

ATARI Information Series - Volume I

Carl M. Evans

ATARIBASIC
Faster and Better

Editor - Charles Trapp - Gunslinger
Production - Cindy Hall - Bouncer ..
Production Assistant - Debbie Cooke Runner
Everybody's Assistant - David Moore - Magic
Cover - D. J. Smith - Bass Guitar

This book is dedicated to Lewis Rosenfelder . . . in grateful
acknowledgment of his being that special kind of pioneer, who,
being the first to go, carried the lantern high.

ISBN 0 936200 29 4
Copyright © 1983 by IJG Inc.

10 9 8 7 6 5 4 3 2 1

All rights reserved. No pa rt of this book may be reprodu ced by any means without the express written
permi ss ion of t he pub li sher. Example programs are for personal use only. E very reasonable effort has
been made to ensure accuracy throughout this book, but neithe r the au thor nor the pu blisher can assume
responsibili ty fo t' any errors or omiss ions . No lia bility is assumed for any direct, or indirec t, damages
re sul t ing from the use of information contained herein.

ATARI is a registered trademark of ATARI Inc. , a division of Wal'l1 er Communications Company. Printed in the United States of America

2 Notice

Final Thoughts

About the Author

Carl studied electronic engineering at the Georgia Institute of Technology, specializing in
electro-optical communications. He first became involved with computers in 1971.
Fortunately, for those of us wishing to know the secrets of" A tari magic," Carl's involvement
appears deep and lasting. A champion has appeared, carrying a book of !,pells and
incantations ... Atari BASIC Faster and Better.

Carl is currently the manager of IJG's publications department. IJG publishes technical
books - in non-technical language - about home computers.

He also runs VERVAN Software; a software and documentation consulting firm that has
developed an extensive series of machine-language utilities for the Atari computer.

Carl has been writing on a professional basis since 1978, and is widely published in various
technical and home computer magazines. He's been writing a regular tutorial column; Tape
Topics , and a technical help column; Tangle Angles, for ANTIC magazine since_1982 .

David E. Moore - Wizard's Assistant

From the Author

As I write my final thoughts about this book I am in a strange frame of mind. I started
writing this book like I would have started any other project. I scoped the task and laid out a
Gantt chart for it. Now, this book has changed my life. I was a successful project engineer for
an aerospace company and had a good shot at climbing the corporate ladder. Now, I am the
publications managerfor a book publisher- namely IJG. lowe the change in my career to this
book, and Harv Pennington. I have always loved to write, but I never thought I could make a
career of it. Harv showed me that I could. As publications manager for IJ G, I can continue my
writing, and help other authors bring their hopes to fruition. I couldn' t be happier. Thanks,
Harv.

Carl M. Evans

August 1983

AT ARI BASIC Faster & Better 3

.",

Contents

Preface 10

Introduction
What is Faster and Better? 12

How to Use this Book 14

Chapter One
Subroutines, Handlers and Shells 16

Subroutines 16
Handlers .. 17
Shell Programs 18
Programming Conventions Used in This Book 18

Chapter Two
How to Program Efficiently in BASIC 20

Fundamental Concepts 20
Good Habits to Form .. 22

Making Backup Copies 22
Planning Video Layouts 22
Setting Up Error Traps 28

Minimizing Program Execution Time 29
Minimizing the Size of a Program ... 30

Chapter Three
Using Machine Language in BASIC 33

Writing USR Routines with an Assembler/Editor 34
How to Load and Execute USR Routines from Disk 37
POKEing USR Routines into Memory 37

SFILL.DEM (DEMO) 38
CONVERT.BAS (PROGRAM) 39

Object File into BASIC Data Statements 40
Saving USR Routines to Disk 41

SFILL.LST (SUBROUTINE) 41
Loading USR Routines into Strings 42

DATAPAKBAS (PROGRAM) ... 42

4 Contents

Chapter Four
Magic Memory Techniques 0 00 00000 00000000000000000000000000000000000 000 50

General Methods 0 50
How Much Memory do you Really Have? 0 50
PEEKing a Two Byte Address 0 52
POKEing a Two Byte Address into Memory 0 52
How to Reserve a Block of Memory for Private Use 0000000 0 000000 0000 000000000 52

RESERVE.LST (SUBROUTINE) 0 53
BASIC Variable Lister 000000 0000000000000 000000000000000000000000 0 0000 0 0 0 0 53

VLISToLST (SUBROUTINE) 0 •• 0 • •• •• 0 ••• 53
VSHORT.LST (SUBROUTINE) . .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000.000000.0.00000000. 57
SCRAMBLE.LST (SUBROUTINE) 0000.0000000000.00000000 00. 0 0 00000000. 57

The Two-bit Shuffle, or Moving Data in Memory 0 0 0 0 0 0 0 • 0 0 0 0 000000.000 0000. 0 •• 58
MOVERLST (SUBROUTINE) 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 58
MOVERDEM (DEMO) 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 63
WINDOWoDEM (DEMO) 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 64

Chapter Five
BASIC Overlays 0 • 0 • 0 0 0 0 0 65

Passing Variables Between Programs 0000000000000 0 0 00000 0 00000000000 0 0000 000 65
The Ultimate Memory Saver 0 66
Overlay Techniques in BASIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 67

Using the ENTER Command 0 000000 0 000000000000000.0.0.0000.0000.0.0000 67
Using Protected Memory Overlays 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 •••• 0 0 0 0 0 0 68
PROLA Y.DEM (DEMO) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 69

Chapter Six
Number Crunchers and Munchers 000 000000000000. 000.0000000000 0 0000000 71

Finding Remainders 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 71
REMAINoLST (SUBROUTINE) 00000000000 ••• 000000000.0000000 000.0 0 0 .00 71

Rounding Numbers . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 • • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 ••• 72
ROUNDINToLST (SUBROUTINE) 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 • 0 0 72
ROUNDDECoLST (SUBROUTINE) . 0 0 0 0 •• 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 •• 0 7'k
Rounding Down 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 72
ROUNDDWNoLST (SUBROUTINE) 00000000.0.00.000000.00 ••• 00 •• 00 0000. 73
ROWoLST (SUBROUTINE) 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 73
Rounding Up 000.0000000 •• 00000000000 00.00.000 00000000 00 ••• 000.0 0 0 0 00000 73
ROUNDUPoLST (SUBROUTINE) 0 0 0 0 0 • 0 • 0 0 0 0 •• 73

Saving Space with One-byte Numbers 00000 0 0 0000000000 00000 •• 000.0 ••• 00.00 0 0 73
Saving Space with Two-byte Numbers 0 • 0 0 •••• 0 • 0 0 • 0 0 0 •• 74
Print Without USING 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 74

Formatted Money Values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 0 0 0 0 0 0 o. 74
MONEY.LST (SUBROUTINE) 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 • 0 0 0 0 0 74
Formatted Telephone Numbers 0000000000000000.0 •• 000000000.0000000000000 75
PHONE.LST (SUBROUTINE) 0000 0 000000000. 0 00. 0 00 0 0000 0 00000000000000 75

Base Conversions 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 75
Hexadecimal-to-decimal Conversions 0 0000000 0000 .00000.000000000000 00 00000 75
HEXDECoLST (SUBROUTINE) 0. 000000000 00000000 0 0000 00 00000000000000 76
Decimal-to-Hexadecimal Conversions 00 0 0 0 .00 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 • 0 0 • 0 76
DECHEX.LST (SUBROUTINE) 00000000 00 0.0.000.000000000.000000 •• 00.0 76
HEADERBAS Disk File Analyzer (PROGRAM) 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 77

ATARI BASIC Faster & Better 5

Chapter Seven
Using Strings 83

PEEKs, POKEs, and Strings 83
Blanking a String 85

Stripping Trailing Blanks from a String 85
STRIPPERLST (SUBROUTINE) 85

Justifying and Centering Strings 86
RIGHT.LST (SUBROUTINE) 86
Left Justifying a String 87
LEFT.LST (SUBROUTINE) 87
Centering a String 87
CENTERLST (SUBROUTINE) 87

The Last Shall Be First and The First Shall Be Last 88
REVERSE.LST (SUBROUTINE) 88

Peeling Words Off of a String 89
PEELOFF.LST (SUBROUTINE) 89

Massaging an Umuly String 90
Converting a Lower Case String to Upper Case 90
LOWTOCAP.LST (SUBROUTINE) 90
Inverting the Characters in a String 90
INVERT.LST (SUBROUTINE) 91

Messing Around Inside a String 91
Verifying that a Substring is Really There . 91
VERIFY.LST (SUBROUTINE) 92
Performing a VERIFY in Machine Language 92
SEEKERLST (SUBROUTINE) ... 92

Simulating Real String Arrays 95
LOOKUP1D.LST (SUBROUTINE) 95
LOOKUP2D.LST (SUBROUTINE) 96
LOOKUPXY.LST (SUBROUTINE) 97

Chapter Eight
Date and Time Manipulation 98

The Eight Byte Date 98
A Simple Date Validity Check 98

VALIDATE.LST (SUBROUTINE) 98
The Three Byte Date .. 99

IIXTOIII.LST (SUBROUTINE) 99
IIITOIIX.LST (SUBROUTINE) 100

Find a Day of the Year 100
FINDA Y.LST (SUBROUTINE) .. 100

Simplified Date computing 100
COMPDAY.LST (SUBROUTINE) 101

Days Between Dates 101
Day of the Week 101

WEEKDA Y.LST (SUBROUTINE) 101
Back to Eight Byte Dates 101

YEARCOM.LST (SUBROUTINE) 102
DAYCOM1.LST (SUBROUTINE) 102
MONTHCOM.LST (SUBROUTINE) 102
DAYCOM2.LST (SUBROUTINE) 102

6 Contents

Going Fiscal 102
FISCAL.LST (SUBROUTINE) 102

1901 - 2099 Perpetual Calendar 103
DATECOMP.BAS (PROGRAM) 103

Timing Benchmark Tests ... l Ob
CLOCK.BAS (PROGRAM) 110

The Eight-Byte Time. .. 112
HMSTOSEC.LST (SUBROUTINE) 113
SECTOHMS.LST (SUBROUTINE) 113

Time Clock Math 113
CLOCKMATH.LST (SUBROUTINE) 114

Chapter Nine
Bits, Bytes, and Boole 115

A Bucket of Bits 115
Binary Numbers - Fundamental Building Blocks. 115

Working with Binary Numbers in BASIC 115
Mapping bits in Machine Language 117
BITMAP.LST (SUBROUTINE) 119
Clearing a Bit in a Byte 120
Setting a Bit in a Byte 120
Testing a Bit in a Byte 120
A Practical Example of Bit Mapping 120

Boolean Operators - Logical Building Blocks .. 121
A Brief Tutorial on Boolean Logic 121
The Boolean OR Operator 122
The Boolean AND Operator .. . 122
The Boolean NOT Operator 123
The Boolean XOR Operator .. 123
Combining Boolean Operators 123
How Atari BASIC Treats Boolean Expressions 124
Boolean Logic in Machine Language 125
BOOLEAN.LST (SUBROUTINE) 126
Machine Language Boolean OR 127
Machine Language Boolean AND 127
Machine Language Boolean XOR 127

An Un-real World Example of Bit Level Logic 128

Chapter Ten
Sorting Things Out 130

All Sorts of Sorts 130
Bubble, Bubble, Toil and Trouble 131

BUBBLE.DEM (DEMO) 132
The Shell Game 132

SHELL.DEM (DEMO) 133
The Shell Game Speeds Up 134

SORT.LST (SUBROUTINE) 142
Making Numeric Data Sortable 144
Sorting with Assorted Keys 145
Sorting Demonstration Programs 146

SHELL2.DEM (DEMO)
SHELL3.DEM (DEMO)

Chapter Eleven

AT ARI BASIC Faster & Better 7

147
150

Keyboard Trickery 152
Avoiding Operator Crashes 152
The Single Key Input Routine 152

KEY.LST (SUBROUTINE) 152
Quick and Easy Menu Routines 153

Keyboard Menus 154
MENU1.LST (SUBROUTINE) 154
Paddle Driven Menus 155
MENU2.LST (SUBROUTINE) 155

Using the Function Keys to Better Advantage 156
FUNKEY.LST (SUBROUTINE) 156
MENU3.LST (SUBROUTINE) 157

Disabling the BREAK Key 157
BREAKLOKLST (SUBROUTINE) 158

Repeating Keys and Combinations 158
REPEAT.LST (SUBROUTINE) 158

Special Keys and Their Codes 159
Controlled Keyboard Input Routines 159

Controlled String Input 160
INKEY1.LST (SUBROUTINE) 160
Controlled Numeric Input 160
INKEY2.LST (SUBROUTINE) 160

Chapter Twelve
Controlled Data Entry 162

Video Formatting 162
Positional Input Fields 163
FIELDB.LST (SUBROUTINE) 163
FIELDLLST (SUBROUTINE) 163
Special Input Fields 164
FDOLLARS.LST (SUBROUTINE) 164
FDATES.LST (SUBROUTINE) 164
FTIMES.LST (SUBROUTINE) 165
Scrolling Window Inputs 165
FSCROLL.LST (SUBROUTINE) 165

Error Handling 166
Error Detection Techniques 166
Error Correction Techniques 167

Attracting and Distracting the Operator 168
BLINKLST (SUBROUTINE) 169

Putting It All Together 173
CONTROL.DEM (DEMO) 173

8 Contents

Chapter Thirteen
Video Antics 177

Le Marquee D' Atari .. 177
SCROLL.DEM (DEMO) 178
MARQUEE.BAS (PROGRAM) 179

Four Color Text in GRAPHICS 2 181
TITLE.LST (SUBROUTINE) 182
GLOW1.DEM (DEMO) 182
GLOW2.DEM (DEMO) 182

Using Page Flipping for a "SLYDESHO" 184
SLYDESHO.DEM (DEMO) 185

Slower BASIC LISTings 193
SLOWLIST.BAS (PROGRAM) 197

Saving and Retrieving Screen Data 199
GR8PUT.DSK (SUBROUTINE) 201
GR8GET.DSK (SUBROUTINE) 203
CITOH.GR8 (SUBROUTINE) 204
PAINTGET.DSK (SUBROUTINE) 206

Chapter Fourteen
Sound Advice 208

What is a Sound? 208
A Sound POKE Gets You in the POKEY 211

Tone Control .. 211
Controlling Volume and Distortion .. 211
Special Sound Control Register - AUDCTL 213
SOUND1.DEM (DEMO) 214

Using What We Have Learned 215
The SOUND Statement 215

Special Effects Routines 216
SOUND2.DEM (DEMO) 216
TRAIN.LST (SUBROUTINE) 217
POLICAR.LST (SUBROUTINE) 218
TANKLST (SUBROUTINE) 218
THUNDER.LST (SUBROUTINE) 218
FLIES.LST (SUBROUTINE) 219
MOTRBOAT.LST (SUBROUTINE) 219
MANHOLE.LST (SUBROUTINE) 219
SURF.LST (SUBROUTINE) 219
EUROCOP.LST (SUBROUTINE) 220
STORM.LST (SUBROUTINE) 220
HEART.LST (SUBROUTINE) 220
TAKEOFF.LST (SUBROUTINE) 221
SPLAT.LST (SUBROUTINE) 221
SAUCER1.LST (SUBROUTINE) 221
SAUCER2.LST (SUBROUTINE) 222
KLAXON.LST (SUBROUTINE) 222
BOMB.LST (SUBROUTINE) 223
EXPLODE.LST (SUBROUTINE) 223

ATARI BASIC Faster & Better 9

Chapter Fifteen
Useful Utilities 224

AUTO GO - Creates AUTORUN.SYS Files 224
AUTOGO.BAS (PROGRAM) 225

CATALOG - Disk Catalog Program 228
CATALOG.BAS (PROGRAM) 228

RPMTEST - Disk RPM Tester 231
RPMTEST.BAS (PROGRAM) 231

MINIDOS - DOS Functions from BASIC 223
MINIDOS Command Descriptions 234
MINIDOS.BAS (PROGRAM) 235

Chapter Sixteen
The Faster and Better Disks 243

The Subroutine Library Disks (ABF ABLIB) 244
DISK #1 The First Half 244
DISK # 2 The Other Half 248

The Assembly Library Disk (ABFABASM) 251
The Demonstration/ Applications Library Disk (ABF ABDEM) 253

Application Programs , 255
Demonstration Programs. .. 256

Appendix Table of Contents 258

Appendix A
Useful POKE & PEEK Locations 259

Appendix B
Key Codes 263

Appendix C
Error Codes Explained 271

Appendix D
Base Conversions for Decimal, Binary and Hexadecimal Numbers ... 282

Appendix E
Subroutines - by Line Number 285

Appendix F
Subroutines - Alphabetically 289

Appendix G
Assembly Language Routines - by Chapter 293

Appendix H
Application Programs - by Chapter 294

Appendix I
Demonstration Programs by Chapter 295

Index 296

10 Preface

Preface

The Atari 800 (and the 400) is a powerful computer. .. I've had my 800 since September
of 1981, and each day I become ever more convinced of this.

You might think that the inherent limitations of a low-cost, mass-produced, eight bit
computer would be frustrating. I've found quite the opposite to be true. The primary
frustration I have with my 800 is that it is so complex that I can never seem to learn "all there
is to know" about anyone aspect of the thing. Every time I think I have it all down pat, I see a
new program that does something I didn't even know could be done. Each day, I become
more and more impressed with its capabilities.

Learning to program the 800 is like learning to play the piano. It's easy to play simple tunes
(and you can really play tunes on the 800!) from the very first day, but you can spend a
lifetime improving your technique and expanding your repertoire.

I started programming back in 1971, in college. I started out on a Burroughs 5500 and
rapidly got involved with several other large computers (commonly referred to as
mainframes) such as PDP/ll , CDC 6400 and UNIVAC 1108. The very first programming I
did was called "BATCH" programming. That means that all computer inputs are made
using punched cards. After discovering the wonders of interactive programming on a CRT
(video screen), I was of the opinion that batch programming was a diabolical device created
to prevent people from learning how to program computers. I still have not changed that
opinion.

Once I got out of college, I went to work for an aerospace company as an electro-optical
engineer and spent most of my first two years writing special analytical programs for electro­
optical guidance systems. I went along in this manner until June, 1979, when I bought myself
a Radio Shack TRS-80 Model I with 16K of RAM. I soon found that working with 16K was
analagous to memorizing only the left side of an equation, so I almost immediately upgraded
to 48K. I felt much better, but kept seeing all those really eye-catching arcade games on the
Atari computers, and I finally trashed my TRS-80 for a game machine - the Atari 800. I had
learned from my previous experience, so I bought it with 48K of RAM and a disk drive. I have
been delirious ever since.

The first problem I ran into was - yep, you guessed it - not enough memory for what I
wanted to do. I never have been a fan of machine language, but I learned it to enhance my
BASIC programs. Not being a masochist, I decided that I didn't want to have to rewrite a
machine language subroutine every time that I needed one, so I started stuffing them into

ATARI BASIC Faster & Better 11

BASIC subroutines that I could save as an ever expanding-library of "cook book" add ons to
any other program I might want to write. This book is a spin off of those efforts.

This book is the result ofthe efforts I've made to make my BASIC programs run better and
faster. Every time I'd have to stop to figure out a routine or technique, I'd put it in my
programming notebook. Many times, I've had to throw out a routine and come up with an
improvement, because the real test was whether or not it would work successfully on a day­
to-day basis.

You won't find any trivia here. Each routine and technique solves one or more specific
problems that you are likely to encounter when programming the Atari computer.
Everything we'll discuss is pragmatic, with the goal of making the computer do what you
want it to do, with the least programming effort.

The subroutines and techniques in this book don't attempt to be "all things to all people."
I suppose it would be possible to write a sorting subroutine or a disk file-handling subroutine
that could handle every possible operation you might want to perform. But why sacrifice
execution speed? Why waste the memory? Instead, this book gives you relatively flexible
routines with the documentation that allows you to modify them as your application
requires.

I hope you'll find this book as valuable to you as it is to me. I use it daily as a reference in my
programming work. Though some of the information can be found elsewhere, this book gives
you a handy "one-source" reference, and now that these routines and techniques are
explained in book format, documentation efforts for any program I write are greatly
simplified. I can now refer anyone who reads one of my program listings back to this book,
instead of filling up the program with memory-wasting remarks. If you adopt the same
techniques and standards, you too can save a lot of time on documentation. You will be free
to concentrate on the logic of the application, rather than the specific techniques required to
make the computer perform better and faster!

Carl M. Evans

October, 1982

12 Introduction

Introduction

What Is Faster and Better?

If we could define "faster" and "better" in a way that would apply to all programming
problems, it would be a much simpler matter to design programs. Programming would
become less an art and more of a science. It would be a simple matter of starting at point" A"
and working to point "B."

A large part of our programming problem is deciding exactly what point "B" is. In
programming and system design, we are working in a world of trade-offs. To make a system
better in one way, we often have to make it not quite as good in another way. We must balance
our limited resources to arrive at the best overall solution.

Let's talk about some of the trade-offs we must work with. Each can be maximized only at
the expense of one or more other considerations. Every programming technique in your bag
of tricks has its own advantages and disadvantages. If you can decide on the "mix" that is
best for your application, you've cleared away one of the main roadblocks to developing your
system.

Efficiency

How economically does the program use limited disk and memory space? We can save disk
space through data compression at the expense of memory space, execution time and
compatibility. We can conserve memory space at the expense of execution speed.

Execution Speed

How fast is it overall? How fast is it in those operations that are most critical? How fast and
responsive is it for operator-paced operations? We can often make one operation faster by
making another operation slower. We can often make a system faster at the expense of
reliability or portability.

Programming Time

How long will it take to develop? Can deadlines be met? Given enough time, we can
improve on many aspects of performance, but nearly every other performance consideration
is achieved at the expense of programming time.

ATARI BASIC Faster & Better 13

Function

Does it do the job intended? By limiting the project to only certain parts of the overall
problem, we can save on programming time. By doing some things manually, we can improve
on computer execution speed.

Workability

Does it do the job in a way that is practical and worthwhile to the user? We can maximize
the functions performed by the computer, but by doing so, we often sacrifice
workability.

Reliability

Is it vulnerable to operator errors or equipment malfunctions? Is it crash-proof? Is it bug
free? We can improve on reliability at the expense of programming time, execution speed
and efficiency.

Recoverability

How easily can the results of operator errors or equipment malfunctions be overcome? We
can improve on recoverability at the expense of function, workability, design and
programming time. We can improve on recoverability with special utility programs that
reconstruct data that has been lost. We can live more dangerously in terms of reliability ifthe
system is easily recoverable.

Ease of Operation

Is it operator-oriented? Are keystrokes minimized? Are operator entries consistent so that
it can be run instinctively? We can usually make a system easy to operate at the expense of
programming and design time, and memory efficiency.

Capacity

How much data can it handle? Programming a system to handle a small amount of data in
memory can be a simple matter. For larger amounts of data, we get into the complexities of
disk storage. To allow for capacity beyond that of a single disk adds even more
complexity.

Portability

How easily can it be transferred for use on a different computer system? We can maximize
portability at the expense of efficiency and execution speed. We can make a system easier to
transfer by ignoring many of the capabilities and advantages that are unique to the system
we are using.

Compatibility

How well does it tie-in with other systems the user might have? We can make the system
perform more functions and work faster if we don't have to allow for com patibility with other
systems.

Maintainability

If something goes wrong, how easy will it be to find the problem and correct it? We can
improve on maintainability at the expense of function and efficiency. By conforming to
programming standards we make the system more maintainable, but we sometimes sacrifice
the ability to use procedures that are best suited to the application.

14 Introduction

Ease of Modification

How easy will it be to modify the system to perform other functions that were not originally
considered in the design? We can usually make it easier to modify with more programming
and design time.

Understandability

How easily can a programmer other than the one who wrote the program understand the
system? We can improve on understandability with extra programming and design time. By
sacrificing some techniques that make the system more efficient or faster, we can make it
more understandable to others.

Documentation

How well are the operating procedures, capabilities and limitations of the system
explained? We can always improve on documentation by spending more time. Internal
documentation, by inserting remarks in the body of the program text, can be achieved at the
expense of execution speed and memory efficiency.

Attractiveness

How well designed are the video displays and printouts? Does it "sell" itself to those who
must use it? We can make a program look good with more programming time and slower
execution speed.

With the "tools" presented in this book, you can maximize the performance of your system
according to the goals you have defined for the project at hand. Every function and program
has been carefully designed to achieve one or more specific purposes. Most of the routines
provide exceptional speed. Others operate slower than alternative techniques, but can
provide a great savings in programming time. It is up to you to select your programming tools
wisely and to test them for your specific application.

How To Use This Book

This book can be valuable to you whether you're a beginner, with only a few weeks'
experience, or an expert programmer with many years of experience.

If you are new to programming, or the Atari 400/800 is new to you, you'll need first to get
familiar with the capabilities and peculiarities of the Atari and the BASIC programming
language. The best way is to work through the examples shown in your operating manuals,
and to modify and experiment with them. Then you can give yourself simple programming
challenges, and expand and modify your programs. There is no better teacher for
programming than your own computer! It'll tell you when you've made an error, and you can
try again and again. When you start looking at the examples in this book, you'll get ideas on
how to do things differently (and, hopefully, better).

If you are new to assembly language programming, or if you have not been exposed to it at
all, don't let the assembler listings in this book scare you off! Just gloss over them. You don't
need to know 6502 assembly language, and you don't need to own an assembler/ editor to use
any of the routines in this book. If you want to learn assembly language for the Atari, I
recommend The AtariAssembler by Don and Kurt Inman as a good introductory book. 6502
Assembly Language Programming by Lance A. Leventhal and Programming the 6502 by
Rodney Zaks are excellent all around references. You can pick them up at most good
computer stores. Then, after you get a feel for assembly language, you can start studying and
modifying the assembly language subroutines shown here.

ATARI BASIC Faster & Better 15

I've made no attempt in this book to duplicate anything that can be found in your
instruction manuals, except where some amplification, clarification or summarization for
your convenience is required.

The first four chapters of this book cover programming techniques that are important to
the implementation of the routines found in the remainder of the book. They discuss
subroutines, USR routines and techniques for managing the memory of your computer.
Again, even if you are an experienced programmer, be sure to go through these chapters first.
I guarantee you'll find new ideas and techniques that you've never seen published anywhere
else!

Chapters 5 through 15 contain hundreds of ideas, tricks, subroutines and USR routines
that can be implemented in your programs. It's unavoidable that when you use them, you will
need to skip around, because video routines sometimes interact with disk routines, printer
routines with disk routines, and so forth. So, before you begin using any of them, be sure to at
least "skim" through the whole book so you'll know what's included.

To get the maximum usefulness from this book, you'll want to create a disk library of the
subroutines, functions , test programs and utilities. That way you can merge what you need
into any program that you might be Writing.

16 Chapter 1

Subroutines, Handlers and Shell Programs

The BASIC language, as you'll find it in the Atari computer, has around 82 commands and
built-in functions. Have you ever considered which commnds and capabilities are the most
important to you? My answer to this might suprise you, but to me, LIST and ENTER are
without a doubt the most powerful and important commands!

I wouldn't have said that a year ago, but now that I've built up a library of programs,
subroutines and functions, I almost never start a program from scratch. You could take away
the NEW command (which clears out memory so you can begin writing a new program), and I
wouldn't miss it.

A few years back I was in a computer store having a discussion with a salesman. He thought
it was foolish to be in the programing business because "in a couple of years, every program
will have been written!" Of course, that statement has turned out to be quite false, but from a
programming productivity standpoint, we who program computers would do well to take the
attitude that everything has already been written. Our job is to rearrange, modify, combine,
insert and delete so as to come up with programs that can perform anyone of an endless
range of useful applications.

Subroutines
It doesn't take long to realize that the subroutine capability of BASIC can save you

countless hours of work. The GOSUB command lets your program branch to another line,
execute some logic, and then RETURN to resume execution with the next command
following the GOSUB. Let's consider the advantages of a liberal use of subroutines:

• Subroutines save memory. Any significant operation that has to be performed
more than once in your program only needs to appear once as a subroutine.

• Subroutines save programming time. With subroutines, you are not
continually retyping the same logic over and over again.

• Subroutines provide flexibility. Simple modifications to a program having a
liberal use of subroutines can make it perform new functions that were never
considered when the program was originally written.

• Subroutines simplify testing and debugging. They let you break your program
down into logical modules. Once you've completely tested a subroutine, you can
forget about it.

ATARI BASIC Faster & Better 17

• Subroutines free you. They allow you to concentrate on the overall logic and
design of the application. You can forget about the details and complexities of those
operations you perform again and again.

• Subroutines increase understanding. They make programs more readable and
understandable. The details and complexities of common operations don't
interrupt the "train-of-thought" in your main program. Even if a routine is used only
once in a program, the benefits of readability can sometimes make it worthwhile to
design that routine as a subroutine.

• Subroutines ease conversions. They can make your program more easily
convertable to other computers and operating systems. For example, if a new
computer system differs only in its disk handling instructions, you simply modify
your disk handling subroutines. The rest of your program can remain
unchanged.

• Su broutines can be libraries. You can create a library of subroutines on disk,
and as you need them, merge them into the program you are writing.

This book gives you an extensive library of subroutines that can be used as you need them.
Nearly all of them are shown with specific line numbers ranging from 19000 to 32000. You'll
find no overlapping of subroutine line numbers shown in this book, except in a few cases
where two subroutines perform the same function in a different way, and there would be no
reason to have them both in the same program.

If you wish, you can change the line numbers and variables used by any of the standard
subroutines in this book. But be aware that by doing so, you'll be missing out on one of the
main benefits that this book provides - the pre-written documentation and detailed
explanations. The line numbers and variables shown are arbitrary, but I've found that they
work well for me. I trust that you'll find similar success with them.

Handlers

A "handler" is a group of subroutines and procedures that work together to perform a
major function within a program.

In this book, for example, we'll be introducing a video display handler for the simplified
programming of data entry and video display inquiries.

Handlers provide all the benefits of subroutines, but they go a level above and beyond
single subroutines to provide system-wide standards for program organization, disk file
organization and standardized operator-computer dialogues.

A handler gives you specific procedures for using a set of subroutines. To set up a handler
within a program, you simply merge the subroutines required and modify, insert, or delete
specific lines according to the instructions provided. A handler provides a starting point for
you to begin the modifications required for any particular application. No attempt is made to
make anyone handler do everything for every possible application. Handlers are designed so
that they can be modified for maximum efficiency in a particular application.

You'll find that the time, saving and standardization benefits of handlers are enormous.
Once you adopt standard handlers into your programs, you'll wonder how you ever got along
without them!

18 Chapter 1

Shell Programs
A "shell program" can be any program that you've designed to be easily modified to

perform entirely different applications.

For example, I have used a sophisticated shell program for nearly three years to develop
hundreds of different applications. My accounts receivable system has all the handlers for
menu selection, video display additions, changes, inquiries, transaction entry, report
printing and disk file handling. By deleting certain routines, I've got a mailing list system.
Other changes have made it into a general ledger system, an inventory control system, an
accounts payable system and many other specialized applications.

When considering a new application, your first question should be, "What other
applications that are already written have the same general structure?" When you think
about it, just a few well-designed shell programs can be modified to perform almost any
application, with up to a 90 percent savings in programming time!

Programming Conventions Used In This Book

Every serious programmer I have ever talked to has a special system for naming variables
and organizing the code (program statements). I also have adopted a system or set of
conventions that I use whenever I am developing a program. Every programmer's system is
unique, but they all have certain common characteristics. The conventions outlined in the
following two charts are those that I have been using with Atari BASIC. You may have
already created your own system, but I suggest that you familiarize yourself with this system,
since it is used extensively throughout this book. I invite you to adopt these conventions and
to modify them or add to them as your needs dictate.

Figure 1.1 - Varia ble Nam ing COll uentiolls

WORKING VARIABLES:

Temporary storage (very brief time)
Temporary storage (not so brief time)

Flags (used to control branching)

COUNTERS:

FOR-NEXT loops

Accumulators (long term counters)

- X, V, Z, X$, V$, Z$
- Xl, X2, X3

XI$, X2$, X3$
- FLAGI, FLAG2, FLAG3, etc.

or a key word (e.g., I
might use a flag called
"DEAD" and set it to I
when a monster is killed).

- LOOPI, LOOP2, LOOP3, etc.
Replace "LOOP" with I, J,
or K to save memory

- I usually use the name of
the thing I am counting
(e.g., I might use "SCORE"
to keep a running total of
how many points I have
made during a combat).

CONSTANTS:

Line numbers (used for indirect
GOTO's and GOSUB's)

Never changed numbers

Seldom changed numbers

String constants

Figure 1 .2 - Lin e Numb ering Conventions

100 - 199

200 - 299

300 - 999

1000 - 9999

10000 - 18999
19000 - 32000

ATARI BASIC Faster & Better 19

- Here, again, I usually
use a descriptive name
that tells me where the
program is going to
(e .g., I might use "DELAY"
to identify a time delay
routine) .

- The number preceded by
by a "Z" (e .g., Zl0=10) .

- Here, once again, I use
a descriptive name
(e .g., DAY, MONTH, YEAR).

- Descriptive names are
also used here (e.g.,
NAMES$="Johnny") .

- Program name, copyright,
author, version number
(i.e., the title page) .

- Program initialization
(e .g., DIMensioning,
setting constants and
variables) .

- Set USR variables and
GOTO main program

- ALL frequently used
subroutines and loops.
Put the most often
called ones first.

- Main program
- Seldom used subroutines

and program closeout

I use these conventions extensively during the development of a program. If the program is
likely to be used over and over with variations in the specific subroutines, then I leave it with
these line numbers.

On the other hand, if! have written a program that is dedicated to a single narrow function
and is therefore unlikely to need changing, I will renumber the program with a starting line
number of 100 and step by 1, or a starting line number of 1000 and step by 10. I recommend
against arbitrarily renumbering a program that is in development or one that you do not
thoroughly understand.

20 Chapter 2

How to Program Efficiently in BASIC

I remember the very first college course I took on computer programming. The professor
devoted the majority of the class time to something called "flow charts." We were taught that
organization was the real key to good programming. The professor was right. Most of you
simply sit down at your computer and start entering code when you are trying to write a new
program. If you are writing a relatively short program, you may get away without any
planning. However, if the program is of some complexity, you will rapidly become lost in an
ever deepening morass of confusion. The first lesson of efficient programming in BASIC or
any other language is: Plan the Program. I will explain this concept in more detail in the
following sections and then show you some general methods for minimizing the size and
maximizing the speed of your programs.

Fundamental Concepts

A program can be written in many ways, but I usually go through the following steps:

1. I come up with an idea for a program.

2. I write down everything that comes to mind about the idea. This is where I really define
what I want the program to do. This step also serves to get my ideas down on paper so they
won't be forgotten.

3. Now I categorize the notes I took in step two and assign labels that will relate to routines
in my program. Any ideas that I get later can then be added to the proper catagory. If the
program is going to be a very large one, I may even put my notes on 3x5 cards for easy
indexing.

4. At this point I start a flow chart of the program. A flow chart is simply a block diagram of
the program. Figure 2.1 illustrates a simple flow chart for a program that computes gas
milage given the amount of gas used and the number of miles driven.

A flow chart is a road map of your program. Think of the lines as being roads and the boxes
as towns and interchanges. Professional programmers make very fancy road maps that may
go on for dozens of pages and use a special set of pictorial symbols to represent different
kinds of operations. For example, a diamond tells you that the operation at that point in the
program is a "branch on decision." A rectangle at that point would mean something
completely different. However, this chapter is not meant to be a tutorial on flow charting.
The point I am trying to make is that you should walk through the logic of your program and

ATARI BASIC Faster & Better 21

make sure that all possible results of an action are covered. Have you ever hit the wrong key
in the middle of a game and had the program crash on you? The reason the program crashed
is that the programmer was sloppy and wrote the program without a complete road map. The
result was a one-way dead-end road that should not have been there. I suggest that you
always flow chart any program that cannot be listed on a single piece of paper.

Figure 2.1 - A Simple Flow Chart

Initialize
Variables

and Arrays ..
Ask for

" Miles Driven"

+
r--+ INPUT MILES

+
~ Is INPUT Valid?

+ YES

Ask for
"Gallons Used"

~

--+- INPUT GAL

+
NO Is INPUT Valid?
~

.. YES

Compute . . .
MPG =

MILES -;- GAL ..
Display MILES,
GAL, and MPG ..

STOP

22 Chapter 2

5. Once I have a flow chart, I can actually begin work on the program code. I tend to write
my programs in modules that perform some particularfunction in the program. For example,
an INPUT module, a SCREEN DISPLAY module, and so on. Each of these modules is
written as a stand alone routine and is saved on my development disk with a descriptive file
name, such as SETUP or DISPLAYl. Note the "I" on the second file name. I use a number
like that to distinguish between different routines with similar functions. If I later revise a
module, I use the extender to indicate the revision number. I never delete an old version until
I am certain that the new version is working. I'll talk about backups a little later.

6. As I get my modules completed, I start to combine them into a program. This is
particularly easy using the LIST and ENTER commands. I LIST each module to disk when I
originally write it. Since the ENTER command does not erase memory like the LOAD
command, I can concatenate the various modules by simply ENTERing each one from disk.
You have to be careful to make sure that each module uses a different block of line numbers.
The ENTER command will replace any existing lines with the newly entered lines if they
have the same line number. While we have to be wary of this restriction at this time, I will
show you how to use it to your advantage later in this book.

7. This is perhaps the most tedious and difficult step of all; I debug my program. Sure, I
debugged each module as I wrote it, but the interaction of the modules is sometimes hard to
predict. I don't know how I can express the importance of this step. Let's just say, "It only
takes one bad bug to spoil a barrel ... er, program."

Good Habits to Form
Making Backup Copies

You now know the general approach to use when developing a program, but there are some
other things that you may need more guidance on. For example, I am sure that you have
heard the term "backup" before. This term refers to more than just making an extra copy of a
completed program. It is an essential tool that every serious programmer should use in the
process of developing a program. I have no sympathy for the programmer who cannot meet a
deadline because "the only copy of my source was stolen!" or lost, or whatever. Any
programmer worth his salt will have at least one backup of anything he is working on. I am
particularly paranoid and not only have several backup copies, but I also make it a point to
backup anything I am working on every hour. That way I will never lose more than an hour's
worth of programming. You don't have to go quite that far, but I do strongly suggest that you
never let yourself be caught in the position of losing your "only copy" of a source. In other
words, keep at least one backup copy of your work on a separate disk that is stored in a
separate location.

Planning Video Layouts

When running a program, the primary interface between the program and you is the video
screen. You should plan the video displays in your program with extreme care. The displays
should give you the needed information easily and without straining your eyes or your mind. I
have seen some programs that try to do everything with a single video display, when two or
more displays would have been much better. There are no hard and fast rules for how much
information should be on a given video display, but you should keep the display as simple as
possible. Arcade games are an obvious exception to this rule of thumb. When designing a
program, I generally use a video layout planning sheet similar to the ones shown in Figures
2.2 through 2.6. All that you need to have your own video layout planning forms is some
rectangular graph paper, or you can simply photo-copy the ones in this book. Try this
technique the next time you are designing a program, and I'm sure that you will not only save
an appreciable amount of time, but your video displays will look much more
professional.

ATARI BASIC Faster & Better 23

Figure 2.2 - GRAPHICS 0 Video Display Planning S heet

c:c
~~+-4-4-~~~~~-+-+-+~-4~~~~~+-+-+-4-4-4-~

~
~~+-4-4-~~~~~-+-+-+~-4~~r-~~+-+-+-+-+-~~

~

~t-+-~~-r-r-r-r-+-+-+-+~~--r-r-r-+-+-+-+-~~-r~

24 Chapter 2

Figure 2.3 - GRAPHICS 1 Video Display Planning Sheet

b

~

~

--f'oo.)

--0')

-~

ATARI BASIC Faster & Better 25

Figure 2.4 - GRAPHICS 2 Video Display Planning Sheet

26 Chapter 2

Figure 2.5 - GRAPHICS 1 with Text Window Video Display Planning Sheet

ATARI BASIC Faster & Better 27

Figure 2 .6 - GRAPHICS 2 with Text Window Video Display Planning Sheet

en ..-

c:D ..-

C"'-I
..-

co

~

~

28 Chapter 2

Setting Up Error Traps

An error trap is something used to prevent your program from crashing when a mistake is
made while the program is running. Error traps take two general forms. The first form is the
one that you are probably the most familiar with. The general form, as given in your BASIC
handbook, is

TRAP aexp

The most common usage of the TRAP command looks something like this

2100 TRAP 2120
2110 GOTO 2140
2120 PRINT"* TURN THE PRINTER ON !"
2130 GOSUB BELL:GOSUB DELAY:GOTO 2100
2140 REM PRINT ROUTINE

This routine sets a TRAP before going to the printer routine. If the operating system
detects any error in the printer routine, program control will transfer to line 2120 which will
give you an error message, go to a bell ringing subroutine, go to a time delay subroutine (to
give you time to turn the printer on) and then go back to your printer routine. This kind of

TRAP is set to alert you that the printer is not ON after you have tried to send something to
it. You may say, "So what?" but the significance ofthis is that the error was intercepted and a
message was sent to you so you could correct the error without crashing the program! This is a
technique that you should incorporate into all of the programs that you write. This may
sound easy, but you will find that it really isn't.

The problem is that the TkAP stays set until something trips it or another TRAP
command is executed. In one program I was working on, I spent hours trying to find out why I
was encountering a particular TRAP, time and time again. The answer was almost
embarrassing. The trapped portion of the program was not the source of the error. That
routine was being successfully executed, and an error was occurring later in the program.
The original TRAP was set for one specific kind of error, but once that section of the program
was done, I should have set another TRAP to close the first one. To get around this problem,
sometimes at the beginning of a program I will set a general TRAP that branches to an error
diagnostic subroutine. You can effectively close a trap by executing a TRAP that points to a
non-existent line number. The most common one I have seen is TRAP 40000.

The key to complex routines is that the error code you normally see displayed is stored in
decimal address 195. By writing a routine that does a PEEK(195), you can have your
program ignore certain errors and give you detailed messages for those errors that you are
interested in. Oh, by the way, the line number where the error occurred is easily found by
ERL=PEEK(186)+256*PEEK(187).

The second kind of error trap is a little less obvious, but nonetheless important. Error
trapping code is a safety measure to prevent errors that the TRAP command is not designed
to handle. For example, the TRAP command could detect that a string had been INPUT
when a number had been asked for and either ignore the bad input, or tell you it was bad
input and then ask for the input again. The TRAP command could not, however, tell whether
or not a numerical input was a valid number for that routine. This kind of error trapping is

ATARI BASIC Faster & Better 29

usually handled by error trapping code. Let's say that a routine is asking for you to input a
day of the month. The error trapping code would need to make sure that no number less than
1 or greater than 31 was input. The code might look something like this

1~~ PRINT"ENTER THE DAY OF THE MONTH II.

11~ TRAP 1~~

12~ INPUT DAY
13~ IF DAY<1 OR DAY>31 THEN 12~

This is a very simple example and more sophisticated input routines will be discussed
later in this book, but the principles should be made clear here. The person using your
program should not be allowed to make any input to the program that will cause the program
to crash. In the trade, this is commonly referred to as "idiot proofing" your program. In
Chapter 11 I'll show you how you can even prevent the BREAK key from stopping your
program.

Minimizing Program Execution Time
The speed of a BASIC program is affected by many factors. The position of the code, the

form ofthe code and the logic ofthe code all have some impact on program speed. There are a
number of simple guidelines for maximizing the speed of a program.

The following list can be useful in helping you to speed your programs up. The methods
are listed roughly in the order of most effective to least effective. The methods at the top of
the list will typically be more effective than the methods at the bottom of the list.

1. Use machine language subroutines - tremendous time savings can be made by packing
a loop in machine language and calling the loop by using the USR function.

2. Recode - there is generally more than one way to write a given routine. Restructuring
the logic of a routine can sometimes yield great time savings.

3. Put frequently called subroutines and loops at the start of the program - since BASIC
starts at the first line number in its search for a particular line number regardless of the
position of the call, you can chop a good bit of time off your program's execution time by
placing all frequently called subroutines and loops at the top of your program.

4. In loops, replace GOSUBs with in-line code - the additional time savings here is due to
the fact that BASIC has to add and remove entries from the run time stack each time it
encounters a GOSUB. If you eliminate the GOSUB, you also delete the time BASIC would
use to keep track of the subroutine.

5. Replace "*,, and "/" operators with equivalent "+" and "-" operators - the multiply and
divide routines in Atari BASIC are very slow compared to the addition and subtraction
routines.

6. Put multiple statements on a single program line - this is especially effective with loops
since BASIC won't have to fetch the next line to continue the loop. It also serves the purpose
of reducing the number of lines that BASIC will have to search through each time a search is
needed.

7. Disable the screen display - the video screen display is maintained using a process
called Direct Memory Access (DMA) that steals time from your computer when it isn't
looking. This theft amounts to about 30 percent of your computer's time. You can regain this
lost time by disabling the DMA process. To do this, you must POKE 559,0. This will speed
up your program by 30 percent, but your video display will black out. To restore the DMA,
simply POKE 559,34.

30 Chapter 2.

8. Use a lower graphics mode - using high resolution graphics will make your entire
program run slower. You can save as much as 25 percent of the run time by using a lower
graphics mode.

9. Replace seldom called subroutines with in-line code - BASIC spends a lot of time
searching for line numbers and adding and subtracting subroutine pointers from the run
time stack. If a routine is only used every once in a while, you can save some time by replacing
the subroutine with in-line code.

10. When using nested loops, put the higher frequency loops inside - this gets back to the
run time stack again. By putting a 100 cycle loop inside a 10 cycle loop, the number of times
that BASIC has to update the run time stack is minimized, and your program runs
faster.

11. Replace constants with variables - every time that BASIC encounters a constant, it
must "interpret" it as a new number and convert it to BCD format. This takes up valuable
time, and as you will see in the next section, it also eats up precious memory. So, you should
replace any constants used more than three times with variables. For example,
Z100=100:Z0=0:Zl=1 and so forth. This is especially important for constants inside
large loops.

12. Reference variable names early in your program - now that you have replaced your
constants with variables, you should be told the price you paid. The more variables that you
use in a program, the longer it takes BASIC to find variables that were first referenced late in
the program. If you set aside a special statement to intialize your most frequently used
variables early in your program, you will speed up your program.

13. Delete all unnecessary spaces and remarks - the larger the program, the slower it is.
Also, every REM statement is just one more line number for BASIC to sort through.

14. Use indirect addressing for GOTOs and GOSUBs - the reasons for this are similar to
those given in (11) above.

15. Pack IF -THEN logic statements - this one is a little less obvious, and the rewards will
vary, but you can replace an IF-THEN statement sequence such as

100 IF X<101 THEN Y = 0
110 IF X>100 AND X<301 THEN Y = 1
120 IF X>300 AND X<801 THEN Y = 2
130 IF X>800 THEN Y = 3

with a logical statement like

Y = (X>100)*«X>100)+(X>300)+(X>800))

Before you try anytl;ing like this, I suggest that you go back and re-read the section on
logical operators in your BASIC manual. You will find that with a little study you can replace
whole blocks of IF -THEN statements with a few logical expressions.

16. Use X*RND(O) rather than RND(O)*X - I'm still not sure why this one works, but
experience has shown that it does save time. The same holds true for X*COS(Y) and the rest
of the special functions.

Minimizing the Size of a Program
You will often find that you are hard pressed between two desires that usually conflict with

one another. You would like to have your program run as fast as possible and yet use up as
little memory as possible. There are a number of tricks you can use to accomplish one desire

ATARI BASIC Faster & Better 31

or the other. The previous section addressed the various ways you can speed up your
program. This section will show you some other tricks you can use to reduce the amount of
memory that your program will require. Those techniques that are listed in both sections
deserve your close study.

1. Use machine language subroutines - a BASIC routine can take more than six times as
much memory as a machine language subroutine that performs the same function.

2. Recode - inefficient code can easily take five times the memory as tight (efficient)
code.

3. Remove all remark statements and unnecessary spaces - these things are not needed
to run the program, and each one takes up valuable bytes of memory.

4. Replace constants with variables - this is especially good if the constant is referenced
more than three times. BASIC stores each variable once as a six byte BCD number. Each
reference to that variable uses only one byte. A constant, on the other hand, uses seven bytes
each and every time it is used in your program. The savings is obvious.

5. Initialize numeric variables with a READ statement - this one is not an obvious
technique. The trick is that DATA statements are stored in ATASCII code with each
character using one byte. The normal assignment statement (e .g., Z100=100) uses seven
bytes for each constant. This trick is most useful when you have a large number of constants
and variables.

6. Use indirect addressing in GOTOs and GOSUBs - Atari BASIC allows you to use a
variable instead of a line number in a GOTO or a GOSUB statement. Using this technique
saves you roughly six bytes each time you use it. A side benefit is that using descriptive
names for routines within a program makes it easier to follow the program's logic when you
are analyzing it.

7. Get the garbage out of the variable name table - this applies primarily to the actual
writing of the program. Every time you use a variable, it is added to the variable name table.
This entry in the table stays there even though you may delete all uses of that variable in your
program. You can get this garbage out of the variable name table by LISTing the program to
cassette or disk, typing NEW, and then ENTERing the program back into memory. You can
now SAVE the program with the cleaned up table. The savings here will range anywhere
from a dozen bytes to truly large numbers. One program I was working on had gone through
extensive changes, and I saved 500 bytes by getting rid of the garbage in the name table.

8. Minimize the number of variables in your program - each new variable requires an
additional 8 bytes plus the bytes for its name.

9. Keep the variable names as short as possible - each character in the variable name uses
up one more byte in the variable name table . It is tempting to use long descriptive names, but
I believe that you will find that a short name can be just as good.

10. Put multiple statements on a single program line - you save three bytes each time you
eliminate a program line by putting a statement on a line with another statement.

11. If a subroutine is only used once, replace it with in-line code - each unnecessary
GOSUB and RETURN wastes bytes, and even more bytes are wasted ifthey are on separate
lines.

12. String pack numerical arrays if the numbers are integers between zero and 255 - this
allows you to store a six byte number in a single byte. I used this technique in a program
where I had a numerical array with almost 3000 elements. I saved over 15K bytes using this
technique.

32 Chapter 2

13. Use self-deleting code -I'll show you later in this book how you can write a program in
BASIC that can rewrite itself as it is running!

14. Replace the SETCOLOR statement with the proper POKE commands - this will
save you 8 bytes each time you use it.

15. Initialize string variables with assignment statements - unlike technique (5), it takes
less space for a string assignment statement than it does for the equivalent READ and
CHR$ statements.

16. Chain your programs - using this technique allows you to run programs that would
otherwise be too large for your computer. I'll show you some detailed examples in
Chapter 5.

ATARI BASIC Faster & Better 33

Using Machine Language in BASIC

Nothing beats the BASIC language for a quick and simple way to program your computer
applications. BASIC lets us talk to the computer with commands and mathematical
formulas that are quite consistent with the way we think and communicate. However, when
super-fast execution speed and truly economical memory usage is required, we must speak
to the computer in its native tongue, 6502 machine language. Once we have relieved the
computer of the burden of translating from BASIC to 6502 commands, its true speed and
power can take over.

It is usually not necessary to write a complete program in 6502 machine language. This is
fortunate since writing machine language is a tedious, time consuming job. There are
applications (such as arcade games) where the entire program has to be written in machine
language, but for most home applications the memory savings is not needed, and the
enhanced speed can be achieved by using machine language subroutines. I have found that
the most useful approach is to set up a library of short machine language subroutines that
you can call from BASIC when and where you need them. The USR command is a BASIC
command that calls a machine language subroutine from a BASIC program. By making
proper use of this technique, you can have the speed of 6502 machine language at your
fingertips and still write your programs in BASIC.

In this book, we will discuss many special purpose machine language subroutines and
illustrate how you can use them in your programs without ever having to learn 6502 machine
language. Each subroutine will be listed in assembly code as well as the USR format. When
you are ready to take the plunge into programming your own 6502 routines (if you haven't
already), the listings will provide you with a good starting place. You can use an assembler/
editor program to combine or modify any of the routines in this book.

Most of the USR routines in this book have one very important characteristic - they are
relocatable, so you can load and execute them at any location in available RAM. In fact, in
some cases, we will be using a technique where a USR routine might be relocated several
times during the execution of the BASIC program.

You may have seen, or purchased, some of the excellent machine language programs for
high speed sorting or other purposes, that are available for the ATARI. Although most of
them perform their functions very well, there are four fundamental problems with many of
these products:

34 Chapter 3

1. They are designed to load at a specific location in memory. If you have a printer
driver or some other USR routine that also must load at the same address, you are
out of luck. My biggest gripe is with those programs that overwrite the disk
operating system.

2. The programs are usually "protected" so you can't examine them, and the
source listings are not provided with them. Without this kind of information you
cannot see how they work, so it is very difficult to learn from them or modify
them.

3. The programs often contain many routines in a single load package. You must
load all of the routines you don't need in order to get the one that you need. This
wastes valuable memory space.

4. If you write a program that uses a routine from one of these commercial
packages, you will have to pay royalties if you decide to sell your program.

The USR routines in this book avoid those four problems. This way you get the maximum
in flexibility and performance. You also don't need to worry about paying royalties as long as
you don't resell these routines as a library or copy the pages out of this book to serve as your
documentation.

Writing USR Routines with an Assembler/Editor

Let's look at how you would go about creating a 6502 machine language subroutine. I won't
be too specific because your assembler/editor manual will give you detailed instructions,
and the exact commands will depend upon the particular one that you are using. All
examples in this book will be shown in the Atari Assembler/Editor Cartridge format. If you
don't have an assembler/editor program, then just follow along - you don't need one to use
the routines in this book!

For a sample program, we will write a short subroutine that will "instantly" fill the entire
video screen with any character that you specify.

With an assembler/editor we can type in the following:

Figure 3.1 - Screen Fill Assembly Listing

1000 ;SFILL - USR ROUTINE TO FILL VIDEO SCREEN WITH ANY CHARACTER
1010
1020 *= $600 ;SET ORIGIN TO PAGE SIX
1030
1040 POINT $CC ;POINTER LOCATION ON PAGE ZERO
1050 SCREEN $58 ;HOLDS ADDRESS OF SCREEN MEMORY
1060
1070 PLA ;GRAB NUMBER OF ARGUMENTS
1080 CMP #$1 ;IS THERE ONLY ONE ARGUMENT?
1090 DEAD BNE DEAD ;NO? THEN KILL THE COMPUTER
1100 PLA ;GRAB MSB OF ARGUMENT
1110 PLA ;GRAB LSB OF ARGUMENT
1120 TAX ;STORE LSB IN X REGISTER
1130
1140 LOA SCREEN ;SETUP PAGE ZERO .POINTER
1150 STA POINT

ATARI BASIC Faster & Better 35

1160 LDA SCREEN+1
11 70 STA POINT+1
1180
1190 TXA ;RETRIEVE THE ARGUMENT
1200 LDY #0 ;SET OFFSET TO ZERO
1210 LOOP STA (POINT),Y ;WRITE CHARACT ER TO SCREEN
1220 INC POINT ;POINT TO NEXT SPOT ON SCREEN
1230 BNE LOOP ;IF POINT<=FF THEN GO BACK
1240 INC POINT+1 ;INC MSB
1250 LDX POINT+1 ;ARE WE FINISHED?
1260 CPX #$A0
1270 BNE LOOP ;NO? THEN GO BACK
1280 RTS ;RETURN TO BASIC
1290 . END

1. Line 1020 specifies an origin for the USR routine. We have selected $600, which is on
page six. There are 256 bytes starting at $600 that are almost always available for USR
routines since BASIC normally does not use that area of memory. This location is great for
machine language subroutines. You might think that 256 bytes is small, but a 256 byte
machine language subroutine is really a very large subroutine! As long as you design the
routine to be relocatable (i.e., no JSR's or JMP's within the routine), then the origin you
select need not be the address you'll be using when you execute the routine . So if page six
gets crowded, you can always move the subroutines.

For assembly and test purposes, I usually use page six. The tough decision as to exactly
where I want all of my USR routines to reside I can leave to a later date. No matter where I put
such a routine, I generally find out later that I'll need to move it again, so I end up string
packing most of my routines.

Most assembler listings in this book will show an origin command specifying $600 as the
starting point of the program or routine. You can assemble them to any other origin that is
compatible with your needs.

2.Lines 1040 through 1280 provide the actual program logic for the routine. One of the
peculiar things about 6502 machine language is that certain commands are only possible
using page zero memory locations. Line 1040 sets up a pointer on page zero, and line 1050
identifies a particular address on page zero that holds the starting address of the screen
memory. When a USR command is used, the number of arguments being passed to the
machine language routine is given by the first number on the stack. Line 1070 pulls this
number off of the stack, and the next two lines make sure that only one argument is in the
USR call. If you have done everything correctly so far, the next two bytes on the stack should
be the MSB and LSB of the character you want printed on the screen. Since all ATASCII
characters are (by definition) only one byte long, the MSB can simply be discarded.

The LSB is temporarily stored in the X register so we can recall it later. One side note at
this point is that these numbers must be pulled from the stack to bring the BASIC return
address to the top of the stack. The next few lines set up a counter on page zero with the
initial value of the counter being the address ofthe start of screen memory. We then retrieve
the character value to write to the screen and go through a little loop that writes this
character to each location on the screen. The RTS command tells the computer to return
control to the BASIC program at the address on the top of the stack.

36 Chapter 3

3. Line 1290 satisfies the assembler requirement that there be an END statement.

Now that we have typed the routine in, we can assemble it to disk or tape as a machine
language object file.

We can also save the source code that we just typed in to another file on disk or cassette. I
always save my source code in case I want to modify the routine later. That way I won't have
to type all of the code in again. Here is what the assembled listing of the screen fill USR
routine will look like if you dump it to a printer:

Figure 3.2 - Listing of A ssembLed S creen FiLL Routine

1000 ;SFILL - USR ROUTINE TO FILL VIDEO SCREEN WITH ANY CHARACTER
1010

0000 1020 *= $600 ;SET ORIGIN TO PAGE SIX
1030

00CC 1040 POINT $CC ;POINTER LOCATION ON PAGE ZERO
0058 1050 SCREEN $58 ;HOLDS ADDRESS OF SCREEN MEMORY

1060
0600 68 1070 PLA ;GRAB NUMBER OF ARGUMENTS
0601 C901 1080 CMP #$1 ;IS THERE ONLY ONE ARGUMENT?
0603 D0FE 1090 DEAD BNE DEAD ;NO? THEN KILL THE COMPUTER
0605 68 1100 PLA ;GRAB MSB OF ARGUMENT
0606 68 1110 PLA ;GRAB LSB OF ARGUMENT
0607 AA 1120 TAX ;STORE LSB IN X REGISTER

1130
0608 A558 1140 LOA SCREEN ;SETUP PAGE ZERO POINTER
060A 85CC 1150 STA POINT
060C A559 1160 LOA SCREEN+1
060E 85CD 1170 STA POINT+1

1180
0610 8A 1190 TXA ;RETRIEVE THE ARGUMENT
0611 A000 1200 LOY #0 ;SET OFFSET TO ZERO
0613 91CC 1210 LOOP STA (POINT),Y ;WRITE CHARACTER TO SCREEN
0615 E6CC 1220 INC POINT ;POINT TO NEXT SPOT ON SCREEN
0617 D0FA 1230 BNE LOOP ;IF POINT<=FF THEN GO BACK
0619 E6CD 1240 INC POINT+1 ;INC MSB
061B A6CD 1250 LOX POINT+1 ;ARE WE FINISHED?
0610 E0A0 1260 CPX #$A0
061F D0F2 1270 BNE LOOP ;NO? THEN GO BACK
0621 60 1280 RTS ;RETURN TO BASIC
0622 1290 .END

As a matter of comparison, try the following BASIC routine that does the same thing as the
USR routine:

100 FOR X=40000 TO 40959 :POKE X,10:NEXT X
110 GOTO 110

This BASIC routine takes almost seven seconds to fill the screen with a character as
compared to the almost instantaneous action of the machine language subroutine! In

ATARI BASIC Faster & Better 37

addition, the BASIC routine uses 61 bytes of memory as compared to the 34 bytes used by
the machine language routine.

How to Load and Execute USR Routines from Disk

Let's suppose that we have assembled the screen fill routine to a disk file named
"SFILL.OBJ". We could also assemble the routine to memory and execute it from the
assembler/editor's DEBUG facility , but the true test is whether or not you can load the
routine while BASIC is in the computer. If you boot your computer with BASIC and ATARI
DOS II, the computer will respond with READY. Type 'DOS' and hit the RETURN. This
will put you in DOS, and the DOS menu will be displayed on the screen. Type "L" followed
by a RETURN, and DOS will ask "LOAD FROM WHAT FILE?" You should type in
"SFILL.OBJ". DOS will access the disk and load the objectfile for you. Since no run address
was specified, DOS will simply redisplay the menu when the file is loaded. Now we need to
get back to BASIC. From the DOS menu type a "B" followed by a RETURN, and you will be
returned to BASIC.

Once you have gone back to BASIC, you can LOAD a BASIC program or write one to call
up the machine language subroutine. The following short BASIC program is all you need to
tryout this USR routine:

2~~ PRINT CHR$(125)
21~ PRINT "ENTER CHARACTER ";
22~ OPEN #2,4,~,"K:":

TRAP 22~
23~ GET #2,KEY
24~ CLOSE #2
25~ X=USR(1536,KEY-32)
26~ GOTO 26~

To execute the screen fill routine, enter this program into memory and RUN the program.
The screen will "instantaneously" fill up with whatever character you specify.

The general form of the USR function, as given in your user's manual is:

X=USR(ADDRESS,aexpl,aexp2,aexp3,aexp4)

You can pass up to 126 arguments to the machine language routine by simply adding more
arithmetic expressions to the USR call. The ADDRESS, which technically is also an
arithmetic expression, is the memory location of the machine language subroutine. The
address and the arguments are normal base ten (i.e., decimal) numbers . The arguments are
always passed to the machine language routine as two byte numbers and are stored on the
stack with the MSB on top ofthe LSB. A program can have any number of USR calls in it and
you won't get into trouble as long as the proper routine is stored at the ADDRESS used in
each call. I can't really teach you all about USR's since that is beyond the scope of this book.
If you are really interested, I suggest that you pick up one of the books I mentioned back in
the introduction to this book.

POKEing USR Routines into Memory

Each USR routine in this book is shown in POKE format. In other words, you will be given
a list of the numbers that you will need if you want to PO KE the routine into memory. This
way you don't need an assembler/editor program, and you don't need to understand 6502
machine language. The screen fill USR routine we have been discussing can be loaded by
POKEing the following 34 numbers into any 34 contiguous bytes of RAM:

38 Chapter 3

104 201 1 208 254 104 104 170
165 88 133 204 165 89 133 205
138 160 0 145 204 230 204 208
242 96

Try these steps to see how it works:

1. Boot your computer with BASIC.

2. Type in the following program:

100 REM SFILL .DEM-SCREEN FILL FROM BASIC
110 DATA 104,201,1,208,254,104,104,170
120 DATA 165,88,133,204,165,89,133,205
130 DATA 138,160,0,145,204,230,204,208
140 DATA 250,230,205,166,205,224,160,208
150 DATA 242,96
160 MLSTART=1536 :MLEND=1569
170 FOR X=MLSTART TO MLEND
180 READ Y:POKE X,Y:NEXT X
200 PRINT CHR$(125) :PRINT
210 PRINT"SFILL .DEM - SCREEN FILL FROM BASIC"
220 PRINT:PRINT:PRINT"ENTER CHARACTER : ".
230 OPEN #2,4.0," K: " : TRAP 230
240 GET #2,KEY:CLOSE #2
250 X=USR(1536,KEY-32)
260 GOTO 260

3. RUN it. The program will "load" the machine language subroutine and ask you to enter a
character. When you enter the character, the screen will "instantly" fill with that
character.

The DATA statements in lines 120 through 160 specify a list of numbers which
correspond to the 34 bytes in the USR routine. Lines 170 and 180 put the values into the first
34 bytes of page six memory, starting at $600 (1536 decimal).

Since the screen fill routine is relocatable , you can replace the addresses in line 110 with
another set of addresses, and it will run the same. You might try using another location. Just
be sure that the location is safe and that the value of MLEND is 33 more than
MLSTART.

Are you wondering where I got the numbers to be POKEd? The assembly listing gave us
the hexadecimal codes for the USR routine. The command STA POINT in line 1150 generated
the machine language instruction 85CC. Converting this to decimal:

85 is 133 decimal
CC is 204 decimal.

The rest of the program was translated in a similar fashion. We could have also gotten the
decimal numbers by PEEKing the appropriate memory locations after loading the object
program from disk or cassette. Then from BASIC we could have printed the PEEK values
from the first byte to the last byte of the routine by issuing the command:

FOR X=1536 TO 1569 : PRINT PEEK(X) , : NEXT X

AT ARI BASIC Faster & Better 39

I find even this a pain so I wrote a program that will read an object file from a disk and
create a BASIC subroutine that I can later add to any other BASIC program. The program
listed below is that program. I call it CONVERT:

Figure 3.3 - CONVERT Program

100 REM CONVERT 1.1- A PROGRAM THAT
CONVERTS A ML OBJ FILE INTO
BASIC DATA STATEMENTS

110 DIM FILE$(16),RESPONSE$(16) :
FIRST=30000

120 FILE$="D1 :":
PRINT CHR$(l25) :
PRINT

130 PRINT "CONVERT .BAS ":
PRINT :PRINT :

CAUTION! USE ONLY OBJECT FILES PRINT "
PRINT :PRINT

140 PRINT "ENTER NAME OF FILE ";
150 FILE$(4,14)=" ".

TRAP 140 :
CLOSE #1

160 INPUT RESPONSE$
170 FILE$(4,14)=RESPONSE$
180 OPEN #I,4,0,FILE$
190 TRAP 380
200 GET #I,X :

GET#I,X :
GET #I,X :
GET #l,Y

210 MLSTART=X+256*Y
220 GET #I,X :

GET #1, Y
230 MLEND=X+256*Y :

SIZE=INT((MLEND-MLSTART) / 8+1) :
LAST=FIRST+2*SIZE

240 PRINT CHR$(125):
POSITION 2,4

250 PRINT LAST+10;" MLSTART = ";MLSTART
260 PRINT LAST +20;" MLEND =" ; MLEND
270 PRINT :

PRINT "CONT" :
POSITION 2,0

280 POKE 842,13:
STOP

290 POKE 842,12
300 FOR LINE=FIRST TO LAST STEP 2
310 PRINT CHR$(125):

POSITION 2,4
320 PRINT LINE; II DATA ";
330 FOR 1=1 TO 7:

" .

40 Chapter 3

GET #l,X:
PRINT X;",";:
NEXT I

340 GET #l ,X:
PRINT X:
PRINT :
PRINT "CONT" :
POSITION 2,0

350 POKE 842,13 :
STOP

360 POKE 842,12
370 NEXT LINE
380 PRINT :

PRINT "CONT" :
POSITION 2,0 :
POKE 842, 13 :
STOP

390 POKE 842,12
400 CLOSE #1 :

PRINT CHR$(l25):
POSITION 2,4

410 PRINT LAST+30;" FOR X=MLSTART TO MLEND"
420 PRINT LAST+40;" READ V:

POKE X,V :
NEXT X" :
PRINT :
PRINT "CONT" :
POSITION 2,0

430 POKE 842,13:
STOP

440 POKE 842,12
450 PRINT CHR$(125):

PRINT "PRESS l8~ij!ll'I!I!III!1!' TO LIST TO CASSETTE"
460 PRINT "PRESS mmI TO LIST TO DISK" :

PRINT "(FILENAME IS ML.BAS) ";
470 IF PEEK(53279)=6 THEN 500
480 IF PEEK(53279)=5 THEN 520
490 GOTO 470
500 LIST "0:

ML.BAS" ,FIRST,FIRST+40+2*SIZE
510 GOTO 530
520 LIST "C :",FIRST,FIRST+40+2*SIZE
530 END

Object File into BASIC Data Statements

CONVERT will read any DOS compatible binary load (i.e., object) file from a disk, create
a BASIC subroutine starting at line 30000 and then save the routine to either cassette or disk
for later recall. The resulting subroutine is in the LIST format, so it can be added to the end
of any of your other BASIC programs by typing ENTER"ML.BAS". You may then SAVE

ATARI BASIC Faster & Better 41

your BASIC program with the built-in machine language subroutine. The full power of this
merging capability will be discussed in more detail in Chapter Five. We will also discuss
some other interesting techniques for embedding machine language routines later in this
chapter.

Saving USR Routines To Disk

Each machine language routine in this book is shown in POKE format. That is, you will be
given a list of numbers that you can POKE, starting at any safe address in memory. Once you
have PO KE d the numbers indicated for the USR routine, you can record that routine to disk,
using any valid disk file name. Suppose that you want to save the screen fill USR routine that
we have been using for our example:

1. First boot your computer up with BASIC and an ATARI DOS II disk.

2. Write or load a program that will POKE the required values at the proper addresses in
memory. Here is a program that does the job for the SFILL routine:

19000 REM SFILL .LST - SCREEN FILL
19001 DATA 104,201,1,208,254,104,104,170
19002 DATA 165,88,133,204,165,89,133,205
19003 DATA 138,160,0,145,204,230,204,208
19004 DATA 250,230,205,166,205,224,160,208
19005 DATA 242,96
19006 MLSTART=1536:

MLEND=1569
19007 FOR X=MLSTART TO MLEND
19008 READ V:

POKE X,V:
NEXT X

19009 END

3. Run the program. This reads the data statements and POKEs the numbers into
memory.

4. Now go to DOS. To do so, type 'DOS' followed by a RETURN.

5. When in DOS you can use the binary save command to save the machine language
subroutine to disk. To do this, enter a K in response to the DOS menu. DOS will respond with
SAVE-GIVE FILE, START,END,INIT, RUN. You can then save the screen fill routine by
entering the following command:

SFILL .OBJ,600,622

Remember to use hexadecimal addresses with this command. Ignore the INIT and RUN
parameters at this time.

6. From now on, whenever you know that you will be calling the SFILL routine in a BASIC
program, you can either perform a binary load (the DOS L command) as described before, or
you can use CONVERT to create a BASIC subroutine. In the next section, I'll show you an
even better technique - string packing.

If you wish, you can rename SFILL.OBJ to any other valid file name. To do this, you will
use the rename command on the DOS menu (the E command). If you do rename it, for
example to FILLSCRN, and it no longer has the OBJ extension, your command to load it
from the DOS menu will be L followed by entering FILLSCRN.

42 Chapter 3

If you are using one of the other disk operating systems that is available for the ATARI,
you will have to refer to your DOS manual to translate what we have just discussed. Although
I am aware that a number of such programs are on the market, I have found that Atari's DOS
II meets my needs. I bought two of these other DOS's but I seldom find a need to use
them.

Loading USR Routines Into Strings

We can load any relocatable USR routine into a string! There are some tremendous
advantages to this technique. First, if the code is relocatable, we no longer have to worry
about where the routine is stored. The starting address of the routine can easily be found by
using the ADR command in BASIC. Second, we can store the string packed routine in an
ordinary BASIC disk file, which may contain a whole library of routines, for faster and more
convenient loading from BASIC.

The screen fill routine can be loaded into the string SFILL$ with the following program
commands:

100 DIM SFILL$(34)
110 SFILL$(1)=CHR$(104):SFILL$(2)=CHR$(201)
120 SFILL$(3)=CHR$(l) :SFILL$(4)=CHR$(208) etc .

Note that ATARI BASIC does not support a command like

SFILL$ = CHR$(104)+CHR$(201)+CHR$(1)+CHR$(208) etc .

This is a tedious and time consuming method, but it does work. I am essentially lazy so I
modified the program CONVERT to do all of this work for me. I call the new program
DATAPAK.

Figure 3.4 - DATAPAK - A Program to Pack Machine Code into a String Array

100 REM DATAPAK.BAS - A STRING PACKER
110 GOTO 260
120 REM ** KEYBOARD ENTRY ROUTINE **
130 OPEN #3,4,0,"K:"
140 GET #3,RES :

IF RES<68 OR RES>155 THEN 140
150 CLOSE #3:

RETURN
160 REM ** TIME DELAYS **
170 FOR Z=1 TO 500:

NEXT Z:
Z=0:
RETURN

180 FOR Z=1 TO 25 :
NEXT Z:
Z=0:
RETURN

190 REM ** INITIALIZE DATA ARRAY **
200 PAC$(l)="" :

PAC$(NP)="" :
PAC$(2)=PAC$:
RETURN

210 REM ** AUTO RETURN ROUTINE **
220 POSITION 2,0
230 POKE 842,13 :

STOP
240 POKE 842,12 :

RETURN
250 REM ** MAIN PROGRAM **
260 DELAY20=180:

DELAY=170:
KEY=130:
ARM=202 :
TITLE=210 :
Z=0 :ZZ=0

270 PRINT CHR$(125):
GRAPHICS 2+16 :
SETCOLOR 4,8,0

280 POSITION 16,2 :
PRINT #6, "datapak"

290 POSITION 14,8:
PRINT #6," (C) 1982"

300 POSITION 12,10 :
vervan software PRINT #6,"

GOSUB DELAY:
GOSUB DELAY

310 GRAPHICS 0:
POKE 752,1 :
GOTO 1030

320 TRAP 320 :
GOSUB 1420 :
PRINT CHR$(253):
POSITION 2,12 :

" .

