
GUAGE

^UcMttaL P. SizUuijeSi

A55EMBLY LANGUAGE
PROGRAMMING TOR

THE 68000 FAMILY

Related Titles of Interest from John Wiley & Sons

PROGRAMMING WITH MACINTOSH PASCAL, Swan
EXCEL: A POWER USER’S GUIDE, Hodgkins
JAZZ AT WORK, Venit & Bums
MACINTOSH LOGO, Haigh & Radford
DESKTOP PUBLISHING WITH PAGEMAKER FOR THE
MACINTOSH, Bove & Rhodes
SCIENTIFIC PROGRAMMING WITH MAC PASCAL, Crandall

ASSEMBLY LANGUAGE
PROGRAMMING FOR
TNE 68000 FAMILY

Thomas P. Skinner

John Wiley & Sons, Inc.
New York • Chichester • Brisbane • Toronto • Singapore

Intel is a trademark oflntel Corporation.
Amiga is a trademark of Commodore International.
Apple and Macintosh are trademarks of Apple Computer, Inc.
Atari and Atari ST are trademarks of Atari Corp.
IBM and IBM PC are trademarks of International Business Machines, Inc.
Motorola is a trademark of Motorola, Inc.
Radio Shack and Color Computer are trademarks of Radio Shack.

Publisher: Stephen Kippur
Editor: Therese A. Zak
Managing Editor: Ruth Creif
Editing, Design, and Production: Publishing Synthesis, Ltd.
Composition: McFarland Graphics

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional service. If legal advice or other expert
assistance is required, the services of a competent professional person should be sought.
FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE
OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Copyright ® 1988 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful. Requests for permission or further information should be addressed to the
Permission Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Skinner, Thomas P.
Assembly language programming for the 68000 family/Thomas P.

Skinner,
p. cm.

ISBN 0-471-85357-7
1. Motorola 68000 series microprocessors—Programming.

2.Assembler language (Computer program language) I. Title:
Q A76.8. M695S58 1988
005.265—dcl9

Printed in the United States of America

87-20293
CIP

88 89 10 9 8 7 6 5 4 3 2 1

*

To my wife Linda

>

PREFACE

This book deals specifically with the Motorola 68000 family of
microprocessors. It is primarily about assembly language programming.
Chances are that a reader interested in assembly language programming is
familiar with computers and their programming; In the unlikely event that
you are not, and have picked up this book expecting to learn all about
computers, I want to urge you to start elsewhere. In order to gain the
maximum knowledge from this book, you should already be familiar with
computers in general and have written some programs in a high-level
language such as BASIC or Pascal. It is not necessary to know another
assembly language or be an expert in computer programming. I start at a
fairly low level but get up to speed pretty quickly. Those who already know
another assembly language will be able to progress rapidly through the
material. In the writing of this book I attempted to strike a balance between
a beginner-level tutorial and the brief format of a reference manual. This
level of presentation should appeal to the majority of readers.

There are 15 chapters plus a number of useful appendices. Chapter 1
covers number systems. This is mostly general information, but there is a
little bit of 68000-specific information here. You should look through it even
if you know number systems inside out. Chapter 2 describes microcomputer
architectures in general, and the 68000 specifically.

Chapters 3 through 5 provide enough information to start writing com
plete programs. Chapters 6 through 8 cover more advanced topics such
as addressing modes and subroutines. Once through chapter 8 you will have
a substantial background in 68000 assembly language. At this point Chapter
9 presents a major program, a linked list manager. This helps to cement the
techniques from Chapters 1 through 8.

Chapters 10 through 12 cover advanced topics such as exception
handling, shift and rotate instructions, and advanced arithmetic. By the end
of Chapter 12 you will know all the instructions of the 68000. Chapters 13,
14, and 15 cover the newest members of the 68000 family—the 68010,68020,
and 68030. Chapter 15 should be of special interest, since it provides an
introduction to the latest and most powerful 68000 processor. You will be
hearing more about the 68030 as it is introduced into systems. It is destined
to have a major impact on the computer systems of the next decade.

vii

vi il Preface

Of special note is Appendix B, which provides program shells. These
shells allow you to start programming with the Atari ST, the Apple
Macintosh, or the Commadore Amiga. Without these program shells it
would require a good deal of effort just to learn how to interface to your
operating system.

A number of people provided assistance along the way. Among my
students who helped out were Carol Cook and An-Ping Chi. Special thanks
to Mike Mellone and John Say well, who helped prepare the appendices.
Finally, I would like to thank Motorola for their cooperation and permission
to reprint information from their 68000 manuals.

Thomas P. Skinner

CONTENTS

INTRODUCTION 1

CHAPTER 1: Number Systems 5
Decimal 5
Binary 6
Conversions 6
Hexadecimal 8
Arithmetic in Binary and Hexadecimal 9
Bits, Bytes, Words and Longwords 10
Representing Negative Values 11
ASCII Character Codes 12
Exercises 13
Answers 14

CHAPTER 2: Microcomputer Architecture 17
The Motorola M68000 Family 17
The CPU 20
Memory 21
User and Supervisor Modes 23
The CPU Registers 24
Input/Output 26
Exercises 26
Answers 27

CHAPTER 3: Assembler Source Format 29
The Label Field 30
The Operation Field 31
The Operand Field 31
The Comment Field 33
On Choosing Symbols 34
Constants 34
Data-Defining Directives 36
Symbol Equates 37
The END Directive 38
Exercises 38
Answers 39

x Contents

CHAPTER 4: Getting Started 41
Data Movement 41
Addition and Subtraction 44
Input and Output 47
The Program Shell 49
Looping 50
Putting It All Together 53
Exercises 54
Answers 55

CHAPTER 5: Conditional and Arithmetic Instructions 57
Arithmetic and the Condition Code Register 57
The Carry Bit 58
The Overflow Bit 61
The Zero and Negative Bits 61
The Extend Bit 62
Comparisons 62
ADDQ and SUBQ Instructions 66
Exercises 68
Answers 69

CHAPTER 6: Addressing Modes 71
Register Direct Modes 72
Immediate Data 72
Absolute Addressing 73
Address Register Indirect 74
Address Register Indirect With Postincrement 77
Address Register Indirect With Predecrement 79
Address Register Indirect With Displacement 80
Address Register Indirect with Index 82
Program Counter Relative Modes 83
Addressing Mode Summary 84
Exercises 85
Answers 86

C h a p t e r 7: The Stack 89
Stack Instructions 89
Stack Applications 93
Exercises 96
Answers 96

CHAPTER 8 : Subroutines 99
JSR, BSR, and RTS Instructions 99
Passing Parameters 102

Contents xl

Saving and Restoring the Registers 105
Passing Parameters on the Stack 106
Stack Frames 109
Exercises 112
Answers 114

CHAPTER 9: Linked Lists—A Programming Example 117

CHAPTER 10: Logical, Shift and Rotate Instructions 129
Truth Tables 129
Logical Operations 130
Shifts 132
Rotates 136
Bit Manipulation 137
Exercises 138
Answers 139

CHAPTER 11: Advanced Arithmetic 141
Multiple Precision Addition and Subtraction 141
Multiplication and Division 145
Decimal Arithmetic 148
Exercises 152
Answers 153

CHAPTER 12; Exception Processing, System Control
Operations, and I/O 155
The Status Register and System Control 155
Exception Processing 158
Traps 161
Serial I/O 163
Miscelaneous Instructions 168
Exercises 170
Answers 171

C h a p t e r 13: The 68010 173
Virtual Memory and the Bus Error Exception 173
Virtual Machines 175
Reference Classifications 177
The Vector Base Register 178
RTD and Loop Mode 179
Summary 181
Exercises 181
Answers 182

xli Contents

Chapter 14: The 68020 185
Instruction Caching 186
Additional Addressing Modes 188
Instruction Extensions 190
New Instructions 193

Bit Field Instructions 193
Breakpoint Instruction 193
CALLM/RTM 194
CAS and CAS2 196
CHK2 197
CMP2 197
Coprocessor Support Instructions 197
PACK and UNPK 198
TRAPcc 199
Exercises 199
Answers 200

Chapter 15: The 68030 203
Instruction and Data Caches 204
Pipelined Architecture 206
Paged Memory Management 206
68030 Instructions 211
Exercises 212
Answers 212

Appendix A: ASCII Character Codes 215

Appendix B: Program Shells and I/O Subroutines 217

Appendix C: 68000-68020 Instruction Summary 229

Index 235

INTRODUCTION

Why learn assembly language? Most people do so out of a need to
perform programming tasks that are not easy, or not possible, with other
languages. The popularity of the 68000 family of microprocessors, as
exemplified by the sales figures of the Apple Macintosh, Commodore
Amiga, Atari ST, and others, certainly makes it worthwhile to learn more
about this line of micros. The particular microprocessor chip your com
puter uses will remain an abstraction unless you get down to the machine
language level; but since no one really programs in machine language, as
sembly language is the way to gain the most complete knowledge of the
68000 family capabilities.

Programming in assembly language allows the control of every aspect
of the computer hardware. Many applications require procedures that
are either impossible or inefficient with computer languages such as
BASIC. You may be a professional computer user who has a need for
a laboratory control computer, such real time applications often require
some assembly language programming. Regardless of your reason for
learning assembly language, it is challenging and rewarding when your
programs start to run. You will feel—and be—“in control.”

This book is about programming the 68000 microprocessor, not a
particular computer using this chip. For this reason there will be some
specifics about your computer and operating system that are not covered.
Since you are more than likely experienced in using your computer for
other applications, it would be a waste of time to attempt to cover
all the small details. Instead, I will present the material in a general
manner such that it will be easy to locate the specifics for your particular
machine in your manuals. As an aid to those individuals having one of the
aforementioned computers, some specific input/output subroutines and
a program shell are provided in the appendices.

Before we get started, let’s pause to review the steps required to
write a program and run it. Programming in assembly language, like
programming in a high-level language, requires entering the “source
code” into the computer. Unless all of your programming has been in
BASIC, using its built-in editing features, you have probably used some

1

2 Assembly Language Programming for the 68000 Family

form of text editor. It really doesn’t matter which editor you use as long
as you can create a source file for input to the assembler. An assembler is
similar to a compiler in that it “translates” a source language into machine
language.

The output from an assembler is called the object code. Normally
this is machine language put into a special format that combines it with
other object modules into an executable image. This file is essentially a
picture of what goes into memory. When you finally run the program,
this file is brought into memory so that the microprocessor may execute
the instructions.

The operation of combining object modules is called linking. A special
program called a linker is used to perform this function. Figure 1 shows
the steps used to produce an executable program. The details will differ
from computer to computer. Your system may have a program similar
to a linker that converts the output of the assembler into an executable
form, but does not allow combining object modules. You should have no
trouble in learning the commands that perform these steps on a particular
machine.

There are quite a few 68000 assemblers available for a range of com
puter systems. It is not possible to present all the variations in assemblers
in this book. Motorola, as the designer of the 68000 microprocessor fam
ily, originated its assembly language. The most important task of the
assembly language designer is to devise a set of symbolic names for each
instruction the microprocessor can execute. These symbolic names are
known as mnemonics. For example, an instruction to move data from
one place to another has the mnemonic MOVE.

In order to allow the greatest flexibility, this book will use the standard
Motorola assembler syntax and mnemonics. There will probably be some
minor variations with the assembler you use. However, most of the pieces
of an assembly language program will be identical regardless of the
assembler used, and you should not find it difficult in relating the material
to your particular assembler. If you don’t presently have an assembler
and linker for your computer system, check with the manufacturer, who
probably sells a “developer’s package” that contains an assembler, a
linker, and the system documentation you will need. Many independent
software houses also supply development packages. Go to your local
computer store and compare these for compatability with the Motorola
standard. If the syntax or mnemonics of the assembler are very far from the
standard, you should probably consider another one. Other items that
are sometimes provided are an editor (a must if you don’t have one),
an interactive debugger, and other utilities to assist in rapid program
development. This book does not assume any specific development aids
or utilities.

Introduction 3

Step One. Text Editing

Step Two. Assembly

Figure 1 Assembler Operation.

In Chapter 1 1 will review number systems. If you are an experienced
assembly language programmer in another language you probably know
most of this material. However, it is a good idea to review the chapter,
especially as it presents some details specific to the 68000.

c m r r m 1

NUMBER SYSTEMS

Throughout history mankind has used a variety of methods to rep
resent numerical quantities. Early man used piles of stones, each stone
representing one unit of those items being counted. It soon became ob
vious that for large numbers, a large number of stones were required.
One solution to this problem was to use stones of different sizes. A sin
gle large stone could be used to represent a pile of smaller stones. This is
similar to the use of the denominations of paper currency. Schemes like
this work well for physical entities like coins or stones. However, to rep
resent quantities on paper we would be forced to draw pictures of our
piles of stones.

Decimal

Our decimal number system is a product of all these schemes. Instead
of piles of different numbers of stones or stones of different sizes, the
Arabic numerals 0 to 9 and the relative position of these numerals are
used to represent the number of stones in a pile and the relative size
of the stones. The numerals 0 to 9 can represent quantities from zero to
nine. Position can be used to represent any number of sizes. For example,
the decimal number “23” can be thought of as representing three small
stones and two larger stones. If each larger stone is equivalent to ten
small stones, this number represents the equivalent of twenty-three small
stones. This may seem obvious to most readers, but it is the basis of all
the number systems we will study.

In the decimal number system, each digit’s position represents a dif
ferent power of 10. For example, the number 7458 is equivalent to:

7(10)3+4(10)2+5(10)1+8(10)°
The choice of 10 as the numerical base, or radix, as it is sometimes called,
is arbitrary. We can create a number system using any base we desire.

5

6 Assembly Language Programming for the 68000 Family

Binary

Virtually all computers use 2 as the base for numerical quantities.
The choice of 2 as a base for computers is not arbitrary. Internally, the
electrical elements, or gates, that collectively construct the computer are
much easier to build if they are required to represent only two values or
states, they are thus called binary state devices. Each element can only
represent the values zero or one. Each one or zero is called a bit, or binary
digit. In order to represent larger numbers, bit positions must be used.
Binary numbers are based on powers of two rather than on powers of
ten. For example, the binary number “1011” is equivalent to:

1(2)3+0(2)2+ l(2 >1+1(2)0

This value is equivalent to:

8+0+2+1 = 11

in decimal representation. The positional values of the bits are thus:

(2) ° = 1

(2) 1 = 2

(2) 2 = 4

(2) 3 = 8

(2) 4 s 16

<2) 16 = 6 5 , 5 3 6

etc.

To convert a binary number to its decimal equivalent, merely add up
the appropriate powers of two. If the binary position contains a 1, the
decimal value of that bit position is added.

Conversions

Converting a decimal number to binary is not quite as simple as con
verting a binary number to decimal. One method is to work backwards.

Number Systems 7

We can look for the highest power of two that is not greater than the
decimal number, place a 1 in the equivalent bit position, and then sub
tract this value from the decimal number. We repeat this operation until
the number is zero. Bit positions not used in this subtractive process are
set to 0. For example, we can convert 5710 (57 in base 10) to binary by
the following steps:

57 - 25 = 25
25 - 24 = 9
9 - 23 = 1
1 - 2® = 0 (finished)

This gives us the binary number

l(2)5+l(2)4+l(2)3+0(2)2+0(2)1+l(2)° = 1110012

Another method can also be used. We can divide the original decimal
number by two and check the remainder. If the remainder is one, a binary
one is generated. We repeat this division by two until we obtain a zero.
This method gives us the bits in reverse. In other words, we get 2°, 21,
and so on. For example, using the same number as above:

57/2 = 28 R 1
28/2 = 14 R 0

14/2 = 7 R 0
7/2 = 3 R 1
3/2 ■ 1 R 1
1/2 = 0 R 1 (finished)

Reading the bits in reverse gives us 1110012, which is the same number
as we arrived at before. The method you use is up to you.

These methods can be used to convert from any number base to any
other number base. However, the arithmetic must be done in the number
base of the number being converted. As this becomes complicated when
converting from a system other than decimal, you are better off to convert
the number to decimal and then the decimal number to the new base.
There are a few exceptions to this rule. One of these exceptions is the
conversion of the hexadecimal (hex) base to or from binary. Since hex is
used quite extensively with the 68000 family, it is the topic of our next
discussion.

8 Assembly Language Programming for the 68000 Family

Hexadecimal

Hexadecimal, or base 16, uses positional values that are powers of 16.
Each hex digit can take on 16 values. Since the decimal digits 0 through
9 only represent 10 values, 6 additional symbols are needed. The letters
A through F are used to represent these additional values. Thus the hex
digits are represented by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F,
corresponding to the values from 010 to 1510. The positional values are:

(16)° • l
(16)* * 16
(16)2 * 256
(16)3 = 4096
etc.

As you can see, these values increase rapidly. A hex number is usually
larger than it looks. For example, 32BF10 is

3(16)3+2(16)2+ll(16)1+15(16)0
- 12,288+512+176+15 = 12,99110

We can convert from decimal to hexadecimal by either method dis
cussed above. For example, to convert 38710 to hex, we perform the
following:

387/16 « 24 R 3
24/16 » 1 R 8
1/16 > 0 R 1 (finished)

The result in hex is 183ie. Remember to list the hex digits in reverse order.
A nice property of hexadecimal numbers is that they can be converted

to binary almost by inspection. Since 24=16, there is a simple relationship
present. Four binary digits grouped together can represent one hexadeci
mal digit. The binary values 0000 through 1111 represent the hexadecimal
digits 0 through F.

HEX BINARY HEX BINARY
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 P 1111

Mumber 5ystems 9

To convert from hex to binary we merely write the equivalent of each
hex digit in binary. To convert 6E3Cie to binary we would write:

6 e 3 c
0110 1110 0011 1100

and our binary equivalent is IIOIIIOOOIIIIOO2. We can go from binary
to hex in the same manner. IIIIOOOOIOIO2 is F0Ai6.

Arithmetic in Binary and Hexadecimal

We can perform the normal arithmetic operations of addition, sub
traction, multiplication, and division in any number base. Addition and
subtraction are simple if we remember that a carry or borrow may be
required. If the sum of two digits equals or exceeds the number base, a
carry is generated. The value used as the carry or borrow is equal to the
number base. For example, if we add two binary numbers together, we
generate a carry if the sum of the bits in one binary position and a pos
sible carry from the next lowest position is greater than or equal to two.
Adding 11001012 to OIIIIOI2 gives us:

1100101
+ 0111101
10100010

Let’s try adding 72A816 to IF08i6.

72A8
+ 1F08

91B0

Subtraction is only slightly more difficult. If the individual digits
cannot be subtracted from one another, we need to borrow from the
next higher digit position. In other words, if the minuend (top digit) is
less than the subtrahend (bottom digit) we need a borrow. In binary the
value borrowed is always two. This borrow is added to the minuend, the
subtraction is then performed on the two digits. To adjust for the borrow,
just as we had to adjust for a carry, we must add one to the subtrahend
in the next higher digit position. For example, in binary

nil 1001
- 0110 - 0110

1001 0011

10 Assembly Language Programming for the 68000 Family

or hexadecimal
55P2

- 4A63
0B8F

Hand calculations involving multiplication or division are rarely per
formed by programmers. However, conventional hand methods can be
used. The basic principles we used for addition and subtraction are ap
plied. Although I will not explain multiplication or division, those readers
who desire can try some examples and verify their results by convert
ing to decimal and repeating the multiplication or division in the decimal
number base.

Bits, Bytes, Words and Longwords

So far in our discussion of numbers we have not indicated how large
our numbers can be. If you want to write down a very large number on
paper, the size of the number is only limited by the size of the paper.
This is not the case for computers. Internally the computer must represent
numbers by electrical signals. These signals represent the binary values
0 and 1. The maximum size of a number inside the computer is limited
to the number of binary digits, or bits, used to represent the number.
Theoretically we could use all the bits inside the computer to represent a
single number. This, of course, is not practical. Internally it is convenient
to limit the number of bits used for each number.

Many computers are organized around groups of eight bits, called
bytes. The size of memory on many computers is measured in bytes.
We might say a computer has 64 thousand bytes of memory. This is
equivalent to 512 thousand bits. Modem computers often have memory
sizes in the millions of bytes. A megabyte (MB) is equal to approximately
one million bytes. As we will discuss shortly, a single byte is normally used
to represent a single character of textual information. If we have a 2 MB
memory, we can store 2 million characters of information. If we assume
approximately 60 characters per line of printed material, and 50 lines per
page, this is equivalent to over 650 pages.

Bytes can be grouped together. For most computers, including the
68000 family, two bytes grouped together form a word. A word is there
fore equal to 16 bits. This is also equivalent to four hexadecimal digits.
We can also have longwords, made up of four bytes or 32 bits. Larger
groupings are possible but are not normally handled as a single value ex
cept by much larger computers. We will be dealing primarily with bytes,
words, and longwords in 68000 assembly language programming.

Humber 5ystems 11

Representing Negative Values

So far in our discussion of number representations, we have only
been dealing with positive numbers. A method of representing negative
numbers in the computer must be introduced. You have already learned
that numbers are represented internally by binary digits. We must devise
a way of including the conventional minus sign used to indicate a
negative number, with the number itself. But how does a minus sign
translate into binary? Since numbers are either positive or negative, we can
indicate this fact by using a single binary digit. A negative number can be
indicated by using an “extra” bit rather than a minus sign. This may not work
as well on paper, but it is essential for a computer’s internal representations.

Numeric quantitites are normally restricted to fixed sizes—a single
byte, a word, or some multiple number of words or bytes. It is not
practical to append an extra “sign” bit to a fixed unit of storage such
as a byte: the central processing unit (CPU) normally is restricted to
manipulating integral numbers of bytes, and this extra bit would force
the use of an extra complete byte. The solution is to sacrifice one of the
bits of our number for use as the sign bit. The size of the largest number
we can represent is reduced, but we can now represent the same number
of positive numbers as negative numbers.

By convention, if a number is negative we indicate this fact by in
cluding a sign bit equal to one. The sign bit is normally the leftmost, or
high-order, bit of the number. The simplest technique would be merely
to indicate the magnitude of the number in the remaining bits, setting the
sign bit to either one or zero to indicate a negative or positive number.
This representation, called sign magnitude, has been used on older com
puters. It has a number of disadvantages, the most prominent to a pro
grammer being the fact that both a positive and negative zero exist—both
100000002 and OOOOOOOO2 are zero values for a single byte number. With
out going into additional detail, suffice it to say that a better method is
needed.

Virtually all modern computers, including microprocessors, use a rep
resentation called two’s complement. The sign bit is still used to indicate
whether a number is positive or negative, but the remaining bits do not
directly indicate the magnitude of the number if it is a negative number.
To represent a negative number in two’s complement, we first form the
one’s complement of the number in its binary form. The one’s comple
ment is merely the number with all the one bits converted to zeros, and
all the zero bits converted to ones. The one’s complement of 011000112
is 100111002. So far this is quite simple. We are almost finished. To get
the two’s complement we add one to the one’s complement. We perform
this addition just as we have done in the previous examples. To complete
the conversion of our example, we get:

12 Assembly Language Programming for the 68000 Family

10011100
+ 00000001

10011101

Let’s convert 8910 to —8910 using two’s complement. First we must
convert 8910 to binary. 89io = 010110012. Now form the one’s complement,
101001102; finally, to get the two’s complement we add one. Our result
is —8910 = 101001112.

The nice property of two’s complement numbers is that we can add
them together without concern for the sign. We do not have to perform
any conversion. As a simple example, we should be able to add 8910 and
—8910 and obtain a zero result.

01011001 8910
+ 10100111 -89^0

oooooooo o10

We ignore any carry out from the sign bit position.
To subtract in two’s complement, we merely negate the subtrahend

and then add. This operation is performed regardless of whether the
subtrahend is positive or negative.

ASCII Character Codes

In order to represent character information in the computer’s memory,
we must find a way to convert the such as CR (carriage return), LF
(line feed) and HT (horizontal tab). There are other “control character”
codes that are of general interest but are not necessarily available on
all terminals. For example, a BEL (bell) might sound a beep on your
terminal, or a VT (vertical tab) might be implemented. The other codes
with values less than 3210 are used for a variety of purposes including the
protocols used for data communications.

One special character should be mentioned. The DEL (delete) code,
12710, which is sometimes called a rubout, is most commonly used by
software to indicate the deletion of the last character typed. Some soft
ware uses the BS (backspace) character to perform this same operation.
You should note that these are really two different character codes, 810
and 12710, and the interpretation as to what, if anything, these characters
do is up to the software.

Some computers and terminals have incorporated additional charac
ters as an extension to the standard ASCII character set. By allowing
codes above 12710> an additional 12810 characters can be specified. These
might be from a foreign language, or for special graphics used by certain

Mumber Systems 13

terminals. The IBM PC, which does not use the 68000, makes extensive
use of such an extended character set. You should be aware that these
special character sets are not part of the ASCII standard, when you use
these codes, your programs will not necessarily be useful on all comput
ers, even though they use the 68000 microprocessor.

Exercises

1. Binary numbers are based on powers o f_________
2. Give the decimal equivalent of the following binary numbers: a)

11100010 b) 111111 c) 10000000
3. Convert the following decimal numbers to binary: a) 126 b) 255

c) 100
4. Convert the following binary numbers to hexadecimal: a) 11111111

b) 10000 c) 11000101
5. Convert the following hexadecimal numbers to binary: a) 55 b)

AB c) EE
6. Give the decimal equivalent of the following hexadecimal numbers:

a) FF b) 55 c) DE
7. Perform the following binary additions:

a) 110000 b) 01111
+ 001111 + 11100

8. Perform the following hexadecimal additions:
a) FFAA b) 0123

+ A100 + A5EE
9. Perform the following binary subtractions:

a) 11111 b) 11001
- 00101 - 10000

10. Perform the following hexadecimal subtractions:
a) FFFF b) 12AA

- AAAA - 02AB
11. How many bits are there in a byte?
12. How many bytes are contained in a 68000 word?
13. The 68000 uses what method to represent negative numbers?
14. Which bit is the sign bit?
15. If a number is negative, what is the binary value of the sign bit?
16. Convert the binary number 00111101 to an equivalent negative num

ber.
17. What is the decimal equivalent of 11110000 in signed binary?
18. What is the equivalent of —100 decimal in a signed hexadecimal byte?
19. What number bases are convenient to use when programming the

68000?

14 Assembly Language Programming for the 68000 Family

20. Hexadecimal numbers use what number base?
21. What number base is used internally by the 68000?
22. Convert the following decimal numbers to binary and hexadecimal:

a) 200 b) 5 c) 65000
23. Convert the following unsigned binary numbers to decimal:

a) 11010101 b) 00001110 c) 11100000110
24. Convert the following unsigned hexadecimal numbers to decimal:

a) ABCD b) 123 c) FF
25. Convert the following hexadecimal numbers to binary:

a) FEAA b) 123A c) 0100
26. Convert the following binary numbers to hexadecimal:

a) 1100110001 b) 00010000 c)11110111
27. Perform the following signed binary additions:

a) 11111000 + 00111111
b) 00010001 + 01000000
c) 11111100 + 00000011

28. Perform the following signed binary subtractions:
a) 11100000 - 00000001
b) 00111000 - 11111111
c) 10101010-00010101

29. What is the range of the ASCII codes that are printable?
30. Does the 68000 interpret the ASCII character codes?

Answers

1. two
2. a) 226 b) 63 c) 128
3. a) 1111110 b) 11111111 c) 1100100
4. a) FF b) 10 c) C5
5. a) 01010101 b) 10101011 c) 11101110
6. a) 225 b) 85 c) 222
7. a) 111111 b) 101011
8. a) 1A0AA b) A711
9. a) 11010 b) 01001

10. a) 55555 b) OFFF
11. 8
12. 2
13. two’s complement
14. the high-order bit
15. one
16. 11000011
17. -16
18. 9C

fiumber Systems 15

19. decimal, binary and hexadecimal
20. 16
21. binary
22.

a) 110010002; C816
b) 1012; 5„
c) lllllOllllOlOOOj; FDE816

23. a) 213 b) 14 c) 1798
24. a) 43981 b) 288 c) 255
25.

a) 1111111010101010
b) 1001000111010
c) 100000000

26.
a) 331
b) 10
c) F7

27.
a) 100110111
b) 01010001
c) 11111111

28.
a) 11011111
b) 00111001
c) 10010101

29. 33j0 through 126io, assuming that space, 3210> does not print.
30. No. Input/output devices and software interpret the ASCII codes.

CHAPTER 2

MICROCOMPUTER
ARCHITECTURE

Before we begin to discuss assembly language, we should take time to
explore the world of the microcomputer. Just what is a microcomputer?
As the name implies, it is a small computer. This should not mislead you
into thinking that a microcomputer cannot be a powerful computing tool.
In fact, the microcomputers of today are as powerful as the minicomput
ers and mainframe computers of just a few years ago. The reduction in
size has been a direct consequence of the development of integrated cir
cuits (chips) that contain the functional equivalent of many thousands of
transistors.

A microprocessor is an integrated circuit that is the basic functional
building block of the microcomputer. Figure 2 shows the organization
of a basic microcomputer system. The central processing unit (CPU) is
the microprocessor chip itself. Electrically connected to the CPU chip is
memory. Memory can be of various sizes—for example, over 16 million
bytes for the 68000 microprocessor. Also connected to the CPU are input
and output (I/O) devices that allow the CPU to communicate with the
outside world through a terminal, as well as other information storage
devices such as floppy disks and magnetic tapes.

The Motorola M68000 Family

The M68000 family of microprocessors is the current step in a
continually evolving microprocessor technology. The M68000 family
consists of a number of different CPU chips. Among these are the MC68000,
MC68008, MC68010, and the MC68020, and the very new MC68030 (actual
chips are designated with the prefix MC). Later on in this book I will
refer to the M68000 family or the MC68000 CPU chip as just the 68000.

Motorola, like the other major microprocessor designers, didn’t start
with a chip as sophisticated as the MC68000. Prior to the introduction of
the M68000 family, Motorola’s bread-and-butter microprocessor line was

17

18 Assembly Language Programming for the 68000 Family

Figure 2 Organization of a simple microcomputer system.

the M6800 family. The MC6800 is strictly an 8-bit processor. Motorola
attempted to bridge the gap with the MC6809, a pseudo-16-bit CPU.
The 6809 never caught on like the Intel 8086 family. However, it did gain
wide popularity in the Radio Shack Color computer.

A major issue that faces chip architects is how compatible to make
their new chips with earlier chips. It is rarely possible to make a new chip
completely compatible, at the machine code level, with prior designs. An
alternative is to make the architectures source code-compatible. With
this scheme, a programmer merely has to reassemble the program for
the new chip. He or she is then free to use the features of the new
chip in modifications to an already running program. This technique was
adopted by Motorola when they jumped to the 6809.

The successor to the Intel 8080 family is the 8086 family. Intel chose
to make the new chip family somewhat compatible at the source code
level. This requirement may have bridled the new architecture to some
extent. It is possible to convert an 8080 program to an 8086 program
by a source code conversion program. The resulting program can then

Microcomputer Architecture 19

be modified by hand to allow for the differences in architectures. This
scheme did have the advantage that it allowed software vendors to get
their products to market quickly. However, the transposed code did not
run as well as if it had been written for the target machine in the first
place.

Motorola’s MACSS (advanced computer system on silicon) project
abandoned both object and source code compatibility with the older
MC6800 line. While this decision forced a slower introduction of software
for the M68000 system family, it allowed a completely unconstrained
design. The only concession Motorola made was at the bus interface level:
special pinouts are provided to accommodate the large number of 8-bit
peripheral chips already in existence. It should be noted that this is a plus,
and in no way affects the architecture or, for that matter, the M68000 bus
interface.

The question always arises, is a chip 8, 16, 32, or some other number
of bits? To properly answer this question requires setting a base of
comparison; we must compare apples with apples and oranges with
oranges. One basic metric that can be used is the internal register size. If
16-bit registers support 16-bit operations with the majority of arithmetic
and logical instructions, the chip can be classed as internally a 16-bit
architecture. If only a few of the registers and/or instructions are 16-bit,
and the remainder are 8-bit, the chip should be classified as an 8-bit chip.
The 8080 family is a good example of an 8-bit chip. Another perspective
is the width of the data path to and from memory. Contrary to popular
belief, the internal size does not have to be the same as the data path; the
data path can be larger or smaller. The only restriction is that the data
path always be a multiple of a byte (8 bits). The very popular 8088 is an
8-bit data bus version of the 16-bit data bus 8086. This is the chip found
in the original IBM PC.

The M68000 family uses a 32-bit architecture internally. It fully sup
ports its 32-bit registers with a rich instruction set performing 32-bit oper
ations. The MC68000 and MC68010 have a 16-bit data bus. The MC68020
and MC68030 have full 32-bit buses. The MC68008 is an 8-bit bus version
of the MC68000. Its position is similar to the Intel 8088 in that it allows
interfacing to 8-bit buses and memory components.

The astute reader may be asking the question, what effect does the
data bus width have on the microprocessor’s speed? This is not a simple
question to answer. A 16-bit bus does not necessarily allow a CPU to
operate twice as fast as an 8-bit bus. It is true, however, that if the CPU
desires to fetch a 16-bit value it will require two accesses to memory if an
8-bit bus is used. But even if the 16-bit bus is operating at twice the byte
transfer rate of the 8-bit bus, there are many other factors that control
the CPU speed.

A CPU requires a clock. The speed of this clock determines the inter

20 Assembly Language Programming for the 68000 Family

nal rate at which operations are performed. The basic interval between
clock pulses is the cycle time for the CPU. It takes a multiple number of
cycles for the CPU to execute an instruction. Not all instructions require
the same number of cycles, and not every cycle requires an access to
memory. Furthermore, the M68000 family supports what is known as an
asynchronous bus: the speed of the bus does not have to be directly re
lated to the CPU clock. This is a major departure from the M6800 family
design.

When you consider this information, together with some more exotic
concepts such as instruction prefetch and pipelining, to be covered in
later chapters, it is a complicated task to determine the exact relationship
between the data bus width and the CPU speed. One thing is clear;
the M68000 is a fast microprocessor. Microprocessor manufacturers are
constantly designing benchmark tests to show the performance edge of
their chips. It is always possible to design a program that shows up
the good features of any chip in comparison with others. I will leave
it up to you to decide for yourself how much faith you want to place in
benchmark programs.

The CPU

Before starting on assembly language programming, it is essential that to
take a look at the 68000 microprocessor architecture. We are not going to
discuss all the details of the actual machine language used by the CPU,
but we must know enough about the structure of memory and the internal
CPU registers to use assembly language.

As you are probably aware from your experience with a high-level
programming language such as BASIC or Pascal, all information in the
computer’s memory and acted on by the CPU must be represented as
numbers. This includes textual information, which is represented by the
numeric equivalents for each character as governed by an appropriate
character set. You will learn more about character manipulation in later
chapters.

The instructions of the 68000 microprocessor are designed to manip
ulate numeric information in a variety of ways. Data can be moved from
one place to another in the computer’s memory, or data can be moved
from memory to registers contained in the microprocessor chip. Registers
are special places to store and manipulate data. They are like memory lo
cations except that they operate at much higher speeds and serve special
purposes for the CPU. The most important use of the registers is in per
forming arithmetic operations. The 68000 is capable of performing the
normal arithmetic operations on integer numbers, such as addition, sub
traction, multiplication and division, as well as logical operations. Logical

Microcomputer Architecture 21

operations allow manipulation of the individual bits of the data. You will
soon see how logical operations can be very useful.

Some instructions do not manipulate data but are instead used to
control the flow of your program. Often you will desire to repeat an
operation many times. Rather than repeat the instructions over and over
when you write your program, you can use the control instructions to
cause the microprocessor to automatically repeat a group of instructions
that you have written only once.

Memory

The memory used with the 68000 consists of a number of locations or
cells, each holding one 8-bit number or byte. Memory cells are numbered
from zero up to the maximum allowable amount of memory. The 68000
allows a maximum of 16 megabytes of memory. A megabyte is equal
to 220 or 1,048,57610. Therefore, 16 megabytes is actually 16,777,21610
locations or addresses. Figure 3 shows the concept of memory cells and
their corresponding addresses.

A program consists of instructions and data. Since everything in mem
ory is a number, careful organization is required to prevent the computer
from interpreting instructions as data, or data as instructions. This is nor
mally the responsibility of the programmer.

One of the reasons for using assembly language is to free the program-

ADDRESS MEMORY

0
1
2

MAX

Figure 3 Memory Organization.

22 Assembly Language Programming for the 68000 Family

mer from having to worry about the exact representation of instructions
and data in memory. However, a programmer usually finds the occasion
when such knowledge is useful.

Recall that memory consists of an array of individually addressable
bytes. If the data we wish to store in memory is only a single byte, there
is no question as to how it is represented, only where. If, however, the
data is a word or instruction consisting of more than one byte, it is not
clear how this information is stored. Word data (16 bits) are always stored
with the high-order byte stored in the lower memory address. This means
that if we were reading a dump of memory, word data would be read
directly. Many microprocessors have this order reversed, making it much
harder to interpret the contents of memory. Figure 4 shows how byte,
word and longword values are stored.

Instructions consist of one or more words. The first word always con
tains the operation code, or opcode. This specifies what the particular

Integer Data
1 Byte - 8 Bits

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Bvt® 0 LSB Byte 1

Byte 2 Byte 3

1 W o r d - 16 Bits

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB WordO LSB

Word 1

Word 2

Even Bytes I Odd Bytes

7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
1 Long W o r d * 32 Bits

15 14 13 12 11 10 9 3 7 6 5 4 3 2 1 0
MSB

— — Long Word 0— ---------—
High Order

Low Order LSB

— — Long Word 1--------------- —

— — Long Word 2 — --------- —

Figure 4 Bytes, words, and longwords memoiy. (Courtesy of Motorola, Inc.)

Microcomputer Architecture 23

instruction is. Many instructions are actually represented by several dif
ferent opcodes, each specifying a different version of the instruction.

Virtually all systems will have two kinds of memory: read-only mem
ory (ROM) and random-access memory (RAM). Read-only memory, as
its name implies, can be read but not written. How then is it possible
to use it? Actually, ROM chips can be written, but not by a program.
Certain types of ROM chips have data stored when the chips are manu
factured. These ROM chips can never be changed; the data is part of the
mask used to create the chips. Other types of ROM chips can be erased,
either electrically or using ultraviolet light, and then “reprogrammed.”
There are special ROM programming devices to do this. ROM’s can be
used to store a program that will never change. A good example of this
is an operating system. All or part of your operating system is more than
likely in ROM.

RAM memory is something of a misnomer, since ROM is in fact also
a random-access type of memory. By random access we mean that any
location in the memory can be accessed in any order, without restriction
to a sequential order. Read/write memory actually is what is normally
meant by RAM. This is the memory that holds your program and data,
as well as data that must be maintained by the operating system. The
amount of RAM memory your system has will vary, but some amount
of RAM is required with any system. The more RAM memory available,
the larger your program and data can be if it is all to fit into memory at
the same time.

User and Supervisor Modes

The 68000 executes programs in one of two modes, user or supervisor.
If a program is running in the user mode, it is most likely a normal
everyday program. You will more than likely be writing mostly user
mode programs. The supervisor mode is used by programs that require
complete control over all aspects of the hardware. Your operating system
is a prime example of a program that would run in supervisor mode.

If a program is running in the user mode, it is restricted in a number
of ways. Some instructions are designated as privileged. One of these is
the STOP instruction. A program in user mode cannot execute any of
the privileged instructions. This helps to prevent a program with bugs
from crashing the system it is running on. In a multiple user system it is
important that one user not be able to do damage to another user. If a
user crashes the system, or otherwise performs a privileged instruction,
it could affect all users.

While not built into the 68000 CPU chip, many machines have im
plemented various forms of memory protection. The 68000 provides the

24 Assembly Language Programming for the 68000 Family

user/supervisor mode information on every reference to memory. If the
system is so designed, certain areas of memory can be restricted to ref
erences only when in the supervisor mode. If a user mode instruction
were to try to access this “protected” area of memory, a special condi
tion or “exception” would occur and the operating system could then take
control before any damage is done.

The CPU Registers

In one sense, a register is a type of memory location. However, it is
located right on the CPU chip itself. Registers differ from conventional
memory locations in that they operate at a higher speed. In other words, if
we use registers in a calculation, it will be faster to perform than if mem
ory locations were used. Additionally, registers are specified by special
names rather than just by numbers. The existence of a good register set
is a major asset to the architecture of a particular microprocessor. The 68000
family is a good example of a microprocessor with a rich register set.

Depending on whether a program is running in user or supervisor
mode, there is a slightly different view of the CPU registers. This view
is known as the programmer s model. The following paragraphs discuss
the programmers model for the user mode.

The 68000 has sixteen 32-bit general-purpose registers. These are di
vided into two groups of eight. The eight data registers, DO through D7,
are the registers you would normally use to perform arithmetic oper
ations. These can be used as bytes, words, or longwords. The second
group of eight general-purpose registers are the address registers, A0
through A7. These registers can be used for arithmetic operations, but
are primarily designed for use in the special addressing modes discussed
in subsequent chapters. The address registers can be used as words or
longwords, but not as bytes. In the next chapter you will learn more of
the details concerning the use of the sixteen general-purpose registers.

Address register A7, also known as the user stack pointer (USP), has a
special interpretation by the 68000. Some instructions affect this register
without its being explicitly specified. You will learn all about stacks and
the use of the USP in Chapter 7. For now, consider it as just one of the
eight address registers.

Another very important register is the program counter, or PC. This
32-bit register is used to hold the memory address of the next instruction
that the CPU will execute. The programmer never explicitly references
this register; its contents are always updated by the CPU. Normally, the
PC advances as the program executes sequential instructions that are in

Microcomputer Architecture 25

memory. If an instruction causes a branch to a part of the program other
than the next sequential instruction, the PC will be updated automatically.

The final register in the user programmers model is the condition
code register, or CCR. This is an 8-bit register that contains individual
bits that are set or reset as the result of arithmetic instructions. The CCR
will be covered in detail in Chapter 5.

The supervisor programmer’s model is identical to the user mode
programmer’s model with two exceptions. First, in the supervisor mode
there is a different register A7, known as the supervisor stack pointer, or
SSP. This register is totally distinct from the USP. Second, the condition
code register is still present, but it is in a 16-bit form. Together with the
new high-order 8 bits, it is known as the status register, or SR. Figure 5
shows the programmer’s models for both the user and supervisor modes.

n p r Program
J Counter

1 " 1 | Condition Code
___________ lCCR Register

User Programmer's Model

31____________________ 1615_____________________ 0
; IA7’ Supervisor Stack

--1 J(SSP) Pointer
15_________ 8 7 __________0

j CCR |sR Status Register

Supervisor Programmer’s Model Supplement

Figure 5 Programmer's models. (Courtesy of Motorola, Inc.)

26 Assembly Language Programming for the 68000 Family

Input/Output

It may come as a surprise to you that the 68000 does not have
any input/output instructions. How then, is I/O performed? The 68000
family uses a technique known as memory mapped I/O. This means that
input/output devices are connected to the system via interface chips that
are connected to the CPU as if they were areas of memory. A small part
of the huge amount of memory we are allowed must be sacrificed; it is
now used for I/O and can’t be used for main memory at the same time.
The real advantage to the memory-mapped I/O technique is that rather
than being restricted to a small number of special I/O instructions, we
can use aU of the 68000 memory reference instructions with I/O devices.

A large variety of I/O interface chips are available for the 68000
family. A number of these were formerly used with the M6800 family.
The 68000 allows the use of these 8-bit chips as well as the newer
16-bit I/O devices specifically designed for the 68000. In Chapter 12
we will discuss the programming of a typical I/O chip. We will use an
asynchronous serial I/O device or UART chip.

Exercises

1. What are the three main parts of a microcomputer?
2. What is the difference between the MC68000 and the MC68008?
3. What is the newest member of the M68000 family?
4. Is the M68000 family an extension of the M6800 architecture?
5. How many bits is the internal architecture of the 68000?
6. What are the data bus sizes for the M68000 family?
7. Is the M68000 data bus synchronous or asynchronous?
8. What is the difference between RAM and ROM?
9. What is the purpose of supervisor mode?

10. Are registers faster or slower than memory?
11. How much memory is allowed with the MC68000?
12. What are the 32-bit general-purpose registers?
13. Is multi-byte data stored with the high order byte in the lowest or

highest address?
14. Are all instructions the same number of words?
15. What is the purpose of the program counter?
16. What register is used for the USP and SSP?
17. How many input/output instructions does the 68000 have?

Microcomputer Architecture 27

Answers

1. CPU, memory, and I/O.
2. The MC68000 transfers two bytes of data to and from memory, while

the MC68008 only transfers one byte.
3. The MC68030.
4. No.
5. 32 bits.
6. The MC68000 and the MC68010 are 16-bit buses, while the MC68020

and the MC68030 are 32-bit buses.
7. Asynchronous.
8. RAM can be read and written, while ROM can only be read.
9. Supervisor mode allows the design of operating systems that can make

it more difficult for a user s program to crash the system.
10. Much faster.
11. 16 megabytes.
12. D0-D7 and A0-A7.
13. The lowest.
14. No, an instruction can be one or more words. The first word is the

opcode word.
15. The PC contains the addresses of the instructions as they are executed.
16. A7.
17. None; memory-mapped I/O is used.

CHAPTER 3

ASSEMBLER SOURCE FORMAT

There are many assemblers available for the 68000 family. They differ
from each other in minor ways. It would be virtually impossible to present
the details of every assembler on the market. Rather, I will present what
is a relatively standard core, based on the specifications provided by
Motorola for its assemblers. There are many assembler features that
are left out. A careful reading of your assembler manual will provide
these details. What is presented here is enough information to get you
programming in 68000 assembler. You should, however, verify that your
assembler is compatible with this core.

The assembler processes the source program line by line. A line of the
source program can be translated into a machine instruction, or generate
an element or elements of data to be placed in memory; or the line may
only provide information to the assembler itself. The lines of the source
program are sometimes referred to as source statements.

Regardless of the use of a particular line of the source program, the
format of each line is relatively standard. The general format of a source
line consists of four fields, as follows:

[<label>] <operation> [<operand>] [<comment>]

Not all of the four fields must appear on all lines; brackets [] have been
used to indicate fields that are optional. The comment field is always
optional, but the label and/or operand fields may be required depending
on the contents of the operation field. Unless a source line consists solely
of a comment, the operation field is required. If a line is to consist only
of a comment, the first Character on the line must be an asterisk (°). This
must appear in the leftmost position on the line, column 1. The remainder
of the line is ignored by the assembler.

