

Figure 8.2. Example of a Matrix

This section describes the two commands associated w ith arrays. matrices, and
strings. and how to load both arrays and matrices. The commands in th is section
are
DIM
CLR

STRINGS 49

DIM (DI.)
Format: D(M svar(aexp)I [J ,svar(aexp)

mvar(aexp[aexp]) f L L,mvar(aexp[,aexp])
Examples: DIM A(100)

DIM M(6.3)
DIM B$(20) used with STRINGS

A DIM statement is used to reserve a certain number of locations in memory for a
string, array, or matrix A character in a string takes one byte in memory and a
number in an array takes six bytes The first example reserves 101 locations for an
array designated A. The second example reserves 7 rows by 4 columns for a two-
dimensional array (matrix) designated M The third example reserves 20 bytes
designated B$ AII strings, arrays, and matrices must be dimensioned. It is a
good habit to put all DIM statements at the beginning of the program. Notice in
Figure 8.1 that although the array is dimensioned as DIM A(6), there are actually
7 elements in the array because of the 0 element. Although Figure 8-2 is dimen.
sioned as DIM M(6,3), 28 locations are reserved
Note: The ATARI Home Computer does not automatically initialize array or matrix
variables to 0 at the start of program execution. To initialize array or matrix
elements to 0, use the following program steps

Arrays and matrices are "filled" with data by using FOR/NEXT statements,
READ/DATA statements and INPUT commands F igure 8-3 illustrates the
"building" of part of an array using the FOR/NEXT loop and Figure 8 4 builds an
array using the READ/DATA statements.

Figure 8.3. Use of FOR/NEXT to Build An Array

50 ARRAYS a MATRICES

Figure 8.4. Use of READ/DATA to Build An Array

Figure 8-5 shows an example of bu ilding a 6 x 3 matrix.

Figure 8.5. Building A Matrix
Note that the words ROW and COLUMN are not BASIC commands, statements.
functions, or keywords They are s imply variable names used here to designate
which loop function is first The program could lust as easily have been written
with X and Y as the variable names
Note: The command COM is identical to DIM and may be used in its place.
Note: Due to a discrepancy in boundary check ing. arrays of up to 32766 by 32766
in size can be dimensioned. The programmer should size the array ahead of time
to ensure that there is enougn RAM storage space.

CLR
Format: CLR
Example: 20 0 CLR
This command clears the memory of all previously d imensioned strings, arrays,
and matrices so the memory and variable names can be used for other purposes
If a matrix. string, or array is needed after a CLR command, it must be redimen.
sioned with a DIM command

ARRAYS 8 MATRICES Si

GRAPHICS MODES
AND COMMANDS

This section describes the ATARI BASIC commands and the different graphics
modes of the ATARI Home Computer Using these commands, it is possible to
create graphics for graphic displays or games.

The commands to be described in this section are
GRAPHICS LOCATE PUT/GET
C OLOR PLOT SETCOLO R
DRAWTO POSI T ION XI O
The PUT/GET and XIO commands explained in this section are special applica-
tions of the same commands described in Section 5

C C C

GRAPHICS (GR.)
Format: GRA P HICS aexp
Examples: GRAPHICS 2 C C

100 G RA P H I CS 5 + 16
170 GRAPHICS 1+ 32+ 16
120 GRAPHICS 8
150 GRAPHICS 0
140 GRAPHICS 18

This command is used to select one of the graphics modes. The 1200XL provides
16 graphics modes. Ihe 400/800 provide 12 graphics modes if the GTIA chip is in.
stalled and 9 if the CTIA chip is installed Table 9-1 summarizes the modes and the
characteristics of each. The GRAPHICS command automatically opens the

C C C

screen, S.(the graphics window), as device ¹6 So when printing text in the text
window, it is not necessary to specify the device code The aexp must be positive.
rounded to the nearest integer. Graphics mode 0 is a full. screen display while
modes 1 through 8 are split screen displays. To override the split-screen, add the
characters + 16 to the mode number (aexp) in the GRAPHICS command Adding

C C
32 prevents the GRAPHICS command from clearing the screen

To return to graphics mode 0 in Direct mode, press SYSTEM RESET or type CGR.O and press RETURN.

(C

E
52 GRAPI 'ICS MODES & COMMANDS

TABLE 9-1 TABLE OF MODES AND SCREEN FORMATS
SCREEN FORMAT

Rows — Rows — N umber R A M Required
Graphics Mode Split Full ot (Bytes)
Mode Type Columns Screen' * S creen C o lors Spl i t Fu l l

0 1
TEXT 40 24 1. 1/2 992
TEXT 20 20 24 5 674 672

2 3 4 5 6 7

TEXT 20 10 12 5 424 420
G RAPHICS 4 0 20 24 4 434 432
G RAPHICS 8 0 40 48 2 694 696
G RAPHICS 8 0 40 48 4 1 174 117 6
G RAPHICS 1 6 0 80 96 2 2 174 21 8 4
G RAPHICS 1 6 0 80 96 4 4 190 42 0 0

8 G RAPHICS 3 2 0 160 192 1. 1/2 8 112 81 3 8
9* G RAPHICS 8 0 192 1 8138
10' G RAPHICS 8 0 192 9 8138
11 G RAPHICS 8 0 192 16 8138
12 * ' ' G RAPHICS 4 0 20 24 5 1 154 115 2
13 * * ' G RAPHICS 4 0 10 12 5 664 660
14* ' * G RAPHICS 1 6 0 160 192 2 4 270 4 2 9 6
15 * * G RAPHICS 1 6 0 160 192 4 8 112 81 3 8

GTIA Mode Oniy
'Refer IO Figure 9.1

'i200XL Only

GRAPHICS MODE 0

This mode is the 1.color, 2-luminance (br ightness) default mode for the ATARI
Home Computer It contains a 24 by 40 character SCreen matr ix. The default
margin settings at 2 and 39 allow 38 characters per l ine. Margins may be changed
by poking LMARGN and RMARGN (82 and 83) See Append ix I. Some systems
have different margin defaull settings. The color of the characters is determined by
the background color. Only the luminance of the characters can be different Th is
full-screen display has a blue display area bordered in black (unless the border is
specified to be another color) To display characterS at a specif ied location, use
one of the following two methods.
Method 1.

lineno POSITION aexp1, aexp2 Puts cursor at location specified by aexp 1 and
lineno PRINT sexp aexp2.

Method 2
lineno GR. 0 Specifies graphics mode
lineno POKE 752,1 Suppresses cursor.
lineno COLOR ASC(sexp) SpeCifieS CharaCter tO be printed.
lineno PLOT aexpl,aexp2 Specifies where to print character.
lineno GOTO lineno Start loop lo prevent READY from being

printed. (GOTO same lineno.)
Press BREAK to terminate loop.

GRAPHICS 0 is also used as a clear screen command either in Direct mode or
Deferred mode It terminates any previously selected graphics mode and returns
the screen to the default mode (GRAPHICS 0).

GRAPHICS MODES It COMMANDS 53

GRAPHICS MODES 1 AND 2

As defined in Table 9-1, these two 5-color modes are Text modes However. they
are both split. screen (see Figure 9-1) modes Characters printed in Graphics mode
1 are twice the width of those printed in Graphics 0, but are the same height
Characters printed in Graphics mode 2 are twice the width and height of those in
Graphics mode 0. In the split. screen mode, a PRINT command is used to display
characters in either the text window or the graphics window. To print characters in
the graphics window. specify device ¹6 after the PRINT command.
Example: 10 0 GR

110 P RINT¹6,"ATARI"
The default colors depend on the type of character input Table 9.2 defines the
default color and color register used for each type
TABLE 9.2 DEFAULT COLORS FOR SPECIFIC INPUT TYPES
Character Type Color Register Default Color
Upper case alphabetical 0 Orange
Lower case alphabetical 1 Light Green
inverse upper case alphabetical 2 Dark Blue
inverse lower case alphabetical 3 Red
Numbers and delimiters 0 Orange
Inverse numbers and delimiters 2 Dark Blue
Note: See SETCOLOR to change CharaCter COIOrS

Unless otherwise specified, all characters are displayed in upper case non-inverse
form. To print lower case letters and graphics characters, use a POKE 756,226. To
return to upper case. use POKE 756,224.

In Graphics modes 1 and 2, there is no inverse video, but it is possible to get all
of the characters in four different colors (see end of section).

(X =0)
(V=0) X-coordinate (columns)

II •
Graphics Window
(graphics or text)

tn

0 tc

e n c

D 0 0 V

E:
Text Window
(4 lines)

border (size
depends on
indtwduai
TV's overseen)

Figure 9.1. Split. Screen Display For Graphics Modes 1 and 2

54 GRAPHICS MODES & COMMANDS

As shown in Figure 9-1. the x and Y coordinates start at 0 (upper left of screen)
The maximum values are the numbers of rows and columns m inus 1 (see Table
9-1).

This split-screen configuration can be changed to a full screen display by add ing
the characters + 16 to the mode number,
Example: G RAPHICS 1+ 16

GRAPHICS MODES 3, 5, AND 7
These three 4-color Graph ics modes are also split-screen displays in their default
state. but may be changed to full screen by add ing + 16 to the mode number
Modes 3, 5, and 7 are alike except that modes 5 and 7 use more po ints (pixels) in
plOtting, drawing, and positioning the cursor, the points are smaller, thereby giv ing
a much higher resolution.

GRAPHICS MODES 4 AND 6

These two 2.color Graphics modes are split-screen displays and can display in only
two colors while the other modes can d isplay 4 and 5 colors The advantage of a
two-color mode is that it requires less RAM space (see Table 9-1). Therefore, it is
used when only two colors are needed and RAM is getting crowded. These two
modes also have a higher resolution which means smaller points than Graph ics
mode 3.

GRAPHICS MODE 8

This Graphics mode gives the highest resolution of all the modes As it takes a lot
of RAM to obtain this kind of resolution, it can only accommodate a max imum of
one color and two different luminances.

GRAPHICS MODES 9, 10, AND 11
Use GRAPHICS to select one of the Graphics modes (9 through 11). GRAPHICS 9
through 11 are only available if your system has a GTIA chip. GRAPHICS 9 allows
you to have one playfield color with 16 luminances. GRAPHICS 10 can have nine
playfield colors with eight luminances. GRAPHICS 11 can have 16 colors with one
luminance.

GRAPHICS MODES & COMMANDS 55

COLOR (C.)
Format: COL OR aexp
Examples: 110 COLOR ASC("A")

110 COLOR 3
The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO commands
until the next COLOR statement is executed. The value must be positive and is
usually an integer from 0 through 4 Modes 9 through 11 use 4 bits, so the color
statement varies between 0 and 15 The actual color displayed depends on the
value in the color register, which corresponds to the data of 0. 1, 2, or 3 in the par-
ticular graphics mode being used. This may be determined by looking in Table 9.5,
which gives the default colors and the corresponding register numbers. Colors may
be changed by using SETCOLOR.

Note that when BASIC is first powered up. the color data is 0, and when a
GRAPHICS command (without + 32) is executed. all of the pixels are set to 0
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed Correct by doing a
COLOR 1 first

DRAWTO (DR.)
Format: DRA WTO aexp1, aexp2
Example: 10 0 DRAWTO 10,S
This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexpt and aexp2 The first expression
represents the X coordinate and the second represents the Y.coordinate (see
Figure 9.1). The color of the line is determined by the color command in effect at
the time.

LOCATE (LOC.)
Format: LOC ATE aexp1, aexp2, var
Example: 15 0 LOCATE 12, 15, X
This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the color data at that pixel, and stores it in the
specified arithmetic variable This gives a number from 0 to 255 for Graphics
modes 0 through 2, 0 or 1 for the 2-color graphics modes, and 0, 1 2, or 3 for the
4-color modes The two arithmetic expressions specify the X and Y coordinates of
the point. LOCATE is equivalent to
POSITION aexp1, aexp2 GET ¹6,avar
Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified This problem is avoided by reposi.
tioning the cursor and putting the data that was read, back into the pixel before do.
ing the PRINT The program in Figure 9-2 illustrates the use of the LOCATE com-
mand.

56 GRAPHICS MODES ff, COMMANDS

'I (1 (F";" "''I-(Tf".'",,;.' l- 'I;:,,
I',I ' l l (I(I
' .

.

:I: ' r .(:)I...(':F;: , ri,.;;-,
i'I I') 1 I (I,, 'I ';i

'.i ri I.;ir:;i'i) 1 () : I ',"j r I ',"'j
r',0 I ('1("r'q "(i.-.. I, q ."~.'.i;. X

F I".Ii''!'i

Figure 9-2. Example Program Using LOCATE

Qn execution, the program prints the data (1) determined by the COLOR statement
which was stored in pixel 12, 15.

PLOT (PL.)
Format: PLO T aexp1, aexp2
Example: 10 0 PLOT 5,5
The PLOT command is used in Graphics modes 3 through 11 to display a point in
the graphics window. The aexp1 spec ifies the X-coordinate and the aexp2 the
Y-coordinate The color of the plotted point is determined by the last COLOR state.
ment executed To change the color and luminance of the plotted point, use SET-
COLOR. Points that can be plotted on the screen are dependent on the Graphics
mode being used. The range of points begins at 0 and extends to one less than the
total number of rows (X-coordinate) or columns (Y.coordinate) shown in Table 9-1.

POSITION (POS.)
Format: POS I TION aexp1, aexp2
Example: 10 0 POSITION 8, 12
The POSITION statement is used to place the cursor (invisible in graphics mode)
at a specified location on the screen. This statement usually precedes a PRINT
statement and can be used in all modes. Note that the cursor does not actually
move until an I/O command which involves the screen is issued.

PUT/G ET (PU./G E.)
Formats PUT ¹aexp, aexp

GET ¹aexp. avar
Examples: 100 PUT ¹6, ASC("A")

200 GET ¹1, X
In graphics work, PUT is used to output data to the screen display. This statement
works hand-in-hand with the POSITION statement. After a PUT (or GET), the cur-
sor is moved to the next location on the screen. Doing a PUT to device ¹6 causes
the one-byte input (second aexp) to be displayed at the cursor position The byte is
either an ATASCII code byte for a particular character (modes 0-2) or the color
data (modes 3-11).

GRAPHICS MODES & COMMANDS 57

GET is used to input the code byte of the character displayed at the cursor pos i-

tion, into the specified ar ithmetic variable. (PRINT and INPUT may also be used.)
Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was exam ined to be mod ified To avoid this problem, repos i-

tion the cursor and put the data that was read, back into the pixel before doing the
PRINT

SETCOLOR (SE.)
Format: SET COLOR aexp1, aexp2, aexp3
Example: 10 0 SETCOLOR 0, 1, 4
This statement is used to choose the particular hue and luminance to be stored In

the specified color register. The parameters of the SETCOLOR statement are
defined below:
aexp1 = Color register (0-4 depending on graphics mode)
aexp2 = Co lor hue number (0-15 See Table 9.3)
aexp3 = C o lor luminance (must be an even number between 0 and 14, the

higher the number the brighter the d isplay. 14 is almost pure white.)
TABLE 9-3 THE ATARI HUE (SETCOLOR COMMAND) NUMBERS AND COLORS
COLORS SETCOLOR (aexp2) NUMBERS
GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED.ORANGE 3
PINK 4
PURPLE 5
PURPLE-BLUE 6
BLUE 7
BLUE 8
LIGHT BLUE 9
TURQUOISE 10
GREEN-BLUE 11
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15
Note: Colors vary with type and adjustment of TV or mon itor used.

The ATARI display hardware conta ins five color registers, numbered from
0 through 4. The Operating System (OS) has five RAM locat ions (COLOR 0 through
COLOR 4, see Appendix I — Memory Locations) where it keeps track of the current
colors. The SETCOLOR statement is used to change the values in these RAM
locations. (The OS transfers these values to the hardware registers every televis ion
frame.) The SETCOLOR statement requires a value from 0 to 4 to specify a color
register. The COLOR statement uses different numbers because it specif ies data
which only indirectly corresponds to a color reg ister. This can be confusing, so
careful experimentation and study of the various tables in this section is advised.

No SETCOLOR commands are needed if the default set of colors is used. The
purpose of the color reg isters and SETCOLOR statement is to specify the colors.

58 GRAPHICS MODES & COMMANDS

TABLE 9-4 TAB LE OF SETCOLOR "DEFAULT" COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color
0 2 8 ORANGE
1 12 10 GREEN
2 9 4 DARK BLUE
3 4 6 PINK OR RED
4 0 0 BLACK
'"DEFAULT" occurs if no SETCOLOR statement is used
Note: Colors may vary depending upon the television monitor type, condition, and adlust-
ment

A program illustrating Graphics mode 3 and the cOmmands explained so far in this
section is shown below:

' I! (' ;F I::F FI.Z(' "1 ')

„ ;t! !E I ! t , ,'IL (:) F', I, '„:, ':::; (.::(:: I. i')", :I
,"; () I'"„ I'I 'T' '! .'') '.0 I..: I''. i "') j'x i i! . I . 2 .I. 0 0 I.i I"' I"II'! I (I ' j . I. '..
EI!1 Fsl I ' IT 0 E", I .; I ! : , L I 'I (:! 1 ' , :I l::.

F: I. i)T ;, (! j 'I,;!.)I.'r'jt-I ((.! .::t.',.:I ('
I! I ' I .. i: ! 'I' "2.:.').., : L I: I j" j!! I i:.); .:.'.0' j I. i!

," ft F'! F". I' I IT I .! , : (! E . E '::)
' :t(' F ('lI r.
rv f'. ') I-i) i il , '.!'.. I-IUI iI::. I . , (! IXII) I! I I:,I'."r)"
'I. 0! (:I (:! F.) TI) 'i 0."

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9-5). The SETCOLOR command loads color register 0 with hue 2
(orange) and a luminance of 8 (" normal"). The next 4 lines plot the points to be
displayed Line 80 prints the string expression ATARI HOME COMPUTERS in the
text window

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it prints the ATARI logo in the graphics window and
the string expression in the text window as in Figure 9-3.