PRINT "ENTER NUMBER OF DATA ELEMENTS ";
330 INPUT N:

IF N<1 THEN 320
340 IF FRE(X»2 .5*N THEN 360
350 GOSUB 1420 :

POSITION 2,12:
PRINT "INSUFFICIENT MEMORY FOR THAT NUMBER" :
GOSUB DELAY:
GOTO 320

360 GOSUB 1420 :
PRINT CHR$(253) :
POSITION 2,12 :
PRINT "IS ";N;" CORRECT ?"; :
GOSUB KEY

370 IF RES=121 OR RES=89 OR RES=155 THEN 390
380 N=0 :

RES=0:
GOTO 320

390 LL=80:
X=1 :
IF N/LL=INT(N/ LL) THEN X=0

ATARI BASIC Faster & Better 43

44 Chapter 3

400 LNUM=INT(N/ LL)+X:
NP=LL*LNUM:
NL=N

410 DIM PAC$(NP),FIX34(20),FIX9B(20):
FIX34 (1) =0:
FIX9B(1)=0

420 GOSUB 1420 :
POSITION 2,12 :
PRINT "RAW DATA MUST BE INTEGER (0-255)"

430 PRINT :
PRINT "DATA MUST BEGIN AT LINE # >2000":
PRINT

440 PRINT "FOR SPEEDIER PROCESSING" :
PRINT "THE SCREEN WILL BLACKOUT DURING RUN."

450 TRAP 450:
GOSUB DELAY :
GOSUB DELAY :
GOSUB 1420:
POSITION 2,12 :
PRINT "ENTER FIRST LINE # FOR PACKED DATA"

460 POSITION 2,14 :
PRINT "MUST BE =>2000 AND <=32000 ";

470 INPUT FIRST:
IF FIRST<2000 OR FIRST>32000 THEN 450

480 POSITION 2,16 :
PRINT "ENTER LINE # INCREMENT =>10 ";

490 INPUT DELTA :
IF DELTA<10 OR DELTA>1000 THEN 480

500 IF DELTA*LNUM+1+FIRST>32500
THEN PRINT "TRY A SMALLER INCREMENT OR FIRST#" :
GOSUB DELAY :
GOTO 450

510 REM ** TURN OFF VIDEO DMA **
520 POKE 559.0 :

GOSUB 200 :
TRAP 530 :
GOTO 570

530 POKE 559,34 :
PRINT CHR$ (125) :
POSITION 2,12

540 IF PEEK(195)=6 THEN PRINT "*** OUT OF DATA ERROR ***":
PRINT "THERE ARE ONLY ";X-1;" DATA ."

550 IF PEEK(195)=8 THEN PRINT "*** BAD DATA AT "; X;" ***"
560 GOTO 1010
570 IF MERGE THEN FOR X=1 TO N:

READ DAT
580 IF NOT MERGE THEN FOR X=1 TO N:

GET #2, DAT
590 IF DAT=INT(DAT) THEN 610

6~~ POKE 559,34:
PRINT CHR$ (125) :
POSITION 2,12 :
PRINT ""** NON-INTEGER DATA AT ";X;" ***":
GO TO 1~1~

61~ IF DAT>=~ AND DAT<=255 THEN 64~
62~ PRINT CHR$(125):

POSITION 2,12 :
PRINT "*** DATA OUT OF RANGE AT ";X;" ***"

63~ POKE 559,34 :
GO TO 1~1~

64~ IF DAT=34 THEN DAT=32 :
FIX34(Z)=X :
Z=Z+l

65~ IF DAT=155 THEN DAT=32 :
FIX9B(ZZ)=X :
ZZ=ZZ+l

66~ PAC$(X,X)=CHR$(DAT) :
NEXT X:
PRINT CHR$ (125) :
POSITION 2,12:
PRINT "RAW DATA LOADED .. . "

67~ REM ** TURN ON VIDEO DMA **
68~ POKE 559,34:

PRINT CHR$(253) :
GOSUB DELAY

69~ REM ** WRITE NEW LINES OF CODE **
7~~ FOR LOOP=l TO LNUM :

X=(LOOP-1)*LL+1 :
Y=LOOP*LL:
IF NL<LL AND NL>~ THEN Y=X-1+NL

7l~ NL=NL-LL :
PRINT CHR$ (125) :
POSITION 2,12 :

ATARI BASIC Faster & Better 45

PRINT FIRST+DELTA*(LOOP-l);" DAT$(LEN(DAT$)+l)="; CHR$(34);
72~ FOR Z=X TO Y:

PRINT CHR$(27);PAC$(Z,Z); :
NEXT Z:
PRINT CHR$(34)

73~ PRINT :
PRINT "CONT":
GOSUB ARM:
NEXT LOOP

74~ REM INSTALL FIX FOR 34 AND 155
75~ IF FIX34(1)=~ THEN 8~~
76~ FOR N=l TO 25 :

PRINT CHR$(125)
77~ IF FIX34(N)=~ THEN POP

GOTO 8~~
78~ LNUM=LNUM+1:

PRINT FIRST+DELTA*LNUM;"DAT$(";FIX34(N);",";FIX34(N);")=CHR$(34)"

46 Chapter 3

790 PRINT :
PRINT "CONT":
GOSUB ARM :
NEXT N

800 IF FIX9B(1)=0 THEN 850
810 FOR N=1 TO 25 :

PRINT CHR$ (125)
820 IF FIX9B(N)=0 THEN POP :

GO TO 850
830 LNUM=LNUM+ 1 :

PRINT FIRST +DELTA*LNUM ; "DAT$ (" ; FIX9B (N) ; " , " ; FIX9B (N) ; ") =CHR$ (155)"
840 PRINT :

PRINT "CONT":
GOSUB ARM :
NEXT N

850 FINAL=FIRST+DELTA*LNUM
860 PRINT CHR$(125) :

POSITION 2,12 :
PRINT "PACKING COMPLETE.":
PRINT CHR$(253) :
GOSUB DELAY

870 REM ** OUTPUT ROUTINE **
880 GOSUB 1420 :

POSITION 2,12 :
PRINT "PRESS TO WRITE STRING TO TAPE"

890 PRINT "PRESS TO WRITE STRING TO DISK":
PRINT" (THE DISK FILE WILL BE PACKED.DAT)"

900 IF PEEK(53279)=5 THEN 990
910 IF PEEK(53279)=6 THEN 930
920 GOTO 900
930 PRINT :

PRINT :
PRINT "PUT DISK INTO DRIVE#1 AND PRESS 19111@1" :
GOSUB KEY

940 TRAP 970
950 LIST "D:

PACKED.DAT",FIRST,FINAL
960 GOTO 1010
970 IF PEEK(195)=139 THEN PRINT CHR$(125):

PRINT CHR$(253):
POSITION 2,12:
PRINT " TURN ON YOUR DISK DRIVE

980 GOSUB DELAY:
GOTO 930

990 PRINT :
PRINT :
PRINT "PREPARE BLANK TAPE AND PRESS 1Dilmm"

1000 LIST "C:
",FIRST,FINAL

1010 POKE 752,0:
END

1020 REM ** DATA INPUT ROUTINE **

1030 GOSUB 1420 :
POSITION 2,12:
POKE 752,1:
PRINT "PRESS DliIImI FOR I!1m/ TAPE INPUT" :
TAPE=0

1040 PRINT "PRESS §DDi FOR Blii/ MERGE FILE":
MERGE=0 :
PRINT "PRESS DiD TO CONTINUE"

1050 IF PEEK(53279»5 THEN 1120
1060 IF PEEK (53279)=3 THEN TAPE= NOT TAPE:

GOSUB DELAY20
1070 IF PEEK(53279)=5 THEN MERGE= NOT MERGE :

GOSUB DELAY20
1080 IF TAPE THEN POSITION 19,12 :

PRINT "DISK/IDI!"
1090 IF NOT TAPE THEN POSITION 19,12 :

PRINT "IiDItTAPE"
1100 IF MERGE THEN POSITION 19,13:

PRINT "OBJECT/mmBi"
1110 IF NOT MERGE THEN POSITION 19,13:

PRINT "rmDlii/ MERGE"
1120 IF PEEK(53279)=6 THEN 1140
1130 GO TO 1050
1140 IF NOT MERGE THEN 1260
1150 IF NOT TAPE THEN 1190
1160 PRINT :

PRINT :
PRINT "PUT THE TAPE IN THE RECORDER":
PRINT "PRESS BmD TO BEGIN INPUT":
GOSUB DELAY20

1170 IF PEEK(53279)<>6 THEN 1170
1180 POKE 764,12 :

ENTER "C :":
POKE 752,0:
GO TO 320

1190 PRINT :
PRINT :
PRINT" PUT THE DISK IN DRIVE #1"

ATARI BASIC Faster & Better 47

1200 PRINT "THE FILE MAY HAVE ANY LEGAL NAME,BUT":
PRINT "THE EXTENDER MUST BE .LST"

1210 PRINT "ONLY THE FIRST *. LST FILE ON" :
PRINT "THE DISK WILL BE LOADED"

1220 PRINT :
PRINT "PRESS mMD TO BEGIN INPUT" :
GOSUB DELAY20

1230 IF PEEK(53279)<>6 THEN 1220
1240 POKE 764,12 :

ENTER "D:*.LST"
1250 GOTO 320
1260 IF TAPE THEN 1400
1270 DIM FILE$(16),RESPONSE$(16):

FIRST=30000

48 Chapter 3

1280 FILE$="D1:":
GOSUB 1420 :
PRINT

1290 PRINT :
PRINT :
PRINT "
PRINT :
PRINT

UTION! USE ONLY OBJECT FI E

1300 PRINT "ENTER NAME OF FILE ";
1310 FILE$(4,14)=" ".

TRAP 1300:
CLOSE #2

1320 INPUT RESPONSE$
1330 FILE$(4,14)=RESPONSE$
1340 OPEN #2,4,0,FILE$
1350 GET #2,X:

GET #2,X :
GET #2,X :
GET #2,Y

1360 MLSTART=X+256*Y
1370 GET #2,X:

GET #2,Y
1380 MLEND=X+256*Y:

N=MLEND-MLSTART+1
1390 GOTO 390
1400 OPEN #2,4.0,"C :"
1410 GOTO 1350
1420 PRINT CHR$(125):

POSITION 14,2:
PRINT "1.14'!1j4W' :
PRINT :

II.

PRINT "STRING PACK MACHINE LANGUAGE PROGRAMS"
1430 RETURN
1440 REM .* START DATA AFTER THIS **

DATAPAK, like CONVERT, will read a machine language objectfile on disk and create a
BASIC subroutine (in this case a simple string assignment) and store it on disk or cassette. In
addition, you may load the data by using a LISTed file that can be merged to the end of
DATAPAK. This way it is possible to use the DATA statements created by CONVERT as
inputs to DATAPAK.

You can follow the technique outlined earlier to get the POKE codes onto disk as an object
file and then use DATAPAK on the file to generate the packed strings.

Using a string packed machine language routine is really quite easy. All you need to do is
modify the USR call to reference the starting address of the string. For example, the USR
call to use SFILL was

X=USR(1536,KEY-32)

ATARI BASIC Faster & Better 49

You can change this call to refer to a string, SFILL$, that contains the machine code as
follows

X=USR(ADR(SFILL$) ,KEY-32)

It is possible to use strings for routines that are longer than 255 bytes by concatenating
smaller strings into one large string. Be sure to DIMension the large string to the extended
size that you want to use. This is really an advanced technique that is going beyond the scope
of the current discussion, so I will leave exploring that topic up to you. I will give you a hint on
where to start looking - DATAPAK uses this technique.

You will find that the string packing techniques we have discussed in this section provide
one of the fastest, most flexible, and most memory efficient methods for handling USR
routines. It really would not be useful to show you every routine in this book in the string
packed format, so I won't. However, I do recommend that you take the POKE values, load
them into memory, save them to disk as an object file, and then use DATAPAK on the file to
create nice, neat, string packed arrays.

50 Chapter 4

Magic Memory Techniques

General Methods

"Any given program will expand to fill all available memory."

If you have been programming the ATARI home computer for any length of time, you will
be able to attest to the truth of that statement. It always seems that, no matter how much
memory or disk space your computer has, it is never enough. This chapter will give you the
techniques that you will need to make the most of the memory space you have.

We have all seen entertainers who dazzle their audiences by feats of "memory," such as
memorizing everyone's name or the contents of each page in a magazine. These "super"
memory powers are really based upon simple techniques that anyone can learn. This section
will give you some simple techniques that can, likewise, give your computer some amazing
memory powers. You will find that when you know how to control your computer's memory
and move data quickly, your programs can reach a new generation of performance!

How Much Memory Do You Really Have?

The 6502 microprocessor is an "8-bit" device that uses two 8-bit bytes to define an
address. Since each bit of each byte can be either a zero or a one (Le., two states), the 6502
computer chip can uniquely identify (address) 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2 16-bit
addresses. That list of two's is equal to 65536. This number is usually referred to as 64K.
Your computer is therefore a 64K computer regardless of how much "memory" you have.
Your typical "48K" computer really is a 64K computer that has 48K of available memory
and 16K of dedicated memory. The 48K Atari actually has only 3 7K of memory for BASIC
programmers.

Dedicated memory usually consists of a ROM based (Le., you can read it but not write to it)
operating system. A 32K computer is the same 64K machine with only 32K (32768 bytes) of
available memory. The missing 16K can still be "addressed," but since there isn't any RAM
or ROM at any of those addresses, you can't use this addressing capability for anything. For
example, you could write a BASIC program that resided in 32K, but PEEKed and POKEd
data in the missing 16K. This program could be written on a 32K computer, but obviously
you would have to RUN it on a 48K computer. I am not recommending that you try this, since
debugging would be almost impossible. The point is that you should try to think of memory
size as being under your control.

ATARI BASIC Faster & Better 51

Figure 4.1 - Table of Available Memory Limits without DOS

Atari Top Byte Top Byte Bottom Byte Bottom Byte
Catalog Hexadecimal Decimal Hexdecimal Decimal

16K 3FFF 16383 700 1792
32K 7FFF 32767 700 1792
48K BFFF 49151 700 1792

Note: Cartridge A uses A000-BFFF (40960-49151)
Cartridge Buses 8000-9FFF (32768-40959)

Figure 4.1 gives you a table of available memory addresses for different size Atari 800
computers. The cartridges will use the addresses shown regardless of how much "memory"
you have.

When you put a cartridge in your computer, the computer switches the connection of those
addresses to point to the cartridge. If you normally have RAM at those addresses, then the
RAM is disabled. The bottom 1535 bytes of your computer's RAM is reserved and used by
the operating system and/or BASIC.

There are some small areas of memory below 1792 that you can use. You have already
heard me refer to page six in the last chapter. A "page" is defined to be 256 bytes. The pages
in your computer's memory are numbered by using the first part of the lower address
boundary. Thus page zero starts at hexadecimal (hex) address 0000 and page six starts at hex
address 0600. Available memory starts at page seven. Page six is reserved for your private
use. The operating system, BASIC, DOS and the assembler/ editor will normally not use this
page of memory. This is why I usually locate my machine language subroutines on page six.
There are only a handful of addresses available on page zero for you to use. Later in this
chapter I will demonstrate a way to use the page zero addresses from BASIC. The addresses
you can use are shown in Figure 4.2.

Figure 4.2 - Available Memory on Page ZERO

Hex Decimal
Address Address Restrictions

BO . .. CA 176-202 Not from BASIC
CB ... Dl 203-209 None
D4 ... D5 212-213 Used to return an argument

to BASIC from a USR call

52 Chapter 4

PEEKing a Two Byte Address

As you know, when you PEEK any location in memory, the result is a number from 0 to
255. Likewise, the second argument of a POKE command must be a number from 0 to
255.

Often, it is necessary to work with a decimal address that is located somewhere in memory.
A memory address can be defined by two hex numbers MM and LL. Two bytes are needed
because the largest possible eight bit binary number is 11111111, which is FF in hex and 255
in decimal. Any number larger than 255 is defined as MMLL and is stored in two consecutive
bytes of memory as LLMM. LL is commonly called the least significant byte (or LSB). MM is
called the most significant byte (or MSB). A decimal address can be calculated from LL and
MM by the following equation:

ADDRESS = 256*PEEK(address of MM) + PEEK(address of LL)

An example for an address stored on page zero might be

ADDRESS = 256*PEEK(204) + PEEK(203)

POKEing A Two Byte Address Into Memory

From time to time, you may want to change an address that is stored in memory at a known
location. To POKE a two byte address into any two contiguous memory locations, your
command is

POKE LOCATION+l,INT(ADDRESS/ 256):
POKE LOCATION,(ADDRESS-256*INT(ADDRESS/ 256»

An example that stores the number 40000 in memory locations 203 and 204 on page zero
IS

POKE 204,INT(40000/256):
POKE 203, (40000-256*INT(40000/256»

Be very careful when you are POKEing things into memory. If you POKE the wrong
number into the wrong location, you can cause your computer to behave very strangely.

How to Reserve a Block of Memory for Private Use

Sometimes you would like to reserve a block of memory that is safe from the depredations
of BASIC and the operating system. You might use this reserved area to store data or
machine language subroutines. When you power your computer up with BASIC, the bottom
of memory available for a BASIC program is established by the operating system as a
number that we will call LOMEM. LOMEM is stored in addresses 743 and 744. BASIC,
also, keeps its own pointer at the bottom of memory in addresses 128 and 129. We will call
this number MEMLO. Likewise, the top of available memory is stored somewhere.

I have seen many different methods used to reserve a block of memory so that it is safe
from being modified by BASIC or the operating system. Many of these involve moving the
apparent top of memory. I recommend against using any of those techniques. RAMTOP
changes are only safe after the program has executed a GRAPHICS command for the highest
graphics mode that is used anywhere in the program, and even then the reserved memory
isn't truly safe.

ATARI BASIC Faster & Better 53

Some people use a special machine language subroutine to alter the LOMEM and
MEMLO pointers. The problem with this technique is that the special machine language
subroutine also has to be stored somewhere. A much safer method is to first load a small
BASIC program that changes the pointers to the bottom of memory and RUN it just before
running your main program. The program listed below will move the bottom of BASIC
memory pointers:

Figure 4.3 - RESERVE.LS T - Protects a Block of Memory

19930 REM RESERVE.LST - PROTECTS A BLOCK OF MEMORY
19931 REM SIZE = NUMBER OF BYTES TO RESERVE
19932 ADDRESS=256*PEEK(744)+PEEK(743)+SIZE
19933 MM=INT(ADDRESS/ 256):

LL=ADDRESS-256*MM
19934 POKE 743,LL :

POKE 744,MM
REM MOVE MEMLO UP

19935 POKE 128,LL :
POKE 129,MM
REM MOVE LOMEM UP

19936 POKE 8.0:
REM RESET WARM START FLAG

19937 X=USR(40960)
RESTART BASIC

This routine examines the LOMEM and MEMLO pointers, and changes them to a new
value. Any program that is LOADed or RUN after it, will ignore the reserved block of
addresses. The "trick" to this routine is that BASIC only loads a new MEMLO value from
the operating system's LOMEM pointer when a NEW command is used. MEMLO is not
updated for a LOAD or a RUN. A curious tidbit is that even SYSTEM RESET does not
trigger an update of MEMLO under normal conditions. RESERVE.BAS fixes it so NEW,
RUN, LOAD and SYSTEM RESET will reset the pointers to the place you specify.

BASIC Variable Lister

Many times I have been writing a program and mis-typed a variable name. I have found it
useful to have a way to quickly and easily obtain a complete list of all of the variable names in
a program. There are several programs on the market such as VERV AN'S FULMAP that
will generate a complete list of variable names along with the lines that they are used in. I use
FULMAP(a machine language program) when I am documenting a new program for my files
or when I am trying to analyze someone else's BASIC program. However, when I am simply
interested in how many variables I have used and what they are, I use the little program listed
below:

Figure 4.4 - VLIST.LST - A Routine to List the Variables in a BASIC Program

19940 REM VLIST.- VARIABLE ANALYZER
19941 PRINT CHR$(125) :

PRINT
PRINT "VLIST.LST - A BASIC VARIABLE ANALYZER"

54 Chapter 4

19942 PRINT :
PRINT :
PRINT "PRESS BIB FOR OUTPUT TO THE SCREEN II :

PRINT "PRESS §DIiJ FOR OUTPUT TO A PRINTER II
19943 TRAP 19961:

IF PEEK(53279)=6 THEN OPEN #3,8,0,IS:" :
GOTO 19946

19944 IF PEEK(53279)=5 THEN OPEN #3,8,0,IP:":
GOTO 19946

19945 GOTO 19943
19946 POKE 203,0:

POKE 204,PEEK(130) :
POKE 205,PEEK(131):
POKE 206,PEEK(134):
POKE 207,PEEK(135):
POKE 208,1

19947 POKE 752,1 :
PRINT #3:
PRINT #3 :
PRINT #3;"VLIST - BASIC VARIABLE ANALYSIS":
PRINT #3:
PRINT #3 :
PRINT #3

19948 PRINT #3;"VARIABLE NUMBER = I;PEEK(203);" II.

PRINT #3; "VARIABLE NAME = ";
19949 IF PEEK(PEEK(204)+256*PEEK(205))<128 THEN

PRINT #3;CHR$(PEEK(PEEK(204)+256*PEEK(205)));
19950 IF PEEK(PEEK(204)+256*PEEK(205))>127 THEN

PRINT #3;CHR$(PEEK(PEEK(204)+256*PEEK(205))-128);
19951 IF PEEK(PEEK(204)+256*PEEK(205))<128 THEN

GOSUB 19984:
GOTO 19949

19952 IF NOT (PEEK(PEEK(206)+256*PEEK(207)))
THEN POKE 208,0:
GOSUB 19962

19953 IF PEEK(PEEK(206)+256*PEEK(207))=64 OR PEEK(PEEK(206)+256*PEEK(207))=65
THEN POKE 208,0 :
GOSUB 10032

19954 IF PEEK(PEEK(206)+256*PEEK(207))=128 OR
PEEK(PEEK(206)+256*PEEK(207))=129 THEN POKE 208,0:
GOSUB 19978

19955 IF PEEK(208) THEN GOTO 19961
19956 POKE 209,0:

GOSUB 19986 :
GOSUB 19984 :
POKE 203,PEEK(203)+1

19957 IF (PEEK(204)+256*PEEK(205))«PEEK(132)+256*PEEK(133))
THEN 19948

19958 PRINT #3;"END OF VARIABLE NAME AND VALUE TABLES. ":
PRINT #3;"NUMBER OF VARIABLES FOUND=";PEEK(203)

19959 PRINT #3;"STRING/ ARRAY TABLE LENGTH= ";
«PEEK(142)+256*PEEK(143))-(PEEK(140)+256*PEEK(141)));
II BYTES II

19960 POKE 752,0:
CLOSE #3 :
END

19961 POKE 752,0 :
PRINT #3 :
PRINT #3;" ERROR! ",
END

19962 PRINT #3
19963 PRINT #3; "SCALAR VARIABLE":

PRINT #3; "CURRENT VALUE - ";

ATARI BASIC Faster & Better 55

19964 IF PEEK(PEEK(206)+256*PEEK(207)+2)=0 THEN PRINT #3; "ZERO":
PRINT #3:
RETURN

19965 PRINT #3;INT(PEEK(PEEK(206)+256*PEEK(207)+3)/16);
19966 PRINT #3; (PEEK(PEEK(206)+256*PEEK(207)+3)-

(INT(PEEK(PEEK(206)+256*PEEK(207)+3)/ 16))*16);" ,";
19967 POKE 209,4
19968 PRINT #3;INT(PEEK(PEEK(206)+256*PEEK(207)+PEEK(209))/16);
19969 PRINT #3; (PEEK(PEEK(206)+256*PEEK(207)+PEEK(209))-

(INT(PEEK(PEEK(206)+256*PEEK(207)+PEEK(209) / 16))*16);
19970 IF PEEK(209)<7 THEN POKE 209,PEEK(209)+1:

GOTO 19966
19971 PRINT #3; "*"; :

PRINT #3; ((PEEK(PEEK(206)+256*PEEK(207)+2)-64)*100):
PRINT #3 :
RETURN

10072 PRINT #3 :
PRINT #3; "ARRAY ";

19973 IF PEEK(PEEK(206)+256*PEEK(207))=64 THEN PRINT #3;"NOT DIMENSIONED ";:
PRINT #3

19974 IF PEEK(PEEK(206)+256*PEEK(207))=65 THEN PRINT #3; "DIMENSIONED"; :
PRINT #3

19975 PRINT #3; "FIRST DIMENSION="; ((PEEK(PEEK(206)+256*PEEK(207)+4)+
256*PEEK(PEEK(206)+256*PEEK(207)+5))-1)

19976 PRINT #3; "SECOND DIMENSION= ";
((PEEK(PEEK(206)+256*PEEK(207)+6)+
256*PEEK(PEEK(206)+256*PEEK(207)+7))-1)

19977 PRINT #3:
RETURN

19978 PRINT #3 :
PRINT #3;"STRING ";

19979 IF PEEK(PEEK(206)+256*PEEK(207))=128 THEN
PRINT #3; "NOT DIMENSIONED";:
PRINT #3

19980 IF PEEK(PEEK(206)+256*PEEK(207))=129 THEN
PRINT #3; "DIMENSIONED"; :
PRINT #3

19981 PRINT #3; "MAXIMUM LENGTH = ";(PEEK(PEEK(206)+256*PEEK(207)+6)+
256*PEEK(PEEK(206)+256*PEEK(207)+7))

19982 PRINT #3; "CURRENT LENGTH = ";
(PEEK(PEEK(206)+256*PEEK(207)+4)+
256*PEEK(PEEK(206)+256*PEEK(207)+5))

56 Chapter 4

19983 PRINT #3:
RETURN

19984 IF PEEK(204)=255 THEN POKE 204,0:
POKE 205,PEEK(205)+I:
RETURN

19985 POKE 204,PEEK(204)+I:
RETURN

19986 IF PEEK(206)=255 THEN POKE 206,0:
POKE 207,PEEK(207)+I :
GOTO 10048

19987 POKE 206,PEEK(206)+1
19988 IF PEEK(209)=7 THEN POKE 209,0:

RETURN
19989 POKE 209,PEEK(209)+I:

GOTO 10046

The neat thing about this routine is that it contains no variable names to clutter the list of
variable names in your program. The following are examples of the outpu ts you will get from
VLIST.LST for the three types of variables:

VARIABLE NUMBER = 5
VARIABLE NAME = DAYS
SCALAR VARIABLE
CURRENT VALUE = 27 .00000000*0

VARIABLE NUMBER = 6
VARIABLE NAME = MONTHS(
ARRAY DIMENSIONED
FIRST DIMENSION= 12
SECOND DIMENSION= 0

VARIABLE NUMBER = 7
VARIABLE NAME = NAME$
STRING DIMENSIONED
MAXIMUM LENGTH = 19
CURRENT LENGTH = 11

END OF VARIABLE NAME AND VALUE TABLES.
NUMBER OF VARIABLES FOUND= 7
STRING/ARRAY TABLE LENGTH= 1729 BYTES

Here is how you can use VLIST.LST:

1. LOAD the program that you want to analyze.

2. ENTER the list routine by using the commandENTER"D:VLIST.LST". Note
that the routine must have previously been LISTed to disk with the file name
VLIST.LST.

3. RUN your program to initialize the variables, then simply execute a
GOSUB 19940.

ATARI BASIC Faster & Better 57

4. A short menu will come up asking you to press the START botton for output to
the screen or SELECT for output to a printer. If you select the printer, be sure to
turn your printer ON before pressing SELECT.

5. If you modify your program, make sure that you delete the lister routine when
you LIST the new version to disk.

If you don't have enough available memory to use VLIST.LST, you can use the following
abbreviated version of it. VSHORT.LST does not have all the features ofVLIST.LST, but it
only takes up about 343 bytes. It will give you a list of all of your variables, thus telling you
how many variables you have in your program. It does not perform the complete analysis that
VLIST.LST does, but VSHORT.LST still can come in handy.

Here is a simple program that initializes some variables so we can see how VSHORT.LST
works:

100 DIM MONTH$(15),COSTS(10):
UNITS=100:
BREAKAGE=0 .1

Now if we merge VSHORT.LST and type RUN, here's what we get:

MONTHSEI
COSTS II
UNIT.
BREAKAGII

Notice that each name ends with an inverse video character.

Figure 4.5 - VSHORT.LST - A 343 Byte Version of VLISTLST

19990 REM VSHORT.LST - A SHORT VLIST
19991 POKE 204,PEEK(130):

POKE 205,PEEK(131)
19992 IF PEEK(204)=PEEK(132) AND PEEK(205)=PEEK(133)

THEN STOP
19993 PRINT CHR$(PEEK(PEEK(204)+256*PEEK(205)));
19994 IF PEEK(PEEK(204)+256*PEEK(205))>127 THEN PRINT
19995 IF PEEK(204)=255 THEN POKE 204,0:

POKE 205,PEEK(205)+1:
GOTO 19992

19996 POKE 204,PEEK(204)+1:
GOTO 19992

If you want to make your program unlistable, you can achieve that dubious goal by using
the following routine:

20000 REM SCRAMBLE.LST
20001 FOR VTABLE=PEEK(130)+256*(131) TO PEEK(132)+256*PEEK(133)-1
20002 POKE VTABLE,99
20003 NEXT VTABLE
20004 POKE PEEK(138)+;256*PEEK(139)+2,0
20005 SAVE "D:FILENAME"
20006 NEW

58 Chapter 4

This routine replaces all of the variable names in the table with garbage, and the POKE in
line 20004 makes it so your program can only be RUN. It will not be listable at all and a
LOAD command won't work correctly. I really do not recommend that you ever do this to one
of your programs. The reason that I showed you this trick is so you will better understand
what the problem is when some nefarious programmer gives you a program that has a
garbled variable name table. If you run across such a program, you can use VERVAN'S
FULMAP to make it listable again.

The Two Bit Shuffle, or Moving Data in Memory

Many special effects and high speed techniques involve nothing more than moving (or
copying) a block of data from one location in memory to another. Copying a block of data
means that the contents of certain memory locations are nondestructively duplicated in
another location. Moving a block of data means that the original memory locations no longer
contain the data. Think of this in terms of a photo-copy process. When you photo-copy a
magazine article, the copy is made without destroying the original article (that is, if you don't
use the photo-copy machine I have in my office). On the other hand, moving a block of data is
analogous to moving a pile of leaves from the front of your house to the back of your house.
When your mother (or wife) looks at the front yard, she congratulates you on doing such a fine
job. However, you know that you did not really destroy the leaves. You simply moved them to
a different storage location.

You can use special machine language subroutines to rapidly move or copy blocks of data
from one location to another. In general, I will use the word "move" for both types of
movement.

I have a little machine language routine that will do all of this by a simple call from BASIC. I
call the routine MOVER. Figure 4.6 gives the assembly listing of MOVER:

Figure 4.6 - Assembly Language Listing of MOVER - A Block Move (or Copy) Routine

00CB
00CD
00CF
00Dl

0600 68
0601 C904
0603 F007

1000 ;MOVER - A BLOCK MEMORY MOVER
1010
1020 ;CALLED FROM BASIC USING:
1030 ;X=USR(ADDR,START,END,NEWSTART,OPTION)
1040
1050 ;CAUTION! - USE OPTION=0 CAREFULLY
1060
1070
1080

*= $600

1090 ;SET UP PAGE ZERO POINTERS
1100
1110 FROMT
1120 FROMB
1130 TO
1140 OPTION
1150

$CB
$CD
$CF
$Dl

1160 ;INTIALIZE POINTERS
1170
1180
1190
1200

PLA
CMP
BEQ

#4
GOOD

;COMPLETELY RELOCATABLE

;START ADDRESS OF OLD BLOCK
;END ADDRESS OF OLD BLOCK
;START ADDRESS OF NEW BLOCK
;0=MOVE <>0=COPY

;GRAB NUMBER OF ARGUMENTS

;IF ONLY 4 THEN CONTINUE

ATARI BASIC Faster & Better 59

0605 AA 1210 TAX ;WRONG NUMBER OF ARGUMENTS
0606 68 1220 KILL PLA ;RETRIEVE PROPER RTS ADDRESS
0607 68 1230 PLA
0608 CA 1240 DEX
0609 D0FB 1250 BNE KILL
060B 60 1260 EXIT RTS ;GO BACK TO BASIC
060C 68 1270 GOOD PLA
060D 85CC 1280 STA FROMT+1
060F 68 1290 PLA
0610 85CB 1300 STA FROMT
0612 68 1310 PLA
0613 85CE 1320 STA FROMB+1
0615 68 1330 PLA
0616 85CD 1340 STA FROMB
0618 68 1350 PLA
0619 85D0 1360 STA TO+1
061B 68 1370 PLA
061C 85CF 1380 STA TO
061E 68 1390 PLA
061F 68 1400 PLA
0620 85D1 1410 STA OPTION

1420 ;
1430 ;IS THIS A MOVE TO THE LEFT OR THE RIGHT?
1440 ;

0622 A000 1450 LDY #0 ;SET INDEX TO ZERO FOR LATER
0624 A5CC 1460 LDA FROMT+1
0626 C5D0 1470 CMP TO+1
0628 3030 1480 BMI RIGHT
062A 1006 1490 BPL LEFT
062C A5CB 1500 LDA FROMT
062E C5CF 1510 CMP TO
0630 3028 1520 BMI RIGHT

1530 ;
1540 ;MOVE A BLOCK TO THE LEFT
1550 ;

0632 B1CB 1560 LEFT LDA (FROMT) ,Y ;GRAB A BYTE
0634 91CF 1570 STA (TO) , Y ; MOVE IT LEFT
0636 A5D1 1580 LDA OPTION ;DO WE ERASE OLD LOCATION?
0638 C900 1590 CMP #0
063A D003 1600 BNE CHECK1 ;NO? THEN CONTINUE
063C 98 1610 TYA ;YES, ERASE OLD LOCATION
063D 91CB 1620 STA (FROMT) ,Y
063F A5CC 1630 CHECK1 LDA FROMT+1 ;ARE WE FINISHED?
0641 C5CE 1640 CMP FROMB+1
0643 D006 1650 BNE CHECK2
0645 A5CB 1660 LDA FROMT
0647 C5CD 1670 CMP FROMB
0649 F0C0 1680 BEQ EXIT ;YES? THEN RETURN TO BASIC
064B E6CB 1690 CHECK2 INC FROMT ;UPDATE READ/WRITE POINTERS
064D D002 1700 BNE CHECK3
064F E6CC 1710 INC FROMT+1
0651 E6CF 1720 CHECK3 INC TO

60 Chapter 4

0653 D0DD 1730 BNE LEFT
0655 E6D0 1740 INC TO+1
0657 18 1750 CLC
0658 90D8 1760 BCC LEFT

1770 ;
1780 ;MOVE A BLOCK TO THE RIGHT
1790 ;

065A A5CD 1800 RIGHT LDA FROMB
065C 38 1810 SEC
065D E5CB 1820 SBC FROMT
065F 48 1830 PHA
0660 A5CE 1840 LDA FROMB+1
0662 E5CC 1850 SBC FROMT+1
0664 AA 1860 TAX
0665 68 1870 PLA
0666 18 1880 CLC
0667 65CF 1890 ADC TO
0669 85CF 1900 STA TO
066B 8A 1910 TXA
066C 65D0 1920 ADC TO+1
066E 85D0 1930 STA TO+1
0670 B1CD 1940 MOVE LDA (FROMB),Y
0672 91CF 1950 STA (TO) , Y
0674 A5D1 1960 LDA OPTION
0676 C900 1970 CMP #0
0678 D003 1980 BNE CHECK4
067A 98 1990 TYA
067B 91CD 2000 STA (FROMB),Y
067D A5CC 2010 CHECK4 LDA FROMT+1
067F C5CE 2020 CMP FROMB+1
0681 D006 2030 BNE CHECK5
0683 A5CB 2040 LDA FROMT
0685 C5CD 2050 CMP FROMB
0687 F082 2060 BEQ EXIT
0689 C6CD 2070 CHECK5 DEC FROMB
068B D002 2080 BNE CHECK6
068D C6CE 2090 DEC FROMB+1
068F C6CF 2100 CHECK6 DEC TO
0691 D0DD 2110 BNE MOVE
0693 C6D0 2120 DEC TO+1
0695 18 2130 CLC
0696 90D8 2140 BCC MOVE
0698 2150 . END

Figure 4.7 - POKE Value Table for MOVER

19900 REM MOVER.LST
19901 DATA 104,201,4,240,7,170,104,104
19902 DATA 202,208,251,96,104,133,204,104

;COMPUTE BLOCK LENGTH

;ADD IT TO NEW BLOCK START

;GRAB A BYTE
; MOVE IT RIGHT
;DO WE ERASE OLD LOCATION?

;NO? THEN CONTINUE
;YES, ERASE OLD LOCATION

;ARE WE FINISHED?

;YES? THEN RETURN TO BASIC
;UPDATE READ/ WRITE POINTERS

19903 DATA 133,203,104,133,206,104,133,205
19904 DATA 104,133,208,104,133,207,104,104
19905 DATA 133,209,160,0,165,204,197,208
19906 DATA 48,48,16,6,165,203,197,207,
19907 DATA 48,40,177,203,145,207,165,209
19908 DATA 201,0,208,3,152,145,203,165
19909 DATA 204,197,206,208,6,165,203,197
19910 DATA 205,240,192,230,203,208,2,230
19911 DATA 204,230,207,208,221,230,208,24
19912 DATA 144,216,165,205,56,229,203,72
19913 DATA 165,206,229,204,170,104,24,101
19914 DATA 207,133,207,138,101,208,133,208
19915 DATA 177,205,145,207,165,209,201,0
19916 DATA 208,3,152,145,205,165,204,197
19917 DATA 206,208,6,165,203,197,205,240
19918 DATA 130,198,205,208,2,198,206,198
19919 DATA 207,208,221,198,208,24,144,216
19920 MLSTART=1536
19921 MLEND=1687
19922 FOR X=MLSTART TO MLEND
19923 READ Y:

POKE X,Y:
NEXT X

19924 RETURN

ATARI BASIC Faster & Better 61

When you are shuffling blocks of numbers around in memory, you will have to be very
careful not to crash your computer. Always save your program to disk and remove the disk
from your disk drive before trying any new block move that you have not successfully done
before. It is possible not only to crash the computer, but you could also very easily cause the
operating system to destroy the files on your disk!

MOVER is called from BASIC by a USR call in the following format:

X = USR(1536,START,END,NEWSTART,OPTION)

START and END define the first and last memory addresses of the block that you want to
move. NEWSTART is the address where MOVER is to start loading the data. The data will
end up in the same order that it was in the original block. OPTION tells the routine whether
you want to move or copy the block. A value of zero tells MOVER to move the block, thus
deleting the block from its previous location. Any non-zero value in this argument will cause
MOVER to copy the designated block of data. This means that you will then have two copies
of the same block of data in two separate locations in memory.

There are two general kinds of block movements. If START and NEWSTART are
separated by at least END-START+ 1 bytes, then this is called a non-overlapping movement.
Think of it as laying two sheets of paper side-by-side in such a way that the two pieces of
paper do not touch each other. It does not matter whether one piece of paper is to the right or
the leftofthe other one. This type of movement is okay most of the time, but you will also find
need for another kind of movement that allows the pieces of paper to overlap. The second
kind of movement involves block locations that overlap one another. This kind of movement
is further differentiated by the direction of the movement. A good example is to take an egg
carton, cut it down the middle length-wise, and position the pieces end-to-end.

62 Chapter 4

Put three eggs in the right side of the lefthand "half carton," and put three more eggs in the
left side of the carton on the right. When you get it set up, it should look something like
this:

Figure 4.8 - Eggs in Carton

LOl L02 L03 L04 L05 L06 ROl R02 R03 R04 R05 R06

Now, move all the eggs to the left one position so they look like this:

Figure 4.9 - Eggs Moved to Left

LOl L02 L03 L04 L05 L06 ROl R02 R03 R04 R05 R06

How did you move the eggs? I would wager that you did it the same way most other people
would do it. You started by moving the egg in position L04 to position L03. Next you moved
the egg in position L05 to position L04. You then continued in this fashion until all ofthe eggs
were moved. This is exactly the same technique that a computer uses when moving a block of
data in an overlapping move to the left (down, for you purists).

ATARI BASIC Faster & Better 63

Now, reverse the experiment and shift the "block" of eggs right one position to restore the
original configuration. What did you do differently? That's correct, you started the
movement with the egg in position R02. You made the change in method almost
instinctively. When a machine language subroutine moves a block of data in memory, it must
use the technique that is correct for the kind of move it is doing.

The possible applications you might have for a routine such
as MOVER would include:

1. Moving relocatable USR routines from one address in memory to another.

2. Instant duplication of array elements.

3. Clearing a section of memory.

4. Inserting and deleting array elements.

5. Moving data to protected memory so it can be passed to another program.

6. Insert and delete operations on the video display.

7. Saving the video display in protected memory for later recall. (There is also
a technique called "page flipping" that we will discuss later in this book.)

8. Downloading the Atari character set.

The following program will demonstrate some of the uses of MOVER:

Figure 4.10 - MOVER.DEM - Demonstration Program for MOVER

1~~ REM MOVER. OEM
11~ PRINT CHR$(125) :

POKE 752,1
12~ POSITION 2,2:

PRINT " •••••••••• "
13~ X=USR(153614~~8214~~9114~722,~)

14~ FOR 1=1 TO 1~~:

NEXT I
150 X=USR(153614072214073114~082,0)
160 FOR 1=1 TO 100:

NEXT I
170 GOTO 130

This program uses MOVER to simply move a string display from the top of the screen to
the bottom. Try changing the fourth argument in both USR calls from zero to one. Note that
the screen now appears to have two permanent copies of the string.

To move the original string to the right six places, use the following arguments in
MOVER.DEM:

X = USR(1536140~82140091,40~88,0)

The routine WINDOW.DEM listed below, uses MOVER to show the contents of any page
in your computer, one page at a time.

64 Chapter 4

Figure 4.11 - WINDOW.DEM - A Window Into Your Computer's Memory

100 REM WINDOW.DEM - A WINDOW INTO
110 REM YOUR COMPUTER'S MEMORY
120 PRINT CHR$(125) :

PRINT "WINDOW.DEM - ":
PRINT "A WINDOW INTO YOUR COMPUTER"

130 PRINT :
PRINT "WHAT PAGE NUMBER (0 TO 255):";

140 TRAP 140:
POSITION 30,4 :
PRINT CHR$(253);CHR$(254);CHR$(254);CHR$(254);:
INPUT PAGE

150 IF PAGE<0 OR PAGE>255 THEN 140
160 X=USR(1536,256*PAGE,256*PAGE+255,40240,1)
170 GOTO 140

This routine shows you any page of memory, one at a time.

ATARI BASIC Faster & Better 65

BASIC Overlays

Passing Variables Between Programs

Any time you use a RUN or LOAD command, all variables that were already active in your
previous program are cleared to allow the newly LO ADed program to start with a fresh slate.
This is not always the result you would like to achieve. There are many applications where
you will not want the variables cleared as you go from one program to another, or RUN a
program again.

If you could pass variables between programs, you could divide a large applications
program into several smaller run modules. By using smaller "programs," you will have more
memory available for data storage. One program, for example, might load data from the
keyboard or from a disk file . The next program might process the data, and a third program
might take care of dumping the results to a printer or disk.

Before you can effectively use variable-passing subroutines, you need to have some
understanding of how BASIC stores variables. Three areas are set aside in memory to store
information about the variables in your program. We talked about the first in the last
chapter. It is called the Variable Name Table. Every time a new variable is used in a program
or in direct mode, the name of that variable is added to the end of the Variable Name Table.
The table will not allow you to have more than 128 variables. If you exceed this limit, you will
get an ERROR 4, and your program will crash. The real utility of VLIST.BAS is that it gives
you a count of how many variables are in your program. The length of this table depends
upon the number of variables in your program. The second area that BASIC reserves for
variable housekeeping is called the Variable Value Table. This is where BASIC stores the
BCD value of each numeric variable in your program. I won't go into the specifics of exactly
how the numbers are stored since that is well documented in De Re Atari, a book published
by Atari. The piece of information that you need here is that this table is stored on top of the
Variable Name Table below your program. The starting address of this table is stored on
page zero at 134 and 135, and the length of this table depends upon the number of variables
in your program.

The third reserved area is the one we need to really watch out for whenever we are doing
simple overlays in BASIC. This is the String/Array Table. This table contains all ofthe string
variables in your program, as well as the BCD values of all of your dimensioned numeric
arrays. The key to understanding whether or not a variable is contained in this table is the
DIMENSION statement. If the variable is dimensioned, itis in this table. BASIC requires all
string variables to be dimensioned, so they are always included in this table. This table is of

66 Chapter 5

particular concern from the overlay point of view because it is enlarged during program
execution. Every time a new DIMENSION statement is encountered the table is expanded
to make room for the new data. The amount of additional space that is eaten up is equal to the
size of a string dimension, or six times the size of a numeric variable dimension. This table is
located immediately below your BASIC program. You can find the start address ofthis table
by looking at page zero, locations 140 and 141.

The Ultimate Memory Saver

Large computers use sophisticated techniques that automatically load small blocks of
program logic from disk as they are needed. This makes it possible to execute programs that
are, in effect, larger than the available memory. With the techniques I will describe here, you
can do the same thing with your Atari 800! I am sure you will find, as I did, that when you
implement these techniques, your programs will enter a whole new generation of
performance capabilities.

We will call each group of BASIC program lines loaded with these techniques an overlay,
and refer to the lines that remain in memory as our main (or master) program. Overlays can
be loaded for limited operations that would normally be done by subroutines or for more
global operations where the overlays are main programs in their own right. They can also be
major blocks of program logic which act as sub-programs. Here are some of the advantages of
using BASIC overiays:

1. You can, in effect, go from one program to another, retaining all variables that
are in use. You can also leave your disk files open as you roll in overlays.

2. Common routines and subroutines can remain in memory as you go from one
overlay to another. Because of this, you don't have to repeat your housekeeping
logic in each program, and you don't need to repeat those subroutines that are
standard to the overall application in each program. Because you can look at every
application as a group of run modules, with little or no logic repeated, you save disk
space. Since you load only what you need, when you need it, your effective load time
may be faster.

3. Because your overlays share the same standard run modules and housekeeping
logic, you save time when you need to make modifications. Let's say, for example,
you want to change a disk file layout. Instead of changing it in several different
programs, you only need to change it once if you have your disk handling subroutine
in a run module.

4. Program execution speeds can improve because you have less text in memory
at anyone time. BASIC doesn't have to search as far when it receives a GOTO or
GOSUB command.

5. An overlay program can GO TO or GOSUB to any line in the main program. The
main program can execute GOTOs or GOSUBs to any line in the overlay program.
One overlay program can even load another one.

6. You' can make almost any large application run in as little as 8K of memory! Of
course, you would not want to run that "tight" since performance would be seriously
degraded by the continual loading of overlays from disk. In practice, however, the
ability to reduce the memory space required for program text lets you have more
space for string and variable storage and (if you need it) more space for protected
memory at the bottom of memory.

ATARI BASIC Faster & Better 67

We will be discussing two general methods of loading overlays. A merged overlay
overwrites a section of code via an ENTER command while assuming that BASIC is holding
the values of all of the variables that you want to pass to the new routine. Aprotected memory
overlay utilizes a section of protected memory to make sure that the loading or running of a
new routine or program won't damage the resident data.

Overlay Techniques In BASIC
Using the ENTER Command

There are two general methods for doing overlays in Atari BASIC. The first way is
probably the easiest, but is also the least safe. You can merge two programs by using the
ENTER command. You can do this either from the direct mode or during the execution of a
program. When a program is stored on disk with the ENTER command, the resulting file is
what is called an ASCII file (I guess ATASCII is what the form should be called on the Atari
800). When you ENTER this file from disk, it is treated like keyboard input! This holds true
even if you are loading it during the execution of another program.

The trick to getting the new program to overlay part of your first program is to make sure
that the line numbers of the overlay are exactly the same as the line numbers of the code to be
replaced. For example, write the following three routines and LIST them to disk as three
different files:

100 PRINT"MY PROGRAM #1"
110 PRINT
120 X=10 :

Y=25
130 Z=X*X+YjX
140 PRINT X,Y,Z

110 PRINT"WITH A DIRECT OVERLAY"
130 Z=X*Y-XjY

110 PRINT"WITH AN INTERLEAVED OVERLAY"
115 W=12
130 Z=X+Y+W \

Now, type NEW and ENTER the first routine. When you RUN the first routine, the words
"MY PROGRAM #1" will be printed on the screen along with the values of X, Y, and Z (10,
25, 102 5). When you use the ENTER command to load the second routine, the screen
output of the next RUN will be:

MY PROGRAM #1
WITH A DIRECT OVERLAY
10 25 249.75

Why is this? Well, when you entered the second routine, lines 110 and 130 were replaced
by the new lines in your overlay. If you did a LIST at this point, you would get

100 PRINT"MY PROGRAM #1"
110 PRINT"WITH A DIRECT OVERLAY"
120 120 X=10:

Y=25
130 Z=X*Y-XjY
140 PRINT X,Y,Z

68 Chapter 5

Loading the overlay with the ENTER command had exactly the same effect as if you had
typed the new lines in through the keyboard. Now ENTER the third routine from disk and
RUN it. You got a different output because of the new program lines. Now LIST the
program. You should pay special attention to the presence of line 115. This line did not exist
in either the original routine or the first overlay. If you later perform another overlay, you will
have to make doubly sure that the next overlay won't be messed up by line 115. This is why I
emphasized the words exactly the same in the earlier discussion.

The merge technique of doing overlays may therefore be broken down into direct and
interleaved methods. A direct overlay always replaces lines of code in the host program. It
never introduces any new line numbers. This is what I would consider to be the safer of these
two methods. Using interleaved overlays can lead to unforeseen trouble if more than one
overlay is going to be used. You may accidentally put lines of code in the wrong place and
wreak havoc with your data.

The same technique can be used to perform an overlay where you want to preserve the
existing variable values for use by the overlayed run module. All that is required is one small
change: you have to eliminate the need to use the RUN command after the new module is
ENTERed. Unfortunately, the only way to do this is for you to know where you want the
program to resume execution and for you to type the appropriate GOSUB command from
direct mode. Needless to say, this is less than ideal, so I will show you a better way in a
moment. So far I haven't told you why we need to worry about the String/Array Table.
Remember that this table is expanded every time a new array or string variable is
dimensioned. As long as you are doing partial overlays, you probably won't run into a
problem with the fact that this table is dynamically updated. However, I once had an
application where I used one program to set up a massive amount oflook-up tables that were
to be used by a completely separate program which was to be loaded via the ENTER
command. It bombed! No matter what I tried, I could not get it to work. I finally gave up and
called Atar:i's question department to find out what I was doing wrong. They couldn't help
me. They said that the ENTER technique was originally intended for small overlays of less
than 8K or so. They had never tried to do an overlay of the size I was trying, and I was
probably getting messed up by the way the String/Variable Table updates itself. Oh well.
That told me that I probably should find another way to pack my lOOK program into my little
48K computer. I found it. I could store my data in reserved memory by using POKEs, and get
it out again by using PEEKs.

Using Protected Memory Overlays

The second of the general overlay techniques is more complex to set up, but it is much
safer and can also be used in conjunction with the ENTER technique. This technique
requires that you use some scheme like RESERVE.LSTtoprotecta section of memory. You
can then store your data in the protected area using POKEs. This way you can ENTER,
LOAD a new program or even R UN"D:FILEN AME", and the data will remain safe until you
need it. I've seen this technique used in several graphics adventure games, such as Temple of
Apshai, that are remarkably fast considering that they are written in BASIC. This technique
has the added benefit of reducing the number of variables, which leaves more room for your
program.

For example, type in the following routine and save it to disk:

100 PROLAY.DEM
110 SIZE=25
120 ADDRESS=256*PEEK(744)+PEEK(743)+SIZE

130 MM=INT(ADDRESSj 256) :
LL=ADDRESS-256*MM

140 POKE 743,LL :
POKE 744,MM

150 POKE 128,LL:
POKE 129,MM

160 FOR X=1 TO 24:
READ Y:
POKE ADDRESS-X,Y:
NEXT X

170 REM IF Y>255 OR Y<>INT(Y) THEN YOU WILL NEED
180 REM TO STORE IT IN TWO BYTES WHICH MEANS YOU
190 REM WOULD HAVE TO MODIFY THIS ROUTINE.
200 DATA 10,20,30,40,50,60,70,80
210 DATA 90,100,110,120,130,140,150,160
220 DATA 170,180,190,200,210,220,230,240
230 END

ATARI BASIC Faster & Better 69

PROLA Y.DEM first reserves 25 bytes at the bottom of memory. Then it reads a bunch of
data that could just as easily be from a numeric array or several variables. Each byte of data
is then POKEd into the reserved area of memory for later use by another program. The data
is now safe from being destroyed by a RUN or LOAD command. You can now LOAD and
RUN a new overlay module that will be able to use the data stored by the first routine .
Typically, how this is done is to make the last line of the first routine automatically load the
overlay with a RUN"D:filespec.extension" command. The overlay can process the data and
end its function with a RUN"D:MAIN" command.

This technique can be used almost "as is" for data that consists of integers. If your data
also includes non-integer values, you can still use this technique if you first multiply the data
by 1 0 or 1 00 or 1 000, that is, whatever power of ten that will get rid of the decimal fraction. If
you have to do this, make sure that the overlay decodes the number properly. For example, 1
have a set of routines that use a 3000 element look-up table that contains numbers between
zero and 35.5. All of the numbers have either a zero or a five to the right of the decimal place. 1
used the protected memory overlay technique by simply multiplying each number by two (I
could have used 10, but decided against it to keep all of my data values below 255, which
avoids two byte numbers), then 1 POKEd the "new" table into protected memory for use by
the overlay routines. Of course, 1 had to make sure that the overlay divided the peeked value
by two before using it.

If you want to store string data in this manner, you will have to write a routine that looks at
each character in the string and computes the AT ASCII value of the character. The resulting
number can then be stored in your protected area. The follow on program will have to
retrieve the numbers in the proper order, do a CHR$ operation, and concatenate them into
the new string variable.

Protected memory overlays is a general technique that will handle large amounts of data.
If you have less than 256 bytes of data to store, you could always store them on page six in
memory.

Another application of this technique is to load special machine language subroutines
during the execution of a main program. 1 haven't used the technique in this way very much,
since 1 usually string pack my machine language subroutines and incorporate them directly
into my main program. This only works, however, if the routine is relocatable. If the machine

70 Chapter 5

language routine that you need in your program is not relocatable, you can reserve a block of
memory for it at the bottom of memory. This works only if that is where it is nonrelocatable
to.

There are several different ways to load such a routine without halting program execution
like the ENTER command does. If you analyze either CONVERT.BAS or DATAP AK.BAS,
you will see where I am actually "loading" a machine language routine from disk during the
middle of program execution. The only difference is that those two routines process the
machine language code into some other format instead of simply POKEing the machine
language program into the proper memory locations.

The simplest way to perform a "load" during program execution is to GOSUB to a
subroutine that will open the disk file and loop through a series of GET statements which will
grab the machine language routine from the disk file. You follow this with a short routine that
takes the byte grabbed from the disk and POKEs it into the designated location in memory
(usually page six). There are more sophisticated methods, but they are typically a variation
on this one. For example, De Re Atari contains a program that performs the same kind of
GET routine by POKEing certain parameters into the operating system and persuades the
OS to load a machine language program from disk. HEADER.BAS in Chapter Four makes
use of this technique.

ATARI BASIC Faster & Better 71

Number Crunchers and Munchers

Regardless of the application, almost every program involves some addition, subtraction,
multiplication or division. Whether you are computing a scientific formula, an accounting
balance, or the number of points accumulated by each player in a game, you soon become
accustomed to talking to your computer with numbers and equations. However, the problem
presented by the application is only the beginning. Simple housekeeping chores, such as
formatting the screen output or retrieving the desired information from an array or from a
disk file, may often involve many numbers and equations.

This chapter provides many tricks and subroutines that can save you hours of
programming time. We'll be looking at some mathematical techniques that are often
required for everyday programs. In addition, we'll discuss ways to compress numerical data
for more efficient disk and memory storage. You will also see some quick routines that will
allow you to format numerical data. Finally, have you ever seen a computer book that didn't
cover the subject of hexadecimal number conversions? We'll be discussing some efficient
subroutines that can put this subject to bed, once and for all!

Finding Remainders

You will find that the remainder obtained when you divide one number by another has
many applications in programming. A memory location, for example, can be broken down
into byte sized pieces by dividing the decimal value of the memory location by 256. The
integer of the result is the MSB and the remainder is the LSB. The specific equations
are:

MSB = INT(ADDRESS/ 256)
LSB = ADDRESS-256*MSB

In disk applications, when we divide the sector number by the number of tracks on a disk,
the integer of the result tells us which track the desired record is on, and the remainder tells
us which sector within that track is the right one. In doing base conversions, we typically
divide the original number by the new base repeatedly to obtain the remainder. BASIC
provides no built-in command or function that will allow you to automatically fetch the
remainder of a divide operation. You've got to use a simple formula (equation). The following
subroutine, REMAIN.LST, computes the remainder, LEFTOVERS, of the first argument,
NUMBER, divided by the second argument, DIVISOR:

72 Chapter 6

20010 REM REMAIN.LST
20011 LEFTOVERS=NUMBER-DIVISOR*INT(NUMBER/ DIVISOR)
20012 RETURN

Compare this equation to the way we computed MSB and LSB, and you will note that we
used the same mathematical technique. When using this technique for general purpose
applications, be sure that your program will not allow DIVISOR to ever be equal to zero. If
that should ever occur, your program will be interrupted by an ERROR 11 (attempt to divide
by zero error) . This routine can be LISTed to a library disk and appended to other programs
by using the ENTER command.

Rounding Numbers

Rounding a number is a mathematical technique that limits the number of digits in a
number while trying to minimize the amount of error in the rounded number. You use this
technique when you go to a store and compare the "per ounce" cost of two products. For
example, if you are looking at two products that cost 87 cents for 9 ounces and 77 cents for 8
ounces, respectively, you may compute their relative per unit cost as 9.66666667 and 9.625
cents per ounce, respectively. However, this is not exactly what you really do. Typically, you
will say that the first product costs about 9.66 cents per ounce and the second product costs
about 9.63 cents per ounce. You conclude that the second product is a better bargain. What
you have just done, almost automatically, is to round the awkward numbers to a format that is
more managable. Of course, if you are like me, you had to use a pocket calculator in the
process.

You will often find that you need to round numbers in application programming. We will
discuss two rounding methods that are useful in various circumstances. The first of these is
ROUNDINT.LST, which rounds a number to the nearest whole integer. If the decimal
portion of the number is greater than or equal to 0.5, the number will be rounded UP to the
next whole number for positive numbers, and DOWN to the next whole number if the
number is negative. If the decimal portion is less than 0.5, then the decimal fraction will be
truncated. This subroutine works with both positive and negative numbers.

20020 REM ROUNDINT .LST
20021 ROUNDINT = SGN(NUMBER)*ABS((INT(NUMBER)+INT(NUMBER-INT(NUMBER+0 .5»)
20022 RETURN

The second technique, ROUNDDEC.LST, rounds a NUMBER to two decimal places for
the proper handling of dollars and cents. The result will be the nearest cent, taking into
account positive and negative numbers.

20030 REM ROUNDDEC.LST
20031 NUMBER = 100*NUMBER
20032 GOSUB 20020
20033 ROUNDDEC = ROUNDINT/ 100
20034 RETURN

In programming rounding functions, the challenge is to properly handle positive and
negative numbers. You will be able to handle such problems with relative ease after you have
experimented with ROUNDINT.LST and ROUNDDEC.LST.

Rounding Down

This subroutine, ROUNDDWN.LST, requires two arguments. Itfinds the first multiple of
the first argument, LIMIT, that is less than or equal to the other argument, NUMBER. Let's

ATARI BASIC Faster & Better 73

say, for example, that we need to round a number down to the nearest 100. Calling
ROUNDDWN.LST with NUMBER = 392 and LIMIT = 100 will return ROUNDDWN =
300. Setting NUMBER = 3100 and LIMIT = 100 will return ROUNDDWN = 3100.

2~~4~ REM ROUNDDOWN.LST
2~~41 ROUNDDWN = LIMIT*INT(NUMBER/ LIMIT)
2~~42 RETURN

If you want to find the corresponding left position on the video screen for a POSITION
statement, you can use this routine. For example:

2~~5~ REM ROW.LST
2~~51 ADDRESS = 4~~82 :

REM 4~~82 IS FOR DEMO ONLY
2~~52 NUMBER = ADDRESS-4~~~~ :

LIMIT = 4~:

GOSUB (2~~4~)

2~~54 ROW=LIMIT*INT(NUMBER/ LIMIT)
2~~55 RETURN

will return a value of ROUNDDWN=2, thus telling you that the row number is two.
Remember that the ATARI 400/800 normally indents the left side of the screen by two
columns, so 40082 will actually point to the first PRINT position instead of the third. By the
way, you can find the column for your POSITION by using the following routine:

2~~6~ REM COLUMN .LST
2~~61 ADDRESS=4~~82:

REM 4~~82 IS FOR DEMO ONLY
20~62 NUMBER=ADDRESS-4~~~~

2~~63 DIVISOR=4~

2~~64 COLUMN=NUMBER-DIVISOR*INIT(NUMBER/ DIVISOR)
2~~65 RETURN

Rounding Up

The ROUNDUP.LST suroutine is similar to the ROUNDDWN.LST routine, except that
it finds the first multiple of LIMIT that is greater than NUMBER. For example,
ROUNDUP.LST will return ROUNDUP=3100 for NUMBER=3022 and LIMIT=lOO.
Changing NUMBER to 3100 will yield ROUNDUP=3200.

2~~7~ REM ROUNDUP .LST
2~071 ROUNDUP = LIMIT*INT(NUMBER/ LIMIT)+LIMIT
2~072 RETURN

Saving Space with One-Byte Numbers

If you know that a numeric field to be stored on disk (orina program) will always contain an
integer in the range 0 to 255, you can use the CHR$ and ASC functions to store and retrieve
the data. The advantage is that your data will only be using one byte to store each number
instead of six!

If you want to store an array which contains integers in the range 0 to 255, you can store
each number in a string by converting each number to an equivalent ATASCII character.
Call the number to be so stored, VALUE; then you can convert it into an AT ASCII character

74 Chapter 6

by using PACK$(X,X) = CHR$(VALUE), where X is the position in the string, PACK$,
that the character is to be stored in. To recall the number, simply use VALUE =

ASC(PACK$(X,X)) . I used this inone particular program that had a 3000 element array that
was loaded via DATA statements. Between the array and the DATA statements, over 36K
bytes would have been required. By packing the data into a string dimensioned to a length of
3000, I was able to reduce the 36K data base to about 3K! An unanticipated side effect was
that my program ran faster because the size of the program had been reduced by almost 30K,
and I no longer had to use overlays.

Saving Space with Two-Byte Numbers

Since the ATARI does not support true integers, all numeric values are stored as six-byte
BCD. This can be a real pain if you have an application like the one mentioned in the previous
paragraph. I have shown you a way to handle a special case by packing the six-byte numbers
into one-byte strings. That technique isn't much help, however, if your data won't fit into the
o to 255 range of integers. This next technique goes one step further. It assumes that you still
have integers, but they can take on any positive value from 0 to 65535. All you have to do is
combine several ofthe techniques that we have already discussed. Namely, you separate the
number into an LSB and an MSB and pack these numbers into a string. You will have to be
more careful in recovering the data to make sure you don't call an LSB an MSB and vice
versa. Note that you could store prices in this way by multiplying the price by 100.

Print Without USING

Many BASICs have a built-in formatted print capability that is called PRINT USING.
Unfortunately ATARI BASIC does not support this command. Although it is possible to
write a machine language program to add such a command to BASIC, it probably isn't worth
the time it would take, since you still would have to write the format statement that the
PRINT USING command would use. I have found it simpler to write a set of special format
subroutines that give me comparable capability in special cases.

Formatted Money Values

The MONEY.LST routine will take a number and force it into a dollar and cents format.
The largest whole dollar must be less than $10 million. Fractional cents are rounded to the
nearest penny. The dollar sign, "$", is placed at the immediate left of the number. The print
field, however, does not vary. It is always 15 spaces wide. If you are formatting a column of
prices and want the dollar sign to be printed in a certain column, then change the value of
MONEY$ appropriately. DIGITS should be set for the largest dollar figure.

Figure 6.1 - FORMATTED MONEY S ubroutine

2~~8~ REM MONEY.LST
2~~81 TRAP 2~~83
2~~82 COLUMNS=DIGITS+3:

DIM MONEY$(COLUMNS)
20~83 IF LEN(STR$(ABS(INT(VALUE))))>=COLUMNS-5

THEN PRINT "INTEGER VALUE OF NUMBER IS TOO LARGE" :
GOTO 2~~88

2~~84 TRAP 2~~88 :
MONEY$=" $ ".
IF VALUE<~ THEN VALUE=-VALUE:
MONEY$(l,l)="-"

ATARI BASIC Faster & Better 75

20085 MONEY$(COLUMNS-2-LEN(STR$(INT(VALUE))),COLUMNS-3)=
STR$(INT(VALUE))

20086 REM ROUND TO NEAREST PENNY
20087 MONEY$(COLUMNS-l,COLUMNS)=

STR$(100+INT((VALUE-INT(VALUE))*100+0.5)) :
MONEY$(COLUMNS-2,COLUMNS-2)=" ."

20088 RETURN

Formatted Telephone Numbers

Another very useful format routine is PHONE.LST. The following routine requires the
area code to be stored in AREA, and a telephone number which has been separated and
stored in PREFIX and NUMBER. The routine will return a string, PHONE$, that contains
the telephone number in the format (XXX) XXX-XXXX. This makes the number much
easier to understand and use in printed listings.

Figure 6.2 - FORMATTED TELEPHONE N UMBERS Subroutine

20090 REM FORMATTED TELEPHONE NUMBERS
20091 REM USE LINE 20092 ONLY ONCE
20092 DIM PHONE$(14)
20093 PHONE$="(XXX) XXX-XXXX"
20094 PHONE$(2,4)=STR$(AREA):

PHONE$(7,9)=STR$(PREFIX) :
PHONE$(11,14)=STR$(NUMBER):
RETURN

20095 REM LINE 20096 IS FOR DEMO ONLY
20096 AREA=714:

PREFIX=555 :
NUMBER=2121 :
PRINT AREA,PREFIX,NUMBER :
GOSUB 20092 :
PRINT PHONE$:
STOP

Base Conversions
Hexadecimal-to-Decimal Conversions

In many cases it is much more efficient to work with hexadecimal (hex) notation than with
decimal. In fact, it is almost mandatory if you expect to do much machine language
programming. To convert from hex to decimal is easy. You can use the following routine to
convert any two or four place (in other words, one or two byte) hex number into a decimal
number by storing your hex number in HEXNUMBER$ and using a GOSUB to
HEXDEC.LST. The routine uses a common mathematical trick that will return the proper
decimal number in DECNUMBER.

76 Chapter 6

20100 REM HEXDEC .LST - CONVERT HEX NUMBERS TO DECIMAL
20101 DIM HEXDEC$(23),HEXNUMBER$(4)
20102 HEXDEC$ = "ABCDEFGHIJ*******KLMNOP":
20103 REM THIS IS THE MAIN ENTRY POINT
20104 DECNUMBER=0:HEX=LEN(HEXNUMBER$)

FOR X = 1 TO HEX:
DECNUMBER = 16*DECNUMBER +
ASC(HEXDEC$(ASC(HEXNUMBER$(X)-47))-65 :
NEXT X:
RETURN

This routine is particularly useful if you are writing a BASIC program that requires you to
INPUT hex numbers. All you have to do is make the input variable a string and store the
input in HEXNUMBER$ before calling the HEXDEC routine.

Decimal-to-Hexadecimal conversions

DECHEX.LSTis very similar mathematically to HEXDEC.LST. The primary difference
is the direction of the conversion. This routine will take a decimal number stored in the
variable DECNUMBER, and convert it to a hex number, stored in HEXNUMBER$. The
variable, BYTES, specifies the size of the hex number as either one or two bytes.

20110 REM DECHEX .LST - CONVERT DECIMAL NUMBERS TO HEX
20111 DIM DECHEX$(16)
20112 DECHEX$=10123456789ABCDEF" :
20013 KHEX=4096: PRINT "$" :IF BYTES=-1 THEN KHEX=16:2Z=2
20014 FOR 1=1 TO Z4 :

J=INT(DECNUMBER/ KHEX):PRINT DECHEX$(J+l,J+D);
20015 DECNUMBER=DECNUMBER-KHEX*J :

KHEX=KHEX/ 16 :
NEXT I: PRINT:IF BYTES=1 THEN BYTES=2:Z4=4

20116 RETURN

The following program, HEADERBAS, is a practical application program that uses the
DECHEX.LST routine, albeit in a slightly modified form that reduces the repetition of the
DIM and initial assignment statement. HEADERBAS reads the file header on a disk file
and tells you whether the file is for a BASIC program or a binary load machine language
program. If the file is a binary load file, then HEADERBAS will tell you certain important
parameters for the file . Namely, you will be told the START and END addresses of where
the file is loaded into memory. The length of the file will be displayed and you will be given
the option of tracing the RUN and INIT addresses. If you chose to find out the RUN and
INIT addresses, then HEADERBAS will search the file for these parameters and display
them for you. If the file turns out to be what is called a compound load file, you will be notified
of this fact and given the option of continuing the trace operation. All addresses and lengths
are printed in both decimal and hex format. If you press CTRL-R, HEADER will go into an
auto-scan mode looking for an INIT or RUN address. The auto scan feature stops when one
of these is found, the end of file is reached, or you press the space bar.

Figure 6.3 - HEADER. BAS - Disk File Analyzer

1000 REM HEADER. BAS-DOS FILE ANALYZER
1010 Z0=0:

Z1=1 :
Z2=2:
Z4=4 :
Z8=8:
Z16=16

1020 IOCB=3 :
POKE 752,1

1030 DIM FILE$(ZI6),
RESPONSE$ (Z16) ,
DECHEX$ (116) ,
BLANK$(32) ,
CIO$(31)

1040 FILE$="Dl:":
SEGMENT=Z0:
DECNUMBER=Z0 :
FLAG1=Z0 :
FLAG2=Z0

1050 DECHEX$="0123456789ABCDEF"
1060 BLANK$ (1) =" ":

BLANK$(32)=" ":
BLANK$(2)=BLANK$

1070 GOSUB 2560
1080 GOTO 1400
1090 REM COMMAND ROUTINE
1100 TRAP 1100
1110 POSITION Z2,18 :

PRINT "PRESS mDII TO QUIT"
1120 PRINT "PRESS mill TO LOOK FOR RUN/ INIT"
1130 PRINT "PRESS mmi TO LOAD NEW FILE"
1140 IF PEEK(53279)=6

THEN POKE 764,255 :
CLOSE #IOCB:
RUN

1150 IF PEEK(53279)=5
THEN 2070

1160 IF PEEK(53279)=3
THEN 1210

1170 REM CTRL-R AUTO SCANS FOR INIT
1180 IF PEEK(764)=168

THEN 2070
1190 POKE 77.0
1200 GOTO 1140
1210 POKE 752,Z0 :

POKE 764,255:
CLOSE #IOCB

1220 END

AT ARI BASIC Faster & Better 77

78 Chapter 6

1230 REM DECIMAL-TO-HEX CONVERTER
1240 KHEX=4096 :

PRINT "$";
1250 IF BYTES=Z1

THEN KHEX=Z16:
Z4=Z2

1260 FOR I=ZI TO Z4
1270 J=INT(DECNUMBER/ KHEX)
1280 PRINT DECHEX$(J+Zl,J+Z1);
1290 DECNUMBER=DECNUMBER-KHEX*J
1300 KHEX=KHEX/ ZI6
1310 NEXT I:

PRINT
1320 IF BYTES=Z1

THEN BYTES=Z2:
Z4=4

1330 RETURN
1340 IF SEGMENT

THEN PRINT "~illt;linll" :
GO TO 1100

1350 PRINT "1iDi" :
GOTO 1100

1360 REM CLEAR THE MESSAGE BOARD
1370 POSITION Z2,Z8
1380 PRINT BLANK$
1390 RETURN
1400 PRINT CHR$(125) :

POSITION Z2,Z2 :
PRINT "HEADER . BAS - DOS 2.0 FILE ANALYZER"

1410 POSITION Z2,6 :
PRINT "ENTER NAME OF FILE" :
GOTO 1460

1420 POSITION Z2,Z8
1430 PRINT" ";CHR$(253)
1440 FOR I=ZI TO 200 :

NEXT I
1450 GOSUB 1370
1460 POSITION 21,6
1470 PRINT BLANK$(I,13)
1480 POSITION 21,6
1490 FILE$(Z4,ZI6)=BLANK$(I,12)
1500 TRAP 1420
1510 CLOSE #IOCB
1520 INPUT RESPONSE$
1530 IF RESPONSE$ <> " DOS . SYS"

AND RESPONSE$<>"DUP.SYS"
AND RESPONSE$<>"MEM .SAV"
THEN 1600

1540 GOSUB 1370
1550 POSITION Z2,Z8

DO NOT USE DOS FILES 1560 PRINT " ' ; CHR$ (253)

157~ FOR I=Z1 TO 2~~:

NEXT I
158~ GOTO 142~

159~ REM FETCH FIRST TWO HEADER BYTES
16~~ IF FLAG1=1

THEN 11~~

161~ FILE$(Z4,Z16)=RESPONSE$
162~ OPEN #IOCB,Z4,Z~,FILE$
163~ GET #IOCB,T :

GET #IOCB,U
164~ IF T OR U

THEN 177~

165~ GOSUB 137~

166~ POSITION Z2,Z8
167~ PRINT I "; CHR$ (253)
168~ GO TO ll~~
169~ POSITION Z2,1~
17~~ PRINT "FIRST BYTE = ";
171~ DECNUMBER=T :

BYTES=Zl
172~ GOSUB 124~

173~ PRINT "SECOND BYTE = ";
174~ DECNUMBER=U:

BYTES=Zl
175~ GOSUB 124~

176~ RETURN
1770 GOSUB 1690
178~ REM FETCH NEXT FOUR HEADER BYTES
1790 GET #IOCB,V:

GET #IOCB, W
180~ GET #IOCB,X :

GET #IOCB,Y
1810 FLAG1=1
1820 REM COMPUTE START AND END
1830 MLSTART=V+256*W
1840 MLEND=X+256*Y
1850 SIZE=INT(MLEND-MLSTART)+Z1 :

IF SIZE>3000~
OR SIZE<~
THEN 2660

1860 POSITION 21,12
1870 PRINT BLANK$(1,5)
1880 POSITION 21,13
1890 PRINT BLANK$(I,5)
1900 POSITION 21,14
1910 PRINT BLANK$(1,5)
1920 POSITION Z2,12
1930 PRINT "STARTING ADDRESS = ";MLSTART
1940 DECNUMBER=MLSTART
1950 POSITION 28,12
1960 GOSUB 1240
1970 PRINT "ENDING ADDRESS = ";MLEND

AT ARI BASIC Faster & Better 79

80 Chapter 6

1980 DECNUMBER=MLEND
1990 POSITION 28,13
2000 GOSUB 1240
2010 PRINT "LENGTH OF FILE = ";SIZE
2020 DECNUMBER=SIZE
2030 POSITION 28,14
2040 GOSUB 1240
2050 GO TO 1100
2060 REM MOVE POINTER TO SEGMENT END
2070 BLOCK=SIZE:

SUM=Z0:
IF SIZE>30000
OR SIZE<0
THEN 2660

2080 IF SIZE<=Z0
THEN 2140

2090 IF SIZE<=2
AND (T=224 OR T=226)
THEN SIZE=0 :
GO TO 2150

2100 IF BLOCK>125
THEN BLOCK=BLOCK-125 :
GOTO 2100

2110 X=USR(ADR(CIO$) ,BLOCK)
2120 SUM=SUM+BLOCK :

BLOCK=SIZE-SUM :
IF BLOCK
THEN 2100

2130 GOTO 2150
2140 GOSUB 1370:

POSITION Z2,Z8 :
END OF FILE REACHED PRINT "

GOTO 1100
2150 TRAP 2140 :

GET #IOCB,T :
GET #IOCB,U

2160 POSITION Z2,10 :
PRINT BLANK$

2170 POSITION Z2,11 :
PRINT BLANK$

2180 IF T=255
AND U=255
THEN GOSUB 1690:
GET #IOCB,T :
GET #IOCB,U

2190 IF T=224
AND U=2
THEN 2410

2200 IF T=226
AND U=2
THEN 2290

2210 REM COMPOUND LOAD FILE

" .

2220 V=T :
W=U

2230 GOSUB 1370:
POSITION Z2, Z8:

THIS IS A COMPOUND LOAD FILE PRINT "
SEGMENT=SEGMENT+Zl

2240 POSITION Z2,9 :

" .

