ATARI INFORMATION SERIES - VOLUME |
Cari M. Fvans

ATARI
BASIC

FASTER AND
BETTER .,

#55 ok _- _
~ imu_u...ﬂq._f-u A-I.Ln.{.tf IymY - -

ATARI Information Series — Volume I

Carl M. Evans

ATARI BASIC
Faster and Better

Editor — Charles Trapp — Gunslinger

Production — Cindy Hall — Bouncer . . .

Production Assistant — Debbie Cooke — Runner . . .
Everybody’s Assistant — David Moore — Magic
Cover — D. J. Smith — Bass Guitar

This book is dedicated to Lewis Rosenfelder . . . in grateful
acknowledgment of his being that special kind of pioneer, who,
being the first to go, carried the lantern high.

ISBN 0 936200 29 4
Copyright © 1983 by IJG Inc.

10 9 8 7 6 5 4 3 2 1

All rights reserved. No part of this book may be reproduced by any means without the express written
permission of the publisher. Example programs are for personal use only. Every reasonable effort has
beenmade to ensure accuracy throughout this book, but neither the authornor the publisher can assume
responsibility for any errors or omissions. No liability is assumed for any direct, or indirect, damages
resulting from the use of information contained herein.

ATARI is a registered trademark of ATARI Inc., a division of Warner Communications Company. Printed in the United States of America

2 Notice

Final Thoughts

About the Author

Carl studied electronic engineering at the Georgia Institute of Technology, specializing in
electro-optical communications. He first became involved with computers in 1971.
Fortunately, for those of us wishing to know the secrets of “Atari magic,” Carl’s involvement
appears deep and lasting. A champion has appeared, carrying a book of spells and
incantations . . . Atari BASIC Faster and Better.

Carl is currently the manager of IJG’s publications department. IJG publishes technical
books — in non-technical language — about home computers.

He also runs VERVAN Software; a software and documentation consulting firm that has
developed an extensive series of machine-language utilities for the Atari computer.

Carl has been writing on a professional basis since 1978, and is widely published in various
technical and home computer magazines. He’s been writing a regular tutorial column; Tape
Topics, and a technical help column; Tangle Angles, for ANTIC magazine since.1982.

David E. Moore — Wizard’s Assistant

From the Author

As I write my final thoughts about this book I am in a strange frame of mind. I started
writing this book like I would have started any other project. I scoped the task and laid out a
Gantt chart for it. Now, this book has changed my life. I was a successful project engineer for
an aerospace company and had a good shot at climbing the corporate ladder. Now, I am the
publications manager for a book publisher—namely IJG. I owe the change in my career to this
book, and Harv Pennington. I have always loved to write, but I never thought I could make a
career of it. Harv showed me thatI could. As publications manager for IJG, I can continue my
writing, and help other authors bring their hopes to fruition. I couldn’t be happier. Thanks,
Harv.

Carl M. Evans

Coold 7Y Sreuna-

August 1983

ATARI BASIC Faster & Better 3

Contents
PIBIBEE ..o vvnnnbr: GuaBass i tBEENEEI I AREESRERE I UHEEEE RS Ky o) e a By 10
Introduction
What is Fasterand Better? i 12
Howto Uge this BOoK ...covsssinmsannsinssnssnss i spmanns sososns saassunyss 14
Chapter One
Subroutines, Handlersand Shells 16
SUBEOULINES o500 5060w s06 -0 8BS 508 R ETS 4 6 555 50758) 605165 o 5 3 51 6 g 9 1 s o 16
HanidléfSiammens ¢ o maus & cttaEmns CERa IS ¢ & 5% FeE e ot [RaEa ety s g e @ G EEHE 5 17
BRI PROBPTING ¢ 5 0cie 05 600 5050 1 ¥ 016, 505085 465 95005 5050 5 G B 6 68 T 8 0 50 18
Progranmiming Conventions Used in Thig Book ...usessscnssnsssnnnnsssssnssrss 18
Chapter Two
How to Program Efficientlyin BASIC i, 20
Fundamental Comnceptsvvtini ettt ettt ittt ettt 20
GOOA Habits 10 JIOTIINL & o w6 s v v cws s o nomainssmsss s sns s essaesmsessons s 22
Making Backup CoODIes ...sexcsssnssonsnssinss sesnenssnsssys s vessesess 22
Planning Video LAFOULE i« sws wmmms smmss s 5 a0 o5 e wie s 560550 6088 850850 8 68008 w0 22
Setting Up Error TIAPS «.ccerssvsoncsnanssbsnssssnsssnsssssnssssnsnssssss 28
Minimizing Program Execution Time, 29
Minimizing the Size of A PYOPEIML . .o cvonssvasscamivmnsnsinsbhs s Shnass s onson 30
Chapter Three
Using Machine Language in BASIC i, 33
Writing USR Routines with an Assembler/Editor 34
How to Load and Execute USR Routines from Disk R 1w earr it ek i s eSS 37
POKEing USR Routines into Memoryoiuiiiiiiiiiininnennnn. i
SPILLEEM IDERIC .0 i snns nand o sbiedhs s phe Gnsmninssmmes oo g uangs € see 38
CONVERT.BAS (PROGRAM) ...ttt ittt ittt eeee e 39
Object File into BASIC Data Statementsc.cciiiiiiiinnnccisnnsnnans 40
Saving USR Routines fo DIgk ...cussossssunssnnvesnsnssansronnsnssensnvens 41
SFEILL.LST (SUBROUTINE) s 65 s s s m o a0 18 0t 500 50558 0 1002000 s s e § 1365 51 41
Loading USR Routines into SINEE ..o icisssnnnsrsissnmnprissnesianmsnnisans 42

DATAPAE.BAS (PROGRAN) ccosmunisconmpnsnrissaunsnns tntuprsrsensvasns 42

4 Contents

Chapter Four

Magic Memory Techniques ... it 50
Goneral IWIEEROAS: .o oot e s 0w s b m s 5 o i 5 5505 5 6@ b i sie 58 Hs DS 5 9 50
How Much Memory do you Really Have? i, 50
PEEKing a Two Byte Addressttt 52
POKEing a Two Byte Addressinto Memorycooiiiiiiiiinnnnn.. 52
How to Reserve a Block of Memory for Private Useccoiiinvn... 52

RESERVE.LST (SUBROUTINE)iiiiiiiiiiiiiinineennnennanennns 53
BASIC Variable Listerouiuniinininnitnenininenenrneeneroeeneneess 53
VLIST.LST [SUBBROUITINEEY 5 os s 0mms s ammmmnn oo mas s s s s s s 28 es 886 58 53
VSHORTLST (BUBRCYUTINIES & 5o 5015 5 5 085055 50 05 5as & % 0w om0 500 503 0 05 0 010 0 57
SCRAMBLE.LST (SUBROUTINE)coiiiiiiiieii it iieeiiieeennns 57
The Two-bit Shuffle, or Moving Datain Memoryccoviiiiinienen .. 58
MOVER.LST (SUBROUTINE) ...cvvttiriinrinranenennonasaensnessnnsns 58
MOVER.DEM (DEMO) . iuomuinmmassewmnss smdsmsos smmess s s s 63
WINDOW.DEM (DEMO) ..ottt ettt ie et et 64

Chapter Five

BASIC DVBRIEYE .. o covsirssms s nmesn s s smes s a8 bmm et 5 o bs g4 €50y 15 a5F 55 65
Passing Variables Between Programs i iiiiiiiiiininnnnn.. 65
The Ultimate Memory Saverttt i ettt et e 66
Overlay Techniques in BASIC i e i i e 67

Using the ENTER Commandoviossissssssaceisnsioovossacsnsnssasis 67
Using Protected Memory Overlayscciiniiiiiiiniiiinnnn. 68
PROLAY.DEM (DEMO) . ..ottt ettt et 69

Chapter Six

Number Crunchers and Munchers, 71
Finding Remainders i e e e 71

REMAIN.LST (SUBROUTINE) ...ttt e 71
RoUDdINg TNUIIBDEEE o 56 5mim s s 6555 55 508 0 565 5.8 om0 010 0 08 085500 W0 6808 B0 0 72
ROUNDINT.LST (SUBROUTINE)covnitiiiitiiiiie i 72
ROUNDDEC.LST (SUBROUTINE) ...ttt 2
RN LV, 5xsima8mr 2 550 05 6 0 S 55 v e o § S H S50 & LEEBEE b FAEES S 5k b 72
ROUNDDWN.LST (SUBROUTINE) 5506 vumooicaesnanennnosscnssnsssssos 73
ROW.LST (SUBROUTINE) ...ttt e e 73
ROt Y suws v tvmessnsemen s s s s o nsem s 0w hm i b NEETES S5 b s v we s 73
ROUNDUP.LST (SUBROUTINE) ..ottt i ciiiaeennnn. 73
Saving Space with One-byte Numbers it iiiinn..n. 73
Saving Space with Two-byte Numbers 74
Print Without USIING . ..o cmsss se s o s o e s saiasis s &5 s s e dame o 74
Formatted Money Valuescoiiiuiiniinin e e 74
MONEY.LST (SUBROUTINE) ...ttt ittt cieecie e iieeeae 74
Formatted Telephone Numbers i, 75
PHONE.LST (SUBROUTINE)oiitiiiiin it 75
Base COnVerSIONSttt ittt ittt ettt et et 75
Hexadecimal-to-decimal Conversionscouuuiiiiuniunnennnnnn.. 75
HEXDEC.LST (SUBROUTINE)oiiiiiii i it 76
Decimal-to-Hexadecimal Conversionsc.ccoiiiiiiniinnnnnnn.. 76
DECHEX.LST (SUBROUTINE)couiiiiiiiiiitiiniennenannnn. 76

HEADER.BAS Disk File Analyzer (PROGRAM)ccuviiunnenn.. 77

ATARI BASIC Faster & Better 5

Chapter Seven
UsiNg StriNgs 83
PEEKSs, POKES, and Stringscuunuttnttet i eet et eaneaeanenens 83
Blanking @ SUPINE . comwss s smmnos s s smmansens s s @msmnses sm@ssi s somans s o svmo 85
Stripping Trailing Blanks froma String o il 85
STRIPPER.LST (SUBROUTINE) ...ttt iieeaenns 85
Justifying and Centering Stringsottt iiiiiniiiinnanns 86
RICGHTP LS (BUBBOUTINEY &5 s s sanwnuasss s ssnanmnsss snuass jeaani § (8 86
Left Justifying a Stringo ittt it 87
LEFT.LST (SUBROUTINE) ..ottt i 87
Centering a Stringitiitin it e e et e ei e 87
CENTER.LST (BUBROUTINE) .. ssisanusns s shannsnss samas s semasss ssuus 87
The Last Shall Be First and The First ShallBe Last 88
REVERSE.LST (SUBROUTINE)citniiiiiiitiiiiiieienennn 88
Peeling Words Off of a String i i i 89
PEELOFF.LST (SUBROUTINE)covcunniisossnisansssamans asansssssss 89
Massaging an Unruly STring . ccoveesiviinmavoss sowmamuns s ammass s aummass s i 90
Converting a Lower Case Stringto Upper Casec.coiiiiiiinnnnenn.. 90
LOWTOCAP.LST (SUBROUTINE)co ittt ittt eie et eiaennns 90
Inverting the Charactersina String i iiiiiiiienn... 90
INVERT.LEST (SUBBODUTINEY ..::consasnasssaonmnsnsssannss samunsnsfss 91
Messing Around Inside a String ...t e 91
Verifying that a Substring is Really Thereo ... 91
VERIFY.LST (SUBROUTINE)citiiiii it i i e 92
Performing a VERIFY in Machine Language 92
SEEKER.LST (SUBROUTINE) ...t eii et 92
Simulating Real String Arraysottt 95
LOOKUPID.LST (SUBROUTINE)cciiiiiiiiiiiitiiinniieinnenaenans 95
LOOKUP2D.LST (SUBROUTINE)oiiiiiiii it iieiaaennns 96
LOOKUPXY.LST (SUBROUTINE)ciitiiiiiiiiiii it eiiaiiaannnn 97

Chapter Eight
Date and Time Manipulation 98
The Eight Byte Date ...t et e et e i 98
A Simple Date Validity Checkt iiiinnn 98
VALIDATE.LST (SUBROUTINE) . ..ottt iiie i eiieeann 98
The Three Byte Date e e e 99
IIXTOIILLST (SUBROUTINE) . ..ottt ittt eieeieeannn 99
IMITOOX.LST (SUBROUTINE) ...ttt iiie e eiieiannn 100
FindaDayofthe Year i 100
FINDAY.LST (SUBBOUTINE) :camunsssicsmaassns s cassnns ddsnissisaan 100
Simplified Date computingiuniitnin ittt 100
COMPDAY.LST (SUBROUTINE) ...ttt iee e 101
Days Between Datesoiiniii it e e e e 101
Day of the WeekK . ..o i e e e et e 101
WEEKDAY.LST (SUBROUTINE)ciiiiiii i ii i 101
Back to Eight Byte Datest 101
YEARCOM.LST (SUBROUTINE)coiiiiiiiiii i iiieeieeiieaanns 102
DAYCOMI1.LST (SUBROUTINE) ..ottt iiiaeiaaann 102
MONTHCOMLST (SUBROUTINE] o s scnsnnnnni snnsnnisnnens sonasn s 102

DAYCOM2.LST (SUBROUTINE)coututiiiineeiniiiiiinnnnnn. 102

6 Contents

AR TUBEAL o o oo 5 mmsemson b b s s 0 505 5o i 8 06 58 6 0B W 102
FISCAL.LST (SUBROUTINE) ...ttt iiieieee e 102
1901 — 2099 Perpetual Calendarccoiviiiiiniiiinerrennrenenncnnns 103
DATECOME.BAS (PROGRAMY « o oo swmmssssnnnnssssnsnsss s essns 103
Timing Benchmark Testscoiiiiiiiiiii e, 106
CLOCK.BAS (PROGRAM) ...ttt it 110
The BightrByte THE « o« 550w 05 5m0m mmnm fim g g skmsn s 556 0ms & 6 6606k v mmssemns s L2
HMETOSEC.LET (SUBBOUTINEY .5 vueessivessmasesmessss ossonscnss 113
SECTOHMS.LST (SUBROUTINE)ovuiiiiiiiiiiiiiieeiiiineann. 113
Timve ClOCK NESUR oo w0 ounmms s s oo il o6 b & e oo om0 m 06 m s & o5 s 8 g e 55 s 113
CLOCKMATH.LST (SUBROUTINE)00oivitiiirrnenerrnnanneeeennens 114
Chapter Nine
Bits, BYtes, AN00 BOOIE . ..o asnnmvsnsnssnssms osem s siheensnsssmsssssans s 115
A BUCKEGOL BILS v w0005 5 55005 650 5 50575600 1 1 5180 17581 5P s 8 o 2 115
Binary Numbers — Fundamental Building Blocks 115
Working with Binary Numbers in BASIC 115
Mapping bits in Machine Languagecoiiiiiiiniinninennnn.. 117
BITMAP.LST (SUBROUTINE) ...ttt e 119
Clearinig.a Bitin 8 BYTE . x5 swe ws s s ome s oimmis oo s bia s s o e o s enn s ok iiaiat o000 120
Setting a Bibin @ BYte .. v e ons osomionionss s e sions s s snses snsmssss s s 120
Testitiga Bit I & Byte & .« 560 cv s mmmuesmamsinesiswesers ssinsminmesssssssssssses 120
A Practical Example of Bit Mappingc i, 120
Boolean Operators — Logical Building Blocks oL, 121
A Brief Tutorial on Boolean Logic, 121
The Boolean OR ODETAtOL: <. vv i v a5 5 mwsis asain s sias 50 5 as s 5o s @55 65550565 s 122
The Boolean AND Operatoruuuiuiuninit i iieieiennenenannn. 122
The Boolean NOT Operatorouuuiiiininiiieinieininenenennn. 123
The Boolean XOR Operatorccoueirieenietinenneneernenenennnnns 123
Combining Boolean Operatorsoiiiiininiiniiernnennnnennnn. 123
How Atari BASIC Treats Boolean Expressionscoiviienenn.. 124
Boolean Logic in Machine Languagec.cciuiiiiininrnennnnann.. 125
BOOLEAN.LST (SUBROUTINE) ...ttt ittt i i 126
Machine Language Boolean OR it 127
Machine Language Boolean ANDc i, 127
Machine Language Boolean XOR i, 127
An Un-real World Example of Bit Level Logic 128
Chapter Ten
SOMING ThINOB OIOL oo cumnns ot s ions €@ e s mmdin st s Sh o868 s06 5 585505 b s 130
AL SOTES OF SOTTE: 5 .5 1050905005 555050 5050 6 5vis i, 550515 15050 510608 -0 1 5 81 60l 1§ 080 0 (50 3 130
Bubble, Bubble, Toil and Troublet 131
BUBBLE.DEM (DEMUD] ;:i:oissvsvaanssvissnsssasskensbsesssiaasasssa 132
The Shell Gamettt et e it et et e et eeneann 132
SEHELLDENM (DENMOT | cessivesrdobseus s oniin enes S s dse 5sass 5o e by v 183
The Shell Game Speeds Up . ..cviiiiiiii it it cee i e eeeeanes 134
SORT.LST (SUBROUTINE) . s v 058 s 556 6mswsanmnss s nnssssssesssesesss 142
Making Numeric Data Sortable i, 144
Sorting with Assorted Keyso..iiiiiii e e 145

Sorting Demonstration Programsc.0iiiiiiiii .. 146

ATARI BASIC Faster & Better 7

SHELLZ.DEM [DEMO) ..osrsrcaenmemsmesnoanoesbssoldsssesssiasss iy 147
SHELLEDEM [(DEMO} . .ccvnrencnasnssi s smm@nes s osshons «Epes 5o s 150

Chapter Eleven

Keyboard Trickery ... e et 152
Avoiding Operator Crashes « . .omssssssnsaonmns s sommupans s sumnms s simgnans i 152
The Single Key Input Routine, 152

KEY.LST (SUBROUTINED . «aw e e oo immmnmers oo e shsse ssms e semos sass s 152
Quick and Easy Menu Routinesc.ccssunsisssnansns sanonssonsnnossss 153
Reybhoattd MENTIS .. .cmssos s 6o aass s i smmesss s s o ssssns e sessfessesssss 154
MENULLST (SUBROUTINE)itiiiiiii ittt it iie e e eiaaaannn 154
Paddle Driven ITEIIUSE! v u v v ve cme v oo mmm oain o o e oo o s o s ca b dom e ss e0n 155
MENLZILST (SUBROUTINEY ..wcsrsibnsnsisansmpniss fasnsessssannsss 155
Using the Function Keys to Better Advantagecoo... 156
FUNKEY.LST (SUBROUTINE) . ..ottt it it e eiieeeen 156
MENLZLEST (SUBROUTING ... ccasaissssbasbiinss sananss s §hnas s 167
Disabling the BREAK Keyooo i e 157
BREAKLOK.LST (SUBRIVUTINIE . . o6 600 0n s 55 s s s 66as0mhnssssnssss 158
Repeating Keys and Combinationst nnnnennn.. 158
REPEAT.LST (SUBROUTINE)citiiiiiiiii ittt iiecieiieiaenns 158
Special Keys and Their Codesiiniiin ittt iieee e 159
Controlled Keyboard Input Routines i, 159
Gantrolled String Iapat - : scosssssassiassuasesasvssssss s esssnsssemes 160
INKEY1.LST (SUBROUTINE)ciiiiiiiiiiiiiii ittt iieiiannenns 160
Controlled Numeric Inputoviniin i i i i e i e 160
INKEY2LST (SUBROUTINE} . . ccocvieviinnnmasssiissssnpsiosossssssans 160

Chapter Twelve

Controlled Data Entry i 162
Video Formatting e 162

Positional Input Fields .. .cvosivuivsssossssosnmimsosensosasssonsosssssns 163
FIELDB.LST (SUBROUTINE) . ..ottt it ettt cieeeieeaeens 163
FIELDLLST (SUBROUTINE)oiiitiiiiiitiatteiinrennrnnnnnnensens 163
Special INDULFTELAS o v e v o oo e 0 0o 6108 & 6 o tie 0 & 5 m Bnono 8 16 008 164
FDOLLARS.LST (SUBROUTINEY sssasssssansmmosssnmnnsssssnansssssns 164
FDATES.LST (SUBROUTINE) ..ottt ittt iieineanannn. 164
FTIMES.LST [(SUBROUTINE) . .ovuvursnesccommnenssnnasnstssnssssssssns 165
Setolling WindOW IIBUES) - v . v.v o «n i o mimmtiore 5155515 505008 1600150 (o 50k e 650 o 6 i i 165
FSCROLLLST (SUBROUTINE] s xoawscensssssesssns soincssszninssrssss 165
Error HAtfIIng . o coooms imnosmannnssmomnsess snesnsmssesssssnesssmassssssss 166
Error Detection Techniques i e 166
Error Correction Techniqueso i 167
Attracting and Distracting the Operator innnon... 168
BLINK.LST (SUBROUTINIL ccccenmannm s b miis s 60 0w b0 44056 000408 53 169
Putting It All TOZEtHET . unussinsmmssssnms @ o 65 memssms @ 8o 806 5 5imnes i s 173

CONTROLDEM (DENOQ] ..oownssvrssssnmnsnssenvnmesssssssssssssnsssse 173

8 Contents

Chapter Thirteen
NIEBO ANMIBE s cansas o5 e aessmimmes sm s sms s nmm om0 s ns 58585 sessess 177
Lo Marguies LV BHETE . o cow 05000 a0 imn b 56 m mmmn s s me mwm g3 ah 5 49008 358 6 5808 05 4 177
SCROLL.DEM (DEMO) ...ttt et 178
MARQUEE.BAS (PROGRAM) e e 179
Four Color Text in GRAPHICSE 2ccouvisvannyonsonssnsonsssssssssansss 181
TITLELST (SUBROUTINIET .. 5 ctnue mmmommnensiswinsssmsssnssssesssss 182
LWL DENL ATIENID & o.x 5 550565 08 005 55 5 s o 0m0m 00 oin s /550 000 6 680 30058 35 182
GLOW2.DEM (DEMO) ...ttt et e et i 182
Using Page Flipping for a “SLYDESHO” 184
NLYTDESHOIOEM (BRI oo o 0009000 mminm s o oo 51556 8 & &k @« s 185
Slower BASIC LISTINGES s csmmmus somanes 6 0manss s messns swemabi i yaeoes §eai 193
SLOWLIST.BAS (PROGRAM)ttt et 197
Saving and Retrieving ScreenData 199
GRSPUT.DSK (SUBROUTINE)coiiiiiiiiiiiiiiiiieiiiaiaannns 201
GRSGET.DSK (SUBROUTINE)oiiiitiiiiiiinttiieirernnrennnneanes 203
CITOHGRE . BUBROLITTINGGY . o o 5o s 5w 5 m o500 05 55 5066 505 508505 553 8§ 656 204
PAINTGET.DSK (SUBROUTINE)ttt i 206

Chapter Fourteen
Sound AdViCe 208
Whalin il SOUIRIT o v sumnshembn e s s s srs sowd e i o o8 08 F RN S5 BB RN & B 208
A Sound POKE Gets Youinthe POKEY, 20
TS CONETOL w0550 5555 560555950 1678 5 58 510 5035 60805 ok ko s G v 0 8 o 5 0 e, 430 211
Caniteolling Voluime ang IDISTOrtION « . oxss cosamas pitssnnsss ssne sesssss s s ns 211
Special Sound Control Register —AUDCTL, 213
BOUNDLDENM. (DB <\ 00wt sns co wmmmmn e wmmeiens s« oms s s senm e e 214
Using What We Have Liearned . . cuscivsnvs s simannsssmsovesssnnssssaasns s 215
The SOUND Statementiiniiniiintie ittt 215
Special Effects Routines i e 216
SOUND2DEM (DEMO) : convcriinmesrnsnmsnssannssnssgesnns i sasinsébnn 216
TRAIN.LST (SUBROUTINE) « .. uusescconsnscancasnssassnnssssanssssns 217
POLICAR.LST (SUBROUTINE)oiiiiiiiiiietiiiieeiiiaeennannnns 218
TANK.LST (SUBROUTINE) ...cusvveeensnossnmsssvrssssnssesnsansnss 218
THUNDER.LST (SUBROUTINE)ccccuiiiviaaannsannssessnnssnssss 218
FLIES.LST [SLIBRIOIFTIIVEE oo i s sm s s i o mmioms s o s o g w6 656 n 219
MOTEBOATIAT (SUBROUTINE) & coxsumes woss@nns s mes s s sns s ssus 219
MANHOLE.LST (SUBROUTINE)0iitiiietinetinnnernnneeennnans 219
SURFLST (SUBROUTINE) ..cvvunsevssvnnssssnsssessonysisesssssssses 219
EUROCOP.LET (SLIBROUTINE] <5y i0simen s amnsnssanesosissessssssss 220
STORM.LST (SUBROUTINE)ciiiiiiiiiitiiitieeneianenaennnnens 220
HEARTLST (BUBROUTINET « 5066 0 mnmm omamosessessssmsnssessssss s 220
TAREOEELST (SUBROUTINGY . onessvsunsssnssinsssmns s nensrs § 221
SPLAT.ILST (SUBROUTINE ..o cuummrscnmnsns snsnsnnsnssassssssnssssen 221
SAUCERI.LST (SUBROUTINE)citiiiiit ittt iiiiiiiie e 221
BAVCERZLET [SUBROUTINGG . ¢ oomscirmmmansssmseuns ks s samng sy s 222
KLAXON.LST (SUBROUTINE) ...ttt ittt i iieian 222
BOMB.LST (SUBROUTINE) ...ttt 223

EXPLODE.LST (SUBROUTINE) ..uuu:isannssssnnnsnsswanssssonansisss 223

ATARI BASIC Faster & Better 9

Chapter Fifteen

LSERUT LIRIIMTLAE cvv v i 0000 b B m G 0BT S 5 o oem m om0 o TR S SIS S S 224
AUTOGO — Creates AUTORUN.SYS FIlesiicomnessassissssssssssossess 224
AUTOGO.BAS (PROGRAM) . .. ittt ettt et et ettt 225
CATALOG — Disk Catalog Programiiiiitiiiiiiiineenans 228
CATALODG.BAS (PROGERANI) « o v ¢ munsm s oo mmmonmm o n s smssadnemssyssess 228
RPMTEST — Disk RPM Testerccoiueviseisasmssssisasississsesisnss 231
RPMTEST.BAS (PROGRAM).c. .. comuvsosssssnsssnesssensssansnassssss 231
MINIDOS — DOS Functions from BASIC i, 223
MINIDOS Command Descriptionsouvuiiiinn i iiineneenen.s 234
MINIDOS.BAS (PROGRAM) ... i e e i e 235
Chapter Sixteen
The Fasterand BetterDisks i, 243
The Subroutine Library Disks (ABFABLIB]cissss0assssssnasssssssons s 244
DISK #1. The FitsE HALE . 5 o omi svens s s s s665 66655 6056 658 5 500 w6 b6 e s 244
DISK #2 The Other Half e 248
The Assembly Library Disk (ABFABASM) 251
The Demonstration/Applications Library Disk (ABFABDEM) 9253
Application Programs . : .cscemssossssnsinins s sasmsnis s ansasossmsnisss 255
Demonstration Programs. i e 256
Appendix Tableof Contents 258
Appendix A
Useful POKE & PEEK Locations i, 259
Appendix B
REY COUOE ... o sisnsns s snoysaes swnisanasnsinndWakes s BB e by EsanEs s samw s 263
Appendix C
Error Codes Explained i 271

Appendix D
Base Conversions for Decimal, Binary and Hexadecimal Numbers ... 282

Appendix E

Subroutines—-by Line Number 285
Appendix F
Subroutines — Alphabetically 289
Appendix G
Assembly Language Routines—-byChapter 293

Appendix H
Application Programs—-by Chapter 294

Appendix |
Demonstration Programs by Chapter 295

10 Preface

Preface

The Atari 800 (and the 400) is a powerful computer. .. I've had my 800 since September
of 1981, and each day I become ever more convinced of this.

You might think that the inherent limitations of a low-cost, mass-produced, eight bit
computer would be frustrating. I’ve found quite the opposite to be true. The primary
frustration I have with my 800 is that it is so complex that I can never seem to learn “all there
is to know” about any one aspect of the thing. Every time I think I have it all down pat,Isee a
new program that does something I didn’t even know could be done. Each day, I become
more and more impressed with its capabilities.

Learning to program the 800 is like learning to play the piano. It’s easy to play simple tunes
(and you can really play tunes on the 800!) from the very first day, but you can spend a
lifetime improving your technique and expanding your repertoire.

I started programming back in 1971, in college. I started out on a Burroughs 5500 and
rapidly got involved with several other large computers (commonly referred to as
mainframes) such as PDP/11, CDC 6400 and UNIVAC 1108. The very first programming I
did was called “BATCH” programming. That means that all computer inputs are made
using punched cards. After discovering the wonders of interactive programming on a CRT
(video screen), I was of the opinion that batch programming was a diabolical device created
to prevent people from learning how to program computers. I still have not changed that
opinion.

Once I got out of college, I went to work for an aerospace company as an electro-optical
engineer and spent most of my first two years writing special analytical programs for electro-
optical guidance systems. I went along in this manner until June, 1979, when I bought myself
a Radio Shack TRS-80 Model I with 16K of RAM. I soon found that working with 16K was
analagous to memorizing only the left side of an equation, so I almost immediately upgraded
to 48K. Ifelt much better, but kept seeing all those really eye-catching arcade games on the
Atari computers, and I finally trashed my TRS-80 for a game machine — the Atari 800. I had
learned from my previous experience, so I boughtit with 48 K of RAM and a disk drive. I have
been delirious ever since.

The first problem I ran into was — yep, you guessed it — not enough memory for what I
wanted to do. I never have been a fan of machine language, but I learned it to enhance my
BASIC programs. Not being a masochist, I decided that I didn’t want to have to rewrite a
machine language subroutine every time that I needed one, so I started stuffing them into

ATARI BASIC Faster & Better 11

BASIC subroutines that I could save as an ever expanding-library of “cook book™ add ons to
any other program I might want to write. This book is a spin off of those efforts.

This book is the result of the effortsI've made to make my BASIC programs run better and
faster. Every time I'd have to stop to figure out a routine or technique, I'd put it in my
programming notebook. Many times, I’ve had to throw out a routine and come up with an
improvement, because the real test was whether or not it would work successfully on a day-
to-day basis.

You won’t find any trivia here. Each routine and technique solves one or more specific
problems that you are likely to encounter when programming the Atari computer.
Everything we’ll discuss is pragmatic, with the goal of making the computer do what you
want it to do, with the least programming effort.

The subroutines and techniques in this book don’t attempt to be “all things to all people.”
Isuppose it would be possible to write a sorting subroutine or a disk file-handling subroutine
that could handle every possible operation you might want to perform. But why sacrifice
execution speed? Why waste the memory? Instead, this book gives you relatively flexible
routines with the documentation that allows you to modify them as your application
requires.

Thope you’ll find this book as valuable to you as it is to me. [use it daily as areference in my
programming work. Though some of the information can be found elsewhere, this book gives
you a handy “one-source” reference, and now that these routines and techniques are
explained in book format, documentation efforts for any program I write are greatly
simplified. I can now refer anyone who reads one of my program listings back to this book,
instead of filling up the program with memory-wasting remarks. If you adopt the same
techniques and standards, you too can save a lot of time on documentation. You will be free
to concentrate on the logic of the application, rather than the specific techniques required to
make the computer perform better and faster!

Carl M. Evans
October, 1982

12 Introduction

Introduction

What Is Faster and Better?

If we could define “faster” and “better” in a way that would apply to all programming
problems, it would be a much simpler matter to design programs. Programming would
become less an art and more of a science. It would be a simple matter of starting at point “A”
and working to point “B.”

A large part of our programming problem is deciding exactly what point “B” is. In
programming and system design, we are working in a world of trade-offs. To make a system
better in one way, we often have to make it not quite as good in another way. We must balance
our limited resources to arrive at the best overall solution.

Let’s talk about some of the trade-offs we must work with. Each can be maximized only at
the expense of one or more other considerations. Every programming technique in your bag
of tricks has its own advantages and disadvantages. If you can decide on the “mix” that is
best for your application, you've cleared away one of the main roadblocks to developing your
system.

Efficiency

How economically does the program use limited disk and memory space? We can save disk
space through data compression at the expense of memory space, execution time and
compatibility. We can conserve memory space at the expense of execution speed.

Execution Speed

How fast is it overall? How fast is it in those operations that are most critical? How fast and
responsive is it for operator-paced operations? We can often make one operation faster by
making another operation slower. We can often make a system faster at the expense of
reliability or portability.

Programming Time

How long will it take to develop? Can deadlines be met? Given enough time, we can
improve on many aspects of performance, but nearly every other performance consideration
is achieved at the expense of programming time.

ATARI BASIC Faster & Better 13

Function

Does it do the job intended? By limiting the project to only certain parts of the overall
problem, we can save on programming time. By doing some things manually, we can improve
on computer execution speed.

Workability

Does it do the job in a way that is practical and worthwhile to the user? We can maximize
the functions performed by the computer, but by doing so, we often sacrifice
workability.

Reliability

Is it vulnerable to operator errors or equipment malfunctions? Is it crash-proof? Is it bug
free? We can improve on reliability at the expense of programming time, execution speed
and efficiency.

Recoverability

How easily can the results of operator errors or equipment malfunctions be overcome? We
can improve on recoverability at the expense of function, workability, design and
programming time. We can improve on recoverability with special utility programs that
reconstruct data that has beenlost. We can live more dangerously in terms of reliability if the
system is easily recoverable.

Ease of Operation

Isit operator-oriented? Are keystrokes minimized? Are operator entries consistent so that
it can be run instinctively? We can usually make a system easy to operate at the expense of
programming and design time, and memory efficiency.

Capacity

How much data can it handle? Programming a system to handle a small amount of data in
memory can be a simple matter. For larger amounts of data, we get into the complexities of
disk storage. To allow for capacity beyond that of a single disk adds even more
complexity.

Portability

How easily can it be transferred for use on a different computer system? We can maximize
portability at the expense of efficiency and execution speed. We can make a system easier to
transfer by ignoring many of the capabilities and advantages that are unique to the system
we are using.

Compatibility

How well does it tie-in with other systems the user might have? We can make the system
perform more functions and work faster if we don’t have to allow for compatibility with other
systems.

Maintainability

If something goes wrong, how easy will it be to find the problem and correct it? We can
improve on maintainability at the expense of function and efficiency. By conforming to
programming standards we make the system more maintainable, but we sometimes sacrifice
the ability to use procedures that are best suited to the application.

14 Introduction

Ease of Modification

How easy will it be to modify the system to perform other functions that were not originally
considered in the design? We can usually make it easier to modify with more programming
and design time.

Understandability

How easily can a programmer other than the one who wrote the program understand the
system? We can improve on understandability with extra programming and design time. By
sacrificing some techniques that make the system more efficient or faster, we can make it
more understandable to others.

Documentation

How well are the operating procedures, capabilities and limitations of the system
explained? We can always improve on documentation by spending more time. Internal
documentation, by inserting remarks in the body of the program text, can be achieved at the
expense of execution speed and memory efficiency.

Attractiveness

How well designed are the video displays and printouts? Does it “sell” itself to those who
must use it? We can make a program look good with more programming time and slower
execution speed.

With the “tools” presented in this book, you can maximize the performance of your system
according to the goals you have defined for the project at hand. Every function and program
has been carefully designed to achieve one or more specific purposes. Most of the routines
provide exceptional speed. Others operate slower than alternative techniques, but can
provide a great savings in programming time. It is up to you to select your programming tools
wisely and to test them for your specific application.

How To Use This Book

This book can be valuable to you whether you’re a beginner, with only a few weeks’
experience, or an expert programmer with many years of experience.

If you are new to programming, or the Atari 400/800 is new to you, you'll need first to get
familiar with the capabilities and peculiarities of the Atari and the BASIC programming
language. The best way is to work through the examples shown in your operating manuals,
and to modify and experiment with them. Then you can give yourself simple programming
challenges, and expand and modify your programs. There is no better teacher for
programming than your own computer! It’ll tell you when you’ve made an error, and you can
try again and again. When you start looking at the examples in this book, you’ll get ideas on
how to do things differently (and, hopefully, better).

If you are new to assembly language programming, or if you have not been exposed to it at
all, don’t let the assembler listings in this book scare you off! Just gloss over them. You don’t
need to know 6502 assembly language, and you don’t need to own an assembler/editor to use
any of the routines in this book. If you want to learn assembly language for the Atari, I
recommend The Atari Assembler by Don and Kurt Inman as a good introductory book. 6502
Assembly Language Programming by Lance A. Leventhal and Programming the 6502 by
Rodney Zaks are excellent all around references. You can pick them up at most good
computer stores. Then, after you get a feel for assembly language, you can start studying and
modifying the assembly language subroutines shown here.

ATARI BASIC Faster & Better 15

I've made no attempt in this book to duplicate anything that can be found in your
instruction manuals, except where some amplification, clarification or summarization for
your convenience is required.

The first four chapters of this book cover programming techniques that are important to
the implementation of the routines found in the remainder of the book. They discuss
subroutines, USR routines and techniques for managing the memory of your computer.
Again, even if you are an experienced programmer, be sure to go through these chapters first.
I guarantee you'll find new ideas and techniques that you’ve never seen published anywhere
else!

Chapters 5 through 15 contain hundreds of ideas, tricks, subroutines and USR routines
that can be implemented in your programs. It’s unavoidable that when you use them, you will
need to skip around, because video routines sometimes interact with disk routines, printer
routines with disk routines, and so forth. So, before you begin using any of them, be sure to at
least “skim” through the whole book so you’ll know what’s included.

To get the maximum usefulness from this book, you’ll want to create a disk library of the
subroutines, functions, test programs and utilities. That way you can merge what you need
into any program that you might be writing.

16 Chapter 1

Subroutines, Handlers and Shell Programs

The BASIC language, as you’ll find it in the Atari computer, has around 82 commands and
built-in functions. Have you ever considered which commnds and capabilities are the most
important to you? My answer to this might suprise you, but to me, LIST and ENTER are
without a doubt the most powerful and important commands!

I wouldn’t have said that a year ago, but now that I’ve built up a library of programs,
subroutines and functions, I almost never start a program from scratch. You could take away
the NEW command (which clears out memory so you can begin writing a new program), and I
wouldn’t miss it.

Afewyears backIwasinacomputer store having a discussion with a salesman. He thought
it was foolish to be in the programing business because “in a couple of years, every program
will have been written!” Of course, that statement has turned out to be quite false, but from a
programming productivity standpoint, we who program computers would do well to take the
attitude that everything has already been written. Our job is to rearrange, modify, combine,
insert and delete so as to come up with programs that can perform any one of an endless
range of useful applications.

Subroutines

It doesn’t take long to realize that the subroutine capability of BASIC can save you
countless hours of work. The GOSUB command lets your program branch to another line,
execute some logic, and then RETURN to resume execution with the next command
following the GOSUB. Let’s consider the advantages of a liberal use of subroutines:

® Subroutines save memory. Any significant operation that has to be performed
more than once in your program only needs to appear once as a subroutine.

® Subroutines save programming time. With subroutines, you are not
continually retyping the same logic over and over again.

® Subroutines provide flexibility. Simple modifications to a program having a
liberal use of subroutines can make it perform new functions that were never
considered when the program was originally written.

® Subroutines simplify testing and debugging. They let you break your program
down into logical modules. Once you’ve completely tested a subroutine, you can
forget about it.

ATARI BASIC Faster & Better 17

® Subroutines free you. They allow you to concentrate on the overall logic and
design of the application. You canforget about the details and complexities of those
operations you perform again and again.

® Subroutines increase understanding. They make programs more readable and
understandable. The details and complexities of common operations don’t
interrupt the “train-of-thought” in your main program. Evenif aroutine is used only
once in a program, the benefits of readability can sometimes make it worthwhile to
design that routine as a subroutine.

® Subroutines ease conversions. They can make your program more easily
convertable to other computers and operating systems. For example, if a new
computer system differs only in its disk handling instructions, you simply modify
your disk handling subroutines. The rest of your program can remain
unchanged.

® Subroutines can be libraries. You can create a library of subroutines on disk,
and as you need them, merge them into the program you are writing.

This book gives you an extensive library of subroutines that can be used as you need them.
Nearly all of them are shown with specific line numbers ranging from 19000 to 32000. You'll
find no overlapping of subroutine line numbers shown in this book, except in a few cases
where two subroutines perform the same function in a different way, and there would be no
reason to have them both in the same program.

If you wish, you can change the line numbers and variables used by any of the standard
subroutines in this book. But be aware that by doing so, you’ll be missing out on one of the
main benefits that this book provides — the pre-written documentation and detailed
explanations. The line numbers and variables shown are arbitrary, but I’ve found that they
work well for me. I trust that you’ll find similar success with them.

Handlers

A “handler” is a group of subroutines and procedures that work together to perform a
major function within a program.

In this book, for example, we’ll be introducing a video display handler for the simplified
programming of data entry and video display inquiries.

Handlers provide all the benefits of subroutines, but they go a level above and beyond
single subroutines to provide system-wide standards for program organization, disk file
organization and standardized operator-computer dialogues.

Ahandler gives you specific procedures for using a set of subroutines. To set up a handler
within a program, you simply merge the subroutines required and modify, insert, or delete
specific lines according to the instructions provided. A handler provides a starting point for
you to begin the modifications required for any particular application. No attempt is made to
make any one handler do everything for every possible application. Handlers are designed so
that they can be modified for maximum efficiency in a particular application.

You’ll find that the time-saving and standardization benefits of handlers are enormous.
Once you adopt standard handlers into your programs, you’ll wonder how you ever got along
without them!

18 Chapter 1

Shell Programs
A “shell program” can be any program that you’ve designed to be easily modified to
perform entirely different applications.

For example, I have used a sophisticated shell program for nearly three years to develop
hundreds of different applications. My accounts receivable system has all the handlers for
menu selection, video display additions, changes, inquiries, transaction entry, report
printing and disk file handling. By deleting certain routines, I've got a mailing list system.
Other changes have made it into a general ledger system, an inventory control system, an
accounts payable system and many other specialized applications.

When considering a new application, your first question should be, “What other
applications that are already written have the same general structure?”’” When you think
about it, just a few well-designed shell programs can be modified to perform almost any
application, with up to a 90 percent savings in programming time!

Programming Conventions Used In This Book

Every serious programmer I have ever talked to has a special system for naming variables
and organizing the code (program statements). I also have adopted a system or set of
conventions that I use whenever I am developing a program. Every programmer’s system is
unique, but they all have certain common characteristics. The conventions outlined in the
following two charts are those that I have been using with Atari BASIC. You may have
already created your own system, but I suggest that you familiarize yourself with this system,
since itis used extensively throughout this book. I invite you to adopt these conventions and
to modify them or add to them as your needs dictate.

Figure 1.1 — Variable Naming Conventions

WORKING VARIABLES:

Temporary storage (very brief time) - X, Y, Z, X$, Y§, 7%
Temporary storage (not so brief time) - X1, X2, X3

X1§, X2§, X3%
Flags (used to control branching) - FLAG1, FLAG2, FLAG3, etc.

or a key word (e.g., I
might use a flag called
"DEAD" and set it to 1
when a monster is killed).

COUNTERS:

FOR-NEXT loops - LOOP1, LOOP2, LOOP3, etc.
Replace "LOOP" with I, J,
or K to save memory

Accumulators (long term counters) - I usually use the name of
the thing I am counting
(e.g., I might use "SCORE"
to keep a running total of
how many points I have
made during a combat).

CONSTANTS:

Line numbers (used for indirect
GOTO's and GOSUB's)

Never changed numbers

Seldom changed numbers

String constants

ATARI BASIC Faster & Better

Here, again, I usually

use a descriptive name
that tells me where the
program 1s going to

(e.g., I might use "DELAY"
to identify a time delay
routine).

The number preceded by
by a "Z" (e.g., Z1p=1P).
Here, once again, I use
a descriptive name

(e.g., DAY, MONTH, YEAR).
Descriptive names are
also used here (e.g.,
NAMES$="Johnny") .

19

Figure 1.2 — Line Numbering Conuventions

199 - 199
200 - 299
300 - 999
1099 - 9999

1pp0p - 18999
19009 - 32009

Program name, copyright,
author, version number
(i.e., the title page).
Program initialization
(e.g., DIMensioning,
setting constants and
variables).

Set USR variables and
GOTO main program

ALL frequently used
subroutines and loops.
Put the most often
called ones first.

Main program

Seldom used subroutines
and program closeout

Tuse these conventions extensively during the development of a program. If the program is
likely to be used over and over with variations in the specific subroutines, then I leave it with

these line numbers.

On the other hand, if have written a program that is dedicated to a single narrow function
and is therefore unlikely to need changing, I will renumber the program with a starting line
number of 100 and step by 1, or a starting line number of 1000 and step by 10. I recommend
against arbitrarily renumbering a program that is in development or one that you do not

thoroughly understand.

20 Chapter 2

How to Program Efficiently in BASIC

Iremember the very first college course I took on computer programming. The professor
devoted the majority of the class time to something called “flow charts.” We were taught that
organization was the real key to good programming. The professor was right. Most of you
simply sit down at your computer and start entering code when you are trying to write a new
program. If you are writing a relatively short program, you may get away without any
planning. However, if the program is of some complexity, you will rapidly become lost in an
ever deepening morass of confusion. The first lesson of efficient programming in BASIC or
any other language is: Plan the Program. I will explain this concept in more detail in the
following sections and then show you some general methods for minimizing the size and
maximizing the speed of your programs.

Fundamental Concepts
A program can be written in many ways, but I usually go through the following steps:
1. Icome up with an idea for a program.

2. Iwrite down everything that comes to mind about the idea. This is where I really define
what I want the program to do. This step also serves to get my ideas down on paper so they
won'’t be forgotten.

3. Nowl categorize the notes I took in step two and assign labels that will relate to routines
in my program. Any ideas that I get later can then be added to the proper catagory. If the
program is going to be a very large one, I may even put my notes on 3x5 cards for easy
indexing.

4. Atthis pointI start a flow chart of the program. A flow chartis simply a block diagram of
the program. Figure 2.1 illustrates a simple flow chart for a program that computes gas
milage given the amount of gas used and the number of miles driven.

A flow chart is a road map of your program. Think of the lines as being roads and the boxes
as towns and interchanges. Professional programmers make very fancy road maps that may
go on for dozens of pages and use a special set of pictorial symbols to represent different
kinds of operations. For example, a diamond tells you that the operation at that point in the
program is a “branch on decision.” A rectangle at that point would mean something
completely different. However, this chapter is not meant to be a tutorial on flow charting.
The point I am trying to make is that you should walk through the logic of your program and

ATARI BASIC Faster & Better 21

make sure that all possible results of an action are covered. Have you ever hit the wrong key
in the middle of a game and had the program crash on you? The reason the program crashed
is that the programmer was sloppy and wrote the program without a complete road map. The
result was a one-way dead-end road that should not have been there. I suggest that you
always flow chart any program that cannot be listed on a single piece of paper.

Figure 2.1 — A Simple Flow Chart

Initialize
Variables
and Arrays

Y

Ask for
“Miles Driven”

INPUT MILES

Y

Is INPUT Valid?

; YES

Ask for
“Gallons Used”

Y

INPUT GAL

Y

NO | |s INPUT Valid?

* YES

Compute...
MPG =
MILES + GAL

Y

Display MILES,
GAL, and MPG

Y

STOP

NO

22 Chapter 2

5. Once I have a flow chart, I can actually begin work on the program code. I tend to write
my programs in modules that perform some particular function in the program. For example,
an INPUT module, a SCREEN DISPLAY module, and so on. Each of these modules is
written as a stand alone routine and is saved on my development disk with a descriptive file
name, such as SETUP or DISPLAY1. Note the “1” on the second file name. I use a number
like that to distinguish between different routines with similar functions. If I later revise a
module, I use the extender to indicate the revision number. I never delete an old version until
I am certain that the new version is working. I'll talk about backups a little later.