• AXIS POINTS ICOLUNNSI

0 ' 2) •) • I • \ 0 I 1 • $ 0 I • \ 10 2 11 212 • 1)2 • 2 I • 20)0))2)l)0))) • 121 • I •

GRAPHICS WINOOWI

OEVICE COOS S
SI oo

I G OPRH) 0 1 • t l

TTE 0 I WINOOWI

• • E 0 Io
OE VICE COOS 'E "

I T • I 0 ' T I

Figure 9-3. Atari Logo Program Execution

GRAPHICS MODES & COMMANDS 59

TABLE 9.5 MOD E, SETCOLOR, COLOR TABLE
SETCOLOR DESCRIPTION

Default Mode or (aexpt) Color COLOR AND
Colors Condition Register No. (aexp) COMMENTS

0 COLOR data
LIGHT BLUE MODE 0 and 1 actually Character

ALL TEXT determines luminance
WINDOWS character to (same color
(1 Color be plotted as background)

DARK BLUE 2 Luminances) Background

BLACK Border
ORANGE COLOR data Character
LIGHT GREEN M O DES 1 actually deter- Character
DARK BLUE and mines character Character
RED 2 to be plotted Character

C C
BLACK (Text Modes) Background. Border
ORANGE GraphiCS pOint
LIGHT GREEN M ODES 3, 5, Graphics point
D ARK BLUE and 7 Graphics point

(Four-color
BLACK Modes) Graphics point

(background
default). Border

ORANGE MODES 4 Graphics point
and 6
(Two-color
Modes)

BLACK Graphics point
(background
default), Border

Graphics point
luminance
(same color C
as background)

L IGHT BLUE MOD E 8 Graphics point
(background
default)

DARK BLUE (1 C o lo r 3
BLACK 2 Luminances) 4 Border
BLACK MODE 9 4 0-15 Graphics point-

(I Color Color value deter-
16 Luminances) mines luminance

C C C
BLACK MODE 10 Background

(Color 0) CBLACK (9 Color) Graphics point
BLACK GraphiCS pOint
BLACK Graphics point
ORANGE 0 1 Graphics point
LIGHT GREEN Graphics point
DARK BLUE

2 3 4
Graphics point

RED Graphics point
BLACK Graphics point

C C C C

BLACK MODE 11 0-15 Graphics point-
(16 Colors Color value
1 Luminance) determines hue

60 GRAPHICS MODES & COMMANDS

XIO (X.) SPECIAL FILL APPLICATION
Format: XIO 18 , ¹aexp, aexp1, aexp2, filespec
Example: 10 0 XIO 18, ¹6, 12, 0,"S:"
This special application of the XIO statement uses XIO 18 fills an area on the
screen between plotted points and l ines with a non-zero color A dummy variable
(0) is used for aexp2. Refer to XIO statement for further information

The following steps illustrate the fill process:
1. PLOT bottom right corner (point 1).
2 DRAWTO upper right corner (point 2) Th is outlines the right edge of the area to

be filled
3. DRAWTO upper left corner (point 3)
4 POSITION cursor at lower left corner (point 4)
5. POKE address 765 with the fill color data (1, 2, or 3)
6 This method is used to fill each horizontal line from top to bottom of the

specified area. The fill starts at the left and proceeds across the line to the right
until it reaches a pixel which conta ins non-zero data (will wraparound if
necessary). This means that fill cannot be used to change an area wh ich has
been filled in with a non-zero value, as the fill will StOP. The fill command w ill go
into an infinite loop if a fill with zero (0) data is attempted on a line which has no
non-zero pixels. BREAK or SYSTEM RESET can be used to stop the fi ll if this
happens.

The program in Figure 9-4 creates a shape and f ills it with a data (color) Of 3 Note
that the XIO command draws in the lines at the left and bottom of the figure.

Figure 9-4. Example "FILL" Program

XIO L,X.) DRAW LINE APPLICATION
Format: XIO 17 , ¹aexp. aexp1, aexp2, filespec
Example: 13 0 XIO 17, ¹6, 12, 0,"S "
This application of the XIO statement uses XIQ 17 and draws a line on the screen
between the last point plotted and the current position of the (invisible) graphics
cursor (moved by the POSITION command) in the current color

GRAPHICS MODES S COMMANDS 6 I

100 GRAPHICS 5: COLOR 2
110 PLOT 5,5
120 POSITION 10,10
130 XIO 17, ¹6, 12, 0,"S."

The above program draws a line from 5,5 to 10,10 in COLOR 2 Lines 120 and 130
could be replaced by

120 DRAWTO 10,10

TABLE 9-6 INT ERNAL CHARACTER SET
Column 1 Column 2

¹ CHR ¹ CHR ¹ CHR ¹ CHR

0 Spa c e 16 0 32 gri 48 P C'
1 17 1 33 A 49 0

18 2 34 B 50 R

3 ¹ 19 3 35 C 51 S

4 $ 20 4 36 D 52 T

5 '/c 2 1 5 37 E 53 U

6 8 22 6 38 F 54 V
C f C f

23 7 39 G 55 W

8 (24 8 40 H 56 X
C f

9) 25 9 41 I 57 Y

10 * 26 42 J 58 Z

11 + 27 43 K 59 [

12 28 60

13 - 29 45 M 61 I

C f C C (

14 30 46 N 62 A

15 I 31 47 0 63
C C C

62 GRAPHICS MODES 6 COMMANDS | t.
-

Assigning Colors To Characters ln Text Modes 1 and 2
This procedure describes the method of assigning colors to the ATARI character
set. First, look up the character number in Table 9-6. Then, see Table 9-7 to get the
conversion of that number required to assign a color register to it.

Example: A s s ign SETCOLOR 0 to lower case "r"in mode 2 whose color is
determined by register 0.

1. In Table 9-6, find the column and number for "r" (114-column 4).

Column 3 Column 4
CHR ¹ CHR ¹ CHR ¹ CHR

64 Q ss Q 96 112 p

65 g si g 97 a 113 q

66 g) ss 98 b 114 r

67 Q Q 99 c 115 s

68 100 d 116

69 ss 101 e 117 u

70 Q ss 102 f 118 v

71 103 9 119 w

72 104 h 120 x

73 ss g 105 121 y

74 106 122 z

75 91 Q i 107 k 123

76 92 C', 108 124

77 93 0 109 m 125 0

78 94 0 110 n 126 Qi

79 95 0' 0 127

1 In mode 0 these characters must be preceded With an eSCape, CHRS(27), tO be psinted

GRAPHICS MODES & COMMANDS 63

k
TABLE 9-7 CHARACTER/COLOR ASSIGNMENT

Column 1 C o lumn 2 Co l umn 3 Co l umn 4
Conversion Conversion Conversion Conversion

MODE 0 ' SETCOLOR 2 ¹ + 3 2 ¹+ 32 ¹ — 64 NONE
POKE 756,224 POKE 756.226

MODE 1 SETCOLOR 0 ¹ + 3 2 ¹+ 32 ¹ — 32 ¹ — 32
OR S ETCOLOR 1 N O N E ¹+ 6 4 ¹ — 64 NONE
MODE 2 SETCOLOR 2 ¹ + 1 60 ¹ + 160 ¹ + 96 ¹ — 96

SETCOLOR 3 ¹ + 1 28 ¹ + 192 ¹ + 64 ¹ + 28

2 Luminance conlrblled by SETCOLOR i. 0, LUM

2. Using Table 9-7, locate column 4 Conversion is the character number minus 32
(114 — 32 = 8 2)

3 POKE the Character Base Address (CHBAS) with 226 to specify lower case let-
ters or special graphics characters, e g,
POKE 756,226
of'
CHBAS = 756
POKE CHBAS, 226

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS
with 224.
4 A PRINT statement using the converted number (82) assigns the lower case "r"

to SETCOLOR 0 in mode 2 (see Table 9-5).
Graphic Control Characters
These characterS are PrOduced when the CTRL key is pressed with the ap-
propriate alphabetic keys. These characters can be used to draw design, pictures,
etc, in mode 0 and in modes 1 and 2 if CHBAS is changed

COLOR ASSIGNMENT IN THE GTIA MODES 9, 10, and 11:

The GTIA modes 9, 10 and 11 handle colorS differently than modes 0 through 8.
The following procedures describe how to use modes 9, 10, and 11,
Mode 9: In th i s mode, one color with 16 luminances is available First,

choose a hue frOm Table 9-3 and assign it with the SETCOLOR com-
mand Oniy SETCOLOR register 4 is used and the luminance must be
set to zero: e g.,

100 SETCOLOR 4, HUE, 0 (where HUE is the hue to be assigned)
Then, use the COLOR statement to choose luminances from 0
through 15. 0 is almost black and 15 is almost white

Mode 10 Nin e co lors with nine different luminances are available. The nine col.
ors are chosen by using COLOR 0 through 8. These colors are as-
signed by use of POKE and SETCOLOR.
COLOR POKE SETO OLOR

iocalion register
0 704
1 705
2 706
3 707
4 708 0
5 709 1
6 710 2

64 GRAPHICS MODES & COMMANDS

C

COLOR POKE SETCOLOR (contlnuedl
location register
711 3
712 4

COLORs 4 through 8 can be assigned by using SETCOLOR in the
normal manner. All COLORs can be assigned by POKEing to the
locations given above.
16 colors, all with the same luminance, are available. The luminance
is assigned by SETCOLOR. Only SETCOLOR register 4 is used with
the hue number of zero; e.g.,

100 SETCOLOR 4,0,LUM (where lum is the luminance chosen)
The colors are chosen by COLORs 0 to 15. The COLOR numbers are
the same as those given in Table 9-3.

GRAPHICS MODES 6 COMMANDS 65

10 SOUNDS AND GAME
CONTROLLERS

C C

This section describes the statement used to generate musical notes and sounds
through the audio system of the television monitor Up to four different sounds can
be "played" simultaneously creating harmony. This SOUND statement can also be
used to simulate explosions, wh istles, and other interesting sound effects. The
other commands described in this section deal with the functions used to
manipulate the keyboard, lOyStiCk, and paddle controllers. These functions allow
these controllers to be plugged in and used in BASIC programs for games, etc.

The command and functions covered in this section are:
SOUND P AD DLE S TICK STRIG PTRIG

SOUND (SO.)
Format: SOU N D aexp1, aexp2, aexp3, aexp4
Example: 10 0 SOUND 2. 204, 10, 12
The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program encounters
another SOUND statement with the same aexp1 or an END statement. This com-
mand can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

C C C C

aexp1 = Voice. Can be 0-3, but each voice requires a separate SOUND state.
ment.

aexp2 = Pitch. Can be any number between 0-255 The larger the number, the
lower the pitch. Table 10-1 defines the pitch numbers for the various
musical notes ranging from two octaves above middle C to one octave
below middle C

aexp3 = Dis(ortion. Can be even numbers between 0-14. Used in creating sound
effects A 10 is used to create a "pure" tone whereas a 12 gives an in-
teresting buzzer sound The following program combines the 10 and 12

C C C C C

sounds:
10X = 1
20X = X + 2 " X
30 IF X < 10 THEN GOTO 20
35 SOUND 2. 100, 10, 8
40Y = O
50Y = Y + 2 ~ Y
60 SOUND 2, 100, 12, 8
70 IF Y < 10 THEN GOTO 50
80 GOTO 10
The rest of the numbers are used for other special effects, noise genera-
tion, and experimental use.

C C C C C i i

66 SOUND AND GAME CONTROLLERS

aexp4 = Volume control. Can be between 0 and 15 Using a 1 creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered normal. If
more than 1 sound statement is being used, the total volume should not
exceed 32. This creates an unpleasant "clipped" tone. A value of 0 turns
off the sound of the specified voice.

Using the note values in Table 10-1, the program in Figure 10-1 demonstrates
how to write a program that will "play" the C scale

TABLE 10-1 TABLE OF PITCH VALUES FOR THE MUSICAL NOTES

HIGH C 29
NOTES B 31

A¹or B p 33
A 35
G¹or A 37
G 40
F¹or G 42
F 45
E 47
D¹or E 50
0 53
C¹or D 57
C 60
B 64
A¹or B 68
A 72
G¹ or A 76
G 81
F¹or G 85
F 91
E 96
D¹or E 102
D 108
C¹or D 114

MIDDLE C C 121
B 128
A¹or B 136
A 144
G¹or A 153
G 162
F¹G or 173
F 182

LOW NOTES E 193
D¹or E 204
D 217
C¹or D 7 2 3 0
C 243

SOUND AND GAME CONTROLLERS 67

i" I D i" I
r":i-': .."..".I <!p T I II:.:.: I'! I:.:: I'I I

I 'f'I[) 0 pi"i 1 I' i, I I }
[z ! I :- : l T (3 ' l 0 0 i I' t[::.'.l'1' t'I
Tl)T
T(.! 1 0
[)

, 9: p '.l I) l:.); '.I '.,::: 1
T i"i .I. .8 + .I. > '(, .L;!:;L i..l (: .:. p .L ' .) p ..'. 1; p . *I,:) p,'."..'.~

Figure 10-1. Musical Scale Program

Note that the DATA statement in line 90 ends with 256, which is outSide of the
designated range. The 256 is used as an end.of-data marker

GAME CONTROLLER FUNCTIONS

Figure 10-2 is an illustration of controllers used with the ATARI Home Computers.
The controllers can be attached directly to the ATARI Home Computer or to exter-
nal mechanical devices so that outside events can be fed directly to the computer
for processing and control purposes.

Figure 10-2. Game Controllers

PADDLE
Format: PAD D LE(aexp)
Example: P RINT PADDLE(3)
This function returns the status of a particular numbered controller, The paddle
controllers (aexp) are numbered 0-7 from left to r ight for the ATARI 800 and 400, and
0-3 for the ATARI 1200. This function can be used with other functions or commands
to "cause" further actions like sound, graphics controls, etc. for example, the state-
ment IF PADDLE (3) © 14 THEN PRINT "PADDLE ACTIVE." Note that the PAD-
DLE function returns a number between 1 and 228, with the number increasing in
size as the knob on the controller is rotated counterclockwise (turned to the left).

68 SOUND AND GAME CONTROLLERS

PTRIG
Format: PT R I G(aexp)
Example: 100 IF PTRIG(4) = 0 THEN PRINT "MISSILES FIRED i"
The PTRIG function returns a status of 0 if the trigger button of the designated con-
troller is pressed Otherw ise, it returns a value of 1 The aexp must be a number
between 0 and 7 for the ATARI 800 and 400, and 0-3 for the ATARI 1200 as it
designates the controller

STICK
Format: STI C K(aexp)
Example: 10 0 PRINT STICK(3)
This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The Ioystick controllers are numbered from (left to
right) 0-3 for the ATARI 800 and 4QQ, and 0-1 for the ATARI 1200 and 400.
Controller 1 = STICK(0)
Controller 2 = S T ICK(1)
Controller 3 = S T ICK(2)
Controller 4 = S T ICK(3)
Figure 10-3 shows the numbers that are returned when the joyst ick controller is
moved in any direction.

10

8
13

Figure 10.3. Joystick Controller Movement

STRIG
Format: STR I G(aexp)
Example: 10 0 IF STRIG(3) = 0 THEN PRINT "FIRE TORPEDO"
The STRIG function works the same way as the PTRIG function. It is used with the
Ioystick. The aexP for the ATARI 800 and 400 must be 0-3, and the aexP for the ATARI
1200 must be 0-1.

SOUND AND GAME CONTROLLERS 69

ADVANCED PROGRAMMING
TECHNIQUES

This section includes hints on increasing programming efficiency conserving
memory, and combining machine language programs with ATARI BASIC programs
This section does not include an instruction set for the 6502 microprocessor chip
nor does it give instructions on programming in machine language. An add itional
purchase of the ATARI Assembler Editor cartridge and a careful study of the ATARI
Assembler Editor Manual are strongly recommended

MEMORY CONSERVATION

These hints give ways of conserving memory Some of these methods make pro-
grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations C C
1, In many small computers, eliminating blank spaces between words and

characters as they are typed into the keyboard will save memory This is not
true of the ATARI Home Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (lust as in typ ing on a con-
ventional typewriter) between successive keywords and between keywords and
variable names. Here is an example: C C,
10 IF A = 5 THEN PRINT A
Note the space between IF and A and between THEN and PRINT. In most L
cases, a s1atement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true Use conventional spacing.

2. Each new line number represents the beginning of what is called a new "log ical
line". Each logical line takes 6 bytes of "overhead", whether it is used to full
capacity or not. Adding an additional BASIC statement by using a colon () to C.
separate each pair of statements on the same line takes only 3 bytes.
If you need to save memory, this program

C.
C,

C
can be entered on one line:

:L (." X -:X+:I l ' ' i ' -'r'+:I. i ';.:=:X l '(l I-'I,''3:I'I'1 '.r'.: ((:) T() l . 0

This consolidation saves 12 bytes. C ti

70 ADVANCE D PROGRAMMING TECHNiQUES
li

3 Variables and constants should be "managed" for savings, too Each t ime a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new var iable
requires 8 bytes plus the length of the variable name (in characters) But each
time it is used after being defined, it takes only 1 byte, regardless of its length
Thus, if a constant (such as 3 14159) is used more than once or twice in a pro-
gram, it should be defined as a var iable, and the variable name used throughout
the program For example:

:::n F r"-.:I'Ii ""F:EH': cir ''; «; IF;(::I...E:::i: Ti-IE': r 'E.:i.
I),", '3 ('I I! i"-i['' E r',' 'r".i: i't E'.,'.i " "; r'' '5

4. I iteral strings require 2 bytes overhead and 1 byte for each character (includ ing
all spaces) in the string
String variables take 9 bytes each plus the length of the variable name (in-
cluding spaces) plus the space eaten up by the DIM statement plus the size of
the string itself (1 byte per character, including spaces) when it is defined Ob-
viously, the use of string variables is very costly in terms of RAM,

6. Definition of a new matrix requ ires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of columns).
Thus, a 25 row by 4 column matrix would require 15 + approximately 3 (for
variable name) + approximately 10 (for the DIM statement) + 6 t imes 100 (the
matrix size), or about 630 bytes.

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to remove
remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times On the other hand, a
subroutine that is only called once takes extra bytes for the GOSUB and
RETURN statements

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer
However, removing unnecessary parentheses and relying on operator
precedence will save a few bytes.

PROGRAMMING IN MACHINE LANGUAGE

Machine language is written entirely in binary code. The ATARI Home Computer
contains a 6502 microprocessor and it is possible to call 6502 machine code
subroutines from BASIC using the USR function Short routines may then be
entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac-
cumulator (PLA) instruction to remove the number (N) of input arguments off the
stack. If this number is not 0, then all of the input arguments must be popped off
the stack also using PLA. (See Figure 6-1).

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) instruc-
tion. The BASIC interpreter will convert the 2-byte binary number stored in loca-
tions 212 and 213 into an integer between 0 and 65535 in floating-point format to
obtain the value returned by the USR function.

ADVANCED PROGRAMMING TECHNIQUES 71

The ADR function may be used to pass data that is stored in arrays or str ings to
a subroutine in machine language. Use the ADR funct ion to get the address of the
array or string, and then use this address as one of the USR input arguments

The program in Figure 11-1, Hexcode Loader, provides the means of entering
hexadecimal codes, converting each hexadecimal number to decimal, and storing
the decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)
1. To use this program, first enter it. After entering it, save this program on disk or

cassette for future use.
l (t (' I ' "": t!',:C"

.
. 0 i '~ "I!L".'..'.0;0[: E.:.: L (. '[.)E:::I";" ('.

1.'F. ff '": TC11,'I'::"- [)E::C;:'J:i1" I... E:.:C!LJ.I,fiHL..I:;I'! I:.;: .LI'!
I.'F' ":" " i ; r) IJ'I'I 'l.)1 '.";:.".I! I 'F:.:I i.!'I" I:.::L') ' I.'. ' i T ' ! 3 1I'I Tl::
i' !F.!! T'.-

' ': T I.. I:i I i tl) I ' !13F.:.F,':!.'; 0 f) ..

(C

:: 0 F E:.!i (J!:.iE::F 1'!.IE.::i'l I 'I..."'0;i:::!:. (..L! I",!:i(.'!F:.: (3i:! I' 4:1 !4
'1'Irr T'I 0) (.JTF'I.JT I..:I:i'JF' „ I-II'T'." "hL; I'LJI",'i'! "; I'<I! [)
:'1 (3 I"'Fr'1 E::HTE.'I" I" E::!iT 0! I I i ' : i ,"::I:0 I" I' 'OCJF': ' I'I, I i ' ! C C
I'.I, lll3 ' i ' !i . L l !:.!E",F:,' !: i'r '-' T E::'I[::f'" T

0 [)T l" I I"- ', '..:. 0);.111:;:,'.I': ';i)
: . '-. II I"..'[;;i I IPT" I)'I' C;C)I!t:.IL',:F'.'I' 5 '1" (31"'[" [)! I 'I'I I C C
:::" n IHI-: 0 '. '> "F.:.:HTE-::I,' .I I l[:: : 0 ;C) L) L::, .I;Ir L i"-1';:31 (:I
I'! I"' T.! , : I : iJ, , E : !'! TE..I"' ' [;(3HI:.; ' . "
(3 CI I'.:I 'F''l 'T I-IE r.".L:

'I'r I I[:.,'.'.T:=' " I". I:)i.! I.:: " 'I" I II:..:H IHI'-'.. 7':.'Y; (:,C)1 (3 1 9 0
I 0 (1 F () I' I : : - L ' (' I I i ' ~ I-II 'I 1

C C C

:I.:l 0 I F : I - l f:.: ":I::'.:K,I) : :::-'' ' " T l- I E:i ! H : :-8:I:.:I.;.', E' ''-'I,..I'.