PRINT " THESE PARAMETERS ARE FOR SEGMENT
2250 POSITION Z2,15 :

PRINT BLANK$
2260 POSITION Z2,16 :

PRINT BLANK$
2270 GET #IOCB,X :

GET #IOCB,Y:
GOTO 1830

2280 REM SIMPLE LOAD FILE
2290 GET #IOCB,V :

GET #IOCB,W
2300 IF V<>227

OR W<>2
THEN 1100

2310 GET #IOCB,INITL:
GET #IOCB, INITH

2320 INIT=INITL+256*INITH
2330 POSITION Z2,15
2340 IF FLAG2

THEN POSITION Z2,16
2350 PRINT "INIT ADDRESS
2360 DECNUMBER=INIT
2370 POSITION 28,15
2380 IF FLAG2

THEN POSITION 28,16
2390 GOSUB 1240:

POKE 764 ,255 :
GOSUB 2710

2400 SIZE=l:
GOTO 1100

2410 GET #IOCB,V :
GET #IOCB,W

2420 IF V=225
AND W=2
THEN FLAG2=0 :
GOTO 2450

2430 IF V=227
AND W=2
THEN FLAG2=1 :
GOTO 2450

2440 GO TO 1100
2450 GET #IOCB,LRUN :

GET #IOCB,HRUN
2460 GOADDR=LRUN+256*HRUN
2470 POSITION Z2,15

= ";INIT

ATARI BASIC Faster & Better 81

#" ; SEGMENT +Zl

82 Chapter 6

248~ PRINT "RUN ADDRESS = ";GOADDR:
DECNUMBER=GOADDR

249~ POSITION 28,15
25~~ GOSUB 124~:

POKE 764,255:
GOSUB 271~

251~ IF FLAG2
THEN 231~

252~ FLAG2=~ :

SIZE=1 :
GOTO 11~~

253~ REM MACHINE LANGUAGE BYTE READER
254~ REM DATA FROM DISK IS NOT SAVED.
255~ REM EXECUTED ON FIRST RUN ONLY
256~ FOR X=Z1 TO 3~

2570 READ Y
2580 CIO$(X,X)=CHR$(Y)
2590 NEXT X
260~ RETURN
2610 DATA 1~4,162,48,169,7,157,66,3
262~ DATA 169,0,157,68,3,169,224,157
263~ DATA 69,3,1~4,157,73,3,1~4,157
264~ DATA 72,3,32,86,228,96
265~ REM CHECK FOR END OF FILE
266~ TRAP 268~:

GET #IOCB,ERROR
267~ PRINT CHR$(125):

POSITION 2, 1~ :

PRINT "FATAL ERROR":
GOTO 1210

2680 IF PEEK(195)=136
THEN 214~

2690 GOTO 267~
27~~ REM TONE
271~ SOUND ~,50,1~,4
272~ FOR X=1 TO 5~:

NEXT X
273~ SOUND ~,0,0,~:

RETURN

ATARI BASIC Faster & Better 83

Using Strings

The string handling capabilities of BASIC provide countless opportunities to design
powerful program utilities. This chapter will give you some ideas and some standard
subroutines that will multiply the power of your programs.

PEEKs, POKEs, and Strings

There are three special string commands that are very useful. ADR(STRING$) will return
the value of START. Thus you can look at and modify the contents of a string by PEEKing or
POKEing directly at the memory locations that hold the contents of your string. Try the
following example:

100 DIM DUMMY$(10)
110 DUMMY$="1234567890":

PRINT DUMMY$
120 FOR X=0 TO 9 :

POKE (ADR(DUMMY$)+X),65+X:
NEXT X:
PRINT DUMMY$

This example replaces the numbers in DUMMY$ with the alphabet letters A through J.
You could use this technique to POKE a machine language subroutine into a string.
However, the ADR command is used primarily to set the jump address of a USR function.
For example, X=USR(ADR(STRING$)).

The ADR command has another interesting property. If you say X=USR(ADR"XYZ"),
the value returned by ADR is the location in your program of "XYZ". More specifically, it is
the address of that particular reference to "XYZ"! Generally, in this usage, the actual XYZ
will be a small machine language routine.

The second string command of special interest is LEN(STRING$). This command
returns the current length (LENGTH in Figure 7.1) of the string variable. This value is
dynamically updated every time you modify the string. The following program statements
will show you what I mean:

84 Chapter 7

100 DIM DUMMY$(10)
110 DUMMY$="ABCDEF" :

PRINT LEN(DUMMY$)
120 DUMMY$="ABC":

PRINT LEN(DUMMY$)

The third special string command is CLR. This command UN -dimensions all of your
string variables and makes the computer "forget" that you ever used them! In essence, CLR
zeros out the Variable Value Table and sets the string array space to zero length. CLR has
the same effect on any dimensioned variable or string. Scalar variables are all set to zero, but
their names are left in the VNT; and although the names of your dimensioned variables and
strings are left in the Variable Name Table, they must be dimensioned all over again if they
are needed after a CLR.

Before we start manipulating strings, it is useful to know how BASIC stores and handles
them. For each string variable in a program, BASIC maintains an eight-byte pointer in the
Variable Value Table (VVT). The first byte will always be equal to 128 or 129 for a string
variable since this is how BASIC distinguishes a string variable from some other variable
type. If the string variable has not yet been dimensioned, the first byte will be set to 128. A
value of 129 indicates that the string variable has been dimensioned. The second byte is the
variable number (equal to its relative position in the VNT) which will range from 0 to 127.
The third and fourth bytes contain the LSB and MSB of the offset of that particular string.
The offset is the number of bytes from the beginning of the String Array Table Pointer
(STARP) to the actual storage location ofthe contents of that string variable. Bytes five and
six are the LSB and MSB of the dimensioned length of the string. Bytes seven and eight
contain the LSB and MSB of the last location in the string that has information written in it.
With these definitions, the following table is useful:

Figure 7.1 - String Storage Pointers

NAME HOW TO FIND IT WHAT IT MEANS
===

VNUMBER Use VLIST . LST Variable's ID number
VVTP PEEK(134)+256*PEEK(135) Start of VVT
STARP PEEK(140)+256*PEEK(141) Start of string storage area
REF VVTP+(VNUMBER-1)*8 Reference to your string
TYPE PEEK(REF+1) 128=not DIM; 129=DIMensioned
VNUM PEEK(REF+2) Same as VNUMBER
OFFSET PEEK(REF+3)+256*PEEK(REF+4) Value to add to STARP
MAXSIZE PEEK(REF+5)+256*PEEK(REF+6) DIMensioned length of string
LAST PEEK(REF+7)+256*PEEK(REF+8) Last used element of string
START STARP+OFFSET Where string contents start

(same as result of ADR)
LENGTH LAST-START Actual length of your string

(same as result of LEN)

The equations in this table were used in VLIST.LST to analyze string variables. The only
easy way to obtain the value of VNUMBER is to use VLIST.LST. Why Atari chose to repeat
this value in the VVT is a mystery to all of us.

ATARI BASIC Faster & Better 85

It is important to note that BASIC does not move a string to the string array table unless it
is used as a variable. For example, if line 100 of your program says:

1~~ DIM A$(l~) : A$="CAT":PRINT A$;" KILLS DOG"

... the string A$ is stored as discussed above. The string "KILLS DOG" is a literal string that
is not stored in the string table. In fact, it is only "stored" in the position in memory where it
occurs in line 100. So, though two strings were defined in line 100, only one of them was
stored in the string storage area. Keeping this in mind, you can judge the ramifications of
various methods of programming your application. Note that A$ uses a fixed amount of
memory for overhead and a small amount for each reference to the string. The literal string,
on the other hand, will use the same amount of memory every time you use the string.

If we use a command that "lengthens" A$ during a BASIC program, the contents of the
string array table are dynamically updated. The most obvious mistake made in these cases is
to try to set A$ equal to something that is longer than the maximum dimensioned length of
A$. The computer will barf if this happens and halt your program with an ERROR 5.

Blanking a String

If you need to pre-set a string to all blanks or some other character, you can use the
following trick:

STRING$(l)=" ":STRING$(MAX)=" ":STRING$(2)=STRING$

Note that the "blank" between the quotes can be replaced by any other valid character.
This trick works due to how BASIC performs a string equate. It literally does a sequential
byte-by-byte transfer. Try the following experiment:

1~0 DIM STRING$(l5) :STRING$="123456789
11~ STRING$(7,15)=STRING$(1,9):PRINT STRING$

The result that is printed isn't what you think it will be

Now that you have a better understanding of how BASIC handles and stores strings, we
can discuss some special purpose subroutines for string handling. Each of these routines has
been of use to me in one or more application programs, and I am sure that you will also find
them to be indispensible time savers.

Stripping Trailing Blanks from a String

Here's a subroutine that you can use when you want to insure that there are no trailing
blanks on a string. STRIPPER.LST returns the contents ofWORD$ with any trailing blanks
removed.

Figure 7.2 - STRIPPER.LS T

2~120 STRIPPER.LST
2~121 REM WORD$ MUST BE PRESET
2~122 REM BY THE CALLING PROGRAM
20123 FOR X=LEN(WORD$) TO 2 STEP -1
2~124 IF WORD$(X,X)<>" " THEN POP :

GOTO 20126
2~125 NEXT X: RETURN
2~126 WORD$=WORD$(1,X): RETURN

86 Chapter 7

The only restrictions are that the calling program must have previously dimensioned
WORD$ and that the string that you want stripped must be stored in WORD$. Also, you
should be careful to make sure that the only thing stored in WORD$ is your string. This is
easily done by presetting WORD$ to all blanks using the method we just discussed:

WORD$(I)=" ":WORD$(MAX)=" ":WORD$(2)=WORD$

In this case MAX is the dimensioned length of WORD$.

Justifying and Centering Strings

The RIGHT.LST, LEFT.LST and CENTER.LST subroutines are very useful when you
are working with variable length strings and you want to print them in special formats on the
video display or line printer.

Right Justifying a String

RIGHT.LST pads enough spaces to the left of a string, WORD$, so that its current length
will be COLUMNS and forces the original contents of WORD$ to be right justified. Any
trailing blanks are automatically stripped before the contents are right justified. The
primary restrictions are that WORD$ and a temporary string called TEMP$ must be
dimensioned to the same length before the routine is called. Additionally, the length of the
the final string must be preset in COLUMNS. X is a temporary variable only. This
subroutine is handy when you want to print variable length strings in nice, neat columns on a
line printer. RIGHT.LST makes all of the right hand edges line up.

Figure 7.3 - RIGHT.LST

20130 REM RIGHT .LST
20131 REM COLUMNS,WORD$,AND TEMP$ MUST
20132 REM BE PRESET BY CALLING PROGRAM
20133 TEMP$(1)=" ":

TEMP$(COLUMNS)=" ".
TEMP$(2)=TEMP$

20134 FOR X=LEN(WORD$) TO 2 STEP -1 :
IF WORD$(X,X)<>" " THEN POP :
GOTO 20136

20135 NEXT X:
RETURN

20136 WORD$=WORD$(I,X)
20137 TEMP$(COLUMNS+I-LEN(WORD$),COLUMNS)=WORD$:

WORD$=TEMP$:
RETURN

Here is an example of RIGHT.LST:

WORD$="CALIFORNIA ":COLUMNS=15 : GOSUB 20130
returns WORD$=" CALIFORNIA".

ATARI BASIC Faster & Better 87

Left Justifying A String

LEFT.LST pads enough blanks to the right of a string to left justify it. The routine works
very much like RIGHT.LST and the same restrictions apply to both routines.

Figure 7.4 - LEFT.LST

20140 REM LEFT.LST
20141 REM FIELDS AND WORD$ MUST BE
20142 REM PRESET BY THE CALLING PROGRAM
20143 FOR X=1 TO LEN(WORD$):

IF WORD$(X,X)<>" " THEN POP :
GOTO 20145

20144 NEXT X
20145 WORD$=WORD$(X,LEN(WORD$):

RETURN

Here is an example of LEFT.LST:

WORD$=" CALIFORNIA": COLUMNS=15: GOSUB 20140
returns WORD$="CALIFORNIA "

If you don't want the trailing blanks left on the string, do another call to
STRIPPER.LST.

Centering a String

CENTER.LST pads enough blanks before a string and after it to center the string. The
same restrictions that applied to the previous two routines also apply to this routine.

Figure 7.5 - CENTER.LST

20150 REM CENTER.LST
20151 REM COLUMNS, WORD$, AND TEMP$ MUST
20152 REM BE PRESET BY THE CALLING PROGRAM
20153 TEMP$(1)=" ":

TEMP$(COLUMNS)=" ":
TEMP$(2)=TEMP$

20154 FOR X=LEN(WORD$) TO 2 STEP -1 :
IF WORD$(X,X)<>" " THEN POP :
GOTO 20156

20155 NEXT X
20156 WORD$=WORD$(I,X) :

FOR X=1 TO LEN(WORD$) :
IF WORD$(X,X)<>" " THEN POP
GOTO 20158

20157 NEXT X
20158 WORD$=WORD$(X,LEN(WORD$)):

X=INT((COLUMNS-LEN(WORD$)) / 2)+1

88 Chapter 7

20159 TEMP$(X,LEN(WORD$)+X)=WORD$:
WORD$=TEMP$:
RETURN

Here are a couple of examples using CENTER.LST:

WORD$=" CALIFORNIA ":COLUMNS=16:GOSUB 20150
returns WORD$=" CALIFORNIA "

WORD$="CALIFORNIA" :COLUMNS=20 :GOSUB 20150
returns WORD$=" CALIFORNIA "

The Last Shall Be First and the First Shall Be Last

In mailing lists, payroll and many other applications, it is useful to store names on disk with
the last name of a person preceding his first name. This storage method makes it easier to
sort the name file and put it in alphabetical order by the last name of each person. The
REVERSE.LST routine converts a string stored in "last,first" format to a string in "first
last" format. The routine looks for a comma in a string and swaps the data on the left side of
the comma with the data on the right of the comma. If a comma is not found in the string, the
string is not modified.

Here are some examples:

WORD$="JONES,SALLY" :GOSUB 20160
returns WORD$="SALLY JONES".

WORD$="JOHNSON,MR . & MRS. BILL":GOSUB 20160
returns WORD$="MR. & MRS. BILL JOHNSON".

WORD$="ABC SUPPLY COMPANY" :GOSUB 20160
returns WORD$="ABC SUPPLY COMPANY".

WORD$="Strings,How To Sort":GOSUB 20160
returns WORD$="How To Sort Strings".

The only restriction with REVERSE.LST is that the strings WORD$, TEMP$ and
TEMPl$ must be dimensioned in your main program before calling the subroutine. I usually
dimension all three strings to a length of 40. This shouldn't be a problem since the routine
automatically strips any trailing blanks before it reverses the string.

Figure 7.6 - REVERSE.LST

20160 REM REVERSE.LST
20161 REM WORD$, TEMP$, AND TEMP1$
20162 REM MUST BE PRESET BY CALLING PROGRAM
20163 TEMP$=" ":

TEMP1$=" "

2~164 FOR X=LEN(WORD$) TO 2 STEP -1 :
IF WORD$(X,X)<>" " THEN POP:
GOTO 2~166

2~165 NEXT X
2~166 WORD$=WORD$(l,X):

FOR X=LEN(WORD$) TO 2 STEP -1:
IF WORD$(X,X)="," THEN POP
GOTO 2~168

2~167 NEXT X
2~168 TEMP1$=WORD$(l,X-1) :

TEMP$=WORD$(X+1,LEN(WORD$)):
TEMP$(LEN(TEMP$)+l)=" "

2~169 WORD$=TEMP$:
WORD$(LEN(WORD$)+1)=TEMP1$:
RETURN

ATARI BASIC Faster & Better 89

If you want to modify REVERSE .LST so that it will use a delimiter other than a comma to
separate the two substrings, then replace the quoted comma in line 20166 with the character
that you want to use.

Peeling Words Off of a String

Here's a subroutine that you can use to process a list of words entered by the operator. The
PEELOFF.LST subroutine gets, one by one, each word in a string of words separated by
commas. Upon each call to this subroutine, WORD$ contains a list of words. Upon return,
ORDER$ contains the next word. When all words have been accessed, a value of -1 will be
returned in the variable X. For all other calls, this variable will contain the length of the word
that is returned in ORDER$.

Figure 7.7 - PEELOFF.LST

2~18~ REM PEELOFF.LST
2~181 REM ORDER$ AND WORD$ MUST BE
2~182 REM PRESET BY CALLING PROGRAM
2~183 IF X<~ THEN WORD$="" :

X=~:

RETURN
2~184 ORDER$=WORD$:

FOR X=l TO LEN(ORDER$)
2~185 IF ORDER$(X,X)="," THEN POP

GOTO 2~187
2~186 NEXT X:

X=-l :
RETURN

2~187 ORDER$=WORD$(l,X-1):
WORD$=WORD$(X+1,LEN(WORD$)) :
X=LEN(ORDER$):
RETURN

90 Chapter 7

Here is an example of PEELOFF.LST:

Make three calls to PEELOFF.LST.
Start with WORD$="JOHNSON,PAT,ERIC".

The first GOSUB 20180 will return
ORDER$="JOHNSON" and WORD$="PAT,ERIC" and X=7.

The second GOSUB 20180 will return
ORDER$="PAT" and WORD$="ERIC" and X=3.

The third GOSUB 20180 will return
ORDER$="ERIC" and WORD$="ERIC" and X=-l.

Massaging an Unruly String

Some processes require a string to be in a special form. The two that I have encountered
most often are "upper vs. lower case" and "positive vs. inverted characters."
LOWTOCAP.LST takes care of the first case, and INVERT.LST handles the second.

Converting a Lower Case String to Upper Case

The subroutine LOWTOCAP.LST searches a string for lower case characters and
converts them to upper case characters. The string to be scanned must be stored in WORD$
before your program calls this subroutine.

Figure 7.8 - LOWTOCAPLST

20190 REM LOWTOCAP.LST
20191 REM WORD$ MUST BE PRESET
20192 REM BY THE CALLING PROGRAM
20193 FOR X=1 TO LEN(WORD$) :

IF ASC(WORD$(X,X))>96
AND ASC(WORD$(X,X))<123

THEN GOSUB 20195
20194 NEXT X:

RETURN
20195 WORD$(X,X)=CHR$(ASC(WORD$(X,X))-32):

RETURN

Here is an example of LOWTOCAP.LST:

Set WORD$="John Paul Jones".
GOSUB 20190 returns WORD$="JOHN PAUL JONES".

Inverting the Characters in a String

The second special case is converting all the inverted characters in a string to non-inverted
characters. INVERT.LST is a subroutine that will convert all normal characters into
inverted ones or vice versa. The string to be inverted must be stored in W 0 RD$, and the flag
variable INVERT must be set to 0,1 or -1. IfINVERT=O, then only inverse characters will
be flipped. IfINVERT=l, only normal characters will be flipped. IfINVERT=-l, then all
normal characters will become inverted, and all inverted characters will become normal.

Figure 7.9 - INVERT.LST

2~2~~ REM INVERT.LST
2~2~1 REM WORD$ AND INVERT MUST
2~2~2 BE PRESET BY CALLING PROGRAM
2~2~3 FOR X=l TO LEN(WORD$) :

Y=ASC(WORD$(X,X)
2~2~4 IF Y<32 OR Y>25~ OR (Y>122 AND Y<16~)

THEN GO TO 2~2~7

ATARI BASIC Faster & Better 91

2~2~5 IF (Y>3l AND Y<123) AND (INVERT=l OR INVERT=-l)
THEN WORD$(X,X)=CHR$(ASC(WORD$(X,X)+128):

GOTO 2~2~7
2~2~6 IF (Y>159 AND Y<25l) AND (INVERT=~ OR INVERT=-l)

THEN WORD$(X,X)=CHR$(ASC(WORD$(X,X)-128)
2~2~7 NEXT X
2~2~8 RETURN

Here is a brief summary of the possible options:

INVERT=

-1
~
1

FUNCTION PERFORMED

All alphanumeric characters are flipped
Only inverse alphanumeric characters are flipped
Only normal alphanumeric characters are flipped

If you want to modify INVERT.LST to work on keyboard graphic characters as well,
delete line 20204 and change the limits of the IF statement in line 20205 to (Y>O AND
Y<129) and line 20206 to (Y>128 AND Y<256).

Messing Around Inside a String

The second biggest deficiency of ATARI BASIC is the lack of true string arrays in the
same sense that we can have numerical arrays. (The biggest deficiency is the lack of true
integers.) The resulting problems are fortunately not insurmountable. The routines in this
section will show you how to verify that a substring is in a string and also several ways to
simulate real string arrays. The PEELOFF.LST routine was a first step in this direction.

Verifying That a Substring is Really There

VERIFY.LST is a subroutine that searches a string for the presence of a specific
substring. The string to be searched must be stored in WORD$, and the substring you are
searching for must be stored in CODE$. The variable X will return the location of the first
character in the substring. If the substring is not found in the target string, then X will be set
to-I.

92 Chapter 7

Figure 7.10 - VERIFYLST

2.017.0 REM VERIFY.LST
2.0171 REM CODE$ AND WORD$ MUST BE
2.0172 REM PRESET BY THE CALLING PROGRAM
2.0173 FOR X=LEN(WORD$) TO 1 STEP -1
2.0174 IF WORD$(X+1-LEN(CODE$),X)=CODE$ THEN POP

X=X+1-LEN(CODE$) :
GOTO 2.0176

2.0175 NEXT X:
X=-l

2.0176 CODE$=" II.

RETURN

Performing a VERIFY in Machine Language

BASIC is OK for verifying short strings, but a long string can take many seconds to search
if you are using BASIC. When you have a long string, I recommend that you use SEEKER,
which is a machine language subroutine that will search WORD$, element-by-element, for
the target string, CODE$. If CODE$ is found in WORDS, then the variable SEARCH will
contain the element number in WORDS where CODES occurs. If CODES is not found, then
SEARCH will be set to zero. If you made a mistake in the USR call to SEEKER, a value of
40000 will be stored in SEARCH to let you know that an error was found. Figure 7.11 is an
assembly listing of SEEKER. The POKE values are given in Figure 7.12. The assembly
listing tells you how to call SEEKER from BASIC, so I won't repeat all of that information
here.

Figure 7.11 - Assembled Listing of SEEKER

1.0.0.0 ;SEEKER - STRING SEARCH SUBROUTINE
1.01.0
1.02.0 ;CALLED FROM BASIC USING
1.03.0 ;SEARCH=USR(AEXP.0,AEXP1,AEXP2,AEXP3,AEXP4)
1.04.0 ;WHERE AEXP.0 = ADR(SEEKER$)
1.05.0 AEXP1 = ADR(WORD$)
1.06.0 AEXP2 = INT(LEN(WORD$)/LEN(CODE$))
1.07.0 AEXP3 = ADR(CODE$)
1.08.0 AEXP4 = LEN(CODE$)
1.09.0
11.0.0
111.0
112.0
113.0
114.0
115.0
116.0

;UPON RETURN TO BASIC, THE VARIABLE 'SEARCH' WILL BE
.0 = CODE$ NOT FOUND
X = ELEMENT NUMBER WHERE CODE$ WAS FOUND

4.0.0.0.0 = ERROR DURING INPUT

*= $6.0.0 ;COMPLETELY RELOCATABLE

117.0 ;SET UP ZERO PAGE POINTERS
118.0

AT ARI BASIC Faster & Better 93

~~CB 119~ AWORDL $CB ;START ADDRESS OF STRING
~~CC 12~~ AWORDH $CC ;ARRAY TO BE SEARCHED
~~CD 121~ TOTALL $CD ;NUMBER OF ELEMENTS IN
0~CE 122~ TOTALH $CE ;THE STRING ARRAY
0~CF 123~ ACODEL $CF ;START ADDRESS OF CODE$
0~D~ 124~ ACODEH $D~

0~Dl 125~ LCODE $Dl ;LENGTH OF CODE$
0~D4 126~ COUNTL $D4 ;LOCATION OF CODE$ INSIDE
0~D5 127~ COUNTH $D5 ;THE STRING ARRAY

128~ ;
129~ ;INPUT ERROR TRAP
13~0 ;

~6~~ 68 131~ PLA ;GRAB NUMBER OF ARGUMENTS
~6~1 C9~4 132~ CMP #4
~6~3 F0~9 133~ BEQ GOOD ;IF ONLY 4, THEN CONTINUE
06~5 AA 134~ TAX ;WRONG NUMBER? THEN
~6~6 68 135~ KILL PLA ;RETRIEVE PROPER RTS ADDRESS
~6~7 68 136~ PLA
~6~8 CA 137~ DEX
~6~9 D~FB 138~ BNE KILL
~6~B 18 139~ CLC
~6~C 9~66 14~~ BCC ERROR

141~ ,
142~ ; INITIALIZE POINTERS
143~ ;

060E 68 144~ GOOD PLA
060F 85CC 145~ STA AWORDH
0611 68 146~ PLA
~612 85CB 147~ STA AWORDL
~614 68 148~ PLA
~615 85CE 149~ STA TOTALH
~617 68 15~~ PLA
~618 85CD 151~ STA TOTALL
061A 68 152~ PLA
061B 85D0 153~ STA ACODEH
~61D 68 154~ PLA
~61E 85CF 1550 STA ACODEL

156~ ;
157~ ;MAKE SURE ~ < LEN(CODE$) < 256
158~ ;

~620 68 159~ PLA
0621 AA 1600 TAX
~622 68 161~ PLA
0623 C900 1620 CMP #0
~625 F~4D 1630 BEQ ERROR
~627 85D1 164~ STA LCODE
~629 8A 165~ TXA
~62A C9~~ 1660 CMP #~
~62C D~46 1670 BNE ERROR

168~ ;
169~ ;SEARCH LOOP
17~0 ;

94 Chapter 7

062E A5CO 1710 LOA TOTALL
0630 8504 1720 STA COUNTL
0632 A5CE 1730 LOA TOTALH
0634 8505 1740 STA COUNTH
0636 A000 1750 MAIN LOY #0 ;SET INDEX TO FIRST OF ELEMENT
0638 BICF 1760 LOOPI LOA (ACOOEL),Y ;COMPARE BYTE OF CODE TO
063A 01CB 1770 CMP (AWOROL) ,Y ;A BYTE OF THE ELEMENT
063C 001C 1780 BNE LOOP2 ;NO MATCH? THEN NEXT ELEMENT
063E C8 1790 INY ;MATCH? THEN DO BYTE-BY-BYTE
063F C501 1800 CMP LCOOE ;COMPARE TO REST OF ELEMENT
0641 00F5 1810 BNE LOOPI
0643 A5CO 1820 LOA TOTALL ;WE FOUND IT!!
0645 38 1830 SEC ;STORE ELEMENT NUMBER OF
0646 E504 1840 SBC COUNn ;COOE$ IN VARIABLE 'SEARCH'
0648 8504 1850 STA COUNn
064A A5CE 1860 LOA TOTALH
064C E505 1870 SBC COUNTH
064E 8505 1880 STA COUNTH
0650 18 1890 CLC
0651 E604 1900 INC COUNTL
0653 0028 1910 BNE EXIT
0655 E605 1920 INC COUNTH
0657 18 1930 CLC
0658 9023 1940 BCC EXIT
065A A5CB 1950 LOOP2 LOA AWOROL ;MOVE POINTER TO NEXT ELEMENT
065C 18 1960 CLC
0650 6501 1970 AOC LCOOE
065F 85CB 1980 STA AWOROL
0661 9002 1990 BCC LOOP3
0663 E6CC 2000 INC AWOROH
0665 A504 2010 LOOP3 LOA COUNTL ;HAVE WE REACHED THE END
0667 0006 2020 BNE LOOP4 ;OF THE STRING ARRAY?
0669 A505 2030 LOA COUNTH
066B F010 2040 BEQ EXIT ;YES? THEN COOE$ IS NOT HERE
0660 C605 2050 DEC COUNTH ;NO? THEN CONTINUE
066F C604 2060 LOOP4 DEC COUNn
0671 18 2070 CLC
0672 90C2 2080 BCC MAIN
0674 A900 2090 ERROR LOA #0 ;STORE ERROR CODE 40000
0676 8504 2100 STA COUNn ;IN THE VARIABLE 'SEARCH'
0678 A9A0 2110 LOA #$A0
067A 8505 2120 STA COUNTH
067C EA 2130 NOP ;NEEOEO FOR OATAPAK .BAS
0670 60 2140 EXIT RTS ;RETURN TO BASIC
067E 2150 .ENO

Figure 7.12 - BASIC POKE Version of SEEKER

2~24~ REM SEEKER .LST
2~241 DATA 1~4,2~l,4,24~,9,17~,l~4,l~4
2~242 DATA 2~2,2~8,251,24,144,1~2,1~4,133
2~243 DATA 2~4,l~4,133,2~3,l~4,133,2~6,l~4
2~244 DATA 133,2~5,l~4,133,2~8,l~4,133,2~7
2~245 DATA 1~4,17~,l~4,2~l,~,24~,77,133
2~246 DATA 2~9,138,2~l,~,2~8,7~,165,2~5
2~247 DATA 133,212,165,2~6,133,213,16~,~
2~248 DATA 177,2~7,2~9,2~3,2~8,28,2~~,197
2~249 DATA 2~9,2~8,245,165,2~5,56,229,212
2~25~ DATA 133,212,165,2~6,229,213,133,213
2~251 DATA 24,23~,212,2~8,4~,23~,213,24
2~252 DATA 144,35,165,2~3,24,l~l,2~9,133
2~253 DATA 2~3,144,2,23~,2~4,165,212,2~8
2~254 DATA 6,165,213,24~,16,198,213,198
2~255 DATA 212,24,144,194,169,~,133,212
2~256 DATA 169,16~,133,213,234,96
2~257 MLSTART=1536
2~258 MLEND=1661
2~259 FOR X=MLSTART TO MLEND
2~26~ READ Y:POKE X,Y:NEXT X
2~261 RETURN

Simulating Real String Arrays

ATARI BASIC Faster & Better 95

The entity that you are used to calling a string array really isn't a real array. It is simply a
string that has to be dimensioned. An array is a means of referring to a set of such strings.
Typically, each element of such an array is of a uniform length to simplify retrieving the
particular element that you need. You can have real arrays like those only indirectly . Your
program must do all of the bookkeeping that is done automatically on most other computer
systems or by Atari Microsoft BASIC. The following three subroutines will do most of that
kind of work for you. LOOKUP1D.LST is a subroutine that will fetch a particular
ELEMENT of a one dimensional string array where each element is of length SIZE. The
element you are looking for will be returned in the string TEMP$.

Figure 7.13 - LOOKUPlD.LST

2~210 REM LOOKUP1D .LST
20211 REM SIZE, ELEMENT, TEMP$, AND WORD$
20212 REM MUST BE PRESET BY THE CALLING PROGRAM
2~213 START=SIZE*(ELEMENT-l)+l
2~214 TEMP$=WORD$(START,SIZE*ELEMENT) :

RETURN

96 Chapter 7

Here is an example of LOOKUP1D.LST:

Set SIZE=4, ELEMENT=3, and WORD$=" GREGPAULERICCARL".
GOSUB 20210 returns TEMP$="ERIC".

LOOKUP2D.LST is similar to LOOKUP1D.LST except that it retrieves an element from
a two dimensional string array. In this routine we have replaced the one dimensional
ELEMENT with X and Y, which are the coordinates of the desired element in the two
dimensional array. In addition to SIZE, WORD$ and TEMP$, this routine also needs to
know the maximum value of X. We will call this variable XMAX.

Figure 7.14 - LOOKUP2D.LST

20220 REM LOOKUP2D.LST
20221 REM SIZE, XMAX, X, Y, TEMP$, AND WORD$
20222 REM MUST BE PRESET BY THE CALLING PROGRAM
20223 START=(X-l)*SIZE+l+(Y-l)*SIZE*XMAX:

LAST=START+SIZE-l:
TEMP$=WORD$(START,LAST):
RETURN

Here is a graphic representation of a two dimensional string array that we will use
LOOKUP2D.LST on:

Figure 7.15 Graphic Representation of a 2-D String Array

........ 1---- COLUMNS (X' s) -----l ...

2 3 4 5 6 7

+++

1
+ + + + + + + +

+ JOHNI + PAULI + ERICI + CARLI + GREGI + MARKI + MIKEl +
+ + + + + + + +

rJ) -
>- +++

+ +
(/)

+ + + + + +
~ 2
a::::

+ JOHN2 + PAUL2 + ERIC2 + CARL2 + GREG2 + MARK2 + MIKE2 +

~
+ + + + + + + +
+++
+ + + + + + + +

3 + JOHN3 + PAUL3 + ERIC3 + CARL3 + GREG3 + MARK3 + MIKE3 +
+ + + + + + + +
+++

ATARI BASIC Faster & Better 97

We will use this 7-by-3, two dimensional array in a couple of examples to illustrate
LOOKUP2D.LST. In these examples, SIZE=5 and XMAX=7:

EXAMPLE 1 - Find the element (4,2).

X=4:Y=2 :GOSUB 2~22~

returns TEMP$="CARL2".

EXAMPLE 2 - Find the element (7 ,3).

X=7 :Y=3:GOSUB 2~22~
returns TEMP$="MIKE3".

Another situation occurs every now and then in which you know where the element is (or
have found it by searching the string), and you need to translate this number into the
appropriate X and Y coordinates. LOOKUPXY.LST performs that function. This routine
requires you to supply SIZE, XMAX and START (the location of the first byte of the target
element). You might use LOOKUPID.LST or VERIFY.LST to find the proper value of
START.

Figure 7.16 - LOOKUPXYLST

2~230 REM LOOKUPXY.LST
20231 REM SIZE, XMAX, AND START MUST BE
20232 REM PRESET BY THE CALLING PROGRAM
20233 Y=INT(START/ (SIZE*XMAX))+l:

X=INT((START-(Y-1) *XMAX*SIZE)/SIZE)+1:
RETURN

Using the same 2-D array we just used, we can set START=51 and GOSUB 20230. The
resulting X and Yare X=4 and Y=2.

98 Chapter 8

Date and Time Manipulation

Sooner or later in your programming efforts, you are likely to work with date or time
computations. Why be the millionth programmer to spend hours and hours re-inventing the
old wheel? Here are some plug-in subroutines that can save you programming time while
conserving valuable computer memory and disk space.

The Eight Byte Date

The "eight byte date" is simply a string that expresses the month, day and year in the
format, MM/DD/YV, where:

MM is a two digit month number ranging from 01 to 12,
DD is a two digit day number ranging from 01 to 31, and
YY is a two digit year number ranging from 00 to 99 .

The string, "02/16/83" is an example of an eight byte date that stands for "February 16,
1983".

A Simple Date Validity Check

V ALIDATE.LST is a subroutine that checks the validity of a date entered by the
operator. VALIDATE.LST verifies for the date string, DATE$:

The month (in positions 1 and 2) is between 01 and 12 .
The day (in positions 4 and 5) is between 01 and 31.
The year (in positions 7 and 8) is greater than or equal to QUERY$.
The string, DATE$, is eight characters long .

To use the V ALIDATE.LST subroutine, you must first merge it with your program:

20250 REM VALIDATE.LST
20251 REM DATE$ MUST BE PRESET
20252 MONTH=VAL(DATE$(I,2» :

DAY=VAL(DATE$(4,5» :
YEAR=VAL(DATE$(7,8»

20253 VDATE=MONTH>0 AND MONTH<13 AND
DAY>0 AND DAY<32 AND YEAR>=QUERY

20254 VDATE=(VDATE AND LEN(DATE$)=8)
OR DATE$="00/00/00":
RETURN

ATARI BASIC Faster & Better 99

Here is an example of how you might use V ALIDATE.LST m one of your own
programs:

130 PRINT"ENTER DATE (MM/ DD/ YY)":
INPUT DATE$

140 REM CHECK IF DATE IS VALID AND
THE YEAR IS 1983 OR GREATER

150 GOSUB 20250
IF NOT VDATE THEN PRINT"INVALID":
GOTO 130

160 REM PROGRAM FALLS THROUGH TO HERE
IF THE DATE IS VALID

A big advantage of the validate routine is that you can handle the validity test in one line of
program logic. The subroutine returns a VDATE=l for a valid date and a value of zero if the
date is invalid. If you don't want to check on a minimum year, you can simply use zero as the
value of QUERY.

Note that we are accepting 00/00/00 as a valid date. If you don't want to accept a zero date,
then modify the subroutine by deleting the 'OR DATE$="OO/OO/OO'" from line 20254.

The Three Byte Date

For disk and in-memory array storage, it is quite convenient to store dates in a three byte
format. If the eight byte date is stored in DATE8$, a GOSUB to IIXTOII.LSTwill return the
equivalent three byte date in DATE3$. We use a month-day-year so the three byte date can
be sorted, and we can use "greater-than" and "less than" tests if necessary.

You will find the three byte approach is much more convenient than storing a date as three
BCD scalar variables or as an eight byte string. Besides the advantage of using only three
bytes instead of eight or more, the execution speed for conversions will normally be much
faster.

Here are two subroutines that you can use when working with three byte dates.
IIXTOIII.LST converts an eight byte date string, DATE8$, to a three byte data string,
DATE3$. IIITOIIX.LST uncompresses a three byte string back to an eight byte string:

20260 REM IIXTOIII.LST
20261 REM DATE8$,DATE3$ MUST BE PRESET
20262 DATE3$(l,l)=CHR$(VAL(DATE8$(l,2»):

DATE3$(2,2)=CHR$(VAL(DATE8$(4,5»)
20263 DATE3$(3,3)=CHR$(VAL(DATE8$(7,8»):

RETURN

100 Chapter 8

20270 REM IIITOIIX .LST
20271 REM DATE3$,DATE8$ MUST BE PRESET
20272 DATE8$(1,2)=STR$(ASC(DATE3$(1,1)) :

DATE8$(3,3)=" / "
20273 DATE8$(4,5)=STR$(ASC(DATE3$(2,2)):

DATE8$(6,6)=" / "
20274 DATE8$(7,8)=STR$(ASC(DATE3$(3,3)) :

RETURN

Find a Day of the Year

Here is a subroutine that computes the day within any year from 1901 to 2099. You simply
provide the four digit year, the month and the day of the month. FINDA Y.LST takes into
account whether or not a year is a leap year.

20280 REM FINDAY .LST
20281 REM MONTH,DAY,YEAR,& STRING$
20282 REM MUST BE PRESET
20283 STRING$="000303060811131619212426"
20284 NUMBER=28*(MONTH-1)+

VAL(STRING$(2*(MONTH-1)+1,2*(MONTH-1)+2))+DAY
20285 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN NUMBER=NUMBER+1
20286 RETURN

If you look carefully at this subroutine, you will see that the day number is computed first
by figuring the number of preceding months multiplied by 28 days. Next a table is accessed
based upon the number of days beyond 28 for all of the preceding months. Then, if the year is
evenly divisible by four (leap year), and the month is greater than two, one day is added to
account for 29 days in February. Finally, the day within the month is added.

After adding this subroutine to a program, we could, for instance, issue the following
command:

MONTH=5:DAY=14 :YEAR=1983:GOSUB 20280:PRINT NUMBER

.. . to find that MAY 14,1983 is the 134th day of the year.

Simplified Date Computing

To find the number of days between dates, the day of the week or the date that will be any
number of days in the future , I have found that the best way is to convert each date to a
number. Then, for example, the number of days between dates is a simple subtraction.

COMPDA Y.LST is a subroutine that returns a single number which I call a
"computational date." The computional day number, as provided by COMPDA Y.LST, is
useful for any date between the years 1901 and 2099. If you are curious about the reasons for
limiting the valid range from 1901 to 2099 you can consult any good almanac. In brief,
however, even numbered centuries, unless divisible by 400, are exceptions to the rule that
leap years are divisible by four. Thus, 2000 is a leap year, while 1900 and 2100 are not.

Note that the computational dates we are discussing here are only useful for certain date
computations. Because of changes in the calandar in past centuries, and leap year variations
every century, they do not represent a number that is useful for any other purpose, such as
astronomical calculations.

ATARI BASIC Faster & Better 101

Here is the computational date subroutine. The inputs are the four digit year, a one or two
digit month, and a one or two digit day of the month:

20290 REM COMPDAY.LST
20291 REM MONTH,DAY,YEAR,& STRING$
20292 REM MUST BE PRESET
20293 STRING$="000303060811131619212426"
20294 NUMBER=365*YEAR+INT((YEAR-1)/4)+28*(MONTH-l)+

VAL(STRING$(2*(MONTH-1)+1,2*(MONTH-1)+2))+DAY
20295 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN NUMBER=NUMBER+1
20296 RETURN

Days Between Dates

To find the number of days between two dates, merge the computational date subroutine,
shown above, into your program. Then subtract the computational day number of the first
date from the computational day number of the second date. For example, the number of
days between November 8, 1982 and February 16, 1983 is 100. I'll show you a program a
little later that will perform many such functions for you.

Day of the Week

This subroutine returns a nine byte string, DA Y$, that contains the day ofthe week for any
date between 1901 and 2099. WEEKDA Y.LST assumes that the computational day has
already been calculated.

20300 REM WEEKDAY.LST
20301 REM ASSUMES GOSUB TO 20290 (COMPDAY .LST) FIRST
20303 WEEK$=" FRIDAY Mil SATURDAY IISUNDAYIIIIII MONDAYII M

TUESDAYM WEDNESDAYTHURSDAY II"
20304 TEMP=9*(NUMBER-7*INT(NUMBER/ 7))+1:

DAY$=WEEK$(TEMP,TEMP+8) :
RETURN

To find the day of the week for February 16, 1983, you can use the following
commands:

MONTH=2 :DAY=16:YEAR=1983:GOSUB 20290 :
GOSUB 20300: PRINT DAY$

Back to Eight-Byte Dates

The computations to convert from a computational day number to an eight byte date are
rather complex, but you will need them if you want to find out something like, what will the
date be 200 days from now. To do it, we will use four new subroutines.

YEARCOM.LST recalls the yearfrom a computational date. DA YCOM1.LST recalls the
day number within the year for any computational date. MONTHCOM.LST recalls the
month based on the day number within the year, NUMBER, and the year, YEAR.
DA YCOM2.LST recalls the day of the month based on the YEAR, the MONTH and
NUMBER.

102 Chapter 8

To find the date 200 days into the future, we can use the following commands:

MONTH=1 :DAY=15 :YEAR=1983:GOSUB 20290:GOSUB 20310:
GOSUB 20320 :GOSUB 20330 :GOSUB 20340 :
PRINT MONTH; "I" ;DAY; "I" ;YEAR

20310 REM YEARCOM .LST
20311 REM ASSUMES GOSUB TO 20290 (COMPDAY .LST) FIRST
20313 YEAR=INT((NUMBER-NUMBER-1461) / 365):

RETURN

20320 REM DAYCOM1.LST
20331 REM ASSUMES GOSUB TO 20310 (YEARCOM .LST) FIRST
20323 DAY=NUMBER-(365*YEAR+INT((YEAR-1)/4)):

RETURN

20330 REM MONTHCOM.LST
20331 REM ASSUMES GOSUB TO 20320 (DAYCOM1 .LST) FIRST
20333 X=0:

IF YEAR/ 4-INT(YEAR/ 4) THEN X=l
20334 MONTH=1+(DAY>31)+(DAY>(59+X))+

(DAY>(90+X))+(DAY>(120+X))+
(DAY>(151+X))+(DAY>(181+X))+(DAY>212+X))

20335 MONTH=MONTH+(DAY>(243+X))+(DAY>(273+X))+
(DAY>(304+X))+(DAY>(334+X)):
RETURN

20340 REM DAYCOM2 .LST
20341 REM ASSUMES GOSUB TO 20310 (MONTHCOM.LST) FIRST
20343 DAY=DAY-28*(MONTH-1)-VAL(STRING$(2*(MONTH-1)+l,2*(MONTH-1)+2))
20344 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN DAY=DAY-1
20345 RETURN

Going Fiscal

It is necessary in some application programs to provide for a fiscal month and year that
differs from the calendar month and year. The following subroutine computes the two digit
fi scal year, FYEAR, the fiscal month, FMONTH, based on the calendar year, YEAR, and the
calendar month, MONTH. The variable, FYSTART, specifies the first calendar month of
the fiscal year.

Suppose that the fiscal year begins in October. The current calendar month is 12, and the
current calendar year is 1982. You would load FYSTART with 10, MONTH with 12, and
YEAR with 82. A GOSUB 20350 would yield FYSTART=83 and FMONTH=3.

20350 REM FISCAL.LST
20351 REM FYSTART,MONTH,& YEAR MUST BE PRESET

AT ARI BASIC Faster & Better 103

20353 X=0 :
IF MONTH<1 OR MONTH>12 OR
YEAR<0 OR YEAR>99 THEN PRINT"INPUT ERROR" :
X=-1 :
RETURN

20354 IF FYSTART=1 THEN FMONTH=MONTH :
FYEAR=YEAR :
RETURN

20355 IF FYSTART<1 OR FYSTART>12 THEN PRINT"BAD START":
X=-I :
RETURN

20356 IF MONTH>=FYSTART THEN FMONTH=MONTH+I-FYSTART:
FYEAR=YEAR+ 1 :
RETURN

20357 FMONTH=MONTH+13-FYSTART :
FYEAR=YEAR :
RETURN

1901 - 2099 Perpetual Calendar

The program, DATECOMP.BAS, will let you test the subroutines we have discussed. In
addition, it will come in handy whenever you need to perform a date computation. To use the
program, type it in as shown and then RUN it. DATECOMP.BAS will compute days
between dates, a day of the week, a day within year, or the date X days hence. Note that the
subroutines were slightly modified to minimize the size of the program.

Figure 8.1 - DATECOMP. BAS

1000 REM DATECOMP,BAS
1001 GRAPHICS 0:

POKE 752,1:
PRINT CHR$(125)

1002 POSITION 14,2 :
PRINT " DATE COMPUTER

1003 POSITION 10,4:
PRINT "I = DAYS BETWEEN DATES"

1004 POSITION 10,5 :
PRINT "2 = DAY OF THE WEEK"

1005 POSITION 10,6 :
PRINT "3 = DAY WITHIN THE YEAR"

1006 POSITION 10,7 :
PRINT "4 = DATE, X DAYS HENCE"

1007 POSITION 10,20 :
PRINT "SELECT AN OPTION. " , II

1008 CLR :
DIM STRING$(24),DATE$(8),DAY$(9),WEEK$(63),BLANK$(27)

1009 STRING$="000303060811131619212426"
1010 WEEK$=" FRIDAYMA SATURDAY A SUNDAYAMMONDAYAM

TUESDAYM WEDNESDAYTHURSDAYA"

104 Chapter 8

1011 DATE$(1)="" :
DATE$(8)='"' :
DATE$(2)=DATE$:
DAY$(1)="":
DAY$(9)="":
DAY$(2)=DAY$

1012 BLANK$(I)=" ":
BLANK$(27)=" ":
BLANK$(2)=BLANK$

1013 GOSUB 1040:
IF X<49 OR X>52 THEN 1013

1014 GOSUB 1039 :
ON X-48 GOTO 1025,1028,1030,1032

1015 POSITION 10,11 :
PRINT "ENTER MONTH NUMBER : ";

1016 TRAP 1016:
POSITION 31,11:
INPUT MONTH

1017 IF MONTH<1 OR MONTH>12 THEN 1016
1018 POSITION 10,12:

PRINT "ENTER DAY OF MONTH: ";
1019 TRAP 1019:

POSITION 31,12:
INPUT DAY

1020 IF DAY<1 OR DAY>31 THEN 1019
1021 POSITION 10,13 :

PRINT "ENTER 4-DIGIT YEAR: ";
1022 TRAP 1022:

POSITION 31,13:
INPUT YEAR

1023 IF YEAR<1901 OR YEAR>2099 THEN 1022
1024 RETURN
1025 POSITION 10,10:

PRINT "ENTER FIRST DATE
GOSUB 1015:
GOSUB 1046:
GOSUB 1037:
X=DAY

1026 POSITION 10,10:

II.

PRINT "ENTER SECOND DATE II.

GOSUB 1015
1027 GOSUB 1046 :

GOSUB 1037:
DAY=ABS(X-DAy) :
POSITION 10,15:
PRINT "DAYS BETWEEN DATES = ";DAY:
GOSUB 1040:
RUN

1028 POSITION 10,10:
PRINT "ENTER DATE
GOSUB 1015 :
GOSUB 1046

II.

1029 POSITION 10,15 :
PRINT "DAY OF THE WEEK
·GOSUB 1049 :
PRINT DAY$:
GOSUB 1040 :
RUN

1030 POSITION 10,10:
PRINT "ENTER DATE
GOSUB 1015

1031 POSITION 10,15:

II . . , .

" .

PRINT "DAY WITHIN THE YEAR : ";:
GOSUB 1043 :
PRINT DAY :
GOSUB 1040:
RUN

1032 GOSUB 1015 :
POSITION 10, 14 :
PRINT "ENTER DAYS HENCE

1033 TRAP 1033 :
POSITION 31 ,14 :
INPUT Y

1034 IF Y<0 THEN 1033
1035 GOSUB 1046 :

DAY=Y+DAY:
GOSUB 1050 :
GOSUB 1051 :
GOSUB 1052 :
GOSUB 1055

1036 POSITION 10,15 :
PRINT "DATE = ";MONTH;"/";DAY;"/" ;YEAR :
GOSUB 1040 :
RUN

1037 POSITION 10,10 :
PRINT BLANK$:
POSITION 10,11:
PRINT BLANK$:
POSITION 10,12 :
PRINT BLANK$

1038 POSITION 10,13 :
PRINT BLANK$:
POSITION 10,14 :
PRINT BLANK$:
POSITION 15,12 :
PRINT BLANK$

1039 POSITION 10,20 :
PRINT BLANK$:
RETURN

1040 OPEN #3 ,4,0,"K :"
1041 GET #3,X
1042 CLOSE #3 :

RETURN

ATARI BASIC Faster & Better 105

106 Chapter 8

1043 DAY=28*(MONTH-1)+
VAL(STRING$(2*(MONTH-1)+l,2*(MONTH-N)+2))+DAY

1044 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN DAY=DAY+1
1045 RETURN
1046 DAY=365*YEAR+INT((YEAR-1) / 4)+28*(MONTH-1)+

VAL(STRING$(2*(MONTH-1)+l,2*(MONTH-1)+2))+DAY
1047 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN DAY=DAY+1
1048 RETURN
1049 TEMP=9*(DAY-7*INT(DAY/ 7))+1:

DAY$=WEEK$(TEMP,TEMP+8) :
RETURN

1050 YEAR=INT((DAY-DAY/ 1461) / 365) :
RETURN

1051 DAY=DAY-(365*YEAR+INT((YEAR-1) / 4)):
RETURN

1052 X=0:
IF YEAR/ 4-INT(YEAR/ 4) THEN X=l

1053 MONTH=1+(DAY>31)+(DAY>(59+X))+(DAY>(90+X))+
(DAY>(120+X))+(DAY>(151+X))+(DAY>(181+X))+(DAY>(212+X))

1054 MONTH=MONTH+(DAY>(243+X))+(DAY>(273+X))+
(DAY>(304+X))+(DAY>(334+X)) :
RETURN

1055 DAY=DAY-28*(MONTH-1)­
VAL(STRING$(2*(MONTH-1)+l,2*(MONTH-1)+2))

1056 IF YEAR/ 4=INT(YEAR/ 4) AND MONTH>2 THEN DAY=DAY-1
1057 RETURN

Timing Benchmark Tests

A "benchmark" is simply a timed test of a program or routine. You can use the real time
clock program, CLOCK, to compare the speed of alternative programming methods. You
will have to use the BASIC clock loader program, CLOCK.BAS to set the clock up and
initialize the time. Once this is done, the time will be displayed in the upper right hand corner
of the screen regardless of what you are doing in BASIC. This clock is put on page six and
protects itself despite the actions of DOS or even the SYSTEM RESET button. The clock
has a "switch" that starts out ON, but can be turned OFF by POKEing any non-zero value
into $600, such as POKE 1536,1. This is a must if you are reading the time from BASIC
(since BASIC is so slow) for timing a benchmark. The time will be temporarily "frozen" and
may be read by PEEKing 1537 for the hours, 1538 for the minutes, and 1539 for the
seconds.

Figure 8.2 - CLOCK Listing

1000 ;CLOCK - A REAL TIME CLOCK
1010
1020
1030 ;THE INIT ROUTINE AT $400 IS EXECUTED ONLY ONCE .
1040 ;THE MAIN ROUTINE IS STORED ON PAGE SIX .
1050 ;


~~~~ 1~6~ 
1~7~ ; 
1~8~ ; 

*= $40~ 

1~9~ ;SET UP OS POINTERS 

~~~2 
~~09
~~42
~222

~230
159D
E45C
E45F

ll~~ ;
111~ CASINI
112~ BOOTF =
113~ CRITIC =
114~ VBLANK
115~ SCREEN =
116~ DUP
117~ SETVBI
118~ SYSVBI
119~ ;

$2
$9
$42
$222
$23~

$159D
$E45C
$E45F

12~~ ;SET UP PAGE ZERO POINTER

~~CC

121~ ;
122~ VIDEO =
123~ ;
124~ ;

$CC

125~ ;SET UP PRIVATE INTERRUPT
126~ ;

~4~~ A5~9 127~

~4~2 29~2 128~

~4~4 F~~A 129~

~4~6 A6~2 13~~

~4~8 A4~3 131~

~4~A 8E~D~6 132~

~4~D 8C~E~6 133~
~41~ A9~7 134~ INIT
~412 85~2 135~

~414 A9~6 136~

~416 85~3 137~

~418 AD22~2 138~

~41B 8D1F~6 139~

~41E AD23~2 14~~

~421 8D2~~6 141~

~424 A5~9 142~

~426 ~9~2 143~
~428 85~9 144~

~42A A2~6 145~

~42C A~21 146~

~42E A9~6 147~

0430 205CE4 1480
0433 68 149~

~434 6~ 15~~

151~ ;

LDA
AND
BEQ
LDX
LDY
STX
STY
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
ORA
STA
LDX
LDY
LDA
JSR
PLA
RTS

BOOTF
#2
INIT
CASINI
CASINI+1
DETOUR+ 1
DETOUR+2
#RESET&$FF
CASINI
#RESET/256
CASINI+1
VBLANK
EXIT+1
VBLANK+1
EXIT+2
BOOTF
#2
BOOTF
#MAIN/256
#MAIN&$FF
#6
SETVBI

ATARI BASIC Faster & Better 107

;THIS IS LATER OVER-WRITTEN

;CASSETTE INIT VECTOR
;BOOT MODE FLAG
;CRITICAL OPERATION FLAG
;IMMEDIATE VBLANK VECTOR
;CONTAINS LOCATION OF SCREEN
;OS FLAG TO DETECT DUP,SYS
;SET-VBI VECTOR ENTRY
;OS VBLANK SERVICE ROUTINE

;USED AND THEN RESTORED

;IF A CASSETTE HAS BOOTED
;THEN SAVE CASINI FOR LATER

;RE-VECTOR CASSETTE INIT
;TO INCLUDE OUR CLOCK

;DETOUR NORMAL HOUSEKEEPING

;POINT VBLANK TO OUR CLOCK

;RETURN TO BASIC

152~ ;THIS IS THE PART WE WANT TO PRESERVE

~435

1530 ;
1540
1550 ;
156~ ;

*= $6~0

1570 ;SAVE SPACE FOR ON/OFF SWITCH
1580 ;

;PROGRAM IS NOT RELOCATABLE

108 Chapter 8

0600 00 1590 SWITCH .BYTE0 ;0=ON,ANY OTHER VALUE=OFF
1600 ;
1610 ;
1620 ;SAVE SPACE FOR CLOCK TIME
1630 ;

0601 00 1640 HOURS · BYTE0
0602 00 1650 MIN .BYTE0
0603 00 1660 SEC .BYTE0

1670 ;
1680 ;
1690 ;SAVE SPACE FOR COUNTERS
1700 ;

0604 3C 1710 TICKS · BYTE60 ;1 SECONO=60 TICKS
0605 00 1720 CSEC .BYTE0 ;SECONOS COUNTER
0606 00 1730 FUOGE · BYTEl3 ;CORRECTION TO CSEC

1740 ;
1750 ;
1760 ;KEEP THE WOLVES AT BAY
1770 ;

0607 A9A9 1780 RESET LOA #$A9 ;SYSTEM RESET COMES HERE
0609 801306 1790 STA PATCH
060C 201806 1800 OETOUR JSR NULL
060F A206 1810 LOX #MAIN/256 ;TELL VBI WHERE CLOCK IS
0611 A021 1820 LOY #MAIN&$FF
0613 A906 1830 PATCH LOA #6
0615 205CE4 1840 JSR SETVBI ;SET THE GEARS IN MOTION
0618 60 1850 NULL RTS
0619 68 1860 THAW PLA ;RESTORE COMPUTER REGISTERS
061A A8 1870 TAY
061B 68 1880 PLA
061C AA 1890 TAX
0610 68 1900 PLA
061E 4C1806 1910 EXIT JMP NULL ;CHANGEO OURING SETUP
062l 48 1920 MAIN PHA ;SAVE CURRENT REGISTERS
0622 8A 1930 TXA
0623 48 1940 PHA
0624 98 1950 TYA
0625 48 1960 PHA
0626 AD9015 1970 LOA OUP ;IF OUP.SYS IS IN COMPUTER
0629 C900 1980 CMP #0 ;THEN PATCH IT SO IT
062B F00F 1990 BEQ CLOCK ;WILL NOT KILL CLOCK
0620 A94C 2000 LOA #$4C
062F 802A27 2010 STA $272A
0632 A912 2020 LOA #$12
0634 802B27 2030 STA $272B
0637 A919 2040 LOA #$19
0639 802C27 2050 STA $272C

2060 ;
2070 ;CHRONOMETER ROUTINE
2080 ;

063C CE0406 2090 CLOCK OEC TICKS
063F 0008 2100 BNE THAW

ATARI BASIC Faster & Better 109

0641 EE0506 2110 INC CSEC
0644 A23C 2120 LOX #60
0646 8E0406 2130 STX TICKS
0649 A542 2140 LOA CRITIC ;NEED THIS TO AVOID BAD I/ O
064B 000006 2150 ORA SWITCH ;IF SWITCH IS OFF THEN
064E D0C9 2160 BNE THAW ;BYPASS CLOCK
0650 CE0606 2170 LOOP DEC FUDGE ;KEEP CLOCK CALIBRATED
0653 0008 2180 BNE DING
0655 A90D 2190 LOA #13
0657 800606 2200 STA FUDGE
065A CE0406 2210 DEC TICKS
0650 EE0306 2220 DING INC SEC ;KEEP TRACK OF TIME
0660 EC0306 2230 CPX SEC
0663 0010 2240 BNE DONG
0665 A000 2250 LOY #0
0667 8C0306 2260 STY SEC
066A EE0206 2270 INC MIN
0660 EC0206 2280 CPX MIN
0670 0010 2290 BNE DONG
0672 8C0206 2300 STY MIN
0675 EE0106 2310 INC HOURS
0678 A918 2320 LOA #24
067A CD0106 2330 CMP HOURS
0670 0003 2340 BNE DONG
067F 8C0106 2350 STY HOURS
0682 CE0506 2360 DONG DEC CSEC
0685 O0C9 2370 BNE LOOP

2380
2390 ;VIDEO DISPLAY ROUTINE
2400

0687 A5CC 2410 LOA VIDEO ;SAVE CURRENT PAGE ZERO
0689 48 2420 PHA
068A A5CD 2430 LOA VIDEO+1
068C 48 2440 PHA
0680 18 2450 CLC
068E A03002 2460 LOA SCREEN ;FIND THE SCREEN DISPLAY AND
0691 6940 2470 ADC #$40 ;POINT TO WHERE WE WANT
0693 85CC . 2480 STA VIDEO ;TO WRITE THE TIME
0695 AD3102 2490 LOA SCREEN+1
0698 6900 2500 ADC #$0
069A 85CO 2510 STA VIDEO+ 1
069C A000 2520 LOY #0 ;WRITE THE TIME ON THE SCREEN
069E AD0106 2530 LOA HOURS ;HOURS ONE DIGIT AT A TIME
06Al 200106 2540 JSR DIVIDE
06A4 91CC 2550 STA (VIDEO),Y
06A6 C8 2560 INY
06A7 8A 2570 TXA
06A8 9lCC 2580 STA (VIDEO),Y
06AA C8 2590 INY
06AB B1CC 2600 LOA (VIDEO),Y ;BLINK COLON ON AND OFF
06AD C99A 2610 CMP #$9A
06AF F005 2620 BEQ BLANK

110 Chapter 8

06B1 A99A 263 OFF
06AD C99A 2610 CMP #$9A
06AF F005 2620 BEQ BLANK
06B1 A99A 26380
06B8 91CC 2660 COLON STA (VIDEO) , Y
06BA C8 2670 INY
06BB AD0206 2680 LDA MIN ;MINUTES ONE DIGIT AT A TIME
06BE 20D106 2690 JSR DIVIDE
06C1 91CC 2700 STA (VIDEO),Y
06C3 C8 2710 INY
06C4 8A 2720 TXA
06C5 91CC 2730 STA (VIDEO) ,Y
06C7 C8 2740 INY
06C8 68 2750 PLA
06C9 85CD 2760 STA VIDEO+1
06CB 68 2770 PLA
06CC 85CC 2780 STA VIDEO
06CE 4C1906 2790 JMP THAW
06D1 A200 2800 DIVIDE LDX #0
06D3 38 2810 SEC
06D4 E8 2820 LOOP2 INX
06D5 E90A 2830 SBC #$A
06D7 B0FB 2840 BCS LOOP2
06D9 699A 2850 ADC #$9A
06DB 8DE506 2860 STA TEMP
06DE 8A 2870 TXA
06DF 698E 2880 ADC #$8E
06E1 AEE506 2890 LDX TEMP
06E4 60 2900 RTS
06E5 00 2910 TEMP . BYTE0
06E6 2920 .END

Figure 8 .3 - CLOCK.BAS Listing

100 REM CLOCK. BAS - REAL TIME CLOCK
110 DIM A$(3) :

PRINT CHR$ (125) :
POSITION 5,5:
PRINT "CLOCK. BAS - A REAL TIME CLOCK"

120 TRAP 120 :
POSITION 2,10 :
PRINT "ENTER THE CORRECT TIME (HHMM)"; :
INPUT TIME

130 HOUR=INT(TIME/ 100) :
MINUTE=INT(TIME-HOUR*100):

;RESTORE PAGE ZERO

;SEPARATE I'S FROM 10'S
;AND CONVERT TO PROPER
;DISPLAY CODE

; RETURNS I'S DIGIT IN A

;RETURNS 10'S DIGIT IN X

IF HOUR=0 AND MINUTE>=0 AND MINUTE<60 THEN 200
140 IF MINUTE<0 OR MINUTE>59 OR HOUR<1 OR HOUR>23 THEN 120
150 IF HOUR<>12 THEN 180

160 POSITION 2,12 :
PRINT "IS THIS NOON "; :
INPUT A$:
IF A$(l,1)<>"Y" THEN HOUR=0

170 GOTO 200
180 IF HOUR>12 THEN 200
190 TRAP 120:

POSITION 2,12:
PRINT "IS THIS AM OR PM"; :
INPUT A$:
IF A$(l,1)="P" THEN HOUR=HOUR+12

200 GOSUB 290 :
POKE 1537,HOUR :
POKE 1538,MINUTE:
CLOCK=USR(1024)

210 END
220 DATA 165,9,41,2,240,10,166,2
230 DATA 164,3,142,13,6,140,14,6
240 DATA 169,7,133,2,169,6,133,3
250 DATA 173,34,2,141,31,6,173,35
260 DATA 2,141,32,6,165,9,9,2
270 DATA 133,9,162,6,160,33,169,6
280 DATA 32,92,228,104,96
290 MLSTART=1024 :

MLEND=1076
300 FOR X=MLSTART TO MLEND:

READ Y:
POKE X,Y:
NEXT X

310 DATA 0,0,0,0,60,0,13,169
320 DATA 169,141,19,6,32,24,6,162
330 DATA 6,160,33,169,6,32,92,228
340 DATA 96,104,168,104,170,104,76,24
350 DATA 6,72,138,72,152,72,173,157
360 DATA 21,201,0,240,15,169,76,141
370 DATA 42,39,169,18,141,43,39,169
380 DATA 25,141,44,39,206,4,6,208
390 DATA 216,238,5,6,162,60,142,4
400 DATA 6,165,66,13,0,6,208,201
410 DATA 206,6,6,208,8,169,13,141
420 DATA 6,6,206,4,6,238,3,6
430 DATA 236,3,6,208,29,160,0,140
440 DATA 3,6,238,2,6,236,2,6
450 DATA 208,16,140,2,6,238,1,6
460 DATA 169,24,205,1,6,208,3,140
470 DATA 1,6,206,5,6,208,201,165
480 DATA 204,72,165,205,72,24,173,48
490 DATA 2,105,64,133,204,173,49,2
500 DATA 105,0,133,205,160,0,173,1
510 DATA 6,32,209,6,145,204,200,138
520 DATA 145,204,200,177,204,201,154,240
530 DATA 5,169,154,76,184,6,169,128

ATARI BASIC Faster & Better 111

112 Chapter 8

540 DATA 145,204,200,173,2,6,32,209
550 DATA 6,145,204,200,138,145,204,200
560 DATA 104,133,205,104,133,204,76,25
570 DATA 6,162,0,56,232,233,10,176
580 DATA 251,105,154,141,229,6,138,105
590 DATA 142,174,229,6,96,0
600 MLSTART=1536 :

MLEND=1765
610 FOR X=MLSTART TO MLEND :

READ Y:
POKE X,Y :
NEXT X:
RETURN

The Eight Byte Time

The eight byte time is simply a string that expresses the time in the format HH :MM:SS,

where:

HH is a two digit hour number ranging from 01 to 12
(note that the range is 00 to 23 for military time),
MM is a two digit minute number ranging from 00 to 59, and
SS is a two digit second number ranging from 00 to 59 .

The string "10:15:35" is an example of an eight byte time that stands for 15 minutes and
35 seconds after the hour of 10. The CLOCK machine language program uses a 24 hour
military format. The clock starts at 00 (midnight), and 12 is added to the hours number for
any time after noon. Thus 4 o'clock in the afternoon is shown as hour 16. The machine
language program is divided into two parts. The first part is stored in the cassette bufer at
$400. This part of the program needs to be executed only once, so it is stored in a region of
memory that will be wiped clean the next time you do any cassette or disk I/O. All this routine
does is to tell the SYSTEM RESET to not kill the other routine, which is our clock. In
addition, it sets up what is called a special vertical blank interrupt so our clock will be
updated every 1/60th of a second. See the Atari Technical User Notes for a detailed
description of vertical blank interrupts.

The second part of the machine language program is the real meat of the clock. This part is
stored on page six, so loading a BASIC program won't smash the clock. A better solution
is to re-assemble the CLOCK to another block of memory that is protected via
RESERVE.LST. Another necessary countermeasure is a harmless patch to DUP. SYS
whenever that program is loaded. Without the patch, the clock will be killed when you go
from the DOS menu back to BASIC. The patched DOS will work exactly like the
original.

The clock "stops" for critical I/O operations and when the "switch" is turned OFF.
Although the display is not updated during that freeze, the clock keeps track of how long it is
OFF and corrects the display as soon as possible. Don't stop the clock for more than about
nine minutes, or it may lose track of how long it has been OFF.

To time a benchmark test, design your test program so it stops the clock for an initial
reading which you store. Then start the clock and your benchmark routine . When the routine
finishes its task, stop the clock and calculate the difference between the first reading and this

ATARI BASIC Faster & Better 113

one. Typically a benchmark program will consist of a routine inside a FOR-NEXT that
executes the routine for 1000 times. If you are using this technique, don't forget to have the
resulting time divided by 1000 to get the benchmark time of your test routine.

Here are two subroutines that you will find useful when working with time quantities.
HMSTOSEC.LST converts a time in the HH:MM:SS format to an equivalent number of
seconds. The time needs to be stored in the string, HMS$, in an eight-byte format as
indicated above. The resulting number of seconds is returned in the scalar variable,
SECONDS. SECTOHMS.LST performs the inverse of this transform. It converts a number
of seconds stored in SECONDS back to the eight byte HH:MM:SS format.

Once you have converted "hours, minutes, and seconds" to seconds, you can compute
elapsed time by simply subtracting the two "seconds" quantities. If you wish to express the
elapsed time in hours, minutes, and seconds, you can use SE CTOHMS.LST to convert them
back.

20360 REM HMSTOSEC.LST
20361 REM HMS$ MUST BE PRESET
20362 SECONDS=3600*VAL(HMS$(1,2)+

60*VAL(HMS$(4,5)+VAL(HMS$(7,8):
RETURN

20370 REM SECTOHMS .LST
20371 REM HMS$ MUST BE PRESET
20372 HMS$=" 00/00/00'" :

X=INT(SECONDS/ 3600):
HMS$(1,1)=STR$(INT(X/ 10)):
HMS$(2,2)=STR$(X-10*INT(X/10))

20373 SECONDS=SECONDS-3600*INT(SECONDS/ 3600):
X=INT(SECONDS/ 60):
HMS$(4,4)=STR$(INT(X/10))

20374 HMS$(5,5)=STR$(X-10*INT(X/ 10)):
SECONDS=SECONDS-60*INT(SECONDS/ 60) :
X=INT(SECONDS)

20375 HMS$(7,7)=STR$(INT(X/ 10)) :
HMS$(8,8)=STR$(X-10*INT(X/ 10)):RETURN

Time Clock Math

You will want to use this subroutine if you ever have to compute the elapsed time in hours
and 10ths of an hour. The most obvious application is to compute the "amount of time
worked" given the time you punched in and the time you punched out. CLOCKMATH.LST
will do these computations when you supply a start time in CLOCKIN$ and a stop time in
CLOCKOUT$. Both string times must be in HH:MM:SS format. CLOKMATH.LST will
return the elapsed hours to the next lowest tenth of an hour in the scalar variable HOURS.
You can then easily multiply HOURS by the appropriate pay rate to compute wages. Please
note that the two times cannot differ by more than twelve hours, or the answer will not be
correct.

114 Chapter 8

20380 REM CLOKMATH .LST
20381 REM CLOCKIN$,& CLOCKOUT$
20382 REM MUST BE PRESET
20383 X=VAL(CLOCKIN$):

Y=VAL(CLOCKOUT$):
IF X<l OR X>12 OR Y<l OR Y>12 THEN X = -1 :
RETURN

20384 IF X>Y THEN Y=Y+12
20385 HOURS=Y-X:

X=VAL(CLOCKIN$(4,5)) :
Y=VAL(CLOCKOUT$(4,5)) :
IF X<0 OR X>59 OR Y<0 OR Y>59 THEN X = -1 :
RETURN

20386 IF X>Y THEN Y=Y+60:
HOURS=HOURS-1

20387 HOURS=HOURS+INT((Y-X) / 6) / 10 :
RETURN

Here is an example of how you might use CLO CKMA TH.LST:

110 PRINT CHR$(125) :
PRINT :
PRINT"TIME CLOCK SUBTRACTION TEST PROGRAM" :
PRINT

120 PRINT "ENTER START TIME"; :
INPUT CLOCKIN$

130 PRINT "ENTER STOP TIME"; :
INPUT CLOCKOUT$

140 GOSUB 20380 :
PRINT "ELAPSED TIME = ";HOURS;" HOURS"

ATARI BASIC Faster & Better 115

Bits, Bytes, and Boole

•

A Bucket of Bits

Each byte of memory in your ATARI computer contains eight bits, giving a total of
393,216 bits in the memory of a 48KATARI 800. Additionally, the 707 sectors on a diskette
formatted by an Atari 810 disk drive give you another 707 ,000 usable bits on every diskette!
Are you getting your money's worth?

In this chapter, we will look at ways to access and make use of the eight bits in a byte. We
will discuss two machine language subroutines that will open up whole new avenues of
possibilities for you to use in your programs.

Binary Numbers - Fundamental Building Blocks

The byte is the most common unit of measure in modern computer applications. A byte is
usually described as one character of information, such as a letter ("A," "B," "C"), a single
digit ("1," "2," "3") or a special character ("$," "?," " %"). In reality, a byte is any of 256
possible codes interpreted from the "ON/OFF" status of the eight bits in the byte.

A bit is the smallest unit of information storage in a computer. In fact, you could say that a
bit is the only real unit of storage in your computer. The 6502 microprocessor does not have
the capability of recognizing bytes any more than it can inherently handle disk I/O. The
fundamental unit of information is the bit, which is either a one or a zero indicating the ON or
OFF status of a specific electronic or magnetic location in memory or on a diskette.

In an eight-bit byte we can store any whole number from ° to 255, or we can store the
"YES/NO" status of eight different conditions. These "YES/NO" flags are sometimes
referred to as binary numbers. This is just a special label that tells you that each number of
that type (in other words, binary) can never have any value other than one or zero.

Working With Binary Numbers in BASIC

BASIC lets us create one-byte strings with the CHR$ function. CHR$(l), for example,
generates a byte with the zero bit set and all other bits "cleared." CHR$(2) generates a byte
in which bit one is set. CHR$(3) generates a byte in which bits zero and one are set.
CHR$(65) generates a byte, which by ATASCII standards, represents the letter "A". For
the letter" A", bit zero and six are set. "Set" means that the bit is equal to one, while "Clear"
means that the bit is equal to zero.

116 Chapter 9

One peculiarity of computer jargon that you will sooner or later have to get comfortable
with is the screwy way counting is done. You always start counting with the number "zero"
rather than "one." For example, the eight bits in a byte are numbered from right-to-left
starting with zero:

Figure 9.1 - Bits Within a Byte

$~F = 15 = ~ ~ ~ ~ 1 1 1 1
t t t t t t t t

BIT # = 7 6 5 4 3 2 1 ~

To convert the bits in a byte to a number, we look at each bit as a "power" of two and add
them. For example, to represent the number three, bits zero and one are set. The three was
obtained by adding two to the zeroth power, which is one, and two to the first power, which is
two. The 65 was obtained by adding two to the zeroth power, whichis one and two to the sixth
power, which is 64. You will find it very useful to know the powers of two. They are:

Figure 9.2 - The Powers of Two

Power Decimal Hexadecimal (MSB) Binary (LSB)
2° ~~~~1 ~001 ~~~~/0~00 ~~00/0001
t 00002 0002 ~000/0~00 0000/~010
t 00~~4 0~04 0000/0000 0000/01~0
23

0~008 ~008 0000/0000 0000/ 100~
t 00016 0010 0000/0000 0001 /0000
25 00032 0020 0000/0000 0010/0000
26 00064 ~040 00~0/000~ 0100/0000
t ~~128 0080 0000/0000 100~/0000
28

~~256 ~100 0000/00~1 0000/~00~
t 00512 020~ 0000/0010 ~000/~000
219 01024 0400 0000/0100 0000/00~~
211 02048 0800 0000/ 1000 0000/0000
t 2 04~96 100~ 0001/0000 000~/~000
213 08192 2000 0010/000~ 0000/0000
t4 16384 4000 0100/0000 0000/0000
t 5 32768 8000 1000/0000 0000/0000

I have one bone I would like to pick with Atari BASIC. Unlike Microsoft BASIC, Atari
BASIC does not allow us to directly access the bits in a number. The "logical" operators
compare quantities only on the byte level, so we have no easy way to SET, CLEAR or TEST
an individual bit in a byte.

AT ARI BASIC Faster & Better 117

Mapping Bits in Machine Language

The machine language subroutine, BITMAP, alleviates this deficiency by enabling us to
SET, CLEAR or TEST any bit in a byte. BITMAP is called by a USR command of the
general form:

RESULT = USR(ADDR,BYTE,BIT,OPTION)

where : AD DR = address of this machine language subroutine
BYTE = a number between 0 and 255
BIT = the target bit number inside BYTE
OPTION = 0 means we wish to CLEAR that bit

= 1 means the bit is to be SET
= 2 will test the current value of the bit

The variable "RESULT" will contain the appropriate answer upon the return to
BASIC.