A field consists of one or more tokens. A token is the smallest mean
ingful unit of information that the assembler uses. Tokens are identifiers
or numeric constants. The symbolic names of the machine instructions
are an example of identifiers. The fields of a source line are separated by
one or more spaces. All 68000 assemblers recognize the space character

29

30 Assembly Language Programming for the 68000 Family

as a field separator; most assemblers also recognize the tab character as
a field separator, and treat it as a space. Generally, where one space or
tab is allowed, you may also use more than one. You must be careful not
to insert a space in the middle of a field, as this causes the assembler to
treat the next non-blank characters as the next field.

A delimiter is a special character that can serve to mark the end of
a token, besides having its own special meaning. Punctuation characters
such as commas, periods, and colons are examples of delimiters.

Figure 6 is an excerpt from a sample program that we will use to
further discuss the format of assembler source lines. As you can see, the
program consists mainly of character sequences that look like English
language words separated by punctuation. These character sequences
are the identifiers. The rules for creating identifiers varies slightly from
assembler to assembler, but the following rules work with almost every
assembler:

1. The first character must be alphabetic (A...Z, a...z).
2. Any additional characters may be alphabetics or digits (0...9).
3. Only the first eight characters are significant; the rest are ignored.

There are a number of variations from these rules. Some assemblers re
tain significance for more than eight characters. Others treat the upper-
and lower-case alphabetic characters as equivalent, or retain uniqueness,
or allow only the use of one case. For example, “COUNT” and “count”
may be completely different identifiers. Generally, assemblers allow in
structions and directives to be in either case. Characters other than the
alphanumerics are sometimes allowed. Check your assembler manual to
be sure. Throughout this book we will use upper case, and be careful not
to mix cases.

The Label Field

The label field always contains a symbol formed with the standard
rules for identifiers. If a label is present, it is used to associate the symbol
with a value. This value may represent the location of data in memory,
a constant, or the location in memory of the instruction in the operation
field.

Labels can be used to locate data, such as a variable, stored at par
ticular locations in memory. A variable consists of one or more bytes.
Normally variables will be bytes, words, or longwords. It is important
to reserve sufficient space for a variable. If an instruction tries to place
a longword of data at a memory location only large enough to hold a
word, the data will overwrite a part of memory that it shouldn’t.

Assembler 5ource Format 31

★PROGRAM TO ECHO A LINE
TEXT

START: LEA BUFFER,AO INITIALIZE BUFFER POINTER
LOOP: JSR GETC GET A CHARACTER

MOVE.B DO,(AO)+ SAVE CHARACTER IN BUFFER
CMPI.B #CR,D0 END OF LINE?
BNE LOOP NEXT CHARACTER
LEA BUFFER,AO RESET BUFFER POINTER
JSR NEWLINE GO TO A NEW LINE

LOOP2: MOVE•B (AO)+,D0 GET A CHARACTER
JSR PUTC OUTPUT TO SCREEN
CMPI.B #CR,D0 END OF LINE?
BNE LOOP 2 GET NEXT CHARACTER
JSR NEWLINE GO TO NEW LINE

FINIs MOVE.W #0,-(SP) RETURN TO SYSTEM
* TRAP #1 n

PUTC: MOVEM.L D0-D7/A0- A 6 , - (SP) SAVE REGISTERS
ANDI.L # $FF,D0 MAKE SURE WE HAVE ONLY A
MOVE.W D O ,-(SP) OUTPUT TO OP. SYS.
MOVE.W #2,-(SP) n
TRAP #1 n
ADDQ.L #4 ,SP CLEAN UP STACK
MOVEM.L (SP)+ ,D0- D7/A0-A6 RESTORE REGISTERS

* RTS RETURN
GETC: MOVEM.L D1-D7/A0- A 6 , - (SP) SAVE REGISTERS

MOVE.W #1,-(SP) GET A CHAR. FROM OP. SYS.
TRAP #1 n
ANDI.L # $7F,D0 MASK TO 7 BITS
ADDQ.L #2 ,SP CLEAN UP STACK
MOVEM.L (SP)+ ,D1- D7/A0-A6 RESTORE REGISTERS

je RTS RETURN
CR: EQU $0D CARRIAGE RETURN
LF:* EQU $0A LINE FEED
NEWLINE :MOVE.L D O ,-(SP) SAVE DO

MOVE.B ICR,DO OUTPUT A CR
JSR PUTC n
M OV E .B #LF,D0 OUTPUT A LF
JSR PUTC n
M OV E .L (SP)+ ,D0 RESTORE DO

* RTS RETURN

* DATA
BUFFER: DS.B 100 100 CHARACTER BUFFER

END

Figure 6 Sample program.

52 Assembly Language Programming for the 68000 Family

A symbol in the label field can be made to equal a numeric constant.
Anywhere this symbol appears in your program it is interpreted as if you
wrote the constant itself. For example, you could define the symbol MAX
to represent the constant 1000.

A symbol in the label field can also be used to specify the memory
location of an instruction. This is a true label. Although the first field is
called the label field, only the symbols that are present in the label field
of a source line that translates into a memory location are the true labels
of a 68000 assembly language program. Unless a label starts in column
1, it must be delimited with a semicolon. In the latter case, the label can
start in any column as long as it is the first thing on the line.

The Operation Field

The operation field contains either a machine instruction or an as
sembler directive. Each machine instruction has a special symbol or
mnemonic associated with it. If a particular machine instruction is de
sired, the proper mnemonic must be placed in the operation field. As
sembler directives have symbolic names that are different from the ma
chine instructions. The assembler is thus able to differentiate between a
machine instruction and a directive.

If a machine instruction is placed in the operation field, the assembler
will generate the appropriate words to be placed in memory correspond
ing to the translation of the source statement. Assembler directives may or
may not generate bytes to be stored in memory. Some directives merely
control the format of the assembly listing, or provide other information
about the program. Directives are also used to define symbols.

The Operand Field

Many machine instructions as well as assembler directives require one
or more operands. The operand field is used to provide these operands.
Individual operands can consist of constants, variables, or special sym
bols. Expressions made up of constants, variables, and special symbols
are also permitted. The rules for making up expressions vary slightly from
assembler to assembler. Standard arithmetic expressions such as

COUNT+5

Assembler Source Format 33

are allowed by all assemblers. The characters + , —, and / are inter
preted as addition, subtraction, multiplication, and division respectively.
Most assemblers allow the use of parentheses in arithmetic expressions.
Consult your assembler manual for details on expression evaluation.

If more than one operand is required with an instruction or assembler
directive, the operands are separated by commas. These commas are
delimeters, and you must not insert a space before or after their use. For
example,

ADD.L D2,D3

results in the two registers, D2 and D3, being added together, with the
result placed in register D3.

The 68000 microprocessor uses a variety of addressing modes. The
addressing mode is the method the CPU uses to locate its operands in
memory. In order to specify the particular addressing mode desired, the
operands are formed with the use of special delimiters. For example,

MOVE . L DO,(AO)

indicates the register indirect mode of addressing used with the AO
register. The left and right parenthesis are the special delimeters used
to indicate this type of addressing. You will learn more about the 68000
addressing modes in Chapter 6.

The Comment Field

The comment field is used to provide information for the programmer
and others who may have occasion to examine the program. Assembly
language is not self-documenting. Often, even the programmer may have
difficulty in remembering exactly how her program works if she has been
away from it for some time. Comments are best used to provide a running
description of the program’s operation. Comments help those who may
have to maintain the program in the future. Comments can also be used
to provide information as to how to use a particular program.

A comment can be used on every line of the program. The first space
after the operand field starts the comment. The remainder of the line is
ignored by the assembler. This is why it is very important not to include
any spaces in the operand field. Comments are not interpreted or used in
any way by the assembler. When a comment is the only thing on a source

34 Assembly Language Programming for the 68000 Family

line, you must use an asterisk in column 1. You can see the comments in
Figure 6.

On Choosing Symbols

When you need to select a new symbol for use as a constant, variable,
or label for an instruction, you are free to create arbitrary symbols as
long as you adhere to the rules for creating an identifier. However, some
assemblers do not allow you to create symbols that are the same as the
instruction mnemonics or assembler directives. These reserved symbols
are known as the keywords of the assembler. Although it may seem clear
when a symbol is used as an instruction rather than a variable, some
assemblers are not that smart. Even if your assembler can make this
distinction, it is a good practice to avoid using keywords. Consult your
assembler manual. You can usually find a table of all the keywords that
the assembler recognizes.

It is good programming practice to choose symbols that have a mean
ing related to their use in the program. For example, if you use a vari
able to keep track of a count, why not name it COUNT? Short symbols
like I, J, or N can be used, but don’t tell us much. Labels for instruc
tions can indicate the function of a particular portion of the program.
The label RE ADD AT A clearly indicates the reading of some data. The
label L23 does not convey any meaning. Although many assemblers al
low’ extremely long identifiers, keeping them to eight characters or less
is standard practice. Most programmers line up the source line fields on
tab stops set at every eight columns, and long identifiers make lining up
the fields difficult unless a lot of extra space is used to accommodate the
longest symbols.

Constants

A constant is a value that doesn’t change during program assembly
or execution. Two types of constants can be used: integers and character
strings.

Integer constants are numeric quantities that can be represented by
32 bits or less. You will remember from Chapter 1 that numbers can be
represented in various number bases. If a constant is specified without
indicating this base or radix, it is assumed to be in the decimal number
base. To indicate that a constant is written in a number base other than
10, we can prefix the number with a radix indicator. The radix indicators

Assembler Source Format 35

we can use are:

Indicator Base
% 2
@ 8

[none] 10
$ 16

A binary constant would naturally consist of a percent sign followed
by only l ’s and 0’s. If we try to write a binary constant with other than
l ’s and 0’s, it is an error. The following are all valid constants:

1234 1234,0
$1234 1234,6
$1100111001 11001110012
$FFFF FFFF,e
@377 3778

Character string constants are ASCII character strings delimited by
apostrophes. A character string constant must appear entirely on one line.
Any valid “printing” characters from the ASCII character set are allowed.
For example,

'Hello there.'

is a character string of length 12. The two apostrophes are not part of the
string. What do we do if we want an apostrophe? We can’t just place one
in the middle of the string, that would terminate the string. If we want a
single apostrophe, we merely write two apostrophes. For example,

'Don''t give up the ship.'

is actually the string “Don’t give up the ship.”.
If a string is one to four characters long it can be used as a numeric

value. In this case, the characters are right-justified. This means that the
ASCII values of the characters are used as the low-order bytes. Any
high-order bytes that do not have a corresponding character are filled
with zeros. If it is longer than four characters, it is merely the string
of bytes with the appropriate ASCII values. Both upper and lower case
characters can be used in character strings.

36 Assembly Language Programming for the 68000 Family

Data-Defining Directives

Before we cover the specific instructions of the 68000, it is important
that we discuss the methods used with the assembler for placing specific
data values in memory. The define constant or DC directive is used for
this purpose. The general form of the DC directive is

[<label>] DC[.<size>] <list>

The size specifier indicates the size of the data to be placed into memory.
It may be B, W, or L, which stand for byte, word, and longword,
respectively. If the size specifier is omitted, the size defaults to word.
<list> is a list of one or more data values. If a label is used, it is assigned
the address of the data. Without a label it is difficult to refer to the data.
Here are some examples of the use of the DC directive:

COUNT: DC.L 100
ARRAY: DC.B 1,2,3,4,5,6
WORDS: DC.W $FF,$1000
WORD: DC.W %11111

If a value doesn’t take up exactly the full number of bits in the memory
location, the high-order bits of the byte, word, or longword are padded
with zeros. For example, the constant $FF is placed into a word as $00FF.

The DC directive is also used to place ASCII character strings into
memory. This is the only directive that allows a character string.

STRl: DC. B 'ENTER VALUE:'

The above example would place the ASCII character codes for the
string “ENTER VALUE:” into successive bytes of memory starting at the
location whose address is assigned to the label STRl.

At this point I should mention an important requirement of data that
is stored in memory. For word and longword data, the address of the first
byte must be on an even boundary. This means that addresses like $12345
or $1001 are not legal for word or longword data. Most assemblers will
ensure that word or longword data is aligned on these even boundaries
by skipping a byte where necessary. This byte is essentially wasted. It
is always a good idea to group all word and longword data together to
minimize the number of these wasted bytes. For example, the following
directives would cause an extra byte to be used.

DC .W 0
DC.B 1,2,3
DC.L 100

Assembler Source Format 37

Sometimes we desire to reserve a location in memory for some data
whose value is not known at assembly time. Rather than place a mean
ingless value in the location, we can use another directive. The define
storage directive or DS is used for this purpose. Its form is

[<label>] DSt t.<size>] <iten\s>

The size is specified just as it is for the DC directive. <items> specifies
the number of bytes, words, or longwords we want to reserve space for.
It normally has a value starting at one. If zero items are specified, some
assemblers merely ensure that the current memory address is even and
don’t reserve any storage unless a skipped byte is needed for alignment.
Here are some examples:

COUNT: DS.L 1 1 LONGWORD
ARRAY: DS.B 100 100 BYTE ARRAY
BUFFER: DS.W 50 50 WORD BUFFER

Symbol Equates

Quite often a programmer desires to assign a specific value to a
symbol. The equate directive, EQU, is used for this purpose. This is
quite different from letting the assembler assign an address value to a
label. Suppose we want to set the value of symbol MAX to the value 100
decimal. Here is how we do it:

MAX: EQU 100

Notice that the symbol appears in the label field. You may have been
tempted to write MAX=100. This is the way you would do it in a language
like BASIC or FORTRAN, but not with 68000 assembler. You must use
EQU. We can assign a value to a symbol that involves another symbol
just as long as the other symbol is already defined. For example,

ALPHA: EQU 100
BETA: EQU ALPHA+100

would assign the value 200 to BETA. If we reversed the order, it would
not be legal. The general form of EQU is

<label> EQU <exp>

58 Assembly Language Programming for the 68000 Family

<exp> is any legal expression as long as it does not contain any undefined
symbols. Symbols that will be defined further along in the program are
called forward references.

The END Directive

The END directive is an important directive. It is only used once
during a program and is the very last source line. This directive informs
the assembler that there are no more source lines to follow. The assembler
stops processing input lines when it reaches the END directive. Be sure
always to include an END, and make sure you don’t include any extra
ones in the middle of your program. Some assemblers allow a label to be
used on the END directive. The value of this symbol will represent the
first memory address not used by your program. While few programmers
will ever use this feature, there are some applications where it is useful.
For example, if the first and last locations of a program are known, it is
simple to compute its size. If the first statement contains the label START,
and the END directive contains the label FINISH, the program’s length
is FINISH-START.

Exercises

1. Does every line of the source program have to represent a machine
instruction?

2. Is a comment required on every source line?
3. What is the smallest unit of information that the assembler uses?
4. What characters can be used to separate the fields of the source

statement?
5. Indicate which of the following are legal identifiers:

FOO 50RANGES F1040 FULL(BYTE
6. What two things can the operation field contain?
7. What special character starts a comment line?
8. What special character is used to separate multiple operands in the

operand field?
9. When is it legal to leave out the operation field of a source statement?

10. What are the four fields of a source statement?
11. What is a mnemonic?
12. Are blanks or tabs allowed in the operand field?
13. Can a comment precede an instruction on a source line?
14. Tab stops are normally set up for every how many columns?

Assembler Source Format 39

15. Indicate which of the following are legal constants:
12345 $ABCD @F00 $345 @777

16. What is the character string constant for “Let’s quote’ ” ” ?
17. What is the last statement in a program?
18. Write the assembler directive to place the word constant 123 in

memory at location ALPHA.
19. Write the assembler directive to reserve 1000 bytes at location BETA.
20. Write the assembler directive to set the value of SIZE to 8.

Answers

1. No. Source line may be used to create data items or provide infor
mation for the assembler.

2. No. Comments are always optional, but it is a good idea to provide
as many comments as possible.

3. A token. Tokens are identifiers or numbers.
4. Spaces or tabs.
5. F00 is legal; 50RANGES is not legal since it starts with a digit; F1040

is legal; FULL(BYTE is not legal since a (is not a legal character in
an identifier.

6. A machine instruction or an assembler directive.
7. An asterisk.
8. A comma.
9. When the source line consists solely of a comment.

10. Label, operation, operand, and comment.
11. The symbolic representation of a machine instruction.
12. No, the blank or tab starts a comment.
13. No, the remainder of the line is ignored.
14. 8
15. 12345 is a legal decimal constant; $ABCD is legal; @F00 is not a legal

octal (base 8) constant; $345 is not a legal binary constant because
only the digits 0 and 1 can be used with binary constants; @777 is a
legal octal constant.

16. ‘Let’ s quote’” ” ”
17. A statement with the END directive.
18. ALPHA: DC.W 123
19. BETA: DS.B 100
20. SIZE: EQU 8

CHAPTER 4

GETTING STARTED

In order to write a program in assembly language, you must develop
a familiarity with the machine instructions of the 68000. These instruc
tions can be grouped together depending on their functions. For example,
there are instructions that are used to move data between memory and
the registers, and another group of instructions that perform the standard
arithmetic operations like addition, subtraction, multiplication, and divi
sion. Still others perform only control functions such as looping. Rather
than present all the instructions from each group in order, you will learn
some key instructions from each group so that you can start to under
stand complete programs without being overwhelmed with too many
instructions.

After you have completed this chapter you will know enough to
actually write and execute simple 68000 assembly language programs.
It is important that you take the time to experiment with your computer
system before going on to the more advanced material. Try running the
programs from this chapter as well as some of your own design. Let’s get
started.

Data Movement

Moving data between registers, and between registers and memory,
is a fundamental requirement of all programs. The 68000, like many
other microprocessors, provides a variety of machine instructions to per
form these operations. The most fundamental instruction is the move
instruction, which has the appropriate mnemonic, MOVE. There are ac
tually a number of different move instructions which all have this same
mnemonic. The assembler determines which of the actual machine in
structions is needed by a combination of an optional suffix or extension
to the mnemonic, and the types of the operands used with the MOVE
instruction. This means that we can move a constant into a register, the
contents of a memory location into a register, or a register into a register,

41

42 Assembly Language Programming for the 68000 Family

without having to remember different mnemonics for all these instruc
tions.

The general form of the MOVE instruction is

[<label>] MOVE[.<size>] <source>,<destination> [<coroment>]

The <size> following the MOVE indicates the type of operation to be
performed. It must be a B, W, or L, standing for byte, word or longword.
If the size is omitted, the default value is taken as word. The MOVE
instruction takes the value of the source operand and places a copy of
it into the destination operand. The source operand is not changed. The
destination operand may be a data register or a memory location, but
not a constant. The source operand may be a data register, memory
location, or constant. A number of other instructions have source and
destination operands. Always remember that the direction of the data
flow is from the left operand to the right operand. You may have used
an assembly language for another computer (for example, from the 8080
or 8086 families) in which the flow is reversed. Be careful when you start
out programming the 68000 so you don’t make a mistake.

Let’s assume that the DO and D1 registers contain the following values:

D0 D1

123 4SG

We now execute the following instruction:

MOVE.L D0,D1

The DO and D1 registers would contain the following values after execu
tion:

00 D1

123 123

Notice that the previous value in the D1 register has been lost and that
the new value is identical to that contained in the DO register. Also note
that the contents of the DO register remains unchanged. We must also be
careful that the size of the source operand in bytes matches the size of
the destination operand in bytes. This is normally not a problem with the
registers, since they will always accommodate a full longword. However,
specifying a memory location that is actually a byte, when we really
want a word or longword, will result in faulty program behavior. Your
assembler will not be able to catch this mistake, and it is a common cause

Getting Started 43

of subtle errors that are hard to debug. If you must perform a move
between two data elements of different lengths, there are techniques that
can be used. We will discuss them as we move along. The following is an
example of a MOVE instruction used to move the contents of the byte
at memory location ALPHA to the byte at memory location BETA.

HOVE.B ALPHA,BETA

A constant value can be moved into a register or into a memory
location. A constant as a source operand is specified by preceding it
with the special character #. This is known as an immediate operand.
The following instruction will move the constant 100 into register DO:

MOVE.L #100,D0

Although it makes no sense, it is possible to write a MOVE instruction
indicating that the contents of a register or a memory location are to be
stored into a constant. This is not permitted, but if you forget the order
of the source and destination operands it may come out this way.

MOVE.L DO,#100

is not legal. Fortunately, your assembler will detect this error and let you
know.

If the byte or word form of an instruction is used with a data register
as the destination, only the lower byte or word of the register is changed.
All the high-order bits remain unchanged. This is important to remember,
since we may move a byte into a register and then subsequently use
the register as a longword. All those high-order bytes will most likely
be meaningless garbage and cause an erroneous value to be used. For
example, if register DO contains the value $12345678,

MOVE *B #$00,DO

would result in DO containing $12345600, and not $00000000. Further
along in the book I will discuss ways to handle this problem.

Quite often a programmer desires to swap the contents of two regis
ters. The 68000 provides a special instruction to perform this operation.
Before looking at this instruction, let’s see how to program a swap opera
tion using only the MOVE instruction. To swap the contents of registers
DO and Dl, a programmer may at first be tempted to write:

MOVE.L DO,D1
MOVE.L D1,D0

44 Assembly Language Programming for the 68000 Family

Unfortunately these two instructions do not accomplish the desired result.
The first MOVE instruction has destroyed the contents of register Dl.
This is the value that must be placed in register DO by the second MOVE.
This second MOVE will erroneously result in the value of register DO
not being changed. To perform the swap correctly, a temporary storage
location is needed. This can be a register or a memory variable. The
instructions

MOVE.L D0,D2
MOVE.L D1,D0
MOVE.L D2,D1

will perform the swap correctly. However, register D2 has thus been
used as a temporary storage location, and we may not wish to destroy its
contents either. The use of a memory location as a temporary frees the
registers but will cause the instructions to execute at a slower speed.

The 68000 EXG (exchange registers) is our salvation. We can swap
between any of the 16 registers but not between two memory locations
or between a memory location and a register. We can write the above
program as:

EXG.L D0,D1

The EXG instruction will operate on bytes, words, or longwords when
the proper instruction extension is specified. Of course, we can’t swap
two constants or a constant and anything else.

I didn’t mention it above, but a value cannot be moved into an address
register using the MOVE instruction; the MOVE A instruction must be
used. Its general form is

MOVEAI.<size>] <ea>,An
<size> = W or L

Any operations involving an address register as a destination can only use
the word or longword forms. In the case of a word form, the word is
sign-extended to 32 bits before being used. The entire address register is
always used.

Addition and Subtraction

While moving values from one register to another is an important
part of assembly language programming, arithmetic operations such as
addition and subtraction will allow you to start writing programs that

Getting 5tarted 45

actually perform meaningful tasks. The general form of the add and
subtract instructions are:

[<label>] ADD[.<size>] <source>,<destination> [<coinntent>]
[<label>] SUB[.<size>] <source>,<destination> [<cowment>]

As with the MOVE instruction, <size> may be B, W, or L.
The ADD instruction forms the sum of the source and destination

operands, which may be words, bytes, or longwords, and replaces the
destination operand with this sum. Both operands may be signed or
unsigned numbers. SUB works like ADD except that the source operand
is subtracted from the destination operand. Once again, the result replaces
the destination operand. The source operand may be any register or
memory location, or a constant. The destination operand may be a data
register or memory location. For the ADD and SUB instructions, MOVE
source and destination operands cannot both be memory locations. At
least one operand must be a data register, and the destination operand
cannot be an address register.

Here, and in later chapters, we will express instructions in a more
proper manner by indicating the allowable type for the source and
destination operands. The ADD and SUB instructions have the following
forms:

ADDI.<size>] <ea>,Dn
ADD[.<size>] Dn,<ea>
SUBI.<size>] <ea>,Dn
SUB[.<size>] Dn,<ea>

<ea> is a general way of expressing an effective address. An effective
address generally includes the data registers and the contents of mem
ory locations. Each instruction has more complicated limitations on the
effective addresses of instructions. You should consult Appendix C for
these details. Dn indicates that any of the eight data registers DO through
D7 can be used.

The following are all valid ADD and SUB instructions:

ADD.L D2,D3
SUB.W #5,D0
ADD.B D6,COUNT COUNT IS A BYTE LOCATION

As mentioned in the discussion of the. MOVE instruction, the size, in
bytes, of the source and destination operands must be the same. When
a constant is used, it must be capable of being represented by the num
ber of bytes of the destination operand. If a two-byte (word) constant is
specified, it cannot be used with a MOVE.B, ADD.B, or SUB.B instruc

46 Assembly Language Programming for the 68000 Family

tion; in this case the destination operand is only a single byte. However,
if a one-byte constant is used with a word or longword destination, the
assembler is able to generate the proper machine instruction. The 68000
assembly language includes a mechanism in which numeric constants are
automatically sign-extended to 8, 16, or 32 bits as needed. The following
instruction is not legal and would be flagged as an error by the assembler:

ADD.B §1000,DO

The source and destination operands can be the same.

ADD.L DO,DO

results in the DO register being doubled.
Note that the ADD or SUB instructions do not allow the more general

form

ADDl.<size>] <ea>,<ea>
SUB[.<size>] <ea>,<ea>

This would eliminate the possibility of adding a constant to a memory
location, or subtracting a constant from an address register. There are a
couple of additional forms of the ADD and SUB instructions that help to
eliminate some of these restrictions.

ADDA[.<size>] <ea>,An
SUBA[.<size>1 <ea>,An
<size> = W or L

allows adding or subtracting to an address register.

ADDII.<size>] #<data>,<ea>
SUBI[.<size>] #<data>,<ea>

allow adding or subtracting an immediate value to a memory location
or data register. This instruction cannot be used to add or subtract
an immediate value to an address register. For example, the following
instructions are correct:

ADDI.L #1000,COUNT
ADDA.L #2,A5

Many assemblers allow the use of the mnemonics MOVE, ADD, SUB,
and so on without qualifying the instruction; the assembler decides what
instruction to use. For example, if you write

Getting Started 47

MOVE DO,AO

the assembler would use the MOVEA form of the instruction. Check your
assembler manual to be sure you can do this. Even if allowed, it is better
to use the correct instruction mnemonic.

Quite often we may want to set a register or memory location equal
to zero. We can always move a zero value into the destination operand.
Or we can subtract a register from itself. There are other ways to zero a
register or memory location, but none is better than the clear instruction
(CLR). This instruction is provided for just this purpose. Its general form
is

[<label>] CLRl.<size>] <ea> [<comment>]

The size may be B, W, or L. We can clear a data register or memory
location, but not an address register. Here are some examples:

CLR.L DO CLEARS DO
CLR.B CHAR CLEARS A BYTE IN MEMORY
CLR.W D5 CLEARS LOW ORDER WORD IN D5

Input and Output

While we can write many programs that do not require data to be
entered by the user, we certainly do not want to limit ourselves in this
way. Programs can be written that manipulate data that is included in
the assembly language source itself. This would be of limited use if the
data required frequent modification: each time the program is to be run
with different data the source program would have to be edited and then
reassembled, a time-consuming and unreasonable requirement for many
users. What we seek is the ability to obtain data entered from the user’s
terminal or keyboard at the time the program is executed.

Similarly, a method is normally required to obtain output from the
program during or after its execution. Unless there is some way of
displaying the program output on a terminal or a printer, a program’s
action can only be determined by looking at the contents of variables or
registers that may have changed during the programs execution. While
this may be possible with programmer utilities, such as a debugger, it is
certainly not the best way to start programming in assembly language.

Unfortunately, input and output is always dependent on the partic
ular computer you are using. Not all computer systems using the 68000
processor are equipped with the same input/output devices. Some sys
tems have a built in video display and others may have a separate CRT

48 Assembly Language Programming for the 68000 Family

terminal. Normally, some degree of hardware independence is provided
by the operating system being used. But here again we will not all be
using the same operating system. Some readers may be using an Apple
Macintosh and others may be using an Atari ST or one of many other
operating systems that operate with 68000-based systems.

In order to start to write programs without worrying about the system-
dependent details, we will use a set of input/output subroutines whose
inner workings will be different for different operating systems. These
subroutines will assume a standard ASCII terminal or display. Since the
interface is through your operating system, the details of your particular
hardware are automatically taken care of. It doesn’t matter if you have a
video display or a printing terminal. Appendix B gives the actual source
statements for these subroutines written for the Atari ST, Commodore
Amiga, and Apple Macintosh operating systems. (While this does not
cover every operating system in use, the majority of readers will probably
be accommodated.)

It is possible to write many programs that involve inputting one
or more decimal numbers from the keyboard and outputting one or
more decimal numbers to the screen. It is also necessary to be able to
input and output ASCII characters. We will start by introducing some
useful subroutines to perform these tasks. A procedure, or subroutine,
is a portion of a program that can be referenced, or called, from many
different places within the program without the necessity of repeating
the instructions for this procedure each time it is used. Here are the
procedures; read their descriptions carefully so that you will understand
their use.

1. INDEC—Input an unsigned decimal number from the keyboard.
The number is entered as one or more decimal digits terminated
by a character other than 0-9. This terminating character may be
a carriage return (RETURN key on most keyboards). The number
must be representable by four bytes and must therefore be between
0 and 4,294,967,295. The number is placed in the DO register.

2. OUTDEC—Output an unsigned decimal number to the screen. The
number is taken from the longword in register DO. It is output
without a terminating carriage return and line feed (doesn’t advance
to the next line). The range of the output value is the same as for
INDEC.

3. NEWLINE—Terminate the present output line and output the car
riage return and line feed characters to advance to the start of the *
next line.

4. GETC—Input a single character from the keyboard. The ASCII
value of the character is returned in the lower eight bits of the register
DO. The high-order bits are cleared.

Getting Started 49

5. PUTC—Output a single character to the screen. The character is
taken from the low-order eight bits of register DO.

In order to use these procedures within your program, a special in
struction, JSR (jump to subroutine) is provided in the 68000 instruction
set. The exact operation of this instruction, and of subroutines in gen
eral, will be discussed in Chapter 8. The mnemonic JSR is followed by
the symbol representing the subroutine’s name. For now, assume that
when you use the JSR instruction, the program performs the operations
specified by the subroutine that is called, and then continues on to the
next instruction. The following program excerpt will obtain two num
bers from your keyboard, add them together, and then output the result
to your screen:

JSR INDEC
JSR NEWLINE
MOVE.L D0,D1
JSR INDEC
JSR NEWLINE
ADD.L D1,D0
JSR OUTDEC
JSR NEWLINE

Notice that the third instruction is used to save the contents of the DO
register so that the second JSR instruction to INDEC does not destroy
the first number to be added. Other than the DO register that is used with
the INDEC procedure, the input/output procedures given above do not
destroy the contents of any of the 68000 registers. The JSR to NEWLINE
ensures the advance to the beginning of a new line after each number
is input and after the result is output. A call to NEWLINE is required
even if you terminate the number you enter with a carriage return. A line
feed must be output to advance to the beginning of the “next” line. The
carriage return only positions you at the beginning of the “current” line.

The Program Shell

For the writing of a complete program, certain assembler directives
and standard code sequences are needed for each different assembler
and operating system. This program shell will enclose each program. So
that we don’t have to depend on one particular assembler or operating
system, we will not include this program code for each program pre
sented. Appendix B shows an appropriate program shell for the Atari ST,
Commodore Amiga, and Apple Macintosh.

Note that the shell is terminated by an appropriate mechanism to re
turn control to the operating system. The 68000 does have a halt instruc

50 Assembly Language Programming for the 68000 Family

tion, STOP, but if this instruction is used to terminate your program, the
microprocessor will literally stop and you will have to reboot (start from
scratch) your operating system. It is much better to return control such
that you can continue to issue system commands.

So that you can actually start to write programs using the input/output
procedures presented above, these must be included along with your
program and the shell. If you require one or more of these subroutines
in your program, just copy the appropriate source statements. You will
have to consult your system documentation to adapt these procedures for
other operating systems and/or assemblers.

Looping

With the instructions you have learned so far, it is possible to write a
few simple programs that perform addition and subtraction of a limited
number of values. To form the sum of 20 numbers entered from your
keyboard would take 20 lines of assembler source code just to obtain
these values. An additional 20 ADD instructions would be required as
well. If you desire to add up a larger number of values, you would soon
tire of all the typing needed to produce the source program. Consider
also that each assembly language instruction will take one or more words
of memory space when it is translated into machine language. Often it is
important to write a small program as well as an efficient one.

The solution to this problem is the use of a program loop. There
are many ways to write a program loop for the 68000 microprocessor.
The simplest type of program loop is the infinite program loop. While it
may seem of no value to write an infinite loop, if there is a method for
escaping the loop, it is often useful. You might like a program that repeats
itself over and over again for an arbitrary number of input data values.
This would eliminate the need to reinvoke the program for each new
value. The methods of escaping from an infinite loop will be discussed
in Chapter 5. For now, let us see how we can write one.

Execution normally passes from one instruction to the next. This is
known as sequential execution. The 68000 provides a special instruction
to alter the normal sequential program flow. The jump instruction, JMP,
provides the ability to transfer control to any instruction that has a label.
The following is a simple infinite loop:

OVER:

JMP OVER

Getting Started 51

Any number of instructions can be contained within the loop. Here is a
simple program that will obtain a number from the terminal, double it,
and then output the result. These steps are then repeated over and over.

♦INPUT A VALUE FROM THE TERMINAL, DOUBLE,
♦AND THEN OUTPUT THE RESULT
*

NEXT: JSR INDEC OBTAIN AN INPUT VALUE
JSR NEWLINE
ADD.L DO, DO DOUBLE THE VALUE
JSR OUTDEC OUTPUT THE NUMBER
JSR NEWLINE
JMP NEXT

If you actually run this program, you may have to stop your computer
manually and reboot your operating system (the exact procedures to
follow depend on your particular computer; consult your owner’s manual
for the details). Some systems allow you to abort a program and return to
the operating system by typing a “Control C” (character C typed while
also holding down the key labeled CTRL).

Another frequently used type of loop is the counting loop. This is
a loop that repeats a number of instructions a fixed number of times.
Unlike most 8-bit microprocessors, the 68000 provides a single instruction
to perform a counting loop. This is the test condition, decrement, and
branch instruction, with the peculiar mnemonic DBRA. (It is actually a
member of a family of instructions with the mnemonics DBcc, where
the characters cc are replaced by the appropriate characters to select the
particular instruction desired.) The DBRA instruction has the following
format:

DBRA Dn,<label>

It works somewhat like a JMP instruction except that it uses the value
contained in the data register as a loop counter. It does this by first
subtracting 1 from the current value in Dn and then checking to see
if the result is equal to —1. If the updated value contained in Dn is not
equal to —1, the DBRA instruction then performs like a JMP to the label
specified as the second operand. If the new value of Dn is —1, the next
sequential instruction is executed.

In order to use the DBRA instruction, the Dn register must first be
set up with the total number of times we wish to go through the loop
minus one. The instructions between the label of the DBRA and the
DBRA instruction itself will be executed. These instructions will always
be executed at least once even if Dn is initialized with —1. In fact,

52 Assembly Language Programming for the 68000 Family

initializing Dn to —1 results in repeating the loop the maximum number
of times—65,536, to be exact. Only the low-order 16 bits of the register
are used as a counter. As a simple example, let’s say you want to output
20 blank lines. You could call the newline subroutine 20 times by writing
20 lines of assembler source, or you could write the following three lines:

MOVE.W #19#D2 INITIAL VALUE IS COUNT-1
NEXT: JSR NEWLINE

DBRA D2,NEXT

You must be careful not to modify the contents of the Dn register within
the program loop, since it then would no longer represent the loop count
and would not yield the result desired. If you must use the Dn register
within the loop, you must save and restore it. You could move the contents
to another register or to a memory location. Here’s how to do it with a
variable:

MOVE.W #100,D1
NEXT: MOVE.W

•
D1,SAVED1

•
. <Use Dl>
MOVE.W SAVED1,D1
DBRA D1,NEXT

SAVED1: DS.W 1

Recall from Chapter 3 that DS.W is not an instruction, but rather a
directive to reserve one or more words in memory. In this case one word
of uninitialized memory has been reserved at location SAVED1.

There is one restriction with the DBRA instruction that is not found
with the JMP instruction. With the JMP instruction the programmer can
transfer control to any distant label. In other words, there can be loops of
arbitrary size. Unfortunately, the DBRA instruction, and many others you
will discover, only allow transfer of control over a limited distance. This
distance is approximately plus-or-minus 32,768 bytes from the position of
the DBRA instruction itself. This distance can’t be represented as a fixed
number of instructions, because the number of bytes per instruction varies
with the particular instruction. It is a very rare occasion when a loop must
contain a greater number of instructions than this maximum. Fortunately,
the assembler tells the user if all the instructions do not fit into the loop.
In this case there are several methods to get around the problem. You
will have to read on to find out how.

Getting Started 53

S P A C E : EQU $ 2 0
*

MOVE•W # 3 0 , D1
MLOOP: MOVE•L E X P ,D O

J S R OUTDEC
AD D Q.L # 1 ,E X P
MOVE•B # SPA C E,D O
J S R PUTC
MOVE•L POWER,DO
J S R OUTDEC
A D D .L DO, DO
MOVE. L DO,POWER
J S R NEW LINE
DBRA D l,M LO O P

*
• • •

E X P : D C .L 1
POW ER: D C .L 2

A S C I I SPA CE

S E T UP LOOP COUNT
GET CURRENT EXPONENT
OUTPUT
INCREMENT EXPONENT
OUTPUT A SPA CE
n
GET CURRENT POWER
OUTPUT
DOUBLE I T
AND SAVE
GO TO A NEW L IN E
LOOP U N T IL DONE
WE CONTINUE HERE

Figure 7 Program to output powers of two.

Putting It All Together

Figure 7 shows a complete program that will output a table of the
powers of 2 from 21 to 231. As you learned in Chapter 1, 231 is the largest
power of 2 that can be represented with a 32-bit unsigned number. The
program is written as one counting loop. The D1 register is initialized
to 30, which is the number of powers that we wish to output minus one.
MLOOP is the label referenced by the DBRA instruction, which is the last
instruction of the program prior to the return to the operating system. We
also declared two variables, EXP and POWER, to represent the current
exponent and the actual power of 2 for the value of EXP. These two
variables are initialized prior to entering the main loop. Each successive
power is computed by doubling the previous power with the ADD.L
DO,DO instruction. Since the DO register is used for several functions,
POWER and EXP are updated after their new values are computed.

Formatting of the output lines is accomplished by inserting a space
after outputting the exponent, and an advance to the next line after
outputting the power. The ASCII character value for the space character
is 20 in hexadecimal. The standard procedure, PUTC, is called with this
value in the DO register. The output from this program should look like
the following:

54 Assembly Language Programming for the 68000 Family

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
etc.

Exercises

1. Write an instruction to move the contents of DO to Dl.
2. Write an instruction to move the low-order byte in register DO to

memory location SAMPLE.
3. Is MOVE.L DO,#10 a legal instruction?
4. Is MOVE.B #2056,DO a legal instruction?
5. Write an instruction to exchange the contents of registers D5 and D6.
6. Write the instruction to add DO to the longword at ALPHA.
7. Write the instructions to add memory location INCREMENT to

memory location TOTAL. Assume longwords.
8. Write the instruction to add the constant 25 to A0.
9. Write the instruction to add the word at memory location OFFSET

to register A5.
10. Write the instruction to move the contents of the longword at INIT-

VAL to register A2.
11. Write the instruction to clear the low-order byte of register D5.
12. Write an instruction to clear register A0.
13. Write the instructions to obtain an input value, add 100, and output

the result.
14. Write the instructions to obtain an input character and repeat it on

output.
15. Write an infinite loop to output the integers starting at zero.
16. Write a counting loop to output the digits 0 through 9 in that order.
17. Write a program to sum the numbers from 1 through 100.
18. Write a program to output your name.
19. Write a program to evaluate DO—D1+D2+100 and output the result.
20. Write a program to output the letter A 100 times, with 10 A’s per line.

Getting 5tarted 55

Answers

1. HOVE.L D0/D1

2. HOVE.B DO,SAMPLE

3. No, a constant can’t be a destination operand.
4. No, the constant is larger than a byte.

5. EXG D5,D6

ADD.L DO,ALPHA

7. MOVE.L INCREMENT,DO
ADD.L DO,TOTAL

8. ADDA.L #25,AO

9. ADDA.W OFFSET,A5

10. MOVEA.L INITVAL,A2

11. CLR.B D5

12. MOVEA.L #0,A0

13. JSR INDEC
JSR NEWLINE
ADD.L #100,DO
JSR OUTDEC
JSR NEWLINE

14. JSR GETC
JSR PUTC

CLR.L DO
NEXT: JSR OUTDEC

ADD.L #1,D0
JMP NEXT

16. CLR.L DO
MOVE.W #9,D1

NEXT: JSR OUTDEC
JSR NEWLINE
ADD.L #1,D0
DBRA D1,NEXT

56 Assembly Language Programming for the 68000 Family

17.

NEXT:

CLR.L
MOVE.L
MOVE.W
ADD.L
ADD.L
DBRA
JSR
JSR

DO
#1,D1
#99,D2
D1 / DO
#1 ,D1
D2,NEXT
OUTDEC
NEWLINE

TOTAL
NUMBER TO ADD
LOOP COUNT
ADD TO TOTAL
GET NEXT NUMBER TO ADD
LOOP TILL DONE
OUTPUT RESULT

18. MOVE.B
JSR
MOVE.B
JSR
MOVE.B
JSR
JSR

#'T*,D0
PUTC
#'0',DO
PUTC
#'M',D0
PUTC
NEWLINE

19. SUB.L D1,D0
ADD.L D2,D0
ADD.L #100,DO
JSR OUTDEC
JSR NEWLINE

20.

NEXT:
MOVE.W
MOVE.B
MOVE.W
JSR
DBRA
JSR

#9,D1 OUTER LOOP COUNT
#'A',D0 GET ASCII "A*
#9,D2
PUTC
D2,NEXT
NEWLINE

DBRA D1,NEXT

INNER LOOP COUNT
OUTPUT CHARACTER
INNER LOOP
GO TO NEW LINE
OUTER LOOP

CHAPTER 5

CONDITIONAL AND
ARITHMETIC INSTRUCTIONS

In Chapter 4 you learned a small number of 68000 instructions. These
were enough to write some very simple programs. I hope that you have
taken the time to actually run some of the programs presented in the
chapter, as well as a few programs of your own design. Nothing gives you
more confidence that you are successfully mastering assembly language
programming than the joy you experience when a program actually
performs as it should. By now you should have become familiar with
your own computer’s procedures for editing, assembling, and executing
assembly language programs. If you are having trouble, you should
carefully review your computer system's manuals before going on with
this chapter.

The remainder of this book is designed to expand your vocabulary
of 68000 instructions. Rather than present all the remaining instructions
at one time, we will present groups of instructions and specific examples
of their use. You should not attempt to learn all of the 68000 instructions
before practicing with each group. Take the time to actually experiment
with the instructions presented in each chapter. Don’t limit yourself to
the exercises. Be creative.

In this chapter you will learn the very powerful set of conditional
instructions. These instructions allow the control flow of your program
to vary depending on the results of certain instructions. Among these
are the arithmetic instructions you have already learned as well as several
others. Crucial to understanding the conditional instructions is a thorough
knowledge of certain bits in the condition code register and how they are
affected by arithmetic instructions.

Arithmetic and the Condition Code Register

As you learned in Chapter 2, the 68000 has a special register known as
the condition code register (CCR), This register is not used in the same

57

58 Assembly Language Programming for the 68000 Family

way as the other registers. We don’t treat the contents of the CCR as a
numeric quantity. Instead, we indirectly use the values of individual bits
in the CCR. Each of these special bits, or condition codes, has a specific
meaning when set or reset. If a bit is set it has a value of binary 1. If it is
reset it has a value of binary 0. The CCR is an 8-bit register, but not all
of the 8 bits are used. It is organized as follows:

CONDITION CODE REGISTER

7 4 0

X(extend) Transparent to data m ovem ent. When affected, it is set the
same as the C bit.

N (negative) Set if the most significant bit of the result is set. Cleared
otherwise.

Z (zero) Set if the result equals zero. Cleared otherwise.

V(overflow) Set if there was an arithm etic overflow . Cleared otherwise.

C (carry) Set if a carry is generated out of the most significant bit of
the operands for an addition. Also set if a borrow is
generated in a subtraction. Cleared otherwise.

After the execution of a 68000 instruction, some of the condition codes
may be affected. Not all instructions affect the CCR. The majority of
CCR usage is related to arithmetic operations such as addition, subtrac
tion, and the comparison of two numeric quantities.

The representation of numbers in two’s complement binary was dis
cussed in Chapter 1. Recall that numbers can be interpreted as signed or
unsigned depending on the interpretation of the most significant bit. This
bit is referred to as the sign bit for signed numbers. Many times we will
desire to treat a number as a positive value only. By allowing the use of
the most significant bit as a normal bit of the number, and not a sign,
we can double the magnitude of the numbers that can be represented.
The ADD and SUB instructions operate identically for both signed and
unsigned numbers. The interpretation is up to the programmer. How
ever, by the use of particular bits in the CCR we can test the outcome
of arithmetic operations for both signed and unsigned numbers.

The Carry Bit

One of the most important checks that must be made on an arithmetic
operation is whether or not the result has exceeded the size of the

Conditional and Arithmetic Instructions 59

destination register. For example, the addition of the following unsigned
8-bit binary numbers results in a sum that will not fit in an 8-bit destination
(register or memory byte).

11101001
+ 10110111

110100000

The carry of a bit from the most significant (high-order) bit position has
no place to go. Actually, this event causes the carry bit (C) to be set. If
there was no carry, the carry bit would be reset.

In order to determine if the result of an unsigned addition is valid, the
setting of the carry bit must somehow be tested. Fortunately, the 68000
provides a group of instructions that allow the testing of each of the bits
of the CCR individually and in various combinations. These instructions
all have the form of a conditional branch. A conditional branch is similar
to a JMP instruction except that for the former the jump is not taken
unless a particular condition is true. This condition corresponds to the
value or values of one or more of the bits of the CCR. If the branch is
not taken then the next sequential instruction is executed. The branch on
carry set instruction, BCS, provides a conditional branch based on the
setting of the carry bit. If the carry bit is set (binary one) then the branch
is taken. The following program illustrates the use of the BCS instruction
to validate the result of an unsigned addition.

HOVB.L NUH1/D0
ADD.L NUM2,D0
BCS INVALID

RESULT IS OK

INVALID: . RESULT EXCEEDS REGISTER SIZE

The label used with the BCS instruction, and with all the conditional
branches, must be to a location that is within approximately plus-or-minus
32,768 bytes of the location of the instruction itself. As mentioned in
Chapter 4, this restriction is also present with the DBRA instruction. It is
usually difficult to tell how many instructions will represent 32,768 bytes.
It is best to let the assembler do the work for you. But let’s suppose
that you really must perform a conditional branch to a location that is
greater than plus or minus 32,768 bytes. What can you do to get around
this problem? One simple solution is to perform the conditional branch
to a JMP instruction that is “close” to the conditional branch and then

60 Assembly Language Programming for the 68000 Family

have the JMP instruction actually jump to the target label. Here's how
it’s done.

