OSBORNE/McGRAW-HILL

02 ASSEMBLY LANGUAGE PROGRAMMING
LANCE A. LEVENTHAL

DAVID L BURKE
1129 N Bitting St
Wichita KS 67203

6502

nsscmsLV irhgurgc
pPpROGRAMMMG

6502

RSSCHIIfILV LRRGURGC
PROGRNMMING

Lance fl. Leventhcil

OSBORNE/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of
the U.S.A., please write OSBORNE/McGraw-Hill at the above
address.

6502 ASSEMBLY LANGUAGE PROGRAMMING

Copyright ® 1979 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publishers, with the exception that the pro-
gram listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

6 7890DODO 876543
ISBN 0-931988-27-6

Cover design by K.L.T. van Genderen.

ACKNOWLEDGMENTS

The author would like to acknowledge the following people: Mr. Curt In-
graham and Ms. Janice Enger of OSBORNE/McGraw-Hill, who made many
corrections, improvements, and suggestions; Mr. Gary Hankins, Mr. Michael
Lehman, Mr. Winthrop Saville, and Mr. Stanley St. John of Sorrento Valley
Associates, who provided assistance and examples; Mr. Leo Scanlon of
Rockwell International, who provided constant encouragement and reference
materials; Mr. Charles Peddle of Commodore International, who provided
some reference material; Ms. Marielle Carter of Sorrento Valley Associates,
who typed some of the material; Mr. Stanley Rogers of the Society for Com-
puter Simulation, who has continually encouraged clear and concise techni-
cal writing; and his wife Donna, for her patience and understanding
throughout the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Walsh, Mr.
Romeo Favreau, Mr. Richard Deisher, Mr. Karl Amatneek, Mr. Robert Stow,
and Mr. Irv Stafford. Other students and colleagues also helped to keep the
author on the right track.

The author, of course, bears responsibility for any remaining errors, miscon-
ceptions, and misinterpretations.

A special note of acknowledgment should go to the magazine MICRO, which
is entirely dedicated to 6502-based personal computers. Besides numerous
articles, MICRO also contains resource and reference lists related to the
6502. MICRO is published monthly by Dr. Robert Tripp, The Computerist
Inc., P.O. Box 3, South Chelmsford, MA 01824.

This book is dedicated on behalf of Amanda Catherine (Elizabeth Bramble) to
some very special people — Catherine Greenlee, Max and Peggy Leventhal,
Al and Rose Rosen, and Julius and Jeanette Ross.

The author would like to thank Karl Amatneek, Mel Evans, and particularly
Philip Hooper for their lists of corrections to earlier printings of this book.

Contents

Chapter Page
1 Introduction to Assembly Language Programming 1-1
How This Book Has Been Printed 1-1
The Meaning of Instructions 1-1
A Computer Program 1-2
The Programming Problem 1-2
Using Octal or Hexadecimal 1-3
Instruction Code Mnemonics 1-4
The Assembler Program 1-5
Additional Features of Assemblers 1-6
Disadvantages of Assembly Language 1-6
High-Level Languages 1-7
Advantages of High-Level Languages 1-7
Disadvantages of High-Level Languages 1-8
High-Level Languages for Microprocessors 1-9
Which Level Should You Use? 1-10
How About the Future? 1-11
Why This Book? 1-12
References 1-13
2 Assemblers 2-1
Features of Assemblers 2-1
Assembler Instructions 2-1
Labels 2-2
Assembler Operation Codes (Mnemonics) 2-4
Pseudo-Operations 2-4
The Data Pseudo-Operation 2-5
The Equate (or Define) Pseudo-Operation 2-6
The Origin Pseudo-Operation 2-7
The Reserve Pseudo-Operation 2-7
Linking Pseudo-Operations 2-8
Housekeeping Pseudo-Operations 2-9
Labels with Pseudo-Operations 2-9
Addresses and the Operation Field 2-10
Conditional Assembly 2-12
Macros 2-13
Comments 2-15
Types of Assemblers 2-16
Errors 2-17
Loaders 2-17

References 2-18

vii

Contents (Continued)

Chapter Page
3 The 6502 Assembly Language Instruction Set 31
CPU Registers and Status Flags 3-3
6502 Memory Addressing Modes 3-5
Memory — Immediate 3-6
Memory — Direct 3-7
Implied or Inherent Addressing 3-8
Accumulator Addressing 3-8
Pre-Indexed Indirect Addressing 3-9
Post-Indexed Indirect Addressing 3-10
Indexed Addressing 3-11
Indirect Addressing 3-13
Relative Addressing 3-14
6502 Instruction Set 3-15
Abbreviations 3-15
Instruction Mnemonics 3-17
Instruction Object Codes 3-17
Instruction Execution Times 3-17
Status 3-17
ADC — Add Memory, with Carry, to Accumulator 3-38
AND — AND Memory with Accumulator 3-40
ASL — Shift Accumulator or Memory Byte Left 3-41
BCC — Branch if Carry Clear (C = 0) 3-43
BCS — Branch if Carry Set (C =1) 3-44
BEQ — Branch if Equal to Zero (Z= 1) 3-44
BIT — Bit Test 3-45
BMI — Branch if Minus (S= 1) 3-47
BNE — Branch if Not Equal to Zero (Z = 0) 3-47
BPL — Branch if Plus (S= 0) 3-48
BRK — Force Break (Trap or Software Interrupt) 3-49
BVC — Branch if Overflow Clear (V = 0) 3-51
BVS — Branch if Overflow Set (V = 1) 3-51
CLC— Clear Carry 3-52
CLD — Clear Decimal Mode 3-53
CLI — Clear Interrupt Mask (Enable Interrupts) 3-54
CLV— Clear Overflow 3-55
CMP — Compare Memory with Accumulator 3-56
CPX — Compare Index Register with Memory 3-58
CPY — Compare Index Register Y with Memory 3-59
DEC — Decrement Memory (by 1) 3-60
DEX — Decrement Index Register X (by 1) 3-61
DEY — Decrement Index Register Y (by 1) 3-62
EOR — Exclusive-OR Accumulator with Memory 3-63
INC — Increment Memory (by 1) 3-65
INX — Increment Index Register X (by 1) 3-67
INY— Increment Index Register Y (by 1) 3-68
JMP — Jump via Absolute or Indirect Addressing 3-69
JSR — Jump to Subroutine 3-70
LDA — Load Accumulator from Memory 3-71
LDX — Load Index Register X from Memory 3-72
LDY — Load Index Register Y from Memory 3-74

LSR — Logical Shift Right of Accumulator or Memory 3-76

viii

Contents (Continued)

Chapter Page
3 (Cont.) NOP — No Operation 3-78
ORA — Logically OR Memory with Accumulator 3-79
PHA — Push Accumulator onto Stack 3-81
PHP — Push Status Register (P) onto Stack 3-82
PLA — Pull Contents of Accumulator from Stack 3-83
PLP — Pull Contents of Status Register (P) from Stack 3-84
ROL — Rotate Accumulator or Memory Left through Carry 3-85
ROR — Rotate Accumulator or Memory Right, through Carry 3-87
RTI — Return from Interrupt 3-89
RTS — Return from Subroutine 3-90
SBC — Subtract Memory from Accumulator with Borrow 3-91
SEC — Set Carry 3-93
SED — Set Decimal Mode 3-94
SElI — Set Interrupt Mask (Disablelnterrupts) 3-95
STA — Store Accumulator in Memory 3-96
STX — Store Index Register X in Memory 3-97
STY — Store Index Register Y in Memory 3-98
TAX — Move from Accumulator to Index Register X 3-99
TAY — Move from Accumulator to Index Register Y 3-100
TSX — Move from Stack Pointer to Index Register X 3-101
TXA — Move from Index Register X to Accumulator 3-102
TXS — Move from Index Register X to Stack Pointer 3-103
TYA — Move from Index Register Y to Accumulator 3-104
6800/6502 Compatibility 3-105
MOS Technology 6502 Assembler Conventions 3-109
Assembler Field Structure 3-109
Labels 3-109
Pseudo-Operations 3-109
Examples 3-110
Examples 3-110
Labels with Pseudo-Operations 3-111
Addresses 3-111

Other Assembler Features 3-112

Contents (Continued)

Chapter Page
4 Simple Programs 4-1
General Format of Examples 4-1
Guidelines for Solving Problems 4-2
Program Examples 4-4
8-Bit Data Transfer 4-4
8-Bit Addition 4-5
Shift Left One Bit 4-6
Mask Off Most Significant Four Bits 4-7
Clear a Memory Location 4-8
Word Disassembly 4-9
Find Larger of Two Numbers 4-10
16-Bit Addition 4-12
Table of Squares 4-13
Ones Complement 4-16
Problems 4-17
16-Bit Data Transfer 4-17
8-Bit Subtraction 4-17
Shift Left Two Bits 4-17
Mask Off Least Significant Four Bits 4-17
Set a Memory Location to All Ones 4-17
Word Assembly 4-17
Find Smaller of Two Numbers 4-18
24-Bit Addition 4-18
Sum of Squares 4-18
Twos Complement 4-19
5 Simple Program Loops 5-1
Examples 5-4
Sum of Data 5-4
16-Bit Sum of Data 5-9
Number of Negative Elements 5-12
Maximum Value 5-14
Justify a Binary Fraction 5-17
Post-Indexed (Indirect) Addressing 5-20
Pre-Indexed (Indirect) Addressing 5-22
Problems 5-23
Checksum of Data 5-23
Sum of 16-Bit Data 5-23
Number of Zero, Positive, and Negative Numbers 5-24
Find Minimum 5-24

Count 1 Bits 5-24

Contents (Continued)

Chapter Page
6 Character-Coded Data 6-1
Examples 6-3
Length of a String of Characters 6-3
Find First Non-Blank Character 6-7
Replace Leading Zeros with Blanks 6-10
Add Even Parity to ASCIl Characters 6-13
Pattern Match 6-17
Problems 6-20
Length of a Teletypewriter Message 6-20
Find Last Non-Blank Character 6-20
Truncate Decimal String to Integer Form 6-21
Check Even Parity in ASCIlI Characters 6-21
String Comparison 6-22

7 Code Conversion 7-1
Examples 7-2
Hex to ASCII 7-2
Decimal to Seven-Segment 7-4
ASCIl to Decimal -7
BCD to Binary 7-9
Convert Binary Number to ASCIl String 7-11
Problems 7-13
ASCIl to Hex 7-13
Seven-Segment to Decimal 7-13
Decimal to ASCII 7-13
Binary to BCD 7-13
ASCII String to Binary Number 7-14
References 7-15
8 Arithmetic Problems 81
Examples 8-2
Multiple-Precision Binary Addition 8-2
Decimal Addition 8-4
8-Bit Binary Multiplication 8-7
8-Bit Binary Division 8-12
Self-Checking Numbers Double Add Double Mod 10 8-17
Problems 8-23
Multiple-Precision Binary Subtraction 8-23
Decimal Subtraction 8-23
8-Bit by 16-Bit Binary Multiplication 8-24
Signed Binary Division 8-24
Self-Checking Numbers Aligned 1, 3, 7 Mod 10 8-25

References 8-26

xi

Contents (Continued)

Page
Tables and Lists o-1
Examples 9-2
Add Entry to List 9-2
Check an Ordered List 9-5
Remove Element from Queue 9-8
8-Bit Sort 9-12
Using an Ordered Jump Table 9-16
Problems 9-18
Remove an Entry From a List 9-18
Add an Entry to an Ordered List 9-19
Add an Element to a Queue 9-19
16-Bit Sort 9-20
Using a Jump Table with a Key 9-20
References 9-21
Subroutines 10-1
Subroutine Documentation 10-2
Examples 10-3
Hex to ASCII 10-4
Length of a String of Characters 10-7
Maximum Value 10-11
Pattern Match 10-15
Multiple-Precision Addition 10-21
Problems 10-25
ASCIl to Hex 10-25
Length of a Teletypewriter Message 10-25
Minimum Value 10-25
String Comparison 10-26
Decimal Subtraction 10-27

References 10-28

xii

Contents (Continued)

Chapter Pago
11 Input/Output 11-1
Timing Intervals (Delays) 11-8
Delay Routines 11-9
Delay Program 11-10
6502 Input/Output Chips 11-12
The 6520 Peripheral Interface Adapter 11-13
PIA Control Register 11-15
Configuring the PIA 11-18
Examples of PIA Configuration 11-19
Using the PIA to Transfer Data 11-21
The 6522 Versatile Interface Adapter (VIA) 11-23
Configuring the VIA 11-27
CA2 Input 11-31
CA2 Output 11-31
Examples of VIA Configuration 11-32
Using the VIA to Transfer Data 11-34
VIA Interrupt Flag Register 11-35
VIA Timers 11-36
Operation of 6522 VIA Timer 2 11-37
Operation of 6522 VIA Timer 1 11-38
The 6530 and 6532 Multifunction Support Devices 11-39
Examples 11-43
A Pushbutton Switch 11-43
A Toggle Switch 11-50
A Single LED 11-61
Seven-Segment LED Display 11-65
Problems 11-76
An On-Off Pushbutton 11-76
Debouncing a Switch in Software 11-76
Control for a Rotary Switch 11-76
Record Switch Positions on Lights 11-77
Count on a Seven-Segment Display 11-77
More Complex I/O Devices 11-78
Examples 11-81
An Unencoded Keyboard 11-81
An Encoded Keyboard 11-90
A Digital-to-Analog Converter 11-93
Analog-to-Digital Converter 11-98
A Teletypewriter (TTY) 11-103
The 6850 Asynchronous Communications Interface
Adapter (ACIA) 11-111
The 6551 Asynchronous Communications Interface
Adapter (ACIA) 11-118
Logical and Physical Devices 11-123
Standard Interfaces 11-124
Problems 11-125
Separating Closures from an Unencoded Keyboard 11-125
Read a Sentence from an Encoded Keyboard 11-125
A Variable Amplitude Square Wave Generator 11-126
Averaging Analog Readings 11-126
A 30 Character-per-Second Terminal 11-126
References 11-127

i

Chapter
12

Contents (Continued)

Interrupts

6502 Interrupt System

6520 PIA Interrupts

6522 VIA Interrupts

6530 and 6532 Multifunction Device Interrupts

ACIA Interrupts

6502 Polling Interrupt Systems

6502 Vectored Interrupt Systems
Examples

A Startup Interrupt

A Keyboard Interrupt

A Printer Interrupt

A Real-Time Clock Interrupt

A Teletypewriter Interrupt
More General Service Routines
Problems

A Test Interrupt

A Keyboard Interrupt

A Printer Interrupt

A Real-Time Clock Interrupt

A Teletypewriter Interrupt

References

Xiv

Page

12-1
12-3
12-5
12-6
12-9
12-9
12-11
12-12
12-13
12-13
12-16

12-20

12-23
12-32
12-37
12-38
12-38
12-38

12-38

12-38
12-38
12-39

Contents (Continued)

Chapter

13 Problem Definition and Program Design
The Tasks of SoftwareDevelopment
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memory Loader
A Verification Terminal
Review of Problem Definition
Program Design
Flowcharting
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Modular Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal
Review of Modular Programming
Structured Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Review of Structured Programming
Top-Down Design
Examples
Response to a Switch
The Switch-Based Memory Loader
The Transaction Terminal
Review of Top-Down Design
Review of Problem Definition and Program Design
References

XV

Page

13-1
13-1
13-3
13-3
13-4
13-4
13-5
13-5
13-6
13-7
13-7
13-9
13-12
13-16
13-17
13-18
13-20
13-20
13-22
13-24
13-29
13-31
13-31
13-31
13-32
13-34
13-35
13-41
13-41
13-42
13-44
13-49
13-50
13-51
13-51
13-52
13-53
13-55
13-56
13-57

Contents (Continued)

Chapter
14 Debugging and Testing
Simple Debugging Tools
More Advanced Debugging Tools
Debugging With Checklists
Looking for Errors
Debugging Example 1. Decimal to Seven-Segment
Conversion
Debugging Example 2: Sort into Decreasing Order
Introduction to Testing
Selecting Test Data
Testing Example 1: Sort Program
Testing Example 2: Self-Checking Numbers
Testing Precautions
Conclusions
References
15 Documentation and Redesign
Self-Documenting Programs
Comments
Commenting Example 1: Multiple-Precision Addition
Commenting Example 2: Teletypewriter Output
Flowcharts as Documentation
Structured Programs as Documentation
Memory Maps
Parameter and Definition Lists
Library Routines
Library Examples
Library Example 1. Sum of Data
Library Example 2: Decimal to Seven-Segment Conversion
Library Example 3: Decimal Sum
Total Documentation
Redesign
Reorganizing to Use Less Memory
Major Reorganizations
References
16 Sample Projects

Project #1: A Digital Stopwatch
Project #2: A Digital Thermometer
References

Xvi

Page
14-1
14-1
14-8

14-10

14-11

14-15
14-19
14-25
14-27
14-28
14-28
14-29
14-29
14-30

15-1
15-1
15-3
15-5
15-7
15-9
15-9
15-10
15-11
15-13
15-14
15-14
15-15
15-16
15-17
15-18
15-19
15-21
15-22

16-1
16-1
16-15
16-29

Figure

5-1
5-2

11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30

11-31

11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40

12-1
12-2
12-3

Figures

Flowchart of a Program Loop
A Program Loop that Allows Zero lIterations

An Output Demultiplexer Controlled by a Counter

An Output Demultiplexer Controlled by a Port

An Input Multiplexer Controlled by a Counter

An Input Multiplexer Controlled by a Port

An Input Handshake

An Output Handshake

Block Diagram of the 6520 Peripheral Interface Adapter

Block Diagram of the 6522 Versatile Interface Adapter

6522 VIA Peripheral Control Register Bit Assignments

6522 VIA Auxiliary Control Register Bit Assignments

The 6522 VIA Interrupt Flag Register

Block Diagram of the 6530 Multifunction Device

Block Diagram of the 6532 Multifunction Device

A Pushbutton Circuit

An Interface for a Toggle Switch

A Debounce Circuit Based on Cross-coupled NAND Gates

An Interface for a Multi-Position Switch

A Multiple-Position Switch with an Encoder

Interfacing an LED

Interfacing a Seven-Segment Display

Seven-Segment Display Organization

Seven-Segment Representations of Decimal Digits

Interfacing Multiplexed Seven-Segment Displays

A Small Keyboard

A Keyboard Matrix

/0 Arrangement for a Keyboard Scan

1/0 Interface for an Encoded Keyboard

Signetics NE5018 D/A Converter

Interface for an 8-bit Digital-to-Analog Converter

General Description and Timing Diagram for the National
5357 A/D Converter

Connection Diagram and Typical Application for the
National 5357 A/D Converter

Interface for an 8-bit Analog-to-Digital Converter

Teletypewriter Data Format

Flowchart for Receive Procedure

Flowchart for Transmit Procedure

Block Diagram of the 6850 ACIA

Block Diagram of the 6551 ACIA

Definition of 6551 ACIA Control Register Contents

Definition of 6551 ACIA Command Register Contents

Definition of 6551 ACIA Status Register Contents

Saving the Status of the Microprocessor in the Stack
Description of the 6522 VIA Interrupt Enable Register
Description of the 6522 VIA Interrupt Flag Register

xvii

Page

5-2
5-3

11-3

11-3

11-4

11-4

11-6

11-7

11-14
11-24
11-26
11-26
11-30
11-40
11-42
11-43
11-50
11-50
11-55
11-56
11-62
11-66
11-67
11-68
11-75
11-82
11-82
11-83
11-90
11-94
11-95

11-99

11-100
11-100
11-103
11-104
11-108
11-114
11-119
11-120
11-121
11-122

12-4
12-7
12-7

Figures (Continued)

Figure

13-1 Flowchart of Software Development

13-2 The Switch and Light System

13-3 The Switch-Based Memory Loader

13-4 Block Diagram of a Verification Terminal

13-5 Verification Terminal Keyboard

13-6 Verification Terminal Display

13-7 Standard Flowchart Symbols

13-8 Flowchart of One-Second Response to a Switch
13-9 Flowchart of Switch-Based Memory Loader
13-10 Flowchart of Keyboard Entry

13-11 Flowchart of Keyboard Entry Process with Send Key
13-12 Flowchart of Keyboard Entry Process with Function Keys
13-13 Flowchart of Receive Routine

13-14 Flowchart of an Unstructured Program

13-15 Flowchart of the If-Then-Else Structure

13-16 Flowchart of the Do-While Structure

13-17 Flowchart of the Do-Until Structure

13-18 Flowchart of the Case Structure

13-19 Initial Flowchart for Transaction Terminal

13-20 Flowchart for Expanded KEYBOARD Routine

14-1 A Simple Breakpoint Routine

14-2 Flowchart of Register Dump Program

14-3 Results of a Typical 6502 Register Dump

14-4 Results of a Typical Memory Dump

14-5 Flowchart of Decimal to Seven-Segment Conversion
14-6 Flowchart of Sort Program

16-1 I/0 Configuration for a Digital Stopwatch

16-2 I/0 Configuration for a Digital Thermometer

16-3 Digital Thermometer Analog Hardware

16-4 Thermistor Characteristics (Fenwal GA51J1 Bead)
16-5 Typical E-l Curve for Thermistor (25°C)

xviii

Page
13-2

13-8

13-10
13-13
13-13
13-14
13-19
13-21
13-23
13-24
13-25
13-26
13-27
13-36
13-36
13-37
13-37
13-38
13-53
13-54

14-2
14-5
14-5
14-6
14-15
14-20

16-2

16-16
16-17
16-18
16-18

Table
1-1

2-1
2-2
2-3

3-1
3-2
3-3
3-4
3-5
3-6
3-7

3-8

6-1

111
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15

11-16
11-17
11-18

12-1

14-1

16-1
16-2

Tables

Hexadecimal Conversion Table

The Fields of an Assembly Language Instruction
Standard 6502 Assembler Delimiters
Assigning and Using a Label

Frequently Used Instructions f the 6502

Occasionally Used Instructions of the 6502

Seldom Used Instructions of the 6502

A Summary of the 6502 Instruction Set

6502 Instruction Object Codes in Numerical Order

Summary of 6502 Object Codes with 6800 Mnemonics

Memory Addressing Modes Available on the 6800and
6502 Microprocessors

Comparison of 6800 and 6502 Assembly Language
Instruction Sets

Hex-ASCIl Table

Addressing 6520 PIA Internal Registers

Organization of the PIA Control Registers

Control of 6520 PIA Interrupt Inputs CA1 and CB1

Control of 6520 PIA Interrupt Inputs CA2 and CB2

Control of 6520 PIA CB2 Output Line

Control of 6520 PIA CA2 Output Line

Addressing 6522 VIA Internal Registers

Configurations for 6522 VIA Control Line CA2

Configurations for 6522 VIA Control Line CB2

Internal Addressing for the 6530 Multifunction Device

Internal Addressing for the 6532 Multifunction Device

Data Input vs. Switch Position

Seven-Segment Representations of Decimal Numbers

Seven-Segment Representations of Letters and Symbols

Comparison Between Independent Connections and
Matrix Connections for Keyboards

Definition of 6850 ACIA Register Contents

Meaning of the 6850 ACIA Control Register Bits

Addressing 6551 ACIA Internal Registers

Memory Map for 6502 Addresses Used in Response to
Interrupts and Reset
Addressing the 6532 Multifunction Device

6502 Interrupt Vectors

Input Connections for Stopwatch Keyboard
Output Connections for Stopwatch Keyboard

Xix

Page
1-4

2-1
2-2
2-3

3-2
3-2
3-3
3-19
3-31
3-34

3-106

3-107
6-2

11-13
11-15
11-16
11-16
11-17
11-17
11-25
11-28
11-29
11-41
11-42
11-56
11-66
11-69

11-81

11-112
11-113
11-119

12-4
12-10
14-2

16-2
16-2

Chapter 1
INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

This book describes assembly language programming. It assumes that you are
familiar with An Introduction To Microcomputers: Volume 1 — Basic Conceptsl
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers, microcomputers, addressing methods, or instruction sets; you should
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
boldface type until you reach a subject about which you want to know more, at which
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device, such as a gate, adder, or shift register. Of
course, the actions that the microprocessor performs in response to its instruction in-
puts are far more complex than the actions that logic devices perform in response to
their inputs.

An instruction is a binary bit pattern — it must be available at BINARY

the data inputs to the microprocessor at the proper time in INSTRUCTIONS
order to be interpreted as an instruction. For example, when the

6502 microprocessor receives the 8-bit binary pattern 11101000 as the input during an
instruction fetch operation, the pattern means:

"Increment (add 1 to) the contents of Register X".
Similarly, the pattern 10101001 means:
"Load the Accumulator with the contents of the next word of program memory".

The microprocessor (like any other computer) recognizes only binary patterns as in-
structions or data: it does not recognize words or octal, decimal, or hexadecimal num-
bers.

1-1

A COMPUTER PROGRAM

A program is a series of instructions that causes a computer to perform a particular
task.

Actually, a computer program includes more than instructions; it COMPUTER
also contains the data and memory addresses that the PROGRAM
microprocessor needs to accomplish the tasks defined by the in-

structions. Clearly, if the microprocessor is to perform an addition, itmust have two
numbers to add and a place to put the result. The computer program must determine
the sources of the data and the destination of the result as well as the operation to be
performed.

All microprocessors execute instructions sequentially unless one of the instructions
changes the execution sequence or halts the computer, i.e., the processor gets the next
instruction from the next consecutive memory address unless the current instruction
specifically directs it to do otherwise.

Ultimately every program is translated into a set of binary numbers. For example,
this is a 6502 program that adds the contents of memory locations0060ig and
006116 and places the result in memory location 0062ig:

10100101

01100000

01100101

01100001

10000101

01100010
This is a machine language, or object, program. If this program OBJECT
were entered into the memory of a 6502-based microcomputer, PROGRAM
the microcomputer would be able to execute it directly. MACHINE
THE PROGRAMMING PROBLEM LANGUAGE

PROGRAM

There are many difficulties associated with creating programs
as object, or binary machine language, programs. These are
some of the problems:

1) The programs are difficult to understand or debug (binary numbers all look the
same, particularly after you have looked at them for a few hours).

2) The programs are slow to enter since you must determine each bit individually.

3) The programs do not describe the task which you want the computer to perform in
anything resembling a human readable format.

4) The programs are long and tiresome to write.

5) The programmer often makes careless errors that are very difficult to locate and
correct.

For example, the following version of the addition object program contains a single
bit error. Try to find it:

10100101
01100000
01110101
01100001
10000101
01100010

Although the computer handles binary numbers with ease, people do not. People find
binary programs long, tiresome, confusing, and meaningless. Eventually, a programmer
may start remembering some of the binary codes, but such effort should be spent more
productively.

USING OCTAL OR HEXADECIMAL

We can improve the situation somewhat by writing instruc- OCTAL OR
tions using octal or hexadecimal, rather than binary numbers. = HEXADECIMAL
We will use hexadecimal numbers in this book because they are

shorter, and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The 6502 program to add
two numbers now becomes:

A5
60
65
61
85
62

At the very least, the hexadecimal version is shorter to write and not quite so tiring to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er-
roneous version of the addition program, in hexadecimal form, becomes:

A5
60
75
61
85
62

The mistake is far more obvious.

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer is that we must convert the hexadecimal
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who
attempt it make all sorts of petty mistakes, such as looking at the wrong line, dropping a
bit, or transposing a bit or a digit.

This repetitive, grueling task is, however, a perfect job for a com- HEXADECIMAL
puter. The computer never gets tired or bored and never makes LOADER

silly mistakes The idea then is to write a program that accepts

hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microcomputers; it is called a hexadecimal loader.

Is a hexadecimal loader worth having? If you are willing to write a program using binary
numbers, and you are prepared to enter the program in its binary form into the com-
puter, then you will not need the hexadecimal loader.

If you choose the hexadecimal loader, you will have to pay a price for it. The hex-
adecimal loader is itself a program that you must load into memory. Furthermore, the
hexadecimal loader will occupy memory — memory that you may want to use in some
other way.

The basic tradeoff, therefore, is the cost and memory requirements of the hexadecimal
loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

A hexadecimal loader certainly does not solve every programming problem. The hex-
adecimal version of the program is still difficult to read or understand; for example, it
does not distinguish instructions from data or addresses, nor does the program listing
provide any suggestion as to what the program does. What does 85 or DO mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore, the
codes will be entirely different for a different microprocessor, and the program will re-
quire a large amount of documentation.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a "mnemonic" or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact, every microprocessor manufacturer (they can't remember PROBLEM
hexadecimal codes either) provides a set of mnemonics for the WITH
microprocessor instruction set. You do not have to abide by the MNEMONICS

manufacturer's mnemonics; there is nothing sacred about them.

However, they are standard for a given microprocessor and therefore understood by all
users. These are the instruction codes that you will find in manuals, cards, books, ar-
ticles, and programs. The problem with selecting instruction mnemonics is that not all
instructions have "obvious” names. Some instructions do (e.g., ADD, AND, OR), others
have obvious contractions (e.g.. SUB for subtraction, XOR for exclusive-OR), while still
others have neither. The result is such mnemonics as WMP, PCHL, and even SOB
(guess what that means!). Most manufacturers come up with some reasonable names
and some hopeless ones. However, users who devise their own mnemonics rarely do
much better than the manufacturer.

Along with the instruction mnemonics, the manufacturer will usually assign names to
the CPU registers. As with the instruction names, some register names are obvious (e.g.,
A for Accumulator) while others may have only historical significance. Again, we will
use the manufacturer's suggestions simply to promote standardization.

If we use standard 6502 instruction and register mnemonics, ASSEMBLY
as defined by MOS Technology, Inc., our 6502 addition pro- LANGUAGE
gram becomes: PROGRAM

LDA $60

ADC $61

STA $62

The program is still far from obvious, but at least some parts are comprehensible. ADC
is a considerable improvement over 65; LDA and STA suggest loading and storing the
contents of the Accumulator. We now know which lines are instructions and which are
data or addresses Such a program is an assembly language program.

1-4

THE ASSEMBLER PROGRAM

How dowe get the assembly language program intothe com- HAND
puter? We have totranslate it, either into hexadecimal orinto bi- ASSEMBLY
nary numbers. You can translate an assembly language pro-

gram by hand, instruction by instruction. This is called hand assembly

Hand assembly of the addition program may he illustrated as follows:

Instruction Mnemonic Addressing Method Hexadecimal Equivalent
LDA Zero Page (direct) A5
ADC Zero Page (direct) 65
STA Zero Page (direct) 85

As with hexadecimal to binary conversion, hand assembly is a rote task which is unin-
teresting, repetitive, and subject to numerous minor errors. Picking the wrong line,
transposing digits, omitting instructions, and misreading the codes are only a few of the
mistakes that you may make. Most microprocessors complicate the task even further by
having instructions with different word lengths. Some instructions are one word long
while others are two or three words long. Some instructions require data in the second
and third words, others require memory addresses, register numbers, or who knows
what?

Assembly is another rote task that we can assign to the ASSEMBLER
microcomputer. The microcomputer never makes any

. . o SOURCE
mistakes when translating codes; it always knows how many

; .) PROGRAM

words and what format each instruction requires. The program
that does this job is an "assembler.” The assembler program OBJECT
translates a user program, or "source" program written with PROGRAM

mnemonics, into a machine language program, or "object"
program, which the microcomputer can execute. The assem-
bler's input is a source program and its output is an object program.

The tradeoffs that we discussed in connection with the hexadecimal loader are
magnified in the case of the assembler. Assemblers are more expensive, occupy
more memory, and require more peripherals and execution time than do hexadecimal
loaders. While users may (and often do) write their own loaders, few care to write their
own assemblers.

Assemblers have their own rules that you must learn. These include the use of cer-
tain markers (such as spaces, commas, semicolons, or colons) in appropriate places,
correct spelling, the proper control information, and perhaps even the correct place-
ment of names and numbers. These rules are usually simple and can be learned quickly.

1-5

ADDITIONAL FEATURES OF ASSEMBLERS

Early assemblers did little more than translate the mnemonic names of instructions and
registers into their binary equivalents. However, most assemblers now provide such ad-
ditional features as:

1) Allowing the user to assign names to memory locations, input and output devices,
and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g., decimal or hex-
adecimal) to binary and converting characters into their ASCIl or EBCDIC binary
codes.

3) Performing some arithmetic as part of the assembly process.

4) Telling the loader program where in memory parts of the program or data should be
placed.

5) Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program li-
braries, or programs written at some other time, in the current program.

7) Allowing the user to control the format of the program listing and the input and
output devices employed.

All of these features, of course, involve additional cost and memo- CHOOSING
ry. Microcomputers generally have much simpler assemblers than AN
do larger computers, but the tendency always is for the size of as- ASSEMBLER

semblers to increase. You will often have a choice of assemblers.
The important criterion is not how many offbeat features the assembler has, but rather
how convenient it is to work with in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve all the problems of
programming. One problem is the tremendous gap between the microcomputer in-
struction set and the tasks which the microcomputer is to perform. Computer in-
structions tend to do things like add the contents of two registers, shift the contents of
the Accumulator one bit. or place a new value in the Program Counter. On the other
hand, a user generally wants a microcomputer to do something like check if an analog
reading has exceeded a threshold, look for and react to a particular command from a
teletypewriter, or activate a relay at the proper time. An assembly language program-
mer must translate such tasks into a sequence of simple computer instructions. The
translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have detailed
knowledge of the particular microcomputer that you are using. You must know
what registers and instructions the microcomputer has. precisely how the instructions
affect the various registers, what addressing methods the computer uses, and a myriad
of other information. None of this information is relevant to the task which the
microcomputer must ultimately perform.

In addition, assembly language programs are not portable. | PORTABILITY |
Each microcomputer has its own assembly language, which

reflects its own architecture. An assembly language program written for the 6502 will
not run on a 6800, Z80. 8080, or 3870 microprocessor. For example, the addition pro-
gram written for the 8080 would be:

LDA 60H
MOV B.A
LDA 61 H
ADD B

STA 62H

1-6

The lack of portability not only means that you won't be able to use your assembly
language program on another microcomputer, but it also means that you won't be able
to use any programs that weren't specifically written for the microcomputer you are
using. This is a particular drawback for microcomputers, since these devices are new
and few assembly language programs exist for them. The result, too frequently, is that
you are on your own. If you need a program to perform a particular task, you are not
likely to find it in the small program libraries that most manufacturers provide. Nor are
you likely to find it in an archive, journal article, or someone's old program file. You will
probably have to write it yourself.

HIGH-LEVEL LANGUAGES

The solution to many of the difficulties associated with as- | COMPILER |
sembly language programs is to use, instead, "high-level" or
"procedure-oriented" languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function; it will generally corres-
pond to many assembly language instructions. A program called a compiler trans-
lates the high-level language source program into object code or machine
language instructions.

Many different high-level languages exist for different types of | FORTRAN |
tasks. If, for example, you can express what you want the com-
puter to do in algebraic notation, you can write your program in FORTRAN (Formula
Translation Language), the oldest and most widely used of the high-level languages.
Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1 + NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro-
gram or the equivalent assembly language program. Other high-level languages in-
clude COBOL (for business applications), PASCAL (another algebraic language). PL/1 (a
combination of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language.1'3 That is just writing the
program: it does not include problem definition, program design, debugging, testing, or
documentation, all of which become simpler and faster. The high-level language pro-
gram is, for instance, partly self-documenting. Even if you do not know FORTRAN, you
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ- MACHINE

ated with assembly language programming. The high-level INDEPENDENCE
language has its own syntax (usually defined by a national or OF HIGH-LEVEL
international standard). The language does not mention the in- LANGUAGES

struction set, registers, or other features of a particular com-

puter. The compiler takes care of all such details. Programmers can concentrate on their
own tasks; they do not need a detailed understanding of the underlying CPU architec-
ture — for that matter, they do not need to know anything about the computer they are
programming.

Programs written in a high-level language are portable — PORTABILITY
at least, in theory. They will run on any computer that has a OF HIGH-LEVEL
standard compiler for that language. LANGUAGES

At the same time, all previous programs written in a high-level language for prior com-
puters are available to you when programming a new computer. This can mean thou-
sands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as-
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics, and all that garbagel As usual, there are disadvantages that balance
the advantages.

One obvious problem is that you have to learn the "rules" or SYNTAX OF
"syntax" of any high-level language you want to use. A high- HIGH-LEVEL
level language has a fairly complicated set of rules. You will find LANGUAGES

that it takes a lot of time just to get a program that is syntactically

correct (and even then it probably will not do what you want). A high-levelcomputer

language is like a foreign language. If you have a little talent, you will getusedto the
rules and be able to turn out programs that the compiler will accept. Still, learning the
rules and trying to get the program accepted by the compiler does not contribute
directly to doing your job.

Here, for example, are some FORTRAN rules:

« Labels must be numbers placed in the first five card columns
« Statements must start in column seven
« Integer variables must start with the letters I, J, K L, M, or N

Another obvious problem is that you need a compiler to translate COST OF
programs written in a high-level language. Compilers are expen- COMPILERS
sive and use a large amount of memory. While most assemblers

occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K bytes. So
the amount of overhead involved in using the compiler is rather large.

Furthermore, only some compilers will make the implementa- ALGEBRAIC
tion of your task simpler. FORTRAN, for example, is well-suited NOTATION
to problems that can be expressed as algebraic formulas. If,

however, your problem is controlling a printer, editing a string of characters, or monitor-
ing an alarm system, your problem cannot be easily expressed in algebraic notation. In
fact, formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it in assembly language. One answer is to use a more suitable
high-level language. Some such languages exist, but they are far less widely used and
standardized than FORTRAN. You will not get many of the advantages of high-level
languages if you use these so-called system implementation languages.

High-level languages do not produce very efficient INEFFICIENCY
machine language programs. The basic reason for this is that OF HIGH-LEVEL
compilation is an automatic process which is riddled with com- LANGUAGES
promises to allow for many ranges of possibilities. The com- OPTIMIZING
piler works much like a computerized language translator — COMPILER

sometimes the words are right but the sounds and sentence

structures are awkward. A simple compiler cannot know when a variable is no longer
being used and can be discarded, when a register should be used rather than a memory
location, or when variables have simple relationships. The experienced programmer can
take advantage of shortcuts to shorten execution time or reducememory usage. A few
compilers (known as optimizing compilers) can also do this, but suchcompilers are
much larger and slower than regular compilers.

The general advantages and disadvantages of high-level languages are:

Advantages: ADVANTAGES
* More convenient descriptions of tasks OF
) . HIGH-LEVEL
* Less time spent writing programs LANGUAGES
» Easier documentation
« Standard syntax
« Independence of the structure of a particular computer
« Portability
« Availability of library and other programs
Disadvantages: DISADVANTAGES
i OF
.S I rul
pecial files _ HIGH-LEVEL
« Extensive hardware and software support required LANGUAGES

* Orientation of common languages to algebraic or
business problems

« Inefficient programs
« Difficulty of optimizing code to meet time and memory requirements
 Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using high-
level languages. Among these are:

* Few high-level languages exist for microprocessors
* Few standard languages are widely available

* Compilers usually require a large amount of memory or even a com-
pletely different computer

« Most microprocessor applications are not well-suited to high-level
languages

« Memory costs are often critical in microprocessor applications

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers. Very few high-level languages exist for microprocessors. The most com-
mon are BASIC,5 PASCAL,® FORTRAN, and the PL/I-type languages such as PL/M,7
MPL, and PLjuS.

Many of the high-level languages that exist do not conform to recognized standards, so
that the microprocessor user cannot expect to gain much program portability, access to
program libraries, or use of previous experience or programs. The main advantages re-
maining are the reduction in programming effort and the smaller amount of detailed
understanding of the computer architecture that is necessary.

The overhead involved in using a high-level language with OVERHEAD
microprocessors is considerable. Microprocessors themselves are FOR

better suited to control and slow interactive applications than they HIGH-LEVEL
are to the character manipulation and language analysis involved LANGUAGES

in compilation. Therefore, some compilers for microprocessors will

not run on a microprocessor-based system. Instead, they require a much larger com-
puter; i.e., they are cross-compilers rather than self-compilers. A user must not only
bear the expense of the larger computer but must also physically transfer the program
from the larger computer to the micro.

Some self-compilers are available. These compilers run on the microcomputer for which
they produce object code. Unfortunately, they require large amounts of memory (16K or
more), plus special supporting hardware and software.

High-level languages also are not generally well-suited to UNSUITABILITY
microprocessor applications. Most of the common languages OF HIGH-LEVEL
were devised either to help solve scientific problems or to LANGUAGES

handle large-scale business data processing. Few

microprocessor applications fall in either of these areas. Most microprocessor
applications involve sending data and control information to output devices and
receiving data and status information from input devices. Often the control and status
information consists of a few binary digits with very precise hardware-related
meanings. If you try to write a typical control program in a high-level language, you
often feel like someone who is trying to eat soup with chopsticks. For tasks in such
areas as test equipment, terminals, navigation systems, signal processing, and business
equipment, the high-level languages work much better than they do in
instrumentation, communications, peripherals, and automotive applications.

Applications better suited to high-level languages are those which APPLICATION

require large memories. If, as in a valve controller, electronic game, AREAS FOR
appliance controller, or small instrument, the cost of a single LANGUAGE
memory chip is important, then the inefficiency of high-level LEVELS

languages is intolerable. If, on the other hand, as in a terminal or

test equipment, the system has many thousands of bytes of memory anyway, the ineffi-
ciency of high-level languages is not as important. Clearly the size of the program and
the volume of the product are important factors as well. A large program will greatly in-
crease the advantages of high-level languages. On the other hand, a high-volume ap-
plication will mean that fixed software development costs are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels:

Machine Language: APPLICATIONS
¢ Virtually no one programs in machine language EQEG%Q%'EINE
because it is inefficient and difficult to document.
An assembler costs very little and greatly reduces
programming time.
Assembly Language: APPLICATIONS
* Short to moderate-sized programs FOR ASSEMBLY
LANGUAGE

« Applications where memory cost is a factor

* Real-time control applications

« Limited data processing

* High-volume applications

« Applications involving more input/output or control than computation

High Level Languages: APPLICATIONS
FOR HIGH-LEVEL

e Lon rograms
9 prog LANGUAGE

* Low-volume applications requiring long pro-
grams

* Applications where the amount of memory required is already very large
« Applications involving more computation than input/output or control
« Compatibility with similar applications using larger computers

« Availability of specific programs in a high-level language which can be
used in the application

Many other factors are also important, such as the availability of a larger computer for
use in development, experience with particular languages, and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application, or if speed is critical,
you should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft-
ware will be the largest cost in your application, you should favor a high-level language.
But be prepared to spend the extra money required for the supporting hardware and
software.

Of course, no one except some theorists will object if you use both assembly and high-
level languages. You can write the program originally in a high-level language and then
patch some sections in assembly language.7 However, most users prefer not to do this
because of the havoc it creates in debugging, testing, and documentation.

HOW ABOUT THE FUTURE?
We expect that the future will favor high-level languages for the following reasons:

* Programs always seem to add extra features and FUTURE TRENDS
grow larger IN LANGUAGE
« Hardware and memory are becoming less expensive LEVELS

Software and programmers are becoming more ex-
pensive

Memory chips are becoming available in larger sizes, at lower "per bit" cost,
so actual savings in chips are less likely

More suitable and more efficient high-level languages are being developed

More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it is now for large computers. But longer programs, cheaper memory, and more ex-
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

1-11

WHY THIS BOOK?

If the future would seem to favor high-level languages, why have a book on as-
sembly language programming? The reasons are:

1) Most current microcomputer users program in assembly language (almost two
thirds, according to one recent survey).

2) Many microcomputer users will continue to program in assembly language since
they need the detailed control that it provides.

3) No suitable high-level language has yet become widely available or standardized.

4) Many applications require the efficiency of assembly language.

5) An understanding of assembly language can help in evaluating high-level
languages.

The rest of this book will deal exclusively with assemblers and assembly language pro-
gramming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

REFERENCES

A. Osborne, An Introduction to Microcomputers: Volume 1 — Basic Concepts.
Osborne/McGraw-Hill, Berkeley, CA, 1976.

M. H. Halstead, Elements of Software Science. American Elsevier, New York, 1977.

V. Schneider, "Prediction of Software Effort and Project Duration,” SIGPLAN
Notices. June 1978, pp. 49-55.

M. Phister Jr., Data Processing Technology and Economics, Santa Monica Publish-
ing Co., Santa Monica, CA, 1976.

Albrecht, Finkel, and Brown, BASIC for Home Computers. Wiley, New York, 1978.
K L Bowles, Microcomputer Problem Solving Using PASCAL, Springer-Verlag, New
York, 1977.

D. D. McCracken. A Guide to PL'M Programming for Microcomputer Applications,
Addison-Wesley, Reading, Mass., 1978.

P. Caudill, "Using Assembly Coding to Optimize High-Level Language Programs,"
Electronics, February 1, 1979, pp. 121-124.

Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning with features
common to most assemblers and proceeding through more elaborate capabilities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate as-
sembly language mnemonics into binary codes. But we will describe how an as-
sembler handles the translation of mnemonics before describing additional assem-
bler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS

Assembly language instructions (or "statements") are divided ASSEMBLY
into a number of fields, as shown in Table 2-1. LANGUAGE
FIELDS

The operation code field is the only field that can never be
empty; it always contains either an instruction mnemonic or a
directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The operand or address field may contain an address or data, or it may be blank.

The comment and label fields are optional. A programmer will assign a label to a
statement or add acomment as a personal convenience: namely, to make the pro-
gram easier to read and use.

Table 2-1. The Fields of an Assembly Language Instruction

Label Operation Code Operand or

Field ©F Mnemonic Address Comment Field
Field Field

START LDA VAL1 :LOAD FIRST NUMBER INTO A
ADC VAL2 ;ADD SECOND NUMBER TO A
STA SUM iSTORE SUM

NEXT ? ? :NEXT INSTRUCTION

VAL1 T=Eb]

VAL2 *=k]

SUM *=*]

Table 2-2. Standard 6502 Assembler Delimiters

'space’ between label and operation code and between operation
code and address
, between operands in the address field
; or ! before a comment

Note that 6502 assemblers vary greatly and some may not use these delimiters.

Of course, the assembler must have some way of telling |[FORMAT!
where one field ends and another begins. Assemblers that use

punched card input often require that each field start in a specific card column. This is
a fixed format. However, fixed formats are inconvenient when the input medium is
paper tape; fixed formats are also a nuisance to programmers. The alternative is a free
format where the fields may appear anywhere on the line.

If the assembler cannot use the position on the line to tell the |PEUMITERS|
fields apart, it must use something else. Most assemblers use a

special symbol or delimiter at the beginning or end of each field. The most common
delimiter is the space character. Commas, periods, semicolons, colons, slashes, ques-
tion marks, and other characters that would not otherwise be used in assembly
language programs may also serve as delimiters. Table 2-2 lists standard 6502 assem-
bler delimiters.

You will have to exercise a little care with delimiters. Some assemblers are fussy
about extra spaces or the appearance of delimiters in comments or labels. A well-
written assembler will handle these minor problems, but many assemblers are not
well-written. Our recommendation is simple: avoid potential problems if you can.
The following rules will help:

1) Do not use extra spaces, particularly after commas that separate operands.
2) Do not use delimiter characters in names or labels.

3) Include standard delimiters even if your assembler does not require them. Your pro-
grams will then run on any assembler.

LABELS
The label field is the first field in an assembly language in- LABEL
struction; it may be blank. If a label is present, the assembler FIELD

defines the label as equivalent to the address into which the first

byte of the object program resulting from that instruction is loaded. You may subse-
quently use the label as an address or as data in another instruction's address field. The
assembler will replace the label with the assigned value when creating an object pro-
gram.

Labels are most frequently used in Jump, Call, or Branch in- LABELS
structions. These instructions place a new value in the Program IN JUMP
Counter and so alter the normal sequential execution of instruc- INSTRUCTIONS
tions. JUMP 150-/6 means "place the vakje 15010 in the Program

Counter". The next instruction to be executed will be the one in memory location
1501 6. The instruction JUMP START means "place the value assigned to the label
START in the Program Counter”. The next instruction to be executed will be the one at
the address corresponding to the label START. Table 2-3 contains an example.

Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM

START LOAD ACCUMULATOR 100

« (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction
JUMP START causes the address of the instruction labeled START to be placed
in the Program Counter. That instruction will then be executed.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember.
2) A label can easily be moved, if required, to change or correct a program. The as-

sembler will automatically change all instructions that use that label when the pro-
gram is reassembled.

3) The assembler or loader can relocate the whole program by RELOCATION
adding a constant (a relocation constant) to each address for CONSTANT
which a label was used. Thus we can move the program to
allow for the insertion of other programs or simply to rearrange memory.

4) The program is easier to use as a library program: i.e., it is easierfor someone else
to take your program and add it to some totally different program.

5) You do not have to figure out memory addresses. Figuring out memory addresses is
particularly difficult with microprocessors which have instructions that vary in

length.
You should assign a label to any instruction that you might want to refer to later.
The next question is how to choose a label. The assembler CHOOSING
often places some restrictions on the number of characters LABELS

(usually 5 or 6), the leading character (often must be a letter), and
the trailing characters (often must be letters, numbers, or one of a few special charac-
ters). Beyond these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic labels.
Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a
routine that searches for the ASCIl character ETX, or NKEYS for a location in data
memory that contains the number of key entries. Meaningful labels are easier to
remember and contribute to program documentation. Some programmers use a stan-
dard format for labels, such as starting with LO000. These labels are self-sequencing
(you can skip a few numbers to permit insertions), but they do not help document the
program.

Some label selection rules will keep you out of trouble. We RULES OF
recommend the following: LABELING

1) Do not use labels that are the same as operation codes or
other mnemonics. Most assemblers will not allow this usage; others will, but it is
very confusing.

2) Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

3) Avoid special characters (non-alphabetic and non-numeric) and lower-case letters.
Some assemblers will not permit them; others allow only certain ones. The simplest
practice is to stick to capital letters and numbers.

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters I, 0 and
Z, and the numbers 0, 1, and 2. Also avoid things like XXXX and XXXXX. There's
no sense tempting fate and Murphy's laws.

6) When you are not sure if a label is legal, do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them, but don't blame
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table
much as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex — some instructions (like a Halt) have no
operands, others (like an Addition or a Jump instruction) have one, while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives; e.g.,, some computers have instructions (like Shift or Clear)
that can apply either to the Accumulator or to a memory location. We will not discuss
how the assembler makes these distinctions; we will just note that it must do so.

PSEUDO-OPERATIONS

Some assembly language instructions are not directly trans- PSEUDO-
lated into machine language instructions. These instructions OPERATIONS
are directives to the assembler; they assign the program to cer-

tain areas in memory, define symbols, designate areas of RAM for temporary data
storage, place tables or other fixed data in memory, allow references to other programs,
and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the
pseudo-operation's mnemonic in the operation code field, and, if the specified pseudo-
operation requires it, an address or data in the address field.

The most common pseudo-operations are:

DATA
EQUATE (=) or DEFINE
ORIGIN

RESERVE

Linking pseudo-operations (used to connect separate programs) are:
ENTRY
EXTERNAL

Different assemblers use different names for these operations, but their functions are
the same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNCH

We will discuss these pseudo-operations briefly, although their functions are usually
obvious.

THE DATA PSEUDO-OPERATION

The DATA pseudo-operation allows the programmer to enter fixed data into pro-
gram memory. This data may include:

« Lookup tables

* Code conversion tables

* Messages

« Synchronization patterns

» Thresholds

* Names

« Coefficients for equations

* Commands

» Conversion factors

* Weighting factors

« Characteristic times or frequencies
* Subroutine addresses

« Key identifications

 Test patterns

« Character generation patterns
« Identification patterns

» Tax tables

« Standard forms

* Masking patterns

« State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction
like:

DZCON DATA 12
will place the number 12 in the next available memory location and assign that

location the name DZCON. Usually every DATA pseudo-operation has a label, unless it

is one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a large amount of
data at one time, e.g.:

EMESS DATA 'ERROR'
SQRS DATA 1,4,9,16,25

A single instruction may fill many words of program memory, limited only by the length
of a line. Note that if you cannot get all the data on one line, you can always follow one
DATA instruction with another, e.g.,

MESSG DATA 'NOW IS THE '
DATA TIME FOR ALL '
DATA '‘GOOD MEN '
DATA ‘TO COME TO THE '
DATA 'AID OF THEIR '
DATA 'COUNTRY"

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers;
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses.
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION

The EQUATE pseudo-operation allows the programmer to DEFINING
equate names with addresses or data. This pseudo-operation NAMES

is almost always given the mnemonic EQU or =. The names

may refer to device addresses, numeric data, starting addresses, fixed addresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to
the label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another, e.g.,

LAST EQU FINAL
ST1 EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain more complex expressions, as we shall see later. Double
name assignments (two names for the same data or address) may be useful in patching
together programs that use different names for the same variable (or different spellings
of what was supposed to be the same name).

Note that an EQU pseudo-operation does not cause the as- SYMBOL
sembler to place anything in memory. The assembler simply TABLE
enters an additional name into a table (called a symbol table)

which the assembler maintains. This table, unlike the mnemonic table, must be in
RAM since it varies with each program. The assembler always needs some RAM to hold
the symbol table; the more RAM it has, the more symbols it can accept. This RAM is in
addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a USE OF
parameter that has some meaning besides its ordinary numeric NAMES
value or the numeric value of the parameter might be changed.

We typically assign names to time constants, device addresses, masking patterns, con-
version factors, and the like. A name like DELAY, TTY, KBD, KROW, or OPEN not only
makes the parameter easier to change, but it also adds to program documentation. We
also assign names to memory locations that have special purposes; they may hold data,
mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same as CHOICE
in the case of labels, except that here meaningful names really OF
count. Why not call the teletypewriter TTY instead of X15, a bit NAMES

time delay BTIME or BTDLY rather than WW, the number of the
"GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightfor-
ward, but a surprising number of programmers do not follow it.

2-6

Where do you place the EQUATE pseudo-operations? The PLACEMENT

best place is at the start of the program, under appropriate OF

comment headings such as I/O ADDRESSES, TEMPORARY DEFINITIONS

STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This

makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Clearly this prac-
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION

The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro-
grammer to locate programs, subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memory depending on the memory con-
figuration. Startup routines, interrupt service routines, and other required programs
may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter (comparable to LOCATION
the computer's Program Counter) which contains the location COUNTER
in memory of the next instruction or data item being pro-

cessed. An ORG pseudo-operation causes the assembler to place a new value in the
Location Counter, much as a Jump instruction causes the CPU to place a new value in
the Program Counter. The output from the assembler must not only contain instructions
and data, but must also indicate to the loader program where in memory it should place
the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following
purposes:

Reset (startup) address

Interrupt service addresses

Trap addresses

RAM storage

Memory stack

Subroutines

Memory addresses for input/output devices or
special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data in
memory, or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight; we recommend the in-
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION

The RESERVE pseudo-operation allows the programmer to ALLOCATING
allocate RAM for various purposes such as data tables, tem- RAM
porary storage, indirect addresses, a Stack, etc.

Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples:

NOKEY RESERVE 1
TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program
memory or in data memory; however, the RESERVE pseudo-operation is more
meaningful when applied to data memory.

In reality, all the RESERVE pseudo-operation does is increase the assembler's Location
Counter by the amount declared in the operand field. The assembler does not actually
produce any object code.

Note the following features of RESERVE:

1) The label of the RESERVE pseudo-operation is assigned the value of the first ad-
dress reserved. For example, the pseudo-operation:

TEMP RESERVE 20

reserves 20 bytes of RAM and assigns the name TEMP to the address of the first
byte.
2) You must specify the number of locations to be reserved. There is no default case.

3) No data is placed in the reserved locations. Any data that, by chance, may be in
these locations will be left there.

Some assemblers allow the programmer to place initial INITIALIZING
values in RAM. We strongly recommend that you do not RAM

use this feature — it assumes that the program (along with

the initial values) will be loaded from an external device (e.g., paper tape or floppy disk)
each time it is run. Most microprocessor programs, on the other hand, reside in non-
volatile ROM and start when power comes on. The RAM in such situations does not re-
tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in
your program.

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to EXTERNAL
use names that are defined elsewhere. Such names are called REFERENCES
external references; a special linking program is necessary to ac-

tually fill in the values and determine if any names are undefined or doubly defined.

The pseudo-operation EXTERNAL, usually abbreviated EXT, signifies that the
name is defined elsewhere.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is
available for use elsewhere; i.e.. it is defined in this program.

The precise way in which linking pseudo-operations are implemented varies greatly
from assembler to assembler. We will not refer to such pseudo-operations again, but
they are very useful in actual applications.

HOUSEKEEPING PSEUDO-OPERATIONS

There are various housekeeping pseudo-operations that affect the operation of
the assembler and its program listing rather than the output program itself. Com-
mon housekeeping pseudo-operations include:

« END, which marks the end of the assembly language source program.

« LIST, which tells the assembler to print the source program. Some assemblers allow
such variations as NO LIST or LIST SYMBOL TABLE to avoid long, repetitive listings.

« NAME or TITLE, which prints a name at the top of each page of the listing.

*« PAGE or SPACE, which skips to the next page or next line, respectively, and im-
proves the appearance of the listing, making it easier to read.

*« PUNCH, which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore unneces-
sary.

LABELS WITH PSEUDO-OPERATIONS

Users often wonder if or when they can assign a label to a pseudo-operation.
These are our recommendations:

« All EQUATE pseudo-operations must have labels; they are useless otherwise, since
the purpose of an EQUATE is to define its label.

« DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned.

« Other pseudo-operations should not have labels. Some assemblers allow such
labels, but we recommend against their use because there is no standard way to in-
terpret them.

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con-
tents of the Operand or Address field. But remember that the assembler has built-
in names for registers and instructions and may have other built-in names.

Some common options for the operand field are: DECIMAL
1) Decimal numbers DATA OR
ADDRESSES

Most assemblers assume all numbers to be decimal unless they
are marked otherwise. So:

ADD 100

means "add the contents of memory location 100-)o to the contents of the Ac-
cumulator.”

2) Other number systems NON-DECIMAL
NUMBER

Most assemblers will also accept binary, octal, or hexadecimal
P Y SYSTEMS

entries. But you must identify these number systems in some
way, e.g., by preceding or following the number with an iden-
tifying character or letter. Here are some common identifiers:

B or % for binary

0, Q, or C for octal (the letter O should be avoided because of the confu-
sion with zero).

H or $ for hexadecimal (or standard BCD).

D for decimal. D may be omitted: it is the default case.

Assemblers generally require hexadecimal numbers to start with a digit (e.g., 0A36
instead of A36) in order to distinguish between numbers and names or labels. It is
good practice to enter numbers in the base in which their meaning is the
clearest: i.e., decimal constants in decimal: addresses and BCD numbers in hex-
adecimal; masking patterns or bit outputs in binary if they are short and in hex-
adecimal if they are long.

3) Names

Names can appear in the operand field: they will be treated as the data that they
represent But remember,there is a difference between data and addresses. The
sequence:

FIVE EQU 5
ADD FIVE

will add the contents of memory location 0005 (not necessarily the number 5) to the
contents of the Accumulator.

4) The current value of the location counter (usually referred to as * or $).

5)

6)

This is useful mainly in Jump instructions; for example:
JUMP *+6

causes a Jump to the memory location six words beyond the word that contains the
first byte of the JUMP instruction:

Memory

JUMP *+6 code stored here

6 locations <

- Jump here

Most microprocessors have many two- and three-word instructions. Thus, you will
have difficulty determining exactly how far apart two assembly language statements
are. Therefore, using offsets from the Location Counter frequently results in errors
that you can avoid if you use labels.

Character codes

Most assemblers allow text to be entered as ASCII strings. Such ASCII

strings may be surrounded either with single or double quota- CHARACTERS
tion marks; strings may also use a beginning or ending symbol

such as A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity and
readability of the program.

Combinations of 1) through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations ARITHMETIC
such as START+1. Some assemblers also permit multiplication, AND LOGICAL
division, logical functions, shifts, etc. These are referred to as EXPRESSIONS
expressions. Note that the assembler evaluates expressions at

assembly time. Even though an expression in the operand field may involve
multiplication, you may not be able to use multiplication in the logic of your own pro-
gram— unless you write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com-
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here In general, the user should strive for clarity and simplicity. There is
no payoff for being an expert in the intricacies of an assembler or in having the most
complex expression on the block. We suggest the following approach:

1

2
3)
4)

Use the clearest number system or character code for data.

Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary numeri-
cal constants in hexadecimal serve no purpose and therefore should not be used.
Remember to distinguish data from addresses.

Don't use offsets from the Location Counter.

Keep expressions simple and obvious. Don't rely on obscure features of the assem-
bler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de-
pending on conditions existing at assembly time. This is called conditional assem-
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A typical form is:

IF COND

.(CONDITIONAL PROGRAM)

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF
(two pseudo-operations) are included in the program.

Typical uses of conditional assembly are:

1) To include or exclude extra variables.

2) To place diagnostics or special conditions in test runs.
3) To allow data of various bit lengths.

4) To create specialized versions of a common program.

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions oc- DEFINING A
cur many times in a source program. Repeated instruction se- SEQUENCE OF
guences may reflect the needs of your program logic, or they INSTRUCTIONS

may be compensating for deficiencies in your microprocessor's
instruction set. You can avoid repeatedly writing out the same instruction sequence by
using a macro.

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.
The assembler will replace the macro name with the appropriate sequence of in-
structions. This may be illustrated as follows:

Source Program Object Program

MACRO (macro definition)
instruction M1 \

instruction M2 > «ememeeeeee e
instruction M3 /

(end of macro definition)

instruction P1 (main program) instruction P1
instruction P2 instruction P2
instruction P3 instruction P3

instruction M1
instruction M2
instruction M3

instruction P4
instruction P5
instruction P6
instruction P7
instruction M1
instruction M2
instruction M3

instruction P8 instruction P8
instruction P9 instruction P9
instruction M1
instruction M2
instruction M3

instruction P1° | instruction P10
instruction P11 f* instruction P11

Macros are not the same as subroutines. A subroutine occurs once in a program, and
program execution branches to the subroutine. A macro is expanded to an actual in-
struction sequence each time the macro occurs; thus a macro does not cause any
branching.

Macros have the following advantages: ADVANTAGES

1) Shorter source programs. OF MACROS

2) Better program documentation.
3) Use of debugged instruction sequences — once the macro has been debugged,
you are sure of an error-free instruction sequence every time you use the macro.

4) Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

5) Inclusion of commands, keywords, or other computer instructions inthe basic in-
struction set. You can use macros to extend or clarifytheinstruction set.

The disadvantages of macros are: DISADVANTAGES

1) Repetition of the same instruction sequences since the OF MACROS

macro is expanded every time it is used.
2) A single macro may create a lot of instructions.
3) Lack of standardization makes programs difficult to read and understand.
4) Possible effects on registers and flags that may not be clearly described.

One problem is that variables used in a macro are only known LOCAL OR
within it (i.e., they are local rather than global). This can often GLOBAL
create a great deal of confusion without any gain in return. You VARIABLES

should be aware of this problem when using macros. *

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; programs without comments are very difficult to understand.

