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PREFACE

This book deals specifically with the Motorola 68000 family of 
microprocessors. It is primarily about assembly language programming. 
Chances are that a reader interested in assembly language programming is 
familiar with computers and their programming; In the unlikely event that 
you are not, and have picked up this book expecting to learn all about 
computers, I want to urge you to start elsewhere. In order to gain the 
maximum knowledge from this book, you should already be familiar with 
computers in general and have written some programs in a high-level 
language such as BASIC or Pascal. It is not necessary to know another 
assembly language or be an expert in computer programming. I start at a 
fairly low level but get up to speed pretty quickly. Those who already know 
another assembly language will be able to progress rapidly through the 
material. In the writing of this book I attempted to strike a balance between 
a beginner-level tutorial and the brief format of a reference manual. This 
level of presentation should appeal to the majority of readers.

There are 15 chapters plus a number of useful appendices. Chapter 1 
covers number systems. This is mostly general information, but there is a 
little bit of 68000-specific information here. You should look through it even 
if you know number systems inside out. Chapter 2 describes microcomputer 
architectures in general, and the 68000 specifically.

Chapters 3 through 5 provide enough information to start writing com
plete programs. Chapters 6 through 8 cover more advanced topics such 
as addressing modes and subroutines. Once through chapter 8 you will have 
a substantial background in 68000 assembly language. At this point Chapter 
9 presents a major program, a linked list manager. This helps to cement the 
techniques from Chapters 1 through 8.

Chapters 10 through 12 cover advanced topics such as exception 
handling, shift and rotate instructions, and advanced arithmetic. By the end 
of Chapter 12 you will know all the instructions of the 68000. Chapters 13,
14, and 15 cover the newest members of the 68000 family—the 68010,68020, 
and 68030. Chapter 15 should be of special interest, since it provides an 
introduction to the latest and most powerful 68000 processor. You will be 
hearing more about the 68030 as it is introduced into systems. It is destined 
to have a major impact on the computer systems of the next decade.
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vi il Preface

Of special note is Appendix B, which provides program shells. These 
shells allow you to start programming with the Atari ST, the Apple 
Macintosh, or the Commadore Amiga. Without these program shells it 
would require a good deal of effort just to learn how to interface to your 
operating system.

A number of people provided assistance along the way. Among my 
students who helped out were Carol Cook and An-Ping Chi. Special thanks 
to Mike Mellone and John Say well, who helped prepare the appendices. 
Finally, I would like to thank Motorola for their cooperation and permission 
to reprint information from their 68000 manuals.

Thomas P. Skinner
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INTRODUCTION

Why learn assembly language? Most people do so out of a need to 
perform programming tasks that are not easy, or not possible, with other 
languages. The popularity of the 68000 family of microprocessors, as 
exemplified by the sales figures of the Apple Macintosh, Commodore 
Amiga, Atari ST, and others, certainly makes it worthwhile to learn more 
about this line of micros. The particular microprocessor chip your com
puter uses will remain an abstraction unless you get down to the machine 
language level; but since no one really programs in machine language, as
sembly language is the way to gain the most complete knowledge of the 
68000 family capabilities.

Programming in assembly language allows the control of every aspect 
of the computer hardware. Many applications require procedures that 
are either impossible or inefficient with computer languages such as 
BASIC. You may be a professional computer user who has a need for 
a laboratory control computer, such real time applications often require 
some assembly language programming. Regardless of your reason for 
learning assembly language, it is challenging and rewarding when your 
programs start to run. You will feel—and be—“in control.”

This book is about programming the 68000 microprocessor, not a 
particular computer using this chip. For this reason there will be some 
specifics about your computer and operating system that are not covered. 
Since you are more than likely experienced in using your computer for 
other applications, it would be a waste of time to attempt to cover 
all the small details. Instead, I will present the material in a general 
manner such that it will be easy to locate the specifics for your particular 
machine in your manuals. As an aid to those individuals having one of the 
aforementioned computers, some specific input/output subroutines and 
a program shell are provided in the appendices.

Before we get started, let’s pause to review the steps required to 
write a program and run it. Programming in assembly language, like 
programming in a high-level language, requires entering the “source 
code” into the computer. Unless all of your programming has been in 
BASIC, using its built-in editing features, you have probably used some

1



2 Assembly Language Programming for the 68000 Family

form of text editor. It really doesn’t matter which editor you use as long 
as you can create a source file for input to the assembler. An assembler is 
similar to a compiler in that it “translates” a source language into machine 
language.

The output from an assembler is called the object code. Normally 
this is machine language put into a special format that combines it with 
other object modules into an executable image. This file is essentially a 
picture of what goes into memory. When you finally run the program, 
this file is brought into memory so that the microprocessor may execute 
the instructions.

The operation of combining object modules is called linking. A special 
program called a linker is used to perform this function. Figure 1 shows 
the steps used to produce an executable program. The details will differ 
from computer to computer. Your system may have a program similar 
to a linker that converts the output of the assembler into an executable 
form, but does not allow combining object modules. You should have no 
trouble in learning the commands that perform these steps on a particular 
machine.

There are quite a few 68000 assemblers available for a range of com
puter systems. It is not possible to present all the variations in assemblers 
in this book. Motorola, as the designer of the 68000 microprocessor fam
ily, originated its assembly language. The most important task of the 
assembly language designer is to devise a set of symbolic names for each 
instruction the microprocessor can execute. These symbolic names are 
known as mnemonics. For example, an instruction to move data from 
one place to another has the mnemonic MOVE.

In order to allow the greatest flexibility, this book will use the standard 
Motorola assembler syntax and mnemonics. There will probably be some 
minor variations with the assembler you use. However, most of the pieces 
of an assembly language program will be identical regardless of the 
assembler used, and you should not find it difficult in relating the material 
to your particular assembler. If you don’t presently have an assembler 
and linker for your computer system, check with the manufacturer, who 
probably sells a “developer’s package” that contains an assembler, a 
linker, and the system documentation you will need. Many independent 
software houses also supply development packages. Go to your local 
computer store and compare these for compatability with the Motorola 
standard. If the syntax or mnemonics of the assembler are very far from the 
standard, you should probably consider another one. Other items that 
are sometimes provided are an editor (a must if you don’t have one), 
an interactive debugger, and other utilities to assist in rapid program 
development. This book does not assume any specific development aids 
or utilities.
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Step One. Text Editing

Step Two. Assembly

Figure 1  Assembler Operation.

In Chapter 1 1 will review number systems. If you are an experienced 
assembly language programmer in another language you probably know 
most of this material. However, it is a good idea to review the chapter, 
especially as it presents some details specific to the 68000.
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NUMBER SYSTEMS

Throughout history mankind has used a variety of methods to rep
resent numerical quantities. Early man used piles of stones, each stone 
representing one unit of those items being counted. It soon became ob
vious that for large numbers, a large number of stones were required. 
One solution to this problem was to use stones of different sizes. A sin
gle large stone could be used to represent a pile of smaller stones. This is 
similar to the use of the denominations of paper currency. Schemes like 
this work well for physical entities like coins or stones. However, to rep
resent quantities on paper we would be forced to draw pictures of our 
piles of stones.

Decimal

Our decimal number system is a product of all these schemes. Instead 
of piles of different numbers of stones or stones of different sizes, the 
Arabic numerals 0 to 9 and the relative position of these numerals are 
used to represent the number of stones in a pile and the relative size 
of the stones. The numerals 0 to 9 can represent quantities from zero to 
nine. Position can be used to represent any number of sizes. For example, 
the decimal number “23” can be thought of as representing three small 
stones and two larger stones. If each larger stone is equivalent to ten 
small stones, this number represents the equivalent of twenty-three small 
stones. This may seem obvious to most readers, but it is the basis of all 
the number systems we will study.

In the decimal number system, each digit’s position represents a dif
ferent power of 10. For example, the number 7458 is equivalent to:

7(10)3+4(10)2+5(10)1+8(10)°
The choice of 10 as the numerical base, or radix, as it is sometimes called, 
is arbitrary. We can create a number system using any base we desire.

5



6 Assembly Language Programming for the 68000 Family

Binary

Virtually all computers use 2 as the base for numerical quantities. 
The choice of 2 as a base for computers is not arbitrary. Internally, the 
electrical elements, or gates, that collectively construct the computer are 
much easier to build if they are required to represent only two values or 
states, they are thus called binary state devices. Each element can only 
represent the values zero or one. Each one or zero is called a bit, or binary 
digit. In order to represent larger numbers, bit positions must be used. 
Binary numbers are based on powers of two rather than on powers of 
ten. For example, the binary number “1011” is equivalent to:

1(2)3+0(2)2+ l(2 >1+1(2)0

This value is equivalent to:

8+0+2+1 = 11

in decimal representation. The positional values of the bits are thus:

( 2 ) ° = 1

( 2 ) 1 = 2

( 2 ) 2 = 4

( 2 ) 3 = 8

( 2 ) 4 s 16

<2 ) 16  = 6 5 , 5 3 6

etc.

To convert a binary number to its decimal equivalent, merely add up 
the appropriate powers of two. If the binary position contains a 1, the 
decimal value of that bit position is added.

Conversions

Converting a decimal number to binary is not quite as simple as con
verting a binary number to decimal. One method is to work backwards.
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We can look for the highest power of two that is not greater than the 
decimal number, place a 1 in the equivalent bit position, and then sub
tract this value from the decimal number. We repeat this operation until 
the number is zero. Bit positions not used in this subtractive process are 
set to 0. For example, we can convert 5710 (57 in base 10) to binary by 
the following steps:

57 - 25 = 25 
25 - 24 = 9 
9 - 23 = 1
1 - 2® = 0 (finished)

This gives us the binary number

l(2)5+l(2)4+l(2)3+0(2)2+0(2)1+l(2)° = 1110012

Another method can also be used. We can divide the original decimal 
number by two and check the remainder. If the remainder is one, a binary 
one is generated. We repeat this division by two until we obtain a zero. 
This method gives us the bits in reverse. In other words, we get 2°, 21, 
and so on. For example, using the same number as above:

57/2 = 28 R 1 
28/2 = 14 R 0

14/2 = 7 R 0 
7/2 = 3 R 1 
3/2 ■ 1 R 1
1/2 = 0 R 1 (finished)

Reading the bits in reverse gives us 1110012, which is the same number 
as we arrived at before. The method you use is up to you.

These methods can be used to convert from any number base to any 
other number base. However, the arithmetic must be done in the number 
base of the number being converted. As this becomes complicated when 
converting from a system other than decimal, you are better off to convert 
the number to decimal and then the decimal number to the new base. 
There are a few exceptions to this rule. One of these exceptions is the 
conversion of the hexadecimal (hex) base to or from binary. Since hex is 
used quite extensively with the 68000 family, it is the topic of our next 
discussion.



8 Assembly Language Programming for the 68000 Family

Hexadecimal

Hexadecimal, or base 16, uses positional values that are powers of 16. 
Each hex digit can take on 16 values. Since the decimal digits 0 through 
9 only represent 10 values, 6 additional symbols are needed. The letters 
A through F are used to represent these additional values. Thus the hex 
digits are represented by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, 
corresponding to the values from 010 to 1510. The positional values are:

(16)° • l 
(16)* * 16 
(16)2 * 256 
(16)3 = 4096 
etc.

As you can see, these values increase rapidly. A hex number is usually 
larger than it looks. For example, 32BF10 is

3(16)3+2(16)2+ll(16)1+15(16)0
- 12,288+512+176+15 = 12,99110

We can convert from decimal to hexadecimal by either method dis
cussed above. For example, to convert 38710 to hex, we perform the 
following:

387/16 « 24 R 3
24/16 » 1 R 8
1/16 > 0 R 1  (finished)

The result in hex is 183ie. Remember to list the hex digits in reverse order.
A nice property of hexadecimal numbers is that they can be converted 

to binary almost by inspection. Since 24=16, there is a simple relationship 
present. Four binary digits grouped together can represent one hexadeci
mal digit. The binary values 0000 through 1111 represent the hexadecimal 
digits 0 through F.

HEX BINARY HEX BINARY
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 P 1111
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To convert from hex to binary we merely write the equivalent of each 
hex digit in binary. To convert 6E3Cie to binary we would write:

6 e 3 c 
0110 1110 0011 1100

and our binary equivalent is IIOIIIOOOIIIIOO2. We can go from binary 
to hex in the same manner. IIIIOOOOIOIO2 is F0Ai6.

Arithmetic in Binary and Hexadecimal

We can perform the normal arithmetic operations of addition, sub
traction, multiplication, and division in any number base. Addition and 
subtraction are simple if we remember that a carry or borrow may be 
required. If the sum of two digits equals or exceeds the number base, a 
carry is generated. The value used as the carry or borrow is equal to the 
number base. For example, if we add two binary numbers together, we 
generate a carry if the sum of the bits in one binary position and a pos
sible carry from the next lowest position is greater than or equal to two. 
Adding 11001012 to OIIIIOI2 gives us:

1100101 
+ 0111101
10100010 

Let’s try adding 72A816 to IF08i6.

72A8 
+ 1F08

91B0

Subtraction is only slightly more difficult. If the individual digits 
cannot be subtracted from one another, we need to borrow from the 
next higher digit position. In other words, if the minuend (top digit) is 
less than the subtrahend (bottom digit) we need a borrow. In binary the 
value borrowed is always two. This borrow is added to the minuend, the 
subtraction is then performed on the two digits. To adjust for the borrow, 
just as we had to adjust for a carry, we must add one to the subtrahend 
in the next higher digit position. For example, in binary

nil 1001
- 0110 - 0110

1001 0011
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or hexadecimal
55P2

- 4A63
0B8F

Hand calculations involving multiplication or division are rarely per
formed by programmers. However, conventional hand methods can be 
used. The basic principles we used for addition and subtraction are ap
plied. Although I will not explain multiplication or division, those readers 
who desire can try some examples and verify their results by convert
ing to decimal and repeating the multiplication or division in the decimal 
number base.

Bits, Bytes, Words and Longwords

So far in our discussion of numbers we have not indicated how large 
our numbers can be. If you want to write down a very large number on 
paper, the size of the number is only limited by the size of the paper. 
This is not the case for computers. Internally the computer must represent 
numbers by electrical signals. These signals represent the binary values 
0 and 1. The maximum size of a number inside the computer is limited 
to the number of binary digits, or bits, used to represent the number. 
Theoretically we could use all the bits inside the computer to represent a 
single number. This, of course, is not practical. Internally it is convenient 
to limit the number of bits used for each number.

Many computers are organized around groups of eight bits, called 
bytes. The size of memory on many computers is measured in bytes. 
We might say a computer has 64 thousand bytes of memory. This is 
equivalent to 512 thousand bits. Modem computers often have memory 
sizes in the millions of bytes. A megabyte (MB) is equal to approximately 
one million bytes. As we will discuss shortly, a single byte is normally used 
to represent a single character of textual information. If we have a 2 MB 
memory, we can store 2 million characters of information. If we assume 
approximately 60 characters per line of printed material, and 50 lines per 
page, this is equivalent to over 650 pages.

Bytes can be grouped together. For most computers, including the 
68000 family, two bytes grouped together form a word. A word is there
fore equal to 16 bits. This is also equivalent to four hexadecimal digits. 
We can also have longwords, made up of four bytes or 32 bits. Larger 
groupings are possible but are not normally handled as a single value ex
cept by much larger computers. We will be dealing primarily with bytes, 
words, and longwords in 68000 assembly language programming.
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Representing Negative Values

So far in our discussion of number representations, we have only 
been dealing with positive numbers. A method of representing negative 
numbers in the computer must be introduced. You have already learned 
that numbers are represented internally by binary digits. We must devise 
a way of including the conventional minus sign used to indicate a 
negative number, with the number itself. But how does a minus sign 
translate into binary? Since numbers are either positive or negative, we can 
indicate this fact by using a single binary digit. A negative number can be 
indicated by using an “extra” bit rather than a minus sign. This may not work 
as well on paper, but it is essential for a computer’s internal representations.

Numeric quantitites are normally restricted to fixed sizes—a single 
byte, a word, or some multiple number of words or bytes. It is not 
practical to append an extra “sign” bit to a fixed unit of storage such 
as a byte: the central processing unit (CPU) normally is restricted to 
manipulating integral numbers of bytes, and this extra bit would force 
the use of an extra complete byte. The solution is to sacrifice one of the 
bits of our number for use as the sign bit. The size of the largest number 
we can represent is reduced, but we can now represent the same number 
of positive numbers as negative numbers.

By convention, if a number is negative we indicate this fact by in
cluding a sign bit equal to one. The sign bit is normally the leftmost, or 
high-order, bit of the number. The simplest technique would be merely 
to indicate the magnitude of the number in the remaining bits, setting the 
sign bit to either one or zero to indicate a negative or positive number. 
This representation, called sign magnitude, has been used on older com
puters. It has a number of disadvantages, the most prominent to a pro
grammer being the fact that both a positive and negative zero exist—both 
100000002 and OOOOOOOO2 are zero values for a single byte number. With
out going into additional detail, suffice it to say that a better method is 
needed.

Virtually all modern computers, including microprocessors, use a rep
resentation called two’s complement. The sign bit is still used to indicate 
whether a number is positive or negative, but the remaining bits do not 
directly indicate the magnitude of the number if it is a negative number. 
To represent a negative number in two’s complement, we first form the 
one’s complement of the number in its binary form. The one’s comple
ment is merely the number with all the one bits converted to zeros, and 
all the zero bits converted to ones. The one’s complement of 011000112 
is 100111002. So far this is quite simple. We are almost finished. To get 
the two’s complement we add one to the one’s complement. We perform 
this addition just as we have done in the previous examples. To complete 
the conversion of our example, we get:



12 Assembly Language Programming for the 68000 Family

10011100  
+ 00000001

10011101

Let’s convert 8910 to —8910 using two’s complement. First we must 
convert 8910 to binary. 89io =  010110012. Now form the one’s complement, 
101001102; finally, to get the two’s complement we add one. Our result 
is —8910 =  101001112.

The nice property of two’s complement numbers is that we can add 
them together without concern for the sign. We do not have to perform 
any conversion. As a simple example, we should be able to add 8910 and 
—8910 and obtain a zero result.

01011001 8910 
+ 10100111 -89^0

oooooooo o10

We ignore any carry out from the sign bit position.
To subtract in two’s complement, we merely negate the subtrahend 

and then add. This operation is performed regardless of whether the 
subtrahend is positive or negative.

ASCII Character Codes

In order to represent character information in the computer’s memory, 
we must find a way to convert the such as CR (carriage return), LF 
(line feed) and HT (horizontal tab). There are other “control character” 
codes that are of general interest but are not necessarily available on 
all terminals. For example, a BEL (bell) might sound a beep on your 
terminal, or a VT (vertical tab) might be implemented. The other codes 
with values less than 3210 are used for a variety of purposes including the 
protocols used for data communications.

One special character should be mentioned. The DEL (delete) code, 
12710, which is sometimes called a rubout, is most commonly used by 
software to indicate the deletion of the last character typed. Some soft
ware uses the BS (backspace) character to perform this same operation. 
You should note that these are really two different character codes, 810 
and 12710, and the interpretation as to what, if anything, these characters 
do is up to the software.

Some computers and terminals have incorporated additional charac
ters as an extension to the standard ASCII character set. By allowing 
codes above 12710> an additional 12810 characters can be specified. These 
might be from a foreign language, or for special graphics used by certain
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terminals. The IBM PC, which does not use the 68000, makes extensive 
use of such an extended character set. You should be aware that these 
special character sets are not part of the ASCII standard, when you use 
these codes, your programs will not necessarily be useful on all comput
ers, even though they use the 68000 microprocessor.

Exercises

1. Binary numbers are based on powers o f_________
2. Give the decimal equivalent of the following binary numbers: a) 

11100010 b) 111111 c) 10000000
3. Convert the following decimal numbers to binary: a) 126 b) 255 

c) 100
4. Convert the following binary numbers to hexadecimal: a) 11111111

b) 10000 c) 11000101
5. Convert the following hexadecimal numbers to binary: a) 55 b) 

AB c) EE
6. Give the decimal equivalent of the following hexadecimal numbers: 

a) FF b) 55 c) DE
7. Perform the following binary additions: 

a) 110000 b) 01111
+  001111 +  11100

8. Perform the following hexadecimal additions: 
a) FFAA b) 0123

+  A100 +  A5EE
9. Perform the following binary subtractions:

a) 11111 b) 11001
-  00101 -  10000

10. Perform the following hexadecimal subtractions:
a) FFFF b) 12AA

-  AAAA -  02AB
11. How many bits are there in a byte?
12. How many bytes are contained in a 68000 word?
13. The 68000 uses what method to represent negative numbers?
14. Which bit is the sign bit?
15. If a number is negative, what is the binary value of the sign bit?
16. Convert the binary number 00111101 to an equivalent negative num

ber.
17. What is the decimal equivalent of 11110000 in signed binary?
18. What is the equivalent of —100 decimal in a signed hexadecimal byte?
19. What number bases are convenient to use when programming the 

68000?



14 Assembly Language Programming for the 68000 Family

20. Hexadecimal numbers use what number base?
21. What number base is used internally by the 68000?
22. Convert the following decimal numbers to binary and hexadecimal: 

a) 200 b) 5 c) 65000
23. Convert the following unsigned binary numbers to decimal: 

a) 11010101 b) 00001110 c) 11100000110
24. Convert the following unsigned hexadecimal numbers to decimal:

a) ABCD b) 123 c) FF
25. Convert the following hexadecimal numbers to binary:

a) FEAA b) 123A c) 0100
26. Convert the following binary numbers to hexadecimal:

a) 1100110001 b) 00010000 c)11110111
27. Perform the following signed binary additions:

a) 11111000 +  00111111
b) 00010001 +  01000000 
c) 11111100 +  00000011

28. Perform the following signed binary subtractions:
a) 11100000 -  00000001
b) 00111000 -  11111111 
c) 10101010-00010101

29. What is the range of the ASCII codes that are printable?
30. Does the 68000 interpret the ASCII character codes?

Answers

1. two
2. a) 226 b) 63 c) 128
3. a) 1111110 b) 11111111 c) 1100100
4. a) FF b) 10 c) C5
5. a) 01010101 b) 10101011 c) 11101110
6. a) 225 b) 85 c) 222
7. a) 111111 b) 101011
8. a) 1A0AA b) A711
9. a) 11010 b) 01001

10. a) 55555 b) OFFF
11. 8 
12. 2
13. two’s complement
14. the high-order bit
15. one
16. 11000011
17. -16
18. 9C
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19. decimal, binary and hexadecimal
20. 16
21. binary
22.

a) 110010002; C816
b) 1012; 5„
c) lllllOllllOlOOOj; FDE816

23. a) 213 b) 14 c) 1798
24. a) 43981 b) 288 c) 255
25.

a) 1111111010101010
b) 1001000111010 
c) 100000000

26.
a) 331
b) 10
c) F7

27.
a) 100110111
b) 01010001
c) 11111111

28.
a) 11011111
b) 00111001
c) 10010101

29. 33j0 through 126io, assuming that space, 3210> does not print.
30. No. Input/output devices and software interpret the ASCII codes.





CHAPTER 2

MICROCOMPUTER 
ARCHITECTURE

Before we begin to discuss assembly language, we should take time to 
explore the world of the microcomputer. Just what is a microcomputer? 
As the name implies, it is a small computer. This should not mislead you 
into thinking that a microcomputer cannot be a powerful computing tool. 
In fact, the microcomputers of today are as powerful as the minicomput
ers and mainframe computers of just a few years ago. The reduction in 
size has been a direct consequence of the development of integrated cir
cuits (chips) that contain the functional equivalent of many thousands of 
transistors.

A microprocessor is an integrated circuit that is the basic functional 
building block of the microcomputer. Figure 2 shows the organization 
of a basic microcomputer system. The central processing unit (CPU) is 
the microprocessor chip itself. Electrically connected to the CPU chip is 
memory. Memory can be of various sizes—for example, over 16 million 
bytes for the 68000 microprocessor. Also connected to the CPU are input 
and output (I/O) devices that allow the CPU to communicate with the 
outside world through a terminal, as well as other information storage 
devices such as floppy disks and magnetic tapes.

The Motorola M68000 Family

The M68000 family of microprocessors is the current step in a 
continually evolving microprocessor technology. The M68000 family 
consists of a number of different CPU chips. Among these are the MC68000, 
MC68008, MC68010, and the MC68020, and the very new MC68030 (actual 
chips are designated with the prefix MC). Later on in this book I will 
refer to the M68000 family or the MC68000 CPU chip as just the 68000.

Motorola, like the other major microprocessor designers, didn’t start 
with a chip as sophisticated as the MC68000. Prior to the introduction of 
the M68000 family, Motorola’s bread-and-butter microprocessor line was

17
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Figure 2 Organization of a simple microcomputer system.

the M6800 family. The MC6800 is strictly an 8-bit processor. Motorola 
attempted to bridge the gap with the MC6809, a pseudo-16-bit CPU. 
The 6809 never caught on like the Intel 8086 family. However, it did gain 
wide popularity in the Radio Shack Color computer.

A major issue that faces chip architects is how compatible to make 
their new chips with earlier chips. It is rarely possible to make a new chip 
completely compatible, at the machine code level, with prior designs. An 
alternative is to make the architectures source code-compatible. With 
this scheme, a programmer merely has to reassemble the program for 
the new chip. He or she is then free to use the features of the new 
chip in modifications to an already running program. This technique was 
adopted by Motorola when they jumped to the 6809.

The successor to the Intel 8080 family is the 8086 family. Intel chose 
to make the new chip family somewhat compatible at the source code 
level. This requirement may have bridled the new architecture to some 
extent. It is possible to convert an 8080 program to an 8086 program 
by a source code conversion program. The resulting program can then
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be modified by hand to allow for the differences in architectures. This 
scheme did have the advantage that it allowed software vendors to get 
their products to market quickly. However, the transposed code did not 
run as well as if it had been written for the target machine in the first 
place.

Motorola’s MACSS (advanced computer system on silicon) project 
abandoned both object and source code compatibility with the older 
MC6800 line. While this decision forced a slower introduction of software 
for the M68000 system family, it allowed a completely unconstrained 
design. The only concession Motorola made was at the bus interface level: 
special pinouts are provided to accommodate the large number of 8-bit 
peripheral chips already in existence. It should be noted that this is a plus, 
and in no way affects the architecture or, for that matter, the M68000 bus 
interface.

The question always arises, is a chip 8, 16, 32, or some other number 
of bits? To properly answer this question requires setting a base of 
comparison; we must compare apples with apples and oranges with 
oranges. One basic metric that can be used is the internal register size. If 
16-bit registers support 16-bit operations with the majority of arithmetic 
and logical instructions, the chip can be classed as internally a 16-bit 
architecture. If only a few of the registers and/or instructions are 16-bit, 
and the remainder are 8-bit, the chip should be classified as an 8-bit chip. 
The 8080 family is a good example of an 8-bit chip. Another perspective 
is the width of the data path to and from memory. Contrary to popular 
belief, the internal size does not have to be the same as the data path; the 
data path can be larger or smaller. The only restriction is that the data 
path always be a multiple of a byte (8 bits). The very popular 8088 is an 
8-bit data bus version of the 16-bit data bus 8086. This is the chip found 
in the original IBM PC.

The M68000 family uses a 32-bit architecture internally. It fully sup
ports its 32-bit registers with a rich instruction set performing 32-bit oper
ations. The MC68000 and MC68010 have a 16-bit data bus. The MC68020 
and MC68030 have full 32-bit buses. The MC68008 is an 8-bit bus version 
of the MC68000. Its position is similar to the Intel 8088 in that it allows 
interfacing to 8-bit buses and memory components.

The astute reader may be asking the question, what effect does the 
data bus width have on the microprocessor’s speed? This is not a simple 
question to answer. A 16-bit bus does not necessarily allow a CPU to 
operate twice as fast as an 8-bit bus. It is true, however, that if the CPU 
desires to fetch a 16-bit value it will require two accesses to memory if an 
8-bit bus is used. But even if the 16-bit bus is operating at twice the byte 
transfer rate of the 8-bit bus, there are many other factors that control 
the CPU speed.

A CPU requires a clock. The speed of this clock determines the inter
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nal rate at which operations are performed. The basic interval between 
clock pulses is the cycle time for the CPU. It takes a multiple number of 
cycles for the CPU to execute an instruction. Not all instructions require 
the same number of cycles, and not every cycle requires an access to 
memory. Furthermore, the M68000 family supports what is known as an 
asynchronous bus: the speed of the bus does not have to be directly re
lated to the CPU clock. This is a major departure from the M6800 family 
design.

When you consider this information, together with some more exotic 
concepts such as instruction prefetch and pipelining, to be covered in 
later chapters, it is a complicated task to determine the exact relationship 
between the data bus width and the CPU speed. One thing is clear; 
the M68000 is a fast microprocessor. Microprocessor manufacturers are 
constantly designing benchmark tests to show the performance edge of 
their chips. It is always possible to design a program that shows up 
the good features of any chip in comparison with others. I will leave 
it up to you to decide for yourself how much faith you want to place in 
benchmark programs.

The CPU

Before starting on assembly language programming, it is essential that to 
take a look at the 68000 microprocessor architecture. We are not going to 
discuss all the details of the actual machine language used by the CPU, 
but we must know enough about the structure of memory and the internal 
CPU registers to use assembly language.

As you are probably aware from your experience with a high-level 
programming language such as BASIC or Pascal, all information in the 
computer’s memory and acted on by the CPU must be represented as 
numbers. This includes textual information, which is represented by the 
numeric equivalents for each character as governed by an appropriate 
character set. You will learn more about character manipulation in later 
chapters.

The instructions of the 68000 microprocessor are designed to manip
ulate numeric information in a variety of ways. Data can be moved from 
one place to another in the computer’s memory, or data can be moved 
from memory to registers contained in the microprocessor chip. Registers 
are special places to store and manipulate data. They are like memory lo
cations except that they operate at much higher speeds and serve special 
purposes for the CPU. The most important use of the registers is in per
forming arithmetic operations. The 68000 is capable of performing the 
normal arithmetic operations on integer numbers, such as addition, sub
traction, multiplication and division, as well as logical operations. Logical
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operations allow manipulation of the individual bits of the data. You will 
soon see how logical operations can be very useful.

Some instructions do not manipulate data but are instead used to 
control the flow of your program. Often you will desire to repeat an 
operation many times. Rather than repeat the instructions over and over 
when you write your program, you can use the control instructions to 
cause the microprocessor to automatically repeat a group of instructions 
that you have written only once.

Memory

The memory used with the 68000 consists of a number of locations or 
cells, each holding one 8-bit number or byte. Memory cells are numbered 
from zero up to the maximum allowable amount of memory. The 68000 
allows a maximum of 16 megabytes of memory. A megabyte is equal 
to 220 or 1,048,57610. Therefore, 16 megabytes is actually 16,777,21610 
locations or addresses. Figure 3 shows the concept of memory cells and 
their corresponding addresses.

A program consists of instructions and data. Since everything in mem
ory is a number, careful organization is required to prevent the computer 
from interpreting instructions as data, or data as instructions. This is nor
mally the responsibility of the programmer.

One of the reasons for using assembly language is to free the program-

ADDRESS MEMORY

0
1
2

MAX

Figure 3  Memory Organization.



22 Assembly Language Programming for the 68000 Family

mer from having to worry about the exact representation of instructions 
and data in memory. However, a programmer usually finds the occasion 
when such knowledge is useful.

Recall that memory consists of an array of individually addressable 
bytes. If the data we wish to store in memory is only a single byte, there 
is no question as to how  it is represented, only where. If, however, the 
data is a word or instruction consisting of more than one byte, it is not 
clear how this information is stored. Word data (16 bits) are always stored 
with the high-order byte stored in the lower memory address. This means 
that if we were reading a dump of memory, word data would be read 
directly. Many microprocessors have this order reversed, making it much 
harder to interpret the contents of memory. Figure 4 shows how byte, 
word and longword values are stored.

Instructions consist of one or more words. The first word always con
tains the operation code, or opcode. This specifies what the particular

Integer Data 
1 Byte - 8  Bits

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Bvt® 0 LSB Byte 1

Byte 2 Byte 3

1 W o r d - 16 Bits

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB WordO LSB

Word 1

Word 2

Even Bytes I Odd Bytes

7 6 5 4  3 2 1  0 | 7 6 5  4 3 2  1 0
1 Long W o r d * 32 Bits

15 14 13 12 11 10 9 3 7 6 5 4 3 2 1 0
MSB

—  —  Long Word 0— ---------—
High Order

Low Order LSB

—  — Long Word 1--------------- —

—  —  Long Word 2 — --------- —

Figure 4 Bytes, words, and longwords memoiy. (Courtesy of Motorola, Inc.)
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instruction is. Many instructions are actually represented by several dif
ferent opcodes, each specifying a different version of the instruction.

Virtually all systems will have two kinds of memory: read-only mem
ory (ROM) and random-access memory (RAM). Read-only memory, as 
its name implies, can be read but not written. How then is it possible 
to use it? Actually, ROM chips can be written, but not by a program. 
Certain types of ROM chips have data stored when the chips are manu
factured. These ROM chips can never be changed; the data is part of the 
mask used to create the chips. Other types of ROM chips can be erased, 
either electrically or using ultraviolet light, and then “reprogrammed.” 
There are special ROM programming devices to do this. ROM’s can be 
used to store a program that will never change. A good example of this 
is an operating system. All or part of your operating system is more than 
likely in ROM.

RAM memory is something of a misnomer, since ROM is in fact also 
a random-access type of memory. By random access we mean that any 
location in the memory can be accessed in any order, without restriction 
to a sequential order. Read/write memory actually is what is normally 
meant by RAM. This is the memory that holds your program and data, 
as well as data that must be maintained by the operating system. The 
amount of RAM memory your system has will vary, but some amount 
of RAM is required with any system. The more RAM memory available, 
the larger your program and data can be if it is all to fit into memory at 
the same time.

User and Supervisor Modes

The 68000 executes programs in one of two modes, user or supervisor. 
If a program is running in the user mode, it is most likely a normal 
everyday program. You will more than likely be writing mostly user
mode programs. The supervisor mode is used by programs that require 
complete control over all aspects of the hardware. Your operating system 
is a prime example of a program that would run in supervisor mode.

If a program is running in the user mode, it is restricted in a number 
of ways. Some instructions are designated as privileged. One of these is 
the STOP instruction. A program in user mode cannot execute any of 
the privileged instructions. This helps to prevent a program with bugs 
from crashing the system it is running on. In a multiple user system it is 
important that one user not be able to do damage to another user. If a 
user crashes the system, or otherwise performs a privileged instruction, 
it could affect all users.

While not built into the 68000 CPU chip, many machines have im
plemented various forms of memory protection. The 68000 provides the
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user/supervisor mode information on every reference to memory. If the 
system is so designed, certain areas of memory can be restricted to ref
erences only when in the supervisor mode. If a user mode instruction 
were to try to access this “protected” area of memory, a special condi
tion or “exception” would occur and the operating system could then take 
control before any damage is done.

The CPU Registers

In one sense, a register is a type of memory location. However, it is 
located right on the CPU chip itself. Registers differ from conventional 
memory locations in that they operate at a higher speed. In other words, if 
we use registers in a calculation, it will be faster to perform than if mem
ory locations were used. Additionally, registers are specified by special 
names rather than just by numbers. The existence of a good register set 
is a major asset to the architecture of a particular microprocessor. The 68000 
family is a good example of a microprocessor with a rich register set.

Depending on whether a program is running in user or supervisor 
mode, there is a slightly different view of the CPU registers. This view 
is known as the programmer s model. The following paragraphs discuss 
the programmers model for the user mode.

The 68000 has sixteen 32-bit general-purpose registers. These are di
vided into two groups of eight. The eight data registers, DO through D7, 
are the registers you would normally use to perform arithmetic oper
ations. These can be used as bytes, words, or longwords. The second 
group of eight general-purpose registers are the address registers, A0 
through A7. These registers can be used for arithmetic operations, but 
are primarily designed for use in the special addressing modes discussed 
in subsequent chapters. The address registers can be used as words or 
longwords, but not as bytes. In the next chapter you will learn more of 
the details concerning the use of the sixteen general-purpose registers.

Address register A7, also known as the user stack pointer (USP), has a 
special interpretation by the 68000. Some instructions affect this register 
without its being explicitly specified. You will learn all about stacks and 
the use of the USP in Chapter 7. For now, consider it as just one of the 
eight address registers.

Another very important register is the program counter, or PC. This 
32-bit register is used to hold the memory address of the next instruction 
that the CPU will execute. The programmer never explicitly references 
this register; its contents are always updated by the CPU. Normally, the 
PC advances as the program executes sequential instructions that are in
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memory. If an instruction causes a branch to a part of the program other 
than the next sequential instruction, the PC will be updated automatically.

The final register in the user programmers model is the condition 
code register, or CCR. This is an 8-bit register that contains individual 
bits that are set or reset as the result of arithmetic instructions. The CCR 
will be covered in detail in Chapter 5.

The supervisor programmer’s model is identical to the user mode 
programmer’s model with two exceptions. First, in the supervisor mode 
there is a different register A7, known as the supervisor stack pointer, or 
SSP. This register is totally distinct from the USP. Second, the condition 
code register is still present, but it is in a 16-bit form. Together with the 
new high-order 8 bits, it is known as the status register, or SR. Figure 5 
shows the programmer’s models for both the user and supervisor modes.

n p r  Program 
J  Counter

1 " 1 | Condition Code 
___________ lCCR Register

User Programmer's Model

31____________________ 1615_____________________ 0
; IA7’ Supervisor Stack

----------------------------------------1 J(SSP) Pointer
15_________ 8 7 __________0

j CCR |sR Status Register

Supervisor Programmer’s Model Supplement

Figure 5 Programmer's models. (Courtesy of Motorola, Inc.)
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Input/Output

It may come as a surprise to you that the 68000 does not have 
any input/output instructions. How then, is I/O performed? The 68000 
family uses a technique known as memory mapped I/O. This means that 
input/output devices are connected to the system via interface chips that 
are connected to the CPU as if they were areas of memory. A small part 
of the huge amount of memory we are allowed must be sacrificed; it is 
now used for I/O and can’t be used for main memory at the same time. 
The real advantage to the memory-mapped I/O technique is that rather 
than being restricted to a small number of special I/O instructions, we 
can use aU of the 68000 memory reference instructions with I/O devices.

A large variety of I/O interface chips are available for the 68000 
family. A number of these were formerly used with the M6800 family. 
The 68000 allows the use of these 8-bit chips as well as the newer 
16-bit I/O devices specifically designed for the 68000. In Chapter 12 
we will discuss the programming of a typical I/O chip. We will use an 
asynchronous serial I/O device or UART chip.

Exercises

1. What are the three main parts of a microcomputer?
2. What is the difference between the MC68000 and the MC68008?
3. What is the newest member of the M68000 family?
4. Is the M68000 family an extension of the M6800 architecture?
5. How many bits is the internal architecture of the 68000?
6. What are the data bus sizes for the M68000 family?
7. Is the M68000 data bus synchronous or asynchronous?
8. What is the difference between RAM and ROM?
9. What is the purpose of supervisor mode?

10. Are registers faster or slower than memory?
11. How much memory is allowed with the MC68000?
12. What are the 32-bit general-purpose registers?
13. Is multi-byte data stored with the high order byte in the lowest or 

highest address?
14. Are all instructions the same number of words?
15. What is the purpose of the program counter?
16. What register is used for the USP and SSP?
17. How many input/output instructions does the 68000 have?
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Answers

1. CPU, memory, and I/O.
2. The MC68000 transfers two bytes of data to and from memory, while 

the MC68008 only transfers one byte.
3. The MC68030.
4. No.
5. 32 bits.
6. The MC68000 and the MC68010 are 16-bit buses, while the MC68020 

and the MC68030 are 32-bit buses.
7. Asynchronous.
8. RAM can be read and written, while ROM can only be read.
9. Supervisor mode allows the design of operating systems that can make 

it more difficult for a user s program to crash the system.
10. Much faster.
11. 16 megabytes.
12. D0-D7 and A0-A7.
13. The lowest.
14. No, an instruction can be one or more words. The first word is the 

opcode word.
15. The PC contains the addresses of the instructions as they are executed.
16. A7.
17. None; memory-mapped I/O is used.





CHAPTER 3

ASSEMBLER SOURCE FORMAT

There are many assemblers available for the 68000 family. They differ 
from each other in minor ways. It would be virtually impossible to present 
the details of every assembler on the market. Rather, I will present what 
is a relatively standard core, based on the specifications provided by 
Motorola for its assemblers. There are many assembler features that 
are left out. A careful reading of your assembler manual will provide 
these details. What is presented here is enough information to get you 
programming in 68000 assembler. You should, however, verify that your 
assembler is compatible with this core.

The assembler processes the source program line by line. A line of the 
source program can be translated into a machine instruction, or generate 
an element or elements of data to be placed in memory; or the line may 
only provide information to the assembler itself. The lines of the source 
program are sometimes referred to as source statements.

Regardless of the use of a particular line of the source program, the 
format of each line is relatively standard. The general format of a source 
line consists of four fields, as follows:

[<label>] <operation> [<operand>] [<comment>]

Not all of the four fields must appear on all lines; brackets [ ] have been 
used to indicate fields that are optional. The comment field is always 
optional, but the label and/or operand fields may be required depending 
on the contents of the operation field. Unless a source line consists solely 
of a comment, the operation field is required. If a line is to consist only 
of a comment, the first Character on the line must be an asterisk (°). This 
must appear in the leftmost position on the line, column 1. The remainder 
of the line is ignored by the assembler.

A field consists of one or more tokens. A token is the smallest mean
ingful unit of information that the assembler uses. Tokens are identifiers 
or numeric constants. The symbolic names of the machine instructions 
are an example of identifiers. The fields of a source line are separated by 
one or more spaces. All 68000 assemblers recognize the space character

29
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as a field separator; most assemblers also recognize the tab character as 
a field separator, and treat it as a space. Generally, where one space or 
tab is allowed, you may also use more than one. You must be careful not 
to insert a space in the middle of a field, as this causes the assembler to 
treat the next non-blank characters as the next field.

A delimiter is a special character that can serve to mark the end of 
a token, besides having its own special meaning. Punctuation characters 
such as commas, periods, and colons are examples of delimiters.

Figure 6 is an excerpt from a sample program that we will use to 
further discuss the format of assembler source lines. As you can see, the 
program consists mainly of character sequences that look like English 
language words separated by punctuation. These character sequences 
are the identifiers. The rules for creating identifiers varies slightly from 
assembler to assembler, but the following rules work with almost every 
assembler:

1. The first character must be alphabetic (A...Z, a...z).
2. Any additional characters may be alphabetics or digits (0...9).
3. Only the first eight characters are significant; the rest are ignored.

There are a number of variations from these rules. Some assemblers re
tain significance for more than eight characters. Others treat the upper- 
and lower-case alphabetic characters as equivalent, or retain uniqueness, 
or allow only the use of one case. For example, “COUNT” and “count” 
may be completely different identifiers. Generally, assemblers allow in
structions and directives to be in either case. Characters other than the 
alphanumerics are sometimes allowed. Check your assembler manual to 
be sure. Throughout this book we will use upper case, and be careful not 
to mix cases.

The Label Field

The label field always contains a symbol formed with the standard 
rules for identifiers. If a label is present, it is used to associate the symbol 
with a value. This value may represent the location of data in memory, 
a constant, or the location in memory of the instruction in the operation 
field.

Labels can be used to locate data, such as a variable, stored at par
ticular locations in memory. A variable consists of one or more bytes. 
Normally variables will be bytes, words, or longwords. It is important 
to reserve sufficient space for a variable. If an instruction tries to place 
a longword of data at a memory location only large enough to hold a 
word, the data will overwrite a part of memory that it shouldn’t.
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★PROGRAM TO ECHO A LINE
TEXT

START: LEA BUFFER,AO INITIALIZE BUFFER POINTER
LOOP: JSR GETC GET A CHARACTER

MOVE.B DO,(AO)+ SAVE CHARACTER IN BUFFER
CMPI.B #CR,D0 END OF LINE?
BNE LOOP NEXT CHARACTER
LEA BUFFER,AO RESET BUFFER POINTER
JSR NEWLINE GO TO A NEW LINE

LOOP2: MOVE•B (AO)+,D0 GET A CHARACTER
JSR PUTC OUTPUT TO SCREEN
CMPI.B #CR,D0 END OF LINE?
BNE LOOP 2 GET NEXT CHARACTER
JSR NEWLINE GO TO NEW LINE

FINIs MOVE.W #0,-(SP) RETURN TO SYSTEM
* TRAP #1 n

PUTC: MOVEM.L D0-D7/A0- A 6 , - (SP) SAVE REGISTERS
ANDI.L # $FF,D0 MAKE SURE WE HAVE ONLY A
MOVE.W D O ,-(SP) OUTPUT TO OP. SYS.
MOVE.W #2,-(SP) n
TRAP #1 n
ADDQ.L #4 ,SP CLEAN UP STACK
MOVEM.L (SP)+ ,D0- D7/A0-A6 RESTORE REGISTERS

* RTS RETURN
GETC: MOVEM.L D1-D7/A0- A 6 , - (SP) SAVE REGISTERS

MOVE.W #1,-(SP) GET A CHAR. FROM OP. SYS.
TRAP #1 n
ANDI.L # $7F,D0 MASK TO 7 BITS
ADDQ.L #2 ,SP CLEAN UP STACK
MOVEM.L (SP)+ ,D1- D7/A0-A6 RESTORE REGISTERS

je RTS RETURN
CR: EQU $0D CARRIAGE RETURN
LF:* EQU $0A LINE FEED
NEWLINE :MOVE.L D O ,-(SP) SAVE DO

MOVE.B ICR,DO OUTPUT A CR
JSR PUTC n
M OV E .B #LF,D0 OUTPUT A LF
JSR PUTC n
M OV E .L (SP)+ ,D0 RESTORE DO

* RTS RETURN

* DATA
BUFFER: DS.B 100 100 CHARACTER BUFFER

END

Figure 6 Sample program.
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A symbol in the label field can be made to equal a numeric constant. 
Anywhere this symbol appears in your program it is interpreted as if you 
wrote the constant itself. For example, you could define the symbol MAX 
to represent the constant 1000.