BCS CLOSE --------------
< 32K BYTES I

CLOSE: JMP FARWAY ------------- 1
• I
• I

> 32K BYTES I

PARWAY: . --------------

We can also do this:

•
BCS CLOSE
BRA NEXT

CLOSE: JMP PARWAY
NEXT:

This second approach has the advantage that we know the JMP is close
enough, and we have a definite place for it to go without interfering
with other instructions. The BRA instruction is an unconditional branch.
It always branches, but it suffers from the same limited range as the
conditional branches. The solution to this problem can be made even
simpler if the condition for branching is reversed. In other words, if
we could perform a conditional branch when the carry bit was not set,
rather than set, then we could use the conditional branch to go to the next
sequential instruction in the program. We are in luck! The 68000 provides
complementary instructions for all conditional branches. We can always
find an appropriate conditional branch that branches when the condition
we wish to test is not true. In the case of the BCS instruction, the BCC
(branch on carry clear) is the one to use. Our program can now be written:

BCC NEXT
JMP FARWAY

NEXT:

Conditional and Arithmetic Instructions 61

The Overflow Bit

What if we were adding signed numbers? A carry out of the high-order
bit is not necessarily indicative of a result that is too large. Adding two
negative numbers will result in the carry bit being set. For example,

11111110 -2
+ l i m i i i -l
111111101 -3

A result that is too large can be detected when the sign bit (most signif
icant bit) changes when we don’t want it to. This condition is known as
overflow. The overflow bit (V) is set or reset depending on the occur
rence of the overflow condition. V is affected by all arithmetic instruc
tions regardless of whether operands are treated as signed or unsigned
numbers. The 68000 instructions don’t know the difference. Either V or
C must be used, for signed or unsigned arithmetic, respectively. The BVS
(branch on overflow set) and BVC (branch on overflow clear) instruc
tions are provided for signed arithmetic.

Subtraction also results in similar effects on C and V. If an unsigned
subtraction results in a borrow into the most significant bit position, the
carry bit is set. Since an unsigned subtraction cannot result in a negative
value, this is an error. The overflow bit is set for subtractions as well. If
we subtract a positive number from a negative number, and the result
is a negative number that is too large, V will be set. Overflow can also
result from subtracting a negative number from a positive number. If the
positive result is too large, V will be set.

The Zero and negative Bits

In addition to determining if the result of an arithmetic operation has
exceeded the size capacity of the destination, a programmer may also
desire to know if the result is positive, negative, or zero. The zero bit
(Z) and negative bit (N) are provided for these purposes. The zero bit
is set if the numerical result is zero. This means that all bits of the result
are zero. The BEQ (branch on equal) and BNE (branch on not equal)
instructions will conditionally branch depending on the value of Z.

A zero value can be used as a signal to exit an indefinite loop. The
following program outputs the integers from 10 to 1 in reverse order.

62 Assembly Language Programming for the 68000 Family

MOVE.L #10,DO
NEXT: JSR OUTDEC

JSR NEWLINE
SUB.L #1,D0
BNE NEXT

The programmer may also want to determine if an arithmetic opera
tion results in a positive or a negative value. The negative bit (N) will be
set to a binary 1 for all negative numbers (note that zero is always a pos
itive number in two’s complement). The negative bit is set to the same
value as the sign bit of the result of the operation. The BMI (branch on
minus) and BPL (branch on plus) instructions will test for negative and
positive numbers respectively.

The MOVE instruction always sets the negative and zero bits in the
CCR just as the arithmetic instructions do. However, the programmer
sometimes desires to determine if a value is zero or negative, but hasn’t
moved it or used it in arithmetic. A special instruction, TST, is provided
for just such a purpose. The general form is

TST[.<size>] <ea>

The following instructions test register D5 and memory location COUNT.

TST.L D5
TST.L COUNT

Of course, the TST instruction must be followed with an appropriate
conditional branch.

The Extend Bit

The extend bit (X) is normally a copy of the carry bit. It is used for
performing multiple precision arithmetic, which will be covered in detail
in Chapter 11. However, you should be aware that some instructions do
not affect the extend bit. The most notable of these instructions is the
MOVE instruction. MOVE conditionally sets or clears N and Z, clears V
and C, but doesn’t change the current value of X. You won’t be using the
extend bit at this time, so this fact shouldn’t cause concern.

Com parisons

An essential task in any programming language is the comparison of
two numbers, or any data items that are being represented by numerical

Conditional and Arithmetic Instructions 63

values such as ASCII characters. One way to perform a comparison would
be to subtract the two numbers and then test the flags to determine their
relationship. If the two values are equal to each other, the zero flag will be
set. The carry flag, sign flag, and so on, can also be tested to determine
other inequalities. The particular flags that must be tested depends on
whether the comparison is between signed or unsigned quantities. In
fact, it is important to test for overflow as well. This may result in a
requirement to test two or more flags.

A disadvantage in performing a subtraction to compare two numbers
is the fact that the destination operand will be changed. Since the desti
nation operand must be one of the values to be compared, its value will
be destroyed. We could, of course, make a copy. The following exam
ple determines if the contents of register DO are equal to the contents of
register Dl.

HOVB.L D0,D2
SUB.L D1,D2
BEQ EQUAL

•

EQUAL: . EQUAL

There is a better way to compare numbers. A special compare instruc
tion, CMP, works almost like the SUB instruction except that the result
of the subtraction is not actually saved—in other words, the operands
remain unchanged. All the flags that would be set or reset by the SUB
instruction are also set or reset by the CMP instruction. The destination
operand must be a data register, but the source operand can be a regis
ter, variable, or constant. In fact, the source operand can use any of the
addressing modes that will be discussed in Chapter 6.

The previous example can be rewritten using the CMP instruction.

CMP.L Dl,DO
BEQ EQUAL

EQUAL: !

Since we are using the CMP instruction and not an SUB, the value of DO
does not have to be copied.

In general we will desire to compare both signed and unsigned num
bers. The standard inequalities all have unique conditional branches that
are used with the CMP instruction. For inequalities other than equal or

MAKE A COPY OF DO
SUBTRACT Dl PROM D2
BRANCH IF THEY ARE =
NOT EQUAL

64 Assembly Language Programming for the 68000 Family

not equal, it is sometimes difficult to remember which value should be
the source and which value should be the destination. The CMP instruc
tion compares the destination with the source. Therefore, if we wish to
determine if DO is less than or equal to D1 we would write

CHP.L DirDO
BLE LABEL

An easy way to remember this is:

destination <inequality> source

The following table shows the conditional branches for signed numbers.
C tA f A

{I < / B LT Branch on less than
f < = / ' B L E Branch on less or equal

= BEQ Branch on equal
> = BG E Branch on greater or equal
> BGT Branch on greater than
not = B N E Branch on not equal

When you compare unsigned numbers you should use the following.

< BCS® Branch on carry set
< = BLS Branch on lower or same
= BEQ Branch on equal
> = B C C ° Branch on carry clear
> BHI Branch on higher
not = BN E Branch on not equal

0 These mnemonics are not particularly indicative of their function, but they are the
ones to use.

The tests for equal and not equal use the same conditional branches
for both signed and unsigned numbers. The following program finds
the largest unsigned number from an arbitrary number of input values.
Entering a zero value terminates input and outputs the result.

* FIND LARGEST INPUT VALUE
* ZERO VALUE TERMINATES INPUT

CLR.L D1 INITIAL VALUE IS ZERO
NEXT: JSR INDEC GET NEXT INPUT VAL

TST.L DO ZERO?
BEQ FINI YESr ALL DONE
CMP.L Dlr DO LARGER?
BLE NEXT NO

Conditional and Arithmetic Instructions 65

FINI: MOVE.L Dl,D0
JSR OUTDEC
JSR NEWLINE

MOVE•L D0,D1
BRA NEXT

YES, SAVE AS NEW VAL
BACK FOR NEXT VAL
SET UP FOR OUTPUT
OUTPUT THE VALUE
GO TO NEXT LINE

Two CMP instructions are used. The first CMP tests for the zero termi
nating value. The second determines if a new input value is larger than
the largest value encountered so far. It is important to remember to ini
tialize this value to something meaningful. In this case, a zero value is
smaller than any value we will encounter.

There are several additional versions of the compare instruction. Al
though any addressing mode, including immediate values, can be used as
the source operand, the destination operand can only be a data register.
The general form of the CMP instruction is:

The CMPA instruction allows the use of an address register as the desti
nation operand. Its form is:

While we may often desire to compare a data or address register with an
immediate value, we sometimes desire to compare a constant with the
contents of a memory location. It is not possible to use the CMP or CMPA
instruction in such a manner. We would first have to copy the contents
of memory to a register and then use the CMP instruction. Fortunately, a
special version of the CMP instruction, CMPI, exists to solve our problem.
Its general form is:

The destination operand is restricted in that it can't be an address register
(use CMPA in this case), or an immediate value. (This latter restriction
really isn’t a restriction, because it makes no sense to compare one
constant with another, since the outcome is always the same.) Let’s assume
that we want to see if the contents of memory location COUNT, a byte
value, is less than 10. These are the instructions we would use:

CMP[.<size>] <ea>,Dn

CMPA(.<size>] <ea>,An

CMPII.<size>] #<data>,<ea>

CMPI.B #10,COUNT
BLT LESSTHAN

66 Assembly Language Programming for the 68000 Family

Many assemblers will allow the use of the CMP mnemonic for all
variations of the CMP instruction. The assembler figures out what version
to use by looking at the type of the operands in use. However, it is
somewhat sloppy programming to do this. You should always be aware
of what the actual 68000 instructions are. If you issue the following
instruction,

CMP.L VAL1,VAL2

you will lose out, No version of the CMP instruction will allow the use
of two memory operands.

ADDQ and SUBQ Instructions

Many programs require adding or subtracting the constant 1 from a
register or variable. Naturally, the ADD or SUB instruction can be used
to perform this operation.

ADD.L #1,D0

increments the value in the DO register.

SUBI.L #1,VAR55

decrements memory location VAR55. Many microprocessors provide spe
cial instructions to increment or decrement a value. The 68000 instruction
set provides a better way to increment or decrement a number. The
ADDQ (add quick) and SUBQ (subtract quick) instructions are provided.
They can be used to add or subtract a value ranging from 1 to 8. Since
they allow small values other than 1, they are more flexible than their
counterparts on other CPUs. All arithmetic flags are updated just as they
are with the ADDI and SUBI. Here are their general forms:

ADDQ[.<size>] #<data>,<ea>
SUBQ(.<size>] #<data>,<ea>
<size> = B, W, L
<data> is a value between 1 and 8 inclusive

The effective address can be almost any valid addressing mode including
an address register. There is no special form of these instructions when

Conditional and Arithmetic Instructions 67

referencing an address register. However, only word and longword forms
of the instruction can be used with an address register. The following
instruction would increment the value of memory location COUNT:

ADDQ.W #1,COUNT COUNT IS A WORD

At first it may seem that these instructions are identical to the ADDI
and SUBI instructions. In order to understand why the ADDQ and SUBQ
instructions are better, we have to delve into the actual machine instruc
tions generated when these mnemonics are used. The ADDI and SUBI
instructions will generate a 16-bit opcode word and one or two additional
16-bit values corresponding to the immediate operand. With the ADDQ
and SUBQ instructions, only the 16-bit opcode word is generated. This
results not only in a savings in memory locations but also in a significant
increase in speed because the programmer doesn’t have to perform the
memory fetch to obtain the immediate data. In the case of the ADDQ
and SUBQ instructions, this data is contained in the 16-bit opcode word.

Along a similar line, a special MOVE instruction, MOVEQ, is pro
vided. This instruction allows an immediate source operand that must be
represented in 8 bits or less, giving a signed range between —128 and
+127, or an unsigned range between 0 and 255. The destination is always
a data register, and the full 32 bits are used. This instruction is only avail
able in the longword form. It should be used whenever possible, since
the number of bytes required will be less than the corresponding MOVE
instruction. For example,

MOVEQ #100,DO

is preferable to

MOVE.L #100,DO

Many assemblers will automatically use the MOVEQ version whenever
possible, even if it hasn’t been specified.

The 68000 provides many instructions that can be functionally dupli
cated by other instructions. When a programmer uses the more appro
priate instructions, programs are more readable and take up less space
in memory. This latter consideration is important for large programs, or
when you only a small amount of memory is available. We will make ex
tensive use of the ADDQ and SUBQ instructions for a variety of purposes
throughout this book.

68 Assembly Language Programming for the 68000 Family

Exercises

Assume longword operands unless otherwise specified.

1. What CCR bit is used to detect overflow of unsigned arithmetic
operations?

2. What CCR bit is used to detect overflow of signed arithmetic opera
tions?

3. Is there a limit as to how far away the label of a conditional branch
may be?

4. What CCR bit determines if the result of an arithmetic operation is
zero?

5. What CCR bit determines if the result of an arithmetic operation is
positive or negative?

6. What is the difference between the CMP instruction and the SUB
instruction?

7. Write the instructions necessary to branch to label STOP if the DO
register is equal to 100.

8. Write the instructions to branch to label BIGER if register DO is larger
than variable LIMIT. Assume unsigned values.

9. What CCR bits were discussed in this chapter?
10. Are all the bits of the CCR used?
11. If we add the following unsigned bytes, will the carry bit be set? The

values are in decimal.
55 and 27
150 and 110

12. If we add the following signed bytes, will the overflow bit be set?
The values are in decimal.
—100 and +50
—100 and —50

13. Write the instructions necessary to add the signed values in the DO
and D1 register and branch to label OK if there is no overflow.

14. Repeat the above problem for unsigned values.
15. Write the instructions necessary to test if register DO is zero and, if

so, to branch to label ZERO.
16. Write the instructions necessary to compare variables NUM1 and

NUM2, branching to label EQUAL if they are equal, to label LESS
if NUM1 is less than NUM2. Assume signed values.

17. Write the equivalent of the DBRA instruction using instructions intro
duced in this chapter.

18. What is the purpose of the extend bit?
19. What is the advantage of using ADDQ and SUBQ rather than ADD

AND SUB?

Conditional and Arithmetic Instructions 69

20. Can MOVEQ be used to load only the low-order byte of a data
register?

Answers

1. The carry bit, C.
2. The overflow bit, V.
3. Yes, approximately plus or minus 32,768 bytes.
4. The zero bit, Z.
5. The negative bit, N.
6. The CMP instruction does not store the result in the destination

9. The carry, overflow, negative, zero, and extend bits.
10. No, only five out of the eight.
11. 55+27=82, which is within the range of an unsigned byte; the carry

bit will not be set. 150+110=260, which is larger than the range of an
unsigned byte; the carry bit will be set.

12. (—100) + (+50) —50. The overflow bit will not be set. (—100) +
(—50) = —150. The largest signed negative byte is —128. In this
case the overflow bit will be set.

13. ADD.L D0,D1

operand

7. CMP.L #100,DO
BEQ STOP

3 CMP.L LIMIT,DO
BHI BIGER

BVC OK

14 ADD.L DO,D1
BCC OK

15. TST.L DO
BEQ ZERO

16. MOVE.L NUM1,D0
CMP.L NUM2,D0
BEQ EQUAL
BLT LESS

70 Assembly Language Programming for the 68000 Family

17. SUB.W tlrDO ASSUME COUNT IN DO
BGE LABEL

18. The extend bit is used for multiple precision arithmetic.
19. The ADDQ and SUBQ take up less memory and execute faster.
20. No, MOVEQ is always a full longword operation.

a 1APTER 6

ADDRESSING MODES

The majority of 68000 instructions have one or more operands. An
operand is used either as a source operand or a destination operand. A
source operand is always a data value that is only read by the instruction
and never modified. A destination operand may be read as well as
written. In other words, its value can be modified by the action of the
instruction.

The programmer normally explicitly specifies the operand or
operands of an instruction. A small number of instructions have implicit
operands. This means that a register is used as an operand without be
ing so specified. The JSR instruction is an example of this. As you will
see in the next two chapters, address register A7 is implicitly used by this
instruction.

Operands always ultimately specify a register or location in memory
where the data for the instruction is found. It is quite clear in

MOVE.L D0,D1

that the source operand is to be found in data register DO and the
destination operand is in data register Dl. If we write

MOVE.L (A0)+,D0

what does (AO) +mean? In order to answer this and many other questions
concerning operands, it is necessary to introduce the concept of an
addressing mode. The addressing mode is the method we specify for
the instruction to find a particular operand. The effective address of an
instruction is the actual location of the data. When a simple data register
is specified, the effective address is the data register itself. When an
instruction such as

ADD.L COUNT,DO

is specified, the effective address of the source operand is the location in
memory that contains the variable COUNT.

71

72 Assembly Language Programming for the 68000 Family

The 68000 has a total of 12 different addressing modes. This may
seem like a lot, but not all of these modes are commonly used, and some
are automatically selected by many assemblers to allow more efficient
execution of instructions. You have actually learned several of these
modes already.

At this point I should mention something about the limitations on the
use of these 12 addressing modes with all instructions. Life would indeed
be nice if we could use any of these 12 addressing modes as the source
and/or destination of each and every instruction. Computer scientists
refer to the orthogonality of a machine architecture as to the degree to
which all addressing modes can be used with all instructions. A fully
orthoganal architecture would allow all combinations. Unfortunately, the
68000 is not fully orthoganal, although it comes remarkably close. We do
have to be careful. Appendix C should be used as a reference as to what
is legal and what is not.

We will now go over the details of each of the addressing modes. I
will show some simple examples of how each mode is used. First, let’s
review the addressing modes that we have already covered in previous
chapters.

Register Direct Modes

These are actually the simplest of the modes. The effective address is
the specified register itself. There are two register direct modes:

1. Dn—Data register direct
2. An—Address register direct

Any of the seven address or seven data registers can be used. Don’t forget
that some instructions will not allow an address register to be specified.
We must use a MOVEA instruction instead of MOVE, and an ADDA or
SUBA instead of ADD or SUB.

Im m ediate Data

We have used immediate data addressing to place a constant in a
register or memory location. This value must be a constant value that is
known at the time of assembly. The general form of this addressing mode
is #<data>, where <data>can be a byte, word, or longword value.

Where is this constant located? It is actually located right along with the
instructor’s opcode word. You may recall that each instruction consists of at

Addressing Modes 73

least one word of memory. If we have an immediate operand, this
immediate constant data is placed in one or two successive words of
memory, right along with the instruction—a byte or word constant takes up
a word of memory, while a longword constant takes up the next two words.

The data may be a numeric constant, a symbol, or an expression. Here
are some examples of valid immediate addresses:

MOVE.B #$FF,BDATA
ADDI.L I1000/D5

MAX: EQU 200
SUBI.W #MAX*3,COUNT

Note that ADDI and SUBI were used instead of ADD and SUB.

Absolute Addressing

This is the third addressing mode that you have already used. In order
to understand the operation of this addressing mode, you will first have
to recall the structure of memory. Remember that each byte of memory
has an associated address or location. These addresses start at zero and
continue up to the maximum size of allowable memory. A byte, word, or
longword can be stored in memory. Words or longwords must be located
at even-numbered memory addresses. So, we can specify a particular
piece of data by its address in memory. There are actually two different
absolute addressing modes: absolute short and absolute long. The normal
one is absolute long. This allows a full 32-bit address to be specified.

When we want to directly access the contents of a location in memory,
we can use absolute addressing. The instruction

MOVE.B 5000rDO

moves the byte of data at location 500010 in memory into register DO. We
normally don’t use a numeric address, but a symbolic one.

MOVE.B DATA,DO

would be more common. Don’t get confused by the first example. This
not the same thing as immediate mode; without the # character it is taken
as absolute addressing. In the second example, the assembler substitutes
the correct value for the memory address of symbol DATA. For absolute
long addressing, the address is held in two words that follow the opcode

74 Assembly Language Programming for the 68000 Family

word. This is similar to the technique used with immediate addressing,
but these words are an address and not the data itself.

The absolute short mode only provides a single extension word to the
instruction. This word has a range of from 0 to FFFF in hexadecimal.
The 68000 takes this word and sign-extends it to 32 bits. This means that
the sign bit is copied into the high-order 16 bits. Therefore the range of
an absolute short address is

0000000016 - 00007FFF16 and
FFFF800016 - FFFFFFFF16

An address between 0000800016 and FFFF7FFF16 does not lie in this range
and can not be accommodated by the absolute short addressing mode.

If you have a smart assembler and are specifying an address in the
short range, the assembler can use this mode and save a word of memory.
Some assemblers always use the long absolute mode. I should mention
that on the majority of systems, even with a smart assembler, absolute
short mode may never be used. This is because you will normally be
specifying addresses by their symbolic names. These addresses are not
really absolute in the sense that they are pinned down to specific memory
locations. Most programming environments use some form of program
relocation. This can be accomplished at the time of linking, or at the
time the program is loaded for execution, or at both times. Therefore,
the assembler can’t guarantee that the final address will be in range of
the short addressing mode. Your only chance to use this mode is if you
specify a numeric address explicitly such as

MOVE.L $100,DO

If your assembler is smart, it will use absolute short. One way to find out
is to look at the assembly listing and count the total number of words
generated for that instruction. If there are two, then absolute short was
used.

Address Register Indirect

This is an addressing mode that has not been introduced in earlier
chapters. When we write an assembly language program, we normally
use a symbol to specify the location of data in memory. It is the job of
the assembler to assign memory locations to each of these symbols. The
68000 CPU doesn’t operate with symbolic addresses; rather, it requires
the actual memory address. If we somehow had a method of obtaining

Addressing Modes 75

this memory address at program execution time, we could reference
data using this address value rather than a symbol. This is the essence
of address register indirect addressing.

To use this addressing mode, an address must be placed into one of
the address registers. An address used in this manner is often called a
pointer. If we assume that the address of our data is in register AO, we
can reference the data by specifying the operand as (AO). In other words,
all we do is put parenthesis around the register designator. The general
form of this addressing mode is (An). Let’s assume that a word of data
is at location $10000. If we place the value $10000 into register A0, we
can reference this data. The following instructions will move this data to
register DO:

MOVEA.L #$10000,A0
MOVE.W (A0),DO

In this case we used the MOVEA.L instruction to place the value $10000
into register A0. Note that we used a MOVEA.L and not a MOVEA.W for
this instruction. Even though we are going to obtain a word of data, an
address is always a 32-bit longword value.

It is rare that we know the actual memory address for a particular
piece of data. How, then, can we find the address of a location repre
sented only by a symbolic name? This is actually quite simple. There
are two methods we can use. The first method simply moves the ad
dress value in as an immediate value. The following program excerpt
will move the address of COUNT into A0 and then move the data value
at COUNT into register DO.

MOVEA.L #COUNT,AO
MOVE.W (A0),DO
•

♦

COUNT: DC.W 1234

The second method is to use a special instruction specifically designed
for this purpose, the load effective address instruction, LEA. Its general
form is:

LEA <ea>,An

It has the advantage that it determines the effective address at execution
time and can therefore be used with a number of different addressing
modes. The above instructions would be rewritten as

LEA COUNT,A0
MOVE.W (A0),DO

76 Assembly Language Programming for the 68000 Family

The LEA instruction takes the address of COUNT, not the value at
location COUNT, and places it in register AO. The LEA instruction always
has a longword size, since it specifies an address value.

You might be wondering, why not just use absolute addressing? The
answer to this is best shown by example, but there are a couple of reasons.
Unlike in absolute addressing, the address can be modified if it is in a
register. This helps with data structures like arrays. Another real power
of the address register indirect mode is that it avoids the necessity of
knowing the symbolic name for the location of a data value in order to
reference it. This will start to have a greater meaning when subroutines
are discussed in Chapter 8.

Address register indirect can be of great help in managing data in
arrays. You are no doubt somewhat familiar with the use of arrays from
your experience in a high-level language. An array is a type of data
structure created by grouping together many similar data elements of
the same type in successive locations in memory. For example, we can
create an array of word-sized data items with the DC.W directive.

ARRAY: DC.W 345,862,10000,-26,473

This example is an array composed of arbitrary values. Suppose we wanted
to print out these five values—how could it be done using address register
indirect addressing? First, we observe that the label ARRAY specifies the
first address in the array. If we place this address in register AO, we should
be able to access the first data element using address register indirect
addresssing. How do we then get to the next value? We merely add the
proper constant to AO. In this case it will be a 2, since word data requires two
consecutive memory bytes. The following is a program that does just this:

NEXT:

LEA
CLR.L
MOVE.W
MOVE.W
JSR
JSR
ADDQ.L
DBRA

ARRAY,A0
DO
#4 ,D1
(A0),D0
OUTDEC
NEWLINE
«2,A0
D1,NEXT

GET ADDRESS OP ARRAY
CLEARS HIGH ORDER WORD
INIT FOR LOOP
GET ARRAY ELEMENT
OUTPUT
GO TO NEXT LINE
BUMP FOR NEXT ELEMENT
BACK FOR MORE

Wouldn’t it be nice if we didn’t have to increment the value of A0
by 2 each time through the loop, if it could be done automatically? The
68000 has granted our wish. The next addressing mode we will discuss,
address register indirect with postincrement, does just that.

Addressing Modes 77

Address Register Indirect With Postincrem ent

This addressing mode works exactly the same way as address register
indirect except that the value contained in the address register specified
is automatically incremented by 1, 2, or 4, depending on whether the
instruction was a byte, word, or longword operation. The general form
of the addressing mode is (An)+. The plus sign follows the register as a
reminder that the incrementing is performed after the operand is used.
The previous example can be rewritten as:

NEXT:

LEA
CLR.L
MOVE.W
MOVE.W
JSR
JSR
DBRA

ARRAY,AO
DO
#4,D1
(A0)+,D0
OUTDEC
NEWLINE
D1,NEXT

GET ADDRESS OF ARRAY
CLEARS HIGH ORDER WORD
INIT FOR LOOP
GET ARRAY ELEMENT AND INCREMENT
OUTPUT
GO TO NEXT LINE
BACK FOR MORE

As an interesting example of the use of address register indirect with
postincrement addressing, I would like to introduce the concept of a
character string. You will recall from Chapter 3 that the DC.B directive
can be used to place character strings into memory. It will generate
memory bytes that are equivalent to the ASCII character codes. One
problem exists with these character strings: How do we determine the
size? Unless we keep the size of each string along with the string, we
can’t really tell its length. There is another approach that has been widely
adopted by the C language. A null character, or zero byte, is used as a
terminator for the string. This acts as a special mark that indicates the end
of the string. The space occupied by the string will be one longer than
the actual length of the string. We could declare some strings as follows:

STRl: DC.B 'This is string l',0
STR2: DC.B 'Line 1',13,10,'Line 2',13,10,0
STR3 DC.B 0

The second string would be output on two lines. ASCII 13 is a carriage
return and ASCII 10 is a line feed. The third string is a null- or zero-length
string.

The first thing we might want to do with a string is to output it to the
terminal. A simple program will accomplish this. Assuming that a string
is located at location STR, the following will output all the characters
except the null:

78 Assembly Language Programming for the 68000 Family

LOOPs

PINI

LEA
MOVE.B
BEQ
JSR
BRA

STR,A0
(A0)+,D0
PINI
PUTC
LOOP

GET ADDRESS OF STRING
GET NEXT CHARACTER
DONE?
NO, OUTPUT THE CHARACTER
BACK FOR MORE
DONE

Another useful example is in moving a string from one place to
another. This same technique can be used to move one area of memory
to another. Here, address register indirect with postincrement addressing
is used for both the source and destination operands. We will move string
SI to string S2. S2 must be large enough to contain SI.

LEA SI,AO AO -> SOURCE
LEA S2,A0 A1 -> DESTINATION

LOOP: MOVE.B (A0)+,(A1) + MOVE A BYTE
BNE LOOP LOOP TILL ZERO BYTE

It may come as a shock that the loop consists of just one instruction, but
that is all it takes. One nice feature of the 68000 instruction set is that all
condition codes except X are set for a MOVE instruction. This allows us
to perform the conditional branch immediately following the MOVE.

As a final example of the use of this addressing mode, here is a simple
program to compare two strings.

LEA SI,AO A0 -> SI
LEA S2,A1 Al -> S2LOOP: TST.B (A0) NULL?BEQ LAST YES
CMPM.B (A0) +, (Al) + NO, COMPARE BYTES
BEQ LOOP CONTINUE WHILK =
BRA DIFF NOT =

LAST: TST.B (Al) NULL?
BEQ SAME

DIFF: • HERE WHEN STRINGS
SAME: # HERE WHEN STRINGS

The CMPM instruction is a special version of the compare instruction
that must be used when both the operands are register indirect with
postincrement addressing. We end up at label DIFF if the strings are
different and at label SAME if they are the same. The first TST.B is
needed to ensure that we don’t continue to compare memory locations
beyond the strings. The TST.B at LAST is needed to make sure that the

Addressing Modes 79

the second string is the same length as the first. If it is not, then the first
string would be a substring of the second and the two are therefore not
identical. If the second string were a substring of the first, the CMPM.B
instruction would fail. I will leave it as an exercise to rewrite this program
to allow matching substrings.

Address Register Indirect With Predecrem ent

This addressing mode is very similar to address register indirect with
postincrement. Its general form is — (An). Notice that the minus sign must
precede the register number. There are two major differences. First, the
value in the specified address register is decremented by the data size
rather than incremented. The other difference is in when this decrementing
takes place. With address register indirect with postincrement, the address
register was incremented after the effective address was computed. With
address register indirect with predecrement, the decrementing takes place
before the effective address is computed.

At first, you might be tempted to think of this addressing mode as a
way to access memory in decreasing address order. You might want to
move a chunk of memory starting with the highest memory location. This
can be done with some care. You have to remember that predecrementing
will occur. This means that the initial address value you place in the
address register will not be the address of the first piece of data. It will
be off by data-size bytes. You can certainly take this into consideration by
adjusting the value in the address register. This can be done in two ways.
You can generate a label that is on the next higher memory location:

DS.W 100 WORD ARRAY
BLOCK s EQU *

The asterisk is used to obtain the current value of the assembler’s location
counter. In this case, its value will be equal to the memory location
immediately following the last word of the data. You would then be
able to access this array in reverse order with the following instructions:

LEA BLOCK,AO
MOVE.W -(AO),DO GETS DATA ELEMENT INTO DO

The other method would involve placing a pointer to the last data element
in the address register and then adjusting it before use. Here is how you
would do it:

80 Assembly Language Programming for the 68000 Family

LEA BLOCK,AO
ADDQ.L §2,AO ADJUST BY ONE WORD
MOVE.W -(AO),DO GETS DATA ELEMENT INTO DO

DS.W 99 FIRST 99 WORDS OF ARRAY
BLOCK: DS.W 1 THE LAST WORD OF ARRAY

In the next couple of chapters you will learn some additional uses
for this addressing mode. Before going on to the next addressing mode
I should mention one minor detail that you must keep in mind. When
you use register A7 with either predecrement or postincrement modes,
it will always be adjusted by a multiple of two bytes. This means that
byte operations cause the value 2 to be added or subtracted. This is due
to the special significance of register A7 as a stack pointer, the topic of
the next chapter. Another thing you may be tempted to do is to use the
CMPM instruction with this addressing mode. You cannot do this. CMPM
can only be used with the address register indirect with postdecrement
mode.

Address Register Indirect With Displacem ent

This addressing mode is also a variant of address register indirect.
However, in this case there is no predecrement or postincrement. Rather,
this mode provides the ability to include a constant displacement to be
added to the value in the address register before it is used to form the
effective address. This value is not used to modify the contents of the
address register, but only in forming the effective address. The general
form is d16(An), where d16 indicates a displacement value which is 16 bits
long. It is a signed value; therefore, it can represent both a positive and
a negative offset given by the contents of An. Let’s say that AO contains
the value $10000. The instruction

MOVE.L 4 (A0),DO

will move the word at location $10004 to register DO. Using a symbol for
the displacement, the above example could be written as

DISP: EQU 4
MOVE.L DISP(A0),DO

If a symbol is used for the displacement, it must be a constant value and

Addressing Modes 81

not a label used on a memory location. Although some assemblers may
allow you to assemble the following:

MOVE.L ARRAY(AO),DO

ARRAY: DS.L 100

you will most likely run into trouble. The label ARRAY can ultimately be
located anywhere in memory and therefore should be represented by a
32-bit value. The displacement must be a signed 16-bit value.

Address register indirect with displacement is extremely useful for
data structures that contain records. A record can contain almost anything.
All records must be the same size if a simple array access technique is
to be used. Let’s say that we want a simple data structure containing
the names and ages of various people. We will restrict a name to be 10
characters, plus a byte for the terminating null character. An age can be
represented by a single byte. This gives us a total record size of 12 bytes.
We can declare an array of names as follows:

NAMLST: DC.B 'TOM ',0
DC.B 43
DC.B 'ERIN 'rO
DC.B 3
DC.B 'KRISTIN ',0
DC.B 5
DC.B 0

Here a null name has been used to mark the end of the list. We can
access the name and age of a particular record by defining constants to
represent the displacements into the record for each component.

NAME: EQU 0
AGE: EQU 11
RECSIZ: EQU 12

Here is a program that will add up the ages of the names in this array:

CLR.L DO DO HAS SUM
LEA NAMLSTfAO AO -> ARRAY

LOOP: TST.B NAME(AO) FINISHED?
BEQ FINI YES
CLR.L Dl NO, CLEAR HIGH ORDER BYTES
MOVE.B AGE(A0),D1 GET AGE
ADD.L DlfDO ADD IN AGE

82 Assembly Language Programming for the 68000 Family

ADDA.L #RECSIZ,A0 GET NEXT RECORD
BRA LOOP BACK FOR MORE

FINI:

Notice that the age is not added directly to the sum in DO. This is because
the age is a byte value, and adding a byte to DO would only allow a sum
as large as a byte. To get around this, we clear the high-order bytes of
Dl and then move the age byte into the low-order byte of Dl. Then we
can perform a full longword addition.

We can also take advantage of this addressing mode to rewrite the
string compare previously presented.

LEA SI,AO AO -> SILEA S2/A1 Al -> S2LOOP: CMPM.B (A0)+, <A1) + COMPARE BYTESBNE DIFF DIFFERENTTST.B -1(AO) FINISHED?BEQ SAME YES, THEY MATCHBRA LOOP LOOP FOR NEXT CHAR.DIFF: • HERE WHEN STRINGS DIFFERENT
SAME: . HERE WHEN STRINGS MATCH

Address Register Indirect With Index

This mode is very similar to address register indirect with displace
ment. In fact, it is address register indirect with displacement plus the
addition of a value contained in any one of the address or data registers.
The general form is d8(An,Rn.W) or d8(An,Rn.L). d8 is an 8-bit displace
ment. Its range is —128 to +127. This is not as great a range as with
address register indirect with displacement mode. Rn is any one of the
address or data registers. Either the sign-extended word or the complete
longword is taken from the index register, depending on the suffix the
programmer specifies. The effective address is formed by adding the dis
placement, the contents of the address register, and the contents of the
index register. This can be expressed as <ea> = (An)+(Ri)+d, where Ri
is the appropriate value from Rn.

This addressing mode is especially useful for two-dimensional arrays.
For a simple two-dimensional array of bytes, words, or longwords, the
address of the appropriate row can be placed in the address register and
the index of the column in the index register. In this case the displacement
would be set to zero. The effective operand would then be the location

Addressing Modes 83

of the data item. In order to determine the address of the row, a value
must be added to the address of the array that is equal to the row number
(assume rows start at 0) X the number of data elements in each row X the
size of each element. A two-dimensional array stored this way is referred
to as being in row major form.

We haven’t discussed multiplications just yet, so as an example I
will assume we want to access a particular element that we know in
advance—this way we can just use a constant. Let’s assume the size of
each element in the array is a longword and that the array is 100 by
100 elements. Furthermore, let’s say we want the 25th element in the 10th
row. The following instructions will move the longword from this array
element to register Dl.

RO: EQU 10*100*4
LEA ARRAY,A0
ADDA.L #RO,AO
MOVE.W #25,DO
MOVE.L 0 (A0,D0.W),D1

;ROW OFFSET
;GET PTR. TO ARRAY
;ADD IN ROW OFFSET
;COLUMN NUM. TO DO
;MOVE ELEMENT TO Dl

If we have a two-dimensional array of records, we can use the displace
ment to access the particular field of the record. There are many ways to
use this addressing mode. Just remember that the displacement must be
a constant value that is known at assembly time. The two register values
can be computed at execution time.

Program Counter Relative Modes

There are two program counter relative addressing modes. These
modes function similarly: the effective address is formed as a relative
displacement to the value of the program counter at the time the instruc
tion is executed. Since this is a multi-word instruction, the programmer
must be a bit more specific as to exactly what value the program counter
will have. The value is the address of the extension word of the instruc
tion. This is the word following the opcode word. The general forms of
the program counter with displacement addressing modes are d16(PC),
where di6 is the sign extension of a 16-bit value, and d16(PC,Ri), where
Ri is either Rn.W or Rn.L. This is similar to the use of the index register
with address register indirect with index mode. The effective addresses
for these addressing modes are (PC) +d and (PC) +(Ri) +d respectively.

At first, these addressing modes may seem utterly useless, since we
don’t know what the value of the PC will be at the time the program
is executed. However, we do know where some things will be located
relative to the position of an instruction using this addressing mode. In

84 Assembly Language Programming for the 68000 Family

fact, we can let the assembler do the work for us. By specifying a label for
the displacement, the assembler will automatically compute the proper
offset value. If we wish to access the data at location COUNT, we can
use PC with displacement addressing:

MOVE.L COUNT(PC),D0
0

COUNT: DC.L 1000

There are a couple of advantages in using this addressing mode. First,
the length of the instruction will be shorter than if the long absolute mode
is used, and a full word of memory will be saved. Second, when we
use PC relative addressing modes, the program code becomes position-
independent. This means that we can move the program around in
memory without modifying it and it will still work. Of course, this is
assuming that no absolute addressing is used anywhere in memory, which,
with great care, can be done. It is a help that all the branch instructions use
this mode at all times. Only with JMP and JSR do you have a choice. This
technique is useful for dynamically loaded programs that will be loaded
into various locations in memory. It is somewhat beyond the level of this
book to discuss all the applications of these techniques; however, one
application is that of dynamically loaded device drivers in an operating
system. If you program the Apple Macintosh, you will always have to
write position independent code—this is a drawback of the Macintosh
programming environment.

A couple of restrictions apply. PC relative modes can never be used
for the destination operand of an instruction. Additionally, many assem
blers and systems support the concept of a program section. Normally,
PC relative modes cannot be used with a label that is in another program
section. The specific restrictions on the use of these modes is somewhat
system-dependent. Consult the manuals for your assembler and system.
Additionally, some assemblers will generate this addressing mode auto
matically for references to labels that are not forward references. A for
ward reference is a reference to a label that has not yet been defined. You
should take a good look at your assembly listings to determine the ad
dressing modes that your assembler uses. Just look at the extension words
to the instruction. If there is only one, then PC relative mode is used.

Addressing Mode Summary

Here is a table of all the possible addressing modes and their assembler
syntax:

Addressing Modes 85

D ata Register Direct
Address Register Direct
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrem ent
Address Register Indirect with Displacement
Address Register Indirect with Index
Absolute Short
Absolute Long
Program Counter with Displacement
Program Counter with Index
Immediate

Exercises

1. Are source operands ever modified by an instruction?
2. What is an “effective address” ?
3. Is the 68000 a fully orthoganal machine?
4. What is the effective address for register direct mode?
5. Where is immediate data located?
6. What is the range of absolute short addressing?
7. What is a pointer?
8. How is address register indirect mode specified?
9. Use address register indirect mode to add the first 10 longwords

starting at absolute location $2000. Leave the result in DO.
10. Repeat the above problem using address register indirect with postin

crement addressing.
11. Write the instructions necessary to determine the length of a null

terminated string found at MYSTR. Leave the length value in register
DO.

12. With address register indirect with predecrementing or postincre
menting, is the value in the address register always modified by plus
or minus one?

13. What addressing modes are allowed with the CMPM instruction?
14. What is the range of the displacement for address register indirect

with displacement addressing?
15. Set up equates to define a record consisting of a 12-character (includ

ing the null) employee name, a longword employee number, and a
word salary.

16. For the above record definition, assume a pointer to the record is in
A4. Write the instruction that will place the salary data into DO.

Dn
An
(An)
(A n)+
“ (An)
d(An)
d(An, Ri)
xxx.W
xxx.L
d(PC)
d (P C , Ri)
#xxx

86 Assembly Language Programming for the 68000 Family

17. What are the general forms of the address register with index address
ing mode?

18. What restrictions do we have with the PC relative modes?
19. What do you think the instruction MOVE.W 0(PC), DO would do?
20. What is a forward reference?

Answers

1. No, only destination operands are.
2. The ultimate location where the operand data is found. This may be

a register or memory location.
3. Unfortunately no.
4. The register itself.
5. In one or more extension words found with the instruction.
6. 0000000016 to 00007FFFF16 and FFFF800016 to FFFFFFFF16.
7. An value used to represent an address in memory.
8. (An)

9. HOVE.L #$2000,A0
MOVE.W #9 ,D1
CLR.L DO

NEXT: ADD.L (A0),D0
ADDQ.L #4,A0
DBRA Dl,NEXT

10.

NEXT:

MOVE.L
MOVE.W
CLR.L
ADD.L
DBRA

#$2000,A0#9,D1
DO
(A0)+,D0
Dl,NEXT

11.

NEXT:

FINI:

CLR.L
LEA
TST.B
BEQ
ADDQ.L
BRA

DO
MYSTR,A0
(A0) +
FINI
#1 ,D0
NEXT

12. No, it is incremented or decremented by 1, 2, or 4, depending on
whether the size was byte, word, or longword.

13. Only address register indirect with postincrementing for both the
source and destination operands.

Addressing Modes 87

14. A 16-bit signed number. This is —65,536 to +65,535.

NAME: EQU 0
EMPNUM: EQU 12
SALARY: EQU 16
RECSIZ: EQU 18

16 . MOVE.W SALARY(A4)r D0

17. d8(An,Rn.W) and d8(An,Rn.L)
18. PC relative modes can not be used for destination operands. Some

assemblers will not allow these modes for references to other program
sections.

19. It copies the value in the instructions extension word to register DO.
This contains a zero.

20. A reference to a symbol that has not yet been defined.

C H A PTER 7

THE STACK

In this chapter we will examine the hardware stack implementation
on the 68000. A stack is a type of data structure. Computer scientists refer
to data structures like stacks as abstract data types. This is because we
manipulate the data items contained on the stack by indirect means. In
other words, we do not have to know the exact details of the particular
abstract data structure in order to use it. The 68000 provides a number of
addressing modes and instructions that can be used to manipulate data
on a stack. Additionally, a number of other instructions use the stack to
support their main functions. The JSR instruction that we have already
used is a good example.

A stack is just about what its name implies: a stack of data elements. As
with a stack of dishes or books, items are normally added to or removed
from the top of the stack. While it is possible to add or remove an element
from the middle of a stack, it is not a proper use. The data elements that
form a 68000 stack may be bytes, words, or longwords. A stack may be
placed anywhere in memory. It can be of any size. Normally, one of the
eight address registers, A0 through A7, is used to reference the contents
of a stack. However, register A7 is the register that is used by many
instructions, such as JSR, to implicitly reference a stack. This register
also has the symbolic representation SP (stack pointer). The diagram on the
following page shows what an empty stack looks like. Each position in the
stack is capable of holding a different value. The initial contents of the stack
are of no significance. Whatever values are in the respective memory
addresses are indicated by the question marks in the diagram. The actual
length of the stack is up to the programmer as long as the total length fits
within an area the programmer has reserved.

Stack Instructions

While it might seem a bit confusing, the 68000 hardware stack is upside
down. That is, when we add something to the stack, the elements are
added to progressively lower memory addresses. For each data element

89

90 Assembly Language Programming for the 68000 Family

SP- HIGH ADDRESS

LOU ADDRESS

added to the stack, the value of the stack pointer, SP, is decremented by
2 or 4. Remember, memory addresses are byte addresses and not word
or longword addresses. Even if we place a byte of data on the stack, the
SP register is always changed by 2, to allow a mixture of byte, word, and
longword data on the stack. Data on the stack should always be aligned
at even byte boundaries. This is necessary for word and longword data.
This is only true of register A7, and not when one of the other registers
is used as a stack pointer. If you use a register other than A7 as a stack
pointer, you will have to avoid placing byte data on the stack, or be sure
to keep things aligned properly.

The two main operations that are performed on a stack are push and
pop: we push data onto the stack, and later we pop it off. These are
descriptive terms, but are not the actual instruction names, although some
microprocessors actually use PUSH and POP. The 68000 uses two of its
addressing modes instead of special instructions. This allows us to push
and pop values onto and off of the stack with a variety of instructions.

To push a value onto the stack, the register indirect with predecrement
addressing mode is used. The general form is — (An), or — (SP) when we
use register A7 (of course, we could write — (A7), but the use of the
alternate symbolic name for address register 7 is more appropriate). The
instruction

MOVE.W # 1 2 3 4 , - (S P)

The 5tach 91

would result in the following stack:

SP 1234

HIGH ADDRESS

LOW ADDRESS

The stack pointer always points to the top element on the stack. This is
our push operation. If we push another value on the stack, let’s say 5555,
the stack would look like this:

1234
HIGH ADDRESS

SP 5555

LOW ADDRESS

92 Assembly Language Programming for the 68000 Family

To retrieve elements from the stack, we use a MOVE instruction with ad
dress register indirect with postincrement addressing. The general form
of this addressing mode is (An)+ and (SP)+ for the stack pointer. The
use of this addressing mode is the reverse of register indirect with pre
decrement addressing and results in popping the topmost value off the
stack. The data element pointed to by the stack pointer, SP, is obtained
from the stack and placed into the destination operand of the MOVE
instruction. The stack pointer is then incremented by 2 or 4. If we perform a

MOVE.W (SP)+,D0

on the above stack, the value 5555 is placed in the DO register. The stack
then looks like this:

HIGH ADDRESS

D0 < -- 5555

LOW ADDRESS

Notice that the value 5555 has not been changed on the stack. However, it
is below the stack pointer and is therefore no longer relevant. You might
be tempted to try to access this value by modifying the stack pointer
directly, perhaps with a SUB instruction. This is not a good idea. In fact, if
hardware interrupts are enabled, it might be changed without your being
able to predict just when (hardware interrupts will be covered in Chapter
12). Always regard data below the stack pointer as lost forever.