We will discuss commenting along with documentation in a later chapter, but here
are some guidelines.:

1

2)
3

4)

5)
6)
7

8)
9

10)

Use comments to tell what application task the program is COMMENTING
performing, not how the microcomputer executes the in- TECHNIQUES
structions.

Comments should say things like "IS TEMPERATURE ABOVE LIMIT?". "LINE FEED
TO TTY", or "EXAMINE LOAD SWITCH".

Comments should not say things like "ADD 1 TO ACCUMULATOR". "JUMP TO
START", or "LOOK AT CARRY”. You should describe how the program is affecting
the system: internal effects on the CPU are seldom of any interest.

Keep comments brief and to the point. Details should be available elsewhere in
the documentation.

Comment all key points.

Do not comment standard instructions or sequences that change counters or
pointers; pay special attention to instructions that may not have an obvious mean-
ing.

Do not use obscure abbreviations.

Make the comments neat and readable.

Comment all definitions, oescribing their purposes. Also mark all tables and data
storage areas.

Comment sections of the program as well as individual instructions.

Be consistent in your terminology. You can and should be repetitive; you need not
consult a thesaurus.

Leave yourself notes at points which you find confusing: e.g., "REMEMBER CAR-
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen-
tation.

A well-commented program is easy to use. You will recover the time spent in comment-
ing many times over. We will try to show good commenting style in the programming
examples, although we often over-comment for instructional purposes.

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will
merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer CROSS-
other than the one for which it assembles object programs. ASSEMBLER

The computer on which the cross-assembler runs is typically a

large computer with extensive software support and fast peripherals — such as an IBM
360 or 370, aUnivac 1108, or a Burroughs 6700. The computer for which the cross-as-
sembler assembles programs is typically a micro like the 6502 or 8080. Most cross-as-
semblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that RESIDENT
runs on the computer for which it assembles programs. The ASSEMBLER
self-assembler will require some memory and peripherals, and it

may run quite slowly.

A macro assembler is an assembler that allows you to define MACRO
sequences of instructions as macros. ASSEMBLER
A microassembler is an assembler used to write the MICRO-
microprograms that define the instruction set of a computer. ASSEMBLER

Microprogramming has nothing specifically to do with
microcomputers.2,3

A meta-assembler is an assembler that can handle many META-
different instruction sets. The user must define the particular in- ASSEMBLER
struction set being used.

A one-pass assembler is an assembler that goes through the ONE-PASS
assembly language program only once. Such an assembler must ASSEMBLER

have some way of resolving forward references, e.g., Jump in-
structions which use labels that have not yet been defined.

A two-pass assembler is an assembler that goes through the TWO-PASS
assembly language source program twice. The first time the ASSEMBLER
assembler simply collects and defines all the symbols; the

second time it replaces the references with the actual definitions. A two-pass as-
sembler has no problems with forward references but may be quite slow if no
backup storage (like a floppy disk) is available; then the assembler must
physically read the program twice from a slow input medium (like ateletypewriter
paper tape reader). Most microprocessor-based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded
letter. Some typical errors are:

« Undefined name (often a misspelling or an omitted definition)

« lllegal character (e.g., a 2 in a binary number)

« lllegal format (wrong delimiter or incorrect operands)

minvalid expression (e.g., two operators in a row)

« lllegal value (usually too large)

* Missing operand

« Double definition (i.e., two different values assigned to one name)

« lllegal label (e.g., a label on a pseudo-operation that cannot have one)
* Missing label

« Undefined operation code

In interpreting assembler errors, you must remember that the assembler may get on the
wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many as-
semblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the first error very carefully; subsequent
ones may depend on it. Caution and consistent adherence to standard formats will
eliminate many annoying mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as-
sembler and places it in memory Loaders range from the very simple to the very com-
plex. We will describe a few different types.

A bootstrap loader is a program that uses its own first few in- BOOTSTRAP
structions to load the rest of itself or another loader program LOADER

into memory. The bootstrap loader may be in ROM, or you may

have to enter it into the computer memory using front panel switches. The assembler
may place a bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. It RELOCATING
typically loads each program into the memory space immediately LOADER
following that used by the previous program. The programs,

however, must themselves be capable of being moved around in this way; i.e.. they
must be relocatable. An absolute loader, in contrast, will always place the pro-
grams in the same area of memory.

A linking loader loads programs and subroutines that have LINKING
been assembled separately; it resolves cross references — LOADERS
that is, instructions in one program that refer to a label in another

program. Object programs loaded by a linking loader must be created by an assembler
that allows external references.

An alternative approach is to separate the linking and loading LINK
functions and have the linking performed by a program called a EDITOR
link editor.

REFERENCES

A complete monograph on macros is M. Campbell-Kelly, "An Introduction to
Macros." American Elsevier. New York, 1973.

A. Osborne. An Introduction to Microcomputers: Volume 1 - Basic Concepts.
OSBORNE/McGraw-Hill, Berkeley. CA, 1977.

A. K Agrawala and T. G. Rauscher. Foundations of Microprogramming. Academic
Press, New York, 1976.

D. W. Barron, "Assemblers and Loaders." American Elsevier. New York, 1972

C.W. Gear, Computer Organization and Programming, McGraw-Hill, New York,
1974. ~

Chapter 3
THE 6502 ASSEMBLY LANGUAGE
INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual instructions of the 6502 assembly language in-
struction set, plus the syntax rules of the MOS Technology assembler.

We do not discuss any aspects of microcomputer hardware, signals, interfaces, or
CPU architecture in this book. This information is described in detail in An Introduction
to Microcomputers: Volume 2 — Some Real Microprocessors and Volume 3 — Some
Real Support Devices.

In this book, we look at programming techniques from the assembly language pro-
grammer's viewpoint, where pins and signals are irrelevant and there are no im-
portant differences between a minicomputer and a microcomputer.

Interrupts, direct memory access, and the Stack architecture for the 6502 will be de-
scribed in later chapters of this book, in conjunction with assembly language program-
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.

The detailed description of individual instructions is preceded by a general discussion
of the 6502 instruction set that divides instructions into those which are frequently
used (Table 3-1), occasionally used (Table 3-2), and seldom used (Table 3-3). If you are
an experienced assembly language programmer, this categorization is not particularly
important — and. depending on your own programming prejudices, it may not even be
accurate. If you are a novice assembly language programmer, we recommend that you
begin by writing programs using only instructions in the "frequently used” category.
Once you have mastered the concepts of assembly language programming, you may
examine other instructions and use them where appropriate.

3-1

Table 3-1. Frequently Used Instructions of the 6502

Instruction :
Code Meaning
ADC Add with Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEQ Branch if Equal to Zero (Z= 1)
BMI Branch if Minus (S= 1)
BNE Branch if Not Equal to Zero (Z= 0)
BPL Branch if Plus (S = 0)
CMP Compare Accumulator to Memory
DEC Decrement (by 1)
DEX (DEY) Decrement Index Register X (Y) by 1
INC Increment (by 1)
INX (INY) Increment Index Register X (Y) by 1
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator
LDX (LDY) Load Index Register X (Y)
LSR Logical Shift Right
PHA Push Accumulator onto Stack
PLA Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTS Return from Subroutine
SBC Subtract with Borrow
STA Store Accumulator
STX (STY) Store Index Register X (V)

Table 3-2. Occasionally Used Instructions of the 6502

Instruction Meaning
Code
BIT Bit Test
BRK Break
CLC Clear Carry
CLD Clear Decimal Mode
CLI Clear Interrupt Mask (Enable Interrupts)
CPX (CPY) Compare with Index Register X (Y)
EOR Logical Exclusive-OR
NOP No Operation
ORA Logical (Inclusive) OR
RTI Return from Interrupt
SEC Set Carry
SED Set Decimal Mode
SEI Set Interrupt Mask (Disable Interrupts)
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator

Table 3-3. Seldom Used Instructions of the 6502

Instruction Meaning
Code
BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLV Clear Overflow
PHP Push Status Register onto Stack
PLP Pull Status Register from Stack
TSX Transfer Stack Pointer to Index Register X
TXS Transfer Index Register X to Stack Pointer

CPU REGISTERS AND STATUS FLAGS
The 6502 microprocessor has an Accumulator, a Status (or P) register, two index
registers, a Stack Pointer, and a Program Counter. These registers may be illustrated
as follows: n

Accumulator A

Index.Register X

Index Register Y

Program Counter PC

Stack Pointer SP
Status Register P

The 6502's Status register contains six status flags and an interrupt control bit.
These are the six status flags:

Carry (C

Zero (9

Overflow (V)

Sign (§
Decimal Mode (D)
Break (B)

Flags are assigned bit positions within the Status register as follows:

-Bit Number
.6502 Status (P) register

The Accumulator (A) is a primary accumulator as described in An Introduction to
Microcomputers: Volume 1.

The Index Registers (X and Y) are only eight bits long, unlike the typical microcom-
puter index registers described in An Introduction to Microcomputers: Volume 1. They
are more like classical computer index registers that are used to hold indexes, short
offsets, or counters.

The 6502 has a Stack implemented in memory and indexed by the Stack Pointer as de-
scribed in Volume 1. The only difference from that description is that the 6502 Stack
Pointer is only eight bits wide, which means that maximum Stack length is 256
bytes. The CPU always inserts 0116 as the high-order byte of any Stack address, which
means that memory locations OlOOig through O1FF-|0 are permanently assigned
to the Stack:

01XX is the Stack address

There is nothing very significant about the shorter 6502 Stack Pointer if you are
using this CPU as a stand-alone product. A 256-byte Stack is usually sufficient for
any typical microcomputer application; and its location in early memory simply means
that low memory addresses must be implemented as read/write memory. 6502
literature represents the Stack Pointer .by the letter S; we use the letters SP to prevent
confusion with the Sign status.

The 6502 Program Counter is a typical program counter as described in Volume 1.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included in Shift and Rotate instructions. The only
unusual feature of the 6502 Carry flag is that it has an inverted meaning in subtrac-
tion operations. After an SBC instruction, the Carry is cleared if a borrow was required
and set if no borrow was required. Note also that the SBC (Subtract with Carry) instruc-
tion results in (A) = (A) - M) - L - C where M is the other operand. This usage is
different from most microprocessors or other computers of recent vintage and the user
should take heed of it.

The Zero status flag is standard. It is set to 1 when any arithmetic or logical operation
produces a zero result. It is set toO when any arithmetic or logical operation produces a
non-zero result.

The Sign status flag is standard. It will acquire the value of the high-order (Sign) bit of
any arithmetic or logical result. Thus, a Sign status value of 1 identifies a negative result
and a Sign value of 0 identifies a positive result. The Sign status will be set or reset on
the assumption that you are using signed binary arithmetic. If you are not using signed
binary arithmetic, you can ignore the Sign status, or you can use it to identify the value
of the high-order bit of the result.

The Decimal Mode status, when set, causes the Add-with-Carry and Subtract-
with-Carry instructions to perform BCD operations. Thus, when the Decimal Mode
status is set and an Add-with-Carry or Subtract-with-Carry instruction is executed, CPU
logic assumes that both source 8-bit values are valid BCD numbers — and the result
generated will also be a valid BCD number. Because the 6502 CPU performs decimal
addition and subtraction, there is no need for an intermediate or Half-Carry status. This
status is described in Volume 1 One problem with the 6502 approach is that the same
instruction sequence will produce different results, depending on whether the Decimal
Mode status has been set or cleared. Thus, confusion and errors can occur if the
Decimal Mode status has accidentally been given the wrong value.

The Break status pertains to software interrupts. When a software interrupt (BRK in-
struction) is executed, 6502 CPU logic will set the Break status flag.

| is a standard master interrupt enable/disable or interrupt mask flag. When |
equals 1, interrupts are disabled: when | equals O, interrupts are enabled.

The Overflow status is a typical overflow, except that it can be used as a control
input on the 6502 microprocessor. Recall that, during signed binary arithmetic, Over-
flow status flags a result of magnitude too great to be represented in the given word
size. The Overflow status has been discussed in detail in Volume 1 of An Introduction to
Microcomputers; it equals the exclusive-OR of carries out of bits 6 and 7 during
arithmetic operations. The 6502 microprocessor allows external logic to set the Over-
flow status, in which case it can be used subsequently as a general logic indicator; you
must be very careful when using the Overflow status in this way, since the same status
flag will be modified by arithmetic instructions. It is up to you, as a programmer, to
make sure that an instruction which modifies the Overflow status is not executed in
between the time external logic sets this status and subsequent program logic tests it.

6502 literature refers to the Sign bit as a negative bit. given the DIFFERENCES

symbol N, Statuses (except for Carry) are nevertheless set and IN NOTATION

reset as described for our hypothetical microcomputer in An In-

troduction to Microcomputers; Volume 1. Henceforth, we will use the standard sym-
bols S for Sign bit, as well as SP for the Stack Pointer; you should remember these
minor differences when using the 6502 literature and instruction set summary cards.

6502 MEMORY ADDRESSING MODES
The 6502 offers eleven basic addressing methods:

1) Memory — immediate

2) Memory — absolute or direct, non-zero-page
3) Memory — zero page (direct)

4) Implied or inherent

5) Accumulator

6) Pre-indexed indirect

7) Post-indexed indirect

8) Zero page, indexed (also called base page, indexed)
9) Absolute indexed

10) Relative

11) Indirect

There are tremendous variations in terms of which methods are allowed with which in-
structions. See Table 3-4 for the addressing options available with each instruction.

Memory — Immediate

In this form of addressing, one of the operands is present in the byte immediately
following the first byte of object code. An immediate operand is specified by prefacing
the operand with the # symbol. For example,

AND #$08

requests the Assembler to generate the instruction that will logically AND the value
08-|6 with the contents of the Accumulator.

AND #$08

1st Byte
These bits These bits select
select the AND immediate addressing
operation with one operand in A

Memory — Direct

This form of addressing uses the second — or second and third (if not on zero, or base,
page) — bytes of the instruction to identify the address of an operand in memory. The
zero page version is specified when the expression used as the operand in the instruc-
tion reduces to a value between 00-] g and FF-|g. For example,

AND $30

requests the Assembler to generate an AND instruction which will logically AND the
value in memory location OO30-]0 with the contents of the Accumulator.
Data

The non-zero-page (absolute) version is similar except that the address of the operand
occupies two bytes. For example,

AND $31F6

requests the Assembler to generate an AND instruction that will logically AND the
value in memory location 31F6-]g with the contents of the Accumulator.
Data

You should note that 16-bit addresses are stored with the eight STORING
least significant bits first (at the lower address) followed by the ADDRESSES
eight most significant bits (at the higher address). This is the same

technique that is used in the 8080, 8085, and Z80 microprocessors, but the opposite of
that used in the 6800 microprocessor.

Implied or Inherent Addressing

This mode means that no addresses are required to execute the instruction. Typical ex-
amples of inherent addressing are CLC (Clear Carry) and TAX (Transfer Register A to
Register X).

Accumulator Addressing

This mode means that the instruction operates on the data in the Accumulator. On the
6502 microprocessor, the only Accumulator instructions are the shifts ASL (Arithmetic
Shift Left), LSR (Logical Shift Right), ROL (Rotate Left through Carry), and ROR (Rotate
Right through Carry).

Pre-Indexed Indirect Addressing

This mode means that the second byte of the instruction is added to the contents of the
X Index register to access a memory location in the first 256 bytes of memory, where
the indirect address will be found. Wraparound addition is used, which means that any
carry formed in address addition will be discarded. For example,

AND ($20,X)

requests the Assembler to generate the instruction which will logically AND the con-
tents of the Accumulator with the contents of the byte addressed by the zero-page
memory location given by the sum of 2016 and the contents of the X Index register.
Note the use of parentheses in the address field to indicate indirection or "contents of"

Data

Remember that the carry from the address addition is ignored, i.e., the address of the
first address byte is a number in mod 256. Note that the indirect address is stored with
its least significant bits first (at the lower address); note also that an address occupies
two bytes of memory.

Only the X Index register can be used for pre-indexed indirect addressing.

Post-Indexed Indirect Addressing

This mode means that the second byte of the instruction contains an address in the first
256 bytes of memory. That address and the next location contain an address which is
added to the contents of the Y Index register to obtain the effective address.

Note the differences between this method and pre-indexed indirect addressing:

1) In pre-indexed indirect addressing the indexing is performed before the indirec-
tion.while in post-indexed indirect addressing the indirection is performed before
the indexing.

2) Pre-indexed indirect addressing uses the X Index register, while post-indexed in-
direct addressing uses the Y Index register.

3) Pre-indexed indirect addressing is useful for choosing one of a set of indirect ad-
dresses to use. while post-indexed indirect addressing is useful for accessing ele-
ments in an array or table for which the base address has been obtained indirectly.

An example of post-indexed indirect addressing is
AND ($20),Y

which requests the Assembler to generate the instruction which will logically AND the
contents of the Accumulator with the contents of the byte addressed by adding the Y
Index register to the address at memory location 0020-| 6- Note that here only the $20 is
inside the parentheses, since only that part of the address is used indirectly.

Data

Here again the indirect address is stored with its least significant byte first (at the lower
address). Unlike that in pre-indexed indirection, this address addition is a full 16-bit ad-
dition; however, it is wraparound so any carry from bit 15 is ignored. Only the Y Index
register can be used with post-indexed indirect addressing.

Indexed Addressing

This form of addressing uses the second — or second and third (if not on zero page) —
bytes of the instruction to specify the base address. That base address is then added to
the contents of Index Register X or Y to get the effective address. X and Y are not in-
terchangeable since no instructions have both forms of simple indexing with both X
and Y. In fact, the only instructions which allow zero-page indexing with Y are LDX
(Load Index Register X) and STX (Store Index Register X). You should consult Table 3-4
to determine which addressing options are available with each instruction.

A typical example of zero-page indexed addressing is
AND $20.X

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 20-)g and the contents of the X Index register. This is a two-byte instruction
because the address is within the first 256 bytes of memory. Note that there is no two-
byte form of AND $20.Y although there is a more general three-byte form of this in-
struction.

Data

A typical example of absolute indexed addressing is
AND $31FEY

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 31FE-|6 ancl the contents of the Y Index register. This is a 3-byte instruction
since the base address is not within the first 256 bytes of memory.

Data

Either Index Register X or Index Register Y could be used here However, some instruc-
tions (such as ASL, DEC. INC, LSR, ROL, and ROR) only allow Index Register X in this
mode. This is also the case (more logically) with the instructions LDY (Load Index
Register Y) and STY (Store Index Register Y).

Indirect Addressing

Indirect addressing only applies to the JMP (Jump to New Location) instruction. In this
mode, the second and third bytes of the instruction contain the address at which the
effective address is located. Note that the indirect address can have any value and can
be located anywhere in memory. Obviously, this mode can be regarded as a special
case of either post-indexed indirect addressing or pre-indexed indirect addressing in
which the Index register contains zero. A typical example is:

IJMP ($31 FB)

which requests the Assembler to generate a JMP instruction that will load the Program
Counter from the memory locations addressed by the contents of memory locations
31 FE1q and 31 FFi 66 Remember that absolute addresses are 16 bits long and occupy
two memory bytes: however, the data located at an address is eight bits long. This con-
fusion applies to all 8-bit processors, but is a particular problem with the 6502 because
of its numerous indirect and indexed addressing modes. Indirect addressing is de-
scribed more fully in Volume 1 of An Introduction to Microcomputers. Chapter 6.
Remember that all addresses are stored with their least significant byte first (at the
lower address).
Data
svbdizc Memory

Program

+i
+2

The final value of the Program Counter is ppqqg.

Never let an indirect address cross a page boundary, as in JMP ($31FF). Although the
high-order byte of the indirect address is in the first location of the next page (in this
example, memory location 3200ig), the CPU will fetch the high-order byte from the
first location of the same page (location 310019 in our example).

Relative Addressing

Branch-on-Condition instructions use program relative addressing; a single byte dis-
placement is treated as a signed binary number which is added to the Program Counter,
after the Program Counter contents have been incremented to address the next se-
quential instruction. This allows displacements in the range +129-|o to -126iq bytes.

A typical example is
BCC '+5

which requests the Assembler to generate a BCC (Branch on Carry Clear; i.e., branch if
Carry = 0) instruction that will load the Program Counter with its current value plus five
if the Carry is, in fact, zero. If the Carry is one, the instruction does nothing. Note that
the instruction itself occupies two bytes of memory and the offset is measured from the
end of the instruction. Thus the offset should be 3 to generate a branch to the location
five beyond the one in which the first byte of the instruction is located. Note that the
symbol * is used for the current value of the Program Counter (actually, the Assembler's
Location Counter as described in Chapter 2).

The execution of the BCC *+5 instruction may be described as shown below. Note that
the entire instruction is fetched from memory before the destination address is calcu-
lated. Note also that there are no other addressing modes available with Branch-on-
Condition instructions.
Data
SVvBDI ZC Memory

6502 INSTRUCTION SET

Instructions often frighten microcomputer users who are new to programming.
Taken in isolation, the operations involved in the execution of a single instruction
are usually easy to follow. The purpose of this chapter is to isolate and explain
those operations.

Why are the instructions of a microcomputer referred to as an instruction "set"?
Because the microcomputer designer selects (or at least should select) the instructions
with great care; it must be easy to execute complex operations as a sequence of simple
events, each of which is represented by one instruction from a well-designed instruc-
tion "set".

Remaining consistent with An Introduction to Microcomputers: Volume 2, Table
3-4 summarizes the 6502 microcomputer instruction set. with similar instructions
grouped together. Individual instructions are listed numerically by object code in
Table 3-5 and in alphabetical order by instruction mnemonic in Table 3-6. Table 3-6
also compares the 6800 instruction set with that of the 6502. We will discuss the 6800
and 6502 much later in this chapter, after detailing the 6502 instruction set.

In addition to simply stating what each instruction does, the individual instruction
descriptions discuss the purpose of the instruction within normal programming logic.

ABBREVIATIONS
These are the abbreviations used in this chapter:

The registers:

A Accumulator
X Index Register X
Y Index Register Y
PC Program Counter
SP Stack Pointer
P Status register, with bits assigned as follows:
76 5 432 10 ~ Bit Number
mReserved for expansion
(unused at this time)
Statuses:
S Sign or Negative status
\% Overflow status
B Break status
D Decimal Mode status
Interrupt Disable status
z Zero status
c Carry status

Symbols in the column labeled STATUS:

(blank)
X

~N O O

addr
[addr+1,addr]

addrl 6
data
disp
label

PC(HI)
PC(LO)
PP

qq

[1

Operation does not affect status

Operation affects status

Operation clears status

Operation sets status

Operation reflects bit 6 of memory location

Operation reflects bit 7 of memory location

8 bits of absolute or base address

The address constructed from the contents of memory locations
addr and addr+1. This address is used in post-indexed indirect ad-
dressing.

16 bits of absolute or base address

8 bits of immediate data

An 8-bit. signed address displacement

16-bit absolute address, destination of Jump or Jump-to-
Subroutine

The high-order 8 bits of the Program Counter

The low-order 8 bits of the Program Counter

The second byte of a two- or three-byte instruction object code
The third byte of a three-byte object code

Contents of the memory location designated inside the brackets.
For example, [FFFE] represents the contents of memory location
FFFE-|6: (addrl 6+X] represents the contents of the location ad-
dressed by adding the contents of register X to addrl 6: [SP] repre-
sents the value at the top of the Stack (contents of the memory
location addressed by the Stack Pointer).

Indirect addressing: the contents of the memory byte addressed
by the contents of the memory location designated within the in-
ner brackets. For example, [[addr+X]] represents the contents of a
memory location addressed via pre-indexed indirect addressing.
Addition — either unsigned binary addition or BCD addition, de-
pending on the condition of the Decimal Mode status.

Binary or BCD subtraction, performed by adding the twos comple-
ment of the subtrahend to the minuend.

The ones complement of the quantity denoted beneath the bar;
for example. A_represents the complement of the contents of the
Accumulator; C represents the complement of the value of the
Carry status.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow.

INSTRUCTION MNEMONICS

Table 3-4 summarizes the 6502 instruction set. The INSTRUCTION column shows
the instruction mnemonic (LDA, STA, CLC) and the operands, if any, used with the
instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part (immediate data, address, or label) is shown in lower case.

If a mnemonic has more than one type of operand, each type is listed separately with-
out repeating the mnemonic. For instance, some examples of the format entry

STX
addr
addr.Y
addrl 6

STX $75
STX $60,Y
STX $4276

INSTRUCTION OBJECT CODES

For instruction bytes without variations, object codes are represented as two
hexadecimal digits (e.g., 8A). For instruction bytes with variations, the object
code is shown as eight binary digits (e.g., 101aaa01l).

The object code and instruction length in bytes is shown in Table 3-4 for each in-
struction variation. Table 3-5 lists the object codes in numerical order, and Table
3-6 shows the corresponding object codes for the mnemonics, listed in alphabeti-
cal order.

INSTRUCTION EXECUTION TIMES

Table 3-4 lists the instruction execution times in numbers of clock periods. Actual
execution time can be derived by dividing the given number of clock periods by the
clock speed. For example, for an instruction that requires 5 clock periods, a2 MHz clock
will result in a 2.5 microsecond execution time.

STATUS

The status flags are stored in the Status register (P) as follows:

7654@1‘?

-Carry status (carry out of bit 7)
-Zero status (1 for zero, 0 for nonzero)
-Interrupt disable status
(1 means interrupts are disabled)
-Decimal Mode status (1 for decimal mode)
-Break status (1 means a Break instruction
has been executed)
-This bit is not used
-Overflow status
-Sign status (value of bit 7)

In the individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

S Vv DIl ZC

Modified to reflect results of execution
Unchanged

Unconditionally reset to 0
Unconditionally set to 1

Bit 6 of tested byte

Bit 7 of tested byte

An X identifies a status that is set or reset. A 0 identifies a STATUS CHANGES
status that is always cleared. A 1 identifies a status thatis ~ WITH INSTRUCTION
always set. A blank means the status does not change. The EXECUTION
numbers 7 and 6 show that the flag contains the value of

bit 7 or bit 6 of the byte tested by the instruction.

<)

Bes
8%

U@DC@
88c o
Bog p
26 3F

N NQQ

o v B,
o WPoeX3
«X Wsz0g

10} 0 =X

BAiEs A
NOB—n
+ W8 A

HBre—n
HNog< 0

c

Ope _x
Ore —y
Oprs ™

Ops -

12z

\Y

X
©
11111

< < < < < <

189S uonadnasu|

:19)s1bas xopu] ap sereubisep X, ‘@pod 108lqo ap U 'passold 9 Amrepunoq ofed j pousd OOP Ao pPy

X X X X

X X X X

Lo

@ «* 0O

X X X X X X
X X X X X X

) »t D Ifl

2099 ap p Arewwns v ‘p-€ oqeL

M av O @

M v v v O @O M v CO @

v av o @

©
zed
c
flog

8adh

4 338 ¢;

Q.cT
a Q°

o®
og

X Jo1sibay o) T = X ‘A Jsisibay

it

i
=X
Jies]

os

aouejejea Ajotueyy Ajeiuud pue o/l

3-19

1040 = X
©
o
&
(=]
— 0, Vv v
W, 9 UXs3 <<“<
X.- W Y05 <<l<
& og Vvav
a.QHRun < A\YAVETY
anhéN Vviy
: < 0= o
©
4=V
VvV Vv
I3 <M<
3 V Vv
z Vv
= \AnY,
2 poo.—x3 A_2 R
UP&Bg Oty A —x =P
Besok, -0
- 8. 0N

(panunuo)) 1S uononnsu|

PEISIEY]

X X X X X X

X X X X X X

X X X X X X

ap sejeubisep

X X X X X X

X X X X X X

X X X X X X

@ = D 10 =

M v av av O

M av v O @

2069 aj p Arwwns v v-€ ojeL

X JoisiBoy 10y T = X ‘A J9isiBay
X, ‘@pod 108lqo ap y ‘pessoid 9 Arepunoq abed y pousd oop awo PRy

5

s

s 9
S 8
s

Lo

505 O

oo A .
oo v8 2
co sl e
oo 8 B8

(penuiiuoQ) eousjejey

(e;eJ9do A-iouieyy) eouejejey Ajoweyy Ajepuooes

Ajoiueyy Ajeuiud pue o/l

3-20

@a>

z
Ow

N N CLCLi

N N Q @

10} 0 = x o)sibal xepu| ap sareubisep X, ‘9pod 109[q0 ap U ‘passosd 9 Arepunoq ofed § pousd OO D PPV «

—
AV V
AV TV
AV TV
AV
AV —V
AV =V

1

X X X X X X

(penunuoD) 1S UonONISU|

oM av v O @O

X X X X X X
X X X X X X
(o]

aMm oMoy av o @

X X X X X X
X X X X X X
@

N N N N ©®

X X X X X X
X X X X X X

°_®

*9

2089 ap p Arewwns v p-€ el

-SPo

(penuj*uoQ) (eiejedo Ajoiueyv) eouejejey Ajoiuey\| Ajepuooes

3-21

10041p papuelg
10841p obed osz

104 0 = X

[oT4ppel-A
[1ppe]-A
‘paloaye ae sbey

smels aj Auo ‘uonedo| Alowsw o ssoyl ym JaisiBal A o Susuod asedwod

1001Ip papusdg
10011p ofed as7

[9T4ppeE]-X
[1ppe]-x
‘peloaye ae sbey

smels ap Aup ‘uonedso| Aowsw p ssoyp yww Jaisibal X o susuod asedwiod

paxapul anjosqy
10841p papuslxg
paxapul afed oswz
1011p obed oz

‘Aluo X J91s1Bay ybBnoayl Xapuj ‘uonedo|

paxapul anjosqy
10841p papuslxg
paxapul &fed oswz
108u41p abed osl7z

‘Aluo X Jeisibay ybnoay xepul

T—[x+9 pppe]—[x+9 1ppe]

1-[9 1ppe] —[9 uppe]
T-[X+1ppe]l—[x+ippe]
T—[1ppe] —[1ppe]

Aowsaw p SUNUOD JUBWIBQ

T+[X+9 Mppe] —[x+9 uppe]

T+[9 1ppe] —[9 uppe]
T+[x+1ppe]—[x+1ppe]
T+[1ppe]—.[ippe]

Alowsw p SUSIUOD JusWBIOU|

(‘'mousiog ap p wawsjdwod ap 9 anea Aued eyl SION)

paxapul anjosqy

10811p papuaxg
19911pUl paxapuI-1sod
19211pul paxapul-aid
paxapul abed oz
10841p obed oz

-0y 0 SIUSUOD UDY ‘MOLIOTG LIm

O-[A+9 pppel-v — v

10 O-[Xx+9TippE]-V —V
O-[9Tappel-v — v

O-[A+lippe'T+ippe]l-v — v

o—[[x+ippe]ll-v — v
D—[x+ippel-v — v
20— [ppel-v — v

*103jnwnd

Kowsw p suLYuU0d 10eNqNS

pawioyad uonessdo

:1o1s1Bas xepu|

X X
x

X X
x

X x X X

X X xX X

X X X X X X
X X X X X X

(penunuod) S uondNNSU| 2059

ap sejeubisep

X X X X X X

' o A

smels

"X Joisibey U0} T = X ‘A Jalsibay
X, ‘9pod 108lgo ap u ‘pessoid 9 Arepunoq abed y pousd oo ao ppy

= bbdd ppe
. E g D 9 PP
< 3 =3 dd 1 ippe
AdD
« bbdd 3@ 9 |ppe)
< 8 dd @ wee 8
E
oy
Xdo z
>
>
S bbdd T X'9 Hppe E
N 2
< 3 o bbdd D 9 HUppe 2
= 8 s dd ¢ X'ippe S
o3a v
5
o
o
. 8 bbdd 3 X'9 1ppe 3
x o
9 3 8 bbdd = 9 1ppe]
- 3 3 dd o XIppe m_
< c 3 dd @ ippe °
ONI 3
N
g
g
" - s bbdd TOXTTTTT A B X9 lppe 2
5
« e 8 bbdd @ 9 uppe g
9 b= 3 dd H A'(lppe) e
« ° 3 dd 3 (x"1ppe)
« b 3 dd o X'Ippe
« S z dd @ ippe
o8s
¥ spouad P _ o
sal apo: 199 uononisu|
49015 g pod fao

ap p Aewwns v p-g 9delL

3-22

Instruction Set (Continued)

Table 3-4. A Summary o the 6502

OL

X <0 +
>t w <
' N
m2"5 5
X X X X
noam Iood @I
%488

BOPP B388

ina ™

S
oS
[Ss)
54

&4 8%

LED

(panujiuoo) (eiejedQ Ajouioj/id) eouejejey Ajouiey\j Ajepuooes

Instruction Set (Continued)

Table 3-4. A Summary do the 6502

o0

0o ®'0 4T (O
<T- L1
e< r e >
X X X
11 in co co oYl M o
Q) M © © a a v

DDOD

(luoo) (eisjedo Ajouirw)
joy Ajouia®i Ajepuoaes

€210

‘o 1o

E x

<&
—d
3 3
x
x 3 5
—=y —v
eudE W am x 8 8
x 5 &
~V =V
—A O x 3 8
v
(11N x 3 3
&
@ w x 3 51
P vt
n -
8 8

(penunuod) ®BS uononnsul Zos9 ap p Arewwns v p-€ 8|gel

dump

eiejedo eiBjpeuiuii

3-25

dsip+0d—0d U ‘T=A 4
19s 9 Bey moOlBAD § dAiER) Uouelg
dsIp+0d—0d Wp 0 = A 4
‘pales|d g @u MOJHBAQ J BAnelRl Youelg
dsip+0d—0d U '0=S 4
.®>_~_WOQ 9 }nsel J BAleRI youerg
dsip+0d—0d U ‘0=Z 4
‘049Z Jou 9 Jnsal Ji 3Aleal youelg
dsIp+0d—0d W ‘T=S
.®>_ummwr_ 9 Jnsal J BAIeRI youelg
dsip+0d—0d Uy “T-Z 4
‘019z Q@ [enba 9)Nsal J oAneRI Youerg
dsip+0d—0d U ‘T=D 4
‘19s 9 Pey AueDd J aanel youerg
dsip+0d—0d Uy ‘0=0 4
‘paseslo 9 Fey Aued J eAneps youerg
‘uononusul youerg ap Bumoljoy uononas
-ul ap @ uiod @ psusWRIOUl LS SAy Jeluno) weibold ap Jaye Jslunod
weibold ap a peppe § Juswadeidsip ajp ‘paysnes § uonipuod ap J
ISUOIIONIISUl UOIIPUOD-UO-Yyduelg [Jo} Buimojio} ap S1oN

(penunuo)d) 1S uondNASU|

2069 ap p Arewwns v p-€ olgelL

dd

dd

dd

dd

dd

dd

dd

dd

3pod

193lq0

dsip

dsip

dsip

dsip

dsip

dsip

dsip

dsip

s\ g

o<]

N

Ing

josc|

UQjljpuoQ uo ipuejg

adA 1L

(panupuo)) 1S uondNASU|

2089 ap p Arewwns v p-g ogeL

oaow JOisiBey-JOisiBoy

ujnjey pue |eo euunojqns

3-27

O oo < &
A
< v ww < <]
+xT X%
o =< H
—h—N
Hun > 3
=0 x
A UK x 3
R
% O

(penupuoD) 18S UuOpONNISUl ZOS9 AP P ArWWNS ¥V p-E el

eiBJedQ jejSj0ey

-28

.
5
¢
E

(penupuo)) ©S uondnAsSu|

©
©

2089 ap p Arewwns v ‘p-£ 9jqeL

sdnijesul

HO81S

3-29

(PeNnuUNUOD) 1BS UONONASU] 2059 AR P ArRWWNS V¥ b- Sl

Object Code

00
01
05
06
08
09
OA
oD
OE
10
11
15
16
18
19
1D
1E
20
21
24
25
26
28
29
2A
2C
2D
2E
30
31
35
36
38
39
3D
3E
40
41
45
46
48
49
4A
4C
4D
4E
50
51
55
56
58
59
5D
5E
60
61
65
66

pp
pp
pp

pp

ppad
pPaq
pp
PP
pp
PP

ppaq
pPaq
ppPaq
ppag
PP
PP
PP
PP

pp

ppag
ppag
pPaq
pp
PP
pp
pp

ppaq
ppAq
ppAd

pp
pp
pp

pp

ppaq
ppag
ppag
pp
pp
PP
PP

ppPqq

Ppqq

ppPaq

PP

pp

Table 3-5. 6502 Instruction Object Codes in Numerical Order

BRK
ORA

ASL
PHP
ORA
ASL
ORA
ASL

ORA
ORA
ASL
CLC
ORA
ORA
ASL

AND
BIT
AND
ROL
PLP
AND
ROL
BIT
AND
ROL
BMI
AND
AND
ROL
SEC
AND
AND
ROL

EOR
EOR

PHA
EOR
LSR

JMP
EOR
LSR

BvVC
EOR
EOR

CLI

EOR
EOR
LSR
RTS

ADC
ROR

Instruction

(addr.X)
addr
addr

data

A

addrl 6
addrl 6
disp
(addr),Y
addr.X
addr.X

addrl 6.Y
addrl 6.X
addrl 6.X
label
(addr.X)
addr
addr
addr

data

A

addrl 6
addrl 6
addrlé
disp
(addr).Y
addr.X
addr.X

addrl6.Y
addrl6.X
addrl 6.X

(addr.X)
addr
addr

data

A

label
addrlé
addrl 6
disp
(addr),Y
addr.X
addr.X

addrl 6,Y
addrl 6.X
addrl 6.X

(addr.X)
addr
addr

Object Code

68
69
6A
6C
6D
6E
70
71
75
76
78
79
7D
7E
81
84
85
86
88
8A
8C
8D
8E
90
91
94
95
96
98
99
9A
9D
AO
Al
A2
A4
A5
A6
A8
A9
AA
AC
AD
AE
BO
B1
B4
B5
B6
B8
B9
BA
BC
BD
BE
co
Ccl
c4

PP

ppag
ppag
ppaq
pp
PP
pp
PP

Ppqq
Ppqq
Ppaq
pp
pp
pp
pp

PpPaq
Ppqq
Ppqq
pp
pp
pp
pp
pp

ppPqq

ppag
pp
pp
pp
pp
pp
pp

pp

Ppqq
Ppqq
Ppqq
pp
pp
pp
pp

Ppqq

ppaq

ppag

ppag

pp

pp

PLA
ADC
ROR
JMP
ADC
ROR

ROR
STA
STY
STA
STX
DEY
TXA
STY
STA
STX
BCC
STA
STY
STA
STX

STA
TXS
STA
LDY
LDA
LDX
LDY
LDA
LDX
TAY
LDA
TAX

LDA
LDY
LDA
LDX
CLv

TSX
LDY
LDA
LDX
CPY
CMP
CPY

Instruction

data

A

(label)
addrl 6
addrl 6
disp
(addr),Y
addr.X
addr.X

addrl6.y
addrl 6.X
addr16.X
(addr.X)
addr
addr

addr

addrlé
addrlé
addrl 6
disp
(addr).Y
addr.X
addr.X
addr.Y

addrl 6.Y

addrl 6.X
data
(addr.X)
data
addr
addr
addr

data

addrl 6
addrl 6
addrlé
disp
(addr),Y
addr.X
addr.X
addr.Y

addrl 6.Y

addrl 6.X
addrl6.X
addrl 6.Y
data
(addr.X)
addr

Object Code

C5
Ccé6
c8
Cc9
CA
cC
CD
CE
DO
D1

D5
D6
D8

D9
DD
DE
EO
E1l

Table 3-5. 6502 Instruction Object Codes in Numerical Order (Continued)

pp
pp

pp

ppag
ppaq
ppag
PP
PP
PP
pp

ppag
ppaq
ppaq
pp
PP

CMP
DEC
INY
CMP
DEX
CPY
CMP
DEC
BNE
CMP
CMP

CLD
CMP
CMP
DEC
CPX
SBC

Instruction

addr
addr

data

addrl 6
addrl 6
addrlé
disp
(addr),Y
addr.X
addr.X

addrl 6,Y
addrl 6,X
addrlée, X
data
(addr.X)

Object Code

E4
E5
E6
E8
E9
EA
EC
ED
EE
FO
Fl
F5
F6
F8
F9
FD
FE

pp
pp
pp

pp

pPAq
ppaq
ppag
pp
pp
pp
pp

ppag
ppag
ppag

CPX
SBC
INC

INX

SBC
NOP
CcPX
SBC
INC

BEQ
SBC
SBC
INC

SED
SBC
SBC
INC

Instruction

addr
addr
addr

data

addrl 6
addrl 6
addrl 6
disp
(addr),Y
addr.X
addr.X

addrl 6,Y
addrl6.X
addrl 6,X

The following symbols are used in the object codes in Table 3-6.

Address-mode Selection:

aaa
000 pre-indexed indirect - (addr.X)
001 direct - addr
010 immediate - data
011 extended direct - addrl 6
100 post-indexed indirect - (addri.Y
101 base page indexed - addr.X
110 absolute indexed - addrl 6,Y
111 absolute indexed - addrl 6,X
bb
00 direct - addr
01 extended direct -addrl6
10 base page indexed - addr.X
1 absolute indexed - addrl 6.X
bbb
001 direct - addr
010 accumulator - A
011 extended direct - addrl 6
101 base page indexed - addr.X; addr.Y in STX
111 absolute indexed - addrl6,X; addrl6,Y in STX
00 immediate - data
01 direct - addr
1 extended direct -addrl6
ddd
000 immediate - data
001 direct - addr
011 extended direct - addrl 6
101 base page indexed - addr.Y in LDX; addr.X in LDY
11 absolute indexed - addr16,Y in LDX; addr16,X in LDY
pp the second byte of a two- or three-byte instruction
qaq the third byte of a three-byte instruction
X one bit choosing the address mode:
0 direct - addr
1 extended direct - addrl 6
y one bit choosing the JMP address mode:
0 extended direct - label
1 indirect - (label)

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics

. . Clock MC6800
Mnemonic Operand Object Code Bytes . .
Periods Instruction

ADC 011laaa0l ADCA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 pPPqq 3 4 addrl 6
addrl 6.X ppaq 3 4%
addrl 6,Y ppaq 3 4'

AND 00laaa0ll ANDA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 PPqq 3 4 addrlé
addrl 6.X ppaq 3 4*
addrl 6.Y ppaq 3 a4*

ASL A OO0ObbbIO 1 2 ASLA
addr PP 1 5
addr.X PP 2 6 ASL index
addrl 6 ppaq 3 6 ASL addrl 6
addrl 6.X ppaq 3 7

BCC disp 90 pp 2 2" BCC disp

BCS disp BO pp 2 2" BCS disp

BEQ disp FO pp 2 2” BEQ disp

BIT 0010x100 BITA
addr pp 2 3 addr8
addrl 6 ppPaq 3 4 addrl 6

BMI disp 30 pp 2 2" BMI disp

BNE disp DO pp 2 2" BNE disp

BPL disp 10 pp 2 2" BPL disp

BRK 00 1 7 (SW1)

BvVC disp 50 pp 2 27 BVC disp

BVS disp 70 pp 2 2" BVS disp

CLC 18 1 2 CLC

CLD D8 1 2

CLI 58 1 2 CLI

CLv B8 1 2 CLv

‘Add one clock period if page boundary is crossed.
"“Add one clock period if branch occurs to location in same page; add two clock periods if branch to another
page occurs.

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

Clock MC6800
Mnemonic Operand Object Code Bytes R R
Periods Instruction

CMP 110aaall CMPA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5%
addrl 6 PPgq 3 4 addrl 6
addrl 6.X ppaq 3 4%
addrl 6.Y ppaq 3 4%

CPX 1110ccOO CPX
data PP 2 2 data8
addr PP 2 3 addr8
addrl 6 ppaq 3 4 addrl 6

CPY nooccoo
data pp 2 2
addr pp 2 3
addrlé ppaq 3 4

DEC 110bb110 DEC
addr PP 2 5
addr.X PP 2 6 index
addrl 6 ppaq 3 6 addrlé
addrl 6.X ppaq 3 7

DEX CA 1 2 DEX

DEY 88 1 2

EOR 0l0aaa0ll EORA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5"
addrl 6 ppaq 3 4 addrl 6
addrl 6.X PPgq 3 4
addrl6.Y ppaq 3 4'

INC 111bb110 INC
addr PP 2 5
addr.X PP 2 6 index
addrl 6 ppaq 3 6 addrl 6
addrl 6.X ppaq 3 7

INX E8 1 2 INX

INY cs8 1 2

JMP 01ly01100 JMP
label ppaq 3 3 addrl 6
(label) ppPaq 3 5

JSR label 20 ppaq 3 6 JSR addrl 6

'Add one clock period if page boundary is crossed.
"“Add one clock period if branch occurs to location in same page; add two clock periods if branch to another
page occurs.

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

B . Clock MC6800
Mnemonic Operand Object Code Bytes .
Periods Instruction
LDA 10laaa01 LDAA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5%
addrl 6 ppaq 3 4 addrl 6
addrl 6.X ppagq 3 4%
addrl 6.Y ppaq 3 4%
LDX 101ddd10 LDX
data PP 2 2 (data8)
addr PP 2 3 addr8
addr.Y PP 2 4 (index)
addrlé ppqq 3 4 addrl 6
addrl 6.Y PPqq 3 4%
LDY 101dddoo
data PP 2 2
addr PP 2 3
addr.X PP 2 4
addrl 6 PPAq 3 4
addrl 6.X pPYq 3 4%
LSR A 010bbb10 1 2 LSRA
addr PP 2 5
addr.X PP 2 6 LSR index
addrlé PPqq 3 6 LSR addrl 6
addrl 6.X PPqq 3 7
NOP EA 1 2 NOP
ORA 000aaaOl ORAA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 ppag 3 4 addrl 6
addrl 6,X PPqq 3 4%
addrl 6.Y ppag 3 4%
PHA 48 1 3 PSHA
PHP 08 1 3
PLA 68 1 4 PULA
PLP 28 1 4
ROL A 001bbb10 1 2 ROLA
addr PP 2 5
addr.X PP 2 6 ROL index
addrl 6 PPqq 3 6 ROL addrl 6
addrl 6.X ppag 3 7

*Add one clock period if page boundary is crossed.
"Add one clock period if branch occurs to location in same page; add two clock periods if branch to another
page occurs.

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

Clock MC6800
Mnemonic Operand Object Code Bytes . .
Periods Instruction

ROR A 011bbb10 1 2 RORA
addr PP 2 5
addr.X PP 2 6 ROR index
addrl 6 PPQQ 3 6 ROR addrl 6
addrl 6.X ppagq 3 7

RTI 40 1 6 RTI

RTS 60 1 6 RTS

SBC 11laaa0l SBCA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5+
addrl 6 ppaq 3 4 addrl 6
addrl 6.X ppaq 3 4*
addrl 6.Y ppaq 3 4x

SEC 38 1 2 SEC

SED F8 1 2

SEI 78 1 2 SEI

STA 100aaa01 STAA
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 6
addrlé ppaq 3 4 addrlé
addrl 6.X ppPAq 3 5
addrl 6.Y PPqq 3 5

STX 100bb110 STX
addr PP 2 3 addr8
addr.Y PP 2 4 (index)
addrl 6 ppaq 3 4 addrl 6

STY 100bb100
addr PP 2 3
addr.X PP 2 4
addrl 6 ppaq 3 4

TAX AA 1 2

TAY A8 1 2

TSX BA 1 2 TSX

TXA 8A 1 2

TXS 9A 1 2 TXS

TYA 98 1 2

‘Add one clock period if page boundary is crossed.
"Add one clock period if branch occurs to location in same page; add two clock periods if branch to another
page occurs.

ADC — ADD MEMORY, WITH CARRY, TO ACCUMULATOR

This instruction uses eight methods of addressing data memory and allows the con-
tents of data memory and the carry status to be added to the Accumulator. The eight
methods of addressing memory are:

1) Immediate - ADC data

2) Absolute (direct) - ADC addrl6

3) Zero page (direct) - ADC addr

4) Pre-indexed with Index Register X - ADC (addr.X)

5) Post-indexed with Index Register Y - ADC (addri.Y

6) Zero-page indexed with Index Register X - ADC addr.X

7) Absolute indexed with Index Register X - ADC addr16,X

8) Absolute indexed with Index Register Y - ADC addrl6,Y

The first byte of object code determines which addressing mode is selected as follows:

7 6 543 210" Bit Number
|o]l]llalala|O]l Object Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of bytes
000 61 Indirect, pre-indexed with X 2
001 65 Zero page (direct) 2
010 69 Immediate 2
011 6D Absolute (direct) 3
100 71 Indirect, post-indexed with Y 2
101 75 Zero page indexed with X 2
110 79 Absolute indexed with Y 3
111 7D Absolute indexed with X 3

We may illustrate the ADC instruction with immediate addressing as shown below. For
other addressing modes, consult either the discussion of addressing modes or the
description of other arithmetic or logical instructions since other illustrations show
different addressing modes.

Add the contents of the next program memory byte (addressing mode selected by bits
2. 3. and 4 of the byte in the instruction register) and the Carry status to the Accumula-
tor. Suppose xx =3A-|6. yy =7Cie. C = 1 After the instruction

ADC #$7C
has been executed, the Accumulator will contain B7-|g.
3A = 001110 10
7C = 01111100
Carry = 1
0110 111

No carry, set C to 0-* L Nonzero result sets Z to 0

r 1 sets S to 1+

O-V-1 =1, SetV to 1l

ADC is the only 6502 addition instruction. To use it in single-byte operations or to add
the low-order bytes of two multibyte numbers, a previous instruction must explicitly set
Carry to zero so that it does not affect the operation. Note that the 6502 microprocessor
has no addition instruction that does not include the Carry. ADC will perform either bi-

nary or decimal (BCD) addition, depending on whether the Decimal Mode status is O or
1.

AND — AND MEMORY WITH ACCUMULATOR

This instruction logically ANDs the contents of a memory location with the contents of
the Accumulator. This instruction offers the same memory addressing options as the
ADC instruction. The first byte of object code selects the addressing mode as follows:

76 5 4 3 210 " Bit Number
|0 j0|1l]lalalalo|1l Object Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 21 Indirect, pre-indexed with X 2
001 25 Zero page (direct) 2
010 29 Immediate 2
011 2D Absolute (direct) 3
100 31 Indirect, post-indexed with Y 2
101 35 Zero page indexed with X 2
110 39 Absolute indexed with Y 3
111 3D Absolute indexed with X 3

We will illustrate the AND instruction with zero page (direct) addressing. See the dis-
cussion of addressing methods and other arithmetic and logical instructions for exam-
ples of the other addressing modes.

Data

Logically AND the contents of the selected memory byte with the Accumulator and

store the result in the Accumulator. Suppose xx = FC-|6 ar|d VY = 1316- After the in-
struction

AND $40

(assuming that yy is in memory location 0040), the Accumulator will contain 101q:

FC = 11111100
13 = 000 100 11
000 10000
0 in bit 7 sets S to O_J U Nonzero result sets Z to 0

AND is a frequently used logical instruction.

3-40

ASL — SHIFT ACCUMULATOR OR MEMORY BYTE LEFT

Perform a one-bit arithmetic left shift of the contents of the Accumulator or the con-
tents of the selected memory byte.

First, consider shifting the Accumulator:

Data

svbedizc Memory
Program
Memory

mmmm

mmmm -

Suppose that the Accumulator contains 7A-|g. Performing an
ASL A

instruction will set the Carry status to 0, the Sign status to 1, the Zero status to 0, and
will store F4-JQ in the Accumulator.

Carry Accumulator

Kee-mm=- 011110 10>— 0
0 11110 100

Sets S to 1-*------ 1 L _ Nonzero result sets Z to 0

The ASL instruction uses four data memory addressing options:

1) Zero page (direct) - ASL addr

2) Absolute (direct) - ASL addrl6

3) Zero page indexed with Index Register X - ASL addr.X

4) Absolute indexed with Index Register X - ASL addrl6,X

The first byte of object code determines which addressing mode is selected as follows:

765432 107 Bit Number
1010TOlblbT11 1|0 M - Obiect Code

Bit Value Hexadecimal Number

for bb Object Code Addressing Mode of Bytes
00 06 Zero page (direct) 2
01 OE Absolute (direct) 3
10 16 Zero page indexed with X 2
n 1E Absolute indexed with X 3

We will show the ASL instruction with absolute (direct) addressing The other addres-
sing modes are shown in other instruction descriptions.

Memory
[o]

"HATTTThqq

Program
Memory

mmmm
mmmm + 1
mmmm + 2

mmmm + 3

Suppose ppqq = 3F86-|g and the contents of ppgq are CB-|g. After executing an
ASL $3F86

instruction, the contents of location 3F86-|g will be altered to 96-|g and Carry will be
set to 1:

Carry (3F86-]g)
X - mmmeee 1100101 1-— O
1 10010110
SetsStol-*---- 1 [*- Nonzero result sets Z to 0

The ASL instruction is often used in multiplication routines and as a standard logical in-
struction. Note that a single ASL instruction multiplies its operand by 2.

BCC — BRANCH IF CARRY CLEAR (C = 0)

This instruction is a branch with relative addressing in which the branch is only ex-
ecuted if the Carry status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT

#$7F

$40

the ADC $40 instruction is executed right after the BCC instruction if the Carry status
equals 0. The AND #$7F instruction is executed if the Carry status equals 1 The rela-
tive addressing operates as shown in the next illustration and as shown in the discus-
sion of addressing methods presented earlier. No statuses and no registers — except
the Program Counter — are affected.
Data
Sv b oi zc Memory

-Lii.lLELJ

mmmm + ri

If the Carry is zero, this instruction adds the contents of the second object code byte
(taken as a signed s -bit displacement) to the contents of the Program Counter plus 2;
this becomes the memory address for the next instruction to be executed. The previous
contents of the Program Counter are lost.

BCS — BRANCH IF CARRY SET <C = 1)

This instruction operates like the BCC instruction except that the branch is only ex-
ecuted if the Carry status equals 1; otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT

#$TF

$40

the ADC $40 instruction is executed right after the BCS instruction if the Carry status
equals 1L The AND #$7F instruction is executed if the Carry status equals 0.

BEQ — BRANCH IF EQUAL TO ZERO (Z = 1)

This instruction is just like the BCC instruction except that the branch is executed if the
Zero status equals 1; otherwise, the next instruction is executed.

In the following sequence:

NEXT

#$TF

$40

the ADC $40 instruction is executed right after the BEQ instruction if the Zero status
equals 1L The AND #$7F instruction is executed if the Zero status equals 0.

3-44

BIT — BIT TEST

This instruction logically ANDs the contents of the Accumulator with the contents of a
selected memory location, sets the condition flags accordingly, but does not alter the
contents of the Accumulator or memory byte. The only addressing modes allowed are
absolute (direct) and zero page (direct). The first byte of object code determines the ad-
dressing mode as follows:

765432107 Bit m0
1010] 1jQIX f1lol'OV A e Object Code
Bit Value Hexadecimal . Number
for x Object Code Addressing Mode of Bytes
0 24 Zero page (direct) e
1 2C Absolute (direct) 8
We will illustrate the BIT instruction using absolute (direct) addressing. For the zero

page mode, see the AND instruction and the discussion of addressing modes. We
should note that BIT has a rather unusual effect on the status flags, since it sets the Z
flag according to the result of the logical AND operation but sets the S and V flags ac-
cording to bits 7 and s of the contents of the memory location being tested: that is,

Z=1fAAM=02Z=0ifAA M EO

S = bit 7 of (M)

V = bit s of (M)

Data

Logically AND the contents of the Accumulator with the contents of the specified
memory location and set the Zero condition flag accordingly. Set the Sign and Overflow
condition flags according to bits 7 and &, respectively, of the selected memory location.
Suppose xx = As -jo, yy = EOig, and ppqq = 1641 ig After the instruction

BIT $1641

has executed, the Accumulator will still contain As -|g, and location 1641 ig will still
contain EO-|g. but the statuses will be modified as follows:

As 10100110
EO 1f100000
10 100000
Sets S to 1- SetVito1l

-Nonzero result sets Z to 0

BIT instructions frequently precede conditional Branch instructions. BIT instructions are
also used to perform masking functions on data.

3-46

BMI — BRANCH IF MINUS (S = 1)
BMI

30

This instruction works like the BCC instruction except that the branch is executed only
if the Sign status is 1: otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT

#$7F

$40

the ADC $40 instruction is executed right after the BMI instruction if the Sign status is
1 The AND #$7F instruction is executed if the Sign status is 0.

BNE — BRANCH IF NOT EQUAL TO ZERO (Z = 0)
BNE

This instruction is identical to the BCC instruction except that the branch is executed
only if the Zero status is 0; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

E NEXT
zZ=1
ID #$7F
ADC $40

the ADC $40 instruction is executed right after the BNE instruction if the Zero status is
0. The AND #$7F instruction is executed if the Zero status is 1

BPL — BRANCH IF PLUS (S = 0)
BPL

This instruction operates like the BCC instruction except that the branch is executed
only if the Sign status is O; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

S=0
BlL NEXT
S=1
AND #$7F

the ADC $40 instruction is executed right after the BPL instruction if the Sign status is
0. The AND #$7F instruction is executed if the Sign status is 1.

3-48

BRK — FORCE BREAK (TRAP OR SOFTWARE INTERRUPT)

The Program Counter is incremented by two and the Break status is set to 1. then the
Program Counter and Status (P) register are pushed onto the Stack. The registers and
the corresponding memory locations into which they are pushed are as follows:

Memory Location Register
(Stack Pointer contains ss at start of instruction execution.)
01 ss High byte of Program Counter
Olss - 1 Low byte of Program Counter
Olss - 2 Status (P) register with B =1
(Stack Pointer contains ss - 3 at end of instruction execution.)

The Interrupt Mask bit is then set to 1. This disables the 6502's interrupt service ability,
i.e., the processor will not respond to an interrupt from a peripheral device. The con-
tents of the Interrupt Pointer (memory addresses FFFE-|g and FFFFi6> are then loaded
into the Program Counter.

The BRK instruction can be used for a variety of functions. It can provide a breakpoint
facility for debugging purposes or it can transfer control to a particularly important soft-
ware system such as a disk operating system or a monitor. Note that the programmer
must insert the code required to tell a BRK instruction from a regular interrupt response.
The coding to do this checks the value of the B status flag in the Stack as follows:

PLA GET STATUS REGISTER

PHA BUT ALSO LEAVE IT ON STACK
AND #$10 IS BREAK STATUS SET?

BNE BRKP YES, GO PROCESS BREAK

Note that the operation code for BRK is 00. This choice of operation code means that
BRK can be used to patch programs in fusible-link PROMs since blowing all the fuses
makes the contents of the word 00. Thus an erroneous instruction can be corrected by
changing the first object code byte to 00 and inserting a patch via the interrupt vector
routine. Remember that a bit in a fusible-link PROM can be set to zero (by blowing the
fuse) but cannot be reset to one after the fuse has been blown. Such PROMs are not
erasable.

The operation of the BRK instruction may be illustrated as follows:

3-49

The final contents of the Program Counter are ppqq where pp represents the contents
of the memory location FFFF-|g and PQ the contents of memory location FFFE-|g. Note
that the Stack is always on page 1 of memory: ie.. the eight most significant bits of the
Stack address are always 01 iq .

BVC — BRANCH IF OVERFLOW CLEAR (V = 0)
BvVC
50

This instruction operates like the BCC instruction except that the branch is executed
only if the Overflow status is 0; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

V =0
-B»'C NEXT
v=1
A <D #$7F
----- » ADC $40

the ADC $40 instruction is executed right after the BVC instruction if the Overflow
status is 0. The AND #$7F instruction is executed if the Overflow status is 1

BVS — BRANCH IF OVERFLOW SET (V = 1)
BVS
70

This instruction is just like the BCC instruction except that the branch is executed only
if the Overflow status is 1: otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

the ADC $40 instruction is executed right after the BVS instruction if the Overflow
status equals 1. The AND #$7F instruction is executed if the Overflow status equals 0.

CLC — CLEAR CARRY
CLC
18

Clear the Carry status. No other status or register's contents are affected. Note that this
instruction is required as part of a normal addition operation since the only addition in-
struction available on the 6502 microprocessor is ADC, which also adds in the Carry
status. This instruction is also required at the start of a multi-byte addition since there is
never a carry into the least significant byte.

Data

V B D Memory

s O H

Program
Memory

mmmm

mmmm -

CLD — CLEAR DECIMAL MODE
CLD

De

Clear the Decimal Mode status. No other status or register's contents are affected. This
instruction is used to return the 6502 processor to the binary mode in which ADC and
SBC instructions produce binary rather than BCD results. This instruction may be used
to ensure that the mode is binary in situations where it may be uncertain whether the
Decimal Mode status has been set or cleared most recently.
Data
svBdiz2c Memory

Program
Memory

D8 mmmm
mmmm + 1

CLI — CLEAR INTERRUPT MASK (ENABLE INTERRUPTS)
CLI

58

Clear the interrupt mask bit in the Status (P) register. This instruction enables the
6502's interrupt service ability, i.e.. the 6502 will respond to the Interrupt Request con-
trol line. No other registers or statuses are affected. Note that the | bit is a mask or disa-
ble bit. It must be cleared to enable interrupts and set to disable them.

Data
Memory

Program
Memory

mmmm

mmmm =

CLV — CLEAR OVERFLOW
CLv

B8

Clear the overflow bit in the Status register. No other registers or statuses are affected.
Note that the 6502 has no SET OVERFLOW instruction.

Data
tzc Memory
cm

Program

Memory

mmmm
mmmm + 1

CMP — COMPARE MEMORY WITH ACCUMULATOR

This instruction subtracts the contents of a selected memory byte from the Accumula-
tor, sets the condition flags accordingly, but does not alter the contents of the Ac-
cumulator or memory byte. This instruction offers the same memory addressing options

as the ADC instruction. The first byte of object code selects the addressing mode as
follows:

76543210 Bit Number
1]1/Qlalalalo|l]l " Qbiect Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 Cl Indirect, pre-indexed with X 2
001 C5 Zero page (direct) 2
010 C9 Immediate 2
011 CD Absolute (direct) 3
100 D1 Indirect, post-indexed with Y 2
101 D5 Zero page indexed with X 2
110 D9 Absolute indexed with Y 3
111 DD Absolute indexed with X 3

We will illustrate the CMP instruction with pre-indexed indirect addressing (using Index
Register X). See the discussions of addressing methods and other instructions for exam-
ples of the other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of the Accumula-
tor and set the Sign, Zero, and Carry statuses to reflect the result of the subtraction.
Suppose xx = FFie- yy = 18ig. rr=20te- cc=23-|6. <0043¢)g) = 6D1o, and
(004419) = 15i6- Note that 0043 = + cc and we have assumed that
056Die) = v =

After the instruction

CMP ($23,X)
has been executed, the Accumulator will still containFe16 and memory location
156D16 will still contain 18-, but the statuses willbe modifiedasfollows:
F6= 11110 110
Twos complement of 18 — 11101000
110 11110

’Nonzero result sets Z to 0
Sets S to I<e------

Note that C is equal to the resulting carry, not to its complement as is true on many
other microprocessors. Thus C = 0 if a borrow is required and C = 1 if no borrow is
necessary.

Compare instructions are most frequently used to set statuses before the execution of
Branch-on-Condition instructions.