6. As I get my modules completed, I start to combine them into a program. This is
particularly easy using the LIST and ENTER commands. I LIST each module to disk whenI
originally write it. Since the ENTER command does not erase memory like the LOAD
command, I can concatenate the various modules by simply ENTERing each one from disk.
You have to be careful to make sure that each module uses a different block of line numbers.
The ENTER command will replace any existing lines with the newly entered lines if they
have the same line number. While we have to be wary of this restriction at this time, I will
show you how to use it to your advantage later in this book.

7. 'This is perhaps the most tedious and difficult step of all; I debug my program. Sure, I
debugged each module as I wrote it, but the interaction of the modules is sometimes hard to
predict. I don’t know how I can express the importance of this step. Let’s just say, “It only
takes one bad bug to spoil a barrel . . . er, program.”

Good Habits to Form
Making Backup Copies

You now know the general approach to use when developing a program, but there are some
other things that you may need more guidance on. For example, I am sure that you have
heard the term “backup’ before. This term refers to more than just making an extra copy of a
completed program. It is an essential tool that every serious programmer should use in the
process of developing a program. I have no sympathy for the programmer who cannot meet a
deadline because “the only copy of my source was stolen!” or lost, or whatever. Any
programmer worth his salt will have at least one backup of anything he is working on. I am
particularly paranoid and not only have several backup copies, but I also make it a point to
backup anything I am working on every hour. That way I will never lose more than an hour’s
worth of programming. You don’t have to go quite that far, but I do strongly suggest that you
never let yourself be caught in the position of losing your “only copy” of a source. In other
words, keep at least one backup copy of your work on a separate disk that is stored in a
separate location.

Planning Video Layouts

When running a program, the primary interface between the program and you is the video
screen. You should plan the video displays in your program with extreme care. The displays
should give you the needed information easily and without straining your eyes or your mind. I
have seen some programs that try to do everything with a single video display, when two or
more displays would have been much better. There are no hard and fast rules for how much
information should be on a given video display, but you should keep the display as simple as
possible. Arcade games are an obvious exception to this rule of thumb. When designing a
program, I generally use a video layout planning sheet similar to the ones shown in Figures
2.2 through 2.6. All that you need to have your own video layout planning forms is some
rectangular graph paper, or you can simply photo-copy the ones in this book. Try this
technique the next time you are designing a program, and I'm sure that you will not only save
an appreciable amount of time, but your video displays will look much more
professional.

ATARI BASIC Faster & Better 23

Figure 2.2 — GRAPHICS 0 Video Display Planning Sheet

24 Chapter 2

Figure 2.3 — GRAPHICS 1 Video Display Planning Sheet

ATARI BASIC Faster & Better 25

Figure 2.4 — GRAPHICS 2 Video Display Planning Sheet

26 Chapter 2

Figure 2.5 — GRAPHICS 1 with Text Window Video Display Planning Sheet

ATARI BASIC Faster & Better 27

Figure 2.6 — GRAPHICS 2 with Text Window Video Display Planning Sheet

28 Chapter 2

Setting Up Error Traps

An error trap is something used to prevent your program from crashing when a mistake is
made while the program is running. Error traps take two general forms. The first form is the
one that you are probably the most familiar with. The general form, as given in your BASIC
handbook, is

TRAP aexp

The most common usage of the TRAP command looks something like this

2109 TRAP 2120

2119 GOTO 2149

2129 PRINT"* TURN THE PRINTER ON !"
213p GOSUB BELL:GOSUB DELAY:GOTO 2100
214 REM PRINT ROUTINE

This routine sets a TRAP before going to the printer routine. If the operating system
detects any error in the printer routine, program control will transfer to line 2120 which will
give you an error message, go to a bell ringing subroutine, go to a time delay subroutine (to
give you time to turn the printer on) and then go back to your printer routine. This kind of

TRAP is set to alert you that the printer is not ON after you have tried to send something to
it. You may say, “So what?” but the significance of this is that the error was intercepted and a
message was sent to you so you could correct the errorwithout crashing the program! Thisis a
technique that you should incorporate into all of the programs that you write. This may
sound easy, but you will find that it really isn’t.

The problem is that the TRAP stays set until something trips it or another TRAP
command is executed. In one program I was working on, I spent hours trying to find out why I
was encountering a particular TRAP, time and time again. The answer was almost
embarrassing. The trapped portion of the program was not the source of the error. That
routine was being successfully executed, and an error was occurring later in the program.
The original TRAP was set for one specific kind of error, but once that section of the program
was done, I should have set another TRAP to close the first one. To get around this problem,
sometimes at the beginning of a program I will set a general TRAP that branches to an error
diagnostic subroutine. You can effectively close a trap by executing a TRAP that points to a
non-existent line number. The most common one I have seen is TRAP 40000.

The key to complex routines is that the error code you normally see displayed is stored in
decimal address 195. By writing a routine that does a PEEK(195), you can have your
program ignore certain errors and give you detailed messages for those errors that you are

interested in. Oh, by the way, the line number where the error occurred is easily found by
ERL=PEEK(186)+256*PEEK(187).

The second kind of error trap is a little less obvious, but nonetheless important. Error
trapping code is a safety measure to prevent errors that the TRAP command is not designed
to handle. For example, the TRAP command could detect that a string had been INPUT
when a number had been asked for and either ignore the bad input, or tell you it was bad
input and then ask for the input again. The TRAP command could not, however, tell whether
or not a numerical input was a valid number for that routine. This kind of error trapping is

ATARI BASIC Faster & Better 29

usually handled by error trapping code. Let’s say that a routine is asking for you to input a
day of the month. The error trapping code would need to make sure that no numberless than
1 or greater than 31 was input. The code might look something like this

190 PRINT"ENTER THE DAY OF THE MONTH ";
119 TRAP 100

12 INPUT DAY

130 IF DAY<1 OR DAY>31 THEN 12p

This is a very simple example and more sophisticated input routines will be discussed
later in this book, but the principles should be made clear here. The person using your
program should not be allowed to make any input to the program that will cause the program
to crash. In the trade, this is commonly referred to as “idiot proofing” your program. In
Chapter 11 I’ll show you how you can even prevent the BREAK key from stopping your
program.

Minimizing Program Execution Time

The speed of a BASIC program is affected by many factors. The position of the code, the
form of the code and the logic of the code all have some impact on program speed. There are a
number of simple guidelines for maximizing the speed of a program.

The following list can be useful in helping you to speed your programs up. The methods
are listed roughly in the order of most effective to least effective. The methods at the top of
the list will typically be more effective than the methods at the bottom of the list.

1. Usemachine language subroutines — tremendous time savings can be made by packing
a loop in machine language and calling the loop by using the USR function.

2. Recode — there is generally more than one way to write a given routine. Restructuring
the logic of a routine can sometimes yield great time savings.

3. Putfrequently called subroutines and loops at the start of the program — since BASIC
starts at the first line number in its search for a particular line number regardless of the
position of the call, you can chop a good bit of time off your program’s execution time by
placing all frequently called subroutines and loops at the top of your program.

4. Inloops,replace GOSUBs with in-line code — the additional time savings here is due to
the fact that BASIC has to add and remove entries from the run time stack each time it
encounters a GOSUB. If you eliminate the GOSUB, you also delete the time BASIC would
use to keep track of the subroutine.

“ kil b

5. Replace “*” and “/” operators with equivalent ‘4’ and ““-”” operators — the multiply and
divide routines in Atari BASIC are very slow compared to the addition and subtraction
routines.

6. Putmultiple statements on a single program line — this is especially effective with loops
since BASIC won’t have to fetch the nextline to continue the loop. It also serves the purpose
of reducing the number of lines that BASIC will have to search through each time a searchis
needed.

7. Disable the screen display — the video screen display is maintained using a process
called Direct Memory Access (DMA) that steals time from your computer when it isn’t
looking. This theft amounts to about 30 percent of your computer’s time. You can regain this
lost time by disabling the DMA process. To do this, you must POKE 559,0. This will speed
up your program by 30 percent, but your video display will black out. To restore the DMA,
simply POKE 559,34.

30 Chapter 2

8. Use a lower graphics mode — using high resolution graphics will make your entire
program run slower. You can save as much as 25 percent of the run time by using a lower
graphics mode.

9. Replace seldom called subroutines with in-line code — BASIC spends a lot of time
searching for line numbers and adding and subtracting subroutine pointers from the run
time stack. If aroutine is only used every once in a while, you can save some time by replacing
the subroutine with in-line code.

10. When using nested loops, put the higher frequency loops inside — this gets back to the
run time stack again. By putting a 100 cycle loop inside a 10 cycle loop, the number of times
that BASIC has to update the run time stack is minimized, and your program runs
faster.

11. Replace constants with variables — every time that BASIC encounters a constant, it
must “interpret” it as a new number and convert it to BCD format. This takes up valuable
time, and as you will see in the next section, it also eats up precious memory. So, you should
replace any constants used more than three times with variables. For example,
7Z100=100:Z0=0:Z1=1 and so forth. This is especially important for constants inside
large loops.

12. Reference variable names early in your program — now that you have replaced your
constants with variables, you should be told the price you paid. The more variables that you
use in a program, the longer it takes BASIC to find variables that were first referenced late in
the program. If you set aside a special statement to intialize your most frequently used
variables early in your program, you will speed up your program.

13. Delete all unnecessary spaces and remarks — the larger the program, the slower it is.
Also, every REM statement is just one more line number for BASIC to sort through.

14. Useindirect addressing for GOTOs and GOSUBs — the reasons for this are similar to
those given in (11) above.

15. PackIF-THEN logic statements — this one is a little less obvious, and the rewards will
vary, but you can replace an IF-THEN statement sequence such as

109 IF X<1@1 THEN Y =
11p IF X>1p@ AND X<3p1 THEN Y
12p IF X>3PPp AND X<8@1 THEN Y
130 IF X>80@ THEN Y = 3

I
N —

with a logical statement like

Y = (X>189)* ((X>1p0)+(X>300)+(X>800))

Before you try anything like this, I suggest that you go back and re-read the section on
logical operators in your BASIC manual. You will find that with a little study you can replace
whole blocks of IF-THEN statements with a few logical expressions.

16. Use X*RND(0) rather than RND(0)*X — I'm still not sure why this one works, but
experience has shown that it does save time. The same holds true for X*COS(Y) and the rest
of the special functions.

Minimizing the Size of a Program

You will often find that you are hard pressed between two desires that usually conflict with
one another. You would like to have your program run as fast as possible and yet use up as
little memory as possible. There are a number of tricks you can use to accomplish one desire

ATARI BASIC Faster & Better 31

or the other. The previous section addressed the various ways you can speed up your
program. This section will show you some other tricks you can use to reduce the amount of
memory that your program will require. Those techniques that are listed in both sections
deserve your close study.

1. Use machine language subroutines — a BASIC routine can take more than six times as
much memory as a machine language subroutine that performs the same function.

2. Recode — inefficient code can easily take five times the memory as tight (efficient)
code.

3. Remove all remark statements and unnecessary spaces — these things are not needed
to run the program, and each one takes up valuable bytes of memory.

4. Replace constants with variables — this is especially good if the constant is referenced
more than three times. BASIC stores each variable once as a six byte BCD number. Each
reference to that variable uses only one byte. A constant, on the other hand, uses seven bytes
each and every time it is used in your program. The savings is obvious.

5. [Initialize numeric variables with a READ statement — this one is not an obvious
technique. The trick is that DATA statements are stored in ATASCII code with each
character using one byte. The normal assignment statement (e.g., Z100=100) uses seven
bytes for each constant. This trick is most useful when you have a large number of constants
and variables.

6. Use indirect addressing in GOTOs and GOSUBs — Atari BASIC allows you to use a
variable instead of a line number in a GOTO or a GOSUB statement. Using this technique
saves you roughly six bytes each time you use it. A side benefit is that using descriptive
names for routines within a program makes it easier to follow the program’s logic when you
are analyzing it.

7. Get the garbage out of the variable name table — this applies primarily to the actual
writing of the program. Every time you use a variable, it is added to the variable name table.
This entry in the table stays there even though you may delete all uses of that variable in your
program. You can get this garbage out of the variable name table by LISTing the program to
cassette or disk, typing NEW, and then ENTERing the program back into memory. You can
- now SAVE the program with the cleaned up table. The savings here will range anywhere
from a dozen bytes to truly large numbers. One program I was working on had gone through
extensive changes, and I saved 500 bytes by getting rid of the garbage in the name table.

8. Minimize the number of variables in your program — each new variable requires an
additional 8 bytes plus the bytes for its name.

9. Keepthevariable names as shortas possible — each characterin the variable name uses
up one more byte in the variable name table. It is tempting to use long descriptive names, but
I believe that you will find that a short name can be just as good.

10. Putmultiple statements on a single program line — you save three bytes each time you
eliminate a program line by putting a statement on a line with another statement.

11. If a subroutine is only used once, replace it with in-line code — each unnecessary
GOSUB and RETURN wastes bytes, and even more bytes are wasted if they are on separate
lines.

12. String pack numerical arrays if the numbers are integers between zero and 255 — this
allows you to store a six byte number in a single byte. I used this technique in a program
where I had a numerical array with almost 3000 elements. I saved over 15K bytes using this
technique.

32 Chapter 2

13. Useself-deleting code — I'll show you later in this book how you can write a program in
BASIC that can rewrite itself as it is running!

14. Replace the SETCOLOR statement with the proper POKE commands — this will
save you 8 bytes each time you use it.

15. Initialize string variables with assignment statements — unlike technique (5), it takes
less space for a string assignment statement than it does for the equivalent READ and
CHR#$ statements.

16. Chain your programs — using this technique allows you to run programs that would
otherwise be too large for your computer. I'll show you some detailed examples in
Chapter 5.

ATARI BASIC Faster & Better 33

Using Machine Language in BASIC

Nothing beats the BASIC language for a quick and simple way to program your computer
applications. BASIC lets us talk to the computer with commands and mathematical
formulas that are quite consistent with the way we think and communicate. However, when
super-fast execution speed and truly economical memory usage is required, we must speak
to the computer in its native tongue, 6502 machine language. Once we have relieved the
computer of the burden of translating from BASIC to 6502 commands, its true speed and
power can take over.

It is usually not necessary to write a complete program in 6502 machine language. This is
fortunate since writing machine language is a tedious, time consuming job. There are
applications (such as arcade games) where the entire program has to be written in machine
language, but for most home applications the memory savings is not needed, and the
enhanced speed can be achieved by using machine language subroutines. I have found that
the most useful approach is to set up a library of short machine language subroutines that
you can call from BASIC when and where you need them. The USR command is a BASIC
command that calls a machine language subroutine from a BASIC program. By making
proper use of this technique, you can have the speed of 6502 machine language at your
fingertips and still write your programs in BASIC.

In this book, we will discuss many special purpose machine language subroutines and
illustrate how you can use them in your programs without ever having to learn 6502 machine
language. Each subroutine will be listed in assembly code as well as the USR format. When
you are ready to take the plunge into programming your own 6502 routines (if you haven’t
already), the listings will provide you with a good starting place. You can use an assembler/
editor program to combine or modify any of the routines in this book.

Most of the USR routines in this book have one very important characteristic — they are
relocatable, so you can load and execute them at any location in available RAM. In fact, in
some cases, we will be using a technique where a USR routine might be relocated several
times during the execution of the BASIC program.

You may have seen, or purchased, some of the excellent machine language programs for
high speed sorting or other purposes, that are available for the ATARI. Although most of
them perform their functions very well, there are four fundamental problems with many of
these products:

34 Chapter 3

1. They are designed toload at a specific location in memory. If you have a printer
driver or some other USR routine that also must load at the same address, you are
out of luck. My biggest gripe is with those programs that overwrite the disk
operating system.

2. The programs are usually “protected” so you can’t examine them, and the
source listings are not provided with them. Without this kind of information you
cannot see how they work, so it is very difficult to learn from them or modify
them.

3. The programs often contain many routines in a single load package. You must
load all of the routines you don’t need in order to get the one that you need. This
wastes valuable memory space.

4. If you write a program that uses a routine from one of these commercial
packages, you will have to pay royalties if you decide to sell your program.

The USR routines in this book avoid those four problems. This way you get the maximum
in flexibility and performance. You also don’t need to worry about paying royalties as long as
you don’t resell these routines as a library or copy the pages out of this book to serve as your
documentation.

Writing USR Routines with an Assembler/Editor

Let’slook at how you would go about creating a 6502 machine language subroutine. Iwon’t
be too specific because your assembler/editor manual will give you detailed instructions,
and the exact commands will depend upon the particular one that you are using. All
examples in this book will be shown in the Atari Assembler/Editor Cartridge format. If you
don’t have an assembler/editor program, then just follow along — you don’t need one to use
the routines in this book!

For a sample program, we will write a short subroutine that will “instantly” fill the entire
video screen with any character that you specify.

With an assembler/editor we can type in the following:

Figure 3.1 — Screen Fill Assembly Listing

1909 ;SFILL - USR ROUTINE TO FILL VIDEO SCREEN WITH ANY CHARACTER
1919 ;

1929 *= $600 :SET ORIGIN TO PAGE SIX

1030 ;

1949 POINT = $CC ;POINTER LOCATION ON PAGE ZERO
1950 SCREEN = $58 :HOLDS ADDRESS OF SCREEN MEMORY
1069

1079 PLA :GRAB NUMBER OF ARGUMENTS

1089 CMP #$1 ;IS THERE ONLY ONE ARGUMENT?
1099 DEAD BNE DEAD :NO? THEN KILL THE COMPUTER
1199 PLA :GRAB MSB OF ARGUMENT

1119 PLA :GRAB LSB OF ARGUMENT

1129 TAX ;STORE LSB IN X REGISTER

1139 ;

1149 LDA SCREEN :SETUP PAGE ZERO .POINTER

1150 STA POINT

ATARI BASIC Faster & Better 35

1160 LDA SCREEN+1

1179 STA POINT+1

1180

1199 TXA RETRIEVE THE ARGUMENT
1209 LDY #0 SET OFFSET TO ZERO

1214 LOOP STA (POINT),Y yWRITE CHARACTER TO SCREEN
1229 INC POINT ;POINT TO NEXT SPOT ON SCREEN
1230 BNE LOOP IF POINT<=FF THEN GO BACK
1249 INC POINT+1 ;INC MSB

1250 LDX POINT+1 ARE WE FINISHED?

1260 CPX #$APD

1279 BNE LOOP ;NO? THEN GO BACK

1280 RTS RETURN TO BASIC

1299 .END

1. Line 1020 specifies an origin for the USR routine. We have selected $600, which is on
page six. There are 256 bytes starting at $600 that are almost always available for USR
routines since BASIC normally does not use that area of memory. This location is great for
machine language subroutines. You might think that 256 bytes is small, but a 256 byte
machine language subroutine is really a very large subroutine! As long as you design the
routine to be relocatable (i.e., no JSR’s or JMP’s within the routine), then the origin you
select need not be the address you’ll be using when you execute the routine. So if page six
gets crowded, you can always move the subroutines.

For assembly and test purposes, I usually use page six. The tough decision as to exactly
where I want all of my USR routines toreside I canleave to alater date. No matter where I put
such a routine, I generally find out later that I'll need to move it again, so I end up string
packing most of my routines.

Most assembler listings in this book will show an origin command specifying $600 as the
starting point of the program or routine. You can assemble them to any other origin that is
compatible with your needs.

2.Lines 1040 through 1280 provide the actual program logic for the routine. One of the
peculiar things about 6502 machine language is that certain commands are only possible
using page zero memory locations. Line 1040 sets up a pointer on page zero, and line 1050
identifies a particular address on page zero that holds the starting address of the screen
memory. When a USR command is used, the number of arguments being passed to the
machine language routine is given by the first number on the stack. Line 1070 pulls this
number off of the stack, and the next two lines make sure that only one argument is in the
USR call. If you have done everything correctly so far, the next two bytes on the stack should
be the MSB and LSB of the character you want printed on the screen. Since all ATASCII
characters are (by definition) only one byte long, the MSB can simply be discarded.

The LSB is temporarily stored in the X register so we can recall it later. One side note at
this point is that these numbers must be pulled from the stack to bring the BASIC return
address to the top of the stack. The next few lines set up a counter on page zero with the
initial value of the counter being the address of the start of screen memory. We then retrieve
the character value to write to the screen and go through a little loop that writes this
character to each location on the screen. The RT'S command tells the computer to return
control to the BASIC program at the address on the top of the stack.

36 Chapter 3

3. Line 1290 satisfies the assembler requirement that there be an END statement.

Now that we have typed the routine in, we can assemble it to disk or tape as a machine
language object file.

We can also save the source code that we just typed in to another file on disk or cassette. I
always save my source code in case I want to modify the routine later. That way I won’t have
to type all of the code in again. Here is what the assembled listing of the screen fill USR
routine will look like if you dump it to a printer:

Figure 3.2 — Listing of Assembled Screen Fill Routine
19P@ ;SFILL - USR ROUTINE TO FILL VIDEO SCREEN WITH ANY CHARACTER

1919
pp0p 1920 *= $600 :SET ORIGIN TO PAGE SIX
1030 ;
ppce 1949 POINT = $CC ;POINTER LOCATION ON PAGE ZERO
0058 1950 SCREEN = $58 ;HOLDS ADDRESS OF SCREEN MEMORY
1060 ,
p6pp 68 1070 PLA :GRAB NUMBER OF ARGUMENTS
pep1 €991 1980 CMP #31 ' ;IS THERE ONLY ONE ARGUMENT?
p603 DPFE 1998 DEAD BNE DEAD ;NO? THEN KILL THE COMPUTER
p6p5 68 1199 PLA :GRAB MSB OF ARGUMENT
p606 68 1119 PLA :GRAB LSB OF ARGUMENT
p607 AA 1129 TAX :STORE LSB IN X REGISTER
1139 ;
p6P8 A558 114p LDA SCREEN :SETUP PAGE ZERO POINTER
P6PA 85CC 1150 STA POINT
p6PC A559 116§ LDA SCREEN+1
P6PE 85CD 1179 STA POINT+1
1189 ;
p61p 8A 1199 TXA ;RETRIEVE THE ARGUMENT
p611 ARPP 120P LDY #0 :SET OFFSET TO ZERO
p613 91CC 1219 LOOP STA (POINT),Y ;WRITE CHARACTER TO SCREEN
p615 E6CC 1220 INC POINT ;POINT TO NEXT SPOT ON SCREEN
p617 DPFA 1230 BNE LOOP :IF POINT<=FF THEN GO BACK
0619 E6CD 124p INC POINT+1 ;INC MSB
P61B A6CD 1250 LDX POINT+1 :ARE WE FINISHED?
P61D EQAD 1260 CPX #IAD
P61F DPF2 1279 BNE LOOP :NO? THEN GO BACK
p621 60 1289 RTS :RETURN TO BASIC
0622 1290 .END

As amatter of comparison, try the following BASIC routine that does the same thing as the
USR routine:

190 FOR X=4pppP TO 4p959:POKE X, 10:NEXT X
119 GOTO 119

This BASIC routine takes almost seven seconds to fill the screen with a character as
compared to the almost instantaneous action of the machine language subroutine! In

ATARI BASIC Faster & Better 37

addition, the BASIC routine uses 61 bytes of memory as compared to the 34 bytes used by
the machine language routine.

How to Load and Execute USR Routines from Disk

Let’s suppose that we have assembled the screen fill routine to a disk file named
“SFILL.OBJ”. We could also assemble the routine to memory and execute it from the
assembler/editor’s DEBUG facility, but the true test is whether or not you can load the
routine while BASIC is in the computer. If you boot your computer with BASIC and ATARI
DOS II, the computer will respond with READY. Type ‘DOS‘ and hit the RETURN. This
will put you in DOS, and the DOS menu will be displayed on the screen. Type “L” followed
by a RETURN, and DOS will ask “LOAD FROM WHAT FILE?” You should type in
“SFILL.OBJ”.DOS will access the disk and load the object file for you. Since no run address
was specified, DOS will simply redisplay the menu when the file is loaded. Now we need to
get back to BASIC. From the DOS menu type a “B” followed by a RETURN, and you will be
returned to BASIC.

Once you have gone back to BASIC, you can LOAD a BASIC program or write one to call
up the machine language subroutine. The following short BASIC program is all you need to
try out this USR routine:

200 PRINT CHR$(125)
219 PRINT "ENTER CHARACTER ";
220 OPEN #2,4,0,"K:":
TRAP 220
230 GET #2 ,KEY
24p CLOSE #2
250 X=USR(1536,KEY-32)
260 GOTO 260

To execute the screen fill routine, enter this program into memory and RUN the program.
The screen will “instantaneously’ fill up with whatever character you specify.

The general form of the USR function, as given in your user’s manual is:

X=USR (ADDRESS, aexpl,aexp2,aexp3, aexp4)

You can pass up to 126 arguments to the machine language routine by simply adding more
arithmetic expressions to the USR call. The ADDRESS, which technically is also an
arithmetic expression, is the memory location of the machine language subroutine. The
address and the arguments are normal base ten (i.e., decimal) numbers. The arguments are
always passed to the machine language routine as two byte numbers and are stored on the
stack with the MSB on top of the LSB. A program can have any number of USR calls in it and
you won’t get into trouble as long as the proper routine is stored at the ADDRESS used in
each call. I can’t really teach you all about USR’s since that is beyond the scope of this book.
If you are really interested, I suggest that you pick up one of the books I mentioned back in
the introduction to this book.

POKEing USR Routines into Memory

Each USR routine in this book is shown in POKE format. In other words, you will be given
a list of the numbers that you will need if you want to POKE the routine into memory. This
way you don’t need an assembler/editor program, and you don’t need to understand 6502
machine language. The screen fill USR routine we have been discussing can be loaded by
POKEing the following 34 numbers into any 34 contiguous bytes of RAM:

38 Chapter 3

104 2p1 1 208 254 1p4 1p4 179
165 88 133 204 165 89 133 2f5
138 160 0 145 204 230 2p4 208
242 96

Try these steps to see how it works:
1. Boot your computer with BASIC.
2. Type in the following program:

109 REM SFILL.DEM-SCREEN FILL FROM BASIC
110 DATA 1p4,201,1,208,254,1p4,1p4,170
120 DATA 165,88,133,204,165,89,133,205
139 DATA 138,160,0,145,204,23p,2p4,208
149 DATA 250,230,205,166,205,224,160,208
150 DATA 242,96

160 MLSTART=1536:MLEND=1569

17 FOR X=MLSTART TO MLEND

180 READ Y:POKE X,Y:NEXT X

200 PRINT CHR$(125):PRINT

219 PRINT"SFILL.DEM - SCREEN FILL FROM BASIC"
22f) PRINT:PRINT:PRINT"ENTER CHARACTER: ";
230 OPEN #2,4,0,"K:":TRAP 23p

24 GET #2,KEY:CLOSE #2

250 X=USR(1536,KEY-32)

260 GOTO 26f

3. RUNIt. The program will “load” the machine language subroutine and ask you to enter a
character. When you enter the character, the screen will “instantly” fill with that
character.

The DATA statements in lines 120 through 160 specify a list of numbers which
correspond to the 34 bytes in the USR routine. Lines 170 and 180 put the values into the first
34 bytes of page six memory, starting at $600 (1536 decimal).

Since the screen fill routine is relocatable, you can replace the addresses in line 110 with
another set of addresses, and it will run the same. You might try using another location. Just
be sure that the location is safe and that the value of MLEND is 33 more than
MLSTART.

Are you wondering where I got the numbers to be POKEd? The assembly listing gave us
the hexadecimal codes for the USR routine. The command STA POINTinline 1150 generated
the machine language instruction 85cc. Converting this to decimal:

85 is 133 decimal
CC is 204 decimal.

The rest of the program was translated in a similar fashion. We could have also gotten the
decimal numbers by PEEKing the appropriate memory locations after loading the object
program from disk or cassette. Then from BASIC we could have printed the PEEK values
from the first byte to the last byte of the routine by issuing the command:

FOR X=1536 TO 1569: PRINT PEEK(X),: NEXT X

ATARI BASIC Faster & Better 39

I find even this a pain so I wrote a program that will read an object file from a disk and
create a BASIC subroutine that I can later add to any other BASIC program. The program
listed below is that program. I call it CONVERT:

Figure 3.3 — CONVERT Program

19p REM CONVERT 1.1- A PROGRAM THAT
CONVERTS A ML 0BJ FILE INTO
BASIC DATA STATEMENTS
119 DIM FILE$(16) ,RESPONSE$(16):
FIRST=300pP
12 FILE$="D1:":
PRINT CHR$(125):
PRINT
130 PRINT "CONVERT.BAS ":
PRINT :PRINT :
0NN CAUTION! USE ONLY OBJECT FILESH
PRINT :PRINT
140 PRINT "ENTER NAME OF FILE ";
150 FILE$(4,14)=" e
TRAP 140:
CLOSE #1
160 INPUT RESPONSE$
179 FILE$(4,14)=RESPONSE$
189 OPEN #1,4,0 ,FILES
190 TRAP 380
20p GET #1,X:
GET #1,X:
GET #1.X:
GET #1,Y
21 MLSTART=X+256*Y
220 GET #1,X:
GET #1,Y
230 MLEND=X+256%*Y:
SIZE=INT ((MLEND-MLSTART)/8+1):
LAST=FIRST+2*SIZE
249 PRINT CHR$(125):
POSITION 2,4

250 PRINT LAST+1@;" MLSTART = ";MLSTART
260 PRINT LAST+20;" MLEND = ";MLEND
270 PRINT :

PRINT "CONT":

POSITION 2,0
28 POKE 842,13:
STOP
299 POKE 842,12
3P FOR LINE=FIRST TO LAST STEP 2
319 PRINT CHR§(125):
POSITION 2,4
320 PRINT LINE;" DATA ",
330 FOR I=1 TO 7:

40 Chapter 3

GET #1,X:
PRINT X;","::
NEXT I
340 GET #1,X:
PRINT X:
PRINT :
PRINT "CONT":
POSITION 2,0
350 POKE 842,13:
STOP
360 POKE 842,12
370 NEXT LINE
380 PRINT :
PRINT "CONT":
POSITION 2,0:
POKE 842,13:
STOP
390 POKE 842,12
499 CLOSE #1:
PRINT CHR$(125):
POSITION 2,4
41p PRINT LAST+30;" FOR X=MLSTART TO MLEND"
420 PRINT LAST+40;" READ Y:
POKE X,Y:
NEXT X":
PRINT :
PRINT "CONT":
POSITION 2,0
439 POKE 842,13:
STOP
44p POKE 842,12
45§ PRINT CHR$(125):
PRINT "PRESS [SHMR} TO LIST TO CASSETTE"
46 PRINT "PRESS TO LIST TO DISK":
PRINT "(FILENAME IS ML.BAS) ";
479 IF PEEK(53279)=6 THEN 509
480 IF PEEK(53279)=5 THEN 520
499 GOTO 470
589 LIST "D:
ML.BAS",FIRST,FIRST+40+2*SIZE
519 GOTO 539
520 LIST "C:",FIRST,FIRST+4+2*SIZE
530 END

Object File into BASIC Data Statements

CONVERT willread any DOS compatible binary load (i.e., object) file from a disk, create
aBASIC subroutine starting at line 30000 and then save the routine to either cassette or disk
for later recall. The resulting subroutine is in the LIST format, so it can be added to the end
of any of your other BASIC programs by typing ENTER“ML.BAS”. You may then SAVE

ATARI BASIC Faster & Better 41

your BASIC program with the built-in machine language subroutine. The full power of this
merging capability will be discussed in more detail in Chapter Five. We will also discuss
some other interesting techniques for embedding machine language routines later in this
chapter.

Saving USR Routines To Disk

Each machine language routine in this book is shown in POKE format. That is, you will be
given a list of numbers that you can POKE, starting at any safe address in memory. Once you
have POKEd the numbersindicated for the USR routine, you canrecord that routine to disk,
using any valid disk file name. Suppose that you want to save the screenfill USR routine that
we have been using for our example:

1. First boot your computer up with BASIC and an ATARI DOS II disk.

2. Write or load a program that will POKE the required values at the proper addresses in
memory. Here is a program that does the job for the SFILL routine:

19009 REM SFILL.LST - SCREEN FILL
19601 DATA 104,201,1,208,254,104,1p4,170
19602 DATA 165,88,133,204,165,89,133,205
19693 DATA 138,160,0,145,204,230,2p4,208
19pp4 DATA 25@,230,205,166,205,224,160,208
19005 DATA 242,96
190p6 MLSTART=1536:

MLEND=1569
1907 FOR X=MLSTART TO MLEND
19068 READ Y:

POKE X,Y:

NEXT X
19049 END

3. Run the program. This reads the data statements and POKEs the numbers into
memory.

4. Now go to DOS. To do so, type 'DOS’ followed by a RETURN.

5. When in DOS you can use the binary save command to save the machine language
subroutine to disk. To do this, enter aK inresponse to the DOS menu. DOS will respond with
SAVE-GIVE FILE, START, END, INIT, RUN. You can then save the screen fill routine by

entering the following command:

SFILL.0BJ, 609,622

Remember to use hexadecimal addresses with this command. Ignore the INIT and RUN
parameters at this time.

6. Fromnow on, whenever you know that you will be calling the SFILL routine ina BASIC
program, you can either perform a binary load (the DOS L. command) as described before, or
you can use CONVERT to create a BASIC subroutine. In the next section, I'll show you an
even better technique — string packing.

If you wish, you can rename SFILL.OBJ to any other valid file name. To do this, you will
use the rename command on the DOS menu (the E command). If you do rename it, for
example to FILLSCRN, and it no longer has the OBJ extension, your command to load it
from the DOS menu will be L followed by entering FILLSCRN.

42 Chapter 3

If you are using one of the other disk operating systems that is available for the ATARI,
you will have to refer to your DOS manual to translate what we have just discussed. Although
I am aware that a number of such programs are on the market, I have found that Atari’s DOS
II meets my needs. I bought two of these other DOS’s but I seldom find a need to use
them.

Loading USR Routines Into Strings

We can load any relocatable USR routine into a string! There are some tremendous
advantages to this technique. First, if the code is relocatable, we no longer have to worry
about where the routine is stored. The starting address of the routine can easily be found by
using the ADR command in BASIC. Second, we can store the string packed routine in an
ordinary BASIC disk file, which may contain a whole library of routines, for faster and more
convenient loading from BASIC.

The screen fill routine can be loaded into the string SFILL$ with the following program
commands:

199 DIM SFILL$(34)
119 SFILL$(1)=CHR$(104):SFILL$(2)=CHR$(201)
12 SFILL$(3)=CHR$(1):SFILL$(4)=CHR$(208) etc.

Note that ATARI BASIC does not support a command like
SFILLS = CHR$(104)+CHR$(201)+CHR$ (1)+CHRE(208) etc.
This is a tedious and time consuming method, but it does work. I am essentially lazy so I

modified the program CONVERT to do all of this work for me. I call the new program
DATAPAK.

Figure 3.4 — DATAPAK — A Program to Pack Machine Code into a String Array

109 REM DATAPAK.BAS - A STRING PACKER
119 GOTO 260
120 REM ** KEYBOARD ENTRY ROUTINE **
139 OPEN #3,4.,9,"K:"
149 GET #3,RES:

IF RES<68 OR RES>155 THEN 14§
150 CLOSE #3:

RETURN
160 REM ** TIME DELAYS **
179 FOR Z=1 TO 508

NEXT Z:

=0

RETURN
180 FOR Z=1 TO 25:

NEXT Z:

7=p:

RETURN
199 REM ** INITIALIZE DATA ARRAY **
20p PACE(1)="":

PAC$ (NP)=""":

PAC$ (2)=PACS:

RETURN

219 REM ** AUTO RETURN ROUTINE **
22f) POSITION 2,0
23p POKE 842,13:

STOP

249 POKE 842,12:

RETURN

250 REM ** MAIN PROGRAM **
260 DELAY20=18p:

DELAY=17f:
KEY=130:
ARM=202:
TITLE=21p:
7=0:77=

270 PRINT CHR$(125):

280

299

3pp

319

32

330

340
350

360

379
380

399

GRAPHICS 2+16:

SETCOLOR 4,8,0

POSITION 16,2:

PRINT #6,"datapak"
POSITION 14,8:

PRINT #6," (C) 1982"
POSITION 12,10:

PRINT #6, "MEEINETER" :
GOSUB DELAY:

GOSUB DELAY

GRAPHICS 9:

POKE 752,1:

GOTO 1939

TRAP 320:

GOSUB 142p:

PRINT CHR$(253):
POSITION 2,12:

PRINT "ENTER NUMBER OF DATA ELEMENTS ";
INPUT N:

IF N<1 THEN 328

IF FRE(X)>2.5*N THEN 360
GOSUB 142p:

POSITION 2,12:

PRINT "INSUFFICIENT MEMORY FOR THAT NUMBER":

GOSUB DELAY:

GOTO 329

GOSUB 1420

PRINT CHR$(253):

POSITION 2,12:

PRINT "IS ";N;" CORRECT ?";:
GOSUB KEY

IF RES=121 OR RES=89 OR RES=155 THEN 390
N=p:

RES=f:

GOTO 329

LL=80:

X=1:

IF N/LL=INT(N/LL) THEN X=@

ATARI BASIC Faster & Better 43

44 Chapter 3

49p LNUM=INT(N/LL)+X:
NP=LL*LNUM:
NL=N
419 DIM PAC$(NP),FIX34(20),FIX9B(20):
FIX34(1)=:
FIX9B(1)=p
420 GOSUB 1420:
POSITION 2,12:
PRINT "RAW DATA MUST BE INTEGER (@-255)"
439 PRINT :
PRINT "DATA MUST BEGIN AT LINE # >20@p":
PRINT
449 PRINT "FOR SPEEDIER PROCESSING":
PRINT "THE SCREEN WILL BLACKOUT DURING RUN."
450 TRAP 450:
GOSUB DELAY:
GOSUB DELAY:
GOSUB 1420:
POSITION 2,12:
PRINT "ENTER FIRST LINE # FOR PACKED DATA"
460 POSITION 2,14:
PRINT "MUST BE =>20@@ AND <=3200p ",
479 INPUT FIRST:
IF FIRST<2p@p OR FIRST>320@P THEN 450
48p POSITION 2,16:
PRINT "ENTER LINE # INCREMENT =>1§ ";
499 INPUT DELTA:
IF DELTA<1f OR DELTA>1p@@ THEN 480
509 IF DELTA*LNUM+1+FIRST>32508
THEN PRINT "TRY A SMALLER INCREMENT OR FIRST#":
GOSUB DELAY:
GOTO 450
51f REM ** TURN OFF VIDEO DMA **
52p) POKE 559,0:
GOSUB 20P:
TRAP 53@:
GOTO 570
53p POKE 559,34:
PRINT CHR$(125):
POSITION 2,12
54p IF PEEK(195)=6 THEN PRINT "*** QUT OF DATA ERROR ***":
PRINT "THERE ARE ONLY ";X-1;" DATA."
550 IF PEEK(195)=8 THEN PRINT "*** BAD DATA AT ";X;" #*x!
560 GOTO 1P1p
579 IF MERGE THEN FOR X=1 TO N:
READ DAT
589 IF NOT MERGE THEN FOR X=1 TO N:
GET #2,DAT
590 IF DAT=INT(DAT) THEN 610

ATARI BASIC Faster & Better 45

609 POKE 559,34:
PRINT CHR$(125):
POSITION 2,12:
PRINT "##* NON-INTEGER DATA AT ";X;" #*=*":
GO TO 1p1P
610 IF DAT>=p AND DAT<=255 THEN 640
620 PRINT CHR$(125):
POSITION 2,12:
PRINT "*** DATA OUT OF RANGE AT ";X;" w***!
630 POKE 559,34:
GO TO 1p1P
640 IF DAT=34 THEN DAT=32:
FIX34(Z)=X:
[=7+1
650 IF DAT=155 THEN DAT=32:
FIX9B(ZZ)=X:
17=77+1
660 PACS$ (X, X)=CHRE (DAT) :
NEXT X:
PRINT CHR$(125):
POSITION 2,12:
PRINT "RAW DATA LOADED..."
670 REM ** TURN ON VIDEO DMA **
680 POKE 559,34:
PRINT CHR$(253):
GOSUB DELAY
690 REM ** WRITE NEW LINES OF CODE **
7069 FOR LOOP=1 TO LNUM:
X=(LOOP-1)*LL+1:
Y=LOOP*LL:
IF NL<LL AND NL>§ THEN Y=X-1+NL
719 NL=NL-LL:
PRINT CHR$(125):
POSITION 2,12:
PRINT FIRST+DELTA*(LOOP-1);" DAT$(LEN(DAT$)+1)=";CHRE(34);
72 FOR Z=X TO Y:
PRINT CHR$(27);PAC$(Z,2);:
NEXT Z:
PRINT CHR$(34)
730 PRINT :
PRINT "CONT":
GOSUB ARM:
NEXT LOOP
74p REM INSTALL FIX FOR 34 AND 155
750 IF FIX34(1)=p THEN 80P
760 FOR N=1 TO 25:
PRINT CHR$(125)
770 IF FIX34(N)=p THEN POP :
GOTO 8pP
780 LNUM=LNUM+1:
PRINT FIRST+DELTA*LNUM;"DAT$(";FIX34(N);",",FIX34(N),;")=CHRE(34)"

46 Chapter 3

790 PRINT :
PRINT "CONT":
GOSUB ARM:
NEXT N
800 IF FIX9B(1)=p THEN 850
819 FOR N=1 TO 25:
PRINT CHR$(125)
820 IF FIX9B(N)=@ THEN POP :
GOTO 850
830 LNUM=LNUM+1:
PRINT FIRST+DELTA*LNUM;"DAT$(";FIX9B(N);",":FIX9B(N);")=CHR$(155)"
840 PRINT :
PRINT "CONT":
GOSUB ARM:
NEXT N
850 FINAL=FIRST+DELTA*LNUM
860 PRINT CHR$(125):
POSITION 2,12:
PRINT "PACKING COMPLETE.":
PRINT CHR$(253):
GOSUB DELAY
870 REM ** QUTPUT ROUTINE **
880 GOSUB 1420:
POSITION 2,12:
PRINT "PRESS%TO WRITE STRING TO TAPE"
890 PRINT "PRESS T0 WRITE STRING TO DISK":
PRINT " (THE DISK FILE WILL BE PACKED.DAT)"
990 IF PEEK(53279)=5 THEN 990
919 IF PEEK(53279)=6 THEN 93¢
920 GOTO 96p
93¢ PRINT :
PRINT :
PRINT "PUT DISK INTO DRIVE#1 AND PRESS [TEIN":
GOSUB KEY
949 TRAP 978
959 LIST "D:
PACKED.DAT" FIRST, FINAL
960 GOTO 1019
97¢ IF PEEK(195)=139 THEN PRINT CHR$(125):
PRINT CHR$(253):
POSITION 2,12:
A TURN ON YOUR DISK DRIVER
980 GOSUB DELAY:

GOTO 930
999 PRINT :

PRINT :

PRINT "PREPARE BLANK TAPE AND PRESS [JRITEN"
199 LIST "C:

" FIRST,FINAL
1919 POKE 752,0:
END
1920 REM ** DATA INPUT ROUTINE **

103p GOSUB 142f:
POSITION 2,12:
POKE 752,1:
PRINT "PRESS FOR PERIA/ TAPE INPUT":
TAPE=p

1049 PRINT "PRESS FOR [ER[EW}/MERGE FILE":
MERGE= :
PRINT "PRESS T0 CONTINUE"

1950 IF PEEK(53279)>5 THEN 1120

1069 IF PEEK(53279)=3 THEN TAPE= NOT TAPE:
GOSUB DELAY2f

107p IF PEEK(53279)=5 THEN MERGE= NOT MERGE:
GOSUB DELAY2f

1980 IF TAPE THEN POSITION 19,12:
PRINT "DISK/[TIZE"

1999 IF NOT TAPE THEN POSITION 19,12:
PRINT "PIRYQ/ TAPE"

1199 IF MERGE THEN POSITION 19,13:
PRINT "OBJECT/[IaId"

1119 IF NOT MERGE THEN POSITION 19,13:
PRINT "LN[Helj/MERGE"

1120 IF PEEK(53279)=6 THEN 114p

1139 GO TO 1050

1149 IF NOT MERGE THEN 126

1150 IF NOT TAPE THEN 1190

1160 PRINT :
PRINT :
PRINT "PUT THE TAPE IN THE RECORDER":
PRINT "PRESS Ul TO BEGIN INPUT":
GOSUB DELAY2f

1179 IF PEEK(53279)<>6 THEN 117§

118p POKE 764,12:
ENTER "C:":
POKE 752,0:
GOTO 32

1199 PRINT :
PRINT :
PRINT " PUT THE DISK IN DRIVE #1"

ATARI BASIC Faster & Better 47

1209 PRINT "THE FILE MAY HAVE ANY LEGAL NAME,BUT":

PRINT "THE EXTENDER MUST BE .LST"
1219 PRINT "ONLY THE FIRST *.LST FILE ON":
PRINT "THE DISK WILL BE LOADED"
122¢ PRINT :
PRINT "PRESS NI TO BEGIN INPUT":
GOSUB DELAY20
1230 IF PEEK(53279)<>6 THEN 1220
124p POKE 764,12:
ENTER "D:*.LST"
1250 GOTO 32¢
1260 IF TAPE THEN 1499
127¢ DIM FILE$(16),RESPONSE$(16):
FIRST=3p0pP

48 Chapter 3

1280 FILE$="D1:":
GOSUB 1420:
PRINT
1299 PRINT :
PRINT :
I(YMRCAUTION! USE ONLY OBJECT FILESEE
PRINT :
PRINT
1309 PRINT "ENTER NAME OF FILE ";
1319 FILE$(4,14)=" ",
TRAP 1309
CLOSE #2
1329 INPUT RESPONSE$
1339 FILE$(4,14)=RESPONSE$
1349 OPEN #2,4,0,FILE$
1350 GET #2,X:
GET #2,X:
GET #2,X:
GET #2,Y
1360 MLSTART=X+256*Y
1379 GET #2,X:
GET #2,Y
1380 MLEND=X+256*Y :
N=MLEND-MLSTART+1
1399 GOTO 39
1409 OPEN #2,4,8,"C:"
1419 GOTO 1350
142 PRINT CHR$(125):
POSITION 14,2:
LTI DA TAPAK R
PRINT :
PRINT "STRING PACK MACHINE LANGUAGE PROGRAMS"
1439 RETURN
1449 REM ** START DATA AFTER THIS **

DATAPAK,like CONVERT, will read a machine language object file on disk and create a
BASIC subroutine (in this case a simple string assignment) and store it on disk or cassette. In
addition, you may load the data by using a LISTed file that can be merged to the end of
DATAPAK. This way it is possible to use the DATA statements created by CONVERT as
inputs to DATAPAK.

You can follow the technique outlined earlier to get the POKE codes onto disk as an object
file and then use DATAPAK on the file to generate the packed strings.

Using a string packed machine language routine is really quite easy. All you need to do is
modify the USR call to reference the starting address of the string. For example, the USR
call to use SFILL was

X=USR (1536, KEY-32)

ATARI BASIC Faster & Better 49

You can change this call to refer to a string, SFILL$, that contains the machine code as
follows

X=USR (ADR(SFILLS) KEY-32)

It is possible to use strings for routines that are longer than 255 bytes by concatenating
smaller strings into one large string. Be sure to DIMension the large string to the extended
size that you want touse. This isreally an advanced technique that is going beyond the scope
of the current discussion, so I will leave exploring that topic up to you. I will give you a hint on
where to start looking — DATAPAK uses this technique.

You will find that the string packing techniques we have discussed in this section provide
one of the fastest, most flexible, and most memory efficient methods for handling USR
routines. It really would not be useful to show you every routine in this book in the string
packed format, so I won’t. However, I do recommend that you take the POKE values, load
them into memory, save them to disk as an object file, and then use DATAPAK on the file to
create nice, neat, string packed arrays.