What happens if we pop one too many elements from the stack? Since

SP- 1234
5555

The Stack 93

the 68000 has no way of knowing how many valid elements are on the
stack, it just obtains the element pointed to by the stack pointer. If this
points to an invalid stack element, then the value obtained is garbage.
For this reason, all stack operations must be performed in pairs. A pop is
matched with a previous push. Due to the last-in first-out (LIFO) action
of the stack, you must be careful to pop things in the reverse order they
were pushed.

Before we go on to discuss stack applications, there is one other in
struction that should be mentioned. The push effective address instruc
tion, PEA, will compute the effective address of the source operand and
then push it on the stack. The general form of this instruction is

pea <ea>

It always pushes a full 32-bit value onto the stack. It is equivalent to
executing the two instructions

LEA <ea>,A0
HOVE.L A0,-<SP)

except that the address register is not used. Its main application, for
passing address values to subroutines, will be covered in more detail
in the next chapter. As a curiosity, the following two instructions are
equivalent

p e a (An)
MOVE.L An,-(sp)

Stack Applications

A stack can have many uses. In addition to its usage for subroutine
calls, which will be discussed in Chapter 8, the stack can be used by a
programmer as a versatile temporary storage area. The only restriction
is that the information stored on the stack must be saved and restored in
reverse order.

Quite often a programmer may need one or more registers for an
operation, and these registers currently contain values that may be needed
later. The registers could be moved to other registers, if available, or
saved in variable storage. This latter approach has the disadvantage that
unless we define specific variable names for each such operation, we
run the risk of accidentally using the same temporary storage location

94 Assembly Language Programming for the 68000 Family

more than once, which would wipe out the previous value before it was
restored. This problem does not exist with the stack, because the stack
can continue to grow and thus create new temporary storage locations.

The following instructions save the DO, Dl, D2, and D3 registers and
then restore them after performing some arbitrary operations.

D0,-(SP)
D1,-(SP)
D2,-(SP)
D3,-(SP)

(SP)+,D3
(SP)+,D2
(SP)+,D1
(SP)+,D0

Note that the number of pushes matches the number of pops and that
the order of the registers is reversed when the pops are performed.

If we want to push and pop a large number of registers, it can get
very tiresome to type all these MOVE instructions. The 68000 includes
a special version of the MOVE instruction, MOVEM (move multiple
registers). This instruction will push or pop any or all of the data or
address registers. The general forms of this instruction are:

MOVEM[.<size>] cregister list>,<ea>
MOVEMI.<size>] <ea>,<register list>
<size> = W, L

A register list is the list of registers to be pushed or popped. It consists
of:

1. Rn—a single register.
2. Rn-Rm—a range of registers (m > n).
3. Any combination of 1. and 2. separated by a slash.

The effective addresses that are normally used with this instruction are the
address register indirect with predecrement or postincrement. With these
two modes, the MOVEM operates just like a single MOVE except that
multiple registers are pushed or popped. To push registers DO through
D5 and registers A3 through A6, the following instruction would be used:

MOVE.L
MOVE•L
MOVE.L
MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVEM.L D0-D5/A3-A6,-CSP)

The Stack 95

They can be popped with:

MOVEM.L (SP)+fD0-D5/A3-A6

Just remember to make sure that the register lists match for the push and
pop. If the wrong number of registers are used for the pop operation,
the stack will be left in an improper state.

The MOVEM can also be used to move a set of register contents to
an area of memory rather than on the stack. All that is needed is an array
large enough to hold the contents of the register list. Here is how a set of
registers would be saved and restored to an area of memory:

MOVEM.L D0-D7/A0-A7,SAVEREGS

MOVEM.L SAVEREGS,D0-D7/A0-A7

SAVEREGSsDS.L 16

A stack can be used to reverse the order of a list of data items. The
following program reverses a character string entered from the keyboard:

♦PROGRAM TO REVERSE A CHARACTER STRING
CR: EQU 13 ASCII CARRIAGE RETURN

MOVE.B CR,-(SP) PLACE A RETURN ON THE STACKNEXT: JSR GETC GET A CHARACTER
CMP.B #CR,D0 IS IT A RETURN?
BNE REV YES, NOW REVERSE
MOVE.B DO,-(SP) NO, SAVE ON STACKBRA NEXT LOOP FOR MOREREV: JSR NEWLINE GO TO A NEW LINERNEXT: MOVE.B (SP)+,D0 GET A CHAR FROM THE STACK
CMP.B #CR,D0 FINISHED?
BEQ FINI YES, EXIT
JSR PUTC NO, OUTPUT THE CHAR
BRA RNEXT LOOP FOR MORE

PINI: JSR NEWLINE GO TO A NEW LINE

This program does not keep a count of the number of characters stored
on the stack. Instead, the ASCII value of the carriage return is placed on
the stack as a marker to indicate when we have reached the start of the
string. As we reverse the string, we will be moving from the end of the
string to the start. The carriage return tells us to stop popping the stack.
Any character code could be used, as long as it does not appear in the
string itself.

96 Assembly Language Programming for the 68000 Family

What happens if we do use a character code that appears in the string?
When we try to reverse the string, we will terminate the reverse loop
prematurely. This will leave data on the stack that should have been
removed. The consequences of this bad stack depend on the rest of the
program. The very next pop that is performed will result in the wrong
value. Since returns from procedures also use the stack, we can have
disastrous results.

In the next chapter we will discuss subroutines. The stack will be an
extremely important element in the implementation and use of subrou
tines.

Exercises

1. Which register is used as the hardware stack pointer?
2. Do some instructions implicitly reference the stack?
3. Does the 68000 stack grow upward or downward in memory?
4. What addressing mode is used to push data onto the stack?
5. What addressing mode is used to pop data from the stack?
6. Write the instructions necessary to push the value 100 onto the stack.
7. Write the instructions necessary to push the DO register onto the stack

and pop it into the Dl register.
8. Can you access data below the stack pointer?
9. Write the instruction to place the address of variable COUNT onto

the stack.
10. Write the instructions necessary to push the values 1 to 10 onto the

stack.

Answers

1. A7.
2. Yes, the JSR is one example.
3. Downward.
4. Address register indirect with predecrement.
5. Address register indirect with postincrement.

6. h o v e .L #100,-(SP)

7. HOVE• L DO r - (SP)
HOVE.L (SP)+,D1

8. Yes, but you can’t be sure of what it is.

PEA COUNT

MOVE.W #9,DO
MOVE.L #1,D1

NEXT: MOVE.L Dl,-(SP)
ADDQ.L #1,D1
DBRA DO,NEXT

LOOP COUNT
INITIAL DATA VALUE
PUSH DATA ONTO STACK
INCREMENT DATA VALUE
LOOP TILL DONE

C H A PTER 8

SUBROUTINES

We often find that we are repeating the same sequence of instructions
in several different parts of the program we are writing. Unlike the
instructions that are repeated in a loop, these sequences of instructions
must be repeated at different places in the program. Without the facility
of using subroutines, we would be forced to repeat these sequences of
instructions in our source code, and the machine instructions generated
by the assembler would be repeated in memory as well. This results in a
larger program—not to mention extra typing.

Fortunately, we do have the ability to write subroutines and use the
68000 instructions that support them. Any sequence of instructions that
we wish can be defined as a subroutine. The early high-level program
ming languages like FORTRAN used the term subroutine, while newer
languages like PASCAL use the term procedure. However, you should
not regard a procedure and a subroutine in a high-level language as ex
actly the same thing in assembler.

JSR, BSR, and RTS Instructions

As a simple example, let us say that we have a need to select the
largest of three numbers. Assuming that these numbers are contained in
the DO, Dl, and D2 registers, and that we wanted the largest value to be
placed in the DO register, we might do it with the following instructions:

CMP.L Dl ,D0
B6E LI
MOVE.L D1,D0CHP.L D2,D0
B6E L2
MOVE.L D2,D0

L 2 :

99

100 Assembly Language Programming for the 68000 Family

Each time we wished to perform this operation, we would have to repeat
the above six instructions. We would also have to change the labels to
make sure they were different for each repetition.

If we define these six instructions as a subroutine, we can call the
subroutine each time we want to execute these six instructions. We use
the JSR (jump to subroutine) instruction for this purpose. You have
already used JSR for performing input/output. You have been calling
the appropriate input/output subroutines all along. Here is how we would
define a subroutine:

BIGEST: CMP.L D1,D0
BGE LI
MOVE.L Dl / DOLI: CMP.L D2,D0
BGE L2
M0VE.L D2,D0

L2: RTS

The general form of a subroutine is:

<name>: .

RTS

The subroutines name and the RTS instruction bracket the instructions
that constitute the subroutine. One or more RTS instructions must appear
in the subroutine. Otherwise, execution will “fall out” the bottom. The
RTS instruction can be the last instruction of the subroutine, but it doesn’t
have to be. This will become a bit clearer when we examine the exact
mechanism by which subroutines work.

Subroutines can be defined at any convenient place in your program,
but keep in mind that the instructions of the subroutine appear in memory
in exactly the position they appear in the source program. This means
that you can’t just stick a subroutine in the middle of your main program.
When the subroutine’s instructions are encountered, they will be executed
in line. Normally, subroutines are placed after your main program.

The subroutine name is defined as a normal instruction label and
corresponds to the address of the first instruction of the subroutine. Your
subroutine BIGEST can be invoked from several places in your program
just by using a JSR instruction with the name of the subroutine. For
example:

Subroutines 101

JSR BIGEST

JSR BIGEST

Each time the JSR instruction is executed, the instructions of the subrou
tine BIGEST are executed. How does the program find these instructions?
The label BIGEST is used to tell the JSR instruction where to find the
subroutine. This can be thought of as equivalent to a simple JMP BIGEST
instruction. So far this is easy. But now consider what happens after the
steps of BIGEST are executed. How do we get back to the instruction
after the JSR? Which JSR? There may be quite a few. The answer lies
with the use of the stack and the RTS instruction.

Prior to transferring control to the subroutine, the JSR instruction
places the address of the instruction that immediately follows the JSR
instruction itself on the stack. This is the instruction that should be
executed when the instructions of the subroutine are completed. When
the RTS instruction is executed in the subroutine, this return address is
popped from the stack and placed in the program counter (PC). This
acts like another JMP instruction. Now control returns to the part of
the program that called the subroutine, with execution continuing at the
proper instruction. Figure 8 shows the sequence of events for a typical
subroutine call.

Figure 8 Subroutine call. END

102 Assembly Language Programming for the 68000 Family

The BSR instruction operates identically to the JSR instruction except
that it has the same limited addressing range as the conditional branch
instructions discussed in Chapter 5. The target address of the BSR instruc
tion must be a label. The JSR instruction allows the use of a wider range
of addressing modes. For example, we can place the address of the sub
routine in an address register and then use register indirect addressing.
The instructions

LEA SUBR,AO
JSR (AO)

have the same effect as the single instruction

JSR SUBR

You should use the BSR instruction whenever possible, since it takes up
less space in memory for subroutine calls that are relatively close to the
address of the BSR itself.

Passing Param eters

An assembly language subroutine is normally free to access any vari
ables within a program. You might want a subroutine to use specific
variables of your program as data for its operation. Some variables might
only be examined and not modified by the subroutine. Others might be
modified. An important point is that if a subroutine specifically refer
ences variables other than ones it uses for its own internal purposes, the
programmer is stuck with always using these variables to pass data to
and from the subroutine. From your programming in a high-level lan
guage, you are most likely wondering if parameters or arguments can be
passed to subroutines in assembly language. The answer is yes. By allow
ing parameters, we can make a subroutine more general by not always
requiring the same specific variables to be used to pass data to or from
the subroutine.

Parameters or arguments can be passed to subroutines in a great
variety of ways. There are no standard methods as would be used by
high-level languages. The choice is up to the programmer. In fact, it is
common practice for several different methods to be used in the same
program. The simplest method is to place the parameters to be passed
to the subroutine in one or more of the registers. We did this with the
BIGEST subroutine. Under normal circumstances one or more values are
returned by the subroutine. These values can be placed in the same or

Subroutines 103

different registers. This was also the case with BIGEST. For subroutines
with a small number of parameters, the use of the registers is simple and
efficient. Unfortunately, the number of registers is limited. Additionally,
the use of registers may require copying data values to and from variables.
We might also have to save values already in the registers before we use
them for parameters.

An alternative to the exclusive use of registers is to pass the address of
a list of parameters to the subroutine. The address can be passed in one of
the address registers. This allows a parameter list of arbitrary length, just
as long as all the parameters can be placed in memory at the same place.
Using the register indirect addressing mode (introduced in Chapter 6),
an address register contains the address of the operand rather than the
operand itself. Recall that to use an address register in this way we must
enclose it in parenthesis. Here is BIGEST rewritten to have parameters
passed by the use of an argument list:

BIGEST: MOVE.L (AO),D0 GET 1ST. ARG.
ADDQ.L #4, AO SET AO TO 2ND. ARG.
CMP.L (AO) ,D0 COMPARE
BGE LI
MOVE.L (AO),D0

LI: ADDQ.L #4, AO SET AO TO 3RD. ARG.
CMP.L (AO),D0 COMPARE
BGE L2
MOVE.L (AO),D0

L2: RTS

We are still using the DO register to return the largest value. This actually
has the advantage that none of the parameters passed to the subroutine
are modified. A fourth parameter, or return argument, could be used to
return this value. Here is how we set up a call to BIGEST:

•

•

LEA ARG1,A0
JSR BIGEST

DO MOW CONTAINS THE LARGEST VALUE
ARGls DS.L 1
ARG2 DS.L 1
ARG3 DS.L 1

The three arguments, ARG1, ARG2, and ARG3, would have values placed
in them before the subroutine call.

You might be asking whether it is possible to use the address register
indirect with postincrement mode rather than simple address register in
direct. It would be, except that we require up to two references through

104 Assembly Language Programming for the 68000 Family

AO, one for the compare and possibly one for the move. If we postincre
ment on the compare, we will not have AO pointing to the proper place
for the move. If we use a postincrement on the move, we may not al
ways execute this instruction. Give a lot of thought to those cases where
you may be tempted to use address register indirect with postincrement.

The above technique works quite well if we can always group the
parameters to a subroutine in one list. If, however, some variables are
used as parameters to several subroutines and the argument lists are not
the same, we are in trouble. Unless each subroutine is written such that it
knows which parameters to skip in the argument list, we can’t use just one
list. It would be poor programming practice to write subroutines in this
manner. A solution does exist. Instead of passing the actual parameters
in the argument list, we can pass the addresses of the actual parameters.
Just as we passed the address of the argument list in the AO register, we
can pass the parameter addresses as longword constants in the argument
list. These values will correspond to the address of each parameter in
memory. It is a bit more work to get to the actual parameter. This is how
BIGEST would be written:

BIGEST: MOVEA.L (AO),A1
MOVE.L (A1),D0
ADDQ.L #4,AO
MOVEA.L (A0),A1
CMP.L (A1),D0
BGE LI
MOVE.L (A1),D0

LI: ADDQ.L #4,AO
MOVEA.L (AO)/Al
CMP.L (A1),D0
BGE L2
MOVE.L (Al)/DO

L2: ADDQ.L #4/AO
MOVEA.L (AO)fAl
MOVE.L DO/(Al)
RTS

GET 1ST. ARG. PTR.
GET 1ST. ARG.
SET AO TO 2ND. ARG. PTR.
GET 2ND. ARG. PTR.
COMPARE
NEW LARGEST
SET AO TO 3RD. ARG. PTR.
GET 3RD. ARG. PTR.
COMPARE
NEW LARGEST
SET AO TO 4TH. ARG. PTR.
GET 4TH. ARG. PTR.
RETURN RESULT

LEA ARGLST/AO
JSR BIGEST

;ARGLST: DC.L ARG1
DC.L ARG2
DC.L ARG3
DC.L ARG4

ARG1: DS.L 1
ARG2: DS.L 1

Subroutines 105

ARG3: DS.L 1

ARG4: DS.L 1

The MOVEA.L (A0),A1 instruction obtains each argument pointer in
turn. Note also that the parameters ARG1 through ARG4 do not have to
be adjacent or in any order, but can be anywhere in memory.

Saving and Restoring the Registers

Most subroutines will no doubt require the use of one or more of the
registers. If these registers are used to pass parameters, the programmer
is well aware of the use of these registers by the subroutine. However, a
register may be used by the subroutine that is not used for a parameter.
The programmer who uses the subroutine must be aware of which of
these registers are used if the contents are not preserved by the subroutine.
If the programmer is not careful, a bug is introduced. It is important to
be sure that either the caller or the subroutine saves and restores the
appropriate registers.

The saving and restoring of the registers can be done by the caller or
the called subroutine. Both have their advantages and disadvantages. The
caller who saves and restores the registers may be doing extra work. Let’s
say he is using most of the registers. The subroutine he is calling may only
use one or two. Unless the caller knows which registers are used by the
subroutine he must save and restore all those he is using. The assumption
that only certain registers are used by the subroutine is a common source
of bugs in assembly language programming. If the subroutine is modified
in the future to use an additional register, all calls must be checked to
make sure a bug has not been introduced. On the other hand, if the called
subroutine is responsible for saving and restoring the registers it uses,
the caller will never be doing extra work and the probability of errors
is sharply reduced. However, if the subroutine uses a large number of
registers, it may save and restore some of them that are not being used
by a particular caller.

The technique of saving and restoring the registers is normally handled
by using the stack. If the caller is saving and restoring the registers,
he must push the desired registers prior to the call and then pop these
same registers after control returns from the subroutine. Remember, the

106 Assembly Language Programming for the 68000 Family

registers must be popped in the reverse order from the pushes. The caller
would save and restore DO, Dl, and D3 as follows:

MOVE.L DO,-(SP)
MOVE.L D1,-(SP)
MOVE.L D3,-(SP)
JSR MYPROC
MOVE.L (SP)+,D3
MOVE.L (SP)+/D1
MOVE.L (SP)+,DO

You may recall from Chapter 7 that the MOVEM instruction can be used
in place of a sequence of moves. The above instructions could also be
written

MOVEM.L D0-D1/D3,- (sp)
JSR MYPROC
MOVEM.L (sp)+/D0-D1/D3

Passing Param eters on the Stack

A technique of passing parameters to a subroutine that is often over
looked by assembly language programmers is that of using the stack.
This is the most common technique that is used by high-level languages.
If parameters are pushed onto the stack by the caller, the subroutine can
access them. How does this work, considering that the return address is
also pushed onto the stack by the JSR instruction? If the subroutine were
to pop values from the stack, the first value would be the return address.
Unless this value is saved, and later pushed back onto the stack, the sub
routine will not have the ability to return to its caller. A better method is
possible.

Let us say that you, as caller, want to pass three longword parameters
to a subroutine. You would use the following instructions:

MOVE.L PARM3,- (SP)
MOVE.L PARM2,-(SP)
MOVE.L PARM1,- (SP)
JSR MYPROC

The execution of these instructions would result in the stack at the top of the
following page. If you could access the stack without changing the stack
pointer, SP, you could obtain the parameters. A push or pop can’t be used,
since they automatically modify, the stack pointer. However, you can use
register indirect with displacement addressing. The appropriate register is,

Subroutines 107

HIGH RDDRESS

LOW ADDRESS

of course, SP. After the call, SP is pointing at the 32-bit return address value.
The first parameter is located at 4(SP) (assuming that the parameters were
pushed onto the stack in reverse order). Where would the second parameter
be? Well, that depends on the size of the first parameter. If the first
parameter is a longword, as in this example, then the second parameter is at
8(SP). Each of the other parameters can be found in a similar manner.

I should refresh your memory concerning register A7 (SP), the stack
pointer. When postincrement or predecrement addressing are used with a
byte-sized operand, SP is always modified by 2, even though the operand
is a byte. This is so the stack can always be aligned on an even-word
boundary. You should remember this fact if you pass a byte parameter on
the stack—always count it as two bytes. If you use a byte-sized instruction
for both the push and the pop, everything will work out okay.

The following instructions will obtain the three parameters from the
above example and place them into registers DO, Dl, and D2:

MOVE.L 4(SP),D0 PARM1
MOVE.L 8(SP),D1 PARM2
MOVE.L 12(SP),D2 PARM3

Of course, the parameters do not have to be moved to registers to be
used; they can be referenced directly.

This very common and simple method of passing parameters is re
ferred to as call by value. The actual value of the parameter is placed
on the stack. There are some limitations to this technique. First, it is only
practical to pass byte, word, or longword arguments on the stack. What
if we want to pass an entire array? Second, the subroutine has no way to
change the actual parameter; it can only change the copy it has on the
stack. Both of these limitations can be overcome by the use of a call by

PARM3

PARM2

PftRMl

SP RETURN ADDRESS

108 Assembly Language Programming for the 68000 Family

reference. With call by reference, the address of the parameter is passed
on the stack. This allows the subroutine not only to access the parameter
in the caller’s domain, but actually to change its value—in other words,
the subroutine can have both input and output parameters. Call by value
only allows input parameters.

The PEA instruction discussed in Chapter 7 is used to pass the address
of each parameter that is to be a call by reference. Note that it is certainly
possible to have a mix of call by value and call by reference in the same
subroutine call. The only restriction is that both the caller and the callee
agree on the order and type of the parameters. Let’s say we want to
call subroutine ALPHA with the single parameter COUNT, using call by
reference. We would call ALPHA as follows:

PEA COUNT
JSR ALPHA

Furthermore, assume that subroutine ALPHA does something simple, like
adding 10 to its only parameter. Here’s how we can do it:

ALPHA: MOVEA.L 4(SP),A0 GETS ADDRESS OP COUNT IN AO
ADD.L #10,(AO) ADD 10
RTS

Keep in mind that the data object to which the parameter points can
be as simple as a single integer or as complicated as the programmer
desires—an array of records, or even a record consisting of several arrays.
Anything that can be located by a single address can be passed as a
parameter using call by reference.

One problem still remains: the parameters are still on the stack when
the subroutine returns. The subroutine can’t pop the parameters, since
the return address is at the top of the stack. One method is to have the
caller clean up the stack. The caller has several choices as to what to do.
The caller can pop the parameters:

MOVE.L (SP)+,D0 PARM1
MOVE.L (SP)+,D0 PARM2
MOVE.L (SP)+,D0 PARM3

This technique is most useful when one or more parameters are return
values. The caller can also modify SP directly:

ADDA. L # 1 2 , SP

Subroutines 109

A unique method that you might come across is to use the LEA instruc
tion:

LEA 12(SP),SP

This method is reported to execute somewhat faster than the ADDA.
An alternate approach is to have the subroutine clean up the stack.

This is complicated by the fact that the return address is on the stack.
You can’t just add a value to SP. You must first move the return address
to a safe place, adjust SP, and finally return the return address to the stack
in preparation for the RTS. For the above example, this can be done as
follows:

MOVEA.L (SP)+,AO GET RETURN ADDRESS
ADDA.L #12,SP ADJUST SP
MOVE.L AO,- (SP) PUT RETURN ADDRESS BACK
RTS

A subtle method would be to substitute a JMP instruction for the RTS.

MOVEA.L (SP)+,A0 GET RETURN ADDRESS
ADDA.L #12,SP ADJUST STACK
JMP (AO) RETURN

These last two methods have the disadvantage in that they use an address
register that can’t be restored to its prior value before the return.

Stack Fram es

There are a number of problems introduced when parameters are
passed on the stack. Unless the subroutine keeps track of the value of
SP when it was called, it will not be able to find its parameters. For
example, if a subroutine needs to push one or more values on the stack
during its operation, the value of SP will change and the parameters
will not be located at the same relative offsets that they were originally.
Also, high-level languages use the concept of local or automatic variables.
These are special storage locations that only exist during the time interval
that the subroutine, or a subroutine that it calls, is executing. These local
variables are normally allocated from the stack. This allows such nice
features as recursive subroutine calls. Each time a subroutine is called it
will create a new and distinct set of local variables.

All of this greatly increases the difficulty in keeping track of where
things are on the stack. Each time the stack pointer SP changes, all the

110 Assembly Language Programming for the 68000 Family

offsets will also change. What is needed is a method of anchoring our
position in the stack and making all references relative to this fixed point.
This fixed reference is called the frame pointer. Every subroutine that
is called in a sequence of subroutine calls uses its own stack frame. It is
a simple matter to allocate a specific address register, other than A7, to
serve this purpose. Quite often register A6 is used as a frame pointer. All
we have to do is to move the particular value of SP that is our anchor point
into A6. SP can then change and we will still be able to access parameters
and local variables relative to our anchor point. The logical choice of such
an anchor point is the value of SP just after the subroutine is called. This
would always allow us to access parameters as a positive offset from the
frame pointer. If we want local variable storage, we can subtract a fixed
number from SP and use this area, referenced as a negative offset from
the frame pointer, for our locals. If we execute the following instructions

ALPHA: HOVEA.L SP,A6
ADDA.L *m,SP

SET UP FRAME POINTER
RESERVE ID BYTES OF LOCALS

for subroutine BETA we will have a stack that looks like this:

High
arguments

return address

locals
AS (Frame Pointer)

SP

Loui

We can then access parameters using address mode 4n(A6), where n is
the parameter number. We have to remember to account for the four
bytes occupied by the return address when computing this offset. Local
variables are addressed as —m(A6), where m is the byte offset into the
local area. To return from our subroutine, we can quickly clean up the
stack of all locals by merely resetting SP to the value of the frame pointer
A6 and then performing the RTS.

Subroutines 111

HOVEA.L A6,SP
RTS

All of these operations are made simpler by using the LINK and
UNLK instructions. These have the added advantage that the register
used as the frame pointer is automatically saved and restored. The LINK
instruction has the general form

LINK Anr#<<3i6placement>

where <displacement> is the value to be added to the stack pointer.
Normally a negative displacement is used to allocate locals. The LINK
instruction first pushes An on the stack, and then loads An with the
updated value. Finally, the displacement is added to SP. The result will
look almost like our example above, except that An will be on the stack.
Here is what a frame will look like after a LINK instruction.

High

Lou

arguments

return address
saved fin

locals

temporaries

fin (Frame Pointer)

SP

Naturally, the offsets to the parameters are slightly different. The first
parameter is now found at 8(An) rather than 4(An).

The unlink instruction, UNLK, merely loads SP from An and pops the
saved An from its location on the stack. As a final example, let’s write a
subroutine, GAMMA, that uses LINK and UNLK and requires 100 bytes
of local storage.

112 Assembly Language Programming for the 68000 Family

GAMMA: LINK A6,#-100
MOVEM.L <regs>,-(sp)

MOVEM.L (SP)+,<regs>UNLK A6
RTS

The only register that does not have to be saved and restored with the
MOVEM instructions is A6, since this is handled by the LINK and UNLK.
If subroutine A calls subroutine B, which calls subroutine C, we will have
a chain of stack frames.

Lou

High ft’s frame

B ’s frame

C ’s frame

etc.

Exercises

1. Are subroutines and procedures essentially the same thing?
2. How does a subroutine get control?
3. How does a subroutine return control?
4. Where in your program can subroutines be placed?
5. What is the difference between a JSR and a BSR?
6. Write the instructions and directives for a subroutine named CLEAR

that clears the data registers.
7. What are the disadvantages of using registers to pass parameters to a

subroutine?

Subroutines 113

8. Write a subroutine called SUM that adds DO and Dl and returns the
result in DO.

9. Write a subroutine and its call that adds word variables A and B.
Assume that A and B can be located next to each other in memory.
Return the sum in DO.

10. Repeat the above problem, now assuming that A and B cannot be
located next to each other in memory.

11. When a JSR is executed, what actions take place?
12. What actions take place when a RTS is executed?
13. What is wrong with the following?

CRAZY: MOVE.L D0,-(SP)
ADD.L D0,D1
RTS

14. The following subroutine is designed to double the DO register and
return the result in Dl. What is a possible danger with the following
procedure if the caller assumes that no registers are changed?

DOUBLE:ADD.L DO,DO
MOVE.L D0,D1
RTS

15. Write a subroutine named SKIPLINES that outputs blank lines spec
ified by a count contained in register DO.

16. If we pass parameters on the stack, what method can be used to
“clean up” the stack?

17. Write a subroutine named PAIRS that outputs two values on a line.
VAL1 is output first, and then VAL2, followed by a new line. These
values are passed on the stack by the following instructions:

MOVE.L VAL l (S P)
MOVE.L VAL2,-(SP)
JSR PAIRS

It might help to draw the stack.
18. What is the difference between call by reference and call by value?
19. Write an instruction to place the address of variable ALPHA on the

stack.
20. What is a stack frame?

114 Assembly Language Programming for the 68000 Family

Answers

1. Yes, but they are not exactly the same as the subroutines and proce
dures of high-level languages.

2. By a JSR instruction.
3. By a RTS instruction.
4. Anywhere, as long as they are not in the middle of code that is

designed for sequential execution.
5. A BSR is similar to the conditional branches in that it only allows a

label as an operand; a JSR can use a number of addressing modes,
including register indirect.

CLEAR: CLR.L DO
CLR.L Dl
CLR.L D2
CLR.L D3
CLR.L D4
CLR.L D5
CLR.L D6
CLR.L D7
RTS

7. There are a limited number of them, and data may have to be copied
to and from the registers.

8. SUM: ADD.L D1,D0
RTS

9.
LEA A,AO
JSR SUM

SUM: MOVE.W (AO),DO
ADDQ.L #2,AO
ADD.L (AO),DO
RTS

A: DS.W 1
B: DS.W 1

10.

LEA ARGLST,A0
JSR SUM

SUM: MOVEM.L A0-A1,-(SP)
MOVEA.L (AO),A1
MOVE.W (A1),D0

SAVE REGS
-> 1ST. ARG.

Subroutines 115

ADDQ.L
MOVEA.L
ADD.W
MOVEM.L
RTS

#4/AO
(AO),A1
(Al)/DO
(SP)+/A0-A1

-> 2ND. ARG
RESTORE REGS

12

13

14.

15.

ARGLST :DC.L A
DC.L B

A: DC.W I

B; DC.W 1

11. The return address is pushed onto the stack, and control transfers to
the location specified by the operand of the JSR.
The return address is popped from the stack, and control transfers to
the return address.
There is no matching pop to the push of DO onto the stack, and there
fore the RTS instruction will not obtain the correct return address.
The DO register is not saved and restored by the procedure.

16.

17.

SKIPLINES: MOVE.L D O (S P) SAVE DO
NEXT: JSR NEWLINE OUTPUT NEWLINE

SUBQ.L #1/DO DECREMENT COUNT
BNE NEXT BRANCH IF MORE
MOVE.L (SP)+/D0
RTS

RESTORE DO

caller can use an ADD instruction to register SP.

PAIRS: MOVE.L DO/-(SP) SAVE DO
MOVE.L 12(SP)/DO GET VAL1
JSR OUTDEC OUTPUT
MOVE.B #' ' BLANK
JSR PUTC OUTPUT BLANK
MOVE.L 8 (SP)/DO GET VAL2
JSR OUTDEC OUTPUT
JSR NEWLINE
MOVE.L
RTS

(SP) +,D0 RESTORE DO

18.

Note that VAL2 is at 8(SP) because of the extra 4 bytes used when
we saved DO on the stack. VAL1 is at 12(SP) because it was pushed
first.
With call by value, a copy of the data is placed on the stack. With
call by reference, the address of the data is placed on the stack.

19. PEA ALPHA

116 Assembly Language Programming for the 68000 Family

20. A stack frame is an area of the stack used to pass parameters to a
subroutine, save the return address, and provide temporary storage
or local variables for a subroutine. Each subroutine has an associated
stack frame for each active call.

CHAPTER 9

LINKED LISTS—
A PROGRAMMING EXAMPLE

You now have a considerable number of useful 68000 instructions in
your repertoire, it would be nice to see how a larger program can be
constructed. Since a linked list is a very popular type of data structure, I
have chosen this as the vehicle for our discussion. We will set out to write
out a complete program to form a linked list of words that is organized
in alphabetical order. This program will allow you to add to, print, and
delete entries in this linked list. In the course of the chapter we will build
up a set of subroutines that will prove useful beyond their application
to linked lists. To some extent these subroutines look like some of those
found in the standard C language library.

A linked list consists of a chain of nodes. A node consists of some
amount of data and a pointer. The data is arbitrary and the amount can
be as large or small as the user desires. The pointer which is just a 32-bit
address in memory, is the address of the next node in the chain. As many
nodes as we want can be chained together. If we know the address of
the first node in the list and have some method of determining when we
have reached the last node in the list,we can reach any particular node
by progressively chaining down the list from the first node. This will be
demonstrated shortly. Figure 9 shows the structure of a single node and
a linked list of nodes. HEADER is not a node but merely a pointer to the
first node.

When we build a linked list of data items, we must obtain the storage
space for a node, fill in the correct data, and finally link it into the list

Figure 9 Linked list

117

118 Assembly Language Programming for the 68000 Family

in the correct location. There are many ways to obtain the storage for
a node. One way is to maintain a linked list of free nodes. All we have
to do is to initialize this linked list by chaining the nodes together. For
our example we will have nodes of size NDATA. This represents a node
of size NDATA+4, where NDATA is the size of the data in the node.
A header, FLIST, will be maintained that will point to the pool of free
nodes. Assuming the total number of nodes is equal to the value of symbol
NNODES the following subroutine, INIT, will initialize a free list of
nodes:

NDATAs EQU 10 10 BYTES OP DATA (MUST BE EVEN NO.)
NSIZE: EQU NDATA+4 DATA + POINTER
NNODES: EQU 100 NUMBER OF NODES
* *

* INIT - INITIALIZE THE FREE LIST
* *

INIT: MOVEM.L D1/A0-A1,-(SP) SAVE REGS
LEA NODES,A0 A0 -> NODE POOL
LEA FLIST,A1 Al -> HEADER OF FREE LIST
MOVE.W #NNODES-l,D1 SET UP FOR LOOP

INIT1: MOVE.L A0,(Al) SET -> TO NEXT NODE
MOVEA.L A0 ,A1 SET UP FOR NEXT NDOE
ADDA.L #NSIZE,A0 A0 -> NEXT NODE
DBRA Dl,INIT1 LOOP UNTIL DONE
CLR.L (Al) PLACE NULL PTR IN LAST NODE
MOVEM.L (SP)+,D0/A0-A1 RESTORE REGS

* RTS
DATA

FLIST: DS.L 1 -> FREE LIST
NODES: DS.B NSIZE*NNODES NODE POOL

The CLR.L instruction places a zero value in the very last pointer. A
value of zero is used to represent the NULL pointer. We can never have
a node at address zero for reasons that will be covered in Chapter 12.
Locations starting at zero are special reserved locations on the 68000.

Our next step is to write a subroutine that will obtain a free node from
this free list. Here is how we do it:

**
* GETFREE - RETURNS PTR TO FREE NODE IN A0.
* IF NO NODES LEFT, NULL IS RETURNED
* *

GETFREE:
MOVEA.L FLIST,A0
CMPA.L #0,A0
BEQ GETFRET
MOVE.L (A0),FLIST

GETFRET:RTS

* *

GET HEAD PTR
NULL?
YES, JUST RETURN
NO, SET NEW HEAD

Linked Lists—A Programming Example 119

This subroutine merely uses the address contained in the head pointer
FLIST as a pointer to the the node to obtain. If it is NULL, it means our
free list is empty. If the pointer in FLIST is not NULL, then it gives the
address of a free node. If the free list is not empty then the head pointer
FLIST is set to point to the next node in the free list. Either a valid node
pointer or a NULL is returned by the subroutine.

Before we can start to build some linked lists that contain actual data,
we will have to take time out from our linked lists and develop some
other important subroutines.

In Chapter 6 I introduced the concept of a character string. You
may recall that a character string can be specified as a list of successive
bytes followed by a terminating or null byte. One important subroutine
determines a string’s length:

ft***
* STRLEN - RETURNS LENGTH OP NULL TERMINATED STRING IN DO
* AO -> STRING ***’
STRLEN: MOVE.L AO r- (SP) SAVE REG

CLR.L DO INITIALIZE
STRLENI:TST.B (AO) + NULL?

BEQ STRLENR YES, RETURN
ADDQ.L #1 f DO BUMB COUNT
BRA STRLENI LOOP

STRLENR:MOVE.L (SP)+,A0 RESTORE REG
RTS

We might also want to copy a string:

**
* STRCPY - COPY A NULL TERMINATED STRING
* AO -> SOURCE STRING
* A1 -> DESTINATION STRING **
STRCPY: MOVEM.L A0-A1,-(SP) SAVE REGS
STRCPY1:MOVE.B (A0)+,(A1)+ MOVE A BYTE

BNE STRCPY1 GET ANOTHER IF NOT NULL
MOVEM.L (SP)+/A0-A1 RESTORE REGS
RTS

Next, we will want to compare two strings:

* *

* STRCMP - COMPARE TWO NULL TERMINATED STRINGS
* AO -> STRING 1
* A1 -> STRING 2 **
STRCMP: MOVEM.L A0-A1,-(SP) SAVE REGS
STRCMP1:CMPM.B (A0)+,(A1) + COMPARE BYTES

BNE STRRET RETURN IF DIFFERENT

120 Assembly Language Programming for the 68000 Family

TST.B -1(AO) HAVE WE HIT A NULL?
BNE STRCMP1 NOW MORE BYTES LEFT

STRRET: MOVEM.L (SP)+,A0-A1 RESTORE REGS
RTS

This subroutine sets the condition code register according to the last two
bytes compared, if they were unequal; the zero condition is set if the
strings match. We can then determine not only the equality or inequality
of the strings, but also their alphabetical order. Fortunately, the ASCII
character set is ordered properly from A to Z. These last two subroutines
are minor variations of the techniques used in Chapter 6.

The standard I/O subroutines introduced in Chapter 4 only provide
a mechanism to input or output a single character. We must be able to
input and output a complete character string. Two subroutines, INS and
OUTS, will be used to input and output null-terminated strings. OUTS
merely calls PUTC for each character in the string until the null is found.

* OUTS - OUTPUT A NULL TERMINATED STRING TO THE SCREEN
* aO -> STRING
OUTS: MOVEM.L AO/DO,-(SP)
0UTS1: CLR.L DO

MOVE.B (AO)+/D0
BEQ OUTSRET
JSR PUTC
BRA OUTS1

OUTSRET:MOVEM.L (SP)+,AO/DO
RTS

SAVE REGISTERS
CLEAR HIGH ORDER BYTES OF DO
MOVE A CHARACTER INTO DO
QUIT IF NULL
OUTPUT THE CHARACTER
LOOP FOR ANOTHER
RESTORE REGISTERS

Inputting a character string is almost as simple. There is one minor
detail to keep in mind: the size of the array that we are reading the string
into is of a certain size. For this example, the maximum size data string
is a total of NDATA characters long. Since the string must be terminated
with a null, we must reserve one of these characters for the null byte.
Therefore, we can only read a total of NDATA-1 characters from the
keyboard. The INS subroutine will read characters using GETC until a
carriage return is entered or NDATA-1 characters have been entered.

* INS - INPUT A STRING UNTIL CR OR NDATA-1 CHARACTERS
* AO -> STRING
INS: MOVEM.L A0/D0-D1,- (SP) SAVE REGISTERS

MOVE.W #NDATA-2,D1 SET UP LOOP COUNT
INS1: JSR GETC GET A CHARACTER

MOVE.B D0,(A0)+ STORE IT IN STRING
CMP.B #CR,D0 CR?
DBEQ Dl,INS1 LOOP UNTIL COUNT RUNS OUT OR CR

Llnhed Lists—A Programming Example 121

INSR: JSR NEWLINE
CLR.B (AO)
CMP.B #CR,D0
BNE INSR1
CLR.B -1(AO)

INSR1: MOVEM.L (SP)+,A0/D0-D1
RTS

OUTPUT A NEWLINE
ADD A NULL TO STRING
LAST CHAR A CR?
NO
YES, PUT NULL THERE TOO
RESTORE REGISTERS

Note that the method used to handle an overflow count is different from
that used to handle a string terminated with a carriage return. If the
carriage return is entered, it must not appear in the string. The second
CMP.B instruction handles this check. If the last character entered was a
carriage return, it is overwritten with a null byte.

At this point we have enough basic subroutines to start manipulating
the linked lists themselves. We will need two types of list insertions; one
that inserts a node at the head of a list, and one that inserts a node in
alphabetical order. To insert at the head of the list is very simple. We
merely obtain the pointer to the first node from the header. You can think
of the header as a special node that has no data and is always located in a
known place. For example, the header for the free list is always located
at the memory location FLIST. We set the forward pointer in the node
we are inserting to point to the node that was pointed to by the header.
This may be a null pointer, but we don’t care. The only other piece of
business is to set the header to point to the node we are inserting. Here
is how it’s done:

* INSERT - INSERT A NODE AT THE HEAD OF A LIST.
* AO -> NODE
* A1 -> HEADER OF LIST **
INSERT: MOVE.L (A1),(A0) SET UP LINK IN NEW NODE

MOVE.L A0,(A1) SET HEADER TO -> NEW NODE
RTS

Figure 10 shows this operation.
Insertion of a node in alphabetical order is considerably more difficult.

We must chain down the linked list until we find the proper insertion
point. This is determined by a string comparison using STRCMP. We
then have to link this node into the list by breaking the previous link and
setting the proper pointers. Refer to Figure 11.

INSERTA - INSERT A NODE ALPHABETICALLY.
AO -> NODE
A1 -> HEADER OF LIST

INSERTA:MOVEM.L A0-A2,-(SP) SAVE REGISTERS
ADDQ.L #4/AO AO -> NEW NODE DATA

122 Assembly Language Programming for the 68000 Family

INSAO: MOVEA.L A1,A2 A2 -> PREVIOUS NODE LINK
MOVE.L (Al),A1 Al -> NEXT NODE LINK
CMPA.L #0,A1 NULL?
BEQ INSAI YES, END OF LIST
ADDQ.L *4,A1 Al -> NEXT NODE DATA
JSR STRCMP COMPARE STRINGS
BLT INSAI KEEP LOOKING
SUBQ.L #4,A1 Al -> NEXT NODE LINK

INSAI: SUBQ.L #4 / AO AO -> NEW NODE LINK
MOVE.L Al,(AO) SET LINK IN NEW NODE
MOVE.L AO, (A2) SET LINK IN PREVIOUS NODE

INSAR: MOVEM.L
RTS

(SP)+,A0-A2 RESTORE REGISTERS
INSAI: SUBQ.L #4 ,A1 Al -> LINK

BRA INSAO CONTINUE SEARCH

figure 10 Insertion at head of list

Figure 11 Insertion into middle of list

By using more registers and/or other addressing modes it may be possible
to reduce the size of this subroutine. Can you do it? Is there a way to

Linked Lists—A Programming Example 125

eliminate the additions and subtractions used to obtain pointers to the
data?

To delete a node, we must know its position in the linked list. If we
are given the data string for a particular node, we can find the actual
node location by searching the string to see if we can find the node. The
subroutine SEARCH will search a given list. If a node matches our search
string, then a pointer to the node is returned.

**
SEARCH - SEARCH FOR A NODE WITH HATCHING STRING.

AO -> HEADER NODE
Al -> SEARCH STRING
ON RETORN AO -> HATCHING NODE OR IS NULL
IF NOT FOUND.

SEARCH: HOVEA.L (AO),A0 GET -> NEXT NODE
CMPA.L #0,A0 NULL?
BEQ SEARCHR YES, NO HATCH
ADDQ.L t4,A0 AO -> STRING
JSR STRCHP COHPARE STRINGS
BNE SEARCH1 DOESN'T HATCH
SUBQ.L #4, AO RESET PTR TO LINK

SEARCHR :RTS
SEARCH1 :SUBQ.L #4 ,A0 RESET PTR TO LINK

BRA SEARCH

To complete our deletion, we must unlink the deleted node from the
linked list and return it to the free list. The latter operation can be
accomplished by the INSERT subroutine already discussed. The former
operation is accomplished as follows:

* *

DELETE - DELETE A NODE.
AO -> NODE
Al -> HEADER OF LIST

DELETE: HOVEM.L A0-A1,-(SP) SAVE REGISTERS
DELETEO :CMPA.L (Al),A0 DO NODE PTRS. MATCH?

BEQ DELETE1 YES, COMPLETE OPERATION
MOVEA.L (Al),Al NO, CHANIN DOWN LIST
CMPA.L 10,Al NULL?
BEQ DELETER YES, NODE NOT FOUND
BRA DELETEO NO, LOOP TO NEXT NODE

DELETE1 :MOVE.L (AO),(Al) UNLINK THE NODE
DELETER :MOVEM.L <SP)+,A0-A1 RESTORE REGISTERS

RTS

This operation is shown in Figure 12.
One more subroutine is needed before we can write the main pro

gram: we must have a way of outputting the list to the terminal or screen.

124 Assembly Language Programming for the 68000 Family

figure 12 Deletion of a node.

This is accomplished by the subroutine PLIST:

**
* PLIST - PRINT A LIST
* AO -> HEADER NODE
* *

PLIST: MOVE.L AO,-(SP) SAVE REGISTER
MOVEA.L (AO),AO GET -> FIRST NODE

PLIST1: CMPA.L #0 ,A0 NULL?
BEQ PLISTR YES, RETURN
ADDQ.L #4,AO AO -> STRING
JSR OUTS OUTPUT THE STRING
JSR NEWLINE OUTPUT A NEWLINE
SUBQ.L #4,AO AO -> LINK
MOVEA.L (AO), AO CHAIN DOWN THE LIST
BRA PLIST1 LOOP FOR NEXT

PLISTR: MOVE.L (SP)+,AO RESTORE REGISTER
RTS RETURN

The main program is very straightforward. A menu is displayed and
the user is expected to enter a single character corresponding to one of
the valid commands, I (insert), D (delete), P (print), or Q (quit). The
character entered is compared with the valid commands and if one is
found to match, the appropriate instructions are executed by branching
to specific command routines. Each of these command routines branches
to the common loop at OVER. Other than to display input prompts or
output messages, these routines merely call the proper list-manipulating
subroutines and string primitives. Their operation should be clear if you
refer back to the descriptions of the subroutines.

* *

* MAIN PROGRAM - EXECUTION STARTS HERE
* *

JSR INIT INITIALIZE THE FREE LIST
OVER: LEA MENU,AO DISPLAY THE MENU

JSR OUTS n
JSR GETC GET INPUT CHARACTER
JSR NEWLINE OUTPUT A NEWLINE

Linked Lists—A Programming Example 125

* COMPARE THE INPUT CHARACTER WITH ALL POSSIBLE SINGLE
* CHARACTER COMMANDS AND BRANCH TO THE PROPER COMMAND
* IF FOUND.