3-57

CPX — COMPARE INDEX REGISTER X WITH MEMORY

This instruction is the same as CMP except that the memory byte is subtracted from In-
dex Register X instead of the Accumulator. The only addressing modes allowed are im-
mediate, zero page (direct), and absolute (direct). The first byte of object code selects
the addressing mode as follows:

7 6 54 3 2 10 Bit Number
[T11111Q clc|Qloln Object Code
Bit Value He>_<adeC|maI Addressing Mode Number
for cc Object Code of Bytes
00 EO Immediate 2
01 E4 Zero page (direct) 2
10 Used for INX instruction
1 EC Absolute (direct) 3

We will illustrate the CPX instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of Index Register
X. The Sign, Zero, and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruction.

CPY — COMPARE INDEX REGISTER Y WITH MEMORY

This instruction is the same as CMP except that the memory byte is subtracted from In-
dex Register Y instead of the Accumulator. The only addressing modes allowed are im-
mediate. zero page (direct), and absolute (direct). The first byte of object code selects

the addressing mode as follows:

Bit Value
for cc

00
01
10
n

76 543210 " Bit Number

[1111010 clc 1 Q[o]r emmeemn Object Code

Hexadecimal
Object Code

(e6]
C4

cc

. Number
Addressing Mode of Bytes
Immediate 2
Zero page (direct) 2
Used for INY instruction
Absolute (direct) 3

We will illustrate the CPY instruction with zero page (direct) addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples

of the other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of Index Register
Y. The Sign, Zero, and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruction.

DEC — DECREMENT MEMORY (BY 1)

This instruction decrements by 1 the contents of a selected memory location.The DEC
instruction uses four data memory addressing options:

1) Zero page (direct) — DEC addr

2) Absolute (direct) — DEC addrl6

3) Zero page indexed with Index Register X — DEC addr.X
4) Absolute indexed with Index Register X — DEC addr16,X

The first byte of object code determines which addressing mode is selected as follows:

76543210 -* Bit Number
1 i Ob b i 10 Object Code
Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 Cs Zero page (direct) 2
01 CE Absolute (direct) 3
10 Ds Zero page indexed with X 2
11 DE Absolute indexed with X 3

We will illustrate the DEC instruction with absolute indexed addressing. The other ad-
dressing modes are shown elsewhere.

If yy = A5-|6' PPdQ = 0100ig, and rr = OA-|o, then after execution of the instruction
DEC $0100,X

the contents of memory location OIOA10 will be altered to Asio.

A5 = 10100101
Ones complementof 1 = 11111111
10100100
Carry is not altered Nonzero result sets Z to 0
Sets Sto 1- Overflow (V) is not altered

DEX — DECREMENT INDEX REGISTER X (BY 1)

This instruction decrements by 1 the contents of Index Register X. The Zero and Sign
statuses are affected.

The effects of this instruction are the same as those of DEC except that the contents of
Index Register X are decremented rather than the contents of a memory location.

Data

svboizc Memory
mE U933
Program
Memory

mmmm
mmmm + 1

DEY — DECREMENT INDEX REGISTER Y (BY 1)

This instruction decrements by 1 the contents of Index Register Y. The Zero and Sign
statuses are affected just as they are by DEC and DEX.

DEY

Data
SV B Memory

-E m

Program
Memory

mmmm

mmmm h

EOR — EXCLUSIVE-OR ACCUMULATOR WITH MEMORY

Exclusive-OR the contents of the Accumulator with the contents of a selected memory
byte. This instruction offers the same memory addressing options as the ADC instruc-
tion. The first byte of object code selects the addressing mode as follows:

7654321 o~ Bit Number
A e Object Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 41 Indirect, pre-indexed with X 2
001 45 Zero page (direct) 2
010 49 Immediate 2
011 4D Absolute (direct) 3
100 51 Indirect, post-indexed with Y 2
101 55 Zero page indexed with X 2
110 59 Absolute indexed with Y 3
111 5D Absolute indexed with X 3

We will illustrate the EOR instruction with post-indexed indirect addressing (using In-
dex Register Y). See the discussion of addressing methods and other arithmetic and
logical instructions for examples of the other addressing modes.

Data

SV B D zc Memory
PIXI 11 yxi i o 00cc
PP 0OOcc +

mmmm
mmmm + 1
mmmm + 2

mmmm + 3

Logically Exclusive-OR the contents of the Accumulator with the contents of the
selected memory location, treating both operands as simple binary data. Suppose that
xx = E3-|0 and yy = AOig. After the instruction

EOR ($40,Y)

has executed, the Accumulator will contain 43t6. We assume also that rr = 10-6_
qq = (4010): 1E-|6, pp = (41ig) = 25-|6" and (251 Ei€) = W = AOQig.

E3 = 11100011
A0 = 10100000
010000 11

0 sets Sto 0 Nonzero result sets Z to 0

EOR is used to test for changes in bit status. Note also that the instruction EOR #$FF
complements the contents of the Accumulator, changing each 'V bit to a'O' and each
‘0" bit to a'1".

INC — INCREMENT MEMORY (BY 1)

This instruction increments by 1 the contents of a selected memory location. The INC
instruction uses four data memory addressing options:

1) Zero page (direct) — INC addr

2) Absolute (direct) — INC addrl6

3) Zero page indexed with Index Register X — INC addr.X
4) Absolute indexed with Index Register X — INC addr16,X

The first byte of object code determines which addressing mode is selected as follows:

76 543210 @ - Bit Number
| 111]1| bl b|1]1]0 ————Object Code
Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 E6 Zero page (direct) 2
01 EE Absolute (direct) 3
10 F6 Zero page indexed with X 2
11 FE Absolute indexed with X 3

We will illustrate the INC instruction with absolute (direct) addressing. The other ad-
dressing modes are shown elsewhere.

Data

Increment the selected memory byte.
If pp = 011@ qq = A2-|g, and yy = COig- then after executing an:
INC $01A2

instruction, the contents of memory location 01 A2-|e will be incremented to C116.

CO = 11000000
1 = 00000001
1100000 1

Sets S to 1--------- 1 1 »Nonzero result sets Z to 0

Carry and Overflow are not
altered

The INC instruction can be used to provide a counter in a variety of applications such as
counting the occurrences of an event dr specifying the number of times a task is to be
performed.

INX — INCREMENT INDEX REGISTER X (BY 1)

This instruction increments by 1 the contents of Index Register X. The Zero and Sign
statuses are affected just as by the INC instruction.

Data
Memory

Program
Memory

mmmm
mmmm -

Add 1 to the contents of Index Register X and set the Zero and Sign flags according to
the result. Suppose that Index Register X contains 7A-|0, After the instruction

INX

has executed, Index Register X will contain 7B-|0, the Zero status will be cleared since

the result is nonzero, and the Sign status will be cleared since the result has 0 in its
most significant bit.

3-67

INY — INCREMENT INDEX REGISTER Y (BY 1)

This instruction increments by 1 the contents of Index Register Y. The Zero and Sign
statuses are affected just as by the INC instruction.

INY
Cs

Data
SVvVBDIZC Memory

ppm T in

Program
Memory

mmmm

mmmm + 1

Add 1 to the contents of Index Register Y and set the Zero and Sign flags according to
the result. Suppose that Index Register Y contains OCais. After the instruction INY has
executed. Index Register Y will contain 0D-|g, the Zero status will be cleared since the

result is nonzero, and the Sign status will be cleared since the result has 0 in its most
significant bit.

JMP — JUMP VIA ABSOLUTE OR INDIRECT ADDRESSING

This instruction will be illustrated using indirect addressing. Note that it is the only in-
struction that has the true indirect addressing mode. The first byte of object code deter-
mines the addressing mode as follows:

7 6 54 32 10 ~ Bit Number
J]0O111lylOl1l1lo]oK »--——--Object Code
Bit Value Hexadecimal . Number
fory Object Code Addressing Mode of Bytes
0 4C Absolute (direct) 3
1 6C Indirect 3
Data
SV BD I Memory
ccdd
ccdd+1

Program
Memory

Jump to the instruction specified by the operand by loading the address from the
selected memory bytes into the Program Counter.

In the following instruction sequence:

CLC

LDA #BASEL CALCULATE LSB'S OF DESTINATION ADDRESS
ADC INDXL

STA JADDR

LDA #BASEU CALCULATE MSB'S OF DESTINATION ADDRESS
ADC INDXU

STA JADDR+1

JMP (JADDR) TRANSFER CONTROL TO DESTINATION

The JMP instruction will perform an indexed jump relative to the 16-bit address con-
sisting of BASEU (¢ MSBs) and BASEL (s LSBs). The index here is assumed to be 16 bits
long and to be initially stored at addresses INDXL (s LSBs) and INDXU (s MSBs). The ad-
dresses following the start of the table could then contain absolute JMP instructions
that transfer control to the proper routines.

JMP will not work properly if the indirect address crosses a page boundary — that is, if
dd = FFiq in the illustration above. The discussion of indirect addressing earlier in this
chapter discusses this peculiarity in more detail.

The JMP instruction can also use the absolute (direct) addressing mode. In this case,
the second byte of the instruction is loaded into the low byte of the Program Counter,
and the third byte of the instruction is loaded into the high byte of the Program
Counter. Instruction execution continues from this address.

JSR— JUMP TO SUBROUTINE

This instruction pushes the Program Counter onto the Stack and then transfers control
to the specified instruction. Only absolute (direct) addressing is allowed. Note that the
Stack Pointer is decremented after the storage of each data byte and that the Program
Counter value that is saved is the address of the last (third) byte of the JSR instruc-
tion: i.e., the initial program counter value plus 2. Remember also that the Stack grows
down in memory and that the most significant half of the Program Counter is stored
first and thus ends up at the higher address (in the usual 6502 address form).

Data

The Program Counter is incremented by 2 and then is pushed onto the Stack. The Stack
Pointer is adjusted to point to the next empty location in the Stack. The address part of
the instruction is then stored in the Program Counter and execution continues from that
point.

Assume that mmmm = E34F-]o and that ss = E3-Jo Then after the execution of the in-
struction

JSR $E100

the Program Counter will contain E1004q, the Stack Pointer will contain Eli0, and the
Stack locations will be as follows:

(01ss) = (01E3) = PC(HI) = E3
(Olss - 1) = (01E2) = PC(LO) = 5116

The next instruction to be executed will be the one at memory address E1OO-Jo.

LDA — LOAD ACCUMULATOR FROM MEMORY

Load the contents of the selected memory byte into the Accumulator. This instruction
offers the same memory addressing options as the ADC instruction and will be illus-
trated using zero-page indexed addressing with Index Register X. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes. The first byte of object code selects the addressing mode as
follows:

76 5432107 Bit Number
[1jofllalala|O0]| 1~t" - Object Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 Al Indirect, pre-indexed with X 2
001 A5 Zero page (direct) 2
010 A9 Immediate 2
011 AD Absolute (direct) 3
100 Bl Indirect, post-indexed with Y 2
101 B5 Zero page indexed with X 2
110 B9 Absolute indexed with Y 3
111 BD Absolute indexed with X 3

Data

Load the contents of the selected memory byte into the Accumulator.

Suppose that Index Register X contains 101q and cc = 43-|g. If memory location
0OO053-|0 contains AA-|6, then after

LDA $43.X
has executed, the Accumulator will contain AA-|g.
AA = 10 10 10

1sets Sto 1--—-- £ ~Nonzero result set to 0

LDX — LOAD INDEX REGISTER X FROM MEMORY

Load the contents of the selected memory byte into Index Register X. The addressing
modes allowed are:

1) Immediate — LDX data

2) Absolute (direct) — LDX addrl6

3) Zero page (direct) — LDX addr

4) Absolute indexed with Y — LDX addr16,Y

5) Zero page indexed with Y — LDX addr.Y

Note that there are no indexing modes with Index Register X, and there is no post-in-
dexing. The first byte of object code selects the addressing mode as follows:

76 543 210" Bit Number
j1jofr|didid(l [0 - Object Code
Bit Value Hexadecimal . Number
for ddd Object Code Addressing Mode of Bytes
000 A2 Immediate 2
001 A6 Zero page (direct) 2
010 AA Used for TAX instruction
011 AE Absolute (direct) 3
100 B2 Not used
101 B6 Zero page indexed with Y 2
110 BA Used for TSX instruction
111 BE Absolute indexed with Y 3

We will illustrate the LDX instruction with absolute indexed addressing using Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data

Load the contents of the selected memory byte into Index Register X. Suppose that In-
dex Register Y contains Z}\q, ppaq = 2E1 and yy = (2E42-|e) = 4Fig. then after
the execution of the instruction

LDX $2E1AY
Index Register X will contain 4F-|q.

4F = 01001111

L Nonzero result sets Z to 0

LDY — LOAD INDEX REGISTER Y FROM MEMORY

Load the contents of the selected memory byte into Index Register Y. The addressing
modes allowed are:

1) Immediate — LDY data

2) Absolute (direct) — LDY addrl6

3) Zero page (direct) — LDY addr

4) Absolute indexed with X — LDY addrl6.X

5) Zero page indexed with X — LDY addr,X

Note that there are no indexing modes with Index Register Y nor is there any pre-index-
ing.

The first byte of object code selects the addressing mode as follows:

Bit Number
j110]1]d|d[d] O] O =ereen Object Code

Bit Value He>_<adecimal Addressing Mode Number
for ddd Object Code of Bytes
000 AO Immediate 2
001 A4 Zero page (direct) 2

010 A8 Used forTAY instruction
011 AC Absolute (direct) 3
100 BO Used for BCS instruction
101 B4 Zero page indexed with X 2
110 B8 Used for CLV instruction
111 BC Absolute indexed with X 3

We will illustrate the LDY instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes.

Data
Memory

Load the contents of the selected memory byte into Index Register Y. Suppose that
yy = OO0-i6- then after the execution of the instruction

LDY #0
Index Register Y will contain zero.

00 - 00000O0COO

U -Zero result sets Z to 1

LSR — LOGICAL SHIFT RIGHT OF ACCUMULATOR OR MEMORY
This instruction performs a one-bit logical right shift of the Accumulator or the selected
memory byte.
First, consider shifting the Accumulator.
LSR A
4A

Data
sv8bpl Zc Memory

Program
Memory

mmmm
mmmm + 1

Shift the contents of the Accumulator right one bit. Shift the low-order bit into the Car-
ry status. Shift a zero into the high-order bit.

Suppose the Accumulator contains 7A-|g. After the

LSR A
instruction is executed, the Accumulator will contain 3Di 6 and the Carry status will be
set to zero.

Accumulator Carry

0------ 011110 10— »X
00111101 0

LSR always sets S to O-«———1 ' m Nonzero result sets Z to 0
Four methods of addressing data memory are available with the LSR instruction; they
are:
1) Zero page (direct) — LSR addr
2) Absolute(direct) — LSR addrl6
3) Zero page indexedwith Index Register X— LSR addr.X
4) Absolute indexed with Index Register X — LSR addrl16,X
The first byte of object code determines which addressing mode is selected as follows:

7 65 4 32 10" Bit Number
10] 10| b] b] 11 1]0 -eeeeeee Object Code

Bit Value Hexadecimal
Addressing Mode Number

for bb Object Code of Bytes
00 46 Zero page (direct) 2
01 4E Absolute (direct) 3
10 56 Zero page indexed with X 2
n 5E Absolute indexed with X 3

We will illustrate the LSR instruction with absolute (direct) addressing. The other ad-
dressing modes are shown elsewhere.

Program
Memory
mmmm
mmmm + 1
mmmm + 2
mmmm ¢ 3
Logically shift thecontents of the selected memorylocation right one hit.

Suppose that ppqq =04FA-|g and the contents of memorylocation 04FA-|6 are OD-|g.
After the instruction

LSR $04FA

has been executed, the Carry status will be 1 and the contents of memory location
04FA-|g will be 06-|g.

(04FAig) Carry
0 ---mev 0000 110 1-—-—-»X
00000 110 1
LSR always sets S to 0- 1 1 — Nonzero result sets Z to 0

NOP — NO OPERATION
NOP

EA

This is a one-byte instruction which does nothing except increment the Program
Counter. This instruction allows you to give a label to an object program byte, to fine
tune a delay (each NOP instruction adds two clock cycles), and to replace instruction
bytes that are no longer needed because of corrections or changes. NOPs can also be
used to replace instructions (such as JSRs) which you may not want to include in
debugging runs. NOP is not very frequently used in finished programs, but it is often
useful in debugging and testing.

Data
s v Bo | ZC Memory

PL1—L..L1 m

Program
Memory

mmmm
mmmm +

ORA — LOGICALLY OR MEMORY WITH ACCUMULATOR

This instruction logically ORs the contents of a memory location with the contents of
the Accumulator. This instruction offers the same memory addressing options as the
ADC instruction. The first byte of object code selects the addressing mode as follows:

76 5 432 10" - Bit Number
10|0[01lalala|Q|" - Obiect Code

Bit Value Hexadecimal Addressing Mode Number
for aaa Object Code of Bytes
000 01 Indirect, pre-indexed with X 2
001 05 Zero page (direct) 2
010 09 Immediate 2
011 oD Absolute (direct) 3
100 n Indirect, post-indexed with Y 2
101 15 Zero page indexed with X 2
110 19 Absolute indexed with Y 3
111 1D Absolute indexed with X 3

We will illustrate the ORA instruction using absolute indexed addressing with Index

Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data

Logically OR the contents of the Accumulator with the contents of the selected memory
byte, treating both operands as simple binary data.

Suppose that ppqq —16231g, rr = 10-|g, xx = E3-|g, and yy = AB-|g. After the execu-
tion of the instruction

ORA $1623,Y

the Accumulator will contain EB1g.

E3 = 111 00011
AB = 1010 10 11
110 10 11
Sets Sto 1 Nonzero result sets Z to 0

This is a logical instruction; it is often used to turn bits "on", i.e.,, make them 'l's. For
example, the instruction

ORA #$80

will unconditionally set the high-order bit in the Accumulator to 1

PHA — PUSH ACCUMULATOR ONTO STACK

This instruction stores the contents of the Accumulator on the top of the Stack. The
Stack Pointer is then decremented by 1. No other registers or statuses are affected.
Note that the Accumulator is stored in the Stack before the Stack Pointer is decre-
mented.

PHA

Data

Suppose that the Accumulator contains 3 A-jo and the Stack Pointer contains F7-]g-
After the instruction PHA has been executed, 3A-|6 will have been stored in memory
location O1F7-j10 and the Stack Pointer will be altered to Fs -Jo .

The PHA instruction is most frequently used to save Accumulator contents before ser-
vicing an interrupt or calling a subroutine.

PHP — PUSH STATUS REGISTER (P) ONTO STACK

This instruction stores the contents of the Status (P) register on the top of the Stack.
The Stack Pointer is then decremented by 1 No other registers or statuses are affected.
Note that the Status register is stored in the Stack before the Stack Pointer is decre-
mented.

The organization of the status in memory is as follows:

7 6 5432 10 7~ - Bit Number

|sivi IBIDI I|Z]C(-<-— Register P

Bit 5 is not used and its value is arbitrary.
PHP

08

The PHP instruction is generally used to save the contents of the Status register before
calling a subroutine. Note that PHP is not necessary before servicing an interrupt since
the interrupt response (to IRQ or NMI) and the BRK instruction automatically save the
contents of the Status register at the top of the Stack.

PLA — PULL CONTENTS OF ACCUMULATOR FROM STACK

This instruction increments the Stack Pointer by 1 and then loads the Accumulator
from the top of the Stack. Note that the Stack Pointer is incremented before the Ac-
cumulator is loaded.

PLA

Data

Suppose the Stack Pointer contains F6-|g and memory location 01F7-|g contains CE-|6
After the instruction PLA has executed, the Accumulator will contain CE-|g and the
Stack Pointer will contain F7-|g.

F7 =\]1110 111L
Set S to 1«

Nonzero result sets Z to 0

The PLA instruction is most frequently used to restore Accumulator contents that have
been saved on the Stack: e.g., after servicing an interrupt, or after completing a
subroutine.

PLP — PULL CONTENTS OF STATUS REGISTER (P) FROM STACK

This instruction increments the Stack Pointer by 1 and then loads the Status (P) register
from the top of the Stack. No other registers are affected but all the statuses may be

changed. Note that the Stack Pointer is incremented before the Status register is
loaded.

The organization of the status in memory is as follows:

76 543210 @ Bit Number
Is|v] |Bld|llz|ct<~— Register P

Bit 5 is not used.

Data

The PLP instruction is generally used to restore the contents of the Status register after
completing a subroutine. Thus, it serves to balance the PHP instruction mentioned
earlier. Note that PLP is not necessary after servicing an interrupt since the RTI instruc-
tion automatically restores the contents of the Status register from the top of the Stack.

ROL — ROTATE ACCUMULATOR OR MEMORY LEFT THROUGH
CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the left
through the Carry.

First, consider rotating the Accumulator.
ROL A
2A

Data
SVvBDIZC Memory

Program
Memory

mmmm
mmmm + 1

Rotate the Accumulator's contents left one bit through the Carry status.
Suppose the Accumulator contains 7A-|g and the Carry status is set to 1. After the
ROL A

instruction is executed, the Accumulator will contain F5-|g and the Carry status will be
reset to zero.

Accumulator Carry
011110 10 1
j 110 10 1| 0
Set S to 1- Nonzero result sets Z to zero

The ROL instruction allows four methods of addressing data memory; they are:

1) Zero page (directy — ROL addr

2) Absolute (direct) — ROL addrl6

3) Zero page indexed with Index Register X — ROL addr.X

4) Absolute indexed with Index Register X — ROL addr16,X

The first byte of object code determines which addressing mode is selected as follows:

76 54 3210 Bit Number
lgl°|11b[b11111~ Object Code

Bit Value Hexadecimal)
Addressing Mode Number

for bb Object Code of Bytes
00 26 Zero page (direct) 2
01 2E Absolute (direct) 3
10 36 Zero page indexed with X 2
11 3E Absolute indexed with X 3

We will illustrate the ROL instruction with zero page indexed addressing (using Index
Register X). The other addressing modes are shown elsewhere.

Rotate the selected memory byte left one bit through the Carry status. Suppose that
cc = 34-|g. rr = le1s, the contents of memory location 004Ai s are 2E-|6- and the Carry
status is zero. After executing a

ROL $34,X
instruction, memory location 004A-|g will contain 5C-|6

(004Aig) Carry

00101110 0
1011100 0

Set S to 0« Nonzero result sets Z to 0

ROR — ROTATE ACCUMULATOR OR MEMORY RIGHT,
THROUGH CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the
right through the Carry.

First consider rotating the Accumulator.
ROR A

6A

Data
Svs8DbDl2c Memory

Program
Memory

mmmm
mmmm + 1

Rotate the Accumulator's contents right one bit through the Carry status. Suppose that
the Accumulator contains 7A-|g and the Carry status is set to 1 Execution of the

ROR A

instruction will produce these results: the Accumulator will contain BD-)6 and the Car-
ry status will be 0.

Accumulator Carry

011110 10 1

Jo 11110 Jl 0
Set Sto 1

Nonzero result sets Z to 0

The ROR instruction allows four methods of addressing data memory: they are:

1) Zero page (direct) — ROR addr

2) Absolute (direct) — ROL addrl6

3) Zero page indexed with Index Register X — ROR addr.X
4) Absolute indexed with Index Register X — ROR addr1l6,X

The first byte of object code determines which addressing mode is selected as follows:

76 5432 10" Bil Number
i0]111IbIbl111[0hA —meen Object Code

Bit Value Hexadecimal Number

for bb Object Code Addressing Mode of Bytes
00 66 Zero page (direct) 2
01 6E Absolute (direct) 3
10 76 Zero page indexed with X 2
n TE Absolute indexed with X 3

We will illustrate the ROR instruction with absolute indexed addressing (using Index
Register X). The other addressing modes are shown elsewhere.

Suppose that rr = 14-|q. ppqq = 0100ig, the contents of memory location 011419 are
ED-|6- and the Carry status is 1. After executing a:

ROR S0100.X
instruction, the Carry status will be 1 and memory location 0114-|g will contain F6-]g.

(011419) Carry
1110 1101 1

Jl 1110 110 t
SetSto 1 Nonzero result sets Z to 0

RTI — RETURN FROM INTERRUPT

Pull the Status (P) register and the Program Counter off the top of the Stack. The
registers and the corresponding memory locations from which they are loaded are as
follows, assuming that the Stack Pointer contains ss at the start of instruction execu-
tion:

Memory Location Register
01ss+1 Status (P) register
01ss+2 Low byte of Program Counter
01ss+3 High byte of Program Counter

The final value of the Stack Pointer is its initial value plus 3. The old values of the Status
register and Program Counter are lost.

Data

Memory
0lss
Olss + 1
Olss + 2
Olss + 3

Program

Memory

Suppose that the Stack Pointer contains E8-|g, memory location 01E9-| g contains C116.
memory location 01 EAi g contains 3E-|g, and memory location 01 EB-| 6 contains D5-|6
After the instruction RTI has been executed, the Status register will contain C116, the
Stack Pointer will contain EB-|g. and the Program Counter will contain D53E-|g (this is
the address from which instruction execution will proceed). The statuses will be as
follows:
s v bdizc
Cl= [1]1]|0]0|O[O]O]|1]

Note that the Interrupt Mask bit will be set or reset depending on its value at the time
the Status register was stored, assuming that the interrupt service routine did not
change it while it was on the Stack.

RTS — RETURN FROM SUBROUTINE

This instruction fetches a new Program Counter value from the top of the Stack and in-
crements it before using it to fetch an instruction. Note that the Stack Pointer is incre-
mented before the loading of each data byte and its final value is thus two greater than
its initial value. RTS is normally used at the end of a subroutine to restore the return ad-
dress that was saved in the Stack by a JSR instruction. Remember that the return ad-
dress saved by JSR is actually the address of the third byte of the JSR instruction itself:
hence, RTS must increment that address before using it to resume the main program.
The previous contents of the Program Counter are lost. Every subroutine must contain
at least one RTS instruction.
Data

60
No statuses are altered by an RTS instruction.

Suppose that the Stack Pointer contains DF-|g, memory location 01EO-|g contains
08-]s, and memory location 01E1l1g contains 7Cig. After the instruction RTS has been
executed, the Stack Pointer will contain ElLig and the Program Counter will contain
7C09-|g (this is the address from which instruction execution will proceed).

SBC — SUBTRACT MEMORY FROM ACCUMULATOR WITH
BORROW

Subtract the contents of the selected memory byte and the complement of the Carry
status (i.e.. 1 —C) from the contents of the Accumulator. This instruction offers the
same memory addressing options as does the ADC instruction. The first byte of object
code selects the addressing mode as follows:

7 6543210 n Bit Number
I'TM IH.H ohWU Object Code
Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 El Indirect, pre-indexed with X 2
001 E5 Zero page (direct) 2
010 E9 Immediate 2
011 ED Absolute (direct) 3
100 F1 Indirect, post-indexed with Y 2
101 F5 Zero page indexed with X 2
110 F9 Absolute indexed with Y 3
111 FD Absolute indexed with X 3

We will illustrate the SBC instruction using pre-indexed indirect addressing (via Index
Register X). See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data

Subtract the contents of the selected memory byte and the complement of the Carry
status (1 — C). from the Accumulator, treating all register contents as simple binary
data. Note, however, that all data will be treated as decimal (BCD) if the D status is set.

Suppose that xx = 14ig, cc = 1519- rr = 37-|g, ppqq = 07E2-|g, yy = (07E219) = 34-|g,
and C = 0. After executing a

SBC ($15,X)
instruction, the contents of the Accumulator would be altered to DF-|g.

14 =00010100
Twos complement of 35=11001011 (see note below)
110 11111

Set Carry to 0

SetSto 1
O-V-O - 0,setVto0

Note: xx —yy — (@ - C) = xx —(yy+C):
hence, 14-|g - 34-]g- (L - 0) = 14ig - (34-|]g + 1) = 1419 - 35-|6

Note that the resulting Carry is not a borrow. It is, rather, the inverse of a borrow since it
is set to 1 if no borrow is required and cleared if a borrow is required. You should be
careful of this usage since it differs from that of most other microprocessors, which
complement the Carry before it is stored following a subtraction.

SBC is the only binary subtraction instruction. To use it in single-byte operations or to
subtract the low-order bytes of two multibyte numbers, a previous instruction (SEC)
must explicitly set C to 1 so that it does not affect the operation. Remember that C must
be set (not cleared) before a subtraction since its meaning is inverted from the usual
borrow. Note also that the 6502 microprocessor, unlike most others, has no subtraction
instruction that does not include the Carry.

SEC — SET CARRY
SEC

38

Set the Carry status to 1 No other status or register's contents are affected. Note that
this instruction is required as part of a normal subtraction operation since the only
subtraction instruction available on the 6502 microprocessor is SBC, which also
subtracts the complemented Carry status. This instruction is also required at the start of
a multi-byte subtraction since there is never a borrow from the least significant byte.

Data
svadizc Memory

Program
Memory

mmmm

mmmm + 1

SED — SET DECIMAL MODE
SED

F8

Set the Decimal Mode status to 1 No other status or register's contents are affected.
This instruction is used to place the 6502 processor in the decimal mode in which ADC
and SBC instructions produce BCD rather than binary results. The programmer should
be careful of the fact that the same program will produce different results, depending
on the state of the Decimal Mode status. This can lead to puzzling and seemingly ran-
dom errors if the state of the Decimal Mode status is not carefully monitored.
Data
Memory

Program
Memory

mmmm
mmmm + 1

SElI — SET INTERRUPT MASK (DISABLE INTERRUPTS)
SEI
78

Set the interrupt mask in the Status register. This instruction disables the 6502's inter-
rupt service ability, i.e., the 6502 will not respond to the Interrupt Request control line.
No other registers or statuses are affected. The Interrupt Mask is bit 2 of the Status (P)
register.

Data
svobo | Memory

Program
Memory

mmmm
mmmme 1

STA — STORE ACCUMULATOR IN MEMORY

Store the contents of the Accumulator into the specified memory location. This instruc-
tion offers the same memory addressing modes as the ADC instruction, with the excep-

tion that an immediate addressing mode is not available. The first byte of object code
selects the addressing mode as follows:

76543210 A Bit Number
[[3"E££0JMaJ”al aJNON) ~ Object Code

Bit Value Hexadecimal . Number

for aaa Object Code Addressing Mode of Bytes
000 81 Indirect, pre-indexed with X 2
001 85 Zero page (direct) 2
010 89 Not used
011 8D Absolute (direct) 3
100 91 Indirect, post-indexed with Y 2
101 95 Zero page indexed with X 2
110 99 Absolute indexed with Y 3
111 9D Absolute indexed with X 3

We will illustrate the STA instruction with zero page direct addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes. No statuses are affected.

Data

Store the contents of the Accumulator in memory. Suppose that xx = 63-|6 and
qgq =3A-|6- After the instruction

STA $3A

hes been executed, the contents of memory location 0034-|6 will be 6310 No registers
or statuses are affected. | Ho 5

STX — STORE INDEX REGISTER X IN MEMORY

Store the contents of Index Register X in the selected memory location. The addressing
modes allowed are:

1) Zero page (direct) — STX addr
2) Absolute (direct) — STX addrl6é
3) Zero page indexed with Y — STX addr.Y

Note that there are no indexed modes using Index Register X. There is also no absolute

indexed mode. STX and LDX are the only instructions that use the zero page indexed
mode with Index Register Y. No statuses are affected.

The first byte of object code selects the addressing mode as follows:

7 654 32 10 ~ Bit Number
J11OJO[b[b[I] 1]0 - Object Code
Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 86 Zero page (direct) 2
01 8E Absolute (direct) 3
10 96 Zero page indexed with Y 2
n 9E Not used

We will illustrate the STX instruction using zero page indexed addressing with Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data

Store the contents of Index Register X in the selected memory byte. Suppose that
cc = 2816- rr = 2016- ar|d yy = E9I6- After executing the

STX $28)Y

instruction, memory location 0048-|g will contain E916- No registers or statuses are
affected.

STY — STORE INDEX REGISTER Y IN MEMORY

Store the contents of Index Register Y in the selected memory location. The addressing
modes allowed are:

1) Zero page (direct) — STY addr
2) Absolute (direct) — STY addrl6
3) Zero page indexed with X — STY addr.X

Note that there are no indexed modes using Index Register Y. There is also no absolute
indexed mode. No statuses or registers are affected.

The first byte of object code selects the addressing mode as follows:

76 5432 10 4 Bit Number
11]01Q| b] b] 1]o]ot" --mmmmr Object Code
Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 84 Zero page (direct) 2
01 8C Absolute (direct) 3
10 94 Zero page indexed with X 2
u 9C Not used

We will illustrate the STY instruction with absolute direct addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes.

Data

Store the contents of Index Register Y in the selected memory byte. Suppose that
yy = 0116 and ppqq = 08F3i@. After the

STY $08F3

instruction has executed, memory location 08F3i6 will contain 01ig No registers or
statuses are affected.

TAX — MOVE FROM ACCUMULATOR TO INDEX REGISTER X
TAX
AA

Move the contents of the Accumulator to Index Register X. Set the Sign and Zero
statuses accordingly

Data

SVBDI ZC Memory
pi»i i i 1 i*n
A
X
v Program
sp Memory
PC

mmmm

mmmm + 1

Suppose that xx = 00-|6 After executing the TAX instruction, both the Accumulator
and Index Register X will contain OOtg.

00000000
Set S to 0-*------- N N "Zero result sets Zto 1

The following instruction sequence will restore the contents of Index Register X from
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD X REGISTER FROM STACK
TAX ‘RESTORE TO X REGISTER

TAY — MOVE FROM ACCUMULATOR TO INDEX REGISTER Y
TAY
A8

Move the contents of the Accumulator to Index Register Y. Set the Sign and Zero
statuses accordingly.

Data

SVvBDI ZC Memory
pxi 11 1 IXT1
XX
> Program
Memory
mm

mmmm

mmmm + 1

Suppose that xx = F1:@ After executing the TAY instruction, both the Accumulator
and Index Register Y will contain FL -|g.

1110001
-
Set Sto 1< Nonzero result sets Z to 0

The following instruction sequence will restore the contents of Index Register Y from
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD Y REGISTER FROM STACK
TAY ;RESTORE TO Y REGISTER

3-100

TSX — MOVE FROM STACK POINTER TO INDEX REGISTER X
TSX

BA

Move the contents of the Stack Pointer to Index Register X. Set the Sign and Zero
statuses accordingly. Note that TSX is the only 6502 instruction that allows you to ac-
cess the value in the Stack Pointer. A typical instruction sequence that saves the value
of the Stack Pointer in memory location TEMP is:

TSX ;MOVE STACK POINTER TO X
STX TEMP ;SAVE STACK POINTER IN MEMORY
Data
SV BDIZC Memory
B MI NI

Program
Memory

mmmm
mmmm+ 1

If, for example, the Stack Pointer contains ED-|g, after executing the TSX instruction,
both the Stack Pointer and Index Register X will contain EDi g.

1110 110 l|
Set Sto 1- Nonzero result sets Z to 0

3-101

TXA — MOVE FROM INDEX REGISTER X TO ACCUMULATOR
TXA
8A

Move the contents of Index Register X to the Accumulator and set the Sign and Zero
statuses accordingly. The following instruction sequence will save the contents of In-
dex Register X in the Stack before execution of a subroutine or interrupt service routine:

TXA ;MOVE X REGISTER TO ACCUMULATOR
PHA ;SAVE X REGISTER IN STACK
Data
SV BO izCcC Memory
'"E O T (0]

Program
Memory

mmmm
mmmm + 1

Suppose that rr = 3B-| g. After executing the TXA instruction, both Index Register X and
the Accumulator will contain 3Bi0.

00111011 L
Set S to O- Nonzero result sets Z to 0

3-102

TXS — MOVE FROM INDEX REGISTER X TO STACK POINTER
TXS
9A

Move the contents of Index Register X to the Stack Pointer No other registers or
statuses are affected. Note that TXS is the only 6502 instruction that allows you to
determine the value in the Stack Pointer. A typical instruction sequence that loads the
Stack Pointer with the value LAST is:

LDX #LAST ,GET LOCATION OF STACK ON PAGE 1
TXS ;PLACE STARTING LOCATION IN STACK POINTER

Note that TXS does not affect any statuses, unlike TSX which affects the Zero and Sign
statuses.

Data

ZC Memory
Program
Memory

mmmm
mmmm + 1

Suppose that rr —F2-] g After executing the TXS instruction, both Index Register X and
the Stack Pointer will contain F21g, making 01F2ig the current Stack location. No
statuses or other registers are affected.

3-103

TYA — MOVE FROM INDEX REGISTER Y TO ACCUMULATOR

Move the contents of Index Register Y to the Accumulator and set the Sign and Zero
statuses accordingly. The following instruction sequence will save the contents of In-
dex Register Y in the Stack before execution of a subroutine or interrupt service routine:

TYA ;MOVE Y REGISTER TO ACCUMULATOR
PHA ;SAVE Y REGISTER IN STACK
Data
Sv BDI ZC Memory

peen ~1

b Program

Memory

mmmm

mmmm + 1

Suppose that rr = AFi g. After executing the TYA instruction, both Index Register Y and
the Accumulator will contain AF-|g.

10 10 1111

Set Sto 1- L Nonzero result sets Z to 0

3-104

6800/6502 COMPATIBILITY

Although the 6502 microprocessor can certainly be used on its 6800/6502
own merits, one of its important characteristics is its SIMILARITY
similarity to the widely used 6800 microprocessor. This

similarity is not sufficient to allow programs written for one of these processors at
the machine or assembly level to be run on the other, but it is sufficient so that pro-
grammers can easily move from one CPU to the other. Most of the external support
devices designed for one of these processors can also be used with the other. Chapters
9 and 10 of An Introduction to Microcomputers: Volume 2 — Some Real
Microprocessors discuss this hardware compatibility in more detail.

We will briefly describe and compare the 6800 and 6502 microprocessors with regard
to their registers, statuses, addressing modes, and instruction sets. You should note
that the two processors are far from mirror images, but they are much closer to each
other than either is to an 8080, Z80, F8, or 2650 microprocessor. This description
should give you some idea as to what problems you would encounter in going from one
CPU to the other.

As for registers, both the 6800 and the 6502 have an 8-bit pri- 6800/6502
mary Accumulator (A register) and a 16-bit Program Counter REGISTER

(or PC register). The other registers, however, are slightly COMPARISON
different. The 6800 has a second 8-bit Accumulator (B register), a

16-bit Index register, and a 16-bit Stack Pointer. The 6502, on the other hand, has two
8-bit Index registers and an 8-bit Stack Pointer. Thus the 6502 Index registers cannot
hold a complete 16-bit memory address while the 6800 Index register can. Furthermore
the 6800's RAM Stack can be located anywhere in memory because of its 16-bit Stack
Pointer while the 6502's RAM Stack is always located on page 1

As for statuses, the 6800 and 6502 have identical Zero, Over- 6800/6502
flow, Sign, and Interrupt Mask statuses. The difference in the STATUS

Carry status is that the 6800 and 6502 version of this flag COMPARISON
have opposite meanings after subtraction operations. The

6800 Carry is setto 1 if a borrow is necessary and to 0 otherwise; the 6502 Carry is set
to 0 if a borrow is necessary and to 1 otherwise. This difference means that, before a
multi-byte subtraction operation, the programmer must clear the Carry on the 6800 and
set the Carry on the 6502. The 6800 and 6502 also differ in how they perform
decimal arithmetic; the 6800 has a Half-Carry flag (or carry from bit 3) while the 6502
has a Decimal Mode flag The 6502 also has a Break flag which is not present in the
6800; it is not necessary in the 6800 because the 6800 Trap or Software Interrupt in-
struction is automatically vectored separately from the regular interrupt response.

The 6502 microprocessor has many more addressing modes 6800/6502
than does the 6800. This is partly necessitated by the fact that ADDRESSING
the 6502 index registers are only 8 bits long. Table 3-7 compares MODE

the addressing modes available on the two processors. The 6800 COMPARISON
microprocessor has no indirect modes, no combinations of index-

ing and indirection, and no absolute indexed modes. There are also some other
differences in terms of which modes are available with particular instructions; we will
not discuss those differences, but they are enumerated in Table 3-6.

3-105

Table 3-7. Memory Addressing Modes Available on the 6800 and 6502
Microprocessors

6800 6502
Immediate Immediate
Direct (zero-page) Zero Page (direct)
Extended (absolute direct) Absolute (direct)
Indexed (absolute) Absolute Indexed

Zero Page Indexed
Post-Indexed Indirect
Pre-indexed Indirect
Indirect
Relative (branches only) Relative (branches only)

Note that many different variations of indexed addressing are available on the
6502 microprocessor, but remember that the 6502 index registers are only 8 bits
long while the 6800 Index register is 16 bits long.

The 6800 and 6502 instruction sets are similar but not identi- 6800/6502
cal (see Table 3-6). Table 3-8 compares the two sets, listing first INSTRUCTION
the instructions which are present in both, then the 6800 instruc- COMPARISON

tions which have no 6502 equivalent, and finally the 6502 instruc-

tions which have no 6800 equivalent. Obviously some of these differences are a direct
result of the differences in the statuses and registers. Most of the differences are minor,
and involve instructions that are a small part of common applications programs. One
noticeable difference is that the 6800 has Add and Subtract instructions that do not in-
volve the Carry status (ADD and SUB) while the 6502 does not. This means that the
6502 assembly language programmer must explicitly clear or set the Carry status when
its value should not affect an addition or subtraction operation. Note that this similarity
in the instruction sets does not extend to the object code level; the actual machine
codes are entirely different on the two microprocessors.

3-106

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets

Common Instructions

Instruction Meaning
ADC Add with Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEQ Branch if Equal to Zero (Z = 1)
BIT Bit Test
BMI Branch if Minus (S= 1)
BNE Branch if Not Equal to Zero (Z = 0)
BPL Branch if Plus (S= 0)
BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLC Clear Carry
CLI Clear Interrupt Mask (Enable Interrupt)
CLv Clear Overflow
CMP Compare Accumulator with Memory
CPX1 (also CPY on 6502) Compare Index Register with Memory
DEC Decrement (by 1)
DEX1 (also DEY on 6502) Decrement Index Register (by 1)
EOR Logical Exclusive-OR
INC Increment (by 1)
INX1 (also INY on 6502) Increment Index Register (by 1)
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator
LDX1 (also LDY on 6502) Load Index Register
LSR Logical Shift Right
NOP No Operation
ORA Logical (Inclusive) OR
PHA (PSH on 6800) Push Accumulator onto Stack
PLA (PUL on 6800) Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTI Return from Interrupt
RTS Return from Subroutine
SBC2 Subtract with Carry
SEC Set Carry
SEI Set Interrupt Mask
STA Store Accumulator
STX1 (also STY on 6502) Store Index Register
TSX Transfer Stack Pointer to Index Register (X)
TXS Transfer Index Register (X) to Stack Pointer

11ndex Register X is 16 bits long on 6800, 8 bits long on 6502 which has Index
Register Y as well.

2Note that SBC has a different meaning on the 6502 than on the 6800 since.
for subtraction operations, the 6800 Carry is the inverse of the 6502 Carry.

3-107

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets
(Continued)

Unique 6800 Instructions

Instruction Meaning
ABA Add Accumulators
ADD Add (without Carry)
ASR Arithmetic Shift Right
BGE Branch if Greater than or Equal to Zero
BGT Branch if Greater than Zero
BHI Branch if Higher
BLE Branch if Less than or Equal to Zero
BLS Branch if Lower or Same
BLT Branch if Less than Zero
BRA Branch Unconditionally
BSR Branch to Subroutine
CBA Compare Accumulators
CLR Clear
COM Logical Complement
.DAA Decimal Adjust Accumulator
DES Decrement Stack Pointer (by 1)
INS Increment Stack Pointer (by 1)
LDS Load Stack Pointer
NEG Negate (Twos Complement)
SBA Subtract Accumulators
SEV Set Overflow
STS Store Stack Pointer
SuUB Subtract (without Carry)
SWiI Software Interrupt (like 6502 BRK)
TAB Move from Accumulator A to Accumulator B
TAP Move from Accumulator A to CCR
TBA Move from Accumulator B to Accumulator A
TPA Move CCR to Accumulator A
TST Test Zero or Minus
WAI Wait for Interrupt

Unique 6502 Instructions

Instruction Meaning

BRK Break (like 6800 SWI)

CLD Clear Decimal Mode

PHP Push Status Register onto Stack

PLP Pull Status Register from Stack

SED Set Decimal Mode

TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator

3-108

MOS TECHNOLOGY 6502 ASSEMBLER
CONVENTIONS

The standard 6502 assembler is available from 6502 manufacturers and on many
major time-sharing networks; it is also included in most development systems.
Cross-assembler versions are available for most large computers and many
minicomputers.

ASSEMBLER FIELD STRUCTURE

The assembly language instructions have the standard field structure (see Table
2-1). The required delimiters are:

1) A space after a label. Note that all labels must start in column 1.

2) A space after the operation code.

3) A comma between operands in the address field, i.e., between the offset ad-
dress and X or Y to indicate indexing with Index Register X or Y respectively.

4) Parentheses around addresses that are to be used indirectly.

5) A semicolon or exclamation point (we will use the semicolon) before a com-
ment.

Typical 6502 assembly language instructions are:

START LDA (1000.X) JGET LENGTH
ADC NEXT

LAST BRK JEND OF SECTION

LABELS

The Assembler often allows only six characters in labels and truncates longer
ones. The first character must be a letter while subsequent characters must be
letters or numbers. The single characters A, X, and Y are reserved for the Ac-
cumulator and the two index registers. The use of operation codes as labels is
often not allowed and is not good programming practice anyway.

PSEUDO-OPERATIONS
The Assembler has the following explicit pseudo-operations:

.BYTE — Form Byte-Length Data
.DBYTE — Form Double-Byte-Length Data with MSBs First
.END — End of Program

.TEXT — Form String of ASCII Characters

.WORD — Form Double-Byte-Length Data with LSBs First
= — Equate

Other pseudo-operations may be implemented by setting the assembler's location
counter (denoted by *) to a new or updated value. Examples are:
*

= ADDR — Set Program Origin to ADDR
* = %N — Reserve N Bytes for Data Storage
.BYTE, .DBYTE. .TEXT, and .WORD are the Data BYTE, .DBYTE,
pseudo-operations used to place data in ROM. .BYTE is uTEXT, .WORD
used for 8-bit data. .TEXT for 7-bit ASCIlI characters PSEUDO-OPERATIONS

(MSB is zero). .DBYTE for 16-bit data with the most sig-
nificant bits first, and .WORD for 16-bit addresses or data with the least significant bits
first. Note particularly the difference between .DBYTE and .WORD.

3-109

Examples:

ADDR \WORD $3165
results in (ADDR) =65 and (ADDR+1) =31 (hex).
TCONV .BYTE 32

This pseudo-operation places the number 32 (20{6> in the next byte of ROM and
assigns the name TCONV to the address of that byte.

ERROR TEXT /ERROR/

This pseudo-operation places the 7-bit ASCII characters E R R 0, and R into the next
five bytes of ROM and assigns the name ERROR to the address of the first byte. Any
single character (not just /) may be used to surround the ASCII text, but we will always
use / for the sake of consistency.

MASK .DBYTE $1000
results in (MASK) =10 and (MASK+1)=00.
OPERS .WORD FADD. FSUB. FMUL.FDIV

This pseudo-operation places the addresses FADD, FSUB. FMUL, and FDIV in the next
eight bytes of memory (least significant bits first) and assigns the name OPERS to the
address of the first byte.

The operation ' = *+N is the Reserve pseudo-operation SET ORIGIN

used to assign locations in RAM; it allocates a specified PSEUDO-OPERATION
number of bytes. = is the Equate or Define pseudo-opera-

tion used to define names. * = ADDR is the standard Origin pseudo-operation.

6502 programs usually have several origins which are used as follows:

1) To specify the Reset and interrupt service addresses. These addresses must be
placed in the highest memory addresses in the system (usually FFFA-|]g through
FFFF16).

2) To specify the starting addresses of the actual Reset and interrupt service routines.
The routines themselves may be placed anywhere in memory.

3) To specify the starting address of the main program.

4) To specify the starting addresses of subroutines.

5) To define areas for RAM storage.

6) To define an area (always on page 1) for the RAM Stack.

7) To specify addresses used for I1/0 ports and special functions.

Examples:

RESET =$3800
*=$FFFC
\WORD RESET
*=RESET

Note: $ means "hexadecimal”.

This sequence places the Reset instruction sequence in memory beginning at address
3800ig, and places that address in the memory locations (addresses FFFC-|6 and
FFFD1s) from which the 6502 CPU retrieves the Reset address.

The instruction sequence which follows is stored in memory beginning at location
C000-|6.

MAIN =$C000
*=MAIN
.END simply marks the end of the assembly language program.

3-110

LABELS WITH PSEUDO-OPERATIONS

The rules and recommendations for labels with 6502 pseudo-operations are as

follows:

1) Simple equates, such as MAIN =$C000, require labels since their purpose is to
define the meanings of those labels.

2) .BYTE. .DBYTE, .TEXT, .WORD, and *='+N pseudo-operations usually have labels.

3) .END should not have a label, since the meaning of such a label is unclear.

ADDRESSES

The 6502 Assembler allows entries in the address field in any NUMBERS AND
of the following forms: CHARACTERS IN

1) Decimal (the default case) ADDRESS FIELD
Example: 1247

2) Hexadecimal (must start with $)
Example: $CE00

3) Octal (must start with @)
Example: @1247

4) Binary (must start with %
Example: %dl1100011

5) ASCII (single character preceded by an apostrophe)
Example: 'H

6) As an offset from the Program Counter (¥
Example: *+7

The various 6502 addressing modes are distinguished as ADDRESSING
follows: MODES

¢ Absolute or Zero Page (direct) are the default modes
(the Assembler chooses Zero Page if the address is less than 256, and Ab-
solute otherwise).
« # for immediate mode (precedes the data)
« X or,Y for indexing (follows the offset address)
« Parentheses around addresses that are used indirectly so that
(addr.X) indicates pre-indexing (indexed address used indirectly)
(addri.Y indicates post-indexing (indirect address is ndexed)
(addri indicates indirection with JMP instruction only

In the indexed modes, as in the direct modes, the Assembler automatically chooses the
Zero Page version if it is permitted and if the address is less than 256.

The Assembler also allows expressions in the address field. These ASSEMBLER
expressions consist of numbers and names separated by the ARITHMETIC
arithmetic operators +, " (multiplication), or/ (integer division). EXPRESSIONS
The Assembler evaluates expressions from left to right; no

parentheses are allowed to group operations, nor is there any hierarchy of operations.
Fractional results are truncated.

We recommend that you avoid expressions within address fields whenever possi-
ble. If you must compute an address, comment any unclear expressions and be sure
that the evaluation of the expressions never produces a result which is too large for its
ultimate use.

3-111

OTHER ASSEMBLER FEATURES

The standard 6502 Assembler has neither a conditional assembly capability nor a
macro capability. Some 6502 assemblers have one or both of these capabilities, and
you should consult your manual for a description. We will not use or refer to either
capability again, although both can be quite convenient in actual applications.

3-112

Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is through experience. The
next six chapters of this book contain examples of simple programs that perform
actual microprocessor tasks. You should read each example carefully and try to
execute the program on a 6502-based microcomputer. Finally, you should work
the problems at the end of each chapter and run the resulting programs to insure
that you understand the material.

This chapter contains some very elementary programs.
GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts: EXAMPLE
) . FORMAT
1) A title that describes the general problem.

2) A statement of purpose that describes the specific task that the program performs
and the memory locations that it uses.

3) A sample problem with data and results.

4) A flowchart if the program logic is complex.

5) The source program or assembly language listing.

6) The object program or hexadecimal machine language listing.

7) Explanatory notes that discuss the instructions and methods used in the program.

You should use the examples as guidelines for solving the problems at the end of
each chapter. Be sure to run your solutions on a 6502-based microcomputer to in-
sure that they are correct.

The source programs in the examples have been constructed as follows:

1) Standard 6502 assembler notation is used, as summarized in GUIDELINES
Chapter 3. FOR

2) The forms in which data and addresses appear are selected for EXAMPLES

clarity rather than for consistency. We use hexadecimal num-
bers for memory addresses, instruction codes, and BCD data; decimal for numeric
constants; binary for logical masks; and ASCII for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications, instru-
mentation, computers, business equipment, industrial, and military applications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized, but programs are as efficient as possi-
ble within this guideline. The notes often describe more efficient procedures.

7) Programs use consistent memory allocations. Each program starts in memory loca-
tion 0000 and ends with the Break (BRK) instruction. If your microcomputer has no
monitor and no interrupts, you may prefer to end programs with an endless loop in-
struction, e.g.,

HERE JMP HERE

4-1

Some 6502-based microcomputers may require a JMP or JSR instruction with a
specific destination address to return control to the monitor. Other microcomputers
may require you to specify the monitor address to be used by the BRK instruction. For
example, if you are using the popular KIM-1, you will have to load 1COO into addresses
17FE and 17FF. Be careful — the 00 must be loaded into address 17FE and the 1C into
address 17FF. We will explain later how the 6502 stores addresses and how it imple-
ments the BRK instruction (see Chapter 12).

Consult the User's Manual for your microcomputer to determine the required memory
allocations and terminating instruction for your particular system.

GUIDELINES FOR SOLVING PROBLEMS
Use the following guidelines in solving the problems at the end of each chapter:

1) Comment each program so that others can understand it.
The comments can be brief and ungrammatical; they
should explain the purpose of a section or instruction in
the program. Comments should not describe the operation
of instructions; that description is available in manuals. You do not have to com-
ment each statement or explain the obvious. You may follow the format of the ex-
amples but provide less detail.

PROGRAMMING
GUIDELINES

2) Emphasize clarity, simplicity, and good structure in programs. While programs
should be reasonably efficient, do not worry about saving a single byte of program
memory or a few microseconds.

3) Make programs reasonably general. Do not confuse parameters (such as the num-
ber of elements in an array) with fixed constants (such as it or ASCII C).

4) Never assume fixed initial values for parameters; i.e., assume that the parameters
are already in RAM.

5) Use assembler notation as shown in the examples and definedin Chapter 3.
6) Use hexadecimal notation for addresses. Use the clearest possible form for data.

7) If your microcomputer allows it, start all programs in memory location 0000 and
use memory locations starting with 0040-|q for data and temporary storage. Other-
wise. establish equivalent addresses for your microcomputer and use them consis-
tently. Again, consult the user's manual.

8) Use meaningful names for labels and variables: e.g.. SUM or CHECK rather than X.
Y, or Z

9) Execute each program on your microcomputer. There is no other way of ensuring
that your program is correct. We have provided sample data with each problem. Be
sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instructions (e.g.. Add. Subtract, AND, USING THE

OR) use the contents of the Accumulator as one operand and ACCUMULATOR
place the result back in the Accumulator. In most cases, you

will load the initial data into the Accumulator with LDA. You will store the result from
the Accumulator into memory with STA.

Frequently accessed data and frequently used base addresses or USING
pointers should be placed on page zero of memory. This data can PAGE ZERO
then be accessed with zero-page (direct), pre-indexed, post- OF MEMORY
indexed, and zero-page indexed addressing. Note in particular that

pre-indexing and post-indexing both assume that an address is stored on page zero.
The zero-page direct and indexed modes both require less time and memory than the
corresponding absolute addressing modes.

Some instructions, such as shifts, increment (add 1), and decrement (subtract 1) can act
directly on data in memory. Such instructions allow you to bypass the user registers but
they require extra execution time since the data must actually be loaded into the CPU
and the result must be stored back into memory.

4-3

PROGRAM EXAMPLES
8-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0041.

Sample Problem:

(0040) = 6A
Result: (0041) = 6A
Source Program:
LDA $40 ;GET DATA
STA $41 TRANSFER TO NEW LOCATION
BRK
Object Program:
Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 85 STA $41
0003 41
0004 00 BRK

The LDA (Load Accumulator) and STA (Store Accumulator) need an address to deter-
mine the source or destination of the data. Since the addresses used in the example are
on page zero (that is, the eight most significant bits are all zero), the zero page (direct)
form of the instructions can be used with the address in the next word. The leading
zeros can be omitted. The addresses are really 0040 and 0041, but the shorthand form
can be used just as in everyday conversation (e.g., we say "sixty cents" rather than
"zero dollars and sixty cents").

BRK (Force Break) is used to end all the examples and return control to the monitor.
Remember that you may have to replace this instruction with whatever your microcom-
puter requires.

8-Bit Addition

Purpose: Add the contents of memory locations 0040 and 0041, and place the result
in memory location 0042.

Sample Problem:

(0040) = 38
(0041) = 2B
Result: (0042) = 63
Source Program:
CLC ;CLEAR CARRY TO START
LDA $40 ;GET FIRST OPERAND
ADC $41 ;JADD SECOND OPERAND
STA $42 ;STORE RESULT
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 18 CLC
0001 A5 LDA $40
0002 40
0003 65 ADC $41
0004 41
0005 85 STA $42
0006 42
0007 00 BRK

The only addition instruction on the 6502 microprocessor is ADC (Add with Carry),
which results in (A) = (A) + (M) + (Carry) where M is the addressed memory location.
Thus, we need the initial CLC (Clear Carry) instruction if the value of Carry is not to
affect the addition. Remember that the Carry will be included in all additions and
subtractions.

The zero-page (direct) forms of all instructions are used, since all the addresses are in
the first 256 bytes of memory.

ADC affects the Carry bit, but LDA and STA do not. Only arithmetic and shift instruc-
tions affect the Carry; logical and transfer instructions do not.

LDA and ADC do not affect the contents of memory. STA changes the contents of the
addressed memory location but does not affect the contents of the Accumulator.

Be sure that the Decimal Mode (D) flag is cleared when you execute this program. To be
absolutely certain of the D flag's state, you could add a CLD instruction (D8-Jo) to the
start of the program. If you are using the KIM-1 microcomputer, you should clear
memory location OOFLl to ensure that the Decimal Mode flag does not interfere with
your programs or with the monitor.

Shift Left One Bit

Purpose: Shift the contents of memory location 0040 left one bit and place the result
into memory location 0041. Clear the empty bit position.

Sample Problem:

(0040) = 6F
Result: (0041) = DE
Source Program:
LDA $40 ;GET DATA
ASL A ;SHIFT LEFT
STA $41 ;STORE RESULT
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 OA ASL A
0003 85 STA $41
0004 41
0005 00 BRK

The instruction ASL A shifts the contents of the Accumulator left one bit and clears the
least significant bit. The most significant bit is moved into the Carry. The result is twice
the original data (why?).

Note that we cou Id also shift the contents of memory location 0040 one bit with the in-
struction ASL $40 and then move the result to memory location 0041. This method
would, however, change the contents of memory location 0040 as well as the contents
of memory location 0041.

Mask Off Most Significant Four Bits

Purpose: Place the least significant four bits of memory location 0040 in the least sig-
nificant four bits of memory location 0041. Clear the most significant four
bits of memory location 0041.

Sample Problem:

(0040) = 3D
Result: (0041) = 0D
Source Program
LDA $40 ;GET DATA
AND #%00001111 ;MASK 4 MSB'S
STA $41 ;STORE RESULT

BRK

Note: # means immediate addressing and % means binary constant in standard 6502
Assembler notation.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 29 AND #%00001111
0003 OoF
0004 85 STA $41
0005 41
0006 00 BRK

AND #%00001111 logically ANDs the contents of the Accumulator with the number
OF-]6 — not the contents of memory location 000F. Immediate addressing (indicated by
#) means that the actual data, not the address of the data, is included in the instruc-
tion.

The mask (00001111) is written in binary to make its purpose clearer to the reader. Bi-
nary notation for masks is clearer than hexadecimal notation since logical operations
are performed bit-by-bit rather than digits or bytes at a time. The result, of course, does
not depend on the programming notation. Hexadecimal notation should be used for
masks longer than eight bits because the binary versions become long and cumber-
some. The comments should explain the masking operation.

A logical AND instruction may be used to clear bits that are not in use. For example, the
four least significant bits of the data could be an input from a ten-position switch or an
output to a numeric display.

Clear a Memory Location
Purpose: Clear memory location 0040.

Source Program:

LDA #0
STA $40 ;CLEAR LOCATION 40
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 85 STA $40
0003 40
0004 00 BRK

Zero is handled no differently than any other number — the 6502 has no explicit Clear
instruction. However, remember that LDA #0 does set the Zero flag to one. Always
watch this logic — the Z (Zero) flag is set to one if the last result was zero.

STA does not affect any status flags.

Word Disassembly

Purpose: Divide the contents of memory location 0040 into two 4-bit sections and
store them in memory locations 0041 and 0042. Place the four most signifi-
cant bits of memory location 0040 into the four least significant bit positions
of memory location 0041; place the four least significant bits of memory
location 0040 into the four least significant bit positions of memory location
0042. Clear the four most significant bit positions of memory locations 0041
and 0042

Sample Problem:

Result:

ogram:

LDA
AND
STA
LDA
LSR
LSR
LSR
LSR
STA
BRK

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
ooocC
000D
000E

A logical shift right of four positions requires four executions of the LSR A instruction.

Each LSR instruction clears the most significant bit of the result. Thus, the four most
significant bits of the Accumulator are all cleared after LSR A has been executed four

times.

You might wish to try rewriting the program so that it saves a copy of the data in Index
Register X rather than loading the same data twice. Which version do you prefer and

why?

(0040)

(0041)
(0042)

3F
03

?

$40
#%00001111
$42
$40

A5
40
29

CF
85

42

A5
40
4A
4A
4A
4A
85
41

00

JGET DATA
JMASK OFF MSB'S
;STORE LSB'S
;RESTORE DATA

LOGICALLY SHIFT DATA RIGHT 4 TIMES

;STORE MSB'S

Memory Contents
(Hex)

Instruction
(Mnemonic)
LDA $40
AND #%00001111

STA $42
LDA $40
LSR A
LSR A
LSR A
LSR A
STA $41
BRK

Find Larger of Two Numbers

Purpose: Place the larger of the contents of memory locations 0040 and 0041 into
memory location 0042. Assume that the contents of memory locations 0040
and 0041 are unsigned binary numbers.

Sample Problems:

a (0040) = 3F
(0041) = 2B
Result: (0042) = 3F
b. (0040) = 75
(0041) = A8
Result: (0042) = A8
Source Program:
LDA $40 ;GET FIRST OPERAND
CMP $41 :IS SECOND OPERAND LARGER?
BCS STRES
LDA $41 ;YES. GET SECOND OPERAND INSTEAD
STRES STA $42 ;STORE LARGER OPERAND
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 C5 CMP $41
0003 41
0004 BO BCS STRES
0005 02
0006 A5 LDA $41
0007 41
0008 85 STRES STA $42
0009 42
000A 00 BRK

CMP $41 subtracts the contents of memory location 0041 from the contents of the Ac-
cumulator but does not store the result anywhere. The instruction is used merely to set
the flags for a subsequent conditional branch.

CMP affects the flags as follows:
1) Ntakes the value of the most significant bit of the result of the subtraction.
2) Zis set to 1 if the result of the subtraction is zero and to 0 otherwise.

3) Cissetto 1if the subtraction does not require a borrow and to O if it does. Note
that C is an inverted borrow, not the actual borrow as it is on many other
microprocessors.

4) Vis not affected.