50 Chapter 4

Magic Memory Techniques

General Methods
“Any given program will expand to fill all available memory.”

If you have been programming the ATARI home computer for any length of time, you will
be able to attest to the truth of that statement. It always seems that, no matter how much
memory or disk space your computer has, it is never enough. This chapter will give you the
techniques that you will need to make the most of the memory space you have.

We have all seen entertainers who dazzle their audiences by feats of “memory,” such as
memorizing everyone’s name or the contents of each page in a magazine. These “super”
memory powers are really based upon simple techniques that anyone can learn. This section
will give you some simple techniques that can, likewise, give your computer some amazing
memory powers. You will find that when you know how to control your computer’s memory
and move data quickly, your programs can reach a new generation of performance!

How Much Memory Do You Really Have?

The 6502 microprocessor is an “8-bit” device that uses two 8-bit bytes to define an
address. Since each bit of each byte can be either a zero or a one (i.e., two states), the 6502
computer chip can uniquely identify (address) 2*2%*2%2%2%2%2%2%2%2%9*9%9%9*9%*9 16-bit
addresses. That list of two’s is equal to 65536. This number is usually referred to as 64K.
Your computer is therefore a 64K computer regardless of how much “memory” you have.
Your typical “48K” computer really is a 64K computer that has 48K of available memory
and 16K of dedicated memory. The 48K Atari actually has only 37K of memory for BASIC
programmers.

Dedicated memory usually consists of a ROM based (i.e., you canread it but not write to it)
operating system. A 32K computer is the same 64K machine with only 32K (32768 bytes) of
available memory. The missing 16K can still be “addressed,” but since there isn’t any RAM
or ROM at any of those addresses, you can’t use this addressing capability for anything. For
example, you could write a BASIC program that resided in 32K, but PEEKed and POKEd
data in the missing 16K. This program could be written on a 32K computer, but obviously
youwould have to RUN it on a 48K computer. am not recommending that you try this, since
debugging would be almost impossible. The point is that you should try to think of memory
size as being under your control.

ATARI BASIC Faster & Better 51

Figure 4.1 — Table of Available Memory Limits without DOS

Atari Top Byte Top Byte Bottom Byte Bottom Byte

Catalog Hexadecimal Decimal Hexdecimal Decimal
16K 3FFF 16383 700 1792
32K TFFF 32767 709 1792
48K BFFF 49151 789 1792

Note: Cartridge A uses APPP-BFFF (409960-49151)
Cartridge B uses 8PPP-9FFF (32768-40959)

Figure 4.1 gives you a table of available memory addresses for different size Atari 800
computers. The cartridges will use the addresses shown regardless of how much “memory”
you have.

When you put a cartridge in your computer, the computer switches the connection of those
addresses to point to the cartridge. If you normally have RAM at those addresses, then the
RAM is disabled. The bottom 1535 bytes of your computer’s RAM is reserved and used by
the operating system and/or BASIC.

There are some small areas of memory below 1792 that you can use. You have already
heard me refer to page six in the last chapter. A “page” is defined to be 256 bytes. The pages
in your computer’s memory are numbered by using the first part of the lower address
boundary. Thus page zero starts at hexadecimal (hex) address 0000 and page six starts at hex
address 0600. Available memory starts at page seven. Page six is reserved for your private
use. The operating system, BASIC, DOS and the assembler/editor will normally not use this
page of memory. This is why I usually locate my machine language subroutines on page six.
There are only a handful of addresses available on page zero for you to use. Later in this
chapter I will demonstrate a way to use the page zero addresses from BASIC. The addresses
you can use are shown in Figure 4.2.

Figure 4.2 — Available Memory on Page ZERO

Hex Decimal
Address Address Restrictions

BO...CA 176-202 Not from BASIC

CB...D1 203-209 None

D4...D5 212-213 Used to return an argument
to BASIC from a USR call

52 Chapter 4

PEEKing a Two Byte Address

As you know, when you PEEK any location in memory, the result is a number from 0 to
255. Likewise, the second argument of a POKE command must be a number from 0 to
256.

Often, itis necessary to work with a decimal address thatislocated somewhere in memory.
A memory address can be defined by two hex numbers MM and LL. Two bytes are needed
because the largest possible eight bit binary numberis 11111111, whichis FFin hex and 255
in decimal. Any number larger than 255 is defined as MMLL and is stored in two consecutive
bytes of memory as LLMM. LL is commonly called the least significant byte (or LSB). MM is
called the most significant byte (or MSB). A decimal address can be calculated from LL and
MM by the following equation:

ADDRESS = 256*PEEK(address of MM) + PEEK(address of LL)

An example for an address stored on page zero might be

ADDRESS = 256*PEEK(2004) + PEEK(203)

POKEing A Two Byte Address Into Memory

From time to time, you may want to change an address that is stored in memory at a known
location. To POKE a two byte address into any two contiguous memory locations, your
command is

POKE LOCATION+1,INT(ADDRESS/256):
POKE LOCATION, (ADDRESS-256*INT (ADDRESS/256))

An example that stores the number 40000 in memory locations 203 and 204 on page zero
is

POKE 204, INT(40ppp/256):
POKE 203, (49PPP-256*INT (400PP/256))

Be very careful when you are POKEing things into memory. If you POKE the wrong
number into the wrong location, you can cause your computer to behave very strangely.

How to Reserve a Block of Memory for Private Use

Sometimes you would like to reserve a block of memory that is safe from the depredations
of BASIC and the operating system. You might use this reserved area to store data or
machine language subroutines. When you power your computer up with BASIC, the bottom
of memory available for a BASIC program is established by the operating system as a
number that we will call LOMEM. LOMEM is stored in addresses 743 and 744. BASIC,
also, keeps its own pointer at the bottom of memory in addresses 128 and 129. We will call
this number MEMLO. Likewise, the top of available memory is stored somewhere.

I have seen many different methods used to reserve a block of memory so that it is safe
from being modified by BASIC or the operating system. Many of these involve moving the
apparent top of memory. I recommend against using any of those techniques. RAMTOP
changes are only safe after the program has executed a GRAPHICS command for the highest
graphics mode that is used anywhere in the program, and even then the reserved memory
isn’t truly safe.

ATARI BASIC Faster & Better 53

Some people use a special machine language subroutine to alter the LOMEM and
MEMLO pointers. The problem with this technique is that the special machine language
subroutine also has to be stored somewhere. A much safer method is to first load a small
BASIC program that changes the pointers to the bottom of memory and RUN it just before
running your main program. The program listed below will move the bottom of BASIC
memory pointers:

Figure 4.3 — RESERVE.LST — Protects a Block of Memory

19939 REM RESERVE.LST - PROTECTS A BLOCK OF MEMORY
19931 REM SIZE = NUMBER OF BYTES TO RESERVE
19932 ADDRESS=256*PEEK(744)+PEEK(743)+SIZE
19933 MM=INT (ADDRESS/256) :
LL=ADDRESS-256*MM
19934 POKE 743,LL:
POKE 744, MH
REM MOVE MEMLO UP
19935 POKE 128,LL:
POKE 129, MM
REM MOVE LOMEM UP
19936 POKE 8.0:
REM RESET WARM START FLAG
19937 X=USR(4p960)
RESTART BASIC

This routine examines the LOMEM and MEMLO pointers, and changes them to a new
value. Any program that is LOADed or RUN after it, will ignore the reserved block of
addresses. The “trick” to this routine is that BASIC only loads a new MEMLO value from
the operating system’s LOMEM pointer when a NEW command is used. MEMLO is not
updated for a LOAD or a RUN. A curious tidbit is that even SYSTEM RESET does not
trigger an update of MEMLO under normal conditions. RESERVE.BAS fixes it so NEW,
RUN, LOAD and SYSTEM RESET will reset the pointers to the place you specify.

BASIC Variable Lister

Many times I have been writing a program and mis-typed a variable name. I have found it
useful to have a way to quickly and easily obtain a complete list of all of the variable names in
a program. There are several programs on the market such as VERVAN’S FULMAP that
will generate a complete list of variable names along with the lines that they are used in. I use
FULMAP (a machine language program) when I am documenting a new program for my files
or when I am trying to analyze someone else’s BASIC program. However, when I am simply
interested in how many variables [have used and what they are, I use the little program listed
below:

Figure 4.4 — VLIST.LST - A Routine to List the Variables in a BASIC Program

19940 REM VLIST.- VARIABLE ANALYZER
19941 PRINT CHR$(125):
PRINT :
PRINT "VLIST.LST - A BASIC VARIABLE ANALYZER"

54 Chapter 4

19942

19943

19944

19945
19946

19947

19948
19949
19950

19951

19952

19953

19954

19955
19956

19957
19958

19959

PRINT :
PRINT :

PRINT "PRESS FOR OUTPUT TO THE SCREEN":
PRINT "PRESS FOR OUTPUT TO A PRINTER"

TRAP 19961

IF PEEK(53279)=6 THEN OPEN #3,8,8,"S:":

GOTO 19946

IF PEEK(53279)=5 THEN OPEN #3,8,8,"P:":

GOTO 19946

GOTO 19943

POKE 203,0:

POKE 2004, PEEK(130) :

POKE 2005, PEEK(131):

POKE 2006, PEEK(134) :

POKE 207, PEEK(135):

POKE 298, 1

POKE 752,1:

PRINT #3:

PRINT #3:

PRINT #3;"VLIST - BASIC VARIABLE ANALYSIS":

PRINT #3:

PRINT #3:

PRINT #3

PRINT #3;"VARIABLE NUMBER = ";PEEK(203);" ":
PRINT #3;"VARIABLE NAME = "

IF PEEK(PEEK(204)+256*PEEK(205))<128 THEN

PRINT #3;CHRS (PEEK (PEEK (204)+256*PEEK (205))):

IF PEEK(PEEK(204)+256*PEEK(205))>127 THEN

PRINT #3;CHR$ (PEEK (PEEK (204)+256*PEEK (205))-128) ;
IF PEEK(PEEK(204)+256*PEEK(205))<128 THEN

GOSUB 19984

GOTO 19949

IF NOT (PEEK(PEEK(206)+256*PEEK (207)))

THEN POKE 2089

GOSUB 19962

IF PEEK(PEEK(206)+256*PEEK(207))=64 OR PEEK (PEEK(206)+256*PEEK(207))=65
THEN POKE 208,8:

GOSUB 1§32

IF PEEK(PEEK(206)+256*PEEK(207))=128 OR

PEEK (PEEK (206)+256*PEEK(207))=129 THEN POKE 208 ,8:
GOSUB 19978

IF PEEK(208) THEN GOTO 19961

POKE 209,0:

GOSUB 19986

GOSUB 19984

POKE 203,PEEK(203)+1

IF (PEEK(204)+256*PEEK (205))<(PEEK(132)+256*PEEK (133))
THEN 19948

PRINT #3;"END OF VARIABLE NAME AND VALUE TABLES.":
PRINT #3;"NUMBER OF VARIABLES FOUND=";PEEK(203)
PRINT #3;"STRING/ARRAY TABLE LENGTH= ":
((PEEK(142)+256*PEEK (143))~ (PEEK (140)+256*PEEK (141)))
" BYTES"

ATARI BASIC Faster & Better

1996p POKE 752,0:

19961

19962
19963

19964
19965
19966
19967
19968
19969
19979

19971

10072
19973
19974
19975

19976

19977
19978

19979

1998p

19981

19982

CLOSE #3:

END

POKE 752,0:

PRINT #3:

PRINT #3;"ERROR! ":

END

PRINT #3

PRINT #3;"SCALAR VARIABLE":

PRINT #3;"CURRENT VALUE =",

IF PEEK(PEEK(206)+256*PEEK(2007)+2)=p THEN PRINT #3;"ZER0O":
PRINT #3:

RETURN

PRINT #3;INT(PEEK(PEEK(206)+256*PEEK (207)+3)/16);

PRINT #3; (PEEK(PEEK(206)+256*PEEK(2007)+3)-
(INT(PEEK(PEEK(206)+256*PEEK(207)+3)/16))*16);".";

POKE 209,4

PRINT #3;INT(PEEK(PEEK(206)+256*PEEK (207)+PEEK(209))/16);
PRINT #3; (PEEK(PEEK(206)+256*PEEK(207)+PEEK(209))-

(INT (PEEK(PEEK(206)+256*PEEK (207)+PEEK(209)/16))*16) ;

IF PEEK(209)<7 THEN POKE 209,PEEK(209)+1:

GOTO 19966

PRINT #3;"*";:

PRINT #3; ((PEEK(PEEK(206)+256*PEEK(207)+2)—-64)*1pP) :
PRINT #3:

RETURN

PRINT #3:

PRINT #3;"ARRAY ",

IF PEEK(PEEK(206)+256*PEEK(207))=64 THEN PRINT #3;"NOT DIMENSIONED ";:
PRINT #3

IF PEEK(PEEK(206)+256*PEEK(207))=65 THEN PRINT #3;"DIMENSIONED";:
PRINT #3

PRINT #3;"FIRST DIMENSION="; ((PEEK(PEEK(206)+256%PEEK(207)+4)+
256*PEEK (PEEK (206)+256*PEEK (207)+5))-1)

PRINT #3;"SECOND DIMENSION= ",
((PEEK(PEEK(206)+256*PEEK(207)+6)+

256*PEEK (PEEK(206)+256*PEEK (207)+7))-1)

PRINT #3:

RETURN

PRINT #3:

PRINT #3;"STRING ",

IF PEEK(PEEK(206)+256*PEEK(207))=128 THEN

PRINT #3;"NOT DIMENSIONED";:

PRINT #3

IF PEEK(PEEK(206)+256*PEEK(207))=129 THEN

PRINT #3;"DIMENSIONED";:

PRINT #3

PRINT #3;"MAXIMUM LENGTH = ", (PEEK(PEEK(206)+256*PEEK(207)+6)+
256*PEEK (PEEK (206)+256*PEEK (207)+7))

PRINT #3;"CURRENT LENGTH = ",

(PEEK(PEEK(206)+256*PEEK (207)+4)+

256*PEEK (PEEK (206)+256*PEEK(207)+5))

55

56 Chapter 4

19983 PRINT #3:
RETURN

19984 IF PEEK(204)=255 THEN POKE 24,0:
POKE 2@5,PEEK(205)+1:
RETURN

19985 POKE 204 ,PEEK(204)+1:
RETURN

19986 IF PEEK(206)=255 THEN POKE 206,0:
POKE 207 ,PEEK(207)+1:
GOTO 1pp48

19987 POKE 206,PEEK(206)+1

19988 IF PEEK(2@9)=7 THEN POKE 209,0:
RETURN

19989 POKE 209,PEEK(209)+1:
GOTO 10p46

The neat thing about this routine is that it contains no variable names to clutter the list of

variable names in your program. The following are examples of the outputs you will get from
VLIST.LST for the three types of variables:

VARIABLE NUMBER = 5

VARIABLE NAME = DAYS

SCALAR VARIABLE

CURRENT VALUE = 27.00p0@ppa*p

VARIABLE NUMBER = 6
VARIABLE NAME = MONTHS(
ARRAY DIMENSIONED

FIRST DIMENSION= 12
SECOND DIMENSION= §

VARIABLE NUMBER = 7
VARIABLE NAME = NAME$
STRING DIMENSIONED
MAXIMUM LENGTH = 19
CURRENT LENGTH = 11

END OF VARIABLE NAME AND VALUE TABLES.
NUMBER OF VARIABLES FOUND= 7
STRING/ARRAY TABLE LENGTH= 1729 BYTES

Here is how you can use VLIST.LST:

1. LOAD the program that you want to analyze.

2. ENTER the listroutine by using the command ENTER“D:VLIST.LST”. Note

that the routine must have previously been LISTed to disk with the file name
VLIST.LST.

3. RUN your program to initialize the variables, then simply execute a
GOSUB 19940.

ATARI BASIC Faster & Better 57

4. A shortmenu will come up asking you to press the START botton for output to
the screen or SELECT for output to a printer. If you select the printer, be sure to
turn your printer ON before pressing SELECT.

5. If you modify your program, make sure that you delete the lister routine when
you LIST the new version to disk.

If you don’t have enough available memory to use VLIST.LST, you can use the following
abbreviated version of it. VSHORT.LST does not have all the features of VLIST.LST, but it
only takes up about 343 bytes. It will give you a list of all of your variables, thus telling you
how many variables you have in your program. It does not perform the complete analysis that
VLIST.LST does, but VSHORT.LST still can come in handy.

Here is a simple program that initializes some variables so we can see how VSHORT.LST
works:

109 DIM MONTH$ (15),COSTS(19):
UNITS=100:
BREAKAGE=@.1

Now if we merge VSHORT.LST and type RUN, here’s what we get:

MONTHSEY
COSTSH

UNITER
BREAKAGH

Notice that each name ends with an inverse video character.

Figure 4.5 — VSHORT.LST — A 343 Byte Version of VLIST.LST

1999@ REM VSHORT.LST - A SHORT VLIST
19991 POKE 2@4,PEEK(130):
POKE 205,PEEK(131)
19992 IF PEEK(204)=PEEK(132) AND PEEK(205)=PEEK(133)
THEN STOP
19993 PRINT CHR$ (PEEK(PEEK(204)+256*PEEK(205)));
19994 IF PEEK(PEEK(204)+256*PEEK(205))>127 THEN PRINT
19995 IF PEEK(204)=255 THEN POKE 204,0:
POKE 205,PEEK(205)+1:
GOTO 19992
19996 POKE 204 ,PEEK(204)+1:
GOTO 19992

If you want to make your program unlistable, you can achieve that dubious goal by using
the following routine:

20PpP REM SCRAMBLE.LST

20pP1 FOR VTABLE=PEEK(13@)+256*(131) TO PEEK(132)+256*PEEK(133)-1
20092 POKE VTABLE,99

2p0@3 NEXT VTABLE

20004 POKE PEEK(138)+;256*PEEK(139)+2,0

20pp5 SAVE "D:FILENAME"

20096 NEW

58 Chapter 4

This routine replaces all of the variable names in the table with garbage, and the POKE in
line 20004 makes it so your program can only be RUN. It will not be listable at all and a
LOAD command won’t work correctly. Ireally do not recommend that you ever do this to one
of your programs. The reason that I showed you this trick is so you will better understand
what the problem is when some nefarious programmer gives you a program that has a
garbled variable name table. If you run across such a program, you can use VERVAN’S
FULMAP to make it listable again.

The Two Bit Shuffle, or Moving Data in Memory

Many special effects and high speed techniques involve nothing more than moving (or
copying) a block of data from one location in memory to another. Copying a block of data
means that the contents of certain memory locations are nondestructively duplicated in
another location. Moving a block of data means that the original memory locations no longer
contain the data. Think of this in terms of a photo-copy process. When you photo-copy a
magazine article, the copy is made without destroying the original article (thatis, if you don’t
use the photo-copy machine I have in my office). On the other hand, moving a block of data is
analogous to moving a pile of leaves from the front of your house to the back of your house.
When your mother (or wife) looks at the front yard, she congratulates you on doing such a fine
job. However, you know that you did not really destroy the leaves. You simply moved them to
a different storage location.

You can use special machine language subroutines to rapidly move or copy blocks of data
from one location to another. In general, I will use the word “move” for both types of
movement.

I'have alittle machine language routine that will do all of this by a simple call from BASIC.I
call the routine MOVER. Figure 4.6 gives the assembly listing of MOVER:

Figure 4.6 — Assembly Language Listing of MOVER — A Block Move (or Copy) Routine

1009 ;MOVER - A BLOCK MEMORY MOVER

1019 ;

192p ;CALLED FROM BASIC USING:

1030 ;X=USR(ADDR, START, END,NEWSTART, OPTION)

1949 ;

150 ;CAUTION! - USE OPTION=f CAREFULLY

1060 ;
popp 107 o $60p : COMPLETELY RELOCATABLE

1089 ;

1990 ;SET UP PAGE ZERO POINTERS

1109 ;
#pCB 111 FROMT = $CB ;START ADDRESS OF OLD BLOCK
gpco 112 FROMB = $CD :END ADDRESS OF OLD BLOCK
pACF 1139 T0 = $CF ; START ADDRESS OF NEW BLOCK
ggDn1 1149 OPTION = $D1 :P=MOVE <>p=COPY

1150 ;

1169 ;INTIALIZE POINTERS

1179
0609 68 1189 PLA :GRAB NUMBER OF ARGUMENTS
g6g1 Coga 1199 CMP A

p6p3 FPR7 1209 BEQ GOoD IF ONLY 4 THEN CONTINUE

605
606
pep7
p6p8
p6p9
p608B
p68C
p6pD
p6pF
pe1p
p612
p613
p615
p616
p618
p619
618
p61C
p61E
f61F
2620

0622
0624
0626
£628
p62A
p62C
p62E
p63p

p632
p634
£636
638
f63A
p63C
p63D
p63F
p641
p643
p645
p647
£649
p64B
p64D
p64F
#651

AA
68
68
CA
DAFB
69
68
85CC
68
85CB
68
85CE
68
85CD
68
8500
68
85CF
68
68
8501

Appp
A5CC
C5Dp
3p3p
1996
A5CB
C5CF
3028

B1CB
91CF
A5D1
C9gp
Dp@3
98

91CB
A5CC
C5CE
DPP6
A5CB
C5CD
FACo
E6CB
Dpp2
E6CC
E6CF

1219

1229 KILL
1230

1249

1250

1269 EXIT
1279 GOOD
128p

129¢

1309

1319

1320

1330

134p

1350

1360

1379

1380

1399

1409

1419

1429 ,

1430 ;IS THIS A MOVE

1449 ;

1450

1460

1479

1489

1499

1509

1519

1520

1530 ;

1549 ;MOVE A
1550 ;

1560 LEFT
1570

1580

1590

1600

1619

1620

1639 CHECK1
1640

1650

1660

1670

1680

1699 CHECK2
1790

1719

1720 CHECK3

TAX
PLA
PLA
DEX
BNE
RTS
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
PLA
STA

LDY
LDA
CMP
BMI
BPL
LDA
CMP
BMI

ATARI BASIC Faster & Better

WRONG NUMBER OF ARGUMENTS
RETRIEVE PROPER RTS ADDRESS

KILL
;GO BACK TO BASIC
FROMT+1
FROMT
FROMB+1
FROMB
T0+1

T0

OPTION
TO THE LEFT OR THE RIGHT?

#0 :SET INDEX TO ZERO FOR LATER
FROMT+1

T0+1

RIGHT

LEFT

FROMT

T0

RIGHT

BLOCK TO THE LEFT

LDA
STA
LDA
CMP
BNE
TYA
STA
LDA
CMP
BNE
LDA
CMP
BEQ
INC
BNE
INC
INC

(FROMT) ,Y ;GRAB A BYTE
(T0),Y ;MOVE IT LEFT
OPTION ;D0 WE ERASE OLD LOCATION?
#0
CHECK1 ;NO? THEN CONTINUE
;YES, ERASE OLD LOCATION
(FROMT) ,Y
FROMT+1 ARE WE FINISHED?
FROMB+1
CHECK2
FROMT
FROMB
EXIT ;YES? THEN RETURN TO BASIC
FROMT ; UPDATE READ/WRITE POINTERS
CHECK3
FROMT+1
T0

59

60 Chapter 4

#653
$655
657
£658

P65A
p65C
#65D
p65F
pe60
0662
p664
p665
666
667
669
668
p66C
f66E
p67p
§672
p674
p676
0678
p67A
0678
p67D
p67F
0681
p683
p685
0687
A689
0688
$68D
p68F
#691
p693
p695
p696
£698

DADD
E6DP
18

9pD8

A5CD
38

E5CB
48

A5CE
E5CC
AA

68

18

65CF
85CF
8A

6500
85D
B1CD
91CF
A5D1
C9pp
DpP3
98

91CD
A5CC
C5CE
DAP6
A5CB
C5CD
Fp82
C6CD
Dpp2
C6CE
C6CF
DADD
C6DP
18

90D8

1730
1749
1750
1769

1779

1780
179¢
180p
1816
1820
1830
1844
1850
1860
1870
1880
1890
1909
1919
1920
193p
194p
1950
1960
197p
198p
199p
2ppp
2019
202p
2030
2p4p
2050
2060
2079
2080
2090
2109
2119
212p
2130
2149
2150

MOVE A

RIGHT

MOVE

CHECK4

CHECKS

CHECK6

BNE
INC
CLC
BCC

LEFT
TO+1

LEFT

BLOCK TO THE RIGHT

LDA
SEC
SBC
PHA
LDA
SBC
TAX
PLA
CLC
ADC
STA
TXA
ADC
STA
LDA
STA
LDA
CMP
BNE
TYA
STA
LDA
CMP
BNE
LDA
CMP
BEQ
DEC
BNE
DEC
DEC
BNE
DEC
CLC
BCC
.END

FROMB
FROMT

FROMB+1
FROMT+1

T0
T0

TO+1

T0+1
(FROMB) ,Y
(TO),Y
OPTION

#o

CHECK4

(FROMB) , Y
FROMT+1
FROMB+1
CHECKS
FROMT
FROMB
EXIT
FROMB
CHECK6
FROMB+1
T0

MOVE
TO+1

MOVE

; COMPUTE BLOCK LENGTH

;ADD IT TO NEW BLOCK START

;GRAB A BYTE
;MOVE IT RIGHT
;D0 WE ERASE OLD LOCATION?

;NO? THEN CONTINUE
;YES, ERASE OLD LOCATION

ARE WE FINISHED?

;YES? THEN RETURN TO BASIC
;UPDATE READ/WRITE POINTERS

Figure 4.7 — POKE Value Table for MOVER

19909 REM MOVER.LST
19901 DATA 104,201,4,24p,7,170,1p4,1p4
19902 DATA 202,28,251,96,104,133,204,1p4

ATARI BASIC Faster & Better 61

19903 DATA 133,203,104,133,206,104,133,205
19904 DATA 104,133,208,1094,133,207,104,194
19905 DATA 133,209,160,0,165,204,197,208
19906 DATA 48,48,16,6,165,203,197,207,
199097 DATA 48,40,177,203,145,207,165,209
19908 DATA 201,0,208,3,152,145,203,165
19909 DATA 2@4,197,206,208,6,165,203,197
19919 DATA 205,240,192,230,203,208,2,230
19911 DATA 204,230,207,208,221,230,208,24
19912 DATA 144,216,165,205,56,229,203,72
19913 DATA 165,206,229,204,179,1p4,24,1p1
19914 DATA 207,133,207,138,101,208,133,208
19915 DATA 177,205,145,207,165,209,201,p
19916 DATA 208,3,152,145,205,165,204,197
19917 DATA 206,208,6,165,203,197,205,24p
19918 DATA 130,198,205,208,2,198,206,198
19919 DATA 207,28,221,198,208,24,144 216
19929 MLSTART=1536
19921 MLEND=1687
19922 FOR X=MLSTART TO MLEND
19923 READ Y:

POKE X,Y:

NEXT X
19924 RETURN

When you are shuffling blocks of numbers around in memory, you will have to be very
careful not to crash your computer. Always save your program to disk and remove the disk
from your disk drive before trying any new block move that you have not successfully done
before. It is possible not only to crash the computer, but you could also very easily cause the
operating system to destroy the files on your disk!

MOVER is called from BASIC by a USR call in the following format:
X = USR(1536,START,END,NEWSTART, OPTION)

START and END define the first and last memory addresses of the block that you want to
move. NEWSTART is the address where MOVER is to start loading the data. The data will
end up in the same order that it was in the original block. OPTION tells the routine whether
you want to move or copy the block. A value of zero tells MOVER to move the block, thus
deleting the block from its previous location. Any non-zero value in this argument will cause
MOVER to copy the designated block of data. This means that you will then have two copies
of the same block of data in two separate locations in memory.

There are two general kinds of block movements. If START and NEWSTART are
separated by atleast END-START+1 bytes, then this is called a non-overlapping movement.
Think of it as laying two sheets of paper side-by-side in such a way that the two pieces of
paper do not touch each other. It does not matter whether one piece of paper is to the right or
the left of the other one. This type of movement is okay most of the time, but you will also find
need for another kind of movement that allows the pieces of paper to overlap. The second
kind of movement involves block locations that overlap one another. This kind of movement
is further differentiated by the direction of the movement. A good example is to take an egg
carton, cut it down the middle length-wise, and position the pieces end-to-end.

62 Chapter 4

Putthree eggs in the right side of the lefthand “half carton,” and put three more eggs in the
left side of the carton on the right. When you get it set up, it should look something like
this:

Figure 4.8 — Eggs in Carton

Now, move all the eggs to the left one position so they look like this:

Figure 4.9 — Eggs Moved to Left

How did you move the eggs? I would wager that you did it the same way most other people
would do it. You started by moving the egg in position L04 to position LL03. Next you moved
the eggin position L.05 to position L04. You then continued in this fashion until all of the eggs
were moved. This is exactly the same technique that a computer uses when moving a block of
data in an overlapping move to the left (down, for you purists).

ATARI BASIC Faster & Better 63

Now, reverse the experiment and shift the “block” of eggs right one position to restore the
original configuration. What did you do differently? That’s correct, you started the
movement with the egg in position R02. You made the change in method almost
instinctively. When a machine language subroutine moves a block of data in memory, it must
use the technique that is correct for the kind of move it is doing.

The possible applications you might have for a routine such
as MOVER would include:

Moving relocatable USR routines from one address in memory to another.
Instant duplication of array elements.
Clearing a section of memory.

Inserting and deleting array elements.

Insert and delete operations on the video display.

Saving the video display in protected memory for later recall. (There is also

1
2
3
4
5. Moving data to protected memory so it can be passed to another program.
6
1
a technique called “page flipping” that we will discuss later in this book.)

8

. Downloading the Atari character set.

The following program will demonstrate some of the uses of MOVER:

Figure 4.10 — MOVER.DEM — Demonstration Program for MOVER

190 REM MOVER.DEM
119 PRINT CHR$(125):
POKE 752,1
120 POSITION 2,2:
PRINT 11 3 3 e 3¢ e e e e e 3¢ 11
130 X=USR(1536,4p082,40p91,40722,P)
149 FOR I=1 TO 1p@:
NEXT I
150 X=USR(1536,40722,40731,4pp82,0)
16p FOR I=1 TO 1pP:
NEXT I
17p GOTO 130

This program uses MOVER to simply move a string display from the top of the screen to
the bottom. Try changing the fourth argument in both USR calls from zero to one. Note that
the screen now appears to have two permanent copies of the string.

To move the original string to the right six places, use the following arguments in
MOVER.DEM:
X = USR(1536,4p082,4p091,40p88,9)

The routine WINDOW.DEM listed below, uses MOVER to show the contents of any page
in your computer, one page at a time.

64 Chapter 4

Figure 4.11 — WINDOW.DEM — A Window Into Your Computer’s Memory

199 REM WINDOW.DEM - A WINDOW INTO
119 REM YOUR COMPUTER'S MEMORY
12 PRINT CHR$(125):
PRINT "WINDOW.DEM - ":
PRINT "A WINDOW INTO YOUR COMPUTER"
139 PRINT :
PRINT "WHAT PAGE NUMBER (@ TO 255):";
149 TRAP 140:
POSITION 30,4:
PRINT CHR$(253);CHRE (254) ; CHR$(254) ; CHR$ (254) ; :
INPUT PAGE
15 IF PAGE<@ OR PAGE>255 THEN 14f
160 X=USR(1536,256*PAGE,256*PAGE+255,40240,1)
179 GOTO 149

This routine shows you any page of memory, one at a time.

ATARI BASIC Faster & Better 65

BASIC Overlays

Passing Variables Between Programs

Any time you use a RUN or LOAD command, all variables that were already active in your
previous program are cleared to allow the newly LOADed program to start with a fresh slate.
This is not always the result you would like to achieve. There are many applications where
you will not want the variables cleared as you go from one program to another, or RUN a
program again.

If you could pass variables between programs, you could divide a large applications
program into several smaller run modules. By using smaller “programs,” you will have more
memory available for data storage. One program, for example, might load data from the
keyboard or from a disk file. The next program might process the data, and a third program
might take care of dumping the results to a printer or disk.

Before you can effectively use variable-passing subroutines, you need to have some
understanding of how BASIC stores variables. Three areas are set aside in memory to store
information about the variables in your program. We talked about the first in the last
chapter. Itis called the Variable Name Table. Everytime a new variable is used in a program
orin direct mode, the name of that variable is added to the end of the Variable Name Table.
The table will not allow you to have more than 128 variables. If you exceed this limit, you will
get an ERROR 4, and your program will crash. The real utility of VLIST.BAS is that it gives
you a count of how many variables are in your program. The length of this table depends
upon the number of variables in your program. The second area that BASIC reserves for
variable housekeeping is called the Variable Value Table. This is where BASIC stores the
BCD value of each numeric variable in your program. I won’t go into the specifics of exactly
how the numbers are stored since that is well documented in De Re Atari, a book published
by Atari. The piece of information that you need here is that this table is stored on top of the
Variable Name Table below your program. The starting address of this table is stored on
page zero at 134 and 135, and the length of this table depends upon the number of variables
in your program.

The third reserved area is the one we need to really watch out for whenever we are doing
simple overlaysin BASIC. This is the String/Array Table. This table contains all of the string
variables in your program, as well as the BCD values of all of your dimensioned numeric
arrays. The key to understanding whether or not a variable is contained in this table is the
DIMENSION statement. If the variable is dimensioned, it is in this table. BASIC requires all
string variables to be dimensioned, so they are always included in this table. This table is of

66 Chapter 5

particular concern from the overlay point of view because it is enlarged during program
execution. Everytime a new DIMENSION statement is encountered the table is expanded
to make room for the new data. The amount of additional space that is eaten up is equal to the
size of a string dimension, or six times the size of a numeric variable dimension. This table is
located immediately below your BASIC program. You can find the start address of this table
by looking at page zero, locations 140 and 141.

The Ultimate Memory Saver

Large computers use sophisticated techniques that automatically load small blocks of
program logic from disk as they are needed. This makes it possible to execute programs that
are, in effect, larger than the available memory. With the techniques I will describe here, you
can do the same thing with your Atari 800! I am sure you will find, as I did, that when you
implement these techniques, your programs will enter a whole new generation of
performance capabilities.

We will call each group of BASIC program lines loaded with these techniques an overlay,
and refer to the lines that remain in memory as our main (or master) program. Overlays can
be loaded for limited operations that would normally be done by subroutines or for more
global operations where the overlays are main prograins in their own right. They can also be
major blocks of program logic which act as sub-programs. Here are some of the advantages of
using BASIC overlays:

1. You can, in effect, go from one program to another, retaining all variables that
are in use. You can also leave your disk files open as you roll in overlays.

2. Common routines and subroutines can remain in memory as you go from one
overlay to another. Because of this, you don’t have to repeat your housekeeping
logic in each program, and you don’t need to repeat those subroutines that are
standard to the overall application in each program. Because you can look at every
application as a group of run modules, with little or no logic repeated, you save disk
space. Since you load only what you need, when you need it, your effective load time
may be faster.

3. Because youroverlays share the same standard run modules and housekeeping
logic, you save time when you need to make modifications. Let’s say, for example,
you want to change a disk file layout. Instead of changing it in several different
programs, you only need to change it once if you have your disk handling subroutine
in a run module.

4. Program execution speeds can improve because you have less text in memory
at any one time. BASIC doesn’t have to search as far when it receives a GOTO or

GOSUB command.

5. Anoverlay program can GOTO or GOSUB to any line in the main program. The
main program can execute GOTOs or GOSUBs to any line in the overlay program.
One overlay program can even load another one.

6. You can make almost any large application run in as little as 8K of memory! Of
course, you would not want to run that “tight” since performance would be seriously
degraded by the continual loading of overlays from disk. In practice, however, the
ability to reduce the memory space required for program text lets you have more
space for string and variable storage and (if you need it) more space for protected
memory at the bottom of memory.

ATARI BASIC Faster & Better 67

We will be discussing two general methods of loading overlays. A merged overlay
overwrites a section of code viaan ENTER command while assuming that BASIC is holding
the values of all of the variables that you want to pass to the new routine. A protected memory
overlay utilizes a section of protected memory to make sure that the loading or running of a
new routine or program won’t damage the resident data.

Overlay Techniques In BASIC
Using the ENTER Command

There are two general methods for doing overlays in Atari BASIC. The first way is
probably the easiest, but is also the least safe. You can merge two programs by using the
ENTER command. You can do this either from the direct mode or during the execution of a
program. When a program is stored on disk with the ENTER command, the resulting file is
what is called an ASCII file (I guess ATASCII is what the form should be called on the Atari
800). When you ENTER this file from disk, it is treated like keyboard input! This holds true
even if you are loading it during the execution of another program.

The trick to getting the new program to overlay part of your first program is to make sure
that the line numbers of the overlay are exactly the same as the line numbers of the code to be
replaced. For example, write the following three routines and LIST them to disk as three
different files:

199 PRINT"MY PROGRAM #1"
119 PRINT
120 X=19:
Y=25
130 Z=X*X+Y/X
149 PRINT X,Y,Z

119 PRINT"WITH A DIRECT OVERLAY"
130 Z=X*Y-X/Y

119 PRINT"WITH AN INTERLEAVED OVERLAY"
115 W=12
130 Z=X+Y+W

Now, type NEW and ENTER the first routine. When you RUN the first routine, the words
“MY PROGRAM #1” will be printed on the screen along with the values of X, Y, and Z (10,
25, 102 5). When you use the ENTER command to load the second routine, the screen
output of the next RUN will be:

MY PROGRAM #1
WITH A DIRECT OVERLAY
19 25 249.75

Why is this? Well, when you entered the second routine, lines 110 and 130 were replaced
by the new lines in your overlay. If you did a LIST at this point, you would get

190 PRINT"MY PROGRAM #1"
119 PRINT"WITH A DIRECT OVERLAY"
129 129 X=19:
Y=25
130 Z=X*Y-X/Y
14p PRINT X,Y,Z

68 Chapter 5

Loading the overlay with the ENTER command had exactly the same effect as if you had
typed the new lines in through the keyboard. Now ENTER the third routine from disk and
RUN it. You got a different output because of the new program lines. Now LIST the
program. You should pay special attention to the presence of line 115. This line did not exist
in either the original routine or the first overlay. If you later perform another overlay, you will
have to make doubly sure that the next overlay won’t be messed up by line 115. This is why I
emphasized the words exactly the same in the earlier discussion.

The merge technique of doing overlays may therefore be broken down into direct and
interleaved methods. A direct overlay always replaces lines of code in the host program. It
never introduces any new line numbers. This is what I would consider to be the safer of these
two methods. Using interleaved overlays can lead to unforeseen trouble if more than one
overlay is going to be used. You may accidentally put lines of code in the wrong place and
wreak havoc with your data.

The same technique can be used to perform an overlay where you want to preserve the
existing variable values for use by the overlayed run module. All that is required is one small
change: you have to eliminate the need to use the RUN command after the new module is
ENTERed. Unfortunately, the only way to do this is for you to know where you want the
program to resume execution and for you to type the appropriate GOSUB command from
direct mode. Needless to say, this is less than ideal, so I will show you a better way in a
moment. So far I haven’t told you why we need to worry about the String/Array Table.
Remember that this table is expanded everytime a new array or string variable is
dimensioned. As long as you are doing partial overlays, you probably won’t run into a
problem with the fact that this table is dynamically updated. However, I once had an
application where I used one program to set up a massive amount of look-up tables that were
to be used by a completely separate program which was to be loaded via the ENTER
command. It bombed! No matter what I tried, I could not get it to work. I finally gave up and
called Atari’s question department to find out what I was doing wrong. They couldn’t help
me. They said that the ENTER technique was originally intended for small overlays of less
than 8K or so. They had never tried to do an overlay of the size I was trying, and I was
probably getting messed up by the way the String/Variable Table updates itself. Oh well.
That told me that I probably should find another way to pack my 100K program into my little
48K computer.Ifoundit.Icould store my data in reserved memory by using POKEs, and get
it out again by using PEEKs.

Using Protected Memory Overlays

The second of the general overlay techniques is more complex to set up, but it is much
safer and can also be used in conjunction with the ENTER technique. This technique
requires that youuse some scheme like RESERVE.LST to protect a section of memory. You
can then store your data in the protected area using POKEs. This way you can ENTER,
LOAD anew program or even RUN“D:FILENAME”, and the data will remain safe until you
need it. I've seen this technique used in several graphics adventure games, such as Temple of
Apshai, that are remarkably fast considering that they are written in BASIC. This technique
has the added benefit of reducing the number of variables, which leaves more room for your
program.

For example, type in the following routine and save it to disk:
199 PROLAY.DEM

11 SIZE=25
12f) ADDRESS=256*PEEK(744)+PEEK(743)+SIZE

ATARI BASIC Faster & Better 69

130 MM=INT (ADDRESS/256) :
LL=ADDRESS-256*MM
14p POKE 743,LL:
POKE 744 MM
150 POKE 128,LL:
POKE 129, MM
16 FOR X=1 TO 24:
READ Y:
POKE ADDRESS-X,Y:
NEXT X
179 REM IF Y>255 OR Y<>INT(Y) THEN YOU WILL NEED
180 REM TO STORE IT IN TWO BYTES WHICH MEANS YOU
199 REM WOULD HAVE TO MODIFY THIS ROUTINE.
209 DATA 1f,20,30,49,50,60,70,80
219 DATA 90,1pp,110,120,130,140,150,160
22p) DATA 170,180,190,200,210,220,230,24p
23p END

PROLAY.DEM first reserves 25 bytes at the bottom of memory. Then it reads a bunch of
data that could just as easily be from a numeric array or several variables. Each byte of data
is then POKEd into the reserved area of memory for later use by another program. The data
is now safe from being destroyed by a RUN or LOAD command. You can now LOAD and
RUN a new overlay module that will be able to use the data stored by the first routine.
Typically, how this is done is to make the last line of the first routine automatically load the
overlay with a RUN“D:filespec.extension” command. The overlay can process the data and
end its function with a RUN“D:MAIN” command.

This technique can be used almost “as is” for data that consists of integers. If your data
also includes non-integer values, you can still use this technique if you first multiply the data
by 10 or 100 or 1000, that is, whatever power of ten that will get rid of the decimal fraction. If
you have to do this, make sure that the overlay decodes the number properly. For example, I
have a set of routines that use a 3000 element look-up table that contains numbers between
zero and 35.5. All of the numbers have either a zero or a five to the right of the decimal place. I
used the protected memory overlay technique by simply multiplying each number by two (I
could have used 10, but decided against it to keep all of my data values below 255, which
avoids two byte numbers), then I POKEd the “new” table into protected memory for use by
the overlay routines. Of course, I had to make sure that the overlay divided the peeked value
by two before using it.

If you want to store string data in this manner, you will have to write a routine that looks at
each characterin the string and computes the ATASCII value of the character. The resulting
number can then be stored in your protected area. The follow on program will have to
retrieve the numbers in the proper order, do a CHR$ operation, and concatenate them into
the new string variable.

Protected memory overlays is a general technique that will handle large amounts of data.
If you have less than 256 bytes of data to store, you could always store them on page six in
memory.

Another application of this technique is to load special machine language subroutines
during the execution of a main program. I haven’t used the technique in this way very much,
since I usually string pack my machine language subroutines and incorporate them directly
into my main program. This only works, however, if the routine is relocatable. If the machine

70 Chapter 5

language routine that you need in your program is not relocatable, you can reserve a block of
memory for it at the bottom of memory. This works only if that is where it is nonrelocatable
to.

There are several different ways to load such a routine without halting program execution
like the ENTER command does. If you analyze either CONVERT.BAS or DATAPAK.BAS,
you will see where I am actually “loading” a machine language routine from disk during the
middle of program execution. The only difference is that those two routines process the
machine language code into some other format instead of simply POKEing the machine
language program into the proper memory locations.

The simplest way to perform a “load” during program execution is to GOSUB to a
subroutine that will open the disk file and loop through a series of GET statements which will
grab the machine language routine from the disk file. You follow this with a short routine that
takes the byte grabbed from the disk and POKEs it into the designated location in memory
(usually page six). There are more sophisticated methods, but they are typically a variation
on this one. For example, De Re Atari contains a program that performs the same kind of
GET routine by POKEing certain parameters into the operating system and persuades the
OS to load a machine language program from disk. HEADER.BAS in Chapter Four makes
use of this technique.

A

b B

CASD!“$W FUM&MAP
T DISDUP
CASDUP % DOWNLD Q. DISDLVY

CASSETTE DUPLICATING PROGRAM 2
(13 11773

B L]

el

G uu

DISASM Rude V-COS

| DISASSEMBLY PROGRAM

Ld 44

£ IDISKPAK| R\

.!:. DOS FILES ON BOOT DISKS Peesessssss

ATARI BASIC Faster & Better 71

Number Crunchers and Munchers

Regardless of the application, almost every program involves some addition, subtraction,
multiplication or division. Whether you are computing a scientific formula, an accounting
balance, or the number of points accumulated by each player in a game, you soon become
accustomed to talking to your computer with numbers and equations. However, the problem
presented by the application is only the beginning. Simple housekeeping chores, such as
formatting the screen output or retrieving the desired information from an array or from a
disk file, may often involve many numbers and equations.

This chapter provides many tricks and subroutines that can save you hours of
programming time. We’ll be looking at some mathematical techniques that are often
required for everyday programs. In addition, we’ll discuss ways to compress numerical data
for more efficient disk and memory storage. You will also see some quick routines that will
allow you to format numerical data. Finally, have you ever seen a computer book that didn’t
cover the subject of hexadecimal number conversions? We’ll be discussing some efficient
subroutines that can put this subject to bed, once and for all!

Finding Remainders

You will find that the remainder obtained when you divide one number by another has
many applications in programming. A memory location, for example, can be broken down
into byte sized pieces by dividing the decimal value of the memory location by 256. The
integer of the result is the MSB and the remainder is the LSB. The specific equations
are:

MSB = INT(ADDRESS/256)
LSB = ADDRESS-256*MSB

In disk applications, when we divide the sector number by the number of tracks on a disk,
the integer of the result tells us which track the desired record is on, and the remainder tells
us which sector within that track is the right one. In doing base conversions, we typically
divide the original number by the new base repeatedly to obtain the remainder. BASIC
provides no built-in command or function that will allow you to automatically fetch the
remainder of a divide operation. You’ve got to use a simple formula (equation). The following
subroutine, REMAIN.LST, computes the remainder, LEFTOVERS, of the first argument,
NUMBER, divided by the second argument, DIVISOR:

72 Chapter 6

20019 REM REMAIN.LST
2p@11 LEFTOVERS=NUMBER-DIVISOR*INT(NUMBER/DIVISOR)
2pp12 RETURN

Compare this equation to the way we computed MSB and LSB, and you will note that we
used the same mathematical technique. When using this technique for general purpose
applications, be sure that your program will not allow DIVISOR to ever be equal to zero. If
that should ever occur, your program will be interrupted by an ERROR 11 (attempt to divide
by zero error). This routine can be LISTed to a library disk and appended to other programs
by using the ENTER command.

Rounding Numbers

Rounding a number is a mathematical technique that limits the number of digits in a
number while trying to minimize the amount of error in the rounded number. You use this
technique when you go to a store and compare the “per ounce” cost of two products. For
example, if you are looking at two products that cost 87 cents for 9 ounces and 77 cents for 8
ounces, respectively, you may compute their relative per unit cost as 9.66666667 and 9.625
cents per ounce, respectively. However, this is not exactly what you really do. Typically, you
will say that the first product costs about 9.66 cents per ounce and the second product costs
about 9.63 cents per ounce. You conclude that the second product is a better bargain. What
you have just done, almost automatically, is to round the awkward numbers to a format thatis
more managable. Of course, if you are like me, you had to use a pocket calculator in the
process.

You will often find that you need to round numbers in application programming. We will
discuss two rounding methods that are useful in various circumstances. The first of these is
ROUNDINT.LST, which rounds a number to the nearest whole integer. If the decimal
portion of the number is greater than or equal to 0.5, the number will be rounded UP to the
next whole number for positive numbers, and DOWN to the next whole number if the
number is negative. If the decimal portion is less than 0.5, then the decimal fraction will be
truncated. This subroutine works with both positive and negative numbers.