CMP.B
BEQ
CMP.B
BEQ
CMP.B
BEQ
CMP.B
BEQ

#'I',D0
COMI
'D',D0
COMD
*'P',D0
COMP
'Q',D0
COMQ

BRA OVER NOT FOUND/ TRY AGAIN
* D - DELETE AN ENTRY
COMD: LEA MESS1/A0 PROMPT FOR STRING

JSR OUTS II

LEA SI ,A0 GET INPUT STRING
JSR INS fl
MOVEA.L A0/A1 A1 —> STRING
LEA NLIST/AO AO -> NLIST
JSR SEARCH SEARCH FOR ENTRY
CMPA.L *0/A0 FOUND?
BEQ COMDNF NO
LEA NLIST,A1 YES, CALL DELETE
JSR DELETE m

LEA FLIST/A1 A1 -> FREE LIST
JSR INSERT INSERT DELETED NODE ONTO FRE!
LEA MESS2/A0 OUTPUT MESSAGE
JSR OUTS VI

BRA OVER GET ANOTHER COMMAND
COMDNF: LEA MESS3/A0 OUTPUT MESSAGE

JSR OUTS n

BRA OVER GET ANOTHER COMMAND
* I - INSERT AN ENTRY
COMI: LEA MESS1/A0 OUTPUT PROMPT

JSR OUTS m

JSR GETFREE GET A FREE NODE
CMPA.L I0/A0 NULL?
BEQ COMIERR YES, NO MORE NODES
ADDQ.L #4/AO AO -> DATA IN NODE
JSR INS GET AN INPUT STRING
SUBQ.L #4 /AO AO -> LINK IN NODE
LEA NLIST/A1 AI -> LIST
JSR INSERTA INSERT ENTRY ALPHABETICALLY
BRA OVER GET NEXT COMMANDCOMIERR:LEA MESS4/A0 OUTPUT ERROR MESSAGE
JSR OUTS Cl

BRA OVER GET ANOTHER COMMAND
* P - PRINT THE LINKED LIST
COMP: LEA NLIST/AO AO -> LIST

JSR PLIST PRINT OUT
BRA OVER GET NEXT COMMAND

* Q - RETURN TO YOUR OPERATING SYSTEM
COMQ: SYSTEM DEPENDANT

126 Assembly Language Programming for the 68000 Family

**
* PROGRAM DATA**
* NOTE - CR AND LF ARE DEFINED IN THE STANDARD I/O SUBROUTINES
MENU: DC.B 'INSERT, PRINT, DELETE, QUIT? ',0
MESS1: DC.B ’ENTER: ',0
MESS2: DC.B 'NODE DELETED.',CR,LF,0
MESS3: DC.B 'NODE NOT FOUND.',CR,LF,0
MESS4: DC.B 'NO MORE FREE NODES.',CR,LF,0
SI: DS.B 80 BUFFER FOR INPUT STRING
NLIST: DS.L 1 -> LIST
FLIST: DS.L 1 -> FREE LIST
NODES: DS.B NSIZE * NNODES NODE POOL

END

To conclude this chapter, I have included a sample dialog that was
formed by running this program. It demonstrates all of the features.

INSERT, PRINT, DELETE, QUIT? I
ENTER: ALPHA
INSERT, PRINT, DELETE, QUIT? I
ENTER: BETA
INSERT, PRINT, DELETE, QUIT? P
ALPHA
BETA
INSERT, PRINT, DELETE, QUIT? I
ENTER: AAA
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
INSERT, PRINT, DELETE, QUIT? I
ENTER: ZZZ
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
ZZZINSERT, PRINT, DELETE, QUIT? I
ENTER: GAMMA
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
BETA
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? D
ENTER: BETA
NODE DELETED.
INSERT, PRINT, DELETE, QUIT? P
AAA
ALPHA
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? I
ENTER: A
INSERT, PRINT, DELETE, QUIT? I
ENTER: B

Linked Lists—A Programming Example 127

INSERT, PRINT, DELETE, QUIT? I
ENTER: C
INSERT, PRINT, DELETE, QUIT? I
ENTER: D
INSERT, PRINT, DELETE, QUIT? I
ENTER: E
INSERT, PRINT, DELETE, QUIT? I
ENTER: P
INSERT, PRINT, DELETE, QUIT? P
A
AAA
ALPHA
B
C
D
E
P
GAMMA
ZZZ
INSERT, PRINT, DELETE, QUIT? I
ENTER: NO MORE FREE NODES.
INSERT, PRINT, DELETE, QUIT? D
ENTER: AAA
NODE DELETED.
INSERT, PRINT, DELETE, QUIT? I
ENTER: LASTONE
INSERT, PRINT, DELETE, QUIT? P
A
ALPHA
B
C
D
E
F
GAMMA
LASTONE
ZZZ
INSERT, PRINT, DELETE, QUIT? Q

CHAPTER 10

LOGICAL, SHIFT AND
ROTATE INSTRUCTIONS

In this chapter we will examine a group of instructions that can ma
nipulate the individual bits of a byte, word, or longword by performing
logical operations such as AND and OR. We will also see how shift and
rotate instructions can change the positions of all the bits in a byte or
word in interesting ways.

Truth Tables

There are four logical operations that have corresponding 68000 in
structions: NOT, AND, OR, and EOR (exclusive or). These four logical
operations can be described by the use of a truth table. AND, OR, and
EOR are operations that require two operands, while NOT only requires
one. When used as 68000 instructions, these logical operations act on all
the bits of the operands in parallel. However, the action on individual
bits or bit pairs is the same. We can therefore describe each operation
with a truth table consisting of at most a pair of bits.

The NOT logical operation essentially reverses ones and zeros. In
other words, a 1 becomes a 0 and a 0 becomes a 1. The truth table looks
like this:

Operand
0 1

Result 1 0
NOT

The AND operation takes two operands. The resulting bit is a 1 only if
both the operand bits are 1.

129

150 Assembly Language Programming for the 68000 Family

Operand 1

Operand 2

0 1

0 0 0

1 0 1

AND

OR results in a 1 if either of the operand bits are a 1.

Operand 1

Operand 2

0 1

0 0 1

1 1 1

OR

EOR is just like OR except that the result is a 0 if both operands are 1.

Operand 1

Operand 2

0 1

0 0 1

1 1 0

EOR

Logical Operations

With the exception of NOT, the general form of the logical instructions
is exactly the same as for ADD and ADDI. Both a source and destination
must be specified. The corresponding bits of the source and destination
operands are used to form the result, which is stored in the destination.
NOT requires only a destination operand. Here are the general forms:

Logical, Shift and Rotate Instructions 151

AND[.<size>]
ANDI.<size>]
ANDII.<size>]
OR I.<size>]
0R[.<size>]
ORIt.<size>]
EORt.<size>]
EORI.<size>]
EORI(.<size>]
NOT!.<size>]

<ea>,Dn
Dn,<ea>
#<data>,<ea>
<ea>,Dn
Dn,<ea>
#<data>,<ea>
<ea>fDn
Dn,<ea>
#<data>,<ea>
<ea>

<size> B, W, or L
For example, we can execute the following instructions:

MOVE.B # $55/DO
ANDI.B #$64,DO

The following logical operation is thus performed:

01010101
AND 01100100

01000100

The result, 4416, would be left in the DO register. The operation has been
shown in binary to make clearer what is happening. The bits in each
column are operated on separately. Notice that the result only contains a
1 in bit positions that have both the source and destination bits set to 1.

The source operand of an AND, OR, or EOR instruction is quite often
called a mask. A mask has the property of changing a certain group of
bits in the destination operand while leaving others alone. For example,
the AND instruction can be used to zero a group of bits while leaving the
others unmodified. We merely form a mask with the bits of the mask set
to ones that correspond to bits in the destination that we wish to leave
unchanged. Let's say that we want to zero the high-order four bits of a
byte in DO. The mask value we would use would be OF 16.

ANDI.B #$0F,D0

We can also make sure that certain bits are set to 1. Those bits will
correspond to ones placed in a mask used with the OR instruction. The
following instruction would ensure that the high-order two bits of a
longword in register D5 are set to 1:

ORI.L #$C000000Q,D5

132 Assembly Language Programming for the 68000 Family

EOR has the most interesting property in its use with a mask. Each bit
set to 1 in the mask corresponds to a bit in the destination that we desire
to complement. In other words, 1 flips to 0 or 0 flips to 1.

Shifts

The logical instructions can be used to manipulate individual bits or
groups of bits within a byte, word, or longword. However, the positions
of the bits that are manipulated remain the same. We sometimes desire to
treat all of the bits of a byte or word as a group and change their positions.
One can imagine a virtually unlimited number of possible operations.
Since it would not be practical to implement a machine instruction for
every possible reorganization of the bits of a word or byte, two of the
most useful operations are implemented, shifts and rotates.

The bits of a word or byte are normally numbered as follows:

Byte
7 G 5 4 3 2 1 0

IS 14 13 12 11 10 9
Word
B 7 6 5 4 3 2 1 0

31 30 29 2B 27 26
Longword

6 5 4 3 2 1 0

The bits of a word or byte can be shifted either to the left or to the right.
For each shift of one position, all the bits move to the left or right, each
bit replacing the bit that was previously occupying that position. This
looks like the following:

Logical, Shift and Rotate Instructions 133

for a right shift, or

for a left shift.

You are probably wondering what happens to the bit that falls off the
end of a left or right shift. You are also probably wondering if a 1 or 0 bit
is shifted into the high-order bit position of a right shift or the low-order
position of a left shift. The answer to the first question is quite simple.
If we shift left or right, the bit that falls off the end is saved in both the
carry bit, C, and the extend bit, X. This is either bit 7 for a byte shift, bit
15 for a word shift, or bit 31 for a longword shift, for left shifts, and bit
0 for all right shifts.

If we shift left, a bit with a zero value is always shifted into the
low-order bit position of the byte or word. This is the bit 0 position. When
we shift right, two results are possible. If we use the logical shift right
instruction, LSR, a zero bit is shifted into the high-order bit position. If we
use the arithmetic shift right instruction, ASR, the value of the high-order
bit is shifted into itself. In other words, the value of the high-order bit is
not changed. This is what these shifts look like:

LSR

X'C

LSL'ASL

154 Assembly Language Programming for the 68000 Family

The purpose of the arithmetic shift is to preserve the sign bit. You will
recall that the sign bit is the high-order bit when using two’s complement
representation. One use of the shift instructions is to multiply or divide
a number by a power of two. Without the arithmetic forms of the shift
instructions, incorrect values would result. The corresponding mnemonics
for the left shifts are ASL and LSL. Even though it would at first appear
that these are the same instructions, they actually differ slightly. While
it is true that the result in the destination of an ASL and an LSL will
be identical, the two instructions differ in how they affect the condition
code register. The arithmetic versions of the instructions will conditionally
set the overflow bit depending upon whether the most significant bit is
changed at any time during the shift operation. The remaining bits of the
CCR are conditionally set for both versions of the instructions.

There are three forms for the shift instructions:

<shift>[.<size>] DxfDy
<shift>[.<size>] #<data>,Dy
<shift>f.W] <ea>
<shift> = ASL, ASR, LSL, LSR
<size> = B, W, or L
<data> = 1-8

The first form specifies a shift count in register Dx and the destination in
register Dy. The second form allows an immediate shift count between
1 and 8. For counts larger than 8, two or more sequential shifts with
immediate operands can be used. Naturally, if the shift count is to be
variable, the first form is most useful. The third form shifts the contents
of a memory location by one bit only. Furthermore, the data width is
restricted to one word. If you need to manipulate a byte or longword
from memory, you will have to move it into a register first, shift it, and
then move it back to memory. Additionally, anything but a shift of a few
bits would also require moving the data to a register.

If the DO register contains 543216, the shift

LSL.W #1,D0

results in A86418 in DO. Likewise,

LSR.W #1,D0

results in 2A1916. And

MOVEQ.L #10,Dl
LSL.W Dl,DO

Logical, Shift and Rotate Instructions 155

will shift DO left by 10 bits. This will shift in 10 zeros, and the value
in DO after the shift will be C00016. Note that we are performing word
operations on the register. The bits shifted out of the low-order word are
not shifted into the high-order word.

Even though the 68000 has a number of multiply and divided instruc
tions, it is sometimes easier and faster to use a shift for these operations.
This only works for multiplication or division by a power of two. A left
shift will multiply by 2n, where n is the number of bits to shift. A right
shift (be sure to use ASR for a signed divide) will divide by 2n. Since
the bits shifted off the end are lost, there will not be a remainder. Also,
be aware that no rounding of the result is performed. This means that
positive numbers are truncated towards zero, and negative numbers are
truncated towards negative infinity. In other words, 5/2 will result in 2,
while —5/2 will result in —3. You can verify this for yourself by writing
the binary values for 5 and —5 and then shifting.

An interesting application of this use of the shift instructions is a mul
tiplication which is not a power of two. A simple unsigned multiplication
can be performed using the left shift, LSL. Simply check each bit position
in the multiplier to determine if it is a 1 or 0. If it is a 1, add the multipli
cand shifted left by the number of bits corresponding to the bit position
in the multiplier. Sum these partial products as we go along. Here is a
simple routine to perform this multiplication:

* UNSIGNED MULTIPLY
* DO = MULTIPLIER

Dl = MULTIPLICAND
D2 = PRODUCT
D3 = TEMP FOR MULTIPLICAND
D4 = SHIFT COUNT

NEXT:
CLR.L D2 CLEAR PRODUCT
MOVEQ.L #-l,D4 SET UP SHIFT COUNT
TST.L DO FINISHED?
BEQ FINI YES
ADDQ.L #1,D4 SET UP COUNT FOR NEXT SHIFT
LSR.L #1 / DO GET NEXT BIT OF MULTIPLIER
BCC NEXT ZERO, CONTINUE
MOVE.L D1/D3 COPY MULTIPLICAND
LSL. L D4/D3 GET PARTIAL PRODUCT
ADD.L D3/D2 SUM TO PRODUCT
BRA NEXT

FINI:

Notice that the shift count is initialized to —1. This is to ensure that the
first time it is used it will be zero. We drop out of the loop as soon as
the multiplier is zero. This allows the algorithm to operate faster than if

156 Assembly Language Programming for the 68000 Family

we always went through the loop 32 times. Also note that this routine
does not check for overflow. The 68000 has a multiply instruction, so this
routine should never be required.

Rotates

Rotates are very similar to shifts. We can rotate to the left or right. The
difference is that rather than shift in zeros, as for left shifts and logical
right shifts, the bit that would normally fall off the end is shifted back
into the longword, word, or byte at the opposite end. The ROL (rotate
left) and ROR (rotate right) instructions work as follows:

ROL

A corresponding pair or rotates, ROXL and ROXR, work in the same
way as ROL and ROR except that the extend bit is included as an extra
bit to be included in the rotate. Here is how they work:

ROXL

ROXR

□

Logical, Shift and Rotate Instructions 157

The rotate instructions have the same format as the shift instructions.

<rotate>[.<size>] Dx,Dy
<rotate>[.<size>l #<data>,Dy
<rotate>[.W] <ea>
<rotate> = ROL, ROR, ROXL, ROXR
<size> = B, W, L
<data> = 1-8

The following subroutine, OUTHEX, demonstrates the use of a rotate
instruction and a logical instruction to output the contents of the DO regis
ter as a hexadecimal number.

OUTHEXI MOVE.L DO,-(SP)
MOVE.L Dl,— (SP)
MOVEQ #7,D1

OUTL1: ROL.L *4,DO
JSR OUTDIG
DBRA Dl,OUTL1
MOVE.L (SP)+,D1
MOVE.L
RTS

(SP)+,D0
*
OUTDIGs MOVE.L D0,-(SP)

ANDI.L #$F,D0
CMPI.B *9,DO
BLS OUTD1
ADDI.B #*A'-'0'-10,D0

OUTD1: ADDI.B #'0',D0
JSR
RTS

PUTC

SAVE REG. VALUESf9
8 NIBBLES
ROTATE NIBBLE INTO PLACE
OUTPUT NIBBLE
LOOP UNTIL DONE
RESTORE REGS.19
RETURN

SAVE DO
ISOLATE NIBBLE
>9?
NO
YES, MAKE A-P
MAKE DIG. INTO ASCII
OUTPUT DIGIT
RETURN

The subroutine OUTDIG is used to convert a 4-bit hexadecimal digit to
its ASCII character value. Since a hexadecimal digit can range from 0 to
9 and A to F, a check must be made to ensure that the proper ASCII
character value is selected for digits with decimal values between 10 and
15. In OUTHEX, a rotate instruction rather than a shift instruction is used,
since the digits must be output starting with the high-order digit. The left
rotate accomplishes this quite nicely.

Bit Manipulation

Sometimes we desire to manipulate only one bit in a byte, word,
or longword. While it is possible to use the logical instructions for this
purpose, it is much easier to use a special group of instructions known as
the bit manipulation instructions. There are four of them: BTST, BSET,
BCLR, and BCHG. They all have the same general form:

158 Assembly Language Programming for the 68000 Family

<bitop> Dn,<ea>
<bitop> #<data>,<ea>
<bitop> = BTSTr BSET, BCLR, BCBG

The effective address can be a data register or memory location, but
not an address register. For each of these instructions, you specify the
number of the particular bit that you want to manipulate. The bits are
numbered starting with the low-order bit as bit 0. The bit number may be
placed in a register for the first form of the instruction, or specified as an
immediate value for the second form of the instruction. If the effective
address is a data register, then the instruction operates on any of the 32
bits of the data register. If the effective address is a memory location,
then the instruction operates only on the byte at the specified address. In
other words, the range of the bit number must be between 0 and 7.

BSET and BCLR will set the specified bit to a 1 or a 0 respectively.
BCHG will complement the specified bit—in other words, a 1 becomes
a 0, and vice versa. BTST will test the specified bit to determine if it is
a 1 or a 0. It does not change it. The Z-condition bit is set accordingly.
If the bit is zero, then Z will be set. It doesn’t matter what the values of
the other bits are in the data item.

Exercises

1. What is NOT 55AA16?
2. What is AAAA16 or 555516?
3. Write a logical instruction that will clear register DO.
4. Write a logical instruction that will ensure that the high-order three

bits of register DO are ones.
5. Write a logical instruction that will ensure that the low-order four bits

of register DO are zeros.
6. Write a logical instruction that will set the bits of register Dl such that

a bit is set to one if it differs from the corresponding bit in register
DO.

7. Give the bit number of the high-order bit for
a) a byte
b) a word
c) a longword

8. Where does the bit go that is shifted off the end in a left or right shift?
9. What is the difference between a logical shift right and an arithmetic

right?
10. Is there a difference between the ASL and LSL instructions?
11. What register can be used to specify a shift count?

Logical, Shift and Rotate Instructions 159

12. Write an instruction to perform a logical shift right by one bit of the
DO register.

13. Write the instruction necessary to divide register DO by 16 using a
shift.

14. There are two types of left and right rotates. What is the difference?
15. Write the instruction necessary to rotate register DO left by one bit,

including the extend bit.
16. Write the instructions necessary to rotate register DO right by 16 bits,

not including the extend bit.
17. There are many more logical operations than the four that are im

plemented by the 68000. For example, the NOR operation has the
following truth table:

Operand 1

Operand 2

0 1

0 1 0

1 0 0

Write the instructions necessary to form the NOR operation of the DO
and Dl registers.

18. Is LSR.L #10,DO a legal instruction?
19. Can you think of a way to perform NOT DO using another logical

instruction?
20. Write an instruction to test if bit 12 of register DO is a 1.

Answers

1. AA55j6

2. ffff16

3. EOR.L DO,DO ANDI

4. ORI.L #$E0000000,D0

5. ANDI.B #$F0,D0

6. EOR.L D0,D1

140 Assembly Language Programming for the 68000 Family

7. a) 7 b) 15 c) 31
8. Into the carry bit.
9. The logical shift right shifts a zero into the high order bit. The

arithmetic shift right shifts the sign bit into itself.
10. Yes, the ASL conditionally sets the overflow bit.
11. Any data register.

12. LSR.L #1,D0

13. ASR.L 14,DO

14. One type includes the extend bit and the other type doesn’t.

15. r o x l .l #1#DO

16. MOVE.L #16,Dl
R0R.L Dl,D0

17. OR.L D0,D1
N0T.L Dl

18. No, a count greater than 1 must be specified in a register.

19. EORI.L #5FFFFFFFF,DO

20. BTST #12,DO

CHAPTER 11

ADVANCED ARITHMETIC

In Chapters 4 and 5 you learned the ADD, SUB, ADDQ, and SUBQ
instructions. These instructions, along with the condition code register,
give you the capability to perform other arithmetic operations such as
multiplication and division. For example, you can perform multiplication
by repeated addition, and division by repeated subtraction. These are not
the best methods to use, but they are simple. By using the shift instructions
shown in Chapter 10, more efficient algorithms can be implemented.
Fortunately, the 68000 has a set of powerful arithmetic instructions that
include multiplication and division as well as some other rather interesting
instructions. In this chapter we will take a look at the complete set of
arithmetic instructions and introduce some new concepts such as decimal
arithmetic. Yes, I did say “decimal” arithmetic. Up to this point we have
been dealing strictly with binary arithmetic operations.

Multiple Precision Addition and Subtraction

Before discussing the multiplication and division instructions, I want to
introduce the concept of arithmetic precision. Basically, the precision of
a calculation is proportional to the number of bits used in the calculation.
The more bits used, the greater the precision. Even though we are
confined to integer arithmetic, we can use a larger number of bits to
represent larger numbers which, in turn, can represent scaled values. For
example, we can represent time intervals in thousandths of seconds rather
than seconds. This would require the ability to represent numbers 1,000
times larger for the equivalent times in seconds. However, the precision
would be greater, since times would be stored with accuracy down to a
thousandth of a second.

The 68000 performs additions and subtractions on bytes, words, or
longwords. Therefore, there are actually three built-in precisions avail
able. But what if 32 bits is not a great enough precision for our calcu
lations? Is there anything we can do? The answer is yes, but not with a

141

142 Assembly Language Programming for the 68000 Family

single instruction. We can perform multiple precision operations by rep
resenting our numbers as multiple numbers of bytes. Normally it would
make no sense to represent numbers as two bytes rather than a word.
However, three bytes, two longwords, or other higher multiples of bytes,
words, or longwords are logical.

How do we store multiple precision values in memory? You may
recall that single words or longwords are stored in memory such that
the high-order (most significant) byte comes first. We can adhere to this
convention and require multiple precision numbers to be stored with the
highest order bytes coming first. This is not absolutely necessary, but it
makes things consistent; and some of the new instructions you will learn in
this chapter will operate more efficiently if this is the case. For example,
if we have a double longword value, $123456789ABCDEF0, it can be
stored as:

DC.L $12345678
DC.L $9ABCDEF0

This number would be a double-precision longword. We can set up values
of any precision in a similar manner.

Suppose we want to add two double-precision integers, A and B, and
store the result in variable C. We will assume that all three variables are
stored high-order bytes first. The following directives might be used to
reserve storage:

A: DS.L 2
B: DS.L 2
C: DS.L 2

Adding the two low-order bytes is straightforward:

MOVE.L A+4,D0
ADD.L B+4,D0

Notice that A+4 and B+4 are used as the operands. These are the
addresses of the two low-order longwords. Remember, a longword is
four bytes. The labels A and B are the addresses of the two high-order
longwords. The result is now in register DO. We can store this result as
the low-order word of C:

MOVE.L DO/C+4

You might be tempted to say that all we have to do is repeat the
above instructions for the two high-order words of A and B. This is
almost correct except for the fact that we might have had a carry from
the low-order addition. This carry must be added to the calculation for

Advanced Arithmetic 143

the high-order longwords. The carry condition, C, is set/reset as a result
of our first addition. All we have to do is somehow add the carry bit to
our high-order addition. But wait, the MOVE instruction used to save the
low-order result will clear the carry bit. In fact, we can’t even get a hold
of the high-order longword without destroying the carry bit. The 68000
designers anticipated this problem. They provided the extend condition
or X bit in the condition code register. This bit is always a copy of the
carry bit for arithmetic operations. However, it is not cleared, or modified
in any way, as a result of a MOVE instruction.

The ADDX, SUBX and NEGX instructions are provided to utilize the
value in the extend bit. Their general forms are:

ADDX[.<size>] Dy,Dx
ADDXl.<size>] -(Ay),-(Ax)
SUBXt.<size>] Dy,Dx
SUBX[.<size>] -(Ay),-(Ax)
NEGX[.<size>] <ea>
<size> = B, W, L

They work like ADD, SUB and NEG, except that the extend bit is
factored into the calculation, and the addressing modes are restricted
to those shown. For ADDX, the extend bit is added to the result; for
SUBX and NEGX it is subtracted—this is equivalent to a borrow for a
subtraction. The ADDX, SUBX, and NEGX instructions all set the C and
X bits after a calculation. The remaining instructions needed to complete
the calculation are:

MOVE.L A,DO
MOVE.L B,D1
ADDX.L D1,D0
MOVE.L D0,C

The above procedure can be used to add numbers of any precision. An
ADD instruction is used for the lowest order byte, word, or longword,
and all other additions are performed with the ADDX instruction.

Multiple precision subtraction can be performed in a similar manner,
using the SUB instruction and the subtract-with-extend instruction, SUBX.
The following instructions will subtract the three-byte variable A from B
and store the result in C:

MOVE.B B+2,D0
SUB.B A+2,D0
MOVE.B DO,C+2
MOVE.B B+l,D0
MOVE.B A+l,D1
SUBX.B D1,D0
MOVE.B D0,C+1
MOVE.B B,D0

144 Assembly Language Programming for the 68000 Family

MOVE.B A,Dl
SUBX.B D1,D0
MOVE.B DO rC

A: DC.B 3
B : DC.B 3
C: DC.B 3

The use of a three-byte value is questionable. The complexity in calcu
lation would most likely outweigh the small savings in memory unless
there was a very large number of three-byte values. The use of a long
word would eliminate this complexity. I presented this only as an example
of the flexibility of the 68000 instructions.

One disadvantage to the above technique is that there must always be
both operands in data registers before the ADDX or SUBX instructions
are performed. If address register indirect with predecrement addressing
is used, the multiple precision addition from above can be made com
pletely general. Before showing some specific examples of the use of
these instructions, I will have to introduce a new instruction, the MOVE
to CCR instruction. This is actually just a version of the MOVE instruc
tion, with the destination operand being the condition code register, CCR.
It allows the setting or clearing of any of the bits in the CCR. Its general
form is:

MOVEt.W] <ea>,CCR

Even though the source operand must be a word, only the low-order byte
is used to load the condition code register. Recall from Chapter 5 that
the CCR bits are:

BIT I CONDITION
0 c
1 v
2 Z
3 N
4 X

The reason for this sudden interest in the CCR is that the extend bit is
always included in the calculation. Therefore, we must make sure that it
is clear before we start a calculation.

The following is a subroutine to do a double-precision addition. The
subroutine will add the double-precision values pointed to by registers
A0 and Al, and place the result in the location pointed to by register Al.

DBADD: ADDQ.L #8,A0
ADDQ.L #8,A1
MOVE.W #4 rCCR
ADDX.L - (A0),- (Al)

Advanced Arithmetic 145

ADDX.L -(A0),-(A1)
RTS

Moving the constant 4 into the CCR will clear all the bits except for the
Z condition. Remember, when the Z bit is set, there is a zero value. I will
get back to this point shortly. Notice that the subroutine first adjusts the
addresses to point to the longword just beyond the number, and then uses
address register indirect with predecrement addressing for the additions.
The values in AO and A1 will be restored to their original values when
the subroutine returns. This subroutine could be called as follows:

LEA A,AO
LEA B,A1
JSR DBADD

This call would result in adding double-precision value A to double
precision value B.

I mentioned that there is a reason to make sure the Z condition is set
in the CCR before starting a multiple precision calculation. The reason is
that we may want to test the result of our calculation to determine if it is
zero. Since this is a multiple precision calculation, what we really require
is that all the intermediate results are zero, as well as the final addition or
subtraction. ADDX, SUBX, and NEGX all have an interesting property
when it comes to the Z condition: the Z condition is cleared if a result is
non-zero, and unchanged otherwise. This means that once it is cleared it
will remain cleared. This indicates a non-zero result for our calculation.
A BEQ or BNE instruction can then be used to conditionally branch,
depending on the state of the Z bit.

The NEGX instruction is used to negate (subtract from zero) a
multiple precision value. The following instructions will negate the
double-precision longword in location COUNT:

MOVE.W #4,CCR
NEGX.L COUNT+4
NEGX.L COUNT

Notice that the Z bit must be set prior to execution of the first NEGX.
Address register indirect with predecrement addressing can also be used:

LEA COUNT+8/AO
MOVE.W #4/CCR
NEGX.L -(AO)
NEGX.L -(AO)

Multiplication and Division

The 68000 has two multiply and two divide instructions. One pair of
multiply and divide instructions is used for unsigned values and the other

146 Assembly Language Programming for the 68000 Family

pair is used for signed values. Unlike addition and subtraction, signed
and unsigned multiplies and divides require different instructions. The
four instructions are:

MULU -unsigned multiply
MULS -signed multiply
DIVU -unsigned divide
DIVS -signed divide

A property of the multiplication of two numbers of a given precision is
that the result of the multiplication can have a precision equal to the sum
of the precisions of the two numbers. This means that the multiplication
of two bytes yields a result up to two bytes or one word in length; and the
multiplication of two words, a result up to four bytes or one longword
in length.

The general form of the multiplication instructions is:
MULU <ea>,Dn
MULS <ea>,Dn

The size of the source and destination operands is always a word. If the
operand comes from a register, only the low-order 16 bits are used. The
remainder of the bits are ignored. The product is stored in all 32 bits of
the destination register.

Unlike addition and subtraction in two’s complement representation,
the result of a multiplication or division will be different for signed and
unsigned numbers. A simple example will illustrate. We will assume 4-bit
numbers. If we multiply —1 by —1, the signed result should be +1. In
binary this is:

n i l
x 1 1 1 1

oooooooi

Notice that I have shown the 8-bit result. Now, an unsigned value of
11112 is actually 1510, so this multiplication would be 15 X 15 = 225. Our
answer should be:

m i
X 1111

11100001

A similar situation exists for division. Therefore, the proper instruction,
signed or unsigned, must be used.

The following instruction multiplies the two signed words contained
in registers DO and Dl:

MULS DO fDl

Advanced Arithmetic 147

The result is in Dl. The following instructions multiply word variables X
and Y:

MOVE.W X fD0
MULS Y,D0

The result is in register DO. The following instruction multiplies register
DO by 100:

MULS #100,D0

The general form of the divide instructions are:
DIVU <ea>,Dn
DIVS <ea>,Dn

The destination operand is divided by the source operand, and the
quotient is left in the destination operand. The integer part of the quotient
is in the lower 16 bits, and the remainder, in the upper 16 bits, of the
destination register. The dividend is the full longword in the destination
register, but the divisor is only a single word operand. If the source
operand comes from a register, only the low-order 16 bits are used.

The following instruction will divide the unsigned longword in register
DO by the constant 10:

DIVU #10,DO

The integer part of the result is in the lower 16 bits of the DO register.
Any remainder is in the upper 16 bits of DO. There are a few things to be
careful of. First, if you plan to use a word dividend, you must make sure
that the high-order bits of the register are zero for an unsigned divide, and
equal to the sign extension of the low-order 16 bits for a signed divide.
For an unsigned divide, you can merely use a CLR.L instruction before
moving the word into the register. Second, you must remember that the
remainder is in the upper 16 bits of the destination register. If you want
to save the integer part of the quotient as a longword, you must zero the
upper 16 bits for an unsigned divide, and sign-extend the lower 16 bits
for a signed divide. One way to do this for an unsigned divide is with
an AND.L instruction. The following instructions will divide longword B
by word A and place the result in longword C:

MOVE.L B,D0
DIVU A,DO
AND.L #§FFPP
MOVE.L DO ,C

DS.L 1
DS.W 1
DS.L 1

148 Assembly Language Programming for the 68000 Family

We can sign-extend a byte to a word, or a word to a longword, using
the EXT instruction. The general form is:

EXT[.<size>] Dn
<size> = W, L

So, if we want to divide two signed words, we can use the following
instructions:

MOVE.W VAL1,D0
EXT.L DO
DIVS VAL2,D0
MOVE.W DO,RESULT

VAL1: DS.W 1
VAL2: DS.W 1
RESULT: DS.W 1

Before leaving division, there are a few more loose ends to clear up.
In signed division, the sign of the remainder is always the same as that of
the dividend. This means that if a negative number is divided by another
negative number, even though the quotient is positive, any remainder
will be negative. If we divide —23 by —10, the execution of the DIVS
instruction will yield a quotient of +2 and a remainder of —3.

In division, signed or unsigned, it is possible for the quotient to be
larger than the destination register can hold. This overflow condition,
always the case when we try to divide by zero, can occur for divisors
other than zero. The overflow bit, V, is used to detect this situation. The
result of such a division leaves the operands unchanged. A divide by zero
is a special case: a special exception condition is generated by an attempt
to divide by zero. This causes a trap to exception vector number 5. The
discussion of traps in the next chapter will show how this capability can
be utilized.

Decimal Arithmetic

Up to this point, all our numerical values have been represented as
binary data consisting of one or more bytes. Decimal numbers that are
input to a program must be converted to binary. Likewise, a decimal
number that is output must be converted from the internal binary repre
sentation. The INDEC and OUTDEC subroutines introduced in Chapter
4 perform these operations. As it turns out, the 68000 has a number of in
structions that allow the represention of decimal numbers internally in a
special way that makes the input and output conversions much simpler.
This representation is called binary coded decimal or BCD.

Advanced Arithmetic 149

Four bits are required to represent the digits 0 to 9. As you may recall,
we can actually count up to 15 with four bits. That, of course, allows us
hexadecimal representation. If, however, we restrict the values of a group
of four bits to range from 0 to 9, we can represent a decimal number as
a set of these four-bit groups. There are two half bytes, sometimes called
“nibbles,” per byte. This allows us to represent two decimal digits per
byte. The decimal number 35 can be written in BCD form as 001101012.
The two decimal digits are contained in one byte. Note that this number
would be 5310 if the “binary” value were converted to decimal.

So far so good, but how are BCD values used in performing arith
metic? If they have to be converted to pure binary, nothing has been
gained. The answer lies in examining what happens when we perform ad
ditions and subtractions of BCD numbers. Suppose we add the BCD num
bers 2 and 7. In the binary representation these numbers are 000000102
and 000001112. Adding them using the ADD instruction would yield
000010012, or 910. This is just what we want. However, suppose we add 5
and 7. Our result will now be 000011002. This is not a valid BCD number,
since the low-order nibble is greater than 9. The problem gets worse if
we add 8 and 9—this gives us OOOIOOOI2 , which we might interpret as
1110 if we were using BCD. This is still not right. What we really want is
the low-order nibble to be set to the correct BCD value, with some way
of determining if there is a carry to the high-order nibble. In other words,
we really wanted 000100102 when we added 5 and 7 and 000101112 when
we added 8 and 9. In both these cases there is a carry corresponding to
IO10.

The above problem is solved by the use of a number of instructions
specifically designed for BCD arithmetic. These instructions fix up the
low-order nibble, propagate a carry to the high-order nibble, and set the
carry/extend bits as appropriate for a carry out of the high-order nibble.
These instructions and their general forms are:

ABCD[.B] Dy,Dx
ABCDt.B] - (Ay),-(Ax)
SBCDl.B] Dy,Dx
SBCDf.B] -(Ay),-(Ax)
NBCDI.B] <ea>

Note that they always operate on bytes. This is the only valid size to use.
Here is how two BCD values can be added, assuming that they are in

registers DO and Dl:

MOVE.W #4,CCR
ABCD DO/Dl

A subtraction can be performed similarly:
MOVE.W #4/CCR
SBCD D0/D1

150 Assembly Language Programming for the 68000 Family

Notice that I cleared the extend bit and set the zero bit in the CCR prior
to executing the BCD instructions. The BCD instructions will always use
the extend bit just as the ADDX, SUBX, and NEGX instructions did.

Now that we know how to perform additions and subtractions of
two BCD values, we can extend these operations to multidigit decimal
numbers. The address register indirect with predecrement addressing
mode is designed for this operation. This works in a similar manner to
the multiple precision operations for addition and subtraction. Suppose
we are storing 10-digit decimal numbers as arrays of five bytes. If the
first entry in the array corresponds to the high order-byte, two of these
numbers, VAL1 and VAL2, can be added with the following instructions:

LEA VAL1+5 fAO
LEA VAL2+5,Al
MOVE.W #4,DO
MOVE.W #4,CCR

LOOP: ABCD -(AO)t- (Al)
DBRA DO,LOOP

VAL1: DS.B 5
VAL2: DS.B 5

In this example, the two decimal numbers VAL1 and VAL2 are added
together, with the result stored in VAL2. The MOVE to CCR instruction
is used to clear the extend bit prior to the first add. If we don’t make
sure the extend bit is initially clear, we might get an erroneous result.
Subtraction of multidigit BCD numbers can be performed in a similar
manner. The SBCD instruction must be used.

Input and output of BCD numbers are really not too difficult. It is
important to remember that there are two decimal digits in each byte
and they are not in ASCII character codes. A single-byte BCD number
in register DO can be output with the following:

MOVE.L DO t“ (SP) SAVE DO
LSR.B #4,DO GET HIGH ORDER NIBBLE
AND.L # SPfDO MASK TO 4 BITS
ADD.B #'0',D0 MAKE INTO ASCII
JSR PUTC OUTPUT THE CHARACTER
MOVE.L (SP)+rD0 GET DO BACK
AND.L #$F,D0 MASK TO 4 BITS
ADD.B #'0',D0 MAKE INTO ASCII
JSR PUTC OUTPUT THE CHARACTER

To perform additions and subtractions on BCD numbers, the high-order
digit must be in the high-order four bits of the byte. The above instruc
tions output the byte with the high-order digit first.

The following instructions are necessary to input a single BCD byte
into DO:

Advanced Arithmetic 151

JSR GETC GET A CHARCTER
SOB.B # ' 0'/DO MAKE INTO DECIMAL
LSL.B #4,DO SHIFT INTO HIGH NIBBLE
MOVE.L DO/-(SP) SAVE DO
JSR GETC GET A CHARACTER
SUB.B #'0',D0 MAKE INTO DECIMAL
ADD.L (SP)+/DO ADD HIGH NIBBLE

This routine does not have any error checking, so if a character other
than 0 through 9 is entered, an error will result. It is straightforward to
add instructions to test the range of each digit as it enters to ensure that
it is valid.

BCD numbers are unsigned. The high-order bit of the high-order byte
is not interpreted as a sign bit. How then can we represent signed BCD
numbers? One method is to reserve a single byte as the sign byte. We can
store the ASCII character + or — in this sign byte and the absolute value
of the BCD number in the remaining bytes. Unfortunately we can’t just
add or subtract these numbers. The sign byte can’t enter into the actual
arithmetic. Before using a signed BCD number, the sign byte must first
be checked. If the BCD number is negative, tens complement must first
be taken prior to its use in a calculation. The ten’s complement is used
in a manner very similar to the two’s complement of binary numbers.
The ten’s complement is the nine’s complement plus one. To compute
the nine’s complement, simply subtract each BCD digit from the number
nine, then add in the one. For example: the nine’s complement of the
four-digit BCD number 1234 is 8765. The ten’s complement is then 8766.
This adjusted number used in a calculation will now give a correct result.
From the above example, the number 8766 can be thought of as a negative
1234. If we add a positive 1234, we should get a result of zero. This is
true if we ignore the carry.

8766 -1234
1234 +1234

10000 0000

The same rules apply as for two’s complement binary numbers. Unfor
tunately, we must keep track of the signs separately, or use more com
plicated schemes. One such scheme would be to use the high-order digit
for the sign, with a positive number being represented by a 0 and a neg
ative number by a 9. This is equivalent to the use of the high-order bit
as a sign bit with two’s complement binary numbers.

The NBCD instruction is used to compute the ten’s complement. The
action of this instruction is to perform the ten’s complement of a pair
of BCD bytes and then subtract the extend bit. If the extend bit is 0,
then the result is truly the ten’s complement. If the extend bit is a 1, then

152 Assembly Language Programming for the 68000 Family

the result is the nine’s complement. This instruction can also be thought
of as subtracting the two-digit number in a byte from zero. Unless the
number is zero, a borrow will be needed. This results in the number
being subtracted from 100 if we include the borrow from the next higher
digit, the hundreds position. Therefore, unless the two-digit number in a
byte is zero, a borrow will be required. This property allows us to take
the ten’s complement of a multi-byte BCD number by performing the
NBCD instruction on each byte, starting with the low order. The extend
bit must be cleared prior to the first operation. Here is the code required
to take the ten’s complement from a four-byte BCD number:

MOVE.W #4,CCR CLEAR X AND SET Z
LEA VAL,A0 AO -> NUMBER
ADDQ.L #4/AO ADJUST TO BYTE BEYOND
NBCD -(A0)
NBCD -(A0)
NBCD -(A0)
NBCD -(A0)

You might have noticed that I didn’t use a loop, but rather used four
in-line NBCD instructions. While it might look like we could save space
by replacing three of the NBCD’s with two instructions for the loop, this is
actually not true. The NBCD instruction is only a single word instruction
if address register indirect with predecrement addressing is used. The
savings would have to be at least one word to be worthwhile. That leaves
only two words for the two loop instructions. Even if a MOVEQ is used
for initialization, the DBRA alone will require two words. Therefore, we
are better off with the four NBCD instructions. While no one would
expect a programmer to check each and every instruction combination
to see which is faster or takes up less space, it is wise to be aware that
such tradeoffs do exist. Sometimes it is obvious when such a decision
should be made.

Exercises

1. What is meant by arithmetic precision?
2. You have a requirement to store monetary values from 0 to 1 billion

dollars down to the nearest penny. What scaling is required, and what
precision is required to store these values?

3. How are multiple precision values stored in memory?
4. Set up the value $5643278436667 as a double longword in memory.
5. Write the instructions necessary to add the above constant to the

double longword variable ALPHA.
6. What are the multiplication and division instructions used with signed

and unsigned numbers?

Advanced Arithmetic 153

7. What is the precision of the result of a multiplication?
8. What is the sign of the remainder in signed division?
9. Where is it located?

10. Write the instructions necessary to multiply unsigned byte variables
NUM1 and NUM2, placing the result in NUM2. Ignore overflow.

11. Write the instructions necessary to divide unsigned word variable
COUNT by 25.

12. Write the instructions necessary to sign-extend a byte in register DO
to a full longword.

13. How many decimal digits can be stored in a byte using BCD repre
sentation?

14. What is a nibble?
15. What is the binary value for 7510 in BCD representation?
16. What is the decimal equivalent for the BCD value 100101102?
17. What addressing modes are allowed with the ABCD and SBCD

instructions?
18. Write the instructions necessary to add the constant 10 to a 10-digit

BCD number at location LIMIT.

Answers

1. The number of bits that are used to represent a numeric value.
2. One billion is 1,000,000,000. If we scale by two decimal digits to

include pennies, we must be able to accommodate numbers as large
as 100,000,000,000. This requires 5 bytes. Two longwords or three
words would be a reasonable choice for implementation.

3. In consecutive memory locations, with the high-order bytes first.

4. CON: DC.L $00056432
DC.L $78436667

MOVE.L ALPHA+4,D0
ADD.L CON+4 rDO
MOVE.L DO rALPHA+4
MOVE.L ALPHA,DO
MOVE.L CON,Dl
ADDX.L Dl, DO
MOVE.L DO tALPHA

6. MULU and DIVU for unsigned numbers and MULS and DIVS for
signed numbers.

7. The sum of the precisions of the numbers being multiplied. Specifi
cally for the 68000, the result is a longword.

8. The sign of the remainder is always that of the dividend.

154 Assembly Language Programming for the 68000 Family

9. The remainder is located in the high-order word of the destination
register.

HOVE.B NUH1,D0
EXT.W DO
HULU NUH2,D0
HOVE.B D0,NUM2

HOVE.W COUNT,DO
EXT.L DO
DIVU *25,DO
HOVE.W DO,COUNT

EXT.W DO
EXT.L DO

13. Two.
14. The upper or lower four bits of a byte.
15. 011101012.
16. 9610.
17. Both source and destination as registers or address register indirect

with predecrement addressing.

LEA CON+5,AO
LEA LIHIT+5,A1
HOVE.W #4, DO
HOVE.W #4,CCR

NEXT: ABCD -(AO) , - (Al)
DBRA DO,NEXT

CON: DC.B
•

0,0,0,0,$10

LIHIT: DS.B 5

C/MPTER 12

EXCEPTION PROCESSING,
SYSTEM CONTROL

OPERATIONS, AND I/O

In this chapter we will cover a number of topics and instructions
that don’t fit into the category of general programming instructions. I
mentioned in Chapter 2 that the 68000 doesn’t have any input/output
instructions. This is not quite true. A number of instructions are used
to process interrupts, a certain type of exception which is a vital part
of I/O activity. In addition, a special version of the MOVE instruction is
provided to make certain kinds of I/O easier and faster. I also mentioned
in Chapter 2 that the 68000 has a user and supervisor mode of operation.
The system control operations are used to coordinate these two modes.

The Status Register and System Control

When we are in the supervisor mode, the condition code register,
CCR, is part of a 16-bit register known as the status register, SR. Let’s
take a closer look at the high-order bits of the register found on the
following page. If the trace bit is set to a 1, the CPU is placed into trace
mode. This special mode is used for debugging purposes. When in trace
mode, an exception is generated for each instruction executed. We will
discuss trace mode when we talk about exceptions.

If the supervisor state bit is set, we are in supervisor mode. However,
this bit cannot be arbitarily set at any time. If we are in user mode
(the supervisor bit clear), we can’t modify the high-order bits of the
status register. How then do we get into supervisor mode? There are
two ways. The first is when we initially turn on our system, or push the
reset button (if so equipped). This causes a system reset to supervisor
mode. The second method is related to the handling of exceptions. When

155

156 Assembly Language Programming for the 68000 Family

Status Register

15 13

System Byte-
10

User Byte
4

T S 12 11 10 CCR

Interrupt Mask
Supervisor State
Trace Mode

an exception condition occurs, we will wind up in supervisor mode.
Exceptions are discussed in the next section.

The interrupt mask is a three-bit value that specifies the processor
interrupt priority: if an interrupt from an I/O device has a priority
greater than the interrupt mask, it will be allowed to generate an interrupt
exception. The interrupt priority from the device is restricted to the range
from 1 to 7. If the interrupt mask is set to 0, any interrupt will be allowed.
If it is set to a 1, then only interrupts from devices with priorities from 2
through 7 will be allowed. An exception exists for processor interrupt
priority level 7. This only inhibits device priorities below 7. Device
priority 7 will cause an interrupt.