Note the following cases:
1) If the operands are equal, Z = 1; if they are not equal, Z = 0,

2) If the contents of the Accumulator are greater than or equal to the contents of the
other address (considering both as unsigned binary numbers), C = 1, since no bor-
row would then be needed. Otherwise, C = 0.

All 6502 conditional branch instructions use relative addressing, in which the second
word of the instruction is an 8-bit twos complement number which the CPU adds to the
address of the next instruction to calculate the destination address. In the example, the
relative offset is 0008 (destination address) - 0006 (address immediately following the
branch) or 02. Obviously, calculating relative offsets is error-prone, particularly if the
result is negative: however, if you label all target instructions, the assembler will per-
form the calculations for you.

BCS causes a branch if the Carry is one. If the Carry is zero, the processor continues ex-
ecuting instructions in their normal sequence as if the Branch instruction did not exist.

STRES is a label, a name that the programmer assigns to a memory address so that it is
easier to remember and locate. Note that labels are followed by a space on the line
where they are defined. The label makes the destination of the branch clear, particularly
when relative addressing is being used. Using a label is preferable to |ust specifying the
offset (i.e., BCS*+4) since the 6502's instructions vary in length. You or another user of
the program could easily make an error in determining the offset or the destination.

16-Bit Addition

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit
number in memory locations 0042 and 0043. The most significant eight bits
are in memory locations 0041 and 0043. Store the result in memory loca-
tions 0044 and 0045, with the most significant bits in 0045.

Sample Problem:

(0040) 2A
(0041) 67
(0042) F8
(0043) 14
Result=672A + 14F8 = 7C22
(0044) 22
(0045) 7C
Source Program:
CLC ;CLEAR CARRY TO START
LDA $40 ;JADD LEAST SIGNIFICANT BITS
ADC $42
STA $44
LDA $41 ;JADD MOST SIGNIFICANT BITS WITH CARRY
ADC $43
STA $45
BRK
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 18 CLC
0001 A5 LDA $40
0002 40
0003 65 ADC $42
0004 42
0005 85 STA $44
0006 44
0007 A5 LDA $41
0008 41
0009 65 ADC $43
000A 43
000B 85 STA $45
O00C 45
000D 00 BRK

You must clear the Carry before the first addition since there is never a carry into the
least significant bits.

ADC then automatically includes the Carry from the least significant bits in the addition
of the most significant bits. Thus the microprocessor can add data of any length; it adds
numbers eight bits at a time with the Carry transferring information from one 8-bit sec-
tion to the next. Note, however, that each 8-bit addition requires the execution of three
instructions (LDA, ADC, STA) since there is only one accumulator.

Table of Squares

Purpose: Calculate the square of the contents of memory location 0041 from a table
and place the result in memory location 0042. Assume that memory location
0041 contains a number between 0 and 7 inclusive — 0 < (0041) < 7.

The table occupies memory locations 0050 to 0057.

Memory Address Entry

(Hex) (Hex) (Decimal)

0050 00 0 (0?)
0051 o1 1 17
0052 04 4 EZ
0053 09 9 (3j

0054 10 16 4)
0055 19 25 (5.
0056 24 36 (6,)
0057 31 49)

Sample Problems:

a (0041)
Result: (0042)

b. (0041)
Result: (0042)

Remember that the answer

Source Program:

LDX $41
LDA $50,X
STA $42
BRK

*=$50

BYTE 0,1,4,9,16,25,36,49

= 03

= 09
= 06

= 24

is a hexadecimal number.

JGET DATA

;GET SQUARE OF DATA

;STORE SQUARE

;SQUARES TABLE

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $41
0001 41
0002 B5 LDA $50,X
0003 50
0004 85 STA $42
0005 42
0006 00 BRK
0050 00 SQTAB BYTE 0
0051 01 1
0052 04 4
0053 09 9
0054 10 16
0055 19 25
0056 24 36
0057 31 49

Note that you must also enter the table of squares into memory (the assembler pseudo-
operation BYTE will handle this). The table of squares is constant data, not parameters
that may change; that is why you can initialize the table using the .BYTE pseudo-opera-
tion, rather than by executing instructions to load values into the table. Remember that,
in an actual application, the table would be part of the read-only program memory. The
BYTE pseudo-operation places the specified data in memory in the order in which it ap-
pears in the operand field.

The pseudo-operation *= simply determines where the loader (or assembler) will place
the next section of code when it is finally entered into the microcomputer's memory for
execution. Note that the pseudo-operation does not actually result in any object code
being generated.

Indexed addressing (or indexing) means that the actual address used by the instruction
(often referred to as the effective address) is the sum of the address included in the in-
struction and the contents of the Index register. Thus LDA $50,X (,X or,Y indicates in-
dexed addressing with the specified Index register in 6502 assembly language) is
equivalent to LDA $50+(X) or LDA $53 if (X) = 03. In the example program, Index
Register X contains the number to be squared and the address included in the instruc-
tion is the starting address of the table of squares. Note that there is a special zero-page
indexed mode using Index Register X.

Indexing always takes extra time since the microcomputer must perform an addition to
calculate the effective address. Thus LDA $50,X requires four clock cycles while LDA
$50 requires only three. However, it would clearly take a great deal more time to access
the table entry if the microcomputer lacked indexing and the address calculation had to
be performed with a series of instructions.

Remember that the Index registers are only 8 bits long so the maximum offset from the
base address is 255 (FF-ig)- Note also that the offset is an unsigned number (unlike the
offset in relative addressing) so that it can never be negative. However, we do get wrap-
around. That is, if the sum of the base address and the contents of the index register
exceed the maximum allowed value, the most significant bits of the sum are simply
dropped. In the case of zero page indexing, the maximum allowed value is FF-|g. If, for
example, the base address on the zero page is FO-|g and the index register contains
1B-|0, the effective address for zero page indexing is 000B-|g; there is no carry to the
more significant byte. Thus we can get the effect of a negative offset.

There are a few special instructions that operate on one of the Index registers rather
than on the Accumulator. These are:

CPX, CPY - Compare Memory and Index Register
DEX, DEY - Decrement Index Register (by 1)

INX. INY - Increment Index Register (by 1)

LDX, LDY - Load Index Register from Memory

STX, STY - Store Index Register into Memory

TAX. TAY - Transfer Accumulator to Index Register
TXA, TYA - Transfer Index Register to Accumulator

Remember that there are only a few addressing modes available with CPX, CPY, LDX,
LDY, STX, and STY. Consult Table 3-4 for more details.

Arithmetic that a microprocessor cannot do directly in a few ARITHMETIC
instructions is often best performed with lookup tables. Lookup WITH
tables simply contain all the possible answers to the problem; TABLES

they are organized so that the answer to a particular problem

can be found easily. The arithmetic problem now becomes an accessing problem —
how do we get the correct answer from the table? We must know two things: the
position of the answer in the table (called the index) and the base, or starting, address
of the table. The address of the answer is then the base address plus the index.

The base address, of course, is a fixed number for a particular table. How can we deter-
mine the index? In simple cases, where a single piece of data is involved, we can organ-
ize the table so that the data is the index. In the table of squares, the Oth entry in the ta-
ble contains zero squared, the first entry one squared, etc. In more complex cases,
where the spread of input values is very large or there are several data items involved
(e.g., roots of a quadratic equation or number of permutations), we must use more com-
plicated methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster, since no com-
putations are required, and simpler, since no mathematical methods must be devised
and tested. However, tables can occupy a large amount of memory if the range of the
input data is large. We can often reduce the size of a table by limiting the accuracy of
the results, scaling the input data, or organizing the table cleverly. Tables are often
used to compute transcendental and trigonometric functions, linearize inputs, convert
codes, and perform other mathematical tasks.

Ones Complement

Purpose: Logically complement the contents of memory location 0040 and place the
result in memory location 0041.

Sample Problem:

(0040) = BA
Result=(0041) = 95
Source Program:
LDA $40 JGET DATA
EOR #%11111111 :LOGICALLY COMPLEMENT DATA
STA $41 ;STORE RESULT
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 49 EOR #%11111111
0003 F
0004 85 STA $41
0005 41
0006 00 BRK

The 6502 microprocessor lacks some simple instructions, such as Clear or Complement,
that are available in most other sets. However, the required operations are easily ac-
complished with the existing instructions if the programmer simply gives the matter a
little thought.

Exclusive-ORing a bit with 'V complements the bit since
1-v-0=1
and 1-v-1 =0
So the Exclusive-OR function turns each 'O bit into a '1' and each T bit into a'O, just
like a logical complement or inverse. Note, however, that the instruction EOR
#% 11111111 occupies two bytes of memory, one for the operation code and one for
the mask. An explicit Complement instruction would require only one byte.

One problem with this approach is that the purpose of the instructions may not be im-
mediately obvious. A reader would probably have to think about exactly what an Ex-
clusive-OR function with an all-ones word actually does. Adequate documentation is
essential here, and the use of macros can also help clarify the situation.

PROBLEMS
1) 16-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0042 and
the contents of memory location 0041 to memory location 0043.

Sample Problem:

(0040) = 3E
(0041) = B7

Result: (0042) = 3E
(0043) = B7

2) 8-Bit Subtraction

Purpose: Subtract the contents of memory location 0041 from the contents of memory
location 0040. Place the result into memory location 0042.

Sample Problem:

(0040) = 77
(0041) = 39
Result: (0042) = 3E

3) Shift Left Two Bits

Purpose: Shift the contents of memory location 0040 left two bits and place the result
into memory location 0041. Clear the two least significant bit positions.

Sample Problem:
(0040) = 5D
Result: (0041) = 74

4) Mask Off Least Significant Four Bits

Purpose: Place the four most significant bits of the contents of memory location 0040
into memory location 0041. Clear the four least significant bits of memory
location 0041.

Sample Problem:
(0040) = C4
Result: (0041) = CO
5) Set a Memory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF-|g).

6) Word Assembly

Purpose: Combine the four least significant bits of memory locations 0040 and 0041
into aword and store them in memory location 0042. Place the four least sig-
nificant bits of memory location 0040 into the four most significant bit posi-
tions of memory location 0042: place the four least significant bits of memo-
ry location 0041 into the four least significant bit positions of memory loca-
tion 0042.

Sample Problem:

(0040) = 6A
(0041) = B3
Result: (0042) = A3

4-17

7

Find Smaller of Two Numbers

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in

memory location 0042. Assume that memory locations 0040 and 0041 con-
tain unsigned binary numbers.

Sample Problems:

a

8)

3F
2B

(0040)
(0041)

Result: (0042) = 2B

(0040) = 75
(0041) = A8

Result: (0042)

75

24-Bit Addition

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-

bit number in memory locations 0043, 0044, and 0045. The most significant
eight bits are in memory locations 0042 and 0045, the least significant eight
bits in memory locations 0040 and 0043. Store the result in memory loca-
tions 0046, 0047, and 0048 with the most significant bits in 0048 and the
least significant bits in 0046.

Sample Problem:

9)

(0040) = 2A

(0041) = 67

(0042) = 35

(0043) = F8

(0044) = A4

(0045) = 51

Result: (0046) = 22

(0047) = oc

(0048) = 87
that is, 35672A
+51A4F8
870C22

Sum of Squares

Purpose: Calculate the squares of the contents of memory locations 0040 and 0041

and add them together. Place the result in memory location 0042. Assume
that memory locations 0040 and 0041 bothcontain numbers between Oand
7 inclusive: i.e.,0 < (0040) < 7 and 0<(0041)<7. Use thetable of
squares from the example entitled Table of Squares.

Sample Problem:

(0040) = 03
(0041) 06

Result = (0042) = 2D

thatis, 32+ 62= 9 + 36 =45 = 2D-]e

10) Twos Complement

Purpose: Place the twos complement of the contents of memory location 0040 in
memory location 0041. The twos complement is the ones complement plus
one.

Sample Problem:

3E
Cc2

(0040)
Result: (0041)

The sum of the original number and its twos complement is zero. So the twos comple-
ment of X is 0-X. Which approach (calculating the ones complement and adding one, or
subtracting from zero) results in a shorter and faster program?

Chapter 5
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence
of instructions. Loops have four sections:

1) The initialization section that establishes the starting values of counters, point-
ers, indexes, and other variables.

2) The processing section where the actual data manipulation occurs. This is the
section that does the work.

3) The loop control section that updates counters and indexes for the next iteration.
4) The concluding section that analyzes and stores the results.

Note that the computer performs Sections 1 and 4 only once while it may perform Sec-
tions 2 and 3 many times. Thus, the execution time of the loop will mainly depend on
the execution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as
quickly as possible: do not worry about the execution time of Sections 1 and 4. A typi-
cal program loop can be flowcharted as shown in Figure 5-1, or the positions of the pro-
cessing and loop control sections may be reversed as shown in Figure 5-2. The process-
ing section in Figure 5-1 is always executed at least once, while the processing section
in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural, but Figure 5-2
is often more efficient and avoids the problem of what to do when there is no data (a
bugaboo for computers and the frequent cause of silly situations like the computer dun-
ning someone for a bill of $0.00).

The loop structure can be used to process entire blocks of data. To accomplish this, the
program must increment an Index register after each iteration so that the effective ad-
dress of an indexed instruction is the next element in the data block. The next iteration
will then perform the same operations on the data in the next memory location. The
computer can handle blocks of any length (up to 256, since the Index registers are 8
bits long) with the same set of instructions. Indexed addressing is the key to processing
blocks of data with the 6502 microprocessor, since it allows you to vary the actual (or
effective) memory address by changing the contents of Index registers. Note that in the
direct and immediate addressing modes, the address used is completely determined by
the instruction and is therefore fixed if the program memory is read-only.

Figure 5-1. Flowchart of a Program Loop

Figure 5-2. A Program Loop that Allows Zero Iterations

5-3

EXAMPLES
Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of 8-BIT
the series is in memory location 0041. and the series SUMMATION
begins in memory location 0042. Store the sum

memory location 0040. Assume that the sum is an 8-bit number so that you
can ignore carries.

Sample Problem:

(0041) 03
(0042) 28
(0043) 55
(0044) 26
Result: (0040) (0042) + (0043) + (0044)
= 28+55+26
= A3

There are three entries in the sum. since (0041)=03.

Flowchart:

Note: (0042 + Index) is the contents of the memory location whose address is the sum
of 0042 and Index. Remember that on the 6502 microprocessor, 0042 is a 16-bit
address. Index is an 8-bit offset, and (0042 + Index) is an 8-bit byte of data.

5-4

Source Program:

LDA #0 SUM = ZERO
TAX INDEX = ZERO
SUMD CLC DO NOT INCLUDE CARRY
ADC $42,X SUM = SUM + DATA
INX INCREMENT INDEX
CPX $41 HAVE ALL ELEMENTS BEEN SUMMED?
BNE SUMD NO, CONTINUE SUMMATION
STA $40 YES, STORE SUM
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 AA TAX
0003 18 SUMD CLC
0004 75 ADC $42,X
0005 42
0006 E8 INX
0007 E4 CPX $41
0008 41
0009 DO BNE SUMD
000A F8
000B 85 STA $40
O00oC 40
000D 00 BRK

The initialization section of the program is the first two instructions, which set the sum
and index to their starting values. Note that TAX transfers the contents of the Ac-
cumulator to Index Register X but leaves the Accumulator as it was. The base address
of the array and the location of the counter are fixed within the program and need not
be initialized.

The processing section of the program consists of the single instruction ADC $42,X,
which adds the contents of the effective address (base address plus Index Register X) to
the contents of the Accumulator. This instruction does the real work of the program.
The CLC instruction simply clears the Carry flag so that it does not affect the summa-
tion. Note that each iteration of the loop adds in the contents of a new effective address
even though the instructions do not change.

The loop control section of the program consists of the instruction INX. This instruction
updates the Index register (by 1) so that the next iteration adds the next number to the
sum. Note that (0041) - X tells you how many iterations are left to be done.

The instruction BNE causes a branch if the Zero flag is 0. CPX sets the Zero flag to 1 if
Index Register X and the contents of memory location 0041 are the same and to O if
they are not. The offset is a twos complement number and the count begins from the
memory location immediately following the BNE instruction. In this case, the required
jump is from memory location 000B to memory location 0003. So'the offset is:

0003 = 03
-000B = +F5
F8

If the Zero flag is one. the CPU executes the next instruction in sequence (STA $40).
Since CPX $41 was the last instruction before BNE to affect the Zero flag, BNE SUMD
causes a branch to SUMD if CPX $41 does not produce a zero result; that is.

UMD if (X) - (0041) *0
(PO)
(PC)+2 if (X) - (0041) =0

The 2 is caused by the two-word BNE instruction. A single instruction combining the
Decrement and the Jump would be a useful addition to the 6502 instruction set.

The order in which instructions are executed is often very important. INX must come
after ADC $42,X or else the first number to be added to the sum will be the contents of
memory location 0043 instead of the contents of memory location 0042. CPX $41 must
come right before BNE SUMD, since otherwise the Zero status setting produced by CPX
could be changed by another instruction.

CPX and CPY are the same as CMP except that the contents of memory are subtracted
from an Index register rather than from the Accumulator. Note, however, that CPX and
CPY offer limited addressing options (see Table 3-4).

Most computer loops count down rather than up so that the Zero flag can serve as an
exit condition, thus eliminating the need for a Compare instruction. This method is a bit
awkward for people although it is used occasionally in launch countdowns and in a few
other situations. Remember that the Zero flag is set to 1 if the result of an instruction is
zero and to O if the result is not zero.

We could easily revise the loop so that it works backward through the array (see the
next flowchart). The following programs are revised versions.

Source Program:

LDA #0 SUM = ZERO
LDX $41 INDEX = MAXIMUM COUNT
SUMD CLC DO NOT INCLUDE CARRY
ACD $41,X SUM = SUM + DATA
DEX DECREMENT INDEX
BNE SUMD BRANCH BACK IF ALL ELEMENTS NOT SUMMED
STA $40 STORE SUM
BRK

Note that the addition instruction is now ADC $41 ,X instead of ADC $42,X; the number
in the Index register is one larger than before. Clearly, the net result of subtracting one
from the base address and adding one to the index is zero. The reorganized object pro-
gram is:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 A6 LDX $41
0003 41
0004 18 SUMD CLC
0005 75 ADC $41,X
0006 41
0007 CA DEX
0008 DO BNE SUMD
0009 FA
000A 85 STA $40
000B 40
00oC 00 BRK

In most applications, the slight time and memory differences between one implementa-
tion of a loop and another do not matter very much. You should therefore select the ap-
proach that is the clearest and easiest for you to use. We will discuss program design
and efficiency later in Chapters 13 and 15.

You may wish to verify the hexadecimal values for the relative offsets in the last two
programs. The final test of any calculations that you make is whether the program runs
correctly. If. for whatever reason, you must perform hexadecimal calculations fre-
quently. we suggest that you consider a calculator (like the Texas Instruments Program-
mer) or one of the numerous manual aids that are available.

16-Bit Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight least significant
bits in 0040).

Sample Problem:

(0042) = 03
(0043) = cC8
(0044) = FA
(0045) = 96
Result = C8 + FA + 96 = 0258-|6
(0040) = 58
(0041) = 02

Flowchart:

Source Program:

IDA
TAX
TAY
SUMD CLC
ADC
BCC
INY
COUNT INX
CPX
BNE
STA
STY
BRK

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
0O00C
000D
000E
000F
0010
0011
0012
0013

The structure of this program is the same as the structure of the last example. The most
significant bits of the sum must now be initialized and stored. The processing section
consists of four instructions (CLC; ADC $43,X; BCC COUNT; and INY), including a con-

dition jump.

BCC COUNT causes ajump to memory location COUNT if Carry = 0. Thus, if there is no
carry from the 8-bit addition, the program jumps around the statement that increments

#0 ;SUM = ZERO
;INDEX = ZERO

;MSB'S OF SUM = ZERO
;DO NOT INCLUDE CARRY

$43,X ;'SUM = SUM + DATA

COUNT

;ADD CARRY TO MSB'S OF SUM

$42

SUMD ;CONTINUE UNTIL ALL ELEMENTS
$40 ;STORE LSB'S OF SUM

$41 ;STORE MSB'S OF SUM

(Hex)

A9
00
AA
A8
18
75
43
90
01
C8
E8
E4
42
DO
F5
85
40
84
41
00

Memory Contents

SUMD

COUNT

the most significant bits of the sum. The relative offset is

000A
-0009

The relative offset for BNE SUMD is

0004
-000F

o1

= 0004
-FFFI
F5

Instruction
(Mnemonic)
LDA #0
TAX
TAY
CLC
ADC $43,X
BCC COUNT
INY
INX
CPX $42
BNE SUMD
STA $40
STY $41
BRK

INY adds 1 to the contents of Index Register Y, which is used here as a temporary
register to save the carries from the addition. We could also use a memory location to
hold the carries, since the INC instruction can be used to directly increment the con-
tents of a memory location.

You might wish to try reorganizing this program so that it decrements the index down
to zero rather than incrementing it. Which version is faster and shorter?

Relative branches are limited to short distances (7F1g or +127 LONG
forward, 8046 or-128 backward from the end of the branch in- CONDITIONAL
struction). This limitation is seldom important, since most pro- BRANCHES

gram branches are short. However, if you need a conditional
branch with a greater range, you can always invert the condition logic and branch
around a JMP instruction. For example, to branch to location FAR if Carry = 0, use the
sequence

BCS NEXT

JMP FAR
NEXT

NEXT is the address immediately following the last byte of the JMP instruction. JMP
allows only absolute (direct) and indirect addressing.

Number of Negative Elements

Purpose: Determine the number of negative elements (most significant bit 1) in a
block. The length of the block is in memory location 0041 and the block itself
starts in memory location 0042. Place the number of negative elements in
memory location 0040.

Sample Problem:

(0041) = 06
(0042) = 68
(0043) = F2
(0044) = 87
(0045) = 30
(0046) = 59
(0047) = 2A
Result: (0040) = 02, since 0043 and 0044 contain

numbers with an MSB of 1
Flowchart:

Source Program:

LDX #0 ;INDEX = ZERO

LDY #0 ;NUMBER OF NEGATIVES = ZERO

LDA $42,X ;IS NEXT ELEMENT NEGATIVE?

BPL CHCNT

INY ;YES, ADD 1 TO NUMBER OF NEGATIVES

INX

CPX $41

BNE SRNEG iCONTINUE UNTIL ALL ELEMENTS EXAMINED
STY $40 ;SAVE NUMBER OF NEGATIVES

BRK

Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 AO LDY #0
0003 00
0004 B5 SRNEG LDA $42,X
0005 42
0006 10 BPL CHCNT
0007 01
0008 C8 INY
0009 E8 CHCNT INX
000A E4 CPX $41
000B 41
000C DO BNE SRNEG
000D F6
000E 84 STY $40
000F 40
0010 00 BRK

LDA affects the Sign (S) and Zero (2 status flags. Therefore, we can immediately check
to see if a number that has been loaded is negative or zero.

BPL, Branch-on-Plus, causes a branch over the specified number of locations if the Sign
(or Negative) bit is zero. A sign bit of zero may indicate a positive number or may just in-
dicate the value of the most significant bit position; the interpretation depends on what
the numbers mean.

The offset for BPL is calculated from the first memory location following the two-byte
instruction. Here the offset is simply from 0008 to 0009, or one location (i.e., the INY in-
struction is skipped if the Negative bit is zero). The Negative bit will be zero if the most
significant bit of the data loaded from memory by the LDA $42,X instruction is zero.

Remember that negative-signed numbers all have a most significant bit (bit 7) of 1L All
negative numbers are actually larger, in the unsigned sense, than positive numbers.

Maximum Value

Purpose: Find the largest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042.

Store the maximum in memory location 0040. Assume that the numbers in
the block are all 8-bit unsigned binary numbers.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)

Result: (0040)

Flowchart:

05
67
79
15
E3
72

E3. since this is the largest of
the five unsigned numbers.

Source Program:

LDX $41 ;GET ELEMENT COUNT

LDA #0 :MAXIMUM =ZERO (MINIMUM POSSIBLE VALUE)
MAXM CMP $41,X ;IS NEXT ELEMENT ABOVE MAXIMUM?

BCS NOCHG ;NO. KEEP MAXIMUM

LDA $41,X 'YES, REPLACE .MAXIMUM WITH ELEMENT
NOCHG DEX

BNE MAXM CONTINUE UNTIL ALL ELEMENTS EXAMINED

STA $40 ;'SAVE MAXIMUM

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $41
0001 41
0002 A9 LDA #0
0003 00
0004 D5 MAXM CMP $41,X
0005 41
0006 BO BCS NOCHG
0007 02
0008 B5 LDA $41,X
0009 41
000A CA NOCHG DEX
000B DO BNE MAXM
0oocC F7
000D 85 STA $40
000E 40
000F 00 BRK

The relative offset for BCS NOCHG is:

000A
-0008
02

The relative offset for BNE MAXM is:

0004 = 04
-000D +F3
F7

The first two instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary
number. When you set the register that contains the maximum value — in this case,
the Accumulator — to the minimum possible value before you enter theloop, then the
program will set the Accumulator to a larger value unless all theelements in the array
are zeros. The program works properly if there are two elements in the array, but not if
there is only one or none at all. Why? How could you solve this problem?

The instruction CMP $41,X sets the Carry flag as follows where ELEMENT is the con-
tents of the effective address and MAX is the contents of the Accumulator:

Carry = 0 if ELEMENT> MAX
Carry = 1 if ELEMENT <MAX

Remember that the carry is an inverted borrow. If Carry = 1, the program proceeds to
address NOCHG and does not change the maximum. If Carry = 0, the program replaces
the old maximum with the current element by executing the instruction LDA $41.X.

The program does not work if the numbers are signed, because negative numbers will
appear to be larger than positive numbers. This problem is somewhat tricky because a
twos complement overflow could make the sign of the result incorrect. A further prob-
lem is that the CMP instruction does not affect the Overflow flag. A program for signed
numbers would therefore have to use the SBC instruction and check both the Sign and
the Overflow flags. The Carry flag would have to be set to 1 before the subtraction
(remember that Carry is an inverted borrow and the SBC instruction inverts it before
subtracting it), and an addition would be required to restore the original value of the
maximum. Note how convenient it is in the example that CMP does not actually change
the contents of the Accumulator.

Justify a Binary Fraction

Purpose: Shift the contents of memory location 0040 left until the most significant bit
of the number is 1. Store the result in memory location 0041 and the number
of left shifts required in memory location 0042. If the contents of memory
location 0040 are zero, clear both 0041 and 0042.

Note: The process is just like converting a number to a scientific notation: for example:
0.0057 = 5.7 x 10'3
Sample Problems:

a (0040) = 22
Result: (0041) = 88
(0042) = 02
b. (0040) = o1
Result: (0041) = 80
(0042) = 07
c. (0040) = CB
Result: (0041) = CB
(0042) = 00
d. (0040) = 00
Result: (0041) = 00
(0042) = 00

Flowchart:

Source Program:

LDY #0 ;NUMBER OF SHIFTS =0
LDA $40 JGET DATA
BEQ DONE ;DONE IF DATA IS ZERO
CHKMS BMI DONE ;DONE IF MSB IS ONE
INY ;ADD 1 TO NUMBER OF SHIFTS
ASL A ;SHIFT LEFT ONE BIT
JMP CHKMS
DONE STA $41 ;SAVE JUSTIFIED DATA
STY $42 ;SAVE NUMBER OF SHIFTS
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 AO LDY #0
0001 00
0002 A5 LDA $40
0003 40
0004 FO BEQ DONE
0005 07
0006 30 CHKMS BMI DONE
0007 05
0008 c8 INY
0009 OA ASL A
000A 4C JMP CHKMS
000B 06
00o0oC 00
000D 85 DONE STA $41
000E 41
000F 84 STY $42
0010 42
0011 00 BRK

BMI DONE causes a branch to location DONE if the Sign bit is 1. This condition may
mean that the last result was a negative number, or it may just mean that its most sig-
nificant bit was 1 — the computer only supplies the results; the programmer must pro-
vide the interpretation.

ASL A shifts the contents of the Accumulator left one bit and clears the least significant
bit.

JMP is an unconditional branch instruction that always places a new value in the Pro-
gram Counter. It only allows absolute (direct) or indirect addressing. The indirect mode
provides flexibility since the actual destination address can be stored in RAM. Note that
there is no relative addressing and no special page-zero modes.

The address in the JMP instruction is stored in two successive memory locations with
the least significant bits first (at the lower address). This is the standard way in which
the 6502 microprocessor expects to find addresses, regardless of whether they are part
of instructions or are used indirectly. The same upside-down method is used in the
8080, 8085, and Z80 microprocessors, but the opposite approach (most significant bits
first) is used on the 6800 microprocessor. Note that an address occupies two bytes of
memory, although there is a single byte of data located at that address.

We could reorganize this program so as to eliminate the extraneous JMP instruction.
One reorganized version would be:

LDY #0 NUMBER OF SHIFTS = 0

LDA $40 GET DATA

BEQ DONE DONE IF DATA IS ZERO

INY ADD 1 TO NUMBER OF SHIFTS

ASL A SHIFT LEFT ONE BIT

BCC CHKMS CONTINUE IF MSB NOT ONE

ROR A OTHERWISE. SHIFT BACK ONCE

DEY AND IGNORE EXTRA SHIFT
DONE STA $41 SAVE JUSTIFIED DATA

STY $42 SAVE NUMBER OF SHIFTS

BRK

This version shifts the data until the Carry becomes 1. Then it adjusts the data and the
number of shifts back one since the last shift was not really necessary. Show that this
version is also correct. What are its advantages and disadvantages as compared to the
previous program? You might wish to try some other organizations to see how they
compare in execution time and memory usage.

Post-Indexed (Indirect) Addressing

We have already noted the additional flexibility provided by POST-INDEXED
the indexed addressing mode. The same instructions can be (INDIRECT)
used to process each element in an array or table. But even ADDRESSING
more flexibility is provided by the post-indexed addressing MODE

mode in which the instruction only specifies the address on

page zero that contains the base address of the table or array. Now the same program
can handle an array or table located anywhere in memory. All that we have to do is
place the starting address in the appropriate locations on page zero. Note that the start-
ing address occupies two bytes of memory, with the least significant byte first (at the
lower address). Post-indexing requires extra clock cycles (six as compared to four for
the zero-page indexed mode)but provides tremendous additional flexibility. Entire ar-
rays need not be moved, nor are repeated versions of the same programrequired.

Post-indexed (indirect) addressing can only be used with Index Register Y. So the max-
imum value program with post-indexed addressing is as follows, assuming that the
length of the array is in memory location 0041 and its starting address is in memory
locations 0042 and 0043.

For example,
(0041) = 05

(0042) = 43 (LSBs of starting address minus one)
(0043) = 00 (MSBs of starting address minus one)

(0044) = 67 (first element in array)
(0045) = 79
(0046) = 15
(0047) = E3
(0048) = 72

Result = (40) = E3 since this is the largest
of the 5 unsigned numbers.

Source Program:

LDY $41 JGET ELEMENT COUNT

LDA #0 iIMAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)
MAXM CMP ($42),Y ;IS NEXT ELEMENT ABOVE MAXIMUM?

BCS NOCHG ;NO, KEEP MAXIMUM

LDA ($42),Y ;YES, REPLACE MAXIMUM WITH ELEMENT
NOCHG DEY

BNE MAXM ;CONTINUE UNTIL ALL ELEMENTS EXAMINED

STA $40 ;'SAVE MAXIMUM

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A4 LDY $41
0001 41
0002 A9 LDA #0
0003 00
0004 D1 MAXM CMP ($42),Y
0005 42
0006 BO BCS NOCHG
0007 02
0008 Bl LDA ($42),Y
0009 42
000A 88 NOCHG DEY
000B DO BNE MAXM
oooC F7
000D 85 STA $40
000E 40
000F 00 BRK

The indirect address (in memory locations 0042 and 0043) is stored in the usual 6502
fashion, with the least significant bits first (at the lower address).

We could use the same program to find the maximum element in an array of 5 entries
starting in memory address 25E1. All that we would have to do is change the indirect
address to 25E0 before executing the program, that is,

(0042) = EO (LSBs of starting address minus one)
(0043) = 25 (MSBs of starting address minus one)

How would you handle the array starting in memory address 25E1 if the program used
ordinary indexed addressing (as in the earlier example)? Assume that the program is in
ROM so that you cannot change the addresses in the instructions.

5-21

Pre-Indexed (Indirect) Addressing

The pre-indexed addressing mode gives you a different kind of
flexibility. This method allows you to choose one address from
a table of addresses, rather than being limited to a particular
memory address. For example, rather than having memory
location 0041 contain the length of the array in the maximum

PRE-INOEXED
(INDIRECT)
ADDRESSING
MODE

problem, we could let it contain the index of the address that contains the length of the
array. The table of addresses must be located somewhere on page zero, perhaps start-

ing at memory address 0060, that is

0060) = 2F'
50061; -00 eaddress in which counter #0 is stored
Egggg i g(())(l address in which counter #1 is stored
(0064) >A5

(0065) ; OOt address in which counter #2 is stored

One problem is that addresses occupy two bytes of memory so that you must multiply
the counter number by two before applying the pre-indexed addressing mode. Note
that all addresses are stored in the usual 6502 manner, with the least significant bits
first. Pre-indexed addressing is not as useful as post-indexed addressing, but it does

come in handy occasionally.

PROBLEMS
1) Checksum of Data

Purpose: Calculate the checksum of a series of numbers. The length of the series is in
memory location 0041 and the series itself begins in memory location 0042.
Store the checksum in memory location 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure
that the data has been read correctly. The calculated checksum is compared to
the one stored with the data — if the two checksums do not agree, the system
will usually either indicate an error to the operator or automatically read the data
again.

Sample Problem:

(0041) = 03
(0042) = 28
(0043) = 55
(0044) = 26
Result: (0040) = (0042) © (0043) © (0044)
= 28 ©55 ©26
00 10 1000

© 010 10101
0111110 1
© 00 100 110
010110 11
= 5B

2) Sum of 16-Bit Data

Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight most significant
bits in 0041). Each 16-bit number occupies two memory locations, with the
eight most significant bits in the higher address. Assume that the sum can
be contained in 16 bits.

Sample Problem:

(0042) = 03
(0043) = F1
(0044) = 28
(0045) = 1A
(0046) = 30
(0047) = 89
(0048) = 4B
Result: 28F1 + 301A + 4B89 =A494
(0040) = 94
(0041) = A4

3) Number of Zero, Positive, and Negative Numbers

Purpose: Determine the number of zero, positive (most significant bit zero but entire
number not zero), and negative (most significant bit 1) elements in a block.
The length of the block is in memory location 0043 and the block itself starts
in memory location 0044. Place the number of negative elements in memory
location 0040, the number of zero elements in memory location 0041, and
the number of positive elements in memory location 0042.

Sample Problem:

(0043) = 06
(0044) = 68
(0045) = F2
(0046) = 87
(0047) = 00
(0048) = 59
(0049) = 2A
Result: 2 negative. 12
(0040) = 02
(0041) = 01
(0042) = 03

4) Find Minimum

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042.
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041) 05
(0042) 67
(0043) 79
(0044) 15
(0045) E3
(0046) 72
Result: (0040) = 15, since this is the smallest of the

five unsigned numbers.
5) Count 1 Bits

Purpose: Determine how many bits in memory location 0040 are ones and place the
result in memory location 0041.

Sample Problem:
(0040) = 3B = 00111011
Result: (0041) = 05

Chapter 6
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards,
teletypewriters, communications devices, displays, and computer terminals ex-
pect or provide character-coded data, but many instruments, test systems, and
controllers also require data in this form. The most commonly used code is ASCII.
Baudot and EBCDIC are found less frequently. We will assume all of our character-
coded data to be 7-bit ASCIlI with the most significant bit zero (see Table 6-1).

Some principles to remember in handling ASCll-coded data HANDLING
are: DATA IN
1) The codes for the numbers and letters form ordered sub- AScll

2)

3

4)

5)

sequences. The codes for the decimal numbers are 3076

through 39-|6 so that you can convert between decimal and ASCII with a simple
additive factor. The codes for the upper case letters are 411 (through 5Ai 6 so that
you can do alphabetic ordering by sorting the data in increasing numerical order.

The computer draws no distinction between printing and non-printing charac-
ters. Only the 1/0 devices make that distinction.

An ASCII device will handle only ASCII data. To print a 7 on an ASCII printer,
the microprocessor must send 37-|g to the printer; 07-|g is the 'bell' character.
Similarly, the microprocessor will receive the character 9 from an ASCIl keyboard
as 39-|g; 09-|6 is the 'tab’ character.

Some ASCII devices do not use the full character set. For example, control
characters and lower case letters may be ignored or printed as spaces or question
marks.

Some widely used ASCII characters are:
OAie - line feed (LF)

0D-|6 mcarriage return (CR)

20ig - space

3F-|6 - ? (question mark)

7Fi0 - rubout or delete character

Each ASCII character occupies eight bits. This allows a large character set but is
wasteful when the data is limited to a small subset such as the decimal numbers.
An 8-bit byte, for example, can hold only one ASCIl-coded decimal digit, while it
can hold two BCD-coded digits.

Table 6-1. Hex-ASCIl Table

EXAMPLES

Length of a String of Characters

Purpose: Determine the length of a string of ASCIl characters (seven bits with most
significant bit zero). The string starts in memory location 0041; the end of
the string is marked by a carriage return character CCR, ODig). Place the

length of the string (excluding

0040.
Sample Problems:
(0041)
Result: (0040)

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)

Result: (0040)
Flowchart:

oD
00

52
41
54
48
45

06

since

ZmL =R

first character is a carriage return.

C

carriage return) into memory location

(0040) = Length

Ha

Source Program:

LDX #0 ;STRING LENGTH = ZERO
LDA #$0D ;GET ASCIl CARRIAGE RETURN TO COMPARE
CMP $41,X ;IS CHARACTER A CARRIAGE RETURN?
BEQ DONE ;YES, DONE
INX ;NO, ADD 1 TO STRING LENGTH
JMP CHKCR
STX $40 ;SAVE STRING LENGTH
BRK
Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 A9 LDA #$0D
0003 oD
0004 D5 CHKCR CMP $41,X
0005 41
0006 FO BEQ DONE
0007 04
0008 E8 INX
0009 4C JMP CHKCR
000A 04
000B 00
000C 86 DONE STX $40
000D 40
000E 00 BRK

The carriage return character. 'CR’, is just another ASCII code (ODi q) as far as the com-
puter is concerned. The fact that this character causes an output device to perform a
control function rather than print a symbol does not affect the computer.

The Compare instruction. CMP, sets the flags as if a subtraction had been performed
but leaves the carriage return character in the Accumulator for later comparisons. The
Zero (2 flag is affected as follows:

Z =1 if the character in the string is a carriage return
Z =0 ifitis not a carriage return

The instruction INX adds 1 to the string length counter in Index Register X. LDX #0 in-
itializes this counter to zero before the loop begins. Remember to initialize variables
before using them in a loop.

This loop does not terminate because a counter is decremented to zero or reaches a
maximum value. The computer will simply continue examining characters until it finds
a carriage return. It is good programming practice to place a maximum count in a loop
like this to avoid problems with erroneous strings that do not contain a carriage return.
What would happen if the example program were used with such a string?

6-4

Note that by rearranging the logic and changing the initial conditions, you can shorten
the program and decrease its execution time. If we adjust the flowchart so that the pro-
gram increments the string length before it checks for the carriage return, only one
Jump instruction is necessary instead of two. The new flowchart and program are as

follows:

Source Program:

LDX
LDA
INX
CMP
BNE
STX
BRK

#$FF :STRING LENGTH = -1

#$0D :GET ASCII CARRIAGE RETURN TO COMPARE
JADD 1 TO STRING LENGTH

$41,X ;IS CHARACTER A CARRIAGE RETURN?

CHKCR ;NO, CHECK NEXT CHARACTER

$40 ;YES. SAVE STRING LENGTH

This version is not only shorter and faster, but it also contains no absolute destination
addresses: thus it can easily be placed anywhere in memory. The earlier version con-
tains a JMP instruction with a specific absolute address, while this version has only
branch instructions with relative addresses.

Object Program:

Memory Address

(Hex)

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
000B

Memory Contents
(Hex)

A2
FF
A9
oD
E8
D5
41
DO
FB
86
40
00

CHKCR

Instruction
(Mnemonic)
LDX #SFF
LDA #$0D
INX
CMP $41.X
BNE CHKCR
STX $40
BRK

Find First Non-Blank Character

Purpose: Search a string of ASCII characters (seven bits with most significant bit zero)
for a non-blank character. The string starts in memory location 0042. Place
the index of the first non-blank character in memory location 0040. A blank
character is 20i6 in ASCILI.

Sample Problems:
(0042)
Result: (0040)

(0042)
(0043)
(0044)
(0045)
(0046)

Result: (0040)

Flowchart:

37 ASCH 7

00, since memory location 0042 contains a
non-blank character.

20 SP
20 SP
20 SP
46 T
20 SP

03. since the three previous memory locations
all contain blanks.

Source Program:

LDX
LDA
CHBLK CMP
BNE
INX
JMP
DONE STX

BRK

Note the use of an apostrophe 0

Object Program:

#0

$42,X
DONE

CHBLK
$40

Memory Address

(Hex)

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
00o0C
000D
000E

;START WITH INDEX = ZERO
;GET ASCII SPACE FOR COMPARISON

;IS CHARACTER AN ASCIlI SPACE?

;NO, DONE

;YES. EXAMINE NEXT CHARACTER

;SAVE INDEX OF FIRST NON-BLANK
; CHARACTER

Memory Contents

(Hex)

A2
00
A9
20
D5
42
DO
04
ES
4c
04
00
86
40
00

CHBLK

DONE

or single quotation mark before an ASCII character.

Instruction

(Mnemonic)
LDX #0
LDA #'
CMP $42,X
BNE DONE
INX
JMP CHBLK
STX $40
BRK

Looking for spaces in strings is a common task. Spaces often are eliminated from
strings when they are used simply to increase readability or to fit particular formats. It is
obviously wasteful to store and transmit beginning, ending, or extra spaces, particularly
if you are paying for the communications capability and memory required. Data and
program entry, however, are much simpler if extra spaces are tolerated. Microcom-
puters are often used in situations like this to convert data between forms that are easy
for humans to use and forms that are efficiently handled on computers and com-

munications lines.

Again, if we alter the initial conditions so that the loop control section precedes the pro-
cessing section, we can reduce the number of bytes in the program and decrease the
loop's execution time. The rearranged flowchart is:

Source Program:

LDX #SFF START WITH INDEX = -1

LDA #' GET ASCIl SPACE FOR COMPARISON
CHBLK INX INCREMENT INDEX

CMP $42,X IS CHARACTER AN ASCII SPACE?

BEQ CHBLK YES, EXAMINE NEXT CHARACTER

STX $40 NO, SAVE INDEX OF FIRST NON-BLANK

CHARACTER
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #SFF
0001 FF
0002 A9 LDA #'

, 0003 20
0004 E8 CHBLK INX
0005 D5 CMP $42,X
0006 42
0007 FO BEQ CHBLK
0008 FB
0009 86 STX $40
000A 40
000B 00 BRK

6-9

Replace Leading Zeros with Blanks

Purpose; Edit a string of ASCII decimal characters by replacing all leading zeros with
blanks. The string starts in memory location 0041; assume that it consists
entirely of ASCIlI-coded decimal digits. The length of the string is in memory
location 0040.

Sample Problems:

a (0040) = 02
(0041) = 36 ASCIl 6
The program leaves the string unchanged, since the leading digit is not zero.
(0040) = 08
(0041) = 30 ASClI O
(0042) = 30 ASCl O
(0043) = 38 ASCIll 8
Result: (0041) = 20 SP
(0042) = 20 SP

The two leading ASCII zeros have been replaced by ASCII blanks.

Flowchart:

Source Program:

LDX #0 INDEX = ZERO TO START
LDY #' GET ASCIlI SPACE FOR REPLACEMENT
LDA #'0 GET ASCIlI ZERO FOR COMPARISON
CHKZ CMP $41 X IS LEADING DIGIT ZERO?
BNE DONE NO, END REPLACEMENT PROCESS
STY $41,X IS LEADING DIGIT ZERO?
INX
CPX $40
BNE CHKZ ;EXAMINE NEXT DIGIT IF ANY
DONE BRK

Single quotation mark in front of a character indicates that the operand is an ASCII
code.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 AO LDY #'
0003 20
0004 A9 LDA #'0
0005 30
0006 D5 CHKZ CMP $41.X
0007 41
0008 DO BNE DONE
0009 07
000A 94 STY $41.X
0O00B 41
oooc E8 INX
000D E4 CPX $40
000E 40
000F DO BNE CHKZ
0010 F5
0011 00 DONE BRK

You will frequently want to edit decimal strings before they are printed or displayed to
improve their appearance. Common editing tasks include eliminating leading zeros,
justifying numbers, adding signs or other identifying markers, and rounding. Clearly,
printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits — one if the processor finds a nonzero digit and the other if
it has examined the entire string.

The instruction STY $41,X places an ASCIl space character (20 hex) in a memory loca-
tion that previously contained an ASCIl zero. Note that STY has only a limited number
of addressing modes (see Table 3-4); there are no indexing modes with Register Y, no
pre-indexing, and no absolute indexing. The only indexed addressing mode is the zero-
page mode with Index Register X.

All digits in the string are assumed to be ASCII; that is, the digits are 30-|6 through
3910 rather than the ordinary decimal 0 to 9. The conversion from decimal to ASCII is
simply a matter of adding 30ig to the decimal digit.

You can place a single ASCII character in a 6502 assembly language program by pre-
ceding it with an apostrophe (). You can place a string of ASCII characters in program
memory by using the .TEXT (Store ASCIl Text) pseudo-operation on the 6502 assem-
bler. A delimiter character (usually /) must surround the text; the usual form is:

Operation
Label Code Operand
EMSG TEXT /ERROR/

You may have to be careful, when blanking zeros, to leave one zero in the event that all
the digits are zero. How would you do this?

Note that each ASCII digit requires eight bits, as compared to four for a BCD digit.
Therefore, ASCII is an expensive format in which to store or transmit numerical data.

Add Even Parity to ASCIl Characters

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string
is in memory location 0040 and the string itself begins in memory location
0041. Place even parity in the most significant bit of each character by set-
ting the most significant bit to 1 if that makes the total number of 1 bits in
the word an even number.

Sample Problem:

(0040) ~ 06
(0041) = 31
(0042) = 32
(0043) = 33
(0044) = 34
(0045) = 35
(0046) = 36
(0041) = BL
(0042) = B2
(0043) = 33
(0044) = B4
(0045) = 35

(0046) = 36

Flowchart:

Source Program:

LDX
GTDATA LDY
LDA
CHBIT BPL
INY
CHKZ ASL
BNE
TYA
LSR
BCC
LDA
ORA
STA
NEXTE DEX
BNE
BRK

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
00oCC
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

$40
#0
$40.X
CHKZ

CHBIT

A

NEXTE

$40,X

#% 10000000
$40,X

GTDATA

INDEX = MAXIMUM COUNT
BIT COUNT = ZERO FOR DATA
GET DATA FROM BLOCK

IS NEXT DATA BIT 1?2

YES, ADD 1 TO BIT COUNT
EXAMINE NEXT BIT POSITION
UNLESS ALL BITS ARE ZEROS

DID DATA HAVE EVEN NUMBER OF

NO, SET PARITY BIT

CONTINUE THROUGH DATA BLOCK

Memory Contents Instruction
(Hex) (Mnemonic)

A6 LDX $40
40
AO GTDATA LDY #0
00
B5 LDA $40, X
40
10 CHBIT BPL CHKZ
01
c8 INY
OA CHKZ ASL A
DO BNE CHBIT
FA
98 TYA
4A LSR A
90 BCC NEXTE
06
B5 LDA $40,X
40
09 ORA #%10000000
80
95 STA $40,X
40
CA NEXTE DEX
DO BNE GTDATA
E9
00 BRK

Parity is often added to ASCIl characters before they are transmitted on noisy com-
munications lines; this provides a simple error-checking facility. Parity detects all
single-bit errors but does not allow for error correction; that is, you can tell by checking
the parity of the data that an error has occurred, but you cannot tell which bit was
received incorrectly. All that the receiver can do is request retransmission.

The procedure for calculating parity is to count the number of '1' bits in the data words.
If that number is odd, the MSB of the data word is set to 1 to make the parity even.

ASL clears the least significant bit of the number being shifted. Therefore, the result of
a series of ASL instructions will eventually be zero, regardless of the original value of
the data (try it!). The bit counting section of the example program not only does not
need a counter, but also stops examining the data as soon as all remaining bits are
zeros. This procedure saves execution time in many cases.

The MSB of the data is setto T by logically ORing it with a pattern that has a'l' in its
most significant bit and zeros elsewhere. Logically ORing a bit with one produces a
result of one regardless of the original value, while logically ORing a bit with zero does
not change the original value.

Pattern Match

Purpose: Compare two strings of ASCIl characters to see if they are the same. The
length of the strings is in memory location 0041; one string starts in memory
location 0042 and the other in memory location 0052. If the two strings
match, clear memory location 0040; otherwise, set memory location 0040 to
FF-ie (all ones).

Problems:
(0041) = 03
(0042) - 43 C
(0043) = 41 A
(0044) = 54 T
(0052) = 43 K
(0053) = 41 A
(0054) = 54 T
Result: (0040) = 00, since the
(0041) = 03
(0042) 52 mR
0043) - 41 A’
(0044) = 54 T
(0052) = 43 'C
(0053) = 41 A’
(0054) = 54 T
Result: (0040) = F since the

strings differ.

Note: The matching process ends as soon as the CPU finds a difference — the rest of
the strings need not be examined.

Flowchart:

Source Program:

LDX #0 START WITH FIRST ELEMENT IN STRINGS
LDY #SFF MARKER FOR NO MATCH

CHCAR LDA $42,X GET CHARACTER FROM STRING 1
CMP $52,X IS THERE A MATCH WITH STRING 2?
BNE DONE NO, DONE
INX
CPX $41
BNE CHCAR CHECK NEXT PAIR IF ANY LEFT
LDY #0 IF NONE LEFT, MARK MATCH

DONE STY $40 SAVE MATCH MARKER
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 A0 LDY #SFF
0003 FF
0004 B5 CHCAR LDA $42.X
0005 42
0006 D5 CMP $52.X
0007 52
0008 DO BNE DONE
0009 07
000A E8 INX
000B E4 CPX $41
000C 41
000D DO BNE CHCAR
000E F5
000F AO LDY #0
0010 00
0011 84 DONE STY $40
0012 40
0013 00 BRK

Matching strings of ASCII characters is an essential part of recognizing names or com-
mands. identifying variables or operation codes in assemblers and compilers, finding
files, and many other tasks.

Index Register X is used to access both strings — only the base addresses are different.
This method allows the strings to be located anywhere in memory, although we would
have to use the absolute indexed addressing modes if the strings were not on page
zero. We could also use the post-indexed mode (with Index Register Y) if we had two
different base addresses stored somewhere on page zero.

The instruction CMP $52,X compares the Accumulator to the contents of the indexed
memory location. We could replace the LDY #0 instruction with INY. Why? Compare
the time and memory requirements of the two alternatives. Which version do you think
is clearer? The replacement would also allow you to use a memory location for the
marker rather than a register (why?).

PROBLEMS
1) Length of a Teletypewriter Message

Purpose: Determine the length of an ASCII message. All characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is embedded
starts in memory location 0041. The message itself starts with an ASCIl STX
character (02:@ and ends with ETX (0316) Place the length of the message
(the number of characters between the STX and the ETX but including
neither) into memory location 0040.

Sample Problem:

(0041) = 40
(0042) = 02 STX
(0043) = 47 'G
(0044) = 4F 'O
(0045) = 03 ETX
Result: (0040) = 02, since there aretwo characters between the STX

in location 0042 and ETX in location 0045.
2) Find Last Non-Blank Character

Purpose: Search a string ofASCIl characters for the last non-blank character. The
string starts in memory location 0042 and ends with a carriage return
character (0D-|g). Place the index of the last non-blank character in memory
location 0040.

Sample Problems:

(0042) = 37 ASCIl 7
(0043) = OD CR
Result: (0040) — 00, since the last (and only) non-blank character
is in memory location 0042.
(0042) = 41 A’
(0043) = 20 SP
(0044) = 48 'H'
(0045) = 41 ‘A’
(0046) = 54 T
(0047) = 20 SP
(0048) 20 SP
(0049) = 0D CR
Result: (0040) = 04

3) Truncate Decimal String to Integer Form

Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of
the decimal point with ASCII blanks (20-) 0) The string starts in memory loca-
tion 0041 and is assumed to consist entirely of ASCIll-coded decimal digits
and a possible decimal point (2E-|The length of the string is in memory
location 0040- If no decimal point appears in the string, assume that the
decimal point is implicitly at the far right.

Sample Problems:

(0040) = 04

(0041) = 37 ASCI 7
(0042) = 2E ASCI
(0043) = 38 ASCIl 8
(0044) = 31 ASCll 1
(0041) — 37 ASCIl 7
(0042) = 2E ASCII
(0043) — 20 SP
(0044) = 20 SP
(0040) = 03

(0041) = 36 ASCIl 6
(0042) = 37 ASCIl 7
(0043) = 31 ASCI 1

Result: Unchanged, as number
4) Check Even Parity in ASCIl Characters

Purpose: Check even parity in a string of ASCII characters. The length of the string is
in memory location 0041, and the string itself begins in memory location
0042. If the parity of all the characters in the string is correct, clear memory
location 0040; otherwise, place FFiq (all ones) into memory location 0040.

Sample Problems:

(0041) = 03
(0042) = Bl
(0043) = B2
(0044) = 33
(0040) = 00,
(0041) = 03
(0042) = Bl
(0043) = B6
(0044) = 33
(0040) = FF, since the character in memory location 0043

does not have even parity.

5) String Comparison

Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which
follows the other in alphabetical ordering). The length of the strings is in
memory location 0041; one string starts in memory location 0042 and the
other in memory location 0052. If the string starting in memory location
0042 is greater than or equal to the other string, clear memory location
0040; otherwise, set memory location 0040 to FF-|g (all ones).

Sample Problems:

(0041) 03
(0042) 43 C
(0043) 41 A
(0044) 54 T
(0052) 42 B
(0053) 51 A’
(0054) 54 T
Result: (0040) 00, since CAT is 'larger' than BAT.
(0041) 03
(0042) 43 mc
(0043) 41 A
(0044) 54 T
(0052) 43 ¢
(0053) 4 A
(0054) 54 T
Result: (0040) 00. since the two strings are equal.
(0041) 03
(0042) 43 ¢
(0043) 41 A
(0044) 54 T
(0052) 43 ¢
(0053) 55 U’
(0054) 54 T
Result: (0040) = FF, since CUT is 'larger' than CAT.

Chapter 7
CODE CONVERSION

Code conversion is a continual problem in most microcomputer applications. Pe-
ripherals provide data in ASCII, BCD, or various special codes. The system must
convert the data into some standard form for processing. Output devices may re-
quire data in ASCII, BCD, seven-segment, or other codes. Therefore, the system
must convert the results to a suitable form after the processing is completed.

There are several ways to approach code conversion:

1) Some conversions can easily be handled by algorithms involving arithmetic or
logical functions. The program may. however, have to handle some special cases
separately.

2) More complex conversions can be handled with lookup tables. The lookup ta-
ble method requires little programming and is easy to apply. However, the table
may occupy a large amount of memory if the range of input values is large.

3) Hardware is readily available for some conversion tasks. Typical examples are
decoders for BCD to seven-segment conversion and Universal Asynchronous
Receiver/Transmitters (UARTs) for conversion between parallel (ASCII) and serial
(teletypewriter) formats.

In most applications, the program should do as much as possible of the code conversion
work. This results in a savings in parts and board space as well as in increased
reliability. Furthermore, most code conversions are easy to program and require little
execution time.

EXAMPLES
Hex to ASCII

Purpose: Convert the contents of memory location 0040 to an ASCIlI character.
Memory location 0040 contains a single hexadecimal digit (the four most
significant bits are zero). Store the ASCIl character in memory location
0041.

Sample Problems:

a (0040) oc
Result: (0041) 43 'C'
b. (0040) 06
Result: (0041) 36 '6'
Flowchart:
Program:
LDA $40 ;GET DATA
CMP #10 ;IS DATA LESS THAN 10?
BCC ASCZ
ADC #'A-'9-2 ;NO. ADD OFFSET FOR LETTERS (CARRY = 1)
ASCz ADC #'0 ;ADD OFFSET FOR ASCII
STA $41 ;STORE ASCII DIGIT
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 C9 CMP #10
0003 0A
0004 90 BCC ASCZ
0005 02
0006 69 ADC #'A-'9-2
0007 06
0008 69 ASCz ADC #m0
0009 30
000A 85 STA $41
000B 41
000C 00 BRK

The basic idea of this program is to add ASCII zero (3010) to all the hexadecimal digits.
This addition converts the decimal digits to ASCII correctly; however, there is a break
between ASCII 9 (39{g) and ASCIl A (4110)which must be considered. This break must
be added to the non-decimal digits A, B, C, D, E and F. The first ADC instruction ac-
complishes this by adding the offset 'A-'9-2 to the contents of the Accumulator. Can
you explain why the offset is 'A-'9-27?

The problem here is that the letters do not follow immediately after the decimal digits in
ASCII. There is a gap occupied by the ASCII codes for such characters as: (3A103> =
(3D1g), and @ (40ig). To bridge this gap, we must add a constant factor determined by
the distance between the actual value of ASCII A (4110) and the value it would have if
there were no gap (3A-|g). There is also an extra factor of 1 provided by the Carry flag.
You can compare this situation to the problem of walking from one address to another
on a street that is divided into two discontinuous sections by a canyon or a river.

Remember that the ADC instruction always adds in the Carry bit. After the BCC instruc-
tion, we know that the Carry contains one (otherwise a branch would have occurred).
So we simply reduce the additive factor by 1 to account for the Carry. As for the second
ADC instruction, the Carry will be zero if the program branched after the CMP instruc-
tion (since the BCC instruction was used) or if the Accumulator contained a valid hex-
adecimal digit (10 through 15) since the additive factor is only 7. Therefore, we do not
have to worry about the Carry in any reasonable case.

This routine could be used in a variety of programs; for example, monitor programs
must convert hexadecimal digits to ASCII in order to display the contents of memory
locations in hexadecimal on an ASCII printer or CRT display.

Another (quicker) conversion method that requires no conditional jumps at all is the
following program, described by AllisonJ

SED MAKE ADDITIONS. DECIMAL

CLC CLEAR CARRY TO START

LDA $40 GET HEXADECIMAL DIGIT

ADC #$90 DEVELOP EXTRA s AND CARRY

ADC #$40 ADD IN CARRY, ASCIlI OFFSET

STA $41 STORE ASCII DIGIT

CLD CLEAR DECIMAL MODE BEFORE ENDING
BRK

7-3

Try this program on some digits. Can you explain why it works? Note that you must be
careful to clear the decimal mode flag when you have completed all decimal arithmetic.
Otherwise, you will get decimal results in programs (including the monitor) where they
are not wanted.

Decimal to Seven-Segment

Purpose: Convert the contents of memory location 0041 to a seven-segment code in
memory location 0042. If memory location 0041 does not contain a single
decimal digit, clear memory location 0042.

Seven-segment table: The following table can be used to convert decimal numbers to
seven-segment code. The seven-segment code is organized with the most significant
bit always zero followed by the code (1 = on, 0 = off) for segments g, f, e, d, c. b, and a
(see Figure 7-1 for the positions of the segments). The segment names are standard but
the organization that we have chosen is arbitrary. In actual applications, the hardware
determines the assignment of data bits to segments.

Note that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid
confusion with lower case b, and 6F for 9 rather than 67 (bottom bar off), for no particu-
lar reason.

Digit Code

3F
06
5B
4F
66
6D
7D
07
7F
6F

©CoO NS WNRERO

Figure 7-1. Seven-segment Arrangement
Sample Problems:

a (0041) = 03
Result: (0042) = 4F
b. (0041) = 28
Result: (0042) = 00

Flowchart:

Note that the addition of base address (SSEG) and index (DATA) produces the address

that contains the answer.

Source Program:

LDA #0 GET ERROR CODE TO BLANK DISPLAY
LDX $41 GET DATA
CPX #10 IS DATA A DECIMAL DIGIT?
BCS DONE NO, KEEP ERROR CODE
LDA SSEG.X YES. GET SEVEN-SEGMENT CODE FROM
TABLE
DONE STA $42 SAVE SEVEN-SEGMENT CODE OR ERROR
CODE
BRK
=30 ;'SEVEN-SEGMENT CODE TABLE
SSEG .BYTE $3F,$06.$5B.$4F.$66

.BYTE $6D,$7D,$07,$7F.$6F

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 A6 LDX $41
0003 41
0004 EO CPX #10
0005 0A
0006 BO BCS DONE
0007 02
0008 B5 LDA SSEG.X
0009 20
000A 85 DONE STA $42
000B 42
0oocC 00 BRK
0020 3F SSEG BYTE $3F
0021 06 $06
0022 5B $5B
0023 4F $4F
0024 66 $66
0025 6D .BYTE $6D
0026 7D $7D
0027 07 $07
0028 7F $7F
0029 6F $6F

The program calculates the memory address of the desired code by adding the index
(i.e., the digit to be displayed) to the base address of the seven-segment code table.
This procedure is known as a table lookup. No explicit instructions are required for the
addition, since it is performed automatically in the indexed addressing modes.

The assembly language pseudo-operation .BYTE (define byte-length data) places con-
stant data in program memory. Such data may include tables, headings, error
messages, priming messages, format characters, thresholds, etc. The label attached to
a .BYTE pseudo-operation is assigned the value of the address into which the first byte
of data is placed.

Tables are often used to perform code conversions that are more complex than the pre-
vious example. Such tables typically contain all the results organized according to the
input data; e.g.. the first entry is the code corresponding to the number zero.

Seven-segment displays provide recognizable forms of the decimal digits and a few let-
ters and other characters. Calculator-type seven-segment displays are inexpensive,
easy to multiplex, and use little power. However, the seven-segment coded digits are
somewhat difficult to read.

The assembler simply places the data for the table in memory. Note that one .BYTE
pseudo-operation can fill many memory locations. We have left some memory space
between the program and the table to allow for later additions or corrections.

The table can be placed anywhere in memory, although the absolute indexed address-
ing mode would have to be used if it was not on page zero. We could also use post-in-
dexing (with Index Register Y) and have the base address saved in two memory loca-
tions on page zero. The same program could then be used with any table since the base
address would be specified in RAM rather than in ROM.

7-6

ASCII to Decimal

Purpose: Convert the contents of memory location 0040 from an ASCII character to a
decimal digit and store the result in memory location 0041. If the contents of
memory location 0040 are not the ASCII representation of a decimal digit,
set the contents of memory location 0041 to FFig.

