VALPAR
INTERNATIONA

3801 E. 34 STREET
TUCSON, ARIZONA 85713
4

valFORTH

SOFTWARE SYSTEM
for ATARI®

valFORTH 1.1

* Atari is a trademark of Atari, Inc., a division of Warner Communications. © Copyright Valpar International 1982

¥ : Yy N .
;
- pe v :
‘ e Lo e -
vy Yy CLv L .

Y

(R

valFORTH

SOFTWARE SYSTEM

Stephen Maguire
Evan Rosen

(Atari interfaces based on work by Patrick Mullarky)

Software and Documentation
© Copyright 1982
Valpar International

Purchasers of this software and documentation package are
authorized only to make backup or archival copies of the
software, and only for personal use. Copying the accompanying
documentation is prohibited.

Copies of software for distribution may be made only as speci-
fied in the accompanying documentation.

valFORTH 1.1 USER'S MANUAL

Table of Contents

Page

I.. STROLLING THROUGH vaTFORTH 1.1
A brief Took at valFORTH 1.1

ERRORS, RECOVERIES, CRASHES . 1
FORMATTING AND COPYING DISKS 2
COLORS e
DEBUGGING, &
PRINTING 6
EDITING 6
GRAPHICS 09
SOUNDS R e 0]
THE GREAT SCREEN SIZE DEBATE D 10
SAVING YOUR FAVORITE SYSTEM(S) 1
DISTRIBUTING YOUR PROGRAMS 11

K. w4 TJWQ M0 QA O T
e e e e e e e e e e

IT. THE FORTH INTEREST GROUP LINE EDITOR
The command glossary for the standard fig-FORTH line editor

ITT. CREATING DISKS FOR PRODUCTION
a) RELOCATING THE BUFFERS TO SAVE 2K+

b) COMPILING AUTO BOOTING SOFTWARE .
c) DISTRIBUTING YOUR PROGRAMS

B

IV. valFORTH 1.1 SYSTEM EXTENSIONS

GRAPHIC SUBSYSTEM .

COLORS

SOUND GENERATION ..

TEXT OUTPUT ROUTINES . . .
DISK FORMATTING AND COPYING .
valFORTH DEBUGGER . . .
FLOATING POINT PACKAGE . .
OPERATING SYSTEM PACKAGE .

SKQ hHhMO QAO O QD
e e S M e e e
WO OTOT P W

—

V. valFORTH GLOSSARY
Descriptions of the entire valFORTH bootup dictionary

a) fig-FORTH GLOSSARY AND valFORTH EXTENSIONS 1
b) valFORTH MEMORY MAP 28

VI. valFORTH ADVANCED 6502 ASSEMBLER
A user's manual for the valFORTH assembler.

VII. valFORTH 1.1 SUPPLIED SOURCE LISTING

STROLLING THROUGH valFORTH 1.1

Welcome. For this excursion you'll need an ATARI 800 (or 400) with at least
24K, a disk drive, monitor, a printer, and valFORTH 1.1. You could even do

without the printer. Please get everything up and running, and boot
valFORTH.

(To boot the disk, turn the drive(s) on and the computer off. Insert the disk
in drive 1 and turn the computer on. The disk should now be booting, and the
monitor speaker should be going beep-beep-beep-beep as valFORTH loads.)

ERRORS, RECOVERIES, CRASHES

Before we get started, let's mention the inevitable: Most of the time when
you make an error you'll receive one of the fairly lucid fig-Forth error
messages. If you just get a number, this will probably refer to the Atari
error message list which you can find in the documentation that came with your
computer. Since the Atari is a rather complex beast, you may sometimes get
into a tangle that looks worse than it is. Keep your head. If you have party-
color trash on the screen, for instance, and yet you can still hear the
"peek-peek-peek" of the key when you hit return, you may have merely blown

the display 1ist without hurting your system. Try Shift-Clear followed by

0 GR. . Very often you're home again. If this doesn't work, try a warm start:
Hold down a CONSOLE button, say START, and while you've got it down, press
SYSTEM RESET and hold both for a moment until the "valFORTH" title comes up.
(If you were to push the SYSTEM RESET button alone, you'd get a cold start,
which takes you back to just the protected dictionary.) A warm start gets

you back to the "ok" prompt without forgetting your dictionary additions.

If warm start doesn't work, your system is being kept alive only by those
wires connected to it; it no longer has a 1ife of its own. The standard
procedure now is to push SYSTEM RESET alone a few times (cold start) in a
superstitious manner, and then reboot the system.