Figure 9.3 - BITMAP - Assembly Language Listing

00CC
00CE
00D0
00D4

0600 A900
0602 85D4
0604 85D5

1000 ;BITMAP - A BIT MANIPULATION ROUTINE
1010
1020
1030 ;CALLED FROM BASIC USING :
1040 ;X=USR(ADDR,BYTE,BIT,OPTION)
1050 ;WHERE
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

ADDR = ADDRESS OF THIS ROUTINE
BYTE = ARGUMENT #1
BIT = ARGUMENT #2
OPTION = 0 MEANS 'CLEAR THE BIT'
OPTION = 1 MEANS 'SET THE BIT'
OPTION = 2 MEANS 'TEST THE BIT'

*= $600 ;COMPLETELY RELOCATABLE

1170 ;SET UP PAGE ZERO POINTERS
1180 ;
1190 BYTE
1200 BIT
1210 MASK
1220 RESULT
1230
1240

$CC
$CE
$D0
$D4

1250 ;INITIALIZE POINTERS
1260
1270
1280
1290

LDA
STA
STA

#0
RESULT
RESULT+l

;SET RESULT TO ZERO

118 Chapter 9

0606 68 1300 PLA ;MAKE SURE THERE ARE NO
0607 C903 1310 CMP #3 ;MORE THAN THREE ARGUMENTS
0609 F007 1320 BEQ GOOD
060B AA 1330 TAX
060C 68 1340 KILL PLA
0600 68 1350 PLA
060E CA 1360 DEX
060F D0FB 1370 BNE KILL
0611 60 1380 EXIT RTS ;GO BACK TO BASIC
0612 68 1390 GOOD PLA
0613 68 1400 PLA ;GET LSB OF BYTE
0614 85CC 1410 STA BYTE ;AND IGNORE THE MSB
0616 68 1420 PLA
0617 68 1430 PLA ;GET LSB OF BIT
0618 85CE 1440 STA BIT ;AND IGNORE THE MSB

1450 ;
1460 ;SET UP BIT MASK
1470 ;

061A AA 1480 TAX ;SET SPECIFIED BIT IN MASK
061B A901 1490 LOA #1 ;ALL OTHER BITS ARE ZERO
0610 E000 1500 CPX #0
061F F004 1510 BEQ SETMASK
0621 0A 1520 IDMASK ASL A
0622 CA 1530 DEX
0623 D0FC 1540 BNE IDMASK
0625 8500 1550 SETMASK STA MASK

1560 ;
1570 ;SELECT WHICH OPTION
1580 ;

0627 68 1590 PLA
0628 68 1600 PLA
0629 AA 1610 TAX
062A E000 1620 CPX #0
062C F008 1630 BEQ CLEAR ; OPTION = 0
062E CA 1640 DEX
062F F014 1650 BEQ SET ; OPTION = 1
0631 CA 1660 DEX
0632 F01A 1670 BEQ TEST ; OPTION = 2

1680
0634 D0DB 1690 BNE EXIT ;OPTION = SOMETHING ELSE

1700 ;
1710 ;BIT MAP ROUTINES
1720 ;

0636 A90F 1730 CLEAR LOA #$0F ;CLEAR BIT IN A
0638 4500 1740 EOR MASK
063A 8500 1750 STA MASK
063C A5CC 1760 LOA BYTE
063E 2500 1770 AND MASK
0640 8504 1780 STA RESULT
0642 18 1790 CLC
0643 90CC 1800 BCC EXIT

0645 A5CC 1810 SET LOA BYTE
0647 0500 1820 ORA MASK
0649 8504 1830 STA RESULT
064B 18 1840 CLC
064C 90C3 1850 BCC EXIT
064E A5CC 1860 TEST LOA BYTE
0650 2500 1870 AND MASK
0652 F007 1880 BEQ NEXT
0654 A901 1890 LOA #1
0656 8504 1900 STA RESULT
0658 18 1910 CLC
0659 90B6 1920 BCC EXIT
065B A900 1930 NEXT LOA #0
0650 8504 1940 STA RESULT
065F 18 1950 CLC
0660 90AF 1960 BCC EXIT
0662 1970 . END

Figure 9.4 - BITMAPLST

20390 REM BITMAP.LST
20391 DATA 169,0,133,212,133,213,104,201
20392 DATA 3,240 ,7,170,104,104,202,208
20393 DATA 251,96,104,104,133,204,104,104
20394 DATA 133,206,170,169,1,224,0,240
20395 DATA 4,10,202,208,252,133,208,104
20306 DATA 104,170,224,0,240,8,202,240
20397 DATA 20,202,240,26,208,219,169,15
20398 DATA 69,208,133,208,165,204,37,208
20399 DATA 133,212,24,144,204,165,204,5
20400 DATA 208,133,212,24,144,195,165,204
20401 DATA 37,208,240,7,169,1,133,212
20402 DATA 24,144,182,169,0,133,212,24
20403 DATA 144,175
20404 MLSTART=1536
20405 MLEND=1633
20406 FOR X=MLSTART TO MLEND
20407 READ Y:POKE X,Y :NEXT X

ATARI BASIC Faster & Better 119

; SET BIT IN A

; TEST BIT IN A

I recommend that you use DATAP AK.BAS to string pack BITMAP for your everyday use.
That way the value of ADDR in the USR call will be ADDR=ADR(BITMAP$). All of the
examples in this chapter will assume that you have done this first. If you decide to use the
DATA statement version, then ADDR will be equal to the address where you store the first
byte of data.

120 Chapter 9

Clearing a Bit in a Byte

To CLEAR any bit in a byte, you start by selecting a particular byte that needs such a
service. BITMAP will treat any number from 0 to 255 as a single byte. If you are trying to
operate on a single byte of a string, you will have to define BYTE=ASC(STRING$(X,X))
before calling BITMAP. BIT is any number between zero and seven. If you try to use a BIT
outside this range, BITMAP will not CLEAR any bits in BYTE. OPTION should be set to
zero. The USR call to CLEAR the third bit in BYTE=7 is:

RESULT = USR(ADR(BITMAP$) ,7,2,0)

Note that the third bit is bit number two.

The result of this operation is stored in the variable RESULT. If you were to use the
command PRINT RE S UL T after returning from BITMAP, you would get" 3", which is what
you should get when 00000111 is changed to 00000011.

Setting a Bit in a Byte

Setting any bit in a byte is done in a manner very similar to clearing a bit. In the previous
example, keep everything the same except change OPTION=I and BIT=3. The USR call to
SET the fourth bit of BYTE=7 is:

RESULT = USR(ADR(BITMAP$),7,3,l)

This time 00000111 was changed to 00001111, so the number stored in RESULT should
be (and is) RESULT=I5.

Testing a Bit in a Byte

When we "test" a bit, we are checking to see whether it has been SET or not. We can test
any bit in a byte by using OPTION=2 and calling BITMAP. A "true" test, meaning that the
bit is SET, will return a value of RE SUL T=I. A "false" test, meaning that the bit is not set,
will return a value ofRESULT=O. We can use the answer stored in RESULTto perform an
IF /THEN operation in our main program.

Let's test the third bit in BYTE=5. BIT will be equal to two and OPTION=2. The USR
call is:

RESULT = USR(ADR(BITMAP$) ,5,2,2)

If we now PRINT RESULT, we will get a "1" indicating that the third bit is set. The binary
representation of "5" is 00000101, so the answer is correct.

Don't worry about the previous contents of RESULT messing up the answer. BITMAP
sets RESULT=O before starting any CLEAR, SET or TEST operation.

A Practical Example of Bit Mapping

The ability to CLEAR, SET and TEST any bit in a byte lets us store eight "YES/NO"
status indicators (or "flags") in a single byte. By setting up a string of such bytes, we can use
this capability to obtain a marked savings in memory and disk storage requirements. For
example, in a mailing list program we want to store as many names and addresses as possible.
Additionally, we may need to store several other pieces of Information about each of the
people or companies that are in our list. By assigning only one more byte to each client's
record, we can store eight additional information codes for each name, where each code is a
YES/NO indicator. Say, for example, in our mailing list we want to keep track of which
customer had been sent a copy of our latest catalog, and what other actions were taken in

ATARI BASIC Faster & Better 121

regards to that customer. The program was designed so that BIT=O indicated that a new
catalog was sent to that customer. BIT=l was used to indicate whether or not the customer
was a retail or wholesale customer. BIT=2 was used to indicate whether the customer's
account was in good standing, and so forth. There were also bytes set aside to indicate which
products the customer had or had not bought. This information was used for market analysis
and to allow us to send special promotional literature to a customer on products that he had
not yet bought.

Another application of bit mapping is an invoicing program I wrote where a byte
associated with each of the products would indicate various stocking and inventory codes. If
a bit is set, the condition applies to that particular product. For example:

Figure 9.5 - An Example of Bit Mapping

BIT MEANING

0 This product is sold on disk
1 This product is sold on cassette
2 This product is for the ATARI 400/ 800/ 1200
3 This product is for the TRS-80 Model I or III
4 This product is for the IBM PC
5 This product is for the APPLE II
6 This product is for the COMMODORE VIC-20
7 This product is for the COMMODORE 64

Here is another idea I have used. When I am performing a series of operations on a set of
records, I reserve one or two bytes of each record as an "update status" flag. Certain bits
within each status flag are set after particular kinds of record updates and are not cleared
until a special "clear status" routine is run. This has been especially useful since I seldom
have the time to sit down and update every record in one sitting. Usually I get interrupted
with one crisis or another that keeps me away for several hours or even several days. When I
can finally get back to my chores, I can resume right where I left off by running a routine that
tests the appropriate status flag of each record until it finds the first one that is CLEAR. This
is really simple to do if you concatenate all status flags of a given type into one long string. I
am sure that you will find many other ways to take advantage of bit mapping.

Boolean Operators - Logical Building Blocks

Boolean operators, which take their name from the famous mathematician George Boole,
are a set of mathematical relationships that are used to perform logic operations. Such
"logical" (or Boolean) operators enable a programmer to easily program logic functions into
a program.

A Brief Tutorial on Boolean Logic

There are four fundamental Boolean operators: OR, AND, NOT, and the often confusing
"exclusive OR", XOR. The exclusive ORis sometimes abreviated EOR instead ofXOR. We will
discuss each of these operators in more detail and show you some new ways to use them.

122 Chapter 9

The Boolean OR Operator

The OR operator looks at the TRUE/FALSE condition of two arguments, BYTE 1 and
BYTE2. Each argument is either TRUE or FALSE. The OR operator returns a combined
condition of TRUE anytime BYTE 1 or BYTE2 is TRUE. The result is always FALSE if
both BYTEI and BYTE2 are FALSE.

Visualize this example: You and a friend are trying to decide which arcade game to play. If
both of you do not like the game, then the two of you will look for another game to play. On the
other hand, you are willing to playa game you do not like if your friend likes it and vice versa.
Let's define all of the possible outcomes of your decision as a "truth table." It would look
something like this:

Figure 9.6 - Truth Table for a Boolean OR

Your Opinion Friend's Opinion Result

Hate The Game Hate The Game Go Play Something Else
Hate The Game Like The Game Play This Game
Like The Game Hate The Game Play This Game
Like The Game Like The Game Play This Game

FALSE (0) FALSE (0) FALSE (0)
FALSE (0) TRUE (1) TRUE (1)
TRUE (1) FALSE (0) TRUE (1)
TRUE (1) TRUE (1) TRUE (1)

The Boolean AND Operator

The AND operator looks at the TRUE/FALSE condition of two arguments and returns a
combined condition of TRUE only if both of the arguments are TRUE. In our previous
example, this would be like saying that you and your friend will play the arcade game only if
both of you like the game. Otherwise, the two of you will look for another game to play. The
truth table for the possible outcomes looks like this:

Figure 9.7 - Truth Table for a Boolean AND

You Friend Result

FALSE (0) FALSE (0) FALSE (0)
FALSE (0) TRUE (1) FALSE (0)
TRUE (1) FALSE (0) FALSE (0)
TRUE (1) TRUE (1) TRUE 0)

ATARI BASIC Faster & Better 123

The Boolean NOT Operator

The Boolean NOT operator is different from the first two we have talked about in that it
operates on only one argument. It serves the function of changing a TRUE to a FALSE or a
FALSE to a TRUE. The truth table for the NOT operator is:

Figure 9.8 - Truth Table for a Boolean NOT

You

FALSE (0)
TRUE (1)

Result

TRUE (1)
FALSE (0)

The Boolean XOR Operator

This poor operator is one of the most misunderstood mathematical operators that was
ever invented. This operator looks at the TRUE/FALSE condition of two arguments and
returns a TRUE only if the two arguments have different values. If both arguments are
TRUE or both arguments are FALSE, the result of the XOR operation is FALSE. The truth
table for this operator looks like this:

Figure 9.9 - Truth Table for a Boolean XOR

You Friend Result

FALSE (0) FALSE (0) FALSE (0)
FALSE (0) TRUE (1) TRUE (1)

TRUE (1) FALSE (0) TRUE (1)

TRUE (1) TRUE (1) FALSE (0)

Combining Boolean Operators

When the Boolean operators are combined with each other in the same logical expression,
you have what is. called "Boolean algebra." The expressions "A OR B" and "C AND D" are
called "Boolean expressions." The expression "(A OR B) AND (C AND D)" is also a Boolean
expression. There are many rules governing the relationships in Boolean algebra. I can't
discuss all of them here in detail since that would take another couple of hundred pages. All I
will do here is summarize the more frequently used rules and refer you to your local library or
book store for more detailed information.

First, Boolean operators, like the arithmetic operators (+,-,*,/) obey the laws of
precedence. With arithmetic operators, addition is done before subtraction, which is done
before multiplication, which is done before division. The order of precedence for Boolean
operators is:

124 Chapter 9

Figure 9.10 - Order of Precedence for Boolean Operators

OPERATOR PRECEDENCE MEANING

() FIRST Group contents of ()
NOT SECOND Logical complement
AND THIRD Logical AND
OR FOURTH Logical OR
XOR LAST Logical exclusive OR

You will note that, like arithmetic expressions, the Boolean expressions inside
parentheses take precedence.

When you studied math in school, you were probably taught that "1+2=2+1" and
"3*(2+4)=(3*2)+(3*4)." Similar properties apply to Boolean expressions. Briefly stated,
they are:

Figure 9.11 - Axioms for Boolean Expressions

(1)
(2)
(3)

(4)

(5)
(6)
(7)
(8)
(9)

A OR B = B OR A
A AND B = B AND A
A AND (B OR C) = (A AND B) OR (A AND C)
A OR (B AND C) = (A OR B) AND (A OR C)
A OR 0 = A
A AND 1 = A
A OR NOT A = 1
A AND NOT A = 0
0<>1

Where: A, Band C are arithmetic (or Boolean) expressions that evaluate to a value of one or
zero. That is as far as I will take you in the study of the theory of Boolean logic. These types of
expressions are used frequently in the coding of computer programs. The primary reason for
going into this much detail is so you will recognize a "Bool" when you see one. The rest of this
discussion will explain to you how Atari BASIC treats Boolean expressions and, also,
explore some new ways to use Boolean expressions via machine language.

How Atari BASIC Treats Boolean Expressions

Atari BASIC only supports three of the standard Boolean operators: OR, AND, and NOT.

Unfortunately, Atari BASIC treats Boolean operations only at the byte level, and not at the
bit level like most other BASICs. Hence, "A = 1 OR 2" will result in A=O instead of
A=3. One special note of interest is that the statement

100 IF NOT A THEN B=10

AT ARI BASIC Faster & Better 125

This statement is a test for A=O. If A is equal to any other value, then the argument of the
IF/THEN is automatically assumed to be "1" for logical purposes.

Boolean Logic in Machine Language

Sometimes it is really much more efficient to use logical operators on the bit level. The
machine language routine BOOLEAN enables you to do AND, OR and exclusive OR XOR

operations at the bit level. You can use BOOLEAN for OR, AND, XOR operations. The NOT

operator is unary and can be easily performed by first testing the appropriate bit with
BITMAP and then using BITMAP to CLEAR or SET the bit as needed.

Figure 9.12 - BOOLEAN - Assembly Language Listing

1~~~ ;BOOLEAN - BIT-BY-BIT LOGICAL OPERATORS
1~1~

1~2~
1~3~ ;CALLED FROM BASIC USING:
1~4~ ;X=USR(ADDR,BYTE1,BYTE2,OPTION)
1~5~ ; WHERE
1~6~ ADDR = ADDRESS OF THIS ROUTINE
1~7~ BYTE! = ARGUMENT #1
1~8~ BYTE2 = ARGUMENT #2
1~9~ OPTION = ~ MEANS ' OR'
11~~ 1 MEANS 'AND'
111~ 2 MEANS 'XOR'
112~