Sample Problems:

a (0040) = 37 (AsCll 7
Result: (0041) = 07
b. (0040) = 55 (aninvalid code, since it is not an

ASCII decimal digit)
FF

Result: (0041)
Flowchart:

7-7

Source Program:

LDX #$FF GET ERROR MESSAGE
LDA $40 GET DATA
SEC IGNORE CARRY IN SUBTRACTION
SBC #'0 IS DATA BELOW ASCII ZERO?
BCC DONE YES. NOT A DIGIT
CMP #10 IS DATA ABOVE ASCII NINE?
BCS DONE YES, NOT A DIGIT
TAX SAVE DIGIT IF VALID

DONE STX $41 SAVE DIGIT OR ERROR MARKER
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #SFF
0001 FF
0002 A5 LDA $40
0003 40
0004 38 SEC
0005 E9 SBC #'0
0006 30
0007 90 BCC DONE
0008 05
0009 Cc9 CMP #10
000A OA
000B BO BCS DONE
oooc 01
000D AA TAX
OOCE 86 DONE STX $41
000F 41
0010 00 BRK

This program handles ASCII-coded characters just like ordinary numbers. Note that the
decimal digits and the letters form groups of consecutive codes. Strings of letters (like
names) can be alphabetized by placing their ASCIlI representations in increasing
numerical order (ASCIl B = ASCIl A + 1 for example).

Subtracting ASCII zero (304q) from any ASCII decimal digit gives the BCD representa-
tion of that digit.

The Carry must be set before a subtraction if it is not to affect the result since SBC pro-
duces (A) = (A) - (M) - @ - Carry) where M is the contents of the addressed memory
location. Compare instructions, on the other hand, do not include the Carry in their im-
plied subtractions.

ASCIll-to-decimal conversion is necessary when decimal numbers are being entered
from an ASCII device like a teletypewriter or CRT terminal.

The basic idea of the program is to determine if the character is between ASCIlI 0 and
ASCII 9, inclusive. If so. the character is an ASCIlI decimal digit since the digits form a
sequence. It may then be converted to decimal simply by subtracting 30i6 (ASCII 0):
eg., ASCIl 7 - ASCII 0 = 37 - 30 = 7.

Note that one comparison is done with an actual subtraction (SBC #'0) since the
subraction is necessary to convert ASCII to decimal. The other comparison is done with
an implied subtraction (CMP #10) since the final result is now in the Accumulator if the
original number was valid.

BCD to Binary

Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary
number in memory location 0042. The most significant BCD digit is in
memory location 0040.

Sample Problems:

(0040) = 02
(0041) = 09
Result: (0042) = 1DJ16 = 2940
b. (0040) = 07
(0041) = 01
Result: (0042) = 4719 = T714q

Note: We include no flowchart because the program multiplies the most significant
digit by 10 simply by using the formula 10x = 8x + 2x. Multiplying by 2 requires
one arithmetic left shift and multiplying by 8 requires three such shifts.

Source Program:

LDA $40 GET MOST SIGNIFICANT DIGIT (MSD)
ASL A MSD TIMES TWO

STA $42 SAVE MSD TIMES TWO

ASL A MSD TIMES FOUR

ASL A MSD TIMES EIGHT

CLC

ADC $42 MSD TIMES TEN (NO CARRY)

ADC $41 ADD LEAST SIGNIFICANT DIGIT

STA $42 STORE BINARY EQUIVALENT

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 OA ASL A
0003 85 STA $42
0004 42
0005 OA ASL A
0006 OA ASL A
0007 18 CLC
0008 65 ADC $42
0009 42
000A 65 ADC $41
000B 41
000C 85 STA $42
000D 42
000E 00 BRK

BCD entries are converted to binary in order to save on storage and to simplify calcula-
tions. However, the need for conversion may offset some of the advantages of binary
storage and arithmetic.

This program multiplies the BCD digit in memory location 0040 by 10 using left shifts
and additions. 2 Note that ASL A multiplies the contents of the Accumulator by 2, This
allows you to multiply the contents of the Accumulator by small decimal numbers in a
few instructions. How would you use this procedure to multiply by 16? by 12? by 7?

BCD numbers require about 20% more storage than do binary numbers. Representing 0
to 999 requires 3 BCD digits (12 bits) and 10 bits in binary (since 220 = 1024 = 1000).

Convert Binary Number to ASCII String

Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII
characters (either ASCIl 0 or ASCIl 1) in memory locations 0042 through
0049 (the most significant bit is in 0042).

Sample Problem:

(0041) = D2 =11010010
Result: (0042) 31 ASCI 1
(0043) = 31 ASCll 1
(0044) = 30 ASCII 0
(0045) = 31 ASCll 1
(0046) = 30 ASCIl 0
(0047) = 30 ASCII 0
(0048) = 31 ASCIl 1
(0049) = 30 ASCIl 0

Flowchart:

Source Program:

LDA $41 GET DATA

LDX #8 NUMBER OF BITS =8

LDY #'0 GET ASCIl ZERO TO STORE IN STRING
CONV STY $41.X STORE ASCIl ZERO IN STRING

LSR A IS NEXT BIT OF DATA ZERO?

BCC COUNT

INC $41,X ;NO, MAKE STRING ELEMENT ASCIlI ONE
COUNT DEX ;COUNT BITS

BNE CONV

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $41
0001 41
0002 A2 LDX #8
0003 08
0004 AO LDY #'0
0005 30
0006 94 CONV STY $41 X
0007 41
0008 4A LSR A
0009 90 BCC COUNT
000A 02
0o0B F6 INC $41.X
000C 41
000D CA COUNT DEX
000E DO BNE CONV
000F F6
0010 00 BRK

The ASCII digits form a sequence so ASCIl 1 = ASCII 0 + 1 The INX instruction can be
used to directly increment the contents of a memory location. The savings here are that
no explicit instructions are required to load the data from memory or to store the result
back into memory. Nor are any of the user registers (A, X, and Y) disturbed. However,
the CPU must actually load the data from memory, save it in a temporary register, incre-
ment it, and store the result back into memory. All data processing actually takes place
inside the CPU.

Be careful of the difference between INX and an instruction like INC $41.X. The INC in-
struction adds one to the contents of Index Register X; INC $41 ,X adds one to the con-
tents of the indexed memory location — it has no effect on Index Register X

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an
ASCII device.

The conversion to ASCIl simply involves adding ASCII zero (30-| 6>

PROBLEMS
1) ASCII to Hex

Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and
store the result in memory location 0041. Assume that memory location
0040 contains the ASCII representation of a hexadecimal digit (7 bits with

MSB 0).

Sample Problems:

a (0040) = 43 ASCIl C
Result: (0041) = 0C

b. (0040) = 36 ASCIl 6
Result: (0041) = 06

2) Seven-Segment to Decimal

Purpose: Convert the contents of memory location 0040 from a seven-segment code
to adecimal number in memory location 0041. If memory location 0040 does
not contain a valid seven-segment code, set memory location 0041 to FFig.
Use the seven-segment table given under the Decimal to Seven-Segment ex-
ample and try to match codes.

Sample Problems:

a (0040) = 4F
Result: (0041) = 03
b. (0040) = 28
Result: (0041) = FF

3) Decimal to ASCII

Purpose: Convert the contents of memory location 0040 from a decimal digit to an
ASCII character and store the result in memory location 0041. If the number
in memory location 0040 is not a decimal digit, set the contents of memory
location 0041 to an ASCII blank character (20-|g).

Sample Problems:

a (0040) = 07
Result: (0041) = 37 ASCIl 7
b. (0040) = 55
Result: (0041) = 20 ASCIl SPACE

4) Binary to BCD

Purpose: Convert the contents of memory location 0040 to two BCD digits in memory
locations 0041 and 0042 (most significant digit in 0041)."The number in
memory location 0040 is unsigned and less than 100.

Sample Problems:

a (0040) = 1D (29 decimal)
Result: (0041) = 02
(0042) = 09

b. (0040) = 47 (71 decimal)
Result: (0041) = 07
(0042) = 01

5) ASCIlI String to Binary Number

Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049
to an 8-bit binary number in memory location 0041 (the most significant bit
is in 0042). Clear memory location 0040 if all the ASCII characters are either
ASCIlI 1 or ASCIl 0 and set it to FFe)g otherwise.

Sample Problems:

(0042) = 31 ASCl 1
(0043) = 31 ASCl 1
(0044) = 30 ASCIl 0
(0045) = 31 ASCH 1
(0046) = 30 ASCII 0
(0047) = 30 ASCIl 0
(0048) = 31 ASCI 1
(0049) = 30 ASCIl 0
Result: (0041) = D2
(0040) = 00
as 'a’ except:
(0045) = 37 ASCIl 7
Result: (0040) = FF

REFERENCES

1 D R Allison, "A Design Philosophy for Microcomputer Architectures,” Computer,
February 1977. pp. 35-41. This is an excellent article which we recommend highly.

2. Other BCD-to-binary conversion methods are discussed in J.A. Tabb and M.L.
Roginsky, "Microprocessor Algorithms Make BCD-Binary Conversions.Super-fast,”

EDN. January 5, 1977, pp. 46-50 and in J.B. Peatman, Microcomputer-based
Design. (New York: McGraw-Hill, 1977, pp. 400-406.

Chapter 8
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary
or decimal manipulations. A decimal correction (decimal adjust) or some other
means for performing decimal arithmetic is frequently the only arithmetic instruc-
tion provided besides basic addition and subtraction. You must implement other
arithmetic operations with sequences of instructions.

Multiple-precision binary arithmetic requires simple repetitions of the basic
single-word instructions. The Carry bit transfers information between words. Add
with Carry and Subtract with Carry use the information from the previous arithmetic
operations. You must be careful to clear the Carry before operating on the first words
(obviously there is no carry into or borrow from the least significant bits).

Decimal arithmetic is a common enough task for microprocessors that most have
special instructions for this purpose. These instructions may either perform decimal
operations directly or correct the results of binary operations to the proper decimal
form. Decimal arithmetic is essential in such applications as point-of-sale terminals,
calculators, check processors, order entry systems, and banking terminals.

You can implement multiplication and division as series of additions and subtractions
respectively, much as they are done by hand. Double-word operations are necessary
since a multiplication produces a result twice as long as the operands, while a division
similarly contracts the length of the result. Multiplications and divisions are time-con-
suming when done in software because of the repeated arithmetic and shift operations
that are necessary. Of course, multiplying or dividing by a power of 2 is simple because
such operations can be implemented with an appropriate number of left or right
arithmetic shifts.

8-1

EXAMPLES
Multiple-Precision Binary Addition

Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes)
is in memory location 0040, the numbers themselves start (most significant
bits first) in memory locations 0041 and 0051, respectively, and the sum
replaces the number starting in memory location 0041.

Sample Problem:

(0040) 04
(0041) 2F
(0042) 5B
(0043) A7
(0044) c3
(0051) 14
(0052) DF
(0053) 35
(0054) B8
Result: (0041) 44
(0042) 3A
(0043) DD
(0044) 7B
that is, 2F5BA7C3
14DF35B8
443ADD7B

Flowchart:

8-2

Source Program:

LDX $40 JINDEX = LENGTH OF STRINGS
CLC ;CLEAR CARRY TO START
ADDW LDA $40,X JGET BYTE FROM STRING 1
ADC $50,X ;ADD BYTE FROM STRING 2
STA $40,X ;STORE RESULT IN STRING 1
DEX
BNE ADDW CONTINUE UNTIL ALL BYTES ADDED
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $40
0001 40
0002 18 CLC
0003 B5 ADDW LDA $40,X
0004 40
0005 75 ADC $50,X
0006 50
0007 95 STA $40,X
0008 40
0009 CA DEX
000A DO BNE ADDW
000B F7
000C 00 BRK

The relative address for BNE ADDW is:

0003 = 03
-000C +F4
F7

The instruction CLC is used to clear the Carry bit since there is no carry involved in the
addition of the least significant bytes.

The instruction ADC. Add with Carry, includes the Carry from the previous words in the
addition. ADC is the only instruction in the loop that affects the Carry. Inparticular,
note that increment and decrement instructions (DEC, DEX, DEY, INC, INX, INY) do not

affect the Carry.

This program uses the same index with two different base ad- DECIMAL
dresses to handle the two strings. The strings can be located any- ACCURACY
where in memory. Furthermore, there would be no difficulty in IN BINARY

storing the result in a third string.

This procedure can add binary numbers of any length. Note that ten binary bits corres-
pond to three decimal digits since 220 = 1024 = 1000. So. you can calculate the num-
ber of bits required to give a certain accuracy in decimal digits. For example, twelve
decimal digit accuracy requires:

12 x ~ =40 bits

Decimal Addition

Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in
bytes) is in memory location 0040, the numbers themselves start (most sig-
nificant bits first) in memory locations 0041 and 0051, respectively, and the
sum replaces the number starting in memory location 0041.

Sample Problem:

(0040) = 04
(0041) = 36
(0042) = 70
(0043) = 19
(0044) = 85
(0051) = 12
(0052) = 66
(0053) = 34
(0054) = 59
Result: (0041) = 49
(0042) = 36
(0043) = 54
(0044) = 44
that is, 36701985
+12663459
49365444

Flowchart:

Source Program:

SED MAKE ALL ARITHMETIC DECIMAL
LDX $40 INDEX = LENGTH OF STRINGS
CLC CLEAR CARRY TO START

ADDW LDA $40,X GET TWO DIGITS FROM STRING 1
ADC $50,X ADD TWO DIGITS FROM STRING 2
STA $40,X STORE RESULT IN STRING 1
DEX
BNE ADDW CONTINUE UNTIL ALL DIGITS ADDED
CLD :RETURN TO BINARY MODE
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 F8 SED
0001 A6 LDX $40
0002 40
0003 18 CLC
0004 B5 ADDW LDA $40.X
0005 40
0006 75 ADC $50,X
0007 50
0008 95 STA $40,X
0009 40
000A CA DEX
000B DO BNE ADDW
oooc F7
000D D8 CLD
000E 00 BRK
The Decimal mode automatically takes care of the following 6502
situations in which binary and BCD addition differ: DECIMAL
1) The sum of two digits is between 10 and 15 inclusive. In this MODE
case, six must be added to the sum to give the right result, i.e.,
0101 (5
+ 1000 (8
1101 (D)
+ 0110
0001 0011 (BCD 13, which is correct)
2) The sum of two digits is 16 or more. In this case, the result is a proper BCD digit but

six less than it should be, i.e.,

1000 ()
+ 1001 (9)

0001 0001 (BCD 11)
+ 0110

0001 0111 (BCD 17, which is correct)

Six must be added in both situations. However, case 1 can be recognized by the fact
that the sum is not a BCD digit, i.e.. it is between 10 and 15 (or A and F hexadecimal).
Case 2 can only be recognized by the fact that the carry from the digit addition is one
since the result is a valid BCD number.

8-5

When the Decimal Mode flag is set, all arithemtic is carried out in the decimal
form. This includes subtractions as well as additions, regardless of which address-
ing mode is employed.

However, the Increment and Decrement instructions pro- DECIMAL
duce binary results even when the Decimal Mode flag is MODE
set. Thus DEC, DEX, DEY, INC, INX, and INY can only be used LIMITATIONS

to maintain binary counters. For example, to increment a
decimal counter in memory location 0040, you must use the sequence:

SED ;MAKE ARITHMETIC DECIMAL

LDA $40 ;GET COUNTER

CLC ;KEEP CARRY FROM AFFECTING ADDITION
ADC #1 INCREMENT COUNTER (DECIMAL)

STA $40

CLD JRETURN TO BINARY MODE

The SED, CLC, and CLD instructions may not be necessary if other parts of the program
set the status flags appropriately.

Subtractions in the decimal mode produce correct BCD results with the Carry being an
inverted borrow. For example, if the Accumulator contains 03, the addressed memory
location contains 27, and the Carry contains 1. after the execution of an SBC instruction
the Accumulator will contain 76 and the Carry will be 0. As in the binary mode, a Carry
of zero means that a borrow has been generated.

The Sign bit is not meaningful after additions and subtractions when the Decimal
Mode flag is set. It reflects the result of the binary operation, not of the decimal opera-
tion. In the most recently mentioned situation (03-27), the Sign bit will be set (as it
would be if the numbers were binary) even though the decimal result (76) has a most
significant bit of zero.

This procedure can add decimal (BCD) numbers of any length. ACCURACY IN
Here four binary bits are required for each decimal digit, so BINARY AND BCD
twelve-digit accuracy requires

12 x 4 = 48 bits
as opposed to 40 bits in the binary case. This is six 8-bit words instead of five.

The program for decimal addition is the same as that for binary addition except for the
surrounding CLD and SED instructions. Thus a single sequence of instructions can pro-
duce two entirely different results depending on the value of a flag that is not even
mentioned explicitly. Can you suggest some problems this might create in connecting
programs written at different times or by different people?

8-6

8-Bit Binary Multiplication

Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-bit
unsigned number in memory location 0041. Place the eight least significant
bits of the result into memory location 0042 and the eight most significant
bits into memory location 0043.

Sample Problems:

a (0040) = 03
(0041) = 05
Result: (0042) = OF
(0043) = 00
or in decimal 3x5 = 15
b. (0040) = 6F
(0041) = 61
Result: (0042) = OF
(0043) = 2A

or 111 x97= 10.767

You can perform multiplication on a computer in the same way that you do long
multiplication by hand. Since the numbers are binary, the only problem is whether to
multiply by 0 or 1; multiplying by zero obviously gives zero as a result, while multiply-
ing by one produces the same number that you started with (the mu Itiplicand). So, each
step ina binary multiplication can be reduced to the following operation.

If the current bit in the multiplier is 1. add the multiplicand MULTIPLICATION
to the partial product. ALGORITHM

The only remaining problem is to ensure that you line everything up correctly each
time. The following operations perform this task.

1) Shift the multiplier left one bit so that the bit to be examined is placed in the Carry.
2) Shift the product left one bit so that the next addition is lined up correctly.
The complete process for binary multiplication is as follows:
Step 1 - Initialization
Product = 0
Counter = 8
Step 2 - Shift Product so as to line up properly
Product = 2 x Product (LSB = 0)

Step 3 - Shift Multiplier so bit goes to Carry
Multiplier = 2 x Multiplier

Step 4 - Add Multiplicand to Product if Carry is 1
If Carry = 1, Product = Product + Multiplicand

Step 5 - Decrement Counter and check for zero

Counter = Counter - 1
If Counter ¥=Ogo to Step 2

8-7

In the case of Sample Problem b, where th

6Fi g the process works as follows:
Initialization:

Product
Multiplier
Multiplicand
Counter

After first iteration of steps 2-5:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After second iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After third iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After fourth iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After fifth iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After sixth iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

After seventh iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

0000
61
6F
08

0000
Cc2
6F
07

006F
84
6F
06

014D
08
6F
05

029A
10
6F
04

0534
20
6F
03

0AG8
40
6F
02

14D0
80
6F
01

8-8

After eighth iteration

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

Flowchart:

2A0F
00
6F
00

Source Program:

LDA
STA
LDX
SHIFT ASL
ROL
ASL
BCC
CLC
ADC
BCC
INC
CHCNT DEX
BNE
STA
BRK

Object Program:

#0
$43
#8

$43
$41
CHCNT

$40
CHCNT
$43

SHIFT
$42

Memory Address

(Hex)

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019

LSB'S OF PRODUCT = ZERO
MSB'S OF PRODUCT = ZERO
NUMBER OF BITS IN MULTIPLIER =8

SHIFT PRODUCT LEFT ONE BIT

SHIFT MULTIPLIER LEFT

NO ADDITION IF NEXT BIT IS ZERO
ADD MULTIPLICAND TO PRODUCT

WITH CARRY IF NECESSARY
;LOOP UNTIL 8 BITS ARE MULTIPLIED

STORE LSB'S OF PRODUCT

Memory Contents

(Hex)

A9
00
85
43
A2
08
OA
26
43
06
41
90
07
18
65
40
90
02
E6
43
CA
DO
EF
85
42
00

-10

SHIFT

CHCNT

Instruction
(Mnemonic)
LDA #0
STA $43
LDX #8
ASL A
ROL $43
ASL $41
BCC CHCNT
CLC
ADC $40
BCC CHCNT
INC $43
DEX
BNE SHIFT
STA $42

BRK

Besides its obvious use in calculators and point-of-sale terminals, multiplication is a key
part of almost all signal processing and control algorithms. The speed at which
multiplications can be performed determines the usefulness of a CPU in process con-
trol, signal detection, and signal analysis.

This algorithm takes between 170 and 280 clock cycles to multiply on a 6502
microprocessor. The precise time depends on the number of 1 bits in the multiplier.
Other algorithms may be able to reduce the average execution time somewhat, but 250
clock cycles will still be a typical execution time for a software multiplication. Some
microprocessors (such as the 9900, 8086, and Z8000) have hardware multiplication in-
structions that are somewhat faster but maximum speed requires the addition of exter-
nal hardware.

8-Bit Binary Division

Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041
(most significant bits in 0041) by the 8-bit unsigned number in memory loca-
tion 0042. The numbers are normalized so that 1) the most significant bits of
both the dividend and the divisor are zero and 2) the number in memory
location 0042 is greater than the number in memory location 0041.Thus, the
quotient is an 8-bit number. Store the quotient in memory location 0043 and
the remainder in location 0044.

Sample Problems:

a(0040) = 40 (64 decimal)
(0041) = 00
(0042) = 08
Result = (0043) = 08
(0044) = 00
i.S, 64/8 = 8
b.(0040) = 6D (12,909 decimal)
(0041) = 32
(0042) = 47 (71 decimal)
Result = (0043) = B5 (181 decimal)
(0044) = 3A (58 decimal)
ie, 12,909/71 = 181 with a remainder of 58
You can perform division on the computer just like you would per- DIVISION
form division with pen and paper, i.e., using trial subtractions. ALGORITHM

Since the numbers are binary, the only question is whether the bit "
in the quotient is 0 or 1, i.e,, whether the divisor can be subtracted from what is left of
the dividend. Each step in a binary division can be reduced to the following operation:

If the divisor can be subtracted from the eight
most significant bits of the dividend without
a borrow, the corresponding bit in the quo-
tient is 1; otherwise it is O.

The only remaining problem is to line up the dividend and quotient properly. You can
do this by shifting the dividend and quotient logically left one bit before each trial
subtraction. The dividend and quotient can share a 16-bit register, since the procedure
clears one bit of the dividend at the same time as it determines one bit of the quotient.

The complete process for binary division is:

Step 1 - Initialization:
Quotient = 0
Counter = 8

Step 2 - Shift Dividend and Quotient so as to line up properly:
Dividend = 2 x Dividend
Quotient = 2 x Quotient

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient:
If 8 MSBs of Dividend > Divisor then
MSBs of Dividend = MSBs of Dividend - Divisor
Quotient = Quotient + 1

Step 4 - Decrement counter and check for zero:
Counter = Counter - 1
if Counter -0, go to Step 2
Remainder = 8 MSBs of Dividend

8-12

in the case of sarmple problem by where the dividend is 326D-|6 and the divisor is47-]g,
the process works as fallows:

Initialization:
Dividend 326D
Divisor 47
Quotient 00
Counter 00

After first iteration of Steps 2 - 4:
(Note that the dividend is shifted prior to the trial subtraction)
Dividend 1DDA
Divisor 47
Quotient 01
Counter 07

of Steps 2 - 4:
Dividend 3BB4
Divisor 47
Quotient 02
Counter 06

After third iteration:
Dividend 3068
Divisor 47
Quotient 05
Counter 05

After fourth iteration:
Dividend 19D0
Divisor 47
Quotient 0B
Counter 04

After fifth iteration:
Dividend 33A0
Divisor 47
Quotient 16
Counter 03

After sixth iteration:
Dividend 2040
Divisor 47
Quotient 2D
Counter 02

After seventh iteration:
Dividend 4080
Divisor 47
Quotient 5A
Counter 01

After eighth iteration:
Dividend 3A00
Divisor 47
Quotient B5
Counter 00

and the remainder

The MSBs of dividend and divisor are assumed to be zero; this simplifies calculations
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow an 8-bit word. For example:

1024 400 (Hex)
3 3

100 + 100 (Hex)
3

The last problem is now in the proper form. An extra division may be necessary.
Flowchart:

Source Program:

LDX
LDA
STA
LDA
DIVID ASL
ROL
CMP
BCC
SBC
INC
DEX
BNE
STA
BRK

Object Program:

#8

$40
$43
$41
$43

$42
CHCNT
$42
$43

DIVID
$44

Memory Address

(Hex)

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
oooc
000D
000E
000F
0010
0011

0012
0013
0014
0015
0016
0017
0018

Division is used

;NUMBER OF BITS IN DIVISOR = 8
;START WITH LSB'S OF DIVIDEND

;GET MSB'S OF DIVIDEND
;SHIFT DIVIDEND. QUOTIENT LEFT 1 BIT

CAN DIVISOR BE SUBTRACTED?

NO, GO TO NEXT STEP

YES, SUBTRACT DIVISOR (CARRY = 1)
AND INCREMENT QUOTIENT BY 1
LOOP UNTIL ALL 8 BITS HANDLED

;STORE REMAINDER

Memory Contents Instruction
(Hex) (Mnemonic)

A2 LDX #8
08
A5 LDA $40
40
85 STA $43
43
A5 LDA $41
41
06 DIVID ASL $43
43
2A ROL A
C5 CMP $42
42
90 BCC CHCNT
04
E5 SBC $42
42
E6 INC $43
43
CA CHCNT DEX
DO BNE DIVID
F2
85 STA $44
44
00 BRK

in calculators, terminals, communications error checking, control

algorithms, and many other applications.

The algorithm takes between 150 and 230 microseconds to divide on a 6502 with a 1
MHz clock. The precise time depends on the number of 1 bits in the quotient. Other
algorithms can reduce the average time somewhat, but 200 microseconds will still be

typical for a software division.

The instructions ASL $43 and ROL A together provide a 16-bit arithmetic left shift of
the dividend (MSBs in A). The ROL instruction picks up the bit which the ASL instruc-
tion left in the Carry.

An 8-bit subtraction is necessary, since there is no simple way to perform a 16-bit
subtraction or comparison.

Memory location 0043 and the Accumulator hold both the dividend and the quotient
(MSBs in Accumulator). The quotient simply replaces the dividend in memory location
0043 as the dividend is shifted left arithmetically.

We do not have to worry about the Carry in the SBC instruction. It must be 'V since
otherwise BCC would have caused a branch. Remember that a Carry value of '1' has no
effect on the result of an SBC instruction since the Carry is an inverted borrow.

The following routine offers an improvement in timing over the previous example
without increasing memory usage. It also performs error checking.

DIV LDX
LDA
STA
LDA
CMP
BCS
DIVID ROL
ROL
CMP
BCC
SBC
CHCNT DEX
BNE
ROL
STA
DONE RTS

#8
$40
S43
$41
$42
DONE
$43

A

$42
CHCNT
$42

DIVID
$43
$44

NUMBER OF BITS IN DIVISOR = 8
START WITH LSB’S OF DIVIDEND

GET MSB'S OF DIVIDEND

SHOULD BE LESS THAN DIVISOR

IF NOT, ERROR EXIT (CARRY = 1)
SHIFTDIVIDEND, QUOTIENT LEFT 1 BIT
(AND NEW ANSWER BIT — SEE DEX BELOW)
CAN DIVISOR BE SUBTRACTED?

NO, GO TO NEXT STEP (CARRY = 0)

YES, SUBTRACT DIVISOR (CARRY = 1)
NOTE CARRY ' NEW ANSWER BIT

LOOP UNTIL ALL 8 BITS HANDLED

SHIFT IN THE LAST ANSWER BIT

STORE REMAINDER (CARRY = 0 HERE)
QUIT (CARRY 0, NORMAL, CARRY 1, ERROR)

Self-Checking Numbers
Double Add Double Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the
string of digits (number of words) is in memory location 0041; the string of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Double Add Double Mod 10 techniquel and store it in
memory location 0040.

TheDouble Add Double Mod 10 technique works as follows: SELF-CHECKING

1) Clear the checksum to start. NUMBERS

2) Multiply the leading digit by two and add the result to the
checksum.

3) Add the next digit to the checksum.
4) Continue the alternating process until you have used all thedigits.
5) The least significant digit of the checksum is the self-checking digit.

Self-checking digits are commonly added to identification numbers on credit cards, in-
ventory tags, luggage, parcels, etc., when they are handled by computerized systems.
They may also be used in routing messages, identifying files, and other applications.
The purpose of the digits is to minimize entry errors such as transposing digits (69 in-
stead of 96), shifting digits (7260 instead of 3726), missing digits by one (65 instead of
64), etc. You can check the self-checking number automatically for correctness upon
entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain checksum
will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double algorithm will
find simple transposition errors (2x4 + 9 = 17722x9 + 4); but will miss some errors,
such as transpositions across even numbers of digits (367 instead of 763). However,
this method will find many common errors! The value of a method depends on what er-
rors it will detect and on the probability of particular errors in an application.

For example, if the string of digits is

549321
the result will be:
Checksum = 5x2 + 4+ 9x2 + 3+ 2x2 + 1=40
Self-checking digit = 0 (least significant digit of a checksum)

Note that an erroneous entry like 543921 would produce a different self-checking digit
(4), but erroneous entries like 049321 or 945321 would not be detected.

Sample Problems:

a (0041) = 03
(0042) = 36
(0043) = 68
(0044) = 51

Result: Checksum =3x2 + 6+ 6x2 + 8+ 5x2 + 1=43

(0040) = 03

b. (0041) = 04
(0042) = 50
(0043) = 29
(0044) = 16
(0045) = 83

Result: Checksum =5x2 + 0+ 2x2 + 9+ 1x2 + 6+ 8x2 + 3=50
(0040) = 00

Flowchart:

C D

Checksum = 0
Base - 0041
Index = (0041)

MSD = (Base
+Index)/16

LSD = (Base+Index)
AND 00001111
(binary)

Checksum =
Checksum -
2 x MSD + LSD

(0040) = Checksum
AND 00001111
(binary)

Source Program:

SED MAKE ALL ARITHIMETIC DECIMAL
LDX $41 INDEX = LENGTH OF STRING
LDY #0 CHECKSUM = ZERO
CHKDG LDA $41,X GET NEXT 2 DIGITS OF DATA
LSR A SHIFT OFF LEAST SIGNIFICANT DIGIT
LSR A
LSR A
LSR A
STA $40
CLC CLEAR CARRY FROM SHIFTING
ADC $40 DOUBLE MOST SIGNIFICANT DIGIT
STY $40 DOUBLING A DIGIT NEVER PRODUCES A
CARRY
ADC $40 ADD DOUBLED MSD TO CHECKSUM
STA $40
LDA $41,X GET LEAST SIGNIFICANT DIGIT
AND #%00001111 (MASK OFF MSD)
CLC ADD LSD TO CHECKSUM
ADC $40
TAY
DEX
BNE CHKDG CONTINUE UNTIL ALL DIGITS SUMMED
AND #%00001111 ;SAVE LSD OF SELF-CHECKING DIGIT
STA $40
CLD JRETURN TO BINARY MODE
BRK

8-19

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 F8 SED
0001 A6 LDX $41
0002 41
0003 AO LDY #0
0004 00
0005 B5 CHKDG LDA $41,X
0006 41
0007 4A LSR A
0008 4A LSR A
0009 4A LSR A
000A 4A LSR A
000B 85 STA $40
0O00C 40
000D 18 CLC
000E 65 ADC $40
000F 40
0010 84 STY $40
0011 40
0012 65 ADC $40
0013 40
0014 85 STA $40
0015 40
0016 B5 LDA $41 X
0017 41
0018 29 AND #%00001111
0019 OF
001A 18 CLC
001B 65 ADC $40
001C 40
001 D A8 TAY
001E CA DEX
001F DO BNE CHKDG
0020 E4
0021 29 AND #%00001111
0022 OF
0023 85 STA $40
0024 40
0025 D8 CLD
0026 00 BRK

The digits are removed by shifting and masking. Four logical right shifts are needed to
separate out the most significant digit.

All arithmetic is performed in the decimal mode. Remember, however, that DEX still
produces a binary result.

There is no problem with the Carry from doubling a decimal digit since the result can
never be larger than 18. You may be able to eliminate the final CLC instruction if the
numbers to be summed are known to be too small to ever produce a Carry.

8-20

You can double a decimal number in the Accumulator by DOUBLING AND

adding it to itself in the decimal mode. A typical sequence is as HALVING
follows (using memory location 0040 for temporary storage): DECIMAL
SED ;MAKE ARITHMETIC DECIMAL NUMBERS
STA $40
CLC ;KEEP CARRY FROM AFFECTING ADDITION
ADC $40 ;DOUBLE NUMBER
CLD ‘RETURN TO BINARY MODE

You may not need the SED, CLC, and CLD instructions if other parts of the program set
the Carry and Decimal Mode flags appropriately. Note that you cannot use ASL A to
double adecimal number because that instruction produces a binary result even if the
Decimal Mode flag is set.

You divide a decimal number by 2 simply by shifting it right logically and then
subtracting 3 from any digit that is 8 or larger (since 10 BCD is 16 binary). The following
program divides a decimal number in memory location 0040 by 2 and places the result
in memory location 0041.

LDA $40 ;GET DECIMAL NUMBER
LSR A ;DIVIDE BY 2 IN BINARY
TAX
AND #%00001111 ;IS LEAST SIGNIFICANT DIGIT 8 OR MORE?
CMP #8
BCC DONE
TXA
SBC #3 'YES, SUBTRACT 3 FOR DECIMAL
CORRECTION
TAX
DONE STX $41 ;STORE NUMBER DIVIDED BY 2
BRK

There is no problem with the Carry in the SBC instruction since that instruction is only
executed if the Carry is set. Remember that SBC subtracts off the complemented Carry
(@ - ©) so a Carry of 1 does not affect the result.

Try the division method by hand on the decimal numbers 28, 30, and 37. Do you under-
stand why it works? You may also wish to try the program on the same data.

Rounding is simple regardless of whether the numbers are binary BINARY
or decimal. A binary number can be rounded as follows: ROUNDING

If the most significant bit to be dropped is 1
add 1 to the remaining bits. Otherwise, leave
the remaining bits alone.

This rule works because 1 is halfway between 0 and 10 in binary, much as 5 is halfway
in decimal (note that 0.5 decimal = 0.1 binary).

So. the following program will round a 16-bit number in memory locations 0040 and
0041 (MSBs in 0041) to an 8-bit number in memory location 0041.

LDA $40 ;IS MSB OF EXTRA BYTE 1?

BPL DONE

INC $41 'YES, ROUND MSB’'S UP
DONE BRK

8-21

If the number is longer than 16 bits, the rounding must ripple through all the bytes as
needed. Note that we could use BIT $40 instead of LDA $40 since the BIT instruction
sets the Sign flag according to the most significant bit of the addressed memory loca-
tion. This approach leaves the Accumulator as it was although it does change the
status flags.
Decimal rounding is a bit more difficult because the crossover DECIMAL
point is now BCD 50 and the rounding must produce a decimal ROUNDING
result. The rule is:

If the most significant digit is to be dropped

is 5 or more, add 1 to the remaining digits.

The following program will round a 4-digit BCD number in memory locations 0040 and
0041 (MSDs in 0041) to a two-digit BCD number in memory location 0041.

LDA $40 :IS BYTE TO BE DROPPED 50 OR MORE?
CMP #$50
BCC DONE
SED ;YES, ROUND MSD’S UP BY 1 IN DECIMAL
LDA $41
ADC #0 ;ADD IN CARRY (KNOWN TO BE SET)
STA $41
CLD ‘RETURN TO BINARY MODE
DONE BRK

Remember that you cannot use the INC instruction to add 1 because that instruction a
ways produces a binary result. The instruction ADC#0 will add 1 to the Accumulator
since the Carry must be 1 for the instruction to be executed (otherwise the BCC instruc-
tion would have forced a branch). As usual, we must be careful to set and clear the
Decimal Mode flag appropriately. For longer numbers, the rounding must ripple
through more significant digits as needed.

8-22

PROBLEMS
1) Multiple-Precision Binary Subtraction

Purpose: Subtract one multiple-word number from another. The length of the num-
bers is in memory location 0040, the numbers themselves start (most signifi-
cant bits first) in memory locations 0041 and 0051, respectively, and the
difference replaces the number starting in memory location 0041. Subtract
the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) = 04
(0041) = 2F
(0042) = 5B
(0043) = A7
(0044) = C3
(0051) = 14
(0052) = DF
(0053) = 35
(0054) = B8
(0041) = 1A
(0042) = 7C
(0043) = 72
(0044) = OB

2F5BA7C3

- 14DF35B8

1A7C720B

2) Decimal Subtraction

Purpose: Subtract one multiple-word decimal (BCD) number from another. The length
of the numbers is in memory location 0040, the numbers themselves start
(most significant digits first) in memory locations 0041 and 0051, respec-
tively, and the difference replaces the number starting in memory location
0041. Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) = 04
(0041) = 36
(0042) = 70
(0043) = 19
(0044) = 85
(0o51) = 12
(0052) = 66
(0053) = 34
(0054) = 59
(0041) = 24
(0042) = 03
(0043) = 85
(0044) = 26

36701985

- 12663459

24038526

3) 8-Bit by 16-Bit Binary Multiplication

Purpose: Multiply the 16-bit unsigned number in memory locations 0040 and 0041
(most significant bits in 0041) by the 8-bit unsigned number in memory loca-
tion 0042. Store the result in memory locations 0043 through 0045. with the
most significant bits in memory location 0045.

Sample Problems:

(0040) 03
(0041) 00
(0042) 05
Result: (0043) = OF
(0044) = 00
(0045) = 00
that is. 3x5 =15
(0040) 6F
(0041) 72 (29,295 decimal)
(0042) 61 (97 decimal)
Result: (0043) OF
(0044) 5C
(0045) 2B
that is. 29.295 x 97 = 2,841.615

4) Signed Binary Division

Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 (most
significant bits in 0041) by the 8-bit signed number in memory location
0042. The numbers are normalized so that the magnitude of memory loca-
tion 0042 is greater than the magnitude of memory location 0041. Store the
quotient (signed) in memory location 0043 and the remainder (always posi-
tive) in memory location 0044

Sample Problems:

a (0040) = CO
(0041) = FF (-64)
(0042) = 08
Result: (0043) = F8 (-8) quotient
(0044) = 00 (0) remainder
b. (0040) = 93
(0041) = ED (-4717)
(0042) = 47 (71 decimal)
Result: (0043) = BD (-67 decimal)
(0044) = 28 (+40 decimal)

Hint: Determine the sign of the result, perform an unsigned division, and ad-
just the quotient and remainder properly.

5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the
string of digits (number ofwords) is in memory location 0041; the string of
digits (2 BCD digits to a word)starts in memory location 0042.Calculate the

checksum digit by the Aligned 1, 3. 7 Mod 10 method and store it in memory
location 0040.

The Aligned 1. 3, 7 Mod 10 technique works as follows:
1) Clear the checksum to start.
2) Add the leading digit to the checksum.
3) Multiply the next digit by 3 and add the result to the checksum.
4) Multiply the next digit by 7 and add the result to the checksum.
5) Continue the process (Steps 2-4) until you have used all the digits.
6) The self-checking digit is the least significant digit of the checksum.
For example, if the string of digits is:
549321
the result will be:
Checksum = 5+ 3x4 + 7x9 + 3+ 3x2 + 7x1=96

Self-checking digit = 6

Sample Problems:

a (0041) = 03
(0042) = 36
(0043) = 68
(0044) = 51
Result: Checksum = 3+ 3x6 + 7x6 + 8+ 3x5 + 7x1 =93
(0040) = 03
b. (0041) = 04
(0042) = 50
(0043) = 29
(0044) = 16
(0045) = 83
Result: Checksum =5+ 3x0 + 7x2 + 9+ 3x1 + 7x6 + 8
+ 3x3=290
(0040) = 00

Hint: Note that 7=2x3 + 1 and 3=2x1 + 1, so the formula
Mj = 2 x Mj_i + 1 can be used to calculate the next multiplying factor.

1

REFERENCES

J. R Herr, "Self-Checking Number Systems,” Computer Design, June 1974, pp.
85-91.

Other methods for implementing multiplication, division, and other arithmetic tasks
are discussed in:

S. Davis, "Digital Processing Gets a Boost from Bipolar LSI Multipliers," EDN.
November 5, 1978, pp. 38-43.

A. Kolodzinski and D. Wainland, "Multiplying with a Microcomputer,” Electronic
Design, January 18, 1978, pp. 78-83.

B. Parasuraman "Hardware Multiplication Techniques for Microprocessor
Systems," Computer Design. April 1977, pp. 75-82.

T. F Tao et al,, "Applications of Microprocessors in Control Problems," 1977 Joint
Automatic Control Conference Proceedings. San Francisco. CA, June 22-24, 1977,

S. Waser "State-of-the-art in High-Speed Arithmetic Integrated Circuits," Com-
puter Design, July 1978, pp. 67-75.

S. Waser "Dedicated Multiplier ICs Speed Up Processing in Fast Computer
Systems," Electronic Design, September 13, 1978, pp. 98-103.

S. Waser and A. Peterson, "Medium-Speed Multipliers Trim Cost, Shrink Band-
width in Speech Transmission," Electronic Design, February 1, 1979, pp. 58-65.

A. J. Weissberger and T. Toal, "Tough Mathematical Tasks Are Child’s Play for
Number Cruncher," Electronics, February 17. 1977. pp. 102-107.

Chapter 9
TABLES AND LISTS

Tables and lists are two of the basic data structures used with all computers. We
have already seen tables used to perform code conversions and arithmetic. Tables
may also be used to identify or respond to commands and instructions, linearize
data, provide access to files or records, define the meaning of keys or switches,
and choose among alternate programs. Lists are usually less structured than ta-
bles. Lists may record tasks that the processor must perform, messages or data
that the processor must record, or conditions that have changed or should be
monitored. Tables are a simple way of making decisions or solving problems, since
no computations or logical functions are necessary. The task, then, reduces to
organizing the table so that the proper entry is easy to find. Lists allow the execu-
tion of sequences of tasks, the preparation of sets of results, and the construction
of interrelated data files (or data bases). Problems include how to add elements to
a list and remove elements from it.

9-1

EXAMPLES
Add Entry to List

Purpose: Add the contents of memory location 0040 to a list if it is not already pres-

ent in the list. The

length of the list is in memory location 0041 and the list

itself begins in memory location 0042.

Sample Problems:

a (0040)
(0041)
(0042) =
(0043)
(0044)
(0045)

Result: (0041) =
(0046) =

6B
04
37
61
38
1D

05
6B

The entry (6B) is added to the list, since it is not already present. The length of the list is

incremented by 1

b. (0040) =
(0041) =

(0042) =

(0043) =

(0044) =

(0045) =

Result: No change,

tion 0043).

6B
04
37
6B
38
1D
since the entry (6B) is already in the list (in memory loca-

Flowchart:

Source Program:

SRLST

DONE

LDA
LDX
CMP
BEQ
DEX
BNE
INC

LDX
STA
BRK

$40
$41
$41.X
DONE

SRLST
$41
$41
$41,X

JGET ENTRY

INDEX = LENGTH OF LIST

;IS ENTRY = ELEMENT IN LIST?
'YES, DONE

;NO, GO ON TO NEXT ELEMENT

;ADD 1 TO LIST LENGTH

JADD ENTRY TO LIST

9-3

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 A6 LDX $41
0003 41
0004 D5 SRLST CMP $41,X
0005 41
0006 FO BEQ DONE
0007 09
0008 CA DEX
0009 DO BNE SRLST
000A Fo
000B E6 INC $41
000C 41
000D A6 LDX $41
000E 41
000F 95 STA $41,X
0010 41
0011 00 DONE BRK

Clearly, this method of adding elements is very inefficient if the list I HASHING |

is long. We could improve the procedure by limiting the search to

part of the list or by ordering the list We could limit the search by using the entry to
get a starting point in the list. This method is called "hashing"”, and is much like
selecting a starting page in a dictionary or directory on the basis of the first letter in an
entry. We could order the list by numerical value. The search could then end when the
list values went beyond the entry (larger or smaller, depending on the ordering tech-
nique used). A new entry would have to be inserted properly, and all the other entries
would have to be moved down in the list.

The program could be restructured to use two tables. One table could provide a starting
point in the other table; for example, the search point could be based on the most or
least significant 4-bit digit in the entry.

The program does not work if the length of the list is zero (what happens?). We could
avoid this problem by checking the length initially. The initialization procedure would
then be:

LDX $41 ;INDEX = LENGTH OF LIST
BEQ ADELM ;ADD ENTRY TO LIST IF LENGTH IS ZERO
ADELM INC $41 ;ADD 1 TO LIST LENGTH

Unlike many other processors, the 6502's Zero flag is affected by Load instructions.

If each entry were longer than one word, a pattern-matching program would be neces-
sary. The program would have to proceed to the next entry if a match failed; that is,
skip over the last part of the current entry once a mismatch was found.

Check an Ordered List

Purpose: Check the contents of memory location 0041 to see if that value is in an or-
dered list. The length of the list is in memory location 0042; the list itself
begins in memory location 0043 and consists of unsigned binary numbers
in increasing order. If the contents of location 0041 are in the list, clear
memory location 0040; otherwise, set memory location 0040 to F~| g

Sample Problems:

(0041) =. 6B

(0042) = 04

(0043) = 37

(0044) = 55

(0045) = 7D

(0046) = Al

(0040) = FF, since 6B is not in the list.
(0041) 6B

(0042) 04

(0043) — 37

(0044) = 55

(0045) = 6B

(0046) = Al

(0040) = 00, is in the list.

9-5

Flowchart:

The searching process is a bit different here since the elements are ordered. Once we
find an element smaller than the entry (remember that we are moving backward
through the list in the usual 6502 fashion), the search is over, since subsequent ele-
ments will be even smaller. You may want to try an example to convince yourself that
the procedure works. Note that an element smaller than the entry is indicated by a com-
parison that does not produce a borrow (that is. Carry = 1).

As in the previous problem, a table or other method that could SEARCHING
choose a good starting point would speed up the search. One METHODS
method would be to start in the middle and determine which

half of the list the entry was in, then divide the half into halves, etc. This method

is called a binary search, since it divides the remaining part of the list in half each
time.1

9-6

Source Program:

LDA $41 GET ENTRY
LDX $42 INDEX = LENGTH OF LIST
LDY #0 MARK = ZERO FOR ELEMENT IN LIST
SRLST CMP $42,X IS ENTRY EQUAL TO ELEMENT?
BEQ DONE YES. SEARCH COMPLETED
BCS NOTIN ENTRY NOT IN LIST IF GREATER THAN ELEMENT
DEX
BNE SRLST
NOTIN LDY #3FF 'MARK = FF FOR NOT IN LIST
DONE STY $40 ;'SAVE MARK
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $41
0001 41
0002 A6 LDX $42
0003 42
0004 AO LDY #0
0005 00
0006 D5 SRLST CMP $42,X
0007 42
0008 FO BEQ DONE
0009 07
000A BO BCS NOTIN
000B 03
[eee e CA DEX
000D DO BNE SRLST
000E F7
000F AO NOTIN LDY #SFF
0010 FF
0011 84 DONE STY $40
0012 40
0013 00 BRK

This algorithm is a bit slower than the one in the example given under "Add Entry to
List" because of the extra conditional jump (BCS NOTIN). The average execution time
for this simple search technique increases linearly with the length of the list while the
average execution time for a binary search increases logarithmically. For example, if the
length of the list is doubled, the simple technique takes twice as long on the average
while the binary search method only requires one extra iteration.

9-7

Remove Element from Queue

Purpose: Memory locations 0042 and 0043 contain the address of the head of the
queue (MSBs in 0043). Place the address of the first element (head) of a
queue into memory locations 0040 and 0041 (MSBs in 0041) and update
the queue to remove the element. Each element in the queue is two bytes
long and contains the address of the next two-byte element in the queue.
The last element in the queue contains zero to indicate that there is no next
element.

Queues are used to store data in the order in which it will be used, or tasks in the
order in which they will be executed. The queue is a first-in, first-out data struc-
ture; i.e., elements are removed from the queue in the same order in which they
were entered. Operating systems place tasks in queues so that they will be executed
in the proper order. 1/O drivers transfer data to or from queues so that it will be transmit-
ted or handled in the proper order. Buffers may be queued so that the next available
one can easily be found and those that are released can easily be added to the available
storage. Queues may also be used to link requests for storage, timing, or I/O so that
they can be satisfied in the correct order.

In real applications, each element in the queue will typically contain a large amount of
information or storage space besides the address required to link the element to the
next one.

Sample Problems:

a (0042) g®} address of first element in queue
(0043)
(0046) address of second element in queue
(0047)
(004D) end of queue
(004E)
Result: (0040) address of element removed from queue
(0041)
(0042) qq J address of new first element in queue
(0043)
b. (0042)
empt eue
(0043) Ply queu
Result: (0040) no element available from queue
(0041)

9-8

Flowchart:

C o

Pointer = (0042
and 0043)
(0040 and 0041) =
Pointer
Source Program
LDA $42 ;REMOVE HEAD OF QUEUE
STA $40
LDA $43
STA $41
ORA $42 ;IS QUEUE EMPTY?
BEQ DONE ;YES, DONE
LDY #0 ;NO. MOVE NEXT ELEMENT TO HEAD OF QUEUE
LDA ($40).Y
STA $42
INY
LDA ($40),Y
STA $43
DONE BRK

9-9

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $42
0001 42
0002 85 STA $40
0003 40
0004 A5 LDA $43
0005 43
0006 85 STA $41
0007 41
0008 05 ORA $42
0009 42
000A FO BEQ DONE
000B 0B
oooc AO LDY #0
000D 00
000E Bl LDA ($40).Y
000F 40
0010 85 STA $42
0011 42
0012 C8 INY
0013 Bl LDA ($40),Y
0014 40

! 0015 85 STA $43
0016 43
0017 00 DONE BRK

Queuing can handle lists that are not in sequential memory locations. Each element in
the queue must contain the address of the next element. Such lists allow you to handle
data or tasks in the proper order, change variables, or fill in definitions in a program. Ex-
tra storage is required but elements can easily be added to the queue or deleted from it.

Post-indexing, or indirect indexed addressing, is very handy here since it allows us to
use the contents of memory locations 0040 and 0041 as a pointer. Those locations con-
tain the address of the head of the queue which, in turn, contains the address of the
next element. The memory locations in which the address of the element is stored must
be on page zero, since they are used with the post-indexed addressing mode. All other
addresses can be anywhere in memory. The post-indexed mode could also be used later
to transfer data to or from the element that has just been removed from the queue.

Remember that post-indexing is only available for addresses on page zero. Furthermore,
only Index Register Y can be used in this mode.

Note the use of the sequence

LDA $43
ORA $42

to determine if the 16-bit number in memory locations 0042 and 0043 is zero. Try to
devise some other sequences that could handle this problem — it obviously occurs
whenever you use a 16-bit counter rather than the 8-bit counter that we have used in
most of the examples.

One problem with the 6502 instruction set is that there are no instructions that
specifically move 16-bit addresses (or data) from one place to another or that perform
other 16-bit operations. Of course, such instructions would have to operate eight bits at
a time, but some instruction fetch and decode cycles could be saved. Most other
microprocessors have such instructions.

It may be useful to maintain pointers to both ends of the queue rather than just to
its head.2'3 The data structure may then be used in either a first-in, first-out man-
ner or in a last-in, first-out manner, depending on whether new elements are ad-
ded to the head or to the tail. How would you change the example program so that
memory locations 0044 and 0045 contain the address of the last element (tail) of the
queue?

If there are no elements in the queue, the program clears memory locations 0040 and
0041. A program that requested an element from the queue would have to check those
memory locations to see if its request had been satisfied. Can you suggest other ways
to provide this information?

8-Bit Sort

Purpose:

Sort an array of unsigned binary numbers into descending order. The length
of the array is in memory location 0040 and the array itself begins in memo-
ry location 0041.

Sample Problem:

(0040) = 06
(0041) = 2A
(0042) = B5
(0043) = 60
(0044) = 3F
(0045) = D1
(0046) = 19
(0041) D1
(0042) = BS
(0043) = 60
(0044) = 3F
(0045) = 2A
(0046) = 19
A simple sorting technique works as follows: SIMPLE
SORTING
Step 1) Clear a flag INTER. ALGORITHM
Step 2) Examine each consecutive pair of numbers in the array. If
any are out of order, exchange them and set INTER.
Step 3) If INTER = 1 after the entire array has been examined, return to Step 1

INTER will be set if any consecutive pair of numbers is out of order. Therefore, if IN-
TER = 0 at the end of a pass through the entire array, the array is in proper order.

The technique operates as shown in the following simple case. Let us assume that we
want to sort an array into descending order; the array has four elements — 12, 03, 15,
08. We will work backwards through the array in normal 6502 processing style.

1st Iteration:

Step 1)
Step 2)

INTER = 0

Final order of the array is:

15

12

03

08

since the second pair (03,15) is exchanged and so is the third pair (12,15).
INTER = 1

2nd lteration:

Step 1)
Step 2)

INTER =0

Final order of the array is:

15

12

08

03

since the first pair (08,03) is exchanged. INTER = 1

3rd lIteration:
Step 1) INTER =0

Step 2) The elements are already in order; no exchanges are necessary, and
INTER remains zero.

Note that one extra iteration is always performed to ensure that the elements are in the
proper order. Clearly, there is a large potential for improvement in this method and new
sorting techniques are an important area of current research.®

Flowchart:

Source Program:

SORT LDY
LDX
DEX
PASS LDA
CMP
BCS
LDY
PHA
LDA
STA
PLA
STA
DEX
BNE
DEY
BEQ
BRK

Object Program:

#0
$40

$40,X
$41.X
COUNT
#1

$41,X
$40,X

$41.X
PASS

SORT

Memory Address

(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOO0A
000B
0oooC
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

INTERCHANGE FLAG = ZERO

GET LENGTH OF ARRAY

ADJUST ARRAY LENGTH TO NUMBER OF PAIRS
IS PAIR OF ELEMENTS IN ORDER?

YES, TRY NEXT PAIR

NO, SET INTERCHANGE FLAG
INTERCHANGE ELEMENTS USING THE STACK

CHECK FOR COMPLETED PASS

WERE ALL ELEMENTS IN ORDER?
NO, GO THROUGH ARRAY AGAIN

Memory Contents Instruction

(Hex) (Mnemonic)
AO SORT LDY #0
00
A6 LDX $40
40
CA DEX
B5 PASS LDA $40, X
40
D5 CMP $41 X
41
BO BCS COUNT
OA
AO LDY #1
01
48 PHA
B5 LDA $41,X
41
95 STA $40,X
40
68 PLA
95 STA $41,X
41
CA COUNT DEX
DO BNE PASS
ED
88 DEY
FO BEQ SORT
E5
00 BRK

The case where two elements in the array are equal is very important. The pro-
gram should not perform an interchange in that case since that interchange would
be performed in every pass. The result would be that every pass would set the In-
terchange flag, thus producing an endless loop. The program compares the elements
in the specified order so that the Carry flag is set if the elements are already arranged
correctly. Remember that comparing two equal values sets the Carry flag since that flag
is an inverted borrow after subtractions or comparisons.

The 6502 Conditional Branch instructions can be limiting, and are particularly limiting
in this program. Following an instruction like CMP, we have only BCC — branch if
(M)>(A) — and BCS — branch if (M)<(A). The 6502 has no Branch instructions for the
cases where the equality condition is on the other side, that is, (M)>(A) and (M)<(A).
Therefore, we must be careful of the order of operations.

Before starting each sorting pass, we must be careful to reinitialize the Index and the In-
terchange flag.

The program must reduce the Counter by 1 initially, since the number of consecutive
pairs is one less than the number of elements (the last element has no successor).

This program does not work properly if there are fewer than two elements in the array.
How could you handle this degenerate case?
OTHER SORTING

Th i Igorithms that idely in efficien-
ere are many sorting algorithms that vary widely in efficien METHODS

cy. References 1, 4, and 5 describe some of these.

The Stack is easy to use fortemporary storage in thisprogram sincethe PHA (Push Ac-
cumulator or Store Accumulator in Stack) and PLA (PullAccumulator or Load Ac-
cumulator from Stack) instructions are each only one byte long. The address is in the
Stack Pointer (extended with 01 as its page number). If you wish, you can substitute a
fixed memory location, such as 003F. The interchange then is:

STA $3F INTERCHANGE ELEMENTS USING TEMPORARY
;. STORAGE

LDA $41.X

STA $40,X

LDA $3F

STA $41,X

See Chapter 10 for a further discussion of the 6502 RAM Stack.

Using an Ordered Jump Table

Purpose: Use the contents of memory location 0042 as an index to ajump table start-
ing in memory location 0043. Each entry in the jump table contains a 16-bit
address with LSBs in the first byte. The program should transfer control to
the address with the appropriate index; that is, if the index is 6, the pro-
gram should jump to address entry #6 in the table. Assume that the table
has fewer than 128 entries.

Sample Problem:

Result:

Flowchart:

(0042)

(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(004A)

(PO)

02

4C . .

00 j- zeroth element in jump table
50 ; .. .

00 Jfirst element in jump table

gg j- second element in jump table

58 third element in jump table
00

00!
jump table. The next instruction to be executed will be
the one located at that address.

The last box results in a transfer of control to the address obtained from the table.

Source Program:

LDA
ASL
TAX
LDA
STA
LDA
STA
JMP

$42
A

$43,X
$40
$44,X
$41
($40)

;GET INDEX
;DOUBLE INDEX FOR 2-BYTE TABLE

;GET LSB'S OF JUMP ADDRESS

;GET MSB'S OF JUMP ADDRESS

TRANSFER CONTROL TO DESTINATION

9-16

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $42
0001 42
0002 0A ASL A
0003 AA TAX
0004 B5 LDA $43,X
0005 43
0006 85 STA $40
0007 40
0008 B5 LDA $44,X
0009 44
000A 85 STA $41
000B 41
oooc 6C JMP ($40)
000D 40
000E 00

Jump tables are very useful in situations where one of several routines must be
selected for execution. Such situations arise in decoding commands (entered, for
example, from a control keyboard), selecting test programs, choosing alternative
methods, or selecting an I/O configuration.

The jump table replaces a series of conditional jump operations. The program that
accesses the jump table could be used to access several different tables merely by
using the post-indexed, or indirect indexed, addressing mode, in which the starting ad-
dress of the table is placed in RAM on page zero.

The data must be multiplied by 2 to give the correct index since each entry in the jump
table occupies two bytes.

The instruction JMP ($40) uses indirect addressing: the destination is the address
stored at the specified location rather than the specified location itself. JMP is the only
6502 instruction that uses indirect addressing. Note that there is no page-zero mode
and that the address is stored in the usual 6502 fashion with the least significant bits
first.

The terminology used in describing Jump or Branch instructions is JUMP AND

often quite confusing. A Jump instruction that is described as BRANCH

using direct addressing actually loads the specified address into TERMINOLOGY
the Program Counter; this works more like immediate addressing

than like direct addressing as applied to other instructions such as Load or Store. A
Jump instruction using indirect addressing works like other instructions using direct
addressing.

No ending operation (such as a BRK instruction) is necessary since JMP ($40) transfers
control to the address obtained from the jump table.

References 7 and 8 contain additional examples of the use of jump tables. The program
assumes that the jump table contains fewer than 128 entries (why?). How could you
change the program to allow longer tables?

PROBLEMS
1) Remove an Entry From a List

Purpose: Remove the contents of memory location 0040 from a list if it is present.
The length of the list is in memory location 0041 and the list itself begins in
memory location 0042. Move the entries below the one removed up one
position and reduce the length of the list by 1

Sample Problems:

(0040) = 6B entry to be removed from list
(0041) = 04 length of list

(0042) = 37 first element in list

(0043) = 61

(0044) = 28

(0045) = 1D

Result: No change. since the entry is not in the list.

(0040) = 6B entry to be removed from list
(0041) = 04 length of list
(0042) = 37 first element in list
(0043) = 6B
(0044) = 28
(0045) = 1D

Result: (0041) = 03 length of list reduced by 1
(0042) = 37
(0043) = 28 other elements in list moved i
(0044) = 1D

The entry is removed from the list and the ones below it are moved up one position. The
length of the list is reduced by 1

2) Add an Entry to an Ordered List

Purpose: Place the contents of memory location 0040 into an ordered list if they are
not already there. The length of the list is in memory location 0041. The list
itself begins in memory location 0042 and consists of unsigned binary num-
bers in increasing order. Place the new entry in the correct position in the
list, adjust the elements below it down, and increase the length of the list by
1

Sample Problems:

(0040) = 6B entry to be added to list

(0041) = 04 length of list

(0042) = 37 first element in list

(0043) = 55

(0044) = 7D

(0045) = Al

(0041) = 05 length of list increased by 1

(0044) 6B entry placed in list

(0045) = 7D other elements in the list moved
position

(0046) = A1

(0040) = 6B entry to be added to list

(0041) = 04 length of list

(0042) = 37 first element in list

(0043) = 55

(0044) = 6B

(0045) = Al

Result: No change, since the entry is already in the list.
3) Add an Element to a Queue

Purpose: Add the address in memory locations 0040 and 0041 (MSBs in 0041) to a
queue. The address of the first element of the queue is in memory locations
0042 and 0043 (MSBs in 0043). Each element in the queue contains either
the address of the next element in the queue or zero if there is no next ele-
ment; all addresses are 16 bits long with the least significant bits in the first
byte of the element. The new element goes at the end (tail) of the queue: its
address will be in the element that was at the end of the queue and it will
contain zero to indicate that it is now the end of the queue.

Sample Problem:

Egg:g; z gg | new element to be added to queue
Eggjg i gg }pointer to head of queue

Eggig; Z gg N last element in queue

(0o46) = 4D

(0047) = 00 }' new last element

(004D) = 00 . .

(004E) = 00 } new last element in queue

How would you add an element to the queue if memory locations 0044 and 0045 con-
tained the address of the tail of the queue (the last element)?

9-19

4) 16-Bit Sort

Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The
length of the array is in memory location 0040 and the array itself begins in
memory location 0041. Each 16-bit number is stored with the least signifi-
cant bits in the first byte.

Sample Problem:
(0040) =

(0041) =
(0042) =
(0043)
(0044) =
(0045) =
(0046) =
(0041) =
(0042) =
(0043) =
(0044) =
(0045)
(0046) =
The numbers are B52A, 3F60,

Sample Problem:
(0040) =

(0041) =
(0042) =
(0043) =

(0044) =
(0045) =
(0046) =

(0047) =
(0048) =
(0049) =

PO =

03

D1
19

60
3F

2A
B5

2A
B5

60
3F

D1
19

length of list

LSBs of first element in list
MSBs of first element in list

LSBs of first element in sorted list
MSBs of first element in sorted list

and 19D1.
5) Using a Jump Table with a Key

Purpose: Use the contents of memory location 0040 as the key to ajump table start-
ing in memory location 0041. Each entry in the jump table contains an 8-bit
key value followed by a 16-bit address (MSBs in second byte) to which the
program should transfer control if the key is equal to that key value.

38

32
4A
00

35
4E
00

38
52
00

key value for search

key value for first entry
LSBs of jump address for first entry
MSBs of jump address for first entry

0052, since that address corresponds
to key value 38.

1

REFERENCES

D. Knuth. The Art of Computer Programming. Volume Ill: Sorting and Searching
(Reading. Mass.: Addison-Wesley. 1978).

D. Knuth. "Algorithms," Scientific American. April 1977, pp. 63-80.

K J. Thurber and P. C. Patton, Data Structures and Computer Architecture (Lex-
ington, Mass.: Lexington Books, 1977).

