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Chapter 1 
INTRODUCTION TO ASSEMBLY 

LANGUAGE PROGRAMMING
This book describes assembly language programming. It assumes that you are 
familiar w ith  An Introduction To Microcomputers: Volume 1 — Basic Concepts1 
(particularly Chapters 6 and 7). This book does not discuss the general features of 
computers, microcomputers, addressing methods, or instruction sets; you should 
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED
Notice that te x t in this book has been printed in boldface type and lightface type 
This has been done to help you skip those parts of the book that cover subject 
matter w ith  which you are familiar. You can be sure that lightface type only ex­
pands on information presented in the previous boldface type. Therefore, only read 
boldface type until you reach a subject about which you want to know more, at which 
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce 
defined actions during an instruction cycle. An instruction set is to a microprocessor 
what a function table is to a logic device, such as a gate, adder, or shift register. Of 
course, the actions that the microprocessor performs in response to its instruction in­
puts are far more complex than the actions that logic devices perform in response to 
their inputs.

An instruction is a binary b it pattern — it must be available at 
the data inputs to the microprocessor at the proper time in 
order to be interpreted as an instruction. For example, when the 
6502 microprocessor receives the 8-b it binary pattern 11101000 as the input during an 
instruction fetch operation, the pattern means:

"Increment (add 1 to) the contents of Register X".

Similarly, the pattern 10101001 means:

"Load the Accumulator w ith the contents of the next word of program memory".

The microprocessor (like any other computer) recognizes only binary patterns as in­
structions or data: it does not recognize words or octal, decimal, or hexadecimal num­
bers.

BINARY
INSTRUCTIONS

1-1



A COMPUTER PROGRAM
A program is a series of instructions that causes a computer to perform a particular 
task.

Actually, a computer program includes more than instructions; it 
also contains the data and memory addresses that the 
microprocessor needs to accomplish the tasks defined by the in­
structions. Clearly, if the microprocessor is to perform an addition, it must have two
numbers to add and a place to put the result. The computer program must determine 
the sources of the data and the destination of the result as well as the operation to be 
performed.

A ll microprocessors execute instructions sequentially unless one of the instructions 
changes the execution sequence or halts the computer, i.e., the processor gets the next 
instruction from the next consecutive memory address unless the current instruction 
specifically directs it to do otherwise.

Ultimately every program is translated into a set of binary numbers. For example, 
this is a 6502 program that adds the contents of memory locations 00 60 ig  and
006116 and places the result in memory location 00 62 ig :

10100101 
01100000 
01100101 
01100001 
10000101 
01100010

This is a machine language, or object, program. If this program 
were entered into the memory of a 6502-based microcomputer, 
the microcomputer would be able to execute it directly.

THE PROGRAMMING PROBLEM
There are many difficulties associated w ith  creating programs 
as object, or binary machine language, programs. These are 
some of the problems:

1) The programs are d ifficu lt to understand or debug (binary numbers all look the 
same, particularly after you have looked at them for a few hours).

2) The programs are slow to enter since you must determine each bit individually.
3) The programs do not describe the task which you want the computer to perform in 

anything resembling a human readable format.
4) The programs are long and tiresome to write.
5) The programmer often makes careless errors that are very d ifficu lt to locate and 

correct.

For example, the following version of the addition object program contains a single 
b it error. Try to find it:

10100101
01100000
01110101
01100001
10000101
01100010

Although the computer handles binary numbers w ith ease, people do not. People find 
binary programs long, tiresome, confusing, and meaningless. Eventually, a programmer 
may start remembering some of the binary codes, but such effort should be spent more 
productively.

OBJECT
PROGRAM

MACHINE
LANGUAGE
PROGRAM

COMPUTER
PROGRAM
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USING OCTAL OR HEXADECIMAL
We can improve the situation somewhat by w riting instruc­
tions using octal or hexadecimal, rather than binary numbers.
We w ill use hexadecimal numbers in this book because they are 
shorter, and because they are the standard for the microprocessor industry. Table 1-1 
defines the hexadecimal digits and their binary equivalents. The 6502 program to add 
tw o  numbers now becomes:

A5
60
65
61
85
62

At the very least, the hexadecimal version is shorter to write and not quite so tiring to 
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er­
roneous version of the addition program, in hexadecimal form, becomes:

A5
60
75
61
85
62

The mistake is far more obvious.

What do we do w ith  this hexadecimal program? The microprocessor understands 
only binary instruction codes. The answer is that we must convert the hexadecimal 
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who 
attempt it make all sorts of petty mistakes, such as looking at the wrong line, dropping a 
bit, or transposing a bit or a digit.

This repetitive, grueling task is, however, a perfect job for a com­
puter. The computer never gets tired or bored and never makes 
silly mistakes The idea then is to w rite  a program that accepts 
hexadecimal numbers and converts them into binary numbers. This is a standard 
program provided w ith  many microcomputers; it  is called a hexadecimal loader.

Is a hexadecimal loader worth having? If you are w illing to write a program using binary 
numbers, and you are prepared to enter the program in its binary form into the com­
puter, then you w ill not need the hexadecimal loader.

If you choose the hexadecimal loader, you w ill have to pay a price for it. The hex­
adecimal loader is itself a program that you must load into memory. Furthermore, the 
hexadecimal loader w ill occupy memory —  memory that you may want to use in some 
other way.

The basic tradeoff, therefore, is the cost and memory requirements of the hexadecimal 
loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

A hexadecimal loader certainly does not solve every programming problem. The hex­
adecimal version of the program is still d ifficu lt to read or understand; for example, it 
does not distinguish instructions from data or addresses, nor does the program listing 
provide any suggestion as to what the program does. W hat does 85 or DO mean? 
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore, the 
codes w ill be entirely different for a different microprocessor, and the program w ill re­
quire a large amount of documentation.

HEXADECIMAL
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Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE M NEMONICS
An obvious programming improvement is to assign a name to each instruction 
code. The instruction code name is called a "m nem onic" or memory jogger. The 
instruction mnemonic should describe in some way what the instruction does.

In fact, every microprocessor manufacturer (they can't remember 
hexadecimal codes either) provides a set of mnemonics for the 
microprocessor instruction set. You do not have to abide by the 
manufacturer's mnemonics; there is nothing sacred about them.
However, they are standard for a given microprocessor and therefore understood by all 
users. These are the instruction codes that you w ill find in manuals, cards, books, ar­
ticles, and programs. The problem w ith selecting instruction mnemonics is that not all 
instructions have "obvious” names. Some instructions do (e.g., ADD, AND, OR), others 
have obvious contractions (e.g.. SUB for subtraction, XOR for exclusive-OR), while still 
others have neither. The result is such mnemonics as WMP, PCHL, and even SOB 
(guess what that means!). Most manufacturers come up w ith some reasonable names 
and some hopeless ones. However, users who devise their own mnemonics rarely do 
much better than the manufacturer.

Along w ith the instruction mnemonics, the manufacturer w ill usually assign names to 
the CPU registers. As w ith the instruction names, some register names are obvious (e.g., 
A for Accumulator) while others may have only historical significance. Again, we w ill 
use the manufacturer's suggestions simply to promote standardization.

If we use standard 6502 instruction and register mnemonics, 
as defined by MOS Technology, Inc., our 6502 addition pro­
gram becomes:

LDA $60
ADC $61
STA $62

The program is still far from obvious, but at least some parts are comprehensible. ADC 
is a considerable improvement over 65; LDA and STA suggest loading and storing the 
contents of the Accumulator. We now know which lines are instructions and which are 
data or addresses Such a program is an assembly language program.
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THE ASSEMBLER PROGRAM
How do we get the assembly language program into the com­
puter? We have to translate it, either into hexadecimal or into bi­
nary numbers. You can translate an assembly language pro­
gram by hand, instruction by instruction. This is called hand assembly

Hand assembly of the addition program may he illustrated as follows:

Instruction Mnemonic Addressing Method Hexadecimal Equivalent 
LDA Zero Page (direct) A5
ADC Zero Page (direct) 65
STA Zero Page (direct) 85

As w ith hexadecimal to binary conversion, hand assembly is a rote task which is unin­
teresting, repetitive, and subject to numerous minor errors. Picking the wrong line, 
transposing digits, omitting instructions, and misreading the codes are only a few of the 
mistakes that you may make. Most microprocessors complicate the task even further by 
having instructions w ith different word lengths. Some instructions are one word long 
while others are two or three words long. Some instructions require data in the second 
and third words, others require memory addresses, register numbers, or who knows 
what?

Assembly is another rote task that we can assign to the 
m icrocom puter. The m icrocom puter never makes any 
mistakes when translating codes; it always knows how many 
words and what format each instruction requires. The program 
that does this job is an "assembler." The assembler program 
translates a user program, or " source"  program w ritten  w ith  
mnemonics, into a machine language program, or "o b je c t" 
program, which the microcomputer can execute. The assem­
bler's input is a source program and its output is an object program.

The tradeoffs that we discussed in connection w ith  the hexadecimal loader are 
magnified in the case of the assembler. Assemblers are more expensive, occupy 
more memory, and require more peripherals and execution time than do hexadecimal 
loaders. W hile users may (and often do) write their own loaders, few care to write their 
own assemblers.

Assemblers have their own rules that you must learn. These include the use of cer­
tain markers (such as spaces, commas, semicolons, or colons) in appropriate places, 
correct spelling, the proper control information, and perhaps even the correct place­
ment of names and numbers. These rules are usually simple and can be learned quickly.
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ADDITIONAL FEATURES OF ASSEMBLERS
Early assemblers did little more than translate the mnemonic names of instructions and 
registers into their binary equivalents. However, most assemblers now provide such ad­
ditional features as:

1) A llow ing the user to assign names to memory locations, input and output devices, 
and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g., decimal or hex­
adecimal) to binary and converting characters into their ASCII or EBCDIC binary
codes.

3) Performing some arithmetic as part of the assembly process.
4) Telling the loader program where in memory parts of the program or data should be

placed.
5) A llow ing the user to assign areas of memory as temporary data storage and to 

place fixed data in areas of program memory.
6) Providing the information required to include standard programs from program li­

braries, or programs written at some other time, in the current program.
7) A llow ing the user to control the format of the program listing and the input and 

output devices employed.

All of these features, of course, involve additional cost and memo­
ry. Microcomputers generally have much simpler assemblers than 
do larger computers, but the tendency always is for the size of as­
semblers to increase. You w ill often have a choice of assemblers.
The important criterion is not how many offbeat features the assembler has, but rather 
how convenient it is to work w ith in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE
The assembler, like the hexadecimal loader, does not solve all the problems of 
programming. One problem is the tremendous gap between the microcomputer in­
struction set and the tasks which the microcomputer is to perform. Computer in­
structions tend to do things like add the contents of two registers, shift the contents of 
the Accumulator one bit. or place a new value in the Program Counter. On the other 
hand, a user generally wants a microcomputer to do something like check if an analog 
reading has exceeded a threshold, look for and react to a particular command from a 
teletypewriter, or activate a relay at the proper time. An assembly language program­
mer must translate such tasks into a sequence of simple computer instructions. The 
translation can be a difficult, time-consuming job.

Furthermore, if  you are programming in assembly language, you must have detailed 
knowledge of the particular microcomputer that you are using. You must know 
what registers and instructions the microcomputer has. precisely how the instructions 
affect the various registers, what addressing methods the computer uses, and a myriad 
of other information. None of this information is relevant to the task which the 
microcomputer must ultimately perform.

In addition, assembly language programs are not portable. | PORTABILITY |
Each microcomputer has its own assembly language, which
reflects its own architecture. An assembly language program written for the 6502 w ill 
not run on a 6800, Z80. 8080, or 3870 microprocessor. For example, the addition pro­
gram written for the 8080 would be:

LDA 60H
MOV B.A
LDA 61 H
ADD B
STA 62H
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The lack of portability not only means that you w on 't be able to use your assembly 
language program on another microcomputer, but it also means that you w on 't be able 
to use any programs that weren't specifically written for the microcomputer you are 
using. This is a particular drawback for microcomputers, since these devices are new 
and few assembly language programs exist for them. The result, too frequently, is that 
you are on your own. If you need a program to perform a particular task, you are not 
likely to find it in the small program libraries that most manufacturers provide. Nor are 
you likely to find it in an archive, journal article, or someone's old program file. You w ill 
probably have to write it yourself.

HIGH-LEVEL LANGUAGES __________
The solution to many of the difficulties associated w ith  as- | COMPILER | 
sembly language programs is to use, instead, "h igh-leve l" or 
"procedure-oriented" languages. Such languages allow you to describe tasks in 
forms that are problem oriented rather than computer oriented. Each statement in 
a high-level language performs a recognizable function; it w ill generally corres­
pond to many assembly language instructions. A program called a compiler trans­
lates the high-level language source program into object code or machine 
language instructions.

Many different high-level languages exist for different types of | FORTRAN |
tasks. If, for example, you can express what you want the com­
puter to do in algebraic notation, you can write your program in FORTRAN (Formula 
Translation Language), the oldest and most widely used of the high-level languages. 
Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1 +  NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro­
gram or the equivalent assembly language program. Other high-level languages in­
clude COBOL (for business applications), PASCAL (another algebraic language). PL/1 (a 
combination of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that 
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES
Clearly, high-level languages make programs easier and faster to w rite. A common 
estimate is that a programmer can w rite  a program about ten times as fast in a 
high-level language as compared to assembly language.1'3  That is just writing the 
program: it does not include problem definition, program design, debugging, testing, or 
documentation, all of which become simpler and faster. The high-level language pro­
gram is, for instance, partly self-documenting. Even if you do not know FORTRAN, you 
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ­
ated w ith  assembly language programming. The high-level 
language has its own syntax (usually defined by a national or 
international standard). The language does not mention the in­
struction set, registers, or other features of a particular com­
puter. The compiler takes care of all such details. Programmers can concentrate on their 
own tasks; they do not need a detailed understanding of the underlying CPU architec­
ture —  for that matter, they do not need to know anything about the computer they are 
programming.

Programs w ritten  in a high-level language are portable — 
at least, in theory. They w ill run on any computer that has a 

standard compiler for that language.
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A t the same time, all previous programs written in a high-level language for prior com­
puters are available to you when programming a new computer. This can mean thou­
sands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES
Well, if all the good things we have said about high-level languages are true, if you 
can w rite  programs faster and make them portable besides, why bother w ith  as­
sembly languages? Who wants to worry about registers, instruction codes, 
mnemonics, and all that garbagel As usual, there are disadvantages that balance 
the advantages.

One obvious problem is that you have to learn the "ru les " or 
"syn ta x " of any high-level language you want to use. A high- 
level language has a fairly complicated set of rules. You w ill find 
that it takes a lot of time just to get a program that is syntactically 
correct (and even then it probably w ill not do what you want). A high-level computer
language is like a foreign language. If you have a little talent, you w ill get used to the
rules and be able to turn out programs that the compiler w ill accept. Still, learning the 
rules and trying to get the program accepted by the compiler does not contribute 
directly to doing your job.

Here, for example, are some FORTRAN rules:

• Labels must be numbers placed in the first five card columns
• Statements must start in column seven
• Integer variables must start w ith  the letters I, J, K, L, M, or N

Another obvious problem is that you need a compiler to translate 
programs written in a high-level language. Compilers are expen­
sive and use a large amount of memory. W hile most assemblers 
occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K bytes. So 
the amount of overhead involved in using the compiler is rather large.

Furthermore, only some compilers w ill make the implementa­
tion of your task simpler. FORTRAN, for example, is well-suited 
to problems that can be expressed as algebraic formulas. If, 
however, your problem is controlling a printer, editing a string of characters, or monitor­
ing an alarm system, your problem cannot be easily expressed in algebraic notation. In 
fact, formulating the solution in algebraic notation may be more awkward and more 
d ifficu lt than formulating it in assembly language. One answer is to use a more suitable 
high-level language. Some such languages exist, but they are far less w idely used and 
standardized than FORTRAN. You w ill not get many of the advantages of high-level 
languages if you use these so-called system implementation languages.

High-level languages do not produce very e ffic ien t 
machine language programs. The basic reason for this is that 
compilation is an automatic process which is riddled w ith com­
promises to allow for many ranges of possibilities. The com­
piler works much like a computerized language translator — 
sometimes the words are right but the sounds and sentence 
structures are awkward. A simple compiler cannot know when a variable is no longer 
being used and can be discarded, when a register should be used rather than a memory 
location, or when variables have simple relationships. The experienced programmer can 
take advantage of shortcuts to shorten execution time or reduce memory usage. A few
compilers (known as optimizing compilers) can also do this, but such compilers are
much larger and slower than regular compilers.
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The general advantages and disadvantages of high-level languages 

Advantages:

• More convenient descriptions of tasks
• Less time spent w riting programs
• Easier documentation
• Standard syntax
• Independence of the structure of a particular computer
• Portability
• Availability of library and other programs 

Disadvantages:

• Special rules
• Extensive hardware and software support required
• Orientation of common languages to algebraic or 

business problems
• Inefficient programs
• D ifficulty of optimizing code to meet time and memory requirements
• Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS
Microprocessor users w ill encounter several special difficu lties when using high- 
level languages. Among these are:

• Few high-level languages exist for microprocessors
• Few standard languages are w idely available
• Compilers usually require a large amount of memory or even a com­

pletely different computer
• M ost microprocessor applications are not well-suited to high-level 

languages
• Memory costs are often critical in microprocessor applications

The lack of high-level languages is partly a result of the fact that microprocessors are 
quite new and are the products of semiconductor manufacturers rather than computer 
manufacturers. Very few high-level languages exist for microprocessors. The most com­
mon are BASIC, 5 PASCAL,® FORTRAN, and the PL/l-type languages such as PL/M,7 
MPL, and PLjuS.

Many of the high-level languages that exist do not conform to recognized standards, so 
that the microprocessor user cannot expect to gain much program portability, access to 
program libraries, or use of previous experience or programs. The main advantages re­
maining are the reduction in programming effort and the smaller amount of detailed 
understanding of the computer architecture that is necessary.

The overhead involved in using a high-level language w ith 
microprocessors is considerable. Microprocessors themselves are 
better suited to control and slow interactive applications than they 
are to the character manipulation and language analysis involved 
in compilation. Therefore, some compilers for microprocessors w ill 
not run on a microprocessor-based system. Instead, they require a much larger com­
puter; i.e., they are cross-compilers rather than self-compilers. A user must not only 
bear the expense of the larger computer but must also physically transfer the program 
from the larger computer to the micro.
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Some self-compilers are available. These compilers run on the microcomputer for which 
they produce object code. Unfortunately, they require large amounts of memory (16K or 
more), plus special supporting hardware and software.

High-level languages also are not generally well-suited to 
microprocessor applications. Most of the common languages 
were devised either to help solve scientific problems or to 
hand le  la rge -sca le  bus iness da ta  p rocess ing . Few 
microprocessor applications fall in either of these areas. Most microprocessor 
applications involve sending data and control information to output devices and 
receiving data and status information from input devices. Often the control and status 
information consists of a few binary digits w ith  very precise hardware-related 
meanings. If you try to write a typical control program in a high-level language, you 
often feel like someone who is trying to eat soup w ith chopsticks. For tasks in such 
areas as test equipment, terminals, navigation systems, signal processing, and business 
equipment, the high-level languages work much better than they do in 
instrumentation, communications, peripherals, and automotive applications.

Applications better suited to high-level languages are those which 
require large memories. If, as in a valve controller, electronic game, 
appliance controller, or small instrument, the cost of a single 
memory chip is important, then the inefficiency of high-level 
languages is intolerable. If, on the other hand, as in a terminal or 
test equipment, the system has many thousands of bytes of memory anyway, the ineffi­
ciency of high-level languages is not as important. Clearly the size of the program and 
the volume of the product are important factors as well. A large program w ill greatly in­
crease the advantages of high-level languages. On the other hand, a high-volume ap­
plication w ill mean that fixed software development costs are not as important as 
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?
That depends on your particular application. Let us briefly note some of the factors 
which may favor particular levels:

Machine Language:

• Virtually no one programs in machine language 
because it is inefficient and difficu lt to document.
An assembler costs very little  and greatly reduces 
programming time.

Assembly Language:

• Short to moderate-sized programs
• Applications where memory cost is a factor
• Real-time control applications
• Limited data processing
• High-volume applications

• Applications involving more input/output or control than computation
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High Level Languages:

• Long programs
• Low-volume applications requiring long pro­

grams

• Applications where the amount o f memory required is already very large
• Applications involving more computation than input/output or control
• Compatibility w ith  similar applications using larger computers
• Availability of specific programs in a high-level language which can be 

used in the application

Many other factors are also important, such as the availability of a larger computer for 
use in development, experience w ith particular languages, and compatibility w ith other 
applications.

If hardware w ill ultimately be the largest cost in your application, or if speed is critical, 
you should favor assembly language. But be prepared to spend extra time in software 
development in exchange for lower memory costs and higher execution speeds. If soft­
ware w ill be the largest cost in your application, you should favor a high-level language. 
But be prepared to spend the extra money required for the supporting hardware and 
software.

Of course, no one except some theorists w ill object if you use both assembly and high- 
level languages. You can write the program originally in a high-level language and then 
patch some sections in assembly language.7 However, most users prefer not to do this 
because of the havoc it creates in debugging, testing, and documentation.

HOW ABOUT THE FUTURE?
We expect that the future w ill favor high-level languages for the following reasons:

• Programs always seem to add extra features and 
grow larger

• Hardware and memory are becoming less expensive
• Software and programmers are becoming more ex­

pensive
• Memory chips are becoming available in larger sizes, at lower "per bit" cost, 

so actual savings in chips are less likely
• More suitable and more efficient high-level languages are being developed
• More standardization of high-level languages w ill occur

Assembly language programming of microprocessors w ill not be a dying art any more 
than it is now for large computers. But longer programs, cheaper memory, and more ex­
pensive programmers w ill make software costs a larger part of most applications. The 
edge in many applications w ill therefore go to high-level languages.
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W HY THIS BOOK?
If the future would seem to favor high-level languages, why have a book on as­
sembly language programming? The reasons are:

1) Most current microcomputer users program in assembly language (almost two 
thirds, according to one recent survey).

2) Many microcomputer users w ill continue to program in assembly language since 
they need the detailed control that it provides.

3) No suitable high-level language has yet become widely available or standardized.
4) Many applications require the efficiency of assembly language.
5) An understanding of assembly language can help in evaluating high-level 

languages.

The rest of this book w ill deal exclusively w ith assemblers and assembly language pro­
gramming. However, we do want readers to know that assembly language is not the 
only alternative. You should watch for new developments that may significantly reduce 
programming costs if such costs are a major factor in your application.
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Chapter 2 
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning w ith features 
common to most assemblers and proceeding through more elaborate capabilities such 
as macros and conditional assembly. You may wish to skim this chapter for the present 
and return to it when you feel more comfortable w ith the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate as­
sembly language mnemonics into binary codes. But we w ill describe how an as­
sembler handles the translation of mnemonics before describing additional assem­
bler features. Finally, we w ill explain how assemblers are used.

ASSEMBLER INSTRUCTIONS
Assembly language instructions (or "statem ents") are divided 
into a number of fields, as shown in Table 2-1.

The operation code field is the only field that can never be 
empty; it always contains either an instruction mnemonic or a 
directive to the assembler, called a pseudo-instruction, pseudo-operation, or 
pseudo-op.

The operand or address field may contain an address or data, or it may be blank.

The comment and label fields are optional. A programmer w ill assign a label to a 
statement or add a comment as a personal convenience: namely, to make the pro­
gram easier to read and use.

Table 2-1. The Fields of an Assembly Language Instruction

Label
Field

Operation Code 
or Mnemonic 

Field

Operand or 
Address 

Field
Comment Field

START LDA VAL1 ;LOAD FIRST NUMBER INTO A
ADC VAL2 ;ADD SECOND NUMBER TO A
STA SUM iSTORE SUM

NEXT ? ? :NEXT INSTRUCTION

VAL1 ’ =*+1
VAL2 *=*+1
SUM *=*+1

ASSEMBLY
LANGUAGE
FIELDS
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Table 2-2. Standard 6502 Assembler Delimiters

'space' between label and operation code and between operation 
code and address 

, between operands in the address field 
; or ! before a comment

Note that 6502 assemblers vary greatly and some may not use these delimiters.

Of course, the assembler must have some way of telling |FORMAT!
where one field ends and another begins. Assemblers that use 
punched card input often require that each field start in a specific card column. This is 
a fixed format. However, fixed formats are inconvenient when the input medium is 
paper tape; fixed formats are also a nuisance to programmers. The alternative is a free 
format where the fields may appear anywhere on the line.

If the assembler cannot use the position on the line to tell the |PEUMITERS| 
fields apart, it must use something else. Most assemblers use a 
special symbol or delim iter at the beginning or end of each field. The most common 
delimiter is the space character. Commas, periods, semicolons, colons, slashes, ques­
tion marks, and other characters that would not otherwise be used in assembly 
language programs may also serve as delimiters. Table 2-2 lists standard 6502 assem­
bler delimiters.

You w ill have to exercise a little  care w ith  delimiters. Some assemblers are fussy 
about extra spaces or the appearance of delimiters in comments or labels. A well- 
w ritten  assembler w ill handle these minor problems, but many assemblers are not 
well-w ritten. Our recommendation is simple: avoid potential problems if you can. 
The following rules w ill help:

1) Do not use extra spaces, particularly after commas that separate operands.
2) Do not use delim iter characters in names or labels.
3) Include standard delimiters even if your assembler does not require them. Your pro­

grams w ill then run on any assembler.

LABELS
The label field is the firs t field in an assembly language in­
struction; it may be blank. If a label is present, the assembler 
defines the label as equivalent to the address into which the first 
byte of the object program resulting from that instruction is loaded. You may subse­
quently use the label as an address or as data in another instruction's address field. The 
assembler w ill replace the label w ith the assigned value when creating an object pro­
gram.

Labels are most frequently used in Jump, Call, or Branch in­
structions. These instructions place a new value in the Program 
Counter and so alter the normal sequential execution of instruc­
tions. JUMP 150-|6 means "place the vakje 1501 0  in the Program 
Counter". The next instruction to be executed w ill be the one in memory location 
1501 6. The instruction JUMP START means "place the value assigned to the label 
START in the Program Counter” . The next instruction to be executed w ill be the one at 
the address corresponding to the label START. Table 2-3 contains an example.

LABELS 
IN JUMP 
INSTRUCTIONS

LABEL
FIELD
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Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM 

START LOAD ACCUMULATOR 100

• (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction 
JUMP START causes the address of the instruction labeled START to be placed 
in the Program Counter. That instruction w ill then be executed.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember.
2) A label can easily be moved, if required, to change or correct a program. The as­

sembler w ill automatically change all instructions that use that label when the pro­
gram is reassembled.

3) The assembler or loader can relocate the whole program by
adding a constant (a relocation constant) to each address for 
which a label was used. Thus we can move the program to 
allow for the insertion of other programs or simply to rearrange memory.

4) The program is easier to use as a library program: i.e., it is easier for someone else
to take your program and add it to some totally different program.

5) You do not have to figure out memory addresses. Figuring out memory addresses is 
particularly d ifficu lt w ith microprocessors which have instructions that vary in 
length.

You should assign a label to any instruction that you might want to refer to later.

The next question is how to choose a label. The assembler 
often places some restrictions on the number of characters 
(usually 5 or 6), the leading character (often must be a letter), and 
the trailing characters (often must be letters, numbers, or one of a few special charac­
ters). Beyond these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic labels. 
Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a 
routine that searches for the ASCII character ETX, or NKEYS for a location in data 
memory that contains the number of key entries. Meaningful labels are easier to 
remember and contribute to program documentation. Some programmers use a stan­
dard format for labels, such as starting w ith L0000. These labels are self-sequencing 
(you can skip a few numbers to permit insertions), but they do not help document the 
program.

CHOOSING
LABELS

RELOCATION
CONSTANT
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Some label selection rules w ill keep you out of trouble. We 
recommend the following:

1) Do not use labels that are the same as operation codes or 
other mnemonics. Most assemblers w ill not allow this usage; others will, but it is 
very confusing.

2) Do not use labels that are longer than the assembler permits. Assemblers have 
various truncation rules.

3) Avoid special characters (non-alphabetic and non-numeric) and lower-case letters. 
Some assemblers w ill not permit them; others allow only certain ones. The simplest 
practice is to stick to capital letters and numbers.

4) Start each label w ith  a letter. Such labels are always acceptable.
5) Do not use labels that could be confused w ith each other. Avoid the letters I, 0  and 

Z, and the numbers 0, 1, and 2. Also avoid things like XXXX and XXXXX. There's 
no sense tempting fate and Murphy's laws.

6) When you are not sure if a label is legal, do not use it. You w ill not get any real 
benefit from discovering exactly what the assembler w ill accept.

These are recommendations, not rules. You do not have to follow them, but don't blame 
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)
The main task of the assembler is the translation of mnemonic operation codes 
into their binary equivalents. The assembler performs this task using a fixed table 
much as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must 
also somehow determine how many operands the instruction requires and what 
type they are. This may be rather complex —  some instructions (like a Halt) have no 
operands, others (like an Addition or a Jump instruction) have one, while still others 
(like a transfer between registers or a multiple-bit shift) require two. Some instructions 
may even allow alternatives; e.g., some computers have instructions (like Shift or Clear) 
that can apply either to the Accumulator or to a memory location. We w ill not discuss 
how the assembler makes these distinctions; we w ill just note that it must do so.

PSEUDO-OPERATIONS
Some assembly language instructions are not directly trans­
lated into machine language instructions. These instructions 
are directives to the assembler; they assign the program to cer­
tain areas in memory, define symbols, designate areas of RAM for temporary data 
storage, place tables or other fixed data in memory, allow references to other programs, 
and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the 
pseudo-operation's mnemonic in the operation code field, and, if the specified pseudo­
operation requires it, an address or data in the address field.

The most common pseudo-operations are:

DATA
EQUATE (=) or DEFINE
ORIGIN
RESERVE

Linking pseudo-operations (used to connect separate programs) are:
ENTRY
EXTERNAL

PSEUDO­
OPERATIONS

RULES OF 
LABELING
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Different assemblers use different names for these operations, but their functions are 
the same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNCH

We w ill discuss these pseudo-operations briefly, although their functions are usually 
obvious.

THE DATA PSEUDO-OPERATION
The DATA pseudo-operation a llow s the programmer to  enter fixed  data in to  pro­
gram memory. This data may include:

• Lookup tables
• Code conversion tables
• Messages
• Synchronization patterns
• Thresholds
• Names
• Coefficients for equations
• Commands
• Conversion factors
• W eighting factors
• Characteristic times or frequencies
• Subroutine addresses
• Key identifications
• Test patterns
• Character generation patterns
• Identification patterns
• Tax tables
• Standard forms
• Masking patterns
• State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The fo rm at o f a DATA pseudo-operation is usually qu ite  simple. An instruction  
like:

DZCON DATA 12

w ill place the number 12 in the next available memory location and assign that 
location the name DZCON. Usually every DATA pseudo-operation has a label, unless it 
is one of a series of DATA pseudo-operations. The data and label may take any form 
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a large amount of 
data at one time, e.g.:

EMESS DATA 'ERROR'
SQRS DATA 1,4,9,16,25
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A single instruction may fill many words of program memory, limited only by the length 
of a line. Note that if you cannot get all the data on one line, you can always follow one 
DATA instruction w ith another, e.g.,

MESSG DATA 'NOW IS THE '
DATA TIME FOR ALL '
DATA 'GOOD MEN '
DATA 'TO COME TO THE '
DATA 'AID OF THEIR '
DATA 'COUNTRY'

Microprocessor assemblers typically have some variations of standard DATA 
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers; 
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses. 
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION
The EQUATE pseudo-operation allows the programmer to 
equate names w ith  addresses or data. This pseudo-operation 
is almost always given the mnemonic EQU or =. The names 
may refer to device addresses, numeric data, starting addresses, fixed addresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to 
the label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers w ill allow you to define one label in terms of another, e.g.,

LAST EQU FINAL
ST1 EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the 
operand field may contain more complex expressions, as we shall see later. Double 
name assignments (two names for the same data or address) may be useful in patching 
together programs that use different names for the same variable (or different spellings 
of what was supposed to be the same name).

DEFINING
NAMES

SYMBOL
TABLE

Note that an EQU pseudo-operation does not cause the as­
sembler to place anything in memory. The assembler simply 
enters an additional name into a table (called a symbol table) 
which the assembler maintains. This table, unlike the mnemonic table, must be in 
RAM since it varies w ith each program. The assembler always needs some RAM to hold 
the symbol table; the more RAM it has, the more symbols it can accept. This RAM is in 
addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a 
parameter that has some meaning besides its ordinary numeric 
value or the numeric value of the parameter might be changed.
We typically assign names to time constants, device addresses, masking patterns, con­
version factors, and the like. A name like DELAY, TTY, KBD, KROW, or OPEN not only 
makes the parameter easier to change, but it also adds to program documentation. We 
also assign names to memory locations that have special purposes; they may hold data, 
mark the start of the program, or be available for intermediate storage.

USE OF 
NAMES

What name do you use? The best rules are much the same as CHOICE
in the case of labels, except that here meaningful names really OF
count. W hy not call the teletypewriter TTY instead of X15, a bit NAMES
time delay BTIME or BTDLY rather than WW, the number of the 
"GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightfor­
ward, but a surprising number of programmers do not follow it.
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Where do you place the EQUATE pseudo-operations? The 
best place is at the start of the program, under appropriate 
comment headings such as I/O ADDRESSES, TEMPORARY 
STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This 
makes the definitions easy to find if you want to change them. Furthermore, another 
user w ill be able to look up all the definitions in one centralized place. Clearly this prac­
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the 
subroutine.

THE ORIGIN PSEUDO-OPERATION
The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro­
grammer to locate programs, subroutines, or data anywhere in memory. Programs 
and data may be located in different areas of memory depending on the memory con­
figuration. Startup routines, interrupt service routines, and other required programs 
may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter (comparable to 
the computer's Program Counter) which contains the location 
in memory of the next instruction or data item being pro­
cessed. An ORG pseudo-operation causes the assembler to place a new value in the 
Location Counter, much as a Jump instruction causes the CPU to place a new value in 
the Program Counter. The output from the assembler must not only contain instructions 
and data, but must also indicate to the loader program where in memory it should place 
the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following 
purposes:

Reset (startup) address 
Interrupt service addresses 
Trap addresses 
RAM storage 
Memory stack 
Subroutines
Memory addresses for input/output devices or 

special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data in 
memory, or assign vacant RAM space for data buffers. Program and data memory in 
microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG 
statement at the start of the program. The convenience is slight; we recommend the in­
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION
The RESERVE pseudo-operation allows the programmer to 
allocate RAM for various purposes such as data tables, tem ­
porary storage, indirect addresses, a Stack, etc.

ALLOCATING
RAM

LOCATION
COUNTER

PLACEMENT
OF
DEFINITIONS
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Using the RESERVE pseudo-operation, you assign a name to the memory area and 
declare the number of locations to be assigned. Here are some examples:

NOKEY RESERVE 1
TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program 
memory or in data memory; however, the RESERVE pseudo-operation is more 
meaningful when applied to data memory.

In reality, all the RESERVE pseudo-operation does is increase the assembler's Location 
Counter by the amount declared in the operand field. The assembler does not actually 
produce any object code.

Note the following features of RESERVE:

1) The label of the RESERVE pseudo-operation is assigned the value of the first ad­
dress reserved. For example, the pseudo-operation:

TEMP RESERVE 20

reserves 20 bytes of RAM and assigns the name TEMP to the address of the first 
byte.

2) You must specify the number of locations to be reserved. There is no default case.
3) No data is placed in the reserved locations. Any data that, by chance, may be in 

these locations w ill be left there.

Some assemblers allow the programmer to place initial 
values in RAM. We strongly recommend that you do not 
use this feature —  it assumes that the program (along w ith 
the initial values) w ill be loaded from an external device (e.g., paper tape or floppy disk) 
each time it is run. Most microprocessor programs, on the other hand, reside in non­
volatile ROM and start when power comes on. The RAM in such situations does not re­
tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in 
your program.

LINKING PSEUDO-OPERATIONS
We often want statements in one program or subroutine to 
use names that are defined elsewhere. Such names are called 
external references; a special linking program is necessary to ac­
tually fill in the values and determine if any names are undefined or doubly defined.

The pseudo-operation EXTERNAL, usually abbreviated EXT, signifies that the 
name is defined elsewhere.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is 
available for use elsewhere; i.e.. it is defined in this program.

The precise way in which linking pseudo-operations are implemented varies greatly 
from assembler to assembler. We w ill not refer to such pseudo-operations again, but 
they are very useful in actual applications.

EXTERNAL
REFERENCES

INITIALIZING
RAM

2 - 8



HOUSEKEEPING PSEUDO-OPERATIONS
There are various housekeeping pseudo-operations that affect the operation of 
the assembler and its program listing rather than the output program itself. Com­
mon housekeeping pseudo-operations include:

• END, which marks the end of the assembly language source program.

• LIST, which tells the assembler to print the source program. Some assemblers allow 
such variations as NO LIST or LIST SYMBOL TABLE to avoid long, repetitive listings.

• NAME or TITLE, which prints a name at the top of each page of the listing.

• PAGE or SPACE, which skips to the next page or next line, respectively, and im­
proves the appearance of the listing, making it easier to read.

• PUNCH, which transfers subsequent object code to the paper tape punch. This 
pseudo-operation may in some cases be the default option and therefore unneces­
sary.

LABELS W ITH PSEUDO-OPERATIONS
Users often wonder if or when they can assign a label to a pseudo-operation. 
These are our recommendations:

• All EQUATE pseudo-operations must have labels; they are useless otherwise, since 
the purpose of an EQUATE is to define its label.

• DATA and RESERVE pseudo-operations usually have labels. The label identifies the 
first memory location used or assigned.

• Other pseudo-operations should not have labels. Some assemblers allow such 
labels, but we recommend against their use because there is no standard way to in­
terpret them.
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ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con­
tents of the Operand or Address field. But remember that the assembler has built- 
in names for registers and instructions and may have other built-in names.

Some common options for the operand field are:

1) Decimal numbers

Most assemblers assume all numbers to be decimal unless they 
are marked otherwise. So:

ADD 100

means "add the contents of memory location 100-)o to the contents of the Ac­
cumulator."

2) Other number systems

Most assemblers w ill also accept binary, octal, or hexadecimal 
entries. But you must identify these number systems in some 
way, e.g., by preceding or following the number w ith an iden­
tifying character or letter. Here are some common identifiers:

B or % for binary
0, Q, or C for octal (the letter O should be avoided because of the confu­
sion w ith zero).
H or $ for hexadecimal (or standard BCD).
D for decimal. D may be omitted: it is the default case.

Assemblers generally require hexadecimal numbers to start w ith a dig it (e.g., 0A36 
instead of A36) in order to distinguish between numbers and names or labels. It is 
good practice to enter numbers in the base in which their meaning is the 
clearest: i.e., decimal constants in decimal: addresses and BCD numbers in hex­
adecimal; masking patterns or bit outputs in binary if they are short and in hex­
adecimal if they are long.

3) Names

Names can appear in the operand field: they w ill be treated as the data that they 
represent But remember,there is a difference between data and addresses. The
sequence:

FIVE EQU 5
ADD FIVE

will add the contents of memory location 0005 (not necessarily the number 5) to the 
contents of the Accumulator.

NON-DECIMAL
NUMBER
SYSTEMS

DECIMAL 
DATA OR 
ADDRESSES
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4) The current value of the location counter (usually referred to as * or $).

This is useful mainly in Jump instructions; for example:

JUMP *+6

causes a Jump to the memory location six words beyond the word that contains the 
first byte of the JUMP instruction:

6 locations <

Memory

JUMP *+ 6  code stored here

- Jump here

Most microprocessors have many two- and three-word instructions. Thus, you w ill 
have difficu lty determining exactly how far apart two assembly language statements 
are. Therefore, using offsets from the Location Counter frequently results in errors 
that you can avoid if you use labels.

5) Character codes

Most assemblers allow text to be entered as ASCII strings. Such 
strings may be surrounded either w ith single or double quota­
tion marks; strings may also use a beginning or ending symbol 
such as A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity and 
readability of the program.

6) Combinations of 1) through 5) w ith  arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations 
such as START+1. Some assemblers also permit multiplication, 
division, logical functions, shifts, etc. These are referred to as 
expressions. Note that the assembler evaluates expressions at 
assembly time. Even though an expression in the operand field may involve 
multiplication, you may not be able to use multiplication in the logic of your own pro­
gram — unless you write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com­
plex expressions make a program d ifficu lt to read and understand.

We have made some recommendations during this section but w ill repeat them and 
add others here In general, the user should strive for clarity and simplicity. There is 
no payoff for being an expert in the intricacies of an assembler or in having the most 
complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data.
Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary numeri­
cal constants in hexadecimal serve no purpose and therefore should not be used.

2) Remember to distinguish data from addresses.
3) Don't use offsets from the Location Counter.
4) Keep expressions simple and obvious. Don't rely on obscure features of the assem­

bler.

ARITHMETIC 
AND LOGICAL 
EXPRESSIONS

ASCII
CHARACTERS
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CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de­
pending on conditions existing at assembly time. This is called conditional assem­
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer 
assemblers have limited capabilities for conditional assembly. A typical form is:

IF COND

.(CONDITIONAL PROGRAM)

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF 
(two pseudo-operations) are included in the program.

Typical uses of conditional assembly are:

1) To include or exclude extra variables.
2) To place diagnostics or special conditions in test runs.
3) To allow data of various bit lengths.
4) To create specialized versions of a common program.

Unfortunately, conditional assembly tends to clutter programs and make them d ifficu lt 
to read. Use conditional assembly only if it is necessary.
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MACROS

You w ill often find that particular sequences of instructions oc­
cur many times in a source program. Repeated instruction se­
quences may reflect the needs of your program logic, or they 
may be compensating for deficiencies in your microprocessor's 
instruction set. You can avoid repeatedly w riting out the same instruction sequence by 
using a macro.

Macros allow you to assign a name to an instruction sequence. You then use the 
macro name in your source program instead of the repeated instruction sequence. 
The assembler w ill replace the macro name w ith  the appropriate sequence of in­
structions. This may be illustrated as follows:

DEFINING A 
SEQUENCE OF 
INSTRUCTIONS

Source Program Object Program

instruction P1 
instruction P2 
instruction P3

instruction P8 
instruction P9

MACRO (macro definition)

instruction M 1 \
instruction M2 > --------------------------------
instruction M3 /

(end of macro definition)

instruction
instruction

(main program)

P1° | 

P11 f  "

instruction P1 
instruction P2 
instruction P3 

instruction M1 
instruction M2 
instruction M3 

instruction P4 
instruction P5 
instruction P6 
instruction P7 

instruction M1 
instruction M2 
instruction M3

instruction P8 
instruction P9

instruction M1 
instruction M2 
instruction M3 

instruction P10 
instruction P11

Macros are not the same as subroutines. A subroutine occurs once in a program, and 
program execution branches to the subroutine. A macro is expanded to an actual in­
struction sequence each time the macro occurs; thus a macro does not cause any 
branching.
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ADVANTAGES 
OF MACROS

Macros have the following advantages:

1) Shorter source programs.
2) Better program documentation.
3) Use of debugged instruction sequences —  once the macro has been debugged,

you are sure of an error-free instruction sequence every time you use the macro.
4) Easier changes. Change the macro definition and the assembler makes the change

for you every time the macro is used.
5) Inclusion of commands, keywords, or other computer instructions in the basic in­

struction set. You can use macros to extend or clarify the instruction set.

The disadvantages of macros are:

1) Repetition of the same instruction sequences since the 
macro is expanded every time it is used.

2) A single macro may create a lot of instructions.

DISADVANTAGES 
OF MACROS

3) Lack of standardization makes programs d ifficu lt to read and understand.
4) Possible effects on registers and flags that may not be clearly described.

One problem is that variables used in a macro are only known 
w ith in it (i.e., they are local rather than global). This can often 
create a great deal of confusion w ithout any gain in return. You 
should be aware of this problem when using macros. ^

LOCAL OR
GLOBAL
VARIABLES
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COMMENTS

All assemblers allow you to place comments in a source program. Comments have 
no effect on the object code, but they help you to read, understand, and document 
the program. Good commenting is an essential part of w riting assembly language 
programs; programs w ithou t comments are very d ifficu lt to understand.

We w ill discuss commenting along w ith  documentation in a later chapter, but here 
are some guidelines.:

1) Use comments to tell what application task the program is 
performing, not how the microcomputer executes the in­
structions.
Comments should say things like "IS TEMPERATURE ABOVE LIMIT?". "LINE FEED 
TO TTY", or "EXAMINE LOAD SWITCH".
Comments should not say things like "ADD 1 TO ACCUMULATOR". "JUMP TO 
START", or "LOOK AT CARRY” . You should describe how the program is affecting 
the system: internal effects on the CPU are seldom of any interest.

2) Keep comments brief and to the point. Details should be available elsewhere in 
the documentation.

3) Comment all key points.

4) Do not comment standard instructions or sequences that change counters or 
pointers; pay special attention to instructions that may not have an obvious mean­
ing.

5) Do not use obscure abbreviations.

6) Make the comments neat and readable.

7) Comment all definitions, oescribing their purposes. Also mark all tables and data 
storage areas.

8) Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can and should be repetitive; you need not 
consult a thesaurus.

10) Leave yourself notes at points which you find confusing: e.g., "REMEMBER CAR­
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen­
tation.

A well-commented program is easy to use. You w ill recover the time spent in comment­
ing many times over. We w ill try to show good commenting style in the programming 
examples, although we often over-comment for instructional purposes.

COMMENTING
TECHNIQUES
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TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary 
greatly. We w ill not try  to describe all the existing types of assemblers; we w ill 
merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer 
other than the one for which it assembles object programs.

The computer on which the cross-assembler runs is typically a 
large computer w ith extensive software support and fast peripherals —  such as an IBM 
360 or 370, a Univac 1108, or a Burroughs 6700. The computer for which the cross-as­
sembler assembles programs is typically a micro like the 6502 or 8080. Most cross-as­
semblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that 
runs on the computer for which it  assembles programs. The
self-assembler w ill require some memory and peripherals, and it 
may run quite slowly.

A macro assembler is an assembler that allows you to define 
sequences of instructions as macros.

A microassembler is an assembler used to w rite  the 
microprograms that define the instruction set of a computer.
Microprogramming has nothing specifically to do w ith
microcomputers.2,3

A meta-assembler is an assembler that can handle many 
different instruction sets. The user must define the particular in­
struction set being used.

A one-pass assembler is an assembler that goes through the 
assembly language program only once. Such an assembler must 
have some way of resolving forward references, e.g., Jump in­
structions which use labels that have not yet been defined.

A two-pass assembler is an assembler that goes through the 
assembly language source program twice. The firs t time the 
assembler simply collects and defines all the symbols; the 
second time it  replaces the references w ith  the actual definitions. A two-pass as­
sembler has no problems w ith  forward references but may be quite slow if no 
backup storage (like a floppy disk) is available; then the assembler must 
physically read the program tw ice from a slow input medium (like a teletypewriter 
paper tape reader). M ost microprocessor-based assemblers require tw o  passes.

RESIDENT
ASSEMBLER

MACRO
ASSEMBLER

MICRO-
ASSEMBLER

META­
ASSEMBLER

ONE-PASS
ASSEMBLER

TWO-PASS
ASSEMBLER

CROSS-
ASSEMBLER
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ERRORS

Assemblers normally provide error messages, often consisting of a single coded 
letter. Some typical errors are:

• Undefined name (often a misspelling or an omitted definition)
• Illegal character (e.g., a 2 in a binary number)
• Illegal format (wrong delim iter or incorrect operands)
■ Invalid expression (e.g., two operators in a row)
• Illegal value (usually too large)
• Missing operand
• Double definition (i.e., two different values assigned to one name)
• Illegal label (e.g., a label on a pseudo-operation that cannot have one)
• Missing label
• Undefined operation code

In interpreting assembler errors, you must remember that the assembler may get on the 
wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many as­
semblers w ill then proceed to misinterpret the succeeding instructions and produce 
meaningless error messages. Always look at the first error very carefully; subsequent 
ones may depend on it. Caution and consistent adherence to standard formats will 
eliminate many annoying mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as­
sembler and places it in memory Loaders range from the very simple to the very com­
plex. We w ill describe a few different types.

A bootstrap loader is a program that uses its own firs t few  in­
structions to load the rest of itself or another loader program 
into memory. The bootstrap loader may be in ROM, or you may 
have to enter it into the computer memory using front panel switches. The assembler 
may place a bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. It
typically loads each program into the memory space immediately 
following that used by the previous program. The programs, 
however, must themselves be capable of being moved around in this way; i.e.. they 
must be relocatable. An absolute loader, in contrast, w ill always place the pro­
grams in the same area of memory.

A linking loader loads programs and subroutines that have 
been assembled separately; it resolves cross references —
that is, instructions in one program that refer to a label in another 
program. Object programs loaded by a linking loader must be created by an assembler 
that allows external references.

An alternative approach is to separate the linking and loading 
functions and have the linking performed by a program called a 
link editor.

LINK
EDITOR

LINKING
LOADERS

RELOCATING
LOADER

BOOTSTRAP
LOADER
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Chapter 3 
THE 6502 ASSEMBLY LANGUAGE 

INSTRUCTION SET
We are now ready to start w riting assembly language programs. We begin in this 
chapter by defining the individual instructions of the 6502 assembly language in­
struction set, plus the syntax rules of the MOS Technology assembler.

We do not discuss any aspects of microcomputer hardware, signals, interfaces, or 
CPU architecture in this book. This information is described in detail in An Introduction 
to Microcomputers: Volume 2 —  Some Real Microprocessors and Volume 3 —  Some 
Real Support Devices.

In this book, we look at programming techniques from the assembly language pro­
grammer's viewpoint, where pins and signals are irrelevant and there are no im­
portant differences between a minicomputer and a microcomputer.

Interrupts, direct memory access, and the Stack architecture for the 6502 w ill be de­
scribed in later chapters of this book, in conjunction w ith assembly language program­
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.

The detailed description of individual instructions is preceded by a general discussion 
of the 6502 instruction set that divides instructions into those which are frequently 
used (Table 3-1), occasionally used (Table 3-2), and seldom used (Table 3-3). If you are 
an experienced assembly language programmer, this categorization is not particularly 
important —  and. depending on your own programming prejudices, it may not even be 
accurate. If you are a novice assembly language programmer, we recommend that you 
begin by w riting programs using only instructions in the "frequently used” category. 
Once you have mastered the concepts of assembly language programming, you may 
examine other instructions and use them where appropriate.
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Table 3-1. Frequently Used Instructions of the 6502

Instruction
Code Meaning

ADC Add w ith Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEQ Branch if Equal to Zero (Z =  1)
BMI Branch if Minus (S = 1)
BNE Branch if Not Equal to Zero (Z =  0)
BPL Branch if Plus (S =  0)
CMP Compare Accumulator to Memory
DEC Decrement (by 1)
DEX (DEY) Decrement Index Register X (Y) by 1
INC Increment (by 1)
INX (INY) Increment Index Register X (Y) by 1
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator
LDX (LDY) Load Index Register X (Y)
LSR Logical Shift Right
PHA Push Accumulator onto Stack
PLA Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTS Return from Subroutine
SBC Subtract w ith Borrow
STA Store Accumulator
STX (STY) Store Index Register X (Y)

Table 3-2. Occasionally Used Instructions of the 6502

Instruction
Code Meaning

BIT Bit Test
BRK Break
CLC Clear Carry
CLD Clear Decimal Mode
CLI Clear Interrupt Mask (Enable Interrupts)
CPX (CPY) Compare w ith Index Register X (Y)
EOR Logical Exclusive-OR
NOP No Operation
ORA Logical (Inclusive) OR
RTI Return from Interrupt
SEC Set Carry
SED Set Decimal Mode
SEI Set Interrupt Mask (Disable Interrupts)
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator
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Table 3-3. Seldom Used Instructions of the 6502

Instruction
Code Meaning

BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLV Clear Overflow
PHP Push Status Register onto Stack
PLP Pull Status Register from Stack
TSX Transfer Stack Pointer to Index Register X
TXS Transfer Index Register X to Stack Pointer

CPU REGISTERS AND STATUS FLAGS
The 6502 microprocessor has an Accumulator, a Status (or P) register, tw o index 
registers, a Stack Pointer, and a Program Counter. These registers may be illustrated 
as follows: n

Accumulator A 
Index.Register X 
Index Register Y 
Program Counter PC 
Stack Pointer SP 
Status Register P

The 6502's Status register contains six status flags and an interrupt control bit.
These are the six status flags:

Carry (C)
Zero (Z)
Overflow (V)
Sign (S)
Decimal Mode (D)
Break (B)

Flags are assigned bit positions w ith in the Status register as follows:

-B it Number
. 6 5 0 2  Status (P) register

The Accumulator (A) is a primary accumulator as described in An Introduction to 
Microcomputers: Volume 1.

The Index Registers (X and Y) are only eight bits long, unlike the typical microcom­
puter index registers described in An Introduction to Microcomputers: Volume 1. They 
are more like classical computer index registers that are used to hold indexes, short 
offsets, or counters.
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The 6502 has a Stack implemented in memory and indexed by the Stack Pointer as de­
scribed in Volume 1. The only difference from that description is that the 6502 Stack 
Pointer is only eight bits wide, which means that maximum Stack length is 256 
bytes. The CPU always inserts 01 1 6 as the high-order byte of any Stack address, which 
means that memory locations OlOOig through O1FF-|0 are permanently assigned 
to the Stack:

01 I ------ XX-----------------Is p

*  — f —

i
0 1 XX is the Stack address

There is nothing very significant about the shorter 6502 Stack Pointer if you are 
using this CPU as a stand-alone product. A 256-byte Stack is usually sufficient for 
any typical microcomputer application; and its location in early memory simply means 
that low memory addresses must be implemented as read/write memory. 6502 
literature represents the Stack Pointer .by the letter S; we use the letters SP to prevent 
confusion w ith the Sign status.

The 6502 Program Counter is a typical program counter as described in Volume 1.

The Carry status flag holds carries out of the most significant bit in any arithmetic 
operation. The Carry flag is also included in Shift and Rotate instructions. The only 
unusual feature of the 6502 Carry flag is that it has an inverted meaning in subtrac- 
t ion operations. After an SBC instruction, the Carry is cleared if a borrow was required 
and set if no borrow was required. Note also that the SBC (Subtract w ith  Carry) instruc­
tion results in (A) =  (A) - (M) - (1 - C) where M is the other operand. This usage is 
different from most microprocessors or other computers of recent vintage and the user 
should take heed of it.

The Zero status flag is standard. It is set to 1 when any arithmetic or logical operation 
produces a zero result. It is set toO when any arithmetic or logical operation produces a 
non-zero result.

The Sign status flag is standard. It w ill acquire the value of the high-order (Sign) bit of 
any arithmetic or logical result. Thus, a Sign status value of 1 identifies a negative result 
and a Sign value of 0 identifies a positive result. The Sign status w ill be set or reset on 
the assumption that you are using signed binary arithmetic. If you are not using signed 
binary arithmetic, you can ignore the Sign status, or you can use it to identify the value 
of the high-order bit of the result.

The Decimal Mode status, when set, causes the Add-with-Carry and Subtract- 
with-Carry instructions to perform BCD operations. Thus, when the Decimal Mode 
status is set and an Add-with-Carry or Subtract-with-Carry instruction is executed, CPU 
logic assumes that both source 8-bit values are valid BCD numbers —  and the result 
generated w ill also be a valid BCD number. Because the 6502 CPU performs decimal 
addition and subtraction, there is no need for an intermediate or Half-Carry status. This 
status is described in Volume 1. One problem w ith the 6502 approach is that the same 
instruction sequence w ill produce different results, depending on whether the Decimal 
Mode status has been set or cleared. Thus, confusion and errors can occur if the 
Decimal Mode status has accidentally been given the wrong value.

The Break status pertains to software interrupts. When a software interrupt (BRK in­
struction) is executed, 6502 CPU logic w ill set the Break status flag.

I is a standard master interrupt enable/disable or interrupt mask flag. When I 
equals 1, interrupts are disabled: when I equals 0, interrupts are enabled.
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The Overflow status is a typical overflow, except that it can be used as a control 
input on the 6502 microprocessor. Recall that, during signed binary arithmetic, Over­
flow status flags a result of magnitude too great to be represented in the given word 
size. The Overflow status has been discussed in detail in Volume 1 of An Introduction to 
Microcomputers; it equals the exclusive-OR of carries out of bits 6 and 7 during 
arithmetic operations. The 6502 microprocessor allows external logic to set the Over­
flow status, in which case it can be used subsequently as a general logic indicator; you 
must be very careful when using the Overflow status in this way, since the same status 
flag w ill be modified by arithmetic instructions. It is up to you, as a programmer, to 
make sure that an instruction which modifies the Overflow status is not executed in 
between the time external logic sets this status and subsequent program logic tests it.

6502 literature refers to the Sign bit as a negative bit. given the 
symbol N, Statuses (except for Carry) are nevertheless set and 
reset as described for our hypothetical microcomputer in An In­
troduction to Microcomputers; Volume 1. Henceforth, we w ill use the standard sym­
bols S for Sign bit, as well as SP for the Stack Pointer; you should remember these 
minor differences when using the 6502 literature and instruction set summary cards.

6502  MEMORY ADDRESSING MODES
The 6502 offers eleven basic addressing methods:

1) Memory —  immediate
2) Memory —  absolute or direct, non-zero-page
3) Memory —  zero page (direct)
4) Implied or inherent
5) Accumulator
6) Pre-indexed indirect
7) Post-indexed indirect
8) Zero page, indexed (also called base page, indexed)
9) Absolute indexed

10) Relative
11) Indirect

There are tremendous variations in terms of which methods are allowed w ith which in­
structions. See Table 3-4 for the addressing options available w ith each instruction.

DIFFERENCES 
IN NOTATION
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Memory —  Immediate
In this form of addressing, one of the operands is present in the byte immediately 
following the first byte of object code. An immediate operand is specified by prefacing 
the operand w ith the #  symbol. For example,

AND #$08

requests the Assembler to generate the instruction that w ill logically AND the value 
08-|6 w ith the contents of the Accumulator.

AND # $ 0 8

1 st Byte

These bits 
select the AND 

operation

These bits select 
immediate addressing 
with one operand in A
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Memory —  Direct
This form of addressing uses the second —  or second and third (if not on zero, or base, 
page) —  bytes of the instruction to identify the address of an operand in memory. The 
zero page version is specified when the expression used as the operand in the instruc­
tion reduces to a value between 00-] g and FF-|g. For example,

AND $30

requests the Assembler to generate an AND instruction which w ill logically AND the 
value in memory location OO3O-]0 w ith the contents of the Accumulator.

Data

The non-zero-page (absolute) version is similar except that the address of the operand 
occupies two bytes. For example,

AND $31F6

requests the Assembler to generate an AND instruction that w ill logically AND the 
value in memory location 31F6-]g w ith the contents of the Accumulator.

Data

You should note that 16-bit addresses are stored w ith the eight STORING
least significant bits first (at the lower address) followed by the ADDRESSES
eight most significant bits (at the higher address). This is the same 
technique that is used in the 8080, 8085, and Z80 microprocessors, but the opposite of 
that used in the 6800 microprocessor.
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Implied or Inherent Addressing
This mode means that no addresses are required to execute the instruction. Typical ex­
amples of inherent addressing are CLC (Clear Carry) and TAX (Transfer Register A to 
Register X).

Accumulator Addressing
This mode means that the instruction operates on the data in the Accumulator. On the 
6502 microprocessor, the only Accumulator instructions are the shifts ASL (Arithmetic 
Shift Left), LSR (Logical Shift Right), ROL (Rotate Left through Carry), and ROR (Rotate 
Right through Carry).
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This mode means that the second byte of the instruction is added to the contents of the 
X Index register to access a memory location in the first 256 bytes of memory, where 
the indirect address w ill be found. Wraparound addition is used, which means that any 
carry formed in address addition w ill be discarded. For example,

AND ($20,X)

requests the Assembler to generate the instruction which w ill logically AND the con­
tents of the Accumulator w ith the contents of the byte addressed by the zero-page 
memory location given by the sum of 20 1 6 and the contents of the X Index register. 
Note the use of parentheses in the address field to indicate indirection or "contents of"

Data

Pre-lndexed Indirect Addressing

Remember that the carry from the address addition is ignored, i.e., the address of the 
first address byte is a number in mod 256. Note that the indirect address is stored with 
its least significant bits first (at the lower address); note also that an address occupies 
two bytes of memory.

Only the X Index register can be used for pre-indexed indirect addressing.
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This mode means that the second byte of the instruction contains an address in the first 
256 bytes of memory. That address and the next location contain an address which is 
added to the contents of the Y Index register to obtain the effective address.

Note the differences between this method and pre-indexed indirect addressing:

1) In pre-indexed indirect addressing the indexing is performed before the indirec- 
tion.while in post-indexed indirect addressing the indirection is performed before 
the indexing.

2) Pre-indexed indirect addressing uses the X Index register, while post-indexed in­
direct addressing uses the Y Index register.

3) Pre-indexed indirect addressing is useful for choosing one of a set of indirect ad­
dresses to use. while post-indexed indirect addressing is useful for accessing ele­
ments in an array or table for which the base address has been obtained indirectly.

An example of post-indexed indirect addressing is

AND ($20),Y

which requests the Assembler to generate the instruction which w ill logically AND the 
contents of the Accumulator w ith the contents of the byte addressed by adding the Y 
Index register to the address at memory location 0020-| 6- Note that here only the $20 is 
inside the parentheses, since only that part of the address is used indirectly.

Post-Indexed Indirect Addressing

Data

Here again the indirect address is stored w ith its least significant byte first (at the lower 
address). Unlike that in pre-indexed indirection, this address addition is a fu ll 16-bit ad­
dition; however, it is wraparound so any carry from bit 15 is ignored. Only the Y Index 
register can be used w ith post-indexed indirect addressing.
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This form of addressing uses the second —  or second and third (if not on zero page) —  
bytes of the instruction to specify the base address. That base address is then added to 

the contents of Index Register X or Y to get the effective address. X and Y are not in­
terchangeable since no instructions have both forms of simple indexing w ith  both X 
and Y. In fact, the only instructions which allow zero-page indexing w ith Y are LDX 
(Load Index Register X) and STX (Store Index Register X). You should consult Table 3-4 
to determine which addressing options are available w ith each instruction.

A typical example of zero-page indexed addressing is

AND $20.X

which requests the Assembler to generate the instruction that w ill logically AND the 
contents of the Accumulator w ith the contents of the byte at the address given by the 
sum of 20-)g and the contents of the X Index register. This is a two-byte instruction 
because the address is w ith in the first 256 bytes of memory. Note that there is no two- 
byte form of AND $20.Y although there is a more general three-byte form of this in­
struction.

Data

Indexed Addressing

A typical example of absolute indexed addressing is

AND $31 FE.Y

which requests the Assembler to generate the instruction that w ill logically AND the 
contents of the Accumulator w ith the contents of the byte at the address given by the 
sum of 31FE-|6 ancl the contents of the Y Index register. This is a 3-byte instruction 
since the base address is not w ith in the first 256 bytes of memory.
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Data

Either Index Register X or Index Register Y could be used here However, some instruc­
tions (such as ASL, DEC. INC, LSR, ROL, and ROR) only allow Index Register X in this 
mode. This is also the case (more logically) w ith the instructions LDY (Load Index 
Register Y) and STY (Store Index Register Y).
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Indirect addressing only applies to the JMP (Jump to New Location) instruction. In this 
mode, the second and third bytes of the instruction contain the address at which the 
effective address is located. Note that the indirect address can have any value and can 
be located anywhere in memory. Obviously, this mode can be regarded as a special 
case of either post-indexed indirect addressing or pre-indexed indirect addressing in 
which the Index register contains zero. A typical example is:

JMP ($31 FE)

which requests the Assembler to generate a JMP instruction that w ill load the Program 
Counter from the memory locations addressed by the contents of memory locations 
31 FE 1 q and 31 FFi 6- Remember that absolute addresses are 16 bits long and occupy 
two memory bytes: however, the data located at an address is eight bits long. This con­
fusion applies to all 8-bit processors, but is a particular problem w ith the 6502 because 
of its numerous indirect and indexed addressing modes. Indirect addressing is de­
scribed more fully in Volume 1 of An Introduction to Microcomputers. Chapter 6. 
Remember that all addresses are stored w ith their least significant byte first (at the 
lower address).

Indirect Addressing

s v  b d i z c

+ i 
+ 2

The final value of the Program Counter is ppqq.

Never let an indirect address cross a page boundary, as in JMP ($31FF). Although the 
high-order byte of the indirect address is in the first location of the next page (in this 
example, memory location 3200ig), the CPU will fetch the high-order byte from the 
first location of the same page (location 3100 1 g in our example).

Program

Data
Memory
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Relative Addressing
Branch-on-Condition instructions use program relative addressing; a single byte dis­
placement is treated as a signed binary number which is added to the Program Counter, 
after the Program Counter contents have been incremented to address the next se­
quential instruction. This allows displacements in the range +129-|o to - 1 2 6 iq  bytes.

A typical example is

BCC '+ 5

which requests the Assembler to generate a BCC (Branch on Carry Clear; i.e., branch if 
Carry =  0) instruction that w ill load the Program Counter w ith  its current value plus five 
if the Carry is, in fact, zero. If the Carry is one, the instruction does nothing. Note that 
the instruction itself occupies two bytes of memory and the offset is measured from the 
end of the instruction. Thus the offset should be 3 to generate a branch to the location 
five beyond the one in which the first byte of the instruction is located. Note that the 
symbol * is used for the current value of the Program Counter (actually, the Assembler's 
Location Counter as described in Chapter 2).

The execution of the BCC *+5 instruction may be described as shown below. Note that 
the entire instruction is fetched from memory before the destination address is calcu­
lated. Note also that there are no other addressing modes available w ith Branch-on- 
Condition instructions.

Data
S V B D I Z C Memory
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6502 INSTRUCTION SET

Instructions often frighten microcomputer users who are new to programming. 
Taken in isolation, the operations involved in the execution of a single instruction 
are usually easy to follow. The purpose of this chapter is to isolate and explain 
those operations.

Why are the instructions of a microcomputer referred to as an instruction "set"? 
Because the microcomputer designer selects (or at least should select) the instructions 
w ith great care; it must be easy to execute complex operations as a sequence of simple 
events, each of which is represented by one instruction from a well-designed instruc­
tion "set".

Remaining consistent w ith  An Introduction to Microcomputers: Volume 2, Table 
3-4 summarizes the 6502 microcomputer instruction set. w ith  similar instructions 
grouped together. Individual instructions are listed numerically by object code in 
Table 3-5 and in alphabetical order by instruction mnemonic in Table 3-6. Table 3-6 
also compares the 6800 instruction set w ith that of the 6502. We w ill discuss the 6800 
and 6502 much later in this chapter, after detailing the 6502 instruction set.

In addition to simply stating what each instruction does, the individual instruction 
descriptions discuss the purpose of the instruction w ith in normal programming logic.

ABBREVIATIONS
These are the abbreviations used in this chapter:

The registers:

A
X
Y
PC
SP
P

Accumulator
Index Register X 
Index Register Y 
Program Counter 
Stack Pointer
Status register, w ith bits assigned as follows:

7 6 5 4 3 2 1 0  ^  Bit Number

■Reserved for expansion 
(unused at this time)

Statuses:

Z
c

s
V
B
D

Sign or Negative status 
Overflow status 
Break status 
Decimal Mode status 
Interrupt Disable status 
Zero status 
Carry status
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Symbols in the column labeled STATUS:

(blank)
X
0
1
6
7
addr
[addr+1,addr]

addrl 6 
data 
disp 
label

PC(HI)
PC(LO)
PP
qq
[ ]

[ [ ] ]

A
V
V-

Operation does not affect status 
Operation affects status 
Operation clears status 
Operation sets status
Operation reflects bit 6 of memory location 
Operation reflects bit 7 of memory location 
8 bits of absolute or base address
The address constructed from the contents of memory locations 
addr and addr+1. This address is used in post-indexed indirect ad­
dressing.
16 bits of absolute or base address
8 bits of immediate data
An 8-bit. signed address displacement
16-bit absolute address, destination of Jump or Jump-to- 
Subroutine
The high-order 8 bits of the Program Counter 
The low-order 8 bits of the Program Counter 
The second byte of a two- or three-byte instruction object code 
The third byte of a three-byte object code 
Contents of the memory location designated inside the brackets. 
For example, [FFFE] represents the contents of memory location 
FFFE-|6: (addrl 6+X] represents the contents of the location ad­
dressed by adding the contents of register X to addrl 6: [SP] repre­
sents the value at the top of the Stack (contents of the memory 
location addressed by the Stack Pointer).
Indirect addressing: the contents of the memory byte addressed 
by the contents of the memory location designated w ith in the in­
ner brackets. For example, [[addr+X]] represents the contents of a 
memory location addressed via pre-indexed indirect addressing. 
Addition —  either unsigned binary addition or BCD addition, de­
pending on the condition of the Decimal Mode status.
Binary or BCD subtraction, performed by adding the twos comple­
ment of the subtrahend to the minuend.
The ones complement of the quantity denoted beneath the bar; 
for example. A_represents the complement of the contents of the 
Accumulator; C represents the complement of the value of the 
Carry status.
Logical AND 
Logical OR 
Logical Exclusive-OR
Data is transferred in the direction of the arrow.
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INSTRUCTION M NEMONICS
Table 3-4 summarizes the 6502 instruction set. The INSTRUCTION column shows 
the instruction mnemonic (LDA, STA, CLC) and the operands, if any, used w ith  the 
instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The 
variable part (immediate data, address, or label) is shown in lower case.

If a mnemonic has more than one type of operand, each type is listed separately w ith ­
out repeating the mnemonic. For instance, some examples of the format entry

STX
addr
addr.Y
addrl 6

STX $75
STX $60,Y
STX $4276

INSTRUCTION OBJECT CODES
For instruction bytes w ithou t variations, object codes are represented as tw o 
hexadecimal digits (e.g., 8A). For instruction bytes w ith  variations, the object 
code is shown as eight binary digits (e.g., 101aaa01).

The object code and instruction length in bytes is shown in Table 3-4 for each in­
struction variation. Table 3-5 lists the object codes in numerical order, and Table 
3-6 shows the corresponding object codes for the mnemonics, listed in alphabeti­
cal order.

INSTRUCTION EXECUTION TIMES
Table 3-4 lists the instruction execution times in numbers of clock periods. Actual 
execution time can be derived by dividing the given number of clock periods by the 
clock speed. For example, for an instruction that requires 5 clock periods, a 2 MHz clock 
w ill result in a 2.5 microsecond execution time.

STATUS
The status flags are stored in the Status register (P) as follows:

7 6 5 4  3 2 1 0 .ECU1
-Carry status (carry out of bit 7)
-Zero  status (1 for zero, 0  for nonzero) 
-Interrupt disable status

(1 means interrupts are disabled) 
-Decimal Mode status (1 for decimal mode) 
-Break status (1 means a Break instruction 

has been executed)
-Th is  bit is not used
-O verflow  status
-S ign  status (value of bit 7)
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In the individual instruction descriptions, the effect of instruction execution on 
status is illustrated as follows:

S V D I Z C

Modified to reflect results of execution 
Unchanged
Unconditionally reset to 0  
Unconditionally set to 1 
Bit 6 of tested byte 
Bit 7 of tested byte

An X identifies a status that is set or reset. A 0 identifies a 
status that is always cleared. A 1 identifies a status that is 
always set. A blank means the status does not change. The 
numbers 7 and 6 show that the flag contains the value of 
bit 7 or bit 6 of the byte tested by the instruction.

STATUS CHANGES 
WITH INSTRUCTION 
EXECUTION
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Table 3-5. 6502 Instruction Object Codes in Numerical Order

Object Code Instruction O bject Code Instruction

0 0 BRK 68 PLA
01 pp ORA (addr.X) 69 pp ADC data
05  pp ORA addr 6A ROR A
06  pp ASL addr 6C ppqq JMP (label)
08 PHP 6D ppqq ADC addrl 6
09  pp ORA data 6E ppqq ROR addrl 6
OA ASL A 70 pp BVS disp
OD ppqq ORA addrl 6 71 pp ADC (addr),Y
OE ppqq ASL addrl 6 75 pp ADC addr.X
10 pp BPL disp 76 pp ROR addr.X

\ 11 pp ORA (addr),Y 78 SEI
15 pp ORA addr.X 79 ppqq ADC addrl6 .Y
16 pp ASL addr.X 7D ppqq ADC addrl 6.X
18 CLC 7E ppqq ROR addr 16.X
19 ppqq ORA addrl 6.Y 81 pp STA (addr.X)
1D ppqq ORA addrl 6.X 84 pp STY addr
1E ppqq ASL addrl 6.X 85 pp STA addr
20 ppqq JSR label 86 pp STX addr
21 PP AND (addr.X) 88 DEY
24 pp BIT addr 8A TXA
25 pp AND addr 8C ppqq STY a d d rl6
26 pp ROL addr 8D ppqq STA a d d rl6
28 PLP 8E ppqq STX addrl 6
29 pp AND data 90  pp BCC disp
2A ROL A 91 pp STA (addr).Y
2C ppqq BIT addrl 6 94 pp STY addr.X
2D ppqq AND addrl 6 95 pp STA addr.X
2E ppqq ROL a d d rl6 96 pp STX addr.Y
30  pp BMI disp 98 TYA
31 PP AND (addr).Y 99 ppqq STA addrl 6.Y
35 pp AND addr.X 9A TXS
36 pp ROL addr.X 9D ppqq STA addrl 6.X
38 SEC AO pp LDY data
39 ppqq AND addrl6 .Y A1 pp LDA (addr.X)
3D ppqq AND addrl6 .X A2 pp LDX data
3E ppqq ROL addrl 6.X A4 pp LDY addr
4 0 RTI A5 pp LDA addr
41 pp EOR (addr.X) A6 pp LDX addr
4 5  pp EOR addr A8 TAY
46  pp LSR addr A9 pp LDA data
48 PHA AA TAX
49  pp EOR data AC ppqq LDY addrl 6
4A LSR A AD ppqq LDA addrl 6
4C ppqq JMP label AE ppqq LDX a d d rl6
4D ppqq EOR a d d rl6 BO pp BCS disp
4E ppqq LSR addrl 6 B1 pp LDA (addr),Y
50  pp BVC disp B4 pp LDY addr.X
51 pp EOR (addr),Y B5 pp LDA addr.X
55 pp EOR addr.X B6 pp LDX addr.Y
56 pp LSR addr.X B8 CLV
58 CLI B9 ppqq LDA addrl 6 .Y
59 ppqq EOR addrl 6 ,Y BA TSX
5D ppqq EOR addrl 6.X BC ppqq LDY addrl 6.X
5E ppqq LSR addrl 6.X BD ppqq LDA addrl6 .X

; 60 RTS BE ppqq LDX addrl 6.Y
61 pp ADC (addr.X) CO pp CPY data
65 pp ADC addr C l PP CMP (addr.X)
66 pp ROR addr C4 pp CPY addr



Table 3-5. 6502 Instruction Object Codes in Numerical Order (Continued)

Object Code Instruction Object Code Instruction

C5 pp CMP addr E4 pp CPX addr
C6 pp DEC addr E5 pp SBC addr
C8 INY E6 pp INC addr
C9 pp CMP data E8 INX
CA DEX E9 pp SBC data
CC ppqq CPY addrl 6 EA NOP
CD ppqq CMP addrl 6 EC ppqq CPX addrl 6
CE ppqq DEC a d d rl6 ED ppqq SBC addrl 6
DO pp BNE disp EE ppqq INC addrl 6
D1 pp CMP (addr),Y FO pp BEQ disp
D5 pp CMP addr.X FI pp SBC (addr),Y
D6 pp DEC addr.X F5 pp SBC addr.X
D8 CLD F6 pp INC addr.X
D9 ppqq CMP addrl 6 ,Y F8 SED
DD ppqq CMP addrl 6 ,X F9 ppqq SBC addrl 6 ,Y
DE ppqq DEC addrl6 ,X FD ppqq SBC addrl6 .X
EO pp CPX data FE ppqq INC addrl 6,X
E1 PP SBC (addr.X)

3 -3 2



bbb

The following symbols are used in the object codes in Table 3-6.

Address-mode Selection: 

aaa
000 pre-indexed indirect - (addr.X)
001 direct - addr
010 immediate - data
011 extended direct - addrl 6
100 post-indexed indirect - (addri.Y
101 base page indexed - addr.X
110 absolute indexed - addrl 6,Y
111 absolute indexed - addrl 6,X

bb
00 direct - addr
01 extended direct - a d d rl6
10 base page indexed - addr.X
11 absolute indexed - addrl 6.X

001 direct - addr
010 accumulator - A
011 extended direct - addrl 6
101 base page indexed - addr.X; addr.Y in STX
111 absolute indexed - addr16,X; addr16,Y in STX

00 immediate - data
01 direct - addr
I I  extended direct - a d d rl6

000 immediate - data
001 direct - addr
011 extended direct - addrl 6
101 base page indexed - addr.Y in LDX; addr.X in LDY
I I I  absolute indexed - addr16,Y in LDX; addr16,X in LDY

pp the second byte of a two- or three-byte instruction

qq the third byte of a three-byte instruction

x one bit choosing the address mode:
0 direct - addr
1 extended direct - addrl 6

y one bit choosing the JMP address mode:
0 extended direct - label
1 indirect - (label)

ddd
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Table 3-6. Summary of 6502 Object Codes w ith 6800 Mnemonics

Mnemonic Operand Object Code Bytes
Clock

Periods
M C 68 00

Instruction

ADC 0 1 1aaa01 ADCA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 ppqq 3 4 addrl 6
addrl 6.X ppqq 3 4*
addrl 6 ,Y ppqq 3 4'

AND 001aaa01 ANDA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 PPqq 3 4 a d d rl6
addrl 6.X ppqq 3 4*
addrl 6.Y ppqq 3 4*

ASL A OOObbblO 1 2 ASLA
addr PP 1 5
addr.X PP 2 6 ASL index
addrl 6 ppqq 3 6 ASL addrl 6
addrl 6.X ppqq 3 7

BCC disp 9 0  pp 2 2 " BCC disp

BCS disp BO pp 2 2 " BCS disp

BEQ disp FO pp 2 2” BEQ disp

BIT 0 0 1 0 x 1 0 0 BITA
addr pp 2 3 addr8
addrl 6 ppqq 3 4 addrl 6

BMI disp 30  pp 2 2 " BMI disp

BNE disp DO pp 2 2 ” BNE disp

BPL disp 10 pp 2 2" BPL disp

BRK 00 1 7 (SWI)

BVC disp 50  pp 2 2 ” BVC disp

BVS disp 70 pp 2 2 " BVS disp

CLC 18 1 2 CLC

CLD D8 1 2

CLI 58 1 2 CLI

CLV B8 1 2 CLV

'Add one clock period if page boundary is crossed.
"A dd one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.
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Table 3-6. Summary of 6502 Object Codes w ith 6800 Mnemonics (Continued)

Mnem onic Operand Object Code Bytes
Clock

Periods
M C 68 00

Instruction

CMP 110aaa01 CMPA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 PPqq 3 4 addrl 6
addrl 6.X ppqq 3 4*
addrl 6.Y ppqq 3 4*

CPX 1 110ccOO CPX
data PP 2 2 data8
addr PP 2 3 addr8
addrl 6 ppqq 3 4 addrl 6

CPY nooccoo
data pp 2 2
addr pp 2 3
a d d rl6 ppqq 3 4

DEC 1 10bb110 DEC
addr PP 2 5
addr.X PP 2 6 index
addrl 6 ppqq 3 6 a d d rl6
addrl 6.X ppqq 3 7

DEX CA 1 2 DEX

DEY 88 1 2

EOR 010aaa01 EORA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5 '
addrl 6 ppqq 3 4 addrl 6
addrl 6.X PPqq 3 4 '
addrl6 .Y ppqq 3 4 '

INC 1 11bb110 INC
addr PP 2 5
addr.X PP 2 6 index
addrl 6 ppqq 3 6 addrl 6
addrl 6.X ppqq 3 7

INX E8 1 2 INX

INY C8 1 2

JMP 0 1 y 0 1 100 JMP
label ppqq 3 3 addrl 6
(label) ppqq 3 5

JSR label 20  ppqq 3 6 JSR addrl 6

'Add one clock period if page boundary is crossed.
"A d d  one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.
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Table 3-6. Summary of 6502 Object Codes w ith 6800 Mnemonics (Continued)

Mnem onic Operand O bject Code Bytes
Clock

Periods
M C 68 00

Instruction

LDA 101aaa01 LDAA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 ppqq 3 4 addrl 6
addrl 6.X ppqq 3 4*
addrl 6.Y ppqq 3 4*

LDX 101ddd10 LDX
data PP 2 2 (data8) {
addr PP 2 3 addr8
addr.Y PP 2 4 (index)
a d d rl6 ppqq 3 4 addrl 6
addrl 6.Y PPqq 3 4*

LDY 101ddd00
data PP 2 2
addr PP 2 3
addr.X PP 2 4
addrl 6 PPqq 3 4
addrl 6.X ppqq 3 4*

LSR A 010bbb10 1 2 LSRA
addr PP 2 5
addr.X PP 2 6 LSR index
a d d rl6 PPqq 3 6 LSR addrl 6
addrl 6.X PPqq 3 7

NOP EA 1 2 NOP

ORA OOOaaaOl ORAA
data PP 2 2 data8 j
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 ppqq 3 4 addrl 6
addrl 6 ,X PPqq 3 4*
addrl 6.Y ppqq 3 4*

PHA 48 1 3 PSHA

! PHP 08 1 3

PLA 68 1 4 PULA

PLP 28 1 4

ROL A 0 0 1 bbb10 1 2 ROLA
addr PP 2 5
addr.X PP 2 6 ROL index
addrl 6 PPqq 3 6 ROL addrl 6
addrl 6.X ppqq 3 7

*Add one clock period if page boundary is crossed.
"A dd  one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.
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Table 3-6. Summary of 6502 Object Codes w ith  6800 Mnemonics (Continued)

Mnemonic Operand Object Code Bytes
Clock

Periods
M C 68 00

Instruction

ROR A 0 1 1bbb10 1 2 RORA
addr PP 2 5
addr.X PP 2 6 ROR index
addrl 6 PPQQ 3 6 ROR addrl 6
addrl 6.X ppqq 3 7

RTI 40 1 6 RTI

RTS 60 1 6 RTS

SBC 1 11 aaa01 SBCA
data PP 2 2 data8
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 5*
addrl 6 ppqq 3 4 addrl 6
addrl 6.X ppqq 3 4*
addrl 6 .Y ppqq 3 4*

SEC 38 1 2 SEC

SED F8 1 2

SEI 78 1 2 SEI

STA 100aaa01 STA A
addr PP 2 3 addr8
addr.X PP 2 4 index
(addr.X) PP 2 6
(addr).Y PP 2 6
a d d rl6 ppqq 3 4 a d d rl6
addrl 6.X ppqq 3 5
addrl 6 .Y PPqq 3 5

STX 1 00bb110 STX
addr PP 2 3 addr8
addr.Y PP 2 4 (index)
addrl 6 ppqq 3 4 addrl 6

STY 100bb100
addr PP 2 3
addr.X PP 2 4
addrl 6 ppqq 3 4

TAX AA 1 2

TAY A8 1 2

TSX BA 1 2 TSX

TXA 8A 1 2

TXS 9A 1 2 TXS

TYA 98 1 2

'Add one clock period if page boundary is crossed.
"A dd one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.
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This instruction uses eight methods of addressing data memory and allows the con­
tents of data memory and the carry status to be added to the Accumulator. The eight 
methods of addressing memory are:

1) Immediate - ADC data
2) Absolute (direct) - ADC a d d rl6
3) Zero page (direct) - ADC addr
4) Pre-indexed w ith  Index Register X - ADC (addr.X)
5) Post-indexed w ith Index Register Y - ADC (addri.Y
6) Zero-page indexed w ith  Index Register X - ADC addr.X
7) Absolute indexed w ith Index Register X - ADC addr16,X
8) Absolute indexed w ith Index Register Y - ADC a d d rl6,Y

The first byte of object code determines which addressing mode is selected as follows:

7 6 5 4 3 2 1 0 ^  Bit Number 
| 0 | l | l | a | a | a | 0 | l  Object Code

ADC — ADD MEMORY, WITH CARRY, TO ACCUMULATOR

Bit Value 
for aaa

Hexadecimal 
Object Code

Addressing Mode
Number 
of bytes

000 61 Indirect, pre-indexed w ith  X 2
001 65 Zero page (direct) 2
010 69 Immediate 2
011 6D Absolute (direct) 3
100 71 Indirect, post-indexed w ith  Y 2
101 75 Zero page indexed w ith  X 2
110 79 Absolute indexed w ith Y 3
111 7D Absolute indexed w ith  X 3

We may illustrate the ADC instruction w ith immediate addressing as shown below. For 
other addressing modes, consult either the discussion of addressing modes or the 
description of other arithmetic or logical instructions since other illustrations show 
different addressing modes.
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"

Add the contents of the next program memory byte (addressing mode selected by bits 
2. 3. and 4 of the byte in the instruction register) and the Carry status to the Accumula­
tor. Suppose xx =3A-|6 . yy = 7 C ie . C =  1. After the instruction

ADC #$7C

has been executed, the Accumulator w ill contain B7-|g.

3A =  0 0 1 1 1 0  1 0  
7C =  0 1 1 1 1 1 0  0 

Carry =  ___________ 1

No carry, set C to 0-* 
1 sets S to 1-*r

O-V-1 = 1 ,

0 1 1 0  11 1

L Nonzero result sets Z to 0

Set V to 1

ADC is the only 6502 addition instruction. To use it in single-byte operations or to add 
the low-order bytes of two multibyte numbers, a previous instruction must explicitly set 
Carry to zero so that it does not affect the operation. Note that the 6502 microprocessor 
has no addition instruction that does not include the Carry. ADC w ill perform either bi­
nary or decimal (BCD) addition, depending on whether the Decimal Mode status is 0 or 
1 .
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AND — AND MEMORY WITH ACCUMULATOR
This instruction logically ANDs the contents of a memory location w ith the contents of 
the Accumulator. This instruction offers the same memory addressing options as the 
ADC instruction. The first byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 1 0  ^  Bit Number 

| 0  |0  | 1 | a | a | a | o | 1 Object Code

Bit Value 
for aaa

Hexadecimal 
Object Code

Addressing Mode
Number 
of Bytes

000 21 Indirect, pre-indexed w ith X 2
001 25 Zero page (direct) 2
010 29 Immediate 2
011 2D Absolute (direct) 3
100 31 Indirect, post-indexed w ith  Y 2
101 35 Zero page indexed w ith X 2
110 39 Absolute indexed w ith  Y 3
111 3D Absolute indexed w ith X 3

We w ill illustrate the AND instruction w ith zero page (direct) addressing. See the dis­
cussion of addressing methods and other arithmetic and logical instructions for exam­
ples of the other addressing modes.

Data

Logically AND the contents of the selected memory byte w ith the Accumulator and 
store the result in the Accumulator. Suppose xx =  FC-|6 ar|d VY = 1316- A fter the in­
struction

AND $40

(assuming that yy is in memory location 0040), the Accumulator w ill contain 101 q :

FC =  1 1 1 1 1 1 0  0 
13 =  0 0 0  1 0 0  1 1

0 0 0  1 0 0 0 0

0 in bit 7 sets S to 0 _J u  Nonzero result sets Z to 0

AND is a frequently used logical instruction.
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ASL — SHIFT ACCUMULATOR OR MEMORY BYTE LEFT
Perform a one-bit arithmetic left shift of the contents of the Accumulator or the con­
tents of the selected memory byte.

First, consider shifting the Accumulator:

s v b d i z c
Data

Memory

Program
Memory

mmmm 
mmmm -

Suppose that the Accumulator contains 7A-|g. Performing an

ASL A

instruction w ill set the Carry status to 0, the Sign status to 1, the Zero status to 0, and 
w ill store F4-JQ in the Accumulator.

Carry Accumulator
X-«------0 1 1 1 1 0  1 0->— 0
0 1 1 1 1 0  1 0 0

Sets S to 1 -*------1 L _ Nonzero result sets Z to 0

The ASL instruction uses four data memory addressing options:

1) Zero page (direct) - ASL addr
2) Absolute (direct) - ASL addr16
3) Zero page indexed w ith Index Register X - ASL addr.X
4) Absolute indexed w ith Index Register X - ASL a d d rl6,X

The first byte of object code determines which addressing mode is selected as follows:

7 6 5 4  3 2 1 0 ^  Bit Number
I O lOTO] b I b T  1 I 1 | 0 M ----- Obiect Code
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Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

00 06 Zero page (direct) 2
01 0E Absolute (direct) 3
10 16 Zero page indexed w ith X 2
11 1E Absolute indexed w ith X 3

We w ill show the ASL instruction w ith absolute (direct) addressing The other addres­
sing modes are shown in other instruction descriptions.

Memory

'H4TTTT
o

w'ppqq

Program
Memory

mmmm 

mmmm + 1 
mmmm + 2 
mmmm + 3

Suppose ppqq =  3F86-|g and the contents of ppqq are CB-|g. A fter executing an

ASL $3F86

instruction, the contents of location 3F86-|g w ill be altered to 96-|g and Carry w ill be 
set to 1:

Carry (3F86-]g)
X - ------1 1 0 0 1 0 1  1-— 0
1 1 0 0 1 0 1 1 0

Se t s S t o l - * -------1 I----- *- Nonzero result sets Z to 0

The ASL instruction is often used in multiplication routines and as a standard logical in­
struction. Note that a single ASL instruction multiplies its operand by 2.
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BCC —  BRANCH IF CARRY CLEAR (C =  0)
This instruction is a branch w ith relative addressing in which the branch is only ex­
ecuted if the Carry status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT

#$7F

$40

the ADC $40 instruction is executed right after the BCC instruction if the Carry status 
equals 0. The AND #$7F instruction is executed if the Carry status equals 1. The rela­
tive addressing operates as shown in the next illustration and as shown in the discus­
sion of addressing methods presented earlier. No statuses and no registers —  except 
the Program Counter —  are affected.

s v  b o i  z c

-L ii.lI.E L J

Data
Memory

mm mm + ri

If the Carry is zero, this instruction adds the contents of the second object code byte 
(taken as a signed 8 -b it displacement) to the contents of the Program Counter plus 2; 
this becomes the memory address for the next instruction to be executed. The previous 
contents of the Program Counter are lost.
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BCS —  BRANCH IF CARRY SET <C =  1)
This instruction operates like the BCC instruction except that the branch is only ex­
ecuted if the Carry status equals 1; otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT
= 0

#$7F

$40

the ADC $40 instruction is executed right after the BCS instruction if the Carry status 
equals 1. The AND #$7F instruction is executed if the Carry status equals 0.

BEQ —  BRANCH IF EQUAL TO ZERO (Z =  1)
This instruction is just like the BCC instruction except that the branch is executed if the 
Zero status equals 1; otherwise, the next instruction is executed.

In the following sequence:

NEXT

#$7F

$40

the ADC $40 instruction is executed right after the BEQ instruction if the Zero status 
equals 1. The AND #$7F instruction is executed if the Zero status equals 0.
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BIT — BIT TEST
This instruction logically ANDs the contents of the Accumulator w ith  the contents of a 
selected memory location, sets the condition flags accordingly, but does not alter the 
contents of the Accumulator or memory byte. The only addressing modes allowed are 
absolute (direct) and zero page (direct). The first byte of object code determines the ad­
dressing mode as follows:

7 6 5 4 3 2 1 0 ^  Bit m0

I 0 1 0 |  1 j Q |X  f 1 1 o l 'o V ^ --------Object Code

Bit Value 
for x

Hexadecimal 
Object Code Addressing Mode Number 

of Bytes

0
1

24
2C

Zero page (direct) 
Absolute (direct)

CM 
CO

We w ill illustrate the BIT instruction using absolute (direct) addressing. For the zero 
page mode, see the AND instruction and the discussion of addressing modes. We 
should note that BIT has a rather unusual effect on the status flags, since it sets the Z 
flag according to the result of the logical AND operation but sets the S and V flags ac­
cording to bits 7 and 6  of the contents of the memory location being tested: that is,

Z = 1 if A A (M) = 0: Z = 0 if A A (M) £ 0  
S = bit 7 of (M)
V =  bit 6  of (M)

Data
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Logically AND the contents of the Accumulator w ith  the contents of the specified 
memory location and set the Zero condition flag accordingly. Set the Sign and Overflow 
condition flags according to bits 7 and 6 , respectively, of the selected memory location. 
Suppose xx =  A 6 -|0 , yy =  EOig, and ppqq =  1641 ig  A fter the instruction

BIT $1641

has executed, the Accumulator w ill still contain A 6 -|g, and location 1641 ig  w ill still 
contain E0-|g. but the statuses w ill be modified as follows:

A 6

EO

Sets S to 1-

1 0 1 0 0 1 1 0  
1 f  1 0  0  0  0  0

1 0  1 0 0 0 0 0

Set V to 1

- Nonzero result sets Z to 0

BIT instructions frequently precede conditional Branch instructions. BIT instructions are 
also used to perform masking functions on data.
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BMI —  BRANCH IF M INUS (S =  1)
BMI

30

This instruction works like the BCC instruction except that the branch is executed only 
if the Sign status is 1: otherwise, the next instruction is executed.

In the following instruction sequence:

NEXT
)
#$7F

$40

the ADC $40 instruction is executed right after the BMI instruction if the Sign status is 
1. The AND #$7F instruction is executed if the Sign status is 0.

BNE —  BRANCH IF NOT EQUAL TO ZERO (Z =  0)
BNE

This instruction is identical to the BCC instruction except that the branch is executed 
only if the Zero status is 0; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

E NEXT
Z = 1 

ID #$7F

ADC $40

the ADC $40 instruction is executed right after the BNE instruction if the Zero status is 
0. The AND #$7F instruction is executed if the Zero status is 1.
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BPL —  BRANCH IF PLUS (S =  0)
BPL

This instruction operates like the BCC instruction except that the branch is executed 
only if the Sign status is 0; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

the ADC $40 instruction is executed right after the BPL instruction if the Sign status is
0. The AND #$7F instruction is executed if the Sign status is 1.

