[-0 - 8 - |

Y EY & KN £ £V 8 ry £ B W

N LAY EN K EY ¥ &3 k3

E S o 4

AR NEW EEW EEX ESN EN KN £S5 S E3 SN OEE
RGN B IR SR RS BN EY KX ©F KY £F E

A+ Programming
in Atari® Basic

A+ Programming
in Atari® Basic

John M. Reisinger

Patch American High School
Stuttgart/ Vaihingen
Federal Republic of Germany

A Reston Computer Group Book
Reston Publishing Company, Inc.
A Prentice-Hall Company

Reston, Virginia

Library of Congress Cataloging in Publication Data

Reisinger, John M.
A+t programming in Atari Basic.

“A Reston Computer Group book.”

1. Atari computer—Programming. 2. Basic (Computer
program language) I. Title. II. Title: A plus pro-
gramming in Atari Basic.

QA76.8.A82R44 1984 001.6424 83-19125
ISBN 0-8359-0004-5

© 1984 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

Allrightsreserved. No part of this book may be reproduced in any way
or by any means without permission in writing from the publisher.

ATARI®is aregistered trademark of ATARI, Inc., a Warner Communi-

cations Company, Sunnyvale, California.

10 9 8 76 54 3 21

Printed in the United States of America

Acknowledgments

To Mr. Sam Calvin, computer coordinator for DoDDS-
Germany, for his continuing efforts on behalf of computer
education in DoDDS and for making this project possible.

To Mr. Tom Rowley, computer coordinator for DoDDS-
Mediterranean, for organizing and skillfully leading the work-
shop whose participants wrote the outline for this text (and
several other computer courses) and for giving permission to
quote from his book, ATARI BASIC, Learning by Using
(ELCOMP Publishing, Inc.).

To Bernie Edwards, Tuner Lequar, Bryan Zimmerman,
and many other students at Patch American High School for
their ideas, enthusiasm, and help.

To my wife, for her patience, understanding, and support
during the writing of this text.

Preface

To The Student:

The eighteen chapters of this book are intended as a beginning
course in BASIC programming. Our intent throughout the book
is to provide a variety of experiments to help you learn how to
program in BASIC. If we suggest that you try something on the
computer, then please do! Only by actually typing in programs
and modifying them can you learn programming. We think that
you’ll find the whole experience exciting and rewarding. Have
fun!

To The Teacher:

This book is notintended as an attempt toimpose any particular
programming philosophy on you or your students. You may use
it in any way that meets their needs. Certainly you have your
own favorite programs and exercises that you will want to
include in your course. We have purposely deemphasized the
more traditional business-related applications of BASIC in
favor of more motivating graphics and sound programs.

We hope that you and your students will enjoy BASIC
programming on the ATARI as much as we have!

Vii

—

~s

Contents

Chapter 1 - Operating the Computer

Introduction, 1

Turning on the Computer, 2

The Keyboard, 2

Control Graphics, 6

BASIC, 7

Loading Programs from Cassette Tapes, 9
Loading Programs from Diskettes, 9
Exercises, 11

Chapter 2 - Printing

Introduction, 13

Printing to the Screen, 13
Error Messages, 15

Line Numbers, 17
Arithmetic Operators, 18
Order of Operations, 19
Printing on a Printer, 19
Print Zones, 20
Exercises, 22

Chapter 3 - Graphics and Sound

Introduction, 25

Graphics Modes, 25

COLOR, 28

SETCOLOR, 29

The Text Window, 32

Text Modes, 34

Sound, 38

The REMARK Statement, 40
Exercises, 43

Chapter 4 - Assignment (LET) Statements

Introduction, 47

Memory, 47

Numeric Variables, 48

String Variables, 52

Saving Programs on Cassette Tapes, 54
Saving Programs on Diskettes, 54
Exercises, 58

Contents

Chapter 5 - The INPUT Statement

Introduction, 63

Numeric Input, 63

String (Alphabetic) Input, 65
Input Error Messages, 66
Input Variations, 66
Prompts, 68

Exercises, 70

Chapter 6 - READ, DATA, and RESTORE STATEMENTS

Introduction, 73

READ and DATA, 73

The RESTORE Statement, 77
Abbreviations, 78

Exercises, 79

Chapter 7 - Transfer of Control Statements

Introduction, 83

The GOTO Statement, 83

Loops, 84

The IF..THEN Statement, 84

Lengths of Lines, 87

The STOP and END Statements, 87
Debugging (Error Correction) - Part 1, 88
Exercises, 89

Chapter 8 - Anatomy of a Loop

Introduction, 95
Initialization, 95
Incrementation, 97
Decisions, 98

Tracing a Program, 101
Counters, 104

Flags, 106

Exercises, 108

Chapter 9 - FOR...NEXT Loops

Introduction, 113

Two Ways to Write Loops, 113
The FOR Statement, 114

The NEXT Statement, 114
The Body of a Loop, 115

Contents

Xi

STEP, 116

Timing with FOR..NEXT Loops, 116

Using FOR..NEXT Loops, 117

Getting out of FOR...NEXT Loops, 119

Nested FOR...NEXT Loops, 119

Printing Techniques with FOR...NEXT Loops, 121
Exercises, 124

Chapter 10 - Flowcharts

Introduction, 127

A Sample Flowchart, 127

Flowcharting Symbols, 128

Reading Flowcharts, 128

Writing Programs from Flowcharts, 131
Problem Solving with Flowcharts, 134
Exercises, 136

Chapter 11 - Writing Understandable Programs

Introduction, 139

The REMark Statement, 139

Using REMarks for Program Identification, 140

Using REMarks to Describe Sections of a Program, 140
Describing the Variables in a Program, 142

Line Numbers, 144

Changing Line Numbers (“Renumbering”), 145
Improving Screen Output, 147

Exercises, 151

Chapter 12 - More about Graphics

Introduction, 157

GRAPHICS 0, 157

GRAPHICS 8, 158

GRAPHICS 4 and GRAPHICS 6, 161
Filling an Area with Color, 162
GRAPHICS 9, 165

GRAPHICS 10, 168

GRAPHICS 11, 172

Exercises, 174

Chapter 13 - Numeric Functions

Introduction, 179
Scientific Notation, 179
The SQR(X) Function, 180

Xii

Contents

The ABS(X) Function, 180

The INT(X) Function, 181

The RND(X) Function, 182

The SGN(X) Function, 183 T
The LOG(X) Function, 184

The CLOG(X) Function, 184

The EXP(X) Function, 184

The Trigonometric Functions, 184
Exercises, 186

Chapter 14 - String Functions

Introduction, 189 -
The LEN(A$) Function, 189

The STR$(X) Function, 192

The VAL(A$) Function, 193

The ASCII and ATASCII Codes, 193
The CHR$(X) Function, 195

The ASC(A$) Function, 196

String Concatenation, 197
Exercises, 198

Chapter 15 - Variables with One Subscript (Arrays)

Introduction, 203 —
Subscripts, 203

Arrays, 204

Initializing an Array, 205

Storing Computations in Arrays, 206
Applications of Subscripted Variables, 207
Sorting, 208

Sorting Strings, 213 —
Exercises, 216

Chapter 16 - Variables with Two Subscripts (Matrices)

Introduction, 221

Double Subscripts, 221
Initializing a Matrix, 222
Using Matrices - Graphics, 223
Using Matrices - Tallying, 224 -
Exercises, 227

Chapter 17 - Subroutines

Introduction, 231
The GOSUB Statement, 231
Euclid’s Algorithm, 233

Contents

Xili

Subroutines in Music, 234

A Library of Subroutines, 236

Some Reminders about Using Subroutines, 241
Exercises, 242

Chapter 18 - Review

Introduction, 245

A Bar Graph, 245
“Filled” Circles, 251
The Final Program, 255
Exercises, 255

Appendix 1 - Error Messages, 261
Appendix 2 - Pitch Values for Sound Statements, 265
Appendix 3 - Introduction to DOS II, 267

Glossary, 271

—~—

Operating the Computer

Welcome to the world of ATARI! We feel certain that learning to
program an ATARI personal computeris going to be an exciting
and rewarding experience for you. Please think of this book as a
guide to your learning; you’re going to learn to program not so
much by reading these pages but by using the computer.

But what is a program? A program is a sequence of instruc-
tions to the computer that tells it what steps to perform in order
to produce a desired result, or output. The instructions are writ-
ten in some kind of computer language; the language we are
learning is called BASIC (Beginners’ All-purpose Symbolic In-
struction Code). A computer program is an example of software;
the computer itself, printer, TV screen or monitor, and disk drive
are examples of hardware.

We just referred to the results of a program as output. A
computer or computer system has four main functions:

1. Input: This is the process of “feeding” a program or data
for the program into the computer system. On the ATARI,
the keyboard is the main input device. The cassette recorder
and disk drive may also be used as input devices.

2. Storage: A program that is typed into the computer is
stored in the computer memory until we turn the computer
off. We may also store the program permanently on a
cassette tape or on a diskette.

3. Processing: The Central Processing Unit (CPU) of a com-
puter is what makes it all work. The CPU consists of a

Introduction

Operating the Computer

Turning on the
Computer

The Keyboard

control unit, which coordinates all the computer activity,

and an arithmetic-logic unit, which does the calculations
and makes decisions.

4. Output: Thisrefers to the results of a program. Output may
be a screen display, a printed sheet, or a set of data on a tape
or diskette, as well as other forms and means.

We’re going to assume now that you have access to the ATARI
Operators Manual for your particular computerin case you have

problems, but our comments should be enough to get you started.
Follow these steps:

1. Plug the AC power adapter into a 110 volt outlet. Plug the
small end of the adapter into the jack labeled POWER IN on
the panel on the side (or back, depending on the model) of the
computer console.

2. If you are using a normal TV set for the screen display, then
plug the TV cord that is permanently attached to the back of
the computer console into the jack labeled COMPUTER on
the TV switch box.

If you are using a monitor for the screen display, then pilug
one end of the monitor cable into the jack labeled MONITOR
on the computer, and plug the other two ends of the cable
into the audio and video jacks on the monitor.

3. (400, 800 and 1200XL models only.) Insert the BASIC car-
tridge in the appropriate cartridge slot of the computer.

4. Turn on the TV set (or monitor), and turn on the POWER
ON/OFF switch on the computer console. The power indi-
cator light on the keyboard should light up red.

If you followed the steps correctly, then the displayin Figure
1-1 should appear on the screen. Look at the bright square direct-
ly below the “R” in “READY” on the screen.

This squareis called the cursor and indicates our position on
the screen. Type something, and you will see that the “typing”
starts at the cursor and that the cursor moves with what you are
typing, always showing the next available space. Now we need
to become familiar with the keyboard.

Youcan seethatthe ATARI keyboard is very much like a normal
typewriter keyboard but with a few extra keys added. Let’s con-
centrate first on the keys that type the letters of the alphabet, the
numerals, and the punctuation marks. We’ll call these keys the

The Keyboard

READY

FIGURE 1-1 The ATARI BASIC Display Screen

character keys because each one will print one or more charac-
ters on the screen. Here is a chart of just the character keys,
without the special keys at the edges of the keyboard. The long
bar at the bottom is the space bar. Compare the chart with the
actual keyboard.

vl el s lwlal|l el ()

11213 a|s5]6|7|8]9]0]<]|>

a|lw|e|R|[T|Y|lul1|lo]er T:“:

AlSsS|{D|F|G|H]|]JIK L *}r*:
zl x|lclv|s|n|m]|] ;

FIGURE 1-2 The ATARI Character Keyboard

Operating the Computer

Now type whatever you want. See if you can completely fill
up the screen. Type, type, type! (Two fingers count here.) If you
don’t already know the keyboard, youw’ll be surprised at how fast
you learn it. Note that the cursor automatically returns to the
beginning of the next line when you reach the right edge. Have
fun!

Could you print the characters on the upper half of the keys,
such as §, &, ?, etc.? If you couldn’t, try them now. Simply hold
down either SHIFT key (lower left and right corners of the key-
board) while you press the desired key. This works exactly like a
normal typewriter. How about lowercase (small) letters? Press
the CAPS (CAPS/LOWR on some models) key (right end of third
row from top) to change to lowercase. Now the SHIFT key will
switch you back to uppercase. Press SHIFT and CAPS (CAPS/
LOWR) together to switch back to uppercase permanently.
Practice these things now.

In addition to the character keys, the ATARI has several
special function keys: keys that don’t print a character by them-
selves but control certain screen editing functions. Screen edit-
ing is the process of modifying what is displayed on the screen.
Figure 1-3a and Figure 1-3b show the special function keys for

| CLEAR |INSERT | DELETE
ESC < > BACK s | BREAK RESET

[CLR] SET - ;
-TAB _ : RETURN

E 320 S

SHIFT /I\ SHIFT

(a) LEFT EDGE RIGHT EDGE

CLEAR | INSERT | DELETE

< BREAK

> | BACKS RESET
- _' RETURN
() || owes

+ *

SHIFT D

(b) RIGHT EDGE

FIGURE 1-3 The ATARI Special Function Keys

The Keyboard

the older and newer ATARI models. Notice that we have split the
keyboard to show only these special function keys. They are to
the left and to the right of the character keys. Take some time
now to be sure that you can find the keys shown in the chart on
the actual keyboard.
Note particularly the special function keys: | CLR |,| CONTROL|,
,[1] ,[==1, and[=]. These are extremely important in screen
editing.

Now let’s see what the special function keys can do. Type a
few lines on the screen, and then practice using each special
function as it is discussed. Don’t press the RETURN key during
these exercises.

CLEAR SCREEN: Press either SHIFT and CLEAR, or
CONTROL and CLEAR at the same time. The screen goes
blank, and the cursor returns to “home,” that is, the upper left
corner of the screen.

MOVE CURSOR: Hold down the CONTROL key and press
the arrow key with the direction you want to go. By the way,
have you discovered that if you hold a character key down for
more than a second, it keeps printing its character? The same
thing is true about moving the cursor. Now move the cursor
back over a word on the screen and change some or all of the
letters. See how easy it is to make corrections? Get used to this
superb feature of the ATARI—you’ll need it!

BACKSPACE: Press the DELETE/BACKSPACE key by
itself. The cursor moves from right to left, erasing as it goes.
Be careful! If you don’t want to erase, use the move cursor
function.

FORWARD SPACE: Press the space bar. The cursor moves
from left to right, erasing as it goes. The preceding word of
caution applies here, too.

INSERT A LINE: Move the cursor to the beginning of the line
below where you would like the line inserted. Press SHIFT and
INSERT at the same time. The line where you place the cursor
moves down one line, and a blank line is inserted above it.

DELETE ALINE: Movethecursortothebeginning of the line
you want to delete. Press SHIFT and DELETE/BACK S (delete/
backspace) at the same time. Poof! The entire line vanishes. Try
clearing the screen this way by holding both keys down for more
than a second.

Operating the Computer

Control Graphics

INSERT ACHARACTER: Move the cursor to the character (or
space) immediately to the right of where you want the space.
Press CTRL and INSERT at the same time. The character under
the cursor and all of the characters to its right moveone space to
the right, and the cursor appears in the empty space. Remember
that the space appears to the left of where you place the cursor.

DELETE A CHARACTER: Move the cursor to the character
you want to delete and press CTRL and DELETE/BACK S
simultaneously. The character under the cursor disappears, and
all of the characters to its right move one space to the left.

TABULATE: Press the TAB key, and the cursor will move to
the next TAB setting, just as on a normal typewriter. To set a tab,
move the cursor to the desired location and press SHIFT and
TAB simultaneously. To clear a tab, move the cursor to the
location to be cleared and press CTRL and TAB. Tabs that you

set in this manner will be cleared when the computer is turned
off.

INVERSE VIDEO: Theinverse video keyislabeled d or /\ .
Itislocated either next to the right-hand SHIFT key or above the
keyboard. Press the key. Now everything that you type is in
inverse video; that is, the colors of print and background are

reversed. To get out of inverse video, press the inverse video key
again.

Don’t be frustrated by this laundry list of special functions—
you’ll learn to use them quickly as you begin to type programs
into the computer. Do refer to the list frequently, though, because
using the excellent screen editing features of the ATARI will
save you much time.

There are other characters that can be printed on the screen that
are not indicated on the keyboard: the control graphics charac-
ters. These are printed by holding down the key
and any of the alphabetic keys (A,B,C...,X,Y,Z) or the comma G),
period (.), or semicolon (). Figure 1-4 is a chart of the control
graphics characters.

The control graphics characters can be used to create a great

variety of graphics designs—experiment with them now before
we continue.

Basic

OO0 oouoga]
()0 (o) () (=) ()) (o) ()) () (]
(AN AN ™)@
(= DO M OE]

FIGURE 1-4 The ATARI Control Graphics Keyboard

Yet another set of characters, the control characters, can be
printed by using the ESC key in conjunction with one or two
other keys. This allows you to actually print the cursor control
arrows and the CLEAR and INSERT arrows on the screen.
Using these characters is beyond the scope of a first course in
ATARI BASIC, but you can refer to the ATARI Basic Reference
Manual for instructions on printing them.

Now let’s use some BASIC commands. A quick way to clear the
screen is to press the (SYSTEM) RESET key on the right side of
the keyboard. You should get the display from Figure 1-5:
“READY” in the upper left corner of the screen, with the cursor
under the “R.”

READY
a

Figure 1-5 The ATARI BASIC Display Screen

Basic

Operating the Computer

We are in DIRECT, or immediate, mode. In this mode, we
can giveindividual BASIC language commands and have them
EXECUTED (performed) immediately by pressing the RETURN
key. Suppose you type

PRINT 13+17

and press the RETURN key. The computer’s response will be:
30

READY
-

You're using the computer as a desk-top calculator! You can
practice some calculations now, but first you should know that
the symbol for multiplication is “*”, and the symbol for division
1s “/”. For example, we write “2 times 3" as “2*3”, and we write
“10 divided by 5” as “10/5”. If the computer responds with
“ERROR— PRINT...”, just ignore it at this point and try again.
You can clear the screen by pressing SHIFT and CLEAR at the
same time. Notice that the RETURN key is performing a dif-
ferent function in direct mode: it activates the computer. The
computer’s response, of course, depends on what command(s) we
have given it.