J. Hemenway and E Teja, "Data Structures - Part 1,” EDN. March 5, 1979, pp.
89-92.

B. W. Kernighan and P. J. Plauger, The Elements of Programming Style (New
York: McGraw-Hill, 1978).

K A. Schember and J. R Rumsey, "Minimal Storage Sorting and Searching Tech-
niques for RAM Applications," Computer, June 1977, pp. 92-100.

"Sorting 30 Times Faster with DPS,” Datamation, February 1978, pp. 200-203.

L. A. Leventhal, "Cut Your Processor's Computation Time," Electronic Design,
August 16, 1977, pp. 82-89.

J. B. Peatman, Microcomputer-Based Design (New York: McGraw-Hill, 1977),
Chapter 7.

9-21

Chapter 10
SUBROUTINES

None of the examples that we have shown so far is typically a program all by it-
self. Most real programs perform a series of tasks, many of which may be the
same or may be common to several different programs. We need away to formu-
late these tasks once and make the formulations conveniently available both in
different parts of the current program and in other programs.

The standard method is to write subroutines that perform par- SUBROUTINE
ticular tasks. The resulting sequences of instructions can be LIBRARY
written once, tested once, and then used repeatedly. They can

form a subroutine library that provides documented solutions to common prob-
lems.

Most microprocessors have special instructions for SUBROUTINE
transferring control to subroutines and restoring control to INSTRUCTIONS
the main program. We often refer to the special instruction

that transfers control to a subroutine as Call. Jump-to-Subroutine, Jump and Mark
Place, or Jump and Link. The special instruction that restores control to the main pro-
gram is usually called Return. On the 6502 microprocessor, the Jump-to-Subroutine
(JSR) instruction saves the old value of the Program Counter in the RAM Stack before
placing the starting address of the subroutine into the Program Counter; the Return-
from-Subroutine (RTS) instruction gets the old value from the Stack and puts it back in
the Program Counter. The effect is to transfer program control, first to the subroutine
and then back to the main program. Clearly the subroutine may itself transfer control to
a subroutine, and so on.

In order to be really useful, a subroutine must be general. A routine that can perform
only a specialized task, such as looking for a particular letter in an input string of fixed
length, will not be very useful. If, on the other hand, the subroutine can look for any let-
ter in strings of any length, it will be far more helpful. We call the data or addresses
that the subroutine allows to vary "parameters.” An important part of writing
subroutines is deciding which variables should be parameters.

One problem is transferring the parameters to the subroutine; this PASSING
process is called passing parameters. The simplest method is for PARAMETERS
the main program to place the parameters into registers. Then the

subroutine can simply assume that the parameters are there. Of course, this technique
is limited by the number of registers that are available. The parameters may, however,
be addresses as well as data. For example, a sorting routine could begin with Index
Register X containing the address on page zero at which the length of the array is lo-
cated.

The 6502 microprocessor is limited by the fact that it has no address-length (16-
bit) registers in which to pass address-length parameters. However, such
parameters can easily be passed by reserving locations on page zero; these loca-
tions effectively act as additional registers. A further advantage of this approach
is that addresses on page zero can be accessed using the post-indexed (indirect
indexed) and pre-indexed (indexed indirect) addressing modes, as well as the
short page-zero forms of direct and indexed addressing.

10-1

Another approach is to use the Stack. The main program can place the parameters in
the Stack and the subroutine can retrieve them. The advantages of this method are that
the Stack is usually fairly large (up to one page) and that data in the Stack is not lost
even if the Stack is used again. The disadvantages are that few 6502 instructions use
the Stack, and the Jump-to-Subroutine instruction stores the return address at the top
of the Stack.

Still another approach is to assign an area of memory for parameters. The main program
can place the address of the area on page zero and the subroutine can retrieve the data
using the post-indexed addressing mode. However, this approach is awkward if the
parameters are themselves addresses.

Sometimes a subroutine must have special characteristics. A | RELOCATION |
subroutine is relocatable if it can be placed anywhere in

memory. You can use such a subroutine easily, regardless of the placement of other
programs or the arrangement of the memory. A strictly relocatable program can use
no absolute addresses; all addresses must be relative to the start of the program.
A relocating loader is necessary to place the program in memory properly; the loader
will start the program after other programs and will add the starting address or reloca-
tion constant to all addresses in the program.

A subroutine is reentrant if it can be interrupted and called by REENTRANT
the interrupting program and still give the correct results for SUBROUTINE
both the interrupting and interrupted programs. Reentrancy is

important for standard subroutines in an interrupt-based system. Otherwise the inter-
rupt service routines cannot use the standard subroutines without causing errors.
Microprocessor subroutines are easy to make reentrant, since the Call instruction uses
the Stack and that procedure is automatically reentrant. The only remaining require-
ment is that the subroutine use the registers and Stack rather than fixed memory loca-
tions for temporary storage. This is a bit awkward, but usually can be done if necessary.

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be re-
entrant. However, recursive subroutines are uncommon in microprocessor applications.

Most programs consist of a main program and several subroutines. This is advan-
tageous because you can use proven routines and debug and test the other
subroutines separately. You must, however, be careful to use the subroutines pro-
perly and remember their exact effects on registers, memory locations, and flags.

SUBROUTINE DOCUMENTATION

Subroutine listings must provide enough information so DOCUMENTING
that users need not examine the subroutine's internal SUBROUTINES
structure. Among the necessary specifications are:

« A description of the purpose of the subroutine

* A list of input and output parameters

* Registers and memory locations used

* A sample case

If these guidelines are followed, the subroutine will be easy to use.

10-2

EXAMPLES

It is important to note that the following examples all reserve an area of memory for the
RAM Stack. If the monitor in your microcomputer establishes such an area, you may use
it instead. If you wish to try establishing your own Stack area, remember to save and
restore the monitor's Stack Pointer in order to produce a proper return at the end of
your main program.

To save the monitor Stack Pointer, use the instruction sequence

TSX
STX TEMP

To restore the monitor Stack Pointer, use the sequence

LDX TEMP
TXS

Note that the Stack Pointer can only be loaded or stored via Register X. Remember that
the 6502 always keeps its Stack on page 1 of memory so that the real Stack address is
01ss, where ss is the contents of the 8-bit Stack Pointer register.

We have used address 01FF1g as the starting point for the Stack. You may have to con-
sistently replace that address with one more suitable for your configuration. You should
consult your microcomputer's User's Manual to determine the required changes.

The basic sequence for initializing the Stack Pointer is thus

LDX #$FF JPLACE STACK AT TOP OF PAGE 1
TXS

10-3

Hex to ASCII

Purpose: Convert the contents of the Accumulator from a hexadecimal digit to an
ASCII character. Assume that the original contents of the Accumulator form
a valid hex digit.

Sample Problems:

a A = ocC
Result: (A) = 43 ASCIl C
b. A = 06
Result: (A) = 36 ASCIl 6
Flowchart:

The calling program starts the Stack at memory location 01FF, gets the data from
memory location 0040, calls the conversion subroutine, and stores the result in memory
location 0041.

*=0

LDX #$FF ;PLACE STACK AT END OF PAGE 1
TXS

LDA $40 GET HEXADECIMAL DATA

JSR ASDEC CONVERT DATA TO ASCII

STA $41 STORE RESULT

BRK

The subroutine converts the hexadecimal data to ASCII.

'=$20
ASDEC CMP #10 IS DATA A DECIMAL DIGIT?
BCC ASCZz
ADC #'A-'9-2 ;NO. ADD OFFSET FOR LETTERS
ASCz ADC #0 ;CONVERT TO ASCIl BY ADDING
RTS

10-4

Subroutine Documentation:

SUBROUTINE ASDEC
PURPOSE: ASDEC CONVERTS A HEXADECIMAL
DIGIT IN THE ACCUMULATOR TO AN
ASCII DIGIT IN THE ACCUMULATOR
INITIAL CONDITIONS: HEX DIGIT IN A
FINAL CONDITIONS: ASCIHl CHARACTER IN A
REGISTERS USED: A
SAMPLE CASE
INITIAL CONDITIONS: 6 IN ACCUMULATOR

FINAL CONDITIONS: ASCIlI 6 (HEX 36)
IN ACCUMULATOR

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
1) Calling program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A5 LDA $40
0004 40
0005 20 JSR ASDEC
0006 20
0007 00
0008 85 STA $41
0009 41
000A 00 BRK

2) Subroutine

0020 C9 ASDEC CMP #10
0021 OA

0022 90 BCC ASCz
0023 02

0024 69 ADC #'A-'9-2
0025 06

0026 69 ASCz ADC #'0
0027 30

0028 60 RTS

The instructions LDX #$FF and TXS start the Stack at memory location 01F~. Remem-
ber that the Stack grows downward (toward lower addresses) and that the 6502 Stack
Pointer always contains the address on page one of the next empty location (rather than
the last filled one as on some other microprocessors).

10-5

The Jump-to-Subroutine instruction places the subroutine starting address (0020) in
the Program Counter and saves the old Program Counter (the address of the last byte of
the JSR instruction) in the Stack. The procedure is:

STEP 1— Save MSBs of old Program Counter in Stack, decrement Stack Pointer.
STEP 2 — Save.LSBs of old Program Counter in Stack, decrement Stack Pointer.
Note that the Stack Pointer is decremented after the data is stored.

The MSBs of the Program Counter are stored first, but those bits end up at the higher
address (in the usual 6502 fashion) since the Stack is growing down.

The result in the example is:

(OIFF) = 00
(01FF) = 07
(9 = FD

The value which the Jump-to-Subroutine instruction saves is the Program Counter
before the last byte of the JSR instruction has been fetched. This value is therefore one
less than the proper return address. The Return-from-Subroutine (RTS) instruction
retrieves the top two entries from the Stack, adds one (because of the odd 6502 offset
just mentioned), and places the result back in the Program Counter. The procedure is:

STEP 1 — Increment Stack Pointer, load eight bits from Stack, place result into LSBs of
Program Counter.

STEP 2 — Increment Stack Pointer, load eight bits from Stack, place result into MSBs of
Program Counter.

STEP 3 — Increment Program Counter before actually fetching an instruction.
Here the Stack Pointer is incremented before the data is loaded.

The result in the example is:

(PC) = (OOFFMOOFE) + 1
= 0008
S = F

This subroutine has a single parameter and produces a single result. The Accumulator
is the obvious place to put both.

The calling program consists of three steps: placing the data in the Accumulator, call-
ing the subroutine, and storing the result in memory. The overall initialization must also
place the Stack in the appropriate area of memory.

The subroutine is reentrant since it uses no.data memory; it is relocatable since the ad-
dress ASCZ is only used in a Conditional Branch instruction with relative addressing.

Note that the Jump-to-Subroutine instruction results in the execution of four or five in-
structions taking 13 or 14 clock cycles. A subroutine call can take a long time even
though it appears to be a single instruction in the program.

If you plan to use the Stack for passing parameters, remember that Jump-to-Subroutine
saves the return address at the top of the Stack. You can move the Stack Pointer to In-
dex Register X to get access to the data, but you must remember to provide the proper
offsets. You can also gain access to the data by using two extra PLA instructions to
move the Stack Pointer past the return address, but you must then remember to adjust
the Stack Pointer back to its original value before returning.

10-6

Length of a String of Characters

Purpose: Determine the length of a string of ASCII characters. The starting address of
the string is in memory locations 0040 and 0041. The end of the string is
marked by a carriage return character (CR. 0D-|6). Place the length of the
string (excluding carriage return) in the Accumulator.

Sample Problems:

(0040)
(0041)

(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)

Result: A)

(0040)
(0041)

(0043)
Result: (]
Flowchart:

43
00

52
41

54
48
45

52
oD

06

43
00

oD
00

starting address of string

QamIT—Axx

stai

10-7

Source Program:

The calling program starts the Stack at memory location 01 FF, stores the starting ad-
dress of the string in memory locations 0040 and 0041, calls the string length
subroutine, and stores the result in memory location 0042, Memory locations 0040 and
0041 are used as if they were extra registers.

'=0

LDX #$FF ‘PLACE STACK AT END OF PAGE 1
TXS

LDA #$43 .SAVE STARTING ADDRESS OF STRING
STA $40

LDA #0

STA $41

JSR STLEN DETERMINE LENGTH OF STRING

STA $42 ;STORE STRING LENGTH

BRK

The subroutine determines the length of the string of ASCII characters and places the
length in the Accumulator.

+=$20
STLEN LDY #$FF STRING LENGTH = -1
LDA #$0D GET ASCIl CARRIAGE RETURN TO COMPARE
CHKCR INY ADD 1 TO STRING LENGTH
CMP ($40),Y IS NEXT CHARACTER A CARRIAGE RETURN?
BNE CHKCR NO, KEEP LOOKING
TYA SAVE STRING LENGTH IN ACCUMULATOR
RTS

Subroutine Documentation:

SUBROUTINE STLEN

PURPOSE: STLEN DETERMINES THE LENGTH OF AN ASCII STRING
(NUMBER OF CHARACTERS BEFORE A CARRIAGE RETURN)

INITIAL CONDITIONS: STARTING ADDRESS OF STRING IN MEMORY
LOCATIONS 0040 AND 0041

FINAL CONDITIONS: NUMBER OF CHARACTERS IN A

REGISTERS USED: A, Y. ALL FLAGS EXCEPT OVERFLOW
MEMORY LOCATIONS USED: 0040 , 0041

SAMPLE CASE:
INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041
(0043) = 35, (0044) = 46, (0045) = OD
FINAL CONDITIONS: (A) = 02

10-8

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)

1) Calling program
0000 A2 LDX #SFF
0001 FF
0002 9A TXS
0003 A9 LDA #$43
0004 43
0005 85 STA $40
0006 40
0007 A9 LDA #0
0008 00
0009 85 STA $41
000A 41
000B 20 JSR STLEN
000C 20
000D 00
000E 85 STA $42
000F 42
0010 00 BRK

2) Subroutine

0020 AO STLEN LDY #SFF
0021 FF

0022 A9 LDA #$0D
0023 oD

0024 cs CHKCR INY

0025 D1 CMP ($40),Y
0026 40

0027 DO BNE CHKCR
0028 FB

0029 98 TYA

002A 60 RTS

The calling program consists of four steps: initializing the Stack Pointer, placing the
starting address of the string in memory locations 0040 and 0041, calling the
subroutine, and storing the result.

The subroutine is not reentrant, since it uses fixed memory addresses 0040 and 0041.
However, if these locations are considered as extra registers and their contents are au-
tomatically saved and restored with the user registers, the subroutine can be used in a
reentrant manner. Many computers of all sizes use registers that are actually located in
memory; this approach makes memory management more complex but does not
change the basic procedures.

The subroutine changes Index Register Y as well as the Accumulator. The programmer
must be aware that data stored in Index Register Y will be lost; the subroutine docu-
mentation must describe what registers are used.

10-9

One way to preserve register contents during a subroutine is to save them in the Stack
and then restore them before returning. This approach makes life easier for the user of
the routine, but costs extra time and memory (in the program and in the Stack). To save
and restore Index Register Y, you would have to add the sequence

TYA ;SAVE OLD CONTENTS OF Y
PHA

to the beginning of the program and

PLA ;RESTORE OLD CONTENTS OF Y
TAY

to the end of the program.

This subroutinehas a single input parameter, which isan address. Theeasiest way to
pass this parameteris through two memory locations onpage zero. The 6502 has no
address-length registers in which this parameter could be passed.

If the terminating character were not always an ASCIl carriage return, we could make
that character into another parameter. Now the calling program would have to place
the terminating character in the Accumulator and the starting address of the string in
memory locations 0040 and 0041 before calling the subroutine.

One way to pass parameters that are fixed for a particular call is to place their values in
program memory immediately after the Jump-to-Subroutine instruction. You can use
the old Program Counter (saved at the top of the Stack) to access the data, but you
must adjust the return address (increase it by the number of bytes used for parameters)
before transferring control back to the main program. For example, we could pass the
value of the terminating character this way. The main program would contain the
pseudo-operation .BYTE', immediately after the JSR instruction. The subroutine could
place the return address in memory locations 0050 and 0051 and access the various
parameters using post-indexing. The following sequence could save the return address,
remembering that the Stack is always on page 1 of memory and that the Stack Pointer
always contains the address of the next available location.

TSX JGET STACK POINTER

LDA $0101,X JGET MSB'S OFRETURN ADDRESS
STA $50

LDA $0102,X ;GET LSB'SOF RETURNADDRESS
STA $51

Be careful of the fact that the return address is actually the address of the last (third)
byte of the JSR instruction, not the address immediately after the JSR instruction as it
is on most other microprocessors. The actual return address must also be offset by 1,
since RTS will automatically add 1 to it

The instructions PHA (Store Accumulator in Stack) and PLA (Load Accumulator from
Stack) transfer eight bits of data between the Accumulator and the RAM Stack. Index
Registers X and Y can only be saved and restored via the Accumulator. As in the Jump-
to-Subroutine instruction, the Stack Pointer is decremented after data is stored in the
Stack and incremented before data is loaded from it. Remember that the RAM Stack
grows downward (to lower addresses).

10-10

Maximum Value

Purpose: Find the largest element in a block of unsigned binary numbers. The length
of the block is in Index Register Y and the starting address of the block is in
memory locations 0040 and 0041. The maximum value is returned in the Ac-
cumulator.

Sample Problem:

(Y) = 05 length of block
(0040) = 43 starting address of block

(0041) = 00

(0043) 67

(0044) = 79

(0045) = 15

(0046) = E3

(0047) = 72

Result: (A) = EB, since this is the largest of five unsigned numbers
Flowchart:
(Z2T7T~)
Base = (0040 and
0041)

Index = (Y)
Max = 0

10-11

Source Program:

The calling program starts the Stack at memory location 01 FF, sets the starting address
of the block to 0043, gets the block length from memory location 0030, calls the max-
imum subroutine, and stores the maximum in memory location 0042.

*=0

LDX #$FF JPLACE STACK AT END OF PAGE 1
TXS

LDA #$43 ;SAVE STARTING ADDRESS OF BLOCK
STA $40

LDA #0

STA $41

LDY $30 ‘GET LENGTH OF BLOCK

JSR MAXM ;FIND MAXIMUM VALUE

STA $42 :SAVE MAXIMUM VALUE

BRK

The subroutine determines the maximum value in the block.

*=$20
MAXM LDA #0 MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)
CMPE DEY DECREMENT INDEX

PHP SAVE STATUS

CMP ($40),Y IS NEXT ELEMENT ABOVE MAXIMUM?

BCS NOCHG NO, KEEP MAXIMUM

LDA ($40),Y YES, REPLACE MAXIMUM WITH ELEMENT
NOCHG PLP RESTORE STATUS

BNE CMPE CONTINUE UNTIL ALL ELEMENTS EXAMINED

RTS

Subroutine Documentation:

SUBROUTINE MAXM

iPURPOSE: MAXM DETERMINES THE MAXIMUM VALUE IN A BLOCK
; OF UNSIGNED BINARY NUMBERS

!INITIAL CONDITIONS: STARTING ADDRESS OF BLOCK IN MEMORY
LOCATIONS 0040 AND 0041, LENGTH OF BLOCK IN Y

:FINAL CONDITIONS: MAXIMUM VALUE IN A

REGISTERS USED: A, Y, ALL FLAGS EXCEPT OVERFLOW
MEMORY LOCATIONS USED: 0040, 0041

:SAMPLE CASE:

INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041
. (Y)= 03, (0043) = 35, (0044) = 46. (0045) = OD

FINAL CONDITIONS: (A) =46

This subroutine has two parameters — an address and a number. Memory locations
0040 and 0041 are used to pass the address, and Index Register Y is used to pass the
number. The result is a single number that is returned in the Accumulator.

The calling program must place the starting address of the block in memory locations
0040 and 0041 and the length of the block in Index Register Y before transferring con-
trol to the subroutine.

10-12

4 1 0N eeeeee Bit No.
HE 1BIC | 4IC | ~ Processor Status
A

Ur

* Carry
I-" Zero Result

= Interrupt Disable
Decimal Mode

—Break Command
(Not used)
Overflow

---Negative Result (Sign)

Figure 10-1. The 6502 Status Register

The subroutine returns control with zero in Index Register Y. It is not reentrant unless
memory locations 0040 and 0041 are treated as extra registers. It is relocatable since
the addresses are relative and the Stack is used for temporary storage.

Note the use of the instructions PHP and PLP which save and restore the Status
register. This register is organized as shown in Figure 10-1. We could reorganize the
program and change the initial conditions so as to eliminate the need for these instruc-
tions (see Chapter 5). The key here would be to provide the address one before the start
of the array as a parameter. This is easy to do with most assemblers since they allow
simple arithmetic expressions (such as START-1) in the operand field (see Chapter 3).
However, the user of the subroutine must be warned that this offset is necessary.

10-13

Object Program:

Memory Address

(Hex)

1) Calling Program

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
O00C
000D
000E
000F
0010
0011
0012

2) Subroutine

0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D

Memory Contents

(Hex)

A2

9A
A9
43
85

A9
00
85
41

A4
30
20
20
00
85
42

00

A9
00
88
08
D1
40

02
Bl
40
28

F5
60

10-14

MAXM

CMPE

NOCHG

Instruction
(Mnemonic)
LDX #$FF
TXS
LDA #$43
STA $40
LDA #0
STA $41
LDY $30
JSR MAXM
STA $42
BRK
LDA #0
DEY
PHP
CMP ($40),Y
BCS NOCHG
LDA ($40),Y
PLP
BNE CMPE
RTS

Pattern Match2

Purpose: Compare two strings of ASCIl characters to see if they are the same. The
length of the strings is in Index Register Y. The starting address of one string
is in memory locations 0042 and 0043; the starting address of the other is in
memory locations 0044 and 0045. If the two strings match, clear the Ac-

cumulator; otherwise, set the Accumulator to FFiq.

Sample Problems:

a)
(0042)
(0043)
(0044)
(0045)
(0046)

(0047)
(0048)

(0050)
(0051)
(0052)

Result: (A)

b. 4]

(0042)
(0043)

(0045)

(0046)
(0047)
(0048)

(0050)
(0051)
(0052)

Result: A)

03 length of strings

46>
qqJ starting address of string #1

starting address of string #2

43
a1
54

43
41
54

4xaq 72aq

00, since the strings are the same
03 length of strings

32' starting address of string #1

S } startin9 addreSS of Strin9 # 2
=52 R
=41 A
=54 T
=43 C
= 41 A
=54 T

FF, since the first characters differ

10-15

Flowchart:

Source Program:

The calling program starts the Stack at memory location 01 FF, sets the two starting ad-
dresses to 0046 and 0050 respectively, gets the string length from memory location

0041, calls the pattern match subroutine, and places the result in memory location
0040.

*=0

LDX #$FF ;PLACE STACK AT END OF PAGE 1

TXS

LDA #$46 ;SAVE STARTING ADDRESS OF STRING 1
STA $42

LDA #0

STA $43

LDA #3$50 ;SAVE STARTING ADDRESS OF STRING 2
STA $44

LDA #0

STA $45

LDY $41 GET LENGTH OF STRINGS

JSR PMTCH CHECK FOR MATCH

STA $40 SAVE MATCH INDICATOR

BRK

The subroutine determines if the two strings are the same.

*=$20

LDX #$FF ;MARK = FF (HEX) FOR NO MATCH
CMPE DEY

LDA ($42),Y ;GET CHARACTER FROM STRING 1

CMP ($44),Y ;IS THERE A MATCH WITH STRING 2?

BNE DONE ;NO. DONE — STRINGS DO NOT MATCH

TYA ;RESTORE STATUS FROM INDEX

BNE CMPE

LDX #0 JMARK = ZERO. STRINGS MATCH
DONE TXA

RTS

10-17

Subroutine Documentation:

SUBROUTINE PMTCH
PURPOSE: PMTCH DETERMINES IF TWO STRINGS MATCH

INITIAL CONDITIONS: STARTING ADDRESSES OF STRINGS
IN MEMORY LOCATIONS 0042 AND 0043, 0044 AND 0045
LENGTH OF STRINGS IN INDEX REGISTER Y

FINAL CONDITIONS: ZERO IN A IF STRINGS MATCH.
FF IN A OTHERWISE

REGISTERS USED: A, X, Y, ALL FLAGS EXCEPT OVERFLOW
MEMORY LOCATIONS USED: 0042, 0043, 0044, 0045

SAMPLE CASE:
INITIAL CONDITIONS: 0046 IN 0042 AND 0043, 0050
IN 0044 AND 0045, (Y) = 02
(0046)= 36, (0047) = 39
(0050) =36, (0051) =39
FINAL CONDITIONS: (A) = 0 SINCE THE STRINGS MATCH

10-18

Object Program:

Memory Address

(Hex)

1) Calling program

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011

0012
0013
0014
0015

0016
0017
0018
0019
001A

2) Subroutine

0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F

Memory Contents
(Hex)

A2
FF
9A
A9
46
85
42
A9
00
85

43

A9
50
85
44
A9
00
85
45
A4
a4

20
20
00
85
40
00

A2

88
Bl
42
D1
44

05
98

F6
A2
00
8A
60

10-19

PMTCH

CMPE

DONE

Instruction
(Mnemonic)
LDX #SFF
TXS
LDA #$46
STA $42
LDA #0
STA $43
LDA #3$50
STA $44
LDA #0
STA $45
LDY $41
JSR PMTCH
STA $40
BRK
LDX #SFF
DEY
LDA ($42),Y
CMP ($44),Y
BNE DONE
TYA
BNE CMPE
LDX #0
TXA
RTS

This subroutine, like the preceding ones, changes all the flags except Overflow. You
should generally assume that a subroutine call changes the flags unless it is specifically
stated otherwise. If the main program needs the old flag values (for later checking), it
must save them in the Stack before calling the subroutine. This is accomplished with
the PHP instruction.

This subroutine uses all the registers anu rour memory locations on page zero. There are
three parameters — two starting addresses and the length of the strings.

The instruction TYA has no purpose other than to set the Zero flag according to the
contents of Index Register Y. We could eliminate the need for that instruction by
reorganizing the subroutine. One alternative would be to change the parameters so that
the addresses were both offset by 1 (that is, both string addresses would actually refer
to the byte immediately preceding the character string). Remember, however, that the
user should be able to supply parameters to the subroutine in the simplest and most ob-
vious form possible. The user should not have to offset addresses by one or make other
adjustments for the convenience of the subroutine; such practices result in numerous,
annoying programming errors. The program should make such rote adjustments unless
time or memory constraints are critical.

Another alternative would be to decrement the index by 1 initially to avoid the problem
of accessing beyond the end of the string. The end of the loop would then decrement
the index and branch back as long as the result was positive, i.e.,

DEY
BPL CMPE

This approach would work as long as the string was less than 130 bytes long. The
limitation occurs because the 6502 Sign flag is set if the result is an unsigned number
greater than 127 (decimal).

10-20

Muitiple-Precision Addition

Purpose: Add two multiple-byte binary numbers. The length of the numbers (in bytes)
is in Index Register Y, the starting addresses of the numbers are in memory
locations 0042 and 0043 and in 0044 and 0045. and the starting address of
the result is in memory locations 0046 and 0047. All the numbers begin with
the most significant bits.

Sample Problem:
(Y) = 04 length of numbers in bytes

Eggig; = gg; starting address of first nun

Eggjg; = 381) starting address of second

Egg:g; = (5)8)1 starting address of result

(0048) = 2F MSBs of first number
(0049) = 5B
(004A) = A7
(004B) = C3 LSBs of first number
(004C) = 14 MSBs of second number
(004D) = DF
(004E) = 35
(004F) = B8 LSBs of second number
Result: (0050) = 44 MSBs of result
(0051) = 3A
(0052) = DD
(0053) = 7B LSBs of result
that is. 2F5BA7C3
+ 14DF35B8
443ADD7B

10-21

Flowchart:

10-22

Source Program:

The calling program starts the Stack at memory location 01 FF, sets the starting ad-
dresses of the various numbers to 0048, 004C, and 0050, respectively, gets the length
of the numbers from memory location 0040, and calls the multiple-precision addition
subroutine.

*=0
LDX #SFF ;PLACE STACK AT END OF PAGE 1
TXS
LDA #$48 :SAVE STARTING ADDRESS OF FIRST NUMBER
STA $42
LDA #$4C :SAVE STARTING ADDRESS OF SECOND NUMBER
STA $44
LDA #$50 ;SAVE STARTING ADDRESS OF RESULT
STA $46
LDA #0 ;SAVE PAGE NUMBER FOR ALL ADDRESSES
STA $43
STA $45
STA $47
LDY $40 ;GET LENGTH OF NUMBERS IN BYTES
JSR MPADD ;MULTIPLE-PRECISION ADDITION
BRK
The subroutine performs multiple-precision binary addition.
*=$20
MPADD CLC :CLEAR CARRY TO START
ADDB DEY
LDA ($42),Y ;GET BYTE FROM FIRST NUMBER
ADC ($44),Y :ADD BYTE FROM SECOND NUMBER
STA ($46),Y ;STORE RESULT
TYA ;ALL BYTES ADDED?
BNE ADDB :NO. CONTINUE
RTS

Subroutine Documentation:

SUBROUTINE MPADD
PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS

INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (MSB'S)
IN MEMORY LOCATIONS 0042 AND 0043, 0044 AND 0045
STARTING ADDRESS OF RESULT IN MEMORY LOCATIONS 0046 AND 0047
LENGTH OF NUMBERS IN INDEX REGISTER Y

REGISTERS USED: A, Y, ALL FLAGS
MEMORY LOCATIONS USED: 0042, 0043, 0044, 0045, 0046, 0047

SAMPLE CASE:
INITIAL CONDITIONS: 0048 IN 0042 AND 0043,
004C IN 0044 AND 0045, 0050 IN 0046 AND 0047,
(Y) = 02, (0048) = A7, (0049) = C3, (004C) = 35, (004D) = B8
FINAL CONDITIONS: (0050) = DD, (0051) = 7B

10-23

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)

1) Calling program
0000 A2 LDX #SFF
0001 FF
0002 9A TXS
0003 A9 LDA #$48
0004 48
0005 85 STA $42
0006 42
0007 A9 LDA #$4C
0008 4C
0009 85 STA $44
000A 44
O00B A9 LDA #$50
0o0oC 50
000D 85 STA $46
000E 46
000F A9 LDA #0
0010 00
0011 85 STA $43
0012 43
0013 85 STA $45
0014 45
0015 85 STA $47
0016 47
0017 A4 LDY $40
0018 40
0019 20 JSR MPADD
001A 20
001 B 00
001C 00 BRK

2) Subroutine
0020 18 MPADD CLC
0021 88 ADDB DEY
0022 Bl LDA ($42),Y
0023 42
0024 71 ADC ($44),Y
0025 44
0026 91 STA ($46).Y
0027 46
0028 98 TYA
0029 DO BNE ADDB
002A F6
002B 60 RTS

This subroutine has four parameters — three addresses and the length of the numbers.
Six memory locations on page zero and Index Register Y are used for passing
parameters.

As with the previous example, we could eliminate the need for the TYA instruction by
reorganizing the program or by offsetting the address parameters by 1

10-24

PROBLEMS

Note that you are to write both a calling program for the sample problem and a properly

documented subroutine.

1) ASCIl to Hex

Purpose: Convert the contents of the Accumulator from the ASCII representation of a
hexadecimal digit to the actual digit. Place the result in the Accumulator.

Sample Problems:

a ™
Result: A)
b. A
Result: A)

43 ASCIl C
oc
36 ASCIl 6
06

2) Length of a Teletypewriter Message

Purpose: Determine the length of an ASCIl-coded teletypewriter message. The start-
ing address of the string of characters in which the message is embedded is
in memory locations 0042 and 0043. The message itself starts with an ASCII
STX character (02-]g) and ends with ASCIl ETX (0316> Place the length of
the message (the number of characters between the STX and the ETX) in the

Accumulator.
Sample Problem:

(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)

Result: (A)

3) Minimum Value

gg | starting address of string

49

02 STX
47 G
4F 'O
03 ETX
02

Purpose: Find the smallest element in a block of unsigned binary numbers. The length
of the block is in Index Register Y and the starting address of the block is in
memory locations 0040 and 0041. The minimum value is returned in the Ac-

cumulator.
Sample Problem:

)

(0040)
(0041)

(0043)
(0044)
(0045)
(0046)
(0047)

Q)

05 length of block

3 .
N
00! starting address of block

67
79
15
E3
73

15, since this is the smallest of the five
unsigned numbers

10-25

4) String Comparison

Purpose: Compare two strings of ASCII characters to see which is larger (i.e.. which
follows the other in "alphabetical" ordering). The length of the strings is in
Index Register Y. the starting address of string 1is in memory locations 0042
and 0043, and the starting address of string 2 is in memory locations 0044
and 0045. If string 1 is larger than or equal to string 2, clear the Accumula-
tor; otherwise, set the Accumulator to FF-|g.

Sample Problems:

) 03 length of strings

(0042) 46 . .

(0043) 00 | starting address of string #1
Egg:g gg j— starting address of string #2
(0046) 43 'C

(0047) 41 A

(0048) 54 T

(004A) 42 'B'

(004B) 41 A

(0040 54 T

Result: A) 00. since 'CAT is "larger" than 'BAT

) 03 length of strings

(0042) 46 i . .
(0043) = 00 J starting address of string #1
(0044) 4A . .
(0045) 00} starting address of string #2
(0046) 43 X

(0047) 41 A

(0048) 54 T

(004A) 43 'C

(004B) 41 A

(004C) 54 T

Result: A 00, since the two strings are the same

) 03 length of strings

Eggjg; 88 | starting address of string #1
Eggjg; g'g A starting address of string #2
(0046) 43 'C
(0047) 41 A
(0048) 54 T
(004A) 43 'C

(004B) 55V
(004C) 54 T

Result: () FF, since 'CUT' is "larger" than 'CAT'

10-26

5) Decimal Subtraction

Purpose: Subtract one multiple-digit decimal (BCD) number from another. The length
of the numbers (in bytes) is in Index Register Y and the starting addresses of
the numbers are in memory locations 0042 and 0043 and 0044 and 0045.
Subtract the number with the starting address in 0044 and 0045 from the
one with the starting address in 0042 and 0043. The starting address of the
result is in memory locations 0046 and 0047. All the numbers begin with the
most significant digits. The sign of the result is returned in the Accumula-

tor— zero if the result is positive, FF{q if it is negative.

Sample Problem:

)

0042
0043

(0044)
(0045)

(0046)
(0047)

(0048)
(0049)
(004A)
(004B)

(004C)
(004D)
(004E)
(004F)

Result: (A)

(0050)
(0051)
(0052)
(0053)

that is,

= 04 length of numbers in bytes

=48 > , t. .. ,
- 00)startin9 address of minuend

=4C)
- 00) start'n9 address of subtrahend

=50 » .))
- 00)starting address of difference

36 most significant digits of minuend

= 85 least significant digits of minuend

=12 most significant digits of subtrahend

=59 least significant digits of subtrahend
= 00 positive result

=24 most significant digits of difference
03
85
= 26 least significant digits of difference

36701985
- 12663459

+ 24038526

10-27

REFERENCES

Other examples of this technique (for the 8080 microprocessor) are in S. Mazor and
C. Pitchford. "Develop Cooperative Microprocessor Subroutines," Electronic
Design, June 7, 1978, pp. 116-118.

J. T. O'Donnell, "6502 Routine Compares Character Strings," EDN, August 5, 1978,
p. 54.

Chapter 11
INPUT/OUTPUT

There are two problems in the design of input/output sections: one is how to in-
terface peripherals to the computer and transfer data, status, and control sig-
nals; the other is how to address I/O devices so that the CPU can select a particu-
lar one for a data transfer. Clearly, the first problem is both more complex and more in-
teresting We will therefore discuss the interfacing of peripherals here and leave ad-
dressing to a more hardware-oriented book.

In theory, the transfer of data to or from an I/O device is similar 1/0 AND
to the transfer of data to or from memory. In fact, we can con- MEMORY
sider the memory as just another I/O device. The memory is,

however, special for the following reasons:

1) It operates at almost the same speed as the processor.

2) It uses the same type of signals as the CPU. The only circuits usually needed
to interface the memory to the CPU are drivers, receivers, and level transla-
tors.

3) It requires no special formats or any control signals besides a Read/Write
pulse.

4) It automatically latches data sent to it.
5) Its word length is the same as the computer's.

Most /O devices do not have such convenient features. They may operate at
speeds much slower than the processor; for example, a teletypewriter can transfer only
10 characters per second, while a slow processor can transfer 10,000 characters per
second. The range of speeds is also very wide — sensors may provide one reading
per minute, while video displays or floppy disks may transfer 250,000 bits per second.
Furthermore, 1/O devices may require continuous signals (motors or thermometers),
currents rather than voltages (teletypewriters), or voltages at far different levels
than the signals used by the processor (gas-discharge displays). I/0O devices may also
require special formats, protocols, or control signals. Their word lengths may be much
shorter or much longer than the word length of the computer. These variations make
the design of I/O sections difficult and mean that each peripheral presents its own
special interfacing problem.

We may, however, provide a general description of devices 110
and interfacing methods. We may roughly separate devices CATEGORIES
into three categories, based on their data rates:

1) Slow devices that change state no more than once per second. Changing their
states typically requires milliseconds or longer. Such devices include lighted dis-
plays, switches, relays, and many mechanical sensors and actuators.

2) Medium-speed devices that transfer data at rates of 1 to 10,000 bits per sec-
ond. Such devices include keyboards, printers, card readers, paper tape readers
and punches, cassettes, ordinary communications lines, and many analog data ac-
quisition systems.

3) High-speed devices that transfer data at rates of over 10,000 bits per second.
Such devices include magnetic tapes, magnetic disks, high-speed line printers,
high-speed communications lines, and video displays.

11-1

The interfacing of slow devices is simple. Few control sig- INTERFACING
nals are necessary unless the devices are multiplexed, i.e.. SLOW DEVICES
several are handled from one port, as shown in Figures 11-1 to

11-4. Input data from slow devices need not be latched, since it remains stable for a
long time interval Output data must, of course, be latched. The only problems with
input are transitions that occur while the computer is reading the data. One-shots,
cross-coupled latches, or software delay routines can smooth the transitions.

A single port can handle several slow devices. Figure 11-1 shows a demultiplexer
that automatically directs the next output data to the next device by counting output
operations. Figure 11-2 shows a control port that provides select inputs to a
demultiplexer. The data outputs here can come in any order, but an additional output
instruction is necessary to change the state of the control port. Output demultiplexers
are commonly used to drive several displays from the same output port. Figures 11-3
and 11-4 show the same alternatives for an input multiplexer.

Note the differences between input and output with slow devices:

1) Input data need not be latched, since the input device holds the data for an enor-
mous length of time by computer standards. Output data must be latched, since
the output device will not respond to data that is present for only a few CPU clock
cycles.

2) Input transitions cause problems because of their duration; brief output tran-
sitions cause no problems because the output devices (or the observers)
react slowly.

3) The major constraints on input are reaction time and responsiveness, the ma-
jor constraints on output are response time and observability.

Medium-speed devices must be synchronized in some way INTERFACING
to the processor clock. The CPU cannot simply treat these MEDIUM-SPEED
devices as if they held their data forever or could receive data DEVICES

at any time. Instead, the CPU must be able to determine when

a device has new input data or is ready to receive output data. It must also have a way
of telling a device that new output data is available or that the previous input data has
been accepted. Note that the peripheral may be or contain another processor.

The standard unclocked procedure is the handshake. Here the |[HANDSHAKe]
sender indicates the availability of data to the receiver and

transfers the data; the receiver completes the handshake by acknowledging the recep-
tion of the data. The receiver may control the situation by initially requesting the data or
by indicating its readiness to accept data; the sender then sends the data and com-
pletes the handshake by indicating that data is available. In either case, the sender
knows that the transfer has been completed successfully and the receiver knows when
new data is available.

11-2

Output Data
Port Inputs

Port Selection Logic
Demultiplexer

Select
Inputs

The Counter controls where the Demultiplexer sends the data.

Data Outputs 0

Data Outputs 1

Data Outputs 2

Data Outputs 3

=>

Figure 11-1. An Output Demultiplexer Controlled by a Counter

Data Data
Port Inputs

Demultiplexer

Control Select
Port Inputs

The CPU sends control information to the Control Port; that port then determines

where the Demultiplexer sends the data.

Data Outputs 0

Data Outputs 1

Data Outputs 2
i>
Data Outputs 3

£

Figure 11-2. An Output Demultiplexer Controlled by a Port

11-3

ta Bus

Input
Port

Enable

Port Selection Logic

Data Inputs 0

~-— 5

>>

Outputs
Data Inputs 1
Multiplexer
Data Inputs 2
Select

fata Input:
Inputs — —
——

The Counter controls which input the Multiplexer gates to the Input Port.

Figure 11-3. An Input Multiplexer Controlled by a Counter

Input Data Bus
Data
Port

Output Data Bus
Control
Port

Data Inputs 0

Data K = *

Outputs
Data Inputs 1
/e <
Multiplexer
Data Inputs 2
Select Data Inputs 3
Inputs

IC=>

The control information which the CPU sends to the Control Port (with an output operation)

determines which input the Multiplexer routes to the Data Port.

Figure 11-4. An Input Multiplexer Controlled by a Port

Figures 11-5 and 11-6 show typical input and output operations using the handshake
method. The procedure whereby the CPU checks the readiness of the peripheral
before transferring data is called "polling". Clearly, polling can occupy a large
amount of processor time if there are many 1/O devices. There are several ways of
providing the handshake signals. Among these are:

* Separate dedicated /O lines. The processor may handle these as additional 1/0
ports or through special lines or interrupts. The 6502 microprocessor does not have
special serial 1/O lines, but such lines are available on the 6520 Peripheral Interface
Adapter (or PIA), the 6522 Versatile Interface Adapter (or VIA), and the 6532 Pe-
ripheral Interface/Memory (or Multifunction) device.

« Special patterns on the 1/O lines. These may be single start and stop bits or entire
characters or groups of characters. The patterns must be easy to distinguish from
background noise or inactive states.

We often call a separate I/O line that indicates the availability | STROBE |
of data or the occurrence of a transfer a "strobe". A strobe
may, for example, clock data into a latch or fetch data from a buffer.

Many peripherals transfer data at regular intervals; i.e., synchronously. Here the only
problem is starting the process by lining up to the first input or marking the first output.
In some cases, the peripheral provides a clock input from which the processor can ob-
tain timing information.

Transmission errors are a problem with medium-speed REDUCING
devices. Several methods can lessen the likelihood of such TRANSMISSION
errors; they include: ERRORS

« Sampling input data at the center of the transmission
interval in order to avoid edge effects; that is, keep away from the edges where
the data is changing.

« Sampling each input several times and using majority logic such as best three
out of five.1

* Generating and checking parity; an extra bit is used that makes the number of 1
bits in the correct data even or odd.

« Using other error detecting and correcting codes such as checksums, LRC
(longitudinal redundancy check), and CRC (cyclic redundancy check).2

High-speed devices that transfer more than 10,000 bits per INTERFACING
second require special methods. The usual technique is to HIGH-SPEED
construct a special-purpose controller that transfers data DEVICES
directly between the memory and the 1/O device. This process

) . DIRECT

is called direct memory access (DMA). The DMA controller MEMORY
must force the CPU off the busses, provide addresses and con- ACCESS

trol signals to the memory, and transfer the data. Such a con-

troller will be fairly complex, typically consisting of 50 to 100

chips, although LSI devices are now available.3 The CPU must initially load the Address
and Data Counters in the controller so that the controller will know where to start and
how much to transfer.

11-5

a) Peripheral provides data and Data Ready signal to computer 1/0 section.

b) CPU reads Data Ready signal from I/O section (this may be a hardware interrupt connection).

c) CPU reads data from 1/0 section.

d) CPU sends Input Acknowledge signal to 1/0O section, which then provides Input Acknowledge signal
to Peripheral (this may be a hardware connection).

Figure 11-5. An Input Handshake

11-6

a) Peripheral provides Peripheral Ready signal to computer 1/0O section.

b) CPU reads Peripheral Ready signal from 1/0 section (this may be a hardware interrupt connection).

c) CPU sends data to Peripheral.

d) CPU sends Output Ready signal to Peripheral (this may be a hardware connection).

Figure 11-6. An Output Handshake

11-7

TIMING INTERVALS (DELAYS)

One problem that we will face throughout the discussion of in-
put/output is the generation of timing intervals with specific
lengths. Such intervals are necessary to debounce mechanical
switches (i.e.,, to smooth their irregular transitions), to provide

USES OF
TIMING
INTERVALS

pulses with specified lengths and frequencies for displays, and to provide timing for
devices that transfer data regularly (e.g., a teletypewriter that sends or receives one bit

every 9.1 ms).
We can produce timing intervals in several ways:

1) In hardware with one-shots or monostable multivibra-
tors. These devices produce a single pulse of fixed dura-
tion in response to a pulse input.

2) Inacombination of hardware and software with aflex-

METHODS FOR
PRODUCING
TIMING
INTERVALS

ible programmable timer such as those that are included in the 6522 Versatile In-
terface Adapter (to be described later in this chapter). The 6522 timers can provide
timing intervals of various lengths with a variety of starting and ending conditions.

3) In software with delay routines. These routines use the processor as a counter.
This use is possible since the processor has a stable clock reference, but it clearly
underutilizes the processor. However, delay routines require no additional hard-
ware and often use processor time that would otherwise be wasted.

The choice among these three methods depends on your ap-
plication. The software method is inexpensive but may over-
burden the processor. The programmable timers are relatively ex-
pensive but are easy to interface and may be able to handle many

CHOOSING
A TIMING
METHOD

complex timing tasks. The timers that are included in the 6522 Versatile Interface
Adapter and in the 6530 and 6532 Multifunction Devices are available at no additional
cost as long as those parts are being used. These parts may be somewhat more expen-
sive than simpler devices, but may be justifiable as complete packages. Such parts with
integral timers are used in many board-level microcomputers, including the KIM. SYM,
VIM. and AIM-65. The use of one-shots should be avoided whenever possible.

11-8

DELAY ROUTINES

A simple delay routine works as follows: BASIC
) ’ - SOFTWARE
Step 1 - Load a register with a specified value. DELAY

Step 2 - Decrement the register.
Step 3 - If the result of Step 2 is not zero, repeat Step 2.

This routine does nothing except use time. The amount of time used depends upon
the execution time of the various instructions The maximum length of the delay is
limited by the size of the register; however, the entire routine can be placed inside a
similar routine that uses another register, and so on.

Be careful — the actual time used depends on the clock rate at which the pro-
cessor is running, the speed of memory accesses, and operating conditions such
as temperature, power supply voltage, and circuit loading which may affect the
speed at which the processor executes instructions.

The following example uses Index Registers X and Y to TRANSPARENT
provide delays as long as 255 ms. The choice of registers is DELAY
arbitrary. You may find the use of the Accumulator or of ROUTINE

memory locations more convenient. Remember, however, that
the 6502 has no explicit Decrement Accumulator instruction. We could produce a
routine that does not change the contents of any user registers. The sequence

PHP ;SAVE STATUS REGISTER
PHA ;SAVE ACCUMULATOR
TXA ;SAVE INDEX REGISTER X
PHA

TYA ;SAVE INDEX REGISTER Y
PHA

would save the contents of all the registers initially and the sequence

PLA ‘RESTORE INDEX REGISTER Y
TAY

PLA :RESTORE INDEX REGISTER X
TAX

PLA JRESTORE ACCUMULATOR
PLP ;RESTORE STATUS REGISTER

would restore the registers at the end of the routine. A subroutine that does not affect
any registers or flags is said to be "transparent” to the calling program. The in-
struction sequences that save and restore the registers must, of course, be included in
the time budget.

DELAY PROGRAM

Purpose: The program provides a delay of 1 ms times the contents of Index Register V.
Flowchart:

The value of MSCNT depends on the speed of the CPU and the memory cycle

Source Program:

DELAY LDX #MSCNT JGET COUNT FOR 1 MS DELAY

DLY1 DEX COUNT = COUNT - 1
BNE DLY1 CONTINUE UNTIL COUNT = ZERO
DEY DECREMENT NUMBER OF REMAINING MS
BNE DELAY CONTINUE UNTIL NUMBER OF MS = ZERO
RTS

11-10

Object Program: (starting in location 0030)

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0030 A2 DELAY LDX #MSCNT
0031 MSCNT
0032 CA DLY1 DEX
0033 DO BNE DLY1
0034 FD
0035 88 DEY
0036 DO BNE DELAY
0037 F8
0038 60 RTS

Time Budget:
Instruction Number of Times Executed

LDX #MSCNT \9)
DEX (Y) x MSCNT
BNE DLY1 (Y) x MSCNT
DEY)
BNE DELAY)
RTS 1

The total time used should be (Y) x 1 ms. If the memory is operating at full speed, the
instructions require the following numbers of clock cycles.

Ignoring Page Boundaries

LDX #MSCNT 2 or 3 2
DEX or DEY 2 2
BNE 2.3, 0r4 2o0r 3
RTS 6 6

The alternative times forLDX #MSCNT depend on whether a page boundary is
crossed. The alternative times for BNE depend on whether the branch does not occur
(2). occurs to an address on the same page (3), or occurs to an address on a different
page (4). A page is a set of 256 contiguous memory locations which have the same
eight most significant bits (or page number) in their addresses. We will assume that the
routine is located so that no page boundaries are crossed, and we can use the rightmost
column of the last table for timing purposes.

Ignoring the Jump-to-Subroutine (JSR) and Return from Subroutine (RTS) instructions
(which occur only once), the program takes:

Y) x 2+ 5xMSCNT -1+51-1 clock cycles
The -1s are caused by the fact that the BNE instruction requires less time during the
final iteration when the Counter has reached zero and no branch occurs.
So. to make the delay 1 ms,

5+ 5 x MSCNT = Nc
where Nc is the number of clock cycles per millisecond. At the standard 1 MHz 6502
clock rate, Nc = 1000 so

5 x MSCNT = 995 6502 DELAY

_ LOOP
MSCNT = 199 (C7-]g) at a 6502 clock rate of 1 MHz CONSTANT

11-11

6502 INPUT/OUTPUT CHIPS

Most 6502 input/output sections are based on LSI interface chips. These devices
combine latches, buffers, flip-flops, and other logic circuits needed for handshak-
ing and other simple interfacing techniques. They contain many logic connections,
certain sets of which can be selected according to the contents of programmable
registers. Thus the designer has the equivalent of a Circuit Designer's Casebook
under his or her control. The initialization phase of the program places the ap-
propriate values in registers to select the required logic connections. An in-
put/output section based on programmable LSI interface chips can handle many
different applications and changes or corrections can be made in software rather
than by rewiring.

We will discuss the following LSI interface chips that can be used with the 6502
microprocessor:

1) The 6520 Peripheral Interface Adapter. This device contains two 8-bit 1/0 ports
and four individual control lines; it is exactly the same as the 6820 device used
with 6800-based microcomputers.4

2) The 6522 Versatile Interface Adapter. This device contains two 8-bit I1/O ports,
four individual control lines, two 16-bit counter/timers, and an 8-bit shift register.

3) The 6530 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit 1/0 ports, an 8-bit counter/timer with a prescaler.
1024 bytes of ROM. and 64 bytes of RAM.

4) The 6532 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit I/O ports, an 8-bit counter/timer with a prescaler,
and 128 bytes of RAM.

The following acronyms are often used in describing these devices: the 6520 PIA. the
6522 VIA, and the 6530 or 6532 RIOT (for ROM or RAM, J/0, and Timer combination).
Our I/0O examples later in this chapter will all use the 6522 Versatile Interface Adapter.
Examples of the use of the 6520 device can be found in 6800 Assembly Language Pro-
gramming;5 those examples can easily be adapted to the 6502 microprocessor
(remember the comparisons of the instruction sets in Tables 3-6 and 3-7).

11-12

THE 6520 PERIPHERAL INTERFACE ADAPTER

Figure 11-7 is the block diagram of a PIA. The device contains two nearly identical 8-
bit ports — A. which is usually an input port, and B, which is usually an output port.
Each port contains:

« A Data or Peripheral register that holds either input or PIA
output data. This register is latched when used for output REGISTERS
but unlatched when used for input. AND CONTROL
LINES

« A Data Direction register. The bits in this register deter-
mine whether the corresponding data register bits (and
pins) are inputs (0) or outputs (2).

* A Control register that holds the status signals required for handshaking, and
other bits that select logic connections within the PIA.

« Two control lines that are configured by the control registers. These lines can
be used for the handshaking signals shown in Figures 11-5 and 11-6.

The meanings of the bits in the Data Direction and Control registers are related to the
underlying hardware and are entirely arbitrary as far as the assembly language pro-
grammer is concerned. You must either memorize them or look them up in the ap-
propriate tables (Tables 11-2 through 11-6).

Each PIA occupies four memory addresses. The RS (register PIA

select) lines choose one of the four registers, as described in Table ADDRESSES
11-1. Since there are six registers (two peripheral, two data direc-

tion, and two control) in each PIA, one further bit is needed for addressing. Bit 2 of each
control register determines whether the other address on that side refers to the Data
Direction register (0) or to the Peripheral register (1). This sharing of an external address
means that:

1) A program must change the bit in the Control register in order to use the register
that is not currently being addressed.

2) The programmer must know the contents of the Control register in order to know
which register is being addressed. RESET clears the Control register and thus ad-
dresses the Data Direction register.

Table 11-1. Addressing 6520 PIA Internal Registers

Address Lines Control Register Bit

Register Select
RS1 RSO CRA-2 CRB-2

Peripheral Register A \
Data Direction Register A
Control Register A

Peripheral Register B

Data Direction-Register B

» kR OOO
O O » © O
X X X X o
X O | X X X

Control Register B

X = Either 0 or 1

11-13

DO -
o -
D2 -
D3 - Data Bus
Buffers
D4 - (DBB)
D5 -
D6 -
D7 -
Bus Input
Register
(BIR)
IRQB

Figure 11-7. Block Diagram of the 6520 Peripheral Interface Adapter

C

Control
Register A
(CRA)

Output E

Output
Register A

x> (ORA)

Output
Register B
(ORB)

Input E

Control
Register B
(CRB)

11-14

Interrupt
Status
Control A

Data
Direction
Register A
(DDRA)

21

Peripheral
Interface
A

Peripheral
Interface
B

21

>

c Data
Direction
Register B

(DDRB)

Interrupt
Status
Control B

-CAl

»CA2

* PAO

* PAL

» PA2

»PA3

»PA4

»PA5

»PA6

»PA7

»PB5

-PB6

»PB7

uCBL

* CB2

PIA CONTROL REGISTER

Table 11-2 shows the organization of the PIA Control registers. We PIA
may describe the general purpose of each bit as follows: CONTROL
Bit 7: status bit set by transitions on control line 1 and cleared by SE%ISTER

reading the Peripheral (Data) register
Bit 6: same as bit 7 except set by transitions on control line 2
Bit 5: determines whether control line 2 is an input (0) or output (1)

Bit 4: Control line 2 input: determines whether bit 6 is set by high-to-low transitions
(0) or low-to-high transitions (1) on control line 2
Control line 2 output: determines whether control line 2 is a pulse (0) or a level
&

Bit 3: Control line 2 input: if 1. enables interrupt output from bit 6
Control line 2 output: determines ending condition for pulse (0 = handshake
acknowledgement lasting until next transition on control line 1.1= brief strobe
lasting one clock cycle) or value of level

Bit 2: selects Data Direction register (0) or Data register (1)

Bit 1: determines whether bit 7 is set by high-to-low transitions (0) or low-to-high tran-
sitions (1) on control line 1

Bit 0: if 1, enables interrupt output from bit 7 of Control register.

Tables 11 -3 through 11-6 describe the bits in more detail. Since E is normally tied to the
02 clock, you can interpret "E" pulse as "clock pulse."

Table 11-2. Organization of the PIA Control Registers

7 6 5 4 3 2 1 0

CRA DDRA
IRQAL CA2 Control CA1 Control
Q IRQA2 ontro Access ontro
7 6 5 4 3 2 1 0

CRB DDRB
B1 Control
IRQB1 IRQB2 CB2 Control Access C ontro

11-15

Table 11-3. Control of 6520 PIA Interrupt Inputs CA1 and CB1

CRA-1 CRA-0 Interrupt Input Interrupt Flag
(CRB-1) (CRB-0) CA1l (CB1) CRA-7 (CRB-7)
0 0 i Active Set high on [of CAl1
(CB1)
0 1 [Active Set high on 1 of CAT
(CB1)
1 0 | Active Set high on | of CAl1
(CB1)
1 1 f Active Set high on J of CAl1
(CB1)
Notes:
1. | indicates positive transition (low to high)

2. 1 indicates negative transition (high to low)

3. The Interrupt flag bit CRA-7

is cleared by an MPU Read of the A Data Register,

CRB-7 is cleared by an MPU Read of the B Data Register

MPU
Request
IRQA (IRQB)

Interrupt

Disabled — IRQ re-
mains high

Goes low when the
interrupt flag bit CRA-7
(CRB-7) goes high

Disabled — IRQ re-
mains high

Goes low when the
interrupt flag bit CRA-7
(CRB-7) goes high

and

4 If CRA-0 (CRB-0) is low when an interrupt occurs (Interrupt disabled) and is later brought

high,

IRQA (IRQB) occurs after CRA-0 (CRB-0) is written to a "one”

Table 11-4. Control of 6520 PIA Interrupt Inputs CA2 and CB2

Interrupt Flag
CRA-6 (CRB-6)

Set high on j of CA2
(CB2)

Set high on |
(CB2)

of CA2

Set high on |
(CB2)

of CA2

Set high on f of CA2
(CB2)

MPU Interrupt
Request

IRQA (IRQB)

Disabled — IRQ

remains high

Goes low when the
interrupt flag bit CRA-6
(CRB-6) goes high

Disabled —
remains high

IRQ

Goes low when the
interrupt flag bit CRA-6
(CRB-6) goes high

The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6

CRA-5 CRA-4 CRA-3 Interrupt Input
(CRB-5) (CRB-4) (CRB-3) CA2 (CB2)

0 0 0 [Active

0 0 1 [Active

0 1 0 f Active

0 1 1 | Active
Notes:
1. j indicates positive transition (low to high)
2. lindicates negative transition (high to low)
3.

is cleared by an MPU Read of the B Data Register.

4

If CRA-3 (CRB-3) is low when an interrupt occurs (Interrupt disabled) and is later brought

high, IRQA (IRQB) occurs after CRA-3 (CRB-3) is written to a "one"

11-16

CRB-5

CRA-5

CRB-4

CRA-4

Table 11-5. Control of 6520 PIA CB2 Output Line

CRB-3

CB2

Cleared

Low on the positive transition of
the first E pulse following an
MPU Write "B"
operation

Data Register

Low on the positive transition of
the first E pulse after an MPU
Write “B" Data Register opera-
tion.

Low when CRB-3 goes low as a
result of an MPU W rite in Con-
trol Register "B

Always high as long as CRB-3 is
high. Will be cleared when an
MPU W rite Control Register "B "
results in clearing CRB-3 to

“zero”

Set

High when the interrupt flag bit
CRB-7 is set by an active transi-
tion of the CB1 signal

High on the positive edge of the
first "E" pulse following an "E"
pulse which occurred while the

part was deselected

Always low as long as CRB-3 is
low Will go high on an MPU
W rite Register "B"
that changes CRB-3 to "one"

in Control

High when CRB-3 goes high as
a result of an MPU W rite into
Control Register "B "

Table 11-6. Control of 6520 PIA CA2 Output Line

CRA-3

CA2

Cleared

Low on negative transition of E
after an MPU Read "A" Data
operation.

Low on negative transition of E
after an MPU Read "A"
operation

Data

Low when CRA-3 goes low as a
result of an MPU W rite to Con-
trol Register "A"

Always high as long as CRA-3 is
high. W ill be cleared on an MPU
W rite to Control Register "A"
that clears CRA-3 to a "zero"

11-17

Set

High when the interrupt flag bit
CRA-7 is set by an active transi-
tion of the CA1 signal

High on the negative edge of
the first "E" pulse which occurs
during a deselect

Always low as long as CRA-3 is
low Will go high on an MPU
W rite to Control Register "A"
that changes CRA-3 to "one"

High when CRA-3 goes high as
aresultofan MPU W rite to Con-
trol Register "A

CONFIGURING THE PIA

The program must select the logic connections in the PIA STEPS IN
before using it. This selection (or configuration) is usually CONFIGURING
part of the startup routine. The steps in the configuration are: A PIA

1) Address the Data Direction register by clearing bit 2 of the
Control register. Since the Reset signal clears all the internal registers, this step is
unnecessary in the overall startup routine.

2) Establish the directions of the 1/O pins by loading the Data Direction register.

3) Select the required logic connections in the PIA by loading the Control register. Set
bit 2 of the Control register so as to address the Data register.

Step 1 can be performed as follows:

LDA #0 ;CLEAR PIA CONTROL REGISTER
STA PIACR

LDA PIACR

AND #% 11111011 ;SELECT DATA DIRECTION REGISTER
STA PIACR

Once the program has performed Step 1. Step 2 is simply a matter of clearing each in-
put bit position and setting each output bit position in the Data Direction Register.
Some simple examples are:

1) LDA #0 :ALL LINES INPUTS
STA PIADDR

2) LDA #SFF JALL LINES OUTPUTS
STA PIADDR

3) LDA #$FO0 ;MAKE LINES 4-7 OUTPUTS. 0-3 INPUTS
STA PIADDR

Step 3 is clearly the difficult part of the configuration, since it involves selecting the
logic connections in the PIA. Some points to remember are:

1) Bits 6 and 7 of the Control register are set by transitions on the control lines and are
cleared by reading the Data register. You cannot change these bits by writing data
into the Control register.

2) Bit 2 of the Control register must be set to address the Data register.

3) Bit 1 determines which pulse edge will set bit 7. Bit 1 is 0 for a high-to-low transi-
tion; bit 1 is 1 for a low-to-high transition.

4) Bit 0 is the interrupt enable for control line 1. Remember that it must be set to ena-
ble interrupts, unlike the 6502 interrupt bit. which must be cleared to enable inter-
rupts. Chapter 12 describes interrupts in more detail.

5) Bit 5 must be set if control line 2 is to be output. Bits 3 and 4 then determine how
control line 2 works. Remember that sides A and B differ, since side A can only pro-
duce a read strobe while side B can only produce a write strobe. Once the strobe
option has been selected, the strobes automatically follow each reading of Data
Register A or writing of Data Register B. You must configure each side of each PIA
in the startup program.

11-18

EXAMPLES OF PIA CONFIGURATION

1) A simple input port with no control lines (as needed for a PIA

set of switches): CONFIGURATION
EXAMPLES
LDA #0 ;CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR ;MAKE ALL LINES INPUTS
LDA #%00000100 ;SELECT DATA REGISTER
STA PIACR

Bit 2 of the Control register must be set to address the Data register. The same se-
quence can be used if a high-to-TOw transition (negative transition) on control line 1
indicates Data Ready or Peripheral Ready.