S = 0
-B1 L NEXT

S = 1 
AND #$7F
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BRK —  FORCE BREAK (TRAP OR SOFTWARE INTERRUPT)

The Program Counter is incremented by two and the Break status is set to 1. then the 
Program Counter and Status (P) register are pushed onto the Stack. The registers and 
the corresponding memory locations into which they are pushed are as follows:

M e m o r y  Location Register
(Stack Pointer contains ss at start of instruction execution.)

01 ss High byte of Program Counter
01 ss -  1 Low byte of Program Counter
01 ss -  2 Status (P) register w ith B =  1

(Stack Pointer contains ss -  3 at end of instruction execution.)

The Interrupt Mask b it is then set to 1. This disables the 6502's interrupt service ability,
i.e., the processor w ill not respond to an interrupt from a peripheral device. The con­
tents of the Interrupt Pointer (memory addresses FFFE-|g and FFFFi6> are then loaded 
into the Program Counter.

The BRK instruction can be used for a variety of functions. It can provide a breakpoint 
facility for debugging purposes or it can transfer control to a particularly important soft­
ware system such as a disk operating system or a monitor. Note that the programmer 
must insert the code required to tell a BRK instruction from a regular interrupt response. 
The coding to do this checks the value of the B status flag in the Stack as follows:

PLA
PHA
AND
BNE

#$10
BRKP

GET STATUS REGISTER
BUT ALSO LEAVE IT ON STACK
IS BREAK STATUS SET?
YES, GO PROCESS BREAK

Note that the operation code for BRK is 00. This choice of operation code means that 
BRK can be used to patch programs in fusible-link PROMs since blowing all the fuses 
makes the contents of the word 00. Thus an erroneous instruction can be corrected by 
changing the first object code byte to 00 and inserting a patch via the interrupt vector 
routine. Remember that a bit in a fusible-link PROM can be set to zero (by blowing the 
fuse) but cannot be reset to one after the fuse has been blown. Such PROMs are not 
erasable.

The operation of the BRK instruction may be illustrated as follows:
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The final contents of the Program Counter are ppqq where pp represents the contents 
of the memory location FFFF-|g and PQ the contents of memory location FFFE-|g. Note 
that the Stack is always on page 1 of memory: i.e.. the eight most significant bits of the 
Stack address are always 01 iq .
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BVC —  BRANCH IF OVERFLOW CLEAR (V =  0)
BVC

50

This instruction operates like the BCC instruction except that the branch is executed 
only if the Overflow status is 0; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

NEXT
V =  1

#$7F

$40

the ADC $40 instruction is executed right after the BVC instruction if the Overflow 
status is 0. The AND #$7F instruction is executed if the Overflow status is 1.

V = 0
-B»'C

A <ID

-----►ADC

BVS —  BRANCH IF OVERFLOW SET (V =  1)
BVS

70

This instruction is just like the BCC instruction except that the branch is executed only 
if the Overflow status is 1: otherwise, the next instruction in sequence is executed.

In the following instruction sequence:

the ADC $40 instruction is executed right after the BVS instruction if the Overflow 
status equals 1. The AND #$7F instruction is executed if the Overflow status equals 0.
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CLC — CLEAR CARRY
CLC

18

Clear the Carry status. No other status or register's contents are affected. Note that this 
instruction is required as part of a normal addition operation since the only addition in­
struction available on the 6502 microprocessor is ADC, which also adds in the Carry 
status. This instruction is also required at the start of a multi-byte addition since there is 
never a carry into the least significant byte.

Data

= [

V B D

O H
Memory

Program
Memory

mmmm 
mmmm -

3 - 5 2



CLD — CLEAR DECIMAL MODE
CLD

D8

Clear the Decimal Mode status. No other status or register's contents are affected. This 
instruction is used to return the 6502 processor to the binary mode in which ADC and 
SBC instructions produce binary rather than BCD results. This instruction may be used 
to ensure that the mode is binary in situations where it may be uncertain whether the 
Decimal Mode status has been set or cleared most recently.

s v B d i 2 c
Data

Memory

A
X

Program
Memory

D8 mmmm
mm mm + 1
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CLI — CLEAR INTERRUPT MASK (ENABLE INTERRUPTS)
CLI

58

Clear the interrupt mask bit in the Status (P) register. This instruction enables the 
6502's interrupt service ability, i.e.. the 6502 w ill respond to the Interrupt Request con­
trol line. No other registers or statuses are affected. Note that the I b it is a mask or disa­
ble bit. It must be cleared to enable interrupts and set to disable them.

Data
Memory

Program
Memory

mmmm 

m m m m  ■
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CLV —  CLEAR OVERFLOW
CLV

B8

Clear the overflow b it in the Status register. No other registers or statuses are affected. 
Note that the 6502 has no SET OVERFLOW instruction.

t z c

c m

Data
Memory

Program
Memory

mmmm 
mm mm +  1
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CMP — COMPARE MEMORY WITH ACCUMULATOR
This instruction subtracts the contents of a selected memory byte from the Accumula­
tor, sets the condition flags accordingly, but does not alter the contents of the Ac­
cumulator or memory byte. This instruction offers the same memory addressing options 
as the ADC instruction. The first byte of object code selects the addressing mode as 
follows:

7 6 5 4 3 2 1 0  Bit Number

1 | l | Q | a | a | a | o | l ] ^  Qbiect Code

Bit Value 
for aaa

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

0 0 0 C1 Indirect, pre-indexed w ith X 2

0 0 1 C5 Zero page (direct) 2

0 1 0 C9 Immediate 2

0 1 1 CD Absolute (direct) 3
1 0 0 D1 Indirect, post-indexed w ith Y 2

1 0 1 D5 Zero page indexed w ith X 2

1 1 0 D9 Absolute indexed w ith Y 3
1 1 1 DD Absolute indexed w ith X 3

We w ill illustrate the CMP instruction w ith pre-indexed indirect addressing (using Index 
Register X). See the discussions of addressing methods and other instructions for exam­
ples of the other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of the Accumula­
tor and set the Sign, Zero, and Carry statuses to reflect the result of the subtraction. 
Suppose xx =  F F i6 - yy =  18 ig . rr =  2 0 t 6 - c c = 2 3 - |6 . <0043•)g) =  6 D 1 0 , and 
(0044 1 g) =  15 i 6- Note that 0043 =  rr +  cc and we have assumed that 
0 5 6 D ie ) =  vv =
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After the instruction

CMP ($23,X)

has been executed, the Accumulator w ill still contain F6 1 6 , and memory location
156D 1 6 w ill still contain 1 8 -]0 , but the statuses w ill be modified as follows:

F6 =  1 1 1 1 0  1 1 0
Twos complement of 18 — 1 1 10  10  0 0

1 1 0  1 1 1 1 0

Note that C is equal to the resulting carry, not to its complement as is true on many 
other microprocessors. Thus C = 0 if a borrow is required and C =  1 if no borrow is 
necessary.

Compare instructions are most frequently used to set statuses before the execution of 
Branch-on-Condition instructions.

L,•Nonzero result sets Z to 0

Sets S to 1-«-------
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CPX — COMPARE INDEX REGISTER X W ITH MEMORY
>

This instruction is the same as CMP except that the memory byte is subtracted from In­
dex Register X instead of the Accumulator. The only addressing modes allowed are im­
mediate, zero page (direct), and absolute (direct). The first byte of object code selects 
the addressing mode as follows:

7 6 5 4  3 2 1 0 Bit Number

| l | l l l l Q | c | c | Q | o | ^  Object Code

Bit Value 
for cc

Hexadecimal 
Object Code

Addressing Mode Number 
of Bytes

00 E0 Immediate 2
01 E4 Zero page (direct) 2
10 Used for INX instruction
11 EC Absolute (direct) 3

We w ill illustrate the CPX instruction w ith immediate addressing. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of Index Register 
X. The Sign, Zero, and Carry statuses reflect the result of the subtraction in the same 
way as shown for the CMP instruction.
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CPY — COMPARE INDEX REGISTER Y WITH MEMORY
This instruction is the same as CMP except that the memory byte is subtracted from In­
dex Register Y instead of the Accumulator. The only addressing modes allowed are im­
mediate. zero page (direct), and absolute (direct). The first byte of object code selects 
the addressing mode as follows:

7 6 5 4 3 2 1 0  ^  Bit Number

| 1 | 1 | 0 10 | c | c  I Q | o | ^ --------Object Code

Bit Value 
for cc

Hexadecimal 
Object Code

Addressing Mode
Number 
of Bytes

00 CO Immediate 2
01 C4 Zero page (direct) 2
10 Used for INY instruction
11 CC Absolute (direct) 3

We w ill illustrate the CPY instruction w ith zero page (direct) addressing. See the discus­
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes.

Data

Subtract the contents of the selected memory byte from the contents of Index Register 
Y. The Sign, Zero, and Carry statuses reflect the result of the subtraction in the same 
way as shown for the CMP instruction.
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This instruction decrements by 1 the contents of a selected memory location.The DEC 
instruction uses four data memory addressing options:

1) Zero page (direct) —  DEC addr
2) Absolute (direct) —  DEC addr16
3) Zero page indexed w ith Index Register X —  DEC addr.X
4) Absolute indexed w ith Index Register X —  DEC addr16,X

The first byte of object code determines which addressing mode is selected as follows: 
7 6 5 4 3 2 1 0 - *

DEC — DECREMENT MEMORY (BY 1)

1 i  O b  b i  1 0

Bit Number 
Object Code

Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

0 0 C6 Zero page (direct) 2

0 1 CE Absolute (direct) 3
1 0 D6 Zero page indexed w ith X 2

1 1 DE Absolute indexed w ith X 3

We w ill illustrate the DEC instruction w ith absolute indexed addressing. The other ad­
dressing modes are shown elsewhere.

If yy = A5-|6' PPdQ =  0100 ig , and rr = OA-|0 , then after execution of the instruction 

DEC $0100,X

the contents of memory location OIOA1 0  w ill be altered to A4 i 0 .

A5 =  10  1 0  0 1 0  1
Ones complement of 1 =  1 1 1 1 1 1 1 1

10  1 0 0 1 0 0

Carry is not altered 

Sets S to 1 -

L Nonzero result sets Z to 0 

Overflow (V) is not altered
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This instruction decrements by 1 the contents of Index Register X. The Zero and Sign 
statuses are affected.

DEX — DECREMENT INDEX REGISTER X (BY 1)

The effects of this instruction are the same as those of DEC except that the contents of 
Index Register X are decremented rather than the contents of a memory location.

s v b o i z c

■GE J J 3 3

Data
Memory

Program
Memory

mmmm 
mmmm + 1
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This instruction decrements by 1 the contents of Index Register Y. The Zero and Sign 
statuses are affected just as they are by DEC and DEX.

DEY

DEY — DECREMENT INDEX REGISTER Y (BY 1)

S V B

- E m

Data
Memory

Program
Memory

mmmm 

mmmm h
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EOR — EXCLUSIVE-OR ACCUMULATOR W ITH MEMORY
Exclusive-OR the contents of the Accumulator w ith the contents of a selected memory 
byte. This instruction offers the same memory addressing options as the ADC instruc­
tion. The first byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 1  0  ^  Bit Number
^ --------Object Code

Bit Value 
for aaa

Hexadecimal 
Object Code

Addressing Mode Number 
of Bytes

000 41 Indirect, pre-indexed w ith X 2
001 45 Zero page (direct) 2
010 49 Immediate 2
011 4D Absolute (direct) 3
100 51 Indirect, post-indexed w ith Y 2
101 55 Zero page indexed w ith X 2
110 59 Absolute indexed w ith Y 3
111 5D Absolute indexed w ith X 3

We w ill illustrate the EOR instruction w ith post-indexed indirect addressing (using In­
dex Register Y). See the discussion of addressing methods and other arithmetic and 
logical instructions for examples of the other addressing modes.

S V B D z c

Data
Memory

P | X |  I I I l x i I i qq OOcc
PP OOcc +

mmmm 

mmmm + 1 
mmmm + 2 
mmmm + 3
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Logically Exclusive-OR the contents of the Accumulator w ith  the contents of the 
selected memory location, treating both operands as simple binary data. Suppose that 
xx =  E3-|0 and yy =  AOig. A fter the instruction

EOR ($40,Y)

has executed, the Accumulator w ill contain 43 t6 . We assume also that rr = 10-|6_ 
qq =  (401 q) = 1E-|6, pp =  (41 ig ) = 25-|6’ and (251 E i©) = VV =  AOig.

E3 =  1 1 1 0 0 0 1 1 
A0 =  10  1 0 0 0 0 0

0 1 0 0 0 0  11

0 sets S to 0 L Nonzero result sets Z to 0

EOR is used to test for changes in bit status. Note also that the instruction EOR #$FF 
complements the contents of the Accumulator, changing each 'V  bit to a 'O' and each 
'0' bit to a '1'.
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This instruction increments by 1 the contents of a selected memory location. The INC 
instruction uses four data memory addressing options:

1) Zero page (direct) — INC addr
2) Absolute (direct) —  INC addr16
3) Zero page indexed w ith Index Register X —  INC addr.X
4) Absolute indexed w ith Index Register X —  INC addr16,X

The first byte of object code determines which addressing mode is selected as follows:

INC — INCREMENT MEMORY (BY 1)

7 6 5 4 3 2 1 0  -------- Bit Number
|  1 11 | 1 | b | b | 1 | 1 | 0  --------Object Code

Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

00 E6 Zero page (direct) 2
01 EE Absolute (direct) 3
10 F6 Zero page indexed w ith  X 2
11 FE Absolute indexed w ith X 3

We w ill illustrate the INC instruction w ith absolute (direct) addressing. The other ad­
dressing modes are shown elsewhere.

Data
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Increment the selected memory byte.

If pp = 0 1 1 @. qq = A2-|g, and yy = COig- then after executing an:

INC $01A2

instruction, the contents of memory location 01 A2-|e w ill be incremented to C116.

CO =  1 1 0 0 0 0 0 0
1 = 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0  1

Sets S to 1 ---------1 1 ► Nonzero result sets Z to 0

Carry and Overflow are not 
altered

The INC instruction can be used to provide a counter in a variety of applications such as 
counting the occurrences of an event dr specifying the number of times a task is to be 
performed.
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This instruction increments by 1 the contents of Index Register X. The Zero and Sign 
statuses are affected just as by the INC instruction.

INX — INCREMENT INDEX REGISTER X (BY 1)

s v b o i z c

’EETEEEO

Data
Memory

Program
Memory

mmmm 
mmmm -

Add 1 to the contents of Index Register X and set the Zero and Sign flags according to 
the result. Suppose that Index Register X contains 7A-|0, After the instruction

INX

has executed, Index Register X w ill contain 7B-|0, the Zero status w ill be cleared since 
the result is nonzero, and the Sign status w ill be cleared since the result has 0 in its 
most significant bit.
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INY —  INCREMENT INDEX REGISTER Y (BY 1)
This instruction increments by 1 the contents of Index Register Y. The Zero and Sign 
statuses are affected just as by the INC instruction.

INY

C8

s V B

p p m
D I Z C

T i n

Data
Memory

Program
Memory

mmmm 

mm mm + 1

Add 1 to the contents of Index Register Y and set the Zero and Sign flags according to 
the result. Suppose that Index Register Y contains OC1 5 . A fter the instruction INY has 
executed. Index Register Y w ill contain 0D-|g, the Zero status w ill be cleared since the 
result is nonzero, and the Sign status w ill be cleared since the result has 0 in its most 
significant bit.



JM P — JUM P VIA ABSOLUTE OR INDIRECT ADDRESSING
This instruction w ill be illustrated using indirect addressing. Note that it is the only in­
struction that has the true indirect addressing mode. The first byte of object code deter­
mines the addressing mode as follows:

7 6 5 4 3 2 1 0  ^  Bit Number

| 0  I 1 I y I 0 I 1 I 1 I o | o K ^ ------- Object Code

Bit Value Hexadecimal Number
for y Object Code Addressing Mode of Bytes

0 4C Absolute (direct) 3
1 6 C Indirect 3

S V B D I

Jump to the instruction specified by the operand by loading the address from the 
selected memory bytes into the Program Counter.

In the following instruction sequence:
CLC
LDA #BASEL CALCULATE LSB'S OF DESTINATION ADDRESS
ADC INDXL
STA JADDR
LDA #BASEU CALCULATE MSB'S OF DESTINATION ADDRESS
ADC INDXU
STA JADDR+1
JMP (JADDR) TRANSFER CONTROL TO DESTINATION

The JMP instruction w ill perform an indexed jump relative to the 16-bit address con­
sisting of BASEU ( 8  MSBs) and BASEL ( 8  LSBs). The index here is assumed to be 16 bits 
long and to be initially stored at addresses INDXL ( 8  LSBs) and INDXU ( 8  MSBs). The ad­
dresses following the start of the table could then contain absolute JMP instructions 
that transfer control to the proper routines.

JMP will not work properly if the indirect address crosses a page boundary — that is, if 
dd =  FFiq in the illustration above. The discussion of indirect addressing earlier in this 
chapter discusses this peculiarity in more detail.

The JMP instruction can also use the absolute (direct) addressing mode. In this case, 
the second byte of the instruction is loaded into the low byte of the Program Counter, 
and the third byte of the instruction is loaded into the high byte of the Program 
Counter. Instruction execution continues from this address.

Program
Memory

Data
Memory

ccdd
ccdd+1
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JSR — JU M P TO SUBROUTINE
This instruction pushes the Program Counter onto the Stack and then transfers control 
to the specified instruction. Only absolute (direct) addressing is allowed. Note that the 
Stack Pointer is decremented after the storage of each data byte and that the Program 
Counter value that is saved is the address of the last (third) byte of the JSR instruc­
tion: i.e., the initial program counter value plus 2. Remember also that the Stack grows 
down in memory and that the most significant half of the Program Counter is stored 
first and thus ends up at the higher address (in the usual 6502 address form).

Data

The Program Counter is incremented by 2 and then is pushed onto the Stack. The Stack 
Pointer is adjusted to point to the next empty location in the Stack. The address part of 
the instruction is then stored in the Program Counter and execution continues from that 
point.

Assume that mmmm =  E34F-] 0  and that ss = E3-] 0  Then after the execution of the in­
struction

JSR $E100

the Program Counter w ill contain E100-| q, the Stack Pointer w ill contain E11 0 , and the 
Stack locations w ill be as follows:

(01 ss) = (01E3) =  PC (HI) = E3 
(01 ss - 1) = (01E2) = PC(LO) =  5 1 1 6  

The next instruction to be executed w ill be the one at memory address E1 OO-|0 .
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LDA — LOAD ACCUMULATOR FROM MEMORY
Load the contents of the selected memory byte into the Accumulator. This instruction 
offers the same memory addressing options as the ADC instruction and w ill be illus­
trated using zero-page indexed addressing w ith Index Register X. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes. The first byte of object code selects the addressing mode as 
follows:

7 6 5 4 3 2 1 0 ^  Bit Number 

| l | 0 | l | a | a | a | 0 |  1~t^ ------- Object Code

Bit Value 
for aaa

Hexadecimal 
Object Code Addressing Mode Number 

of Bytes

000 A1 Indirect, pre-indexed w ith X 2
001 A5 Zero page (direct) 2
010 A9 Immediate 2
011 AD Absolute (direct) 3
100 B1 Indirect, post-indexed w ith Y 2
101 B5 Zero page indexed w ith X 2
110 B9 Absolute indexed w ith Y 3
111 BD Absolute indexed w ith X 3

Data

Load the contents of the selected memory byte into the Accumulator.

Suppose that Index Register X contains 101 q and cc =  43-|g. If memory location 
OO53-|0 contains AA-|6, then after

LDA $43.X

has executed, the Accumulator w ill contain AA-|g.

AA = 10  10  10  10I L1 sets S to 1 -•------ 1 '— ^Nonzero result sets Z to 0
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LDX —  LOAD INDEX REGISTER X FROM MEMORY
Load the contents of the selected memory byte into Index Register X. The addressing 
modes allowed are:

1) Immediate —  LDX data
2) Absolute (direct) —  LDX addr16
3) Zero page (direct) —  LDX addr
4) Absolute indexed w ith Y —  LDX addr16,Y
5) Zero page indexed w ith Y —  LDX addr.Y

Note that there are no indexing modes w ith Index Register X, and there is no post-in­
dexing. The first byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 1 0 ^  Bit Number
| l | 0 | l | d | d | d | 1  | 0 ------- Object Code

Bit Value 
for ddd

Hexadecimal 
Object Code

Addressing Mode Number 
of Bytes

000 A2 Immediate 2
001 A6 Zero page (direct) 2
010 AA Used for TAX instruction
011 AE Absolute (direct) 3
100 B2 Not used
101 B6 Zero page indexed w ith Y 2
110 BA Used for TSX instruction
111 BE Absolute indexed w ith Y 3

We w ill illustrate the LDX instruction w ith absolute indexed addressing using Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes.

Data
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Load the contents of the selected memory byte into Index Register X. Suppose that In­
dex Register Y contains 2Q-\q, ppqq = 2E1 and yy =  (2E42-|e) =  4F ig . then after 
the execution of the instruction

LDX $2E1 A,Y

Index Register X w ill contain 4F-|q.

4F =  0 1 0 0 1 1 1 1

L Nonzero result sets Z to 0
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LDY — LOAD INDEX REGISTER Y FROM MEMORY
Load the contents of the selected memory byte into Index Register Y. The addressing 
modes allowed are:

1) Immediate —  LDY data
2) Absolute (direct) —  LDY addr16
3) Zero page (direct) —  LDY addr
4) Absolute indexed w ith X —  LDY addr16.X
5) Zero page indexed w ith X —  LDY addr,X

Note that there are no indexing modes w ith Index Register Y nor is there any pre-index- 
ing.

The first byte of object code selects the addressing mode as follows:

Bit Number
| 1 | 0 | 1 | d | d | d |  o |  0 --------Object Code

Bit Value 
for ddd

Hexadecimal 
Object Code

Addressing Mode Number 
of Bytes

000 A0 Immediate 2
001 A4 Zero page (direct) 2
010 A8 Used forTAY instruction
011 AC Absolute (direct) 3
100 B0 Used for BCS instruction
101 B4 Zero page indexed w ith X 2
110 B8 Used for CLV instruction
111 BC Absolute indexed w ith  X 3

We w ill illustrate the LDY instruction with immediate addressing. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes.

Data
Memory
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Load the contents of the selected memory byte into Index Register Y. Suppose that 
yy = OO-i6- then after the execution of the instruction

LDY # 0

Index Register Y w ill contain zero.

00  =  0 0 0 0 0 0 0 0

U -Zero result sets Z to 1

0
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LSR —  LOGICAL SHIFT RIGHT OF ACCUMULATOR OR MEMORY
This instruction performs a one-bit logical right shift of the Accumulator or the selected 
memory byte.

First, consider shifting the Accumulator.

LSR A

s V 8 D I Z c

4A
Data

Memory

Program
Memory

mmmm 
mmmm + 1

Shift the contents of the Accumulator right one bit. Shift the low-order bit into the Car­
ry status. Shift a zero into the high-order bit.

Suppose the Accumulator contains 7A-|g. After the

LSR A

instruction is executed, the Accumulator w ill contain 3D i 6 and the Carry status w ill be 
set to zero.

Accumulator Carry
0 ------ 0 1 1 1 1 0  1 0 — ►X

0 0 1 1 1 1 0 1  0

LSR always sets S to 0-«------1 ' ■» Nonzero result sets Z to 0

Four methods of addressing data memory are available w ith  the LSR instruction; they 
are:

1) Zero page (direct) —  LSR addr
2) Absolute (direct) —  LSR addr16
3) Zero page indexed w ith Index Register X —  LSR addr.X
4) Absolute indexed w ith Index Register X —  LSR addr16,X

The first byte of object code determines which addressing mode is selected as follows:

7 6 5 4 3 2 1 0  ^  Bit Number

| 0 |  1 | 0 |  b | b | 1 1 1 |0  ----------Object Code
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Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode Number 

of Bytes

00 46 Zero page (direct) 2
01 4E Absolute (direct) 3
10 56 Zero page indexed w ith X 2
11 5E Absolute indexed w ith X 3

We w ill illustrate the LSR instruction w ith absolute (direct) addressing. The other ad­
dressing modes are shown elsewhere.

Program
Memory

mmmm 

mmmm + 1 
mmmm + 2 
mmmm ♦ 3

Logically shift the contents of the selected memory location right one bit.

Suppose that ppqq = 04FA-|g and the contents of memory location 04FA-|6 are 0D-|g.
After the instruction

LSR $04FA

has been executed, the Carry status w ill be 1 and the contents of memory location 
04FA-|g w ill be 06-|g.

(04FAig) Carry
0 ------- 0 0 0 0  1 1 0 1--------- ►X

0 0 0 0 0  1 1 0  1

I I___LSR always sets S to 0- Nonzero result sets Z to 0
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NOP — NO OPERATION
NOP

EA

This is a one-byte instruction which does nothing except increment the Program 
Counter. This instruction allows you to give a label to an object program byte, to fine 
tune a delay (each NOP instruction adds two clock cycles), and to replace instruction 
bytes that are no longer needed because of corrections or changes. NOPs can also be 
used to replace instructions (such as JSRs) which you may not want to include in 
debugging runs. NOP is not very frequently used in finished programs, but it is often 
useful in debugging and testing.

s  v  B o I

PL1—L..L1

z c

m

Data
Memory

Program
Memory

mmmm 
mmmm -i
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ORA — LOGICALLY OR MEMORY WITH ACCUMULATOR
This instruction logically ORs the contents of a memory location w ith the contents of 
the Accumulator. This instruction offers the same memory addressing options as the 
ADC instruction. The first byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 1 0 ^ --------Bit Number

10  | 0  [ 0  1 a 1 a | a | Q | ' -------Obiect Code

Bit Value 
for aaa

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

000 01 Indirect, pre-indexed w ith X 2
001 05 Zero page (direct) 2
010 09 Immediate 2
011 0D Absolute (direct) 3
100 11 Indirect, post-indexed w ith Y 2
101 15 Zero page indexed w ith X 2
110 19 Absolute indexed w ith Y 3
111 1D Absolute indexed w ith  X 3

We w ill illustrate the ORA instruction using absolute indexed addressing w ith Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes.

Data

Logically OR the contents of the Accumulator w ith the contents of the selected memory 
byte, treating both operands as simple binary data.
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Suppose that ppqq — 16231 g, rr =  10-|g, xx =  E3-|g, and yy = AB-|g. After the execu­
tion of the instruction

ORA $1623,Y

the Accumulator w ill contain EB1 g.

E3 =  1 1 1  0 0 0 1 1
AB =  1 0  1 0  1 0  11

1 1 1 0  1 0  11

Sets S to 1 _J L Nonzero result sets Z to 0

This is a logical instruction; it is often used to turn bits "on", i.e., make them '1's. For 
example, the instruction

ORA #$80

will unconditionally set the high-order bit in the Accumulator to 1.
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PHA — PUSH ACCUMULATOR ONTO STACK
This instruction stores the contents of the Accumulator on the top of the Stack. The 
Stack Pointer is then decremented by 1. No other registers or statuses are affected. 
Note that the Accumulator is stored in the Stack before the Stack Pointer is decre­
mented.

PHA

Data

Suppose that the Accumulator contains 3 A - | 0  and the Stack Pointer contains F7-]g- 
After the instruction PHA has been executed, 3A-|6 w ill have been stored in memory 
location O1 F7 - | 0  and the Stack Pointer w ill be altered to F6 -|0 .

The PHA instruction is most frequently used to save Accumulator contents before ser­
vicing an interrupt or calling a subroutine.
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PHP —  PUSH STATUS REGISTER (P) ONTO STACK
This instruction stores the contents of the Status (P) register on the top of the Stack. 
The Stack Pointer is then decremented by 1. No other registers or statuses are affected. 
Note that the Status register is stored in the Stack before the Stack Pointer is decre­
mented.

The organization of the status in memory is as follows:

7 6 5 4 3 2 1 0  ^ ------ Bit Number

| S I V I I B I D I I |z |c ( -< ---- Register P

Bit 5 is not used and its value is arbitrary.

PHP

08

The PHP instruction is generally used to save the contents of the Status register before 
calling a subroutine. Note that PHP is not necessary before servicing an interrupt since 
the interrupt response (to IRQ or NMI) and the BRK instruction automatically save the 
contents of the Status register at the top of the Stack.
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PLA — PULL CONTENTS OF ACCUMULATOR FROM STACK
This instruction increments the Stack Pointer by 1 and then loads the Accumulator 
from the top of the Stack. Note that the Stack Pointer is incremented before the Ac­
cumulator is loaded.

PLA

Data

Suppose the Stack Pointer contains F6-|g and memory location 01F7-|g contains CE-|6 
After the instruction PLA has executed, the Accumulator w ill contain CE-|g and the 
Stack Pointer w ill contain F7-|g.

F7 = 1 1 1 1 0  111

Set S to 1-«_J L Nonzero result sets Z to 0

The PLA instruction is most frequently used to restore Accumulator contents that have 
been saved on the Stack: e.g., after servicing an interrupt, or after completing a 
subroutine.
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This instruction increments the Stack Pointer by 1 and then loads the Status (P) register 
from the top of the Stack. No other registers are affected but all the statuses may be 
changed. Note that the Stack Pointer is incremented before the Status register is 
loaded.

PLP — PULL CONTENTS OF STATUS REGISTER (P) FROM STACK

The organization of the status in memory is as follows:

7 6 5 4 3 2 1 0 -------- Bit Number

|s |v |  | B l d | I l z | c t < ^ —  Register P

Bit 5 is not used.
Data

The PLP instruction is generally used to restore the contents of the Status register after 
completing a subroutine. Thus, it serves to balance the PHP instruction mentioned 
earlier. Note that PLP is not necessary after servicing an interrupt since the RTI instruc­
tion automatically restores the contents of the Status register from the top of the Stack.
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ROL — ROTATE ACCUMULATOR OR MEMORY LEFT THROUGH 
CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the left 
through the Carry.

First, consider rotating the Accumulator.

ROL A 

2A

S V B D I Z C
Data

Memory

Program
Memory

mmmm 

mmmm +  1

Rotate the Accumulator's contents left one bit through the Carry status.

Suppose the Accumulator contains 7A-|g and the Carry status is set to 1. After the

ROL A

instruction is executed, the Accumulator w ill contain F5-|g and the Carry status w ill be 
reset to zero.

Accumulator Carry
0 1 1 1 1 0  1 0  1
1 1 1 1 0  10  1 0J I_Set S to 1 - Nonzero result sets Z to zero

The ROL instruction allows four methods of addressing data memory; they are:

1) Zero page (direct) —  ROL addr
2) Absolute (direct) —  ROL addr16
3) Zero page indexed w ith  Index Register X —  ROL addr.X
4) Absolute indexed w ith Index Register X —  ROL addr16,X

The first byte of object code determines which addressing mode is selected as follows:

7 6 5 4 3 2 1 0

| g | ° | 1 1b[b11111~
Bit Number 
Object Code
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Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode Number 

of Bytes

0 0 26 Zero page (direct) 2

0 1 2E Absolute (direct) 3
1 0 36 Zero page indexed w ith  X 2

1 1 3E Absolute indexed w ith  X 3

We w ill illustrate the ROL instruction w ith zero page indexed addressing (using Index 
Register X). The other addressing modes are shown elsewhere.

Rotate the selected memory byte left one bit through the Carry status. Suppose that 
cc =  34-|g. rr =  16 1 5 , the contents of memory location 004A i 6  are 2E-|6- and the Carry 
status is zero. After executing a

ROL $34,X

instruction, memory location 004A-|g w ill contain 5C-|6

(004Aig) Carry
0 0 1 0 1 1 1 0  0
0 1 0  1 1 1 0 0  0

Set S to 0-« _J L Nonzero result sets Z to 0
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ROR —  ROTATE ACCUMULATOR OR MEM ORY RIGHT, 
THROUGH CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the 
right through the Carry.

First consider rotating the Accumulator.

ROR A

6A

S V 8 D I 2 c

Data
Memory

Program
Memory

mmmm 
mmmm +  1

Rotate the Accumulator's contents right one bit through the Carry status. Suppose that 
the Accumulator contains 7A-|g and the Carry status is set to 1. Execution of the

ROR A

instruction w ill produce these results: the Accumulator w ill contain BD-)6 and the Car­
ry status w ill be 0.

Accumulator Carry 
0 1 1 1 1 0  1 0  1
1 0  1 1 1 1 0  1 0

Set S to 1_J L Nonzero result sets Z to 0

The ROR instruction allows four methods of addressing data memory: they are:

1) Zero page (direct) —  ROR addr
2) Absolute (direct) —  ROL addr16
3) Zero page indexed w ith Index Register X —  ROR addr.X
4) Absolute indexed w ith Index Register X —  ROR addr16,X

The first byte of object code determines which addressing mode is selected as follows:

7 6 5 4 3 2 1 0 ^  Bil Number

i  o ] 1 I 1 I b I b | 1 I 1 | o h ^ --------Object Code
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Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

00 66 Zero page (direct) 2
01 6E Absolute (direct) 3
10 76 Zero page indexed w ith X 2
11 7E Absolute indexed w ith X 3

We w ill illustrate the ROR instruction w ith absolute indexed addressing (using Index 
Register X). The other addressing modes are shown elsewhere.

Suppose that rr =  14-|q. ppqq = 0100ig , the contents of memory location 0114 1 g are 
ED-|6- and the Carry status is 1. A fter executing a:

ROR S0100.X

instruction, the Carry status w ill be 1 and memory location 0114-|g w ill contain F6-]g.

(0114 -] g) Carry
1 1 1 0  1 1 0  1 1
1 1 1 1 0  1 1 0  1

Set S to 1 _J L Nonzero result sets Z to 0
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RTI —  RETURN FROM INTERRUPT
Pull the Status (P) register and the Program Counter off the top of the Stack. The 
registers and the corresponding memory locations from which they are loaded are as 
follows, assuming that the Stack Pointer contains ss at the start of instruction execu­
tion:

Register

Status (P) register 
Low byte of Program Counter 
High byte of Program Counter

Memory Location

01 ss+1 
01 ss+2 
01ss+3

The final value of the Stack Pointer is its initial value plus 3. The old values of the Status 
register and Program Counter are lost.

Data
Memory

01 ss 
01 ss +  1 
01 ss +  2 
01 ss +  3

Program
Memory

Suppose that the Stack Pointer contains E8-|g, memory location 01E9-| g contains C116. 
memory location 01 EAi g contains 3E-|g, and memory location 01 EB-| 6 contains D5-|6 
After the instruction RTI has been executed, the Status register w ill contain C11 6, the 
Stack Pointer w ill contain EB-|g. and the Program Counter w ill contain D53E-|g (this is 
the address from which instruction execution w ill proceed). The statuses w ill be as 
follows:

s v b d i z c 
C1 =  |1 |1 |0 |0 |0 |0 |0 |1 |

Note that the Interrupt Mask bit w ill be set or reset depending on its value at the time 
the Status register was stored, assuming that the interrupt service routine did not 
change it while it was on the Stack.
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RTS — RETURN FROM SUBROUTINE
This instruction fetches a new Program Counter value from the top of the Stack and in­
crements it before using it to fetch an instruction. Note that the Stack Pointer is incre­
mented before the loading of each data byte and its final value is thus two greater than 
its initial value. RTS is normally used at the end of a subroutine to restore the return ad­
dress that was saved in the Stack by a JSR instruction. Remember that the return ad­
dress saved by JSR is actually the address of the third byte of the JSR instruction itself: 
hence, RTS must increment that address before using it to resume the main program. 
The previous contents of the Program Counter are lost. Every subroutine must contain 
at least one RTS instruction.

Data

60

No statuses are altered by an RTS instruction.

Suppose that the Stack Pointer contains DF-|g, memory location 01E0-|g contains 
08-]5 , and memory location 01E11 g contains 7C ig. After the instruction RTS has been 
executed, the Stack Pointer w ill contain E1 ig  and the Program Counter w ill contain 
7C09-|g (this is the address from which instruction execution w ill proceed).
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SBC — SUBTRACT MEMORY FROM ACCUMULATOR W ITH  
BORROW

Subtract the contents of the selected memory byte and the complement of the Carry 
status (i.e.. 1 — C) from the contents of the Accumulator. This instruction offers the 
same memory addressing options as does the ADC instruction. The first byte of object 
code selects the addressing mode as follows:

7 6 5 4 3 2 1 0  ^  Bit Number 

I l M l H . H o h U  Object Code

Bit Value 
for aaa

Hexadecimal 
Object Code

Addressing Mode
Number 
of Bytes

000 E1 Indirect, pre-indexed w ith X 2
001 E5 Zero page (direct) 2
010 E9 Immediate 2
011 ED Absolute (direct) 3
100 F1 Indirect, post-indexed w ith Y 2
101 F5 Zero page indexed w ith X 2
110 F9 Absolute indexed w ith Y 3
111 FD Absolute indexed w ith X 3

We w ill illustrate the SBC instruction using pre-indexed indirect addressing (via Index 
Register X). See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes.

Data

Subtract the contents of the selected memory byte and the complement of the Carry 
status (1 — C). from the Accumulator, treating all register contents as simple binary 
data. Note, however, that all data w ill be treated as decimal (BCD) if the D status is set.
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Suppose that xx = 14 ig , cc = 151 g- rr = 37 -|g, ppqq = 07E2-|g, yy = (07E21 g) = 34-|g, 
and C =  0. After executing a

Note: xx — yy — (1 -  C) =  xx — (yy+C):
hence, 14-|g -  34-|g -  (1 -  0) = 1 4 ig  -  (34-|g +  1) =  141 g -  35-|6

Note that the resulting Carry is not a borrow. It is, rather, the inverse of a borrow since it 
is set to 1 if no borrow is required and cleared if a borrow is required. You should be 
careful of this usage since it differs from that of most other microprocessors, which 
complement the Carry before it is stored following a subtraction.

SBC is the only binary subtraction instruction. To use it in single-byte operations or to 
subtract the low-order bytes of two multibyte numbers, a previous instruction (SEC) 
must explicitly set C to 1 so that it does not affect the operation. Remember that C must 
be set (not cleared) before a subtraction since its meaning is inverted from the usual 
borrow. Note also that the 6502 microprocessor, unlike most others, has no subtraction 

instruction  that does not include the Carry.

SBC ($15,X)

instruction, the contents of the Accumulator would be altered to DF-|g.

14 = 0 0 0 1 0 1 0 0  
Twos complement of 35 =  1 1 0 0 1 0 1 1 (see note below)

1 1 0  1 1 1 1 1

Set Carry to 0 
Set S to 1

O-V-O -  0, set V to 0
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SEC — SET CARRY
SEC

38

Set the Carry status to 1 No other status or register's contents are affected. Note that 
this instruction is required as part of a normal subtraction operation since the only 
subtraction instruction available on the 6502 microprocessor is SBC, which also 
subtracts the complemented Carry status. This instruction is also required at the start of 
a multi-byte subtraction since there is never a borrow from the least significant byte.

s v a d i z c
Data

Memory

Program
Memory

mmmm 

mmmm + 1

3 - 9 3



SED — SET DECIMAL MODE
SED

F8

Set the Decimal Mode status to 1. No other status or register's contents are affected. 
This instruction is used to place the 6502 processor in the decimal mode in which ADC 
and SBC instructions produce BCD rather than binary results. The programmer should 
be careful of the fact that the same program w ill produce different results, depending 
on the state of the Decimal Mode status. This can lead to puzzling and seemingly ran­
dom errors if the state of the Decimal Mode status is not carefully monitored.

Data 
Memory

Program
Memory

mmmm 
mmmm + 1



SEI — SET INTERRUPT MASK (DISABLE INTERRUPTS)
SEI

78

Set the interrupt mask in the Status register. This instruction disables the 6502's inter­
rupt service ability, i.e., the 6502 w ill not respond to the Interrupt Request control line. 
No other registers or statuses are affected. The Interrupt Mask is bit 2 of the Status (P) 
register.

s v b o I
Data

Memory

Program
Memory

mmmm 
m m m m ♦ 1
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STA — STORE ACCUMULATOR IN MEMORY
Store the contents of the Accumulator into the specified memory location. This instruc­
tion offers the same memory addressing modes as the ADC instruction, w ith the excep­
tion that an immediate addressing mode is not available. The first byte of object code 
selects the addressing mode as follows:

7 6 5 4  3 2 1 0  ^  Bit Number

[jJ^££oJ^aJ^aJ^aJ^O^J ^  Object Code

Bit Value 
for aaa

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

000 81 Indirect, pre-indexed w ith X 2
001 85 Zero page (direct) 2
010 89 Not used
011 8D Absolute (direct) 3
100 91 Indirect, post-indexed w ith Y 2
101 95 Zero page indexed w ith X 2
110 99 Absolute indexed w ith Y 3
111 9D Absolute indexed w ith X 3

We w ill illustrate the STA instruction w ith zero page direct addressing. See the discus­
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes. No statuses are affected.

Data

Store the contents of the Accumulator in memory. Suppose that xx =  63-|6 and 
qq =3A-|6- After the instruction

STA $3A

has been executed, the contents of memory location 003A-|6 will be 631 0 . No registers 
or statuses are affected.
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STX —  STORE INDEX REGISTER X IN MEMORY
Store the contents of Index Register X in the selected memory location. The addressing 
modes allowed are:

1) Zero page (direct) —  STX addr
2) Absolute (direct) —  STX addr16
3) Zero page indexed w ith  Y —  STX addr.Y

Note that there are no indexed modes using Index Register X. There is also no absolute 
indexed mode. STX and LDX are the only instructions that use the zero page indexed 
mode w ith Index Register Y. No statuses are affected.

The first byte of object code selects the addressing mode as follows:
7 6 5 4  3 2 1 0  ^  Bit Number 

| l | 0 | 0 [ b | b [ l |  1 | 0  --------Object Code

Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode

Number 
of Bytes

00 86 Zero page (direct) 2
01 8E Absolute (direct) 3
10 96 Zero page indexed w ith Y 2
11 9E Not used

We w ill illustrate the STX instruction using zero page indexed addressing w ith Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes.

Data

Store the contents of Index Register X in the selected memory byte. Suppose that 
cc =  28 1 6- rr =  2016- ar|d yy =  E9l6- After executing the

STX $28,Y

instruction, memory location 0048-|g w ill contain E91 6- No registers or statuses are 
affected.



STY — STORE INDEX REGISTER Y IN MEMORY
Store the contents of Index Register Y in the selected memory location. The addressing 
modes allowed are:

1) Zero page (direct) — STY addr
2) Absolute (direct) — STY addr16
3) Zero page indexed w ith X —  STY addr.X

Note that there are no indexed modes using Index Register Y. There is also no absolute 
indexed mode. No statuses or registers are affected.

The first byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 1 0 ^  Bit Number

I  1 | 0 1 Q| b |  b | 1 | o | o t ^ --------Object Code

Bit Value 
for bb

Hexadecimal 
Object Code Addressing Mode Number 

of Bytes

00 84 Zero page (direct) 2
01 8C Absolute (direct) 3
10 94 Zero page indexed w ith X 2
11 9C Not used

We w ill illustrate the STY instruction w ith absolute direct addressing. See the discus­
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes.

Data

Store the contents of Index Register Y in the selected memory byte. Suppose that 
yy =  0 1 1 6  and ppqq =  08F3i@. After the

STY $08F3

instruction has executed, memory location 08F3 i6  w ill contain 01 ig  No registers or 
statuses are affected.
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TAX —  MOVE FROM ACCUMULATOR TO INDEX REGISTER X
TAX

AA

Move the contents of the Accumulator to Index Register X. Set the Sign and Zero 
statuses accordingly

Data
S V B D I Z C

p i» i i i i i * n

Memory

A
X
Y

SP
PC

Program
Memory

mmmm 
mmmm +  1

Suppose that xx =  00-|6 After executing the TAX instruction, both the Accumulator 
and Index Register X w ill contain OOtg.

0 0 0 0 0 0 0 0

Set S to 0-*-------  ̂  ̂ "Z e ro  result sets Z to 1

The following instruction sequence w ill restore the contents of Index Register X from 
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD X REGISTER FROM STACK
TAX : RESTORE TO X REGISTER
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TAY — MOVE FROM ACCUMULATOR TO INDEX REGISTER Y
TAY

A8

Move the contents of the Accumulator to Index Register Y. Set the Sign and Zero 
statuses accordingly.

S V B D I Z C

p<xi 1 I I I XT 1

Data
Memory

XX

.>

mm

Program
Memory

mmmm 

mmmm + 1

Suppose that xx =  F11 @. After executing the TAY instruction, both the Accumulator 
and Index Register Y w ill contain F1 -|g.

1 1 1 1 0 0 0 1

Set S to 1-< -J L Nonzero result sets Z to 0

The following instruction sequence w ill restore the contents of Index Register Y from 
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD Y REGISTER FROM STACK
TAY ;RESTORE TO Y REGISTER
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TSX — MOVE FROM STACK POINTER TO INDEX REGISTER X
TSX

BA

Move the contents of the Stack Pointer to Index Register X. Set the Sign and Zero 
statuses accordingly. Note that TSX is the only 6502 instruction that allows you to ac­
cess the value in the Stack Pointer. A typical instruction sequence that saves the value 
of the Stack Pointer in memory location TEMP is:

TSX
STX TEMP

S V B D I Z C

pl*l MINI

;MOVE STACK POINTER TO X 
;SAVE STACK POINTER IN MEMORY

Data 
Memory

Program
Memory

mmmm 
m m m m + 1

If, for example, the Stack Pointer contains ED-|g, after executing the TSX instruction, 
both the Stack Pointer and Index Register X w ill contain EDi g.

1 1 1 0  1 1 0  1

Set S to 1- L Nonzero result sets Z to 0
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TXA — MOVE FROM INDEX REGISTER X TO ACCUMULATOR
TXA

8A

Move the contents of Index Register X to the Accumulator and set the Sign and Zero 
statuses accordingly. The following instruction sequence w ill save the contents of In­
dex Register X in the Stack before execution of a subroutine or interrupt service routine:

TXA ;MOVE X REGISTER TO ACCUMULATOR
PHA ;SAVE X REGISTER IN STACK

S V B O i Z C

’ E O T O

Data
Memory

Program
Memory

mmmm 
mmmm + 1

Suppose that rr =  3B-| g. After executing the TXA instruction, both Index Register X and 
the Accumulator w ill contain 3B i0.

0 0 1 1 1 0 1 1

Set S to 0- L Nonzero result sets Z to 0
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TXS — MOVE FROM INDEX REGISTER X TO STACK POINTER
TXS

9A

Move the contents of Index Register X to the Stack Pointer No other registers or 
statuses are affected. Note that TXS is the only 6502 instruction that allows you to 
determine the value in the Stack Pointer. A typical instruction sequence that loads the 
Stack Pointer w ith  the value LAST is:

LDX
TXS

#LAST ;GET LOCATION OF STACK ON PAGE 1
;PLACE STARTING LOCATION IN STACK POINTER

Note that TXS does not affect any statuses, unlike TSX which affects the Zero and Sign 
statuses.

pC
z c

ED

Data
Memory

Program
Memory

mmmm 
mmmm + 1

Suppose that rr — F2-] g After executing the TXS instruction, both Index Register X and 
the Stack Pointer w ill contain F21 q, making 01F2ig  the current Stack location. No 
statuses or other registers are affected.

3 - 1 0 3



TYA — MOVE FROM INDEX REGISTER Y TO ACCUMULATOR

Move the contents of Index Register Y to the Accumulator and set the Sign and Zero 
statuses accordingly. The following instruction sequence w ill save the contents of In­
dex Register Y in the Stack before execution of a subroutine or interrupt service routine:

TYA
PHA

;MOVE Y REGISTER TO ACCUMULATOR 
;SAVE Y REGISTER IN STACK

S v  B

p e e n
D I Z C

~rm
Data

Memory

b Program
Memory

mmmm  

mmmm + 1

Suppose that rr =  AFi g. After executing the TYA instruction, both Index Register Y and 
the Accumulator w ill contain AF-|g.

10  10  1 1 1 1

Set S to 1- L Nonzero result sets Z to 0
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6800/6502 COMPATIBILITY

Although the 6502 microprocessor can certainly be used on its 
own merits, one of its important characteristics is its 
sim ilarity to the w idely used 6800 microprocessor. This 
sim ilarity is not sufficient to allow programs w ritten  for one of these processors at 
the machine or assembly level to be run on the other, but it is sufficient so that pro­
grammers can easily move from one CPU to the other. Most of the external support 
devices designed for one of these processors can also be used w ith the other. Chapters
9 and 10 of An Introduction to M icrocomputers: Volume 2 — Some Real 
Microprocessors discuss this hardware compatibility in more detail.

We w ill briefly describe and compare the 6800 and 6502 microprocessors w ith regard 
to their registers, statuses, addressing modes, and instruction sets. You should note 
that the two processors are far from mirror images, but they are much closer to each 
other than either is to an 8080, Z80, F8, or 2650 microprocessor. This description 
should give you some idea as to what problems you would encounter in going from one 
CPU to the other.

As for registers, both the 6800 and the 6502 have an 8-b it pri­
mary Accumulator (A register) and a 16-bit Program Counter 
(or PC register). The other registers, however, are slightly 
different. The 6800 has a second 8-bit Accumulator (B register), a 
16-bit Index register, and a 16-bit Stack Pointer. The 6502, on the other hand, has two 
8-bit Index registers and an 8-bit Stack Pointer. Thus the 6502 Index registers cannot 
hold a complete 16-bit memory address while the 6800 Index register can. Furthermore 
the 6800's RAM Stack can be located anywhere in memory because of its 16-bit Stack 
Pointer while the 6502's RAM Stack is always located on page 1.

As for statuses, the 6800 and 6502 have identical Zero, Over­
flow , Sign, and Interrupt Mask statuses. The difference in the 
Carry status is that the 6800 and 6502 version of this flag 
have opposite meanings after subtraction operations. The
6800 Carry is set to 1 if a borrow is necessary and to 0 otherwise; the 6502 Carry is set 
to 0 if a borrow is necessary and to 1 otherwise. This difference means that, before a 
multi-byte subtraction operation, the programmer must clear the Carry on the 6800 and 
set the Carry on the 6502. The 6800 and 6502 also differ in how they perform 
decimal arithmetic; the 6800 has a Half-Carry flag (or carry from bit 3) while the 6502 
has a Decimal Mode flag The 6502 also has a Break flag which is not present in the 
6800; it is not necessary in the 6800 because the 6800 Trap or Software Interrupt in­
struction is automatically vectored separately from the regular interrupt response.

The 6502 microprocessor has many more addressing modes 
than does the 6800. This is partly necessitated by the fact that 
the 6502 index registers are only 8 bits long. Table 3-7 compares 
the addressing modes available on the two processors. The 6800 
microprocessor has no indirect modes, no combinations of index­
ing and indirection, and no absolute indexed modes. There are also some other 
differences in terms of which modes are available w ith particular instructions; we w ill 
not discuss those differences, but they are enumerated in Table 3-6.

6800/6502
ADDRESSING
MODE
COMPARISON

6800/6502
STATUS
COMPARISON

6800/6502
REGISTER
COMPARISON

6800/6502
SIMILARITY
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Table 3-7. Memory Addressing Modes A va ilab le  on the 6800 and 6502
Microprocessors

6800 6502

Immediate 
Direct (zero-page) 
Extended (absolute direct) 
Indexed (absolute)

Relative (branches only)

Immediate 
Zero Page (direct) 
Absolute (direct) 
Absolute Indexed 
Zero Page Indexed 
Post-Indexed Indirect 
Pre-indexed Indirect 
Indirect
Relative (branches only)

Note that many different variations of indexed addressing are available on the 
6502 microprocessor, but remember that the 6502 index registers are only 8 bits 
long while the 6800 Index register is 16 bits long.

The 6800 and 6502 instruction sets are similar but not identi- 6800/6502
cal (see Table 3-6). Table 3-8 compares the two sets, listing first INSTRUCTION
the instructions which are present in both, then the 6800 instruc- COMPARISON
tions which have no 6502 equivalent, and finally the 6502 instruc­
tions which have no 6800 equivalent. Obviously some of these differences are a direct 
result of the differences in the statuses and registers. Most of the differences are minor, 
and involve instructions that are a small part of common applications programs. One 
noticeable difference is that the 6800 has Add and Subtract instructions that do not in­
volve the Carry status (ADD and SUB) while the 6502 does not. This means that the 
6502 assembly language programmer must explicitly clear or set the Carry status when 
its value should not affect an addition or subtraction operation. Note that this similarity 
in the instruction sets does not extend to the object code level; the actual machine 
codes are entirely different on the two microprocessors.
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Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets

1. Common Instructions

Instruction Meaning

ADC Add w ith  Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEQ Branch if Equal to Zero (Z =  1)
BIT Bit Test
BMI Branch if Minus (S =  1)
BNE Branch if Not Equal to Zero (Z = 0)
BPL Branch if Plus (S =  0)
BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLC Clear Carry
CLI Clear Interrupt Mask (Enable Interrupt)
CLV Clear Overflow
CMP Compare Accumulator w ith Memory
CPX1 (also CPY on 6502) Compare Index Register w ith Memory
DEC Decrement (by 1)
DEX1 (also DEY on 6502) Decrement Index Register (by 1)
EOR Logical Exclusive-OR
INC Increment (by 1)
INX1 (also INY on 6502) Increment Index Register (by 1)
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator
LDX1 (also LDY on 6502) Load Index Register
LSR Logical Shift Right
NOP No Operation
ORA Logical (Inclusive) OR
PHA (PSH on 6800) Push Accumulator onto Stack
PLA (PUL on 6800) Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTI Return from Interrupt
RTS Return from Subroutine
SBC2 Subtract w ith  Carry
SEC Set Carry
SEI Set Interrupt Mask
STA Store Accumulator
STX1 (also STY on 6502) Store Index Register
TSX Transfer Stack Pointer to Index Register (X)
TXS Transfer Index Register (X) to Stack Pointer

11ndex Register X is 16 bits long on 6800, 8 bits long on 6502 which has Index 
Register Y as well.

2Note that SBC has a different meaning on the 6502 than on the 6800 since.
for subtraction operations, the 6800 Carry is the inverse of the 6502 Carry.
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Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets
(Continued)

II. Unique 6800 Instructions

Instruction Meaning

ABA Add Accumulators
ADD Add (without Carry)
ASR Arithmetic Shift Right
BGE Branch if Greater than or Equal to Zero
BGT Branch if Greater than Zero
BHI Branch if Higher
BLE Branch if Less than or Equal to Zero
BLS Branch if Lower or Same
BLT Branch if Less than Zero
BRA Branch Unconditionally
BSR Branch to Subroutine
CBA Compare Accumulators
CLR Clear
COM Logical Complement

. DAA Decimal Adjust Accumulator
DES Decrement Stack Pointer (by 1)
INS Increment Stack Pointer (by 1)
LDS Load Stack Pointer
NEG Negate (Twos Complement)
SBA Subtract Accumulators
SEV Set Overflow
STS Store Stack Pointer
SUB Subtract (without Carry)
SWI Software Interrupt (like 6502 BRK)
TAB Move from Accumulator A to Accumulator B
TAP Move from Accumulator A to CCR
TBA Move from Accumulator B to Accumulator A
TPA Move CCR to Accumulator A
TST Test Zero or Minus
WAI W ait for Interrupt

III. Unique 6502 Instructions

Instruction Meaning

BRK Break (like 6800 SWI)
CLD Clear Decimal Mode
PHP Push Status Register onto Stack
PLP Pull Status Register from Stack
SED Set Decimal Mode
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator
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MOS TECHNOLOGY 6502 ASSEMBLER 
CONVENTIONS

The standard 6502 assembler is available from 6502 manufacturers and on many 
major time-sharing networks; it is also included in most development systems. 
Cross-assembler versions are available for most large computers and many 
minicomputers.

ASSEMBLER FIELD STRUCTURE
The assembly language instructions have the standard field structure (see Table 
2-1). The required delimiters are:

1) A space after a label. Note that all labels must start in column 1.
2) A space after the operation code.
3) A comma between operands in the address field, i.e., between the offset ad­

dress and X or Y to indicate indexing w ith  Index Register X or Y respectively.
4) Parentheses around addresses that are to be used indirectly.
5) A semicolon or exclamation point (we w ill use the semicolon) before a com­

ment.

Typical 6502 assembly language instructions are:

START LDA (1000.X) ;GET LENGTH
ADC NEXT

LAST BRK ;END OF SECTION

LABELS
The Assembler often allows only six characters in labels and truncates longer 
ones. The firs t character must be a letter while subsequent characters must be 
letters or numbers. The single characters A, X, and Y are reserved for the Ac­
cumulator and the tw o  index registers. The use of operation codes as labels is 
often not allowed and is not good programming practice anyway.

PSEUDO-OPERATIONS
The Assembler has the following explic it pseudo-operations:

.BYTE — Form Byte-Length Data

.DBYTE — Form Double-Byte-Length Data w ith  MSBs First

.END — End of Program

.TEXT — Form String of ASCII Characters

.WORD — Form Double-Byte-Length Data w ith  LSBs First
= — Equate

Other pseudo-operations may be implemented by setting the assembler's location 
counter (denoted by *) to a new or updated value. Examples are:

* =  ADDR —  Set Program Origin to ADDR
* = *+N —  Reserve N Bytes for Data Storage

.BYTE, .DBYTE. .TEXT, and .WORD are the Data 
pseudo-operations used to place data in ROM. .BYTE is 
used for 8-b it data. .TEXT for 7-bit ASCII characters 
(MSB is zero). .DBYTE for 16-bit data w ith the most sig­
nificant bits first, and .WORD for 16-bit addresses or data w ith the least significant bits 
first. Note particularly the difference between .DBYTE and .WORD.

BYTE, .DBYTE,
■TEXT, .WORD 
PSEUDO-OPERATIONS
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Examples:
ADDR .WORD $3165

results in (ADDR) = 6 5  and (ADDR+1) =  31 (hex).

TCONV .BYTE 32

This pseudo-operation places the number 32 (20-| 6> in the next byte of ROM and 
assigns the name TCONV to the address of that byte.

ERROR .TEXT /ERROR/

This pseudo-operation places the 7-bit ASCII characters E, R, R, 0, and R into the next 
five bytes of ROM and assigns the name ERROR to the address of the first byte. Any 
single character (not just /) may be used to surround the ASCII text, but we w ill always 
use /  for the sake of consistency.

MASK .DBYTE $1000

results in (MASK) =  10 and (MASK+1) = 00 .

OPERS .WORD FADD. FSUB. FMUL.FDIV

This pseudo-operation places the addresses FADD, FSUB. FMUL, and FDIV in the next 
eight bytes of memory (least significant bits first) and assigns the name OPERS to the 
address of the first byte.

The operation '  =  *+N is the Reserve pseudo-operation 
used to assign locations in RAM; it allocates a specified 
number of bytes. =  is the Equate or Define pseudo-opera- 
tion used to define names. * =  ADDR is the standard Origin pseudo-operation.

6502 programs usually have several origins which are used as follows:

1) To specify the Reset and interrupt service addresses. These addresses must be 
placed in the highest memory addresses in the system (usually FFFA-|g through 
FFFF16).

2) To specify the starting addresses of the actual Reset and interrupt service routines. 
The routines themselves may be placed anywhere in memory.

3) To specify the starting address of the main program.
4) To specify the starting addresses of subroutines.
5) To define areas for RAM storage.
6) To define an area (always on page 1) for the RAM Stack.
7) To specify addresses used for I/O ports and special functions.

Examples:
RESET =$3800 

*=$FFFC
.WORD RESET
*=RESET

Note: $ means "hexadecimal".

This sequence places the Reset instruction sequence in memory beginning at address 
3800ig, and places that address in the memory locations (addresses FFFC-|6 and 
FFFD1 6 ) from which the 6502 CPU retrieves the Reset address.

The instruction sequence which follows is stored in memory beginning at location 
C000-|6.

MAIN =$C000
*=MAIN

.END simply marks the end of the assembly language program.

SET ORIGIN 
PSEUDO-OPERATION
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LABELS W ITH PSEUDO-OPERATIONS
The rules and recommendations for labels w ith  6502 pseudo-operations are as 
follows:

1) Simple equates, such as MAIN =$C000, require labels since their purpose is to 
define the meanings of those labels.

2) .BYTE. .DBYTE, .TEXT, .WORD, and *= '+ N  pseudo-operations usually have labels.
3) .END should not have a label, since the meaning of such a label is unclear.

ADDRESSES
The 6502 Assembler allows entries in the address field in any NUMBERS AND
of the following forms: CHARACTERS IN

1) Decimal (the default case) ADDRESS FIELD

Example: 1247
2) Hexadecimal (must start w ith $)

Example: $CE00
3) Octal (must start w ith  @)

Example: @1247
4) Binary (must start w ith  %)

Example: %11100011
5) ASCII (single character preceded by an apostrophe)

Example: 'H
6) As an offset from the Program Counter (*)

Example: *+7

The various 6502 addressing modes are distinguished as ADDRESSING
follows: MODES

• Absolute or Zero Page (direct) are the default modes
(the Assembler chooses Zero Page if the address is less than 256, and Ab­
solute otherwise).

• #  for immediate mode (precedes the data)
• ,X or ,Y for indexing (follows the offset address)
• Parentheses around addresses that are used indirectly so that

(addr.X) indicates pre-indexing (indexed address used indirectly)
(addri.Y indicates post-indexing (indirect address is ndexed)
(addri indicates indirection w ith JMP instruction only

In the indexed modes, as in the direct modes, the Assembler automatically chooses the
Zero Page version if it is permitted and if the address is less than 256.

The Assembler also allows expressions in the address field. These ASSEMBLER
expressions consist of numbers and names separated by the ARITHMETIC
arithmetic operators + , " (multiplication), or /  (integer division). EXPRESSIONS
The Assembler evaluates expressions from left to right; no
parentheses are allowed to group operations, nor is there any hierarchy of operations.
Fractional results are truncated.

We recommend that you avoid expressions w ith in  address fields whenever possi­
ble. If you must compute an address, comment any unclear expressions and be sure 
that the evaluation of the expressions never produces a result which is too large for its 
ultimate use.
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OTHER ASSEMBLER FEATURES
The standard 6502 Assembler has neither a conditional assembly capability nor a 
macro capability. Some 6502 assemblers have one or both of these capabilities, and 
you should consult your manual for a description. We w ill not use or refer to either 
capability again, although both can be quite convenient in actual applications.
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Chapter 4  
SIMPLE PROGRAMS

The only way to learn assembly language programming is through experience. The 
next six chapters of this book contain examples of simple programs that perform 
actual microprocessor tasks. You should read each example carefully and try  to 
execute the program on a 6502-based microcomputer. Finally, you should work 
the problems at the end of each chapter and run the resulting programs to insure 
that you understand the material.

This chapter contains some very elementary programs.

GENERAL FORMAT OF EXAMPLES
Each program example contains the following parts:

1) A title that describes the general problem.

EXAMPLE
FORMAT

2) A statement of purpose that describes the specific task that the program performs 
and the memory locations that it uses.

3) A sample problem w ith data and results.

4) A flowchart if the program logic is complex.

5) The source program or assembly language listing.

6) The object program or hexadecimal machine language listing.

7) Explanatory notes that discuss the instructions and methods used in the program.

You should use the examples as guidelines for solving the problems at the end of
each chapter. Be sure to run your solutions on a 6502-based microcomputer to in­
sure that they are correct.

The source programs in the examples have been constructed as follows:

1) Standard 6502 assembler notation is used, as summarized in 
Chapter 3.

2) The forms in which data and addresses appear are selected for 
clarity rather than for consistency. We use hexadecimal num­
bers for memory addresses, instruction codes, and BCD data; decimal for numeric 
constants; binary for logical masks; and ASCII for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications, instru­
mentation, computers, business equipment, industrial, and military applications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized, but programs are as efficient as possi­
ble w ith in this guideline. The notes often describe more efficient procedures.

7) Programs use consistent memory allocations. Each program starts in memory loca­
tion 0000 and ends w ith the Break (BRK) instruction. If your microcomputer has no 
monitor and no interrupts, you may prefer to end programs w ith an endless loop in­
struction, e.g.,

HERE JMP HERE

GUIDELINES
FOR
EXAMPLES
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Some 6502-based microcomputers may require a JMP or JSR instruction w ith a 
specific destination address to return control to the monitor. Other microcomputers 
may require you to specify the monitor address to be used by the BRK instruction. For 
example, if you are using the popular KIM-1, you w ill have to load 1 COO into addresses 
17FE and 17FF. Be careful —  the 00 must be loaded into address 17FE and the 1C into 
address 17FF. We w ill explain later how the 6502 stores addresses and how it imple­
ments the BRK instruction (see Chapter 12).

Consult the User's Manual for your microcomputer to determine the required memory 
allocations and terminating instruction for your particular system.

GUIDELINES FOR SOLVING PROBLEMS
Use the following guidelines in solving the problems at the end of each chapter:

1) Comment each program so that others can understand it.
The comments can be brief and ungrammatical; they 
should explain the purpose of a section or instruction in 
the program. Comments should not describe the operation 
of instructions; that description is available in manuals. You do not have to com­
ment each statement or explain the obvious. You may follow the format of the ex­
amples but provide less detail.

2) Emphasize clarity, simplicity, and good structure in programs. While programs 
should be reasonably efficient, do not worry about saving a single byte of program 
memory or a few microseconds.

3) Make programs reasonably general. Do not confuse parameters (such as the num­
ber of elements in an array) w ith fixed constants (such as it or ASCII C).

4) Never assume fixed initial values for parameters; i.e., assume that the parameters 
are already in RAM.

5) Use assembler notation as shown in the examples and defined in Chapter 3.

6) Use hexadecimal notation for addresses. Use the clearest possible form for data.

7) If your microcomputer allows it, start all programs in memory location 0000 and 
use memory locations starting w ith 0040-|q for data and temporary storage. Other­
wise. establish equivalent addresses for your microcomputer and use them consis­
tently. Again, consult the user's manual.

8) Use meaningful names for labels and variables: e.g.. SUM or CHECK rather than X. 
Y, or Z.

9) Execute each program on your microcomputer. There is no other way of ensuring 
that your program is correct. We have provided sample data w ith each problem. Be 
sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when 
w riting programs.

Almost all processing instructions (e.g.. Add. Subtract, AND,
OR) use the contents of the Accumulator as one operand and 
place the result back in the Accumulator. In most cases, you 
w ill load the initial data into the Accumulator w ith  LDA. You w ill store the result from 
the Accumulator into memory w ith STA.

USING THE 
ACCUMULATOR

PROGRAMMING
GUIDELINES
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Frequently accessed data and frequently used base addresses or 
pointers should be placed on page zero of memory. This data can 
then be accessed w ith zero-page (direct), pre-indexed, post­
indexed, and zero-page indexed addressing. Note in particular that 
pre-indexing and post-indexing both assume that an address is stored on page zero. 
The zero-page direct and indexed modes both require less time and memory than the 
corresponding absolute addressing modes.
Some instructions, such as shifts, increment (add 1), and decrement (subtract 1) can act 
directly on data in memory. Such instructions allow you to bypass the user registers but 
they require extra execution time since the data must actually be loaded into the CPU 
and the result must be stored back into memory.

USING 
PAGE ZERO 
OF MEMORY

4-3



PROGRAM EXAMPLES 

8-B it Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0041. 

Sample Problem:

(0040) =  6A

Result: (0041) = 6A

Source Program:

LDA $40 ;GET DATA
STA $41 TRANSFER TO NEW LOCATION
BRK

Object Program:

Memory Location 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 85 STA $41
0003 41
0004 00 BRK

The LDA (Load Accumulator) and STA (Store Accumulator) need an address to deter­
mine the source or destination of the data. Since the addresses used in the example are 
on page zero (that is, the eight most significant bits are all zero), the zero page (direct) 
form of the instructions can be used w ith the address in the next word. The leading 
zeros can be omitted. The addresses are really 0040 and 0041, but the shorthand form 
can be used just as in everyday conversation (e.g., we say "sixty cents" rather than 
"zero dollars and sixty cents").

BRK (Force Break) is used to end all the examples and return control to the monitor. 
Remember that you may have to replace this instruction w ith whatever your microcom­
puter requires.
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8-B it Addition
Purpose: Add the contents of memory locations 0040 and 0041, and place the result 

in memory location 0042.

Sample Problem:

(0040) = 38
(0041) = 2B

Result: (0042) =  63

Source Program:

CLC ;CLEAR CARRY TO START
LDA $40 ;GET FIRST OPERAND
ADC $41 ;ADD SECOND OPERAND
STA $42 ;STORE RESULT
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 18 CLC
0001 A5 LDA $40
0002 40
0003 65 ADC $41
0004 41
0005 85 STA $42
0006 42
0007 00 BRK

The only addition instruction on the 6502 microprocessor is ADC (Add w ith Carry), 
which results in (A) = (A) +  (M) +  (Carry) where M is the addressed memory location. 
Thus, we need the initial CLC (Clear Carry) instruction if the value of Carry is not to 
affect the addition. Remember that the Carry w ill be included in all additions and 
subtractions.

The zero-page (direct) forms of all instructions are used, since all the addresses are in 
the first 256 bytes of memory.

ADC affects the Carry bit, but LDA and STA do not. Only arithmetic and shift instruc­
tions affect the Carry; logical and transfer instructions do not.

LDA and ADC do not affect the contents of memory. STA changes the contents of the 
addressed memory location but does not affect the contents of the Accumulator.

Be sure that the Decimal Mode (D) flag is cleared when you execute this program. To be 
absolutely certain of the D flag's state, you could add a CLD instruction (D8-|0 ) to the 
start of the program. If you are using the KIM-1 microcomputer, you should clear 
memory location OOF1 to ensure that the Decimal Mode flag does not interfere with 
your programs or w ith  the monitor.
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Shift Left One Bit
Purpose: Shift the contents of memory location 0040 left one bit and place the result 

into memory location 0041. Clear the empty bit position.

Sample Problem:

(0040) = 6F

Result: (0041) =  DE

Source Program:

LDA $40 ;GET DATA
ASL A ;SHIFT LEFT
STA $41 ;STORE RESULT
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $40
0001 40
0002 OA ASL A
0003 85 STA $41
0004 41
0005 00 BRK

The instruction ASL A shifts the contents of the Accumulator left one bit and clears the 
least significant bit. The most significant bit is moved into the Carry. The result is twice 
the original data (why?).

Note that we cou Id also shift the contents of memory location 0040 one bit w ith  the in­
struction ASL $40 and then move the result to memory location 0041. This method 
would, however, change the contents of memory location 0040 as well as the contents 
of memory location 0041.
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Mask Off M ost Significant Four Bits
Purpose: Place the least significant four bits of memory location 0040 in the least sig­

nificant four bits of memory location 0041. Clear the most significant four 
bits of memory location 0041.

Sample Problem:

(0040) = 3D

Result: (0041) =  0D

Source Program

LDA 
AND 
STA 
BRK

Note: #  means immediate addressing and % means binary constant in standard 6502 
Assembler notation.

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 29 AND #% 00001111
0003 OF
0004 85 STA $41
0005 41
0006 00 BRK

AND #% 00001111 logically ANDs the contents of the Accumulator w ith  the number 
OF-]6 —  not the contents of memory location 000F. Immediate addressing (indicated by 
#) means that the actual data, not the address of the data, is included in the instruc­
tion.

The mask (00001111) is written in binary to make its purpose clearer to the reader. Bi­
nary notation for masks is clearer than hexadecimal notation since logical operations 
are performed bit-by-bit rather than digits or bytes at a time. The result, of course, does 
not depend on the programming notation. Hexadecimal notation should be used for 
masks longer than eight bits because the binary versions become long and cumber­
some. The comments should explain the masking operation.

A logical AND instruction may be used to clear bits that are not in use. For example, the 
four least significant bits of the data could be an input from a ten-position switch or an 
output to a numeric display.

$40 ;GET DATA
#% 00001111 ;MASK 4 MSB'S
$41 ;STORE RESULT
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Clear a Mem ory Location
Purpose: Clear memory location 0040.

Source Program:

LDA # 0
STA $40 ;CLEAR LOCATION 40
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 85 STA $40
0003 40
0004 00 BRK

Zero is handled no differently than any other number —  the 6502 has no explicit Clear 
instruction. However, remember that LDA # 0  does set the Zero flag to one. Always 
watch this logic — the Z (Zero) flag is set to one if the last result was zero.

STA does not affect any status flags.
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Word Disassembly
Purpose: Divide the contents of memory location 0040 into two 4-b it sections and 

store them in memory locations 0041 and 0042. Place the four most signifi­
cant bits of memory location 0040 into the four least significant bit positions 
of memory location 0041; place the four least significant bits of memory 
location 0040 into the four least significant bit positions of memory location 
0042. Clear the four most significant bit positions of memory locations 0041 
and 0042

Sample Problem:

(0040) = 3F

Result: (0041) = 03
(0042) =  OF

ogram:

LDA $40
AND #% 00001111
STA $42
LDA $40
LSR A
LSR A
LSR A
LSR A
STA
BRK

$41

;GET DATA 
;MASK OFF MSB'S 
;STORE LSB'S 
;RESTORE DATA
LOGICALLY SHIFT DATA RIGHT 4 TIMES

;STORE MSB'S

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 29 AND #% 00001111
0003 OF
0004 85 STA $42
0005 42
0006 A5 LDA $40
0007 40
0008 4A LSR A
0009 4A LSR A
000A 4A LSR A
000 B 4A LSR A
oooc 85 STA $41
000D 41
000E 00 BRK

A logical shift right of four positions requires four executions of the LSR A instruction.

Each LSR instruction clears the most significant bit of the result. Thus, the four most 
significant bits of the Accumulator are all cleared after LSR A has been executed four 
times.

You might wish to try rewriting the program so that it saves a copy of the data in Index 
Register X rather than loading the same data twice. W hich version do you prefer and 
why?
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Find Larger of Tw o Numbers
Purpose: Place the larger of the contents of memory locations 0040 and 0041 into 

memory location 0042. Assume that the contents of memory locations 0040 
and 0041 are unsigned binary numbers.

Sample Problems:

a. (0040) =  3F
(0041) =  2B

Result: (0042) =  3F

b. (0040) =  75
(0041) = A8

Result: (0042) =  A8

Source Program:

LDA $40 ;GET FIRST OPERAND
CMP $41 :IS SECOND OPERAND LARGER?
BCS STRES
LDA $41 ;YES. GET SECOND OPERAND INSTEAD

STRES STA $42 ;STORE LARGER OPERAND
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 C5 CMP $41
0003 41
0004 B0 BCS STRES
0005 02
0006 A5 LDA $41
0007 41
0008 85 STRES STA $42
0009 42
000A 00 BRK

CMP $41 subtracts the contents of memory location 0041 from the contents of the Ac­
cumulator but does not store the result anywhere. The instruction is used merely to set 
the flags for a subsequent conditional branch.

CMP affects the flags as follows:

1) N takes the value of the most significant bit of the result of the subtraction.

2) Z is set to 1 if the result of the subtraction is zero and to 0 otherwise.

3) C is set to 1 if the subtraction does not require a borrow and to 0 if it does. Note
that C is an inverted borrow, not the actual borrow as it is on many other 
microprocessors.

4) V is not affected.
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1) If the operands are equal, Z = 1; if they are not equal, Z = 0,

2) If the contents of the Accumulator are greater than or equal to the contents of the 
other address (considering both as unsigned binary numbers), C =  1, since no bor­
row would then be needed. Otherwise, C = 0.

A ll 6502 conditional branch instructions use relative addressing, in which the second 
word of the instruction is an 8-bit twos complement number which the CPU adds to the 
address of the next instruction to calculate the destination address. In the example, the 
relative offset is 0008 (destination address) - 0006 (address immediately following the 
branch) or 02. Obviously, calculating relative offsets is error-prone, particularly if the 
result is negative: however, if you label all target instructions, the assembler w ill per­
form the calculations for you.

BCS causes a branch if the Carry is one. If the Carry is zero, the processor continues ex­
ecuting instructions in their normal sequence as if the Branch instruction did not exist.

STRES is a label, a name that the programmer assigns to a memory address so that it is 
easier to remember and locate. Note that labels are followed by a space on the line 
where they are defined. The label makes the destination of the branch clear, particularly 
when relative addressing is being used. Using a label is preferable to |ust specifying the 
offset (i.e., BCS*+4) since the 6502's instructions vary in length. You or another user of 
the program could easily make an error in determining the offset or the destination.

Note the following cases:
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16-B it Addition
Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit 

number in memory locations 0042 and 0043. The most significant eight bits 
are in memory locations 0041 and 0043. Store the result in memory loca­
tions 0044 and 0045, w ith  the most significant bits in 0045.

Sample Problem:

(0040)
(0041)
(0042)
(0043)

2A
67
F8
14

Result=672A +  14F8 = 7C22

(0044)
(0045)

22
7C

Source Program:

CLC
LDA $40
ADC $42
STA $44
LDA $41
ADC $43
STA $45
BRK

;CLEAR CARRY TO START 
;ADD LEAST SIGNIFICANT BITS

;ADD MOST SIGNIFICANT BITS WITH CARRY

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 18 CLC
0001 A5 LDA $40
0002 40
0003 65 ADC $42
0004 42
0005 85 STA $44
0006 44
0007 A5 LDA $41
0008 41
0009 65 ADC $43
000A 43
000B 85 STA $45
OOOC 45
000D 00 BRK

You must clear the Carry before the first addition since there is never a carry into the 
least significant bits.

ADC then automatically includes the Carry from the least significant bits in the addition 
of the most significant bits. Thus the microprocessor can add data of any length; it adds 
numbers eight bits at a time w ith the Carry transferring information from one 8-b it sec­
tion to the next. Note, however, that each 8-bit addition requires the execution of three 
instructions (LDA, ADC, STA) since there is only one accumulator.
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Table of Squares
Purpose: Calculate the square of the contents of memory location 0041 from a table 

and place the result in memory location 0042. Assume that memory location 
0041 contains a number between 0 and 7 inclusive —  0 <  (0041) <  7.

The table occupies memory locations 0050 to 0057.

Memory Address 

(Hex)

Entry

(Hex) (Decimal)

0050 00 0 (0?)
0051 01 1 (1?
0052 04 4 (2Z)
0053 09 9 (3 j
0054 10 16 (4‘ )
0055 19 25 (5,)
0056 24 36 (6,)
0057 31 49 (7 )

Sample Problems:

a. (0041) =  03

Result: (0042) = 09

b. (0041) =  06

Result: (0042) = 24

Remember that the answer is a hexadecimal number. 

Source Program:

LDX $41 ;GET DATA
LDA $50,X ;GET SQUARE OF DATA
STA $42 ;STORE SQUARE
BRK
*=$50 ;SQUARES TABLE
BYTE 0,1,4,9,16,25,36,49
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A6 LDX $41
0001 41
0002 B5 LDA $50,X
0003 50
0004 85 STA $42
0005 42
0006 00 BRK

0050 00 SQTAB BYTE 0
0051 01 1
0052 04 4
0053 09 9
0054 10 16
0055 19 25
0056 24 36
0057 31 49

Note that you must also enter the table of squares into memory (the assembler pseudo­
operation BYTE w ill handle this). The table of squares is constant data, not parameters 
that may change; that is why you can initialize the table using the .BYTE pseudo-opera­
tion, rather than by executing instructions to load values into the table. Remember that, 
in an actual application, the table would be part of the read-only program memory. The 
BYTE pseudo-operation places the specified data in memory in the order in which it ap­
pears in the operand field.

The pseudo-operation *=  simply determines where the loader (or assembler) w ill place 
the next section of code when it is finally entered into the microcomputer's memory for 
execution. Note that the pseudo-operation does not actually result in any object code 
being generated.

Indexed addressing (or indexing) means that the actual address used by the instruction 
(often referred to as the effective address) is the sum of the address included in the in­
struction and the contents of the Index register. Thus LDA $50,X (,X or ,Y indicates in­
dexed addressing w ith the specified Index register in 6502 assembly language) is 
equivalent to LDA $50+(X) or LDA $53 if (X) = 03. In the example program, Index 
Register X contains the number to be squared and the address included in the instruc­
tion is the starting address of the table of squares. Note that there is a special zero-page 
indexed mode using Index Register X.

Indexing always takes extra time since the microcomputer must perform an addition to 
calculate the effective address. Thus LDA $50,X requires four clock cycles while LDA 
$50 requires only three. However, it would clearly take a great deal more time to access 
the table entry if the microcomputer lacked indexing and the address calculation had to 
be performed w ith  a series of instructions.

Remember that the Index registers are only 8 bits long so the maximum offset from the 
base address is 255 (FF-ig)- Note also that the offset is an unsigned number (unlike the 
offset in relative addressing) so that it can never be negative. However, we do get wrap­
around. That is, if the sum of the base address and the contents of the index register 
exceed the maximum allowed value, the most significant bits of the sum are simply 
dropped. In the case of zero page indexing, the maximum allowed value is FF-|g. If, for 
example, the base address on the zero page is F0-|g and the index register contains 
1B-|0, the effective address for zero page indexing is 000B-|g; there is no carry to the 
more significant byte. Thus we can get the effect of a negative offset.

4 - 1 4



There are a few special instructions that operate on one of the Index registers rather 
than on the Accumulator. These are:

CPX, CPY - Compare Memory and Index Register 
DEX, DEY - Decrement Index Register (by 1)
INX. INY - Increment Index Register (by 1)
LDX, LDY - Load Index Register from Memory 
STX, STY - Store Index Register into Memory 
TAX. TAY - Transfer Accumulator to Index Register 
TXA, TYA - Transfer Index Register to Accumulator

Remember that there are only a few addressing modes available w ith CPX, CPY, LDX, 
LDY, STX, and STY. Consult Table 3-4 for more details.

Arithmetic that a microprocessor cannot do directly in a few 
instructions is often best performed w ith  lookup tables. Lookup 
tables simply contain all the possible answers to the problem; 
they are organized so that the answer to a particular problem 
can be found easily. The arithmetic problem now becomes an accessing problem — 
how do we get the correct answer from the table? We must know two things: the 
position of the answer in the table (called the index) and the base, or starting, address 
of the table. The address of the answer is then the base address plus the index.

The base address, of course, is a fixed number for a particular table. How can we deter­
mine the index? In simple cases, where a single piece of data is involved, we can organ­
ize the table so that the data is the index. In the table of squares, the Oth entry in the ta­
ble contains zero squared, the first entry one squared, etc. In more complex cases, 
where the spread of input values is very large or there are several data items involved 
(e.g., roots of a quadratic equation or number of permutations), we must use more com­
plicated methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster, since no com­
putations are required, and simpler, since no mathematical methods must be devised 
and tested. However, tables can occupy a large amount of memory if the range of the 
input data is large. We can often reduce the size of a table by lim iting the accuracy of 
the results, scaling the input data, or organizing the table cleverly. Tables are often 
used to compute transcendental and trigonometric functions, linearize inputs, convert 
codes, and perform other mathematical tasks.

ARITHMETIC
WITH
TABLES
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Ones Complement
Purpose: Logically complement the contents of memory location 0040 and place the 

result in memory location 0041.

Sample Problem:

(0040) =  6A

Result=(0041) =  95

Source Program:

LDA 
EOR 
STA 
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 49 EOR #% 11111111
0003 FF
0004 85 STA $41
0005 41
0006 00 BRK

The 6502 microprocessor lacks some simple instructions, such as Clear or Complement, 
that are available in most other sets. However, the required operations are easily ac­
complished w ith the existing instructions if the programmer simply gives the matter a 
little thought.

Exclusive-ORing a bit w ith 'V  complements the bit since
1 -V-0 = 1 

and 1 -V-1 = 0
So the Exclusive-OR function turns each 'O' bit into a '1' and each T  bit into a 'O', just 
like a logical complement or inverse. Note, however, that the instruction EOR 
#% 11111111 occupies two bytes of memory, one for the operation code and one for 
the mask. An explicit Complement instruction would require only one byte.

One problem w ith this approach is that the purpose of the instructions may not be im­
mediately obvious. A reader would probably have to think about exactly what an Ex­
clusive-OR function w ith an all-ones word actually does. Adequate documentation is 
essential here, and the use of macros can also help clarify the situation.

$40 ;GET DATA
#% 11111111 :LOGICALLY COMPLEMENT DATA
$41 ;STORE RESULT
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PROBLEMS
1) 16-B it Data Transfer
Purpose: Move the contents of memory location 0040 to memory location 0042 and 

the contents of memory location 0041 to memory location 0043.

Sample Problem:

(0040) = 3E
(0041) = B7

Result: (0042) = 3E
(0043) =  B7

2) 8-B it Subtraction
Purpose: Subtract the contents of memory location 0041 from the contents of memory 

location 0040. Place the result into memory location 0042.

Sample Problem:

(0040) = 77
(0041) =  39

Result: (0042) = 3E

3) Shift Left Tw o Bits
Purpose: Shift the contents of memory location 0040 left two bits and place the result 

into memory location 0041. Clear the two least significant bit positions.

Sample Problem:

(0040) = 5D 

Result: (0041) = 74

4) Mask Off Least Significant Four Bits
Purpose: Place the four most significant bits of the contents of memory location 0040 

into memory location 0041. Clear the four least significant bits of memory 
location 0041.

Sample Problem:

(0040) =  C4 

Result: (0041) = CO

5) Set a Mem ory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF-|g).

6) Word Assembly
Purpose: Combine the four least significant bits of memory locations 0040 and 0041 

into a word and store them in memory location 0042. Place the four least sig­
nificant bits of memory location 0040 into the four most significant bit posi­
tions of memory location 0042: place the four least significant bits of memo­
ry location 0041 into the four least significant bit positions of memory loca­
tion 0042.

Sample Problem:

(0040) =  6A
(0041) =  B3

Result: (0042) = A3
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7) Find Smaller of Tw o Numbers
Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in 

memory location 0042. Assume that memory locations 0040 and 0041 con­
tain unsigned binary numbers.

Sample Problems:

a. (0040) =  3F
(0041) = 2B

Result: (0042) = 2B

b. (0040) =  75
(0041) = A8

Result: (0042) =  75

8) 24-B it Addition
Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24- 

bit number in memory locations 0043, 0044, and 0045. The most significant 
eight bits are in memory locations 0042 and 0045, the least significant eight 
bits in memory locations 0040 and 0043. Store the result in memory loca­
tions 0046, 0047, and 0048 w ith the most significant bits in 0048 and the 
least significant bits in 0046.

Sample Problem:

(0040) = 2A
(0041) = 67
(0042) = 35
(0043) = F8
(0044) = A4
(0045) = 51

Result: (0046) = 22
(0047) = OC
(0048) = 87

that is, 35672A 
+51A4F8 

870C22

9) Sum of Squares
Purpose: Calculate the squares of the contents of memory locations 0040 and 0041 

and add them together. Place the result in memory location 0042. Assume 
that memory locations 0040 and 0041 both contain numbers between 0 and
7 inclusive: i.e.,0 <  (0040) <  7 and 0 < ( 0 0 4 1 ) < 7 .  Use the table of
squares from the example entitled Table of Squares.

Sample Problem:

(0040) =  03
(0041) =  06

Result =  (0042) =  2D

that is, 32 +  62 =  9 +  36 =  45 = 2D-] e
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10) Twos Complement
Purpose: Place the twos complement of the contents of memory location 0040 in 

memory location 0041. The twos complement is the ones complement plus 
one.

Sample Problem:

(0040) = 3E

Result: (0041) =  C2

The sum of the original number and its twos complement is zero. So the twos comple­
ment of X is 0-X. W hich approach (calculating the ones complement and adding one, or 
subtracting from zero) results in a shorter and faster program?
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Chapter 5 
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence 
of instructions. Loops have four sections:

1) The initialization section that establishes the starting values of counters, point­
ers, indexes, and other variables.

2) The processing section where the actual data manipulation occurs. This is the 
section that does the work.

3) The loop control section that updates counters and indexes for the next iteration.

4) The concluding section that analyzes and stores the results.

Note that the computer performs Sections 1 and 4 only once while it may perform Sec­
tions 2 and 3 many times. Thus, the execution time of the loop w ill mainly depend on 
the execution time of Sections 2 and 3. You w ill want Sections 2 and 3 to execute as 
quickly as possible: do not worry about the execution time of Sections 1 and 4. A typi­
cal program loop can be flowcharted as shown in Figure 5-1, or the positions of the pro­
cessing and loop control sections may be reversed as shown in Figure 5-2. The process­
ing section in Figure 5-1 is always executed at least once, while the processing section 
in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural, but Figure 5-2 
is often more efficient and avoids the problem of what to do when there is no data (a 
bugaboo for computers and the frequent cause of silly situations like the computer dun­
ning someone for a bill of $0.00).

The loop structure can be used to process entire blocks of data. To accomplish this, the 
program must increment an Index register after each iteration so that the effective ad­
dress of an indexed instruction is the next element in the data block. The next iteration 
w ill then perform the same operations on the data in the next memory location. The 
computer can handle blocks of any length (up to 256, since the Index registers are 8 
bits long) w ith  the same set of instructions. Indexed addressing is the key to processing 
blocks of data w ith the 6502 microprocessor, since it allows you to vary the actual (or 
effective) memory address by changing the contents of Index registers. Note that in the 
direct and immediate addressing modes, the address used is completely determined by 
the instruction and is therefore fixed if the program memory is read-only.
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Figure 5-1. Flowchart of a Program Loop
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Figure 5-2. A Program Loop that Allows Zero Iterations
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EXAMPLES 
Sum of Data
Purpose: Calculate the sum of a series of numbers. The length of 8-BIT

SUMMATIONthe series is in memory location 0041. and the series 
begins in memory location 0042. Store the sum 
memory location 0040. Assume that the sum is an 8-b it number so that you 
can ignore carries.

Sample Problem:

03 
28 
55 
26

(0042) +  (0043) +  (0044) 
=  28+55+26 
= A3

There are three entries in the sum. since (0041)=03. 

Flowchart:

(0041)
(0042)
(0043)
(0044)

Result: (0040)

Note: (0042 +  Index) is the contents of the memory location whose address is the sum 
of 0042 and Index. Remember that on the 6502 microprocessor, 0042 is a 16-bit 
address. Index is an 8-b it offset, and (0042 +  Index) is an 8 -b it byte of data.
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Source Program:

LDA # 0
TAX

SUMD CLC
ADC $42,X
INX
CPX $41
BNE SUMD
STA $40
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 AA TAX
0003 18 SUMD CLC
0004 75 ADC $42,X
0005 42
0006 E8 INX
0007 E4 CPX $41
0008 41
0009 DO BNE SUMD
000A F8
000B 85 STA $40
OOOC 40
000D 00 BRK

The initialization section of the program is the first two instructions, which set the sum 
and index to their starting values. Note that TAX transfers the contents of the Ac­
cumulator to Index Register X but leaves the Accumulator as it was. The base address 
of the array and the location of the counter are fixed w ith in the program and need not 
be initialized.

The processing section of the program consists of the single instruction ADC $42,X, 
which adds the contents of the effective address (base address plus Index Register X) to 
the contents of the Accumulator. This instruction does the real work of the program. 
The CLC instruction simply clears the Carry flag so that it does not affect the summa­
tion. Note that each iteration of the loop adds in the contents of a new effective address 
even though the instructions do not change.

The loop control section of the program consists of the instruction INX. This instruction 
updates the Index register (by 1) so that the next iteration adds the next number to the 
sum. Note that (0041) - X tells you how many iterations are left to be done.

The instruction BNE causes a branch if the Zero flag is 0. CPX sets the Zero flag to 1 if 
Index Register X and the contents of memory location 0041 are the same and to 0 if 
they are not. The offset is a twos complement number and the count begins from the 
memory location immediately following the BNE instruction. In this case, the required 
jump is from memory location 000B to memory location 0003. So'the offset is:

0003 = 03
-000B =  +F5 

F8

SUM =  ZERO 
INDEX =  ZERO 
DO NOT INCLUDE CARRY 
SUM =  SUM +  DATA 
INCREMENT INDEX
HAVE ALL ELEMENTS BEEN SUMMED? 
NO, CONTINUE SUMMATION 
YES, STORE SUM
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If the Zero flag is one. the CPU executes the next instruction in sequence (STA $40). 
Since CPX $41 was the last instruction before BNE to affect the Zero flag, BNE SUMD 
causes a branch to SUMD if CPX $41 does not produce a zero result; that is.

The 2 is caused by the two-word BNE instruction. A single instruction combining the 
Decrement and the Jump would be a useful addition to the 6502 instruction set.

The order in which instructions are executed is often very important. INX must come 
after ADC $42,X or else the first number to be added to the sum w ill be the contents of 
memory location 0043 instead of the contents of memory location 0042. CPX $41 must 
come right before BNE SUMD, since otherwise the Zero status setting produced by CPX 
could be changed by another instruction.

CPX and CPY are the same as CMP except that the contents of memory are subtracted 
from an Index register rather than from the Accumulator. Note, however, that CPX and 
CPY offer limited addressing options (see Table 3-4).

Most computer loops count down rather than up so that the Zero flag can serve as an 
exit condition, thus eliminating the need for a Compare instruction. This method is a bit 
awkward for people although it is used occasionally in launch countdowns and in a few 
other situations. Remember that the Zero flag is set to 1 if the result of an instruction is 
zero and to 0 if the result is not zero.

We could easily revise the loop so that it works backward through the array (see the 
next flowchart). The following programs are revised versions.

Source Program:

{SUMD if (X) - (0041) * 0
(PC)

(PC)+2 if (X) - (0041) = 0

LDA # 0
LDX $41

SUM = ZERO
INDEX =  MAXIMUM COUNT 
DO NOT INCLUDE CARRY 
SUM =  SUM +  DATA 
DECREMENT INDEX
BRANCH BACK IF ALL ELEMENTS NOT SUMMED 
STORE SUM

SUMD CLC
ACD $41,X
DEX
BNE SUMD
STA $40
BRK
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Note that the addition instruction is now ADC $41 ,X instead of ADC $42,X; the number 
in the Index register is one larger than before. Clearly, the net result of subtracting one 
from the base address and adding one to the index is zero. The reorganized object pro­
gram is:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 A6 LDX $41
0003 41
0004 18 SUMD CLC
0005 75 ADC $41,X
0006 41
0007 CA DEX
0008 DO BNE SUMD
0009 FA
000A 85 STA $40
000 B 40
oooc 00 BRK

In most applications, the slight time and memory differences between one implementa­
tion of a loop and another do not matter very much. You should therefore select the ap­
proach that is the clearest and easiest for you to use. We w ill discuss program design 
and efficiency later in Chapters 13 and 15.

