ATARI? PROGRAM !
€ @nene/cH

AUTHOR'S GUIDE

MAY 1, 1981

TRADEMARKS OF ATARI
The following are trademarks of Atari, Inc,

ol ~ ATARI A
-~ - . ATARIT 400 Home Computer
~ ATARI 300 Home Computer
ATARI 410 Program Recorder
ATARI 310 Disk Drive
ATARI 320 40-Column Printer
ATARI 322 Thermal Printer
ATARI 825 20-Column Printer s

ATARI 830 Acoustic Modem <% &
ATARI 850 Interface Module *-. .-'.,- ‘1:’,
2 2l

***’* 30

Distributed by kit

B K e P

The ATARI Program Exchange MEIC R
P. O, Box 427 -
135 Moffett Park Drive, B-1 g
Sunnyvale, CA 94086 e

To request an APX Software Catalog, write to the address above, or call toll-free!

800/338-1862 (outside California)
800/672-1850 (within California)

o -tk

Or call our Sales number, 408/745-5535, g%,
HHHEHHHHHHERHHEHEHEHOHHHEHEHEHEHEHEHEHEEHHHHH HEHOHOHEHEHEHRHHEHHHHHH e 27

.h'

T

s

ATAHRI PROGCGRAM EXCHANGE

. AUTHOR'S GUIDE

Submitting your user instructions. When you submit your program to the ATARI Program

Exchange (APX) for review, you also submit yaur program’s user documentation. APX wants to
offer ATARI Personal Computer awners not only well-written programs but also well-written user
instructions! So, when we review your program, we also review your documentation. We‘d like to
have your manual on diskette, with the file formatted using either the FORMS program

; (available through APX) or the ATARI Word Processor, and accompanied by a printed copy of your

- manual. However, we’ll also accept a typed copy of your user instructions.

- The Author’s Guide. This guide can help you organize and write your user documentation. It

. outlines suggested topics to cover for two kinds of programs! games (see pages 1 -~ 5) and all

;. other programs (see pages 6 - 12), It also includes examples of ways to explain standard types
.+ of information, such as describing menu-driven, controller-driven, and command-driven

~ programs. If you're so well-organized that you’ve already written complete user instructions,
~.then check that they cover the topics mentioned in this guide. In addition to the user manual
~:Sections described in the following outlines, we’d welcome a table of contents and a list of

figures and/or tables for your manual.

' ‘Finally, the guide also contains programming procedures and suggestions that can make your
program easy for others to use (see pages 13 - 14), Consider these suggestions for your
current program as well as for future programs you plan to submit to APX, If you submit your
program on diskette, we’d prefer that it run under DQS II, as that version becomes available.

- Retain copies for yourself. We won’t be returning either your user manual or your program,
regardless of the review decision. Therefore, keep copies of your program and all
documentation.

Copyright information, ATARI won‘t copyright software distributed by APX, Therefoare, if you
want to copyright your software yourself, write to the Register of Copyrights, Copyright
Office, Library of Congress, Washington, D.C., 20559,

. - When your program and user instructions are ready for review, fill out the Program Submission
Form accompanying this guide and mail the following items:

Program cassette/diskette

Program Submission Form

Software Submittal Agreement (2 signed copies)
User instructions

Source code in machine-readable form

to!

THE ATARI PROGRAM EXCHANGE
P. Q. BOX 427

1196 BORREGAS AVENUE
SUNNYVALE, CALIFORNIA 94086

GAME SOFTIWARE OUTLINE

1 GENERAL. DESCRIPTION
Game overview

This section orients the user. Try to keep your description under 200 words, Briefly
mention your game’s major features--such as the general type of game, how it’s played

{e.gsy with joysticks), the object of the game, and any options and game variations——but
save the details for later. An example is!