113~

~~~~ 114~ *= $6~~ ;COMPLETELY RELOCATABLE 
115~ 

116~ 

117~ ;SET UP PAGE ZERO POINTERS 
118~ 

~0CC 119~ BYTE1 $CC 
0~CD 1200 BYTE2 $CD 
~~D4 121~ RESULT $D4 

122~ 

123~ 

124~ ;INITIALIZE POINTERS 
125~ 

~6~~ A9~~ 126~ LDA #~ ;SET RESULT TO ZERO 
06~2 85D4 127~ STA RESULT 
~604 85D5 128~ STA RESULT+1 
~6~6 68 129~ PLA ;MAKE SURE THERE ARE NO 
~6~7 C9~3 13~~ CMP #3 ;MORE THAN THREE ARGUMENTS 
~6~9 F~~7 131~ BEQ GOOD 
~6~B AA 132~ TAX 
~6~C 68 133~ KILL PLA 
~6~D 68 134~ PLA 
~6~E CA 135~ DEX 
~6~F D~FB 136~ BNE KILL 
~611 6~ 137~ EXIT RTS ;GO BACK TO BASIC 



126 Chapter 9 

• 

0612 68 1380 GOOD PLA ;GET BYTEI AND BYTE2 LSB'S 
0613 68 1390 PLA ;AND IGNORE MSB'S 
0614 85CC 1400 STA BYTEI 
0616 68 1410 PLA 
0617 68 1420 PLA 
0618 85CD 1430 STA BYTE2 

1440 
1450 ;SELECT WHICH OPTION 
1460 

061A 68 1470 PLA 
061B 68 1480 PLA 
061C AA 1490 TAX 
061D E000 1500 CPX #0 
061F F008 1510 BEQ OR ; OPTION = 0 
0621 CA 1520 DEX 
0622 F00C 1530 BEQ AND ; OPTION = 1 
0624 CA 1540 DEX 
0625 F010 1550 BEQ XOR ;OPTION = 2 

1560 
0627 D0E8 1570 BNE EXIT ;OPTION = SOMETHING ELSE 

1580 
1590 ;BOOLEAN LOGIC ROUTINES 
1600 

0629 A5CC 1610 OR LDA BYTE! ; BYTEI OR BYTE2 
062B 05CD 1620 ORA BYTE2 
062D 18 1630 CLC 
062E 900B 1640 BCC OUTPUT 
0630 A5CC 1650 AND LDA BYTEI ; BYTE! AND BYTE2 
0632 25CD 1660 AND BYTE2 
0634 18 1670 CLC 
0635 9004 1680 BCC OUTPUT 
0637 A5CC 1690 XOR LDA BYTE! ; BYTE 1 XOR BYTE2 
0639 45CD 1700 EOR BYTE2 

1710 ; 
1720 ;STORE RESULT IN THE CALLING VARIABLE 
1730 ; 

063B 85D4 1740 OUTPUT STA RESULT 
0630 18 1750 CLC 
063E 9001 1760 BCC EXIT 
0640 1770 . END 

Figure 9.13 - BOOLEAN.LST 

20410 REM BOOLEAN.LST 
20411 DATA 169,0,133,212,133,213,104,201 
20412 DATA 3,240,7,170,104,104,202,208 
20413 DATA 251,96,104,104,133,204,104,104 
20414 DATA 133,205,104,104,170,224,0,240 



20415 DATA 8,202,240,12,202,240,16,208 
20416 DATA 232,165,204,5,205,24,144,11 
20417 DATA 165,204,37,205,24,144,4,165 
20418 DATA 204,69,205,133,212,24,144,209 
20419 DATA 
20420 MLSTART=1536 
20421 MLEND=1599 
20422 FOR X=MLSTART TO MLEND 
20423 READ Y:POKE X,Y :NEXT X 
20424 RETURN 

ATARI BASIC Faster & Better 127 

You can call BOOLEAN from BASIC with a USR command of the form: 

RESULT = USR(ADDR,BYTE1,BYTE2,OPTION) 

where: ADDR = address of this machine language subroutine 
BYTE1 = a number between 0 and 255 
BYTE2 = another number between 0 and 255 
OPTION = 0 means a Boolean OR 

= 1 means a boolean AND 
= 2 means a boolean XOR 

The variable RESULT will contain the appropriate answer upon the return to BASIC. 
As I recommended for BITMAP, you should use DATAPAK to string pack BOOLEAN for 
use in your programs. 

Machine Language Boolean OR 

To OR any two bytes, you must first make sure that they are in numerical form. Whole 
numbers between 0 and 255 are treated as a single byte by BOOLEAN. The USR call to OR 

BYTE1=7 and BYTE2=9 is: 

RESULT = USR(ADR(BOOLEAN$) ,7,9,0) 

If you did a PRINT RESULT, then the number 15 would be printed. This is the result of 
ORing 00000111 and 00001001, which is the correct answer. 

Machine Language Boolean AND 

Take the previous example and leave everything the same, except change OPTION=O to 
OPTION=1. The result should be the result of ANDing 00000111 and 00001001, which is 
00000001, or RESULT=1. 

RESULT = USR(ADR(BOOLEAN$) ,7,9,1) 

Machine Language Boolean XOR 

Once again, keep everything the same and change OPTION to a value of one. This time, 
the result is 14. Look at the bits in the two arguments. They are the same except in the 
second, third and fourth bits. The exclusive OR of those two numbers is therefore 00001110, 
which is binary for 14. 

RESULT = USR(ADR(BOOLEAN$) ,7,9,2) 



128 Chapter 9 

An Un-Real World Example of Bit Level Logic 

Once upon a time, I wrote a BASIC adventure game for my computer. This game had many 
different levels and many different rooms on each level (8*8*8 if memory serves). I wanted a 
way to code each of the rooms so the person playing the game could not cheat, and so I could 
pack a lot of room data in a minimum amount of space. The technique I ended up using 
involved the bit level encoding of certain key information. The chief problem was how to 
recognize what were valid exits from a room. This is what I did: 

Figure 9.14 - Exits from a Room 

Direction Bit number 

NORTH 0 
SOUTH 1 
EAST 2 
WEST 3 
UP 4 
DOWN 5 
TELEPORT 6 

This way, if a room had three exits, I would SET the bit assigned to each valid direction. 
The resulting binary number, when converted to a decimal number, ROOMID, gave me a 
code that I could assign to that room which would identify every exit from the room. When 
the player tried to go in a particular direction from a room, the program would set 
DIRECTION equal to the direction number and call BITMAP with the following: 

GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,2) 

If the chosen direction was a valid exit, then the GATE would open for GATE=l, else it 
stayed closed. The TELEPORT direction would work only in certain special rooms when a 
special magic word was said. 

You can use BITMAP to create the codes for the room IDs by using the following sequence 
of commands: 

Figure 9.15 - S elling Up Room Codes with Bit Level Logic 

100 ROOMID = 0 
110 DIRECTION = 3 :REM IF WEST IS A VALID EXIT 
120 GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,1) 
130 ROOMID = GATE 
140 DIRECTION = 4 :REM IF UP IS A VALID EXIT 
150 GATE = USR(ADR(BITMAP$),ROOMID,DIRECTION,1) 

and so forth ... 



AT ARI BASIC Faster & Better 129 

Being essentially lazy, I wrote a short program that would ask for a room's matrix code in 
the dungeon, the name of that room and the legal exits from that room. The program would 
then generate a special code for that room and create a BASIC data statement in the same 
way that CONVERT.BAS does. 

This is only a small sample of what you can do with Boolean expressions and bit mapping. 
There are many more ways to use them just waiting out there for you to figure out. Have 
fun. 



130 Chapter 10 

Sorting Things Out 

When programming your Atari computer, you will often find a need to work with lists of 
data. When you think about it, a major percentage of computer programming involves the 
storage and retrieval of information in one way or another. 

In this chapter, we will reveal some techniques that can give you dramatic increases in data 
handling capability and some fantastic improvements in program execution speed. We will 
be dealing with the general topic of sorting data. We will discuss the most popular techniques 
and explain why they are so popular. These sorting techniques will be demonstrated in pure 
BASIC, and in one case I will show you how to include a fast machine language sort routine in 
your BASIC programs. 

All Sorts of Sorts 

Every time you separate the dimes from the nickels in your pocket change, you are using 
one or more forms of a technique called "sorting." According to my dictionary, the verb 
"sort" means: 

1. To arrange according to class, kind, or size; classify 

Computer programmers use this word in a much narrower sense. We think of "sorting" as 
arranging things in ascending or descending order. A more appropriate name would be 
"ordering." We will, with all due apologies to Mr. Webster, use the word "sorting" to mean 
"arranging things into an orderly sequence." 

Sorting has been a common activity since before recorded history, but its most prevalent 
modern application is arranging data in numerical or alphabetical order for purposes of 
segregating groups of a similar type. Suppose that your record album collection has grown to 
more than 5,000 albums. It would be much easier to find your Janis Joplin albums (that dates 
me, doesn't it?) if the records are in some sort of order. The way you arrange your albums is 
one form of" sorting." The same principle holds true for the millions and millions of pieces of 
information that today's highly technological society must keep track of. Have you ever 
looked at a bank statement for a checking account? Typically my statements contain a list of 
my checks in numerical order. This was accomplished by "sorting." 

Sorting, in the software sense, can be classified into two major categories. "In-memory" 
sorting means that the data to be sorted is contained in the available RAM of your computer. 
This method tends to be very fast since you can take advantage of the extremely fast access 
time of a computer's memory. The other major catagory is called "external" sorting. This 



ATARI BASIC Faster & Better 131 

method utilizes a large data file on disk in those cases where there is too much data to fit in 
the limited memory of your computer. There are special techniques for both types of sorting 
that take advantage of various computer configurations. The nature of the data to be sorted 
also plays a role in the choice of a particular sorting algorithm. We will concentrate our 
discussion in this chapter on two of the more popular in-memory sorting routines. The 
methods I will show you can readily be adapted for extremely large data files, but I suspect 
that most of your needs can be met by these relatively simple sort routines. 

Let's take a moment to define some terminology that is commonly used when talking 
about sorts. First, a collection of data is typically called a "file." This file will, in turn, usually 
consist of one or more "records." For example, the list of the names of the students in a class 
might be your "file." Each name in the list would be a "record." Each record might also 
include a list of that student's test scores and the average score to date. When a list (file) is to 
be sorted, you many times will want to sort on a particular "field" or "key." In the previous 
example, you might want to sort the students in the class from "highest average score" to 
"lowest average score" or vice versa. The average score of each student is one "key" in the 
"record" for each student. The phrase "key" defines the part of a record that you will sort on. 
Each value for a key is called an "element." 

When you are sorting a file , you typically want the records sorted in ascending or 
descending order, based on one or more keys. In the process of performing the sort, you must 
examine every record in the file at least once. This is what is called a "pass" on the file. 
Usually a sort operation will require many such passes before the sort is completed. 

Bubble, Bubble, Toil and Trouble 

By far the most popular sorting technique in use today is a method called a "bubble" sort. 
The popularity of this particular technique is due to its simplicity. A bubble sort is 
performed by simply comparing every two adjacent elements and swapping them if the first 
one is "greater than" the second. Aflagis set every time two records are swapped. The sortis 
complete when a pass is made where no records are swapped, hence the flag is not set at the 
end of a pass. As this process moves its way through a list of data, the smaller elements 
appear to "bubble" their way to the top of the list. 

This technique, which is also known as a simple interchange sort, is more than adequate 
for small data files that are not too much out of order. If either of these two conditions is not 
met, the time needed to sort a file can rapidly become very inconvenient. For example, The 
BASIC bubble sort shown in Figure. 10.1 takes about 43 seconds to sort 50 records, and 
takes almost three minutes to sort 100 records. The time required for this BASIC program to 
sort 1000 records is in the neighborhood of several hours. The dramatic increase in sorting 
time is due to the fact that the sort time goes up by roughly a factor of four every time you 
double the number of records. 

There are a variety of ways to modify the bubble sort to improve its speed. The most 
obvious is to use a bi-directional bubble sort, where we first make a pass from top-to-bottom 
looking for RECORD1> RECORD2 and then reverse the direction of the sort to go from 
bottom-to-top looking for RECORD2>RECORDl. No matter what minor modifications 
you make, the bubble sort is not very fast. Even if you write the bubble sort in machine 
language, it still will take an appreciable amount of time to sort a large file. There must be a 
better way to sort stuff that is faster without being overly complex. There is - the Shell 
sort. 



132 Chapter 10 

Figure 10.1 - BUBBLE.DEM - A BASIC Bubble Sort 

100 REM BUBBLE. OEM - BENCHMARK TEST FOR BASIC BUBBLE SORT 
110 REM 
120 REM SET UP TEST ROUTINE 
130 REM 
140 NUM=50 
150 DIM TEST$(NUM) ,TEMP$(5):N=NUM:Z1=1 
160 FOR X=l TO NUM 
170 Y=INT(200*RND(0)):TEST$(X,X)=CHR$(Y) 
180 IF NOT ((Y>47 AND Y<58) OR (Y>64 AND Y<91) OR (Y>96 AND Y<123)) THEN 170 
190 NEXT X 
200 REM 
210 REM RESET CLOCK 
220 REM 
230 POKE 1536,l :POKE 1537,0:POKE 1538,0 :POKE 1539,0:POKE 1536,0 
240 REM 
250 REM ROUTINE TO BE TESTED 
260 REM 
270 REM BUBBLE SORT ROUTINE 
280 FLAG=0 
290 FOR COUNT=Zl TO N-Z1: 

IF ASC(TEST$(COUNT,COUNT)) <=ASC(TEST$(COUNT+Z1,COUNT+Z1)) THEN 330 
300 TEMP$=TEST$(COUNT,COUNT) 
310 TEST$(COUNT,COUNT)=TEST$(COUNT+Z1,COUNT+Z1) 
320 TEST$(COUNT+Z1,COUNT+Z1)=TEMP$ :FLAG=Zl 
330 NEXT COUNT 
340 IF FLAG=Zl THEN N=N-Z1 :GOTO 280 
350 REM 
360 REM FIND ELAPSED TIME 
370 REM 
380 PRINT CHR$ (125) : PRINT CHR$ (253) : POSITION 2,5 : PRINT "BENCHMARK TEST COMPLETED" 
390 POSITION 2,9 :POKE 1536,1: 

PRINT "ELAPSED TIME = "; PEEK (1537) ; : POSITION 20,9: PRINT " HOURS" 
400 POSITION 17,10 :PRINT ;PEEK(1538); :POSITION 20,10:PRINT" MINUTES" 
410 POSITION 17,ll :PRINT ;PEEK(1539);:POSITION 20,ll :PRINT" SECONDS" 
420 POKE 1536,0 :END 

Note: BUBBLE.DEM requires you to run CLOCK.BAS first. 

The SHELL Game 

Almost as simple in concept and far faster in execution, the Shell sort is a popular sort 
routine with many programmers. For 50 records, the shell sort is about three times faster 
than a bubble sort, and the differences in execution time for larger files is even more notable. 
For example, a BASIC shell sort will sort 100 records in about 37 seconds, as compared to 
the three minutes required for a bubble sort. The primary reason for the dramatic increase in 
speed is due to the fact that a shell sort requires fewer comparisons to sort the same 
data file. 



ATARI BASIC Faster & Better 133 

The theory of a shell sort is relatively straightforward. In a list of N items, a boundary, 
FLAG, is computed such that 2EXP(FLAG)< N < 2EXP(FLAG+1) . FLAG is then set equal 
to 2EXP(FLAG-1). A loop counts from 1 to N-FLAG checking for RECORD(COUNT) <= 
RE CORD (CO UNT+FLAG ).If this condition is met, the counter is incremented and the next 
pair of records is compared. If the test fails, the two records are swapped before the counter 
is updated. When the counter reaches N, FLAG is divided by two, the counter is reset and a 
new loop (pass) is started. The sort is complete when FLAG reaches zero. 

The name given to this sorting technique is not due to any similarity to the infamous 
"shell" con game. The origin of the name is a little more prosaic. The shell sort technique was 
originally proposed and published by Donald L. Shell back in 1959. 

SHELL.DEM is a BASIC program that demonstrates the shell sort in such a way that the 
algorithm is easier to follow. The program assumes that you have previously run the real time 
clock we discussed earlier. The sort will still run properly if you haven't done this, but the 
actual sort time will not be computed for you. SHELL.DEM creates a data file, TEST$, 
which holds a collection of numbers and alpha characters. This file is then sorted using the 
shell sort technique, and the elapsed time is printed out foJ.' you. The program uses a general 
benchmark routine that I have used for a number of different tests. It can easily be modified 
to perform a benchmark test on just about any other routine that you might need to test. 

Figure 10.2- SHELL.DEM - A BASIC SHELL SORT 

100 REM SHELL.DEM - BENCHMARK TEST FOR BASIC SHELL SORT 
110 REM 
120 REM SET UP TEST ROUTINE 
130 REM 
140 NUM=50 
150 DIM TEST$(NUM),TEMP$(5): 

N=NUM : 
Zl=l 

160 FOR X=l TO NUM 
170 Y=INT(200*RND(0)): 

TEST$(X,X)=CHR$(Y) 
180 IF NOT «Y>47 AND Y<58) OR 

(Y>64 AND Y<91) OR 
(Y>96 AND Y<123)) THEN 170 

190 NEXT X 
200 REM 
210 REM RESET CLOCK 
220 REM 
230 POKE 1536,1: 

POKE 1537,0: 
POKE 1538,0 : 
POKE 1539,0: 
POKE 1536,0 

240 REM 
250 REM ROUTINE TO BE TESTED 
260 REM 
270 REM SHELL SORT ROUTINE 
280 FLAG=Z1 



134 Chapter 10 

290 FLAG=2*FLAG : 
IF FLAG<=NUM THEN 290 

300 FLAG=INT(FLAG/ 2): 
IF FLAG=0 THEN 390 

310 FOR COUNT=ZI TO N-FLAG: 
FLIP=COUNT 

320 OTHER=FLIP+FLAG : 
X=ASC(TEST$(FLIP,FLIP)): 
Y=ASC(TEST$(OTHER,OTHER)) : 
IF X<=Y THEN 350 

330 TEMP$=CHR$(X): 
TEST$(FLIP,FLIP)=TEST$(OTHER,OTHER): 
TEST$(OTHER,OTHER)=TEMP$: 
FLIP=FLIP-FLAG 

340 IF FLIP>0 THEN 320 
350 NEXT COUNT : 

GOTO 300 
360 REM 
370 REM FIND ELAPSED TIME 
380 REM 
390 PRINT CHR$(125): 

PRINT CHR$(253) : 
POSITION 2,5: 
PRINT "BENCHMARK TEST COMPLETED" 

400 POSITION 2,9: 
POKE 1536, 1: 
PRINT "ELAPSED TIME = "; PEEK(1537); : 
POSITION 20,9: 
PRINT " HOURS" 

410 POSITION 17,10: 
PRINT ;PEEK(1538); : 
POSITION 20,10: 
PRINT " MINUTES" 

420 POSITION 17,11 : 
PRINT ;PEEK(1539); : 
POSITION 20,11: 
PRINT " SECONDS" 

430 POKE 1536,0: 
END 

The Shell Game Speeds Up 

Even though the BASIC Shell sort is much faster than a BASIC bubble sort, sorting large 
files will still take longer than is convenient in a data processing environment. We have 
already demonstrated the superior speed of machine language programs. Let's see what 
kind of performance we can get out of a machine language shell sort. 

The listing shown in Figure 10.3 is an assembled listing of a machine language shell sort 
routine. I tried to show in the comments column the parallel operations in the BASIC version 
ofthe routine. The machine language version takes up only 486 bytes, and works fast enough 



ATARI BASIC Faster & Better 135 

for most applications. This routine will sort 100 items in about four seconds. It is possible to 
create sort routines that will sort records much faster than this, but they are not only 
considerably more complex, they almost always require more memory. Those kinds of 
routines are more suitable for external sorting applications. Even those routines, however, 
can still take a relatively long time to sort very large files . Y oujust have to face the reality that 
sorting is an inherently time consuming task. 

If you are interested in studying other kinds of sorts, I recommend Volume 3 of the 
"programmers bible," Sorting and Searching by Donald E. Knuth. The three volume Knuth 
series is rather expensive and goes very heavily into the mathematics of programming 
theory. If complex math is not your strong point, you will have difficulty understanding the 
material. A book that might be easier for you to understand and make use of is Sorting and 
Sort Systems by H . Lorin. 

The listing in Figure 10.4 is the BASIC POKE version, SORT.LST, of the machine 
language shell sort routine. I have it set it up like any other BASIC subroutine so that you can 
add it to your own BASIC programs. The machine code is completely relocatable, so I 
recommend that you use DA T AP AK to string pack the routine for your every day use. 

Figure 10.3 - S HELL - Assembled Source Listing 

1000 ;SHELL - A SHELL SORT ROUTINE 
1010 
1020 

0000 1030 .OPT NOEJECT 
1040 
1050 
1060 ;CALLED FROM BASIC USING : 
1070 ;X=USR(ADDR,FILE,RECSIZE,NUMBER, 
1080 KEYPOS,KEYLEN,DIRECT) 
1090 ;WHERE 
1100 ADDR = ADDRESS OF THIS ROUTINE 
1110 FILE = ADDRESS OF STRING HOLDING FILE 
1120 RECSIZE = LENGTH OF EACH RECORD «=256 BYTES) 
1130 NUMBER = NUMBER OF RECORDS TO SORT 
1140 KEYPOS = POSITION OF KEY IN RECORD 
1150 KEYLEN = LENGTH OF KEY 
1160 DIRECT = 0 MEANS ASCENDING SORT 
1170 = 1 MEANS DESCENDING SORT 
1180 
1190 

0000 1200 *= $2B00 ;COMPLETELY RELOCATABLE 
1210 
1220 
1230 ;SET UP POINTERS 
1240 ; 

00B4 1250 TEMP $B4 
00B6 1260 FILE $B6 
00B8 1270 RECSIZE = $B8 
00B9 1280 NUMBER $B9 
00BB 1290 KEYPOS $BB 
00BC 1300 KEYLEN $BC 



136 Chapter 10 

00BD 1310 DIRECT $BD 
00BE 1320 FLAG $BE 
00C0 1330 COUNT = $C0 
00C2 1340 FLIP = $C2 
00C4 1350 OTHER $C4 
00C6 1360 RECORD 1 = $C6 
00C8 1370 RECORD2 = $C8 
00CA 1380 LIMIT = $CA 
00CC 1390 KEY 1 $CC 
00CE 1400 KEY2 $CE 
00D4 1410 ERROR $D4 
03E0 1420 VAULT $3E0 

1430 ; 
1440 ;SAVE PAGE ZERO ON PAGE THREE 
1450 ; 

2B00 A21C 1460 LDX #$lC 
2B02 B5B3 1470 SAVE LDA $B3,X 
2B04 9DE003 1480 STA VAULT , X 
2B07 CA 1490 DEX 
2B08 D0F8 1500 BNE SAVE 

1510 ; 
1520 ;INPUT ERROR CHECK #1 
1530 ; 

2B0A A900 1540 LDA #0 ;SET ERROR FLAG TO ZERO 
2B0C 85D4 1550 STA ERROR 
2B0E 85D5 1560 STA ERROR+1 
2B10 68 1570 PLA ;MAKE SURE THERE ARE 
2B11 C906 1580 CMP #6 ;EXACTLY SIX ARGUMENTS 
2B13 F00D 1590 BEQ GOOD 
2B15 AA 1600 TAX 
2B16 68 1610 KILL PLA ;IF NOT, THEN ERROR=l AND 
2B17 68 1620 PLA ; GO TO EXIT 
2B18 CA 1630 DEX 
2B19 D0FB 1640 BNE KILL 
2B1B A201 1650 LDX #1 
2B1D 86D4 1660 BAD STX ERROR ;STORE ERROR CODE 
2B1F 18 1670 CLC 
2B20 9025 1680 BCC EXIT 

1690 , 
1700 ;INITIALIZE POINTERS 
1710 ; 

2B22 68 1720 GOOD PLA 
2B23 85B7 1730 STA FILE+1 
2B25 68 1740 PLA 
2B26 85B6 1750 STA FILE 
2B28 68 1760 PLA 
2B29 68 1770 PLA 
2B2A 85B8 1780 STA RECSIZE 
2B2C 68 1790 PLA 
2B2D 85BA 1800 STA NUMBER+1 
2B2F 68 1810 PLA 



ATARI BASIC Faster & Better 137 

2B30 85B9 1820 STA NUMBER 
2B32 68 1830 PLA 
2B33 68 1840 PLA 
2B34 85BB 1850 STA KEYPOS 
2B36 C6BB 1860 DEC KEYPOS ;CONVERT TO BASE ZERO 
2B38 85B4 1870 STA TEMP ;SAVE FOR ERROR CHECK 
2B3A 68 1880 PLA 
2B3B 68 1890 PLA 
2B3C 85BC 1900 STA KEYLEN 
2B3E C6BC 1910 DEC KEYLEN ;CONVERT TO BASE ZERO 
2B40 68 1920 PLA 
2B41 68 1930 PLA 
2B42 85BD 1940 STA DIRECT 
2B44 18 1950 CLC 
2B45 900B 1960 BCC CHECK2 

1970 
1980 ;RESTORE PAGE ZERO VALUES 
1990 

2B47 A21C 2000 EXIT LDX #$IC 
2B49 BDE003 2010 RESTORE LDA VAULT ,X 
2B4C 95B3 2020 STA $B3 ,X 
2B4E CA 2030 DEX 
2B4F D0F8 2040 BNE RESTORE 
2B51 60 2050 RTS ;RETURN TO BASIC 

2060 
2070 ;INPUT ERROR CHECK #2 
2080 

2B52 A202 2090 CHECK2 LDX #2 ;IF FILE<2 THEN ERROR=2 
2B54 A5B6 2100 LDA FILE ;AND GO TO BAD EXIT 
2B56 C900 2110 CMP #0 
2B58 D004 2120 BNE ERR3 
2B5A A5B7 2130 LDA FILE+l 
2B5C F0BF 2140 BEQ BAD 
2B5E E8 2150 ERR3 INX ;IF RECSIZE<1 THEN ERROR=3 
2B5F A5B8 2160 LDA RECSIZE ;AND GO TO BAD EXIT 
2B61 D004 2170 BNE ERR4 
2B63 A5B9 2180 LDA RECSIZE+l 
2B65 F0B6 2190 BEQ BAD 
2B67 E8 2200 ERR4 INX ;IF NUMBER<2 THEN ERROR=4 
2B68 A5B9 2210 LDA NUMBER ;AND GO TO BAD EXIT 
2B6A D008 2220 BNE ERR5 
2B6C C901 2230 CMP #1 
2B6E D004 2240 BNE ERR5 
2B70 A5BA 2250 LDA NUMBER+l 
2B72 F0A9 2260 BEQ BAD 
2B74 E8 2270 ERR5 INX ;IF KEYPOS<0 THEN ERROR=5 
2B75 24BB 2280 BIT KEYPOS ;AND GO TO BAD EXIT 
2B77 1003 2290 BPL ERR6 
2B79 18 2300 CLC 
2B7A 90Al 2310 BCC BAD 
2B7C E8 2320 ERR6 INX ;IF KEYLEN<0 OR 
2B7D 24BC 2330 BIT KEYLEN ;IF KEYLEN>(RECSIZE-KEYPOS+l) 



138 Chapter 10 

2B7F 1.0.03 234.0 BPL ERR6A ;THEN ERROR=6 AND 
2B81 18 235.0 CLC ;GO TO BAD EXIT 
2B82 9.099 236.0 BCC BAD 
2B84 A5B8 237.0 ERR6A LDA RECSIZE 
2B86 C6B4 238.0 DEC TEMP 
2B88 38 239.0 SEC 
2B89 E5B4 24.0.0 SBC TEMP 
2B8B C5BC 241.0 CMP KEYLEN 
2B8D 3.08E 242.0 BMI BAD 

243.0 
244.0 ;SET UP SORT VARIABLES 
245.0 

2B8F A9.0.0 246.0 LDA #.0 
2B91 85BF 247.0 STA FLAG+l ;FLAG = 1 
2B93 A9.01 248.0 LDA #1 
2B95 85BE 249.0 STA FLAG 
2B97 .06BE 25.0.0 LOOPI ASL FLAG ;FLAG = 2*FLAG 
2B99 26BF 251.0 ROL FLAG+l 
2B9B A5B9 252.0 LDA NUMBER ;IF FLAG<=NUMBER THEN LOOPI 
2B9D C5BE 253.0 CMP FLAG 
2B9F A5BA 254.0 LDA NUMBER+l 
2BAI E5BF 255.0 SBC FLAG+l 
2BA3 B.0F2 256.0 BCS LOOPI 
2BA5 46BF 257.0 LOOP3 LSR FLAG+l ;FLAG = FLAG/ 2 
2BA7 66BE 258.0 ROR FLAG 
2BA9 A5BE 259.0 LDA FLAG ;IF FLAG = .0 THEN 
2BAB .05BF 26.0.0 ORA FLAG+l ;SORT IS COMPLETE AND 
2BAD F.098 261.0 BEQ EXIT ;GO TO NORMAL EXIT 
2BAF A9.01 262.0 MAIN LDA #1 ;FOR COUNT=1 TO (NUMBER-FLAG) 
2BBI 85C.0 263.0 STA COUNT 
2BB3 A9.0.0 264.0 LDA #.0 
2BB5 85Cl 265.0 STA COUNT+l 
2BB7 38 266.0 SEC 
2BB8 A5B9 267.0 LDA NUMBER 
2BBA E5BE 268.0 SBC FLAG 
2BBC 85CA 269.0 STA LIMIT 
2BBE A5BA 27.0.0 LDA NUMBER+l 
2BC.0 E5BF 271.0 SBC FLAG+l 
2BC2 85CB 272.0 STA LIMIT+l 
2BC4 A5C0 2730 LOOP2 LDA COUNT ; FLIP = COUNT 
2BC6 85C2 2740 STA FLIP 
2BC8 A5Cl 275.0 LDA COUNT+l 
2BCA 85C3 276.0 STA FLIP+l 
2BCC 18 2770 CLC 
2BCD 9006 2780 BCC AGAIN 
2BCF 90D4 2790 DUM3 BCC LOOP3 ; LILLY PADS 
2BDI B0Fl 2800 DUM2 BCS LOOP2 
28D3 D.0.0.0 281.0 DUMI BNE AGAIN 
2BD5 18 2820 AGAIN CLC ;OTHER = FLIP+FLAG 
2BD6 A5C2 2830 LDA FLIP 
2BD8 65BE 284.0 ADC FLAG 
2BDA 85C4 285.0 STA OTHER 



AT ARI BASIC Faster & Better 139 

2BDC A5C3 2860 LOA FLIP+ 1 
2BDE 65BF 2870 ADC FLAG+1 
2BE0 85C5 2880 STA OTHER+1 

2890 
2900 ;POINT TO TEST RECORDS 
2910 

2BE2 A5B6 2920 LOA FILE 
2BE4 85C6 2930 STA RECORD1 
2BE6 85C8 2940 STA RECORD2 
2BE8 A5B7 2950 LOA FILE+1 
2BEA 85C7 2960 STA RECORD1+1 
2BEC 85C9 2970 STA RECORD2+1 
2BEE A901 2980 LOA #1 ;POINT TO FIRST RECORD 
2BF0 85B4 2990 STA TEMP 
2BF2 C5C2 3000 CMP FLIP 
2BF4 0006 3010 BNE SETlA 
2BF6 A900 3020 LOA #0 
2BF8 C5C3 3030 CMP FLIP+1 
2BFA F02E 3040 BEQ SETKEYl 
2BFC A900 3050 SETlA LOA #0 
2BFE 85B5 3060 STA TEMP+1 
2C00 18 3070 SETlB CLC 
2C01 A5C6 3080 LOA RECORD1 
2C03 65B8 3090 ADC RECSIZE 
2C05 85C6 3100 STA RECORD1 
2C07 A5C7 3110 LOA RECORD1+1 
2C09 6900 3120 ADC #0 
2C0B 85C7 3130 STA RECORD1+1 
2C0D E6B4 3140 INC TEMP 
2C0F 0002 3150, BNE SETlC 
2Cll E6B5 3160 INC TEMP+ 1 
2C13 A5B4 3170 SETlC LOA TEMP 
2C15 C5C2 3180 CMP FLIP 
2C17 D0E7 3190 BNE SETlB 
2C19 A5B5 3200 LOA TEMP+1 
2C1B C5C3 3210 CMP FLIP+ 1 
2C1D D0E1 3220 BNE SETlB 
2C1F 18 3230 CLC 
2C20 9008 3240 BCC SETKEYl 
2C22 D0AF 3250 DUM1B BNE DUM1 ; MORE LILLY PADS 
2C24 B0AB 3260 DUM2B BCS DUM2 
2C26 90A7 3270 DUM3B BCC DUM3 
2C28 0006 3280 BNE SETlB 
2C2A 18 3290 SETKEY1 CLC ;POINT TO KEY IN RECORD1 
2C2B' A5C6 3300 LOA RECORD1 
2C2D 65BB 3310 ADC KEYPOS 
2C2F 85CC 3320 STA KEY1 
2C31 A5C7 3330 LOA RECORD1+1 
2C33 6900 3340 ADC #0 
2C35 85CD 3350 STA KEY1+1 
2C37 A901 3360 SET2A LOA #1 ;POINT TO SECOND RECORD 
2C39 85B4 3370 STA TEMP 



140 Chapter 10 

2C3B C5C4 3380 CMP OTHER 
2C3D 0006 3390 BNE SET2B 
2C3F A900 3400 LOA #0 
2C41 C5C5 3410 CMP OTHER+l 
2C43 F023 3420 BEQ SETKEY2 
2C45 A900 3430 SET2B LOA #0 
2C47 85B5 3440 STA TEMP+l 
2C49 18 3450 SET2C CLC 
2C4A A5C8 3460 LOA RECOR02 
2C4C 65B8 3470 ADC RECSIZE 
2C4E 85C8 3480 STA RECORD2 
2C50 A5C9 3490 LOA RECORD2+1 
2C52 6900 3500 ADC #0 
2C54 85C9 3510 STA RECORD2+1 
2C56 E6B4 3520 INC TEMP 
2C58 0002 3530 BNE SET2D 
2C5A E6B5 3540 INC TEMP+l 
2C5C A5B4 3550 SET2D LOA TEMP 
2C5E C5C4 3560 CMP OTHER 
2C60 00E7 3570 BNE SET2C 
2C62 A5B5 3580 LOA TEMP+l 
2C64 C5C5 3590 CMP OTHER+l 
2C66 D0El 3600 BNE SET2C 
2C68 18 3610 SETKEY2 CLC ;POINT TO KEY IN RECORD2 
2C69 A5C8 3620 LOA RECORD2 
2C6B 65BB 3630 ADC KEYPOS 
2C6D 85CE 3640 STA KEY2 
2C6F A5C9 3650 LOA RECORD2+1 
2C71 6900 3660 ADC #0 
2C73 85CF 3670 STA KEY2+1 

3680 ; 
3690 ;MAIN SORT ROUTINE 
3700 ; 

2C75 A000 3710 SORT LOY #0 ;PICK A SORT DIRECTION 
2C77 A5BO 3720 LOA DIRECT 
2C79 0013 3730 BNE DOWN 
2C7B BICC 3740 UP LOA (KEYl),Y ;SORT IN ASCENDING ORDER 
2C7D DICE 3750 CMP (KEY2),Y 
2C7F 3054 3760 BMI BMPREC 
2C81 C8 3770 INY 
2C82 C4BC 3780 CPY KEYLEN 
2C84 90F5 3790 BCC UP 
2C86 B011 3800 BCS SWAP 
2C88 0098 3810 DUMIA BNE DUMIB ;EVEN MORE LILLY PADS 
2C8A B098 3820 DUM2A BCS DUM2B 
2C8C 9098 3830 DUM3A BCC DUM3B 
2C8E BICE 3840 DOWN LOA (KEY2),Y ;SORT IN DESCENDING ORDER 
2C90 DICC 3850 CMP (KEYl),Y 
2C92 3041 3860 BMI BMPREC 
2C94 C8 3870 INY 
2C95 C4BC 3880 CPY KEYLEN 



ATARI BASIC Faster & Better 141 

2C97 90F5 3890 BCC DOWN 
3900 , 
3910 ;SWAP RECORD1 WITH RECORD2 
3920 

2C99 A000 3930 SWAP LDY #0 ;POINT BUFFER TO PAGE FOUR 
2C9B A904 3940 LDA #4 
2C9D 85B5 3950 STA TEMP+1 
2C9F A900 3960 LDA #0 
2CA1 85B4 3970 STA TEMP 
2CA3 B1C6 3980 SWAPA LDA (RECORDl) , Y ;TEMP$ = TEST$(REC1) 
2CA5 91B4 3990 STA (TEMP),Y 
2CA7 C8 4000 INY 
2CA8 C4B8 4010 CPY RECSIZE 
2CAA D0F7 4020 BNE SWAPA 
2CAC A000 4030 LDY #0 ;TEST$(REC1) = TEST$(REC2) 
2CAE B1C8 4040 SWAPB LDA (RECORD2),Y 
2CB0 91C6 4050 STA (RECORD1),Y 
2CB2 C8 4060 INY 
2CB3 C4B8 4070 CPY RECSIZE 
2CB5 D0F7 4080 BNE SWAPB 
2CB7 A000 4090 LDY #0 ;TEST$(REC2) = TEMP$ 
2CB9 B1B4 4100 SWAPC LDA (TEMP),Y 
2CBB 91C8 4110 STA (RECORD2),Y 
2CBD C8 4120 INY 
2CBE C4B8 4130 CPY RECSIZE 
2CC0 D0F7 4140 BNE SWAPC 

4150 
4160 ;UPDATE COUNTERS 
4170 

2CC2 A5C2 4180 LDA FLIP ;FLIP = FLIP-FLAG 
2CC4 38 4190 SEC 
2CC5 E5BE 4200 SBC FLAG 
2CC7 85C2 4210 STA FLIP 
2CC9 A5C3 4220 LDA FLIP+1 
2CCB E5BF 4230 SBC FLAG+1 
2CCD 85C3 4240 STA FLIP+ 1 
2CCF 9004 4250 BCC BMPREC 
2CD1 05C2 4260 ORA FLIP 
2CD3 D0B3 4270 FROG1 BNE DUM1A 
2CD5 E6C0 4280 BMPREC INC COUNT ;NEXT COUNT 
2CD7 D002 4290 BNE NEXT 
2CD9 E6C1 4300 INC COUNT+1 
2CDB A5CA 4310 NEXT LDA LIMIT ;IS THIS PASS COMPLETED? 
2CDD C5C0 4320 CMP COUNT 
2CDF A5CB 4330 LDA LIMIT+1 
2CE1 E5Cl 4340 SBC COUNT+l 
2CE3 B0A5 4350 FROG2 BCS DUM2A ;NO? THEN GO BACK TO LOOP2 
2CE5 90A5 4360 FROG3 BCC DUM3A ;START A NEW PASS (LOOP3) 
2CE7 4370 .END 



142 Chapter 10 

Figure 10.4 - SORT.LST - BASIC POKE Version of S HELL 

20430 REM SORT.LST 
20431 DATA 162,28,181,179,157,224,3,202 
20432 DATA 208,248,169,0,133,212,133,213 
20433 DATA 104,201,6,240,13,170,104,104 
20434 DATA 202,208,251,162,1,134,212,24 
20435 DATA 144,37,104,133,183,104,133,182 
20436 DATA 104,104,133,184,104,133,186,104 
20437 DATA 133,185,104,104,133,187,198,187 
20438 DATA 133,180,104,104,133,188,198,188 
20439 DATA 104,104,133,189,24,144,11,162 
20440 DATA 28,189,224,3,149,179,202,208 
20441 DATA 248,96,162,2,165,182,201,0 
20442 DATA 208,4,165,183,240,191,232,165 
20443 DATA 184,208,4,165,185,240,182,232 
20444 DATA 165,185,208,8,201,1,208,4 
20445 DATA 165,186,240,169,232,36,187,16 
20446 DATA 3,24,144,161,232,36,188,16 
20447 DATA 3,24,144,153,165,184,198,180 
20448 DATA 56,229,180,197,188,48,142,169 
20449 DATA 0,133,191,169,1,133,190,6 
20450 DATA 190,38,191,165,185,197,190,165 
20451 DATA 186,229,191,176,242,70,191,102 
20452 DATA 190,165,190,5,191,240,152,169 
20453 DATA 1,133,192,169,0,133,193,56 
20454 DATA 165,185,229,190,133,202,165,186 
20455 DATA 229,191,133,203,165,192,133,194 
20456 DATA 165,193,133,195,24,144,6,144 
20457 DATA 212,176,241,208,0,24,165,194 
20458 DATA 101,190,133,196,165,195,101 ,191 
20459 DATA 133,197,165,182,133,198,133,200 
20460 DATA 165,183,133,199,133,201,169 ,1 
20461 DATA 133,180,197,194,208,6,169,0 
20462 DATA 197,195,240,46,169,0,133,181 
20463 DATA 24,165,198 ,101,184,133,198,165 
20464 DATA 199,105,0,133,199,230,180,208 
20465 DATA 2,230,181,165,180,197,194,208 
20466 DATA 231,165,181,197,195,208,225,24 
20467 DATA 144,8,208,175,176,171,144,167 
20468 DATA 208,214,24,165,198,101,187,133 
20469 DATA 204,165,199,105,0,133,205,169 
20470 DATA 1,133,180,197,196,208,6,169 
20471 DATA 0,197,197,240,35,169,0,133 
20472 DATA 181,24,165,200,101,184,133,200 
20473 DATA 165,201,105,0,133,201,230,180 
20474 DATA 208,2,230,181,165,180,197,196 
20475 DATA 208,231,165,181,197,197,208,225 
20476 DATA 24,165,200,101,187,133,206,165 
20477 DATA 201,105,0,133,207,160,0,165 



2~478 DATA 189,2~8,19,177,2~4,2~9,2~6,48 

2~479 DATA 84,2~~,196,188,144,245,176,17 
2~48~ DATA 2~8,152,176,152,144,152,177,2~6 
2~481 DATA 2~9,2~4,48,65,2~~,196,188,144 
2~482 DATA 245,16~,~,169,4,133,181,169 
2~483 DATA ~,133,18~,177,198,145,18~,2~~ 
2~484 DATA 196,184,2~8,247,16~,~,177,2~~ 
2~485 DATA 145,198,2~~,196,184,2~8,247,16~ 

2~486 DATA ~,177,18~,145,2~~,2~~,196,184 
2~487 DATA 2~8,247,165,194,56,229,19~,133 
2~488 DATA 194,165,195,229,191,133,195,144 
2~489 DATA 4,5,194,2~8,179,23~,192,2~8 
2~49~ DATA 2,23~,193,165,2~2,197,192,165 
2~491 DATA 2~3,229,193,176,165,144,165 
2~492 MLSTART=11~~8 

2~493 MLEND=11494 
2~494 FOR X=MLSTART TO MLEND 
2~495 READ Y: 

POKE X,Y : 
NEXT X 

2~496 RETURN 

ATARI BASIC Faster & Better 143 

Using SORT.LST is easy. After you have loaded, POKEd, or packed the routine into 
memory, you access it with a USR call of the form: 

ERROR=USR(ADDR,FILE,RECSIZE,NUMBER,KEYPOS,KEYLEN,DIRECT) 

where: 
ERROR = Error code returned to BASIC 
ADDR = Address of the sort routine 
FILE = Address of the file to be sorted 
RECSIZE = The number of bytes in each record 
NUMBER = The number of records in the file 
KEYPOS = The position of the sort key in each record 
KEYLEN = The number of bytes in the sort key 
DIRECT = The direction of the sort (ascending or descending) 

ADDR is computed the same way we have done this in previous cases. FILE is equal to 
ADR(FILE$), where FILE$ is the string array in which you have stored your data. You can 
also set FILE equal to a particular memory address if you have POKEd your data into 
memory. I will show you an example of both methods a little later. RECSIZE must be set 
equal to the number of bytes you have allocated for each record. NUMBER is simply the 
number of such records you want the routine to sort on. DIRECT specifies the direction of 
the sort. A value of zero means the data will be sorted from the smallest to the largest 
(ascending). Any non-zero value will cause the sort to be in descending order, from largest to 
smallest. 

Note the two "key" related arguments. This sort routine is a little more sophisticated than 
its BASIC counterpart. By specifying a key position greater than one, you can have the 
routine sort on any key anywhere in a record. Of course, all ofthe records must have the same 
key in the same location inside each record. The key can have a maximum length of 128 
bytes. This length is specified by the argument KEYLEN. 



144 Chapter 10 

The variable, ERROR, is used to call the routine. Under most circumstances, this variable 
will always be be equal to zero. The machine language routine does some input error 
checking to make sure you have used the right number of arguments and that each argument 
is assigned a legal value. The possible error codes are: 

Error Codes For Machine Language Shell Sort 
ERROR CODE MEANING 

~ 
I 
2 
3 
4 
5 
6 

No errors 
Number of arguments is not equal to 6 
File address is less than ~ 

RECSIZE is less than 1 
Number of records is less than 2 
Key position is less than 1 (or>l28) 
Key length is less than 1 (or>l28) 

You will note that there is no upper limit specified for the number of records. This is 
because the number will depend upon how much memory your system has. One advantage of 
this sort routine is that you can sort any number of records, as long as you can fit them all into 
your computer. 

Making Numeric Data Sortable 

The need to sort numbers is a special problem. Since numbers are stored in the six-byte 
BCD format and you don't have a numeric equivalent of the" ADR(STRING$)" command, 
numbers not only are hard to find; they are difficult to sort once you do find them. The 
solution to this problem is simple, fortunately. All you have to do is convert all of the numeric 
data to strings using the STR$(X) command. Yes, I realize that this could be a time 
consuming process, but the alternative is to do without the capabilty of sorting numeric 
tables. 

The next case to consider is sorting a table of positive and negative numbers. This breaks 
down into two problem areas. The first is that the ATASCII value of a "+" is less than the 
ATASCII value of a "-". When sorting negative and positive numbers, you should not have a 
"+" sign in front of your positive numbers. That solves this particular problem since the 
AT ASCII value of the" -" sign is less than the ATASCII value of any number and therefore 
will be sorted as "less than" any positive number. Be careful not to have any leading spaces 
on your positive numbers either, or you will run into the same problem that you had with the 
"+" sign. 

The second problem with sorting such numbers is leading zeroes (not spaces). If you are 
comparing the number "9" to the number "27", the result will tell you that 27 is less than 9 
because the comparison is made a digit at a time. The solution to this problem is to add 
leading zeroes to the smaller numbers so all of the numbers will , in effect, have the same 
number of digits in front ofthe decimal (including the "-" sign). This is easily done when you 
are converting the numeric data to strings. You avoid any problem with the" -" sign because 
zero has a higher ATASCII value than it. Now when you sort the "numbers," the number 
"09" will correctly be sorted as being less than "27." 

Unfortunately, there is still another problem you have to handle before you start sorting 
numbers. If any of the numbers in the sort file have decimals (as in dollar and cents), these 
numbers will not be sorted properly because a "." has a higher ATASCII value than a space 



ATARI BASIC Faster & Better 145 

and a lower value than a number. The solution to this problem is to either eliminate the 
decimal point (by multiplying the numbers by a large enough factor of ten), or by adding 
enough trailing zeroes, to make sure that all of the decimal points lineup. For monetary 
numbers , you can easily do this using the MONEY.LST routine that we discussed earlier in 
this book. In any case, the sorted numbers can be recovered as numbers by using a 
"V AL(STRING$)" command on them. 

Sorting With Assorted Keys 

Let's suppose that you have data for several retail stores. Working at each store you have 
several salesmen, and your computer program has accumulated total sales for each 
salesman. You have stored the data in a file with 10 bytes allocated to each key, giving a total 
record length of 30 bytes: 

Store Sales Data File 

STORE SALESMAN SALES 

012345678901234567890123456789 
CHINO JONES 532.40 
AZUSA DIETL 221.28 
UPLAND MARRACK 223.32 
UPLAND JOHNSON 332.22 
ONTARIO SAMMS 052.48 
ONTARIO BURKE 299.00 

To sort the data in alphabetical order by store and within each store in alphabetical order 
by salesman, you simply set RECSIZE=30, NUMBER=6, KEYPOS=l, KEYLEN=20, 
DIRECT=O and call up the sort routine. Change KEYLEN to 10 if you only want to sort by 
store location, and change KEYPOS to 11 if you only want to sort by salesman. 

012345678901234567890123456789 
CHINO JONES 532.40 
AZUSA DIETL 221.28 
UPLAND MARRACK 223.32 
UPLAND JOHNSON 332.22 
ONTARIO SAMMS 052.48 
ONTARIO BURKE 299.00 

After the data is sorted in ascending sequence, you can split out the keys and store them 
back in their separate arrays for further processing. Here's what you get: 

012345678901234567890123456789 
AZUSA DIETL 221 .28 
CHINO JONES 532.40 
ONTARIO BURKE 299 .00 
ONTARIO SAMMS 052.48 
UPLAND JOHNSON 332.22 
UPLAND MARRACK 223.32 



146 Chapter 10 

Now suppose you want to sort so that the salesman with the lowest sales total is shown at 
the top of the list and if more than one salesman has the same sales figure, they are to be 
listed alphabetically. To do this, setKEYPOS=l1 andKEYLEN=10. Run the sort routine 
to get the following: 

012345678901234567890123456789 
ONTARIO SAMMS 052 .48 
AZUSA DIETL 221.28 
UP LAND MARRACK 223 .32 
ONTARIO BURKE 299 .00 
UPLAND JOHNSON 332.22 
CHINO JONES 532 .00 

Since there are no duplicated sales figures we are done; if there had been duplicated sales 
figures , we could handle this situation in one oftwo ways. The first is to create a small sort file 
that consists of the records for a particular duplicated sales figure and sort that small file on 
the name key by setting KEYPOS=l1 and KEYLEN=10. This is how I do it most of the 
time since I usually have only a couple of duplicated figures. If you have a large number of 
duplicated figures, you probably should create a brand new sort file that looks like this: 

012345678901234567890123456789 
CHINO 532 .40 JONES 
AZUSA 221. 28 DIETL 
UPLAND 223.32 MAR RACK 
UPLAND 332 .22 JOHNSON 
ONTARIO 052 .48 SAMMS 
ONTARIO 299 .00 BURKE 

This new file could now be sorted in the desired way. 

Now let's suppose you want the salesman with the highest sales total to be shown at the top 
of the list. In other words, you want the list sorted in descending sequence by sales total, 
ascending sequence by salesman, and ascending sequence by store location. One method 
you can use is to sort in descending sequence similar to what we did above (but with 
DIRECT=l). 

The only problem with this technique is that the names of the salesmen will not be in the 
right order, and the store locations will also be in in the wrong order if two sales totals are 
equal. 

A better solution is to use INVERT.LST to complement the keys that we want to be sorted 
in the opposite order of the primary key. The complement of "AAA" is greater than the 
complement of "BBB". 

In our example, we would want to complement the sales amount key before we do the sort. 
Be sure to use a dummy file! After the sort, we use INVERT.LST to complement the sales 
amount keys again to restore them to their original values . 

Sorting Demonstration Programs 

The programs listed in Figures 10.5 and 10.6 are demonstration programs that illustrate 
ways to use SORT.LST. The first program SHELL2.DEM is a simple benchmark program 
similar to SHELL.DEM. You should RUN the real time clock program before running this 



ATARI BASIC Faster & Better 147 

demo. The sort will still be performed if you don't, but the elapsed time won't be correct. The 
demo is set up to sort 50 random alpha-numeric characters. If you would like to sort a larger 
number, change the value of the variable NUM in line 160 to the desired number. If you want 
the sort to be in descending order instead of ascending order, change DIRECT to one. The 
sorted file is stored in the string TEST$. To have a look at the sorted data, just PRINT 
TEST$. 

The second demo program is a lot more interesting. SHELL3.DEM is a visual sorting 
routine. The data file is POKEd to the video screen, and the sort routine is told to use the 
screen display as the source file to be sorted. The results are very interesting! You can 
actually watch the sort take place. This should enable you to better understand exactly how 
the shell sort really works . The demo is set up to display 320 lower case alpha characters on 
the bottom half of the screen. I used a file this size so you would have time to see the sort 
routine working. I think you will like the results. Have fun! 

Figure 10.5 - SHELL2. DEM - A Shell Sort Benchmark Test 

100 REM SHELL2 .DEM -
110 REM BENCHMARK TEST FOR 
120 REM MACHINE LANGUAGE SHELL SORT 
130 REM 
140 REM SET UP TEST ROUTINE 
150 REM 
160 NUM=50 : 

DIM SORT$(487),TEST$(NUM) : 
N=NUM : 
Zl=l : 
Z200=200: 
Z47=47: 
Z58=58 : 
Z64=64: 
Z91=91: 
Z96=96 : 
Zl23=123 

170 FOR X=Zl TO NUM 
180 Y=INT(Z200*RND(0)) : 

TEST$(X,X)=CHR$(Y) 
190 IF NOT ((Y>Z47 AND Y<Z58) OR 

(Y>Z64 AND Y<Z91) OR 
(Y>Z96 AND Y<Z123)) THEN 180 

200 NEXT X 
210 FILE=ADR(TEST$) : 

RECSIZE=l : 
NUMBER=NUM: 
KEYPOS=l: 
KEYLEN=l : 
DIRECT =0 

220 FOR X=ADR(SORT$) TO ADR(SORT$)+486: 
READ Y: 
POKE X,Y: 
NEXT X 



148 Chapter 10 

230 REM 
240 REM RESET CLOCK 
250 REM 
260 POKE 1536, 1: 

POKE 1537.0 : 
POKE 1538,0 : 
POKE 1539.0 : 
POKE 1536,0 

270 REM 
280 REM ROUTINE TO BE TESTED 
290 REM 
300 REM SHELL SORT ROUTINE 
310 ERROR=USR(ADR(SORT$),FILE,RECSIZE,NUMBER,KEYPOS,KEYLEN,DIRECT) 
320 REM 
330 REM FIND ELAPSED TIME 
340 REM 
350 PRINT CHR$(125): 

PRINT CHR$ (253) : 
POSITION 2,5 : 
PRINT "BENCHMARK TEST COMPLETED" 

360 POSITION 2,9 : 
POKE 1536,1: 
PRINT "ELAPSED TIME = "; PEEK(l537); : 
POSITION 20,9 : 
PRINT " HOURS" 

370 POSITION 17,10 : 
PRINT ;PEEK(1538); : 
POSITION 20,10 : 
PRINT " MINUTES" 

380 POSITION 17,11 : 
PRINT ;PEEK(1539); : 
POSITION 20,11 : 
PRINT " SECONDS" 

390 POKE 1536,0 : 
END 

400 REM 
410 REM MERGE POKE DATA FOR 
420 REM ML SORT ROUTINE HERE 
430 REM 
440 DATA 162,28,181,179,157,224,3,202 
450 DATA 208,248,169,0,133,212,133,213 
460 DATA 104,201,6,240,13,170,104,104 
470 DATA 202,208,251,162,1,134 ,212,24 
480 DATA 144,37,104,133,183,104,133,182 
490 DATA 104,104,133,184,104,133,186,104 
500 DATA 133,185,104,104,133,187,198,187 
510 DATA 133,180,104,104,133,188,198,188 
520 DATA 104,104,133,189,24,144,11,162 
530 DATA 28,189,224,3,149,179,202,208 
540 DATA 248,96,162,2,165,182,201,0 
550 DATA 208,4,165 ,183,240,191,232,165 
560 DATA 184,208,4,165 ,185,240,182,232 



570 DATA 165,185,208,8,201,1,208,4 
580 DATA 165,186,240,169,232,36,187,16 
590 DATA 3,24,144,161,232,36,188,16 
600 DATA 3,24,144,153,165,184,198,180 
610 DATA 56,229,180,197,188,48,142,169 
620 DATA 0,133,191,169,1,133,190,6 
630 DATA 190,38,191,165,185,197,190,165 
640 DATA 186 ,229,191,176,242,70,191,102 
650 DATA 190,165,190,5,191,240,152,169 
660 DATA 1,133,192,169,0,133,193,56 
670 DATA 165,185,229,190,133,202,165,186 
680 DATA 229,191,133,203,165,192,133,194 
690 DATA 165,193,133,195,24,144,6,144 
700 DATA 212,176,241,208,0,24,165,194 
710 DATA 101,190,133,196,165,195,101,191 
720 DATA 133,197,165,182,133,198,133,200 
730 DATA 165,183,133,199,133,201,169,1 
740 DATA 133,180,197,194,208,6,169,0 
750 DATA 197,195,240,46,169,0,133,181 
760 DATA 24,165,198,101,184,133,198,165 
770 DATA 199 ,105,0,133,199,230,180,208 
780 DATA 2,230,181,165,180,197,194,208 
790 DATA 231 ,165,181,197,195,208,225,24 
800 DATA 144,8,208,175,176,171,144,167 
810 DATA 208,214,24,165,198 ,101,187,133 
820 DATA 204,165,199,105,0,133,205,169 
830 DATA 1,133,180,197,196,208,6,169 
840 DATA 0,197,197,240,35,169,0,133 
850 DATA 181 ,24,165,200,101,184,133,200 
860 DATA 165,201,105,0,133,201,230,180 
870 DATA 208,2,230,181,165,180,197,196 
880 DATA 208,231,165,181,197,197,208,225 
890 DATA 24,165,200,101,187,133,206,165 
900 DATA 201,105,0,133,207,160,0,165 
910 DATA 189,208,19,177,204,209,206,48 
920 DATA 84,200,196,188,144,245,176,17 
930 DATA 208,152,176,152,144,152,177,206 
940 DATA 209,204,48,65,200,196,188,144 
950 DATA 245,160,0,169,4,133,181,169 
960 DATA 0,133,180,177,198,145,180,200 
970 DATA 196,184,208,247,160,0,177,200 
980 DATA 145,198,200,196,184,208,247,160 
990 DATA 0,177,180,145,200,200,196,184 
1000 DATA 208,247,165,194,56,229,190,133 
1010 DATA 194,165,195,229,191,133,195,144 
1020 DATA 4,5,194,208,179,230,192,208 
1030 DATA 2,230,193,165,202,197,192,165 
1040 DATA 203,229,193,176,165,144,165 

ATARI BASIC Faster & Better 149 



150 Chapter 10 

Figure 10.6 - SH ELL3. DEM - A Visual Sort of Experience 

100 REM SHELL3.DEM -
110 REM A VISUAL SORT OF EXPERIENCE 
120 REM 
130 REM SET UP DATA TO BE SORTED 
140 REM 
150 NUM=320 : 

DIM SORT$(487) : 
Zl=l : 
Z25=25 : 
Z97=97.5 : 
POKE 752,1 

160 PRINT CHR$(125) : 
PRINT :PRINT :PRINT : 
PRINT " SHELL3. DEM - A VISUAL SORT" : 
FOR X=Zl TO NUM 

170 Y=INT(Z25*RND(0)+Z97) 
180 POKE 40399+X,Y : 

NEXT X 
190 FILE=40400 : 

RECSIZE=l : 
NUMBER=NUM: 
KEYPOS=l : 
KEYLEN=l : 
DIRECT=0 

200 FOR X=ADR(SORT$) TO ADR(SORT$)+486 : 
READ Y: 
POKE X,Y: 
NEXT X 

210 REM 
220 REM SHELL SORT ROUTINE 
230 REM 
240 ERROR=USR(ADR(SORT$),FILE,RECSIZE,NUMBER,KEYPOS,KEYLEN,DIRECT) 
250 END 
260 REM 
270 REM MERGE POKE DATA FOR 
280 REM ML SORT ROUTINE HERE 
290 REM 
300 DATA 162,28,181,179,157,224,3,202 
310 DATA 208,248,169,0,133,212,133,213 
320 DATA 104,201,6,240,13,170,104,104 
330 DATA 202,208,251,162,1,134,212,24 
340 DATA 144,37,104,133,183,104,133,182 
350 DATA 104,104,133,184,104,133,186,104 
360 DATA 133,185,104,104,133,187,198,187 
370 DATA 133,180,104,104,133,188,198,188 
380 DATA 104,104,133,189,24,144,11,162 
390 DATA 28,189,224,3,149,179,202,208 
400 DATA 248,96,162,2,165,182,201,0 



410 DATA 208,4,165,183,240,191,232,165 
420 DATA 184,208,4,165,185,240,182,232 
430 DATA 165,185,208,8,201,1,208,4 
440 DATA 165,186,240,169,232,36,187,16 
450 DATA 3,24,144,161,232,36,188,16 
460 DATA 3,24,144,153,165,184,198,180 
470 DATA 56,229,180,197,188,48,142,169 
480 DATA 0,133,191,169,1,133,190,6 
490 DATA 190,38,191,165,185,197,190,165 
500 DATA 186,229,191,176,242,70,191,102 
510 DATA 190,165,190,5,191,240,152,169 
520 DATA 1,133,192,169,0,133,193,56 
530 DATA 165,185,229,190,133,202,165,186 
540 DATA 229,191,133,203,165,192,133,194 
550 DATA 165,193,133,195,24,144,6,144 
560 DATA 212,176,241,208,0,24,165,194 
570 DATA 101,190,133,196,165,195 ,101,191 
580 DATA 133,197,165,182,133,198,133,200 
590 DATA 165,183,133,199,133,201,169,1 
600 DATA 133,180 ,197,194,208,6,169,0 
610 DATA 197,195,240,46,169,0,133,181 
620 DATA 24,165,198,101,184,133,198,165 
630 DATA 199,105 ,0,133,199,230,180,208 
640 DATA 2,230,181 ,165,180,197,194,208 
650 DATA 231,165,181,197,195,208,225,24 
660 DATA 144,8,208,175,176,171 ,144,167 
670 DATA 208,214,24,165,198,101,187,133 
680 DATA 204,165 ,199,105 ,0,133,205,169 
690 DATA 1,133,180,197,196,208,6,169 
700 DATA 0,197,197,240,35,169,0,133 
710 DATA 181,24,165,200,101,184,133,200 
720 DATA 165,201,105,0,133,201,230,180 
730 DATA 208,2,230,181,165,180,197,196 
740 DATA 208,231,165,181,197,197,208,225 
750 DATA 24,165,200,101,187,133,206,165 
760 DATA 201,105,0,133,207,160,0,165 
770 DATA 189,208,19,177,204,209,206,48 
780 DATA 84,200,196,188,144,245,176,17 
790 DATA 208,152,176,152,144,152,177,206 
800 DATA 209,204,48,65,200,196,188,144 
810 DATA 245,160,0,169,4,133,181 ,169 
820 DATA 0,133,180,177,198,145,180,200 
830 DATA 196,184,208,247,160,0,177,200 
840 DATA 145,198,200,196,184,208,247,160 
850 DATA 0,177,180,145,200,200,196,184 
860 DATA 208,247,165,194,56,229,190 ,133 
870 DATA 194,165,195,229,191,133,195,144 
880 DATA 4,5,194,208,179,230,192,208 
890 DATA 2,230,193,165,202 ,197,192,165 
900 DATA 203,229,193,176,165,144,165 

ATARI BASIC Faster & Better 151 



152 Chapter 11 

Keyboard Trickery 

On the Atari, like most other home computers, the primary interface between you and the 
computer is the keyboard. There are many tricks to using the keyboard interface more 
efficiently. In this chapter we will discuss many tricks ofthe trade and show you how to make 
your programs easier to use and more professional in their operation. 

Avoiding Operator Crashes 

The most annoying thing I have noticed in some commercial programs is that they have 
this nasty tendency to crash if you hit the wrong key. For example, the expected input is a 
number between one and nine, and you accidentally hit a "Q" or some other alpha character. 
In a well written program this mistake causes no harm, but in many so-called "professional" 
programs the result is a system, or at least, a program crash. All user inputs should be 
anticipated, and the program should not have a nervous breakdown just because you hit the 
wrong key. Normally, when most professional programmers write a program, they fully 
buffer all user inputs. This means that if the program asks for a specific input, such as a 
number from one to nine, the only inputs the program will act on are those numbers, and the 
rest of the keyboard is locked out. I strongly suggest that you adopt this policy in all of your 
programs, too. The routines in this chapter will be of help in doing this. 

The Single Key Input Routine 

I use this neat little routine injust about every BASIC program I write. You will find that it 
provides quite a programming convenience when you want to use a single key to answer a 
prompt or a question displayed on the screen. Subroutine KEY.LST simply tells the 
computer to wait for the operator to press a key on the keyboard. Upon return from the 
subroutine, you will have the ATASCII value of the character, corresponding to the key that 
was pressed, stored in KEY. Here's the subroutine: 

Figure 11.1 - KEY.LST 

20440 REM KEY.LST 
20441 OPEN #6,4,0,"K:" 
20442 GET #6,KEY 
20443 REM PUT SPECIAL EXIT #1 HERE 
20444 REM PUT SPECIAL EXIT #2 HERE 
20445 CLOSE #6:RETURN 



ATARI BASIC Faster & Better 153 

Essentially, this routine opens the keyboard as a "device", sort of like you might open a 
printer or disk drive for special I/O. In this particular routine the device number is "6". If the 
program you want to put this routine into is already using this device number for something 
else, you can change it to" 5", "4" or some other legal number. You should avoid using device 
zero or seven since the operating system uses them, and the results could become 
unpredictable. The screen editor uses device zero. Device seven is used by LIST, LOAD, 
PRINT and RUN. CAUTION: always CLOSE a device when you are through with it. 

When this routine is called, the ATASCII code for the key you hit is stored in the variable 
KEY. Any special exit conditions must test KEY against the proper ATASCII codes. I will 
give you a few examples a little later to help make this part clearer. 

When you want the operator to press a single key, just GOSUB 20440. I use this 
routine in: 

1. Menu programs, where I want the operator to select a program or subroutine by 
pressing a number or letter key without having to press the "RETURN" key. 

2. Applications where a message or data is displayed on the screen and I want the 
operator to press "RETURN" to continue. 

3. Applications where I want the operator to give a simple one-key response. 

The advantages of the single-key input routine are: 

1. You don't have to clutter your program logic with a number of two-or-more line 
routines to accept a single key entry. This saves you memory. 

2. Your video display is not disturbed (as it could be with INPUT). Nothing is 
printed on the screen until your program logic has had a chance to analyze the 
contents of KEY. Inadvertent use of the control keys can't destroy your screen 
display. 

3. You provide more convenience and fewer key strokes for the person using your 
program. 

The menu routine shown in the next section is an example of one way that you can use the 
single-key subroutine. 

Quick and Easy Menu Routines 

A menu routine is a video display module that gives you a list of alternative functions to 
perform and the ability to select one of those functions (usually by entering a letter or a 
number). I've included a couple of sample menu routines to illustrate a few of the tricks in 
program design. Here is the menu to be displayed: 

Figure 11.2 - Sample Menu 

SELECT A CHANGE OPTION 
[1] CHANGE A PLAYER'S NAME 
[2] DELETE A PLAYER 
[3] CHANGE THE BONUS FACTOR 
[4] SUBTRACT BONUS FROM A PLAYER 
[5] RESTORE PREVIOUS DESTINATION 
[6] START A NEW GAME 
[7] RESURRECT A PLAYER 



154 Chapter 11 

The selection of an item from a menu can be done by keyboard, paddle or joystick inputs, 
depending upon your application. The following sections will illustrate two of these input 
options. Keyboard input is demonstrated in MENU1.LST, and paddle input is 
demonstrated in MENU2.LST. I won't show an example for joystick inputs since they are 
very similar to paddle inputs in concept. 

Keyboard Menus 

In MENU1.LST, the PRINT CHR$(125) simply clears the screen so we won't have a 
messed up display. We then display the various options and their associated code numbers 
to prompt the user to select one of them. 

Figure 11.3 - MENUl.LST- Sample Menu Subroutine 

2~451 PRINT CHR$(125):POKE 752,1 
2~452 PRINT:PRINT" SELECT A CHANGE OPTION" 
2~453 POSITION 4,5 :PRINT"[1] CHANGE A PLAYER'S NAME" 
2~454 POSITION 4,7:PRINT"[2] DELETE A PLAYER" 
2~455 POSITION 4,9:PRINT"[3] CHANGE THE BONUS FACTOR" 
2~456 POSITION 4,ll:PRINT"[4] SUBTRACT BONUS FROM A PLAYER" 
2~457 POSITION 4,13:PRINT"[5] RESTORE PREVIOUS DESTINATION" 
2~458 POSITION 4,15:PRINT"[6] START A NEW GAME" 
2~459 POSITION 4,17:PRINT"[7] RESURRECT A PLAYER" 
2~461 GOSUB 2~440:IF KEY=155 THEN 20464 
20462 IF KEY<49 OR KEY>55 THEN 2~461 
20463 ON KEY-48 GOSUB 1~~~,2~0~,3~~~,40~~,50~~,6~00,7~00 
2~464 RETURN 

In this particular case, we are saying that the specialized subroutines referred to in the 
menu are located at line numbers 1000,2000,3000,4000,5000,6000 and 7000. You could 
put them somewhere else if you so desired. If you want to use GOTO instead of GOSUB in 
line 20463, be sure to execute a POP command before leaving the subroutine. Every time 
you go into a subroutine, the computer saves the RETURN address on the STACK. If you 
use an exit from the subroutine other than a RETURN, that address is left on the STACK. If 
you do this very often, the STACK can become full of useless addresses, and your program 
can crash with an ERROR 10. Executing a POP command before leaving the subroutine 
removes the unwanted return address from the stack. 

The parameters used in this menu routine can easily be changed to work in whatever 
program you are writing. You can use the numbers I used, or you can select a different set of 
input codes by referring to the AT AS ClI keycode chart in the back of this book and changing 
the IF-THEN statement in line 20462. The line numbers referred to in line 20463 would 
then become the line numbers of your special routines. 

Irecommend that you always leave the user an easy ~xitfrom the subroutine that performs 
none ofthe functions, just in case he got into the menu by mistake. In this menu routine, that 
easy exit is hitting the "RETURN" key. If the key value returned by the routine is equal to a 
"RETURN" (155), we assume that the user wanted none of the options, and we return to the 
main calling routine without performing any of the possible options. The keycodes for the 
numbers 1-7 are 49-55 (see the ATASClI keycode list). If the keycode is outside of this 
range, we assume that an incorrect key was pressed by mistake and ignore it. Once we have 



ATARI BASIC Faster & Better 155 

gotten a valid input from the user, we execute a GOSUB to the selected routine before 
returning to the main program. To change the key to some other one, use the appropriate 
code from the keycode table. 

You can also dress up the menu by using colors, reverse video or special bars and lines, but 
that is an embellishment I will leave up to you for now. The routines in the next chapter 
should be of some help to you in this area. 

Note that each of the options is enclosed by brackets. A consistent use of brackets in this 
way will make things easier for the user of your program since he will tend to automatically 
assume that he must input something anytime he sees the brackets. If you use this technique, 
the brackets should also appear in any documentation that you write for the program. 

Menus are much easier to understand ifthey have a distinctive title. In this particular case, 
I combined the title with the prompt for the user to enter a number. If you want to have a title 
that is separate from the prompt, you can simply insert a new line between 20459 and 20461 
that asks for a user input. Line 20460 was deliberately left out so that you could do this 
without having to renumber the subroutine. 

One thing that I also do in many of my programs is to set a TRAP that will go to the main 
program's control menu in case some unforeseen error does come up. For example, I might 
have forgotten to account for the printer being OFF. Normally this could cause a fatal 
execution error. Most of the time I would have a special error check in the print routine, but 
my failsafe TRAP would catch it if for some reason I forgot to put one there. 

Paddle Driven Menus 

The general menu philosophy we discussed in the last section really applies to all types of 
menus, so I will only describe the differences between keyboard and paddle menu control in 
this section. Figure 11.4 Shows you an example of a typical paddle driven menu. 

Figure 11.4 - MENU2.LST-A Paddle Driven Menu 

2~47~ REM MENU2.LST - A PADDLE DRIVEN MENU 
2~471 PRINT CHR$(125) :POKE 752,l :PRINT : 

PRINT" SELECT A CHANGE OPTION" 
2~472 POSITION 4,5:PRINT "[] CHANGE A PLAYER'S NAME" 
2~473 POSITION 4,7:PRINT "[] DELETE A PLAYER" 
2~4 74 POSITION 4,9: PRINT "[] CHANGE THE BONUS FACTOR" 
2~475 POSITION 4,11 : PRINT" [] SUBTRACT BONUS FROM A PLAYER" 
2~476 POSITION 4,13: PRINT" [] RESTORE PREVIOUS DESTINATION" 
2~477 POSITION 4,15 :PRINT "[] START A NEW GAME" 
2~478 POSITION 4,17:PRINT "[] RESURRECT A PLAYER" 
2~479 POSITION 4,22:PRINT "[] ESCAPE FROM THIS ROUTINE" 
2~48~ FOR N=l TO 7:POSITION 5,2*N+3:PRINT " ": 

NEXT N:POSITION 5,22:PRINT " " 
2~481 IF PADDLE(~)<26 THEN POSITION 5,5:0PTION=1:GOTO 2~489 
2~482 IF PADDLE(~)<51 THEN POSITION 5,7:0PTION=2:GOTO 2~489 
2~483 IF PADDLE(~)<76 THEN POSITION 5,9 :0PTION=3:GOTO 2~489 
2~484 IF PADDLE(~)<l~l THEN POSITION 5,ll :OPTION=4 :GOTO 2~489 
2~485 IF PADDLE(~)<126 THEN POSITION 5,13 :0PTION=5:GOTO 2~489 
2~486 IF PADDLE(~)<151 THEN POSITION 5,15 :0PTION=6:GOTO 2~489 
2~487 IF PADDLE(~)<21~ THEN POSITION 5,17 :0PTION=7:GOTO 2~489 
2~488 POSITION 5,22:0PTION=155 



156 Chapter 11 

20489 PRINT "*":IF PTRIG(0) THEN 20480 
20490 IF OPTION=155 THEN 20492 
20491 ON OPTION GOSUB 1000,2000,3000,4000,5000,6000,7000 
20492 RETURN 

This routine displays the menu options and puts a flashing asterisk in the "box" to the left 
of an option. The position of this "cursor" will move from box to box asyou turn the control of 
your paddle. If you press the trigger, the asterisk will stop flashing, and the program will go to 
the selected routine. Note the new line in the menu. We now have to call out the escape 
option explicitly. The keyboard menu assumed that the user knew (from the instruction 
manual) the escape command. 

Personally, I do not like to use this type of menu routine because it is actually slower than a 
keyboard menu if there are more than thret or four options. One reason for the slow down is 
the accuracy with which you can set a paddle control. If there are only a few options, the range 
of228 can be divided into large easily controlled blocks for the IF-THEN statements. When 
you have a lot of options in the menu, these blocks must be much smaller and are therfore 
much more difficult to select by turning the paddle. If you use either paddle or joystick 
menus, I strongly recommend that you limit any single menu to no more than four 
options. 

Using the Function Keys to Better Advantage 

The Atari home computers have three built-in function keys labeled "OPTION", 
"SELECT" and "START". You will probably have already noticed that I like to use these 
keys a lot when soliciting a response from the operator. This section will discuss these keys in 
more detail and show you how to use them in your own programs for simple inputs or even a 
special variation of the keyboard menu. 

The key to using these function keys is a single, special memory location. The only way to 
tell if one of these keys has been pressed is to test on 53279. This opens some interesting 
possibilities. Normally, you test 764 to see if a particular key has been pressed, but 764 is not 
affected by pressing one of the function keys. This means that you can have a program that 
uses the main keyboard for its normal processing and maintains an interrupt system based 
upon whether or not a function key has been pressed. The Atari Word Processor is an 
excellent example of such a program. I have also noticed that many games use the function 
keys in this way. 

The FUNKEY.LST routine is a simple way to check the state ofthe function keys. In some 
ways they are like a simple application of BITMAP.LST. If none of the function keys are 
pressed, the value stored in 53279 is seven. Each ofthe function keys clear a particular bit in 
the number stored at 53279 when they are pressed. The START key clears bit zero; 
SELECT clears bit one, and OPTION clears bit two. Yes, this means that you can also test 
for combinations of the function keys. If all three keys are pressed, the value stored in 53279 
would be 00000000 or a decimal value of zero. The following chart shows you all of the 
possible key combinations and their effect on 53279. 

Figure 11.5 - FUNKEYLST- Function Key Test Routine 

20500 REM FUNKEY .LST 
20501 IF PEEK(53279)=6 THEN 1000 :REM START 



2~5~2 IF PEEK(53279)=5 THEN 2~~~ : REM SELECT 
2~5~3 IF PEEK(53279)=3 THEN 3~~~ : REM OPTION 
2~5~4 GO TO 2~5~1 

ATARI BASIC Faster & Better 157 

The starting line numbers of the routine that the key is to invoke are 1000, 2000 and 
3000. 

Figure 11 .6 - Function Key Value Chart 

KEYS PRESSED PEEK(53279) BINARY CODE 

NONE 7 ~~~~~111 
START 6 ~~~~~11~ 
SELECT 5 ~~~~~1~1 
START & SELECT 4 ~~~~~1~~ 
OPTION 3 ~~~~~~ll 
START & OPTION 2 ~~~~~~1~ 
SELECT & OPTION 1 ~~~~~~M 
ALL THREE ~ ~~~~~~~~ 

Figure 11.7 - MENU3. LST-A Function Key Menu 

2~51~ REM MENU3 .LST 
20511 PRINT CHR$(125) :POKE 752,l :POSITION 2,12 : 

PRINT "PRESS ~ FOR TAPE INPUT" : TAPE=~ 
20512 PRINT "PRESS FOR MERGE FILE": 

MERGE=~ : PRINT "PRESS TO CONTINUE" 
2~513 IF PEEK(53279»5 THEN 2~52~ 
20514 IF PEEK(53279)=3 THEN TAPE= NOT TAPE : 

FOR X=l TO 2~: 

NEXT X 
20515 IF PEEK(53279)=5 THEN MERGE= NOT MERGE : 

FOR X=l TO 2~:NEXT X 
2~516 IF TAPE THEN POSITION 19,12 :PRINT "DISK/ mm" 
2~517 IF NOT TAPE THEN POSITION 19,12:PRINT "IDm/TAPE" 
2~518 IF MERGE THEN POSITION 19,13 : PRINT "OBJECT/mmBi" 
2~519 IF NOT MERGE THEN POSITION 19,13 :PRINT "BIiJI/MERGE" 
2~52~ IF PEEK(53279)=6 THEN 2~522 
2~521 GO TO 2~513 
2~522 IF TAPE AND MERGE THEN 1~~~ 

20523 IF TAPE AND NOT MERGE THEN 20~~ 

2~524 IF MERGE THEN 3~~~ 

2~525 GOTO 4~~~ 



158 Chapter 11 

Where the following routines are: 
LINE 1000 = ENTER a BASIC file from cassette 
LINE 2000 = GET an object file from cassette 
LINE 3000 = ENTER a BASIC file from disk 
LINE 4000 = GET an object file from disk 

NOTE: See the listing of DATAPAKBAS for more info. 

There are many possible ways to use the function keys to better advantage. The examples 
in this section are only a starting point. With the information we have discussed here, you 
should be able to design your own uses for the Atari function keys. 

Disabling the BREAK Key 

Some operations, such as disk I/O, can run into catastrophic failures if the BREAK key is 
pressed at the wrong time. This is also true for many of those programs that play around with 
the Display List. One solution to this problem is to disable the BREAK key so the user can 
not accidentally, or deliberately, press it at the wrong time. The routine to disable the 
BREAK key is: 

Figure 11.8 - BREAKLOK.LST-Lock Out the BREAK Key 

20530 BREAKLOK.LST - DISABLE THE BREAK KEY 
20531 CODE=PEEK(16) 
20532 IF CODE>127 THEN CODE=CODE-128 
20533 POKE 16,CODE 
20534 POKE 53774,CODE 
20535 RETURN 

Be sure that you don't use this routine until you have saved your program if you are in the 
midst of debugging it. Once you have your program debugged, then you can safely put this 
routine at the top of your program where it will be executed as soon as the program is RUN. 
To unlock the BREAK key again, use POKE 16,192 and POKE 53774,247. 

Repeating Keys and Combinations 

Did you ever want to repeat a function as long as you were holding a key down? Here's a 
subroutine that will help you: 

Figure 11.9 - REPEAT.LST- Infinitely Repeat a Function 

20540 REM REPEAT.LST 
20541 IF PEEK(764)=TEST THEN 

GOSUB FUNCTION:GO TO 20541 
20542 POKE 764,255:RETURN 

In this subroutine, the variable TEST should be previously set to the keyboard (not 
ATASCII) code of the key you wish to test for. The value of the variable FUNCTION is 
assumed to have been previously set to the line number of the function that you want to have 



ATARI BASIC Faster & Better 159 

repeated while the test key is depressed. The keyboard codes are listed in the back of this 
book, but if you want to have them displayed on the screen, then type in this short routine and 
run it to display the keyboard keycodes: 

100 IF PEEK (764)=255 THEN 100 
110 PRINT PEEK (764) 
120 POKE 764,255 : GO TO 100 

Now press any key or key combination and notice the number that is displayed. This value 
will correspond to one of the keycodes given in Appendix B. To set up repeat keys in your 
programs, simply test on PEEK (764) for the proper keycode and direct the program to the 
desired subroutine! 

Special Keys And Their Codes 

Here is a list of the more important special keys found on the keyboard and the effect you 
will get by printing the CHR$ function for the ATASCII code for the key: 

Figure 11.10 - Special Keys and Th eir Character Codes 

KEY 

SHIFT-CLEAR 
SHIFT-INSERT 
SHIFT-DELETE 
RETURN 
BACKSPACE 
CONTROL-UP ARROW 
CONTROL-DOWN ARROW 
CONTROL-LEFT ARROW 
CONTROL-RIGHT ARROW 
CONTROL-CLEAR 
CONTROL-2 
CONTROL-INSERT 
CONTROL-DELETE 

CHR$ CODE 

125 
157 
156 
155 
126 

28 
29 
30 
31 

125 
253 
255 
254 

EFFECT GENERATED 

Clear the screen 
Insert a line 
Delete a line 
End-of-line 
Delete character to left 
Move cursor up one line 
Move cursor down one line 
Move cursor left one spot 
Move cursor right one spot 
Clear the screen 
Activate keyboard buzzer 
Insert one character here 
Delete current character 

I only listed those codes that I have found useful for creating special effects while a 
program is running. For example, the "move cursor" codes can be combined with the "delete 
character" code to eliminate a faulty input from a formatted input. Formatted input routines 
will be covered in the next chapter. The best way to learn how to use these special codes 
effectively is to try them out. One odd thing is that there is apparently no difference between 
a CONTROL-CLEAR and a SHIFT-CLEAR. 

Controlled Keyboard Input Routines 

The routines in this section will work very well with the formatted input routines in the 
next chapter. In this section, we will concentrate on how to get multi-key inputs from the 
keyboard without using the INPUT command. 



160 Chapter 11 

Controlled String Input 

Many applications require the user to input a string of characters, such as a person's name, 
in response to a prompt. The routine in Figure 11.9 illustrates a simple, but effective 
technique for this purpose: 

Figure 11.11 -INKE Yl.LS T - Controlled S tring Input 

2~55~ REM INKEYl.LST - CONTROLLED STRING INPUT 
2~55l OPEN #6,4,~,"K : " : SIZE=9 : FOR X=l TO SIZE 
2~552 GET #6,KEY:IF KEY=l55 THEN POP :GOTO 2~559 
2~553 IF KEY<48 OR KEY>l22 THEN 2~552 

. any other conditions would go here 

2~558 PRINT CHR$(KEY); :RESPONSE$(X,X)=CHR$(KEY) :NEXT X 
2~559 CLOSE #6 :RETURN 

The allowed length of the input string is set by the variable SIZE. If you want to limit the 
legal characters to some other set, you will need to change the values in line 20553. Note that 
the string may be shorter than SIZE. The input sequence is terminated by either reaching 
the maximum string length or by pressing a RETURN. 

Controlled Numeric Input 

The single-key input routine we discussed at the beginning of this chapter is fine where a 
single key input is sufficient, but many applications require two or more keys in response. 
For example, a program might need a date or dollar amount entered. The single-key input 
routine is not suitable for such cases without some modification. The routine listed below, 
INKEY2.LST, is one solution to this problem. 

Figure 11.12 - INKEY2.LST - Controlled Numeric Input 

2~56~ REM INKEY2 .LST - CONTROLLED NUMERIC INPUT 
2~56l SIGN=l : NUMBER=~ : SIZE=3 : 0PEN #6,4,~,"K : ": 

FOR X=l TO SIZE 
2~562 GET #6,KEY:IF KEY=l55 THEN POP :GOTO 2~569 
2~563 IF KEY=45 AND SIGN=l THEN SIGN=-l: 

PRINT"-"; :GOTO 2~562 
2~564 IF KEY<48 OR KEY>57 THEN 2~562 

. additional conditions would go here 

2~568 PRINT CHR$(KEY);: 
NUMBER=l~*NUMBER+VAL(CHR$(KEY» : 

NEXT X 
2~569 NUMBER=SIGN*NUMBER:CLOSE #6 :RETURN 



ATARI BASIC Faster & Better 161 

This routine is very similartolNKEYI.LST in the way the characters are grabbed one ata 
time. As before, the length of the input field is set by the variable SIZE. In this particular 
case, SIZE is set to three. This count does not include the space used by the minus sign. So, 
any positive or negative three digit number could be entered by this routine. We will use this 
routine in the next chapter along with special video prompts to achieve what I have been 
calling "controlled input". 



162 Chapter 12 

Controlled Data Entry 

You could easily spend 75 per cent or more of your programming time trying to develop an 
attractive, easy-to-use and water-tight data entry system. Once you have gotten good clean 
information in the computer, processing the information and printing it out is comparatively 
easy. 

A good menu or other data entry routine should always provide prompts that make it clear 
what kind of input is required. The trade-off in using prompts is to supply enough prompts 
for the new user of your program while at the same time limiting the prompts so they will not 
slow down the experienced user. 

You also need input validation that will ignore bad inputs instead of crashing the system or 
halting program execution. If the inputs are processed properly by the input routine, your 
job of processing the information becomes much simpler. In a really good (i.e., professional) 
program, each input is controlled so that only those keys which are considered valid will have 
any effect at all. In situations like this, you must avoid the screen destroying effects of the 
CLEAR key and the BREAK key. 

Finally, you need to provide simple and consistent ways for the operator to correct entry 
errors. The operator should always be allowed to back up and correct the previous entry. 
This is sometimes difficult to achieve, but if you ignore this requirement, you are 
programming automatic operator frustration into your programs! 

This chapter will take many of the techniques that we have discussed in previous chapters 
and show you how to combine them with a few new video techniques to create good, user 
friendly menus and other video displays. The demonstration program at the end of this 
chapter should be especially useful to you. 

Video Formatting 

Video formatting, in the sense we will use it here, refers to those techniques that you might 
use to set up special data entry fields. I think of such routines as being in three major 
categories. The first category is "positional input fields." The second one, "special input 
fields," is a category by itself, but can be used quite effectively with the first category. The 
third category, "scrolled inputs," is a powerful technique that you will find useful in many 
different applications. 



ATARI BASIC Faster & Better 163 

Positional Input Fields 

Most of the time, when setting up a program, there will arise a need for asking the user to 
enter numbers or alpha characters of limited length. We discussed in the last chapter how 
you can create a routine to actually get those inputs, but so far we have not really discussed 
the impact of those inputs on the video display. The easiest, and most useless solution is to 
get the inputs without echoing them on the screen. This leads to instant confusion. A better 
solution is to not only control the nature of the allowed inputs, but to also control the possible 
results on the video display. 

The following routines are examples of two ways you can control the video display during 
an input routine. FIELDB.LST sets up a blank field of length SIZE at a particular location 
on the screen. When you use this routine in conjunction with the inkey routines in the last 
chapter, you can not only restrict the number of characters the user can input, but you can 
also make sure that any characters the user may enter will be printed only where you want 
them to be. In this routine, the position on the screen is specified by the two variables X and 
Y. We will give you a working example later in this chapter. 

Figure 12.1 - FIELDB. LS T - S et Up a Blank Field 

20580 REM FIELDI.LST . INVERSE INPUT FIELD 
20581 REM DIM INVERSE$(40) ELSEWHERE 
20582 INVERSE$ (1 )=" • " : INVERSE$ (40) =" • ": INVERSE$ (2) =INVERSE$ 
20583 X=2:V=12 :SIZE=9 POKE 752,1 
20584 POSITION X,V 
20585 PRINT INVERSE$(l,SIZE) 
20586 POSITION X,V 
20587 REM GOSUB INPUT ROUTINE 
20588 REM GOSUB ERROR CHECK ROUTINE 
20589 RETURN 

The FIELDI.LST routine is very similar to the other routine. The primary difference is 
that the input field is highlighted in inverse video. The variables and operation of the routine 
are the same. Be sure to replace any field locations with inverse blanks during error 
corrections and to eliminate any unused inverse field locations from the field when input is 
finished. 

Figure 12.2 - FIELDI.LST- S et Up an Inverse Field 

20580 REM FIELDI.LST - SET UP INVERSE INPUT FIELDS 
20581 REM POSITION OF FIELD IS SET BV X&V 
20582 X=2:V=12 :SIZE=9:POKE 752,1 
20583 POSITION X,V :FOR Z=l TO SIZE :PRINT "."; :NEXT Z 
20584 POSITION X,V 
20585 REM GOSUB INPUT ROUTINE 
20856 REM GOSUB ERROR CHECK ROUTINE 
20857 RETURN 



164 Chapter 12 

Special Input Fields 

The techniques described in the previous section can be tailored for special input 
requirements. The more common special input fields are for money, dates, and time values. 
The routines in this section, while not covering everthing, will show you how to handle these 
particular special input fields. 

The routine FDOLLARS.LST sets up a limited video field for the general input of dollar 
figures. It is intended to be used with the INKEY routines we discussed in the last chapter. 
The routine first prints a "$" sign and a decimal point in the screen position specified by the 
variables X and Y. The number of digits to the left of the decimal place is controlled by the 
variable SIZE. Once the format has been printed on the screen, you are expected to use the 
proper calls to the INKEY routines. Any error correction routine should take the field sizes 
into account. 

Figure 12.3 - FDOLLARS.LST- Special Fields Dollars & Cents 

20590 REM FDOLLARS.LST - SPECIAL FIELDS DOLLARS & CENTS 
20591 X=2:Y=12:SIZE=4:POKE 752,1 
20592 POSITION X,Y:PRINT "$":POSITION X+SIZE+1,Y:PRINT " " 
20593 POSITION X+1,Y:FOR Z=1 TO SIZE:PRINT" " .. 

NEXT Z: POSITION X+SIZE+2, Y: PRINT" " 
20594 POSITION X+1,Y 
20595 REM GOSUB DOLLAR INPUT ROUTINE 
20596 POSITION X+SIZE+2,Y :SIZE=2 
20597 REM GOSUB CENTS INPUT ROUTINE 
20598 REM GOSUB ERROR CHECK ROUTINE 
20599 RETURN 

The next two subroutines are very similar to each other in operation. FDATES.LST sets 
up a display field in the standard MM/DD/YY format. You then use the INKEY2.LST 
routine to grab three two-digit numbers. FTIMES.LST sets up an HH:MM time display 
format; then all you need to do is to grab two two-digit numbers. 

Figure 12.4 - FDATES.LST - Special Fields Dates 

20600 REM FDATES .LST - SPECIAL FIELDS DATES 
20601 X=2:Y=20:SIZE=2:POKE 752,1 
20602 POSITION X,V:PRINT" / / " 
20603 POSITION X,V 
20604 REM GOSUB TWO DIGIT INPUT 
20605 POSITION X+3,Y 
20606 REM GOSUB TWO DIGIT INPUT 
20607 POSITION X+6,Y 
20608 REM GOSUB TWO DIGIT INPUT 
20609 REM GOSUB ERROR CHECK ROUTINE 
20610 RETURN 



Figure 12.5 - FTIMES.LST - Special Fields Clock Time 

20620 FTIMES .LST - SPECIAL FIELDS CLOCK TIME 
20621 X=2 :Y=20:SIZE=2 :POKE 752,1 
20622 POSITION X,Y :PRINT " 
20623 POSITION X,Y 
20624 REM GOSUB TWO DIGIT INPUT 
20625 POSITION X+3,Y 
20626 REM GOSUB TWO DIGIT INPUT 
20627 REM GOSUB ERROR CHECK ROUTINE 
20628 RETURN 

ATARI BASIC Faster & Better 165 

The actual values of X and Y should be set before you go into FDATES.LST or 
FTIMES.LST. You should probably delete those variables from the actual subroutines 
before using them. Do not, however, alter the value of the variable SIZE within the routines, 
or you will mess up the format operation. 

Scrolling Window Inputs 

Most of you have seen those programs that use a high-res graphics display in the top 20 
lines of the display and use the bottom four display lines to give you prompts and solicit 
responses from you. Did you realize that you can have the same kind of independent scrolling 
window in GRAPHICS O? It is as easy as POKEing a number. The following routine, 
FSCROLL.LST, contains the codes to set up or remove such a window in GRAPHICS mode 
0: 

Figure 12.6 - FSCROLL.LS T- Special Fields Scrolling Window 

20630 REM FSCROLL.LST - SPECIAL FIELDS SCROLLING WINDOW 
20631 REM RESTRICT INPUTS TO LAST 4 LINES OF SCREEN 
20632 POKE 703,4 
20634 RETURN 
20635 REM RESTORE NORMAL DISPLAY 
20636 POKE 703,24 
20637 RETURN 

The window thus set up may be used exactly like a normal full screen without affecting the 
top 20 display lines. All of your normal screen controls will affect only the window. If you 
were to LIST a program, it would be listed only in the last four lines of the screen and would 
scroll off the top of your four-line display like any other normal display would. I will show you 
a working example of this technique at the end of this chapter. 

The only tricky part of using the scrolling window is how to make changes in the top part of 
the screen while you are in the window mode. There are two general solutions. The first is to 
simply POKE any changes into the proper part of the screen buffer. Thus a POKE 
40520,104 will cause a lower case "h" to appear on the screen regardless of whether you are 



166 Chapter 12 

in the window mode or not. This method is sometimes awkward, however, so Atari built in a 
much simpler solution. 

If you do not use a GRAPHICS 0 command anywhere in the program, then the above 
condition will prevail when you go into window mode. All screen controls will affect only the 
window area ofthe display. However, if you take care to use a GRAPHICS 0 command before 
going into the window mode, things change somewhat. First, and most noticable, is that your 
screen controls once again affect the whole 24 line screen. 

The second effect is a little more subtle. When a GRAPHICS command is executed, the 
operating system automatically OPENs device number 6 for output and defines the device 
to be the video display. (A full screen graphics mode without a text window will have the 
entire screen opened for output.) The net result of going into window mode at this stage is 
that you can use a PRINT statement to print information in the window area of a mode zero 
screen and still use a PRINT #6 statement to print directly to the top portion of the 
screen! 

I have used this technique to display a customized menu in the top 20 lines of the screen 
while using the window as a work area for displaying prompts and soliciting user inputs that 
might do such things as save data to disk. You can also use this technique to get new data to 
display in the static area. For example, you display a menu, go into window mode, and ask the 
user to select a program option. This option, in turn, might clear the top area and display a 
new sub-menu for the execution of the selected option. The Atari Word Processor uses this 
kind of nested menu technique, although it puts the window (non-scrolling) at the top four 
lines instead ofthe bottom four lines ofthe video display. There are many possible variations 
you could use in your next program. The window mode can be set up by using a GOSUB 
20632. When you are finished with it and want to restore the screen to normal, you can do this 
by a GOSUB 20635. 

Error Handling 

Error handling, in the end, is probably the single most important feature in distinguishing 
between an amateur program and a truly professional one. The professional programmer 
takes all possible operations into account and buffers the program so a bad user input or 
some other mistake will not cause the program or the system to crash. This is sometimes 
easier said than done, since it is difficult to make sure that every possible error has been 
anticipated. 

Errors which occur during program execution are usually controlled by an "error 
detection" routine coupled with an "error correction" routine. Error detection routines are 
used to intercept and/or prevent a run-time error. If an error is found, then an error 
correction routine allows the mistake to be corrected. 

Error Detection Techniques 

Error detection routines generally consist of TRAPs or filters or a combination of the two. 
Both of these error detectors have their strengths and weaknesses. TRAPs are very well 
suited for intercepting general I/O errors and as a general catch-all error trap. Filters, which 
usually consist of one or more IF-THEN statements, are more suitable for screening user 
inputs and preventing other types of errors. 

TRAP commands, as we discussed previously, are mostfrquently used to intercept errors 
after they have occurred and redirect the results of the error to an error correction routine. 
For example, you might set a TRAP that will be tripped if an error occurs during disk I/O. 

This TRAP could detect an attempt to write to a disk that was not even turned ON and 
would redirect program control to an error correction routine that tells you to turn your disk 



ATARI BASIC Faster & Better 167 

drive ON. A really common error is trying to dump something to a printer without first 
turning the printer ON. By using TRAPs, you could prevent these kinds of mistakes from 
crashing your program. 

Error Correction Techniques 

There are at least as many error correction techniques as there are errors, if not more. An 
error correction routine can range from something as simple as a single IF -THEN statement 
to a whole program which is dedicated to correcting a data base. We will leave the latter to the 
more energetic of you. The discussion here will limit itself to those simple correction 
techniques that you will find useful in your every day programming tasks. 

The simplest of error correction techniques is also an error detection routine. It consists of 
one or more IF-THEN statements that examine a user input or some other variable and 
compare it to a specific value or a range of values. If the variable does not pass this test, 
control is tranferred back to the input routine or to some other routine that tells the user that 
a mistake has occurred. Usually the second method will also tell the user what the error was 
and ask for a corrective action. 

You can also use a routine that takes its own corrective action. For example, you are using a 
menu routine that has just asked for you to input your name. As you are entering the fourth 
letter, you find that you have entered "Kohn" instead of" John". Assuming that your correct 
name is Johnny, some programs might prevent you from correcting the mistake and force 
you to keep right on going. On the other hand, many programs will let you alter the input by 
pressing the BACK SPACE key to the error and then re-entering the name. There is nothing 
wrong with either method as long as you have some means of correcting the error. 

An in-line error correction routine checks each entry and acts on the single key by 
accepting it as new valid input, ignoring the input as invalid, or recognizing the input as an 
instruction to back up to a previous input. The simplest way to do this using the KEY routine 
is to compare the value of RESPONSE to 126 (BACK SPACE) along with the other normal 
IF -THEN comparisons. If a BACK SPACE is detected, then the program moves the cursor 
back one position in the input field and erases that input. If you look at the example program 
at the end of this chapter, you will see this technique illustrated. Note also that the BACK 
SP ACE is not allowed to move the cursor back any further than the beginning of the input 
field. This technique is probably the one most commonly used. 

The second most popular error correction technique is to have a separate routine in the 
program that allows the user to correct any of a number of possible errors. Look again at the 
menu routines in the last chapter. These are examples of a menu for just such an error 
correction routine. For example, the program might ask you for a whole list of various inputs 
one right after the other. In this particular case, the BACK SPACE routine was also used, but 
it is oflittle help after you have entered the last character in an inputfield. The main program 
menu listed "CORRECT ERRORS" as one option. If you select this option from the main 
menu, the detailed error correction menu is displayed. In the menus from the last chapter (as 
I actually used them), if you selected "CHANGE THE NAME OF A PLAYER", a little 
routine would be called up which would allow you to select the name you wanted to change 
and then ask you for the correct name. The new name could then be entered and would be 
stored in all of the arrays as appropriate. 

Detailed error correction routines ofthis nature can be very simple, like the one I used, or 
they can be so large and complex that they end up being programs in their own right. The 
right size and complexity for your program is sometimes a tough decision. All I can suggest is 
that you sit back and ask yourself what you would want in a similar program if you were 
buying it. You might be surprised at the answer. 



168 Chapter 12 

We will close this brief discussion of error correction techniques with this little sermon: 
NEVER write a program you intend to sell without making sure that all user inputs are 
fully buffered. There is nothing more aggravating to me than spending my hard earned cash 
on a new program that crashes the first time I try to use it. I even bought a program one 
time that not only failed to load properly, but it had some kind of protection scheme that 
caused it to promptly erase itself from the disk just because my drive speed was faulty! 
Moral of this story: always keep your customer in mind. 

Attracting and Distracting the Operator 

A program should be easy to use, have adequate error checking and error correction 
options, and perform the desired functions smoothly and swiftly. We have already discussed 
many of these attributes of a good program. The most subtle and difficult to master is the art 
of user prompting. A good user prompt should be clear enough for the novice user of your 
program without being so slow that it impedes the experienced user. One easy way to 
accomplish this is to have a special option which will eliminate long prompts for those people 
who don't want or need them. A perfect example of this technique is the ZORK adventure 
game series which has three levels of prompts that are under user control. 

A good prompt consists of more than a lone "?" sitting on the screen. Time after time I buy 
programs that use this simple prompt. When it pops up I have no idea whether I am supposed 
to input a number or a letter. In most cases, I guess wrong and the program crashes. When 
you want the user to input a number, the program should plainly and clearly ask for a numeric 
input. In most cases, it is also nice to give the range of valid numbers. Go back to Chapter 
Three and look at the prompts I used in the program CONVERT.BAS. You will quickly see 
how awkward the program would be to use if the prompt were nothing more than a"?". 

Another kind of prompt that is popular is a buzzer or bell to get the operator's attention. 
Once again, you have to be careful to avoid over using such a thing. Have you ever played a 
war game called EASTERN FRONT? It is a classic example ofthe graphics capability of the 
Atari computer, but it is a program with one very irritating feature. If you make an incorrect 
input, the program blatts this loud raspberry sound at you. This noise got on my nerves to the 
point where I simply put the program disk back in its box and left it there. That was over a 
year ago. 

This brings me to my next point about program design. Prompts and audio cues should not 
be designed so they distract the user from the main purpose of the program. This principle 
applies to video prompts as well. Use a simple menu when you can and break the screen up 
into "information" and "input" sections. The window technique we just discussed is one 
approach. In the next chapter I will show you how to get four colors in a GRAPHICS 2 text 
display at the same time. That capability will allow you to design user friendly screen 
displays that will also dress up your programs. 

One technique for attracting the eye of the user is to make use of flashing cursors or other 
flashing prompts. This can be illustrated by the following routine: 

100 POKE 755,0 
ll~ FOR X=l TO 5~ : NEXT X 
12~ POKE 755,2 
13~ FOR X=l TO 5~ : NEXT X 
14~ GOTO l~~ 

This little routine POKEs the cursor control flag (755) with zero to turn the cursor OFF, 
waits a little while, POKEs the cursor control flag with two to turn the cursor back ON, waits 



ATARI BASIC Faster & Better 169 

a little while, and then repeats the whole process. While this is cute, it is not very practical 
since BASIC can't be doing anything else while it is flashing our little cursor. The solution is 
to employ a small machine language routine. 

BLINK is a machine language program that sets up a vertical blank interrupt routine to 
turn the cursor ON and OFF while BASIC goes on about your business. 

The time delay between changes is set at what I consider a comfortable pace. If you want to 
change the rate, stop the routine by POKEing a zero into 359 with POKE 359,0. Now that 
you have the routine stopped, POKE address 377 with a new number. The default value is 
eight. A larger number will slow the rate down, and a smaller one will speed it up. Once you 
have installed your new rate number, press SYSTEM RESET to activate the routine 
again. 

There is an interesting side effect of this routine. More than just the cursor will be flashing. 
Any character that is in inverse video will also be flashing! I use this technique combined with 
the FIELDLLST routine to cause the next user input field to flash. This can be a very catchy 
video technique, but don't get carried away with it to the point that you give the user eye 
strain. 

Those of you out there who know a little something about the Atari are probably 
wondering why I didn't use the cursor inhibit flag (752) to flash the cursor without causing 
the inverse video to flash also. The answer is simple. A POKE to address 752 affects the 
cursor only if the cursor is moved after the POKE. I tried to use that address for my flashing 
cursor and ended up with a flashing cursor that jumped. I found this jittering to be very 
irritating after a while and ended up writing the routine you see in this book. If one of you 
readers come up with another solution to this problem, please write to me in care of this 
publisher and showme how you did it. Anyway, I have found that I seldom have any difficulty 
with the routine the way it is right now. 

Figure 12.7 - BLINK Assembled Source Listing 

1000 ;BLINK - CREATES BLINKING CURSOR 
1010 
1020 
1030 
1040 ;THIS ROUTINE CREATES A BLINKING CURSOR 
1050 
1060 ;SET $167 (359 decima1)=0 TO STOP FLASHING 
1070 
1080 
1090 ;********************************************************* 

1100 
1110 ;SET UP OS POINTERS 
1120 

0002 1130 CASINI $2 ; CASSETTE INIT VECTOR 
0009 1140 BOOTF $9 ; BOOT MODE FLAG 
0042 1150 CRITIC $42 ; CRITICAL I/ O FLAG 
0222 1160 VBLANK $222 ;IMMEDIATE VBLANK VECTOR 
02F3 1170 FLASHER = $2F3 ;CURSOR CONTROL FLAG 
159D 1180 DUP $159D ;OS FLAG TO DETECT DUP.SYS 
E45C 1190 SETVBI = $E45C ;SET-VBI VECTOR ENTRY 



170 Chapter 12 

E45F 12~~ SYSVBI = 
121~ 

$E45F ;OS VBLANK SERVICE ROUTINE 

122~ ;********************************************************* 
123~ 

124~ ;THE INIT ROUTINE AT $4~~ IS EXECUTED ONLY ONCE . 
125~ ;THE MAIN ROUTINE IS STORED ON PAGE ONE . 
126~ 

127~ 

128~ 

*= $4~~ 

129~ ;SET UP PRIVATE INTERRUPT 

~4~~ A5~9 
~4~2 29~2 

~4~4 F~~A 

13~~ 

131~ 

132~ 

133~ 

134~ 

~4~6 A6~2 135~ 

~4~8 A4~3 136~ 

~4~A 8E6E~1 137~ 

~4~D 8C6F~1 138~ 
~41~ A968 139~ INIT 
~412 85~2 14~~ 

~414 A9~1 141~ 

~416 85~3 142~ 

~418 AD22~2 143~ 

~41B 8D89~1 144~ 

~41E AD23~2 145~ 

~421 8D8A~1 146~ 

~424 A5~9 147~ 

~426 09~2 148~ 

0428 85~9 149~ 

~42A A2~1 15~~ 

~42C A~8B 151~ 

~42E A9~6 152~ 

~43~ 2~5CE4 153~ 

~433 6~ 154~ 

155~ 

LDA 
AND 
BEQ 

LDX 
LDY 
STX 
STY 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
ORA 
STA 
LDX 
LDY 
LDA 
JSR 
RTS 

BOOTF 
#2 
INIT 

CASINI 
CASINI+l 
DETOUR+1 
DETOUR+2 
#RESET&$FF 
CASINI 
#RESET/ 256 
CASINI+1 
VBLANK 
EXIT+1 
VBLANK+1 
EXIT+2 
BOOTF 
#2 
BOOn 
#MAIN/ 256 
#MAIN&$FF 
#6 
SETVBI 

;THIS IS LATER OVER-WRITTEN 

;IF A CASSETTE HAS BOOTED 
;THEN SAVE CASINI FOR LATER 

;RE-VECTOR CASSETTE INIT 
;TO INCLUDE OUR ROUTINE 

;DETOUR NORMAL HOUSEKEEPING 

;POINT VB LANK TO OUR ROUTINE 

;USE IMMEDIATE VBI 

156~ ;********************************************************* 

~434 

~165 ~~ 
~166 ~~ 

~167 ~8 

157~ 

158~ ;THIS IS THE PART WE WANT TO PRESERVE 
159~ 

16~~ 
161~ 

*= $165 

162~ ;SAVE SPACE FOR COUNTERS 
163~ 

164~ FLAG . BYTE0 
165~ COUNTER .BYTE0 
166~ LIMIT . BYTE8 
167~ 

168~ 

;PROGRAM IS NOT RELOCATABLE 

;0=TURN CURSOR OFF 
;HOW MANY DELAYS SO FAR 
;THIS CONTROLS TIME DELAY 

169~ ;THIS RESTORES OUR ROUTINE WHEN SYSTEM RESET IS PRESSED 
17~~ ; 



ATARI BASIC Faster & Better 171 

0168 A9A9 1710 RESET LDA #$A9 ;SYSTEM RESET COMES HERE 
016A 8D8101 1720 STA PATCH 
016D 2086~1 173~ DETOUR JSR NULL 
017~ A9~~ 174~ LDA #~ ;RESTORE DEFAULT VALUES 
0172 8D66~1 175~ STA COUNTER ;TO TIME DELAY & COUNTER 
0175 8D65~1 176~ STA FLAG 
0178 A9~8 177~ LDA #8 
017A 8D67~1 178~ STA LIMIT 
017D A2~1 179~ LDX #MAIN/ 256 ;TELL VBI WHERE OUR ROUTINE IS 
017F M8B 18~~ LDY #MAIN&$FF 
0181 A9% 181~ PATCH LDA #6 ; IMMEDIATE VBI 
.0183 2.05CE4 1820 JSR SETVBI ;SET THE GEARS IN MOTION 
0186 6~ 183~ NULL RTS 

184~ ; 
185.0 ;THIS IS THE MAIN ROUTINE 
186.0 ; 

0187 68 187.0 THAW PLA ;RESTORE ACCUMULATOR 
0188 4C86.01 188.0 EXIT JMP NULL ;(NULL CHANGED DURING SETUP) 

189.0 ; 
19.0.0 ;VBLANK INTERRUPT COMES HERE 
191.0 ; 

.018B 48 192.0 MAIN PHA ;SAVE ACCUMULATOR 
193.0 ; 
194.0 ;CHECK FOR CRITICAL I/ O FLAG 
195.0 

018C A542 196.0 LDA CRITIC ;IF CRITIC IS SET, 
018E D.0F7 197.0 BNE THAW ;ALL DONE, LET'S GO HOME 

198.0 
019.0 AD67.01 199.0 LDA LIMIT ;IF LIMIT=.0 THEN EXIT 
0193 F~IE 2~~.0 BEQ ON 

2M.0 
2.02.0 ;TIMING LOOP 
2.03.0 ; 

0195 EE66.01 2.040 INC COUNTER 
.0198 AD66~1 2.05.0 LDA COUNTER 
.019B CD67~1 2.06.0 CMP LIMIT ;IF TIME<>LIMIT THEN EXIT 
019E D.0E7 2.07.0 BNE THAW 

2.08.0 ; 
01A.0 A9.0.0 2.09.0 LDA #.0 ;WHEN TIME LIMIT REACHED 
.01A2 8D66.01 21.0.0 STA COUNTER ;RESET COUNTER AND 
.01A5 AD65.01 211.0 LDA FLAG ;TOGGLE CURSOR FLAG 
01A8 49.01 212.0 EOR #1 ;FLAG=NOT FLAG 
01AA 806501 2130 STA FLAG 
.01AD D.0.04 214.0 BNE ON 

215.0 
.01AF A9~.0 2l6.0 OFF LDA #.0 ;COMMAND CURSOR OFF 
.01Bl F.0.02 217.0 BEQ FLASH 

2l8.0 ; 
~IB3 A9.02 2l9.0 ON LOA #2 ;COMMAND CURSOR ON 
.01B5 8DF3.02 22.0.0 FLASH STA FLASHER ;EXECUTE COMMAND 
.01B8 18 221.0 CLC 



172 Chapter 12 

01B9 90CC 2220 
2230 

01BB 2240 

BCC THAW 

. END 

Figure 12.8 - BLINK - Blinking Cursor In BASIC 

100 REM BLINK . BAS - FLASHING CURSOR 
110 REM 
120 REM THIS IS THE VBI SETUP ROUTINE 
130 REM THAT IS TEMPORARILY STORED ON 
140 REM PAGE FOUR . $400 (1024) 
150 DATA 165,9,41,2,240,10,166,2 
160 DATA 164,3,142,110,1,140,111,1 
170 DATA 169,104,133,2 ,169,1,133,3 
180 DATA 173,34,2,141,137,1,173,35 
190 DATA 2,141,138,1,165,9,9,2 
200 DATA 133,9,162,1,160,139,169,6 
210 DATA 32,92,228,104,96 
220 REM NOTE THAT THE NUMBER '104' 
230 REM IN LINE 210 IS ONLY IN THIS 
240 REM BASIC VERSION . IT IS NOT IN 
250 REM THE BINARY LOAD VERSION . 
260 MLSTART=1024 
270 MLEND=1076 
280 FOR X=MLSTART TO MLEND 
290 READ Y: 

POKE X,Y : 
NEXT X 

300 REM THIS IS THE MAIN ROUTINE . 
310 REM IT IS STORED ON PAGE ONE . 
320 DATA 0,0,8,169,169,141,129,1 
330 DATA 32,134,1,169 ,0 ,141,102,1 
340 DATA 141,101,1,169,8,141,103,1 
350 DATA 162,1,160,139,169,6,32,92 
360 DATA 228,96,104,76,134,1,72,165 
370 DATA 66,208,247,173,103,1,240,30 
380 DATA 238,102,1,173,102,1,205,103 
390 DATA 1,208,231,169,0,141,102,1 
400 DATA 173,101,1,73,1,141,101,1 
410 DATA 208,4,169,0,240,2,169,2 
420 DATA 141,243,2,24,144,204, 
430 MLSTART=357 
440 MLEND=442 
450 FOR X=MLSTART TO MLEND 
460 READ Y: 

POKE X,Y : 
NEXT X 

470 REM NOW THAT WE HAVE THE ROUTINE 



480 REM IN MEMORY, WE TURN IT ON BY 
490 X=USR (1024) 
500 END 

Putting It All Together 

ATARI BASIC Faster & Better 173 

O.K., up to this point we have discussed a number of professional program design 
techniques and laid a couple of philosophical sermons on you. Now let's put what we have 
discussed into practice. The following program, CONTROL.DEM, is a demonstration 
program that shows you how to tie all of these techniques together into a functioning 
program. CONTROL.DEM displays a sample "fill-in-the-blank" menu which asks you for 
your name and birthday and then demonstrates the scrolling window technique. As you try 
the program out, deliberately make a mistake while entering your name or birth date and see 
how the program allows you to easily correct the mistake. Note how the inverse input fields 
not only back up to the point where you want to re-enter the data, but the unused portions of 
the name field disappear as soon as you hit the RETURN or complete the maximum input 
length. 

The scrolling window display does not try to do anything fancy. Refer to the write-up on 
that technique for other possible uses of the scrolling window. 

Figure 12.9 - CONTROL.DEM - A M enu Using COil trolled Input 

100 REM CONTROL. OEM - MENU USING CONTROLLED INPUT 
110 GRAPHICS 0: 

POKE 752,1 
120 INKEY1=390 : 

INKEY2=450: 
CORRECT=540 : 
DELAY=580 

130 DIM NAME$(10) 
140 NAME$(l)=" ":NAME$(l0)=" ":NAME$(2)=NAME$ 
150 PRINT CHR$(125) : 

POSITION 10,3: 
PRINT "CONTROLLED MENU" 

160 POSITION 2,7 : 
PRINT "ENTER YOUR NAME" · ' 
POSITION 23,7: 
PRINT " •••••••••• "; 

170 POSITION 23,7: 
SIZE=10: 
GOSUB INKEYl: 
POSITION 23,7 : 
PRINT NAME$ 

180 POSITION 2,9: 
PRINT "ENTER YOUR BIRTHDAY"; : 
POSITION 23,9: 
PRINT " •• / •• / •• "; 



174 Chapter 12 

19~ POSITION 23,9: 
SIZE=2 : 
GOSUB INKEY2: 
POSITION 26,9: 
GQSUB INKEY2 : 
POSITION 29,9 : 
GOSUB INKEY2 

2~~ POSITION 2,14: 
PRINT "CONTROLLED MENU IS AN EXAMPLE OF A" 

21~ POSITION 2,15 : 
PRINT "METHOD FOR GETTING SPECIAL INPUTS" 

22~ POSITION 2,17 : 
PRINT "NOW WE WILL TRY THE SCROLLING WINDOW" 

23~ POSITION 2,19: 
PRINT "***************** ** ******* ***** ,~**** " 

24~ POKE 7~3,4 : 

PRINT CHR$(l25) 
25~ PRINT "YOU ARE NOW IN SCROLLING WINDOW MODE ." 
26~ GOSUB DELAY : 

GOSUB DELAY : 
GOSUB DELAY: 
PRINT 
PRINT : 
PRINT : 
GOSUB DELAY 

27~ PRINT "USING THIS WINDOW, YOU CAN ASK THE" : 
GOSUB DELAY 

28~ PRINT "USER FOR ADDITIONAL INPUTS .": 
GOSUB DELAY : 
PRINT : 
PRINT : 
PRINT : 
GOSUB DELAY 

29~ PRINT "FOR EXAMPLE, YOU COULD ASK FOR THE" : 
GOSUB DELAY 

3~~ PRINT "USER TO PRESS ONE OF THE FUNCTION ": 
GOSUB DELAY 

31~ PRINT "KEYS TO INITIATE LOADING A DISK FILE .": 
GOSUB DELAY : 
PRINT : 
PRINT : 
PRINT : 
GOSUB DELAY 

32~ PRINT "ONE THING YOU MAY HAVE NOTICED BY NOW" : 
GOSUB DELAY 

33~ PRINT "IS THAT THIS GARBABE IS BEING": 
GOSUB DELAY 

34~ PRINT "DISPLAYED WITHOUT INTERFERING WITH" : 
GOSUB DELAY 



350 PRINT "THE DISPLAY ON THE MAIN SCREEN.": 
GOSUB DELAY : 
PRINT : 
PRINT : 
PRINT : 
GOSUB DELAY 

360 PRINT "ENTER A GRAPHICS 0 COMMAND" 
370 PRINT "TO RESTORE THE NORMAL SCREEN"; : 

END 
380 REM INKEY1.LST - CONTROLLED STRING INPUT 
390 OPEN #5,4,0," K: " : 

FOR X=l TO SIZE 
400 GET #5,KEY : 

IF KEY=155 THEN POP : 
GOTO 440 

410 IF KEY=126 THEN GOSUB CORRECT : 
GOTO 400 

420 IF (KEY<48 OR KEY>122) AND KEY <>32 THEN 400 
430 PRINT CHR$(KEY); : 

NAME$(X,X)=CHR$(KEY) : 
NEXT X 

440 CLOSE #5: 
RETURN 

450 REM INKEY2 .LST - CONTROLLED NUMERIC INPUT 
460 SIGN=l : 

NUMBER=0: 
OPEN #5,4,0," K: " : 
FOR X=l TO SIZE 

470 GET #5,KEY: 
IF KEY=155 THEN POP : 
GOTO 520 

480 IF KEY=126 THEN GOSUB CORRECT : 
GOTO 470 

490 IF KEY=45 AND SIGN=l THEN SIGN=-l: 
PRINT "-"; : 
GOTO 470 

500 IF KEY<48 OR KEY>57 THEN 470 
510 PRINT CHR$ (KEY) ; : 

NUMBER=10*NUMBER+VAL(CHR$(KEY)): 
NEXT 

520 NUMBER=SIGN*NUMBER : 
CLOSE #5 : 
RETURN 

530 REM ERROR CORRECTION ROUTINE 
540 X=X-1 : 

IF X<l THEN X=l : 
RETURN 

550 PRINT CHR$(30);" ";CHR$(30); 
560 RETURN 
570 REM TIME DELAY ROUTINE 

ATARI BASIC Faster & Better 175 



176 Chapter 12 

580 FOR Y=l TO 500 : 
NEXT Y: 
RETURN 

If you want to see the effects of blinking fields, then install the BLINK routine before 
loading this one. 



ATARI BASIC Faster & Better 177 

Video Antics 

There are so many features available in the Atari video display graphics system that it 
would take a good sized book to do proper justice to even a fraction of them. Hence, we will be 
able to cover only a small sample in the space of a single chapter. We will talk about the ever 
popular marquee (video banner) style programs, how to use colors for a more dramatic effect 
in GRAPHICS 2, and how to use "page flipping" to create your own video slide show. We will 
show you a way to slow down those fast BASIC video listings to a pace that is easier to read. 
And last, but not least, we will show you some screen dump and retrieval routines. 

Le Marquee D' Atari 

A marquee program displays a specified message on the video screen and "scrolls" itfrom 
right-to-Ieft across the screen until the end of the message is reached, at which point the 
message is repeated. There are three basic ways to solve this programming problem. The 
most elegant way is to redefine your display list using the methods outlined in De Re Atari to 
achieve smooth horizontal scrolling (a combination of coarse and fine scrolling). While this 
method is the right approach for assembly programmers, it is by no means a trivial task. We 
will look at two of the methods here. They may not be as elegant, but they make up for it by 
being much easier to understand and implement. Even here we must make trade offs. 

The first technique involves altering, rather than replacing the display list. While this is 
easier than replacing the entire display list, this method still is not exactly what you would 
call easy. The routine shown in Figure 13.1 is a demonstration program that illustrates how 
you can create a simple scrolling banner with a few alterations to the display list. 
SCROLL.DEM is faster than using a pure BASIC scroll, so a time delay was inserted into the 
routine at LINE 260. 

This demo program is short and simple, but not very flexible. The message must be stored 
on an even "page" boundary to satisfy ANTIC. In this particular example, I put the message 
on page six. 



178 Chapter 13 

Figure 13.1 - SCROLL.DEM - A Coarse Scrolling Demonstration 

1~~ REM SCROLL .DEM 
11~ GRAPHICS 2+16: 

DLIST=PEEK(56~)+256* PEEK(561) : 

L=~ : 

H=6: 
NUM=119: 
GO=9: 
DIM STRING$(2~~) 

12~ REM SET UP MESSAGE STRING 
13~ STRING$=" 
14~ STRING$(LEN(STRING$)+1)="41)3 13 a -1II33!1%" 
15~ REM STORE MESSAGE ON PAGE SIX 
160 FOR X=l TO LEN (STRING$) : 

POKE 1535+X,ASC(STRING$(X,X)) 
170 IF ASC(STRING$(X,X))=32 THEN POKE 1535+X,0 
180 NEXT X 
19~ REM FOR X=l TO 254: 

POKE 1535+X,~: 

NEXT X 
2~~ REM POINT DISPLAY TO MESSAGE 
21~ POKE DLIST+GO,NUM : 

POKE DLIST+GO+1,L : 
POKE DLIST+GO+2,H 

22~ REM SCROLL OUR MESSAGE 
23~ FOR X=~ TO 3~24~ POKE DLIST+GO,NUM : 

POKE DLIST+GO+1,L+X : 
POKE DLIST+GO+2,H 

25~ REM POKE 54276,15-X 
26~ FOR Y=l TO 65 : 

NEXT Y 
27~ REM RANDOMLY CHANGE COLORS 
28~ POKE 708,16*INT(16*RND(0))+7+INT(5*RND(0)) 
29~ POKE 7~9,16* INT(16 * RND(~))+7+INT(5*RND(0)) 

3~~ POKE 71~,16 * INT(16*RND(~))+7+INT(5* RND(0)) 

31~ POKE 711,16* INT(16 * RND(~))+7+INT(5*RND(0)) 

32~ NEXT X 
33~ REM REPEAT MESSAGE ALL DAY 
340 GOTO 23~ 

Let's take a look at each line in the program and point out things of interest. In LINE 110, 
we set the graphics mode to full screen "two" . The variable DLIST is then set equal to the 
address of the display list. "L" and "H" are the low and high bytes that define where the 
message will be located. "L" should always start out with a value of zero to make sure that 
you are on an even page boundary. "H" (in this case) points to page six. You might try 
experimenting with other values of "H" . The effects can be pretty strange. 



ATARI BASIC Faster & Better 179 

The variable NUM is the command code that we will later POKE into the display list. This 
variable tells the computer to perform a particular display function. I chose 119 to cause a 
scrolling row to be placed in the middle of the video display. I suggest that you try other 
values and experiment to see what they do. You can find more detailed technical information 
on display lists in De Re Atari as well as the Technical User Notes from Atari. 

The next line of interest is 140. This is where we specify what our message will be. Looks 
like a bunch of garbage, doesn't it? This is due to the fact that we are playing directly with the 
display list, and it uses "display codes" rather than the normal AT ASCII codes. If you take 
the ASC(X) of each element of the message string and add 32 to it, you will see the real 
message we used. I don't like this awkward translation process, but it has to be done. Of 
course, we could write a little routine to translate the various ATASCII codes to their proper 
display codes, but there is a simpler solution. We will talk more about that shortly. 

Lines 160 and 170 POKE our message into page six. Note that the code we have to use to 
geta "SPACE" is zero. This is done by LINE 170. If you remove the "REM" at the beginning 
of LINE 190, the program will clear all of page six. Be sure to put the REM back when you are 
through, or you will never be able to see your message. This comes in handy when you are 
trying out different codes to compose a message. 

LINE 210 initializes the modified display list, and the loop that starts in LINE shifts the 
display data to the left, resulting in a reasonably good scrolling effect. If you want the 
message to scroll to the right, change the loop limits to something like "FOR X=30 TO 0 
STEP -I". You can also use the POKE statement in LINE 250 to do your scrolling, but the 
screen flickers annoyingly. If you were using a vertical blank interrupt machine language 
routine, you could get rid of the flicker. The address 54276 is the HORIZONTAL SCROLL 
register. 

As you can see, this is not a clean straight topic to discuss. Let's move on to line 280 
through 310. These lines change the OS color registers. By changing them inside a loop like 
this, it is possible to change the colors of upper/lower case and normal/inverse video 
characters on the fly, so to speak. I will cover this topic in more detail later in this chapter. 
Now let's look at another scrolling banner program. 

The program in Figure 13.2 is a more sophisticated solution to the horizontal scrolling 
problem. This program is far more flexible in that you can enter your message in plain 
English. Your message can be up to 200 characters. The marquee is set up for a GRAPHICS 
2 display. If you want to add additional color to your message, try using lower-case and 
inverse video. 

When you run MARQ UEE.BAS, the first prompt will ask you to define the length of your 
message. A message is defined in terms of 40 character lines. Since the longest message 