You may wish to verify the hexadecimal values for the relative offsets in the last two 
programs. The final test of any calculations that you make is whether the program runs 
correctly. If. for whatever reason, you must perform hexadecimal calculations fre­
quently. we suggest that you consider a calculator (like the Texas Instruments Program­
mer) or one of the numerous manual aids that are available.
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16-B it Sum of Data
Purpose: Calculate the sum of a series of numbers. The length of the series is in 

memory location 0042 and the series itself begins in memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight least significant 
bits in 0040).

Sample Problem:

(0042) = 03
(0043) =  C8
(0044) = FA
(0045) = 96

Result = C8 +  FA +  96 = 0258-|6
(0040) =  58
(0041) = 02

Flowchart:
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Source Program:

ID A # 0  ;SUM =  ZERO
TAX ;INDEX =  ZERO
TAY ;MSB'S OF SUM =  ZERO

SUMD CLC ;DO NOT INCLUDE CARRY
ADC $43,X ;SUM =  SUM +  DATA
BCC COUNT
INY ;ADD CARRY TO MSB'S OF SUM

COUNT INX
CPX $42
BNE SUMD ;CONTINUE UNTIL ALL ELEMENTS
STA $40 ;STORE LSB'S OF SUM
STY $41 ;STORE MSB'S OF SUM
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 AA TAX
0003 A8 TAY
0004 18 SUMD CLC
0005 75 ADC $43,X
0006 43
0007 90 BCC COUNT
0008 01
0009 C8 INY
000A E8 COUNT INX
000B E4 CPX $42
OOOC 42
000D DO BNE SUMD
000E F5
000F 85 STA $40
0010 40
0011 84 STY $41
0012 41
0013 00 BRK

The structure of this program is the same as the structure of the last example. The most 
significant bits of the sum must now be initialized and stored. The processing section 
consists of four instructions (CLC; ADC $43,X; BCC COUNT; and INY), including a con­
dition jump.

BCC COUNT causes a jum p to memory location COUNT if Carry =  0. Thus, if there is no 
carry from the 8-b it addition, the program jumps around the statement that increments 
the most significant bits of the sum. The relative offset is

000A
-0009

01
The relative offset for BNE SUMD is

0004 =  0004
-000F -t-FFFl 

F5
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INY adds 1 to the contents of Index Register Y, which is used here as a temporary 
register to save the carries from the addition. We could also use a memory location to 
hold the carries, since the INC instruction can be used to directly increment the con­
tents of a memory location.

You might wish to try reorganizing this program so that it decrements the index down 
to zero rather than incrementing it. W hich version is faster and shorter?

Relative branches are limited to short distances (7F1 g or +127 
forward, 8 0 -| 6 o r -128 backward from the end of the branch in­
struction). This lim itation is seldom important, since most pro­
gram branches are short. However, if you need a conditional 
branch w ith a greater range, you can always invert the condition logic and branch 
around a JMP instruction. For example, to branch to location FAR if Carry =  0, use the 
sequence

BCS NEXT
JMP FAR

NEXT

NEXT is the address immediately following the last byte of the JMP instruction. JMP 
allows only absolute (direct) and indirect addressing.

LONG
CONDITIONAL
BRANCHES
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Number of Negative Elements
Purpose: Determine the number of negative elements (most significant bit 1) in a 

block. The length of the block is in memory location 0041 and the block itself 
starts in memory location 0042. Place the number of negative elements in 
memory location 0040.

Sample Problem:

Result:

Flowchart:

(0041) =  06
(0042) = 68
(0043) =  F2
(0044) = 87
(0045) = 30
(0046) =  59
(0047) = 2A

(0040) =  02, since 0043 and 0044 contain 
numbers w ith an MSB of 1.
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Source Program:

LDX # 0 ;INDEX =  ZERO
LDY # 0 ;NUMBER OF NEGATIVES =  ZERO
LDA $42,X ;IS NEXT ELEMENT NEGATIVE?
BPL CHCNT
INY ;YES, ADD 1 TO NUMBER OF NEGATIVES
INX
CPX $41
BNE SRNEG iCONTINUE UNTIL ALL ELEMENTS EXAMINED
STY $40 ;SAVE NUMBER OF NEGATIVES
BRK

Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 0
0001 00
0002 AO LDY # 0
0003 00
0004 B5 SRNEG LDA $42,X
0005 42
0006 10 BPL CHCNT
0007 01
0008 C8 INY
0009 E8 CHCNT INX
000A E4 CPX $41
000B 41
000C DO BNE SRNEG
000D F6
000E 84 STY $40
000F 40
0010 00 BRK

LDA affects the Sign (S) and Zero (Z) status flags. Therefore, we can immediately check 
to see if a number that has been loaded is negative or zero.

BPL, Branch-on-Plus, causes a branch over the specified number of locations if the Sign 
(or Negative) bit is zero. A sign bit of zero may indicate a positive number or may just in­
dicate the value of the most significant bit position; the interpretation depends on what 
the numbers mean.

The offset for BPL is calculated from the first memory location following the two-byte 
instruction. Here the offset is simply from 0008 to 0009, or one location (i.e., the INY in­
struction is skipped if the Negative bit is zero). The Negative bit w ill be zero if the most 
significant bit of the data loaded from memory by the LDA $42,X instruction is zero.

Remember that negative-signed numbers all have a most significant bit (bit 7) of 1. All 
negative numbers are actually larger, in the unsigned sense, than positive numbers.
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Maxim um  Value
Purpose: Find the largest element in a block of data. The length of the block is in 

memory location 0041 and the block itself begins in memory location 0042. 
Store the maximum in memory location 0040. Assume that the numbers in 
the block are all 8-bit unsigned binary numbers.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)

05
67
79
15
E3
72

Result: (0040) = E3. since this is the largest of 
the five unsigned numbers.

Flowchart:
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Source Program:

LDX $41 ;GET ELEMENT COUNT
LDA # 0 :MAXIMUM =ZERO (MINIMUM POSSIBLE VALUE)

MAXM CMP $41,X ;IS NEXT ELEMENT ABOVE MAXIMUM?
BCS NOCHG ;NO. KEEP MAXIMUM
LDA $41,X :YES, REPLACE .MAXIMUM WITH ELEMENT

NOCHG DEX
BNE MAXM CONTINUE UNTIL ALL ELEMENTS EXAMINED
STA $40 ;SAVE MAXIMUM
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A6 LDX $41
0001 41
0002 A9 LDA # 0
0003 00
0004 D5 MAXM CMP $41,X
0005 41
0006 BO BCS NOCHG
0007 02
0008 B5 LDA $41,X
0009 41
000A CA NOCHG DEX
000B DO BNE MAXM
000C F7
000D 85 STA $40
000E 40
000F 00 BRK

The relative offset for BCS NOCHG is:

000A
-0008

02

The relative offset for BNE MAXM is:

0004 =  04
-000D +F3

F7

The first two instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8-b it unsigned binary 
number. When you set the register that contains the maximum value —  in this case, 
the Accumulator —  to the minimum possible value before you enter the loop, then the
program w ill set the Accumulator to a larger value unless all the elements in the array
are zeros. The program works properly if there are two elements in the array, but not if 
there is only one or none at all. Why? How could you solve this problem?

The instruction CMP $41,X sets the Carry flag as follows where ELEMENT is the con­
tents of the effective address and MAX is the contents of the Accumulator:

Carry =  0 if ELEMENT >  MAX
Carry =  1 if ELEMENT <M A X
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Remember that the carry is an inverted borrow. If Carry =  1, the program proceeds to 
address NOCHG and does not change the maximum. If Carry = 0, the program replaces 
the old maximum w ith the current element by executing the instruction LDA $41.X.

The program does not work if the numbers are signed, because negative numbers w ill 
appear to be larger than positive numbers. This problem is somewhat tricky because a 
twos complement overflow could make the sign of the result incorrect. A further prob­
lem is that the CMP instruction does not affect the Overflow flag. A program for signed 
numbers would therefore have to use the SBC instruction and check both the Sign and 
the Overflow flags. The Carry flag would have to be set to 1 before the subtraction 
(remember that Carry is an inverted borrow and the SBC instruction inverts it before 
subtracting it), and an addition would be required to restore the original value of the 
maximum. Note how convenient it is in the example that CMP does not actually change 
the contents of the Accumulator.
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Justify a Binary Fraction
Purpose: Shift the contents of memory location 0040 left until the most significant bit 

of the number is 1. Store the result in memory location 0041 and the number 
of left shifts required in memory location 0042. If the contents of memory 
location 0040 are zero, clear both 0041 and 0042.

Note: The process is just like converting a number to a scientific notation: for example:

0.0057 =  5.7 x 1 O'3

Sample Problems:

a. (0040) = 22

Result: (0041) = 88
(0042) = 02

b. (0040) = 01

Result: (0041) = 80
(0042) = 07

c. (0040) = CB

Result: (0041) = CB
(0042) = 00

d. (0040) = 00

Result: (0041) = 00
(0042) = 00

Flowchart:
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Source Program:

LDY # 0  ;NUMBER OF SHIFTS =0
LDA $40 ;GET DATA
BEQ DONE ;DONE IF DATA IS ZERO

CHKMS BMI DONE ;DONE IF MSB IS ONE
INY ;ADD 1 TO NUMBER OF SHIFTS
ASL A ;SHIFT LEFT ONE BIT
JMP CHKMS

DONE STA $41 ;SAVE JUSTIFIED DATA
STY
BRK

$42 ;SAVE NUMBER OF SHIFTS

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 AO LDY # 0
0001 00
0002 A5 LDA $40
0003 40
0004 FO BEQ DONE
0005 07
0006 30 CHKMS BMI DONE
0007 05
0008 C8 INY
0009 OA ASL A
000A 4C JMP CHKMS
000B 06
OOOC 00
000D 85 DONE STA $41
000E 41
000F 84 STY $42
0010 42
0011 00 BRK

BMI DONE causes a branch to location DONE if the Sign bit is 1. This condition may 
mean that the last result was a negative number, or it may just mean that its most sig­
nificant bit was 1 —  the computer only supplies the results; the programmer must pro­
vide the interpretation.

ASL A shifts the contents of the Accumulator left one bit and clears the least significant
bit.

JMP is an unconditional branch instruction that always places a new value in the Pro­
gram Counter. It only allows absolute (direct) or indirect addressing. The indirect mode 
provides flexib ility since the actual destination address can be stored in RAM. Note that 
there is no relative addressing and no special page-zero modes.

The address in the JMP instruction is stored in two successive memory locations with 
the least significant bits first (at the lower address). This is the standard way in which 
the 6502 microprocessor expects to find addresses, regardless of whether they are part 
of instructions or are used indirectly. The same upside-down method is used in the 
8080, 8085, and Z80 microprocessors, but the opposite approach (most significant bits 
first) is used on the 6800 microprocessor. Note that an address occupies two bytes of 
memory, although there is a single byte of data located at that address.
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We could reorganize this program so as to eliminate the extraneous JMP instruction. 
One reorganized version would be:

LDY # 0 NUMBER OF SHIFTS =  0
LDA $40 GET DATA
BEQ DONE DONE IF DATA IS ZERO
INY ADD 1 TO NUMBER OF SHIFTS
ASL A SHIFT LEFT ONE BIT
BCC CHKMS CONTINUE IF MSB NOT ONE
ROR A OTHERWISE. SHIFT BACK ONCE
DEY AND IGNORE EXTRA SHIFT
STA $41 SAVE JUSTIFIED DATA
STY $42 SAVE NUMBER OF SHIFTS
BRK

DONE

This version shifts the data until the Carry becomes 1. Then it adjusts the data and the 
number of shifts back one since the last shift was not really necessary. Show that this 
version is also correct. W hat are its advantages and disadvantages as compared to the 
previous program? You might wish to try some other organizations to see how they 
compare in execution time and memory usage.
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We have already noted the additional flexib ility provided by 
the indexed addressing mode. The same instructions can be 
used to process each element in an array or table. But even 
more flexib ility is provided by the post-indexed addressing 
mode in which the instruction only specifies the address on 
page zero that contains the base address of the table or array. Now the same program 
can handle an array or table located anywhere in memory. All that we have to do is 
place the starting address in the appropriate locations on page zero. Note that the start­
ing address occupies two bytes of memory, w ith  the least significant byte first (at the 
lower address). Post-indexing requires extra clock cycles (six as compared to four for 
the zero-page indexed mode) but provides tremendous additional flexibility. Entire ar­
rays need not be moved, nor are repeated versions of the same program required.

Post-indexed (indirect) addressing can only be used w ith Index Register Y. So the max­
imum value program w ith post-indexed addressing is as follows, assuming that the 
length of the array is in memory location 0041 and its starting address is in memory 
locations 0042 and 0043.

For example,

(0041) =  05
(0042) =  43 (LSBs of starting address minus one)
(0043) =  00 (MSBs of starting address minus one)
(0044) =  67 (first element in array)
(0045) =  79
(0046) = 15
(0047) =  E3
(0048) = 72

Result = (40) =  E3 since this is the largest 
of the 5 unsigned numbers.

Source Program:

Post-Indexed (Indirect) Addressing

LDY $41 ;GET ELEMENT COUNT
LDA # 0 iMAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)

MAXM CMP ($42), Y ;IS NEXT ELEMENT ABOVE MAXIMUM?
BCS NOCHG ;NO, KEEP MAXIMUM
LDA ($42),Y ;YES, REPLACE MAXIMUM WITH ELEMENT

NOCHG DEY
BNE MAXM ;CONTINUE UNTIL ALL ELEMENTS EXAMINED
STA $40 ;SAVE MAXIMUM
BRK

POST-INDEXED
(INDIRECT)
ADDRESSING
MODE
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A4 LDY $41
0001 41
0002 A9 LDA # 0
0003 00
0004 D1 MAXM CMP ($42), Y
0005 42
0006 BO BCS NOCHG
0007 02
0008 B1 LDA ($42), Y
0009 42
000A 88 NOCHG DEY
000B DO BNE MAXM
OOOC F7
000D 85 STA $40
000E 40
000F 00 BRK

The indirect address (in memory locations 0042 and 0043) is stored in the usual 6502 
fashion, w ith the least significant bits first (at the lower address).

We could use the same program to find the maximum element in an array of 5 entries 
starting in memory address 25E1. A ll that we would have to do is change the indirect 
address to 25E0 before executing the program, that is,

(0042) = E0 (LSBs of starting address minus one)
(0043) =  25 (MSBs of starting address minus one)

How would you handle the array starting in memory address 25E1 if the program used 
ordinary indexed addressing (as in the earlier example)? Assume that the program is in 
ROM so that you cannot change the addresses in the instructions.
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PRE-INOEXED
(INDIRECT)
ADDRESSING
MODE

The pre-indexed addressing mode gives you a different kind of 
flexibility. This method allows you to choose one address from 
a table of addresses, rather than being limited to a particular 
memory address. For example, rather than having memory 
location 0041 contain the length of the array in the maximum 
problem, we could let it contain the index of the address that contains the length of the 
array. The table of addresses must be located somewhere on page zero, perhaps start­
ing at memory address 0060, that is

(0060) =  2F '
(0061) = 0 0

Pre-lndexed (Indirect) Addressing

• address in which counter # 0  is stored

(0062) =  8 0 1 
(0063) =  00 (

(0064)
(0065) ;

> A5( 
00 (

address in which counter #1 is stored

address in which counter # 2  is stored

One problem is that addresses occupy two bytes of memory so that you must multiply 
the counter number by two before applying the pre-indexed addressing mode. Note 
that all addresses are stored in the usual 6502 manner, w ith  the least significant bits 
first. Pre-indexed addressing is not as useful as post-indexed addressing, but it does 
come in handy occasionally.
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PROBLEMS
1) Checksum of Data
Purpose: Calculate the checksum of a series of numbers. The length of the series is in 

memory location 0041 and the series itself begins in memory location 0042. 
Store the checksum in memory location 0040. The checksum is formed by 
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure 
that the data has been read correctly. The calculated checksum is compared to 
the one stored w ith the data —  if the two checksums do not agree, the system 
w ill usually either indicate an error to the operator or automatically read the data 
again.

Sample Problem:

(0041) =  03
(0042) =  28
(0043) =  55
(0044) =  26

Result: (0040) =  (0042) ©  (0043) ©  (0044)
= 28 © 5 5  © 2 6  
=  0 0  1 0  1 0 0 0  
©  0 1 0  1 0  10  1 

0 1 1 1 1 1 0  1 
©  0 0  1 0 0  1 10 

0 1 0  1 1 0  11 
=  5B

2) Sum of 16-B it Data
Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in 

memory location 0042 and the series itself begins in memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight most significant 
bits in 0041). Each 16-bit number occupies two memory locations, w ith the 
eight most significant bits in the higher address. Assume that the sum can 
be contained in 16 bits.

Sample Problem:

(0042) =  03
(0043) =  F1
(0044) =  28
(0045) =  1A
(0046) =  30
(0047) =  89
(0048) = 4B

Result: 28F1 +  301A +  4B89 =A494
(0040) =  94
(0041) =  A4
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3) Number of Zero, Positive, and Negative Numbers
Purpose: Determine the number of zero, positive (most significant bit zero but entire 

number not zero), and negative (most significant bit 1) elements in a block. 
The length of the block is in memory location 0043 and the block itself starts 
in memory location 0044. Place the number of negative elements in memory 
location 0040, the number of zero elements in memory location 0041, and 
the number of positive elements in memory location 0042.

Sample Problem:

(0043) =  06
(0044) = 68
(0045) =  F2
(0046) =  87
(0047) = 00
(0048) =  59
(0049) = 2A

2 negative. 1 zi
(0040) =  02
(0041) = 01
(0042) =  03

Result:

4) Find Minimum
Purpose: Find the smallest element in a block of data. The length of the block is in 

memory location 0041 and the block itself begins in memory location 0042. 
Store the minimum in memory location 0040. Assume that the numbers in 
the block are 8-b it unsigned binary numbers.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)

05
67
79
15
E3
72

Result: (0040) =  15, since this is the smallest of the 
five unsigned numbers.

5) Count 1 Bits
Purpose: Determine how many bits in memory location 0040 are ones and place the 

result in memory location 0041.

Sample Problem:

Result:

(0040)

(0041)

=  3B =  00111011 

=  05
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Chapter 6 
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards, 
teletypewriters, communications devices, displays, and computer terminals ex­
pect or provide character-coded data, but many instruments, test systems, and 
controllers also require data in this form. The most commonly used code is ASCII. 
Baudot and EBCDIC are found less frequently. We w ill assume all of our character- 
coded data to be 7-bit ASCII w ith  the most significant b it zero (see Table 6-1).

Some principles to remember in handling ASCII-coded data 
are:

1) The codes for the numbers and letters form ordered sub­
sequences. The codes for the decimal numbers are 30^6 
through 39-|6 so that you can convert between decimal and ASCII w ith  a simple 
additive factor. The codes for the upper case letters are 4 1 1 q through 5A i 6 so that 
you can do alphabetic ordering by sorting the data in increasing numerical order.

2) The computer draws no distinction between printing and non-printing charac­
ters. Only the I/O devices make that distinction.

3) An ASCII device w ill handle only ASCII data. To print a 7 on an ASCII printer, 
the microprocessor must send 37 -|g to the printer; 07-|g is the 'bell' character. 
Similarly, the microprocessor w ill receive the character 9 from an ASCII keyboard 
as 39 -|g; 09-|6 is the 'tab' character.

4) Some ASCII devices do not use the full character set. For example, control 
characters and lower case letters may be ignored or printed as spaces or question 
marks.

5) Some widely used ASCII characters are:

OAi e - line feed (LF)

0D-|6 ■ carriage return (CR)

20 ig  - space

3F-|6 - ? (question mark)

7F i0  - rubout or delete character

6) Each ASCII character occupies eight bits. This allows a large character set but is
wasteful when the data is limited to a small subset such as the decimal numbers. 
An 8-b it byte, for example, can hold only one ASCII-coded decimal digit, while it 
can hold two BCD-coded digits.

HANDLING 
DATA IN 
ASCII
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Table 6-1. Hex-ASCII Table



EXAMPLES
Length of a String of Characters
Purpose: Determine the length of a string of ASCII characters (seven bits w ith most 

significant bit zero). The string starts in memory location 0041; the end of 
the string is marked by a carriage return character CCR', ODig). Place the
length of the string (excluding
0040.

Sample Problems:
(0041) = 0D

Result: (0040) = 00 since

(0041) = 52 ■R'
(0042) = 41 'A'
(0043) = 54 T
(0044) = 48 'H'
(0045) = 45 'E'
(0046) = 52 'R'
(0047) = OD CR

Result: (0040) = 06

Flowchart:

carriage return) into memory location

first character is a carriage return.

(0040) =  Length

C End )

6 - 3



Source Program:

LDX # 0 ;STRING LENGTH = ZERO
LDA #$0D ;GET ASCII CARRIAGE RETURN TO COMPARE
CMP $41,X ;IS CHARACTER A CARRIAGE RETURN?
BEQ DONE ;YES, DONE
INX ;NO, ADD 1 TO STRING LENGTH
JMP CHKCR
STX $40 ;SAVE STRING LENGTH
BRK

Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 0
0001 00
0002 A9 LDA #$0D
0003 OD
0004 D5 CHKCR CMP $41,X
0005 41
0006 FO BEQ DONE
0007 04
0008 E8 INX
0009 4C JMP CHKCR
000A 04
000B 00
oooc 86 DONE STX $40
000D 40
000E 00 BRK

The carriage return character. 'CR', is just another ASCII code (ODi q) as far as the com­
puter is concerned. The fact that this character causes an output device to perform a 
control function rather than print a symbol does not affect the computer.

The Compare instruction. CMP, sets the flags as if a subtraction had been performed 
but leaves the carriage return character in the Accumulator for later comparisons. The 
Zero (Z) flag is affected as follows:

Z =  1 if the character in the string is a carriage return

Z = 0 if it is not a carriage return

The instruction INX adds 1 to the string length counter in Index Register X. LDX # 0  in­
itializes this counter to zero before the loop begins. Remember to initialize variables 
before using them in a loop.

This loop does not terminate because a counter is decremented to zero or reaches a 
maximum value. The computer w ill simply continue examining characters until it finds 
a carriage return. It is good programming practice to place a maximum count in a loop 
like this to avoid problems w ith erroneous strings that do not contain a carriage return. 
W hat would happen if the example program were used w ith such a string?
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Note that by rearranging the logic and changing the initial conditions, you can shorten 
the program and decrease its execution time. If we adjust the flowchart so that the pro­
gram increments the string length before it checks for the carriage return, only one 
Jump instruction is necessary instead of two. The new flowchart and program are as 
follows:

Source Program:

LDX #$FF :STRING LENGTH =  -1
LDA #$0D :GET ASCII CARRIAGE RETURN TO COMPARE
INX ;ADD 1 TO STRING LENGTH
CMP $41,X ;IS CHARACTER A CARRIAGE RETURN?
BNE CHKCR ;NO, CHECK NEXT CHARACTER
STX $40 ;YES. SAVE STRING LENGTH
BRK

This version is not only shorter and faster, but it also contains no absolute destination 
addresses: thus it can easily be placed anywhere in memory. The earlier version con­
tains a JMP instruction w ith a specific absolute address, while this version has only 
branch instructions w ith  relative addresses.
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LDX #$FF
0001 FF
0002 A9 LDA #$0D
0003 OD
0004 E8 CHKCR INX
0005 D5 CMP $41.X
0006 41
0007 DO BNE CHKCR
0008 FB
0009 86 STX $40
000A 40
000B 00 BRK
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Find First Non-Blank Character
Purpose: Search a string of ASCII characters (seven bits w ith  most significant bit zero) 

for a non-blank character. The string starts in memory location 0042. Place 
the index of the first non-blank character in memory location 0040. A blank 
character is 2 0 i6  in ASCII.

Sample Problems:

37 ASCII 7(0042) 

Result: (0040)

(0042) =
(0043) =
(0044) =
(0045) =
(0046) =

(0040) =Result:

00, since memory location 0042 contains a 
non-blank character.

20 SP 
20 SP 
20 SP 
46 T '
20 SP

03. since the three previous memory locations 
all contain blanks.

Flowchart:
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;START WITH INDEX =  ZERO 
;GET ASCII SPACE FOR COMPARISON 
;IS CHARACTER AN ASCII SPACE? 
;NO, DONE
;YES. EXAMINE NEXT CHARACTER

;SAVE INDEX OF FIRST NON-BLANK 
; CHARACTER

Note the use of an apostrophe 0  or single quotation mark before an ASCII character.

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 0
0001 00
0002 A9 LDA # '
0003 20
0004 D5 CHBLK CMP $42,X
0005 42
0006 DO BNE DONE
0007 04
0008 E8 INX
0009 4C JMP CHBLK
000A 04
0008 00
000C 86 DONE STX $40
000D 40
000E 00 BRK

Looking for spaces in strings is a common task. Spaces often are eliminated from 
strings when they are used simply to increase readability or to fit particular formats. It is 
obviously wasteful to store and transmit beginning, ending, or extra spaces, particularly 
if you are paying for the communications capability and memory required. Data and 
program entry, however, are much simpler if extra spaces are tolerated. Microcom­
puters are often used in situations like this to convert data between forms that are easy 
for humans to use and forms that are efficiently handled on computers and com­
munications lines.

Source Program:

LDX # 0
LDA # '

CHBLK CMP $42,X
BNE DONE
INX
JMP CHBLK

DONE STX $40

BRK
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Again, if we alter the initial conditions so that the loop control section precedes the pro­
cessing section, we can reduce the number of bytes in the program and decrease the 
loop's execution time. The rearranged flowchart is:

Source Program:

CHBLK

LDX #$FF
LDA #'
INX
CMP $42,X
BEQ CHBLK
STX $40

BRK

START WITH INDEX = -1
GET ASCII SPACE FOR COMPARISON
INCREMENT INDEX
IS CHARACTER AN ASCII SPACE?
YES, EXAMINE NEXT CHARACTER 
NO, SAVE INDEX OF FIRST NON-BLANK 

CHARACTER

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX #$FF
0001 FF
0002 A9 LDA # '

, 0003 20
0004 E8 CHBLK INX
0005 D5 CMP $42,X
0006 42
0007 FO BEQ CHBLK
0008 FB
0009 86 STX $40
000A 40
000B 00 BRK
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Replace Leading Zeros w ith  Blanks
Purpose; Edit a string of ASCII decimal characters by replacing all leading zeros with 

blanks. The string starts in memory location 0041; assume that it consists 
entirely of ASCII-coded decimal digits. The length of the string is in memory 
location 0040.

Sample Problems:

a. (0040) = 02
(0041) =  36 ASCII 6

The program leaves the string unchanged, since the leading dig it is not zero.

(0040) =  08
(0041) = 30 ASCII 0
(0042) = 30 ASCII 0
(0043) =  38 ASCII 8

Result: (0041) = 20 SP
(0042) =  20 SP

The two leading ASCII zeros have been replaced by ASCII blanks. 

Flowchart:
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Source Program:

CHKZ

DONE

LDX # 0
LDY # '
LDA # '0
CMP $41 ,X
BNE DONE
STY $41,X
INX
CPX $40
BNE CHKZ
BRK

INDEX =  ZERO TO START 
GET ASCII SPACE FOR REPLACEMENT 
GET ASCII ZERO FOR COMPARISON 
IS LEADING DIGIT ZERO?
NO, END REPLACEMENT PROCESS 
IS LEADING DIGIT ZERO?

;EXAMINE NEXT DIGIT IF ANY

Single quotation mark in front of a character indicates that the operand is an ASCII 
code.

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 0
0001 00
0002 AO LDY # '
0003 20
0004 A9 LDA # '0
0005 30
0006 D5 CHKZ CMP $41.X
0007 41
0008 DO BNE DONE
0009 07
000A 94 STY $ 4 1.X
OOOB 41
oooc E8 INX
000D E4 CPX $40
000E 40
000F DO BNE CHKZ
0010 F5
0011 00 DONE BRK

You w ill frequently want to edit decimal strings before they are printed or displayed to 
improve their appearance. Common editing tasks include eliminating leading zeros, 
justifying numbers, adding signs or other identifying markers, and rounding. Clearly, 
printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits —  one if the processor finds a nonzero digit and the other if 
it has examined the entire string.

The instruction STY $41,X places an ASCII space character (20 hex) in a memory loca­
tion that previously contained an ASCII zero. Note that STY has only a limited number 
of addressing modes (see Table 3-4); there are no indexing modes w ith Register Y, no 
pre-indexing, and no absolute indexing. The only indexed addressing mode is the zero- 
page mode w ith Index Register X.

All digits in the string are assumed to be ASCII; that is, the digits are 30-|6 through 
39 1 0  rather than the ordinary decimal 0 to 9. The conversion from decimal to ASCII is 
simply a matter of adding 3 0 ig  to the decimal digit.
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You can place a single ASCII character in a 6502 assembly language program by pre­
ceding it w ith  an apostrophe (’). You can place a string of ASCII characters in program 
memory by using the .TEXT (Store ASCII Text) pseudo-operation on the 6502 assem­
bler. A delim iter character (usually /) must surround the text; the usual form is:

O pera tion
Label Code Operand

EMSG .TEXT /ERROR/

You may have to be careful, when blanking zeros, to leave one zero in the event that all 
the digits are zero. How would you do this?

Note that each ASCII d ig it requires eight bits, as compared to four for a BCD digit. 
Therefore, ASCII is an expensive format in which to store or transmit numerical data.
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Add Even Parity to ASCII Characters
Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string 

is in memory location 0040 and the string itself begins in memory location
0041. Place even parity in the most significant bit of each character by set­
ting the most significant bit to 1 if that makes the total number of 1 bits in 
the word an even number.

Sample Problem:

(0040) - 06
(0041) = 31
(0042) = 32
(0043) = 33
(0044) = 34
(0045) = 35
(0046) = 36

(0041) = B1
(0042) = B2
(0043) = 33
(0044) = B4
(0045) = 35
(0046) = 36



Flowchart:



Source Program:

LDX $40 INDEX =  MAXIMUM COUNT
GTDATA LDY # 0 BIT COUNT =  ZERO FOR DATA

LDA $40.X GET DATA FROM BLOCK
CHBIT BPL CHKZ IS NEXT DATA BIT 1 ?

INY YES, ADD 1 TO BIT COUNT
CHKZ ASL A EXAMINE NEXT BIT POSITION

BNE CHBIT UNLESS ALL BITS ARE ZEROS
TYA
LSR A DID DATA HAVE EVEN NUMBER OF
BCC NEXTE
LDA $40,X NO, SET PARITY BIT
ORA #% 10000000
STA $40,X

NEXTE DEX
BNE GTDATA CONTINUE THROUGH DATA BLOCK
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A6 LDX $40
0001 40
0002 AO GTDATA LDY # 0  :
0003 00
0004 B5 LDA $40, X
0005 40
0006 10 CHBIT BPL CHKZ
0007 01
0008 C8 INY
0009 OA CHKZ ASL A
000A DO BNE CHBIT
000B FA
OOOC 98 TYA
000D 4A LSR A
000E 90 BCC NEXTE
000F 06
0010 B5 LDA $40, X
0011 40
0012 09 ORA #% 10000000
0013 80
0014 95 STA $40, X
0015 40
0016 CA NEXTE DEX
0017 DO BNE GTDATA
0018 E9
0019 00 BRK

Parity is often added to ASCII characters before they are transmitted on noisy com­
munications lines; this provides a simple error-checking facility. Parity detects all 
single-bit errors but does not allow for error correction; that is, you can tell by checking 
the parity of the data that an error has occurred, but you cannot tell which bit was 
received incorrectly. All that the receiver can do is request retransmission.
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The procedure for calculating parity is to count the number of '1' bits in the data words. 
If that number is odd, the MSB of the data word is set to 1 to make the parity even.

ASL clears the least significant bit of the number being shifted. Therefore, the result of 
a series of ASL instructions w ill eventually be zero, regardless of the original value of 
the data (try it!). The bit counting section of the example program not only does not 
need a counter, but also stops examining the data as soon as all remaining bits are 
zeros. This procedure saves execution time in many cases.

The MSB of the data is set to T  by logically ORing it w ith a pattern that has a '1' in its 
most significant bit and zeros elsewhere. Logically ORing a bit w ith one produces a 
result of one regardless of the original value, while logically ORing a bit w ith zero does 
not change the original value.
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Pattern M atch
Purpose: Compare two strings of ASCII characters to see if they are the same. The 

length of the strings is in memory location 0041; one string starts in memory 
location 0042 and the other in memory location 0052. If the two strings 
match, clear memory location 0040; otherwise, set memory location 0040 to
FF-ie (all ones).

Problems:

(0041) = 03

(0042) . 43 'C'
(0043) = 41 ’A'
(0044) = 54 T

(0052) = 43 ■c
(0053) = 41 'A'
(0054) = 54 T

Result: (0040) = 00, since the

(0041) = 03

(0042) 52 ■R'
(0043) - 41 'A'
(0044) = 54 T

(0052) = 43 'C
(0053) = 41 'A'
(0054) = 54 T

Result: (0040) = FF, since the
strings differ.

Note: The matching process ends as soon as the CPU finds a difference —  the rest of 
the strings need not be examined.



Flowchart:

Source Program:

LDX
LDY

CHCAR LDA 
CMP 
BNE 
INX 
CPX 
BNE 
LDY

DONE STY 
BRK

#0 
#$FF 
$42,X 
$52,X 
DONE

START WITH FIRST ELEMENT IN STRINGS 
MARKER FOR NO MATCH 
GET CHARACTER FROM STRING 1 
IS THERE A MATCH WITH STRING 2?
NO, DONE

$41
CHCAR
#0
$40

CHECK NEXT PAIR IF ANY LEFT 
IF NONE LEFT, MARK MATCH 
SAVE MATCH MARKER

6 - 1 8



Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 0
0001 00
0002 A0 LDY #$FF
0003 FF
0004 B5 CHCAR LDA $42. X
0005 42
0006 D5 CMP $52.X
0007 52
0008 DO BNE DONE
0009 07
000A E8 INX
000B E4 CPX $41
oooc 41
000D DO BNE CHCAR
000E F5
000F A0 LDY # 0
0010 00
0011 84 DONE STY $40
0012 40
0013 00 BRK

Matching strings of ASCII characters is an essential part of recognizing names or com­
mands. identifying variables or operation codes in assemblers and compilers, finding 
files, and many other tasks.

Index Register X is used to access both strings —  only the base addresses are different. 
This method allows the strings to be located anywhere in memory, although we would 
have to use the absolute indexed addressing modes if the strings were not on page 
zero. We could also use the post-indexed mode (with Index Register Y) if we had two 
different base addresses stored somewhere on page zero.

The instruction CMP $52,X compares the Accumulator to the contents of the indexed 
memory location. We could replace the LDY # 0  instruction w ith INY. Why? Compare 
the time and memory requirements of the two alternatives. W hich version do you think 
is clearer? The replacement would also allow you to use a memory location for the 
marker rather than a register (why?).
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PROBLEMS
1) Length of a Teletypew riter Message
Purpose: Determine the length of an ASCII message. A ll characters are 7-bit ASCII 

w ith  MSB =  0. The string of characters in which the message is embedded 
starts in memory location 0041. The message itself starts w ith an ASCII STX 
character (021 @) and ends w ith ETX (031 6) Place the length of the message 
(the number of characters between the STX and the ETX but including 
neither) into memory location 0040.

Sample Problem:

(0041) = 40
(0042) =  02 STX
(0043) = 47 'G'
(0044) = 4F ’O’
(0045) =  03 ETX

Result: (0040) = 02, since there are two characters between the STX
in location 0042 and ETX in location 0045.

2) Find Last Non-Blank Character
Purpose: Search a string of ASCII characters for the last non-blank character. The

string starts in memory location 0042 and ends w ith a carriage return
character (0D-|g). Place the index of the last non-blank character in memory 
location 0040.

Sample Problems:

Result:

Result:

(0042) = 37 ASCII 7
(0043) = 0D CR

(0040) — 00, 
is in

since the last (and only) non-blank character 
memory location 0042.

(0042) = 41 'A'
(0043) = 20 SP
(0044) = 48 'H'
(0045) = 41 'A'
(0046) = 54 T
(0047) = 20 SP
(0048) 20 SP
(0049) = 0D CR

(0040) = 04
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3) Truncate Decimal String to Integer Form
Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of 

the decimal point w ith  ASCII blanks (20-) q). The string starts in memory loca­
tion 0041 and is assumed to consist entirely of ASCII-coded decimal digits 
and a possible decimal point ( 2 E - | T h e  length of the string is in memory 
location 0040- If no decimal point appears in the string, assume that the 
decimal point is implicitly at the far right.

Sample Problems:

(0040) = 04

(0041) = 37 ASCII 7
(0042) = 2E ASCII
(0043) = 38 ASCII 8
(0044) = 31 ASCII 1

(0041) — 37 ASCII 7
(0042) = 2E ASCII
(0043) — 20 SP
(0044) = 20 SP

(0040) = 03

(0041) = 36 ASCII 6
(0042) = 37 ASCII 7
(0043) = 31 ASCII 1

Uncha nged, as numberResult:

4) Check Even Parity in ASCII Characters
Purpose: Check even parity in a string of ASCII characters. The length of the string is 

in memory location 0041, and the string itself begins in memory location
0042. If the parity of all the characters in the string is correct, clear memory 
location 0040; otherwise, place FF1 q (all ones) into memory location 0040.

Sample Problems:

(0041) = 03

(0042) = B1
(0043) = B2
(0044) = 33

(0040) = 00,

(0041) = 03

(0042) = B1
(0043) = B6
(0044) = 33

(0040) = FF, since the character in memory location 0043 
does not have even parity.
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5) String Comparison
Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which 

follows the other in alphabetical ordering). The length of the strings is in 
memory location 0041; one string starts in memory location 0042 and the 
other in memory location 0052. If the string starting in memory location 
0042 is greater than or equal to the other string, clear memory location 
0040; otherwise, set memory location 0040 to FF-|g (all ones).

Sample Problems:

(0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result: (0040)

(0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result: (0040)

(0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

03

43 'C'
41 'A' 
54 T

42 'B'
51 'A'
54 T

00 ,

03

since CAT is 'larger' than BAT.

43
41
54

43
41
54

00.
03

43
41
54

43
55 
54

■c
'A'
T

'C'
'A'
T

since the two strings are equal.

' C

'A'
T

'C'
'U'
T

Result: (0040) =  FF, since CUT is 'larger' than CAT.
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Chapter 7 
CODE CONVERSION

Code conversion is a continual problem in most microcomputer applications. Pe­
ripherals provide data in ASCII, BCD, or various special codes. The system must 
convert the data into some standard form for processing. Output devices may re­
quire data in ASCII, BCD, seven-segment, or other codes. Therefore, the system 
must convert the results to a suitable form after the processing is completed.

There are several ways to approach code conversion:

1) Some conversions can easily be handled by algorithms involving arithmetic or 
logical functions. The program may. however, have to handle some special cases 
separately.

2) More complex conversions can be handled w ith  lookup tables. The lookup ta­
ble method requires little programming and is easy to apply. However, the table 
may occupy a large amount of memory if the range of input values is large.

3) Hardware is readily available for some conversion tasks. Typical examples are 
decoders for BCD to seven-segment conversion and Universal Asynchronous 
Receiver/Transmitters (UARTs) for conversion between parallel (ASCII) and serial 
(teletypewriter) formats.

In most applications, the program should do as much as possible of the code conversion 
work. This results in a savings in parts and board space as well as in increased 
reliability. Furthermore, most code conversions are easy to program and require little 
execution time.
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EXAMPLES 
Hex to ASCII
Purpose: Convert the contents of memory location 0040 to an ASCII character.

Memory location 0040 contains a single hexadecimal dig it (the four most 
significant bits are zero). Store the ASCII character in memory location
0041.

Sample Problems:

a. (0040) 

Result: (0041)

b. (0040) 

Result: (0041)

Flowchart:

0C

43 'C' 

06

36 '6'

ASCZ

Program:

LDA $40
CMP #10
BCC ASCZ
ADC #'A -'9 -2
ADC # '0
STA $41
BRK

;GET DATA
;IS DATA LESS THAN 10?

;NO. ADD OFFSET FOR LETTERS (CARRY = 1) 
;ADD OFFSET FOR ASCII 
;STORE ASCII DIGIT
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0 0 0 0 A5 LDA $40
0 0 0 1 40
0 0 0 2 C9 CMP # 1 0

0003 0A
0004 90 BCC ASCZ
0005 0 2

0006 69 ADC # 'A -'9 -2
0007 06
0008 69 ASCZ ADC # ■ 0

0009 30
000A 85 STA $41
000B 41
0 0 0 c 0 0 BRK

The basic idea of this program is to add ASCII zero (301 q) to all the hexadecimal digits. 
This addition converts the decimal digits to ASCII correctly; however, there is a break 
between ASCII 9 (39-| g) and ASCII A (411 0 ) which must be considered. This break must 
be added to the non-decimal digits A, B, C, D, E, and F. The first ADC instruction ac­
complishes this by adding the offset 'A-'9-2 to the contents of the Accumulator. Can 
you explain why the offset is 'A-'9-2?

The problem here is that the letters do not follow immediately after the decimal digits in 
ASCII. There is a gap occupied by the ASCII codes for such characters as : (3A1 0 >, = 
(3D 1 g), and @ (40ig). To bridge this gap, we must add a constant factor determined by 
the distance between the actual value of ASCII A (411 0 ) and the value it would have if 
there were no gap (3A-|g). There is also an extra factor of 1 provided by the Carry flag. 
You can compare this situation to the problem of walking from one address to another 
on a street that is divided into two discontinuous sections by a canyon or a river.

Remember that the ADC instruction always adds in the Carry bit. A fter the BCC instruc­
tion, we know that the Carry contains one (otherwise a branch would have occurred). 
So we simply reduce the additive factor by 1 to account for the Carry. As for the second 
ADC instruction, the Carry w ill be zero if the program branched after the CMP instruc­
tion (since the BCC instruction was used) or if the Accumulator contained a valid hex­
adecimal d ig it (10 through 15) since the additive factor is only 7. Therefore, we do not 
have to worry about the Carry in any reasonable case.

This routine could be used in a variety of programs; for example, monitor programs 
must convert hexadecimal digits to ASCII in order to display the contents of memory 
locations in hexadecimal on an ASCII printer or CRT display.

Another (quicker) conversion method that requires no conditional jumps at all is the 
following program, described by AllisonJ

SED MAKE ADDITIONS. DECIMAL
CLC CLEAR CARRY TO START
LDA $40 GET HEXADECIMAL DIGIT
ADC #$90 DEVELOP EXTRA 6  AND CARRY
ADC #$40 ADD IN CARRY, ASCII OFFSET
STA $41 STORE ASCII DIGIT
CLD CLEAR DECIMAL MODE BEFORE ENDING
BRK
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Try this program on some digits. Can you explain why it works? Note that you must be 
careful to clear the decimal mode flag when you have completed all decimal arithmetic. 
Otherwise, you w ill get decimal results in programs (including the monitor) where they 
are not wanted.

Decimal to Seven-Segment
Purpose: Convert the contents of memory location 0041 to a seven-segment code in 

memory location 0042. If memory location 0041 does not contain a single 
decimal digit, clear memory location 0042.

Seven-segment table: The following table can be used to convert decimal numbers to 
seven-segment code. The seven-segment code is organized w ith the most significant 
bit always zero followed by the code (1 =  on, 0 =  off) for segments g, f, e, d, c. b, and a 
(see Figure 7-1 for the positions of the segments). The segment names are standard but 
the organization that we have chosen is arbitrary. In actual applications, the hardware 
determines the assignment of data bits to segments.

Note that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid 
confusion w ith lower case b, and 6F for 9 rather than 67 (bottom bar off), for no particu­
lar reason.

Digit Code

0 3F
1 06
2 5B
3 4F
4 66
5 6D
6 7D
7 07
8 7F
9 6F

Figure 7-1. Seven-segment Arrangement

Sample Problems:

a. (0041) = 03

Result: (0042) = 4F

b. (0041) =  28

Result: (0042) =  00
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Flowchart:

Note that the addition of base address (SSEG) and index (DATA) produces the address 
that contains the answer.

Source Program:

LDA # 0 GET ERROR CODE TO BLANK DISPLAY
LDX $41 GET DATA
CPX #1 0 IS DATA A DECIMAL DIGIT?
BCS DONE NO, KEEP ERROR CODE
LDA SSEG.X YES. GET SEVEN-SEGMENT CODE FROM 

TABLE
DONE STA

BRK

$42 SAVE SEVEN-SEGMENT CODE OR ERROR 
CODE

oCMmII ;SEVEN-SEGMENT CODE TABLE
SSEG .BYTE $3F,$06.$5B.$4F.$66

.BYTE $6D,$7D,$07,$7F.$6F
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 A6 LDX $41
0003 41
0004 E0 CPX #10
0005 0A
0006 BO BCS DONE
0007 02
0008 B5 LDA SSEG.X
0009 20
000A 85 DONE STA $42
000B 42
oooc 00 BRK

0020 3F SSEG ■ BYTE $3F
0021 06 $06
0022 5B $5B
0023 4F $4F
0024 66 $66
0025 6D .BYTE $6D
0026 7D $7D
0027 07 $07
0028 7F $7F
0029 6F $6F

The program calculates the memory address of the desired code by adding the index 
(i.e., the d ig it to be displayed) to the base address of the seven-segment code table. 
This procedure is known as a table lookup. No explicit instructions are required for the 
addition, since it is performed automatically in the indexed addressing modes.

The assembly language pseudo-operation .BYTE (define byte-length data) places con­
stant data in program memory. Such data may include tables, headings, error 
messages, priming messages, format characters, thresholds, etc. The label attached to 
a .BYTE pseudo-operation is assigned the value of the address into which the first byte 
of data is placed.

Tables are often used to perform code conversions that are more complex than the pre­
vious example. Such tables typically contain all the results organized according to the 
input data; e.g.. the first entry is the code corresponding to the number zero.

Seven-segment displays provide recognizable forms of the decimal digits and a few let­
ters and other characters. Calculator-type seven-segment displays are inexpensive, 
easy to multiplex, and use little power. However, the seven-segment coded digits are 
somewhat d ifficu lt to read.

The assembler simply places the data for the table in memory. Note that one .BYTE 
pseudo-operation can fill many memory locations. We have left some memory space 
between the program and the table to allow for later additions or corrections.

The table can be placed anywhere in memory, although the absolute indexed address­
ing mode would have to be used if it was not on page zero. We could also use post-in- 
dexing (with Index Register Y) and have the base address saved in two memory loca­
tions on page zero. The same program could then be used w ith any table since the base 
address would be specified in RAM rather than in ROM.
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ASCII to Decimal
Purpose: Convert the contents of memory location 0040 from an ASCII character to a 

decimal d ig it and store the result in memory location 0041. If the contents of 
memory location 0040 are not the ASCII representation of a decimal digit, 
set the contents of memory location 0041 to FFig.

Sample Problems:

a. (0040) = 37 (ASCII 7)

Result: (0041) = 07

b. (0040) = 55 (an invalid code, since it is not an
ASCII decimal digit)

Result: (0041) =  FF

Flowchart:
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Source Program:

DONE

LDX #$FF GET ERROR MESSAGE
LDA $40 GET DATA
SEC IGNORE CARRY IN SUBTRACTION
SBC # '0 IS DATA BELOW ASCII ZERO?
BCC DONE YES. NOT A DIGIT
CMP #10 IS DATA ABOVE ASCII NINE?
BCS DONE YES, NOT A DIGIT
TAX SAVE DIGIT IF VALID
STX $41 SAVE DIGIT OR ERROR MARKER
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX #$FF
0001 FF
0002 A5 LDA $40
0003 40
0004 38 SEC
0005 E9 SBC # '0
0006 30
0007 90 BCC DONE
0008 05
0009 C9 CMP #10
000A OA
000B BO BCS DONE
oooc 01
000D AA TAX
OOOE 86 DONE STX $41
000F 41
0010 00 BRK

This program handles ASCII-coded characters just like ordinary numbers. Note that the 
decimal digits and the letters form groups of consecutive codes. Strings of letters (like 
names) can be alphabetized by placing their ASCII representations in increasing 
numerical order (ASCII B = ASCII A +  1 for example).

Subtracting ASCII zero (30-| q) from any ASCII decimal d ig it gives the BCD representa­
tion of that digit.

The Carry must be set before a subtraction if it is not to affect the result since SBC pro­
duces (A) =  (A) - (M) - (1 - Carry) where M is the contents of the addressed memory 
location. Compare instructions, on the other hand, do not include the Carry in their im­
plied subtractions.

ASCII-to-decimal conversion is necessary when decimal numbers are being entered 
from an ASCII device like a teletypewriter or CRT terminal.

The basic idea of the program is to determine if the character is between ASCII 0 and 
ASCII 9, inclusive. If so. the character is an ASCII decimal d ig it since the digits form a 
sequence. It may then be converted to decimal simply by subtracting 3 0 i6  (ASCII 0): 
e.g., ASCII 7 - ASCII 0 = 37 - 30 =  7.

Note that one comparison is done with an actual subtraction (SBC # '0) since the 
subraction is necessary to convert ASCII to decimal. The other comparison is done with 
an implied subtraction (CMP #10) since the final result is now in the Accumulator if the 
original number was valid.
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BCD to Binary
Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary 

number in memory location 0042. The most significant BCD digit is in 
memory location 0040.

Sample Problems:

(0040) =
(0041) =

02
09

b.

Result: (0042) =  1D -] 6 = 29 -| o

(0040) = 07
(0041) =  01

Result: (0042) =  4 7 1 g =  71 •] q

Note: We include no flowchart because the program multiplies the most significant 
d ig it by 10 simply by using the formula 10x = 8x +  2x. M ultiplying by 2 requires 
one arithmetic left shift and multiplying by 8 requires three such shifts.

Source Program:

LDA $40 GET MOST SIGNIFICANT DIGIT (MSD)
ASL A MSD TIMES TWO
STA $42 SAVE MSD TIMES TWO
ASL A MSD TIMES FOUR
ASL A MSD TIMES EIGHT
CLC
ADC $42 MSD TIMES TEN (NO CARRY)
ADC $41 ADD LEAST SIGNIFICANT DIGIT
STA $42 STORE BINARY EQUIVALENT
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $40
0001 40
0002 OA ASL A
0003 85 STA $42
0004 42
0005 OA ASL A
0006 OA ASL A
0007 18 CLC
0008 65 ADC $42
0009 42
000A 65 ADC $41
000B 41
000C 85 STA $42
000D 42
000E 00 BRK
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BCD entries are converted to binary in order to save on storage and to simplify calcula­
tions. However, the need for conversion may offset some of the advantages of binary 
storage and arithmetic.

This program multiplies the BCD dig it in memory location 0040 by 10 using left shifts 
and additions. 2 Note that ASL A multiplies the contents of the Accumulator by 2, This 
allows you to m ultiply the contents of the Accumulator by small decimal numbers in a 
few instructions. How would you use this procedure to m ultiply by 16? by 12? by 7?

BCD numbers require about 20% more storage than do binary numbers. Representing 0 
to 999 requires 3 BCD digits (12 bits) and 10 bits in binary (since 2^0 = 1024 = 1000).
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Convert Binary Number to ASCII String
Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII 

characters (either ASCII 0 or ASCII 1) in memory locations 0042 through 
0049 (the most significant bit is in 0042).

Sample Problem:

(0041) = D2 =11010010

Result: (0042) 31 ASCII 1
(0043) = 31 ASCII 1
(0044) = 30 ASCII 0
(0045) = 31 ASCII 1
(0046) = 30 ASCII 0
(0047) = 30 ASCII 0
(0048) = 31 ASCII 1
(0049) = 30 ASCII 0

Flowchart:
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Source Program:

LDA $41
LDX # 8
LDY # '0

CONV STY $41.X
LSR A
BCC COUNT
INC $41,X

COUNT DEX
BNE
BRK

CONV

Object Program:

GET DATA
NUMBER OF BITS = 8
GET ASCII ZERO TO STORE IN STRING
STORE ASCII ZERO IN STRING
IS NEXT BIT OF DATA ZERO?

;NO, MAKE STRING ELEMENT ASCII ONE 
;COUNT BITS

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $41
0001 41
0002 A2 LDX # 8
0003 08
0004 AO LDY # '0
0005 30
0006 94 CONV STY $41 ,X
0007 41
0008 4A LSR A
0009 90 BCC COUNT
000A 02
000 B F6 INC $41.X
OOOC 41
000D CA COUNT DEX
000E DO BNE CONV
000F F6
0010 00 BRK

The ASCII digits form a sequence so ASCII 1 =  ASCII 0 +  1. The INX instruction can be 
used to directly increment the contents of a memory location. The savings here are that 
no explicit instructions are required to load the data from memory or to store the result 
back into memory. Nor are any of the user registers (A, X, and Y) disturbed. However, 
the CPU must actually load the data from memory, save it in a temporary register, incre­
ment it, and store the result back into memory. All data processing actually takes place 
inside the CPU.

Be careful of the difference between INX and an instruction like INC $41.X. The INC in­
struction adds one to the contents of Index Register X; INC $41 ,X adds one to the con­
tents of the indexed memory location —  it has no effect on Index Register X.

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an 
ASCII device.

The conversion to ASCII simply involves adding ASCII zero (30-| 6>.
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PROBLEMS
1) ASCII to Hex
Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and 

store the result in memory location 0041. Assume that memory location 
0040 contains the ASCII representation of a hexadecimal dig it (7 bits w ith 
MSB 0).

Sample Problems:

a. (0040) =  43 ASCII C

Result: (0041) = 0C

b. (0040) = 36 ASCII 6

Result: (0041) =  06

2) Seven-Segment to Decimal
Purpose: Convert the contents of memory location 0040 from a seven-segment code 

to a decimal number in memory location 0041. If memory location 0040 does 
not contain a valid seven-segment code, set memory location 0041 to FFi g. 
Use the seven-segment table given under the Decimal to Seven-Segment ex­
ample and try to match codes.

Sample Problems:

a. (0040) =  4F

Result: (0041) =  03

b. (0040) =  28

Result: (0041) = FF

3) Decimal to ASCII
Purpose: Convert the contents of memory location 0040 from a decimal digit to an 

ASCII character and store the result in memory location 0041. If the number 
in memory location 0040 is not a decimal digit, set the contents of memory 
location 0041 to an ASCII blank character (20-|g).

Sample Problems:

a. (0040) = 07

Result: (0041) =  37 ASCII 7

b. (0040) =  55

Result: (0041) =  20 ASCII SPACE

4) Binary to BCD
Purpose: Convert the contents of memory location 0040 to two BCD digits in memory 

locations 0041 and 0042 (most significant d ig it in 0041).'The number in 
memory location 0040 is unsigned and less than 100.

Sample Problems:

a. (0040) = 1D (29 decimal)

Result: (0041) =  02
(0042) =  09

b. (0040) =  47 (71 decimal)

Result: (0041) =  07
(0042) =  01
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5) ASCII String to Binary Number
Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049 

to an 8-bit binary number in memory location 0041 (the most significant bit 
is in 0042). Clear memory location 0040 if all the ASCII characters are either 
ASCII 1 or ASCII 0 and set it to FF•)q otherwise.

Sample Problems:

(0042) = 31 ASCII 1
(0043) = 31 ASCII 1
(0044) = 30 ASCII 0
(0045) = 31 ASCII 1
(0046) = 30 ASCII 0
(0047) = 30 ASCII 0
(0048) = 31 ASCII 1
(0049) = 30 ASCII 0

Result: (0041) = D2
(0040) = 00

as 'a' except:
(0045) = 37 ASCII 7

Result: (0040) = FF
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Chapter 8 
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary 
or decimal manipulations. A decimal correction (decimal adjust) or some other 
means for performing decimal arithmetic is frequently the only arithmetic instruc­
tion provided besides basic addition and subtraction. You must implement other 
arithmetic operations w ith  sequences of instructions.

Multiple-precision binary arithmetic requires simple repetitions of the basic 
single-word instructions. The Carry bit transfers information between words. Add 
w ith Carry and Subtract w ith  Carry use the information from the previous arithmetic 
operations. You must be careful to clear the Carry before operating on the first words 
(obviously there is no carry into or borrow from the least significant bits).

Decimal arithmetic is a common enough task for microprocessors that most have 
special instructions for this purpose. These instructions may either perform decimal 
operations directly or correct the results of binary operations to the proper decimal 
form. Decimal arithmetic is essential in such applications as point-of-sale terminals, 
calculators, check processors, order entry systems, and banking terminals.

You can implement multiplication and division as series of additions and subtractions 
respectively, much as they are done by hand. Double-word operations are necessary 
since a multiplication produces a result twice as long as the operands, while a division 
similarly contracts the length of the result. Multiplications and divisions are time-con­
suming when done in software because of the repeated arithmetic and shift operations 
that are necessary. Of course, multiplying or dividing by a power of 2 is simple because 
such operations can be implemented w ith an appropriate number of left or right 
arithmetic shifts.
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EXAMPLES
Multiple-Precision Binary Addition
Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes) 

is in memory location 0040, the numbers themselves start (most significant 
bits first) in memory locations 0041 and 0051, respectively, and the sum 
replaces the number starting in memory location 0041.

Sample Problem:

Result:

that is,

(0040)

(0041)
(0042)
(0043)
(0044)

(0051)
(0052)
(0053)
(0054)

(0041)
(0042)
(0043)
(0044)

04

2F
5B
A7
C3

14
DF
35
B8

44
3A
DD
7B

2F5BA7C3
14DF35B8
443ADD7B

Flowchart:
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Source Program:

ADDW

LDX $40 ;INDEX =  LENGTH OF STRINGS
CLC ;CLEAR CARRY TO START
LDA $40,X ;GET BYTE FROM STRING 1
ADC $50,X ;ADD BYTE FROM STRING 2
STA $40,X ;STORE RESULT IN STRING 1
DEX
BNE ADDW CONTINUE UNTIL ALL BYTES ADDED
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A6 LDX $40
0001 40
0002 18 CLC
0003 B5 ADDW LDA $40,X
0004 40
0005 75 ADC $50,X
0006 50
0007 95 STA $40, X
0008 40
0009 CA DEX
000A DO BNE ADDW
000B F7
OOOC 00 BRK

The relative address for BNE ADDW is:

0003 = 03
-000C +F4

F7

The instruction CLC is used to clear the Carry bit since there is no carry involved in the 
addition of the least significant bytes.

The instruction ADC. Add w ith  Carry, includes the Carry from the previous words in the
addition. ADC is the only instruction in the loop that affects the Carry. In particular,
note that increment and decrement instructions (DEC, DEX, DEY, INC, INX, INY) do not 
affect the Carry.

This program uses the same index w ith two different base ad­
dresses to handle the two strings. The strings can be located any­
where in memory. Furthermore, there would be no difficu lty in 
storing the result in a third string.

This procedure can add binary numbers of any length. Note that ten binary bits corres­
pond to three decimal digits since 2^0 = 1024 =  1000. So. you can calculate the num­
ber of bits required to give a certain accuracy in decimal digits. For example, twelve 
decimal d ig it accuracy requires:

12 x ^  = 4 0  bits

DECIMAL 
ACCURACY 
IN BINARY
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Decimal Addition
Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in 

bytes) is in memory location 0040, the numbers themselves start (most sig­
nificant bits first) in memory locations 0041 and 0051, respectively, and the 
sum replaces the number starting in memory location 0041.

Sample Problem:

(0040) = 04

(0041) = 36
(0042) = 70
(0043) = 19
(0044) = 85

(0051) = 12
(0052) = 66
(0053) = 34
(0054) = 59

Result: (0041) = 49
(0042) = 36
(0043) = 54
(0044) = 44

that is, 36701985
+12663459

49365444

Flowchart:
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Source Program:

ADDW

SED
LDX $40
CLC
LDA $40,X
ADC $50,X
STA $40,X
DEX
BNE ADDW
CLD
BRK

MAKE ALL ARITHMETIC DECIMAL 
INDEX = LENGTH OF STRINGS 
CLEAR CARRY TO START 
GET TWO DIGITS FROM STRING 1 
ADD TWO DIGITS FROM STRING 2 
STORE RESULT IN STRING 1

CONTINUE UNTIL ALL DIGITS ADDED 
:RETURN TO BINARY MODE

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 F8 SED
0001 A6 LDX $40
0002 40
0003 18 CLC
0004 B5 ADDW LDA $40.X
0005 40
0006 75 ADC $50,X
0007 50
0008 95 STA $40,X
0009 40
000A CA DEX
000B DO BNE ADDW
oooc F7
000D D8 CLD
000E 00 BRK

The Decimal mode automatically takes care of the following 
situations in which binary and BCD addition differ:

1) The sum of two digits is between 10 and 15 inclusive. In this 
case, six must be added to the sum to give the right result, i.e.,

0101 (5)
+  1000 (8)

1101 (D)
+ 0110

0001 0011 (BCD 13, which is correct)

2) The sum of two digits is 16 or more. In this case, the result is a proper BCD digit but 
six less than it should be, i.e.,

1000 (8)
+  1001 (9)

0001 0001 (BCD 11)
+ 0110

0001 0111 (BCD 17, which is correct)

Six must be added in both situations. However, case 1 can be recognized by the fact 
that the sum is not a BCD digit, i.e.. it is between 10 and 15 (or A and F hexadecimal). 
Case 2 can only be recognized by the fact that the carry from the dig it addition is one 
since the result is a valid BCD number.

6502
DECIMAL
MODE
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When the Decimal Mode flag is set, all arithemtic is carried out in the decimal 
form. This includes subtractions as w e ll as additions, regardless of which address­
ing mode is employed.

However, the Increment and Decrement instructions pro­
duce binary results even when the Decimal Mode flag is
set. Thus DEC, DEX, DEY, INC, INX, and INY can only be used 
to maintain binary counters. For example, to increment a 
decimal counter in memory location 0040, you must use the sequence:

SED ;MAKE ARITHMETIC DECIMAL
LDA $40 ;GET COUNTER
CLC ;KEEP CARRY FROM AFFECTING ADDITION
ADC #1 INCREMENT COUNTER (DECIMAL)
STA $40
CLD ;RETURN TO BINARY MODE

The SED, CLC, and CLD instructions may not be necessary if other parts of the program 
set the status flags appropriately.

Subtractions in the decimal mode produce correct BCD results with the Carry being an 
inverted borrow. For example, if the Accumulator contains 03, the addressed memory 
location contains 27, and the Carry contains 1. after the execution of an SBC instruction 
the Accumulator w ill contain 76 and the Carry w ill be 0. As in the binary mode, a Carry 
of zero means that a borrow has been generated.

The Sign bit is not meaningful after additions and subtractions when the Decimal 
Mode flag is set. It reflects the result of the binary operation, not of the decimal opera­
tion. In the most recently mentioned situation (03-27), the Sign bit w ill be set (as it 
would be if the numbers were binary) even though the decimal result (76) has a most 
significant bit of zero.

This procedure can add decimal (BCD) numbers of any length.
Here four binary bits are required for each decimal digit, so 
twelve-digit accuracy requires

12 x 4 = 48 bits

as opposed to 40 bits in the binary case. This is six 8-bit words instead of five.

The program for decimal addition is the same as that for binary addition except for the 
surrounding CLD and SED instructions. Thus a single sequence of instructions can pro­
duce two entirely different results depending on the value of a flag that is not even 
mentioned explicitly. Can you suggest some problems this m ight create in connecting 
programs written at different times or by different people?

ACCURACY IN 
BINARY AND BCD

DECIMAL
MODE
LIMITATIONS
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8-B it Binary Multiplication
Purpose: Multiply the 8-b it unsigned number in memory location 0040 by the 8-bit 

unsigned number in memory location 0041. Place the eight least significant
bits of the result into memory location 0042 and the eight most significant
bits into memory location 0043.

Sample Problems:

a. (0040) = 03
(0041) =  05

Result: (0042) =  OF
(0043) =  00
or in decimal 3 x 5  = 15

b. (0040) = 6F
(0041) =  61

Result: (0042) =  OF
(0043) = 2A
or 111 x9 7  =  10.767

You can perform multiplication on a computer in the same way that you do long 
multiplication by hand. Since the numbers are binary, the only problem is whether to 
m ultiply by 0 or 1; m ultiplying by zero obviously gives zero as a result, while m ultiply­
ing by one produces the same number that you started w ith  (the mu Itiplicand). So, each 
step in a binary multiplication can be reduced to the following operation.

If the current bit in the multiplier is 1. add the multiplicand MULTIPLICATION
to the partial product. ALGORITHM_____

The only remaining problem is to ensure that you line everything up correctly each 
time. The following operations perform this task.

1) Shift the multiplier left one bit so that the bit to be examined is placed in the Carry.
2) Shift the product left one bit so that the next addition is lined up correctly.

The complete process for binary multiplication is as follows:

Step 1 - Initialization 
Product = 0 
Counter =  8

Step 2 - Shift Product so as to line up properly 
Product =  2 x Product (LSB = 0)

Step 3 - Shift Multiplier so bit goes to Carry 
M ultiplier =  2 x M ultiplier

Step 4 - Add Multiplicand to Product if Carry is 1
If Carry = 1, Product = Product +  Multiplicand

Step 5 - Decrement Counter and check for zero 
Counter = Counter - 1 
If Counter ¥=0 go to Step 2
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In the case of Sample Problem b, where th
6Fi q the process works as follows: 

Initialization:

Product 0000
Multiplier 61

Multiplicand 6F
Counter 08

After first iteration of steps 2-5:

Product 0000
Multiplier C2

Multiplicand 6F
Counter 07

Carry from M ultiplier 0

After second iteration:

Product 006F
Multiplier 84

Multiplicand 6F
Counter 06

Carry from Multiplier 1

After third iteration:

Product 014D
Multiplier 08

Multiplicand 6F
Counter 05

Carry from Multiplier 1

After fourth iteration:

Product 029A
Multiplier 10

Multiplicand 6F
Counter 04

Carry from Multiplier 0

After fifth  iteration:

Product 0534
Multiplier 20

Multiplicand 6F
Counter 03

Carry from Multiplier 0

After sixth iteration:

Product 0A68
Multiplier 40

Multiplicand 6F
Counter 02

Carry from M ultiplier 0

After seventh iteration:

Product 14D0
Multiplier 80

Multiplicand 6F
Counter 01

Carry from M ultiplier 0

8-8



After eighth iteration

Product 2A0F
Multiplier 00

Multiplicand 6F
Counter 00

Carry from Multiplier 1

Flowchart:
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Source Program:

LDA #0 LSB'S OF PRODUCT =  ZERO
STA $43 MSB'S OF PRODUCT =  ZERO
LDX #8 NUMBER OF BITS IN MULTIPLIER = 8

SHIFT ASL A SHIFT PRODUCT LEFT ONE BIT
ROL $43
ASL $41 SHIFT MULTIPLIER LEFT
BCC CHCNT NO ADDITION IF NEXT BIT IS ZERO
CLC ADD MULTIPLICAND TO PRODUCT
ADC $40
BCC CHCNT
INC $43 WITH CARRY IF NECESSARY

CHCNT DEX ;LOOP UNTIL 8 BITS ARE MULTIPLIED
BNE SHIFT
STA $42 STORE LSB'S OF PRODUCT
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A9 LDA # 0
0001 00
0002 85 STA $43
0003 43
0004 A2 LDX # 8
0005 08
0006 OA SHIFT ASL A
0007 26 ROL $43
0008 43
0009 06 ASL $41
000A 41
000B 90 BCC CHCNT
000C 07
000D 18 CLC
000E 65 ADC $40
000F 40
0010 90 BCC CHCNT
0011 02
0012 E6 INC $43
0013 43
0014 CA CHCNT DEX
0015 DO BNE SHIFT
0016 EF
0017 85 STA $42
0018 42
0019 00 BRK
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Besides its obvious use in calculators and point-of-sale terminals, multiplication is a key 
part of almost all signal processing and control algorithms. The speed at which 
multiplications can be performed determines the usefulness of a CPU in process con­
trol, signal detection, and signal analysis.

This algorithm takes between 170 and 280 clock cycles to m ultiply on a 6502 
microprocessor. The precise time depends on the number of 1 bits in the multiplier. 
Other algorithms may be able to reduce the average execution time somewhat, but 250 
clock cycles w ill still be a typical execution time for a software multiplication. Some 
microprocessors (such as the 9900, 8086, and Z8000) have hardware multiplication in­
structions that are somewhat faster but maximum speed requires the addition of exter­
nal hardware.
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8-B it Binary Division
Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-bit unsigned number in memory loca­
tion 0042. The numbers are normalized so that 1) the most significant bits of 
both the dividend and the divisor are zero and 2) the number in memory 
location 0042 is greater than the number in memory location 0041.Thus, the 
quotient is an 8-bit number. Store the quotient in memory location 0043 and 
the remainder in location 0044.

Sample Problems:

a. (0040) = 40 (64 decimal)
(0041) = 00
(0042) =  08

Result =  (0043) =  08 
(0044) =  00 
i.S„ 64/8 =  8

b. (0040) =  6D (12,909 decimal)
(0041) =  32
(0042) =  47 (71 decimal)

Result = (0043) = B5 (181 decimal)
(0044) =  3A (58 decimal)
i.e., 12,909/71 =  181 w ith a remainder of 58

You can perform division on the computer just like you would per- DIVISION 
form division w ith pen and paper, i.e., using trial subtractions. ALGORITHM 
Since the numbers are binary, the only question is whether the bit ”
in the quotient is 0 or 1, i.e., whether the divisor can be subtracted from what is left of 
the dividend. Each step in a binary division can be reduced to the following operation:

If the divisor can be subtracted from the eight 
most significant bits of the dividend without 
a borrow, the corresponding bit in the quo­
tient is 1; otherwise it is 0.

The only remaining problem is to line up the dividend and quotient properly. You can 
do this by shifting the dividend and quotient logically left one bit before each trial 
subtraction. The dividend and quotient can share a 16-bit register, since the procedure 
clears one bit of the dividend at the same time as it determines one bit of the quotient.

The complete process for binary division is:

Step 1 - Initialization:
Quotient =  0 
Counter =  8

Step 2 - Shift Dividend and Quotient so as to line up properly:
Dividend =  2 x  Dividend 
Quotient =  2 x  Quotient

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient:
If 8 MSBs of Dividend >  Divisor then
MSBs of Dividend =  MSBs of Dividend - Divisor
Quotient =  Quotient +  1

Step 4 - Decrement counter and check for zero:
Counter =  Counter -  1 
if Counter -0 ,  go to Step 2 
Remainder =  8 MSBs of Dividend
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In the case of sample problem b, where the dividend is 326D-|6 and the divisor is47-|g, 
the process works as follows:
Initialization:

Dividend 326D 
Divisor 47

Quotient 00
Counter 00

After first iteration of Steps 2 - 4:
(Note that the dividend is shifted prior to the trial subtraction)

After third iteration:

After fourth iteration:

After fifth  iteration:

After sixth iteration:

After seventh iteration:

After eighth iteration:

Dividend 1DDA
Divisor 47

Quotient 01
Counter 07

of Steps 2 - 4:
Dividend 3BB4

Divisor 47
Quotient 02
Counter 06

Dividend 3068
Divisor 47

Quotient 05
Counter 05

Dividend 19D0
Divisor 47

Quotient 0B
Counter 04

Dividend 33A0
Divisor 47

Quotient 16
Counter 03

Dividend 2040
Divisor 47

Quotient 2D
Counter 02

i:
Dividend 4080

Divisor 47
Quotient 5A
Counter 01

Dividend 3AOO
Divisor 47

Quotient B5
Counter 00

and the remainder
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The MSBs of dividend and divisor are assumed to be zero; this simplifies calculations 
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in 
the Carry). Problems that are not in this form must be simplified by removing parts of 
the quotient that would overflow an 8-bit word. For example:

1024 400 (Hex) 100 + 100 (Hex)
3 3 3

The last problem is now in the proper form. An extra division may be necessary. 

Flowchart:
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Source Program:

DIVID

LDX # 8
LDA $40
STA $43
LDA $41
ASL $43
ROL A
CMP $42
BCC CHCNT
SBC $42
INC $43
DEX
BNE DIVID
STA $44
BRK

;NUMBER OF BITS IN DIVISOR = 8 
;START WITH LSB'S OF DIVIDEND

;GET MSB'S OF DIVIDEND
;SHIFT DIVIDEND. QUOTIENT LEFT 1 BIT

CAN DIVISOR BE SUBTRACTED?
NO, GO TO NEXT STEP 
YES, SUBTRACT DIVISOR (CARRY =  1) 
AND INCREMENT QUOTIENT BY 1 
LOOP UNTIL ALL 8 BITS HANDLED

;STORE REMAINDER

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A2 LDX # 8
0001 08
0002 A5 LDA $40
0003 40
0004 85 STA $43
0005 43
0006 A5 LDA $41
0007 41
0008 06 DIVID ASL $43
0009 43
000A 2A ROL A
000B C5 CMP $42
oooc 42
000D 90 BCC CHCNT
000E 04
000F E5 SBC $42
0010 42
0011 E6 INC $43
0012 43
0013 CA CHCNT DEX
0014 DO BNE DIVID
0015 F2
0016 85 STA $44
0017 44
0018 00 BRK

Division is used in calculators, terminals, communications error checking, control 
algorithms, and many other applications.

The algorithm takes between 150 and 230 microseconds to divide on a 6502 with a 1 
MHz clock. The precise time depends on the number of 1 bits in the quotient. Other 
algorithms can reduce the average time somewhat, but 200 microseconds w ill still be 
typical for a software division.

The instructions ASL $43 and ROL A together provide a 16-bit arithmetic left shift of 
the dividend (MSBs in A). The ROL instruction picks up the bit which the ASL instruc­
tion left in the Carry.
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An 8-bit subtraction is necessary, since there is no simple way to perform a 16-bit 
subtraction or comparison.

Memory location 0043 and the Accumulator hold both the dividend and the quotient 
(MSBs in Accumulator). The quotient simply replaces the dividend in memory location 
0043 as the dividend is shifted left arithmetically.

We do not have to worry about the Carry in the SBC instruction. It must be 'V  since 
otherwise BCC would have caused a branch. Remember that a Carry value of '1' has no 
effect on the result of an SBC instruction since the Carry is an inverted borrow.

The fo llo w in g  routine  o ffers an im provem ent in tim ing  over the previous example 
w ithou t increasing mem ory usage. It also perform s error checking.

DIV LDX #8 NUMBER OF BITS IN DIVISOR =  8
LDA $40 START WITH LSB’S OF DIVIDEND
STA S43
LDA $41 GET MSB'S OF DIVIDEND
CMP $42 SHOULD BE LESS THAN DIVISOR
BCS DONE IF NOT, ERROR EXIT (CARRY =  1)

DIVID ROL $43 SHIFTDIVIDEND, QUOTIENT LEFT 1 BIT
ROL A (AND NEW ANSWER BIT — SEE DEX BELOW)
CMP $42 CAN DIVISOR BE SUBTRACTED?
BCC CHCNT NO, GO TO NEXT STEP (CARRY =  0)
SBC $42 YES, SUBTRACT DIVISOR (CARRY =  1)

CHCNT DEX NOTE CARRY ' NEW ANSWER BIT
BNE DIVID LOOP UNTIL ALL 8 BITS HANDLED
ROL $43 SHIFT IN THE LAST ANSWER BIT
STA $44 STORE REMAINDER (CARRY =  0 HERE)

DONE RTS QUIT (CARRY 0, NORMAL, CARRY 1, ERROR)
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Self-Checking Numbers 
Double Add Double Mod 10
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the 

string of digits (number of words) is in memory location 0041; the string of 
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the 
checksum dig it by the Double Add Double Mod 10 technique1 and store it in 
memory location 0040.

The Double Add Double Mod 10 technique works as follows:

1) Clear the checksum to start.
2) Multiply the leading d ig it by two and add the result to the 

checksum.
3) Add the next d ig it to the checksum.
4) Continue the alternating process until you have used all the digits.
5) The least significant d ig it of the checksum is the self-checking digit.

Self-checking digits are commonly added to identification numbers on credit cards, in­
ventory tags, luggage, parcels, etc., when they are handled by computerized systems. 
They may also be used in routing messages, identifying files, and other applications. 
The purpose of the digits is to minimize entry errors such as transposing digits (69 in­
stead of 96), shifting digits (7260 instead of 3726), missing digits by one (65 instead of 
64), etc. You can check the self-checking number automatically for correctness upon 
entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain checksum 
w ill not find transposition errors (4 +  9 = 9 +  4). The Double Add Double algorithm will 
find simple transposition errors ( 2 x 4  +  9 =  1 7 ^ 2 x 9  +  4); but w ill miss some errors, 
such as transpositions across even numbers of digits (367 instead of 763). However, 
this method w ill find many common errors! The value of a method depends on what er­
rors it w ill detect and on the probability of particular errors in an application.

For example, if the string of digits is

549321

the result w ill be:

Checksum = 5 x 2  +  4 +  9 x 2  +  3 +  2 x 2  +  1 = 4 0  
Self-checking digit = 0 (least significant d ig it of a checksum)

Note that an erroneous entry like 543921 would produce a different self-checking digit 
(4), but erroneous entries like 049321 or 945321 would not be detected.

Sample Problems:

a. (0041) = 03
(0042) = 36
(0043) = 68
(0044) =  51

Result: Checksum = 3 x 2  +  6 +  6 x 2  +  8 +  5 x 2  +  1 = 4 3  
(0040) =  03

b. (0041) = 04
(0042) =  50
(0043) = 29
(0044) =  16
(0045) =  83

Result: Checksum = 5 x 2  +  0 +  2 x 2  +  9 +  1 x 2  +  6 +  8 x 2  +  3 = 50 
(0040) = 00

SELF-CHECKING
NUMBERS
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Flowchart:

c D
Checksum =  0 
Base -  0041  
Index =  (0041)

MSD =  (Base 
+  lndex)/16 

LSD =  (Base+lndex) 
AND 000 01 1 11  
(binary) 

Checksum =  
Checksum - 
2 x MSD +  LSD

(0040) =  Checksum 
AND 0 00 01 1 11  

(binary)
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Source Program:

SED
LDX $41
LDY # 0

CHKDG LDA $41,X
LSR A
LSR A
LSR A
LSR A
STA $40
CLC
ADC $40
STY $40

ADC $40
STA $40
LDA $41,X
AND #% 00001111
CLC
ADC $40
TAY
DEX
BNE CHKDG
AND #% 00001111
STA $40
CLD
BRK

MAKE ALL ARITHIMETIC DECIMAL 
INDEX = LENGTH OF STRING 
CHECKSUM =  ZERO 
GET NEXT 2 DIGITS OF DATA 
SHIFT OFF LEAST SIGNIFICANT DIGIT

CLEAR CARRY FROM SHIFTING 
DOUBLE MOST SIGNIFICANT DIGIT 
DOUBLING A DIGIT NEVER PRODUCES A 

CARRY
ADD DOUBLED MSD TO CHECKSUM

GET LEAST SIGNIFICANT DIGIT 
(MASK OFF MSD)
ADD LSD TO CHECKSUM

CONTINUE UNTIL ALL DIGITS SUMMED 
;SAVE LSD OF SELF-CHECKING DIGIT

;RETURN TO BINARY MODE
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 F8 SED
0001 A6 LDX $41
0002 41
0003 AO LDY # 0
0004 00
0005 B5 CHKDG LDA $41,X
0006 41
0007 4A LSR A
0008 4A LSR A
0009 4A LSR A
000A 4A LSR A
000 B 85 STA $40
OOOC 40
000D 18 CLC
000E 65 ADC $40
000F 40
0010 84 STY $40
0011 40
0012 65 ADC $40
0013 40
0014 85 STA $40
0015 40
0016 B5 LDA $41 ,X
0017 41
0018 29 AND #% 00001111
0019 OF
001A 18 CLC
001 B 65 ADC $40
001C 40
001 D A8 TAY
001E CA DEX
001F DO BNE CHKDG
0020 E4
0021 29 AND #% 00001111
0022 OF
0023 85 STA $40
0024 40
0025 D8 CLD
0026 00 BRK

The digits are removed by shifting and masking. Four logical right shifts are needed to 
separate out the most significant digit.

All arithmetic is performed in the decimal mode. Remember, however, that DEX still 
produces a binary result.

There is no problem w ith the Carry from doubling a decimal d ig it since the result can 
never be larger than 18. You may be able to eliminate the final CLC instruction if the 
numbers to be summed are known to be too small to ever produce a Carry.
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You can double a decimal number in the Accumulator by 
adding it to itself in the decimal mode. A typical sequence is as 
follows (using memory location 0040 for temporary storage):

SED
STA
CLC
ADC
CLD

;MAKE ARITHMETIC DECIMAL

DOUBLING AND 
HALVING 
DECIMAL 
NUMBERS

$40

$40
;KEEP CARRY FROM AFFECTING ADDITION 
;DOUBLE NUMBER 
:RETURN TO BINARY MODE

You may not need the SED, CLC, and CLD instructions if other parts of the program set 
the Carry and Decimal Mode flags appropriately. Note that you cannot use ASL A to 
double a decimal number because that instruction produces a binary result even if the 
Decimal Mode flag is set.

You divide a decimal number by 2 simply by shifting it right logically and then 
subtracting 3 from any d ig it that is 8 or larger (since 10 BCD is 16 binary). The following 
program divides a decimal number in memory location 0040 by 2 and places the result 
in memory location 0041.

;GET DECIMAL NUMBER 
;DIVIDE BY 2 IN BINARY

;IS LEAST SIGNIFICANT DIGIT 8 OR MORE?

;YES, SUBTRACT 3 FOR DECIMAL 
: CORRECTION

;STORE NUMBER DIVIDED BY 2DONE

LDA $40
LSR A
TAX
AND #% 00001111
CMP # 8
BCC DONE
TXA
SBC # 3

TAX
STX $41
BRK

There is no problem w ith the Carry in the SBC instruction since that instruction is only 
executed if the Carry is set. Remember that SBC subtracts off the complemented Carry 
(1 - C) so a Carry of 1 does not affect the result.

Try the division method by hand on the decimal numbers 28, 30, and 37. Do you under­
stand why it works? You may also wish to try the program on the same data.

BINARY
ROUNDING

Rounding is simple regardless of whether the numbers are binary 
or decimal. A binary number can be rounded as follows:

If the most significant bit to be dropped is 1. 
add 1 to the remaining bits. Otherwise, leave 
the remaining bits alone.

This rule works because 1 is halfway between 0 and 10 in binary, much as 5 is halfway 
in decimal (note that 0.5 decimal =  0.1 binary).

So. the following program w ill round a 16-bit number in memory locations 0040 and
0041 (MSBs in 0041) to an 8-bit number in memory location 0041.

DONE

LDA
BPL
INC
BRK

$40
DONE
$41

;IS MSB OF EXTRA BYTE 1 ?

:YES, ROUND MSB’S UP
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If the number is longer than 16 bits, the rounding must ripple through all the bytes as 
needed. Note that we could use BIT $40 instead of LDA $40 since the BIT instruction 
sets the Sign flag according to the most significant bit of the addressed memory loca­
tion. This approach leaves the Accumulator as it was although it does change the 
status flags.

Decimal rounding is a bit more d ifficu lt because the crossover 
point is now BCD 50 and the rounding must produce a decimal 
result. The rule is:

If the most significant dig it is to be dropped
is 5 or more, add 1 to the remaining digits.

The following program w ill round a 4-digit BCD number in memory locations 0040 and 
0041 (MSDs in 0041) to a two-d ig it BCD number in memory location 0041.

LDA $40 :IS BYTE TO BE DROPPED 50 OR MORE?
CMP #$50
BCC DONE
SED ;YES, ROUND MSD’S UP BY 1 IN DECIMAL
LDA $41
ADC # 0 ;ADD IN CARRY (KNOWN TO BE SET)
STA $41
CLD :RETURN TO BINARY MODE

DONE BRK

Remember that you cannot use the INC instruction to add 1 because that instruction a
ways produces a binary result. The instruction ADC #0 w ill add 1 to the Accumulator 
since the Carry must be 1 for the instruction to be executed (otherwise the BCC instruc­
tion would have forced a branch). As usual, we must be careful to set and clear the 
Decimal Mode flag appropriately. For longer numbers, the rounding must ripple 
through more significant digits as needed.

DECIMAL
ROUNDING
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PROBLEMS
1) Multiple-Precision Binary Subtraction
Purpose: Subtract one multiple-word number from another. The length of the num­

bers is in memory location 0040, the numbers themselves start (most signifi­
cant bits first) in memory locations 0041 and 0051, respectively, and the 
difference replaces the number starting in memory location 0041. Subtract 
the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) = 04

(0041) = 2F
(0042) = 5B
(0043) = A7
(0044) = C3

(0051) = 14
(0052) = DF
(0053) = 35
(0054) = B8

(0041) = 1A
(0042) = 7C
(0043) = 72
(0044) = OB

2F5BA7C3
- 14DF35B8

1A7C720B

2) Decimal Subtraction
Purpose: Subtract one multiple-word decimal (BCD) number from another. The length 

of the numbers is in memory location 0040, the numbers themselves start 
(most significant digits first) in memory locations 0041 and 0051, respec­
tively, and the difference replaces the number starting in memory location
0041. Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) = 04

(0041) = 36
(0042) = 70
(0043) = 19
(0044) = 85

(0051) = 12
(0052) = 66
(0053) = 34
(0054) = 59

(0041) = 24
(0042) = 03
(0043) = 85
(0044) = 26

36701985
- 12663459

24038526
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3) 8-B it by 16-B it Binary Multiplication
Purpose: Multiply the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-bit unsigned number in memory loca­
tion 0042. Store the result in memory locations 0043 through 0045. w ith the 
most significant bits in memory location 0045.

Sample Problems:

(0040)
(0041)
(0042)

03
00
05

Result: (0043) =  OF
(0044) = 00
(0045) =  00

that is.

(0040)
(0041)
(0042)

Result: (0043)
(0044)
(0045)

that is.

3 x 5  = 15 

6F
72 (29,295 decimal) 
61 (97 decimal)

OF
5C
2B

29.295 x 97 =  2,841.615

4) Signed Binary Division
Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 (most 

significant bits in 0041) by the 8-bit signed number in memory location
0042. The numbers are normalized so that the magnitude of memory loca­
tion 0042 is greater than the magnitude of memory location 0041. Store the 
quotient (signed) in memory location 0043 and the remainder (always posi­
tive) in memory location 0044

Sample Problems:

a. (0040) = CO
(0041) = FF (-64)
(0042) = 08

Result: (0043) = F8 (-8) quotient
(0044) = 00 (0) remainder

b. (0040) = 93
(0041) = ED (-4717)
(0042) = 47 (71 decimal)

Result: (0043) = BD (-67 decimal)
(0044) = 28 (+40 decimal)

Hint: Determine the sign of the result, perform an unsigned division, and ad­
just the quotient and remainder properly.
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5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10
Purpose: Calculate a checksum dig it from a string of BCD digits. The length of the 

string of digits (number of words) is in memory location 0041; the string of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Aligned 1, 3. 7 Mod 10 method and store it in memory 
location 0040.

The Aligned 1. 3, 7 Mod 10 technique works as follows:

1) Clear the checksum to start.
2) Add the leading d ig it to the checksum.
3) Multiply the next d ig it by 3 and add the result to the checksum.

4) Multiply the next dig it by 7 and add the result to the checksum.
5) Continue the process (Steps 2-4) until you have used all the digits.
6) The self-checking d ig it is the least significant d ig it of the checksum.

For example, if the string of digits is:

549321

the result w ill be:

Checksum = 5 +  3 x 4  +  7 x 9  +  3 +  3 x 2  +  7 x 1 = 9 6  
Self-checking d ig it =  6 

Sample Problems:

a. (0041) =  03
(0042) =  36
(0043) = 68
(0044) =  51

Result: Checksum =  3 +  3 x 6  +  7 x 6  +  8 +  3 x 5  +  7 x 1  = 9 3
(0040) = 03

b. (0041) =  04
(0042) = 50
(0043) =  29
(0044) = 16
(0045) = 83

Result: Checksum =  5 +  3 x 0  +  7 x 2  +  9 +  3 x 1  +  7 x 6  +  8 
+  3 x 3 =  90

(0040) = 00

H int: Note tha t 7 =  2 x 3  +  1 and 3 =  2 x 1  +  1, so the form ula 
Mj =  2 x Mj_i +  1 can be used to calculate the next m ultiplying factor.
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Number Cruncher," Electronics, February 17. 1977. pp. 102-107.
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Chapter 9 
TABLES AND LISTS

Tables and lists are tw o of the basic data structures used w ith  all computers. We 
have already seen tables used to perform code conversions and arithmetic. Tables 
may also be used to identify or respond to commands and instructions, linearize 
data, provide access to files or records, define the meaning of keys or switches, 
and choose among alternate programs. Lists are usually less structured than ta­
bles. Lists may record tasks that the processor must perform, messages or data 
that the processor must record, or conditions that have changed or should be 
monitored. Tables are a simple way of making decisions or solving problems, since 
no computations or logical functions are necessary. The task, then, reduces to 
organizing the table so that the proper entry is easy to find. Lists allow the execu­
tion of sequences of tasks, the preparation of sets of results, and the construction 
of interrelated data files (or data bases). Problems include how to add elements to 
a list and remove elements from it.
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EXAMPLES 
Add Entry to List
Purpose: Add the contents of memory location 0040 to a list if it is not already pres­

ent in the list. The length of the list is in memory location 0041 and the list 
itself begins in memory location 0042.

Sample Problems:

a. (0040) =  6B
(0041) =  04
(0042) = 37
(0043) =  61
(0044) = 38
(0045) = 1D

Result: (0041) =  05
(0046) = 6B

The entry (6B) is added to the list, since it is not already present. The length of the list is 
incremented by 1.

b. (0040) =  6B
(0041) =  04
(0042) = 37
(0043) =  6B
(0044) = 38
(0045) = 1D

Result: No change, since the entry (6B) is already in the list (in memory loca­
tion 0043).
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Flowchart:

Source Program:

SRLST

DONE

LDA $40 ;GET ENTRY
LDX $41 ;INDEX = LENGTH OF LIST
CMP $41.X ;IS ENTRY = ELEMENT IN LIST?
BEQ DONE :YES, DONE
DEX ;NO, GO ON TO NEXT ELEMENT
BNE SRLST
INC $41 ;ADD 1 TO LIST LENGTH
LDX $41
STA $41,X ;ADD ENTRY TO LIST
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $40
0001 40
0002 A6 LDX $41
0003 41
0004 D5 SRLST CMP $41,X
0005 41
0006 FO BEQ DONE
0007 09
0008 CA DEX
0009 DO BNE SRLST
000A F9
000B E6 INC $41
oooc 41
000D A6 LDX $41
000E 41
000F 95 STA $41,X
0010 41
0011 00 DONE BRK

Clearly, this method of adding elements is very inefficient if the list I HASHING I
is long. We could improve the procedure by lim iting the search to 
part of the list or by ordering the list We could lim it the search by using the entry to 
get a starting point in the list. This method is called "hashing", and is much like 
selecting a starting page in a dictionary or directory on the basis of the first letter in an 
entry. We could order the list by numerical value. The search could then end when the 
list values went beyond the entry (larger or smaller, depending on the ordering tech­
nique used). A new entry would have to be inserted properly, and all the other entries 
would have to be moved down in the list.

The program could be restructured to use two tables. One table could provide a starting 
point in the other table; for example, the search point could be based on the most or 
least significant 4-b it d ig it in the entry.

The program does not work if the length of the list is zero (what happens?). We could 
avoid this problem by checking the length initially. The initialization procedure would 
then be:

LDX $41 ;INDEX =  LENGTH OF LIST
BEQ ADELM ;ADD ENTRY TO LIST IF LENGTH IS ZERO

ADELM INC $41 ;ADD 1 TO LIST LENGTH

Unlike many other processors, the 6502's Zero flag is affected by Load instructions.

If each entry were longer than one word, a pattern-matching program would be neces­
sary. The program would have to proceed to the next entry if a match failed; that is, 
skip over the last part of the current entry once a mismatch was found.
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Check an Ordered List
Purpose: Check the contents of memory location 0041 to see if that value is in an or­

dered list. The length of the list is in memory location 0042; the list itself 
begins in memory location 0043 and consists of unsigned binary numbers 
in increasing order. If the contents of location 0041 are in the list, clear 
memory location 0040; otherwise, set memory location 0040 to FF-| q

Sample Problems:

(0041) =. 6B
(0042) = 04
(0043) = 37
(0044) = 55
(0045) = 7D
(0046) = A1

(0040) = FF,

(0041) 6B
(0042) 04
(0043) - 37
(0044) = 55
(0045) = 6B
(0046) = A1

(0040) = 00,

FF, since 6B is not in the list.

is in the list.
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Flowchart:

The searching process is a bit different here since the elements are ordered. Once we 
find an element smaller than the entry (remember that we are moving backward 
through the list in the usual 6502 fashion), the search is over, since subsequent ele­
ments w ill be even smaller. You may want to try an example to convince yourself that 
the procedure works. Note that an element smaller than the entry is indicated by a com­
parison that does not produce a borrow (that is. Carry =  1).