2002 REM ROUNDINT.LST
2pP21 ROUNDINT = SGN(NUMBER)*ABS((INT(NUMBER)+INT(NUMBER-INT (NUMBER+.5)))
20922 RETURN

The second technique, ROUNDDEC.LST, rounds a NUMBER to two decimal places for
the proper handling of dollars and cents. The result will be the nearest cent, taking into
account positive and negative numbers.

2030 REM ROUNDDEC.LST

2p931 NUMBER = 1P@*NUMBER
2pPp32 GOSUB 20P20

2pP33 ROUNDDEC = ROUNDINT/1p0
2034 RETURN

In programming rounding functions, the challenge is to properly handle positive and
negative numbers. You will be able to handle such problems with relative ease after you have
experimented with ROUNDINT.LST and ROUNDDEC.LST.

Rounding Down

This subroutine, ROUNDDWN.LST, requires two arguments. It finds the first multiple of
the first argument, LIMIT, that is less than or equal to the other argument, NUMBER. Let’s

ATARI BASIC Faster & Better 73

say, for example, that we need to round a number down to the nearest 100. Calling
ROUNDDWN.LST with NUMBER = 392 and LIMIT = 100 will return ROUNDDWN =
300. Setting NUMBER = 3100 and LIMIT = 100 will return ROUNDDWN = 3100.

20040 REM ROUNDDOWN.LST
2041 ROUNDDWN = LIMIT*INT(NUMBER/LIMIT)
20042 RETURN

If you want to find the corresponding left position on the video screen for a POSITION
statement, you can use this routine. For example:

20p50 REM ROW.LST
2051 ADDRESS = 4p@82:
REM 4p@82 IS FOR DEMO ONLY
20@52 NUMBER = ADDRESS-40p@p :
LIMIT = 4§:
GOSUB (2p049)
2pP54 ROW=LIMIT*INT (NUMBER/LIMIT)
20@55 RETURN

will return a value of ROUNDDWN=2, thus telling you that the row number is two.
Remember that the ATARI 400/800 normally indents the left side of the screen by two
columns, so 40082 will actually point to the first PRINT position instead of the third. By the
way, you can find the column for your POSITION by using the following routine:

20p6p REM COLUMN.LST
20@61 ADDRESS=4pp82:
REM 4pp82 IS FOR DEMO ONLY
2062 NUMBER=ADDRESS-4p000
20963 DIVISOR=4p
2pp64 COLUMN=NUMBER-DIVISOR*INIT(NUMBER/DIVISOR)
2p@65 RETURN

Rounding Up

The ROUNDUP.LST suroutine is similar to the ROUNDDWN.LST routine, except that
it finds the first multiple of LIMIT that is greater than NUMBER. For example,
ROUNDUP.LST will return ROUNDUP=3100 for NUMBER=3022 and LIMIT=100.
Changing NUMBER to 3100 will yield ROUNDUP=3200.

2pp7p REM ROUNDUP.LST
2pp71 ROUNDUP = LIMIT*INT(NUMBER/LIMIT)+LIMIT
20072 RETURN

Saving Space with One-Byte Numbers

If you know that a numeric field to be stored on disk (or in a program) will always contain an
integer in the range 0 to 255, you can use the CHR$ and ASC functions to store and retrieve
the data. The advantage is that your data will only be using one byte to store each number
instead of six!

If you want to store an array which contains integers in the range 0 to 255, you can store
each number in a string by converting each number to an equivalent ATASCII character.
Call the number to be so stored, VALUE; then you can convertitinto an ATASCII character

74 Chapter 6

by using PACK$(X,X) = CHR$(VALUE), where X is the position in the string, PACKS,
that the character is to be stored in. To recall the number, simply use VALUE =
ASC(PACK$(X,X)).Iused thisin one particular program thathad a 3000 element array that
was loaded via DATA statements. Between the array and the DATA statements, over 36K
bytes would have been required. By packing the data into a string dimensioned to alength of
3000, I was able to reduce the 36K data base to about 3K! An unanticipated side effect was
that my program ran faster because the size of the program had beenreduced by almost 30K,
and I no longer had to use overlays.

Saving Space with Two-Byte Numbers

Since the ATARI does not support true integers, all numeric values are stored as six-byte
BCD. This can be areal painif you have an application like the one mentioned in the previous
paragraph. I have shown you a way to handle a special case by packing the six-byte numbers
into one-byte strings. That technique isn’t much help, however, if your data won’t fit into the
0to 255 range of integers. This next technique goes one step further. It assumes that you still
have integers, but they can take on any positive value from 0 to 65535. All you have to do is
combine several of the techniques that we have already discussed. Namely, you separate the
number into an LSB and an MSB and pack these numbers into a string. You will have to be
more careful in recovering the data to make sure you don’t call an LSB an MSB and vice
versa. Note that you could store prices in this way by multiplying the price by 100.

Print Without USING

Many BASICs have a built-in formatted print capability that is called PRINT USING.
Unfortunately ATARI BASIC does not support this command. Although it is possible to
write a machine language program to add such a command to BASIC, it probably isn’t worth
the time it would take, since you still would have to write the format statement that the
PRINT USING command would use. I have found it simpler to write a set of special format
subroutines that give me comparable capability in special cases.

Formatted Money Values

The MONEY.LST routine will take a number and force it into a dollar and cents format.
The largest whole dollar must be less than $10 million. Fractional cents are rounded to the
nearest penny. The dollar sign, ““$”, is placed at the immediate left of the number. The print
field, however, does not vary. It is always 15 spaces wide. If you are formatting a column of
prices and want the dollar sign to be printed in a certain column, then change the value of
MONEYS$ appropriately. DIGITS should be set for the largest dollar figure.

Figure 6.1 — FORMATTED MONEY Subroutine

2pp8P REM MONEY.LST

20p81 TRAP 20p83

20p82 COLUMNS=DIGITS+3:
DIM MONEY$(COLUMNS)

20p83 IF LEN(STR$ (ABS(INT(VALUE))))>=COLUMNS-5
THEN PRINT "INTEGER VALUE OF NUMBER IS TOO LARGE":
GOTO 2pP88

20p84 TRAP 2pP88:
MONEY$=" § e
IF VALUE<p THEN VALUE=-VALUE:
MONEY$ (1,1)="-"

ATARI BASIC Faster & Better 75

2pp85 MONEY$ (COLUMNS-2-LEN(STR$ (INT(VALUE))),COLUMNS-3)=
STRY (INT(VALUE))

2pp86 REM ROUND TO NEAREST PENNY

2pp87 MONEY$ (COLUMNS-1,COLUMNS)=
STR$ (1PP+INT ((VALUE-INT(VALUE))*19@+p.5)):
MONEY$ (COLUMNS-2, COLUMNS-2)="."

2pp88 RETURN

Formatted Telephone Numbers

Another very useful format routine is PHONE.LST. The following routine requires the
area code to be stored in AREA, and a telephone number which has been separated and
stored in PREFIX and NUMBER. The routine will return a string, PHONES$, that contains
the telephone number in the format (XXX) XXX-XXXX. This makes the number much

easier to understand and use in printed listings.

Figure 6.2 — FORMATTED TELEPHONE NUMBERS Subroutine

2p@90 REM FORMATTED TELEPHONE NUMBERS
2pp91 REM USE LINE 26§92 ONLY ONCE
2pp92 DIM PHONE$(14)
2pP93 PHONE$="(XXX) XXX-XXXX"
20094 PHONE$(2,4)=STR$ (AREA) :
PHONE$ (7,9)=STR$ (PREFIX) :
PHONE$ (11,14)=STR$ (NUMBER) :
RETURN
2pP95 REM LINE 26096 IS FOR DEMO ONLY
20p96 AREA=714:
PREFIX=555:
NUMBER=2121:
PRINT AREA, PREFIX,NUMBER:
GOSUB 2pp92:
PRINT PHONES$:
STOP

Base Conversions
Hexadecimal-to-Decimal Conversions

In many cases it is much more efficient to work with hexadecimal (hex) notation than with
decimal. In fact, it is almost mandatory if you expect to do much machine language
programming. To convert from hex to decimal is easy. You can use the following routine to
convert any two or four place (in other words, one or two byte) hex number into a decimal
number by storing your hex number in HEXNUMBERS$ and using a GOSUB to
HEXDEC.LST. The routine uses a common mathematical trick that will return the proper
decimal number in DECNUMBER.

76 Chapter 6

20109 REM HEXDEC.LST - CONVERT HEX NUMBERS TO DECIMAL
20191 DIM HEXDEC$(23) ,HEXNUMBERS (4)
201092 HEXDEC$ = "ABCDEFGHIJ*******K| MNOP" :
20193 REM THIS IS THE MAIN ENTRY POINT
20104 DECNUMBER=f : HEX=LEN (HEXNUMBERS)
FOR X = 1 TO HEX:
DECNUMBER = 16*DECNUMBER +
ASC (HEXDEC$ (ASC (HEXNUMBER$ (X)-47))-65:
NEXT X:
RETURN

This routine is particularly useful if you are writing a BASIC program that requires you to
INPUT hex numbers. All you have to do is make the input variable a string and store the
input in HEXNUMBERS$ before calling the HEXDEC routine.

Decimal-to-Hexadecimal conversions

DECHEX.LST s very similar mathematically to HEXDE C.LST. The primary difference
is the direction of the conversion. This routine will take a decimal number stored in the
variable DECNUMBER, and convert it to a hex number, stored in HEXNUMBERS$. The
variable, BYTES, specifies the size of the hex number as either one or two bytes.

20119 REM DECHEX.LST - CONVERT DECIMAL NUMBERS TO HEX
20111 DIM DECHEXS$(16)
2p112 DECHEX$="p123456789ABCDEF"
20P13 KHEX=4096: PRINT "$":IF BYTES=-1 THEN KHEX=16:27=2
20914 FOR I=1 TO Z4:

J=INT(DECNUMBER/KHEX) : PRINT DECHEX$(J+1,J+D);
20015 DECNUMBER=DECNUMBER-KHEX*J:

KHEX=KHEX/16:

NEXT I: PRINT:IF BYTES=1 THEN BYTES=2:74=4
20116 RETURN

The following program, HEADER.BAS, is a practical application program that uses the
DECHEX.LST routine, albeit in a slightly modified form that reduces the repetition of the
DIM and initial assignment statement. HEADER.BAS reads the file header on a disk file
and tells you whether the file is for a BASIC program or a binary load machine language
program. If the file is a binary load file, then HEADER.BAS will tell you certain important
parameters for the file. Namely, you will be told the START and END addresses of where
the file is loaded into memory. The length of the file will be displayed and you will be given
the option of tracing the RUN and INIT addresses. If you chose to find out the RUN and
INIT addresses, then HEADER.BAS will search the file for these parameters and display
them for you. If the file turns out to be what is called a compound load file, you will be notified
of this fact and given the option of continuing the trace operation. All addresses and lengths
are printed in both decimal and hex format. If you press CTRL-R, HEADER will go into an
auto-scan mode looking for an INIT or RUN address. The auto scan feature stops when one
of these is found, the end of file is reached, or you press the space bar.

ATARI BASIC Faster & Better 77

Figure 6.3 — HEADER.BAS — Disk File Analyzer

1000 REM HEADER.BAS-DOS FILE ANALYZER
1919 2p=p:

Z1=1:

72=2:

28=4;

78=8:

716=16
1629 10CB=3:

POKE 752,1
1930 DIM FILE$(Z16),

RESPONSES (Z16) ,

DECHEX$ (116),

BLANKS$ (32)

CI08$(31)

1049 FILE§="D1:":

SEGMENT=20:

DECNUMBER=Z0:

FLAG1=Z0:

FLAG2=Z
1050 DECHEX$="P123456789ABCDEF"
1060 BLANKS(1)=" ":

BLANK$ (32)=" ":

BLANKS (2) =BLANK$
1070 GOSUB 2560
1089 GOTO 1409
1699 REM COMMAND ROUTINE
1109 TRAP 1199
1119 POSITION 72,18:

PRINT "PRESS TO QUIT"
112¢ PRINT "PRESS SAMA®] T0 LOOK FOR RUN/INIT"
113p PRINT "PRESS TO LOAD NEW FILE"
114p IF PEEK(53279)=6

THEN POKE 764,255:

CLOSE #IOCB:

RUN
1150 IF PEEK(53279)=5

THEN 2070
1160 IF PEEK(53279)=3

THEN 1219
1179 REM CTRL-R AUTO SCANS FOR INIT
1180 IF PEEK(764)=168

THEN 2070
1199 POKE 77,0
129 GOTO 1149
121p POKE 752,Z9:

POKE 764,255:

CLOSE #IOCB
1220 END

78 Chapter 6

1230 REM DECIMAL-TO-HEX CONVERTER
1249 KHEX=4p96:
PRINT "$";
1250 IF BYTES=Z1
THEN KHEX=Z16:
74=12
1269 FOR I=Z1 TO Z4
1279 J=INT (DECNUMBER/KHEX)
1280 PRINT DECHEX$(J+Z1,J+Z1);
1299 DECNUMBER=DECNUMBER-KHEX*J
1309 KHEX=KHEX/Z16
1319 NEXT I:
PRINT
1320 IF BYTES=Z1
THEN BYTES=Z2:
24=4
1339 RETURN
1349 IF SEGMENT
THEN PRINT "N :
GOTO 1199
1350 PRINT "[@IH3" :
GOTO 1199
1369 REM CLEAR THE MESSAGE BOARD
137p POSITION 72,78
1380 PRINT BLANK$
1399 RETURN
1499 PRINT CHR$(125):
POSITION 72,72:
PRINT "HEADER.BAS - DOS 2.§ FILE ANALYZER"
1419 POSITION Z2,6:
PRINT "ENTER NAME OF FILE":
GOTO 1460
1420 POSITION 72,78
1439 PRINT VALV ; CHRS (253)
1449 FOR I=Z1 TO 200 :
NEXT 1
1450 GOSUB 137¢
1469 POSITION 21,6
1470 PRINT BLANK$(1,13)
1480 POSITION 21,6
1499 FILE$(Z4,216)=BLANK$(1,12)
1500 TRAP 1420
1519 CLOSE #IOCB
1520 INPUT RESPONSE$
153p IF RESPONSE§<>"DOS.SYS"
AND RESPONSE$<>"DUP. SYS"
AND RESPONSE§<>"MEM.SAV"
THEN 1609
1549 GOSUB 1370
1550 POSITION 72,78

1560 PRINT "DIOTmNSDINERINN" ; CHRS (253)

ATARI BASIC Faster & Better 79

1579 FOR I=21 TO 2p:
NEXT I
1580 GOTO 142p
1590 REM FETCH FIRST TWO HEADER BYTES
1609 IF FLAGI=I
THEN 1109
1619 FILE$(Z4,716)=RESPONSE$
1620 OPEN #I0CB,Z4,Z0,FILES
1639 GET #I0CB,T:
GET #I0CB,U
1640 IF T OR U
THEN 1778
1650 GOSUB 1370
166 POSITION 22,78
167¢ PRINT "([TNIFNNEISTEE " ; CHRS (253)
1680 GOTO 1100
1699 POSITION Z2,1p
1709 PRINT "FIRST BYTE = ";
171p DECNUMBER=T:
BYTES=Z1
172 GOSUB 1240
1739 PRINT "SECOND BYTE = ";
174p DECNUMBER=U:
BYTES=Z1
1750 GOSUB 124p
1768 RETURN
1779 GOSUB 1690
1789 REM FETCH NEXT FOUR HEADER BYTES
1799 GET #I0CB,V:
GET #I0CB,W
1809 GET #IOCB,X:
GET #I0CB,Y
1819 FLAGI=1
1820 REM COMPUTE START AND END
1830 MLSTART=V+256*W
1840 MLEND=X+256*Y
1850 SIZE=INT(MLEND-MLSTART)+Z1:
IF SIZE>3pppp
OR SIZE<p
THEN 2660
1869 POSITION 21,12
187p PRINT BLANK$(1,5)
1880 POSITION 21,13
1899 PRINT BLANK$(1,5)
1999 POSITION 21,14
1919 PRINT BLANK$(1,5)
1929 POSITION 22,12

1930 PRINT "STARTING ADDRESS = ";MLSTART
194p DECNUMBER=MLSTART

1959 POSITION 28,12

1960 GOSUB 124p

197¢ PRINT "ENDING ADDRESS = ",MLEND

80 Chapter 6

1980 DECNUMBER=MLEND
1999 POSITION 28,13
20pp GOSUB 1244
2019 PRINT "LENGTH OF FILE = ";SIZE
202p) DECNUMBER=SIZE
2p3p POSITION 28,14
2p4p GOSUB 124p
2050 GOTO 1100
206Q REM MOVE POINTER TO SEGMENT END
2079 BLOCK=SIZE:
SUM=Z0:
IF SIZE>3pppP
OR SIZE<f
THEN 2660
2080 IF SIZE<=Zp
THEN 2140
2099 IF SIZE<=2
AND (T=224 OR T=226)
THEN SIZE=f:
GOTO 2150
21pp IF BLOCK>125
THEN BLOCK=BLOCK-125:
GOTO 21p9
2119 X=USR(ADR(CIO$),BLOCK)
212p SUM=SUM+BLOCK:
BLOCK=SIZE-SUM:
IF BLOCK
THEN 2100
213p GOTO 2150
214p GOSUB 1370:
POSITION 72,78:
GAULINE\D OF FILE REACHEDRE
GOTO 1190
2150 TRAP 214f:
GET #IOCB,T:
GET #I0CB,U
216p POSITION Z2,10:
PRINT BLANK$
217p POSITION Z2,11:
PRINT BLANK$
218p IF T=255
AND U=255
THEN GOSUB 1690:
GET #IOCB,T:
GET #I0CB,U
2199 IF T=224
AND U=2
THEN 2419
2209 IF T=226
AND U=2
THEN 2299
221 REM COMPOUND LOAD FILE

ATARI BASIC Faster & Better 81

2229 V=T:
W=U
223p GOSUB 1378:
POSITION Z2,Z8:
UM THIS IS A COMPOUND LOAD FILERS
SEGMENT=SEGMENT+Z1
2249 POSITION Z2,9:
RULERTHE SE PARAMETERS ARE FOR SEGMENT[EARNAHIIIgval
2250 POSITION 72,15:
PRINT BLANK$
226@ POSITION 72,16:
PRINT BLANK$
227§ GET #IOCB,X:
GET #IOCB,Y:
GOTO 183p
2280 REM SIMPLE LOAD FILE
2299 GET #IOCB,V:
GET #IOCB,W
2309 IF V<>227
OR W<>2
THEN 1199
2319 GET #IOCB, INITL:
GET #IOCB,INITH
232 INIT=INITL+256*INITH
233p POSITION Z2,15
2340 IF FLAG2
THEN POSITION 72,16
2359 PRINT "INIT ADDRESS = ";INIT
2360 DECNUMBER=INIT
2379 POSITION 28,15
238p IF FLAG2
THEN POSITION 28,16
2399 GOSUB 124p:
POKE 764,255:
GOSUB 2718
24pp SIZE=1:
GOTO 11p9
2419 GET #IOCB,V:
GET #IOCB,W
2429 IF V=225
AND W=2
THEN FLAG2=p:
GOTO 245¢
243p 1F V=227
AND W=2
THEN FLAG2=1:
GOTO 245p
244p GOTO 11p9
2450 GET #IOCB,LRUN:
GET #I0CB,HRUN
246§ GOADDR=LRUN+256*HRUN
2479 POSITION 72,15

82 Chapter 6

248p PRINT "RUN ADDRESS = ";GOADDR:
DECNUMBER=GOADDR
2499 POSITION 28,15
250p GOSUB 1240:
POKE 764,255:
GOSUB 2710
2519 IF FLAG2
THEN 2310
2520 FLAG2=f:
SIZE=1:
GOTO 1100
2530 REM MACHINE LANGUAGE BYTE READER
2540 REM DATA FROM DISK IS NOT SAVED.
2550 REM EXECUTED ON FIRST RUN ONLY
256@ FOR X=Z1 TO 3p
2579 READ Y
2580 CIO$(X,X)=CHR$(Y)
2590 NEXT X
2609 RETURN
2610 DATA 1p4,162,48,169,7,157,66,3
2620 DATA 169,0,157,68,3,169,224,157
2630 DATA 69,3,104,157,73,3,104,157
2640 DATA 72,3,32,86,228,96
2650 REM CHECK FOR END OF FILE
2660 TRAP 2680:
GET #IOCB, ERROR
2679 PRINT CHR$(125):
POSITION 2,10:
PRINT "FATAL ERROR":
GOTO 1210
268p IF PEEK(195)=136
THEN 214p
2699 GOTO 2670
2709 REM TONE
2719 SOUND #,50,10,4
272 FOR X=1 TO 50:
NEXT X
273p SOUND 9,0.,0,0:
RETURN

ATARI BASIC Faster & Better 83

Using Strings

The string handling capabilities of BASIC provide countless opportunities to design
powerful program utilities. This chapter will give you some ideas and some standard
subroutines that will multiply the power of your programs.

PEEKs, POKEs, and Strings

There are three special string commands that are very useful. ADR(STRING$) will return
the value of START. Thus you canlook at and modify the contents of a string by PEEKing or
POKEing directly at the memory locations that hold the contents of your string. Try the
following example:

100 DIM DUMMY$(19)
11p DUMMY$="123456789p" :
PRINT DUMMY$
12 FOR X=p T0 9 :
POKE (ADR(DUMMY$)+X) ,65+X:
NEXT X:
PRINT DUMMY$

This example replaces the numbers in DUMMY$ with the alphabet letters A through J.
You could use this technique to POKE a machine language subroutine into a string.

However, the ADR command is used primarily to set the jump address of a USR function.
For example, X=USR(ADR(STRINGS)).

The ADR command has another interesting property. If you say X=USR(ADR“XYZ”),
the value returned by ADR is the location in your program of “XYZ”. More specifically, it is
the address of that particular reference to “XYZ”! Generally, in this usage, the actual XYZ
will be a small machine language routine.

The second string command of special interest is LEN(STRINGS$). This command
returns the current length (LENGTH in Figure 7.1) of the string variable. This value is
dynamically updated everytime you modify the string. The following program statements
will show you what I mean:

84 Chapter 7

100 DIM DUMMY$ (1)

119 DUMMY$="ABCDEF":
PRINT LEN(DUMMY$)

120 DUMMY$="ABC":
PRINT LEN(DUMMY$)

The third special string command is CLR. This command UN-dimensions all of your
string variables and makes the computer “forget” that you ever used them! In essence, CLR
zeros out the Variable Value Table and sets the string array space to zero length. CLR has
the same effect on any dimensioned variable or string. Scalar variables are all set to zero, but
their names are left in the VNT; and although the names of your dimensioned variables and
strings are left in the Variable Name Table, they must be dimensioned all over again if they
are needed after a CLR.

Before we start manipulating strings, it is useful to know how BASIC stores and handles
them. For each string variable in a program, BASIC maintains an eight-byte pointer in the
Vaariable Value Table (VVT). The first byte will always be equal to 128 or 129 for a string
variable since this is how BASIC distinguishes a string variable from some other variable
type. If the string variable has not yet been dimensioned, the first byte will be set to 128. A
value of 129 indicates that the string variable has been dimensioned. The second byte is the
variable number (equal to its relative position in the VNT') which will range from 0 to 127.
The third and fourth bytes contain the LSB and MSB of the offset of that particular string.
The offset is the number of bytes from the beginning of the String Array Table Pointer
(STARP) to the actual storage location of the contents of that string variable. Bytes five and
six are the LSB and MSB of the dimensioned length of the string. Bytes seven and eight
contain the LSB and MSB of the last location in the string that has information written in it.
With these definitions, the following table is useful:

Figure 7.1 — String Storage Pointers

NAME HOW TO FIND IT WHAT IT MEANS

VNUMBER Use VLIST.LST Variable's ID number

VVTP PEEK (134)+256*PEEK(135) Start of VT

STARP PEEK (140)+256*PEEK(141) Start of string storage area

REF VVTP+(VNUMBER-1) *8 Reference to your string

TYPE PEEK (REF+1) 128=not DIM; 129=DIMensioned

VNUM PEEK(REF+2) Same as VNUMBER

OFFSET PEEK (REF+3)+256*PEEK (REF+4) Value to add to STARP

MAXSIZE PEEK(REF+5)+256*PEEK(REF+6) DIMensioned length of string

LAST PEEK(REF+7)+256*PEEK (REF+8) Last used element of string

START STARP+OFFSET Where string contents start
(same as result of ADR)

LENGTH LAST-START Actual length of your string

(same as result of LEN)

The equations in this table were used in VLIST.LST to analyze string variables. The only

easy way to obtain the value of VNUMBER is to use VLIST.LST. Why Atari chose to repeat
this value in the VVT is a mystery to all of us.

ATARI BASIC Faster & Better 85

Itis important to note that BASIC does not move a string to the string array table unless it
is used as a variable. For example, if line 100 of your program says:

199 DIM A$(1Q) :A$="CAT":PRINT A$;" KILLS DOG"

...the string A§$ is stored as discussed above. The string “KILLS DOG” is a literal string that
is not stored in the string table. In fact, it is only “stored” in the position in memory where it
occurs in line 100. So, though two strings were defined in line 100, only one of them was
stored in the string storage area. Keeping this in mind, you can judge the ramifications of
various methods of programming your application. Note that A$ uses a fixed amount of
memory for overhead and a small amount for each reference to the string. The literal string,
on the other hand, will use the same amount of memory everytime you use the string.

If we use a command that “lengthens” A$ during a BASIC program, the contents of the
string array table are dynamically updated. The most obvious mistake made in these casesis
to try to set A$ equal to something that is longer than the maximum dimensioned length of
A$. The computer will barf if this happens and halt your program with an ERROR 5.

Blanking a String

If you need to pre-set a string to all blanks or some other character, you can use the
following trick:

STRING$ (1)=" ":STRING§ (MAX)=" ":STRINGS$ (2)=STRING$

Note that the “blank” between the quotes can be replaced by any other valid character.
This trick works due to how BASIC performs a string equate. It literally does a sequential
byte-by-byte transfer. Try the following experiment:

1@ DIM STRING$(15):STRING$="123456789 :
11 STRING$(7,15)=STRING$(1,9) :PRINT STRING$

The result that is printed isn’t what you think it will be. . . .

Now that you have a better understanding of how BASIC handles and stores strings, we
can discuss some special purpose subroutines for string handling. Each of these routines has
been of use to me in one or more application programs, and I am sure that you will also find
them to be indispensible time savers.

Stripping Trailing Blanks from a String

Here’s a subroutine that you can use when you want to insure that there are no trailing
blanks on a string. STRIPPER.LST returns the contents of WORD$ with any trailing blanks

removed.

Figure 7.2 — STRIPPER.LST

20129 STRIPPER.LST

20121 REM WORDS MUST BE PRESET

20122 REM BY THE CALLING PROGRAM

20123 FOR X=LEN(WORD$) TO 2 STEP -1

20124 IF WORD$ (X,X)<>" " THEN POP :
GOTO 20126

20125 NEXT X:RETURN

20126 WORD$S=WORD$ (1,X) : RETURN

86 Chapter 7

The only restrictions are that the calling program must have previously dimensioned
WORDS$ and that the string that you want stripped must be stored in WORDS. Also, you
should be careful to make sure that the only thing stored in WORD#$ is your string. This is
easily done by presetting WORD#$ to all blanks using the method we just discussed:

WORD$ (1)=" ":WORD$ (MAX)="":WORD$ (2)=WORD$

In this case MAX is the dimensioned length of WORDS$.

Justifying and Centering Strings

The RIGHT.LST, LEFT.LST and CENTER.LST subroutines are very useful when you
are working with variable length strings and you want to print them in special formats on the
video display or line printer.

Right Justifying a String

RIGHT.LST pads enough spaces to the left of a string, WORDS$, so that its current length
will be COLUMNS and forces the original contents of WORD$ to be right justified. Any
trailing blanks are automatically stripped before the contents are right justified. The
primary restrictions are that WORD$ and a temporary string called TEMP$ must be
dimensioned to the same length before the routine is called. Additionally, the length of the
the final string must be preset in COLUMNS. X is a temporary variable only. This
subroutine is handy when you want to print variable length strings in nice, neat columns on a
line printer. RIGHT.LST makes all of the right hand edges line up.

Figure 7.3 — RIGHT.LST

20130 REM RIGHT.LST
20131 REM COLUMNS,WORD$,AND TEMP$ MUST
20132 REM BE PRESET BY CALLING PROGRAM
20133 TEMP(1)=" ":
TEMP$ (COLUMNS)=" ":
TEMP$ (2)=TEMP$
20134 FOR X=LEN(WORD$) TO 2 STEP -1:
IF WORD§ (X,X)<>" " THEN POP :
GOTO 20136
2p135 NEXT X:
RETURN
2p136 WORD$=WORD$ (1,X)
20137 TEMP$ (COLUMNS+1-LEN(WORD$) , COLUMNS)=WORDS :
WORD$=TEMPS :
RETURN

Here is an example of RIGHT.LST:

WORD$="CALIFORNIA ":COLUMNS=15: GOSUB 20139
returns WORD$=* CALIFORNIA”.

Left Justifying A String

LEFT.LST pads enough blanks to the right of a string to left justify it. The routine works
very much like RIGHT.LST and the same restrictions apply to both routines.

ATARI BASIC Faster & Better 87

Figure 7.4

20149
20141

20142 REM PRESET BY THE CALLING PROGRAM

20143

20144
20145

— LEFT.LST

REM LEFT.LST
REM FIELDS AND WORD$ MUST BE

FOR X=1 TO LEN(WORDS$) :

IF WORD$ (X,X)<>" " THEN POP :
GOTO 20145

NEXT X
WORD$=WORD$ (X, LEN(WORDS) :
RETURN

Here is an example of LEFT.LST:

WORD$="

CALIFORNIA":COLUMNS=15: GOSUB 20140
returns WORD$=“CALIFORNIA o

If you don’t want the trailing blanks left on the string, do another call to
STRIPPER.LST.

Centering a String

CENTER.LST pads enough blanks before a string and after it to center the string. The
same restrictions that applied to the previous two routines also apply to this routine.

Figure 7.5 — CENTER.LST

20150
20151
20152
2p153

20154

20155
2p156

2p157
20158

REM CENTER.LST

REM COLUMNS, WORD§, AND TEMP§ MUST
REM BE PRESET BY THE CALLING PROGRAM

TEMPE(1)=" ":
TEMP$ (COLUMNS)=" "
TEMP§ (2)=TEMP$

FOR X=LEN(WORD$) TO 2 STEP -1:
IF WORD$(X,X)<>" " THEN POP :
GOTO 20156

NEXT X

WORD$=WORD$ (1,X) :

FOR X=1 TO LEN(WORDS$):

IF WORD$(X,X)<>" " THEN POP :
GOTO 2p158

NEXT X
WORD$=WORDS$ (X, LEN (WORDS)) :

X=INT ((COLUMNS-LEN (WORD$))/2)+1

88 Chapter 7

20159 TEMP$ (X, LEN(WORD$)+X)=WORDS:
WORD$=TEMPS :
RETURN

Here are a couple of examples using CENTER.LST:

WORD$=" CALIFORNIA ":COLUMNS=16:GOSUB 20150
returns WORD$="“ CALIFORNIA 7.

WORD$="CALIFORNIA":COLUMNS=2:GOSUB 20150
returns WORD$="* CALIFORNIA 7

The Last Shall Be First and the First Shall Be Last

Inmailing lists, payroll and many other applications, it is useful to store names on disk with
the last name of a person preceding his first name. This storage method makes it easier to
sort the name file and put it in alphabetical order by the last name of each person. The
REVERSE.LST routine converts a string stored in “last,first” format to a string in “first
last” format. The routine looks for a comma in a string and swaps the data on the left side of
the comma with the data on the right of the comma. If a comma is not found in the string, the
string is not modified.

Here are some examples:

WORD$="JONES, SALLY":GOSUB 20160
returns WORD$=“SALLY JONES”.

WORD$="JOHNSON,MR. & MRS. BILL":GOSUB 20160
returns WORD$="MR. & MRS. BILL JOHNSON”.

WORD$="ABC SUPPLY COMPANY":GOSUB 20160
returns WORD$="“ABC SUPPLY COMPANY".

WORD$="Strings ,How To Sort":GOSUB 20160
returns WORD$=“How To Sort Strings”.

The only restriction with REVERSE.LST is that the strings WORD$, TEMP$ and
TEMP18$ must be dimensioned in your main program before calling the subroutine. I usually
dimension all three strings to a length of 40. This shouldn’t be a problem since the routine
automatically strips any trailing blanks before it reverses the string.

Figure 7.6 — REVERSE.LST

20160 REM REVERSE.LST
20161 REM WORDS, TEMPS, AND TEMP1S
20162 REM MUST BE PRESET BY CALLING PROGRAM
20163 TEMP$=" ":
TENP1$=" "

ATARI BASIC Faster & Better 89

20164 FOR X=LEN(WORD$) TO 2 STEP -1:
IF WORD$(X,X)<>" " THEN POP :
GOTO 20166

20165 NEXT X

20166 WORD$=WORDS (1,X) :
FOR X=LEN(WORD$) TO 2 STEP -1:
IF WORD$ (X,X)="," THEN POP :
GOTO 20168

20167 NEXT X

20168 TEMP1$=WORDS$(1,X-1):
TEMP§=WORD$ (X+1,LEN(WORDS)) :
TEMP$ (LEN(TEMP$)+1)=""

20169 WORD$=TEMP$:
WORD$ (LEN(WORD$)+1)=TEMP1$:
RETURN

If you want to modify REVERSE.LST so that it will use a delimiter other than a comma to
separate the two substrings, then replace the quoted comma in line 20166 with the character
that you want to use.

Peeling Words Off of a String

Here’s a subroutine that you can use to process a list of words entered by the operator. The
PEELOFF.LST subroutine gets, one by one, each word in a string of words separated by
commas. Upon each call to this subroutine, WORD$ contains a list of words. Upon return,
ORDERS$ contains the next word. When all words have been accessed, a value of -1 will be
returned in the variable X. For all other calls, this variable will contain the length of the word
that is returned in ORDERS.

Figure 7.7 — PEELOFF.LST

2p18p REM PEELOFF.LST
24181 REM ORDER$ AND WORD$ MUST BE
20182 REM PRESET BY CALLING PROGRAM
2p183 IF X<@ THEN WORD$="":
X=p:
RETURN
2184 ORDER$=WORDS:
FOR X=1 TO LEN(ORDERS$)
20185 IF ORDER$(X,X)="," THEN POP :
GOTO 2p187
20186 NEXT X:
X=-1:
RETURN
2187 ORDER$=WORD$(1,X-1):
WORD$=WORD$ (X+1,LEN(WORDS$)) :
X=LEN(ORDERS) :
RETURN

90 Chapter 7

Here is an example of PEELOFF.LST:

Make three calls to PEELOFF.LST.
Start with WORD$=“JOHNSON,PAT,ERIC”.

The first GOSUB 20180 will return
ORDER$=“JOHNSON” and WORD$=“PAT,ERIC” and X=T7.

The second GOSUB 20180 will return
ORDER$=“PAT” and WORD$=“ERIC” and X=3.

The third GOSUB 20180 will return
ORDER$=“ERIC” and WORD$=“ERIC” and X=-1.

Massaging an Unruly String

Some processes require a string to be in a special form. The two that I have encountered
most often are “upper vs. lower case” and “positive vs. inverted characters.”
LOWTOCAP.LST takes care of the first case, and INVERT.LST handles the second.

Converting a Lower Case String to Upper Case

The subroutine LOWTOCAP.LST searches a string for lower case characters and
converts them to upper case characters. The string to be scanned must be storedin WORD$
before your program calls this subroutine.

Figure 7.8 — LOWTOCAP.LST

20199 REM LOWTOCAP.LST
2p191 REM WORD$ MUST BE PRESET
20192 REM BY THE CALLING PROGRAM
20193 FOR X=1 TO LEN(WORDS$):
IF ASC(WORD$ (X, X))>96
AND ASC(WORD$ (X, X))<123
THEN GOSUB 20195
20194 NEXT X:
RETURN
20195 WORD$ (X, X)=CHR$ (ASC (WORD$ (X, X))-32):
RETURN

Here is an example of LOWTOCAP.LST:

Set WORD$=“John Paul Jones”.
GOSUB 20190 returns WORD$=“JOHN PAUL JONES”.

Inverting the Characters in a String

The second special case is converting all the inverted charactersin a string tonon-inverted
characters. INVERT.LST is a subroutine that will convert all normal characters into
inverted ones or vice versa. The string to be inverted must be stored in WORDS$, and the flag
variable INVERT must be set to 0, 1 or -1. If INVERT=0, then only inverse characters will
be flipped. If INVERT=1, only normal characters will be flipped. If INVERT=-1, then all
normal characters will become inverted, and all inverted characters will become normal.

ATARI BASIC Faster & Better 91

Figure 7.9 — INVERT.LST

20269 REM INVERT.LST

202p1 REM WORD$ AND INVERT MUST

20202 BE PRESET BY CALLING PROGRAM

20293 FOR X=1 TO LEN(WORDS) :
Y=ASC(WORDS (X, X)

20204 IF Y<32 OR Y>25@ OR (Y>122 AND Y<160)
THEN GOTO 2p2p7

20205 IF (Y>31 AND Y<123) AND (INVERT=1 OR INVERT=-1)
THEN WORD$ (X, X)=CHR$ (ASC (WORD$ (X, X)+128) :
GOTO 2p2p7

20206 IF (Y>159 AND Y<251) AND (INVERT=p OR INVERT=-1)
THEN WORDS (X, X)=CHR$ (ASC (WORD$ (X, X)-128)

20207 NEXT X

20208 RETURN

Here is a brief summary of the possible options:

INVERT= FUNCTION PERFORMED

-1 A1l alphanumeric characters are flipped
Only inverse alphanumeric characters are flipped
1 Only normal alphanumeric characters are flipped

If you want to modify INVERT.LST to work on keyboard graphic characters as well,
delete line 20204 and change the limits of the IF statement in line 20205 to (Y>0 AND
Y<129) and line 20206 to (Y>128 AND Y<256).

Messing Around Inside a String

The second biggest deficiency of ATARI BASIC is the lack of true string arrays in the
same sense that we can have numerical arrays. (The biggest deficiency is the lack of true
integers.) The resulting problems are fortunately not insurmountable. The routines in this
section will show you how to verify that a substring is in a string and also several ways to
simulate real string arrays. The PEELOFF.LST routine was a first step in this direction.

Verifying That a Substring is Really There

VERIFY.LST is a subroutine that searches a string for the presence of a specific
substring. The string to be searched must be stored in WORDS$, and the substring you are
searching for must be stored in CODES$. The variable X will return the location of the first
characterin the substring. If the substring is not found in the target string, then X will be set
to -1.

92 Chapter 7

Figure 7.10 — VERIFY.LST

REM VERIFY.LST

REM CODE$ AND WORD§ MUST BE

REM PRESET BY THE CALLING PROGRAM

FOR X=LEN(WORD$) TO 1 STEP -1

IF WORD$ (X+1-LEN(CODES$) ,X)=CODE$ THEN POP :
X=X+1-LEN(CODES) :

GOTO 2p176

20179
20171
20172
20173
20174

20175

20176

NEXT X:
X=-1

CODE$=" "

RETURN

Performing a VERIFY in Machine Language

BASIC is OK for verifying short strings, but a long string can take many seconds to search
if you are using BASIC. When you have a long string, I recommend that you use SEEKER,
which is a machine language subroutine that will search WORD#$, element-by-element, for
the target string, CODES$. If CODES$ is found in WORDS$, then the variable SEARCH will
contain the element number in WORD$ where CODE$ occurs. If CODE$ is not found, then
SEARCH will be set to zero. If you made a mistake in the USR call to SEEKER, a value of
40000 will be stored in SEARCH to let you know that an error was found. Figure 7.11 is an
assembly listing of SEEKER. The POKE values are given in Figure 7.12. The assembly
listing tells you how to call SEEKER from BASIC, so I won’t repeat all of that information

here.

Figure 7.11 — Assembled Listing of SEEKER
; SEEKER — STRING SEARCH SUBROUTINE

1009
1919

1920 ;CALLED FROM BASIC USING
1930 ; SEARCH=USR (AEXP@, AEXP1,AEXP2,AEXP3,AEXP4)

1040
1050

1960
1079
1089 |
1099 .

1199

1119 ;
1129 ;
1139 ;
1149 ;

1150

1169 ;
+SET UP ZERO PAGE POINTERS

1179
1180

; WHERE

AEXP@ = ADR(SEEKER$)

AEXP1 = ADR(WORDS$)

AEXP2 = INT(LEN(WORD$)/LEN(CODES))
AEXP3 = ADR(CODES)

AEXP4 = LEN(CODES)

UPON RETURN TO BASIC, THE VARIABLE 'SEARCH' WILL BE

= CODE$ NOT FOUND
X = ELEMENT NUMBER WHERE CODE$ WAS FOUND
4ppPP = ERROR DURING INPUT
*= $609 COMPLETELY RELOCATABLE

£pCB
pace
paco
ppCE
pacF
poaDp
ppD1
0004
#0D5

p6pp
p6p1
p6p3
605
p6p6
0607
0608
609
£6pB
p60C

peoE
pepF
p611
0612
p614
#615
0617
p618
A61A
p61B
p61D
P61E

p620
p621
0622
£623
0625
0627
#629

68
C9pa
Fop9
AA
68
68
CA
DAFB
18
9066

68
85CC
68
85CB
68
85CE
68
85CD
68
8500
68
85CF

68
AA
68
C9pp
FA4D
8501
8A

p62A C9pP

$62C

DP46

1199 AWORDL
129 AWORDH
1219 TOTALL
122p TOTALH
123p ACODEL
1249 ACODEH
125p LCODE
126f COUNTL
1279 COUNTH
1289 ,

ATARI BASIC Faster & Better

$CB START ADDRESS OF STRING
$CC ARRAY TO BE SEARCHED

$CD ;NUMBER OF ELEMENTS IN
$CE ; THE STRING ARRAY

$CF ; START ADDRESS OF CODE$
$0P

$D1 ;LENGTH OF CODE$

$04 ;LOCATION OF CODE$ INSIDE
$D5 ; THE STRING ARRAY

1299 ;INPUT ERROR TRAP

1309
1319
132p
1330
1349
1350 KILL
1360
1379
1380
1399
1409
1419 ;

PLA
CMP
BEQ
TAX
PLA
PLA
DEX
BNE
CLC
BCC

;GRAB NUMBER OF ARGUMENTS

4

GOOD IF ONLY 4, THEN CONTINUE
;WRONG NUMBER? THEN
RETRIEVE PROPER RTS ADDRESS

KILL

ERROR

1429 ;INITIALIZE POINTERS

1430
1449 GOOD
1450
146p
1479
1480
149p
1509
151p
1520
1530
1549
1550
1560 ;

PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA

1579 ;MAKE SURE

1589 ;
1590
1609
1619
1620
1630
1649
1650
1660
1679
1680 ;

1690 ;SEARCH LOOP

17p9

PLA
TAX
PLA
CMP
BEQ
STA
TXA
CMP
BNE

AWORDH
AWORDL
TOTALH
TOTALL
ACODEH
ACODEL

§ < LEN(CODE§) < 256

#o
ERROR

LCODE

#o
ERROR

93

94 Chapter 7

p62E
£63p
0632
p634
p636
p638
p63A
p63C
P63E
p63F
p641
p643
p645
0646
0648
P64A
p64C
P6AE
p65p
#651
£653
§655
0657
p658
p65A
#65C
65D
p65F
661
p663
p665
667
669
p668
p66D
p66F
p671
p672
0674
p676
$678
f67A
$67C
#67D
P67E

ASCD
8504
ASCE
8505
ABpp
B1CF
D1CB
Dp1C
8

C5D1
DAF5
A5CD
38

E5D4
85D4
A5CE
E5D5
85D5
18

E6D4
Dp28
E6D5
18

9023
A5CB
18

6501
85CB
9pp2
E6CC
A5D4
DAp6
A5D5
Fp1@
C6D5
C6D4
18

96C2
A9pp
8504
A9Ap
85D5
EA

60

171p

1720

1730

174p

1750 MAIN

176@ LOOP1
1779

1780

1799

1809

1819

1820

1839

1849

1850

1860

1879

1889

1890

1909

191p

192p

193p

194p

1950 LOOP2
1960

1979

1980

1999

2ppp

2019 LOOP3
202p

203p

2049

2050

206 LOOP4
2079

28

2090 ERROR
21pp

211p

2129

2130

2149 EXIT

2150

LDA
STA
LDA
STA
LDY
LDA
CMP
BNE
INY
CMP
BNE
LDA
SEC
SBC
STA
LDA
SBC
STA
CLC
INC
BNE
INC
CLC
BCC
LDA
CLC
ADC
STA
BCC
INC
LDA
BNE
LDA
BEQ
DEC
DEC
CLC
BCC
LDA
STA
LDA
STA
NOP
RTS
.END

TOTALL
COUNTL
TOTALH
COUNTH
#0 ;SET INDEX TO FIRST OF ELEMENT
(ACODEL) ,Y ; COMPARE BYTE OF CODE TO
(AWORDL) , Y ;A BYTE OF THE ELEMENT
LOOP2 ;NO MATCH? THEN NEXT ELEMENT
;MATCH? THEN DO BYTE-BY-BYTE
LCODE ;COMPARE TO REST OF ELEMENT
LOOP1
TOTALL ;WE FOUND IT!!
;STORE ELEMENT NUMBER OF
COUNTL ;CODE$ IN VARIABLE 'SEARCH'
COUNTL
TOTALH
COUNTH
COUNTH

COUNTL
EXIT
COUNTH

EXIT
AWORDL ;MOVE POINTER TO NEXT ELEMENT

LCODE

AWORDL

LOOP3

AWORDH

COUNTL yHAVE WE REACHED THE END
LOOP4 ;OF THE STRING ARRAY?

COUNTH

EXIT . YES? THEN CODE$ IS NOT HERE
COUNTH NO? THEN CONTINUE

COUNTL

MAIN
#P STORE ERROR CODE 4pppp
COUNTL IN THE VARIABLE 'SEARCH'
#SAD
COUNTH
NEEDED FOR DATAPAK.BAS
;RETURN TO BASIC

ATARI BASIC Faster & Better 95

Figure 7.12 — BASIC POKE Version of SEEKER

20249
20241
26242
20243
20244
20245
20246
20247
20248
20249
20250
20251
26252
26253
20254
26255
20256
20257
20258
26259
20269
20261

REM SEEKER.LST

DATA 1p4,201,4,240,9,170,104,1p4
DATA 202,208,251,24,144,102,1p4,133
DATA 2p4,1p4,133,203,104,133,206,1p4
DATA 133,205,104,133,208,104,133,207
DATA 104,170,104,201,0,240,77,133
DATA 29,138,201,0,208,70,165,205
DATA 133,212,165,206,133,213,160,0
DATA 177,207,209,203,208,28,200,197
DATA 209,208,245,165,205,56,229,212
DATA 133,212,165,206,229,213,133,213
DATA 24,23p,212,208,40,23p,213,24
DATA 144,35,165,203,24,1p1,209,133
DATA 203,144,2,230,204,165,212,208
DATA 6,165,213,240,16,198,213,198
DATA 212,24,144,194,169,0,133,212
DATA 169,160,133,213,234,96
MLSTART=1536

MLEND=1661

FOR X=MLSTART TO MLEND

READ Y:POKE X,Y:NEXT X

RETURN

Simulating Real String Arrays

The entity that you are used to calling a string array really isn’t a real array. It is simply a
string that has to be dimensioned. An array is a means of referring to a set of such strings.
Typically, each element of such an array is of a uniform length to simplify retrieving the
particular element that you need. You can have real arrays like those only indirectly. Your
program must do all of the bookkeeping that is done automatically on most other computer
systems or by Atari Microsoft BASIC. The following three subroutines will do most of that
kind of work for you. LOOKUPID.LST is a subroutine that will fetch a particular
ELEMENT of a one dimensional string array where each element is of length SIZE. The
element you are looking for will be returned in the string TEMPS$.