AVALANCHEX is a paddle game of speed and dexterity. An
avalanche of rocks is poised overhead, ready to pummel YO,
Score as many points as 4ou can by absorbhing the falling rocks
with your shields before the rocks hit the qround. Use s paddle
controller to maneuver vyour shields back amd forth across the
screen. Your chosen bonus level determimes the riumber of misses
Yyou’'‘re allowed and the rnumber of points yYou must obtain to earn
an extra turn, Compete against Yyour own best score or aqainst
another plager.,

Minimum RAM and accessories

A simple way to organize this information is to list it. Include here both required and
optional accessories. For example! ‘

REQUIRED ACCESSORIES
16K RAM for cassette version
24K RAM for diskette version
ATARTI 410 Froqram Recorder for cassette
ATARI 810 Disk Drive for diskette
ATARI BASIC Languaqe Cartridqe

OFTIONAL ACCESSORIES
ATARI Joystick Controller
2 GETTING STARTED
A simple way to organize this information is in numbered steps, in the order a user would set

up his or her equipment and load your program. First indicate what accessories and/or
cartridge must be in place before loading your program. Then describe how to load your program.

Standard wavs to describe program loading
You load a prograﬁ‘n from diskette or from cassette, On each medium, the program loads one way

if it's written in machine language and another way if it’‘s written in BASIC. Here are
examples for loading a program written in BASIC,

#Indicates trademark of Atari, Inc,

Game Software Qutline

1f_gouw have the cassette version of the game! ;

1. Insert the game cassette in the proqgram recorder, press
REWIND, amd then press FLAY.

2. Type CLOAD and press RETURN twice.

3. After the qgame loads into RAM, You’ll see the READY prompt.
Type RUN and press RETURN.

If _gou have the diskette version of the game!

1, Turmn on your disk drive and insert the game diskette.
2. Power up your computer amd turmn or Your video screer.

3. At the READY prompt, type RUN "Difilename" and press RETURN.
The game will load into RAM.

The first display screen

Start your instructions for the game itself by describing the first display screen, which also
tells the user what to expect if the program has loaded correctly. For example!

You’ll see a screen containing scoring information at the top! =z
four—-lager avalanche; the text "AVALANCHE"” and "EONUS FLAY FOR

300"; and four shields moving back and forth across the surface
and absorbing falling rocks.

Game options and variations

If your program has variations chosen by pressing OPTION or SELECT or by responding to a
prompt, describe gach choice. An example of variations chosen by a function key is!

Press SELECT to choose 2 orie-plader or two-plavder qgame. If only
"#1" appears in the scoring area at the top of the screen,
You’ve selected 3 ome-plaver qame. If “#1" and "#$2" display, You
have a3 two-plager game. Plavyers alternate turns.

An example of variations chosen by responding to a prompt is!

You’ll see the prompt DIFFICULTY LEVEL(0-?). Select the level
you want, zero being the easiest and nime beima the most
challenqging.

How to start

Finally, you want to be sure to tell the user how to start playing if your game doesn’t start
automatically! For example!

After gow’ve chosen Your bonus level and rnumber of playgers,

Game Software Outline

press START to begbm playing. The avalanche will start fallina
in sbowt 10 seconds, or You can press the red buttorn on Your
paddle to start sooner,

3 PLAYING THE GaAaME
The playing field

If the game’s playing field differs from the initial display, you’ll want to explain any items
on the screen that aren’t self-explanatory. For example, a grid game using numbers as players
can be described as follows!

Your qoal is first to locate an enemy unit and then to enqgage it
in combat by moving Your unit(s) into the hexaqgon it occupies.
Each of yYour wnits displays as a number (0-9) inm 3 hexagon.
Erems units visible to wou display as numbers (also 0-9) in
inverse video, Enemy units will suddenly appear wherever ore of
wour units moves within three hexacons of them. You c3m move
gyour wnits into any outlimed hexaqgon. However, youw can’t pass
througn solid hexaqons from any directiorn.

1f sounds or color changes denote specific conditions players should be aware of--such as a
flashing red to denote danger-—you might want to describe these here as well. If the display

screen changes under some circumstances, describe the screen variations and the conditions
controlling them.

Game rules and moves/actions/commands

Organize this information to suit your game. A simply played game might need only one
paragraph. That’s all it took to explain this paddle game!

By turning your paddle knob, maneuver yYour six shields to keep
the rocks from hitting the groumnd. Each rock that qgets by wgou
counts as 3 miss (that is, a turn). As You absorb the rocks,
your shields wear away——each one decreases in size and then
disappears altogether, until you have only one small shield. At
the same time, the rocks fall faster as you progress throuah the
lagers to the smaller rocks. If you’re dexterous ernough to
absorb the entire mass, You face successive avalanches, but You
start each nmew round with fewer shields.