If you have a printer attached to your computer, you can
print the results of your calculations on the printer by typing
LPRINT instead of PRINT. If you would like the problem
printed, too, enclose the problem in quotation marks. In ATARI
BASIC, anything that is placed in quotes after the word PRINT
or LPRINT will be printed exactly as it appears in the quotes.
Think of quotes as performing a duplicating function. Hereis an
example. You type

LFRINT "2 + 3 is", 243

and press RETURN, and the following is printed on the printer:

-

2+ 3 is o

READY
=

(If you typed PRINT instead of LPRINT, the same thing will be
printed on the screen.)

Chapter 2 is all about printing—this is just a brief introduc-
tion. Have some fun now seeing what calculations you can print
on the screen and/or printer.

Loading Programs from Diskettes

First, be sure your ATARI 410 Program Recorder is correctly
attached to the computer:

1.

Plug the recorder DATA CORD into the jack labeled PERIPH-
ERAL on the side panel of the ATARI console.

Plug the recorder power cord into an ordinary 110V power
source.

Now, follow these steps:

1.

Insert the cassette tape with the program you want to load into
the Program Recorder with the recording surface toward you
and the label for the side of the tape that you wantright side up
so that you can read it.

Push REWIND on the recorder and wait until the tape stops.

Push the tape counter reset button until it reads 000, then push
STOP EJECT once.

On the computer keyboard type CLOAD and then press the
RETURN key. You will hear one beep.

Push PLAY on the Program Recorder. Now push the RETURN
key on the computer keyboard again. When the tape counter
reaches about 8, you will begin to hear a series of beeps. This
means the program is loading. When it is finished, the word
READY will appear on the screen.

Push STOP on the Program Recorder and remove the tape.

You may “run” the program by typing RUN and then pressing
RETURN.

It sometimes happens that a tape does not load properly. In
this case, repeat steps 1-7 above. Sometimes it seems to help
totype LPRINT and press the RETURN key at the beginning of
the sequence.

In order to load a program from a diskette, you must have the
ATARI Disk Drive attached to your computer (with at least 16K
RAM), and you must also load DOS (Disk Operating System). To
attach the disk drive to the computer proceed as follows:

1.

2.

Plug one end of a data cord into the jack labeled PERIPHERAL
on the ATARI console. Plug the other end into either of the
jacks labeled 1/0 CONNECTORS on the back of the disk drive
unit. Note: If you also want to use the recorder, you may plug
its data cord into the other /O CONNECTOR jack.

Plug the small plug on the AC power adaptor into the jack

Loading Programs
from Cassette Tapes

Loading Programs
from Diskettes

10

Operating the Computer

labeled PWR. on the back of the disk drive unit, and the other
end into an ordinary 110V wall socket.

To load DOS (a program that allows the computer to communi-
cate with the disk drive), do the following:

1.

Press the PWR. ON/OFF switch on the front of the disk drive.
The two red lights will glow, the drive will whir for about seven

seconds, and then the upper red light will go out. The lower
light will still glow.

Open the door in the front of the disk drive.

Insert a diskette that contains DOS (such a disk is shipped with
the computer) with the label facing up and the notch on the
left. Be careful not to touch the recording surface of the disk

through the openings in the black protective jacket. Close the
door of the disk drive.

Turn the computer console power switch on. The disk drive
will whir for a few seconds, then the word READY will appear
on the screen. You are now ready to load a program.

Remove the DOS diskette from the disk drive and return it to its
protective paper sleeve.

Let’s suppose that the name of the program you want to load

1s BLASTOFF. Follow these steps to load it:

1.
2.

Press the PWR. ON/OFF switch on the disk drive.

When the upper red light goes out, open the door of the disk
drive, insert your diskette (label up, notch to the left), and then
close the door of the disk drive.

Type: LOAD “D:BLASTOFF” and press the RETURN key. The
disk drive will whir for a few seconds, then the word READY
will appear on the screen. Your program has been loaded.
Remove the diskette from the disk drive, replace itin its protec-
tive paper sleeve, and turn the disk drive off.

You may run the program by typing the word RUN and then
pressing the RETURN key.

After you have run the program(s) that you have loaded,

type the word LIST and press the RETURN key. The list of
instructions that produced the display will go by on the screen.

To stop the list, hold down the[CONTROLJkey while you press
the “1” key. Do the same to start the list again.

Learning to write such a list of instructions to the computer

(a program) is what this book is all about. You’ve learned a lot
already; now you’re ready to start programming!

Exercises

11

10.

EXERCISES

The four main functions of a computer system are:

and

A disk drive is an example of () hardware, () software.

A program that draws a picture of a disk drive is an example of
()hardware, ()software.

To clear the screen, we press the SHIFT key and the
key.

If we move the cursor to a character in a line on the screen and then
press the CTRL key and the INSERT key at the same time, then a
space appears to the () left ()right of the character that was
under the cursor.

[()True ()False] Pressing the RETURN key will move the
cursor to the beginning of the line you were on.

Which of the following should be typed to load a program called
TESTING from a diskette?

() “D:TESTING”

()LOAD “D:TESTING”

()LOAD TESTING

The symbol for multiplication is

The CPU of a computer hastwo parts:the____unit and the

unit.

[()True ()False] Wecouldloadaprogram called BLASTOFF
from a cassette tape by typing CLOAD “BLASTOFF”.

12

Operating the Computer

11.

12.

13.

[()True ()False] Inversevideo means thatcharacters will be
printed upside down.

You have just typed PRIMT “3 + 7 is”,3+7 and you realize that you
have made a mistake. You should

() Press SHIFT and CLEAR and start over.

() Move the cursor (press CTRL and the left arrow) to the M, type
N, and then press RETURN.

A sequence of instructions to the computer to have it produce a

certain result is called a

Printing

In this chapter we are going to cover how to print the results of
computer computations on the screen and on the printer. Such
results are known as output.

Because we will be using the BASIC language, if you are
using an ATARI 400, 800, or 1200 XL, check now to be sure that
the BASIC cartridge is inserted in the cartridge slot of the com-
puter console.

Type the following program on the computer keyboard exactly
as it appears below. At the end of each line, press the RETURN
key and the cursor will move to the beginning of the next line.
When you have finished, type the word RUN and press the
RETURN key. Please be careful to use upper and lowercase
letters exactly as they appear below.

100 PRINT "ADD TWO NUMBERS"

110 PRINT

120 PRINT "The sum of 5.3 and 9.8 is”
130 PRINT 5.3+9.8

Your run of the program should have looked like this on the
screen:

RUN
ADD TWO NUMBERS

The sum of 5.3 and 2.8 is
15.1

READY
|

Introduction

Printing to the
Screen

13

14

Printing

(READY is always the computer’s signal to us that it has fin-
ished a task and is ready for a new one.)

Now clear the screen by holding down either SHIFT key
while you press the CLEAR/< key. Our program is stored in the
computer, and we can see it again by typing LIST and pressing
the RETURN key. Do this now.

Let’s change the problem the computer did for us by chang-
ing lines 120 and 130 of the program to look like this:

120 PRINT "The sum of 23.98 and 117.67 is"®
130 PRINT 23.98+117.67

Wedon’t need to retype the entire line—we can just move the
cursor to the numbers and change them. Remember, to move the
cursor, hold down the CTRL key and press one of the arrow keys.
The cursor will move in the direction of the arrow. To insert a
space (this is necessary because our new numbers have more
digits than the old ones), move the cursor to the right of where
you need the space, then hold down the CTRL key and press the
INSERT/> key once for each space that you need. Be sure to
press the RETURN key at the end of each line. Notice that line
120 automatically extends to the next line.

After you have made the changes, type the word LIST and
inspect the new program to seeif you have made any mistakes. If

not, type RUN to see your results. The output should look like
this:

RUN
ADD TWO NUMBERS

The sum of 23.98 and 117.67 is
141.65

READY
]
Now change the program to look like the following:

100 PRINT "MULTIPLY TWO NUMBERS"
110 PRINT

120 PRINT "The product of S5 and 9.3 is"
130 PRINT 5%9.3

RUN the program. The output should look like this:

Error Messages

15

RUN
MULTIPLY TWO NUMBERS

The product of 5 and 9.3 is
46.5

READY
n

As you type in these programs, you are using the computer
in the deferred mode; that is, the instructions are not executed
immediately, as in the direct mode. As soon as we type RUN, the
computer is in the execute (or run) mode. We have just four
modes: memo pad (400 and 800 models only), direct, deferred,
and execute.

You may have experienced in the previous exercises that the
computer printed something like the following on the screen:

100 PRINT MULTIPLY TWO NUMBERS"
100 ERROR- PRINT MULTIPLY TWO NUMBERS"

In this case the cursor will appear superimposed on the T in
TWO. The computer is telling us that it cannot completely un-
derstand line 100. We forgot the quotation marks! To correct this
error, follow the steps below. This will be the standard procedure
for correcting error messages in this text.

TABLE 2-1 Error Correction Procedures

. 1. Move the cursor to the beginning of the original line that
contains the error. (Use the CONTROL key and the arrow
keys.)

2. Correct the line using cursor control. Press the RETURN key
after all mistakes in the line are corrected.

3. Press the RETURN key to move the cursor to the beginning of
the line with the error message in it. Hold down either SHIFT
key and press the DELETE/BACKSPACE key. The line will
disappear. The error should be corrected.

4. Type LIST to check that the program has been corrected. If
not, repeat the steps above.

Error Messages

16

Printing

Suppose that we had typed the following message:

100 PRIMT "MY NAME 1S5 ATARI"

(Notice the spelling error.) The computer will type the following
message:

100 ERROR- PRIMT "MY NAME IS ATARI"

In this case, the cursor will appear superimposed on the first set
of quotation marks. (The computer thinks that the word PRIMT
is a variable, but more about that later.) So we correct our state-
ment by using the steps outlined in Table 2-1. Whenever we type
acommand that the computer cannot understand, we will get an
error message, and we should correct it using the method
outlined.

QUESTION: Why won’t we get an error message if we type

100 PRINT "MY NSME ID ATARI"

Do you have an idea?

Right! The ATARI prints whatever is inside quotation
marks exactly as it appears, even if we make a typing error. It
must, however, be able to understand the reserved words or
keywords of ATARI BASIC. Learning to program in BASIC is
largely a question of learning to put these keywords together in
sensible statements. So far, we know three keywords: PRINT,
RUN, and LIST.

As we begin to write programs, we will discover that we
make frequent errors of another sort: The computer can under-
stand our instruction, but it can’t carry it out. In such a case, we
will get an error message that tells us two things: (1) A code
number for the type of error, and (2) the line number of the line in
the program where the error occurred. For example, type in the
following short program and run it.

To erase the previous program from the computer memory, type
the word NEW and press the RETURN key.

100 PRINT "ERROR MESSAGE"

110 PRINT

120 GOTO 150

130 PRINT "THIS WON’T BE FRINTED"

Your RUN of the program should have looked like this on the
screen.

Line Numbers

17

RUN
ERROR MESSAGE

ERROR- 12 AT LINE 120
]

Now we need to know what error 12 is, so we consult the
appendix in the back of this book or the ATARI BASIC Refer-
ence Manual. Error 12 means “line not found.” Because this
error occurred at line 120, we need to look at line 120 of our
program. If it is not still on the screen, we can get it back by
typing

LIST 120
and pressing the RETURN key. Line 120 is
120 GOTO 150

Because there is no line numbered 150 in the program, the
computer certainly cannot go there! Thus, the error message. We
can correct the program by adding the line

130 PRINT "I FIXED IT'*®

Try this now.

As we learn more and more BASIC commands, we will make
many different errors (to err is human!), and eventually we will
have memorized the number codes for the more frequent ones.
Think of the error messages as the computer’s way of helping
you and don’t be frustrated when they occur. We all make many
mistakes, but we can also correct them!

You have noticed by now that all of the programs we have
considered have one feature in common: Each line of the pro-
gram starts with a number. Yes, these are the line numbers we
referred to above. In general, the computer performs (executes)
the commands given in the program statements in the same
order as the numbers of the statements. We may use any
numbers from 0 to 32767 (one less than 2 raised to the 15th
power)in ATARI BASIC. Usually we number by 10s (or even 20s
or 100s) so that we can insert additional lines later if needed. In
this book, we will not use line numbers below 100. Try to guess

Line Numbers

18

Printing

Arithmetic
Operators

what the following program will produce, then type it in exactly

as it appears and run it to see if you are right. Then LIST the
program.

140 PRINT "ORDER"
100 PRINT "THIS"
120 PRINT "ouTt”
130 PRINT "OF"
110 PRINT "IS"™

Were you surprised? Notice that when we LIST a program,

the computer will automatically put the lines in numerical order.

In BASIC, the following symbols are used for arithmetic
operations:

e Addition +
® Multiplication *
® Subtraction -
e Division /
» Exponentiation A

Exponentiation is the process of raising a number to a pow-
er. We write 2 to the third power (2 cubed) as 2 » 3.

The symbols listed above are called arithmetic operators, or
simply operators. These five operators form the basis for all
mathematic computation on the computer.

We can practice using these symbols by typing in the follow-
Ing instructions. After each line, press the RETURN key, and
the result of the calculation will be printed immediately. We are
using the direct, or immediate, mode.

PRINT 243

PRINT 2%3

FRINT 12-7

PRINT 2874

PRINT 27

PRINT S% (6+3)
PRINT (37+48)/(7-2)
PRINT 3.14%35%5
FRINT 8+4/2

PRINT (8+4)/2

Did you predict correctly the results of the last two lines?
Obviously we must be careful to put the operators in the correct
order.

Order of Operations

19

The computer does operations in exactly the same order that we
do them in algebra:

1. Expressions in parentheses, beginning with the innermost
parentheses and working outward

2. Exponentiation
3. Multiplication and division, in order from left to right
4. Addition and subtraction, in order from left to right

Examples:

1) 3+5%2 A 3-4/2%3 becomes 3+5%8-4/2%3
then 3+ 40-2 *3
then 3+ 40- 6
then 43- 6
then 37

2) (8/(3+1)+10)/4 becomes (8/4+10)/4
then (2 +10)/4
then 12 /4
then 3

3) (3+5)*(9-6)+12/4+2 becomes 8%3+12/4+2
then 24+ 3 +2
then 27 +2
then 29

4) 2A374-1 becomes 8A4-1
then 4095.99999-1
then 4094.99999

(NOTE: We often get a slight rounding error in exponentiation.
The correct answer is 4095. We will discuss techniques for cor-
recting this error in CHAPTER 13.)

5) 91+87/2 becomes 91+43.5
then 134.5

6) (91+97)/2 becomes 178/2
then 89

If you have a printer attached to your computer, then you can
have the results of your programs printed on the printer by
making some very simple changes in the programs. Consider the

Order of
Operations

Printing on a Printer

20

Printing

Print Zones

program at the beginning of this chapter:

100 PRINT "ADD TWO NUMBERS"
110 PRINT

120 PRINT "The sum of 5.3 and 9.8 is”
130 PRINT 5.3+9.8

To have the results printed on the printer, simply replace
each PRINT in the program with LPRINT. (This is an abbrevia-
tion for LINE PRINT because printers are often referred to as
line printers.) Your program will now look like this:

100 LPRINT "ADD TWO NUMBERS"

110 LPRINT

120 LPRINT "The sum of 5.3 and 9.8 is”"
130 LPRINT S5.3+92.8

Run the program and watch the results be printed on your
paper. The sheet of printed results is known as a hard copy of
your results. If you would like a hard copy of your program
statements, simply type

LIST "P:"

and press RETURN. “P:” is simply an abbreviation for the print-
er. Don’t forget the colon! The ATARI will automatically supply
quotation marks at the right end of a statement if we leave them
off. For example, we could just as well type

LIST "P:

and we would get the list, or hard copy, of our program on the
printer.

The ATARI provides several ways to space text on the screen or
the printed page. One of the waysis zone spacing. To get an idea
of how it works, type in the following program and then run it.

100 PRINT "BASE","HEIGHT", "AREA"
1 1(, PRINT n PR——) | s | L 11} | L ——— | |
120 PRINT 5,4, (5%4) /2

130 PRINT 9.2,6, (9.2%&) /2

Your results should look like this:

Print Zones

21

BASE HEIGHT AREA
S 4 10
9.2 6 27.6

The ATARI screen is divided into 4 zones vertically. The
first three zones are 10 spaces wide, and the fourth zone is 8
spaces wide. Thus, the screen is normally 38 spaces wide.
(There is a margin of 2 spaces on the left edge.) Commas (,)
placed between the items in a print line tell the computer to use
zone spacing.

An alternative type of spacing is compact spacing. In this
case, we separate the items in a print line with semicolons (;)
instead of commas. Type in and run the following program:

100 PRINT "2 X 3 = ";2%3
110 PRINT "6 X 5.7 = ";6Xx5.7

Your results should look like this:

o

o
N

2 X
6 X 34.2

Recall that whatever is enclosed in quotation marks in a
print statement is printed exactly the way it appears in the
quotation marks.

At this point you may want to convert the programs above to
work on a printer, and you may also want to experiment with
your own programs. Eighty-column printers that are compatible
with the ATARI computers vary greatly in their capabilities, but
most will have these characteristics:

1. The printed characters are spaced ten per horizontal inch on
the paper, and there are six lines per vertical inch, just as on a
typewriter.

2. There are eight print zones of ten characters each across a line
of the paper.

3. Compact spacing works exactly as it does on the screen; that
is, no spaces are left between items in a PRINT statement that
are separated by semicolons.

4. If aline in a program contains more than 38 characters (but
fewer than 80), then it will of necessity overlap onto the next
line on the screen, but it will be printed completely on one line
of paper with the printer.

99

Printing

The command to list a program on a printeris

5. Special styles of printing (condensed, elongated, underlined,
italics, etc.) may be produced by adding appropriate com-
mands to LPRINT statements.

You will need to refer to the operating manual for your particular
printer and then experiment as much as possible.