A symbol in the label field can also be used to specify the memory 
location of an instruction. This is a true label. Although the first field is 
called the label field, only the symbols that are present in the label field 
of a source line that translates into a memory location are the true labels 
of a 68000 assembly language program. Unless a label starts in column
1, it must be delimited with a semicolon. In the latter case, the label can 
start in any column as long as it is the first thing on the line.

The Operation Field

The operation field contains either a machine instruction or an as
sembler directive. Each machine instruction has a special symbol or 
mnemonic associated with it. If a particular machine instruction is de
sired, the proper mnemonic must be placed in the operation field. As
sembler directives have symbolic names that are different from the ma
chine instructions. The assembler is thus able to differentiate between a 
machine instruction and a directive.

If a machine instruction is placed in the operation field, the assembler 
will generate the appropriate words to be placed in memory correspond
ing to the translation of the source statement. Assembler directives may or 
may not generate bytes to be stored in memory. Some directives merely 
control the format of the assembly listing, or provide other information 
about the program. Directives are also used to define symbols.

The Operand Field

Many machine instructions as well as assembler directives require one 
or more operands. The operand field is used to provide these operands. 
Individual operands can consist of constants, variables, or special sym
bols. Expressions made up of constants, variables, and special symbols 
are also permitted. The rules for making up expressions vary slightly from 
assembler to assembler. Standard arithmetic expressions such as

COUNT+5



Assembler Source Format 33

are allowed by all assemblers. The characters + , —, and /  are inter
preted as addition, subtraction, multiplication, and division respectively. 
Most assemblers allow the use of parentheses in arithmetic expressions. 
Consult your assembler manual for details on expression evaluation.

If more than one operand is required with an instruction or assembler 
directive, the operands are separated by commas. These commas are 
delimeters, and you must not insert a space before or after their use. For 
example,

ADD.L D2,D3

results in the two registers, D2 and D3, being added together, with the 
result placed in register D3.

The 68000 microprocessor uses a variety of addressing modes. The 
addressing mode is the method the CPU uses to locate its operands in 
memory. In order to specify the particular addressing mode desired, the 
operands are formed with the use of special delimiters. For example,

MOVE . L DO,(AO)

indicates the register indirect mode of addressing used with the AO 
register. The left and right parenthesis are the special delimeters used 
to indicate this type of addressing. You will learn more about the 68000 
addressing modes in Chapter 6.

The Comment Field

The comment field is used to provide information for the programmer 
and others who may have occasion to examine the program. Assembly 
language is not self-documenting. Often, even the programmer may have 
difficulty in remembering exactly how her program works if she has been 
away from it for some time. Comments are best used to provide a running 
description of the program’s operation. Comments help those who may 
have to maintain the program in the future. Comments can also be used 
to provide information as to how to use a particular program.

A comment can be used on every line of the program. The first space 
after the operand field starts the comment. The remainder of the line is 
ignored by the assembler. This is why it is very important not to include 
any spaces in the operand field. Comments are not interpreted or used in 
any way by the assembler. When a comment is the only thing on a source
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line, you must use an asterisk in column 1. You can see the comments in 
Figure 6.

On Choosing Symbols

When you need to select a new symbol for use as a constant, variable, 
or label for an instruction, you are free to create arbitrary symbols as 
long as you adhere to the rules for creating an identifier. However, some 
assemblers do not allow you to create symbols that are the same as the 
instruction mnemonics or assembler directives. These reserved symbols 
are known as the keywords of the assembler. Although it may seem clear 
when a symbol is used as an instruction rather than a variable, some 
assemblers are not that smart. Even if your assembler can make this 
distinction, it is a good practice to avoid using keywords. Consult your 
assembler manual. You can usually find a table of all the keywords that 
the assembler recognizes.

It is good programming practice to choose symbols that have a mean
ing related to their use in the program. For example, if you use a vari
able to keep track of a count, why not name it COUNT? Short symbols 
like I, J, or N can be used, but don’t tell us much. Labels for instruc
tions can indicate the function of a particular portion of the program. 
The label RE ADD AT A clearly indicates the reading of some data. The 
label L23 does not convey any meaning. Although many assemblers al
low’ extremely long identifiers, keeping them to eight characters or less 
is standard practice. Most programmers line up the source line fields on 
tab stops set at every eight columns, and long identifiers make lining up 
the fields difficult unless a lot of extra space is used to accommodate the 
longest symbols.

Constants

A constant is a value that doesn’t change during program assembly 
or execution. Two types of constants can be used: integers and character 
strings.

Integer constants are numeric quantities that can be represented by 
32 bits or less. You will remember from Chapter 1 that numbers can be 
represented in various number bases. If a constant is specified without 
indicating this base or radix, it is assumed to be in the decimal number 
base. To indicate that a constant is written in a number base other than
10, we can prefix the number with a radix indicator. The radix indicators
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we can use are:

Indicator Base
% 2 
@ 8 

[none] 10 
$ 16

A binary constant would naturally consist of a percent sign followed 
by only l ’s and 0’s. If we try to write a binary constant with other than 
l ’s and 0’s, it is an error. The following are all valid constants:

1234 1234,0
$1234 1234,6
$1100111001 11001110012
$FFFF FFFF,e
@377 3778

Character string constants are ASCII character strings delimited by 
apostrophes. A character string constant must appear entirely on one line. 
Any valid “printing” characters from the ASCII character set are allowed. 
For example,

'Hello there.'

is a character string of length 12. The two apostrophes are not part of the 
string. What do we do if we want an apostrophe? We can’t just place one 
in the middle of the string, that would terminate the string. If we want a 
single apostrophe, we merely write two apostrophes. For example,

'Don''t give up the ship.'

is actually the string “Don’t give up the ship.”.
If a string is one to four characters long it can be used as a numeric 

value. In this case, the characters are right-justified. This means that the 
ASCII values of the characters are used as the low-order bytes. Any 
high-order bytes that do not have a corresponding character are filled 
with zeros. If it is longer than four characters, it is merely the string 
of bytes with the appropriate ASCII values. Both upper and lower case 
characters can be used in character strings.
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Data-Defining Directives

Before we cover the specific instructions of the 68000, it is important 
that we discuss the methods used with the assembler for placing specific 
data values in memory. The define constant or DC directive is used for 
this purpose. The general form of the DC directive is

[<label>] DC[.<size>] <list>

The size specifier indicates the size of the data to be placed into memory. 
It may be B, W, or L, which stand for byte, word, and longword, 
respectively. If the size specifier is omitted, the size defaults to word. 
<list> is a list of one or more data values. If a label is used, it is assigned 
the address of the data. Without a label it is difficult to refer to the data. 
Here are some examples of the use of the DC directive:

COUNT: DC.L 100
ARRAY: DC.B 1,2,3,4,5,6
WORDS: DC.W $FF,$1000
WORD: DC.W %11111

If a value doesn’t take up exactly the full number of bits in the memory 
location, the high-order bits of the byte, word, or longword are padded 
with zeros. For example, the constant $FF is placed into a word as $00FF.

The DC directive is also used to place ASCII character strings into 
memory. This is the only directive that allows a character string.

STRl: DC. B 'ENTER VALUE:'

The above example would place the ASCII character codes for the 
string “ENTER VALUE:” into successive bytes of memory starting at the 
location whose address is assigned to the label STRl.

At this point I should mention an important requirement of data that 
is stored in memory. For word and longword data, the address of the first 
byte must be on an even boundary. This means that addresses like $12345 
or $1001 are not legal for word or longword data. Most assemblers will 
ensure that word or longword data is aligned on these even boundaries 
by skipping a byte where necessary. This byte is essentially wasted. It 
is always a good idea to group all word and longword data together to 
minimize the number of these wasted bytes. For example, the following 
directives would cause an extra byte to be used.

DC .W 0 
DC.B 1,2,3 
DC.L 100
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Sometimes we desire to reserve a location in memory for some data 
whose value is not known at assembly time. Rather than place a mean
ingless value in the location, we can use another directive. The define 
storage directive or DS is used for this purpose. Its form is

[<label>] DSt t.<size>] <iten\s>

The size is specified just as it is for the DC directive. <items> specifies 
the number of bytes, words, or longwords we want to reserve space for. 
It normally has a value starting at one. If zero items are specified, some 
assemblers merely ensure that the current memory address is even and 
don’t reserve any storage unless a skipped byte is needed for alignment. 
Here are some examples:

COUNT: DS.L 1 1 LONGWORD
ARRAY: DS.B 100 100 BYTE ARRAY 
BUFFER: DS.W 50 50 WORD BUFFER

Symbol Equates

Quite often a programmer desires to assign a specific value to a 
symbol. The equate directive, EQU, is used for this purpose. This is 
quite different from letting the assembler assign an address value to a 
label. Suppose we want to set the value of symbol MAX to the value 100 
decimal. Here is how we do it:

MAX: EQU 100

Notice that the symbol appears in the label field. You may have been 
tempted to write MAX=100. This is the way you would do it in a language 
like BASIC or FORTRAN, but not with 68000 assembler. You must use 
EQU. We can assign a value to a symbol that involves another symbol 
just as long as the other symbol is already defined. For example,

ALPHA: EQU 100 
BETA: EQU ALPHA+100

would assign the value 200 to BETA. If we reversed the order, it would 
not be legal. The general form of EQU is

<label> EQU <exp>
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<exp> is any legal expression as long as it does not contain any undefined 
symbols. Symbols that will be defined further along in the program are 
called forward references.

The END Directive

The END directive is an important directive. It is only used once 
during a program and is the very last source line. This directive informs 
the assembler that there are no more source lines to follow. The assembler 
stops processing input lines when it reaches the END directive. Be sure 
always to include an END, and make sure you don’t include any extra 
ones in the middle of your program. Some assemblers allow a label to be 
used on the END directive. The value of this symbol will represent the 
first memory address not used by your program. While few programmers 
will ever use this feature, there are some applications where it is useful. 
For example, if the first and last locations of a program are known, it is 
simple to compute its size. If the first statement contains the label START, 
and the END directive contains the label FINISH, the program’s length 
is FINISH-START.

Exercises

1. Does every line of the source program have to represent a machine 
instruction?

2. Is a comment required on every source line?
3. What is the smallest unit of information that the assembler uses?
4. What characters can be used to separate the fields of the source 

statement?
5. Indicate which of the following are legal identifiers:

FOO 50RANGES F1040 FULL(BYTE
6. What two things can the operation field contain?
7. What special character starts a comment line?
8. What special character is used to separate multiple operands in the 

operand field?
9. When is it legal to leave out the operation field of a source statement?

10. What are the four fields of a source statement?
11. What is a mnemonic?
12. Are blanks or tabs allowed in the operand field?
13. Can a comment precede an instruction on a source line?
14. Tab stops are normally set up for every how many columns?
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15. Indicate which of the following are legal constants:
12345 $ABCD @F00 $345 @777

16. What is the character string constant for “Let’s quote’ ” ” ?
17. What is the last statement in a program?
18. Write the assembler directive to place the word constant 123 in 

memory at location ALPHA.
19. Write the assembler directive to reserve 1000 bytes at location BETA.
20. Write the assembler directive to set the value of SIZE to 8.

Answers

1. No. Source line may be used to create data items or provide infor
mation for the assembler.

2. No. Comments are always optional, but it is a good idea to provide 
as many comments as possible.

3. A token. Tokens are identifiers or numbers.
4. Spaces or tabs.
5. F00 is legal; 50RANGES is not legal since it starts with a digit; F1040 

is legal; FULL(BYTE is not legal since a ( is not a legal character in 
an identifier.

6. A machine instruction or an assembler directive.
7. An asterisk.
8. A comma.
9. When the source line consists solely of a comment.

10. Label, operation, operand, and comment.
11. The symbolic representation of a machine instruction.
12. No, the blank or tab starts a comment.
13. No, the remainder of the line is ignored.
14. 8
15. 12345 is a legal decimal constant; $ABCD is legal; @F00 is not a legal 

octal (base 8) constant; $345 is not a legal binary constant because 
only the digits 0 and 1 can be used with binary constants; @777 is a 
legal octal constant.

16. ‘Let’ s quote’” ” ”
17. A statement with the END directive.
18. ALPHA: DC.W 123
19. BETA: DS.B 100
20. SIZE: EQU 8





CHAPTER 4

GETTING STARTED

In order to write a program in assembly language, you must develop 
a familiarity with the machine instructions of the 68000. These instruc
tions can be grouped together depending on their functions. For example, 
there are instructions that are used to move data between memory and 
the registers, and another group of instructions that perform the standard 
arithmetic operations like addition, subtraction, multiplication, and divi
sion. Still others perform only control functions such as looping. Rather 
than present all the instructions from each group in order, you will learn 
some key instructions from each group so that you can start to under
stand complete programs without being overwhelmed with too many 
instructions.

After you have completed this chapter you will know enough to 
actually write and execute simple 68000 assembly language programs. 
It is important that you take the time to experiment with your computer 
system before going on to the more advanced material. Try running the 
programs from this chapter as well as some of your own design. Let’s get 
started.

Data Movement

Moving data between registers, and between registers and memory, 
is a fundamental requirement of all programs. The 68000, like many 
other microprocessors, provides a variety of machine instructions to per
form these operations. The most fundamental instruction is the move 
instruction, which has the appropriate mnemonic, MOVE. There are ac
tually a number of different move instructions which all have this same 
mnemonic. The assembler determines which of the actual machine in
structions is needed by a combination of an optional suffix or extension 
to the mnemonic, and the types of the operands used with the MOVE 
instruction. This means that we can move a constant into a register, the 
contents of a memory location into a register, or a register into a register,
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without having to remember different mnemonics for all these instruc
tions.

The general form of the MOVE instruction is

[<label>] MOVE[.<size>] <source>,<destination> [<coroment>]

The <size> following the MOVE indicates the type of operation to be 
performed. It must be a B, W, or L, standing for byte, word or longword. 
If the size is omitted, the default value is taken as word. The MOVE 
instruction takes the value of the source operand and places a copy of 
it into the destination operand. The source operand is not changed. The 
destination operand may be a data register or a memory location, but 
not a constant. The source operand may be a data register, memory 
location, or constant. A number of other instructions have source and 
destination operands. Always remember that the direction of the data 
flow is from the left operand to the right operand. You may have used 
an assembly language for another computer (for example, from the 8080 
or 8086 families) in which the flow is reversed. Be careful when you start 
out programming the 68000 so you don’t make a mistake.

Let’s assume that the DO and D1 registers contain the following values:

D0 D1

123 4SG

We now execute the following instruction:

MOVE.L D0,D1

The DO and D1 registers would contain the following values after execu
tion:

00 D1

123 123

Notice that the previous value in the D1 register has been lost and that 
the new value is identical to that contained in the DO register. Also note 
that the contents of the DO register remains unchanged. We must also be 
careful that the size of the source operand in bytes matches the size of 
the destination operand in bytes. This is normally not a problem with the 
registers, since they will always accommodate a full longword. However, 
specifying a memory location that is actually a byte, when we really 
want a word or longword, will result in faulty program behavior. Your 
assembler will not be able to catch this mistake, and it is a common cause
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of subtle errors that are hard to debug. If you must perform a move 
between two data elements of different lengths, there are techniques that 
can be used. We will discuss them as we move along. The following is an 
example of a MOVE instruction used to move the contents of the byte 
at memory location ALPHA to the byte at memory location BETA.

HOVE.B ALPHA,BETA

A constant value can be moved into a register or into a memory 
location. A constant as a source operand is specified by preceding it 
with the special character #. This is known as an immediate operand. 
The following instruction will move the constant 100 into register DO:

MOVE.L #100,D0

Although it makes no sense, it is possible to write a MOVE instruction 
indicating that the contents of a register or a memory location are to be 
stored into a constant. This is not permitted, but if you forget the order 
of the source and destination operands it may come out this way.

MOVE.L DO,#100

is not legal. Fortunately, your assembler will detect this error and let you 
know.

If the byte or word form of an instruction is used with a data register 
as the destination, only the lower byte or word of the register is changed. 
All the high-order bits remain unchanged. This is important to remember, 
since we may move a byte into a register and then subsequently use 
the register as a longword. All those high-order bytes will most likely 
be meaningless garbage and cause an erroneous value to be used. For 
example, if register DO contains the value $12345678,

MOVE *B #$00,DO

would result in DO containing $12345600, and not $00000000. Further 
along in the book I will discuss ways to handle this problem.

Quite often a programmer desires to swap the contents of two regis
ters. The 68000 provides a special instruction to perform this operation. 
Before looking at this instruction, let’s see how to program a swap opera
tion using only the MOVE instruction. To swap the contents of registers 
DO and Dl, a programmer may at first be tempted to write:

MOVE.L DO,D1 
MOVE.L D1,D0
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Unfortunately these two instructions do not accomplish the desired result. 
The first MOVE instruction has destroyed the contents of register Dl. 
This is the value that must be placed in register DO by the second MOVE. 
This second MOVE will erroneously result in the value of register DO 
not being changed. To perform the swap correctly, a temporary storage 
location is needed. This can be a register or a memory variable. The 
instructions

MOVE.L D0,D2 
MOVE.L D1,D0 
MOVE.L D2,D1

will perform the swap correctly. However, register D2 has thus been 
used as a temporary storage location, and we may not wish to destroy its 
contents either. The use of a memory location as a temporary frees the 
registers but will cause the instructions to execute at a slower speed.

The 68000 EXG (exchange registers) is our salvation. We can swap 
between any of the 16 registers but not between two memory locations 
or between a memory location and a register. We can write the above 
program as:

EXG.L D0,D1

The EXG instruction will operate on bytes, words, or longwords when 
the proper instruction extension is specified. Of course, we can’t swap 
two constants or a constant and anything else.

I didn’t mention it above, but a value cannot be moved into an address 
register using the MOVE instruction; the MOVE A instruction must be 
used. Its general form is

MOVEAI.<size>] <ea>,An 
<size> = W or L

Any operations involving an address register as a destination can only use 
the word or longword forms. In the case of a word form, the word is 
sign-extended to 32 bits before being used. The entire address register is 
always used.

Addition and Subtraction

While moving values from one register to another is an important 
part of assembly language programming, arithmetic operations such as 
addition and subtraction will allow you to start writing programs that
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actually perform meaningful tasks. The general form of the add and 
subtract instructions are:

[<label>] ADD[.<size>] <source>,<destination> [<coinntent>]
[<label>] SUB[.<size>] <source>,<destination> [<cowment>]

As with the MOVE instruction, <size> may be B, W, or L.
The ADD instruction forms the sum of the source and destination 

operands, which may be words, bytes, or longwords, and replaces the 
destination operand with this sum. Both operands may be signed or 
unsigned numbers. SUB works like ADD except that the source operand 
is subtracted from the destination operand. Once again, the result replaces 
the destination operand. The source operand may be any register or 
memory location, or a constant. The destination operand may be a data 
register or memory location. For the ADD and SUB instructions, MOVE 
source and destination operands cannot both be memory locations. At 
least one operand must be a data register, and the destination operand 
cannot be an address register.

Here, and in later chapters, we will express instructions in a more 
proper manner by indicating the allowable type for the source and 
destination operands. The ADD and SUB instructions have the following 
forms:

ADDI.<size>] <ea>,Dn
ADD[.<size>] Dn,<ea>
SUBI.<size>] <ea>,Dn
SUB[.<size>] Dn,<ea>

<ea>  is a general way of expressing an effective address. An effective 
address generally includes the data registers and the contents of mem
ory locations. Each instruction has more complicated limitations on the 
effective addresses of instructions. You should consult Appendix C for 
these details. Dn indicates that any of the eight data registers DO through 
D7 can be used.

The following are all valid ADD and SUB instructions:

ADD.L D2,D3
SUB.W #5,D0
ADD.B D6,COUNT COUNT IS A BYTE LOCATION

As mentioned in the discussion of the. MOVE instruction, the size, in 
bytes, of the source and destination operands must be the same. When 
a constant is used, it must be capable of being represented by the num
ber of bytes of the destination operand. If a two-byte (word) constant is 
specified, it cannot be used with a MOVE.B, ADD.B, or SUB.B instruc
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tion; in this case the destination operand is only a single byte. However, 
if a one-byte constant is used with a word or longword destination, the 
assembler is able to generate the proper machine instruction. The 68000 
assembly language includes a mechanism in which numeric constants are 
automatically sign-extended to 8, 16, or 32 bits as needed. The following 
instruction is not legal and would be flagged as an error by the assembler:

ADD.B §1000,DO

The source and destination operands can be the same.

ADD.L DO,DO

results in the DO register being doubled.
Note that the ADD or SUB instructions do not allow the more general 

form

ADDl.<size>] <ea>,<ea>
SUB[.<size>] <ea>,<ea>

This would eliminate the possibility of adding a constant to a memory 
location, or subtracting a constant from an address register. There are a 
couple of additional forms of the ADD and SUB instructions that help to 
eliminate some of these restrictions.

ADDA[.<size>] <ea>,An 
SUBA[.<size>1 <ea>,An
<size> = W or L

allows adding or subtracting to an address register.

ADDII.<size>] #<data>,<ea>
SUBI[.<size>] #<data>,<ea>

allow adding or subtracting an immediate value to a memory location 
or data register. This instruction cannot be used to add or subtract 
an immediate value to an address register. For example, the following 
instructions are correct:

ADDI.L #1000,COUNT 
ADDA.L #2,A5

Many assemblers allow the use of the mnemonics MOVE, ADD, SUB, 
and so on without qualifying the instruction; the assembler decides what 
instruction to use. For example, if you write
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MOVE DO,AO

the assembler would use the MOVEA form of the instruction. Check your 
assembler manual to be sure you can do this. Even if allowed, it is better 
to use the correct instruction mnemonic.

Quite often we may want to set a register or memory location equal 
to zero. We can always move a zero value into the destination operand. 
Or we can subtract a register from itself. There are other ways to zero a 
register or memory location, but none is better than the clear instruction 
(CLR). This instruction is provided for just this purpose. Its general form 
is

[<label>] CLRl.<size>] <ea> [<comment>]

The size may be B, W, or L. We can clear a data register or memory 
location, but not an address register. Here are some examples:

CLR.L DO CLEARS DO
CLR.B CHAR CLEARS A BYTE IN MEMORY
CLR.W D5 CLEARS LOW ORDER WORD IN D5

Input and Output

While we can write many programs that do not require data to be 
entered by the user, we certainly do not want to limit ourselves in this 
way. Programs can be written that manipulate data that is included in 
the assembly language source itself. This would be of limited use if the 
data required frequent modification: each time the program is to be run 
with different data the source program would have to be edited and then 
reassembled, a time-consuming and unreasonable requirement for many 
users. What we seek is the ability to obtain data entered from the user’s 
terminal or keyboard at the time the program is executed.

Similarly, a method is normally required to obtain output from the 
program during or after its execution. Unless there is some way of 
displaying the program output on a terminal or a printer, a program’s 
action can only be determined by looking at the contents of variables or 
registers that may have changed during the programs execution. While 
this may be possible with programmer utilities, such as a debugger, it is 
certainly not the best way to start programming in assembly language.

Unfortunately, input and output is always dependent on the partic
ular computer you are using. Not all computer systems using the 68000 
processor are equipped with the same input/output devices. Some sys
tems have a built in video display and others may have a separate CRT
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terminal. Normally, some degree of hardware independence is provided 
by the operating system being used. But here again we will not all be 
using the same operating system. Some readers may be using an Apple 
Macintosh and others may be using an Atari ST or one of many other 
operating systems that operate with 68000-based systems.

In order to start to write programs without worrying about the system- 
dependent details, we will use a set of input/output subroutines whose 
inner workings will be different for different operating systems. These 
subroutines will assume a standard ASCII terminal or display. Since the 
interface is through your operating system, the details of your particular 
hardware are automatically taken care of. It doesn’t matter if you have a 
video display or a printing terminal. Appendix B gives the actual source 
statements for these subroutines written for the Atari ST, Commodore 
Amiga, and Apple Macintosh operating systems. (While this does not 
cover every operating system in use, the majority of readers will probably 
be accommodated.)

It is possible to write many programs that involve inputting one 
or more decimal numbers from the keyboard and outputting one or 
more decimal numbers to the screen. It is also necessary to be able to 
input and output ASCII characters. We will start by introducing some 
useful subroutines to perform these tasks. A procedure, or subroutine, 
is a portion of a program that can be referenced, or called, from many 
different places within the program without the necessity of repeating 
the instructions for this procedure each time it is used. Here are the 
procedures; read their descriptions carefully so that you will understand 
their use.

1. INDEC—Input an unsigned decimal number from the keyboard. 
The number is entered as one or more decimal digits terminated 
by a character other than 0-9. This terminating character may be 
a carriage return (RETURN key on most keyboards). The number 
must be representable by four bytes and must therefore be between
0 and 4,294,967,295. The number is placed in the DO register.

2. OUTDEC—Output an unsigned decimal number to the screen. The 
number is taken from the longword in register DO. It is output 
without a terminating carriage return and line feed (doesn’t advance 
to the next line). The range of the output value is the same as for 
INDEC.

3. NEWLINE—Terminate the present output line and output the car
riage return and line feed characters to advance to the start of the * 
next line.

4. GETC—Input a single character from the keyboard. The ASCII 
value of the character is returned in the lower eight bits of the register 
DO. The high-order bits are cleared.
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5. PUTC—Output a single character to the screen. The character is 
taken from the low-order eight bits of register DO.

In order to use these procedures within your program, a special in
struction, JSR (jump to subroutine) is provided in the 68000 instruction 
set. The exact operation of this instruction, and of subroutines in gen
eral, will be discussed in Chapter 8. The mnemonic JSR is followed by 
the symbol representing the subroutine’s name. For now, assume that 
when you use the JSR instruction, the program performs the operations 
specified by the subroutine that is called, and then continues on to the 
next instruction. The following program excerpt will obtain two num
bers from your keyboard, add them together, and then output the result 
to your screen:

JSR INDEC
JSR NEWLINE
MOVE.L D0,D1
JSR INDEC
JSR NEWLINE
ADD.L D1,D0
JSR OUTDEC
JSR NEWLINE

Notice that the third instruction is used to save the contents of the DO 
register so that the second JSR instruction to INDEC does not destroy 
the first number to be added. Other than the DO register that is used with 
the INDEC procedure, the input/output procedures given above do not 
destroy the contents of any of the 68000 registers. The JSR to NEWLINE 
ensures the advance to the beginning of a new line after each number 
is input and after the result is output. A call to NEWLINE is required 
even if you terminate the number you enter with a carriage return. A line 
feed must be output to advance to the beginning of the “next” line. The 
carriage return only positions you at the beginning of the “current” line.

The Program  Shell

For the writing of a complete program, certain assembler directives 
and standard code sequences are needed for each different assembler 
and operating system. This program shell will enclose each program. So 
that we don’t have to depend on one particular assembler or operating 
system, we will not include this program code for each program pre
sented. Appendix B shows an appropriate program shell for the Atari ST, 
Commodore Amiga, and Apple Macintosh.

Note that the shell is terminated by an appropriate mechanism to re
turn control to the operating system. The 68000 does have a halt instruc
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tion, STOP, but if this instruction is used to terminate your program, the 
microprocessor will literally stop and you will have to reboot (start from 
scratch) your operating system. It is much better to return control such 
that you can continue to issue system commands.

So that you can actually start to write programs using the input/output 
procedures presented above, these must be included along with your 
program and the shell. If you require one or more of these subroutines 
in your program, just copy the appropriate source statements. You will 
have to consult your system documentation to adapt these procedures for 
other operating systems and/or assemblers.

Looping

With the instructions you have learned so far, it is possible to write a 
few simple programs that perform addition and subtraction of a limited 
number of values. To form the sum of 20 numbers entered from your 
keyboard would take 20 lines of assembler source code just to obtain 
these values. An additional 20 ADD instructions would be required as 
well. If you desire to add up a larger number of values, you would soon 
tire of all the typing needed to produce the source program. Consider 
also that each assembly language instruction will take one or more words 
of memory space when it is translated into machine language. Often it is 
important to write a small program as well as an efficient one.

The solution to this problem is the use of a program loop. There 
are many ways to write a program loop for the 68000 microprocessor. 
The simplest type of program loop is the infinite program loop. While it 
may seem of no value to write an infinite loop, if there is a method for 
escaping the loop, it is often useful. You might like a program that repeats 
itself over and over again for an arbitrary number of input data values. 
This would eliminate the need to reinvoke the program for each new 
value. The methods of escaping from an infinite loop will be discussed 
in Chapter 5. For now, let us see how we can write one.

Execution normally passes from one instruction to the next. This is 
known as sequential execution. The 68000 provides a special instruction 
to alter the normal sequential program flow. The jump instruction, JMP, 
provides the ability to transfer control to any instruction that has a label. 
The following is a simple infinite loop:

OVER:

JMP OVER
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Any number of instructions can be contained within the loop. Here is a 
simple program that will obtain a number from the terminal, double it, 
and then output the result. These steps are then repeated over and over.

♦INPUT A VALUE FROM THE TERMINAL, DOUBLE, 
♦AND THEN OUTPUT THE RESULT 
*

NEXT: JSR INDEC OBTAIN AN INPUT VALUE
JSR NEWLINE
ADD.L DO, DO DOUBLE THE VALUE
JSR OUTDEC OUTPUT THE NUMBER
JSR NEWLINE
JMP NEXT

If you actually run this program, you may have to stop your computer 
manually and reboot your operating system (the exact procedures to 
follow depend on your particular computer; consult your owner’s manual 
for the details). Some systems allow you to abort a program and return to 
the operating system by typing a “Control C” (character C typed while 
also holding down the key labeled CTRL).

Another frequently used type of loop is the counting loop. This is 
a loop that repeats a number of instructions a fixed number of times. 
Unlike most 8-bit microprocessors, the 68000 provides a single instruction 
to perform a counting loop. This is the test condition, decrement, and 
branch instruction, with the peculiar mnemonic DBRA. (It is actually a 
member of a family of instructions with the mnemonics DBcc, where 
the characters cc are replaced by the appropriate characters to select the 
particular instruction desired.) The DBRA instruction has the following 
format:

DBRA Dn,<label>

It works somewhat like a JMP instruction except that it uses the value 
contained in the data register as a loop counter. It does this by first 
subtracting 1 from the current value in Dn and then checking to see 
if the result is equal to —1. If the updated value contained in Dn is not 
equal to —1, the DBRA instruction then performs like a JMP to the label 
specified as the second operand. If the new value of Dn is —1, the next 
sequential instruction is executed.

In order to use the DBRA instruction, the Dn register must first be 
set up with the total number of times we wish to go through the loop 
minus one. The instructions between the label of the DBRA and the 
DBRA instruction itself will be executed. These instructions will always 
be executed at least once even if Dn is initialized with —1. In fact,
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initializing Dn to —1 results in repeating the loop the maximum number 
of times—65,536, to be exact. Only the low-order 16 bits of the register 
are used as a counter. As a simple example, let’s say you want to output 
20 blank lines. You could call the newline subroutine 20 times by writing 
20 lines of assembler source, or you could write the following three lines:

MOVE.W #19#D2 INITIAL VALUE IS COUNT-1 
NEXT: JSR NEWLINE 

DBRA D2,NEXT

You must be careful not to modify the contents of the Dn register within 
the program loop, since it then would no longer represent the loop count 
and would not yield the result desired. If you must use the Dn register 
within the loop, you must save and restore it. You could move the contents 
to another register or to a memory location. Here’s how to do it with a 
variable:

MOVE.W #100,D1
NEXT: MOVE.W

•
D1,SAVED1

•
. <Use Dl>
MOVE.W SAVED1,D1
DBRA D1,NEXT

SAVED1: DS.W 1

Recall from Chapter 3 that DS.W is not an instruction, but rather a 
directive to reserve one or more words in memory. In this case one word 
of uninitialized memory has been reserved at location SAVED1.

There is one restriction with the DBRA instruction that is not found 
with the JMP instruction. With the JMP instruction the programmer can 
transfer control to any distant label. In other words, there can be loops of 
arbitrary size. Unfortunately, the DBRA instruction, and many others you 
will discover, only allow transfer of control over a limited distance. This 
distance is approximately plus-or-minus 32,768 bytes from the position of 
the DBRA instruction itself. This distance can’t be represented as a fixed 
number of instructions, because the number of bytes per instruction varies 
with the particular instruction. It is a very rare occasion when a loop must 
contain a greater number of instructions than this maximum. Fortunately, 
the assembler tells the user if all the instructions do not fit into the loop. 
In this case there are several methods to get around the problem. You 
will have to read on to find out how.
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S P A C E : EQU $ 2 0
*

MOVE•W # 3 0 , D1
MLOOP: MOVE•L E X P ,D O

J S R OUTDEC
AD D Q.L # 1 ,E X P
MOVE•B # SPA C E,D O
J S R PUTC
MOVE•L POWER,DO
J S R OUTDEC
A D D .L DO, DO
MOVE. L DO,POWER
J S R NEW LINE
DBRA D l,M LO O P

*
• • •

E X P : D C .L 1
POW ER: D C .L 2

A S C I I  SPA CE

S E T  UP LOOP COUNT 
GET CURRENT EXPONENT 
OUTPUT
INCREMENT EXPONENT 
OUTPUT A SPA CE
n
GET CURRENT POWER
OUTPUT
DOUBLE I T
AND SAVE
GO TO A NEW L IN E
LOOP U N T IL  DONE
WE CONTINUE HERE

Figure 7 Program to output powers of two.

Putting It All Together

Figure 7 shows a complete program that will output a table of the 
powers of 2 from 21 to 231. As you learned in Chapter 1, 231 is the largest 
power of 2 that can be represented with a 32-bit unsigned number. The 
program is written as one counting loop. The D1 register is initialized 
to 30, which is the number of powers that we wish to output minus one. 
MLOOP is the label referenced by the DBRA instruction, which is the last 
instruction of the program prior to the return to the operating system. We 
also declared two variables, EXP and POWER, to represent the current 
exponent and the actual power of 2 for the value of EXP. These two 
variables are initialized prior to entering the main loop. Each successive 
power is computed by doubling the previous power with the ADD.L 
DO,DO instruction. Since the DO register is used for several functions, 
POWER and EXP are updated after their new values are computed.

Formatting of the output lines is accomplished by inserting a space 
after outputting the exponent, and an advance to the next line after 
outputting the power. The ASCII character value for the space character 
is 20 in hexadecimal. The standard procedure, PUTC, is called with this 
value in the DO register. The output from this program should look like 
the following:
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1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768 
etc.

Exercises

1. Write an instruction to move the contents of DO to Dl.
2. Write an instruction to move the low-order byte in register DO to 

memory location SAMPLE.
3. Is MOVE.L DO,#10 a legal instruction?
4. Is MOVE.B #2056,DO a legal instruction?
5. Write an instruction to exchange the contents of registers D5 and D6.
6. Write the instruction to add DO to the longword at ALPHA.
7. Write the instructions to add memory location INCREMENT to 

memory location TOTAL. Assume longwords.
8. Write the instruction to add the constant 25 to A0.
9. Write the instruction to add the word at memory location OFFSET 

to register A5.
10. Write the instruction to move the contents of the longword at INIT- 

VAL to register A2.
11. Write the instruction to clear the low-order byte of register D5.
12. Write an instruction to clear register A0.
13. Write the instructions to obtain an input value, add 100, and output 

the result.
14. Write the instructions to obtain an input character and repeat it on 

output.
15. Write an infinite loop to output the integers starting at zero.
16. Write a counting loop to output the digits 0 through 9 in that order.
17. Write a program to sum the numbers from 1 through 100.
18. Write a program to output your name.
19. Write a program to evaluate DO—D1+D2+100 and output the result.
20. Write a program to output the letter A 100 times, with 10 A’s per line.
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Answers

1. HOVE.L D0/D1

2. HOVE.B DO,SAMPLE

3. No, a constant can’t be a destination operand.
4. No, the constant is larger than a byte.

5. EXG D5,D6

ADD.L DO,ALPHA

7. MOVE.L INCREMENT,DO 
ADD.L DO,TOTAL

8. ADDA.L #25,AO

9. ADDA.W OFFSET,A5

10. MOVEA.L INITVAL,A2

11. CLR.B D5

12. MOVEA.L #0,A0

13. JSR INDEC
JSR NEWLINE
ADD.L #100,DO
JSR OUTDEC
JSR NEWLINE

14. JSR GETC
JSR PUTC

CLR.L DO
NEXT: JSR OUTDEC

ADD.L #1,D0
JMP NEXT

16. CLR.L DO
MOVE.W #9,D1

NEXT: JSR OUTDEC
JSR NEWLINE
ADD.L #1,D0
DBRA D1,NEXT
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17.

NEXT:

CLR.L
MOVE.L
MOVE.W
ADD.L
ADD.L
DBRA
JSR
JSR

DO
#1,D1 
#99,D2 
D1 / DO 
#1 ,D1 
D2,NEXT 
OUTDEC 
NEWLINE

TOTAL
NUMBER TO ADD
LOOP COUNT
ADD TO TOTAL
GET NEXT NUMBER TO ADD
LOOP TILL DONE
OUTPUT RESULT

18. MOVE.B
JSR
MOVE.B
JSR
MOVE.B
JSR
JSR

#'T*,D0
PUTC
#'0',DO
PUTC
#'M',D0
PUTC
NEWLINE

19. SUB.L D1,D0
ADD.L D2,D0
ADD.L #100,DO
JSR OUTDEC
JSR NEWLINE

20.

NEXT:
MOVE.W
MOVE.B
MOVE.W
JSR
DBRA
JSR

#9,D1 OUTER LOOP COUNT
#'A',D0 GET ASCII "A*
#9,D2 
PUTC 
D2,NEXT 
NEWLINE

DBRA D1,NEXT

INNER LOOP COUNT 
OUTPUT CHARACTER 
INNER LOOP 
GO TO NEW LINE 
OUTER LOOP



CHAPTER 5

CONDITIONAL AND 
ARITHMETIC INSTRUCTIONS

In Chapter 4 you learned a small number of 68000 instructions. These 
were enough to write some very simple programs. I hope that you have 
taken the time to actually run some of the programs presented in the 
chapter, as well as a few programs of your own design. Nothing gives you 
more confidence that you are successfully mastering assembly language 
programming than the joy you experience when a program actually 
performs as it should. By now you should have become familiar with 
your own computer’s procedures for editing, assembling, and executing 
assembly language programs. If you are having trouble, you should 
carefully review your computer system's manuals before going on with 
this chapter.

The remainder of this book is designed to expand your vocabulary 
of 68000 instructions. Rather than present all the remaining instructions 
at one time, we will present groups of instructions and specific examples 
of their use. You should not attempt to learn all of the 68000 instructions 
before practicing with each group. Take the time to actually experiment 
with the instructions presented in each chapter. Don’t limit yourself to 
the exercises. Be creative.

In this chapter you will learn the very powerful set of conditional 
instructions. These instructions allow the control flow of your program 
to vary depending on the results of certain instructions. Among these 
are the arithmetic instructions you have already learned as well as several 
others. Crucial to understanding the conditional instructions is a thorough 
knowledge of certain bits in the condition code register and how they are 
affected by arithmetic instructions.

Arithmetic and the Condition Code Register

As you learned in Chapter 2, the 68000 has a special register known as 
the condition code register (CCR), This register is not used in the same
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way as the other registers. We don’t treat the contents of the CCR as a 
numeric quantity. Instead, we indirectly use the values of individual bits 
in the CCR. Each of these special bits, or condition codes, has a specific 
meaning when set or reset. If a bit is set it has a value of binary 1. If it is 
reset it has a value of binary 0. The CCR is an 8-bit register, but not all 
of the 8 bits are used. It is organized as follows:

CONDITION CODE REGISTER

7 4 0

X(extend) Transparent to data m ovem ent. When affected, it is set the 
same as the C  bit.

N (negative) Set if the most significant bit of the result is set. Cleared  
otherwise.

Z (zero) Set if the result equals zero. Cleared otherwise.

V(overflow ) Set if there was an arithm etic overflow . Cleared otherwise.

C (carry) Set if a carry is generated out of the most significant bit of
the operands for an addition. Also set if a borrow  is 
generated in a subtraction. Cleared otherwise.

After the execution of a 68000 instruction, some of the condition codes 
may be affected. Not all instructions affect the CCR. The majority of 
CCR usage is related to arithmetic operations such as addition, subtrac
tion, and the comparison of two numeric quantities.

The representation of numbers in two’s complement binary was dis
cussed in Chapter 1. Recall that numbers can be interpreted as signed or 
unsigned depending on the interpretation of the most significant bit. This 
bit is referred to as the sign bit for signed numbers. Many times we will 
desire to treat a number as a positive value only. By allowing the use of 
the most significant bit as a normal bit of the number, and not a sign, 
we can double the magnitude of the numbers that can be represented. 
The ADD and SUB instructions operate identically for both signed and 
unsigned numbers. The interpretation is up to the programmer. How
ever, by the use of particular bits in the CCR we can test the outcome 
of arithmetic operations for both signed and unsigned numbers.

The Carry Bit

One of the most important checks that must be made on an arithmetic 
operation is whether or not the result has exceeded the size of the
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destination register. For example, the addition of the following unsigned 
8-bit binary numbers results in a sum that will not fit in an 8-bit destination 
(register or memory byte).

11101001 
+ 10110111

110100000

The carry of a bit from the most significant (high-order) bit position has 
no place to go. Actually, this event causes the carry bit (C) to be set. If 
there was no carry, the carry bit would be reset.

In order to determine if the result of an unsigned addition is valid, the 
setting of the carry bit must somehow be tested. Fortunately, the 68000 
provides a group of instructions that allow the testing of each of the bits 
of the CCR individually and in various combinations. These instructions 
all have the form of a conditional branch. A conditional branch is similar 
to a JMP instruction except that for the former the jump is not taken 
unless a particular condition is true. This condition corresponds to the 
value or values of one or more of the bits of the CCR. If the branch is 
not taken then the next sequential instruction is executed. The branch on 
carry set instruction, BCS, provides a conditional branch based on the 
setting of the carry bit. If the carry bit is set (binary one) then the branch 
is taken. The following program illustrates the use of the BCS instruction 
to validate the result of an unsigned addition.

HOVB.L NUH1/D0 
ADD.L NUM2,D0 
BCS INVALID

RESULT IS OK

INVALID: . RESULT EXCEEDS REGISTER SIZE

The label used with the BCS instruction, and with all the conditional 
branches, must be to a location that is within approximately plus-or-minus 
32,768 bytes of the location of the instruction itself. As mentioned in 
Chapter 4, this restriction is also present with the DBRA instruction. It is 
usually difficult to tell how many instructions will represent 32,768 bytes. 
It is best to let the assembler do the work for you. But let’s suppose 
that you really must perform a conditional branch to a location that is 
greater than plus or minus 32,768 bytes. What can you do to get around 
this problem? One simple solution is to perform the conditional branch 
to a JMP instruction that is “close” to the conditional branch and then
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have the JMP instruction actually jump to the target label. Here's how 
it’s done.

BCS CLOSE --------------
< 32K BYTES I

CLOSE: JMP FARWAY ------------- 1
• I
• I

> 32K BYTES I

PARWAY: . --------------

We can also do this:

•
BCS CLOSE 
BRA NEXT 

CLOSE: JMP PARWAY 
NEXT:

This second approach has the advantage that we know the JMP is close 
enough, and we have a definite place for it to go without interfering 
with other instructions. The BRA instruction is an unconditional branch. 
It always branches, but it suffers from the same limited range as the 
conditional branches. The solution to this problem can be made even 
simpler if the condition for branching is reversed. In other words, if 
we could perform a conditional branch when the carry bit was not set, 
rather than set, then we could use the conditional branch to go to the next 
sequential instruction in the program. We are in luck! The 68000 provides 
complementary instructions for all conditional branches. We can always 
find an appropriate conditional branch that branches when the condition 
we wish to test is not true. In the case of the BCS instruction, the BCC 
(branch on carry clear) is the one to use. Our program can now be written:

BCC NEXT 
JMP FARWAY

NEXT:
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The Overflow Bit

What if we were adding signed numbers? A carry out of the high-order 
bit is not necessarily indicative of a result that is too large. Adding two 
negative numbers will result in the carry bit being set. For example,

11111110 -2 
+ l i m i i i  -l
111111101 -3

A result that is too large can be detected when the sign bit (most signif
icant bit) changes when we don’t want it to. This condition is known as 
overflow. The overflow bit (V) is set or reset depending on the occur
rence of the overflow condition. V is affected by all arithmetic instruc
tions regardless of whether operands are treated as signed or unsigned 
numbers. The 68000 instructions don’t know the difference. Either V or 
C must be used, for signed or unsigned arithmetic, respectively. The BVS 
(branch on overflow set) and BVC (branch on overflow clear) instruc
tions are provided for signed arithmetic.

Subtraction also results in similar effects on C and V. If an unsigned 
subtraction results in a borrow into the most significant bit position, the 
carry bit is set. Since an unsigned subtraction cannot result in a negative 
value, this is an error. The overflow bit is set for subtractions as well. If 
we subtract a positive number from a negative number, and the result 
is a negative number that is too large, V will be set. Overflow can also 
result from subtracting a negative number from a positive number. If the 
positive result is too large, V will be set.