Figure 7.13 — LOOKUP1D.LST

2p21p
20211

2p212 REM MUST BE PRESET BY THE CALLING PROGRAM

20213
20214

REM LOOKUP1D.LST
REM SIZE, ELEMENT, TEMP$, AND WORD$

START=SIZE* (ELEMENT-1)+1
TEMP$=WORD$ (START, STZE*ELEMENT) :
RETURN

96 Chapter 7

Here is an example of LOOKUP1D.LST:

Set SIZE=4, ELEMENT=3, and WORD$=“GREGPAULERICCARL”.
GOSUB 20210 returns TEMP$=“ERIC”.

LOOKUP2D.LST is similarto LOOKUP1D.LST except that it retrieves an element from
a two dimensional string array. In this routine we have replaced the one dimensional
ELEMENT with X and Y, which are the coordinates of the desired element in the two
dimensional array. In addition to SIZE, WORD$ and TEMPS$, this routine also needs to
know the maximum value of X. We will call this variable XMAX.

Figure 7.14 — LOOKUP2D.LST

20220 REM LOOKUP2D.LST
20221 REM SIZE, XMAX, X, Y, TEMP§, AND WORD$
20222 REM MUST BE PRESET BY THE CALLING PROGRAM
20223 START=(X-1)*SIZE+1+(Y-1)*SIZE*XMAX:
LAST=START+SIZE-1:
TEMP$=WORD$ (START, LAST) :
RETURN

Here is a graphic representation of a two dimensional string array that we will use
LOOKUP2D.LST on:

Figure 7.15 Graphic Representation of a 2-D String Array

~——— COLUMNS (X'S) —>

1 2 3 4 5 6 7

B o I & O SN S S S A ST RS S S S A SVN TS
+ + + + + + + +

+ JOHN1 + PAULL + ERICI1 + CARL1 + GREG1 + MARK1 + MIKE1 +

+ + + + + + + -

—_

B i L O R RS NS
+ + + + + + + +

+ JOHN2 + PAUL2 + ERIC2 + CARL2 + GREG2 + MARK2 + MIKE2 +

+ + + + + + + +

N

o B o 1 o & S YRS A A TR

~——ROWS (Y's)—>

+ + + + + + + +

3 + JOHN3 + PAUL3 + ERIC3 + CARL3 + GREG3 + MARK3 + MIKE3 +
+ + + + + + + +
e o B S o mmrwmrerare

ATARI BASIC Faster & Better 97

We will use this 7-by-3, two dimensional array in a couple of examples to illustrate
LOOKUP2D.LST. In these examples, SIZE=5 and XMAX="7:

EXAMPLE 1 — Find the element (4,2).

X=4:Y=2:GOSUB 20220
returns TEMP$=“CARL2”.

EXAMPLE 2 — Find the element (7,3).

X=7:Y=3:GOSUB 20220
returns TEMP$=“MIKE3”.

Another situation occurs every now and then in which you know where the element is (or
have found it by searching the string), and you need to translate this number into the
appropriate X and Y coordinates. LOOKUPXY.LST performs that function. This routine
requires you to supply SIZE, XMAX and START (the location of the first byte of the target
element). You might use LOOKUP1D.LST or VERIFY.LST to find the proper value of
START.

Figure 7.16 — LOOKUPXY.LST

2023p REM LOOKUPXY.LST

20231 REM SIZE, XMAX, AND START MUST BE

20232 REM PRESET BY THE CALLING PROGRAM

20233 Y=INT(START/ (SIZE*XMAX))+1:
X=INT((START-(Y-1)*XMAX*SIZE) /SIZE)+1:
RETURN

Using the same 2-D array we just used, we can set START=51 and GOSUB 20230. The
resulting X and Y are X=4 and Y=2.

98 Chapter 8

Date and Time Manipulation

Sooner or later in your programming efforts, you are likely to work with date or time
computations. Why be the millionth programmer to spend hours and hours re-inventing the
old wheel? Here are some plug-in subroutines that can save you programming time while
conserving valuable computer memory and disk space.

The Eight Byte Date

The “eight byte date” is simply a string that expresses the month, day and year in the
format, MM/DD/YY, where:

MM is a two digit month number ranging from @1 to 12,
DD is a two digit day number ranging from @1 to 31, and
YY is a two digit year number ranging from @@ to 99.

The string, “02/16/83” is an example of an eight byte date that stands for “February 16,
1983”.

A Simple Date Validity Check

VALIDATE.LST is a subroutine that checks the validity of a date entered by the
operator. VALIDATE.LST verifies for the date string, DATE$:

The month (in positions 1 and 2) is between @1 and 12.

The day (in positions 4 and 5) is between §1 and 31.

The year (in positions 7 and 8) is greater than or equal to QUERYS.
The string, DATE$, is eight characters long.

To use the VALIDATE.LST subroutine, you must first merge it with your program:

20250 REM VALIDATE.LST

20251 REM DATE$ MUST BE PRESET

20252 MONTH=VAL(DATE$(1,2)):
DAY=VAL (DATE$ (4,5)):
YEAR=VAL (DATE$(7,8))

20253 VDATE=MONTH>p AND MONTH<13 AND
DAY>p AND DAY<32 AND YEAR>=QUERY

ATARI BASIC Faster & Better 99

20254 VDATE=(VDATE AND LEN(DATE$)=8)

OR DATE$="pQ/pp/pp"
RETURN

Here is an example of how you might use VALIDATE.LST in one of your own
programs:

139 PRINT"ENTER DATE (MM/DD/YY)":
INPUT DATES

149 REM CHECK IF DATE IS VALID AND
THE YEAR IS 1983 OR GREATER

150 GOSUB 26250
IF NOT VDATE THEN PRINT"INVALID":
GOTO 130

160 REM PROGRAM FALLS THROUGH TO HERE
IF THE DATE IS VALID

A big advantage of the validate routine is that you can handle the validity test in one line of
program logic. The subroutine returns a VDATE=1 for a valid date and a value of zeroif the
date is invalid. If you don’t want to check on a minimum year, you can simply use zero as the
value of QUERY.

Note that we are accepting 00/00/00 as a valid date. If you don’t want to accept a zero date,
then modify the subroutine by deleting the ‘OR DATE$=“00/00/00"" from line 20254.

The Three Byte Date

For disk and in-memory array storage, it is quite convenient to store dates in a three byte
format. If the eight byte date is stored in DATE8$,a GOSUB to IIXTOILLST will return the
equivalent three byte date in DATE3$. We use a month-day-year so the three byte date can
be sorted, and we can use ‘“‘greater-than” and “less than” tests if necessary.

You will find the three byte approach is much more convenient than storing a date as three
BCD scalar variables or as an eight byte string. Besides the advantage of using only three
bytes instead of eight or more, the execution speed for conversions will normally be much
faster.

Here are two subroutines that you can use when working with three byte dates.
IIXTOIILLST converts an eight byte date string, DATES8$, to a three byte data string,
DATE3$. IIITOIIX.LST uncompresses a three byte string back to an eight byte string:

2026 REM IIXTOIII.LST

20261 REM DATE8S,DATE3$ MUST BE PRESET

20262 DATE3$(1,1)=CHR$ (VAL (DATE8$(1,2))):
DATE3$(2,2)=CHR$ (VAL (DATE8$(4,5)))

20263 DATE3$(3,3)=CHR$ (VAL (DATE8$(7,8))):
RETURN

100 Chapter 8

20279 REM IIITOIIX.LST

20271 REM DATE3$,DATE8$ MUST BE PRESET

20272 DATE8$(1,2)=STR$(ASC(DATE3$(1,1)):
DATE8$(3,3)="/"

20273 DATE8$(4,5)=STR$ (ASC(DATE3$(2,2)):
DATE8$(6,6)="/"

20274 DATE8$(7,8)=STR$ (ASC(DATE3$(3,3)):
RETURN

Find a Day of the Year

Here is a subroutine that computes the day within any year from 1901 to 2099. You simply
provide the four digit year, the month and the day of the month. FINDAY.LST takes into
account whether or not a year is a leap year.

20280 REM FINDAY.LST
20281 REM MONTH,DAY,YEAR,& STRINGS$
20282 REM MUST BE PRESET
2283 STRING$="ppp3P306p811131619212426"
20284 NUMBER=28* (MONTH-1)+
VAL (STRINGS (2* (MONTH-1)+1,2* (MONTH-1)+2)) +DAY
20285 IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN NUMBER=NUMBER+1
20286 RETURN

If you look carefully at this subroutine, you will see that the day number is computed first
by figuring the number of preceding months multiplied by 28 days. Next a table is accessed
based upon the number of days beyond 28 for all of the preceding months. Then, if the yearis
evenly divisible by four (leap year), and the month is greater than two, one day is added to
account for 29 days in February. Finally, the day within the month is added.

After adding this subroutine to a program, we could, for instance, issue the following
command:

MONTH=5:DAY=14:YEAR=1983:GOSUB 20280 :PRINT NUMBER
... to find that MAY 14,1983 is the 134th day of the year.

Simplified Date Computing

To find the number of days between dates, the day of the week or the date that will be any
number of days in the future, I have found that the best way is to convert each date to a
number. Then, for example, the number of days between dates is a simple subtraction.

COMPDAY.LST is a subroutine that returns a single number which I call a
“computational date.” The computional day number, as provided by COMPDAY.LST, is
useful for any date between the years 1901 and 2099. If you are curious about the reasons for
limiting the valid range from 1901 to 2099 you can consult any good almanac. In brief,
however, even numbered centuries, unless divisible by 400, are exceptions to the rule that
leap years are divisible by four. Thus, 2000 is a leap year, while 1900 and 2100 are not.

Note that the computational dates we are discussing here are only useful for certain date
computations. Because of changes in the calandar in past centuries, and leap year variations
every century, they do not represent a number that is useful for any other purpose, such as
astronomical calculations.

ATARI BASIC Faster & Better 101

Here is the computational date subroutine. The inputs are the four digit year, a one or two
digit month, and a one or two digit day of the month:

2029 REM COMPDAY.LST

20291 REM MONTH,DAY,YEAR,& STRING$

20292 REM MUST BE PRESET

20293 STRING$="00p3p306p811131619212426"

20294 NUMBER=365*YEAR+INT ((YEAR-1)/4)+28% (MONTH-1)+
VAL(STRINGS (2* (MONTH-1)+1,2* (MONTH-1)+2))+DAY

20295 IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN NUMBER=NUMBER+1

20296 RETURN

Days Between Dates

To find the number of days between two dates, merge the computational date subroutine,
shown above, into your program. Then subtract the computational day number of the first
date from the computational day number of the second date. For example, the number of
days between November 8, 1982 and February 16, 1983 is 100. I’ll show you a program a
little later that will perform many such functions for you.

Day of the Week

This subroutine returns anine byte string, DAY $, that contains the day of the week for any
date between 1901 and 2099. WEEKDAY.LST assumes that the computational day has
already been calculated.

20300 REM WEEKDAY .LST
20301 REM ASSUMES GOSUB TO 20298 (COMPDAY.LST) FIRST
20303 WEEK$="FRIDAY, , , SATURDAY SUNDAY, , ,MONDAY, , ,
TUESDAY,, , WEDNESDAYTHURSDAY,,"
2034 TEMP=9* (NUMBER-7*INT (NUMBER/7))+1:
DAY$=WEEKS (TEMP, TEMP+8) :
RETURN

To find the day of the week for February 16, 1983, you can use the following
commands:

MONTH=2:DAY=16: YEAR=1983:GOSUB 20290 :
GOSUB 20309 :PRINT DAY$

Back to Eight-Byte Dates

The computations to convert from a computational day number to an eight byte date are
rather complex, but you will need them if you want to find out something like, what will the
date be 200 days from now. To do it, we will use four new subroutines.

YEARCOM.LST recalls the year from a computational date. DAYCOM1.LST recalls the
day number within the year for any computational date. MONTHCOM.LST recalls the
month based on the day number within the year, NUMBER, and the year, YEAR.
DAYCOMZ2.LST recalls the day of the month based on the YEAR, the MONTH and
NUMBER.

102

Chapter 8

To find the date 200 days into the future, we can use the following commands:

MONTH=1:DAY=15:YEAR=1983:GOSUB 20290:GOSUB 20310:
GOSUB 2(3200:GOSUB 20330:GOSUB 20340:

PRINT MONTH;"/";DAY;"/";YEAR

20319 REM YEARCOM.LST
20311 REM ASSUMES GOSUB TO 2¢29p (COMPDAY.LST) FIRST
20313 YEAR=INT ((NUMBER-NUMBER-1461)/365) :

RETURN

20320 REM DAYCOMI.LST
20331 REM ASSUMES GOSUB TO 2f31¢ (YEARCOM.LST) FIRST
20323 DAY=NUMBER-(365*YEAR+INT ((YEAR-1)/4)):

RETURN

2p33p REM MONTHCOM.LST

2p331 REM ASSUMES GOSUB TO 2@320 (DAYCOM1.LST) FIRST

20333 X=p:
IF YEAR/4-INT(YEAR/4) THEN X=1

2p334 MONTH=1+(DAY>31)+(DAY>(59+X))+
(DAY>(9p+X))+ (DAY>(120+X))+
(DAY>(151+X))+ (DAY>(181+X))+(DAY>212+X))

20335 MONTH=MONTH+(DAY>(243+X))+ (DAY>(273+X))+
(DAY>(304+X))+ (DAY>(334+X)) :
RETURN

20340 REM DAYCOM2.LST

2p341 REM ASSUMES GOSUB TO 2@31¢ (MONTHCOM.LST) FIRST

20343 DAY=DAY-28* (MONTH-1)-VAL (STRINGS (2* (MONTH-1)+1,2*(MONTH-1)+2))
20344 IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN DAY=DAY-1

2f1345 RETURN

Going Fiscal

It is necessary in some application programs to provide for a fiscal month and year that
differs from the calendar month and year. The following subroutine computes the two digit
fiscalyear, FYE AR, the fiscal month, FMONTH, based on the calendaryear, YEAR, and the
calendar month, MONTH. The variable, FYSTART, specifies the first calendar month of

the fiscal year.

Suppose that the fiscal year begins in October. The current calendar month is 12, and the
current calendar year is 1982. You would load FYSTART with 10, MONTH with 12, and
YEAR with 82. A GOSUB 20350 would yield FYSTART=83 and FMONTH=3.

2p350 REM FISCAL.LST
2p351 REM FYSTART,MONTH,& YEAR MUST BE PRESET

20353

20354

20355

20356

20357

ATARI BASIC Faster & Better

X=0:

IF MONTH<1 OR MONTH>12 OR

YEAR<@ OR YEAR>99 THEN PRINT"INPUT ERROR":
X=-1:

RETURN

IF FYSTART=1 THEN FMONTH=MONTH:
FYEAR=YEAR:

RETURN

IF FYSTART<1 OR FYSTART>12 THEN PRINT"BAD START":

X=-1:

RETURN

IF MONTH>=FYSTART THEN FMONTH=MONTH+1-FYSTART:
FYEAR=YEAR+1:

RETURN

FMONTH=MONTH+13-FYSTART:

FYEAR=YEAR:

RETURN

1901 — 2099 Perpetual Calendar

The program, DATECOMP.BAS, will let you test the subroutines we have discussed. In
addition, it will come in handy whenever you need to perform a date computation. To use the
program, type it in as shown and then RUN it. DATECOMP.BAS will compute days
between dates, a day of the week, a day within year, or the date X days hence. Note that the

subroutines were slightly modified to minimize the size of the program.

103

Figure 8.1

1900
1901
1092
1903
19p4
1995
1096
1097
1008
1099

— DATECOMP.BAS

REM DATECOMP. BAS

GRAPHICS 0:

POKE 752,1:

PRINT CHR$(125)

POSITION 14,2:

IEDATE COMPUTER]

POSITION 10,4:

PRINT "1 = DAYS BETWEEN DATES"
POSITION 18,5:

PRINT "2 = DAY OF THE WEEK"
POSITION 10,6:

PRINT "3 = DAY WITHIN THE YEAR"
POSITION 18,7:

PRINT "4 = DATE, X DAYS HENCE"
POSITION 10,20:

PRINT "SELECT AN OPTION...."
CLR :

DIM STRING$(24) ,DATES(8),DAY§(9) ,WEEKS (63) ,BLANKS (27)

STRING$="ppp30p3p60811131619212426"

1919 WEEK$="FRIDAY, , A SATURDAY, SUNDAY, , \MONDAY

TUESDAY,, ,WEDNESDAYTHURSDAY,, "

104 Chapter 8

1911 DATES(1)="":
DATE$ (8)="":
DATE$ (2)=DATES:
DAY$(1)="":
DAY$(9)="":
DAY§(2)=DAY$
1912 BLANK§(1)=" ":
BLANKS (27)=" ":
BLANKS (2)=BLANK$
1913 GOSUB 1p4p:
IF X<49 OR X>52 THEN 1913
1914 GOSUB 1f39:
ON X-48 GOTO 1p25,1028,1030,10832
1915 POSITION 16,11:
PRINT "ENTER MONTH NUMBER : ";
1916 TRAP 1p16:
POSITION 31,11:
INPUT MONTH
1917 IF MONTH<1 OR MONTH>12 THEN 1f16
1918 POSITION 10,12:
PRINT "ENTER DAY OF MONTH : ",
1919 TRAP 1p19:
POSITION 31,12:
INPUT DAY
192p IF DAY<l OR DAY>31 THEN 1919
1921 POSITION 1§,13:
PRINT "ENTER 4-DIGIT YEAR : ";
1922 TRAP 1§22:
POSITION 31,13:
INPUT YEAR
1923 IF YEAR<19@1 OR YEAR>2099 THEN 1§22
1924 RETURN
1925 POSITION 1@,10:
PRINT "ENTER FIRST DATE : ":
GOSUB 1p15:
GOSUB 1p46:
GOSUB 137:
X=DAY
1026 POSITION 10,10:
PRINT "ENTER SECOND DATE : ":
GOSUB 1615
1927 GOSUB 1p46:
GOSUB 1037:
DAY=ABS (X-DAY) :
POSITION 10,15:
PRINT "DAYS BETWEEN DATES = ";DAY:
GOSUB 1p49:
RUN
1928 POSITION 1@,1@:
PRINT "ENTER DATE §
GOSUB 1015:
GOSUB 1p46

ATARI BASIC Faster & Better 105

1929 POSITION 1@,15:
PRINT "DAY OF THE WEEK e |
‘GOSUB 1p49:
PRINT DAY$:
GOSUB 1p40:
RUN
193p POSITION 18,18:
PRINT "ENTER DATE & M
GOSUB 1015
131 POSITION 10,15:
PRINT "DAY WITHIN THE YEAR: ";:
GOSUB 1p43:
PRINT DAY:
GOSUB 1p40:
RUN
132 GOSUB 1f15:
POSITION 10,14:
PRINT "ENTER DAYS HENCE : "
1933 TRAP 1@33:
POSITION 31,14:
INPUT Y
1934 IF Y<p THEN 1933
1935 GOSUB 1p46:
DAY=Y+DAY:
GOSUB 1950 :
GOSUB 1@51:
GOSUB 1@52:
GOSUB 1§55
1936 POSITION 18,15:
PRINT "DATE = ";MONTH;"/";DAY;"/",YEAR:
GOSUB 194p:
RUN
1937 POSITION 10,14:
PRINT BLANKS:
POSITION 10,11:
PRINT BLANKS:
POSITION 19,12:
PRINT BLANK$
1938 POSITION 19,13:
PRINT BLANKS:
POSITION 1@,14:
PRINT BLANKS:
POSITION 15,12:
PRINT BLANK$
1939 POSITION 19,20:
PRINT BLANKS:
RETURN
1949 OPEN #3,4.9,"K:
1941 GET #3,X
1942 CLOSE #3:
RETURN

106 Chapter 8

1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1053

1054

1955

1456
1457

DAY=28%* (MONTH-1)+

VAL (STRING$ (2* (MONTH-1)+1,2* (MONTH-N)+2))+DAY

IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN DAY=DAY+1
RETURN

DAY=365*YEAR+INT ((YEAR-1)/4)+28* (MONTH-1)+

VAL (STRINGS$ (2* (MONTH-1)+1,2* (MONTH-1)+2))+DAY

IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN DAY=DAY+l
RETURN

TEMP=9* (DAY-7*INT(DAY/7))+1:
DAY$=WEEKS (TEMP, TEMP+8) :

RETURN

YEAR=INT ((DAY-DAY/1461)/365) :

RETURN

DAY=DAY-(365*YEAR+INT ((YEAR-1)/4)):

RETURN

X=0:

IF YEAR/4-INT(YEAR/4) THEN X=1
MONTH=1+(DAY>31)+(DAY>(59+X))+ (DAY>(90+X))+

(DAY>(12@+X))+ (DAY>(151+X))+ (DAY>(181+X))+ (DAY>(212+X))

MONTH=MONTH+ (DAY>(243+X)) +(DAY>(273+X)) +
(DAY>(3p4+X))+ (DAY>(334+X)) :

RETURN

DAY=DAY-28* (MONTH-1)-
VAL(STRING$ (2* (MONTH-1)+1,2*(MONTH-1)+2))

IF YEAR/4=INT(YEAR/4) AND MONTH>2 THEN DAY=DAY-1
RETURN

Timing Benchmark Tests

A “benchmark” is simply a timed test of a program or routine. You can use the real time
clock program, CLOCK, to compare the speed of alternative programming methods. You
will have to use the BASIC clock loader program, CLOCK.BAS to set the clock up and
initialize the time. Once this is done, the time will be displayed in the upper right hand corner
of the screen regardless of what you are doing in BASIC. This clock is put on page six and
protects itself despite the actions of DOS or even the SYSTEM RESET button. The clock
has a “switch” that starts out ON, but can be turned OFF by POKEing any non-zero value
into $600, such as POKE 1536,1. This is a must if you are reading the time from BASIC
(since BASIC is so slow) for timing a benchmark. The time will be temporarily “frozen’ and
may be read by PEEKing 1537 for the hours, 1538 for the minutes, and 1539 for the
seconds.

Figure 8.2 — CLOCK Listing

1909 ;CLOCK - A REAL TIME CLOCK
1919
1029

1030
1049
1950

; THE INIT ROUTINE AT $4@p IS EXECUTED ONLY ONCE.
; THE MAIN ROUTINE IS STORED ON PAGE SIX.

pppp

ppp2
pop9
apa2
p222
p23p
159D
E45C
E45F

ppce

0499 A509
pap2 2992
papa FOPA
pap6 A6p2
p4p8 A4p3
P4apA 8EADP6
p4pD 8CPEP6
p4a1p A9p7
pa12 8502
p414 A9p6
p416 8503
0418 AD2202
p41B 8D1FP6
P41E AD23p2
0421 8D2pp6
p424 A5p9
p426 p9p2
p428 8509
p4a2A A2p6
paz2C Ap21
P42E A9P6
p43p 2p5CE4
$433 68
$434 60

pa3s

1960
1979

1980 ;

1099 ;SET UP
1109

1119 CASINI
112¢ BOOTF
1139 CRITIC
1149 VBLANK
1159 SCREEN
116@ DUP
1179 SETVBI
1184 SYSVBI
1199 ;

1206 ;SET UP
1219 ;
1220 VIDEO
1230 ;

1249

1250 ;SET UP
1269 ;
1279
1280
1290
1309
1319
1329
133p
134p INIT
1350
1360
1379
138¢
1399
1499
1414
1420
143
1449
1450
1468
1470
1480
1499
1500
1519 ;
1520
1539 ;
1540
1550 ;
1569 ;
1579
1589 ;

ATARI BASIC Faster & Better

*=

$4pp ; THIS IS LATER OVER-WRITTEN

0S POINTERS

= $2 CASSETTE INIT VECTOR

= $9 ;BOOT MODE FLAG

= $42 CRITICAL OPERATION FLAG

= $222 ; IMMEDIATE VBLANK VECTOR

- $23p ; CONTAINS LOCATION OF SCREEN
= $159D ;0S FLAG TO DETECT DUP.SYS
= $EA45C SET-VBI VECTOR ENTRY

= $EASF ;0S VBLANK SERVICE ROUTINE

PAGE ZERO POINTER

$CC ;USED AND THEN RESTORED

PRIVATE INTERRUPT

LDA BOOTF ;IF A CASSETTE HAS BOOTED
AND #2 ; THEN SAVE CASINI FOR LATER
BEQ INIT

LDX CASINI RE-VECTOR CASSETTE INIT
LDY CASINI+1 ;TO INCLUDE OUR CLOCK

STX DETOUR+1

STY DETOUR+2

LDA HRESET&SFF

STA CASINI

LDA HRESET/256

STA CASINI+1

LDA VBLANK ;DETOUR NORMAL HOUSEKEEPING
STA EXIT+1

LDA VBLANK+1

STA EXIT+2

LDA BOOTF

ORA #2

STA BOOTF

LDX #MAIN/256 POINT VBLANK TO OUR CLOCK
LDY HMAIN&SFF

LDA #6

JSR SETVBI

PLA RETURN TO BASIC

RTS

;THIS IS THE PART WE WANT TO PRESERVE

*=

$600 PROGRAM IS NOT RELOCATABLE

SAVE SPACE FOR ON/OFF SWITCH

107

108 Chapter 8

p6po

p601
p602
P63

pepa
605
606

p6p7
0609
pepc
p6pF
p611
p613
p615
p618
p619
P61A
f61B
p61C
p61D
P61E
621
0622
623
p624
0625
#626
629
p62B
p62D
p62F
0632
p634
p637
£639

#63C
P63F

o

po
o
p

3C
pp
gD

A9A9
8D1306
201806
A2p6
Ap21
A906
20)5CE4
69

68

A8

68

AA

68
4C1806
48

8A

43

98

48
ADID15
Copp
FOQF
A94C
8D2A27
A912
8D2B27
A919
8D2C27

CEP4p6
DAD8

1590 SWITCH
1609 ;
1619 ;

.BYTEP

162p ;SAVE SPACE FOR CLOCK TIME

1639 ;
1649 HOURS
1650 MIN
1668 SEC
1679 ;
1680 ;

.BYTEQ
.BYTED
.BYTEQ

1690 ; SAVE SPACE FOR COUNTERS

1790 ;
1719 TICKS
1729 CSEC
173¢ FUDGE
1749
1750 ;

1779 ;
1780 RESET
1799

1809 DETOUR
1819

182p

1830 PATCH
1840

1859 NULL
1860 THAW
1870

188

1899

1909

1919 EXIT
192 MAIN
193p

1940

1950

1960

1970

1989

1999

2000

2019

2020

2030

2049

2050

2069 ,

.BYTEG6P
.BYTEQ
.BYTE13

LDA
STA
JSR
LDX
LDY
LDA
JSR
RTS
PLA
TAY
PLA
TAX
PLA
JMP
PHA
TXA
PHA
TYA
PHA
LDA
CMP
BEQ
LDA
STA
LDA
STA
LDA
STA

176f ;KEEP THE WOLVES AT BAY

#3A9
PATCH
NULL
HMAIN/256
HMAINESFF
#6

SETVBI

NULL

bup
i
CLOCK
#$4C
$272A
#$12
$272B
#$19
$272C

2079 ;CHRONOMETER ROUTINE

2080 ;
2090 CLOCK
2109

DEC
BNE

TICKS
THAW

;0=0N, ANY OTHER VALUE=0FF

;1 SECOND=6§ TICKS
; SECONDS COUNTER
+ CORRECTION TO CSEC

SYSTEM RESET COMES HERE

;TELL VBI WHERE CLOCK IS

SET THE GEARS IN MOTION

yRESTORE COMPUTER REGISTERS

; CHANGED DURING SETUP
; SAVE CURRENT REGISTERS

; IF DUP.SYS IS IN COMPUTER
; THEN PATCH IT SO IT
;WILL NOT KILL CLOCK

ATARI BASIC Faster & Better 109

641 EE@A5P6 211P INC CSEC
p644 A23C 2120 LDX #60
p646 BEQAPE 2130 STX TICKS
P649 A542 214P LDA CRITIC :NEED THIS TO AVOID BAD I/0
0648 pDPPP6 2150 ORA SWITCH :IF SWITCH IS OFF THEN
P64E DPCY 216 BNE THAW :BYPASS CLOCK
p65@ CEP6P6 217p LOOP DEC FUDGE :KEEP CLOCK CALIBRATED
653 DPP8 218P BNE DING
655 A9GD 2199 LDA #13
0657 8DP6P6 220P STA FUDGE
P65A CEQAP6 221p DEC TICKS
P65D EEP3P6 2220 DING INC SEC .KEEP TRACK OF TIME
0660 ECA306 2230 CPX SEC
p663 DPID 224p BNE DONG
0665 APPR 2250 LDY #0
p667 8CP3P6 2260 STY SEC
P66A EEP206 227p INC MIN
066D ECP206 2280 CPX MIN
0679 DR1P 2290 BNE DONG
0672 8CPA206 23pP STY MIN
0675 EEQ1P6 231P INC HOURS
p678 A918 232 LDA #24
P67A CDA1P6 2330 CMP HOURS
67D DPR3 234p BNE DONG
P67F 8CP1P6 2350 STY HOURS
0682 CEP5P6 2360 DONG DEC CSEC
p685 DACY 2379 BNE LOOP
2380
2390 ;VIDEO DISPLAY ROUTINE
240 ,
p687 ASCC 241p LDA VIDEOQ :SAVE CURRENT PAGE ZERO
p689 48 2420 PHA
P68A ASCD 2430 LDA VIDEO+1
P68C 48 2449 PHA
P68D 18 2450 CLC
P68E AD3pP2 2460 LDA SCREEN :FIND THE SCREEN DISPLAY AND
0691 6949 2479 ADC #$40 ;POINT TO WHERE WE WANT
693 85CC 248 STA VIDEO :TO WRITE THE TIME
0695 AD31p2 2490 LDA SCREEN+1
0698 6909 2500 ADC #$9
P69A 85CD 2519 STA VIDEQ+1
p69C AGPP 2520 LDY #0 ‘WRITE THE TIME ON THE SCREEN
P69E ADP1P6 2530 LDA HOURS ;HOURS ONE DIGIT AT A TIME
P6A1 2pD1P6 254p JSR DIVIDE
P6A4 91CC 2550 STA (VIDEO) ,Y
P6A6 C8 2560 INY
P6A7 8A 2579 TXA
P6A8 91CC 2580 STA (VIDEO),Y
f6AA C8 2599 INY ‘
P6AB BICC 2600 LDA (VIDEO),Y ;BLINK COLON ON AND OFF
P6AD C99A 2619 CMP #$9A

P6AF FPP5 2620 BEQ BLANK

110 Chapter 8

f6B1 A99A 263 OFF

P6AD C99A 2619 CMP #$9A

P6AF FPP5 2620 BEQ BLANK
P6B1 A99A 26380

p6B8 91CC 266@ COLON STA (VIDEO),Y

p6BA (8 2679 INY

f6BB ADP206 2680 LDA MIN MINUTES ONE DIGIT AT A TIME
f6BE 20D1p6 2690 JSR DIVIDE

#6C1 91CC 27pp STA (VIDEO),Y

#6C3 C8 271p INY

p6C4 8A 272p TXA

p6C5 91CC 273p STA (VIDEO),Y

p6C7 C8 2740 INY

f6C8 68 2750 PLA RESTORE PAGE ZERO

p6C9 85CD 276p STA VIDEO+1

p6CB 68 2719 PLA

#6CC 85CC 278p STA VIDEO

P6CE 4C1906 2790 JMP THAW

06D1 A2pp 28¢@ DIVIDE LDX #0 SEPARATE 1'S FROM 19'S
f6D3 38 281p SEC AND CONVERT TO PROPER
p6D4 E8 282 LOOP2 INX ;DISPLAY CODE

p6D5 E9PA 2830 SBC #$A

p6D7 BPFB 2840 BCS LOOP2

f6D9 699A 2850 ADC #$9A

f6DB 8DE506 2860 STA TEMP

6DE 8A 2870 TXA yRETURNS 1'S DIGIT IN A
f6DF 698E 2880 ADC H#$8E

P6E1 AEESP6 2890 LDX TEMP RETURNS 1@'S DIGIT IN X
f6E4 60 2909 RTS

P6ES PP 2919 TEMP .BYTEP

P6ES 2920 .END

Figure 8.3 — CLOCK.BAS Listing

199 REM CLOCK.BAS - REAL TIME CLOCK
119 DIM A$(3):

PRINT CHR$(125):

POSITION 5,5:

PRINT “CLOCK.BAS - A REAL TIME CLOCK"
12 TRAP 120:

POSITION 2,10:

PRINT "ENTER THE CORRECT TIME (HHMM)";:

INPUT TIME
139 HOUR=INT(TIME/10@):

MINUTE=INT(TIME-HOUR*109) :

IF HOUR=@ AND MINUTE>=@ AND MINUTE<6@ THEN 200
149 IF MINUTE<@ OR MINUTE>59 OR HOUR<1 OR HOUR>23 THEN 126
159 IF HOUR<>12 THEN 18p

ATARI BASIC Faster & Better 111

1690 POSITION 2,12:

PRINT "IS THIS NOON "“;:

INPUT AS:

IF A$(1,1)<"Y" THEN HOUR=f
176 GOTO 2p9
180 IF HOUR>12 THEN 20§
199 TRAP 120:

POSITION 2,12:

PRINT "IS THIS AM OR PM";:

INPUT AS$:

IF A$(1,1)="P" THEN HOUR=HOUR+12
209 GOSUB 290:

POKE 1537, HOUR:

POKE 1538, MINUTE:

CLOCK=USR(1p24)
219 END
220 DATA 165,9,41,2,24p,19,166,2
230 DATA 164,3,142,13,6,140,14,6
24¢ DATA 169,7,133,2,169,6,133,3
250 DATA 173,34,2,141,31,6,173,35
260 DATA 2,141,32,6,165,9,9,2
270 DATA 133,9,162,6,160,33,169,6
280 DATA 32,92,228,1p4,96
290 MLSTART=1p24:

MLEND=1076
300 FOR X=MLSTART TO MLEND:

READ Y:

POKE X,Y:

NEXT X
319 DATA 0.0,0.0,60,0,13,169
32 DATA 169,141,19,6,32,24,6,162
33p DATA 6,160,33,169,6,32,92,228
340 DATA 96,104,168,104,170,1p4,76,24
350 DATA 6,72,138,72,152,72,173,157
360 DATA 21,201,0,249,15,169,76,141
379 DATA 42,39,169,18,141,43,39,169
380 DATA 25,141,44,39,206,4,6,208
399 DATA 216,238,5,6,162,60,142 4
4pp DATA 6,165,66,13,0,6,208,201
419 DATA 206,6,6,208,8,169,13,141
420 DATA 6,6,206,4,6,238,3,6
430 DATA 236,3,6,208,29,160,0,14p
449 DATA 3,6,238,2,6,236,2,6
450 DATA 208,16,149,2,6,238,1,6
460 DATA 169,24,205,1,6,208,3,14p
470 DATA 1,6,206,5,6,208,201,165
480 DATA 2p4,72,165,205,72,24,173,48
490 DATA 2,1p5,64,133,204,173,49,2
500 DATA 1@5,0,133,205,160,0,173,1
519 DATA 6,32,209,6,145,204,20p,138
520 DATA 145,204,200,177,204 201,154,240
530 DATA 5,169,154,76,184,6,169,128

112 Chapter 8

540 DATA 145,204,209,173,2,6,32,209
550 DATA 6,145,204,200,138,145,204,200
560 DATA 1p4,133,205,104,133,204,76,25
570 DATA 6,162,0,56,232,233,10,176
580 DATA 251,1@5,154,141,229,6,138,105
590 DATA 142,174,229,6,96,0
600 MLSTART=1536:

MLEND=1765
619 FOR X=MLSTART TO MLEND:

READ Y:

POKE X,Y:

NEXT X:

RETURN

The Eight Byte Time

The eight byte time is simply a string that expresses the time in the format HH:MM:SS,
where:

HH is a two digit hour number ranging from @1 to 12

(note that the range is §@ to 23 for military time),

MM is a two digit minute number ranging from @ to 59, and
SS is a two digit second number ranging from Pf to 59.

The string “10:15:35” is an example of an eight byte time that stands for 15 minutes and
35 seconds after the hour of 10. The CLOCK machine language program uses a 24 hour
military format. The clock starts at 00 (midnight), and 12 is added to the hours number for
any time after noon. Thus 4 o’clock in the afternoon is shown as hour 16. The machine
language program is divided into two parts. The first part is stored in the cassette bufer at
$400. This part of the program needs to be executed only once, so it is stored in a region of
memory that will be wiped clean the next time you do any cassette or diskI/O. All this routine
does is to tell the SYSTEM RESET to not kill the other routine, which is our clock. In
addition, it sets up what is called a special vertical blank interrupt so our clock will be
updated every 1/60th of a second. See the Atari Technical User Notes for a detailed
description of vertical blank interrupts.

The second part of the machine language program is the real meat of the clock. This partis
stored on page six, so loading a BASIC program won’t smash the clock. A better solution
is to re-assemble the CLOCK to another block of memory that is protected via
RESERVE.LST. Another necessary countermeasure is a harmless patch to DUP.SYS
whenever that program is loaded. Without the patch, the clock will be killed when you go
from the DOS menu back to BASIC. The patched DOS will work exactly like the
original.

The clock “stops” for critical I/O operations and when the “switch” is turned OFF.
Although the display is not updated during that freeze, the clock keeps track of how long it is
OFF and corrects the display as soon as possible. Don’t stop the clock for more than about
nine minutes, or it may lose track of how long it has been OFF.

To time a benchmark test, design your test program so it stops the clock for an initial
reading which you store. Then start the clock and your benchmark routine. When the routine
finishesits task, stop the clock and calculate the difference between the first reading and this

ATARI BASIC Faster & Better 113

one. Typically a benchmark program will consist of a routine inside a FOR-NEXT that
executes the routine for 1000 times. If you are using this technique, don’t forget to have the
resulting time divided by 1000 to get the benchmark time of your test routine.

Here are two subroutines that you will find useful when working with time quantities.
HMSTOSEC.LST converts a time in the HH:MM:SS format to an equivalent number of
seconds. The time needs to be stored in the string, HMSS$, in an eight-byte format as
indicated above. The resulting number of seconds is returned in the scalar variable,
SECONDS. SECTOHMS.LST performs the inverse of this transform. It converts anumber
of seconds stored in SECONDS back to the eight byte HH:MM:SS format.

Once you have converted “hours, minutes, and seconds” to seconds, you can compute
elapsed time by simply subtracting the two “seconds’ quantities. If you wish to express the

elapsed time in hours, minutes, and seconds, you canuse SECTOHMS.LST to convert them
back.

2036@ REM HMSTOSEC.LST

2p361 REM HMS$ MUST BE PRESET

20362 SECONDS=36@@*VAL (HMS$(1,2)+
60*VAL (HMS$ (4 ,5)+VAL (HMS$(7,8) :
RETURN

20379 REM SECTOHMS.LST

20371 REM HMS$ MUST BE PRESET

20372 HMS$="100/00/0p" :

X=INT (SECONDS/3600) :
HMS$ (1,1)=STR$ (INT(X/10)):
HMS$ (2,2)=STR$ (X-19*INT(X/10))

20373 SECONDS=SECONDS-36@9*INT (SECONDS/3609) :
X=INT (SECONDS/60)

HMS$ (4,4)=STR$ (INT(X/19))

20374 HMS$(5,5)=STR$ (X-10*INT(X/10)):
SECONDS=SECONDS-6@*INT (SECONDS/60) :
X=INT(SECONDS)

20375 HMS$(7,7)=STR$(INT(X/19)):

HMS$ (8,8)=STR$ (X-1@*INT(X/1@)) :RETURN

Time Clock Math

You will want to use this subroutine if you ever have to compute the elapsed time in hours
and 10ths of an hour. The most obvious application is to compute the “amount of time
worked” given the time you punched in and the time you punched out. CLOCKMATH.LST
will do these computations when you supply a start time in CLOCKIN$ and a stop time in
CLOCKOUTS. Both string times must be in HH:MM:SS format. CLOKMATH.LST will
return the elapsed hours to the next lowest tenth of an hour in the scalar variable HOURS.
You can then easily multiply HOURS by the appropriate pay rate to compute wages. Please
note that the two times cannot differ by more than twelve hours, or the answer will not be
correct.

114 Chapter 8

20380 REM CLOKMATH.LST
20381 REM CLOCKINS$,& CLOCKOUT$
20382 REM MUST BE PRESET
20383 X=VAL(CLOCKINS) :
Y=VAL (CLOCKOUTS) :
IF X<1 OR X>12 OR Y<l OR Y>12 THEN X
RETURN
20384 IF X>Y THEN Y=Y+12
2p385 HOURS=Y-X:
X=VAL (CLOCKIN$ (4,5)):
Y=VAL (CLOCKOUT$ (4,5)):
IF X<p OR X>59 OR Y<p OR Y>59 THEN X
RETURN
20386 IF X>Y THEN Y=Y+60:
HOURS=HOURS-1
20387 HOURS=HOURS+INT((Y-X)/6)/1p:
RETURN

]
|
—

1l
|
—

Here is an example of how you might use CLOCKMATH.LST:

11p PRINT CHR$(125):
PRINT:
PRINT"TIME CLOCK SUBTRACTION TEST PROGRAM":
PRINT
120 PRINT "ENTER START TIME",
INPUT CLOCKIN$
139 PRINT "ENTER STOP TIME";:
INPUT CLOCKOUT$
14p GOSUB 20380
PRINT "ELAPSED TIME = ";HOURS;" HOURS"

A

e o
CASDIS [ERFULMAP,
s |20y gg (DISDUP
CASDUP & SIDOWNLD 5y ey

SR pisasH I v-C0S

S IDISKPAK| N,

ey

©

i

ATARI BASIC Faster & Better 115

Bits, Bytes, and Boole

A Bucket of Bits

Each byte of memory in your ATARI computer contains eight bits, giving a total of
393,216 bits in the memory of a 48K ATARI 800. Additionally, the 707 sectors on a diskette
formatted by an Atari 810 disk drive give you another 707,000 usable bits on every diskette!
Are you getting your money’s worth?

In this chapter, we will look at ways to access and make use of the eight bits in a byte. We
will discuss two machine language subroutines that will open up whole new avenues of
possibilities for you to use in your programs.

Binary Numbers — Fundamental Building Blocks

The byte is the most common unit of measure in modern computer applications. A byte is
usually described as one character of information, such as a letter (“A,” “B,” “C”), a single
digit (“1,” “2,” “3”) or a special character (“$,” “?,” “%”). In reality, a byte is any of 256
possible codes interpreted from the “ON/OFF” status of the eight bits in the byte.

A bitis the smallest unit of information storage in a computer. In fact, you could say that a
bit is the only real unit of storage in your computer. The 6502 microprocessor does not have
the capability of recognizing bytes any more than it can inherently handle disk I/O. The
fundamental unit of information is the bit, which is either a one or a zero indicating the ON or
OFTF status of a specific electronic or magnetic location in memory or on a diskette.

In an eight-bit byte we can store any whole number from 0 to 255, or we can store the
“YES/NO” status of eight different conditions. These “YES/NO” flags are sometimes
referred to as binary numbers. This is just a special label that tells you that each number of
that type (in other words, binary) can never have any value other than one or zero.

Working With Binary Numbers in BASIC

BASIC lets us create one-byte strings with the CHR$ function. CHR$(1), for example,
generates a byte with the zero bit set and all other bits “cleared.” CHR$(2) generates a byte
in which bit one is set. CHR$(3) generates a byte in which bits zero and one are set.
CHR$(65) generates a byte, which by ATASCII standards, represents the letter “A”. For
the letter “A”, bit zero and six are set. “Set” means that the bitis equal to one, while “Clear”
means that the bit is equal to zero.

116 Chapter 9

One peculiarity of computer jargon that you will sooner or later have to get comfortable
with is the screwy way counting is done. You always start counting with the number “zero”
rather than “one.” For example, the eight bits in a byte are numbered from right-to-left
starting with zero:

Figure 9.1 — Bits Within a Byte

WF=15=pppP1111
PPIT1188
BITH# =76543219

To convert the bits in a byte to a number, we look at each bit as a “power” of two and add
them. For example, to represent the number three, bits zero and one are set. The three was
obtained by adding two to the zeroth power, which is one, and two to the first power, which is
two. The 65 was obtained by adding two to the zeroth power, which is one and two to the sixth
power, which is 64. You will find it very useful to know the powers of two. They are:

Figure 9.2 — The Powers of Two

Power Decimal Hexadecimal (MSB) Binary (LSB)
2 2ppp1 popl 0000/ PpPp PPPR/PRM1
2! pppp2 ppp2 PppR/RpRp PRpR/Pp1p
2 pppp4 appa pppp/0pRp PRpR/P19P
2 0p0p8 ppp8 0ppp/PpRp PPPR/1pp9
2' ppp16 pp1p 0pp0/PR0P PPP1/PPPS
g ppp32 pp2p Pppp/0PRR PO1p/PHRH
2° ppp64 ppap Ppp0p/0Ppp P1pp/APRM
2’ pp128 2p8p 0ppp/0p0p 100p/P0PY
2 #p256 p10p 0000/0001 PpPR/PPHY
2’ pp512 p20p 0pp0/0P1P PPpR/ PPN
gz p1p24 p4pp 0ppp/R1Pp POPL/PRAA
o #2p48 p8pp 0000/ 100 P0G/ PRHR
2" p4p96 109p ApR1/pppp PPPR/PRAR
2" #8192 20pp PP1p/PPR0 POPL/PRRR
2" 16384 4ppp p1pp/0ppp PPPL/PPRY
7" 32768 80pp 100p/00p0 P0pR/0P0P

I have one bone I would like to pick with Atari BASIC. Unlike Microsoft BASIC, Atari
BASIC does not allow us to directly access the bits in a number. The “logical” operators
compare quantities only on the byte level, so we have no easy way to SET, CLEAR or TEST
an individual bit in a byte.

Mapping Bits in Machine Language

ATARI BASIC Faster & Better

117

The machine language subroutine, BITMAP, alleviates this deficiency by enabling us to
SET, CLEAR or TEST any bit in a byte. BITMAP is called by a USR command of the

general form:

RESULT = USR(ADDR,BYTE,BIT,0OPTION)

where: ADDR
BYTE
BIT

OPTION =

1}

address of this machine language subroutine
a number between f and 255
the target bit number inside BYTE
p means we wish to CLEAR that bit

1 means

the bit is to be SET

= 2 will test the current value of the bit

The variable “RESULT” will contain the appropriate answer upon the return to

BASIC.