A number of instructions have been provided to manipulate the status
register directly. The following are the only instructions that can be used
with the SR:

MOVE <ea>,SR (PRIVILEGED)
MOVE SR,<ea>
ANDI *xxx,SR (PRIVILEGED)
E0RI #xxx,SR (PRIVILEGED)
ORI *XXX,SR (PRIVILEGED)

You will notice that all of these instructions are privileged if they can
modify the SR. A program running in user mode can only look at, not
change, the contents of the SR. These are all word instructions and all of
the bits of the SR are affected.

A program running in user mode can always examine or modify the
condition code register by using the following instructions:

MOVE SR,<ea>
MOVE <ea>,CCR

Exception Processing, System Control Operations, and I/O 157

ANDI tXXX,CCR
EORI #xxx,CCR
ORI #XXX,CCR

Notice that the MOVE from SR instruction is used to examine the CCR.
With this exception, the instructions are all byte instructions.

Two other instructions involving the CCR not mentioned previously
should be examined. Return and restore condition codes, RTR, is similar
in operation to the RTS instruction except that the CCR is restored from
the stack prior to the return. In other words, the RTR instruction is
equivalent to

MOVE (SP)+,CCR
RTS

If the CCR is pushed onto the stack at the beginning of a subroutine
and the subroutine uses an RTR instead of an RTS, the subroutine will
not result in any changes to the CCR. This is a simple way to make a
subroutine transparent as far as the CCR is concerned.

The other instruction is actually a group of instructions. The See
instructions are similar to the group of conditional branches, Bcc. The
difference is that rather than conditionally branch, this instruction will
set its effective address to TRUE or FALSE depending on the particular
condition tested. TRUE and FALSE are defined as all ones for TRUE
and all zeros for FALSE. The effective address must always be a byte.
The following conditions can be tested:

CC carry clear LS low or samecs carry set LT less thanEQ equal MI minusF £alse NE notequalGE greater or equal PL plusGT greater than T trueHI high vc overflow clearLE less or equal VS overflow set

This instruction is especially useful for remembering the outcome of a
test without taking immediate action. For example, we might want to
remember if a calculation overflowed. We can set a flag byte OVFL
using the SVS instruction:

<perform calculation>
SVS OVFL SET FLAG BYTE
<do something else>
TST.B OVFL
BNE OVERFLOW

OVFLs DS.B 1 OVERFLOW FLAG BYTE

158 Assembly Language Programming for the 68000 Family

There is one more instruction that should be mentioned before going
on to exceptions. Recall from Chapter 2 that there are really two register
A7’s. One A7 is for the user in user mode, and the other A7 is for the
system in supervisor mode. These are designated USP (user stack pointer)
and SSP (system stack pointer). If a user wants to change her stack pointer
she merely references it as A7 or SP. If the system in supervisor mode
wants to change its stack pointer, the SSP, it can do so also by referencing
A7 or SP. It is not permissible for a user to modify, or even to examine,
the SSP. However, it is normally the responsibility of the system to set up
a valid initial stack pointer for the user. A special instruction is required
for this purpose. The MOVE to USP instruction:

MOVE USP,An
MOVE An,USP

This is always a longword instruction and it is privileged.

Exception Processing

An exception is an event that causes the normal flow of a program to
be suspended and a special piece of program code to be given control.
This special piece of code, or exception handler, is designed to respond
to the condition causing the exception by taking whatever steps are
necessary and then returning control to the program for the program to
continue, if possible. The condition causing an exception can be generated
by an I/O device external to the CPU, by an error condition within the
program like a divide by zero, or by the program itself using special
instructions known as traps.

When the CPU detects an exception condition, it must locate the
special piece of code to handle that specific exception. It does this by
looking into a special table of exception vectors. These exception vectors
are located at the very bottom of memory. They take a total of 1024^
bytes. Each exception vector requires 4 bytes. This conceptually allows a
total of 25610 different vectors. However, vector numbers 0 and 1 serve a
special purpose, that of system reset, giving a total of 255 unique vectors.
Not all of these are assigned. Each entry contains the 32-bit address of
the exception handler. The format is:

Even Bytes i Odd Bytes
Word 0 New Program Counter (High)
Word 1 New Program Counter (Low)

Exception Processing, System Control Operations, and I/O 159

Vector
Numberls) Dec

Address
Hex Space

Assignment

0 0 000 SP Reset: Initial SSP?
1 4 004 SP Reset: Initial PC2
2 8 008 SD Bus Error
3 12 OOC SD Address Error
4 16 010 SD Illegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator

121 48 030 SD (Unassigned. Reserved)
13̂ 52 034 SD (Unassigned, Reserved)
14 56 038 SD Format Error**
15 60 03C SD Uninitialized Interrupt Vector

16-23' 64 040 SD (Unassigned, Reserved)
95 05F -

24 96 060 SD Spurious Interrupt3
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SO Level 2 Interrupt Autovector
27 108 06C SO Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector

32-47 128 080 SD TRAP Instruction Vectors4
191 0BF

48-631 192 OCO SD (Unassigned, Reserved)
256 OFF -

64-255 256 100 SD User Interrupt Vectors
1023 3FF -

NOTES:
1. Vector numbers 12, 13. 16 through 23. and 48 through 63 are reserved for

future enhancements by Motorola. No user peripheral devices should be
asstgned these numbers.

2. Reset vector (0) requires four words, unlike the other vectors which only re
quire two words, and is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indica
tion during interrupt processing. Refer to Paragraph 4 4.2.

4. TRAP In uses vector number 32+ n.
5. MC68010 only. See Return from Exception Section.

This vector is unassigned, reserved on the MC68000, and MC68008.

Figure 13 Exception vector assignments. (Courtesy of Motorola, Inc.)

The exception vector assignments are shown in Figure 13. Each vector is
assigned a number. The address of the particular vector number is four
times the vector number.

Before we discuss the various types of exceptions, let’s see just what
happens when an exception occurs. The following events take place:

1. An internal copy is made of the status register. This is used in step
number 3. The CPU is forced into the supervisor mode by setting the

160 Assembly Language Programming for the 68000 Family

S bit in the status register. The tracing bit, T, is negated to prevent
tracing. If the exception is an interrupt, the interrupt priority mask
is updated.

2. The vector number of the exception is determined. This either comes
from an external fetch, in the case of an interrupt, or is determined
internally by the CPU.

3. The current program counter and the saved status register are pushed
onto the supervisor stack using the supervisor stack pointer, SSP.
Some additional information is stacked for certain types of excep
tions and for the 68010, 68020, and 68030 processors.

4. The address of the exception handler is fetched from the vector
location and placed into the program counter. Execution continues
within the exception handler.

The exception handler can perform any operations it deems necessary.
It will be executing in supervisor mode so that it has access to all the
system and CPU resources. Once its work has been done, it can optionally
return to the program that was originally interrupted. This is done by
executing the instruction RTE (return from exception). This instruction
has no operands. It reverses the steps listed above:

1. The saved status register is popped from the supervisor stack and
placed in the status register.

2. The saved program counter is popped from the stack and placed
into the program counter.

3. Execution continues with the next instruction in the interrupted pro
gram.

The whole process of handling an exception looks very much like a
subroutine call except that the calling program doesn’t issue a JSR or BSR
instruction. If the exception is an external interrupt, then no instruction is
executed that can be associated with the exception.

To cover all the details concerning exceptions would require many
pages of explanation and would probably confuse many novice readers.
Since most programmers will only require a casual knowledge of excep
tions, I am only going to cover the really important exceptions for general
programmers. For more specific details on the remainder of the excep
tions, refer to the appropriate Motorola documentation.

Reset is not a standard exception in that it requires two vector entries.
When you initially power up your computer, or press a reset button, the
reset exception is generated. This exception is normally used to cause a
boot of your operating system. The program counter and supervisor stack
pointer are loaded from the vector addresses, and control proceeds at the

Exception Processing, System Control Operations, and I/O 161

PC location. Normally this is to an area of read only memory (ROM) that
contains a small bootstrap program to load the complete operating system
from disk. In some cases, the bulk of the operating system is contained in
ROM, and little or no information is obtained from disk. In either case,
the program flow ends up in your operating system, usually at command
level.

Interrupts that are generated by external devices cause exceptions in
either of two ways. The first method is one in which the particular device
provides the vector number ranging from 64 to 255. The particular vectors
used for particular devices is system-dependent. The second method
is to use the autovector feature. The autovectors are 25 through 31.
The particular vector selected is determined from the device’s interrupt
priority.

Bus error, address error, illegal instruction, zero divide, and privilege
violation are exceptions caused by errors in a program. A bus error is
generated when you try to reference a non-existent area of memory. An
address error results when you try to access a word, longword, or in
struction from an odd memory address. The illegal instruction exception
is generated if the CPU tries to execute a word bit pattern that doesn’t
correspond to any valid instruction. One very specific instruction, IL
LEGAL, always generates this exception. In a sense it is the only legal
instruction that generates an illegal instruction exception. A zero divide
exception results from a DIVU or DIVS instruction when you divide by
zero. Certain instructions are executable only in the supervisor mode. If
one of these instructions is executed in the user mode, the privilege vio
lation exception occurs.

Traps

Exception vectors numbered 32 through 47 are associated with the
TRAP instruction. Its format is:

TRAP #<vector>

where <vector> is a number from 010 through 1510. The operand value of
the TRAP instruction is added to 3210 to determine the actual exception
vector. Execution of this instruction causes an immediate exception to be
generated, with control passed to the appropriate exception handler. If
the handler subsequently executes an RTE instruction, the program will
continue with the instruction following the TRAP.

TRAPS are sometimes called software interrupts and are the method
that many operating systems use to provide user services. There are a
couple of advantages to this method:

162 Assembly Language Programming for the 68000 Family

1. Execution of the TRAP instruction will result in the CPU being
placed into supervisor mode.

2. By use of a vector number, rather than the specific address of the
operating system service, the actual address within the operating
system can change without the user reassembling his programs. The
operating system merely ensures that the proper address is placed
into the exception vector at the time the system starts up.

A special trap instruction, TRAPV, can be used to test the result of a
computation for an overflow condition. If the overflow condition is set,
the TRAPV instruction will cause an exception to vector number 7. If
we have an appropriate exception handler, this instruction is quite useful.
For example, if we perform an addition and then wish to trap on an
overflow, all we have to do is write the following instructions:

ADD.L DO fDl
TRAPV

Along the same line as the TRAPV instruction is the CHK (check
register against bounds) instruction:

CHK <ea>,Dn

The word in register Dn is first checked to see if it is below zero. If
it is, an exception is generated. If the word in Dn is zero or greater,
it is compared with the source operand. If it is greater than the source
operand, an exception is generated. The exception vector is number 6.

If the T bit in the status register is set to 1, we enter the trace mode. In
trace mode, every instruction generates an exception after it completes,
but before the next instruction begins. This is very useful for debugging a
program. In effect, we can single-step a program. Remember that the T
bit is reset before the exception handler gets control so that the handler
itself will not generate further exceptions. When the RTE is executed,
the T bit will assume its value before the exception, and execution will
continue with the next instruction in the program. The trace exception is
vector number 9.

Setting up an exception handler is quite simple. All that is needed is to
place its address in the appropriate exception vector location. However,
this requires access to the vector area of memory. Some systems restrict
access to this area in the user mode. In this case, we must somehow get
into supervisor mode. That means an exception of some sort. Usually an
operating system has a specific service that allows entry into supervisor
mode for a short time. If the operating system is very secure, or is

Exception Processing, System Control Operations, and I/O 163

multi-user, it might not allow a user to do anything in supervisor mode.
This is not a disadvantage, but one of the intended features of the 68000
family. Unlike many microprocessors, including the 8086, the 68000 does
allow the writing and implementation of a secure multi-user operating
system. Here is how to set up an exception handler for the TRAP #0
instruction:

TRAP0V: EQU 32*4 TRAP 0 VECTOR ADDRESS
*GET INTO SUPERVISOR MODE IP NOT ALREADY IN IT

LEA T0HAND/A0 GET ADDRESS OF HANDLER
MOVE.L A0,TRAP0V STICK IN VECTOR

♦TRAP 0 HANDLER
T0HAND: MOVEM.L,-(SP) SAVE REGISTERS WE USE

MOVEM (SP)+,.... RESTORE REGISTERS WE USED
RTE END WITH AN RTE

Notice that the exception handler saves and restores any registers it uses.
This is important because they are not automatically saved and restored
by the exception mechanism—only the program counter and the status
register/condition codes are. Forgetting to save and restore registers has
major consequences.

Serial I/O

In Chapter 2 the concept of memory mapped I/O was introduced.
All input/output on the 68000 is via I/O devices with control and data
registers that are present as addresses in the 68000’s address space. This
has the advantage that rather than being restricted to a small number of
input/output instructions, the 68000 programmer can use any memory
reference instruction with input/output devices as well as actual physical
memory locations.

To cover the wide variety of I/O devices that can be connected
to the 68000 would take up a book in itself. Additionally, so many
system-dependent aspects of these devices would make the topic almost
limitless in scope. Instead, in order to give you an idea of how to program
an I/O device, we will take a look at one very popular I/O chip, the
MC6850 Asynchronous Communications Interface Adapter (ACIA).

Many microcomputers are equipped with serial communications in
terfaces. Your CRT terminal or printer can be connected via a serial
interface. Another popular interface is the parallel interface. The terms

164 Assembly Language Programming for the 68000 Family

serial and parallel refer to the methods used to transfer data from the
input/output device to the interface. A parallel interface transfers a com
plete byte or word at a time. A serial interface transfers a byte or word
a single bit at a time. The advantage of a serial interface is that fewer
wires are needed to make the connection. A parallel interface requires
at least one wire for each bit. A disadvantage of a serial interface is that
data cannot be transferred as rapidly as with the parallel interface.

At the heart of the serial interface is a chip commonly known as a
universal asynchronous receiver transmitter (UART). Each byte of data
is sent or received as a stream of bits. Two additional bits are included
for each byte of data. A start bit is included to tell the UART that a byte
is to follow. A stop bit is used to verify to the UART that we are finished
with the current byte. Without start and stop bits, the UART would not
be able to ensure framing. When a framing error occurs, some of the
bits from one byte are mixed up with some of the bits from a previous
byte. Figure 14 shows this typical asynchronous serial format. The most
popular format is for eight data bits, one start bit, and one stop bit, giving
a total of 10 bits for each byte of data sent or received.

If each byte is to represent an ASCII character code, an extra bit is
available. This bit can be permanently set to a 1 or 0, or it may be used
as a parity bit. A parity bit is used to help verify that the data has been
received without error. The way a parity bit is used is very simple. We

M -------------- |------ 1------ 1------ 1------ 1------ 1------ 1------ 1-------1--------
I I I I I I ■ I I

I I I I I I I I I I

s I____ I____I____ I____ I-------- 1---------1---------1-------- 1--------- 1

Time

M—Marking or a logical one.
S—Spacing or a logical zero.

Figure 14 Asynchronous serial I/O format

Exception Processing, System Control Operations, and I/O 165

count up the number of data bits that are ones. We include the parity
bit, but not the start and stop bits. If we have an even number we have
even parity. If we have and odd number we have odd parity. Most serial
interfaces allow a programmer to specify if even, odd, or no parity is
required. The interface normally generates and/or checks the parity if
desired.

Now let’s take a look at the MC6850 in particular. This chip is a
member of the older 8-bit family of interface devices used with the
MC6800 CPU. However, it is still a very popular device for use with the
MC68000. It is inexpensive, simple to program, and interfaces directly to
the 68000 using the CPU’s 8-bit compatibility feature. You will find this
chip used on many 68000-based systems. The 6850 ACIA consists of four
internal 8-bit registers. These are:

1. Transit Data Register
2. Receive Data Register
3. Control Register
4. Status Register

The transmit and receive data registers are located at the same address.
The appropriate register is selected, depending on whether the register
is being read or written. The transmit data register is write only and the
receive data register is read only. A similar situation exists for the control
and status registers. These normally occupy the address two bytes greater
than the data registers. The control register is write only and the status
register is read only.

The interpretation of the bits in these registers is as follows:

Transmit and Receive Data Registers
DB7 DBG DB5 DB4 DB3 DB2 DB1 DB0

Control

------ Data Bits 0-7

Register
CR? CRG CR5 CR4 CR3 CR2 CR1 CR0

__ Counter Divide Sel.
__ Word Select
__ Transmit Control
__ Receive Interrupt Ena

166 Assembly Language Programming for the 68000 Family

Status Register

IRQ PE 0VRN FE CTS DCD TDRE RDRF

L Recv. Data Reg. Full
— Xmit. Data Reg. Empt
— Data Carrier Detect
— Clear To Send
— Framing Error
— Overrun Error
— Parity Error
— Interrupt Request

Counter Divide Sel.
CR1 CRO Function
0 0 Divide by 1
0 1 Divide by 16
1 0 Divide by 64
1 1 Master Reset

Word Select
CR4 CR3 CR2 Function
0 0 0 7 bits, even parity, 2 stop bits
0 0 1 7 bits, odd parity, 2 stop bits
0 1 0 7 bits. even parity, 1 stop bit
0 1 1 7 bits, odd parity, 1 stop bit
1 0 0 8 bits, 2 stop bits
1 0 1 8 bits, 1 stop bit
1 1 0 8 bits, even parity, 1 stop bit
1 1 1 8 bits, odd parity, 1 stop bit

Transmit Control
CR6 CR7 Function
0 0 RTS low, transmit disable low
0 1 RTS low, transmit interrupt enabled
1 0 RTS high, transmit interrupt disabled
1 1 RTS low, transmit a break, transmit

interrupt disabled

There are two methods of operating the ACIA; programmed I/O
and interrupt-driven I/O. The 6850 is capable of both methods. We will
discuss programmed mode, as it is much less complicated. This way we
don’t have to get involved with interrupts and an exception handler. The
keys to using the 6850 are the RDRF (receive data register full) and TDRE
(transmit data register empty) bits in the status word. The other control
and status bits are used to set up the operating modes and to detect

Exception Processing, System Control Operations, and I/O 167

errors. If RDRF is set to a one, we have an input character already to be
picked up. This would most likely be coming from a terminal’s keyboard
connected to the serial port. This character is available in the receive data
register. If RDRF is not set to a 1, we have to wait. If TDRE is set to a 1,
we are free to output a character to the transmit data register. If TDRE
is not set to a 1, we have to wait.

To demonstrate the programming involved with the 6850, we will
write three subroutines: one to initialize the port, one to output a charac
ter, and finally one to read a character. Let’s assume that we want to oper
ate our port with a standard clock divide rate of 16 (a system-dependent
value), 8 data bits with no parity, 1 stop bit, and RTS low with transmit
and receive interrupts disabled. Here are the three subroutines:

ACIATD: EQU <addr. of port> THE TRANSMIT DATA REGISTER
ACIARD: EQU ACIATD THE RECEIVE DATA REGISTER
ACIAC: EQU ACIATD+2 THE CONTROL REGISTER
ACIAS: EQU ACIAC THE STATUS REGISTER
CONTROLSEQU #$15 THE PORT PARAMETERS
*

♦INITIALIZE THE ACIA
*

INIT: MOVE.B #$3,ACIAC DO A MASTER RESET
MOVE.B #CONTROL,ACIAC INITIALIZE PARAMETERS
RTS

*

♦OUTPUT CHARACTER IN DO TO THE ACIA *
OUT: BTST.B #1,ACIAS TRANSMIT DATA REGISTER EMPTY?

BEQ OUT NO, TRY AGAIN
MOVE.B DO,ACIATD YES, OUTPUT THE CHARACTER
RTS

*

♦INPUT A CHARACTER TO DO PROM THE ACIA
*

IN: BTST.B #0,ACIAS RECEIVE DATA REGISTER FULL?
BEQ IN NO, TRY AGAIN
MOVE.B ACIARD,DO YES, GET THE CHARACTER
RTS

These subroutines are very straightforward. The BTST instructions
are used to test the appropriate bits in the status register. If a particular
bit is not set, we merely enter a loop and keep trying. This does have
the disadvantage that we can’t do any other useful processing while
waiting for a character to be sent or received. If we were to use the
interrupt capability of the 68000 and the 6850 ACIA, we could overcome
this problem, and the CPU would be free for use. When a character
arrived, an interrupt would be generated and we could then process
the new character. In a similar manner, when the current character is
output, an interrupt would be generated so that we could output the
next character. Naturally, using an interrupt mode of operation requires
character buffering and cooperation between the interrupt handler and

168 Assembly Language Programming for the 68000 Family

the main program. Many textbooks on systems programming or operating
system techniques describe these techniques.

There is one special instruction that has been provided just for inter
facing with 8-bit peripheral devices. This is the MOVEP (move peripheral
data) instruction. Its general forms are:

MOVEP[.<size>] Dx,d(Ay)
MOVEP[,<size>] d(Ay),Dx
<size> = W, L

Note that the only forms of the addressing modes it allows are register
and register indirect with displacement. This instruction moves bytes of
data to or from alternate bytes of a memory address. A longword transfer
to/from an even address looks like this:

Register Contents
13 24 23 1G IS 8 7 0

hi-order mid-upper mid-lower low-order

Contents of Memory
15 8 7 0

hi-order
mid-upper
mid-lower
low-order

A word transfer to/from an even address looks like the illustration at the
top of the following page.

Miscellaneous Instructions

In this section we will discuss a few miscellaneous instructions not
covered in previous chapters.

The NOP instruction is an instruction that does absolutely nothing. It
stands for No OPeration. It takes a minimum amount of time to execute,
since there are no operands. It occupies one word of memory. It can be
used as a place holder. For example, if you are using a debugger and

Exception Processing, System Control Operations, and I/O 169

31 24
Register Contents

23 1G 15 0 7 0
hi-order low-order

Contents of Memory
15 B 7 0

hi-order
low-order

find that an instruction is to be substituted by one that requires one less
word in memory, a NOP can be used to fill the excess word.

The RESET instruction can only be used in supervisor mode. When
it is executed it asserts the hardware reset line. This normally causes all
external devices to be reset. The exact results of using this instruction
will depend on what sort of devices are connected to the hardware reset
line. Normally this instruction is executed by the operating system to
ensure an initialized state for all external devices. Unless you are writing
an operating system, you should never have need for this instruction. If
you execute it by mistake in the user mode, a trap will be generated.

The STOP instruction has the general form:

STOP #xxx

The STOP instruction must be executed when in the supervisor mode
or else a trap will be generated. The immediate operand of the STOP
instruction is moved into the entire status register, the program counter is
advanced to the next instruction, and the CPU stops executing. However,
if an interrupt occurs with a priority higher than the current interrupt
priority level in the SR, then an interrupt exception will be generated;
otherwise nothing happens. If the exception handler executes an RTE,
the next instruction following the STOP will be executed. If an external
reset is generated, the processor will execute the standard reset sequence.

The test and set instruction, TAS, is primarily used in a multi-processor
environment. The general form of the instruction is:

TAS <ea>

The operand size used with the TAS instruction must be byte. It first tests
the byte at the effective address and sets the N and Z bits of the CCR
accordingly. It then sets bit 7 of the operand to a 1. This instruction is
special in that a read-modify-write bus cycle is used so that the test and

170 Assembly Language Programming for the 68000 Family

set operation can be performed in an indivisible manner. In other words,
only one CPU at a time can perform a TAS in a multiple CPU system.
No two TAS’s can overlap.

This instruction is normally used for locking operations. If a processor
wants to place a lock on some item, it can execute the following code:

Ls TAS LOCK
BNE L

It might look as if this loop would go on forever. This is not the case if the
lock was zero to begin with. Remember, the test operation is performed
before the set takes place. After a processor is finished with the locked
item, it must reset the lock and therefore allow other CPU’s to access the
data, one at a time. This unlock operation is performed by:

CLR.B LOCK

The byte variable LOCK must be initially cleared or no CPU will ever
be able to access the item.

The particular items protected by locks can vary all over the place.
A lock could be placed on a record of a file, an area of memory,
and so on. Since the use of a TAS involves a busy wait, an operating
system normally uses this instruction to implement higher level methods
of ensuring mutually exclusive access. Consult a good operating systems
text for these details.

Exercises

1. How large is the status register?
2. In addition to the CCR bits, what extra bits are in the SR?
3. Can the status register be accessed when in user mode?
4. What is the range of values for the interrupt mask?
5. Write an instruction to clear the carry bit in the CCR. All other bits

should remain the same.
6. What is the purpose of the RTR instruction?
7. Write an instruction to set the byte at location MINUS if the result of

a calculation is negative.
8. Assume your program is in supervisor mode. Write the instructions

necessary to initialize the USP to location USTACK.
9. What is an exception?

10. Where are the exception vectors located?
11. What is the difference between an RTE instruction and an RTS

instruction?
12. What happens when you try to access a word or longword at an odd

memory address?

Exception Processing, System Control Operations, and I/O 171

13. What exception vectors are associated with the TRAP instruction?
14. Is an exception generated for an overflow condition?
15. What happens if the trace bit is set in the status register?
16. Does the 68000 restrict the user to specific instructions for I/O?
17. What is the difference between a serial and a parallel interface?
18. What is the purpose of a parity bit?
19. What two methods can be used to program the 6850 ACIA?
20. What is the purpose of the MOVEP instruction?
21. What instruction is normally used as a place holder?
22. After the STOP instruction has been executed, is it possible for the

CPU to start up again?
23. What instruction is used in a multi-processor system for locking op

erations?

Answers

1. Two bytes.
2. The 3-bit interrupt mask, the supervisor state bit, and the trace mode

bit.
3. It can be read but not written using the MOVE from SR instruction.
4. The interrupt mask can range from 0 through 7.

5. ANDi #$f e ,s r

6. The RTR instruction is used to restore the saved CCR bits from the
stack and return. It allows the writing of a transparent subroutine.

7. SMI MINUS

8 . l e a u s t a c k ,ao
MOVE A0fUSP

9. An event that causes the normal flow of a program to be suspended,
and control given to a special handler.

10. In memory, starting at location zero, for a total of 1024 bytes.
11. The RTE is used to return from an exception. The SR as well as the return

address are popped from the stack. The RTS is used to return from a
subroutine and only the return address is popped from the stack.

12. The address error exception is generated.
13. Vector numbers 32 through 47.
14. No, but the TRAPV instruction can be used to generate one.
15. An exception is generated after every instruction execution. Vector

number 9 is used.

172 Assembly Language Programming for the 68000 Family

16. No, any memory reference instruction can be used, since the 68000
employs memory-mapped I/O.

17. A serial interface transfers a bit at a time, while a parallel interface
transfers a byte or word at a time.

18. A parity bit can be used to detect errors in data transmission.
19. The 6850 can be operated using programmed I/O or interrupt-driven

I/O.
20. The MOVEP instruction is used to transfer data to alternate byte

addresses. This is helpful for certain I/O devices.
21. The NOP instruction.
22. Yes, if an interrupt is generated from an external device.
23. The TAS (test and set) instruction.

C m P T ff l 15

THE 68010

The MC68010 is the next step up the ladder in the 68000 family. This
microprocessor is not radically different from the 68000. Most program
mers will never have to be aware that their program is running on a 68010
and not on a 68000. The 68010 is primarily designed to make it easy for
designers to build systems that use virtual concepts. The most popular
virtual concept is that of virtual memory. A secondary but also very im
portant use of 68010-type processors is in implementing virtual machines.
By “virtual” we mean giving the illusion that something is there when
it really isn’t. For example, we can give the illusion of a large physical
memory when, in fact, we have only a small physical memory. A virtual
machine can be used for a number of purposes. One of these is to allow
the concurrent execution of two or more different operating systems. This
might be desirable when we want to test a new operating system while
running an old one. Also, different users might want different operating
systems. The 68010 allows all of these things to be accomplished by some
relatively minor changes to the basic architecture.

Virtual Memory and the Bus Error Exception

You may recall from Chapter 12 that a bus error is a particular
exception that occurs when a program tries to access an address in
memory that doesn’t exist. A bus error may occur when the CPU tries
to access the instruction itself or when accessing one of the instruction’s
operands. It all depends on what is in the real physical memory and what
is addressed at non-existent memory locations. If a bus error occurs on
the 68000, an exception is generated and control will be passed to an
appropriate exception handler. There is not much the handler can do
about the situation. Normally the program is aborted and an appropriate
notice is given to the user. Even if it can somehow be arranged for
memory to be subsequently made available at the address that caused
the bus error (this is the basis of virtual memory management), we have
no way of restarting the instruction without the potential for error. A
simple example will serve to illustrate. Suppose the following instruction

173

174 Assembly Language Programming for the 68000 Family

generates a bus error on the destination operand, MEMLOC.

MOVE.L (AO)+,MEMLOC

If we try to re-execute this instruction, the address in AO will be in error.
We have already postincremented the value. What we would really like
to be able to do is to restart the instruction just where it left off—in this
case, just after having fetched the source operand. Unfortunately, the
68000 does not have this feature. And so, now enters the 68010, which of
course does give us this capability.

The secret to being able to recover midstream from a bus error on the
68010 comes from the way in which information is placed on the stack
during a bus error exception. The 68010 places 22 words of additional in
formation on the stack concerning the intermediate state of an instruction
execution. Therefore, when the RTE instruction is executed, everything
can be put back just as it was before the bus error. The instruction can
continue execution without ever knowing that it was interrupted. You
don’t have to be concerned with the specific details of this additional
information, since the RTE instruction takes care of if all when it is exe
cuted.

One issue needs to be briefly explained: just how does memory
get managed such that we can make physical memory available at a
particular address that was formerly not available? There are many
techniques to do this. In all cases some form of memory management
hardware must be added “between” the CPU and the physical memory.
The Motorola MC68851 Paged Memory Management Unit is a single
chip available for this purpose. The 68851 is actually a coprocessor,
and although specifically designed for the MC68020 CPU, it can be
used with other CPU’s, including the 68010. Other hardware can also be
used. Regardless of the specific hardware, the basic concept of virtual
memory is that we map an address in the virtual address space into
an address in the physical address space. The virtual address is the
address your instruction uses. This address is in turn converted or mapped
to a physical address that may or may not be the same. All forms
of virtual memory management map blocks of memory rather than
specific addresses. Otherwise the mapping would be very complex and
inefficient.

The most popular form of memory management is called paging.
With paging we divide the virtual memory up into equal sized blocks
called pages. Physical memory is likewise divided up into page frames
that are the same size as those of the virtual memory. The memory
management hardware is responsible for mapping a virtual page to a
physical page frame. The offset or displacement within a virtual page
is always the same as the offset in the page frame that it is mapped to;

The 68010 175

the tenth word in the virtual page corresponds to the tenth word in the
physical page. Since the virtual address space is normally much larger
than the physical memory, it is necessary to temporarily store the pages
that won’t fit into physical memory. For example, we might have just
1 megabyte of physical memory, while the 68010 can address up to 16
megabytes. Normally a disk memory is used to store the pages that are
not in physical memory. This is sometimes called a backing store. The
backing store does not have to be as large as the addressing capability of
the CPU if the size of the virtual address space is reduced.

Now we can tie up the loose ends. If an instruction references an
address that is mapped to physical memory, the memory management
hardware makes that address immediately available and no bus error
is generated. If a reference is made to an address that is not currently
mapped, a bus error exception will occur. This is normally called a page
fault when paging is used. The operating system now gets control. It is
responsible for finding the proper page on the backing store and bringing
it into memory. Once it is in memory, the operating system can execute
the RTE instruction with the stack pointer pointing at the same place it
was when the bus error was initially processed. This will return control
to the instruction that generated the bus error, and it will now be able to
access the address.

This may sound simple, but an operating system has a lot of bookeep-
ing to do in order to get all the pages mapped correctly. Many operating
systems textbooks will provide more information on the techniques used
to implement paging. Figure 15 shows a possible mapping of virtual pages
to physical page frames. Notice that some of the pages are not mapped.
Any reference to an address in one of these pages will generate a bus
error and hence a page fault.

Virtual Machines

Like virtual memory, a virtual machine provides the illusion of a
bare-bones machine. In other words, it appears to the user that all the
functionality of the machine is available. The user must not be aware
that a virtual machine operating system is running underneath her own
operating system.

In order to implement a true virtual machine, not only does the CPU
have to appear as a bare CPU, but any input/output devices must also
be made available to each user. Virtual memory can provide the illusion
of a specific physical memory (all users must have access to the same
addressing range). Since input/output devices are memory-mapped, they
can be replicated or shared for each user and appear at the same physical

176 Assembly Language Programming for the 68000 Family

Virtual Address Space
Physical Memory

page frames

Figure 1 5 Virtual memory mapping.

addresses. The CPU is another matter. Each user must think she has
access to all of the CPU’s capabilities, including user and supervisor states.
However, in order for the virtual machine operating system to maintain
control, the user must always run in user mode. We must be able to fool
a program into thinking that it is running in supervisor mode when it
actually isn’t.

Let’s say that a program is running in the user mode and executes
a privileged instruction. An exception will be generated and the virtual
operating system can take control. It can then verify and simulate the
execution of the privileged instruction. The user program will never know
that the instruction was not executed directly. The one problem that can
not be handled in this manner is the manipulation of the status register,
SR. A user on the 68000 can execute

The 68010 177

MOVE SR,<ea>

to examine the processor state. This instruction is not privileged on the
68000. The user could then tell that she was really in the user state.

To correct this deficiency, the 68010 makes the MOVE from SR
instruction privileged. The virtual operating system can then “fool” the
program into believing that it is in the supervisor state when it is actually
in the user state. It can simulate the execution of the instruction and return
the status register contents with the supervisor bit set. One minor change
was also made: a new instruction was added, the MOVE from CCR. Its
general form is

MOVE CCR,<ea>

The contents of the condition code register is moved to the destination
operand. This instruction is not available on the 68000 and it is not
privileged on the 68010. It allows a user-mode program on the 68010
to access the CCR without generating a privilege exception. You will
find a summary of the new and changed instructions at the end of this
chapter.

Reference Classifications

Three additional output lines are provided with both the 68000 and
the 68010 CPU. These lines are used to classify the type of memory
reference. They are interpreted as follows:

££2 E£1 ££4 Reference class
o o o N/A
0 0 1 User Data
0 1 0 User Prograir
0 1 1 N/A
1 0 0 N/A
1 0 1 Supervisor Data
1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

N/A = not generated by a normal instruction

A computer system based on the 68000 family can use these lines to con
trol access to certain areas of memory. Separate areas can be reserved
for user and supervisor states. A further distinction can be made between
data and program references. Bus errors can be generated if incorrect
references are made. All this must be accomplished with external hard
ware.

With the 68000 there is no way to override the use of the three function
class bits. However, the 68010 provides two new registers and two new

178 Assembly Language Programming for the 68000 Family

instructions to be used in conjunction with the function class output lines.
A source function code register, SFC, and a destination function code
register, DFC, are available in the supervisor state. These registers are 3
bits each, each bit corresponding to a bit of the function class lines. A new
privileged instruction, the move to/from control register, is provided on
the 68010. Its general form is:

MOVEC Rc,Rn
MOVEC Rn,Rc
Rc = SFC, DFC, VBR, USP
Rn = D0-D7, A0-A7

It is always a 32-bit transfer, with unused bits read as zero. This instruction
can also be used to access the user stack pointer, USP, or the vector base
register, VBR (discussed below), or to set up the SFC or DFC with any
relevant value.

A second privileged instruction, move to/from address space, can now
be used to access the memory location in the address space specified
by the source or destination function registers. The general form of this
instruction is:

MOVESI.<size>] Rn,<ea>
MOVESI.<size>] <ea>,Rn
<size> = B, W, L
Rn = D0-D7, A0-A7

The SFC or DFC is used, as appropriate, depending on whether <ea>
is the source or destination of the instruction.

The Vector Base Register

You will recall from Chapter 12 that for the 68000 the exception
vectors start at memory location 016 and continue through 3FF10. This
is normally the case for the 68010 as well. However, the 68010 provides a
method of relocating the exception vectors to any place desired. A special
register, the vector base register, VBR, is provided for this purpose. This
32-bit register is initially set to zero upon a system reset. A program
running in the supervisor mode can change the contents of this register
by use of the MOVEC instruction described above. The contents of the
VBR is always added to the address that would normally be used to
process the exception. You may recall that this address is four times the
exception number. For example, the TRAP #0 instruction will generate
exception number 3210. The actual vector location will be at 12810 or 8016.
If the VBR contains 400016, the TRAP #0 exception vector is located at
408016. The following instructions can be used to set the VBR to 400016:

The 68010 179

MOVE.L #$4000,DO
M0VEC DO,VBR

The VBR can be used for many purposes. The implementation of
a virtual machine is made much easier by the use of the VBR. Each
different user of the virtual machine must think that he/she has his/her
own set of exception vectors. These should appear to be located at
address zero. However, when the program runs, these vectors really can’t
be used since the virtual machine operating system requires complete
control. The virtual machine operating can use the VBR to set up an
alternate address for the actual vectors. If an exception occurs that the
virtual machine operating systems wants to pass to the user it can re
vector through the address found in the vectors based at zero. The VBR
can also be used to make a debugger appear more transparent to the
program it is debugging.

RTD and Loop Mode

Two other minor features that exist for the 68010 are the RTD in
struction and loop mode. The RTD instruction works exactly like the
RTS instruction except that a constant is added to the stack pointer af
ter the return address is fetched. This constant value is normally used
to clear the stack of any parameters passed to the subroutine. As dis
cussed in Chapter 8, this is normally the responsibility of the caller. To
see how this instruction works, let’s say that subroutine MYSUB is called
with three longword arguments. The following call would be used:

MOVE.L ARG3,-(SP)
MOVE.L ARG2,-(SP)
MOVE.L ARG1,-(SP)
JSR MYSUB

Normally the caller would use an ADDA.L #12,SP following the JSR to
clean up the stack. With the 68010, the following instructions can be used
such that the subroutine can clean up the stack upon its return:

MYSUB: .

RTD 12

Loop mode is an enhancement to the operating speed of the 68010 that
the user doesn’t even have to be aware of. To understand the advantage
of loop mode, we will have to take a closer look at the factors that govern

I

180 Assembly Language Programming for the 68000 Family

the speed of execution of an instruction. As I mentioned in Chapter
2, a CPU requires a clock to generate timing for the overall execution
of instructions. The speed of this clock depends on the particular chip
being used and also on the design of the computer it is used with. Each
instruction requires a particular number of clock cycles to execute. This
number varies with the particular operand addressing modes used with
the instruction. The reference documentation for the particular member
of the 68000 family you are using will have tables giving the exact number
of cycles for each instruction and addressing mode. All you need to
know is the speed of your clock and you can figure out the execution
time for any instruction. There is one minor problem that can throw off
your calculations: The 68000 is designed to accommodate memory of any
speed. If your memory is slower than the required speed for maximum
CPU speed, the CPU adds wait states, extra clock cycles to slow down
the CPU until the memory catches up. You will have to get the technical
details about your particular machine.

Since loops in a program may be executed hundreds or thousands of
times, it may be important to design the instructions inside the loop so
that they execute in the fastest time. This may mean sitting down with
paper and pencil to consult the manual to add up the total cycles for all
the instructions, and then trying various combinations until the best set
of instructions is obtained. Now back to the 68010 loop mode. If you
understand how this special mode works, you can plan some loops to
make them execute faster. The increased speed is obtained by entering
loop mode for only certain loops. The loop must contain only a single
word long instruction. The addressing modes of this instruction must be
such that no extension words are required. This would eliminate such
instructions as MOVE.L COUNT,Dl. The reason the 68010 can execute
these small loops with greater speed is that it has a two-word prefetch
queue, plus the instruction decode register. This means that all three
words of the entire loop can be held in the CPU. No additional memory
references are required for the instruction fetches once the loop is set
up. The memory references are then only those required by the loop
instruction. A prefetch queue is a special set of internal CPU registers
that are used to “look ahead” into memory and obtain the next few words
before they are actually needed. The MC68020 explained more fully in
the next chapter, makes extensive use of this technique.

Generally, any memory reference instructions can be used for loop
mode. These include the arithmetic and logical/shift rotates. The
operands must use one or more of the following addressing modes:

DX
(An)
(An) +
-(An)

The 68010 181

You may recall that the DBcc instruction on the 68000 first checks
the terminating condition. If it is true, execution continues with the next
sequential instruction; if the test condition is false, the loop counter is
decremented and the result is checked against —1. If it is not equal to —1,
the loop branch is taken and we stay in the loop; otherwise, we continue
with the next sequential instruction. Under the 68010 loop mode, the
sequence is slightly different. The 68010 first decrements the contents of
the count register. It does this internally without actually changing the
value in the register. If the result is —1, this value is stored in the count
register and execution continues with the next sequential instruction. If
the result is not —1, the terminating condition is checked. If it is true,
the temporary count is discarded and execution continues with the next
sequential instruction. Otherwise, if the terminating condition is false, the
branch is taken.

A very fast memory move can be implemented using loop mode with
the following:

Here is a summary of the new or changed instructions and registers

LEA SOURCE/A0
LEA DEST/A1
MOVE.W COUNT,DO

NEXT: MOVE.L (AO)+,(Al)+
DBRA DO,NEXT

Summary

for the 68010:
Instruction Comments
MOVE from CCR
MOVE from SR
MOVEC
MOVES
RTD
RTE 68010 restores intermediate instruction

state

68010 only
Privileged on 68010
68010 only
68010 only
68010 only

New Registers
SFC
DFC
VBR

Source function code register
Destination function code register
Vector base register

Exercises

1. What is a virtual memory?
2. What is a bus error?

182 Assembly Language Programming for the 68000 Family

3. In what way does the 68010 handle bus errors differently than the
68000?

4. What is the purpose of memory management hardware?
5. What is the most popular form of memory management for imple

menting virtual memory?
6. What is a page fault?
7. What is the purpose of a virtual machine?
8. Is a MOVE from SR instruction privileged on the 68010?
9 . Write a 68010 instruction to copy the contents of the CCR to register

DO. This instruction should not generate an exception in user mode.
10. What output lines are provided for reference classifications?
11. What new registers are provided on the 68010 to allow overrides to

the reference classification?
12. Write the instructions necessary to reference absolute location $1000

in the supervisor data space. Read the longword at this location into
register DO.

13. What is the function of the vector base register?
14. What does the RTD instruction do?
15. What addressing modes are allowed with the single instruction used

inside the loop in loop mode?

Answers

1. A virtual memory is the illusion of a large physical memory when in
actuality a much smaller memory is available.

2. A bus error is an exception that is generated when a reference is made
to non-existent memory.

3. The 68010 allows an instruction to be restarted where it left off after
a bus error is processed. This is accomplished by stacking additional
state information during the exception processing.

4. Memory management hardware provides the necessary mapping be
tween the logical address and the physical address.

5. Paging.
6. A page fault is generated if a memory reference is made to a page

that is currently not in physical memory.
7. A virtual machine can be used to allow execution of several differ

ent operating systems on the same CPU or to provide a simulation
capability for features that don’t actually exist.

8. Yes, but not on the 68000.

9 . MOVE CCR,DO

10. P C 0, FC 1, and FC 2.

The 68010 183

11. The SFC (source function code) register and the DFC (destination
function code) register.

12. MOVE.L #5, DO
MOVEC DO,SFC
MOVES.L $1000,DO

13. The vector base register allows moving the exception vectors to any
location in memory.

14. RTD performs like an RTS except that a constant is also added to the
stack pointer after the return address is popped. This can be used to
clear the stack of any arguments passed to the subroutine.

15. Dx, (An), (An)+, and —(An).

CHAPTER 1 4

THE 68020

The MC68020 is a dramatically improved member of the 68000 family
with a plethora of new features. Not only is the basic core performance
of the processor much improved, but the new features expand the func
tionality of this chip so much that it brings it into serious competition
with mini- and super minicomputers. The major enhancements can be
summarized as:

1. A full 32-bit address bus
2. An instruction cache for faster execution
3. Built-in coprocessor support
4. New addressing modes
5. New and enhanced instructions
6. 8-, 16-, and 32-bit.data bus interface

The 68020 is a true 32-bit architecture. With the 32-bit data bus capa
bility and internal 32-bit operations, the 68020 can operate at its maximum
potential with 32-bit operands. Even though the 68000 performs 32-bit op
erations, the data bus path is restricted to 16 bits at a time. For this reason
the 68000 is sometimes classed as a 16-bit micro. The 68020 is clearly a
32-bit architecture in every way. In order to allow the 68020 to be used in
systems that are restricted to an 8- or 16-bit data bus, the 68020 provides
the option of using 8-, 16-, or 32-bit data bus widths. Unfortunately, you
can’t just plug in a 68020 where a 68000 was. The physical construction
is very different. The 68020 uses a 114-pin grid array, whereas the 68000
uses the more conventional dual in-line package (DIP).

Along with the expanded addressing capability comes an added
bonus: the restriction that word or longword data must be aligned on
even-byte boundaries is relaxed. Words and longwords can start on any
byte address. However, the restriction that instructions start on even bytes
has not been removed.

185

186 Assembly Language Programming for the 68000 Family

Instruction Caching

Besides using full 32-bit operands both internally and via the data bus,
the 68020 gains additional performance improvement by introducing an
instruction cache. A cache is very similar to a small internal memory. Since
it is internal, it can operate at register speeds. This means that an access
to the cache takes less time than an access to the physical memory. The
cache on the 68020 is used to store instructions. If an instruction is found
in the cache there is no need to look for it in physical memory. There
is an additional benefit however; while the instruction is being fetched
from the cache, an operand can be accessed in memory. If this situation
occurs, then the instruction fetch is actually for free. This is because the
two accesses are overlapped.

The operation of the instruction cache is invisible to the programmer.
The cache is automatically updated according to an internal algorithm
in the CPU. The real advantage of the instruction cache comes into play
when a small loop is executed. If all the instructions of the loop will fit
into the instruction cache, once we have gone through the loop the first
time, the instruction fetches for each additional pass through the loop will
be from the instruction cache. The instruction cache on the 68020 is 256
bytes. This is enough to hold a significant number of instructions. Since
the length of an instruction varies from 2 to 10 bytes, it is not possible
to know the exact number of instructions that will fit in the cache, but
a rough estimate is around 50. Since most loops don’t involve more than
50 instructions, the instruction cache almost always speeds up loops. The
loop mode on the 68010 is a very limited version of the 68020 instruction
cache.

Figure 16 shows the operation of the 68020 instruction cache. The
cache stores 32-bit longwords that are aligned on even-word addresses.
Bits 2 through 7 of an address are used to index into the cache. This
allows 64 longwords to be stored in the cache. Bits 8 through 31 and the
high-order bit of the 3-bit function code are stored as a tag in the cache
entry along with the 32-bit value at that address. You will recall from
Chapter 13 that the function code specifies the address space. Only user
and supervisor program spaces are stored in the instruction cache. The
high-order bit of the function code determines which is which. If this bit
is set, it indicates a supervisor program address. The two lower-order bits
of the function code must be 10. Every address accessed by the CPU is
compared with the contents of the cache. The entry is selected by bits 2
through 7. If the tag field matches, then the data in the cache, rather than
a fetch to memory, is used. If the tag doesn’t match and the reference
is a program reference, then the actual memory location is accessed and
the cache is updated.