The Zero and negative Bits

In addition to determining if the result of an arithmetic operation has 
exceeded the size capacity of the destination, a programmer may also 
desire to know if the result is positive, negative, or zero. The zero bit 
(Z) and negative bit (N) are provided for these purposes. The zero bit 
is set if the numerical result is zero. This means that all bits of the result 
are zero. The BEQ (branch on equal) and BNE (branch on not equal) 
instructions will conditionally branch depending on the value of Z.

A zero value can be used as a signal to exit an indefinite loop. The 
following program outputs the integers from 10 to 1 in reverse order.
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MOVE.L #10,DO 
NEXT: JSR OUTDEC 

JSR NEWLINE 
SUB.L #1,D0 
BNE NEXT

The programmer may also want to determine if an arithmetic opera
tion results in a positive or a negative value. The negative bit (N) will be 
set to a binary 1 for all negative numbers (note that zero is always a pos
itive number in two’s complement). The negative bit is set to the same 
value as the sign bit of the result of the operation. The BMI (branch on 
minus) and BPL (branch on plus) instructions will test for negative and 
positive numbers respectively.

The MOVE instruction always sets the negative and zero bits in the 
CCR just as the arithmetic instructions do. However, the programmer 
sometimes desires to determine if a value is zero or negative, but hasn’t 
moved it or used it in arithmetic. A special instruction, TST, is provided 
for just such a purpose. The general form is

TST[.<size>] <ea>

The following instructions test register D5 and memory location COUNT.

TST.L D5 
TST.L COUNT

Of course, the TST instruction must be followed with an appropriate 
conditional branch.

The Extend Bit

The extend bit (X) is normally a copy of the carry bit. It is used for 
performing multiple precision arithmetic, which will be covered in detail 
in Chapter 11. However, you should be aware that some instructions do 
not affect the extend bit. The most notable of these instructions is the 
MOVE instruction. MOVE conditionally sets or clears N and Z, clears V 
and C, but doesn’t change the current value of X. You won’t be using the 
extend bit at this time, so this fact shouldn’t cause concern.

Com parisons

An essential task in any programming language is the comparison of 
two numbers, or any data items that are being represented by numerical
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values such as ASCII characters. One way to perform a comparison would 
be to subtract the two numbers and then test the flags to determine their 
relationship. If the two values are equal to each other, the zero flag will be 
set. The carry flag, sign flag, and so on, can also be tested to determine 
other inequalities. The particular flags that must be tested depends on 
whether the comparison is between signed or unsigned quantities. In 
fact, it is important to test for overflow as well. This may result in a 
requirement to test two or more flags.

A disadvantage in performing a subtraction to compare two numbers 
is the fact that the destination operand will be changed. Since the desti
nation operand must be one of the values to be compared, its value will 
be destroyed. We could, of course, make a copy. The following exam
ple determines if the contents of register DO are equal to the contents of 
register Dl.

HOVB.L D0,D2 
SUB.L D1,D2 
BEQ EQUAL

•

EQUAL: . EQUAL

There is a better way to compare numbers. A special compare instruc
tion, CMP, works almost like the SUB instruction except that the result 
of the subtraction is not actually saved—in other words, the operands 
remain unchanged. All the flags that would be set or reset by the SUB 
instruction are also set or reset by the CMP instruction. The destination 
operand must be a data register, but the source operand can be a regis
ter, variable, or constant. In fact, the source operand can use any of the 
addressing modes that will be discussed in Chapter 6.

The previous example can be rewritten using the CMP instruction.

CMP.L Dl,DO 
BEQ EQUAL

EQUAL: !

Since we are using the CMP instruction and not an SUB, the value of DO 
does not have to be copied.

In general we will desire to compare both signed and unsigned num
bers. The standard inequalities all have unique conditional branches that 
are used with the CMP instruction. For inequalities other than equal or

MAKE A COPY OF DO 
SUBTRACT Dl PROM D2 
BRANCH IF THEY ARE = 
NOT EQUAL
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not equal, it is sometimes difficult to remember which value should be 
the source and which value should be the destination. The CMP instruc
tion compares the destination with the source. Therefore, if we wish to 
determine if DO is less than or equal to D1 we would write

CHP.L DirDO 
BLE LABEL

An easy way to remember this is:

destination <inequality> source

The following table shows the conditional branches for signed numbers.
C tA f  A

{I <  /  B LT  Branch on less than
f  < = / '  B L E  Branch on less or equal

=  BEQ  Branch on equal
> =  BG E Branch on greater or equal
>  BGT Branch on greater than 
not =  B N E Branch on not equal

When you compare unsigned numbers you should use the following.

<  BCS® Branch on carry set
< =  BLS Branch on lower or same 
=  BEQ  Branch on equal
> =  B C C ° Branch on carry clear
>  BHI Branch on higher 
not =  BN E Branch on not equal

0 These mnemonics are not particularly indicative of their function, but they are the 
ones to use.

The tests for equal and not equal use the same conditional branches 
for both signed and unsigned numbers. The following program finds 
the largest unsigned number from an arbitrary number of input values. 
Entering a zero value terminates input and outputs the result.

* FIND LARGEST INPUT VALUE
* ZERO VALUE TERMINATES INPUT

CLR.L D1 INITIAL VALUE IS ZERO
NEXT: JSR INDEC GET NEXT INPUT VAL

TST.L DO ZERO?
BEQ FINI YESr ALL DONE
CMP.L Dlr DO LARGER?
BLE NEXT NO
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FINI: MOVE.L Dl,D0 
JSR OUTDEC 
JSR NEWLINE

MOVE•L D0,D1 
BRA NEXT

YES, SAVE AS NEW VAL 
BACK FOR NEXT VAL 
SET UP FOR OUTPUT 
OUTPUT THE VALUE 
GO TO NEXT LINE

Two CMP instructions are used. The first CMP tests for the zero termi
nating value. The second determines if a new input value is larger than 
the largest value encountered so far. It is important to remember to ini
tialize this value to something meaningful. In this case, a zero value is 
smaller than any value we will encounter.

There are several additional versions of the compare instruction. Al
though any addressing mode, including immediate values, can be used as 
the source operand, the destination operand can only be a data register. 
The general form of the CMP instruction is:

The CMPA instruction allows the use of an address register as the desti
nation operand. Its form is:

While we may often desire to compare a data or address register with an 
immediate value, we sometimes desire to compare a constant with the 
contents of a memory location. It is not possible to use the CMP or CMPA 
instruction in such a manner. We would first have to copy the contents 
of memory to a register and then use the CMP instruction. Fortunately, a 
special version of the CMP instruction, CMPI, exists to solve our problem. 
Its general form is:

The destination operand is restricted in that it can't be an address register 
(use CMPA in this case), or an immediate value. (This latter restriction 
really isn’t a restriction, because it makes no sense to compare one 
constant with another, since the outcome is always the same.) Let’s assume 
that we want to see if the contents of memory location COUNT, a byte 
value, is less than 10. These are the instructions we would use:

CMP[.<size>] <ea>,Dn

CMPA(.<size>] <ea>,An

CMPII.<size>] #<data>,<ea>

CMPI.B #10,COUNT 
BLT LESSTHAN
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Many assemblers will allow the use of the CMP mnemonic for all 
variations of the CMP instruction. The assembler figures out what version 
to use by looking at the type of the operands in use. However, it is 
somewhat sloppy programming to do this. You should always be aware 
of what the actual 68000 instructions are. If you issue the following 
instruction,

CMP.L VAL1,VAL2

you will lose out, No version of the CMP instruction will allow the use 
of two memory operands.

ADDQ and SUBQ Instructions

Many programs require adding or subtracting the constant 1 from a 
register or variable. Naturally, the ADD or SUB instruction can be used 
to perform this operation.

ADD.L #1,D0

increments the value in the DO register.

SUBI.L #1,VAR55

decrements memory location VAR55. Many microprocessors provide spe
cial instructions to increment or decrement a value. The 68000 instruction 
set provides a better way to increment or decrement a number. The 
ADDQ (add quick) and SUBQ (subtract quick) instructions are provided. 
They can be used to add or subtract a value ranging from 1 to 8. Since 
they allow small values other than 1, they are more flexible than their 
counterparts on other CPUs. All arithmetic flags are updated just as they 
are with the ADDI and SUBI. Here are their general forms:

ADDQ[.<size>] #<data>,<ea>
SUBQ(.<size>] #<data>,<ea>
<size> = B, W, L
<data> is a value between 1 and 8 inclusive

The effective address can be almost any valid addressing mode including 
an address register. There is no special form of these instructions when
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referencing an address register. However, only word and longword forms 
of the instruction can be used with an address register. The following 
instruction would increment the value of memory location COUNT:

ADDQ.W #1,COUNT COUNT IS A WORD

At first it may seem that these instructions are identical to the ADDI 
and SUBI instructions. In order to understand why the ADDQ and SUBQ 
instructions are better, we have to delve into the actual machine instruc
tions generated when these mnemonics are used. The ADDI and SUBI 
instructions will generate a 16-bit opcode word and one or two additional 
16-bit values corresponding to the immediate operand. With the ADDQ 
and SUBQ instructions, only the 16-bit opcode word is generated. This 
results not only in a savings in memory locations but also in a significant 
increase in speed because the programmer doesn’t have to perform the 
memory fetch to obtain the immediate data. In the case of the ADDQ 
and SUBQ instructions, this data is contained in the 16-bit opcode word.

Along a similar line, a special MOVE instruction, MOVEQ, is pro
vided. This instruction allows an immediate source operand that must be 
represented in 8 bits or less, giving a signed range between —128 and 
+127, or an unsigned range between 0 and 255. The destination is always 
a data register, and the full 32 bits are used. This instruction is only avail
able in the longword form. It should be used whenever possible, since 
the number of bytes required will be less than the corresponding MOVE 
instruction. For example,

MOVEQ #100,DO

is preferable to

MOVE.L #100,DO

Many assemblers will automatically use the MOVEQ version whenever 
possible, even if it hasn’t been specified.

The 68000 provides many instructions that can be functionally dupli
cated by other instructions. When a programmer uses the more appro
priate instructions, programs are more readable and take up less space 
in memory. This latter consideration is important for large programs, or 
when you only a small amount of memory is available. We will make ex
tensive use of the ADDQ and SUBQ instructions for a variety of purposes 
throughout this book.
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Exercises

Assume longword operands unless otherwise specified.

1. What CCR bit is used to detect overflow of unsigned arithmetic 
operations?

2. What CCR bit is used to detect overflow of signed arithmetic opera
tions?

3. Is there a limit as to how far away the label of a conditional branch 
may be?

4. What CCR bit determines if the result of an arithmetic operation is 
zero?

5. What CCR bit determines if the result of an arithmetic operation is 
positive or negative?

6. What is the difference between the CMP instruction and the SUB 
instruction?

7. Write the instructions necessary to branch to label STOP if the DO 
register is equal to 100.

8. Write the instructions to branch to label BIGER if register DO is larger 
than variable LIMIT. Assume unsigned values.

9. What CCR bits were discussed in this chapter?
10. Are all the bits of the CCR used?
11. If we add the following unsigned bytes, will the carry bit be set? The 

values are in decimal.
55 and 27 
150 and 110

12. If we add the following signed bytes, will the overflow bit be set? 
The values are in decimal.
—100 and +50 
—100 and —50

13. Write the instructions necessary to add the signed values in the DO 
and D1 register and branch to label OK if there is no overflow.

14. Repeat the above problem for unsigned values.
15. Write the instructions necessary to test if register DO is zero and, if 

so, to branch to label ZERO.
16. Write the instructions necessary to compare variables NUM1 and 

NUM2, branching to label EQUAL if they are equal, to label LESS 
if NUM1 is less than NUM2. Assume signed values.

17. Write the equivalent of the DBRA instruction using instructions intro
duced in this chapter.

18. What is the purpose of the extend bit?
19. What is the advantage of using ADDQ and SUBQ rather than ADD 

AND SUB?
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20. Can MOVEQ be used to load only the low-order byte of a data 
register?

Answers

1. The carry bit, C.
2. The overflow bit, V.
3. Yes, approximately plus or minus 32,768 bytes.
4. The zero bit, Z.
5. The negative bit, N.
6. The CMP instruction does not store the result in the destination

9. The carry, overflow, negative, zero, and extend bits.
10. No, only five out of the eight.
11. 55+27=82, which is within the range of an unsigned byte; the carry 

bit will not be set. 150+110=260, which is larger than the range of an 
unsigned byte; the carry bit will be set.

12. (—100) +  (+50) —50. The overflow bit will not be set. (—100) +  
(—50) =  —150. The largest signed negative byte is —128. In this 
case the overflow bit will be set.

13. ADD.L D0,D1

operand

7. CMP.L #100,DO 
BEQ STOP

3 CMP.L LIMIT,DO
BHI BIGER

BVC OK

14 ADD.L DO,D1 
BCC OK

15. TST.L DO 
BEQ ZERO

16. MOVE.L NUM1,D0
CMP.L NUM2,D0
BEQ EQUAL
BLT LESS
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17. SUB.W tlrDO ASSUME COUNT IN DO 
BGE LABEL

18. The extend bit is used for multiple precision arithmetic.
19. The ADDQ and SUBQ take up less memory and execute faster.
20. No, MOVEQ is always a full longword operation.
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ADDRESSING MODES

The majority of 68000 instructions have one or more operands. An 
operand is used either as a source operand or a destination operand. A 
source operand is always a data value that is only read by the instruction 
and never modified. A destination operand may be read as well as 
written. In other words, its value can be modified by the action of the 
instruction.

The programmer normally explicitly specifies the operand or 
operands of an instruction. A small number of instructions have implicit 
operands. This means that a register is used as an operand without be
ing so specified. The JSR instruction is an example of this. As you will 
see in the next two chapters, address register A7 is implicitly used by this 
instruction.

Operands always ultimately specify a register or location in memory 
where the data for the instruction is found. It is quite clear in

MOVE.L D0,D1

that the source operand is to be found in data register DO and the 
destination operand is in data register Dl. If we write

MOVE.L (A0)+,D0

what does (AO) +mean? In order to answer this and many other questions 
concerning operands, it is necessary to introduce the concept of an 
addressing mode. The addressing mode is the method we specify for 
the instruction to find a particular operand. The effective address of an 
instruction is the actual location of the data. When a simple data register 
is specified, the effective address is the data register itself. When an 
instruction such as

ADD.L COUNT,DO

is specified, the effective address of the source operand is the location in 
memory that contains the variable COUNT.

71



72 Assembly Language Programming for the 68000 Family

The 68000 has a total of 12 different addressing modes. This may 
seem like a lot, but not all of these modes are commonly used, and some 
are automatically selected by many assemblers to allow more efficient 
execution of instructions. You have actually learned several of these 
modes already.

At this point I should mention something about the limitations on the 
use of these 12 addressing modes with all instructions. Life would indeed 
be nice if we could use any of these 12 addressing modes as the source 
and/or destination of each and every instruction. Computer scientists 
refer to the orthogonality of a machine architecture as to the degree to 
which all addressing modes can be used with all instructions. A fully 
orthoganal architecture would allow all combinations. Unfortunately, the 
68000 is not fully orthoganal, although it comes remarkably close. We do 
have to be careful. Appendix C should be used as a reference as to what 
is legal and what is not.

We will now go over the details of each of the addressing modes. I 
will show some simple examples of how each mode is used. First, let’s 
review the addressing modes that we have already covered in previous 
chapters.

Register Direct Modes

These are actually the simplest of the modes. The effective address is 
the specified register itself. There are two register direct modes:

1. Dn—Data register direct
2. An—Address register direct

Any of the seven address or seven data registers can be used. Don’t forget 
that some instructions will not allow an address register to be specified. 
We must use a MOVEA instruction instead of MOVE, and an ADDA or 
SUBA instead of ADD or SUB.

Im m ediate Data

We have used immediate data addressing to place a constant in a 
register or memory location. This value must be a constant value that is 
known at the time of assembly. The general form of this addressing mode 
is #<data>, where <data>can be a byte, word, or longword value.

Where is this constant located? It is actually located right along with the 
instructor’s opcode word. You may recall that each instruction consists of at
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least one word of memory. If we have an immediate operand, this 
immediate constant data is placed in one or two successive words of 
memory, right along with the instruction—a byte or word constant takes up 
a word of memory, while a longword constant takes up the next two words.

The data may be a numeric constant, a symbol, or an expression. Here 
are some examples of valid immediate addresses:

MOVE.B #$FF,BDATA
ADDI.L I1000/D5

MAX: EQU 200
SUBI.W #MAX*3,COUNT

Note that ADDI and SUBI were used instead of ADD and SUB.

Absolute Addressing

This is the third addressing mode that you have already used. In order 
to understand the operation of this addressing mode, you will first have 
to recall the structure of memory. Remember that each byte of memory 
has an associated address or location. These addresses start at zero and 
continue up to the maximum size of allowable memory. A byte, word, or 
longword can be stored in memory. Words or longwords must be located 
at even-numbered memory addresses. So, we can specify a particular 
piece of data by its address in memory. There are actually two different 
absolute addressing modes: absolute short and absolute long. The normal 
one is absolute long. This allows a full 32-bit address to be specified.

When we want to directly access the contents of a location in memory, 
we can use absolute addressing. The instruction

MOVE.B 5000rDO

moves the byte of data at location 500010 in memory into register DO. We 
normally don’t use a numeric address, but a symbolic one.

MOVE.B DATA,DO

would be more common. Don’t get confused by the first example. This 
not the same thing as immediate mode; without the # character it is taken 
as absolute addressing. In the second example, the assembler substitutes 
the correct value for the memory address of symbol DATA. For absolute 
long addressing, the address is held in two words that follow the opcode
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word. This is similar to the technique used with immediate addressing, 
but these words are an address and not the data itself.

The absolute short mode only provides a single extension word to the 
instruction. This word has a range of from 0 to FFFF in hexadecimal. 
The 68000 takes this word and sign-extends it to 32 bits. This means that 
the sign bit is copied into the high-order 16 bits. Therefore the range of 
an absolute short address is

0000000016 - 00007FFF16 and
FFFF800016 - FFFFFFFF16

An address between 0000800016 and FFFF7FFF16 does not lie in this range 
and can not be accommodated by the absolute short addressing mode.

If you have a smart assembler and are specifying an address in the 
short range, the assembler can use this mode and save a word of memory. 
Some assemblers always use the long absolute mode. I should mention 
that on the majority of systems, even with a smart assembler, absolute 
short mode may never be used. This is because you will normally be 
specifying addresses by their symbolic names. These addresses are not 
really absolute in the sense that they are pinned down to specific memory 
locations. Most programming environments use some form of program 
relocation. This can be accomplished at the time of linking, or at the 
time the program is loaded for execution, or at both times. Therefore, 
the assembler can’t guarantee that the final address will be in range of 
the short addressing mode. Your only chance to use this mode is if you 
specify a numeric address explicitly such as

MOVE.L $100,DO

If your assembler is smart, it will use absolute short. One way to find out 
is to look at the assembly listing and count the total number of words 
generated for that instruction. If there are two, then absolute short was 
used.

Address Register Indirect

This is an addressing mode that has not been introduced in earlier 
chapters. When we write an assembly language program, we normally 
use a symbol to specify the location of data in memory. It is the job of 
the assembler to assign memory locations to each of these symbols. The 
68000 CPU doesn’t operate with symbolic addresses; rather, it requires 
the actual memory address. If we somehow had a method of obtaining
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this memory address at program execution time, we could reference 
data using this address value rather than a symbol. This is the essence 
of address register indirect addressing.

To use this addressing mode, an address must be placed into one of 
the address registers. An address used in this manner is often called a 
pointer. If we assume that the address of our data is in register AO, we 
can reference the data by specifying the operand as (AO). In other words, 
all we do is put parenthesis around the register designator. The general 
form of this addressing mode is (An). Let’s assume that a word of data 
is at location $10000. If we place the value $10000 into register A0, we 
can reference this data. The following instructions will move this data to 
register DO:

MOVEA.L #$10000,A0 
MOVE.W (A0),DO

In this case we used the MOVEA.L instruction to place the value $10000 
into register A0. Note that we used a MOVEA.L and not a MOVEA.W for 
this instruction. Even though we are going to obtain a word of data, an 
address is always a 32-bit longword value.

It is rare that we know the actual memory address for a particular 
piece of data. How, then, can we find the address of a location repre
sented only by a symbolic name? This is actually quite simple. There 
are two methods we can use. The first method simply moves the ad
dress value in as an immediate value. The following program excerpt 
will move the address of COUNT into A0 and then move the data value 
at COUNT into register DO.

MOVEA.L #COUNT,AO 
MOVE.W (A0),DO
•

♦

COUNT: DC.W 1234

The second method is to use a special instruction specifically designed 
for this purpose, the load effective address instruction, LEA. Its general 
form is:

LEA <ea>,An

It has the advantage that it determines the effective address at execution 
time and can therefore be used with a number of different addressing 
modes. The above instructions would be rewritten as

LEA COUNT,A0 
MOVE.W (A0),DO
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The LEA instruction takes the address of COUNT, not the value at 
location COUNT, and places it in register AO. The LEA instruction always 
has a longword size, since it specifies an address value.

You might be wondering, why not just use absolute addressing? The 
answer to this is best shown by example, but there are a couple of reasons. 
Unlike in absolute addressing, the address can be modified if it is in a 
register. This helps with data structures like arrays. Another real power 
of the address register indirect mode is that it avoids the necessity of 
knowing the symbolic name for the location of a data value in order to 
reference it. This will start to have a greater meaning when subroutines 
are discussed in Chapter 8.

Address register indirect can be of great help in managing data in 
arrays. You are no doubt somewhat familiar with the use of arrays from 
your experience in a high-level language. An array is a type of data 
structure created by grouping together many similar data elements of 
the same type in successive locations in memory. For example, we can 
create an array of word-sized data items with the DC.W directive.

ARRAY: DC.W 345,862,10000,-26,473

This example is an array composed of arbitrary values. Suppose we wanted 
to print out these five values—how could it be done using address register 
indirect addressing? First, we observe that the label ARRAY specifies the 
first address in the array. If we place this address in register AO, we should 
be able to access the first data element using address register indirect 
addresssing. How do we then get to the next value? We merely add the 
proper constant to AO. In this case it will be a 2, since word data requires two 
consecutive memory bytes. The following is a program that does just this:

NEXT:

LEA
CLR.L
MOVE.W
MOVE.W
JSR
JSR
ADDQ.L
DBRA

ARRAY,A0 
DO
#4 ,D1
(A0),D0
OUTDEC
NEWLINE
«2,A0
D1,NEXT

GET ADDRESS OP ARRAY 
CLEARS HIGH ORDER WORD 
INIT FOR LOOP 
GET ARRAY ELEMENT 
OUTPUT
GO TO NEXT LINE 
BUMP FOR NEXT ELEMENT 
BACK FOR MORE

Wouldn’t it be nice if we didn’t have to increment the value of A0 
by 2 each time through the loop, if it could be done automatically? The 
68000 has granted our wish. The next addressing mode we will discuss, 
address register indirect with postincrement, does just that.
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Address Register Indirect With Postincrem ent

This addressing mode works exactly the same way as address register 
indirect except that the value contained in the address register specified 
is automatically incremented by 1, 2, or 4, depending on whether the 
instruction was a byte, word, or longword operation. The general form 
of the addressing mode is (An)+. The plus sign follows the register as a 
reminder that the incrementing is performed after the operand is used. 
The previous example can be rewritten as:

NEXT:

LEA
CLR.L
MOVE.W
MOVE.W
JSR
JSR
DBRA

ARRAY,AO 
DO
#4,D1
(A0)+,D0
OUTDEC
NEWLINE
D1,NEXT

GET ADDRESS OF ARRAY 
CLEARS HIGH ORDER WORD 
INIT FOR LOOP
GET ARRAY ELEMENT AND INCREMENT 
OUTPUT
GO TO NEXT LINE 
BACK FOR MORE

As an interesting example of the use of address register indirect with 
postincrement addressing, I would like to introduce the concept of a 
character string. You will recall from Chapter 3 that the DC.B directive 
can be used to place character strings into memory. It will generate 
memory bytes that are equivalent to the ASCII character codes. One 
problem exists with these character strings: How do we determine the 
size? Unless we keep the size of each string along with the string, we 
can’t really tell its length. There is another approach that has been widely 
adopted by the C language. A null character, or zero byte, is used as a 
terminator for the string. This acts as a special mark that indicates the end 
of the string. The space occupied by the string will be one longer than 
the actual length of the string. We could declare some strings as follows:

STRl: DC.B 'This is string l',0
STR2: DC.B 'Line 1',13,10,'Line 2',13,10,0
STR3 DC.B 0

The second string would be output on two lines. ASCII 13 is a carriage 
return and ASCII 10 is a line feed. The third string is a null- or zero-length 
string.

The first thing we might want to do with a string is to output it to the 
terminal. A simple program will accomplish this. Assuming that a string 
is located at location STR, the following will output all the characters 
except the null:
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LOOPs

PINI

LEA 
MOVE.B 
BEQ 
JSR 
BRA

STR,A0
(A0)+,D0
PINI
PUTC
LOOP

GET ADDRESS OF STRING 
GET NEXT CHARACTER 
DONE?
NO, OUTPUT THE CHARACTER
BACK FOR MORE
DONE

Another useful example is in moving a string from one place to 
another. This same technique can be used to move one area of memory 
to another. Here, address register indirect with postincrement addressing 
is used for both the source and destination operands. We will move string
SI to string S2. S2 must be large enough to contain SI.

LEA SI,AO AO -> SOURCE
LEA S2,A0 A1 -> DESTINATION

LOOP: MOVE.B (A0)+,(A1) + MOVE A BYTE
BNE LOOP LOOP TILL ZERO BYTE

It may come as a shock that the loop consists of just one instruction, but 
that is all it takes. One nice feature of the 68000 instruction set is that all 
condition codes except X are set for a MOVE instruction. This allows us 
to perform the conditional branch immediately following the MOVE.

As a final example of the use of this addressing mode, here is a simple 
program to compare two strings.

LEA SI,AO A0 -> SI
LEA S2,A1 Al -> S2LOOP: TST.B (A0) NULL?BEQ LAST YES
CMPM.B (A0) +, (Al) + NO, COMPARE BYTES
BEQ LOOP CONTINUE WHILK =
BRA DIFF NOT =

LAST: TST.B (Al) NULL?
BEQ SAME

DIFF: • HERE WHEN STRINGS
SAME: # HERE WHEN STRINGS

The CMPM instruction is a special version of the compare instruction 
that must be used when both the operands are register indirect with 
postincrement addressing. We end up at label DIFF if the strings are 
different and at label SAME if they are the same. The first TST.B is 
needed to ensure that we don’t continue to compare memory locations 
beyond the strings. The TST.B at LAST is needed to make sure that the
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the second string is the same length as the first. If it is not, then the first 
string would be a substring of the second and the two are therefore not 
identical. If the second string were a substring of the first, the CMPM.B 
instruction would fail. I will leave it as an exercise to rewrite this program 
to allow matching substrings.

Address Register Indirect With Predecrem ent

This addressing mode is very similar to address register indirect with 
postincrement. Its general form is — (An). Notice that the minus sign must 
precede the register number. There are two major differences. First, the 
value in the specified address register is decremented by the data size 
rather than incremented. The other difference is in when this decrementing 
takes place. With address register indirect with postincrement, the address 
register was incremented after the effective address was computed. With 
address register indirect with predecrement, the decrementing takes place 
before the effective address is computed.

At first, you might be tempted to think of this addressing mode as a 
way to access memory in decreasing address order. You might want to 
move a chunk of memory starting with the highest memory location. This 
can be done with some care. You have to remember that predecrementing 
will occur. This means that the initial address value you place in the 
address register will not be the address of the first piece of data. It will 
be off by data-size bytes. You can certainly take this into consideration by 
adjusting the value in the address register. This can be done in two ways. 
You can generate a label that is on the next higher memory location:

DS.W 100 WORD ARRAY 
BLOCK s EQU *

The asterisk is used to obtain the current value of the assembler’s location 
counter. In this case, its value will be equal to the memory location 
immediately following the last word of the data. You would then be 
able to access this array in reverse order with the following instructions:

LEA BLOCK,AO
MOVE.W -(AO),DO GETS DATA ELEMENT INTO DO

The other method would involve placing a pointer to the last data element 
in the address register and then adjusting it before use. Here is how you 
would do it:
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LEA BLOCK,AO
ADDQ.L §2,AO ADJUST BY ONE WORD
MOVE.W -(AO),DO GETS DATA ELEMENT INTO DO

DS.W 99 FIRST 99 WORDS OF ARRAY
BLOCK: DS.W 1 THE LAST WORD OF ARRAY

In the next couple of chapters you will learn some additional uses 
for this addressing mode. Before going on to the next addressing mode
I should mention one minor detail that you must keep in mind. When 
you use register A7 with either predecrement or postincrement modes, 
it will always be adjusted by a multiple of two bytes. This means that 
byte operations cause the value 2 to be added or subtracted. This is due 
to the special significance of register A7 as a stack pointer, the topic of 
the next chapter. Another thing you may be tempted to do is to use the 
CMPM instruction with this addressing mode. You cannot do this. CMPM 
can only be used with the address register indirect with postdecrement 
mode.

Address Register Indirect With Displacem ent

This addressing mode is also a variant of address register indirect. 
However, in this case there is no predecrement or postincrement. Rather, 
this mode provides the ability to include a constant displacement to be 
added to the value in the address register before it is used to form the 
effective address. This value is not used to modify the contents of the 
address register, but only in forming the effective address. The general 
form is d16(An), where d16 indicates a displacement value which is 16 bits 
long. It is a signed value; therefore, it can represent both a positive and 
a negative offset given by the contents of An. Let’s say that AO contains 
the value $10000. The instruction

MOVE.L 4 (A0),DO

will move the word at location $10004 to register DO. Using a symbol for 
the displacement, the above example could be written as

DISP: EQU 4
MOVE.L DISP(A0),DO

If a symbol is used for the displacement, it must be a constant value and
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not a label used on a memory location. Although some assemblers may 
allow you to assemble the following:

MOVE.L ARRAY(AO),DO

ARRAY: DS.L 100

you will most likely run into trouble. The label ARRAY can ultimately be 
located anywhere in memory and therefore should be represented by a 
32-bit value. The displacement must be a signed 16-bit value.

Address register indirect with displacement is extremely useful for 
data structures that contain records. A record can contain almost anything. 
All records must be the same size if a simple array access technique is 
to be used. Let’s say that we want a simple data structure containing 
the names and ages of various people. We will restrict a name to be 10 
characters, plus a byte for the terminating null character. An age can be 
represented by a single byte. This gives us a total record size of 12 bytes. 
We can declare an array of names as follows:

NAMLST: DC.B 'TOM ',0
DC.B 43
DC.B 'ERIN 'rO
DC.B 3
DC.B 'KRISTIN ',0
DC.B 5
DC.B 0

Here a null name has been used to mark the end of the list. We can 
access the name and age of a particular record by defining constants to 
represent the displacements into the record for each component.

NAME: EQU 0 
AGE: EQU 11 
RECSIZ: EQU 12

Here is a program that will add up the ages of the names in this array:

CLR.L DO DO HAS SUM
LEA NAMLSTfAO AO -> ARRAY

LOOP: TST.B NAME(AO) FINISHED?
BEQ FINI YES
CLR.L Dl NO, CLEAR HIGH ORDER BYTES
MOVE.B AGE(A0),D1 GET AGE
ADD.L DlfDO ADD IN AGE
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ADDA.L #RECSIZ,A0 GET NEXT RECORD
BRA LOOP BACK FOR MORE

FINI:

Notice that the age is not added directly to the sum in DO. This is because 
the age is a byte value, and adding a byte to DO would only allow a sum 
as large as a byte. To get around this, we clear the high-order bytes of 
Dl and then move the age byte into the low-order byte of Dl. Then we 
can perform a full longword addition.

We can also take advantage of this addressing mode to rewrite the 
string compare previously presented.

LEA SI,AO AO -> SILEA S2/A1 Al -> S2LOOP: CMPM.B (A0)+, <A1) + COMPARE BYTESBNE DIFF DIFFERENTTST.B -1(AO) FINISHED?BEQ SAME YES, THEY MATCHBRA LOOP LOOP FOR NEXT CHAR.DIFF: • HERE WHEN STRINGS DIFFERENT
SAME: . HERE WHEN STRINGS MATCH

Address Register Indirect With Index

This mode is very similar to address register indirect with displace
ment. In fact, it is address register indirect with displacement plus the 
addition of a value contained in any one of the address or data registers. 
The general form is d8(An,Rn.W) or d8(An,Rn.L). d8 is an 8-bit displace
ment. Its range is —128 to +127. This is not as great a range as with 
address register indirect with displacement mode. Rn is any one of the 
address or data registers. Either the sign-extended word or the complete 
longword is taken from the index register, depending on the suffix the 
programmer specifies. The effective address is formed by adding the dis
placement, the contents of the address register, and the contents of the 
index register. This can be expressed as <ea>  =  (An)+(Ri)+d, where Ri 
is the appropriate value from Rn.

This addressing mode is especially useful for two-dimensional arrays. 
For a simple two-dimensional array of bytes, words, or longwords, the 
address of the appropriate row can be placed in the address register and 
the index of the column in the index register. In this case the displacement 
would be set to zero. The effective operand would then be the location
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of the data item. In order to determine the address of the row, a value 
must be added to the address of the array that is equal to the row number 
(assume rows start at 0) X the number of data elements in each row X the 
size of each element. A two-dimensional array stored this way is referred 
to as being in row major form.

We haven’t discussed multiplications just yet, so as an example I 
will assume we want to access a particular element that we know in 
advance—this way we can just use a constant. Let’s assume the size of 
each element in the array is a longword and that the array is 100 by 
100 elements. Furthermore, let’s say we want the 25th element in the 10th 
row. The following instructions will move the longword from this array 
element to register Dl.

RO: EQU 10*100*4
LEA ARRAY,A0
ADDA.L #RO,AO
MOVE.W #25,DO
MOVE.L 0 (A0,D0.W),D1

;ROW OFFSET 
;GET PTR. TO ARRAY 
;ADD IN ROW OFFSET 
;COLUMN NUM. TO DO 
;MOVE ELEMENT TO Dl

If we have a two-dimensional array of records, we can use the displace
ment to access the particular field of the record. There are many ways to 
use this addressing mode. Just remember that the displacement must be 
a constant value that is known at assembly time. The two register values 
can be computed at execution time.

Program  Counter Relative Modes

There are two program counter relative addressing modes. These 
modes function similarly: the effective address is formed as a relative 
displacement to the value of the program counter at the time the instruc
tion is executed. Since this is a multi-word instruction, the programmer 
must be a bit more specific as to exactly what value the program counter 
will have. The value is the address of the extension word of the instruc
tion. This is the word following the opcode word. The general forms of 
the program counter with displacement addressing modes are d16(PC), 
where di6 is the sign extension of a 16-bit value, and d16(PC,Ri), where 
Ri is either Rn.W or Rn.L. This is similar to the use of the index register 
with address register indirect with index mode. The effective addresses 
for these addressing modes are (PC) +d and (PC) +(Ri) +d respectively.

At first, these addressing modes may seem utterly useless, since we 
don’t know what the value of the PC will be at the time the program 
is executed. However, we do know where some things will be located 
relative to the position of an instruction using this addressing mode. In
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fact, we can let the assembler do the work for us. By specifying a label for 
the displacement, the assembler will automatically compute the proper 
offset value. If we wish to access the data at location COUNT, we can 
use PC with displacement addressing:

MOVE.L COUNT(PC),D0 
0

COUNT: DC.L 1000

There are a couple of advantages in using this addressing mode. First, 
the length of the instruction will be shorter than if the long absolute mode 
is used, and a full word of memory will be saved. Second, when we 
use PC relative addressing modes, the program code becomes position- 
independent. This means that we can move the program around in 
memory without modifying it and it will still work. Of course, this is 
assuming that no absolute addressing is used anywhere in memory, which, 
with great care, can be done. It is a help that all the branch instructions use 
this mode at all times. Only with JMP and JSR do you have a choice. This 
technique is useful for dynamically loaded programs that will be loaded 
into various locations in memory. It is somewhat beyond the level of this 
book to discuss all the applications of these techniques; however, one 
application is that of dynamically loaded device drivers in an operating 
system. If you program the Apple Macintosh, you will always have to 
write position independent code—this is a drawback of the Macintosh 
programming environment.

A couple of restrictions apply. PC relative modes can never be used 
for the destination operand of an instruction. Additionally, many assem
blers and systems support the concept of a program section. Normally, 
PC relative modes cannot be used with a label that is in another program 
section. The specific restrictions on the use of these modes is somewhat 
system-dependent. Consult the manuals for your assembler and system. 
Additionally, some assemblers will generate this addressing mode auto
matically for references to labels that are not forward references. A for
ward reference is a reference to a label that has not yet been defined. You 
should take a good look at your assembly listings to determine the ad
dressing modes that your assembler uses. Just look at the extension words 
to the instruction. If there is only one, then PC relative mode is used.

Addressing Mode Summary

Here is a table of all the possible addressing modes and their assembler 
syntax:
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D ata Register Direct
Address Register Direct
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrem ent
Address Register Indirect with Displacement
Address Register Indirect with Index
Absolute Short
Absolute Long
Program  Counter with Displacement 
Program  Counter with Index 
Immediate

Exercises

1. Are source operands ever modified by an instruction?
2. What is an “effective address” ?
3. Is the 68000 a fully orthoganal machine?
4. What is the effective address for register direct mode?
5. Where is immediate data located?
6. What is the range of absolute short addressing?
7. What is a pointer?
8. How is address register indirect mode specified?
9. Use address register indirect mode to add the first 10 longwords 

starting at absolute location $2000. Leave the result in DO.
10. Repeat the above problem using address register indirect with postin

crement addressing.
11. Write the instructions necessary to determine the length of a null 

terminated string found at MYSTR. Leave the length value in register 
DO.

12. With address register indirect with predecrementing or postincre
menting, is the value in the address register always modified by plus 
or minus one?

13. What addressing modes are allowed with the CMPM instruction?
14. What is the range of the displacement for address register indirect 

with displacement addressing?
15. Set up equates to define a record consisting of a 12-character (includ

ing the null) employee name, a longword employee number, and a 
word salary.

16. For the above record definition, assume a pointer to the record is in 
A4. Write the instruction that will place the salary data into DO.

Dn
An
(An)
(A n )+
“ (An)
d(An)
d(An, Ri)
xxx.W
xxx.L
d(PC )
d (P C , Ri)
#xxx
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17. What are the general forms of the address register with index address
ing mode?

18. What restrictions do we have with the PC relative modes?
19. What do you think the instruction MOVE.W 0(PC), DO would do?
20. What is a forward reference?

Answers

1. No, only destination operands are.
2. The ultimate location where the operand data is found. This may be 

a register or memory location.
3. Unfortunately no.
4. The register itself.
5. In one or more extension words found with the instruction.
6. 0000000016 to 00007FFFF16 and FFFF800016 to FFFFFFFF16.
7. An value used to represent an address in memory.
8. (An)

9. HOVE.L #$2000,A0 
MOVE.W #9 ,D1 
CLR.L DO

NEXT: ADD.L (A0),D0 
ADDQ.L #4,A0 
DBRA Dl,NEXT

10.

NEXT:

MOVE.L
MOVE.W
CLR.L
ADD.L
DBRA

#$2000,A0#9,D1
DO
(A0)+,D0 
Dl,NEXT

11.

NEXT:

FINI:

CLR.L
LEA
TST.B
BEQ
ADDQ.L
BRA

DO
MYSTR,A0 
(A0) + 
FINI 
#1 ,D0 
NEXT

12. No, it is incremented or decremented by 1, 2, or 4, depending on 
whether the size was byte, word, or longword.

13. Only address register indirect with postincrementing for both the 
source and destination operands.
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14. A 16-bit signed number. This is —65,536 to +65,535.

NAME: EQU 0
EMPNUM: EQU 12
SALARY: EQU 16
RECSIZ: EQU 18

16 .  MOVE.W SALARY(A4)r D0

17. d8(An,Rn.W) and d8(An,Rn.L)
18. PC relative modes can not be used for destination operands. Some 

assemblers will not allow these modes for references to other program 
sections.

19. It copies the value in the instructions extension word to register DO. 
This contains a zero.

20. A reference to a symbol that has not yet been defined.
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THE STACK

In this chapter we will examine the hardware stack implementation 
on the 68000. A stack is a type of data structure. Computer scientists refer 
to data structures like stacks as abstract data types. This is because we 
manipulate the data items contained on the stack by indirect means. In 
other words, we do not have to know the exact details of the particular 
abstract data structure in order to use it. The 68000 provides a number of 
addressing modes and instructions that can be used to manipulate data 
on a stack. Additionally, a number of other instructions use the stack to 
support their main functions. The JSR instruction that we have already 
used is a good example.

A stack is just about what its name implies: a stack of data elements. As 
with a stack of dishes or books, items are normally added to or removed 
from the top of the stack. While it is possible to add or remove an element 
from the middle of a stack, it is not a proper use. The data elements that 
form a 68000 stack may be bytes, words, or longwords. A stack may be 
placed anywhere in memory. It can be of any size. Normally, one of the 
eight address registers, A0 through A7, is used to reference the contents 
of a stack. However, register A7 is the register that is used by many 
instructions, such as JSR, to implicitly reference a stack. This register 
also has the symbolic representation SP (stack pointer). The diagram on the 
following page shows what an empty stack looks like. Each position in the 
stack is capable of holding a different value. The initial contents of the stack 
are of no significance. Whatever values are in the respective memory 
addresses are indicated by the question marks in the diagram. The actual 
length of the stack is up to the programmer as long as the total length fits 
within an area the programmer has reserved.

Stack Instructions

While it might seem a bit confusing, the 68000 hardware stack is upside 
down. That is, when we add something to the stack, the elements are 
added to progressively lower memory addresses. For each data element

89
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SP- HIGH ADDRESS

LOU ADDRESS

added to the stack, the value of the stack pointer, SP, is decremented by
2 or 4. Remember, memory addresses are byte addresses and not word 
or longword addresses. Even if we place a byte of data on the stack, the 
SP register is always changed by 2, to allow a mixture of byte, word, and 
longword data on the stack. Data on the stack should always be aligned 
at even byte boundaries. This is necessary for word and longword data. 
This is only true of register A7, and not when one of the other registers 
is used as a stack pointer. If you use a register other than A7 as a stack 
pointer, you will have to avoid placing byte data on the stack, or be sure 
to keep things aligned properly.

The two main operations that are performed on a stack are push and 
pop: we push data onto the stack, and later we pop it off. These are 
descriptive terms, but are not the actual instruction names, although some 
microprocessors actually use PUSH and POP. The 68000 uses two of its 
addressing modes instead of special instructions. This allows us to push 
and pop values onto and off of the stack with a variety of instructions.

To push a value onto the stack, the register indirect with predecrement 
addressing mode is used. The general form is — (An), or — (SP) when we 
use register A7 (of course, we could write — (A7), but the use of the 
alternate symbolic name for address register 7 is more appropriate). The 
instruction

MOVE.W # 1 2 3 4 , - ( S P )
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would result in the following stack:

SP 1234

HIGH ADDRESS

LOW ADDRESS

The stack pointer always points to the top element on the stack. This is 
our push operation. If we push another value on the stack, let’s say 5555, 
the stack would look like this:

1234
HIGH ADDRESS

SP 5555

LOW ADDRESS
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To retrieve elements from the stack, we use a MOVE instruction with ad
dress register indirect with postincrement addressing. The general form 
of this addressing mode is (An)+ and (SP)+ for the stack pointer. The 
use of this addressing mode is the reverse of register indirect with pre
decrement addressing and results in popping the topmost value off the 
stack. The data element pointed to by the stack pointer, SP, is obtained 
from the stack and placed into the destination operand of the MOVE 
instruction. The stack pointer is then incremented by 2 or 4. If we perform a

MOVE.W (SP)+,D0

on the above stack, the value 5555 is placed in the DO register. The stack 
then looks like this:

HIGH ADDRESS

D0 < --  5555

LOW ADDRESS

Notice that the value 5555 has not been changed on the stack. However, it 
is below the stack pointer and is therefore no longer relevant. You might 
be tempted to try to access this value by modifying the stack pointer 
directly, perhaps with a SUB instruction. This is not a good idea. In fact, if 
hardware interrupts are enabled, it might be changed without your being 
able to predict just when (hardware interrupts will be covered in Chapter 
12). Always regard data below the stack pointer as lost forever.

What happens if we pop one too many elements from the stack? Since

SP- 1234
5555
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the 68000 has no way of knowing how many valid elements are on the 
stack, it just obtains the element pointed to by the stack pointer. If this 
points to an invalid stack element, then the value obtained is garbage. 
For this reason, all stack operations must be performed in pairs. A pop is 
matched with a previous push. Due to the last-in first-out (LIFO) action 
of the stack, you must be careful to pop things in the reverse order they 
were pushed.

Before we go on to discuss stack applications, there is one other in
struction that should be mentioned. The push effective address instruc
tion, PEA, will compute the effective address of the source operand and 
then push it on the stack. The general form of this instruction is

pea <ea>

It always pushes a full 32-bit value onto the stack. It is equivalent to 
executing the two instructions

LEA <ea>,A0
HOVE.L A0,-<SP)

except that the address register is not used. Its main application, for 
passing address values to subroutines, will be covered in more detail 
in the next chapter. As a curiosity, the following two instructions are 
equivalent

p e a (An)
MOVE.L An,-(sp)

Stack Applications

A stack can have many uses. In addition to its usage for subroutine 
calls, which will be discussed in Chapter 8, the stack can be used by a 
programmer as a versatile temporary storage area. The only restriction 
is that the information stored on the stack must be saved and restored in 
reverse order.