On the other hand, if your game has many rules, or if it uses several keyboard commands,
describe each., One approach is to explain rules and commands in the order a player typically
needs to know the information while playing the game. Another approach is to group similar
commands or rules. Your game might call for yet another approach. When you explain commands or

actions, a "picture” of menus or data displays along with an explanation can be very helpful.
An example is!

You’ll see the prompt INFUT COHORT # below the game arid. Enter
one of two kinds of numbers! a number for one of Your units or a
number for an eremy unit. Entering 3 rumber for orne of wdour

Game Software Outlire

'

units (e.@+, 6) results in a8 display like the following!

COHORT EFF.ST. DIS.ST. MOVES
6 100 0 6 000

“"COHORT" refers to your unit’s rumber. "EFF.ST." (effective
strength) and "DIS.ST" (disrupted stremath) are explairned below.
Under '"MOVES", 4ou may replace 38 many of the zeros as you like
with ome-digit directional commands, which the program executes
in real time.

Scoring

If your game keeps scores, explain the scoring system. If scores display on the screen,
explain what each piece of information represents. For example:

Each plader’s current score displagys in the second lirne. You
earn one point per rock in the first lavyer, two points per rock
in the second laver, and so on, up to six points per rock in the
sixth lager. The same scoring applies to each avalanche You work
your way through.

4 PROBLEMS

Use this section to warn players about potential problems and to explain what happens when
players do something invalid. An example of a program operation warning is!

Be sure to wait for the "beep" sound indicating the computer has
read your command before 4ou press arother key, Otherwise, the
program might lose some of ygour commands.

An example of a common invalid move with program response and recommended recovery is!

If you try to enter a3 move for a wnit that slready displays four
moves (i.e., no zeros), the proaeram will bump You back to the
"INFUT COHORT #'" prompt. You must either wait for the proaram to
execute at least ore move for that unit before entering arother
move, Or erase one or more moves for the unit and then enter new
moves.

S SUGGESTED STRATEGY AND HELPFUL HINTS (optional)

You might want to give novice players some hints or strategy, espedially if your game is
complicated. An example is!

If You’re 3 beginner, a2 simple strateqy to follow is?! (1) fight
ornly ome attacker; (2) pursue him (code 8) at warp factor 1} (3)
lock. om 311 phasers (code 4); (4) continuously take his position
and watch his voyaqge; (9) when he gets withirnm 1100 M, fire all
phasers (code 1) and keep on firirng while he is in rarnqe! and

Game Software Outline

(6) when the ememy is out of ramqe, scanm him (code 9). After a
few trial games, you’ll want to become as efficiemt as the enemy
at firing photon torpedoes. Finally, whern You master launching
anti-matter probes, 4ou can desianate more than one opponent.

6 RESTARTING OR REPLAYING THE GAME

7

8

Describe here how players can both interrupt a game in progress to start over and play another
round of a game they’‘ve finished. Examples are!

You can interrupt the qame at any time and start over by first
pressing BREAK, then SHIFT CLEAR, and typing RUN.

When you finmish 2 qgame, responding Y to the prompt LIKE TO PLAY

AGAIN (Y OR N)? will set Youw up to battle the harbarians et

snother time!

ADVANCED TECHNICAL INFORMATION (optional?

1f you think some users might want to madify your game or design another game based on some
techniques you’ve used, you might want to include information here so users can study what
you've done. Assume a reader of this section has fairly extensive experience programming ATARI
Personal Computer Systems, Consider the following kinds of information, either for your
complete program or for its particularly complex parts!

1, A fully commented program listing (in the case of a program written in machine
language, this would be the source code, which you should make as readable as possible).

2, A system-level diagram or description of your program’s activities.

3. A description of the data structures used in your program, including diagrams of
diskette/cassette file formats, pointer arrays, and data arrays. -

4, A list of the most important variables used and their function.
S. A cross-reference listing of the program.

&, Any helpful hints, descriptions of unusual PEEKS or POKES, and other information that
would help someone understand your program.