EXERCISES

Write the printout (output) for each of the following one-line pro-
grams. Try to compute the result before you use the computer.

110
120
130
140
150
160
170
180
190

200

PRINT S5+7

PRINT (5+7)

PRINT (5+7)%3

PRINT S+(7%3)

PRINT (&6+(7%3)) %2

PRINT (6+(7%3)) X (2+35)

PRINT 274%{(3+7)/4-5

PRINT 2Z2™4%(3+7)/(4-30)

FPRINT (S5+1)~(7-4)%2/8-10

PRINT 2+2%2°2-2/2

Correct each of the following BASIC statements. If a statement has
no errors, write ‘“correct.”

1,050 PRINT "TESTING"

55.1 PRINT 2x3

30 PRINT "SuUM OF ANGLES

Exercises

23

727 PRINT "A = 3"
33020 PRIMT "RESULT = "j;1+1

Thereare_____ print zones on the display screen.

[()True ()False] 2raised tothe 5th power would be written
2POW5 in BASIC.

[()True ()False] Thecommand 120 PRINT 2 x I = &
will produce an error message.

Write the printout (output) for each of the following “one-line” pro-
grams. Try to anticipate the result before you use the computer.

110 PRINT "2 »x 3 = 6"

120 PRINT "2 x 3 = ";2%3

130 PRINT "1234567"; 6354321

Write the printout (output) for each of the following “one-line” pro-
grams. Try to anticipate the result before you use the computer.

110 PRINT "DAY","MONTH"

120 PRINT "DAY"; "MONTH"

130 PRINT 3%4;" + "3;24/6

Write the complete printout (output) of each of the following three
programs. See if you can anticipate the printout without using the
computer. Be sure to indicate the spacing into zones.

100 PRINT 1,2.3.4

110 PRINT 1;2:3:4

200 PRINT "BASE = ";5
210 PRINT "HEIGHT = ";7
220 PRINT

230 PRINT "AREA ="; (S5%7)/2

[»]

) PRINT "FOR TRICKS"

i
00 PRINT "WATCH OuUT™

(]

(=)

24

Printing

10.

11.

12.

13.

14.

15.

As you type in a program, you are using the computer in the

mode.

[()True ()False] One possible way to correct a line that pro-
duced an error message is to retype the entire line.

Thesymbols+,*,-,/, and A arereferred to as

The largest line number that we may use in ATARI BASIC is

The smallest line number that we may use in ATARI BASIC

is

Write a program that will produce the following printout. Be sure to
have the computer do the calculations!

RUN

NAME AGE
GEORGE 15
SANDRA 19
BILLY 8

AVERAGE 14

Graphics and Sound

Two of the most attractive features of the ATARI computer are
color graphics and sound. In this chapter we are going to learn
how to use these features. By graphics we mean pictures or de-
signs appearing on the screen. All the instructions for using
color will be valid if you have a black and white TV set (or moni-
tor) attached to your computer, but your graphics displays will
be less attractive!

All graphics displays are produced by lighting up (in varying
colors)dots, or pixels,on the screen. We have a choice of different
sizes of dots to use, and these choices are referred to as graphics
modes. Tolight up a dot on the screen, we must tell the computer
the location of the dot. Type in and then run the following pro-
gram and you will probably get an idea of the system that is
used. We will explain the program in the following paragraphs.
Line 100 is just for identification; it doesn’t affect the program.

100 REM — Chapter 3, No. 1
110 GRAPHICS 3

120 COLOR 1

130 PLOT 0,0

140 DRAWTO 39,0

150 DRAWTO 39,19

Introduction

Graphics Modes

25

26

Graphics and Sound

160 DRAWTO 0,19
170 DRAWTO 0,0
180 COLOR 2

190 PLOT 1,1

200 DRAWTO 38,18
210 COLOR 3

220 PLOT 1,18
230 DRAWTO 38,1

Your run of the program should have produced an orange
rectangle with a blue and green X in it. If it didn’t, press the
SYSTEM RESET key, then list the program and make cor-
rections.

Now let’s look at some of the instructions in the program.
Consider the second line:

110 GRAPHICS 3

Change this line to

110 GRAPHICS 5

and then run the program again. What happens? The picture
(graphics display) gets smaller. Or, to think of it in another way,
we could get more dots on the screen. Let’s make another change:

110 GRAPHICS 7

When we run the program this time, the picture gets smaller
still. We have many more dots available, though, so that we
could create a picture with much more detail.

We have just considered graphics modes 3, 5, and 7. Table
3-1 summarizes the number of dots available in each mode:

TABLE 3-1 Screen Formats - GRAPHICS 3, 5, 7

Graphics Mode Columns Rows
Number (Left to Right) (Top to Bottom)
3 40 20
5 80 40

7 160 80

Graphics Modes

27

The numbers of the rows and columns always start at zero
(0), so that in graphics mode 3, for example, the columns are
numbered from 0 to 39 and the rows are numbered from 0 to 19.

The location of a dot on the screen is always given by two
numbers. The first number refers to the column (left to right),
and the second number refers to the row (top to bottom). We
always start numbering from the upper left corner of the screen.

There are just two commands to light up points on the screen
on the ATARI. Look at line 130 of our program:

130 PLOT 0,0

This command lights up the pixel (dot) at the upper left
corner of the screen. If we had wanted a pixel 10 columns from
the left and 5 rows down lighted up, the command would have
been

130 PLOT 10,5

Now look at line 140 of our program:

140 DRAWTO 39,0

This command lights up all of the pixels on the straight line
between the pixel 0,0 and the pixel 39,0. (Masochists could
get the same effect by writing 40 separate PLOT statements!)
Line 150 lights up all the pixels on the straight line between the
pixel 39,0 and the pixel 39,19. Similarly, lines 160 and 170 draw
lines across the bottom of the screen and up the left side.

Now add the following line to your program:

175 STOP

This will do just what you think: The computer will stop execut-
ing the instructions at this point. Run the program. You should
get just the orange rectangle. Do you see how the PLOT and
DRAWTO statements work? If you would like to experiment a
bit, try putting different numbers after the PLOT and DRAWTO
statementsin lines 130 to 170. See if your experiment works. You
might get the following error message:

ERROR- 141 AT LINE 160

28

Graphics and Sound

Color

This will mean that you asked the computer to plot a pixel
that was “off the screen”; that is, either the first or second num-
ber for the pixel was too big. Remember, the largest number for a
column or row is one less than the number given in Table 3-1.
(This is because the numbering starts at 0.)

Ifyou are satisfied with your experiment(s), do the following:
Remove line 175 from the program by typing

1735

and then pressing the RETURN key. Line 175 will be gone from
the program. You can check by LISTing the program. Now run
the program again. Do you see what lines 190, 200, 220, and 230
do? You might want to experiment with the numbers in these
statements at this point. Next we’ll talk about color.

You noticed when you ran your program that four colors ap-
peared on the screen: the background was black, the rectangle

was orange, one diagonal was green, and the other diagonal was
blue.

Look at line 120 of the program:

120 COLOR 1

This command causes lines 130 to 170 to be executed using the
color orange. Similarly, line 180

180 COLOR 2

causes the top-left to bottom-right diagonal of the X to be drawn
in light green.

Thus, to light up a pixel, we need to specify two things:

1. Where the pixel is on the screen
2. What color we want the pixel to be

We can see from our program that the colors produced by the
COLOR statements are as follows:

TABLE 3-2 Default Colors - Graphics 3, 5, 7
COLOR 0: BLACK (screen background)

COLOR 1: ORANGE
COLOR 2: LIGHT GREEN
COLOR 3: BLUE

Setcolor

29

These colors are known as the default colors because they are
the colors we will get unless we give the computer additional
instructions.

But wait! COLOR 0? We don’t even have such a statement
in our program! How could we see black pixels on a black back-
ground? Add the following lines to your program to see the sense
of using a COLOR 0 statement:

240 COLOR 0O
250 PLOT 1,1
260 DRAWTO 38,18

What happened? Did you see the top-left to bottom-right
diagonal appear and then very quickly disappear? Notice that
lines 250 and 260 that we added are exactly the same as lines
190 and 200. We simply redrew the line, but in the same color as
the background! This, of course, makes the line disappear. (This
is a fundamental technique of computer animation.)

Now let’s experiment just a bit. If we change line 120 to

120 COLOR 2

then the rectangle will be light green instead of orange. Simi-
larly, we can change the colors of the diagonal also. Make some
experiments now on your own by changing the COLOR state-
ments in the program.

Were you able to produce the colors you wanted in your experi-
ments? Keep in mind that a COLOR statement determines the
color that will be used until the next COLOR statement occurs in
the program.

Now, you may well be thinking, “But black, orange, green,
and blue aren’t really my favorite colors!” Not to worry. The
ATARI provides several different colors in different intensities.
We will refer to a color as a hue and to an intensity as a lumi-
nance. We can use a maximum of four hues on the screen at a
time. Each of these hues is controlled by a color register that has
one of the numbers 0, 1, 2, or 4. Think of each color register as a
“paint pot” that can contain different colors of paint. To put a
particular color paint in a paint pot, we use the SETCOLOR
command, such as

110 SETCOLOR 1,114,190

Setcolor

30

Graphics and Sound

The 1 refers to the color register (0, 1, 2, 4); the 14 refers to
the hue (a number between 0 and 15); and the 10 refers to the
luminance (an even number between 0 and 14). In this particular
case, the command fills paint pot #1 with yellow paint. Table
3-3 shows which hue and luminance numbers to use for some
standard colors. You will want to refer to this chart frequently
as you program color graphics.

TABLE 3-3 Standard Colors - Hue and
Luminance Numbers

Color Hue Number Luminance Number
Black 0 0
White 0 14
Gray 0 6
Brown 14 0
Red 4 4
Orange 2 6
Yellow 14 10
Green 12 4
Blue 7 2
Violet 5 2
Pink 4 10
Flesh 3 12
Gold 1 6
Rust 2 0
Turquoise 10 8
Forest Green 11 2
Olive Drab 13 2
Normal Screen Blue 9 4

Now let’s type in a program to see just how the SETCOLOR
command works. If you still have a program in the computer,
be sure to type NEW before you enter this program:

100 REM - Chapter 3, No. 2
110 GRAPHICS 3

120 SETCOLOR 4,0,0
130 SETCOLOR 0,4, 4
140 SETCOLOR 1,0, 14
150 SETCOLOR 2,7,2

160 COLOR 1

170 PLOT 5.5
180 DRAWTO 34,5
190 COLOR 2

200 PLOT 5,6
210 DRAWTO 34,6
220 COLOR 3

230 PLOT 5,7
240 DRAWTO 34,7

Setcolor

31

If everything worked correctly, your display was a flag of
horizontal red, white, and blue stripes on a black background.
The SETCOLOR statements are responsible for the colors black,
red, white, and blue. Remember the paint pots? The SETCOLOR
statements in lines 120 to 150 fill the four paint pots (color regis-
ters) with black (0,0), red (4,4), white (0,14), and blue (7,2)
according to Table 3-3. Remember that the first number in the
SETCOLOR statement is the number of the color register (4, 0,
1, 2); the second number is the hue; and the third number is the
luminance. The luminance numbers are small (0, 2, 4) for dark
luminances, and large (10, 12, 14) for bright luminances.

So far so good? Our four paint pots are filled with black,
red, white, and blue paint—now, how do we use each paint pot?
We already know about the COLOR statement. Clearly each
COLOR statement must refer to one of the SETCOLOR state-
ments. Unfortunately, the COLOR numbers are not the same
as the color register numbers in the SETCOLOR statements.
Table 3-4 shows how the SETCOLOR and COLOR numbers
correspond for graphics modes 3, 5, and 7.

TABLE 3-4 SETCOLOR and COLOR Numbers -
Graphics 3, 5, 7

SETCOLOR Number COLOR Number Default Color

(Color Register) (no SETCOLOR)
0 1 orange
1 2 light green
2 3 blue
4 0 black

Now see if you can match up the SETCOLOR statements
with their corresponding COLOR statements. List your program
on the screen, and refer to Table 3-4.

Because SETCOLOR number 0 corresponds to COLOR
number 1, line 130 (SETCOLOR 0,4,4) must correspond to line
160 (COLOR 1). That is, line 130 fills color register 0 with red
(4,4) and line 160 tells the computer to PLOT and DRAWTO in
red at lines 170 and 180. Similarly, line 140 matches line 190, and
line 150 matches line 220.

But what about line 120? We have a SETCOLOR 4 state-
ment but no matching COLOR 0 statement. Here is an impor-
tant rule to remember.

RULE: Ingraphicsmodes3, 5, and7, SETCOLOR
4 always determines the color of the screen
background.

32

Graphics and Sound

The Text Window

Because our command at line 120 was SETCOLOR 4,0,0
(black), the background of our display was black. To illustrate

further, let’s change the background to gold (in color) by
changing line 120 to

120 SETCOLOR 4,1,6

Refer to Table 3-3 to confirm that 1,6 are the numbers for gold.
Did it work? Did you get a red, white, and blue flag on a gold
background? If not, LIST your program and see if you can cor-
rect it.

We would like to note here that since black is the default
color for SETCOLOR 4, if we leave line 120 out of our program,
we will automatically get a black background.

Now let’s see how many different flags we can make by
changing the hue and luminance numbers in the SETCOLOR
commands in lines 130, 140, and 150. First, let’s change back to
a black background by changing line 120 to

120 SETCOLOR 4,0,0

Try the following changes for an orange, a yellow, and a green
flag:

130 SETCOLOR ©,2,6
140 SETCOLOR 1,14,10
150 SETCOLOR 2,12.4

If you are bored with flags with horizontal stripes, you can
change the numbers in the PLOT and DRAWTO statements to
make vertical, or even diagonal, stripes. This is a good time for
you to experiment using the different SETCOLOR numbers
from Table 3-4. If you’re ambitious, perhaps you can produce an
original color masterpiece!

You may have noticed in the preceding graphics program that
the display always contained a rectangle at the bottom of the
screen in which the word READY and the cursor appeared. This
rectangle is known as the text window and provides us with a
way to combine text (written information) with graphics dis-
plays. Type in and run the following program to see how the
text window can be used.

The Text Window

33

100 REM — Chapter 3, No. 3

110 GRAPHICS 3

120 SETCOLOR 4,12,4

130 SETCOLOR 2,4,4

140 PRINT "LINE 1"

150 PRINT "LINE 2 — RED TEXT WINDOW"
160 PRINT "LINE 3 — GREEN BACKGROUND"
170 PRINT "LINE 4";

180 GOTO 180

Yourdisplay should be a green screen with a red text window
in which is written:

LINE 1

LINE 2 — RED TEXT WINDOW
LINE 3 - GREEN BACKGROUND
LINE 48

We can see from the program and the display that

1. The text window contains 4 lines
2. SETCOLOR 2 determines the background color of the text
window

Because 4,4 are the hue and luminance colors for red, line
130 (SETCOLOR 2,4,4) produced the red text window. We know
that SETCOLOR 4 determines the color of the screen background
in GRAPHICS 3, so line 120 (SETCOLOR 4,12,4) gives us a
green background.

Note particularly lines 170 and 180 of the program:

170 PRINT "LINE 4";
180 GOTO 18O

The semicolon (;) at the end of line 170 ensures that the cur-
sor stays on the fourth line of the text window. Otherwise, the
cursor would move to the beginning of the next line and push
line 1 off the top of the window. (You can test this by removing
the semicolon.) Line 180 prevents the word READY from being
printed at the bottom of the window. This would also force line 1
(and line 2) off the top of the window. Think of the line “180
GOTO 180” as a way of keeping the computer from doing
anything else—it is chasing its tail.

If you feel (as we do) that it is somewhat distracting to have
a cursor left on the screen, you can get rid of it by adding the

34

Graphics and Sound

Text Modes

following line to your program:
135 POKE 752,1

For the time being, just remember that this command gets rid of
the cursor.

Now practice changing the colors of the background and
text window. Put your own message in the PRINT statements
in lines 140 to 170.

Perhaps youdon’t need a text window in a particular graph-
ics display. We can change from a split screen (graphics window
plus text window) to a full screen (graphics window only) by
simply adding 16 to the graphics number. For example, instead
of GRAPHICS 3, we could use GRAPHICS 19 or GRAPHICS
3+16. Try the following program as an illustration (don’t forget
NEW). Note that we are using the default colors, but you could
add some SETCOLOR statements if you like.

100 REM - Chapter 3, No. 4
110 GRAPHICS 3+16
120 COLOR 1

130 PLOT 0,0

140 DRAWTO 39,0
150 DRAWTO 39,23
160 COLOR 2

170 PLOT 38,23
180 DRAWTO 0,23
190 DRAWTO O, 1
200 GOTO 200

Your result should be an orange and light green border
around the screen. Note that because we got rid of the text win-
dow, we now have additional rows of pixels at the bottom of the
screen. The number of rows depends on the graphics mode: four
more rows in GRAPHICS 3, eight more rows in GRAPHICS 5,
and sixteen more rows in GRAPHICS 7. Table 3-5 on the next
page is an update of Table 3-1.

We have just looked at the three graphics modes—3, 5, and 7.
The ATARI also has three text modes. One of these, GRAPHICS
0, is the mode that we are automatically in when we turn on the
computer. We notice that we normally have a blue screen with a
black border and white (very pale blue, actually) letters. All of

Text Modes

35

TABLE 3-5 Screen Formats - Graphics, 3, 5, 7

(full and split)
Graphics Mode Columns Rows
Number (Left to Right) (Top to Bottom)
Full Split
Screen Screen
3 40 24 20
5 80 48 40
7 160 96 80

these conditions can be changed with SETCOLOR statements.
We will not need to use COLOR statements with the text modes.
Try this program:

100 REM — Chapter I, No. 5
110 GRAFHICS O

120 SETCOLOR 2,4,4

130 SETCOLOR 4,12,4

140 PRINT "GRAFHICS O

150 PRINT

160 PRINT "RED BACKGROUND"
170 PRINT

180 PRINT "GREEN BORDER™
1920 PRINT

200 PRINT "LIGHT PINK LETTERS"

We hope that you got a red background with a green border
and light pink letters, just as the program says! Here are some
facts to remember about graphics mode 0:

1. A GRAPHICS 0 command at the beginning of the pro-
gram will clear the screen.

2. SETCOLOR 2 controls the color of the background. (4,4 is
red in the preceding program.)

3. SETCOLOR 4 controls the color of the border. (12,4 is
green in the preceding program.)

4. SETCOLOR 1 controls the luminance of the characters.
They are the same color as the background but brighter or
darker, depending on which luminance value you use in the
SETCOLOR 1 statement. You may leave the SETCOLOR
1 statement out, and usually the default value for the
character luminance will be satisfactory. (It might happen

Graphics and Sound

that you get something like yellow letters on a yellow back-
ground, which will be invisible! If so, add a SETCOLOR
1 statement and experiment with the luminance value.)