Quite often a programmer may need one or more registers for an 
operation, and these registers currently contain values that may be needed 
later. The registers could be moved to other registers, if available, or 
saved in variable storage. This latter approach has the disadvantage that 
unless we define specific variable names for each such operation, we 
run the risk of accidentally using the same temporary storage location
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more than once, which would wipe out the previous value before it was 
restored. This problem does not exist with the stack, because the stack 
can continue to grow and thus create new temporary storage locations.

The following instructions save the DO, Dl, D2, and D3 registers and 
then restore them after performing some arbitrary operations.

D0,-(SP)
D1,-(SP)
D2,-(SP)
D3,-(SP)

(SP)+,D3 
(SP)+,D2 
(SP)+,D1 
(SP)+,D0

Note that the number of pushes matches the number of pops and that 
the order of the registers is reversed when the pops are performed.

If we want to push and pop a large number of registers, it can get 
very tiresome to type all these MOVE instructions. The 68000 includes 
a special version of the MOVE instruction, MOVEM (move multiple 
registers). This instruction will push or pop any or all of the data or 
address registers. The general forms of this instruction are:

MOVEM[.<size>] cregister list>,<ea>
MOVEMI.<size>] <ea>,<register list>
<size> = W, L

A register list is the list of registers to be pushed or popped. It consists 
of:

1. Rn—a single register.
2. Rn-Rm—a range of registers (m >  n).
3. Any combination of 1. and 2. separated by a slash.

The effective addresses that are normally used with this instruction are the 
address register indirect with predecrement or postincrement. With these 
two modes, the MOVEM operates just like a single MOVE except that 
multiple registers are pushed or popped. To push registers DO through 
D5 and registers A3 through A6, the following instruction would be used:

MOVE.L 
MOVE•L 
MOVE.L 
MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVEM.L D0-D5/A3-A6,-CSP)
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They can be popped with:

MOVEM.L (SP)+fD0-D5/A3-A6

Just remember to make sure that the register lists match for the push and 
pop. If the wrong number of registers are used for the pop operation, 
the stack will be left in an improper state.

The MOVEM can also be used to move a set of register contents to 
an area of memory rather than on the stack. All that is needed is an array 
large enough to hold the contents of the register list. Here is how a set of 
registers would be saved and restored to an area of memory:

MOVEM.L D0-D7/A0-A7,SAVEREGS 

MOVEM.L SAVEREGS,D0-D7/A0-A7

SAVEREGSsDS.L 16

A stack can be used to reverse the order of a list of data items. The 
following program reverses a character string entered from the keyboard:

♦PROGRAM TO REVERSE A CHARACTER STRING
CR: EQU 13 ASCII CARRIAGE RETURN

MOVE.B CR,-(SP) PLACE A RETURN ON THE STACKNEXT: JSR GETC GET A CHARACTER
CMP.B #CR,D0 IS IT A RETURN?
BNE REV YES, NOW REVERSE
MOVE.B DO,-(SP) NO, SAVE ON STACKBRA NEXT LOOP FOR MOREREV: JSR NEWLINE GO TO A NEW LINERNEXT: MOVE.B (SP)+,D0 GET A CHAR FROM THE STACK
CMP.B #CR,D0 FINISHED?
BEQ FINI YES, EXIT
JSR PUTC NO, OUTPUT THE CHAR
BRA RNEXT LOOP FOR MORE

PINI: JSR NEWLINE GO TO A NEW LINE

This program does not keep a count of the number of characters stored 
on the stack. Instead, the ASCII value of the carriage return is placed on 
the stack as a marker to indicate when we have reached the start of the 
string. As we reverse the string, we will be moving from the end of the 
string to the start. The carriage return tells us to stop popping the stack. 
Any character code could be used, as long as it does not appear in the 
string itself.
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What happens if we do use a character code that appears in the string? 
When we try to reverse the string, we will terminate the reverse loop 
prematurely. This will leave data on the stack that should have been 
removed. The consequences of this bad stack depend on the rest of the 
program. The very next pop that is performed will result in the wrong 
value. Since returns from procedures also use the stack, we can have 
disastrous results.

In the next chapter we will discuss subroutines. The stack will be an 
extremely important element in the implementation and use of subrou
tines.

Exercises

1. Which register is used as the hardware stack pointer?
2. Do some instructions implicitly reference the stack?
3. Does the 68000 stack grow upward or downward in memory?
4. What addressing mode is used to push data onto the stack?
5. What addressing mode is used to pop data from the stack?
6. Write the instructions necessary to push the value 100 onto the stack.
7. Write the instructions necessary to push the DO register onto the stack 

and pop it into the Dl register.
8. Can you access data below the stack pointer?
9. Write the instruction to place the address of variable COUNT onto 

the stack.
10. Write the instructions necessary to push the values 1 to 10 onto the 

stack.

Answers

1. A7.
2. Yes, the JSR is one example.
3. Downward.
4. Address register indirect with predecrement.
5. Address register indirect with postincrement.

6. h o v e .L #100,-(SP)

7. HOVE• L DO r - (SP) 
HOVE.L (SP)+,D1

8. Yes, but you can’t be sure of what it is.



PEA COUNT

MOVE.W #9,DO
MOVE.L #1,D1

NEXT: MOVE.L Dl,-(SP)
ADDQ.L #1,D1
DBRA DO,NEXT

LOOP COUNT 
INITIAL DATA VALUE 
PUSH DATA ONTO STACK 
INCREMENT DATA VALUE 
LOOP TILL DONE
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SUBROUTINES

We often find that we are repeating the same sequence of instructions 
in several different parts of the program we are writing. Unlike the 
instructions that are repeated in a loop, these sequences of instructions 
must be repeated at different places in the program. Without the facility 
of using subroutines, we would be forced to repeat these sequences of 
instructions in our source code, and the machine instructions generated 
by the assembler would be repeated in memory as well. This results in a 
larger program—not to mention extra typing.

Fortunately, we do have the ability to write subroutines and use the 
68000 instructions that support them. Any sequence of instructions that 
we wish can be defined as a subroutine. The early high-level program
ming languages like FORTRAN used the term subroutine, while newer 
languages like PASCAL use the term procedure. However, you should 
not regard a procedure and a subroutine in a high-level language as ex
actly the same thing in assembler.

JSR, BSR, and RTS Instructions

As a simple example, let us say that we have a need to select the 
largest of three numbers. Assuming that these numbers are contained in 
the DO, Dl, and D2 registers, and that we wanted the largest value to be 
placed in the DO register, we might do it with the following instructions:

CMP.L Dl ,D0
B6E LI
MOVE.L D1,D0CHP.L D2,D0
B6E L2
MOVE.L D2,D0

L 2 :

99
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Each time we wished to perform this operation, we would have to repeat 
the above six instructions. We would also have to change the labels to 
make sure they were different for each repetition.

If we define these six instructions as a subroutine, we can call the 
subroutine each time we want to execute these six instructions. We use 
the JSR (jump to subroutine) instruction for this purpose. You have 
already used JSR for performing input/output. You have been calling 
the appropriate input/output subroutines all along. Here is how we would 
define a subroutine:

BIGEST: CMP.L D1,D0
BGE LI
MOVE.L Dl / DOLI: CMP.L D2,D0
BGE L2
M0VE.L D2,D0

L2: RTS

The general form of a subroutine is: 

<name>: .

RTS

The subroutines name and the RTS instruction bracket the instructions 
that constitute the subroutine. One or more RTS instructions must appear 
in the subroutine. Otherwise, execution will “fall out” the bottom. The 
RTS instruction can be the last instruction of the subroutine, but it doesn’t 
have to be. This will become a bit clearer when we examine the exact 
mechanism by which subroutines work.

Subroutines can be defined at any convenient place in your program, 
but keep in mind that the instructions of the subroutine appear in memory 
in exactly the position they appear in the source program. This means 
that you can’t just stick a subroutine in the middle of your main program. 
When the subroutine’s instructions are encountered, they will be executed 
in line. Normally, subroutines are placed after your main program.

The subroutine name is defined as a normal instruction label and 
corresponds to the address of the first instruction of the subroutine. Your 
subroutine BIGEST can be invoked from several places in your program 
just by using a JSR instruction with the name of the subroutine. For 
example:
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JSR BIGEST 

JSR BIGEST

Each time the JSR instruction is executed, the instructions of the subrou
tine BIGEST are executed. How does the program find these instructions? 
The label BIGEST is used to tell the JSR instruction where to find the 
subroutine. This can be thought of as equivalent to a simple JMP BIGEST 
instruction. So far this is easy. But now consider what happens after the 
steps of BIGEST are executed. How do we get back to the instruction 
after the JSR? Which JSR? There may be quite a few. The answer lies 
with the use of the stack and the RTS instruction.

Prior to transferring control to the subroutine, the JSR instruction 
places the address of the instruction that immediately follows the JSR 
instruction itself on the stack. This is the instruction that should be 
executed when the instructions of the subroutine are completed. When 
the RTS instruction is executed in the subroutine, this return address is 
popped from the stack and placed in the program counter (PC). This 
acts like another JMP instruction. Now control returns to the part of 
the program that called the subroutine, with execution continuing at the 
proper instruction. Figure 8 shows the sequence of events for a typical 
subroutine call.

Figure 8  Subroutine call. END
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The BSR instruction operates identically to the JSR instruction except 
that it has the same limited addressing range as the conditional branch 
instructions discussed in Chapter 5. The target address of the BSR instruc
tion must be a label. The JSR instruction allows the use of a wider range 
of addressing modes. For example, we can place the address of the sub
routine in an address register and then use register indirect addressing. 
The instructions

LEA SUBR,AO 
JSR (AO)

have the same effect as the single instruction 

JSR SUBR

You should use the BSR instruction whenever possible, since it takes up 
less space in memory for subroutine calls that are relatively close to the 
address of the BSR itself.

Passing Param eters

An assembly language subroutine is normally free to access any vari
ables within a program. You might want a subroutine to use specific 
variables of your program as data for its operation. Some variables might 
only be examined and not modified by the subroutine. Others might be 
modified. An important point is that if a subroutine specifically refer
ences variables other than ones it uses for its own internal purposes, the 
programmer is stuck with always using these variables to pass data to 
and from the subroutine. From your programming in a high-level lan
guage, you are most likely wondering if parameters or arguments can be 
passed to subroutines in assembly language. The answer is yes. By allow
ing parameters, we can make a subroutine more general by not always 
requiring the same specific variables to be used to pass data to or from 
the subroutine.

Parameters or arguments can be passed to subroutines in a great 
variety of ways. There are no standard methods as would be used by 
high-level languages. The choice is up to the programmer. In fact, it is 
common practice for several different methods to be used in the same 
program. The simplest method is to place the parameters to be passed 
to the subroutine in one or more of the registers. We did this with the 
BIGEST subroutine. Under normal circumstances one or more values are 
returned by the subroutine. These values can be placed in the same or
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different registers. This was also the case with BIGEST. For subroutines 
with a small number of parameters, the use of the registers is simple and 
efficient. Unfortunately, the number of registers is limited. Additionally, 
the use of registers may require copying data values to and from variables. 
We might also have to save values already in the registers before we use 
them for parameters.

An alternative to the exclusive use of registers is to pass the address of 
a list of parameters to the subroutine. The address can be passed in one of 
the address registers. This allows a parameter list of arbitrary length, just 
as long as all the parameters can be placed in memory at the same place. 
Using the register indirect addressing mode (introduced in Chapter 6), 
an address register contains the address of the operand rather than the 
operand itself. Recall that to use an address register in this way we must 
enclose it in parenthesis. Here is BIGEST rewritten to have parameters 
passed by the use of an argument list:

BIGEST: MOVE.L (AO),D0 GET 1ST. ARG.
ADDQ.L #4, AO SET AO TO 2ND. ARG.
CMP.L (AO) ,D0 COMPARE
BGE LI
MOVE.L (AO),D0

LI: ADDQ.L #4, AO SET AO TO 3RD. ARG.
CMP.L (AO),D0 COMPARE
BGE L2
MOVE.L (AO),D0

L2: RTS

We are still using the DO register to return the largest value. This actually 
has the advantage that none of the parameters passed to the subroutine 
are modified. A fourth parameter, or return argument, could be used to 
return this value. Here is how we set up a call to BIGEST:

•

•

LEA ARG1,A0 
JSR BIGEST

DO MOW CONTAINS THE LARGEST VALUE
ARGls DS.L 1 
ARG2 DS.L 1 
ARG3 DS.L 1

The three arguments, ARG1, ARG2, and ARG3, would have values placed 
in them before the subroutine call.

You might be asking whether it is possible to use the address register 
indirect with postincrement mode rather than simple address register in
direct. It would be, except that we require up to two references through
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AO, one for the compare and possibly one for the move. If we postincre
ment on the compare, we will not have AO pointing to the proper place 
for the move. If we use a postincrement on the move, we may not al
ways execute this instruction. Give a lot of thought to those cases where 
you may be tempted to use address register indirect with postincrement.

The above technique works quite well if we can always group the 
parameters to a subroutine in one list. If, however, some variables are 
used as parameters to several subroutines and the argument lists are not 
the same, we are in trouble. Unless each subroutine is written such that it 
knows which parameters to skip in the argument list, we can’t use just one 
list. It would be poor programming practice to write subroutines in this 
manner. A solution does exist. Instead of passing the actual parameters 
in the argument list, we can pass the addresses of the actual parameters. 
Just as we passed the address of the argument list in the AO register, we 
can pass the parameter addresses as longword constants in the argument 
list. These values will correspond to the address of each parameter in 
memory. It is a bit more work to get to the actual parameter. This is how 
BIGEST would be written:

BIGEST: MOVEA.L (AO),A1 
MOVE.L (A1),D0 
ADDQ.L #4,AO 
MOVEA.L (A0),A1 
CMP.L (A1),D0 
BGE LI 
MOVE.L (A1),D0 

LI: ADDQ.L #4,AO
MOVEA.L (AO)/Al 
CMP.L (A1),D0 
BGE L2 
MOVE.L (Al)/DO 

L2: ADDQ.L #4/AO
MOVEA.L (AO)fAl 
MOVE.L DO/(Al) 
RTS

GET 1ST. ARG. PTR.
GET 1ST. ARG.
SET AO TO 2ND. ARG. PTR. 
GET 2ND. ARG. PTR. 
COMPARE
NEW LARGEST
SET AO TO 3RD. ARG. PTR. 
GET 3RD. ARG. PTR. 
COMPARE
NEW LARGEST
SET AO TO 4TH. ARG. PTR. 
GET 4TH. ARG. PTR.
RETURN RESULT

LEA ARGLST/AO 
JSR BIGEST

;ARGLST: DC.L ARG1
DC.L ARG2
DC.L ARG3
DC.L ARG4

ARG1: DS.L 1
ARG2: DS.L 1
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ARG3: DS.L 1 

ARG4: DS.L 1

The MOVEA.L (A0),A1 instruction obtains each argument pointer in 
turn. Note also that the parameters ARG1 through ARG4 do not have to 
be adjacent or in any order, but can be anywhere in memory.

Saving and Restoring the Registers

Most subroutines will no doubt require the use of one or more of the 
registers. If these registers are used to pass parameters, the programmer 
is well aware of the use of these registers by the subroutine. However, a 
register may be used by the subroutine that is not used for a parameter. 
The programmer who uses the subroutine must be aware of which of 
these registers are used if the contents are not preserved by the subroutine. 
If the programmer is not careful, a bug is introduced. It is important to 
be sure that either the caller or the subroutine saves and restores the 
appropriate registers.

The saving and restoring of the registers can be done by the caller or 
the called subroutine. Both have their advantages and disadvantages. The 
caller who saves and restores the registers may be doing extra work. Let’s 
say he is using most of the registers. The subroutine he is calling may only 
use one or two. Unless the caller knows which registers are used by the 
subroutine he must save and restore all those he is using. The assumption 
that only certain registers are used by the subroutine is a common source 
of bugs in assembly language programming. If the subroutine is modified 
in the future to use an additional register, all calls must be checked to 
make sure a bug has not been introduced. On the other hand, if the called 
subroutine is responsible for saving and restoring the registers it uses, 
the caller will never be doing extra work and the probability of errors 
is sharply reduced. However, if the subroutine uses a large number of 
registers, it may save and restore some of them that are not being used 
by a particular caller.

The technique of saving and restoring the registers is normally handled 
by using the stack. If the caller is saving and restoring the registers, 
he must push the desired registers prior to the call and then pop these 
same registers after control returns from the subroutine. Remember, the
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registers must be popped in the reverse order from the pushes. The caller 
would save and restore DO, Dl, and D3 as follows:

MOVE.L DO,-(SP)
MOVE.L D1,-(SP)
MOVE.L D3,-(SP)
JSR MYPROC 
MOVE.L (SP)+,D3 
MOVE.L (SP)+/D1 
MOVE.L (SP)+,DO

You may recall from Chapter 7 that the MOVEM instruction can be used 
in place of a sequence of moves. The above instructions could also be 
written

MOVEM.L D0-D1/D3,- (sp)
JSR MYPROC 
MOVEM.L (sp)+/D0-D1/D3

Passing Param eters on the Stack

A technique of passing parameters to a subroutine that is often over
looked by assembly language programmers is that of using the stack. 
This is the most common technique that is used by high-level languages. 
If parameters are pushed onto the stack by the caller, the subroutine can 
access them. How does this work, considering that the return address is 
also pushed onto the stack by the JSR instruction? If the subroutine were 
to pop values from the stack, the first value would be the return address. 
Unless this value is saved, and later pushed back onto the stack, the sub
routine will not have the ability to return to its caller. A better method is 
possible.

Let us say that you, as caller, want to pass three longword parameters 
to a subroutine. You would use the following instructions:

MOVE.L PARM3,- (SP)
MOVE.L PARM2,-(SP)
MOVE.L PARM1,- (SP)
JSR MYPROC

The execution of these instructions would result in the stack at the top of the 
following page. If you could access the stack without changing the stack 
pointer, SP, you could obtain the parameters. A push or pop can’t be used, 
since they automatically modify, the stack pointer. However, you can use 
register indirect with displacement addressing. The appropriate register is,
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HIGH RDDRESS

LOW ADDRESS

of course, SP. After the call, SP is pointing at the 32-bit return address value. 
The first parameter is located at 4(SP) (assuming that the parameters were 
pushed onto the stack in reverse order). Where would the second parameter 
be? Well, that depends on the size of the first parameter. If the first 
parameter is a longword, as in this example, then the second parameter is at 
8(SP). Each of the other parameters can be found in a similar manner.

I should refresh your memory concerning register A7 (SP), the stack 
pointer. When postincrement or predecrement addressing are used with a 
byte-sized operand, SP is always modified by 2, even though the operand 
is a byte. This is so the stack can always be aligned on an even-word 
boundary. You should remember this fact if you pass a byte parameter on 
the stack—always count it as two bytes. If you use a byte-sized instruction 
for both the push and the pop, everything will work out okay.

The following instructions will obtain the three parameters from the 
above example and place them into registers DO, Dl, and D2:

MOVE.L 4(SP),D0 PARM1
MOVE.L 8(SP),D1 PARM2
MOVE.L 12(SP),D2 PARM3

Of course, the parameters do not have to be moved to registers to be 
used; they can be referenced directly.

This very common and simple method of passing parameters is re
ferred to as call by value. The actual value of the parameter is placed 
on the stack. There are some limitations to this technique. First, it is only 
practical to pass byte, word, or longword arguments on the stack. What 
if we want to pass an entire array? Second, the subroutine has no way to 
change the actual parameter; it can only change the copy it has on the 
stack. Both of these limitations can be overcome by the use of a call by

PARM3

PARM2

PftRMl

SP RETURN ADDRESS
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reference. With call by reference, the address of the parameter is passed 
on the stack. This allows the subroutine not only to access the parameter 
in the caller’s domain, but actually to change its value—in other words, 
the subroutine can have both input and output parameters. Call by value 
only allows input parameters.

The PEA instruction discussed in Chapter 7 is used to pass the address 
of each parameter that is to be a call by reference. Note that it is certainly 
possible to have a mix of call by value and call by reference in the same 
subroutine call. The only restriction is that both the caller and the callee 
agree on the order and type of the parameters. Let’s say we want to 
call subroutine ALPHA with the single parameter COUNT, using call by 
reference. We would call ALPHA as follows:

PEA COUNT 
JSR ALPHA

Furthermore, assume that subroutine ALPHA does something simple, like 
adding 10 to its only parameter. Here’s how we can do it:

ALPHA: MOVEA.L 4(SP),A0 GETS ADDRESS OP COUNT IN AO
ADD.L #10,(AO) ADD 10
RTS

Keep in mind that the data object to which the parameter points can 
be as simple as a single integer or as complicated as the programmer 
desires—an array of records, or even a record consisting of several arrays. 
Anything that can be located by a single address can be passed as a 
parameter using call by reference.

One problem still remains: the parameters are still on the stack when 
the subroutine returns. The subroutine can’t pop the parameters, since 
the return address is at the top of the stack. One method is to have the 
caller clean up the stack. The caller has several choices as to what to do. 
The caller can pop the parameters:

MOVE.L (SP)+,D0 PARM1
MOVE.L (SP)+,D0 PARM2
MOVE.L (SP)+,D0 PARM3

This technique is most useful when one or more parameters are return 
values. The caller can also modify SP directly:

ADDA. L # 1 2 , SP
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A unique method that you might come across is to use the LEA instruc
tion:

LEA 12(SP),SP

This method is reported to execute somewhat faster than the ADDA.
An alternate approach is to have the subroutine clean up the stack. 

This is complicated by the fact that the return address is on the stack. 
You can’t just add a value to SP. You must first move the return address 
to a safe place, adjust SP, and finally return the return address to the stack 
in preparation for the RTS. For the above example, this can be done as 
follows:

MOVEA.L (SP)+,AO GET RETURN ADDRESS
ADDA.L #12,SP ADJUST SP
MOVE.L AO,- (SP) PUT RETURN ADDRESS BACK
RTS

A subtle method would be to substitute a JMP instruction for the RTS.

MOVEA.L (SP)+,A0 GET RETURN ADDRESS
ADDA.L #12,SP ADJUST STACK
JMP (AO) RETURN

These last two methods have the disadvantage in that they use an address 
register that can’t be restored to its prior value before the return.

Stack Fram es

There are a number of problems introduced when parameters are 
passed on the stack. Unless the subroutine keeps track of the value of 
SP when it was called, it will not be able to find its parameters. For 
example, if a subroutine needs to push one or more values on the stack 
during its operation, the value of SP will change and the parameters 
will not be located at the same relative offsets that they were originally. 
Also, high-level languages use the concept of local or automatic variables. 
These are special storage locations that only exist during the time interval 
that the subroutine, or a subroutine that it calls, is executing. These local 
variables are normally allocated from the stack. This allows such nice 
features as recursive subroutine calls. Each time a subroutine is called it 
will create a new and distinct set of local variables.

All of this greatly increases the difficulty in keeping track of where 
things are on the stack. Each time the stack pointer SP changes, all the
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offsets will also change. What is needed is a method of anchoring our 
position in the stack and making all references relative to this fixed point. 
This fixed reference is called the frame pointer. Every subroutine that 
is called in a sequence of subroutine calls uses its own stack frame. It is 
a simple matter to allocate a specific address register, other than A7, to 
serve this purpose. Quite often register A6 is used as a frame pointer. All 
we have to do is to move the particular value of SP that is our anchor point 
into A6. SP can then change and we will still be able to access parameters 
and local variables relative to our anchor point. The logical choice of such 
an anchor point is the value of SP just after the subroutine is called. This 
would always allow us to access parameters as a positive offset from the 
frame pointer. If we want local variable storage, we can subtract a fixed 
number from SP and use this area, referenced as a negative offset from 
the frame pointer, for our locals. If we execute the following instructions

ALPHA: HOVEA.L SP,A6 
ADDA.L *m,SP

SET UP FRAME POINTER 
RESERVE ID BYTES OF LOCALS

for subroutine BETA we will have a stack that looks like this:

High
arguments

return address

locals
AS (Frame Pointer)

SP

Loui

We can then access parameters using address mode 4n(A6), where n is 
the parameter number. We have to remember to account for the four 
bytes occupied by the return address when computing this offset. Local 
variables are addressed as —m(A6), where m is the byte offset into the 
local area. To return from our subroutine, we can quickly clean up the 
stack of all locals by merely resetting SP to the value of the frame pointer 
A6 and then performing the RTS.
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HOVEA.L A6,SP 
RTS

All of these operations are made simpler by using the LINK and 
UNLK instructions. These have the added advantage that the register 
used as the frame pointer is automatically saved and restored. The LINK 
instruction has the general form

LINK Anr#<<3i6placement>

where <displacement> is the value to be added to the stack pointer. 
Normally a negative displacement is used to allocate locals. The LINK 
instruction first pushes An on the stack, and then loads An with the 
updated value. Finally, the displacement is added to SP. The result will 
look almost like our example above, except that An will be on the stack. 
Here is what a frame will look like after a LINK instruction.

High

Lou

arguments

return address
saved fin

locals

temporaries

fin (Frame Pointer)

SP

Naturally, the offsets to the parameters are slightly different. The first 
parameter is now found at 8(An) rather than 4(An).

The unlink instruction, UNLK, merely loads SP from An and pops the 
saved An from its location on the stack. As a final example, let’s write a 
subroutine, GAMMA, that uses LINK and UNLK and requires 100 bytes 
of local storage.
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GAMMA: LINK A6,#-100
MOVEM.L <regs>,-(sp)

MOVEM.L (SP)+,<regs>UNLK A6
RTS

The only register that does not have to be saved and restored with the 
MOVEM instructions is A6, since this is handled by the LINK and UNLK. 
If subroutine A calls subroutine B, which calls subroutine C, we will have 
a chain of stack frames.

Lou

High ft’s frame

B ’s frame

C ’s frame

etc.

Exercises

1. Are subroutines and procedures essentially the same thing?
2. How does a subroutine get control?
3. How does a subroutine return control?
4. Where in your program can subroutines be placed?
5. What is the difference between a JSR and a BSR?
6. Write the instructions and directives for a subroutine named CLEAR 

that clears the data registers.
7. What are the disadvantages of using registers to pass parameters to a 

subroutine?
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8. Write a subroutine called SUM that adds DO and Dl and returns the 
result in DO.

9. Write a subroutine and its call that adds word variables A and B. 
Assume that A and B can be located next to each other in memory. 
Return the sum in DO.

10. Repeat the above problem, now assuming that A and B cannot be 
located next to each other in memory.

11. When a JSR is executed, what actions take place?
12. What actions take place when a RTS is executed?
13. What is wrong with the following?

CRAZY: MOVE.L D0,-(SP)
ADD.L D0,D1 
RTS

14. The following subroutine is designed to double the DO register and 
return the result in Dl. What is a possible danger with the following 
procedure if the caller assumes that no registers are changed?

DOUBLE:ADD.L DO,DO 
MOVE.L D0,D1 
RTS

15. Write a subroutine named SKIPLINES that outputs blank lines spec
ified by a count contained in register DO.

16. If we pass parameters on the stack, what method can be used to 
“clean up” the stack?

17. Write a subroutine named PAIRS that outputs two values on a line. 
VAL1 is output first, and then VAL2, followed by a new line. These 
values are passed on the stack by the following instructions:

MOVE.L VAL l ( S P )
MOVE.L VAL2,-(SP)
JSR PAIRS

It might help to draw the stack.
18. What is the difference between call by reference and call by value?
19. Write an instruction to place the address of variable ALPHA on the 

stack.
20. What is a stack frame?
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Answers

1. Yes, but they are not exactly the same as the subroutines and proce
dures of high-level languages.

2. By a JSR instruction.
3. By a RTS instruction.
4. Anywhere, as long as they are not in the middle of code that is 

designed for sequential execution.
5. A BSR is similar to the conditional branches in that it only allows a 

label as an operand; a JSR can use a number of addressing modes, 
including register indirect.

CLEAR: CLR.L DO
CLR.L Dl
CLR.L D2
CLR.L D3
CLR.L D4
CLR.L D5
CLR.L D6
CLR.L D7
RTS

7. There are a limited number of them, and data may have to be copied 
to and from the registers.

8. SUM: ADD.L D1,D0
RTS

9.
LEA A,AO 
JSR SUM

SUM: MOVE.W (AO),DO
ADDQ.L #2,AO
ADD.L (AO),DO 
RTS

A: DS.W 1
B: DS.W 1

10.

LEA ARGLST,A0 
JSR SUM

SUM: MOVEM.L A0-A1,-(SP) 
MOVEA.L (AO),A1 
MOVE.W (A1),D0

SAVE REGS 
-> 1ST. ARG.
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ADDQ.L
MOVEA.L
ADD.W
MOVEM.L
RTS

#4/AO 
(AO),A1 
(Al)/DO 
(SP)+/A0-A1

-> 2ND. ARG 
RESTORE REGS

12

13

14.

15.

ARGLST :DC.L A
DC.L B

A: DC.W I

B; DC.W 1

11. The return address is pushed onto the stack, and control transfers to 
the location specified by the operand of the JSR.
The return address is popped from the stack, and control transfers to 
the return address.
There is no matching pop to the push of DO onto the stack, and there
fore the RTS instruction will not obtain the correct return address. 
The DO register is not saved and restored by the procedure.

16.

17.

SKIPLINES: MOVE.L D O ( S P ) SAVE DO
NEXT: JSR NEWLINE OUTPUT NEWLINE

SUBQ.L #1/DO DECREMENT COUNT
BNE NEXT BRANCH IF MORE
MOVE.L (SP)+/D0 
RTS

RESTORE DO

caller can use an ADD instruction to register SP.

PAIRS: MOVE.L DO/-(SP) SAVE DO
MOVE.L 12(SP)/DO GET VAL1
JSR OUTDEC OUTPUT
MOVE.B #' ' BLANK
JSR PUTC OUTPUT BLANK
MOVE.L 8 (SP)/DO GET VAL2
JSR OUTDEC OUTPUT
JSR NEWLINE
MOVE.L 
RTS

(SP) +,D0 RESTORE DO

18.

Note that VAL2 is at 8(SP) because of the extra 4 bytes used when 
we saved DO on the stack. VAL1 is at 12(SP) because it was pushed 
first.
With call by value, a copy of the data is placed on the stack. With 
call by reference, the address of the data is placed on the stack.

19. PEA ALPHA
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20. A stack frame is an area of the stack used to pass parameters to a 
subroutine, save the return address, and provide temporary storage 
or local variables for a subroutine. Each subroutine has an associated 
stack frame for each active call.



CHAPTER 9

LINKED LISTS— 
A PROGRAMMING EXAMPLE

You now have a considerable number of useful 68000 instructions in 
your repertoire, it would be nice to see how a larger program can be 
constructed. Since a linked list is a very popular type of data structure, I 
have chosen this as the vehicle for our discussion. We will set out to write 
out a complete program to form a linked list of words that is organized 
in alphabetical order. This program will allow you to add to, print, and 
delete entries in this linked list. In the course of the chapter we will build 
up a set of subroutines that will prove useful beyond their application 
to linked lists. To some extent these subroutines look like some of those 
found in the standard C language library.

A linked list consists of a chain of nodes. A node consists of some 
amount of data and a pointer. The data is arbitrary and the amount can 
be as large or small as the user desires. The pointer which is just a 32-bit 
address in memory, is the address of the next node in the chain. As many 
nodes as we want can be chained together. If we know the address of 
the first node in the list and have some method of determining when we 
have reached the last node in the list,we can reach any particular node 
by progressively chaining down the list from the first node. This will be 
demonstrated shortly. Figure 9 shows the structure of a single node and 
a linked list of nodes. HEADER is not a node but merely a pointer to the 
first node.

When we build a linked list of data items, we must obtain the storage 
space for a node, fill in the correct data, and finally link it into the list

Figure 9 Linked list

117
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in the correct location. There are many ways to obtain the storage for 
a node. One way is to maintain a linked list of free nodes. All we have 
to do is to initialize this linked list by chaining the nodes together. For 
our example we will have nodes of size NDATA. This represents a node 
of size NDATA+4, where NDATA is the size of the data in the node. 
A header, FLIST, will be maintained that will point to the pool of free 
nodes. Assuming the total number of nodes is equal to the value of symbol 
NNODES the following subroutine, INIT, will initialize a free list of 
nodes:

NDATAs EQU 10 10 BYTES OP DATA (MUST BE EVEN NO.)
NSIZE: EQU NDATA+4 DATA + POINTER
NNODES: EQU 100 NUMBER OF NODES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* INIT - INITIALIZE THE FREE LIST 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INIT: MOVEM.L D1/A0-A1,-(SP) SAVE REGS
LEA NODES,A0 A0 -> NODE POOL
LEA FLIST,A1 Al -> HEADER OF FREE LIST
MOVE.W #NNODES-l,D1 SET UP FOR LOOP

INIT1: MOVE.L A0,(Al) SET -> TO NEXT NODE
MOVEA.L A0 ,A1 SET UP FOR NEXT NDOE
ADDA.L #NSIZE,A0 A0 -> NEXT NODE
DBRA Dl,INIT1 LOOP UNTIL DONE
CLR.L (Al) PLACE NULL PTR IN LAST NODE
MOVEM.L (SP)+,D0/A0-A1 RESTORE REGS

* RTS
DATA

FLIST: DS.L 1 -> FREE LIST
NODES: DS.B NSIZE*NNODES NODE POOL

The CLR.L instruction places a zero value in the very last pointer. A 
value of zero is used to represent the NULL pointer. We can never have 
a node at address zero for reasons that will be covered in Chapter 12. 
Locations starting at zero are special reserved locations on the 68000.

Our next step is to write a subroutine that will obtain a free node from 
this free list. Here is how we do it:

******************************************************
* GETFREE - RETURNS PTR TO FREE NODE IN A0.
* IF NO NODES LEFT, NULL IS RETURNED
* * * * * * * * * * * * * * * * * * * * * * * * * * *

GETFREE:
MOVEA.L FLIST,A0 
CMPA.L #0,A0 
BEQ GETFRET 
MOVE.L (A0),FLIST 

GETFRET:RTS

* * * * * * * * * * * * * * * * * * * * * *

GET HEAD PTR 
NULL?
YES, JUST RETURN 
NO, SET NEW HEAD
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This subroutine merely uses the address contained in the head pointer 
FLIST as a pointer to the the node to obtain. If it is NULL, it means our 
free list is empty. If the pointer in FLIST is not NULL, then it gives the 
address of a free node. If the free list is not empty then the head pointer 
FLIST is set to point to the next node in the free list. Either a valid node 
pointer or a NULL is returned by the subroutine.

Before we can start to build some linked lists that contain actual data, 
we will have to take time out from our linked lists and develop some 
other important subroutines.

In Chapter 6 I introduced the concept of a character string. You 
may recall that a character string can be specified as a list of successive 
bytes followed by a terminating or null byte. One important subroutine 
determines a string’s length:

ft***************************************************************
* STRLEN - RETURNS LENGTH OP NULL TERMINATED STRING IN DO
* AO -> STRING *******************************************’
STRLEN: MOVE.L AO r- (SP) SAVE REG

CLR.L DO INITIALIZE
STRLENI:TST.B (AO) + NULL?

BEQ STRLENR YES, RETURN
ADDQ.L #1 f DO BUMB COUNT
BRA STRLENI LOOP

STRLENR:MOVE.L (SP)+,A0 RESTORE REG
RTS

We might also want to copy a string:

************************************************************
* STRCPY - COPY A NULL TERMINATED STRING
* AO -> SOURCE STRING
* A1 -> DESTINATION STRING ************************************************************ 
STRCPY: MOVEM.L A0-A1,-(SP) SAVE REGS
STRCPY1:MOVE.B (A0)+,(A1)+ MOVE A BYTE

BNE STRCPY1 GET ANOTHER IF NOT NULL
MOVEM.L (SP)+/A0-A1 RESTORE REGS
RTS

Next, we will want to compare two strings:

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* STRCMP - COMPARE TWO NULL TERMINATED STRINGS
* AO -> STRING 1
* A1 -> STRING 2 ************************************************************ 
STRCMP: MOVEM.L A0-A1,-(SP) SAVE REGS
STRCMP1:CMPM.B (A0)+,(A1) + COMPARE BYTES

BNE STRRET RETURN IF DIFFERENT
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TST.B -1(AO) HAVE WE HIT A NULL?
BNE STRCMP1 NOW MORE BYTES LEFT

STRRET: MOVEM.L (SP)+,A0-A1 RESTORE REGS 
RTS

This subroutine sets the condition code register according to the last two 
bytes compared, if they were unequal; the zero condition is set if the 
strings match. We can then determine not only the equality or inequality 
of the strings, but also their alphabetical order. Fortunately, the ASCII 
character set is ordered properly from A to Z. These last two subroutines 
are minor variations of the techniques used in Chapter 6.

The standard I/O subroutines introduced in Chapter 4 only provide 
a mechanism to input or output a single character. We must be able to 
input and output a complete character string. Two subroutines, INS and 
OUTS, will be used to input and output null-terminated strings. OUTS 
merely calls PUTC for each character in the string until the null is found.

* OUTS - OUTPUT A NULL TERMINATED STRING TO THE SCREEN
* aO -> STRING
OUTS: MOVEM.L AO/DO,-(SP) 
0UTS1: CLR.L DO

MOVE.B (AO)+/D0 
BEQ OUTSRET 
JSR PUTC 
BRA OUTS1 

OUTSRET:MOVEM.L (SP)+,AO/DO 
RTS

SAVE REGISTERS
CLEAR HIGH ORDER BYTES OF DO
MOVE A CHARACTER INTO DO
QUIT IF NULL
OUTPUT THE CHARACTER
LOOP FOR ANOTHER
RESTORE REGISTERS

Inputting a character string is almost as simple. There is one minor 
detail to keep in mind: the size of the array that we are reading the string 
into is of a certain size. For this example, the maximum size data string 
is a total of NDATA characters long. Since the string must be terminated 
with a null, we must reserve one of these characters for the null byte. 
Therefore, we can only read a total of NDATA-1 characters from the 
keyboard. The INS subroutine will read characters using GETC until a 
carriage return is entered or NDATA-1 characters have been entered.

* INS - INPUT A STRING UNTIL CR OR NDATA-1 CHARACTERS
* AO -> STRING
INS: MOVEM.L A0/D0-D1,- (SP) SAVE REGISTERS

MOVE.W #NDATA-2,D1 SET UP LOOP COUNT
INS1: JSR GETC GET A CHARACTER

MOVE.B D0,(A0)+ STORE IT IN STRING
CMP.B #CR,D0 CR?
DBEQ Dl,INS1 LOOP UNTIL COUNT RUNS OUT OR CR
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INSR: JSR NEWLINE
CLR.B (AO)
CMP.B #CR,D0
BNE INSR1
CLR.B -1(AO)

INSR1: MOVEM.L (SP)+,A0/D0-D1 
RTS

OUTPUT A NEWLINE 
ADD A NULL TO STRING 
LAST CHAR A CR?
NO
YES, PUT NULL THERE TOO 
RESTORE REGISTERS

Note that the method used to handle an overflow count is different from 
that used to handle a string terminated with a carriage return. If the 
carriage return is entered, it must not appear in the string. The second 
CMP.B instruction handles this check. If the last character entered was a 
carriage return, it is overwritten with a null byte.

At this point we have enough basic subroutines to start manipulating 
the linked lists themselves. We will need two types of list insertions; one 
that inserts a node at the head of a list, and one that inserts a node in 
alphabetical order. To insert at the head of the list is very simple. We 
merely obtain the pointer to the first node from the header. You can think 
of the header as a special node that has no data and is always located in a 
known place. For example, the header for the free list is always located 
at the memory location FLIST. We set the forward pointer in the node 
we are inserting to point to the node that was pointed to by the header. 
This may be a null pointer, but we don’t care. The only other piece of 
business is to set the header to point to the node we are inserting. Here 
is how it’s done:

* INSERT - INSERT A NODE AT THE HEAD OF A LIST.
* AO -> NODE
* A1 -> HEADER OF LIST **************************************************************** 
INSERT: MOVE.L (A1),(A0) SET UP LINK IN NEW NODE

MOVE.L A0,(A1) SET HEADER TO -> NEW NODE
RTS

Figure 10 shows this operation.
Insertion of a node in alphabetical order is considerably more difficult. 

We must chain down the linked list until we find the proper insertion 
point. This is determined by a string comparison using STRCMP. We 
then have to link this node into the list by breaking the previous link and 
setting the proper pointers. Refer to Figure 11.

INSERTA - INSERT A NODE ALPHABETICALLY. 
AO -> NODE 
A1 -> HEADER OF LIST

INSERTA:MOVEM.L A0-A2,-(SP) SAVE REGISTERS
ADDQ.L #4/AO AO -> NEW NODE DATA
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INSAO: MOVEA.L A1,A2 A2 -> PREVIOUS NODE LINK
MOVE.L (Al),A1 Al -> NEXT NODE LINK
CMPA.L #0,A1 NULL?
BEQ INSAI YES, END OF LIST
ADDQ.L *4,A1 Al -> NEXT NODE DATA
JSR STRCMP COMPARE STRINGS
BLT INSAI KEEP LOOKING
SUBQ.L #4,A1 Al -> NEXT NODE LINK

INSAI: SUBQ.L #4 / AO AO -> NEW NODE LINK
MOVE.L Al,(AO) SET LINK IN NEW NODE
MOVE.L AO, (A2) SET LINK IN PREVIOUS NODE

INSAR: MOVEM.L
RTS

(SP)+,A0-A2 RESTORE REGISTERS
INSAI: SUBQ.L #4 ,A1 Al -> LINK

BRA INSAO CONTINUE SEARCH

figure 10 Insertion at head of list

Figure 11 Insertion into middle of list

By using more registers and/or other addressing modes it may be possible 
to reduce the size of this subroutine. Can you do it? Is there a way to
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eliminate the additions and subtractions used to obtain pointers to the 
data?

To delete a node, we must know its position in the linked list. If we 
are given the data string for a particular node, we can find the actual 
node location by searching the string to see if we can find the node. The 
subroutine SEARCH will search a given list. If a node matches our search 
string, then a pointer to the node is returned.

**************************************************************
SEARCH - SEARCH FOR A NODE WITH HATCHING STRING.

AO -> HEADER NODE 
Al -> SEARCH STRING
ON RETORN AO -> HATCHING NODE OR IS NULL 
IF NOT FOUND.

SEARCH: HOVEA.L (AO),A0 GET -> NEXT NODE
CMPA.L #0,A0 NULL?
BEQ SEARCHR YES, NO HATCH
ADDQ.L t4,A0 AO -> STRING
JSR STRCHP COHPARE STRINGS
BNE SEARCH1 DOESN'T HATCH
SUBQ.L #4, AO RESET PTR TO LINK

SEARCHR :RTS
SEARCH1 :SUBQ.L #4 ,A0 RESET PTR TO LINK

BRA SEARCH

To complete our deletion, we must unlink the deleted node from the 
linked list and return it to the free list. The latter operation can be 
accomplished by the INSERT subroutine already discussed. The former 
operation is accomplished as follows: 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DELETE - DELETE A NODE.
AO -> NODE
Al -> HEADER OF LIST

DELETE: HOVEM.L A0-A1,-(SP) SAVE REGISTERS
DELETEO :CMPA.L (Al),A0 DO NODE PTRS. MATCH?

BEQ DELETE1 YES, COMPLETE OPERATION
MOVEA.L (Al),Al NO, CHANIN DOWN LIST
CMPA.L 10,Al NULL?
BEQ DELETER YES, NODE NOT FOUND
BRA DELETEO NO, LOOP TO NEXT NODE

DELETE1 :MOVE.L (AO),(Al) UNLINK THE NODE
DELETER :MOVEM.L <SP)+,A0-A1 RESTORE REGISTERS

RTS

This operation is shown in Figure 12.
One more subroutine is needed before we can write the main pro

gram: we must have a way of outputting the list to the terminal or screen.
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figure 12 Deletion of a node.

This is accomplished by the subroutine PLIST:

****************************************************************
* PLIST - PRINT A LIST
* AO -> HEADER NODE 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PLIST: MOVE.L AO,-(SP) SAVE REGISTER
MOVEA.L (AO),AO GET -> FIRST NODE

PLIST1: CMPA.L #0 ,A0 NULL?
BEQ PLISTR YES, RETURN
ADDQ.L #4,AO AO -> STRING
JSR OUTS OUTPUT THE STRING
JSR NEWLINE OUTPUT A NEWLINE
SUBQ.L #4,AO AO -> LINK
MOVEA.L (AO), AO CHAIN DOWN THE LIST
BRA PLIST1 LOOP FOR NEXT

PLISTR: MOVE.L (SP)+,AO RESTORE REGISTER
RTS RETURN

The main program is very straightforward. A menu is displayed and 
the user is expected to enter a single character corresponding to one of 
the valid commands, I (insert), D (delete), P (print), or Q (quit). The 
character entered is compared with the valid commands and if one is 
found to match, the appropriate instructions are executed by branching 
to specific command routines. Each of these command routines branches 
to the common loop at OVER. Other than to display input prompts or 
output messages, these routines merely call the proper list-manipulating 
subroutines and string primitives. Their operation should be clear if you 
refer back to the descriptions of the subroutines.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* MAIN PROGRAM - EXECUTION STARTS HERE 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

JSR INIT INITIALIZE THE FREE LIST
OVER: LEA MENU,AO DISPLAY THE MENU

JSR OUTS n
JSR GETC GET INPUT CHARACTER
JSR NEWLINE OUTPUT A NEWLINE
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* COMPARE THE INPUT CHARACTER WITH ALL POSSIBLE SINGLE
* CHARACTER COMMANDS AND BRANCH TO THE PROPER COMMAND
* IF FOUND.