Look carefully at the code that blew the system last time. If you're really
having trouble debugging, sprinkle a bunch of WAIT's and/or .S's (Stack
Printouts) through the code, and go through again. The best thing about those
first few long debugging sessions in any computer language is that they teach
you the value of writing code carefully.

S W
== |
[N\=I0)
00 00 -mg%’% ”
M*."Q?IF’HONK THEN \& b @

= m\ L
/>§¥_if§>y/ R) ;;;%

I-1

FORMATTING AND COPYING DISKS

You may have noticed that your system came up in a green screen. In a little —_
while you'll be able to change it to anything you 1ike. We'll get to that in

a moment, but right now type 170 LIST (and then hit RETURN.) Behold the table

of contents. Our first priority should be to make a working disk by copying

the original.

Let's assume that you have a blank, unformatted disk on which to make your
copy. Notice the 1ine called FORMATTER on screen 170. At the right side of
this 1line 1is probably 92 LOAD, though the number may be different in later
releases. Type 92 LOAD (or whatever the number is) and wait until the machine
comes back with "ok". Now you're going to type FORMAT, but for safety's

sake why not remove the valFORTH disk and insert the blank disk? One never
knows if newly purchased software will give you warnings before taking action.
("Warnings" or "Prompts" make a system more friendly.) Ok, now type FORMAT.
For the drive number you probably want to hit "1", unless you've got more

than one drive and don't want to format on the lowest. In answer to the next
prompt, hit RETURN unless you've changed your mind. Now wait while the machine
does the job. If you get back "Format OK" you're in business. (If "Format
Error" comes back, suspect a bad blank disk or drive.) You might as well
format another disk at this time on which to store your programs.

Now to make the copy. Return the valFORTH disk to the drive and do 170 LIST
again. Find DISK COPIERS and do 72 LOAD, or whatever number is indicated.
When the "ok" prompt comes back, two different disk copying routines are
loaded: DISKCOPY1 for single drive systems and DISKCOPY2 for multiple
drive systems. Type whichever of these words is appropriate and follow the -
instructions. ("source" means the disk you want to copy. "dest." is the -
blank "destination" disk.) There are 720 sectors that have to be copied.
Since this can't be done in one pass, if you are using DISKCOPY1 you will
have to swap the disks back and forth until you're done. (The computer will
tel1 you when.) The less memory you have, the more passes; there is great
benefit in having 48K. If you have more than one drive, it still takes
several internal passes, but there is no swapping required. Either way, the
process takes several minutes with standard Atari disk drives.

I-2

Nice going. Now store the original disk in some safe place. Don't write
protect your copy yet. First we'll adjust the screen color to your taste.
Just to see if you really have a good copy, boot it. This can be done by
the usual on-off method, or by typing BOOT.

COLORS

Before playing with the colors, let's look at something else. Type VLIST,
and watch the words go by. These are all of the commands that are currently
in the "dictionary" in memory in your system. You can cause this listing, or
any other, to pause by hitting CTRL and 1 at the same time. This is a handy
feature of the Atari. The listing is restarted with the next CTRL 1.
Additionally, in valFORTH most Tistings may be aborted by pressing any of the
three yellow buttons START, SELECT, and OPTION. These three buttons together
will be referred to as the CONSOLE.

Do VLIST again, and abort it with a CONSOLE press after a few lines. At the
top of the 1ist you should see the word TASK. Remember that for a moment.
Do 170 LIST again. Look over the 1list and find COLOR COMMANDS, and LOAD as
appropriate. Now do VLIST again, and stop the 1list when it takes up about
half of the screen. Above TASK you now can see a number of new commands, or
"words" as they are commonly called in Forth. These were added to the
dictionary by the LOAD command. Here's what some of these words do:

Type BLUE 12 BOOTCOLOR, and you get a new display color. Try BLUE 2 BOOTCOLOR.
If you try this action with the number as 4, the letters will disappear, and
you'll have to type carefully to get them back. The number is the luminance
or "Tum" and is an even number in the range 0 to 14. The color-name is called
the "hue." The word "color" will be used to refer to a particular combination
of hue and Tum; hence PINK 6 is a color, PINK is a hue. There are 16 hues
available and you can read their names from the display, starting with LTORNG
("1ight orange") and ending with GREY. (The hues may not match their names on
your monitor. Later on you'll be able to change the names to your 1iking, or
eliminate them altogether to save memory, and just use numbers. For instance,
PINK is equal to 4.) -