Figure 9.3 — BITMAP — Assembly Language Listing
1009 ;BITMAP — A BIT MANIPULATION ROUTINE

pppp

pace
pACE
£a0p
$aD4

p6pp A9pP
$602 85D4
#604 85D5

1919 ;
1029

193p ;CALLED FROM BASIC USING:
1949 ;X=USR(ADDR,BYTE,BIT,OPTION)

1050
1060
1079
1089
1090
1199
1119
1129
1130
1149

1150 ;
1160 ;

1179
1180
119¢
12p9
1219
1220
1230

1249

1250
1260
1279
1280
1290

; WHERE

SET UP

BYTE
BIT
MASK
RESULT

ADDR = ADDRESS OF THIS ROUTINE

BYTE = ARGUMENT #1
BIT = ARGUMENT #2
OPTION =

MEANS 'CLEAR THE BIT'

OPTION = 1 MEANS 'SET THE BIT'
OPTION = 2 MEANS 'TEST THE BIT'

e $600

PAGE ZERO POINTERS

$CC
$CE
$0P
$D4

INITIALIZE POINTERS

LDA #0
STA RESULT
STA RESULT+1

; COMPLETELY RELOCATABLE

SET RESULT TO ZERO

118 Chapter 9

p606
p6p7
p609
p60B
26pC
#60D
P6oE
P6pF
p611
p612
p613
p614
p616
#617
p618

P61A
p61B
g61D
P61F
p621
$622
$623
625

0627
0628
£629
P62A
§62C
P62E
P62F
p631
§632

p634

$636
p638
p63A
$63C
f63E
p640
0642
p643

68
€903
Fpp7
AA
68
68
CA
DOFB
60
68
68
85CC
68
68
85CE

AA
A9p1
EfpQ
Fpp4
DA
CA
DAFC
8500

68
68
AA
ERRP
FAp8
CA
Fo14
CA
FO1A

DADB

A9PF
4509
8500
A5SCC
2500
8504
18

9pCC

1300

1319

1320

1330

1349 KILL
1350

1360

1379

13809 EXIT
1399 GOOD
14p9

1419

1429

1430

1449

1459

1460 ;SET UP
1479 ;

148p

1499

1509

1519

152 IDMASK
153p

1540

1550 SETMASK
1560 ;

PLA
CMP
BEQ
TAX
PLA
PLA
DEX
BNE
RTS
PLA
PLA
STA
PLA
PLA
STA

BIT

TAX
LDA
CPX
BEQ
ASL
DEX
BNE
STA

MAKE SURE THERE ARE NO
#3 MORE THAN THREE ARGUMENTS
GOOD
KILL
;GO BACK TO BASIC
;GET LSB OF BYTE
BYTE ;AND IGNORE THE MSB
;GET LSB OF BIT
BIT ;AND IGNORE THE MSB
MASK
SET SPECIFIED BIT IN MASK
#1 ALL OTHER BITS ARE ZERO
#p
SETMASK
A
IDMASK
MASK

157¢ ;SELECT WHICH OPTION

1580 ;
1599
1690
1619
1620
1630
164p
1650
1660
167p
1680
1690
1799

1729 ;
173p CLEAR
1749

1750

1769

1779

1780

1790

1809

PLA
PLA
TAX
CPX
BEQ
DEX
BEQ
DEX
BEQ

BNE

LDA
EOR
STA
LDA
AND
STA
CLC
BCC

#h

CLEAR ;OPTION = 0

SET ;OPTION = 1

TEST OPTION = 2

EXIT OPTION = SOMETHING ELSE

1719 ;BIT MAP ROUTINES

H$PF ;CLEAR BIT IN A
MASK

MASK

BYTE

MASK

RESULT

EXIT

0645
0647
£649
064B
064C
P64E
0650
$652
p654
£656
p658
£659
p658
p65D
pe5F
p66p
p662

ASCC 181@ SET LDA BYTE

g50p 182f ORA MASK
8504 183p STA RESULT
18 1840 CLC
96C3 1850 BCC EXIT
A5CC 1860 TEST LDA BYTE
2500 1879 AND MASK
Fpp7 188p BEQ NEXT
A9f1 1894 LDA #1
8504 190p STA RESULT
18 191p CLC
9pB6 1920 BCC EXIT
A9PP 193@ NEXT LDA #o
8504 194p STA RESULT
18 1950 CLC
9pAF 1960 BCC EXIT
1979 .END

ATARI BASIC Faster & Better

SET BIT IN A

;TEST BIT IN A

119

Figure 9.4 — BITMAP.LST

20399
20391
20392
20393
20394
20395
2003006
20397
20398
20399
20409
20491
20492
20493
20494
20405
20406
20407

REM BITMAP.LST

DATA 169,0,133,212,133,213,1p4,201
DATA 3,240,7,170,1p4 104,202,208
DATA 251,96,104,194,133,204,104,1p4
DATA 133,206,179,169,1,224,0,240
DATA 4,19,202,208,252,133,208,1p4
DATA 194,179,224 ,0,240,8,202,24p
DATA 20,202,249 ,26,208,219,169,15
DATA 69,208,133,208,165,204,37,208
DATA 133,212,24,144,204,165,204,5
DATA 208,133,212,24,144,195,165,204
DATA 37,208,240,7,169,1,133,212
DATA 24,144,182,169,0,133,212,24
DATA 144,175

MLSTART=1536

MLEND=1633

FOR X=MLSTART TO MLEND

READ Y:POKE X,Y:NEXT X

Irecommend that youuse DATAPAK.BAS to string pack BITMAP for your everyday use.
That way the value of ADDR in the USR call will be ADDR=ADR(BITMAPS$). All of the
examples in this chapter will assume that you have done this first. If you decide to use the
DATA statement version, then ADDR will be equal to the address where you store the first
byte of data.

120 Chapter 9

Clearing a Bit in a Byte

To CLEAR any bit in a byte, you start by selecting a particular byte that needs such a
service. BITMAP will treat any number from 0 to 255 as a single byte. If you are trying to
operate on a single byte of a string, you will have to define BYTE=ASC(STRING$(X,X))
before calling BITMAP. BIT is any number between zero and seven. If you try to use a BIT
outside this range, BITMAP will not CLEAR any bits in BYTE. OPTION should be set to
zero. The USR call to CLEAR the third bit in BYTE=7 is:

RESULT = USR(ADR(BITMAPS),7,2,0)

Note that the third bit is bit number two.

The result of this operation is stored in the variable RESULT. If you were to use the
command PRINT RESULT after returning from BITMAP, youwould get “3”, which is what
you should get when 00000111 is changed to 00000011.

Setting a Bit in a Byte

Setting any bit in a byte is done in a manner very similar to clearing a bit. In the previous
example, keep everything the same except change OPTION=1 and BIT=3. The USR call to
SET the fourth bit of BYTE=7 is:

RESULT = USR(ADR(BITMAP$),7,3,1)

This time 00000111 was changed to 00001111, so the number stored in RESULT should
be (and is) RESULT=15.

Testing a Bit in a Byte

When we “test” a bit, we are checking to see whether it has been SET or not. We can test
any bit in a byte by using OPTION=2 and calling BITMAP. A “true” test, meaning that the
bitis SET, will return a value of RESULT=1. A “false” test, meaning that the bitis not set,
will return a value of RESULT=0. We can use the answer stored in RESULT to perform an
IF/THEN operation in our main program.

Let’s test the third bit in BYTE=5. BIT will be equal to two and OPTION=2. The USR
call is:

RESULT = USR(ADR(BITMAPS),5,2,2)

If we now PRINT RESULT, we will get a “1” indicating that the third bit is set. The binary
representation of “5” is 00000101, so the answer is correct.

Don’t worry about the previous contents of RESULT messing up the answer. BITMAP
sets RESULT=0 before starting any CLEAR, SET or TEST operation.

A Practical Example of Bit Mapping

The ability to CLEAR, SET and TEST any bit in a byte lets us store eight “YES/NO”
status indicators (or “flags”) in a single byte. By setting up a string of such bytes, we can use
this capability to obtain a marked savings in memory and disk storage requirements. For
example, in amailing list program we want to store as many names and addresses as possible.
Additionally, we may need to store several other pieces of information about each of the
people or companies that are in our list. By assigning only one more byte to each client’s
record, we can store eight additional information codes for each name, where each code is a
YES/NO indicator. Say, for example, in our mailing list we want to keep track of which
customer had been sent a copy of our latest catalog, and what other actions were taken in

ATARI BASIC Faster & Better 121

regards to that customer. The program was designed so that BIT=0 indicated that a new
catalog was sent to that customer. BIT=1 was used to indicate whether or not the customer
was a retail or wholesale customer. BIT=2 was used to indicate whether the customer’s
account was in good standing, and so forth. There were also bytes set aside to indicate which
products the customer had or had not bought. This information was used for market analysis
and to allow us to send special promotional literature to a customer on products that he had
not yet bought.

Another application of bit mapping is an invoicing program I wrote where a byte
associated with each of the products would indicate various stocking and inventory codes. If
a bit is set, the condition applies to that particular product. For example:

Figure 9.5 — An Example of Bit Mapping
BIT MEANING

This product is sold on disk

This product is sold on cassette

This product is for the ATARI 40p/800/1200
This product is for the TRS-8f Model I or III
This product is for the IBM PC

This product is for the APPLE II

This product is for the COMMODORE VIC-20

This product is for the COMMODORE 64

N OO WN ™

Here is another idea I have used. When I am performing a series of operations on a set of
records, [reserve one or two bytes of each record as an “update status” flag. Certain bits
within each status flag are set after particular kinds of record updates and are not cleared
until a special “clear status” routine is run. This has been especially useful since I seldom
have the time to sit down and update every record in one sitting. Usually I get interrupted
with one crisis or another that keeps me away for several hours or even several days. When I
can finally get back to my chores, I can resume right where I left off by running a routine that
teststhe appropriate status flag of eachrecord until it finds the first one thatis CLEAR. This
is really simple to do if you concatenate all status flags of a given type into one long string. I
am sure that you will find many other ways to take advantage of bit mapping.

Boolean Operators — Logical Building Blocks

Boolean operators, which take their name from the famous mathematician George Boole,
are a set of mathematical relationships that are used to perform logic operations. Such
“logical” (or Boolean) operators enable a programmer to easily program logic functions into
a program.

A Brief Tutorial on Boolean Logic

There are four fundamental Boolean operators: OR, AND, NOT, and the often confusing
“exclusive OR”, XOR. The exclusive OR is sometimes abreviated EOR instead of XOR. We will
discuss each of these operators in more detail and show you some new ways to use them.

122 Chapter 9

The Boolean OR Operator

The OR operator looks at the TRUE/FALSE condition of two arguments, BYTE1 and
BYTE2. Each argument is either TRUE or FALSE. The OR operator returns a combined
condition of TRUE anytime BYTE1 or BYTEZ2 is TRUE. The result is always FALSE if
both BYTE1 and BYTEZ2 are FALSE.

Visualize this example: You and a friend are trying to decide which arcade game to play. If
both of you do not like the game, then the two of you will look for another game to play. On the
other hand, you are willing to play a game you do not like if your friend likes it and vice versa.
Let’s define all of the possible outcomes of your decision as a “truth table.” It would look
something like this:

Figure 9.6 — Truth Table for a Boolean OR

Your Opinion Friend's Opinion Result

Hate The Game Hate The Game Go Play Something Else
Hate The Game Like The Game Play This Game

Like The Game Hate The Game Play This Game

Like The Game Like The Game Play This Game

FALSE (§) FALSE (@) FALSE ()

FALSE (9) TRUE (1) TRUE (1)

TRUE (1) FALSE (9) TRUE (1)

TRUE (1) TRUE (1) TRUE (1)

The Boolean AND Operator

The AND operator looks at the TRUE/FALSE condition of two arguments and returns a
combined condition of TRUE only if both of the arguments are TRUE. In our previous
example, this would be like saying that you and your friend will play the arcade game only if
both of you like the game. Otherwise, the two of you will look for another game to play. The
truth table for the possible outcomes looks like this:

Figure 9.7 — Truth Table for a Boolean AND

You Friend Result

FALSE (9) FALSE (@) FALSE (9)
FALSE (9) TRUE (1) FALSE (9)
TRUE (1) FALSE (@) FALSE (9)
TRUE (1) TRUE (1) TRUE (1)

ATARI BASIC Faster & Better 123

The Boolean NOT Operator

The Boolean NOT operator is different from the first two we have talked about in that it
operates on only one argument. It serves the function of changing a TRUE to a FALSE ora
FALSE to a TRUE. The truth table for the NOT operator is:

Figure 9.8 — Truth Table for a Boolean NOT
You Result

FALSE (@) TRUE (1)
TRUE (1) FALSE (9)

The Boolean XOR Operator

This poor operator is one of the most misunderstood mathematical operators that was
ever invented. This operator looks at the TRUE/FALSE condition of two arguments and
returns a TRUE only if the two arguments have different values. If both arguments are
TRUE or both arguments are FALSE, the result of the XOR operation is FALSE. The truth
table for this operator looks like this:

Figure 9.9 — Truth Table for a Boolean XOR

You Friend Result

FALSE (@) FALSE (@) FALSE (@)
FALSE (@) TRUE (1) TRUE (1)
TRUE (1) FALSE (9) TRUE (1)
TRUE (1) TRUE (1) FALSE ()

Combining Boolean Operators

When the Boolean operators are combined with each other in the same logical expression,
you have what is called “Boolean algebra.” The expressions “A OR B” and “C AND D” are
called “Boolean expressions.” The expression “(A OR B) AND (C AND D)” is also a Boolean
expression. There are many rules governing the relationships in Boolean algebra. I can’t
discuss all of them here in detail since that would take another couple of hundred pages. All 1
will do here is summarize the more frequently used rules and refer you to your local library or
book store for more detailed information.

First, Boolean operators, like the arithmetic operators (,-,*/) obey the laws of
precedence. With arithmetic operators, addition is done before subtraction, which is done
before multiplication, which is done before division. The order of precedence for Boolean
operators is:

124 Chapter 9

Figure 9.10 — Order of Precedence for Boolean Operators
OPERATOR PRECEDENCE MEANING

() FIRST Group contents of ()
NOT SECOND Logical complement
AND THIRD Logical AND

OR FOURTH Logical OR

XOR LAST Logical exclusive OR

You will note that, like arithmetic expressions, the Boolean expressions inside
parentheses take precedence.

When you studied math in school, you were probably taught that “1+2=2+1" and
“3%(244)=(3*2)+(3*4).” Similar properties apply to Boolean expressions. Briefly stated,
they are:

Figure 9.11 — Axioms for Boolean Expressions

(1) A OR B B OR A
(2) A AND B B AND A
(3) A AND (B OR C) = (A AND B) OR (A AND C)

]

(4) A OR (B AND C) = (A OR B) AND (A OR C)
(5) AOR P =A
(6) A AND 1 =A
(7) A OR NOT A =1

(8) AAND NOT A =9
9) 0<>1

Where: A, B and C are arithmetic (or Boolean) expressions that evaluate to a value of one or
zero. Thatis as far as I will take you in the study of the theory of Boolean logic. These types of
expressions are used frequently in the coding of computer programs. The primary reason for
going into this much detail is so you will recognize a “Bool” when you see one. The rest of this
discussion will explain to you how Atari BASIC treats Boolean expressions and, also,
explore some new ways to use Boolean expressions via machine language.

How Atari BASIC Treats Boolean Expressions

Atari BASIC only supports three of the standard Boolean operators: OR, AND, and NOT.
Unfortunately, Atari BASIC treats Boolean operations only at the byte level, and not at the
bit level like most other BASICs. Hence, “A = 1 OR 2” will result in A=0 instead of
A=3. One special note of interest is that the statement

190 IF NOT A THEN B=10

ATARI BASIC Faster & Better 125

This statement is a test for A=0. If A is equal to any other value, then the argument of the
IF/THEN is automatically assumed to be “1” for logical purposes.

Boolean Logic in Machine Language

Sometimes it is really much more efficient to use logical operators on the bit level. The
machine language routine BOOLEAN enables you to do AND, OR and exclusive OR XOR
operations at the bit level. You can use BOOLEAN for OR, AND, XOR operations. The NOT
operator is unary and can be easily performed by first testing the appropriate bit with
BITMAP and then using BITMAP to CLEAR or SET the bit as needed.

Figure 9.12 — BOOLEAN - Assembly Language Listing

ppop

pace
£pCD
$pD4

pepp
602
pepa
0606
p6p7
0609
p60B
p60C
264D
P6PE
p6QF
pe611

ASQp
8504
85D5
68
€903
Fpa7
AA
68
68
CA
DAFB
60

1990 ;BOOLEAN - BIT-BY-BIT LOGICAL OPERATORS
1019

1920 ;

1930 ;CALLED FROM BASIC USING:

1940 :X=USR(ADDR,BYTE1,BYTE2,0PTION)

1950 ;WHERE

1960 ; ADDR = ADDRESS OF THIS ROUTINE

1979 ; BYTEl = ARGUMENT #1

1080 ; BYTE2 = ARGUMENT #2

1090 ; OPTION = @ MEANS 'OR'

1199 1 MEANS 'AND'

1119 ; 2 MEANS 'XOR'

1129 ;

1139 ;

1149 *= $600 ; COMPLETELY RELOCATABLE
1150 ;

1169 ;

1179 ;SET UP PAGE ZERO POINTERS

1189 ;

1199 BYTEL = $CC

1209 BYTE2 = $CD

1219 RESULT = $04

1229

1230 ;

1249 ;INITIALIZE POINTERS

1250 ;

1260 LDA #o SET RESULT TO ZERO
1279 STA RESULT

1280 STA RESULT+1

1299 PLA :MAKE SURE THERE ARE NO
1300 CMP #3 :MORE THAN THREE ARGUMENTS
1319 BEQ GOOD

1320 TAX

133¢ KILL PLA

1349 PLA

1350 DEX

1369 BNE KILL

1379 EXIT RTS ;GO BACK TO BASIC

126 Chapter 9

§612
0613
0614
A616
p617
618

P61A
£618
961C
#61D
§61F
p621
0622
9624
$625

p6217

£629
#62B
£62D
p62E
£630
632
p634
§635
0637
£639

638
63D
p63E
p64g

68
68
85CC
68
68
85CD

68
68
AA
E0pQ
FAp8
CA
FoaC
CA
Fa1p

DAES

A5CC
#5CD
18

9008
A5CC
25CD
18

9pp4
A5CC
45CD

8504
18
9¢D1

1380
1390
1499
1419
1420
143p

144p
;SELECT WHICH OPTION

1450
1460
1479
1480
149p
1509
151p
1520
1530
154p
1550
1560
1579

1580 ;
;BOOLEAN LOGIC ROUTINES

1590
1609
1616
1620
163p
164p
1650
1660
1670
1680
1690
1709

1719
;STORE RESULT IN THE CALLING VARIABLE

1729
1730
1749
1750
1769
1779

GOOD PLA
PLA
STA
PLA
PLA
STA

PLA
PLA
TAX
CPX
BEQ
DEX
BEQ
DEX
BEQ

BNE

OR LDA
ORA
CLC
BCC
AND LDA
AND
CLC
BCC
XOR LDA
EOR

OUTPUT STA
CLC
BCC

.END

;GET BYTE1 AND BYTEZ LSB'S
;AND IGNORE MSB'S
BYTEI

BYTE2

#o

OR ;OPTION = @

AND ;OPTION =1

XOR OPTION = 2

EXIT ;OPTION = SOMETHING ELSE

BYTEI ;BYTE1 OR BYTE2
BYTE2

OUTPUT
BYTE1 ;BYTE1 AND BYTE2
BYTE2
OUTPUT

BYTEL ' ;BYTEL XOR BYTE2
BYTE2

RESULT

EXIT

Figure 9.13 — BOOLEAN.LST

20410 REM BOOLEAN.LST
20411 DATA 169,0,133,212,133,213,1p4,201
20412 DATA 3,240,7,170,104,104,202,208
20413 DATA 251,96,104,104,133,204,104,1p4
20414 DATA 133,205,1p4,194,170,224,0,240

ATARI BASIC Faster & Better 127

20415 DATA 8,202,24p,12,202,240,16,208
20416 DATA 232,165,204,5,205,24,144 11
20417 DATA 165,204,37,205,24,144,4,165
20418 DATA 204 ,69,205,133,212,24,144,209
20419 DATA

2042p) MLSTART=1536

20421 MLEND=1599

20422 FOR X=MLSTART TO MLEND

20423 READ Y:POKE X,Y:NEXT X

20424 RETURN

You can call BOOLEAN from BASIC with a USR command of the form:
RESULT = USR(ADDR,BYTEL,BYTE2,0PTION)

where: ADDR = address of this machine language subroutine
BYTE] = a number between @ and 255
BYTE2 = another number between § and 255
OPTION = § means a Boolean OR

1 means a boolean AND
2 means a boolean XOR

The variable RESULT will contain the appropriate answer upon the return to BASIC.
AsIrecommended for BITMAP, you should use DATAPAK to string pack BOOLEAN for
use in your programs.

Machine Language Boolean OR

To OR any two bytes, you must first make sure that they are in numerical form. Whole
numbers between 0 and 255 are treated as a single byte by BOOLEAN. The USR call to OrR
BYTE1=7 and BYTE2=9 is:

RESULT = USR(ADR(BOOLEANS),7,9,9)

If you did a PRINT RESULT, then the number 15 would be printed. This is the result of
ORing 00000111 and 00001001, which is the correct answer.

Machine Language Boolean AND

Take the previous example and leave everything the same, except change OPTION=0 to
OPTION=1. The result should be the result of ANDing 00000111 and 00001001, which is
00000001, or RESULT=1.

RESULT = USR(ADR(BOOLEANS),7,9,1)

Machine Language Boolean XOR

Once again, keep everything the same and change OPTION to a value of one. This time,
the result is 14. Look at the bits in the two arguments. They are the same except in the
second, third and fourth bits. The exclusive OR of those two numbersis therefore 00001110,
which is binary for 14.

RESULT = USR(ADR(BOOLEAN$),7,9,2)

128 Chapter 9

An Un-Real World Example of Bit Level Logic

Onceuponatime, I wrote a BASIC adventure game for my computer. This game had many
different levels and many different rooms on each level (8*%8*8 if memory serves). I wanted a
way to code each of the rooms so the person playing the game could not cheat, and so I could
pack a lot of room data in a minimum amount of space. The technique I ended up using
involved the bit level encoding of certain key information. The chief problem was how to
recognize what were valid exits from a room. This is what I did:

Figure 9.14 — Exits from a Room

Direction Bit number

NORTH p
SOUTH 1
EAST 2
WEST 3
up 4
DOWN 5
TELEPORT 6

This way, if a room had three exits, I would SET the bit assigned to each valid direction.
The resulting binary number, when converted to a decimal number, ROOMID, gave me a
code that I could assign to that room which would identify every exit from the room. When
the player tried to go in a particular direction from a room, the program would set
DIRECTION equal to the direction number and call BITMAP with the following:

GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,2)
If the chosen direction was a valid exit, then the GATE would open for GATE=1, else it

stayed closed. The TELEPORT direction would work only in certain special rooms when a
special magic word was said.

You canuse BITMAP to create the codes for the room IDs by using the following sequence
of commands:

Figure 9.15 — Setting Up Room Codes with Bit Level Logic

199 ROOMID = §

119 DIRECTION = 3 :REM IF WEST IS A VALID EXIT
120 GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,1)
130 ROOMID = GATE

14p DIRECTION = 4 :REM IF UP IS A VALID EXIT
150 GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,1)

and so forth. . .

ATARI BASIC Faster & Better 129

Being essentially lazy, I wrote a short program that would ask for a room’s matrix code in
the dungeon, the name of that room and the legal exits from that room. The program would
then generate a special code for that room and create a BASIC data statement in the same
way that CONVERT.BAS does.

This is only a small sample of what you can do with Boolean expressions and bit mapping.
There are many more ways to use them just waiting out there for you to figure out. Have
fun.

130 Chapter 10

Sorting Things Out

When programming your Atari computer, you will often find a need to work with lists of
data. When you think about it, a major percentage of computer programming involves the
storage and retrieval of information in one way or another.

In this chapter, we will reveal some techniques that can give you dramaticincreasesin data
handling capability and some fantastic improvements in program execution speed. We will
be dealing with the general topic of sorting data. We will discuss the most popular techniques
and explain why they are so popular. These sorting techniques will be demonstrated in pure
BASIC, and in one case I will show you how to include a fast machine language sort routine in
your BASIC programs.

All Sorts of Sorts

Every time you separate the dimes from the nickels in your pocket change, you are using
one or more forms of a technique called “sorting.” According to my dictionary, the verb
“sort” means:

1. To arrange according to class, kind, or size; classify

Computer programmers use this word in a much narrower sense. We think of “sorting” as
arranging things in ascending or descending order. A more appropriate name would be
“ordering.” We will, with all due apologies to Mr. Webster, use the word “sorting” to mean
“arranging things into an orderly sequence.”

Sorting has been a common activity since before recorded history, but its most prevalent
modern application is arranging data in numerical or alphabetical order for purposes of
segregating groups of a similar type. Suppose that your record album collection has grown to
more than 5,000 albums. It would be much easier to find your Janis Joplin albums (that dates
me, doesn’t it?) if the records are in some sort of order. The way you arrange your albums is
one form of “sorting.” The same principle holds true for the millions and millions of pieces of
information that today’s highly technological society must keep track of. Have you ever
looked at a bank statement for a checking account? T'ypically my statements contain a list of
my checks in numerical order. This was accomplished by “sorting.”

Sorting, in the software sense, can be classified into two major categories. ‘“In-memory”
sorting means that the data to be sorted is contained in the available RAM of your computer.
This method tends to be very fast since you can take advantage of the extremely fast access
time of a computer’s memory. The other major catagory is called “external” sorting. This

ATARI BASIC Faster & Better 131

method utilizes a large data file on disk in those cases where there is too much data to fit in
the limited memory of your computer. There are special techniques for both types of sorting
that take advantage of various computer configurations. The nature of the data to be sorted
also plays a role in the choice of a particular sorting algorithm. We will concentrate our
discussion in this chapter on two of the more popular in-memory sorting routines. The
methods I will show you can readily be adapted for extremely large data files, but I suspect
that most of your needs can be met by these relatively simple sort routines.

Let’s take a moment to define some terminology that is commonly used when talking
about sorts. First, a collection of data is typically called a “file.” This file will, in turn, usually
consist of one or more “records.” For example, the list of the names of the students in a class
might be your “file.” Each name in the list would be a “record.” Each record might also
include alist of that student’s test scores and the average score to date. When a list (file) is to
be sorted, you many times will want to sort on a particular “field” or “key.” In the previous
example, you might want to sort the students in the class from “highest average score” to
“lowest average score” or vice versa. The average score of each student is one “key” in the
“record” for each student. The phrase “key” defines the part of arecord that you will sort on.
Each value for a key is called an “element.”

When you are sorting a file, you typically want the records sorted in ascending or
descending order, based on one or more keys. In the process of performing the sort, you must
examine every record in the file at least once. This is what is called a “pass” on the file.
Usually a sort operation will require many such passes before the sort is completed.

Bubble, Bubble, Toil and Trouble

By far the most popular sorting technique in use today is a method called a “bubble” sort.
The popularity of this particular technique is due to its simplicity. A bubble sort is
performed by simply comparing every two adjacent elements and swapping them if the first
oneis “greater than” the second. A flagis set every time two records are swapped. The sortis
complete when a pass is made where no records are swapped, hence the flag is not set at the
end of a pass. As this process moves its way through a list of data, the smaller elements
appear to “bubble” their way to the top of the list.

This technique, which is also known as a simple interchange sort, is more than adequate
for small data files that are not too much out of order. If either of these two conditions is not
met, the time needed to sort a file can rapidly become very inconvenient. For example, The
BASIC bubble sort shown in Figure. 10.1 takes about 43 seconds to sort 50 records, and
takes almost three minutes to sort 100 records. The time required for this BASIC program to
sort 1000 records is in the neighborhood of several hours. The dramatic increase in sorting
time is due to the fact that the sort time goes up by roughly a factor of four everytime you
double the number of records.

There are a variety of ways to modify the bubble sort to improve its speed. The most
obvious is to use a bi-directional bubble sort, where we first make a pass from top-to-bottom
looking for RECORD1>RECORD2 and then reverse the direction of the sort to go from
bottom-to-top looking for RECORD2>RECORD1. No matter what minor modifications
you make, the bubble sort is not very fast. Even if you write the bubble sort in machine
language, it still will take an appreciable amount of time to sort a large file. There must be a
better way to sort stuff that is faster without being overly complex. There is — the Shell
sort.

132 Chapter 10

Figure 10.1 — BUBBLE.DEM — A BASIC Bubble Sort

199 REM BUBBLE.DEM - BENCHMARK TEST FOR BASIC BUBBLE SORT

11 REM

12 REM SET UP TEST ROUTINE

130 REM

140 NUM=50

150 DIM TEST$(NUM) ,TEMP§(5) :N=NUM:Z1=1

160 FOR X=1 TO NUM

170 Y=INT(2p0*RND(P)) : TEST$ (X, X)=CHRE (Y)

186 IF NOT ((Y>47 AND Y<58) OR (Y>64 AND Y<91) OR (Y>96 AND Y<123)) THEN 170
199 NEXT X

200 REM

210 REM RESET CLOCK

220 REM

230 POKE 1536,1:POKE 1537,0:POKE 1538,0:POKE 1539,0:POKE 1536,0
240 REM

250 REM ROUTINE TO BE TESTED

260 REM

27% REM BUBBLE SORT ROUTINE

280 FLAG=0

299 FOR COUNT=Z1 TO N-Z1:

IF ASC(TEST$(COUNT, COUNT))<=ASC(TEST$ (COUNT+Z1,COUNT+Z1)) THEN 330

309 TEMP$=TEST$ (COUNT,COUNT)

319 TEST§(COUNT,COUNT)=TEST$ (COUNT+Z1,COUNT+Z1)

32 TEST$(COUNT+Z1,COUNT+Z1)=TEMPS:FLAG=Z1

330 NEXT COUNT

340 IF FLAG=Z1 THEN N=N-Z1:GOTO 28p

350 REM

360 REM FIND ELAPSED TIME

370 REM

38p PRINT CHR$(125) :PRINT CHR$(253):POSITION 2,5:PRINT "BENCHMARK TEST COMPLETED"
390 POSITION 2,9:POKE 1536,1:

PRINT "ELAPSED TIME = ";PEEK(1537);:POSITION 2@,9:PRINT " HOURS"
4pp POSITION 17,10:PRINT ;PEEK(1538);:POSITION 2@,1@:PRINT " MINUTES"
419 POSITION 17,11:PRINT ;PEEK(1539);:POSITION 2@,11:PRINT " SECONDS"
42 POKE 1536,0:END

Note: BUBBLE.DEM requires you to run CLOCK.BAS first.

The SHELL Game

Almost as simple in concept and far faster in execution, the Shell sort is a popular sort
routine with many programmers. For 50 records, the shell sort is about three times faster
than a bubble sort, and the differences in execution time for larger files is even more notable.
For example, a BASIC shell sort will sort 100 records in about 37 seconds, as compared to
the three minutes required for a bubble sort. The primary reason for the dramatic increase in
speed is due to the fact that a shell sort requires fewer comparisons to sort the same

data file.

ATARI BASIC Faster & Better 133

The theory of a shell sort is relatively straightforward. In a list of N items, a boundary,
FLAG, is computed such that 2EXP(FLAG)< N < 2EXP(FLAG+1). FLAG is then set equal
to 2EXP(FLAG-1). A loop counts from 1 to N-FLAG checking for RECORD(COUNT) <=
RECORD(COUNT+FLAG). If this condition is met, the counter is incremented and the next
pair of records is compared. If the test fails, the two records are swapped before the counter
is updated. When the counter reaches N, FLAG is divided by two, the counter is reset and a
new loop (pass) is started. The sort is complete when FLAG reaches zero.

The name given to this sorting technique is not due to any similarity to the infamous
“shell” con game. The origin of the name is a little more prosaic. The shell sort technique was
originally proposed and published by Donald L. Shell back in 1959.

SHELL.DEM is a BASIC program that demonstrates the shell sort in such a way that the
algorithm is easier to follow. The program assumes that you have previously run the real time
clock we discussed earlier. The sort will still run properly if you haven’t done this, but the
actual sort time will not be computed for you. SHELL.DEM creates a data file, TESTS,
which holds a collection of numbers and alpha characters. This file is then sorted using the
shell sort technique, and the elapsed time is printed out for you. The program uses a general
benchmark routine that I have used for a number of different tests. It can easily be modified
to perform a benchmark test on just about any other routine that you might need to test.

Figure 10.2— SHELL.DEM - A BASIC SHELL SORT

100 REM SHELL.DEM - BENCHMARK TEST FOR BASIC SHELL SORT
110 REM
120 REM SET UP TEST ROUTINE
130 REM
149 NUM=50
150 DIM TEST$(NUM),TEMP$(5):
N=NUM:
Z1=1
1690 FOR X=1 TO NUM
179 Y=INT (2@@*RND(D)) :
TEST$ (X, X)=CHRS (Y)
180 IF NOT ((Y>47 AND Y<58) OR
(Y>64 AND Y<91) OR
(Y>96 AND Y<123)) THEN 170
196 NEXT X
200 REM
210 REM RESET CLOCK
220 REM
23 POKE 1536,1:
POKE 1537,9:
POKE 1538,0:
POKE 1539,0:
POKE 1536,0
240 REM
250 REM ROUTINE TO BE TESTED
260 REM
270 REM SHELL SORT ROUTINE
280 FLAG=Z1

134 Chapter 10

290 FLAG=2*FLAG:
IF FLAG<=NUM THEN 296

300 FLAG=INT(FLAG/2):
IF FLAG=p THEN 390

319 FOR COUNT=Z1 TO N-FLAG:
FLIP=COUNT

320 OTHER=FLIP+FLAG:
X=ASC(TEST§(FLIP,FLIP)):
Y=ASC(TEST$ (OTHER,OTHER)) :
IF X<=Y THEN 350

330 TEMP$=CHR$ (X) :
TEST$ (FLIP,FLIP)=TEST$ (OTHER, OTHER):
TEST$ (OTHER, OTHER)=TEMPS :
FLIP=FLIP-FLAG

349 IF FLIP>p THEN 320

350 NEXT COUNT:
GOTO 300

360 REM

379 REM FIND ELAPSED TIME

380 REM

390 PRINT CHR$(125):
PRINT CHR$(253):
POSITION 2,5:
PRINT "BENCHMARK TEST COMPLETED"

4pp POSITION 2,9:
POKE 1536,1:
PRINT "ELAPSED TIME = ";PEEK(1537);:
POSITION 20,9:
PRINT " HOURS"

419 POSITION 17,1P:
PRINT ;PEEK(1538);:
POSITION 20,1p:
PRINT " MINUTES"

42 POSITION 17,11:
PRINT ;PEEK(1539);:
POSITION 20,11:
PRINT " SECONDS"

439 POKE 1536,0:
END

The Shell Game Speeds Up

Even though the BASIC Shell sort is much faster than a BASIC bubble sort, sorting large
files will still take longer than is convenient in a data processing environment. We have
already demonstrated the superior speed of machine language programs. Let’s see what
kind of performance we can get out of a machine language shell sort.

The listing shown in Figure 10.3 is an assembled listing of a machine language shell sort
routine. I tried to show in the comments column the parallel operations in the BASIC version
of the routine. The machine language version takes up only 486 bytes, and works fast enough

ATARI BASIC Faster & Better 135

for most applications. This routine will sort 100 items in about four seconds. It is possible to
create sort routines that will sort records much faster than this, but they are not only
considerably more complex, they almost always require more memory. Those kinds of
routines are more suitable for external sorting applications. Even those routines, however,
can still take arelatively long time to sort very large files. You just have to face the reality that
sorting is an inherently time consuming task.

If you are interested in studying other kinds of sorts, I recommend Volume 3 of the
“programmers bible,” Sorting and Searching by Donald E. Knuth. The three volume Knuth
series is rather expensive and goes very heavily into the mathematics of programming
theory. If complex math is not your strong point, you will have difficulty understanding the
material. A book that might be easier for you to understand and make use of is Sorting and
Sort Systems by H. Lorin.

The listing in Figure 10.4 is the BASIC POKE version, SORT.LST, of the machine
language shell sort routine. I have it set it up like any other BASIC subroutine so that you can
add it to your own BASIC programs. The machine code is completely relocatable, so I
recommend that you use DATAPAK to string pack the routine for your every day use.

Figure 10.3 — SHELL — Assembled Source Listing

1990 ;SHELL - A SHELL SORT ROUTINE
1019 ;
1020
ppop 1030 .OPT NOEJECT
1949
1059 ;
1060 ;CALLED FROM BASIC USING:
1979 ;X=USR(ADDR, FILE,RECSIZE,NUMBER,

1089 KEYPOS, KEYLEN,DIRECT)
1099 ;WHERE
1196 ; ADDR = ADDRESS OF THIS ROUTINE
1119 ; FILE = ADDRESS OF STRING HOLDING FILE
1129 ; RECSIZE = LENGTH OF EACH RECORD (<=256 BYTES)
1130 ; NUMBER = NUMBER OF RECORDS TO SORT
1149 ; KEYPOS = POSITION OF KEY IN RECORD
1159 ; KEYLEN = LENGTH OF KEY
1169 ; DIRECT = @ MEANS ASCENDING SORT
1179 ; = 1 MEANS DESCENDING SORT
1189 ;
1199 ;
00pp 1209 *= $2BpP ; COMPLETELY RELOCATABLE
1219
1229 ;
123p ;SET UP POINTERS
1249 ;
pPB4 125p TEMP = $B4
$B6 1269 FILE = $B6
$9B8 1279 RECSIZE = $B8
ppBY9 - 128p NUMBER = $B9
$PBB 1299 KEYPOS = $BB
£9BC 1309 KEYLEN = $BC

136 Chapter 10

f9BD
PPBE
pacp
pac2
paca
ppCé
ppc8
AACA
ppace
POCE
paD4
p3EQ

2800
2Bp2
2Bp4
2807
2Bp8

2BPA
2BpC
2BPE
2B1p
2811
2B13
2B15
2B16
2B17
2B18
2B19
2B1B
2B1D
2B1F
2820

2B22
2B23
2B25
2B26
2B28
2B29
2B2A
2B2C
2B2D
2B2F

A21C
B5B3
9DEPP3
CA
DAF8

ASQP
8504
85D5
68
€906
FAgD
AA
68
68
CA
DAFB
A201
86D4
18
9925

68
8587
68
85B6
68
68
85B8
68
85BA
68

1319 DIRECT

1320

1330 COUNT

1349

1350 OTHER
1369 RECORD1
1379 RECORD2

FLAG

FLIP

$BD
$BE
$Cp
$C2
$C4
$C6
$C8
$CA
$CC
$CE
$D4
$3E0

144p ;SAVE PAGE ZERO ON PAGE THREE

1380 LIMIT =
1399 KEY1 =
1499 KEY2 =
1419 ERROR =
142 VAULT =
1439 ;

1459 ;

1460 LDX
1479 SAVE LDA
1489 STA
1490 DEX
1500 BNE
1519 ;

1520

1530 ;

1549 LDA
1550 STA
1560 STA
1579 PLA
1580 CMP
1599 BEQ
1609 TAX
1619 KILL PLA
1620 PLA
1630 DEX
1640 BNE
1650 LDX
1660 BAD STX
1670 CLC
1680 BCC
1699 ;

1799 ;INITIALIZE
1719 ;

172¢ GOOD PLA
1739 STA
1749 PLA
1750 STA
1769 PLA
1779 PLA
178 STA
1799 PLA
1800 STA
1819 PLA

#$1C
$B3, X
VAULT, X

SAVE

 INPUT ERROR CHECK #1

#p
ERROR
ERROR+1

#6
GOOD

KILL
#1
ERROR
EXIT

POINTERS

FILE+]

FILE

RECSIZE

NUMBER+1

;SET ERROR FLAG TO ZERO

;MAKE SURE THERE ARE
EXACTLY SIX ARGUMENTS

;IF NOT, THEN ERROR=1 AND
;GO TO EXIT

; STORE ERROR CODE

2B30
2B32
2B33
2B34
2B36
2B38
2B3A
2B3B
2B3C
2B3E
2B4p
2B41
2B42
2B44
2B45

2B47
2B49
2B4C
2BAE
2BAF
2B51

2B52
2B54
2B56
2B58
2B5A
2B5C
2B5E
2B5F
2861
2B63
2B65
2B67
2B68
2B6A
2B6C
2B6E
2879
2B72
2B74
2B75
2B77
2B79
2B7A
2B7C
2B7D

85B9
68
68
8588
C6BB
8584
68
68
858BC
C6BC
68
68
858D
18
9008

A21C
BDEQP3
9583
CA
DPF8
69

A202
A5B6
Copp
Dpp4
A5B7
FOBF
E8

A5B8
DAp4
A5B9
F@B6
E8

A5B9
DPP8
€991
DPP4
A5BA
FOA9
E8

2488
1903
18

9pA1
E8

24BC

NUMBER

KEYPOS
KEYPOS
TEMP

KEYLEN
KEYLEN

DIRECT

CHECK2

1980 ;RESTORE PAGE ZERO VALUES

#$1C
VAULT, X
$B3,X

RESTORE

#2
FILE
#p
ERR3
FILE+]
BAD

RECSIZE
ERR4
RECSIZE+1
BAD

NUMBER
ERRS

#1

ERRS
NUMBER+1
BAD

KEYPOS
ERR6

BAD

182§ STA
1830 PLA
1840 PLA
1850 STA
1860 DEC
1870 STA
1880 PLA
1890 PLA
1900 STA
1919 DEC
1920 PLA
1939 PLA
1949 STA
1950 CLC
1960 BCC
1979 ;

1999 ;

2009 EXIT LDX
2010 RESTORE LDA
202p STA
203p DEX
2p4p BNE
2050 RTS
2p60 |

2079 ;INPUT ERROR CHECK #2
2p8p

2099 CHECK2 LDX
2109 LDA
211p CMpP
2120 BNE
213p LDA
214p BEQ
2150 ERR3 INX
216p LDA
2179 BNE
218p LDA
2199 BEQ
220p ERR4 INX
221p LDA
222 BNE
223p CMP
224p BNE
225p LDA
226p BEQ
227p ERRS INX
228p BIT
2299 BPL
2309 CLC
231p BCC
232p ERR6 INX
233p BIT

KEYLEN

ATARI BASIC Faster & Better

;CONVERT TO BASE ZERO
;SAVE FOR ERROR CHECK

; CONVERT TO BASE ZERO

;RETURN TO BASIC

 IF FILE<2 THEN ERROR=2
;AND GO TO BAD EXIT

 IF RECSIZE<1 THEN ERROR=3
;AND GO TO BAD EXIT

; IF NUMBER<2 THEN ERROR=4
;AND GO TO BAD EXIT

 IF KEYPOS<@ THEN ERROR=5
;AND GO TO BAD EXIT

; IF KEYLEN<@ OR
 IF KEYLEN>(RECSIZE-KEYPOS+1)

137

138 Chapter 10

2B7F 1pp3 2349 BPL ERR6A :THEN ERROR=6 AND
2B81 18 2350 CLG ;GO TO BAD EXIT
2B82 9099 2360 BCC BAD
2B84 A5B8 2370 ERR6A LDA RECSIZE
2B86 C6B4 2380 DEC TEMP
2B88 38 239p SEC
2B89 E5B4 240P SBC TEMP
2B8B C5BC 241p CMP KEYLEN
2B8D 3P08E 2420 BMI BAD
2430
2440 ;SET UP SORT VARIABLES
2450 ;
2B8F A9pp 2460 LDA #0
2B91 85BF 2470 STA FLAG+1 JFLAG =1
2B93 A941 248p LDA #1
2B95 85BE 249p STA FLAG
2B97 P6BE 25@0P LOOP1 ASL FLAG :FLAG = 2*FLAG
2B99 26BF 2510 ROL FLAG+1
2B9B A5B9 2520 LDA NUMBER :IF FLAG<=NUMBER THEN LOOP1
2B9D CHBE 2530 CMP FLAG
2BIF ASBA 254P LDA NUMBER+1
2BA1 E5BF 2550 SBC FLAG+1
2BA3 BRF2 2560 BCS LOOP1
2BA5 46BF 257@ LOOP3 LSR FLAG+1 :FLAG = FLAG/2
2BA7 66BE 2580 ROR FLAG
2BA9 A5SBE 2599 LDA FLAG ;IF FLAG = @ THEN
2BAB @5BF 2600 ORA FLAG+1 :SORT IS COMPLETE AND
2BAD Fp98 2610 BEQ EXIT ;GO TO NORMAL EXIT
2BAF A9P1 2620 MAIN LDA #1 ;FOR COUNT=1 TO (NUMBER-FLAG)
2BB1 85C0 2630 STA COUNT
2BB3 A9PP 2649 LDA #0
2BB5 85C1 2650 STA COUNT+1
2BB7 38 2660 SEC
2BB8 A5B9 267§ LDA NUMBER
2BBA E5BE 2680 SBC FLAG
2BBC 85CA 2690 STA LIMIT
2BBE A5BA 270P LDA NUMBER+1
2BC@ ESBF 2719 SBC FLAG+1
2BC2 85CB 2720 STA LIMIT+1
2BC4 A5CP 2730 LOOP2 LDA COUNT :FLIP = COUNT
2BC6 85C2 274P STA FLIP
2BC8 A5SC1 2750 LDA COUNT+1
2BCA 85C3 276§ STA FLIP+1
2BCC 18 2779 CLC
2BCD 9pp6 278P BCC AGAIN
2BCF 99D4 2796 DUM3 BCC LOOP3 :LILLY PADS

2BD1 B@F1 280p DUM2 BCS LOOP2
2BD3 D@PP 2810 DUMI BNE AGAIN

2BD5 18 2820 AGAIN CLC ;OTHER = FLIP+FLAG
2BD6 ASC2 283p LDA FLIP
2BD8 65BE 284p ADC FLAG

2BDA 85C4 2850 STA OTHER

2BDC
2BDE
2BEP

2BE2
2BE4
2BE6
2BE8
2BEA
2BEC
2BEE
2BFp
2BF2
2BF4
2BF6
2BF8
2BFA
2BFC
2BFE
2009
2001
2003
2005
2007
2009
2008
200D
2CpF
2C11
2C13
2C15
2017
2C19
2C1B
2C1D
2C1F
2020
2022
2024
2026
2028
2C2A

2028

202D
2C2F
2031
2C33
2C35
2037
2C39

A5C3
65BF
85C5

A5B6
85C6
85C8
A5B7
85C7
85C9
A9p1
85B4
C5C2
DPP6
ASPP
C5C3
FO2E
A9pQ
85B5
18

A5C6
65B8
85C6
A5C7
6909
85C7
E6B4
DAp2
E6BS
A5B4
C5C2
DPE7
A5BS
C5C3
DAE1L
18

9008
DPAF
BOAB
9pA7
DAD6
18

A5C6
65BB
85CC
A5C7
6900
85CD
A9P1
85B4

2860
2870
2880
289f

LDA
ADC
STA

FLIP+1
FLAG+1
OTHER+1

29p@ ;POINT TO TEST RECORDS

2919
2920

2930

2940

2950

2960

297

2980

2990

3008

3019

3020

303p

3pap

3050 SETIA
3p6p

3079 SETIB
3p8p

3099

3109

311p

3126

3130

314p

3150,

316p

3179 SETIC
318p

3190

320P

3219

3220

3230

324p

3250 DUM1B
3260 DUM2B
3279 DUM3B
3284

3290 SETKEY1
3300

3310

3320

3330

334p

3350

3360 SET2A
3378

LDA
STA
STA
LDA
STA
STA
LDA
STA
CHP
BNE
LDA
CHP
BEQ
LDA
STA
cLC
LDA
ADC
STA
LDA
ADC
STA
INC
BNE
INC
LDA
CHP
BNE
LDA
CHP
BNE
cLC
BCC
BNE
BCS
BCC
BNE
cLC
LDA
ADC
STA
LDA
ADC
STA
LDA
STA

FILE
RECORD1
RECORD2
FILE+]
RECORD1+1
RECORD2+1
#1

TEMP

FLIP
SETIA

#P

FLIP+1
SETKEY1

#P
TEMP+1

RECORD1
RECSIZE
RECORD1
RECORD1+1
#o
RECORD1+1
TEMP
SETIC
TEMP+1
TEMP

FLIP
SET1B
TEMP+1
FLIP+1
SET1B

SETKEY1
DUMI
DUM2
DUM3
SET1B

RECORD1
KEYPOS
KEY1
RECORD1+1
#o

KEY1+1

#1

TEMP

ATARI BASIC Faster & Better

;POINT TO FIRST RECORD

MORE LILLY PADS

;POINT TO KEY IN RECORD1

;POINT TO SECOND RECORD

139

140 Chapter 10

2(3B
203D
2C3F
2041
2043
2045
2047
2049
2C4A
2C4C
2CAE
2050
2052
2054
2056
2058
2C5A
205C
2C5E
2060
2062
2064
2066
2068
2069
2C6B
2C6D
2C6F
2C71
2C73

2C75
2C77
2C79
2C7B
2C7D
2C7F
2081
2082
2084
2086
2C88
2C8A
208C
2C8E
2090
2092
2094
2095

C5C4
Dpp6
ASpP
C5C5
Fp23
ASpP
85B5
18

A5C8
65B8
85C8
A5C9
6909
85C9
E6B4
Dpp2
E6BS
A5B4
C5C4
DPE7
A5B5
C5C5
DAE1
18

A5C8
65BB
85CE
A5C9
6900
85CF

ABRp
A5BD
DA13
B1CC
DICE
3054
C8

C4BC
9pF5
BA11
DA98
BA98
9098
BICE
D1ICC
3p41
Cc8

C4BC

3380
3399
3499
3419
3420
3430
3440
3450
3460
3479
3480
3490
3500
3510
3520
3530
3549
3550
3560
357p
3580
3599
3600
3619
3620
3630
3649
3650
3660
3679

3680
;MAIN SORT ROUTINE

3690
3709
3719
3720
3730
3749
3750
3760
3779
3780
3790
3809
3819
3820
3830
384p
3850
3860
3879
3880

SET2B

SET2C

SET2D

SETKEY2

SORT

up

DUMIA
DUM2A
DUM3A
DOWN

cHP
BNE
LDA
CHP
BEQ
LDA
STA
cLC
LDA
ADC
STA
LDA
ADC
STA
INC
BNE
INC
LDA
CHP
BNE
LDA
CHP
BNE
cLC
LDA
ADC
STA
LDA
ADC
STA

LDY
LDA
BNE
LDA
CMP
BMI
INY
CPY
BCC
BCS
BNE
BCS
BCC
LDA
CMP
BMI
INY
CPY

OTHER
SET2B
#0
OTHER+1
SETKEY2

#P
TEMP+1

RECORD2
RECSIZE
RECORD2
RECORD2+1
#0
RECORD2+1
TEMP
SET2D
TEMP+1
TEMP
OTHER
SET2C
TEMP+1
OTHER+1
SET2C

RECORD2
KEYPOS
KEY2
RECORD2+1

#P
KEY2+1

#p
DIRECT
DOWN
(KEY1),Y
(KEY2) Y
BMPREC

KEYLEN
up

SWAP
DUM1B
DUM2B
DUM3B
(KEY2) Y
(KEY1),Y
BMPREC

KEYLEN

POINT TO KEY IN RECORDZ2

;PICK A SORT DIRECTION

;SORT IN ASCENDING ORDER

EVEN MORE LILLY PADS

;SORT IN DESCENDING ORDER

2097

2099
2098
2C9D
2C9F
2CAl
2CA3
2CA5
2CA7
2CA8
2CAA
2CAC
2CAE
2CBp
20B2
2CB3
2CB5
2CB7
2CB9
2CBB
2CBD
2CBE
2CCp

20C2
20C4
2CC5
20C7
2CC9
2CCB
2CCD
2CCF
2CD1
2CD3
2CD5
20D7
2CD9
2(CDB
2(CDD
2CDF
2CE1
2CE3
2CE5
2CE7

90F5

Ap@p
A9p4
85B5
A9PP
85B4
B1C6
91B4
Cc8

C4B8
DAF7
ApRp
B1C8
91C6
8

C4B8
DAF7
ABpY
B1B4
91C8
Cc8

C4B8
DOF7

A5C2
38

E5BE
85C2
A5C3
ESBF
85C3
9004
p5C2
DAB3
E6CH
Dpp2
E6C1
A5CA
C5Cp
A5CB
E5C1
BPAS
9PA5

3890
3909 .