CMP.B
BEQ
CMP.B
BEQ
CMP.B
BEQ
CMP.B
BEQ

#'I',D0 
COMI 
# 'D',D0 
COMD 
*'P',D0 
COMP 
# 'Q',D0 
COMQ

BRA OVER NOT FOUND/ TRY AGAIN
* D  - DELETE AN ENTRY
COMD: LEA MESS1/A0 PROMPT FOR STRING

JSR OUTS II

LEA SI ,A0 GET INPUT STRING
JSR INS fl
MOVEA.L A0/A1 A1 —> STRING
LEA NLIST/AO AO -> NLIST
JSR SEARCH SEARCH FOR ENTRY
CMPA.L *0/A0 FOUND?
BEQ COMDNF NO
LEA NLIST,A1 YES, CALL DELETE
JSR DELETE m

LEA FLIST/A1 A1 -> FREE LIST
JSR INSERT INSERT DELETED NODE ONTO FRE!
LEA MESS2/A0 OUTPUT MESSAGE
JSR OUTS VI

BRA OVER GET ANOTHER COMMAND
COMDNF: LEA MESS3/A0 OUTPUT MESSAGE

JSR OUTS n

BRA OVER GET ANOTHER COMMAND
* I - INSERT AN ENTRY
COMI: LEA MESS1/A0 OUTPUT PROMPT

JSR OUTS m

JSR GETFREE GET A FREE NODE
CMPA.L I0/A0 NULL?
BEQ COMIERR YES, NO MORE NODES
ADDQ.L #4/AO AO -> DATA IN NODE
JSR INS GET AN INPUT STRING
SUBQ.L #4 /AO AO -> LINK IN NODE
LEA NLIST/A1 AI -> LIST
JSR INSERTA INSERT ENTRY ALPHABETICALLY
BRA OVER GET NEXT COMMANDCOMIERR:LEA MESS4/A0 OUTPUT ERROR MESSAGE
JSR OUTS Cl

BRA OVER GET ANOTHER COMMAND
* P - PRINT THE LINKED LIST
COMP: LEA NLIST/AO AO -> LIST

JSR PLIST PRINT OUT
BRA OVER GET NEXT COMMAND

*  Q  - RETURN TO YOUR OPERATING SYSTEM
COMQ: SYSTEM DEPENDANT
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************************************************************
* PROGRAM DATA************************************************************
* NOTE - CR AND LF ARE DEFINED IN THE STANDARD I/O SUBROUTINES
MENU: DC.B 'INSERT, PRINT, DELETE, QUIT? ',0
MESS1: DC.B ’ENTER: ',0
MESS2: DC.B 'NODE DELETED.',CR,LF,0
MESS3: DC.B 'NODE NOT FOUND.',CR,LF,0
MESS4: DC.B 'NO MORE FREE NODES.',CR,LF,0
SI: DS.B 80 BUFFER FOR INPUT STRING
NLIST: DS.L 1 -> LIST
FLIST: DS.L 1 -> FREE LIST
NODES: DS.B NSIZE * NNODES NODE POOL

END

To conclude this chapter, I have included a sample dialog that was 
formed by running this program. It demonstrates all of the features.

INSERT, PRINT, DELETE, QUIT? I 
ENTER: ALPHA
INSERT, PRINT, DELETE, QUIT? I 
ENTER: BETA
INSERT, PRINT, DELETE, QUIT? P
ALPHA
BETA
INSERT, PRINT, DELETE, QUIT? I 
ENTER: AAA
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
INSERT, PRINT, DELETE, QUIT? I 
ENTER: ZZZ
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
ZZZINSERT, PRINT, DELETE, QUIT? I 
ENTER: GAMMA
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? D 
ENTER: BETA 
NODE DELETED.
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? I 
ENTER: A
INSERT, PRINT, DELETE, QUIT? I 
ENTER: B
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INSERT, PRINT, DELETE, QUIT? I 
ENTER: C
INSERT, PRINT, DELETE, QUIT? I 
ENTER: D
INSERT, PRINT, DELETE, QUIT? I 
ENTER: E
INSERT, PRINT, DELETE, QUIT? I 
ENTER: P
INSERT, PRINT, DELETE, QUIT? P 
A
AAA
ALPHA
B
C
D
E
P
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? I 
ENTER: NO MORE FREE NODES. 
INSERT, PRINT, DELETE, QUIT? D 
ENTER: AAA 
NODE DELETED.
INSERT, PRINT, DELETE, QUIT? I 
ENTER: LASTONE
INSERT, PRINT, DELETE, QUIT? P 
A
ALPHA
B
C
D
E
F
GAMMA
LASTONE
ZZZ
INSERT, PRINT, DELETE, QUIT? Q





CHAPTER 10

LOGICAL, SHIFT AND 
ROTATE INSTRUCTIONS

In this chapter we will examine a group of instructions that can ma
nipulate the individual bits of a byte, word, or longword by performing 
logical operations such as AND and OR. We will also see how shift and 
rotate instructions can change the positions of all the bits in a byte or 
word in interesting ways.

Truth Tables

There are four logical operations that have corresponding 68000 in
structions: NOT, AND, OR, and EOR (exclusive or). These four logical 
operations can be described by the use of a truth table. AND, OR, and 
EOR are operations that require two operands, while NOT only requires 
one. When used as 68000 instructions, these logical operations act on all 
the bits of the operands in parallel. However, the action on individual 
bits or bit pairs is the same. We can therefore describe each operation 
with a truth table consisting of at most a pair of bits.

The NOT logical operation essentially reverses ones and zeros. In 
other words, a 1 becomes a 0 and a 0 becomes a 1. The truth table looks 
like this:

Operand
0 1

Result 1 0
NOT

The AND operation takes two operands. The resulting bit is a 1 only if 
both the operand bits are 1.

129
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Operand 1

Operand 2

0 1

0 0 0

1 0 1

AND

OR results in a 1 if either of the operand bits are a 1.

Operand 1

Operand 2

0 1

0 0 1

1 1 1

OR

EOR is just like OR except that the result is a 0 if both operands are 1.

Operand 1

Operand 2

0 1

0 0 1

1 1 0

EOR

Logical Operations

With the exception of NOT, the general form of the logical instructions 
is exactly the same as for ADD and ADDI. Both a source and destination 
must be specified. The corresponding bits of the source and destination 
operands are used to form the result, which is stored in the destination. 
NOT requires only a destination operand. Here are the general forms:
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AND[.<size>] 
ANDI.<size>] 
ANDII.<size>] 
OR I.<size>] 
0R[.<size>] 
ORIt.<size>] 
EORt.<size>] 
EORI.<size>] 
EORI(.<size>] 
NOT!.<size>]

<ea>,Dn 
Dn,<ea> 
#<data>,<ea> 
<ea>,Dn 
Dn,<ea> 
#<data>,<ea> 
<ea>fDn 
Dn,<ea> 
#<data>,<ea> 
<ea>

<size> B, W, or L
For example, we can execute the following instructions:

MOVE.B # $55/DO 
ANDI.B #$64,DO

The following logical operation is thus performed:

01010101  
AND 01100100

01000100

The result, 4416, would be left in the DO register. The operation has been 
shown in binary to make clearer what is happening. The bits in each 
column are operated on separately. Notice that the result only contains a 
1 in bit positions that have both the source and destination bits set to 1.

The source operand of an AND, OR, or EOR instruction is quite often 
called a mask. A mask has the property of changing a certain group of 
bits in the destination operand while leaving others alone. For example, 
the AND instruction can be used to zero a group of bits while leaving the 
others unmodified. We merely form a mask with the bits of the mask set 
to ones that correspond to bits in the destination that we wish to leave 
unchanged. Let's say that we want to zero the high-order four bits of a 
byte in DO. The mask value we would use would be OF 16.

ANDI.B #$0F,D0

We can also make sure that certain bits are set to 1. Those bits will 
correspond to ones placed in a mask used with the OR instruction. The 
following instruction would ensure that the high-order two bits of a 
longword in register D5 are set to 1:

ORI.L #$C000000Q,D5
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EOR has the most interesting property in its use with a mask. Each bit 
set to 1 in the mask corresponds to a bit in the destination that we desire 
to complement. In other words, 1 flips to 0 or 0 flips to 1.

Shifts

The logical instructions can be used to manipulate individual bits or 
groups of bits within a byte, word, or longword. However, the positions 
of the bits that are manipulated remain the same. We sometimes desire to 
treat all of the bits of a byte or word as a group and change their positions. 
One can imagine a virtually unlimited number of possible operations. 
Since it would not be practical to implement a machine instruction for 
every possible reorganization of the bits of a word or byte, two of the 
most useful operations are implemented, shifts and rotates.

The bits of a word or byte are normally numbered as follows:

Byte
7 G 5 4 3 2 1 0

IS 14 13 12 11 10 9
Word 
B 7 6 5 4 3 2 1 0

31 30 29 2B 27 26
Longword

6 5 4 3 2 1 0

The bits of a word or byte can be shifted either to the left or to the right. 
For each shift of one position, all the bits move to the left or right, each 
bit replacing the bit that was previously occupying that position. This 
looks like the following:



Logical, Shift and Rotate Instructions 133

for a right shift, or

for a left shift.

You are probably wondering what happens to the bit that falls off the 
end of a left or right shift. You are also probably wondering if a 1 or 0 bit 
is shifted into the high-order bit position of a right shift or the low-order 
position of a left shift. The answer to the first question is quite simple. 
If we shift left or right, the bit that falls off the end is saved in both the 
carry bit, C, and the extend bit, X. This is either bit 7 for a byte shift, bit 
15 for a word shift, or bit 31 for a longword shift, for left shifts, and bit
0 for all right shifts.

If we shift left, a bit with a zero value is always shifted into the 
low-order bit position of the byte or word. This is the bit 0 position. When 
we shift right, two results are possible. If we use the logical shift right 
instruction, LSR, a zero bit is shifted into the high-order bit position. If we 
use the arithmetic shift right instruction, ASR, the value of the high-order 
bit is shifted into itself. In other words, the value of the high-order bit is 
not changed. This is what these shifts look like:

LSR

X'C

LSL'ASL
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The purpose of the arithmetic shift is to preserve the sign bit. You will 
recall that the sign bit is the high-order bit when using two’s complement 
representation. One use of the shift instructions is to multiply or divide 
a number by a power of two. Without the arithmetic forms of the shift 
instructions, incorrect values would result. The corresponding mnemonics 
for the left shifts are ASL and LSL. Even though it would at first appear 
that these are the same instructions, they actually differ slightly. While 
it is true that the result in the destination of an ASL and an LSL will 
be identical, the two instructions differ in how they affect the condition 
code register. The arithmetic versions of the instructions will conditionally 
set the overflow bit depending upon whether the most significant bit is 
changed at any time during the shift operation. The remaining bits of the 
CCR are conditionally set for both versions of the instructions.

There are three forms for the shift instructions:

<shift>[.<size>] DxfDy
<shift>[.<size>] #<data>,Dy
<shift>f.W] <ea>
<shift> = ASL, ASR, LSL, LSR 
<size> = B, W, or L 
<data> = 1-8

The first form specifies a shift count in register Dx and the destination in 
register Dy. The second form allows an immediate shift count between
1 and 8. For counts larger than 8, two or more sequential shifts with 
immediate operands can be used. Naturally, if the shift count is to be 
variable, the first form is most useful. The third form shifts the contents 
of a memory location by one bit only. Furthermore, the data width is 
restricted to one word. If you need to manipulate a byte or longword 
from memory, you will have to move it into a register first, shift it, and 
then move it back to memory. Additionally, anything but a shift of a few 
bits would also require moving the data to a register.

If the DO register contains 543216, the shift

LSL.W #1,D0

results in A86418 in DO. Likewise,

LSR.W #1,D0

results in 2A1916. And

MOVEQ.L #10,Dl 
LSL.W Dl,DO
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will shift DO left by 10 bits. This will shift in 10 zeros, and the value 
in DO after the shift will be C00016. Note that we are performing word 
operations on the register. The bits shifted out of the low-order word are 
not shifted into the high-order word.

Even though the 68000 has a number of multiply and divided instruc
tions, it is sometimes easier and faster to use a shift for these operations. 
This only works for multiplication or division by a power of two. A left 
shift will multiply by 2n, where n is the number of bits to shift. A right 
shift (be sure to use ASR for a signed divide) will divide by 2n. Since 
the bits shifted off the end are lost, there will not be a remainder. Also, 
be aware that no rounding of the result is performed. This means that 
positive numbers are truncated towards zero, and negative numbers are 
truncated towards negative infinity. In other words, 5/2 will result in 2, 
while —5/2 will result in —3. You can verify this for yourself by writing 
the binary values for 5 and —5 and then shifting.

An interesting application of this use of the shift instructions is a mul
tiplication which is not a power of two. A simple unsigned multiplication 
can be performed using the left shift, LSL. Simply check each bit position 
in the multiplier to determine if it is a 1 or 0. If it is a 1, add the multipli
cand shifted left by the number of bits corresponding to the bit position 
in the multiplier. Sum these partial products as we go along. Here is a 
simple routine to perform this multiplication:

* UNSIGNED MULTIPLY
* DO = MULTIPLIER 

Dl = MULTIPLICAND 
D2 = PRODUCT
D3 = TEMP FOR MULTIPLICAND 
D4 = SHIFT COUNT

NEXT:
CLR.L D2 CLEAR PRODUCT
MOVEQ.L #-l,D4 SET UP SHIFT COUNT
TST.L DO FINISHED?
BEQ FINI YES
ADDQ.L #1,D4 SET UP COUNT FOR NEXT SHIFT
LSR.L #1 / DO GET NEXT BIT OF MULTIPLIER
BCC NEXT ZERO, CONTINUE
MOVE.L D1/D3 COPY MULTIPLICAND
LSL. L D4/D3 GET PARTIAL PRODUCT
ADD.L D3/D2 SUM TO PRODUCT
BRA NEXT

FINI:

Notice that the shift count is initialized to —1. This is to ensure that the 
first time it is used it will be zero. We drop out of the loop as soon as 
the multiplier is zero. This allows the algorithm to operate faster than if
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we always went through the loop 32 times. Also note that this routine 
does not check for overflow. The 68000 has a multiply instruction, so this 
routine should never be required.

Rotates

Rotates are very similar to shifts. We can rotate to the left or right. The 
difference is that rather than shift in zeros, as for left shifts and logical 
right shifts, the bit that would normally fall off the end is shifted back 
into the longword, word, or byte at the opposite end. The ROL (rotate 
left) and ROR (rotate right) instructions work as follows:

ROL

A corresponding pair or rotates, ROXL and ROXR, work in the same 
way as ROL and ROR except that the extend bit is included as an extra 
bit to be included in the rotate. Here is how they work:

ROXL

ROXR

□
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The rotate instructions have the same format as the shift instructions.

<rotate>[.<size>] Dx,Dy
<rotate>[.<size>l #<data>,Dy
<rotate>[.W] <ea>
<rotate> = ROL, ROR, ROXL, ROXR 
<size> = B, W, L 
<data> = 1-8

The following subroutine, OUTHEX, demonstrates the use of a rotate 
instruction and a logical instruction to output the contents of the DO regis
ter as a hexadecimal number.

OUTHEXI MOVE.L DO,-(SP)
MOVE.L Dl,— (SP)
MOVEQ #7,D1

OUTL1: ROL.L *4,DO
JSR OUTDIG
DBRA Dl,OUTL1
MOVE.L (SP)+,D1
MOVE.L
RTS

(SP)+,D0
*
OUTDIGs MOVE.L D0,-(SP)

ANDI.L #$F,D0
CMPI.B *9,DO
BLS OUTD1
ADDI.B #*A'-'0'-10,D0

OUTD1: ADDI.B #'0',D0
JSR
RTS

PUTC

SAVE REG. VALUESf9
8 NIBBLES
ROTATE NIBBLE INTO PLACE 
OUTPUT NIBBLE 
LOOP UNTIL DONE 
RESTORE REGS.19
RETURN

SAVE DO
ISOLATE NIBBLE 
>9?
NO
YES, MAKE A-P 
MAKE DIG. INTO ASCII 
OUTPUT DIGIT 
RETURN

The subroutine OUTDIG is used to convert a 4-bit hexadecimal digit to 
its ASCII character value. Since a hexadecimal digit can range from 0 to 
9 and A to F, a check must be made to ensure that the proper ASCII 
character value is selected for digits with decimal values between 10 and
15. In OUTHEX, a rotate instruction rather than a shift instruction is used, 
since the digits must be output starting with the high-order digit. The left 
rotate accomplishes this quite nicely.

Bit Manipulation

Sometimes we desire to manipulate only one bit in a byte, word, 
or longword. While it is possible to use the logical instructions for this 
purpose, it is much easier to use a special group of instructions known as 
the bit manipulation instructions. There are four of them: BTST, BSET, 
BCLR, and BCHG. They all have the same general form:
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<bitop> Dn,<ea>
<bitop> #<data>,<ea>
<bitop> = BTSTr BSET, BCLR, BCBG

The effective address can be a data register or memory location, but 
not an address register. For each of these instructions, you specify the 
number of the particular bit that you want to manipulate. The bits are 
numbered starting with the low-order bit as bit 0. The bit number may be 
placed in a register for the first form of the instruction, or specified as an 
immediate value for the second form of the instruction. If the effective 
address is a data register, then the instruction operates on any of the 32 
bits of the data register. If the effective address is a memory location, 
then the instruction operates only on the byte at the specified address. In 
other words, the range of the bit number must be between 0 and 7.

BSET and BCLR will set the specified bit to a 1 or a 0 respectively. 
BCHG will complement the specified bit—in other words, a 1 becomes 
a 0, and vice versa. BTST will test the specified bit to determine if it is 
a 1 or a 0. It does not change it. The Z-condition bit is set accordingly. 
If the bit is zero, then Z will be set. It doesn’t matter what the values of 
the other bits are in the data item.

Exercises

1. What is NOT 55AA16?
2. What is AAAA16 or 555516?
3. Write a logical instruction that will clear register DO.
4. Write a logical instruction that will ensure that the high-order three 

bits of register DO are ones.
5. Write a logical instruction that will ensure that the low-order four bits 

of register DO are zeros.
6. Write a logical instruction that will set the bits of register Dl such that 

a bit is set to one if it differs from the corresponding bit in register 
DO.

7. Give the bit number of the high-order bit for
a) a byte
b) a word
c) a longword

8. Where does the bit go that is shifted off the end in a left or right shift?
9. What is the difference between a logical shift right and an arithmetic 

right?
10. Is there a difference between the ASL and LSL instructions?
11. What register can be used to specify a shift count?



Logical, Shift and Rotate Instructions 159

12. Write an instruction to perform a logical shift right by one bit of the 
DO register.

13. Write the instruction necessary to divide register DO by 16 using a 
shift.

14. There are two types of left and right rotates. What is the difference?
15. Write the instruction necessary to rotate register DO left by one bit, 

including the extend bit.
16. Write the instructions necessary to rotate register DO right by 16 bits, 

not including the extend bit.
17. There are many more logical operations than the four that are im

plemented by the 68000. For example, the NOR operation has the 
following truth table:

Operand 1

Operand 2

0 1

0 1 0

1 0 0

Write the instructions necessary to form the NOR operation of the DO 
and Dl registers.

18. Is LSR.L #10,DO a legal instruction?
19. Can you think of a way to perform NOT DO using another logical 

instruction?
20. Write an instruction to test if bit 12 of register DO is a 1.

Answers

1. AA55j6

2. ffff16

3. EOR.L DO,DO ANDI

4. ORI.L #$E0000000,D0

5. ANDI.B #$F0,D0

6. EOR.L D0,D1
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7. a) 7 b) 15 c) 31
8. Into the carry bit.
9. The logical shift right shifts a zero into the high order bit. The 

arithmetic shift right shifts the sign bit into itself.
10. Yes, the ASL conditionally sets the overflow bit.
11. Any data register.

12. LSR.L #1,D0

13. ASR.L 14,DO

14. One type includes the extend bit and the other type doesn’t.

15. r o x l .l #1#DO

16. MOVE.L #16,Dl 
R0R.L Dl,D0

17. OR.L D0,D1
N0T.L Dl

18. No, a count greater than 1 must be specified in a register.

19. EORI.L #5FFFFFFFF,DO

20. BTST #12,DO



CHAPTER 11

ADVANCED ARITHMETIC

In Chapters 4 and 5 you learned the ADD, SUB, ADDQ, and SUBQ 
instructions. These instructions, along with the condition code register, 
give you the capability to perform other arithmetic operations such as 
multiplication and division. For example, you can perform multiplication 
by repeated addition, and division by repeated subtraction. These are not 
the best methods to use, but they are simple. By using the shift instructions 
shown in Chapter 10, more efficient algorithms can be implemented. 
Fortunately, the 68000 has a set of powerful arithmetic instructions that 
include multiplication and division as well as some other rather interesting 
instructions. In this chapter we will take a look at the complete set of 
arithmetic instructions and introduce some new concepts such as decimal 
arithmetic. Yes, I did say “decimal” arithmetic. Up to this point we have 
been dealing strictly with binary arithmetic operations.

Multiple Precision Addition and Subtraction

Before discussing the multiplication and division instructions, I want to 
introduce the concept of arithmetic precision. Basically, the precision of 
a calculation is proportional to the number of bits used in the calculation. 
The more bits used, the greater the precision. Even though we are 
confined to integer arithmetic, we can use a larger number of bits to 
represent larger numbers which, in turn, can represent scaled values. For 
example, we can represent time intervals in thousandths of seconds rather 
than seconds. This would require the ability to represent numbers 1,000 
times larger for the equivalent times in seconds. However, the precision 
would be greater, since times would be stored with accuracy down to a 
thousandth of a second.

The 68000 performs additions and subtractions on bytes, words, or 
longwords. Therefore, there are actually three built-in precisions avail
able. But what if 32 bits is not a great enough precision for our calcu
lations? Is there anything we can do? The answer is yes, but not with a

141
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single instruction. We can perform multiple precision operations by rep
resenting our numbers as multiple numbers of bytes. Normally it would 
make no sense to represent numbers as two bytes rather than a word. 
However, three bytes, two longwords, or other higher multiples of bytes, 
words, or longwords are logical.

How do we store multiple precision values in memory? You may 
recall that single words or longwords are stored in memory such that 
the high-order (most significant) byte comes first. We can adhere to this 
convention and require multiple precision numbers to be stored with the 
highest order bytes coming first. This is not absolutely necessary, but it 
makes things consistent; and some of the new instructions you will learn in 
this chapter will operate more efficiently if this is the case. For example, 
if we have a double longword value, $123456789ABCDEF0, it can be 
stored as:

DC.L $12345678 
DC.L $9ABCDEF0

This number would be a double-precision longword. We can set up values 
of any precision in a similar manner.

Suppose we want to add two double-precision integers, A and B, and 
store the result in variable C. We will assume that all three variables are 
stored high-order bytes first. The following directives might be used to 
reserve storage:

A: DS.L 2
B: DS.L 2
C: DS.L 2

Adding the two low-order bytes is straightforward:

MOVE.L A+4,D0 
ADD.L B+4,D0

Notice that A+4 and B+4 are used as the operands. These are the 
addresses of the two low-order longwords. Remember, a longword is 
four bytes. The labels A and B are the addresses of the two high-order 
longwords. The result is now in register DO. We can store this result as 
the low-order word of C:

MOVE.L DO/C+4

You might be tempted to say that all we have to do is repeat the 
above instructions for the two high-order words of A and B. This is 
almost correct except for the fact that we might have had a carry from 
the low-order addition. This carry must be added to the calculation for
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the high-order longwords. The carry condition, C, is set/reset as a result 
of our first addition. All we have to do is somehow add the carry bit to 
our high-order addition. But wait, the MOVE instruction used to save the 
low-order result will clear the carry bit. In fact, we can’t even get a hold 
of the high-order longword without destroying the carry bit. The 68000 
designers anticipated this problem. They provided the extend condition 
or X bit in the condition code register. This bit is always a copy of the 
carry bit for arithmetic operations. However, it is not cleared, or modified 
in any way, as a result of a MOVE instruction.

The ADDX, SUBX and NEGX instructions are provided to utilize the 
value in the extend bit. Their general forms are:

ADDX[.<size>] Dy,Dx
ADDXl.<size>] -(Ay),-(Ax)
SUBXt.<size>] Dy,Dx
SUBX[.<size>] -(Ay),-(Ax)
NEGX[.<size>] <ea>
<size> = B, W, L

They work like ADD, SUB and NEG, except that the extend bit is 
factored into the calculation, and the addressing modes are restricted 
to those shown. For ADDX, the extend bit is added to the result; for 
SUBX and NEGX it is subtracted—this is equivalent to a borrow for a 
subtraction. The ADDX, SUBX, and NEGX instructions all set the C and 
X bits after a calculation. The remaining instructions needed to complete 
the calculation are:

MOVE.L A,DO 
MOVE.L B,D1 
ADDX.L D1,D0 
MOVE.L D0,C

The above procedure can be used to add numbers of any precision. An 
ADD instruction is used for the lowest order byte, word, or longword, 
and all other additions are performed with the ADDX instruction.

Multiple precision subtraction can be performed in a similar manner, 
using the SUB instruction and the subtract-with-extend instruction, SUBX. 
The following instructions will subtract the three-byte variable A from B 
and store the result in C:

MOVE.B B+2,D0
SUB.B A+2,D0
MOVE.B DO,C+2
MOVE.B B+l,D0
MOVE.B A+l,D1
SUBX.B D1,D0
MOVE.B D0,C+1
MOVE.B B,D0
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MOVE.B A,Dl 
SUBX.B D1,D0 
MOVE.B DO rC

A: DC.B 3
B : DC.B 3
C: DC.B 3

The use of a three-byte value is questionable. The complexity in calcu
lation would most likely outweigh the small savings in memory unless 
there was a very large number of three-byte values. The use of a long
word would eliminate this complexity. I presented this only as an example 
of the flexibility of the 68000 instructions.

One disadvantage to the above technique is that there must always be 
both operands in data registers before the ADDX or SUBX instructions 
are performed. If address register indirect with predecrement addressing 
is used, the multiple precision addition from above can be made com
pletely general. Before showing some specific examples of the use of 
these instructions, I will have to introduce a new instruction, the MOVE 
to CCR instruction. This is actually just a version of the MOVE instruc
tion, with the destination operand being the condition code register, CCR. 
It allows the setting or clearing of any of the bits in the CCR. Its general 
form is:

MOVEt.W] <ea>,CCR

Even though the source operand must be a word, only the low-order byte 
is used to load the condition code register. Recall from Chapter 5 that 
the CCR bits are:

BIT I CONDITION
0 c
1 v
2 Z
3 N
4 X

The reason for this sudden interest in the CCR is that the extend bit is 
always included in the calculation. Therefore, we must make sure that it 
is clear before  we start a calculation.

The following is a subroutine to do a double-precision addition. The 
subroutine will add the double-precision values pointed to by registers 
A0 and Al, and place the result in the location pointed to by register Al.

DBADD: ADDQ.L #8,A0
ADDQ.L #8,A1
MOVE.W #4 rCCR
ADDX.L - (A0),- (Al)
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ADDX.L -(A0),-(A1)
RTS

Moving the constant 4 into the CCR will clear all the bits except for the 
Z condition. Remember, when the Z bit is set, there is a zero value. I will 
get back to this point shortly. Notice that the subroutine first adjusts the 
addresses to point to the longword just beyond the number, and then uses 
address register indirect with predecrement addressing for the additions. 
The values in AO and A1 will be restored to their original values when 
the subroutine returns. This subroutine could be called as follows:

LEA A,AO 
LEA B,A1 
JSR DBADD

This call would result in adding double-precision value A to double
precision value B.

I mentioned that there is a reason to make sure the Z condition is set 
in the CCR before starting a multiple precision calculation. The reason is 
that we may want to test the result of our calculation to determine if it is 
zero. Since this is a multiple precision calculation, what we really require 
is that all the intermediate results are zero, as well as the final addition or 
subtraction. ADDX, SUBX, and NEGX all have an interesting property 
when it comes to the Z condition: the Z condition is cleared if a result is 
non-zero, and unchanged otherwise. This means that once it is cleared it 
will remain cleared. This indicates a non-zero result for our calculation. 
A BEQ or BNE instruction can then be used to conditionally branch, 
depending on the state of the Z bit.

The NEGX instruction is used to negate (subtract from zero) a 
multiple precision value. The following instructions will negate the 
double-precision longword in location COUNT:

MOVE.W #4,CCR 
NEGX.L COUNT+4 
NEGX.L COUNT

Notice that the Z bit must be set prior to execution of the first NEGX. 
Address register indirect with predecrement addressing can also be used:

LEA COUNT+8/AO
MOVE.W #4/CCR
NEGX.L -(AO)
NEGX.L -(AO)

Multiplication and Division

The 68000 has two multiply and two divide instructions. One pair of 
multiply and divide instructions is used for unsigned values and the other
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pair is used for signed values. Unlike addition and subtraction, signed 
and unsigned multiplies and divides require different instructions. The 
four instructions are:

MULU -unsigned multiply
MULS -signed multiply
DIVU -unsigned divide
DIVS -signed divide

A property of the multiplication of two numbers of a given precision is 
that the result of the multiplication can have a precision equal to the sum 
of the precisions of the two numbers. This means that the multiplication 
of two bytes yields a result up to two bytes or one word in length; and the 
multiplication of two words, a result up to four bytes or one longword 
in length.

The general form of the multiplication instructions is:
MULU <ea>,Dn 
MULS <ea>,Dn

The size of the source and destination operands is always a word. If the 
operand comes from a register, only the low-order 16 bits are used. The 
remainder of the bits are ignored. The product is stored in all 32 bits of 
the destination register.

Unlike addition and subtraction in two’s complement representation, 
the result of a multiplication or division will be different for signed and 
unsigned numbers. A simple example will illustrate. We will assume 4-bit 
numbers. If we multiply —1 by —1, the signed result should be +1. In 
binary this is:

n i l  
x 1 1 1 1

oooooooi

Notice that I have shown the 8-bit result. Now, an unsigned value of 
11112 is actually 1510, so this multiplication would be 15 X 15 =  225. Our 
answer should be:

m i
X 1111 

11100001

A similar situation exists for division. Therefore, the proper instruction, 
signed or unsigned, must be used.

The following instruction multiplies the two signed words contained 
in registers DO and Dl:

MULS DO fDl
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The result is in Dl. The following instructions multiply word variables X 
and Y:

MOVE.W X fD0 
MULS Y,D0

The result is in register DO. The following instruction multiplies register 
DO by 100:

MULS #100,D0

The general form of the divide instructions are:
DIVU <ea>,Dn 
DIVS <ea>,Dn

The destination operand is divided by the source operand, and the 
quotient is left in the destination operand. The integer part of the quotient 
is in the lower 16 bits, and the remainder, in the upper 16 bits, of the 
destination register. The dividend is the full longword in the destination 
register, but the divisor is only a single word operand. If the source 
operand comes from a register, only the low-order 16 bits are used.

The following instruction will divide the unsigned longword in register 
DO by the constant 10:

DIVU #10,DO

The integer part of the result is in the lower 16 bits of the DO register. 
Any remainder is in the upper 16 bits of DO. There are a few things to be 
careful of. First, if you plan to use a word dividend, you must make sure 
that the high-order bits of the register are zero for an unsigned divide, and 
equal to the sign extension of the low-order 16 bits for a signed divide. 
For an unsigned divide, you can merely use a CLR.L instruction before 
moving the word into the register. Second, you must remember that the 
remainder is in the upper 16 bits of the destination register. If you want 
to save the integer part of the quotient as a longword, you must zero the 
upper 16 bits for an unsigned divide, and sign-extend the lower 16 bits 
for a signed divide. One way to do this for an unsigned divide is with 
an AND.L instruction. The following instructions will divide longword B 
by word A and place the result in longword C:

MOVE.L B,D0
DIVU A,DO
AND.L #§FFPP
MOVE.L DO ,C

DS.L 1
DS.W 1
DS.L 1
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We can sign-extend a byte to a word, or a word to a longword, using 
the EXT instruction. The general form is:

EXT[.<size>] Dn 
<size> = W, L

So, if we want to divide two signed words, we can use the following 
instructions:

MOVE.W VAL1,D0
EXT.L DO
DIVS VAL2,D0
MOVE.W DO,RESULT

VAL1: DS.W 1 
VAL2: DS.W 1 
RESULT: DS.W 1

Before leaving division, there are a few more loose ends to clear up. 
In signed division, the sign of the remainder is always the same as that of 
the dividend. This means that if a negative number is divided by another 
negative number, even though the quotient is positive, any remainder 
will be negative. If we divide —23 by —10, the execution of the DIVS 
instruction will yield a quotient of +2 and a remainder of —3.

In division, signed or unsigned, it is possible for the quotient to be 
larger than the destination register can hold. This overflow  condition, 
always the case when we try to divide by zero, can occur for divisors 
other than zero. The overflow bit, V, is used to detect this situation. The 
result of such a division leaves the operands unchanged. A divide by zero 
is a special case: a special exception condition is generated by an attempt 
to divide by zero. This causes a trap to exception vector number 5. The 
discussion of traps in the next chapter will show how this capability can 
be utilized.

Decimal Arithmetic

Up to this point, all our numerical values have been represented as 
binary data consisting of one or more bytes. Decimal numbers that are 
input to a program must be converted to binary. Likewise, a decimal 
number that is output must be converted from the internal binary repre
sentation. The INDEC and OUTDEC subroutines introduced in Chapter
4 perform these operations. As it turns out, the 68000 has a number of in
structions that allow the represention of decimal numbers internally in a 
special way that makes the input and output conversions much simpler. 
This representation is called binary coded decimal or BCD.
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Four bits are required to represent the digits 0 to 9. As you may recall, 
we can actually count up to 15 with four bits. That, of course, allows us 
hexadecimal representation. If, however, we restrict the values of a group 
of four bits to range from 0 to 9, we can represent a decimal number as 
a set of these four-bit groups. There are two half bytes, sometimes called 
“nibbles,” per byte. This allows us to represent two decimal digits per 
byte. The decimal number 35 can be written in BCD form as 001101012. 
The two decimal digits are contained in one byte. Note that this number 
would be 5310 if the “binary” value were converted to decimal.

So far so good, but how are BCD values used in performing arith
metic? If they have to be converted to pure binary, nothing has been 
gained. The answer lies in examining what happens when we perform ad
ditions and subtractions of BCD numbers. Suppose we add the BCD num
bers 2 and 7. In the binary representation these numbers are 000000102 
and 000001112. Adding them using the ADD instruction would yield 
000010012, or 910. This is just what we want. However, suppose we add 5 
and 7. Our result will now be 000011002. This is not a valid BCD number, 
since the low-order nibble is greater than 9. The problem gets worse if 
we add 8 and 9—this gives us OOOIOOOI2 , which we might interpret as 
1110 if we were using BCD. This is still not right. What we really want is 
the low-order nibble to be set to the correct BCD value, with some way 
of determining if there is a carry to the high-order nibble. In other words, 
we really wanted 000100102 when we added 5 and 7 and 000101112 when 
we added 8 and 9. In both these cases there is a carry corresponding to 
IO10.

The above problem is solved by the use of a number of instructions 
specifically designed for BCD arithmetic. These instructions fix up the 
low-order nibble, propagate a carry to the high-order nibble, and set the 
carry/extend bits as appropriate for a carry out of the high-order nibble. 
These instructions and their general forms are:

ABCD[.B] Dy,Dx
ABCDt.B] - (Ay),-(Ax)
SBCDl.B] Dy,Dx
SBCDf.B] -(Ay),-(Ax)
NBCDI.B] <ea>

Note that they always operate on bytes. This is the only valid size to use.
Here is how two BCD values can be added, assuming that they are in 

registers DO and Dl:

MOVE.W #4,CCR 
ABCD DO/Dl

A subtraction can be performed similarly:
MOVE.W #4/CCR 
SBCD D0/D1
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Notice that I cleared the extend bit and set the zero bit in the CCR prior 
to executing the BCD instructions. The BCD instructions will always use 
the extend bit just as the ADDX, SUBX, and NEGX instructions did.

Now that we know how to perform additions and subtractions of 
two BCD values, we can extend these operations to multidigit decimal 
numbers. The address register indirect with predecrement addressing 
mode is designed for this operation. This works in a similar manner to 
the multiple precision operations for addition and subtraction. Suppose 
we are storing 10-digit decimal numbers as arrays of five bytes. If the 
first entry in the array corresponds to the high order-byte, two of these 
numbers, VAL1 and VAL2, can be added with the following instructions:

LEA VAL1+5 fAO
LEA VAL2+5,Al
MOVE.W #4,DO
MOVE.W #4,CCR

LOOP: ABCD -(AO)t- (Al)
DBRA DO,LOOP

VAL1: DS.B 5
VAL2: DS.B 5

In this example, the two decimal numbers VAL1 and VAL2 are added 
together, with the result stored in VAL2. The MOVE to CCR instruction 
is used to clear the extend bit prior to the first add. If we don’t make 
sure the extend bit is initially clear, we might get an erroneous result. 
Subtraction of multidigit BCD numbers can be performed in a similar 
manner. The SBCD instruction must be used.

Input and output of BCD numbers are really not too difficult. It is 
important to remember that there are two decimal digits in each byte 
and they are not in ASCII character codes. A single-byte BCD number 
in register DO can be output with the following:

MOVE.L DO t“ (SP) SAVE DO
LSR.B #4,DO GET HIGH ORDER NIBBLE
AND.L # SPfDO MASK TO 4 BITS
ADD.B #'0',D0 MAKE INTO ASCII
JSR PUTC OUTPUT THE CHARACTER
MOVE.L (SP)+rD0 GET DO BACK
AND.L #$F,D0 MASK TO 4 BITS
ADD.B #'0',D0 MAKE INTO ASCII
JSR PUTC OUTPUT THE CHARACTER

To perform additions and subtractions on BCD numbers, the high-order 
digit must be in the high-order four bits of the byte. The above instruc
tions output the byte with the high-order digit first.

The following instructions are necessary to input a single BCD byte 
into DO:
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JSR GETC GET A CHARCTER
SOB.B # ' 0'/DO MAKE INTO DECIMAL
LSL.B #4,DO SHIFT INTO HIGH NIBBLE
MOVE.L DO/-(SP) SAVE DO
JSR GETC GET A CHARACTER
SUB.B #'0',D0 MAKE INTO DECIMAL
ADD.L (SP)+/DO ADD HIGH NIBBLE

This routine does not have any error checking, so if a character other 
than 0 through 9 is entered, an error will result. It is straightforward to 
add instructions to test the range of each digit as it enters to ensure that 
it is valid.

BCD numbers are unsigned. The high-order bit of the high-order byte 
is not interpreted as a sign bit. How then can we represent signed BCD 
numbers? One method is to reserve a single byte as the sign byte. We can 
store the ASCII character +  or — in this sign byte and the absolute value 
of the BCD number in the remaining bytes. Unfortunately we can’t just 
add or subtract these numbers. The sign byte can’t enter into the actual 
arithmetic. Before using a signed BCD number, the sign byte must first 
be checked. If the BCD number is negative, tens complement must first 
be taken prior to its use in a calculation. The ten’s complement is used 
in a manner very similar to the two’s complement of binary numbers. 
The ten’s complement is the nine’s complement plus one. To compute 
the nine’s complement, simply subtract each BCD digit from the number 
nine, then add in the one. For example: the nine’s complement of the 
four-digit BCD number 1234 is 8765. The ten’s complement is then 8766. 
This adjusted number used in a calculation will now give a correct result. 
From the above example, the number 8766 can be thought of as a negative 
1234. If we add a positive 1234, we should get a result of zero. This is 
true if we ignore the carry.

8766 -1234
1234 +1234

10000  0000

The same rules apply as for two’s complement binary numbers. Unfor
tunately, we must keep track of the signs separately, or use more com
plicated schemes. One such scheme would be to use the high-order digit 
for the sign, with a positive number being represented by a 0 and a neg
ative number by a 9. This is equivalent to the use of the high-order bit 
as a sign bit with two’s complement binary numbers.

The NBCD instruction is used to compute the ten’s complement. The 
action of this instruction is to perform the ten’s complement of a pair 
of BCD bytes and then subtract the extend bit. If the extend bit is 0, 
then the result is truly the ten’s complement. If the extend bit is a 1, then
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the result is the nine’s complement. This instruction can also be thought 
of as subtracting the two-digit number in a byte from zero. Unless the 
number is zero, a borrow will be needed. This results in the number 
being subtracted from 100 if we include the borrow from the next higher 
digit, the hundreds position. Therefore, unless the two-digit number in a 
byte is zero, a borrow will be required. This property allows us to take 
the ten’s complement of a multi-byte BCD number by performing the 
NBCD instruction on each byte, starting with the low order. The extend 
bit must be cleared prior to the first operation. Here is the code required 
to take the ten’s complement from a four-byte BCD number:

MOVE.W #4,CCR CLEAR X AND SET Z
LEA VAL,A0 AO -> NUMBER
ADDQ.L #4/AO ADJUST TO BYTE BEYOND
NBCD -(A0)
NBCD -(A0)
NBCD -(A0)
NBCD -(A0)

You might have noticed that I didn’t use a loop, but rather used four 
in-line NBCD instructions. While it might look like we could save space 
by replacing three of the NBCD’s with two instructions for the loop, this is 
actually not true. The NBCD instruction is only a single word instruction 
if address register indirect with predecrement addressing is used. The 
savings would have to be at least one word to be worthwhile. That leaves 
only two words for the two loop instructions. Even if a MOVEQ is used 
for initialization, the DBRA alone will require two words. Therefore, we 
are better off with the four NBCD instructions. While no one would 
expect a programmer to check each and every instruction combination 
to see which is faster or takes up less space, it is wise to be aware that 
such tradeoffs do exist. Sometimes it is obvious when such a decision 
should be made.

Exercises

1. What is meant by arithmetic precision?
2. You have a requirement to store monetary values from 0 to 1 billion 

dollars down to the nearest penny. What scaling is required, and what 
precision is required to store these values?

3. How are multiple precision values stored in memory?
4. Set up the value $5643278436667 as a double longword in memory.
5. Write the instructions necessary to add the above constant to the 

double longword variable ALPHA.
6. What are the multiplication and division instructions used with signed 

and unsigned numbers?
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7. What is the precision of the result of a multiplication?
8. What is the sign of the remainder in signed division?
9. Where is it located?

10. Write the instructions necessary to multiply unsigned byte variables 
NUM1 and NUM2, placing the result in NUM2. Ignore overflow.

11. Write the instructions necessary to divide unsigned word variable 
COUNT by 25.

12. Write the instructions necessary to sign-extend a byte in register DO 
to a full longword.

13. How many decimal digits can be stored in a byte using BCD repre
sentation?

14. What is a nibble?
15. What is the binary value for 7510 in BCD representation?
16. What is the decimal equivalent for the BCD value 100101102?
17. What addressing modes are allowed with the ABCD and SBCD 

instructions?
18. Write the instructions necessary to add the constant 10 to a 10-digit 

BCD number at location LIMIT.

Answers

1. The number of bits that are used to represent a numeric value.
2. One billion is 1,000,000,000. If we scale by two decimal digits to 

include pennies, we must be able to accommodate numbers as large 
as 100,000,000,000. This requires 5 bytes. Two longwords or three 
words would be a reasonable choice for implementation.

3. In consecutive memory locations, with the high-order bytes first.

4. CON: DC.L $00056432
DC.L $78436667

MOVE.L ALPHA+4,D0
ADD.L CON+4 rDO
MOVE.L DO rALPHA+4
MOVE.L ALPHA,DO
MOVE.L CON,Dl
ADDX.L Dl, DO
MOVE.L DO tALPHA

6. MULU and DIVU for unsigned numbers and MULS and DIVS for 
signed numbers.

7. The sum of the precisions of the numbers being multiplied. Specifi
cally for the 68000, the result is a longword.

8. The sign of the remainder is always that of the dividend.
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9. The remainder is located in the high-order word of the destination 
register.

HOVE.B NUH1,D0
EXT.W DO
HULU NUH2,D0
HOVE.B D0,NUM2

HOVE.W COUNT,DO
EXT.L DO
DIVU *25,DO
HOVE.W DO,COUNT

EXT.W DO
EXT.L DO

13. Two.
14. The upper or lower four bits of a byte.
15. 011101012.
16. 9610.
17. Both source and destination as registers or address register indirect 

with predecrement addressing.

LEA CON+5,AO
LEA LIHIT+5,A1
HOVE.W #4, DO
HOVE.W #4,CCR

NEXT: ABCD -(AO) , - (Al)
DBRA DO,NEXT

CON: DC.B
•

0,0,0,0,$10

LIHIT: DS.B 5
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EXCEPTION PROCESSING, 
SYSTEM CONTROL 

OPERATIONS, AND I/O

In this chapter we will cover a number of topics and instructions 
that don’t fit into the category of general programming instructions. I 
mentioned in Chapter 2 that the 68000 doesn’t have any input/output 
instructions. This is not quite true. A number of instructions are used 
to process interrupts, a certain type of exception which is a vital part 
of I/O activity. In addition, a special version of the MOVE instruction is 
provided to make certain kinds of I/O easier and faster. I also mentioned 
in Chapter 2 that the 68000 has a user and supervisor mode of operation. 
The system control operations are used to coordinate these two modes.

The Status Register and System Control

When we are in the supervisor mode, the condition code register, 
CCR, is part of a 16-bit register known as the status register, SR. Let’s 
take a closer look at the high-order bits of the register found on the 
following page. If the trace bit is set to a 1, the CPU is placed into trace 
mode. This special mode is used for debugging purposes. When in trace 
mode, an exception is generated for each instruction executed. We will 
discuss trace mode when we talk about exceptions.

If the supervisor state bit is set, we are in supervisor mode. However, 
this bit cannot be arbitarily set at any time. If we are in user mode 
(the supervisor bit clear), we can’t modify the high-order bits of the 
status register. How then do we get into supervisor mode? There are 
two ways. The first is when we initially turn on our system, or push the 
reset button (if so equipped). This causes a system reset to supervisor 
mode. The second method is related to the handling of exceptions. When

155
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Status Register

15 13

System Byte-
10

User Byte 
4

T S 12 11 10 CCR

Interrupt Mask 
Supervisor State 
Trace Mode

an exception condition occurs, we will wind up in supervisor mode. 
Exceptions are discussed in the next section.