SUMMARY OF USEFUL INFORMATION (optional)

Players will be grateful to see a one-page summary of the information needed to play your
game! When writing this, assume they’ve read through your instructions and need just a brief
reminder of commands, rules, and so on.

NOM—G@arHE SOFTHWKARE OUTLINE

Whether to include some of the following sections and the amount of detail to use depends to a
large extent on your program’s intended user—-taking into account both age and background, A
program designed for preteenagers with no programming experience needs much more explanation and
simplified vocabulary than does a program intended for adults with extensive programming
experience, Form a mental portrait of your program’s typical user and try to address that user in
your instructions. In general, the more explanation you include and the simpler you keep your
vocabulary, the wider the potential market for your software, Many of the examples below come from
a manual written for preteenage and teenage users, Notice how the explanations assume limited
computer experience and avoid using many specialized computer terms. Consider whether your
program’s documentation faces these or similar restrictions.

1 INTRODUCTION
Overview

Use this section to orient the user. Describe generally your program’s application, its most
important features, and why and how one uses it, The idea is to give your readers a frame of
reference for all the details that follow, but not to overwhelm, bewilder, or discourage them
with too many details at this point. Other aspects you might want to mention briefly are your
program’s basic logic, any equations it uses, the kinds of activities users can do or the
functions your program performs, whether your program is menu/prompt-driven,
controller-driven, or command-driven, the kinds of output it produces, program limitations (if
they‘re likely to discourage some users), and any other special considerations generally
affecting your program. An example is!

The NEWSFAPER ROUTE MANAGEMENT PROCRAM helps 4ou manaqe a
rnewspaper route by simplifying Your record-keeping chores. It
supports daily and Sunday routes of a3s many as 100
subscriptions. You use menu selections to enter, update, and
delete customers’ addresses and class of service to reflect
subscription changes, and 4You keep track of Your customers on a3
computer—-displayed map. You use 3 jodystick conmntroller to
position houses on the map and to update it when necessard., In
addition, Youw can create and display several kinds of customer
lists. If you have an ATARI 82%5(TM) Frinter or an equivalent
printer attached, You can print these lists, as well as payment
collection lists and customer receipts. :

Minimum RAM and acressories

A simple way to organize this information is to list it, The same section in the GAME SOFTWARE
OUTLINE shows an example.

Spedial terms or notation

Note here any terms and symbolic notation you think most users will need explained, either
because you use the term or notation in a spedial way or because the term or notation isn‘t
known generally. Include terms and notation you use in either your program or your manual.
Examples help to clarify notation descriptions. An example of a special terms explanation is!

Norm-qame Software OQutline

The terms "START" armd "ACTIVE" both refer to a customer who
currently receives the paper, and the term "STOF" refers to 3
customer who is on vacation or has temporarily suspended '‘service.

Special function keys

If your program uses function keys, such as the control or escape key or the directional arrow
keys, note that information here, along with a brief description of their purpose.

References to related publications

If your program assumes a user is familiar with another ATARI publication, mention the
document here. If your program depends on a user’s having read some other, non-ATARI
publication, cite the work as follows! author (last name first), full title, edition, volume,
number of pages, publisher, and copyright year. If only some chapters or pages are important,
mention these pages instead of the total number of pages for the work.

2 GETTING STARTED

Flease see the discussion under GETTING STARTED in the GAME SOFTWARE OUTLINE for suggested ways to
describe how users should load programs, depending on the software medium and the language.

The first display screen

Begin your detailed discussion of your program by describing the first display screen. At a
minimum, tell the user what to expect, if the program loaded correctly, Better yet is to include an
illustration of the first display screen. For example!

The first display screen looks like this?

FILE: FAPER30.LST
DATE:! 2/22/81

13 MAF ELEMENTS
6 STREET NAMES

40 HOUSES SAVED ON 02/28/81

ACTIVE HOUSES . + + + + 38
STOPS ¢ 4 4 ¢ o « o o+ ¢ 2

TODAY’S DATE (MM/DD/YY) 7?_

3 FUNCTIONS AND/OR COMMANDS AND/OR MENUS

This section is the heart of your user manual. These are the step-by-step instructions for
using your program. Organize your information in a way that’s logical for your program
application. Some standard ways are by menu screens and by menu selections within each screen,
or by each kind of program function, or by order of activity, if there’s one usual order. For

each unit, include the following information, as applicable!