5. There are 24 rows of 40 characters each on the GRAPHICSO0
screen. The left margin is automatically set for the third
column (column 2—we start with 0), and the right margin is
set for the fortieth column (column 39), so that there are 38
characters on a line.

6. If you run a GRAPHICS 0 program that contains SET
COLOR 2 and/or SETCOLOR 4 statements to change the
colors of the background and/or the border, then those
colors will stay on the screen until you press the SYSTEM
RESET key. For example, if you LIST your program, it will
be listed in the new colors. (Some programmers like to cus-
tomize their ATARI screens by making them green or
orange, or whatever color they find pleasing to work with.)

To see how GRAPHICS 1 and GRAPHICS 2 work, run the
following program:

100 REM - Chapter 3, No. &
110 GRAPHICS 1

120 SETCOLOR 4,14,0

130 SETCOLOR 0,4,10

140 SETCOLOR 1,14,10

150 SETCOLOR 2,9,4

160 POSITION 2,2

170 PRINT #6: "GRAPHICS 1"

180 POSITION 2,4

190 PRINT #6;"brown background”
200 POSITION 2,6

210 PRINT #6;"FINK LETTERS"
220 POSITION 2,8

230 PRINT #6;"vellow letters”
240 PRINT "BLUE TEXT WINDOW"

See what happens if you change line 110 to

110 GRAPHICS 2

Three things are immediately obvious about GRAPHICS 1
and GRAPHICS 2:

1. There is no border on the screen.
2. There is a text window.
3. We use a POSITION statement to place text on the screen.

Text Modes

37

The POSITION statement is very similar to the PLOT
statement; it gives a pair of numbers that tell how many columns
to the right and how many rows from the top to start printing
the information in the next PRINT statement. For example, in
the preceding program, GRAPHICS 1 is printed starting at the
third column, third row (POSITION 2,2).

GRAPHICS 1 has 20 rows of 20 characters each, plus 4 rows
of text window. Thus, GRAPHICS 1 characters are the same
height but twice as wide as GRAPHICS 0 characters.

GRAPHICS 2 has 10 rows of 20 characters each, plus 4 rows
of text window. Thus, GRAPHICS 2 characters are the same
width, but twice as high as GRAPHICS 1 characters.

Note line 170 of the preceding program:

170 PRINT #6; "GRAPHICS 1"

In this line, #6 is a code for the graphics window—we want to
print GRAPHICS 1 in the graphics window, not the text window.
Atline 240, we do not use the code #6, so BLUE TEXT WINDOW
gets printed in the text window. Remember, to printin the graph-
ics window in graphics modes 1 and 2, you must use the code
#6 after the PRINT command, followed by a semicolon (;).

We may also get rid of the text window in GRAPHICS 1 and
2 by adding 16 to the graphics mode number, just as we did in
GRAPHICS 3, 5, and 7. If you don’t use a text window, be sure
to use the code #6 after all PRINT commands; otherwise, the
display will revert to GRAPHICS 0.

If you run the preceding program again (in either GRAPH-
ICS 1 or GRAPHICS 2), you will notice that text that was in
uppercase letters in a PRINT statement appeared in pink on
the screen, and text that was in lowercase letters in a PRINT
statement appeared in yellow on the screen. Note that pink and
yellow are the colors determined by the SETCOLOR statements
in lines 130 and 140, respectively. Thus,in GRAPHICS 1 and 2,
the color of the characters is determined by the type of character
(uppercase, lowercase, inverse, etc.) used in the PRINT state-
ment. Table 3-6 on page 38 shows the combinations.

Test this information in a program of your own. Don’t feel
lost if you find it a bit confusing at this time, just keep working
at it.

Now you know (almost) everything about using color graph-
ics on the ATARI. Don’t be embarrassed if you find you must
keep referring to the charts and examples—learning to program
takes some practice!

38

Graphics and Sound

TABLE 3-6 Character Types/Setcolor Numbers—
Graphics 1 & 2

SETCOLOR Default Character Type Feature Controlled

Number Color in “PRINT” by SETCOLOR
0 orange uppercase and character
numbers
1 light lowercase character
green
2 blue inverse upper- character, text
case and window color

inverse numbers

3 red inverse lower- character
case

4 black — background color

Sound

The SOUND command for the ATARI is somewhat similar to
the SETCOLOR command. Just as we have four color registers
(paint pots), we have four voices, numbered 0, 1, 2, and 3. That
means that we can have four separate sound channels playing
simultaneously. Corresponding to hue for SETCOLOR is pitch
(tone) for SOUND, and corresponding to luminance is volume
control. SOUND has an additional characteristic (parameter);
namely, distortion. This is the quality that produces special
sound effects for games, etc. We can test the SOUND statement
by typing in the following command—without a line number—
and pressing the RETURN key. Press the SYSTEM RESET
key to turn the sound off.

SOUND ©,121,10,8

You should have heard a tone that was approximately
middle C. Let’s consider the separate numbers in this SOUND

statement:
0 Refers to the voice (0,1,2,3)

121 Refers to the pitch (a number between 0 and 255, where
0 is the highest tone, and 255 is the lowest tone)

10 Refers to the distortion (an even number between 0 and
14. 10 is a pure, or musical, tone.)

Sound

39

8 Refers to volume control (a number between 1 and 15,
where 1 is barely audible and 15 is loud.)

Try two voices together:

SOUND 0,121,10,8
SOUND 1,60,10,8

Youshould have heard middle C and C above middle C. Now
try some distortion:

SOUND ©,121,8,8
SOUND 1,60,2,8

You describe what you heard!

Here is a program to play some familiar notes. It contains
some new commands, which we will discuss later. You can prob-
ably guess how they work. Play close attention to the punctua-
tion and notice that line 120 is the same as line 110 (we want to
play note 121 twice), line 140 is the same as line 130, etc. To dupli-
cate a line without retyping the entire line, simply move the
cursor to the line number and type the new line number. Press
the RETURN key, and the line will be duplicated. Type LIST
and press RETURN to verify the duplication.

100 REM — Chapter 3, No. 7

110 SOUND 0,121,10,10:6G058UEB 300
120 SOUND 0,121,10,10:605UR 300
130 SOUND 0,96,10,10:605UB 300

140 SOUND 0,96,10,10:605UB 300

150 SOUND ©0,81,10,10:6G05UB 300

160 SOUND 0,81,10,10:6GO5UR 300

170 SOUND 0,96,10,10:6G05UB 300

180 STOP

300 FOR HOLD=1 TO 100:NEXT HOLD
310 FOR OFF=1 TO 10

320 SOUND 0,0,0,0

330 NEXT OFF

340 RETURN

We’ll learn some easier ways to program music later. Let’s
look at some features of the program. Line 300 determines the
duration of each note played. Think of the computer as counting
to 100 while it plays a note. In this program, each note has the
same duration. Lines 310 to 330 turn the note off while the com-
puter counts to 10. Without this interval, the notes slur together,
a technique we often need to use in programming music or sound
effects. Line 340 tells the computer to go back and play the next
note. You may wish to see what happensif you change the length

40

Graphics and Sound

The
REMARK Statement

of the duration and interval in lines 300 and 310.

Try this sound effects program that simulates a tug boat
(Thanks to Tom Rowley!):

100 REM - Chapter 3, No. 8
110 SOUND 0,250,12,10

120 SOUND 1,243,10,10

130 SOUND 2,29,10,8

140 FOR OFF=1 TO 8

150 SOUND 0,0,0,0

160 SOUND 1,0,0,0

170 SOUND 2,0,0,0

180 NEXT OFF

190 GOTO 100

This tug keeps chugging until you press the BREAK key or
the SYSTEM RESET key.

As our programs get longer and more complex, you can see that
it becomes more and more difficult to remember what part of the
program does what. Fortunately, we can put comments directly
into a program by using the REMARK statement. We have
already been using REMARK (abbreviated, REM) statements to
identify each of the programs in this chapter by number. A REM
statement does not affect the running of a program,; it is just for
our information. It is part of the documentation of the program;
that is, the set of explanatory information that accompanies a

program. Try this simple example of a program with REMARK
statements.

100 REM %%x¥ Chapter 3, No. 2 XXX
110 GRAFPHICS 2+16
120 REM XXX brown background Xkx

130 SETCOLOR 4,14,2

140 REM ¥%Xx yellow = upper case XXX
150 SETCOLOR 0,14,10

160 REM XxXxx pink = lower case XXX
170 SETCOLOR 1,4,10

180 POSITION 6,3

190 PRINT #6&3; "PROGRAM”

200 POSITION 7,5

210 PRINT #6&6;"TITLE"

220 POSITION 4.8

230 PRINT #6;"by john doe®

240 REM XXX hold text on screen X%xx
250 GOTO 250

The REMARK Statement

41

We close this chapter with a long program that combines
graphics and sound to provide an animated figure. There are
many REMARK statements to tell you what’s happening. Note
that in several places we have put two related commands on
one line, separated by a colon (:).

100 REM %% Chapter 3. No. 10 Xxx
101 REM *xXx Singing Practice kXX
110 GRAPHICS 3+16

120 REM XXX set up colors XXX

130 SETCOLOR 4,14,2:REM color O=brown X
140 SETCOLOR 0,0,14:REM color 1=white X
150 SETCOLOR 1,4,4:REM .color 2=red X
160 SETCOLOR 2,0,0:REM .color 3=black x
170 REM XXX draw eyeballs : XX
180 COLOR 1:PLOT 14,.7:DRAWTO 16,7

120 PLOT 23.7:DRAWTO 25,7:PLOT 14,8

200 PLOT 15,8:PLOT 23,8:PLOT 24,8

230 REM %Xxx draw pupils ¥k
240 COLOR 3I:PLOT 16,.8:PLOT 25.8
250 REM xX%xX draw closed mouth XXX

260 COLOR 2:PLOT 17,13:DRAWTO 22,13
270 PLOT 17,14:DRAWTO 22,14

280 REM x%xX%x wait a moment XXX
290 FOR WAIT=1 TO SO00:NEXT WAIT
300 REM XXX pick a note LS §

310 SOUND ©,60,10,10:605UB 400

320 SOUND ©0,47,10,10:G05UB 400

330 SOUND ©,40,10,10:605UB 400

Z40 SOUND 0,29,10,10:6G05UB 400

350 SOUND ©0,40,10,10:605UB 400

360 SOUND ©0,47,10,10: GOSUR 400

370 SOUND ©0,60,10,10:G0OSUB 400

380 GOTO 290:REM ¥Xx% do it again Xxx
390 REM ¥xXx erase closed mouth XXX
400 COLOR 0:PLOT 17,13:DRAWNTO 22,13

410 PLOT 17,14:DRAWTO 22,14

420 REM XXX draw open mouth XkX
430 COLOR 2:PLOT 18,12:DRAWTO 21,12
440 DRAWTO 21,15:DRAWTO 18,15

450 DRAWTO 18,12

460 REM ¥%XXx move pupils E S § ¢
470 COLOR 1:PLOT 146,.8:PLOT 25,8

480 COLOR 3:PLOT 16,7:PLOT 25,7

490 REM x%X¥ hold note XXX
500 FOR HOLD=1 TO 100:NEXT HOLD
510 REM XXX erase open mouth Xxx

520 COLOR 0:PLOT 18,12:DRAWTO 21,12
530 DRAWTO 21,15:DRAWTO 18,15

Graphics and Sound

340 DRAWTO 18,12

330 REM XXX move pupils XXX
360 COLOR 1:PLOT 16,7:PLOT 25,7

570 COLOR 3:PLOT 16,8:PLOT 25,8

280 REM XxX¥X draw closed mouth Xkx
390 COLOR 2:PLOT 17,13:DRAWTO 22,13
600 PLOT 17,14:DRAWTO 22,14

610 REM XXX turn off note Xkx
620 FOR OFF=1 TO 20

630 SOUND 0,0,0,0

640 NEXT OFF

650 RETURN

Whew! If nothing else, you got some good typing practice.
Note that the technique for erasing pixels is to redraw them in
the background color. Then if you draw them somewhere else
in the original color, you get the effect of animation. You might

want to modify this program to produce your own animated
picture as a project.

Exercises

10.

EXERCISES

The number of the error message that means “Cursor out of range”

18

[()True ()False] The COLOR statement determines which
color will be stored in a color register.

Of graphics modes 3, 5, and 7, graphics mode _______ has the
most pixels.

In graphics modes 3, 5, and 7, the upper left corner of the screen

is numbered

y — e

In graphics mode 7, the lower right corner of the GRAPHICS

WINDOW is numbered ,

[()True ()False] Thetextwindowin GRAPHICS 7 hasmore
lines than the text window in GRAPHICS 3.

GRAPHICS 5 (with a text window) has a total of _________ pixels
in the graphics window.

The BASIC command to light up a single pixel on the screen is

The default color for COLOR 1 is

The command to produce a pink background in GRAPHICS 3 would
be

44

Graphics and Sound

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

[()True ()False] The command PLOT 10,5:DRAWTO 10,5
will produce an error message.

In graphics modes 3, 5, and 7, how many colors can be placed on the

screen at one time?

In graphics modes 3, 5, and 7, the color of the background is deter-
mined by SETCOLOR ____.

In graphics mode 7 (with a text window) thereare_____ times
as many pixels as in graphics mode 5 (with a text window).

[() True () False] The commandiSETCOLOR 0,14,10 will
produce a yellow background in GRAPHICS 3.

Which of the following statements is true?

() If a DRAWTO statement in GRAPHICS 3 doesn’t produce

an error 141 message, then it won’t produce one in GRAPHICS 5,
either.

() IfaDRAWTO statementin GRAPHICS 5 doesn’t produce an

error 141 message, then it won’t produce one in GRAPHICS 3,
either.

To eliminate the text window in graphics modes 3,5,and 7, we add
to the number of the graphics mode in the GRAPHICS

statement.

[() True () False] The statement SOUND 0,62,20,10 will
produce an error message.

To print HELP! on the GRAPHICS 1 screen at position 5,5, the
PRINT command would be

[() True () False] The SOUND statement will work only
with GRAPHICS 0.

Exercises

45

21.

22,

23.

24.

25.

26.

27.

28.

29.

A screen that includes a graphics window and a text window is

called a screen.

[() True () False] The command SOUND 0,121,6,8 will
produce note middle C.
Which of the following statements is true?

() The command SOUND 3,60,10, 10 produces a louder sound
than the command SOUND ©,60,10,10.

() The command SOUND 2,30,10,8 produces a higher pitched
sound than the command SOUND 0,50, 10,8.

Thereare____ sound registers (channels).

Write the statement that will turn off the sound generated by the

command SOUND 2,87,10.6

[()True ()False] To duplicate a line in a program, we can
type over the line number and press the RETURN key.

To add a comment to a program, we can use a
statement.

Write a GRAPHICS 3 program that will draw an orange square
15 pixels long on each side anywhere on the screen.

Write a GRAPHICS 2 program that will print in red letters on a
yellow background this message:

RED
ON

YELLOW

Assignment (LET) Statements

Much of the power of a computer lies in its ability to perform the
same computation over and over but on different sets of num-
bers. To do this, the computer uses variables. In this chapter
we will look at the rules for using numerical and alphabetical
(string) variables. At the end of the chapter, we will discuss
saving your programs on tape and disk.

The computer has the capacity to storeinformation and retrieve
it at a later time. This storage capacity is referred to as memory.
The unit of measure for computer memory is the byte, which is
the amount of memory needed to store one alphabetic or numeric
character. Your ATARI may have between 5000 and 48,000 bytes
of memory. One thousand bytes of memory is known as a kilo
byte, or simply a K. Thus, 32K memory means 32,000 bytes, or
characters, of memory. (Actually, 32K means 32,768 bytes—2
raised to the 15th power.)

The computer memory, of course, is a combination of elec-
tronic parts, but it is useful for us to think of the memory as a
set of boxes in which we can store numbers and letters. (We
sometimes refer to memory as storage.) In order to know which
box a particular number or set of letters is stored in, we must
attach alabel to the box, just as a person attaches hisname to his
mailbox. These labels are known as variables.

Introduction

Memory

47

48

Assignment (LET) Statements

Numeric Variables

A numeric variable is a label for a memory location (one of the
“boxes” in the computer memory) that can hold a number, In
ATARI BASIC, a numeric variable name can be any combina-

tion of uppercase letters and numbers that satisfies these two
simple rules:

1. The first character must be a letter
2. The length does not exceed 120 characters

Here

are some possible numeric variable names:

JOJO R2D2 NEWX OLDX BIGBOY
LENGTH AREA A5 267 JAN25
HUE LUM PITCH DISTORT VOLUME

HEIGHT LASTTESTGRADE AGE7

Here is a program using variables that does the same thing
as the first program in Chapter 2:

100
110
120
130
140
150

REM — Chapter 4, No. 1

PRINT "ADD TWO NUMEERS"
PRINT

LET A=5.3

LET B=9.8

PRINT A;" + ";B3;" = ";A+B

Did your run look like this?

RUN
ADD

TWO NUMBERS

+ 9.8 = 15.1

READY

Let us now consider the program in detail. We identified the
variables at lines 130 and 140. Look at line 130:

130 LET A=5.3

The sense of this statement is: LET the box labeled A contain the

number 5.