I!FT)'.':I: i:I:; I)) ",:. ((:3'T'C) 'i.;: 0
L ',: ". iA:- I'! w: L ; I '" !:.i C ; I-ll'. ':I ('.I:;:I:)) -- I": !'.i(: i " ir " + :L 0
L;3r) I! F',.'; r I

C f
T':4() F F','1:I.JT i'.! " .(..::::(,+:I.
:I. ' f) ni (("

.

',::-' I'!
: I.;:. i : I :F" I ' ,I::;;::9« I Il l : :.1'! (:,(.! ((! 7 0 C f
;I.;:" (3 F",E.: rl I"'Fi'.II'IT(.) I..J'I I.'! r"I'I (0 I. I I'w[.. I'i T I , ; i 0 0
:I l1(! C:.I", "IF I-IIC':";:3 0 i I"'F'. 'I:I"'I' ";L'i0 0 [) " " I ' IT
I'",n r;- n f C
;:. 0 (I C;::- C + '!.
?:L (1 I.F' 1<'. (:)::-"'?'?', TI-I[::I':! I' F''.E:i'.!T "'i 'Y9" i ! " T(3F'
2 .'.0 F I"iIH1' f 'i((:) "; " , " ;
'.<'?",3 0 I"I (C;) = 0

,

""; (1 (",f,')'I'('1 ~~ 0 0
.:.':::0 FxF','IIEET "F LJ1' C;Ol,'I E:.:C; T 4!(JT1[:.'E:;F' C)F: I-I[::X Et
'(TE,:.:!:i Ib! L . I i 'JE.:: ."r."i) " ' !"T'C)F ' I I::>'0 'I'I",')" F L,I N [: :
., , 0 F ;E:.!:I x<~;E-,E'C;LJT:KC)IH I'IC)[.LJL,E;:~,"'t:.

C C C

:.:;:"Ci C.;L..r;;F:, t rr.-.:".,:':I3

72 ADVANCED PROGRAMMING TECHNIQUES

: : l:!0 T ! . i l l .'. . 'i0.', I.>Iit I :.:.! (:L) .;I::.:(;li>T(LIT IE::'>i' a:)-'-

'."") 0 F f.?F I-:::L T0 f :."'TE::."'
! ('I 0 F E:.:AE) ' ' I fr '" : ::: "..".; ';: T'l-ll...ti! L'(:! "('(:! . ".0

;; I I') F (:!i',L:: I'l : I ',':E . I:) EI, ' :
;":, 0 i<E-.)',! I
;:.l'.. I? I"'.E::i:I E "- ..':I:("., I: 0F ! .1:0!i! 0f : L.!!.:;E::I '!:i I' I :0(I"'"'

F (:!L..L..(:)IJ",.!

Figure 11.1. Hexcode Loader Input Program

2. Now add the BASIC language part of your program start ing at line 340 in-
cluding the USR function that calls the machine language subroutine. (See ex-
ample below.)

3. Count the total number of hex codes to be entered and enter this number on
line 270 when requested If another number is already entered, simply replace
it

4 Run the program and enter the hexadecimal codes of the machine level
subroutine pressing RETURN after each entry After the last entry, type DONE
and press RETURN.

5 Now the DATA line (1500) dispiays on the screen It will not be entered into the
program until the cursor is moved to the DATA line and RETURN is pressed

6. Add a program line 5 GOTO 270 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by using
CSAVE or SAVE It is important to do this before executing the part of the pro-
gram containing the USR call A mistake in a machine language routine may
cause the system to crash. If the system does hang up. press SYSTEM RESET.
If the system doesn'1 respond, turn power off and on again, reload the program,
and correct it.

Note: This method only works with re!ocafabie machine language routines.
The following two sample programs can each be entered into the Hexcode Loader
program The first program prints NOTHING IS MOVING while the machine pro-
gram changes the colors. Use inverse video for lines 380 and 390. The second
sample program displays a BASIC graphics design, then changes colors.

- . : ,(t , ' .,r .', I-I'~:I:.;:.:
", i " 0 F" (? Ff '.) .- L "I' (')
' i (" 0 I '' f"' .!.. i '. T f> <'> ' ' ' j'! l.l (I-I .ln'! t

i I ':! i"I t.! ' i'; (:
f l I"'F",'"„' 0T t , ' ' , " " , i I ; i i t i .. . I"i u ii .t I i <3

' ;::r'I! r F' T;IT S ,:" I ! (' T I I E:j.:I', I ..I I' i t.! t;:!. I (.-.
, ', 7 f! f" F, T i i i lt <'i r I i v> i: i i .i, i r H ,I, ',- I" i i.)" , .I. i i "j
-'I I', f) il E" 2 T
"-, 'I. 0 f)-: ll„-,l.'; ' ,I:)I. ' i::.::F ': .I.)

F f'll", I ..;. I T(i " . " . " , ' ,".. i! I'" 'T f i(' 0 T (! " I r '.l 0

After entering this program, check that line 270 reads.
270 CLR:BYTES = 21
Type RUN and press RETURN.

ADVANCED PROGRAMMING TECHNIQUES 73

Now enter the hexadecimal codes as shown column by column
6 8 2
A 2 E 8
0 EO
AC 3

C C

C 4 9 0
2 F5 C
B D 8 C
C 5 C 7
2 2 C'
9 D 6 0
C4
BYTES = 21 C C
When completed, type DONE and press RETURN. Now place the cursor after the
last entry (999) on the DATA line and press RETURN.

Now run the program by typing GOTO 270 and pressing RETURN, or add line 5
has been added, type RUN and press RETURN. Press BREAK to stop program

C C
The second program, which follows, should be entered in place of the NOTHING

IS MOVING program Be sure to check the BYTES = count in line 270,
Delete line 5. Follow steps 2 through 6. C

C
.I; ' '

I I . ' I l i

C C C C C C

C C

Type RUN and press RETURN.
Enter the hexadecimal codes for this program column by column

C C C

6 8 2
A 2 E 8
0 EO
AC 2
C 4 9 0
2 F5
B D 8 C

C C C

74 ADVANCED PROGRAMMING TECHNIQUES
l.

C5 C6
2 2
9D 60
C4
BYTES = 21
when completed, type DONE and press RETURN. Now place the cursor after the
last entry (999) on the DATA line and press RETURN.

Now run the program by typing GOTO 270 and pressing RETURN, or add line
5 GOTO270 and type RUN and press RETURN. Press BREAK to stop the pro.
gram To use the Hexcode loader for other programs, be sure to delete line 5

Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. It is included here for the information of the user.

Assembler Subroutine to Rotate Colors
A ddress Object Li ne Label Mne monic D a t a

Code No.
0100 Routine to rotate

COLOR data
0110 From one register to

another
0120 4 colors are rotated
0130
0140 Operating system

address
02C4 0150 COLOR 0 = $02C4
02C5 0160 COLOR 1 = $02C5
02C6 0170 COLOR 2 = $02C6
02C7 0175 COLOR 3 = $02C7

0180
0190 $6000 Machine program

starting address
6000 68 0200 PLA Pop stack

(See Chapter 4)
6001 A200 0210 LDX ffO Zero the X register
6003 ACC402 0220 LDY COLO RO Save COLOR 0
6006 BDC502 0230 L OOP L D A COLOR1,X
6009 9DC402 0240 STA COLORO,X
600C E8 0250 INX Increment the X

register (add one)
600D E003 0260 CPX Compare contents of

X register with 3
600F 90F5 0270 BCC LOOP Loop if X register

contents are
less than 3

6 011 8CC70 2 0280 STY COLOR3 Save COLOR 0 in
COLOR 3

6014 60 0290 RTS Return from machine
level subroutine

Assembler This Portion is Source Information Programmer Enters
Prints This Using ATARI Assembler Editor Cartridge
ff Indicates data (source)
* Routine is relocatable
$ indicates a hexadecimal number

Figure 11.2. Assembler Subroutine To Rotate Colors

ADVANCED PROGRAMMING TECHNIQUES 75

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note: The period is mandatory after all abbreviated keywords.

RESERVED BRIEF SUMMARY
WORD: ABBREV IATION: OF BASIC STATEMENT
ABS Function returns absolute value (uns igned) of

the variable or expression,
ADR Function returns memory address of a string
AND Logical operator Expression is true only if both

subexpressions Ioined by AND are true.
ASC String function returns the numeric value of a

single string character
ATN Function returns the arctangent of a number or

expression in radians or degrees.

BYE Exit from BASIC and return to the resident
operating system or console processor.

C LOAD CLOA. Loads data from Program Recorder into RAM
CHRS String function returns a single string byte

equivalent to a numeric value between 0 and
255 in ATASCII code.

CLOG Function returns the base 10 logarithm of an
expression

CLOSE CL. I/O statement used to close a file at 'the conclu-
sion of I/O operations

CLR The opposite of DIM: Undimensions all strings
and arrays

COLOR C. Chooses color register to be used in color
graphics wOrk.

CONT CON. Continue Causes a program to restart execu-
tion on the next line following use of the
BREAK key or encountering a STOP.

COS Function returns the cosine of the variable or
expression (degrees or radians).

CSAVE Outputs data from RAM to the Program
Recorder for tape storage.

DATA D. Part of READ/DATA combination Used to iden-
tify the succeeding items (which must be
separated by commas) as individual data items.

76 APPENDIX A

l~ 8
RESERVED BRIEF SUMMARY
WORD: ABBREV IATION: OF BASIC STATEMENT
DEG DE. Statement DEG tells computer to perform trigo-

nometric functions in degrees instead of

' 0 0 0 0 0 0 0 0 0 0 0 5
radians (Default in radians)

DIM DI. Reserves the specified amount of memory for
matrix, array, or string. All string variables,
arrays, matrices must be dimens ioned with a
DIM statement

DOS DO. Reserved word for disk operators Causes the
menu to be displayed. (See DOS Manual.)

DRAWTO DR. Draws a straight l ine between a plotted point
and specified point.

END Stops program execution: closes files, turns off
sounds. Program may be restarted us ing
CONT. (Note. END may be used more than
once in a program)

ENTER E. IIO command used to store data or programs in
untokenized (source) form

EXP Function returns e (2 7182818) raised to the
specified power

FOR F. Used with NEXT to establish FOR/NEXT loops.
Introduces the range that the loop var iable will
operate in during the execution of loop

8 '5

FRE Function returns the amount of remaining user
memory (in bytes).

GET GE Used mostly with d isk operations to input a
single byte of data

GOSUB GOS Branch to a subroutine beginning at the
specified line number,

GOTO G. Unconditional branch to a specif ied line
number.'5 G RAP HICS G R. Specifies which of the graph ics modes is to be

'5 used. GR.O may be used to clear screen.

IF Used to cause condit ional branching or to ex-
ecute another statement on the same line (only
if the first expression is true).

IN P UT I. Causes computer to ask for input from
keyboard Execution continues only when
RETURN key is pressed after inputting data

IN T Function returns the next lowest whole integer
below the specified value Rounding is always

x 7i

downward, even when number is negat ive.

LEN String function returns the length of the
specified string in bytes or characters (1 byte
contains 1 character)

APPENDIX A 77

RESERVED BRIEF SUMMARY
WORD: ABBREVIATION: OF BASIC STATEMENT

LET LE. Assigns a value to a specific variable name
LET is optional in ATARI BASIC, and may be
simply omitted,

LIST L. Display or otherwise output the program list
LOAD LO. Input from disk, etc. into the computer
LOCATE LOC. Graphics Stores, in a specified variable, the

value that controls a specified graphics point
LOG Function returns the natural logarithm of a

number
LP R IN T LP. Command to line printer to print the specified

message.
NEW Erases all contents of user RAM.
NEXT N. Causes a FOR/NEXT loop to terminate or con-

tinue depending on the particular variables or
expressions All loops are executed at least
once.

NOT A "t" is returned only if the expression is NOT
true. If it is true, a "0 ' i s returned

NOTE NO. See DOSIFMS Manual...used only in disk opera-
tions

ON Used with GOTO or GOSUB for branching pur-
poses Multiple branches to different line
numbers are possible depending on the value
of the ON variable or expression.

OPEN Opens the specified file for input or output
operations

OR Logical operator used between two expres-
sions. If either one is true, a "t " i s evaluated.
A "0" reSultS Only if bOth are falSe

PADDLE Function returns position of the paddle game
controller.

PEEK Function returns decimal form of contents of
specified memory location (RAM or ROM).

PLOT PL. Causes a single point to be plotted at the X,Y
IOCatiOn SpeCified.

POINT P. See DOS/FMS Manual. .used only in disk operations
POKE POK. Insert the specified byte into the specified

memory location May be used only with RAM
Don'I try to POKE ROM or you' ll get an error.

POP Removes the loop variable from the GOSUB
stack. Used when departure from the loop is
made in other than normal manner

POSITION POS. Sets the cursor to the specified screen
position

78 APPENDIX A

RESERVED BRIEF SUMMARY
WORD: ABBREVIATION: OF BASIC STATEMENT
PRINT PR. or? I/O command causes output from the computer

to the specified output device

P TRIG Function returns status of the trigger button on
paddle game controllers.

PUT PU. Causes output of a single byte of data from the
computer to the specified device

RAD Specifies that information is in radians rather
than degrees when using the trigonometric
functions Default is to RAD. (See DEG.)

READ REA Read the next items in the DATA list and
assign to specified variables.

REM R. or (SPACE). Remarks This statement does nothing, but
comments may be printed within the program
list for future reference by the programmer.
Statements on a line that starts w ith REM are
not executed.

RESTORE RES. Allows DATA to be read more than once.
RETURN RET. RETURN from subroutine to the statement im.

mediately following the one in which GOSUB
appeared.

RND Function returns a random number between 0
and 1, but never 1.

RUN RU. Execute the program Sets normal var iables to
0, undims arrays and string

SAVE S. I/O statement causes data or program to be
recorded on disk under filespec provided with
SAVE.

S ETCOLOR S E . Store hue and luminance color data in a par.
tie via r color r eg i ster.

SGN Function returns + 1 if value is positive, 0 if
zero — 1 if negative.

SIN Function returns trigonometric sine of g iven
value (DEG or RAD).

SOUND SO. Controls register, sound pitch, distortion, and
volume of a tone or note

SQR Function returns the square root of the
specified value.

STATUS ST. Calls status routine for specified device.
STEP Used with FOR/NEXT. Determines increment

to be skipped between each pair of loop
variable values.

STICK Function returns posit ion of stick game
COntrOller

APPENDIX A 79

RESERVED BRIEF SUMMARY
WORD: ABBREVIATION: OF BASIC STATEMENT

ST RIG Function returns 1 if stick trigger button not
pressed, 0 if pressed.

STOP STO. Causes execution to stop, but does not close
files or turn off sounds

STR$ Function returns a character string equal to
numeric value given For example STR$(65)
returns 65 as a string.

THEN Used with IF statement. If expression is true,
the THEN statements are executed. If the ex-
pression is false, control passes to next line

TO Used with FOR as in "FOR X = 1 TO 10"
Separates the loop range expressions.

TRAP Takes control of program in case of an INPUT
error and directs execution to a specified line
number.

USR Function returns results of a machine-language
subroutine.

VAL Function returns the equivalent numeric value
of a string.

X IO X. General I/O statement used with disk opera-
tions (see DOSIFMS Manual) and in graphics
work (Fill)

80 APPEtuDIX

ERROR APPENDIX

MESSAGES

ERROR
CODE NO. ERROR CODE MESSAGE

2 3 4 5 6 7 8 9 10

Memory insufficient to store the statement or the new variable
name or to DIM a new string variable.

Value Error: A value expected to be a positive integer is negative, a
value expected to be w ithin a specific range is not.

Too Many Variables: A maximum of 128 different variable names is
allowed (See Variable Name Limit.)
String Length Error: Attempted to store beyond the DIMens ioned
st r ing leng th
Out of Data Error: READ statement requires more data items than
supplied by DATA statement(s).
Number greater than 32767: Value is not a positive integer or is
greater than 32767,
Input Statement Error: Attempted to INPUT a non.numeric value
into a numeric variable.
Array or String DIM Error: DIM size is greater than 32767 or an
array/matrix reference is out of the range of the dimensioned s ize, or
the array/matrix or string has been already DIMensioned, or a
reference has been made to an undimens ioned array or string

Argument Stack Overflow: There are too many GOSUBs or too
large an expression.

11 Floating Point Overflow/Underflow Error: Attempted to d ivide by
zero or refer to a number larger than 1 x 10" or smaller than
1 x 10

12 Line Not Found: A GOSUB, GOTO, or THEN referenced a non-
existent line number.

13 No Matching FOR Statement: A NEXT was encountered without a
previous FOR or nested FOR/NEXT statements do not match prop-
erly. (Error is reported at the NEXT statement, not at FOR).

14 Line Too Long Error: The statement is too complex or too long for
BASIC to handle

15 GOSUB or FOR Line Deleted: A NEXT or RETURN statement was
encountered and the corresponding FOR or GOSUB has been
deleted since the last RUN

16 RETURN Error: A RETURN was encountered without a matching
GOSUB

APPENDIX B 81

ERROR
CODE NO. ERROR CODE MESSAGE

17 Garbage Error: Execution of "garbage" (bad RAM bits) was attemp.
ted. This error code may indicate a hardware problem, but may also
be the result of faulty use of POKE. Try typing NEW or powering
down, then re-enter the program without any POKE commands.

18 Invalid String Character: String does not start with a valid
character, or string in VAL statement is not a numeric string

Note: The following are INPUT/OUTPUT errors that result during the
use of disk drives, printers, or other accessory devices. Further
information is provided with the auxiliary hardware.

19 LOAD program Too Long: Insufficient memory remains to complete
LOAD.

20 Device Number Larger than 7 or Equal to 0
21 LOAD File Error: Attempted to LOAD a non.LOAD file.
128 BREAK Abort: User hit BREAK key during I/O operation
129 IOCB' already open

C C e

130 Nonexistent Device specified
131 IOCB Write Only. READ command to a write-only device (Printer), C C
132 Invalid Command: The command is invalid for this device.
133 CDevice or File not Open: No OPEN specified for the device.
134 Bad IOCB Number: Illegal device number
135 IOCB Read Only Error: WRITE command to a read-only device
136 EOF: End of File read has been reached. (NOTE: This message may

occur when using cassette files.)
137 Truncated Record: Attempt to read a record longer than 256

characters.
138 Device Timeout. Device doesn't respond.
139 Device NAK: Garbage at serial port or bad disk drive C'
140 Serial bus input framing error.
141 Cursor out of range for particular mode C'
142 Serial bus data frame overrun.
143 Serial bus data frame checksum error. C'
144 Device done error (invalid 'done" byte) Attempt to write on a write- C'

protected diskette or a bad sector
145 BAD screen mode error.
146 Function not implemented in handler.

C C
147 Insufficient RAM for operating selected graphics mode.
160 Drive number error. C C
161 Too many OPEN files (no sector buffer available).

C
'IOCB refers to Input/Output Control Block.