As in the previous problem, a table or other method that could SEARCHING
choose a good starting point would speed up the search. One METHODS
method would be to start in the middle and determine which
half of the list the entry was in, then divide the half into halves, etc. This method
is called a binary search, since it divides the remaining part of the list in half each
time.1
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Source Program:

SRLST

NOTIN
DONE

LDA $41
LDX $42
LDY # 0
CMP $42,X
BEQ DONE
BCS NOTIN
DEX
BNE SRLST
LDY #$FF
STY $40
BRK

GET ENTRY
INDEX = LENGTH OF LIST
MARK =  ZERO FOR ELEMENT IN LIST
IS ENTRY EQUAL TO ELEMENT?
YES. SEARCH COMPLETED
ENTRY NOT IN LIST IF GREATER THAN ELEMENT

;MARK =  FF FOR NOT IN LIST 
;SAVE MARK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $41
0001 41
0002 A6 LDX $42
0003 42
0004 AO LDY # 0
0005 00
0006 D5 SRLST CMP $42,X
0007 42
0008 FO BEQ DONE
0009 07
000A BO BCS NOTIN
000B 03
OOOC CA DEX
000D DO BNE SRLST
000E F7
000F AO NOTIN LDY #$FF
0010 FF
0011 84 DONE STY $40
0012 40
0013 00 BRK

This algorithm is a bit slower than the one in the example given under "Add Entry to 
List" because of the extra conditional jump (BCS NOTIN). The average execution time 
for this simple search technique increases linearly w ith  the length of the list while the 
average execution time for a binary search increases logarithmically. For example, if the 
length of the list is doubled, the simple technique takes twice as long on the average 
while the binary search method only requires one extra iteration.
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Remove Element from Queue
Purpose: Memory locations 0042 and 0043 contain the address of the head of the

queue (MSBs in 0043). Place the address of the first element (head) of a 
queue into memory locations 0040 and 0041 (MSBs in 0041) and update 
the queue to remove the element. Each element in the queue is two bytes 
long and contains the address of the next two-byte element in the queue. 
The last element in the queue contains zero to indicate that there is no next 
element.

Queues are used to store data in the order in which it w ill be used, or tasks in the 
order in which they w ill be executed. The queue is a first-in, first-out data struc­
ture; i.e., elements are removed from the queue in the same order in which they 
were entered. Operating systems place tasks in queues so that they w ill be executed 
in the proper order. I/O drivers transfer data to or from queues so that it w ill be transmit­
ted or handled in the proper order. Buffers may be queued so that the next available 
one can easily be found and those that are released can easily be added to the available 
storage. Queues may also be used to link requests for storage, timing, or I/O so that 
they can be satisfied in the correct order.

In real applications, each element in the queue w ill typically contain a large amount of 
information or storage space besides the address required to link the element to the 
next one.

Sample Problems:

a. (0042)
(0043)
(0046)
(0047) 
(004D) 
(004E)

q® j- address of first element in queue 

address of second element in queue 

end of queue

address of element removed from quei 

qq J- address of new first element in queue

empty queue

no element available from queue

ueue

Result: (0040) ueue
(0041)
(0042)
(0043)

b. (0042)
(0043)

Result: (0040) 
(0041)
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Flowchart:

Source Program

LDA
STA
LDA
STA
ORA
BEQ
LDY
LDA
STA
INY
LDA
STA

DONE BRK

c D

Pointer =  (0042
and 0043) 

(0040  and 0 04 1) =  
Pointer

$42 ;REMOVE HEAD OF QUEUE
$40
$43
$41
$42 ;IS QUEUE EMPTY?
DONE ;YES, DONE
# 0  ;NO. MOVE NEXT ELEMENT TO HEAD OF QUEUE
($40). Y
$42

($40),Y 
$43
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 A5 LDA $42
0001 42
0002 85 STA $40
0003 40
0004 A5 LDA $43
0005 43
0006 85 STA $41
0007 41
0008 05 ORA $42
0009 42
000A F0 BEQ DONE
000B 0B
oooc A0 LDY # 0
000D 00
000E B1 LDA ($40). Y
000F 40
0010 85 STA $42
0011 42
0012 C8 INY
0013 B1 LDA ($40), Y
0014 40

! 0015 85 STA $43
0016 43
0017 00 DONE BRK

Queuing can handle lists that are not in sequential memory locations. Each element in 
the queue must contain the address of the next element. Such lists allow you to handle 
data or tasks in the proper order, change variables, or fill in definitions in a program. Ex­
tra storage is required but elements can easily be added to the queue or deleted from it.

Post-indexing, or indirect indexed addressing, is very handy here since it allows us to 
use the contents of memory locations 0040 and 0041 as a pointer. Those locations con­
tain the address of the head of the queue which, in turn, contains the address of the 
next element. The memory locations in which the address of the element is stored must 
be on page zero, since they are used w ith the post-indexed addressing mode. All other 
addresses can be anywhere in memory. The post-indexed mode could also be used later 
to transfer data to or from the element that has just been removed from the queue.

Remember that post-indexing is only available for addresses on page zero. Furthermore, 
only Index Register Y can be used in this mode.

Note the use of the sequence

LDA $43
ORA $42

to determine if the 16-bit number in memory locations 0042 and 0043 is zero. Try to 
devise some other sequences that could handle this problem —  it obviously occurs 
whenever you use a 16-bit counter rather than the 8-bit counter that we have used in 
most of the examples.

One problem w ith the 6502 instruction set is that there are no instructions that 
specifically move 16-bit addresses (or data) from one place to another or that perform 
other 16-bit operations. Of course, such instructions would have to operate eight bits at 
a time, but some instruction fetch and decode cycles could be saved. Most other 
microprocessors have such instructions.
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It may be useful to maintain pointers to both ends of the queue rather than just to 
its head.2'3 The data structure may then be used in either a first-in, first-out man­
ner or in a last-in, first-out manner, depending on whether new elements are ad­
ded to the head or to the tail. How would you change the example program so that 
memory locations 0044 and 0045 contain the address of the last element (tail) of the 
queue?

If there are no elements in the queue, the program clears memory locations 0040 and 
0041. A program that requested an element from the queue would have to check those 
memory locations to see if its request had been satisfied. Can you suggest other ways 
to provide this information?
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8-B it Sort
Purpose: Sort an array of unsigned binary numbers into descending order. The length

of the array is in memory location 0040 and the array itself begins in memo­
ry location 0041.

Sample Problem:

(0040) = 06
(0041) = 2A
(0042) = B5
(0043) = 60
(0044) = 3F
(0045) = D1
(0046) = 19

(0041) D1
(0042) = B5
(0043) = 60
(0044) = 3F
(0045) = 2A
(0046) = 19

A simple sorting technique works as follows:

Step 1) Clear a flag INTER.
Step 2) Examine each consecutive pair of numbers in the array. If 

any are out of order, exchange them and set INTER.
Step 3) If INTER =  1 after the entire array has been examined, return to Step 1.

INTER w ill be set if any consecutive pair of numbers is out of order. Therefore, if IN­
TER =  0 at the end of a pass through the entire array, the array is in proper order.

The technique operates as shown in the following simple case. Let us assume that we 
want to sort an array into descending order; the array has four elements — 12, 03, 15, 
08. We w ill work backwards through the array in normal 6502 processing style.

1st Iteration:

Step 1) INTER = 0
Step 2) Final order of the array is:

15
12
03
08
since the second pair (03,15) is exchanged and so is the third pair (12,15). 
INTER =  1.

2nd Iteration:

Step 1) INTER = 0
Step 2) Final order of the array is:

15
12
08
03
since the first pair (08,03) is exchanged. INTER =  1.

SIMPLE
SORTING
ALGORITHM
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3rd Iteration:

Step 1) INTER = 0
Step 2) The elements are already in order; no exchanges are necessary, and 

INTER remains zero.

Note that one extra iteration is always performed to ensure that the elements are in the 
proper order. Clearly, there is a large potential for improvement in this method and new 
sorting techniques are an important area of current research.®

Flowchart:



Source Program:

SORT

PASS

LDY # 0 INTERCHANGE FLAG =  ZERO
LDX $40 GET LENGTH OF ARRAY
DEX ADJUST ARRAY LENGTH TO NUMBER OF PAIRS
LDA $40,X IS PAIR OF ELEMENTS IN ORDER?
CMP $ 4 1.X
BCS COUNT YES, TRY NEXT PAIR
LDY #1 NO, SET INTERCHANGE FLAG
PHA INTERCHANGE ELEMENTS USING THE STACK
LDA $41,X
STA $40,X
PLA
STA $ 4 1.X
DEX CHECK FOR COMPLETED PASS
BNE PASS
DEY WERE ALL ELEMENTS IN ORDER?
BEQ SORT NO, GO THROUGH ARRAY AGAIN
BRK

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0000 AO SORT LDY # 0
0001 00
0002 A6 LDX $40
0003 40
0004 CA DEX
0005 B5 PASS LDA $40, X
0006 40
0007 D5 CMP $41 ,X
0008 41
0009 BO BCS COUNT
OOOA OA
000B AO LDY #1
OOOC 01
000D 48 PHA
000E B5 LDA $41,X
000F 41
0010 95 STA $40,X
0011 40
0012 68 PLA
0013 95 STA $41,X
0014 41
0015 CA COUNT DEX
0016 DO BNE PASS
0017 ED
0018 88 DEY
0019 FO BEQ SORT
001A E5
001B 00 BRK
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The case where tw o  elements in the array are equal is very important. The pro­
gram should not perform an interchange in that case since that interchange would 
be performed in every pass. The result would be that every pass would set the In­
terchange flag, thus producing an endless loop. The program compares the elements 
in the specified order so that the Carry flag is set if the elements are already arranged 
correctly. Remember that comparing two equal values sets the Carry flag since that flag 
is an inverted borrow after subtractions or comparisons.

The 6502 Conditional Branch instructions can be lim iting, and are particularly lim iting 
in this program. Following an instruction like CMP, we have only BCC — branch if 
(M)>(A) — and BCS — branch if (M)<(A). The 6502 has no Branch instructions for the 
cases where the equality condition is on the other side, that is, (M)>(A) and (M)<(A). 
Therefore, we must be careful of the order of operations.

Before starting each sorting pass, we must be careful to reinitialize the Index and the In­
terchange flag.

The program must reduce the Counter by 1 initially, since the number of consecutive 
pairs is one less than the number of elements (the last element has no successor).

This program does not work properly if there are fewer than two elements in the array. 
How could you handle this degenerate case?

There are many sorting algorithms that vary widely in efficien­
cy. References 1, 4, and 5 describe some of these.

The Stack is easy to use for temporary storage in this program since the PHA (Push Ac­
cumulator or Store Accumulator in Stack) and PLA (Pull Accumulator or Load Ac­
cumulator from Stack) instructions are each only one byte long. The address is in the 
Stack Pointer (extended w ith 01 as its page number). If you wish, you can substitute a 
fixed memory location, such as 003F. The interchange then is:

STA $3F INTERCHANGE ELEMENTS USING TEMPORARY 
; STORAGE

LDA $41.X 
STA $40,X 
LDA $3F 
STA $41,X

See Chapter 10 for a further discussion of the 6502 RAM Stack.

OTHER SORTING 
METHODS
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Using an Ordered Jump Table
Purpose: Use the contents of memory location 0042 as an index to a jump table start­

ing in memory location 0043. Each entry in the jump table contains a 16-bit 
address w ith LSBs in the first byte. The program should transfer control to 
the address w ith the appropriate index; that is, if the index is 6, the pro­
gram should jump to address entry # 6  in the table. Assume that the table 
has fewer than 128 entries.

Sample Problem:

(0042) = 02

(0043) = 4C
(0044) = 00
(0045) = 50
(0046) = 00
(0047) = 54
(0048) = 00
(0049) = 58
(004A) = 00

Result: (PC) = 00!

j- zeroth element in jump table 

j- first element in jump table 

j- second element in jump table 

|  third element in jump table

jump table. The next instruction to be executed w ill be 
the one located at that address.

Flowchart:

The last box results in a transfer of control to the address obtained from the table. 

Source Program:

LDA $42 ;GET INDEX
ASL A ;DOUBLE INDEX FOR 2-BYTE TABLE
TAX
LDA $43,X ;GET LSB'S OF JUMP ADDRESS
STA $40
LDA $44,X ;GET MSB'S OF JUMP ADDRESS
STA $41
JMP ($40) TRANSFER CONTROL TO DESTINATION
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $42
0001 42
0002 0A ASL A
0003 AA TAX
0004 B5 LDA $43,X
0005 43
0006 85 STA $40
0007 40
0008 B5 LDA $44, X
0009 44
000A 85 STA $41
000B 41
oooc 6C JMP ($40)
000D 40
000E 00

Jump tables are very useful in situations where one of several routines must be 
selected for execution. Such situations arise in decoding commands (entered, for 
example, from a control keyboard), selecting test programs, choosing alternative 
methods, or selecting an I/O configuration.

The jump table replaces a series of conditional jump operations. The program that 
accesses the jump table could be used to access several different tables merely by 
using the post-indexed, or indirect indexed, addressing mode, in which the starting ad­
dress of the table is placed in RAM on page zero.

The data must be multiplied by 2 to give the correct index since each entry in the jump 
table occupies two bytes.

The instruction JMP ($40) uses indirect addressing: the destination is the address 
stored at the specified location rather than the specified location itself. JMP is the only 
6502 instruction that uses indirect addressing. Note that there is no page-zero mode 
and that the address is stored in the usual 6502 fashion w ith the least significant bits 
first.

The terminology used in describing Jump or Branch instructions is 
often quite confusing. A Jump instruction that is described as 
using direct addressing actually loads the specified address into 
the Program Counter; this works more like immediate addressing 
than like direct addressing as applied to other instructions such as Load or Store. A 
Jump instruction using indirect addressing works like other instructions using direct 
addressing.

No ending operation (such as a BRK instruction) is necessary since JMP ($40) transfers 
control to the address obtained from the jump table.

References 7 and 8 contain additional examples of the use of jump tables. The program 
assumes that the jump table contains fewer than 128 entries (why?). How could you 
change the program to allow longer tables?

JUMP AND
BRANCH
TERMINOLOGY
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PROBLEMS
1) Remove an Entry From a List
Purpose: Remove the contents of memory location 0040 from a list if it is present.

The length of the list is in memory location 0041 and the list itself begins in 
memory location 0042. Move the entries below the one removed up one 
position and reduce the length of the list by 1.

Sample Problems:

Result:

(0040) = 6B entry to be removed from list

(0041) = 04 length of list

(0042) = 37 first element in list
(0043) = 61
(0044) = 28
(0045) = 1D

No change. since the entry is not in the list.

(0040) = 6B entry to be removed from list

(0041) = 04 length of list

(0042) = 37 first element in list
(0043) = 6B
(0044) = 28
(0045) = 1D

(0041) = 03 length of list reduced by 1

(0042) = 37
(0043) = 28 other elements in list moved i
(0044) = 1D

Result:

The entry is removed from the list and the ones below it are moved up one position. The 
length of the list is reduced by 1.
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2) Add an Entry to an Ordered List
Purpose: Place the contents of memory location 0040 into an ordered list if they are

not already there. The length of the list is in memory location 0041. The list 
itself begins in memory location 0042 and consists of unsigned binary num­
bers in increasing order. Place the new entry in the correct position in the 
list, adjust the elements below it down, and increase the length of the list by
1.

Sample Problems:

(0040) = 6B entry to be added to list

(0041) = 04 length of list

(0042) = 37 first element in list
(0043) = 55
(0044) = 7D
(0045) = A1

(0041) = 05 length of list increased by 1

(0044) 6B entry placed in list
(0045) = 7D other elements in the list moved 

position
(0046) = A1

(0040) = 6B entry to be added to list

(0041) = 04 length of list

(0042) = 37 first element in list
(0043) = 55
(0044) = 6B
(0045) = A1

Result: No change, since the entry is already in the list.

3) Add an Element to a Queue
Purpose: Add the address in memory locations 0040 and 0041 (MSBs in 0041) to a 

queue. The address of the first element of the queue is in memory locations
0042 and 0043 (MSBs in 0043). Each element in the queue contains either 
the address of the next element in the queue or zero if there is no next ele­
ment; all addresses are 16 bits long w ith the least significant bits in the first 
byte of the element. The new element goes at the end (tail) of the queue: its 
address w ill be in the element that was at the end of the queue and it w ill 
contain zero to indicate that it is now the end of the queue.

Sample Problem:

|  new element to be added to queue 

pointer to head of queue

(0040) = 4D
(0041) = 00
(0042) = 46
(0043) = 00

(0046) = 00
(0047) = 00

(0046) = 4D
(0047) = 00

(004D) = 00
(004E) = 00

}
 ̂ last element in queue

new last element} '

j- new last element in queue

How would you add an element to the queue if memory locations 0044 and 0045 con­
tained the address of the tail of the queue (the last element)?
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4) 16-B it Sort
Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The

length of the array is in memory location 0040 and the array itself begins in 
memory location 0041. Each 16-bit number is stored w ith the least signifi­
cant bits in the first byte.

Sample Problem:

(0040) = 03 length of list

(0041) = D1 LSBs of first element in list
(0042) = 19 MSBs of first element in list

(0043) 60
(0044) = 3F

(0045) = 2A
(0046) = B5

(0041) = 2A LSBs of first element in sorted list
(0042) = B5 MSBs of first element in sorted list

(0043) = 60
(0044) = 3F

(0045) = D1
(0046) = 19

The numbers are B52A, 3F60, and 19D1.

5) Using a Jump Table w ith  a Key
Purpose: Use the contents of memory location 0040 as the key to a jump table start­

ing in memory location 0041. Each entry in the jump table contains an 8-bit 
key value followed by a 16-bit address (MSBs in second byte) to which the 
program should transfer control if the key is equal to that key value.

Sample Problem:

(0040) = 38 key value for search

(0041) = 32 key value for first entry
(0042) = 4A LSBs of jump address for first entry
(0043) = 00 MSBs of jump address for first entry

(0044) = 35
(0045) = 4E
(0046) = 00

(0047) = 38
(0048) = 52
(0049) = 00

(PC) = 0052, since that address corresponds
to key value 38.
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Chapter 10 
SUBROUTINES

None of the examples that we have shown so far is typically a program all by it ­
self. Most real programs perform a series of tasks, many of which may be the 
same or may be common to several different programs. We need a way to formu­
late these tasks once and make the formulations conveniently available both in 
different parts of the current program and in other programs.

The standard method is to w rite  subroutines that perform par­
ticular tasks. The resulting sequences of instructions can be 
w ritten  once, tested once, and then used repeatedly. They can 
form a subroutine library that provides documented solutions to common prob­
lems.

M ost microprocessors have special instructions for 
transferring control to subroutines and restoring control to 
the main program. We often refer to the special instruction 
that transfers control to a subroutine as Call. Jump-to-Subroutine, Jump and Mark 
Place, or Jump and Link. The special instruction that restores control to the main pro­
gram is usually called Return. On the 6502 microprocessor, the Jump-to-Subroutine 
(JSR) instruction saves the old value of the Program Counter in the RAM Stack before 
placing the starting address of the subroutine into the Program Counter; the Return- 
from-Subroutine (RTS) instruction gets the old value from the Stack and puts it back in 
the Program Counter. The effect is to transfer program control, first to the subroutine 
and then back to the main program. Clearly the subroutine may itself transfer control to 
a subroutine, and so on.

In order to be really useful, a subroutine must be general. A routine that can perform 
only a specialized task, such as looking for a particular letter in an input string of fixed 
length, w ill not be very useful. If, on the other hand, the subroutine can look for any let­
ter in strings of any length, it w ill be far more helpful. We call the data or addresses 
that the subroutine allows to vary "parameters." An important part of writing 
subroutines is deciding which variables should be parameters.

One problem is transferring the parameters to the subroutine; this 
process is called passing parameters. The simplest method is for 
the main program to place the parameters into registers. Then the 
subroutine can simply assume that the parameters are there. Of course, this technique 
is limited by the number of registers that are available. The parameters may, however, 
be addresses as well as data. For example, a sorting routine could begin w ith  Index 
Register X containing the address on page zero at which the length of the array is lo­
cated.

The 6502 microprocessor is lim ited by the fact that it has no address-length (16- 
bit) registers in which to pass address-length parameters. However, such 
parameters can easily be passed by reserving locations on page zero; these loca­
tions effectively act as additional registers. A further advantage of this approach 
is that addresses on page zero can be accessed using the post-indexed (indirect 
indexed) and pre-indexed (indexed indirect) addressing modes, as w e ll as the 
short page-zero forms of direct and indexed addressing.

PASSING
PARAMETERS

SUBROUTINE
INSTRUCTIONS

SUBROUTINE
LIBRARY
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Another approach is to use the Stack. The main program can place the parameters in 
the Stack and the subroutine can retrieve them. The advantages of this method are that 
the Stack is usually fairly large (up to one page) and that data in the Stack is not lost 
even if the Stack is used again. The disadvantages are that few 6502 instructions use 
the Stack, and the Jump-to-Subroutine instruction stores the return address at the top 
of the Stack.

Still another approach is to assign an area of memory for parameters. The main program 
can place the address of the area on page zero and the subroutine can retrieve the data 
using the post-indexed addressing mode. However, this approach is awkward if the 
parameters are themselves addresses.

Sometimes a subroutine must have special characteristics. A | RELOCATION | 
subroutine is relocatable if it  can be placed anywhere in 
memory. You can use such a subroutine easily, regardless of the placement of other 
programs or the arrangement of the memory. A strictly relocatable program can use 
no absolute addresses; all addresses must be relative to the start of the program. 
A relocating loader is necessary to place the program in memory properly; the loader 
w ill start the program after other programs and w ill add the starting address or reloca­
tion constant to all addresses in the program.

A subroutine is reentrant if it  can be interrupted and called by 
the interrupting program and s till give the correct results for 
both the interrupting and interrupted programs. Reentrancy is 
important for standard subroutines in an interrupt-based system. Otherwise the inter­
rupt service routines cannot use the standard subroutines w ithout causing errors. 
Microprocessor subroutines are easy to make reentrant, since the Call instruction uses 
the Stack and that procedure is automatically reentrant. The only remaining require­
ment is that the subroutine use the registers and Stack rather than fixed memory loca­
tions for temporary storage. This is a bit awkward, but usually can be done if necessary.

A subroutine is recursive if it  calls itself. Such a subroutine clearly must also be re­
entrant. However, recursive subroutines are uncommon in microprocessor applications.

Most programs consist of a main program and several subroutines. This is advan­
tageous because you can use proven routines and debug and test the other 
subroutines separately. You must, however, be careful to use the subroutines pro­
perly and remember their exact effects on registers, memory locations, and flags.

SUBROUTINE DOCUMENTATION
Subroutine listings must provide enough information so 
that users need not examine the subroutine's internal 
structure. Among the necessary specifications are:

• A description of the purpose of the subroutine
• A list of input and output parameters
• Registers and memory locations used
• A sample case

If these guidelines are followed, the subroutine w ill be easy to use.

DOCUMENTING
SUBROUTINES

REENTRANT
SUBROUTINE
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EXAMPLES
It is important to note that the following examples all reserve an area of memory for the 
RAM Stack. If the monitor in your microcomputer establishes such an area, you may use 
it instead. If you wish to try establishing your own Stack area, remember to save and 
restore the monitor's Stack Pointer in order to produce a proper return at the end of 
your main program.

To save the monitor Stack Pointer, use the instruction sequence 

TSX
STX TEMP

To restore the monitor Stack Pointer, use the sequence

LDX TEMP
TXS

Note that the Stack Pointer can only be loaded or stored via Register X. Remember that 
the 6502 always keeps its Stack on page 1 of memory so that the real Stack address is
01 ss, where ss is the contents of the 8-bit Stack Pointer register.

We have used address 01FF1 g as the starting point for the Stack. You may have to con­
sistently replace that address w ith one more suitable for your configuration. You should 
consult your microcomputer's User's Manual to determine the required changes.

The basic sequence for initializing the Stack Pointer is thus

LDX #$FF ;PLACE STACK AT TOP OF PAGE 1
TXS

1 0 -3



Hex to ASCII
Purpose: Convert the contents of the Accumulator from a hexadecimal d ig it to an 

ASCII character. Assume that the original contents of the Accumulator form 
a valid hex digit.

Sample Problems:

a. (A) = 0C

Result: (A) = 43 ASCII C

b. (A) =  06

Result: (A) = 36 ASCII 6

Flowchart:

The calling program starts the Stack at memory location 01FF, gets the data from 
memory location 0040, calls the conversion subroutine, and stores the result in memory

;PLACE STACK AT END OF PAGE 1

location 0041.

*=0
LDX #$FF
TXS
LDA $40
JSR ASDEC
STA $41
BRK

GET HEXADECIMAL DATA 
CONVERT DATA TO ASCII 
STORE RESULT

The subroutine converts the hexadecimal data to ASCII.

'= $ 2 0
ASDEC CMP #10 :IS DATA A DECIMAL DIGIT?

BCC ASCZ
ADC # 'A -'9 -2 ;NO. ADD OFFSET FOR LETTERS

ASCZ ADC # ’0 ;CONVERT TO ASCII BY ADDING
RTS
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Subroutine Documentation:

SUBROUTINE ASDEC

PURPOSE: ASDEC CONVERTS A HEXADECIMAL 
DIGIT IN THE ACCUMULATOR TO AN 
ASCII DIGIT IN THE ACCUMULATOR

INITIAL CONDITIONS: HEX DIGIT IN A

FINAL CONDITIONS: ASCII CHARACTER IN A

REGISTERS USED: A

SAMPLE CASE 
INITIAL CONDITIONS: 6 IN ACCUMULATOR 
FINAL CONDITIONS: ASCII 6 (HEX 36)

IN ACCUMULATOR

Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

1) Calling program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A5 LDA $40
0004 40
0005 20 JSR ASDEC
0006 20
0007 00
0008 85 STA $41
0009 41
000A 00 BRK

2) Subroutine

0020 C9 ASDEC CMP #10
0021 OA
0022 90 BCC ASCZ
0023 02
0024 69 ADC # 'A -'9 -2
0025 06
0026 69 ASCZ ADC # '0
0027 30
0028 60 RTS

The instructions LDX #$FF and TXS start the Stack at memory location 01FF. Remem­
ber that the Stack grows downward (toward lower addresses) and that the 6502 Stack 
Pointer always contains the address on page one of the next empty location (rather than 
the last filled one as on some other microprocessors).
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The Jump-to-Subroutine instruction places the subroutine starting address (0020) in 
the Program Counter and saves the old Program Counter (the address of the last byte of 
the JSR instruction) in the Stack. The procedure is:

STEP 1 — Save MSBs of old Program Counter in Stack, decrement Stack Pointer.

STEP 2 —  Save.LSBs of old Program Counter in Stack, decrement Stack Pointer.

Note that the Stack Pointer is decremented after the data is stored.

The MSBs of the Program Counter are stored first, but those bits end up at the higher 
address (in the usual 6502 fashion) since the Stack is growing down.

The result in the example is:

(01FF) = 00 
(01FE) =  07 

(S) =  FD

The value which the Jump-to-Subroutine instruction saves is the Program Counter 
before the last byte of the JSR instruction has been fetched. This value is therefore one 
less than the proper return address. The Return-from-Subroutine (RTS) instruction 
retrieves the top two entries from the Stack, adds one (because of the odd 6502 offset 
just mentioned), and places the result back in the Program Counter. The procedure is:

STEP 1 — Increment Stack Pointer, load eight bits from Stack, place result into LSBs of 
Program Counter.

STEP 2 —  Increment Stack Pointer, load eight bits from Stack, place result into MSBs of 
Program Counter.

STEP 3 — Increment Program Counter before actually fetching an instruction.

Here the Stack Pointer is incremented before the data is loaded.

The result in the example is:

(PC) =  (00FFM00FE) +  1 
=  0008 

(S) =  FF

This subroutine has a single parameter and produces a single result. The Accumulator 
is the obvious place to put both.

The calling program consists of three steps: placing the data in the Accumulator, call­
ing the subroutine, and storing the result in memory. The overall initialization must also 
place the Stack in the appropriate area of memory.

The subroutine is reentrant since it uses no.data memory; it is relocatable since the ad­
dress ASCZ is only used in a Conditional Branch instruction w ith  relative addressing.

Note that the Jump-to-Subroutine instruction results in the execution of four or five in­
structions taking 13 or 14 clock cycles. A subroutine call can take a long time even 
though it appears to be a single instruction in the program.

If you plan to use the Stack for passing parameters, remember that Jump-to-Subroutine 
saves the return address at the top of the Stack. You can move the Stack Pointer to In­
dex Register X to get access to the data, but you must remember to provide the proper 
offsets. You can also gain access to the data by using two extra PLA instructions to 
move the Stack Pointer past the return address, but you must then remember to adjust 
the Stack Pointer back to its original value before returning.
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Length of a String of Characters
Purpose: Determine the length of a string of ASCII characters. The starting address of 

the string is in memory locations 0040 and 0041. The end of the string is 
marked by a carriage return character (CR. 0D-|6). Place the length of the 
string (excluding carriage return) in the Accumulator.

Sample Problems:

starting address of string

Result:

Result:

Flowchart:

(0040) = 43 star
(0041) = 00

(0043) = 52 'R'
(0044) = 41 'A'
(0045) = 54 T
(0046) = 48 H
(0047) = 45 'E'
(0048) = 52 ■R'
(0049) = 0D CR

(A) = 06

(0040) = 43 stai
(0041) = 00

(0043) = 0D

(A) = 00
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The calling program starts the Stack at memory location 01 FF, stores the starting ad­
dress of the string in memory locations 0040 and 0041, calls the string length 
subroutine, and stores the result in memory location 0042, Memory locations 0040 and 
0041 are used as if they were extra registers.

Source Program:

'= 0
LDX #$FF :PLACE STACK AT END OF PAGE 1
TXS
LDA #$43 .SAVE STARTING ADDRESS OF STRING
STA $40
LDA # 0
STA $41
JSR STLEN DETERMINE LENGTH OF STRING
STA $42 ;STORE STRING LENGTH
BRK

The subroutine determines the length of the string of ASCII characters and places the 
length in the Accumulator.

STLEN
•=$20
LDY #$FF STRING LENGTH = -1
LDA #$0D GET ASCII CARRIAGE RETURN TO COMPARE

CHKCR INY ADD 1 TO STRING LENGTH
CMP ($40), Y IS NEXT CHARACTER A CARRIAGE RETURN?
BNE CHKCR NO, KEEP LOOKING
TYA
RTS

SAVE STRING LENGTH IN ACCUMULATOR

Subroutine Documentation:

SUBROUTINE STLEN

PURPOSE: STLEN DETERMINES THE LENGTH OF AN ASCII STRING 
(NUMBER OF CHARACTERS BEFORE A CARRIAGE RETURN)

INITIAL CONDITIONS: STARTING ADDRESS OF STRING IN MEMORY 
LOCATIONS 0040 AND 0041

FINAL CONDITIONS: NUMBER OF CHARACTERS IN A

REGISTERS USED: A, Y. ALL FLAGS EXCEPT OVERFLOW 
MEMORY LOCATIONS USED: 0040 , 0041

SAMPLE CASE:
INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041

(0043) =  35, (0044) =  46, (0045) =  OD 
FINAL CONDITIONS: (A) = 02
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

1) Calling program
0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #$43
0004 43
0005 85 STA $40
0006 40
0007 A9 LDA # 0
0008 00
0009 85 STA $41
000A 41
000B 20 JSR STLEN
OOOC 20
000D 00
000E 85 STA $42
000F 42
0010 00 BRK

2) Subroutine

0020 AO STLEN LDY #$FF
0021 FF
0022 A9 LDA #$0D
0023 OD
0024 C8 CHKCR INY
0025 D1 CMP ($40), Y
0026 40
0027 DO BNE CHKCR
0028 FB
0029 98 TYA
002A 60 RTS

The calling program consists of four steps: initializing the Stack Pointer, placing the 
starting address of the string in memory locations 0040 and 0041, calling the 
subroutine, and storing the result.

The subroutine is not reentrant, since it uses fixed memory addresses 0040 and 0041. 
However, if these locations are considered as extra registers and their contents are au­
tomatically saved and restored w ith the user registers, the subroutine can be used in a 
reentrant manner. Many computers of all sizes use registers that are actually located in 
memory; this approach makes memory management more complex but does not 
change the basic procedures.

The subroutine changes Index Register Y as well as the Accumulator. The programmer 
must be aware that data stored in Index Register Y w ill be lost; the subroutine docu­
mentation must describe what registers are used.
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One way to preserve register contents during a subroutine is to save them in the Stack 
and then restore them before returning. This approach makes life easier for the user of 
the routine, but costs extra time and memory (in the program and in the Stack). To save 
and restore Index Register Y, you would have to add the sequence

TYA ;SAVE OLD CONTENTS OF Y
PHA

to the beginning of the program and

PLA ;RESTORE OLD CONTENTS OF Y
TAY

to the end of the program.

This subroutine has a single input parameter, which is an address. The easiest way to
pass this parameter is through two memory locations on page zero. The 6502 has no
address-length registers in which this parameter could be passed.

If the terminating character were not always an ASCII carriage return, we could make 
that character into another parameter. Now the calling program would have to place 
the terminating character in the Accumulator and the starting address of the string in 
memory locations 0040 and 0041 before calling the subroutine.

One way to pass parameters that are fixed for a particular call is to place their values in 
program memory immediately after the Jump-to-Subroutine instruction.^ You can use 
the old Program Counter (saved at the top of the Stack) to access the data, but you 
must adjust the return address (increase it by the number of bytes used for parameters) 
before transferring control back to the main program. For example, we could pass the 
value of the terminating character this way. The main program would contain the 
pseudo-operation .BYTE', immediately after the JSR instruction. The subroutine could 
place the return address in memory locations 0050 and 0051 and access the various 
parameters using post-indexing. The following sequence could save the return address, 
remembering that the Stack is always on page 1 of memory and that the Stack Pointer 
always contains the address of the next available location.

TSX ;GET STACK POINTER
LDA $0101,X ;GET MSB'S OF RETURN ADDRESS
STA $50
LDA $0102,X ;GET LSB'S OF RETURN ADDRESS
STA $51

Be careful of the fact that the return address is actually the address of the last (third) 
byte of the JSR instruction, not the address immediately after the JSR instruction as it 
is on most other microprocessors. The actual return address must also be offset by 1, 
since RTS w ill automatically add 1 to it.

The instructions PHA (Store Accumulator in Stack) and PLA (Load Accumulator from 
Stack) transfer eight bits of data between the Accumulator and the RAM Stack. Index 
Registers X and Y can only be saved and restored via the Accumulator. As in the Jump- 
to-Subroutine instruction, the Stack Pointer is decremented after data is stored in the 
Stack and incremented before data is loaded from it. Remember that the RAM Stack 
grows downward (to lower addresses).
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M axim um  Value
Purpose: Find the largest element in a block of unsigned binary numbers. The length 

of the block is in Index Register Y and the starting address of the block is in 
memory locations 0040 and 0041. The maximum value is returned in the Ac­
cumulator.

length of block 
starting address of block

Sample Problem:

(Y) = 05
(0040) = 43
(0041) = 00

(0043) 67
(0044) = 79
(0045) = 15
(0046) = E3
(0047) = 72

Result: (A) = E3,E3, since this is the largest of five unsigned numbers

Flowchart:

(  Z T ~ )

Base = (0040  and 
0 041)

Index =  (Y)
Max =  0
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Source Program:

The calling program starts the Stack at memory location 01 FF, sets the starting address 
of the block to 0043, gets the block length from memory location 0030, calls the max­
imum subroutine, and stores the maximum in memory location 0042.

*=0
LDX #$FF ;PLACE STACK AT END OF PAGE 1
TXS
LDA #$43 ;SAVE STARTING ADDRESS OF BLOCK
STA $40
LDA # 0
STA $41
LDY $30 :GET LENGTH OF BLOCK
JSR MAXM ;FIND MAXIMUM VALUE
STA $42 :SAVE MAXIMUM VALUE
BRK

The subroutine determines the maximum value in the block.

*=$20
MAXM LDA # 0 MAXIMUM =  ZERO (MINIMUM POSSIBLE VALUE)
CMPE DEY DECREMENT INDEX

PHP SAVE STATUS
CMP ($40),Y IS NEXT ELEMENT ABOVE MAXIMUM?
BCS NOCHG NO, KEEP MAXIMUM
LDA ($40),Y YES, REPLACE MAXIMUM WITH ELEMENT

NOCHG PLP RESTORE STATUS
BNE CMPE CONTINUE UNTIL ALL ELEMENTS EXAMINED
RTS

Subroutine Documentation:

SUBROUTINE MAXM

iPURPOSE: MAXM DETERMINES THE MAXIMUM VALUE IN A BLOCK 
; OF UNSIGNED BINARY NUMBERS

:INITIAL CONDITIONS: STARTING ADDRESS OF BLOCK IN MEMORY 
: LOCATIONS 0040 AND 0041, LENGTH OF BLOCK IN Y

:FINAL CONDITIONS: MAXIMUM VALUE IN A

REGISTERS USED: A, Y, ALL FLAGS EXCEPT OVERFLOW 
;MEMORY LOCATIONS USED: 0040, 0041

:SAMPLE CASE:
: INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041
; (Y) =  03, (0043) =  35, (0044) =  46. (0045) =  0D
: FINAL CONDITIONS: (A) = 4 6

This subroutine has two parameters —  an address and a number. Memory locations 
0040 and 0041 are used to pass the address, and Index Register Y is used to pass the 
number. The result is a single number that is returned in the Accumulator.

The calling program must place the starting address of the block in memory locations 
0040 and 0041 and the length of the block in Index Register Y before transferring con­
trol to the subroutine.
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4 2 1 0 ^ --------Bit No.

H E 1 1 B I C 1 | Z |C  |  ^  Processor Status

A UT
* Carry

I-" Zero Result
...................  ■ Interrupt Disable

-------------------------Decimal Mode
— Break Command

------------------------- (Not used)
-------------------------Overflow
-------------------------Negative Result (Sign)

Figure 10-1. The 6502 Status Register

The subroutine returns control w ith zero in Index Register Y. It is not reentrant unless 
memory locations 0040 and 0041 are treated as extra registers. It is relocatable since 
the addresses are relative and the Stack is used for temporary storage.

Note the use of the instructions PHP and PLP which save and restore the Status 
register. This register is organized as shown in Figure 10-1. We could reorganize the 
program and change the initial conditions so as to eliminate the need for these instruc­
tions (see Chapter 5). The key here would be to provide the address one before the start 
of the array as a parameter. This is easy to do w ith most assemblers since they allow 
simple arithmetic expressions (such as START-1) in the operand field (see Chapter 3). 
However, the user of the subroutine must be warned that this offset is necessary.
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

1) Calling Program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #$43
0004 43
0005 85 STA $40
0006 40
0007 A9 LDA # 0
0008 00
0009 85 STA $41
000A 41
000B A4 LDY $30
OOOC 30
000D 20 JSR MAXM
000E 20
000F 00
0010 85 STA $42
0011 42
0012 00 BRK

2) Subroutine

0020 A9 MAXM LDA # 0
0021 00
0022 88 CMPE DEY
0023 08 PHP
0024 D1 CMP ($40), Y
0025 40
0026 BO BCS NOCHG
0027 02
0028 B1 LDA ($40),Y
0029 40
002A 28 NOCHG PLP
002B DO BNE CMPE
002C F5
002D 60 RTS
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Pattern M atch2
Purpose: Compare two strings of ASCII characters to see if they are the same. The 

length of the strings is in Index Register Y. The starting address of one string 
is in memory locations 0042 and 0043; the starting address of the other is in 
memory locations 0044 and 0045. If the two strings match, clear the Ac­
cumulator; otherwise, set the Accumulator to FF 1 q.

Sample Problems:

a. (Y) =  03 length of strings

(0046) =  43 'C'
(0047) =  41 'A'
(0048) = 54 T

(0050) =  43 'C'
(0051) =  41 'A'
(0052) =  54 T

Result: (A) =  00, since the strings are the same

b. (Y) =  03 length of strings

(0045) =  S } startin9 addreSS of Strin9 # 2

(0046) =  52 -R'
(0047) = 41 ’A'
(0048) = 54 T

(0050) =  43 ‘C
(0051) =  41 'A'
(0052) = 54 T

Result: (A) =  FF, since the first characters differ

(0042)
(0043)

4 6 >
qqJ starting address of string #1 

starting address of string # 2(0044)
(0045)

(0042) =  46
(0043) =  00

|  starting address of string #1
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Flowchart:



The calling program starts the Stack at memory location 01 FF, sets the two starting ad­
dresses to 0046 and 0050 respectively, gets the string length from memory location 
0041, calls the pattern match subroutine, and places the result in memory location 
0040.

Source Program:

;PLACE STACK AT END OF PAGE 1 

;SAVE STARTING ADDRESS OF STRING 1

*=0
LDX #$FF
TXS
LDA #$46
STA $42
LDA # 0
STA $43
LDA #$50
STA $44
LDA # 0
STA $45
LDY $41
JSR PMTCH
STA $40
BRK

;SAVE STARTING ADDRESS OF STRING 2

GET LENGTH OF STRINGS 
CHECK FOR MATCH 
SAVE MATCH INDICATOR

The subroutine determines if the two strings are the same.

CMPE

DONE

*=$20
LDX #$FF ;MARK =  FF (HEX) FOR NO MATCH
DEY
LDA ($42), Y ;GET CHARACTER FROM STRING 1
CMP ($44),Y ;IS THERE A MATCH WITH STRING 2?
BNE DONE ;NO. DONE — STRINGS DO NOT MATCH
TYA ;RESTORE STATUS FROM INDEX
BNE CMPE
LDX # 0 ;MARK =  ZERO. STRINGS MATCH
TXA
RTS
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Subroutine Documentation:

SUBROUTINE PMTCH

PURPOSE: PMTCH DETERMINES IF TWO STRINGS MATCH

INITIAL CONDITIONS: STARTING ADDRESSES OF STRINGS 
IN MEMORY LOCATIONS 0042 AND 0043, 0044 AND 0045 
LENGTH OF STRINGS IN INDEX REGISTER Y

FINAL CONDITIONS: ZERO IN A IF STRINGS MATCH.
FF IN A OTHERWISE

REGISTERS USED: A, X, Y, ALL FLAGS EXCEPT OVERFLOW 
MEMORY LOCATIONS USED: 0042, 0043, 0044, 0045

SAMPLE CASE:
INITIAL CONDITIONS: 0046 IN 0042 AND 0043, 0050 

IN 0044 AND 0045, (Y) =  02
(0046) =  36, (0047) = 39
(0050) = 3 6 , (0051) = 3 9  

FINAL CONDITIONS: (A) =  0 SINCE THE STRINGS MATCH
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

1) Calling program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #$46
0004 46
0005 85 STA $42
0006 42
0007 A9 LDA #0
0008 00
0009 85 STA $43
000A 43
000B A9 LDA #$50
OOOC 50
000D 85 STA $44
000E 44
000F A9 LDA # 0
0010 00
0011 85 STA $45
0012 45
0013 A4 LDY $41
0014 41
0015 20 JSR PMTCH
0016 20
0017 00
0018 85 STA $40
0019 40
001A 00 BRK

2) Subroutine

0020 A2 PMTCH LDX #$FF
0021 FF
0022 88 CMPE DEY
0023 B1 LDA ($42),Y
0024 42
0025 D1 CMP ($44),Y
0026 44
0027 DO BNE DONE
0028 05
0029 98 TYA
002A DO BNE CMPE
002B F6
002C A2 LDX # 0
002D 00
002E 8A DONE TXA
002F 60 RTS
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This subroutine, like the preceding ones, changes all the flags except Overflow. You 
should generally assume that a subroutine call changes the flags unless it is specifically 
stated otherwise. If the main program needs the old flag values (for later checking), it 
must save them in the Stack before calling the subroutine. This is accomplished w ith 
the PHP instruction.

This subroutine uses all the registers anu rour memory locations on page zero. There are 
three parameters —  two starting addresses and the length of the strings.

The instruction TYA has no purpose other than to set the Zero flag according to the 
contents of Index Register Y. We could eliminate the need for that instruction by 
reorganizing the subroutine. One alternative would be to change the parameters so that 
the addresses were both offset by 1 (that is, both string addresses would actually refer 
to the byte immediately preceding the character string). Remember, however, that the 
user should be able to supply parameters to the subroutine in the simplest and most ob­
vious form possible. The user should not have to offset addresses by one or make other 
adjustments for the convenience of the subroutine; such practices result in numerous, 
annoying programming errors. The program should make such rote adjustments unless 
time or memory constraints are critical.

Another alternative would be to decrement the index by 1 initially to avoid the problem 
of accessing beyond the end of the string. The end of the loop would then decrement 
the index and branch back as long as the result was positive, i.e.,

DEY
BPL CMPE

This approach would work as long as the string was less than 130 bytes long. The 
lim itation occurs because the 6502 Sign flag is set if the result is an unsigned number 
greater than 127 (decimal).
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Muitiple-Precision Addition
Purpose: Add two multiple-byte binary numbers. The length of the numbers (in bytes) 

is in Index Register Y, the starting addresses of the numbers are in memory 
locations 0042 and 0043 and in 0044 and 0045. and the starting address of 
the result is in memory locations 0046 and 0047. A ll the numbers begin with 
the most significant bits.

Sample Problem:

(Y) = 04 length of numbers in bytes

(0042)
(0043) =

48)
00) starting address of first nun

(0044)
(0045) =

4C)
001 starting address of second

(0046)
(0047) =

50) 
0 0 1 starting address of result

(0048) = 2F MSBs of first number
(0049) = 5B
(004A) = A7
(004B) = C3 LSBs of first number

(004C) = 14 MSBs of second number
(004D) = DF
(004E) = 35
(004F) = B8 LSBs of second number

Result: (0050) = 44 MSBs of result
(0051) = 3A
(0052) = DD
(0053) = 7B LSBs of result

that is. 2F5BA7C3
+ 14DF35B8

443ADD7B
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Flowchart:
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The calling program starts the Stack at memory location 01 FF, sets the starting ad­
dresses of the various numbers to 0048, 004C, and 0050, respectively, gets the length 
of the numbers from memory location 0040, and calls the multiple-precision addition 
subroutine.

Source Program:

*=0
LDX #$FF ;PLACE STACK AT END OF PAGE 1
TXS
LDA #$48 :SAVE STARTING ADDRESS OF FIRST NUMBER
STA $42
LDA #$4C :SAVE STARTING ADDRESS OF SECOND NUMBER
STA $44
LDA #$50 ;SAVE STARTING ADDRESS OF RESULT
STA $46
LDA # 0 ;SAVE PAGE NUMBER FOR ALL ADDRESSES
STA $43
STA $45
STA $47
LDY $40 ;GET LENGTH OF NUMBERS IN BYTES
JSR MPADD ;MULTIPLE-PRECISION ADDITION
BRK

The subroutine performs multiple-precision binary addition.

*=$20
MPADD CLC : CLEAR CARRY TO START
ADDB DEY

LDA ($42),Y ;GET BYTE FROM FIRST NUMBER
ADC ($44), Y :ADD BYTE FROM SECOND NUMBER
STA ($46), Y ;STORE RESULT
TYA ;ALL BYTES ADDED?
BNE ADDB :NO. CONTINUE
RTS

Subroutine Documentation:

SUBROUTINE MPADD

PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS

INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (MSB'S)
IN MEMORY LOCATIONS 0042 AND 0043, 0044 AND 0045
STARTING ADDRESS OF RESULT IN MEMORY LOCATIONS 0046 AND 0047
LENGTH OF NUMBERS IN INDEX REGISTER Y

REGISTERS USED: A, Y, ALL FLAGS
MEMORY LOCATIONS USED: 0042, 0043, 0044, 0045, 0046, 0047

SAMPLE CASE:
INITIAL CONDITIONS: 0048 IN 0042 AND 0043,

004C IN 0044 AND 0045, 0050 IN 0046 AND 0047,
(Y) = 02, (0048) = A7, (0049) = C3, (004C) = 35, (004D) = B8 

FINAL CONDITIONS: (0050) =  DD, (0051) =  7B
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

1) Calling program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #$48
0004 48
0005 85 STA $42
0006 42
0007 A9 LDA #$4C
0008 4C
0009 85 STA $44
000A 44
OOOB A9 LDA #$50
000C 50
000D 85 STA $46
000E 46
000F A9 LDA # 0
0010 00
0011 85 STA $43
0012 43
0013 85 STA $45
0014 45
0015 85 STA $47
0016 47
0017 A4 LDY $40
0018 40
0019 20 JSR MPADD
001A 20
001 B 00
001C 00 BRK

2) Subroutine

0020 18 MPADD CLC
0021 88 ADDB DEY
0022 B1 LDA ($42),Y
0023 42
0024 71 ADC ($44), Y
0025 44
0026 91 STA ($46).Y
0027 46
0028 98 TYA
0029 DO BNE ADDB
002A F6
002B 60 RTS

This subroutine has four parameters —  three addresses and the length of the numbers. 
Six memory locations on page zero and Index Register Y are used for passing 
parameters.

As w ith the previous example, we could eliminate the need for the TYA instruction by 
reorganizing the program or by offsetting the address parameters by 1.
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PROBLEMS
Note that you are to write both a calling program for the sample problem and a properly 
documented subroutine.

1) ASCII to Hex
Purpose: Convert the contents of the Accumulator from the ASCII representation of a 

hexadecimal d ig it to the actual digit. Place the result in the Accumulator.

Sample Problems:

a. (A) = 43 ASCII C

Result: (A) =  0C

b. (A) =  36 ASCII 6

Result: (A) =  06

2) Length of a Teletypew riter Message
Purpose: Determine the length of an ASCII-coded teletypewriter message. The start­

ing address of the string of characters in which the message is embedded is 
in memory locations 0042 and 0043. The message itself starts w ith an ASCII 
STX character (02-|g) and ends w ith  ASCII ETX (031 6>- Place the length of 
the message (the number of characters between the STX and the ETX) in the 
Accumulator.

Sample Problem:

(0042) =
(0043) =
(0044) =
(0045) =
(0046) =
(0047) =
(0048) =

Result: (A) =

3) Minimum Value
Purpose: Find the smallest element in a block of unsigned binary numbers. The length 

of the block is in Index Register Y and the starting address of the block is in 
memory locations 0040 and 0041. The minimum value is returned in the Ac­
cumulator.

Sample Problem:

(Y) = 05 length of block

(0040) _ 43
(0041) = 00!  ̂ starting address of block

(0043) = 67
(0044) = 79
(0045) = 15
(0046) = E3
(0047) = 73

(A) = 15, since this is the smallest of the five
unsigned numbers

|  starting address of string44 
00 
49
02 STX 
47 'G' 
4F ’O'
03 ETX

02
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4) String Comparison
Purpose: Compare two strings of ASCII characters to see which is larger (i.e.. which 

follows the other in "alphabetical" ordering). The length of the strings is in 
Index Register Y. the starting address of string 1 is in memory locations 0042 
and 0043, and the starting address of string 2 is in memory locations 0044 
and 0045. If string 1 is larger than or equal to string 2, clear the Accumula­
tor; otherwise, set the Accumulator to FF-|g.

Sample Problems:

Result:

Result:

Result:

(Y)

(0042)
(0043)

(0044)
(0045)

(0046)
(0047)
(0048)

(004A) 
(004B) 
(004C)

(A)

(Y)

(0042)
(0043)

(0044)
(0045)

(0046)
(0047)
(0048)

(004A)
(004B)
(004C)

(A)

(Y)

(0042)
(0043)

(0044)
(0045)

(0046)
(0047)
(0048)

(004A)
(004B)
(004C)

(A)

03 length of strings

|  starting address of string #1

j- starting address of string # 2

46
00

4A
00

43
41 
54

42 
41 
54

'C'
'A'
T
'B'
'A'
T

00. since 'CAT is "larger" than 'BAT 

03 length of strings 

46 i
=  00 J- starting address of string #1

4 A [
00
43
41
54

43
41
54

00 ,

03

46
00

4A
00

43
41
54

43
55 
54

j- starting address of string # 2

JC
'A'
T

'C'
'A'
T

since the two strings are the same 

length of strings

|  starting address of string #1

 ̂ starting address of string # 2

'C  
'A'
T
'C'
V  
T

FF, since 'CUT' is "larger" than 'CAT'
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5) Decimal Subtraction
Purpose: Subtract one m ultiple-digit decimal (BCD) number from another. The length 

of the numbers (in bytes) is in Index Register Y and the starting addresses of 
the numbers are in memory locations 0042 and 0043 and 0044 and 0045. 
Subtract the number w ith the starting address in 0044 and 0045 from the 
one w ith the starting address in 0042 and 0043. The starting address of the 
result is in memory locations 0046 and 0047. All the numbers begin w ith the 
most significant digits. The sign of the result is returned in the Accumula­
to r—  zero if the result is positive, FF-] q if it is negative.

Sample Problem:

(Y) =  04 length of numbers in bytes

(0042) =  48 > , t . . . ,
(0043) -  00 ) startln9 address of minuend

(0044) = 4 C )
(0045) -  00 ) start'n9 address of subtrahend

(0046) = 50 » . , , ,
(0047) -  00 ) startlng address of difference

(0048) =  36 most significant digits of minuend
(0049) =  70
(004A) =  19
(004B) =  85 least significant digits of minuend

(004C) =  12 most significant digits of subtrahend
(004D) = 66
(004E) =  34
(004F) = 59 least significant digits of subtrahend

Result: (A) =  00 positive result

(0050) = 24 most significant digits of difference
(0051) =  03
(0052) =  85
(0053) =  26 least significant digits of difference

that is, 36701985 
-  12663459 
+  24038526
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Chapter 11 
INPUT/OUTPUT

There are tw o problems in the design of input/output sections: one is how to in­
terface peripherals to the computer and transfer data, status, and control sig­
nals; the other is how to address I/O devices so that the CPU can select a particu­
lar one for a data transfer. Clearly, the first problem is both more complex and more in­
teresting We w ill therefore discuss the interfacing of peripherals here and leave ad­
dressing to a more hardware-oriented book.

In theory, the transfer of data to or from an I/O device is similar 
to the transfer of data to or from memory. In fact, we can con­
sider the memory as just another I/O device. The memory is, 
however, special for the following reasons:

1) It operates at almost the same speed as the processor.
2) It uses the same type of signals as the CPU. The only circuits usually needed 

to interface the memory to the CPU are drivers, receivers, and level transla­
tors.

3) It requires no special formats or any control signals besides a Read/Write 
pulse.

4) It automatically latches data sent to it.
5) Its word length is the same as the computer's.

Most I/O devices do not have such convenient features. They may operate at 
speeds much slower than the processor; for example, a teletypewriter can transfer only 
10 characters per second, while a slow processor can transfer 10,000 characters per 
second. The range of speeds is also very wide — sensors may provide one reading 
per minute, while video displays or floppy disks may transfer 250,000 bits per second. 
Furthermore, I/O devices may require continuous signals (motors or thermometers), 
currents rather than voltages (teletypewriters), or voltages at far different levels 
than the signals used by the processor (gas-discharge displays). I/O devices may also 
require special formats, protocols, or control signals. Their word lengths may be much 
shorter or much longer than the word length of the computer. These variations make 
the design of I/O sections difficu lt and mean that each peripheral presents its own 
special interfacing problem.

We may, however, provide a general description of devices 
and interfacing methods. We may roughly separate devices 
into three categories, based on their data rates:

1) Slow devices that change state no more than once per second. Changing their 
states typically requires milliseconds or longer. Such devices include lighted dis­
plays, switches, relays, and many mechanical sensors and actuators.

2) Medium-speed devices that transfer data at rates of 1 to 10,000 bits per sec­
ond. Such devices include keyboards, printers, card readers, paper tape readers 
and punches, cassettes, ordinary communications lines, and many analog data ac­
quisition systems.

3) High-speed devices that transfer data at rates of over 10,000 bits per second.
Such devices include magnetic tapes, magnetic disks, high-speed line printers, 
high-speed communications lines, and video displays.

I/O
CATEGORIES

I/O AND 
MEMORY
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The interfacing of slow devices is simple. Few control sig­
nals are necessary unless the devices are multiplexed, i.e.. 
several are handled from one port, as shown in Figures 11-1 to 
11-4. Input data from slow devices need not be latched, since it remains stable for a 
long time interval Output data must, of course, be latched. The only problems with 
input are transitions that occur while the computer is reading the data. One-shots, 
cross-coupled latches, or software delay routines can smooth the transitions.

A single port can handle several slow devices. Figure 11-1 shows a demultiplexer 
that automatically directs the next output data to the next device by counting output 
operations. Figure 11-2 shows a control port that provides select inputs to a 
demultiplexer. The data outputs here can come in any order, but an additional output 
instruction is necessary to change the state of the control port. Output demultiplexers 
are commonly used to drive several displays from the same output port. Figures 11-3 
and 11-4 show the same alternatives for an input multiplexer.

Note the differences between input and output w ith slow devices:

1) Input data need not be latched, since the input device holds the data for an enor­
mous length of time by computer standards. Output data must be latched, since 
the output device w ill not respond to data that is present for only a few CPU clock 
cycles.

2) Input transitions cause problems because of their duration; brief output tran­
sitions cause no problems because the output devices (or the observers) 
react slowly.

3) The major constraints on input are reaction time and responsiveness, the ma­
jor constraints on output are response time and observability.

Medium-speed devices must be synchronized in some way 
to the processor clock. The CPU cannot simply treat these 
devices as if they held their data forever or could receive data 
at any time. Instead, the CPU must be able to determine when 
a device has new input data or is ready to receive output data. It must also have a way 
of telling a device that new output data is available or that the previous input data has 
been accepted. Note that the peripheral may be or contain another processor.

The standard unclocked procedure is the handshake. Here the |HANDSHAKe ]
sender indicates the availability of data to the receiver and 
transfers the data; the receiver completes the handshake by acknowledging the recep­
tion of the data. The receiver may control the situation by initially requesting the data or 
by indicating its readiness to accept data; the sender then sends the data and com­
pletes the handshake by indicating that data is available. In either case, the sender 
knows that the transfer has been completed successfully and the receiver knows when 
new data is available.

INTERFACING
MEDIUM-SPEED
DEVICES

INTERFACING 
SLOW DEVICES
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Output
Port

Port Selection Logic

Data
Inputs

Demultiplexer

Select
Inputs

Data Outputs 0

Data Outputs 1

£
Data Outputs 2

Data Outputs 3

=>

The Counter controls where the Demultiplexer sends the data.

Figure 11-1. An Output Demultiplexer Controlled by a Counter

Data
Port

Control
Port

Data
Inputs

Demultiplexer

Select
Inputs

Data Outputs 0

Data Outputs 1

Data Outputs 2

i >

Data Outputs 3

£

The CPU sends control information to the Control Port; that port then determines 

where the Demultiplexer sends the data.

Figure 11 -2. An Output Demultiplexer Controlled by a Port
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Input
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Multiplexer

Select
Inputs

Data Inputs 0V— ~ — 5V »

Data Inputs 1

IC = 3
Data Inputs 2

C = 3

Data Inputs 3K==3

The Counter controls which input the Multiplexer gates to the Input Port.

Figure 11 -3. An Input Multiplexer Controlled by a Counter

Input Data Busc Data
Port c

Output Data Bus
Control
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Data
Outputs

Data Inputs 0

K = *

Data Inputs 1 

/■-------------- <.

Multiplexer

Select
Inputs

Data Inputs 2 

Data Inputs 3

IC =>

The control information which the CPU sends to the Control Port (with an output operation) 

determines which input the Multiplexer routes to the Data Port.

Figure 11-4. An Input Multiplexer Controlled by a Port
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Figures 11-5 and 11-6 show typical input and output operations using the handshake 
method. The procedure whereby the CPU checks the readiness of the peripheral 
before transferring data is called "po lling ". Clearly, polling can occupy a large 
amount of processor time if there are many I/O devices. There are several ways of 
providing the handshake signals. Among these are:

• Separate dedicated I/O lines. The processor may handle these as additional I/O 
ports or through special lines or interrupts. The 6502 microprocessor does not have 
special serial I/O lines, but such lines are available on the 6520 Peripheral Interface 
Adapter (or PIA), the 6522 Versatile Interface Adapter (or VIA), and the 6532 Pe­
ripheral Interface/Memory (or Multifunction) device.

• Special patterns on the I/O lines. These may be single start and stop bits or entire 
characters or groups of characters. The patterns must be easy to distinguish from 
background noise or inactive states.

We often call a separate I/O line that indicates the availability | STROBE |
of data or the occurrence of a transfer a "s trobe". A strobe 
may, for example, clock data into a latch or fetch data from a buffer.

Many peripherals transfer data at regular intervals; i.e., synchronously. Here the only 
problem is starting the process by lining up to the first input or marking the first output. 
In some cases, the peripheral provides a clock input from which the processor can ob­
tain tim ing information.

Transmission errors are a problem w ith  medium-speed 
devices. Several methods can lessen the likelihood of such 
errors; they include:

• Sampling input data at the center of the transmission 
interval in order to avoid edge effects; that is, keep away from the edges where 
the data is changing.

• Sampling each input several times and using majority logic such as best three 
out of five .1

• Generating and checking parity; an extra bit is used that makes the number of 1 
bits in the correct data even or odd.

• Using other error detecting and correcting codes such as checksums, LRC 
(longitudinal redundancy check), and CRC (cyclic redundancy check).2

High-speed devices that transfer more than 10,000 bits per 
second require special methods. The usual technique is to 
construct a special-purpose controller that transfers data 
directly between the memory and the I/O device. This process 
is called direct memory access (DMA). The DMA controller 
must force the CPU off the busses, provide addresses and con­
trol signals to the memory, and transfer the data. Such a con­
troller w ill be fairly complex, typically consisting of 50 to 100 
chips, although LSI devices are now available. 3 The CPU must initially load the Address 
and Data Counters in the controller so that the controller w ill know where to start and 
how much to transfer.

INTERFACING
HIGH-SPEED
DEVICES

DIRECT
MEMORY
ACCESS

REDUCING
TRANSMISSION
ERRORS
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a) Peripheral provides data and Data Ready signal to computer I/O  section.

b) CPU reads Data Ready signal from I/O  section (this may be a hardware interrupt connection).

c) CPU reads data from I/O  section.

d) CPU sends Input Acknowledge signal to I/O  section, which then provides Input Acknowledge signal 
to Peripheral (this may be a hardware connection).

Figure 11-5. An Input Handshake
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a) Peripheral provides Peripheral Ready signal to computer I/O  section.

b) CPU reads Peripheral Ready signal from I/O  section (this may be a hardware interrupt connection).

c) CPU sends data to Peripheral.

d) CPU sends Output Ready signal to Peripheral (this may be a hardware connection).

Figure 11-6. An Output Handshake 
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TIM IN G  INTERVALS (DELAYS)
One problem that we w ill face throughout the discussion of in­
put/output is the generation of timing intervals w ith  specific 
lengths. Such intervals are necessary to debounce mechanical 
switches (i.e., to smooth their irregular transitions), to provide 
pulses w ith specified lengths and frequencies for displays, and to provide tim ing for 
devices that transfer data regularly (e.g., a teletypewriter that sends or receives one bit 
every 9.1 ms).

We can produce tim ing intervals in several ways:

1) In hardware w ith  one-shots or monostable m ultivibra­
tors. These devices produce a single pulse of fixed dura­
tion in response to a pulse input.

2) In a combination of hardware and software w ith  a f lex ­
ible programmable timer such as those that are included in the 6522 Versatile In­
terface Adapter (to be described later in this chapter). The 6522 timers can provide 
tim ing intervals of various lengths w ith a variety of starting and ending conditions.

3) In software w ith  delay routines. These routines use the processor as a counter. 
This use is possible since the processor has a stable clock reference, but it clearly 
underutilizes the processor. However, delay routines require no additional hard­
ware and often use processor time that would otherwise be wasted.

The choice among these three methods depends on your ap­
plication. The software method is inexpensive but may over­
burden the processor. The programmable timers are relatively ex­
pensive but are easy to interface and may be able to handle many 
complex tim ing tasks. The timers that are included in the 6522 Versatile Interface 
Adapter and in the 6530 and 6532 Multifunction Devices are available at no additional 
cost as long as those parts are being used. These parts may be somewhat more expen­
sive than simpler devices, but may be justifiable as complete packages. Such parts w ith 
integral timers are used in many board-level microcomputers, including the KIM. SYM, 
VIM. and AIM-65. The use of one-shots should be avoided whenever possible.

CHOOSING 
A TIMING 
METHOD

METHODS FOR
PRODUCING
TIMING
INTERVALS___

USES OF
TIMING
INTERVALS
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DELAY ROUTINES
BASIC
SOFTWARE
DELAY

A simple delay routine works as follows:

Step 1 - Load a register w ith  a specified value.
Step 2 - Decrement the register.
Step 3 - If the result of Step 2 is not zero, repeat Step 2.

This routine does nothing except use time. The amount of time used depends upon 
the execution time of the various instructions The maximum length of the delay is 
lim ited by the size of the register; however, the entire routine can be placed inside a 
similar routine that uses another register, and so on.

Be careful — the actual time used depends on the clock rate at which the pro­
cessor is running, the speed of memory accesses, and operating conditions such 
as temperature, power supply voltage, and circuit loading which may affect the 
speed at which the processor executes instructions.

The following example uses Index Registers X and Y to TRANSPARENT
provide delays as long as 255 ms. The choice of registers is DELAY
arbitrary. You may find the use of the Accumulator or of ROUTINE
memory locations more convenient. Remember, however, that
the 6502 has no explicit Decrement Accumulator instruction. We could produce a 
routine that does not change the contents of any user registers. The sequence

;SAVE STATUS REGISTER 
;SAVE ACCUMULATOR 
;SAVE INDEX REGISTER X

PHP
PHA
TXA
PHA
TYA
PHA

;SAVE INDEX REGISTER Y

would save the contents of all the registers initially and the sequence

PLA 
TAY
PLA
TAX
PLA
PLP

:RESTORE INDEX REGISTER Y 

:RESTORE INDEX REGISTER X

;RESTORE ACCUMULATOR 
;RESTORE STATUS REGISTER

would restore the registers at the end of the routine. A subroutine that does not affect 
any registers or flags is said to be "transparent" to the calling program. The in­
struction sequences that save and restore the registers must, of course, be included in 
the time budget.
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Purpose: The program provides a delay of 1 ms times the contents of Index Register V. 

F low chart:

DELAY PROGRAM

The value o f MSCNT depends on the speed o f the CPU and the m emory cycle

Source Program:

;GET COUNT FOR 1 MS DELAYDELAY LDX
DLY1 DEX

BNE
DEY
BNE
RTS

#MSCNT

DLY1

DELAY

COUNT =  COUNT - 1 
CONTINUE UNTIL COUNT =  ZERO 
DECREMENT NUMBER OF REMAINING MS 
CONTINUE UNTIL NUMBER OF MS =  ZERO
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Object Program: (starting in location 0030)

Memory Location 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

0030 A2 DELAY LDX #MSCNT
0031 MSCNT
0032 CA DLY1 DEX
0033 DO BNE DLY1
0034 FD
0035 88 DEY
0036 DO BNE DELAY
0037 F8
0038 60 RTS

Time Budget:

Instruction Number of Times Executed

LDX #MSCNT (Y)
DEX (Y) x MSCNT
BNE DLY1 (Y) x MSCNT
DEY (Y)
BNE DELAY (Y)
RTS 1

The total time used should be (Y) x 1 ms. If the memory is operating at full speed, the 
instructions require the following numbers of clock cycles.

Ignoring Page Boundaries 
LDX #MSCNT 2 or 3 2
DEX or DEY 2 2
BNE 2. 3, or 4 2 or 3
RTS 6 6

The alternative times for LDX #MSCNT depend on whether a page boundary is
crossed. The alternative times for BNE depend on whether the branch does not occur 
(2). occurs to an address on the same page (3), or occurs to an address on a different 
page (4). A page is a set of 256 contiguous memory locations which have the same 
eight most significant bits (or page number) in their addresses. We w ill assume that the 
routine is located so that no page boundaries are crossed, and we can use the rightmost 
column of the last table for timing purposes.

Ignoring the Jump-to-Subroutine (JSR) and Return from Subroutine (RTS) instructions 
(which occur only once), the program takes:

(Y) x (2 +  5 x MSCNT - 1 + 5 1 - 1  clock cycles 
The -1s  are caused by the fact that the BNE instruction requires less time during the 
final iteration when the Counter has reached zero and no branch occurs.

So. to make the delay 1 ms,
5 +  5 x MSCNT =  Nc

where Nc is the number of clock cycles per millisecond. A t the standard 1 MHz 6502 
clock rate, Nc =  1000 so

5 x MSCNT =  995

MSCNT =  199 (C7-]g) at a 6502 clock rate of 1 MHz

6502 DELAY 
LOOP
CONSTANT
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6502  INPUT/OUTPUT CHIPS
Most 6502 input/output sections are based on LSI interface chips. These devices 
combine latches, buffers, flip-flops, and other logic circuits needed for handshak­
ing and other simple interfacing techniques. They contain many logic connections, 
certain sets of which can be selected according to the contents of programmable 
registers. Thus the designer has the equivalent of a Circuit Designer's Casebook 
under his or her control. The initialization phase of the program places the ap­
propriate values in registers to select the required logic connections. An in­
put/output section based on programmable LSI interface chips can handle many 
different applications and changes or corrections can be made in software rather 
than by rewiring.

We w ill discuss the following LSI interface chips that can be used w ith the 6502 
microprocessor:

1) The 6520 Peripheral Interface Adapter. This device contains two 8-bit I/O ports 
and four individual control lines; it is exactly the same as the 6820 device used 
w ith 6800-based microcomputers.4

2) The 6522 Versatile Interface Adapter. This device contains two 8-bit I/O ports, 
four individual control lines, two 16-bit counter/timers, and an 8-bit shift register.

3) The 6530 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit I/O ports, an 8-bit counter/timer w ith  a prescaler. 
1024 bytes of ROM. and 64 bytes of RAM.

4) The 6532 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit I/O ports, an 8-bit counter/timer w ith a prescaler, 
and 128 bytes of RAM.

The following acronyms are often used in describing these devices: the 6520 PIA. the 
6522 VIA, and the 6530 or 6532 RIOT (for ROM or RAM, J/0, and Timer combination). 
Our I/O examples later in this chapter w ill all use the 6522 Versatile Interface Adapter. 
Examples of the use of the 6520 device can be found in 6800 Assembly Language Pro- 
gramming;5 those examples can easily be adapted to the 6502 microprocessor 
(remember the comparisons of the instruction sets in Tables 3-6 and 3-7).
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THE 6 52 0  PERIPHERAL INTERFACE ADAPTER
Figure 11 -7 is the block diagram of a PIA. The device contains tw o  nearly identical 8- 
b it ports —  A. which is usually an input port, and B, which is usually an output port. 
Each port contains:

• A Data or Peripheral register that holds either input or 
output data. This register is latched when used for output 
but unlatched when used for input.

• A Data Direction register. The bits in this register deter­
mine whether the corresponding data register bits (and 
pins) are inputs (0) or outputs (1).

• A Control register that holds the status signals required for handshaking, and 
other bits that select logic connections w ith in  the PIA.

• Two control lines that are configured by the control registers. These lines can 
be used for the handshaking signals shown in Figures 11 -5 and 11-6.

The meanings of the bits in the Data Direction and Control registers are related to the 
underlying hardware and are entirely arbitrary as far as the assembly language pro­
grammer is concerned. You must either memorize them or look them up in the ap­
propriate tables (Tables 11-2 through 11-6).

Each PIA occupies four memory addresses. The RS (register 
select) lines choose one of the four registers, as described in Table 
11-1. Since there are six registers (two peripheral, two data direc­
tion, and two control) in each PIA, one further bit is needed for addressing. Bit 2 of each 
control register determines whether the other address on that side refers to the Data 
Direction register (0) or to the Peripheral register (1). This sharing of an external address 
means that:

1) A program must change the bit in the Control register in order to use the register 
that is not currently being addressed.

2) The programmer must know the contents of the Control register in order to know 
which register is being addressed. RESET clears the Control register and thus ad­
dresses the Data Direction register.

Table 11-1. Addressing 6520 PIA Internal Registers

PIA
ADDRESSES

PIA
REGISTERS 
AND CONTROL 
LINES

Address Lines Control Register Bit
Register Select

RS1 RSO CRA-2 CRB-2

0 0 1 X P e r ip h e ra l R e g is te r A  \

0 0 0 X D a ta  D ire c t io n  R e g is te r A
0 1 X X C o n tro l R e g is te r A
1 0 X 1 P e r ip h e ra l R e g is te r B
1 0 X 0 D a ta  D ire c t io n -R e g is te r  B
1 1 X X C o n tro l R e g is te r B

X =  E ith e r  0  o r 1
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Figure 11-7. Block Diagram of the 6520 Peripheral Interface Adapter
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PIA
CONTROL
REGISTER
BITS

PIA CONTROL REGISTER
Table 11-2 shows the organization of the PIA Control registers. We 
may describe the general purpose of each bit as follows:

Bit 7: status bit set by transitions on control line 1 and cleared by 
reading the Peripheral (Data) register

Bit 6: same as bit 7 except set by transitions on control line 2

Bit 5: determines whether control line 2 is an input (0) or output (1)

Bit 4: Control line 2 input: determines whether bit 6 is set by high-to-low transitions
(0) or low-to-high transitions (1) on control line 2
Control line 2 output: determines whether control line 2 is a pulse (0) or a level
( 1 )

Bit 3: Control line 2 input: if 1. enables interrupt output from bit 6
Control line 2 output: determines ending condition for pulse (0 = handshake
acknowledgement lasting until next transition on control line 1 . 1 =  brief strobe 
lasting one clock cycle) or value of level

Bit 2: selects Data Direction register (0) or Data register (1)

Bit 1: determines whether bit 7 is set by high-to-low transitions (0) or low-to-high tran­
sitions (1) on control line 1

Bit 0: if 1, enables interrupt output from bit 7 of Control register.

Tables 11 -3 through 11 -6 describe the bits in more detail. Since E is normally tied to the
0 2  clock, you can interpret "E" pulse as "clock pulse."

Table 11-2. Organization of the PIA Control Registers

C R A

7 6 5 4 3 2 1 0

IRQ A1 IR Q A 2 C A 2  C o n tro l
D D R A

A c c e s s
CA 1 C o n tro l

CRB

7 6 5 4 3 2 1 0

IRQB1 IR Q B2 C B 2  C o n tro l
D D R B

A c c e s s CB1 C o n tro l
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Table 11-3. Control of 6520 PIA Interrupt Inputs CA1 and CB1

C RA-1

(C RB-1)
C R A -0
(CRB-0)

In te r ru p t  In p u t  
C A 1 (CB1)

In te r ru p t  F lag  
C R A -7  (C RB-7)

M P U  In te r ru p t  
R e q u e s t 

IR Q A  (IRQB)

0 0 i  A c t iv e S e t h ig h  o n  [  o f CA1 
(CB1)

D is a b le d  —  IRQ re ­
m a in s  h ig h

0 1 [  A c t iv e S e t h ig h  on  1 o f C A T  
(CB1)

G oes lo w  w h e n  the  
in te r ru p t  f la g  b i t  C R A -7  
(C RB-7) g oe s  h ig h

1 0 |  A c t iv e S e t h ig h  on  | o f CA1 
(CB1)

D is a b le d  —  IRQ re ­
m a in s  h ig h

\ 1 1 f  A c t iv e S e t h ig h  on  J o f CA1 
(CB1)

G oes lo w  w h e n  the  
in te r ru p t  f la g  b it  C R A -7  
(C RB-7) g oe s  h ig h

N o te s :
1. |  in d ic a te s  p o s it iv e  t ra n s i t io n  ( lo w  to  h igh )

2. 1 in d ic a te s  n e g a tiv e  t ra n s i t io n  (h ig h  to  lo w )

j 3. T h e  In te r ru p t  f la g  b it  C R A -7  is c le a re d  b y  an  M P U  R ead o f th e  A  D a ta  R e g is te r, a n d  
] C R B -7  is c le a re d  b y  an M P U  R ead o f th e  B D a ta  R e g is te r

4  If C R A -0  (C RB-0) is lo w  w h e n  an  in te r ru p t  o c c u rs  ( In te r ru p t  d is a b le d ) a nd  is la te r b ro u g h t 
h ig h , IR Q A  (IRQB) o c c u rs  a fte r  C R A -0  (C RB-0) is w r it te n  to  a " o n e ”

Table 11-4. Control of 6520 PIA Interrupt Inputs CA2 and CB2

C R A -5
(CRB-5)

C R A -4
(CRB-4)

C R A -3
(C RB-3)

In te r ru p t  In p u t  
C A 2  (CB2)

In te r ru p t  F lag 
C R A -6  (C R B-6)

M P U  In te r ru p t  
R e q u e s t 

IR Q A  (IRQB)

I 0 0 0 [ A c t iv e S e t h ig h  on  j  o f C A 2  
(CB2)

D is a b le d  —  IRQ 
re m a in s  h ig h

0 0 1 [ A c t iv e S e t h ig h  on |  o f C A 2  
(CB2)

G oes lo w  w h e n  th e  \ 

in te r ru p t  f la g  b it  C R A -6  
(C RB-6) g oe s  h ig h

0 1 0 f A c t iv e S e t h ig h  on  | o f  C A 2  
(CB2)

D is a b le d  —  IRQ 
re m a in s  h ig h

0 1 1 |  A c t iv e S e t h ig h  on  f o f C A 2  
(CB2)

G oes lo w  w h e n  the  
in te r ru p t  f la g  b it  C R A -6  
(C RB-6) g o e s  h ig h

N o tes :
1. j  in d ic a te s  p o s it iv e  t ra n s it io n  ( lo w  to  h ig h )

2. 1 in d ic a te s  n e g a tiv e  t ra n s i t io n  (h ig h  to  low )

3. T h e  In te r ru p t  f la g  b it  C R A -6  is c le a re d  b y  an  M P U  R ead  o f th e  A  D a ta  R e g is te r a n d  C R B -6  
is c le a re d  b y  a n  M P U  Read o f th e  B D a ta  R e g is te r.

4  If C R A -3  (C RB-3) is lo w  w h e n  an  in te r ru p t  o c c u rs  ( In te rru p t  d is a b le d ) a n d  is la te r  b ro u g h t 
h igh , IR Q A  (IRQB) o c c u rs  a fte r  C R A -3  (C R B-3) is w r i t te n  to  a " o n e "
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Table 11 -5. Control of 6520 PIA CB2 Output Line

C R B -5 C R B -4 C R B -3
C B 2

C le a re d S e t

1 0 0 L o w  on  th e  p o s it iv e  t ra n s i t io n  o f 
th e  f ir s t  E p u ls e  fo l lo w in g  an 
M P U  W r ite  " B "  D a ta  R e g is te r 
o p e ra t io n

H ig h  w h e n  th e  in te r ru p t  f la g  b it  
C R B -7  is s e t b y  an  a c t iv e  t ra n s i­
t io n  o f th e  CB1 s ig n a l

1 0 1 L o w  o n  th e  p o s it iv e  t ra n s i t io n  o f 
th e  f ir s t  E p u ls e  a fte r  a n  M P U  
W r i te  “ B "  D a ta  R e g is te r o p e ra ­
tio n .

H ig h  on  th e  p o s it iv e  e d g e  o f th e  
f ir s t  " E "  p u ls e  fo l lo w in g  a n  "E "  

p u ls e  w h ic h  o c c u r re d  w h i le  the  
p a r t w a s  d e s e le c te d

1 1 0 L o w  w h e n  C R B -3  g oe s  lo w  as a 
re s u lt  o f an  M P U  W r i te  in  C o n ­
t ro l R e g is te r "B

A lw a y s  lo w  as lo n g  as C R B -3  is 
lo w  W i l l  g o  h ig h  o n  an M P U  
W r ite  in  C o n tro l R e g is te r " B "  
th a t  c h a n g e s  C R B -3  to  " o n e "

1 1 1 A lw a y s  h ig h  as lo n g  as C R B -3  is 
h ig h . W i l l  b e  c le a re d  w h e n  an 
M P U  W r ite  C o n tro l R e g is te r " B "  
re s u lts  in  c le a r in g  C R B -3  to  

" z e ro "

H ig h  w h e n  C R B -3  g oe s  h ig h  as 
a re s u lt  o f an  M P U  W r i te  in to  
C o n tro l R e g is te r " B "

Table 11 -6. Control of 6520 PIA CA2 Output Line

C R A -5 C R A -4 C R A -3
C A 2

C le a re d S e t

1 0 0 L o w  on  n e g a tiv e  t ra n s i t io n  o f  E 
a fte r  an  M P U  R ead " A "  D a ta  
o p e ra tio n .

H ig h  w h e n  th e  in te r ru p t  f la g  b it  
C R A -7  is s e t b y  a n  a c t iv e  t ra n s i­
t io n  o f th e  C A 1  s ig n a l

1 0 1 L o w  o n  n e g a tiv e  t ra n s i t io n  o f E 
a fte r  a n  M P U  R ead " A "  D a ta  
o p e ra t io n

H ig h  on  th e  n e g a tiv e  e d g e  o f 
th e  f ir s t  " E "  p u ls e  w h ic h  o c c u rs  
d u r in g  a d e s e le c t

1 1 0 L o w  w h e n  C R A -3  g oe s  lo w  as a 
re s u lt  o f an M P U  W r i te  to  C o n ­
t ro l R e g is te r " A "

A lw a y s  lo w  as lo n g  as C R A -3  is 
lo w  W i l l  g o  h ig h  on  an  M P U  
W r i te  to  C o n tro l R e g is te r " A "  
th a t  c h a n g e s  C R A -3  to  " o n e "

1 1 1 A lw a y s  h ig h  as lo n g  as C R A -3  is 
h ig h . W i l l  be  c le a re d  o n  an  M P U  
W r i te  to  C o n tro l R e g is te r " A "  
th a t  c le a rs  C R A -3  to  a " z e ro "

H ig h  w h e n  C R A -3  g oes  h ig h  as 
a re s u lt  o f  an  M P U  W r i te  to  C o n ­
tro l R e g is te r " A "
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CONFIGURING THE PIA
The program must select the logic connections in the PIA STEPS IN
before using it. This selection (or configuration) is usually CONFIGURING
part of the startup routine. The steps in the configuration are: A PIA________

1) Address the Data Direction register by clearing bit 2 of the
Control register. Since the Reset signal clears all the internal registers, this step is 
unnecessary in the overall startup routine.

2) Establish the directions of the I/O pins by loading the Data Direction register.

3) Select the required logic connections in the PIA by loading the Control register. Set 
b it 2 of the Control register so as to address the Data register.

Step 1 can be performed as follows:

;CLEAR PIA CONTROL REGISTERLDA # 0
STA PIACR

LDA PIACR
AND #% 1 1111011
STA PIACR

1) LDA # 0
STA PIADDR

2) LDA #$FF
STA PIADDR

3) LDA #$F0
STA PIADDR

;SELECT DATA DIRECTION REGISTER

Once the program has performed Step 1. Step 2 is simply a matter of clearing each in­
put bit position and setting each output bit position in the Data Direction Register.
Some simple examples are:

:ALL LINES INPUTS 

;ALL LINES OUTPUTS 

;MAKE LINES 4-7 OUTPUTS. 0-3 INPUTS

Step 3 is clearly the d ifficu lt part of the configuration, since it involves selecting the
logic connections in the PIA. Some points to remember are:

1) Bits 6 and 7 of the Control register are set by transitions on the control lines and are 
cleared by reading the Data register. You cannot change these bits by writing data 
into the Control register.

2) Bit 2 of the Control register must be set to address the Data register.

3) Bit 1 determines which pulse edge w ill set bit 7. Bit 1 is 0 for a high-to-low transi­
tion; bit 1 is 1 for a low-to-high transition.

.4) Bit 0 is the interrupt enable for control line 1. Remember that it must be set to ena­
ble interrupts, unlike the 6502 interrupt bit. which must be cleared to enable inter­
rupts. Chapter 12 describes interrupts in more detail.

5) Bit 5 must be set if control line 2 is to be output. Bits 3 and 4 then determine how
control line 2 works. Remember that sides A and B differ, since side A can only pro­
duce a read strobe while side B can only produce a write strobe. Once the strobe 
option has been selected, the strobes automatically follow each reading of Data 
Register A or writing of Data Register B. You must configure each side of each PIA 
in the startup program.
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EXAMPLES OF PIA CONFIGURATION
1) A simple input port w ith  no control lines (as needed for a 

set of switches):
PIA
CONFIGURATION
EXAMPLES

LDA # 0 ;CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR ;MAKE ALL LINES INPUTS
LDA #%00000100 ;SELECT DATA REGISTER
STA PIACR

Bit 2 of the Control register must be set to address the Data register. The same se­
quence can be used if a high-to-TOw transition (negative transition) on control line 1 
indicates Data Ready or Peripheral Ready.

2) A simple output port w ith no control lines (as needed for a set of single LED dis­
plays):

LDA # 0 ;CLEAR OUT CONTROL REGISTER
STA PIACR
LDA #$FF ;MAKE ALL LINES OUTPUTS
STA PIADDR
LDA #%00000100 ;SELECT DATA REGISTER
STA PIACR

3) An input port w ith  a control input that indicates DATA READY w ith a low-to-high 
transition (positive transition):

LDA # 0  ;CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR ;MAKE ALL LINES INPUTS
LDA #%00000110 ;MAKE DATA READY ACTIVE LOW-TO-HIGH
STA PIACR

The DATA READY or DATA AVAILABLE line is tied to control line CA1 or CB1 Bit 1 of 
the Control register is set so as to recognize low-to-high transitions on control line 1. 
This configuration is suitable for most encoded keyboards.

4) An output port that produces a brief strobe to indicate DATA READY or OUTPUT 
READY (this could be used for multiplexing displays or for providing a DATA 
AVAILABLE signal to a printer):

LDA # 0 ;CLEAR OUT CONTROL REGISTER
STA PIACR
LDA #$FF ;MAKE ALL LINES OUTPUTS
STA PIADDR
LDA #%00101100 ;MAKE CONTROL LINE 2 A BRIEF STROBE
STA PIACR

Bit 5 =  1 to make control line 2 an output, bit 4 = 0 to make it a pulse, and bit 3 =  1 to 
make it a brief active-low strobe (one clock period in duration). The strobe w ill automat­
ically follow each instruction that writes data into the B side of the PIA; for example, the 
instruction

STA PIADRB

will both transfer data and cause a strobe. However, the A side w ill produce a strobe 
only after a read operation. The sequence

STA PIADRA ;WRITE DATA
LDA PIADRA ;PRODUCE AN OUTPUT STROBE

w ill both transfer data and cause a strobe. The LDA instruction is a "dummy read” ; it 
has no effect other than to cause the strobe (and waste some time). Other instructions 
besides LDA could also be used —  you should try to name some of them.
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5) An input port w ith  a handshake Input Acknowledge strobe that can be used to tell 
a peripheral that the previous data has been accepted (and the computer is ready
for more):

LDA # 0  ;CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR ;MAKE ALL LINES INPUTS
LDA #%00100100 ;CONTROL LINE 2 =  HANDSHAKE

: ACKNOWLEDGE
STA PIACR

Bit 5 =  1 to make control line 2 an output, bit 4 = 0 to make it a pulse, and bit 3 =  0 to 
make it an active-low acknowledgment that remains low until the next active transition 
on control line 1. The acknowledgment w ill automatically follow a read operation on the 
A side of the PIA: for example, the instruction

LDA PIADRA

will both read data and cause the acknowledgment. However, the B side w ill produce 
an acknowledgment only after a write operation. The sequence

LDA PIADRB :READ DATA
STA PIADRB ;PRODUCE ACKNOWLEDGMENT

will both read data and produce an acknowledgment. The STA instruction is a "dummy 
write"; it has no other effect than to cause the acknowledgment (and waste some time). 
Note that the order of the sequence is reversed from the previous example. This con­
figuration is suitable for many CRT terminals that require a complete handshake.

6) An output port w ith  a latched zero control bit (latched individual output or level 
output). Such an output can be used to turn the peripheral on or off or to control its 
mode of operation.

LDA # 0  ;CLEAR OUT CONTROL REGISTER
STA PIACR
LDA #$FF ;MAKE ALL LINES OUTPUTS
STA PIADDR
LDA #% 001101 00 ;CONTROL LINE 2 = LATCHED ZERO LEVEL 
STA PIACR

Bit 5 = 1 to make control line 2 an output, bit 4 = 1 to make it a level or latched bit, and 
bit 3 = 0 to make the level zero. This output is not affected by operations on the Data 
register; its value can be changed by changing the value of bit 3 of the PIA Control 
register, i.e..

LDA PIACR
ORA #%00001000 ;MAKE LEVEL ONE
STA PIACR

LDA PIACR
AND #% 1 1110111 ;MAKE LEVEL ZERO
STA PIACR

You can use this configuration to produce active-high strobes or to provide pulses with 
software-controlled lengths
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USING THE PIA TO TRANSFER DATA
Once the PIA has been configured, you may use its data 
registers like any other memory locations. The simplest in­
structions for data transfer are:

PIA INPUT/ 
OUTPUT

Load Accumulator, which transfers eight bits of data from the specified input pins to 
the Accumulator, and

Store Accumulator, which transfers eight bits of data from the Accumulator to the 
specified output pins.

You must be careful in situations where input and output ports do not behave like 
memory locations. For example, it often makes no sense to write data into input ports or 
read data from output ports. Be particularly careful if the input port is not latched or if 
the output port is not buffered.

Other instructions that transfer data to or from memory can also serve as I/O in­
structions. Typical examples are:

B it Test, which sets the Zero flag as if the values of a set of input pins had been 
logically ANDed w ith the contents of the Accumulator. The Sign (Negative) flag is set to 
the value of bit 7 of the input port and the Overflow flag is set to the value of bit 6 of the 
input port. This instruction provides a simple way to test the PIA status flags; that 
is. the instruction

BIT PIACR

sets the Sign flag to the value of Control register bit 7 (the status latch for control line 1) 
and the Overflow flag to the value of Control register bit 6 (the status latch for control 
line 2).

Compare, which sets the flags as if the values of a set of input pins had been 
subtracted from the contents of the Accumulator.

Here also you must be aware of the physical limitations of the I/O ports. Be particularly 
careful of instructions like shifts. Increment, and Decrement, which involve both read 
and write cycles.

We cannot overemphasize the importance of careful documentation. Often, com­
plex I/O transfers can be concealed in instructions w ith no obvious functions. You must 
describe the purposes of such instructions carefully. For example, one could easily be 
tempted to remove the dummy read and write operations mentioned earlier since they 
do not appear to accomplish anything.

Bit 7 of the PIA Control register often serves as a status bit,
such as Data Ready or Peripheral Ready. You can check its value 
w ith  either of the following sequences:

LDA PIACR ;IS READY FLAG 1?
BMI DEVRDY ;YES. DEVICE READY

BIT PIACR ;IS READY FLAG 1?
BMI DEVRDY ;YES. DEVICE READY

Note that you should not use the shift instructions, since they w ill change the contents 
of the Control register (why?). The following program w ill wait for the Ready flag to go 
high:

WAITR BIT PIACR ;IS READY FLAG 1 ?
BPL WAITR ;NO, WAIT

How would you change these programs so that they examine bit 6 instead of b it 7?

PIA STATUS 
BITS
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The only way to clear bit 7 (or bit 6) is to read the Data register. A dummy read will 
be necessary if a read operation is not normally part of the response to the bit being set. 
If the port is used for output, the sequence

STA PIADR ;SEND DATA
LDA PIADR ;CLEAR READ FLAG

will do the job. Note that here the dummy read is necessary on either side of the PIA. 
The Bit Test instruction can also clear the strobe w ithout changing anything except the 
flags. Be particularly careful in cases where the CPU is not ready for input data or has 
no output data to send.
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THE 6 52 2  VERSATILE INTERFACE ADAPTER (VIA)
The 6522 Versatile Interface Adapter is an enhanced version of the 6520 Periph­
eral Interface Adapter.®-?'®

The 6522 VIA contains the following (see the block diagram in 
Figure 11-8):

1) Two 8-bit I/O ports (A and B). Each pin can be individually 
selected to be either an input or an output.

2) Four status and control lines (two associated w ith each port).

3) Two 16-bit counter/timers which can be used to generate or count pulses. These 
timers can produce single pulses or a continuous series of pulses.

4) An 8-bit Shift register which can convert data between serial and parallel forms.

5) Interrupt logic (to be described in Chapter 12) so that I/O can proceed on an inter­
rupt-driven basis.

Thus the Versatile Interface Adapter provides the functions of the PIA plus two 16-bit 
counter/timers and an 8-b it Shift register. We w ill describe the use of the 
counter/timers later in this chapter. The Shift register provides a simple serial I/O 
capability that is only occasionally useful; we will not discuss it any further.

Each VIA occupies sixteen memory addresses. The RS (register 
select) lines choose the various internal registers, as described in 
Table 11-7 The way that a VIA operates is determined by the 
contents of four registers.

1) Data Direction Register A (DDRA) determines whether the pins on Port A are in­
puts (Os) or outputs (1 s).

2) Data Direction Register B (DDRB) determines whether the 
pins on Port B are inputs (Os) or outputs (1s).

3) The Peripheral Control register (PCR) determines which 
polarity of transition (rising edge or falling edge) is recognized 
on the input status lines (CA1 and CB1) and how the other 
status lines (CA2 and CB2) operate. Figure 11-9 describes the bit assignments in 
the Peripheral Control register; as usual, the functions and bit positions are ar­
bitrarily selected by the manufacturer. Note that the 6522 Peripheral Control 
register does not contain status bits (latches) like the 6520 Control register; these 
bits are located in the separate Interrupt Flag register (see Figure 11-11).

4) The Auxiliary Control register (ACR) determines whether the data ports are 
latched and how the timers and Shift register operate. These functions are not pre­
sent in the 6520 PIA. Figure 11-10 describes the bit assignments in Auxiliary Con­
trol register.

Note that there is a data direction register for each side but only one control register 
(unlike the 6520, which has a separate control register for each side). Ports A and B are 
virtually identical. One important difference is that Port B can handle Darlington tran­
sistors, which are used to drive solenoids and relays. We w ill use Port A for input and 
Port B for output in our examples later in this chapter.