2) A simple output port with no control lines (as needed for a set of single LED dis-
plays):

LDA #0 ;CLEAR OUT CONTROL REGISTER
STA PIACR

LDA #$FF ;MAKE ALL LINES OUTPUTS

STA PIADDR

LDA #%00000100 ;SELECT DATA REGISTER

STA PIACR

3) An input port with a control input that indicates DATA READY with a low-to-high
transition (positive transition):

LDA #0 ;CLEAR OUT CONTROL REGISTER

STA PIACR

STA PIADDR ;MAKE ALL LINES INPUTS

LDA #%00000110 'MAKE DATA READY ACTIVE LOW-TO-HIGH
STA PIACR

The DATA READY or DATA AVAILABLE line is tied to control line CAL1 or CB1 Bit 1 of
the Control register is set so as to recognize low-to-high transitions on control line 1
This configuration is suitable for most encoded keyboards.

4) An output port that produces a brief strobe to indicate DATA READY or OUTPUT
READY (this could be used for multiplexing displays or for providing a DATA
AVAILABLE signal to a printer):

LDA #0 ;CLEAR OUT CONTROL REGISTER

STA PIACR

LDA #SFF ;MAKE ALL LINES OUTPUTS

STA PIADDR

LDA #%00101100 ;MAKE CONTROL LINE 2 A BRIEF STROBE
STA PIACR

Bit 5 = 1 to make control line 2 an output, bit 4 = 0 to make it a pulse, and bit 3 = 1to
make it a brief active-low strobe (one clock period in duration). The strobe will automat-
ically follow each instruction that writes data into the B side of the PIA; for example, the
instruction

STA PIADRB

will both transfer data and cause a strobe. However, the A side will produce a strobe
only after a read operation. The sequence

STA PIADRA JWRITE DATA
LDA PIADRA ;PRODUCE AN OUTPUT STROBE

will both transfer data and cause a strobe. The LDA instruction is a "dummy read”; it
has no effect other than to cause the strobe (and waste some time). Other instructions
besides LDA could also be used — you should try to name some of them.

11-19

5) An input port with a handshake Input Acknowledge strobe that can be used to tell
a peripheral that the previous data has been accepted (and the computer is ready

for more):
LDA #0 ;CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR ;MAKE ALL LINES INPUTS
LDA #%00100100 ;CONTROL LINE 2 = HANDSHAKE
ACKNOWLEDGE
STA PIACR

Bit 5 = 1to make control line 2 an output, bit 4 = 0 to make it a pulse, and bit 3 = 0 to
make it an active-low acknowledgment that remains low until the next active transition
on control line 1 The acknowledgment will automatically follow a read operation on the
A side of the PIA: for example, the instruction

LDA PIADRA

will both read data and cause the acknowledgment. However, the B side will produce
an acknowledgment only after a write operation. The sequence

LDA PIADRB ‘READ DATA
STA PIADRB ;PRODUCE ACKNOWLEDGMENT

will both read data and produce an acknowledgment. The STA instruction is a "dummy
write"; it has no other effect than to cause the acknowledgment (and waste some time).
Note that the order of the sequence is reversed from the previous example. This con-
figuration is suitable for many CRT terminals that require a complete handshake.

6) An output port with a latched zero control bit (latched individual output or level
output). Such an output can be used to turn the peripheral on or off or to control its
mode of operation.

LDA #0 ;CLEAR OUT CONTROL REGISTER

STA PIACR

LDA #$FF ;MAKE ALL LINES OUTPUTS

STA PIADDR

LDA #%001101 00 ;CONTROL LINE 2 = LATCHED ZERO LEVEL

STA PIACR

Bit 5 = 1to make control line 2 an output, bit 4 = 1to make it a level or latched bit, and
bit 3 = 0 to make the level zero. This output is not affected by operations on the Data
register; its value can be changed by changing the value of bit 3 of the PIA Control
register, i.e..

LDA PIACR

ORA #%00001000 JMAKE LEVEL ONE
STA PIACR

LDA PIACR

AND #% 11110111 JMAKE LEVEL ZERO
STA PIACR

You can use this configuration to produce active-high strobes or to provide pulses with
software-controlled lengths

11-20

USING THE PIA TO TRANSFER DATA

Once the PIA has been configured, you may use its data PIA INPUT/
registers like any other memory locations. The simplest in- OUTPUT
structions for data transfer are:

Load Accumulator, which transfers eight bits of data from the specified input pins to
the Accumulator, and

Store Accumulator, which transfers eight bits of data from the Accumulator to the
specified output pins.

You must be careful in situations where input and output ports do not behave like
memory locations. For example, it often makes no sense to write data into input ports or
read data from output ports. Be particularly careful if the input port is not latched or if
the output port is not buffered.

Other instructions that transfer data to or from memory can also serve as I/O in-
structions. Typical examples are:

Bit Test, which sets the Zero flag as if the values of a set of input pins had been
logically ANDed with the contents of the Accumulator. The Sign (Negative) flag is set to
the value of bit 7 of the input port and the Overflow flag is set to the value of bit 6 of the
input port. This instruction provides a simple way to test the PIA status flags; that
is. the instruction

BIT PIACR

sets the Sign flag to the value of Control register bit 7 (the status latch for control line 1)
and the Overflow flag to the value of Control register bit 6 (the status latch for control
line 2).

Compare, which sets the flags as if the values of a set of input pins had been
subtracted from the contents of the Accumulator.

Here also you must be aware of the physical limitations of the 1/0 ports. Be particularly
careful of instructions like shifts. Increment, and Decrement, which involve both read
and write cycles.

We cannot overemphasize the importance of careful documentation. Often, com-
plex 1/0 transfers can be concealed in instructions with no obvious functions. You must
describe the purposes of such instructions carefully. For example, one could easily be
tempted to remove the dummy read and write operations mentioned earlier since they
do not appear to accomplish anything.

Bit 7 of the PIA Control register often serves as a status bit, PIA STATUS
such as Data Ready or Peripheral Ready. You can check its value BITS
with either of the following sequences:

LDA PIACR ;IS READY FLAG 1?

BMI DEVRDY)YES. DEVICE READY

BIT PIACR ;IS READY FLAG 1?

BMI DEVRDY ;YES. DEVICE READY

Note that you should not use the shift instructions, since they will change the contents
of the Control register (why?). The following program will wait for the Ready flag to go
high:

WAITR BIT PIACR ;IS READY FLAG 17
BPL WAITR ;NO, WAIT

How would you change these programs so that they examine bit 6 instead of bit 7?

11-21

The only way to clear bit 7 (or bit 6) is to read the Data register. A dummy read will
be necessary if a read operation is not normally part of the response to the bit being set.
If the port is used for output, the sequence

STA PIADR ;SEND DATA
LDA PIADR JCLEAR READ FLAG

will do the job. Note that here the dummy read is necessary on either side of the PIA.
The Bit Test instruction can also clear the strobe without changing anything except the
flags. Be particularly careful in cases where the CPU is not ready for input data or has
no output data to send.

11-22

THE 6522 VERSATILE INTERFACE ADAPTER (VIA)

The 6522 Versatile Interface Adapter is an enhanced version of the 6520 Periph-
eral Interface Adapter.®-?'®

The 6522 VIA contains the following (see the block diagram in 6522 VIA
Figure 11-8): FUNCTIONS

1) Two 8-bit I/O ports (A and B). Each pin can be individually
selected to be either an input or an output.

2) Four status and control lines (two associated with each port).

3) Two 16-bit counter/timers which can be used to generate or count pulses. These
timers can produce single pulses or a continuous series of pulses.

4) An 8-bit Shift register which can convert data between serial and parallel forms.

5) Interrupt logic (to be described in Chapter 12) so that I/O can proceed on an inter-
rupt-driven basis.

Thus the Versatile Interface Adapter provides the functions of the PIA plus two 16-bit
counter/timers and an 8-bit Shift register. We will describe the use of the
counter/timers later in this chapter. The Shift register provides a simple serial 1/O
capability that is only occasionally useful; we will not discuss it any further.

Each VIA occupies sixteen memory addresses. The RS (register VIA

select) lines choose the various internal registers, as described in ADDRESSES
Table 11-7 The way that a VIA operates is determined by the

contents of four registers.

1) Data Direction Register A (DDRA) determines whether the pins on Port A are in-
puts (Os) or outputs (159).

2) Data Direction Register B (DDRB) determines whether the VIA
pins on Port B are inputs (Os) or outputs (1s). REGISTERS
AND CONTROL

3) The Peripheral Control register (PCR) determines which LINES

polarity of transition (rising edge or falling edge) is recognized
on the input status lines (CA1 and CB1) and how the other
status lines (CA2 and CB2) operate. Figure 11-9 describes the bit assignments in
the Peripheral Control register; as usual, the functions and bit positions are ar-
bitrarily selected by the manufacturer. Note that the 6522 Peripheral Control
register does not contain status bits (latches) like the 6520 Control register; these
bits are located in the separate Interrupt Flag register (see Figure 11-11).

4) The Auxiliary Control register (ACR) determines whether the data ports are
latched and how the timers and Shift register operate. These functions are not pre-
sent in the 6520 PIA. Figure 11-10 describes the bit assignments in Auxiliary Con-
trol register.

Note that there is a data direction register for each side but only one control register
(unlike the 6520, which has a separate control register for each side). Ports A and B are
virtually identical. One important difference is that Port B can handle Darlington tran-
sistors, which are used to drive solenoids and relays. We will use Port A for input and
Port B for output in our examples later in this chapter.

11-23

Figure 11-8. Block Diagram of the 6522 Versatile Interface Adapter

Table 11-7. Addressing 6522 VIA Internal Registers

Select Lines

Label % ™M — o Addressed Location

QD <«

¢4
DEV 0 0 0 0 Output register for I/O Port B
DEV+1 0O 0 O 1 Output register for /0 Port A. with handshaking
DEV+2 0 0 1 0 /O PortB Data Direction register
DEV+3 0O 0 1 1 I/O PortA Data Direction register
DEV+4 0 1 0 0 ReadTimer 1 Counter low-order byte

Write to Timer 1 Latch low-order byte

DEV+5 0O 1 o0 1 Read Timer 1 Counter high-order byte

Write to Timer 1 Latch high-order byte and

initiate count

DEV+6 0 1 1 0 Access Timer 1 Latch low-order byte

DEV+7 0o 1 Access Timer 1 Latch high-order byte

DEV+8 1 0 0 O Read low-order byte of Timer 2 and reset
Counter interrupt
Write to low-order byte of Timer 2 but do not
reset interrupt

=
=

DEV+9 1 0 O 1 Access high-order byte of Timer 2; reset
Counter interrupt on write
DEV+A 1 0 1 0 Serial /O Shift register
DEV+B 1 0 1 1 Auxiliary Control register
DEV+C 1 1 0 0 Peripheral Control register
DEV+D 1 1 0 1 |Interrupt Flag register
DEV+E 1 1 1 0 Interrupt Enable register
DEV+F 1 1 1 1 Output register for I/0 Port A, without handshaking

11-25

-Bit Number

-Peripheral Control register

0 Request interrupt on high-to-low
transition of CAl

1 Request interrupt on low-to-high

transition of CAl

000
001
010
011
100
101
110
11

=y

CA2 input mode
CA2 independent input mode
CA2 input mode
CA2 independent input mode

On interrupt request set

CA2 output low on CPU read or write

CAZ2 output low pulse on CPU read or write
Output CA2 low
Output CA2, high

0 Request interrupt on high-to-low \
transition of CB1

1 Request interrupt on low-to-high

transition of CB1

-000
001
010
011
100
101
110
111

CB2 input mode
CB2 independent input mode
CB2 input mode
CB2 independent input mode

On interrupt request set

Request interrupt on
low-to-high CB2 transition

CB2 output low on CPU write

CB2 output low pulse on CPU write
Output CB2 low

Output CB2 high

Interrupt Flag register bit 1

Request interrupt on
high-to-low CA2 transition
Request interrupt on
low-to-high CA2 transition

Interrupt Flag register bit 4

Request interrupt on
high-to-low CB2 transition

On interrupt
request set

Interrupt Flag
register bit 0

Figure 11-9. 6522 VIA Peripheral Control Register Bit Assignments

7 6 54 32 10

Bit Number

Auxiliary Control register

>0 Disable input latch on Port A
1 Enable input latch on Port A

0 Disable input latch on Port B
1 Enable input latch on Port B

000
001
010
011
100
101
110
111

Disable Shift register
Shift in at Counter 2 rate
Shift in at <2 clock rate

Shift in at external clock rate
Free-running output at Counter 2 rate

Shift out at Counter 2 rate
Shift out at $2 clock rate

Shift out at external clock rate

0 Decrement Counter 2 on $ 2 clock,in one-shotmode

1 Decrement Counter 2 on externalpulsesinput via

0 Disable output via PB7"
1 Enable output via PB7 1

0 One-shot mode

1 Free-running mode

>Counter 1 controls
|

PB6

Figure 11-10. 6522 VIA Auxiliary Control Register Bit Assignments

11-26

CONFIGURING THE VIA

The program must select the logic connections in the VIA STEPS IN
before using it. This selection (or configuration) is usually CONFIGURING
part of the startup routine. The steps are to establish the A VIA

directions of the 1/0O pins by loading the Data Direction register
and to select the required logic connections in the VIA by loading the Peripheral Con-
trol register and, if necessary, the Auxiliary Control register.

You can establish the directions of the 1/0 pins as follows:

1) A '0'in abit in the Data Direction register makes the ESTABLISHING
corresponding pin an input. For example, a O in bit 5 of VIA PIN
Data Direction Register A makes pin PA5 an input. DIRECTIONS

2) A v in abit in the Data Direction register makes the
corresponding pin an output. For example, a'1' in bit 3 of Data Direction Register
B makes pin PB3 an output.

The directions of almost all I/0 pins are fixed after the initialization since most input and
output lines transfer data in only one direction (i.e., the microprocessor will never fetch
data from a printer or send data to a keyboard).

Some simple examples of setting directions are:

1) LDA #0 JALL LINES INPUTS
STA VIADDRA

2) LDA #$FF JALL LINES OUTPUTS
STA VIADDRB

3) LDA #$FO0 JMAKE LINES 4-7 OUTPUTS, 0-3 INPUTS
STA VIADDRB

You can mix inputs and outputs on a single port by establishing the dii

dividual pins appropriately. Port B is buffered so that its contents can be read correctly
even when it is being used for output; Port A is not buffered so that its contents can be
read correctly only if it is lightly loaded (or designated as inputs).

Configuring the VIA is difficult because of its many func- VIA PERIPHERAL
tions. Most of the I/O port functions are controlled by the CONTROL
Peripheral Control register, and we shall discuss these first. REGISTER

Some points to remember are:

1) Reset clears all the VIA registers, making all lines inputs and disabling all inter-
rupts. All edge detection facilities are set to trigger on falling edges (high-to-low
transitions).

2) Bits 0-3 of the Peripheral Control register are used to establish the logic con-
nections for control lines CA1 and CA2; bits 4-7 have the same purposes for
control lines CB1 and CB2.

3) Control lines CA1 and CB1 are always inputs. The only choice is whether the
corresponding status latches (Interrupt Flag register bits 1 and 4 — see Figure
11-11) are set on falling edges (high-to-low, or negative, transitions) or on rising
edges (low-to-high, or positive, transitions). For CA1, bit 0 = 0 for falling edges and
1 for rising edges; for CB1, bit 4 = 0 for falling edges and 1 for rising edges.

4) Control lines CA2 and CB2 can be either inputs or outputs (see Tables 11-8 and
11-9). For CA2, bit 3 = 1 to make it an output and 0O to make it an input.

11-27

PCR7
0

Table 11-8. Configurations for 6522 VIA Control Line CB2

PCR6
0

PCR5
0

Mode

Interrupt Input Mode — Set CB2 Interrupt flag
(IFR3) on a negative transition of the CB2 input
signal. Clear IFR3 on a read or write of the Pe-
ripheral B Output register.

Independent Interrupt Input Mode — Set IFR3 on
a negative transition of the CB2 input signal
Reading or writing ORB does not clear the Inter-
rupt flag.

Input Mode — Set CB2 Interrupt flag on a posi-
tive transition of the CB2 input signal. Clear the
CB2 Interrupt flag on a read or write of ORB.

Independent Input Mode — Set IFR3 on a posi-
tive transition of the CB2 input signal. Reading or
writing ORB does not clear the CB2 Interrupt
flag.

Handshake Output Mode — Set CB2 low on a
write ORB operation. Reset CB2 high with an ac-
tive transition of the CB1 input signal.

Pulse Output Mode — Set CB2 low for one cycle
following a write ORB operation.

Manual Output Mode — The CB2 output is held
low in this mode.

Manual Output Mode — The CB2 output is held
high in this mode.

11-28

PCR3
0

Table 11-9. Configurations for 6522 VIA Control Line CA2

PCR2
0

PCR1
0

Mode

Input Mode — Set CA2 Interrupt flag (IFRO) on a
negative transition of the input signal. Clear IFRO
on a read or write of the Peripheral A Output
register.

Independent Interrupt Input Mode — Set IFRO on
a negative transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2
Interrupt flag.

Input Mode — Set CA2 Interrupt flag on a posi-
tive transition of the CA2 input signal. Clear IFRO
with a read or write of the Peripheral A Output
register.

Independent Interrupt Input Mode — Set IFRO on
a positive transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2
Interrupt flag.

Handshake Output Mode — Set CA2 output low
on a read or write of the Peripheral A Output
register. Reset CA2 high with an active transition
on CAL.

Pulse Output Mode — CA2 goes low for one cy-
cle following a read or write of the Peripheral A
Output register.

Manual Output Mode — The CA2 output is held
low in this mode.

Manual Output Mode — The CA2 output is held
high in this mode.

11-29

- Bit Number

IRQ T1 T2 CB1 CB2 SR CAl CA2 - Interrupt Flag register
Bit No. Set By Cleared By
o Active transition of the signal Reading or writing the A Port Output
on the CA2 pin. register (ORA) using address 0001.
Active transition of the signal Reading or writing the A Port Output
1 on the CA1l pin. register (ORA), using address 0001.
Completion of eight shifts. Reading or writing the Shift
2 register.
3 Active transition of the signal Reading or writing the B Port
on the CB2 pin. Output register.
4 Active transition of the signal Reading or writing the B Port
on the CB1 pin. Output register.
5 Time-out of Timer 2. Reading T2 low-order counter or
writing T2 high-order counter.
Time-out of Timer 1. Reading T1 low-order counter or
6 . B
writing T1 high-order latch
7 Active and enabled interrupt Action which clear interrupt
condition. condition.

Bits 0, 1, 3, and 4 are the I/O handshake signals. Bit 7 (IRQ) is 1 if any of the interrupts is both active
and enabled (see Chapter 12).

Figure 11-11 The 6522 VIA Interrupt Flag Register

11-30

Further functions are as follows:

CA2 Input
Bit 2 = 1 to trigger on a rising edge, 0 to trigger on a falling edge.
Bit 1 = 1to make Interrupt Flag register bit 0 (the CA2 input status latch) independent

of operations on 1/0O Port A, 0 to have that bit cleared by operations on /O Port
A

The independent mode is useful when CA2 is being used for purposes (such as a real-
time clock) that are completely unrelated to the data transfers through the 1/0 port. The
regular mode is useful when CA2 is being used as a handshaking signal which must be
cleared to prepare for the next I/O operation (see Figures 11-5 and 11-6).

CA2 Output
Bit 2 = 1 to make CA2 a level, 0 to make it a pulse
If CA2 is a level, bit 1 is its value

If CA2 is a pulse, bit 1is 0 to have CA2 go low when the CPU transfersdata toor from
Port A and remain low until an active transition occurs on CA1; bit 1is 1 to have
CA2 go low for one clock cycle after the CPU transfers data to or from Port A.

CB2 is handled exactly the same (using bits 7, 6, and 5 of the Peripheral Control register
and bit 3 of the Interrupt Flag register) except that pulses are produced on CB2 only
after data is written into Port B. To produce a pulse after reading data, you must use a
"dummy write", that is:

LDAVIAORB ;GET DATA FROM PORT B

STAVIAORB ;PRODUCE STROBE FROM PORT B
The only 1/O port function governed by the Auxiliary Control VIA INPUT
register (Figure 11-10) is input latching. Bit 0 (for Port A) or bit 1 LATCHES

(for port B) must be set to latch the input data on theactive transi-
tion on control line 1 (as determined by the Peripheral Control register) Note the
following features of the latching function:

1) RESET disables the input latches. The 6522 VIA then operates like the 6520 PIA,
which has no input latches.

2) For Port A, the data that is latched will always be the data on the peripheral pins.
Since Port A is not buffered, that data may not be the same as the data in the Out-
put register when the port is being used for output.

3) For Port B, the data that is latched is either the data on the peripheral pins (for those
pins defined as inputs) or the contents of the Output register (for those pins defined
as outputs).

Some simple examples of activating the input latches are:

LDA #%00000001
STA VIAACR IACTIVATE LATCHON PORT A
LDA #%00000010
STA VIAACR ACTIVATE LATCHON PORT B
LDA #%00000011
STA VIAACR ACTIVATE LATCHES ON PORTS A AND B

Note that 6522 output ports are automatically latched, just like 6520 output ports.

11-31

EXAMPLES OF VIA CONFIGURATION
1) A simple input port with no control lines (as needed for VIA

a set of switches): CONFIGURATION
LDA #0 EXAMPLES
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS

Remember that Reset clears all the internal registers so that this sequence may not
even be necessary. The same sequence can be used if a high-to-low edge (falling
edge) on control line CAl indicates Data Ready or Peripheral Ready.

2) A simple output port with no control lines (as needed for a set of single LED dis-

plays):
LDA #0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
LDA #SFF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS

3) Aninput port with an active low-to-high DATA READY signal attached to CA1
(as needed for an encoded keyboard):

LDA #0

STA VIADDRA :MAKE PORT A LINES INPUTS
LDA #1 ‘MAKE RISING EDGE ACTIVE
STA VIAPCR

Bit 1 of the Peripheral Control register is set so as to recognize low-to-high transitions
on control line CAl. Such a transition will set bit 1 of the Interrupt Flag register (see
Figure 11-10): reading the data from the port will clear that bit (see the table associated
with Figure 11-11). Input latching can be provided by setting bit 0 of the Auxiliary Con-
trol register.

4) An output port that produces a brief strobe to indicate DATA READY or OUT-
PUT READY (this could be used for multiplexing displays or for providing a DATA
AVAILABLE signal to a printer):

LDA #SFF

STA VIADDRB ;MAKE PORT BLINES OUTPUTS
LDA #%10100000
STA VIAPCR

The brief strobe on control line CB2 will occur after every output operation. Bit 7 of the
Peripheral Control register is 1 to make CB2 an output, bit 6 is 0 to make CB2 a pulse,
and bit 5 is 1 to make CB2 a brief (one clock cycle) pulse following each output.

5) An input port with a handshake Input Acknowledge strobe that can be used to
tell a peripheral that the previous data has been accepted (and that the com-
puter is ready for more):

LDA #0
STA VIADDRA ;MAKE PORT ALINES INPUTS
LDA #%00001000 ;CONTROL LINE 2 =HANDSHAKE

; ACKNOWLEDGE

The strobe on control line CA2 will occur after every input or output operation. It will re-
main low until the next active transition on control line CALl. Bit 3 of the Peripheral Con-
trol register is 1 to make CA2 an output, bit 2 is 0 to make CA2 a pulse, and bit 1is 0 to
make CA2 an active-low acknowledgment that lasts until the next active transition on
CAL. Note that the active transition on CA1 is a falling edge since bit 0 of the Peripheral
Control register is 0. This configuration is suitable for many CRT terminals that require a
complete handshake.

11-32

6) An output port with a latched active-low control bit (latched output or level
output). Such an output bit can be used to turn a peripheral on or off or to control
its mode of operation.

LDA #$FF ;MAKEPORT BLINES OUTPUTS
STA VIADDRB
LDA #% 11000000 ;CONTROLLINE 2 = LATCHED ZERO LEVEL

STA VIAPCR

Bit 7 = 1to make control line CB2 an output, bit 6 = 1 to make it a level or latched bit,
and bit 5 = 0 to make the active level zero. This bit is not affected by operations on the
1/0 port or Output register; its value can be changed by changing bit 5 of the Peripheral
Control register, i.e.,

LDA VIAPCR

ORA #% 00100000 'MAKE LEVEL ONE
STA VIAPCR

LDA VIAPCR

AND #% 11011111 ;MAKE LEVEL ZERO
STA VIAPCR

You can use this configuration to produce an active-high or active-low strobe or to pro-
vide pulses with software-controlled lengths.

USING THE VIA TO TRANSFER DATA

Once the VIA has been configured, you may use its data registers VIA INPUT/
like any other memory location (just as with the PIA). The common OUTPUT
ways to transfer data, status, and control are with the instructions

Load Accumulator, Store Accumulator, Bit Test, and Compare. Note that Output
Register A can be addressed in two ways — one with handshaking (address 1) and one
without handshaking (address F). The address without handshaking allows you to use
CAl independently of the peripheral attached to I/O Port A. That control line could be
used for an alarm, clock input, control panel interface, or extra control input from
another peripheral. The Interrupt flag for that input can be cleared directly by clearing
the appropriate bits in the Interrupt Flag register (see Figure 11-11). The alternate ad-
dress for Output Register A and the independent modes for control lines CA2 and CB2
allow use of control lines without having to worry about the automatic handshaking
features of the VIA.

11-34

VIA INTERRUPT FLAG REGISTER

We have mentioned the VIA Interrupt Flag register (see Figure VIA INTERRUPT
11-11) on several occasions. The table in Figure 11-11 ex- FLAG REGISTER
plains the meanings of the various bits (bit 7 is a general in-

terrupt request bit that is 1 if any interrupt is both active and enabled).

Any of the flags in the Interrupt Flag register may be explicitly cleared by writing
a logic 1 into the corresponding bit position. This procedure is useful when the con-
trol lines are being used independently of the data ports (as in the independent input
mode described in Tables 11-8 and 11-9) or when no data transfers are actually re-
quired in response to the flag being set. Some examples of explicitly clearing the flags
are:

LDA #%00000010

STA VIAIFR JCLEAR CAl INTERRUPT FLAG

LDA #%00001000

STA VIAIFR ;CLEAR CB2 INTERRUPT FLAG

LDA #% 11111111

STA VIAIFR ;CLEAR ALL INTERRUPT FLAGS

The value written into bit 7 does not matter, since that flag cannot be explicitly set or
cleared from the CPU.

Bits 0, 1, 3, and 4 of the VIA Interrupt Flag register often serve as handshake status bits
such as Data Ready or Peripheral Ready. You can check their values with appropriate
masking or shifting operations.

LDA VIAIFR

AND #%00000010 ;IS CA1 FLAG SET?
BNE DEVRDY ;YES. DEVICE READY
LDA VIAIFR

AND #%00010000 ;IS CB1 FLAG SET?
BNE DEVRDY ;YES. DEVICE READY

The flag is then automatically cleared by reading or writing the appropriate port or by
explicitly clearing the bit in the Interrupt Flag register. The following program will wait
for a Ready flag attached to input CA1 to go high:

WAITR LDA VIAIFR
AND #%00000010 ;IS CA1L FLAG SET?
BEQ WAITR iNO, WAIT

How would you change these programs to handle Ready lines attached to CA2, CB1, or
cB2?

Note that the flag will remain set unless some operation clears it. If no operation is
actually required, some dummy operation (such as reading the port and discarding the
data) will be necessary simply to clear the flag. Be particularly careful in cases where
the CPU is not ready for data or has no output data to send. Obviously, careful docu-
mentation is essential in cases where the purposes of operations may be far from ob-
vious.

11-35

VIA TIMERS9' 10

As we noted earlier, the VIA contains two 16-bit counter/timers. | VIA TIMERS |
These timers are handled as follows:

1) They may be read or written as six memory locations, four for timer 1 and two
for timer 2 (see Table 11-7).

2) Their modes of operation are controlled by bits 5, 6, and 7 of the Auxiliary
Control register (see Figure 11-10),

3) Their status may be determined by examining bits 5 and 6 of the Interrupt
Flag register (see Figure 11-11).
The timers can be used as follows:

1) To generate asingle time interval. The timer must be loaded with the number of
clock pulses that are required.

2) To count pulses on pin PB6 (timer 2 only). The timer must be loaded with the
number of pulses to be counted. This use of PB6 takes precedence over its normal
use as an /O pin.

3) To generate continuous time intervals (timer 1 only) for use in real-time ap-
plications. The timer must be loaded with the number of clock pulses per interval.

4) To produce a single pulse or a continuous series of pulses on pin PB7 (timer 1
only). The timer must be loaded with the number of clock pulses per interval. This
use of PB7 takes precedence over its normal use as an /O pin.

11-36

OPERATION OF 6522 VIA TIMER 2

Timer 2 is simpler than timer 1 and can be used only to generate a single time in-
terval (the one-shot mode) or to count pulses on pin PB6. Bit 5 of the Auxiliary Con-
trol register selects the mode:

Bit 5 = 0 for one-shot mode, 1 for pulse-counting mode.

The 16-bit timer occupies two memory locations (see Table 11-7). The first address is
used to read or write the 8 least significant bits: reading this address also clears the
timer 2 interrupt flag (Figure 11-11). The second address is used to read or write the 8
most significant bits; writing into this address loads the counters, clears the timer 2 in-
terrupt flag, and starts the timing operation. The completion of the operation sets the
timer 2 interrupt flag (bit 5 of the Interrupt Flag register as shown in Figure 11-11).

Examples of timer 2 operation are as follows:
1) Wait for 1024 (0400-6> clock pulses to elapse.

LDA #0 ;PUT TIMER 2 IN ONE-SHOT MODE (BIT
; 5=0)

STA VIAACR

STA VIAT2L :MAKE PULSE LENGTH 0400 HEX

LDA #4

STA VIAT2H :START TIMING INTERVAL

LDA #9% 00100000 :GET MASK FOR TIMER 2 INTERRUPT FLAG
WAITD BIT VIAIFR JIS TIMER 2 FLAG SET?

BEQ WAITD :NO, INTERVAL NOT COMPLETED

LDA VIAT2L :YES, CLEAR INTERRUPT FLAG

BRK

Note the following steps in the program:

a) Putting the timer in the one-shot mode by clearing bit 5 of the Auxiliary Control
register.

b) Loading the timer with the initial count (0400-) g) required to give the correct inter-
val. Loading the MSBs of the timer also starts the timing operation.

¢) Waiting for the interval to be completed. A timeout sets bit 5 of the Interrupt Flag
register.

d) Clearing the interrupt flag so that it does not interfere with other operations. The in-
struction LDA VIAT2L performs this function.

2) Generate a delay of length given by 10 pulses on pin PB6.

LDA #0

STA VIADDRB MAKE PORT B INPUTS

LDA #%00100000 PUT TIMER 2 IN PULSE-COUNTING MODE

(BIT5= 1)

STA VIAACR

LDA #10 ‘MAKEPULSE COUNT 10

STA VIAT2L

LDA #0

STA VIAT2H START PULSE COUNTING

LDA #% 00100000 GET MASK FOR TIMER 2 INTERRUPT FLAG
WAITC BIT VIAIFR IS TIMER 2 FLAG SET?

BEQ WAITC NO, COUNT NOT COMPLETE

LDA VIAT2L YES. CLEAR INTERRUPT FLAG

BRK

This program is the same as the previous example, except that the mode of timer 2
is different. Here the input on pin PB6 could be a periodic clock line or a line that is
simply pulsed with each occurrence of some external operation.

11-37

OPERATION OF 6522 VIA TIMER 1

Timer 1 has four operating modes (see Figure 11-10) which allow it to generate a
single time-interval (one-shot mode) or a continuous series of intervals (free-run-
ning mode). Furthermore, each loading operation can generate an output pulse on PB7
which can be used to control external hardware. Bits 6 and 7 of the Auxiliary Control
register determine the mode of timer 2 as follows:

Bit 7 = 1to generate output pulses on pin PB7, O to disable such pulses (in the free-run-
ning mode, PB7 is inverted each time the counter reaches zero).

Bit 6 = 1 for free-running mode, 0 for one-shot mode.

Timer 1 occupies four memory addresses (see Table 11-7). The first two addresses
are used to read or write the counters. Writing into the second address loads the coun-
ters, clears the timer 1 Interrupt flag, and starts the timing operation. The next two ad-
dresses are used to read from or write into the latches without affecting the counters.
This allows the generation of complex waveforms in the free-running mode. Writing
into the most significant bits of the latches also clears the timer 1 interrupt flag.

Examples of timer 1 operation are as follows:

1) Wait for 4096 (1000-|q) clock pulses to elapse before producing an output on pin

PB7.
LDA #0 ;PUT TIMER 1 IN SINGLE PULSE, NO OUTPUT
MODE
STA VIAACR
STA VIAT1L :PULSE LENGTH = 1000 HEX
LDA #$10
STA VIAT1CH ;START TIMING INTERVAL
LDA #% 01000000 JGET MASK FOR TIMER 1 INTERRUPT FLAG
BIT VIAIFR ;IS TIMER 1 FLAG SET?
BEQ WAITD ;NO. INTERVAL NOT COMPLETED
LDA VIAT1L 'YES, CLEAR TIMER 1 INTERRUPT FLAG
BRK

The only changes from the program for timer 2 are the different addresses used to load
the pulse length and the different bit position (bit 6 instead of bit 5) that is examined for
the interrupt flag.

2) Produce an interrupt every 2048 (080019) clock pulses and produce a continuous
series of cycles on pin PB7 with a half-width of 2048 clock pulses.

LDA #$FF ;MAKE PORT B LINES OUTPUTS
STA VIADDRB
LDA #%11000000 ;PUT TIMER 1 IN CONTINUOUS MODE WITH

OUTPUT TO PB7
STA VIAACR

LDA #0 ;MAKE PULSE LENGTH 0800 HEX
STA VIATIL

LDA #8

STA VIATICH :START TIMING INTERVALS

BRK

This routine will produce a continuous series of intervals that will be marked by the set-
ting of the timer 1 Interrupt flag (bit 6 of the Interrupt Flag register). The main program
can look for the occurrence of each interval (with the waiting routine from Example 1).
or (more sensibly) the end of each interval can produce an interrupt (see Chapter 12).
The level on PB7 will be inverted at the end of each timer interval (it will go low when
the first interval starts). Timer 1 will run continuously with the values in the latches au-
tomatically being reloaded into the counters each time the counters reach zero.

11-38

THE 6530 AND 6532 MULTIFUNCTION SUPPORT DEVICES

The 6530 and 6532 devices contain memory as well as 1/0 6530 AND 6532
ports. They are sometimes referred to as combination MULTIFUNCTION
chips, multifunction support devices, or ROM DEVICES
(RAMI/IO/TIMER chips (RIOTs). The 6530 device has:

1024 bytes of ROM

64 bytes of RAM

Two 8-bit I/O ports (A and B). although pins 5 through 7 of Port B are often used for
chip selects and an interrupt output

One 8-bit timer

Figure 11-12 is a block diagram of the 6530 device and Table 11-10 describes its inter-
nal addressing. The 6532 device has:

128 bytes of RAM

Two 8-bit I/0 ports (A and B), although pin 7 of Port A is often used as a strobe input
comparable to pins CA1 or CB1 of a 6520 or 6522 device,

One 8-bit timer

Figure 11-13 is a block diagram of the 6532 device and Table 11-11 describes its inter-
nal addressing. Note that 6532 devices contain no ROM.

The following features of 6530 and 6532 devices should be noted:

1)

2)

3)

Neither contains any dedicated I/O control lines, although pin 7 of Port A on a 6532
device can be used for this purpose.

Both contain a single 8-bit timer with a prescaler that allows timing intervals with
multiplying factors of 1, 8, 64, or 1024 clock pulses. The timer can thus be used to
provide intervals far longer than the basic 256 clock counts.

The end of the timing interval either causes an interrupt or sets aflag which can be
read.

The 6530 and 6532 devices are used in such popular single-board microcomputers as
the KIM, VIM, SYM. and AIM-65.11" 14

11-39

3

I ... £ uls.
aS % cc d eclec
J s h |
1/0 Port B
Control
and
Select logic
1/0 Port A 1/0 Port B
Data Direction Data Direction
register register
Interval
N [[
................. [0} Timer
Data
Buffer
64 Bytes 1024 Bytes
of of
RAM ROM

Figure 11-12. Block Diagram of the 6530 Multifunction Device

11-40

Table 11-10. Internal Addressing for the 6530 Multifunction Device

Pimary Select

RAM 110 Timer Accessed Locations
RSO
Select* Select*
X X AO A9 directly address one of 1024 ROM bytes
0 1 0 AO AS directly address one of 64 RAM bytes
Secondary
Select Interpretation
A3 A2 Al AO
0 0 1 X 0 0 0 Access 1/0 Port A
O 0 1 X 0 0 1 Access /O Port A Data Direction register
0 0 1 X 0 1 0 Access 1/0 Port B
0 0 1 X 0 1 1 Access 1/0 Port B Data Direction register
0 0] 1w 0] 1 X X Disable IRQ
0 0 iw 1 1 X X Enable IRQ
0 0 1w X 1 0 0 Write to timer, then decrement every qulse
0 0 1w X 1 0 1 Write to timer, then decrement every 8 <2 pulses
0 0 iw X 1 1 0 Write to timer, then decrement every 64 <t2 pulses
0 0 1w X 1 1 1 Write to timer, then decrement every 1024 <¢2 pulses
0 0 1R X 1 X 0 Read timer
0 0 1R X 1 X 1 Read interrupt flag

* RAM select and I/O select are ‘true” if 1, or ' false" if 0; true and false are functions of your
specification. You specify the combination of address lines that create a “true” line condition.

X represents “"don't care” . Bits may be 0 or 1

1R represents Select during a read.

1W represents Select during a write.

11-41

WA
PAO PA7 IRQ PBO PB7 R uice o« " ¥

Interrupt Logic 1/0 Port B
Control
and
Select Logic
1/10 Port A 1/0 Port B
Data Direction Interval i Data Direction
. ’ Timer .
Register Register
Data n
Buffer
128 Bytes
of
RAM

Figure 11-13. Block Diagram of the 6532 Multifunction Device

Table 11-11 Internal Addressing for the 6532 Multifunction Device

Primary Select Secondary Select
RAM /O Timer Interpretation
A4 A3 A2 Al AO
Select Select
1 0 X X X X X AO - A6 directly addresses one of 128 RAM bytes
0 1 X X 0 0 0 Access 1/0 Port A
0 1 X X 0 0 1 Access 1/0 Port A Data Direction register
0 1 X X 0 1 0 Access 1/0 Port B
0 1 X X 0 1 1 Access I/O Port B Data Direction register
0 iw 1 0 1 X X Disable IRQ
0 w 1 1 1 X X Enable IRQ
0 iw 1 X 1 0 0 Write to timer, then decrement every <2 pulse
O iw 1 X 1 0 1 Write to timer, then decrement every 8 <2 pulses
0 iw 1 X 1 1 0 Write to timer, then decrement every 64 <>2 pulses
0 iw 1 X 1 1 1 Write to timer, then decrement every 1024 4>2 pulses
0 1R X X 1 X 0 Read timer
0 1R X X 1 X 1 Read interrupt flags
0 iw 0 X 1 X 0 Request interrupt on high-to-low PA7 transition
0 1w 0 X 1 X 1 Request interrupt on low-to-high PA7 transition
0 iw 0 X 1 0 X Enable PA7 interrupt request
0 w 0 X 1 1 X Disable PA7 interrupt request
X represents "don't care” Bits may be 0 or 1

1Rrepresents Read access. 1W represents Write access.

11-42

EXAMPLES
A Pushbutton Switch

Purpose: To interface a single pushbutton switch to a 6502 microprocessor by means
of a 6522 Versatile Interface Adapter. The pushbutton is a single mechani-
cal switch that provides a contact closure (logic level '0") while pressed

Figure 11-14 shows the circuitry required to interface the pushbutton. It uses one bit of
a 6522 VIA, which acts as a buffer; no latch is needed since the pushbutton remains
closed for many CPU clock cycles. Pressing the button grounds the VIA input bit. The
pullup resistor ensures that the input bit is T if the button is not being pressed.

+5v

Figure 11-14. A Pushbutton Circuit

11-43

Programming Examples:

We will perform two tasks with this circuit. They are:

a) Set a memory location based on the state of the button.
b) Count the number of times that the button is pressed.
Task 1: Determine Switch Closure

Purpose: Set memory location 0040 to one if the button is not being pressed, and to
zero if it is being pressed.

Sample Cases:

1) Button open (i.e., not pressed)
Result = (0040) =01

2) Button closed (i.e., pressed)
Result = (0040) = 00

Flowchart:
Program:
LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER = ZERO
LDA VIAORA READ BUTTON POSITION
AND #MASK IS BUTTON CLOSED (LOGIC ZERO)?
BEQ DONE YES, DONE
INC $40 NO, MARKER =1
BRK

11-44

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR
00031 VIAPCR
0004)
0005 8D STA VIADDRA
0006)
00071 VIADDRA
0008 85 STA $40
0009 40
000A AD LDA VIAORA
000B) VIAORA
oooct
000D 29 AND #MASK
000E MASK
OOCF FO BEQ DONE
0010 02
0011 E6 INC $40
0012 40
0013 00 DONE BRK

The addresses VIAPCR (Peripheral Control register). VIADDRA (Data Direction Register
A), and VIAORA (Output Register A) depend on how the VIA is connected in your
microcomputer. The VIA control lines are not used in this example; the contents of the
Peripheral Control register are thus irrelevant but we have cleared that register as a pre-
caution against spurious operations. We have assumed (as is usually the case) that the
VIA addresses are not on page zero.

MASK depends on the bit to which the pushbutton is connected; it has a one in the
button position and zeros elsewhere.

Button Position Mask

(Bit Number) Binary Hex
0 00000001 01
1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 10
5 00100000 20
6 01000000 40
7 10000000 80

11-45

If the button is attached to bit 6 or bit 7 of the VIA input port, the program can use a Bit
Test instruction to set the Overflow or Sign bits and thereby determine the button's
state. For example,

Bit 7

BIT VIAORA ;IS BUTTON CLOSED (LOGIC ZERO)?
BPL DONE 'YES, DONE

Bit 6

BIT VIAORA ;IS BUTTON CLOSED (LOGIC ZERO)?
BVC DONE 'YES. DONE

Note the use of BVC or BVS to check the value of bit 6.

We could also use shift instructions if the button is attached to bits 0, 6, or 7. The se-
quence for bit 0 is:

LSR VIAORA :IS BUTTON CLOSED (LOGIC ZERO)?
BCC DONE ;YES, DONE

The instructions ASL or ROL can be used with bits 6 or 7. Do the contents of the VIA
Data register actually change? Explain your answer.

11-46

Task 2: Count Switch Closures

Purpose: Count the number of button closures by Incrementing memory location 0040
after each closure.

Sample Case:

Pressing the button ten times after the start of the program should give

(0040) = 0A
Note: In order to count the number of times that the button has SWITCH
been pressed, we must be sure that each closure causes a single | BOUNCE

transition. However, a mechanical pushbutton does not produce a

single transition for each closure, because the mechanical contacts bounce back and
forth before settling into their final positions. We can use hardware to eliminate the
bounce or we can handle it in software.

The program can debounce the pushbutton by waiting after it DEBOUNCING
finds a closure. The required delay is called the debouncing IN SOFTWARE
time and is part of the specifications of the pushbutton. It is

typically a few milliseconds long. The program should not examine the pushbutton dur-
ing this period because it might mistake the bounces for new closures. The program
may either enter a delay routine like the one described previously or may simply per-
form other tasks for the specified amount of time.

Even after debouncing, the program must still wait for the present closure to end before
looking for a new closure. This procedure avoids double counting. The following pro-
gram uses a software delay of 10 ms to debounce the pushbutton. You may want to try
varying the delay or eliminating it entirely to see what happens. To run this program,
you must also enter the delay subroutine into memory starting at location 0030.

Flowchart:

11-47

Source Program:

LDA #0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS
STA $40 ;COUNT = ZERO INITIALLY

CHKCL LDA VIAORA
AND #MASK ;IS BUTTON BEING PRESSED?
BNE CHKCL ;NO. WAIT UNTIL IT IS
INC $40 JYES. ADD 1 TO CLOSURE COUNT
LDY #10 ;WAIT 10 MS TO DEBOUNCE BUTTON
JSR DELAY

CHKOP LDA VIAORA
AND #MASK IS BUTTON STILL BEING PRESSED?
BEQ CHKOP ;YES. WAIT FOR RELEASE
BNE CHKCL ;NO, LOOK FOR NEXT CLOSURE

11-48

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR
00031
00041 VIAPCR
0005 8D STA VIADDRA
0006)
0007) VIADDRA
0008 85 STA $40
0009 40
000A AD CHKCL LDA VIAORA
000B) VIAORA
000C)
000D 29 AND #MASK
000E MASK
000F DO BNE CHKCL
0010 Fo
0011 E6 INC $40
0012 40
0013 AO LDY #10
0014 OA
0015 20 JSR DELAY
0016 30
0017 00
0018 AD CHKOP LDA VIAORA
0019)
001 A) VIAORA
001 B 29 AND #MASK
001cC MASK
001D FO BEQ CHKOP
001E F9
001F DO BNE CHKCL
0020 E9

The three instructions beginning with the label CHKOP are used to determine when the
switch reopens.

Clearly we do not really need a VIA for this simple interface. An addressable tri-state
buffer would do the job at far lower cost.

11-49

A Toggle Switch

Purpose: To interface a single-pole, double-throw (SPDT) toggle switch to a 6502
microprocessor. The toggle is a mechanical device that is either in the nor-
mally closed (NC) position or the normally open (NO) position.

Circuit Diagram:

Figure 11-15 shows the circuitry required to interface the DEBOUNCING

switch. Like the pushbutton, the switch uses one bit of a 6522 WITH

VIA that serves as an addressable buffer. Unlike the button, the CROSS-COUPLED

switch may be left in either position. Typical program tasks are NAND GATES

to determine the switch position and to see if the position has

changed. Either a one-shot with a pulse length of a few milliseconds or a pair of cross-

coupled NAND gates (see Figure 11-16) can debounce a mechanical switch.

Figure 11-15. An Interface for a Toggle Switch

Figure 11-16. A Debounce Circuit Based on Cross-coupled NAND Gates

11-50

The circuits will produce a single step or pulse in response to a change in switch posi-
tion even if the switch bounces before settling into its new position.

Programming Examples:

We will perform two tasks involving this circuit. They are:

1) Set a memory location to one when the switch is closed.

2) Set a memory location to one when the state of the switch changes.
Task 1: Wait for Switch to Close

Purpose: Memory location 0040 is zero until the switch is closed and then is set to
one; that is. the processor clears memory location 0040, waits for the switch
to be closed, and then sets memory location 0040 to one.

The switch could be marked Run/Halt, since the processor will not proceed until the
switch is closed.

Flowchart:
Program:

LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER = ZERO
LDA VIAORA READ SWITCH POSITION
AND #MASK IS SWITCH CLOSED CO)?
BNE WAITC NO. WAIT
INC $40 YES. MARKER = ONE
BRK

11-51

Object Program:

Memory Location

(Hex)

0000
0001
0002
0003)
0004)
0005
0006)
0007)
0008
0009
000A
000B)
000C
000D
000E
000F
0010
0011
0012
0013

Memory Contents
(Hex)

A9
00
8D

VIAPCR
8D
VIADDRA

85
40
AD

VIAORA

29
MASK
DO

F9

E6

40

00

11-52

WAITC

Instruction
(Mnemonic)
LDA #0
STA VIAPCR
STA VIADDRA
STA $40
LDA VIAORA
AND #MASK
BNE WAITC
INC $40
BRK

Task 2: Wait for Switch to Change

Purpose: Memory location 0040 remains zero until the switch position changes and is
then set to 1; i.e., the processor waits until the switch changes position, then
sets memory location 0040 to 1

Flowchart:

Source Program:

LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER = ZERO
LDA VIAORA GET OLD SWITCH POSITION
AND #MASK
STA $41
WAITCH LDA VIAORA GET NEW SWITCH POSITION
AND #MASK
CMP $41 ARE NEW AND OLD POSITIONS THE
BEQ WAITCH YES, WAIT
INC $40 NO, MARKER = ONE
BRK

11-53

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR
0003) VIAPCR
0004)
0005 8D STA VIADDRA
0006)
0007) VIADDRA
0008 85 STA $40
0009 40
000A AD LDA VIAORA
0008) VIAORA
000C1
000D 29 AND #MASK
OOCE MASK
OOCF 85 STA $41
0010 41
0011 AD WAITCH LDA VIAORA
0012) VIAORA
0013)
0014 29 AND #MASK
0015 MASK
0016 C5 CMP $41
0017 41
0018 FO BEQ WAITCH
0019 F7
001A E6 INC $40
001 B 40
001C 00 BRK

A Subtract or Exclusive OR could replace the Compare instruction in the program. Either
of these instructions would, however, change the contents of the Accumulator. The
Exclusive OR would be useful if several switches were attached to the same VIA, since
it would produce a one bit for each switch that changed state. How would you rewrite
this program so that it debounces the switch in software?

11-54

A Multiple-Position (Rotary, Selector, or Thumbwheel) Switch

Purpose: To interface a multipie-position switch to a 6502 microprocessor. The lead
corresponding to the switch position is grounded, while the other leads are
high (logic ones).

Circuit Diagram:

Figure 11-17 shows the circuitry required to interface an 8-position switch. The switch

uses all eight data bits of one port of a VIA. Typical tasks are to determine the position

of the switch and to check whether or not that position has changed. Two special situa-
tions must be handled:

1) The switch is temporarily between positions so thatno leads are grounded.

2) The switch has not yet reached its final position.

The first of these situations can be handled by waiting until the input is not all 'Vs. i.e.
until a switch lead is grounded. We can handle the second situation by examining the
switch again after a delay (such as 1 or 2 seconds) and only accepting the input when it
remains the same. This delay will not affect the responsiveness of the system to the

switch. We can also use another switch (i.e.,, a Load switch) to tell the processor when
the selector switch should be read.

Programming Examples:
We will perform two tasks involving the circuit of Figure 11-17. These are:

a) Monitor the switch until itis in a definite position, thendetermine the position and
store its binary value in amemory location.

b) Wait for the position of the switch to change, then store the new position in a
memory location.

If the switch is in a position, the lead from that position is grounded through the com-
mon line. Pullup resistors on the input lines avoid problems caused by noise.

Figure 11-17. An Interface for a Multi-Position Switch

11-55

Task 1: Determine Switch Position

Purpose: The program waits for the switch to be in a specific position and then stores
the position number in memory location 0040.

Table 11-12 contains the data inputs corresponding to the various switch positions.

Table 11-12. Data Input vs. Switch Position

Data Input
Switch Position

Binary Hex
0 11111110 FE
1 11111101 FD
2 11111011 FB
3 11110111 F7
4 11101111 EF
5 11011111 DF
6 10111111 BF
7 01111111 F

This scheme is inefficient since it requires eight bits to distinguish among
eight different positions.

A TTL or MOS encoder could reduce the number of input bits USING
needed. Figure 11-18 shows a circuit using the 74LS148 TTL 8- A TTL
to-3 encoder.15 vVe attach the switch outputs in inverse order, ENCODER

since the 74LS148 device has active-low inputs and outputs. The

output of the encoder circuit is a 3-bit representation of the switch position. Many
switches include encoders so that their outputs are coded, usually as a BCD digit (in
negative logic).

Figure 11-18. A Multiple-Position Switch with an Encoder

11-56

The encoder produces active-low outputs, so. for example, switch position 5, which is
attached to input 2, produces an output of 2 in negative logic (or 5 in positive logic).
You may want to verify the double negative for yourself.

Flowchart:
Program:
LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
CHKSW LDA VIAORA
CMP #$FF IS SWITCH IN A POSITION?
BEQ CHKSW NO, WAIT UNTIL IT IS
LDX #0 SWITCH POSITION = ZERO
ROR A IS NEXT BIT GROUNDED POSITION?
BCC DONE YES, SWITCH POSITION FOUND
INX NO, INCREMENT SWITCH POSITION
JMP CHKPOS
DONE STX $40 SAVE SWITCH POSITION
BRK

11-57

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003)
0004 (
0005
0006)
0007)
0008
00091
000A)
000B
oooc
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A

Suppose that a faulty switch or defective VIA results in the input always being FF-Jo .

Memory Contents

(Hex)

A9
00
s D

VIAPCR
s D

VIADDRA

AD

VIAORA

C9
FF
FO
F9

A2
00
6 A
90
04
Bs
4C
11
00
86
40
00

CHKSW

CHKPOS

DONE

Instruction
(Mnemonic)
LDA #0
STA VIAPCR
STA VIADDRA
LDA VIAORA
CMP #SFF
BEQ CHKSW
LDX #0
ROR A
BCC DONE
INX
JMP CHKPOS
STX $40
BRK

How could you change the program so that it would detect this error?

This program could easily be restructured to make it shorter and faster — and relocat-
able as well. One option would be to replace JMP CHKPOS with BCS CHKPOS; why is
this possible and what improvements result? Another option would be to change the
initial conditions so that only one jump instruction was required. How would you
accomplish that? Hint: start with FF-|g in Index Register X and increment X before
shifting the Accumulator.

This example assumes that the switch is debounced in hardware How would you

change the program to debounce the switch in software?

11-58

Task 2: Wait For Switch Position To Change

Purpose: The program waits for the switch position to change and places the new
position (decoded) into memory location 0040. The program waits until the
switch reaches its neOv position.

Flowchart:

Source Program:

LDA #0

STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS

LDA VIAORA

CMP #$FF IS SWITCH IN A POSITION?

BEQ CHKFST NO. WAIT UNTIL IT IS

TAX SAVE OLD POSITION

LDA VIAORA

CMP #$FF IS SWITCH IN A POSITION?

BEQ CHKSEC NO. WAIT UNTIL IT IS

CPX VIAORA IS POSITION SAME AS BEFORE?
BEQ CHKSEC YES. WAIT FOR IT TO CHANGE

LDX #$FF NO, START SWITCH POSITION AT -1
INX SWITCH POSITION = SWITCH POSITION + 1
ROR A IS NEXT BIT GROUNDED?

BCS CHKPOS NO, KEEP LOOKING

STX $40 STORE SWITCH POSITION

BRK

11-59

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR
0003)
0004) VIAPCR
0005 8D STA VIADDRA
0006)
0007t VIADDRA
0008 AD CHKFST LDA VIAORA
0009) VIAORA
000A)
(006 2] C9 CMP #SFF
000C F
000D FO BEQ CHKFST
000E F9
000F AA TAX
0010 AD CHKSEC LDA VIAORA
0011)
0012) VIAORA
0013 C9 CMP #$FF
0014 FF
0015 FO BEQ CHKSEC
0016 F9
0017 EC CPX VIAORA
0018)
0019) VIAORA
001A FO BEQ CHKSEC
001 B F4
oo01cC A2 LDX #$FF
001D =
001 E E8 CHKPOS INX
001F 6A ROR A
0020 BO BCS CHKPOS
0021 FC
0022 86 STX $40
0023 40
0024 00 BRK

An alternative method for determining if the switch is in a position is:

CHKSW INC VIAORA
BEQ CHKSW

Why does this work? What happens to the input data? Rewrite the program to use the
alternative method; how much less memory is required?

11-60

A Single LED

Purpose: To interface a single light-emitting diode to a 6502 microprocessor. The LED
can be attached so that either a logic zero or a logic one turns it on.

Circuit Diagram:

Figure 11-19 shows the circuitry required to interface an LED. The LED

LED lights when its anode is positive with respect to its cathode CONTROL

(Figure 11-19a). Therefore, you can either light the LED by ground-

ing the cathode and having the computer supply a one to the anode (Figure 11-19b) or
by connecting the anode to +5 volts and having the computer supply a zero to the
cathode (Figure 11-19c). Controlling the cathode is the most common approach. The
LED is brightest when it operates from pulsed currents of about 10 or 50 mA applied a
few hundred times per second. LEDs have a very short turn-on time (in the microsecond
range) so they are well suited to multiplexing (operating several from a single port). LED
circuits usually need peripheral or transistor drivers and current-limiting resistors. MOS
devices normally cannot drive LEDs directly and make them bright enough for easy
viewing.

Note: The VIA has an output latch on each port. However, the B port is normally used
for output, since it has somewhat more drive capability. In particular, the B port outputs
are capable of driving Darlington transistors (providing 3.0 mA minimum at 1.5 V).
Darlington transistors are high-gain transistors capable of switching large amounts of
current at high speed; they are useful in driving solenoids, relays, and other devices.

11-61

Anode""Cathode
f5v Q- W V-

a) Basic LED circuitry. The resistor R should limit the maximum current to 50 mA and
the average current to 10 mA.

b) Interfacing an LED with positive logic. A logic '1' from the CPU turns the LED on.

6522
VIA

Driver

MD

c) Interfacing an LED with negative logic. A logic ‘0" from the CPU turns the LED on. The driver or the
CPU may invert the logic levels.

Figure 11-19. Interfacing an LED

11-62

Task: Turn the Light On or Off

Purpose: The program turns a single LED either on or off.

A. Send a Logic One to the LED (turn a positive display on or a negative display off).
Source Program:

(form data initially)

LDA #0

STA VIAPCR iMAKE ALL CONTROL LINES INPUTS
LDA #$FF

STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDA #MASKP ;GET DATA FOR LED

STA VIAORB ;SEND DATA TO LED

BRK

The B side of the VIA is used because of the buffering. The CPU can therefore read the
data from the output port.

(update data)

LDA VIAORB ;GET OLD DATA

ORA #MASKP ;TURN ON LED BIT
STA VIAORB ;SEND DATA TO LED
BRK

MASKP has a one bit in the LED position and zeros elsewhere. Logically ORing with
MASKP does not affect the other bit positions, which may contain values for other
LEDs. Note that we can read the VIA Output (Data) Register even when the pins are
assigned as outputs.

Object Program:

Memory Address
(Hex)

(form data initially)

0000
0001
0002
00031
0004)
0005
0006
0007
0008)
0009)
000A
[e]0]0] 2}
0O00C
000DI
000E)
000F
(update data)
0010
0011)
0012)
0013
0014
0015
0016)
0017)
0018

Memory Contents
(Hex)

A9
00
8D

VIAPCR

A9
FF
8D

VIADDRB

A9
MASKP
8D

VIAORB
00

AD
VIAORB

09
MASKP
8D

VIAORB
00

Instruction
(Mnemonic)
LDA #0
STA VIAPCR
LDA #$FF
STA VIADDRB
LDA #MASKP
STA VIAORB
BRK
LDA VIAORB
ORA #MASKP
STA VIAORB
BRK

B. Send a Logic Zero to the LED (turn a positive display off or a negative display on).

The differences are that MASKP must be replaced by its logical complement MASKN
and ORA #MASKP must be replaced by AND #MASKN. MASKN has a zero bit in the
LED position and ones elsewhere. Logically ANDing with MASKN does not affect the

other bit positions.

11-64

Seven-Segment LED Display

Purpose: To interface a seven-segment LED display to a 6502 microprocessor. The dis-
play may be either common-anode (negative logic) or common-cathode
(positive logic).

Circuit Diagram:

Figure 11-20 shows the circuitry required to interface a ~COMMON-ANODE
seven-segment display. Each segment may have one, two, OR

or more LEDs attached in the same way. There are two = COMMON-CATHODE
ways of connecting the displays. One is tying all the DISPLAYS

cathodes together to ground (see Figure 11-21 a); this is a

"common-cathode" display, and a logic one at an anode lights a segment. The other is
tying all the anodes together to a positive voltage supply (see Figure 11-21b); this is a
"common-anode" display, and a logic zero at a cathode lights a segment. So the com-
mon-cathode display uses positive logic and the common-anode display negative logic.
Either display requires appropriate drivers and resistors.

The Common line from the display is tied either to ground or to +5 volts. The display
segments are customarily labelled:

Note: The seven-segment display is widely used because it contains the smallest num-
ber of separately controlled segments that can provide recognizable representations of
all the decimal digits (see Figure 11-22 and Table 11-13). Seven-segment displays can
also produce some letters and other characters (see Table 11-14). Better representa-
tions require a substantially larger number of segments and more circuitry.1® Since
seven-segment displays are so popular, low-cost seven-segment decoder/drivers have
become widely available. The most popular devices are the 7447 common-anode driver
and the 7448 common-cathode driver;17 these devices have Lamp Test inputs (that
turn all the segments on) and blanking inputs and outputs (for blanking leading or trail-
ing zeros).

11-65

Table 11-13. Seven-Segment Representations of Decimal Numbers

Hexadecimal Representation

Common-cathode Common-anode
0 3F 40
1 06 79
2 5B 24
3 4F 30
4 66 19
5 6D 12
6 7D 02
7 07 78
8 7F 00
9 67 18

Bit 7 is always zero and the others are g. f, e, d. ¢. b, and a in decreasing order of
significance.

a) Common-cathode

gO-------m-mm - VA-
[R <W V-
- e -
eO W r
[I I] v ow
co w > -
b 0- - W V-
ao W r

b) Common-anode

go W r
fQ wmemememememenees VW -
(=1 ©

L ———— v w
(o R W V-
bO-------mem--- VW-
00 VAT

Figure 11-21. Seven-Segment Display Organization

11-67

0: Segments f, e, d, c. b, aon 3: Segments g, d, ¢, b, a on

a a

1. Segments c, bon 4: Segments g, f, ¢, b on

2: Segments g, e, d, b. a on 5. Segments g, f, d. c, aon

a a

Figure 11-22 Seven-Segment Representations of Decimal Digits

11-68

6: Segments g, f, e. d, c, a on 8: Segments g, f, e. d, ¢, b, aon

a a
f b
9 9
e c e c
d d
Note that the alternate representation with j*off may This is the same as Lamp Test.

be reserved for the lower case letter 'b'.

7: Segments c, b, a on 9: Segments g, f. c. b. aon
a a

An alternate has segment d on also.

Figure 11-22. Seven-Segment Representations of Decimal Digits (Continued)

Table 11-14. Seven-Segment Representations of Letters and Symbols

Lower-case Letters

Upper-case Letters and Special Characters

Hexadecimal Hexadecimal
Letter Representation Character Representation

Common- Common- Common- Common-

cathode anode cathode anode
A 77 08 b 7C 03
C 39 46 [58 27
E 79 06 d 5E 21
F 71 OE h 74 oB
H 76 09 n 54 2B
| 06 79 0 5C 23
J 1E 61 r 50 2F
L 38 47 u 1C 63
0 3F 40 - 40 3F
P 73 oc ? 53 2C
U 3E 41
Y 66 19

11-69

Task 1: Display a Decimal Digit

Purpose: Display the contents of memory location 0040 on a seven-segment display if
it contains a decimal digit Otherwise, blank the display.

Sample Problems:
a (0040) = 05

Result is 5 on display
b. (0040) = 66

Result is a blank display
Flowchart:

11-70

Source Program:

LDA #0

STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS

LDA #$FF

STA VIADDRB MAKE PORT B LINES OUTPUTS

LDA #BLANK GET BLANK CODE

LDX $40 GET DATA

CPX #10 IS DATA 10 OR MORE?