82 APPENDIX B

ERROR
CODE NO. ERROR CODE MESSAGE

162 Disk full (no free sectors).
163 Unrecoverable system data I/O error.
164 File number mismatch: Links on disk are messed up.
165 File name error.
166 POINT data length error.
167 File locked.
168 Command invalid (special operation code)

169 Directory full (64 files).
170 File not found.
171 POINT invalid.

APPENDIX B 83

ATASCII
CHARACTER SET

~v
1+ +~v ~ Q y+ g Qo~ G p< G o~

p ~G<o~ qP~w ~G ~ ~+ Qop pp
o po +

G G G G G G

13

14

15

16 10

17

18 12

19 13

20 14

21 15

22 16

10 23 17

24 18

12 25 19

84 At PENDIX C

~v ~v~+ g Q y+g Q y+~Qo~
~po~ g+ g qo+0

+ oo <o~oo go~ qP~V
o p G G G po G G

26 1A Q A 42 2A

27 1B 43 2B +

28 |c Q 44 2C

29 ic Q 45 2D

30 iE P 46 2E

31 Q 47 2F /

32 2 0 Spac e 48 30 0

33 21 49 31 1

34 22 50 32 2

35 23 ¹
51 33 3

36 24 $ 52 34 4

37 25 53 35 5

38 26 8, 54 36 6

39 27 55 37 7

40 28 56 38 8

41 29) 57 39 9

APPENDIX C 85

o~ o~
g+ go po o <o~ ~< o~

CP ooG G G cP c,

58 3A 74 4A

59 3B 75 4B K

60 3C 76 4C L

61 3D 77 4D M

62 3E 78 4E N

63 3F 79 4F 0

64 40 80 50

65 41 A 81 51

66 42 82 52

67 43 C 83 53

68 84 54

69 45 85 55

70 46 86 56

71 47 87 57 W

72 48 88 58

73 49 89 59

66 APPENDIX C

~v

~v+ o~
G g g+ g g+ Qoooo + oo oooo 0

C P G CP G G

90 5A 106 6A

91 5B 107 6B I<

g2 5C 108 6C

93 5D 109 6D m

g4 5E 110 6 E

95 5F 111 6 F o

96 so Q 112 70

97 61 113 71

98 62 114 72

99 63 115 73 s

100 64 116 74

101 6 5 117 75

102 66 118 76 v

103 67 119 77 w

104 68 120 78

105 69 121 79

APPENDIX C 87

o~ q4 ~% ~v o~
G ~ ~< o~ qP ~w <o~ ~+ o~
G ~O ooG G G cP c,

122 7A 138 8A

123 7B Q A 139 8B

124 7C 140 8C

125 777 Q 141 8D

126 7E 0 142 8E

127 7F 0 143 8F

128 80 144 90

129 8 1 145 9 1

130 82 146 92

131 83 147 93

132 84 148 94

133 85 149 95

134 86 150 96

135 87 151 97

136 88 152 98

137 89 99

88 APPENDIX C

~v

~v o~
G g g+ Q ~G g <+ Qoooo oo~ o

o oo + oo
G G

154 9A 170 AA

(EOL)155 9B 171 AB

156 sc f 172 AC

157 gp 173 AD

158 9E 174 A E

159 9F + 175 A F

160 AO 176 BO

161 A1 177 B 1

162 A2 178 B2

163 A3 179 B3

164 A4 180 B4

165 A5 181 B5

166 A6 182 B6

167 A7 183 B7

168 A8 184 B8

169 A9 185 B9

APPENDIX C 89

~v ~v

o~ ~v o~
~'o~ ~+ Q ~G ~ P+o'oo + oo ooG G G C P G

186 BA 202 CA

187 BB 203 CB

188 BC 204 CC

189 BD 205 CD

190 BE 206 CE

191 BF 207 CF

192 CO 208 DO

193 C1 209 D1

194 C2 210 D2

195 C3 211 D3

196 C4 212 D4

197 C5 213 D5

198 C6 2 14 D6

199 C7 215 D7

200 C8 216 D8

201 C9 217 D9

90 APPENDIX C

~v ~v

~ Q y+g + ~e ~ seo~ q4 o% ~v o~
~"o~ <o~ Po~ ~o~p~

oo p< o~oo pD oo + <++
G G G oo G G

218 DA 234 EA

219 DB 235 EB

220 DC 236 EC

221 DD 237 ED

222 DE 238 EE

223 DF 239 EF

224 EO 240 FO

225 E1 241 F1

226 E2 242 F2

227 E3 243 F3

228 E4 244 F4

229 E5 245 F5

230 E6 246 F6

231 E7 247 F7

232 E8 248 FS

233 E9 249 F9

APPENDIX C 91

~v rG ~Qo
<o~ >G

o p ~+ o~ <o~
cp c op ~+ o~

G G CP G

250 FA 253 FD

251 FB 254 FE O (Delete
cna racier)

252 FC 255 FF Q (Inserl
CnaraCler)

See Appendix H for a user program that performs decimal/hexadec imal con-
version
Notes:
1. ATASCII stands for "ATARI ASCII". Letters and numbers have the same values

as those in ASCII, but some of the special characters are d ifferent
2. Except as shown, characters from 128-255 are reverse colors of 1 to 127
3. Add 32 to upper case code to get lower case code for same letter
4 To get ATASCII code, tell computer (direct mode) to PRINT ASC (" ")

Fill blank with letter, character, or number of code Must use the quotes!
5 The normal display keycaps are shown as white symbols on a black background,
the inverse keycap symbols are shown as black on a white background

92 APPENDIX C

HOME COMPUTER APPENDIX

MEMORY MAP

AT A R I 400/800
ADDRESS CONTENTS

Decimal H e xadecimal
65535 FFFF OPERATING SYSTEM ROM
57344 EOO O
57343 DFFF FLOATING POINT ROM
55296 D800
55295 D7FF HARDWARE REGISTERS
53248 DOOO
53247 CFFF NOT USED
49152 C000
49151 BFFF CARTRIDGE SLOT A
40960 AOOO (may be RAM if no A or B cartr idge)
40959 9FFF CARTRIDGE SLOT B
32768 8000 (may be RAM if no B cartridge) RAM TOP (MSB)

32767 7FFF (7FFF if 32K system)
DISPLAY DATA (size varies)
DISPLAY LIST (size varies

31755 7COB 7COB if 32K system) (GRAPHICS 0)

FREE RAM
(size varies) BASIC MEMTOP

BASIC program, buffers, tables, run-time stack
10880 2A80 (2A80 if DOS, may vary) OS MEMLO

BASIC LOMEM

10879 2A7F DISK OPERATING SYSTEM (2A7F-700)
9856 2680 DISK IIO BUFFERS (current DOS)
9855 267F DISK OPERATING SYSTEM RAM (current DOS)
4864 1300

APPENO'X D P3

ADDRESS CONTENTS
Decimal H e xadecimal
4863 12FF FILE MANAGEMENT SYSTEM RAM (current DOS)
1792 700
1791 6FF FREE RAM
1536 600
1535 5FF FLOATING POINT (used by BASIC)
1406 57E
1405 57D BASIC CARTRIDGE
1152 480
1151 47F OPERATING SYSTEM RAM (47F-200)
1021 3FD CASSETTE BUFFER
1020 3FC RESERVED
1000 3E8
999 3E7 PRINTER BUFFER
960 3CO
959 3BF IOCB's
832 340
831 33F MISCELLANEOUS OS VARIABLES
512 200
511 1FF HARDWARE STACK
256 100
255 FF PAGE ZERO
212 D4 FLOATING POINT (used by BASIC)
211 D3 BASIC or CARTRIDGE PROGRAM
210 D2
209 D1 FREE BASIC RAM
208 DO
207 CF FREE BASIC AND ASSEMBLER RAM
203 CB
202 CA FREE ASSEMBLER RAM
176 BO
128 80 ASSEMBLER ZERO PAGE J
127 7F OPERATING SYSTEM RAM
0 0

As the addresses for the top of RAM. OS. and BASIC and the ends of OS and
BASIC vary according to the amount of memory, these addresses are indicated by
pointers. The pointer addresses for each are defined in Appendix I.

94 APPENDIX D

ATARI 1200XL
ADDRESS CONTENTS

Decimal H e xadecimal
65535 FFFF OPERATING SYSTEM ROM (or RAM if OS ROM
55296 D800 is disabled) See Note 1
55295 D7FF OS ROM self-test code can only be accessed during
5 3248 DOO O self test. Space shared with I/O (PIA, POKEY. ANTIC,

GTIA) See Note 3
53247 CFFF OS ROM (or RAM if OS ROM is disabled) See Note 1
49152 C000
49151 BFFF CARTRIDGE INTERFACE ROM
40960 A000 (may be RAM if no cartridge)
40959 9FFF CARTRIDGE INTERFACE ROM
32768 8000 (may be RAM if no cartridge)
32767 7FFF RAM SPACE
22528 5800
22527 57FF RAM (unless in self-test mode)
20480 5000 See Note 2.
20479 4FFF RAM SPACE
0000 0000
Notes:
1. Disable OS ROM by writing a 0 to PBO of PIA
2 Self-test OS ROM code accessed at hex address 5000 (if PBO set to 0) during
self test. RAM between 5000 and 57FF cannot be accessed.

3. PIA, POKEY. ANTIC, GTIA registers used as in Atari 400/800 Home Computer.

APPENDIX D 95

DERIVED
FUNCTIONS

Derived Functions Derived Functions in Terms of ATARI Functions

Secant SEC(X) = 1/COS(X)
Cosecant CSC(X)= 1/SIN(X)
Inverse Sine ARCSIN(X) = ATN(X/SQR(-X'X + 1))
Inverse Cosine ARCCOS(X) = -ATN(X/SQR(-X*X+ 1) + CONSTANT)
Inverse Secant ARSEC(X) = ATN(SQR(X'X-1)) + (SGN(X-1)

CONSTANT)
Inverse Cosecant ARCCSC(X) = ATN(1/SQR(X" X-1)) + (SGN(X.1)

* CONSTANT)
Inverse Cotangent ARCCOT(X) = ATN(X)+ CONSTANT
Hyperbolic Sine SINH(X) = (EXP(X)-EXP(-X))/2
Hyperbolic Cosine COSH(X) = (EXP(X) + EXP(-X))/2
Hyperbolic Tangent TANH(X) = -EXP(-X)/(EXP(X)+ EXP(-X)) 2+ 1
Hyperbolic Secant SECH(X) = 2/(EXP(X)+ EXP(-X))
HyperbOliC COSeCant CSCH(X) = 2/(EXP(X).EXP(-X))
Hyperbolic Cotangent COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+ 1
Inverse Hyperbolic Sine ARCSINH(X) = LOG(X+ SQR(X*X+ 1))
Inverse Hyperbolic Cosine ARCCOSH(X) = LOG(X+ SQR(X'X.1))
InverSe HyperbOliC Tangent ARCTANH(X) = LOG((1+ X)/(1-X))/2
InverSe Hyperbolic Secant ARCSECH(X) = LOG((SQR(-X*X+ 1)+ 1)/X)
Inverse Hyperbolic Cosecant ARCCSCH(X) = LOG((SGN(X)* SQR(X" X+ 1)+ 1)/X)Inverse Hyperbolic Cotangent ARCCOTH(X) = LOG((X+ 1)/(X-1))/2
Notes:

If in RAD (default) mode, CONSTANT = 1 57079633
If in DEG mode, CONSTANT = 90.

2. In this chart, the variable X in parentheses represents the value or expression
to be evaluated by the derived function. Obviously, any variable name is per-
missible. as long as it represents the number or express ion to be evaluated

96 APPENDIX E

PRINTED VERSIONS APPENDIX

OF CONTROL CHARACTERS

The cursor and screen control characters can be placed in a string in a program
or used as a Direct mode statement by pressing the ESC key before entering the
character from the keyboard This causes the special symbols wh ich are shown
below to be displayed. (Refer to Section 1 -ESC Key)

SEE THIS
PRESS PRESS

PRESS AND
PRESS

O I
O 1
O 1
O I
O 1

~ 8
O I I
O I

II
8

O l iR
M QR
O 1

APPENDIX P 97

GLOSSARY

Alphanumeric: The alphabetic letters A-Z, and the numbers 0-9. (No tlpunctuation marks or graphics symbols).
Array: A list of numerical values stored in a series of memory

IOCatiOnS preCeded by a DIM statement May be referred to
by use of an array variable, and its individual elements are
referred to by subscripted variable names. CATASC I I: Stands for ATARI American Standard Code for Information
Interchange. t

BASIC: High level programming language. Acronym for Beginner' s
All-purpose Symbolic Instruction Code. BASIC is always
written using all capital letters Developed by Mssrs.
Kemeny and Kurtz at Dartmouth College in 1963.

C C C
Binary: A number system using the base two. Thus the only poss i-

ble digits are 0 and 1, which may be used in a computer to Crepresent true and false, on and off, etc.
Bit: Short for Binary Digit A bit can be thought of as represent- C

ing true or false, whether a circuit is on or off, or any other
type of two-possibility concept. A bit is the smallest unit of
data with which a computer can work

Branch: ATARI BASIC executes a program in order of line numbers.
This execution sequence can be altered by the program-
mer, and the program can be told to skip over a certain
number of lines or return to a line earlier in the program.
This contrived change in execution sequence is called
"branching'

Bug: A mistake or error usually in the program or "software".
Byte: Usually eight bits (enough to represent the decimal number

255 or 11111111 in binary notation), A byte of data can be
used to represent an ATASCII character or a number in the
range of 0 to 255.

Central Processing In microcomputers such as the ATARI systems, these are
Unit (CPU): also called microprocessors or MPU At one time, the CPU

was that portion of any computer that controlled the
memory and peripherals. Now the CPU or MPU is usually
found on a single integrated circuit or "chip" (ATARI uses
a 6502 microprocessor chip)

C C

Code: Instructions written in a language understood by a
computer

Command:
C C

An instruction to the computer that is executed immediate.
ly. A good example is the BASIC command RUN. (See
Statement)

98 APPENDIX G

Computer: Any device that can rece ive and then follow instruct ions to
manipulate information Both the instructions and the infor-
mation may be varied from moment to moment The
distinction between a computer and a programmable
calculator lies in the computer's ability to manipulate text
as well as numbers Most calculatorS Can Only handle
numbers.

Concatenation: The process of loining two or more strings together to form
one longer string.

Control Characters: Characters produced by holding down the key labeled
CTRL while simultaneously pressing another key.

CRT: Abbreviation for "cathode ray tube" (the tube used in a TV
set) In practice, this is often used to describe the televi-
sion receiver used to display computer output. Also called
a "monitor"

Cursor: A square displayed on the TV monitor that shows where
the next typed character will be displayed.

Data: Information of any kind.
Debug: The process of locating and correcting m istakes and errors

in a program.
Default: A mode or condition "assumed" by tne computer until it is

told to do something else For example, i t will "default" to
screen and keyboard unless told to use other I/O dev ices

Digital: Information that can be represented by a collect ion of bits.
Virtually all modern computers, espec ially microcomputers,
use the digital approach.

Diskette: A small disk A record/playback medium like tape, but
made in the shape of a flat d isk that is placed inside a stiff
envelope for protection The advantage of the disk over
cassette or other tape for memory storage is that access
to any part of the disk is virtually immed iate The ATARI
Home Computer System can control up to 4 d iskette drive
peripherals simultaneously In this manual, disk and
diskette are used interchangeably.

DOS: Abbreviation for "disk operating system". The software or
programs which fac ilitate use of a disk-drwe system DOS
is pronounced either "dee oh ess" or "doss."

Editing: Making corrections or changes in a program or data
Execute: To do what a command or program specifies. To RUN a

program or portion thereof
Expression: A combination of variables, numbers, and operators (like

+. - , etc.) that can be evaluated to a single quantity The
quantity may be a str ing or a number

Format: To specify the form in wh ich something is to appear.
Hard Copy: Printed output as opposed to temporary TV mon itor display
Hardware: The physical apparatus and electronics that make up a

computer

APPENDIX G 99

4

Increment: Increase in value (usually) by adding one Used for count-
ing (as in counting the number of repetitions through a
loop).

Initialize: Set to an initial or starting value. In ATARI BASIC, all non.
array variables are initialized to zero when the command
RUN is given Array and string elements are not initialized

Input: Information transfer to the computer. Output is information
transfer away from the computer In this manual, input and
output are always in relation to the computer.

Interactive: A system that responds quickly to the user. usually within a
second or two All home computer systems are interactive.

Interface: The electronics used to allow two devices to communicate.
IOCB Input/Output Control Block A block of data in RAM that

tells the Operating System the information it needs to know
for an I/O operation

I/O: Short for input/output, I/O devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.
Stands for "kilo" meaning "times 1000" Thus 1 KByte is
(approximately) 1000 bytes. (Actually 1024 bytes) Also, the
device type code for the Keyboard

Keyword: A word that has meaning as an instruction or command in
a computer language, and thus must not be used as a
variable name or at the beginning of a variable name.

Language: A set of conventions specifying how to tell a computer
what to do

Memory: The part of a computer (usually RAM or RQM) that stores
data or information

Menu: A list of options from which the uSer may choose.
Microcomputer: A computer based on a microprocessor chip: ATARI uses

the 6502
Monitor: The television receiver used to display computer output.
Null String: A string consisting of no characters whatever
OS: Abbreviation for Operating System. This is actually a collec-

tion of programs to aid the user in controlling the com-
puter Pronounced "oh ess".

Output: See input and I/O.
Parallel: Two or more things happening simultaneously. A parallel in.

terface, for example, controls a number of distinct elec.
trical signalS at the same time. Opposite of serial

Peripheral: An I/O device See I/O.
Pixel: Picture Element One point on the screen display Size

depends on graphics mode being used
Precedence: Rules that determine the priority in which operations are

conducted, especially with regard to the arithmetical/logical
operators.

100 APPENDIX G

Program: A sequence of instructions that describes a process. A pro.
gram must be in the language that the particular computer
can understand.

Prompt: A symbol that appears on the monitor screen that indicates
the computer is ready to accept keyboard input. In ATARI
BASIC, this takes the form of the word "READY". A "~" is
also used to prompt a user to enter (input) information or
take other appropriate action

RAM: Random Access Memory The main memory in most com-
puters RAM is used to store both programs and data.

Random Number May be hardware (as is ATARI's) or a program that pro-
Generator: vides a number whose value is difficult to predict Used

primarily for decision-making in game programs, etc
Reserved Word: See Keyword.
ROM: Read Only Memory In this type of solid-state electronic

memory, information is stored by the manufacturer and it
cannot be changed by the user Programs such as the
BASIC interpreter and other cartridges used with the ATARI
systems use ROM

Save: To copy a program or data into some location other than
RAM (for example, diskette or tape).

Screen: The TV screen. In ATARI BASIC, a particular I/O device
code "S:"

Serial: The OppOSite Of parallel. ThingS happening Only One at a
time in sequence. Example. A serial interface.

Software: As opposed to Hardware. Refers to programs and data
Special Character: A character that can be displayed by a computer but is

neither a letter nor a numeral The ATARI graphics symbols
are special characters So are punctuation marks, etc.

Statement: An instruction to the computer, See also Command. While
all commands may be considered statements, all
statements are certainly not commands. A statement con.
tains a line number (deferred mode), a keyword, the value
to be operated on, and is terminated by pressing the
RETURN key.

String: A sequence of letters, numerals, and other characters.
May be stored in a string variable. The string variable's
name must end with a $

Subroutine: A part of a program than can be executed by a special
statement (GOSUB) in BASIC. This effectively gives a
single statement the power of a whole program The
subroutine is a very powerful construct

Variable: A variable may be thought of as a box in which a value
may be stored. Such values are typically numbers and
strings

Window: A portion of the TV display devoled to a specific purpose
such as for graphics or text.