VIA
REGISTERS 
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VIA
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Figure 11-8. Block Diagram of the 6522 Versatile Interface Adapter



Table 11-7. Addressing 6522 VIA Internal Registers

Select Lines
Label m CM r— o Addressed Location

<n U) <0 «0
CC cc cc DC

DEV 0 0 0 0 Output register for I/O Port B
DEV+1 0 0 0 1 Output register for I/O Port A. w ith  handshaking
DEV+2 0 0 1 0 I/O Port B Data Direction register
DEV+3 0 0 1 1 I/O Port A Data Direction register
DEV+4 0 1 0 0 Read Timer 1 Counter low-order byte 

W rite to Timer 1 Latch low-order byte
DEV+5 0 1 0 1 Read Timer 1 Counter high-order byte 

W rite to Timer 1 Latch high-order byte and 
initiate count

DEV+6 0 1 1 0 Access Timer 1 Latch low-order byte
DEV+7 0 1 1 1 Access Timer 1 Latch high-order byte
DEV+8 1 0 0 0 Read low-order byte of Timer 2 and reset 

Counter interrupt
W rite to low-order byte of Timer 2 but do not 
reset interrupt

DEV+9 1 0 0 1 Access high-order byte of Timer 2; reset 
Counter interrupt on write

DEV+A 1 0 1 0 Serial I/O Shift register
DEV+B 1 0 1 1 Auxiliary Control register
DEV+C 1 1 0 0 Peripheral Control register
DEV+D 1 1 0 1 Interrupt Flag register
DEV+E 1 1 1 0 Interrupt Enable register
DEV+F 1 1 1 1 Output register for I/O Port A, w ithout handshaking
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I
-B it Number
-Peripheral Control register

0 Request interrupt on high-to-low 
transition of CA1

1 Request interrupt on low-to-high 
transition of CA1

000 CA2 input mode
001 CA2 independent input mode
010 CA2 input mode
011 CA2 independent input mode
100 CA2 output low on CPU read or write
101 CA2 output low pulse on CPU read or write
110 Output CA2 low
111 Output CA2, high

0 Request interrupt on high-to-low \  
transition of CB1

1 Request interrupt on low-to-high 
transition of CB1

On interrupt request set 
Interrupt Flag register bit 1

Request interrupt on 
high-to-low CA2 transition 
Request interrupt on 
low-to-high CA2 transition

On interrupt request set 
Interrupt Flag register bit 4

-0 0 0  CB2 input mode 
001 CB2 independent input mode
010 CB2 input mode
011 CB2 independent input mode
100 CB2 output low on CPU write
101 CB2 output low pulse on CPU write
110 Output CB2 low
111 Output CB2 high

Request interrupt on 
high-to-low CB2 transition 
Request interrupt on 
low-to-high CB2 transition

On interrupt 
request set 
Interrupt Flag 

register bit 0

Figure 11-9. 6522 VIA Peripheral Control Register Bit Assignments

7 6 5 4  3 2 1 0 Bit Number
Auxiliary Control register

>0 Disable input latch on Port A 
1 Enable input latch on Port A

0  Disable input latch on Port B
1 Enable input latch on Port B

0 00  Disable Shift register
001 Shift in at Counter 2 rate
0 1 0  Shift in at <t>2 clock rate
011 Shift in at external clock rate
1 00  Free-running output at Counter 2 rate
101 Shift out at Counter 2 rate
110  Shift out at $ 2  clock rate
111 Shift out at external clock rate

0  Decrement Counter 2 on $ 2  clock, in one-shot mode
1 Decrement Counter 2 on external pulses input via PB6

0 Disable output via PB7^
1 Enable output via PB7 1

0  One-shot mode |
1 Free-running mode t

> Counter 1 controls

Figure 11-10. 6522 VIA Auxiliary Control Register Bit Assignments 
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CONFIGURING THE VIA
The program must select the logic connections in the VIA 
before using it. This selection (or configuration) is usually 
part of the startup routine. The steps are to establish the 
directions of the I/O pins by loading the Data Direction register 
and to select the required logic connections in the VIA by loading the Peripheral Con­
trol register and, if necessary, the Auxiliary Control register.

You can establish the directions of the I/O pins as follows:

1) A '0 ' in a b it in the Data Direction register makes the 
corresponding pin an input. For example, a O' in bit 5 of
Data Direction Register A makes pin PA5 an input.

2) A ' V  in a b it in the Data Direction register makes the 
corresponding pin an output. For example, a '1' in bit 3 of Data Direction Register 
B makes pin PB3 an output.

The directions of almost all I/O pins are fixed after the initialization since most input and 
output lines transfer data in only one direction (i.e., the microprocessor w ill never fetch 
data from a printer or send data to a keyboard).

Some simple examples of setting directions are:

1) LDA # 0  ;ALL LINES INPUTS
STA VIADDRA

2) LDA #$FF ;ALL LINES OUTPUTS
STA VIADDRB

3) LDA #$F0 ;MAKE LINES 4-7 OUTPUTS, 0-3 INPUTS
STA VIADDRB

You can mix inputs and outputs on a single port by establishing the dii
dividual pins appropriately. Port B is buffered so that its contents can be read correctly 
even when it is being used for output; Port A is not buffered so that its contents can be 
read correctly only if it is lightly loaded (or designated as inputs).

Configuring the VIA is d ifficu lt because of its many func­
tions. Most of the I/O port functions are controlled by the 
Peripheral Control register, and we shall discuss these first.
Some points to remember are:

1) Reset clears all the VIA registers, making all lines inputs and disabling all inter­
rupts. A ll edge detection facilities are set to trigger on falling edges (high-to-low 
transitions).

2) Bits 0-3 of the Peripheral Control register are used to establish the logic con­
nections for control lines CA1 and CA2; bits 4-7 have the same purposes for 
control lines CB1 and CB2.

3) Control lines CA1 and CB1 are always inputs. The only choice is whether the 
corresponding status latches (Interrupt Flag register bits 1 and 4 —  see Figure 
11-11) are set on falling edges (high-to-low, or negative, transitions) or on rising 
edges (low-to-high, or positive, transitions). For CA1, bit 0 =  0 for falling edges and 
1 for rising edges; for CB1, bit 4 =  0 for falling edges and 1 for rising edges.

4) Control lines CA2 and CB2 can be either inputs or outputs (see Tables 11 -8 and 
11-9). For CA2, bit 3 = 1 to make it an output and 0 to make it an input.

VIA PERIPHERAL
CONTROL
REGISTER

ESTABLISHING 
VIA PIN 
DIRECTIONS

STEPS IN 
CONFIGURING 
A VIA
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Table 11-8. Configurations for 6522 VIA Control Line CB2

PCR7 PCR6 PCR5 Mode

0 0 0 Interrupt Input Mode —  Set CB2 Interrupt flag 
(IFR3) on a negative transition of the CB2 input 
signal. Clear IFR3 on a read or write of the Pe­
ripheral B Output register.

0 0 1 Independent Interrupt Input Mode —  Set IFR3 on 
a negative transition of the CB2 input signal 
Reading or writing ORB does not clear the Inter­
rupt flag.

0 1 0 Input Mode —  Set CB2 Interrupt flag on a posi­
tive transition of the CB2 input signal. Clear the 
CB2 Interrupt flag on a read or write of ORB.

0 1 1 Independent Input Mode —  Set IFR3 on a posi­
tive transition of the CB2 input signal. Reading or 
writing ORB does not clear the CB2 Interrupt 
flag.

1 0 0 Handshake Output Mode —  Set CB2 low on a 
write ORB operation. Reset CB2 high w ith an ac­
tive transition of the CB1 input signal.

1 0 1 Pulse Output Mode — Set CB2 low for one cycle 
following a write ORB operation.

1 1 0 Manual Output Mode — The CB2 output is held 
low in this mode.

1 1 1 Manual Output Mode — The CB2 output is held 
high in this mode.
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Table 11-9. Configurations for 6522 VIA Control Line CA2

PCR3 PCR2 PCR1 Mode

0 0 0 Input Mode —  Set CA2 Interrupt flag (IFRO) on a 
negative transition of the input signal. Clear IFRO 
on a read or write of the Peripheral A Output 
register.

0 0 1 Independent Interrupt Input Mode —  Set IFRO on 
a negative transition of the CA2 input signal. 
Reading or w riting ORA does not clear the CA2 
Interrupt flag.

0 1 0 Input Mode —  Set CA2 Interrupt flag on a posi­
tive transition of the CA2 input signal. Clear IFRO 
w ith a read or write of the Peripheral A Output 
register.

0 1 1 Independent Interrupt Input Mode —  Set IFRO on 
a positive transition of the CA2 input signal. 
Reading or writing ORA does not clear the CA2 
Interrupt flag.

1 0 0 Handshake Output Mode — Set CA2 output low 
on a read or write of the Peripheral A Output 
register. Reset CA2 high w ith an active transition 
on CA1.

1 0 1 Pulse Output Mode — CA2 goes low for one cy­
cle following a read or write of the Peripheral A 
Output register.

1 1 0 Manual Output Mode —  The CA2 output is held 
low in this mode.

1 1 1 Manual Output Mode — The CA2 output is held 
high in this mode.
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IRQ T1 T2 CB1 CB2 SR CA1 CA2

- Bit Number

- Interrupt Flag register

Bit No. Set By Cleared By

0
Active transition of the signal 
on the CA2 pin.

Reading or writing the A Port Output 
register (ORA) using address 0001 .

1
Active transition of the signal 
on the CA1 pin.

Reading or writing the A Port Output 
register (ORA), using address 000 1 .

2
Completion of eight shifts. Reading or writing the Shift 

register.

3
Active transition of the signal 
on the CB2 pin.

Reading or writing the B Port 
Output register.

4
Active transition of the signal 
on the CB1 pin.

Reading or writing the B Port 
Output register.

5
Time-out of Timer 2. Reading T2 low-order counter or 

writing T2 high-order counter.

6
Time-out of Timer 1. Reading T1 low-order counter or 

writing T1 high-order latch

7
Active and enabled interrupt 
condition.

Action which clear interrupt 
condition.

Bits 0, 1, 3, and 4  are the I/O handshake signals. Bit 7 (IRQ) is 1 if any of the interrupts is both active 
and enabled (see Chapter 12).

Figure 11-11 The 6522 VIA Interrupt Flag Register
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CA2 Input
Bit 2 =  1 to trigger on a rising edge, 0 to trigger on a falling edge.
Bit 1 =  1 to make Interrupt Flag register b it 0 (the CA2 input status latch) independent 

of operations on I/O Port A, 0 to have that bit cleared by operations on I/O Port 
A.

The independent mode is useful when CA2 is being used for purposes (such as a real­
time clock) that are completely unrelated to the data transfers through the I/O port. The 
regular mode is useful when CA2 is being used as a handshaking signal which must be 
cleared to prepare for the next I/O operation (see Figures 11-5 and 11-6).

CA2 Output
Bit 2 = 1 to make CA2 a level, 0 to make it a pulse

If CA2 is a level, bit 1 is its value

If CA2 is a pulse, bit 1 is 0 to have CA2 go low when the CPU transfers data to or from
Port A and remain low until an active transition occurs on CA1; bit 1 is 1 to have
CA2 go low for one clock cycle after the CPU transfers data to or from Port A.

CB2 is handled exactly the same (using bits 7, 6, and 5 of the Peripheral Control register 
and bit 3 of the Interrupt Flag register) except that pulses are produced on CB2 only 
after data is written into Port B. To produce a pulse after reading data, you must use a 
"dum m y write", that is:

LDA VIAORB ;GET DATA FROM PORT B
STA VIAORB ;PRODUCE STROBE FROM PORT B

The only I/O port function governed by the Auxiliary Control 
register (Figure 11-10) is input latching. Bit 0 (for Port A) or bit 1
(for port B) must be set to latch the input data on the active transi­
tion on control line 1 (as determined by the Peripheral Control register) Note the 
following features of the latching function:

1) RESET disables the input latches. The 6522 VIA then operates like the 6520 PIA, 
which has no input latches.

2) For Port A, the data that is latched w ill always be the data on the peripheral pins. 
Since Port A is not buffered, that data may not be the same as the data in the Out­
put register when the port is being used for output.

3) For Port B, the data that is latched is either the data on the peripheral pins (for those 
pins defined as inputs) or the contents of the Output register (for those pins defined 
as outputs).

Some simple examples of activating the input latches are:

LDA #%00000001
STA VIAACR iACTIVATE LATCH ON PORT A

LDA #%00000010
STA VIAACR ACTIVATE LATCH ON PORT B

LDA #%00000011
STA VIAACR ACTIVATE LATCHES ON PORTS A AND B

Note that 6522 output ports are automatically latched, just like 6520 output ports.

Further functions are as follows:

VIA INPUT 
LATCHES
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EXAMPLES OF VIA CONFIGURATION
1) A simple input port w ith  no control lines (as needed for 

a set of switches):

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS

Remember that Reset clears all the internal registers so that this sequence may not 
even be necessary. The same sequence can be used if a high-to-low edge (falling 
edge) on control line CA1 indicates Data Ready or Peripheral Ready.

2) A simple output port w ith  no control lines (as needed for a set of single LED dis­
plays):

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS

3) An input port w ith  an active low-to-high DATA READY signal attached to CA1
(as needed for an encoded keyboard):

LDA # 0
STA VIADDRA
LDA #1
STA VIAPCR

Bit 1 of the Peripheral Control register is set so as to recognize low-to-high transitions 
on control line CA1. Such a transition w ill set bit 1 of the Interrupt Flag register (see 
Figure 11 -10): reading the data from the port w ill clear that bit (see the table associated 
w ith Figure 11 -11). Input latching can be provided by setting bit 0 of the Auxiliary Con­
trol register.

4) An output port that produces a brief strobe to indicate DATA READY or OUT­
PUT READY (this could be used for multiplexing displays or for providing a DATA 
AVAILABLE signal to a printer):

LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDA #% 10100000
STA VIAPCR

The brief strobe on control line CB2 w ill occur after every output operation. Bit 7 of the 
Peripheral Control register is 1 to make CB2 an output, bit 6 is 0 to make CB2 a pulse, 
and bit 5 is 1 to make CB2 a brief (one clock cycle) pulse following each output.

5) An input port w ith  a handshake Input Acknowledge strobe that can be used to 
tell a peripheral that the previous data has been accepted (and that the com­
puter is ready for more):

LDA # 0
STA VIADDRA ;MAKE PORT A LINES INPUTS
LDA #%00001000 ;CONTROL LINE 2 =  HANDSHAKE

; ACKNOWLEDGE

The strobe on control line CA2 w ill occur after every input or output operation. It w ill re­
main low until the next active transition on control line CA1. Bit 3 of the Peripheral Con­
trol register is 1 to make CA2 an output, bit 2 is 0 to make CA2 a pulse, and bit 1 is 0 to 
make CA2 an active-low acknowledgment that lasts until the next active transition on 
CA1. Note that the active transition on CA1 is a falling edge since bit 0 of the Peripheral 
Control register is 0. This configuration is suitable for many CRT terminals that require a 
complete handshake.

:MAKE PORT A LINES INPUTS 
:MAKE RISING EDGE ACTIVE

VIA
CONFIGURATION
EXAMPLES
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6) An output port w ith  a latched active-low control b it (latched output or level 
output). Such an output bit can be used to turn a peripheral on or off or to control 
its mode of operation.

LDA #$FF ;MAKE PORT B LINES OUTPUTS
STA VIADDRB
LDA #% 11000000 ;CONTROL LINE 2 =  LATCHED ZERO LEVEL
STA VIAPCR

Bit 7 =  1 to make control line CB2 an output, bit 6 =  1 to make it a level or latched bit, 
and bit 5 = 0 to make the active level zero. This bit is not affected by operations on the 
I/O port or Output register; its value can be changed by changing bit 5 of the Peripheral 
Control register, i.e.,

LDA VIAPCR
ORA #% 00100000 ;MAKE LEVEL ONE
STA VIAPCR
LDA VIAPCR
AND #% 11011111 ;MAKE LEVEL ZERO
STA VIAPCR

You can use this configuration to produce an active-high or active-low strobe or to pro­
vide pulses w ith software-controlled lengths.



USING THE VIA TO TRANSFER DATA
Once the VIA has been configured, you may use its data registers 
like any other memory location (just as w ith the PIA). The common 
ways to transfer data, status, and control are w ith the instructions 
Load Accumulator, Store Accumulator, Bit Test, and Compare. Note that Output 
Register A can be addressed in two ways —  one with handshaking (address 1) and one 
w ithout handshaking (address F). The address w ithout handshaking allows you to use 
CA1 independently of the peripheral attached to I/O Port A. That control line could be 
used for an alarm, clock input, control panel interface, or extra control input from 
another peripheral. The Interrupt flag for that input can be cleared directly by clearing 
the appropriate bits in the Interrupt Flag register (see Figure 11-11). The alternate ad­
dress for Output Register A and the independent modes for control lines CA2 and CB2 
allow use of control lines w ithout having to worry about the automatic handshaking 
features of the VIA.

VIA INPUT/ 
OUTPUT
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VIA INTERRUPT FLAG REGISTER
We have mentioned the VIA Interrupt Flag register (see Figure 
11-11) on several occasions. The table in Figure 11-11 ex­
plains the meanings of the various bits (bit 7 is a general in­
terrupt request bit that is 1 if any interrupt is both active and enabled).

Any of the flags in the Interrupt Flag register may be explic itly  cleared by writing 
a logic 1 into the corresponding b it position. This procedure is useful when the con­
trol lines are being used independently of the data ports (as in the independent input 
mode described in Tables 11-8 and 11-9) or when no data transfers are actually re­
quired in response to the flag being set. Some examples of explicitly clearing the flags 
are:

LDA #%00000010
STA VIAIFR ;CLEAR CA1 INTERRUPT FLAG

LDA #%00001000
STA VIAIFR ;CLEAR CB2 INTERRUPT FLAG

LDA #% 1 1111111
STA VIAIFR ;CLEAR ALL INTERRUPT FLAGS

The value written into bit 7 does not matter, since that flag cannot be explicitly set or 
cleared from the CPU.

Bits 0, 1, 3, and 4 of the VIA Interrupt Flag register often serve as handshake status bits 
such as Data Ready or Peripheral Ready. You can check their values w ith appropriate 
masking or shifting operations.

LDA VIAIFR
AND #%00000010 ;IS CA1 FLAG SET?
BNE DEVRDY ;YES. DEVICE READY

LDA VIAIFR
AND #% 00010000 ;IS CB1 FLAG SET?
BNE DEVRDY ;YES. DEVICE READY

The flag is then automatically cleared by reading or writing the appropriate port or by 
explicitly clearing the bit in the Interrupt Flag register. The following program w ill wait 
for a Ready flag attached to input CA1 to go high:

WAITR LDA VIAIFR
AND #%00000010 ;IS CA1 FLAG SET?
BEQ WAITR ;NO, WAIT

How would you change these programs to handle Ready lines attached to CA2, CB1, or 
CB2?

Note that the flag w ill remain set unless some operation clears it. If no operation is 
actually required, some dummy operation (such as reading the port and discarding the 
data) w ill be necessary simply to clear the flag. Be particularly careful in cases where 
the CPU is not ready for data or has no output data to send. Obviously, careful docu­
mentation is essential in cases where the purposes of operations may be far from ob­
vious.

VIA INTERRUPT 
FLAG REGISTER
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VIA TIM ERS9' 10
As we noted earlier, the VIA contains two 16-bit counter/timers. | VIA TIMERS |
These timers are handled as follows:

1) They may be read or w ritten  as six memory locations, four for timer 1 and tw o 
for timer 2 (see Table 11 -7).

2) Their modes of operation are controlled by bits 5, 6, and 7 of the Auxiliary 
Control register (see Figure 11-10),

3) Their status may be determined by examining bits 5 and 6 of the Interrupt 
Flag register (see Figure 11-11).

The timers can be used as follows:

1) To generate a single time interval. The timer must be loaded w ith the number of 
clock pulses that are required.

2) To count pulses on pin PB6 (timer 2 only). The timer must be loaded w ith the 
number of pulses to be counted. This use of PB6 takes precedence over its normal 
use as an I/O pin.

3) To generate continuous time intervals (timer 1 only) for use in real-time ap­
plications. The timer must be loaded w ith the number of clock pulses per interval.

4) To produce a single pulse or a continuous series of pulses on pin PB7 (timer 1 
only). The timer must be loaded with the number of clock pulses per interval. This 
use of PB7 takes precedence over its normal use as an I/O pin.
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Timer 2 is simpler than timer 1 and can be used only to generate a single time in­
terval (the one-shot mode) or to count pulses on pin PB6. Bit 5 of the Auxiliary Con­
trol register selects the mode:

Bit 5 =  0 for one-shot mode, 1 for pulse-counting mode.

The 16-bit timer occupies two memory locations (see Table 11-7). The first address is 
used to read or write the 8 least significant bits: reading this address also clears the 
timer 2 interrupt flag (Figure 11-11). The second address is used to read or write the 8 
most significant bits; w riting into this address loads the counters, clears the timer 2 in­
terrupt flag, and starts the timing operation. The completion of the operation sets the 
timer 2 interrupt flag (bit 5 of the Interrupt Flag register as shown in Figure 11-11).

Examples of timer 2 operation are as follows:

1) W ait for 1024 (0400-|6> clock pulses to elapse.

OPERATION OF 6522 VIA TIMER 2

LDA # 0 ;PUT TIMER 2 IN ONE-SHOT MODE (BIT 
; 5 = 0 )

STA VIAACR
STA VIAT2L ;MAKE PULSE LENGTH 0400 HEX
LDA # 4
STA VIAT2H ;START TIMING INTERVAL
LDA #% 00100000 ;GET MASK FOR TIMER 2 INTERRUPT FLAG
BIT VIAIFR ;IS TIMER 2 FLAG SET?
BEQ WAITD ;NO, INTERVAL NOT COMPLETED
LDA VIAT2L ;YES, CLEAR INTERRUPT FLAG
BRK

WAITD

Note the following steps in the program:

a) Putting the timer in the one-shot mode by clearing bit 5 of the Auxiliary Control 
register.

b) Loading the timer w ith the initial count (0400-) g) required to give the correct inter­
val. Loading the MSBs of the timer also starts the tim ing operation.

c) W aiting for the interval to be completed. A timeout sets bit 5 of the Interrupt Flag
register.

d) Clearing the interrupt flag so that it does not interfere w ith other operations. The in­
struction LDA VIAT2L performs this function.

2) Generate a delay of length given by 10 pulses on pin PB6.

MAKE PORT B INPUTS 
PUT TIMER 2 IN PULSE-COUNTING MODE 

(BIT 5 =  1)

;MAKEPULSE COUNT 10

WAITC

LDA # 0
STA VIADDRB
LDA #% 00100000

STA VIAACR
LDA #10
STA VIAT2L
LDA # 0
STA VIAT2H
LDA #% 00100000
BIT VIAIFR
BEQ WAITC
LDA VIAT2L
BRK

START PULSE COUNTING
GET MASK FOR TIMER 2 INTERRUPT FLAG
IS TIMER 2 FLAG SET?
NO, COUNT NOT COMPLETE 
YES. CLEAR INTERRUPT FLAG

This program is the same as the previous example, except that the mode of timer 2 
is different. Here the input on pin PB6 could be a periodic clock line or a line that is 
simply pulsed w ith each occurrence of some external operation.

1 1 - 3 7



OPERATION OF 6522 VIA TIMER 1
Timer 1 has four operating modes (see Figure 11-10) which allow it to generate a 
single time-interval (one-shot mode) or a continuous series of intervals (free-run­
ning mode). Furthermore, each loading operation can generate an output pulse on PB7 
which can be used to control external hardware. Bits 6 and 7 of the Auxiliary Control 
register determine the mode of timer 2 as follows:

Bit 7 = 1 to generate output pulses on pin PB7, 0 to disable such pulses (in the free-run­
ning mode, PB7 is inverted each time the counter reaches zero).

Bit 6 =  1 for free-running mode, 0 for one-shot mode.

Timer 1 occupies four memory addresses (see Table 11-7). The first two addresses 
are used to read or write the counters. W riting into the second address loads the coun­
ters, clears the timer 1 Interrupt flag, and starts the tim ing operation. The next two ad­
dresses are used to read from or write into the latches w ithout affecting the counters. 
This allows the generation of complex waveforms in the free-running mode. W riting 
into the most significant bits of the latches also clears the timer 1 interrupt flag.

Examples of timer 1 operation are as follows:

1) W ait for 4096 (1000-|q) clock pulses to elapse before producing an output on pin 
PB7.

LDA # 0 ;PUT TIMER 1 IN SINGLE PULSE, NO OUTPUT 
: MODE

STA VIAACR
STA VIAT1L :PULSE LENGTH = 1000 HEX
LDA #$10
STA VIAT1CH ;START TIMING INTERVAL
LDA #% 01000000 ;GET MASK FOR TIMER 1 INTERRUPT FLAG
BIT VIAIFR ;IS TIMER 1 FLAG SET?
BEQ WAITD ;NO. INTERVAL NOT COMPLETED
LDA VIAT1L :YES, CLEAR TIMER 1 INTERRUPT FLAG
BRK

The only changes from the program for timer 2 are the different addresses used to load 
the pulse length and the different bit position (bit 6 instead of bit 5) that is examined for 
the interrupt flag.

2) Produce an interrupt every 2048 (08001 g) clock pulses and produce a continuous 
series of cycles on pin PB7 w ith a half-width of 2048 clock pulses.

LDA #$FF ;MAKE PORT B LINES OUTPUTS
STA VIADDRB
LDA #%11000000 ;PUT TIMER 1 IN CONTINUOUS MODE WITH

: OUTPUT TO PB7
STA VIAACR
LDA # 0  ;MAKE PULSE LENGTH 0800 HEX
STA VIAT1L
LDA # 8
STA VIATICH :START TIMING INTERVALS
BRK

This routine w ill produce a continuous series of intervals that w ill be marked by the set­
ting of the timer 1 Interrupt flag (bit 6 of the Interrupt Flag register). The main program 
can look for the occurrence of each interval (with the waiting routine from Example 1). 
or (more sensibly) the end of each interval can produce an interrupt (see Chapter 12). 
The level on PB7 w ill be inverted at the end of each timer interval (it w ill go low when 
the first interval starts). Timer 1 w ill run continuously w ith the values in the latches au­
tomatically being reloaded into the counters each time the counters reach zero.
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THE 6 53 0  AND 6 53 2  MULTIFUNCTION SUPPORT DEVICES
The 6530 and 6532 devices contain memory as w e ll as I/O 
ports. They are sometimes referred to as combination 
c h ip s , m u lt i fu n c t io n  s u p p o rt d e v ic e s , or ROM 
(RAMl/IO/TIMER chips (RIOTs). The 6530 device has:

1024 bytes of ROM
• 64 bytes of RAM
• Two 8-bit I/O ports (A and B). although pins 5 through 7 of Port B are often used for 

chip selects and an interrupt output
• One 8-bit timer

Figure 11-12 is a block diagram of the 6530 device and Table 11-10 describes its inter­
nal addressing. The 6532 device has:

128 bytes of RAM
• Two 8-b it I/O ports (A and B), although pin 7 of Port A is often used as a strobe input 

comparable to pins CA1 or CB1 of a 6520 or 6522 device,
• One 8-bit timer

Figure 11-13 is a block diagram of the 6532 device and Table 11-11 describes its inter­
nal addressing. Note that 6532 devices contain no ROM.

The following features of 6530 and 6532 devices should be noted:

1) Neither contains any dedicated I/O control lines, although pin 7 of Port A on a 6532 
device can be used for this purpose.

2) Both contain a single 8-bit timer w ith a prescaler that allows tim ing intervals with 
m ultiplying factors of 1, 8, 64, or 1024 clock pulses. The timer can thus be used to 
provide intervals far longer than the basic 256 clock counts.

3) The end of the tim ing interval either causes an interrupt or sets a flag which can be 
read.

The 6530 and 6532 devices are used in such popular single-board microcomputers as 
the KIM, VIM, SYM. and AIM-65.11’ 14

6530 AND 6532
MULTIFUNCTION
DEVICES
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Figure 11-12. Block Diagram of the 6530 M ultifunction Device
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Table 11-10. Internal Addressing for the 6530 M ultifunction Device

Pimary Select

Accessed Locations
RSO

RAM
Select*

I/O Timer 
Select*

1 X X AO A9 directly address one of 1024 ROM bytes
0 1 0 AO A5 directly address one of 64 RAM bytes

Secondary
Select Interpretation

A3 A2 A1 AO

0 0 1 X 0 0 0 Access I/O  Port A

! 0 0 1 X 0 0 1 Access I/O  Port A Data Direction register
0 0 1 X 0 1 0 Access I/O  Port B j
0 0 1 X 0 1 1 Access I/O  Port B Data Direction register
0 0 1W 0 1 X X Disable IRQ
0 0 1W 1 1 X X Enable IRQ
0 0 1W X 1 0 0 Write to timer, then decrement every <P2 pulse

0 0 1W X 1 0 1 Write to timer, then decrement every 8 <t>2 pulses
0 0 1W X 1 1 0 Write to timer, then decrement every 64 <t>2 pulses

0 0 1W X 1 1 1 Write to timer, then decrement every 1024 <t>2 pulses
0 0 1R X 1 X 0 Read timer
0 0 1R X 1 X 1 Read interrupt flag

* R A M  se lec t a nd  I /O  se le c t are 't ru e ”  i f  1, o r  ' fa ls e '' i f  0 ; tru e  and  fa lse  are fu n c t io n s  o f  yo u r 
s p e c if ic a tio n . Y ou  s p e c ify  th e  c o m b in a tio n  o f  a dd re ss  lines th a t  c re a te  a "tru e ”  line  co n d itio n . 

X  re p rese n ts  "d o n 't c a re ” . B its m a y  be  0  o r  1.
1R re p re s e n ts  S e lec t d u r ing  a read.
1W  re p re s e n ts  S e lect d u r in g  a w r ite .
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Figure 11-13. Block Diagram of the 6532 M ultifunction Device 

Table 11-11 Internal Addressing for the 6532 M ultifunction Device

Primary Select Secondary Select

InterpretationRAM
Select

I/O  Timer 
Select

A4 A3 A2 A1 AO

1 0 X X X X X AO - A6 directly addresses one of 128 RAM bytes
0 1 X X 0 0 0 Access I/O  Port A
0 1 X X 0 0 1 Access I/O  Port A Data Direction register
0 1 X X 0 1 0 Access I/O  Port B
0 1 X X 0 1 1 Access I/O  Port B Data Direction register
0 1W 1 0 1 X X Disable IRQ
0 1W 1 1 1 X X Enable IRQ
0 1W 1 X 1 0 0 Write to timer, then decrement every <t>2 pulse

\ 0 1W 1 X 1 0 1 Write to timer, then decrement every 8 <t»2 pulses
0 1W 1 X 1 1 0 Write to timer, then decrement every 64 <l>2 pulses
0 1W 1 X 1 1 1 Write to timer, then decrement every 1024 4>2 pulses
0 1R X X 1 X 0 Read timer
0 1R X X 1 X 1 Read interrupt flags
0 1W 0 X 1 X 0 Request interrupt on high-to-low PA7 transition
0 1W 0 X 1 X 1 Request interrupt on low-to-high PA7 transition
0 1W 0 X 1 0 X Enable PA7 interrupt request
0 1W 0 X 1 1 X Disable PA7 interrupt request

X represents "don't care” Bits may be 0 or 1.
1R represents Read access. 1W represents Write access.
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EXAMPLES  
A Pushbutton Switch
Purpose: To interface a single pushbutton switch to a 6502 microprocessor by means 

of a 6522 Versatile Interface Adapter. The pushbutton is a single mechani­
cal switch that provides a contact closure (logic level '0') while pressed

Figure 11-14 shows the circuitry required to interface the pushbutton. It uses one bit of 
a 6522 VIA, which acts as a buffer; no latch is needed since the pushbutton remains 
closed for many CPU clock cycles. Pressing the button grounds the VIA input bit. The 
pullup resistor ensures that the input bit is T  if the button is not being pressed.

+ 5 v

Figure 11-14. A Pushbutton Circuit

1 1 - 4 3



Programming Examples:

We w ill perform two tasks w ith this circuit. They are:

a) Set a memory location based on the state of the button.

b) Count the number of times that the button is pressed.

Task 1: Determine Switch Closure

Purpose: Set memory location 0040 to one if the button is not being pressed, and to 
zero if it is being pressed.

Sample Cases:

1) Button open (i.e., not pressed)
Result =  (0040) =01

2) Button closed (i.e., pressed)
Result =  (0040) =  00

Flowchart:

Program:

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER = ZERO
LDA VIAORA READ BUTTON POSITION
AND #MASK IS BUTTON CLOSED (LOGIC ZERO)?
BEQ DONE YES, DONE
INC $40 NO, MARKER =1
BRK
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Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
00031
0004)

VIAPCR

0005 8D STA VIADDRA
0006)
00071 VIADDRA

0008 85 STA $40
0009 40
000A AD LDA VIAORA
000B)
oooct

VIAORA

000D 29 AND #MASK
000E MASK
OOOF FO BEQ DONE
0010 02
0011 E6 INC $40
0012 40
0013 00 DONE BRK

The addresses VIAPCR (Peripheral Control register). VIADDRA (Data Direction Register
A), and VIAORA (Output Register A) depend on how the VIA is connected in your
microcomputer. The VIA control lines are not used in this example; the contents of the
Peripheral Control register are thus irrelevant but we have cleared that register as a pre­
caution against spurious operations. We have assumed (as is usually the case) that the
VIA addresses are not on page zero.

MASK depends on the bit to which the pushbutton is connected; it has a one in the
button position and zeros elsewhere.

Button Position Mask

(Bit Number) Binary Hex

0 00000001 01
1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 10
5 00100000 20
6 01000000 40
7 10000000 80
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If the button is attached to bit 6 or bit 7 of the VIA input port, the program can use a Bit 
Test instruction to set the Overflow or Sign bits and thereby determine the button's 
state. For example,

Bit 7
BIT VIAORA ;IS BUTTON CLOSED (LOGIC ZERO)?
BPL DONE ;YES, DONE

Bit 6
BIT VIAORA ;IS BUTTON CLOSED (LOGIC ZERO)?
BVC DONE :YES. DONE

Note the use of BVC or BVS to check the value of bit 6.

We could also use shift instructions if the button is attached to bits 0, 6, or 7. The se­
quence for bit 0 is:

LSR VIAORA :IS BUTTON CLOSED (LOGIC ZERO)?
BCC DONE ;YES, DONE

The instructions ASL or ROL can be used w ith bits 6 or 7. Do the contents of the VIA 
Data register actually change? Explain your answer.
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Task 2: Count Switch Closures

Purpose: Count the number of button closures by Incrementing memory location 0040 
after each closure.

Sample Case:

Pressing the button ten times after the start of the program should give 
(0040) = 0A

Note: In order to count the number of times that the button has SWITCH
been pressed, we must be sure that each closure causes a single I BOUNCE
transition. However, a mechanical pushbutton does not produce a 
single transition for each closure, because the mechanical contacts bounce back and 
forth before settling into their final positions. We can use hardware to eliminate the 
bounce or we can handle it in software.

The program can debounce the pushbutton by waiting after it DEBOUNCING
finds a closure. The required delay is called the debouncing IN SOFTWARE
time and is part of the specifications of the pushbutton. It is
typically a few milliseconds long. The program should not examine the pushbutton dur­
ing this period because it m ight mistake the bounces for new closures. The program 
may either enter a delay routine like the one described previously or may simply per­
form other tasks for the specified amount of time.

Even after debouncing, the program must still wait for the present closure to end before 
looking for a new closure. This procedure avoids double counting. The following pro­
gram uses a software delay of 10 ms to debounce the pushbutton. You may want to try 
varying the delay or elim inating it entirely to see what happens. To run this program, 
you must also enter the delay subroutine into memory starting at location 0030.

Flowchart:
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Source Program:

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS
STA $40 ;COUNT = ZERO INITIALLY

CHKCL LDA VIAORA
AND #MASK ;IS BUTTON BEING PRESSED?
BNE CHKCL ;N0. WAIT UNTIL IT IS
INC $40 ;YES. ADD 1 TO CLOSURE COUNT
LDY #10  ;WAIT 10 MS TO DEBOUNCE BUTTON
JSR DELAY

CHKOP LDA VIAORA
AND #MASK :IS BUTTON STILL BEING PRESSED?
BEQ CHKOP ; YES. WAIT FOR RELEASE
BNE CHKCL ;NO, LOOK FOR NEXT CLOSURE
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Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
00031 
00041 VIAPCR

0005 8D STA VIADDRA
0006)
0007)

VIADDRA

0008 85 STA $40
0009 40
000A AD CHKCL LDA VIAORA
000B)
000C)

VIAORA

000D 29 AND #MASK
000E MASK
000F DO BNE CHKCL
0010 F9
0011 E6 INC $40
0012 40
0013 AO LDY #10
0014 OA
0015 20 JSR DELAY
0016 30
0017 00
0018 AD CHKOP LDA VIAORA
0019) 
001 A)

VIAORA

001 B 29 AND #MASK
001C MASK
001D FO BEQ CHKOP
001E F9
001F DO BNE CHKCL
0020 E9

The three instructions beginning w ith the label CHKOP are used to determine when the 
switch reopens.

Clearly we do not really need a VIA for this simple interface. An addressable tri-state 
buffer would do the job at far lower cost.
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A Toggle Switch
Purpose: To interface a single-pole, double-throw (SPDT) toggle switch to a 6502 

microprocessor. The toggle is a mechanical device that is either in the nor­
mally closed (NC) position or the normally open (NO) position.

Circuit Diagram:

Figure 11-15 shows the circuitry required to interface the 
switch. Like the pushbutton, the switch uses one bit of a 6522 
VIA that serves as an addressable buffer. Unlike the button, the 
switch may be left in either position. Typical program tasks are 
to determine the switch position and to see if the position has 
changed. Either a one-shot w ith  a pulse length of a few milliseconds or a pair of cross- 
coupled NAND gates (see Figure 11-16) can debounce a mechanical switch.

DEBOUNCING 
WITH
CROSS-COUPLED 
NAND GATES

Figure 11-15. An Interface for a Toggle Switch

Figure 11-16. A Debounce Circuit Based on Cross-coupled NAND Gates
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The circuits w ill produce a single step or pulse in response to a change in switch posi­
tion even if the switch bounces before settling into its new position.

Programming Examples:

We w ill perform two tasks involving this circuit. They are:

1) Set a memory location to one when the switch is closed.
2) Set a memory location to one when the state of the switch changes.

Task 1: W ait for Switch to Close

Purpose: Memory location 0040 is zero until the switch is closed and then is set to 
one; that is. the processor clears memory location 0040, waits for the switch 
to be closed, and then sets memory location 0040 to one.

The switch could be marked Run/Halt, since the processor w ill not proceed until the 
switch is closed.

Flowchart:

Program:

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER =  ZERO
LDA VIAORA READ SWITCH POSITION
AND #MASK IS SWITCH CLOSED CO')?
BNE WAITC NO. WAIT
INC $40 YES. MARKER = ONE
BRK
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Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003)
0004) VIAPCR

0005 8D STA VIADDRA
0006)
0007) VIADDRA

0008 85 STA $40
0009 40
000A AD WAITC LDA VIAORA
OOOB)
OOOCi

VIAORA

000D 29 AND #MASK
000E MASK
000F DO BNE WAITC
0010 F9
0011 E6 INC $40
0012 40
0013 00 BRK
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Task 2: W ait for Switch to Change

Purpose: Memory location 0040 remains zero until the switch position changes and is 
then set to 1; i.e., the processor waits until the switch changes position, then 
sets memory location 0040 to 1.

Flowchart:

Source Program:

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 MARKER = ZERO
LDA VIAORA GET OLD SWITCH POSITION
AND #MASK
STA $41

WAITCH LDA VIAORA GET NEW SWITCH POSITION
AND #MASK
CMP $41 ARE NEW AND OLD POSITIONS THE
BEQ WAITCH YES, WAIT
INC $40 NO, MARKER = ONE
BRK
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Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003) VIAPCR
0004)
0005 8D STA VIADDRA
0006)
0007)

VIADDRA

0008 85 STA $40
0009 40
000A AD LDA VIAORA
000B)
000C1

VIAORA

000D 29 AND #MASK
OOOE MASK
OOOF 85 STA $41
0010 41
0011 AD WAITCH LDA VIAORA
0012) VIAORA
0013)
0014 29 AND #MASK
0015 MASK
0016 C5 CMP $41
0017 41
0018 FO BEQ WAITCH
0019 F7
001A E6 INC $40
001 B 40
001C 00 BRK

A Subtract or Exclusive OR could replace the Compare instruction in the program. Either 
of these instructions would, however, change the contents of the Accumulator. The 
Exclusive OR would be useful if several switches were attached to the same VIA, since 
it would produce a one bit for each switch that changed state. How would you rewrite 
this program so that it debounces the switch in software?
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A Multiple-Position (Rotary, Selector, or Thumbwheel) Switch
Purpose: To interface a multipie-position switch to a 6502 microprocessor. The lead 

corresponding to the switch position is grounded, while the other leads are 
high (logic ones).

Circuit Diagram:

Figure 11-17 shows the circuitry required to interface an 8-position switch. The switch 
uses all eight data bits of one port of a VIA. Typical tasks are to determine the position 
of the switch and to check whether or not that position has changed. Two special situa­
tions must be handled:

1) The switch is temporarily between positions so that no leads are grounded.
2) The switch has not yet reached its final position.

The first of these situations can be handled by waiting until the input is not all 'Vs. i.e.. 
until a switch lead is grounded. We can handle the second situation by examining the 
switch again after a delay (such as 1 or 2 seconds) and only accepting the input when it 
remains the same. This delay w ill not affect the responsiveness of the system to the 
switch. We can also use another switch (i.e., a Load switch) to tell the processor when 
the selector switch should be read.

Programming Examples:

We w ill perform two tasks involving the circuit of Figure 11-17. These are:

a) Monitor the switch until it is in a definite position, then determine the position and
store its binary value in a memory location.

b) W ait for the position of the switch to change, then store the new position in a 
memory location.

If the switch is in a position, the lead from that position is grounded through the com­
mon line. Pullup resistors on the input lines avoid problems caused by noise.

Figure 11-17. An Interface for a Multi-Position Switch

1 1 - 5 5



Task 1: Determine Switch Position

Purpose: The program waits for the switch to be in a specific position and then stores 
the position number in memory location 0040.

Table 11-12 contains the data inputs corresponding to the various switch positions. 

Table 11-12. Data Input vs. Switch Position

Switch Position
Data Input

Binary Hex

0 11111110 FE
1 11111101 FD
2 11111011 FB
3 11110111 F7
4 11101111 EF
5 11011111 DF
6 10111111 BF
7 01111111 7F

This scheme is inefficient since it requires eight bits to distinguish among
eight different positions.

A TTL or MOS encoder could reduce the number of input bits 
needed. Figure 11-18 shows a circuit using the 74LS148 TTL 8- 
to-3 encoder.15 v\/e attach the switch outputs in inverse order, 
since the 74LS148 device has active-low inputs and outputs. The 
output of the encoder circuit is a 3-bit representation of the switch position. Many 
switches include encoders so that their outputs are coded, usually as a BCD digit (in 
negative logic).

USING 
A TTL 
ENCODER

Figure 11-18. A Multiple-Position Switch w ith  an Encoder
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The encoder produces active-low outputs, so. for example, switch position 5, which is 
attached to input 2, produces an output of 2 in negative logic (or 5 in positive logic). 
You may want to verify the double negative for yourself.

Flowchart:

CHKSW

DONE

Program:

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
LDA VIAORA
CMP #$FF IS SWITCH IN A POSITION?
BEQ CHKSW NO, WAIT UNTIL IT IS
LDX # 0 SWITCH POSITION = ZERO
ROR A IS NEXT BIT GROUNDED POSITION?
BCC DONE YES, SWITCH POSITION FOUND
INX NO, INCREMENT SWITCH POSITION
JMP CHKPOS
STX $40 SAVE SWITCH POSITION
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0 0 0 0 A9 LDA # 0

0 0 0 1 0 0

0 0 0 2 8 D STA VIAPCR
0003)

VIAPCR0004 (
0005 8 D STA VIADDRA
0006) 
0007) VIADDRA

0008 AD CHKSW LDA VIAORA
00091

VIAORA000A)
000B C9 CMP #$FF
OOOC FF
000D FO BEQ CHKSW
000E F9
000F A2 LDX # 0

0 0 1 0 0 0

0 0 1 1 6 A CHKPOS ROR A
0 0 1 2 90 BCC DONE
0013 04
0014 E8 INX
0015 4C JMP CHKPOS
0016 11

0017 0 0

0018 8 6 DONE STX $40
0019 40
0 0 1 A 0 0 BRK

Suppose that a faulty switch or defective VIA results in the input always being FF-|0 . 
How could you change the program so that it would detect this error?

This program could easily be restructured to make it shorter and faster —  and relocat­
able as well. One option would be to replace JMP CHKPOS w ith BCS CHKPOS; why is 
this possible and what improvements result? Another option would be to change the 
initial conditions so that only one jump instruction was required. How would you 
accomplish that? Hint: start w ith FF-|g in Index Register X and increment X before 
shifting the Accumulator.

This example assumes that the switch is debounced in hardware How would you 
change the program to debounce the switch in software?
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Task 2: W ait For Switch Position To Change

Purpose: The program waits for the switch position to change and places the new 
position (decoded) into memory location 0040. The program waits until the 
switch reaches its neOv position.

Flowchart:

Source Program:

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
LDA VIAORA
CMP #$FF IS SWITCH IN A POSITION?
BEQ CHKFST NO. WAIT UNTIL IT IS
TAX SAVE OLD POSITION
LDA VIAORA
CMP #$FF IS SWITCH IN A POSITION?
BEQ CHKSEC NO. WAIT UNTIL IT IS
CPX VIAORA IS POSITION SAME AS BEFORE?
BEQ CHKSEC YES. WAIT FOR IT TO CHANGE
LDX #$FF NO, START SWITCH POSITION AT -1
INX SWITCH POSITION = SWITCH POSITION +  1
ROR A IS NEXT BIT GROUNDED?
BCS CHKPOS NO, KEEP LOOKING
STX $40 STORE SWITCH POSITION
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003)
0004)

VIAPCR

0005 8D STA VIADDRA
0006)
0007t VIADDRA

0008 AD CHKFST LDA VIAORA
0009) 
000A)

VIAORA

OOOB C9 CMP #$FF
000C FF
000D FO BEQ CHKFST
000E F9
000F AA TAX
0010 AD CHKSEC LDA VIAORA
0011) 
0012)

VIAORA

0013 C9 CMP #$FF
0014 FF
0015 FO BEQ CHKSEC
0016 F9
0017 EC CPX VIAORA
0018)
0019)

VIAORA

001A FO BEQ CHKSEC
001 B F4
001C A2 LDX #$FF
001D FF
001 E E8 CHKPOS INX
001F 6A ROR A
0020 BO BCS CHKPOS
0021 FC
0022 86 STX $40
0023 40
0024 00 BRK

An alternative method for determining if the switch is in a position is:

CHKSW INC VIAORA
BEQ CHKSW

Why does this work? W hat happens to the input data? Rewrite the program to use the 
alternative method; how much less memory is required?
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A Single LED
Purpose: To interface a single light-em itting diode to a 6502 microprocessor. The LED 

can be attached so that either a logic zero or a logic one turns it on.

Circuit Diagram:

Figure 11-19 shows the circuitry required to interface an LED. The 
LED lights when its anode is positive w ith respect to its cathode 
(Figure 11-19a). Therefore, you can either light the LED by ground­
ing the cathode and having the computer supply a one to the anode (Figure 11-19b) or 
by connecting the anode to +5 volts and having the computer supply a zero to the 
cathode (Figure 11 -19c). Controlling the cathode is the most common approach. The 
LED is brightest when it operates from pulsed currents of about 10 or 50 mA applied a 
few hundred times per second. LEDs have a very short turn-on time (in the microsecond 
range) so they are well suited to multiplexing (operating several from a single port). LED 
circuits usually need peripheral or transistor drivers and current-lim iting resistors. MOS 
devices normally cannot drive LEDs directly and make them bright enough for easy 
viewing.

Note: The VIA has an output latch on each port. However, the B port is normally used 
for output, since it has somewhat more drive capability. In particular, the B port outputs 
are capable of driving Darlington transistors (providing 3.0 mA minimum at 1.5 V). 
Darlington transistors are high-gain transistors capable of switching large amounts of 
current at high speed; they are useful in driving solenoids, relays, and other devices.

LED
CONTROL
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Anode ^ ^ C a th o d e

f  5 V Q - - W V -

a) Basic LED circuitry. The resistor R should limit the maximum current to 50 mA and 

the average current to 10 mA.

b) Interfacing an LED with positive logic. A logic '1' from the CPU turns the LED on.

6 52 2
VIA

Driver

MD

c) Interfacing an LED with negative logic. A logic '0 ' from the CPU turns the LED on. The driver or the 

CPU may invert the logic levels.

Figure 11-19. Interfacing an LED
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Task: Turn the Light On or Off

Purpose: The program turns a single LED either on or off.

A. Send a Logic One to the LED (turn a positive display on or a negative display off). 

Source Program:

(form data initially)
LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDA #MASKP ;GET DATA FOR LED
STA VIAORB ;SEND DATA TO LED
BRK

The B side of the VIA is used because of the buffering. The CPU can therefore read the 
data from the output port.

(update data)
LDA VIAORB ;GET OLD DATA

#MASKP ;TURN ON LED BIT
VIAORB ;SEND DATA TO LED

ORA
STA
BRK

MASKP has a one bit in the LED position and zeros elsewhere. Logically ORing with 
MASKP does not affect the other bit positions, which may contain values for other 
LEDs. Note that we can read the VIA Output (Data) Register even when the pins are 
assigned as outputs.



Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

(form data initially)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
00031
0004) VIAPCR

0005 A9 LDA #$FF
0006 FF
0007 8D STA VIADDRB
0008)
0009) VIADDRB

000A A9 LDA #MASKP
000B MASKP
OOOC 8D STA VIAORB
000DI
000E) VIAORB

000F 00 BRK
(update data)

0010 AD LDA VIAORB
0011)
0012) VIAORB

0013 09 ORA #MASKP
0014 MASKP
0015 8D STA VIAORB
0016)
0017) VIAORB

0018 00 BRK

B. Send a Logic Zero to the LED (turn a positive display off or a negative display on).

The differences are that MASKP must be replaced by its logical complement MASKN 
and ORA #MASKP must be replaced by AND #MASKN. MASKN has a zero bit in the 
LED position and ones elsewhere. Logically ANDing w ith  MASKN does not affect the 
other bit positions.
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Seven-Segment LED Display
Purpose: To interface a seven-segment LED display to a 6502 microprocessor. The dis­

play may be either common-anode (negative logic) or common-cathode 
(positive logic).

Circuit Diagram:

Figure 11-20 shows the circuitry required to interface a 
seven-segment display. Each segment may have one, two, 
or more LEDs attached in the same way. There are two 
ways of connecting the displays. One is tying all the 
cathodes together to ground (see Figure 11-21 a); this is a 
"common-cathode" display, and a logic one at an anode lights a segment. The other is 
tying all the anodes together to a positive voltage supply (see Figure 11 -21b); this is a 
"common-anode" display, and a logic zero at a cathode lights a segment. So the com- 
mon-cathode display uses positive logic and the common-anode display negative logic. 
Either display requires appropriate drivers and resistors.

The Common line from the display is tied either to ground or to +5  volts. The display 
segments are customarily labelled:

f b

e c

Note: The seven-segment display is widely used because it contains the smallest num­
ber of separately controlled segments that can provide recognizable representations of 
all the decimal digits (see Figure 11 -22 and Table 11-13). Seven-segment displays can 
also produce some letters and other characters (see Table 11-14). Better representa­
tions require a substantially larger number of segments and more circu itry.1® Since 
seven-segment displays are so popular, low-cost seven-segment decoder/drivers have 
become widely available. The most popular devices are the 7447 common-anode driver 
and the 7448 common-cathode driver;17 these devices have Lamp Test inputs (that 
turn all the segments on) and blanking inputs and outputs (for blanking leading or trail­
ing zeros).

9

COMMON-ANODE
OR
COMMON-CATHODE
DISPLAYS
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Table 11-13. Seven-Segment Representations of Decimal Numbers

Hexadecimal Representation

Common-cathode Common-anode

0 3F 40
1 06 79
2 5B 24
3 4F 30
4 66 19
5 6D 12
6 7D 02
7 07 78
8 7F 00
9 67 18

Bit 7 is always zero and the others are g. f, e, d. c. b, and a in decreasing order of 
significance.



a) Common-cathode

gO----------------- V A -

( 0 ------------------------<W V-

e O W r

d o ------------------------------- v w -

c o  w > -

b o ---------------------w v -

a O W r

- e -

b) Common-anode + 5 V

Q

g 0  W r

fO -------------------- v w -

e O ............

d o ------------------------------v w -

c o --------------------- w v -

bO--------------vw-

O O V A r

Figure 11-21. Seven-Segment Display Organization
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0: Segments f, e, d, c. b, a on 3: Segments g, d, c, b, a on
a a

f b b

9

e c c

d d

1: Segments c, bon 4: Segme nts g, f, c, b on

b f b

9

c c

2: Segments g, e, d, b. a on 5: Segments g, f, d. c, a on

a a

b f

g g

e c

d d

Figure 11-22 Seven-Segment Representations of Decimal Digits
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6: Segments g, f, e. d, c, a on 

a

8: Segments g, f, e. d, c, b, a on 

a

f b

9 9

e c e c

d
Note that the alternate representation with j^off may 
be reserved for the lower case letter 'b'.

d
This is the same as Lamp Test.

7: Segments c, b, a on
a

9: Segments g, f. c. b. a on 
a

b f b

9

c c

An alternate has segment d on also.

Figure 11-22. Seven-Segment Representations of Decimal Digits (Continued) 

Table 11-14. Seven-Segment Representations of Letters and Symbols

Upper-case Letters
Lower-case Letters 

and Special Characters

Hexadecimal Hexadecimal

Letter
Representation Character Representation

Common- Common- Common- Common-
cathode anode cathode anode

A 77 08 b 7C 03
C 39 46 c 58 27
E 79 06 d 5E 21
F 71 0E h 74 0B
H 76 09 n 54 2B
I 06 79 0 5C 23
J 1E 61 r 50 2F
L 38 47 u 1C 63
0 3F 40 - 40 3F
P 73 OC ? 53 2C
U 3E 41
Y 66 19
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Task 1: Display a Decimal Digit

Purpose: Display the contents of memory location 0040 on a seven-segment display if 
it contains a decimal d ig it Otherwise, blank the display.

Sample Problems:

a. (0040) =  05

Result is 5 on display
b. (0040) =  66

Result is a blank display 

Flowchart:
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Source Program:

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
LDA #$FF
STA VIADDRB MAKE PORT B LINES OUTPUTS
LDA #BLANK GET BLANK CODE
LDX $40 GET DATA
CPX #10 IS DATA 10 OR MORE?
BCS DSPLY YES. DISPLAY BLANKS
LDA SSEG.X NO. CONVERT DATA TO SEVEN-SEGMENT

CODE
STA VIAORB SEND CODE TO DISPLAY
BRK

BLANK is 00 for a common-cathode display, FF for a common-anode display. An alter­
native procedure would be to put the blank code at the end of the table and replace all 
improper data values w ith 10, i.e., the instructions after STA VIADDRB are:

$40 
#10

LDX
CPX
BCC
LDX

CNVRT LDA

;GET DATA
;IS DATA 10 OR MORE?

CNVRT
#10
SSEG.X

;YES. REPLACE IT WITH 10
iCONVERT DATA TO SEVEN-SEGMENT CODE

Table SSEG is either the common-cathode or common-anode representation of the 
decimal digits from Table 11-13.
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003)
0004) VIAPCR

0005 A9 LDA #$FF
0006 FF
0007 8D STA VIADDRB
0008)
0009) VIADDRB

000A A9 LDA #BLANK
OOOB BLANK
OOOC A6 LDX $40
000D 40
000E EO CPX #10
000F OA
0010 BO BCS DSPLY
0011 02
0012 B5 LDA SSEG.X
0013 20
0014 8D DSPLY STA VIAORB
0015)
00161 VIAORB

0017 00 BRK
0020-0029 SSEG (seven-segment 

code table)

Several displays may be multiplexed, as shown in Figure 11 -23. A brief strobe on con­
trol line CB2 clocks the counter and directs data to the next display. RESET starts the 
decimal counter at 9 so that the first output operation clears the counter and directs 
data to the first display.

The following program uses the delay routine to pulse each of ten common-cathode 
displays for 1 ms.
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Task 2: Display Ten Decimal Digits

Purpose: Display the contents of memory locations 0040 through 0049 on ten 7-seg­
ment displays that are multiplexed w ith  a counter and a decoder. The most 
significant d ig it is in 0049.

Sample Problem:

(0040) = 66
(0041) = 3F
(0042) = 7F
(0043) = 7F
(0044) = 06
(0045) = 5B
(0046) = 07
(0047) = 4F
(0048) = 6D
(0049) = 7D
The displays read 6537218804

The circuit in Figure 11-23 uses the VIA handshake signal CB2 as a brief output strobe 
to indicate the occurrence of a data transfer.

Source Program:

SCAN

LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDA #% 10100000
STA VIAPCR ;PROVIDE DATA READY STROBE
LDX #10 ;NUMBER OF DISPLAYS = 10
LDA $3F,X ;GET DATA FOR DISPLAY
STA VIAORB ;SEND DATA TO DISPLAY
JSR DELAY ;WAIT 1 MS
DEX
BNE DSPLY ;COUNT DISPLAYS
BEQ SCAN ;START ANOTHER SCAN

Peripheral Control register bit 7 = 1 to make CB2 an output, bit 6 = 1 to make it a pulse, 
and bit 3 = 1 to make it a brief strobe. We have assumed here that subroutine DELAY 
has been modified to provide a transparent 1 ms wait.
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #$FF
0001 FF
0002 8D STA VIADDRB
0003)
00041 VIADDRB

0005 A9 LDA #% 10100000
0006 AO
0007 8D STA VIAPCR
00081
0009'

VIAPCR

000A A2 SCAN LDX #10
000B OA
OOOC B5 DSPLY LDA $3F,X
000D 3F
000E 8D STA VIAORB
000F)
00101

VIAORB

0011 20 JSR DELAY
0012 30
0013 00
0014 CA DEX

; 0015 DO BNE DSPLY
0016 F5
0017 FO BEQ SCAN
0018 F1
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0 , C. B. and A (D most significant. A 
least significant) are the 4-bit output 
from the counter. These 4 bits activate 
the correspondingly numbered output 
from the decoder, and hence the cor 
respondingly numbered display.

D

749 0
Decade
Counter B

r 9 A

9 8 7 6 5 4 3 2 0

7442
4 to 10

Decoder/Driver

Figure 11-23. Interfacing Multiplexed Seven-Segment Displays
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PROBLEMS
1) An On-Off Pushbutton
Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory 

location 0040. The location initially contains zero. The program should con­
tinuously examine the pushbutton and complement location 0040 w ith each 
closure. You may wish to complement a display output port instead, thus 
making the results easier to see.

Sample Case:

Location 0040 initially contains zero.

The first pushbutton closure changes location 0040 to FF 1 g, the second changes it
back to zero, the third back to FF 1 q, etc. Assume that the pushbutton is debounced in
hardware. How would you include debouncing in your program?

2) Debouncing a Switch in Software
Purpose: Debounce a mechanical switch by waiting until two readings, taken a de­

bounce time apart, give the same result. Assume that the debounce time (in 
ms) is in memory location 0040 and store the switch position in memory 
location 0041.

Sample Problem:

(0040) =  03 causes the program to wait 3 ms between readings.

3) Control for a Rotary Switch
Purpose: Another switch serves as a Load switch for a four-position unencoded rotary 

switch. The CPU waits for the Load switch to close (be zero), and then reads 
the position of the rotary switch. This procedure allows the operator to move 
the rotary switch to its final position before the CPU tries to read it. The pro­
gram should place the position of the rotary switch into memory location 
0040. Debounce the Load switch in software.

Sample Problem:

Place rotary switch in position 2. Close Load switch.

Result: (0040) = 02
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4) Record Switch Positions on Lights
Purpose: A set of eight switches should have their positions reflected on eight LEDs.

That is to say, if the switch is closed (zero), the LED should be on, otherwise 
the LED should be off. Assume that the CPU output port is connected to the 
cathodes of the LEDs.

Sample Problem:

SWITCH 0 CLOSED
SWITCH 1 OPEN
SWITCH 2 CLOSED
SWITCH 3 OPEN
SWITCH 4 OPEN
SWITCH 5 CLOSED
SWITCH 6 CLOSED
SWITCH 7 OPEN

Result:
LED 0 ON
LED 1 OFF
LED 2 ON
LED 3 OFF
LED 4 OFF
LED 5 ON
LED 6 ON
LED 7 OFF

How would you change the program so that a switch attached to bit 7 of Port A of VIA 
# 2  determines whether the displays are active (i.e., if the control switch is closed, the 
displays attached to Port B reflect the switches attached to Port A; if the control switch 
is open, the displays are always off)? A control switch is useful when the displays may 
distract the operator, as in an airplane.

How would you change the program so that it makes the control switch an on-off 
pushbutton; that is, each closure inverts the previous state of the displays? Assume 
that the displays start in the active state and that the program examines and debounces 
the pushbutton before sending data to the displays.

5) Count on a Seven-Segment Display
Purpose: The program should count from 0 to 9 continuously on a seven-segment dis­

play. starting w ith zero.

Hint: Try different tim ing lengths for the displays and see what happens. When does 
the count become visible? W hat happens if the display is blanked part of the time?
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MORE COMPLEX I/O DEVICES

More complex I/O devices differ from simple keyboards, switches, and displays in that:

1) They transfer data at higher rates.
2) They may have their own internal clocks and timing.
3) They produce status information and require control information, as well as 

transferring data.

Because of their high data rates, you cannot handle these I/O devices casually. If the 
processor does not provide the appropriate service, the system may miss input data or 
produce erroneous output data. You are therefore working under much more exacting 
constraints than in dealing w ith simpler devices. Interrupts are a convenient method for 
handling complex I/O devices, as we shall see in Chapter 12,

Peripherals such as keyboards, teletypewriters, cassettes, 
and floppy disks produce their own internal timing. These 
devices provide streams of data, separated by specific tim ­
ing intervals. The computer must synchronize the initial in­
put or output operation w ith the peripheral clock and then provide the proper interval 
between subsequent operations. A simple delay loop like the one shown previously can 
produce the tim ing interval. The synchronization may require one or more of the follow­
ing procedures:

1) Looking for a transition on a clock or strobe line provided by the peripheral for tim ­
ing purposes. The simplest method is to tie the strobe to a VIA control line and wait 
until the appropriate b it of the VIA Interrupt Flag register is set.

2) Finding the center of the time interval during which the data is stable. We would 
prefer to determine the value of the data at the center of the pulse rather than at 
the edges, where the data may be changing. Finding the center requires a delay of 
one-half of a transmission interval (bit time) after the edge. Sampling the data at 
the center also means that small tim ing errors have little effect on the accuracy of 
the reception.

3) Recognizing a special starting code. This is easy if the code is a single bit or if we 
have some tim ing information. The procedure is more complex if the code is long 
and could start at any time. Shifting w ill be necessary to determine where the 
transmitter is starting its bits, characters, or messages (this is often called a search 
for the correct "framing").

4) Sampling the data several times. This reduces the probability of receiving data in­
correctly from noisy lines. Majority logic (such as best 3 out of 5 or 5 out of 8) can 
be used to decide on the actual data value.

Reception is, of course, much more d ifficu lt than transmission, since the peripheral con­
trols the reception and the computer must interpret tim ing information generated by 
the peripheral. In transmission, the computer provides the proper tim ing and formatting 
for a specific peripheral.

Peripherals may require or provide other information besides 
data and timing. We refer to other information transmitted by 
the computer as "control information"; it may select modes of 
operation, start or stop processes, clock registers, enable 
buffers, choose formats or protocols, provide operator displays, count operations, or 
identify the type and priority of the operation. We refer to other information transmitted 
by the peripheral as "status information"; it may indicate the mode of operation, the 
readiness of devices, the presence of error conditions, the format of protocol in use. and 
other states or conditions.

CONTROL 
AND STATUS 
INFORMATION

SYNCHRONIZING 
WITH I/O 
DEVICES
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The computer handles control and status information just like data. This information 
seldom changes, even though actual data may be transferred at a high rate. The control 
or status information may be single bits, digits, words, or multiple words. Often single 
bits or short fields are combined and handled by a single input or output port.

Combining status and control information into bytes reduces the total number of I/O 
port addresses required by the peripherals. However, the combination does mean that 
individual status input bits must be separately interpreted and control output bits must 
be separately determined. The procedures for isolating status bits and setting or reset­
ting control bits are as follows:

Separating Out Status Bits 

Step 1) Read status data from the peripheral 
Step 2) Logical AND w ith a mask (the mask has ones in bit 

positions that m ust be examined and zeros 
elsewhere)

Step 3) Shift the separated bits to the least significant bit positions

Step 3 is unnecessary if the field is a single bit, since the Zero 
flag w ill contain the complement of that bit after Step 2 (try it!).
A Shift or Load instruction can replace Step 2 if the field is a 
single bit and occupies the least significant, most significant, or next to most significant 
bit position (positions 0, 7, or 6). These positions are often reserved for the most fre­
quently used status information. You should try to write the required instruction se­
quences for the 6502 processor. Note, in particular, the use of the Bit Test instruction. 
This instruction performs a logical AND between the contents of the Accumulator and
the contents of a memory location but does not save the result; the flags are set as
follows:

Zero flag =  1 if the logical AND produces a zero result, 0 if it does not.

Sign flag =  bit 7 of the contents of the memory location (independent of the value in 
the Accumulator).

Overflow flag =  bit 6 of the contents of the memory location (independent of the value 
in the Accumulator).

Setting and Clearing Control Bits 

Step 1) Read prior control information
Step 2) Logical AND w ith mask to clear bits (mask has zeros

in b it positions to be cleared, ones elsewhere)
Step 3) Logical OR w ith mask to set bits (mask has ones in bit positions to be set, zeros 

elsewhere)
Step 4) Send new control information to peripheral

Here again the procedure is simpler if the field is a single bit and occupies a position at
either end of the byte.

COMBINING
CONTROL
INFORMATION

BIT TEST 
INSTRUCTION

SEPARATING
STATUS
INFORMATION
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Some examples of separating and combining status bits are:

1) A 3-bit field in bit positions 2 through 4 of a VIA Ouput (Data) register is a scaling 
factor. Place that factor into the Accumulator.

READ STATUS DATA FROM INPUT PORT

LDA VIAOR ;READ STATUS DATA

MASK OFF UNWANTED BITS AND SHIFT RESULT

AND #% 00011100 ;MASK SCALING FACTOR
LSR A :SHIFT TWICE TO NORMALIZE
LSR A

2) The Accumulator contains a 2-bit field that must be placed in bit positions 3 and 4 
of a VIA Output (Data) register.
TEMP =  $0040 
MASK =  %11100111

MOVE DATA TO FIELD POSITIONS

ASL A ;SHIFT DATA TO BIT POSITIONS 3 AND 4
ASL A
ASL A
AND #% 00011000 ;CLEAR OUT OTHER BITS 
STA TEMP

COMBINE NEW FIELD VALUE WITH OTHER DATA

LDA VIOADR
;CLEAR FIELD TO BE CHANGED 
;COMBINED NEW DATA WITH OLD 
;OUTPUT COMBINED DATA

AND HMASK 
ORA TEMP
STA VIOAR

Documentation is a serious problem in handling control and 
status information. The meanings of status inputs or control 
outputs are seldom obvious. The programmer should clearly in­
dicate the purposes of input and output operations in the com­
ments, e.g., "CHECK IF READER IS ON," "CHOOSE EVEN 
PARITY OPTION, or ACTIVATE BIT RATE COUNTER." The Logical and Shift instruc 
tions w ill otherwise be very d ifficu lt to remember, understand, or debug.

DOCUMENTING 
STATUS AND 
CONTROL 
TRANSFERS
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EXAMPLES
An Unencoded Keyboard
Purpose: Recognize a key closure from an unencoded 3 x 3  keyboard and place the 

number of the key that was pressed into the Accumulator.

Keyboards are just collections of switches (see Figure 11 -24). Small numbers of keys are 
easiest to handle if each key is attached separately to a bit of an input port. Interfacing 
the keyboard is then the same as interfacing a set of switches.

Keyboards w ith more than eight keys require more than one input 
port and therefore multibyte operations. This is particularly 
wasteful if the keys are logically separate, as in a calculator or ter­
minal keyboard where the user w ill only strike one at a time. The number of input lines 
required may be reduced by connecting the keys into a matrix, as shown in Figure 
11-25. Now each key represents a potential connection between a row and a column. 
The keyboard matrix requires n +  m external lines, where n is the number of rows and 
m is the number of columns. This compares to n x m external lines if each key is sepa­
rate. Table 11-15 compares the number of keys required by typical configurations.

A program can determine which key has been pressed by using 
the external lines from the matrix. The usual procedure is a 
"keyboard scan." We ground Row 0 and examine the column 
lines. If any lines are grounded, a key in that row has been pressed, causing a row-to- 
column connection. We can determine which key was pressed by determining which 
column line is grounded; that is, which bit of the input port is zero. If no column line is 
grounded, we proceed to Row 1 and repeat the scan. Note that we can check to see if 
any keys at all have been pressed by grounding all the rows at once and examining the 
columns.

The keyboard scan requires that the row lines be tied to an output port and the column 
lines to an input port. Figure 11-26 shows the arrangement- The CPU can ground a par­
ticular row by placing a zero in the appropriate bit of the output port and ones in the 
other bits.

The CPU can determine the state of a particular column by examining the appropriate 
bit of the input port.

Table 11-15. Comparison Between Independent Connections 
and Matrix Connections for Keyboards

Keyboard Size
Number of Lines w ith  

Independent Connections
Number of Lines w ith 
M atrix Connections

3 x 3 9 6
4 x 4 16 8
4 x 6 24 10
5 x 5 25 10
6 x 6 36 12
6 x 8 48 14
8 x 8 64 16

KEYBOARD
SCAN

MATRIX
KEYBOARD
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Figure 11-24. A Small Keyboard
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Each key now serves to connect a rov to a column. For instanee, key 4 connects row 1 to column 1. 

---------------------
Figure 11-25. A Keyboard Matrix 
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Figure 11-26 I/O Arrangement for a Keyboard Scan
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Task 1: Determine Key Closure 

Purpose: W ait for a Key to be Pressed.

The procedure is as follows:

1) Ground all the rows by clearing all the output bits.
2) Fetch the column inputs by reading the input port.
3) Return to Step 1 if all the column inputs are ones. 

Flowchart:

WAITING 
FOR A
KEY CLOSURE

Program:

LDA #$FF
STA VIADDRB MAKE PORT B LINES OUTPUTS
LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA VIAORB GROUND ALL KEYBOARD ROWS
LDA VIAORA GET KEYBOARD COLUMN DATA
AND #% 00000111 MASK COLUMN BITS
CMP #% 00000111 ARE ANY COLUMNS GROUNDED?
BEQ WAITK NO, WAIT UNTIL ONE IS
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #$FF
0001 FF
0002 8D STA VIADDRB
0003)
00041 VIADDRB

0005 A9 LDA # 0
0006 00
0007 8D STA VIAPCR
0008)
0009)

VIAPCR

000A 8D STA VIADDRA
000 B) 
000C) VIADDRA

000D 8D STA VIAORB
000EI
000F) VIAORB

0010 AD WAITK LDA VIAORA
0011)
00121 VIAORA

0013 29 AND #% 00000111
0014 07
0015 C9 CMP #% 00000111
0016 07
0017 FO BEQ WAITK
0018 F7
0019 00 BRK

VIA Port B Is the keyboard output port and Port A is the input port.

Masking off all but the column bits eliminates any problems that could be caused by 
the states of the unused input lines.

We could generalize the routine by naming the output and masking patterns:
ALLG =% 11111000
OPEN =%00000111

These names could then be used in the actual program; a different keyboard would re­
quire only a change in the definitions and a re-assembly.

Of course, one port of a VIA is all that is really necessary for a 3 x 3 or 4 x 4 keyboard.
Try rewriting the program so that it uses only Port A.



Task 2: Identify Key

Purpose: Identify a key closure by placing the number of the key into the Accumulator. 

The procedure is as follows:

1) Set key number to -1. keyboard output port to all ones except for a zero in bit 0, 
and row counter to number of rows.

2) Fetch the column inputs by reading the input port
3) If any column inputs are zero, proceed to Step 7.
4) Add the number of columns to the key number to reach next row.
5) Update the contents of the output port by shifting the zero bit left one position.
6) Decrement row counter. Go to Step 2 if any rows have not been scanned, other­

wise go to Step 9.
7) Add 1 to key number. Shift column inputs right one bit.
8) If Carry = 1, return to Step 7.
9) End of program.

Flowchart:
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Source Program:

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIADDRA ;MAKE PORT A LINES INPUTS
LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
TAX ;KEY NUMBER = -1
LDA #% 11111110 :START BY GROUNDING ROW ZERO
STA VIAORB
LDY # 3  ;COUNTER =  NUMBER OF ROWS

FROW LDA VIAORA ;GET COLUMN INPUTS
AND #%00000111 ;ISOLATE COLUMN BITS
CMP #% 00000111 ;ARE ANY COLUMNS GROUNDED?
BNE FCOL ;YES, GO DETERMINE WHICH ONE
TXA ;NO. MOVE KEY NUMBER TO NEXT ROW
CLC
ADC # 3  ;BY ADDING NUMBER OF COLUMNS
TAX
ASL VIAORB ;UPDATE SCAN PATTEN FOR NEXT ROW
DEY ;HAVE ALL ROWS BEEN SCANNED?
BNE FROW ;NO, SCAN NEXT ONE
BRK

FCOL INX ;KEY NUMBER =  KEY NUMBER +  1
LSR A ;IS THIS THE COLUMN GROUNDED?
BCS FCOL ;NO, EXAMINE NEXT ONE
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003)
0004) VIAPCR LD A,00001111B
0005 8D STA VIADDRA
0006)
0007) VIADDRA

0008 A9 LDA #$FF
0009 FF
000A 8D STA VIADDRB
000 B) 
000C)

VIADDRB

000D AA TAX
000E A9 LDA # % 1 1111110
OOOF FE
0010 8D STA VIAORB
00111
0012) VIAORB

0013 AO LDY # 3
0014 03
0015 AD FROW LDA VIAORA
0016)
0017) VIAORA

0018 29 AND #% 00000111
0019 07
001A C9 CMP #% 00000111
001 B 07
001C DO BNE FCOL
001D OC
001E 8A TXA
001F 18 CLC
0020 69 ADC # 3
0021 03
0022 AA TAX
0023 OE ASL VIAORB
0024)
0025) VIAORB

0026 88 DEY
0027 DO BNE FROW
0028 EC
0029 00 BRK
002A E8 FCOL INX
002B 4A LSR A
002C BO BCS FCOL
002D FC
002E 00 BRK
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We have included a CLC instruction for clarity, but it is not actually necessary. The only 
case in which the BNE instruction does not cause a branch is the one in which the two 
operands used in CMP are equal. In that case, the Carry flag is always set to indicate 
that no borrow has been generated. So we could replace the sequence

CLC
ADC # 3  ;BY ADDING NUMBER OF COLUMNS

with the single instruction

ADC # 2  ;BY ADDING NUMBER OF COLUMNS (NOTE
; CARRY = 1)

Each time a row scan fails, we must add the number of columns to the key number to 
move past the current row (try the procedure on the keyboard in Figure 11-26).

What is the result of the program if no keys are being pressed? Change the program so 
that it starts the scan over again in that case. We could insert an extra INX instruction 
before the first BRK. W hat would the final value be in Index Register X if no keys were 
being pressed? Would it be different from the case in which the highest numbered key 
was being pressed? Note that the Zero flag could also be used to distinguish the case 
where no keys were pressed. Can you explain how?

An alternative is to use the bidirectional capability of the VIA. The procedure would be:

1) Ground all the columns and save the row inputs.
2) Ground all the rows and save the column inputs.
3) Use the row and column inputs together to determine the key number from a table. 

Try to write a program to implement this procedure.

This program can be generalized by making the number of rows, the number of col­
umns, and the masking pattern into named parameters w ith EQUATE (=) pseudo­
operations.
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An Encoded Keyboard18
Purpose: Fetch data, when it is available, from an encoded keyboard that provides a 

strobe along w ith  each data transfer.

An encoded keyboard provides a unique code for each key. It has internal electronics 
that perform the scanning and identification procedure of the previous example. The 
tradeoff is between the simpler software required by the encoded keyboard and the 
lower cost of the unencoded keyboard.

Encoded keyboards may use diode matrices, TTL encoders, or MOS encoders. The 
codes may be ASCII, EBCDIC, or a custom code. PROMs are often part of the encoding 
circuitry.

The encoding circuitry may do more than just encode key ^ROLLOVER] 
closures. It may also debounce the keys and handle "rollover," the 
problem of more than one key being struck at the same time. Common ways of 
handling rollover are: "2-key rollover," whereby two keys (but not more) struck at the 
same time are resolved into separate closures, and "n-key rollover," whereby any 
number of keys struck at the same time are resolved into separate closures.

The encoded keyboard also provides a strobe w ith each data transfer. The strobe sig­
nals that a new closure has occurred. Figure 11 -27 shows the interface between an en­
coded keyboard and the 6502 microprocessor. The 6522 Versatile Interface Adapter 
provides input latching on both Ports A and B: these latches are enabled by setting bit
I (for Port B) or bit 0 (for Port A) of the Auxiliary Control register (see Figure 11-10). In 
this mode, the data on the input pins is latched when the Interrupt flag is set and wil 
not change until the Interrupt flag is cleared. Note that the latching works somewhat 
differently on the B side, where the contents of the Output register are latched if the pin 
is programmed as an output.

The keyboard strobe is tied to input CA1. A transition on the strobe line causes Inter­
rupt Flag Register bit 1 to go high. Bit 0 of the Peripheral Control register (see Figure
I I  -9) determines whether the VIA recognizes high-to-low transitions on CA1 (bit 0 = 0) 
or low-to-high transitions (bit 0 =  1). Thus the VIA contains an edge-sensitive latched 
status port as well as a data port. It also contains an inverter that can be used to handle 
strobes of either polarity. A VIA can replace many simple circuit elements: you can 
make corrections in circuit logic by changing the contents of the Control registers (in 
software) rather than by rewiring a breadboard. For example, changing the active edge 
requires the changing of a single program bit. whereas it m ight require additional parts 
and rewiring on a breadboard.
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Purpose: W ait tor an active-low strobe on VIA control line CA1 and then place the 
data from Port A into the Accumulator. Note that reading the data from the 
Output (Data) register clears the status b it in the Interrupt Flag register (this 
circuitry is part of the 6522 VIA).

Flowchart:

Task: Input from Keyboard

The hardware must hold the control lines in a logic '1' state during reset to prevent the 
accidental setting of status flags. An initial read of the Data (Output) registers in the 
startup routine may be used to clear the status flags. As noted earlier, you can also clear 
bits in the 6522 Interrupt Flag register by writing logic '1 's into them.

Source Program:

LDA
STA
STA
LDA
STA
LDA

KBWAIT BIT 
BEQ 
LDA 
BRK

# 0
VIAPCR
VIADDRA
#%00000001
VIAACR
#%00000010
VIAIFR
KBWAIT
VIAORA

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS

ENABLE LATCHING ON PORT A
GET PATTERN FOR EXAMINING CA1 FLAG
IS THERE NEW KEYBOARD DATA?
NO. WAIT UNTIL THERE IS 
YES. FETCH DATA
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003 > 
0004) VIAPCR

0005 8D STA VIADDRA
0006)
0007) VIADDRA

0008 A9 LDA #%00000001
0009 01
000A 8D STA VIAACR
000 BI 
000C)

VIAACR

000D A9 LDA #%00000010
000E 02
000F 2C KBWAIT BIT VIAIFR
0010) 
0011)

VIAIFR

0012 FO BEQ KBWAIT
0013 FB
0014 AD LDA VIAORA
0015)
0016) VIAORA

0017 00 BRK

To make the status bit respond to low-to-high transitions on CA1, you must set bit 0 of 
the Peripheral Control register.

The other handshake status flags are bits 0 (for CA2), 3 (for CB2). and 4 (for CB1) of the 
Interrupt Flag register.

Show that reading the Output (Data) register clears the status flag. Hint: save the con­
tents of the Interrupt Flag register in memory before the instruction LDA VIAORA is ex­
ecuted. W hat happens if you replace LDA w ith STA? How about CMP, INC, ROL? Note 
that either reading or writing the Output (Data) register clears the status bit. W hat hap­
pens if you read Port A from the non-handshaking address (see Table 11-7)? W hat hap­
pens if you replace LDA VIAORA w ith LDA VIAORB?
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A Digital-to-Analog Converter19 22
Purpose: Send data to an 8-bit digital-to-anaiog converter, which has an active-low 

latch enable.

Digital-to-analog converters produce the continuous signals required by motors, 
heaters, actuators, and other electrical and mechanical output devices. Typical conver­
ters consist of switches and resistor ladders w ith the appropriate resistance values. You 
must generally provide a reference voltage and some other digital and analog circuitry, 
although complete units are becoming available at low cost.

Figure 11-28 describes the 8-bit Signetics NE5018 D/A converter, which contains an 
on-chip 8-bit parallel data input latch. A low level on the LE (Latch Enable) input gates 
the input data into the latches, where it remains after LE goes high.

Figure 11-29 illustrates the interfacing of the device to a 
6502 system. Note that the B side of the VIA automatically 
produces the active-low strobe required to latch the data 
into the converter; CB2 acts as an Output Ready signal. Remember that CB2 automat­
ically goes low for one cycle following a write operation on the B port Output (Data)
register if CB2 is in the pulse output mode (see Table 11-9). The Peripheral Control
register bits are:

Bit 7 = 1 to make CB2 an output 
Bit 6 =  0 to make CB2 a pulse
Bit 5 = 1 to make CB2 a brief Output Ready strobe (one clock cycle

in duration).

Note that the VIA contains an output latch. The data therefore remains stable during 
and after the conversion. The converter typically requires only a few microseconds to 
produce an analog output. Thus, the converter latch could be left enabled if the port 
were not used for any other purpose.

In applications where eight bits of resolution are not enough, 10- to 16-bit converters 
can be used. Additional port logic is required to pass all the data bits; some converters 
provide part of this logic.

The VIA here serves both as a parallel data port and as a control port. CB2 is a pulse 
that lasts one clock cycle after the data is latched into the VIA. This pulse is long 
enough to meet the requirements (typically 400 ns) of the NE5018 converter.

D/A CONVERTER 
INTERFACE
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Figure 11-28. Signetics NE5018 D/A Converter



Data Bus
from CPU NE5018
i > VIA PB0 D/AV

Converter

c b 2 LE

_____f

Analog
Output

Figure 11 -29 Interface for an 8-bit Digital-to-Analog Converter
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Purpose: Send data from memory location 0040 to the converter. 

Flowchart:

Task: Output to Converter

C )

Data =  (0040)

♦
Send data to 
converter and 

1 latch it

C E" J

Source Program:

LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDA #% 10100000
STA VIAPCR ;PROVIDE BRIEF LATCH ENABLE STROBE
LDA $40 ;GET DATA
STA VIAORB :SEND DATA TO DAC AND LATCH
BRK

11-96



Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #$FF
0001 FF
0002 8D STA VIADDRB
0003)
0004)

VIADDRB

0005 A9 LDA #% 10100000
0006 A0
0007 8D STA VIAPCR
00081
0009)

VIAPCR

000A A5 LDA $40
000B 40
oooc 8D STA VIAORB
000D|
000EI

VIAORB

000F 00 BRK

The pulse for the Latch Enable input is produced automatically when data is stored in 
Output (Data) Register B. Note, however, that the pulse is a fairly brief one. lasting only 
one clock cycle; this may be insufficient for some applications.

We could use the level (manual) output from CB2 if the Latch Enable signal were ac­
tive-high or if the required length were greater. The program would then be.:

LDA #$FF
STA VIADDRB ;MAKE PORT BE LINES OUTPUTS
LDA #%  11000000
STA VIAPCR ;MAKE LATCH ENABLE A LEVEL (LOW)
LDA $40 ;GET DATA
STA VIAORB ;SEND DATA TO DAC OUTPUT PORT
LDA # % 1 1100000
STA VIAPCR ;OPEN DAC LATCH (ENABLE HIGH)
LDA # % 1 1000000
STA VIAPCR ;LATCH DATA (ENABLE LOW)
BRK

Here bit 6 of the Peripheral Control register is set to make CB2 a level w ith  a value given 
by bit 5 of the Peripheral Control register. This is referred to as the Manual Output mode 
in 6522 literature. Note how many more instructions are required to pulse the Latch 
Enable than in the previous example, since no automatic pulse is provided. An inverter 
gate could also be used to invert the polarity of the strobe.

In the Manual mode, CB2 is completely independent of the parallel data port. It is 
simply a control output that is available for any purpose. The only problem involved in 
using it is that you must not accidentally change any of the other bits in the Peripheral 
Control register, since they may have unrelated functions.



Analog-to-Digital Converter19-23
Purpose: Fetch data from an 8-bit analog-to-digital converter that requires a Start 

Conversion pulse to start the conversion process and provides an End of 
Conversion output to indicate the completion of the process and the 
availability of valid data.

Analog-to-digital converters handle the continuous signals produced by various types 
of sensors and transducers. The converter produces the digital input which the com­
puter requires.

One form of analog-to-digital converter is the successive approximation device, which 
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but 
have little noise immunity. Dual slope integrating converters are another form of 
analog-to-digital converter. These devices take longer but are more resistant to noise. 
Other techniques, such as the incremental charge balancing technique, are also used.

Analog-to-digital converters usually require some external analog and digital circuitry, 
although complete units are becoming available at low cost.

Figure 11-30 contains a general description and a tim ing diagram for the National 
MM5357 8-bit A/D converter. The device contains output latches and tristate data out­
puts. A pulse on the Start Conversion (STRT CONV) line starts conversion of the analog 
input; after about 40 clock cycles (the converter requires a TTL level clock w ith a 
minimum pulse w idth of 400 ns), the result w ill go to the output latches and the End of 
Conversion (EOC) output w ill indicate this by going high. Data is read from the latches 
by applying a 'V  to the Output Enable input. Figure 11-31 shows the connections for 
the device and some typical applications circuits.

Figure 11-32 shows the interface for the 6502 processor 
and the 5357 A/D converter. Control line CA2 is used in the 
Manual (Level) Output mode to provide a Start Conversion 
pulse (active-high) of sufficient length. The End of Conversion signal is tied to control 
line CA1 so that EOC going high w ill set bit 1 of the Interrupt Flag register. The impor­
tant edge on the End of Conversion line is the low-to-high edge, which indicates the 
completion of the conversion. Note that we are using the 6522 device to handle both 
control input and control output, since the converter interface involves a complete 
handshake. The Output Enable pin on the converter is tied high, since we are not plac­
ing the data directly on the processor's tri-state data bus. Note (see Figure 11-30) that 
the converter data outputs are complementary binary (all zeros is full-scale).

A/D CONVERTER 
INTERFACE



NATIONAL 
M M 5 3 5 7  8-b it /

General Description

The M M 5357  is an 8-bit monolithic A/D  converter using P-channel ion-implanted MOS technology. It contains 
a high input impedance comparator, 2 56  series resistors and analog switches, control logic and output latches. 
Conversion is performed using a successive approximation technique where the unknown analog voltage is 
compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the 
unknown voltage, conversion is complete and the digital outputs contain an 8-bit complementary binary word 
corresponding to the unknown. The binary output is tri-state to permit bussing on common data lines.

Features

■ Low cost
■  ± 5  V, 10 V input ranges
■ No missing codes
■ High input impedance
■ Ratiometric conversion
■ Tri-state outputs
■ Contains output latches
■ TTL compatible

Key Specs

■ Resolution
■ Linearity
■ Conversion speed
■ Input impedance
■ Supply voltages
■ Clock range

8 bits 
± 1 / 2  LSB 

40/xs 
>  100  M ft  

+  5 V, -12  V, GND 
5.0  kHz to 2 .0  MHz

Timing Diagram:

Clock + 5  V — j 
Input

0  V j \ a a A a a a a a a a j
Start + 5  V 

Conversion
0  V 

+ 5  V

Output
Enable

0  V 

+ 5 V -  

0  V - 

+ 5  V - 

0  V -

Z T Y

- 4 0  X (1 / f ) -

— a—

- s -

(Tri-state)
-J?-

Enable___
Delay

Data is complementary binary (full scale is "Os" output).

□
Disable _ 

Delay

Figure 11-30. General Description and Timing Diagram for the National 5357 A/D
Converter
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Connection Diagram

2-“ . 
2 - 3 -  
2 - 2 .  

(MSB) 2 ' 1 - 
R Network -  

STRT C O N V - 
Output Enable-

VGG"
EOC-

2 17
3 16
4 1R 

M M 53 57  10
A/D 14

Converter 1 ^

8 11 

9 10

- VDD 
-2-5 
- 2-6
" + V REF 
-2 -7

- 2 ‘ 8  (LSB)

- V |N
"Clock

" vss

Typical Application

+  5 V- 
+ 5 V 
GND 
-5  V 

-1 2  V 
Analog Input 

Clock
Start Conversion 

Output Enable

15 M 
10

12
11
6*
7 *

+  V REF 2 '1

vss 2-2

OO> 2-6
R NET 2-4

V q g  M M 5357 2 -b

V ,N A/D 2 -b

CK Converter 2-1
SC 2-B
OE EOC

Digital
Output

■ LSB /
• End of Conversion

+ 5  V <  V iN <  -5  V

Figure 11-31. Connection Diagram and Typical Application for the National 5357
A/D Converter

Data Bus 
to CPU

c
Analog

National Input

652 2  pa7 ,  . .... 5357
VIA PAq N--------------------- A/D

Converter

STRT
C A , CA2 EOC CONV

Figure 11-32. Interface for an 8-bit Analog-to-Digital Converter
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Task: Input from Converter

Purpose: Start the conversion process, W ait for End of Conversion to go low and then 
high, and then read the data and store it in memory location 0040.

F low chart:

Note that here the VIA serves as a parallel data port, a status port, and a control port.

Source Program:

LDA # 0
STA VIADDRA ;MAKE PORT A LINES INPUTS
LDA #%00001101
STA VIAPCR ;BRING START CONV LOW, ENABLE EOC 

; LOW TO HIGH
LDA #% 00001111
STA VIAPCR ;PULSE START CONVERSION HIGH
LDA #%00001101
STA VIAPCR iPULSE START CONVERSION LOW

WTEOC LDA VIAIFR
AND #%00000010 ;IS CONVERSION COMPLETE?
BNE WTEOC ;NO. WAIT
LDA VIAORA ;YES, FETCH DATA FROM CONVERTER
EOR # % 1 1111111 iCOMPLEMENT DATA FOR TRUE VALUE
STA $40 ;SAVE CONVERTER DATA
BRK
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIADDRA
0003)
0004) VIADDRA

0005 A9 LDA #% 00001101
0006 OD
0007 8D STA VIAPCR
0008)
0009) VIAPCR

000A A9 LDA #%00001 11
000B OF
000C 8D STA VIAPCR
000D)
000E) VIAPCR

OOOF A9 LDA #% 00001101
0010 OD
0011 8D STA VIAPCR
0012)
0013) VIAPCR

0014 AD WTEOC LDA VIAIFR
0015)
0016) VIAIFR

0017 29 AND #%00000010
0018 02
0019 DO BNE WTEOC
001A F9
001 B AD LDA VIAORA
001C) 

' 001 D) VIAORA

001E 49 EOR # % 1 1111111
001F FF
0020 85 STA $40
0021 40
0022 00 BRK

The VIA Peripheral Control register bits are:

Bit 3 = 1 to make CA2 an output
Bit 2 = 1 to make CA2 a level (Manual Output mode)
Bit 1 =  value of level on CA2
Bit 0 = 1 to set Status flag on a low-to-high transition on CA1

Note that VIAs can be addressed using the Postindexed mode. The starting address of 
the VIA (VIAORB) is placed in two memory locations on page zero: all VIA registers can 
then be reached w ith appropriate offsets in Index Register Y.
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A Teletypew riter (TTY)
Purpose: Transfer data to and from a standard 10-character-per- 

second serial teleypewriter.

The common teletypewriter transfers data in an asynchronous 
serial mode. The procedure is as follows:

1) The line is normally in the one state.
2) A Start bit (zero bit) precedes each character.
3) The character is usually 7-bit ASCII w ith the least significant 

bit transmitted first.
4) The most significant bit is a Parity bit. which may be even, 

odd, or fixed at zero or one.
5) Two stop bits (logic one) follow each character.

Figure 11-33 shows the format. Note that each character requires the transmission of 
eleven bits, of which only seven contain information. Since the data rate is ten charac­
ters per second, the bit rate is 10 x 11, or 110 Baud. Each bit therefore has a w idth of 
1/110 of a second, or 9.1 milliseconds. This w idth is an average: the teletypewriter 
does not maintain it to any high level of accuracy.

For a te le typew riter to communicate properly w ith  a computer, the following pro­
cedures are necessary.

Receive (flowcharted in Figure 11-34):

Step 1) Look for a Start bit (a logic zero) on the data line.
Step 2) Center the reception by waiting one-half bit time, or 4,55

milliseconds.
Step 3) Fetch the data bits, waiting one bit time before each one. Assemble the data

bits into a word by first shifting the bit to the Carry and then circularly shifting
the data w ith the Carry. Remember that the least significant bit is received 
first.

Step 4) Generate the received Parity and check it against the transmitted Parity. If 
they do not match, indicate a "Parity error."

Step 5) Fetch the Stop bits (waiting one bit time between inputs). If they are not cor­
rect (if both Stop bits are not one), indicate a "fram ing error."

TTY
RECEIVE
MODE

STANDARD
TTY

CHARACTER
FORMAT

TTY
INTERFACE
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Figure 11-34. Flowchart for Receive Procedure 
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Purpose: Fetch data from a teletypewriter through bit 7 of a VIA data port and place 
the data into memory location 0060. For procedure, see Figure 11-34.