3. Similarly, line 140 means: LET the box labeled B

contain the number 9.8. Each of these two statements did two

things:

Numeric Variables

49

1. It named a variable (A, B)
2. It gave each variable a value (5.3, 9.8)

Now look at line 150:

150 PRINT A;" + ";HB;" = "3;A+B

The computer prints the contents of the box with label “A”;
thatis, variable A. Then it prints “ + ”. Remember that anything
that is enclosed in quotation marks is printed exactly as it ap-
pears inside the quotes. Recall also that the semicolon (;) pro-
duces compact spacing: no space is printed between items sepa-
rated by a semicolon. This is why we needed a space on either
side of the “ + ” in line 150. After the ““ + ”, the contents of vari-
able B are printed; then “ = ”’; then the sum of the contents of
variables A and B (5.3+9.8, OR 15.1).

To see the real power of the LET statement, add the follow-
ing lines to your program. The display will keep on going to
infinity (if you have that much time), so to stop it, hold down
the CTRL key, and press the 1 key. To startit again, do the same
thing. An alternative method is to press the BREAK key.

101 REM - Addition to Chapter 4, No. 1
160 LET A=A+1
170 LET B=B+2
180 GOTO 150

If you stopped the display quickly, you could see that vari-
able A was increased by 1, and variable B was increased by 2
each time and then the new values and the sum were printed.
The sense of line 160 is: Increase the value of variable A by 1,
and then store the result back in variable A. Read the equals sign
in LET statements as be replaced by, or is replaced by, and they
will make more sense. (Algebra students know that no real
number satisfies the equation A = A + 1.)

If we use a variable in a LET statement and we have not
previously given a value to the variable, the value will automati-
cally be set to zero (0). Here is an example:

100 REM - Chapter 4, No. 2
110 LET B=3

120 PRINT "A = ";A
130 PRINT "B = "3ER
140 PRINT "A + B = ";A+E

50

Assignment (LET) Statements

Here is an example of a program with LET statements. On
the right we show what is in each memory location as the pro-

gram is run.

100 REM
110 LET
120 LET
130 LET
140 LET
150 LET

160 PRINT M,N,Q,R

The display should look like this:

RUN

READY
B

MEMORY

M N Q R
— Chapter 4, No. 3
N=23 »23
e=MxN 161
R=M+N-5 ——2h
R=R/S L))

23 161 =]

The word LET may be omitted in LET statements, as the
following program shows. See if you can correctly guess the
display before you run the program.

100 REM — Chapter 4, No. 4

110 A=6
120 B=8

130 A=(A+R) /7

140 B=A+B/2

150 PRINT "A = "3
160 PRINT "B = ":B

Did you guess that the display is like this?

RUN
A
B

o
N

READY
»

N

Numeric Variables

51

Try this program to draw a line slowly in GRAPHICS 5:

100 REM — Chapter 4, No. S
110 GRAPHICS S5+16

120 COLOR 1

130 COL=16

140 ROW=0

150 PLOT COL,ROW

160 SOUND 0,4%COL, 10,10
170 FOR WAIT=1 TO 100:NEXT WAIT
180 COL=COL+1

190 ROW=ROW+1

200 IF ROW<48 THEN 150

210 SOUND 0,0,0,0

220 GOTO 220

Line 200 provides a way of continuing until the line reaches the
bottom of the screen. We will discuss IF.. THEN statements in
detail in Chapter 7.

Notice that the three variable names we used in this pro-
gram (COL, ROW, and WAIT) actually suggest the items they
represent. COL tells the COLumn of the pixel to be lighted, and
ROW tells the row. WAIT indicates the pause between lighting
two successive points on the line. As you write your own pro-
grams, try to choose meaningful variable names, so that others
can follow your code more easily.

Refer once more to line 160 of the program:

160 SOUND O, 4%COL, 10,10

Here the pitch numberis actually a variable expression (4*COL).
Itis always 4 times the current value of COL. Because the value
of COL increases from 16 to 63 (1 is added 47 times), the value of
4*COLincreases from 64 (4 times 16) to 252 (4 times 63). You will
recall that the range of possible numbers for the pitch in a
SOUND statementis from 0 to 255, so 4*COL gives a permissible
set of values. You might want to try some other possibilities
instead of 4*COL at line 160: COL, 2*COL, or even 6+*COL (you’ll
be surprised at the results of the last one!).

So far we have only discussed how to store numbers in
memory locations in the computer, but we also know that com-
puters must be able to store names and other alphabetic informa-
tion. To do this, we need another kind of variable.

592

Assignment (LET) Statements

String Variables

A string variable is a label for a memory location that can hold
alphabetic information (a string of letters). A string variable
name is like a numeric variable name except for one thing: The
last character of the name is a dollar sign ($). Here are some
possible string variable names. Compare them to the list in the
section “Numeric Variables.”

JOJO$ R2D2§ NEWX$ OLDX$ BIGBOY$
LENGTH$ AREAS$ AS5$ Z67$ JAN25$
HEIGHTS$ LASTTESTGRADES$

The strings (letters, numbers, or punctuation marks treated
as characters) that we want to use in a program will not always
have the same number of characters—a name may be 10 letters
long, but a street address may be 60 letters long. Therefore, we
must tell the computer the maximum number of characters that
weintend to putin a string variable. We do this at the beginning
of the program in a DIMENSION (abbreviated DIM) statement.

Here is a program that shows the use of the DIM statement
and string variables:

100 REM - Chapter 4, No. 6
110 DIM NAME$ (20) ,DATE${(9)
120 NAME$="JOHNNY JONES"
130 DATE$="25 SEP 82"

140 PRINT NAME$;

150 PRINT " did this on "j;
160 PRINT DATES

You should get this display:

RUN
JOHNNY JONES did this on 25 SEF 82

READY
.

Note the following in the preceding program:

1. Two string variables are dimensioned at line 110: NAME$
and DATES. Immediately following the string variable name
we place in parentheses the maximum number of characters
the variable will hold. (The variable may hold this number of
characters, or any lesser number of characters.)

String Variables

53

2. Atlines 120 and 130, the strings to be stored in NAME$ and
DATES are enclosed in quotation marks.

3. The semicolon (;) at the end of line 140 is an instruction to
print the next item (line 150) starting at the next column on
the same line, instead of the first column of the next line.
The semicolon at the end of line 150 serves the same purpose.

Put your own namein the quotes in line 120 and run the pro-
gram again. See what happens if you remove the semicolons at
the ends of lines 140 and 150. Experiment, experiment, experi-

ment!

We can print only part of a string—see if you can see how
the following program works:

100
110
120
130
140
150

REM - Chapter 4, No. 7

DIM A$(235)

As="THE COMPUTERS ARE FUN'"

PRINT A$(8,10);" ";A%(1,3);A%$(4,5);
PRINT A%$(15,13):;A%(1,1);;" ";

PRINT A$(6,6):A%$(92,10)3A%(22,22)

Were you surprised at the display? The numbers in the paren-
theses after the string variable name give the numbers of the
first character and the last character of the string. For example,

if

A$=“VARIABLE”, then A$(2,5)=“ARIA”,
and A$(5,8)=“ABLE”

Try one more program with numeric and string variables:

100
110
120
130
140
150
160
170
180

REM - Chapter 4, No. 8

DIM NAMES$ (10)

NAME$="LUDWIG"

HOURS=23

RATE=2.85

WABES=HOURSXRATE

PRINT "NAME", "HOURS", "RATE", "WAGES"
PRINT

PRINT

Now you need to find out how to save your programs on
cassette tapes and diskettes.

54

Assignment (LET) Statements

Saving Programs
on Cassette Tapes

Saving Programs
on Diskettes

In Chapter 1 you learned how to load programs from a cassette
tape into the computer. The steps necessary to save a program
from the computer onto a cassette tape are very similar. First, be
sure your ATARI Program Recorder is correctly attached to the
computer:

1. Plug the recorder data cord into the jack labeled PERIPHERAL
on the side or back panel of the ATARI console.

2. Plug the recorder power cord into an ordinary 110V wall
socket or transformer.

Now, be sure that your program on the computer is working
the way you want it to, and then follow these steps:

1. Insertyourblank cassette tape into the program recorder with
the recording surface toward you and the label right side up,
so that you can read it.

2. Push REWIND on the recorder and wait until the tape stops.

3. Push the tape counter reset button until it reads 000, then push
STOP EJECT once.

4. On the computer keyboard, type CSAVE and then press the
RETURN key. You will hear two beeps.

5. Push RECORD and PLAY simultaneously on the program
recorder. Now push the RETURN key on the computer key-
board again. You will hear a high-pitched whine for about
18 seconds, then a “drilling” sound. When your program has
been copied, the recorder will stop and the word READY will
appear on the screen.

6. Push STOP on the program recorder.

7. Itis always good programming technique to create a backup
copy of each program you wish to save. ATARI recommends
that you store one program on each cassette and keep a
backup on a separate cassette. To make the backup copy,
simply repeat steps 1-6 with a new cassette.

8. Finally, write the name and tape counter number of your new
program on each cassette label and also on a page that you
keep with your other programming documentation.

It would be a good idea now to practice saving some short
programs on tape until you can perform the entire operation
without referring to these notes.

You will remember from Chapter 1 that in order to load a pro-
gram from a diskette, you must have the ATARI Disk Drive
attached to your computer (with at least 16K RAM), and you

Saving Programs on Diskettes

55

must also load DOS (Disk Operating System). You must do the
same things to save a program on a diskette. Here is a review of
the steps to attach the disk drive to the computer:

1.

Plug one end of a data cord into the jack labeled PERIPHERAL
on the side or back panel of the ATARI console. Plug the other
end into either of the jacks labeled /O CONNECTORS on the
back of the disk drive unit. NOTE: If you also want to use the
recorder, you may plug its data cord into the other 1/0
CONNECTOR jack.

. Plug the small plug on the AC power adaptor into the jack

labeled POWER IN on the back of the disk drive unit and the
other end into an ordinary 110V wall socket or transformer.

To load DOS, do the following:

. Press the PWR. ON/OFF switch on the front of the disk drive.

The two red lights will glow, the drive will whir for about 7
seconds, and then the upper red light will go out. The lower
light will still glow.

Open the door in the front of the disk drive.

Insert a diskette that contains DOS with the label facing up
and the notch on the left. Be careful not to touch the re-
cording surface of the disk through the openings in the
black protective jacket. Close the door of the disk drive.

Turn the computer console power switch ON. The disk drive
will whir for a few seconds, then the word READY will
appear on the screen. You are now ready to type in a program
and then save it on a diskette. NOTE: If you need to format
a diskette, please refer to Appendix 3.

Remove the DOS diskette from the disk drive. It is a good
idea not to use the DOS diskette for anything but loading
DOS. You should write protect your DOS diskette (and a
backup copy) by covering the notches with the aluminum
stickers provided with the diskettes.

Now let’s assume that you have typed your program into

the computer, run it, corrected any errors, and are now ready to
store it on a diskette. Unlike the recorder, the disk drive gives
us the opportunity of giving names to our programs. Information
stored on a diskette is referred to as a file (program file or data
file), so we refer to filenames. Here are the rules for filenames:

1.

The maximum length is eight (8) characters.

2. The only characters that can be used are the letters A through

Z, and the numerals 0 through 9.

56

Assignment (LET) Statements

3. The first character is always an alphabetic character (A, B,
C, etc.).

4. The filenames DOS.SYS, DUP.SYS, AUTORUN.SYS, and
MEM.SAV are reserved for the DOS diskette.

In addition to eight characters in a filename, we can add
an extender of not more than three alphabetic or numeric charac-
ters preceded by a period (.). Here are some examples of legal
and illegal filenames with and without extenders. See if you can
tell which rule each illegal filename violates:

Legal Illegal
FILENAME.JOE FILE #2.JOE
R2D2 R 2D2
RAIDERS.GAM 3RAIDERS.GAM
USFLAG.GRF 5,STATES.GRF

DEUTSCHL.AND BYE-BYE

(If you are sharing diskettes with others, you may want to use
your initials as extenders for identification purposes.) Let’s
suppose that you have picked the filename GOODWORK.ABC
for your program. Follow these steps to save it on diskette:

1. Press the PWR. ON/OFF switch on the front of the disk drive.

2. When the upper red light goes out, open the door of the disk

drive, insert your diskette (label up, notch to the left), and then
close the door of the disk drive.

3. Type SAVE “D:GOODWORK.ABC” and press the RETURN
key. The disk drive will whir for a few seconds, then READY
will appear on the screen. Your program is saved on the

diskette. Remove your diskette from the disk drive and turn the
disk drive off.

4. Make a backup copy of your program by repeating steps 1-3
with a different diskette.

Let’s look at the command we typed in step 3 more closely:

"D: GOODWORK . ARC"

The entire command is known as the file specification (or filespec
for short). It has several parts as shown in Table 4-1.

If you are lucky enough to have more than one disk drive at-
tached to your computer, you will have to specify the device
number (1, 2, 3, 4) immediately after the device code (D1, D2:,
D3:, D4:). You will also have to set the DRIVE CODE SWITCH

Saving Programs on Diskettes

57

TABLE 4-1 File Specification (Filespec) Breakdown

D Device Code (D for “Disk”)
Required Colon

GOODWORK Filename (maximum 8 characters); 1st is
alphabetic
Period required as separator if extender is
used.

ABC Extender (optional): 1-3 alphabetic/numeric
characters

on the back of the disk drive. Please refer to the ATARI DISK
DRIVE OPERATOR’S MANUAL.

The same filespec that is used to SAVE a program is also
used to LOAD the program. The filespec is always enclosed in
quotation marks. Here are some sample SAVE and LOAD com-
mands for diskettes:

To save a program To load a program

SAVE “D:GOODWORK.ABC” LOAD “D:GOODWORK.ABC”
SAVE “D:TESTING” LOAD “D:TESTING”

SAVE “D:MX80.EPS” LOAD “D:MX80.EPS”

We close this chapter with an important warning.

WARNING: Never open the door of the disk drive if
the upper red light is on!

58

Assignment (LET) Statements

10.

EXERCISES

The unit of measure for computer memory is the

[()True ()False] The computer memory is actually an array
of microscopic boxes.

A variableisa()box ()chip ()labelfora memory location.

The first character of a numeric variable name must be a__

The statement LET VAR=5 ‘will assignthevalue_________ to the

variable

[() True () False] Numeric variable names are limited to a
length of 32 characters.

Write the printout for the one-line program

200 PRINT A+5

Write the printout for the following program:

100 A=21
110 B=8
120 PRINT (A+11)/8-4

8K means not exactly 8000 bytes, but ___ bytes.

[() True () False] A numeric variable can be changed to

a string variable by adding a dollar sign to the end of the variable
name.

Exercises

59

11.

12.

13.

14.

15.

16.

17.

18.

A string variable may hold
() numerals

() letters

() punctuation marks

() all of the above

What statement must always precede the first use of a string

variable in a program?

If NAME$=“UNITED STATES”, then NAMES$(4,6) =

[() True () False] 130 NAME$=NAME$+1 is a legiti-
mate BASIC statement.

Write the printout for the following program:

100 DIM A%(10)
110 A%="E.T. UPMOC"®
120 PRINT A%$(1,5)3"” LIVES."”

Which part of the statement 170 LET NAME$="BRYAN" may

be omitted?

[() True () False] Both of the following one-line programs
have exactly the same printout.

100 DIM AGE$(2): AGE$="15":PRINT AGES$

100 AGE=15:PRINT AGE

Check all of the legitimate string variable names:

3P0$

PI3.14$

ADDRESS

BACK-SPACE$

S$

“NAME”
THISISONEOFTHELONGESTSTRINGVARIABLENAMESEVERS$

AN AN AN AN AN AN SN
N N N N N N N

60

Assignment (LET) Statements

19. Write the printout for the following program:

100

DIM NAME$(10)

110 NAME$="THEOPHRASTUS BOMBASTUS von HOHENHEIM®
120 PRINT NAME$:;" IS LONG DEAD."

20.

21.

22,

The keyboard command SAVE "D:BIGWORK" could be used to
store a program on () cassette tape () diskette.

[(

) True () False]

180 AGE+1=AGE is a valid command.

For each of the following programs, show the contents of each
memory location as the program is run, as in the program Chapter 4,

No.

130
140
130
160

170

3.

REM — EXERCISE 22 A)
LET A=S

LET B=A+2

LET C=AXE

LET C=C-A

LET D=<(C-2)/R

PRINT A.B,.C.D

REM - EXERCISE 22 E)
LET A1=2

LET B2=6

LET Al=A1+B2

LET B2=A1/4

LET Al=A1/R2

LET BZ=(A1%A1)+(B2%B2)

FRINT Al,E2

MEMORY
A B Cc D
MEMORY
Al B2

Exercises

61

23.

Write (in the space on the right below) an original program that
will produce the printout below. Have your teacher check that you
can save the program on cassette tape and on diskette, and then
load it back into the computer.

RUN

AREA of a CIRCLE

RADIUS AREA
S 23 Fi
12 144 FPi

READY

a

() save on cassette

() save on diskette

The

INPUT Statement

So far, our programs with variables have had this characteris- Introduction

tic: If we wanted to make any changes to the values of the vari-

ables, we had to change part (or parts) of the program and then
run it again. In this chapter, we are going to learn a way to
changethe values of the variables as we run the program. Such a
type of program is called interactive because we interact with
the computer as the program runs.

Let’s typein again a program from Chapter 4, “Chapter 4, No.1” Numeric Input
where we first used variables:

100
110
120
130
140
150

REM — Chapter 5, No. 1
PRINT "ADD TwWO NUMBERS"
PRINT

LET A=5.3

LET B=9.8

PRINT Az;" + "3;B;" = ";A+B

What if we wanted to change the values of A and B each
time we ran the program? We could retype lines 140 and 150, but
that would be inefficient and tedious. A better way would be to
use the INPUT statement.

Add these lines to your program. Don’t type NEW!

110
112

REM — Chapter 5, No. 2
REM - Addition to No. 1

63

64

The INPUT Statement

115 GRAPHICS O:PRINT

125 PRINT "TYPE A VALUE FOR A"
130 INPUT A

135 FPRINT "TYPE A VALUE FOR E"
140 INPUT B

135 PRINT

When you run the program, be sure to press the RETURN key
after you type in a response to a question.