APPENDIX G 101

USER
PROGRAMS

This appendix contains programs and routines that demonstrate the diverse
capabilities of the ATARI Home Computer System. Included in this appendix is a
Decimal/Hexadecimal program for those users who write programs that requ ire
this type of conversion.

CHECKBOOK BALANCER
This is one of the "traditional" programs that every beginning computerist

writes It allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits

I 0 I ' l " ' I '"I i"i':I:. (:":: t'? • I'1',.:1('1' '. :"- I) '!,. I:'i".- CI.I. i (;: I) ; i'i',::: C. .4
(;.".10 'I,. i'1',":(".I , : :I :" : i ' ' f !? ; I i!-:!CI"'(I I' 1.;: ('! ', • I'1".: 0';:i'.I ', = 0?,. II':.:.'C)
r'111'I / 3 0 /

0 f ' l I I 'T' "''T," j';I f; ... f)
(Ir' i': F I I I:,.', 0 ; " . " , " . "C: I II:.:Cl;!: (. Ol', l:.:.' il...'-ii'! C.'L..['.

11

"! Tl ' -' " Y (l t . l I:('. Y I l l " I''.f. C C! I 'I''.E..(., If.(.. i'!',.' i " T " i h Y
T:i:I~F. r.:.,; r . !~TE:.:F,II'I('I I ' » ~ E.(.".I Tl v f : : E)O!...i..':F; I:"IL
I.!F -. "

!"'CI I"I"::iCI I: F:-:"Ol. E C',I-IF. C;I:, Ol! 1"',"'"I' " l!f.:)::IAC "
I':10 !:I",-,C'.,;.".I:.:."IOI Ci f?r-I: I.I,',I l - - - I ! C! T ('F.f::f? I'!'E.:.:I:"
70 i : (',-.':C ",-'1 '=."OI...E C;I-li::I: I:; . II.!3T I : ;L..E::': f",E::Ei"
,:,C «,'.,O' rI- "n !. E: E?f:F (,;:.IF 1.!I,:::F C:r'E:..r?:E:Tl:."r~"
".' 0 I"i '::: C"::I 4'-' " I'4 [:: (! t"., I-I E:.:(I '' i', I ' I",': I C E:.. C; I-I ': F", (I ' "
:I. 0 CI i'IEiC' '' ':F::- " i!I:..I'! C L":.F i:)!: I' F' I'.!F T.i! T E F', L":: 5 T "
:I.:I. 0 Tl': "F 1 : L 0 ". 7 " f : :.II "I:::ri E E:.C;:'!:i'!i'! "L'i'IG E.:.I" L.".INC

FrfiOI:I Yf:!LIF',' C IIEC;I,L".IC!C!I;" ",.::(:i" I'- OT 'i 'OI.!I"'.E'i."il...
1'.;. C! 'Tl",'1".I"' :I." .0 ' '".' "I'.::I'iT r::r r-:lr.:.:0;Ii'!I'!::I'..I>C! E'.Ii"sL i.". i'!C:
E:. FF Cli"I Y(.ll.!'. r::. ' I' ll''. C:: l I"11TE::I"IC.I'lT" ".Ii!I' I.!T E)" L
,I, 0 T I ' ';.":, F' :F Cl 0 fl 0
'I: F 0 C,'('1 'T I 'I 'L 7 0
;I.!!0 CL..C)'=::E': 0 1 i'? " F F : I'.I'!TE:f,":E:!I WC)T OF f::F''- "TI
C)H1.".I..."
:I.,'..0 '? "F:I..E A". E C:I-IE:C;F:(C:C:i!IIE:C) C)F;:.'"
170 F E..F'.'iv(:=:0
:I.I:. 0 ".' "I!C!I.IL.D YC!LI I...J.'.I::E:.: '" F F "CN'l'C)L! 'f"" i i i ! F
I.l T I'.i $
:I. 90 I F I. . .E:N (I'i TI?:::: 0 Tl-II:.::i! :L Cl 0
.".Cl 0 IFr I"- 'T (1 „:L?:-'" i '! " T I - IF.:.:I! l'"..70
.'1"..1 0 :T.l- I " I II (;L,:L?:::.:: "Y" 'I I-iE:.:i'I :I, l='10
".;.',"'.0 TI,'I"-IF 150

102 APPENDIX H

'.:;;;;;. (. l...l) f'::Ci'!'. ; . I I:.:.'i T l=".'::"I l)I;:I:"I'I'[: I,'
'.?) 0 F'I;:hi'I-':'I.

.i fl I F' "' Tl'I I ' 1'EJ(II, Ll l (i I j II'I J l' l l) E 1 iLI ' l i ' l l",E
* ' ((3f lf.' <:

".'. (',') (I L. F) F'. 'T. I 0 T " [.' A I'! i! ,!:i T I"1 T I .: i:i I'.:: i'! T L".I L' 0:I: I~! i!:I: I'> Ci I'.
AI..."-Ii!(',f: T.'.:; ':F:" .," f:.:I' L.; I...F)!":|:IJT
"'.!'0 T l " '.I"'r" '. : '. ." 0 I '".' "-: ." ' " (:;I"Il:)()3E: C:Ii'lL"' C)F" 'TI-I['.: I"'
('ll I f ' l (l J' ' I f ' * "

(" C() Il (L (ll Ii.l(" I J
(" 0 '> I (' ' '1 11 . INI !" ('

%)('1 f'I ') (I (%I ') ll + I,.I(' f'
" .),I, 0 "? " (" ' I ! ") fi,"-.(Ci''h'.I'

""! f) " . ' " (;") [C! I)i'.:.:"
","", I'I

..;.' 0 I : i! F''Ll1' I'! i :.'. F i ' ! :;::I. (! !, ' I ' !::: .'""I'I-ll::.: i! ":.;:"' 0
r, Tl ;Al- -%000i)

".)(, ('I (')I;! I',I (':;f) "il J[.l , ''; () 0 i. ",",i (! (! i.",!" (! g,.',",) 0 P <r~.'. 0; i A fJ
„<)(') 0
: ":."'0 I i i:i[:. '4.:::: " i! I::.I'.' 0:I"I'",::.: C I.; F" .0) 0! I'', [.'AI...'': I'I C: [:.: I".I " i A
I I Cl I J P! 'T::: f' f'I I I I.' [:,', 1"1 I„, ", f,", I I < l I I;".:.'I I ij "; 0
:I 0 0 I'1'.)f:,.I(:--"i:! I:.:;!'! I:. '-'f'!I'! ;-.lT * I I:.::iil:, i'! "f' F.::Al. I': I'!(.':I:.:.:;I.

"; ' : i:i C) i.! i! T:::: I: I1:"iL i (:: Cj ".: LJ E' L 0 '% 0
' ' ,I 0 11.:.'r t::: "f! L! T'.. 'I ''ii II" II! (::; (.. I IL':.: i. I:;S--L) [) F C!!:.':" T'!":::.
": '- f(OL!i! T:-:f)I..!T'::.!Tfll'![i (::.i:).'. L!F.: :L 0'I 0
6 '.,:. i) IF ' F) [:.:F''. !i 'I'I-II:.::I'! L I) F::f. Ix! 'I'
:"i ".? C! f f,l T f.;. Z '? C!
I .'10 F''f:.:ii I IE I I D [: F) C)".'I'T OF I f!T[::.I'.E:;-.i"I JLJ!)T 0

I;r:.DZ Tl-:.r:
'4",'! 0 F.'E:>:i C!L..D CLIF..C',I:: !:.:;T;I:I...I... (:)LJT!~T ('(i:! D Jt!(1
'1('')0 I i " ICi'f':--I'I"..!C(1.'.I i() f l";;il!i l 1 0 l : . '0
:"1.' 0 (J L! I ",> T ("-(l!I.'.1 --- () LJ I ',:i I (A l'I I 1 + I-(I'I(.) LJ r4 f
'") <". 0 F'.F.::'I'(.J I~ I >
";.'0 r ; r :::Ii OL D D [:.:F)C)'I T I !D T CF [-D:I?Ti:.D
;:. 0 0 i i ' IC>%:-I15C'.::I' .', (: (3! I..JL::.' .L C! 00
';:::I. 0 ",.)LJT!" TI'~i'JD-"::C)I..JT!:.') TAi'!L')--I'il'I(;)LJHT
';::"':0 I ,'F:TI.IF','V
!'i,:.'0 I' E:H C)l. D C EIF.:.:CI', ,Ji.!!:.iT C;L[." .". F''E.:D
' :Sn Ii"..C;+ =i~:-;C',: a';CIC)",,LJEI:I.0C:;C!
',;j " i (j F:: I"-)i, .- - E', A L -- IQ ! I C) LJ I'! I'
"") " .0 Flf::TLJF'(I'!
";..70 F F.. !1 C)L D [)[" F)C)!:.!I'T J L I ';;;T C;4[;;DIT I::;l3
"; ... 0 I I;-.) C. f:-" !1 ".-! f." I:", C. C) '.. Ll f.:.I :L 0;::.I 0".'"'0 I::.: ">L.---E'A(f I':IRC)LJI'lT

APPENDIX H 103

I" r" I (1"
: 'I. 0 I''.[:.:ii i :E:.".;. C ill'::(";I, Cjl' ' . L"..i" , .'CC.'[:: C:II'"- [",1'j[:: .!L!

;:.I.r.:,'1[:[.:;)
, ' "; 1 j j I ',.} (".ll:-": i'" ',"., 1", '.,"i i ' l i 1! ' ' l! L,' ;L 0 (' 0
,; . 0 ' (C)L![;I: " I . :--Y()1,!I-;[;;,':.L,;"i!lj.::I.!;! I
i!> i (i " . ".(.'..> 'i'!E.'!'! (.':IIE.1.,1'. !.:! .LI..L L i l .! l ;.i I i":ai'Iri.lj'0(::"
> 1 'I.)''1!' Ll T i"-i 'I'
(>',!l) :>.'.I L..[.:i! ', j':1'l):-' 0 ! ' I - IE::iJ i.'>'I(!
i'>:!: 0:!:i" i' "'i'I (L,::I.): ::: "i '.!" ' i I I[:.:I! 'i'0 0
'..' I (! I..' 1 i I... : i". P1 l... '" 1"i 1'1 [! L! s''I
(4 .'.! :I: I I"' [:. I,' tl "i'I I i.::1! i... I'> [4:I!4 T " C. ' I I [:: 0:. I I li'j.'.:i C; L [
i'"if [:.:Ii"
i'"::0 r",E Tl.!F,'i'!
,"0 (1 ..'F ~ ' .:I '. .l.,:i.)::: " " " '! I IE::"!;:; I (!

()i..l '. ',) !(~i! v>-::<.!L) I! >! 1".r! I.> ' 1-'ij'iL'.L>i'. I
.' '" . .'0 : ! :F I '>E..l'.[1 Tl-I[:.:1! I...l"'! ':!"'! I' "C:I',[:.(',I:; I !" ',:,'1;I:I...
I.. C)L! T'.:> 1 j')i'! L1'I i'! (:i"
"" ", 0 I . [: T l.l I"'; !

I','l...1"I i! [:. '! C? 1...['C! '-' I. I j..il.,' "!.'0 I I.:.I I ';.> '! , .! L)', ! (. ;
I,'I' r'i '..TI:.:I"1
: ":;0 1';" (';:i::-Yi.-',C.„-; f.;(::.'.:}!>L!L::: l0(:.::0

"C!L.>F'E ":I...:::)'(!LlF L:.'" I... ';- I j(. !i'! I'
;:": 0 " . "I-l'','. j..)L.';; i ! E:.:(I l.)t::f: C)'.: ..: i E-: I:.:.:L: ! C;I l:.:I.):".'
T I:.:.: [) ";; ,".;T. i'! I ''(, l T "':i,
: : '.:! 0:T,I:0 I [:.:I! .' ":'I-:::--C! ' ill'.:.:r! " ' 'j
;: lr'!'I I i. ' j " jJ ('L >,'L) .. '

''.' '' ''i' '' I, II >~I (.)',,", 0
l! (1 0 I ." 1-i I...::: [. 1-i L.. > i: 1i.'".L.' g! 1,' !
":!:L 0 Cf I ' 1.',:f','il [I i [::i'! L..l" f''..(I'T " 1.11.::I" Cj!. (."[I I " i:i
[::E:.I'! C:['.E:.:['. I [!::[)"
("1 „" . ' jj I .' 1'' [I! [,'?!1
(i;:i0 : I : I:r i" j

.
, : . : : : : : : " 1) " "i I-II.:..i'! "'0

"T 0 i" I I T ':;; T '' i'! [)i: -' i! (! T! 3 I I' I I'! l. ' "" I"I i'I ('! L! i'! '1
l!'.: 0 'I: F" f E."F",i'I Tl-l l . i' ! L..I>f,' '(:i'! T " I) I::I (!! >'.I: 1" I-I:! >
('! (' E Erf:.'i'! C [",E:[:>ITi:::I.::"
":.) r.' 0 I,' f.'.: T L I i"'. i'I
Fi '" (1 I"'E:.:i'1 1.)C!i'![:.:
('),":)0 " "L ': h:!f'' [::":I '>AC:E:.: !1It l i .!i:} : (!L!'('!.! " i ' . [) I j ' !C

0;I-If:::C.'.I;5 — [)E,.F>C) 5:T.! .;i) !:::,I iC!',! L..[) i! C) f! E:0! l.! i' l. Y l '.)L!
I 0;I-IE':C'.I;E:.',(') [) f:: I:.:,',I i .! C E::"
8' 0 [) : I :I=::-'(C!L!F''I:.''L..— (E:.1"'l...— C)l.! T!;.'I' ":i'![!)
" 0 0:I:i: [) .CI':::::: 0 Tl-II'::i'! !': 0
'>" l. ".. ".' " I!.. 'J" q L''(il.., > '' (' I II'":. I'I i' ll) lj! C'i El j1L j'>HCL::.
(ji'! ' (C)L! f:! E:.'CONF'' !:..'Tj'1 Tl..:I-IE:.:rl (" ',:::I:i'! I>l.)T
<r '.:. 0 .I.f L ,E i'! (i-i I !:-: 0 l I - IL:.1.J 9:L 0

' .: 0 : I :I"' j"1f»,' .L + '.L):-" i' " "('I"IL".:I''! 'I> ''C:C)l'!Cj[" j-'1 'i UL (1 "I

>04 APPENDIX H

T(.!i'!."::i i Y (IL I A C: IJE:.:(:;I::I:: C)f! I:: E.II-IL..I':!I'!C:E;.,:>! "> E:i'!L"
<)>0 C>C)! (> Y:. (!
'>";0 0;I. I"' [) :[: F".:: 0 T I"IE: I'I ". " ''I (.) LJ [''. (.: I"Il,'(.: I, L-IC)C)l:.'. 1(I
T j"-'Il T","> '4 ''; I '.EFI '' (' I i,: E.F'l Y(Ii ! ' , ' EI IIII'! F', !"; T(i'I (IL
" e ('f'1Tf'1 <"> fl
"-.' „> 0 "> " 'I (.! I.! I: L;Hi::.L:I:;LI(..i() i:; [i .! ! IEIl... .l.',:! 'I: ","' -- I:) '..l'. F

L!i'.![': E F'' Y C)i.!F", I'.:,Ij'Ii'!I.', ' S T C)'[i' I... "
0 ' p " I ! (')(JL [) Y(')0 I . ..!',I.',E; "['("II~If-ll' E;, (,,f! I' [''.E.:.:C 'I".1:

C! Xi!",;i" ' ".:I:i! I='LJ'!' (I i ii
"»C) 0;KFP I.„E::I'! .'. I5I% ',:::: 0 "('I-li.::.:i'! ".-' 0
9".' 0:I;I"' O'.i ',:L,:.:I.):-' " i'!" T I-IE:i'!
:I. 0 0 0:I:F' j i ':L' (:I.;:L):::::: "Y" T l " IE:.:I''I 'i>'i" C!
:l. 0:L 0 " . "Y(..IL! (: " i ' ! E:r'!TE-;:F; I i ' ! I :C>,.". TT.I„'E: E)C)LL (:I
Fi 4)(II...L!E: TC) i~i('II:;E: I"I C:C)F;F::E:C.' i:l:(3i'!"
;I. 0 . 0 F F.:: T !.! I..'. i'0
;I. 0;:-', C! F':.E:i:I i'1""':C F'FlD'! T F C)LJ"!".'.(:i! L'::
:L0->C! . i i c : C;r; ;; " ' . I " ; ::I";i'if)l.!i'! I
:L 0';:i0 .Zi ' F" E.F",l.1 TI-IF.::I'I L..F>F","CI'!') I"IBCi'II,": "'II' j'1 I I C) L!
i:.! T
'I, 0;.'> 0 F.,E TLJI. i'!
:I.0:. ('! I ,'E.:, ri 8".-i(F>F'.'.:Ci'!T ':l:I'!F>L)T F C)IJT"f.i'!E.:.:
:L 0 ij) 0 Tl j.j' I l : L 0 (" .0 + 7 " E. i '!!' I:.I.,' i"Ii'IC! LJi" T I-'(' IF. ";-' i~i

(:> C".:E !:[:i'! I-'LIT I'.I?:I(:) LJ W T
:L09C! 1'I'-'.." F: -')00i.) 0
:I.:L 0 0 T.F F>F:.:[",J.I TI-IE::i'! L[>I",'Tf'.! T I'I'.:>C 0 . "':t." * I"II' i("II!
I'! T
:I.:l:L 0 F'! E T LJFii'>

APPENDIX H!05

BUBBLE SORT
This program uses the str ing comparison operator " (= " t h a t orders strings ac-
cording to the ATASCII values of the various characters. Since ATARI BASIC doesnot have arrays of strings, all the strings used in this program are actually sub-
strings of one large string. A bubble sort, though relatively slow if there are a lot of
items to be stored, is easy to wr ite, fairly short, and simpler to understand than
more complex sorts.
'. ft r)ri'1 E:."I' (1)
.0 ".?F's)tir)l]T.("., i 0 ,"' '.' "' ".' ",":lTI";It!C !)(JI"'.'I'" " '.""

;:! 0 Tl ',"-il.' .) 0 i '> ; " "E:.ATE.::I t 1AXII1(Jti ' ". "I" I,'IIVC;
l. E: Nr'.Tl I" : :Ti 'IF l l T' ! i l...l::.:N",',::I...E:.:Nl::::! I,.EN--;L

0 : . . I ",:IL..L::.i'i.: 1. ()Fi' I i i ! ' I ' ; ! . .I..E...t!)::::::!)L..E:.:H 'I I-IE:.i'! '?
"FXL..E.A~E E:.t'!TI:..F", A r)C)",:)IT:I.","I':.: I:NT r.":C E:F'.::: 0" ."(", ('} 'T' (') 3 f?