allowed in the program is 200 characters, you can have a message as short as one line or as 
long as five lines. Any unused spaces in a message line will be displayed as blanks in the 
marquee. 

The screen will alter dramatically as soon as you enter the message length. Simply type in 
your message in the special input field. You may use any standard characters, including 
lower-case and inverse video. Do not press the <RETURN> key! If you chose a length 
greater than one, the cursor will automatically wrap around to the next input line. When you 
are finished entering/editting your message, use <CTRL>-<Down Arrow> to move the 
cursor down to the line where CONT is displayed. Once you have the cursor on that line, 
press the <RETURN>. The screen will go blank for a moment, and then your message will 
begin scrolling across the screen. 



180 Chapter 13 

Figure 13.2 - MARQ UEE.BAS - A Banner Program 

100 REM Le Marquee D'Atari 
110 REM With many thanks to John Weber 
120 REM DEFINE BEG OF SCREEN ADDR 
130 SAVMSC=PEEK(88)+256*PEEK(89) 
140 DLIST=PEEK(560)+256*PEEK(561) 
150 REM DEFINE MACH LANG LOCATIONS 
160 HSON=203:LMS=205:HORZ=204 :LIMIT=207 :COUNT=1791:POKE 82,2 
170 REM LOAD VERT BLANK INTERUPT ROUTINE 
180 FOR N=1536 TO 1536+93:READ A:POKE N,A:NEXT N 
190 REM ROUTINE TO GET MESSAGE 
200 GRAPHICS 0:POSITION l,3:PRINT "LE MARQUEE D'ATARI" 
210 POSITION 2,6:PRINT "This program will generate a": 

PRINT "scrolling message 1 to 5 lines long ." 
220 PRINT "Enter number of lines (1 - 5)": PRINT 
230 TRAP 230:0PEN #3,4.0,"K:" 
240 GET #3,KEY:IF KEY<49 OR KEY>53 THEN 240 
250 CLOSE #3:A=KEY-48 
260 REM POKE IN BLANK LINES 
270 POKE DLIST+17,l12 :POKE DLIST+18+A,l12 
280 POSITION 2,6:PRINT "MOVE THE CURSOR TO THE AREA BETWEEN" 
290 PRINT "THE LINES AND ENTER YOUR MESSAGE . 
300 PRINT "WHEN DONE, POSITION THE CURSOR AFTER 'CONT' AND PRESS 'RETURN' ." 
310 POSITION 2,13+A:PRINT "CONT" :POSITION 2,10:POKE 82,0:STOP 
320 REM TURN OFF ANTIC 
330 B=PEEK(559):POKE 559,0 :POKE LIMIT,40+A*40 
340 POKE COUNT,0 :POKE HSON,l :POKE HORZ,0 
350 REM PUT DISPLAY LIST AT SDLSTL 
360 FOR N=DLIST TO DLIST+23:READ A:POKE N,A:NEXT N 
370 REM SET LMS OF SCROLLING LINE INTO LIST AND AT PAGE ZERO ADDR 
380 C=INT((DLIST+11) / 256) :POKE LMS+1,C :POKE LMS,(DLIST+11)-C*256 
390 C=INT((SAVMSC+460) / 256):POKE DLIST+12,C :POKE DLIST+11,(SAVMSC+460)-C*256 
400 REM PUT IN LMS OF TOP OF GR . DATA 
410 C=INT(SAVMSC/ 256) :POKE DLIST+5,C :POKE DLIST+4,SAVMSC-C*256 
420 REM PUT IN LMS OF BOTTOM OF GR . DATA 
430 C=INT((SAVMSC+100) / 256) :POKE DLIST+15,C :POKE DLIST+14,(SAVMSC+100)-C*256 
440 REM SET BEGINNING ADDR OF LIST AT BOTTOM OF LIST 
450 POKE DLIST+22,PEEK(560):POKE DLIST+23,PEEK(561) 
460 POKE 548,0:POKE 549,6:REM ENABLE INTERRUPT 
470 POKE 559 ,B:REM TURN ANTIC BACK ON 
480 REM READ FUNCTION KEYS 
490 C=6:GOTO 500 
500 IF C=6 THEN POKE HSON,0 :POKE 53279,7:GOTO 530 
510 IF C=5 THEN POKE HSON,I :POKE 53279,7:GOTO 530 
520 IF C=3 THEN POKE HSON,l :POKE 53279,7:GRAPHICS 0:RUN 
530 C=PEEK(53279) :POKE 77,0:GOTO 500 
540 REM DATA STATEMENTS FOR SCROLLING ROUTINE 
550 DATA 216,165,203,208,86,166,204,202,224,255,144,74 
560 DATA 24,173,255,6,105,1,141,255,6,197,207,144 



ATARI BASIC Faster & Better 181 

57~ DATA 33,24~,31,56,16~,7,132,2~4,14~,4,212,16~ 
58~ DATA ~,14~,255,6,177,2~5,229,2~7,145,2~5,176,43 
59~ DATA 2~~,177,2~5,233,~,145,2~5,24,144,33,169,7 
6~~ DATA 133,2~4,141,4,212,169,1,16~,~,24,113,2~5 
61~ DATA 145,2~5,144,7,2~~,177,2~5,1~5,~,145,2~5,76 

62~ DATA 98,228,142,4,212,134,2~4,76,98,228 
63~ REM GR 2 DISPLAY LIST 
64~ DATA 112,112,112,71,16,159,7,7,7,7,87,116 
65~ DATA 159,71,136,159,7,7,7,7,7,65,~,6 

The program is heavily commented so you can more easily see what is being done by each 
routine. I would like to thank my friend, John Weber, for his invaluable help with this 
program. 

You can halt the scrolling by pressing the <SELECT> key. Once you have stopped the 
scroll, you can restart it by pressing the < START> key. If you get tired of the message and 
want to enter a new one, press the <OPTION> key. 

Four Color Text In GRAPHICS 2 

The Atari computer is a truly amazing color machine. There are dozens of colors in varying 
degrees of resolution from the coarse graphics of mode one to the ultra fine graphics of mode 
eight (there are three more modes if you have the GTIA chip or the model 1200 computer). It 
is even possible to get four different colors at a time on the screen in GRAPHICS mode zero 
by altering the Display List or by the careful use of a technique called artifacting with 
redefined characters. The easiest color shifts are accomplished by simply altering the color 
registers like we did in the two previous programs. This latter topic is what we will discuss 
here. 

Memory locations 704 to 712 are the color registers for players, missiles and playfields. 
We are only going to concern ourselves with four of these registers: 708,709,710 and 71l. 
Each of these registers corresponds to one of the COLOR commands. 

Figure 13.3 - COLOR Commands us. Color Registers 

COLOR MEMORY DEFAULT OPERATIVE WHAT IT CONTROLS 
COMMAND REGISTER VALUE GRAPHICS MODE THE COLOR OF 

COLOR ~ 7~8 4~ and 2 Normal upper case 
COLOR 1 7~9 212 and 2 Normal lower case 
COLOR 2 71~ 148 and 2 Inverse upper case 
COLOR 3 711 7~ and 2 Inverse lower case 

NOTE: Normally "lower case" can refer only to alphabet characters. 

The COLOR 4 command can be simulated by POKEing 712, but that is a topic for another 
discussion. 

When you are in GRAPHICS 1 or 2, you can have multi-colored letters on the screen by 
carefully making some of the letters normal upper case, some of them inverse upper case, 



182 Chapter 13 

some of them lower case, and some of them inverse lower case. Then, by POKEing new 
values into the color registers, you can make each type of character a different color. This is 
particularly good for the title page of your program. 

Here is an example of such a title page: 

Figure 13.4 - GRAPHICS 2 Sample Title Page 

20640 REM TITLE.LST 
20641 PRINT CHR$(125):SETCOLOR 2,0,0 :GRAPHICS 18 
20643 POSITION 16,1 : PRINT #6, "m rm" 
20645 POSITION 18,4 :PRINT #6,11iD" 
20646 POSITION 14,5: PRINT #6, "~ WDlIi" 
20647 POSITION 5,10:PRINT #6;"(C) 1983" 
20648 POSITION 2,11 : PRINT #6; "YOURS TRULY, INC" 

Running this title, as is, will give you a pretty, multi-colored title page. If you don't like the 
default colors we used here, add some POKEs in LINE 20642 to change the color registers. 
If you are wondering how you can select certain colors, just hold on. We are coming to that 
shortly. 

First, however, try this little routine: 

Figure 13.5 - A "GLOWING" Message Routine 

100 REM GLOW1.DEM 
110 GRAPHICS 2+16 : 

SETCOLOR 2,0,0: 
POSITION 16,5 : 
PRINT #6,IGLOWING" 

120 FOR X=l TO 200 : 
POKE 708,16*INT(16*RND(0))+7+INT(5*RND(0)) : 
NEXT X 

130 GOTO 120 

When you RUN this routine, you will see the message changing colors so fast that it almost 
seems to glow. Try the same routine with the addition of lower case and inverse video 
characters in the message. Note that only the normal upper case characters glow this time. 
You will have to add three more lines to the routine before it will make your new message 
glow. 

This routine will cause each ofthe letters in the message to glow slightly different from one 
another. I used Z-code variables to speed the loop up a little. You can now take the loop out of 
the glow routine and add it to the title page to add one more special effect. I suggest that you 
use the glow routine only on your program title, and simply set the other parts of the title 
page to a non-glowing color. 



Change the glow routine to look like this: 

Figure 13.6 - A BeUer "GLOW" Routine 

100 REM GLOW2 .DEM 
110 GRAPHICS 2+16 : 

SETCOLOR 2,0,0: 
POSITION 16,5: 
PRINT #6, "GlmIn[!1" : 
Z0=0 : 
Z5=5: 
Z7=7 : 
Z16=16 

120 FOR X=1 TO 200 : 
FOR Y=708 TO 711 

ATARI BASIC Faster & Better 183 

130 POKE Y,ZI6*INT(ZI6*RND(Z0))+Z7+INT(Z5*RND(Z0)) 
140 NEXT Y: 

NEXT X: 
GOTO 120 

The equations used in the color changes in both glow routines were carefully chosen after a 
lot of experimentation. If you POKE completely random values from zero to 255 into the 
color registers, you will end up with a rather dull display. The following table will help to show 
you why this is true. 

Figure 13.7 - Atari Color Value Table 

COLOR BASE POKE POKE RANGE 
NUMBER COLOR VALUE (LOW-HIGH) 

0 BLACK 0 o - 14 
1 RUST 16 16 - 30 
2 RED-ORANGE 32 32 - 46 
3 DARK ORANGE 48 48 - 62 
4 RED 64 64 - 78 
5 DARK LAVENDER 80 80 - 94 
6 COBALT BLUE 96 96 - 110 
7 ULTRAMARINE 112 112 - 126 
8 MEDIUM BLUE 128 128 - 142 
9 DARK BLUE 144 144 - 158 

10 BLUE-GREY 160 160 - 174 
11 OLIVE GREEN 176 176 - 190 
12 MEDIUM GREEN 192 192 - 206 
13 DARK GREEN 208 208 - 222 
14 ORANGE-GREEN 224 224 - 238 
15 ORANGE 240 240 - 254 



184 Chapter 13 

This table identifies the base colors produced by the Atari computer. Other "colors" are 
achieved by using a number in the POKE range of the color. These other colors are actually 
made by adding a luminance value of 0-15 to the base POKE value. The higher the 
luminance, the brighter the color. Note that each range ends in an even number. The color 
registers ignore the zeroth bit, so there are never really any odd numbers in one of the 
registers even if you POKE an odd number into one of them. 

If you POKE a dark color value and use a low luminance value, the resulting characters will 
be very hard to see. On the other hand, if you pick a light color and give it a real high 
luminance, the characters will be so fuzzy that they will be hard to read. You can also get 
apparent color changes. For example, a color of 1(RUST) with a luminance of 14 (POKE 
value=30) is almost yellow. The obvious solution is to choose only medium values for 
luminance. Now let's go back and look at the glow routines again. 

The glow routines use the following statement: 

POKE Y,16*INT(16*RND(0»+7+INT(5*RND(0» 

Let's examine this statement a little closer. The first part is 16*INT(16*RND(0)). This 
selects one of the 16 basic color POKE values. We can live with dark colors if they are bright 
enough. That is where the second part of the statement comes in. "7+INT(5*RND(0))" will 
pick a luminance value somewhere between seven and twelve. These are medium high 
luminance values (we do want the colors to be clearly visible) that are notso dim that the dark 
colors are invisible and not so bright that the light colors get blurry. Try your own 
experiments. Change the color select part to pick a limited range of colors, or change the "7" 
or "5" to higher or lower values. 

Using Page Flipping for a "SLYDESHO" 

The Atari home computer allows us to access, modify and store the Display Data and the 
Display List in any free area of memory. We have already played with this concept a little in 
our scrolling program. This flexibility in storage allows us to define and store the information 
for many different screens (pages) of text or graphics. This is a very powerful capability if we 
now couple it with a simple set of POKE s that "flip" the start of the actual video display from 
one of our stored screens to another. We can achieve some very interesting effects by 
creating and storing a number of screens ahead of time and then recalling them as 
needed. 

There are only a few technical details that you will need to understand before you can start 
flipping pages. First is, "how to flip a page." The second is, "why is that page folded in the 
middle?" 

Two memory locations control the apparent location of the video memory, and therefore 
also control what the computer will display on the screen. First, the fourth and fifth bytes in 
the display list point to the display data, which is what is printed on the screen. We can find 
this address by using the following lines of code: 

100 DLIST=PEEK(560)+256*PEEK(561) 
110 SCRDAT=PEEK(DLIST+4)+256*PEEK(DLIST+5) 

Two other memory locations are important in this application. The lowest address of the 
screen display is stored in decimal addresses 88 and 89. Try the following lines of code: 

120 SCREEN=PEEK(88)+256*PEEK(89) 
130 FOR X=10 TO 900 STEP 10:POKE X,104 :NEXT X 



ATARI BASIC Faster & Better 185 

You will see lower case h's appear in different spots on the video display. When flipping 
pages, it is best to change both sets of addresses to point to your new page. You can run into 
strange problems if you are not careful when using these addresses. 

Normally, when you use a GRAPHICS command, the computer sets up a display list and a 
display data area just below the top offree memory. By changing the values of SCRDAT and 
SCREEN, we can cause the computer to look someplace else for the display information. 
Let's lookata practical example of using this technique. The program in Figure 13.8 is what I 
call a "SL YDESHO" projector. 

Figure 13.8 - SLYDESHO.DEM - A Page Flipping Demonstration 

1~~ REM SLYDESHO .DEM -
11~ REM A SLIDE SHOW VIEWER 
12~ REM DEMONSTRATION PROGRAM 
13~ PRINT CHR$(125): 

GRAPHICS 2+16: 
SETCOLOR 4,8,~ 

14~ POSITION 16,3: 
PRINT #6,"slydesho": 
POSITION 14,8 : 
PRINT #6," (C) 1983" 

15~ POSITION 12,1~ : 

PRINT #6," III 1m 1JIIIIl": 
FOR X=l TO 13~~: 

NEXT X: 
GRAPHICS ~: 

POKE 752,1: 
POKE 82,~ 16~ 

POSITION 8,12 : 
PRINT "INITIALIZING .... " 

17~ Z~=~: 

Zl=l : 
Z2=2: 
Z3=3: 
Z4=4 : 
Z5=5 : 
Z6=6: 
n=7 : 
Z8=8: 
Z9=9: 
Zl0=10 : 
Zll=l1 : 
Zl2=12 : 
Zl3=13 : 
Zl4=14: 
Zl5=15 : 
Zl6=16 



186 Chapter 13 

180 Z17=17 : 
Z18=18: 
Z19=19 : 
Z20=20 : 
ZT=53279: 
ZR=4096 : 
ZP=960: 
ZQ=959: 
Z256=256 

190 NUMBER=7: 
REM SET PAGE LIMIT 

200 DIM A1$(ZP),A2$(ZP),A3$(ZP),A4$(ZP),A5$(ZP),A6$(ZP), 
A7$(ZP) ,A8$(ZP) ,A9$(ZP) ,Q10$(ZP) 

210 DIM A11$(ZP),A12$(ZP),A13$(ZP),A14$(ZP),A15$(ZP), 
A16$(ZP),A17$(ZP),A18$(ZP),A19$(ZP),A20$(ZP) 

220 DIM PAGE(20) ,ADRLO(20) ,ADRHI(20),FLAG(20) 
230 GOSUB 730 : 

GOSUB 1080 
240 GOSUB 590 : 

GOSUB 640 : 
ON RESULT GOTO 430,320,250,550 

250 PRINT CHR$(125) : 
POSITION Z5, Z12 : 
PRINT "*** UNDER CONSTRUCTION ***". 
FOR X=l TO 500 : 
NEXT X 

260 GOTO 240 
270 REM SAVE A PAGE 
280 FOR Z=Z0 TO Zl : 

POKE (ADDRESS+Z),PEEK(SCR+Z): 
NEXT Z 

290 FOR Z=Z2 TO ZQ : 
POKE (ADDRESS+Z),PEEK(SCR+Z): 
POKE (SCR+Z-Z1) ,30 

300 POKE (SCR+Z-Z2) ,0: 
NEXT Z: 
RETURN 

310 REM SLYDE EDITOR 
320 Y=Z0 : 

FOR X=Zl TO NUMBER 
330 IF FLAG(X)=Zl THEN X=X+Zl: 

GOTO 330 
340 IF X>NUMBER THEN X=NUMBER 
350 IF FLAG(X)=Zl THEN 240 
360 PRINT CHR$(125) : 

Y=Y+Z1 
370 REM GET PAGE TO SAVE 
380 POSITION Z2,Z2*(Zl+Y): 

PRINT "THIS IS TEST SCREEN #";Y 
390 POSITION Z2,23: 

PRINT "THE END OF TEST SCREEN #";Y; 



400 I=X: 
FLAG(I )=Z0 : 
ADDRESS=PAGE (I) : 
GOSUB 280: 
NEXT X 

410 GOTO 240 : 
REM DUMMY UNTIL LATER 

420 REM SLYDE VIEWER 
430 I=Z0 : 

GOSUB 1030 
440 GOSUB 640: 

ON RESULT GOTO 470,560,550,550 
450 GOTO 440 
460 FOR X=l TO 500 : 

NEXT X: 
GOTO 540 

470 IF I>=NUMBER THEN 540 
480I=I+Zl : 

IF 1>20 OR I>NUMBER THEN 540 
490 IF I<Zl THEN I=Zl 
500 IF FLAG (I)=Zl THEN 480 
510 IF FLAG(I)=-Zl THEN PRINT CHR$(253) : 

PRINT CHR$ (125) : 
POSITION Z13,Z12 : 
PRINT "OUT OF SLYDES" : 
GOTO 460 

ATARI BASIC Faster & Better 187 

520 IF FLAG(I)=-Zl OR (FLAG(I)=Zl AND I=NUMBER) THEN 540 
530 GOSUB 1010 : 

IF I<=NUMBER THEN 440 
540 GOSUB 990 : 

GOTO 430 
550 GOSUB 990 : 

GOTO 240 
560 IF I<Zl THEN I=Zl 
570I=I-Z2-FLAG(I-Z1) : 

GOTO 480 
580 REM MAIN MENU PAGE 
590 PRINT CHR$(125) : 

POSITION Z2, Z5 : 
PRINT "SLIDE SHOW EDITOR/ VIEWER MAIN MENU" 

600 POSITION Z2,Z12 : 
PRYNT "PRESS r.tula~.rr.II:ft!U1 TO LOAD PAGES FROM DISK" 

610 POSITION Z2 ,Z13 : 
PRINT "PRESS sum TO ENTER EDIT MODE" 

620 POSITION Z2,Z14: 
PRINT "PRESS" TO START SL YDE SHOW";: 
RETURN 

630 REM FUNCTION KEY MONITOR 
640 RESULT =Z0: 

IF PEEK(764)=28 THEN RESULT=Z4 : 
POKE 764,255 : 
GOTO 690 



188 Chapter 13 

650 IF PEEK(ZT)=Z6 THEN RESULT=ZI: 
GOTO 690 

660 IF PEEK(ZT)=Z5 THEN RESULT=Z2: 
GOTO 690 

670 IF PEEK(ZT)=Z3 THEN RESULT=Z3 : 
GOTO 690 

680 GOTO 640 
690 FOR X=1 TO 50 : 

NEXT X: 
RETURN 

700 REM TWO BYTE ADDRESS SPLIT 
710 ADRHI(I)=INT(ADDRESS/ Z256) : 

ADRLO(I)=ADDRESS-Z256*ADRHI(I): 
RETURN 

720 REM INITIALIZE PAGE STORAGE 
730 I=Z0 : 

GOSUB 1310 : 
ADDRESS=ADR(Al$): 
GOSUB 970 

740 GOSUB 1320: 
ADDRESS=ADR(A2$): 
GOSUB 970 

750 GOSUR 1330 : 
ADDRESS=ADR(A3$) : 
GOSUB 970 

760 GOSUB 1340 : 
ADDRESS=ADR(A4$): 
GOSUB 970 

770 GOSUB 1350: 
ADDRESS=ADR(A5$) : 
GOSUB 970 

780 GOSUB 1360: 
ADDRESS=ADR(A6$): 
GOSUB 970 

790 GOSUB 1370: 
ADDRESS=ADR(A7$) : 
GOSUB 970 

800 GOSUB 1380: 
ADDRESS=ADR(A8$) : 
GOSUB 970 

810 GOSUB 1390: 
ADDRESS=ADR(A9$): 
GOSUB 970 

820 GOSUB 1400: 
ADDRUSS=ADR(AI0$) : 
GOSUB 970 

830 GOSUB 1410 : 
ADDRESS=ADR(All$) : 
GOSUB 970 

840 GOSUB 1420 : 
ADDRESS=ADR(AI2$) : 
GOSUB0970 



85~ GOSUB 143~ : 

ADDRESS=ADR(A13$): 
GOSUB 97~ 

86~ GOSUB 144~: 

ADDRESS=ADR(A14$) : 
GOSUB 97~ 

87~ GOSUB 145~ : 

ADDRESS=ADR(A15$): 
GOSUB 97~ 

88~ GOSUB 146~: 

ADDRESS=ADR(A16$): 
GOSUB 97~ 

89~ GOSUB 147~ : 

ADDRESS=ADR(A17$) : 
GOSUB 97~ 

9~~ GOSUB 148~ : 

ADDRESS=ADR(A18$) : 
GOSUB 97~ 

91~ GOSUB 149~ : 

ADDRESS=ADR(A19$): 
GOSUB 97~ 

92~ GOSUB 15~~: 

ADDRESS=ADR(A20$) : 
GOSUB 97~ 

930 SCRLO=PEEK(88) : 
SCRHI=PEEK(89) : 
SCR=SCRLO+Z256*SCRHI 

940 DLISTO=PEEK(560) 
DLISTHI=PEEK(561): 
DLIST=DLISTLO+Z256*DLISTHI : 
LO=DLIST +Z4 : 
HI=DLIST +Z5 

950 SAVL=PEEK(LO) : 
SAVH=PEEK(HI) 

960 FOR X=Z~ TO Z20: 
FLAG(X)=-Zl : 
NEXT X: 
RETURN 

970 I=I+Zl: 
GOSUB 71~ : 

PAGE (I )=ADDRESS : 
RETURN 

980 REM RESTORE ORIGINAL SCREEN 
990 POKE LO,SAVL : 

POKE HI,SAVH : 
POKE 88,SCRLO : 
POKE 89,SCRHI : 
RETURN 

1~0~ REM FLIP TO A NEW PAGE 

ATARI BASIC Faster & Better 189 



190 Chapter 13 

1010 POKE LO,ADRLO(I): 
POKE HI,ADRHI(I): 
POKE 88,ADRLO(I): 
POKE 89,ADRHI(I): 
RETURN 

1020 REM VIEWER MENU PAGE 
1030 PRINT CHR$(125): 

POSITION 10, Z5: 
PRINT "SLYDESHO VIEWER MENU" 

1040 POSITION Z2,Z12: 
PRINT "PRESS P.l11ll:a'I'P.!C.I"'U TO EXIT TO MAIN MENU" 

1050 POSITION Z2,Z13: 
PRINT "PRES~IijI'DI TO BACKUP TO LAST PAGE" 

1060 POSITION Z2,Z14 : 
PRINT "PRESS BJ TO ADVANCE TO NEXT PAGE"; : 
RETURN 

1070 REM 4K BOUNDARY CHECK 
1080 FOR X=Zl TO Z8 
1090 IF ADR(A1$) / ZR<=X AND (ADR(A1$)+ZQ) / ZR>=X THEN 

FLAG(Zl)=Zl 
1100 IF ADR(A2$) / ZR<=X AND (ADR(A2$)+ZQ) / ZR>=X THEN 

FLAG(Z2)=Zl 
1110 IF ADR(A3$) / ZR<=X AND (ADR(A3$)+ZQ) / ZR>=X THEN 

FLAG(Z3)=Zl 
1120 IF ADR(A4$) / ZR<=X AND (ADR(A4$)+ZQ) / ZR>=X THEN 

FLAG(Z4)=Zl 
1130 IF ADR(A5$) / ZR<=X AND (ADR(A5$)+ZQ) / ZR>=X THEN 

FLAG(Z5)=Zl 
1140 IF ADR(A6$) / ZR<=X AND (ADR(A6$)+ZQ) / ZR>=X THEN 

FLAG(Z6)=Zl 
1150 IF ADR(A7$) / ZR<=X AND (ADR(A7$)+ZQ) / ZR>=X THEN 

FLAG(Zl)=Zl 
1160 IF ADR(A8$)/ZR<=X AND (ADR(A8$)+ZQ)/ZR>=X THEN 

FLAG(Z8)=Zl 
1170 IF ADR(A9$) / ZR<=X AND (ADR(A9$)+ZQ) / ZR>=X THEN 

FLAG(Z9)=Zl 
1180 IF ADR(A10$) / ZR<=X AND (ADR(A10$)+ZQ) / ZR>=X THEN 

FLAG(Zl0)=Zl 
1190 IF ADR(A11$) / ZR<=X AND (ADR(A11$)+ZQ) / ZR>=X THEN 

FLAG(Zll)=Zl 
1200 IF ADR(A12$) / ZR<=X AND (ADR(A12$)+ZQ) / ZR>=X THEN 

FLAG(Zl2)=Zl 
1210 IF ADR(A13$) / ZR<=X AND (ADR(A13$)+ZQ) / ZR>=X THEN 

FLAG(Zl3)=Zl 
1220 IF ADR(A14$) / ZR<=X AND (ADR(A14$)+ZQ) / ZR>=X THEN 

FLAG(Zl4)=Zl 
1230 IF ADR(A15$) / ZR<=X AND (ADR(A15$)+ZQ) / ZR>=X THEN 

FLAG(Zl5)=Zl 
1240 IF ADR(A16$) / ZR<=X AND (ADR(A16$)+ZQ)/ZR>=X THEN 

FLAG(Zl6)=Zl 
1250 IF ADR(A17$) / ZR<=X AND (ADR8A17$)+ZQ) / ZR>=X THEN 

FLAG(Zl7)=Zl 



ATARI BASIC Faster & Better 191 

1260 IF ADR(AI8$) / ZR<=X AND (ADR(AI8$)+ZQ) / ZR>=X THEN 
FLAG(Zl8)=Zl 

1270 IF ADR(QI9$) / ZR<=X AND (ADR(AI9$)+ZQ) / ZR>=X THEN 
FLAG(Zl9)=Zl 

1280 IF ADR(A20$) / ZR<=X AND (ADR(A20$)+ZQ) / ZR>=X THEN 
FLAG(Z20)=Zl 

1290 NEXT X: 
RETURN 

1300 REM INITIALIZE ARRAYS 
1310 Al$(Zl)=" ": 

Al$(ZP)=" ": 
Al$(Z2)=Al$: 
RETURN 

1320 A2$ (Zl) =" ": 
A2$(ZP)=" ": 
A2$(Z2)=A2$ : 
RETURN 

1330 A3$(Zl)=" ": 
A3$(ZP)=" ": 
A3$(Z2)=A3$ : 
RUTURN 

1340 A4$(Zl)=" ": 
A4$(ZP)=" ": 
A4$(Z2)=A4$ : 
RETURN 

1350 A5$(Zl)=" ": 
A5$(ZP)=" ": 
A5$(Z2)=A5$ : 
RETURN 

1360 A6$(Zl)=" ": 
A6$(ZP)=" ": 
A6$(Z2)=A6$ : 
RETURN 

1370 A7$(Zl)=" ": 
A7$(ZP)=" ": 
A7$(Z2)=A7$ : 
RETURN 

1380 A8$(ZI)=" ": 
A8$(ZP)=" ": 
A8$(Z2)=A8$ : 
RETURN 

1390 A9$(Zl)=" ": 
A9$(ZP)=" ": 
A9$(Z2)=A9$: 
RETURN 

1400 AI0$(Zl)=" ": 
AI0$(ZP)=" ": 
AI0$(Z2)=AI0$: 
RETURN 



192 Chapter 13 

1410 All$(Zl)=" ": 
All$(ZP)=" ": 
All$(Z2)=A11$: 
RETURN 

1420 A12$(Zl)=" ": 
A12$(ZP)=" ": 
A12$(Z2)=A12$: 
RETURN 

1430 A13$(Zl)=" ": 
A134(ZP)=" ": 
A13$(Z2)=A13$: 
RETURN 

1440 A14$(Zl)=" ": 
A14$(ZP)=" ": 
A14$(Z2)=A14$: 
RETURN 

1450 A15$(Zl)=" ": 
A15$(ZP)=" ": 
A15$(Z2)=A15$: 
RETURN 

1460 A16$(Zl)=" ": 
A16$(ZP)=" ": 
A16$(Z2)=A16$ : 
RETURN 

1470 A17$(Zl)=" ": 
A17$(ZP)=" ": 
A17$(Z2)=A17$ : 
RETURN 

1480 A18$(Zl)=" ": 
A18$(ZP)=" ": 
A18$(Z2)=A18$ : 
RETURN 

1490 A19$(Zl)=" ": 
A19$(ZP)=" ": 
A19$(Z2)=A19$ : 
RETURN 

1500 A20$(Zl)=" ": 
A20$(ZP)=" ": 
A20$(Z2)=A20$: 
RETURN 

SL YDESHO is only set up to save a few limited display pages to memory and to allow you 
to recall them one after the other in quick succession, hence the name of the program. I built 
in the command framework for you to add in a full screen editor and disk load/ save routines. 

The program is set up to handle about 16 different GRAPHICS 0 screens. You will note, 
however, that it looks like it is set up to handle twenty pages. This leads us to the second 
technical detail that you must understand before you can use page flipping in your own 
programs. 



ATARI BASIC Faster & Better 193 

A normal video display cannot cross a 4K memory boundary without some kind of 
modification to the Display List. In this particular case, we did not want to have to do this, so 
we designed our BASIC program to scan the addresses of the proposed pages to determine if 
any of them crossed such a boundary. When this occurs a flag is set to prevent that page from 
being used. The flag is named FLAG, and its values and meanings are shown in Figure 13.9. If 
you want to see some weird text displays, add a loop in at LINE 495 that sets all of the flags 
back to zero. 

Figure 13.9 - SLYDESHO Page Flag Table 

FLAG VALUE 

-1 

o 
1 

WHAT IT MEANS 

This page is not in use 
This page is in use 
Thi s page ca nnot be used 

The technique used here can be adapted for use with graphic modes other than mode zero, 
but be careful to dimension the string variables Al $-A20$ to the proper size. Since they will 
usually have to be larger than 960 bytes, you will have to settle for a smaller number of pages 
in memory at one time. 

Slower BASIC Listings 

When you type in the LIST command in BASIC or while using the assembler/editor 
cartridge, the lines whir by you and off the top of the screen so fast that they are almost 
impossible to read. Atari built-in an interrupt (CNTRL-l) that will stop the video display. 
Pressing CNTRL-l again restarts the listing. This seems awfully awkward. Wouldn't it be 
nice if we could slow down or speed up the display at will and stop or start the listing with a 
single key? The machine language program in Figure 13.10 gives us this capability. The 
BASIC POKE version of the program is given in Figure 13.11. 

Figure 13.10 - SLOWLlST - A Machine Language Slow Lister 

0000 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 

;SLOWLIST - SLOWS VIDEO LISTINGS 

.OPT NOEJECT 

;THIS ROUTINE ALLOWS YOU TO CHANGE THE SPEED OF 
;THE VIDEO DISPLAY WHILE A PROGRAM IS LISTING . 

;ONCE THIS ROUTINE HAS BEEN LOADED, THE NEW CONTROLS ARE: 

; OPTION & START 
; OPTION 

ON/ OFF SWITCH FOR THIS ROUTINE 
SPEEDS LISTING UP 



194 Chapter 13 

114,0 ;SELECT SLOWS LISTING DOWN 
115,0 ; START START/ STOP SWITCH FOR LISTING 
116,0 
117,0 .********************************************************* 

I 

118,0 
119,0 ;SET UP OS POINTERS 
12,0,0 

,0,0,02 121,0 CASINI $2 ;CASSETTE INIT VECTOR 
,0,0,09 122,0 BOOTF $9 ;BOOT MODE FLAG 
,0,042 123,0 CRITIC = $42 ;CRITICAL I/ O FLAG 
,0222 124,0 VBLANK $222 ;IMMEDIATE VBLANK VECTOR 
,02FF 125,0 SSFLAG $2FF ;SCREEN START/ STOP FLAG 
159D 126,0 DUP $159D ;OS FLAG TO DETECT DUP .SYS 
D,01F 127,0 CONSOLE = $D,01F ;CONSOLE FUNCTION KEYS 
E45C 128,0 SETVBI $E45C ;SET-VBI VECTOR ENTRY 
E45F 129,0 SYSVBI = $E45F ;OS VBLANK SERVICE ROUTINE 

13,0,0 
131,0 .********************************************************* 

I 

132,0 
133,0 ;THE IN IT ROUTINE AT $4,0,0 IS EXECUTED ONLY ONCE. 
134,0 ;THE MAIN ROUTINE IS STORED ON PAGE SIX. 
135,0 

,0,0,0,0 136,0 *= $4,0,0 ;THIS IS LATER OVER-WRITTEN 
137,0 
138,0 
139,0 ;SET UP PRIVATE INTERRUPT 
14,0,0 

,04,0,0 A5,09 141,0 LDA BOOTF ;IF A CASSETTE HAS BOOTED 
,04,02 29,02 142,0 AND #2 ;THEN SAVE CASINI FOR LATER 
,04,04 F,0,0A 143,0 BEQ INIT 
,04,06 A6,02 144,0 LDX CASINI ;RE-VECTOR CASSETTE INIT 
,04,08 M,03 145,0 LDY CASINI+1 ;TO INCLUDE OUR ROUTINE 
,04,0A 8E,0B,06 146,0 STX DETOUR+l 
,04,0D 8C,0C,06 147,0 STY DETOUR+2 
,041,0 A9,05 148,0 INIT LDA #RESET&$FF 
,041 2 85,02 149,0 STA CASINI 
,0414 A9,06 15,0,0 LDA #RESET/ 256 
,0416 85,03 151,0 STA CASINI+1 
,0418 AD22,02 152,0 LDA VB LANK ;DETOUR NORMAL HOUSEKEEPING 
,041B 8D33,06 153,0 STA EXIT+ 1 
,041E AD23,02 154,0 LDA VBLANK+l 
,0421 8D34,06 155,0 STA EXIT +2 
,0424 A5,09 156,0 LDA BOOTF 
,0426 ,09,02 157,0 ORA #2 
,0428 85,09 158,0 STA BOOTF 
,042A A2,06 159,0 LDX #MAIN/ 256 ;POINT VBLANK TO OUR ROUTINE 
,042C A,035 16,0,0 LDY #MAIN&$FF 
,042E A9,06 161,0 LDA #6 ;USE IMMEDIATE VBI 
,043,0 2,05CE4 162,0 JSR SETVBI 
,0433 6,0 163,0 RTS 

164,0 ; 



ATARI BASIC Faster & Better 195 

1650 ;********************************************************* 

1660 
1670 ;THIS IS THE PART WE WANT TO PRESERVE 

0434 

0600 01 

0601 00 
0602 00 

1680 
1690 
1700 

$600 

1710 ;SAVE SPACE FOR BYPASS SWITCH 
1720 
17 30 SW ITCH .BYTE1 
1740 
17 50 ;SAVE SPACE FOR COUNTERS 
1760 ; 
1770 COUNTER .BYTE0 
1780 LIMIT . BYTE0 
1790 

;PROGRAM IS NOT RELOCATABLE 

;0=BYPASS, l=EXECUTE 

;HOW MANY DELAYS SO FAR 
;THIS CONTROLS TIME DELAY 

1800 ;SAVE SPACE FOR START/STOP SWITCH 

0603 00 

0604 00 

1810 ; 
1820 ST ART .BYTE0 
1830 
1840 ;SAVE SPACE FOR CONSOLE FLAG 
1850 ; 
1860 CONFLAG .BYTE0 
1870 

;O=GO,l=STOP LISTING 

;USED TO PREVENT KEYBOUNCE 

1880 ;THIS RESTORES OUR ROUTINE WHEN SYSTEM RESET IS PRESSED 
1890 ; 

0605 A9A9 1900 RESET LOA 
0607 802706 1910 STA 
060A 202C06 1920 DETOUR JSR 
0600 A900 19 30 LOA 
060F 8DFF02 1940 STA 
0612 800206 1950 
0615 800106 1960 
0618 800306 1970 
061B 800406 1980 
061E A901 1990 
0620 800006 2000 
0623 A206 20 10 
0625 A0 35 2020 

STA 
STA 
STA 
STA 
LOA 
STA 
LOX 
LOY 

0627 A906 2030 PATCH LOA 
0629 205CE4 2040 JSR 
062C 60 2050 NULL RTS 

2060 

#$A9 
PATCH 
NULL 
#0 
SSFLAG 
LIMIT 
COUNTER 
START 
CONFLAG 
#1 
SWITCH 
#MAIN/256 
#MAIN&$FF 
#6 
SETVBI 

2070 ;THIS IS THE MAIN ROUTINE 
2080 ; 

0620 68 2090 THAW PLA 
062E A8 2100 TAY 
062F 68 2110 PLA 
0630 AA 2120 TAX 
0631 68 2130 PLA 
0632 4C2C06 2140 EXIT JMP NULL 

2150 ; 

;SYSTEM RESET COMES HERE 

;RESTORE DEFAULT VALUES 
;TO OUR FLAGS & COUNTERS 

;TELL VBI WHERE OUR ROUTINE IS 

; IMMEDIATE VBI 
;SET THE GEARS IN MOTION 

;RESTORE COMPUTER REGISTERS 

;CONTINUE DEFAULT VBI 
;(NULL CHANGED DURING SETUP) 



196 Chapter 13 

2160 ;VBLANK INTERRUPT COMES HERE 
2170 ; 

0635 48 2180 MAIN PHA ;SAVE CURRENT REGISTERS 
0636 8A 2190 TXA 
0637 48 2200 PHA 
0638 98 2210 TYA 
0639 48 2220 PHA 
063A AD9D15 2230 LDA DUP ;IF DUP ,SYS IS IN COMPUTER 
063D C900 2240 CMP #0 ;THEN PATCH IT SO IT 
063F F00F 2250 BEQ MONITOR ;WILL NOT KILL OUR ROUTINE 
0641 A94C 2260 LDA #$4C ;UPON EXIT TO CARTRIDGE 
0643 8D2A27 2270 STA $272A 
0646 A912 2280 LDA #$12 
0648 8D2B27 2290 STA $272B 
064B A919 2300 LDA #$19 
064D 8D2C27 2310 STA $272C 

2320 ; 
2330 ;CHECK FOR CRITICAL I/O FLAG 
2340 ; 

0650 A542 2350 MONITOR LDA CRITIC ;IF CRITIC IS SET, 
0652 D0D9 2360 BNE THAW ; THEN EXIT NOW 

2370 
2380 ;CHECK FOR MANUAL OVER RIDE 
2390 

0654 A907 2400 LDA #7 ;ARE ANY CONSOLE KEYS PRESSED? 
0656 CD1FD0 2410 CMP CONSOLE 
0659 F052 2420 BEQ TEST ;IF NO, THEN EXIT 
065B AD1FD0 2430 LDA CONSOLE ;COMPARE CURRENT CONSOLE KEY(S) 
065E CD0406 2440 CMP CONFLAG ;TO VALUE DURING LAST VBI 
0661 F04A 2450 BEQ TEST ;IF NO CHANGE, THEN EXIT 

2460 
0663 A902 2470 LDA #2 ;LOOK FOR BOTH OPTION AND START 
0665 CD1FD0 2480 CMP CONSOLE 
0668 D008 2490 BNE BYPASS ;IF NO, THEN EXIT 
066A AD0006 2500 LDA SWITCH ;SWITCH = NOT SWITCH 
066D 4901 2510 EOR #1 
066F 8D0006 2520 STA SWITCH 

2530 
0672 AD0006 2540 BYPASS LDA SWITCH ;IS BYPASS ACTIVATED? 
0675 F055 2550 BEQ FINIS ;IF YES, THEN EXIT 
0677 D000 2560 BNE GAS ;IF NO, THEN SCAN KEYS 

2570 
2580 ;FUNCTION KEY SWEEP SCAN 
2590 

0679 A903 2600 GAS LDA #3 ;CHECK FOR OPTION KEY 
067B CD1FD0 2610 CMP CONSOLE 
067E D00D 2620 BNE BRAKE ;IF OPTION IS PRESSED, 
0680 CE0206 2630 DEC LIMIT ;DECREASE MAXIMUM TIME DELAY 
0683 1019 2640 BPL FLIP ;MAKE SURE MAX DELAY=>0 
0685 A900 2650 LDA #0 
0687 8D0206 2660 STA LIMIT 
068A 4C9E06 2670 JMP FLIP 



ATARI BASIC Faster & Better 

2680 ; 
068D A905 2690 BRAKE LDA #5 ;CHECK FOR SELECT KEY 
068F CD1FD0 2700 CMP CONSOLE 
0692 D00A 2710 BNE FLIP ;IF SELECT IS PRESSED, 
0694 EE0206 2720 INC LIMIT ; INCREASE MAXIMUM TIME DELAY 
0697 D005 2730 BNE FLIP ;MAKE SURE MAX DELAY<=$FF 
0699 A9FF 2740 LDA #$FF 
069B 8D0206 2750 STA LIMIT 

2760 
069E A906 2770 FLIP LDA #6 ;CHECK FOR START KEY 
06A0 CD1FD0 2780 CMP CONSOLE 
06A3 D008 2790 BNE TEST ;IF START IS PRESSED, 
06A5 A901 2800 LDA #1 
06A7 4D0306 2810 EOR START ;TOGGLE START/STOP SWITCH 
06AA 8D0306 2820 STA START 

2830 ; 
2840 ;START/ STOP VIDEO LISTING 
2850 ; 

06AD AD0306 2860 TEST LDA START ;TEST START/STOP SWITCH 
06B0 D008 2870 BNE STOP ;STOP LISTING IF SWITCH IS OFF 

2880 ; 
06B2 AD0106 2890 SLOW LDA COUNTER ;COUNT DOWN DELAY COUNTER 
06B5 F00A 2900 BEQ ZERO 
06B7 CE0106 2910 DEC COUNTER 

2920 ; 
06BA A901 2930 STOP LDA #1 ; STOP LISTING 
06BC 8DFF02 2940 STA SSFLAG 
06BF D00B 2950 BNE FINIS ; EXIT ROUTINE 

2960 ; 
06C1 AD0206 2970 ZERO LDA LIMIT ;WHEN COUNTER=0, RESET IT 
06C4 8D0106 2980 STA COUNTER ;TO THE CHOSEN TIME DELAY 
06C7 A900 2990 LDA #0 ;ENABLE NORMAL LISTING 
06C9 8DFF02 3000 STA SSFLAG 

30 10 
06CC AD1FD0 3020 FINIS LDA CONSOLE ;SAVE CURRENT CONSOLE KEY(S) 
06CF 8D0406 3030 STA CONFLAG 
06D2 4C2D06 3040 JMP THAW ;ALL DONE, LET'S GO HOME 
06D5 3050 . END 

Figure 13.11 - SLO WLIST. BAS - A BASIC POKE Version of SLOWLIST 

100 REM SLOWLIST .BAS 
110 REM 
120 REM THIS IS THE VBI SETUP ROUTINE 
130 REM THAT IS TEMPORARILY STORED ON 
140 REM PAGE FOUR. $0400 (1024) 
150 DATA 165,9,41,2,240,10,166,2 

197 



198 Chapter 13 

160 DATA 164,3,142,11,6,140,12,6 
170 DATA 169,5,133,2,169,6,133,3 
180 DATA 173,34,2,141,51,6,173,35 
190 DATA 2,141,52,6,165,9,9,2 
200 DATA 133,9,162,6,160,53,169,6 
210 DATA 32,92,228,104,96 
220 REM NOTE THE NUMBER '104' IN LINE 
230 REM 210 IS ONLY IN THIS BASIC 
240 REM VERSION. IT IS NOT IN THE 
250 REM BINARY LOAD FILE VERSION 
260 MLSTART=1024 
270 MLEND=1076 
280 FOR X=MLSTART TO MLEND 
290 READ Y:POKE X,Y : 

NEXT X 
300 REM THIS IS THE MAIN ROUTINE 
310 REM IT IS STORED ON PAGE SIX 
320 DATA 1,0,0,0,0,169,169,141 
330 DATA 39,6,32,44,6,169,0,141 
340 DATA 255,2,141,2,6,141,1,6 
350 DATA 141,3,6,141,4,6,169,1 
360 DATA 141,0,6,162,6,160,53,169 
370 DATA 6,32,92,228,96,104,168,104 
380 DATA 170,104,76,44,6,72,138,72 
390 DATQ 152,72,173,157,21,201,0,240 
400 DATA 15,169,76,141,42,39,169,18 
410 DATA 141,43,39,169,25,141,44,39 
420 DATA 165,66,208,217,169,7,205,31 
430 DATA 208,240,82,173,31,208,205,4 
440 DATA 6,240,74,169,2,205,31,208 
450 DATA 208,8,173,0,6,73,1,141 
460 DATA 0,6,173,0,6240,85,208 
470 DATA 0,169,3,205,31,208,208,13 
480 DATA 206,2,6,16,25,169,0,141 
490 DATA 2,6,76,158,6,169,5,205 
500 DATA 31,208,208,10,238,2,6,208 
510 DATA 5,169,255,141,2,6,169,6 
520 DATA 205,31,208,208,8,169,1,77 
530 DATA 3,6,141,3,6,173,3,6 
540 DATA 208,8,173,1,6,240,10,206 
550 DATA 1,6,169,1,141,255,2,208 
560 DATA 11,173,2,6,141,1,6,169 
570 DATA 0,141,255,2,173,31,208,141 
580 DATA 4,6,76,45,6 
590 MLSTART=1536 
600 MLEND=1748 
610 FOR X=MLSTART TO MLEND 
620 READ Y: 

POKE X,Y: 
NEXT X 

630 REM NOW THAT WE HAVE THE ROUTINE 



ATARI BASIC Faster & Better 199 

64~ REM LOADED INTO MEMORY, WE TURN 
65~ REM IT ON BY THIS LINE 
66~ X=USR (l~24) 
67~ END 

The program works by taking control of the same memory location that the CNTRL-1 
command uses. This address is 767 decimal and is used by the operating system to start or 
stop the scrolling of the screen. A value of zero in this location enables the normal listing 
functions. A non-zero value stops the scrolling function. When you press CNTRL-1, this 
address is toggled between zero and 255. 

SLOWLIST takes over the task of monitoring this address and assigns certain new powers 
to the console function keys. These new controls are outlined in Figure 13.12. 

Figure 13.12 - SLOWLIST Commands 

FUNCTION KEY(S) 

OPTION & START 
OPTION 
SELECT 
START 

PURPOSE 

ON/ OFF switch for this routine 
Speeds up a slowed listing 
Slows down the listing 
Start/ stop the listing 

SLOWLIST works through a vertical blank interrupt routine stored on page six. Every 
1/60th of a second, this routine scans the function keys and changes the listing flag 
accordingly. The routine automatically shuts itself off whenever any critical I/O, such as 
writing to a disk, is being done. 

Using the routine is very simple. LOAD the program and, if you are using the BASIC 
POKE version, then just RUN it. The program will take over from there. 

Saving and Retrieving Screen Data 

There are many occasions when you will need to save the contents of a video display for 
later recall. If you don't need to save the data on disk, you can use the page flipping technique 
we discussed earlier. However, what do you do if you just spent three hours plotting a 
beautiful GRAPHICS 8 masterpiece? Naturally you would like to save the picture to disk for 
recall at some future time. 

There are a number of special graphics utilities, such as Micro Painter, that make it "easy" 
for you to create artistic masterpieces and save them to disk. Programs like that have two 
major draw backs. First, they are" drawing" programs. In my case, all I wanted to do was plot 
3-D mathematical functions, so I wrote a little routine that saves a GRAPHICS 8 screen to 
disk. Of course, once I had the picture on disk, I needed another routine to retrieve it from 
disk and yet another routine to dump my pretty plots to my printer in graphics mode. 

Don'tgetme wrong. I think that special drawing programs are great, if you have the artistic 
talent to make proper use of one, but even the most sophisticated computer graphics 



200 Chapter 13 

program can't turn you into an artist. I bought the Micro Painter program, but all I was able to 
do was transfer my crude crayon drawings from a piece of paper to the video screen. I know 
the program is good, ' because I have seen what a professional artistfriend of mine has 
been able to do with it. Look at some of the printer plots in this chapter to get a rough idea of 
what you can achieve if you have artistic talent. 

Another problem with commercial graphics programs is that they usually don't tell you 
how to use the resulting pictures with your own programs. The routines in this chapter will let 
you save any GRAPHICS 8 picture, and (with minor modifications) they will also save screen 
displays in other graphics modes. The operation of each routine is explained in detail so you 
will understand how to make these modifications. I will also show you how to use these 
routines to put Micro Painter pictures with your own programs. 

The first routine, GR8PUT.DSK, will put a GRAPHICS 8 screen on disk. Once you have a 
picture on disk, you can use GR8GET.DSK to load the picture back into memory and 
CITOH.GR8 toplotitona C-ITOH8510 (Prowriter) printer. Once you know how the screen 
data is stored in memory and on your disk file, you can modify the routines to handle a 
number of other situations. 

The data (picture) you see on the video screen is stored in normal memory much like a 
program would be. The starting location of the "screen memory" will vary (as will the number 
of bytes used in the screen memory) depending upon a number of factors. The amount of 
available RAM determines the default location of screen memory. You can also change the 
apparent location of screen memory by using the page flipping techniques we discussed 
earlier. In any case, the actual start of the screen memory that you will see on the video 
display can be found by PEEKing decimal addresses 88 and 89. We will use this as the 
starting address for a data buffer in the first two routines in this section. The equation for 
finding the address of the screen memory is: 

SCREEN=PEEK(88)+256*PEEK(89) 

Figure 13.13 - Summary of Screen Memory Sizes 

GRAPHICS Horizontal Vertical Screen Data Actual Memory 
Mode Elements Elements Size (bytes) Usage (bytes) 

0 40 24 960 992 
1 20 24 480 672 
2 20 12 240 420 
3 40 24 240 432 
4 80 48 480 696 
5 80 48 960 1176 
6 160 96 1920 2184 
7 160 96 3840 4200 
8 320 192 7680 8138 
9 80 192 7680 8138 

10 80 192 7680 8138 
11 80 192 7680 8138 

Note: Modes 9-11 are not in the old CTIA graphics chip. 



ATARI BASIC Faster & Better 201 

Now that we know where the screen data is, we have to determine how many bytes are in 
the screen memory so our save routine will know how many bytes to save on the disk. The 
normal GRAPHICS 0 screen has 40*24 or 960 bytes in it. If you have a 48K computer, the 
screen memory will default to address 40000. When you go into GRAPHICS 8, the screen 
memory eats up 7680 bytes per screen. See Figure 13.13 for a brief summary of the screen 
memory required for each of the BASIC graphics modes. The "Screen Data Size" is the 
actual number of bytes you have to save to store the picture on disk. The" Actual Memory 
Usage" will be slightly higher due to system overhead for the different modes. See De Re 
Atari for more detail. 

Okay, we have located the block of memory that contains the screen display, and we wrote 
a little routine to save and retrieve the screen on disk. But what is this? The colors are all 
messed up. We neglected to save the screen colors! Lets backtrack to the discussion we had 
about color registers. You will recall that we made changes in the screen display by PO KEing 
certain numbers in memory locations 708-712. Maybe we can save the screen colors by 
saving the contents of these registers along with our screen data? Lets try it. Hey! It works! 
We can now save a GRAPHICS 8 picture on disk and recall it later with no loss of detail. The 
routines we end up with are shown below. 

Figure 13.14 - GR8PUT.DSK - A Screen Save Utility 

20960 REM GR8PUT .DSK 
20961 REM PUT A GRAPHICS 8 SCREEN 
20962 REM IN A DISK FILE . 
20963 REM SAVE COLORS UP FRONT 
20964 RESTORE 20977 
20965 DIM N$(13),NAME$(16) 
20966 NAME$="" : 

NAME$(1,3)="D1:" : 
N$="": 
READ N$: 
NAME$(4,LEN(N$)+3)=N$ 

20967 SCREEN=PEEK(88)+256*PEEK(89) 
20968 NUM=7680: 

OPEN #1,8,0,NAME$ 
20969 REM SAVE GRAPHICS MODE 
20970 MODE=PEEK(87): 

PUT #1,MODE 
20971 REM SAVE COLORS 
20972 FOR X=0 TO 4: 

COL=PEEK(708+X) : 
PUT #1,COL : 
NEXT X 

20973 REM SAVE SCREEN DATA 
20974 BEGIN=SCREEN : 

FINIS=SCREEN+NUM-1 
20975 FOR X=BEGIN TO FINIS: 

BYTE=PEEK(X): 
PUT #1,BYTE : 
NEXT X 



202 Chapter 13 

20976 REM DESTINATION FILE NAME 
20977 DATA SHIP2 
20978 CLOSE #1 
20979 END 

GR8PUT.DSK is a simple BASIC program that transfers the contents of the screen 
memory byte-by-byte to a disk file. The screen mode is PEEKed out of address 87 and sent 
as the first byte of the disk file. Then each of the color registers are sent to the disk followed 
by the actual screen memory data. The file name used by the program is specified by the 
contents of the DATA statement in LINE 20977. Note the variable NUM in LINE 20968. 
This variable is set to the number of bytes in the screen memory (Screen Data Size as 
defined by Figure 13.13). If you want to save a screen from a different graphics mode, then 
change this variable to the appropriate value from that column. Of course, you will have to 
append this routine to the end of whatever drawing routine you are using before you can save 
a screen. 

The second routine, GR8GET.DSK, is a tad more complex. I couldn't see taking the time 
neccessary to write a machine language routine for saving my screen displays since the few 
minutes used to save a routine were negligable compared to the time I had to spend creating 
a new screen. However, retrieving the pictures from a disk was another matter. If I were 
using a special plot or picture in a program, I wanted it to load rapidly so the "flow" of the 
main program would not be adversly affected. So I wrote a small machine language 
subroutine to use in GR8GET.DSK. The little machine routine in GR8GET.DSK is 
extremely simple. All it does is stuff the address of the screen memory (a source buffer) into 
the proper IOCB control registers, tell the computer how many bytes are in the buffer, and 
do a JSR (Jump SubRoutine) to the resident CIO handler in the operating system. If all of 
this is Greek to you, don't worry. You don't have to understand all of it to use it. 

For those of you who want the actual source code, I willjot down a brief synopsis here. The 
routine is so simple that I assembled it by hand. The ASSEMBLER EDITOR would have 
been overkill. 

Figure 13.15 - Set Up IO CB With Machin e Language 

PLA 
PLA 
PLA 
TAX 
PLA 
STA 837,X 
PLA 
STA 836,X 
PLA 
STA841,X 
PLA 
STA 840,X 
JSR $E456 
RTS 

;DROP NUMBER OF ARGUMENTS 
;DROP MSB OF IOCB NUMBER 
;GET LSB OF IOCB NUMBER 
;PUT IT IN THE X REGISTER (X=16*DEVICE NUMBER) 
;GET MSB OF BUFFER ADDRESS 
;STUFF IT IN ICBAH FOR THIS IOCB 
;GET LSB OF BUFFER ADDRESS 
;STUFF IT IN ICBAL FOR THIS IOCB 
;GET MSB OF BUFFER LENGTH 
;STUFF IT IN ICBLH FOR THIS IOCB 
;GET LSB OF BUFFER LENGTH 
;STUFF IT IN ICBLL FOR THIS IOCB 
;GET CIO TO LOAD THE SCREEN DATA FROM DISK 
;RETURN TO BASIC 



ATARI BASIC Faster & Better 203 

With the exception of the machine language subroutine, GR8GET.DSK is a mirror 
operation of GR8PUT.DSK. First, the screen mode is retrieved and POKEd into SCREEN 
to set up the proper graphics mode before the picture is loaded. Then the colors are fetched 
from the file and stored in the appropriate color register. Finally, the machine language 
routine is called to load the actual screen data. The GOTO in LINE 20953 is there to keep 
the picture on the video display. Pressing BREAK will return you to normal GRAPHICS 0 
BASIC. 

Figure 13.16 - GR8GET.DSK - A Screen Load Utility 

20930 REM GR8GET .DSK 
20931 REM GET A GRAPHICS 8 PICTURE 
20932 REM FROM DISK AND DISPLAY IT. 
20933 DATA 104,104,104,170,104,157,69,3 
20934 DATA 104,157,68,3,104,157,73,3 
20935 DATA 104,157,72,3,32,86,228,96 
20937 GRAPHICS 8+16 
20938 DIM F$(24),N$(13),NAME$(16) 
20939 FOR X=l TO 24: 

READ Y 
20940 F$(X,X)=CHR$(Y): 

NEXT X 
20941 RESTORE 20952 
20942 NAME$="": 

NAME$(l, 3)="D1:" : 
N$="" 

20943 READ N$ : 
NAME$(4,LEN(N$)+3)=N$ 

20944 IF N$="END" THEN 20953 
20945 NUM=7680: 

OPEN #1,4,0,NAME$ 
20946 GET #1,MODE 
20947 SCREEN=PEEK(88)+256*PEEK(89) 
20948 POKE SCREEN,MODE 
20949 FOR X=0 TO 4: 

GET #1, COL: 
POKE 708+X,COL: 
NEXT X 

20950 X=USR(ADR(F$),16,SCREEN+1,NUM-1) 
20951 CLOSE #1 : 

GOTO 20942 
20952 DATA VSOFT,END 
20953 GOTO 20953 

You should also note that the word "END" now appears in the file name DATA statement. 
GR8GET.DSK is designed to get multiple pictures from a disk. All you have to do to load the 
three pictures - VSOFT, SHIP and HISEAS - is to put all three file names in the DATA 
statement (LINE 20952). If you want to keep one of the pictures on the screen longer than 
the others, put its name in the DATA statement more than once. Alternatively, you could put 



204 Chapter 13 

a small FOR/NEXT loop somewhere in the program. The loading of pictures is terminated 
when the routine encounters the file name "END" in the DATA statement. 

Those of you who don't have a disk drive yet, don't despair. You can use these routines 
almost as is by simply changing the OPEN statements so they open the cassette recorder 
instead of the disk drive. Specifically, change LINE 20968 to: 

2~968 NUM=768~:OPEN #1,8,0,"C :" 

and change LINE 20945 to: 

20945 NUM=7680:0PEN #1,4,0,"C :" 

Of course, you will have to expect the saving and loading process to be a lot slower. 

We now have a routine for saving a picture and another routine for getting the picture back 
again. These routines are what you will want to use most of the time, but what do you do when 
you want to show your friends at work (or school) an example of what you have been doing? 
The answer is to write one more small routine that will dump your pictures out to your 
printer. The printer I currently have is a C-ITOH 8510 dot matrix printer, so the screen 
dump routine I wrote is customized for this particular printer. If you have a different kind of 
printer, you will have to translate my printer control codes to those used by your printer. It is 
also possible that your printer doesn't even have graphics capability. Ifthatis the case, then I 
guess all you can do now is drool. 

Figures 13.18 through 13.21 are some examples ofthe results I have been getting with the 
CITOH.GR8 screen dump routine. The pictures are shown in the actual size they came out 
on the printer. If you are planning a picture, particularly for printer output, you might want to 
reverse your light and dark colors on the video display. I plotted two pictures, one of a ship at 
night and the other of a ship during the day. The daytime scene looked like it was nighttime 
and the nighttime scene looked like it was daytime. The reason is that I set the screen 
background to BLACK before drawing the pictures. So the night scene had very little data in 
the night sky areas, while the daytime scene had a lot of data to achieve the blue sky. Try 
experimenting. It is a lot of fun as well as being educational. 

Figure 13.17 - CITOH.GR8 - Dump a S creen to a Printer 

21000 REM CITOH.GR8 
21001 REM DUMP GRAPHICS 8 SCREEN 
21002 REM TO 8510 C-ITOH PRINTER 
21003 OPEN #1,8.0,"P:" 
21004 PRINT #1,CHR$(27);"T02" 
210~5 FOR Y=1 TO 191 
21006 PRINT #1;CHR$(27);"S032~"; 
21007 FOR X=0 TO 319 
21008 LOCATE X,Y,A 
21~09 PUT #1,A 
21~1~ NEXT X 
21~11 PRINT #1 
21~12 NEXT Y 
21013 CLOSE #1 
21~14 END 



ATARI BASIC Faster & Better 205 

Figure 13.18 Sample of a GRAPHICS 8 Screen Dump 

Figure 13.19 Screen Dump of a Micro Painter Picture 



206 Chapter 13 

Figure 13.20 Screen Dump of a World Map 

Figure 13.21 Screen Dump of the IJG Wizard 

{I
'1('S-

IN 
I 

..................... } ... 
•• 

J.Xl 
Now let's go full circle and discuss something I mentioned at the beginning of this section: 

MICRO-PAINTER (MP) picture files. The picture files for that particular graphics package 
are stored on disk in what I consider to be a slightly peculiar format. The first byte of an MP 
picture file is the mode value like we used before, but there are no color values in the front of 
the file. The next data you come to is screen data. If you delete LINE 20949 in 
GR8GET.DSK, you could use it to fetch the picture, but the colors would be all wrong. A 
close examination of an MP picture file reveals that the color data is stored at the end of the 
screen data. This is odd enough, but the color values are not in sequential order. Once you 
figure out what values do what to your picture, you finally can decode their sequence. The 
last four bytes of data are in the following order: COLOR4, COLORO, COLOR1 and 
COLOR2. By POKEing the values in 712,708,709 and 710 respectively, you end up with a 
picture that has the proper colors. 



ATARI BASIC Faster & Better 207 

The routine shown below, P AINTGET.DSK, is a short subroutine you can add to one of 
your programs to get an MP picture from disk. I find it awkward to have my pictures in 
several different formats, so I usually combine these routines to read an MP file from disk 
and then save it back out to disk in the GR8GET.DSK format. There are similar technical 
problems with pictures created by other graphics programs, so don't get the impression that 
I am picking on MICRO-PAINTER. I like the program. 

Figure 13.22 - PAINTGETGET - Load a MICRO·PAINTER Picture 

20900 REM PAINTGET .DSK 
20901 REM GET MICRO-PAINTER PICTURE 
20902 REM FROM DISK AND DISPLAY IT. 
20903 DATA 104,104,104,170,104,157,69,3 
20904 DATA 104,157,68,3,104,157,73,3 
20905 DATA 104,157,72,3,32,86,228,96 
20907 GRAPHICS 8+16 
20908 DIM F$(24),N$(13),NAME$(16) 
20909 FOR X=l TO 24 : 

READ Y 
20910 F$(X,X)=CHR$(Y) : 

NEXT X 
20911 RESTORE 20927 
20912 NAME$="": 

NAME$(l,3)="D1:" : 
N$="" 

20913 READ N$:i 
NAME$(4,LEN(N$)+3)=N$ 

20914 IF N$="END" THEN 20928 
20915 NUM=7680 : 

OPEN #l,4,0,NAME$ 
20916 GET #l,MODE 
20917 SCREEN=PEEK(88)+256*PEEK(89) 
20918 POKE SCREEN,MODE 
20919 X=USR(ADR(F$),16,SCREEN+1,NUM-1) 
20920 REM FOR MICROPAINTER FILES 
20921 TRAP 20926 
20922 GET #l,COL4 : 

POKE 712,COL4 
20923 GET #l,COL0 : 

POKE 708,COL0 
20924 GET #1,COL1 : 

POKE 709, COLl 
20925 GET #1,COL2: 

POKE 710,COL2 
20926 CLOSE #1: 

GOTO 20912 
20927 DATA VSOFT,END 
20928 GOTO 20928 



208 Chapter 14 

Sound Advice 

The Atari home computer is first, and foremost, a graphics machine, but what makes it a 
real competitor with the arcades is its built-in sound capability. The Atari computer has four 
independent sound channels that each cover three-and-a-half octaves. What this means, in 
non-technical terms, is that your Atari computer can produce great sound effects and even 
music! 

This chapter will concern itself primarily with the creation of sound effects. When it comes 
to music, I enjoy listening to it, but I have never had the urge to learn how to create music. 
One of these days, a real music buff will write a book about synthesizing music with an Atari 
computer, but I am not that person. 

The movie industry was quick to realize that sound was an important ingredient to an 
effective presentation. Background music was used early on as a mood setter. Later, when it 
became technically possible to synchronize the sound with the movie, music and, later, 
sound effects were used to add impact to the action on the screen. The results can be 
astounding. In fact, people have become so used to this form of entertainment that the only 
silent film anyone will pay to see is one of the old classics. 

We can see the same kind of development in the home computer field. In the old days of 
home computers, all we could do was sit and stare intently at the silent video screen. Then we 
got a real thrill! The computer could beep at us during a game. Now, the computers make a 
wide variety of sounds. Games today make explosion sounds, let you hear the spaceships 
zoom by, and even play mood setting background music. A few games even talk to you! 

Sounds like that are an integral part of a good game. The aliens in Space Invaders are 
merely lights moving on the screen until you add sound effects. The rhythmic thrumming 
sound they make starts out slow and comes faster and faster as the aliens descend on your 
bases. The sounds reach out and grab your emotions, getting you more and more deeply 
involved in the action on the screen. This emotional effect is probably one ofthe reasons why 
arcade games are so addicting. 

What Is A Sound? 

Rather than trying to describe sound in terms that a physicist would understand, let's look 
at sound as a simple curve on a piece of paper. The curve in Figure 14.1 shows what is called 
the envelope of a sound. We will discuss each of the four parts of that envelope briefly and 
show you how they relate to the sound registers in your computer. 



Figure 14.1 - The Envelope of a Sound 

Volume 

Attack (Rise) 
Time 

Decay (Fall) 
Time 

Time 

ATARI BASIC Faster & Better 209 

Sustain 
Time 

Release 
Time 

The envelope of a sound is composed of four basic parts. The standard engineering terms 
are: "attack," "decay," "sustain" and "release." The "attack" time or, as it is also sometimes 
called, the "rise" time refers to the amount of time needed for the sound to reach its 
maximum volume (amplitude). The "decay" or "fall" time refers to how long it takes the 
volume to go back down. In the case of a pure sine wave, these two values are used to define 
the frequency of the sound. If this were all there was to sound, it would be easy to synthesize 
them. Life would sound kind of strange, however. Most real life sounds also have a period in 
their cycle where the sound hasn't quite died out. This is called the sustain time. The point at 
which this sustain level ends and the last of the sound goes away is called the release 
time. 

Regardless of the computer used, there are four fundamental methods that are used to 
program these parameters into a synthesizer: 

1. STATIC - this is where a sound is turned on and left alone while you go off and 
do something else. Obviously, this method doesn't allow you to have sophisticated 
sounds like music or even most of the simpler sound effects but there are a few 
interesting effects that we will illustrate for you in the demo portion of this 
chapter. 

2. DYNAMIC ALGORITHM - this method involves using an equation to 
calculate the various sound parameters to use. This method uses very little memory 
for even complex sound effects. This is typically the method we use from BASIC. 
The "equation" in this case ends up being a short series of FOR-NEXT loops 



210 Chapter 14 

containing PEEKs, POKEs and IF-THEN statements. This method becomes 
progressively more difficult with the complexity of the sound effect. Music, for 
example, is much more easily created using one of the following methods. 

3. DYNAMIC TABLE LOOKUP - this is the technique that you see in the 
magazines when they give you a music program. This technique uses a short loop 
that reads a list of DATA statements and POKEs those data into the POKEY 
registers to produce the desired sounds. This method is very flexible and can 
produce some very good sound effects including music. 

The primary limitation of this technique is the fact that you must have a piece of 
data for every sound parameter for each of many, many sounds. This not only can 
take up a lot of memory, but, what is even worse, you must "assemble" the sounds 
into the proper data values. What would be better is a method that would do a lot of 
this work for you. This leads us to the fourth method. 

4. DYNAMIC INTERPRETER/ASSEMBLER - this technique is analagous to 
what Atari did with BASIC or the ASSEMBLER/EDITOR Cartridge. 

This method requires that you have a special program that will accept certain 
high level commands from you and convert these commands into the proper data for 
the POKEY sound generator. The Atari Music Composer is one such program that 
enables you to enter the musical notes in your song. The program analyzes your 
inputs and converts them into the numbers your computer needs to produce the 
song. 

If the program is an interpreter, your inputs are stored in essentially the same form that 
you entered them. When you go to play the song, the program reads the stored commands 
and interprets them just before it sends the next note's data to the computer. 

A music assembler operates on your commands in a slightly different manner. This kind of 
program converts your musical notes into a data file that contains the data needed by the 
POKEY sound generator. This is just an easier way to achieve the same end result we got in 
method number three. 

I used music as the primary example in the above discussion since most ofthe synthesizer 
programs on the market are especially written for music. There is only one true sound effects 
program on the market that I know of at this time. That program is INSOMNIA, which is 
available from the Atari Program Exchange. 

In each case, sound effects programs act to shape the envelope of the desired sound (I bet 
you thought we were through with envelopes). Here is where the sticky part comes in. In 
many sound effects, several different sounds must be produced in rapid succession. For 
some applications, BASIC is simply not fast enough. If you want to do really fancy sounds, 
such as a fast paced violin concerto, you will be forced to do it in machine language. Another 
benefit of using machine language is that you can use vertical blank interrupts to have your 
music continue to play while the main program is doing something else. 

If I were going to use a routine like that, I would use the VBI routine that we used earlier in 
this book and have the routine pick up the data for the notes from page six or a string array. 
Fortunately, however, most of the kinds of sound effects I use in my programs can usually be 
achieved in BASIC using method number two or method three. Before we show you some of 
these sound effects routines, let's examine the way that the Atari computer generates 
sounds. 



ATARI BASIC Faster & Better 211 

A Sound POKE Gets You in the POKEY 

Whenever you use a SOUND statement, you are really changing the value stored in one or 
more memory locations. Let's look at those locations to see exactly what happens when a 
SOUND command is invoked. 

Tone Control 

The memory locations in the Atari computer that are used in sound production are listed 
in Figure 14.2. These registers can be divided into three types or functions. The first are the 
tone controls AUDFI-AUDF4. These four registers control the frequency or tone of the 
sound produced by each of the four "voices" in the Atari. The allowable range of POKE 
values for these registers is the familiar 0-255. The lower the number, the higher pitched the 
tone. It's also possible to alter the tone by POKEing AUDCTL, but we will cover that a little 
later. 

The locations 53760, 53762, 53764 and 53766 use the number stored in them to 
determine the tone by the following equation: 

TONE = CLOCK/ NUMBER 
where: NUMBER = Value stored in AUDCFl-4 
CLOCK = Current clock rate 

The clock is set at one of three frequencies . You can use the main system clock which runs 
at 1.79 MHz, or you can use either of two other clocks that run at 64 KHz and 15 KHz 
respectively. We will talk more about this in a few minutes. 

Figure 14.2 - The SOllnd Control Regis ters 

MEMORY 
LOCATION NAME FUNCTION 

53760 AUDF1 Tone of Voice 1 (SOUND 0) 
53761 AUDCl Distortion and Volume of Voice 
53762 AUDF2 Tone of Voice 2 (SOUND 1) 
53763 AUDC2 Distortion and Volume of Voice 2 
53764 AUDF3 Tone of Voice 3 (SOUND 2) 
53765 AUDC3 Distortion and Volume of Voice 3 
53766 AUDF4 Tone of Voice 4 (SOUND 3) 
53767 AUDC4 Distortion and Volume of Voice 4 
53768 AUDCTL Special Control Register 

Controlling Volume and Distortion 

Each of the four voice channels has a dedicated control register. As you can see from 
Figure 14.2, these registers are memory locations 53761, 53763, 53765 and 53767. Usually, 
POKE values are in some specific range, such as 0-15 or 0-255. The POKE range for these 
registers is a little weird. To explain that assessment, let's have a look at the bit assignments 
for those registers as shown in Figure 14.3. 



212 Chapter 14 

Figure 14.3 - AUDC1·4 Bit Assignments 

BIT NUMBER FUNCTION 

0 Volume Bit 0 (LSB) 
Volume Bit 1 

2 Volume Bit 2 
3 Volume Bit 3 (MSB) 
4 Special Control Bit 
5 Distortion Bit 0 (LSB) 
6 Distortion Bit 1 
7 Distortion Bit 2 (MSB) 

The volume bits allow us to use any volume from zero to fifteen, which is the highest 
number you can have with only four bits. The use of these bits is simple. A volume value of 
zero results in silence, while a volume value offifteen results in the loudest noise that channel 
can produce. 

Let's skip over the special control bit for a moment and get the distortion bits put away 
first. The first thing to note is that those three bits are treated as a 3-bitnumber even though 
they occur in the high order bit positions of this byte. If all we wanted to do was set each of 
those three bits, we would have to use some multiple of 32. For example, 1 *32 sets the first 
distortion bit, and 2*32 sets the second distortion bit. This means that there are really only 
2*2*2, or eight possible distortion values. 

This all seems simple and straightforward enough. There must be a catch! There is. The 
"distortion" value used in the SOUND command operates on all four of the high bits in 
AUDCI-4. The extra bit is taken care of by giving you a number that is twice the real 
distortion value. For example, if you use the common "pure tone" distortion value of "10", 
you are really using a distortion of "5". The POKE value commonly called out in the 
magazines for this is 160, where they define this value as 16*DISTORTION and limit the 
distortion values to even numbers. There is nothing wrong with this definition. It works quite 
well as long as you obey the rule of using only even distortion values, but this kind of rule does 
not explain the "why" of it all. 

I, too, suggest that you use the rule described in the magazines, but I think you should 
understand why you are limited to even distortion values. The key to this understanding lies 
in that mysterious special control bit that we skipped over earlier. If you use an odd multiple 
of 16 in your POKE to one of the audio control registers, you set that control bit. When this 
bit is set (Le., it equals one), you have put that voice channel in what Atari calls the 
"VOLUME ONLY" mode. In simple terms, this means that the distortion value in the three 
high bits is totally ignored! 

What the computer does in this case is immediately send the current VOLUME value to 
the speaker. You say, "So what?" The answer is not nice. Normally when you send a sound to 
the speaker, the speaker whooshes in and out, like a good speaker should, to create the 
particular sound you sent to it. This is not the case in the VOLUME ONLY mode. When you 
send a sound in this mode, the speaker moves to the position that corresponds to the volume 



ATARI BASIC Faster & Better 213 

value you just sent to it, but the speaker does not relax to normal! The speaker stays in that 
particular position until you send it another move command. This allows you to closely 
control the exact movement of the speaker if you use the proper sequence of movement 
commands. Note that I don't call such a command a SOUND command. The problem that 
you will run into is that normal sound effects don't use the right kinds of values for proper 
movement control. Thus, when you use an odd POKE value in the distortion equation, you 
usually get a short POP and then silence. 

Figure 14.4 - VOL UME ONL Y POKE Values for A UDC}·4 

A void these values when poking directly into the audio control registers when doing music 
or sound effects: 

16-31,48-63,8~-95,112-127,144-159,176-191,2~8-223,24~-255 

Note that this does not apply to the tone registers. 

The ability to alter the distortion enables us to create a wide range of sound effects. It is 
possible, in machine language, to simulate almost any sound envelope that you will ever 
need. Knowing exactly what envelope you need is the real hard part. Before showing you how 
to put all of this information to use, let's look at the last sound register, 53768. 

Special Sound Control Register - AUDCTL 

In Figure 14.2 we identified memory location 53768 as a special control register. This 
register, AUDCTL, is able to affect the operation of any or all of the sound channels. Figure 
14.5 Shows the bit assignments for AUDCTL and the effect they have on the sound 
channels. 

Figure 14.5 - A UD CTL Bit Assignments 

BIT NUMBER 

~ 
1 
2 
3 
4 
5 
6 
7 

FUNCTION WHEN SET 

Change clock base from 64 KHz to 15 KHz 
Put hi-pass filter in channel 2, clocked by channel 4 
Put hi-pass filter in channell, clocked by channel 3 
Merge outputs of channels 3 and 4 (16 bit resolution) 
Merge outputs of channels 1 and 2 (16 bit resolution) 
Change channel 3 clock to 1.79 MHz 
Change channell clock to 1. 79 MHz 
Change distortion base from 17 counts to 9 counts 

I won't try to cover all of the technical details of these bits here. We will discuss these bits 
briefly and try to give you some idea as to their detailed effects on the sound registers. If you 
want to get into the technical aspects in more depth, I suggest that you study chapter seven in 
DE REATARI. 



214 Chapter 14 

Bits zero, five and six are used to directly change the clock rate used by one or more of the 
sound registers. This is the clock rate we referred to a few pages back. The normal default 
clock is the 64 KHz one. If you decrease the clock rate, you will be able to get higher pitched 
sounds at the cost of giving up some of the lower pitched tones. You can also get much lower 
pitched tones by increasing the clock to 1.79 MHz. Of course, you lose most of your high 
pitched tones, but sometimes that is ok. 

Bits one and two are probably the hardest to understand and the most difficult to use 
properly. These two bits enable you to limit the tones in the filtered channel. The limit is set 
to whatever the current tone is in the "clocking" channel. In particular, the filter cuts out any 
tone that is lower than the "clocking" tone and passes only those which are equal to or higher 
than the clocking tone. Thus the name "HIGH-PASS" filter. You will have to experiment 
with this one a lot before you find the right effect. Try the demo program in Figure 14.6 with 
the paddle values set to 254 and 127 to see one ofthe effects you can get. This demo program 
should help you find a number of static sound effects. 

Figure 14.6 - SO UNDl .DEM - Sound Effects Demo Number One 

100 REM SOUND1.DEM 
110 POKE 752,1: 

PRINT CHR$(l25): 
SOUND 0.0,0,0 : 
VOLUMEl=8: 
VOLUME3=8 

120 POSITION 8,2 : 
PRINT "SOUND EFFECTS DEMO #1" 

130 POSITION 11,9 : 
PRINT "PADDLE (0) = " 

140 POSITION 11,11: 
PRINT "PADDLE (1) 

150 POKE 53768,4 : 
REM AUDCTL 

160 POKE 53761,160+VOLUMEl: 
REM AUDC1 

170 POKE 53765, 160+VOLUME3 : 
REM AUDC3 

180 POKE 53760,PADDLE(0) : 
REM AUDFI 

190 POKE 53764,PADDLE(1): 
REM AUDF3 

200 POSITION 23,9 : 
PRINT" ";CHR$(30); 
CHR$(30);CHR$(30);PADDLE(0) 

210 POSITION 23,11: 
PRINT" "; CHR$ (30); 
CHR$(30);CHR$(30);PADDLE(1) 

220 GOTO 180 



ATARI BASIC Faster & Better 215 

Bit numbers three and four give us the ability to perform sounds using 16 bits of 
resolution. Usually eight-bit resolution is adequate, but there are some cases where eight bit 
resolution leaves us in the lurch. For example, try the following: 

FOR PITCH=255 TO 0 STEP -l:SOUND l,PITCH,l0,8:NEXT PITCH 

When you execute this statement, the tone starts out low and relatively smoothly goes up, 
but as the loop gets near the end, the tone changes in a jerky manner. This is because the 
default clock is 64 KHz. Dividing the clock by 255 is almost the same as dividing it by 254, 
but as the loop gets closer to zero, the apparent change in frequency becomes much larger. 
For example, 64000/40=1600 and 64000/20=3600, which is a delta of 100%! Using 16-bit 
sound lets us count down by smaller increments. Basically this method uses the even 
numbered channel as the MSB and the odd numbered channel as the LSB of the 16 bit 
counter. For example, putting a "1" in the odd channel causes a divide by one and putting a 
"1" in the even channel causes a divide by 256. Putting a "1" in both channels causes a divide 
by 257. See DE RE ATARI for more information. 

Bit number seven of AUDCTL changes the way the computer acts on a distortion value. It 
is beyond the scope of this book to discuss this parameter in any real detail. If you want 
something to occupy your mind for a couple of weeks, read the write up in DE RE A TARI and 
learn all about poly counters. Suffice it to say here that the effects ofthis control register bit 
can be quite dramatic. 

Using What We Have Learned 

The first thing to do before applying what we have learned so far is to study one more short 
topic. What is the difference between POKEing the sound registers and using a SOUND 
statement? The answer is easy. A POKE command changes only the memory location you 
POKE to. As long as you understand the consequences of the particular number you used in 
the POKE, you will be ok. This is why we went into the detail we did in the previous sections 
of this chapter. 

The difference between POKEs and SOUND lies in the way a SOUND statement works. 
Each time you use a SOUND statement, the computer initializes the POKEY chip for sound 
output and clears the special control register, AUDCTL. Obviously if you want to use the 
specialfeatures of AUDCTL, you will have to use POKEs instead of SOUND statements. If 
you don't want to use any SOUND statements, then be sure to POKE 53768,0 and POKE 
53775,3 before POKEing the sound registers to activate POKEY. A SOUND 0,0,0,0 
statement (or any other SOUND statement) is usually used prior to POKEing the sound 
registers. Failure to initialize POKEY will be silence. So, the proper method for using the 
POKE techniques for sound generation is to first issue a SOUND 0,0,0,0 statement (or 
POKE 53768 and 53775) followed by any AUDCTL commands you wish to use and ending 
up with the actual POKEs to the sound registers. 

The SOUND Statement 

When you invoke a SOUND statement of the form SOUND S,T,U,V, the decimal values 
you use for S, T, U and V are analyzed by the operating system and used to determine the 
proper values to store in the sound registers. First, as wejustmentioned, 53768 is set to zero 
regardless ofthe values used. Second, the value of"S" is used to select the proper AUDF and 
AUDC registers. The legal values of"S" are the integers 0,1,2 and 3. See Figure 14.2 to find 
out what registers are selected in each case. 



216 Chapter 14 

The second parameter "T" is stored in the selected AUDF register. This determines the 
tone of the sound. The legal range of "T" is 0-255. Any fractions are rounded to the nearest 
integer. A T=10.5 has the same effect as T=l1, while T=10.495 acts like T=10. 

The third parameter "U" is the distortion value. When used in the SOUND format the 
zeroth bit is not ignored! The remaining number is stored in the high three bits of the selected 
AUDC register. This is the parameter that you have to watch carefully when you use POKE s 
instead of the SOUND statement. The legal range of "U" is the even numbers from 0-14, 
with zero being an even number. Do not use odd numbers! Also, like "T", fractions are 
rounded to the nearest integer. 

The fourth, and last, parameter is the volume you desire for the selected channel. The 
computer will store this value in the first four bits of the proper AUDC register. The legal 
range of values for volume is 0-15, with zero meaning silence and 15 meaning maximum 
volume. Fractions are rounded here, too. 

The volume of each channel is additive, so if you are using two channels, each with a 
volume of 15, the actual POKEY volume is the sum of the two, or 30. Try not to ever use a 
combined volume that is greater than 32. This will cause the POKEY to overload and might 
damage it. 

Now let's look at a short comparison between a SOUND statement and the equivalent 
POKEs. We will assume that a SOUND 0,0,0,0 has already been used to activate the 
POKEY. 

SOUND 0,128,10,8 is the same as 
POKE 53760,128:POKE 53761,32*INT(102)+8 

I used 32*INT(102) to prevent the POKE from activating the VOLUME ONLY control 
bit in the off chance that the distortion value had been odd instead of even. 

I think we are now ready to try our hand at a few special sound effects. This next section 
should prove interesting. 

Special Effects Routines 

Here is one last demo program for you to try before we get into the sound effects routines. 
This demo shows you some of the strange effects you can get with static sound by making use 
of waveform interference effects. I won't try to explain them here. Try them and see what you 
think. 

Figure 14.7 - Sound Effects Demo Number Two 

100 REM SOUND2.DEM 
110 POKE 752,1: 

PRINT CHR$(l25): 
SOUND 0.0,0,0: 
DELTA=l 

120 POSITION 8,2 : 
PRINT "SOUND EFFECTS DEMO #2" 

130 POSITION 11,11: 
PRINT "PADDLE(0) = ": 
REM POKE 53768,4 

140 SOUND l,PADDLE(0),10,14 
150 SOUND 2,ABS(PADDLE(0)-DELTA) ,10,7 



16~ POSITION 23,11 : 
PRINT" ";CHR$(3~); 

CHR$(3~);CHR$(3~);PADDLE(~) 

17~ FOR DELAY=~ TO 1: 
NEXT DELAY :GOTO 14~ 

ATARI BASIC Faster & Better 217 

Here is a steam train complete with steam whistle. I like this one. 

20650 REM TRAIN.LST 
20651 REPEAT=~: 

DELTA=1~: 

FOR TIME=1 TO 9~ : 

GOTO 2~653 
20652 DELTA=75: 

FOR TIME=1 TO 5~ 

20653 FOR VOLUME=15 TO 4 STEP -DELTA/ 1~~: 
SOUND ~,15,0,VOLUME: 
NEXT VOLUME 

20654 DELTA=DELTA+1: 
IF DELTA>75 THEN DELTA=75 

20655 NEXT TIME: 
SOUND 0, ~,~.0 : 
IF REPEAT>2 THEN 2~652 

20656 REPEAT=REPEAT+1: 
FOR WHISTLE=1 TO 2 

20657 FOR VOLUME=2 TO 1~ STEP ~ . 5 

20658 SOUND 1,5~,1~,VOLUME : 

SOUND 2,7~,1~,VOLUME : 

SOUND 3,9~,1~,VOLUME: 
NEXT VOLUME 

20659 FOR DELAY=1 TO 40~: 

NEXT DELAY : 
SOUND ~,~,~,~ 

2066~ FOR VOLUME=10 TO 1 STEP -2 
20661 SOUND 1,5~,11,VOLUME : 

SOUND 2,7~,11,VOLUME : 

SOUND 3,9~,11,VOLUME : 

NEXT VOLUME 
20662 FOR DELAY=1 TO 5~ : 

NEXT DELAY 
20663 SOUND 1,~,~,0 : 

SOUND 2,~,~,~: 
SOUND 3,~,~,~ : 

NEXT WHISTLE 
20664 GOTO 2~652 



218 Chapter 14 

Here is an American police car for your next crime adventure. 

20670 REM POLICAR.LST 
20671 X=50: 

Y=35: 
STEPP=-1 

20672 FOR TIME=1 TO 10 : 
FOR PITCH=X TO Y STEP STEPP 

20673 SOUND 1,PITCH,10,15 
20674 FOR DELAY=1 TO 15 : 

NEXT DELAY : 
NEXT PITCH 

20675 TEMP=X : 
X=Y : 
Y=TEMP : 
STEPP=-STEPP : 
NEXT TIME 

20676 GOTO 20671 

If you ever need a tank, here is a good one. 

20680 REM TANK.LST 
20681 FOR VOICE=0 TO 3: 

SOUND VOICE,255,2,4 : 
NEXT VOICE: 
GOTO 20681 

20682 REM USE THIS TO STOP TANK MOTORS 
20683 FOR VOICE=0 TO 3: 

SOUND VOICE,0,0,0 : 
NEXT VOICE 

20684 REM PUT REST OF YOUR PROGRAM HERE 

I'll show you a storm in a few minutes. In the mean time, here are a few peals of thunder to 
get you in the mood. 

20690 REM THUNDER .LST 
20691 FOR PITCH=5 TO 100 STEP RND(0)+0 .2 
20692 SOUND 0,PITCH,8,(100*RND(0)+50) / PITCH 
20693 SOUND 1,PITCH+20,8,(100*RND(0)+50) / PITCH 
20694 NEXT PITCH :SOUND 0,0,0,0 : 

SOUND 1.0,0.0 



ATARI BASIC Faster & Better 219 

I can't think of too many applications that would need a swarm of house flies, but here is 
one anyway. 

20700 REM FLIES .LST 
20701 SOUND 0,0,0,0 
20702 POKE 53760,INT(6*RND(0))+249 
20703 POKE 53761,INT(4*RND(0))+167 
20704 GOTO 20702 

Here is a good motor boat sound for your next "Attack of the Swamp Monster" game. 

20710 REM MOTRBOAT .LST 
20711 SOUND 0,255,11,10 
20712 FOR COUNT=l TO 6: 

SOUND 0,0,0,0 : 
NEXT COUNT 

20713 GOTO 20711 

Have you ever heard the sound of a manhole cover slowly settling down on a sidewalk? No? 
This routine gives you an idea of what it would sound like. 

20720 REM MANHOLE .LST 
20721 FOR COUNT=10 TO 0 STEP -0.15 
20722 FOR VOLUME=l TO COUNT : 

SOUND 0,255,8,VOLUME: 
NEXT VOLUME 

20723 FOR VOLUME=2*COUNT TO 1 STEP -1 : 
SOUND 0,255,8,VOLUME : 
NEXT VOLUME 

20724 NEXT COUNT 

Ahh .. . There is nothing like being down at the beach, except maybe listening to this sound 
of the surf. 

20730 REM SURF .LST 
20731 FOR PITCH=0 TO 10: 

SOUND 2,PITCH,8,4 
20732 FOR DELAY=l TO 30: 

NEXT DELAY : 
NEXT PITCH 

20733 FOR PITCH=10 TO 0 STEP -1 : 
SOUND 2,PITCH,8,4 

20734 FOR DELAY=l TO 300: 
NEXT DELAY : 
NEXT PITCH 

20735 GOTO 20731 



220 Chapter 14 

In case your next adventure takes you to the old country, here is an example of a typical 
European police siren. 

20740 REM EUROCOP.LST 
20741 X=57 : 

Y=45 : 
TEMP=45 

20742 FOR TIME=0 TO 10: 
SOUND l,TEMP,10,15 

20743 FOR DELAY=l TO 180: 
NEXT DELAY 

20744 TEMP=X : 
X=Y : 
Y=TEMP: 
NEXT TIME 

20745 GOTO 20742 

Here is a nice creepy thunder storm for your next "Death in the Crypts" adventure 
program. 

20750 REM STORM .LST 
20751 FOR COUNT=l TO 2: 

MAX=INT(256*RND(0»+50: 
WAIT=200*RND(0) 

20752 FOR PITCH=l TO MAX: 
SOUND 0,PITCH,8,15 : 
NEXT PITCH 

20753 FOR DELAY=l TO WAIT : 
NEXT DELAY: 
NEXT COUNT : 
SOUND 0,0,0,0 

20754 SOUND 1,0,0,15 
20755 FOR DELAY=l TO INT(3000*RND(0»: 

NEXT DELAY 
20756 GOTO 20751 

Shades of Edgar Allen Poe! Is that a tell tale heart I hear? 

20760 REM HEART .LST 
20761 FOR COUNT=l TO 40: 

SOUND 0, 12,3, 15 : 
NEXT COUNT 

20762 FOR COUNT=l TO 150 : 
SOUND 0,0,0 ,0 : 
NEXT COUNT 

20763 GOTO 20761 



ATARI BASIC Faster & Better 221 

Warp three, Mr. Golu. Alpha Centari, here we come! 

20770 REM TAKEOFF .LST 
20771 FOR PITCH=255 TO 1 STEP -1 : 

SOUND 0,PITCH,8,8 
20772 FOR DELAY=l TO 5: 

NEXT DELAY: 
NEXT PITCH 

I tossed an egg into the air. Where it lands I do not care. 

20780 REM SPLAT.LST 
20781 FOR PITCH=30 TO 125 STEP 3 
20782 SOUND l,PITCH,10,INT(PITCH/ 10) 
20783 FOR DELAY=l TO INT (PITCH/ 10): 

NEXT DELAY : 
NEXT PITCH 

20784 SOUND 1,20,0,14: 
SOUND 2,255,10,15 

20785 FOR DELAY=l TO 100 : 
NEXT DELAY 

Captain, there 's a Romulan off the port bow. 

20790 REM SAUCER1.LST 
20791 FOR PITCH=255 TO 195 STEP -1 
20792 SOUND l,PITCH,10,10 : 

SOUND 2,PITCH/ 2,10,15 
20793 FOR DELAY=l TO 10 : 

NEXT DELAY 
20794 SOUND l,PITCH+5,0,5 : 

SOUND 2,PITCH/ 2,0,10 
20795 FOR DELAY=l TO 5: 

NEXT DELAY : 
NEXT PITCH 



222 Chapter 14 

The aliens are coming! The aliens are coming! 

20800 REM SAUCER2.LST 
20801 SOUND 0,0,0,0 : 

REM INIT POKEY 
20802 VOLUME=8 : 

PITCH=100 
20803 POKE 53768,4 : 

REM AUDCTL 
20804 POKE 53761,160+VOLUME : 

REM AUDC1 
20805 POKE 53765, 160+VOLUME+4: 

REM AUDC3 
20806 POKE 53760,PITCH: 

REM AUDF1 
20807 POKE 53764,PITCH/ 2: 

REM AUDF3 
20808 GOTO 20802 

This is your typical klaxon siren. 

20810 REM KLAXON.LST 
20811 FOR COUNT=1 TO 10 : 

FOR PITCH=1 TO 10 
20812 SOUND 0,100-PITCH,10,10: 

NEXT PITCH 
20813 SOUND 0,90,10,14: 

SOUND 1,95,10,14: 
SOUND 2,20,2,4 

20814 FOR DELAY=1 TO 200: 
NEXT DELAY 

20815 SOUND 1,0,0,0: 
SOUND 2,0,0,0 

20816 FOR PITCH=1 TO 5: 
SOUND 0,90+PITCH,10,8: 
NEXT PITCH 

20817 SOUND 0,0,0,0 : 
FOR DELAY=1 TO 100: 
NEXT DELAY : 
NEXT COUNT 



The Nazi dive bombers are on us, sir. 

20820 REM BOMB .LST 
20821 DURATION=10 : 

VOLUMEl=4 
20822 FOR PITCH=30 TO 75: 

SOUND 0,PITCH,10,VOLUMEl : 
SOUND I,PITCH+3,10,0 .7*VOLUMEI 

20823 FOR DELAY=1 TO 3*DURATION : 
NEXT DELAY 

20824 VOLUMEl=I.03*VOLUMEl : 
NEXT PITCH 

20825 SOUND 2,35,8,12 : 
VOLUMEl=15 : 
VOLUME2=15 : 
VOLUME3=15 : 
PITCH=DURATION+5 : 
DELTA=0.79+DURATION/ 100 

20826 SOUND 0,PITCH,8,VOLUMEl : 
SOUND I,PITCH+2~,8,VOLUME2 : 

SOUND 2,PITCH+5~,8,VOLUME3 
2~827 VOLUMEl=DELTA*VOLUMEl : 

VOLUME2=(DELTA+~.~5) *VOLUME2 : 

VOLUME3= (DEL TA+~. ~8) '~ VOLUME3 
2~828 IF VOLUME3>1 THEN 2~826 
2~829 SOUND ~,~,~,0 : 

SOUND 1,~,~,0 : 

SOUND 2,0,0,0: 
GOTO 2~821 

The bombs are exploding all around us. 

2~83~ REM EXPLODE .LST 
2~831 DURATION=8: 

VOLUMEl=5 
20832 SOUND 2,35,8,12: 

VOLUMEl = 15 : 
VOLUME2=15: 
VOLUME3=15 : 
PITCH=DURATION+5 : 
DELTA=~ . 79+DURATION/ l~~ 

2~833 SOUND ~,PITCH,8,VOLUMEl: 
SOUND l,PITCH+20,8,VOLUME2: 
SOUND 2,PITCH+5~,8,VOLUME3 

2~834 VOLUMEl=DELTA*VOLUMEl : 
VOLUME2=(DELTA+~.~5) *VOLUME2 : 

VOLUME3= ( DELTA+~.~8) *VOLUME3 

2~835 IF VOLUME3>1 THEN 2~833 
2~836 SOUND 0,0,0,~ : 

SOUND 1,~,~ ,~: 

SOUND 2,~,~,~ 

ATARI BASIC Faster & Better 223 



224 Chapter 15 

Usefu I Uti lities 

The Atari home computer is a very powerful tool, if you have the correct software for it. So 
far in this book we have talked about many specific applications, but it is impossible to cover 
everything in a single volume. Our chapters have been thematic in that respect even though 
we have covered a lot of topics in a few hundred pages. This chapter is my catch-all for useful 
programs that I couldn't work into the rest of the book. You will hopefully find the special 
routines in this chapter of as much use as I have. 

There are basically four routines in this chapter. The first three are things I have found to 
be absolute necessities when using disk drives. The first program is a special utility that 
creates AUTORUN.SYS files for you. The second program is a handy disk catalog routine, 
and the third program is a helpful diagnostic tool for your disk drives. All three of these 
programs are either BASIC or a hybrid BASIC containing a machine language subroutine. 
The fourth program is a complete miniature DOS that is callable from either BASIC or the 
ASSEMBLER/EDITOR cartridge. 

AUTOGO - Creates AUTORUN.SYS Files 

This is one of the first routines I wrote. A UTOGO is a program that will help you to create 
your own AUTORUN.SYS files. Before we go into how to use AUTOGO, let's briefly touch 
on exactly what an AUTORUN.SYS file is. 

When you boot up your computer (turn it on) with a DOS compatible disk in drive 1, the 
computer first looks for DOS.SYS. If DOS.SYS is found on the disk, the computer loads 
DOS.SYS and starts running it. One of the first things DOS.SYS does is to go back to the 
disk and look for a file named AUTORUN.SYS. If DOS finds such a file, the file is 
automatically loaded in and started running. 

If you had a binary load file (machine language) program that you wanted to be started 
every time you booted a particular disk, you could make this happen by renaming that file to 
AUTORUN.SYS. After that, whenever you booted that disk, your program would run 
automatically. Things are a little bit different if your program is in BASIC. You will need a 
different kind of AUTORUN.SYS file. 

AUTOGO creates a special AUTORUN.SYS file that will be booted in as we just 
described, but rather than being a game, this AUTORUN.SYS file tells the computer to 
RUN"D:FILENAME. The assumptions are: (1) that the BASIC cartridge is in the 
computer, and (2) that the file name referred to is actually on that disk. This is an extremely 
powerful tool for BASIC programmers. 



ATARI BASIC Faster & Better 225 

A UTOGO is extremely easy to use. First, load A UTOGO and run it. The screen will go into 
a colorful GRAPHICS 2 display that shows you the title and purpose of the routine. You are 
then prompted to enter the name of a file. The filename follows the usual conventions. The 
primary name of the file must be no longer than eight characters and must begin with a 
capital letter from A-Z. The rest of the name must contain only capital letters and/or 
numbers. The file extender can be any combination of capital letters and numbers, but it 
may not be any longer than three characters. You don't have to specify a drive number. The 
drive is always assumed to be "Dl :". AUTOGO will stuff this file name into a customized 
AUTORUN.SYS file on drive #1. 

Let's work a quick example. Suppose that you have a BASIC program which is stored on a 
disk under the file name "HOTSTUFF.VOl", and you would like to have this program 
automatically load and run each time you booted that disk. First, make sure that a copy of 
DOS.SYS is also on the disk. Then, load and run AUTOGO. When you are prompted to enter 
a file name, type in HOTSTUFF.VOl , and a special AUTORUN.SYS file will be written on 
the disk. Once this is done and AUTO GO has put the computer back in GRAPHICS 0, turn 
the computer OFF and then back ON again to cause a boot. If all goes well, your program 
"HOTSTUFF.VOl" should automatically be ..Ioaded and run as if you had typed in 
"RUN"D:HOTSTUFF.VOl". 

A UTOGO is written to prevent accidental damage to your BASIC program. All inputs and 
outputs are carefully checked before execution, and an appropriate ERROR message is 
printed out whenever you make a mistake. Of course, this won't prevent you from entering 
the wrong file name, but that error is hardly fatal. 

A UTOGO will not accept anything except a capital letter for the first character of the file 
name. It also rejects any illegal input for any other character in the file name. When the file 
name you are entering reaches a length of eight or when you press the "." key, a period, ".", is 
inserted at the end of the file name. If you make a mistake before you reach the end ofthe file 
name, you can correct the error by pressing the BACK SPACE key. This will erase the last 
character you entered. You can then re-enter the proper character. 

That's all there is to it! When AUTOGO is finished, it stops running and puts the computer 
back into GRAPHICS o. At this point you can test the results by turning the computer OFF 
and then back ON again. Your BASIC program should boot up and begin running all by 
itself. 

Figure 15.1 - AUT OGO - Creates AUTORUN.SYS Files 

100 REM AUTOGO - CREATE AUTORUN .SYS 
110 GRAPHICS 18 : 

POKE 752,1 
120 PRINT #6; II 

130 PRINT #6; ".~~ 
140 PRINT #6;" CREATES DOS 2.0S 
150 PRINT #6;" AUTORUN .SYS FILE 
160 DIM A$(128),FILE$(12) 
170 PRINT #6 : 

PRINT #6 : 
PRINT #6;" ente r fi 1 ename II 

180 TRAP 650 : 
OPEN #1,4,0,"K:" : 
FIRST=1 

NOTE: .. = Inverse Shift Dash! 



226 Chapter 15 

190 FOR X=l TO 8 
200 GET #1, KEY 
210 IF FIRST AND (KEY<65 OR KEY>90) THEN FIRST=l: 

GOTO 200 
220 IF KEY=155 THEN POP 

GOTO 330 
230 FIRST=0 : 

IF KEY=46 THEN POP 
GOTO 270 

240 IF KEY=126 AND X>l THEN X=X-1: 
POSITION X+3 ,8: 
PRINT #6;" ";: 
GOTO 200 

250 IF NOT «KEY>47 AND KEY<58) OR (KEY>64 AND KEY<91)) 
THEN 200 

260 POSITION X+3 ,8: 
PRINT #6;CHR$(KEY);: 
FILE$(X,X)=CHR$(KEY) : 
NEXT X 

270 PRINT #6;".";: 
FILE$(LEN(FILE$)+l)=".": 
SIZE=LEN(FILE$)+l 

280 FOR X=SIZE TO SIZE+3 
290 GET #l,KEY: 

IF KEY=155 THEN POP: 
GOTO 330 

300 IF KEY=126 AND X>12 THEN X=X-1: 
POSITION X+3,8 : 
PRINT #6;" "; : 
GOTO 290 

310 IF NOT «KEY>47 AND KEY<58) OR (KEY>64 AND KEY <91)) 
THEN 290 

320 POSITION X+3,8: 
PRINT #6;CHR$(KEY);: 
FILE$(LEN(FILE$)+l)=CHR$(KEY) : 
NEXT X 

330 CLOSE #1 
340 TRAP 630: 

OPEN #1,8,0,"D:AUTORUN.SYS" 
350 TRAP 640: 

FOR COUNT=l TO 4: 
READ BYTE: 
PUT #l,BYTE : 
NEXT COUNT 

360 A$(l,3)="RUN": 
A$(4,4)=CHR$(34) : 
A$(5,6)="D:" 

370 A$(LEN(A$)+l)=FILE$: 
A$(LEN (A$)+1)=CHR$(34) 



380 L=123+LEN (A$)-1: 
PUT #1,L : 
PUT #1,6: 
FOR COUNT=1 TO 123 : 
READ BYTE 

390 IF COUNT=64 THEN PUT #1,LEN(A$)-1: 
GOTO 410 

400 PUT #1 ,BYTE 
410 NEXT COUNT 
420 FOR COUNT=LEN(A$) TO 1 STEP -1 : 

PUT #1,ASC(A$(COUNT,COUNT)): 
NEXT COUNT 

430 FOR COUNT=1 TO 8: 
READ BYTE : 
PUT #1,BYTE : 
NEXT COUNT : 
CLOSE #1:END 

440 DATA 255,255,O,6 
450 DATA 162,O,189 ,26,3,201,69,240 
460 DATA 5,232,232,232,208,244,232,142 
470 DATA 105,6,189,26,3,133,205,169 
480 DATA 107,157,26,3,232,189,26,3 
490 DATA 133,206,169,6,157,26,3,160 
500 DATA O,162,16,177,205,153,107,6 
510 DATA 200,202,208,247,169,67,141,111 
520 DATA 6,169,6,141,112,6,169,10 
530 DATA 141,106,6,96,172,106,6,240 
540 DATA 9,185,123,6,206,106,6,160 
550 DATA 1,96,138,72,174,105,6,165 
560 DATA 205,157,26,3,232,165,206,157 
570 DATA 26,3,104,170,169,155,160,1 
580 DATA 96,O,O,O,O,O,O,O 
590 DATA O,O,O,O,O,O,O,76 
600 DATA 0,0,0 
610 DATA 255,255,226,2,227,2,O,6 
620 REM ERROR HANDLERS 
630 GOSUB 660: 

PRINT "ERROR WHILE OPENING DISK FILE" : 
GOSUB 680 :RUN 

640 GOSUB 660 : 
PRINT "ERROR WHILE WRITING TO DISK" : 
GOSUB 680 :RUN 

650 GOSUB 660 : 
PRINT "ERROR DURING KEYBOARD INPUT" : 
GOSUB 680 : 
RUN 

660 CLOSE #1 : 
GRAPHICS O: 
POSITION 2,10: 
POKE 752,1: 
RETURN 

ATARI BASIC Faster & Better 227 



228 Chapter 15 

670 REM TIME DELAY 
680 FOR DELAY=l TO 500: 

NEXT DELAY: 
RETURN 

CATALOG - Disk Catalog Program 

If you have reached the point where you have at least ten disks of software, this program 
will be of use to you. I use CATALOG in two ways. First, I use it to make a handy label for the 
jacket of each disk, showing what is on the disk inside. Second, I use it to make a "catalog," or 
complete listing of all of the programs I have in my library. 

When you RUN CATALOG it comes up with my favorite GRAPHICS 2 display showing 
the name of the program. In this particular program the purpose is implicit in the title so the 
routine jumps right in and displays three lines of 17 dashes. These lines are the limits of the 
title you can give to a particular disk. You can get a printout of a directory from DOS by using 
the "A" option and answering it with "D1:,P:", but this doesn't let you assign titles to the 
disks. This catalog program will let you assign detailed titles to each of your disks. 

As usual, the program is fully buffered against input or output errors. When you are 
finished with one of the 17 character lines, the program automatically moves down to the 
next line until all three lines are filled. If you wish to end any line with less than 1 7 characters, 
all you have to do is press the RE TURN key. When the third line is completed, CATALOG 
will LPRINT a neat title and disk directory and display it on the screen at the same time. 
Once the label has been printed, the program re-initializes itself and waits for you to catalog 
another disk. You can stop the program at any time by pressing the BREAK key. You can 
back up to correct a mistake by pressing the BACK SPACE key. 

Figure 15.2 - CA TALOG - Disk Cata log Program 

100 REM CATALOG - DISK CATALOGER 
110 DIM FIRST$(17),SECOND$(17),THIRD$(17),NAME$(17) : 

POKE 752,0: 
POKE 82,2 : 
POKE 83,39 

120 REM PUT FORM ON THE SCREEN 
130 GRAPHICS 18 : 

POKE 708,40 : 
POKE 709,216 : 
POKE 710, 150 : 
POKE 711,254 

140 PRINT #6;" __ II!I'!III!IIRlII. 

PRINT #6;" 
PRINT #6;" enter disk title" 

150 OPEN #1,4,0,"K:" 
160 FOR LINE=1 TO 3: 

POSITION 1, 4+2"LINE : PRINT #6;" 
NEXT LINE 

170 REM GET USER INPUTS 

" . Note:. = Inverse Shift Dash 

I. -----------------



AT ARI BASIC Faster & Better 229 

180 FOR LINE=1 TO 3: 
FOR CHAR=1 TO 17 

190 POSITION CHAR,4+2*LINE: 
PRINT #6; "I"; : 
POSITION CHAR,4+2*LINE: 
PRINT #6; "-" ; : 
IF PEEK(753)=0 THEN 190 

200 POKE 753.0 : 
POSITION CHAR,4+2*LINE : 
GET #I,KEY 

210 REM RETURN ENDS USER INPUT 
220 IF KEY=155 THEN POSITION CHAR,4+2*LINE : 

PRINT #6; "I' : 
GOTO 280 

230 REM CHECK FOR DELETE CHARACTER 
240 IF CHAR>1 AND KEY=126 THEN CHAR=CHAR-l : 

PRINT #6; "I"; : 
GOTO 190 

250 IF KEY<32 OR KEY>122 THEN 190 
260 POSITION CHAR,4+2*LINE : 

PUT #6,KEY 
270 NEXT CHAR 
280 NEXT LINE 
290 REM PREPARE DATA FOR PRINTING 
300 FOR CHAR=1 TO 17 : 

POSITION CHAR,6: 
GET #6,KEY: 
IF CHR$ (KEY) ="1" THEN KEY=32 

310 FIRST$(CHAR,CHAR)=CHR$(KEY) : 
NEXT CHAR 

320 FOR CHAR=1 TO 17 : 
POSITION CHAR,8: 
GET #6, KEY : 
IF CHR$ (KEY) ="1" THEN KEY=32 

330 SECOND$(CHAR,CHAR)=CHR$(KEY) : 
NEXT CHAR 

340 FOR CHAR=1 TO 17 : 
POSITION CHAR ,10 : 
GET #6,KEY: 
IF CHR$(KEY)="I' THEN KEY=32 

350 THIRD$(CHAR,CHAR)=CHR$(KEY) : 
NEXT CHAR : 
GRAPHICS 0: 
POKE 82,10 : 
PRINT : 
CLOSE #1 

360 TRAP 470 : 
IF FIRST$ <> " 
PRINT FIRST$ 

370 IF SECOND$ <>" 
PRINT SECOND$ 

" THEN LPRINT FIRST$ : 

" THEN LPRINT SECOND$ : 

Note: 1 7 spaces 

Note: 1 7 spaces 



230 Chapter 15 

38~ IF THIRD$ <>" 
PRINT THIRD$ : 
LPRINT : 
PRINT 

39~ LPRINT : 
PRINT 

4~~ REM OPEN DISK DIRECTORY 
41~ TRAP 45~ : 

OPEN #1,6.0,"0 :*.*": 
TRAP 46~ 

42~ REM READ DISK DIRECTORY 
43~ INPUT #l,NAME$ : 

LPRINT NAME$: 
PRINT NAME$ : 
TRAP 48~ : 

GOTO 43~ 
44~ REM ERROR HANDLERS 
45~ GOSUB 49~: 

" THEN LPRINT THIRD$: 

PRINT "ERROR WHILE OPENING DISK DIRECTORY" : 
GOSUB 51~ : 

RUN 
46~ GOSUB 49~ : 

PRINT "ERROR WHILE READING DISK DIRECTORY" : 
GOSUB 51~ : 

RUN 
47~ GOSUB 49~ : 

PRINT "ERROR WHILE TRYING TO ACCESS PRINTER": 
GOSUB 51~: 

RUN 
48~ LPRINT : 

LPRINT : 
LPRINT : 
GOSUB 51~ : 

RUN 
49~ CLOSE #1 : 

GRAPHICS ~: 

POKE 82,2 : 
POKE 752,1: 
PRINT CHR$(125);CHR$(253): 
POSITION 2, 1~ : 

RETURN 
5~~ REM TIME DELAY 
51~ FOR DELAY=l TO 5~~: 

NEXT DELAY : 
RETURN 

Note: 17 Spaces 



ATARI BASIC Faster & Better 231 

RPMTEST - Disk RPM Tester 

Most of the time I don't have any trouble with my disk drives. However, every disk drive I 
have owned, and those that belong to friends of mine, all have one peculiar problem. The disk 
speed (RPM's) tends to drift as time goes by. This RPM drift was a major problem with some 
of the early Atari 810 drives, but the severity of the problem has been reduced tremendously 
with the newer models. One difficulty is that Atari doesn't bother to change the part number 
when they change the design of the part. Even a letter change would help. Even if we knew 
whether we had one of the newer, better designs or one of the older ones, all of us should 
periodically monitor the actual speed (RPM) of our disk drives. RPMTEST is a tool for 
doing this task. 

When you run RPMTEST, it will come up with my favorite GRAPHICS 2 display showing 
the name of the program. You will be prompted to enter a drive number between one and 
four. Your response will be displayed on the screen and you will hear your drive come ON. Be 
sure a formatted disk is in the designated drive before you do this. You can use any old disk 
since the only I/O operation used is a READ, thus insuring the safety of whatever you have 
on the disk. 

RPMTEST will then take a sample of 100 disk reads and compute the speed of the 
specified drive. The proper range for this reading is 288 ±4 RPM's. A reading of 288 is 
flagged as "PERFECT" in a congenial blue. Any reading between 284 and 292 other than 
288 is shown as "O.K.", also in blue. Any other reading means that something is not normal, 
and the results will be printed In red to alert you. Any reading that comes up red means that 
you should either adjust the speed back into the proper range or take your drive to a service 
center. 

There is one special exception to the "repair on red" rule. This program was written 
specifically for the Atari 810 disk drive. It is possible that other brands will operate at some 
other RPM. Most non-Atari drives will also operate only at the normal 288 RPM to be 
compatable with those copy-protected programs that will only load at 288 +4 RPM's 
(programs using something called "duplicate sector IDs" and "sector skewing" fall into this 
category). However, I have modified 810 disk drive that runs at an apparent 740 RPM, so I 
Know that there may be occasions where you might run this program on a non-standard disk 
drive. If the RPM reading is 500 or greater, RPMTEST will assume that you have one of 
those special drives and will tell you so. 

Figure 15.3 - RPMTEST- Disk RPM Tesler 

1~~ REM RPMTEST - DISK RPM TESTER 
11~ GRAPHICS 18: 

POKE 752,1: 
GOSUB 39~ 

12~ PRINT #6;" DISK RPM TESTER" 
13~ PRINT #6; "!!!!!!!!!!!!!!!! 
14~ PRINT #6;" push system reset" 
15~ PRINT #6;" to terminate read II. 

PRINT #6 
16~ PRINT #6; "II'QWIWW:Jlt6 "; 
17~ OPEN #I,4,~,"K:" : 

GET #I,KEY: 
CLOSE #1 

Note: _ ,= Inverse Shift Dash 



232 Chapter 15 

180 DRIVE=KEY-48: 
IF DRIVE<l OR DRIVE>4 THEN 170 

190 PRINT #6 ;DRIVE : 
PRINT #6;" RPM READING!. I 

POKE 1610,DRIVE 
200 DUMMY=USR(1536) : 

LSB=PEEK(l611) : 
MSB=PEEK(l612) : 
TIME=(LSB+256*MSB) / 3600 : 
RPM=INT(100TIME+0 .5) 

210 SOUND 1,50,10,15 : 
FOR FLASH=l TO 100 : 
POSITION 14,6 : 
PRINT #6;" " . 
POSITION 14,6 : 
PRINT #6;RPM 

220 NEXT FLASH : 
SOUND 1,0,0,0 

230 IF RPM>500 THEN PRINT #6: 

" . 

PRINT #6;" 
PRINT #6;" 
GOTO 200 

nonstandard drive 
reading not valid 

240 PRINT #6: 
SPEED IS PRINT #6;" 

250 POSITION 10,8 

" . 
" . 

260 IF RPM<284 THEN PRINT #6; "1i';'4,.": 
GOTO 200 

270 IF RPM>292 THEN PRINT #6 ; "Ii .... ""'" : 
GOTO 200 

280 IF RPM=288 THEN PRINT #6; "IAI31111 '1
: 

GOTO 200 
290 PRINT #6; "III" : 

GOTO 200 
300 DATA 104,169,1,141,10,3,169,0 
310 DATA 141,11,3,141,4,3,169,5 
320 DATA 141,5,3,173,74,6,141,1 
330 DATA 3,169,82,141,2,3,169,5 
340 DATA 141,73,6 ,32,83,228,206,73 
350 DATA 6,208,248,169,100,141,73,6 
360 DATA 169,0,133,19,133,20,32,83 
370 DATA 228,206,73,6,208,248,165,20 
380 DATA 164,19,141,75,6,140,76,6,96 
390 MLSTART=1536 : 

MLEND=1608 
400 FOR X=MLSTART TO MLEND: 

READ Y: 
POKE X,Y: 
NEXT X: 
RETURN 



ATARI BASIC Faster & Better 233 

MINIDOS - DOS Functions From BASIC 

This program, MINIDOS, is probably the most sophisticated routine in this book. In 
simple terms, it is a miniature disk operating system (DOS) that enables you to perform 
many disk functions without ever leaving BASIC or the ASSEMBLER/EDITOR. I have 
included the source listing, for those of you who would like to analyze or play with the 
program. Also included is a BASIC program that will create a binary load file version of 
MINIDOS for you. Both versions are fully remarked to help you see what does what. 

MINIDOS supports the following functions: 

Figure 15.4 - MINIDOS Functions 

COMMAND 

A 
B 
D 
F 
K 
L 
R 
U 

FUNCTION 

Go to Atari DOS 
RUN BASIC (or ASM/ED Cartridge) 
Display a disk directory 
Format a disk 
Kill (delete) a file 
Lock a file 
Rename a file 
Unlock a file 

Anytime you type in "DOS", you will see the MINIDOS menu instead of going to normal 
DOS. The MINIDOS menu looks like this: 

Figure 15.5 - MINIDOS Menu 

MINIOOS 
• DOS 
: ASIC 
t IRECTORY 

ORMAT 
ILL 
OCK 

• ENAME 
NLOCK 

MINIDOS sits down on page six, so you will have to be careful not to overwrite it. 
Essentially MINIDOS does some of the functions that DOS.SYS does. Both routines use 
the CIO routines in the operating system to do what they do. MINIDOS simply resides in a 
different memory block and contains fewer commands than a normal DOS. I went to extreme 
lengths to minimize the size of MINIDOS and I was still forced to use the stack area to keep 
the program to a size that would fit on a single page. 



234 Chapter 15 

The most important advantage of a program like MINIDOS is that it enables you to 
quickly execute many of the more common DOS functions without ever actually leaving the 
cartridge. When you are using MINIDOS, all of your existing program in memory is left 
undisturbed. When you exit MINIDOS, you are returned to the cartridge program with all of 
your program still there. You can achieve something like this by using the MEM. SA V option 
in normal Atari DOS, but that method is very slow. On top of that, MEM.SA V requires that 
the disk you are using have a file named MEM.SA V on it. My problem was that I kept 
forgetting to create the MEM.SA V file and had to do needed file manipulations in an even 
more time consuming roundabout way. I suggest that you store MINIDOS on your program 
development disks with the file name AUTORUN.SYS so it will always be in the computer 
when you need it. Using MINIDOS should save you many hours of needless hassle. 

MINIDOS Command Descriptions 

ADOS - Once you have loaded MINIDOS, the MINIDOS menu will be displayed anytime 
you enter the command DOS from BASIC or the ASM/ED cartridge. If you really need to get 
back to the full Atari DOS program to perform file or disk copying, then you can get to Atari 
DOS by using this command, ADOS. Doing this will not damage MINIDOS.1t will still be 
there when you go back to the cartridge. Of course, your program won't be there unless you 
had a MEM.SA V file on the disk. 

BASIC - Using this command will cause you to exit MINIDOS and return to BASIC or the 
ASM/ED cartridge via a warm start. If you are using some other kind of BASIC or ASM/ED, 
I can't guarantee the results. The exitfrom MINIDOS jumps (transfers program control) to a 
particular location ($A04D) in the BASIC and ASM/ED cartridges. Another cartridge 
program or a disk based program probably won't use these particular addresses in the same 
way. The only thing you can do is try it and see what happens. When you return to BASIC, 
you will get the normal READY on the screen. When you return to the Assembler/Editor 
cartridge you are dumped into DEBUG. All you have to do is enter an "X" followed by a 
RETURN to get back to the EDIT mode. 

DIRECTORY - This command operates similar to the "A" command in the Atari DOS menu. 
When you call this command, it will ask, "D#?". You should respond with a number from 1 to 
4. MINIDOS will then search that disk's directory and display a directory listing for you. The 
only display option is "to the screen," and no search parameters are allowed. This shouldn't 
be a problem since those DOS options are not frequently used anyway. Do not enter a "D" 
before the number. 

FORMAT - This is a standard disk format option. When you call up this routine, it will display 
"[iD#?". When you respond with "D" and a number from 1 to 4, the routine will call up the 
format routine in the operating system. A disk in the specified drive will be formatted. Be 
careful with this routine. To keep the code to a minimum, it was necessary to leave out any 
failsafe options. If the first character in your response in not "D" the command will be 
aborted. 

Klll- This is just your familiar DELETE FILE command under a new name. I like the term 
"KILL" used to denote this operation. There are several reasons. First, I have already used 
"D" for my directory command. Second, I initially learned about computers by using an old 
mainframe dinosaur that deleted files with, yes - you guessed it, a "KILL" command. Also, 
"delete" doesn't sound too serious, but "KILLing" something sounds serious. "Sorry, 
Honey, I can't come to supper right now. I have to KILL a file!" See what I mean? 



ATARI BASIC Faster & Better 235 

LOCK - This command will ask you for a "FN?': You must specify the entire file spec. For 
example, "D1: TESTFILE.005". If the first two characters of your answer are not a "D" 
followed by a number from 1 to 4, then the command is aborted. Personally, I almost never 
use a LOCK or UNLOCK command since the only thing that pays any attention to them is a 
normal Atari DOS. A true sector copier or a FORMAT command will wipe out a file whether 
it is "LOCKED" or not. All that using LOCKed files can do is give you a false sense of 
security. I stuck LOCK and UNLOCK in MINIDOS at the request of a friend who does like 
to use them. Oh well, each to his own. 

RENAME - This command is what led to the original creation of MINIDOS. Many times I 
would be working on a program and want to save it under a special file name. Previous 
versions of the program would be stored under the same name with a different extender. 
This command allowed me to change the last "new" version to some other name. I could then 
save the real new version under the name I wanted. This command asks you for "FN?". You 
should respond with the complete file spec for the original file followed by a comma and the 
new file name. Do not use "D#" after the comma! This command assumes that the renamed 
file is in the same drive as it started. After all, you are renaming a file, not moving it. For 
example, suppose you wanted to change the name ofFILETEST.005 on a disk in drive # 1 to 
FILETEST.006. You would do this by first going into MINIDOS with the DOS command 
from BASIC. Then you would press the "R" key after the MINIDOS menu is displayed. 
When the "FN?" prompt appears, you would answer - Dl:TESTFILE.005,TESTFILE.006 
followed by a RETURN. The .file name will then be changed. There is no provision in 
MINIDOS for error messages since they take up valuable memory. Therefore, if you give a 
wrong parameter, the command is simply aborted. 

UNLOCK - This command is the complement of the LOCK command. It removes the 
"LOCK" from a locked file. I have already told you my opinion of LOCK and UNLOCK, so 
let's leave it at that. 

There you have it - a miniature user's manual for a miniature disk operating system. 
MINIDOS is, without a doubt, the most useful routine in this book. After you have used it a 
few times, I am sure you will agree with me. 

Figure 15.6 - MINIDOS.BAS - DOS Functions From BASIC 

1.0.0 REM MINIDOS.BAS - DOS FROM BASIC 
11.0 REM 
12.0 REM CREATE MINIDOS DISK FILE 
13.0 OPEN #2,8,.0,"D:MINIDOS.OBJ" 
14.0 FOR X=1 TO 342: 

READ Y: 
PUT #2,Y : 
NEXT X 

15.0 CLOSE #2 : 
END 

16.0 REM SET UP DISK FILE HEADER 
17.0 DATA 255,255,.0,6,253,6 
18.0 REM MINIDOS PROGRAM FOR PAGE SIX 
19.0 DATA 16.0,37,162,5.0,169,11,32,2.09 
2.0.0 DATA 6,32,19,6,32,221,6,16 
21.0 DATA 239,48,246,16.0,245,162,2,32 
22.0 DATA 84,6,32,9.0,6,16.0,6,14.0 



236 Chapter 15 

230 DATA 90,3,136,240,63,185,234 ,6 
240 DATA 205,8,1,208,245,185,239,6 
250 DATA 72,201,254,208,19,160,250,162 
260 DATA 3,32,84,6,32,90,6,173 
270 DATA 8,1,201,68,208,30,240,10 
280 DATA 160,247,162,3,32,84,6,32 
290 DATA 90,6,104,96,169,11,32,186 
300 DATA 6,96,160,8,162,40,169,5 
310 DATA 32,209,6,96,173,8,1,201 
320 DATA 77,208,62,160,251,162,3,32 
330 DATA 84,6,160,1,162,1,169,5 
340 DATA 32,209,6,160,58,140,2,1 
350 DATA 160,0,169,3,32,223,6,169 
360 DATA 19,141,88,3,169,5,32,221 
370 DATA 6,48,11,160,7,162,20,169 
380 DATA 9,32,209,6,16,233,169,12 
390 DATA 32,221,6,32,90,6,76,0 
400 DATA 6,201,65,208,10,169,68,205 
410 DATA 9,1,208,3,76,159 , 23 , 76 
420 DATA 77,160,72,169,6,141,69,3 
430 DATA 104,140,68,3,142,72,3,162 
440 DATA 0,142,73,3,142,89,3,240 
450 DATA 19,72,169,1,141,69,3,141 
460 DATA 85,3,104,208,228,160,8,140 
470 DATA 84,3,162,16,157,66,3,32 
480 DATA 86,228,96,76,85,68,82,70 
490 DATA 35,36,33,32,254,29,62,70 
500 DATA 78,63,198,68,35,63 
510 REM CHANGE DOSVEC TO $600 
520 REM $A=00:$B=06 
530 DATA 10,0,11,0,0,6 
540 REM CHANGE DOS COMMAND TO $600 
550 REM $1546=00 
560 DATA 70,21,70,21,0 
570 REM $154A=06 
580 DATA 74,21,74,21,6 
590 REM PUT D*.* AT $100 
600 DATA 0,1,7,1,68,49,58,42 
610 DATA 46,42,155,127 
620 REM PUT MINIDOS COMMANDS AT $125 
630 DATA 37,1,86,1,125 
640 REM UNLOCK 
650 DATA 204,79,67 ,7 5,155 
660 REM LOCK 
670 DATA 213,78,76,79,67,75,155 
680 REM DELETE 
690 DATA 196,69,76,69,84,69,155 
700 REM RENAME 
710 DATA 210,69,78,65,77,69,155 
720 REM FORMAT 
730 DATA 198,79,82,77,65,84,155 
740 REM MENU - DISK DIRECTORY 



750 DATA 205,69,78,85,155 
760 REM ADOS - ATARI DOS 2.0S 
770 DATA 193,196,79,83,155 
780 REM BASIC - GOTO CARTRIDGE 
790 DATA 194,65,83,73,67,155 

Figure 15.7 - MINIDOS - Machine Language Source Listing 

ATARI BASIC Faster & Better 237 

1000 ;MINIDOS - DOS FUNCTIONS FROM BASIC 
1010 ; 
1020 ;ALLOWS ACCESS TO SOME DOS FUNCTIONS 
1030 ;WHILE USING BASIC OR THE ASM/ ED CARTRIDGE. 
1040 ; 
1050 ;MAIN ROUTINE RESIDES ON PAGE SIX . 
1060 ;"DOS" COMMAND IS CHANGED TO POINT TO THIS ROUTINE . 
1070 ;MINIDOS MENU IS STORED AT BOTTOM OF PAGE ONE. 
1080 ; 
1090 ;PLEASE OBSERVE USUAL PAGE SIX CAVEATS 
1100 ; 
1110 ;ORIGIN ON PAGE SIX 

0000 
1120 ; 
1130 
1140 ; 
1150 ;SET UP POINTERS 

0102 
0108 
0342 
0340 
0350 
0600 
179F 
A04D 
E456 

1160 ; 
1170 FILE 
1180 ANSWER 
1190 IOCB 
1200 IOCB0 
1210 IOCB1 
1220 ORG 
1230 ADOS 
1240 CART 
1250 CIOV 
1260 ; 

0600 A025 1270 
0602 A23F 1280 
0604 A90B 1290 
0606 20BA06 1300 
0609 201306 1310 AGAIN 
060C 20C606 1320 
060F 10EF 1330 
0611 30F6 1340 

LDY 
LDX 
LDA 
JSR 
JSR 
JSR 
BPL 
BMI 

0613 A0F0 1350 OPTION LDY 
0615 A202 1360 LDX 

JSR 
JSR 

0617 20D406 1370 
061A 20DA06 1380 
061D A006 1390 LDY 

$0600 

$0102 
$0108 
$0342 
$0340 
$0350 
$0600 
$179F 
$A04D 
$E456 

#$25 
#$3F 
#$0B 
MENU 
OPTION 
EXIT 
ORG 
AGAIN 
#$F0 
#$02 
FETCH 
FUNC 
#$06 

;NOT RELOCATABLE 

;DISPLAY MINIDOS MENU 

; GET MENU OPTION 

;START MINIDOS AGAIN 
;GO GET ANOTHER INPUT 
;MOVE DOWN ONE LINE AND 
;PRINT A">" 

;CHECK ANSWER VS DICTIONARY 



238 Chapter 15 

061F 8C5A03 1400 STY IOCB1+10 
0622 88 1410 PARSE DEY 
0623 F02F 1420 BEQ WHEN 
0625 B9E406 1430 LDA INPUTS,Y 
0628 CD0801 1440 CMP ANSWER ;COMPARE INPUT WITH ANSWER 
062B D0F5 1450 BNE PARSE ;NO MATCH? THEN CHECK AGAIN 
062D B9EA06 1460 LDA TOOLS,Y ;GET SPECIAL CODE 
0630 48 1470 PHA 
0631 C9FE 1480 CMP #$FE ;OK TO FORMAT A DISK? 
0633 D013 1490 BNE HERE ;NO? MUST BE SOMETHING ELSE 
0635 A0F5 1500 LDY #$F5 ; PRINT "OD#?" 
0637 A204 1510 LDX #$04 
0639 20D406 1520 JSR FETCH 
063C 20DA06 1530 JSR FUNC ;ASK FOR DISK TO FORMAT 
063F AD0801 1540 LDA ANSWER 
0642 C944 1550 CMP #$44 ;IS FIRST CHAR A "D"? 
0644 D00E 1560 BNE WHEN ;NO? THEN ABORT COMMAND 
0646 F00A 1570 BEQ THERE ;YES? THEN GET DRIVE NUMBER 
0648 A0F2 1580 HERE LDY #$F2 ;PRINT "FN?" 
064A 203 1590 LDX #$03 
064C 20D406 1600 JSR FETCH 
064F 20DA06 1610 JSR FUNC ;DO OTHER DOS FUNCTION 
0652 68 1620 THERE PLA 
0653 60 1630 RTS 
0654 AD0801 1640 WHEN LDA ANSWER 
0657 C944 1650 CMP #$44 ;IS INPUT A "D"? 
0659 D03E 1660 BNE DOSCHEK 
065B A0F6 1670 LDY #$F6 ;PRINT "D#?" 
065D 203 1680 LDX #$03 
065F 20D406 1690 JSR FETCH 
0662 A001 1700 LDY #$01 ;GET DRIVE NUMBER 
0664 A201 1710 LDX #$01 
0666 A905 1720 LDA #$05 
0668 20BA06 1730 JSR MENU 
066B A03A 1740 LDY #$3A 
066D 8C0201 1750 STY FILE 
0670 A000 1760 LDY #$00 
0672 A903 1770 LDA #$03 
0674 20C806 1780 JSR DIn 
0677 A913 1790 Dun LDA #$13 ;SET BUFFER FOR FILE NAME 
0679 8D5803 1800 STA IOCB1+8 
067C A905 1810 LOA #$05 
067E 20C606 1820 JSR EXIT 
0681 300B 1830 BMI GREBO 
0683 A007 1840 LDY #$07 ;OPEN DISK DIRECTORY 
0685 A214 1850 LDX #$14 
0687 A909 1860 LDA #$09 
0689 20BA06 1870 JSR MENU 
068C 10E9 1880 BPL Dun 
068E A90C 1890 GREBO LDA #$0C ;CLOSE DISK DIRECTORY 
0690 20C606 1900 JSR EXIT 
0693 200A06 1910 JSR FUNC 



ATARI BASIC Faster & Better 239 

0696 4C0006 1920 JMP ORG ;RESTART MINIDOS 
0699 C941 1930 OOSCHEK CMP #$41 ; IS INPUT AN "A"? 
069B 0003 1940 BNE BASIC 
0690 4C9F17 1950 JMP ADOS ;GO TO ATARI DOS MENU 
06A0 4C40A0 1960 BASIC JMP $A040 ; GO TO CARTRIDGE 
06A3 48 1970 TOOLKIT PHA 
06A4 A906 1980 LOA #$06 ;POINT BUFFER TO $600 
06A6 804503 1990 STA IOCB0+5 
06A9 68 2000 PLA 
06AA 8C4403 2010 ONE STY IOCB0+4 ;POINT BUFFER INSIDE PAGE 
06AO 8E4803 2020 STX IOCB0+8 ;SET BUFFER LENGTH 
06B0 A200 2030 LOX #$00 ;MAKE SURE BUFFER LENGTH <255 
06B2 8E4903 2040 STX IOCB0+9 
06B5 8E5903 2050 STX IOCB1+9 
06B8 F013 2060 BEQ OOIT 
06BA 48 2070 MENU PHA 
06BB A901 2080 LOA #$01 ;POINT BUFFER TO $100 
06BO 804503 2090 STA IOCB0+5 
06C0 805503 2100 STA IOCB1+5 
06C3 68 2110 PLA 
06C4 00E4 2120 BNE ONE 
06C6 A008 2130 EXIT lOY #$08 
06C8 8C5403 2140 OITT STY IOCB1+4 ;SET BUFFER LENGTH TO 8 
06CB A210 2150 LOX #$10 ;THIS ACTIVATES IOCB1 
06CO 904203 2160 DOlT STA IOCB,X ;OTHERWISE USE IOCB0 
0600 2056E4 2170 JSR CIOV ;GENERAL CIO VECTOR 
0603 60 2180 RTS 
0604 A90B 2190 FETCH LOA #$0B ;GET AN ANSWER 
0606 20A306 2200 JSR TOOLKIT 
0609 60 2210 RTS 
060A A008 2220 FUNC LOY #$08 ;EXECUTE A FUNCTION 
060C A228 2230 LOX #$28 
060E A905 2240 LOA #$05 
06E0 20BA06 2250 JSR MENU 
06E3 60 2260 RTS 

2270 ; 
2280 ; 
2290 ;OICTIONARY 
2300 ; 

06E4 20 2310 INPUTS .BYTE " LUKRF" 
06E5 4C 
06E6 55 
06E7 4B 
06E8 52 
06E9 46 
06EA 20 2320 TOOLS . BYTE " #$! ",254 
06EB 23 
06EC 24 
06ED 21 
06EE 20 
06EF FE 



240 Chapter 15 

~6F~ 9B 233~ .BYTE 155,">" 
~6Fl 3E 
~6F2 46 234~ · BYTE "FN?" 
06F3 4E 
~6F4 3F 
06F5 C6 235~ .BYTE 198 
06F6 44 236~ · BYTE "D#?" 
~6F7 23 
~6F8 3F 

2370 
2380 ;CHANGE DOSVEC TO $6~~ 
2390 

~6F9 24~0 *= $A 
2410 

0~M ~~ 242~ · BYTE 0,6 
~~~B ~6 