Source Program:

(Assume that the serial port is bit 7 of the VIA and that no parity or framing check is 
necessary)

Task 1. Read Data

LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS

WAITS LDA VIAORA IS THERE A START BIT?
BMI WAITS NO. WAIT
JSR DLY2 YES. DELAY HALF BIT TIME TO CENTER
LDA #% 10000000 COUNT WITH BIT IN MSB

TTYRCV JSR DELAY WAIT 1 BIT TIME
ROL PIADRA GET DATA BIT
ROR A ADD DATA BIT TO DATA WORD
BCC TTYRCV CONTINUE IF COUNT BIT NOT IN CARRY
STA $60
BRK

(Delay program)

DLY2 LDY # 5 COUNT FOR 4.55 MS
BNE DLY1

DELAY LDY #10 COUNT FOR 9.1 MS
DLY1 LDX #$B4 GET COUNT FOR 0.91 MS
DLY DEX

BNE DLY
DEY
BNE DLY1
RTS

Remember that bit 0 of the data is received first.
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003 ) 
0004)

VIAPCR

0005 8D STA VIADDRA
0006)
0007) VIADDRA

0008 AD WAITS LDA VIAORA
0009)
OOOA) VIAORA

000B 30 BMI WAITS
OOOC FB
OOOD 20 JSR DLY2
000E 30
000F 00
0010 A9 LDA #% 10000000
0011 80
0012 20 TTYRCV JSR DELAY
0013 34
0014 00
0015 2E ROL VIAORA
0016)
0017) VIAORA

0018 6A ROR A
0019 90 BCC TTYRCV
001A F7
001B 85 STA $60

: 001 c 60
001D 00 BRK

0030 AO DLY2 LDY # 5
0031 05
0032 DO BNE DLY1
0033 02
0034 AO DELAY LDY #10
0035 OA
0036 A2 DLY1 LDX #$B4
0037 B4
0038 CA DLY DEX
0039 DO BNE DLY
003A FD
003B 88 DEY
003C DO BNE DLY1
003D F8
003E 60 RTS
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This program assumes that the Stack can be used for subroutine calls, i.e., that the 
monitor has already initialized the Stack Pointer. Otherwise you w ill have to initialize 
the Stack Pointer as shown in Chapter 10.

The constants for the delay routine were calculated just as shown earlier in this chapter. 
You might try determining them for yourself. The delays do not have to be highly accu­
rate because the reception is centered, the messages are short, the bit rate is low, and 
the teletypewriter is not highly accurate itself.

How would you extend this program to check parity?
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Purpose: Transmit data to a teletypewriter through bit 0 of a VIA Output (Data) 
register. The data is in memory location 0060.

Transmit (flowcharted in Figure 11-35)

Step 1) Transmit a Start bit (i.e.. a logic zero).
Step 2) Transmit the seven data bits, starting with the least

significant bit.
Step 3) Generate and transmit the Parity bit.
Step 4) Transmit two Stop bits (i.e., logic ones).

The transmission routine must wait one bit time between each operation.

Ta s k  2:  W r i t e  D a t a

TTY
TRANSMIT
MODE

Figure 11-35. Flowchart for Transmit Procedure
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Source Program

(Assume that parity need not be generated)

LDA # 0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIAORB ;FORM START BIT
LDA #$FF
STA VIADDRB MAKE PORT B LINES OUTPUTS
LDA $60 GET DATA
LDX #11 COUNT =  11 BITS IN CHARACTER
JSR DELAY WAIT 1 BIT TIME
SEC SET CARRY TO FORM STOP BIT
ROR A GET NEXT BIT OF CHARACTER
ROL VIAORB SEND NEXT BIT TO TTY
DEX
BNE TBIT
BRK

The DELAY subroutine used here must preserve the Accumulator and Index Register X. 
Remember that bit 0 of the data must be transmitted first.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA # 0
0001 00
0002 8D STA VIAPCR
0003) VIAPCR
0004)
0005 8D STA VIAORB
0006) VIAORB
0007)
0008 A9 LDA #$FF
0009 FF
000A 8D STA VIADDRB
000BI VIADDRB
oooc)
000D A5 LDA $60
000E 60
000F A2 LDX #11
0010 OB
0011 20 TBIT JSR DELAY
0012 30
0013 00
0014 38 SEC
0015 6A ROR A
0016 2E ROL VIAORB
0017)
0018)

VIAORB

0019 CA DEX
001A DO BNE TBIT
001B F5
0 0 1  c 00 BRK
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In actual applications, you w ill find it necessary to place a one on the teletypewriter line 
after configuration, since that line should normally be in the mark (one) state.

Each character consists of 11 bits, w ith a Start bit (zero) and ending w ith two Stop bits 
(ones).

Note that you can generate parity by counting bits as shown in Chapter 6. The program 
is:

LDY # 0 BIT COUNT =  ZERO
LDA $60 GET DATA

CHBIT BPL CHKZ IS NEXT DATA BIT 1 ?
INY YES, ADD 1 TO BIT COUNT

CHKZ ASL A EXAMINE NEXT BIT POSITION
BNE CHBIT UNLESS ALL BITS ARE ZEROS
BRK

Index Register Y contains the number of T  bits in the data. The least significant bit of 
Index Register Y is therefore an even Parity bit.

These procedures are sufficiently common and complex to merit a I UART |
special LSI device: the UART, or Universal Asynchronous 
Receiver/Transmitter.24 The UART w ill perform the reception procedure and provide 
the data in parallel form and a Data Ready signal. It w ill also accept data in parallel 
form, perform the transmission procedure, and provide a Peripheral Ready signal when 
it can handle more data. UARTs may have many other features, including:

1) Ability to handle various bit lengths (usually 5 to 8), parity options, and numbers of 
Stop bits (usually 1. 1-1/2, and 2).

2) Indicators for framing errors, parity errors, and "overrun errors" (failure to read a 
character before another one is received).

3) RS-23225 compatibility: i.e., a Request-to-Send (RTS) output signal that indicates 
the presence of data to communications equipment and a Clear-to-Send (CTS) in­
put signal that indicates, in response to RTS, the readiness of the communications 
equipment. There may be provisions for other RS-232 signals, such as Received 
Signal Quality. Data Set Ready, or Data Terminal Ready.

4) Tristate outputs and control compatibility w ith a microprocessor.
5) Clock options that allow the UART to sample incoming data several times in order 

to detect false Start bits and other errors.
6) Interrupt facilities and controls.

UARTs act as four parallel ports: an input data port, an output data port, an input 
status port, and an output control port. The status bits include error indicators as well 
as Ready flags. The control bits select various options. UARTs are inexpensive ($5 to 
$50, depending on features) and easy to use.
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THE 6 85 0  ASYNCHRONOUS CO M M UNICATIO NS INTERFACE 
ADAPTER (ACIA)26. 27

The 6850 ACIA, or Asynchronous Communications Inter­
face Adapter (see Figure 11-36) is a UART specifically 
designed for use in 6800- and 6502-based microcom­
puters. It occupies tw o  memory addresses and contains tw o  read-only registers 
(received data and status) and tw o write-only registers (transmitted data and con­
trol). Tables 11-16 and 11-17 describe the contents of these registers.

Note the following special features of the 6850 ACIA:

1) Read and write cycles address physically distinct registers.
Therefore, you cannot use the ACIA registers as addresses 
for instructions like Increment, Decrement, or Shift, which 
involve both read and write cycles.

2) The ACIA Control register cannot be read by the CPU. You w ill have to save a copy 
of the Control register in memory if the program needs its value.

3) The ACIA has no Reset input. It can be reset only by placing ones in Control register 
bits 0 and 1. This procedure (called MASTER RESET) is necessary before the ACIA 
is used, in order to avoid having a random starting character.

4) The RS-232 signals are all active-low. Request-to-Send (RTS), in particular, should 
be brought high to make it inactive if it is not in use.

5) The ACIA requires an external clock. Typically 1760 Hz is supplied and the +  16 
mode (Control register bit 1 = 0, bit 0 = 1) is used. The ACIA w ill use the clock to 
center the reception in order to avoid false Start bits caused by noise on the lines.

6) The Data Ready (Receive Data Register Full, or RDRF) flag is bit 0 of the Status 
register. The Peripheral Ready (Transmit Data Register Empty, or TDRE) flag is bit 1 
of the Status register.

SPECIAL 
FEATURES 
OF 6850 ACIA

6850 ACIA 
REGISTERS
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Table 11-16. Definition of 6850 ACIA Register Contents

Data
Bus
Line

Number

Buffer Address

RS-R/W
Transmit

Data
Register

RS-R/W
Receive

Data
Register

RS-R/W

Control
Register

RS-R/W

Status
Register

(Write Only) (Read Only) (Write Only) (Read Only)

0 Data Bit 0* Data Bit 0 Counter Divide 
Select 1 (CRO)

Receive Data Register 
Full (RDRF)

1 Data Bit 1 Data Bit 1 Counter Divide 
Select 2 (CR1)

Transmit Data Register 
Empty (TDRE)

2 Data Bit 2 Data Bit 2 Word Select 1 
(CR2)

Data Carrier Detect 
(DCD)

3 Data Bit 3 Data Bit 3 Word Select 2 
(CR3)

Clear-to-Send
(CTS)

4 Data Bit 4 Data Bit 4 Word Select 3 
(CR4)

Framing Error 
(FE)

5 Data Bit 5 Data Bit 5 Transmit Control 1 
(CR5)

Receiver Overrun 
(OVRN)

6 Data Bit 6 Data Bit 6 Transmit Control 2 
(CR6)

Parity Error (PE)

7 Data Bit 7 " ' Data Bit 7 " Receive Interrupt 
Enable (CR7)

Interrupt Request 
(IRQ)

* Leading bit =  LSB = Bit 0 
"  Data bit w ill be zero in 7-bit plus parity modes 

* '*  Data bit is "don 't care" in 7-bit plus parity modes
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0
0
1
1

R'

0
0
0
0
1

1
1

1

:r

0
0
1

1

Table 11-17. Meaning of the 6850 ACIA Control Register Bits

CRB Function

RTS = low, Transmitting Interrupt Disabled 
RTS = low. Transmitting Interrupt Enabled 
RTS = high, Transm itting Interrupt Disabled 
RTS = low. Transmits a Break level on the 

Transmit Data Output. Transmitting 
"Interrupt Disabled

CR3 CR2 Function

0 0
0 1
1 0

0 0
0 1
1 0
1 1

7 Bits + Even Parity +  2 Slop Bits 
7 Bits +  Odd Parity +  2 Stop Bits 
7 Bits +  Even Parity +  1 Stop Bit
7 Bits +  Odd Parity + 1 Stop Bit
8 Bits +  2 Stop Bits 
8 Bits +  1 Stop Bit
8 Bits +  Even Parity +  1 Stop Bit 
8 Bits +  Odd Parity + 1 Stop Bit

CRO Function

+  1 
+  16 
+ 64 

Master Reset
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Figure 11-36. Block Diagram of the 6850 ACIA 
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Task: Receive data from a te le typew riter through a 6850 ACIA and store the data 
in memory location 0060

Source Program:

LDA
STA
LDA

STA
WAITD LDA 

LSR 
BCC 
LDA 
STA 
BRK

#%00000011 
ACIACR 
#%01000101

ACIACR
ACIASR
A
WAITD
ACIADR
$60

;MASTER RESET ACIA

:CONFIGURE ACIA FOR TTY WITH ODD 
; PARITY

GET ACIA STATUS
HAS DATA BEEN RECEIVED?
NO, WAIT
YES, FETCH DATA FROM ACIA 
SAVE DATA

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #% 00000011
0001 03
0002 8D STA ACIACR
0003)
0004)

ACIACR

0005 A9 LDA #%01000101
0006 45
0007 8D STA ACIACR
0008)
0009)

ACIACR

000A AD WAITD LDA ACIASR
0008)
oooc)

ACIASR

000D 4A LSR A
000E 90 BCC WAITD
000F FA
0010 AD LDA ACIADR
0011)
0012)

ACIADR

0013 85 STA $60
0014 60
0015 00 BRK

The program must reset the ACIA originally by placing ones in Control register bits 0
and 1. The ACIA does have an internal power-on reset which holds the ACIA in the
reset state until Master Reset is applied.

The program configures the ACIA Control Register as 
follows:

Bit 7 = 0 to disable the receiver interrupt 
Bit 6 =  1 to make Request-to-Send (RTS) high (inactive)
Bit 5 = 0  to disable the transmitter interrupt 
Bit 4 =  0 for 7-bit words
Bit 3 = 0 ,  Bit 2 =  1 for odd parity w ith  2 Stop bits
Bit 1 =  0. Bit 0 =  1 for -s- 16 clock (1760 Hz must be supplied)

EXAMPLE 
OF 6850 ACIA 
CONFIGURATION
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The Received Data Status flag is Status register bit 0. Suppose we tried to replace

LDA ACIASR
LSR A

with the single instruction

LSR ACIASR

W hat would happen?

Remember that the Status and Control registers share an address but are physically dis­
tinct.

Try adding an error-checking routine to the program. Set.

(0061) =  0 if no errors occurred
=  1 if a parity error occurred 

(Status register bit 6 =  1)
= 2 if an overrun error occurred 

(Status register bit 5 =  1)
= 3 if a framing error occurred 

(Status register bit 4 =  1)

Assume that the priority of the errors is from MSB to LSB in the ACIA Status register 
(i.e., parity errors have priority over overrun errors which, in turn, have priority over 
framing errors if more than one error has occurred)
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Task: Send data from memory location 0060 to a te le typew riter through a 6850 
ACIA

Source Program:

WAITR

LDA #% 00000011
STA ACIACR
LDA #%01000101

STA ACIACR
LDA #%00000010
BIT ACIASR
BEQ WAITR
LDA $60
STA ACIADR
BRK

;MASTER RESET ACIA

iCONFIGURE ACIA FOR TTY WITH ODD 
; PARITY

IS ACIA READY FOR DATA? 
NO. WAIT UNTIL IT IS 
YES, GET DATA 
AND TRANSMIT IT

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #% 00000011
0001 03
0002 8D STA ACIACR
00031
0004>

ACIACR

0005 A9 LDA #%01000101
0006 45
0007 8D STA ACIACR
0008)
0009)

ACIACR

000A A9 LDA #%00000010
000B 02
OOOC 2C WAITR BIT ACIASR
000D)
000E)

ACIASR

000F FO BEQ WAITR
0010 FB
0011 A5 LDA $60
0012 60
0013 8D STA ACIADR
00141
0015)

ACIADR

0016 00 BRK

The Transmitter Status flag is Status register bit 1. How could you modify the receive 
program to use the Bit Test Instruction?



THE 6551 ASYNCHRONOUS CO M M UNICATIO NS INTERFACE 
ADAPTER (ACIA)
The 6551 ACIA is a variation of the 6850 device that can also 
be used in 6800- or 6502-based systems. Figure 11-37 is a 
block diagram of this device. It has most of the features of the 
6850 ACIA and also has an on-chip baud rate generator that can provide 15 
programmable baud rates derived from a standard 1.8432 MHz external crystal. 
Thus the 6551 ACIA can provide virtually any of the common baud rates w ithout 
an external timer or baud rate generator. The device has four internal registers 
addressed as described by Table 11-18. Its operation is controlled by two registers:

1) The Control register (see Figure 11-38) controls the baud rate generator, the word 
length, the number of stop bits, and the receiver clock source.

2) The Command register (see Figure 11-39) controls parity 
checking and generation, interrupt enabling, and the 
RS-232 handshake signals. Note that the program may 
reset the 6551 ACIA at any time by writing any data into 
the address of the Status register (see Figure 11-40). For example, the following 
program resets a 6551 ACIA and configures it for a 10 character per second 
teletypewriter w ith odd parity and two stop bits:

LDA #% 10110011
STA ACIASR ;RESET 6551 ACIA
STA ACIAMR ;CONFIGURE MODE FOR TTY (7 BITS, 2 STOP

: BITS)
LDA #% 00100011
STA ACIACR ;CONFIGURE FOR ODD PARITY, NO

; INTERRUPTS

We have given the name ACIAMR to the Control (Mode) Register.

The program configures the 6551 ACIA Control (Mode) register as follows:

Bit 7 = 1 for 2 stop bits
Bit 6 = 0, bit 5 = 1 for 7-bit words
Bit 4 =  1 to generate receiver clock from the on-board baud rate generator 
Bits 0-3 = 0011 for 109.92 Baud (10 characters per second) from the internal 

baud rate generator

The program configures the 6551 ACIA Command register as follows:

Bit 7 =  O.bit 6 = 0, bit 5 = 1 for odd parity on both receiver and transmitter 
Bit 4 =  0 so characters are not automatically echoed back through the 

transmitter

Bit 3 =  0, bit 2 = 0 to disable the transmitter interrupt and bring RTS high 
(inactive)

Bit 1 =  1 to disable the receiver interrupt (this is a mask bit)
Bit 0 =  1 to enable the Receiver/Transmitter

EXAMPLE OF 
6551 ACIA 
CONFIGURATION

6551 ACIA 
REGISTERS
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Transmit
Control

<t>2 ^
R /W — ► Select
CS0 “ and
c s ] ------ ► Control
RSq  ► Logic
RSi
RES-------►

Data
Bus

Buffers

o

Transmit
Data

Register = >
Transmit

Shift
Register

Status
Register

Interrupt
Logic ^  DCD 

^ ------ DSR

Control
Register

Baud
Rate

Generator
XTAL1 

^  XTAL2

Receive Receive
Data c Shift ►— RxD

Register N Register

Command
Register

Receive
Control

- ► R T S

Figure 11-37. Block Diagram of the 6551 ACIA 

Table 11-18. Addressing 6551 ACIA Internal Registers

RSt RSq W rite Read

0 0 Transmit Data Register Receiver Data Register

0 1 Programmed Reset (Data is "Don't Care") Status Register

1 0 Command Register

1 0 Control Register

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation 
does not cause any data transfer, but is used to clear the SY6551 registers. The Programmed Reset is slightly 
different from the Hardware Reset (RES) and these differences are described in the individual register defini­
tions.
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5 4 3 2 1 0m
~ e

Bit Number
Control Register

-Baud Rate Generator
0 0 0 0 16x External Clock Baud
0 0 0 1 50
0 0 1 0 75
0 0 1 1 109.92
0 1 0 0 134.58
0 1 0 1 150
0 1 1 0 3 00
0 1 1 1 6 00
1 0 0 0 1200
1 0 0 1 1800
1 0 1 0 2 4 0 0
1 0 1 1 3 6 0 0
1 1 0 0 4 8 0 0
1 1 0 1 7 20 0
1 1 1 0 9 6 0 0
1 1 1 1 19,2 00

- Receiver Clock Source
0  =  External Receiver Clock
1 =  Baud Rate Generator 

■ Word Length
Bit Data Word

6 5 Length

0 0 8
0  1 7
1 0 6
1 1

Stop Bits

5

'Allows for 9-bit transmission 
(8 data bits plus parity).

7 6  5 4  3 2 1 0

0 0 0 0 0 0 0 0

0 = 1  Stop Bit 
1 =  2 Stop Bits

1 Stop Bit if Word Length 
=  8 Bits and Parity*

1 Vt Stop Bits if Word Length 
=  5 Bits and No Parity.

-B it Number 
-Hardware Reset 

“ Program Reset

Figure 11-38. Definition of 6551 ACIA Control Register Contents
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g;
5 4  3 2 1 0  * Bit Number

Command register

-D ata  Terminal Ready

0  =  Disable Receiver/Transmitter (DTR high)
1 =  Enable Receiver/Transmitter (DTR low) 

-Receiver Interrupt Enable

0  =  IRQ Interrupt Enabled from Bit 7
of Status Register

1 =  IRQ Interrupt Disabled 

-Transm itter Controls

Bit 
3 2

Transmit
Interrupt

Disabled

Enabled

Disabled

Disabled

RTS
Level Other

High —

Low —

Low —

Low Transmit BRK

• Normal/Echo Mode for Receiver

0  =  Normal
1 =  Echo

7 6 5 4  3 2 1 0

o l o 0

1

0 1 0

oo

0 1 0

-  Parity Check Controls
Bit

7 6 __5_ Operation
---------0  Parity Disabled - No Parity Bit

Generated - No Parity Bit Received

0 0  1 Odd Parity Receiver and Transmitter

0  1 1 Even Parity Receiver and
Transmitter

1 0  1 Mark Parity Bit Transmitted,
Parity Check Disabled 

1 1 1 Space Parity Bit Transmitted,
Parity Check Disabled

-B it Number

-  Hardware Reset

- Program Reset

Figure 11-39. Definition of 6551 ACIA Command Register Contents
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7 6 5 4 3 2 1 0 .

Cl I I I I I  I I
-B it Number
-S tatus Register

*No interrupt occurs for these conditions.

■ Parity Error*
0  =  No Parity Error
1 =  Parity Error Detected

“ Framing Error*
0  =  No Framing Error
1 =  Framing Error Detected

■ Overrun*
0  =  No Overrun
1 =  Overrun Has Occurred

■ Receiver Data Register Full
0  =  Not Full
1 =  Full

- Transmitter Data Register Empty
0 =  Not Empty
1 =  Empty

- Data Carrier Detect (DCD)
0  =  DCD low (Detect)
1 =  DCD high (Not Detected)

■ Data Ready (DSR)
0  =  DSR low (Ready)
1 =  DSR high (Not Ready)

* Interrupt (IRQ)
0  =  No Interrupt
1 =  Interrupt Has Occurred

7 6 5 4 3 2 1 0  > -B it Number 

-Hardware Reset 
-Program Reset

Figure 11-40. Definition of 6551 ACIA Status Register Contents
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LOGICAL AND PHYSICAL DEVICES28
An important goal in w riting I/O routines is to make them j LOGICAL DEVICES | 
independent of particular physical hardware. The routines
can then transfer data to or from I/O devices, w ith  the actual addresses being sup­
plied as parameters. The I/O device that can actually be accessed through a partic­
ular interface is referred to as a physical device. The I/O device to which the pro­
gram transfers data is referred to as a logical device. The operating system or 
supervisor program must provide a mapping of logical devices on to physical 
devices, that is, assign actual physical I/O addresses and characteristics to be 
used by the I/O routines.

Note the advantages of this approach:

1) The operating system can vary the assignments under user control. Now the user 
can easily substitute a test panel or a development system interface for the actual 
I/O devices. This is useful in field maintenance as well as in debugging and testing. 
Furthermore, the user can change the I/O devices for different situations: typical 
examples are directing intermediate output to a video display and final output to a 
printer or obtaining some input from a remote communications line rather than 
from a local keyboard.

2) The same I/O routines can handle several identical or similar devices. The operating 
system or user only has to supply the address of a particular teletypewriter, RS-232 
terminal, or printer, for example.

3) Changes, corrections, or additions to the I/O configuration are easy to make since 
only the assignments (or mapping) must be changed.

On the 6502 microprocessor, either the Preindexed (Indexed Indirect) or Postindexed 
(Indirect Indexed) addressing mode can be used in the I/O routines to provide indepen­
dence of specific physical addresses. Preindexing is convenient since it allows the 
choice of a physical device address from a table.

If a table of I/O addresses is maintained on page zero, all that 
an I/O routine needs is an index into that table. It can then ac­
cess the I/O device by using the Preindexed (or Indexed In­
direct) addressing mode. If. for example, the device number is in memory location DEV, 
the program to calculate the index would be:

LDA DEV :GET DEVICE NUMBER
ASL A ;MULTIPLY BY 2 FOR 2-BYTE ADDRESS TABLE
TAX

Data may now be transferred to or from the appropriate I/O device w ith the instructions 
LDA DATA :GET DATA
STA (IOTBL.X) :SEND TO LOGICAL I/O DEVICE

LDA (IOTBL.X) :GET DATA FROM LOGICAL I/O DEVICE
STA DATA :SAVE DATA

The same I/O routine can transfer data to or from many different I/O devices merely by 
being supplied w ith different indexes. Compare the flexib ility of this approach w ith the 
inflexibility of I/O routines that use direct addressing and are therefore tied to specific 
physical addresses.

I/O DEVICE 
TABLE
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STANDARD INTERFACES
Other standard interfaces besides the TTY current-loop and 
RS-232 can also be used to connect peripherals to the microcom­
puter. Popular ones include:

1) The serial RS-449, RS-422, and RS-423 interfaces.29

2) The 8-b it parallel General Purpose Interface Bus, also known as IEEE-488 or
Hewlett-Packard Interface Bus (HPIB).30

3) The S-100 or A ltair/lmsai hobbyist b u s .^  This is also an 8 -b it bus.

4) The Intel Multibus.32 This is another 8-bit bus that can, however, be expanded to
handle 16 bits in parallel.

STANDARD
INTERFACES
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PROBLEMS
1) Separating Closures from an Unencoded Keyboard
Purpose: The program should read entries from an unencoded 3 x 3  keyboard and 

save them in an array. The number of entries is in memory location 0040 and 
the array starts in memory location 0041.

Separate one closure from the next by waiting for the current closure to end. Remember 
to debounce the keyboard (this can be simply a 1 ms wait).

Sample Problem:

(0040) = 04
Entries are 7, 2, 2, 4

Result: (0041) = 07
(0042) = 02
(0043) = 02
(0044) = 04

2) Read a Sentence from an Encoded Keyboard
Purpose: The program should read entries from an ASCII keyboard (7 bits w ith a zero

Parity bit) and place them in an array until it receives an ASCII period 2E-|g. 
The array starts in memory location 0040. Each entry is marked by a strobe
as in the example given under An Encoded Keyboard

Sample Problem:

Entries are H, E. L. L, O,
Result: (0040) =  48 H

(0041) =  45 E
(0042) =  4C L
(0043) = 4C L
(0044) = 4F O
(0045) = 2E
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3) A Variable Amplitude Square W ave Generator
Purpose: The program should generate a square wave, as shown in the next figure.

using a D/A converter. Memory location 0040 contains the scaled amplitude 
of the wave, memory location 0041 the length of a half cycle in milliseconds, 
and memory location 0042 the number of cycles.

Assume that a digital output of 80 -| 6 to the converter results in an analog output of zero 
volts. In general, a digital output of D results in an analog output of (D-80)/80 X -Vref 
volts.

Sample Problem:

Output
Voltage

Result:

(0040)
(0041)
(0042)

= A0 (hex) 
= 04 
=  03

+ Vref |

■•Vref j
4o |------— h
4 l I

- V rff L
! 4 ms Time ---------------------------------------------------------►
I I
T h e  b ase  v o lta g e  is 8 0 - |g  =  0  v o lts . F u ll s c a le  is 10 0 -|q  =  -V p ^ p  v o lts .

S o  A 0 - |g  =  (A 0 -8 0 ) /8 0  X  -V r e p  =  -V p p p /4

The program produces 3 pulses of amplitude Vp{Ep/4 w ith a half cycle length of 4 ms.

4) Averaging Analog Readings
Purpose: The program should take four readings from an A/D converter 10 m illi­

seconds apart and place the average in memory location 0040. Assume that 
the A/D  conversion time can be ignored.

Sample Problem:

Readings are (hex) 86, 89, 81, 84 
Result: (0040) = 85

5) A 30 Character-per-Second Terminal
Purpose: Modify the transmit and receive routines of the example given under A 

Teletypewriter to handle a 30 cps terminal that transfers ASCII data w ith one 
stop bit and even parity. How could you write the routines to handle either 
terminal depending on a flag bit in memory location 0060: e.g., (0060) =  0 
for the 30 cps terminal. (0060) = 1 for the 10 cps terminal?
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Chapter 12 
INTERRUPTS

Interrupts are inputs that the CPU examines as part of each instruction cycle. 
These inputs allow the CPU to react to asynchronous events in a more efficient 
manner than polling each device. The use of interrupts generally involves more 
hardware than does ordinary (programmed) I/O, but interrupts provide a faster and 
more direct response.1

Why use interrupts? Interrupts allow events such as alarms, 
power failure, the passage of a certain amount of time, and periph­
erals having data or being ready to accept data to get the 
immediate attention of the CPU. The program does not have to 
examine (poll) every potential source, nor need the programmer worry about the 
system completely missing events. An interrupt system is like the bell on a 
telephone —  it rings when a call is received so that you don't have to pick up the 
receiver occasionally to see if someone is on the line. The CPU can go about its normal 
business (and get a lot more done). When something happens, the interrupt rouses the 
CPU and forces it to service the input before resuming normal operations. Of course, 
this simple description becomes more complicated (just like a telephone switchboard) 
when there are many interrupts of varying importance and there are tasks that cannot 
be interrupted.

The implementation of interrupt systems varies greatly.
Among the questions that must be answered to character­
ize a particular system are:

1) How many interrupt inputs are there?
2) How does the CPU respond to an interrupt?
3) How does the CPU determine the source of an interrupt if the number of sources 

exceeds the number of inputs?
4) Can the CPU differentiate between important and unimportant interrupts?
5) How and when is the interrupt system enabled and disabled?

There are many different answers to these questions. The aim of all the implementa­
tions, however, is to have the CPU respond rapidly to interrupts and resume normal 
activ ity  afterwards.

The number of interrupt inputs on the CPU chip determines the number of 
different responses that the CPU can produce w ithou t any additional hardware or 
software. Each input can produce a different internal response. Unfortunately, most 
microprocessors have a very small number (one or two, typically) of separate interrupt 
inputs.

CHARACTERISTICS 
OF INTERRUPT 
SYSTEMS

REASONING
BEHIND
INTERRUPTS
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The ultimate response of the CPU to an interrupt must be to transfer control to the 
correct interrupt service routine and to save the current value of the Program 
Counter. The CPU must therefore execute a Jump-to-Subroutine or Call instruction 
w ith the beginning of the interrupt service routine as its address. This action w ill save 
the return address in the Stack and transfer control to the interrupt service routine. The 
amount of external hardware required to produce this response varies greatly. Some 
CPUs internally generate the instruction and the address; others require external hard­
ware to form them. The CPU can only generate a different instruction or address for 
each separate input.

If the number of interrupting devices exceeds the number of 
inputs, the CPU w ill need extra hardware or software to iden­
tify  the source of the interrupt. In the simplest case, the soft­
ware can be a polling routine which checks the status of the 
devices that may be interrupting. The only advantage of such a system over nor­
mal polling is that the CPU knows that at least one device is active. The alterna­
tive solution is for additional hardware to provide a unique data input (or "ve c ­
to r") for each source. The tw o  alternatives can be mixed; the vectors can identify 
groups of inputs from which the CPU can identify a particular one by polling.

An interrupt system that can differentiate between important | PRIORITY*)
and unimportant interrupts is called a "p rio rity  interrupt 
system." Internal hardware can provide as many priority levels as there are in­
puts. External hardware can provide additional levels through the use of a Priority 
register and comparator. The external hardware does not allow the interrupt to 
reach the CPU unless its priority is higher than the contents of the Priority 
register. A priority interrupt system may need a special way to handle low-priority 
interrupts that may be ignored for long periods of time.

Most interrupt systems can be enabled or disabled. In fact, 
most CPUs automatically disable interrupts when a RESET is 
performed (so that the programmer can configure the interrupt 
system) and on accepting an interrupt (so that the interrupt w ill 
not interrupt its own service routine). The programmer may wish 
to disable interrupts while preparing or processing data, performing a tim ing loop, or 
executing a multi-byte operation.

An interrupt that cannot be disabled (sometimes called a 
"non-maskable interrupt") may be useful to warn of power 
failure, an event that obviously must take precedence over all 
other activities.

The advantages of interrupts are obvious, but there are also 
disadvantages:

1) Interrupt systems may require a large amount of extra 
hardware.

2) Interrupts still require data transfers under program control through the CPU. There
is no speed advantage as there is w ith DMA.

3) Interrupts are random inputs, which makes debugging and testing difficult. Errors
may occur sporadically, and therefore may be very hard to find.2

4) Interrupts may involve a large amount of overhead if many registers must be saved
and the source must be determined by polling.

NON-MASKABLE
INTERRUPT
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6 50 2  INTERRUPT SYSTEM
The 6502 microprocessor's internal response to an interrupt is moderately com­
plex. The interrupt system consists of:

1) An active-low maskable interrupt input  (IRQ) and an ac­
tive-low  nonmaskable interrupt input (NMI).

2) An interrupt disable (or mask) b it which disables the 
maskable interrupt. If the Interrupt Disable bit is 1, no 
maskable interrupts are allowed; the I b it is stored in bit 2 of the Processor Status 
(or P) register.

The 6502 checks the current status of the interrupt system at 
the end of each instruction. If an interrupt is active and 
enabled, the response is as follows:

1) The CPU saves the Program Counter (most significant bits 
first) and the Status register in the Stack. Figure 12-1 shows the order in which 
these registers are saved. Note that the Accumulator and Index registers are not 
saved automatically.

2) The CPU disables the maskable interrupt (IRQ); that is, it sets bit 2 of the
Status register.

3) The CPU fetches an address from a specified pair of memory addresses and 
puts that address in the Program Counter. Table 12-1 contains the pairs of ad­
dresses assigned to the various inputs and to the Break instruction.

Note the following special features of the 6502 interrupt 
system:

1) The 6502 automatically saves the Program Counter 
and the Status register in the Stack. Remember that 
the Status register includes the Interrupt Disable flag and the Break Command flag.

2) The 6502 provides no external signals to indicate that it has accepted an interrupt 
other than the address that it places on the Address Bus.

3) The 6502 has no special internal provisions for determining the source of an inter­
rupt when there are several sources tied to the same input.

The 6502 has the follow ing special instructions to manipulate its interrupt 
system:

1) CLI (Clear Interrupt Disable Bit) clears bit 2 of the Status register and thus ena­
bles the maskable interrupt.

2) SEI (Set Interrupt Disable Bit) sets bit 2 of the Status register and thus disables 
the maskable interrupt.

3) BRK (Force Break) sets the Break Command flag, saves the Program Counter and 
Status register in the Stack, disables the maskable interrupt, and places the con­
tents of addresses FFFE and FFFF in the Program Counter.

4) RTI (Return from Interrupt) restores the Status register and the Program 
Counter from the Stack. The result is that the old values are returned to the Pro­
gram Counter and the Status register (including the Interrupt bit). RTI differs from 
RTS (Return from Subroutine) in that RTI restores the Status register as well as the 
Program Counter and RTI does not add 1 to the return address as RTS does 
(see Chapter 11 for a discussion of RTS).

SPECIAL FEATURES 
OF 6502 INTERRUPT 
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Before After

0 1 ss -4 01 ss -4
Stack01 ss -3 0 1 ss -3

01ss -2 01 ss -2 PP
01 ss -1 0 1 ss -1 PCL

01 ss t3C 01ss PCH
01ss +1 “ T ”  Pom,er 0 1 s s + 1

j 01ss + 2 T  01 ss +2

I
Stack Ste ck

ss =  original contents of Stack Pointer
pp =  original contents of Status (P) register
PCH =  original contents of 8 higher order bits of Program Counter
PCL =  original contents of 8 lower order bits of Program Counter

Figure 12-1. Saving the Status of the Microprocessor in the Stack

Table 12-1. Memory Map for 6502 Addresses Used in 
Response to Interrupts and Reset

Source Address Used (Hexadecimaf)

Interrupt Request (IRQ) and BRK Instruction 
Reset (RESET)

| Nonmaskable Interrupt (NMI)

FFFE and FFFF 
FFFC and FFFD 
FFFA and FFFB

The addresses are stored in the usual 650 2  fashion with the least significant bits at the lower address.

The BRK (Force Break) instruction produces almost exactly 
the same response as an interrupt input (IRQ). The only 
difference is that the Break Command flag (bit 4 of the Status 
register) is set. Thus a service routine can differentiate between a BRK instruction 
and an IRQ input by examining b it 4 of the top byte in the Stack (remember Figure 
12-1). A typical program would be:

PLA ;GET STATUS REGISTER FROM STACK
AND #% 00010000 ;IS BREAK COMMAND FLAG SET?
BNE BREAK ;YES, GO TO BREAK ROUTINE

The BRK instruction is useful for debugging (see Chapter 14) and for returning control 
to a monitor or operating system. See Chapter 3 for more information about the BRK in­
struction.

The non-maskable interrupt is an edge-sensitive in­
put. The processor therefore reacts only to the edge of a 
pulse on this line, and the pulse w ill not interrupt its 
own service routine. Non-maskable interrupts are useful for applications that must res­
pond to loss of power (i.e.. must save data in a low-power memory or switch to a back­
up battery). Typical applications are communications equipment that must retain codes 
and partial messages, and test equipment that must keep track of partially completed 
tests. We w ill not discuss the non-maskable interrupt any further. We w ill assume that 
all interrupt inputs are tied to IRQ.

NON-MASKABLE
INTERRUPT

BRK
INSTRUCTION
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6 52 0  PIA Interrupts3
Most 6502 interrupt systems involve programmable interface 
chips or multifunction devices such as the 6520 Peripheral Inter­
face Adapter, the 6522 Versatile Interface Adapter, or the 6530 
and 6532 M ultifunction Devices. Each side of the 6520 PIA has the following 
features for use w ith  interrupts:

1) An active-low interrupt output.
2) Interrupt enable bits (bit 0 of the Control register for control line 1, bit 3 for con­

trol line 2).
3) Interrupt status bits (bit 7 of the Control register for control line 1. bit 6 for control 

line 2).

Bits 1 and 4 of the Control register determine whether a rising edge (low-to-high 
transition) or falling edge (high-to-low transition) on the control line causes an in­
terrupt.

Note that:

1) The PIA interrupt enable bits have the opposite polarity from the 6502 I (or In­
terrupt Disable) flag; that is, they must be 'V  to enable an interrupt.

2) RESET clears the PIA Control registers and thus disables all the interrupts.
3) The CPU can check bits 6 and 7 of the Control register to see if a PIA has an 

interrupt pending. Once set, these bits w ill remain set until the CPU reads the 
PIA Data register.

4) The PIA w ill remember an interrupt that occurs while PIA interrupts are dis­
abled and w ill output an interrupt request as soon as the PIA interrupt is 
enabled.

6520 PIA 
INTERRUPTS
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6522 VIA INTERRUPTS
The 6522 Versatile Interface Adapter may also be used as a 
source of interrupts. This device has an Interrupt Enable 
register (IER) which can be used to enable the various interrupt 
sources and an Interrupt Flag register (IFR) which contains the status of the various 
sources. Figure 12-2 shows the positions of the various enabling bits in the Interrupt 
Enable register and Figure 12-3 describes the Interrupt Flag register.

An interrupt source can be enabled by setting the corres­
ponding enable bit. Note that the most significant b it con­
trols how the other enable bits are affected:

1) If IER7 = 0 , e a c h '1' in a bit position clears an enable bit 
and thus disables that interrupt.

2) If IER7 = 1, each 'V  in a bit position sets an interrupt bit and thus enables that 
interrupt.

Zeros in the enabling bit positions leave the enable bits unchanged.

Some examples of enabling and disabling 6522 VIA interrupts are:

1) Enable CA1 interrupt, disable all others.

LDA #% 01111101 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LDA #%10000010 :ENABLE CA1 INTERRUPT
STA VIAIER

The first operation sets IER7 to zero, so that the '1's in bit positions 0. 2, 3, 4, 5, and 6 
clear the corresponding enable bits and thus disable those interrupts. The second 
operation sets IER7 to one, so that the "V in bit position 1 sets the corresponding enable 
bit (CA1 interrupt) and thus enables that interrupt.

2) Enable CB1 and CB2 interrupts, disable all others.

LDA #% 01100111 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LDA #%10011000 :ENABLE CB1, CB2 INTERRUPTS
STA VIAIER

The first operation sets IER7 to zero, so that the 'V s in bit positions 0, 1, 2, 5, and 6 clear 
the corresponding enable bits and thus disable those interrupts. The second operation 
sets IER7 to one, so that the 'V s  in bit positions 3 and 4 set the corresponding enable 
bits (bit 3 for CB2, bit 4 for CB1) and thus enable those interrupts.

Besides the conditions described in Figure 12-3. the bits in the Interrupt Flag register 
can also be cleared by w riting '1 's  into the required b it positions in that address.
This procedure is useful for clearing flags that are being used in the independent modes 
and for elim inating undesired interrupts that may have been caused accidentally during 
reset or startup. Note that the Interrupt Flag register bit positions are the same as the 
Interrupt Enable register bit positions so that we can easily extend the previous 
examples to eliminate stray interrupts. This can be done w ith either enabling or disab­
ling operations, since the value of bit 7 does not matter. The extended examples are:

1) Enable CA1 interrupt, disable all others, clear CA1 interrupt flag.

LDA #% 01111101 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LDA #% 10000010
STA VIAIFR ;CLEAR CA1 INTERRUPT FLAG
STA VIAIER :ENABLE CA1 INTERRUPT

ENABLING AND 
DISABLING 
6522 VIA 
INTERRUPTS

6522 VIA 
INTERRUPTS
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7 6 5 4 3 2 1 0

Set
clear

control
T1 T2 CB1 CB2 SR CA1 CA2
.................T
T 1 T2 CB1 CB2 SR CA1 CA2

t t  T i t
See Figure 12-3  for meaning of interrupt names. 
Bit 7 is explained further in the main text

Bit Number

Interrupt Enable register

Designated interrupt enable 
1 - Interrupt enabled
0 - Interrupt disabled 

Set or clear bits 0 - 6
1 - Writing 1 sets bit to 1 
0  - Writing 1 sets bit to 0  
Writing 0  to any of

bits 0 - 6  has no effect

Figure 12-2. Description of the 6522 VIA Interrupt Enable Register

IRQ T 1 T2 CB1 CB2 SR CA1 CA2

-  Bit Number 

-Interrupt Flag register

Bit 7 indicates the status of the IRQ output. This bit corresponds to the following logic function:

IRQ =  (IFR6 A IER6) V (IFR5 A IER5) V (IFR4 A IER4) V (IFR3 A IER3) V (IFR2 A IER2) V (IFR1 A IER1) V 

(IFRO A  IER0)

Bits 0  - 6 are latches which are set and cleared as follows:

B it No. S e t by Cleared by

0
Active transition of the signal 
on the CA2 pin.

Reading or writing the A Port Output 
register (ORA) using address 0001 .

1
Active transition of the signal 
on the CA1 pin.

Reading or writing the A Port Output 
register (ORA), using address 0001 .

2
Completion of eight shifts. Reading or writing the Shift 

register.

3
Active transition of the signal 
on the CB2 pin.

Reading or writing the B Port 
Output register.

4
Active transition of the signal 
on the CB1 pin.

Reading or writing the B Port 
Output register

5
Time-out of Timer 2. Reading T2 low-order counter or 

writing T2  high-order counter.

6
Time-out of Timer 1. Reading T1 low-order counter or 

writing T1 high-order latch.

Figure 12-3. Description of the 6522 VIA Interrupt Flag Register

1 2 -7



2) Enable CB1 and CB2 interrupts, disable all others, clear CB1 and CB2 flags.

LDA #% 01100111 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LDA #% 10011000
STA VIAIFR ;CLEAR CB1, CB2 INTERRUPT FLAGS
STA VIAIER ;ENABLE CB1. CB2 INTERRUPTS

Note that b it 7 of the Interrupt Flag register and b it 7 of the Interrupt Enable 
register are both special. B it 7 of the Interrupt Flag register indicates the status of 
the IRQ output —  that is, it is 1 if any of the interrupts are both active and enabled. Bit 
7 of the Interrupt Enable register is the Set/Clear control mentioned earlier. Note 
that b it 7 of the Interrupt Flag register cannot be cleared directly; it can only be cleared 
by either clearing all the active interrupt flags or by disabling all the active interrupts.

Note the following about VIA interrupts:

1) The VIA interrupt enable bits have the opposite polarity from the 6502 I (or 
Interrupt Disable) flag; that is, they must be 'V  to enable an interrupt.

2) RESET disables all the interrupts.
3) The CPU can check b it 7 of the Interrupt Flag register to see if any interrupts 

are both active and enabled. That bit w ill remain set until no interrupt is both ac­
tive and enabled.

4) The VIA w ill remember an interrupt that occurs when VIA interrupts are dis­
abled and w ill output a request via IRQ as the VIA is enabled.

There are several examples of VIA interrupts later in this chapter.
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6 53 0  and 6 53 2  Multifunction Device Interrupts 
The 6530 device can provide an interrupt from its inter­
val timer. The IRQ output is also pin PB7 from Port B and 
should be set up as an input if it is to be used to cause an 
interrupt. The interrupt can be enabled by writing to the 
timer w ith address line A3 high. The interrupt can be disabled by writing to the timer 
w ith address line A3 low. It can be cleared by reading or writing the timer after an inter­
rupt has occurred.

The 6532 device can provide a tim er interrupt like the 6530 device. It can also 
provide an interrupt based on the occurrence of an edge on PA7; PA7 thus operates 
much like CA1 or CB1 on a 6520 PIA or a 6522 VIA. The interrupt can occur either on a 
low-to-high transition (positive edge) or on a high-to-low transition (negative edge).

6532 interrupts are controlled and examined by w riting to and reading from 
specific addresses (see Table 12-2 for a description of the addresses in a 6532 device). 
Note the following:

1) To control the PA7 interrupt, you simply write any data whatsoever into the ad­
dress in the 6532 I/O section given by:
RS =  1 to activate I/O rather than the on-board RAM 
A2 =  1, A4 = 0

The two least significant address bits (not the data) then control the PA7 mode as 
follows:

A1 =  1 to enable PA7 interrupt, 0 to disable it
AO =  1 for a positive (low-to-high) edge detect, 0 for a negative (high-to-low) edge 
detect.

2) To read and clear the Interrupt flags, read from the address in the 6532 I/O section 
given by:
RS =  1 to activate I/O rather than the on-board RAM 
A2 = 1, AO =  1

Bit 7 is the Timer Interrupt flag and bit 6 is the PA7 Interrupt flag. These can easily be 
read by means of the Bit Test instruction (Bit 7 is transferred to the Sign flag and bit 6 to 
the Overflow flag).

ACIA Interrupts
The 6850 ACIA can also serve as a source for interrupts. You
should note the following features of the ACIA in interrupt-
based systems:

1) The transmitter interrupt (ACIA is ready for data) is enabled only if Control 
register b it 6 = 0 and Control register bit 5 = 1.

2) The receiver interrupt (ACIA has received new data) is enabled only if Control 
register b it 7 = 1.

3) Master reset does not affect the interrupt enable bits.
4) Bit 7 of the Status register is set if an interrupt has occurred. This bit can be 

cleared either by reading data from the ACIA or by writing data into the ACIA.

6850 ACIA 
INTERRUPTS

6530 AND 6532 
MULTIFUNCTION 
DEVICE INTERRUPTS
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Table 12-2. Addressing the 6532 M ultifunction Device

Selection Lines
Address Mode

S 3 R/W A4 A3 A2 A1 AO

RAM Addressing
0 1(0) X X X X X Read (Write) RAM. AO - A6 select RAM address.

I/O  Addressing
1 1(0) X X 0 0 0 Read (Write) Port A data
1 1(0) X X 0 0 1 Read (Write) Port A Data Direction Register
1 1(0) X X 0 1 0 Read (Write) Port B data
1 1(0) X X 0 1 1 Read (Write) Port B Data Direction Register

Edge-Detection Control
1 0 0 X 1 0 X Disable interrupt from PA7
1 0 0 X 1 1 X Enable interrupt from PA7
1 0 0 X 1 X 0 Negative edge detect
1 0 0 X 1 X 1 Positive edge detect

1 1 X X 1 X 1 Read and Clear Interrupt Flags
Bit 7 is the Timer Flag
Bit 6  is the PA7 Flag

W rite  Count to Interval Timer
1 0 1 0 1 X X and disable timer interrupt
1 0 1 1 1 X X and enable timer interrupt
1 0 1 X 1 0 0 and decrement every <P2 pulse
i 0 1 X 1 0 1 and decrement every 8 <t>2 pulses
1 0 1 X 1 1 0 and decrement every 64  <t>2 pulses
1 0 1 X 1 1 1 and decrement every 1024  4>2 pulses

For all operations CS1 = 1 ,  CS2 =  0.
Logic levels: 0  means low level 

1 means high level
X means level of that signal does not matter (either 0  or 1)
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650 2  Polling Interrupt Systems
Most 6502 interrupt systems must poll each PIA, VIA. ACIA, 
or other device to determine which one caused an interrupt.
The polling method is:

1) Check each PIA by examining Control register bits 6 and 7:

BIT PIACR ;CHECK PIA STATUS BITS
BMI INT1 ;BRANCH TO INTERRUPT 1 IF BIT 7 SET
BVS INT2 ;BRANCH TO INTERRUPT 2 IF BIT 6 SET

2) Check each VIA by examining Interrupt Flag register bit 7:

BIT VIAIFR ;ARE ANY INTERRUPTS ACTIVE ON THIS VIA?
BMI INTV ;YES, GO EXAMINE ALL OF FLAG REGISTER

You must still examine the Interrupt Flag register if there is more than one potential in­
terrupt source from a particular VIA. A ll that bit 7 tells you is that at least one source is 
both active and enabled.

3) Check each ACIA by examining Status register b it 7:

BIT ACIASR ;ARE ANY INTERRUPTS ACTIVE ON THIS ACIA?
BMI INTA ;YES. GO DETERMINE WHICH ONE IF NECESSARY

The interrupt could still be either a receiver or a transmitter interrupt.

The important features of a 6502 polling system are:

1) The firs t interrupt examined has the highest priority, since the remaining in­
terrupts w ill not be examined if the firs t one is active. The second interrupt has 
the next highest priority, and so on.

2) The service routine must clear the interrupt flags from PIAs, VIAs, ACIAs, or 
other devices if the clearing is not performed automatically.

The programmer should be particularly careful of:

PIAs being used as interrupting output ports.
A dummy read of the port is necessary, since the Interrupt flag is not cleared auto­
matically when data is written into the port. PIA Status (Interrupt) flags are cleared 
only when the Data registers are read.

• VIAs being used in the independent input mode or through addresses that do 
not affect the Interrupt flags.

The Interrupt flag must then be explicitly cleared by writing a logic 'V  into the appropri­
ate bit of the Interrupt Flag register.

Polling routines are adequate if there are only a few  inputs.
However, if there are many inputs, polling routines are 
slow and awkward because:

1) The average number of polling operations increases 
linearly w ith  the number of inputs. On the average, of course, you'll have to poll 
half of the inputs before finding the correct one. You can reduce the average num­
ber of polling operations somewhat by checking the most frequent inputs first.

2) PIA, VIA, and ACIA addresses are rarely consecutive or evenly spaced: therefore, 
separate instructions are necessary to examine each input. Polling routines are 
therefore d ifficu lt to expand. Tables of I/O addresses could be used by placing the 
base address on page zero and using the post-indexed addressing mode or by plac­
ing the entire table on page zero and using the pre-indexed addressing mode.

3) Interrupts that are polled first may shut out those that are polled later unless the 
order of polling is varied. However, the lack of consecutive addresses makes vary­
ing the order of polling difficult.

DISADVANTAGES 
OF POLLING 
INTERRUPTS

POLLING
INTERRUPTS
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650 2  Vectored Interrupt Systems
The problem of polling in 6502-based systems has typically been 
solved by special methods, unique to a particular application or 
microcomputer. Note that there is no way to know that the 
6602 has accepted an interrupt other than by recognizing the 
addresses FFFE and FFFF when they appear on the Address Bus. Special hardware 
can then substitute the vector provided by the actual source.4 We w ill not discuss 
6502 vectored interrupt systems any further.

6502
VECTORED
INTERRUPTS
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EXAMPLES
A Startup Interrupt
Purpose: The computer waits for a VIA interrupt to occur before starting actual opera­

tions.

Many systems remain inactive until the operator actually starts them or until a Data 
Ready signal is received. On RESET, such systems must initialize the Stack Pointer, ena­
ble the startup interrupt, and execute an endless loop or jump-to-self instruction. 
Remember that RESET disables the processor interrupt (by setting I to 1) as well as all 
the VIA interrupts (by clearing all the VIA interrupt enable bits). In the flowchart, the 
decision as to whether startup is active is made in hardware (i.e., by the CPU examining 
the interrupt input internally) rather than in software.

Flowchart:

(  Star, )

Initialize Stack 
Pointer 

Enable startup
interrupt on VIA 

Enable CPU interrupt

Source Program:

Main Program:

HERE

LDX #$FF ;PUT STACK AT END OF PAGE 1
TXS
LDA # 0
STA VIAPCR :MAKE ALL CONTROL LINES INPUTS
LDA #% 10000010
STA VIAIFR ;CLEAR CA1 INTERRUPT FLAG
STA VIAIER :ENABLE CA1 INTERRUPT
CLI lENABLE CPU INTERRUPT
JMP HERE :WAIT FOREVER

Service Routine:

*=INTRP
LDA #%  10000010
STA VIAIFR ;CLEAR CA1 INTERRUPT FLAG
LDX #$FF :REINITIALIZE STACK POINTER
TXS
JMP START
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Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA # 0
0004 00
0005 8D STA VIAPCR
0006)
0007) VIAPCR

0008 A9 LDA #% 10000010
0009 82
000A 8D STA VIAIFR
OOOBt
OOOCt VIAIFR

000D 8D STA VIAIER
000EI
000F) VIAIER

0010 58 CLI
0011 4C HERE JMP HERE
0012 11
0013 00

Interrupt Service Routine:

INTRP A9 LDA #%10000010
INTRP+1 82
INTRP+2 8D STA VIAIFR
INTRP+31
INTRP+4) VIAIFR

INTRP+5 A2 LDX #$FF
INTRP+6 FF
INTRP+7 9A TXS
INTRP+8 4C JMP START
INTRP+9 I 
INTRP+A) START

1 2 -1 4



The exact location of the interrupt service routine varies 
w ith the microcomputer. If your microcomputer has no 
monitor, you can simply place whatever address you want 
in memory locations FFFE and FFFF (or whatever locations 
respond to those addresses). You must then start the interrupt service routine at the ad­
dress you chose. Of course, you should place the routine so that it does not interfere 
w ith fixed addresses or w ith  other programs.

If your microcomputer has a monitor, the monitor w ill occupy ad­
dresses FFFE and FFFF. Those addresses w ill either contain a start­
ing address at which you must place your interrupt service 
routine, or w ill contain the starting address of a routine that allows 
you to choose the starting address of the interrupt service routine. A typical monitor 
routine would be:

MONINT JMP (USRINT) JUMP TO USER SUPPLIED INTERRUPT ADDRESS

You must then place the address of your service routine in memory locations USRINT 
and USRINT+1. Remember that MONINT is an address in the monitor program and its 
value is in addresses FFFE and FFFF.

You can include the loading of memory locations USRINT and USRINT+1 in your main 
program.

LDA #USRL ;LOAD LSB'S OF USER INTERRUPT ADDRESS
STA USRINT
LDA #USRM :LOAD MSB'S OF USER INTERRUPT ADDRESS
STA USRINT+1

These instructions must precede the enabling of the interrupts.

The main program only enables the interrupt from the startup VIA. We have assumed 
that the startup line is attached to VIA input CA1 and that the active edge is the trailing 
one (i.e.. a high-to-low transition). Other configurations would merely require different 
values in the VIA Peripheral Control register.

Note that the VIA interrupt is enabled and the Stack Pointer is loaded before the CPU 
interrupt is enabled (by clearing the I bit). W hat would happen if you cleared the I bit 
before loading the Stack Pointer? This w ill not be a potential problem if the monitor 
already places a value in the Stack Pointer.

In this example, the return address and Status register that the 6502 stores in the Stack 
on accepting an interrupt are not useful. Thus the service routine simply reinitializes the 
Stack Pointer.

Note that we could replace the JMP HERE instruction w ith a conditional branch that 
provided a guaranteed jump, such as BNE HERE. The Zero flag is not zero since the last 
operation was the one that enabled the CA1 interrupt. This shortcut is often helpful to 
make up for the fact that the 6502 has no unconditional branch w ith relative address­
ing.

Remember that RESET and accepting an interrupt automatically disable the inter­
rupt system. This allows the real startup routine to configure all the VIAs and 
other interrupt sources w ithout being interrupted. Note that you must explicitly 
clear the CA1 Interrupt flag or else it w ill interrupt again as soon as the interrupt system 
is re-enabled. You could also clear the flag by reading the VIA's Output Register A from 
the handshaking address (see Table 11-7).

INTERRUPT 
HANDLING 
BY MONITORS

INTERRUPTS ON
PARTICULAR
MICROCOMPUTERS
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A Keyboard Interrupt
Purpose: The computer waits for a keyboard interrupt and places 

the data from the keyboard into memory locaton 0040.

Sample Problem:

Keyboard data =  06
Result: (0040) =  06

KEYBOARD
INTERRUPT

Flowchart:

c
I

Initialize Stack 
Pointer 

Enable keyboard 
interrupt on VIA 

Enable CPU interrupt

Source Program:

Main Program:

LDX
TXS
LDA
STA
STA
LDA
STA
STA
CLI

HERE JMP

#$FF

#0
VIAPCR
VIADDRA
#%10000010
VIAIFR
VIAIER

HERE

Interrupt Service Routine:

*=INTRP
PHA
LDA
STA
PLA
RTI

VIAORA
$40

;PUT STACK AT END OF PAGE 1

;MAKE ALL CONTROL LINES INPUTS 
:MAKE PORT A LINES INPUTS

CLEAR KEYBOARD INTERRUPT FLAG 
ENABLE KEYBOARD INTERRUPT FROM VIA 
ENABLE CPU INTERRUPT 
DUMMY MAIN PROGRAM

SAVE ACCUMULATOR IN STACK 
GET KEYBOARD DATA 
SAVE KEYBOARD DATA 
RESTORE ACCUMULATOR FROM STACK
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Object Program:

Memory Address 
(Hex)

Memory Contents 
(Hex)

Instruction
(Mnemonic)

Main Program:

OOOU A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA # 0
0004 00
0005 8D STA VIAPCR
0006)
00071 VIAPCR

0008 8D STA VIADDRA
00091
000At VIADDRA

000B A9 LDA #% 10000010
OOOC 82
000D 8D STA VIAIFR
000E)
000Fl VIAIFR

0010 8D STA VIAIER
0011)
00121 VIAIER

0013 58 CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 AD LDA VIAORA
INTRP+2)
INTRP+3) VIAORA

INTRP+4 85 STA $40
INTRP+5 40
INTRP+6 68 PLA
INTRP+7 40 RTI

You must configure the VIA completely before enabling the interrupts. This includes 
establishing the directions of ports, determining the transitions to be recognized on 
strobe lines, and enabling latches (remember that setting bit 0 of the Auxiliary Control 
register enables the Port A latch).

The JMP HERE is an endless loop (jump-to-self) instruction that is used to represent the 
main program. After interrupts are enabled in a working system, the main program goes 
about its business until an interrupt occurs and then resumes execution after the inter­
rupt service routine is completed.
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The RTI instruction at the end of the service routine transfers 
control back to the JMP instruction in the main program. If you 
want to avoid this, you can simply change the Program 
Counter in the Stack. Remember that the Stack is always lo­
cated on page 1 (addresses 0100 - 01 FF), the Stack Pointer 
contains the address of the next empty location, and the interrupt response places the 
Program Counter in the Stack underneath the Status register. Thus the following pro­
gram will increment the Program Counter in the Stack without removing it.

TXS ;MAKE STACK POINTER INTO INDEX
INC $0102,X INCREMENT LSB'S OF RETURN ADDRESS
BNE DONE
INC $0103,X ;AND CARRY TO MSB'S IF NECESSARY

DONE (next instruction)

Since the 6502 does not automatically save its registers (other than the Status register), 
you can use them to pass parameters and results between the main program and the in­
terrupt service routine. So. you could leave the data in the Accumulator instead of in 
memory location 0040. This is, however, a dangerous practice that should be avoided 
in all but the most trivial systems. In most applications, the processor is using its 
registers during normal program execution; having the interrupt service routines ran­
domly change the contents of those registers would surely cause havoc. In general, no 
interrupt service routine should ever alter any register unless that register's con­
tents have been saved prior to its alteration and will be restored at the completion 
of the routine.

Note that you need not explicitly re-enable the interrupts at the end of the service 
routine. The reason is that the RTI instruction automatically restores the old Status 
(P) register w ith  the Interrupt Disable bit in its original state. In fact, you w ill have 
to alter the Interrupt Disable bit in the Stack (bit 2 of the top location) if you do not want 
the interrupts to be re-enabled.

Using the Stack is the most general approach to saving and restoring registers. 
The instruction PHA saves the contents of the Accumulator in the Stack and the 
instruction PLA restores the contents of the Accumulator from the Stack. This 
method can be expanded indefinitely (as long as there is room in the Stack) since 
nested service routines will not destroy the data saved by the earlier routines.

You can save all the registers in the Stack (remember that Status is automatically 
saved) after an interrupt w ith  the sequence:

PHA ;SAVE ACCUMULATOR
TXA ;SAVE INDEX REGISTER X
PHA
TYA ;SAVE INDEX REGISTER Y
PHA

Note that there is no direct way to transfer data between the Stack and the Index 
registers. The contents of the Accumulator must be saved first (why?).

You can restore the register; from the Stack (remember that RTI automatically restores 
Status) after an interrupt se vice routine by removing the data from the Stack in the op­
posite order from which it .^as entered:

PLA ;RESTORE INDEX REGISTER Y
TAY
PLA ;RESTORE INDEX REGISTER X
TAX
PLA ;RESTORE ACCUMULATOR

CHANGING THE 
INTERRUPT 
RETURN 
ADDRESS

1 2 -1 8



Note that the Accumulator is saved first and restored last.

An alternative approach would be for the interrupt routine to 
maintain control until it received an entire line of text (e.g., a string 
of characters ending w ith a carriage return). The main program 
would be:

FILLING A 
BUFFER VIA  
INTERRUPTS

Main Program:

LDX #$FF ;PUT STACK AT END OF PAGE 1
TXS
LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 CLEAR BUFFER INDEX TO START
LDA #% 10000010
STA VIAIFR CLEAR KEYBOARD INTERRUPT FLAG
STA VIAIER ENABLE KEYBOARD INTERRUPT FROM VIA
CLI ENABLE CPU INTERRUPT

HERE JMP HERE DUMMY MAIN PROGRAM

Interrupt Service Routine:

*=INTRP
PHA SAVE ACCUMULATOR IN STACK
TXA SAVE INDEX REGISTER X IN STACK
PHA
LDX $40 GET BUFFER INDEX
LDA VIAORA GET KEYBOARD DATA
STA $41,X SAVE DATA IN BUFFER
CMP #CR IS DATA A CARRIAGE RETURN?
BEQ ENDL YES, END OF LINE
INC $40 NO, INCREMENT BUFFER POINTER
PLA RESTORE INDEX REGISTER X FROM STACK
TAX
PLA RESTORE ACCUMULATOR FROM STACK
RTI

ENDL JMP LPROC PROCESS LINE WITHOUT INTERRUPTS

This program fills a buffer starting at memory location 0041 until it receives a carriage 
return character (CR). Memory location 0040 holds the current buffer index.

When the processor receives a carriage return, it leaves the interrupt system disabled 
while it handles the line.

DOUBLE
BUFFERING

An alternative approach would be to fill another buffer while han­
dling the first one; this approach is called double buffering.

The line processing routine is begun at address LPROC w ith  interrupts disabled, and 
w ith the original register contents (P, A, and X) and the return address in the Stack.

In a real application, the CPU could perform other tasks between interrupts. It could, for 
instance, edit, move, or transmit a line from one buffer while the interrupt was filling 
another buffer.
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A Printer Interrupt
Purpose: The computer waits for a printer interrupt and sends the data from memory 

location 0040 to the printer.

Sample Problem:

(0040) = 51 i f
Result:

Flowchart:

Printer receives a 51 1 6  (ASCII Q) when it is ready.

Source Program:

Main Program:

LDX 
TXS 
STX 
LDA 
STA 
LDA 
STA 
STA 
CLI

HERE JMP

Interrupt Service Routine:

"=INTRP
PHA
LDA $40
STA VIAORB
PLA 
RTI

#$FF

VIADDRB
#0
VIAPCR 
#%10000010 
VIAIFR 
VIAIER

HERE

:PUT STACK AT END OF PAGE 1

;MAKE PORT B LINES OUTPUTS

;MAKE ALL CONTROL LINES INPUTS

CLEAR PRINTER INTERRUPT FLAG 
ENABLE PRINTER INTERRUPT FROM VIA 
ENABLE CPU INTERRUPTS 
DUMMY MAIN PROGRAM

SAVE ACCUMULATOR IN STACK 
GET DATA
SEND DATA TO PRINTER
RESTORE ACCUMULATOR FROM STACK
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O b je c t Program :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 8E STX VIADDRB
00041
00051 VIADDRB

0006 A9 LDA #0
0007 00
0008 8D STA VIAPCR
0009) 
000A) VIAPCR

OOOB A9 LDA #% 10000010
000C 82
000D 8D STA VIAIFR
000E) 
000F) VIAIFR

0010 8D STA VIAIER
0011) 
0012) VIAIER

0013 58 CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 A5 LDA $40
INTRP+2 40
INTRP+3 8D STA VIAORB
INTRP+4)
INTRP+51

VIAORB

INTRP+6 68 PLA
INTRP+7 40 RTI
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Here, as w ith the keyboard, you could have the printer continue to 
interrupt until it transferred an entire line of text. The main pro­
gram and the service routine would be:

EMPTYING A 
BUFFER WITH  
INTERRUPTS

Main Program:

LDX #$FF
TXS ;PUT STACK AT END OF PAGE 1
STX VIADDRB :MAKE PORT B LINES OUTPUTS
LDA #0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA $40 ;INITIALIZE BUFFER INDEX TO ZERO
LDA #% 10000010
STA VIAIFR :CLEAR PRINTER INTERRUPT FLAG
STA VIAIER ;ENABLE PRINTER INTERRUPT FROM VIA
CLI :ENABLE CPU INTERRUPT

HERE JMP HERE ;DUMMY MAIN PROGRAM

Interrupt Service Routine:

*=INTRP
;SAVE ACCUMULATOR IN STACK 
;SAVE INDEX REGISTER X IN STACK

GET BUFFER INDEX 
GET A BYTE OF DATA FROM BUFFER 
SEND DATA TO PRINTER 
IS DATA A CARRIAGE RETURN?
YES, END OF LINE 
NO, INCREMENT BUFFER POINTER 
RESTORE INDEX REGISTER X FROM STACK

;RESTORE ACCUMULATOR FROM STACK
RTI

ENDL JMP LCOMP :HANDLE COMPLETED LINE

Again, double buffering could be used to allow I/O and processing to occur at the same 
time w ithout ever halting the CPU.

PHA
TXA
PHA
LDX $40
LDA $41.X
STA VIAORB
CMP #CR
BEQ ENDL
INC $40
PLA
TAX
PLA
RTI
JMP LCOMP
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A Real-Time Clock Interrupt5,6
Purpose: The computer waits for an interrupt from a real-time 

clock.

A real-time clock simply provides a regular series of pulses. The interval between  
the pulses can be used as a time reference. Real-time clock interrupts can be 
counted to give any multiple of the basic time interval. A real-time clock can be pro­
duced by dividing down the CPU clock, by using a separate timer or a programmable 
timer like the ones available in the 6522 VIA or in the 6530 or 6532 Multifunction 
devices (see Chapter 11), or by using external sources such as the AC line frequency.

Note the tradeoffs involved in determining the frequency of 
the real-time clock. A high frequency (say 10 kHz) allows the 
creation of a wide range of time intervals of high accuracy. On the 
other hand, the overhead involved in counting real-time clock 
interrupts may be considerable, and the counts w ill quickly exceed the capacity of a 
single 8-bit register or memory location. The choice of frequency depends on the preci­
sion and tim ing requirements of your application. The clock may, of course, consist 
partly of hardware; a counter may count high frequency pulses and interrupt the pro­
cessor only occasionally. A program w ill have to read the counter to measure time to
high accuracy.

One problem is synchronizing operations with the real­
time clock. Clearly, there w ill be some effect on the preci­
sion of the tim ing interval if the CPU starts the measure­
ment randomly during a clock period, rather than exactly at 
the beginning. Some ways to synchronize operations are:

1) Start the CPU and clock together. RESET or a startup interrupt can start the clock as 
well as the CPU.

2) A llow the CPU to start and stop the clock under program control.
3) Use a high-frequency clock so that an error of less than one clock period w ill be 

small.
4) Line up the clock (by waiting for an edge or interrupt) before starting the measure­

ment.

A real-time clock interrupt should have very high priority, 
since the precision of the timing intervals will be affected by 
any delay in servicing the interrupt. The usual practice is to 
make the real-time clock the highest priority interrupt except for 
power failure The clock interrupt service routine is generally kept extremely short 
so that it does not interfere w ith  other CPU activities.

PRIORITY 
OF REAL-TIME 
CLOCK

SYNCHRONIZATION 
WITH REAL-TIME 
CLOCK

FREQUENCY 
OF REAL-TIME 
CLOCK_______

REAL-TIME
CLOCK
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a) W ait for Real-Time Clock 

Source Program:

Main Program:

LDX
TXS
LDA
STA
LDA
STA
STA
CLI

HERE JMP

#$FF

# 0
VIAPCR 
#%  10000010 
VIAIFR 
VIAIER

HERE

Interrupt Service Routine:

*=INTRP 
PHA 
LDA 
STA 
PLA 
BRK

#%10000010 
VIAIFR

;PUT STACK AT END OF PAGE 1

;MAKE ALL CONTROL LINES INPUTS

CLEAR CLOCK INTERRUPT FLAG 
ENABLE CLOCK INTERRUPT FROM VIA 
ENABLE CPU INTERRUPT 
DUMMY MAIN PROGRAM

;SAVE ACCUMULATOR IN STACK

:CLEAR CLOCK INTERRUPT FLAG 
;RESTORE ACCUMULATOR FROM STACK
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O b je c t P rogram :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA # 0
0004 00
0005 8D STA VIAPCR
00061
0007) VIAPCR

0008 A9 LDA #% 10000010
0009 82
000A 8D STA VIAIFR
000BI
000C)

VIAIFR

000D 8D STA VIAIER
000E) VIAIER000F)
0010 58 CLI
0011 4C HERE JMP HERE
0012 11
0013 00

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 A9 LDA #% 10000010
INTRP+2 82
INTRP+3 8D STA VIAIFR
INTRP+4)
INTRP+5)

VIAIFR

INTRP+6 68 PLA
INTRp+7 00 BRK

If bit 0 of the VIA Peripheral Control register is 0, the interrupt w ill occur on the high-to- 
low (falling) clock edge. If that bit is 1. the interrupt w ill occur on the low-to-high (ris­
ing) clock edge.

The Clock Interrupt flag must be explicitly cleared in the interrupt service routine since 
no I/O transfer is required. Note that Port A could still be used for data as long as that 
data was transferred using the address that does not affect the interrupt flags (see Ta­
ble 11-7).
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We could, of course, generate the pulse itself using one of the 6522 timers. The follow­
ing example uses timer 1 to produce a single pulse 5000 (13881 6> clock cycles in 
length. Remember the following:

1) The timer 1 counters are loaded from two memory locations (VIAT 1L and 
VIAT1CH); loading the most significant bits of the timer count into VIAT1CH starts 
the timer and clears the T1 Interrupt flag (bit 6 of the Interrupt Flag register).

2) The mode of operation of timer 1 is controlled by bits 6 and 7 of the Auxiliary Con­
trol register:

bit 6 =  0 for a single pulse and 1 for continuous operation
bit 7 =  0 to disable output pulses on PB7 and 1 to generate such pulses.

3) The conclusion of the tim ing interval sets the timer 1 Interrupt flag (bit 6 of the In­
terrupt Flag register).

Table 11-7 describes the addressing of the VIA, Figure 11-10 describes the Auxiliary 
Control register, and Figure 12-3 describes the Interrupt Flag register.

Main Program:

LDX #$FF
TXS ;PUT STACK AT END OF PAGE
LDA # 0
STA VIAACR GENERATE ONE PULSE FROM
LDA #% 11000000
STA VIAIFR CLEAR TIMER 1 INTERRUPT
STA VIAIER ENABLE TIMER 1 INTERRUPT
LDA #$88 PULSE LENGTH =  5000 (1388
STA VIAT1L
LDA #$13
STA VIAT1CH START TIMING INTERVAL
CLI ENABLE CPU INTERRUPT

HERE JMP HERE DUMMY MAIN PROGRAM

Interrupt Service Routine:

*=INTRP
PHA
LDA
STA
PLA
BRK

# % 1 1000000 
VIAIFR

;SAVE ACCUMULATOR IN STACK

;CLEAR CLOCK INTERRUPT FLAG 
;RESTORE ACCUMULATOR FROM STACK

The only change in the service routine is the position of the Clock Interrupt flag in the 
Interrupt Flag register.
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b) W ait for 10 Real-Time Clock Interrupts

Source Program:

Main Program:

LDX #$FF PUT STACK AT END OF PAGE 1
TXS
LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA $40 CLEAR CLOCK COUNTER
LDA #% 10000010
STA VIAIFR CLEAR CLOCK INTERRUPT FLAG
STA VIAIER ENABLE CLOCK INTERRUPT FROM VIA
LDA #1 0 NUMBER OF COUNTS =  10
CLI ENABLE CPU INTERRUPT

WTTEN CMP $40 HAVE TEN COUNTS ELAPSED?
BNE WTTEN NO, WAIT
SEI YES, DISABLE CPU INTERRUPT
BRK

Interrupt Service Routine:

*=INTRP
PHA SAVE ACCUMULATOR IN STACK
INC $40 INCREMENT CLOCK COUNTER
LDA #% 10000010
STA VIAIFR CLEAR CLOCK INTERRUPT FLAG
PLA ;REST0RE ACCUMULATOR FROM STACK
RTI

Clearly we could generate the pulses from the 6522 timer —  for example, we could use 
timer 1 in its continuous mode (bit 6 of the Auxiliary Control register = 1). The only 
other change would be the bit position of the Interrupt flag.
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O b je c t Program :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA # 0
0004 00
0005 8D STA VIAPCR
0006)
00071 VIAPCR

0008 85 STA $40
0009 40
000A A9 LDA #% 10000010
OOOB 82
OOOC 8D STA VIAIFR
000D)
000E) VIAIFR

000F 8D STA VIAIER
0010) 
0011 f VIAIER

0012 A9 LDA #10
0013 OA
0014 58 CLI
0015 C5 WTTEN CMP $40
0016 40
0017 DO BNE WTTEN
0018 FC
0019 78 SEI
001A 00 BRK

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 E6 INC $40
INTRP+2 40
INTRP+3 A9 LDA #% 10000010
INTRP+4 82
INTRP+5 8D STA VIAIFR
INTRP+6)
INTRP+7) VIAIFR

INTRP+8 68 PLA
INTRP+9 40 RTI
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This interrupt service routine merely updates the counter in memory location 0040. It is 
transparent to the main program.

A more realistic real-time clock interrupt routine could main­
tain real time in several memory locations. For example, the 
following routine uses addresses 0040 through 0043 as follows:

0040 - hundredths of seconds
0041 - seconds
0042 - minutes
0043 - hours

We assume that the routine is triggered by a 100 Hz clock. 

Flowchart:

M AINTAINING  
REAL TIME
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*=INTRP
PHA
LDA

S ou rce  P rogram :

#%10000010
STA VIAIFR
INC $40
LDA $40
SEC
SBC #100
BNE ENDINT
STA $40
INC $41
LDA $41
SBC #60
BNE ENDINT
STA $41
INC $42
LDA $42
SBC #60
BNE ENDINT
STA $42
INC $43

ENDINT PLA
RTI

Now a wait of 300 ms could

LDA $40
CLC
ADC #30
CMP #100
BCC WAIT30
SBC #100

WAIT30 CMP $40
BNE WAIT30

;SAVE ACCUMULATOR IN STACK

;CLEAR CLOCK INTERRUPT FLAG 
;UPDATE HUNDREDTHS OF SECONDS

;IS THERE A CARRY TO SECONDS?

NO, DONE
YES, MAKE HUNDREDTHS ZERO 
UPDATE SECONDS

IS THERE A CARRY TO MINUTES?
NO. DONE
YES, MAKE SECONDS ZERO 
UPDATE MINUTES

IS THERE A CARRY TO HOURS?
NO, DONE
YES, MAKE MINUTES ZERO 
UPDATE HOURS
RESTORE ACCUMULATOR FROM STACK

;GET CURRENT REAL TIME

iDESIRED TIME IS 30 COUNTS LATER 
;MOD 100

;WAIT UNTIL DESIRED TIME

We do not need explicit SET CARRY (SEC) instructions except in the first operation in 
the interrupt service routine. The other operations in the interrupt service routine are 
only performed if the previous subtraction produced a zero result (and hence also pro­
duced a Carry of 1 indicating no borrow). In the wait program, the subtraction is only 
performed at all if the Carry is 1 (otherwise a branch occurs).

Of course, the program could perform other tasks and check the elapsed time only oc­
casionally. How would you produce a delay of seven seconds? Of three minutes?

Sometimes you may want to keep time either as BCD digits or as ASCII characters. How 
would you revise the last program to handle these alternatives?
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When it is no longer needed, you can disable the clock interrupt 
(or any other interrupt) in any of the following ways:

DISABLING
INTERRUPTS

1) By executing an SEI instruction in the main program. This dis­
ables the entire interrupt system. An SEI instruction in the service routine has no
effect, since RTI restores the old I flag: anyway, the 6502 automatically disables in­
terrupts during the service routine.

2) By clearing the appropriate bit in the Interrupt Enable register (see Figure 12-2)
either during the service routine or during the main program. This disables only the 
single interrupt source from one VIA.

3) By setting the Interrupt Disable flag in the Stack during the service routine. The 
following program w ill do the job (remember that the Interrupt Disable flag is bit 2 
of the Status register and that the Status register is the top entry in the Stack —  
see Figure 12-1):

RTI w ill then cause a return to the main program w ith the entire interrupt system 
disabled.

Note, however, that you must be very careful about not re-enabling the interrupts 
automatically, since the main program would be completely unaware that inter­
rupts were no longer allowed. In general, all interrupt service routines should re­
enable the interrupts before returning; any other policy means that the ser­
vice routines are not transparent to the main program.

PLA
ORA
PHA

;GET STATUS REGISTER 
#%00000010 ;SET INTERRUPT DISABLE FLAG

;RETURN STATUS REGISTER TO STACK
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A Teletypewriter Interrupt
Purpose: The computer waits for data to be received from a teletypewriter and stores 

the data in memory location 0040.

a) Using a 6850 ACIA

(7-bit characters w ith  odd parity and two stop bits).

Source Program:

Main Program:

ACIA
INTERRUPT
ROUTINE

HERE

LDX
TXS
LDA
STA
LDA
STA
CLI
JMP

#$FF

#%00000011 
ACIACR 
#% 11000101 
ACIACR

HERE

Interrupt Service Routine:

*=INTRP
PHA
LDA ACIADR
STA $40
PLA 
RTI

;PUT STACK AT END OF PAGE 1

;MASTER RESET ACIA

;ENABLE ACIA INTERRUPT

;ENABLE CPU INTERRUPT 
;DUMMY MAIN PROGRAM

SAVE ACCUMULATOR IN STACK 
GET DATA FROM ACIA 
SAVE DATA
RESTORE ACCUMULATOR FROM STACK
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O b je c t Program :

Memory Address Memory Contents Instruction
____________(Hex)_______________(Hex)____________________(Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #% 00000011
0004 03
0005 8D STA ACIACR
00061

ACIACR0007)
0008 A9 LDA #% 11000101
0009 C5
000A 8D STA ACIACR
000Bl
oooct ACIACR

000D 58 CLI
000E 4C HERE JMP HERE
000F OE
0010 00

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 AD LDA ACIADR
INTRP+21

ACIADRINTRP+3)
INTRP+4 85 STA $40
INTRP+5 40
INTRP+6 68 PLA
INTRP+7 40 RTI

Remember that the ACIA has no RESET input, so a Master Reset (making Control 
register bits 0 and 1 both '1') is necessary before the ACIA is used. The ACIA Control 
register configuration is:

Bit 7 =  1 to enable the receive interrupt
Bit 6 =  1, Bit 5 =  0 to disable the transmitter interrupt and make RTS high

(inactive)
Bit 4 = 0, Bit 3 =  0, Bit 2 = 1 to select 7-bit data w ith odd parity and two 

stop bits
Bit 1 =  0, Bit 0 = 1 for -s- 16 clock (1760 Hz)

To determine if a particular ACIA is the source of an interrupt, the CPU must examine
the Interrupt Request bit. b it 7 of the Status register. The program must examine the 
Receive Data Register Full bit (Status register bit 0) and the Transmit Data Register 
Empty bit (Status register bit 1) to differentiate between receive and transmit interrupts.

Either reading the Receive Data register or writing into the Transmit Data register clears 
the ACIA Interrupt Request bit.
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b) Using a 6522 VIA START BIT
(Received data tied to both date hit 7 anH tn cnntmt linp 1 nf INTERRUPT
the VIA.)

Source Program:

Main Program:

LDX #$FF PUT STACK AT END OF PAGE 1
TXS
LDA # 0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA
LDA #% 10000010
STA VIAIFR CLEAR START BIT INTERRUPT FLAG
STA VIAIER ENABLE START BIT INTERRUPT FROM VIA
CLI ENABLE CPU INTERRUPT

HERE JUMP HERE DUMMY MAIN PROGRAM

Interrupt Service Routine:

*=INTRP
PHA ;SAVE ACCUMULATOR IN STACK
LDA #%00000010
STA VIAIFR CLEAR START BIT INTERRUPT FLAG
STA VIAIER DISABLE START BIT INTERRUPT
JSR TTYRCV FETCH DATA FROM TTY
LDA #%  10000010
STA VIAIER RE-ENABLE START BIT INTERRUPT
PLA :RESTORE ACCUMULATOR FROM STACK
RTI
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O b je c t P rogram :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA # 0
0004 00
0005 8D STA VIAPCR
0006)
00071 VIAPCR

0008 8D STA VIADDRA
0009)
000A) VIADDRA

000 B A9 LDA #% 10000010
OOOC 82
000D 8D STA VIAIFR
000E
000F VIAIFR

0010 8D STA VIAIER
0011)
0012) VIAIER

0013 58 CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Routine:

INTRP 48 PHA
INTRP+1 A9 LDA #%00000010
INTRP+2 02
INTRP+3 8D STA VIAIFR
INTRP+4)
INTRP+5) VIAIFR

INTRP+6 8D STA VIAIER
INTRP+7)
INTRP+8) VIAIER

INTRP+9 20 JSR TTYRCV
INTRP+10) 
INTRP+11) TTYRCV

INTRP+12 A9 LDA #% 10000010
INTRP+13 82
INTRP+14 8D STA VIAIER
INTRP+15) 
INTRP+161 VIAIER

INTRP+17 68 PLA
INTRP+18 40 RTI
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Subroutine TTYRCV is the teletypewriter receive routine shown in the previous chapter.

The edge used to cause the interrupt is very important here. The transition from the 
normal 'V  (MARK) state to the 'O’ (SPACE) state must cause the in terrupt since this 
transition identifies the start of the transmission. No '0' to '1' transition w ill occur until a 
nonzero data bit is received.

The service routine must disable the VIA interrupt, since otherwise each '1 ' to 'O' transi­
tion in the character w ill cause an interrupt. Of course, you must re-enable the VIA in­
terrupt after the entire character has been read.

Note how VIA interrupts are enabled or disabled. Bit 7 of the Interrupt Enable register is 
a "Set/Clear Control" bit. If that b it is 0, subsequent '1' bits clear interrupt enable bits 
and hence disable the corresponding interrupts; if that bit is 1, subsequent '1' bits set 
interrupt enable bits and hence enable the corresponding interrupts. The processor 
cannot actually write into bit 7 of the Interrupt Flag register, so either an enabling or a 
disabling pattern can be used to clear the interrupt flags. Remember the descriptions of 
the Interrupt Enable register and Interrupt Flag register in Figures 12-2 and 12-3.
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MORE GENERAL SERVICE ROUTINES
More general service routines that are part of a complete 
interrupt-driven system must handle the following tasks:

1) Saving all registers that are used in the interrupt ser­
vice routine in the Stack so that the interrupted pro­
gram can be correctly resumed.

Remember that the 6502 only has Push instructions for the Accumulator and for
the Status (P) register. Pushing the Status register is unnecessary after an interrupt
since the interrupt response does this automatically. A routine to save all the 
registers in the Stack would be (as shown earlier):

PHA ;SAVE ACCUMULATOR IN STACK
TXA ;SAVE INDEX REGISTER X IN STACK
PHA
TYA ;SAVE INDEX REGISTER Y IN STACK
PHA

In some 6502 programs, certain memory locations on page zero are treated as 
extra registers. Such locations may have to be saved and restored during in­
terrupt service routines. The procedure to save the contents of memory location 
0040 would be, for example:

LDA $40 ;SAVE MEMORY LOCATION 0040 IN STACK
PHA

Of course, only those registers that are used by the interrupt service routine must 
be saved.

2) Restoring all registers from the Stack after completing the interrupt service 
routine. Remember that registers must be restored in the opposite order from that 
in which they were saved.

3) Enabling and disabling interrupts appropriately. Remember that the CPU auto­
matically disables its interrupts upon accepting one.

The service routines should be transparent as far as the interrupt program is con­
cerned (i.e., they should have no incidental effects).

Any standard subroutines that are used by an interrupt service routine must be 
reentrant. If some subroutines cannot be made reentrant, the interrupt service 
routine must have separate versions to use.?

TASKS FOR 
GENERAL SERVICE 
ROUTINES
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PROBLEMS
1) A Test Interrupt
Purpose: The computer waits for a VIA interrupt to occur, then executes the endless 

loop instruction:

HERE JMP HERE

until the next interrupt occurs.

2) A Keyboard Interrupt
Purpose: The computer waits for a 4-d ig it entry from a keyboard and places the digits 

into memory locations 0040 through 0043 (first one received in 0040). Each 
d ig it entry causes an interrupt. The fourth entry should also result in the dis­
abling of the keyboard interrupt.

Sample Problem:

Keyboard data =  04, 06, 01, 07

Result: (0040) =  04
(0041) =  06
(0042) =  01
(0043) =  07

3) A Printer Interrupt
Purpose: The computer sends four characters from memory locations 0040 to 0043 

(starting w ith 0040) to the printer. Each character is requested by an inter­
rupt. The fourth transfer also disables the printer interrupt.

4) A Real-Time Clock Interrupt
Purpose: The computer clears memory location 0040 initially and then complements 

memory location 0040 each time the real-time clock interrupt occurs.

How would you change the program so that it complements memory loca­
tion 0040 after every ten interrupts? How would you change the program so 
that it leaves memory location 0040 at zero for ten clock periods, FF-| q. for 
five clock periods, and so on continuously? You may want to use a display 
rather than memory location 0040 so that it w ill be easier to see.

5) A Teletypew riter Interrupt
Purpose: The computer receives TTY data from an interrupting 6850 ACIA and stores 

the characters in a buffer starting in memory location 0040. The process 
continues until the computer receives a carriage return (0D-|g). Assume that 
the characters are 7-bit ASCII w ith  odd parity. How would you change your 
program to use a VIA? Assume that subroutine TTYRCV is available, as in 
the example. Include the carriage return as the final character in the buffer.

1 2 -3 8



REFERENCES

1. A. Osborne. An Introduction to Microcomputers: Volume 1 — Basic Concepts, 
(Berkeley: OSBORNE/McGraw-Hill. 1977). pp. 5-14 to 5-34.

2. R. L. Baldridge, "Interrupts Add Power, Complexity to Microcomputer System 
Design", EDN, August 5, 1977, pp. 67-73.

3. L L e v e n th a l, 6 8 0 0  A s s e m b ly  L a n gu a g e  P ro g ra m m in g  .(B e rk e le y : 
OSBORNE/McGraw-Hill, 1979), pp. 12-5 to 12-25.

4. MCS6500 Microcomputer Family Hardware Manual, MOS Technology Inc., pp. 
104-108.

5. J. Gieryic, "SYM-1 6522-Based Timer", Micro, April 1979, pp. 11:31 to 11:32.

6. M. L. DeJong, "A  Simple 24-Hour Clock for the AIM 65” , Micro, March 1979, pp. 
10:5 to 10:7.

7. For further discussion and some real-life examples of designing 6502- and 6800- 
based systems w ith interrupts, see the following:

6502

T. Travis, "Patching a Program into a ROM” , Electronics, September 1, 1976, pp. 98 - 
1 0 1 .

G. L. Zick and T. T. Sheffer, "Remote Failure Analysis of Micro-Based Instrumentation", 
Computer. September 1977, pp. 30-35.

6800

S. C. Baunach, "An Example of an M6800-based GPIB Interface", EDN, September 20,
1977, pp. 125-128.

L. E. Cannon and P. S. Kreager, "Using a Microprocessor: a Real-Life Application. Part 2 
- Software". Computer Design, October 1975. pp. 81-89.

D. Fullager et al., "Interfacing Data Converters and Microprocessors", Electronics, 
December 8, 1976, pp. 81-89.

S. A. Hill, "Multiprocess Control Interface Makes Remote ixP Command Possible", EDN. 
February 5, 1976, pp. 87-89.

W. S. Holderby, "Designing a Microprocessor-based Terminal for Factory Data Collec­
tion", Computer Design, March 1977, pp. 81-88.

A. Lange. "OPTACON Interface Permits the Blind to 'Read' Digital Instruments". EDN, 
February 5, 1976, pp. 84-86.

J. D. Logan and P. S. Kreager, "Using a Microprocessor: a Real-Life Application. Part 1 - 
Hardware” , Computer Design. September 1975, pp. 69-77.

12-39



A. Moore and M. Eidson, "Printer Control", Application Note available from Motorola 
Semiconductor Products, Phoenix, AZ.

M. C. Mulder and P. P. Fasang, "A  Microprocessor Controlled Substation Alarm Log­
ger", IECI '78 Proceedings - Industrial Applications of Microprocessors, March 
20-22, 1978, pp. 2-6.

P. J. Zsombar-Murray et al„ "Microprocessor Based Frequency Response Analyzer", 
IECI '78 Proceedings - Industrial Applications of Microprocessors, March 20-22,
1978, pp. 36-44.

The Proceedings of the IEEE's Industrial Electronics and Control Instrumentation 
Group's Annual Meeting on "Industrial Applications of Microprocessors" contains 
many interesting articles. Volumes (starting w ith 1975) are available from IEEE Service 
Center, CP Department, 445 Hoes Lane, Piscataway. NJ 08854.

12-40



Chapter 13 
PROBLEM DEFINITION AND 

PROGRAM DESIGN

THE TASKS OF SOFTWARE DEVELOPMENT
In the previous chapters, we have concentrated on the writing of short programs in as­
sembly language. W hile this is an important topic, it is only a small part of software 
development Although writing assembly language programs is a major task for the 
beginner, it soon becomes simple. By now, you should be familiar w ith  standard 
methods for programming in assembly language on the 6502 microprocessor. The 
next four chapters w ill describe how to formulate tasks as programs and how to 
combine short programs to form a working system.

Software development consists of many stages. Figure 
13-1 is a flowchart of the software development process. Its 
stages are:

• Problem definition
• Program design
• Coding
• Debugging
• Testing
• Documentation
• Maintenance and redesign

Each of these stages is important in the construction of a working system. Note that 
coding, the w riting of programs in a form that the computer understands, is only one of 
seven stages.

In fact, coding is usually the easiest stage to define and per­
form. The rules for writing computer programs are easy to learn.
They vary somewhat from computer to computer, but the basic 
techniques remain the same. Few software projects run into trou­
ble because of coding; indeed, coding is not the most time-consuming part of software 
development. Experts estimate that a programmer can write one to ten fully debugged 
and documented statements per day. Clearly, the mere coding of one to ten statements 
is hardly a full day's effort. On most software projects, coding occupies less than 25% of 
the programmer’s time.

Measuring progress in the other stages is difficult. You can say
that half of the program has been written, but you can hardly say 
that half of the errors have been removed or half of the problem 
has been defined. Timetables for such stages as program design, 
debugging, and testing are d ifficu lt to produce. Many days or weeks of effort may result 
in no clear progress. Furthermore, an incomplete job in one stage may result in tremen­
dous problems later. For example, poor problem definition or program design can make 
debugging and testing very difficult. Time saved in one stage may be spent many times 
over in later stages.

MEASURING 
PROGRESS 
IN STAGES

RELATIVE 
IMPORTANCE 
OF CODING

STAGES OF 
SOFTWARE 
DEVELOPMENT
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DEFINITION OF THE STAGES
Problem definition is the formulation of the task in terms of 
the requirements that it places on the computer. For example, 
what is necessary to make a computer control a tool, run a series 
of electrical tests, or handle communications between a central controller and a remote 
instrument? Problem definition requires that you determine the forms and rates of in­
puts and outputs, the amount and speed of processing that is needed, and the types of 
possible errors and their handling. Problem definition takes a vague idea of building a 
computer-controlled system and defines the tasks and requirements for the computer.

Program design is the outline of the computer program which 
w ill perform the tasks that have been defined. In the design 
stage, the tasks are described in a way that can easily be con­
verted into a program Among the useful techniques in this stage are flowcharting, 
structured programming, modular programming, and top-down design.

Coding is the w riting of the program in a form that the com- | CODING |
puter can either directly understand or translate. The form may 
be machine language, assembly language, or a high-level language.

Debugging, also called program verification, is making the pro- | DEBUGGING | 
gram do what the design specified that it would do. In this 
stage, you use such tools as breakpoints, traces, simulators, logic analyzers, and in-cir- 
cuit emulators. The end of the debugging stage is hard to define, since you never know 
when you have found the last error.

Testing, also referred to as program validation, is ensuring that |TESTING]
the program performs the overall system tasks correctly. The
designer uses simulators, exercisers, and various statistical techniques to measure the 
program's performance. This stage is like quality control for hardware.

Documentation is the description of the program in the |DOCUMENTATION] 
proper form for users and maintenance personnel. Docu­
mentation also allows the designer to develop a program library so that subsequent 
tasks w ill be far simpler. Flowcharts, comments, memory maps, and library forms are 
some of the tools used in documentation.

Maintenance and redesign are the servicing, improvement, 
and extension of the program. Clearly, the designer must be 
ready to handle field problems in computer-based equipment.
Special diagnostic modes or programs and other maintenance 
tools may be required. Upgrading or extension of the program may be necessary to 
meet new requirements or handle new tasks.

The rest of this chapter w ill consider only the problem definition and program 
design stages. Chapter 14 w ill discuss debugging and testing, and Chapter 15 w ill dis­
cuss documentation, extension, and redesign. We w ill bring all the stages together in 
some simple systems examples in Chapter 16.

PROBLEM DEFINITION
Typical microprocessor tasks require a lot of definition. For example, what must a pro­
gram do to control a scale, a cash register, or a signal generator? Clearly, we have a 
long way to go just to define the tasks involved.

MAINTENANCE
AND
REDESIGN

PROGRAM
DESIGN

PROBLEM
DEFINITION
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How do we start the definition? The obvious place to begin is w ith the inputs. We 
should begin by listing all the inputs that the computer may receive in this applica­
tion.

Examples of inputs are:

• Data blocks from transmission lines
• Status words from peripherals
• Data from A/D converters

Then, we may ask the following questions about each input:

1) W hat is its form; i.e., what signals w ill the computer actually 
receive?