The 68020 187

MC68020 Prefetch Address

F F F A
C C C 3 • • • 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

i
of
64

Select

Tag
Replace

Tag

Tag V

•
•
•
•

Comparator

Index

Word Select

Word Word

Hit

Replacement
Data

To
Instruction

Path

Cache
Control

Figure 16 Instruction cache. (Courtesy of Motorola, Inc.)

In order to control the operation of the instruction cache, two new
registers were added to the 68020; the cache control register, CACR, and
the cache address register, CAAR. They are both 32 bits, but not all the
bits are used. The CACR only uses the low-order 4 bits.

31 4 3 2 1 0
C CE F E

Clear cache .
Clear entry .
F reeze cache.
Enable cache.

When the hardware is reset, the cache is initially disabled. In order to
enable the cache, the E bit in the CACR must be set. The MOVEC
instruction has been expanded on the 68020 to include the cache registers.

188 Assembly Language Programming for the 68000 Family

MOVE.L #1,D0
MOVEC DO/CACR

does the job nicely. The other bits can be manipulated in a similar manner.
Remember, MOVEC is a privileged instruction, so this operation can’t be
accomplished when in user mode. The cache can be enabled or disabled
at will.

The F bit will freeze the cache. The cache will still operate, but its
contents will not change. This is useful for certain types of applications
when a function is being emulated. The C and CE bits are used to clear
the entire cache or just a particular entry. The cache should be cleared
every time the the contents of program memory are changed. If program
memory is changed without the cache being cleared, the contents of
the cache will not reflect the actual contents of memory, and errors in
execution may result. This operation would normally be performed by
the operating system when it loads a new program. To clear a specific
entry we place the cache index value in the CAAR. The cache index value
is determined by using bits 2 through 7 of the corresponding memory
address. This value is placed in bits 2 through 7 of the CAAR. It doesn’t
matter what the other bits are, they are ignored. The CAAR is structured
like this:

31 8 7 2 1 0
INDEX

This last operation is provided only for the most sophisticated applica
tions. If a specific memory address in program space is modified, only
the specific cache entry that corresponds to it need be modified; the en
tire cache does not have to be cleared. Since self-modifying programs
have fallen out of vogue, it is unlikely that clearing a specific entry has
any value except for very sophisticated machine emulation applications.

Additional Addressing Modes

The 68020 provides six additional addressing modes besides the 12
that already exist for the 68000. These new addressing modes form two
groups of three. The operation of the two groups is very similar. The
first group extends the 68000’s address register indirect with index mode.
The second group extends the 68000’s program counter with index. You
will recall from Chapter 6 that these two modes are quite similar. The
program counter with index mode functions exactly like the address
register indirect with index, with the address register being replaced with
the program counter.

The 68020 189

For these two basic 68000 modes, the effective address is computed
by taking the address register or program counter and adding the con
tents of either the full 32 bits of a general register or the sign-extended
low-order word of a general register. To this intermediate result the
sign-extended value of an 8-bit displacement is added. This final result
is used as the address of the operand. In assembler, these modes were
written as d8(An,Rn.<size>) and d8(PC,Rn.<size>), with <size> either
W or L. Along with the new 68020 addressing modes, Motorola intro
duced a slightly different assembler syntax for these addressing modes
as well as for the new ones. You will have to check your 68020 assembler
manual to find out the syntax required of your own assembler. The new
syntax for these 68000 addressing modes is (d8,An,Rn.<size>*<scale>)
and (d8,PC,Rn.<size>*<scale>). As you can see, these are very minor
changes. <scale> is an optional scale factor that is available with the
68020. It can be 1, 2, 4, or 8. If the scale factor is present, it is used
to multiply the value in the index register Rn. This makes indexing into
word and longword arrays much easier. For example, a scale factor of 4
would be used to access an array of longwords. Let’s say we want to ac
cess the 25th entry of a longword array pointed to by A0. We can do it
with the following instructions:

MOVE.W #24,DO
MOVE.L (0,A0,D0.W*4),D1

Remember, the first entry in the array will be at offset zero.
The first really new addressing mode on the 68020 is almost like the

address register indirect with index. The difference is that an optional
sign-extended 16- or 32-bit displacement, rather than an 8-bit displace
ment, is allowed. In fact, the address and index registers are also optional.
Two versions of this mode are available, one for use with an address reg
ister and one for use with the program counter. These addressing modes
have the following assembler formats:

(bd,An,Rn.<size>*<scale>)
(bd,PC,Rn.<size>*<scale>)

As before, the optional scale factor can be 1, 2, 4, or 8. These addressing
modes are formally known as address register indirect with index (base
displacement) and PC register indirect with index (base displacement).

The second and third new modes are forms of memory indirect. The
ultimate effective address of these modes is found by referencing the con
tents of a memory location. The value found there is actually an address.
This may seem complicated, but it is actually quite simple. Without these
addressing modes, in order to take an address from memory and use it
to access the contents of the location it points to, we would first have
to place the pointer in an address register and then use a register indi

190 Assembly Language Programming for the 68000 Family

rect mode. The new 68020 modes make this operation a thing of the past.
Figure 17 shows the calculation of the effective address for the versions
using an address register. The versions of these modes for use with the
program counter are identical if the PC is substituted for the address reg
ister. In this case the memory address pointed to by the PC is that of the
first extension word. The two versions of the addressing mode are very
similar. The major difference is whether post-indexing or pre-indexing is
used.

The assembler syntax for these forms are:
(tbd,An],Rn.<size>*<scale>,od) post-indexed
([bd,An,Rn.<size>*<scale>],od) pre-indexed
([bd,PC],Rn.<size>*<scale>,od) post-indexed
([bd,PC,Rn.<size>*<scale>],od) pre-indexed

With the post-indexed versions, the memory location calculated by
adding An or PC to bd is used as the memory indirect location. This
is the memory location containing the pointer. The index register, appro
priately scaled, is added to this pointer as well as the outer displacement,
od. This final value is the effective address. With the pre-indexed versions
the sequence is slightly modified. The location of the memory indirect
pointer is determined by adding the address register or PC to the base
displacement, bd, and the scaled index register. The outer displacement
is added to the pointer to compute the final effective address. All four
of the specified values are optional. This actually provides 16 different
combinations.

Only the most advanced assembly language programmers will need
these advanced addressing modes. However, the pre-indexed versions are
especially useful when you have an array of pointers. You might keep this
in mind as you start programming with the 68020.

Instruction Extensions

The extensions to existing instructions generally fall into two cate
gories: increase in the size of allowable displacements, and increased
functionality.

The 68020 allows a full 32-bit displacement to be used with the branch
instructions BRA, BSR, and Bcc. Formally, the addressing range was
restricted to a 16-bit displacement. This extension allows us to reach
anywhere in memory with these instructions.

The CHK instruction will now operate with both word and longword
sources. Recall that the CHK instruction checks the contents of an address
register against a bound that is stored in the source operand. You must
specify the size of the bound using the usual method of appending .W or
.L to the instruction mnemonic.

The 68020 191

Generation: EA = (bd + An) + Xn.SIZE*SCALE + od

Assembler Syntax: ([bd,An],Xn.SIZE*SCALE,od)
Mode:

Base Displacement:

Index Register:

Scale:

Outer Displacement:

Effective Address:

Generation: EA = (bd + An + Xn.SIZE*SCALE) + od
Assembler Syntax: ([bd,An,Xn.SIZE*SCALE],od)
Mode:

Base Displacement:

Index Register:

Scale:

Outer Displacement:

Effective Address:

Figure 17 Effective address calculation. (Courtesy of Motorola, Inc)

192 Assembly Language Programming for the 68000 Family

The CMPI and TST instructions now allow all of the PC relative
addressing modes. However, this extension only applies when word or
longword operands are used.

The divide and multiply instructions, DIV and MUL, have been
greatly expanded. Recall that the four forms of these instructions were:

DIVU <ea>,Dn
DIVS <ea>,Dn
MULU <ea>,Dn
MULS <ea>,Dn

The divide instructions require a 16-bit source and 32-bit destination
operand. The result is a 32-bit value consisting of a 16-bit quotient
and a 16-bit remainder. The multiply instructions multiply two 16-bit
operands, yielding a 32-bit result. The expanded divide instructions have
the following forms:

DIVS.W <ea>,Dn DIVU.W <ea>,Dn 32/16->16r:16q
DIVS.L <ea>,Dq DIVU.L <ea>,Dq 32/32->32q
DIVS.L <ea>,Dr:Dq DIVU.L <ea>,Dr:Dq 64/32->32r:32q
DIVSL.L <ea>,Dr:Dq DIVUL.L <ea>,Dr:Dq 32/32->32r:32q

The operation of these instructions is relatively straightforward. The
first form is the form found on the 68000. This is the default if no
size is specified. The three extended forms vary in the sizes of the
operands and/or the result. Notice that a register pair is required for
operands/results that require more than 32 bits total. The notation Dr/Dq
refers to the quotient and remainder registers. These can be any of the
data registers.

The expanded multiply instructions have the following format:

MULS.W <ea>,Dn MULS.W <ea>,Dn 16Xl6->32
MULS.L <ea>,Dl MULS.L <ea>,Dl 32X32->32
MULS.L <ea>fDh:Dl MULS.L <ea>,Dh:Dl 32X32->64

The first form is the old 68000 form. In this case two 16-bit operands
are multiplied to yield a 32-bit result. The expanded forms allow the
multiplication of two 32-bit operands to yield either a 32-bit or a 64-bit
result. In the case of a 64-bit result, Dh and Dl refer to the registers used
to hold the high-and low-order 32 bits of the result.

The EXT instruction has been expanded. Recall that the EXT.W sign
extends a byte to a word, and the EXT.L sign extends a word to a
longword. In order to sign-extend a byte to a longword, both of these
instructions had to be used. The 68020 allows a sign extension from byte
to longword with a single instruction. A slightly different mnemonic has to
be introduced. This is not really a different instruction, but an expanded
form of EXT. The new instruction format is EXTB.L. This is the exact

The 68020 193

format that must be used. For example, to sign-extend the byte in DO,
you would issue an EXTB.L DO instruction.

The LINK instruction was formally restricted to use a sign-extended
16-bit displacement to offset the stack pointer. The 68020 allows a full
32-bit offset to be added to the stack pointer.

Hew Instructions

The 68020 has a relatively small number of totally new instructions.
Since these instructions are fairly well spread out over the overall func
tionality of the 68020,1 will cover them in alphabetical order.

Bit Field Instructions BFxxx The first new instruction is actually a group
of instructions. They each manipulate a bit field. A bit field is a group
of 1 to 32 contiguous bits in either a register or memory. The bit field
is specified by a field width and offset. The assembler language format
recommended by Motorola is {offset:width}. Offset can be an immediate
value of 0 to 31 or a value in a data register. If a data register is used,
it has a range of —231 to 231—1. The offset is the bit offset from the
high-order bit. In other words, an offset of 0 specifies a bit field starting
at bit number 31. Width can be an immediate value of 0 to 31 or a value
in a data register. If a data register is used, the value is taken modulo 32.
In either case, a value of 0 represents a field width of 32. The specific
assembler syntax can vary, so be sure to check your assembler manual.
This is especially important concerning whether an immediate field width
of 32 is allowed and automatically converted to 0.

Here is a list of the bit field instructions and their functions:

BFCBG <ea>(offset:width)
BFCLR <ea>(offset:width)
BFEXTS <ea>(offset:width),Dn
BFEXTU <ea>(offset:width),Dn
BFFFO <ea>(offset:width),Dn
BFINS Dn,<ea>(offset:width)
BFSET <ea>(offset:width)
BFTST <ea>(offset:width)

One's complement the bit field
Clear the bit field
Bit field->Dn, sign extended
Bit field->Dn, zero extended
Search for first bit set, offset->Dn
Dn->bit field
Set all bits to one
Set N and Z conditions, treat the
bit field as a signed number

Breakpoint Instruction BKPT The BKPT (breakpoint) instruction is
provided for use by debuggers and hardware emulators. In order for
this instruction to be used, external hardware is required. When the
BKPT instruction is executed, a special bus cycle is executed. The BKPT
instruction has a single immediate mode operand. This operand is placed
on address line A2-A4. The immediate value must be in the range 0-7.
If external hardware is present, it can respond with an instruction word

194 Assembly Language Programming for the 68000 Family

on the data lines that is executed in place of the BKPT. If the external
hardware is not present, this instruction generates an illegal instruction
exception.

CALLM/RTM The CALLM (call module) and RTM (return from mod
ule) instructions are used to support the 68020 concept of a module.
A module is very similar to a subroutine except that it can be granted
access rights that may be more extensive than those of the program
calling the module. Access rights pertain to what portions of memory
can be accessed. Since input/output devices on the 68000 family are
memory-mapped, access to those areas of memory are necessary to per
form I/O. The 68020 doesn’t have the necessary hardware on the chip to
fully support access rights. External hardware is needed to work along
with the module concept for this to work.

Access rights are intimately tied in with the concept of address spaces.
In Chapter 13 I discussed the concepts of address spaces and the use of
the three function code lines. The decoding of these lines for the 68020
is as follows:

FC2 FC1 FC0 Reference Class
0 0 0 (Undefined, Reserved)
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 (Undefined, Reserved)
1 0 0 (Undefined, Reserved)
1 0 1 Supervisor Dat a Space
1 1 0 Supervisor Program Space
1 1 1 C PU Space

This mechanism provides a minimal number of access levels, primarily
those offered by the supervisor or user modes. The module support allows
the external hardware to implement a much larger number of access
levels. An 8-bit access level number is associated with each module.
The external hardware can be designed to interpret this access value
any way it wants. When a module is called, a request can be made to
change the current access level. This mechanism is rather complicated,
and since it requires external hardware that doesn’t exist in a general
form, I will present a brief description of its operation. To use the module
support feature, you will need to find out the exact details of the external
hardware your system is providing.

The CALLM instruction has the following general form:

CALLM #<data>,<ea>
<ea> is the address of an external module descriptor. <data> is an

The 68020 195

31 28 23 15 0
Base- *

+ $04

+ $08

+ $0C

+ $10

Figure 18 Module descriptor format (Courtesy of Motorola, Inc)

immediate operand specifying the number of arguments being passed to
the module. These arguments are passed on the stack. Before the CALLM
is executed, they must be pushed on the stack. Figure 18 shows the layout
of a module descriptor. The OPT field is restricted to two values: 000
indicates that arguments are passed on the stack, 100 indicates that a
pointer to the arguments will be provided on the stack. Only two values
for the type field are used: 00 indicates that no change in access level is
desired, 01 indicates that there may be a change in access rights. If type
01 is indicated, the called module is allowed to have a stack area that is
independent of the caller s stack.

The access level field is passed to the external hardware to provide
information for a possible change in access rights. The module data area
pointer contains the address of the called module s data area. This is
normally the value that will be loaded into the stack pointer. The module
entry word pointer is the address of the module’s entry word. This is
a special word that precedes the first instruction of the module. Figure
19 show the layout of this word. It merely specifies an address or data
register to be loaded with the module's data area pointer. Before the
register is loaded, it is saved on the call stack. If this register is SP, the
effect is that the module data pointer is ignored. This is because SP is
overwritten with a new value following the execution of the CALLM.
Figure 20 shows the module call stack frame.

The RTM instruction has the following form:
RTM Rn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/A | Register | 0

o
!

o
!

o

0 0 | 0 0 I o I o I 0 I 0

Operation Word of First Instruction

Figure 19 Module entry word. (Courtesy of Motorola, Inc)

Opt | Type | Access Level | (Reserved, Must be Zero)

Module Entry Word Pointer

Module Data Area Pointer

Additional User-Defined Information

196 Assembly Language Programming for the 68000 Family

SP —

+ $08

+ $0C

+ $10

+ $14

+ $18

15

Opt

12

Type Saved Access Level
Condition Codes
Argument Count

(Reserved)

Module Descriptor Pointer

Saved Program Counter

Saved Module Data Area Pointer

Saved Stack Pointer

Arguments (Optional)

Figure 20 Module call stack frame. (Courtesy of Motorola, Inc.)

Rn specifies the register to beloaded with the saved module’s data pointer
obtained from the stack. If SP is specified, this restored value is overwrit
ten by the updated value of SP. Rn would normally be chosen to match
the register specified by the module entry word. A nice feature of the
RTM is that it increments the stack pointer by the number of arguments
that were specified in the CALLM.

CAS and CAS2 The 68020 provides two new instructions that are ex
tensions to the mechanism provided by the test and set instruction, TAS.
Before you continue, it would be a good idea to review the TAS in
struction covered in Chapter 12. The TAS instruction only provides a
binary-type operation on a lock—in other words, the lock is set or it isn’t.
The compare and swap with operand instructions, CAS and CAS2, have
a much greater functionality. Their general forms are:

CAS Dc,Du,<ea>
CAS2 DC1:Dc2,Dul:Du2,(Rnl):(Rn2)

Dc and Du represent the compare and update registers. The CAS
instruction first compares Dc and <ea>. If they are equal, the contents of
Du is placed in <ea>. If they are not equal, the contents of <ea> is copied
to register Dc. If you think about it, this is actually a test and set type of
operation. The entire operation is performed in an atomic fashion—no
other processor or interrupt routine can execute bus cycles while this
instruction is executing. A typical application of the CAS instruction
would be the implementation of a counting semaphore. What we want
to be able to do is to increment the value of a semaphore in such a
manner that no other process or interrupt routine interferes. Here is how
we would use the CAS instruction:

The 68020 197

MOVE.W SEM,DO
LOOP: MOVE.W DO,Dl

ADDQ.W #1,D1
CAS.W DO/DlfSEM
BNE LOOP

The CAS2 instruction operates in a similar manner to the CAS except
that it has additional operands, and two compares are performed instead
of just one. Both comparisons must show a match for the update registers
to be stored in the destination addresses. The destination addresses must
be specified using register indirect addressing with either a data register
or an address register. If one or both of the compares fails, the
destination operands are copied to the compare registers just as in the
case of the CAS. The CAS instruction allows byte, word and longword
operations. The CAS2 is restricted only to word or longword operations.

CHK2 The CHK2 instruction is an extended version of the CHK instruc
tion. CHK2 will check a data value in either a data register or an address
register against a pair of bounds. The general form of this instruction is:

CHK2I.<size>] <ea>,Rn
<size> = B, W, L

The effective address must be to a pair of memory operands. The first is
the lower bound. It is a byte, word, or longword. The second is the upper
bound. This is located at the next byte, word, or longword in memory
above the lower bound. If the register, Rn, is less than the lower bound or
greater than the upper bound, an exception is generated. The exception
vector is the same as for the CHK instruction. The CHK2 instruction can
be used for both signed and unsigned operands.

CMP2 The CMP2 instruction is very similar to the CHK2 instruction. It
has the same general form:

CMP21.<size>] <ea>,Rn
<size> = B, W, L

The operands are identical to the CHK2 instruction. The difference is
that this instruction does not generate an exception if the register is out
of bounds; instead, the condition codes are used to indicate the success
or failure of the operation. The carry condition is set if the register value
is out of bounds. The zero condition is set if the register value is equal
to either the upper or lower bound. Here is how to test for whether the
value in register DO is greater than 100 or less than —100:

CMP2.L BOUNDS,DO

BOUNDS: DC.L -100,100
Coprocessor Support Instructions The 68020 provides direct coproces
sor support. A coprocessor is a special purpose chip that operates in con

198 Assembly Language Programming for the 68000 Family

junction with the main CPU chip to provide additional features not avail
able on the main CPU. Examples of coprocessors for the 68000 family
are the MC68881 floating point arithmetic coprocessor and the MC68851
paged memory management unit. Each coprocessor has a set of instruc
tions that are unique to it. If a particular coprocessor is present in your
system, the 68020 allows you to write the coprocessor instructions di
rectly.

Without presenting the details of specific coprocessors it is not possible
to present specific coprocessor instructions. However, all coprocessor
instructions for the 68020 fall into specific types. Here is a brief list of the
68020 coprocessor support instructions.

cpBcc
cpDBcc

<label>
Dn,<label>

cpGEN <params>
cpRESTORE <ea>
cpSAVE <ea>
cpScc <ea>
cpTRAPcc [#<data>]

Branch on Coprocessor Condition
Test Coprocessor Condition Decrement
and Branch
Coprocessor General Function
Coprocessor Restore Functions
Coprocessor Save Function
Set on Coprocessor Condition
Trap on Coprocessor Condition

You will have to consult the appropriate coprocessor manual to obtain
the specific information you will need to program the coprocessor.

PACK and UNPK In decimal arithmetic, discussed in Chapter 11, a
decimal number is represented as two binary-coded decimal (BCD) digits
per byte. In order to perform BCD arithmetic, we had to convert ASCII
digits to BCD digits and pack two of them in each byte, and perform
the reverse operation on output. The PACK and UNPK instructions will
perform these operations for us. PACK has the following two general
forms:

PACK - (Ax)(Ay) , #Adjustment>
PACK Dx,Dy,#<adjustment>

<adjustment> is a 16-bit value. Both forms of this instruction take two
bytes, either from memory using predecrement addressing or from the
low-order 16 bits of the register, and add the adjustment. The resulting
16-bit value is packed into a single byte. This is done by taking the
low-order four bits from each of the two bytes and concatenating. The
adjustment can be used to convert the data from ASCII, or some other
character code, to BCD representation. If a negated value is used for
the adjustment, it will effectively be subtracted from the two digits. For
ASCII conversion we would form an adjustment such that the ASCII code
for the character 0 is subtracted from each byte. Here is how we would
write a PACK instruction to do this, assuming that the data is referenced
by A0 and placed in a byte pointed to by Al.

The 68020 199

PACK -(AO),-(Al),#-$3030

UNPK has the following identical general forms:

UNPK -(Ax) ,-(Ay), #<adjustirent>
UNPK Dx,Dy,#<adjustirent>

UNPK simply reverses what a PACK does. A packed BCD byte is
obtained from the source operand. It is then unpacked to two bytes.
The adjustment is added in and the final result stored in the two bytes
of the destination. The following instruction performs this conversion for
ASCII output:

UNPK -(AO),-(Al),#$3030

TRAPcc The TRAPcc instruction is very similar to the TRAP instruction
except that it conditionally generates the exception. The characters cc in
the instruction mnemonic can be any of the conditions used with the Bcc
or See instructions. They are:

CC carry clear
CS carry set
EQ equal
F false

GB greater or equal
GT greater than
HI high
LE less or equal

LS low or same
LT less than
MI minus
NE notequal
PL plus
T true

VC overflow clear
VS overflow set

There are three general forms for the TRAPcc instruction:
TRAPcc
TRAPcc.W
TRAPcc.L #<data>

#<data>

If either a word or longword operand is specified, this immediate operand
is placed in one or two extension words immediately following the in
struction word. The operand can be used to pass an argument to the
trap handler. Exception vector 7 is used for this instruction. It is the
same exception vector that is used by the TRAPV instruction discussed
in Chapter 12.

Exercises

1. What is the width of the 68020’s address bus?
2. What data bus sizes can be accommodated by the 68020?
3. Can a 68020 be plugged in in place of a 68000?

200 Assembly Language Programming for the 68000 Family

4. Can word or longword data begin on an odd address boundary when
using the 68020?

5. What is the purpose of an instruction cache?
6. How large is the instruction cache on the 68020?
7. What is the size of the entries in the 68020 instruction cache?
8. What new registers are provided for control of the 68020 instruction

cache?
9. Why is it necessary to clear the cache when the contents of program

memory is changed?
10. What is purpose of the optional scale factor for the 68020’s address

register indirect with index addressing mode?
11. What are the allowed values for the scale factor?
12. What is the proper form for the 68020 address register indirect with

index (base displacement) addressing mode?
13. For the above addressing mode, are any elements optional? If so,

which?
14. What is memory indirect addressing?
15. What size displacement is allowed with the 68020 branch instructions?
16. What extensions are made to multiplication and division instructions

with the 68020?
17. Write the 68020 instruction to sign-extend a byte in DO to a full

longword.
18. With the 68020 bit field instructions, how large can the bit field be?
19. Where can a bit field be located?
20. What is a 68020 module?
21. What new 68020 instructions support modules?
22. What new 68020 instructions expand the capabilities of the 68000’s

TAS instruction?
23. Write the 68020 instructions necessary to compare register DO to

determine if it is greater than 20 and less than 75. Branch to ERROR
if it is not.

24. What is the normal purpose of the PACK and UNPK instructions?
25. Write an instruction to generate exception 7 if the negative condition

is set.

Answers

1. A full 32 bits.
2. 8, 16, and 32.
3. No, it is physically impossible.
4. Yes, the 68000 even-byte restriction does not apply to the 68020.
5. An instruction cache is used to store a number of instructions inside

the CPU in order to speed up the execution of loops.

The 68020 201

6. 256 bytes.
7. 32 bits.
8. The cache control register, CACR, and the cache address register,

CAAR.
9. The cache must be cleared so that it doesn’t contain instructions that

do not match the actual contents of memory.
10. It makes indexing into arrays much easier.
11. 1, 2, 4, or 8.
12. (bd,An,Rn.<size>*<scale>)
13. Any element is optional.
14. The 68020 addressing modes that use the contents of a memory

location as the address of the actual data.
15. A full 32-bit displacement.
16. Various combinations of 16-, 32-, and 64-bit operands are allowed.

17. EXTB.L DO

18. A bit field must be 32 bits or less.
19. In a register or memory.
20. A section of code similar to a subroutine that can be granted access

rights.
21. The CALLM (call module) and the RTM (return from module) in

structions.
22. The compare and swap instructions CAS and CAS2.

23. CHP2.L BOUNDS,DO
BCC ERROR

BOUNDS: DC.L 21,74

24. To convert to and from ASCII and BCD.

25. TRAPMI

CHAPTER 15

THE 68030

In the latter part of 1986 Motorola announced its latest member of
the 68000 family, the MC68030. This new super chip should be in full
production during 1987. This second-generation 32-bit microprocessor is
actually a combination of an enhanced MC68020 and a subset of the
MC68851 paged memory management unit. The combination really gives
awesome capability to one single tiny chip.

Programming the 68030 will be no different from programming the
68020 unless you are involved with the PMMU (paged memory manage
ment unit) portion of the chip. In that case, you would need to know the
details of the MC68851 coprocessor subset. I will not present all these
details; rather, I will give an introduction to the concepts of memory
management so that you can read the manufacturer’s documentation on
the 68030 or 68851 with less difficulty. At the time of this writing only
preliminary documentation on the 68030 was available. The information
presented here is as accurate as possible with this preliminary documen
tation.

The 68030 operates at 20 MHz, compared to a top speed of 16.7 MHz
for the 68020. However, the 68030 actually has an effective speed which
is twice that of the 68020. This is accomplished by a combination of
data and instruction caches and a pipelined architecture. You will recall
from Chapter 14 that the 68020 has an instruction cache. Its purpose is
to reduce the access time to instructions in memory. It is most effective
for program loops that are small enough to be entirely contained in the
cache. The operation of the instruction cache in the 68030 is similar to
that of the instruction cache in the 68020. However, the addition of a data
cache allows a greater improvement in speed. Both the instruction cache
and the data cache are 256 bytes. Figure 21 shows the block diagram of
the 68030. You will notice that there are two internal address and data
buses. This duplication allows simultaneous access to the instruction and
data caches.

203

204 Assembly Language Programming for the 68000 Family

Figure 21 68030 Block diagram. (Courtesy of Motorola, Inc.)

Instruction and Data Caches

Figure 22 shows the organization of the 68030 data cache. The cache
consists of 16 entries. Each entry contains four longwords. A valid bit
is provided for each of these four longwords. If the valid bit is set, it
indicates that the data in the cache entry is valid for access. A reference
to this longword by a program would then obtain it from the cache rather
than from the physical memory. The organization of the instruction cache
is identical. These cache organizations differ slightly from the 68020. The
68020 instruction cache consists of 64 longword entries. This yields a cache
of the same size, but with a different organization. Studies that Motorola
performed have indicated that the organization used with the 68030 has
a better performance.

A problem exists with a data cache that doesn’t exist with an instruc
tion cache. Since an assumption is made that the instructions of a program
can never be modified by the program itself, the information contained
in the instruction cache never has to be written back to memory. No
such assumption can be made about data. In fact, a program that didn’t
modify any memory locations containing data would be highly unlikely.
Since the stack can contain data, the memory occupied by the stack falls
into this category. If we allow the data contained in the data cache to be
modified, we must take steps to assure that the actual memory location
is modified as well.

A number of techniques exist to make sure that cache contents and
memory contents are updated correcdy. One method is to modify only
the contents of the cache when a write operation is issued. As long as the
entry remains in the cache, subsequent reads will have the correct results.
If an entry is replaced in the cache, the updated data can be written to
physical memory at that time. An alternate approach is to update the
contents of physical memory as soon as a write is issued. This means that

The 68030 205

ACCESS ADDRESS

C C C 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 1 0 9 6 7 6 5 4 3 2 0 9 6 7 6 5 4 3 2 1 0

TAG
INDEX M

10F18
SELECT

i r
LONG WORD SELECT

J
---------- taq ---------1

TAG V V V V

•

TAQ
REPLACE

• ENTRY HIT

DATA FROM DATA CACHE
OATA BUS

DATA TO DATA CACHE
HOLDING REGISTER

CACHE CONTROL
‘ AND REGISTER

> UNEHFT

CACHt . 64 {LONG WOROSJ
BLOCK SBE • 4 (LONG WORDS)
SET S U E . 1

Figure 22 68030 Data Cache. (Courtesy of Motorola, Inc)

we update both the cache and the physical memory for each write to
an address contained in the cache. This latter technique is called a write
through.

The first technique has the advantage that fewer writes to physical
memory are needed if the data in the cache is updated more than
once. Only one physical update is needed for many cache updates. The
disadvantage is that considerably more complex hardware is required.
The processor must keep track of which addresses in the cache have been
modified. The write through cache is a simpler design. Since the normal
programming method is to use registers for counters and addressing inside
loops, the penalty for the write through cache is not as great as one might
think.

206 Assembly Language Programming for the 68000 Family

Pipelined Architecture

Pipelining is a technique used on high performance CPU’s such as
mainframes. With pipelining, the CPU can execute operations for sev
eral instructions in parallel. Instructions are fed into a prefetch queue or
pipe. The 68030 contains an instruction pipe capable of holding three
16-bit values. These three words can represent from one to three com
plete instructions. The 68030 has three independent arithmetic logic units
(ALU’s). These are used to calculate instruction addresses and operand
addresses, and to perform data operations. In combination with the in
struction pipe, these three ALU’s allow concurrent operations to be per
formed. Arithmetic operations are not always performed concurrently,
but when possible they are. The CPU does this automatically, with the
end result of a faster overall operating speed. The more concurrency the
better. The fact that the instruction and data caches allow additional con
currency adds to this effective speed even more.

Paged Memory Management

As Figure 21 showed, the PMMU is added in between the internal
address buses and the external address bus. If the PMMU is not activated
on the 68030, the physical addressing is identical to the 68020. The
address bus is a 32-bit bus. This allows direct access to 4 gigabytes
of physical memory. This is truly an enormous amount of memory by
today’s megabyte standards. However, consider that a 68030 processor
might support many users simultaneously, that we might actually have
substantially less than the maximum permitted memory, and that this
memory would have to be divided up among these users. The more users,
the less actual physical memory is available to each user. The only way to
allow a user to seemingly occupy more memory than is actually available
is to implement a virtual memory, briefly discussed in Chapter 13. It
is possible to implement a virtual memory with either the 68010 or the
68020. However, they would both require external hardware. The PMMU
of the 68030 gives us a built-in capability for a virtual memory.

The 68030 PMMU implements a rather sophisticated version of pag
ing. Before we discuss the specifics of the 68030, let’s take a look at how
a basic paging mechanism works. Paging divides the virtual or logical
address space into equal size blocks called pages (Chapter 13). We
do the same for the physical memory. Each page in the logical address
space is mapped to a corresponding page frame in the physical address
space. Each byte in the page corresponds to the same byte in the phys
ical page frame. This requires that pages and page frames be the same
size. It is customary for the page size to be a power of 2. This makes it

The 68030 207

easy to take a binary logical address and partition it into a page number
and an offset within the page.

Logical Address (example)

31 10 S 0
offset

Since addresses on the 68030 are all 32 bits, we can divide the logical
address into two pieces as long as the sizes add up to 32. For example, if
we desire pages to be IK (1024 bytes), the offset requires 10 bits, leaving
22 bits for the page number. Therefore, there would be 222 pages, each
1024 bytes long.

How do we then map the pages into the corresponding physical page
frames? Also, what if all the pages are not currently in memory? When we
implement a virtual memory, we store the pages that are not currently in
memory on a secondary storage device such as a disk. The hardware must
be aware of what pages are actually in physical memory at a given time.
Both of these problems are solved by the use of a page table. A page table
is simply a translation table. The physical frame number corresponding
to a particular page can be found by looking it up in the page table. A
simple organization of a page table is that of an array of frame numbers.
The page number is used as an index into the array.

The problem of determining if a page is currently mapped to physical
memory is solved by providing an extra bit with each page table entry.
This bit can be set if the frame number is valid and reset if the page
is not in memory. In the latter case, the frame number can be used to
provide information to the operating system about where the page is
located on secondary storage. The hardware doesn’t handle this case. The
hardware only handles the mapping of pages to physical memory. What
the hardware does when it encounters a non-resident page is to generate
a page fault. This page fault is detected by the operating system, the
missing page is brought into memory, and the instruction that caused the
page fault is allowed to continue. This time it will find the missing page.
On the following page is an example of the first few entries of a page
table. It is easy to see that page 0 is mapped to frame 23, page 1 is
mapped to frame 12, and page 3 is not in memory.

While this scheme seems simple, the implementation is rather com
plex. For each memory reference, the CPU must determine what page
is being referenced, find the proper entry in the page table, compute the
actual physical address by adding the offset to the frame’s location, and
finally perform the memory access. Two subtle problems emerge when

208 Assembly Language Programming for the 68000 Family

V Frame no.
0 1 23
1 1 12
2 1 0

3 0 -

4 1 123
5

some thought is given to this process. First, if the page table is located
in memory, an extra memory reference must be made for each and every
desired memory reference, thereby reducing effective memory speed by
a factor of two. The second problem concerns the necessity of having a
page table with as many entries as there are pages in the logical address
ing space. If the number of possible pages is large, this table might not
fit in memory, or at the very least it may be quite large. The 68030 solves
both of these problems.

The problem of speed is normally solved by the use of a special set
of registers variously known as associative registers, content addressable
memory, transaction lookaside buffers, or an address translation cache.
The 68030 implements an address translation cache (ATC). This ATC
can hold 64 translations of page to frame. The operation of this cache is
similar to the instruction and data caches except that current page table
entries are stored in the cache. The time taken to access the information
in the ATC is very much faster than a memory lookup. If it turns out
that the majority of pages can be mapped by the cache, the effective
speed of memory is not significantly compromised. This is generally the
case due to what is known as locality o f reference—in simple terms, a
property of a program that results in references to only a small portion
of its total addressing space over particular intervals of time. As the
program advances, new addresses are referenced and old addresses are
abandoned. The current set of pages a program is referencing is known
as its working set. A large amount of theoretical work has been done in
investigating locality of reference. Suffice it to say that it works, and an
ATC can be tremendously effective.

The 68030 handles the problem of large page tables by allowing the
use of a tree-structured page table. Only a portion of the tree structure
need be in memory at a particular time. The operating system can handle
moving the portions of the tree structure between main memory and the
disk. (In the following discussion of the details of these tree-structured

The 68030 209

tables, Motorola’s terms for the entries of a page table, translation de
scriptors, and for an individual table in the tree, descriptor table, are
used.)

In order to implement the tree structure, the page number in the
logical address can be divided up into from one to four sub-fields. In
addition, the size of the total page number field can be specified. In
essence, this feature allows reducing the size of the logical address space
to less than 32 bits. If there is only one field present, the value of this
field specifies the actual page number. It is used as an index into the
descriptor table to obtain the translation descriptor. In this case there is
only one descriptor table. If two fields are present, the value in the first
field is used to determine the location of the descriptor table to be used
for the second field. This is done by indexing into the first descriptor table
by the field value. The descriptor at this index does not correspond to a
page translation but rather to the location of the second-level descriptor
table. The value in the second field is used to index into the second-level
descriptor table. This operation can be repeated for up to four levels if
all four fields are present.

This is the general form of the logical address:

31 0
I ft B C D OFFSET

The I field is the initial shift field and is essentially the portion of the
logical address to be ignored. This field can range from 0 to 15 bits.
The A field must always be present. It can range from 1 to 15 bits, and
specifies the first level of address translation. If fields B, C, and D are
absent, the A field specifies particular pages. Fields B, C, and D can
each range from 0 to 15. They must be present in increasing alphabetical
order—in other words, if field D is present, then fields A, B, and C must
also be present. The widths of all the fields present must add up to 32:
I+A+B+C-HD+OFFSET=32. The size of the OFFSET field determines
the page size. All of these field sizes are set by values contained in the
translation control register, TC.

Let’s look at a simple example. Assume that the first field of the
page number, A, is 2 bits. This means that it can specify four items.
Furthermore, assume that a second field, B, is present and that it is 3
bits long. If there are only two fields present, the first field specifies four
descriptor tables and the second field specifies eight pages. This means
there are 32 pages in the virtual addressing space. Figure 23 shows how
this particular tree would look. Not all of the descriptor tables or pages
have to be in memory at the same time. If a reference is made to a

210 Assembly Language Programming for the 68000 Family

B-level tables

Figure 23 Example address translation tree.

non-existent table or page, the operating system will get control by an
exception and can handle the situation.

In order to perform an address translation from the logical address to
the physical address, we must know the location of the address translation
tree in physical memory. In other words, we must have a starting point to
apply the translation specified by a particular logical address. The 68030
allows us to have two distinct translation trees active at one time. Two
CPU registers specify the location of these two trees. Refer to Figure
24. The CPU root pointer, CRP, is the pointer normally used for all
references. The supervisor root pointer, SRP, can be set up to cause all
supervisor mode references to use a different translation tree. The use of
the SRP can be turned on and off by a special bit, SRE, in the translation
control register, TC.

The 68030 211

16 15

] A7 (ISP) tNTERRUPTSTACK POINTER

16 15 0
MASTER

AT* (MSP) STACK POtNTER

67 0
(CCR) SR STATUS REGISTER

0
H VBR VECTOR BASE REGISTER

0

I SFC ALTERNATE FUNCTION

DFC CODE REGISTERS

0
“ 1 CACR

CACHE CONTROL
REGISTER

CACHE ADDRESS
REGISTER

0
I TC TRANSLATION CONTROL

0
CRP CPU ROOTPOINTER

0
SRP

0
' TTO

0
"1 TT1

SUPERVISOR
ROOTPOINTER

TRANSPARENT
TRANSLATION 0

TRANSPARENT
TRANSLATION 1

0
PSR MMU STATUS

Figure 24 Supervisor Programming Model Supplement (Courtesy of Motorola, Inc)

68030 Instructions

The 68030 executes all of the instructions of the 68020 plus a handful of
additional instructions needed to manage the PMMU. These instructions
are a subset of the coprocessor instructions of the 68851. These are briefly
summarized below:

PT EST Takes a virtual address and searches the A TC or the translation tree
for the corresponding entry. The PMMU status register, PSR, is set
according to the results of the search.

212 Assembly Language Programming for the 68000 Family

PLOAD Takes a virtual address and searches the translation tree for the
corresponding page descriptor entry. The ATC is then loaded with
this entry.

PFLUSH Flushes the ATC by function code, or function code and logical
address. This instruction is used when a translation tree or table is
changed in order to ensure that false information is not retained in
the ATC.

PFLUSHA Similar to PFLUSH except that all ATC entries are flushed.

Even after this brief introduction to the powerful 68030, I am sure
you can see that this microprocessor is destined to become a dominant
influence on future system designs. One can’t help but wonder what a
68040 or 68050 might look like.

Exercises

1. Other than an enhanced 68020 core, what major feature does the 68030
have?

2. How much faster is the 68030 than the 68020?
3. How large are the instruction and data caches in the 68030?
4. What method is used by the 68030 to keep the contents of memory

consistent with the data cache?
5. How many arithmetic logic Units (ALU’S) does the 68030 have?
6. What is pipelining?
7. How large is the 68030’s instruction pipe?
8. What type of virtual memory does the 68030 PMMU implement?
9. What does a logical address consist of?

10. What is a frame?
11. What actions take place upon the occurrence of a page fault?
12. How are logical-to-physical addresses mapped?
13. What is the function of an address translation cache, ATC?
14. How many translations can the 68030 ATC hold?
15. What is locality of reference?
16. What is a working set?
17. What does Motorola call the entries of a page table?
18. What is the overall structure of the 68030’s page table?
19. How many levels can there be to the descriptor tables?
20. How is the address translation tree located by the CPU?

Answers

1. A built-in capability for paged memory management.
2. About twice as fast.

The 68030 213

3. Each cache is 256 bytes.
4. A write-through is used. Whenever a data location is modified in the

cache, it is also modified in the corresponding memory location.
5. Three.
6. Pipelining is a technique that allows more than one instruction to be

executing at a time.
7. The 68030 instruction pipe is three words long.
8. The 68030 PMMU implements a sophisticated version of paging.
9. A logical address consists of a page number and an offset into the

page.
10. A frame is a unit of the physical memory that corresponds in size to

a page in the logical address space. A frame can be used to hold any
page.

11. An exception is generated so that the operating system can find the
missing page on secondary storage, bring it into memory, and then
allow the program to continue.

12. The page number is used as an index into a page table where the
actual physical location (frame) of the page is found.

13. The ATC is used to speed up the process of page mapping by keeping
current mappings in fast internal associative memory.

14. The ATC can hold 64 mappings.
15. Locality of reference is the property of a program that results in

references to only a small portion of its total addressing space over
particular intervals of time.

16. A working set is the set of pages a program is currently referencing.
This is normally a subset of the total number of pages. The working
set slowly changes as the program advances.

17. Translation descriptors.
18. A rooted tree.
19. Four.
20. By use of the CPU root pointer, CRP, or the supervisor root pointer,

SRP. These are registers available in supervisor mode only.

c ir
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

APPENDIX A

ASCII CHARACTER CODES

Octal Hex ASCII D ecim al O ctal Hex ASCII
000 00 NUL 32 040 20 SP
001 01 SOH 33 041 21 I

002 02 STX 34 042 22 t t

003 03 ETX 35 043 23 »
004 04 EOT 36 044 24 $
005 05 ENQ 37 045 25 %
006 06 ACK 38 046 26 &
007 07 BEL 39 047 27 ’
010 08 BS 40 050 28 (
O il 09 HT 41 051 29)
012 0A LF 42 052 2A *

013 OB VT 43 053 2B 4-
014 OC FF 44 054 2C)
015 OD CR 45 055 2D -

016 OE SO 46 056 2E .
017 OF SI 47 057 2F /
020 10 DLE 48 060 30 0
021 11 DC1 49 061 31 1
022 12 DC2 50 062 32 2
023 13 DC3 51 063 33 3
024 14 DC4 52 064 34 4
025 15 NAK 53 065 35 5
026 16 SYN 54 066 36 6
027 17 ETB 55 067 37 7
030 18 CAN 56 070 38 8
031 19 EM 57 071 39 9
032 1A SUB 58 072 3A 1
033 IB ESC 59 073 3B t

034 1C FS 60 074 3C <
035 ID GS 61 075 3D =
036 IE RS 62 076 3E >
037 IF US 63 077 3F

215

216 Assembly Language Programming for the 68000 Family

Decimal Octal Hex ASCII Decimal Octal Hex ASCII

64 100 40 <S> 96 140 60 *
65 101 41 A 97 141 61 a
66 102 42 B 98 142 62 b
67 103 43 C 99 143 63 c
68 104 44 D 100 144 64 d
69 105 45 E 101 145 65 e
70 106 46 F 102 146 66 f
71 107 47 G 103 147 67 6
72 110 48 H 104 150 68 h
73 111 49 I 105 151 69 i
74 112 4A J 106 152 6A i
75 113 4B K 107 153 6B k
76 114 4C L 108 154 6C 1
77 115 4D M 109 155 6D m
78 116 4E N 110 156 6E n
79 117 4F O 111 157 6F o
80 120 50 P 112 160 70 P
81 121 51 Q 113 161 71 q
82 122 52 R 114 162 72 r
83 123 53 S 115 163 73 s
84 124 54 T 116 164 74 t
85 125 55 U 117 165 75 u
86 126 56 V 118 166 76 V
87 127 57 W 119 167 77 w
88 130 58 X 120 170 78 X
89 131 59 Y 121 171 79 y
90 132 5A Z 122 172 7A z
91 133 5B [123 173 7B {
92 134 5C 124 174 7C 1
93 135 5D 1 125 175 7D }
94 136 5E * 126 176 7E
95 137 5F - 127 177 7F DEL

APPENDIX B

PROGRAM SHELLS AND
I/O SUBROUTINES

Shell foe the Atari ST computers.

text
Your program goes here

<PROGRAM>

Return to system.
fini: move.w #0,-(sp)

trap <1
Subroutines

putc: movem.l d0-d7/a0-a6,-(sp)
andi.l #5ff,d0

dOr-(sp)
*2,-(sp)
*1
*4,sp
(sp)+,d0-d7/a0-a6

move.w
move.w
trap
addq.1
movem.1
rts

getc: movem.l dl-d7/a0-a6,-(sp)
move.w #l,-(sp)
trap il
andi.l #$7f,d0
addg.l #2,sp
movem.l (sp)+,dl-d7/a0-a6
rts

save regs.
make sure we have only a byte
push arg. on stack
dos function 2
trap to dos
clean up stack
restore regs.
return
save regs.
dos function 1
trap to dos
mask to 7 bits
clean up stack
restore regs.
return

The following subroutine to input a decimal number accumulates
the number by multiplying the partially accumulated number by ten
and adding in the current digit. A double precision multiply is
performed to allow a full 32 bit number to be entered.

indecO:
indec: movem.l

clr .1
jar
subi.b
bit
cmp.b
bgt
move.w
clr .w
swap
mulu
swap
mulu
add.l
add.l
bra

indedt move.l

dl-d2,-(sp)
dl
getc
I'O’rdO
indecl
*9,d0
indecl
dl,d2
dl
dl
*10,dl
dl
*10,d2
d2,dl
d0,dl
indecO
dl,d0

save registers
initialize number to zero
get a character
make ascii into digit
terminate if not a digit
not a digit i > 9
also terminate if so
save low order word of number
clear low order word
move high word to low word
multiply by ten
put result back in high word
multiply low order word of number by ten
add low order word to high order word
add in the current digit
get another digit
move number into dO

218 Assembly Language Programming for the 68000 Family

movem.l (sp)+,dl-d2
rts

restore registers
return

The following subroutine to output a decimal number perforins this
operation by successively dividing the number by ten to pick off the
digits. These digits are pushed onto the stack. When the number
has been converted, the digits are popped from the stack and output.
A double precision divide is needed to accommodate a 32 bit number.

outdec: movem.l d0-d3,-(sp)
move.w #-l,-(sp)
tst.l dO
beg outdecz

* divide by ten to pick up digit value
* keep doing this until number is zero
outdecOi! tSt.l dO

beq outdecl
move.w d0,d2
clr .w dO
swap dO
divu 110,dO
move.w d0,d3
move.w d2,d0
divu *10,dO
swap dO
move.w dO,-(sp)
move.w d3,d0
swap dO
bra outdecO

*we now output th« number
outdecl::move.w (sp)+,dO

bmi outdec2
and.l ««llll,dO

outdecz :add.b #’0',d0
jsr putc
bra outdecl

outdec2 :movem.l (sp)+,d0-d3
* rts
cr: equ ?0d
If: equ $0a
newline rmove.l dO,-(sp)

move.b #cr,d0
jsr putc
move.b #lf,d0
jsr putc
move.1
rts

(sp)+,dO

save reg. values
push -1 onto stack
zero value?
yes, make sure we output a 0
as remainder
finished?
yes, output the number
save low order word in d2
clear low order word
get high order word in low order word
divide by ten
save remainder in d3
get low order word back
divide by ten
swap quotient and remainder words
save remainder as digit value
get old remainder in low order word
fix up so result is full 32 bit quotient
divide by ten again
get a digit from the stack
terminate on -1
mask
make digit into ascii char
output
continue to next digit
restore registers
return
ascii car ret
ascii line feed
save reg. dO
output a car ret
output a line feed
restore dO
return

end

Appendix B 219

**
Amiga shell - This must run under the CLI

Link with amiga.lib

* You may have to modify the following include if your
* include files are not in the same directory.

include ";include/libraries/dos_lib.i"
code

* External references
xref _AbsExecBase
xref _LVOOpenLibrary
xref _LVOCloseLibrary

*

* Initialization code to open the DOS library and the console device
lea DOSName,Al get name of dos library
clr.l dO and latest version
movea.1 _AbsExecBase,a6 get base of exec
jsr _LVOOpenLibrary(a6) open dos library
move. 1 dO, DOSBase save base address
move.1 #1006,d2 new file
move.1 #con,dl get console name
movea.1 JDOSBase,a6 dos lib base to a6
jsr _LVOOpen<a6) open console
move.1 dO,console save file pointer

Your program goes here

<PROGRAM>

Code to clean up and exit to the CLI
fini: move.l console,dl

movea.l _D0SBase,a6
jsr _LV0Close(a6)
movea.l _DOSBase,al
movea.l _AbsExecBase,a6
jsr _LVOCloseLibrary(a6)
clr.l dO
rts

*

* Standard I/O subroutines
*

getc: movem.l dl-d7/a0-a6,-(sp)
move.l console,dl
move.l #buff,d2
moveq.l #l,d3
movea.l _D0SBase,a6
jsr _LVORead(a6)
clr.l dO
move.b buff,d0
movem.l (sp)+,dl-d7/a0-a6

get file pointer
dos lib base to a6
close console
dos lib base to al
exec base to a6
close dos library
indicate no error
return to cli

save regs.
file pointer to dl
buffer pointer to d2
count to d3
dos lib base to a6
read data
make sure high order bits clear
get the char,
restore regs.