3920 ;
3930 SWAP
3949

3950

3960

3979

3980 SWAPA
3990

4ppp

4p1p

4020

4p3p

494p SWAPB
4950

4060

4p7p

4080

4990

4100 SWAPC
4119

4120

4130

4149

4150 ;
416f ;UPDATE
4179
4180

4199

4200

421p

4220

4230

4240

4250

4260

4279 FROGL
4280 BMPREC
4299

4300

4319 NEXT
4320

4339

4349

4350 FROG2
4360 FROG3
4379

ATARI BASIC Faster & Better

BCC DOWN

3919 ;SWAP RECORD1 WITH RECORD2

LDY #0 ;POINT BUFFER TO PAGE FOUR
LDA #4

STA TEMP+1

LDA #o

STA TEMP

LDA (RECORDI) ,Y ; TEMP$ = TEST$(REC1)
STA (TEMP) .Y

INY

CPY RECSIZE

BNE SWAPA

LDY #o ; TEST$(REC1) = TEST$(REC2)

LDA (RECORD2) , Y
STA (RECORDI) ,Y

INY

CPY RECSIZE

BNE SWAPB

LDY #o ; TEST$(REC2) = TEMPS

LDA (TEMP) .Y
STA (RECORD2) ,Y

INY

CPY RECSIZE

BNE SWAPC

COUNTERS

LDA FLIP FLIP = FLIP-FLAG
SEC

SBC FLAG

STA FLIP

LDA FLIP+1

SBC FLAG+1

STA FLIP+1

BCC BMPREC

ORA FLIP

BNE DUM1A

INC COUNT ;NEXT COUNT

BNE NEXT

INC COUNT+1

LDA LIMIT ;IS THIS PASS COMPLETED?
CMP COUNT

LDA LIMIT+1
SBC COUNT+1

BCS DUM2A ;NO? THEN GO BACK TO LOOP2
BCC DUM3A START A NEW PASS (LOOP3)
.END

141

142 Chapter 10

Figure 10.4 — SORT.LST — BASIC POKE Version of SHELL

2043p
20431
20432
20433
20434
20435
20436
20437
20438
20439
20449
20441
20442
20443
20444
20445
20446
20447
20448
20449
2045
20451
20452
20453
20454
20455
20455
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20479
20471
20472
20473
20474
20475
20476
20477

REM SORT.LST

DATA 162,28,181,179,157,224,3,202
DATA 2p8,248,169,0,133,212,133,213
DATA 1p4,201,6,24p,13,170,1p4,1p4
DATA 202,208,251,162,1,134,212,24
DATA 144,37,104,133,183,1p4,133,182
DATA 1p4,1p4,133,184,194,133,186,1p4
DATA 133,185,1p4,1p4,133,187,198,187
DATA 133,18¢,1p4,1p4,133,188,198,188
DATA 1p4,1p4,133,189,24,144,11,162
DATA 28,189,224,3,149,179,202,208
DATA 248,96,162,2,165,182,201,0

DATA 20¢8,4,165,183,240,191,232,165
DATA 184,208,4,165,185,240,182,232
DATA 165,185,208,8,201,1,208,4

DATA 165,186,240,169,232,36,187,16
DATA 3,24,144,161,232,36,188,16

DATA 3,24,144,153,165,184,198,18p
DATA 56,229,18,197,188,48,142,169
DATA §,133,191,169,1,133,190,6

DATA 196,38,191,165,185,197,190,165
DATA 186,229,191,176,242,79,191,162
DATA 190,165,190,5,191,240,152,169
DATA 1,133,192,169,0,133,193,56

DATA 165,185,229,199,133,202,165,186
DATA 229,191,133,203,165,192,133,194
DATA 165,193,133,195,24,144,6,144
DATA 212,176,241,208,0,24,165,194
DATA 1f1,190,133,196,165,195,101,191
DATA 133,197,165,182,133,198,133,200
DATA 165,183,133,199,133,201,169,1
DATA 133,180,197,194,208,6,169,0
DATA 197,195,240,46,169,0,133,181
DATA 24,165,198,101,184,133,198,165
DATA 199,105,0,133,199,230,180,208
DATA 2,23p,181,165,180,197,194,208
DATA 231,165,181,197,195,208,225,24
DATA 144,8,208,175,176,171,144 167
DATA 208,214,24,165,198,101,187,133
DATA 2¢4,165,199,105,0,133,205,169
DATA 1,133,180,197,196,208,6,169
DATA 9,197,197,246,35,169,0,133

DATA 181,24,165,200,101,184,133,200
DATA 165,201,105,0,133,201,230,18p
DATA 20¢8,2,230,181,165,180,197,196
DATA 26¢8,231,165,181,197,197,208,225
DATA 24,165,209,101,187,133,206,165
DATA 201,105,0,133,207,160,0,165

ATARI BASIC Faster & Better 143

20478 DATA 189,208,19,177,204,209,2p6,48
20479 DATA 84,206,196,188,144,245,176,17
20480 DATA 208,152,176,152,144,152,177,206
20481 DATA 209,2064,48,65,200,196,188,144
20482 DATA 245,160,0,169,4,133,181,169
20483 DATA 9,133,180,177,198,145,180,20p
20484 DATA 196,184,208,247,160,0,177,209
20485 DATA 145,198,200,196,184,208,247,160
20486 DATA @,177,180,145,200,200,196,184
20487 DATA 208,247,165,194,56,229,190,133
20488 DATA 194,165,195,229,191,133,195,144
20489 DATA 4,5,194,208,179,23p,192,208
20499 DATA 2,230,193,165,202,197,192,165
20491 DATA 203,229,193,176,165,144,165
20492 MLSTART=11p08
2p493 MLEND=11494
2494 FOR X=MLSTART TO MLEND
2p495 READ Y:

POKE X,Y:

NEXT X
20496 RETURN

Using SORT.LST is easy. After you have loaded, POKEd, or packed the routine into
memory, you access it with a USR call of the form:

ERROR=USR (ADDR, FILE,RECSIZE,NUMBER, KEYPOS, KEYLEN, DIRECT)

where:
ERROR = Error code returned to BASIC
ADDR = Address of the sort routine
FILE = Address of the file to be sorted
RECSIZE = The number of bytes in each record
NUMBER = The number of records in the file
KEYPOS = The position of the sort key in each record
KEYLEN = The number of bytes in the sort key
DIRECT = The direction of the sort (ascending or descending)

ADDR is computed the same way we have done this in previous cases. FILE is equal to
ADR(FILES), where FILES$ is the string array in which you have stored your data. You can
also set FILE equal to a particular memory address if you have POKEd your data into
memory. I will show you an example of both methods a little later. RECSIZE must be set
equal to the number of bytes you have allocated for each record. NUMBER is simply the
number of such records you want the routine to sort on. DIRECT specifies the direction of
the sort. A value of zero means the data will be sorted from the smallest to the largest
(ascending). Any non-zero value will cause the sort to be in descending order, from largest to
smallest.

Note the two “key” related arguments. This sort routine is a little more sophisticated than
its BASIC counterpart. By specifying a key position greater than one, you can have the
routine sort on any key anywhere in arecord. Of course, all of the records must have the same
key in the same location inside each record. The key can have a maximum length of 128
bytes. This length is specified by the argument KEYLEN.

144 Chapter 10

The variable, ERROR, is used to call the routine. Under most circumstances, this variable
will always be be equal to zero. The machine language routine does some input error
checking to make sure you have used the right number of arguments and that each argument
is assigned a legal value. The possible error codes are:

Error Codes For Machine Language Shell Sort
ERROR CODE MEANING

No errors

Number of arguments is not equal to 6
File address is less than §

RECSIZE is less than 1

Number of records is less than 2

Key position is less than 1 (or>128)
Key length is less than 1 (or>128)

DD AW N =

You will note that there is no upper limit specified for the number of records. This is
because the number will depend upon how much memory your system has. One advantage of
this sort routine is that you can sort any number of records, as long as you can fit them all into
your computer.

Making Numeric Data Sortable

The need to sort numbers is a special problem. Since numbers are stored in the six-byte
BCD format and you don’t have a numeric equivalent of the “ADR(STRING$)” command,
numbers not only are hard to find; they are difficult to sort once you do find them. The
solution to this problem is simple, fortunately. All you have to do is convert all of the numeric
data to strings using the STR$(X) command. Yes, I realize that this could be a time
consuming process, but the alternative is to do without the capabilty of sorting numeric
tables.

The next case to consider is sorting a table of positive and negative numbers. This breaks
down into two problem areas. The first is that the ATASCII value of a “+”’ is less than the
ATASCII value of a “-”. When sorting negative and positive numbers, you should not have a
‘4” sign in front of your positive numbers. That solves this particular problem since the
ATASCII value of the “-” sign is less than the ATASCII value of any number and therefore
will be sorted as “less than” any positive number. Be careful not to have any leading spaces
on your positive numbers either, or you will run into the same problem that you had with the

€€,

+’ sign.

The second problem with sorting such numbers is leading zeroes (not spaces). If you are
comparing the number “9” to the number “27”, the result will tell you that 27 is less than 9
because the comparison is made a digit at a time. The solution to this problem is to add
leading zeroes to the smaller numbers so all of the numbers will , in effect, have the same
number of digits in front of the decimal (including the “-” sign). This is easily done when you
are converting the numeric data to strings. You avoid any problem with the “-” sign because
zero has a higher ATASCII value than it. Now when you sort the “numbers,” the number
“09” will correctly be sorted as being less than “27.”

Unfortunately, there is still another problem you have to handle before you start sorting
numbers. If any of the numbers in the sort file have decimals (as in dollar and cents), these
numbers will not be sorted properly because a “.”” has a higher ATASCII value than a space

ATARI BASIC Faster & Better 145

and a lower value than a number. The solution to this problem is to either eliminate the
decimal point (by multiplying the numbers by a large enough factor of ten), or by adding
enough trailing zeroes, to make sure that all of the decimal points line up. For monetary
numbers, you can easily do this using the MONEY.LST routine that we discussed earlier in
this book. In any case, the sorted numbers can be recovered as numbers by using a
“VAL(STRINGS$)” command on them.

Sorting With Assorted Keys

Let’s suppose that you have data for several retail stores. Working at each store you have
several salesmen, and your computer program has accumulated total sales for each
salesman. You have stored the data in a file with 10 bytes allocated to each key, giving a total
record length of 30 bytes:

Store Sales Data File
STORE SALESMAN SALES

p123456789012345678909123456789
CHINO JONES 532.4p
AZUSA DIETL 221.28
UPLAND MARRACK 223.32
UPLAND JOHNSON 332.22
ONTARIO SAMMS $52.48
ONTARIO BURKE 299.9p

To sort the data in alphabetical order by store and within each store in alphabetical order
by salesman, you simply set RECSIZE=30, NUMBER=6, KEYPOS=1, KEYLEN=20,
DIRECT=0 and call up the sort routine. Change KEYLEN to 10 if you only want to sort by
store location, and change KEYPOS to 11 if you only want to sort by salesman.

$12345678901234567890123456789

CHINO JONES 532.4p
AZUSA DIETL 221.28
UPLAND MARRACK 223.32
UPLAND JOHNSON 332.22
ONTARIO SAMMS $52.48
ONTARIO BURKE 299. 09

After the data is sorted in ascending sequence, you can split out the keys and store them
back in their separate arrays for further processing. Here’s what you get:

$123456789091234567890123456789
AZUSA DIETL 221.28
CHINO JONES 532.4p
ONTARIO BURKE 299.90
ONTARIO SAMMS $52.48
UPLAND JOHNSON 332.22
UPLAND MARRACK 223.32

146 Chapter 10

Now suppose you want to sort so that the salesman with the lowest sales total is shown at
the top of the list and if more than one salesman has the same sales figure, they are to be
listed alphabetically. T'o do this, set KEYPOS=11 and KEYLEN=10. Run the sortroutine
to get the following:

$123456789912345678909123456789

ONTARIO SAMMS #52.48
AZUSA DIETL 221.28
UPLAND MARRACK 223.32
ONTARIO BURKE 299.09
UPLAND JOHNSON 332.22
CHINO JONES 532.09

Since there are no duplicated sales figures we are done; if there had been duplicated sales
figures, we could handle this situation in one of two ways. The first is to create a small sort file
that consists of the records for a particular duplicated sales figure and sort that small file on
the name key by setting KEYPOS=11 and KEYLEN=10. This is how I do it most of the
time since I usually have only a couple of duplicated figures. If you have a large number of
duplicated figures, you probably should create a brand new sort file that looks like this:

£123456789012345678909123456789
CHINO 532.49 JONES
AZUSA 221.28 DIETL
UPLAND 223.32 MARRACK
UPLAND 332.22 JOHNSON
ONTARIO §52.48 SAMMS
ONTARIO 299.0p BURKE

This new file could now be sorted in the desired way.

Now let’s suppose you want the salesman with the highest sales total to be shown at the top
of the list. In other words, you want the list sorted in descending sequence by sales total,
ascending sequence by salesman, and ascending sequence by store location. One method

you can use is to sort in descending sequence similar to what we did above (but with
DIRECT=1).

The only problem with this technique is that the names of the salesmen will not be in the
right order, and the store locations will also be in in the wrong order if two sales totals are
equal.

Abetter solutionis touse INVERT.LST to complement the keys that we want to be sorted
in the opposite order of the primary key. The complement of “AAA” is greater than the
complement of “BBB”.

In our example, we would want to complement the sales amount key before we do the sort.
Be sure to use a dummy file! After the sort, we use INVERT.LST to complement the sales
amount keys again to restore them to their original values.

Sorting Demonstration Programs

The programs listed in Figures 10.5 and 10.6 are demonstration programs that illustrate
ways to use SORT.LST. The first program SHELL2.DEM is a simple benchmark program
similar to SHELL.DEM. You should RUN the real time clock program before running this

ATARI BASIC Faster & Better 147

demo. The sort will still be performed if you don’t, but the elapsed time won’t be correct. The
demo is set up to sort 50 random alpha-numeric characters. If you would like to sort a larger
number, change the value of the variable NUM in line 160 to the desired number. If you want
the sort to be in descending order instead of ascending order, change DIRECT to one. The
sorted file is stored in the string TEST$. To have a look at the sorted data, just PRINT
TESTS$.

The second demo program is a lot more interesting. SHELL3.DEM is a visual sorting
routine. The data file is POKEJ to the video screen, and the sort routine is told to use the
screen display as the source file to be sorted. The results are very interesting! You can
actually watch the sort take place. This should enable you to better understand exactly how
the shell sort really works. The demo is set up to display 320 lower case alpha characters on
the bottom half of the screen. I used a file this size so you would have time to see the sort
routine working. I think you will like the results. Have fun!

Figure 10.5 — SHELL2.DEM — A Shell Sort Benchmark Test

10p REM SHELL2.DEM -
119 REM BENCHMARK TEST FOR
120 REM MACHINE LANGUAGE SHELL SORT
139 REM
149 REM SET UP TEST ROUTINE
150 REM
160 NUM=5@:
DIM SORT$(487),TESTS(NUM):
N=NUM:
Z1=1:
22pp=2p9
Z47=A47:
758=58:
264=64:
791=91:
796=96:
7123=123
179 FOR X=Z1 TO NUM
189 Y=INT(Z2PP*RND(D)) :
TEST$ (X, X)=CHR$ (Y)
199 IF NOT ((Y>Z47 AND Y<Z58) OR
(Y>Z64 AND Y<Z91) OR
(Y>Z96 AND Y<Z123)) THEN 18§
209 NEXT X
219 FILE=ADR(TEST$):
RECSIZE=1:
NUMBER=NUM:
KEYPOS=1:
KEYLEN=1:
DIRECT =
220 FOR X=ADR(SORT$) TO ADR(SORT$)+486:
READ Y:
POKE X,Y:
NEXT X

148 Chapter 10

230 REM
24 REM RESET CLOCK
250 REM
260 POKE 1536,1:

POKE 1537,0:

POKE 1538,0:

POKE 1539,0:

POKE 1536,0
270 REM
280 REM ROUTINE TO BE TESTED
290 REM
309 REM SHELL SORT ROUTINE
319 ERROR=USR(ADR(SORTS$) ,FILE,RECSIZE, NUMBER,KEYPOS,KEYLEN,DIRECT)
3200 REM
330 REM FIND ELAPSED TIME
340 REM
350 PRINT CHR$(125):

PRINT CHR$(253):

POSITION 2,5:

PRINT "BENCHMARK TEST COMPLETED"
369 POSITION 2,9:

POKE 1536,1:

PRINT "ELAPSED TIME = ";PEEK(1537);:

POSITION 20,9:

PRINT " HOURS"
379 POSITION 17,10:

PRINT ;PEEK(1538);:

POSITION 20,10:

PRINT " MINUTES"
38 POSITION 17,11:

PRINT ;PEEK(1539);:

POSITION 20,11:

PRINT " SECONDS"
399 POKE 1536,0:

END
4p0 REM
419 REM MERGE POKE DATA FOR
42 REM ML SORT ROUTINE HERE
430 REM
44p DATA 162,28,181,179,157,224,3,2p2
450 DATA 208,248,169,0,133,212,133,213
46p DATA 1p4,201,6,240,13,170,1p4,1p4
479 DATA 202,208,251,162,1,134,212,24
480 DATA 144,37,1p4,133,183,1p4,133,182
499 DATA 1p4,1p4,133,184,1p4 133,186,104
50p DATA 133,185,1p4,1p4,133,187,198,187
51Q DATA 133,18¢,1p4,1p4,133,188,198,188
520 DATA 1p4,104,133,189,24,144,11,162
530 DATA 28,189,224,3,149,179,202,208
54p DATA 248,96,162,2,165,182,201,0
550 DATA 2p¢8,4,165,183,24p,191,232,165
560 DATA 184,208,4,165,185,240,182,232

57p DATA 165,185,208,8,201,1,208,4

580 DATA 165,186,240,169,232,36,187,16
590 DATA 3,24,144,161,232,36,188,16

609 DATA 3,24,144,153,165,184,198,180
610 DATA 56,229,180,197,188,48,142,169
620 DATA §,133,191,169,1,133,190,6

630 DATA 19¢,38,191,165,185,197,190,165
640 DATA 186,229,191,176,242,7p,191,102
650 DATA 19¢,165,190,5,191,240,152,169
660 DATA 1,133,192,169,0,133,193,56

670 DATA 165,185,229,190,133,202,165,186
6809 DATA 229,191,133,203,165,192,133,194
690 DATA 165,193,133,195,24,144,6,144
700 DATA 212,176,241,208,0,24,165,194
719 DATA 1p¢1,196,133,196,165,195,101,191
720 DATA 133,197,165,182,133,198,133,20p
730 DATA 165,183,133,199,133,201,169,1
740 DATA 133,180,197,194,20¢8,6,169,0

750 DATA 197,195,240,46,169,0,133,181
769 DATA 24,165,198,101,184,133,198,165
770 DATA 199,1¢5,0,133,199,230,180,208
780 DATA 2,23p,181,165,180,197,194,208
799 DATA 231,165,181,197,195,208,225,24
80p DATA 144 ,8,208,175,176,171,144,167
810 DATA 208,214,24,165,198,101,187,133
820 DATA 24,165,199,1p5,0,133,205,169
830 DATA 1,133,180,197,196,208,6,169

840 DATA @,197,197,249,35,169,0,133

850 DATA 181,24,165,200,101,184,133,209
860 DATA 165,201,1p5,0,133,201,230,18p
870 DATA 28,2,230,181,165,180,197,196
880 DATA 208,231,165,181,197,197,208,225
890 DATA 24,165,200,101,187,133,206,165
969 DATA 201,105,0,133,2p7,160,0,165

91@ DATA 189,208,19,177,204,209,206,48
920 DATA 84,200 ,196,188,144,245,176,17
93p DATA 208,152,176,152,144,152,177,206
94p DATA 29,204 ,48,65,2pp,196,188,144
950 DATA 245,160,0,169,4,133,181,169

960 DATA 0,133,180,177,198,145,180,20p
97p DATA 196,184 ,208,247,160,0,177,200
980 DATA 145,198,200,196,184,208,247,160
9909 DATA p,177,180,145,2p@,200,196,184
1900 DATA 208,247,165,194,56,229,190,133
1919 DATA 194,165,195,229,191,133,195,144
1920 DATA 4,5,194,208,179,230,192,208
1930 DATA 2,230,193,165,202,197,192,165
1049 DATA 203,229,193,176,165,144,165

ATARI BASIC Faster & Better

149

150 Chapter 10

Figure 10.6 — SHELL3.DEM — A Visual Sort of Experience

199 REM SHELL3.DEM -
11 REM A VISUAL SORT OF EXPERIENCE
120 REM
139 REM SET UP DATA TO BE SORTED
149 REM
150 NUM=320:
DIM SORT$(487):
Z1=1:
725=25:
297=97.5:
POKE 752,1
16 PRINT CHR$(125):
PRINT :PRINT :PRINT :
PRINT " SHELL3.DEM - A VISUAL SORT":
FOR X=Z1 TO NUM
17p Y=INT(Z25*RND(9)+Z97)
180 POKE 4p399+X,Y:
NEXT X
190 FILE=4p400:
RECSIZE=1:
NUMBER=NUM:
KEYPOS=1:
KEYLEN=1:
DIRECT=0
2pP FOR X=ADR(SORT$) TO ADR(SORT$)+486:
READ Y:
POKE X,Y:
NEXT X
210 REM
220 REM SHELL SORT ROUTINE
230 REM
24P ERROR=USR(ADR(SORT$) ,FILE,RECSIZE,NUMBER, KEYPOS,KEYLEN, DIRECT)
250 END
260 REM
27p REM MERGE POKE DATA FOR
280 REM ML SORT ROUTINE HERE
290 REM
3pP DATA 162,28,181,179,157,224,3,2p2
310 DATA 20¢8,248,169,0,133,212,133,213
320 DATA 1p4,201,6,240,13,170,194,1p4
330 DATA 262,208,251,162,1,134,212,24
340 DATA 144,37,104,133,183,104,133,182
350 DATA 1¢4,1p4,133,184,104 133,186,104
360 DATA 133,185,1p4,1p4,133,187,198,187
379 DATA 133,18p,1p4,1p4,133,188,198,188
380 DATA 1p4,1p4,133,189,24,144,11,162
399 DATA 28,189,224,3,149,179,202,208
4pp DATA 248,96,162,2,165,182,201,0

410 DATA 208,4,165,183,240,191,232,165
42() DATA 184,208,4,165,185,240,182,232
430 DATA 165,185,208,8,201,1,208,4

440 DATA 165,186,240,169,232,36,187,16
450 DATA 3,24,144,161,232,36,188,16

460 DATA 3,24,144,153,165,184,198,18p
470 DATA 56,229,180,197,188,48,142,169
480 DATA $,133,191,169,1,133,190,6

490 DATA 190,38,191,165,185,197,190,165
500 DATA 186,229,191,176,242,70,191,102
519 DATA 196,165,190,5,191,240,152,169
520 DATA 1,133,192,169,0,133,193,56

530 DATA 165,185,229,190,133,202,165,186
549 DATA 229,191,133,203,165,192,133,194
550 DATA 165,193,133,195,24,144,6,144
560 DATA 212,176,241,208,0,24,165,194
570 DATA 1p1,19¢,133,196,165,195,101,191
580 DATA 133,197,165,182,133,198,133,200
590 DATA 165,183,133,199,133,201,169,1
60p DATA 133,180,197,194,208,6,169,0

619 DATA 197,195,24p,46,169,0,133,181
620 DATA 24,165,198,101,184,133,198,165
630 DATA 199,1p5,0,133,199,230,180,208
640 DATA 2,230,181,165,18p,197,194,208
650 DATA 231,165,181,197,195,208,225,24
660 DATA 144,8,208,175,176,171,144,167
679 DATA 208,214,24,165,198,101,187,133
680 DATA 204,165,199,105,0,133,205,169
690 DATA 1,133,180,197,196,208,6,169

700 DATA §,197,197,240,35,169,0,133

710 DATA 181,24,165,200,101,184,133,20p
720 DATA 165,201,105,0,133,201,230,180
730 DATA 208,2,230,181,165,180,197,196
749 DATA 2¢8,231,165,181,197,197,28,225
750 DATA 24,165,2p@,1p1,187,133,206,165
760 DATA 201,1p5,0,133,207,160,0,165

77p DATA 189,208,19,177,204,209,206,48
780 DATA 84,20p,196,188,144,245,176,17
790 DATA 208,152,176,152,144,152,177,206
80P DATA 209,204 ,48,65,20p,196,188,144
819 DATA 245,160,0,169,4,133,181,169

820 DATA @,133,189,177,198,145,180,200
830 DATA 196,184,208,247,16p,0,177,200
849 DATA 145,198,200,196,184,208,247,16p
850 DATA §,177,180,145,2p0,200,196,184
360 DATA 28,247,165,194,56,229,190,133
870 DATA 194,165,195,229,191,133,195,144
380 DATA 4,5,194,208,179,23p,192,208

890 DATA 2,230,193,165,202,197,192,165
999 DATA 203,229,193,176,165,144,165

ATARI BASIC Faster & Better

151

152 Chapter 11

Keyboard Trickery

On the Atari, like most other home computers, the primary interface between you and the
computer is the keyboard. There are many tricks to using the keyboard interface more
efficiently. In this chapter we will discuss many tricks of the trade and show you how to make
your programs easier to use and more professional in their operation.

Avoiding Operator Crashes

The most annoying thing I have noticed in some commercial programs is that they have
this nasty tendency to crash if you hit the wrong key. For example, the expected input is a
number between one and nine, and you accidentally hit a “Q” or some other alpha character.
In a well written program this mistake causes no harm, but in many so-called “professional”
programs the result is a system, or at least, a program crash. All user inputs should be
anticipated, and the program should not have a nervous breakdown just because you hit the
wrong key. Normally, when most professional programmers write a program, they fully
buffer all user inputs. This means that if the program asks for a specific input, such as a
number from one to nine, the only inputs the program will act on are those numbers, and the
rest of the keyboard is locked out. I strongly suggest that you adopt this policy in all of your
programs, too. The routines in this chapter will be of help in doing this.

The Single Key Input Routine

Tuse this neat little routine in just about every BASIC program I write. You will find that it
provides quite a programming convenience when you want to use a single key to answer a
prompt or a question displayed on the screen. Subroutine KEY.LST simply tells the
computer to wait for the operator to press a key on the keyboard. Upon return from the
subroutine, you will have the ATASCII value of the character, corresponding to the key that
was pressed, stored in KEY. Here’s the subroutine:

Figure 11.1 — KEY.LST

20440 REM KEY.LST

20441 OPEN #6,4,0,"K:"

20442 GET #6,KEY

2p443 REM PUT SPECIAL EXIT #1 HERE
2p444 REM PUT SPECIAL EXIT #2 HERE
2p445 CLOSE #6:RETURN

ATARI BASIC Faster & Better 153

Essentially, this routine opens the keyboard as a “device”, sort of like you might open a
printer or disk drive for special I/O. In this particular routine the device numberis “6”.If the
program you want to put this routine into is already using this device number for something
else,you can changeitto “5”,“4” or some other legal number. You should avoid using device
zero or seven since the operating system uses them, and the results could become
unpredictable. The screen editor uses device zero. Device seven is used by LIST, LOAD,
PRINT and RUN. CAUTION: always CLOSE a device when you are through with it.

When this routine is called, the ATASCII code for the key you hit is stored in the variable
KEY. Any special exit conditions must test KEY against the proper ATASCII codes. I will
give you a few examples a little later to help make this part clearer.

When you want the operator to press a single key, just GOSUB 20440. I use this
routine in:

1. Menu programs, where [want the operator to select a program or subroutine by
pressing a number or letter key without having to press the “RETURN” key.

2. Applications where a message or data is displayed on the screen and I want the
operator to press “RETURN” to continue.

3. Applications where I want the operator to give a simple one-key response.

The advantages of the single-key input routine are:

1. Youdon’t have to clutter your program logic with a number of two-or-more line
routines to accept a single key entry. This saves you memory.

2. Your video display is not disturbed (as it could be with INPUT). Nothing is
printed on the screen until your program logic has had a chance to analyze the
contents of KEY. Inadvertent use of the control keys can’t destroy your screen
display.

3. You provide more convenience and fewer key strokes for the person using your
program.

The menu routine shown in the next section is an example of one way that you can use the
single-key subroutine.

Quick and Easy Menu Routines

A menu routine is a video display module that gives you a list of alternative functions to
perform and the ability to select one of those functions (usually by entering a letter or a
number). I've included a couple of sample menu routines to illustrate a few of the tricks in
program desi@. Here is the menu to be displayed:

Figure 11.2 — Sample Menu

SELECT A CHANGE OPTION
[1] CHANGE A PLAYER'S NAME
[2] DELETE A PLAYER
[3] CHANGE THE BONUS FACTOR
[4] SUBTRACT BONUS FROM A PLAYER
[5] RESTORE PREVIOUS DESTINATION
[6] START A NEW GAME
[7] RESURRECT A PLAYER

154 Chapter 11

The selection of an item from a menu can be done by keyboard, paddle or joystick inputs,
depending upon your application. The following sections will illustrate two of these input
options. Keyboard input is demonstrated in MENUL1.LST, and paddle input is
demonstrated in MENU2.LST. I won’t show an example for joystick inputs since they are
very similar to paddle inputs in concept.

Keyboard Menus

In MENUI1.LST, the PRINT CHR$(125) simply clears the screen so we won’t have a
messed up display. We then display the various options and their associated code numbers
to prompt the user to select one of them.

Figure 11.3 — MENU1.LST - Sample Menu Subroutine

2p451 PRINT CHR$(125):POKE 752,1

20452 PRINT:PRINT" SELECT A CHANGE OPTION"

2p453 POSITION 4,5:PRINT"[1] CHANGE A PLAYER'S NAME"

20454 POSITION 4,7:PRINT"[2] DELETE A PLAYER"

2p455 POSITION 4,9:PRINT"[3] CHANGE THE BONUS FACTOR"

2p456 POSITION 4,11:PRINT"[4] SUBTRACT BONUS FROM A PLAYER"
20457 POSITION 4,13:PRINT"[5] RESTORE PREVIOUS DESTINATION"
2p458 POSITION 4,15:PRINT"[6] START A NEW GAME"

20459 POSITION 4,17:PRINT"[7] RESURRECT A PLAYER"

20461 GOSUB 2p44p:IF KEY=155 THEN 20464

20462 IF KEY<49 OR KEY>55 THEN 20461

20463 ON KEY-48 GOSUB 1000 ,2000,3009,4000,5000,6000 7000
20464 RETURN

In this particular case, we are saying that the specialized subroutines referred to in the
menu are located at line numbers 1000, 2000, 3000, 4000, 5000, 6000 and 7000. You could
put them somewhere else if you so desired. If you want to use GOTO instead of GOSUB in
line 20463, be sure to execute a POP command before leaving the subroutine. Everytime
you go into a subroutine, the computer saves the RETURN address on the STACK. If you
use an exit from the subroutine other than a RETURN, that address is left on the STACK. If
you do this very often, the STACK can become full of useless addresses, and your program
can crash with an ERROR 10. Executing a POP command before leaving the subroutine
removes the unwanted return address from the stack.

The parameters used in this menu routine can easily be changed to work in whatever
program you are writing. You can use the numbers I used, or you can select a different set of
input codes by referring to the ATASCII keycode chart in the back of this book and changing
the IF-THEN statement in line 20462. The line numbers referred to in line 20463 would
then become the line numbers of your special routines.

Irecommend that you always leave the user an easy exit from the subroutine that performs
none of the functions, just in case he got into the menu by mistake. In this menu routine, that
easy exit is hitting the “RETURN” key. If the key value returned by the routine is equal to a
“RETURN?” (155), we assume that the user wanted none of the options, and we return to the
main calling routine without performing any of the possible options. The keycodes for the
numbers 1-7 are 49-55 (see the ATASCII keycode list). If the keycode is outside of this
range, we assume that an incorrect key was pressed by mistake and ignore it. Once we have

ATARI BASIC Faster & Better 155

gotten a valid input from the user, we execute a GOSUB to the selected routine before
returning to the main program. To change the key to some other one, use the appropriate
code from the keycode table.

You can also dress up the menu by using colors, reverse video or special bars and lines, but
that is an embellishment I will leave up to you for now. The routines in the next chapter
should be of some help to you in this area.

Note that each of the options is enclosed by brackets. A consistent use of brackets in this
way will make things easier for the user of your program since he will tend to automatically
assume that he mustinput something anytime he sees the brackets. If you use this technique,
the brackets should also appear in any documentation that you write for the program.

Menus are much easier to understand if they have a distinctive title. In this particular case,
I combined the title with the prompt for the user to enter anumber. If you want to have a title
that is separate from the prompt, you can simply insert anew line between 20459 and 20461
that asks for a user input. Line 20460 was deliberately left out so that you could do this
without having to renumber the subroutine.

One thing that I also do in many of my programs is to set a TRAP that will go to the main
program’s control menu in case some unforeseen error does come up. For example, I might
have forgotten to account for the printer being OFF. Normally this could cause a fatal
execution error. Most of the time I would have a special error check in the print routine, but
my failsafe TRAP would catch it if for some reason I forgot to put one there.

Paddle Driven Menus

The general menu philosophy we discussed in the last section really applies to all types of
menus, so I will only describe the differences between keyboard and paddle menu control in
this section. Figure 11.4 Shows you an example of a typical paddle driven menu.

Figure 11.4 — MENU2.LST — A Paddle Driven Menu

2047% REM MENU2.LST - A PADDLE DRIVEN MENU
20471 PRINT CHR$(125) :POKE 752,1:PRINT:
PRINT" SELECT A CHANGE OPTION"

20472 POSITION 4,5:PRINT "[] CHANGE A PLAYER'S NAME"

20473 POSITION 4,7:PRINT "[] DELETE A PLAYER"

20474 POSITION 4,9:PRINT "[] CHANGE THE BONUS FACTOR"
4
4
4

20475 POSITION L:PRINT "[] SUBTRACT BONUS FROM A PLAYER"
20476 POSITION 3:PRINT "[] RESTORE PREVIOUS DESTINATION"
20477 POSITION 4,15:PRINT "[] START A NEW GAME"
20478 POSITION 4,17:PRINT "[] RESURRECT A PLAYER"
20479 POSITION 4,22:PRINT "[] ESCAPE FROM THIS ROUTINE"
2p48p FOR N=1 TO 7:POSITION 5,2*N+3:PRINT " ":

NEXT N:POSITION 5,22:PRINT " "
20481 IF PADDLE(@)<26 THEN POSITION 5,5:0PTION=1:GOTO 20489
20482 IF PADDLE(P)<51 THEN POSITION 5,7:0PTION=2:GOTO 20489
20483 IF PADDLE(@)<76 THEN POSITION 5,9:0PTION=3:GOTO 20489
20484 IF PADDLE(P)<1p1 THEN POSITION 5,11:0PTION=4:GOTO 20489
2p485 IF PADDLE(P)<126 THEN POSITION 5,13:0PTION=5:GOTO 20489
2p486 IF PADDLE(@)<151 THEN POSITION 5,15:0PTION=6:GOTO 20489
2p487 IF PADDLE(@)<21p THEN POSITION 5,17:0PTION=7:GOTO 20489
20488 POSITION 5,22:0PTION=155

5
7
9
1
1

156 Chapter 11

20489 PRINT "*":IF PTRIG(P) THEN 20480

20499 IF OPTION=155 THEN 20492

2491 ON OPTION GOSUB 10@f,2000,3000,4000,5000,6000,7000
2p492 RETURN

This routine displays the menu options and puts a flashing asterisk in the “box” to the left
of an option. The position of this “cursor” will move from box to box as you turn the control of
your paddle. If you press the trigger, the asterisk will stop flashing, and the program will go to
the selected routine. Note the new line in the menu. We now have to call out the escape
option explicitly. The keyboard menu assumed that the user knew (from the instruction
manual) the escape command.

Personally, I do notlike to use this type of menuroutine because itis actually slower than a
keyboard menu if there are more than three or four options. One reason for the slow down is
the accuracy with which you can seta paddle control. If there are only a few options, the range
of 228 can be divided into large easily controlled blocks for the IF-THEN statements. When
you have a lot of options in the menu, these blocks must be much smaller and are therfore
much more difficult to select by turning the paddle. If you use either paddle or joystick
menus, I strongly recommend that you limit any single menu to no more than four
options.

Using the Function Keys to Better Advantage

The Atari home computers have three built-in function keys labeled “OPTION”,
“SELECT” and “START"”. You will probably have already noticed that I like to use these
keys alot when soliciting aresponse from the operator. This section will discuss these keys in
more detail and show you how to use them in your own programs for simple inputs or even a
special variation of the keyboard menu.

The key to using these function keys is a single, special memory location. The only way to
tell if one of these keys has been pressed is to test on 53279. This opens some interesting
possibilities. Normally, you test 764 to see if a particular key has been pressed, but 764 is not
affected by pressing one of the function keys. This means that you can have a program that
uses the main keyboard for its normal processing and maintains an interrupt system based
upon whether or not a function key has been pressed. The Atari Word Processor is an
excellent example of such a program. I have also noticed that many games use the function
keys in this way.

The FUNKEY.LST routine is a simple way to check the state of the function keys. In some
ways they are like a simple application of BITMAP.LST. If none of the function keys are
pressed, the value stored in 53279 is seven. Each of the function keys clear a particular bit in
the number stored at 53279 when they are pressed. The START key clears bit zero;
SELECT clears bit one, and OPTION clears bit two. Yes, this means that you can also test
for combinations of the function keys. If all three keys are pressed, the value stored in 53279
would be 00000000 or a decimal value of zero. The following chart shows you all of the
possible key combinations and their effect on 53279.

Figure 11.5 — FUNKEY.LST - Function Key Test Routine

20509 REM FUNKEY.LST
20501 IF PEEK(53279)=6 THEN 1PP@:REM START

20502 IF PEEK(53279)=5 THEN 20p@:REM SELECT
20593 IF PEEK(53279)=3 THEN 30f@:REM OPTION

20504

GO TO 2p501

ATARI BASIC Faster & Better

157

The starting line numbers of the routine that the key is to invoke are 1000, 2000 and

3000.

Figure 11.6 — Function Key Value Chart

KEYS P

NONE

START

SELECT
START
OPTION
START
SELECT
ALL TH

RESSED PEEK(53279) BINARY CODE

& SELECT

& OPTION
& OPTION
REE

= N w0

peppRL1l
ppppp11p
ppppp1p1
ppppR10p
p0pppA11
pRpapR1p
popppRe1
pppR0AY

Figure 11.7 — MENUS3.LST - A Function Key Menu

2p51p

20511 PRINT CHR$(125):POKE 752,1:POSITION 2,12:

20512

2p513
20514

20515

20516
2p517
20518
2p519
20520
20521
20522
20523
20524
20525

REM MENU3.LST

PRINT "PRESS [Mm{u]} FOR I/ TAPE INPUT":TAPE=f
PRINT "PRESS pANAQl FOR [o:NIdW)/MERGE FILE":

MERGE=p:PRINT "PRESS PLYd] T0 CONTINUE"

IF PEEK(53279)>5 THEN 20520

IF PEEK(53279)=3 THEN TAPE= NOT TAPE:

FOR X=1 TO 20:
NEXT X

IF PEEK(53279)=5 THEN MERGE= NOT MERGE:

FOR X=1 TO 20:NEXT X

IF TAPE THEN POSITION 19,12:PRINT "DISK/[fYa3"

IF NOT TAPE THEN POSITION 19,12:PRINT "BERYJ/TAPE"

IF MERGE THEN POSITION 19,13:PRINT "O0BJECT/[HIdE"

IF NOT MERGE THEN POSITION 19,13:PRINT '(ER[HW]/MERGE"

IF PEEK(53279)=6 THEN 20522

GO TO 2p513

IF TAPE AND MERGE THEN 19pp

IF TAPE AND NOT MERGE THEN 2ppf
IF MERGE THEN 309

GOTO 4ppp

158 Chapter 11

Where the following routines are:

LINE 10p@ = ENTER a BASIC file from cassette
LINE 20p@ = GET an object file from cassette
LINE 3ppp = ENTER a BASIC file from disk
LINE 4ppp = GET an object file from disk

NOTE: See the listing of DATAPAK.BAS for more info.

There are many possible ways to use the function keys to better advantage. The examples
in this section are only a starting point. With the information we have discussed here, you
should be able to design your own uses for the Atari function keys.

Disabling the BREAK Key

Some operations, such as disk I/O, can run into catastrophic failures if the BREAK key is
pressed at the wrong time. This is also true for many of those programs that play around with
the Display List. One solution to this problem is to disable the BREAK key so the user can

not accidentally, or deliberately, press it at the wrong time. The routine to disable the
BREAK key is:

Figure 11.8 — BREAKLOK.LST - Lock Out the BREAK Key

20530 BREAKLOK.LST - DISABLE THE BREAK KEY
20531 CODE=PEEK(16)

20532 IF CODE>127 THEN CODE=CODE-128

20533 POKE 16,CODE

2p534 POKE 53774, CODE

20535 RETURN

Be sure that you don’t use this routine until you have saved your program if you are in the
midst of debugging it. Once you have your program debugged, then you can safely put this
routine at the top of your program where it will be executed as soon as the program is RUN.
To unlock the BREAK key again, use POKE 16,192 and POKE 53774,247.

Repeating Keys and Combinations

Did you ever want to repeat a function as long as you were holding a key down? Here’s a
subroutine that will help you:

Figure 11.9 — REPEAT.LST - Infinitely Repeat a Function

2054 REM REPEAT.LST

20541 IF PEEK(764)=TEST THEN
GOSUB FUNCTION:GO TO 2@541

2p542 POKE 764,255:RETURN

In this subroutine, the variable TEST should be previously set to the keyboard (not
ATASCII) code of the key you wish to test for. The value of the variable FUNCTION is
assumed to have been previously set to the line number of the function that you want to have

ATARI BASIC Faster & Better 159

repeated while the test key is depressed. The keyboard codes are listed in the back of this
book, but if you want to have them displayed on the screen, then type in this short routine and
run it to display the keyboard keycodes:

190 IF PEEK (764)=255 THEN 160
119 PRINT PEEK (764)
12f POKE 764,255: GO TO 1p9

Now press any key or key combination and notice the number that is displayed. This value
will correspond to one of the keycodes given in Appendix B. To set up repeat keys in your
programs, simply test on PEEK (764) for the proper keycode and direct the program to the
desired subroutine!

Special Keys And Their Codes

Here is a list of the more important special keys found on the keyboard and the effect you
will get by printing the CHR$ function for the ATASCII code for the key:

Figure 11.10 — Special Keys and Their Character Codes

KEY CHR$ CODE EFFECT GENERATED
SHIFT-CLEAR 125 Clear the screen
SHIFT-INSERT 157 Insert a line
SHIFT-DELETE 156 Delete a line

RETURN 155 End-of-line

BACKSPACE 126 Delete character to left
CONTROL-UP ARROW 28 Move cursor up one line
CONTROL-DOWN ARROW 29 Move cursor down one line
CONTROL-LEFT ARROW 39 Move cursor left one spot
CONTROL-RIGHT ARROW 31 Move cursor right one spot
CONTROL-CLEAR 125 Clear the screen
CONTROL-2 253 Activate keyboard buzzer
CONTROL-INSERT 255 Insert one character here
CONTROL-DELETE 254 Delete current character

I only listed those codes that I have found useful for creating special effects while a
program is running. For example, the “move cursor” codes can be combined with the “delete
character” code to eliminate a faulty input from a formatted input. Formatted input routines
will be covered in the next chapter. The best way to learn how to use these special codes
effectively is to try them out. One odd thing is that there is apparently no difference between
a CONTROL-CLEAR and a SHIFT-CLEAR.

Controlled Keyboard Input Routines

The routines in this section will work very well with the formatted input routines in the
next chapter. In this section, we will concentrate on how to get multi-key inputs from the
keyboard without using the INPUT command.

160 Chapter 11

Controlled String Input

Many applications require the user to input a string of characters, such asa person’s name,
in response to a prompt. The routine in Figure 11.9 illustrates a simple, but effective
technique for this purpose:

Figure 11.11 — INKEY1.LST - Controlled String Input

2550 REM INKEYL.LST - CONTROLLED STRING INPUT
20551 OPEN #6,4,0,"K:":SIZE=9:FOR X=1 TO SIZE
20552 GET #6,KEY:IF KEY=155 THEN POP :GOTO 2559
20553 IF KEY<48 OR KEY>122 THEN 20552

. any other conditions would go here

20558 PRINT CHR$ (KEY) ; :RESPONSE$ (X, X)=CHR$ (KEY) :NEXT X
20559 CLOSE #6:RETURN

The allowed length of the input string is set by the variable SIZE. If you want to limit the
legal characters to some other set, you will need to change the valuesinline 20553. Note that
the string may be shorter than SIZE. The input sequence is terminated by either reaching
the maximum string length or by pressing a RETURN.