Try out different colors using BOOTCOLOR, until you find one you can live with
for a while. We usually use GREEN 10 or GREEN 12 in-house at Valpar. While
you are doing this you'll probably make at least one mistake, and the machine
will reply with an error message like "stack empty." Just hit return to get
the "ok" back and start whatever you were doing again. Actually, you don't
even have to get the "ok" back, but it's reassuring to see it there. When
you've got a color you like, do VLIST again. Note the first word above TASK.
It should be GREY. Carefully type FORGET GREY, and do VLIST again. Notice
that GREY and all words above it are indeed forgotten. That's just what we
want. Now type SAVE. You'll get a (Y/N) prompt back to give you a chance to
change your mind, since SAVE involves a significant amount of writing to
drive #1. For practice, check to see that you still have the copy in drive
one, and if it is there, hit Y, and off we go. When "ok" comes back, remove
the disk and apply a write protect tab to it. Boot this disk again to see
that it will come up in your selected color.

I-3

DEBUGGING

Look at 170 again. Load the DEBUGGING AIDS, and type ON STACK. You'll see that
the stack is empty. Great, what's a stack? The best answer to this is to
suggest that you read Leo Brodie's book, Starting FORTH. This amusing and
thorough treatment of FORTH starts from the novice level and continues on to
most of the advanced concepts in FORTH. Starting FORTH is available from many
sources, including Valpar International. Included with your valFORTH package
is a document called "Notes on Starting FORTH for the fig-FORTH User" which
pinpoints differences between Brodie's dialect of FORTH, called 79 Standard,
and the somewhat more common fig-FORTH on which valFORTH was based.

It is not feasible to present a course on FORTH in these pages, since FORTH

is far more powerful than BASIC, which itself requires a fair amount of space
to present. However, we'll try to be as considerate as possible to the FORTH-
innocent.

The visible stack is a very good debugging and practice tool. Type

a few integers, say 5 324 -19 0 and hit RETURN. The numbers are now
visible on the stack. Top of stack, TOS, is at right. Print the top entry
by typing " . " and then do DUP. Note that there are now two -19's on top.

Do " * " to multiply them together. Now do DROP to discard the product, 361,
currently at TOS. Ok, now do SWAP to exchange the 324 and 5 and then do " / "
to divide 324 by 5. This should leave 64, since the answer is truncated. Now
type 1000 * and notice that instead of getting 64000 you get -1536. This

is of course two's complement on a two-byte number. Type U.S which will
switch the visible stack to unsigned representation. Type .S to go back.

The words .S and U.S may be used with the visible stack on or off to show

the stack one time. Now type OFF STACK. Type in a few more numbers, say
123456 7. ONSTACK again, and observe that the entries are retained.

Do OVER to bring a copy of the 6 over the 7. Now DROP it. Do ROT to rotate
the third from top, 5, to the top. Now do <ROT to put it back. In addition
to all of these normal routines, valFORTH supports PICK and ROLL both coded

in 6502 for speed. Notice that the 5th on stack is a 3. 5 PICK will bring a
copy of it to TOS. Do this and then DROP the 3. Do 5 ROLL to pull the 3

out of the stack and place it at T0S. DO SP! to clear the stack.

I-4

One point about number bases: Right now you're in DECIMAL. By typing

HEX you go into hexadecimal, and typing DECIMAL or its abbreviation DCX

you get back. And, as usual, virtually any base may be used by typing N BASE !
where N is the base you want. Thus, 2 BASE ! gives binary, etc. Some errors,
particularly during loading, may leave you in an unexpected base, 1ike base 0,
for instance. If you find the machine acting normally except for numbers, this
may have happened. A simple DCX will get you back to decimal. The word B?
will print the current base in decimal. Put 30 on the stack and then do HEX.
Now do B?. Do DCX to return to decimal.

While we're on the subject of numbers, do ON and note that it is just a CONSTANT
equal to 1. Similarly, do OFF and see that it is zero. Try O STACK and then

1 STACK. The words ON and OFF are provided to enhance readability of code,

but could be substituted by 1 and 0 if desired. The two representations are
equally fast.

We mention to the newcomer to FORTH that the stack takes the place of dummy
variables or dummy parameters in other languages. This reduces memory overhead
in several ways but does exact a penalty of reduced readability of FORTH source
code. Consistent and sensible source code formatting can significantly enhance
readability. The source code on the present disk may be used as a reasonably
good example of well-arranged code.