243~

2440 ;CHANGE DOS COMMAND TO $60~
2450

~~0C 2460 *= $1546
247~

1546 ~~ 248~ · BYTE ~
249~

1547 25~~ *= $154A
2510

154A 06 252~ · BYTE 6
2530
2540 ;PUT D1 *.* AT $100
2550

154B 256~ *= $10~
257~

0100 44 2580 .BYTE "D1: *.*",155,127
~1~1 31
0102 3A
~1~3 2A
01~4 2E
~1~5 2A
~1~6 9B
~107 7F

259~

26~~ ;PUT MINIDOS COMMANDS AT $125
261~

01~8 2620 *= $~125

263~

0125 7D 264~ · BYTE 125
~126 9B 265~ · BYTE 155, "MINIDOS",155,155
~127 4D
0128 49
~129 4E
012A 49
M2B 44

ATARI BASIC Faster & Better 241

012C 4F
0120 53
012E 9B
012F 9B
0130 Cl 266~ .BYTE "~OOS",155
0131 44
0132 4F
0133 53
0134 9B
0135 C2 267~ .BYTE "!9ASIC",155
M36 41
0137 53
0138 49
0139 43
013A 9B
013B C4 268~ .BYTE "mIRECTORY",155
013C 49
0130 52
013E 45
013F 43
014~ 54
M41 4F
0142 52
0143 59
0144 9B
0145 C6 269~ . BYTE "ljORMAT",155
0146 4F
0147 52
0148 40
0149 41
014A 54
014B 9B
014C CB 27~~ .BYTE "GILL",155
0140 49
014E 4C
014F 4C
015~ 9B
0151 CC 271~ . BYTE "DOCK", 155
0152 4F
0153 43
0154 4B
0155 9B
0156 02 272~ . BYTE "WENAME", 155
0157 45
0158 4E
0159 41
015A 40
015B 45
015C 9B
0150 05 273~ . BYTE "mNLOCK",155
015E 4E

242 Chapter 15

M5F 4C
~16~ 4F
~ 161 43
~162 4B
~563 9B
~164 2740 . END

ATARI BASIC Faster & Better 243

The Faster and Better Disks

The Atari BASIC Faster & Better program disks contain the major BASIC subroutines,
machine language subroutines (USR routines), assembly language source code,
demonstration programs and application (utility) programs presented in this book. In
addition to saving you hours of,work, typing and correcting the programs, these disks give
you a convenient program library that you can call on whenever you want.

The three library packages are supplied on standard Atari 810 DOS 2.0 compatible
diskettes. The three packages are:

ABFABLIB - (2 diskettes) which contains 65 of the major subroutines in this
book.

ABFABASM - (1 diskette) which contains the source code and binary load files for
the 10 machine language routines in this book.

ABFABDEM - (1 diskette) which contains the 12 application programs and the 14
demonstration programs in this book.

In general, each file name has a descriptive extention that will tell you what disk it would be
on. The following table defines all of the extenders.

FIGURE 16.1 - File N aming Conventions

EXTENDER TYPE OF FILE DISK NAME

LST BASIC subroutine ABFABLIB
ASM 65~2 source code ABFABASM
OBJ Binary load file ABFABASM
BAS BASIC utility ABFABDEM
DEM Demonstration ABFABDEM

The LST extender is used on most of the routines in the BASIC library. In a few cases I
used another special extender. In any case, these routines are stored on the disks in LISTed

244 Chapter 16

format (ATASCII) and can be merged with any of your own application programs. These
subroutines all have non-overlapping line numbers, so you could conceivably ENTER all of
them into memory at the same time if RAM size permitted.

The ASM files contain the Assembler! editor source code for all ofthe 6502 routines in this
book. Eachofthese files is in the format used by Atari's Assembler/editor cartridge. You can
modify these source listings to perform in any manner you need. In addition, these listings
will serve as excellent learning tools for the programmer who is new to 6502 assembly
language.

The OBJ extender is used for the object code files that result from assembling the ASM
files. In general, these OBJ files will be in DOS 2.0 binary load format. These files can be
loaded with the <L> option from the DOS menu. NOTE: There are no DUP.SYS files on
any of these disks.

The BAS extender is used on all of the application programs in this book. All of these
programs are executable from BASIC even though some of them contain machine language
subroutines. Each of these programs is a stand-alone utility. All of these programs are stored
on the disk in tokenized format and can be called up with either the LOAD or RUN
commands.

The DEM extender is used on those programs whose primary purpose is to illustrate some
principle discussed in the text. In some cases, these programs can be modified to serve a
number of other special purpose functions. All of the demonstration programs are
executable from BASIC. Once again, some of the programs will contain machine language
subroutines. All of these programs are stored on the disk in tokenized format also.

The Subroutine Library Disks (ABFABLlB)

The two disks in this library package contain all of the subroutines discussed in this book.
Gathered together like this, the subroutines create a massive library of useful routines that
can be almost instantly called up for use in your programs.

DISK #1 The First Half

FIGURE 16.2 shows you a file listing from the first subroutine library disk. The following
paragraphs give you a brief synopsis of what each of the subroutines could be used for.

Figure 16.2 - Subroutines From ABFABLIB Disk # 1

PHONE LST
SFILL LST
VLIST LST
VSHORT LST
RESERVE LST
MOVER LST
SCRAMBLELST
REMAIN LST
ROUNDDECLST
ROUNDDWNLST
ROW LST
COLUMN LST
ROUNDUP LST
MONEY LST

DECHEX LST
HEXDEC LST
ROUNDINTLST
STRIPPERLST
RIGHT LST
LEFT LST
CENTER LST
REVERSE LST
VERIFY LST
PEELOFF LST
LOWTOCAPLST
INVERT LST
LOOKUPIDLST
LOOKUP2DLST
LOOKUPXYLST
SEEKER LST
VALIDATELST
IIXTOII I LST
IIITOIIXLST
FINDAY LST
COMPDAY LST
WEEKDAY LST
YEARCOM LST
MONTHCOMLST
DAYCOMI LST
DAYCOM2 LST
FISCAL LST
HMSTOSECLST
SECTOHMSLST
CLOKMATHLST
BITMAP LST
BOOLEAN LST
SORT LST

ATARI BASIC Faster & Better 245

PHONE.lST - This special formatting routine will take an area code, prefix, and phone
number and force them into a (XXX) XXX-XXXX format for use in a computerized
address book.

• For more details see page 75.

SFllL.lST - You can use this handy little subroutine to instantly fill the entire video screen
with the character of your choice.

• For more details see page 4l.

VlIST.lST - This UTILITY analyzes all of the variables in your programs. To use it, you will
have to load your program and then ENTER this one to add it to the end of yours. When you
are debugging a program and want to display all of the variable names you have used along
with what kind of variable each one is, you can temporarily merge VLIST.LST to the end of
your program. VLIST.LST will also tell you the current value of all scalar variables as well as
the DIMensioned and current lengths of all of your strings. You can call VLIST.LST at any
time by pressing <BREAK> and then " GOSUB 19940".

• For more details see page 53.

246 Chapter 16

VSHORT.LST - This subroutine is a condensed version ofVLIST.LST for those occasions
where you are working on a very large program that doesn't leave enough room for
VLIST.LST. VSHORT.LST doesn't have all of the frills its big brother has. All it gives you is
a list of your variables and what type of variable they are.

• For more details see page 57.

RESERVE.LST - You can use this UTILITY the next time you want to reserve a block of
memory to hold a machine language subroutine or a custom character set. This routine will
move LOMEM up and set aside a chunk of memory that is protected from everything except
POKEs or power failures. You can choose how much memory to reserve.

• For more details see page 53.

MOVER.LST - This UTILITY uses a fast machine language subroutine to move a block of
memory to a new location. You can use this routine for moving screen data or filling the
section of memory you protected with RESERVE.LST.

• For more details see page 58.

SCRAM BLE. LST - I don't really approve of what this routine does, but the next time you want
to make one of your BASIC programs unlistable, you can do it with this scramble
routine.

• For more details see page 57.

REMAIN.LST - Routine for finding the remainder of a divide operation.
• For more details see page 71.

ROUNDDEC.LST - Routine for rounding a number to the nearest chosen decimal.
• For more details see page 72

ROUNDDWN.LST - Routine for rounding a number to the next smaller integer.
• For more details see page 73.

ROW.LST - Routine for finding a PLOT row on the screen.
• For more details see page 73.

COLUMN.LST - Routine for finding a PLOT column on the screen.
• For more details see page 73.

ROUNDUP.LST - Routine for rounding a number to the next larger integer.
• For more details see page 73.

MONEV.LST - Special formatting routine for dollars and cents.
• For more details see page 74.

DECH EX. LST - I have never heard of a faster UTILITY in BASIC for converting decimal
numbers into hexadecimal. The only way to do these conversions faster would be to use
machine language.

e For more details see page 76.

HEXDEC. LST - This UTILITY is the mirror of the previous routine and comes just as highly
recommended. If you find a faster or better BASIC routine for converting hexadecimal
numbers to decimal numbers, please let me know.

• For more details see page 76.

ROUNDINT.LST - Routine for rounding positive & negative numbers.
• For more details see page 72.

STRIPPER.LST - This routine and the next three routines are excellent tools for formatting
strings for output to the screen or a printer. This routine strips all of the "trailing" blanks
from the end of a string.

• For more details see page 85.

AT ARI BASIC Faster & Better 247

RIGHT.LST - This routine right-justifies a string inside afield defined by you. This is an easy
way to get columns on a printer to line up on the right hand side.

• For more details see page 86.

LEFT.LST - This routine left-justifies a string inside a field defined by you. It is also quite
useful for formatted printer outputs.

• For more details see page 87 .

CENTER.LST - Sometimes you need to have a string centered in a special field. This routine
will do the trick for you.

• For more details see page 87.

REVERSE.LST - This routine takes a "last-name,first-name" string and converts it to a "first­
name,last-name" string.

• For more details see page 88.

VERIFY.LST - This is a BASIC subroutine for finding a substring inside a long string.
• For more details see page 92.

PEELOFF.LST - Routine for "peeling" a command from a list of commands. You have to read
the write-up on this one to fully appreciate it.

• For more details see page 89.

LOWTOCAP.LST - This subroutine changes lower case letters in a string to upper case
ones.

• For more details see page 90.

INVERT.LST - This routine comes in especially handy when working in GRAPHICS 1 or 2.
INVERT.LST will selectively toggle normal characters to inverse ones. It will also flip them
the other way. You can set it to work on just one type of character or all characters.

• For more details see page 9l.

LOOKUP1 D.LST - This BASIC subroutine will search a string for a particular substring and
tell you the index of the first character of the substring. See SEEKER.LST for a machine
language variation of this routine.

• For more details see page 95.

LOOKUP2D.LST - Although Atari BASIC doesn't support true string arrays, you can use this
subroutine to simulate a two-dimensional string array.

• For more details see page 96.

LOOKUPXY.LST - You can use this subroutine to find the two-dimensional (X,Y) address of a
substring in a simulated string array.

• For more details see page 97 .

SEEKER.LST - This BASIC routine uses a machine language subroutine to rapidly search a
one dimensional string for a particular substring. This routine returns the index of the first
character in your substring.

• For more details see page 95.

VALIDATE.LST - This is the first of a number of calendar oriented utilities. This routine
checks a given date to see if it is a valid date.

• For more details see page 98.

IIXTOIII.LST - Eight byte dates are nice for printed displays, but they take up a lot more
memory than three byte dates. This routine compresses an 8-byte date down to a 3-byte
date.

• For more details see page 99.

248 Chapter 16

IIITOIIX.LST - You can use this routine to "un-compress" an 3-byte date and get back the
longer 8-byte version.

• For more details see page 100.

FINDAY.LST - This routine is useful for computing the day of the year.
• For more details see page 100.

COMPDAY.LST - This routine calculates a special "compday" value for any day of the year.
To really use it to best effect you will need the following routines.

• For more details see page 10l.

WEEKDAY.LST - Use this routine if you would like to find the day of the week for a given
date.

• For more details see page 10l.

YEARCOM.LST - Routine for finding a year given the compday.
• For more details see page 102.

MONTHCOM.LST - Routine for finding a month given the compday.
• For more details see page 102.

DAYCOM1.LST - Routine for finding a day of the year given the compday.
• For more details see page 102.

DAYCOM2.LST - Routine for finding a day of the month given the compday.
• For more details see page 102.

FISCAL. LST - Routine to convert calendar dates to fiscal dates.
• For more details see page 102.

HMSTOSEC.LST - This routine and the next two are useful for doing many clock
computations. This routine takes a clock time in HH:MM:SS format and calculates the
number of equivalent seconds.

• For more details see page 113.

SECTOHMS. LST - This routine is the reverse of the last one. It takes a number of seconds and
computes the equivalent number of hours, minutes, and seconds.

• For more details see page 113.

CLOKMATH.LST - This routine is great for computing elapsed time.
• For more details see page 114.

BITMAP. LST - Atari BASIC does not support logical operations at the bit level. This routine
will selectively SET, CLEAR, or TEST any bit within a byte.

• For more details see page 119.

BOOLEAN.LST - This UTILITY goes hand-in-hand with the last routine. This routine will
perform a variety of logical operations on the bit level from BASIC.

• For more details see page 126.

SORT.LST - This UTILITY uses a fast machine language subroutine to perform an in­
memory Shell sort from BASIC.

• For more details see page 142.

DISK #2 The Other Half

FIGURE 16.3 shows you a list of the subroutines on the second subroutine library disk.
The following paragraphs summarize what each of the routines do.

Figure 16.3 - Subroutines From ABFABLIB Disk ±2

KEY LST
MENUl LST
MENU2 LST
FUNKEY LST
MENU3 LST
BREAKLOKLST
REPEAT LST
INKEYl LST
INKEY2 LST
FIELDB LST
FIELDI LST
FDOLLARSLST
FDATES LST
FTIMES LST
FSCROLL LST
TITLE LST
POLICAR LST
TRAIN LST
TANK LST
THUNDER LST
FLIES LST
MOTRBOATLST
MANHOLE LST
SURF LST
EUROCOP LST
STORM LST
HEART LST
TAKEOFF LST
SPLAT LST
SAUCERl LST
SAUCER2 LST
KLAXON LST
BOMB LST
EXPLODE LST
PAINTGETDSK
CITOH GR8
GR8PUT DSK
GR8GET DSK

AT ARI BASIC Faster & Better 249

KEY.LST - This is a single key input routine that comes in useful for many applications.
KEY.LST will get a single key input from the keyboard without requiring you to press the
<RETURN> key.

• For more details see page 152.

250 Chapter 16

MENU1.LST - This is a kernel for a keyboard driven menu routine. It is a ready-made menu
that you can use in your own programs by making a few minor changes to specify the menu
options you want.

• For more details see page 154.

MENU2. LST - This is another kernel menu that has been set up to accept inputs from a
paddle controller. A few minor changes will customize it for your programs. Some other
changes will convert the input device to a joystick.

• For more details see page 155.

FU N KEY. LST - This is a handy routine for testing to see if one of the key board function keys
is pressed.

• For more details see page 156.

MENU3.LST - This is another kernal menu that you can easily customize for your own
applications. This menu uses the FUNKEY.LST subroutine and is ideal for small limited
option menus.

• For more details see page 157.

BREAKLOK.LST - Pressing the <BREAK> key during certain I/O operations can cause the
computer to lose valuable data. This routine can be used to disable the <BREAK> key so
you can avoid that kind of accident.

• For more details see page 158.

REPEAT.LST - This routine repeats a function as long as you press a key.
• For more details see page 158.

INKEY1.LST - This routine uses KEY.LST to give you controlled string input for strings of
whatever size you specify.

• For more details see page 160.

INKEY2.LST - This routine controls multi-key numeric inputs in much the same way
INKEYl.LST controls string inputs.

• For more details see page 160.

FIELDB. LST - This routine is useful for creating "blank" input fields on the screen. These
come in handy for "fill in the blank" menus and forms.

• For more details see page 163.

FIELDI.LST - This routine creates inverse video input fields on the screen.
• For more details see page 163.

FDOLLARS.LST - Routine for controlled input of dollars and cents.
• For more details see page 164.

FDATES.LST - Routine for controlled input of caledar dates.
• For more details see page 164.

FTIMES.LST - Routine for controlled input of the time of the day.
• For more details see page 165.

FSCROLL.LST - This routine uses the text window at the bottom of the video screen in
GRAPHICS 0 as a scrolling window for user inputs.

• For more details see page 165.

TITLE.LST - This UTILITY routine creates colorful title pages in GRAPHICS 2 for your
programs.

• For more details see page 182.

ATARI BASIC Faster & Better 251

The following routines are a collection of sound effects for your programs. Since there are
so many of them, I will only give you a short note on what each one does.

• For more details see Chapter 14.

POLICAR .LST - SOUND EFFECT of American police car siren
TRAIN.LST - SOUND EFFECT of old timey steam train with a whistle
TANK.LST - SOUND EFFECT of an army tank's engine
THUNDER . LST - SOUND EFFECT of rolling peals of thunder
FLIES. LST - SOUND EFFECT of a swarm of house flies
MOTRBOAT.LST - SOUND EFFECT of an outboard motor for a small boat
MANHOLE .LST - SOUND EFFECT of a manhole cover slowly settling on a sidewalk
SURF.LST - SOUND EFFECT of the gentle wash of ocean waves on a beach
EUROCOP. . LST - SOUND EFFECT of a European police car siren
STORM.LST - SOUND EFFECT of a raging thunder storm
HEART .LST - SOUND EFFECT of the slow beating of a human heart
TAKEOFF .LST - SOUND EFFECT of a starship taking off
SPLAT . LST - SOUND EFFECT of a long fall with a sudden stop
SAUCERl . LST - SOUND EFFECT of a fying saucer hovering overhead
SAUCER2.LST - SOUND EFFECT of a starship hovering overhead
KLAXON.LST - SOUND EFFECT of an old timey klaxon siren
BOMB . LST - SOUND EFFECT pf a bomb dropping and exploding
EXPLODE.LST - SOUND EFFECT of a sharp explosion

The following four routines are a couple of last minute additions to chapter 13. I think you
will find them useful.

PAINTGET.DSK - UTILITY to load a Micro-Painter picture into your program.
• For more details see page 206.

CITOH.GR8 - UTILITY to dump a GRAPHICS 8 screen to a C-ITOH 8510 printer.
• For more details see page 204.

GR8PUT.DSK - UTILITY to save a GRAPHICS 8 screen to a disk file.
• For more details see page 201.

GR8GET.DSK - UTILITY to load a GRAPHICS 8 screen from a disk file
• For more details see page 203.

The Assembly Library Disk (ABFABASM)

This disk contains the 6502 source code and binary object code for the various machine
language routines in this book. Most of them are designed to operate independent of any
particular BASIC program, but a few of them are specially designed to be called from
BASIC. Figure 16.4 shows you a directory listing from this disk.

252 Chapter 16

FIGURE 16.4 - Directory Listing From ABFABASM

DOS SYS ,039
----------- ,0,0,0
Source Code ,0,0,0
----------- ,0,0,0
SFILL ASM ,012
MOVER ASM ,03,0
SEEKER ASM ,032
CLOCK ASM ,05,0
BITMAP ASM ,022
BOOLEAN ASM ,017
SHELL ASM ,081
SLOWLISTASM ,06,0
MINIDOS ASM ,045
BLINK ASM ,034

,0,0,0
----------- ,0,0,0
Object Code ,0,0,0
----------- ,0,0,0
SFILL OBJ ,0,01
MOVER OBJ ,0,02
SEEKER OBJ ,0,03
CLOCK OBJ ,0,03
BITMAP OBJ ,0,01
BOOLEAN OBJ ,0,01
SHELL OBJ ,0,04
SLOWLISTOBJ ,0,03
MINIDOS OBJ ,0,03
BLINK OBJ ,0,02
----------- ,0,0,0

,0,0,0
*********** ,0,0,0

,0,0,0
Atari BFAB ,0,0,0
Assembly
Language
Programs

,0,0,0
,0,0,0
,0,0,0
,0,0,0

Copyright ,0,0,0
1983 by IJG ,0,0,0

,0,0,0
*********** ,0,0,0

,0,0,0
263 FREE SECTORS

ATARI BASIC Faster & Better 253

Here is a description of these programs:

SFILL.ASM - This is a machine language subroutine designed to be called from BASIC. This
routine will fill the video screen with the character of your choice.

• For more details see page 34.

MOVER.ASM - This is another machine language subroutine that is designed to be called
from BASIC. This routine will move a block of data from one place in memory to another.
The routine handles both overlapping and non-overlapping moves either up or down in
memory.

• For more details see page 58.

SEEKER.ASM - This is a BASIC callable machine language routine for searching a long
string for the presence of a smaller string (substring).

• For more details see page 92 .

CLOCK.ASM - This is a stand alone real time clock routine that can be accessed from BASIC.
This clock is self calibrating and doesn't lose time during disk I/O.

• For more details see page 106.

BITMAP.ASM - This is a BASIC callable UTILITY that will SET, CLEAR or TEST a single
bit in a byte.

• For more details see page 117.

BOOLEAN.ASM - This is a BASIC callable UTILITY that gives you bit level Boolean logic
from BASIC.

• For more details see page 125.

SHELL.ASM - This is a BASIC callable UTILITY for doing a Shell sort in memory.
• For more details see page 135.

SLOWLIST. LST - This is a stand alone UTILITY for controlling the speed of a video listing. It
works with either BASIC or the ASM/EDITOR cartridge.

• For more details see page 193.

MINIDOS.ASM - This is an excellent stand alone UTILITY that gives you simple DOS
functions in BASIC or with the ASM/EDITOR cartridge.

• For more details see page 235.

BLlNK.ASM - This is a stand alone UTILITY that gives you a blinking cursor in BASIC or
ASM/EDITOR mode. You can control the blink rate. This routine also causes all inverse
video characters to blink.

• For more details see page 169.

Each of these source files has a matching binary load file on this disk.

The Demonstration/Applications Library Disk (ABFABDEM)

The programs on this disk are all stand alone BASIC programs that either demonstrate
some principle discussed in the text or serve some useful UTILITY function. Figure 16.5
shows you a directory listing of this disk.

254 Chapter 16

Figure 16.5 - Directory Listing From ABFABDEM

DOS SYS 039
----------- 000
Utilities 000
----------- 000
CONVERT BAS 014
DATAPAK BAS 049
HEADER BAS 038
CLOCK BAS 016
DATECOMPBAS 026
SLOWLISTBAS 013
MARQUEE BAS 013
AUTOGO BAS 021
CATALOG BAS 018
RPMTEST BAS 013
BLI NK BAS 010
MINIDOS BAS 016

000
----------- 000
Demo Progs 000
----------- 000
SFILL DEM 005
WINDOW DEM 004
MOVER DEM 006
SHELL DEM 011
BUBBLE DEM 010
SHELL3 DEM 024
SHELL2 DEM 029
CONTROL DEM 019
SLYDESHODEM 049
SCROLL DEM 009
GLOW1 DEM 003
GLOW2 DEM 003
SOUND1 DEM 005
SOUND2 DEM 004
----------- 000

000
;,**** 000

000
Atari BFAB 000
Application 000
and Demo 000
Programs 000

000
Copyright 000
1983 by IJG 000

000
*********** 000

000
240 FREE SECTORS

ATARI BASIC Faster & Better 255

The following paragraphs give you a brief description of each program.

Application Programs

CONVERT. BAS - This is a UTILITY that converts a machine language binary load file into
BASIC DATA statements. The resulting DATA statements are automatically LISTed to
either cassette or disk. This program actually creates an entire subroutine for POKEing a
machine language routine into memory.