";,f) ! I -.i.:,F: . ,0; ? "," " I ' : ,HTI:::.F'.'. t:IAX;I:r',l..lH i ! I.?tIE.EEFl
nF r: t'l TF'TE:-:::."
~';0 " " (I t! Tli''.I'I.') 'Tl-Ir'i T i' il".'I'.: SI.T(:) I",''T'I'=".I",' Tl"Ii""it'! T
I-IF . IA'.(Ti1Llt1 AF''.F:. F) A".' I'. (r:, !!:I: I I-I Fil. .". I'! I'!».') "
7 0 T. NF) I.I'T E;. N T Ii'.:I'r-:; ~)

E)n TF F tail', I;I-';::;„' () I', I l ' ! T : I.-;IITI:;:II:, 5)) ::;:: ENTF I
I;.";.I 'TI-IF..i! '? " F L,.E:A,":) F. E tl T I=.: F,' 'l F) C),'.i IT:I: VL'-:::I:i'! T
E C.F?F';::t."! (.,(?T(? "; 0
'0 T I "'lAI"' 000 f? 0
:I 0 0 r? ('i("- t (!. I .E:.:I'! +I:.i"Tl,'.I:k:.'.r), Tl:::t'Ii) 4 (!:"I. I:;id)
1, 1, 0 .. i ' ? " E ::.I! TF,F",", Ti.",'It' !(",:: (:)i'! E i"- T l"- 'T".I:Ytl: "
: I.; 0 ' . "Ir.t! Tl".I: E..t'il:) TY .' iTF",l:i'! C', t! I-IE:.t! r.."C) t! F.:: (J
(I.. T ITT. 'T I,'F.: Till '.it!? "
: I '30 7 : ' > "F" I...F...' HE $1'l-') ter? Ei Y F! EIII...I:.:.: Tl-IE: 8 'T

:I.""r 0 F(7F' I : : ::1. 'T(7 .3I. I'.:.N>LrtN I'Fi'.!:F.:.;:.3; f"-)0 (:I: ;I:)::="
": NE..X'T I
L)' 0 n +

'.L (r) 0 I-- 1.
1.:: 0 F. C)F", , .).:::1 T(7 E')NTI','I l : ""
1.(:.30 '? ":O'" ",',J;" "; l l N F IJT ' T'F.:thF)4
: l.90 T.F I . ..E:t! ('Tl=.ilE"li) ::=0 T l -IE::.t! E:t! TF'lIE ; : ::: J--I i (
nTn 3 0
P. 0 0 Af. (I , I + ! 3 l . I.::H1)::=1'F::I'1F))!'
P.:I 0 I :-::T.+!~L..E:.:t!
."?.:; 0 NF.. X T, I
"... 0 l '? l "'. "I 'LE:.A!:ik "'TAb! L'? E.:(Y CHILI'=". Tl-Ik

!.:GATI .':I:i! C;5 '-" F''F.. E'.E:TIJC.i V nF,''I'k::I
':. !0 (."C),.)L)E'.: 90 0 ' REH C A L L !:)C)F",T F'w(:)L)T:I:NI'„')"'; 0

106 APPENDIX H

2<!) 0 I -::1
'. , " ; . '."0 F'(:IF'. I,---1 '1'(3 EHTI: T.ES
7PIP ;) II. I. II + I, + I 1 II . A >i I I) I'

.";."-:-'0 I -'I > S!..E:i'!
3r.)0 r'IE:XT I:;
31 0 T l ' ' .AF) 3 1 0 i '? i " . " !A(3(JI...I;) Y(3(J I...II ''E A f) f''
I r i r (3(.! T"; I N ! :)i..!1 F:., i
3~a. 0 I!"" E'.'i1" (1 > 1) "" '' Y '' '1'I"IE:N 3 "f 0
3 30 F ND
,: '40 I : :::I.: I.F'F':TNT i F(3F,' I''::-:I. TO I::.:NTRIE:S
3".:i0 I...f f",T.i.~T " :II:" pl '. i " ">i"-'>'1>(I>I + S I . E:.:N1)
3r.':) 0 I ::::I+SL.Et'! > NE..XT I.'',"' Ei! I3
3;0 f ' E:.Vi;: TI,INC', Eiufif.:,i. E-.. S(3F T r'(3UTIt'IE:
380 F'E.::H INF UT l r':'I, SI...E:i'I, E:.NTF II::.!:
3YO f ' 'E:.:0:I TE:i'If) 1' r1U",:iT Hi"i<)E'.: ':i DI i lE.:i.!SI(3iN OF'
SLEN
"}0 0 I"IAX:.-'..'.iL.E':i'!'< (E:i'! TF~II.::S--1) 4 1
9:I. 0 F>C!F~' I'-'::1 T(3 MAX STE:F' Sl. EN
'f'? 0 DONF.: -:::I.
930 F(:lF I.:; --':l. T(3 I'1AX--I- SLE Nl ! ' T l ':::I'-'' SLE:i'0
9'f 0 V.SLE:.N:I.- - -I(+SL.E::N1: I:;!.:IL.E:N::::I:+!.- LE:iN l ilSL.E:< I!:i
I...E:.k'! 1.::=I(SI...E::.N+S>I.E:i! 1
e;::0 Ir : A '.I:'. F), I''!iI...E'.N:I.):::::::A'.I' (I::SI...E:N, ll! iL I.::N!iLE:
N1) T l-IEN CiOT~(3 "I80
"I(!) 0 DOidE:-'::0
070 T l : ::IIF'4=A% ', I' > I''SLE:N1) : r'>4 (I'.) I:SLE:N1)::=A%
(I(".:il...F.:.N I".ELLE...I'j Sl...l"..:N 1) ' A!i> (I'(S LE.N > I'("iLI";NSI...E:iN 1
)::- TE:.:I'1F'f-
IBO NE:.:XT I''

990 I I = ' D (:.INF.. Tl-IE:I',i F ETUF i'I
' ,".>0 0 NE XT I
,: 10 I E:;TUF''N

APPENDIX H 107

LIGHT SHOW
ThiS Program demonstrates another aspect of ATARI graphics It uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video (use
the ATARI logo key). e
'L 0 rrOf i E)T -:1 ' I (3 E)+ (ifiC1F>H I (,'i 7
.'0 F C)l''I 7".'>Z > '.L

3 0 " . + ' ? " AT ! i f i I I I GIT T IHOI!
"" 0 Ei E:. T G C) L C) F".

C",: 0 !:.)E:.1'(.,OL..C)F 1,",.4".iT, ' , ' ; GOI. OF
F. 0 F. OF", l)F''::=0 T(3 Elo b T I : ::F> !:)T
70 F 'L..c)T 0 > 0+13F A)4.T(3 1 ' i >>~C)Fl
C)0 It)EX'T 13Fr C
"r'0 F C) fi DF,''-= 1.59 'T'(3 ('! Ei 'I ' I :I"' "-ST
10 0 F'L OT 0 , 0 : IDF",HW'T'(3 Dfi , 7V
:L:L 0 i'lE:.X1 l.)Ff
:L'.0 Ec)F I'4--:L T(3 350 0 l IME:.:X'I' C
130 NEX'T F>T:(:,01(3 10

UNITED STATES FLAG
This program involves switching colors to set up the stripes. It uses graphics mode
7 plus 16 so that the display appears as a full-screen. Note the correspondence of
the COLOR statements with the SETCOLOR statements. For fun and experimenta-
tion purposes, add a SOUND statement and use a READ/DATA comb ination to add
"The Star Spangled Banner" after l ine 400. (Refer to Section 10.)

F,'I::ii DF' ":F('I I-II=: I.)il 'C)EI3 !:.i'T'"'I'L::.:!.": I:rL!.'G
.0 F:E.i:I I-I:I:GH F,"E:.".:iOI, LITI(33! '(--C:C)L OI'-'' C'I" f" I'I-ID"

.

i'0O Tl::XT W I i d l) (:) W
;,I! C;f;,':,F I-I'I;C;; —, 7-1,-',
"TC! Fif. Ih '.>ET(.OI...OF' 0 F ' E I . T'E!:.' 'I C) C;OL..C)F' :L
.io r3E T GC)L..C)F' 0 r ' f ; ' "r ", I'.EE)-=.I.
ci 0 F E..N ',.'E::TI C!Lc)F:I. I t :.I. 'TE.:.:!:.i T(3 C;C)L C)I'
7('! !:.3E::.T(.,c!L..f:.)F'' 1, 0, 1 '1; Hl-I:I:Tf.:.::::::.
'E)0 F",E..)I ',:lETC'C)LC)f'' "'. F E::L..l.'!TE"..:; TC) C;C)L..(31"' C
'0 F.:.L..L)E--:3;F'F::.Ix(r!Er ''1uL TS 1-C) r:.:;L ur
1 0 0 F" E:.H Df''s',14 :L3 F ED , ' l l'AE) HFII'TI: !.'iTI: 3:F'I::!
:L:I. 0 c::-Fir: D

C C
;L'.,0 [r C! F .I; -': 0 T(3 1;.'. C:l. 3 Cl C:C) L..Ofi G
1.";0 Fi r.:.in E;;C:H T r I F :E FII'~3;: E:VE:r ''il. Hc)F:I:.'"O C C
108 APPENDIX

i'! T A I. L.. Ii'.ll':.:;:)
:I.!:) 0 F)OF" ,! -..-0 TO (')

:I.':-.'.0 I')L..f.'.T 0) I ' + '/ + J
'I;:" jl [) [i i-> W T 0:L 5 c) I)i " ', I
;I.GO I'0 E: X T,.!
:L .". 0! r;E::II .',WIT(.'l l (::C)L..C)r;,"
".'n n (',:.-:(.+:L I II'c C;::: WI II I'I.:.: 'I I-II:.:.:?4 C;:-'f if:.:O
,.I. i) I'! E X'T:I:
'„:"." 0 FiE.?1 [F,'i'~WE'l...l.!L';. Iil:.:.:(:Ti')4! f')L..[..
'„""„':, 0 C;C.!L.OF,' E L.LIE
,,::'!0 fc"'F'' 'I' -' 0 T jl

i: ('I f: I...C!T 0, I
'.(.'.c~ 0 [) I'. ": W'i'l3 " "-) : I :

;:;:-'0 W.E:.X'T' I
""c) 0 f''f.: W Of;)':!'! ,: r'C) I'!;3 Ol' W I A I T E: 3'T I'w I"'.!3
„ 9 0 0 I'!l...C!F'. Wl-IITE::
.".'0 0 I''-'::0 , "I" E.:il, :)T "Il'.T WI T ! - I F I '!W Of" ': ! i ' I ' "-Ic'"-'

;! [n Fc C) f":I: -' 0 T C)
p$ ni '(::::/l ' Iv, ',

r-C)f;,.!- 0 S O " ; ; r ' i . IC ". ,: 1-,",r';: . ! :?Ni "1 r;OW
'i,i 0 X:-' I". +r.„.-.j i , l x:I. ' t ~ (~ (1""i I.l El .:t ".3 0
'i)./ (1 ?.! E:.XT ..!

/ :I:i: I ; : ::::: 0 T l -IE:II I ' , :-0 i (,.C)'T'C) ''t00
(1 I .'F.:.:?'I I") [) EI <'.'-/'T I-I 3 T I":) Fi'. [:.: I! [:.: Fi 'I' C) T I-i f:.: f 1... I i'! E-'

cl 0 X::: ! + "'i '!I!. ~i i (i O,"-.3 I I E' "l' Pi 0
:":.'' i! I''::: /

'";0 (1 NE:.'//,T : I :
'"i',I 0) F;r ia If : I : E ..'(H II Tl- i r :.:N; ,TC!r
/I I) :T.I' F)E..E:I', (;./ (-"; .' =:..'."."; Tl-If::8 : l i " 0
"'I "1 CI f,'I:.i'I C! f) E:id Tl=:XT WI N[? Oil W:I:Tl-IC!L!T C;L.L".i.". I':
T.?'! C-'. ';:.!C F,'E:O'. N
/ i ,n I) (F",I"1F)I-IIO'.-:) 'i"' 32
x)r: (1 I.'I:?I C.'H'"-Ii'I('[.:: C;C)L C)F",!:i E'(:;f;I::
-g(., IIn ',f, T!." !OLC)f, 0 , ' " , , /I,' ,,E.;TC;C I OF:; ;I,, 0, 'L-",

I:.:.: I! O
0 I: E.!I [; f 'A W 1 ! " .)Tl')F.'. Cl i'JTI::.F,'E...[) I-IT X

)el (1 F)L.,C)'T X- I.) '(."i [)F,'I')WTC) X j-:L) '(
";.i 0 (1 F ' I .. C1 T X, ", --;I. i F I. 0 T , , " > 'L
;: I.0 I 'F.:,: T OIF',?'A
' i'„0 I :[:.i'I I (, ! ." I..)O '. I'II.I!:.''IC; I"'C)O I I!'0E:: „;I: N,c!I.:RT

(if.i';.31.!E "- T i., 'Ii'![;, "0; ; I " I I '![) i ' F ' I ' I H [!
";"'."::0 F.'.E:?~ 'Tl-'.E: ?II.!!"::IO f ,"C)I.)l I i ! I : ! 3 'T(I L: ?1L:I'0'T3 A
I-'T I::. f'.'. T I-II', F,' E. <~1 .":i 'T (' T E::?1[.. N T •

APPENDIX H 'I 09

SEAGULL OVER OCEAN
This program combines graphics and sounds, The sounds are not "pure" sounds,
but simulate the roar of the ocean and the gull's "tweet". The graphics symbols
used to simulate the gull could not be printed on the line printer. Enter the follow-
ing characters in line 20.
20 BIRD] = " V — - "

To get these symbols, use CTRL G, CTRL F, CTRL R, CTRL R.

1 f! [? T.. t I E:.' l l '. [? 't (c'.?
. 0 E' :F:D%--" " : I : I..."-»C;=-.L: I.'.OH- --:I. 0 ", C: C) L:-1 0
",:30 C;F':" F>FII(".,S 1 i I'-''C)l,'E 7"'ih I-'(.)I:,E I ",D~. > .L
,0 SE. Tr.,CIL C)Ft f'I, 0 , 0 "„SE TC;('Jl. C)F'' :I. „b > '.L"'r

, i0 F>F".It'JT : I l () > " 'I;I'IE: ia i..' ie <:.'> I i
''.: 0 F''-:: T. i! T (I t''. [? (0) '«::L 1?
."0 F''C! S..c TI(3i'I 1 : • : L ; l l r C)Fi "f' -'0 '1" (3 1 fi
F30 S>C!I!r!D 0 , T , (: . , ' '3 > I- C)f,' :::I. "I'C! ';.:>0
": 0 I''I[:.XT I':I ': Il ' r F",'r'! I',' '; 0) '::: 0 + 0) T I-IL:.N 15 0
10 0! F>IT(".IR--T.t4 >'(I.'.I'I[? (0) ~ >) f I'.

:I:10 r Or. r:. ---1. rC) ";::
'I ..n ', C)L.Lft1E::-:It!T (I.'i'!L" '; 0) >r'I. 0)
.I '.3 0 S C) Ui! [> ! , . F>:I: T 0 I-I ' [) „:L Cl> I.ic)L L)i'IE:
1 Jo tJE:XT [: i SC?LJIJ[?:I. 13, 0 , (i
I.':-.0 C',OS!.! E:..::.>.7O
:I. <' 0 NE:.XT T : I - 'OF". T:--:10 i (3 0 ST[-::F: --1
;1,7f) Sf LJt'![? 0 > T, 0! > i . "FC)ii I'I -"-:I. T (J ";~ 0
:I. (."-. 0 NE X T I"»: T. I-' F''. lID (0)::: 0 :, 8 TI-IE:J! " ':".I 0
:L '.' 0 F l 'i (".. I-l:::: T. t'I T '. I .'. ! D (0);~'.;,' !+:I.o
l'".. 0 0 Fr t.! Fi'. L') -:. 1 T f3 '..'i
2:I. 0 V f! L.. H tel E.'"' T. I ! T (I'' I''! D 0 .LIJ)
:.;". (1 ,"->f)1!i''ID l. > F>TTC;I-I--['! > '.L 0> '~> C) L I J il E::
> ;,n tJE.XT I ! , S c)L)t~D 1, u,o ,0
;.:.'Jn Fc!F'. l-l::::1 T(3 1 0 ; I ' ! [:.X'1 I-I
::.'.";:>0 C',C)E>1.!El;:. ."O
'.;.'.r.">0 NEXT T : (. i ! T(3 .'> t)
".'.7(t C>OSLJEJ 3:::u
"'.";.! 0 F C)SIT:ION f ;OL,. F C))f
" ."'0 I '>F".DJT : I 'I.':r.F",L?4 (I='L. " : C', I- L I''»C' » 1)
;:V! fi r-L rtc'=-Fr["»(.",+ ', r.i- r:i..." 'I' l-l E:.: I'! I"' L. i"» (~ -"::L
".;31 0 FiF.... Tl.ll '.N
".», o: r.r F':JID(0) : : 0 , : -' ri-iE:N Fi E:."I'IJF','N
"..3 .>0 F'OSITT.(3i'I C;OL, F'C)i*I
::.3) 0 F F".T.:I'! T
,:3'.'!0 I'-;--:.ENT(l-,tJ.D(0):~:;:.3) --:L
,". r'. 0 I:.l--:IIEET (I.'.t!D (0) «',:.3) --1
;:3 "O r;O'C---F',C! W+r;.11- F',O~::-0 f'I-IE:.:td F''C)FJ'-"-1

110 APPENDIX H

380 I F F, ' OW=:: '.0 T l -IE:N F C)t*l:-:.LV: C::L'!L::-.(';OL4 r:,t
3<'0 I F C : C! L..--(! T (-IF.:.i! C;C)L=-:L
'"r no II" C;Ol...:: 1E) Tl"II" N r r!L::::1b
"'t.l. 0 FlE: T L.IF". r:I

VIDEO GRAFFITTI
This program requires a Joystick Controller for each player. Each joystick has one
color associated with it. By maneuvering the foyst ick, different patterns are created
on the screen. Note the use of the STICK and STRlG commands.

in «'.,F" F:I~ICS 0
"vI I.,!-.n (:;F AF:F:IrI"

.'.:I 0 F''E:I"I '. ", Y AF'lli<"< Y! I t«)L..D (::OOhL') IixiATI:S
in i: E v Fnr' ur : TO ' F : i . AYI::.F'; r O.:Ir I ON.-
"'lo F'l[:".N C;C!L.F "- F,'F.'.AY Hc! L D!:.i C;OL..C!r,";i
; !. 0 DI i i A% (: I.) , X (3) , Y (3) > C;C!L i'l l 3)
?n ". "I.ISFr ,JC)YSTI C I ; S ! O DF i i : I~ F: I C:TLIF::E:.!-. "

80 ' " "I' F".F..".iS E:.'LlTT(!IJEi TO C;I-I' N(::I[" C:OLC)F'lS"
~0 ' "IWI T I r ' i . . CC!I...OF <::"
i. 0 0 ".' ",.!0" S'TICI'' 1 I !" I, 'E:.L')"
1:L 0 ' " JC)Y TI (".,I' . ' . I S ! " l-II ' ('E:.:"
1, n ' " , JC)Y, TI(.,i(3 I S E L..llL':"
13n '".. "JC!'(STI("..Il "' i I ! i L ::.'1. A(;I',--E i"tCF'CihOI.!ND"
1~0 ~ "E:, ACI: L..C)CATI (Ji~i I ; : I NDI C A T I .:.I) Et ;
r:.;iIr..F r:L ASFi cir v'E:.[."