Non-game Software Qutline

1. Its name and purpose
2, The possible actions/options
3. The possible follow-up steps
Here is an example of instructions for a menu—-driven program:

SELECTION 1: DISPLAY MAF

Use this selectiomn to look at maps of the houses on Your route.
Whert you first select DISPLAY MAF, an empty street map displaus
in the qraphics area of yYour video screen. The text window
displays this Selection 1 Submenu!

SELECT
1. ACTIVE HOUSES
2., STOPS
3. BOTH ?_

Enter 1 to display a map with house markers for only your active
customers. Enter 2 to display ore with markers for only Your
inactive customers. Enter 3 to display 3 map with markers for
a2ll gour customers.

An example of explaining a program driven by controllers is$

As lona as the map displays, a3ll Your commands are throuagh the
Jjoystick controller. The map displadys in the aqraphics ares of
Your video screen. The small flashing cursoer indicates wour
current map location. Hold the jovystick with the red buttorn to
your upper left, toward the video screen. FPositiorn the cursor
over an existing house marker or Qo to a3 new location by movina
your jodstick in these directions?

up
diaqonally diagonally

A

\ | /
|
|

|
/ 1\
|
diaqgonally v diaconally

down

When the cursor is positioned where You want it, press the red
button, Thern move the joystick as showmn below to add a riew house
marker (MARK), erase an existimg howse marker (ERASE), do

Nan—-game Software Outline

rnothing with gour current cursor position (IGNORE), or leave the
Mmap in its current state and return to the Customer Record
display (QUIT)?

IGNORE <~=m== —w——- * QUIT

ERASE

Here is a sample instruction for a command-driven program. One way to arrange commands is
alphabetically, which makes random searching fairly fast. Another way is by logical groups. In
this example, the command‘s name, format, and one or more examples appear on separate lines,
followed by a description of what it does and explanations of the examples!

JUMF TO NEXT FPAGE
Format: v
Example! «J10

The command ".Jdn'" promotes the text following it to the
rnext paqge if fewer than '"n" output lines remain on the
current page. Use this command when you want a3 certain
block of text to appear on the same paqge or wher You want
to leave room for tables, figures, or illustrations. For
example, to avoid breaking up a fiqure occupsging 10 output
lires, enter ",J10" prior to this block of text. If at
least 10 lirnes remain on the current output page, the
figqure will print on that page; otherwise, the proaram will
leave the remainder of the current page blarnk armd print the
figure beqginming at the top of the rext paqe.

Refer to ATARI‘s BASIC REFERENCE MANUAL, pages 3 and 4, for the correct punctuation to use
when a command format contains optional items aor requires one of a choice of items. Natice the
generous use of illustrations and examples in these sample instructions.

4 TROUBLESHOOTING

Describe what could go wrong in your program and how users can recover. Consider mistakes users can
make on program loading, during data input, and at other stages of program use.

Error codes and/or messages

If your program contains error codes or error messages, list each one and explain the code or
message, common causes for triggering the code or message, and how to recover from the error,

Non-game Software Outline

. An example is!

CHECK PRINTER AND SELECT ONE

1. TRY AGAIN

2. RETURN TO MAIN MENU
You’ve requested that customer receipts or a collection or
house list he printed, but the program can’t carry out your
instruction. Make sure that yvour printer and interface are
turmed on, and then enter a3 1 to print gour data. If 4ou’ve
changaed gour mind about printing the information, enter 2
to returm to the Mainm Menw.

Program Bugs

If you know that your program contains some bugs, describe them here——the circumstances
likely to trigger the bug, the bug itself, and a suggested recovery. An example is!

You might occasionally generate an error code if You’re careless
with yYour responses to the prompts. For example, if you simply
press RETURN in response to the SELECT OFTION prompt, 4ou’ll see
ERROR —-12 (Lime Not Found). In these cases, 4ou must rerun the
PTOQTram.

Program operation limitations and warnings

Describe potential common problems users could encounter when using your program that aren’t
the result of a user error, but instead pertain to program operation ability or accuracy.

Again, be sure to suggest how to recover ar how to avoid the problem altogether. An example of
a program limitation is!