• For more details see page 39.

DATAPAK.BAS - This UTILITY is similar to CONVERT, butitis for the more advanced user
who wants to string pack his machine language subroutines. This program string packs a
machine language binary load file or the equivalent BASIC DATA statements (outputs from
CONVERT for example) and LISTs the resulting string to cassette or disk.

• For more details see page 42.

HEADER.BAS - This UTILITY decodes the header on a binary load file and tells you how
long the file is, where it normally loads into memory, and what the INIT/RUN addresses
are.

• For more details see page 77.

CLOCK.BAS - This program is simply a service routine for setting up the real time clock.
• For more details see page 110.

DATECOMP.BAS - This program is a handy UTILITY that computes various calendar
functions. Aside from being a perpetual calendar, it will also calculate "days between dates",
"day of the week", "day within the year", and the date X days hence. In other words, this
program integrates all of the major calendar routines into a single utility.

• For more details see page 103.

SLOWLlST.BAS - This program is primarily just a service UTILITY that loads the
SLOWLIST machine routine into memory from BASIC.

• For more details see page 197.

MARQUEE.BAS - This program is a UTILITY that creates a custom scrolling banner display.
It will prompt you to enter a message which will then be displayed in a scrolling fashion on the
video screen.

• For more details see page 179.

AUTOGO.BAS - This program is a useful UTILITY that creates an AUTORUN.SYS file for
automatically running BASIC programs. All you need to supply is a file name.

• For more details see page 225 .

CATALOG. BAS - This program is a UTILITY that creates a custom listing of the files on all of
your DOS files on disk. This is a handy routine for making a real printed catalog of all of your
software.

• For more details see page 228.

RPMTEST.BAS - This UTILITY program helps you to keep your disk drives in top running
condition. With this program you can easily monitor the speed of your disk drives. This RPM
test program even handles non-standard drives like those with the HAPPY modification.

• For more details see page 231.

BLlNK.BAS - This program is just a service utility for loading the blinking cursor machine
language routine into memory from BASIC.

• For more details see page 172.

256 Chapter 16

Demonstration Programs

These demonstration programs were included primarily to illustrate one or more of the
things we discussed in the book, but these programs, in many cases, can be adapted for your
custom application with only a moderate amount of work.

SFILL.OEM - This program shows you how to use the screen fill machine language
subroutine. It prompts you for a character input and instantly fills the screen with that
character.

• For more details see page 38.

WINOOW.OEM - This program demonstrates the MOVER block move machine language
subroutine by using it to display any page of memory on the video screen.

• For more details see page 64.

MOVER. OEM - This is a much simpler demo of the MOVER subroutine. This program
displays a string of characters at the top of the video screen and rapidly moves the string to
the bottom of the display and back to the top of the screen. In fact, this routine is so fast that a
special time delay had to be put in the program so you could see the movement.

• For more details see page 63.

SHELL.OEM - This program is a benchmark timing demo of a BASIC Shell sort. It assumes
that the real time clock program has been loaded.

• For more details see page 133.

BUBBLE. OEM - This program is a benchmark timing demo that demonstrates just how slow
a BASIC bubble sort really is. This program also makes use of the real time clock
routine.

• For more details see page 132.

SHELL3.0EM - This program is a highly visual demo that sorts a file on the screen where you
can watch the sorting process. By watching the patterns used by the Shell sort, you can get a
better feel for exactly how it works. On top of that, the effect is hypnotizing.

• For more details see page 150.

SHELL2.0EM - This demo program is almost an application program. It will take a block of
data and sort it with a fast machine language subroutine. When it is finished it will display the
elapsed time for the sort as computed from the real time clock. To use this program for your
own application, simply replace the dummy data it uses for the demo with your own
data.

• For more details see page 147.

CONTROL.OEM - This is actually a menu from an applications program I wrote a while back.
It demonstrates many of the concepts for menus, error trapping, and controlled inputs.

• For more details see page 173.

SLYOESHO.OEM - One of these days I will go backto this routine and add in all of the frills itis
set up to handle. In the meantime, this program functions as a clear example of what you can
achieve with the powerful technique called "page flipping". By setting this kind of routine up
for GRAPHICS 8, you could do page flip animation. In this particular demo, I used normal
GRAPHICS 0 and flipped from one page of text to another.

• For more details see page 185.

SCROLL. OEM - A demo of coarse scrolling in BASIC
• For more details see page 178.

ATARI BASIC Faster & Better 257

GLOW1.0EM - This is a useful little routine that gives your GRAPHICS 1 or 2 messages a
lovely glowing effect.

• For more details see page 182.

GLOW2. OEM - This glow routine creates a colorful display by randomly shifting the colors of
every character on a GRAPHICS 1 or 2 display.

• For more details see page 182.

SOUN01.0EM - Demo of the effects of using 16 bit sound.
• For more details see page 214.

SOUN02.0EM - Demo of the effects of using interference effects in sound waves.
• For more details see page 216.

258 Appendix Contents

Appendix Table of Contents

Appendix A
Useful POKE & PEEK Locations 259

Appendix B
Key Codes 263

Appendix C
ERROR Codes Explained 271

Appendix D
Base Conversions for Decimal, Binary and Hexadecimal Numbers . .. 282

Appendix E
Subroutines - by Line Number 285

Appendix F
Subroutines - Alphabetically 289

Appendix G
Assembly Language Routines - by Chapter 293

Appendix H
Application Programs - by Chapter 294

Appendix I
Demonstration Programs - by Chapter 295

ATARI BASIC Faster & Better 259

Useful POKE & PEEK Locations

Address

16

18,19,2~

65

77

82

83

84

85,86

87

88,89

93

1~6

128,129

13~ ,131

132,133

134,135

136,137

138,139

14~,141

Description

POKE 64 here (and at 53774) to disable the
BREAK key . (192 to restore it)

Clock. Address 20 increases increments 60 times per second

POKE a zero here to stop normal program loading sounds .

POKE a zero here to turn off the screen "attract" mode.

Screen left margin (default=2)

Screen right margin (default=39)

Current cursor row (GRAPHICS 0)

Current cursor column for all modes (ranges from 0 to 319)

Graphics mode number for screen output

Upper left hand screen corner address

Code for the character that is under the cursor

Size of available memory in 256 byte pages

BASIC's LOMEM pointer

Contains location of the Variable Name Table

Points to the end of the Variable Name Table plus one byte ·

Contains location of the Variable Value Table

Points to the beginning of a BASIC program

BASIC's current statement pointer

Contains location of the String and Array
Table, also the end of a BASIC program.

260 Appendix A

144,145

186,187

195

212,213

559

569,561

589

624

625

626

627

628

629

639

631

632

633

634

635

636

637

638

639

649

641

642

643

644

645

646

647

669,661

BASIC's top of memory pointer

The line number where a BASIC program stopped
due to ERROR, TRAP, STOP or BREAK.

The OS code for an error during execution

Used to return a value from a USR call

Direct Memory Access (DMA) control: POKE zero here to
turn the video display OFF; 34 restores the screen.

Contains the location of the display list

POKE 1 here to cause a reboot when SYSTEM RESET is pressed .

Contains current value of PADDLE0 (0-228)

PADDLE!

PADDLE2

PADDLE3

PADDLE4

PADDLE5

PADDLE6

PADDLE7

Contains current value of STICK0 (15,7,6,14,10,11,9,13,5)

STICK1

STICK2

STICK3

PTRIG0: contains 0 if PADDLE0 trigger is pressed;
otherwise contains 1.

PTRIG1

PTRIG2

PTRIG3

PTRIG4

PTRIG5

PTRIG6

PTRIG7

STRIG0: contains 0 if joy STICK0 trigger is pressed;
otherwise contains 1.

STRIGI

STRIG2

STRIG3

Contains location of upper left corner of text window

694

702

703

708

709

710

711

712

736,737

738,739

740

741,742

743,744

752

755

756

764

767

832-847

ATARI BASIC Faster & Better 261

Inverse video flag : 0=normal, 128=inverse

Caps-lock flag: 0=lowercase, 64=uppercase
128=control characters

POKE 4 here to create a text window in GRAPHICS 0.
(default is 24).

COLOR0 : used for upper case in GRAPHICS 1 and 2 (default is 40)

COLOR1: used for lower case in GRAPHICS 1 and 2 (default is 202)

COLOR2: used for inverse upper case in GRAPHICS 1 and 2;
used for background in GRAPHICS 0 (default is 148)

COLOR3 : used for inverse lower case in GRAPHICS 1 and 2
(default is 70)

COLOR4: used for the background (border) in GRAPHICS 0
(default is 0)

Used by DOS to hold the RUN address of a binary load file

Immediate execution address used by DOS to hold the INIT
address of a binary load file .

RAMSIZ: same as location 106

MEMTOP for BASIC and the OS (minus 1 to get highest free
memory.)

MEMLO points to the bottom of user memory for BASIC programs

Cursor inhibit : 0=visible,
l=invisible

Character mode : I=Blank,
2=Normal,
3=Inverse

Character base register: 226=lowercase
224=uppercase

Contains value of last key pressed (internal code)

Scroll start/ stop flag: Toggled by pressing <CNTL>-I;
0=Scroll enabled, otherwise disabled

IOCB0 : default device for the screen editor
* POKE 838,166 & POKE 839,238 to send all

screen outputs to the printer .
POKE 838,163 & POKE 839,246 to return to normal .

* POKE 842,13 to go into auto input mode .
POKE 842,12 to return to normal.

848-863 IOCBl

864-879 IOCB2

880-895 IOCB3

896-911 IOCB4

262 Appendix A

912-927

928-943

944-959

2147,2148

2152,2153

5533

40960

41037

53277

53279

53760

53761

53762

53763

53764

53765

53766

53767

IOCB5

IOCB6 : used by GRAPHICS for screen channel

IOCB7: used by LPRINT, LOAD, SAVE and LIST

One of two locations used by DOS to store LOMEM

The other DOS pointer to LOMEM

Used by DOS to check for presence of DUP.SYS :
Zero means DUP.SYS is not there .

USR here to COLD START the BASIC cartridge

USR here to WARM START the BASIC cartridge

POKE a 4 here to put paddle and joystick triggers in
latch mode. In latch mode, once a trigger is pressed it
stays "presse d" until this location is POKEd with zero .

The keyboard function keys alter this register when
they are pressed .

AUDF1 : controls the frequency of audio channel one

AUDCI : controls volume and distortion of audio channel

AUDF2 : channel two frequency control

AUDC2: channel two volume and distortion control

AUDF3: channel three frequency control

AUDC3 : channel three volume and distortion control

AUDF4 : channel four frequency control

AUDC4 : channel four volume and distortion control

53768 AUDCTL : master audio channel control byte

one

53774 IRQEN : interrupt control register. POKE 64 here to disable
the BREAK key . (247 to restore it)

54018 PACTL : POKE 52 here to turn the cassette motor ON . POKE 6~ here
to turn the motor back OFF .

58454 CIOV : (more commonly known as E456) is the entry vector to
the central I/ O utility in the OS .

5846~ SETVBV : vertical blank interrupt setup vector

58484 WARM START: Do a USR to here to cause the computer
to WARM START

58487 COLD START: Do a USR to here to cause the entire
system to reboot.

ATARI BASIC Faster & Better 263

Key Codes

Table 8-1 - Standard Upper Case Keycodes 264

Table 8-2 - Inverse Upper Case Keycodes 265

Table 8-3 - Standard Lower Case Keycodes 266

Table 8-4 - Inverse Lower Case Keycodes 267

Table 8-5 - Keycodes with Shift Key Pressed 268

Table 8-6 - Keycodes with Inverse Shift Key Pressed 269

Table 8-7 - Standard Upper Case Keycodes with <CTRL> Key Pressed 270

Table 8-8 - Keycodes for Miscellaneous Special Keys 270

264 AppendixB

Table B-1 --- Standard Upper Case Keycodes

--
CHARACTER ATASCII CODE KEYBOARD CODE
--

A 65 63
B 66 21
C 67 18
D 68 58
E 69 42
F 70 56
G 71 61
H 72 57
I 73 13
J 74
K 75 5
L 76 0
M 77 37
N 78 35
0 79 8
p 80 10
Q 81 47
R 82 40
S 83 62
T 84 45
U 85 11
V 86 16
W 87 46
X 88 22
Y 89 43
Z 90 23
1 49 31
2 50 30
3 51 26
4 52 24
5 53 29
6 54 27
7 55 51
8 56 53
9 57 48
0 48 50
< 60 54
> 62 55

45 14
61 15

+ 43 6
* 42 7

59 2
44 32
46 34

/ 47 38

Table B-2 --- Inverse Upper Case Keycodes

CHARACTER ATAscn CODE

A ____ _
B ____ _
C ____ _
D ____ _
E ____ _
F ____ _
G ____ _
H ____ _
I ____ _
J ____ _
K ____ _
L ____ _
M ____ _
N ____ _
0 ____ _

p---­
Q----
R ___ _
S ____ _
T ___ _
U ___ _
V ___ _
W ___ _
X ____ _

y-----
Z ___ _
1 ___ _
2 ___ _
3 ____ _
4 ___ _
5 ____ _
6 ____ _
7 ___ _
8 ___ _
9 ___ _
$3-___ _
<-----

>-----

+-----
*

1-----

193
194
195
196
197
198
199
2$3$3
2$31
2$32
2$33
2$34
2$35
2$36
2$37
2$38
2$39
21$3
211
212
213
214
215
216
217
218
177
178
179
18$3
181
182
183
184
185
176
188
19$3
173
189
171
17$3
187
172
174
175

KEYBOARD CODE

63
21
18
58
42
58
61
57
13

5
$3

37
35
8

1$3
47
4$3
62
45
11
16
46
22
43
23
31
3$3
26
24
29
27
51
53
48
5$3
54
55
14
15
6
7
2

32
34
38

ATARI BASIC Faster & Better 265

266 Appendix B

Table B-3 --- Standard Lower Case Keycodes

CHA RACTER ATAscn CODE KEYBOARD CODE

a 97 63
b 98 21
c 99 18
d 100 58
e 101 42
f 102 56
g 103 61
h 104 57

105 13
j 106 1
k 107 5

108 0
m 109 37
n 110 35
0 III 8
p 112 10
q 113 47
r 114 40
s 115 62
t 116 45
u 117 11
v 118 16
w 119 46
x 120 22
y 121 43
z 122 23

ATARI BASIC Faster & Better 267

Table B-4 --- Inverse Lower Case Keycodes

CHARACTER ATASCII CODE KEYBOARD CODE

a 225 63
b 226 21
c 227 18
d 228 58
e 229 42
f 230 56
g 231 61
h 232 57

233 13
j 234 1
k 235 5

236 0
m 23 7 37
n 238 35
0 239 8
p 240 10
q 241 47
r 242 40
s 243 62
t 244 45
u 245 11
v 246 16
w 247 46
x 248 22
y 249 43
z 250 23

268 Appendix B

Table B-5 --- Keycodes With Shift Key Pressed

--
CHARACTER ATASCII CODE KEYBOARD CODE
--

A 65 127
B 66 85
C 67 82
D 68 122
E 69 106
F 70 120
G 71 125
H 72 121
I 73 77
J 74 65
K 75 69
L 76 64
M 77 101
N 78 99
0 79 72
P 80 74
Q 81 111
R 82 104
S 83 126
T 83 109
U 85 75
V 86 80
W 87 110
X 88 86
Y 89 107
Z 90 87

33 95
34 94

35 90
$ 36 88
% 37 93
& 38 91

39 115
@ 64 117
(40 112
) 41 114
[91 96
] 93 98
7 63 102

58 66
\ 92 70
1\ 94 71
I 124 79

95 78

AT ARI BASIC Faster & Better 269

Table B-6 --- Keycodes With Inverse Shift Key Pressed

--
CHARACTER ATASCII CODE KEYBOARD CODE
--

A 193 127
B 194 85
C 195 82
D 196 122
E 197 1,06
F 198 12,0
G 199 125
H 2,0,0 121
I 2,01 77
J 2,02 65
K 2,03 69
L 2,04 64
M 2,05 1,01
N 2,06 99
0 2,07 72
P 2,08 74
Q 2,09 111
R 21,0 1,04
S 211 126
T 212 1,09
U 213 75
V 214 8,0
W 215 11,0
X 216 86
Y 217 1,07
Z 218 87

161 95
162 94

163 9,0
$ 164 88
% 165 93
& 166 91

167 115
@ 192 117
(168 112
) 169 114
[219 96
] 221 98
? 191 1,02

186 66
\ 22,0 7,0
A 222 71
I 252 79

223 78

270 Appendix B

Table B-7 --- Standard Upper Case Keycodes With <CTRL> Key Pressed

CHARACTER AT ASCII CODE KEYBOARD CODE

<CTRL> - A 1 191
<CTRL> - B 2 149
<CTRL> - C 3 146
<CTRL> - D 4 186
<CTRL> - E 5 170
<CTRL> - F 6 184
<CTRL> - G 7 189
<CTRL> - H 8 185
<CTRL> - I 9 141
<CTRL> - J 10 129
<CTRL> - K 11 133
<CTRL> - L 12 128
<CTRL> - M 13 165
<CTRL> - N 14 163
<CTRL> - 0 15 136
<CTRL> - P 16 138
<CTRL> - Q 17 175
<CTRL> - R 18 168
<CTRL> - S 19 190
<CTRL> - T 20 173
<CTRL> - U 21 139
<CTRL> - V 22 144
<CTRL> - W 23 174
<CTRL> - X 24 150
<CTRL> - Y 25 171
<CTRL> - Z 26 151

Table B-8 --- Keycodes for Miscellaneous Special Keys

CHARACTER ATAscn CODE KEYBOARD CODE
--
<CTRL> - CLEAR 125 182
<CTRL> - INSERT 225 183
<CTRL> - BACK S 254 180
<CTRL> - UP ARROW 28 142
<CTRL> - DOWN ARROW 29 143
<CTRL> - LEFT ARROW 30 134
<CTRL> - RIGHT ARROW 31 135
<SHFT> - CLEAR 125 118
<SHFT> - INSERT 157 119
<SHFT> - DELETE 156 116

SPACE BAR 32 33
ESCAPE KEY 27 28
RETURN KEY 155 12

ATARI BASIC Faster & Better 271

ERROR Codes Explained

This is a complete list of the error codes you could encounter while you are running a
BASIC program or performing operations in direct mode. Many of these error codes will be
familiar to you. Others may not be quite as well known.

1 No error. This is the code that you get when whatever you were trying do was executed
successfully without any error detectable by the operating system. This code is not normally
displayed and is usually of interest only to machine language programmers.

2 Memory insufficient. This code means that your program is trying to use more memory
than is available for it to use. This code usually pops up when you are dimensioning an array.
You can also get this error when you are entering a new line of code for a BASIC program
which causes the program to exceed the maximum size allowed.

3 Value error. This code means that a number used as a subscript is outside of the legal
range for that particular function.

100 POKE -37,10 wrong
110 PRINT PEEK(99999)

100 POKE 752,1 --- correct
110 PRINT PEEK(764)

4 Too many variables. This one is simple. Atari BASIC allows a program to have a
maximum of 128 variables referenced. If you are lucky, you can solve this problem by getting
the garbage out of the variable name table. If you have already cleaned up the VNT, you will
have to eliminate some variables from the actual program.

272 Appendix C

5 String length error. This is probably one of the most common errors you will run into.
This code means that you have either used 0 as the index for a string or you have tried to store
data in an index location that is larger than the dimensioned length of the string.

1~~ DIM TEMP$ (2~) --- wrong
11~ FOR X=~ TO 3~ : TEMP$(X)=X+99
12~ NEXT X

1~~ DIM TEMP$(2~) --- correct
11~ FOR X=1 TO 2~ : TEMP$(X)=X+99
12~ NEXT X

6 Out of data error. This code means that your program tried to read data that wasn't
there.

1~~ FOR X=1 TO 8:READ NUM :NEXT X
11~ DATA 1,2,3,4,5,6,7

1~~ FOR X=1 TO 8:READ NUM:NEXT X
11~ DATA 1,2,3,4,
12~ DATA 5,6,7,8

1~~ FOR X=1 TO 8:READ NUM :NEXT X
11~ DATA 1,2,3,4,5,6,7,8

1~~ FOR X=1 TO 8:READ NUM :NEXT X
ll~ DATA 1,2,3,4
12~ DATA 5,6,7,8

--- wrong

--- wrong

--- correct

--- correct

7 Line number greater than 32767. If you get this error code, your program is trying to
transfer control to a line number larger than the maximum allowable number.

1~~ GOTO 38~~~
11~ GOSUB 99999
12~ RESTORE 767879
13~ GOTO 4~~~~

1~~ GOTO 38~~

11~ GOSUB 9999
12~ RESTORE 7678
13~ GOTO 4~~~

--- wrong

--- correct

8 Input error statement. This code means that you tried to enter a string value for an
INPUT statement that was asking for a numeric input.

l~~ PRINT "ENTER THE NUMBER"
ll~ INPUT NUMBER

RESPONSE= SEVEN wrong

RESPONSE= 7 correct

ATARI BASIC Faster & Better 273

9 Array or string DIM error. There are several causes for this error code. First, you might
have tried to DIM an array that had already been dimensioned. Second, you might have tried
to dimension an array beyond the maximum allowable size. Numeric arrays cannot exceed
5460 and string arrays cannot exceed 32767 in length. Third, your program may be trying to
use an undimensioned numeric array or string.

100 DIM TEMP$(37),TEMP$(45) --- wrong

100 DIM TEMP$(59634),PHONES(6000) --- wrong

100 DIM TEMP$(40) --- wrong
110 TEMP4(35)=65

100 DIM TEMP$(37),TEMP$2(45) --- correct

100 DIM TEMP$(5963) ,PHONES(600) --- correct

100 DIM TEMP$(40) --- correct
110 TEMP$(35)=CHR$(65)

10 Expression too complex. This is a rare error that is caused by an expression that
overflows the argument stack. According to the technical manuals, you can get this error by
using an equation that has too many levels of parentheses, but I have tried to create such a
statement without any success. Therefore, I can't show you an example of how it might
work.

11 Numeric overflow. This error code usually means that you tried to divide something by
zero. This error could also happen if the result of an arithmatic operation gives a result that is
greater than 9.99999999*10EXP(97).

100 X=37 : Y=0 --- wrong
110 Z=X/ Y

100 X=37 :IF Y=0 THEN Y=1
110 Z=X/ Y

--- correct

12 Line not found. You will get this error code anytime your program tries to transfer
control to a non-existent line number with a GOTO, GOSUB, IF/THEN, ON/GOSUB or
ON/GOTO. Note that an out of range line number will give an error code 7. The TRAP
statement simply clears all traps when you give it a non-existent line number.

100 GOTO 1200
110 x=y
120 GOSUB 1400
130 Z=X+Y
140 PRINT Z

100 GOTO 120
110 X=Y
120 GOSUB 140
130 Z=X+Y
140 PRINT Z

--- wrong

--- correct

274 Appendix C

13 No matching FOR statement. This error code means that a NEXT statement was
encountered that did not have a matching FOR statement. Note that a POP command
essentially erases the last existing FOR statement from the stack.

100 FOR X=1 TO 10:Z=Z+1
110 NEXT Z

100 FOR X=1 TO 10:POP
110 NEXT X

100 FOR X=1 TO 10 :Z=Z+1
110 NEXT X

--- wrong

--- wrong

--- correct

100 FOR X=1 TO 10 --- correct
110 IF Z(X)=1 THEN POP :GOT0130
120 NEXT X
130 END

14 Line too long. The only way I have ever managed to get this error message is to try to
ENTER a tokenized file from disk instead of LOADing it.

15 GOSUB or FOR line deleted. You will really have to go out of your way to get this error
code. This code means that you halted a program while it was executing a loop or a
subroutine, and then you CONTinued the program after deleting the FOR or GOSUB
statement that had started that loop or subroutine. That seems like a lot of work. Here is an
example of how you can create this error code for demonstration purposes.

Type in the following program and run it -

100 FOR X=1 TO 20000
110 Z=COS (0. 1)
120 NEXT X

Now that you have it running, press the <BREAK> key and type in the line number 100
followed by a <RETURN>. This effectively erases line number 100 from the program. Now
type in the command CONT to resume running the program. You will almost immediately
get an error 15 message.

16 RETURN error. You will get this error code whenever you try to execute a RETURN
statement that doesn't have a matching GOSUB.

100 RETURN

100 GOSUB 130
110 z=y
120 END
130 Z=37: RETURN

wrong

correct

ATARI BASIC Faster & Better 275

17 Syntax error. I can understand how this error could be created, but you would have to go
out of your way to get it since BASIC performs an automatic syntax check every time you
enter a new line of code. However, this error could be created if a line of BASIC code is
garbled by a machine language subroutine or a POKE to the BASIC program area in
memory. The most unlikely cause of this error would be a faulty RAM cell.

18 VAL fu nction error. You will get this error code if you try to use the VAL function on a
string whose first character is not a number.

100 PRINT VAL("XYZ") wrong

100 PRINT VAL("7YZ") correct

19 LOAD program too long. This is an uncommon error, but it does crop up every once in a
while. Essentially, this error code means that you tried to LOAD a program that exceeds the
amount of memory you have. I have only encountered this error once. I once tried to LOAD a
BASIC program from cassette while I had DOS in the computer so I could write the file out to
disk. It turned out that the program would not load because it was so long that it needed the
little bit of memory used by DOS.

20 Device number error. This is a simple error. If you get this error code, then you tried to
use a device number that was less than 1 or greater than 7.

100 OPEN #9,4,0,"C:" wrong

100 OPEN #3,4,0,"C:" correct

21 LOAD file error. You will get this error code if you try to LOAD a file from disk (or
cassette) that is not a normal tokenized file. "Bad" files like that are usually stored in binary
load format or have been LISTed instead of SAVEd to disk.

22-127 These error codes have not been assigned to anything. If you get one of these, you
are probably in deep yogurt.

128 BREAK abort. This "error" code is generated anytime you interrupt an I/O operation by
pressing the <BREAK> key. Although this code is called an error code, it is technically a
status code. You can eliminate this error in your programs by locking out the <BREAK>
key.

129 IOCB already open. You will get this code when you try to OPEN a device that is
already open. The solution to this error is to either CLOSE the needed device number before
trying to OPEN it or to use a different device number.

100 OPEN #3,4,0,"D:PROG.ASM"
110 OPEN #3,4,0,"D :PROG.OBJ"

100 OPEN #3,4,0,"D:PROG.ASM"
ll0 OPEN #4,4,0, "D:PROG.OBJ"

--- wrong

--- correct

276 Appendix C

130 Nonexistent device. This code means that you tried to access a device that the
operating system doesn't recognize. The most common cause of this error is trying to access
a disk file without specifying the device.

100 RUN" PROG. OBJ" wrong

1.0.0 RUN"D:PROG .OBJ" correct

Another common cause is trying to access the RS232 ports without loading the RS232
handler first. The solution to that problem is to load the AUTORUN.SYS file that is on your
DOS 2.0 master disk. That file is Atari's RS232 handler.

A less likely cause is that you tried to access a custom device that hasn't been defined in
the OS hamHer table yet. Only machine language programmers are likely to run into this kind
of problem, but you can get this error from BASIC by specifying an illegal device in an I/O
request.

100 OPEN #3,4.0, "Q:" wrong

10.0 OPEN #3,4,.0," C: " correct

131 IOCB write only. This error occurs when you try to read from a device that was opened
in "write only" mode. If you need to read from such a device, and input from that device is
legal, then CLOSE the device and OPEN it either for "read only" or for "update" (read and
write enabled).

100 OPEN #3,8,.0,"D :PROG.DAT"
110 GET #3,NUM

100 OPEN #3,4,0,"D:PROG .DAT"
110 GET #3,NUM

100 OPEN #3,12,0,"D:PROG .DAT"
110 GET #3,NUM

--- wrong

--- correct (read only)

--- correct (update mode)

132 Illegal handler command. The only time you should see this error code in BASIC is
when you have given an XIO command a command number (cmdno) less than three. Go back
to your BASIC manual and check your syntax. Machine language programmers will run
across this code when they pass the wrong command code to the device handler.

100 XIO 1,#3,0,0,"C:" wrong

10.0 XIO 3,#3,.0,0,"C :" correct

133 Device/file not open. You will get this error code if you try to access a device or a disk
file that has not been opened.

1.0.0 GET #3,NUM

1.00 OPEN #3,4,0,"D :PROG .DAT"
11.0 GET #3,NUM

wrong

correct

AT ARI BASIC Faster & Better 277

134 Bad IOCB number. The operating system only supports 10CB numbers between 0 and
7. Any attempt to access a device with a number outside this range will result in this error
code. Note that lOeB 0 is not directly accessible from BASIC. I have never gotten this error
code from BASIC. If you try to access an illegal device number in BASIC, you usually get an
error code 20. I have managed to get the 134 error code while using the assembler/editor, but
that is not the topic of this book.

135 IOCB read only. The causes of this error code are similar to those for code 131, but in
this case you have attempted to write something to a device that was opened in the "read
only" mode. The weird thing is I can't get this error to occur.

136 End-of-file. The operating system has encountered an end-of-file (EOF) marker in
whatever file you are working with and consequently will not believe you when you tell it to
get more data from that file . About all you can do if you get this error is to re-examine your
control program and make sure that it is trying to get the correct number of records or
bytes.

137 Truncated record . This error code is a nasty one. It usualy means that the disk file you
are trying to access is mortally wounded. If you are lucky, you may recover the data by tuning
the speed of your disk drive so it is running within the normal speed range. It is also possible
that you are trying to use record-oriented input commands on a file that was created by a
bYte-oriented PUT command.

138 Device timeout. This is one of the most common error codes that you will see.
Essentially, what it means is that the operating system went looking for a device you asked
for and couldn't find it. For example, try doing an LPRINT with your printer turned OFF.
There are many possible causes of this error code and there is a solution for each one. In
general, however, you should check all of your cables and make sure that they are properly
connected. You should also make sure that the requested device is turned ON.

139 Device NAK. The causes of this error code will depend upon what device was being
accessed when the error occurred. Basically, this error code means that the computer did not
receive the proper response from the given device when an I/O command was executed.
Specifically, you might have asked the disk drive to read an illegal sector number. Another
example is that you might be trying to send data through a serial channel at a faster rate than
it can handle. I suggest that you simply check all of your cable connections and try the
command over again.

140 Serial frame error. You will get this error code when communications between the
computer and a device get garbled. This is a very rare error, and it is always fatal. Go back to
the beginning and start over again with whatever you were trying to do. If the error persists,
you may have a hardware problem.

278 Appendix C

141 Cursor out of range. The cursor position you requested would place the cursor
somewhere off of the video display. The actual X,Y position limits are defined by the
graphics mode you are in at the time. Check the logic of your cursor movement code and
install limits to keep the cursor on the screen.

100 GRAPHICS 0:POSITION 10,75 wrong

100 GRAPHICS 0:POSITION 10,10 correct

142 Serial bus overrun. This is another rare error code. It usually means that POKEY (the
computer) received a second eight-bit word over the serial data bus before the computer
could finish processing the previous word. This error is also fatal. All you can do is try the
operation again. If the problem persists, you should get your computer serviced.

143 Checksum error. This is a common error code for cassette users. It means that the
information coming into the computer is garbage. This could be due to a bad recording on a
tape or simply improper cueing of the tape before you tried to load it. Try the loading process
again. The problem is probably more serious if you got this error code during disk I/O. You
probably have a bad disk or disk file . Try to load the file again, and if the error persists, resort
to the standard data recovery techniques.

144 Device done error. The device is unable to execute the command you gave it. This
usually means that you tried to save something on a write-protected disk. If this is the case,
remove the write-protect tab and try the operation again. The other major cause of this error
is trying to write to a damaged sector on a disk.

145 Illegal screen mode. You will get this error code if you try to go into a non-existent
graphics mode. Check your GRAPHICS command or your IOCB parameters. You can also
get this error message if you are doing a write with verify, and the verify detects an error. This
means that the computer wrote one thing to the disk and read something else back when it
tried to verify the write. This could be caused by a faulty drive or by a bad disk. Hope it is the
disk.

100 GRAPHICS 37 wrong

100 GRAPHICS 7 correct

146 Illegal function. This error code means that you tried to execute an I/O operation that
is illegal for the specified device. For example, you might have tried to write to the keyboard
or to read from a printer. Check your I/O command for the correct device and command.

100 OPEN #3,4,O, "K:"
110 PUT #3,NUM

100 OPEN #3,4,0,"K:"
110 GET #3,NUM

--- wrong

--- correct

ATARI BASIC Faster & Better 279

147 Insufficient RAM. The only time you should ever get this error code is when you are
trying to execute a GRAPHICS command which asks for more memory than you have
available in your computer. The most common situation would be where you have a large
BASIC program that leaves less than 8138 bytes available and you try to execute a
GRAPHICS 8 command.

148-159 These error codes are not currently assigned to anything. You should never see
any of them.

160 Drive number error. DOS is preset to support only two disk drives. If you add a third
drive without altering the DOS, you will get this error code anytime you try to acces the third
drive. The solution to this is easy. In BASIC you can POKE 1802,3 for three drives or POKE
1802,4 for four drives. Once you have altered the DOS, have DOS write itself out to disk
using the <H> command from the DOS menu.

161 Too many files. Normally, a maximum of three disk files can be open at the same time.
If you exceed that number, you will get this error code. If you really need to have more than
three files open at the same time, POKE 1801,NUM, where NUM is the number offiles you
want to have open at the same time. If you will be needing this capability often, use the DO S
<H> option to save the modified DOS to disk.

162 Disk full. You only have 707 sectors on a DOS formatted disk. You will get this error
code if you reach this limit in the middle of saving something to disk. You should try another
disk or delete some files to make room on the disk.

163 Unknown fatal error. This is a catch-all error code that pops up if DOS runs across an
error that it can't identify. Try using a different DOS disk.

164 Bad disk file. This error comes up every now and then if you try transfering files from
one DOS to another. It means that the DOS you are using can't follow the sector links
contained in the file. Go back to the original DOS. If you still can't load the file, it is damaged,
and you either to have to go to a backup copy or try the standard file recovery techniques.
File recovery is not a task to be attempted by any but advanced level programmers. You can
also get this error code if you use a POINT command that moves the file pointer outside of
the specified disk file. When you do this, the computer thinks you have a bad file.

165 File name error. The syntax of a legal file name is rather strict. If you use an illegal
character or use a chracter improperly in a file name, you will get this error code. Usually, this
means that you used a file name that started with a lower case letter, contained an illegal
character, or used one of the wild card values improperly.

100 OPEN #3,4,0,"D:cat,dat" wrong

100 OPEN #3,4,0,"D:CAT .DAT" correct

280 Appendix C

166 POINT data length error. This error code means that you used a POINT command
improperly. The highest byte number in a normal 81 0 disk file is 125. If you try to point to a
number larger than this, you will get an error 166.

100 POINT #3,525,188 wrong

100 POINT #3,525,18 correct

167 File locked. You will get this error code if you try to alter a disk file that has been
"locked." Specifically, you can not write to, erase, or save on top of a locked file. If you need to
alter a locked file, use the DOS <G> function to to unlock the file first. Note that you can still
format a disk that contains locked files.

168 Unknown I/O command. This a catch-all error code for illegal I/O commands.

100 OPEN #3,4.0,ID:CAT .DAT" --- wrong
110 PUT #3,NUM

100 OPEN #3,8.0,"0 :CAT.DAT --- correct
110 PUT #3,NUM

169 Directory full. DOS 2.0 is set up to allow a maximum of 64 file names in the disk
directory. If you try to save a file after that point is reached, you will get this error message. It
is possible to alter the DOS to allow more files to be on a disk, but you pay a penalty. The file
names have to be shorter, and your modified DOS will not be compatible with the
unmodified DOS. I suggest that you either delete a file to make room for your new file or use a
new disk.

170 File not found. This error code means that you tried to access a file by a name that is
not in the directory. There are several possible causes of this error. First, you may have
misspelled the file name. Second, you may be searching the wrong disk. Third, you may have
specified the wrong drive number. Fourth, the file may have been deleted and no longer
exists. For the first three, simply correct the pro blem and the error should go away. The last
one means you probably will have to recreate the file.

171 POINT invalid. This error code goes hand-in-hand with code 166. When you get a 166,
you have tried to use an invalid byte number in a sector. Error code 171 means that you have
tried to POINT to a sector that is not in a proper file. A proper file is one that has been op ened
for update (I/O code 12).

172 Illegal append. This is a special error code that you probably will never see. You will
only get this code when you try to use DOS 2.0 to OPEN aDOS 1.0 file for append. If you get
this error, simply copy the DOS 1.0 file over to a DOS 2.0 disk and repeat the OPEN
command.

ATARI BASIC Faster & Better 281

173 Format error. This error code means that the drive could not format the disk you are
currently trying to format. There are two possible causes of this error. First, the disk may
have a bad sector. Second, there may be a fault in the disk drive hardware. The usual
hardware fault, in these cases, is out-of-tolerance drive speed. Check the speed of the drive
and adjust it back into the allowable range. If the problem persists, take your drive to a repair
center.

282 Appendix D

Base Conversions for Decimal,
Binary and Hexadecimal Numbers

Decimal Binary Hex Decimal Binary Hex Decimal

.0 .0.0.0.0.0.0.0.0 .0.0.0.0 25 .0.0.011.0.01 .0.019 5.0

.0.0.0.0.0.0.01 .0.0.01 26 .0.0.011.01.0 .0.01A 51

2 .0.0.0.0.0.01.0 .0.0.02 27 .0.0.011.011 .0.01B 52

3 .0.0.0.0.0.011 .0.0.03 28 .0.0.0111.0.0 .0.01C 53

4 .0.0.0.0.01.0.0 .0.0.04 29 .0.0.0111.01 .0.010 54

5 .0.0.0.0.01.01 .0.0.05 3.0 .0.0.01111.0 .0.01E 55

6 .0.0.0.0.011.0 .0.0.06 31 .0.0.011111 .0.01F 56

7 .0.0.0.0.0111 .0.0.07 32 .0.01.0.0.0.0.0 .0.02.0 57

8 .0.0.0.01.0.0.0 .0.0.08 33 .0.01.0.0.0.01 .0.021 58

9 .0.0.0.01.0.01 .0.0.09 34 .0.01.0.0.01.0 .0.022 59

I.e .0.0.0.01.01.0 .0.0.0 A 35 .0.01.0.0.011 .0.023 6.0

11 .0.0.0.01.011 .0.0.08 36 .0.01.0.01.0.0 .0.024 61

12 .0.0.0.011.0.0 .0.0.0C 37 .0.01.0.01.01 .0.025 62

13 .0.0.0.011.01 .0.0.00 38 .0.01.0.011.0 .0.026 63

14 .0.0.0.0111.0 .0.0.0E 39 .0.01.0.0111 .0.027 64

15 .0.0.0.01111 .0.0.0F 4.0 .0.01.01.0.0.0 .0.028 65

16 .0.0.01.0.0.0.0 .0.01.0 41 .0.01.01.0.01 .0.029 66

17 .0.0.01.0.0.01 .0.011 42 .0.01.01.01.0 .0.02A 67

18 .0.0.01.0.01.0 .0.012 43 .0.01.01.011 .0.028 68

19 .0.0.01.0.011 .0.013 44 .0.01.011.0.0 .0.02C 69

2.0 .0.0.01.01.0.0 .0.014 45 .0.01.011.01 .0.020 7.0

21 .0.0.01.01.01 .0.015 46 .0.01.0111.0 .0.02E 71

22 .0.0.01.011.0 .0.016 47 .0.01.01111 .0.02F 72

23 .0.0.01.0111 .0.017 48 .0.011.0.0.0.0 .0.03.0 73

24 .0.0.011.0.0.0 .0.018 49 .0.011.0.0.01 .0.031 74

Binary Hex

.0.011.0.01.0 .0.032

.0.011.0.011 .0.033

.0.011.01.0.0 .0.034

.0.011.01.01 .0.035

.0.011.011.0 .0.036

.0.011.0111 .0.037

.0.0111.0.0.0 .0.038

.0.0111.0.01 .0.039

.00111.01.0 .0.03A

.0.0111.011 .0.038

.0.01111.0.0 .0.03C

.0.01111.01 .0.030

.0.011111.0 .0.03E

.0.0111111 .0.03F

.01.0.0.0.0.0.0 .004.0

.01.0.0.0.0.01 .0041

.01.0.0.0.01.0 .0.042

.01.0.0.0.011 .0.043

.01.0.0.01.0.0 .0.044

.01.0.0.0101 .0.045

.01.0.0.011.0 .0.046

.01.0.0.0111 .0.047

.01.0.01.0.0.0 .0.048

.01.0.01.0.01 .0.049

.01.0.01.01.0 .004A

ATARI BASIC Faster & Better 283

Decimal Binary Hex Decimal Binary Hex Decimal Binary Hex

75 .01.0.01.011 .0.04B 11.0 .011.0111.0 .0.06E 145 1.0.01.0.0.01 .0.091
------------------- -------------------

76 .01.0.011.0.0 .0.04C III .011.01111 .0.06F 146 1.0.01.0.01.0 .0.092
------------------- -------------------

77 .01.0.011.01 .0.040 112 .0111.0.0.0.0 .0.07.0 147 1.0.01.0.011 .0.093
------------------- -------------------

78 .01.0.0111.0 .0.04E 113 .0111.0.0.01 .0.071 148 1.0.01.01.0.0 .0.094
------------------- -------------------

79 .01.0.01111 .0.04F 114 .0111.0.01.0 .0.072 149 1.0.01.01.01 .0.095
------------------- -------------------

8.0 .01.01.0.0.0.0 .0.05.0 115 .0111.0.011 .0.073 15.0 1.0.01.011.0 .0.096
------------------- -------------------

81 .01.01.0.0.01 .0.051 116 .0111.01.0.0 .0.074 151 1.0.01.0111 .0.097
------------------- -------------------

82 .01.01.0.01.0 .0.052 117 .0111.01.01 .0.075 152 1.0.011.0.0.0 .0.098
------------------- -------------------

83 .01.01.0.011 .0.053 118 .0111.011.0 .0.076 153 1.0.011.0.01 .0.099
------------------- -------------------

84 .01.01.01.0.0 .0.054 119 .0111.0111 .0.077 154 1.0.011.01.0 .0.09A
------------------- -------------------

85 .01.01.01.01 .0.055 12.0 .01111.0.0.0 .0.078 155 1.0.011.011 .0.09B
------------------- -------------------

86 .01.01.011.0 .0.056 121 .01111.0.01 .0.079 156 1.0.0111.0.0 .0.09C
------------------- -------------------

87 .01.01.0111 .0.057 122 .01111.01.0 .0.07A 157 1.0.0111.01 .0.090
------------------- -------------------

88 .01.011.0.0.0 .0.058 123 .01111.011 .0.07B 158 1.0.01111.0 .0.09E
------------------- -------------------

89 .01.011.0.01 .0.059 124 .011111.0.0 .0.07C 159 1.0.011111 .0.09F
------------------- -------------------

9.0 .01.011.01.0 .0.05A 125 .011111.01 .0.070 16.0 1.01.0.0.0.0.0 .0.0A.0
------------------- -------------------

91 .01.011.011 .0.05B 126 .0111111.0 .0.07E 161 1.01.0.0.0.01 .00Al
------------------- -------------------

92 .01.0111.0.0 .0.05C 127 .01111111 .0.07F 162 1.01.0.0.01.0 .0.0A2
------------------- -------------------

93 .01.0111.01 .0.050 128 1.0.0.0.0.0.0.0 .0.08.0 163 1.01.0.0.011 .0.0A3
------------------- -------------------

94 .01.01111.0 .0.05E 129 1.0.0.0.0.0.01 .0.081 164 1.01.0.01.0.0 .0.0A4
------------------- -------------------

95 .01.011111 .0.05F 13.0 1.0.0.0.0.01.0 .0.082 165 1.01.0.01.01 .0.0A5
------------------- -------------------

96 .011.0.0.0.0.0 .0.06.0 131 1.0.0.0.0.011 .0.083 166 1.01.0.011.0 .0.0A6
------------------- -------------------

97 .011.0.0.0.01 .0.061 132 1.0.0.0.01.0.0 .0.084 167 1.01.0.0111 .0.0A7
------------------- -------------------

98 .011.0.0.01.0 .0.062 133 1.0.0.0.01.01 .0.085 168 1.01.01.0.0.0 .0.0A8
------------------- -------------------

99 .011.0.0.011 .0.063 134 1.0.0.0.011.0 .0.086 169 1.01.01.0.01 .0.0A9
------------------- -------------------

1.0.0 .011.0.01.0.0 .0.064 135 1.0.0.0.0111 .0.087 17.0 1.01.01.01.0 0.0AA
------------------- -------------------

1.01 .011.0.01.01 .0.065 136 1.0.0.01.0.0.0 .0.088 171 1.01.01.011 .0.0AB
------------------- -------------------

1.02 .011.0.011.0 .0.066 137 1.0.0.01.0.01 .0.089 172 1.01.011.0.0 .0.0AC
------------------- -------------------

1.03 .011.0.0111 .0.067 138 1.0.0.01.01.0 .0.08A 173 1.01.011.01 .0.0AO
------------------- -------------------

1.04 .011.01.0.0.0 .0.068 139 1.0.0.01.011 .0.08B 174 1.01.0111.0 00AE
------------------- -------------------

1.05 .011.01.0.01 .0.069 14.0 1.0.0.011.0.0 .0.08C 175 1.01.01111 .0.0AF
------------------- -------------------

1.06 .011.01.01.0 .0.06A 141 1.0.0.011.01 .0.080 176 1.011.0.0.0.0 .0.0B.0
------------------- -------------------

1.07 .011.01.011 .0.06B 142 1.0.0.0111.0 .0.08E 177 1.011.0.0.01 .0.0Bl
------------------- -------------------

1.08 .011.011.0.0 .0.06C 143 1.0.0.01111 .0.08F 178 1.011.0.01.0 .0.0B2
------------------- -------------------

1.09 .011.011.01 .0.060 144 1.0.01.0.0.0.0 .0.09.0 179 1.011.0.011 .0.0B3

284 Appendix D

Decimal Binary Hex Decimal Binary Hex Decimal Binary Hex

180 10110100 00B4 206 11001110 00CE 231 11100111 00E7

181 10110101 00B5 207 11001111 00CF 232 11101000 00E8

182 10110110 00B6 208 11010000 0000 233 11101001 00E9

183 10110111 00B7 209 11010001 0001 234 11101010 00EA

184 10111000 00B8 210 11010010 00D2 235 11101011 00EB

185 10111001 00B9 211 11010011 00D3 236 11101100 00EC

186 10111010 00BA 212 11010100 0004 237 11101101 00ED

187 10111011 00BB 213 11010101 0005 238 11101110 00EE

188 10111100 00BC 214 11010110 00D6 239 11101111 00EF

189 10111101 00BO 215 11010111 00D7 240 11110000 00F0

190 10111110 00BE 216 11011000 0008 241 11110001 00F1

191 10111111 00BF 217 11011001 0009 242 11110010 00F2

192 11000000 00C0 218 11011010 000A 243 11110011 00F3

193 11000001 00C1 219 11011011 00DB 244 11110100 00F4

194 11000010 00 C2 220 11011100 000C 245 11110101 00F5

195 11000011 00C3 22 1 11011101 00DO 246 11110110 00F6

196 11000100 00C4 222 11011110 000E 247 11110111 00F7

197 11000101 00C5 223 11011111 000F 248 11111000 00F8

198 11000110 00C6 224 11100000 00E0 249 11111001 00F9

199 11000111 00C7 225 11100001 00E1 250 11111010 00FA

200 11001000 00C8 22 6 11100010 00E2 251 11111011 00FB

201 11001001 00C9 22 7 11100011 00E3 252 11111100 00FC

202 11001010 00CA 22 8 11100100 00E4 253 11111101 00FD

20 3 11001011 00CB 22 9 11100101 00E5 254 11111110 00FE

204 11001100 00CC 230 11100110 00E6 255 11111111 00FF

205 11001101 00CO

AT ARI BASIC Faster & Better 285

Subroutines - by Line Number

Note: * Programs contain machine language routines.

CHAPTER
=======

" 3

* 4

4

4

4

4

6

6

6

6

6

6

6

6

LINE #

19f'f'f'

199f'f'

1993f'

1994f'

19990

2f'f'f'0

2f'f'10

20f'20

2f'f'30

2f'f'40

2f'f'50

2f'f'60

2f'f'7f'

2f'08f'

FILE NAME PURPOSE
========= ===========================

SFILL .LST Sc re en fill using machine language

MOVER .LST Move a block of memory

RESERVE .LST Protect a sect ion of memory

VLIST .LST BASIC variable analyzer

VSHORT .LST A short version of VLIST .LST

SCRAMBLE.LST Make your program unlistable

REMAIN . LST Find the remainder of a divide

ROUNDINT . LST Round to nearest integer

ROUNDDEC .LST Round to nearest given decimal

ROUNDDWN . LST Round down routine

ROW .LST Find row on screen

COLUMN . LST Find column on screen

ROUNDUP .LST Round up routine

MONEY .LST Formatted dollars and cents

286 Appendix E

CHAPTER LINE # FILE NAME PURPOSE
------- ----- ==== ===================== -------

6 20090 PHONE.LST Formatted telephone numbers

6 20100 HEXDEC.LST Hex-to-decimal converter

6 20110 DECHEX.LST Decimal-to-hex converter

7 20120 STRIPPER .LST Remove trailing blanks from string

7 20130 RIGHT.LST Right justify a string

7 20140 LEFT . LST Left justify a string

7 20150 CENTER.LST Center a string

7 20160 REVERSE .LST Last-name-first to last-name-last

7 20170 VERIFY . LST Verify substring is in string

7 20180 PEELOFF.LST Deconcatenate command string

7 20190 LOWTOCAP . LST Convert lower case to upper case

7 20200 INVERT .LST Convert normal to inverse

7 20210 LOOKUPID .LST Find substring in BASIC

7 20220 LOOKUP2D.LST Two dimensional string search

7 20230 LOOKUPXY .LST Find X and Y given element number

* 7 20240 SEEKER . LST Find substring in machine language

8 20250 VALIDATE .LST Is a date valid?

8 20260 IIXTOII I. LJ r Convert 8-byte date to 3-byte date

8 20270 IIITOIIX . LST Convert 3-byte date to 8-byte date

8 20280 FINDAY . LST Find a day of the year

8 20290 COMPDAY .LST Calculate computational date number

8 2031'1' WEEKDAY .LST Find a day of the week

8 21'3111 YEARCOM .LST Find year from COMPDAY

8 21'321' MONTHCOM .LST Find month from COMPDAY

CHAPTER
=======

8

8

8

8

8

8

* 9

* 9

* 1~

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

LINE #

2~33~

2~34~

2~35~

2~36~

2~37~

2~38~

2~39~

2~41~

2~43~

2~44~

2~45~

2~47~

2~53~

2~54~

2~55~

2~56~

2~57~

2~58~

2~59~

2~62~

2~63~

ATARI BASIC Faster & Better 287

FILE NAME PURPOSE
========= =====================

DAYCOMl.LST Find day of year from COMPDAY

DAYCOM2.LST Find day of month from COMPDAY

FISCAL . LST Convert calendar to fiscal date

HMSTOSEC . LST Convert HH :MM:SS to seconds

SECTOHMS.LST Convert seconds to HH :MM:SS

CLOKMATH.LST Time clock subtraction

BITMAP .LST Set, clear, or test bits in a byte

BOOLEAN .LST Bit-level boolean operators

. SORT . LST Fast machine language shell sort

KEY .LST Single key input

MENUl .LST Keyboard menu

MENU2.LST Paddle driven menu

FUNKEY .LST Function key tester

MENU3.LST Function key menu

BREAKLOK . LST Disable the BREAK key

REPEAT.LST Repeat as long as key is pressed

INKEYl.LST Controlled string input

INKEY2 . LST Controlled 'numeric input

FIELDB.LST Create blank input field

FIELDI .LST Create inverse video input field

FDOLLARS .LST Create dollar input field

FDATES.LST Create date input field

FTIMES . LST Create time input field

FSCROLL .LST Create a scrolling window display

288 Appendix E

CHAPTER LINE # FILE NAME PURPOSE
------- ------ ========= ===================== -------

13 2~64~ TITLE . LST GRAPHICS 2 title page

14 2~65~ TRAIN.LST Sound effect

14 2~67~ POLICAR . LST Sound effect

14 2~68~ TANK.LST Sound effect

14 2~69~ THUNDER .LST Sound effect

14 2~7~~ FLIES .LST Sound effect

14 2~71~ MOTRBOAT.LST Sound effect

14 2~72~ MANHOLE .LST Sound effect

14 2~73~ SURF.LST Sound effect

14 2~74~ EUROCOP.LST Sound effect

14 2~75~ STORM.LST Sound effect

14 2~76~ HEART.LST Sound effect

14 2~77~ TAKEOFF .LST Sound effect

14 2~78~ SPLAT.LST Sound effect

14 2~79~ SAUCER1.LST Sound effect

14 2~8~~ SAUCER2 .LST Sound effect

14 2~81~ KLAXON .LST Sound effect

14 2~82~ BOMB .LST Sound effect

14 2~83~ EXPLODE.LST Sound effect

13 2~9~~ PAINTGET.DSK Get a Micro-Painter picture from disk

13 2~93~ GR8GET.DSK Get a GRAPHICS 8 picture from disk

13 2~96~ GR8PUT.DSK Put a GRAPHICS 8 picture on disk

13 21~~~ CITOH.GR8 Dump a GRAPHICS 8 picture to a printer

ATARI BASIC Faster & Better 289

Subroutines - Alphabetically

Note: * Programs contain machine language routines.

LINE # CHAPTER FILE NAME PURPOSE
======= ========= =======

20390 * 9 BITMAP .LST Set, clear, or test bits in a byte

20820 14 BOMB.LST Sound effect

20414 * 9 BOOLEAN .LST Bit-level bool ea n operators

20530 11 BREAKLOK.LST Disable the BREAK key

20150 7 CENTER.LST Center a string

21000 13 CITOH .GR8 Dump a GRAPHICS 8 picture to a printer

20380 8 CLOKMATH.LST Time clock subtraction

20060 6 COLUMN.LST Find column on screen

20290 8 COMPDAY.LST Calculate computational date number

20330 8 DAYCOMl.LST Find day of year from COMPDAY

20340 8 DAYCOM2.LST Find day of month from COMPDAY

20110 6 DECHEX.LST Decimal-to-hex converter

20740 14 EUROCOP.LST Sound effect

20830 14 EXPLODE .LST Sound effect

290 Appendix F

LINE #

20600

20590

20570

20580

20280

20350

20700

20630

20620

20500

20930

20960

20760

20100

20360

20260

20270

20550

20560

20200

20440

20810

20140

20210

CHAPTER
=======

12

12

12

12

8

8

14

12

12

11

13

13

14

6

8

8

8

11

8

7

11

14

7

7

FILE NAME PURPOSE
========= =======

FDATES.LST Create date input field

FDOLLARS.LST Create dollar input field

FIELDB.LST Create blank input field

FIELDI.LST Create inverse video input field

FINDAY.LST Find a day of the year

FISCAL.LST Convert ca1enday to fiscal date

FILES.LST Sound effect

FSCROLL.LST Create a scrolling window display

FTIMES.LST Create time input field

FUNKEY.LST Function key tester

GR8GET.DSK Get a GRAPHICS 8 picture from disk

GR8PUT.DSK Put a GRAPHICS 8 picture on disk

HEART.LST Sound effect

HEXDEC.LST Hex-to-decimal converter

HMSTOSEC.LST Convert HH:MM :SS to seconds

IIXTOIII.LST Convert 8-byte date to 3-byte date

IIITOIIX.LST Convert 3-byte date to 8-byte date

INKEYI.LST Controlled string input

INKEY2.LST Controlled numeric input

INVERT.LST Convert normal to inverse

KEY.LST Single key input

KLAXON.LST Sound effect

LEFT .LST Left justify a string

LOOKUPID.LST Find substring in BASIC

ATARI BASIC Faster & Better 291

LINE # CHAPTER FILE NAME PURPOSE
======= ========= --------------

20220 7 LOOKUP2D.LST Two dimensional string search

20230 7 LOOKUPXY.LST Find X and Y given element number

20190 7 LOWTOCAP.LST Convert lower case to upper case

20720 14 MANHOLE.LST Sound effect

20450 11 MENU1 .LST Keyboard menu

20470 11 MENU2.LST Paddle driven menu

20510 11 MENU3.LST Function key menu

20080 6 MONEY.LST Formatted dollars and cents

20320 8 MONTHCOM.LST Find month from COMPDAY

20710 14 MOTRBOAT .LST Sound effect

19900 ,~ 4 MOVER.LST Move a block of memory

20900 13 PAINTGET.DSK Get a Micro-Painter picture from disk

20180 7 PEELOFF .LST Deconcatenate command string

20090 6 PHONE .LST Formatted telephone numbers

20670 14 POll CAR . LST Sound effect

20010 6 REMAIN.LST Find the remainder of a divide

20540 11 REPEAT .LST Repeat as long as key is pressed

19930 4 RESERVE.LST Protect a section of memory

20160 7 RESERVE.LST Last-name-first to last-name-last

20130 7 RIGHT.LST Right justify a string

20030 6 ROUNDDEC.LST Round to nearest given decimal

20040 6 ROUNDDWN.LST Round down routine

20020 6 ROUNDINT.LST Round to nearest integer

20070 6 ROUNDUP.LST Round up routine

292 Appendix F

LINE # CHAPTER FILE NAME PURPOSE
------ ======= ========= =======

20050 6 ROW.LST Find row on screen

20790 14 SAUCER1.LST Sound effect

20800 14 SAUCER2.LST Sound effect

20000 4 SCRAMBLE.LST Make your program unlistable

20370 8 SECTOHMS.LST Convert seconds to HH:MM:SS

20240 -1:- 7 SEEKER.LST Find substring in machine language

19000 ::: 3 SFILL. LST Screen fill using machine language

20430 ,~ 10 SORT.LST Fast machine language shell sort

20780 14 SPLAT.LST Sound effect

20750 14 STORM.LST Sound effect

20120 7 STRIPPER.LST Remove trailing blanks from string

20730 14 SURF.LST Sound effect

20770 14 TAKEOFF.LST Sound effect

20680 14 TANK.LST Sound effect

20690 14 THUNDER.LST Sound effect

20640 13 TITLE. LST GRAPHICS 2 title page

20650 14 TRAIN.LST Sound effect

20250 8 VALIDATE. LST Is a date valid?

20170 7 VERIFY.LST Verify substring is in string

19940 4 VLIST.LST BASIC variable analyzer

19990 4 VSHORT.LST A short version of VLIST.LST

20300 8 WEEKDAY.LST Find a day of the week

20310 8 YEARCOM.LST Find year from COMPDAY

ATARI BASIC Faster & Better 293

Assembly Language Routines - by Chapter

CHAPTER FILE NAME PURPOSE
-------------- ------------------ ===================================

3 SFILL Fill the screen with a character

4 MOVER Block memory move

7 SEEKER Substring search

8 CLOCK Real time clock

9 BITMAP Test and toggle bits in a byte

9 BOOLEAN Bit level Boolean operators

10 SHELL Shell sort

12 BLINK Blinking cursor

13 SLOWLIST Control LISTing speed

15 MINIDOS DOS functions from BASIC

294 Appendix H

Application Programs - by Chapter

CHAPTER FILE NAME PURPOSE
-------------- ------------------ ================================

3 CONVERT .BAS Convert DOS binary load file into
BASIC DATA statements

3 DATAPAK .BAS Convert DOS binary load file or
BASIC DATA statements into a
string packed array

6 HEADER . BAS Analyze header information of
DOS binary load files

8 DATECOM.BAS Perpetual calendar 1901-2099

8 CLOCK . BAS Real time clock

12 BLINK . BAS Blinking cursor

13 MARQUEE . BAS A banner program

13 SLOWLIST .BAS Control LISTing speed from BASIC

15 AUTOGO Create AUTORUN.SYS files

15 CATALOG Disk catalog program

15 RPMTEST Disk RPM tester

15 MINIDOS .BAS DOS functions from BASIC

ATARI BASIC Faster & Better 295

Demonstration Programs - by Chapter

CHAPTER FILE NAME
======= =========

3 SFILL .OEM

4 MOVER. OEM

4 WINOOW .DEM

5 PROLAY .DEM

1~ BUBBLE .DEM

1~ SHELL .OEM

1~ SHELL2.DEM

1~ SHELL3 .DEM

12 CONTROL . OEM

13 SCROLL .DEM

13 GLOWl .OEM

13 GLOW2.0EM

13 SLYOESHO .OEM

14 SOUN01 .0EM

14 SOUN02 .0EM

PURPOSE
=======

Fill screen with an ATASCII character

Move string from top to bottom of
video screen and then back again

Take a visual trip through memory

BASIC Overlay

A BASIC bubble sort benchmark

A BASIC shell sort benchmark

A machine language sort benchmark

A visual sort of experience

A menu using controlled inputs

Coarse scrolling demo

Make screen messages glow

A better glow routine

Page flipping demo

Channel Mixing (16 bit) effects

Interference effects

296 Index

Index

A

ADDRESS 37
ADR(STRINGS$) 83
Adventure game 128
AND 121
Arithmetic expressions 37
Artifacting 181
Assembler/editor manual 34
Assembler/Editor Cartridge format 34
Atari drives (non) 231
ATASCII Keycode chart 154
ATASCII 158, 159
AUTO GO 224
Available Memory 50,51

* B *
Backup 22
BASIC Listings 193
BASIC Variable Lister 53
BCD 74
Benchmark 106, 133
Binary Numbers 115
Bit level encoding 128
Bit Mapping 120
Bits Within a Byte 116
Blanking a String 85
Blinking cursor 169
Block movements 61
Bomb 223
Boolean Logic 121
- Assembler/Editor Manual 34
- Axioms for Boolean Expressions 124
- Boolean algebra 123
- Boolean Logic in Machine Language 125
- Boolean operators 121,123
- Boolean OR operator 122
- Boolean AND Operator 122
- Boolean NOT Operator 123
- Boolean XOR Operator 123
- Boolean Expressions in BASIC 124
- Machine Language Boolean OR 127
- Machine Language Boolean AND 127
- Machine Language Boolean XOR 127
BREAK Key 157

Byte 115

C

Calendar month and year 102
CATALOG - Disk Catalog Program 228
Centering a String 87
Clearing a Bit in a Byte 120
Clear 115, 116, 120
Clock rate 214
CLR 84
Color register 181
Color Value Table 183
Constants 19
Convert Program 39
Converting Strings: Lower Case to Upper 90
Coordinates 96
Copying a block of data 58
Counters 18
CTIA 201
Cursor control flag 168
Cursor inhibit flag 169

0

Data Entry 162
DATAPAK 42
Day ofthe Year 100
Days between dates 100, 101
Days in the future 100
Days of the week 100, 101
Decay Time 209
Decimal numbers 38, 144
Decimal-to-Hexadecimal conversions 76
Demonstration programs 146
Descending 131
Device number 6 166
Direct methods 68
Direct Overlay 67
Disk operating systems 42
Distortion 212,216
Dive bomber 223
Dump a Screen to a Printer 204
Dynamic algorithm 209
Dynamic interpreter/assembler 210
Dynamic table lookup 210

* E *
Eight byte date 101
Elapsed time 113
Element 96
ENTER Command 67
Envelope 208
Error Code 28
- Line Number where error occurred 28
- Machine Language Shell Sort 144
- Error Code is stored in PEEK(195) 28
Error Correction Techniques 167
Error Detection Techniques 166
Error trapping code 28
Error Traps 28
EXPLODE 223

* F *
FDATES.LST 164
FDOLLARS.LST 164
FIELDl.LST 163
FIELDB.LST 163
Field 131
File header on a disk 76
File 131
Filters 166
Finding Remainders 71
Fiscal month and year 102
Flags 120
Flow chart 20
Formatted Money Values 74
Formatted Telephone Numbers 75
FSCROLL.LST 165
Function Key Value Chart 157
Function keys 156

G
GLOWING Message Routine 182
GRAPHICS 2 Sample Title 182

* H *
HEADER.BAS 76
- Auto-Scan Mode 76
Hexadecimal-to-Decimal Conversions 75
HH:MM:SS 112
High-pass 214
Hours, Minutes, and Seconds 113
House flies 219
How to Load / Execute USR Routines 37

* I *
Interleaved methods 68
Interleaved Overlay 67
Inverting the Characters in a String 90
IOCB with Machine Language 202

K
Keyboard Input Routines 159
Keyboard Menus 154
Keyboard 158
Key 131

ATARI BASIC Faster & Better 297

Klaxon siren 222
Knuth, Donald E. 135

L
Leading zeroes 144
Left Justifying A String 87
LEN(STRING$) 83
Line Numbering Conventions 19
Logic (see Boolean Logic)
Logical expression 123
Logical operators 116,121
LOMEM 52
Lorin, H. 135
LS13 71
Luminance 184

M
Machine Language 34
Machine-language shell sort 134
Making Numeric Data Sortable 144
Manhole cover 219
Marquee 177
MEMLO 52
Menu routine 153
MICRO-PAINTER Picture 207
MINIDOS 233, 234
Minimizing Program Execution Time 29
Minimizing the Size of a Program 30
ML.BAS 40
MONEYLST 74
Motor boat 219
MOVER.DEM 63
MOVER 58
Moving a block of data 58
MSB 71

* N *
Negative numbers (pos. and neg.) 144
Non-overlapping movement 61
NOT 121
Numeric Input 160

0
Object File into BASIC Data Statements 40
Object file 36
One-Byte Numbers 73
One-Byte strings 115
Open the Keyboard 153
OPTION 156
OR 121
Overlap 61
Overlays 65 - 67

*P'"
Paddle Driven Menus 155
Page flipping 63, 184
Page Six 35
Page Zero 51
Pass 131, 133
PEEK (764) 159

298 Index

PEEK any location in memory 52
PEEKing a Two Byte Address 52
PEEK 83
Peeling Words Off of a String 89
Perpetual Calendar 103
PHONE.LST 75
POKEing A Two Byte Address 52
POKEY 215
POKE 83,165
Police car 218
Police siren 220
POP 154
Positional input fields 162, 163
Precedence for Boolean Operators 124
Programming Conventions 18
Protected Memory Overlays 68

R
RAMTOP 52
RAM 50
Records 131
Release Time 209
Repeating Keys and Combinations 158
Reserve Memory for Private Use 52
REVERSE.LST 88
Right Justifying a String 86
ROM 50
Rounding Down 72
Rounding Numbers 72
Rounding Up 73
Royalties 34
RPMTEST - Disk RPM Tester 231

8
SAUCER 221,222
Saving and Retrieving Screen Data 199
- Screen Memory Sizes 200
- Screen Save Utility 201
- Screen Load Utility 203
SCRAMBLE .LST 57
Screen Fill Routine 36
Scrolled inputs 162, 165
SELECT 156
Setting a Bit in a Byte 120
SET 115, 116, 120
SFILL 34, 36, 48
Shell Programs 18
Simulating Real String Arrays 95
Single Key Input Routine 152
Single Key Inputs 152
SLOWLIST 193, 199
SLYDESHO Page Flag Table 193
Smooth scroll 181
Sort 130,131,132,133
- Ascending 131
- Bubble sort 131
- External 130
- In-memory 130
- Shell sort 132

SORT.LST 143
- Sorting with Assorted Keys 145
Sound 208,215
- AUDC 211,212
- AUDF1-AUDF4 211
- AUDCTL 211,213,215
- Attack Time 209
- Sound Control Registers 211
- Special Effects 216
- Synthesizer 209
- Static 209
-Tone 216
- VOLUME ONLY 212,216
- Volume only POKE 213
Special input fields 162,164
Special Keys & Their Character Codes 159
SPLAT 221
START 156
Status indicators 120
Steam train 217
Storm 218
String Dimensioning
- 2-D String Array 96
String Input 160
String packed 42
String Storage Pointers 84
String/ Array Table 65
Strings 83
Stripping Trailing Blanks 85
Subroutines 16
Surf 219
Sustain Time 209

T
TAKEOFF 221
Tank 218
Tell tale heart 220
Testing a Bit in a Byte 120
TEST 116, 120
The Eight Byte Time 112
The Powers of Two 116
The Three Byte Date 99
Thunder 218,220
Time Clock Math 113
TRAP command 28,166
Truth Table 122
Two-Byte Numbers 74

* U *
Unlistable programs 57
User inputs 152
USR Command 33
- Arguments 37
- Writing USR Routines 34
USR Function 37
- Loading USR Routines into Strings 42
- POKE format 37,41
- Saving USR Routines 41

V
VAL(STRING$) 145
Validity of a date 98
Variable Name Table 65
Variable Naming Conventions 18
VERIFY in Machine Language 92
Verifying Substring 91
Vertical blank interrupt 169,199
Vervan's FULMAP 53, 58
Video display module 153
Video Formatting 162

ATARI BASIC Faster & Better 299

Video Layouts 22
VLIST.BAS 65
VLIST.LST 53
VSHORT.LST 57

W
Working Variables 18

X
XOR 121

V
VAL(STRING$) 145
Validity of a date 98
Variable Name Table 65
Variable Naming Conventions 18
VERIFY in Machine Language 92
Verifying Substring 91
Vertical blank interrupt 169, 199
Vervan's FULMAP 53,58
Video display module 153
Video Formatting 162

Video Layouts 22
VLIST.BAS 65
VLIST.LST 53
VSHORT.LST 57

W
Working Variables 18

X
XOR 121

ATARr

ATARi IS ;-' Irad t1 ln ;:nk o l ATARlln c . ,] Warner C ommunlCa ll o ns Co mpany

HI
lANGUAGE
UTILITIES

for ATARl400/BOO/I2OO. va Vervan
~ uhlIty programs

require no software
modifications and are

a must for all serious ATARI BASIC
programmers .

CASDUP 1.D & 2.0 To copy most
BOOT tapes and cassette data files .
1.0 is a file copier. 2.0 is a sector
copier. Cassette only $24.95

CASDIS To transfer most BOOT
tapes and cassette data files to disk.
Disk only $24 .95

FULMAP BASIC Utility Package.
VMAP-variable cross-reference,
CMAP-constan t cross-reference
(includes indirect address
references), LMAP-line number
cross-reference, FMAP-all of the
above. Will list " unlis table"
programs. Also works wi th
Editor/Assembler cartridge to allow
editing of string packed machine
language subroutines. All outputs
may be dumped to printer. Cassette
or Disk $39 .95

DISASM To disassemble machine
language programs. Works with or
without Editor/Assembler

cartridge. May be used to up or
down load s ingle boot files. All
output can be dumped to printer.
Cassette or Disk $24.95

DISDUP For disk sec tor
infonnation copying. May specify
s ingle sector, range of secto rs, orall .
Copies may be made wi thout read
varify. Disk $24.95

IjG products are available at
computer stores, B. Dalton
Booksellers and independent
dealers around the world. If IJG
products a re not available from your
local dealer, order direct . Include
$4.00 for shipping a nd handling pe r
item. Foreign res iden ts add $11 .00
plus purchase price per item. U.S .
funds only please .

I]G, Inc. 1953 W. nth Stree t
Upland . Cali fornia 91786
Phone: 714 /946-5805

Hit'sfrom~
IT'S JUSTGREAT!
ATAR I TM Warner Communlcal ions . Inc

Learn to program theATARI '"
in 6502 MachineLmiguage & BASIC.

own
computer games. primarily
BASIC exam pl es but. for very
advanced programmers. a machine
language example is included at the
end of the book. 115 pages . ISBN
3-911682-84-357.95.

Hew to Program Your ATARlln 6502
Mlchlne Language. To teach the

If

available
dealer. order direct.

for shipping and
per item . Foreign residents

add $11 .00 plus purchase price per
item. U.S. funds only please.

IJG . Inc. 1953W. l1th-Street
Upland . California 91786
Phone: 714/946-5805

Hit'sfram~
IT'S JUSTGREAT!
ATARI TM Warner Communications. In c .

it's
from

COMPUTER
BOOKS FROM

If It's From IJG,
IT'S JUST GREATI

APPLE

THE CUSTOM APPLE & OTHER MYSTERIES by Winfried
Hofacker & Ekkehard Floegel. The complete guide [Q cus[Qmlzing the
APPLE II 190 pages, ISBN 0-936200-05-7 524.95 retail

ATARI400/800/1Z00

ATARI BASIC, Learning By Using by Thomas E. Rowley. Learn
ATARI BASIC easily through the many short programs provided 73 pages,
ISBN 3-92 I 6B2-B6-X 55 .95 retail

FORTH ON THE ATARI - Learning By Using by Ekkehard
Floegel. Forth application examples for the novice and expert
programmer. liB pages, ISBN 3-88963-170-357.95 retail.

GAMES FOR THE ATARI by Sam D. Roberts. Provides Ideas and
examples of computer games that can be wri[[en in BASIC I 15 pages,
ISBN 3-9 I 1682-84-3 57.95 retail

HOW TO PROGRAM YOUR ATARI IN 650Z MACHINE
LANGUAGE by Sam D. Roberts. Teaches machine language, the use of
an assembler and how [Q call subroutines from the BASIC inrerpreter
106 pages, ISBN 3-921682-97-5 59.95 retail

COMMODORE VIC-ZO

TRICKS FOR VlCs by Sam D. Roberts. Inrroducrion to BASIC and
machine language programming. Also includes insrru([lons for hardware
modifications. 114 pages, ISBN 3-88963- I 76-2 59.95 retail

IBM PC

ELECTRIC PENCIL OPERATORS MANUAL by Progressive
Software Design. (Available SOOIl) ISBN 0-936200-12-X

The IBM ELECTRIC PENCIL PROGRAMMING GUIDE by
Progressive Software Design. A guide for programmers and hobbyists
who wish to add their own programs to the IBM PC Electric Pencil Word
Processing System (Release date to be announced).

SHARP 1500

GETTING STARTED ON THE SHARP t 500 & RADIO
SHACK PC-Z by H.C Pennington, G. Camp & R. Burris. Mas ter BASIC
programming fundamenrals. Step by step instructions. For those with no
previous programming experience. 280 pages, ISBN 0-936200-1 1- I 5 I 6.95

TIMEX/SINCLAIR

ZX-8tjTIMEX'" - Programming in BASIC and Machine Language by
Ekkehard Floegel. For the Sinclair ZX-80(8 I) or Timex 1000. 139 pages,
ISBN 3-92 I 682-98-3 59.95 retail.

IJG. Inc. 1953 W. I I th Street
Upland, California 91786
Phone: 714/946-5805

APPLE'" APPLE Computer Inc. ATARI'" Warner Communications, Inc. Elecrric PenCil '" IJG IBM PC IBM

Timex'" Timex ZX-BI '" Sinclair Research Ud. '" IJG. Inc. 19B3

	Cover

	Contents

	Preface

	Introduction

	Subroutines, Handlers and Shell Programs

	Using Machine Language in BASIC

	Magic Memory Techniques

	BASIC Overlays

	Number Crunchers and Munchers

	Using Strings

	Date and Time Manipulation

	Bits, Bytes, and Boole

	Sorting Things Out

	Keyboard Trickery

	Controlled Data Entry

	Video Antics

	Sound Advice

	Useful Utilities

	The Faster and Better Disks

	Appendix

	Useful PEEKS/POKES

	Key Codes

	Error Codes Explained

	Base Conversions for Decimal, Binary, Hex

	Subroutines by Line Number

	Subroutines Alhpabetically

	Assembly Listings by Chapter

	Applications by Chapter
	Demonstrations by Chapter

	Index