Now a few words about DECOMP. Clear the stack. Type in 3 and 4. Do

OVER OVER followed by 2DUP and notice that these two phrases have the same
effect. Clear the stack and then turn it off if you like, and do DECOMP 2DUP.
What you see is a decompilation of 2DUP which indicates that it is indeed
defined as OVER OVER. Decomp OVER. The word "primitive" in the decompilation
of OVER indicates that OVER is defined in machine code.

Decomp LITERAL. The word (IMMEDIATE) after LITERAL in the decompilation
indicates that LITERAL is immediate. Not all words can be decompiled by
DECOMP, and sometimes trash will be printed with long pauses between lines.
In this case, hold down any CONSOLE button (the three yellow ones, remember)
until the "ok" comes back. This may take several seconds, but rarely much
Tonger.

I-5

PRINTING

If you have a printer attached, we can generate some hardcopy. Look at screen
170 again. You can see the line labeled PRINTER UTILITIES. Don't load it,
though. The printer utilities were loaded automatically when you loaded the
debugging aids, and so are in the dictionary already. (There is no need to
have them in twice, though it wouldn't hurt.) You have access to the words P:,
S:, LISTS, PLISTS, PLIST, and a couple of others relating to output. Do VLIST
and see if you can spot this group. As a matter of fact, do ON P: VLIST OFF
P: all in one shot. ON P: is used to route output to the printer or not.

OFF P: stops sending to the printer. Try ON P: OFF S: 170 LIST CR OFF P: ON S:
and notice that this time text is not sent to the display screen, only to the
printer. That's because of OFF S:

Look at screen 170 again, either on display or in hardcopy, and note which
screen the printer utilities start. Type this number in, but don't type load.
Instead, after the number, type 10 PLISTS. This prints 10 screens starting
from the first screen you just typed in. If you have a reasonably smart
printer, it will automatically paginate, so that the screens are printed
three to a page. If the printer acts peculiarly after printing each third
screen, the pagination code in the word EJECT is probably not right for your
printer. You'll be able to change this later on.

Now type 30 150 LISTS and after a few blank screens you'll see the entire disk
go by, except for the boot code. You can pause any time by CTRL 1 or stop
by holding a CONSOLE button.

Finally, do ON P: 30 179 INDEX OFF P: to print a disk index. The index is
made up of the first T1ine of each screen.

EDITING

Two editors have been included in this package. The fig (Forth Interest Group)
Editor and the valFORTH 1.0 Editor. The latter, while a perfectly useable
video-display editor in its own right, is actually a stripped-down version of
the valFORTH 1.1 Editor, available with the Utilities/Editor package from Valpar
International. The 1.0 Editor is provided to give the user some idea of what
the very powerful 1.1 Editor is like, without actually providing it. (Among
other things, the 1.1 Editor has a user-definable 1line buffer of up to 320 Tines
with a 5 Tine visible window at the bottom of the display. This window can be
seen at the bottom of the 1.0 Editor, but is inactive.)

I-6

The fig Editor is a general-purpose FORTH line editor, and was the FORTH editing
workhorse until good video-displays were developed.

The fig Editor User Manual is Tocated just after this section. It is based
on that by Bill Stoddart of FIG, United Kingdom, published in the fig-Forth
installation manual 10/80, and is provided through the courtesy of the FORTH
INTEREST GROUP, P.0. Box 1105, San Carlos, CA 94070. Serious Forth programmers
should write FIG to request their catalog sheet of references and publications.

Let's Took at the valFORTH editor 1.0. Refer to the directory again, screen 170,
and load the valFORTH editor. (Don't load the fig Editor by mistake.) Before
proceeding, make sure that the write-protect tab on your disk is secure. The
word to enter the editor at the screen on top of stack is V. You can remember

it by thinking of it as "view." Type 170 V. Screen 170 is now on the display
again, but in the valFORTH 1.0 Editor rather than as a 1isting. This Editor

is a subset of the valFORTH 1.1 Editor avajlable in the Editor/Utilities package,
which is MUCH more powerful and convenient, and is priced far lower than any
comparable product of which we are aware. The Editor Command card provided

shows all of the commands available with the 1.1 Editor. Commands available
with the 1.0 Editor are marked with asterisks (*) on the card. Let's run

through them:

The cursor can be moved as in the Atari "MEMO PAD" mode. That is, hold down
the control key (CTRL) and move the cursor around the display with the four
arrow keys. To enter text (replace mode only in 1.0), position the cursor and
type it in. Delete characters with the backspace key as usual. The cursor
will wrap to the next line at the end of a line, and to the top of the screen
when it goes off the bottom. You can type at will on this screen since we
won't save the changes to disk.