220 Assembly Language Programming for the 68000 Family

rts
putc: movem.l d0-d7/a0-a6,-(sp)

move.b dO,buff
move.l console/dl
move.l #buff,d2
moveq.l *l,d3
raovea.l _DOSBase,a6
jsr _LVOWrite(a6)
movem.l (sp)+,d0-d7/a0-a6
cts

save regs.
put char, in buff
file pointer to dl
buffer pointer to d2
count to d3
dos lib base to a6
write data
restore regs.
return

The following subroutine to input a decimal number accumulates
the number by multiplying the partially accumulated number by ten
and adding in the current digit. A double precision multiply is
performed to allow a full 32 bit number to be entered.

indec:
indecO:

cir .1
jsr
subi.b
bit
cmp.b
bgt
move.w
cir .w
swap
mulu
swap
mulu
add.l
add.l
bra

indecl: move.l

movem.l dl-d2,-(sp)
dl
getc
*' 01,d0
indecl
*9,d0
indecl
dl,d2
dl
dl
*10,dl
dl
«10,d2
d2,dl
dO,dl
indecO
dl,dO
(sp)+,dl-d2movem.l

rts

save registers
initialize number to zero
get a character
make ascii into digit
terminate if not a digit
not a digit i > 9
also terminate if so
save low order word of number
clear low order word
move high word to low word
multiply by ten
put result back in high word
multiply low order word of number by ten
add low order word to high order word
add in the current digit
get another digit
move number into dO
restore registers
return

* The following subroutine to output a decimal number performs this
* operation by successively dividing the number by ten to pick off the
* digits. These digits are pushed onto the stack, when the number
* has been converted, the digits are popped from the stack and output.
* A double precision divide is needed to accommodate a 32 bit number.
*

outdecs movem.l d0-d3,-<sp) save reg. values
move.w #-l,-(sp) push -1 onto stack
tst.l dO zero value?
beq outdecz yes, make sure we output a 0

* divide by ten to pick up digit value as remainder
* keep doing this until number is zero
outdecOitst.l dO

beg outdecl
move.w d0,d2
cir .w
swap
divu
move.1
move.'
divu
swap
move.'

dO
dO
*10,dO
d0,d3
d2,d0
*10,dO
dO
d0,-(sp)

finished?
yes, output the number
save low order word in d2
clear low order word
get high order word in low order word
divide by ten
save remainder in d3
get low order word back
divide by ten
swap quotient and remainder words
save remainder as digit value

Appendix B 221

move.w d3,d0 get old remainder in low order word
swap dO fix up so result is full 32 bit quotient
bra outdecO divide by ten again

*we now output the number
outdecl :move.w (sp)+,dO get a digit from the stack

bmi outdec2 terminate on -1
and.l •%1111,dO mask

outdecz :add.b #'0',d0 make digit into ascii char
jsr putc output
bra outdecl continue to next digit

outdec2 :movem.l (sp)+,d0~d3 restore registers
* rts return
ct S egu 90d ascii car ret
If: equ 50a ascii line feed
newline :move.l d0,-(sp) save reg. dO

move.b *cr,d0 output a car ret
jsr putc
move.b #lf,d0 output a line feed
jsr putc
move.l (sp)+,dO restore dO

* rts return
data

DOSName: dc.b 'dos .library1',0
con:* dc.b '*',0 console name

bss
buff: ds.b 1 character buffer
_DOSBase: ds.l 1 temp for dos lib pointer
console: ds.l 1 temp for file pointer

end

222 Assembly Language Programming for the 68000 Family

; Macintosh shell.
;**
t; The following include files ace needed:
t

Include MacTraps.D
Include SysEqu .D

?
xdef Start ;starting address

t

; Equates
WIND TOP equ 40 ;window coordinates (GLOBAL)
WIND LEFT equ 4 $
WIND_B0T equ 338 t
WIND_RIGHT equ 508 i

WINDHEIGHT equ WIND BOT-WIND TOP ;window dimensions
WINDWIDTH equ WIND_RIGHT-WIND_LEFT
LMARG equ 6 ;left margin
RMARG equ WINDWIDTH-10 }right
TMARG equ 15 ;top
BMARG equ WINDHEIGHT-15 ;bottom
BS equ 8 ;ASCII backspace
CR equ 13 ;ASCII car ret
LF equ 10 ;ASCII If
DASH equ 45 ;ASCII minus sign
ZERO equ 48 ;ASCII character for digit zero
NINE equ 57 ;ASCII character for digit nine
TRUE equ 1 ;boolean true
FALSE equ 0 ;boolean false
FONTNUM equ 4 ;default font code
FONTSTYLE equ 0 ;plain style
FONTSIZE equ 9 ;default font size
ASCENT equ 0 ;offsets of fields in Fontinfo
DESCENT equ 2 ;
WIDMAX equ 4 0

LEADING equ 6 ?
; The window coordinates in local coordinates
WBoundsRect: dc.w WIND TOP,WIND LEFT,WIND BOT,WIND RIGHT
WScrollRect: dc.w 0,0,WINDHEIGHT,WINDWIDTH
ScrollRgnH: dc.l 0 ;handle for scroll region
Fontlnfo: dcb.w 4,0 ;buffer for record ret. by _GetFontlnfo
LineHt: dc.w 0 ;buffer for height of line
WindowPointer:
;
EventRec:

dc.l 0 ;pointer to the window
ds.l 4 ;event record

?Title: dc.b 16,'Macintosh shell.1
t; Initialization code. Set up everything.

Appendix B 225

Start: movem.l d0-d7/a0-a6,-(sp)
pea -4(a5)
_InitGraf
_InitPonts
_InitWindows
_InitMenua
clr.l -(sp)
_InitDialogs
JTEInit
_InitCursor
lea Title,aO
bsr makewindow

;
; Your program goes here

;save regs.
;space for Quickdraw
;init Quickdraw
;init font manager
;init window manager
;init menu manager
;no restart procedure
;init dialog manager
;init textedit
;set cursor to arrow
;get title bar
;make a window

<PROGRAM>

; Clean up and return
t

movem.l (sp)+,d0-d7/a0-a6
_ExitToShell

9

; Subroutines
/
Makewindow:

movem.l d0-d2/a0-al,-(sp)
clr.l -(sp)
clr.l -(sp)
pea WBoundsRect
move.l aO,-(sp)
st -(sp)
clr.w -(sp)
move.l i-l,-(sp)
sf -(sp)
clr.l -(sp)
_NEWWINDOW
lea WindowPointer,a0
move.l (sp),(aO)
_SETPORT
clr.l -(sp)
_NEWRGN
lea ScrollRgnH,aO
move.l (sp),(aO)
pea HScrollRect
_RECTRGN
move.w fFONTNUM,-(sp)
_TextFont
move.w fFONTSTYLE,-(sp)
_TextPace
move.w tFONTSIZE,-(sp)
_TextSize
pea Pontlnfo
_GETPontInfo
move.w FontInfo+ASCENT,dO
add.w FontInfo+DESCENT,dO
add.w FontInfo+LEADlNG,dO
lea LineHt,aO

;restore registers
;return to finder

;save regs.
;reserve space for window ptr.
;allocate
;window size and location
/window's title
;vis flag ° true
;document window
;window on top
;goaway = flase
;refcon = not used
;get address of window
;save window ptr and pass
; to setport

/create a new region
•save and pass along
;use same limits as WBoundsRect
;required if scrolling
;default font number
;set font selection
;default font style
;set font style
(default font size
;set font size
;get info, about font
;font dimension parameters

;compute font vert, size
;get address

224 Assembly Language Programming for the 68000 Family

move.w
move
move
_M0VET0
movem.1
rts

dO,(aO)
#LMARG,-(sp)
#TMARG,-(sp)
(sp)+,d0-d2,a0-al

FLASHTIME equ 30
EVENTKEY equ 4
EVENTMODIPIERS equ 14

;save vert info.
;horiz. pen pos.
;vert. pen pos.
jpen in upper left corner
;restore regs.
;and return
;*ticks caret is on or off
;offset of key code in event record
;offset of modifier flags

getc: movem.l dl-d4/a0-al,-(sp)
; local initializations

move.l t$0000ffff,d0 ;mask for all events
_FlushEvents jflush event queue
move.l Ticks,d3 ;d3 = time caret was on/off
moveq #0,d4 ;caret off

; start of event loop, but must check if time to switch caret state
getcl: move.l Ticks,dO ;get system time in ticks

sub.l d3,d0 jsubtract time of last switch
cmpi.l ♦FLASHTIME,dO ;if equal must switch
blt.s getc3 ;if not eq then getc3

; switch caret state
move.b ,d0 ;assume it was off
tst.b d4 ;test if it was off
beq.s getc2 ;if off write it
move.b tBS,dO ; if on erase by BS

getc2: bsr putc ;switch the caret
move.l Ticks,d3 ;update time switched
not.b d4 ;flip state

; check the event queue for a key closure or auto-key event
getc3: clr.w -(sp) ;allocate space for result

move.w #$0028,-(sp) ;mask
pea EventRec ;pass address of event rec.
_GetNextEvent
tst.b (sp)+ ;system event or nothing?
beq getcl ;if nothing try again

; otherwise a key was held down and the caret must be erased, if visable
tst.b d4
beq.s getc4
move.b #BS,d0
bsr putc

; return the character code and echo
getc4: move.w EventRec+EVENTMODIFIERS,dO ;get modifiers

;caret on?
;if not, getc4
; if on erase by BS
;switch the caret

swap
move.w
bsr
andi.l

dO
EventRec+EVBNTKBY,dO
putc
«$7f,d0

movem.l (sp)+,dl-d4/a0-al
rts

PenLoc: dc.l
;

jinto high word of dO
;get key and ASCII code
;echo
yraask to 7 bit ASCII
;restore regs.
; return;
;pen pos.

putcj movem.l dl-d2/d5-d7/a0-al,-(sp) ;save regs.
;char to d5
;get pen loc

move.l d0,d5
pea PenLoc
_GETPEN
move.w PenLoc+2,d7
move.w PenLoc,d6
cmpi.b #BS,d5

jx val to d7
;y val to d6
;backspace?

Appendix B 225

bne
cmpi.w
beq
lea
move.w
neg.w
move.w
move.w
_MOVE
move.w
move.w
add.w
move.w
sub.w
sub.w
move.w
move.w
move.1
move.1
_ERASERECT

putcl
ILMARG,d7
putc4
Fontln£o,aO
HIDMAX(aO),d0
dO
dO,-(sp)
#0, ** (sp)
d7,-(sp)
d6,d0
FontInfo+DESCENT,DO
d0,-(sp)
FontInfo+ASCENT,d6
FontInfo+WIDMAX,d7
d7,-(sp)
d6,-(sp)
sp,a0
a0,-(sp)

putcl:
add
bra
cmp.b
beq
cmp.w
bit

generate new line

*8,sp
putc4
«CR,d5
putc2
•RMARG,d7
putc3

putc2: sub.w
neg.w
move.w
lea
move.w
_MOVE
cmp.w
bit
pea
move.w
lea
move.w
neg.w
lea
move.l

#LMARG,d7
d7
d7,-(sp)
LineHt,a0
(aO),-(sp)
#BMARG,d6
putc 3
HScrollRect
*0,-(sp)
LineHt,aO
(aO),-(sp)
(sp)
ScrollRgnH,aO
(aO),-(sp)

J5CROLLRECT
move.w t0,-isp)
lea LineHt,aO
move.w (aO),-(sp)
neg.w (sp)
_MOVE

;display character
putc3: move.w d5,-(sp)

_DRAWCHAR
;exit
putc4: move.l d5,d0

movem.l (sp)-t-,dl-d2/d5-d7/a0-al
rts

if no jump past erasure
else check left margin
at margin, return
get address of font data
get char width data
negate
push new x val difference
push new x val difference
move pen
bottom right corner
y val of pen pos.
add descender amount to y
val and push

y val plus ascender
compute x val
push x val
push y val
push addr of erase rect.
erase deleted character
pop rectangle values from stack
exit
CR?
yes, go create new line
is pen past right hand margin?
if no, jump past new line
compute difference
negate difference x val.
push onto stack
get address of line height
load new value
position cursor for new line
has pen moved past bot. margin?
if no, bypass code to scroll
push addr. of scroll rect
push zero
get address of line height
load new value
negate top of stack value
get addr. of scroll region
push on stack
scroll by one line's height
push zero
get address of line height
load new value
negate top of stack
move pen too
push char code
display character
char to dO
restore regs.
return

The following subroutine to input a decimal number accumulates
the number by multiplying the partially accumulated number by ten
and adding in the current digit. A double precision multiply is

226 Assembly Language Programming for the 68000 Family

i performed to allow a full 32 bit number to be entered.
;
indec: movem.l

clr.l
indecO: jsr

subi.b
bit
cmp.b
bgt
move.w
clr .w
swap
mulu
swap
mulu
add.l
add.l
bra

indecl: move.l
movem.1
rts

#
; The following subroutine to output a decimal number performs this
; operation by successively dividing the number by ten to pick off the
; digits. These digits are pushed onto the stack. When the number
; has been converted/ the digits are popped from the stack and output.
; A double precision divide is needed to accommodate a 32 bit number.
;
outdec: movem.l d0-d3,-(sp) ;save reg. values

move.w *-l,-(sp) jpush -1 onto stack
tst.l dO ;zero value?
beq outdecz ;yes, make sure we output a 0

; divide by ten to pick up digit value as remainder
; keep doing this until number is zero
outdecO:tst.l dO ;finished?

beq outdecl ;yes, output the number
move.w d0,d2 ;save low order word in d2
clr .w dO ;clear low order word
swap dO ;get high order word in low order word
divu *10,dO ;divide by ten
move.w d0,d3 ;save remainder in d3
move.w d2,d0 ;get low order word back
divu *10,dO ;divide by ten
swap dO ;swap quotient and remainder words
move.w d0,-(sp) ;save remainder as digit value
move.w d3,d0 ;get old remainder in low order word
swap dO ;fix up so result is full 32 bit quotient
bra outdecO ;divide by ten again

jwe now output the number
outdecl move.w (sp)+,d0 ;get a digit from the stack

bmi outdec2 jterminate on -1
and.l *«1111,dO ;mask

outdeczsadd.b *'0',d0 ;make digit into ascii char
jsr putc ;output
bra outdecl ;continue to next digit

outdec2:movem.l (sp)+,d0-d3 ;restore registers
rts ;return

?
newline:move.l d0,-(sp) ;save reg. dO

move. b *CR,d0 ;output a car ret

dl-d2,-(sp) ;save registers
dl ;initialize number to zero
getc ;get a character
*'0',d0 ;make ascii into digit
indecl ;terminate if not a digit
19,dO ;not a digit i > 9
indecl ;also terminate if so
dl,d2 ;save low order word of number
dl ;clear low order word
dl ;move high word to low word
*10,dl ;multiply by ten
dl ;put result back in high word
*10,d2 ;multiply low order word of number by ten
d2,dl ;add low order word to high order word
d0,dl ;add in the current digit
indecO ;get another digit
dl,d0 ;move number into dO
(sp)+,dl-d2 /restore registers

;return

Appendix B 227

jsr putc
move,l (sp)+,dO
rts
end

/restore <30
/return

APPEH DIX C

68000-68020
INSTRUCTION SUMMARY

Mnemonic

Addr Modes:

Src Dest Size

Attri

butes

Cond. Codes

X N Z V C Description

ABCD Dn Dn B S 0 S 0 s Add Decimal

-(An) -(An) B S 0 S 0 s Add Decimal

ADDA <ea> An W,L S S S S s Add Address

ADDi #data <dea> Alterable B.W.L s s s s s Add Immediate

ADD <ea> Dn B.W.L *1 s s s s s Add Binary

Dn <mea> Alterable B.W.L *1 s s s s s Add Binary

ADDQ #d <aea> B.W.L *1,*2 s s s s s Add Quick

ADDX Dn Dn B.W.L s s s s s Add Extended

-(An) -(An) B.W.L s s s s s Add Extended

AND <riea> Dn B.W.L 0 S S 00 And Logical

Dn OQ£> B.W.L 0 S S 00 And Logical

ANDI #d <dea> Alterable b .w .l 0 S S 00 And Immediate

#d CCR W.L s s s s s And Imm to CCR

#d SR W,L P s s s s s And Imm to SR

ASL Dn Dn B.W.L *3 s s s s s Arith. Shift L

#d Dn B.W.L *4 s s s s s Arith. Shift L

<mea> Alterable W s s s s s Arith. Shift L

ASR Dn Dn B.W.L *3 s s s s s Arith. Shift R

#d Dn B.W.L *4 s s s s s Arith. Shift R

<mea> Alterable L s s s s s Arith. Shift R

Bcc <label> 16 bit displ. 0 0 0 0 0 Branch Cond

Bcc.S <label> 8 bit displ. 0 0 0 0 0 Branch Cond Short

BCHG Dn <mea> Alterable B.L 0 0 S 0 0 Test bit & Change
#d <mea> Alterable B.L 0 0 S 0 0 Test bit & Change

BCLR Dn <mea> Alterable B,L 0 0 S 0 0 Test bit & Clear
#d <mea> Alterable B,L 0 0 S 0 0 Test bit & Clear

BFCHG <ea> - *8 0 S S 0 0 Tst Bit Fid & Chg
BFCLR <ea>{off,width) *8 0 S S 0 0 Tst Bit Fid & Cir
BFEXTS <ea>{offlwidth}lDn *8 0 S S 0 0 Extrct Bit Fid Sin

BFEXTU <ea>{off,width), Dn *8 0 S S 0 0 Extrct Bit Fid Uns

BFFFO <ea>{off,width),Dn *8 0 S S 0 0 Fnd 1st 1 In bitfld

BFINS <ea>{off,width) *8 0 S S 0 0 Insert Bit Fid
BFSET <ea>{off,width) *8 0 S S 0 0 Set Bit Fid

BFTST <ea>{off,width) *8 0 S S 0 0 Test Bit Fid

BKPT #d - *8 0 0 0 0 0 Breakpoint
BRA <label> 8 or 16 bit displ 0 0 0 0 0 Branch Always

BSET Dn <mea> Alterable B.L 0 0 S 0 0 Test bit & Set
#d <mea> Alterable B.L 0 0 S 0 0 Test bit & Set

BSR <labeb» 8 or16 bit disp 0 0 0 0 0 Branch Subr.

BTST Dn <dea> B,L 0 0 S 0 0 Test bit & Set

#d <dea> B,L 0 0 S 0 0 Test bit & Set
CALLM #d <ea> - *8 0 0 S 0 0 Cali Module

CAS Dn,Dn,<ea> B.W.L *8 0 S S S s Comp & Swap Op

CAS2 Dn:Dn,Dn:Dn,(Rn):(Rn) W,L *8 0 s s s s Comp & Swap Op

CHK <te> Dn B.W.L *8 0 S 0 0 0 Check Reg. Bounds

CHK2 <tea> Rn W 0 0 S 0 s Check Reg. Bounds

229

230 Assembly Language Programming for the 68000 Family

CLR <dea> Alterable b .w .l 0 0 0 00 Clear Operand
CMP <ea> Dn B.W.L *1 0 S S S S Compare
CMPA <ea> An W.L 0 S S S S Compare Addr
CMPI #d <dea> Alterable b .w .l 0 S S S S Compare Imm.
CMPM (An)+ (An)+ B.W.L 0 S S S S Compare Mem.
CMP2 <ea> Rn B.W.L *8 *1 0 0 S 0 S Compare Reg
cpBcc <label> - W,L *8 0 0 0 0 0 Brnch Coproc Cnd
cpDBcc <ea> • - *8 0 0 0 0 0 Tst.Decr.Br.CprC
cpGEN Coprocessor specific operands - *8 S S S S S Bmch Coproc Cnd
cpRESTORE <label> - W,L *8 P 0 0 0 0 0 Coproc Restore
cpSAVE <ea> - - *8 P 0 0 0 0 0 Coprocessor Save
cpScc <ea> - B *8 0 0 0 0 0 Set on Coproc Cond
cpTRAPcc - - W,L *8 0 0 0 0 0 Trap on CoprocCnd

DBcc
#d - W,L *8 0 0 0 0 0 Trap on CoprocCnd
Dn <label> 16 bit disp. 0 0 0 0 0 Deer, Brnch Cond.

DIVS <dea> Dn W 0 S S S 0 Divide Signed
DIVSL <dea> Dquotient L 0 S S S 0 Divide Signed

DIVU
<fea> DremrDquotient L 0 S S S 0 Divide Signed
<tea> Dn W 0 S S S 0 Divide Unsigned

DIVUL <Jea> Dquotient L 0 S S S 0 Divide Unsigned

BOR
<dea> DremrDquotient L 0 S S S 0 Divide Unsigned
Dn <dea> Alterable B.W.L 0 S S 0 0 Exclusive OR

EORI #d <dea> Alterable B.W.L 0 S S 0 0 Exclusive OR Imm
#d SR W P S S S s s Exclusive OR Imm
#d OCR W S S S S S Exclusive OR Imm

EXG Rn Rn L 0 0 0 0 0 Exchange Regs
EXT Dn - W,L 0 S S 0 0 Extend Sign
EXTB Dn - L 0 S S 0 0 Extend B to L Sign
ILLEGAL * - - 0 0 0 0 0 Illegal
JMP - <cea> - 0 0 0 0 0 Jump Always
JSR - <oea> - 0 0 0 0 0 Jump Subr.
LEA <cea> An L 0 0 0 0 0 Load Eff Address
LINK An #d W,L 0 0 0 0 0 Link/ Allocate
LSL Dn Dn B.W.L *3 S S S 0 S Log. Shift Left

#d Dn B.W.L *4 S S S 0 S Log. Shift Left
<mea> Alterable W S S S 0 S Log. Shift Left

LSR Dn Dn b .w .l *3 S S S 0 S Log. Shift Right
#d Dn b .w .l *4 S S S 0 S Log. Shift Right
<mea> Alterable W S S S 0 S Log. Shift Right

MOVE <ea> <dea> Alterable b .w .l *1 0 S S 0 0 Move Data
<dea> OCR w *5 S S S S S Move to CCR
CCR <dea> w *5 0 0 0 0 0 Move from CCR
<dea> SR w P S S S S S Move to SR
SR <dea> Alterable w P 0 0 0 0 0 Move from SR
USP An L P 0 0 0 0 0 Move from USP
An USP L P 0 0 0 0 0 Move to USP

MOVEA <ea> An W.L 0 0 0 0 0 Move Address
MOVEC Rc Rn L *8 P 0 0 0 0 0 Move Control Reg

Rn Rc L *8 P 0 0 0 0 0 Move Control Reg
MOVEM <reglist> <cea> Alterable W,L *6 0 0 0 0 0 Move Mult. Regs

<oea> <reglist> W,L *7 0 0 0 0 0 Move Mult. RegsMOVEP Dn d(An) W,L 0 0 0 0 0 Move Periph. Data
d(An) Dn W,L 0 0 0 0 0 Move Periph. Data

Appendix C 251

MOVEQ #d Dn L 0 S S 0 0 Move Quick
MOVES Rn DFC<mea> Altrbl B.W.L *8 P 0 0 0 0 0 Move Addr Space

SFC<mea> Altrbl Rn B.W.L *8 P 0 0 0 0 0 Move Addr Space
MULS <dea> Dn W 0 S S S 0 Multiply Signed
MULS.L <dea> Dh:DI L *8 0 S S S 0 Multiply Signed
MULU <dea> Dn W 0 S S S 0 Multiply Unsigned
MULU.L <dea> Dh:DI L *8 0 S S S 0 Multiply Unsigned
NBCD <dea> Alterable B S 0 S 0 s Negate Decimal
NEG <dea> Alterable B,W,L s s s s s Negate
NEGX <dea> Alterable B.W.L s s s s s Negate Extended
NOP - - - 0 0 0 0 0 No Operation
NOT <dea> Alterable B.W.L 0 s s 0 0 Logical Complmnt
OR <dea> Dn B.W.L 0 s s 0 0 Inclusive OR Log.

Dn <mea> Alterable b .w .l 0 S S 0 0 Inclusive OR Log.

ORI #d <dea> Alterable b .w .l 0 S S 0 0 Inclusive OR Imm.
#d SR w P S S S S S Inclusive OR Imm
#d CCR W S S S S S Inclusive OR Imm

PACK -(An),-(An),#<adjstmnt> - *8 0 0 0 0 0 Pack
PEA <oea> - L 0 0 0 0 0 Push Eff. Addr
RESET - - - P 0 0 0 0 0 Reset Ext. Device
ROL Dn Dn B.W.L *3 0 S S 0 S Rotate Left

#d Dn B.W.L *4 0 S S 0 S Rotate Left
<mea> Alterable W 0 S S 0 S Rotate Left

ROR Dn Dn B.W.L *3 0 S S 0 S Rotate Right
#d Dn B.W.L *4 0 S S 0 s Rotate Right
<mea> Alterable W 0 S S 0 s Rotate Right

ROXL Dn Dn B.W.L *3 S S S 0 S Rotate L w/extnd
#d Dn b .w .l *4 S S S 0 S Rotate L w/extnd

<mea> Alterable W S S S 0 S Rotate L w/extnd
ROXR Dn Dn B.W.L *4 S S S 0 S Rotate R w/ext

#d Dn B.W.L *5 S S S 0 S Rotate R w/ext

<mea> Alterable W S S S 0 s Rotate R w/ext

RTD #d - - *8 0 0 0 0 0 Return/Deallocate
RTE - - - P s s s s s Ret from exceptn

RTM Rn - - *8 s s s s s Ret from Module

RTR - - - s s s s s Ret/Restore CCR

RTS - . - 0 0 0 0 0 Ret from Subr.
S8CD Dn Dn B S 0 s 0 s Subtract Decimal

-(An) -(An) B S 0 S 0 S Subtract Decimal

See <dea> Alterable B 0 0 0 0 0 Set Conditionally

STOP #d - - P S S S S s Load SR, Stop

SUB <ea> Dn B.W.L *1 s s s s s Subtract Binary

Dn <mea> Alterable B.W.L s s s s s Subtract Binary

SUBA <ea> An W,L 0 0 0 0 0 Subtract Address

SUBI #data <dea> Alterable B.W.L s s s s s Subtract Imm.
SUBQ #d «aea> B.W.L *1,*2 s s s s s Subtract Quick

SUBX Dn Dn b .w .l s s s s s Subtract Extended
•(An) -(An) b .w .l s s s s s Subtract Extended

SWAP Dn . W 0 s S 0 0 Swap Reg Halves
TAS <dea> Alterable B 0 S S 0 0 Test & Set Opernd

TRAP #d - - 0 0 0 0 0 Trap

TRAPcc #d - W,L *8 0 0 0 0 0 Trap on Condition

TRAPV - - - 0 0 0 0 0 Trap on Overflow

252 Assembly Language Programming for the 68000 Family

TST <dea> Alterable
UNLK An
UNPACK -(An),-(An),#<adjstmnt>
UNPK Dn,Dn,#<adjstmnt>

B.W.L 0 S S 0 0 Test Operand
0 0 0 0 0 Unlink

8 0 0 0 0 0 UnPack BCD
’8 0 0 0 0 0 UnPack BCD

Notes:
*1: If size is .B then Address Register Direct Addr. Mode is not allowed
*2: Immediate data occupies 3 bits representing values on 1 - 8.
*3: Source Data Reg. contains shift count. Value 0-63,0 = shift 64 bits.
*4: The data is a shift count of 1-8.
*5: Only uses lower Byte of the Word.
*6: <cea> Alterable may be -(An).
*7: <cea> Alterable may be (An)+.
*8: 68020 only.

P: Privileged Instruction

Condition Code values:

S - Set or Cleared according to result of operation
1 - set
0 - not affected by this instruction
0 - always cleared

Appendix C 233

Addressing Mode Descriptions:

<ea> - effective address
<rea> - register effective address
<dea> - data effective address
<mea> - Memory effective address
<cea> - control effective address
<aea> - alterable effective address (data or memory)

MODE ea rea dea mea cea aea
Dn X X X X
An X X X
(An) X X X X X
(An)+ X X X X
-(An) X X X X
d(An) X X X X X
d(An,Xn) X X X X X
A16 X X X X X
A32 X X X X X
d(PC) X X X X
d(PC,Xn) X X X X
#<data> X X X

68020 specific addressing modes

bd(An,Xn) X X X X X
bd(PC,Xn) X X X X
[bd,An],Xn,od X X X X X
[bd,An,Xn],od X X X X X
[bd,PC],Xn,od X X X X
[bd,PC,Xn],od X X X X

INDEX

, 43, 73
*, 34, 79
ABCD, 149
absolute addressing, 73-74
access rights, 194
ACIA, 163-68
ADD, 45
ADDA, 46
ADDI, 46
addition, 44-46
addition and subtraction, multiple precision,

141-45
ADDQ, 66
address error, 161
address register, as destination, 44

indirect mode, 74-76
indirect with displacement mode, 80-82
indirect with index mode, 82-83
indirect with postincrement mode, 77-78
indirect with predecrement mode, 79-80

address translation cache, 208-10
addressing modes, 24, 33, 71

68020, 188-90
summary, 84

ADDX, 143
ALU, 206
AND, 129-31
ANDI, 129-31

to CCR, 157
to SR, 156

arithmetic, 9-10, 19
advanced, 141
instructions, 57
logic unit, 206
operations, 58
precision, 141

arrav, 76
ASCII, 12-13, 35, 48, 77 ,120,198, 215-16
ASL, 134
ASR, 133
assembler, 2
associative registers, 208

ATC, 208-10
automatic variables, 109

backing store, 175
BASIC, 1,19, 37
BCC, 60, 64,190
BCD, 148,198

input/output of, 150
BCHG, 137
BCLR, 137
BCS, 59, 64
benchmark programs, 19
BEQ, 61, 64
BFCHG, 193
BFCLR, 193
BFEXTS, 193
BFEXTU, 193
BFFFO, 193
BFINS, 193
BFSET, 193
BFTST, 193
BGE, 64
BGT, 64
BHI, 64
binary, 6

arithmetic, 9-10
coded decimal, 148
digit, 6

bit, 6 ,10
field, 193
field instructions, 193
manipulation, 137-38

BKPT, 193
BLE, 64
BLS, 64
BLT, 64
BMI, 62
BNE, 61, 64
borrow, 9
BPL, 62
BRA, 60, 190
breakpoint, 193

235

236 Index

BSET, 137
BSR, 99,102,190
BTST, 137
bus, 19

asynchronous, 19
error, 161,173-76

busy wait, 170
BVC, 61
BVS, 61
byte, 10, 21

C language, 77,117
CAAR, 187
cache, 186

address register, 187
control register, 187

CACR, 187
call

by reference, 107
by value, 107

CALLM, 194
can y, 9

bit, 58
CAS, 196
C A S2,196
CCR, 25, 57-58,144 ,155
CCR, and shifts, 134
central processing unit, see CPU
character strings, 34-35, 77

comparing, 119-20
copying, 119
inputting, 120
length of, 119
outputting, 120
program to reverse, 95-96

chip, 17
CHK, 162,190
C H K 2,197
clock, 19-20,180
CLR, 47
CMP, 63, 65
CM PA, 65
CM PI, 65
CMPM, 78
C M P 2,197
comment field, 33
comments, 33
comparisons, 62-66
compiler, 2
condition code register, see CCR
conditional branch, 59
conditional instructions, 57
constants

character strings, 34-35
integer, 34-35

control character, 12

conversions, 6 -7
coprocessor support, 197-98
counting loop, 51
cpBcc, 198
cpDBcc, 198
cpGEN, 198
cpRESTORE, 198
cpSAVE, 198
cpScc, 198
cpTRAPcc, 198
CPU, 11,17,19

root pointer, 210
CRP, 210
cycle time, 19

data
bus, 19
cache, 203-05
movement, 41-44

DBRA, 51-53
DC, 36
debugger, 2, 47 ,168,193
decimal, 5

arithmetic, 148-52
define constant, 36
define storage, 37
delimiter, 30
descriptor table, 209
destination function code register, 178
destination operand, 41, 71
developers package, 2
DFC, 178
DIP, 185
directives, 31

data defining, 36-37
DIVS, 146,192
DIVSL, 192
DIVU, 146,192
DIVUL, 192
double precision, 142
DS, 37
dual in-line package, 185

effective address, 45, 71
END, 37
EOR, 129-31
EORI, 129-31

to CCR, 157
to SR, 156

EQU, 37
exception, 24,158

condition, 148
handler, 158,160,162-63
processing, 155, 158
vectors, 158-59,178

executable image, 2

Index 237

EXG, 44
EXT, 148,192
extend bit, 62

condition, 143

fields, source statement, 29
FORTRAN, 37, 99
forward reference, 37, 84
framing, 164
function

class bit, 177
code, 186,194

gates, 6
GETC, 48

hardware interrupt, 92
hex, 7

digit, 8
hexadecimal, 7 -9

arithmetic, 9-10
routine to output, 137

I/O, 17, 26, 47-49 ,155
identifiers, rules for, 29-30
ILLEGAL, 161
illegal instruction, 161
immediate data, 72-73
immediate operand, 43
implicit operand, 71
INDEC, 48
input/output, see I/O
instruction

cache, 186, 203-05
pipe, 206
prefetch, 19
summary, 229

integrated circuits, 17
interrupt

driven I/O, 166
mask, 156
priority, 156

JMP, 50
JSR, 49, 99

keywords, 34

label field, 30-32
LEA, 75,109
LINK, 111
linked lists, 117

node deletion, 123
node insertion, 121
node searching, 123
printing, 124

linker, 2
linking, 2, 74
local variables, 109
locality of reference, 208
logical address, 207
logical instructions, 129
logical operations, 19,130
longword, 10, 22
loop mode, 179-82
looping, 50-52
LSL, 134
LSR, 133

MACSS, 19
mainframe, 17
mask, 131
MC6850, 165
M C68010,173
MC68020,185
MC68030, 203
M C68851,174, 203
megabyte, 10, 21
memory, 10,17, 21-23

indirect addressing, 189
management, 174, 203, 206-10
mapped, I/O, 26,163
protection, 23-24

menu, 124
microcomputer, 17
microprocessor, 17
mnemonic, 2, 31
mode

supervisor, 23,155
trace, 155,162
user, 23

module, 194
descriptor, 195

Motorola, 2, 29
M68000 familv, 17-21

MOVE, 41
from CCR, 177
from SR, 156
from USP, 158
to CCR, 144,156
to SR, 156
to USP, 158

MOVEA, 44
MOVEC, 178,187
MOVEM, 94, 106
MOVEP, 168
MOVEQ, 67
MOVES, 178
MULS, 146,192
multiplication and division, 145-48
MULU, 146,192

238 Index

NBCD, 149,151
negative numbers, 11-12
NEGX, 143
NEW LINE, 48
nibble, 149
NOP, 168
NOT, 129-131

object code, 2
one’s complement, 11
opcode, 22
operand field, 31-32
operands, 31
operation field, 31
OR, 129-31
ORI, 129-31

to CCR, 157
to SR, 156

orthoganality, 72
OUTDEC, 48
overflow, 61

bit, 61

PACK, 198
page, 174, 206

fault, 175, 207
frame, 174, 206
table, 207-08

paged memory management unit, 203
paging, 174, 206
parameters, passing, 102-04

passing on the stack, 106-09
parenthesis, in arithmetic expressions, 33
parity bit, 164
Pascal, 19, 99
PC, 24
PEA, 93,108
PFLUSH, 212
PFLUSHA, 212
physical address space, 174
pipelined architecture, 203, 206
pipelining, 19, 206
PLOAD, 212
PMMU, 203, 206
pointer, 75,117

frame, 110
NULL, 117

pop, 90
position-independent code, 84
precision, 141,146
prefetch queue, 180
privilege violation, 161
procedure, 48
program counter, 24

relative modes, 83-84

program
loop, 50
section, 84
shell, 49-50, 217-27

programmed I/O, 166
programmers model, 24-25
PTEST, 211
push, 90
PUTC, 49

radix, 5, 34
RAM, 23
random-access memory, 23
read-only memory, see ROM
reference

class, 194
classifications, 177

register, 19, 24
direct mode, 72
list, 94
size, 19

registers, saving and restoring, 93-95 ,105-06
relocation, 74
remainder, 7, 147-48
RESET, 169
reset

exception, 160
system, 155,158

ROL, 136
ROM, 23,161
ROR, 136
rotate instructions, 129, 136-37
ROXL, 136
ROXR, 136
RTD, 179
RTE, 160,174
RTM, 194-95
RTR, 157
RTS, 99
rubout, 12

SBCD, 149
scale factor, 189
See, 157
SCS, 157
semaphore, 197
SEQ, 157
sequential execution, 50
serial I/O, 163
SF, 157
SFC, 178
SGE, 157
SGT, 157
SHI, 157

Index 239

shift instructions, 129,133-36
used to multiply and divide, 135

sign bit, 11, 58
magnitude, 11

68000 family, 17-21
size, of operands, 41
SLE, 157
SLS, 157
SLT, 157
SMI, 157
SNE, 157
software interrupt, 161
source

code, 1
format, 29
function code register, 178
operand, 41, 71
statements, 29

SP, 89-90,107
special characters, see beginning of

alphabetic listings
SPL, 157
SR, 25,155,176
SRP, 210
SSP, 25,158
ST, 157
stack

applications, 93-95
frames, 109-12
instructions, 89-93
pointer, see SP
use by subroutines, 101

start bit, 164
status register, 25 ,155,176
STOP, 23, 50,169
stop bit, 164
SUB, 45
SUBA, 46
SUBI, 46
SUBQ, 66
subroutine, 48, 99
subtraction, 44-46
SUBX, 143
supervisor

mode, 23,155
root pointer, 210
stack pointer, see SSP

SVC, 157

SVS, 157
swap 43-44
symbol, 30

choosing, 34
equates, 37

tab character, 30
tag field, 186
TAS, 169,196
TC, 210
ten’s complement, 151
text editor, 2
tokens, 29
trace bit, 155
trace mode, 155,162
translation

control register, 210
descriptor, 209

TRAP, 161
TRAPcc, 198
traps, 158,161
TRAPV, 162,198
truth tables, 129-30
TST, 62
two’s complement, 11-12, 58

UART, 26,164
UNLK, 111
UNPK, 198
user mode, 23
user stack pointer, see USP
USP, 24 ,158,178

variable, 31
VBR, 178-79
vector base register, see VBR
virtual address space, 174
virtual machine, 173,175
virtual memory, 173-74, 206

wait states, 180
word, 10, 22
working set, 208
write through, 205

zero bit, 62
zero divide, 161

COMPUTERS
For 68000 series chip u s a ^ h e re ’s the fast, easy way

to learn assembly lcU|^^feprogramming skills.

ASSEPS GUAGE
IfcLG

^Uamai P.
This practical guide covers a wide range
of assem b ly language p ro g ram m in g
techniques for the entire 68000 chip fam-
ily—from the 68000, 68008, 68010,68012,
and 68020, to the new and p ow erfu l
6 80 3 0 . A s s e m b ly la n g u a g e e x p e r t
Thom as Skinner has you w riting p ro
g ram s early in the book, using basic
in p u t/ou tp u t subrou tines, data types,
assembler statements, and programming
instructions. Then you'll learn how the
68000 series chip works with the more
advanced areas of assembly language -
conditional and arithm etic instructions;
loop ing ; s tacks ; s trin g s ; a dd re ss in g
modes; logical, shift, and rotate instruc
tions; linking; and debugging.

No m atter which 68000 chip-equipped
m ach ine you ’ w o rk w ith —the A pp le

Macintosh, Commodore Amiga. Atari ST
Series, and others—the material in this
book will help you get the most from your
machine. Skinner also provides specific
systems details in the appendices, com
plete with shell programming routines to
make programming fast and easy. This
book requires no prior experience with
assembly language.

THOMAS SKINNER is Assistant Profes
sor of Computer Science at Boston Uni
versity and a m icroprocessor hardware
and software systems consultant. He is
also the author of Assem bly Language
Programming for the 8086 Family.

	Front Cover
	Preface
	Contents
	Introduction
	1: Number Systems
	Decimal
	Binary
	Conversions
	Hexadecimal
	Arithmetic in Binary and Hexadecimal
	Bits, Bytes, Words and Longwords
	Representing Negative Values
	ASCII Character Codes
	Exercises
	Answers

	2: Microcomputer Architecture
	The Motorola M68000 Family
	The CPU
	Memory
	User and Supervisor Modes
	The CPU Registers
	Input/Output
	Exercises
	Answers

	3: Assembler Source Format
	The Label Field
	The Operation Field
	The Operand Field
	The Comment Field
	On Choosing Symbols
	Constants
	Data-Defining Directives
	Symbol Equates
	The END Directive
	Exercises
	Answers

	4: Getting Started
	Data Movement
	Addition and Subtraction
	Input and Output
	The Program Shell
	Looping
	Putting It All Together
	Exercises
	Answers

	5: Conditional and Arithmetic Instructions
	Arithmetic and the Condition Code Register
	The Carry Bit
	The Overflow Bit
	The Zero and Negative Bits
	The Extend Bit
	Comparisons
	ADDQ and SUBQ Instructions
	Exercises
	Answers

	6: Addressing Modes
	Register Direct Modes
	Immediate Data
	Absolute Addressing
	Address Register Indirect
	Address Register Indirect With Postincrement
	Address Register Indirect With Predecrement
	Address Register Indirect With Displacement
	Address Register Indirect with Index
	Program Counter Relative Modes
	Addressing Mode Summary
	Exercises
	Answers

	7: The Stack
	Stack Instructions
	Stack Applications
	Exercises
	Answers

	8: Subroutines
	JSR, BSR, and RTS Instructions
	Passing Parameters
	Saving and Restoring the Registers
	Passing Parameters on the Stack
	Stack Frames
	Exercises
	Answers

	9: Linked Lists - A Programming Example
	10: Logical, Shift and Rotate Instructions
	Truth Tables
	Logical Operations
	Shifts
	Rotates
	Bit Manipulation
	Exercises
	Answers

	11: Advanced Arithmetic
	Multiple Precision Addition and Subtraction
	Multiplication and Division
	Decimal Arithmetic
	Exercises
	Answers

	12: Exception Processing, System Control Operations, and I/O
	The Status Register and System Control
	Exception Processing
	Traps
	Serial I/O
	Miscelaneous Instructions
	Exercises
	Answers

	13: The 68010
	Virtual Memory and the Bus Error Exception
	Virtual Machines
	Reference Classifications
	The Vector Base Register
	RTD and Loop Mode
	Summary
	Exercises
	Answers

	14: The 68020
	Instruction Caching
	Additional Addressing Modes
	Instruction Extensions
	New Instructions
	Bit Field Instructions
	Breakpoint Instruction
	CALLM/RTM
	CAS and CAS2
	CHK2
	CMP2
	Coprocessor Support Instructions
	PACK and UNPK
	TRAPcc

	Exercises
	Answers

	15: The 68030
	Instruction and Data Caches
	Pipelined Architecture
	Paged Memory Management
	68030 Instructions
	Exercises
	Answers

	A: ASCII Character Codes
	B: Program Shells and I/O Subroutines
	C: 68000-68020 Instruction Summary
	Index
	Back Cover