Controlled Numeric Input

The single-key input routine we discussed at the beginning of this chapter is fine where a
single key input is sufficient, but many applications require two or more keys in response.
For example, a program might need a date or dollar amount entered. The single-key input
routine is not suitable for such cases without some modification. The routine listed below,
INKEY2.LST, is one solution to this problem.

Figure 11.12 — INKEY2.LST - Controlled Numeric Input

20560 REM INKEY2.LST — CONTROLLED NUMERIC INPUT

20561 SIGN=1:NUMBER=p:SIZE=3:0PEN #6,4,0, "K:":
FOR X=1 TO SIZE

20562 GET #6,KEY:IF KEY=155 THEN POP :GOTO 26569

20563 IF KEY=45 AND SIGN=1 THEN SIGN=-1:
PRINT"-";:GOTO 20562

20564 IF KEY<48 OR KEY>57 THEN 20562

. additional conditions would go here

20568 PRINT CHR$ (KEY);:
NUMBER=1@*NUMBER+VAL (CHR$ (KEY)) :
NEXT X

20569 NUMBER=SIGN*NUMBER:CLOSE #6:RETURN

ATARI BASIC Faster & Better 161

This routine is very similar to INKEY1.LST in the way the characters are grabbed one ata
time. As before, the length of the input field is set by the variable SIZE. In this particular
case, SIZE is set to three. This count does not include the space used by the minus sign. So,
any positive or negative three digit number could be entered by this routine. We will use this
routine in the next chapter along with special video prompts to achieve what I have been
calling “controlled input”.

162 Chapter 12

Controlled Data Entry

You could easily spend 75 per cent or more of your programming time trying to develop an
attractive, easy-to-use and water-tight data entry system. Once you have gotten good clean
information in the computer, processing the information and printing it out is comparatively
easy.

A good menu or other data entry routine should always provide prompts that make it clear
what kind of input is required. The trade-off in using prompts is to supply enough prompts
for the new user of your program while at the same time limiting the prompts so they will not
slow down the experienced user.

Youalsoneed inputvalidation that willignore bad inputs instead of crashing the system or
halting program execution. If the inputs are processed properly by the input routine, your
job of processing the information becomes much simpler. In a really good (i.e., professional)
program, each inputis controlled so that only those keys which are considered valid will have
any effect at all. In situations like this, you must avoid the screen destroying effects of the
CLEAR key and the BREAK key.

Finally, you need to provide simple and consistent ways for the operator to correct entry
errors. The operator should always be allowed to back up and correct the previous entry.
This is sometimes difficult to achieve, but if you ignore this requirement, you are
programming automatic operator frustration into your programs!

This chapter will take many of the techniques that we have discussed in previous chapters
and show you how to combine them with a few new video techniques to create good, user

friendly menus and other video displays. The demonstration program at the end of this
chapter should be especially useful to you.

Video Formatting

Video formatting, in the sense we will use it here, refers to those techniques that you might
use to set up special data entry fields. I think of such routines as being in three major
categories. The first category is “positional input fields.” The second one, “special input
fields,” is a category by itself, but can be used quite effectively with the first category. The
third category, “scrolled inputs,” is a powerful technique that you will find useful in many
different applications.

ATARI BASIC Faster & Better 163

Positional Input Fields

Most of the time, when setting up a program, there will arise a need for asking the user to
enter numbers or alpha characters of limited length. We discussed in the last chapter how
you can create a routine to actually get those inputs, but so far we have not really discussed
the impact of those inputs on the video display. The easiest, and most useless solution is to
get the inputs without echoing them on the screen. This leads to instant confusion. A better
solutionis to not only control the nature of the allowed inputs, but to also control the possible
results on the video display.

The following routines are examples of two ways you can control the video display during
an input routine. FIELDB.LST sets up a blank field of length SIZE at a particular location
on the screen. When you use this routine in conjunction with the inkey routines in the last
chapter, you can not only restrict the number of characters the user can input, but you can
also make sure that any characters the user may enter will be printed only where you want
them to be. In this routine, the position on the screen is specified by the two variables X and
Y. We will give you a working example later in this chapter.

Figure 12.1 — FIELDB.LST - Set Up a Blank Field

20580 REM FIELDI.LST - INVERSE INPUT FIELD

20581 REM DIM INVERSE$(40) ELSEWHERE

20582 INVERSE§(1)="m":INVERSE$(40)="m": INVERSES$(2)=INVERSE$
20583 X=2:Y=12:SIZE=9 POKE 752,1

2$584 POSITION X,Y

20585 PRINT INVERSE$(1,SIZE)

20586 POSITION X,Y

20587 REM GOSUB INPUT ROUTINE

20588 REM GOSUB ERROR CHECK ROUTINE

20589 RETURN

The FIELDILLST routine is very similar to the other routine. The primary difference is
that the inputfield is highlighted in inverse video. The variables and operation of the routine
are the same. Be sure to replace any field locations with inverse blanks during error
corrections and to eliminate any unused inverse field locations from the field when input is
finished.

Figure 12.2 — FIELDI.LST - Set Up an Inverse Field

2058p REM FIELDI.LST - SET UP INVERSE INPUT FIELDS
20581 REM POSITION OF FIELD IS SET BY X&Y

20582 X=2:Y=12:SIZE=9:POKE 752,1

20583 POSITION X,Y:FOR Z=1 TO SIZE:PRINT "am",:NEXT Z
20584 POSITION X,Y

20585 REM GOSUB INPUT ROUTINE

20856 REM GOSUB ERROR CHECK ROUTINE

20857 RETURN

164 Chapter 12

Special Input Fields

The techniques described in the previous section can be tailored for special input
requirements. The more common special input fields are for money, dates, and time values.
The routines in this section, while not covering everthing, will show you how to handle these
particular special input fields.

The routine FDOLLARS.LST sets up a limited video field for the general input of dollar
figures. It is intended to be used with the INKEY routines we discussed in the last chapter.
The routine first prints a “$” sign and a decimal point in the screen position specified by the
variables X and Y. The number of digits to the left of the decimal place is controlled by the
variable SIZE. Once the format has been printed on the screen, you are expected to use the
proper calls to the INKEY routines. Any error correction routine should take the field sizes
into account.

Figure 12.3 — FDOLLARS.LST - Special Fields Dollars & Cents

20599 REM FDOLLARS.LST - SPECIAL FIELDS DOLLARS & CENTS
20591 X=2:Y=12:SIZE=4:POKE 752,1
20592 POSITION X,Y:PRINT "$":POSITION X+SIZE+1,Y:PRINT "."
20593 POSITION X+1,Y:FOR Z=1 TO SIZE:PRINT " ";:
NEXT Z:POSITION X+SIZE+2, Y:PRINT " "
20594 POSITION X+1,Y
20595 REM GOSUB DOLLAR INPUT ROUTINE
20596 POSITION X+SIZE+2,Y:SIZE=2
20597 REM GOSUB CENTS INPUT ROUTINE
20598 REM GOSUB ERROR CHECK ROUTINE
20599 RETURN

The next two subroutines are very similar to each other in operation. FDATES.LST sets
up a display field in the standard MM/DD/YY format. You then use the INKEY2.LST
routine to grab three two-digit numbers. FTIMES.LST sets up an HH:MM time display
format; then all you need to do is to grab two two-digit numbers.

Figure 12.4 — FDATES.LST - Special Fields Dates

20609 REM FDATES.LST - SPECIAL FIELDS DATES
20601 X=2:Y=2:SIZE=2:POKE 752,1
20602 POSITION X,Y:PRINT " / / "
20603 POSITION X,Y

20604 REM GOSUB TWO DIGIT INPUT
20605 POSITION X+3,Y

20606 REM GOSUB TWO DIGIT INPUT
20607 POSITION X+6,Y

20608 REM GOSUB TWO DIGIT INPUT
20609 REM GOSUB ERROR CHECK ROUTINE
20619 RETURN

ATARI BASIC Faster & Better 165

Figure 12.5 — FTIMES.LST - Special Fields Clock Time

20620 FTIMES.LST - SPECIAL FIELDS CLOCK TIME
20621 X=2:Y=20:SIZE=2:POKE 752,1

20622 POSITION X,Y:PRINT " . "

20623 POSITION X,Y

20624 REM GOSUB TWO DIGIT INPUT

20625 POSITION X+3,Y

20626 REM GOSUB TWO DIGIT INPUT

20627 REM GOSUB ERROR CHECK ROUTINE

20628 RETURN

The actual values of X and Y should be set before you go into FDATES.LST or
FTIMES.LST. You should probably delete those variables from the actual subroutines
before using them. Do not, however, alter the value of the variable SIZE within the routines,
or you will mess up the format operation.

Scrolling Window Inputs

Most of you have seen those programs that use a high-res graphics display in the top 20
lines of the display and use the bottom four display lines to give you prompts and solicit
responses from you. Did you realize that you can have the same kind of independent scrolling
window in GRAPHICS 0? It is as easy as POKEing a number. The following routine,
FSCROLL.LST, contains the codes to set up or remove such a windowin GRAPHICS mode
0:

Figure 12.6 — FSCROLL.LST - Special Fields Scrolling Window

20630 REM FSCROLL.LST — SPECIAL FIELDS SCROLLING WINDOW
20631 REM RESTRICT INPUTS TO LAST 4 LINES OF SCREEN
20632 POKE 703,4

20634 RETURN

20635 REM RESTORE NORMAL DISPLAY

20636 POKE 703,24

20637 RETURN

The window thus set up may be used exactly like a normal full screen without affecting the
top 20 display lines. All of your normal screen controls will affect only the window. If you
were to LIST a program, it would be listed only in the last four lines of the screen and would
scroll off the top of your four-line display like any other normal display would. I will show you
a working example of this technique at the end of this chapter.

The only tricky part of using the scrolling window is how to make changes in the top part of
the screen while you are in the window mode. There are two general solutions. The first is to
simply POKE any changes into the proper part of the screen buffer. Thus a POKE
40520,104 will cause a lower case “h” to appear on the screen regardless of whether you are

166 Chapter 12

in the window mode or not. This method is sometimes awkward, however, so Atari built in a
much simpler solution.

If you do not use a GRAPHICS 0 command anywhere in the program, then the above
condition will prevail when you go into window mode. All screen controls will affect only the
window area of the display. However, if you take care tousea GRAPHICS 0 command before
going into the window mode, things change somewhat. First, and most noticable, is that your
screen controls once again affect the whole 24 line screen.

The second effect is a little more subtle. When a GRAPHICS command is executed, the
operating system automatically OPENs device number 6 for output and defines the device
to be the video display. (A full screen graphics mode without a text window will have the
entire screen opened for output.) The net result of going into window mode at this stage is
that you can use a PRINT statement to print information in the window area of a mode zero
screen and still use a PRINT #6 statement to print directly to the top portion of the
screen!

I have used this technique to display a customized menu in the top 20 lines of the screen
while using the window as a work area for displaying prompts and soliciting user inputs that
might do such things as save data to disk. You can also use this technique to get new data to
displayin the static area. For example, you display a menu, go into window mode, and ask the
user to select a program option. This option, in turn, might clear the top area and display a
new sub-menu for the execution of the selected option. The Atari Word Processor uses this
kind of nested menu technique, although it puts the window (non-scrolling) at the top four
linesinstead of the bottom four lines of the video display. There are many possible variations
you could use in your next program. The window mode can be set up by using a GOSUB

20632. When you are finished with it and want to restore the screen to normal, you can do this
by a GOSUB 20635.

Error Handling

Error handling, in the end, is probably the single most important feature in distinguishing
between an amateur program and a truly professional one. The professional programmer
takes all possible operations into account and buffers the program so a bad user input or
some other mistake will not cause the program or the system to crash. This is sometimes
easier said than done, since it is difficult to make sure that every possible error has been
anticipated.

Errors which occur during program execution are usually controlled by an “‘error
detection” routine coupled with an “error correction” routine. Error detection routines are
used to intercept and/or prevent a run-time error. If an error is found, then an error
correction routine allows the mistake to be corrected.

Error Detection Techniques

Error detection routines generally consist of TRAPs or filters ora combination of the two.
Both of these error detectors have their strengths and weaknesses. TRAPs are very well
suited for intercepting general I/O errors and as a general catch-all error trap. Filters, which
usually consist of one or more IF-THEN statements, are more suitable for screening user
inputs and preventing other types of errors.

TRAP commands, as we discussed previously, are most frquently used to intercept errors
after they have occurred and redirect the results of the error to an error correction routine.
For example, you might set a TRAP that will be tripped if an error occurs during disk I/0O.

This TRAP could detect an attempt to write to a disk that was not even turned ON and
would redirect program control to an error correction routine that tells you to turn your disk

ATARI BASIC Faster & Better 167

drive ON. A really common error is trying to dump something to a printer without first
turning the printer ON. By using TRAPs, you could prevent these kinds of mistakes from
crashing your program.

Error Correction Techniques

There are at least as many error correction techniques as there are errors, if not more. An
error correction routine can range from something as simple as a single IF-THEN statement
to a whole program whichis dedicated to correcting a data base. We will leave the latter to the
more energetic of you. The discussion here will limit itself to those simple correction
techniques that you will find useful in your every day programming tasks.

The simplest of error correction techniquesis also an error detection routine. It consists of
one or more IF-THEN statements that examine a user input or some other variable and
compare it to a specific value or a range of values. If the variable does not pass this test,
controlis tranferred back to the input routine or to some otherroutine that tells the user that
amistake has occurred. Usually the second method will also tell the user what the error was
and ask for a corrective action.

You can also use aroutine that takes its own corrective action. For example, you are using a
menu routine that has just asked for you to input your name. As you are entering the fourth
letter, you find that you have entered “Kohn” instead of “John”. Assuming that your correct
name is Johnny, some programs might prevent you from correcting the mistake and force
you to keep right on going. On the other hand, many programs will let you alter the input by
pressing the BACK SPACE key to the error and then re-entering the name. There is nothing
wrong with either method as long as you have some means of correcting the error.

An in-line error correction routine checks each entry and acts on the single key by
accepting it as new valid input, ignoring the input as invalid, or recognizing the input as an
instruction to back up to a previous input. The simplest way to do this using the KEY routine
is to compare the value of RESPONSE to 126 (BACK SPACE) along with the other normal
IF-THEN comparisons. If a BACK SPACE is detected, then the program moves the cursor
back one position in the input field and erases that input. If you look at the example program
at the end of this chapter, you will see this technique illustrated. Note also that the BACK
SPACE is not allowed to move the cursor back any further than the beginning of the input
field. This technique is probably the one most commonly used.

The second most popular error correction technique is to have a separate routine in the
program that allows the user to correct any of a number of possible errors. Look again at the
menu routines in the last chapter. These are examples of a menu for just such an error
correction routine. For example, the program might ask you for a whole list of various inputs
oneright after the other. In this particular case, the BACK SPACE routine was also used, but
itis of little help after you have entered the last character in an input field. The main program
menu listed “CORRECT ERRORS” as one option. If you select this option from the main
menu, the detailed error correction menu is displayed. In the menus from the last chapter (as
I actually used them), if you selected “CHANGE THE NAME OF A PLAYER?”, a little
routine would be called up which would allow you to select the name you wanted to change
and then ask you for the correct name. The new name could then be entered and would be
stored in all of the arrays as appropriate.

Detailed error correction routines of this nature can be very simple, like the one I used, or
they can be so large and complex that they end up being programs in their own right. The
right size and complexity for your program is sometimes a tough decision. AllI can suggestis
that you sit back and ask yourself what you would want in a similar program if you were
buying it. You might be surprised at the answer.

168 Chapter 12

We will close this brief discussion of error correction techniques with this little sermon:
NEVER write a program you intend to sell without making sure that all user inputs are
fully buffered. There is nothing more aggravating to me than spending my hard earned cash
on anew program that crashes the firsttimeI try touseit. Ievenbought a program one
time that not only failed to load properly, but it had some kind of protection scheme that
caused it to promptly erase itself from the disk just because my drive speed was faulty!
Moral of this story: always keep your customer in mind.

Attracting and Distracting the Operator

A program should be easy to use, have adequate error checking and error correction
options, and perform the desired functions smoothly and swiftly. We have already discussed
many of these attributes of a good program. The most subtle and difficult to masteris the art
of user prompting. A good user prompt should be clear enough for the novice user of your
program without being so slow that it impedes the experienced user. One easy way to
accomplish thisis to have a special option which will eliminate long prompts for those people
who don’t want or need them. A perfect example of this technique is the ZORK adventure
game series which has three levels of prompts that are under user control.

A good prompt consists of more than a lone “?” sitting on the screen. Time after time I buy
programs that use this simple prompt. Whenit popsup I have noidea whetherI am supposed
to input a number or a letter. In most cases, I guess wrong and the program crashes. When
you want the user to input a number, the program should plainly and clearly ask for anumeric
input. In most cases, it is also nice to give the range of valid numbers. Go back to Chapter
Three and look at the prompts I used in the program CONVERT.BAS. You will quickly see
how awkward the program would be to use if the prompt were nothing more than a “?”.

Another kind of prompt that is popular is a buzzer or bell to get the operator’s attention.
Once again, you have to be careful to avoid over using such a thing. Have you ever played a
war game called EASTERN FRONT?Itis a classic example of the graphics capability of the
Atari computer, but it is a program with one very irritating feature. If you make an incorrect
input, the program blatts this loud raspberry sound at you. This noise got on my nerves to the
point where I simply put the program disk back in its box and left it there. That was over a
year ago.

This brings me to my next point about program design. Prompts and audio cues should not
be designed so they distract the user from the main purpose of the program. This principle
applies to video prompts as well. Use a simple menu when you can and break the screen up
into “information” and “input” sections. The window technique we just discussed is one
approach. In the next chapter I will show you how to get four colors in a GRAPHICS 2 text
display at the same time. That capability will allow you to design user friendly screen
displays that will also dress up your programs.

One technique for attracting the eye of the user is to make use of flashing cursors or other
flashing prompts. This can be illustrated by the following routine:

10@ POKE 755,90

119 FOR X=1 TO 5@:NEXT X
12 POKE 755,2

139 FOR X=1 TO 5@:NEXT X
14p GOTO 109

This little routine POKEs the cursor control flag (755) with zero to turn the cursor OFF,
waits a little while, POKEs the cursor control flag with two to turn the cursor back ON, waits

ATARI BASIC Faster & Better 169

a little while, and then repeats the whole process. While this is cute, it is not very practical
since BASIC can’t be doing anything else while it is flashing our little cursor. The solution is
to employ a small machine language routine.

BLINK is a machine language program that sets up a vertical blank interrupt routine to
turn the cursor ON and OFF while BASIC goes on about your business.

The time delay between changesis set at what I consider a comfortable pace. If you want to
change the rate, stop the routine by POKEing a zero into 359 with POKE 359,0. Now that
you have the routine stopped, POKE address 377 with a new number. The default value is
eight. A larger number will slow the rate down, and a smaller one will speed it up. Once you
have installed your new rate number, press SYSTEM RESET to activate the routine
again.

There is aninteresting side effect of this routine. More than just the cursor will be flashing.
Any character thatisininverse video will also be flashing! I use this technique combined with
the FIELDLLST routine to cause the next user input field to flash. This can be a very catchy
video technique, but don’t get carried away with it to the point that you give the user eye
strain.

Those of you out there who know a little something about the Atari are probably
wondering why I didn’t use the cursor inhibit flag (752) to flash the cursor without causing
the inverse video to flash also. The answer is simple. A POKE to address 752 affects the
cursor only if the cursor is moved after the POKE. I tried to use that address for my flashing
cursor and ended up with a flashing cursor that jumped. I found this jittering to be very
irritating after a while and ended up writing the routine you see in this book. If one of you
readers come up with another solution to this problem, please write to me in care of this
publisher and show me how you did it. Anyway, I have found thatI seldom have any difficulty
with the routine the way it is right now.

Figure 12.7 — BLINK Assembled Source Listing
1009 ;BLINK — CREATES BLINKING CURSOR

1919 ;
1020 ;
1039
1940 :THIS ROUTINE CREATES A BLINKING CURSOR
1050 ;
1060 :SET $167(359 decimal)=p TO STOP FLASHING
1979
1080 ;
lﬂgg ;****=::**##******#*
1190
1119 ;SET UP 0S POINTERS
1129 ;
§092 1130 CASINI = $2 :CASSETTE INIT VECTOR
0099 1149 BOOTF = $9 :BOOT MODE FLAG
0942 1150 CRITIC = $42 :CRITICAL I/0 FLAG
§222 1160 VBLANK = $222 : IMMEDIATE VBLANK VECTOR
02F3 1170 FLASHER = $2F3 :CURSOR CONTROL FLAG
159D 1180 DUP = $159D :0S FLAG TO DETECT DUP.SYS
E45C 1199 SETVBI = $E45C :SET-VBI VECTOR ENTRY

170 Chapter 12

E45F

pppp

p4pp ASPY
p4ap2 2992
papa FRPA

0406 A6p2
04p8 A4P3
P4pA BEGEQL
p4pD 8C6FP1
p4a1p A968
pa12 8502
p4a14 A9P1
p416 8503
p418 AD22p2
p41B 8D89p1
PA1E AD23p2
p4a21 8D8AR1
pa24 A5P9
p426 pI9p2
0428 8509
paz2A A2p1
042C Ap8B
P42E A9P6
pa3p 2p5CE4
p433 60

p4a34

p165 PP
p166 PP
p167 P8

$E45F ;0S VBLANK SERVICE ROUTINE

= 356 3 38 336 e 3 3 3¢ 3 e e e e e ik 36 e vl o ol e ol e ole e 306 e e 3l o ofe afe e ofe e e e e e sl e ol ofe ol afe e ol e ofe e e e e e ke e
]

124p ;THE INIT ROUTINE AT $4¢p IS EXECUTED ONLY ONCE.
; THE MAIN ROUTINE IS STORED ON PAGE ONE.

$4pp ; THIS IS LATER OVER-WRITTEN

SET UP PRIVATE INTERRUPT

BOOTF ;IF A CASSETTE HAS BOOTED
#2 ; THEN SAVE CASINI FOR LATER
INIT

CASINI
CASINI+1
DETOUR+1
DETOUR+2
HRESET&$FF
CASINI
HRESET/256
CASINI+1
VBLANK
EXIT+1
VBLANK+1
EXIT+2
BOOTF

#2

BOOTF
HMAIN/256
HMAIN&SFF
#6 USE IMMEDIATE VBI
SETVBI

RE-VECTOR CASSETTE INIT
;TO INCLUDE OUR ROUTINE

;DETOUR NORMAL HOUSEKEEPING

POINT VBLANK TO OUR ROUTINE

156ﬂ « 9 3 3 e e s e 36 o e v e e e e 2 ol 3 e (e o 3¢ e ol e 3 e e o o 3 e e a6 3 e 3l s e e e e vfe e sfe s ofe sfe s e sl ok ke ek e
[

12pp SYSVBI =
1219 ;

1220

1239 ;

1250

1269 ;

1279 ¥
1289 ;

1299

1309 ,

131p LDA
1320 AND
1339 BEQ
1349 ;

1350 LDX
1360 LDY
1379 STX
1380 STY
1399 INIT LDA
140 STA
1419 LDA
1420 STA
1439 LDA
1449 STA
1450 LDA
1469 STA
1479 LDA
148p ORA
1490 STA
1500 LDX
1519 LDY
1520 LDA
1530 JSR
1549 RTS
1550 ;

1579 ;

1580

1599 ;

1600 M
1619 ;

1620

1630 ;

1649 FLAG

1650 COUNTER .BYTEQ
1669 LIMIT

1679 ;

1689 ;

1699

17pp

.BYTEP

.BYTES

 THIS IS THE PART WE WANT TO PRESERVE

$165 ;PROGRAM IS NOT RELOCATABLE

; SAVE SPACE FOR COUNTERS

;B=TURN CURSOR OFF
HOW MANY DELAYS SO FAR
 THIS CONTROLS TIME DELAY

; THIS RESTORES OUR ROUTINE WHEN SYSTEM RESET IS PRESSED

p168
p16A
p16D
p17p
p172
p175
p178
p17A
017D
p17F
p181
p183
p186

p187
p188

p18B

p18C
p18E

p19g
p193

p195
p198
p19B
p19E

p1AD
01A2
P1AS
P1A8
P1AA
P1AD

P1AF
p1B1

p1B3
p1B5
$18B8

A9A9
808191
208601
ASQP
806601
806501
A9p8
806701
A201
Af8B
A996
2p5CE4
60

68
4C8601

48

A542
DAF7

AD6701
FP1E

EE66Q1
AD66#1
CD6701
DAE7

A9pp
806601
AD6501
4991
8D6501
Dpp4

A9pP
Fap2

A9p2
8DF3p2
18

1719 RESET
1720

1730 DETOUR
174p

1750

1769

177p

1789

1799

1809

1819 PATCH
1820

183p NULL
1849 ;

1860 ;
1870 THAW
1880 EXIT
1890 ;

1919 ;
192p MAIN
1930 ;

1950 ;
1960
1979
1989 ;
1999
2009
2019
202p TIMING
2030
2040
2050
2060
2079
2080 ;
2090
2109
2119
2129
2139
2149
2150 ;
216p OFF
2179
218p ;
2190 ON
220p FLASH
2219

LDA
STA
JSR
LDA
STA
STA
LDA
STA
LDX
LDY
LDA
JSR
RTS

PLA
JMP

PHA

LDA
BNE

LDA
BEQ

LOOP

INC
LDA
CMP
BNE

LDA
STA
LDA
EOR
STA
BNE

LDA
BEQ

LDA
STA
CLC

#$A9
PATCH
NULL

#o
COUNTER
FLAG

#8

LIMIT
#MAIN/256
HMAIN&SFF
#6

SETVBI

185@ ;THIS IS THE MAIN ROUTINE

NULL

1999 ;VBLANK INTERRUPT COMES HERE

1949 ;CHECK FOR CRITICAL I/0 FLAG

CRITIC
THAW

LIMIT
ON

COUNTER
COUNTER
LIMIT
THAW

#o
COUNTER
FLAG

#1

FLAG

ON

#0
FLASH

#2
FLASHER

ATARI BASIC Faster & Better

SYSTEM RESET COMES HERE

RESTORE DEFAULT VALUES
;TO TIME DELAY & COUNTER

;TELL VBI WHERE OUR ROUTINE IS

; IMMEDIATE VBI
;SET THE GEARS IN MOTION

RESTORE ACCUMULATOR
; (NULL CHANGED DURING SETUP)

; SAVE ACCUMULATOR

; IF CRITIC IS SET,
;ALL DONE, LET'S GO HOME

IF LIMIT=@ THEN EXIT

; IF TIME<>LIMIT THEN EXIT

;WHEN TIME LIMIT REACHED
;RESET COUNTER AND

; TOGGLE CURSOR FLAG
;FLAG=NOT FLAG

; COMMAND CURSOR OFF

; COMMAND CURSOR ON
;EXECUTE COMMAND

171

172 Chapter 12

f1B9 99CC 2220 BCC THAW
2230 ;
f1BB 2249 .END

Figure 12.8 — BLINK - Blinking Cursor In BASIC

109 REM BLINK.BAS - FLASHING CURSOR
119 REM
12 REM THIS IS THE VBI SETUP ROUTINE
130 REM THAT IS TEMPORARILY STORED ON
14 REM PAGE FOUR. $400 (1924)
150 DATA 165,9,41,2,24p,19,166,2
160 DATA 164,3,142,119,1,14p,111,1
170 DATA 169,104,133,2,169,1,133,3
180 DATA 173,34,2,141,137,1,173,35
190 DATA 2,141,138,1,165,9,9,2
20 DATA 133,9,162,1,160,139,169,6
21p) DATA 32,92,228,1p4,96
220 REM NOTE THAT THE NUMBER '1p4'
23p REM IN LINE 21p IS ONLY IN THIS
249 REM BASIC VERSION. IT IS NOT IN
250 REM THE BINARY LOAD VERSION.
26 MLSTART=1p24
270 MLEND=1076
280 FOR X=MLSTART TO MLEND
290 READ Y:

POKE X,Y:

NEXT X
30@ REM THIS IS THE MAIN ROUTINE.
319 REM IT IS STORED ON PAGE ONE.
320 DATA §,0,8,169,169,141,129,1
330 DATA 32,134,1,169,0,141,1p2,1
340 DATA 141,101,1,169,8,141,103,1
350 DATA 162,1,160,139,169,6,32,92
36p DATA 228,96,104,76,134,1,72,165
37p DATA 66,208,247,173,103,1,240,30
380 DATA 238,1$2,1,173,192,1,2p5,103
399 DATA 1,208,231,169,0,141,102,1
499 DATA 173,1p1,1,73,1,141,1p1,1
41p DATA 208,4,169,0,240,2,169,2
420 DATA 141,243,2,24,144 2p4,
430 MLSTART=357
440 MLEND=442
450 FOR X=MLSTART TO MLEND
460 READ Y:

POKE X,Y:

NEXT X
470 REM NOW THAT WE HAVE THE ROUTINE

ATARI BASIC Faster & Better 173

480 REM IN MEMORY, WE TURN IT ON BY
490 X=USR(1p24)
50p END

Putting It All Together

0.K,, up to this point we have discussed a number of professional program design
techniques and laid a couple of philosophical sermons on you. Now let’s put what we have
discussed into practice. The following program, CONTROL.DEM, is a demonstration
program that shows you how to tie all of these techniques together into a functioning
program. CONTROL.DEM displays a sample “fill-in-the-blank” menu which asks you for
your name and birthday and then demonstrates the scrolling window technique. As you try
the program out, deliberately make a mistake while entering your name or birth date and see
how the program allows you to easily correct the mistake. Note how the inverse input fields
not only back up to the point where you want to re-enter the data, but the unused portions of
the name field disappear as soon as you hit the RETURN or complete the maximum input
length.

The scrolling window display does not try to do anything fancy. Refer to the write-up on
that technique for other possible uses of the scrolling window.

Figure 12.9 — CONTROL.DEM — A Menu Using Controlled Input

108 REM CONTROL.DEM - MENU USING CONTROLLED INPUT
119 GRAPHICS #:
POKE 752,1
120 INKEY1=390:
INKEY2=450:
CORRECT=540:
DELAY=580
130 DIM NAMES$(19)
140 NAME$(1)=" ":NAME$(1@)=" ":NAME$(2)=NAMES
150 PRINT CHR$(125):
POSITION 19,3:
PRINT "CONTROLLED MENU"
1690 POSITION 2,7:
PRINT "ENTER YOUR NAME ";:
POSITION 23,7:
PRINT "eesssssmmnm "
170 POSITION 23,7:
SIZE=1p:
GOSUB INKEY1:
POSITION 23,7:
PRINT NAME$
180 POSITION 2,9:
PRINT "ENTER YOUR BIRTHDAY";:
POSITION 23,9:
PRINT "ll/ll/ll";

174 Chapter 12

199 POSITION 23,9:
SIZE=2:

GOSUB

INKEY2:

POSITION 26,9:

GOSUB

INKEY2:

POSITION 29,9:

GOSUB

INKEY2

2pp POSITION 2,14:

PRINT

"CONTROLLED MENU IS AN EXAMPLE OF A"

21p POSITION 2,15:

PRINT

"METHOD FOR GETTING SPECIAL INPUTS"

220 POSITION 2,17:

PRINT

"NOW WE WILL TRY THE SCROLLING WINDOW"

23p POSITION 2,19:

PRINT

1135 i 36 3 i 3 e o 33 3 o e ok 3¢ e e o e e e ol o ok e e e e e ek A ek ke N

249 POKE 703,4:

PRINT
250 PRINT
26p GOSUB
GOSUB
GOSuB

PRINT :

CHR$ (125)

"YOU ARE NOW IN SCROLLING WINDOW MODE."
DELAY:

DELAY:

DELAY:

PRINT :

PRINT
GOSuB
270 PRINT
GOSUB
280 PRINT
GOSuB

PRINT :

DELAY

"USING THIS WINDOW, YOU CAN ASK THE":
DELAY

"USER FOR ADDITIONAL INPUTS.":

DELAY:

PRINT :

PRINT
GOSuB
299 PRINT
GOSUB
300 PRINT
GOSUB
31p PRINT
GOSUB

PRINT :

DELAY

"FOR EXAMPLE, YOU COULD ASK FOR THE":
DELAY

"USER TO PRESS ONE OF THE FUNCTION":
DELAY

"KEYS TO INITIATE LOADING A DISK FILE.":
DELAY:

PRINT :

PRINT
GOSuB
32p PRINT
GOSUB
330 PRINT
GOSuB
34p PRINT
GOSUB

DELAY

"ONE THING YOU MAY HAVE NOTICED BY NOW":
DELAY

"IS THAT THIS GARBABE IS BEING":

DELAY

“DISPLAYED WITHOUT INTERFERING WITH":
DELAY

ATARI BASIC Faster & Better

350 PRINT "THE DISPLAY ON THE MAIN SCREEN.":
GOSUB DELAY:
PRINT :
PRINT :
PRINT :
GOSUB DELAY
360 PRINT "ENTER A GRAPHICS @ COMMAND"
379 PRINT "TO RESTORE THE NORMAL SCREEN";:
END
380 REM INKEY1.LST - CONTROLLED STRING INPUT
390 OPEN #5,4,0,"K:":
FOR X=1 TO SIZE
4p9 GET #5,KEY:
IF KEY=155 THEN POP :
GOTO 449
419 IF KEY=126 THEN GOSUB CORRECT:
GOTO 40P
429 IF (KEY<48 OR KEY>122) AND KEY<>32 THEN 400
439 PRINT CHR$ (KEY);:
NAMES (X, X)=CHR$ (KEY) :
NEXT X
449 CLOSE #5:
RETURN
450 REM INKEY2.LST - CONTROLLED NUMERIC INPUT
460 SIGN=1:
NUMBER=(:
OPEN #5,4,0,"K:":
FOR X=1 TO SIZE
479 GET #5,KEY:
IF KEY=155 THEN POP :
GOTO 520
480 IF KEY=126 THEN GOSUB CORRECT:
GOTO 479
499 IF KEY=45 AND SIGN=1 THEN SIGN=-1:
PRINT "-";:
GOTO 479
500 IF KEY<48 OR KEY>57 THEN 470
519 PRINT CHR$ (KEY);:
NUMBER=1p*NUMBER+VAL (CHR$ (KEY)) :
NEXT
52p NUMBER=SIGN*NUMBER:
CLOSE #5:
RETURN
53¢ REM ERROR CORRECTION ROUTINE
54p X=X-1:
IF X<1 THEN X=1:
RETURN
550 PRINT CHR$(3p);" ",CHR$(30);
56@ RETURN
579 REM TIME DELAY ROUTINE

175

176 Chapter 12

580 FOR Y=1 TO 5@0:
NEXT Y:
RETURN

If you want to see the effects of blinking fields, then install the BLINK routine before
loading this one.

ATARI BASIC Faster & Better 177

Video Antics

There are so many features available in the Atari video display graphics system that it
would take a good sized book to do proper justice to even a fraction of them. Hence, we will be
able to cover only a small sample in the space of a single chapter. We will talk about the ever
popular marquee (video banner) style programs, how to use colors for amore dramatic effect
in GRAPHICS 2, and how to use “page flipping” to create your own video slide show. We will
show you a way to slow down those fast BASIC video listings to a pace that is easier to read.
And last, but not least, we will show you some screen dump and retrieval routines.

Le Marquee D’Atari

A marquee program displays a specified message on the video screen and “scrolls” it from
right-to-left across the screen until the end of the message is reached, at which point the
message is repeated. There are three basic ways to solve this programming problem. The
most elegant way is to redefine your display list using the methods outlined in De Re Atari to
achieve smooth horizontal scrolling (a combination of coarse and fine scrolling). While this
method is the right approach for assembly programmers, it is by no means a trivial task. We
will look at two of the methods here. They may not be as elegant, but they make up for it by
being much easier to understand and implement. Even here we must make trade offs.

The first technique involves altering, rather than replacing the display list. While this is
easier than replacing the entire display list, this method still is not exactly what you would
call easy. The routine shown in Figure 13.1 is a demonstration program that illustrates how
you can create a simple scrolling banner with a few alterations to the display list.
SCROLL.DEM is faster than using a pure BASIC scroll, so a time delay was inserted into the
routine at LINE 260.

This demo program is short and simple, but not very flexible. The message must be stored
on an even “page’”’ boundary to satisfy ANTIC. In this particular example, I put the message
on page Six.

178 Chapter 13

Figure 13.1 — SCROLL.DEM — A Coarse Scrolling Demonstration

19f REM SCROLL.DEM
110 GRAPHICS 2+16:
DLIST=PEEK (560)+256*PEEK (561) :
L=p:
H=6:
NUM=119:
G0=9:
DIM STRING$(209)
120 REM SET UP MESSAGE STRING
13p STRINGS=" :
149 STRINGS (LEN(STRINGS)+1)="4[1)3 |3 [l -{§33'@%"
150 REM STORE MESSAGE ON PAGE SIX
169 FOR X=1 TO LEN(STRING$):
POKE 1535+X,ASC(STRING$ (X, X))
179 IF ASC(STRING$(X,X))=32 THEN POKE 1535+X,0
180 NEXT X
199 REM FOR X=1 TO 254:
POKE 1535+X,0:
NEXT X
20p REM POINT DISPLAY TO MESSAGE
219 POKE DLIST+GO,NUM:
POKE DLIST+G0+1,L:
POKE DLIST+G0+2,H
220 REM SCROLL OUR MESSAGE
239 FOR X=p TO 3p24p POKE DLIST+GO,NUM:
POKE DLIST+GO+1,L+X:
POKE DLIST+G0+2,H
250 REM POKE 54276, 15-X
260 FOR Y=1 TO 65:
NEXT Y
270 REM RANDOMLY CHANGE COLORS
280 POKE 708, 16*INT (16*RND(f))+7+INT(5*RND())
299 POKE 7@9,16*INT (16*RND(@))+7+INT (5*RND(8))
309 POKE 710, 16*INT(16*RND(f))+7+INT(5*RND(f))
319 POKE 711,16*INT(16*RND(f))+7+INT(5*RND(f))
320 NEXT X
339 REM REPEAT MESSAGE ALL DAY
349 GOTO 23p

Let’s take a look at each line in the program and point out things of interest. In LINE 110,
we set the graphics mode to full screen “two”. The variable DLIST is then set equal to the
address of the display list. “L” and “H” are the low and high bytes that define where the
message will be located. “L” should always start out with a value of zero to make sure that
you are on an even page boundary. “H” (in this case) points to page six. You might try
experimenting with other values of “H”. The effects can be pretty strange.

ATARI BASIC Faster & Better 179

The variable NUM is the command code that we will later POKE into the display list. This
variable tells the computer to perform a particular display function. I chose 119 to cause a
scrolling row to be placed in the middle of the video display. I suggest that you try other
values and experiment to see what they do. You can find more detailed technical information
on display lists in De Re Atari as well as the Technical User Notes from Atari.

The next line of interest is 140. This is where we specify what our message will be. Looks
like a bunch of garbage, doesn’tit? Thisis due to the fact that we are playing directly with the
display list, and it uses “display codes” rather than the normal ATASCII codes. If you take
the ASC(X) of each element of the message string and add 32 to it, you will see the real
message we used. I don’t like this awkward translation process, but it has to be done. Of
course, we could write a little routine to translate the various ATASCII codes to their proper
display codes, but there is a simpler solution. We will talk more about that shortly.

Lines 160 and 170 POKE our message into page six. Note that the code we have to use to
geta“SPACE” is zero. Thisisdone by LINE 170. If youremove the “REM” at the beginning
of LINE 190, the program will clear all of page six. Be sure to put the REM back when you are
through, or you will never be able to see your message. This comes in handy when you are
trying out different codes to compose a message.

LINE 210 initializes the modified display list, and the loop that starts in LINE shifts the
display data to the left, resulting in a reasonably good scrolling effect. If you want the
message to scroll to the right, change the loop limits to something like “FOR X=30 TO 0
STEP -1”. You can also use the POKE statement in LINE 250 to do your scrolling, but the
screen flickers annoyingly. If you were using a vertical blank interrupt machine language
routine, you could get rid of the flicker. The address 54276 is the HORIZONTAL SCROLL

register.

As you can see, this is not a clean straight topic to discuss. Let’s move on to line 280
through 310. These lines change the OS color registers. By changing them inside a loop like
this, it is possible to change the colors of upper/lower case and normal/inverse video
characters on the fly, so to speak. I will cover this topic in more detail later in this chapter.
Now let’s look at another scrolling banner program.

The program in Figure 13.2 is a more sophisticated solution to the horizontal scrolling
problem. This program is far more flexible in that you can enter your message in plain
English. Your message can be up to 200 characters. The marquee is set up fora GRAPHICS
2 display. If you want to add additional color to your message, try using lower-case and
inverse video.

When you run MARQUEE.BAS, the first prompt will ask you to define the length of your
message. A message is defined in terms of 40 character lines. Since the longest message
allowed in the program is 200 characters, you can have a message as short as one line or as
long as five lines. Any unused spaces in a message line will be displayed as blanks in the
marquee.

The screen will alter dramatically as soon as you enter the message length. Simply type in
your message in the special input field. You may use any standard characters, including
lower-case and inverse video. Do not press the <RETURN> key! If you chose a length
greater than one, the cursor will automatically wrap around to the next input line. When you
are finished entering/editting your message, use <CTRL>-<Down Arrow> to move the
cursor down to the line where CONT is displayed. Once you have the cursor on that line,
press the <RETURN>. The screen will go blank for a moment, and then your message will
begin scrolling across the screen.

180 Chapter 13

Figure 13.2 — MARQUEE.BAS — A Banner Program

109 REM Le Marquee D'Atari
119 REM With many thanks to John Weber
120 REM DEFINE BEG OF SCREEN ADDR
130 SAVMSC=PEEK(88)+256*PEEK(89)
140 DLIST=PEEK(560)+256*PEEK(561)
150 REM DEFINE MACH LANG LOCATIONS
160 HSON=203:LMS=205:H0RZ=204:LIMIT=207:COUNT=1791:POKE 82,2
170 REM LOAD VERT BLANK INTERUPT ROUTINE
180 FOR N=1536 TO 1536+93:READ A:POKE N,A:NEXT N
199 REM ROUTINE TO GET MESSAGE
20 GRAPHICS @:POSITION 1,3:PRINT "LE MARQUEE D'ATARI"
21 POSITION 2,6:PRINT "This program will generate a":
PRINT "scrolling message 1 to 5 lines long."
22f PRINT "Enter number of lines (1 - 5)":PRINT
23 TRAP 230:0PEN #3,4,0,"K:"
240 GET #3,KEY:IF KEY<49 OR KEY>53 THEN 24§
250 CLOSE #3:A=KEY-48
260 REM POKE IN BLANK LINES
279 POKE DLIST+17,112:POKE DLIST+18+A, 112
28p POSITION 2,6:PRINT "MOVE THE CURSOR TO THE AREA BETWEEN"
299 PRINT "THE LINES AND ENTER YOUR MESSAGE. "
30@ PRINT "WHEN DONE, POSITION THE CURSOR AFTER 'CONT' AND PRESS 'RETURN'."
319 POSITION 2,13+A:PRINT "CONT":POSITION 2,1@:POKE 82,0:STOP
320 REM TURN OFF ANTIC
330 B=PEEK(559) :POKE 559,0:POKE LIMIT,4p8+A*4p
349 POKE COUNT,@:POKE HSON,1:POKE HORZ,P
350 REM PUT DISPLAY LIST AT SDLSTL
360 FOR N=DLIST TO DLIST+23:READ A:POKE N,A:NEXT N
370 REM SET LMS OF SCROLLING LINE INTO LIST AND AT PAGE ZERO ADDR
380 C=INT((DLIST+11)/256):POKE LMS+1,C:POKE LMS, (DLIST+11)-C*256
390 C=INT((SAVMSC+460)/256) :POKE DLIST+12,C:POKE DLIST+11, (SAVMSC+460)-C*256
49 REM PUT IN LMS OF TOP OF GR. DATA
41p C=INT(SAVMSC/256) :POKE DLIST+5,C:POKE DLIST+4,SAVMSC-C*256
42p REM PUT IN LMS OF BOTTOM OF GR. DATA
43p C=INT((SAVMSC+1p@)/256) :POKE DLIST+15,C:POKE DLIST+14, (SAVMSC+1p8)-C*256
449 REM SET BEGINNING ADDR OF LIST AT BOTTOM OF LIST
450 POKE DLIST+22,PEEK(56@):POKE DLIST+23,PEEK(561)
46Q POKE 548,0:POKE 549,6:REM ENABLE INTERRUPT
47 POKE 559,B:REM TURN ANTIC BACK ON
48 REM READ FUNCTION KEYS
49p C=6:GOTO 590
500 IF C=6 THEN POKE HSON,f:POKE 53279,7:GOT0 530
51 IF C=5 THEN POKE HSON,1:POKE 53279,7:G0T0 530
520 IF C=3 THEN POKE HSON,1:POKE 53279,7:GRAPHICS #:RUN
530 C=PEEK(53279) :POKE 77,0:GOT0 500
540 REM DATA STATEMENTS FOR SCROLLING ROUTINE
550 DATA 216,165,203,208,86,166,204,202,224,255,144,74
560 DATA 24,173,255,6,195,1,141,255,6,197,207,144

ATARI BASIC Faster & Better 181

57p DATA 33,24p,31,56,160,7,132,204,14p,4,212,16§
580 DATA p,14p,255,6,177,205,229,207,145,205,176,43
590 DATA 200 ,177,205,233,0,145,205,24,144,33,169,7
609 DATA 133,204,141,4,212,169,1,160,0,24,113,205
610 DATA 145,2¢5,144,7,209,177,205,105,0,145,205,76
620 DATA 98,228,142,4,212,134,204,76,98,228

630 REM GR 2 DISPLAY LIST

64p DATA 112,112,112,71,16,159,7,7,7,7,87,116

650 DATA 159,71,136,159,7,7,7,7,7,65,0,6

The program is heavily commented so you can more easily see what is being done by each
routine. I would like to thank my friend, John Weber, for his invaluable help with this
program.

You can halt the scrolling by pressing the <SELECT> key. Once you have stopped the
scroll, you can restart it by pressing the <START> key. If you get tired of the message and
want to enter a new one, press the <OPTION> key.

Four Color Text In GRAPHICS 2

The Atari computeris a truly amazing color machine. There are dozens of colors in varying
degrees of resolution from the coarse graphics of mode one to the ultra fine graphics of mode
eight (there are three more modes if you have the GTIA chip or the model 1200 computer). It
is even possible to get four different colors at a time on the screen in GRAPHICS mode zero
by altering the Display List or by the careful use of a technique called artifacting with
redefined characters. The easiest color shifts are accomplished by simply altering the color
registers like we did in the two previous programs. This latter topic is what we will discuss
here.

Memory locations 704 to 712 are the color registers for players, missiles and playfields.
We are only going to concern ourselves with four of these registers: 708,709, 710 and 711.
Each of these registers corresponds to one of the COLOR commands.

Figure 13.3 — COLOR Commands vs. Color Registers

COLOR MEMORY DEFAULT OPERATIVE WHAT IT CONTROLS
COMMAND REGISTER VALUE GRAPHICS MODE THE COLOR OF

COLOR 2 708 4p 1 and 2 Normal upper case
COLOR 1 709 212 1 and 2 Normal lower case
COLOR 2 719 148 1 and 2 Inverse upper case
COLOR 3 711 70 1 and 2 Inverse lower case

NOTE: Normally “lower case” can refer only to alphabet characters.

The COLOR 4 command can be simulated by POKEing 712, but thatis a topic for another
discussion.

When you are in GRAPHICS 1 or 2, you can have multi-colored letters on the screen by
carefully making some of the letters normal upper case, some of them inverse upper case,

182 Chapter 13

some of them lower case, and some of them inverse lower case. Then, by POKEing new
values into the color registers, you can make each type of character a different color. This is
particularly good for the title page of your program.

Here is an example of such a title page:

Figure 13.4 — GRAPHICS 2 Sample Title Pa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>