The interrupt mask is a three-bit value that specifies the processor 
interrupt priority: if an interrupt from an I/O device has a priority 
greater than the interrupt mask, it will be allowed to generate an interrupt 
exception. The interrupt priority from the device is restricted to the range 
from 1 to 7. If the interrupt mask is set to 0, any interrupt will be allowed. 
If it is set to a 1, then only interrupts from devices with priorities from 2 
through 7 will be allowed. An exception exists for processor interrupt 
priority level 7. This only inhibits device priorities below 7. Device 
priority 7 will cause an interrupt.

A number of instructions have been provided to manipulate the status 
register directly. The following are the only instructions that can be used 
with the SR:

MOVE <ea>,SR (PRIVILEGED)
MOVE SR,<ea>
ANDI *xxx,SR (PRIVILEGED)
E0RI #xxx,SR (PRIVILEGED)
ORI *XXX,SR (PRIVILEGED)

You will notice that all of these instructions are privileged if they can 
modify the SR. A program running in user mode can only look at, not 
change, the contents of the SR. These are all word instructions and all of 
the bits of the SR are affected.

A program running in user mode can always examine or modify the 
condition code register by using the following instructions:

MOVE SR,<ea>
MOVE <ea>,CCR
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ANDI tXXX,CCR 
EORI #xxx,CCR 
ORI #XXX,CCR

Notice that the MOVE from SR instruction is used to examine the CCR. 
With this exception, the instructions are all byte instructions.

Two other instructions involving the CCR not mentioned previously 
should be examined. Return and restore condition codes, RTR, is similar 
in operation to the RTS instruction except that the CCR is restored from 
the stack prior to the return. In other words, the RTR instruction is 
equivalent to

MOVE (SP)+,CCR 
RTS

If the CCR is pushed onto the stack at the beginning of a subroutine 
and the subroutine uses an RTR instead of an RTS, the subroutine will 
not result in any changes to the CCR. This is a simple way to make a 
subroutine transparent as far as the CCR is concerned.

The other instruction is actually a group of instructions. The See 
instructions are similar to the group of conditional branches, Bcc. The 
difference is that rather than conditionally branch, this instruction will 
set its effective address to TRUE or FALSE depending on the particular 
condition tested. TRUE and FALSE are defined as all ones for TRUE 
and all zeros for FALSE. The effective address must always be a byte. 
The following conditions can be tested:

CC carry clear LS low or samecs carry set LT less thanEQ equal MI minusF £alse NE notequalGE greater or equal PL plusGT greater than T trueHI high vc overflow clearLE less or equal VS overflow set

This instruction is especially useful for remembering the outcome of a 
test without taking immediate action. For example, we might want to 
remember if a calculation overflowed. We can set a flag byte OVFL 
using the SVS instruction:

<perform calculation>
SVS OVFL SET FLAG BYTE 
<do something else>
TST.B OVFL 
BNE OVERFLOW

OVFLs DS.B 1 OVERFLOW FLAG BYTE
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There is one more instruction that should be mentioned before going 
on to exceptions. Recall from Chapter 2 that there are really two register 
A7’s. One A7 is for the user in user mode, and the other A7 is for the 
system in supervisor mode. These are designated USP (user stack pointer) 
and SSP (system stack pointer). If a user wants to change her stack pointer 
she merely references it as A7 or SP. If the system in supervisor mode 
wants to change its stack pointer, the SSP, it can do so also by referencing 
A7 or SP. It is not permissible for a user to modify, or even to examine, 
the SSP. However, it is normally the responsibility of the system to set up 
a valid initial stack pointer for the user. A special instruction is required 
for this purpose. The MOVE to USP instruction:

MOVE USP,An
MOVE An,USP

This is always a longword instruction and it is privileged.

Exception Processing

An exception is an event that causes the normal flow of a program to 
be suspended and a special piece of program code to be given control. 
This special piece of code, or exception handler, is designed to respond 
to the condition causing the exception by taking whatever steps are 
necessary and then returning control to the program for the program to 
continue, if possible. The condition causing an exception can be generated 
by an I/O device external to the CPU, by an error condition within the 
program like a divide by zero, or by the program itself using special 
instructions known as traps.

When the CPU detects an exception condition, it must locate the 
special piece of code to handle that specific exception. It does this by 
looking into a special table of exception vectors. These exception vectors 
are located at the very bottom of memory. They take a total of 1024^ 
bytes. Each exception vector requires 4 bytes. This conceptually allows a 
total of 25610 different vectors. However, vector numbers 0 and 1 serve a 
special purpose, that of system reset, giving a total of 255 unique vectors. 
Not all of these are assigned. Each entry contains the 32-bit address of 
the exception handler. The format is:

Even Bytes i Odd Bytes
Word 0 New Program Counter (High)
Word 1 New Program Counter (Low)
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Vector
Numberls) Dec

Address
Hex Space

Assignment

0 0 000 SP Reset: Initial SSP?
1 4 004 SP Reset: Initial PC2
2 8 008 SD Bus Error
3 12 OOC SD Address Error
4 16 010 SD Illegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator

121 48 030 SD (Unassigned. Reserved)
13̂ 52 034 SD (Unassigned, Reserved)
14 56 038 SD Format Error**
15 60 03C SD Uninitialized Interrupt Vector

16-23' 64 040 SD (Unassigned, Reserved)
95 05F -

24 96 060 SD Spurious Interrupt3
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SO Level 2 Interrupt Autovector
27 108 06C SO Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector

32-47 128 080 SD TRAP Instruction Vectors4
191 0BF

48-631 192 OCO SD (Unassigned, Reserved)
256 OFF -

64-255 256 100 SD User Interrupt Vectors
1023 3FF -

NOTES:
1. Vector numbers 12, 13. 16 through 23. and 48 through 63 are reserved for 

future enhancements by Motorola. No user peripheral devices should be 
asstgned these numbers.

2. Reset vector (0) requires four words, unlike the other vectors which only re
quire two words, and is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indica
tion during interrupt processing. Refer to Paragraph 4 4.2.

4. TRAP In  uses vector number 32+ n.
5. MC68010 only. See Return from Exception Section.

This vector is unassigned, reserved on the MC68000, and MC68008.

Figure 13 Exception vector assignments. (Courtesy of Motorola, Inc.)

The exception vector assignments are shown in Figure 13. Each vector is 
assigned a number. The address of the particular vector number is four 
times the vector number.

Before we discuss the various types of exceptions, let’s see just what 
happens when an exception occurs. The following events take place:

1. An internal copy is made of the status register. This is used in step 
number 3. The CPU is forced into the supervisor mode by setting the
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S bit in the status register. The tracing bit, T, is negated to prevent 
tracing. If the exception is an interrupt, the interrupt priority mask 
is updated.

2. The vector number of the exception is determined. This either comes 
from an external fetch, in the case of an interrupt, or is determined 
internally by the CPU.

3. The current program counter and the saved status register are pushed 
onto the supervisor stack using the supervisor stack pointer, SSP. 
Some additional information is stacked for certain types of excep
tions and for the 68010, 68020, and 68030 processors.

4. The address of the exception handler is fetched from the vector 
location and placed into the program counter. Execution continues 
within the exception handler.

The exception handler can perform any operations it deems necessary. 
It will be executing in supervisor mode so that it has access to all the 
system and CPU resources. Once its work has been done, it can optionally 
return to the program that was originally interrupted. This is done by 
executing the instruction RTE (return from exception). This instruction 
has no operands. It reverses the steps listed above:

1. The saved status register is popped from the supervisor stack and 
placed in the status register.

2. The saved program counter is popped from the stack and placed 
into the program counter.

3. Execution continues with the next instruction in the interrupted pro
gram.

The whole process of handling an exception looks very much like a 
subroutine call except that the calling program doesn’t issue a JSR or BSR 
instruction. If the exception is an external interrupt, then no instruction is 
executed that can be associated with the exception.

To cover all the details concerning exceptions would require many 
pages of explanation and would probably confuse many novice readers. 
Since most programmers will only require a casual knowledge of excep
tions, I am only going to cover the really important exceptions for general 
programmers. For more specific details on the remainder of the excep
tions, refer to the appropriate Motorola documentation.

Reset is not a standard exception in that it requires two vector entries. 
When you initially power up your computer, or press a reset button, the 
reset exception is generated. This exception is normally used to cause a 
boot of your operating system. The program counter and supervisor stack 
pointer are loaded from the vector addresses, and control proceeds at the
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PC location. Normally this is to an area of read only memory (ROM) that 
contains a small bootstrap program to load the complete operating system 
from disk. In some cases, the bulk of the operating system is contained in 
ROM, and little or no information is obtained from disk. In either case, 
the program flow ends up in your operating system, usually at command 
level.

Interrupts that are generated by external devices cause exceptions in 
either of two ways. The first method is one in which the particular device 
provides the vector number ranging from 64 to 255. The particular vectors 
used for particular devices is system-dependent. The second method 
is to use the autovector feature. The autovectors are 25 through 31. 
The particular vector selected is determined from the device’s interrupt 
priority.

Bus error, address error, illegal instruction, zero divide, and privilege 
violation are exceptions caused by errors in a program. A bus error is 
generated when you try to reference a non-existent area of memory. An 
address error results when you try to access a word, longword, or in
struction from an odd  memory address. The illegal instruction exception 
is generated if the CPU tries to execute a word bit pattern that doesn’t 
correspond to any valid instruction. One very specific instruction, IL
LEGAL, always generates this exception. In a sense it is the only legal 
instruction that generates an illegal instruction exception. A zero divide 
exception results from a DIVU or DIVS instruction when you divide by 
zero. Certain instructions are executable only in the supervisor mode. If 
one of these instructions is executed in the user mode, the privilege vio
lation exception occurs.

Traps

Exception vectors numbered 32 through 47 are associated with the 
TRAP instruction. Its format is:

TRAP #<vector>

where <vector> is a number from 010 through 1510. The operand value of 
the TRAP instruction is added to 3210 to determine the actual exception 
vector. Execution of this instruction causes an immediate exception to be 
generated, with control passed to the appropriate exception handler. If 
the handler subsequently executes an RTE instruction, the program will 
continue with the instruction following the TRAP.

TRAPS are sometimes called software interrupts and are the method 
that many operating systems use to provide user services. There are a 
couple of advantages to this method:
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1. Execution of the TRAP instruction will result in the CPU being 
placed into supervisor mode.

2. By use of a vector number, rather than the specific address of the 
operating system service, the actual address within the operating 
system can change without the user reassembling his programs. The 
operating system merely ensures that the proper address is placed 
into the exception vector at the time the system starts up.

A special trap instruction, TRAPV, can be used to test the result of a 
computation for an overflow condition. If the overflow condition is set, 
the TRAPV instruction will cause an exception to vector number 7. If 
we have an appropriate exception handler, this instruction is quite useful. 
For example, if we perform an addition and then wish to trap on an 
overflow, all we have to do is write the following instructions:

ADD.L DO fDl 
TRAPV

Along the same line as the TRAPV instruction is the CHK (check 
register against bounds) instruction:

CHK <ea>,Dn

The word in register Dn is first checked to see if it is below zero. If 
it is, an exception is generated. If the word in Dn is zero or greater, 
it is compared with the source operand. If it is greater than the source 
operand, an exception is generated. The exception vector is number 6.

If the T bit in the status register is set to 1, we enter the trace mode. In 
trace mode, every instruction generates an exception after it completes, 
but before the next instruction begins. This is very useful for debugging a 
program. In effect, we can single-step a program. Remember that the T 
bit is reset before the exception handler gets control so that the handler 
itself will not generate further exceptions. When the RTE is executed, 
the T bit will assume its value before the exception, and execution will 
continue with the next instruction in the program. The trace exception is 
vector number 9.

Setting up an exception handler is quite simple. All that is needed is to 
place its address in the appropriate exception vector location. However, 
this requires access to the vector area of memory. Some systems restrict 
access to this area in the user mode. In this case, we must somehow get 
into supervisor mode. That means an exception of some sort. Usually an 
operating system has a specific service that allows entry into supervisor 
mode for a short time. If the operating system is very secure, or is
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multi-user, it might not allow a user to do anything in supervisor mode. 
This is not a disadvantage, but one of the intended features of the 68000 
family. Unlike many microprocessors, including the 8086, the 68000 does 
allow the writing and implementation of a secure multi-user operating 
system. Here is how to set up an exception handler for the TRAP #0 
instruction:

TRAP0V: EQU 32*4 TRAP 0 VECTOR ADDRESS
*GET INTO SUPERVISOR MODE IP NOT ALREADY IN IT

LEA T0HAND/A0 GET ADDRESS OF HANDLER
MOVE.L A0,TRAP0V STICK IN VECTOR

♦TRAP 0 HANDLER
T0HAND: MOVEM.L . ...,-(SP) SAVE REGISTERS WE USE

MOVEM (SP)+,.... RESTORE REGISTERS WE USED
RTE END WITH AN RTE

Notice that the exception handler saves and restores any registers it uses. 
This is important because they are not automatically saved and restored 
by the exception mechanism—only the program counter and the status 
register/condition codes are. Forgetting to save and restore registers has 
major consequences.

Serial I/O

In Chapter 2 the concept of memory mapped I/O  was introduced. 
All input/output on the 68000 is via I/O devices with control and data 
registers that are present as addresses in the 68000’s address space. This 
has the advantage that rather than being restricted to a small number of 
input/output instructions, the 68000 programmer can use any memory 
reference instruction with input/output devices as well as actual physical 
memory locations.

To cover the wide variety of I/O devices that can be connected 
to the 68000 would take up a book in itself. Additionally, so many 
system-dependent aspects of these devices would make the topic almost 
limitless in scope. Instead, in order to give you an idea of how to program 
an I/O device, we will take a look at one very popular I/O chip, the 
MC6850 Asynchronous Communications Interface Adapter (ACIA).

Many microcomputers are equipped with serial communications in
terfaces. Your CRT terminal or printer can be connected via a serial 
interface. Another popular interface is the parallel interface. The terms
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serial and parallel refer to the methods used to transfer data from the 
input/output device to the interface. A parallel interface transfers a com
plete byte or word at a time. A serial interface transfers a byte or word 
a single bit at a time. The advantage of a serial interface is that fewer 
wires are needed to make the connection. A parallel interface requires 
at least one wire for each bit. A disadvantage of a serial interface is that 
data cannot be transferred as rapidly as with the parallel interface.

At the heart of the serial interface is a chip commonly known as a 
universal asynchronous receiver transmitter (UART). Each byte of data 
is sent or received as a stream of bits. Two additional bits are included 
for each byte of data. A start bit is included to tell the UART that a byte 
is to follow. A stop bit is used to verify to the UART that we are finished 
with the current byte. Without start and stop bits, the UART would not 
be able to ensure framing. When a framing error occurs, some of the 
bits from one byte are mixed up with some of the bits from a previous 
byte. Figure 14 shows this typical asynchronous serial format. The most 
popular format is for eight data bits, one start bit, and one stop bit, giving 
a total of 10 bits for each byte of data sent or received.

If each byte is to represent an ASCII character code, an extra bit is 
available. This bit can be permanently set to a 1 or 0, or it may be used 
as a parity bit. A parity bit is used to help verify that the data has been 
received without error. The way a parity bit is used is very simple. We

M -------------- |------ 1------ 1------ 1------ 1------ 1------ 1------ 1-------1--------
I I I I I I ■ I I 

I I I I I I I I I I

s  I____ I____I____ I____ I-------- 1---------1---------1-------- 1--------- 1

Time

M—Marking or a logical one.
S—Spacing or a logical zero.

Figure 14  Asynchronous serial I/O format



Exception Processing, System Control Operations, and I/O 165

count up the number of data bits that are ones. We include the parity 
bit, but not the start and stop bits. If we have an even number we have 
even parity. If we have and odd number we have odd  parity. Most serial 
interfaces allow a programmer to specify if even, odd, or no parity is 
required. The interface normally generates and/or checks the parity if 
desired.

Now let’s take a look at the MC6850 in particular. This chip is a 
member of the older 8-bit family of interface devices used with the 
MC6800 CPU. However, it is still a very popular device for use with the 
MC68000. It is inexpensive, simple to program, and interfaces directly to 
the 68000 using the CPU’s 8-bit compatibility feature. You will find this 
chip used on many 68000-based systems. The 6850 ACIA consists of four 
internal 8-bit registers. These are:

1. Transit Data Register
2. Receive Data Register
3. Control Register
4. Status Register

The transmit and receive data registers are located at the same address. 
The appropriate register is selected, depending on whether the register 
is being read or written. The transmit data register is write only and the 
receive data register is read only. A similar situation exists for the control 
and status registers. These normally occupy the address two bytes greater 
than the data registers. The control register is write only and the status 
register is read only.

The interpretation of the bits in these registers is as follows:

Transmit and Receive Data Registers
DB7 DBG DB5 DB4 DB3 DB2 DB1 DB0

Control

------  Data Bits 0-7

Register
CR? CRG CR5 CR4 CR3 CR2 CR1 CR0

__ Counter Divide Sel.
__ Word Select
__ Transmit Control
__ Receive Interrupt Ena
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Status Register

IRQ PE 0VRN FE CTS DCD TDRE RDRF

L Recv. Data Reg. Full
—  Xmit. Data Reg. Empt
—  Data Carrier Detect
—  Clear To Send
—  Framing Error
—  Overrun Error
—  Parity Error
—  Interrupt Request

Counter Divide Sel.
CR1 CRO Function
0 0 Divide by 1
0 1 Divide by 16
1 0 Divide by 64
1 1 Master Reset

Word Select
CR4 CR3 CR2 Function
0 0 0 7 bits, even parity, 2 stop bits
0 0 1 7 bits, odd parity, 2 stop bits
0 1 0 7 bits. even parity, 1 stop bit
0 1 1 7 bits, odd parity, 1 stop bit
1 0 0 8 bits, 2 stop bits
1 0 1 8 bits, 1 stop bit
1 1 0 8 bits, even parity, 1 stop bit
1 1 1 8 bits, odd parity, 1 stop bit

Transmit Control
CR6 CR7 Function
0 0 RTS low, transmit disable low
0 1 RTS low, transmit interrupt enabled
1 0 RTS high, transmit interrupt disabled 
1 1 RTS low, transmit a break, transmit

interrupt disabled

There are two methods of operating the ACIA; programmed I/O 
and interrupt-driven I/O. The 6850 is capable of both methods. We will 
discuss programmed mode, as it is much less complicated. This way we 
don’t have to get involved with interrupts and an exception handler. The 
keys to using the 6850 are the RDRF (receive data register full) and TDRE 
(transmit data register empty) bits in the status word. The other control 
and status bits are used to set up the operating modes and to detect
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errors. If RDRF is set to a one, we have an input character already to be 
picked up. This would most likely be coming from a terminal’s keyboard 
connected to the serial port. This character is available in the receive data 
register. If RDRF is not set to a 1, we have to wait. If TDRE is set to a 1, 
we are free to output a character to the transmit data register. If TDRE 
is not set to a 1, we have to wait.

To demonstrate the programming involved with the 6850, we will 
write three subroutines: one to initialize the port, one to output a charac
ter, and finally one to read a character. Let’s assume that we want to oper
ate our port with a standard clock divide rate of 16 (a system-dependent 
value), 8 data bits with no parity, 1 stop bit, and RTS low with transmit 
and receive interrupts disabled. Here are the three subroutines:

ACIATD: EQU <addr. of port> THE TRANSMIT DATA REGISTER 
ACIARD: EQU ACIATD THE RECEIVE DATA REGISTER
ACIAC: EQU ACIATD+2 THE CONTROL REGISTER
ACIAS: EQU ACIAC THE STATUS REGISTER
CONTROLSEQU #$15 THE PORT PARAMETERS
*

♦INITIALIZE THE ACIA 
*

INIT: MOVE.B #$3,ACIAC DO A MASTER RESET
MOVE.B #CONTROL,ACIAC INITIALIZE PARAMETERS 
RTS

*

♦OUTPUT CHARACTER IN DO TO THE ACIA *
OUT: BTST.B #1,ACIAS TRANSMIT DATA REGISTER EMPTY?

BEQ OUT NO, TRY AGAIN
MOVE.B DO,ACIATD YES, OUTPUT THE CHARACTER
RTS

*

♦INPUT A CHARACTER TO DO PROM THE ACIA 
*

IN: BTST.B #0,ACIAS RECEIVE DATA REGISTER FULL?
BEQ IN NO, TRY AGAIN
MOVE.B ACIARD,DO YES, GET THE CHARACTER
RTS

These subroutines are very straightforward. The BTST instructions 
are used to test the appropriate bits in the status register. If a particular 
bit is not set, we merely enter a loop and keep trying. This does have 
the disadvantage that we can’t do any other useful processing while 
waiting for a character to be sent or received. If we were to use the 
interrupt capability of the 68000 and the 6850 ACIA, we could overcome 
this problem, and the CPU would be free for use. When a character 
arrived, an interrupt would be generated and we could then process 
the new character. In a similar manner, when the current character is 
output, an interrupt would be generated so that we could output the 
next character. Naturally, using an interrupt mode of operation requires 
character buffering and cooperation between the interrupt handler and
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the main program. Many textbooks on systems programming or operating 
system techniques describe these techniques.

There is one special instruction that has been provided just for inter
facing with 8-bit peripheral devices. This is the MOVEP (move peripheral 
data) instruction. Its general forms are:

MOVEP[.<size>] Dx,d(Ay)
MOVEP[,<size>] d(Ay),Dx
<size> = W, L

Note that the only forms of the addressing modes it allows are register 
and register indirect with displacement. This instruction moves bytes of 
data to or from alternate bytes of a memory address. A longword transfer 
to/from an even address looks like this:

Register Contents 
13 24 23 1G IS 8 7 0

hi-order mid-upper mid-lower low-order

Contents of Memory
15 8 7 0

hi-order
mid-upper
mid-lower
low-order

A word transfer to/from an even address looks like the illustration at the 
top of the following page.

Miscellaneous Instructions

In this section we will discuss a few miscellaneous instructions not 
covered in previous chapters.

The NOP instruction is an instruction that does absolutely nothing. It 
stands for No OPeration. It takes a minimum amount of time to execute, 
since there are no operands. It occupies one word of memory. It can be 
used as a place holder. For example, if you are using a debugger and
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31 24
Register Contents 

23 1G 15 0 7 0
hi-order low-order

Contents of Memory
15 B 7 0

hi-order
low-order

find that an instruction is to be substituted by one that requires one less 
word in memory, a NOP can be used to fill the excess word.

The RESET instruction can only be used in supervisor mode. When 
it is executed it asserts the hardware reset line. This normally causes all 
external devices to be reset. The exact results of using this instruction 
will depend on what sort of devices are connected to the hardware reset 
line. Normally this instruction is executed by the operating system to 
ensure an initialized state for all external devices. Unless you are writing 
an operating system, you should never have need for this instruction. If 
you execute it by mistake in the user mode, a trap will be generated.

The STOP instruction has the general form:

STOP #xxx

The STOP instruction must be executed when in the supervisor mode 
or else a trap will be generated. The immediate operand of the STOP 
instruction is moved into the entire status register, the program counter is 
advanced to the next instruction, and the CPU stops executing. However, 
if an interrupt occurs with a priority higher than the current interrupt 
priority level in the SR, then an interrupt exception will be generated; 
otherwise nothing happens. If the exception handler executes an RTE, 
the next instruction following the STOP will be executed. If an external 
reset is generated, the processor will execute the standard reset sequence.

The test and set instruction, TAS, is primarily used in a multi-processor 
environment. The general form of the instruction is:

TAS <ea>

The operand size used with the TAS instruction must be byte. It first tests 
the byte at the effective address and sets the N and Z bits of the CCR 
accordingly. It then sets bit 7 of the operand to a 1. This instruction is 
special in that a read-modify-write bus cycle is used so that the test and
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set operation can be performed in an indivisible manner. In other words, 
only one CPU at a time can perform a TAS in a multiple CPU system. 
No two TAS’s can overlap.

This instruction is normally used for locking operations. If a processor 
wants to place a lock on some item, it can execute the following code:

Ls TAS LOCK
BNE L

It might look as if this loop would go on forever. This is not the case if the 
lock was zero to begin with. Remember, the test operation is performed 
before  the set takes place. After a processor is finished with the locked 
item, it must reset the lock and therefore allow other CPU’s to access the 
data, one at a time. This unlock operation is performed by:

CLR.B LOCK

The byte variable LOCK must be initially cleared or no CPU will ever 
be able to access the item.

The particular items protected by locks can vary all over the place. 
A lock could be placed on a record of a file, an area of memory, 
and so on. Since the use of a TAS involves a busy wait, an operating 
system normally uses this instruction to implement higher level methods 
of ensuring mutually exclusive access. Consult a good operating systems 
text for these details.

Exercises

1. How large is the status register?
2. In addition to the CCR bits, what extra bits are in the SR?
3. Can the status register be accessed when in user mode?
4. What is the range of values for the interrupt mask?
5. Write an instruction to clear the carry bit in the CCR. All other bits 

should remain the same.
6. What is the purpose of the RTR instruction?
7. Write an instruction to set the byte at location MINUS if the result of 

a calculation is negative.
8. Assume your program is in supervisor mode. Write the instructions 

necessary to initialize the USP to location USTACK.
9. What is an exception?

10. Where are the exception vectors located?
11. What is the difference between an RTE instruction and an RTS 

instruction?
12. What happens when you try to access a word or longword at an odd 

memory address?
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13. What exception vectors are associated with the TRAP instruction?
14. Is an exception generated for an overflow condition?
15. What happens if the trace bit is set in the status register?
16. Does the 68000 restrict the user to specific instructions for I/O?
17. What is the difference between a serial and a parallel interface?
18. What is the purpose of a parity bit?
19. What two methods can be used to program the 6850 ACIA?
20. What is the purpose of the MOVEP instruction?
21. What instruction is normally used as a place holder?
22. After the STOP instruction has been executed, is it possible for the 

CPU to start up again?
23. What instruction is used in a multi-processor system for locking op

erations?

Answers

1. Two bytes.
2. The 3-bit interrupt mask, the supervisor state bit, and the trace mode 

bit.
3. It can be read but not written using the MOVE from SR instruction.
4. The interrupt mask can range from 0 through 7.

5. ANDi #$f e ,s r

6. The RTR instruction is used to restore the saved CCR bits from the 
stack and return. It allows the writing of a transparent subroutine.

7. SMI MINUS

8 . l e a u s t a c k ,ao
MOVE A0fUSP

9. An event that causes the normal flow of a program to be suspended, 
and control given to a special handler.

10. In memory, starting at location zero, for a total of 1024 bytes.
11. The RTE is used to return from an exception. The SR as well as the return 

address are popped from the stack. The RTS is used to return from a 
subroutine and only the return address is popped from the stack.

12. The address error exception is generated.
13. Vector numbers 32 through 47.
14. No, but the TRAPV instruction can be used to generate one.
15. An exception is generated after every instruction execution. Vector 

number 9 is used.
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16. No, any memory reference instruction can be used, since the 68000 
employs memory-mapped I/O.

17. A serial interface transfers a bit at a time, while a parallel interface 
transfers a byte or word at a time.

18. A parity bit can be used to detect errors in data transmission.
19. The 6850 can be operated using programmed I/O or interrupt-driven 

I/O.
20. The MOVEP instruction is used to transfer data to alternate byte 

addresses. This is helpful for certain I/O devices.
21. The NOP instruction.
22. Yes, if an interrupt is generated from an external device.
23. The TAS (test and set) instruction.
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THE 68010

The MC68010 is the next step up the ladder in the 68000 family. This 
microprocessor is not radically different from the 68000. Most program
mers will never have to be aware that their program is running on a 68010 
and not on a 68000. The 68010 is primarily designed to make it easy for 
designers to build systems that use virtual concepts. The most popular 
virtual concept is that of virtual memory. A secondary but also very im
portant use of 68010-type processors is in implementing virtual machines. 
By “virtual” we mean giving the illusion that something is there when 
it really isn’t. For example, we can give the illusion of a large physical 
memory when, in fact, we have only a small physical memory. A virtual 
machine can be used for a number of purposes. One of these is to allow 
the concurrent execution of two or more different operating systems. This 
might be desirable when we want to test a new operating system while 
running an old one. Also, different users might want different operating 
systems. The 68010 allows all of these things to be accomplished by some 
relatively minor changes to the basic architecture.

Virtual Memory and the Bus Error Exception

You may recall from Chapter 12 that a bus error is a particular 
exception that occurs when a program tries to access an address in 
memory that doesn’t exist. A bus error may occur when the CPU tries 
to access the instruction itself or when accessing one of the instruction’s 
operands. It all depends on what is in the real physical memory and what 
is addressed at non-existent memory locations. If a bus error occurs on 
the 68000, an exception is generated and control will be passed to an 
appropriate exception handler. There is not much the handler can do 
about the situation. Normally the program is aborted and an appropriate 
notice is given to the user. Even if it can somehow be arranged for 
memory to be subsequently made available at the address that caused 
the bus error (this is the basis of virtual memory management), we have 
no way of restarting the instruction without the potential for error. A 
simple example will serve to illustrate. Suppose the following instruction

173
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generates a bus error on the destination operand, MEMLOC.

MOVE.L (AO)+,MEMLOC

If we try to re-execute this instruction, the address in AO will be in error. 
We have already postincremented the value. What we would really like 
to be able to do is to restart the instruction just where it left off—in this 
case, just after having fetched the source operand. Unfortunately, the 
68000 does not have this feature. And so, now enters the 68010, which of 
course does give us this capability.

The secret to being able to recover midstream from a bus error on the 
68010 comes from the way in which information is placed on the stack 
during a bus error exception. The 68010 places 22 words of additional in
formation on the stack concerning the intermediate state of an instruction 
execution. Therefore, when the RTE instruction is executed, everything 
can be put back just as it was before  the bus error. The instruction can 
continue execution without ever knowing that it was interrupted. You 
don’t have to be concerned with the specific details of this additional 
information, since the RTE instruction takes care of if all when it is exe
cuted.

One issue needs to be briefly explained: just how does memory 
get managed such that we can make physical memory available at a 
particular address that was formerly not available? There are many 
techniques to do this. In all cases some form of memory management 
hardware must be added “between” the CPU and the physical memory. 
The Motorola MC68851 Paged Memory Management Unit is a single 
chip available for this purpose. The 68851 is actually a coprocessor, 
and although specifically designed for the MC68020 CPU, it can be 
used with other CPU’s, including the 68010. Other hardware can also be 
used. Regardless of the specific hardware, the basic concept of virtual 
memory is that we map an address in the virtual address space into 
an address in the physical address space. The virtual address is the 
address your instruction uses. This address is in turn converted or mapped 
to a physical address that may or may not be the same. All forms 
of virtual memory management map blocks of memory rather than 
specific addresses. Otherwise the mapping would be very complex and 
inefficient.

The most popular form of memory management is called paging. 
With paging we divide the virtual memory up into equal sized blocks 
called pages. Physical memory is likewise divided up into page frames 
that are the same size as those of the virtual memory. The memory 
management hardware is responsible for mapping a virtual page to a 
physical page frame. The offset or displacement within a virtual page 
is always the same as the offset in the page frame that it is mapped to;
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the tenth word in the virtual page corresponds to the tenth word in the 
physical page. Since the virtual address space is normally much larger 
than the physical memory, it is necessary to temporarily store the pages 
that won’t fit into physical memory. For example, we might have just 
1 megabyte of physical memory, while the 68010 can address up to 16 
megabytes. Normally a disk memory is used to store the pages that are 
not in physical memory. This is sometimes called a backing store. The 
backing store does not have to be as large as the addressing capability of 
the CPU if the size of the virtual address space is reduced.

Now we can tie up the loose ends. If an instruction references an 
address that is mapped to physical memory, the memory management 
hardware makes that address immediately available and no bus error 
is generated. If a reference is made to an address that is not currently 
mapped, a bus error exception will occur. This is normally called a page 
fault when paging is used. The operating system now gets control. It is 
responsible for finding the proper page on the backing store and bringing 
it into memory. Once it is in memory, the operating system can execute 
the RTE instruction with the stack pointer pointing at the same place it 
was when the bus error was initially processed. This will return control 
to the instruction that generated the bus error, and it will now be able to 
access the address.

This may sound simple, but an operating system has a lot of bookeep- 
ing to do in order to get all the pages mapped correctly. Many operating 
systems textbooks will provide more information on the techniques used 
to implement paging. Figure 15 shows a possible mapping of virtual pages 
to physical page frames. Notice that some of the pages are not mapped. 
Any reference to an address in one of these pages will generate a bus 
error and hence a page fault.

Virtual Machines

Like virtual memory, a virtual machine provides the illusion of a 
bare-bones machine. In other words, it appears to the user that all the 
functionality of the machine is available. The user must not be aware 
that a virtual machine operating system is running underneath her own 
operating system.

In order to implement a true virtual machine, not only does the CPU 
have to appear as a bare CPU, but any input/output devices must also 
be made available to each user. Virtual memory can provide the illusion 
of a specific physical memory (all users must have access to the same 
addressing range). Since input/output devices are memory-mapped, they 
can be replicated or shared for each user and appear at the same physical
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Virtual Address Space
Physical Memory

page frames

Figure 1 5  Virtual memory mapping.

addresses. The CPU is another matter. Each user must think she has 
access to all of the CPU’s capabilities, including user and supervisor states. 
However, in order for the virtual machine operating system to maintain 
control, the user must always run in user mode. We must be able to fool 
a program into thinking that it is running in supervisor mode when it 
actually isn’t.

Let’s say that a program is running in the user mode and executes 
a privileged instruction. An exception will be generated and the virtual 
operating system can take control. It can then verify and simulate the 
execution of the privileged instruction. The user program will never know 
that the instruction was not executed directly. The one problem that can 
not be handled in this manner is the manipulation of the status register, 
SR. A user on the 68000 can execute



The 68010 177

MOVE SR,<ea>

to examine the processor state. This instruction is not privileged on the 
68000. The user could then tell that she was really in the user state.

To correct this deficiency, the 68010 makes the MOVE from SR 
instruction privileged. The virtual operating system can then “fool” the 
program into believing that it is in the supervisor state when it is actually 
in the user state. It can simulate the execution of the instruction and return 
the status register contents with the supervisor bit set. One minor change 
was also made: a new instruction was added, the MOVE from CCR. Its 
general form is

MOVE CCR,<ea>

The contents of the condition code register is moved to the destination 
operand. This instruction is not available on the 68000 and it is not 
privileged on the 68010. It allows a user-mode program on the 68010 
to access the CCR without generating a privilege exception. You will 
find a summary of the new and changed instructions at the end of this 
chapter.

Reference Classifications

Three additional output lines are provided with both the 68000 and 
the 68010 CPU. These lines are used to classify the type of memory 
reference. They are interpreted as follows:

££2 E£1 ££4 Reference class
o o o  N/A
0 0 1 User Data
0 1 0  User Prograir
0 1 1  N/A
1 0  0 N/A
1 0  1 Supervisor Data
1 1 0  Supervisor Program
1 1 1  Interrupt Acknowledge

N/A = not generated by a normal instruction

A computer system based on the 68000 family can use these lines to con
trol access to certain areas of memory. Separate areas can be reserved 
for user and supervisor states. A further distinction can be made between 
data and program references. Bus errors can be generated if incorrect 
references are made. All this must be accomplished with external hard
ware.

With the 68000 there is no way to override the use of the three function 
class bits. However, the 68010 provides two new registers and two new
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instructions to be used in conjunction with the function class output lines. 
A source function code register, SFC, and a destination function code 
register, DFC, are available in the supervisor state. These registers are 3 
bits each, each bit corresponding to a bit of the function class lines. A new 
privileged instruction, the move to/from control register, is provided on 
the 68010. Its general form is:

MOVEC Rc,Rn 
MOVEC Rn,Rc
Rc = SFC, DFC, VBR, USP 
Rn = D0-D7, A0-A7

It is always a 32-bit transfer, with unused bits read as zero. This instruction 
can also be used to access the user stack pointer, USP, or the vector base 
register, VBR (discussed below), or to set up the SFC or DFC with any 
relevant value.

A second privileged instruction, move to/from address space, can now 
be used to access the memory location in the address space specified 
by the source or destination function registers. The general form of this 
instruction is:

MOVESI.<size>] Rn,<ea>
MOVESI.<size>] <ea>,Rn
<size> = B, W, L 
Rn = D0-D7, A0-A7

The SFC or DFC is used, as appropriate, depending on whether <ea>  
is the source or destination of the instruction.

The Vector Base Register

You will recall from Chapter 12 that for the 68000 the exception 
vectors start at memory location 016 and continue through 3FF10. This 
is normally the case for the 68010 as well. However, the 68010 provides a 
method of relocating the exception vectors to any place desired. A special 
register, the vector base register, VBR, is provided for this purpose. This 
32-bit register is initially set to zero upon a system reset. A program 
running in the supervisor mode can change the contents of this register 
by use of the MOVEC instruction described above. The contents of the 
VBR is always added to the address that would normally be used to 
process the exception. You may recall that this address is four times the 
exception number. For example, the TRAP #0 instruction will generate 
exception number 3210. The actual vector location will be at 12810 or 8016. 
If the VBR contains 400016, the TRAP #0 exception vector is located at 
408016. The following instructions can be used to set the VBR to 400016:
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MOVE.L #$4000,DO 
M0VEC DO,VBR

The VBR can be used for many purposes. The implementation of 
a virtual machine is made much easier by the use of the VBR. Each 
different user of the virtual machine must think that he/she has his/her 
own set of exception vectors. These should appear to be located at 
address zero. However, when the program runs, these vectors really can’t 
be used since the virtual machine operating system requires complete 
control. The virtual machine operating can use the VBR to set up an 
alternate address for the actual vectors. If an exception occurs that the 
virtual machine operating systems wants to pass to the user it can re
vector through the address found in the vectors based at zero. The VBR 
can also be used to make a debugger appear more transparent to the 
program it is debugging.

RTD and Loop Mode

Two other minor features that exist for the 68010 are the RTD in
struction and loop mode. The RTD instruction works exactly like the 
RTS instruction except that a constant is added to the stack pointer af
ter the return address is fetched. This constant value is normally used 
to clear the stack of any parameters passed to the subroutine. As dis
cussed in Chapter 8, this is normally the responsibility of the caller. To 
see how this instruction works, let’s say that subroutine MYSUB is called 
with three longword arguments. The following call would be used:

MOVE.L ARG3,-(SP)
MOVE.L ARG2,-(SP)
MOVE.L ARG1,-(SP)
JSR MYSUB

Normally the caller would use an ADDA.L #12,SP following the JSR to 
clean up the stack. With the 68010, the following instructions can be used 
such that the subroutine can clean up the stack upon its return:

MYSUB: .

RTD 12

Loop mode is an enhancement to the operating speed of the 68010 that 
the user doesn’t even have to be aware of. To understand the advantage 
of loop mode, we will have to take a closer look at the factors that govern
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the speed of execution of an instruction. As I mentioned in Chapter
2, a CPU requires a clock to generate timing for the overall execution 
of instructions. The speed of this clock depends on the particular chip 
being used and also on the design of the computer it is used with. Each 
instruction requires a particular number of clock cycles to execute. This 
number varies with the particular operand addressing modes used with 
the instruction. The reference documentation for the particular member 
of the 68000 family you are using will have tables giving the exact number 
of cycles for each instruction and addressing mode. All you need to 
know is the speed of your clock and you can figure out the execution 
time for any instruction. There is one minor problem that can throw off 
your calculations: The 68000 is designed to accommodate memory of any 
speed. If your memory is slower than the required speed for maximum 
CPU speed, the CPU adds wait states, extra clock cycles to slow down 
the CPU until the memory catches up. You will have to get the technical 
details about your particular machine.

Since loops in a program may be executed hundreds or thousands of 
times, it may be important to design the instructions inside the loop so 
that they execute in the fastest time. This may mean sitting down with 
paper and pencil to consult the manual to add up the total cycles for all 
the instructions, and then trying various combinations until the best set 
of instructions is obtained. Now back to the 68010 loop mode. If you 
understand how this special mode works, you can plan some loops to 
make them execute faster. The increased speed is obtained by entering 
loop mode for only certain loops. The loop must contain only a single 
word long instruction. The addressing modes of this instruction must be 
such that no extension words are required. This would eliminate such 
instructions as MOVE.L COUNT,Dl. The reason the 68010 can execute 
these small loops with greater speed is that it has a two-word prefetch 
queue, plus the instruction decode register. This means that all three 
words of the entire loop can be held in the CPU. No additional memory 
references are required for the instruction fetches once the loop is set 
up. The memory references are then only those required by the loop 
instruction. A prefetch queue is a special set of internal CPU registers 
that are used to “look ahead” into memory and obtain the next few words 
before they are actually needed. The MC68020 explained more fully in 
the next chapter, makes extensive use of this technique.

Generally, any memory reference instructions can be used for loop 
mode. These include the arithmetic and logical/shift rotates. The 
operands must use one or more of the following addressing modes:

DX
(An)
(An) +
-(An)
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You may recall that the DBcc instruction on the 68000 first checks 
the terminating condition. If it is true, execution continues with the next 
sequential instruction; if the test condition is false, the loop counter is 
decremented and the result is checked against —1. If it is not equal to —1, 
the loop branch is taken and we stay in the loop; otherwise, we continue 
with the next sequential instruction. Under the 68010 loop mode, the 
sequence is slightly different. The 68010 first decrements the contents of 
the count register. It does this internally without actually changing the 
value in the register. If the result is —1, this value is stored in the count 
register and execution continues with the next sequential instruction. If 
the result is not —1, the terminating condition is checked. If it is true, 
the temporary count is discarded and execution continues with the next 
sequential instruction. Otherwise, if the terminating condition is false, the 
branch is taken.

A very fast memory move can be implemented using loop mode with 
the following:

Here is a summary of the new or changed instructions and registers

LEA SOURCE/A0 
LEA DEST/A1 
MOVE.W COUNT,DO

NEXT: MOVE.L (AO)+,(Al)+ 
DBRA DO,NEXT

Summary

for the 68010:
Instruction Comments
MOVE from CCR
MOVE from SR
MOVEC
MOVES
RTD
RTE 68010 restores intermediate instruction 

state

68010 only 
Privileged on 68010
68010 only 
68010 only 
68010 only

New Registers
SFC
DFC
VBR

Source function code register 
Destination function code register 
Vector base register

Exercises

1. What is a virtual memory?
2. What is a bus error?



182 Assembly Language Programming for the 68000 Family

3. In what way does the 68010 handle bus errors differently than the 
68000?

4. What is the purpose of memory management hardware?
5. What is the most popular form of memory management for imple

menting virtual memory?
6. What is a page fault?
7. What is the purpose of a virtual machine?
8. Is a MOVE from SR instruction privileged on the 68010?
9 . Write a 68010 instruction to copy the contents of the CCR to register 

DO. This instruction should not generate an exception in user mode.
10. What output lines are provided for reference classifications?
11. What new registers are provided on the 68010 to allow overrides to 

the reference classification?
12. Write the instructions necessary to reference absolute location $1000 

in the supervisor data space. Read the longword at this location into 
register DO.

13. What is the function of the vector base register?
14. What does the RTD instruction do?
15. What addressing modes are allowed with the single instruction used 

inside the loop in loop mode?

Answers

1. A virtual memory is the illusion of a large physical memory when in 
actuality a much smaller memory is available.

2. A bus error is an exception that is generated when a reference is made 
to non-existent memory.

3. The 68010 allows an instruction to be restarted where it left off after 
a bus error is processed. This is accomplished by stacking additional 
state information during the exception processing.

4. Memory management hardware provides the necessary mapping be
tween the logical address and the physical address.

5. Paging.
6. A page fault is generated if a memory reference is made to a page 

that is currently not in physical memory.
7. A virtual machine can be used to allow execution of several differ

ent operating systems on the same CPU or to provide a simulation 
capability for features that don’t actually exist.

8. Yes, but not on the 68000.

9 . MOVE CCR,DO

10. P C 0, FC 1, and FC 2.
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11. The SFC (source function code) register and the DFC (destination 
function code) register.

12. MOVE.L #5, DO 
MOVEC DO,SFC 
MOVES.L $1000,DO

13. The vector base register allows moving the exception vectors to any 
location in memory.

14. RTD performs like an RTS except that a constant is also added to the 
stack pointer after the return address is popped. This can be used to 
clear the stack of any arguments passed to the subroutine.

15. Dx, (An), (An)+, and —(An).





CHAPTER 1 4

THE 68020

The MC68020 is a dramatically improved member of the 68000 family 
with a plethora of new features. Not only is the basic core performance 
of the processor much improved, but the new features expand the func
tionality of this chip so much that it brings it into serious competition 
with mini- and super minicomputers. The major enhancements can be 
summarized as:

1. A full 32-bit address bus
2. An instruction cache for faster execution
3. Built-in coprocessor support
4. New addressing modes
5. New and enhanced instructions
6. 8-, 16-, and 32-bit.data bus interface

The 68020 is a true 32-bit architecture. With the 32-bit data bus capa
bility and internal 32-bit operations, the 68020 can operate at its maximum 
potential with 32-bit operands. Even though the 68000 performs 32-bit op
erations, the data bus path is restricted to 16 bits at a time. For this reason 
the 68000 is sometimes classed as a 16-bit micro. The 68020 is clearly a 
32-bit architecture in every way. In order to allow the 68020 to be used in 
systems that are restricted to an 8- or 16-bit data bus, the 68020 provides 
the option of using 8-, 16-, or 32-bit data bus widths. Unfortunately, you 
can’t just plug in a 68020 where a 68000 was. The physical construction 
is very different. The 68020 uses a 114-pin grid array, whereas the 68000 
uses the more conventional dual in-line package (DIP).