Do you see that you could find the sums of many pairs of
numbersin a short time this way? The INPUT statement allows
us to give a value for a variable from the keyboard as the pro-
gramruns. Our cue to make a response is the question mark that
appears at the left edge of the screen. Do you see what lines 125
and 135 do? Right! They print instructions so that we know what
to type when the question mark appears. Such an instruction in
a PRINT statement is called a prompt. In all of the programs
that you write, follow this rule.

RULE: Precede all INPUT statements with
a prompt.

When you are finished experimenting with the previous
program, type NEW and try this program:

100 REM - chapter S5, No. 3
110 GRAPHICS 3

120 PRINT "WHAT COLOR NUMBER (1,2,3)"
130 INPUT CN
140 COLOR CN

150 PLOT 1,1:DRAWTO 38, 1:DRAWTO 38,18
160 DRAWTO 1,18:DRAWTO 1,1

See what happens if you input a number other than 1 ,2,0r3.
Can you guess why 1, 5,9, 13, and 17 all produce an orange rec-
tangle? How about 2,6, 10, 14, and 18? Etc., etc., etc.! Experiment
as much as possible with each program.

If you’re satisfied that you understand the program above,
then type NEW and try this one:

100 REM — Chapter 5, No. 4
110 GRAPHICS 0:FPRINT
120 PRINT "TONE TESTER"

String (Alphabetic) Input

65

130 PRINT

140 PRINT "PITCH VALUE (0-235)"

150 INPUT PITCH

160 PRINT "DISTORTION VALUE (0-14 EVEN)"
170 INPUT DISTORT

180 SOUND O,PITCH,DISTORT, 10

190 FOR HOLD=1 TO S00:NEXT HOLD

If you find some pitch and distortion values that produce good
sound effects (laser, tugboat, dental drill, jet, etc.) write them
down in your notebook for possible future use.

Did you remember that the GRAPHICS 0 command at the
beginning of a program will clear the screen? A PRINT state-
ment after the GRAPHICS 0 statement will give us a little border
at the top of the screen. We should always attempt to make our
displays look clean by clearing the screen at the beginning and
by providing borders on all sides of printouts. A few sections
further we will discuss the effective use of prompts.

Line 190 in the last program is necessary to keep the tone
sounding; otherwise, as soon as READY is printed, the sound
channels are turned off. You can vary the duration of the sound
by changing the number after the word TO in line 190.

We are not limited to numeric inputs; type in and run the follow-
ing program with a string input:

100 REM - Chapter 5, No. S5

110 DIM NAME$(10)

120 GRAFPHICS 2

130 PRINT "WHAT IS YOUR FIRST NAME"
140 INPUT NAMES

150 PRINT "HOW OLD ARE YOU THIS YEAR"
160 INPUT AGE

170 POSITION 2,2

180 PRINT #63NAMES; ", "

190 POSITION 2,4

200 PRINT #6;3"YOU WERE BORN IN”"

210 POSITION 2,6

220 PRINT #631982-AGE;"."

Try giving your age as -10 once. Hmm! Born in 1992! Well,
obviously we need ways to handle inappropriate inputs, but for
the time being, let’s assume that the user (the person who is

String
(Alphabetic) Input

66

The INPUT Statement

Input Error
Messages

Input Variations

typing in the responses)is a nice, upstanding person who doesn’t
play jokes.

Try two more experiments:

1. Give your name as 35.63
2. Give your age as MAY 29, 1967

Your results should have confirmed this rule.

RULE: Numeric variables may hold only
numbers, but string variables may
hold any combination of letters,
numerals, and punctuation marks.
In string variables, numerals are
treated as symbols, not as numbers.

In general, if the user does not match his input to the type
called for in the INPUT statement(s) in the program, an error
message will result, just as in experiment (2) above.

If you performed experiment (2) above properly, you got the
following error message:

ERROR— 8 AT LINE 160

ERROR 8 means that the input did not match the type called
forin the program. In this case, we tried to put a string (MAY 29,
1967) into a numeric variable (AGE). On the other hand, it was
alright to input 35.63 as the name because NAMES$ is a string
variable and can hold any type of information.

In the preceding examples of the INPUT statement, the question
mark cue for the user’s response was always printed at the begin-
ning of the line following the prompt. The question mark may
also follow the prompt on the same line, as the following two
programs demonstrate. Try typing the prompts in inverse video:

100 REM - Chapter S5, No. &

110 GRAFPHICS 0:PRINT

120 PRINT "This program will calculate”
130 PRINT "the area of a RECTANGLE i+ you"
140 PRINT "give its LENGTH and WIDTH."

150 PRINT

160 PRINT "Length ";:INPUT LENGTH

Input Variations

67

170
180
190
200
210
220
230

PRINT

PRINT "Width ";:INPUT WIDTH
PRINT:PRINT

PRINT "LENGTH","WIDTH", "AREA"
PRINT "—————— I e

b s
PRINT LENGTH,WIDTH,LENGTHXWIDTH
PRINT: PRINT:PRINT: PRINT

The semicolon after the prompt keeps the input cue on the same
line. The next program uses two graphics modes:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

REM — Chapter 5, No. 7

REM — "The Sleeper™

DIM NAME$ (10Q)

GRAPHICS 0:PRINT

PRINT "What is your name ";:INFUT NAME$
PRINT

PRINT "What is your age "::INPUT AGE
PRINT

PRINT "How many hours do you sleep "

PRINT "each night (on the average) ";:INPUT HOURS

HOURSL IVED=AGEX24X%x34&65
HOURSSLEPT=AGEXHOURSX365
GRAPHICS 1+16

POSITION 1,4

PRINT #6;3;"WELL, "3;NAME$;","
POSITION 3.8

PRINT #6j3"you have lived”
POSITION 3,10

PRINT #63;HOURSLIVED
FPOSITION 3,12

PRINT #6; "hours and spent”
FOSITION 3,14

FPRINT #63;HOURSSLEPT
POSITION 3,16

PRINT #6;"ocf them sleeping!”
GOTO 350

If you are satisfied that you understand the preceding two
programs, then try this very short program to see how multiple
inputs work:

100
110
120
130
140

REM — Chapter 5, No. 8

PRINT "Type in three numbers;”
PRINT "for example, 5,12,13"
INPUT A,B,C

PRINT A,B,C

There are several ways that you can type in the three num-
bers when you run the program. Suppose you choose 5,12, and 13
for the three numbers. Any of the following six responses will

work.

68

The INPUT Statement

Prompts

?5,12,13 75,12 ?5
213 2?12
213
25 ?5,12,13,14, 75,12
212,13 2?13, 00PS

Obviously, the last two inputs would be errors on your part, but
they both would work! The computer waits until it has received
three usable inputs, then ignores anything that is left over.
String inputs present a slightly different problem. If an
INPUT statement calls for a string variable immediately follow-
ing the word INPUT, then everything that is input for that line
is putin the string variable. For example, if the input statement is

20 INPUT NAME$,AGE

and your response is

?SAM JONES, 15

then the variable NAMES$ will contain

SAM JONES, 15

and we will get another question mark to input the age. This
illustrates a good rule of thumb:

RULE: Don’t mix numeric variables and string
variablesin the same INPUT statement!

Try some short programs of your own until you are sure
that you can use the INPUT statement correctly for both numeric
and string variables. In the next section we’ll look more closely
at prompts.

Every attempt should be made to make prompts in a program
easy toread and understandable to the user. Type in and run this
program as an example of what to avoid:

100 REM — Chapter 5, No. 9

110 REM - Sloppy Prompts

120 GRAPHICS O:PRINT

130 PRINT "Type in an even number between Q
and 100."

140 INPUT NUM

130 PRINT:FPRINT "Your number is " 3 NUM

Prompts

69

Poor, right? Change line 130 and add line 135 as follows:

130 PRINT "Type in an even number”
135 FRINT "between ¢ and 100."

Do you see the difference? Always make the extra effort to
make your prompts and other display text visually attractive.
The following program shows how text can be balanced to look
good on the screen. It is easy to use cursor control to insert or
remove spaces between words to make text lines either longer or
shorter. Note that line 160 holds the instructions on the screen
before the actual prompts are printed.

100 REM - Chapter 5, No. 10
110 REM — Draw a line
120 GRAPHICS 7:POKE 752,1

130 PRINT " Type in the COORDINATES of the”
140 PRINT " ENDPOINTS of a LINE SEGMENT, and”
150 PRINT " the line segment will be drawn.”

160 FOR HOLD=1 TO 3000:NEXT HOLD
170 GRAPHICS 7:POKE 752,1

180 PRINT "First endpoint {Column,Row) "j;:INPUT X,Y

190 PRINT "Second endpoint (Column,Row) "3;:INPUT A,B

200 COLOR 1

210 PLOT X,Y:DRAWTO A,B

220 PRINT:PRINT

230 PRINT " Endpoints: (";Xz",":3Y:") and (";A3",";B;")"
240 PRINT:PRINT " Press SYSTEM RESET, then type”

250 PRINT " RUN if you want to try again.”
260 GOTO 260

Experiment a bit by removing lines 170 and 220. Do you see
that they are necessary to place the text on the correct line in
the text window? We could also replace line 170 with PRINT
statements. Can you figure out how many PRINTs would be
necessary to make the prompts appear on the top line of the
text window?

70

The INPUT Statement

EXERCISES

An instruction to the user of a program that precedes an INPUT

statement is called a

[() True () False] A program that contains INPUT state-
ments is called an interactive program.

If a program contains the statement INPUT AGE, and the
user types in “JONATHAN”, then an error message number

will result.

Fill the blanks in the runs for each of the following programs:

100 PRINT "Type three numbers, such as 5,3,7"
110 INPUT A,.B.C

120 PRINT A

130 PRINT B,C

RUN

Type three numbers, such as 9.3.7
?-2,7,98

100 PRINT "Type 4 numbers, such as 8,11,-3,2"
110 INPUT U,V,W,X

120 PRINT U.U+V

130 PRINT W, WkX

RUN
Type 4 numbers, such as 8,11,-3,2

L s L
12
45

U N

Exercises

71

5. The keyword INPUT has essentially the same function as

() PRINT ()LET ()LIST

6. [() True () False] The statement 110 INPUT DATES$

will accept only a string as a user response.

7. Here is the printout for a program. You write the program.
RUN
Type the number of coins that you have, as follows:
QUARTERS?3
DIMES =]
NICKELS 72

You have $1.35.

READY
.

8. Writean original program in which the user types in his present age,
and the computer responds by printing the year of his birth.

READ, DATA, AND RESTORE Statements

We have learned two ways of assigning values to variables:

1. LET

statements

120 LET A=S5

140

B=3.14159 ("LET"” is optional.)

170 COURSE$="ENGL ISH"

2. INPUT statements

130 INPUT A.B.C

160

INPUT DATES

A third way to assign values to variables is to use READ and
DATA statements.

The three following short programs use READ and DATA. Each
one will produce an ERROR 6- message; don’t be alarmed!

100
110
120
130
140
150
160
170

REM — Chapter 6., No. 1
GRAPHICS 0:PRINT

PRINT "ADD TWO NUMBERS"
PRINT:PRINT

READ A

READ E

PRINT Az:" + ";B3;" = ":A+B
PRINT

Introduction

READ and DATA

73

74

Read, Data, and Restore Statements

180 GOTO 140
190 DATA 5,10,2,7,11,19,22,51
200 DATA 11.2,9.7,6.8,2.83

100 REM - Chapter 6, No. 2

110 GRAPHICS 3

120 COLOR 1

130 PLOT 11,1

140 READ X,Y

150 DRAWTO X,Y

160 GOTO 140

170 DATA 3,9,11,17,19,9,27,17,35,.9,27,1,
19,9,11,1

100 REM - Chapter 6, No. 3

110 DIM NAME$(10)

120 GRAPHICS 0Q:PRINT

130 PRINT "NAME","AGE"

140 PRINT "————","——=—"

150 READ NAMES$, AGE

160 PRINT NAME%, AGE

170 GOTO 1350

180 DATA BILL,15,L1I5A,14,JEFF,16,DEBI, 15

Now let’s see exactly how READ and DATA work. (We hope
you still have Program Chapter 6, No. 3 on the computer.) You
have probably deduced from the three preceding programs that
the READ statement works almost exactly like the INPUT
statement; but that instead of having the user input information
(data), the data is included in the program. The statements that
contain the data are known as (you guessed it!) DATA state-
ments. Look now at lines 150 to 180 of the last program. These
are the lines that READ and PRINT the data.

150 READ NAME$, AGE

160 PRINT NAMES$, AGE

170 GOTO 150

180 DATA BILL,15,LISA,14,JEFF,16,DEBI, 15

The data is read from line 180 in order from left to right, so
that first NAMES$ contains the name BILL, and AGE contains
15. These values are printed at line 160, then line 170 tells the
computer to go back and execute line 150 again. The first two
data items (BILL,15) are already used, so that the second time,
LISA is read into NAMES$, and 14 is read into AGE. The third
time around, JEFF and 16 are read; and the fourth time, DEBI
and 15. But now the computer tries to execute line 150 a fifth
time. All of the data has been read from line 180, so we get the
error message

Read and Data

75

ERROR- 6 AT LINE 130

which means “out of data.” Obviously the computer can’t read
information thatisn’t there! Itis very important that you under-
stand that the data is used up as it is read.

Another important point is that the items in the DATA
statement(s) must correspond in type with the variables in the
READ statement. In the last program, line 150 calls for the
computer to read first a string variable, and then a numeric
variable; so theitemsin line 180 are arranged in the same order.

DATA statements may be placed anywhere in the program
(like REM statements, they are not executed), but a common
programming practice is to put them out of the way at the end
of the program.

Certainly it is inelegant to end a program with an error
message, so we need a way to have the computer stop normally
after it has read all of the data. We already know how to have
the computer “count” to a certain number to hold a musical
note or to keep a graphics display on the screen. We can use the
same technique to count how many times the READ statement

is executed. Add line 145 to the last program, and change line

170 as follows:

145 FOR COUNT=1 TO 4
170 NEXT COUNT

Now exactly four sets of data are processed, and then the pro-
gram will stop normally. Note that the NEXT statement replaces
the GOTO statement. Can you make appropriate additions and
corrections to the first two programs at the beginning of this
chapter so that the programs stop normally?

Try two more examples of programs with READ and DATA
statements:

100 REM — Chapter 6, No. 4
110 DIM NAME${10)
120 GRAPHICS O:FPRINT

130 PRINT "Average of Two Grades":PRINT:PRINT

140 PRINT "NAME "," 1 2 AVERAGE"
150 PRINT "——————— oM e e n
160 FOR COUNT=1 TO 4

170 READ NAMES$,G1,G2

180 AVE=(G1+G2)/2

190 PRINT NAME$.G1;" "3;62:" “;AVE
200 NEXT COUNT

210 DATA Louise,B85,91

76

Read, Data, and Restore Statements

100
110
115
120
129
130
139
140
149
1350
159
160
170
180
190
200
210
220
230
24Q
250

220 DATA Roger,79,87
230 DATA DeeDee,80,71
240 DATA Michael, 92,87

Pay close attention to the spacing and punctuation in lines 140,
150, and 190 in the program above. Notice that the average of
the two grades is calculated at line 180. Here is an example of a
music program using READ and DATA statements:

REM - chapter &6, No. 5

GRAPHICS 2:POSITION 2,4:PRINT #6;5; "NAME THIS TUNE'"
FOrR COUNT=1 TO 31

READ PITCH,DURATION, SLUR

REM XXX PLAY NOTE X%x

SOUND O,PITCH, 10,10

REM %X HOLD NOTE FOR PROPER DURATION XXX
FOR HOLD=1 TO 2S%DURATION:NEXT HOLD

REM *Xx TURN NOTE OFF Xxxx

SOUND ©,0,0,0

REM Xxxx KEEF NOTE OFF FOR PROPER INTERVAL XxX
FOR OFF=1 TO SXSLUR:NEXT OFF

NEXT COUNT

DATA 35,2,10,35,2,10,44,2,10,44,2,10

DATA 35,2,10,35,1,1,35,1,10,29,4, 10

DATA 40,2,10,40,2,10,47,2,10,47,2,10

DATA 40,2,10,40,1,1,40,1,10,33,4,10

DATA 35,2,10,35,2,10,44,2,10,44,2,10

DATA 35,2,10,35,1,1,35,1,10,29,4,10

DATA 40,2,10,33,1,1,33,1,10,35,2,10,40,2, 10
DATA 44,4,10,44,2,10

Thelast program probably needs some explanation. To play
a simple tune, we need to consider three things for each note:

1. The pitch (middle C, A, Bb, D#, etc.)
2. The duration (eighth, fourth, or half note, etc.)
3. The slur (is the note tied to the next one?)

Wehave a table of pitch values in Appendix 2. These are the
values in the DATA statements such as 35, 44, 29, 40, etc. In our
tune, we have just eighth, fourth, and half notes. If the duration
of an eighth noteis 1, then the duration of a fourth note is 2 (twice
as long), and the duration of a half note is 4 (four times as long).
These numbers are the ones following the pitch values. Finally,
if a note is tied to the next one (a slur), then the interval between
the notes (when the first note is turned off) must be much shorter
than normal. Thus, we have a slur value of 10 for a normal inter-
val, and a slur value of 1 for a slurred interval. Whew! Don’t
worry right now if you find this difficult—we’ll come back to it
later. One last comment, though: You can “play” the song faster
or slower by decreasing or increasing the number 25 in line 140.
This is the multiplier for the duration.