: l.',oo '? " : T i ' I C>F'.ril" ii IG".I I:.) ~ CJOY':iTICI (S :L A i ! L') 3
;."<F",E:.; Wl-IIT r' . ":ND "t I , E'tl. L!E"

:L<'ict '? " I - IOW I'RAID'<' F'L i<YE Fi S (: L -''0)" p

:I; r! I i ' 4F IJT "- f : I l - L E:.:I'J ("' l)::-0 T l - IEN O 'J" - " : L "
:L l:I 0 .J C) Y I'i "~ X= V i'i L r, r-'< f'! - '.i.
:I.'.".0 I t - ,, ! C!Yi i '" X'::0 Or ' , J O '<'i inX:::-- k Tl-IE:.:iP:L '0
; :no ? " C,.ri.AFHIC;s3(-vox.:~I) „;::;(Boxeo) "
'.:L0 '' . ''7(1 wr0x'«6: ; (JI'"'l r ! (Sc'..0x1'i'2)" I
" !2.0 T. i4F LIT A f ' + I F l E ..N (<'<'.F')::-0 T l - IEN O ' I ::-'"3 "
"..::. 0 f'.i -:: t) ' I... (A%)
." 0 I I - A -" -3 T l - i l ::i:I Xt ' IAX'-": 90 ", Yi'I':X:-"'-'f 1 GOTO

<7n
',:.":. 0 IF A : -" , Tl-IF:ii X t ' (AX-='"..0! YYir.',X::::"(l': (".C!TO

IF r -'i -"? Tl-IE:.i X<'I<"tX::=:I. <<>0 t Yi tr'<X:-'Vh a (GO1 0
;"" n
". ''.: 0 I F A-- -FJ 'Tl-ll::N Xt' IAX::-3.".0 i Yi'iAX=:1'i".. i (.",C)T(J

„") <:~~n
"::.Ho C;C)T('.) 1 9? i I".'.I:i'I A I 'JC! T < ,',L IL')

APPENDIX H 111

.'! 9 0 C'Flr.": F I-IICCi A+ :L;.',
",:300 FC)F" I:-'-0 T (3 . JC)YI'1': X"..", (I) : - :XI1(X ' . ' 1 I " ' Y (
T.?:- YI(AX/ ::.'. rI "N l:::XT I " I ' ;F.:V. !'.iTI'-'IFI,'I i .!E.i'>Ih C;I'.:.I'!'!'
F.:.F'; OF E>CF:E F. I4
,:>'.I. 0 IF I'.i..'"...': 8 TI-IE::i! ; : I";:i 0 t
,;:.O F:(JF, I :--0 r(3;.'.:CC)I..Fi<I?::-:L;i~!E:.:XT I
:.'.:! 0,":JE:.1 (".,Ol C! f'':L ' ,:I. ''I ". I"'E':t1 L.. T . E'L LJE"
:.1""10 Ci[!T[3 3V>0
;::.",: 0 r (JF; I =- 0 ! O::.; f.:Ol.. r (I! : = I i:I.: I! F: x!
.:r-.' 0,"-.iFT(3C)L..C)F': 0, 1, '' l I;I:.:.:i'1 F,'E:.;D

:-".;. 0 !':if.::Tr.',OL.OF'' .I., 0, :L ~ > I '[.::t:I IAIII 1'E:.:
3[3 0 (,;() L, f". r;3?::= i)

C C C 4 t

::-," n r-r.!r ,!=-c! To -. '.

:";00 F-r!r I - -O rO .JCJYti(?X".I"<I:.:JI C;I-IE.::C;I'' JC)Y!..TI
C: I.',!3>
(1 0 F,'F.:.t4 Cl-IE:.:C;I', T I,'IC;(.,f.:.:F','

.'I.:":. 0 Il ':> Tl'iI(":. (I) T l IE::tW "'I'i" 0

C t

'"v',."> (I Il' r'.i '."
. . '.

, .

'1' I IE:: N '1 <" 0 C" l<l0 (: :(3[..F,'(I) -'C;C)L..F''(I) 1 :L ' , I l ' : f . :C)l fi(I) = > T I - IE..
i'! C'.C)L..F': (I)::-0 "; I 'I'-::l:I I!:! C) C.',OI...C!F", t'IC)[."E:.:
'(';; 0 (,CITO (.. 0
''<bo C:Ol..F",' , I) ::=(3[3[..f'l(I) > : I . ; I f > C C!I. F''(I) : : :.:=:i T l - I
E:.N ('.:f)l..f''. (T.) -'0 i I'.I.::I'I I C!LJF'' C;(3LOI'' tl [3[)E
- '(7(3 I I ' . ,I;:: Ci TI-IE tJ C;(;JI„C!F,' C;('ll F (I ? : (, OT(3 '.". 00
:".<:!0 IF c:c!L.F'<I?::::c! Ill[:.:w c:c)l or .L; ('.C)TC! ".:oo
a."0 cc)[..of'. 0;r-;[:.ts E':L It~t; cur F;E:.t~T .:;nuAr F o
I 'I i " i ND OF F
";:>no FL..OT x< I) , Y (I ?
.::. 1.O,.JC1 (II~:-F3rI (. i ; (I ? ; r. i - :t(r [: AD , .JCJ ('TICI::
;-;..0 I r . J c)YI t~:=:L;:Ti-I[::t: ! .-,v(3:F'.l.::tc NO t(c)vE::tiF
I'.i T
",:i;3(3 f.;C)l...f'.,F'' C:OLF (I) ; ,FEE:I'I t1AF',[: !3(.JF''E COLC)l"'
I !3 C! i l
! '.> "v 0 F> l OT X (I) ; Y (I)
.: —:,. 0 Ir , .!C)1'IW:!> r l - I [::t i > O O
:::~ n x<I?::--X(I ? ' . :L : r ',I' t(t ((:Ivf.:.: F;I(-:,ilf
' ;;;; 0 FiE:.ti I F i)LJT C)l' F (i t >[i[:.: TI-IE:.:td WfiAF>r'1fi[JLltl
[)
';'!.:! 0 T.l: X < I?::>::-XI1AX T l IE:.N X (I) : :: 0

(1 I;; r'1 T O; ".„> 0
: : 00 I I - ..JOYT.N::::::::LZ TI-IF.:.:W (>3()

('.l 0 X (I ? : :=X (I) - - :L ", I 'E;:I'1 i'IC!VI:.:: L E:F>T
h. 0 I F X (I) :: : 0 T I IF ti X (I ?: :::Xt'I X--.'L

;3 0 IF , IO (IN> ''::;J y".It/ [? I C) '1' I t'! ': ':' P 11t'J D J[1 (It>I
::::::.:L;.-'. T I-I E:.t.! "'. (> 0

C C C C

112 APPENDIX H

h~t0 Y (I) "Y (:).?+:I.~eIlr Y (I) : ' = "YHAX T l " IEN Y (I
) ==0 ".,: I.'F.:.F1 MOUE: OC)!4N
h ;:0 C'nT(3 ha 0
hh0 I I : ,. !C)YIN::::: h r':>NL! J(:)YIf! :::::::L Cf AN() .JC)YI

! I-Ir:.N ha0
h 70 Y (I) :: - Y(I) -- : L :I I = ' Y (I) :; : 0 T I I E:.N Y (I) = Yi i
A X--;I. l I''.E:.:t'I r10UE I.!F'
h (:.)C! F>I...OT X (I) , Y (I)
<''.>9(! 1NlE:;XT I
7 0 0 NF:.XT i J
7 :L 0 GOTO 39 0

KEYBOARD CONTROLLER
This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further I/O, hit SYSTEM RESET or POKE PACTL.60.
If this program is to be loaded from disk, use LOAD, not RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this light
goes out, otherwise the disk will continue to spin.

' I. 0 (.RAF>HI("!~ 0
:.0 ' ~> ': :.: " I ::E::YE:lnAF,C) C;ntNTr-;OL L Er; r?r: I-IO»

30 r? I« F : n t ! (3 ? , I4 (:I . , C'L IT 'I'ONf ',:L?
't0 C.'Oat..IF.::L00
";:; 0 F OF',' C NT::=:L TO
h0 F>C)aITI (3N , ": , Ci! T:<".+!'."i l ". "0(3NTI '(' L L EF' :ll:»
+ (' • I'tT • »

;:0 NE XT CNT
80 FrnF C: N T : : :L T (3 X I! (: C)a(!E' 170 "F'OaIT I (3N 1
V,(;;NT '(",,'IT+; ' , 7 E :.I,ITTOt'l4! NE XT C;NT
~ 0 c n T i~ ,) 0
100 F','F....ri w:>t: aE:T iJF F>OF'' 0 C)I'tTI'.OLL EFia®+
:L:L 0 F'C!F''T'-':-- : . " -'!0:Lh; F OF''Tl 1=::",.'X!0:L7 i F'AC;TL -' " 't0 :L
a: I >E<GTI =-;::s0:L ..
1:.0 F 'C)l,'E F>AC;1'I., ' i<":>+ F C.I''E I: C)FATA > 2 "i ">+F>C.I',E
F'AC;Tl... ! =.'

.

. L I-'nl''F.:. I"'OF''T'".;.".i"..:I.
:I.;":,0 F"()I';E::. F E:.'CTI..., 98: F" ()I',E: F'C)l"'Ti=',;: ,"'"."' I"'C.l E
F'F.:.l C:1'I..., '; : I-'Ot''E: F C! RTE "'.:.i:L
:L:'t 0 F 'C! 4I (0) -=' „! Cl! Fi 0 H (;L):=:"';."?:L: I 0 H (;) : .=:L 87 l Fi
(3 I!! (3)::=:L:L 9
1 ';:: 0 I 4 : --» 1;?".) "I';-;>h7C! Y~ 0:ll:»
;L <'.> 0 F'<E:.'1'LIFiN
:l.70 RF::r~ ~" I'r::.:Tur;N E:.:IIT T(tixi'I !AITI I C;IIAF''AC:TF.:
I ' F 'OF I;.:,.'L)T T(3N l(FII (:FI I - IA!: E:.'1E:.:E.::N I-'F E aaE:I? C)N

(: C! N T I '. C! I. L„E. F'' (" ,, tN r' (;L -" <) >>< >x
:L I.:) 0 F';E Yi x'<N10'I i:.:.: i A 1 I a F E:TLIF'.'.NEL') Ilrr NC)

APPENDIX H 113

CONTI 'OL..L EFi I S CO N tNI1.(: Tl:.:13tk>
:L90 i iEn x ~ r - S F:AC:EI S FE T(JF tNE:I:, IF I l - lr: O
O NTI' OL.LE F'' IS C:ONNI'.:C:Tl.:1.) 1.1L)T NO I,'E" I I A S
L-.'EIE:.N FxFiE SSE.L)x<>K
.".'.00 Fxt)F'T -':I=.'OFiTA l:I I=' C:tNT:::". T l -IE" N I"'OF''T:-'I"'C)FiT
F.'
'.<'P.:L 0 F:::: 1
2.:. 0 F'AO::.-C: N T+(.iiI T-- ~".
.";.30 F OFi J :=-.0 T(3 3
.90 F'C)llE I C)F T,, I C)I4(,J)

'.!': 0 F. C)F':I::-"'1 TO : L 0 ", NE:", T:I:
..60 I F ' F ADDLE i l .'AO+:L)::: 10 Tl-IE:N F:::: J+ J t J+'!
l (>OTO 3 0 0
".'.70:I;F' F'ADDLE (F C))::::L 0 Tl-IEi'< F':-': J+.J+ J+3: ('
OT(0 30 0
.:;Ho T.F STI,'.I:C'; (::i'lT--:L):-':0 1'I-IE:N F'--: J+ J+ J+''I; (.'
C)TC) 30 0
.;.::0 NE::..'.T,J
30 0 E:.1LiTT('Jill::::::I:F i F F)
3:I. 0 F E:.T(JEAN

TYPE-A-TUNE
This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.
KEY MUSIC A L VALUE
INSERT B
CLEAR Bb (o r A¹)
0 A
9 Ab (or G¹)
8 G
7 F¹ (or Gb)
6 F
5 E
4 E b (or D¹)
3 D
2 D b (or C¹)
1 G

:I. 0 I) T.il F' I f C;:I-I (:I.::.':), "I (.! 1'IE: (:L 2:)e ("C)L.Oh 1
:.o C',r.'r:I-!TC:S 0," '?

". " . "TYF I:.:--('-- '1(Ji'|E:."
,":) 0 '. .":. " . "I F,'I."SS I,F.:.:'1'S:I. — '',. 0,:::,::: 1 C) I' I" ('L')Ll
C;E:. i'I.OTE:S"
'"r0 '". "FlE:I...E: ":-'::E ONE:. i,E.:: ' E:.'EFr C) I '.E I I 'E:SS:I:NC
riIE:. NE.::;-'.T"

114 APPENDIX H

',;;:0 " "DTI-IE:F".I'!ISI:.:.: Tl-ll:.:.:I,'E I"I('t'(Ei'E: ,"-' DEL. . Y"

< ' 0 Fr(.!F,' X:::::l. TC) 1 ' : <. F F.."p"it) i'i p F'IT(.'I-I ', X)::::i"i p I'dt X
q I

; 0 F'C!F', X--:'! T (i :I , . ! F",E 'D i : !TLJI'0E(X)::-": i NEXT

F! 0 C! Fx E I!:II:I. p I • 0, " I . p "
9rt ('l l t)CFIF -::--:L
.I 0 0 1"'::::F E El(.';' ,';,:,', ; I IP 1 :. " ;:.'.::p' .' Tl-IE:N:l. 0u

:l. C! Il" ' i ' : :: C!L..DC':I-iF", TI-II;-::N:L!. 0
:I....: 0 C) L.. t) C'.. I-IF'::::: "1
130 Fr C! F'; X:-'::1 TC):l..'..! IFr TL I'! L'.', X):-'i-'1 Tl-Il::.N SC)
LJND 0 pF ITC.I-I(X . ', :L0 , (:.::' :. (,C; I():l. ' 0
'I:"; I'1 !'f t:. X T
:I.',::0 I : : ::I l ' !T (I'-''E:t:.:I:; ('i3 " ';:i) z'''""r.'l "IF' (I i'' i .) " " I I ' JT (
I ;:™: T l - l l :"N 100
.I.::.:0 '.-'C)F'':. ' ; : " " . .:,:.'::..';::C)LJI'!I.) 0 0 , 0 , U . (t L . t)C,I-IF,"'
- 'I, ";. (.f'1Tl') 'I, 0 Ci

D p"I T 1"1 . '<".."i" . .

" .' 1 .:..".,: 3 p,'..'.".I. ' p '.:.'' .0 Al p 1'p'3 p 1 (:-i .":: 1 .'L'i'3 p 1
",' ('I. ".:! 3 p:1. " 'i p 'L 3 !,. ',l.;, ':3

.I;A I) I H i p p ,: ; .L p, 0 p : :.'. c: 1*.'. 1 1 ' . '." p ~5/ p ; . J , l . p .1 • .1 p '1 (: p D 0
I:p,I I I .' I . '

, ! " ' f ; . . |

To play "Mary Had A Little Lamb" press the following keys:
5 ,3,1, 3 , 5 , 5 , 5 3,3,3 5, 8, 8 5,3,1,3 , 5 , 5 5 , 5, 3, 3 , 5 , 3 , 1

COMPUTER BLUES
This program generates random musical notes to "write" some very interesting
melodies for the programmed bass.

: L0 C',F p':F:FIIC:$: L
20 ".' "E'ASS T I . :t IF'pC)---Sl'::LEL",T i t N LJ?IE'I':.'Ii p"
::) 0 "" . " (F'i-"'1$TI':ST TF': IFPC)::=:L) "
90 F'Tl l :-'1 ', Tl-INC)T:-':L l C I-If)Flt):::::I.
';i0 F'F'lI tNT " i . ' F E:$$ F i ETLJFiNt"
~0 I i !F I ..IT T I -:i'CF-C)
70 CF p",FpF<ICS; .+:L,.;CD.:.ur:: c'.:.)0
80 L')I t" I E'f":USE (3 p''J)
90 t) I t ' I E C.)JI(3)
1 00 L? I i i I . I N E : (1 <')
1:LO DI t l iJ I '-rlh(3 p 7)
:L '. 0 E C) F'l X'-'-1 T(~i 3

APPENDIX H 115

(:I 3fj F C!Fi Y:-':L TO
:I. 90 Fi E: A O A + E' A F) E (X ~ Y):::: A
:I.",:i 0 NEXT Y
1. (') 0 I',IE:XT X
:!.70 F'C)F': X:--:L TC) ; :I): I: E:H:[) IA ll. O! I(X) :=: t-I
:Ll)0 NE:XT X
).'? 0 F C)R X: =:L '! C) : I.<".':F E:AL') r' I :L. i i ' I r::.::x):::A;NL:.:x

C C C C C

;;:.0 c! FC)F',' X -":L TO 3
2;Lo FOR Y:::::L TO 7
" ' '0 F'lF.:,A[? I".1+uAI'0 (X p Y,::: t"-'I t Nl: XT Y i Nl'.")''! X
230 C)0(»IJI:" 37 0

C C C

~'.90 r:::: T+:L
»I: 0 (,o;:.u[:, .-;.70
',:.i"'.10 C.:OT(:):::.3 0
~.7 0 F.r:::.FS F»F;C)(::[:.;:.;» I-ii(:;I-I 3T uF:r--
'?r:) 0 Il- ' F I !O (0).:::0 • ".!'i ' I ' I-IE:IN I 'I":T uI' N

C C C

i " t l IF F;;i.!O (tj) : 0 , ' ; :; T l -IE:I'! ; .:)30
30n Ii !'T':::: I'4 T+:L
3:i. n IF I' ! T:: 7 Tl-IE:N N "(::::7

C C
3'..:: 0 C CjT(.) O',Jn

» 0 W T::::I!! --:L
O''I 0 IF N T : : ::L T I-IE:N INT:::::L
»1'"(1 !:.)OISIN[) 2 ~ i.)1':II'1 (("'I-IC)F,"[); N!'? p '.L 0 ~ NTa~.