Remember, sour howse numbers can be mo longer thar 4 characters
and your street names can be no longer tham 15 characters.

An example of a program warning is:

If 4ou lengthen Your variasbtle names, you could cause some rew
lines to become longer than the logical linme limit of the Screen
Editor. When this happens, the proaram will still rum, but you
might mot be able to edit those lines bhecause the Screen Editor
will truncate them at the loagical lirme limit.

S ADVANCED TECHNICAL INFORMATION (optional)

Use this section for information that advanced users would need to modify your program or to use

its more advanced features, The section describing ADVANCED TECHNICAL INFORMATION in the GAME

SOFTWARE OUTLINE lists some of the kinds of information advanced users will find helpful, A sample
of a program listing explanation is!

Limes 100-125 contain the timing loop that checks for leaqal
input and waits for the wser to press the correct key before
contirnwing.

-10-

Non—-qQame Software Outline

Lirmes 130~220 contain the strateay loop for the computer’s

move. Depending on which level 4ou’re playging, the computer
checks from one to five moves ahead., Specifically, lirnes 150 and
160 check ahead and convert the results into numerical foarm,
lirne 170 stores the value into an array, and lines 180-210
compare and evaluate the data.

Lines 300-350 keep track of the score and display it on the
screen. Line 340 achieves the fireworks effect over the
scoreboard and line 345 calls the sound subroutine.

An example of a variable list is!

A$(342) ARRAY FOR START TOKENS
E$(6) STRING FOR BLANK FILL
C$(1024) ARRAY FOR INPUT FILE
D$(1024) ARRAY FOR NAME TAELE

E(256) ARRAY FOR VARIABELE ENDS
F FOINTER TO A%

I TOKEN COUNTER

L LINE LENGTH

+
* *

The numbers in parentheses are the dimension sizes.
An example of advanced programming information is?

You can alter the progaram to sort records qreater than 185
bytes. To help gou, both the source code for SUFERSORT--with
filename SUFER2.ASM~-—-and the source code for AUTORUN--with
filename DVMOD.ASM--are on the disk. The variable TREC is a
temporaryg storaqe variable residing onm paqe sin. EBecause it
shares this area with other variables, it‘s only 185 bytes, but
you carn move TREC to 2 more open area to ircrease its byte size.
The proaram accepts single byte record lemaths evern if You move
TREC. In addition, 4You can modify the proaram to accept double
byte records since the program uses record length (RLENG) only
during additions. Because the addition is already double byte
(to handle propagation), You need only change hi byte additions
from ADC #0 to ADC RLENGHI. However, these modificatiomns terd to
slow down the proqram.

é& SAMPLE APPLICATIONC(S) OR SESSION(S) (optional)
Use this section to describe typical applications, both the most basic and some logical extensions.
An example of this approach is the following description, which first shows an application using
program default settings, and then describes extensions of the simplest case!

EXAMFLE 1. To remnumber a proaram using the default settinas.

ENTER INFUT DEVICE?D!TEST

11

Norm—-qame Software Outline

ENTER OQUTFUT DEVICE?D!TEST.REN
STARTING NO.7?0

The program renumbers yYour designated file wsing the
default parameters described earlier in this manusal.

EXAMPLE 2., To renumber an entire proagram, setting Your own
values (the mumbers are samples) use yYyour own values).

ENTER INFUT DEVICE?D!TEST
ENTER OUTPUT DEVICE?D!TEST.REN

STARTING NO.7?5
INCREMENT?S
FROM?10
TO?30000

EXAMFLE 3. To move a3 block of code (4ou want to move lirmes 100
through 190 to lines 1000 through 1090, setting Sour own values).

ENTER INFUT DEVICE?DITEST
ENTER OUTFUT DEVICE?DITEST.REN

STARTING NO.7?1000
INCREMENT?10
FROM?100

T0?190

EXAMPLE 4. To switeh two blocks of code.

1. To switch block A with block E, move block A to some
unoccupied line numbers, using the procedure in Example 3.

2, Next, using the file resultiria from step 1 and the same
procedure, move block B into block A’s former location.