The Restore Statement

77

We have emphasized that data gets used up as it is read. Some-
times, though, it would be useful to use the same data (or part of
the data) again. The RESTORE statement makes this possible.
First, type in and run this program to play a few simple notes:

100 REM - chapter 6, No. 6

110 FOR COUNT=1 TO 7

120 READ PITCH

130 SOUND O,PITCH, 10,10

140 FOR HOLD=1 70O 100:NEXT HOLD
150 NEXT COUNT

200 DATA 121,96,81,60,81,96,121

The program “plays” seven notes and then stops normally.
If we want to play the notes a second time (without typing RUN
again), we can’t go back to line 110 because the data is used up.
We need to RESTORE it. Add these lines to your program:

160 SOUND 0,0,0,0

170 FOR OFF=1 TO 200:NEXT OFF
180 RESTORE

190 GOTO 110

Now, after seven notes are played, the sound is turned off for a
count of 200, the data is RESTORED (made usable again), and
the notes are played again (and again, and again, ...).

Keepin mind that the RESTORE statement makes the data
usable again beginning with the first data item in the program.
This is important to remember because later you will work with
programs that may have different sets of data for different
parts of the program. Thus, for example, we may want to RE-
STORE only the data beginning on line 350. We simply add the
line number after the RESTORE, as:

180 RESTORE 350

We use this same statement in the following program, which
draws a square pattern of dots and then makes the inside of the
square “disappear” (the points are replotted in black, the back-
ground color). Note that the data is listed so that the outline of
the square is drawn first, then the inside. This allows us to use
the same “inside’” data to replot the dots in black.

100 REM — Chapter &6, No. 7
110 GRAPHICS 3

The
RESTORE Statement

78

Read, Data, and Restore Statements

Abbreviations

120 COLOR 1

130 FOR COUNT=1 TO 25

140 READ X,Y

150 PLOT X,Y

160 NEXT COUNT

170 FOR WAIT=1 TO 300:NEXT WAIT
180 RESTORE 350

190 COLOR 0O

200 FOR COUNT=1 TO 9

210 READ X,Y

220 PLOT X,Y

230 NEXT COUNT

299 REM XXX DATA FOR OUTLINE OF SQUARE XXX
300 DATA 16,6,18,6,20,6,22,6,24,6
310 DATA 16,8,24,8

320 DATA 16,10,24,10

330 DATA 16,12,24,12

340 DATA 16,14,18,14,20,14,22,14,24,14
350 DATA 18,8,20,8,22,8

360 DATA 18,10,20,10,22,10

370 DATA 18,12,20,12,22,12

If you are satisfied that you understand the function of line
180, then add the following lines to produce a “blink.”

240 RESTORE
230 60TO 120

Note that line 240 RESTORES the data beginning with line 300
(the first data), so that the display can begin again.

In the next section we’ll look at a way to save some key-
strokes in typing in a program.

Most of the keywords (commands) that we have used so far may
be abbreviated when they are typed. When the program is
LISTed (either on the screen or printer), then the full keyword is
printed. Here is a list of the keywords we have studied and their
abbreviations. An asterisk (*) at the left of a keyword indicates
that the abbreviation is useful. (The others don’t save any key-
strokes.)

Try this program, which is almost a one-liner:

100 . - Chapter &6, No. B

110 GR.3:5E.0,4,4:C.1:F.K=1 TO 18:FL.1,
K:DR.38,K:N.K

120 PR."ABBREVIATION PRACTICE"

Exercises

79

TABLE 6-1 Keyword Abbreviations

1. The READ statement is similar in function to the

Keyword Abbreviation
CLOAD CLOA.
CSAVE none

* COLOR C.

* DATA D.

DIM DI.
DOS DO.

* DRAWTO DR.

* FOR F.

* GOTO G.

* GOSUB GOS.

* GRAPHICS GR.

IF none

* INPUT I
LET LE. (“LET” is optional.)

* LIST L.

* LOAD LO.

* LPRINT LP.

* NEXT N.

* PLOT PL.
POKE POK.

* POSITION POS.

* PRINT PR. or ?
READ REA.

* REM . (preceded by a space)

* RETURN RET.

* RESTORE RES.
RUN RU.

* SAVE S.

* SETCOLOR SE.

* SOUND SO.
STOP STO.
THEN none

EXERCISES

and statements.

2. [() True () False] If the statement 200 DATA 5,10,15 is

executed, the numbers 5,10, and 15 will be printed on three consecu-
tive lines.

80

Read, Data, and Restore Statements

3. Ifaprogram containing a READ statement “runs out of data,” then

an error message message number

will result.

4. In each of the four short programs below, give the last value
assigned to the variable A.

100

READ A.B.C 100 READ A,A1,A2
110 DATA -12,10,5 110 DATA 5,-6,-9,34, 23
120 READ X.A
100 LET A=0 100 DATA 1,3,5,7.9
110 READ X1,Z1,A1 110 READ X.Y.A
120 LET A=A+A1 120 DATA 2,4,6

130 LET A=AX(A1-Z1)
140 DATA 12,14,26

Complete the READ statement to read the data in the statement

250 DATA SUNDAY, 15, 8.

130 READ

6. Check all of the following statements that are legitimate.
() 315 DATA 12%,.1S5%.17%
() 242 READ 23.5,61.2
() 290 DATA "GOSH!","JEEFPERS!", "GEE WHIZ"
{) 240 READ NAME$,ADDRESS%
¢) 510 DATA JOE,PETE,LISA,PAULA,GEORGE, TINA
{) 285 DATA D-A-S-H,.S P A C E
7. Rewrite (in the space at the right) each of the following programs
so that it will run correctly.
100 READ X:VY
110 LET P=XY
120 PRINT "PRODUCT = " F
130 DATA 6,8

Exercises

81

100 LET R=S

110 READ S
120 LET X=R+2%S
130 PRINT "X = "X

100 READ S

110 LET T=5%5

120 PRINT SQUARE IS T
130 DATA 6,8

100 READ X,.Y,.Z
110 LET A=(X+Y+Z) /3

120 PRINT "AVERAGE IS ":A

130 DATA 821.4 287.9

8. Rewrite(inthespace attheright) each of the following programs so

that it will run correctly.

100 READ M.N
110 LET @=MN+3Z
120 PRINT @
130 DATA 78,91

100 DATA 21
11O R EADEK
120 LET 4%R=S
130 PRINT S5

100 READ (C.D)
110 LET X=C+D
120 PRINT "SuM IS X*©
130 DATA 37,21

82

Read, Data, and Restore Statements

100 READ X+Y,Z

110 LET A=X+Y/Z.

120 PRINT "RESULT IS"R
130 DATA 84.1,34,26

10.

11.

12.

13.

[()True ()False] Oncethedatainaprogram hasbeen “used
up,” there is no way to use it again.

Give the full BASIC keyword for each of the following abbreviations:

? - GR. LO.
. PL. SE.
RES.____ SO. L.

Write the printout of the following program:

100 LN=200

110 READ A,E,C

120 PRINT (A+E)/C

130 LN=LN+10:RESTORE LN
140 GOTO 110

200 DATA
210 DATA
220 DATA
230 DATA
240 DATA

=N s

Write an original program that will add up 10 numbers and
print their average. Use a READ statement to read the num-
bers from a DATA statement. Use the following numbers:
19,22,15.3,16.1,27,23,9.7,12,20.56,15.8.

Write an original program similar to the onein 12. but which prints
the average of the first five numbers and then the average of the last
five numbers of a set of eight numbers. Use a RESTORE statement

and the following data: 5,11,17,4,3,8,9,12. (Hint: Putthedataintwo
DATA statements.)

Transfer of Control Statements

We know that the computer normally executes program state- Introduction

ments in numerical order according to their line numbers. In this

chapter we are going to consider ways to change this order of
execution.

We have already used the GOTO statement extensively, partic- The
ularly in Chapter 6 with READ and DATA statements. Try this GOTO Statement

simple program as a review:

100
110
120
130
140
150
160
170

REM — Chapter 7, No. 1
GRAPHICS 3

COLOR 1

PLOT X,Y

SOUND 0,4%(X+Y),10,10

FOR WAIT=1 TO SO0:NEXT WAIT
X=X+2:¥Y=Y+1

GOTO 130

In this example, control of the program is transferred atline
170 back to line 130. This is known as an unconditional branch
(transfer of control) because there is only one option (control
must always transfer to line 130). Change line 170 as follows,
and see what happens:

170

GOTO 125

83

84

Transfer of Control Statements

Loops

The IF..THEN
Statement

You should get this error message:

ERROR— 12 AT LINE 170

This means “line not found.” There is no line 125 in the program.
Be sure that your GOTO statements give the line number of a
line that is actually in your program.

In the preceding program, lines 130 to 170 were repeated over
and over until we received a “cursor out of range’” error (141). A
sequence of statements in a program that is executed repeatedly
1s called a loop. Our next concern is to find ways to terminate
a loop. (The preceding program was terminated by an error
message, which is certainly not very elegant.) The next program
contains an endless loop:

100 REM - Chapter 7, No. 2

110 GRAPHICS O:PRINT

120 PRINT "Type a number "j;:INPUT NUM
130 PRINT NUM:;" squared is "3;NUMXNUM
140 PRINT

150 GOTO 120

Do you see why we said the program contains an endless
loop? It just keeps going on and on. One way to stop an endless
loop is to press the BREAK key. You will get a message such as

STOPPED AT LINE 130

where 130 is the number of the line that was being executed as
you pressed BREAK. This method of terminating a loopis useful
on certain occasions, but like the previous example with an
error message, it has a big disadvantage: No other part of the
program can be executed without additional action on the part
of the user. We need a method of terminating loops that depends
somehow on certain conditions in the program. Such a method
is provided by the IF.. THEN statement.

Change line 120 and add line 125 to the preceding program as
follows:

120 PRINT "Your number (type -1 to stop) "::INPUT NUM
125 IF NUM=-1 THEN GRAPHICS 0:STOP

The IF..THEN Statement

85

Now, when you run the program, you can make it terminate
by giving “-1” as a response to the prompt. We call line 125 a
conditional branch because control is transferred only if a cer-
tain condition is met; namely, we type in -1 as a response.

Let’s consider the structure of the IF.. THEN statement.
Following the IF, we can place any expression that could be
classified as true or false. Following the THEN, we can place
either (1) aline number, or (2) a command (or several commands
separated by colons) that can be executed by the computer.
Here are some examples:

120 IF X=5 THEN 300

150 IF NAME$="ZZZ" THEN PRINT "FINISHED":GOTO S00

1920 IF AREA>1000 THEN STOF
210 IF X<Y THEN X=Y:G60TO 150

170 IF EBXB—4XxA%C<O THEN PRINT "NO REAL ROOTS":G0OTO

310 IF R$="YES" THEN LET A%="TOTAL"

In most cases where we use the IF.. THEN statement, the
expression following the IF usually compares two quantities or
two strings. Here is a chart of the symbols to use for compari-
sons. Be careful to write the double symbols in the proper order.

TABLE 7-1 Comparison Symbols

BASIC English Example
= equal to 5=5
< less than 2<3
> greater than 10>7
<> not equal to 2<>9
<= less than or equal to 2<=3
>= greater than or equal to 8>=6

Here is a program that uses IF... THEN statements to test
for three different possibilities. Please note that lines 160, 170,
and 180 occupy two lines on the screen. They are shown below
exactly as they will appear on the screen as you type them in. For
each of these three program lines, don’t press the RETURN key
until you have finished the second screen line.

100 REM — Chapter 7. No. 3

110 GRAPHICS 0O:PRINT

120 PRINT "How o0ld will you be in”

130 PRINT "November of this year ":
140 INPUT AGE

150 PRINT:PRINT

160 IF AGE=18 THEN PRINT "This is your
first voting year.":60T0 200

110

86

Transfer of Control Statements

170 IF AGE>18 THEN PRINT "You have vot
ed for ";AGE-18;:;" vyears.":60T0 200

180 PRINT "You may vote in ";18-AGE:"
more years.'"

200 REM *x%x END OF PROGRAM XXX

Be sure to try all three possibilities for an input: 18, a number less
than 18, and a number greater than 18.

Pay close attention to the way the IF..THEN statement
works:

1. If the expression following IF is true, then the statement(s)
following THEN are executed. These statements may or may
not include a branching (GOTO) statement. If they do not,
then control passes to the next statement in the program.

2. If the expression following IF is false, then the statement(s)
following THEN are ignored and control passes to the next
statement in the program.

Do you see why we didn’t need a line in our program that
started “IF AGE<18 THEN...”? Right! If AGE is not equal to 18
(line 160), and AGE is not greater than 18 (line 170), then it
MUST be less than 18 (line 180).

See what will happen if you run the program and input an
impossible age, such as -10. (There are always wise guys around.)
Because the input is meaningless, the computer’s response is
also meaningless. We need a test to catch inappropriate inputs.

We can make such a test by adding just one line to our
program. Note that it occupies three lines on the screen—don’t
press the RETURN key until you have typed all three lines.

1535 IF AGE<0O THEN PRINT "QOops' Your a
ge must be positive!":FOR WAIT=1 TO 10
QO NEXT WAIT

Now, if yourespond with a negative age, you will get a gentle
reprimand and another chance. We always need to anticipate
inappropriate inputs on the part of the user. To err is human!

Do you think the following IF.. THEN statement makes
sense?

170 IF A$<{B$ THEN FRINT A%:" comes before ":B%

Can we compare strings as if they were numbers? The answer
is yes, as the following program illustrates:

The Stop and End Statements

100 REM — Chapter 7, No. 4

110 DIM A%(10) B (10)

120 GRAPHICS O:PRINT

130 PRINT "Type in two names:”
140 PRINT "1) ";:INPUT A%

1530 PRINT "2) ";:INPUT E$

160 PRINT:PRINT

170 IF A%$<{B$% THEN FRINT A$:;" comes before ";B$:G0T0O 200
180 IF A+s>B$% THEN PRINT B%;" comes before ";A%:G0T0O 200

1920 PRINT A$:;" equals ";B%
200 REM x¥xx END OF PROGRAM XXX

So! The expression “A$<B$” is

1. True if the strings stored in A$ and B$ are in the alphabetical
order A$,BS.

2. False if the strings stored in A$ and BS$ are either equal, or in
the alphabetical order B$,A$.

This capability of comparing strings is the basis of sorting
lists of words or names into alphabetical order, as we shall see
later.

If a comparison is true in an IF.. THEN statement, then often
we want to do several things, as in the voting program Chapter
7, No. 3. How long may a line be?

Oneline across the screen of the TV set or monitor is known
as aphysicalline;normally itis 38 characters long. You already
know that some of our program statements have extended onto
the second (and even third) physical line. Each numbered state-
ment in a program is known as a logical line and may consist
of a maximum of three physical lines (3 x 38, or 114 characters).
You are probably already familiar with the warning buzzer
that sounds as you approach the end of the third physical line
in a program statement. If you exceed three physical lines in a
logical line, the extra characters will be dropped. In this case,
we say that the line has been truncated. If a logical line of more
than 138 characters does creep into your program anyway, an
error message 14 (line too long) will result.

Try this program to see the difference between STOP and END.
On the second run, change STOP in line 300 to END.

100 REM — Chapter 7, No. S

110 GRAPHICS OQO:PRINT

120 PRINT "CUBES LESS THAN 500"
130 PRINT " ————— "

Lengths of Lines

The STOP and
END Statements

88

Transfer of Control Statements

Debugging
(Error Correction)—
Part 1

140 PRINT

150 PRINT " NUMBER CUBE"

160 PRINT " ————— ———"

170 NUM=1

180 CUBE=NUMXNUMXNUM

120 IF CUBE>300 THEN 300

200 PRINT " "3 NUM; v "5 CUBE
210 NUM=NUM+1

220 GOTO 180

300 STOP

Youshould have discovered that after the display the follow-
ing messages are printed, depending on line 300:

300 STOP F00 END
STOFFPED AT LINE 300 READY
s

In either case, we are now back in direct (immediate) mode,
and the computer is waiting for further instructions from us.
There is an important difference between STOP and END,
though: The STOP statement will not turn off sounds, but the
END statement will. In either case, you may continue the execu-
tion of the program from the instruction immediately following
END or STOP by typing CONT (continue) and pressing the
RETURN key. This gives us one of several techniques for cor-
recting bugs (errors) in programs.

The error correction technique just mentioned involves three
steps:

1. Divide the program into sections
2. Insert a STOP statement after each section
3. Correct any errors found in that section

The following program prints “HI!” in GRAPHICS 3 block
letters. There is a STOP statement after each of the sections
that prints a letter so that you can check letter by letter to see
if your data is correctly typed. As soon as a section (“H”, “17,
“I”)works all right, then remove the STOP statement afterit. To
continue after a STOP, type CONT and press the RETURN key.

100 REM - Chapter 7, No. &
110 DIM A%(1)
120 GRAPHICS 3:COLOR 1

Exercises

89

124 REM XXX PRINT "H" XXX

125 FOR K=1 TO &

130 READ A%$,X,.Y

135 IF A$="P" THEN PLOT X,Y:GOTO 145
140 IF A%="D" THEN DRAWTO X,Y

145 NEXT K

146 STOP

149 REM XX%x PRINT "I" %xx

150 FOR K=1 TO 6

155 READ A%, X.Y

160 IF As="P" THEN PLOT X,Y:GOTO 170
165 IF A%$="D" THEN DRAWTO X,Y

170 NEXT K

171 STOP

174 REM X¥¥ PRINT "i" ¥%x

175 FOR k=1 TO 3

180 READ A%$,X,Y

185 IF As="P" THEN FLOT X,Y:GOTO 195
190 IF A%="D" THEN DRAWTO X,Y

195 NEXT K

196 STOP

S00 REM XXX H k%X

si0 pATA P,13,3,D,13,15.P.18,3,D,18,15,F,14,9,D,17,9
520 REM XkX I XXX

530 DATA P,22,3,D.22.15,F.21,3,D,23,3.F,21,15,D,23,15
540 REM XXX ' XXX

550 DATA P,27,.3.D.27,13,F,27,15

Ateach STOP youmay type PRINT X,Y and press RETURN
to see what the least values of X and Y are. If they do not corre-
spond to the DATA statement above, then make changes in
that line of your program and try again. If you want a list of
just part of your program, for example, the part that prints “I”,
type LIST 149,171 and press RETURN. Remember, the point
here is to use STOP to look at your program section by section.
(Do you see how the P and D codes work in the plotting routine?
More about it later.)