BCS DSPLY YES. DISPLAY BLANKS

LDA SSEG.X NO. CONVERT DATA TO SEVEN-SEGMENT
CODE

STA VIAORB SEND CODE TO DISPLAY

BRK

BLANK is 00 for a common-cathode display, FF for a common-anode display. An alter-
native procedure would be to put the blank code at the end of the table and replace all
improper data values with 10, i.e., the instructions after STA VIADDRB are:

LDX $40 JGET DATA
CPX #10 ;IS DATA 10 OR MORE?
BCC CNVRT
LDX #10 'YES. REPLACE IT WITH 10
CNVRT LDA SSEG.X iCONVERT DATA TO SEVEN-SEGMENT CODE

Table SSEG is either the common-cathode or common-anode representation of the
decimal digits from Table 11-13.

11-71

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003)
0004)
0005
0006
0007
0008)
0009)
000A
000B
0ooC
000D
000E
000F
0010
0011
0012
0013
0014
0015)
00161
0017

0020-0029

Several displays may be multiplexed, as shown in Figure 11-23. A brief strobe on con-
trol line CB2 clocks the counter and directs data to the next display. RESET starts the
decimal counter at 9 so that the first output operation clears the counter and directs
data to the first display.

The following program uses the delay routine to pulse each of ten common-cathode

displays for 1 ms.

Memory Contents
(Hex)

A9
00
8D

VIAPCR

A9
FF
8D

VIADDRB

A9
BLANK
A6
40
EO
OA
BO
02
B5
20
8D

VIAORB
00

11-72

DSPLY

SSEG

Instruction
(Mnemonic)
LDA #0
STA VIAPCR
LDA #$FF
STA VIADDRB
LDA #BLANK
LDX $40
CPX #10
BCS DSPLY
LDA SSEG.X
STA VIAORB
BRK

(seven-segment
code table)

Task 2: Display Ten Decimal Digits

Purpose: Display the contents of memory locations 0040 through 0049 on ten 7-seg-
ment displays that are multiplexed with a counter and a decoder. The most
significant digit is in 0049.

Sample Problem:

(0040) = 66
(0041) = 3F
(0042) = 7F
(0043) = 7F
(0044) = 06
(0045) = 5B
(0046) = 07
(0047) = 4F
(0048) = 6D
(0049) = 7D

The displays read 6537218804

The circuit in Figure 11-23 uses the VIA handshake signal CB2 as a brief output strobe
to indicate the occurrence of a data transfer.

Source Program:

LDA
STA
LDA
STA
SCAN LDX
LDA
STA
JSR
DEX
BNE
BEQ

#$FF

VIADDRB ;MAKE PORT B LINES OUTPUTS
#%10100000

VIAPCR ;PROVIDE DATA READY STROBE
#10 ;'NUMBER OF DISPLAYS = 10
$3F, X ;GET DATA FOR DISPLAY
VIAORB ;SEND DATA TO DISPLAY
DELAY SWAIT 1 MS

DSPLY ;COUNT DISPLAYS

SCAN ;START ANOTHER SCAN

Peripheral Control register bit 7 = 1 to make CB2 an output, bit 6 = 1 to make it a pulse,
and bit 3 = 1 to make it a brief strobe. We have assumed here that subroutine DELAY
has been modified to provide a transparent 1 ms wait.

11-73

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003)
00041
0005
0006
0007
00081
0009
000A
000B
000C
000D
000E
000F)
00101
0011
0012
0013
0014

; 0015
0016
0017
0018

Memory Contents

(Hex)

A9
FF
8D

VIADD

A9
AO
8D

RB

VIAPCR

A2
OA
B5
3F
8D

VIAOR

20
30

B

11-74

SCAN

DSPLY

Instruction
(Mnemonic)
LDA #$FF
STA VIADDRB
LDA #%10100000
STA VIAPCR
LDX #10
LDA $3F,X
STA VIAORB
JSR DELAY
DEX
BNE DSPLY
BEQ SCAN

0, C. B. and A (D most significant. A
least significant) are the 4-bit output
from the counter. These 4 bits activate
the correspondingly numbered output
from the decoder, and hence the cor
respondingly numbered display.

D 98765432
7490 7442
Decade 4 to 10
Counter B Decoder/Driver
A

r9

Figure 11-23. Interfacing Multiplexed Seven-Segment Displays

11-75

PROBLEMS
1) An On-Off Pushbutton

Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory
location 0040. The location initially contains zero. The program should con-
tinuously examine the pushbutton and complement location 0040 with each
closure. You may wish to complement a display output port instead, thus
making the results easier to see.

Sample Case:
Location 0040 initially contains zero.

The first pushbutton closure changes location 0040 to FFi1g, the second changes it
back to zero, the third back to FF1q, etc. Assume that the pushbutton is debounced in
hardware. How would you include debouncing in your program?

2) Debouncing a Switch in Software

Purpose: Debounce a mechanical switch by waiting until two readings, taken a de-
bounce time apart, give the same result. Assume that the debounce time (in
ms) is in memory location 0040 and store the switch position in memory
location 0041.

Sample Problem:
(0040) = 03 causes the program to wait 3 ms between readings.
3) Control for a Rotary Switch

Purpose: Another switch serves as a Load switch for a four-position unencoded rotary
switch. The CPU waits for the Load switch to close (be zero), and then reads
the position of the rotary switch. This procedure allows the operator to move
the rotary switch to its final position before the CPU tries to read it. The pro-
gram should place the position of the rotary switch into memory location
0040. Debounce the Load switch in software.

Sample Problem:
Place rotary switch in position 2. Close Load switch.

Result: (0040) = 02

11-76

4) Record Switch Positions on Lights

Purpose: A set of eight switches should have their positions reflected on eight LEDs.
That is to say, if the switch is closed (zero), the LED should be on, otherwise
the LED should be off. Assume that the CPU output port is connected to the
cathodes of the LEDs.

Sample Problem:

SWITCH 0 CLOSED

SWITCH 1 OPEN

SWITCH 2 CLOSED

SWITCH 3 OPEN

SWITCH 4 OPEN

SWITCH 5 CLOSED

SWITCH 6 CLOSED

SWITCH 7 OPEN
Result:

LED 0 ON

LED 1 OFF

LED 2 ON

LED 3 OFF

LED 4 OFF

LED 5 ON

LED 6 ON

LED 7 OFF

How would you change the program so that a switch attached to bit 7 of Port A of VIA
#2 determines whether the displays are active (i.e., if the control switch is closed, the
displays attached to Port B reflect the switches attached to Port A; if the control switch
is open, the displays are always off)? A control switch is useful when the displays may
distract the operator, as in an airplane.

How would you change the program so that it makes the control switch an on-off
pushbutton; that is, each closure inverts the previous state of the displays? Assume
that the displays start in the active state and that the program examines and debounces
the pushbutton before sending data to the displays.

5) Count on a Seven-Segment Display

Purpose: The program should count from 0 to 9 continuously on a seven-segment dis-
play. starting with zero.

Hint: Try different timing lengths for the displays and see what happens. When does
the count become visible? What happens if the display is blanked part of the time?

11-77

MORE COMPLEX I/0O DEVICES

More complex I/O devices differ from simple keyboards, switches, and displays in that:

1) They transfer data at higher rates.
2) They may have their own internal clocks and timing.

3) They produce status information and require control information, as well as
transferring data.

Because of their high data rates, you cannot handle these I/O devices casually. If the
processor does not provide the appropriate service, the system may miss input data or
produce erroneous output data. You are therefore working under much more exacting
constraints than in dealing with simpler devices. Interrupts are a convenient method for
handling complex I/O devices, as we shall see in Chapter 12,

Peripherals such as keyboards, teletypewriters, cassettes, SYNCHRONIZING
and floppy disks produce their own internal timing. These WITH I/O
devices provide streams of data, separated by specific tim- DEVICES

ing intervals. The computer must synchronize the initial in-

put or output operation with the peripheral clock and then provide the proper interval
between subsequent operations. A simple delay loop like the one shown previously can
produce the timing interval. The synchronization may require one or more of the follow-
ing procedures:

1) Looking for a transition on a clock or strobe line provided by the peripheral for tim-
ing purposes. The simplest method is to tie the strobe to a VIA control line and wait
until the appropriate bit of the VIA Interrupt Flag register is set.

2) Finding the center of the time interval during which the data is stable. We would
prefer to determine the value of the data at the center of the pulse rather than at
the edges, where the data may be changing. Finding the center requires a delay of
one-half of a transmission interval (bit time) after the edge. Sampling the data at
the center also means that small timing errors have little effect on the accuracy of
the reception.

3) Recognizing a special starting code. This is easy if the code is a single bit or if we
have some timing information. The procedure is more complex if the code is long
and could start at any time. Shifting will be necessary to determine where the
transmitter is starting its bits, characters, or messages (this is often called a search
for the correct "framing").

4) Sampling the data several times. This reduces the probability of receiving data in-
correctly from noisy lines. Majority logic (such as best 3 out of 5 or 5 out of 8) can
be used to decide on the actual data value.

Reception is, of course, much more difficult than transmission, since the peripheral con-
trols the reception and the computer must interpret timing information generated by
the peripheral. In transmission, the computer provides the proper timing and formatting
for a specific peripheral.

Peripherals may require or provide other information besides CONTROL
data and timing. We refer to other information transmitted by AND STATUS
the computer as "control information”; it may select modes of INFORMATION

operation, start or stop processes, clock registers, enable

buffers, choose formats or protocols, provide operator displays, count operations, or
identify the type and priority of the operation. We refer to other information transmitted
by the peripheral as "status information”; it may indicate the mode of operation, the
readiness of devices, the presence of error conditions, the format of protocol in use. and
other states or conditions.

11-78

The computer handles control and status information just like data. This information
seldom changes, even though actual data may be transferred at a high rate. The control
or status information may be single bits, digits, words, or multiple words. Often single
bits or short fields are combined and handled by a single input or output port.

Combining status and control information into bytes reduces the total number of I/O
port addresses required by the peripherals. However, the combination does mean that
individual status input bits must be separately interpreted and control output bits must
be separately determined. The procedures for isolating status bits and setting or reset-
ting control bits are as follows:

Separating Out Status Bits SEPARATING
. STATUS
Step 1) Read status data from the peripheral INEORMATION

Step 2) Logical AND with a mask (the mask has ones in bit
positions that must be examined and zeros
elsewhere)

Step 3) Shift the separated bits to the least significant bit positions

Step 3 is unnecessary if the field is a single bit, since the Zero BIT TEST

flag will contain the complement of that bit after Step 2 (try it!). INSTRUCTION
A Shift or Load instruction can replace Step 2 if the field is a

single bit and occupies the least significant, most significant, or next to most significant
bit position (positions 0, 7, or 6). These positions are often reserved for the most fre-
quently used status information. You should try to write the required instruction se-
quences for the 6502 processor. Note, in particular, the use of the Bit Test instruction.
This instruction performs a logical AND between the contentsof the Accumulator and
the contents of a memory location but does not save the result; the flags are set as
follows:

Zero flag = 1 if the logical AND produces a zero result, O if it does not.

Sign flag = bit 7 of the contents of the memory location (independent of the value in
the Accumulator).

Overflow flag = bit 6 of the contents of the memory location (independent of the value
in the Accumulator).

Setting and Clearing Control Bits COMBINING
CONTROL

Step 1) Read prior control information INFORMATION

Step 2) Logical AND with mask to clear bits (mask haszeros
in bit positions to be cleared, ones elsewhere)

Step 3) Logical OR with mask to set bits (mask has ones in bit positions to be set, zeros
elsewhere)

Step 4) Send new control information to peripheral

Here again the procedure is simpler if the field is a singlebit and occupies a position at
either end of the byte.

11-79

Some examples of separating and combining status bits are:

1) A 3-bit field in bit positions 2 through 4 of a VIA Ouput (Data) register is a scaling

factor. Place that factor into the Accumulator.

READ STATUS DATA FROM INPUT PORT

LDA VIAOR JREAD STATUS DATA

MASK OFF UNWANTED BITS AND SHIFT RESULT

AND #%00011100 ;MASK SCALING FACTOR

LSR A :SHIFT TWICE TO NORMALIZE

LSR A

2) The Accumulator contains a 2-bit field that must be placed in bit positions 3 and 4

of a VIA Output (Data) register.

TEMP = $0040
MASK = %11100111

MOVE DATA TO FIELD POSITIONS

ASL A ;SHIFT DATA TO BIT POSITIONS 3 AND 4
ASL A

ASL A

AND #%00011000 ;CLEAR OUT OTHER BITS

STA TEMP

COMBINE NEW FIELD VALUE WITH OTHER DATA

LDA VIOADR

AND HMASK JCLEAR FIELD TO BE CHANGED
ORA TEMP ;COMBINED NEW DATA WITH OLD
STA VIOAR ;OUTPUT COMBINED DATA

Documentation is a serious problem in handling control and
status information. The meanings of status inputs or control
outputs are seldom obvious. The programmer should clearly in-
dicate the purposes of input and output operations in the com-
ments, e.g., "CHECK IF READER IS ON," "CHOOSE EVEN

DOCUMENTING
STATUS AND
CONTROL
TRANSFERS

PARITY OPTION, or ACTIVATE BIT RATE COUNTER." The Logical and Shift instruc
tions will otherwise be very difficult to remember, understand, or debug.

11-80

EXAMPLES
An Unencoded Keyboard

Purpose: Recognize a key closure from an unencoded 3 x 3 keyboard and place the
number of the key that was pressed into the Accumulator.

Keyboards are just collections of switches (see Figure 11-24). Small numbers of keys are
easiest to handle if each key is attached separately to a bit of an input port. Interfacing
the keyboard is then the same as interfacing a set of switches.

Keyboards with more than eight keys require more than one input MATRIX
port and therefore multibyte operations. This is particularly KEYBOARD
wasteful if the keys are logically separate, as in a calculator or ter-

minal keyboard where the user will only strike one at a time. The number of input lines
required may be reduced by connecting the keys into a matrix, as shown in Figure
11-25. Now each key represents a potential connection between a row and a column.
The keyboard matrix requires n + m external lines, where n is the number of rows and
m is the number of columns. This compares to n x m external lines if each key is sepa-
rate. Table 11-15 compares the number of keys required by typical configurations.

A program can determine which key has been pressed by using KEYBOARD
the external lines from the matrix. The usual procedure is a SCAN
"keyboard scan." We ground Row O and examine the column

lines. If any lines are grounded, a key in that row has been pressed, causing a row-to-
column connection. We can determine which key was pressed by determining which
column line is grounded; that is, which bit of the input port is zero. If no column line is
grounded, we proceed to Row 1 and repeat the scan. Note that we can check to see if
any keys at all have been pressed by grounding all the rows at once and examining the
columns.

The keyboard scan requires that the row lines be tied to an output port and the column
lines to an input port. Figure 11-26 shows the arrangement- The CPU can ground a par-
ticular row by placing a zero in the appropriate bit of the output port and ones in the
other bits.

The CPU can determine the state of a particular column by examining the appropriate
bit of the input port.

Table 11-15. Comparison Between Independent Connections
and Matrix Connections for Keyboards

. Number of Lines with Number of Lines with

Keyboard Size Independent Connections Matrix Connections
3x3 9 6
4x4 16 8
4x6 24 10
5x5 25 10
6 X6 36 12
6x8 48 14
8x8 64 16

11-81

Figure 11-24. A Small Keyboard

Column 0 Column 1 Column 2
Key 0. \] S
“ S < /
Ksy 3 v (>
K9v4' y ¢/
W
/>
. A
Key 6 v i) Key 8 >
w

/

Each key now serves to connect a rov to a column. For instanee, key 4 connects row 1to column 1

Figure 11-25. A Keyboard Matrix

11-82

Figure 11-26 1/0O Arrangement for a Keyboard Scan

11-83

Task 1: Determine Key Closure
Purpose: Wait for a Key to be Pressed.

The procedure is as follows: WAITING
1) Ground all the rows by clearing all the output bits. FOR A
KEY CLOSURE

2) Fetch the column inputs by reading the input port.
3) Return to Step 1 if all the column inputs are ones.

Flowchart:

Program:

LDA
STA
LDA
STA
STA
STA
LDA
AND
CMP
BEQ
BRK

#$FF
VIADDRB

#0

VIAPCR
VIADDRA
VIAORB
VIAORA
#%00000111
#%00000111
WAITK

MAKE PORT B LINES OUTPUTS

MAKE ALL CONTROL LINES INPUTS
MAKE PORT A LINES INPUTS
GROUND ALL KEYBOARD ROWS
GET KEYBOARD COLUMN DATA
MASK COLUMN BITS

ARE ANY COLUMNS GROUNDED?
NO, WAIT UNTIL ONE IS

11-84

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #$FF
0001 FF
0002 8D STA VIADDRB
0003)
00041 VIADDRB
0005 A9 LDA #0
0006 00
0007 8D STA VIAPCR
0008)
0009) VIAPCR
000A 8D STA VIADDRA
000B)
000C) VIADDRA
000D 8D STA VIAORB
000EI
000F) VIAORB
0010 AD WAITK LDA VIAORA
0011)
00121 VIAORA
0013 29 AND #%00000111
0014 07
0015 C9 CMP #%00000111
0016 07
0017 FO BEQ WAITK
0018 F7
0019 00 BRK

VIA Port B Is the keyboard output port and Port A is the input port.

Masking off all but the column bits eliminates any problems that could be caused by
the states of the unused input lines.
We could generalize the routine by naming the output and maskingpatterns:

ALLG =%11111000

OPEN =%00000111

These names could then be used in the actual program; a different keyboard would re-
quire only a change in the definitions and a re-assembly.

Of course, one port of a VIA is all that is really necessary for a 3x 3or 4 x 4 keyboard.
Try rewriting the program so that it uses only Port A

Task 2: ldentify Key
Purpose: Identify a key closure by placing the number of the key into the Accumulator.

The procedure is as follows:

1) Set key number to -1. keyboard output port to all ones except for a zero in bit 0,
and row counter to number of rows.

2) Fetch the column inputs by reading the input port

3) If any column inputs are zero, proceed to Step 7.

4) Add the number of columns to the key number to reach next row.

5) Update the contents of the output port by shifting the zero bitleftone position.

6) Decrement row counter. Go to Step 2 if any rows have not beenscanned, other-
wise go to Step 9.

7) Add 1 to key number. Shift column inputs right one bit.

8) If Carry = 1, return to Step 7.

9) End of program.

Flowchart:

11-86

Source Program:

LDA #0

STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS

LDA #$FF

STA VIADDRB ;MAKE PORT B LINES OUTPUTS
TAX ;KEY NUMBER =-

LDA #% 11111110 :START BY GROUNDING ROW ZERO

STA VIAORB

LDY #3 ;COUNTER = NUMBER OF ROWS
FROW LDA VIAORA ;GET COLUMN INPUTS

AND #%00000111 ;ISOLATE COLUMN BITS

CMP #%00000111 JARE ANY COLUMNS GROUNDED?

BNE FCOL 'YES, GO DETERMINE WHICH ONE
TXA ;NO. MOVE KEY NUMBER TO NEXT ROW
CLC
ADC #3 ;BY ADDING NUMBER OF COLUMNS
TAX
ASL VIAORB JUPDATE SCAN PATTEN FOR NEXT ROW
DEY JHAVE ALL ROWS BEEN SCANNED?
BNE FROW ;NO, SCAN NEXT ONE
BRK
FCOL INX ;KEY NUMBER = KEY NUMBER + 1
LSR A ;IS THIS THE COLUMN GROUNDED?
BCS FCOL ;NO, EXAMINE NEXT ONE
BRK

11-87

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR
0003)
0004) VIAPCR LD A,00001111B
0005 8D STA VIADDRA
0006)
0007) VIADDRA
0008 A9 LDA #$FF
0009 =
000A 8D STA VIADDRB
0008) VIADDRB
000C)
000D AA TAX
000E A9 LDA #%11111110
OOOF FE
0010 8D STA VIAORB
00111
0012) VIAORB
0013 AO LDY #3
0014 03
0015 AD FROW LDA VIAORA
0016)
0017) VIAORA
0018 29 AND #%00000111
0019 07
001A c9 CMP #%00000111
001 B 07
001C DO BNE FCOL
001D oC
001E 8A TXA
001F 18 CLC
0020 69 ADC #3
0021 03
0022 AA TAX
0023 CE ASL VIAORB
0024)
0025) VIAORB
0026 88 DEY
0027 DO BNE FROW
0028 EC
0029 00 BRK
002A E8 FCOL INX
002B 4A LSR A
002C BO BCS FCOL
002D FC
002E 00 BRK

11-88

We have included a CLC instruction for clarity, but it is not actually necessary. The only
case in which the BNE instruction does not cause a branch is the one in which the two
operands used in CMP are equal. In that case, the Carry flag is always set to indicate
that no borrow has been generated. So we could replace the sequence

CLC

ADC #3 ;BY ADDING NUMBER OF COLUMNS

with the single instruction
ADC #2 ;BY ADDING NUMBER OF COLUMNS (NOTE
; CARRY = 1)
Each time a row scan fails, we must add the number of columns to the key number to
move past the current row (try the procedure on the keyboard in Figure 11-26).

What is the result of the program if no keys are being pressed? Change the program so
that it starts the scan over again in that case. We could insert an extra INX instruction
before the first BRK. What would the final value be in Index Register X if no keys were
being pressed? Would it be different from the case in which the highest numbered key
was being pressed? Note that the Zero flag could also be used to distinguish the case
where no keys were pressed. Can you explain how?

An alternative is to use the bidirectional capability of the VIA. The procedure would be:
1) Ground all the columns and save the row inputs.
2) Ground all the rows and save the column inputs.
3) Use the row and column inputs together to determine the key number from a table.
Try to write a program to implement this procedure.

This program can be generalized by making the number of rows, the number of col-
umns, and the masking pattern into named parameters with EQUATE (=) pseudo-
operations.

11-89

An Encoded Keyboard18

Purpose: Fetch data, when it is available, from an encoded keyboard that provides a
strobe along with each data transfer.

An encoded keyboard provides a unique code for each key. It has internal electronics
that perform the scanning and identification procedure of the previous example. The
tradeoff is between the simpler software required by the encoded keyboard and the
lower cost of the unencoded keyboard.

Encoded keyboards may use diode matrices, TTL encoders, or MOS encoders. The
codes may be ASCII, EBCDIC, or a custom code. PROMs are often part of the encoding
circuitry.

The encoding circuitry may do more than just encode key "ROLLOVER]
closures. It may also debounce the keys and handle "rollover," the

problem of more than one key being struck at the same time. Common ways of
handling rollover are: "2-key rollover," whereby two keys (but not more) struck at the
same time are resolved into separate closures, and "n-key rollover,” whereby any
number of keys struck at the same time are resolved into separate closures.

The encoded keyboard also provides a strobe with each data transfer. The strobe sig-
nals that a new closure has occurred. Figure 11-27 shows the interface between an en-
coded keyboard and the 6502 microprocessor. The 6522 Versatile Interface Adapter
provides input latching on both Ports A and B: these latches are enabled by setting bit
I (for Port B) or bit O (for Port A) of the Auxiliary Control register (see Figure 11-10). In
this mode, the data on the input pins is latched when the Interrupt flag is set and wil
not change until the Interrupt flag is cleared. Note that the latching works somewhat
differently on the B side, where the contents of the Output register are latched if the pin
is programmed as an output.

The keyboard strobe is tied to input CAl. A transition on the strobe line causes Inter-
rupt Flag Register bit 1 to go high. Bit 0 of the Peripheral Control register (see Figure
Il -9) determines whether the VIA recognizes high-to-low transitions on CA1 (bit0 = 0)
or low-to-high transitions (bit 0 = 1). Thus the VIA contains an edge-sensitive latched
status port as well as a data port. It also contains an inverter that can be used to handle
strobes of either polarity. A VIA can replace many simple circuit elements: you can
make corrections in circuit logic by changing the contents of the Control registers (in
software) rather than by rewiring a breadboard. For example, changing the active edge
requires the changing of a single program bit. whereas it might require additional parts
and rewiring on a breadboard.

11-90

Task: Input from Keyboard

Purpose: Wait tor an active-low strobe on VIA control line CA1 and then place the
data from Port A into the Accumulator. Note that reading the data from the
Output (Data) register clears the status bit in the Interrupt Flag register (this
circuitry is part of the 6522 VIA).

Flowchart:

The hardware must hold the control lines in a logic '1' state during reset to prevent the
accidental setting of status flags. An initial read of the Data (Output) registers in the
startup routine may be used to clear the status flags. As noted earlier, you can also clear
bits in the 6522 Interrupt Flag register by writing logic '1's into them.

Source Program:

LDA #0

STA VIAPCR iMAKE ALL CONTROL LINES INPUTS

STA VIADDRA ;MAKE PORT A LINES INPUTS

LDA #%00000001

STA VIAACR ENABLE LATCHING ON PORT A

LDA #%00000010 GET PATTERN FOR EXAMINING CAl FLAG
KBWAIT BIT VIAIFR IS THERE NEW KEYBOARD DATA?

BEQ KBWAIT NO. WAIT UNTIL THERE IS

LDA VIAORA YES. FETCH DATA

BRK

11-91

Object Program:

Memory Address
(Hex)

0000
0001
0002
0003 >
0004)
0005
0006)
0007)
0008
0009
000A
0008BI
000C)
000D
000E
000F
0010)
0011)
0012
0013
0014
0015)
0016)
0017

To make the status bit respond to low-to-high transitions on CA1, you must set bit O of

Memory Contents
(Hex)

A9
00
8D

VIAPCR
8D
VIADDRA

A9
01
8D

VIAACR

A9
02
2C

VIAIFR

FO
FB
AD

VIAORA
00

the Peripheral Control register.

The other handshake status flags are bits 0 (for CA2), 3 (for CB2). and 4 (for CB1) of the
Interrupt Flag register.

Show that reading the Output (Data) register clears the status flag. Hint: save the con-
tents of the Interrupt Flag register in memory before the instruction LDA VIAORA is ex-
ecuted. What happens if you replace LDA with STA? How about CMP, INC, ROL? Note
that either reading or writing the Output (Data) register clears the status bit. What hap-
pens if you read Port A from the non-handshaking address (see Table 11-7)? What hap-

KBWAIT

pens if you replace LDA VIAORA with LDA VIAORB?

11-92

Instruction

(Mnemonic)
LDA #0
STA VIAPCR
STA VIADDRA
LDA #%00000001
STA VIAACR
LDA #%00000010
BIT VIAIFR
BEQ KBWAIT
LDA VIAORA
BRK

A Digital-to-Analog Converter19 22

Purpose: Send data to an 8-bit digital-to-anaiog converter, which has an active-low
latch enable.

Digital-to-analog converters produce the continuous signals required by motors,
heaters, actuators, and other electrical and mechanical output devices. Typical conver-
ters consist of switches and resistor ladders with the appropriate resistance values. You
must generally provide a reference voltage and some other digital and analog circuitry,
although complete units are becoming available at low cost.

Figure 11-28 describes the 8-bit Signetics NE5018 D/A converter, which contains an
on-chip 8-bit parallel data input latch. A low level on the LE (Latch Enable) input gates
the input data into the latches, where it remains after LE goes high.

Figure 11-29 illustrates the interfacing of the device to a D/A CONVERTER
6502 system. Note that the B side of the VIA automatically INTERFACE
produces the active-low strobe required to latch the data

into the converter; CB2 acts as an Output Ready signal. Remember that CB2 automat-
ically goes low for one cycle following a write operation on the B port Output (Data)
register if CB2is in the pulse output mode (see Table 11-9). The Peripheral Control
register bits are:

Bit 7 = 1 to make CB2 an output

Bit 6 = 0 to make CB2 a pulse

Bit 5 = 1 to make CB2 a brief Output Ready strobe (one clock cycle
in duration).

Note that the VIA contains an output latch. The data therefore remains stable during
and after the conversion. The converter typically requires only a few microseconds to
produce an analog output. Thus, the converter latch could be left enabled if the port
were not used for any other purpose.

In applications where eight bits of resolution are not enough, 10- to 16-bit converters
can be used. Additional port logic is required to pass all the data bits; some converters
provide part of this logic.

The VIA here serves both as a parallel data port and as a control port. CB2 is a pulse
that lasts one clock cycle after the data is latched into the VIA. This pulse is long
enough to meet the requirements (typically 400 ns) of the NE5018 converter.

11-93

76-TT

Figure 11-28. Signetics NE5018 D/A Converter

Data Bus

from CPU

1 > VIA PBO
cb2

Analog
NES5018 Output
D/A
Converter

Figure 11-29 Interface for an 8-bit Digital-to-Analog Converter

11-95

Task: Output to Converter
Purpose: Send data from memory location 0040 to the converter.

Flowchart:

C)

Data = (0040)

Send data to
converter and

1 latch it

C E

Source Program:

LDA #SFF

STA VIADDRB ;MAKE PORT B LINES OUTPUTS

LDA #%10100000

STA VIAPCR ;PROVIDE BRIEF LATCH ENABLE STROBE
LDA $40 JGET DATA

STA VIAORB :SEND DATA TO DAC AND LATCH

BRK

11-96

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #$FF
0001 FF
0002 8D STA VIADDRB
0003) VIADDRB
0004)
0005 A9 LDA #% 10100000
0006 A0
0007 8D STA VIAPCR
00081 VIAPCR
0009)
000A A5 LDA $40
000B 40
oooc 8D STA VIAORB
000D|
000EI VIAORB
000F 00 BRK

The pulse for the Latch Enable input is produced automatically when data is stored in
Output (Data) Register B. Note, however, that the pulse is a fairly brief one. lasting only
one clock cycle; this may be insufficient for some applications.

We could use the level (manual) output from CB2 if the Latch Enable signal were ac-
tive-high or if the required length were greater. The program would then be.:

LDA #SFF

STA VIADDRB ;MAKE PORT BE LINES OUTPUTS
LDA #% 11000000

STA VIAPCR ;MAKE LATCH ENABLE A LEVEL (LOW)
LDA $40 JGET DATA

STA VIAORB ;SEND DATA TO DAC OUTPUT PORT
LDA #% 11100000

STA VIAPCR ;OPEN DAC LATCH (ENABLE HIGH)
LDA #9% 11000000

STA VIAPCR ;LATCH DATA (ENABLE LOW)

BRK

Here bit 6 of the Peripheral Control register is set to make CB2 a level with a value given
by bit 5 of the Peripheral Control register. This is referred to as the Manual Output mode
in 6522 literature. Note how many more instructions are required to pulse the Latch
Enable than in the previous example, since no automatic pulse is provided. An inverter
gate could also be used to invert the polarity of the strobe.

In the Manual mode, CB2 is completely independent of the parallel data port. It is
simply a control output that is available for any purpose. The only problem involved in
using it is that you must not accidentally change any of the other bits in the Peripheral
Control register, since they may have unrelated functions.

Analog-to-Digital Converter19-23

Purpose: Fetch data from an 8-bit analog-to-digital converter that requires a Start
Conversion pulse to start the conversion process and provides an End of
Conversion output to indicate the completion of the process and the
availability of valid data.

Analog-to-digital converters handle the continuous signals produced by various types
of sensors and transducers. The converter produces the digital input which the com-
puter requires.

One form of analog-to-digital converter is the successive approximation device, which
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but
have little noise immunity. Dual slope integrating converters are another form of
analog-to-digital converter. These devices take longer but are more resistant to noise.
Other techniques, such as the incremental charge balancing technique, are also used.

Analog-to-digital converters usually require some external analog and digital circuitry,
although complete units are becoming available at low cost.

Figure 11-30 contains a general description and a timing diagram for the National
MM5357 8-bit A/D converter. The device contains output latches and tristate data out-
puts. A pulse on the Start Conversion (STRT CONV) line starts conversion of the analog
input; after about 40 clock cycles (the converter requires a TTL level clock with a
minimum pulse width of 400 ns), the result will go to the output latches and the End of
Conversion (EOC) output will indicate this by going high. Data is read from the latches
by applying a 'V to the Output Enable input. Figure 11-31 shows the connections for
the device and some typical applications circuits.

Figure 11-32 shows the interface for the 6502 processor A/D CONVERTER
and the 5357 A/D converter. Control line CA2 is used in the INTERFACE
Manual (Level) Output mode to provide a Start Conversion

pulse (active-high) of sufficient length. The End of Conversion signal is tied to control
line CAl so that EOC going high will set bit 1 of the Interrupt Flag register. The impor-
tant edge on the End of Conversion line is the low-to-high edge, which indicates the
completion of the conversion. Note that we are using the 6522 device to handle both
control input and control output, since the converter interface involves a complete
handshake. The Output Enable pin on the converter is tied high, since we are not plac-
ing the data directly on the processor's tri-state data bus. Note (see Figure 11-30) that
the converter data outputs are complementary binary (all zeros is full-scale).

NATIONAL
MM5357 8-bit/

General Description

The MM5357 is an 8-bit monolithic A/D converter using P-channel ion-implanted MOS technology. It contains
a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches.
Conversion is performed using a successive approximation technique where the unknown analog voltage is
compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the
unknown voltage, conversion is complete and the digital outputs contain an 8-bit complementary binary word
corresponding to the unknown. The binary output is tri-state to permit bussing on common data lines.

Features

Low cost

+5 V, 10 V input ranges
No missing codes

High input impedance
Ratiometric conversion
Tri-state outputs
Contains output latches

TTL compatible

Key Specs

Resolution 8 bits
Linearity +1/2 LSB
Conversion speed 40/xs
Input impedance > 100 Mft
Supply voltages +5V, -12 V, GND
Clock range 5.0 kHz to 2.0 MHz

Timing Diagram:
Clock +5 V —mj

-~ j\aaAaaaaaaaij

Start +5 V

c .
onversion 0 Z T Y

+5 V
-40 X (1/f)-
ov — a—
Output +5V -
Enable
ov- -5 -
5V (Tri-state)
T []
oV -
Enable__ Disable _
Delay Delay

Data is complementary binary (full scale is "Os" output).

Figure 11-30. General Description and Timing Diagram for the National 5357 A/D
Converter

11-99

Connection Diagram

“
2. - VDD
2-3- 2 17 -2-5
2.2, 3 16 -2-6
"1- 1R "
(MSB) 271 MM5357 10 72"7‘§REF
R Network - AD 14
STRT CONV- Converter 1n -2'8 (LSB)
Output Enable- -VIN
VGG 8 1 "Clock
EOC- 9 10 "vVss
Typical Application
15M .
¥5 V- o + VREF 21
2-2
5V vss
GND v
5V R NET 2-4 Digital
12V 15 Vag MM5357 2-b Output
Analog Input 1 V,N AID 2-b
Clock 6* CK Converter 2'1
Start Conversion 7+ sc 2B aiss/
Output Enable OE EOC « End of Conversion

+5 V < ViN < -5V

Figure 11-31. Connection Diagram and Typical Application for the National 5357
A/D Converter

Data Bus Analog
to CPU National Input
C 6522 pa7 - * 5357
VIA PAq N-ermmemeeeeee A/D
Converter
STRT
CA, CA2 EoC CONV

Figure 11-32. Interface for an 8-bit Analog-to-Digital Converter

11-100

Task: Input from Converter

Purpose: Start the conversion process, Wait for End of Conversion to go low and then
high, and then read the data and store it in memory location 0040.

Flowchart:

Note that here the VIA serves as a parallel data port, a status port, and a control port.

Source Program:

LDA #0

STA VIADDRA ;MAKE PORT A LINES INPUTS

LDA #%00001101

STA VIAPCR ;BRING START CONV LOW, ENABLE EOC

; LOW TO HIGH

LDA #%00001111

STA VIAPCR ;PULSE START CONVERSION HIGH

LDA #%00001101

STA VIAPCR iPULSE START CONVERSION LOW
WTEOC LDA VIAIFR

AND #%00000010 ;IS CONVERSION COMPLETE?

BNE WTEOC iNO. WAIT

LDA VIAORA YES, FETCH DATA FROM CONVERTER

EOR #%11111111 iCOMPLEMENT DATA FOR TRUE VALUE

STA $40 ;SAVE CONVERTER DATA

BRK

11-101

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0

0001 00

0002 8D STA VIADDRA
0003)

0004) VIADDRA

0005 A9 LDA #%00001101
0006 oD

0007 8D STA VIAPCR
0008)

0009) VIAPCR

000A A9 LDA #%00001 11
000B OF

0ooC 8D STA VIAPCR
000D)

000E) VIAPCR

OOOF A9 LDA #%00001101
0010 oD

0011 8D STA VIAPCR
0012)

0013) VIAPCR

0014 AD WTEOC LDA VIAIFR

0015)

0016) VIAIFR

0017 29 AND #%00000010
0018 02

0019 DO BNE WTEOC
001A F9

001 B AD LDA VIAORA
001C)
'001 D) VIAORA

001E 49 EOR #% 11111111
001F FF

0020 85 STA $40

0021 40

0022 00 BRK

The VIA Peripheral Control register bits are:

Bit 3 = 1 to make CA2 an output

Bit 2 = 1 to make CA2 a level (Manual Output mode)

Bit 1 = value of level on CA2

Bit 0 = 1to set Status flag on a low-to-high transition on CA1

Note that VIAs can be addressed using the Postindexed mode. The starting address of
the VIA (VIAORB) is placed in two memory locations on page zero: all VIA registers can
then be reached with appropriate offsets in Index Register Y.

11-102

A Teletypewriter (TTY)
Purpose: Transfer data to and from a standard 10-character-per- TTY

second serial teleypewriter. INTERFACE

The common teletypewriter transfers data in an asynchronous
serial mode. The procedure is as follows:

1) The line is normally in the one state. STANDARD

2) A Start bit (zero bit) precedes each character. TTY

3) The character is usually 7-bit ASCIl with the least significant CHARACTER
bit transmitted first. FORMAT

4) The most significant bit is a Parity bit. which may be even,
odd, or fixed at zero or one.

5) Two stop bits (logic one) follow each character.

Figure 11-33 shows the format. Note that each character requires the transmission of
eleven bits, of which only seven contain information. Since the data rate is ten charac-
ters per second, the bit rate is 10 x 11, or 110 Baud. Each bit therefore has a width of
1/110 of a second, or 9.1 milliseconds. This width is an average: the teletypewriter
does not maintain it to any high level of accuracy.

For ateletypewriter to communicate properly with a computer, the following pro-
cedures are necessary.

Receive (flowcharted in Figure 11-34): TTY

Step 1) Look for a Start bit (a logic zero) on the data line. EAIEOCDEéVE

Step 2) Center the reception by waiting one-half bit time, or 4,55
milliseconds.

Step 3) Fetch the data bits, waiting one bit time before each one.Assemble the data
bits into a word by first shifting the bit tothe Carry and then circularly shifting
the data with the Carry. Remember that the least significant bit is received
first.

Step 4) Generate the received Parity and check it against the transmitted Parity. If
they do not match, indicate a "Parity error."

Step 5) Fetch the Stop bits (waiting one bit time between inputs). If they are not cor-

rect (if both Stop bits are not one), indicate a "framing error."

11-103

Figure 11-34. Flowchart for Receive Procedure

11-104

Task 1. Read Data

Purpose: Fetch data from a teletypewriter through bit 7 of a VIA data port and place
the data into memory location 0060. For procedure, see Figure 11-34.

Source Program:

(Assume that the serial port is bit 7 of the VIA and that no parity or framing check is
necessary)

LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
WAITS LDA VIAORA IS THERE A START BIT?
BMI WAITS NO. WAIT
JSR DLY2 YES. DELAY HALF BIT TIME TO CENTER
LDA #% 10000000 COUNT WITH BIT IN MSB
TTYRCV JSR DELAY WAIT 1 BIT TIME
ROL PIADRA GET DATA BIT
ROR A ADD DATA BIT TO DATA WORD
BCC TTYRCV CONTINUE IF COUNT BIT NOT IN CARRY
STA $60
BRK

(Delay program)

DLY2 LDY #5 COUNT FOR 4.55 MS
BNE DLY1
DELAY LDY #10 COUNT FOR 9.1 MS
DLY1 LDX #$B4 GET COUNT FOR 0.91 MS
DLY DEX
BNE DLY
DEY
BNE DLY1
RTS

Remember that bit 0 of the data is received first.

11-105

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003)
0004)
0005
0006)
0007)
0008
0009)
OO0O0A)
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016)
0017)
0018
0019
001A
001B
00lc
001D

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E

Memory Contents

(Hex)

A9
00
8D

VIAPCR
8D
VIADDRA
AD
VIAORA

30
FB
20
30
00
A9
80
20
34
00
2E

VIAORA

6A
90
F7
85
60
00

AO
05

02

AO
OA
A2
B4
CA

FD
88

F8
60

WAITS

TTYRCV

DLY2

DELAY

DLY1

DLY

11-106

Instruction

(Mnemonic)
LDA #0
STA VIAPCR
STA VIADDRA
LDA VIAORA
BMI WAITS
JSR DLY2
LDA #%10000000
JSR DELAY
ROL VIAORA
ROR A
BCC TTYRCV
STA $60
BRK
LDY #5
BNE DLY1
LDY #10
LDX #$B4
DEX
BNE DLY
DEY
BNE DLY1
RTS

This program assumes that the Stack can be used for subroutine calls, i.e., that the

monitor has already initialized the Stack Pointer. Otherwise you will have to initialize
the Stack Pointer as shown in Chapter 10.

The constants for the delay routine were calculated just as shown earlier in this chapter.
You might try determining them for yourself. The delays do not have to be highly accu-
rate because the reception is centered, the messages are short, the bit rate is low, and
the teletypewriter is not highly accurate itself.

How would you extend this program to check parity?

11-107

Task 2: Write Data

Purpose: Transmit data to a teletypewriter through bit 0 of a VIA Output (Data)
register. The data is in memory location 0060.

Transmit (flowcharted in Figure 11-35) TTY
TRANSMIT

Step 1) Transmit a Start bit (i.e.. a logic zero). MODE

Step 2) Transmit the seven data bits, starting with the least
significant bit.

Step 3) Generate and transmit the Parity bit.
Step 4) Transmit two Stop bits (i.e., logic ones).

The transmission routine must wait one bit time between each operation.

Figure 11-35. Flowchart for Transmit Procedure

11-108

Source Program

(Assume that parity need not be generated)

LDA
STA
STA
LDA
STA
LDA
LDX
JSR

SEC
ROR
ROL
DEX
BNE
BRK

#0
VIAPCR
VIAORB
#SFF
VIADDRB
$60

#11
DELAY

A
VIAORB

TBIT

;MAKE ALL CONTROL LINES INPUTS

;FORM START BIT

MAKE PORT B LINES OUTPUTS

GET DATA

COUNT = 11 BITS IN CHARACTER

WAIT 1 BIT TIME

SET CARRY TO FORM STOP BIT
GET NEXT BIT OF CHARACTER
SEND NEXT BIT TO TTY

The DELAY subroutine used here must preserve the Accumulator and Index Register X.

Remember that bit 0 of the data must be transmitted first.

Object Program:

Memory Address

(Hex)

0000
0001
0002
0003)
0004)
0005
0006)
0007)
0008
0009
000A
000B
oooc)
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017)
0018)
0019
001A
001B
001 C

Memory Contents

(Hex)

A9
00
8D

VIAPCR
8D
VIAORB

A9
FF
8D

VIADDRB

A5
60
A2
OB
20 TBIT
30
00
38
6A
2E

VIAORB

CA
DO
F5
00

11-109

Instruction
(Mnemonic)
LDA #0
STA VIAPCR
STA VIAORB
LDA #$FF
STA VIADDRB
LDA $60
LDX #11
JSR DELAY
SEC
ROR A
ROL VIAORB
DEX
BNE TBIT
BRK

In actual applications, you will find it necessary to place a one on the teletypewriter line
after configuration, since that line should normally be in the mark (one) state.

Each character consists of 11 bits, with a Start bit (zero) and ending with two Stop bits
(ones).

Note that you can generate parity by counting bits as shown in Chapter 6. The program
is:

LDY #0 BIT COUNT = ZERO
LDA $60 GET DATA
CHBIT BPL CHKZ IS NEXT DATA BIT 1?
INY YES, ADD 1TO BIT COUNT
CHKZ ASL A EXAMINE NEXT BIT POSITION
BNE CHBIT UNLESS ALL BITS ARE ZEROS
BRK

Index Register Y contains the number of T bits in the data. The least significant bit of
Index Register Y is therefore an even Parity bit.

These procedures are sufficiently common and complex to merit a | UART |
special LSI device: the UART, or Universal Asynchronous
Receiver/Transmitter.24 The UART will perform the reception procedure and provide
the data in parallel form and a Data Ready signal. It will also accept data in parallel
form, perform the transmission procedure, and provide a Peripheral Ready signal when
it can handle more data. UARTs may have many other features, including:

1) Ability to handle various bit lengths (usually 5 to 8), parity options, and numbers of
Stop bits (usually 1. 1-1/2, and 2).

2) Indicators for framing errors, parity errors, and "overrun errors" (failure to read a
character before another one is received).

3) RS-23225 compatibility: i.e., a Request-to-Send (RTS) output signal that indicates
the presence of data to communications equipment and a Clear-to-Send (CTS) in-
put signal that indicates, in response to RTS, the readiness of the communications
equipment. There may be provisions for other RS-232 signals, such as Received
Signal Quality. Data Set Ready, or Data Terminal Ready.

4) Tristate outputs and control compatibility with a microprocessor.

5) Clock options that allow the UART to sample incoming data several times in order
to detect false Start bits and other errors.

6) Interrupt facilities and controls.

UARTs act as four parallel ports: an input data port, an output data port, an input

status port, and an output control port. The status bits include error indicators as well

as Ready flags. The control bits select various options. UARTs are inexpensive ($5 to
$50, depending on features) and easy to use.

11-110

THE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA)26. 27

The 6850 ACIA, or Asynchronous Communications Inter- 6850 ACIA

face Adapter (see Figure 11-36) is a UART specifically REGISTERS

designed for use in 6800- and 6502-based microcom-

puters. It occupies two memory addresses and contains two read-only registers
(received data and status) and two write-only registers (transmitted data and con-
trol). Tables 11-16 and 11-17 describe the contents of these registers.

Note the following special features of the 6850 ACIA: SPECIAL
FEATURES

1) Read and write cycles address physically distinct registers. OF 6850 ACIA

Therefore, you cannot use the ACIA registers as addresses
for instructions like Increment, Decrement, or Shift, which
involve both read and write cycles.

2) The ACIA Control register cannot be read by the CPU. You will have to save a copy
of the Control register in memory if the program needs its value.

3) The ACIA has no Reset input. It can be reset only by placing ones in Control register
bits 0 and 1. This procedure (called MASTER RESET) is necessary before the ACIA
is used, in order to avoid having a random starting character.

4) The RS-232 signals are all active-low. Request-to-Send (RTS), in particular, should
be brought high to make it inactive if it is not in use.

5) The ACIA requires an external clock. Typically 1760 Hz is supplied and the + 16
mode (Control register bit 1 = 0, bit 0 = 1) is used. The ACIA will use the clock to
center the reception in order to avoid false Start bits caused by noise on the lines.

6) The Data Ready (Receive Data Register Full, or RDRF) flag is bit 0 of the Status
register. The Peripheral Ready (Transmit Data Register Empty, or TDRE) flag is bit 1
of the Status register.

11-111

Table 11-16. Definition of 6850 ACIA Register Contents

Buffer Address

Data RS-R/W RS-R/W RS-R/W RS-R/W
Bus Transmit Receive
Line Data Data Control Status
Number Register Register Register Register
(Write Only) (Read Only) (Write Only) (Read Only)
0 Data Bit 0O* Data Bit 0 Counter Divide Receive Data Register
Select 1 (CRO) Full (RDRF)
1 Data Bit 1 Data Bit 1 Counter Divide Transmit Data Register
Select 2 (CRY) Empty (TDRE)
2 Data Bit 2 Data Bit 2 Word Select 1 Data Carrier Detect
(CR2) (DCD)
3 Data Bit 3 Data Bit 3 Word Select 2 Clear-to-Send
(CR3) (CTS)
4 Data Bit 4 Data Bit 4 Word Select 3 Framing Error
(CR4) (FB)
5 Data Bit 5 Data Bit 5 Transmit Control 1 Receiver Overrun
(CR5) (OVRN)
6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity Error (PE
(CR®6)
7 Data Bit 7 "' Data Bit 7" Receive Interrupt Interrupt Request
Enable (CR7) (IRQ)

* Leading bit = LSB = Bit 0
Data bit will be zero in 7-bit plus parity modes
** Data bit is "don't care" in 7-bit plus parity modes

11-112

bk hhOOOO Py} s h OO

5

h e OO

Table 11-17. Meaning of the 6850 ACIA Control Register Bits

CRB

CR3

- o

= = OO

CRO

Function

RTS = low, Transmitting Interrupt Disabled

RTS = low. Transmitting Interrupt Enabled

RTS = high, Transmitting Interrupt Disabled

RTS = low. Transmits a Break level on the
Transmit Data Output. Transmitting
"Interrupt Disabled

CR2 Function
0 7 Bits + Even Parity + 2 Slop Bits
1 7 Bits + Odd Parity + 2 Stop Bits
0 7 Bits + Even Parity + 1 Stop Bit
7 Bits + Odd Parity + 1 Stop Bit
0 8 Bits + 2 Stop Bits
1 8 Bits + 1 Stop Bit
0 8 Bits + Even Parity + 1 Stop Bit
1 8 Bits + Odd Parity + 1 Stop Bit
Function

+ 1

+ 16

+ 64

Master Reset

11-113

Figure 11-36. Block Diagram of the 6850 ACIA

11-114

Task: Receive data from ateletypewriter through a 6850 ACIA and store the data
in memory location 0060

Source Program:

LDA #%00000011 ;MASTER RESET ACIA

STA ACIACR

LDA #%01000101 :CONFIGURE ACIA FOR TTY WITH ODD
; PARITY

STA ACIACR

WAITD LDA ACIASR GET ACIA STATUS

LSR A HAS DATA BEEN RECEIVED?

BCC WAITD NO, WAIT

LDA ACIADR YES, FETCH DATA FROM ACIA

STA $60 SAVE DATA

BRK

Object Program:

Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)

0000 A9 LDA #%00000011

0001 03

0002 8D STA ACIACR

0003)

0004) ACIACR

0005 A9 LDA #%01000101

0006 45

0007 8D STA ACIACR

0008) ACIACR

0009)

000A AD WAITD LDA ACIASR

0008) ACIASR

0o0o0c)

000D 4A LSR A

000E 90 BCC WAITD

000F FA

0010 AD LDA ACIADR

0011)

0012) ACIADR

0013 85 STA $60

0014 60

0015 00 BRK
The program must reset the ACIA originally by placing ones in Controlregister
and 1 The ACIA does have an internal power-on reset which holdstheACIA
reset state until Master Reset is applied.
The program configures the ACIA Control Register as EXAMPLE
follows: OF 6850 ACIA

Bit 7 = 0 to disable the receiver interrupt CONFIGURATION

Bit 6 = 1 to make Request-to-Send (RTS) high (inactive)

Bit 5=0 to disable the transmitter interrupt

Bit 4 = 0 for 7-bit words

Bit 3=0, Bit 2 = Xor odd parity with 2 Stop bits

Bit 1=0. Bit0 = 1 fors 16 clock (1760 Hz must be supplied)

11-115

bits 0
inthe

The Received Data Status flag is Status register bit 0. Suppose we tried to replace

LDA ACIASR
LSR A

with the single instruction

LSR ACIASR
What would happen?

Remember that the Status and Control registers share an address but are physically dis-
tinct.

Try adding an error-checking routine to the program. Set.

(0061) = 0 if no errors occurred

= 1 if a parity error occurred
(Status register bit 6 = 1)
2 if an overrun error occurred
(Status register bit 5 = 1)
3 if a framing error occurred
(Status register bit 4 = 1)

Assume that the priority of the errors is from MSB to LSB in the ACIA Status register
(i.e., parity errors have priority over overrun errors which, in turn, have priority over
framing errors if more than one error has occurred)

11-116

Task: Send data from memory location 0060 to a teletypewriter through a 6850

ACIA
Source Program:
LDA #%00000011 ;MASTER RESET ACIA
STA ACIACR
LDA #%01000101 iCONFIGURE ACIA FOR TTY WITH ODD
; PARITY
STA ACIACR
LDA #%00000010
WAITR BIT ACIASR IS ACIA READY FOR DATA?
BEQ WAITR NO. WAIT UNTIL IT IS
LDA $60 YES, GET DATA
STA ACIADR AND TRANSMIT IT
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #%00000011
0001 03
0002 8D STA ACIACR
00031
0004> ACIACR
0005 A9 LDA #%01000101
0006 45
0007 8D STA ACIACR
0008) ACIACR
0009)
000A A9 LDA #%00000010
000B 02
O00C 2C WAITR BIT ACIASR
000D) ACIASR
000E)
000F FO BEQ WAITR
0010 FB
0011 A5 LDA $60
0012 60
0013 8D STA ACIADR
00141 ACIADR
0015)
0016 00 BRK

The Transmitter Status flag is Status register bit 1. How could you modify the receive
program to use the Bit Test Instruction?

THE 6551 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA)

The 6551 ACIA is a variation of the 6850 device that can also 6551 ACIA

be used in 6800- or 6502-based systems. Figure 11-37 is a REGISTERS
block diagram of this device. It has most of the features of the

6850 ACIA and also has an on-chip baud rate generator that can provide 15
programmable baud rates derived from a standard 1.8432 MHz external crystal.
Thus the 6551 ACIA can provide virtually any of the common baud rates without
an external timer or baud rate generator. The device has four internal registers
addressed as described by Table 11-18. Its operation is controlled by two registers:

1) The Control register (see Figure 11-38) controls the baud rate generator, the word
length, the number of stop bits, and the receiver clock source.

2) The Command register (see Figure 11-39) controls parity EXAMPLE OF
checking and generation, interrupt enabling, and the 6551 ACIA
RS-232 handshake signals. Note that the program may CONFIGURATION
reset the 6551 ACIA at any time by writing any data into
the address of the Status register (see Figure 11-40). For example, the following
program resets a 6551 ACIA and configures it for a 10 character per second
teletypewriter with odd parity and two stop bits:

LDA #%10110011
STA ACIASR ‘RESET 6551 ACIA
STA ACIAMR :CONFIGURE MODE FOR TTY (7 BITS, 2 STOP
BITS)
LDA #9%00100011
STA ACIACR :CONFIGURE FOR ODD PARITY, NO
. INTERRUPTS

We have given the name ACIAMR to the Control (Mode) Register.
The program configures the 6551 ACIA Control (Mode) register as follows:

Bit 7 =1for 2 stop bits

Bit 6 =0, bit 5 = 1 for 7-bit words

Bit 4 = 1 to generate receiver clock from the on-board baud rate generator

Bits 0-3 = 0011 for 109.92 Baud (10 characters per second) from the internal
baud rate generator

The program configures the 6551 ACIA Command register as follows:

Bit 7 = O.bit 6 = 0, bit 5 = 1 for odd parity on both receiver and transmitter
Bit 4 = 0 so characters are not automatically echoed back through the
transmitter

Bit 3 = 0, bit 2 = 0 to disable the transmitter interrupt and bring RTS high
(inactive)

Bit 1=1to disable the receiver interrupt (this is a mask bit)

Bit 0 =1to enable the Receiver/Transmitter

11-118

Transmit

Control
Transmit Transmit
<P2 R Da.la = > Shift
Register Register
RIW— " » Select
cso * and
c S] ””” > Control
RSq 4 Logic Status Interrupt
A A
RSi Register Logic bcb
RES - > A — DSR
Baud
Control
. Rate XTAL1
Register
Generator n XTAL2
Receive Receive
Data % Shift »—RxD
Data Register Register
Bus
Buffers
Command Receive
(o] Register Control
-» RTS
Figure 11-37. Block Diagram of the 6551 ACIA
Table 11-18. Addressing 6551 ACIA Internal Registers
RSt RSq Write Read
0 0 Transmit Data Register Receiver Data Register
0 1 Programmed Reset (Data is "Don't Care") Status Register
1 0 Command Register
1 0 Control Register

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation
does not cause any data transfer, but is used to clear the SY6551 registers. The Programmed Reset is slightly

different from the Hardware Reset (RES) and these differences are described in the individual register defini-
tions.

11-119

5 4 3 0 Bit Number

Control Register

- e -Baud Rate Generator
0 0 0 O 16x External Clock Baud
0O 0 0 1 50
0 0 1 0 75
0O 0 1 1 109.92
0 1 0 O 134.58
0O 1 0 1 150
0 1 10 300
0 1 1 1 600
1 0 0 O 1200
1 0 0 1 1800
1 0 10 2400
10 1 1 3600
1100 4800
1 1 0 1 7200
11 1 0 9600
11 1 1 19,200
- Receiver Clock Source
0 = External Receiver Clock
1 = Baud Rate Generator
mWord Length
Bit Data Word
6 5 Length
00 8
01 7
10 6
11 5
Stop Bits
0=1 Stop Bit
1= 2 Stop Bits
1 Stop Bit if Word Length
= 8 Bits and Parity*
'‘Allows for 9-bit transmission iVt Stop Bits if Word Length
(8 data bits plus parity). = 5 Bits and No Parity.
76 543210 -Bit Number
00000O0O0O0 -Hardware Reset

“Program Reset

Figure 11-38. Definition of 6551 ACIA Control Register Contents

11-120

54 3 2 10*

Bit Number

Command register

-Data Terminal Ready

0
1

-Receiv

0

1

Disable Receiver/Transmitter (DTR high)
Enable Receiver/Transmitter (DTR low)
er Interrupt Enable

IRQ Interrupt Enabled from Bit 7

of Status Register

IRQ Interrupt Disabled

-Transmitter Controls

Bit Transmit RTS

3 2 Interrupt Level Other
Disabled High —
Enabled Low —
Disabled Low —
Disabled Low Transmit BRK

* Normal/Echo Mode for Receiver

0 = Normal
1 = Echo
- Parity Check Controls
Bit

7 6 _5_ Operation

———————— 0 Parity Disabled - No Parity Bit
Generated - No Parity Bit Received

0 0 1 Odd Parity Receiver and Transmitter

0 1 1 Even Parity Receiver and
Transmitter

1 0 1 Mark Parity Bit Transmitted,
Parity Check Disabled

1 1 1 Space Parity Bit Transmitted,
Parity Check Disabled

76543210 -Bit Number

o o010
©©° 9 10

olo

Figure 11-39. Definition of 6551 ACIA

11-121

- Hardware Reset

- Program Reset

Command Register Contents

76 543210. -Bit Number

CI I I I II I I -Status Register

= Parity Error*
0 = No Parity Error
1 = Parity Error Detected

“ Framing Error*
0 = No Framing Error
1 = Framing Error Detected

m Overrun*
0 = No Overrun
1 = Overrun Has Occurred

mReceiver Data Register Full
0 = Not Full
1= Full

- Transmitter Data Register Empty
0 = Not Empty
1= Empty
- Data Carrier Detect (DCD)
0 = DCD low (Detect)
1 = DCD high (Not Detected)

mData Ready (DSR)
0 = DSR low (Ready)
1 = DSR high (Not Ready)

* Interrupt (IRQ)
0 = No Interrupt
*No interrupt occurs for these conditions. 1 = Interrupt Has Occurred

7 6 5432 10> -Bit Number
-Hardware Reset
-Program Reset

Figure 11-40. Definition of 6551 ACIA Status Register Contents

11-122

LOGICAL AND PHYSICAL DEVICES28

An important goal in writing I/O routines is to make them JLOGICAL DEVICES |
independent of particular physical hardware. The routines

can then transfer data to or from 1/O devices, with the actual addresses being sup-
plied as parameters. The I/O device that can actually be accessed through a partic-
ular interface is referred to as a physical device. The I/O device to which the pro-
gram transfers data is referred to as a logical device. The operating system or
supervisor program must provide a mapping of logical devices on to physical
devices, that is, assign actual physical I/O addresses and characteristics to be
used by the I/O routines.

Note the advantages of this approach:

1) The operating system can vary the assignments under user control. Now the user
can easily substitute a test panel or a development system interface for the actual
1/0 devices. This is useful in field maintenance as well as in debugging and testing.
Furthermore, the user can change the 1/0 devices for different situations: typical
examples are directing intermediate output to a video display and final output to a
printer or obtaining some input from a remote communications line rather than
from a local keyboard.

2) The same /O routines can handle several identical or similar devices. The operating
system or user only has to supply the address of a particular teletypewriter, RS-232
terminal, or printer, for example.

3) Changes, corrections, or additions to the I/O configuration are easy to make since
only the assignments (or mapping) must be changed.

On the 6502 microprocessor, either the Preindexed (Indexed Indirect) or Postindexed
(Indirect Indexed) addressing mode can be used in the I/O routines to provide indepen-
dence of specific physical addresses. Preindexing is convenient since it allows the
choice of a physical device address from a table.

If a table of I/O addresses is maintained on page zero, all that 1/0 DEVICE
an 1/O routine needs is an index into that table. It can then ac- TABLE

cess the 1/0 device by using the Preindexed (or Indexed In-

direct) addressing mode. If. for example, the device number is in memory location DEV,
the program to calculate the index would be:

LDA DEV :GET DEVICE NUMBER
ASL A ;MULTIPLY BY 2 FOR 2-BYTE ADDRESS TABLE
TAX
Data may now be transferred to or from the appropriate I/O device with the instructions
LDA DATA :GET DATA
STA (IOTBL.X) :SEND TO LOGICAL I/ODEVICE
LDA (IOTBL.X) :GET DATA FROM LOGICAL I/O DEVICE
STA DATA :SAVE DATA

The same I/O routine can transfer data to or from many different 1/0O devices merely by
being supplied with different indexes. Compare the flexibility of this approach with the
inflexibility of I/O routines that use direct addressing and are therefore tied to specific
physical addresses.

11-123

STANDARD INTERFACES

Other standard interfaces besides the TTY current-loop and STANDARD
RS-232 can also be used to connect peripherals to the microcom- INTERFACES
puter. Popular ones include:

1) The serial RS-449, RS-422, and RS-423 interfaces.29

2) The 8-bit parallel General Purpose Interface Bus, alsoknown as IEEE-488 or
Hewlett-Packard Interface Bus (HPIB).30

3) The S-100 or Altair/lmsai hobbyist bus.” This is also an 8-hit bus.

4) The Intel Multibus.32 This is another 8-bit bus that can, however,be expanded to
handle 16 bits in parallel.

11-124

PROBLEMS
1) Separating Closures from an Unencoded Keyboard

Purpose: The program should read entries from an unencoded 3 x 3 keyboard and
save them in an array. The number of entries is in memory location 0040 and
the array starts in memory location 0041.

Separate one closure from the next by waiting for the current closure to end. Remember
to debounce the keyboard (this can be simply a 1 ms wait).

Sample Problem:

(0040) = 04
Entries are 7, 2, 2, 4
Result: (0041) = 07
(0042) = 02
(0043) = 02
(0044) = 04

2)Read a Sentence from an Encoded Keyboard

Purpose: The program should read entries from an ASCII keyboard (7 bits with a zero
Parity bit) and place them in an array until it receives an ASCII period 2E-|g.
The array starts in memory location 0040. Each entry is marked by a strobe
as in the example given under An Encoded Keyboard

Sample Problem:

Entries are H, E L. L, O,

Result: (0040) = 48 H
(0041) = 45 E
(0042) = 4C L
(0043) = 4C L
(0044) = 4F O
(0045) = 2E

11-125

3) A Variable Amplitude