Do a Shift-Insert and notice that a blank line is inserted at the cursor line.
The bottom 1line is lost, though it is recoverable in the 1.1 version. Now do
Shift Delete to remove a Tine. (Delete is on the Backspace key). These are
all of the Editing commands available in the 1.0 Editor. There are two methods
of exiting the editor, CTRL S and CTRL Q. CTRL S marks the screen for saving
to disk, and CTRL Q forgets the latest set of editing changes. As usual,
changes are not saved immediately. This is accomplished with the word FLUSH
or by bringing other screens into the buffers and pushing the edited ones out.
Again, as usual, the EMPTY-BUFFERS command, or its valFORTH abbreviation, MTB,
will clear all buffers, thus forgetting any changes that have not yet been
written to disk.

Try CTRL Q to exit now. Reedit the screen by typing L. L does not require an
argument on stack and will bring the last-editing screen into the editor. The
words CLEAR and COPY have their normal meanings, as does WHERE, which has had
the standard fig bug fixed. See the glossary for details.. Note that since
COPY 1in valFORTH does not FLUSH its changes, careful use allows transfers

of single screens between disks by swapping disks after COPY and before

FLUSH. This is particularly handy, for example, for transferring error
messagde screens 176-179 between disks.

I-7

You can make this transfer by doing
176 176 COPY 177 177 COPY 178 178 COPY 179 179 COPY

and then swapping in the destination disk and typing FLUSH. You may want
to define a word to do this automatically:

: ERRXFR (--)
CR ." Insert source and press START" WAIT
180 176
DO I I COPY
LOOP
CR ." Insert dest. and press START" WAIT
FLUSH

Because there are four 512 character screen buffers in memory in valFORTH,
four 512 characters screens at a time is the maximum for this method.

Bulk screen moves on a single disk or between disks are available with
the Utilities/Editor Package.

Note: The word "screen" in Forth refers to an area of the disk. When you

do 170 LIST you are listing screen 170. In valFORTH there are 180 screens,
numbered 0-179, on the disk in drive 1. In multiple-drive systems screen
numbers continue across drives, so that screens 180-349 are on drive 2.

180 LIST will automatically read from drive 2. For technical reasons screen 0
should not be used for program code.

Whichever editor you use for the moment, you can write your programs to a
blank disk and load them from there. Remember that in fig-FORTH (and so

also in valFORTH), if you wish to continue loading from one screen to the
next, all but the last screen should end in -->. You'll see this all through
the valFORTH 1.1 code. You'll also see ==>. For present purposes you can
use --> everywhere, and forget about ==>. ==> is actually a "smart" version

of --> that does nothing if the system uses 1024 character screens instead of
512.

If you are a FORTHER, and wish to use 1024 byte screens, do FULLK. To return
to 512 character screens, do HALFK. (A working disk may be SAVE'd in either
condition.) Note that the valFORTH 1.0 Editor will not edit 1024 character
screens, though the 1.1 version will, and includes special 1K notation. In
the same vein, the word KLOAD that appears in the source code is a smart load.
See the Glossary for details.

To terminate loading one simply omits the --> on the last screen. ;S may be
used to end loading at any point. Also note that valFORTH --> and ==> are
smart in the sense that if you wish to stop loading before the machine is
ready to stop, simply hold down a CONSOLE button. When --> or ==> execute,
they first check the CONSOLE. 1If a button is pressed, they stop loading
instead of continuing with the next screen.

I-8

Before leaving editing practice, type MTB to empty the disk buffers and assure
yourself that nothing will be flushed to disk accidentally as you read in new
screens. Or else, do FLUSH if you really want to save your changes.

(Remember to remove the write-protect tab if you do.)