2) When is the input available and how does the processor know it is available? Does 
the processor have to request the input w ith  a strobe signal?Does the input provide 
its own clock?

3) How long is it available?
4) How often does it change, and how does the processor know that it has changed?
5) Does the input consist of a sequence or block of data? Is the order important?
6) W hat should be done if the data contains errors? These may include transmission 

errors, incorrect data, sequencing errors, extra data, etc.
7) Is the input related to other inputs or outputs?

DEFINING THE INPUTS

FACTORS 
IN INPUT

DEFINING THE OUTPUTS
The next step to define is the output We must lis t all the outputs that the computer 
must produce. Examples of outputs include;

• Data blocks to transmission lines
• Control words to peripherals
• Data to D/A converters

Then, we may ask the following questions about each output:

1) W hat is its form; i.e., what signals must the computer produce?
2) When must it be available, and how does the peripheral know it is available?
3) How long must it be available?
4) How often must it change, and how does the peripheral know that it has changed?
5) Is there a sequence of outputs?
6) W hat should be done to avoid transmission errors or to sense and recover from pe­

ripheral failures?
7) How is the output related to other inputs and outputs?
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PROCESSING SECTION
Between the reading of input data and the sending of output results is the processing
section. Here we must determine exactly how the computer must process the in­
put data. The questions are:

1) W hat is the basic procedure (algorithm) for transforming input 
data into output results?

2) W hat time constraints exist? These may include data rates, 
delay times, the time constants of input and output devices, etc.

3) W hat memory constraints exist? Do we have limits on the amount of program 
memory or data memory, or on the size of buffers?

4) W hat standard programs or tables must be used? W hat are their requirements?
5) W hat special cases exist, and how should the program handle them?
6) How accurate must the results be?
7) How should the program handle processing errors or special conditions such as 

overflow, underflow, or loss of significance?

ERROR HANDLING
An important factor in many applications is the handling of errors. Clearly, the 
designer must make provisions for recovering from common errors and for diagnosing 
malfunctions Among the questions that the designer must ask at the definition 
stage are:

1) W hat errors could occur?
2) W hich errors are most likely? If a person operates the 

system, human error is the most common. Following 
human errors, communications or transmission errors are more common than 
mechanical, electrical, mathematical, or processor errors.

3) W hich errors w ill not be immediately obvious to the system? A special problem is 
the occurrence of errors that the system or operator may not recognize as incorrect.

4) How can the system recover from errors w ith a minimum loss of time and data and 
yet be aware that an error has occurred?

5) W hich errors or malfunctions cause the same system behavior? How can these er­
rors or malfunctions be distinguished for diagnostic purposes?

6) Which errors involve special system procedures? For example, do parity errors re­
quire retransmission of data?

Another question is: How can the field technician systematically find the source of 
malfunctions w ithout being an expert? Built-in test programs, special diagnostics, or 
signature analysis can help.^

ERROR
CONSIDERATIONS

FACTORS IN 
PROCESSING
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HUM AN FACTORS
Many microprocessor-based systems involve human interaction.
Human factors must be considered throughout the develop­
ment process for such systems. Among the questions that the 
designer must ask are:

1) What input procedures are most natural for the human operator?
2) Can the operator easily determine how to begin, continue and end the input

operations?
3) How is the operator informed of procedural errors and equipment malfunctions?
4) What errors is the operator most likely to make?
5) How does the operator know that data has been entered correctly?
6) Are displays in a form that the operator can easily read and understand?
71 Is the response of the system adequate for the operator?
8) Is the system easy for the operator to use?
9) Are there guiding features for an inexperienced operator?

10) Are there shortcuts and reasonable options for the experienced operator?
11) Can the operator always determine or reset the state of the system after interrup­

tions or distractions?

Building a system for people to use is difficult. The microprocessor can make the 
system more powerful, more flexible, and more responsive. However, the designer still 
must add the human touches that can greatly increase the usefulness and attractive­
ness of the system and the productivity of the human operator. 2

OPERATOR
INTERACTION
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EXAMPLES 
Response to a Switch
Figure 13-2 shows a simple system in which the input is 
from a single SPST sw itch and the output is to a single LED 
display. In response to a sw itch closure, the processor 
turns the display on for one second. This system should be 
easy to define.

Let us firs t examine the input and answer each of the questions 
previously presented:

1) The input is a single bit. which may be either 'O' (switch closed) o r '1' (switch 
open).

2) The input is always available and need not be requested.
3) The input is available for at least several milliseconds after the closure.
4) The input w ill seldom change more than once every few seconds. The processor 

has to handle only the bounce in the switch. The processor must monitor the 
switch to determine when it is closed.

5) There is no sequence of inputs.
6) The obvious input errors are switch failure, failure in the input circuitry, and the 

operator attempting to close the switch again before a sufficient amount of time 
has elapsed. We w ill discuss the handling of these errors later.

7) The input does not depend on any other inputs or outputs.

The next requirement in defining the system is to examine the 
output. The answers to our questions are:

1) The output is a single bit. which is '0' to turn the display on,
'1' to turn it off.

2) There are no time constraints on the output. The peripheral does not need to be in­
formed of the availability of data.

3) If the display is an LED, the data need be available for only a few milliseconds at a 
pulse rate of about 100 times per second. The observer w ill see a continuously lit 
display.

4) The data must change (go off) after one second.
5) There is no sequence of outputs.
6) The possible output errors are display failure and failure in the output circuitry.
7) The output depends only on the switch input and time.

The processing section is extremely simple. As soon as the sw itch input becomes 
a logic 'O’, the CPU turns the light on (a logic 'O') for one second. No time or memo­
ry constraints exist.

Let us now look at the possible errors and malfunctions. These 
are:

• Another switch closure before one second has elapsed
• Switch failure
• Display failure
• Computer failure

Surely the first error is the most likely. The simplest solution is for the processor to ig­
nore switch closures until one second has elapsed. This brief unresponsive period w ill 
hardly be noticeable to the human operator. Furthermore, ignoring the switch during 
this period means that no debouncing circuitry or software is necessary, since the 
system w ill not react to the bounce anyway.

SWITCH AND  
LIGHT ERROR 
HANDLING

SWITCH 
AND LIGHT 
OUTPUTS

DEFINING 
SWITCH AND  
LIGHT SYSTEM

SWITCH AND  
LIGHT INPUT
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The switch input is a *1* if the switch is open, 'O' if the 
switch is closed. The CPU applies the output to the 
cathode of the LED; a '0' lights the display.

Figure 13-2. The Switch and Light System

Clearly, the last three failures can produce unpredictable results. The display may stay 
on. stay off, or change state randomly. Some possible ways to isolate the failures would 
be:

• Lamp-test hardware to check the display; i.e., a button that turns the light on in ­
dependently of the processor

• A direct connection to the switch to check its operation
• A diagnostic program that exercises the input and output circuits

If both the display and switch are working, the computer is at fault. A field technician 
w ith proper equipment can determine the cause of the failure.
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A Switch-Based Mem ory Loader
Figure 13-3 shows a system that allows the user to enter 
data into any memory location in a microcomputer. One in­
put port, DPORT, reads data from eight toggle switches.
The other input port, CPORT, is used to read control infor­
mation. There are three momentary switches: High Address, Low Address and 
Data. The output is the value of the last completed entry from the data switches; 
eight LEDs are used for the display.

The system w ill also, of course, require various resistors, buffers, and drivers.

We shall firs t examine the inputs. The characteristics of the switches are the same as 
in the previous example; however, here there is a distinct sequence of inputs, as 
follows:

1) The operator must set the data switches according to the eight most significant 
bits of an address, then

2) press the High Address button. The high address bits w ill appear on the lights, and 
the program w ill interpret the data as the high byte of the address.

3) Then the operator must set the data switches w ith the value of the least significant 
byte of the address and

4) press the Low Address button. The low address bits w ill appear on the lights, and 
the program w ill consider the data to be the low byte of the address.

5) Finally, the operator must set the desired data into the data switches and
6) press the Data button. The display w ill now show the data, and the program stores 

the data in memory at the previously entered address.

The operator may repeat the process to enter an entire program. Clearly, even in this 
simplified situation, we w ill have many possible sequences to consider. How do we 
cope w ith  erroneous sequences and make the system easy to use?

Output is no problem. A fter each input, the program sends to the displays the 
complement (since the displays are active-low) of the input bits. The output data 
remains the same until the next input operation.

The processing section remains quite simple. There are no time or memory con­
straints. The program can debounce the switches by waiting fora few milliseconds, and 
must provide complemented data to the displays.

The most likely errors are operator mistakes. These include

• Incorrect entries
• Incorrect order
• Incomplete entries; for example, forgetting the data

The system must be able to handle these problems in a reasonable way, since they are 
certain to occur in actual operation.

The designer must also consider the effects of equipment failure. Just as before, 
the possible difficulties are:

• Switch failure
• Display failure
• Computer failure

MEMORY
LOADER
ERROR
HANDLING

DEFINING A 
SWITCH-BASED 
MEMORY LOADER
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Figure 13-3. The Switch-Based Memory Loader



In this system, however, we must pay more attention to how these failures affect the 
system. A computer failure w ill presumably cause very unusual behavior by the system, 
and w ill be easy to detect. A display failure may not be immediately noticeable; here a 
Lamp Test feature w ill allow the operator to check the operation. Note that we would 
like to test each LED separately, in order to diagnose the case in which output lines are 
shorted together. In addition, the operator may not immediately detect switch failure; 
however, the operator should soon notice it and establish which switch is faulty by a 
process of elimination.

Let us look at some of the possible operator errors. Typical errors 
w ill be:

• Erroneous data
• Wrong order of entries or switches
• Trying to go on to the next entry w ithout completing the current 

one
The operator w ill presumably notice erroneous data as soon as it appears on the dis­
plays. W hat is a viable recovery procedure for the operator? Some of the options are:

1) The operator must complete the entry procedure: i.e., enter Low Address and Data 
if the error occurs in the High Address. Clearly, this procedure is wasteful and 
would only serve to annoy the operator.

2) The operator may restart the entry process by returning to the high address entry 
steps. This solution is useful if the error was in the High Address, but forces the 
operator to re-enter earlier data if the error was in the Low Address or Data stage.

3) The operator may enter any part of the sequence at any time simply by setting the 
Data switches w ith the desired data and pressing the corresponding button. This 
procedure allows the operator to make corrections at any point in the sequence.

This type of procedure should always be preferred over one that does not allow immedi­
ate error correction, has a variety of concluding steps, or enters data into the system 
w ithout allowing the operator a final check. Any added complication in hardware or 
software w ill be justified in increased operator efficiency. You should always prefer to 
let the microcomputer do the tedious work and recognize arbitrary sequences; it never 
gets tired and never forgets what was in the operating manual.

A further helpful feature would be status lights that would define the meaning of the 
display. Three status lights, marked "High Address", "Low  Address", and "Data", 
would let the operator know what had been entered w ithout having to remember which 
button was pressed. The processor would have to monitor the sequence, but the added 
complication in software would simplify the operator's task. Clearly, three separate sets 
of displays plus the ability to examine a memory location would be even more helpful to 
the operator.

We should note that, although we have emphasized human interaction, machine 
or system interaction has many of the same characteristics. The microprocessor 
should do the work. If complicating the microprocessor's task makes error recov­
ery simple and the causes of failure obvious, the entire system w ill work better 
and be easier to maintain. Note that you should not wait until after the software has 
been completed to consider system use and maintenance: instead, you should include 
these factors in the problem definition stage.

OPERATOR 
ERROR 
CORRECTION 
IN MEMORY 
LOADER
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A Verification Terminal
Figure 13-4 is a block diagram of a simple credit-verification 
terminal. One input port derives data from a keyboard (see 
Figure 13-5); the other input port accepts verification data 
from a transmission line. One output port sends data to a set of 
displays (see Figure 13-6); another sends the credit card number to the central 
computer. A third output port turns on one light whenever the terminal is ready to 
accept an inquiry, and another light when the operator sends the information. The 
"B usy" light turns off when the response returns. Clearly, the input and output of 
data w ill be more complex than In the previous case, although the processing is still 
simple.

Additional displays may be useful to emphasize the meaning of the response. Many ter­
minals use a green light for "Yes", a red light for "No", and a yellow light for "Consult 
Store Manager." Note that these lights w ill still have to be clearly marked w ith their 
meanings to allow for a color-blind operator.

Let us firs t look at the keyboard input. This is. of course, 
different from the switch input, since the CPU must have some 
way of distinguishing new data. We w ill assume that each key 
closure provides a unique hexadecimal code (we can code 
each of the 12 keys into one digit) and a strobe. The program w ill have to recogn­
ize the strobe and fetch the hexadecimal number that identifies the key. There is a 
time constraint, since the program cannot miss any data or strobes. The constraint is 
not serious, since keyboard entries w ill be at least several milliseconds apart.

The transmission input similarly consists of a series of characters, each identified 
by a strobe (perhaps from a UART). The program w ill have to recognize each 
strobe and fetch the character. The data being sent across the transmission lines 
is usually organized into messages. A possible message format is:

• Introductory characters, or header
• Terminal destination address
• Coded yes or no
• Ending characters, or trailer

The terminal w ill check the header, read the destination address, and see if the 
message is intended for it. If the message is for the terminal, the terminal accepts the 
data. The address could be (and often is) hard-wired into the terminal so that the ter­
minal receives only messages intended for it. This approach simplifies the software at 
the cost of some flexibility.

The output is also more complex than in the earlier examples.
If the displays are multiplexed, the processor must not only 
send the data to the display port but must also direct the data 
to a particular display. We w ill need either a separate control port 
or a counter and decoder to handle this. Note that hardware blanking controls can 
blank leading zeros as long as the first d ig it in a m ulti-d ig it number is never zero. Soft­
ware can also handle this task. Time constraints include the pulse length and frequency 
required to produce a continuous display for the operator.

The communications output w ill consist of a series of characters w ith  a particular 
format. The program w ill also have to consider the time required between charac­
ters. A possible format for the output message is:

• Header
• Terminal address
• Credit card number
• Trailer

VERIFICATION
TERMINAL
OUTPUTS

VERIFICATION
TERMINAL
INPUTS

DEFINING A
VERIFICATION
TERMINAL
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Figure 13-4. Block Diagram of a Verification Terminal

The digit keys allow digit entries.
CLEAR deletes the entire entry.
SEND transmits the entry to the central computer.

Figure 13-5. Verification Terminal Keyboard 
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The display consists of ten 7-segment displays, which may be multiplexed, controlled by a shift 
register, or addressed separately. Two additional lights, READY and BUSY, are also present.

Figure 13-6. Verification Terminal Display

A central communications computer may poll the terminals, checking for data 
ready to be sent.

The processing in this system involves many new tasks, such as:

• Identifying the control keys by number and performing the proper actions
• Adding the header, terminal address, and trailer to the outgoing message
• Recognizing the header and trailer in the returning message
• Checking the incoming terminal address

Note that none of the tasks involve any complex arithmetic or any 
serious time or memory constraints.

The number of possible errors in this system is, of course, 
much larger than in the earlier examples. Let us firs t consider 
the possible operator errors. These include:

• Entering the credit card number incorrectly
• Trying to send an incomplete credit card number
• Trying to send another number while the central computer is processing one
• Clearing non-existent entries

Some of these errors can be easily handled by correctly structuring the program. For ex­
ample, the program should not accept the Send key until the credit card number has 
been completely entered, and it should ignore any additional keyboard entries until the 
response comes back from the central computer. Note that the operator w ill know that 
the entry has not been sent, since the Busy light w ill not go on. The operator w ill also 
know when the keyboard has been locked out (the program is ignoring keyboard en­
tries), since entries w ill not appear on the display and the Ready light w ill be off.

VERIFICATION
TERMINAL
ERROR
HANDLING
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Incorrect entries are an obvious problem. If the operator recog­
nizes an error, he can use the Clear key to make corrections. The 
operator would probably find it more convenient to have two Clear 
keys, one that cleared the most recent key and one that cleared 
the entire entry. This would allow both for the situation in which the operator recog­
nizes the error immediately and for the situation in which the operator recognizes the 
error late in the procedure. The operator should be able to correct errors immediately 
and have to repeat as few keys as possible. The operator w ill, however, make a certain 
number of errors w ithout recognizing them. Most credit card numbers include a self­
checking digit; the terminal could check the number before permitting it to be sent to 
the central computer. This step would save the central computer from wasting precious 
processing time checking the number.

This requires, however, that the terminal have some way of informing the operator of 
the error, perhaps by flashing one of the displays or by providing some other special in­
dicator that the operator is sure to notice.

Still another problem is how the operator knows that an entry has been lost or pro­
cessed incorrectly. Some terminals simply unlock after a maximum time delay. The 
operator notes that the Busy light has gone off w ithout an answer being received. The 
operator is then expected to try the entry again. After one or two retries, the operator 
should report the failure to supervisory personnel.

Many equipment failures are also possible. Besides the displays, keyboard, ancf 
processor, there now exist the problems of communications errors or failures anc* 
central computer failures.

The data transmission w ill probably have to include error checking and correcting pro­
cedures. Some possibilities are:

1) Parity provides an error detection facility but no correction 
mechanism. The receiver w ill need some way of request­
ing retransmission, and the sender w ill have to save a copy 
of the data until proper reception is acknowledged. Parity 
is, however, very simple to implement.

2) Short messages may use more elaborate schemes. For example, the yes/no 
response to the terminal could be coded so as to provide error detection and cor­
rection capability.

3) An acknowledgement and a limited number of retries could trigger an indicator 
that would inform the operator of a communications failure (inability to-transfer a 
message w ithout errors) or central computer failure (no response at all to the 
message w ith in a certain period of time). Such a scheme, along w ith the Lamp 
Test, would allow simple failure diagnosis.

A communications or central computer failure indicator should also "unlock” the ter­
minal, i.e., allow it to accept another entry. This is necessary if the terminal w ill not ac­
cept entries while a verification is in progress. The terminal may also unlock after a cer­
tain maximum time delay. Certain entries could be reserved for diagnostics; i.e., certain 
credit card numbers could be used to check the internal operation of the terminal and 
test the displays.

CORRECTING
TRANSMISSION
ERRORS

CORRECTING
KEYBOARD
ERRORS
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REVIEW OF PROBLEM DEFINITION
Problem definition is as important a part of software development as it is of any 
other engineering task. Note that it  does not require any programming or 
knowledge of the computer; rather, it  is based on an understanding of the system 
and sound engineering judgment. Microprocessors can offer flex ib ility  that the 
designer can use to provide a range of features which were not previously availa­
ble.

Problem definition is independent of any particular computer, computer language, 
or development system. It should, however, provide guidelines as to w hat type or 
speed of computer the application w ill require and what kind of hard­
ware/software trade-offs the designer can make. The problem definition stage is 
in fact independent of whether or not a computer is used at all, although a 
knowledge of the capabilities of the computer can help the designer in suggesting 
possible implementations of procedures.
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PROGRAM DESIGN

Program design is the stage in which the problem definition is formulated as a pro­
gram. If the program is small and simple, this stage may involve little  more than 
the w riting of a one-page flowchart. If the program is larger or more complex, the 
designer should consider more elaborate methods

We w ill discuss flowcharting, modular programming, structured programming, and 
top-down design. We w ill try to indicate the reasoning behind these methods, and 
their advantages and disadvantages. We w ill not, however, advocate any particular 
method since there is no evidence that one method is always superior to all others. You 
should remember that the goal is to produce a good working system, not to follow 
religiously the tenets of one methodology or another.

All the methodologies do, however, have some obvious princi­
ples in common. Many of these are the same principles that apply 
to any kind of design, such as:

1) Proceed in small steps. Do not try to do too much at one
time.

2) Divide large jobs into small, logically separate tasks. Make the sub-tasks as inde­
pendent of one another as possible, so that they can be tested separately and so 
that changes can be made in one w ithout affecting the others.

3) Keep the flow of control as simple as possible so as to make it easier to find errors.
4) Use pictorial or graphic descriptions as much as possible. They are easier to 

visualize than word descriptions. This is the great advantage of flowcharts.
5) Emphasize clarity and simplicity at first. You can improve performance (if neces­

sary) once the system is working.
6) Proceed in a thorough and systematic manner. Use checklists and standard pro­

cedures.
7) Do not tempt fate. Either do not use methods that you are not sure of, or use them 

very carefully. Watch for situations that m ight cause confusion, and clarify them
as soon as possible.

8) Keep in mind that the system must be debugged, tested and maintained. Plan for 
these later stages.

9) Use simple and consistent terminology and methods. Repetitiveness is no fault in 
program design, nor is complexity a virtue.

10) Have your design completely formulated before you start coding. Resist the 
temptation to start w riting down instructions: it makes no more sense than mak­
ing parts lists or laying out circuit boards before you know exactly what w ill be in 
the system.

11) Be particularly careful of factors that may change. Make the implementation of 
likely changes as simple as possible.

BASIC 
PRINCIPLES 
OF PROGRAM 
DESIGN
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FLOWCHARTING
Flowcharting is certainly the best-known of all program design methods. Programming 
textbooks describe how programmers first write complete flowcharts and then start 
writing the actual program. In fact, few programmers have ever worked this way, and 
flowcharting has often been more of a joke or a nuisance to programmers than a design 
method. We w ill try to describe both the advantages and disadvantages of flowcharts, 
and show the place of this technique in program design.

The basic advantage of the flowchart is that it is a pictorial 
representation. People find such representations much more 
meaningful than written descriptions. The designer can visual­
ize the whole system and see the relationships of the various parts. Logical errors and 
inconsistencies often stand out instead of being hidden in a printed page. A t its best, 
the flowchart is a picture of the entire system.

Some of the more specific advantages of flowcharts are:

1) Standard symbols exist (see Figure 13-7) so that flowcharting forms are widely 
recognized.

2) Flowcharts can be understood by someone w ithout a programming background.
3) Flowcharts can be used to divide the entire project into sub-tasks. The flowchart 

can then be examined to measure overall progress.
4) Flowcharts show the sequence of operations and can therefore aid in locating the 

source of errors.
5) Flowcharting is widely used in other areas besides programming.
6) There are many tools available to aid in flowcharting, including programmer's 

templates and automated drawing packages.

These advantages are all im portant There is no question that 
flowcharting w ill continue to be widely used. But we should 
note some of the disadvantages of flowcharting as a pro­
gram design method, e.g.:

1) Flowcharts are d ifficu lt to design, draw, or change in all except the simplest situa­
tions.

2) There is no easy way to debug or test a flowchart.
3) Flowcharts tend to become cluttered. Designers find it d ifficu lt to balance between 

the amount of detail needed to make the flowchart useful and the amount that 
makes the flowchart little better than a program listing.

4) Flowcharts show only the program organization. They do not show the organization 
of the data or the structure of the input/output modules.

5) Flowcharts do not help w ith hardware or tim ing problems or give hints as to where
these problems might occur.

6) Flowcharts allow for highly unstructured design. Lines and arrows backtracking 
and looping all over the chart are the antithesis of good structured design princi­
ples.

Thus, flowcharting is a helpful technique that you should not try to extend too far. 
Flowcharts are useful as program documentation, since they have standard forms 
and are comprehensible to non-programmers. As a design tool, however, flowcharts 
cannot provide much more than a starting outline; the programmer cannot debug a 
detailed flowchart and the flowchart is often more d ifficu lt to design than the program 
itself.

DISADVANTAGES
OF
FLOWCHARTING

ADVANTAGES OF 
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Figure 13-7. Standard Flowchart Symbols
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EXAMPLES
Response to a Switch
This simple task, in which a single sw itch turns on a light 
for one second, is easy to flowchart. In fact, such tasks are 
typical examples for flowcharting books, although they form a 
small part of most systems. The data structure here is so simple 
that it can be safely ignored.

Figure 13-8 is the flowchart. There is little d ifficulty in deciding on the amount of 
detail required. The flowchart gives a straightforward picture of the procedure, which 
anyone could understand.

Note that the most useful flowcharts may ignore program variables and ask questions 
directly. Of course, compromises are often necessary here. Two versions of the 
flowchart are sometimes helpful — one general version in layman's language, 
which w ill be useful to non-programmers, and one programmer's version in terms 
of the program variables, which w ill be useful to other programmers.

A third type of flowchart, a data flowchart, may also be 
helpful. This flowchart serves as a cross-reference for the other 
flowcharts, since it shows how the program handles a particular 
type of data. Ordinary flowcharts show how the program proceeds, handling different 
types of data at different points. Data flowcharts, on the other hand, show how particu­
lar types of data move through the system, passing from one part of the program to 
another. Such flowcharts are very useful in debugging and maintenance, since errors 
most often show up as a particular type of data being handled incorrectly.

DATA
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FLOWCHARTING 
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Figure 13-8. Flowchart of One-Second Response to a Switch



The Switch-Based Memory Loader
This system (see Figure 13-3) is considerably more complex 
than the previous example, and involves many more decisions.
The flowchart (see Figure 13-9) is more difficu lt to w rite  
and is not as straightforward as the previous example. In
this example, we face the problem that there is no way to 
debug or test the flowchart.

The flowchart in Figure 13-9 includes the improvements we suggested as part of the 
problem definition. Clearly, this flowchart is beginning to get cluttered and lose its
advantages over a w ritten  description. Adding other features that define the mean­
ing of the entry w ith status lights and allow the operator to check entries after comple­
tion would make the flowchart even more complex. W riting the complete flowchart 
from scratch could quickly become a formidable task. However, once the program has 
been written, the flowchart is useful as documentation.

FLOWCHARTING
THE
SWITCH-BASED 
MEMORY LOADER
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Figure 13-9. Flowchart of Switch-Based Memory Loader
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The Credit-Verification Terminal «

In this application (see Figures 13-4 through 13-6), the 
flowchart w ill be even more complex than in the switch-based 
memory loader case. Here, the best idea is to flowchart sec­
tions separately so that the flowcharts remain manageable.
However, the presence of data structures (as in the m ulti-d ig it 
display and the messages) w ill make the gap between 
flowchart and program much wider.

Let us look at some of the sections. Figure 13-10 shows the keyboard entry process 
for the digit keys. The program must fetch the data after each strobe and place the 
d ig it into the display array if there is room for it. If there are already ten digits in the ar­
ray, the program simply ignores the entry.

The actual program w ill have to handle the displays at the same time. Note that either 
software or hardware must de-activate the keyboard strobe after the processor reads a 
digit.

FLOWCHARTING 
THE CREDIT 
VERIFICATION

FLOWCHARTING
SECTIONS

Figure 13-10. Flowchart of Keyboard Entry Process
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Figure 13-11. Flowchart of Keyboard Entry Process with Send Key

Figure 13-11 adds the Send key. This key, of course, is optional. The terminal could 
just send the data as soon as the operator enters a complete number. However, that 
procedure would not give the operator a chance to check the entire entry. The 
flowchart w ith  the Send key is more complex because there are two alternatives.

1) If the operator has not entered ten digits, the program must ignore the Send key 
and place any other key into the entry.

2) If the operator has entered ten digits, the program must respond to the Send key by 
transferring control to the Send routine, and ignore all other keys.

Note that the flowchart has become much more d ifficu lt to organize and to follow. 
There is also no obvious way to check the flowchart.
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Figure 13-12. Flowchart of Keyboard Entry Process w ith Function Keys

Figure 13-12 shows the flowchart of the keyboard entry process w ith  all the func­
tion keys. In this example, the flow  of control is not simple. Clearly, some written 
description is necessary. The organization and layout of complex flowcharts requires 
careful planning. We have followed the process of adding features to the flowchart one 
at a time, but this still results in a large amount of redrawing. Again we should remem­
ber that throughout the keyboard entry process, the program must also refresh the dis­
plays if they are multiplexed and not controlled by shift registers or other hardware
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Figure 13-13. Flowchart of Receive Routine
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Figure 13-13 is the flowchart of a receive routine. We assume that the serial/parallel 
conversion and error checking are done in hardware (e.g.. by a UART). The processor 
must:

1) Look for the header (we assume that it is a single character).
2) Read the destination address (we assume that it is three characters long) and see if 

the message is meant for this terminal; i.e., if the three characters agree w ith the 
terminal address.

3) W ait for the trailer character.
4) If the message is meant for the terminal, turn off the Busy light and go to Display 

Answer routine.
5) In the event of any errors, request retransmission by going to RTRANS routine.

This routine involves a large number of decisions, and the flowchart is neither simple 
nor obvious.

Clearly, we have come a long way from the simple flowchart (Figure 13-8) of the 
firs t example. A complete set of flowcharts for the transaction terminal would be 
a major task. It would consist of several interrelated charts w ith complex logic, and 
would require a large amount of effort. Such an effort would be just as d ifficu lt as w rit­
ing a preliminary program, and not as useful, since you could not check it on the com­
puter.
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MODULAR PROGRAMMING
Once programs become large and complex, flowcharting is no longer a satisfactory 
design tool. However, the problem definition and the flowchart can give you some idea 
as to how to divide the program into reasonable sub-tasks. The division of the entire 
program into sub-tasks or modules is called "modular programming." Clearly, most 
of the programs we presented in earlier chapters would typically be modules in a large 
system program. The problems that the designer faces in modular programming are 
how to divide the program into modules and how to put the modules together.

The advantages of modular programming are obvious:

1) A single module is easier to write, debug, and test than an 
entire program.

2) A module is likely to be useful in many places and in other programs, particularly if 
it is reasonably general and performs a common task. You can build up a library of 
standard modules.

3) Modular programming allows the programmer to divide tasks and use previously 
written programs.

4) Changes can be incorporated into one module rather than into the entire system.
5) Errors can often be isolated and then attributed to a single module.
6) Modular programming gives an idea of how much progress has been made and 

how much of the work is left.

The idea of modular programming is such an obvious one 
that its disadvantages are often ignored. These include:

1) Fitting the modules together can be a major problem, par­
ticularly if different people write the modules.

2) Modules require very careful documentation, since they may affect other parts of 
the program, such as data structures used by all the modules.

3) Testing and debugging modules separately is d ifficult, since other modules may 
produce the data used by the module being debugged and still other modules may 
use the results. You may have to write special programs (called "drivers") just to 
produce sample data and test the programs. These drivers require extra program­
ming effort that adds nothing to the system.

4) Programs may be very d ifficu lt to modularize. If you modularize the program poorly, 
integration w ill be very difficult, since almost all errors and changes w ill involve 
several modules.

5) Modular programs often require extra time and memory, since the separate 
modules may repeat functions.

Therefore, while modular programming is certainly an improvement over trying to write 
the entire program from scratch, it does have some disadvantages as well.

Important considerations include restricting the amount of information shared by 
modules, lim iting design decisions that are subject to change to a single module 
and restricting the access of one module to another.^

DISADVANTAGES 
OF MODULAR 
PROGRAMMING

ADVANTAGES 
OF MODULAR 
PROGRAMMING
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An obvious problem is that there are no proven, 
systematic methods for modularizing programs. We 
should mention the following principles:4

1) Modules that reference common data should be parts of the same overall module.
2) Two modules in which the first uses or depends on the second, but not the reverse, 

should be separate.
3) A module that is used by more than one other module should be part of a different 

overall module than the others.
4) Two modules in which the first is used by many other modules and the second is 

used by only a few other modules should be separate.
5) Two modules whose frequencies of usage are significantly different should be part 

of different modules.
6) The structure or organization of related data should be hidden w ith in a single 

module.

If a program is d ifficu lt to modularize, you may need to redefine the tasks that are 
involved. Too many special cases or too many variables that require special han­
dling are typical signs of inadequate problem definition.

PRINCIPLES OF 
MODULARIZATION
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EXAMPLES
Response to a Switch
This simple program can be divided into tw o modules:

Module 1 waits for the sw itch to be turned on and turns 
the light on in response.

Module 2 provides the one-second delay.

Module 1 is likely to be specific to the system, since it w ill depend on how the switch 
and light are attached. Module 2 w ill be generally useful, since many tasks require 
delays. Clearly, it would be advantageous to have a standard delay module that could 
provide delays of varying lengths. The module w ill require careful documentation so 
that you w ill know how to specify the length of the delay, how to call the module, and 
what registers and memory locations the module affects.

A general version of Module 1 would be far less useful, since it would have to deal w ith 
different types and connections of switches and lights.

You would probably find it simpler to write a module for a particular configuration of 
switches and lights rather than try to use a standard routine. Note the difference be­
tween this situation and Module 2.

The Switch-Based Memory Loader
The switch-based memory loader is d ifficu lt to modularize, 
since all the programming tasks depend on the hardware 
configuration and the tasks are so simple that modules 
hardly seem worthwhile. The flowchart in Figure 13-9 sug­
gests that one module m ight be the one that waits for the 
operator to press one of the three pushbuttons.

Some other modules might be:

• A delay module that provides the delay required to debounce the switches
• A switch and display module that reads the data from the switches and sends it to 

the displays
• A Lamp Test module

Highly system-dependent modules such as the last two are unlikely to be generally 
useful. This example is not one in which modular programming offers great advantages.
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The Verification Terminal
The verification terminal, on the other hand, lends itself very 
well to modular programming. The entire system can easily be 
divided into three main modules:

• Keyboard and display module
• Data transmission module
• Data reception module

A general keyboard and display module could handle many keyboard- and display- 
based systems. The sub-modules would perform such tasks as:

• Recognizing a new keyboard entry and fetching the data
• Clearing the array in response to a Clear key
• Entering digits into storage
• Looking for the terminator or Send key
• Displaying the digits

Although the key interpretations and the number of digits w ill vary, the basic entry, 
data storage, and data display processes w ill be the same for many programs. Such 
function keys as Clear would also be standard. Clearly, the designer must consider 
which modules w ill be useful in other applications, and pay careful attention to 
those modules.

The data transmission module could also be divided into such sub-modules as:

1) Adding the header character.
2) Transmitting characters as the output line can handle them.
3) Generating delay times between bits or characters.
4) Adding the trailer character.
5) Checking for transmission failures: i.e., no acknowledgement or inability to 

transmit w ithout errors.

The data reception module could include sub-modules which:

1) Look for the header character.
2) Check the message destination address against the terminal address.
3) Store and interpret the message.
4) Look for the trailer character.
5) Generate bit or character delays.

Note here how important it is that each design decision (such as 
the bit rate, message format, or error-checking procedure) be im­
plemented in only one module. A change in any of these decisions 
w ill then require changes only to that single module. The other 
modules should be written so that they are totally unaware of the values chosen or the 
methods used in the implementing module. An important concept here is the "in fo r­
mation-hiding principle,"5  whereby modules share only information that is ab­
solutely essential to getting the task done. Other information is hidden w ith in  a 
single module.

INFORMATION
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Error handling is a typical context in which this principle should be employed. When a 
module detects a lethal error, it should not try to recover; instead, it should inform the 
calling module of the error status and allow that module to decide how to proceed. The 
reason is that the lower level module often lacks sufficient information to establish 
recovery procedures. For example, suppose that the lower level module is one that ac­
cepts numeric input from a user. This module expects a string of numeric digits termi­
nated by a carriage return. Entry of a non-numeric character causes the module to ter­
minate abnormally. Since the module does not know the context (i.e., is the numeric 
string an operand, a line number, an I/O unit number, or the length of a file?), it cannot 
decide how to handle an error. If the module always followed a single error recovery 
procedure, it would lose its generality and only be usable in those situations where that 
procedure was required.
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REVIEW OF MODULAR PROGRAMMING
Modular programming can be very helpful if you abide by
the following rules:

1) Use modules of 20 to 50 lines. Shorter modules are 
usually a waste of time, while longer modules are seldom general and may be d if­
ficult to integrate,

2) Try to make modules reasonably general. Differentiate between common 
features like ASCII code or asynchronous transmission formats, which w ill be the 
same for many applications, and key identifications, number of displays, or number 
of characters in a message, which are likely to be unique to a particular application. 
Make the changing of the latter parameters simple. Major changes like different 
character codes should be handled by separate modules.

3) Take extra time on modules like delays, display handlers, keyboard handlers, etc.
that w ill be useful in other projects or in many different places in the present 
program.

4) Try to keep modules as distinct and logically separate as possible. Restrict the 
flow of information between modules and implement each design decision in a 
single module.

5) Do not try  to modularize simple tasks where rewriting the entire task may be
easier than assembling or modifying the module.

RULES FOR 
MODULAR 
PROGRAMMING
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STRUCTURED PROGRAMMING
How do you keep modules distinct and stop them from interacting? How do you 
w rite  a program that has a clear sequence of operations so that you can isolate 
and correct errors? One answer is to use the methods known as "structured pro­
gramming", whereby each part of the program consists of elements from a limited 
set of structures and each structure has a single entry and a single exit.

Figure 13-14 shows a flowchart of an unstructured program. If an error occurs in 
Module B, we have five possible sources for that error. Not only must we check each se­
quence. but we also have to make sure that any changes made to correct the error do 
not affect any of the other sequences. The usual result is that debugging becomes like 
wrestling an octopus. Every time you think the situation is under control, there is 
another loose tentacle somewhere.

The solution is to establish a clear sequence of operations so 
that you can isolate errors. Such a sequence uses single-entry, 
single-exit modules The basic modules that are needed are:

1) An ordinary sequence; i.e.. a linear structure in which 
statements or structures are executed consecutively. In 
the sequence:

51
52
53

the computer executes S1 first. S2 second, and S3 third. S1, S2, and S3 may be 
single instructions or entire programs.

2) A conditional structure.
The common one is " if  C then S1 else S2," where C is a condition and S1 and S2 
are statements or sequences of statements. The computer executes S1 if C is true, 
and S2 if C is false. Figure 13-15 shows the logic of this structure. Note that the 
structure has a single entry and a single exit; there is no way to enter or leave S1 or 
S2 other than through the structure.

3) A loop structure.
The common loop structure is "w hile  C do S," where C is a condition and S is a 
statement or sequence of statements. The computer checks C and executes S if C 
is true. This structure (see Figure 13-16) also has a single entry and a single exit. 
Note that the computer w ill not execute S at all if C is originally false, since the 
value of C is checked before S is executed.

In most structured programming languages, an alternative looping construct is pro­
vided. This construct is known as the do-until clause. Its basic structure is "do S until 
C” , where C is a condition and S is a statement or sequence of statements. It is similar 
to the do-while construct except that the test of the looping condition C is performed at 
the end of the loop. This has the effect of guaranteeing that the loop is always executed 
at least once. This is illustrated by the flowchart in Figure 13-17. The common index- 
controlled or DO loop can be implemented as a special case of either of these two basic 
looping constructs.

BASIC
STRUCTURES OF
STRUCTURED
PROGRAMMING
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Figure 13-14. Flowchart of an Unstructured Program

Figure 13-15. Flowchart of the If-Then-Else Structure
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Figure 13-16. Flowchart of the Do-While Structure

Figure 13-17. Flowchart of the Do-Until Structure

4) A case structure.
Although not a primitive structure like sequential, if-then-else. and do-while, the 
case structure is so commonly used that we include it here as an adjunct to the 
basic structure descriptions. The case structure is "case I of SO, S 1 ,. . Sn". where I 
is an index and SO, S I , . . .Sn are statements or sequences of statements. If I is 
equal to zero then statement SO is executed, if I is equal to 1 then statement S1 is 
executed, etc. Only one of the n statements is executed. After its execution, control 
passes to the next sequential statement following the case statement group. If I is 
greater than n (i.e., the number of statements in the case statement), then none of 
the statements in the case statement is executed, and control is passed directly to 
the next sequential statement following the case statement. This is illustrated by 
the flowchart in Figure 13-18.
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Note the following features of structured programming:

1) Only the three basic structures, and possibly a small 
number of auxiliary structures, are permitted.

2) Structures may be nested to any level of complexity so that any structure 
can, in turn, contain any of the structures.

3) Each structure has a single entry and a single exit.

Some examples of the conditional structure illustrated in
Figure 13-15 are:

1) S2 included: 
if X >  0 then NPOS = NPOS +  1

else NNEG =  NNEG +  1

Both S1 and S2 are single statements.

2) S2 omitted: 
if X ^ 0  then Y = 1/X

Here no action is taken if C (X ^ 0 )  is false. S2 and "else" can be omitted in this case.

EXAMPLES
OF
STRUCTURES
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Some examples of the loop structure Illustrated in Figure 13-16 are:

1) Form the sum of integers from 1 to N.
1 = 0  
SUM = 0  
do while I <  N 

1 = 1  + 1

SUM = SUM +  I 
end

The computer executes the loop as long as I <  N. If N = 0, the program with in the "do- 
while" is not executed at all-

21 Count characters in an array SENTENCE until you find an ASCII period.
NCHAR =  0
do while SENTENCE (NCHAR) ^  PERIOD 

NCHAR =  NCHAR +  1 
end

The computer executes the loop as long as the character in SENTENCE is not an ASCII 
period. The count is zero if the first character is a period.

The advantages of structured programming are:

1) The sequence of operations is simple to trace. This allows 
you to test and debug easily.

2) The number of structures is limited and the terminology is 
standardized.

3) The structures can easily be made into modules.
4) Theoreticians have proved that the given set of structures is complete; that is, all

programs can be written in terms of the three structures.
5) The structured version of a program is partly self-documenting and fairly easy to 

read.
6) Structured programs are easy to describe w ith program outlines.
7) Structured programming has been shown in practice to increase programmer pro­

ductivity.

Structured programming basically forces much more discipline on the programmer 
than does modular programming. The result is more systematic and better- 
organized programs.

The disadvantages of structured programming are:

1) Only a few high-level languages (e.g., PL/M, PASCAL) w ill 
directly accept the structures. The programmer therefore 
has to go through an extra translation stage to convert the 
structures to assembly language code. The structured ver­
sion of the program, however, is often useful as documentation,

2) Structured programs often execute more slowly and use more memory than 
unstructured programs.

3) Lim iting the structures to the three basic forms makes some tasks very awkward to 
perform. The completeness of the structures only means that all programs can be 
implemented w ith them; it does not mean that a given program can be imple­
mented efficiently or conveniently.

4) The standard structures are often quite confusing, e.g., nested "if-then-else" struc­
tures may be very d ifficu lt to read, since there may be no clear indication of where 
inner structures end. A series of nested "do-while" loops can also be d ifficu lt to read.

DISADVANTAGES
OF
STRUCTURED
PROGRAMMING

ADVANTAGES OF
STRUCTURED
PROGRAMMING
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5) Structured programs consider only the sequence of program operations, not the 
flow of data. Therefore, the structures may handle data awkwardly.

6) Few programmers are accustomed to structured programming. Many find the stan­
dard structures awkward and restrictive.

We are neither advocating nor discouraging the use of structured programming. It 
is one way of systematizing program design. In general, structured programming 
is most useful in the following situations:

• Larger programs, perhaps exceeding 1000 instructions.
• Applications in which memory usage is not critical.
• Low-volume applications where software development costs, 

particularly testing and debugging, are important factors.
• Applications involving string manipulation, process control, or other algorithms ra­

ther than simple bit manipulations.

In the future, we expect the cost of memory to decrease, the average size of 
microprocessor programs to increase, and the cost of software development to in­
crease. Therefore, methods like structured programming, which decrease soft­
ware development costs for larger programs but use more memory, w ill become 
more valuable.

Just because structured programming concepts are usually expressed in high-level 
languages does not mean that structured programming is not applicable to assembly 
language programming. To the contrary, the assembly language programmer, w ith  
the total freedom of expression that assembly level programming allows, needs 
the structuring concepts provided by structured programming. Creating modules 
w ith  single entry and exit points, using simple control structures and keeping the 
complexity of each module minimal makes assembly language coding more e ffi­
cient.

WHEN TO USE
STRUCTURED
PROGRAMMING
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EXAMPLES
Response to a Switch
The structured version of this example is:

SWITCH = OFF 
do while SWITCH =  OFF 

READ SWITCH 
end 

LIGHT = ON 
DELAY 1 
LIGHT =  OFF

ON and OFF must have the proper definitions for the switch and light- We assume that 
DELAY is a module that provides a delay given by its parameter in seconds.

A statement in a structured program may actually be a subroutine. However, in order to 
conform to the rules of structured programming, the subroutine cannot have any exits 
other than the one that returns control to the main program.

Since "do-while” checks the condition before executing the loop, we set the variable 
SWITCH to OFF before starting. The structured program is straightforward, readable, 
and easy to check by hand. However, it would probably require somewhat more memo­
ry than an unstructured program, which would not have to initialize SWITCH and could 
combine the reading and checking procedures.

STRUCTURED 
PROGRAMMING 
IN THE 
SWITCH AND 
LIGHT SYSTEM
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The Switch-Based Mem ory Loader
The switch-based memory loader is a more complex struc­
tured programming problem. We may implement the 
flowchart of Figure 13-9 as follows (a • indicates a com­
ment):

• INITIALIZE VARIABLES

HIADDRESS = 0  
LOADDRESS = 0

• THIS PROGRAM USES A DO-WHILE CONSTRUCT WITH NO CONDITION
• (CALLED SIMPLY DO-FOREVER). THEREFORE, THE SYSTEM CONTINUALLY
• EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP.

do forever

• TEST FOR HIADDRESS BUTTON; PERFORM THE REQUIRED PROCESSING
• IF IT IS ON.

if HIADDRBUTTON = 1 then
begin

HIADDRESS = SWITCHES 
LIGHTS =  SWITCHES 
do

DELAY (DEBOUNCE TIME) 
until HIADDRBUTTON ?M 

end

• TEST FOR LOADDRESS BUTTON; PERFORM LOW ADDRESS PROCESSING
• IF IT IS ON.

if LOADDRBUTTON = 1 then
begin

LOADDRESS =  SWITCHES 
LIGHTS =  SWITCHES
do

DELAY (DEBOUNCE TIME) ,
until LOADDRBUTTON ± 1 

end

• TEST FOR DATABUTTON, AND STORE DATA INTO MEMORY
• IF IT IS ON.

if DATABUTTON = 1 then 
begin 

DATA = SWITCHES 
LIGHTS = SWITCHES 
(HIADDRESS, LOADDRESS) =  DATA 
do

DELAY (DEBOUNCE TIME) 
until DATABUTTON 

end
end

STRUCTURED 
PROGRAMMING 
FOR THE 
SWITCH-BASED 
MEMORY LOADER
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• THE LAST END ABOVE TERMINATES THE 
do forever LOOP

Structured programs are not easy to write, but they can give a great deal of insight into 
the overall program logic. You can check the logic of the structured program by hand 
before w riting any actual code-
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The Credit-Verification Terminal
Let us look at the keyboard entry for the transaction terminal.
We w ill assume that the display array is ENTRY, the keyboard 
strobe is KEYSTROBE, and the keyboard data is KEYIN. The struc­
tured program w ithout the function keys is:

NKEYS = 1 0

• CLEAR ENTRY TO START

do while NKEYS >  0 
NKEYS =  NKEYS- 1 
ENTRY(NKEYS) = 0  

end

• FETCH A COMPLETE ENTRY FROM KEYBOARD

STRUCTURED 
PROGRAM FOR 
THE CREDIT- 
VERIFICATION 
TERMINAL

STRUCTURED
KEYBOARD
ROUTINE

do while NKEYS <  10 
if KEYSTROBE = ACTIVE then 

begin
KEYSTROBE = INACTIVE 
ENTRY(NKEYS) = KEYIN 
NKEYS =  NKEYS +  1

end
end

Adding the SEND key means that the program must ignore extra digits after it has 
a complete entry, and must ignore the SEND key until it  has a complete entry. The 
structured program is:

NKEYS = 1 0

• CLEAR ENTRY TO START

do while NKEYS >  0 
NKEYS =  NKEYS- 1 
ENTRY(NKEYS) = 0 

end

• WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY

do while KEY *SEND OR NKEYS * 1 0  
if KEYSTROBE = ACTIVE then 

begin
KEYSTROBE = INACTIVE 
KEY =  KEYIN
if NKEYS * 1 0  AND KEY *SEND then 

begin
ENTRY(NKEYS) =  KEY 
NKEYS =  NKEYS +  1 

end
end

end
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1) The second if-then is nested w ith in the first one, since keys are only entered after a 
strobe is recognized. If the second if-then were on the same level as the first, a 
single key could fill the entry, since its value would be entered into the array during 
each iteration of the do-while loop.

2) KEY need not be defined initially, since NKEYS is set to zero as part of the clearing 
of the entry.

Adding the CLEAR key allows the program to clear the entry originally by simulat­
ing the pressing of CLEAR; i.e., by setting NKEYS to 10 and KEY to CLEAR before 
starting. The structured program must also only clear digits that have previously been 
filled. The new structured program is:

• SIMULATE COMPLETE CLEARING

NKEYS = 1 0  
KEY =  CLEAR

• WAIT FOR COMPLETE ENTRY AND SEND KEY 

do while KEY *SEND OR NKEYS * 1 0

• CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK

if KEY =  CLEAR then 
begin 

KEY = 0
do while NKEYS >  0 

NKEYS =  NKEYS - 1 
ENTRY(NKEYS) =  0 

end 
end

• GET DIGIT IF ENTRY INCOMPLETE

if KEYSTROBE = INACTIVE then 
begin

KEYSTROBE =  INACTIVE 
KEY = KEYIN
if KEY <  10 AND NKEYS *  10 then 

begin
ENTRY(NKEYS) = KEY 
NKEYS = NKEYS +  1 

end
end

end

Note that the program resets KEY to zero after clearing the array, so that the operation is 
not repeated

Note the following features of this structured program.
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We can similarly build a structured program for the receive 
routine. An initial program could just look for the header and 
trailer characters. We w ill assume that RSTB is the indicator that a 
character is ready. The structured program is:

• CLEAR HEADER FLAG TO START 

HFLAG =  0

• WAIT FOR HEADER AND TRAILER 

do while HFLAG =  0 OR CHAR ^TRAILER

• GET CHARACTER IF READY, LOOK FOR HEADER

if RSTB =  ACTIVE then 
begin 

RSTB =  INACTIVE 
CHAR =  INPUT
if CHAR =  HEADER then HFLAG =  1 

end

Now we can add the section that checks the message address against the three 
digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits 
are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1.

• CLEAR HEADER FLAG, ADDRESS MATCH FLAG, ADDRESS COUNTER TO START

HFLAG =  0 
ADDRMATCH = 0 
ADDRCTR =  0

• WAIT FOR HEADER, DESTINATION ADDRESS AND TRAILER 

do while HFLAG =  0 OR CHAR *  TRAILER OR ADDRCTR * 3

• GET CHARACTER IF READY

if RSTB =  ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR = INPUT 

end

• CHECK FOR TERMINAL ADDRESS AND HEADER

if HFLAG =  1 AND ADDRCTR * 3  then 
begin 

ADDRMATCH = 1 
ADDRCTR =  ADDRCTR+  1

end
if CHAR = HEADER then HFLAG =  1

end

STRUCTURED
RECEIVE
ROUTINE
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The program must now wait for a header, a three-digit identification code, and a trailer. 
You must be careful of what happens during the iteration when the program finds the 
header, and of what happens if an erroneous identification code character is the same 
as the trailer.

A further addition can store the message in MESSG. NMESS is the number of 
characters in the message; if it  is not zero at the end. the program knows that the 
terminal has received a valid message. We have not tried to minimize the logic ex­
pressions in this program.

• CLEAR FLAGS, COUNTERS TO START

HFLAG = 0 
ADDRMATCH = 0  
ADDRCTR = 0  
NMESS = 0

• WAIT FOR HEADER, DESTINATION ADDRESS AND TRAILER 

do while HFLAG = 0 OR CHAR *  TRAILER or ADDRCTR * 3

• GET CHARACTER IF READY

if RSTB = ACTIVE then 
begin 

RSTB =  INACTIVE 
CHAR =  INPUT 

end

• READ MESSAGE IF DESTINATION ADDRESS =  TERMINAL ADDRESS

if HFLAG =  1 AND ADDRCTR =  3 then 
if ADDRMATCH = 0 and CHAR ^TRAILER then 

begin
MESSG(NMESS) =  CHAR 
NMESS = NMESS +  1 

end

• CHECK FOR TERMINAL ADDRESS

if HFLAG = 1 AND ADDRCTR * 3  then 
if CHAR *  TERMADDR(ADDRCTR) then 

begin 
ADDRMATCH =  1 
ADDRCTR = ADDRCTR +  1 

end

• LOOK FOR HEADER

if CHAR = HEADER then HFLAG =  1
end
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The program checks for the identification code only if it found a header during a pre­
vious iteration. It accepts the message only if it has previously found a header and a 
complete, matching destination address. The program must work properly during the 
iterations when it finds the header, the trailer and the last d ig it of the destination ad­
dress. It must not try to match the header w ith the terminal address or place the trailer 
or the final d ig it of the destination address in the message. You might try  adding the 
rest of the logic from the flowchart (Figure 13-13) to the structured program. Note 
that the order of operations is often critical. You must be sure that the program 
does not complete one phase and start the next one during the same iteration.
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REVIEW OF STRUCTURED PROGRAMMING
Structured programming brings discipline to program design. It forces you to lim it 
the types of structures you use and the sequence of operations. It provides single­
entry, single-exit structures, which you can check for logical accuracy. Structured 
programming often makes the designer aware of inconsistencies or possible com­
binations of inputs. Structured programming is not a cure-all, but it does bring 
some order into a process that can be chaotic. The structured program should also 
aid in debugging, testing, and documentation.

Structured programming is not simple. The programmer must not only define the 
problem adequately, but must also work through the logic carefully. This is 
tedious and difficu lt, but it results in a clearly w ritten , working

The particular structures we have presented are not ideal and 
are often awkward. In addition, it can be d ifficu lt to dis­
tinguish where one structure ends and another begins, partic­
ularly if they are nested. Theorists may provide better struc­
tures in the future, or designers may wish to add some of their own. Some kind of 
terminator for each structure seems necessary, since indenting does not always clarify 
the situation. "End" is a logical terminator for the "do-while" loop. There is no obvious 
terminator, however, for the "if-then-else" statement: some theorists have suggested 
"end if" or " f i"  ("if" backwards), but these are both awkward and detract from the 
readability of the program.

We suggest the following rules for applying structured pro­
gramming:

1) Begin by writing a basic flowchart to help define the 
logic of the program.

2) Start w ith  the "sequentia l," "if-then-e lse," and "do-w h ile " constructs. They
are known to be a complete set. i.e., any program can be written in terms of these 
structures.

3) Indent each level a few spaces from the previous level, so that you w ill know 
which statements belong where.

4) Use terminators for each structure; e.g., "end" for the "do-while" and "end if" or
" f i"  for the "if-then-else". The terminators plus the indentation should make the
program reasonably clear.

5) Emphasize simplicity and readability. Leave lots of spaces, use meaningful
names, and make expressions as clear as possible. Do not try to minimize the logic
at the cost of clarity.

6) Comment the program in an organized manner.
7) Check the logic. Try all the extreme cases or special conditions and a few sample 

cases. Any logical errors you find at this level w ill not plague you later.

RULES FOR
STRUCTURED
PROGRAMMING

program.

TERMINATORS
FOR
STRUCTURES
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TOP-DOWN DESIGN
The remaining problem is how to check and integrate modules 
or structures. Certainly we want to divide a large task into 
sub-tasks. But how do we check the sub-tasks in isolation and 
put them together? The standard procedure, called "bottom -up design," requires 
extra work in testing and debugging and leaves the entire integration task to the 
end. What we need is a method that allows testing and debugging in the actual 
program environment and modularizes system integration.

This method is "top-down design." Here we start by w riting 
the overall supervisor program. We replace the undefined sub­
programs by program "s tub s ," temporary programs that may 
either record the entry, provide the answer to a selected test 
problem, or do nothing. We then test the supervisor program 
to see that its logic is correct.

We proceed by expanding the stubs. Each stub w ill often con­
tain sub-tasks, which we w ill temporarily represent as stubs.
This process of expansion, debugging, and testing continues 
until all the stubs are replaced by working programs. Note that 
testing and integration occur at each level, rather than all at the 
end. No special driver or data generation programs are necessary.
We get a clear idea of exactly where we are in the design. Top- 
down design assumes modular programming, and is compati­
ble w ith  structured programming as well.

The disadvantages of top-down design are:

1) The overall design may not mesh well w ith system hard­
ware.

2) It may not take good advantage of existing software.
3) Stubs may be d ifficu lt to write, particularly if they must 

work correctly in several different places.
4) Top-down design may not result in generally useful modules.
5) Errors at the top level can have catastrophic effects, whereas errors in bottom-up 

design are usually limited to a particular module

In large programming projects, top-down design has been shown to greatly im­
prove programmer productivity. However, almost all of these projects have used 
some bottom-up design in cases where the top-down method would have 
resulted in a large amount of extra work.

Top-down design is a useful tool that should not be followed to extremes. It pro­
vides the same discipline for system testing and integration that structured pro­
gramming provides for module design. The method, however, has more general 
applicability, since it does not assume the use of programmed logic. However, 
top-down design may not result in the most efficient implementation.

DISADVANTAGES
OF
TOP-DOWN
DESIGN

TOP-DOWN
DESIGN
METHODS

STUBS

EXPANDING
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EXAMPLES
Response to a Switch
The firs t structured programming example actually demon­
strates top-down design as well. The program was:

SWITCH = OFF 
do while SWITCH =  OFF 

READ SWITCH 
end
LIGHT =  ON 
DELAY 1 
LIGHT =  OFF

These statements are really stubs, since none of them is fully defined. For exam­
ple. what does READ SWITCH mean? If the switch were one b it of input port SPORT, it 
really means:

SWITCH = SPORT AND SMASK 
where SMASK has a '1' b it in the appropriate position. The masking may. of course, be 
implemented w ith  a Bit Test instruction.

Similarly, DELAY 1 actually means (if the processor itself provides the delay):

REG =  COUNT 
do while REG * 0  

REG = REG - 1 
end

COUNT is the appropriate number to provide a one-second delay. The expanded ver­
sion of the program is:

SWITCH = 0  
do while SWITCH =  0 

SWITCH =  SPORT AND MASK 
end
LIGHT =  ON 
REG = COUNT 
do while REG *  0 

REG =  REG - 1 
end
LIGHT =  NOT (LIGHT)

Certainly this program is more explicit, and could more easily be translated into 
actual instructions or statements.

TOP-DOWN 
DESIGN 
OF SWITCH 
AND LIGHT 
SYSTEM
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The Switch-Based Memory Loader
This example is more complex than the first example, so we 
must proceed systematically. Here again, the structured pro­
gram contains stubs.

For example, if the HIGH ADDRESS button is one bit of input 
port CPORT, " if  HIADDRBUTTON =  1" really means:

1) Input from CPORT
2) Complement
3) Logical AND w ith HAMASK

where HAMASK has a T  in the appropriate bit position and 'Os' elsewhere. Similarly 
the condition " if  DATABUTTON =  1" really means:

1) Input from CPORT
2) Complement
3) Logical AND w ith DAMASK

So, the initial stubs could just assign values to the buttons, e.g.,

HIADDRBUTTON = 0  
LOADDRBUTTON = 0  
DATABUTTON =  0

A run of the supervisor program should show that it takes the implied "else" path 
through the "if-then-else" structures, and never reads the switches. Similarly, if the 
stub were:

HIADDRBUTTON = 1

the supervisor program should stay in the "do while HIADDRBUTTON =  1" loop wait­
ing for the button to be released. These simple runs check the overall logic.

Now we can expand each stub and see if the expansion produces a reasonable 
overall result. Note how debugging and testing proceed in a straightforward and 
modular manner. We expand the HIADDRBUTTON =  1 stub to:

READ CPORT
HIADDRBUTTON =  NOT (CPORT) AND HAMASK

The program should wait for the HIGH ADDRESS button to be closed. The program 
should then display the values of the switches on the lights. This run checks for the 
proper response to the HIGH ADDRESS button.

We then expand the LOW ADDRESS button module to:

READ CPORT
LOADDRBUTTON =  NOT (CPORT) AND LAMASK

W ith the LOW ADDRESS button in the closed position, the program should display the 
values of the switches on the lights. This run checks for the proper response to the LOW 
ADDRESS button.

Similarly, we can expand the DATA button module and check for the proper response 
to that button. The entire program w ill then have been tested.

When ail the stubs have been expanded, the coding, debugging, and testing 
stages w ill all be complete. Of course, we must know exactly what results each 
stub should produce. However, many logical errors w ill become obvious at each 
level w ithout any further expansion.

TOP-DOWN 
DESIGN OF 
SWITCH-BASED 
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The Transaction Terminal
This example, of course, w ill have more levels of detail. We 
could start w ith  the following program (see Figure 13-19 for 
a flowchart):

KEYBOARD 
ACK = 0
do while ACK = 0 

TRANSMIT 
RECEIVE 

end
DISPLAY

Here KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs that w ill 
be expanded later. KEYBOARD, for example, could simply place a ten-digit verified 
number into the appropriate buffer.

TOP-DOWN 
DESIGN OF 
VERIFICATION 
TERMINAL

Figure 13-19. Initial Flowchart for Transaction Terminal



Figure 13-20. Flowchart for Expanded KEYBOARD Routine

The next stage of expansion could produce the following pro­
gram for KEYBOARD (see Figure 13-20):

VER = 0
do while VER =  0 

COMPLETE = 0 
do while COMPLETE = 0  

KEYIN 
KEYDS 

end
VERIFY 

end

Here VER = 0 means that an entry has not been verified; COMPLETE =  0 means that 
the entry is incomplete. KEYIN and KEYDS are the keyboard input and display routines 
respectively. VERIFY checks the entry. A stub for KEYIN would simply place a random 
entry (from a random number table or generator) into the buffer and set COMPLETE to 
1.

We would continue by similarly expanding, debugging, and testing TRANSMIT, 
RECEIVE, and DISPLAY. Note that you should expand each program by one level 
so that you do not perform the integration of an entire program at any one time. 
You must use your judgment in defining levels. Too small a step wastes time, 
while too large a step gets you back to the problems of system integration that 
top-down design is supposed to solve.

EXPANDING
THE
KEYBOARD
ROUTINE
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REVIEW OF TOP-DOWN DESIGN
Top-down design brings discipline to the testing and integration stages of pro­
gram design. It provides a systematic method for expanding a flowchart or prob­
lem definition to the level required to actually w rite  a program. Together w ith  
structured programming, it  forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer must 
have defined the problem carefully and must work systematically through each 
level. Here again the methodology may seem tedious, but the payoff can be sub­
stantial if you fo llow  the rules.

We recommend the following approach to top-down 
design:

1) Start w ith  a basic flowchart.
2) Make the stubs as complete and as separate as possi­

ble.
3) Define precisely all the possible outcomes from each stub and select a test set.
4) Check each level carefully and systematically.
5) Use the structures from structured programming.
6) Expand each stub by one level. Do not try to do too much in one step
7) Watch carefully for common tasks and data structures.
8) Test and debug after each stub expansion. Do not try to do an entire level at a 

time.
9) Be aware of what the hardware can do. Do not hesitate to stop and do a little  

bottom-up design where that seems necessary.
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TOP-DOWN
DESIGN

1 3 - 5 5



REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN
You should note that we have spent an entire chapter w ithou t mentioning any 
specific microprocessor or assembly language, and w ithou t w riting a single line of 
actual code. Hopefully, though, you now know a lot more about the examples than 
you would have if we had just asked you to w rite  the programs at the start. 
Although we often think of the w riting of computer instructions as a key part of 
software development, it is actually one of the easiest stages.

Once you have w ritten a few  programs, coding w ill become simple. You w ill soon 
learn the instruction set, recognize which instructions are really useful, and 
remember the common sequences that make up the largest part of most pro­
grams. You w ill then find that many of the other stages of software development 
remain d ifficu lt and have few  clear rules.

We have suggested here some ways to systematize the important early stages. In 
the problem definition stage, you must define all the characteristics of the 
system — its inputs, outputs, processing, time and memory constraints, and error 
handling. You must particularly consider how the system w ill interact w ith  the 
larger system of which it is a part, and whether that larger system includes 
electrical equipment, mechanical equipment, or a human operator. You must start 
at this stage to make the system easy to use and maintain.

In the program design stage, several techniques can help you to systematically 
specify and document the logic of your program. Modular programming forces you 
to divide the total program into small, distinct modules. Structured programming 
provides a systematic way of defining the logic of those modules, while top-down 
design is a systematic method for integrating and testing them. Of course, no one 
can compel you to fo llow  alt of these techniques; they are, in fact, guidelines more 
than anything else. But they do provide a unified approach to design, and you 
should consider them a basis on which to develop your own approach.
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Chapter 14  
DEBUGGING AND TESTING

As we noted at the beginning of the previous chapter, debugging and testing are 
among the most time-consuming stages of software development. Even though such 
methods as modular programming, structured programming, and top-down design 
can simplify programs and reduce the frequency of errors, debugging and testing 
s till are d ifficu lt because they are so poorly defined. The selection of an adequate set 
of test data is seldom a clear or scientific process. Finding errors sometimes seems like a 
game of "p in  the tail on the donkey,”  except that the donkey is moving and the pro­
grammer must position the tail by remote control. Surely, few tasks are as frustrating as 
debugging programs.

This chapter w ill firs t describe the tools available to aid in debugging. It w ill then 
discuss basic debugging procedures, describe the common types of errors, and 
present some examples of program debugging. The last sections w ill describe 
how to select test data and test programs.

We w ill not do much more than describe the purposes of most of the debugging tools. 
There is very little standardization in this area, and not enough space to discuss all the 
devices and programs that are currently available. The examples should give you some 
idea of the uses, advantages, and limitations of particular hardware or software aids.

SIMPLE DEBUGGING TOOLS
The simplest debugging tools available are:

• A single-step facility 
< A breakpoint facility
• A Register Dump program (or utility)
• A Memory Dump program

The single-step fac ility  allows you to execute the program one 
step at a time. Most 6502-based microcomputers have this 
facility, since the circuitry is fairly simple. Of course, the only 
things that you w ill be able to see when the computer executes a single-step are 
the states of the output lines that you are monitoring. The most important lines are:

• Data Bus
• Address Bus
■ Control lines
• SYNC (synchronization) and READ/WRITE

If you monitor these lines (either in hardware or in software), you w ill be able to 
see the progression of addresses, instructions, and data as the program executes. 
You w ill be able to te ll what kind of operations the CPU is performing. This infor­
mation w ill inform you of such errors as incorrect Jump instructions, omitted or incor­
rect addresses, erroneous operation codes, or incorrect data values. However, you can­
not see the contents of registers and flags w ithout some additional debugging facility 
or a special sequence of instructions. Many of the operations of the program cannot be 
checked in real time.

SINGLE-
STEP
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There are many errors that a single-step mode cannot help you 
to find. These include tim ing errors and errors in the interrupt 
or DMA systems. Furthermore, the single-step mode is very 
slow, typically executing a program at less than one millionth 
of the speed of the processor itself. To single-step through one second of real processor 
time would take more than ten days. The single-step mode is useful only to check the 
logic of short instruction sequences.

A breakpoint is a place at which the program w ill automat- | breAKPOINTJ 
ically halt or w a it so that the user can examine the current 
status of the system. The program w ill usually not start again until the operator re­
quests a resumption of execution. Breakpoints allow you to check or pass through an 
entire section of a program. Thus, to see if an initialization routine is correct, you can 
place a breakpoint at the end of it and run the program. You can then check memory 
locations and registers to see if the entire section is correct. However, note that if the 
section is not correct, you’ ll still have to pin down the error, either w ith earlier break­
points or w ith  a single-step mode.

Breakpoints complement the single-step mode. You can use breakpoints either to 
localize the error or to pass through sections that you know are correct. You can 
then do the detailed debugging in the single-step mode. In some cases, breakpoints 
do not affect program tim ing; they can then be used to check input/output and inter­
rupts.

Breakpoints often use part or all of the microprocessor interrupt 
system. Some microprocessors have a special Software Interrupt 
or Trap facility that can act as a breakpoint. The 6502 BRK (Force 
Break) instruction can be used in this way. If you are not already using the maskable in­
terrupt (IRQ) and the non-maskable interrupt (NMI) in your system, you can use those 
vectors as externally controlled breakpoints. Table 14-1 gives the address locations of 
the 6502 interrupt vectors. Chapter 12 describes the vectors in more detail. The break­
point routine can print register and memory contents, or just w ait (by executing a con­
dition jump dependent on a switch input) until the user allows the computer to pro­
ceed. But remember that the interrupts (including BRK) use the Stack and Stack Pointer 
to store the return address and the Status Register. Figure 14-1 shows a routine in 
which BRK results in an endless loop. The programmer would have to clear this break­
point w ith a RESET or interrupt signal.

Table 14-1. 6502 Interrupt Vectors

Input Vector Addresses (Hexadecimal)

n m I FFFA, FFFB
RESET FFFC, FFFD
IRQ or BRK FFFE, FFFF

*=BREAK ;ADDRESS FOR BREAK ROUTINE
JMP BREAK ;WAIT IN PLACE

The interrupt service routine must force a jump to address BREAK when it finds 
the Break Command flag set (this differentiates between BRK and an IRQ input).

Figure 14-1, A Simple Breakpoint Routine

BRK AS A 
BREAKPOINT

LIMITATIONS 
OF SINGLE- 
STEP MODE
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The simplest method for inserting breakpoints is to replace the first byte of the instruc­
tion w ith a BRK instruction or to replace the instruction w ith a JMP or JSR instruction. 
The BRK instruction is preferable since only a single byte must be replaced and the 
breakpoint w ill not overrun the subsequent instructions.

Many monitors have facilities for inserting and removing 
breakpoints implemented via some type of Jump instruction.
Such breakpoints do not affect the tim ing of the program until 
the breakpoint is executed. However, note that this procedure w ill not work if part or all 
of the program is in ROM or PROM. Other monitors implement breakpoints by actually 
checking the address lines or the Program Counter in hardware or in software. This 
method allows breakpoints on addresses in ROM or PROM, but it may affect the timing 
if the address must be checked in software. A more powerful facility would allow the 
user to enter an address to which the processor would transfer control. Another 
possibility would be a return dependent on a switch:

*=BRKPT :ADDRESS FOR BREAKPOINT ROUTINE
BIT VIAORA :WAIT FOR SWITCH TO CLOSE
BPL BRKPT
RTI

Of course, other VIA data or control lines could also be used. Remember that RTI auto­
matically restores the Status register and re-enables the interrupt. If the interrupt comes 
from a VIA control line, the routine would also have to clear the corresponding bit in the 
Interrupt Flag register.

INSERTING
BREAKPOINTS
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A Register Dump u tility  on a microcomputer is a program that 
lists the contents of all the CPU registers. This information is 
usually not directly obtainable. The following routine w ill print 
the contents of all the registers on the system printer, if we assume that PRTHEX 
prints the contents of the Accumulator as two hexadecimal digits. Figure 14-2 is a 
flowchart of the program and Figure 14-3 shows a typical result. We assume that the 
routine is entered w ith a JUMP TO SUBROUTINE instruction that stores the old Program 
Counter at the top of the Stack. An interrupt or BRK instruction w ill store both the Pro­
gram Counter and the Status register at the top of the Stack.

REGISTER
DUMPS

PLACE ALL CPU REGISTER CONTENTS IN STACK (PC ALREADY ON STACK)

PHP ;SAVE STATUS IF NECESSARY (NOT AFTER
PHA ;SAVE CONTENTS OF ACCUMULATOR
TXA ;SAVE INDEX REGISTER X
PHA
TYA ;SAVE INDEX REGISTER Y
PHA
TSX ;SAVE ORIGINAL STACK POINTER
TXA
CLC
ADC #6 ;OFFSET BACK TO ORIGINAL VALUE
PHA

PRINT CONTENTS OF REGISTERS 
ORDER IS S, Y, X, A, P, PC(LOW), PC(HIGH)

LDY #7
PRNT1 LDA $0100,X

JSR PRTHEX
INX 
DEY
BNE PRNT1

NUMBER OF BYTES = 7 
GET A BYTE FROM STACK 
AND PRINT IT

RESTORE REGISTERS FROM STACK

PLA ;PULL AND DISCARD STACK POINTER
PLA iRESTORE INDEX REGISTER Y
TAY
PLA ;RESTORE INDEX REGISTER X
TAX
PLA ;RESTORE CONTENTS OF ACCUMULATOR
PLP ;RESTORE STATUS REGISTER IF NECESSARY
RTS ;RESTORE PC AND SP
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Figure 14-2. Flowchart of Register Dump Program
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A Memory Dump is a program that lists the contents of memo­
ry on an output device (such as a printer). This is a much more 
efficient way to examine data arrays or entire programs than just 
looking at single locations. However, very large memory dumps are not useful (except 
to supply scrap paper) because of the sheer mass of information that they produce. 
They may also take a long time to execute on a slow printer. Small dumps may, 
however, provide the programmer w ith  a reasonable amount of information that 
can be examined as a unit. Relationships such as regular repetitions of data pat­
terns or offsets of entire arrays may become obvious.

A general dump is often rather d ifficu lt to write. The programmer should be careful of 
the following situations:

1) The size of the memory area exceeds 256 bytes, so that an 8-b it counter w ill not 
suffice.

2) The ending location is an address smaller than the starting location. This can be 
treated as an error, or simply cause no output, since the user would seldom want to 
print the entire memory contents in an unusual order.

Since the speed of the Memory Dump depends on the speed of the output device, the 
efficiency of the routine seldom matters. The following program w ill ignore cases 
where the starting address is larger than the ending address, and w ill handle 
blocks of any length. W e assume that the starting address is in memory addresses 
START and START+1 and the ending address is in memory addresses LAST and 
LAST+1. We have assumed that addresses START and START+1 are on page zero, so 
th t their contents can be used indirectly.

: PRINT CONTENTS OF SPECIFIED MEMORY LOCATIONS

MEMORY
DUMP

DUMP
DBYTE

LDY # 0 ;KEEP OFFSET AT ZERO ALWAYS
LDA LAST :ARE WE BEYOND FINAL ADDRESS?
CMP START
LDA LAST+1
SBC START+1
BCC DONE :YES. DUMP COMPLETED
LDA (START).Y ;NO. GET CONTENTS OF NEXT LOCATION
JSR PRTHEX ;PRINT CONTENTS AS 2 HEX DIGITS
INC START INCREMENT MEMORY POINTER
BNE DBYTE
INC START+1
JMP DBYTE
RTSDONE

There is no direct way to perform the 16-bit comparison and increment that this routine 
requires.

Figure 14-4 shows the output from a dump of memory locations 1000 to 101F.

23 1F 60 54 37 28 3E 00
6E 42 38 17 59 44 98 37
47 36 23 81 E1 FF FF 5A
34 ED BC AF FE FF 27 02

Figure 14-4. Results of a Typical Memory Dump
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This routine correctly handles the case in which the starting and ending locations are 
the same (try it!). You w ill have to interpret the results carefully if the dump area in­
cludes the Stack, since the dump subroutine itself uses the Stack. PRTHEX may also 
change memory and Stack locations.

In a memory dump, the data can be displayed in a number of different ways. Common 
forms are ASCII characters or pairs of hexadecimal digits for 8 -b it values and four hex­
adecimal digits for 16-bit values. The format should be chosen based on the intended 
use of the dump. It is almost always easier to interpret an object code dump if it is dis­
played in hexadecimal form rather than ASCII form.

A common and useful dump format is illustrated here:

1000 54 68 65 20 64 75 6D 70 The dump

Each line consists of three parts. The line starts w ith the hexadecimal address of the 
first byte displayed on the line. Following the address are eight or sixteen bytes dis­
played in hexadecimal form. Last is the ASCII representation of the same eight or six­
teen bytes. Try rewriting the memory dump program so that it w ill print the address and 
the ASCII characters as well as the hexadecimal form of the memory contents.
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MORE ADVANCED DEBUGGING TOOLS
The more advanced debugging tools that are most w idely used are:

• Simulator programs to check program logic
• Logic analyzers to check signals and timing

Many variations of both these tools exist, and we shall discuss only the standard 
featu res.

The simulator is the computerized equivalent of the pencil-and- 
paper computer. It is a computer program that goes through the 
operating cycle of another computer, keeping track of the con­
tents of ail the registers, flags, and memory locations. We could, of course, do this 
by hand, but it would require a large amount of effort and close attention to the exact 
effects of each instruction. The simulator program riever gets tired or confused, forgets 
an instruction or register, or runs out of paper.

Most simulators are large FORTRAN programs. They can be purchased or used on the 
time-sharing services. The 6502 simulator is available in several versions from different 
sou rces.

Typical simulator features are:

1) A breakpoint facility. Usually, breakpoints can be set after a particular number of 
cycles have been executed, when a memory location or one of a set of memory 
locations is referenced, when the contents of a location or one of a set of locations 
are altered, or on other conditions.

2) Register and memory dump facilities that can display the values of memory loca­
tions, registers, and I/O ports.

3) A trace facility  that w ill print the contents of particular registers or memory loca­
tions whenever the program changes or uses them.

4) A load facility  that allows you to set values initially or change them during the
simulation.

Some simulators can also simulate input/output, interrupts, and even DMA.

The simulator has many advantages:

1) It can provide a complete description of the status of the computer, since the 
simulator program is not restricted by pin limitations or other characteristics of the 
underlying circuitry.

2) It can provide breakpoints, dumps, traces, and other facilities, w ithout using any of 
the processor’s memory space or control system. These facilities w ill therefore not 
interfere w ith the user program.

3) Programs, starting points, and other conditions are easy to change.
4) A ll the facilities of a large computer, including peripherals and software, are availa­

ble to the microprocessor designer.

On the other hand, the simulator is lim ited by its software base and its separation 
from the real microcomputer. The major lim itations are:

1) The simulator cannot help w ith timing problems, since it operates far more slowly 
than real time and does not model actual hardware or interfaces.

2) The simulator cannot fu lly model the input/output section.
3) The simulator is usually quite slow. Reproducing one second of actual processor 

time may require hours of computer time. Using the simulator can be quite expen­
sive.

SOFTWARE
SIMULATOR
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The simulator represents the software side of debugging; it has the typical advan­
tages and lim itations of a wholly software-based approach. The simulator can pro­
vide insight into program logic and other software problems, but cannot help w ith  
timing, I/O, and other hardware problems.

The logic or microprocessor analyzer is the hardware solution 
to debugging. Basically, the analyzer is the parallel digital ver­
sion of the standard oscilloscope. The analyzer displays informa­
tion in binary, hexadecimal or mnemonic form on a CRT, and has a variety of triggering 
events, thresholds, and inputs. Most analyzers also have a memory so that they can dis­
play the past contents of the busses.

The standard procedure is to set a triggering event, such as the occurrence of a particu­
lar address on the Address Bus or instruction on the Data Bus. For example, one might 
trigger the analyzer if the microcomputer tries to store data in a particular address or ex­
ecute an input or output instruction. One may then look at the sequence of events that 
preceded the breakpoint Common problems you can find in this way include short 
noise spikes (or glitches), incorrect signal sequences, overlapping wave-forms, 
and other tim ing or signaling errors. Of course, a software simulator could not be 
used to diagnose those errors any more than a logic analyzer could conveniently 
be used to find errors in program logic.

Logic analyzers vary in many respects. Some of these are:

1) Number of input lines. A t least 24 are necessary to monitor 
an 8-b it Data Bus and a 16-bit Address Bus. S till more are 
necessary for control signals, clocks, and other important in­
puts.

2) Amount of memory. Each previous state that is saved w ill occupy several bytes.
3) Maximum frequency. It must be several MHz to handle the fastest processors.
4) M inimum signal w idth (important for catching glitches).
5) Type and number of triggering events allowed. Important features are pre- and 

post-trigger delays: these allow the user to display events occurring before or 
after the trigger event.

6) Methods of connecting to the microcomputer. This may require a rather complex 
interface.

7) Number of display channels.
8) Binary, hexadecimal or mnemonic displays.
9) Display formats.

10) Signal hold time requirements.
11) Probe capacitance.
12) Single or dual thresholds.

A ll of these factors are important in comparing different logic and microprocessor 
analyzers, since these instruments are new and unstandardized. A tremendous variety 
of products is already available and this variety w ill become even greater in the future.

Logic analyzers, of course, are necessary only for systems w ith  complex timing. 
Simple applications w ith  low-speed peripherals have few  hardware problems that 
a designer cannot handle w ith  a standard oscilloscope.

IMPORTANT 
FEATURES 
OF LOGIC 
ANALYZERS

LOGIC
ANALYZER
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DEBUGGING W ITH CHECKLISTS
The designer cannot possibly check an entire program by hand; however, there are 
certain trouble spots that the designer can easily check. You can use systematic hand 
checking to find a large number of errors w ithou t resorting to any debugging tools.

The question is where to place the effort. The answer is on 
points that can be handled w ith  either a yes-no anwer or w ith  
a simple arithmetic calculation. Do not try to do complex 
arithmetic, follow all the flags, or try every conceivable case. Lim it 
your hand checking to matters that can be settled easily. Leave the complex problems 
to be solved w ith the aid of debugging tools. But proceed systematically; build your 
checklist, and make sure that the program performs the basic operations correctly.

The firs t step is to compare the flowchart or other program documentation w ith  
the actual code. Make sure that everything that appears in one also appears in the 
other. A simple checklist w ill do the job. It is easy to completely omit a branch or a pro­
cessing section.

Next concentrate on the program loops. Make sure that all registers and memory 
locations used inside the loops are initialized correctly. This is a common source of er­
rors; once again, a simple checklist w ill suffice.

Now look at each conditional branch. Select a sample case that should produce a 
branch and one that should not; try both of them. Is the branch correct or reversed? If 
the branch involves checking whether a number is above or below a threshold, try the 
equality case. Does the correct branch occur? Make sure that your choice is consistent 
w ith  the problem definition.

Look at the loops as a whole. Try the first and last iterations by hand, these are often 
troublesome special cases. W hat happens if the number of iterations is zero; i.e., there 
is no data or the table has no elements? Does the program fall through correctly? Pro­
grams often w ill perform one iteration unnecessarily, or. even worse, decrement coun­
ters past zero before checking them.

Check off everything down to the last statement. Don't assume (hopefully) that 
the first error is the only one in the program. Hand checking w ill allow you to get 
the maximum benefit from debugging runs, since you w ill get rid of many simple 
errors ahead of time.

A quick review of the hand checking questions:

1) Is every element of the program design in the program (and 
vice versa for documentation purposes)?

2) Are all registers and memory locations used inside loops initialized before they 
are used?

3) Are all conditional branches logically correct?
4) Do all loops start and end properly?
5) Are equality cases handled correctly?
6) Are trivial cases handled correctly?

HAND
CHECKING
QUESTIONS

WHAT TO 
INCLUDE IN 
CHECKLIST
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LOOKING FOR ERRORS
Of course, despite all these precautions (or if you skip over 
some of them), programs often s till don't work. The designer 
is le ft w ith  the problem of how to find the mistakes. The hand 
checklist provides a starting place if you didn't use it earlier; some of the errors 
that you may not have eliminated are:

1) Failure to initialize variables such as counters, pointers, sums, indexes, etc.
Do not assume that the registers, memory locations, or flags necessarily contain 
zero before they are used.

2) Inverting the logic of a conditional jump, such as using Branch on Carry Set
when you mean Branch on Carry Clear. Be particularly careful of the fact that the
6502 (unlike most other microprocessors) uses the Carry as an inverted borrow 
after a subtraction or comparison. So the effects of a comparison or subtraction are 
as follows (A is the contents of the Accumulator, M the contents of the memory 
location):

Zero flag = 1 if A = M 
Zero flag = 0  if A £ M  
Carry flag =  1 if A >  M 
Carry flag =  0 if A <  M

Note particularly that Carry = 1 if A = M (the equality case) So Branch on Carry 
Set means jump if A >  M and Branch on Carry Clear means jump if A <  M. If you 
want the equality case on the other side, try either reversing the roles of A and M or 
adding 1 to M. For example, if you want a jump if A >  10 use

CMP #10 
BCS ADDR

If, on the other hand, you want a jump if A >  10 use

CMP #11 
BCS ADDR

3) Updating counters, pointers, and indexes in the wrong place or not at all. Be
sure that there are no paths through a loop that either skip or repeat the updating 
instructions.

4) Failure to fall through correctly in triv ia l cases such as no data in a buffer, no
tests to be run, or no entries in a transaction. Do not assume that such cases will
never occur unless the program specifically eliminates them.

Other problems to watch for are:

5) Reversing the order of operands. Remember that instructions like TAX move the 
contents of A to X. not the other way around.

6) Changing condition flags before you use them.
Almost all instructions except stores and branches affect the Sign and Zero flags. 
Note especially that PLP and RTI may change all the flags.

7) Confusing the Index registers and the indexed memory location.
Note that INX and INY increment the Index registers while INC ADDR.X and other 
similar instructions increment the contents of an indexed memory location.

8) Confusing data and addresses.
Remember that LDA #$40  loads A w ith the number 40-)g. while LDA $40 loads A 
w ith the contents of memory location 0040-]g. Be particularly careful when using 
the pre-indexed and post-indexed addressing modes in which a pair of addresses 
on page zero contains the actual or base address of the data.

COMMON
ERRORS
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9) Accidentally reinitializing a register or memory location.
Make sure that no Jump instructions transfer control back to initialization state­
ments.

10) Confusing numbers and characters.
Remember that the ASCII and EBCDIC representations of digits differ from the 
digits themselves. For example, ASCII 7 is 37 iq , whereas hex 07-|g is the ASCII 
BELL character.

11) Confusing binary and decimal numbers.
Remember that the BCD representation of a number differs from its binary repre­
sentation. For example. BCD 36, when treated as a simple hexadecimal constant, 
is equivalent to 54 decimal (try it).

12) Reversing the order in subtraction. Be careful also w ith  other operations (like 
division) that do not commute. Remember that SBC, CMP, CPX, and CPY all 
subtract the contents of the addressed memory location from the contents of the 
Accumulator or Index register.

13) Ignoring the effects of subroutines and macros.
Don't assume that calls to subroutines or invocations of macros w ill not change 
flags, registers, or memory locations. Be sure of exactly what effects subroutines 
or macros have. Note that it is very important to document these effects so that 
the user can determine them without going through the entire listing.

14) Using the Shift instructions improperly.
Remember the precise effects of ASL, LSR. ROL, and ROR. They are 1-bit shifts 
that affect the Carry, Sign, and Zero flags. ASL and LSR both clear the empty bit; 
ROR and ROL are circular shifts that include the Carry in the circular register. 
Remember that the Carry, Sign, and Zero flags are affected even if these instruc­
tions are applied to the data in a memory location.

15) Counting the length of an array incorrectly.
Remember that there are five (not four) memory locations included in addresses 
0300 through 0304, inclusive.

16) Confusing 8- and 16-bit quantities.
Addresses are actually 16 bits long. The only 6502 register that can hold a com­
plete address is the Program Counter.

17) Forgetting that addresses or 16-bit data occupy tw o  memory locations.
Absolute direct or absolute indexed addresses occupy two memory locations, as 
do the addresses that are stored on page zero for use in post-indexing or pre-in­
dexing. The Program Counter also occupies two memory locations when it is 
stored in the Stack. Note that in the pre-indexed and post-indexed addressing 
modes, two memory locations are used even though only one is specified. The ad­
dress immediately following the one specified is also needed to hold the indirect 
address.
JMP indirect w ill not work properly if the indirect address crosses a page 
boundary. See the discussion of indirect addressing in Chapter 3 for a description 
of this peculiarity.

18) Confusing the Stack and the Stack Pointer.
The instruction TXS affects the Stack Pointer, not the contents of the Stack. PHA, 
PLA, PHP, and PLP transfer data to or from the Stack. Remember that JSR. RTS. 
RTI, and BRK also use the Stack. Remember also that you must initialize the Stack 
Pointer before calling any subroutines or allowing any interrupts. The 6502 Stack 
is always on page one; only the eight least significant bits of the Stack address are 
actually in the Stack Pointer.
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19) Changing a register or memory location before using it.
Remember that LDA. STA, LDX, STX, LDY, STY, TAX. TXA, etc. all change the 
contents of the destination (but not the source).

20) Forgetting to transfer control past sections of the program that should not be 
executed in particular situations.
Remember that the computer w ill proceed sequentially through the program 
memory unless specifically ordered not to do so.

21) Forgetting that the Carry is always included in addition and subtraction 
operations.
The 6502 only has Add-with-Carry and Subtract-with Borrow instructions, unlike 
many other processors which have regular Add and Subtract instructions that do 
not include the Carry. The Carry must be explicitly cleared before an addition and 
set before a subtraction if its value is not to affect the operation. Note, however, 
the comparison instructions (CMP, CPX. CPY) do not include the Carry.

22) Inverting the significance of the Carry in subtraction.
In subtraction and comparison instructions, the resulting Carry is an inverted bor­
row —  that is, the Carry is set if no borrow is required. Accordingly, the subtract- 
with-Borrow instruction subtracts the inverted Carry (1 — Carry) along w ith the 
contents of the specified memory location.

23) Using the decimal mode improperly.
When the Decimal Mode flag is set. all arithmetic results are decimal, thus the 
flag must be explicitly cleared after the decimal operations are completed; other­
wise it w ill change the results of operations which were not intended to be 
decimal. Note that all paths that include a Set Decimal Mode instruction must also 
include a Clear Decimal Mode instruction; be particularly careful of fall-through 
cases and error exits.

24) Using the Bit Test instruction improperly.
Note that the BitTest instruction sets the sign and overflow flags according to bits 
7 and 6 of the tested memory location, w ithout regard to the contents of the Ac­
cumulator. This instruction is convenient for testing status bits in 6520 PIAs and 
for other bit checking operations, but it requires careful documentation since its 
results are often unclear to a reader.

Interrupt-driven programs are particularly d ifficu lt to debug, 
since errors may occur randomly. If, for example, the program 
enables the interrupts a few instructions too early, an error w ill oc­
cur only if an interrupt is received while the program is executing 
those few instructions In fact you can usually assume that ran­
domly occurring errors are caused by the interrupt system.2 Typical errors in inter- 
rupt-driven programs are;

1) Forgetting to re-enable interrupts after accepting one and servicing it.
The processor disables the interrupt system automatically on RESET or on accept­
ing an interrupt. Be sure that no possible sequences fail to re-enable the interrupt 
system. Remember that, in addition to re-enabling interrupts, the program often 
has to perform some action to cause the interrupting signal to be reset. If this is not 
done, it w ill appear as if the interrupting device is constantly requesting service.

2) Using the Accumulator before saving it; i.e., PHA must precede any operations 
that change the Accumulator.

3) Forgetting to save and restore the Accumulator.

DEBUGGING
INTERRUPT-
DRIVEN
PROGRAMS
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4) Restoring registers in the wrong order.
If the order in which they were saved was:

PHA ;SAVE ACCUMULATOR CONTENTS
TXA ;SAVE INDEX REGISTER X
PHA
TYA ;SAVE INDEX REGISTER Y
PHA

the order of restoration should be:

PLA ;RESTORE INDEX REGISTER Y
TAY
PLA :RESTORE INDEX REGISTER X
TAX
PLA : RESTORE ACCUMULATOR CONTENTS

5) Enabling interrupts before establishing all the necessary conditions such as 
priority, flags. PIA and VIA configurations, pointers, counters, etc.
A checklist can aid here.

6) Leaving results in registers and destroying them in the restoration process.
As noted earlier, registers should not be used to pass information between the pro­
gram and the interrupt service routines.

7/ Forgetting that the interrupts (including BRK) leave the old Program Counter 
and Status Register in the Stack whether you use them or not.
You may have to re-initialize or update the Stack Pointer.

8) Ignoring the possibility that the service routine may be entered w ith  the 
Decimal Mode flag set.
You may have to include a CLD instruction in the service routine if this possibility 
exists. Note that RTI w ill automatically restore the original state of the flag at the 
end of the service routine.

9) Not disabling the interrupt during multi-word transfers or instruction se­
quences.
Watch particularly for situations where the interrupt service routine may use the 
same memory locations that the program is using.

Hopefully, these lists w ill at least give you some ideas as to where to look for er­
rors. Unfortunately, even the most systematic debugging can s till leave some 
truly puzzling problems, particularly when interrupts are involved.^
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Figure 14-5. Flowchart of Decimal to Seven-Segment Conversion 

Debugging Example 1: Decimal to Seven-Segment Conversion
The program converts a decimal number in memory location 
0040 to a seven-segment code in memory location 0041. It 
blanks the display if memory location 0040 does not contain a 
decimal number.

Initial Program (from flowchart in Figure 14-5):

LDX #$40 ;GET DATA
CPX #9 :IS DATA GREATER THAN 9 r
BCC DONE ;YES, DONE
LDA (SSEG.X) :GET ELEMENT FROM TABLE
STX $41 ;SAVE SEVEN-SEGMENT CODE

DONE BRK
SSEG .BYTE $3F,$06,$5B,$4F,$66

BYTE $6D,$7D,$07,$7D,$6F

Using the checklist procedure, we were able to find the following errors:

1) The block that cleared Result had been omitted.
2) The Conditional Branch was incorrect.

For example, if the data is zero, CPX # 9  clears the Carry, since 0 <  9 and a borrow is 
required. However, the Jump utilizing the inverted condition (i.e., BCS DONE) still did 
not produce the correct result. Now the program handles the equality case incorrectly 
since, if the data is 9, CPX # 9  sets the Carry and causes a jump. The correct version is:

CPX #1 0  ;IS DATA A DECIMAL DIGIT?
BCS DONE ;NO. KEEP ERROR CODE

DEBUGGING 
A CODE 
CONVERSION 
PROGRAM
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Second Program:

LDA # 0 ;GET BLANK CODE FOR DISPLAY
LDX #$40 :GET DATA
CPX #10 :IS DATA A DECIMAL DIGIT?
BCS DONE ;NO. KEEP ERROR CODE
LDA (SSEG.X) ;GET ELEMENT FROM TABLE
STX $41 ;SAVE SEVEN-SEGMENT CODE OR 

: CODE
DONE BRK
SSEG .BYTE $3F.$06,$5B.$4F.$66

.BYTE $6D,$7D,$07,$7D,$6F

This version was hand checked successfully.

Since the program was simple, the next stage was to single-step through it w ith  real
data. The data selected for the trials was:

0 (the smallest number)
9 (the largest number)

10 (a boundary case)
6B-|6 (a randomly selected case)

The first trial was w ith zero in location 0040. The first error was obvious —  LDX#$40
loaded the number 40 into X. not the contents of memory location 0040. The correct
instruction was LDX $40 (direct rather than immediate addressing). After this 
correction was made, the program moved along w ith no apparent errors until it tried to 
execute the LDA (SSEG.X) instruction.