C C C
'» J., (1 FiE::.TL!FiN

('I I:.EI1 F'F"..C)C:FI.'3!:; E'A!":E: '.::Tl.!F»F: C
3E) n II"' I:" ASS:::::L Tl"IE:i'! J!'! 0
3" 0 I:.:. OL! R--::E'C! I.JR+:L
F on IF E I [! l.! R:::::: '1 F::i~iF»C! TI-IE:I'! ''! i".. 0 4'

:'):I. 0 E' A F».'...".-:: '.L i I: O L! Fi::=r!
"'F '.;". 0 !:.>OI.JN[) 0 p L.C!I'! (".I-IOFi[)) , : I. 0 p ''I
:~3n !:.!C1LJN[) 1; l.'A'.iE: ((.;I-IC!F''[), Tl-li'!('lT) pj.np "|I
-q 1n F;F::.:T uF;N
<';:i 0 ..:..r) I..! Nr) n, o, r!, o
9".'0 '3C)L.JN[! '.L+ 0 P 0 I 0
:'F70 E'OI,JF .---E'Ol,JF','+:L
.~r) n I F E 'OLJF:::::::I. Tl-II: N ' i ') 0
"'('i' 0 r::. r) ur',:::: 0; E.':«:,:.::- o
';:! 0 0 Tl-II'! C) T::= Tl-I'NOT <;L
';! '.L 0 IF' T l -II'IOT.:::::: '."i Tl-II. :N !'Jhn
';:;.':. nTI-II'! f) T::=:I.
I.. 1(1 F» T I': -' F» T F",.":L

C C

';:90 Il'» F'T I"'.:::). 7 THEN F'T I''.:::::L
I.. I: 0 (:;HOF [?::=LINI::.: (RTR)
.Jc) 0 RF.»TI..!F IN

116 APPENDIX H

",:i70 DA 1 ' A :[<i 2 >.I.'9'f > .'L 3<!) > .'L''I'I , 1 '.:: 1, 1 0 8) > 1 0 2 > l
08 , : L0<:) >?<3>?1 >.9<3
;:> E3 0 D A T r~ "..'. "(3 > .L (:.3.".'.9 .L <4 32
!'.i <» 0 [) i'"i T r-'i 1 + . 'L > .'L > .'L > 2 > 2 i 2 > 2 :L , 1 • :L :L , 3 , 2 , : L
> '.L
~ C!0 DAT < r o , ; - ,0 , : (7 , + 2 , : SO • ri) > 2?
h;l. 0 [)ATA 6 0 5 0 , " 't';i, "(2, "'to,;:j',:,3, '„'<?
h20 [) A ' I 'r"-< C31, «-'3 > <".>xi >!:>i >"..'i,:5 "(0
„3 0 F>F'lI>NT : I I<h t f) f IN T :I i .,'> ', F>I,'I txi T:ll: ci
e,eo r>f;x t'(T ~.~; " c:oi : l r :u(Lrfi L L(.JE:!3"
u',=.>0 F'f'<I!N'T :8:<'.') + F'f,"I:NT : I i:<~
; :.,0 r [1 u r N

DECIMAL/HEXADECIMAL CONVERSION PROGRAM

This program can be typed in and used to convert hexadec imal numbers to
decimal numbers and vice versa

:L(t [)T.t'i >"-i'i (9) >('->I)'!5(:L)
, .'. (i (F ": f'FI:I:6'.i (! : ' ? " ''? " I-IE:X C:(.Ii'! VE.::I !'-."I(3i!"
,:> 0 '? " E'.:INTE:F' .' I. ' F'CIR L')F."C; T(3 I"IE':X Ci c)NVE.F'T"
:'I(} '. "E:NTE>f ' I-I' frclf'.'. I-IE:X TO! Dr::C; (".CINVE:F,'T"
; :: 0:I:!NF'l,iT A %
<!: 0:I:Fr L..E..N (r-'i'l'):-":0 'I" I-II:".N 30
"" 0 T.F' A f : - " I -I " T l - IE:N ",:30 0
C> 0 T.F '": '0'::::>" I." T l - l i:.::I'.!;30
? r! Ti'.; F . : o
:I. Ci 0 '? " E :AT[:.:F,' r"t [) [:.:C:T.i'Ir'>>L HLJr:IE:.'E f<"
:I.:L 0 '"." '' DE:C' + ' ' I '.I:tvl>I..J1 I !
:(2(t : I : F N : : :C! C!F(N;::-= 1l-;-r 10 Ol ' O' : : :::.:I:>Nt I'(N: T l - I
E:I'! (>C!TO :L 0 0
'I. 3 0:I':-"

:I. $0 'TE.:.:i"lf>=-N+ tN:::::I:i<I'T (i'!. :L<"')
:L 'i 0 T I::: Yi F' =:: 1 I:-: I'I f> -- t'! x' 'l "'
:L '-.0:T.l:: T[-::IIF'::::I. 0 Tl-IE::N A% (:I: , :L.)::: STF.'4 ('I I:::I'tf)
":. C',C! T(3:I.l'.0
:I. 7 0 r-t'I' (:I:, :I:)::-(:I-II .I: ('I'F::i'IF> -- 1 0 r r'i"3 L, (" rb "))
:l. E30 Tfr i ' ! : ::;:. 0 T l IE..::N I :=:;I:--:L ', ('OT(.i :L 90
: I.90 . "I-IE.X I " '. >"-i''f:(:I: >'?) +". +(>O ('O:L:L0
3 0 0 T I,'i'"iF' , :) 0 0
::31 0 ". t ' ? " E :.:NTI:::f,' A I - IE: X t'.I(.Jt1E'E I""
".:.20 ".' "I-IE:.:X +" > ''.I:HF'I! "I r"-i'.f + I'!:-':0
3: (I : l . f I .E N (r -' ''.I):=:Cl Tl-IL':.:N;:.300
:3"'$0 F Of''. T.::.-1 TCJ I...L':I'! (>"-t'.f)
;3'.-' i3 AD+ <->>%, ('I', 'I:) '.:I lr () L') I''::" 0" I' I - IEN 3 0 0

APPENDIX H > > 7

3<''.1 ") IF r ":1 f) '!': " '.<" T I-IE: I< f., f) 'I' f)::.! I:.) 0
;) "0 1'.I;:::I')I':t::'I -,+j.)1.".,I i I-"II!':.I:; ", I.'(.,I') (.) "I '.L 0
; "-„,f'1 0 Tl: I "-Il:; ij::: ' j.")" T I-II:.::I''I '.. 0 0
',.")'.".' 0::(:I: '": I:)'.!'.::: "I: " T I - IE:i:! 1 0 0
'" (} 0 " I : ::: I'.I Ar L i: 'j. I"I ".1 I.: (j„j I '> ':ll) - j.'I -:, (, i, ' j..j' ,1 "I .L 0!
:3;I, jl i lF.:.',,'T : (:
:t;-:0 '" "DE;,f,;;. ", I ! ; . ' : i: ; (:)'i(:I ',:.)'.::..0

118 APPENDIX H

MEMORY APPENDIX

LOCATIONS

Note: Many of these locations are of primary interest to expert programmers and
are included here as a convenience. The labels given are used by ATARI program-
mers to make programs more readable.

DECIMAL HEX ADECIMAL
LABEL LOCATION LOCATION COMMENTS AND DESCRIPTION

APPMHI 14,15 D,E Highest location used by BASIC (LSB, MSB)
RTCLOK 18,19,20 12,13,14 TV frame counter (1/60 sec) (LSB. NSB,

MSB). Time in seconds = (PEEK(18)+
PEEK (19) 256+ PEEK(20) 256 *256)/60

SOUNDR 65 41 Noisy I/O Flag (0= quiet)
77 Attract Mode Flag (128= Attract mode)

LMARGIN, 82 ,83 52,53 Left, Right Margin (Defaults 2, 39)
RMARGIN
R OWCRS 8 4 54 Current cursor row (graphics window).
C OLCRS 85, 86 55,56 Current cursor column (graphics window).
OLD ROW 90 5A Previous cursor row (graphics window)
O LDCOL 9 1, 9 2 5B Previous cursor column (graphics window).

93 5C Data under cursor (graphics window unless
mode 0).

RAMTOP 106 6A Actual top of memory (number of pages).
LOMEM 128,129 80,81 BASIC low memory pointer,
MEMTOP 144,145 90,91 BASIC top of memory pointer,
STOPLN 186,187 BA,BB Line number at which STOP or TRAP

occurred (2-byte binary number).
ERRSAV 195 C3 Error number
PTABW 201 C9 Print tab width (defaults to 10)
FRO 212,213 D4,D5 Low and high bytes of value to be returned

to BASIC from USR function.
RADFLG 251 FB RAD/DEG flag (0 = radians, 6 = degrees).
LPENH 564 234 Light Pen * Horizontal value
LPENV 565 235 Light Pen' Vertical value.
TXT ROW 656 290 Cursor row (text window)
TXTCOL 657.658 291,292 Cursor column (text window)
COLO RO 708 2C4 Color Register 0
COLOR1 709 2C5 Color Register 1
COLOR2 710 2C6 Color Register 2

' Future product.

APPENDIX 1119

DECIMAL HEXADECIMAL
LABEL LOCATION LOCATION COMMENTS AND DESCRIPTIONS
COLO R3 711 2C7 COIOr RegiSter 3
COLOR4 712 2C8 COIOr RegiSter 4
MEMTOP 741,742 2E5.2E6 OS top of available user memory po inter

(LSB, MSB)
MEMLO 743,744 2E7,2E8 OS low memory pointer
CRS IN H 752 2FO Cursor inhibit (0 = cursor on, 1 = cursor off)
CHACT 755 2F3 Character mode register (4 = vertical

reflect, 2 = normal. 1 = b lank)
CH BAS 756 2F4 Character base register (defaults to 224)

(224 = upper case, 226 = lower case
CharaClerS)

ATACHR 763 2FB Last ATASCII character.
CH 764 2FC I ast keyboard key pressed, internal code.

(255 clears character)
F ILDAT 765 2FD Fill data for graphics Fill (XIO)
DSPFLG 766 2FE Display Flag (1 = display control character)
SSFLAG 767 2FF Start/Stop flag for paging (0 = normal l isting)

Set by CTRL l.
HATABS 794 31A Handler address table (3 bytes/handler)
IOCB 832 340 I/O control blocks (16 bytes/IOCB)

1664-1791 680-6FE Spare RAM
C ONSOL 532 7 9 D01F Console switches (bit 2 = Opt ion.

bit 1 = se lect; bit 0 = start. POKE 53279,
0 before reading 0 = switch pressed)

PORTA 54016 D300 PIA Port A Controller Jack I/O ports.
PORTB 54017 D301 PIA Port B Initialized to hex 3C.
PACTL 54018 D302 Port A Control Register (on Program

Recorder 52 = ON, 60 = OFF).
PBCTL 54019 D303 Port B control register.
SKCTL 53775 D20F Serial Port control register Bit 2=0 (last key

Still preSSed)
SAVMSC 88,89 58,59 Points to screen data area.

123,184 ReacL/data pointer (line ¹)
182 Read (displacement in line).

SDLIST 560,561 230,231 Display list pointer
580 Coldsta r t flag
694 Inverse video (128 = on, 0 = off)
53770 Random ¹ between 0 and 255.

POKMSC 16/ 53774 Poke both w/64 to disable BREAK key
(reenabled when entering new graphics
mode)

i20 APPENDIX I

APPENDIX TABLE OF MODES
AND SCREEN FORMATS

TABLE 9-1 TABLE OF MODES AND SCREEN FORMATS
SCREEN FORMAT

Rows — Rows — Number R A M Required
Graphics Mode Split Full of (Bytes)
Mode Type C olumns Screen" S creen Co lors Spl i t Ful l

0 1 TEXT 40 24 1-1/2 992
TEXT 20 20 24 5 674 672

2 3 TEXT 20 10 12 5 424 420
GRAPHICS 40 20 24 4 434 432

4 5 GRAPHICS 80 40 48 2 694 696
GRAPHICS 80 40 48 4 1 174 11 7 6

6 7 GRAPHICS 160 80 96 2 2 174 21 8 4
GRAPHICS 160 80 96 4 4 190 4 2 0 0

8 GRAPHICS 320 160 192 1.1/2 8 112 8 1 3 8
9* GRAPHICS 80 192 1 8138
10* GRAPHICS 80 192 9 8138
11* GRAPHICS 80 192 16 8138
1 2* * * GRAPHICS 40 20 24 5 1 154 11 5 2
13 * * * GRAPHICS 40 10 12 5 664 660
14 • • GRAPHICS 160 160 192 2 4 270 4 2 9 6

5 * * * GRAPHICS 160 160 192 4 8 112 8 1 38

"GTIA Mode Only
'*Refer to Figure 9.1
• ' '1200XL Only

AppENDIX J 121

INDEX

A CLOSE, 33 Disk Drive
Abbreviations, 4-5 CLR, 51 Default number. 30, 36
Commands in headings, 4 Codes Requirements (see ATARI

ABS, 40 Device, 29-30 DOS Manual)
adata, 5 Colons. 4. 70 Disk file
ADR, 42, 76 COLOR, 53 Modification of BASIC
aexp, 4 Color program, 38
aop, 4 Assigning, 63 Display, split-screen overr ide,
Array, 3-4 49 Changing, 58 52, 54
ASC, 45 Default, 54. 59 Distortion, 66
ATN. 42 Registers, 58 DOS, 31
Audio track of cassette. 29 COM (see DIM) Double-Key Functions, 16
avar. 45 cmdno, 37 DRAWTO, 55

Comma, 32-33
B Command Strings, I E
BASIC, I Commands Editing, screen, 15
Blanks (see Spaces) BYE, 12 Editor, Screen, 30
Booting DOS, 31 CONT, 12 END, 12, 13
Braces. 4 END, 13 End of file, 20
Brackets, 4 LET. 13 Enter, 31
Branching, LIST, 13 Error messages, B-1 through
Conditional Statements, 22 NEW, 13 B-3, 1 1
Unconditional Statements, REM, 13 Escape key. 6

21 RUN, 13 with Control Graphics
Brightness (see Luminance) STOP, 13 Symbols, F-1
Bubble Sort Program, H-5 Concatenation, String, 47 EXP. 40
Buzzer, 16 Conservation, exp, 9
Deferred Mode, F-1 Memory, 70 Exponentiation symbol, 9
DireCt MOde, 16 Constant, 2 Expression, 1

BYE, 12 CONT, 12 Arithmetic (see aexp)
COntrOI Key, 15-17 Logical (see lexp)

C Controllers, String (see sexp)
C-Scale Program, 67 Game, 68
Central Input/output COS, 42 F

Subsystem, 29 CSAVE. 30 filename, breakdown, 34
Character Cursor, 12 filespec, 5

Assigning Color to. 63 Graphics, 56 Usage. 33, 34
ATASCII, C-1 through C-8 Inhibit, 53 Fill (XIO), 61
Display at specified FOR/NEXT 18
locations, 53. 54 D building arrays and matrices,

Set, internal 62 Default 51
Sizes in Text modes, 53 colors, 53 with STEP 18

Chaining Programs. 38 disk drive, 30, 36 without STEP, 18
CHR$, 45 margins in Mode 0. 53 FRE, 35
CIO (see Central Input/output tab settings, 7 Function, 2

Subsystem) Deferred mode, 7 Arithmetic
CLEAR key, 7 DEG, 42 ABS. 40
Clear Screen, Devices, 29-30 CLOG, 40

Deferred mode, 7, 16, 53 Delete line, 16 EXP, 40
Direct mode. 6, 53 DIM. 50 INT, 41

CLOAD. 30 Direct mode, 6 LOG. 41
CLOG. 40

INDEX 123

RND, 41 I INSERT, 7
SGN, 41 If/then, 22 RETURN, 7
SQR, 41 INPUT 31 SYSTEM RESET, 6

Built-in, 9 Input/Output Commands. 29 TAB, 7
Derived, E-1 CLOAD, 30 Editing
Library, 40 CLOSE, 33-34 CTRL (Control) Key, 15
Special Purpose, 42 CSAVE, 30 SHIFT key, 15
ADR, 42 DATA, 35 Cursor Control 16
FRE, 42 DOS. 31 Down arrow, 16
PEEK, 43 ENTER, 31 Left arrow, 16
POKE. 43 GET, 35 Right arrow, 16
USR, 43 INPUT, 31 Up arrOw. 16

Trigonometric, 42 LOAD. 32 Keywords
ATN, 42 LPRINT, 32 BASIC, A-1 thrOugh A-5
COS 42 NOTE, 33
DEG, 42 OPEN, 33 L
RAD, 42 POINT, 34 LEN. 46
SIN, 42 PRINT 4, 6 LET, 2, 4. 13

PUT, 35 Letters
G READ, 35 Capital (upper case). 4
Game controllers SAVE, 36 Lower case, 4
Joystick 68 STATUS. 36 lexp. 5
Paddle, 68 XIO, 37 Light Show Program, H-8
Video Graffitti program, H-12 Input/Output Devices Line

through H-13 Disk Drives (D), 30 Format, 4
Game controller commands Keyboard (K:), 29 Logical, 2

PADDLE. 68 Line Printer (L) 29 Numbers, 4
PTRIG, 69 Program Recorder (C), 29 Physical, 2
STICK, 69 RS-232 Interface (R) 30 lineno, 5
STRIG, 69 Screen Editor (E), 30 LIST, 13

GET. 35, 57 TV Monitor (S.), 30 LOAD. 32
GOSUB/RETURN, 19, 24, 26 INT, 41 Load program from cassette
GOTO, 21 Internal pointer tape. 30
with conditional branching, for DATA, 27 LOCATE. 56
21 Input/Output Control Block, LOG, 41

GRAPHICS. 52 29 Loops
Graphics Inverse Key. 5 Endless, 20

Modes. 52 Invisible graphics cursor, 56 Nested, 18
Statements. 56 IOCB (see Input/Output lop 5
COLOR. 56 Control Block) LPRINT, 33
n~AWTO, 56 before CSAVE 31
GET, 57 J Luminance, 60
GRAPHICS 56 Joystick Controller, 68
LOCATE, 56 M
PLOT. 57 K Mandatory /f symbol, 33
POSITION, 57 Keyboard (K.), 29 Margins
PUT, 57 Keys Changing, 43
SETCOLOR. 58 SpeCial FunCtiOn Default in mode 0, 54
XIO (Fill), 61 ATARI, 6 Matrix, 49-51

Graphics Control Characters, BACKSPACE, 7 Variable. 4
65 BREAK 6 Memory Map, D-1

CAPS. 6 MOdeS. graphiCS, 54, 55
H CAPS/LOWER, 6 Modes, operating
Harmony 66 CLEAR, 7 Deferred 6
Hexcode Loader program, DELETE. 7 Direct. 6

72-73 ESCAPE. 6 Execute. 6

Memo Pad, 6, 31 0 IF. 22
Modes. text, 54 QueStiOn mark aS prOmpt, 31 ON/GOSUB. 24
Override split-screen, 54 Quotation marks, 2 ON/GOTO, 24

8 8
Multiple commands (see POP. 25
Command Strings) R RESTORE, 27

RAD, 42mvar. 4 RETURN, 19, 24RAM (Random Access STEP, 18Memory), 29 THEN. 22
NEW, 14 Random Access to disk file, TQ, 1834Notations TRAP. 28

flOating pOint, 47 READ, 35 STATUS. 36
in manual, 3 Direct mode, 36 STEP, 18

Note, 33 REM, 14 STOP, 14RESTORE, 27 String
0 RETURN Key, 6 Comparison, 48
0 N/GOS U B. 24 Return, Abnormal (see POP) Concatenation, 47
ON/GOTO. 24 ROI IOve r, Dimensioning, 45
OPEN, 33-34 Keyboard, 11 Functions
Operating Modes. 6 RND, 41 ASC, 45
Operators, 2 RS-232(R). 29 CHR$. 45
ArithmetiC. 9. 10 RTS. 63 LEN. 46
Binary, 9. 10 RUN. 1 STR$. 46
Logical. 9 VAL, 46
Relational, 9 S M a ni put a tion, 47
Unary, 9 SAVE, 36 Sort. 48

Output devices, 29-30 Save programs on cassette Splitting 47
Oversized programs (see tape. 30 Variable, 4
Chaining Programs) Screen Display (see TV STR$, 46

Monitor) Subroutine
Screen Edit, 15 Definition, 20

Paddle Controller, 68 Screen Editor (E:), 30 GOSUB, 19, 24, 26
ParentheSeS, Seagull Over Ocean Usage. 24

Usage, 10, 71 PrOgram, H-11 svar, 4
PEEK. 43 Self Test, 8
Peripheral devices (see Semicolon, 28 T
Input/Output Devices) SETCOLOR. 60 Terminology, 1

Pitch sexp. 5 Text modes. 54
Definition, 66 SGN. 41 Text Modes Characters
Values, 66 Shift Key, 15-17 Program, H-7

Pixel 57 SIN, 42 Tokenized version, 3, 30
Size in modes. 56 SOUND, 60 Tone, clipped. 66

PLA. 71 terminating, 60 Trigonometric 47
PLOT, 57 Spaces. 70 TRAP. 28

0 0 0
POINT, 34 Special Function Keys, 16 Type-A-Tune PrOgram, H-15
POKE, 43 SQR, 41
POP, 25. 26 Stack, 19 LI
POSITION, 57 GOSUB. 19 Untokenized version, 3
Precedence, operator, 8 Hardware, 43 USR, 43
PRINT, 33, 35 loop addresses, 19, 24
Printer listing, 13 POP. 25 V
PrOgram COntinuatiOn, 14 Statement, VAL. 46
Programs, PrOgram, 18 var, 4
Machine language. 71 FOR, 18 Variable, 2
User. Appendix H GOSUB, 19, 24, 26 avoiding name limit, 2

PUT, 35, 57 GOTO, 21 Video Graffitti Program, H-12

Volume control. 66
Voice, 66

W
Window

Graphics, 54
Text, 54

Wraparound, 11

X
X-coordinate. 54
XIO, 37
XIO Drawline, 61
XIO (Fill), 61

Y
Y-coordinate. 54

Z
Zero
as Dummy Variable, 38. 42