Along with the expanded addressing capability comes an added 
bonus: the restriction that word or longword data must be aligned on 
even-byte boundaries is relaxed. Words and longwords can start on any 
byte address. However, the restriction that instructions start on even bytes 
has not been removed.

185
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Instruction Caching

Besides using full 32-bit operands both internally and via the data bus, 
the 68020 gains additional performance improvement by introducing an 
instruction cache. A cache is very similar to a small internal memory. Since 
it is internal, it can operate at register speeds. This means that an access 
to the cache takes less time than an access to the physical memory. The 
cache on the 68020 is used to store instructions. If an instruction is found 
in the cache there is no need to look for it in physical memory. There 
is an additional benefit however; while the instruction is being fetched 
from the cache, an operand can be accessed in memory. If this situation 
occurs, then the instruction fetch is actually for free. This is because the 
two accesses are overlapped.

The operation of the instruction cache is invisible to the programmer. 
The cache is automatically updated according to an internal algorithm 
in the CPU. The real advantage of the instruction cache comes into play 
when a small loop is executed. If all the instructions of the loop will fit 
into the instruction cache, once we have gone through the loop the first 
time, the instruction fetches for each additional pass through the loop will 
be from the instruction cache. The instruction cache on the 68020 is 256 
bytes. This is enough to hold a significant number of instructions. Since 
the length of an instruction varies from 2 to 10 bytes, it is not possible 
to know the exact number of instructions that will fit in the cache, but 
a rough estimate is around 50. Since most loops don’t involve more than 
50 instructions, the instruction cache almost always speeds up loops. The 
loop mode on the 68010 is a very limited version of the 68020 instruction 
cache.

Figure 16 shows the operation of the 68020 instruction cache. The 
cache stores 32-bit longwords that are aligned on even-word addresses. 
Bits 2 through 7 of an address are used to index into the cache. This 
allows 64 longwords to be stored in the cache. Bits 8 through 31 and the 
high-order bit of the 3-bit function code are stored as a tag in the cache 
entry along with the 32-bit value at that address. You will recall from 
Chapter 13 that the function code specifies the address space. Only user 
and supervisor program spaces are stored in the instruction cache. The 
high-order bit of the function code determines which is which. If this bit 
is set, it indicates a supervisor program address. The two lower-order bits 
of the function code must be 10. Every address accessed by the CPU is 
compared with the contents of the cache. The entry is selected by bits 2 
through 7. If the tag field matches, then the data in the cache, rather than 
a fetch to memory, is used. If the tag doesn’t match and the reference 
is a program reference, then the actual memory location is accessed and 
the cache is updated.



The 68020 187

MC68020 Prefetch Address
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Figure 16 Instruction cache. (Courtesy of Motorola, Inc.)

In order to control the operation of the instruction cache, two new 
registers were added to the 68020; the cache control register, CACR, and 
the cache address register, CAAR. They are both 32 bits, but not all the 
bits are used. The CACR only uses the low-order 4 bits.

31 4 3 2 1 0
C CE F E

Clear cache . 
Clear entry . 
F reeze cache. 
Enable cache.

When the hardware is reset, the cache is initially disabled. In order to 
enable the cache, the E bit in the CACR must be set. The MOVEC 
instruction has been expanded on the 68020 to include the cache registers.
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MOVE.L #1,D0 
MOVEC DO/CACR

does the job nicely. The other bits can be manipulated in a similar manner. 
Remember, MOVEC is a privileged instruction, so this operation can’t be 
accomplished when in user mode. The cache can be enabled or disabled 
at will.

The F bit will freeze the cache. The cache will still operate, but its 
contents will not change. This is useful for certain types of applications 
when a function is being emulated. The C and CE bits are used to clear 
the entire cache or just a particular entry. The cache should be cleared 
every time the the contents of program memory are changed. If program 
memory is changed without the cache being cleared, the contents of 
the cache will not reflect the actual contents of memory, and errors in 
execution may result. This operation would normally be performed by 
the operating system when it loads a new program. To clear a specific 
entry we place the cache index value in the CAAR. The cache index value 
is determined by using bits 2 through 7 of the corresponding memory 
address. This value is placed in bits 2 through 7 of the CAAR. It doesn’t 
matter what the other bits are, they are ignored. The CAAR is structured 
like this:

31 8 7 2 1 0
INDEX

This last operation is provided only for the most sophisticated applica
tions. If a specific memory address in program space is modified, only 
the specific cache entry that corresponds to it need be modified; the en
tire cache does not have to be cleared. Since self-modifying programs 
have fallen out of vogue, it is unlikely that clearing a specific entry has 
any value except for very sophisticated machine emulation applications.

Additional Addressing Modes

The 68020 provides six additional addressing modes besides the 12 
that already exist for the 68000. These new addressing modes form two 
groups of three. The operation of the two groups is very similar. The 
first group extends the 68000’s address register indirect with index mode. 
The second group extends the 68000’s program counter with index. You 
will recall from Chapter 6 that these two modes are quite similar. The 
program counter with index mode functions exactly like the address 
register indirect with index, with the address register being replaced with 
the program counter.
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For these two basic 68000 modes, the effective address is computed 
by taking the address register or program counter and adding the con
tents of either the full 32 bits of a general register or the sign-extended 
low-order word of a general register. To this intermediate result the 
sign-extended value of an 8-bit displacement is added. This final result 
is used as the address of the operand. In assembler, these modes were 
written as d8(An,Rn.<size>) and d8(PC,Rn.<size>), with <size> either 
W or L. Along with the new 68020 addressing modes, Motorola intro
duced a slightly different assembler syntax for these addressing modes 
as well as for the new ones. You will have to check your 68020 assembler 
manual to find out the syntax required of your own assembler. The new 
syntax for these 68000 addressing modes is (d8,An,Rn.<size>*<scale>) 
and (d8,PC,Rn.<size>*<scale>). As you can see, these are very minor 
changes. <scale> is an optional scale factor that is available with the 
68020. It can be 1, 2, 4, or 8. If the scale factor is present, it is used 
to multiply the value in the index register Rn. This makes indexing into 
word and longword arrays much easier. For example, a scale factor of 4 
would be used to access an array of longwords. Let’s say we want to ac
cess the 25th entry of a longword array pointed to by A0. We can do it 
with the following instructions:

MOVE.W #24,DO
MOVE.L (0,A0,D0.W*4),D1

Remember, the first entry in the array will be at offset zero.
The first really new addressing mode on the 68020 is almost like the 

address register indirect with index. The difference is that an optional 
sign-extended 16- or 32-bit displacement, rather than an 8-bit displace
ment, is allowed. In fact, the address and index registers are also optional. 
Two versions of this mode are available, one for use with an address reg
ister and one for use with the program counter. These addressing modes 
have the following assembler formats:

(bd,An,Rn.<size>*<scale>)
(bd,PC,Rn.<size>*<scale>)

As before, the optional scale factor can be 1, 2, 4, or 8. These addressing 
modes are formally known as address register indirect with index (base 
displacement) and PC register indirect with index (base displacement).

The second and third new modes are forms of memory indirect. The 
ultimate effective address of these modes is found by referencing the con
tents of a memory location. The value found there is actually an address. 
This may seem complicated, but it is actually quite simple. Without these 
addressing modes, in order to take an address from memory and use it 
to access the contents of the location it points to, we would first have 
to place the pointer in an address register and then use a register indi
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rect mode. The new 68020 modes make this operation a thing of the past. 
Figure 17 shows the calculation of the effective address for the versions 
using an address register. The versions of these modes for use with the 
program counter are identical if the PC is substituted for the address reg
ister. In this case the memory address pointed to by the PC is that of the 
first extension word. The two versions of the addressing mode are very 
similar. The major difference is whether post-indexing or pre-indexing is 
used.

The assembler syntax for these forms are:
(tbd,An],Rn.<size>*<scale>,od) post-indexed
([bd,An,Rn.<size>*<scale>],od) pre-indexed
([bd,PC],Rn.<size>*<scale>,od) post-indexed
([bd,PC,Rn.<size>*<scale>],od) pre-indexed

With the post-indexed versions, the memory location calculated by 
adding An or PC to bd is used as the memory indirect location. This 
is the memory location containing the pointer. The index register, appro
priately scaled, is added to this pointer as well as the outer displacement, 
od. This final value is the effective address. With the pre-indexed versions 
the sequence is slightly modified. The location of the memory indirect 
pointer is determined by adding the address register or PC to the base 
displacement, bd, and the scaled index register. The outer displacement 
is added to the pointer to compute the final effective address. All four 
of the specified values are optional. This actually provides 16 different 
combinations.

Only the most advanced assembly language programmers will need 
these advanced addressing modes. However, the pre-indexed versions are 
especially useful when you have an array of pointers. You might keep this 
in mind as you start programming with the 68020.

Instruction Extensions

The extensions to existing instructions generally fall into two cate
gories: increase in the size of allowable displacements, and increased 
functionality.

The 68020 allows a full 32-bit displacement to be used with the branch 
instructions BRA, BSR, and Bcc. Formally, the addressing range was 
restricted to a 16-bit displacement. This extension allows us to reach 
anywhere in memory with these instructions.

The CHK instruction will now operate with both word and longword 
sources. Recall that the CHK instruction checks the contents of an address 
register against a bound that is stored in the source operand. You must 
specify the size of the bound using the usual method of appending .W or 
.L to the instruction mnemonic.
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Generation: EA = (bd + An) + Xn.SIZE*SCALE + od

Assembler Syntax: ([bd,An],Xn.SIZE*SCALE,od)
Mode:

Base Displacement:

Index Register: 

Scale:

Outer Displacement: 

Effective Address:

Generation: EA = (bd + An + Xn.SIZE*SCALE) + od
Assembler Syntax: ([bd,An,Xn.SIZE*SCALE],od)
Mode:

Base Displacement: 

Index Register: 

Scale:

Outer Displacement:

Effective Address:

Figure 17 Effective address calculation. (Courtesy of Motorola, Inc)
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The CMPI and TST instructions now allow all of the PC relative 
addressing modes. However, this extension only applies when word or 
longword operands are used.

The divide and multiply instructions, DIV and MUL, have been 
greatly expanded. Recall that the four forms of these instructions were:

DIVU <ea>,Dn
DIVS <ea>,Dn
MULU <ea>,Dn
MULS <ea>,Dn

The divide instructions require a 16-bit source and 32-bit destination 
operand. The result is a 32-bit value consisting of a 16-bit quotient 
and a 16-bit remainder. The multiply instructions multiply two 16-bit 
operands, yielding a 32-bit result. The expanded divide instructions have 
the following forms:

DIVS.W <ea>,Dn DIVU.W <ea>,Dn 32/16->16r:16q
DIVS.L <ea>,Dq DIVU.L <ea>,Dq 32/32->32q
DIVS.L <ea>,Dr:Dq DIVU.L <ea>,Dr:Dq 64/32->32r:32q
DIVSL.L <ea>,Dr:Dq DIVUL.L <ea>,Dr:Dq 32/32->32r:32q

The operation of these instructions is relatively straightforward. The 
first form is the form found on the 68000. This is the default if no 
size is specified. The three extended forms vary in the sizes of the 
operands and/or the result. Notice that a register pair is required for 
operands/results that require more than 32 bits total. The notation Dr/Dq 
refers to the quotient and remainder registers. These can be any of the 
data registers.

The expanded multiply instructions have the following format:

MULS.W <ea>,Dn MULS.W <ea>,Dn 16Xl6->32
MULS.L <ea>,Dl MULS.L <ea>,Dl 32X32->32
MULS.L <ea>fDh:Dl MULS.L <ea>,Dh:Dl 32X32->64

The first form is the old 68000 form. In this case two 16-bit operands 
are multiplied to yield a 32-bit result. The expanded forms allow the 
multiplication of two 32-bit operands to yield either a 32-bit or a 64-bit 
result. In the case of a 64-bit result, Dh and Dl refer to the registers used 
to hold the high-and low-order 32 bits of the result.

The EXT instruction has been expanded. Recall that the EXT.W sign 
extends a byte to a word, and the EXT.L sign extends a word to a 
longword. In order to sign-extend a byte to a longword, both of these 
instructions had to be used. The 68020 allows a sign extension from byte 
to longword with a single instruction. A slightly different mnemonic has to 
be introduced. This is not really a different instruction, but an expanded 
form of EXT. The new instruction format is EXTB.L. This is the exact
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format that must be used. For example, to sign-extend the byte in DO, 
you would issue an EXTB.L DO instruction.

The LINK instruction was formally restricted to use a sign-extended 
16-bit displacement to offset the stack pointer. The 68020 allows a full 
32-bit offset to be added to the stack pointer.

Hew Instructions

The 68020 has a relatively small number of totally new instructions. 
Since these instructions are fairly well spread out over the overall func
tionality of the 68020,1 will cover them in alphabetical order.

Bit Field Instructions BFxxx The first new instruction is actually a group 
of instructions. They each manipulate a bit field. A bit field is a group 
of 1 to 32 contiguous bits in either a register or memory. The bit field 
is specified by a field width and offset. The assembler language format 
recommended by Motorola is {offset:width}. Offset can be an immediate 
value of 0 to 31 or a value in a data register. If a data register is used, 
it has a range of —231 to 231—1. The offset is the bit offset from the 
high-order bit. In other words, an offset of 0 specifies a bit field starting 
at bit number 31. Width can be an immediate value of 0 to 31 or a value 
in a data register. If a data register is used, the value is taken modulo 32. 
In either case, a value of 0 represents a field width of 32. The specific 
assembler syntax can vary, so be sure to check your assembler manual. 
This is especially important concerning whether an immediate field width 
of 32 is allowed and automatically converted to 0.

Here is a list of the bit field instructions and their functions:

BFCBG <ea>(offset:width)
BFCLR <ea>(offset:width)
BFEXTS <ea>(offset:width),Dn
BFEXTU <ea>(offset:width),Dn
BFFFO <ea>(offset:width),Dn
BFINS Dn,<ea>(offset:width)
BFSET <ea>(offset:width)
BFTST <ea>(offset:width)

One's complement the bit field
Clear the bit field
Bit field->Dn, sign extended
Bit field->Dn, zero extended
Search for first bit set, offset->Dn
Dn->bit field
Set all bits to one
Set N and Z conditions, treat the
bit field as a signed number

Breakpoint Instruction BKPT The BKPT (breakpoint) instruction is 
provided for use by debuggers and hardware emulators. In order for 
this instruction to be used, external hardware is required. When the 
BKPT instruction is executed, a special bus cycle is executed. The BKPT 
instruction has a single immediate mode operand. This operand is placed 
on address line A2-A4. The immediate value must be in the range 0-7. 
If external hardware is present, it can respond with an instruction word
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on the data lines that is executed in place of the BKPT. If the external 
hardware is not present, this instruction generates an illegal instruction 
exception.

CALLM/RTM The CALLM (call module) and RTM (return from mod
ule) instructions are used to support the 68020 concept of a module. 
A module is very similar to a subroutine except that it can be granted 
access rights that may be more extensive than those of the program 
calling the module. Access rights pertain to what portions of memory 
can be accessed. Since input/output devices on the 68000 family are 
memory-mapped, access to those areas of memory are necessary to per
form I/O. The 68020 doesn’t have the necessary hardware on the chip to 
fully support access rights. External hardware is needed to work along 
with the module concept for this to work.

Access rights are intimately tied in with the concept of address spaces. 
In Chapter 13 I discussed the concepts of address spaces and the use of 
the three function code lines. The decoding of these lines for the 68020 
is as follows:

FC2 FC1 FC0 Reference Class
0 0 0 (Undefined, Reserved)
0 0 1 User Data Space
0 1 0  User Program Space
0 1 1  (Undefined, Reserved)
1 0  0 (Undefined,  Reserved)
1 0  1 Supervisor Dat a Space
1 1 0  Supervisor Program  Space
1 1 1 C PU  Space

This mechanism provides a minimal number of access levels, primarily 
those offered by the supervisor or user modes. The module support allows 
the external hardware to implement a much larger number of access 
levels. An 8-bit access level number is associated with each module. 
The external hardware can be designed to interpret this access value 
any way it wants. When a module is called, a request can be made to 
change the current access level. This mechanism is rather complicated, 
and since it requires external hardware that doesn’t exist in a general 
form, I will present a brief description of its operation. To use the module 
support feature, you will need to find out the exact details of the external 
hardware your system is providing.

The CALLM instruction has the following general form:

CALLM #<data>,<ea>
<ea>  is the address of an external module descriptor. <data> is an
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31 28 23 15 0
Base- *

+ $04

+ $08

+ $0C

+ $10

Figure 18 Module descriptor format (Courtesy of Motorola, Inc)

immediate operand specifying the number of arguments being passed to 
the module. These arguments are passed on the stack. Before the CALLM 
is executed, they must be pushed on the stack. Figure 18 shows the layout 
of a module descriptor. The OPT field is restricted to two values: 000 
indicates that arguments are passed on the stack, 100 indicates that a 
pointer to the arguments will be provided on the stack. Only two values 
for the type field are used: 00 indicates that no change in access level is 
desired, 01 indicates that there may be a change in access rights. If type 
01 is indicated, the called module is allowed to have a stack area that is 
independent of the caller s stack.

The access level field is passed to the external hardware to provide 
information for a possible change in access rights. The module data area 
pointer contains the address of the called module s data area. This is 
normally the value that will be loaded into the stack pointer. The module 
entry word pointer is the address of the module’s entry word. This is 
a special word that precedes the first instruction of the module. Figure 
19 show the layout of this word. It merely specifies an address or data 
register to be loaded with the module's data area pointer. Before the 
register is loaded, it is saved on the call stack. If this register is SP, the 
effect is that the module data pointer is ignored. This is because SP is 
overwritten with a new value following the execution of the CALLM. 
Figure 20 shows the module call stack frame.

The RTM instruction has the following form:
RTM Rn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/A  | Register | 0

o 
! 

o
! 

o

0 0 | 0 0 I o I o I 0 I  0

Operation Word of First Instruction

Figure 19 Module entry word. (Courtesy of Motorola, Inc)

Opt | Type | Access Level | (Reserved, Must be Zero)

Module Entry Word Pointer

Module Data Area Pointer

Additional User-Defined Information
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SP —

+ $08 

+ $0C 

+ $10 

+ $14 

+ $18

15

Opt

12

Type Saved Access Level
Condition Codes
Argument Count

(Reserved)

Module Descriptor Pointer

Saved Program Counter

Saved Module Data Area Pointer

Saved Stack Pointer

Arguments (Optional)

Figure 20 Module call stack frame. (Courtesy of Motorola, Inc.)

Rn specifies the register to beloaded with the saved module’s data pointer 
obtained from the stack. If SP is specified, this restored value is overwrit
ten by the updated value of SP. Rn would normally be chosen to match 
the register specified by the module entry word. A nice feature of the 
RTM is that it increments the stack pointer by the number of arguments 
that were specified in the CALLM.

CAS and CAS2 The 68020 provides two new instructions that are ex
tensions to the mechanism provided by the test and set instruction, TAS. 
Before you continue, it would be a good idea to review the TAS in
struction covered in Chapter 12. The TAS instruction only provides a 
binary-type operation on a lock—in other words, the lock is set or it isn’t. 
The compare and swap with operand instructions, CAS and CAS2, have 
a much greater functionality. Their general forms are:

CAS Dc,Du,<ea>
CAS2 DC1:Dc2,Dul:Du2,(Rnl):(Rn2)

Dc and Du represent the compare and update registers. The CAS 
instruction first compares Dc and <ea>. If they are equal, the contents of 
Du is placed in <ea>. If they are not equal, the contents of <ea>  is copied 
to register Dc. If you think about it, this is actually a test and set type of 
operation. The entire operation is performed in an atomic fashion—no 
other processor or interrupt routine can execute bus cycles while this 
instruction is executing. A typical application of the CAS instruction 
would be the implementation of a counting semaphore. What we want 
to be able to do is to increment the value of a semaphore in such a 
manner that no other process or interrupt routine interferes. Here is how 
we would use the CAS instruction:
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MOVE.W SEM,DO 
LOOP: MOVE.W DO,Dl 

ADDQ.W #1,D1 
CAS.W DO/DlfSEM 
BNE LOOP

The CAS2 instruction operates in a similar manner to the CAS except 
that it has additional operands, and two compares are performed instead 
of just one. Both comparisons must show a match for the update registers 
to be stored in the destination addresses. The destination addresses must 
be specified using register indirect addressing with either a data register 
or an address register. If one or both of the compares fails, the 
destination operands are copied to the compare registers just as in the 
case of the CAS. The CAS instruction allows byte, word and longword 
operations. The CAS2 is restricted only to word or longword operations.

CHK2 The CHK2 instruction is an extended version of the CHK instruc
tion. CHK2 will check a data value in either a data register or an address 
register against a pair of bounds. The general form of this instruction is:

CHK2I.<size>] <ea>,Rn 
<size> = B, W, L

The effective address must be to a pair of memory operands. The first is 
the lower bound. It is a byte, word, or longword. The second is the upper 
bound. This is located at the next byte, word, or longword in memory 
above the lower bound. If the register, Rn, is less than the lower bound or 
greater than the upper bound, an exception is generated. The exception 
vector is the same as for the CHK instruction. The CHK2 instruction can 
be used for both signed and unsigned operands.

CMP2 The CMP2 instruction is very similar to the CHK2 instruction. It 
has the same general form:

CMP21.<size>] <ea>,Rn
<size> = B, W, L

The operands are identical to the CHK2 instruction. The difference is 
that this instruction does not generate an exception if the register is out 
of bounds; instead, the condition codes are used to indicate the success 
or failure of the operation. The carry condition is set if the register value 
is out of bounds. The zero condition is set if the register value is equal 
to either the upper or lower bound. Here is how to test for whether the 
value in register DO is greater than 100 or less than —100:

CMP2.L BOUNDS,DO

BOUNDS: DC.L -100,100
Coprocessor Support Instructions The 68020 provides direct coproces
sor support. A coprocessor is a special purpose chip that operates in con



198 Assembly Language Programming for the 68000 Family

junction with the main CPU chip to provide additional features not avail
able on the main CPU. Examples of coprocessors for the 68000 family 
are the MC68881 floating point arithmetic coprocessor and the MC68851 
paged memory management unit. Each coprocessor has a set of instruc
tions that are unique to it. If a particular coprocessor is present in your 
system, the 68020 allows you to write the coprocessor instructions di
rectly.

Without presenting the details of specific coprocessors it is not possible 
to present specific coprocessor instructions. However, all coprocessor 
instructions for the 68020 fall into specific types. Here is a brief list of the 
68020 coprocessor support instructions.

cpBcc
cpDBcc

<label>
Dn,<label>

cpGEN <params>
cpRESTORE <ea> 
cpSAVE <ea> 
cpScc <ea> 
cpTRAPcc [#<data>]

Branch on Coprocessor Condition 
Test Coprocessor Condition Decrement 
and Branch
Coprocessor General Function 
Coprocessor Restore Functions 
Coprocessor Save Function 
Set on Coprocessor Condition 
Trap on Coprocessor Condition

You will have to consult the appropriate coprocessor manual to obtain 
the specific information you will need to program the coprocessor.

PACK and UNPK In decimal arithmetic, discussed in Chapter 11, a 
decimal number is represented as two binary-coded decimal (BCD) digits 
per byte. In order to perform BCD arithmetic, we had to convert ASCII 
digits to BCD digits and pack two of them in each byte, and perform 
the reverse operation on output. The PACK and UNPK instructions will 
perform these operations for us. PACK has the following two general 
forms:

PACK - (Ax)(Ay) , #Adjustment>
PACK Dx,Dy,#<adjustment>

<adjustment> is a 16-bit value. Both forms of this instruction take two 
bytes, either from memory using predecrement addressing or from the 
low-order 16 bits of the register, and add the adjustment. The resulting 
16-bit value is packed into a single byte. This is done by taking the 
low-order four bits from each of the two bytes and concatenating. The 
adjustment can be used to convert the data from ASCII, or some other 
character code, to BCD representation. If a negated value is used for 
the adjustment, it will effectively be subtracted from the two digits. For 
ASCII conversion we would form an adjustment such that the ASCII code 
for the character 0 is subtracted from each byte. Here is how we would 
write a PACK instruction to do this, assuming that the data is referenced 
by A0 and placed in a byte pointed to by Al.
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PACK -(AO),-(Al),#-$3030

UNPK has the following identical general forms:

UNPK -(Ax) ,-(Ay), #<adjustirent>
UNPK Dx,Dy,#<adjustirent>

UNPK simply reverses what a PACK does. A packed BCD byte is 
obtained from the source operand. It is then unpacked to two bytes. 
The adjustment is added in and the final result stored in the two bytes 
of the destination. The following instruction performs this conversion for 
ASCII output:

UNPK -(AO),-(Al),#$3030

TRAPcc The TRAPcc instruction is very similar to the TRAP instruction 
except that it conditionally generates the exception. The characters cc in 
the instruction mnemonic can be any of the conditions used with the Bcc 
or See instructions. They are:

CC carry clear 
CS carry set 
EQ equal 
F false 

GB greater or equal 
GT greater than 
HI high
LE less or equal

LS low or same 
LT less than 
MI minus 
NE notequal 
PL plus 
T true 

VC overflow clear 
VS overflow set

There are three general forms for the TRAPcc instruction:
TRAPcc 
TRAPcc.W 
TRAPcc.L #<data>

#<data>

If either a word or longword operand is specified, this immediate operand 
is placed in one or two extension words immediately following the in
struction word. The operand can be used to pass an argument to the 
trap handler. Exception vector 7 is used for this instruction. It is the 
same exception vector that is used by the TRAPV instruction discussed 
in Chapter 12.

Exercises

1. What is the width of the 68020’s address bus?
2. What data bus sizes can be accommodated by the 68020?
3. Can a 68020 be plugged in in place of a 68000?
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4. Can word or longword data begin on an odd address boundary when 
using the 68020?

5. What is the purpose of an instruction cache?
6. How large is the instruction cache on the 68020?
7. What is the size of the entries in the 68020 instruction cache?
8. What new registers are provided for control of the 68020 instruction 

cache?
9. Why is it necessary to clear the cache when the contents of program 

memory is changed?
10. What is purpose of the optional scale factor for the 68020’s address 

register indirect with index addressing mode?
11. What are the allowed values for the scale factor?
12. What is the proper form for the 68020 address register indirect with 

index (base displacement) addressing mode?
13. For the above addressing mode, are any elements optional? If so, 

which?
14. What is memory indirect addressing?
15. What size displacement is allowed with the 68020 branch instructions?
16. What extensions are made to multiplication and division instructions 

with the 68020?
17. Write the 68020 instruction to sign-extend a byte in DO to a full 

longword.
18. With the 68020 bit field instructions, how large can the bit field be?
19. Where can a bit field be located?
20. What is a 68020 module?
21. What new 68020 instructions support modules?
22. What new 68020 instructions expand the capabilities of the 68000’s 

TAS instruction?
23. Write the 68020 instructions necessary to compare register DO to 

determine if it is greater than 20 and less than 75. Branch to ERROR 
if it is not.

24. What is the normal purpose of the PACK and UNPK instructions?
25. Write an instruction to generate exception 7 if the negative condition 

is set.

Answers

1. A full 32 bits.
2. 8, 16, and 32.
3. No, it is physically impossible.
4. Yes, the 68000 even-byte restriction does not apply to the 68020.
5. An instruction cache is used to store a number of instructions inside 

the CPU in order to speed up the execution of loops.
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6. 256 bytes.
7. 32 bits.
8. The cache control register, CACR, and the cache address register, 

CAAR.
9. The cache must be cleared so that it doesn’t contain instructions that 

do not match the actual contents of memory.
10. It makes indexing into arrays much easier.
11. 1, 2, 4, or 8.
12. (bd,An,Rn.<size>*<scale>)
13. Any element is optional.
14. The 68020 addressing modes that use the contents of a memory 

location as the address of the actual data.
15. A full 32-bit displacement.
16. Various combinations of 16-, 32-, and 64-bit operands are allowed.

17. EXTB.L DO

18. A bit field must be 32 bits or less.
19. In a register or memory.
20. A section of code similar to a subroutine that can be granted access 

rights.
21. The CALLM (call module) and the RTM (return from module) in

structions.
22. The compare and swap instructions CAS and CAS2.

23. CHP2.L BOUNDS,DO 
BCC ERROR

BOUNDS: DC.L 21,74

24. To convert to and from ASCII and BCD.

25. TRAPMI





CHAPTER 15

THE 68030

In the latter part of 1986 Motorola announced its latest member of 
the 68000 family, the MC68030. This new super chip should be in full 
production during 1987. This second-generation 32-bit microprocessor is 
actually a combination of an enhanced MC68020 and a subset of the 
MC68851 paged memory management unit. The combination really gives 
awesome capability to one single tiny chip.

Programming the 68030 will be no different from programming the 
68020 unless you are involved with the PMMU (paged memory manage
ment unit) portion of the chip. In that case, you would need to know the 
details of the MC68851 coprocessor subset. I will not present all these 
details; rather, I will give an introduction to the concepts of memory 
management so that you can read the manufacturer’s documentation on 
the 68030 or 68851 with less difficulty. At the time of this writing only 
preliminary documentation on the 68030 was available. The information 
presented here is as accurate as possible with this preliminary documen
tation.

The 68030 operates at 20 MHz, compared to a top speed of 16.7 MHz 
for the 68020. However, the 68030 actually has an effective speed which 
is twice that of the 68020. This is accomplished by a combination of 
data and instruction caches and a pipelined architecture. You will recall 
from Chapter 14 that the 68020 has an instruction cache. Its purpose is 
to reduce the access time to instructions in memory. It is most effective 
for program loops that are small enough to be entirely contained in the 
cache. The operation of the instruction cache in the 68030 is similar to 
that of the instruction cache in the 68020. However, the addition of a data 
cache allows a greater improvement in speed. Both the instruction cache 
and the data cache are 256 bytes. Figure 21 shows the block diagram of 
the 68030. You will notice that there are two internal address and data 
buses. This duplication allows simultaneous access to the instruction and 
data caches.

203
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Figure 21 68030 Block diagram. (Courtesy of Motorola, Inc.)

Instruction and Data Caches

Figure 22 shows the organization of the 68030 data cache. The cache 
consists of 16 entries. Each entry contains four longwords. A valid bit 
is provided for each of these four longwords. If the valid bit is set, it 
indicates that the data in the cache entry is valid for access. A reference 
to this longword by a program would then obtain it from the cache rather 
than from the physical memory. The organization of the instruction cache 
is identical. These cache organizations differ slightly from the 68020. The 
68020 instruction cache consists of 64 longword entries. This yields a cache 
of the same size, but with a different organization. Studies that Motorola 
performed have indicated that the organization used with the 68030 has 
a better performance.

A problem exists with a data cache that doesn’t exist with an instruc
tion cache. Since an assumption is made that the instructions of a program 
can never be modified by the program itself, the information contained 
in the instruction cache never has to be written back to memory. No 
such assumption can be made about data. In fact, a program that didn’t 
modify any memory locations containing data would be highly unlikely. 
Since the stack can contain data, the memory occupied by the stack falls 
into this category. If we allow the data contained in the data cache to be 
modified, we must take steps to assure that the actual memory location 
is modified as well.

A number of techniques exist to make sure that cache contents and 
memory contents are updated correcdy. One method is to modify only 
the contents of the cache when a write operation is issued. As long as the 
entry remains in the cache, subsequent reads will have the correct results. 
If an entry is replaced in the cache, the updated data can be written to 
physical memory at that time. An alternate approach is to update the 
contents of physical memory as soon as a write is issued. This means that
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Figure 22 68030 Data Cache. (Courtesy of Motorola, Inc)

we update both the cache and the physical memory for each write to 
an address contained in the cache. This latter technique is called a write 
through.

The first technique has the advantage that fewer writes to physical 
memory are needed if the data in the cache is updated more than 
once. Only one physical update is needed for many cache updates. The 
disadvantage is that considerably more complex hardware is required. 
The processor must keep track of which addresses in the cache have been 
modified. The write through cache is a simpler design. Since the normal 
programming method is to use registers for counters and addressing inside 
loops, the penalty for the write through cache is not as great as one might 
think.
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Pipelined Architecture

Pipelining is a technique used on high performance CPU’s such as 
mainframes. With pipelining, the CPU can execute operations for sev
eral instructions in parallel. Instructions are fed into a prefetch queue or 
pipe. The 68030 contains an instruction pipe capable of holding three 
16-bit values. These three words can represent from one to three com
plete instructions. The 68030 has three independent arithmetic logic units 
(ALU’s). These are used to calculate instruction addresses and operand 
addresses, and to perform data operations. In combination with the in
struction pipe, these three ALU’s allow concurrent operations to be per
formed. Arithmetic operations are not always performed concurrently, 
but when possible they are. The CPU does this automatically, with the 
end result of a faster overall operating speed. The more concurrency the 
better. The fact that the instruction and data caches allow additional con
currency adds to this effective speed even more.

Paged Memory Management

As Figure 21 showed, the PMMU is added in between the internal 
address buses and the external address bus. If the PMMU is not activated 
on the 68030, the physical addressing is identical to the 68020. The 
address bus is a 32-bit bus. This allows direct access to 4 gigabytes 
of physical memory. This is truly an enormous amount of memory by 
today’s megabyte standards. However, consider that a 68030 processor 
might support many users simultaneously, that we might actually have 
substantially less than the maximum permitted memory, and that this 
memory would have to be divided up among these users. The more users, 
the less actual physical memory is available to each user. The only way to 
allow a user to seemingly occupy more memory than is actually available 
is to implement a virtual memory, briefly discussed in Chapter 13. It 
is possible to implement a virtual memory with either the 68010 or the 
68020. However, they would both require external hardware. The PMMU 
of the 68030 gives us a built-in capability for a virtual memory.

The 68030 PMMU implements a rather sophisticated version of pag
ing. Before we discuss the specifics of the 68030, let’s take a look at how 
a basic paging mechanism works. Paging divides the virtual or logical 
address space into equal size blocks called pages (Chapter 13). We 
do the same for the physical memory. Each page in the logical address 
space is mapped to a corresponding page frame in the physical address 
space. Each byte in the page corresponds to the same byte in the phys
ical page frame. This requires that pages and page frames be the same 
size. It is customary for the page size to be a power of 2. This makes it
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easy to take a binary logical address and partition it into a page number 
and an offset within the page.

Logical Address (example)

31 10 S 0
offset

Since addresses on the 68030 are all 32 bits, we can divide the logical 
address into two pieces as long as the sizes add up to 32. For example, if 
we desire pages to be IK (1024 bytes), the offset requires 10 bits, leaving 
22 bits for the page number. Therefore, there would be 222 pages, each 
1024 bytes long.

How do we then map the pages into the corresponding physical page 
frames? Also, what if all the pages are not currently in memory? When we 
implement a virtual memory, we store the pages that are not currently in 
memory on a secondary storage device such as a disk. The hardware must 
be aware of what pages are actually in physical memory at a given time. 
Both of these problems are solved by the use of a page table. A page table 
is simply a translation table. The physical frame number corresponding 
to a particular page can be found by looking it up in the page table. A 
simple organization of a page table is that of an array of frame numbers. 
The page number is used as an index into the array.

The problem of determining if a page is currently mapped to physical 
memory is solved by providing an extra bit with each page table entry. 
This bit can be set if the frame number is valid and reset if the page 
is not in memory. In the latter case, the frame number can be used to 
provide information to the operating system about where the page is 
located on secondary storage. The hardware doesn’t handle this case. The 
hardware only handles the mapping of pages to physical memory. What 
the hardware does when it encounters a non-resident page is to generate 
a page fault. This page fault is detected by the operating system, the 
missing page is brought into memory, and the instruction that caused the 
page fault is allowed to continue. This time it will find the missing page. 
On the following page is an example of the first few entries of a page 
table. It is easy to see that page 0 is mapped to frame 23, page 1 is 
mapped to frame 12, and page 3 is not in memory.

While this scheme seems simple, the implementation is rather com
plex. For each memory reference, the CPU must determine what page 
is being referenced, find the proper entry in the page table, compute the 
actual physical address by adding the offset to the frame’s location, and 
finally perform the memory access. Two subtle problems emerge when



208 Assembly Language Programming for the 68000 Family

V Frame no.
0 1 23
1 1 12
2 1 0

3 0 -

4 1 123
5

some thought is given to this process. First, if the page table is located 
in memory, an extra memory reference must be made for each and every 
desired memory reference, thereby reducing effective memory speed by 
a factor of two. The second problem concerns the necessity of having a 
page table with as many entries as there are pages in the logical address
ing space. If the number of possible pages is large, this table might not 
fit in memory, or at the very least it may be quite large. The 68030 solves 
both of these problems.

The problem of speed is normally solved by the use of a special set 
of registers variously known as associative registers, content addressable 
memory, transaction lookaside buffers, or an address translation cache. 
The 68030 implements an address translation cache (ATC). This ATC 
can hold 64 translations of page to frame. The operation of this cache is 
similar to the instruction and data caches except that current page table 
entries are stored in the cache. The time taken to access the information 
in the ATC is very much faster than a memory lookup. If it turns out 
that the majority of pages can be mapped by the cache, the effective 
speed of memory is not significantly compromised. This is generally the 
case due to what is known as locality o f reference—in simple terms, a 
property of a program that results in references to only a small portion 
of its total addressing space over particular intervals of time. As the 
program advances, new addresses are referenced and old addresses are 
abandoned. The current set of pages a program is referencing is known 
as its working set. A large amount of theoretical work has been done in 
investigating locality of reference. Suffice it to say that it works, and an 
ATC can be tremendously effective.

The 68030 handles the problem of large page tables by allowing the 
use of a tree-structured page table. Only a portion of the tree structure 
need be in memory at a particular time. The operating system can handle 
moving the portions of the tree structure between main memory and the 
disk. (In the following discussion of the details of these tree-structured
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tables, Motorola’s terms for the entries of a page table, translation de
scriptors, and for an individual table in the tree, descriptor table, are 
used.)

In order to implement the tree structure, the page number in the 
logical address can be divided up into from one to four sub-fields. In 
addition, the size of the total page number field can be specified. In 
essence, this feature allows reducing the size of the logical address space 
to less than 32 bits. If there is only one field present, the value of this 
field specifies the actual page number. It is used as an index into the 
descriptor table to obtain the translation descriptor. In this case there is 
only one descriptor table. If two fields are present, the value in the first 
field is used to determine the location of the descriptor table to be used 
for the second field. This is done by indexing into the first descriptor table 
by the field value. The descriptor at this index does not correspond to a 
page translation but rather to the location of the second-level descriptor 
table. The value in the second field is used to index into the second-level 
descriptor table. This operation can be repeated for up to four levels if 
all four fields are present.

This is the general form of the logical address:

31 0
I ft B C D OFFSET

The I field is the initial shift field and is essentially the portion of the 
logical address to be ignored. This field can range from 0 to 15 bits. 
The A field must always be present. It can range from 1 to 15 bits, and 
specifies the first level of address translation. If fields B, C, and D are 
absent, the A field specifies particular pages. Fields B, C, and D can 
each range from 0 to 15. They must be present in increasing alphabetical 
order—in other words, if field D is present, then fields A, B, and C must 
also be present. The widths of all the fields present must add up to 32: 
I+A+B+C-HD+OFFSET=32. The size of the OFFSET field determines 
the page size. All of these field sizes are set by values contained in the 
translation control register, TC.

Let’s look at a simple example. Assume that the first field of the 
page number, A, is 2 bits. This means that it can specify four items. 
Furthermore, assume that a second field, B, is present and that it is 3 
bits long. If there are only two fields present, the first field specifies four 
descriptor tables and the second field specifies eight pages. This means 
there are 32 pages in the virtual addressing space. Figure 23 shows how 
this particular tree would look. Not all of the descriptor tables or pages 
have to be in memory at the same time. If a reference is made to a
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B-level tables

Figure 23  Example address translation tree.

non-existent table or page, the operating system will get control by an 
exception and can handle the situation.

In order to perform an address translation from the logical address to 
the physical address, we must know the location of the address translation 
tree in physical memory. In other words, we must have a starting point to 
apply the translation specified by a particular logical address. The 68030 
allows us to have two distinct translation trees active at one time. Two 
CPU registers specify the location of these two trees. Refer to Figure
24. The CPU root pointer, CRP, is the pointer normally used for all 
references. The supervisor root pointer, SRP, can be set up to cause all 
supervisor mode references to use a different translation tree. The use of 
the SRP can be turned on and off by a special bit, SRE, in the translation 
control register, TC.
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Figure 24 Supervisor Programming Model Supplement (Courtesy of Motorola, Inc)

68030 Instructions

The 68030 executes all of the instructions of the 68020 plus a handful of 
additional instructions needed to manage the PMMU. These instructions 
are a subset of the coprocessor instructions of the 68851. These are briefly 
summarized below:

PT EST  Takes a virtual address and searches the A TC  or the translation tree 
for the corresponding entry. The PMMU status register, PSR, is set 
according to the results of the search.
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PLOAD Takes a virtual address and searches the translation tree for the 
corresponding page descriptor entry. The ATC is then loaded with 
this entry.

PFLUSH Flushes the ATC by function code, or function code and logical 
address. This instruction is used when a translation tree or table is 
changed in order to ensure that false information is not retained in 
the ATC.

PFLUSHA Similar to PFLUSH except that all ATC entries are flushed.

Even after this brief introduction to the powerful 68030, I am sure 
you can see that this microprocessor is destined to become a dominant 
influence on future system designs. One can’t help but wonder what a 
68040 or 68050 might look like.

Exercises

1. Other than an enhanced 68020 core, what major feature does the 68030 
have?

2. How much faster is the 68030 than the 68020?
3. How large are the instruction and data caches in the 68030?
4. What method is used by the 68030 to keep the contents of memory 

consistent with the data cache?
5. How many arithmetic logic Units (ALU’S) does the 68030 have?
6. What is pipelining?
7. How large is the 68030’s instruction pipe?
8. What type of virtual memory does the 68030 PMMU implement?
9. What does a logical address consist of?

10. What is a frame?
11. What actions take place upon the occurrence of a page fault?
12. How are logical-to-physical addresses mapped?
13. What is the function of an address translation cache, ATC?
14. How many translations can the 68030 ATC hold?
15. What is locality of reference?
16. What is a working set?
17. What does Motorola call the entries of a page table?
18. What is the overall structure of the 68030’s page table?
19. How many levels can there be to the descriptor tables?
20. How is the address translation tree located by the CPU?

Answers

1. A built-in capability for paged memory management.
2. About twice as fast.
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3. Each cache is 256 bytes.
4. A write-through is used. Whenever a data location is modified in the 

cache, it is also modified in the corresponding memory location.
5. Three.
6. Pipelining is a technique that allows more than one instruction to be 

executing at a time.
7. The 68030 instruction pipe is three words long.
8. The 68030 PMMU implements a sophisticated version of paging.
9. A logical address consists of a page number and an offset into the 

page.
10. A frame is a unit of the physical memory that corresponds in size to 

a page in the logical address space. A frame can be used to hold any 
page.

11. An exception is generated so that the operating system can find the 
missing page on secondary storage, bring it into memory, and then 
allow the program to continue.

12. The page number is used as an index into a page table where the 
actual physical location (frame) of the page is found.

13. The ATC is used to speed up the process of page mapping by keeping 
current mappings in fast internal associative memory.

14. The ATC can hold 64 mappings.
15. Locality of reference is the property of a program that results in 

references to only a small portion of its total addressing space over 
particular intervals of time.

16. A working set is the set of pages a program is currently referencing. 
This is normally a subset of the total number of pages. The working 
set slowly changes as the program advances.