The contents of the Address Bus during the data fetch was 063F, an address that was 
not even being used. Clearly, something had gone wrong.

It was now time for some more hand-checking. Since we knew that BCS DONE was cor­
rect. the error was clearly in the LDA instruction. A hand check showed:

LDA (SSEG.X) adds the contents of Index Register X to the page-zero address SSEG and 
uses the sum to fetch the address that contains the actual data. In the present case, 
since Register X contains zero, the indirect address is in memory locations SSEG and 
SSEG+1 — that is, it is 063F. The instruction is therefore getting an address from a 
table that consists of data. The correct instruction is LDA SSEG.X — we want to get 
data from the table, not the address of the data.

Even w ith this correction, the program still produced a result of zero, rather than the 
expected 3F. The error was obviously in the last instruction —  it should be STA $41, 
not STX $41. Note the importance of following through to the very end of the program, 
rather than quitting after what m ight seem to be the last error.

The revised program now was:

Third Program:

LDA # 0 GET ERROR CODE FOR DISPLAY
LDX $40 GET DATA
CPX #10 IS DATA A DECIMAL DIGIT?
BCS DONE NO, KEEP ERROR CODE
LDA SSEG.X GET ELEMENT FROM TABLE
STA $41 SAVE SEVEN-SEGMENT CODE OR ER 

ROR CODE
DONE BRK
SSEG .BYTE

.BYTE
$3F.$06,$5B,$4F,$66
$6D,$7D,$07,$7D,$6F
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The results now were:

Data Result
00 3F
09 6F
0A 6F
6B 6F

The program was not clearing the result if the data was invalid, i.e., greater than 9. The 
program never stored the blank code since the destination address DONE was 
misplaced —  it should have been attached to the STA $41 instruction. After these cor­
rections were made, the program produced the correct results for all the test cases.

Since the program was simple, it could be tested for all the decimal digits. The results 
were:

Data Result
0 3F
1 06
2 5B
3 4F
4 66
5 6D
6 7D
7 07
8 7D
9 6F

Note that the result for number 8 is wrong —  it should be 7F. Since everything else is 
correct, the error is almost surely in the table. In fact, entry 8 in the table had been 
miscopied.

The final program is:

; DECIMAL TO SEVEN-SEGMENT CONVERSION

LDA
LDX
CPX
BCS
LDA

DONE STA 

BRK
SSEG .BYTE 

.BYTE

1 4 - 1 7

# 0 GET BLANK CODE FOR DISPLAY
$40 GET DATA
#10 IS DATA A DECIMAL DIGIT?
DONE NO. KEEP ERROR CODE
SSEG.X GET SEVEN-SEGMENT CODE FROM

TABLE
$41 SAVE SEVEN-SEGMENT CODE OR

; ERROR CODE

$3F,$06,$5B,$4F,$66 
$6D, $7D,$07,$7F,$6F



The errors encountered in this program are typical of the ones that 6502 assembly 
language programmers should anticipate. They include:

1) Failing to initialize registers or memory locations.
2) Inverting the logic on conditional branches.
3) Branching incorrectly in the case in which the operands are equal.
4) Confusing immediate and direct addressing, i.e.. data and addresses.
5) Failing to keep track of the current contents of registers.
6) Branching to the wrong place so that one path through the program is incorrect.
7) Copying lists of numbers (or instructions) incorrectly.
8) Using the indirect addressing modes incorrectly.

Note that straightforward instructions (like AND, DEC. INC) and simple addressing 
modes seldom cause any problems. Among the particularly annoying errors that are 
frequent in 6502 assembly language programming are using the Carry improperly after 
subtraction or comparison (the Carry is set if no borrow is required) and forgetting to 
clear the Decimal Mode flag.
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DEBUGGING 
A SORT 
PROGRAM

Debugging Example 2: Sort into Decreasing Order
The program sorts an array of unsigned 8-b it binary numbers into 
decreasing order. The array begins in memory location 0041 and 
its length is in memory location 0040.

Initial Program (from flowchart in Figure 14-6):

CLEAR INTERCHANGE FLAG BEFORE PASS 
GET LENGTH OF ARRAY 

PASS LDA $41,X :IS NEXT PAIR OF ELEMENTS IN ORDER?

YES, NO INTERCHANGE NECESSARY 
NO, INTERCHANGE PAIR 

COUNT DEX ;CHECK FOR COMPLETED PASS

;WERE ALL ELEMENTS IN ORDER?
;NO. MAKE ANOTHER PASS

The hand check shows that all the blocks in the flowchart have been implemented in 
the program and that all the registers have been initialized. The conditional branches 
must be examined carefully. The instruction BCC COUNT must force a branch if the 
value in A is greater than or equal to the next element in the array. Remember that we 
are sorting elements into decreasing order and we are moving backward through the 
array in the usual 6502 manner. The equality case must not result in an interchange, 
since such an interchange would create an endless loop, w ith  the two equal elements 
always being swapped.

Try an example:

LDY # 0
LDX $40
LDA $41,X
CMP $42,X
BCC COUNT
STA $42,X
DEX
BNE PASS
DEY
BNE PASS
BRK

(0041) =  30
(0042) =  37

CMP $42,X results in the calculation of 30 - 37. The Carry is cleared since a borrow is 
required. This example should result in an interchange but does not.

BCS COUNT w ill provide the proper branch in this case. If the two numbers are equal, 
the comparison w ill set the Carry and BCS COUNT is again correct.

How about BNE PASS at the end of the program? If there are any elements out of order, 
the interchange flag w ill be one, so the branch is wrong. It should be BEQ PASS.

Now let's hand check the first iteration of the program. The initialization results in the 
following values:

X =  LENGTH (2)
Y =  0

The effects of the loop instructions are:

LDA $41, X ;A = (0043)
CMP $42, X : (0043)-(0044)
BCS COUNT
STA $42, X : (0044) =  (0043)

COUNT DEX ;X =  LENGTH -1
BNE PASS

The indexed addresses are clearly incorrect since they are both beyond the end of the 
array. We w ill change them by subtracting two from the addresses included in the 
indexed instructions. This offset is a common problem in 6502 assembly language 
programs, because arrays and tables have a zeroth element. Thus an array w ith five 
elements occupies memory addresses BASE through BASE+4, not BASE+1 through 
BASE+5. When using indexed addressing on the 6502 microprocessor, be careful that 
your addresses are not in error at one end of the array or the other.
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The initialization now results in the values:

X =  LENGTH (2)
Y = 0

The effects of the loop instructions are:

LDA $3F,X ;A =  (0041)
CMP $40,X ; (0041 )-(0042)
BCS COUNT
STA $40, X : (0042) =  (0041)

COUNT DEX ;X = LENGTH - 1
BNE PASS

Note that we have already checked the Conditional Branch instructions. Clearly the 
logic is incorrect. If the first two elements are out of order, the results after the first 
iteration should be:

Instead, they are:

(0041)
(0042) 

X

(0041)
(0042) 

X

OLD (0042) 
OLD (0041) 
LENGTH - 1

UNCHANGED 
OLD (0041) 
LENGTH - 1

The interchange requires a bit more care and the use of the Stack:

PHA
LDA
STA
PLA
STA

$40,X 
$3F,X

$40, X

An interchange always requires a temporary storage place in which one number can be 
saved while the other one is being transferred.

All these changes require a new copy of the program, i.e..

:CLEAR INTERCHANGE FLAG BEFORE PASS 
:GET LENGTH OF ARRAY 
;IS NEXT PAIR OF ELEMENTS IN ORDER?PASS

COUNT

LDY # 0
LDX $40
LDA $3F,X
CMP $40,X
BCS COUNT
PHA
LDA $40.X
STA $3F,X
PLA
STA $40,X
DEX
BNE PASS
DEY
BEQ PASS
BRK

:YES, NO INTERCHANGE NECESSARY
;NO. INTERCHANGE ELEMENTS USING THE STACK

;CHECK FOR COMPLETED PASS

:WERE ALL ELEMENTS IN ORDER? 
;NO, MAKE ANOTHER PASS

How about the last iteration? Let's say that there are three elements:

(0040) =  03 (number of elements)
(0041) =  02
(0042) =  04
(0043) =  06
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each time through, the program decrements X by 1. So, during the third iteration, 
(X) = 1. The effects of the loop instructions are:

LDA $3F.X : (A) =  (0040)
CMP $40,X ; (0040) - (0041)

This is incorrect: the program has tried to move beyond the starting address of the data. 
The previous iteration should, in fact, have been the last one, since the number of pairs 
is one less than the number of elements. The first element in the array has no pre­
decessor to which it can be compared. The correction is to reduce the number of itera­
tions by one: this can be accomplished by placing DEX after LDX $40. We must also 
add 1 to all the addresses in the indexed instructions.

How about the triv ia l cases? What happens if the array contains no elements at 
all, or only one element? The answer is that the program does not work correctly 
and may change a whole block of data improperly and w ithout any warning (try 
it!). The corrections to handle the triv ia l cases are simple but essential; the cost 
is only a few  bytes of memory to avoid problems that could be very d ifficu lt to 
solve later.

The new program is:

LDY 
LDX
CPX 
BCC 
DEX

PASS LDA 
CMP 
BCS 
PHA 
LDA 
STA 
PLA 
STA

COUNT DEX 
BNE 
DEY 
BEQ

DONE BRK

Now it's time to check the program on the computer or on the simulator. A simple set of 
data is:

(0040) =  02 length of array
(0041) = 00 array to be sorted
(0042) =  01

This set consists of two elements in the wrong order. The program should require two 
passes. The first pass should reorder the elements, producing:

(0041) =  01 reordered array
(0042) =  00

Y =  01 Interchange flag

The second pass should find the elements in the proper (descending) order and pro­
duce:

Y =  00 Interchange flag

#0
$40
# 2
DONE

$40,X 
$41.X 
COUNT

$41.X 
$40,X

CLEAR INTERCHANGE FLAG BEFORE PASS
GET LENGTH OF ARRAY
DOES ARRAY HAVE 2 OR MORE ELEMENTS?
NO. NO ACTION NECESSARY 
NUMBER OF PAIRS =  LENGTH - 1 
IS NEXT PAIR OF ELEMENTS IN ORDER?

;YES, NO INTERCHANGE NECESSARY
:NO. INTERCHANGE ELEMENTS USING THE STACK

$41,X 

PASS 

PASS

:CHECK FOR COMPLETED PASS

:WERE ALL ELEMENTS IN ORDER? 
;NO. MAKE ANOTHER PASS
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This program is rather long for single stepping, so we w ill use breakpoints instead. Each 
breakpoint w ill halt the computer and print the contents of all the registers. The break­
points w ill come:

1) After DEX to check the initialization.
2) After CMP $41,X to check the comparison.
3) After STA $41,X to check the interchange.
4) After DEY to check the completion of a pass through the array

The contents of the registers after the first breakpoint were:

Register
X
Y
P (status)

Contents
01
00
25 (35 if you use BRK to create 

the breakpoint since the Break 
Command flag w ill be set)

These are all correct, so the program is performing the initialization correctly in this

The results at the second breakpoint were: 

Register 
A 
X
Y
P (status)

These results are also correct.

The results at the third breakpoint were: 

Register 
A 
X
Y
P (status)

Checking memory showed:

Content;
00
01
00
A4 (B4 if you use BRK)

Contents
00
01
00
26 (36 if you use BRK)

01
00

(0041)
(0042)

The results at the fourth breakpoint were:

Register 
A 
X
Y
P (status)

The Zero flag (bit 1 of the Status Register) is incorrect, indicating that no interchange 
occurred. Register Y does not contain the correct value —  it should have been set to 
one after the interchange. In fact, a look at the program shows that no instruction ever 
changes Index Register Y to mark the interchange. The correction is to place the in­
struction LDY #1 after BCS COUNT.

Contents
00
00
FF
A4 (B4 if you use BRK)

1 4 - 2 3



Now the procedure is to load Index Register Y w ith the correct value (zero), set the Zero 
flag to 1, and continue. The second iteration of the second breakpoint gives:

Register Contents
A 02
X 00
Y 00
P (status) 25 (35 if you use BRK)

Clearly the program has proceeded incorrectly w ithout reinitializing the registers (par­
ticularly Index Register X). The Conditional Branch that depends on the interchange 
should transfer control back to a point that reinitializes X; note that we do not need to 
reinitialize Y (it w ill be zero anyway —  why?) nor do we need to check the length of the 
array again.

The final version of the program is:

SORT LDY # 0 ;CLEAR INTERCHANGE FLAG TO START
LDX $40 ;DOES ARRAY HAVE 2 OR MORE ELEMENTS?
CPX # 2
BCC DONE ;NO. NO ACTION NECESSARY

ITER LDX $40 :YES, NUMBER OF PAIRS =  LENGTH - 1
DEX

PASS LDA $40,X ;IS NEXT PAIR OF ELEMENTS IN ORDER?
CMP $41,X
BCS COUNT ;YES, NO INTERCHANGE NECESSARY
LDY #1 ;NO. SET INTERCHANGE FLAG
PHA INTERCHANGE ELEMENTS USING THE STACK
LDA $41.X
STA $40, X
PLA
STA $41,X

COUNT DEX ;CHECK FOR COMPLETED PASS
BNE PASS
DEY ;WERE ALL ELEMENTS IN ORDER?
BEQ ITER ;NO, MAKE ANOTHER PASS

DONE BRK

Clearly we cannot check all the possible input values for this program. Two other simple 
sets of data for debugging purposes are:

1) Two equal elements

(0040) = 02
(0041) = 00
(0042) =  00

2) Two elements already in decreasing order

(0040) =  02
(0041) =  01
(0042) = 00
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INTRODUCTION TO TESTING
Program testing is closely related to program debugging.
Surely some of the test cases w ill be the same as the test 
data used for debugging, such as:

• Trivial cases such as no data or a single element
• Special cases that the program singles out for some reason
• Simple examples that exercise particular parts of the program

In the case of the decimal to seven-segment conversion program, these cases 
cover all the possible situations. The test data consists of:

• The numbers 0 through 9
• The boundary case 10
• The random case 6B

The program does not distinguish any other cases- Here debugging and testing are 
virtually the same.

In the sorting program, the problem is more difficult. The number of elements could 
range from 0 to 255, and each of the elements could lie anywhere in that range. The 
number of possible cases is therefore enormous. Furthermore, the program is 
moderately complex. How do we select test data that w ill give us a degree of confi­
dence in that program? Here testing requires some design decisions. The testing 
problem is particularly d ifficu lt if the program depends on sequences of real-time data. 
How do we select the data, generate it. and present it to the microcomputer in a 
realistic manner?

Most of the tools mentioned earlier for debugging are helpful 
in testing also. Logic or microprocessor analyzers can help 
check the hardware; simulators can help check the software.
Other tools can also be of assistance, e.g.,

1) I/O simulations that can simulate a variety of devices from a single input and a 
single output device.

2) In-circuit emulators that allow you to attach the prototype to a development
system or control panel and test it.

3) ROM simulators that have the flexibility of a RAM but the tim ing of the particular
ROM or PROM that w ill be used in the final system.

4) Real-time operating systems that can provide inputs or interrupts at specific 
times (or perhaps randomly) and mark the occurrence of outputs. Real-time break­
points and traces may also be included.

5) Emulations (often on microprogrammable computers) that may provide real-time 
execution speed and programmable I/O A

6) Interfaces that allow another computer to control the I/O system and test the 
microcomputer program.

7) Testing programs that check each branch in a program for logical errors.
8) Test generation programs that can generate random data or other distributions.

Formal testing theorems exist, but they are usually applicable only to very short 
prog rams.

You must be careful that the test equipment does not invalidate the test by 
modifying the environment. Often, test equipment may buffer, latch, or condition 
input and output signals. The actual system may not do this, and may therefore 
behave quite differently.

TESTING
AIDS

USING TEST 
CASES FROM 
DEBUGGING
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Furthermore, extra software in the test environment may use some of the memo­
ry space or part of the interrupt system. It may also provide error recovery and 
other features that w ill not exist in the final system. A software test bed must be 
just as realistic as a hardware test bed, since software failure can be just as critical as 
hardware failure.

Emulations and simulations are, of course, never precise. They are usually ade­
quate for checking logic, but can seldom help test the interface or the timing. On 
the other hand, real-time test equipment does not provide much of an overview of 
the program logic and may affect the interfacing and timing.
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SELECTING TEST DATA
Very few  real programs can be checked for all cases. The designer must choose a 
sample set that in some sense describes the entire range of possibilities.

Testing should, of course, be part of the total development pro­
cedure. Top-down design and structured programming provide for 
testing as part of the design. This is called structured testing.5 
Each module w ith in a structured program should be checked separately. Testing, as 
w ell as design, should be modular, structured, and top-down.

But that leaves the question of selecting test data for a 
module. The designer must firs t list all special cases that a 
program recognizes. These may include:

• Trivial cases
■ Equality cases
• Special situations 

The test data should include all of these.

You must next identify each class of data that statements 
w ith in  the program may distinguish. These may include:

• Positive or negative numbers
• Numbers above or below a particular threshold
• Data that does or does not include a particular sequence or character
• Data that is or is not present at a particular time

If the modules are short, the total number of classes should still be small even though 
each division is multiplicative: i.e., three two-way divisions result in 2 x  2 x  2 =  8 
classes of data.

You must now separate the classes according to whether the 
program produces a different result for each entry in the class 
(as in a table) or produces the same result for each entry (such 
as a warning that a parameter is above a threshold). In the dis­
crete case, one may include each element if the total number is small or sample if the 
number is large. The sample should include all boundary cases and at least one case 
selected randomly. Random number tables are available in books, and random number 
generators are part of most computer facilities.

You must be careful of distinctions that may not be obvious. For example, an 8-bit 
microprocessor w ill regard an 8-bit unsigned number greater than 127 as nega­
tive. The programmer must consider this when using conditional branches that 
depend on the Sign flag. You must also watch for instructions that do not affect 
flags, overflow in signed arithmetic, and the distinctions between address-length 
(16-bit) quantities and data-length (8-bit) quantities.

SELECTING 
DATA FROM 
CLASSES

TESTING
SPECIAL
CASES

FORMING 
CLASSES 
OF DATA

STRUCTURED
TESTING
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Testing Example 1: Sort Program
The special cases here are obvious:

• No elements in the array
• One element, magnitude may be selected randomly

The other special case to be considered is one in which elements are equal.

There may be some problem here w ith signs and data length. Note that the array itself 
must contain fewer than 256 elements. The use of the instruction LDY #1 rather than 
INY to set the Interchange flag means that there w ill be no problems if the number of 
elements or interchanges exceeds 128. We could check the effects of sign by picking 
half the regular test cases w ith  numbers of elements between 128 and 255 and half 
between 2 and 127. All magnitudes should be chosen randomly so as to avoid un­
conscious bias as much as possible.

Testing Example 2: Self-Checking Numbers (see Chapte

Here we w ill presume that a prior validity check has ensured that 
the number has the right length and consists of valid digits. Since 
the program makes no other distinctions, test data should be 
selected randomly. Here a random number table or random num­
ber generator w ill prove ideal: the range of the random numbers is 0

r8)__________
TESTING AN 
ARITHMETIC 
PROGRAM

to 9.

TESTING 
A SORT 
PROGRAM

1 4 - 2 8



TESTING PRECAUTIONS
The designer can simplify the testing stage by designing pro­
grams sensibly. You should use the following rules:

1) Try to eliminate trivial cases as early as possible w ithout 
introducing unnecessary distinctions.

2) Minimize the number of special cases. Each special case means additional testing 
and debugging time.

3) Consider performing validity or error checks on the data prior to processing.
4) Be careful of inadvertent and unnecessary distinctions, particularly in handling 

signed numbers or using operations that refer to signed numbers.
5) Check boundary cases by hand. These are often a source of errors. Be sure that the 

problem definition specifies what is to happen in these cases.
6) Make the program as general as reasonably possible. Each distinction and separate 

routine increases the required testing.
7) Divide the program and design the modules so that the testing can proceed in 

steps in conjunction w ith the other stages of software development®

CONCLUSIONS
Debugging and testing are the stepchildren of the software development process. 
Most projects leave far too little  time for them and most textbooks neglect them. 
But designers and managers often find that these stages are the most expensive 
and time-consuming. Progress may be very d ifficu lt to measure or produce. 
Debugging and testing microprocessor software is particularly d ifficu lt because 
the powerful hardware and software tools that can be used on larger computers 
are seldom available for microcomputers.

The designer should plan debugging and testing carefully. We recommend the 
following procedure:

1) Try to w rite  programs that can easily be debugged and tested. Modular pro­
gramming, structured programming, and top-down design are useful techni­
ques.

2) Prepare a debugging and testing plan as part of the program design. Decide 
early what data you must generate and what equipment you w ill need.

3) Debug and test each module as part of the top-down design process.
4) Debug each module's logic systematically. Use checklists, breakpoints, and 

the single-step mode. If the program logic is complex, consider using the soft­
ware simulator.

5) Check each module's timing systematically if this is a problem. An 
oscilloscope can solve many problems if you plan the test properly. If the 
timing is complex, consider using a logic or microprocessor analyzer.

6) Be sure that the test data is a representative sample. Watch for any classes of 
data that the program may distinguish. Include all special and triv ia l cases.

7) If the program handles each element differently or the number of cases is 
large, select the test data randomly.7

8) Record all test results as part of the documentation. If problems occur, you 
w ill not have to repeat test cases that have already been checked.

RULES FOR 
TESTING
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Chapter 15 
DOCUMENTATION AND REDESIGN
The working program is not the only requirement of software development. Ade­
quate documentation is also an important part of a software product. Not only 
does documentation help the designer in the testing and debugging stages, it is 
also essential for later use and extension of the program. A poorly documented 
program w ill be d ifficu lt to maintain, use, or extend.

Occasionally, a program uses too much memory or executes too slowly. The 
designer must then improve it. This stage is called redesign, and requires that you 
concentrate on the parts of the program that can yield the most improvement.

SELF-DOCUMENTING PROGRAMS
Although no program is ever completely self-document­
ing, some of the rules that we mentioned earlier can help.
These include:

• Clear, simple structure w ith as few transfers of control 
(jumps) as possible

• Use of meaningful names and labels
• Use of names for I/O devices, parameters, numerical factors, etc.
• Emphasis on simplicity rather than on minor savings in memory usage, execution 

time, or typing

For example, the following program sends a string of characters to a teletypewriter:

LDX $40
LDA $0FFF,X
STA $A000
JSR XXX
DEX
BNE w
BRK

Even w ithout comments we can improve the program, as follows:

MESSG =$1000
COUNT =$40
TTYVIA =$A000

LDX COUNT
OUTCH LDA MESSG-1.X

STA TTYVIA
JSR BITDLY
DEX
BNE OUTCH
BRK

Surely this program is easier to understand than the earlier version. Even w ithout 
further documentation, you could probably guess at the function of the program and 
the meanings of most of the variables. Other documentation techniques cannot 
substitute for self-documentation.

RULES FOR
SELF-DOCUMENTING
PROGRAMS
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1) Use the obvious name when it is available, like TTY or CRT 
for output devices, START or RESET for addresses, DELAY or 
SORT for subroutines, COUNT or LENGTH for data.

2) Avoid acronyms like S16BA for SORT 16;BIT ARRAY. These seldom mean 
anything to anybody.

3) Use full words or close to full words when possible, like DONE, PRINT, SEND, etc.
4) Keep the names as distinct as possible.

S o m e  fu r th e r  n o tes  on choosing nam es: CHOOSING
USEFUL
NAMES
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COMMENTS
The most obvious form of additional documentation is the comment. However,
few  programs (even those used as examples in books) have effective comments.
You should consider the following guidelines for good comments.

1) Don't repeat the meaning of the instruction code. Rather, 
explain the purpose of the instruction in the program. Com­
ments like

DEX ;X=X-1
add nothing to documentation. Rather, use

DEX ;LINE NUMBER=LINE NUMBER-1
Remember that you know what the operation codes mean and anyone else can
look them up in the manual The important point is to explain what task the
program is performing.

2) Make the comments as clear as possible. Do not use abbreviations or acronyms 
unless they are well-known (like ASCII, VIA, or UART) or standard (like no for num­
ber, ms for millisecond, etc.). Avoid comments like

DEX ;LN=LN-1
or

DEX ;DEC LN BY 1
The extra typing simply is not all that expensive.

3) Comment every important or obscure point. Be particularly careful to mark 
operations that may not have obvious functions, such as

AND #% 00100000 ;TURN TAPE READER BIT OFF
or

LDA GCODL.X ;CONVERT TO GRAY CODE USING TABLE 
Clearly, I/O operations often require extensive comments. If you're not exactly 
sure of what an instruction does, or if you have to think about it, add a clarifying 
comment. The comment w ill save you time later and w ill be helpful in documenta­
tion.

4) Don't comment the obvious. A comment on each line simply makes it d ifficu lt to 
find the important points. Standard sequences like

DEX
BNE SEARCH

need not be marked unless you're doing something special. One comment w ill 
often suffice for several lines, as in

LSR A ;GET MOST SIGNIFICANT DIGIT
LSR A
LSR A
LSR A

LDA $40 ;EXCHANGE MOST SIGNIFICANT, LEAST
LDX $41 ; SIGNIFICANT BYTES
STA $41
STX $40

Place comments on the lines to which they refer or at the start 
quence.

6) Keep your comments up-to-date. If you change the program, change the com­
ments.

COMMENTING
GUIDELINES
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7) Use standard forms and terms in commenting. Don't worry about repetitiveness. 
Varied names for the same things are confusing, even if the variations are just 
COUNT and COUNTER, START and BEGIN, DISPLAY and LEDS, or PANEL and 
SWITCHES.
There's no real gain in not being consistent. The variations may seem obvious to 
you now, but may not be clear later; others w ill get confused from the very begin­
ning.

8) Make comments mingled w ith  instructions brief. Leave a complete explanation 
to header comments and other documentation. Otherwise, the program gets lost 
in the comments and you may have a hard time even finding it.

9) Keep improving your comments. If you come to one that you cannot read or un­
derstand, take the time to change it. If you find that the listing is getting crowded, 
add some blank lines. The comments won't improve themselves; in fact, they will 
just become worse as you leave the task behind and forget exactly what you did.

10) Before every major section, subsection, or subroutine, insert a number of 
comments describing the functions of the code that follows. Care should be 
taken to describe all inputs, outputs, and side effects, as well as the algorithm 
employed.

11) It is good practice when modifying working programs to use comments to in­
dicate the date, author, and type of modification made.

Remember, comments are important. Good ones w ill save you time and effort. Put
some work into comments and try  to make them as effective as possible.
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Commenting Example 1: Multiple-Precision 
Addition

The basic program is:

ADDWD

COMMENTING
EXAMPLES

LDX $40
CLC
LDA $40,X
ADC $50,X
STA $40,X
DEX
BNE ADDWD
BRK

First, comment the important points. These are typicaliv initializations, data fetches, 
and processing operations. Don't bother w ith standard seauences like updating poin­
ters and counters. Remember that names are dearer than numbers, so use them freely.

The new version of the program is:

MULTIPLE-PRECISION ADDITION

THIS PROGRAM PERFORMS MULTI-BYTE BINARY ADDITION

INPUTS: LOCATION 0040 (HEX) = LENGTH OF NUMBERS (IN BYTES)
LOCATIONS 0041 THROUGH 0050 (HEX) =  FIRST NUMBER STARTING 
WITH MSB'S
LOCATIONS 0051 THROUGH 0060 (HEX) =  SECOND NUMBER STARTING 
WITH MSB'S

OUTPUTS: LOCATIONS 0041 THROUGH 0050 (HEX) = SUM STARTING WITH 
MSB'S

LENGTH =$40
NUMB1 =$41
NUMB2 =$51

LDX LENGTH ;COUNT = LENGTH OF NUMBERS (IN BYTES)
CLC

ADDWD LDA NUMB1-1.X ;GET BYTE FROM STRING 1
ADC NUMB2-1.X ;ADD BYTE FROM STRING 2
STA NUMB1-1.X ;STORE RESULT IN STRING 1
DEX
BNE ADDWD :CONTINUE UNTIL ALL BYTES ADDED
BRK
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Second, look for any instructions that m ight not have obvious 
functions and mark them. Here, the purpose of CLC is to clear the 
Carry the first time through.

Third, ask yourself whether the comments tell you what you would need to know if you 
wanted to use the program, e.g.:

1) Where is the program entered? Are there alternative entry points?

2) W hat parameters are necessary? How and in what form must they be supplied?

3) W hat operations does the program perform?

4) From where does it get the data?

5) Where does it store the results?

6) W hat special cases does it consider?

7) W hat does the program do about errors?

8) How does it exit?

Some of the questions may not be relevant to a particular program and some of the 
answers may be obvious. Make sure that you won't have to sit down and dissect the
program to figure out what the answers are. Remember that too much explanation is
just dead wood that you w ill have to clear out of the way. Is there anything that you 
would add to or subtract from this listing? If so, go ahead —  you are the one who has to 
feel that the commenting is adequate and reasonable.

QUESTIONS
FOR
COMMENTING

MULTIPLE-PRECISION ADDITION

THIS PROGRAM PERFORMS MULTI-BYTE BINARY ADDITION

INPUTS: LOCATION 0040 (HEX) =  LENGTH OF NUMBERS (IN BYTES)
LOCATIONS 0041 THROUGH 0050 (HEX) = FIRST NUMBER STARTING 
WITH MSB'S
LOCATIONS 0051 THROUGH 0060 (HEX) =  SECOND NUMBER STARTING 
WITH MSB'S

OUTPUTS: LOCATIONS 0041 THROUGH 0050 (HEX) =  SUM STARTING WITH 
MSB'S

LENGTH =$40 LENGTH OF NUMBERS (IN BYTES)
NUMB1 =$41 MSB'S OF 1ST NUMBER AND RESULT
NUMB2 =$51 MSB'S OF SECOND NUMBER

LDX LENGTH COUNT = LENGTH OF NUMBERS (IN BYTES)
CLC CLEAR CARRY TO START

ADDWD LDA NUMB1-1.X GET BYTE FROM STRING 1
ADC NUMB2-1.X ADD BYTE FROM STRING 2
STA NUMB1-1.X STORE RESULT IN STRING 1
DEX
BNE ADDWD CONTINUE UNTIL ALL BYTES ADDED
BRK
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Commenting Example 2: Teletypew riter Output
The basic program is:

LDA $60
ASL A
LDX #11
STA $A000
JSR BITDLY
ROR A
SEC
DEX
BNE TBIT
BRK

Commenting the important points and adding names gives:

TELETYPEWRITER OUTPUT PROGRAM

THIS PROGRAM PRINTS THE CONTENTS OF MEMORY LOCATION 0060 (HEX) TO THE 
TELETYPEWRITER

INPUTS: CHARACTER TO BE TRANSMITTED IN MEMORY LOCATION 0060 
OUTPUTS: NONE

NBITS =11
TDATA =$60

TTYVIA =$A000
LDA TDATA
ASL A
LDX #NBITS

TBIT STA TTYVIA
JSR BITDLY
ROR A
SEC 
DEX
BNE TBIT
BRK

NUMBER OF BITS PER CHARACTER 
ADDRESS OF CHARACTER TO BE 

TRANSMITTED 
TELETYPEWRITER OUTPUT DATA PORT 
GET DATA
SHIFT LEFT AND FORM START BIT 
COUNT =  NUMBER OF BITS IN CHARACTER 
SEND NEXT BIT TO TELETYPEWRITER 
WAIT 1 BIT TIME 
GET NEXT BIT
SET CARRY TO FORM STOP BITS 

;COUNT BITS
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Note how easily we could change this program so that it would transfer a whole string 
of data, starting at the address in page-zero locations DPTR and DPTR +  1 and ending 
w ith  an "0 3 ” character (ASCII ETX), Furthermore, let us make the terminal a 30 
character per second device w ith one stop bit (we w ill have to change subroutine 
BITDLY). Try making the changes before looking at the listing.

STRING OUTPUT PROGRAM

THIS PROGRAM TRANSMITS A STRING OF CHARACTERS TO A 30 CPS TERMINAL. 
TRANSMISSION CEASES WHEN AN ASCII ETX (03 HEX) IS ENCOUNTERED

INPUTS: LOCATIONS 0060 AND 0061 (HEX) CONTAIN ADDRESS OF 
STRING TO BE TRANSMITTED 

OUTPUTS: NONE

POINTER TO OUTPUT DATA BUFFER
ENDING CHARACTER = ASCII ETX
NUMBER OF BITS PER CHARACTER
TERMINAL OUTPUT DATA PORT
POINT TO START OF OUTPUT DATA BUFFER
GET A CHARACTER FROM BUFFER
IS IT ENDING CHARACTER?
YES, DONE
NO, SHIFT LEFT AND FORM START BIT 
COUNT =  NUMBER OF BITS PER CHARACTER 
SEND NEXT BIT TO TERMINAL 
WAIT 1 BIT TIME 
GET NEXT BIT
SET CARRY TO FORM STOP BIT 

;COUNT BITS
;PROCEED TO NEXT CHARACTER

Good comments can make it easy for you to change a program to meet new require­
ments. For example, try changing the last program so that it:

• Starts each message w ith ASCII STX (02-]g) followed by a three-digit identification 
code stored in memory locations IDCODE through IDCODE+2

• Adds no start or stop bits
• Waits 1 ms between bits
• Transmits 40 characters, starting w ith the one located at the address in DPTR and 

DPTR+1

DPTR =$60
ENDCH =$03
NBITS =  10
TRMVIA =$A000

LDY # 0
TCHAR LDA (DPTR).Y

CMP #ENDCH
BEQ DONE
ASL A
LDX #NBITS

TBIT STA TRMVIA
JSR BITDLY
ROR
SEC
DEX

A

BNE
INY

TBIT

JMP TCHAR
DONE BRK

Ends each message w ith two consecutive ASCII ETXs (03-) 6)
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FLOWCHARTS AS DOCUMENTATION
We have already described the use of flowcharts as a design tool 
in Chapter 13. Flowcharts are also useful in documentation, partic­
ularly if:

• They are not so detailed as to be unreadable
• Their decision points are clearly explained and marked
• They include all branches
• They correspond to the actual program listings

Flowcharts are helpful if they give you an overall picture of the program. They are not 
helpful if they are just as d ifficu lt to read as an ordinary listing.

STRUCTURED PROGRAMS AS DOCUMENTATION
A structured program can serve as documentation for an assembly language program 
if:

• You describe the purpose of each section in the comments
• You make it clear which statements are included in each conditional or loop structure 

by using indentation and ending markers
• You make the total structure as simple as possible
• You use a consistent, well-defined language

The structured program can help you to check the logic or improve it. Furthermore, 
since the structured program is machine-independent, it can also aid you in implement­
ing the same task on another computer.

HINTS FOR 
USING
FLOWCHARTS
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A memory map is simply a list of all the memory assignments in a program. The 
map allows you to determine the amount of memory needed, the locations of data 
or subroutines, and the parts of memory not allocated. The map is a handy reference 
for finding storage locations and entry points and for dividing memory between 
different routines or programmers. The map w ill also give you easy access to data and 
subroutines if you need them in later extensions or in maintenance. Sometimes a 
graphical map is more helpful than a listing.

A typical map would be:

MEMORY MAPS

Program Memory

Address Routine Purpose

E000-E1FF INTRPT Interrupt Service Routine for Keyboard
E200-E240 BRKPT Service Routine for Break Instruction
E241-E250 DELAY Delay Program
E251-E270 DSPLY Display Control Program
E271-E3F9 MAIN Main Program
E3FA-E3FF Interrupt and Reset Vectors

Data Memory

0000 NKEYS Number of Keys
0001-0002 KPTR Keyboard Buffer Pointer
0003-0041 KBFR Keyboard Buffer
0042-0051 DBFR Display Buffer
0051-006F TEMP Temporary Storage
0100-01 FF STACK RAM Stack

Remember that the 6502 RAM Stack is always on page 1 of memory.
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Parameter and definition lists at the start of the program and each subroutine 
make understanding and changing the program far simpler. The following rules can 
help:

PARAMETER AND DEFINITION LISTS

1) RULES FOR 
DEFINITION 
LISTS

4)

5)

Separate RAM locations, I/O units, parameters, defini­
tions, and memory system constants.

Arrange lists alphabetically when possible, with a descrip­
tion of each entry.

Qive each parameter that might change a name and include it in the lists. Such 
parameters may include tim ing constants, inputs or codes corresponding to partic­
ular keys or functions, control or masking patterns, starting or ending characters, 
thresholds, etc.

Make the memory system constants into a separate list. These constants will 
include Reset and interrupt service addresses, the starting address of the program, 
RAM areas. Stack areas, etc.

Give each port used by an I/O device a name, even though devices may share 
ports in the current system. The separation w ill make expansion or reconfiguration 
much simpler.

A typical list of definitions w ill be:

MEMORY SYSTEM CONSTANTS

INTRP
RAMST
RESET
STPTR

=$E200 
=$0 
=$E300 
=$01 FF

INTERRUPT ENTRY POINT 
START OF DATA STORAGE AREA 
RESET ADDRESS
TOP ADDRESS IN RAM STACK (ON PAGE 1)

I/O UNITS

DSPLY =$A000
KBDIN =$A001
KBDOT =$A000
TTYVIA =$A800

OUTPUT VIA FOR DISPLAYS 
INPUT VIA FOR KEYBOARD 
OUTPUT VIA FOR KEYBOARD 
TTY DATA PORT

RAM LOCATIONS

•=RAMST
NKEYS "=*+1 ;NUMBER OF KEYS
KPTR *= *+2 KEYBOARD BUFFER POINTER
KBFR *=*+$40 KEYBOARD INPUT BUFFER
DBFR *=*+$10 :DISPLAY DATA BUFFER
TEMP *=*+$14 TEMPORARY STORAGE

PARAMETERS

BOUNCE =2
GOKEY =10
MSCNT =$C7
OPEN =$0F
TPULS =  1

DEBOUNCING TIME IN MS 
IDENTIFICATION OF 'GO' KEY 
COUNT FOR 1 MS DELAY 
PATTERN FOR OPEN KEYS 
PULSE LENGTH FOR DISPLAYS IN MS
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DEFINITIONS

ALLHI =$FF ;ALL ONES PATTERN
STCON =$80 iPATTERN FOR START CONVERSION PULSE

Of course, the RAM entries w ill usually not be in alphabetical order, since the designer 
must order these so as to minimize the number of address changes required in the pro­
gram.
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LIBRARY ROUTINES
Standard documentation of subroutines w ill allow you to build up a library of 
useful programs. The idea is to make these programs easily accessible. A standard for­
mat w ill allow you or anyone else to see at a glance what the program does. The best 
procedure is to make up a standard form and use it consistently. Save these programs 
in a well-organized manner (for example, according to processor, language, and type of 
program), and you w ill soon have a useful set. But remember that, w ithou t organiza­
tion and proper documentation, using the library may be more d ifficu lt than rew rit­
ing the program from scratch. Debugging a system requires a precise understanding 
of all the effects of each subroutine.

Among the information that you w ill need in the standard form is:

• Purpose of the program
• Processor used
• Language used
• Parameters required and how they are passed to the subroutine
• Results produced and how they are passed to the main program
• Number of bytes of memory used
• Number of clock cycles required. This number may be an average or a typical figure, 

or it may vary widely. Actual execution time will, of course, depend on the processor 
clock rate and the memory cycle time

• Registers affected
• Flags affected
•A typical example
• Error handling 
•Special cases
• Documented program listing

If the program is complex, the standard library form should also include a general 
flowchart or a structured program. As we have mentioned before, a library program is 
most likely to be useful if it performs a single distinct function in a reasonably general 
manner.
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LIBRARY EXAMPLES 
Library Example 1: Sum of Data
Purpose: The program SUM8 computes the sum of a set of 8 -b it unsigned binary num­

bers.

Language: 6502 Assembler.

Initial Conditions: Address one less than the starting address of the set of numbers in 
memory locations 0040 and 0041, length of set in Index Register Y.

Final Conditions: Sum in Accumulator.

Requirements:

Memory - 9 bytes.
Time - 7 + 12n clock cycles, where n is the length of the set of- 

numbers. May be longer if page boundaries are crossed. 
A.Y
locations 0040 and 0041.

Registers 
RAM 

All flags affected.

Typical Case: (all data in hexadecimal) 
Start:
(0040 and 0041) =  004F 

Y =  03
(0050) =  27
(0051) =  3E
(0052) =  26

End:
A = 8B

Error Handling: Program ignores all carries. Carry bit reflects only the last operation.
Initial contents of Index register Y must be 1 or more. Decimal Mode 
flag should be cleared.

Listing:

SUM OF 8-BIT DATA

SUM8 LDA # 0 :SUM =ZERO
ADD8 CLC ;CLEAR CARRY EACH TIME

ADC ($40),Y :SUM = SUM +  DATA ENTRY
DEY
BNE ADD8
RTS
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Library Example 2: Decimal-to-Seven Segment Conversion 
Purpose: The program SEVEN converts a decimal number to a seven-segment display 

code.

Language: 6502 Assembler.

Initia l Conditions: Data in Index Register X.

Final conditions: Seven-segment code in Accumulator.

Requirements:

Memory - 19 bytes, including the seven-segment code table (10
entries).

Time - 16 clock cycles if the data is valid. 13 if it is not.
May be longer if page boundaries are crossed. 

Registers - A. X 
All flags affected.

Input data in Index Register X is unchanged.

Typical Case: (data in hexadecimal)

Start:
X = 05

End:
A =  6D

Error Handling: Program returns zero in the Accumulator if the data is not a decimal 
digit.

Listing:

;DECIMAL TO SEVEN-SEGMENT CONVERSION

SEVEN LDA # 0 ;GET ERROR CODE TO BLANK DISPLAY
CPX # 10 ;IS DATA A DECIMAL DIGIT?
BCS DONE ;NO. KEEP ERROR CODE
LDA SSEG.X ; YES, GET SEVEN-SEGMENT CODE FROM 

; TABLE
DONE RTS
SSEG . BYTE $3F,$06,$5B,$4F,$66

. BYTE $6D,$7D,$07,$7F,$6F
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Library Example 3: Decimal Sum
Purpose: The program DECSUM adds two multi-word decimal numbers.

Language: 6502 Assembler.

Initial Conditions: Address of MSBs of one number in memory locations 0040 and 
0041, address of MSBs of other number in memory locations 0042 
and 0043. Length of numbers (in bytes) in Index Register Y. Num­
bers arranged starting w ith most significant digits.

Final Conditions: Sum replaces number w ith  starting address in memory locations 
0040 and 0041.

Requirements:
Memory - 14 bytes.

Time - 11 +  22n clock cycles, where n is the number of
bytes. May be longer if page boundaries are crossed.

Registers - A, Y
RAM - memory locations 0040 through 0043.

All flags affected - Carry shows if sum produced a carry. Decimal Mode
flag is cleared.

Typical Case: (all data in hexadecimal)
Start:
(0040 and 0041) = 0060
(0042 and 0043) = 0050

(Y) = 02

(0060) = 55
(0061) = 34

(0050) = 15
(0051) = 88

End:
(0060) = 71
(0061) = 22
Carry = 0

Error Handling: Program does not check the validity of decimal inputs. The contents of 
Index Register Y must be 1 or more.

Listing:

DECSUM

DECADD

DECIMAL (BCD) ADDITION

SED :MAKE ALL ARITHMETIC DECIMAL
CLC :CLEAR CARRY TO START
DEY
LDA ($40),Y ;GET 2 DECIMAL DIGITS FROM STRING 1
ADC ($42).Y ;ADD PAIR OF DIGITS FROM STRING 2
STA ($40). Y :STORE RESULT IN STRING 1
TYA
BNE DECADD
CLD ;RETURN TO BINARY ARITHEMETIC MODE
RTS
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TOTAL DOCUMENTATION
Complete documentation of microprocessor software w ill in­
clude all or most of the elements that we have mentioned. So. 
the total documentation package may involve:

• General flowcharts
• A w ritten  description of the program
• A lis t of all parameters and definitions
• A memory map
• A documented listing of the program
• A description of the test plan and test results 

The documentation may also include:
• Programmers' flowcharts
• Data flowcharts
• Structured programs

The documentation procedures outlined above are the minimal acceptable set of 
documents for non-production software. Production software demands even 
greater documentation efforts. The following documents should also be produced:

• Program Logic Manual
• User's Guide
• Maintenance Manual

The program logic manual expands on the w ritten  explanation produced w ith  the 
software. It should be written for a technically competent individual who may not 
possess the detailed knowledge assumed in the written explanation in the software. 
The program logic manual should explain the system's design goals, the algorithms 
used, and what tradeoffs were necessary.

It should then explain in great detail what data structures were employed and how they 
are manipulated. It should provide a step-by-step guide to the operations of the pro­
gram. Finally, it should contain any special tables or graphs that help explain the pro­
gram. Code conversion charts, state diagrams, translation matrices, and flowcharts 
should be included.

The User's guide is probably the most important and most overlooked piece of 
documentation. No matter how well a system is designed, it is useless if no one 
can take advantage of its features. The User's guide should introduce the system to 
all users, sophisticated and unsophisticated. It should then provide detailed explana­
tions of system features and their use. Frequent examples w ill help to clarify the points 
in the text. Step-by-step directions should be provided (and testedl). Programmers with 
detailed knowledge of a system often take shortcuts that the general reader cannot 
follow. Further discussion of the w riting of User's guides is beyond the scope of this 
book. However, remember that you can never spend too much effort in preparing a 
User's guide, since it w ill be the most frequently referenced system document.

The maintenance manual is designed for the programmer who has to modify the 
system. It should outline step-by-step procedures for those reconfigurations designed 
into the system. In addition, it should describe any provisions built into the program for 
future expansion.

Documentation should not be taken lightly or postponed until the end of the soft­
ware development. Proper documentation, combined w ith  proper programming 
practices, is not only an important part of the final product but can also make 
development simpler, faster, and more productive. The designer should make con­
sistent and thorough documentation part of every stage of software development.

DOCUMENTATION
PACKAGE
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REDESIGN
Sometimes the designer may have to squeeze the last microsecond of speed or 
the last byte of extra memory out of a program. As larger single-chip memories have 
become available, the memory problem has become less serious. The time problem, of 
course, is serious only if the application is time-critical; in many applications the 
microprocessor spends most of its time waiting for external devices, and program speed 
is not a major factor.

Squeezing the last b it of performance out of a program is 
seldom as important as some writers would have you believe.
In the firs t place, the practice is expensive for the following 
reasons:

1) It requires extra programmer time, which is often the single largest cost in software 
development.

2) It sacrifices structure and simplicity w ith a resulting increase in debugging and 
testing time.

3) The programs require extra documentation.
4) The resulting programs w ill be d ifficu lt to extend, maintain, or re-use.

In the second place, the lower per-unit cost and higher performance may not really 
be important. W ill the lower cost and higher performance really sell more units? Or 
would you do better w ith  more user-oriented features? The only applications that 
would seem to justify the extra effort and time are very high-volume, low-cost 
and low-performance applications where the cost of an extra memory chip w ill far 
outweigh the cost of the extra software development. For other applications, you 
w ill find that you are playing an expensive game for no reason.

However, if you must redesign a program, the following 
hints w ill help. First, determine how much more perfor­
mance or how much less memory usage is necessary. If 
the required improvement is 25% or less, you may be 
able to achieve it by reorganizing the program. If it  is more than 25%, you have 
made a basic design error; you w ill need to consider drastic changes in hardware 
or software. We w ill deal first w ith  reorganization and later w ith  drastic changes.

Note particularly that saving memory can be critical if it allows a program to fit into the 
limited amount of ROM and RAM available in a simple one-chip or two-chip microcom­
puter. The hardware cost for small systems can thus be substantially reduced, if their
requirements can be limited to the memory size and I/O limitations of that particular
one-chip or two-chip system.

MAJOR OR 
MINOR
REORGANIZATION

COST OF 
REDESIGN
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REORGANIZING TO USE LESS MEMORY
The following procedures w ill reduce memory usage for 6502 
assembly language programs:

1) Replace repetitious in-line code w ith  subroutines. Be
sure, however, that the Call and Return instructions do not offset most of the gain. 
Note that this replacement usually results in slower programs because of the time 
spent in transferring control back and forth.

2) Place the most frequently used data on page zero and access it w ith  one- 
byte addresses. You may even want to place a few I/O addresses there.

3) Use the Stack when possible. The Stack Pointer is automatically updated after 
each use so that no explicit updating instructions are necessary. Remember, 
however, that the 6502 Stack can never be longer than one page.

4) Eliminate Jump instructions. Try to reorganize the program instead.

5) Take advantage of addresses that you can manipulate as 8-bit quantities.
These include page zero and addresses that are multiples of 1001 6- For example, 
you m ight try to place all ROM tables in one 1001 6-byte section of memory, and 
all RAM variables into another lOOig-byte section.

6) Organize data and tables so that you can address them w ithout worrying
about address calculation carries or w ithout any actual indexing. This w ill
again allow you to manipulate 16-bit addresses as 8-b it quantities.

7) Use the Bit Test or Shift instructions to operate on b it positions at either end 
of a word.

8) Use leftover results from previous sections of the program.

9) Take advantage of such instructions as ASL, DEC, INC, LSR, ROL, and ROR, 
which operate directly on memory locations w ithou t using registers.

10) Use INC or DEC to set or reset flag bits.

11) Use relative jumps rather than jumps w ith  direct addressing.

12) Use BRK, RTS, and RTI to perform jumps and reach subroutines, if they are 
not already being used. These instructions can act as one-byte CALL instructions 
if the required data and addresses are already in the Stack.

13) Watch for special short forms of instructions such as the Accumulator shifts 
(ASL A, LSR A, ROL A, and ROR A) and BIT.

14) Use algorithms rather than tables to calculate arithmetic or logical expressions 
and to perform code conversions. Note that this replacement may result in slower 
programs.

15) Reduce the size of mathematical tables by interpolating between entries. Here 
again, we are saving memory at the cost of execution time.

16) Take advantage of the CPX and CPY instructions to perform comparisons 
w ithou t involving the Accumulator.

Although some of the methods that reduce memory usage also 
save time, you can generally save an appreciable amount of 
time only by concentrating on frequently executed loops. Even 
completely elim inating an instruction that is executed only once 
can save at most a few microseconds. But a savings in a loop that is executed fre­
quently w ill be multiplied many times over.

SAVING
EXECUTION
TIME

SAVING
MEMORY

1 5 -1 9



So, if you must reduce execution time, proceed as follows:

1) Determine how frequently each program loop is executed. You can do this by 
hand or by using the software simulator or another testing method.

2) Examine the loops in the order determined by their frequency of execution,
starting w ith the most frequent. Continue through the list until you achieve the re­
quired reduction.

3) First, see if there are any operations that can be moved outside the loop, i.e.. 
repetitive calculations, data that can be stored in a register or on the Stack, data or 
addresses that can be stored on page zero, special cases or errors that can be 
handled elsewhere, etc. Note that this w ill require extra initialization and memory 
but w ill save time.

4) Try to eliminate Jump statements. These are very time-consuming.

5) Replace subroutines w ith  in-line code. This w ill save at least a Call and a Return
instruction.

6) Use page zero for temporary data storage.

7) Use any of the hints mentioned in saving memory that also decrease execu­
tion time. These include the use of 8-bit addresses, BRK, RTI, special short forms 
of instructions, etc.

8) Do not even look at instructions that are executed only once. Any changes 
that you make in such instructions only invite errors for no appreciable gain.

9) Avoid indexed and indirect addressing whenever possible because they take
extra time.

10) Use tables rather than algorithms; make the tables handle as much of the tasks
as possible even if many entries must be repeated.
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MAJOR REORGANIZATIONS
If you need more than a 25% increase in speed or decrease in memory usage, do 
not try reorganizing the code. Your chances of getting that much of an improve­
ment are small unless you call in an outside expert. You are generally better off 
making a major change.

The most obvious change is a better algorithm. Particularly if 
you are doing sorts, searches, or mathematical calculations, you 
may be able to find a faster or shorter method in the literature.
Libraries of algorithms are available in some journals and from professional groups. See, 
for example, the references at the end of this chapter.

More hardware can replace some of the software. Counters, shift registers, 
arithmetic units, hardware multipliers, and other fast add-ons can save both time and 
memory. Calculators, UARTs, keyboards, encoders, and other slower add-ons may save 
memory even though they operate slowly. Compatible parallel and septal interfaces, and 
other devices specially designed for use w ith the 6502 or 6800. may save time by tak­
ing some of the burden off the CPU.

Other changes may help as well:

1) A CPU w ith  a longer word w ill be faster if the data is eng 
enough. Such a CPU w ill use less total memory 16-b’t pro­
cessors, for example, use memory more efficiently than 8-bit 
processors, since more of their instructions are one word long.

2) Versions of the CPU may exist that operate at higher clock rates. But remem­
ber that you w ill need faster memory and I/O ports, and you w ill have to adjust any 
delay loops.

3) Two CPUs may be able to do the job in parallel or separately if you can divide 
the job and solve the communications problem.

4) A specially microprogrammed processor may be able to execute the same pro­
gram much faster. The cost, however, w ill be much higher even if you use an off- 
the-shelf emulation.

5) You can make tradeoffs between time and memory. Lookup tables and function 
ROMs w ill be faster than algorithms, but w ill occupy more memory.

This kind of problem, in which a large improvement is neces­
sary, usually results from lack of adequate planning in the 
definition and design stages. In the problem definition stage 
you should determine which processor and methods w ill be 
adequate to handle the problem. If you misjudge, the cost later w ill be high. A 
cheap solution may result in an unwarranted expenditure of expensive develop­
ment time. Do not try to just get by; the best solution is usually to do the proper 
design and chalk a failure up to experience. If you have followed such methods as 
flowcharting, modular programming, structured programming, top-down design, 
and proper documentation, you w ill be able to salvage a lot of your effort even if 
you have to make a major change.

DECIDING 
ON A MAJOR 
CHANGE

OTHER
MAJOR
CHANGES

BETTER
ALGORITHMS
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Chapter 16 
SAMPLE PROJECTS

PROJECT # 1 :  A Digital Stopwatch
Purpose: This project is a digital stopwatch. The operator enters 

two digits (minutes and tenths of minutes) from a 
calculator-like keyboard and then presses the GO key.
The system counts down the remaining time on two 
seven-segment LED displays (see Chapter 11 for a description of unencoded 
keyboards and LED displays).

Hardware: The project uses one input port and one output port (one 6522 Versatile In­
terface Adapter or VIA), two seven-segment displays, a 12-key keyboard, a 7404 in­
verter, and either a 7400 NAND gate or a 7408 AND gate, depending on the polarity of 
the seven-segment displays. The displays may require drivers, inverters, and resistors, 
depending on their polarity and configuration.

The hardware is organized as shown in Figure 16-1, Output lines 0, 1, and 2 are used to 
scan the keyboard. Input lines 0, 1 ,2 , and 3 are used to determine whether any keys 
have been pressed. Output lines 0, 1, 2, and 3 are used to send BCD digits to the seven- 
segment decoder/drivers. Output line 4 is used to activate the LED displays (if line 4 is 
'1', the displays are lit). Output line 5 is used to select the left or right display, output 
line 5 is 'V  if the left display is being used, '0' if the right display is being used. Thus, 
the common line on the left display should be active if line 4 is ‘1’ and line 5 is V. while 
the common line on the right display should be active if line 4 is '1' and line 5 is 'O'. 
Output line 6 controls the right hand decimal point on the left display. It may be driven 
w ith an inverter or simply left on.

Keyboard Connections: The keyboard is a simple calculator keyboard available for 
50<( from a local source. It consists of 12 unencoded key-switches arranged in four rows 
of three columns each. Since the wiring of the keyboard does not coincide w ith the ob­
served rows and columns, the program uses a table to identify the keys. Tables 16-1 
and 16-2 contain the input and output connections for the keyboard. The decimal point 
key is present for operator convenience and for future expansion; the current program 
does not actually use-the key.

In an actual application, the keyboard would require pullup resistors to ensure that the 
inputs would actually be read as logic '1's when the keys were not being pressed. It 
would also require current-lim iting resistors or open-collector drivers on the output port 
to avoid damaging the VIA drivers in the case where two outputs were driving against 
each other. This could occur if two keys in the same row were pressed at the same time, 
thus connecting two different column outputs.

STOPWATCH
INPUT
PROCEDURE
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Figure 16-1. I/O Configuration for a Digital Stopwatch

Table 16-1. Input Connections for Stopwatch Keyboard

Input Bit Keys Connected

0 •3', '5'. '8'
1 ■2', '6', ’9'
2 ’O’, '1', 7 ’
3 4'. 'GO'

Table 16-2. Output Connections for Stopwatch Keyboard

Output Bit Keys Connected

0 'O', '2', '3', '4'
1 T ,  '8', '9', 'GO'
2 '5'. '6'. 7 \  '.'
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G en era l P rogram  F lo w c h a rt:

Display Connections: The displays are standard seven-segment displays w ith their 
own integral decoders. Clearly, undecoded seven-segment displays would be cheaper 
but would require some additional software (the seven-segment conversion routine 
shown in Chapter 7). Data is entered into the display as a single binary coded decimal 
digit; the digits are represented as shown in Figure 11 -22. The decimal point is a single 
LED that is turned on when the decimal point input is a logic '1'. You can find more in­
formation about displays in References 12 and 13 at the end of this chapter.
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The program is modular and uses several subroutines. The emphasis is on clarity and 
generality rather than efficiency: obviously, the program does not utilize the full 
capabilities of the 6502 processor. Each section of the listing w ill now be described in 
detail.

1) Introductory Comments
The introductory comments fu lly describe the program; these comments are a 
reference so that other users can easily apply, extend, and understand the pro­
gram. Standard formats, indentations, and spacings increase the readability of the 
program.

2) Variable Definitions
All variable definitions are placed at the start of the program so that they can easily 
be checked and changed. Each variable is placed in a list alphabetically w ith  other 
variables of the same type; comments describe the meaning of each variable. The 
categories are:
a) Memory system constants that may vary from system to system depending on 

the memory space allocated to different programs or types of memories
b) Temporary storage (RAM) used for variables
c) I/O (VIA) addresses
d) Definitions
The memory system constants are placed in the definitions so that the user may 
relocate the program, temporary storage, and memory stack w ithout making any 
other changes. The memory constants can be changed to accommodate other 
programs or to coincide w ith a particular system's allocation of ROM and RAM ad­
dresses.
Temporary storage is allocated by advancing the location counter as shown in 
Chapter 3. An — (Equate) pseudo-operation names the temporary storage 
locations. An ORG (origin) pseudo-operation places the temporary storage 
locations in a particular part of memory. No values are placed in these locations so 
that the program could eventually be placed in ROM or PROM and the system 
could be operated from power-on reset w ithout reloading.
Each memory address occupied by a VIA is named so that the addresses can 
easily be changed to handle varied configurations. The naming also serves to 
clearly distinguish control registers from data registers.
The definitions clarify the meaning of certain constants and allow parameters to 
be changed easily. Each definition is given in the form (binary, hex, octal, ASCII, or 
decimal) in which its meaning is the clearest. Parameters (such as debounce time) 
are placed here so that they can be varied w ith system needs.

3) Initialization
Memory locations FFFC and FFFD (the 6502 RESET locations) contain the starting 
address of the main program. The main program can thus be placed anywhere in 
memory and reached via a "RESET" signal.
The initialization consists of three steps:
a) Place a starting value in the Stack Pointer The Stack is used only to store 

subroutine return addresses. Note that the Stack Pointer is only 8 bits long 
since the 6502 Stack is always on page one of memory.

b) Configure the VIA.
c) Start the number of d ig it keys pressed at zero.

Program  D es c rip tio n :
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4) Look for Key Closure 
Flowchart:

Key closures are identified by grounding all the keyboard columns and then 
checking for grounded rows (i.e., column-to-row switch closures). Note that the 
program does not assume that the unused input bits are all high: nstead, the bits 
attached to the keyboard are isolated w ith a logical AND nstruction

5) Debounce Key
The program debounces the key closure in software by waiting for two millise­
conds. This is usually long enough for a clean contact to be made. Subroutine 
DELAY counts w ith Index Register X for one millisecond. The number of m illi­
seconds is in Index Register Y. DELAY would have to be adjusted if a slower clock 
or slower memories were being used. You could make the change simply by 
redefining the constant MSCNT.
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6) Identify Key Closure 

Flowchart:

( ) 
~ZET
KeyTable Index =  -1 
Keyboard Output =
f e 16 =  1 1 1 1 1 1 0 2

Key Table Index =  
Key Table Index +  
NROWS 

Shift Keyboard 
Output left 1 bit

Key Table Index =  
Key Table Index +  1 
Shift keyboard input

Key T a b le ^ ^ ^
■^^Index = KLA ST^^

^LY es T lY e s

Key ID =  Error code Key ID =  (KTAB +  
Key Table Index)

C
The particular key closed is identified by grounding single columns and observing 
whether a closure is found. Once a closure is found (so the key column is deter­
mined), the key row can be determined by shifting the input until a grounded bit 
is found.

The output patterns required to ground single keyboard columns are obtained by 
shifting the original pattern left one bit after each column is examined. The high­
est numbered key in the keyboard is used as a marker to indicate that all the col­
umns have been grounded w ithout a closure being found. When this value is 
reached, the error code FF is placed in the Accumulator to indicate to the main 
program that the closure could not be identified (i.e., the key closure ended or a 
hardware error occurred).

The key identifications are in table KTAB in memory. The KEY
keys in the first column (attached to the least significant out- TABLE
put bit) are followed by those in the second column, etc.
W ithin a column, the key in the row attached to the least significant input bit is 
first, etc. Thus, each time a column is scanned w ithout finding a closure, the num­
ber of keys in a column (NROWS) must be added to the key table index in order to 
move to the next column. The key table index is also incremented before each bit 
in the row inputs is examined; this process stops when a zero input is found. Note 
that the key table index is initialized to -1, since it is always incremented once in 
the search fo r the proper row.
If we cannot identify the key closure, we simply ignore it and look for another 
closure.
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7) Act on Key Identification
If the program has enough digits (two in this simple case), it looks only for the GO 
key and ignores all other keys. If it finds a d ig it key, it saves the value in the key ar­
ray, increments the number of d ig it keys pressed, and increments the key array 
pointer.
If the entry is not complete, the program must wait for the key closure to end so 
that the system w ill not read the same closure again. The user must wait between 
key closures (i.e., release one key before pressing another one). Note that the pro­
gram w ill identify double key closures as one key or the other, depending on 
which closure the identification routine finds first. An improved version of this 
program would display digits as they were entered and would allow the user to 
omit a leading or trailing zero, (i.e., key in "7", "GO” to get a count of seven- 
tenths of a minute).

8 ) Set Up Display Output
The digits are placed in memory locations w ith bit 4 set so that the output is sent 
to the displays. Bits 5 and 6 are set for the most significant d ig it to direct the out­
put to the left display and to light the decimal point LED

9) Pulse the LED Displays
Each display is turned on for two milliseconds. This process is repeated 1500 
times in order to get a total delay of 0.1 minutes, or 6 seconds The pulses are fre­
quent enough so that the LED displays appear to be lit contmuously
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10) Decrement Display Count 

Flowchart:

The value of the less significant dig it is reduced by one. If this affects bit 4 
(LEDON —  used to turn the displays on), the dig it has become negative. A borrow 
must then be obtained from the more significant digit. If the borrow from the more 
significant d ig it affects bit 4, the count has gone past zero and the countdown is 
finished. Otherwise, the program sets the value of the less significant d ig it to 9 
and continues.

Note that comments describe both sections of the program and individual statements. 
The comments explain what the program is doing, not what specific instruction codes 
do. Spacing and indentation have been used to improve readability.

1 6 -8



PROGRAM NAME: STOPWATCH 
DATE OF PROGRAM:4/28/79 
PROGRAMMER: LANCE A. LEVENTHAL 
PROGRAM REQUIREMENTS: DD(221) BYTES 
RAM REQUIREMENTS: 5 BYTES
I/O REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT (1 6522 VIA)

THIS PROGRAM IS A DIGITAL STOPWATCH THAT ACCEPTS INPUTS FROM A 
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A COUNTDOWN 
ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS 
OF MINUTES

KEYBOARD

A 12-KEY KEYBOARD IS ASSUMED
THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR 

SO THAT A COLUMN OF KEYS CAN BE GROUNDED 
FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT 

COMPLETED CIRCUITS CAN BE IDENTIFIED 
THE KEYBOARD IS DEBOUNCED BY WAITING FOR TWO MILLISECONDS 

AFTER A KEY CLOSURE IS RECOGNIZED 
A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OLD ONE 

TO END SINCE NO STROBE IS USED 
THE KEYBOARD COLUMNS ARE CONNECTED X )  BiTS 0 

TO 2 OF THE VIA B PORT 
THE KEYBOARD ROWS ARE CONNECTED TO BITS 0 

TO 3 OF THE VIA A PORT

DISPLAYS

TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
(7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)

THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 
OF THE VIA B PORT 

BIT 4 OF THE VIA B PORT IS USED TO ACTIVATE THE LED 
DISPLAYS (BIT 4 IS 1 TO SEND DATA TO LEDS)

BIT 5 OF THE VIA B PORT IS USED TO SELECT WHICH 
LED IS BEING USED (BIT 5 IS 1 IF THE LEADING DISPLAY 
IS BEING USED, 0 IF THE TRAILING DISPLAY IS BEING USED)

BIT 6 OF THE VIA B PORT IS USED TO LIGHT THE DECIMAL 
POINT LED ON THE LEADING DISPLAY (BIT 6 IS 1 IF 
THE DISPLAY IS TO BE LIT)

METHOD

STEP 1 - INITIALIZATION 
THE MEMORY STACK POINTER (USED FOR SUBROUTINE RETURN 
ADDRESSES) IS INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET 
TO ZERO

STEP 2 - LOOK FOR KEY CLOSURE 
ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS 
ARE EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND
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STEP 3 - DEBOUNCE KEY CLOSURE 
A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE 

STEP 4 - IDENTIFY KEY CLOSURES
THE KEY CLOSURE IS IDENTIFIED BY GROUNDING SINGLE KEYBOARD 

COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY 
CLOSURE. A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR 
ROW AND COLUMN NUMBER
IN THE KEY TABLE, THE DIGITS ARE IDENTIFIED BY THEIR VALUES,
THE DECIMAL POINT KEY IS NO. 10, THE "GO" KEY IS NO. 11 

STEP 5 - SAVE KEY CLOSURE 
DIGIT KEY CLOSURES ARE SAVED IN THE DIGIT KEY ARRAY UNTIL 
TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS, FURTHER DIGITS, 
AND CLOSURES OF THE "GO" KEY BEFORE TWO DIGITS HAVE BEEN 
IDENTIFIED ARE IGNORED
AFTER TWO DIGITS HAVE BEEN FOUND, THE "GO" KEY IS USED TO 
START THE COUNTDOWN PROCESS 

STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS 
A COUNTDOWN IS PERFORMED ON THE LEDS WITH THE LEADING DIGIT 
REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING 
DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES

;STOPWATCH VARIABLE DEFINITIONS 

;MEMORY SYSTEM CONSTANTS

BEGIN =$0400 ;STARTING ADDRESS FOR PROGRAM
STKBGN =$FF ;STARTING STACK ADDRESS ON PAGE 1
TEMP =0 ;STARTING ADDRESS FOR RAM STORAGE

;RAM TEMPORARY STORAGE

*=TEMP 
DCTR *= *+ 2  
KEYNO '= '+ 2

16-BIT COUNTER FOR TIMING LOOP 
DIGIT KEY ARRAY — HOLDS IDENTIFICA­

TIONS OF DIGIT KEYS THAT HA' 'E BEEN 
PRESSED 

NUMBER OF DIGIT KEYS PRESSEDNKEYS *=*+1

I/O UNITS AND VIA ADDRESSES

VIAORB =$A000 
VIAORA =$A001 
VIADDRB =$A002 
VIADDRA =$A003 
VIAPCR =$A00C

OUTPUT PORT FOR KEYBOARD AND DISPLAY 
INPUT PORT FOR KEYBOARD 
DATA DIRECTION REGISTER FOR PORT B 
DATA DIRECTION REGISTER FOR PORT A 
VIA PERIPHERAL CONTROL REGISTER

DEFINITIONS

DECPT =%01000000 
ECODE =$FF

CODE TO LIGHT DECIMAL POINT LED 
ERROR CODE IF ID ROUTINE DOES NOT FIND 

KEY
IDENTIFICATION NUMBER FOR "GO” KEY 
HIGHEST NUMBERED KEY

GOKEY =11 
KLAST =11
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LEDON =%00010000 ;CODE TO SEND OUTPUT TO LEDS
LEDSL =%00100000 ;CODE TO SELECT LEADING DISPLAY
MSCNT =$C7 ;COUNT NEEDED TO GIVE 1 MS DELAY TIME
MXKEY =2 ;MAXIMUM NUMBER OF DIGIT KEY

; CLOSURES USED 
NROWS =4 ;NUMBER OF ROWS IN KEYBOARD
OPEN =%00001111 ;INPUT FROM KEYBOARD IF NO KEY CLOSED
TPULS =2 ;NUMBER OF MS BETWEEN DIGIT DISPLAYS
TWAIT =2 ;NUMBER OF MS TO DEBOUNCE KEYS

*=$FFFC

RESET ADDRESS TO REACH STOPWATCH PROGRAM

.WORD BEGIN ;VECTOR TO START OF STOPWATCH
; PROGRAM

INITIALIZATION OF STOPWATCH PROGRAM

"=BEGIN
LDA # 0
STA VIADDRA ;MAKE PORT A LINES INPUTS
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
LDA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LDX #STKBGN INITIALIZE STACK POINTER
TXS

;INITIALIZE DIGIT KEY COUNTER

INITL LDA # 0  ;NUMBER OF DIGIT KEYS =  ZERO
STA NKEYS

;SCAN KEYBOARD LOOKING FOR KEY CLOSURE

SRCHK JSR SCANC ;WAIT FOR KEY CLOSURE

;WAIT FOR KEY TO BE DEBOUNCED

LDY #TW AIT ;GET DEBOUNCE TIME IN MS
JSR DELAY ;WAIT FOR KEY TO STOP BOUNCING

IDENTIFY WHICH KEY WAS PRESSED

JSR IDKEY IDENTIFY KEY CLOSURE
CMP #ECODE ;WAS KEY CLOSURE IDENTIFIED?
BEQ SRCHK ;NO. WAIT FOR NEXT CLOSURE
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START TIMING IF "GO’' KEY PRESSED AND ENOUGH DIGITS ENTERED

LDX NKEYS ;HAS MAXIMUM NUMBER OF DIGIT KEYS
BEEN ENTERED?

CPX #MXKEY
BNE ENTDG NO, GO ENTER DIGIT KEY
CMP #GOKEY YES, IS KEY "GO"?
BEQ STTIM YES, START TIMING
BNE WAITK NO, IGNORE KEY

ENTER DIGIT KEY INTO ARRAY, IGNORE DECIMAL POINT OR "GO" KEY

ENTDG CMP #10 IS KEY A DIGIT?
BCS WAITK NO, IGNORE IT
INC NKEYS YES, INCREMENT NUMBER OF DIGIT KEYS

ENTERED
STA KEYNO.X SAVE DIGIT KEY IN ARRAY

;WAIT FOR CURRENT KEY CLOSURE TO END

WAITK JSR SCANO WAIT FOR ALL KEYS TO BE RELEASED
BEQ SRCHK LOOK FOR NEXT CLOSURE (SCANO ALWAYS

SETS Z)

;PROCESS DIGITS FOR DISPLAY

STTIM LDA KEYNO GET LEADING DIGITS
ORA #DECPT TURN ON DECIMAL POINT FOR LEADING

DIGIT
ORA #LEDON SET OUTPUT TO LEDS
ORA #LEDSL SELECT LEADING DISPLAY
STA KEYNO
LDA KEYNO+1 GET TRAILING DIGIT
ORA #LEDON SET OUTPUT TO LEDS
STA KEYNO+1

;PULSE THE LED DISPLAYS

LEDLP LDA # 6 SET COUNTERS FOR 1500 PULSES
STA DCTR+1

TLOOP LDA #250
STA DCTR

DSPLY LDA KEYNO SEND LEADING DIGIT TO LED 1
STA VIAORB
LDY #TPULS DELAY BETWEEN DIGITS
JSR DELAY
LDA KEYNO+1 SEND TRAILING DIGIT TO LED 2
STA VIAORB
LDY #TPULS DELAY BETWEEN DIGITS
JSR DELAY
DEC DCTR
BNE DSPLY
DEC DCTR+1
BNE TLOOP
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DECREMENT COUNT ON LED DISPLAYS

LDA #LEDON ;GET BIT PATTERN TO LOOK FOR CARRIES
DEC KEYNO+1 ;COUNT DOWN TRAILING DIGIT
BIT KEYNO+1 ;IS TRAILING DIGIT PAST ZERO?
BNE LEDLP ;NO, DISPLAY NEW TIME
DEC KEYNO ;YES. COUNT DOWN LEADING DIGIT
BIT KEYNO ;IS LEADING DIGIT PAST ZERO?
BEQ INITL ;YES. WAIT FOR NEXT TIMING TASK
LDA # 9  ;NO. MAKE TRAILING DIGIT 9
ORA #LEDON ;SET OUTPUT TO LEDS
STA KEYNO+1
BNE LEDLP :RETURN TO PULSING DISPLAYS

SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE 
; ALL KEYBOARD INPUTS ARE GROUNDED

SCANC LDA # 0  ;GROUND ALL KEYBOARD COLUMNS
STA VIAORB

KEYCLS LDA VIAORA ;GET KEYBOARD ROW DATA
AND #OPEN ;IGNORE UNUSED INPUTS
CMP #OPEN ;ARE ANY INPUTS GROUNDED?
BEQ KEYCLS ;NO. WAIT
RTS

SUBROUTINE DELAY WAITS FOR THE NUMBER OF MS SPECIFIED 
; IN INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X

DELAY LDX #MSCNT ;COUNT FOR 1 MS DELAY
WTLP DEX ;WAIT 1 MS

BNE WTLP
DEY ;COUNT MS
BNE DELAY
RTS

SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NUMBER OF 
; THE KEY CLOSURE AND IDENTIFIES THE KEY FROM A TABLE

IDKEY LDA #% 11111110 ;GET PATTERN TO GROUND COLUMN ZERO
STA VIAORB ;GROUND COLUMN ZERO
LDX #$FF ;KEY TABLE INDEX =  -1

FCOL LDA VIAORA ;FETCH KEYBOARD ROW DATA
AND #OPEN :IGNORE UNUSED INPUTS
CMP #OPEN ;ARE ANY INPUTS GROUNDED?
BNE FROW ;YES. DETERMINE WHICH ONE
ROL VIAORB ;NO. GROUND NEXT COLUMN
TXA ;MOVE KEY TABLE INDEX TO NEXT COLUMN
ADC #NROWS-1
TAX
CMP #KLAST ;HAVE ALL COLUMNS BEEN EXAMINED?
BNE FCOL ;NO, EXAMINE NEXT COLUMN
LDA #ECODE ;YES. RETURN WITH ERROR CODE IN A
RTS
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DETERMINE ROW NUMBER OF CLOSURE

FROW INX
LSR A

BCS FROW

IDENTIFY KEY FROM TABLE

LDA KTAB.X
RTS

INCREMENT KEY TABLE INDEX 
SHIFT INPUTS LOOKING FOR GROUNDED 

ROW

;GET KEY NUMBER FROM TABLE

KEYBOARD TABLE

COLUMNS ARE PRIMARY INDEX. ROWS SECONDARY INDEX.
THE KEYS IN THE COLUMN ATTACHED TO OUTPUT BIT 0 ARE FOLLOWED 

BY THOSE IN THE COLUMN ATTACHED TO OUTPUT BIT 1 ETC. WITHIN 
A COLUMN. THE KEY ATTACHED TO INPUT BIT 0 IS FIRST. FOLLOWED 
BY THE ONE ATTACHED TO INPUT BIT 1. ETC.

THE DIGIT KEYS ARE 0 TO 9. THE DECIMAL POINT IS 10, AND "GO" IS 11

KTAB BYTE 3,2,0,4,8,9,1,11,5,6,7,10

SUBROUTINE SCANO WAITS FOR ALL KEYS TO BE RELEASED SO THAT THE 
NEXT CLOSURE CAN BE FOUND

LDA # 0 ;GROUND ALL KEYBOARD COLUMNS
STA VIAORB
LDA VIAORA ;GET KEYBOARD ROW INPUTS
AND #OPEN ;IGNORE UNUSED INPUTS
CMP #OPEN ;ARE ANY KEYS BEING PRESSED?
BNE KEYOPN ;YES. WAIT UNTIL ALL RELEASED
RTS
.END
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PROJECT # 2 :  A Digital Thermometer
Purpose: This project is a digital thermometer which shows the temperature in 

degrees Celsius on two seven-segment displays.

Hardware: The project uses one input port and one output port, two seven-segment 
displays, a 74LS04 inverter, a 74LS00 NAND gate or a 74LS08 AND gate depending on 
the polarity of the displays, an Analog Devices AD7570J 8-bit monolithic A/D con­
verter, an LM311 comparator, and various peripheral drivers, resistors, and capacitors 
as required by the displays and the converter. (See Chapter 11 and Reference 1 at the 
end of this chapter for discussions of A/D  converters.)

Figure 16-2 shows the organization of the hardware. Control line CB2 from the VIA is 
used to send a Start Conversion signal to the A/D converter. Input lines 0 through 7 are 
attached directly to the eight digital data lines from the converter. Output lines 0 
through 3 are used to send BCD digits to the seven-segment decoder/drivers. Output 
line 4 activates the displays and output line 5 selects the left or right display (line 5 is '1 ’ 
for the left d isplay). Control line CA1 is used to determine when the conversion is com­
plete (BUSY becomes one).

The analog part of the hardware is shown in Figure 16-3. The 
thermistor simply provides a resistance that depends on tem­
perature. Figure 16-4 is a plot of the resistance and Figure 16-5 
shows the range of current values over which the resistance is 
constant. The conversion to degrees Celsius in the program is performed w ith a calibra­
tion table. The two potentiometers can be adjusted to scale the data properly. A clock 
for the A/D converter is generated from an RC network, as shown in Figure 16-3. The 
values are R7=33 k f l  and C1 =1000 pF, so that the clock frequency is about 75 kHz At 
this frequency, the maximum conversion time for eight bits is about 50 microseconds. 
When BUSY goes high, it sets bit 1 of the VIA Interrupt Flag register. The 8-b it version 
of the converter requires the following special connections. The eight data ' nes are 
DB2 through DB9 (DB1 is always high during conversion and DBO low The Short Cycle 
8-bit input (pin 26-SC8) is tied low so that only an 8 -b 't conversion is performed. In the 
present case, High Byte Enable (pin 20-HBEN) and Low Byte Enable (pin 21-LBEN) were 
both tied high so that the data outputs were always enabled

The A/D converter uses the successive approximation method to perform a conversion. 
The ADCs data register is connected to the inputs of an internal D/A converter whose 
output (available at OUT1 and OUT2) is compared to the analog input. When a conver­
sion is initiated, the ADC logic sets the data register to all zeroes w ith the exception of 
the most significant b it (MSB), which is set to one. If the analog input is less than the 
resulting internally generated analog value, then the MSB is reset to zero; otherwise it 
remains a one. The next most significant bit is then set to one and the process repeated 
until all eight bits have been tested in this way. After the eighth cycle, the value in the 
register is the value which most closely corresponds to the analog input.

This method is fast, but it requires that the input be stable during the conversion 
process. Rapidly changing or noisy inputs would require additional signal conditioning. 
The references at the end of this chapter describe more accurate methods for handling 
analog I/O.

THERMOMETER
ANALOG
HARDWARE
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Figure 16-2. I/O Configuration for a Digital Thermometer
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R6
50 k n  

OFFSET ADJ 
-15  V O  ' - W r  — "O  + 15 V

Note: If positive Vpgp is used, the ANALOG INPUT range is 0  to  -Vpgp, and the
COMPARATOR'S (-) input should be connected to  OUT1 (pin 4) o f the A D 7570

R j  is the therm istor The analog input from  the voltage d iv ider is:

Rb  x 15 Volt 

R8 +  RT

Since Rp =  68  k f l ,  the  input is: 1 02  M f l
r  K  ________________  V/ftW

R j has a m inim um  value o f 34  k H  (T =  50°C, see Figure 16-4) so fu ll scale is 10 Volt.

Figure 16-3. Digital Thermometer Analog Hardware 

16-17



"CX.

T (°C) R (Ohm)

0 365 000
25 100 000
50 34 000

100 6 000

J
25

Temperature (°C)

Figure 16-4, Thermistor Characteristics 
(Fenwal GA51J1 Bead)

I (milliampere)

Figure 16-5. Typical E-l Curve for Thermistor (25°C)
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G e n e ra l P rogram  F lo w c h a rt:
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1) Initialization
Memory locations FFFC and FFFD (the 6502 Reset locations) contain the starting 
address of the program. The initialization configures the VIA and places a value in 
the Stack Pointer. The Stack is used only to store subroutine return addresses. 
Remember that Chapter 11 contains numerous examples of how to configure VIAs.

2) Send Start Conversion Signal to A'D Converter
The CPU pulses the Start Conversion line by first placing a one and then a zero on 
output line CB2. Each input from the converter requires a starting pulse.

3) W ait for Conversion to be Completed.
A ’O’ to '11 transition on the BUSY line sets bit 1 of the VIA Interrupt Flag Register. 
Actually, the converter only requires a maximum of 50 microseconds for an 8-bit 
conversion, so a short delay would also be adequate. Note that reading the 
converter data clears bit 1 of the VIA Interrupt Flag Register so that the next 
operation can proceed correctly.

4) Read Data from A'D Converter
Reading the data involves a single input operation. We should note that the Analog 
Devices AD7570J has an enable input and tristate outputs, so that it could be tied 
directly to the Microprocessor Data Bus. The 7570 converter is, of course, 
underutilized in this particular application, particularly since we are interfacing it to 
the 6502 processor through a VIA. A simpler 8-bit converter such as the National 
5357 described in Chapter 11 would do the job at lower cost.

P rogram  D es c rip tio n :
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5) Convert Data to Degrees Celsius 

Flowchart:

Start

T

The conversion uses a table that contains the largest in­
put value corresponding to a given temperature. The pro­
gram searches the table, ooking for a value greater than 
or equal to the value received from the converter. The first 
such value it finds corresponds to the required temperature; that is, if the tenth 
entry is the first value larger than or equal to the data, the temperature is ten 
degrees. This search method is inefficient but adequate for the present applica­
tion.

The conversion subroutine returns a binary value which is then converted to BCD 
by repeatedly subtracting ten and counting operations until the remainder 
becomes negative The final ten is then added back to produce the least signifi­
cant d ig it

The table could be obtained by calibration or by a mathematical approximation. 
The calibration method is simple, since the thermometer must be calibrated any­
way. The table occupies one memory location for each temperature value to be 
displayed.1 Reference 2 describes a method that uses far less memory. To cali­
brate the thermometer, you must first adjust the potentiometers to produce the 
proper overall range and then determine the converter output values correspond­
ing to specific temperatures.

USING A
CALIBRATION
TABLE
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6) Prepare Data for Display 

Flowchart:

For the least significant digit, we simply set the bit that turns 
on the displays. The result is saved in page zero address 
LSTEMP.

The only difference for the most significant d ig it is that a lead­
ing zero is blanked (i.e., the displays show "blank 7" rather than "07 " for 7°C). This 
simply involves not setting the bit that turns on the displays if the dig it is zero. The 
result is saved in page zero address MSTEMP.

BLANKING 
A LEADING 
ZERO
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7) Display Temperature for Six Seconds 
Flowchart:

Each display is pulsed often enough so that it appears to be lit continuously. If 
TPULS were made longer (say 50 ms), the displays would appear to flash on and
off.
The program uses a 16-bit counter in two page-zero memory locations to count the 
time between temperature samples.
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PROGRAM NAME: THERMOMETER 
DATE OF PROGRAM: 5 /1 /79 
PROGRAMMER: LANCE A. LEVENTHAL 
PROGRAM MEMORY REQUIREMENTS: 173 BYTES 
RAM REQUIREMENTS: 5 BYTES
I/O REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT (1 6522 VIA)

THIS PROGRAM IS A DIGITAL THERMOMETER THAT ACCEPTS INPUTS FROM 
AN A/D CONVERTER ATTACHED TO A THERMISTOR. CONVERTS THE INPUT 
TO DEGREES CELSIUS. AND DISPLAYS THE RESULTS ON TWO 
SEVEN-SEGMENT LED DISPLAYS

A/D CONVERTER

THE A/D CONVERTER IS AN ANALOG DEVICES 7570J MONOLITHIC CONVERTER 
WHICH PRODUCES AN 8-BIT OUTPUT 

THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START 
CONVERSION LINE (CONTROL LINE 2 ON VIA PORT B)

THE CONVERSION IS COMPLETED IN 50 MICROSECONDS AND THE 
DIGITAL DATA IS LATCHED

DISPLAYS

TWO SEVEN-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
(7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)

THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 OF 
VIA PORT B

BIT 4 OF VIA PORT B IS USED TO ACTIVATE THE LED DISPLAYS 
(BIT 4 IS 1 TO SEND DATA TO LEDS)

BIT 5 OF VIA PORT B IS USED TO SELECT WHICH LED IS BEING 
USED (BIT 5 IS 1 IF THE LEADING DISPLAY IS BEING USED,
0 IF THE TRAILING DISPLAY IS BEING USED)

METHOD

STEP 1 - INITIALIZATION 
THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS 
INITIALIZED 

STEP 2 - PULSE START CONVERSION LINE 
THE A/D CONVERTER'S START CONVERSION LINE (CONTROL LINE 2 OF VIA 
PORT B) IS PULSED 

STEP 3 - WAIT FOR A/D OUTPUT TO SETTLE 
THE BUSY LINE FROM THE CONVERTER IS ATTACHED TO CONTROL 
LINE 1 ON PORT A OF THE VIA. WHEN BUSY GOES HIGH TO SIGNAL 
CONVERSION COMPLETED, IT SETS BIT 1 OF THE VIA INTERRUPT 
FLAG REGISTER 

STEP 4 - READ A/D  VALUE, CONVERT TO DEGREES CELSIUS 
A TABLE IS USED FOR CONVERSION, IT CONTAINS THE MAXIMUM 
INPUT VALUE FOR EACH TEMPERATURE READING 

STEP 5 - DISPLAY TEMPERATURE ON LEDS 
THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS 
BEFORE ANOTHER CONVERSION IS PERFORMED
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THERMOMETER VARIABLE DEFINITIONS

MEMORY SYSTEM CONSTANTS

BEGIN =$0400 
STKBGN =$FF 
TEMP =0

I/O UNITS AND VIA ADDRESSES

VIAORB =$A000 
VIAORA =$A001 
VIADDRB =$A002 
VIADDRA =$A003 
VIAPCR =$AOOC 
VIAIFR =$A00D

RAM TEMPORARY STORAGE

•=TEMP 
DCTRC *= *+ 2  
INPUT •=*+1

LSTEMP ‘ =*+1

MSTEMP •=*+1

STARTING ADDRESS FOR PROGRAM 
STARTING STACK ADDRESS ON PAGE 1 
STARTING ADDRESS FOR RAM STORAGE

rOUTPUT p o = " D'SPuAYS 
SiPUT f>0«'r RW  CONVERTER 
DAr A DIRECTION REGISTER FOR PORT B 

.DATA DIRECTION REGISTER FOR PORT A 
:VIA PERIPHERAL CONTROL REGISTER 
;VIA INTERRUPT FLAG REGISTER

DISPLAY PULSE COUNTER 
TEMPORARY STORAGE FOR CONVERTER 

INPUT
LEAST SIGNIFICANT DIGIT OF 

TEMPERATURE 
MOST SIGNIFICANT DIGIT OF 

TEMPERATURE

DEFINITIONS

BUSYF =%00000010

LEDON =% 00010000 
LEDSL =%00100000 
MSCNT =$C7 
TSAMPH =6

TSAMPL =250

TPULS =2

PATTERN FOR EXAMINING BUSY 
STATUS

CODE TO SEND OUTPUT TO LEDS 
CODE TO SELECT LEADING DISPLAY 
COUNT NEEDED TO GIVE 1 MS DELAY 
TSAMPH X TSAMPL IS THE NUMBER OF 
TIMES THE DISPLAYS ARE PULSED IN A 

TEMPERATURE SAMPLING PERIOD.
THE LENGTH OF A SAMPLING PERIOD 
IS THUS 2*TPULS*TSAMPH*TSAMPL 
MILLISECONDS THE FACTOFf OF 2'TPULS 
IS INTRODUCED BY THE FACT THAT 
EACH OF 2 DISPLAYS IS PULSED FOR 
TPULS MS 

DISPLAY PULSE LENGTH IN MS

•=$FFFC

RESET ADDRESS TO REACH THERMOMETER PROGRAM 

WORD BEGIN
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INITIALIZATION OF THERMOMETER PROGRAM

*=BEGIN
LDX #STKBGN INITIALIZE STACK POINTER
TXS
LDA # 0  ;MAKE PORT A LINES INPUTS
STA VIADDRA
LDA #$FF ;MAKE PORT B LINES OUTPUTS
STA VIADDRB
LDA #% 1 1000001 START CONVERSION LOW. BUSY

; ACTIVE LOW-TO-HIGH 
STA VIAPCR ;CONFIGURE VIA PERIPHERAL CONTROL
LDA #BUSYF ;CLEAR BUSY FLAG INITIALLY
STA VIAIFR

;PULSE START CONVERSION LINE

START LDA #% 1 1100001 ;SEND START CONVERSION HIGH
STA VIAPCR'
LDA #% 11000001 ;SEND START CONVERSION LOW
STA VIAPCR

:WAIT FOR BUSY TO GO HIGH AND READ DATA

LDA #BUSYF
WTBSY BIT VIAIFR ;HAS CONVERSION BEEN COMPLETED?

BEQ WTBSY ;NO, WAIT
LDA VIAORA ;YES. READ DATA FROM CONVERTER

;CONVERT DATA TO TEMPERATURE IN DECIMAL

JSR CONVR ;CONVERT DATA TO TEMPERATURE
; IN BINARY

JSR BINBCD ;CONVERT BINARY TO BCD

;CONFIGURE DIGITS FOR DISPLAY

ORA #LEDON ;SET OUTPUT TO LEDS (LSD IN A)
STA LSTEMP ;SAVE LEAST SIGNIFICANT DIGIT
TXA ;GET MOST SIGNIFICANT DIGIT
BEQ SVMSD ;LEAVE DISPLAY OFF IF MSD IS ZERO
ORA #LEDON ;SET OUTPUT TO LEDS
ORA #LEDSL ;SELECT LEADING DISPLAY

SVMSD STA MSTEMP SAVE MOST SIGNIFICANT DIGIT

iPULSE THE LED DISPLAYS

PULSE LDA #TSAMPH ; 16-BIT COUNTER FOR DISPLAY PULSES
STA DCTR+1

TLOOP LDA #TSAMPL
STA DCTR
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DSPLY LDA MSTEMP ;OUTPUT TO LEADING DISPLAY
STA VIAORB
LDY #TPULS ;DELAY DISPLAY PULSE LENGTH
JSR DELAY
LDA LSTEMP iOUTPUT TO TRAILING DISPLAY
STA VIAORB
LDY #TPULS :DELAY DISPLAY PULSE LENGTH
JSR DELAY
DEC DCTR
BNE DSPLY
DEC DCTR+1 :HAS COUNT REACHED ZERO?
BNE TLOOP ;NO. KEEP PULSING DISPLAYS
BEQ START ;YES. GO SAMPLE TEMPERATURE AGAIN

■SUBROUTINE DELAY WAITS FOR THE NUMBER OF MS SPECIFIED IN 
; INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X

DELAY LDX #MSCNT ;COUNT FOR 1 MS DELAY
WTLP DEX ;WAIT 1 MS

BNE WTLP
DEY
BNE DELAY ;COUNT MS
RTS

SUBROUTINE CONVR CONVERTS INPUT FROM A/D CONVERTER TO 
DEGREES CELSIUS BY USING A TABLE- INPUT DATA IS IN 
THE ACCUMULATOR AND THE RESULT IS A BINARY NUMBER IN 
THE ACCUMULATOR

REGISTERS USED: A.X 
MEMORY LOCATION USED: INPUT

CONVR STA INPUT SAVE INPUT READING
LDX #$FF START TABLE INDEX AT -1

CHVAL INX INCREMENT TABLE INDEX
LDA DEGTB.X GET ENTRY FROM TABLE
CMP INPUT IS A/D INPUT BELOW ENTRY?
BCC
TXA
RTS

CHVAL NO, KEEP LOOKING
YES, RETURN WITH T IN ACCUMULATOR

TABLE DEGTB WAS FOUND BY CALIBRATION.
DEGTB CONTAINS THE LARGEST INPUT VALUE WHICH CORRESPONDS 

TO A PARTICULAR TEMPERATURE READING (I.E.. THE FIRST ENTRY 
IS DECIMAL 58 SO AN INPUT VALUE OF 58 IS THE LARGEST 
VALUE GIVING A ZERO TEMPERATURE READING — VALUES 
BELOW ZERO ARE NOT ALLOWED

BYTE 58.61.63.66,69.71,74,77,80,84
BYTE 87,90,93,97,101,104,108
BYTE 112,116,120.124,128.132,136
BYTE 141.145.149.154.158.163,167
BYTE 172,177.181,186.191.195.200
BYTE 204,209,214.218,223,227,232
.BYTE 236.241.245.249.253,255
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SUBROUTINE BINBCD CONVERTS A BINARY NUMBER LESS THAN 100 INTO 
TWO BCD DIGITS. THE INPUT DATA IS IN THE ACCUMULATOR AND THE 
RESULT IS IN INDEX REGISTER X (MOST SIGNIFICANT DIGIT) AND THE 
ACCUMULATOR (LEAST SIGNIFICANT DIGIT)

REGISTERS USED: A.X

BINBCD LDX 
SEC

SUBTEN INX 
SBC 
BCS 
ADC
RTS
.END

#$FF

#10
SUBTEN
#10

TENS COUNT =  -1
SET CARRY INITIALLY
INCREMENT TENS COUNT
CAN TEN STILL BE SUBTRACTED?
YES. CONTINUE
NO. ADD BACK LAST TEN
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