EXERCISES

1. A sequence of statements in a program that is executed more than

one time is called a

2. [()True ()False] Thestatement 200 GOTO 130 will produce
a conditional branch to line 130.

Transfer of Control Statements

If a program contains the statement 190 GOTO S70 but there is no

line 570 in the program, then error message number ___ will
result.

Write each of the following comparisons as a BASIC statement.

Variable names are capitalized. The first one is done for you as an
example.

If A is equal to B IF A=B

If AGE is less than WEIGHT

If HIGH is greater than LOW

If X does not equal Y

If G is less than or equal to K

If FUEL is not less than ROCKETS

The normal length of a physical line on the screen 1is

characters.

When either a STOP or END statement is executed, the

computer returns to mode.

In each of the three programs below, a required GOTO
statement has been omitted. The GOTO statement should

cause a branch to process another set of data. Supply the
needed statement.

100 DATA 10,20,5,15,-6,14

110 READ A.N

120 PRINT "A + N = ";A+N

130

100 INPUT X,Y,Z

110 PRINT "X + Y x (=Z) = ";X+Yk(=Z)

Exercises

100 LET A=5

110 LET B=6

120 PRINT A+B.AXB
130 LET A=A+1

140 LET B=B+2

8. Rewrite (in the space at the right) each of the following two
programs so that each will run correctly.

100 READ X,.Y

110 DATA 73,44

120 GOTO 140

130 READ T,U

140 DATA 12,-21

150 PRINT X,Y,T,U

100 PRINT "NAME","HOURS"

110 READ NAME$, HOURS

120 DATA WARD, 30,GRAY,S5S

130 PRINT NAME$,HOURS

140 GOTO READ

9. Write the printout of each of the following two programs without
using the computer.

100 READ J.K

110 LET S=J+K-J%K
120 GOTO 100

130 PRINT S

140 DATA 2,3.4,.5,6,8

100 READ X.Y

110 LET Z=X-3%Y

120 PRINT "ANSWER IS ":Z
130 DATA 2,-3.4

140 DATA 0,5.-1

10. After the program LISTed below, you are given different possibili-
ties for line 130. In each case, state if the condition is true or false,
why, and what line will be executed next. The first one is done for
you as an example.

92

Transfer of Control Statements

11.

12.

13.

14.

100 LET A=5
110 LET EBE=3
120 LET C=-4
130 IF...
140 ...

130 IF AXC THEN 190

130 IF C>A THEN 280

130 IF B<=C THEN 210

130 IF B>AXC THEN 185

130 IF A+C>E THEN 200

130 IF A>=B-C THEN 175

[()True ()False] AnEND statement may occur anywherein
a program.

What command should be typed in to have the execution of a pro-

gramresume attheline after a STOP statement?

In debugging a program, where should STOP statements be in

serted?

Write an original program using one or more IF.. THEN statements
and an INPUT statement that will tell if a user’s numberis a perfect
square. Some sample runs are shown.

RUN

Type a positive number.
(Type —1 to stop.)

P43
43 is not a square.

READY
8

Exercises

93

RUN

Type a positive number.
(Type -1 to stop.)
2196

196 1s 14 squared.

READY
.

RUN

Type a positive number.
{Type -1 to stop.)

-1

Good-by.

READY
s

Anatomy of a Loop

In the last chapter, we introduced the concept of a loop. In this
chapter, we are going to look more closely at the various parts of
a loop. The following program will serve as the reference pro-
gram for the next three sections, so type it in very carefully. Pay
particular attention to the spacing in lines 150, 160, and 180.
(Use lines 120 and 130 as a guide, so that the proper columns
line up in all lines.)

100 REM — Chapter 8. NO. 1

110 GRAPHICS 0:PRINT

120 PRINT "SQUARES OF NUMBERS 10-20"
130 PRINT "———— o ———— "
140 PRINT

150 PRINT " NUMEER SOUARE ™

160 PRINT " = —————— —————— 1

170 NUM=10

180 PRINT " " NUM; ™ "« NUMXNUM
190 IF NUM=20 THEN END

200 NUM=NUM+1

210 GOTO 180

Lines 170 to 210 are the real “heart” of this program; they are
the lines that do the calculations and that print the results for
the numbers from 10 to 20. These lines form the loop. Every loop
necessarily contains one (or more than one) variable that
changes as theloopisrepeated. In this program, that variable is
NUM. In line 170, the initial value of NUM is set to 10; that is,

Introduction

Initialization

95

96

Anatomy of a Loop

NUM will vary, but its first (initial) value is 10. The process of
giving starting values to variables is called initialization. Every
variablein a program will have to have someinitial value. Often
that value is zero, and because the ATARI automatically sets
variables equal to zero (remember?), we never need to initialize
a variable to zero. Try this quick experiment: change line 170 to

170 REM *Xxx NO INITIALIZATION %kx

and run the program. What happens? You get a display of
numbers from 0 to 20 and their squares, with the titles scrolled
off the screen. Try changing line 170 as indicated below and then
run the program again.

170 NUM=15

What happened? You got the numbers from 15 to 20 and their
squares, and this time the titles didn’t scroll off the screen. How-
ever, the title isn’t correct anymore; we need to change line 120
for a “perfect” program. Now try this change for line 170:

170 NUM=-5

Well, now we know it works for negative numbers! One more
experiment before we move on: change line 170 to

170 NUM=25

Help! Try the BREAK key. Do you see what is wrong? NUM
starts at 25 and increases by one each time through the loop, but
line 190 will stop the program ONLY if NUM is exactly equal
to 20. Thus, we have an endless loop. It should be clear that
endless loops are wasteful and, on large computers, very expen-
sive. Beware!

Let’s review intialization quickly:

1. Avariable in a program may be set to an initial value with
a LET statement.

2. Variables that are not initialized in this way are automati-
cally initialized to zero.

Don’t NEW your program; we’re going to look at other
features of it.

Incrementation

97

Inline 200 of the program, the current value of NUM is increased,
orincremented, by one. The value one (1) is called theincrement,
and the whole process is called incrementation. Without an
incrementation, we would be in an endless loop, and the display
would show the same pairs of numbers over and over. (If you're
curious, just delete line 200 and then run the program.) Let’s try a
different increment: change line 200 to

200 NUM=NUM+2

Did you get the even numbers from 10 to 20? Suppose you make
the increment 3:

200 NUM=NUM+3

Oops! We went past the test! You can see that careisinvolved
here. How about a negative increment (sometimes called a
decrement)? Make the following two changes:

170 NUM=30
200 NUM=NUM-1

Good! We can make loops go forward or backward! Incre-
ments needn’t be whole numbers; they may also be decimals. Try
these changes:

170 NUM=5.1
190 IF NUM=5.9 THEN END
200 NUM=NUM+O0.Z2

So, we see thatincrements may be positive or negative whole
numbers or decimals. There is still one more possibility: The
increment may also be a variable. Suppose we modify the pro-
gram so that the user can determine the increment for each run
of the program. We'll store the increment in the variable
INCRNUM (the increment of NUM), and add a prompt for the
user. Make these changes:

Incrementation

142 PRINT "What increment do you want "j;:INPUT INCRNUM

144 PRINT:PRINT
200 NUM=NUM+INCRNUM

Now we can try whatever increment we like without having
to change the program—an increase in the flexibility of the

98

Anatomy of a Loop

Decisions

program. However, some increments (as we discovered on the
previous page) are inconsistent with the test at line 190 as we

have it written. We need to increase the flexibility of the test as
well. We'll refer to tests as decisions.

The test, or decision, statement from our program is line 190:

190 IF NUM=20 THEN END

We can quickly solve some of our problems by changing this to

190 IF NUM>»=20 THEN END

Now, the program will end if the last value printed is either

1. Exactly equal to 20, or
2. Greater than 20

Try running the program once with an increment of 2, and then
again with an increment of 3 to see how this works.

We have already looked at the structure of a decision
(IF..THEN) statement in Chapter 7, but decision statements
are so important that we’ll review how they work. Taking line
190 of our program as an example:

1. Ifthevalue of NUMis exactly equal to 20, the program ends.
2. If the value of NUM is greater than 20, the program ends.
3. Ifthevalue of NUMisless than 20, line 200 is executed next.
We can think of the command in line 190 as asking a ques-
tion: Is the value of NUM greater than (or equal to) 20? If the
answer is yes, then the program ends; if the answer is no, then

NUM is incremented and we go through the loop again. When-

ever we write a decision statement, we must be perfectly clear
about two things:

1. What we want to do if the question asked in the statement
has a yes answer

2. What we want to do if the question asked in the statement
has a no answer

Let’s ask the question in line 190 in a different way:

190 IF NUM<20 THEN ...

Decisions

99

What should we write in place of the “...”? Well, if the value of
NUM is less than 20, then we need to increment NUM and then
go back to line 180. If the value of NUM is not less than 20, that
is, it is greater than 20, or equal to 20, then the program should
end. Then we could rewrite our loop as follows, eliminating
line 210:

180 PRINT *® "aNuUMz ™ "3 NUMXNUM
120 IF NUM<Z0 THEN NUM=NUM+INCRNUM: GOTO 180
200 END

Does this seem easier, or harder, to understand than our
original loop (below)?

180 PRINT ¥ "INUM: " "3 NUMXNUM
190 IF NUM>=20 THEN END

200 NUM=NUM+INCRNUM

210 GOTO 180

We might anlayze the structure of a loop as shown in Figure

Initialize

START —»—\

Compute, Print

| +

Make a Decision (IF ... THEN)

| +
NO
LOOP YES *
Increment End Program
\
Go to Start
of Loop

END —
FIGURE 8-1 Structure of a Loop

Please note that Figure 8-1 refers to a loop in which the question

asked in the decision statement is: Should we stay in the loop?

This corresponds to the version of our program, which has line
190 as

1920 IF NUM<20 THEN NUM=NUM+1:G0TO 180

100

Anatomy of a Loop

Now that we have a good understanding of decisions, let’s
see if we can “fix” the first program in Chapter 7 (“Chapter 7,
No. 17). We'll repeat it here for convenience:

100 REM - Chapter 8, No. 2

101 REM - (Chapter 7, No. 1 repeated)
110 GRAPHICS 3

120 COLOR 1

130 PLOT X,Y

140 SOUND 0,4%(X+Y), 10,10

150 FOR WAIT=1 TO SO:NEXT WAIT

160 X=X+2:Y=Y+1

170 GOTO 130

Do youremember that we always got an error message (141-
cursor out of range) when we ran the program? Let’s build a test
into the program so that it will stop before it tries to plot a point
with coordinates that are too large. We’ll phrase our question
according to the structure diagram we just discussed. Recall
thatin GRAPHICS 3 the columns are numbered from 0 to 39 and
the rows are numbered from 0 to 19. Thus, 39 and 19 are the
largest permissible values for X and Y in line 130. As long as X
isless than 39, and Y is less than 19, we can stayin theloop. Add
the following statements:

101 REM - (Addition to Chapter 8. No. 2)
160 IF X<38 AND Y<19 THEN X=X+2:Y=Y+1:60TO 130
170 END

Did it work? The display should end by printing READY
and the cursor in the text window. We used 38 (instead of 39) in
line 160 because all of the values of X are even numbers because
the first value is 0 and the increment is two. Forty (40), the next
even number after 38, would be too large.

Our decision statement in line 160 has a new feature: The
use of the keyword AND. The statement “X<38 and Y<19” is
true only if both of the statements “X <38” and “Y<19” are true.
We want to be sure that both the X and Y values are in range, So
we use a compound (two or more parts) IF statement. Notice
also that following the THEN statement we do three things:
(1) increment X, (2) increment Y, and (3) go back to line 130.

You can think of line 160 as asking the question: “Are X and
Y small enough to go through the loop again?”

In the preceding two programs (and their variations), the
decision statement provided for two possibilities: Stay in the
loop, or end the program. Actually, we needn’t end the program;

Tracing a Program

101

we can do something else after the loop is finished. Let’s add a
loop to our preceding program that will draw the other dotted
diagonal of the rectangle. It will be very similar to the existing
loop. Add these lines:

100 REM — Chapter 8. No. 3

101 REM — (Addition to Chapter 8, No. 2)

170 X=3B:Y=0

180 PLOT X,Y

190 SOUND O,4%(38-X+Y), 10,10

200 FOR WAIT=1 TO SO:NEXT WAIT

210 IF X>0O AND Y<19 THEN X=X-2:¥Y=¥Y+1:G60T7T0 180
220 END

Why do we need line 170? Right! We want to start one square
to the left of the upper right corner of the screen, so the initial
value of X is 38, and the initial value of Y is 0. (We have to initial-
ize Y because it last had the value of 19 from the first loop.) Now
look at the sound statement in line 190. We would like the pitch
valueto getlarger (the tones get lower) as the dotted line is drawn
from upper right to lower left. The value 38-X increases from O to
38 as X decreases from 38 to 0, so the expression 4+(38-X+Y) will
increase as we go through the loop. At line 210, we are asking:
Is X still large enough, AND is Y still small enough, to go
through theloop again? If they are, then X gets anegativeincre-
ment and Y gets a positive increment.

The more you experiment at this point by modifying the
initialization, incrementation, and decision statements in this
program, the more you’ll learn about writing loop programs.
Next we’ll look at a technique for understanding what a program
does without running it.

Type in and run the following program:

100 REM ~ Chapter 8, No. 4
110 GRAPHICS O:PRINT

120 COUNT=10

130 PRINT "HAVE A NICE DAY!'”"
140 IF COUNT>11 THEN END

150 COUNT=COUNT+1

160 GOTO 130

A trace of a program is a chart that shows the following
items as each line of the program is executed: The line number,
the values of variables, the results of tests, and the output. A
trace of the preceding program follows in Table 8-1.

Tracing a Program

102

Anatomy of a Loop

TABLE 8-1 Trace of Program Chapter 8, No. 4

Step Statement Value of Decision Yes Output
Number Number “Count” (Test) /No
1 110 (clear screen)
2 120 10
3 130 HAVE A NICE DAY!
4 140 COUNT>11? NO
5 150 11
6 160
7 130 HAVE A NICE DAY!
8 140 COUNT>11? NO
9 150 12
10 160
11 130 HAVE A NICE DAY!
12 140 COUNT>11? YES
13 END

To write the trace, we simply read each line of the program
and record the results of executing that line. Because REMark
statements aren’t executed, we ignore them. When the first
value for the variable count is entered (step 2), it remains the
value until a new one is entered (steps 5 and 9). Each time the
decision statement is executed, we show the answer to the ques-
tion asked. We draw a horizontal line to show the end of each
pass through the loop. In our program, we see that the loop is
executed three times, so the sentence “HAVE A NICE DAY!”
is printed three times.

Following are two programs that are similar to the preced-
ing one but with the elements of the loop placed in a different
order. First, write a trace of each program, using a chart like

Table 8-1. Then type the programs in and run them to see if your
trace is correct.

100 REM - Chapter 8, No. 5
110 GRAPHICS O:FPRINT

120 COUNT=10

130 IF COUNT>11 THEN END

140 PRINT "HAVE A NICE DaAavY!"
150 COUNT=COUNT+1

160 GOTO 130

100 REM — Chapter 8, No. &
110 GRAPHICS OQ:PRINT

120 COUNT=10

130 COUNT=COUNT+1

140 IF COUNT>11 THEN END

150 PRINT "HAVE & NICE DAay!'”
160 GOTO 130

Tracing a

Program

103

Here is the trace for the program Chapter 8, No. 5:

TABLE 8-2 Trace of Program Chapter 8, No. 5

Step

Statement Value of Decision Yes

Number Number “Count” (Test) /No

Output

110
120 10

(clear screen)

130 COUNT>11? NO
140

150 11

160

HAVE A NICE DAY!

© 00O Utk WD

130 COUNT>11? NO
140

150 12

160

HAVE A NICE DAY!

130 COUNT>11? YES
END

Here is the trace for program Chapter 8, No. 6:

TABLE 8-3 Trace of Program Chapter 8, No. 6

Step Statement Value of Decision Yes Output
Number Number “Count” (Test) /No
1 110 (clear screen)
2 120 10
3 130 11
4 140 COUNT>11? NO
5 150 HAVE A NICE DAY!
6 160
7 130 12
8 140 COUNT>11? YES
9 END

Theimportant message of these three different tracesis that
the order of the elements in a loop (and the values in the decision
statement) will determine how many times the loop is executed.
Here is a “model” program to print “HAVE A NICE DAY!”
five times:

100
110
120
130
140
130
160

REM — Chapter 8, No. 7
GRAFHICS 0O:FPRINT

COUNT=1

FPRINT "HAVE A NICE DAvY'!*"
IF COUNT=5 THEN END
COUNT=COUNT+1

GOTO 130

104

Anatomy of a Loop

The structure of the loop in the preceding program could be
diagrammed as shown in Figure 8-2 (compare with the diagram
of a loop in the section on Decisions).

Initialize (COUNT=1)

START A—j

Print “HAVE A NICE DAY!"”

| *

Make a Decision (is COUNT=5?)

+ f

N YES
LOOP 0 f
Increment COUNT End Program
A
Go to Start
of Loop
END —<—-

FIGURE 8-2 Structure of a Loop for Program Chapter 8, No. 7

Counters

Notice that in all of the variations of this “NICE DAY”

100
110
120
130
140
150
160
170
180
190

program, the variable COUNT serves only to count how many
times we have gone through the loop. We refer to such a variable
as a counter.
Suppose we would like to find out how many positive integers
have squares that are between 300 and 500. Try the following
program:

REM — Chapter 8, No. 8

GRAFPHICS 0O:PRINT

REM Xx% N=NUMBER, S=SQUARE, C=COUNTER XXX

N=16:REM Xx*¥% WE REMEMBER THAT 16 SQUARED IS 256 xxx
S=NxN

IF S>=3200 AND S<=500 THEN PRINT N.S:C=C+1
IF S<=500 THEN N=N+1:G0T0O 140
PRINT: PRINT

FRINT C:" NUMBERS HAVE SQUARES™
FRINT "BETWEEN 300 AND SQ0."

As indicate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>