17. Translation descriptors.
18. A rooted tree.
19. Four.
20. By use of the CPU root pointer, CRP, or the supervisor root pointer, 

SRP. These are registers available in supervisor mode only.
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APPENDIX A

ASCII CHARACTER CODES

Octal Hex ASCII D ecim al O ctal Hex ASCII
000 00 NUL 32 040 20 SP
001 01 SOH 33 041 21 I

002 02 STX 34 042 22 t t

003 03 ETX 35 043 23 »
004 04 EOT 36 044 24 $
005 05 ENQ 37 045 25 %
006 06 ACK 38 046 26 &
007 07 BEL 39 047 27 ’
010 08 BS 40 050 28 (
O il 09 HT 41 051 29 )
012 0A LF 42 052 2A *

013 OB VT 43 053 2B 4-
014 OC FF 44 054 2C )
015 OD CR 45 055 2D -

016 OE SO 46 056 2E .
017 OF SI 47 057 2F /
020 10 DLE 48 060 30 0
021 11 DC1 49 061 31 1
022 12 DC2 50 062 32 2
023 13 DC3 51 063 33 3
024 14 DC4 52 064 34 4
025 15 NAK 53 065 35 5
026 16 SYN 54 066 36 6
027 17 ETB 55 067 37 7
030 18 CAN 56 070 38 8
031 19 EM 57 071 39 9
032 1A SUB 58 072 3A 1
033 IB ESC 59 073 3B t

034 1C FS 60 074 3C <
035 ID GS 61 075 3D =
036 IE RS 62 076 3E >
037 IF US 63 077 3F

215
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Decimal Octal Hex ASCII Decimal Octal Hex ASCII

64 100 40 <S> 96 140 60 *
65 101 41 A 97 141 61 a
66 102 42 B 98 142 62 b
67 103 43 C 99 143 63 c
68 104 44 D 100 144 64 d
69 105 45 E 101 145 65 e
70 106 46 F 102 146 66 f
71 107 47 G 103 147 67 6
72 110 48 H 104 150 68 h
73 111 49 I 105 151 69 i
74 112 4A J 106 152 6A i
75 113 4B K 107 153 6B k
76 114 4C L 108 154 6C 1
77 115 4D M 109 155 6D m
78 116 4E N 110 156 6E n
79 117 4F O 111 157 6F o
80 120 50 P 112 160 70 P
81 121 51 Q 113 161 71 q
82 122 52 R 114 162 72 r
83 123 53 S 115 163 73 s
84 124 54 T 116 164 74 t
85 125 55 U 117 165 75 u
86 126 56 V 118 166 76 V
87 127 57 W 119 167 77 w
88 130 58 X 120 170 78 X
89 131 59 Y 121 171 79 y
90 132 5A Z 122 172 7A z
91 133 5B [ 123 173 7B {
92 134 5C 124 174 7C 1
93 135 5D 1 125 175 7D }
94 136 5E * 126 176 7E
95 137 5F - 127 177 7F DEL



APPENDIX B

PROGRAM SHELLS AND 
I/O SUBROUTINES

Shell foe the Atari ST computers.

text
Your program goes here 

<PROGRAM>

Return to system.
fini: move.w #0,-(sp) 

trap <1
Subroutines

putc: movem.l d0-d7/a0-a6,-(sp) 
andi.l #5ff,d0 

dOr-(sp)
*2,-(sp)
*1
*4,sp
(sp)+,d0-d7/a0-a6

move.w 
move.w 
trap 
addq.1 
movem.1 
rts

getc: movem.l dl-d7/a0-a6,-(sp)
move.w #l,-(sp)
trap il
andi.l #$7f,d0
addg.l #2,sp
movem.l (sp)+,dl-d7/a0-a6
rts

save regs.
make sure we have only a byte
push arg. on stack
dos function 2
trap to dos
clean up stack
restore regs.
return
save regs. 
dos function 1 
trap to dos 
mask to 7 bits 
clean up stack 
restore regs. 
return

The following subroutine to input a decimal number accumulates 
the number by multiplying the partially accumulated number by ten 
and adding in the current digit. A double precision multiply is 
performed to allow a full 32 bit number to be entered.

indecO:
indec: movem.l 

clr .1 
jar 
subi.b 
bit 
cmp.b 
bgt
move.w
clr .w
swap
mulu
swap
mulu
add.l
add.l
bra

indedt move.l

dl-d2,-(sp)
dl
getc 
I'O’rdO 
indecl 
*9,d0 
indecl 
dl,d2 
dl 
dl 
*10,dl 
dl 
*10,d2 
d2,dl 
d0,dl 
indecO 
dl,d0

save registers
initialize number to zero
get a character
make ascii into digit
terminate if not a digit
not a digit i > 9
also terminate if so
save low order word of number
clear low order word
move high word to low word
multiply by ten
put result back in high word
multiply low order word of number by ten
add low order word to high order word
add in the current digit
get another digit
move number into dO
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movem.l (sp)+,dl-d2 
rts

restore registers 
return

The following subroutine to output a decimal number perforins this 
operation by successively dividing the number by ten to pick off the 
digits. These digits are pushed onto the stack. When the number 
has been converted, the digits are popped from the stack and output. 
A double precision divide is needed to accommodate a 32 bit number.

outdec: movem.l d0-d3,-(sp) 
move.w #-l,-(sp) 
tst.l dO 
beg outdecz

* divide by ten to pick up digit value
* keep doing this until number is zero
outdecOi! tSt.l dO

beq outdecl
move.w d0,d2
clr .w dO
swap dO
divu 110,dO
move.w d0,d3
move.w d2,d0
divu *10,dO
swap dO
move.w dO,-(sp)
move.w d3,d0
swap dO
bra outdecO

*we now output th« number
outdecl::move.w (sp)+,dO

bmi outdec2
and.l ««llll,dO

outdecz :add.b #’0',d0
jsr putc
bra outdecl

outdec2 :movem.l (sp)+,d0-d3
* rts
cr: equ ?0d
If: equ $0a
newline rmove.l dO,-(sp)

move.b #cr,d0
jsr putc
move.b #lf,d0
jsr putc
move.1 
rts

(sp)+,dO

save reg. values 
push -1 onto stack 
zero value?
yes, make sure we output a 0 
as remainder
finished?
yes, output the number
save low order word in d2
clear low order word
get high order word in low order word
divide by ten
save remainder in d3
get low order word back
divide by ten
swap quotient and remainder words 
save remainder as digit value 
get old remainder in low order word 
fix up so result is full 32 bit quotient 
divide by ten again
get a digit from the stack
terminate on -1
mask
make digit into ascii char 
output
continue to next digit 
restore registers 
return
ascii car ret 
ascii line feed 
save reg. dO 
output a car ret
output a line feed
restore dO 
return

end
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**********************************************
Amiga shell - This must run under the CLI 

Link with amiga.lib

* You may have to modify the following include if your
* include files are not in the same directory.

include ";include/libraries/dos_lib.i" 
code

* External references
xref _AbsExecBase 
xref _LVOOpenLibrary 
xref _LVOCloseLibrary

*

* Initialization code to open the DOS library and the console device
lea DOSName,Al get name of dos library
clr.l dO and latest version
movea.1 _AbsExecBase,a6 get base of exec
jsr _LVOOpenLibrary(a6) open dos library
move. 1 dO, DOSBase save base address
move.1 #1006,d2 new file
move.1 #con,dl get console name
movea.1 JDOSBase,a6 dos lib base to a6
jsr _LVOOpen<a6) open console
move.1 dO,console save file pointer

Your program goes here

<PROGRAM>

Code to clean up and exit to the CLI
fini: move.l console,dl 

movea.l _D0SBase,a6 
jsr _LV0Close(a6) 
movea.l _DOSBase,al 
movea.l _AbsExecBase,a6 
jsr _LVOCloseLibrary(a6) 
clr.l dO 
rts

*

* Standard I/O subroutines
*

getc: movem.l dl-d7/a0-a6,-(sp) 
move.l console,dl 
move.l #buff,d2 
moveq.l #l,d3 
movea.l _D0SBase,a6 
jsr _LVORead(a6) 
clr.l dO 
move.b buff,d0 
movem.l (sp)+,dl-d7/a0-a6

get file pointer 
dos lib base to a6 
close console 
dos lib base to al 
exec base to a6 
close dos library 
indicate no error 
return to cli

save regs.
file pointer to dl
buffer pointer to d2
count to d3
dos lib base to a6
read data
make sure high order bits clear 
get the char, 
restore regs.
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rts
putc: movem.l d0-d7/a0-a6,-(sp) 

move.b dO,buff 
move.l console/dl 
move.l #buff,d2 
moveq.l *l,d3 
raovea.l _DOSBase,a6 
jsr _LVOWrite(a6) 
movem.l (sp)+,d0-d7/a0-a6 
cts

save regs. 
put char, in buff 
file pointer to dl 
buffer pointer to d2 
count to d3 
dos lib base to a6 
write data 
restore regs. 
return

The following subroutine to input a decimal number accumulates 
the number by multiplying the partially accumulated number by ten 
and adding in the current digit. A double precision multiply is 
performed to allow a full 32 bit number to be entered.

indec:
indecO:

cir .1 
jsr 
subi.b 
bit 
cmp.b 
bgt
move.w
cir .w
swap
mulu
swap
mulu
add.l
add.l
bra

indecl: move.l

movem.l dl-d2,-(sp) 
dl
getc 
*' 01,d0 
indecl 
*9,d0 
indecl 
dl,d2 
dl 
dl 
*10,dl 
dl 
«10,d2 
d2,dl 
dO,dl 
indecO 
dl,dO
(sp)+,dl-d2movem.l

rts

save registers
initialize number to zero
get a character
make ascii into digit
terminate if not a digit
not a digit i > 9
also terminate if so
save low order word of number
clear low order word
move high word to low word
multiply by ten
put result back in high word
multiply low order word of number by ten
add low order word to high order word
add in the current digit
get another digit
move number into dO
restore registers
return

* The following subroutine to output a decimal number performs this
* operation by successively dividing the number by ten to pick off the
* digits. These digits are pushed onto the stack, when the number
*  has been converted, the digits are popped from the stack and output.
* A double precision divide is needed to accommodate a 32 bit number.
*

outdecs movem.l d0-d3,-<sp) save reg. values
move.w #-l,-(sp) push -1 onto stack
tst.l dO zero value?
beq outdecz yes, make sure we output a 0

* divide by ten to pick up digit value as remainder
* keep doing this until number is zero 
outdecOitst.l dO

beg outdecl 
move.w d0,d2
cir .w
swap
divu
move.1
move.'
divu
swap
move.'

dO 
dO
*10,dO 
d0,d3 
d2,d0 
*10,dO 
dO
d0,-(sp)

finished?
yes, output the number
save low order word in d2
clear low order word
get high order word in low order word
divide by ten
save remainder in d3
get low order word back
divide by ten
swap quotient and remainder words 
save remainder as digit value
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move.w d3,d0 get old remainder in low order word
swap dO fix up so result is full 32 bit quotient
bra outdecO divide by ten again

*we now output the number
outdecl :move.w (sp)+,dO get a digit from the stack

bmi outdec2 terminate on -1
and.l •%1111,dO mask

outdecz :add.b #'0',d0 make digit into ascii char
jsr putc output
bra outdecl continue to next digit

outdec2 :movem.l (sp)+,d0~d3 restore registers
* rts return
ct S egu 90d ascii car ret
If: equ 50a ascii line feed
newline :move.l d0,-(sp) save reg. dO

move.b *cr,d0 output a car ret
jsr putc
move.b #lf,d0 output a line feed
jsr putc
move.l (sp)+,dO restore dO

* rts return
data

DOSName: dc.b 'dos .library1',0
con:* dc.b '*',0 console name

bss
buff: ds.b 1 character buffer
_DOSBase: ds.l 1 temp for dos lib pointer
console: ds.l 1 temp for file pointer

end
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; Macintosh shell.
;****************************************
t; The following include files ace needed: 
t

Include MacTraps.D
Include SysEqu .D

?
xdef Start ;starting address

t

; Equates
WIND TOP equ 40 ;window coordinates (GLOBAL)
WIND LEFT equ 4 $
WIND_B0T equ 338 t
WIND_RIGHT equ 508 i

WINDHEIGHT equ WIND BOT-WIND TOP ;window dimensions
WINDWIDTH equ WIND_RIGHT-WIND_LEFT
LMARG equ 6 ;left margin
RMARG equ WINDWIDTH-10 }right
TMARG equ 15 ;top
BMARG equ WINDHEIGHT-15 ;bottom
BS equ 8 ;ASCII backspace
CR equ 13 ;ASCII car ret
LF equ 10 ;ASCII If
DASH equ 45 ;ASCII minus sign
ZERO equ 48 ;ASCII character for digit zero
NINE equ 57 ;ASCII character for digit nine
TRUE equ 1 ;boolean true
FALSE equ 0 ;boolean false
FONTNUM equ 4 ;default font code
FONTSTYLE equ 0 ;plain style
FONTSIZE equ 9 ;default font size
ASCENT equ 0 ;offsets of fields in Fontinfo
DESCENT equ 2 ;
WIDMAX equ 4 0

LEADING equ 6 ?
; The window coordinates in local coordinates
WBoundsRect: dc.w WIND TOP,WIND LEFT,WIND BOT,WIND RIGHT
WScrollRect: dc.w 0,0,WINDHEIGHT,WINDWIDTH
ScrollRgnH: dc.l 0 ;handle for scroll region
Fontlnfo: dcb.w 4,0 ;buffer for record ret. by _GetFontlnfo
LineHt: dc.w 0 ;buffer for height of line
WindowPointer: 
;
EventRec:

dc.l 0 ;pointer to the window
ds.l 4 ;event record

?Title: dc.b 16,'Macintosh shell.1
t; Initialization code. Set up everything.
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Start: movem.l d0-d7/a0-a6,-(sp) 
pea -4(a5)
_InitGraf 
_InitPonts 
_InitWindows 
_InitMenua 
clr.l -(sp)
_InitDialogs
JTEInit
_InitCursor
lea Title,aO
bsr makewindow

;
; Your program goes here

;save regs.
;space for Quickdraw 
;init Quickdraw 
;init font manager 
;init window manager 
;init menu manager 
;no restart procedure 
;init dialog manager 
;init textedit 
;set cursor to arrow 
;get title bar 
;make a window

<PROGRAM>

; Clean up and return 
t

movem.l (sp)+,d0-d7/a0-a6 
_ExitToShell

9

; Subroutines 
/
Makewindow:

movem.l d0-d2/a0-al,-(sp)
clr.l -(sp)
clr.l -(sp)
pea WBoundsRect
move.l aO,-(sp)
st -(sp)
clr.w -(sp)
move.l i-l,-(sp)
sf -(sp)
clr.l -(sp)
_NEWWINDOW
lea WindowPointer,a0 
move.l (sp),(aO)
_SETPORT 
clr.l -(sp)
_NEWRGN
lea ScrollRgnH,aO 
move.l (sp),(aO) 
pea HScrollRect 
_RECTRGN
move.w fFONTNUM,-(sp) 
_TextFont
move.w fFONTSTYLE,-(sp) 
_TextPace
move.w tFONTSIZE,-(sp)
_TextSize
pea Pontlnfo
_GETPontInfo
move.w FontInfo+ASCENT,dO 
add.w FontInfo+DESCENT,dO 
add.w FontInfo+LEADlNG,dO 
lea LineHt,aO

;restore registers 
;return to finder

;save regs.
;reserve space for window ptr. 
;allocate
;window size and location 
/window's title 
;vis flag ° true 
;document window 
;window on top 
;goaway = flase 
;refcon = not used
;get address of window 
;save window ptr and pass 
; to setport

/create a new region
•save and pass along
;use same limits as WBoundsRect
;required if scrolling
;default font number
;set font selection
;default font style
;set font style
(default font size
;set font size
;get info, about font
;font dimension parameters

;compute font vert, size 
;get address
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move.w
move
move
_M0VET0
movem.1
rts

dO,(aO)
#LMARG,-(sp) 
#TMARG,-(sp)
(sp)+,d0-d2,a0-al

FLASHTIME equ 30
EVENTKEY equ 4
EVENTMODIPIERS equ 14

;save vert info.
;horiz. pen pos.
;vert. pen pos.
jpen in upper left corner
;restore regs.
;and return
;*ticks caret is on or off 
;offset of key code in event record 
;offset of modifier flags

getc: movem.l dl-d4/a0-al,-(sp)
; local initializations

move.l t$0000ffff,d0 ;mask for all events
_FlushEvents jflush event queue
move.l Ticks,d3 ;d3 = time caret was on/off
moveq #0,d4 ;caret off 

; start of event loop, but must check if time to switch caret state
getcl: move.l Ticks,dO ;get system time in ticks

sub.l d3,d0 jsubtract time of last switch
cmpi.l ♦FLASHTIME,dO ;if equal must switch
blt.s getc3 ;if not eq then getc3 

; switch caret state
move.b ,d0 ;assume it was off
tst.b d4 ;test if it was off
beq.s getc2 ;if off write it
move.b tBS,dO ; if on erase by BS

getc2: bsr putc ;switch the caret
move.l Ticks,d3 ;update time switched
not.b d4 ;flip state 

; check the event queue for a key closure or auto-key event
getc3: clr.w -(sp) ;allocate space for result

move.w #$0028,-(sp) ;mask
pea EventRec ;pass address of event rec. 
_GetNextEvent
tst.b (sp)+ ;system event or nothing?
beq getcl ;if nothing try again 

; otherwise a key was held down and the caret must be erased, if visable
tst.b d4 
beq.s getc4 
move.b #BS,d0 
bsr putc 

; return the character code and echo
getc4: move.w EventRec+EVENTMODIFIERS,dO ;get modifiers

;caret on?
;if not, getc4 
; if on erase by BS 
;switch the caret

swap
move.w
bsr
andi.l

dO
EventRec+EVBNTKBY,dO 
putc 
«$7f,d0 

movem.l (sp)+,dl-d4/a0-al 
rts

PenLoc: dc.l 
;

jinto high word of dO 
;get key and ASCII code 
;echo
yraask to 7 bit ASCII 
;restore regs.
; return;
;pen pos.

putcj movem.l dl-d2/d5-d7/a0-al,-(sp) ;save regs.
;char to d5 
;get pen loc

move.l d0,d5 
pea PenLoc 
_GETPEN
move.w PenLoc+2,d7 
move.w PenLoc,d6 
cmpi.b #BS,d5

jx val to d7 
;y val to d6 
;backspace?
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bne
cmpi.w 
beq 
lea
move.w 
neg.w 
move.w 
move.w 
_MOVE 
move.w 
move.w 
add.w 
move.w 
sub.w 
sub.w 
move.w 
move.w 
move.1 
move.1 
_ERASERECT

putcl 
ILMARG,d7 
putc4
Fontln£o,aO 
HIDMAX(aO),d0 
dO
dO,-(sp)
#0, ** (sp)
d7,-(sp)
d6,d0
FontInfo+DESCENT,DO 
d0,-(sp)
FontInfo+ASCENT,d6
FontInfo+WIDMAX,d7
d7,-(sp)
d6,-(sp)
sp,a0
a0,-(sp)

putcl:
add
bra
cmp.b
beq
cmp.w
bit

generate new line

*8,sp
putc4
«CR,d5
putc2
•RMARG,d7
putc3

putc2: sub.w
neg.w
move.w
lea
move.w
_MOVE
cmp.w
bit
pea
move.w
lea
move.w
neg.w
lea
move.l

#LMARG,d7 
d7
d7,-(sp) 
LineHt,a0 
(aO),-(sp)
#BMARG,d6 
putc 3
HScrollRect 
*0,-(sp) 
LineHt,aO 
(aO),-(sp) 
(sp)
ScrollRgnH,aO 
(aO),-(sp)

J5CROLLRECT 
move.w t0,-isp) 
lea LineHt,aO 
move.w (aO),-(sp) 
neg.w (sp)
_MOVE 

;display character 
putc3: move.w d5,-(sp) 

_DRAWCHAR
;exit 
putc4: move.l d5,d0

movem.l (sp)-t-,dl-d2/d5-d7/a0-al 
rts

if no jump past erasure 
else check left margin 
at margin, return 
get address of font data 
get char width data 
negate
push new x val difference 
push new x val difference 
move pen
bottom right corner 
y val of pen pos. 
add descender amount to y 
val and push 

y val plus ascender 
compute x val 
push x val 
push y val
push addr of erase rect.
erase deleted character
pop rectangle values from stack
exit
CR?
yes, go create new line 
is pen past right hand margin? 
if no, jump past new line
compute difference 
negate difference x val. 
push onto stack 
get address of line height 
load new value
position cursor for new line 
has pen moved past bot. margin? 
if no, bypass code to scroll 
push addr. of scroll rect 
push zero
get address of line height 
load new value 
negate top of stack value 
get addr. of scroll region 
push on stack
scroll by one line's height 
push zero
get address of line height 
load new value 
negate top of stack 
move pen too
push char code 
display character
char to dO 
restore regs. 
return

The following subroutine to input a decimal number accumulates 
the number by multiplying the partially accumulated number by ten 
and adding in the current digit. A double precision multiply is
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i performed to allow a full 32 bit number to be entered.
;
indec: movem.l 

clr.l 
indecO: jsr

subi.b 
bit 
cmp.b 
bgt
move.w 
clr .w 
swap 
mulu 
swap 
mulu 
add.l 
add.l 
bra

indecl: move.l 
movem.1 
rts 

#
; The following subroutine to output a decimal number performs this 
; operation by successively dividing the number by ten to pick off the 
; digits. These digits are pushed onto the stack. When the number 
; has been converted/ the digits are popped from the stack and output. 
; A double precision divide is needed to accommodate a 32 bit number.
;
outdec: movem.l d0-d3,-(sp) ;save reg. values

move.w *-l,-(sp) jpush -1 onto stack
tst.l dO ;zero value?
beq outdecz ;yes, make sure we output a 0

; divide by ten to pick up digit value as remainder
; keep doing this until number is zero
outdecO:tst.l dO ;finished?

beq outdecl ;yes, output the number
move.w d0,d2 ;save low order word in d2
clr .w dO ;clear low order word
swap dO ;get high order word in low order word
divu *10,dO ;divide by ten
move.w d0,d3 ;save remainder in d3
move.w d2,d0 ;get low order word back
divu *10,dO ;divide by ten
swap dO ;swap quotient and remainder words
move.w d0,-(sp) ;save remainder as digit value
move.w d3,d0 ;get old remainder in low order word
swap dO ;fix up so result is full 32 bit quotient
bra outdecO ;divide by ten again

jwe now output the number
outdecl move.w (sp)+,d0 ;get a digit from the stack

bmi outdec2 jterminate on -1
and.l *«1111,dO ;mask

outdeczsadd.b *'0',d0 ;make digit into ascii char
jsr putc ;output
bra outdecl ;continue to next digit

outdec2:movem.l (sp)+,d0-d3 ;restore registers
rts ;return

?
newline:move.l d0,-(sp) ;save reg. dO

move. b *CR,d0 ;output a car ret

dl-d2,-(sp) ;save registers
dl ;initialize number to zero
getc ;get a character
*'0',d0 ;make ascii into digit
indecl ;terminate if not a digit
19,dO ;not a digit i > 9
indecl ;also terminate if so
dl,d2 ;save low order word of number
dl ;clear low order word
dl ;move high word to low word
*10,dl ;multiply by ten
dl ;put result back in high word
*10,d2 ;multiply low order word of number by ten
d2,dl ;add low order word to high order word
d0,dl ;add in the current digit
indecO ;get another digit
dl,d0 ;move number into dO
(sp)+,dl-d2 /restore registers 

;return
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jsr putc 
move,l (sp)+,dO 
rts
end

/restore <30 
/return





APPEH DIX C

68000-68020 
INSTRUCTION SUMMARY

Mnemonic

Addr Modes: 

Src Dest Size

Attri

butes

Cond. Codes 

X N Z V C Description

ABCD Dn Dn B S 0 S 0 s Add Decimal

-(An) -(An) B S 0 S 0 s Add Decimal

ADDA <ea> An W,L S S S S s Add Address

ADDi #data <dea> Alterable B.W.L s s s s s Add Immediate

ADD <ea> Dn B.W.L *1 s s s s s Add Binary

Dn <mea> Alterable B.W.L *1 s s s s s Add Binary

ADDQ #d <aea> B.W.L *1,*2 s s s s s Add Quick

ADDX Dn Dn B.W.L s s s s s Add Extended

-(An) -(An) B.W.L s s s s s Add Extended

AND <riea> Dn B.W.L 0 S S 00 And Logical

Dn OQ£> B.W.L 0 S S 00 And Logical

ANDI #d <dea> Alterable b .w .l 0 S S 00 And Immediate

#d CCR W.L s s s s s And Imm to CCR

#d SR W,L P s s s s s And Imm to SR

ASL Dn Dn B.W.L *3 s s s s s Arith. Shift L

#d Dn B.W.L *4 s s s s s Arith. Shift L

<mea> Alterable W s s s s s Arith. Shift L

ASR Dn Dn B.W.L *3 s s s s s Arith. Shift R

#d Dn B.W.L *4 s s s s s Arith. Shift R

<mea> Alterable L s s s s s Arith. Shift R

Bcc <label> 16 bit displ. 0 0 0 0 0 Branch Cond

Bcc.S <label> 8 bit displ. 0 0 0 0 0 Branch Cond Short

BCHG Dn <mea> Alterable B.L 0 0 S 0 0 Test bit & Change
#d <mea> Alterable B.L 0 0 S 0 0 Test bit & Change

BCLR Dn <mea> Alterable B,L 0 0 S 0 0 Test bit & Clear
#d <mea> Alterable B,L 0 0 S 0 0 Test bit & Clear

BFCHG <ea> - *8 0 S S 0 0 Tst Bit Fid & Chg
BFCLR <ea>{off,width) *8 0 S S 0 0 Tst Bit Fid & Cir
BFEXTS <ea>{offlwidth}lDn *8 0 S S 0 0 Extrct Bit Fid Sin

BFEXTU <ea>{off,width), Dn *8 0 S S 0 0 Extrct Bit Fid Uns

BFFFO <ea>{off,width),Dn *8 0 S S 0 0 Fnd 1st 1 In bitfld

BFINS <ea>{off,width) *8 0 S S 0 0 Insert Bit Fid
BFSET <ea>{off,width) *8 0 S S 0 0 Set Bit Fid

BFTST <ea>{off,width) *8 0 S S 0 0 Test Bit Fid

BKPT #d - *8 0 0 0 0 0 Breakpoint
BRA <label> 8 or 16 bit displ 0 0 0 0 0 Branch Always

BSET Dn <mea> Alterable B.L 0 0 S 0 0 Test bit & Set
#d <mea> Alterable B.L 0 0 S 0 0 Test bit & Set

BSR <labeb» 8 or16 bit disp 0 0 0 0 0 Branch Subr.

BTST Dn <dea> B,L 0 0 S 0 0 Test bit & Set

#d <dea> B,L 0 0 S 0 0 Test bit & Set
CALLM #d <ea> - *8 0 0 S 0 0 Cali Module

CAS Dn,Dn,<ea> B.W.L *8 0 S S S s Comp & Swap Op

CAS2 Dn:Dn,Dn:Dn,(Rn):(Rn) W,L *8 0 s s s s Comp & Swap Op

CHK <te> Dn B.W.L *8 0 S 0 0 0 Check Reg. Bounds

CHK2 <tea> Rn W 0 0 S 0 s Check Reg. Bounds

229
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CLR <dea> Alterable b .w .l 0 0 0 00 Clear Operand
CMP <ea> Dn B.W.L *1 0 S S S S Compare
CMPA <ea> An W.L 0 S S S S Compare Addr
CMPI #d <dea> Alterable b .w .l 0 S S S S Compare Imm.
CMPM (An)+ (An)+ B.W.L 0 S S S S Compare Mem.
CMP2 <ea> Rn B.W.L *8 *1 0 0 S 0 S Compare Reg
cpBcc <label> - W,L *8 0 0 0 0 0 Brnch Coproc Cnd
cpDBcc <ea> • - *8 0 0 0 0 0 Tst.Decr.Br.CprC
cpGEN Coprocessor specific operands - *8 S S S S S Bmch Coproc Cnd
cpRESTORE <label> - W,L *8 P 0 0 0 0 0 Coproc Restore
cpSAVE <ea> - - *8 P 0 0 0 0 0 Coprocessor Save
cpScc <ea> - B *8 0 0 0 0 0 Set on Coproc Cond
cpTRAPcc - - W,L *8 0 0 0 0 0 Trap on CoprocCnd

DBcc
#d - W,L *8 0 0 0 0 0 Trap on CoprocCnd
Dn <label> 16 bit disp. 0 0 0 0 0 Deer, Brnch Cond.

DIVS <dea> Dn W 0 S S S 0 Divide Signed
DIVSL <dea> Dquotient L 0 S S S 0 Divide Signed

DIVU
<fea> DremrDquotient L 0 S S S 0 Divide Signed
<tea> Dn W 0 S S S 0 Divide Unsigned

DIVUL <Jea> Dquotient L 0 S S S 0 Divide Unsigned

BOR
<dea> DremrDquotient L 0 S S S 0 Divide Unsigned
Dn <dea> Alterable B.W.L 0 S S 0 0 Exclusive OR

EORI #d <dea> Alterable B.W.L 0 S S 0 0 Exclusive OR Imm
#d SR W P S S S s  s Exclusive OR Imm
#d OCR W S S S S S Exclusive OR Imm

EXG Rn Rn L 0 0 0 0 0 Exchange Regs
EXT Dn - W,L 0 S S 0 0 Extend Sign
EXTB Dn - L 0 S S 0 0 Extend B to L Sign
ILLEGAL * - - 0 0 0 0 0 Illegal
JMP - <cea> - 0 0 0 0 0 Jump Always
JSR - <oea> - 0 0 0 0 0 Jump Subr.
LEA <cea> An L 0 0 0 0 0 Load Eff Address
LINK An #d W,L 0 0 0 0 0 Link/ Allocate
LSL Dn Dn B.W.L *3 S S S 0 S Log. Shift Left

#d Dn B.W.L *4 S S S 0 S Log. Shift Left
<mea> Alterable W S S S 0 S Log. Shift Left

LSR Dn Dn b .w .l *3 S S S 0 S Log. Shift Right
#d Dn b .w .l *4 S S S 0 S Log. Shift Right
<mea> Alterable W S S S 0 S Log. Shift Right

MOVE <ea> <dea> Alterable b .w .l *1 0 S S 0 0 Move Data
<dea> OCR w *5 S S S S S Move to CCR
CCR <dea> w *5 0 0 0 0 0 Move from CCR
<dea> SR w P S S S S S Move to SR
SR <dea> Alterable w P 0 0 0 0 0 Move from SR
USP An L P 0 0 0 0 0 Move from USP
An USP L P 0 0 0 0 0 Move to USP

MOVEA <ea> An W.L 0 0 0 0 0 Move Address
MOVEC Rc Rn L *8 P 0 0 0 0 0 Move Control Reg

Rn Rc L *8 P 0 0 0 0 0 Move Control Reg
MOVEM <reglist> <cea> Alterable W,L *6 0 0 0 0 0 Move Mult. Regs

<oea> <reglist> W,L *7 0 0 0 0 0 Move Mult. RegsMOVEP Dn d(An) W,L 0 0 0 0 0 Move Periph. Data
d(An) Dn W,L 0 0 0 0 0 Move Periph. Data
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MOVEQ #d Dn L 0 S S 0 0 Move Quick
MOVES Rn DFC<mea> Altrbl B.W.L *8 P 0 0 0 0 0 Move Addr Space

SFC<mea> Altrbl Rn B.W.L *8 P 0 0 0 0 0 Move Addr Space
MULS <dea> Dn W 0 S S S 0 Multiply Signed
MULS.L <dea> Dh:DI L *8 0 S S S 0 Multiply Signed
MULU <dea> Dn W 0 S S S 0 Multiply Unsigned
MULU.L <dea> Dh:DI L *8 0 S S S 0 Multiply Unsigned
NBCD <dea> Alterable B S 0 S 0 s Negate Decimal
NEG <dea> Alterable B,W,L s  s  s  s  s Negate
NEGX <dea> Alterable B.W.L s  s  s  s  s Negate Extended
NOP - - - 0 0 0 0 0 No Operation
NOT <dea> Alterable B.W.L 0 s  s  0 0 Logical Complmnt
OR <dea> Dn B.W.L 0 s  s  0 0 Inclusive OR Log.

Dn <mea> Alterable b .w .l 0 S S 0 0 Inclusive OR Log.

ORI #d <dea> Alterable b .w .l 0 S S 0 0 Inclusive OR Imm.
#d SR w P S S S S S Inclusive OR Imm
#d CCR W S S S S S Inclusive OR Imm

PACK -(An),-(An),#<adjstmnt> - *8 0 0 0 0 0 Pack
PEA <oea> - L 0 0 0 0 0 Push Eff. Addr
RESET - - - P 0 0 0 0 0 Reset Ext. Device
ROL Dn Dn B.W.L *3 0 S S 0 S Rotate Left

#d Dn B.W.L *4 0 S S 0 S Rotate Left
<mea> Alterable W 0 S S 0 S Rotate Left

ROR Dn Dn B.W.L *3 0 S S 0 S Rotate Right
#d Dn B.W.L *4 0 S S 0 s Rotate Right
<mea> Alterable W 0 S S 0 s Rotate Right

ROXL Dn Dn B.W.L *3 S S S 0 S Rotate L w/extnd
#d Dn b .w .l *4 S S S 0 S Rotate L w/extnd

<mea> Alterable W S S S 0 S Rotate L w/extnd
ROXR Dn Dn B.W.L *4 S S S 0 S Rotate R w/ext

#d Dn B.W.L *5 S S S 0 S Rotate R w/ext

<mea> Alterable W S S S 0 s Rotate R w/ext

RTD #d - - *8 0 0 0 0 0 Return/Deallocate
RTE - - - P s s  s  s  s Ret from exceptn

RTM Rn - - *8 s s  s  s  s Ret from Module

RTR - - - s s s s s Ret/Restore CCR

RTS - . - 0 0 0 0 0 Ret from Subr.
S8CD Dn Dn B S 0 s 0 s Subtract Decimal

-(An) -(An) B S 0 S 0 S Subtract Decimal

See <dea> Alterable B 0 0 0 0 0 Set Conditionally

STOP #d - - P S S S S s Load SR, Stop

SUB <ea> Dn B.W.L *1 s s s s s Subtract Binary

Dn <mea> Alterable B.W.L s s s s s Subtract Binary

SUBA <ea> An W,L 0 0 0 0 0 Subtract Address

SUBI #data <dea> Alterable B.W.L s s s s s Subtract Imm.
SUBQ #d «aea> B.W.L *1,*2 s s s s s Subtract Quick

SUBX Dn Dn b .w .l s s s s s Subtract Extended
•(An) -(An) b .w .l s s s s s Subtract Extended

SWAP Dn . W 0 s S 0 0 Swap Reg Halves
TAS <dea> Alterable B 0 S S 0 0 Test & Set Opernd

TRAP #d - - 0 0 0 0 0 Trap

TRAPcc #d - W,L *8 0 0 0 0 0 Trap on Condition

TRAPV - - - 0 0 0 0 0 Trap on Overflow
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TST <dea> Alterable
UNLK An
UNPACK -(An),-(An),#<adjstmnt>
UNPK Dn,Dn,#<adjstmnt>

B.W.L 0 S S 0 0 Test Operand 
0 0 0 0 0  Unlink

8 0 0 0 0 0  UnPack BCD 
’8 0 0 0 0 0  UnPack BCD

Notes:
*1: If size is .B then Address Register Direct Addr. Mode is not allowed 
*2: Immediate data occupies 3 bits representing values on 1 - 8.
*3: Source Data Reg. contains shift count. Value 0-63,0 = shift 64 bits. 
*4: The data is a shift count of 1-8.
*5: Only uses lower Byte of the Word.
*6: <cea> Alterable may be -(An).
*7: <cea> Alterable may be (An)+.
*8: 68020 only.

P: Privileged Instruction

Condition Code values:

S - Set or Cleared according to result of operation 
1 - set
0 - not affected by this instruction 
0 - always cleared
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Addressing Mode Descriptions:

<ea> - effective address
<rea> - register effective address
<dea> - data effective address
<mea> - Memory effective address
<cea> - control effective address
<aea> - alterable effective address (data or memory)

MODE ea rea dea mea cea aea
Dn X X X X
An X X X
(An) X X X X X
(An)+ X X X X
-(An) X X X X
d(An) X X X X X
d(An,Xn) X X X X X
A16 X X X X X
A32 X X X X X
d(PC) X X X X
d(PC,Xn) X X X X
#<data> X X X

68020 specific addressing modes

bd(An,Xn) X X X X X
bd(PC,Xn) X X X X
[bd,An],Xn,od X X X X X
[bd,An,Xn],od X X X X X
[bd,PC],Xn,od X X X X
[bd,PC,Xn],od X X X X
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# ,  43, 73 
*, 34, 79 
ABCD, 149
absolute addressing, 73-74
access rights, 194
ACIA, 163-68
ADD, 45
ADDA, 46
ADDI, 46
addition, 44-46
addition and subtraction, multiple precision, 

141-45 
ADDQ, 66 
address error, 161 
address register, as destination, 44 

indirect mode, 74-76  
indirect with displacement mode, 80-82  
indirect with index mode, 82-83  
indirect with postincrement mode, 77-78  
indirect with predecrement mode, 79-80  

address translation cache, 208-10 
addressing modes, 24, 33, 71 

68020, 188-90 
summary, 84 

ADDX, 143 
ALU, 206 
AND, 129-31 
ANDI, 129-31 

to CCR, 157 
to SR, 156 

arithmetic, 9-10, 19 
advanced, 141 
instructions, 57 
logic unit, 206 
operations, 58 
precision, 141 

arrav, 76
ASCII, 12-13, 35, 48, 77 ,120,198, 215-16 
ASL, 134 
ASR, 133 
assembler, 2
associative registers, 208

ATC, 208-10 
automatic variables, 109

backing store, 175 
BASIC, 1,19, 37
BCC, 60, 64,190
BCD, 148,198 

input/output of, 150
BCHG, 137 
BCLR, 137 
BCS, 59, 64
benchmark programs, 19 
BEQ, 61, 64 
BFCHG, 193 
BFCLR, 193 
BFEXTS, 193 
BFEXTU, 193 
BFFFO, 193 
BFINS, 193 
BFSET, 193 
BFTST, 193 
BGE, 64 
BGT, 64 
BHI, 64 
binary, 6 

arithmetic, 9-10 
coded decimal, 148 
digit, 6 

bit, 6 ,10  
field, 193
field instructions, 193 
manipulation, 137-38 

BKPT, 193 
BLE, 64 
BLS, 64 
BLT, 64 
BMI, 62 
BNE, 61, 64 
borrow, 9 
BPL, 62 
BRA, 60, 190 
breakpoint, 193

235
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BSET, 137 
BSR, 99,102,190  
BTST, 137 
bus, 19 

asynchronous, 19 
error, 161,173-76  

busy wait, 170 
BVC, 61 
BVS, 61 
byte, 10, 21

C language, 77,117 
CAAR, 187 
cache, 186

address register, 187 
control register, 187 

CACR, 187 
call

by reference, 107 
by value, 107 

CALLM, 194 
can y, 9 

bit, 58 
CAS, 196 
C A S2,196
CCR, 25, 57-58,144 ,155  
CCR, and shifts, 134 
central processing unit, see CPU 
character strings, 34-35, 77 

comparing, 119-20 
copying, 119 
inputting, 120 
length of, 119 
outputting, 120 
program to reverse, 95-96  

chip, 17 
CHK, 162,190 
C H K 2,197 
clock, 19-20,180  
CLR, 47 
CMP, 63, 65 
CM PA, 65 
CM PI, 65 
CMPM, 78 
C M P 2,197 
comment field, 33 
comments, 33 
comparisons, 62-66  
compiler, 2
condition code register, see CCR 
conditional branch, 59 
conditional instructions, 57 
constants 

character strings, 34-35  
integer, 34-35  

control character, 12

conversions, 6 -7  
coprocessor support, 197-98 
counting loop, 51 
cpBcc, 198 
cpDBcc, 198 
cpGEN, 198 
cpRESTORE, 198 
cpSAVE, 198 
cpScc, 198 
cpTRAPcc, 198 
CPU, 11,17,19  

root pointer, 210 
CRP, 210 
cycle time, 19

data 
bus, 19 
cache, 203-05  
movement, 41-44 

DBRA, 51-53 
DC, 36
debugger, 2, 47 ,168,193  
decimal, 5 

arithmetic, 148-52 
define constant, 36 
define storage, 37 
delimiter, 30 
descriptor table, 209 
destination function code register, 178 
destination operand, 41, 71 
developers package, 2 
DFC, 178 
DIP, 185 
directives, 31 

data defining, 36-37  
DIVS, 146,192 
DIVSL, 192 
DIVU, 146,192 
DIVUL, 192 
double precision, 142 
DS, 37
dual in-line package, 185

effective address, 45, 71 
END, 37 
EOR, 129-31 
EORI, 129-31 

to CCR, 157 
to SR, 156 

EQU, 37 
exception, 24,158  

condition, 148 
handler, 158,160,162-63  
processing, 155, 158 
vectors, 158-59,178  

executable image, 2
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EXG, 44 
EXT, 148,192 
extend bit, 62 

condition, 143

fields, source statement, 29 
FORTRAN, 37, 99 
forward reference, 37, 84 
framing, 164 
function 

class bit, 177 
code, 186,194

gates, 6 
GETC, 48

hardware interrupt, 92 
hex, 7 

digit, 8 
hexadecimal, 7 -9  

arithmetic, 9-10  
routine to output, 137

I/O, 17, 26, 47-49 ,155  
identifiers, rules for, 29-30  
ILLEGAL, 161 
illegal instruction, 161 
immediate data, 72-73  
immediate operand, 43 
implicit operand, 71 
INDEC, 48 
input/output, see I/O 
instruction 

cache, 186, 203-05  
pipe, 206 
prefetch, 19 
summary, 229 

integrated circuits, 17 
interrupt 

driven I/O, 166 
mask, 156 
priority, 156

JMP, 50 
JSR, 49, 99

keywords, 34

label field, 30-32  
LEA, 75,109  
LINK, 111 
linked lists, 117 

node deletion, 123 
node insertion, 121 
node searching, 123 
printing, 124

linker, 2 
linking, 2, 74 
local variables, 109 
locality of reference, 208 
logical address, 207 
logical instructions, 129 
logical operations, 19,130 
longword, 10, 22 
loop mode, 179-82 
looping, 50-52  
LSL, 134 
LSR, 133

MACSS, 19 
mainframe, 17 
mask, 131 
MC6850, 165 
M C68010,173 
MC68020,185 
MC68030, 203 
M C68851,174, 203 
megabyte, 10, 21 
memory, 10,17, 21-23 

indirect addressing, 189 
management, 174, 203, 206-10 
mapped, I/O, 26,163  
protection, 23-24  

menu, 124 
microcomputer, 17 
microprocessor, 17 
mnemonic, 2, 31 
mode 

supervisor, 23,155  
trace, 155,162 
user, 23 

module, 194 
descriptor, 195 

Motorola, 2, 29 
M68000 familv, 17-21 

MOVE, 41 
from CCR, 177 
from SR, 156 
from USP, 158 
to CCR, 144,156 
to SR, 156 
to USP, 158 

MOVEA, 44 
MOVEC, 178,187 
MOVEM, 94, 106 
MOVEP, 168 
MOVEQ, 67 
MOVES, 178 
MULS, 146,192
multiplication and division, 145-48 
MULU, 146,192
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NBCD, 149,151 
negative numbers, 11-12 
NEGX, 143 
NEW LINE, 48 
nibble, 149 
NOP, 168 
NOT, 129-131

object code, 2 
one’s complement, 11 
opcode, 22 
operand field, 31-32 
operands, 31 
operation field, 31 
OR, 129-31 
ORI, 129-31 

to CCR, 157 
to SR, 156 

orthoganality, 72 
OUTDEC, 48 
overflow, 61 

bit, 61

PACK, 198 
page, 174, 206 

fault, 175, 207 
frame, 174, 206 
table, 207-08  

paged memory management unit, 203 
paging, 174, 206 
parameters, passing, 102-04 

passing on the stack, 106-09 
parenthesis, in arithmetic expressions, 33 
parity bit, 164 
Pascal, 19, 99 
PC, 24 
PEA, 93,108  
PFLUSH, 212 
PFLUSHA, 212 
physical address space, 174 
pipelined architecture, 203, 206 
pipelining, 19, 206 
PLOAD, 212 
PMMU, 203, 206 
pointer, 75,117 

frame, 110 
NULL, 117 

pop, 90
position-independent code, 84 
precision, 141,146 
prefetch queue, 180 
privilege violation, 161 
procedure, 48 
program counter, 24 

relative modes, 83-84

program 
loop, 50 
section, 84 
shell, 49-50, 217-27 

programmed I/O, 166 
programmers model, 24-25  
PTEST, 211 
push, 90 
PUTC, 49

radix, 5, 34 
RAM, 23
random-access memory, 23 
read-only memory, see ROM 
reference 

class, 194 
classifications, 177 

register, 19, 24 
direct mode, 72 
list, 94 
size, 19

registers, saving and restoring, 93-95 ,105-06
relocation, 74
remainder, 7, 147-48
RESET, 169
reset

exception, 160 
system, 155,158 

ROL, 136 
ROM, 23,161 
ROR, 136
rotate instructions, 129, 136-37
ROXL, 136
ROXR, 136
RTD, 179
RTE, 160,174
RTM, 194-95
RTR, 157
RTS, 99
rubout, 12

SBCD, 149 
scale factor, 189 
See, 157 
SCS, 157 
semaphore, 197 
SEQ, 157
sequential execution, 50
serial I/O, 163
SF, 157
SFC, 178
SGE, 157
SGT, 157
SHI, 157
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shift instructions, 129,133-36  
used to multiply and divide, 135 

sign bit, 11, 58 
magnitude, 11 

68000 family, 17-21 
size, of operands, 41 
SLE, 157 
SLS, 157 
SLT, 157 
SMI, 157 
SNE, 157
software interrupt, 161 
source 

code, 1 
format, 29
function code register, 178 
operand, 41, 71 
statements, 29 

SP, 89-90,107
special characters, see beginning of 

alphabetic listings 
SPL, 157 
SR, 25,155,176  
SRP, 210 
SSP, 25,158  
ST, 157 
stack 

applications, 93-95  
frames, 109-12 
instructions, 89-93  
pointer, see SP 
use by subroutines, 101 

start bit, 164
status register, 25 ,155,176  
STOP, 23, 50,169  
stop bit, 164 
SUB, 45 
SUBA, 46 
SUBI, 46 
SUBQ, 66 
subroutine, 48, 99 
subtraction, 44-46  
SUBX, 143 
supervisor 

mode, 23,155  
root pointer, 210 
stack pointer, see SSP 

SVC, 157

SVS, 157 
swap 43-44  
symbol, 30 

choosing, 34 
equates, 37

tab character, 30 
tag field, 186 
TAS, 169,196 
TC, 210
ten’s complement, 151 
text editor, 2 
tokens, 29 
trace bit, 155 
trace mode, 155,162 
translation

control register, 210 
descriptor, 209 

TRAP, 161 
TRAPcc, 198 
traps, 158,161 
TRAPV, 162,198 
truth tables, 129-30 
TST, 62
two’s complement, 11-12, 58

UART, 26,164
UNLK, 111
UNPK, 198
user mode, 23
user stack pointer, see USP
USP, 24 ,158,178

variable, 31 
VBR, 178-79
vector base register, see VBR 
virtual address space, 174 
virtual machine, 173,175 
virtual memory, 173-74, 206

wait states, 180 
word, 10, 22 
working set, 208 
write through, 205

zero bit, 62 
zero divide, 161
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