3. Finally, using the file resultine from step 2 and the
same procedure, move block A into block EB‘s former
location. Now save this final version.
If one block is bigger than the other, use a3 smaller
increment value to accommodate the larger block.
7 COMMAND SUMMARY AND OTHER USEFUL INFORMATION (optional)
Users will be grateful to see a one- or two-page summary of the information needed to use your

program. When writing this, assume they’ve read through your manual and need just a brief reminder
of menu selections, commands, options, and so on.

12

ATARI PROGRAM EXCHANGE

PROGRAMMING PROCEDURES AND SUGGESTIONS
1 PROCEDURES

1, When you first send your program to the ATARI Program Exchange, mark it as REVISION 1.0 in
the first remark statement of your program. Then, if you submit modified versions of your
program at later dates, change this number to reflect the kind of revision} increase the

integer value by ane far each major change (e.q., adding more menu selections)} increase the
dedmal value by one for each minor change (e.g., a bug fix). A major change modifies your
program’s functional capabilities; a minor change doesn‘t.

2 SUGGESTIONS

How usable your program is depends to a great extent on how carefully you’ve designed its user
interface. A programmer who has considered the end user is much more likely to produce an
easy-to-use program. The following techniques can greatly increase the usability of a program.
Consider whether these approaches will improve your software, as well.

1. Make your program flexible by offering alternatives to required accessories, when this is
possible, For example, if you design a game playable either from the keyboard or with a
joystick, chances are your potential market will be broader than if your game is playable only
with a joystick. By the same token, if your software can run on either cassette or diskette,
or if its output can print on any of ATARI’s printers (or equivalent printers), you’ll also
increase your potential market size,

2, Let the user know at every step what the program expects him or her to do. Ways to show the
user what to do include!

a) menus for three or more choices

b) yes/no prompted questions

©) one-word answers to prompted questions

d) HELP commands and/or short instruction frames

e) Instructions to press the OPTION, SELECT, or START key when these are active

Approaches to avoid using include!

a) undescribed choices or options

b) CNTRL or SHIFT user inputs, unless really necessary
©) one-letter commands, except for menu selections

d) computer jargon in displayed information or prompts

3. Try to trap and handle internally all system error messages so that a user doesn’t have to
cope with these while running your program,

4, Give the user plenty of feedback while he‘s running your program. Avoid hiding in a visual
and audio "hole" longer than three seconds. In general, the longer the wait, the more feedback
you should give a user. Some ways to tell a user that the program is computing include!

a) an echo of characters the user input
b) messages asking the user to stand by

-13-

Programming procedures and suggestions

c) task completion countdowns
d) flashing displays
e) displays of the estimated computation time

5. Make the user interface as easy and enjoyable to use as possible, Consider these techniques!

a) joystick or paddle controllers (assign these from left to right on the computer
console)

b) rotating fields, changed by cursor position or aption keys

c) meaningful mnemonics and keywards far commands

d) graphical presentations of information instead of strictly numerical ones

e) color-coded fields, messages, and screens

f) flashing cursor when current location might be difficult to see

6. Use various colors for different levels of your program and as a cue, such as red for an
error screen. When creating colors for your program, keep these restrictions in mind}

a) they must be legible on black and white screens

b) they shouldn’t be essential to your pragram’s operation

c) they should minimize color bleeding ("artifacting") on color screens
d) their usage should be consistent throughout your program.

7. Use sounds to enliven your program, but be sure they convey the same meaning throughout.
For example, use the same sound throughout to signify an input error. Sound is also useful for
regaining the user’s attention after a long delay or when an unexpected message displays.
However, too many sounds can be distracting to users.

8. Code your program to ignore or reset lower case and ATARI invert modes in user responses to
help inexperienced users who might get into these modes and be unaware of it.

9. For games, use the START key to begin the game and to restart it with current options
intact if pressed during the game,

10. Use the OPTION key to select the number of players in a multi-player game and the SELECT
key to choose game variations. The display screen should clearly indicate when users select a
different game or aption.

11, As space permits, use tree structures for menu-driven programs deeper than one level,
Users should be able to return to the current menu level or return to the next higher level at
any point.

12, In most cases, terminate input from users by a RETURN. If you choose instead to use a
self-terminating single keystroke, design your program so that (1) if the user hits RETURN
anyway, the program ignores it; and (2) if the user makes a mistake, returning to the upper

level is easy.

-14~