GRAPHICS

On to Graphics. Check screen 170 and load the Color Commands again, and then
the Graphics Package. VLIST to see what you've got, and print the list if
you like. You may notice that GR. is not among these freshly loaded words:
It is in the kernel, that is, the booted code. Try the following sequence:

2 GR. (BASIC Graphics mode 2)

5 5 P0S. (Move the graphics cursor)

G" TEST" (Send text to graphics area)

1 COLOR (Pick a new graphics color)

G" TEST" (More text)

: SMPL 4 0 DO I COLOR G" TEST" LOOP ; (automate)
SMPL SMPL SMPL (Try it out)

: MANY BEGIN SMPL ?TERMINAL UNTIL ; (More automation)
1 GR. (Go somewhere else)

MANY (Press CONSOLE button to exit)

17 GR. MANY (Try it in full screen)

2 GR. 2 PINK 8 SE. MANY (Use SE. to change color 2)
4 GOLD 8 SE. (Use SE. to change background color).
0 GR. (Go back to normal text screen.)

You can also see a quick demonstration by ioading the Graphics Demo Program
listed on screen 170. If it's not listed on screen 170, do an INDEX in the
area of the Graphics routine screens you loaded recently. When you find the
Graphics examples screen, load it. Then do FBOX. Take a look at the code
and then at the Glossary to get the idea.

As in Atari Basic, adding 16 to the graphics mode you want to enter gives
non-split screen, and adding 32 suppresses erase-on-setup of the mode.

I-9

0
L

SOUNDS
As a final stop on this tour, load the SOUNDS words. The word SOUND acts

similarly to the Basic command SOUND. In valFORTH it also has the abbrevia-
tion SO. and expects stack arguments like so:

channel(0-3) frequency#(0-255) distortion(0-14 evens) volume (0-15).
(We use "CatFish Don't Vote" as a mnemonic).

Try, for instance 0 200 12 8 SO. and then turn it off with 0 XSND which
just shuts off the indicated voice, 0, or XSND4 which quiets everything.
More about sound generation by the Atari may be found in the "sound" section.

Logical Line Input

One of the nice features of the Atari 0S is that it lets you back the cursor
over code that you've typed in already, even edit it with various inserts,
deletes, and retypes, and then hit return to have it reinterpreted. This
function is supported by valFORTH, and you can re-input up to two full lines
of text, (and a wee bit more) at a time just by moving the cursor onto the
"Togical 1ine" you wish to re-read. Try it.

THE GREAT SCREEN SIZE DEBATE

The "standard" Forth screen is composed of 1024 bytes. This is a nice round
number, and on a good text display one can have room for that many characters
plus a few more. However, beyond tradition, there is very little functional
reason to have 1024 byte screens over several other power-of-2 sizes. In the
case of Atari and Apple machines, 512 byte screens make video display editors
much easier to work with, since one can get a whole screen in the display

at once. valFORTH supports both 1024 and 512 byte screen modes, but in-house
at Valpar we strongly prefer 512 byte screens and recommend that you adopt
this as your personal standard. If at any time you wish to change to 1K to
help compile software written on 1K screens, you can do so with one word,
FULLK.

I-10

SAVING YOUR FAVORITE SYSTEM(S)

Well, you've seen many of the bells and whistles of valFORTH. When you are
using the Tanguage for software development you will probably have a favorite
set of capabilities that you always want aboard. Rather than loading them
from scratch each time, why not SAVE them to a formatted disk? Just get
everything you want into the dictionary. After it's all loaded, put a
formatted disk into drive 1 and type SAVE. Answer the prompt by pressing "Y"

unless you have changed your mind, and the computer will save a bootable copy
of your system dictionary on the blank disk.

DISTRIBUTING YOUR PROGRAMS

If you have a program you wish to distribute, there are two ways in which to
proceed:

(1) Make a PROTECTED auto-booting copy of your software by using the
word AUTO as detailed in the "compiling Auto-Booting Software" section
of this manual.

(2) Make a TARGET-COMPILED version of your software, using the valFORTH
Target Compiler, scheduled for release approximately 9/82. Target
Compilers allow production of much smaller final FORTH products by
allowing elimination of unnecessary code, e.g., headers, compiler,
buffers, etc.

In addition to the above procedures, Valpar International also
requires that the message:

Created in whole or part using valFORTH products of
Valpar International, Tucson, AZ 85713, USA

Based on fig-FORTH, provided through the courtesy of
Forth Interest Group, P.0. Box 1105, San Carlos, CA 94070

Hope you've enjoyed the tour. Bye now.

I-11

THE FORTH INTEREST GROUP LINE EDITOR

FIG EDITOR USER MANUAL

Based on the Manual
by Bill Stoddart
of FIG, United Kingdom

valFORTH organizes its mass storage into "screens" of 512 characters, with the
option of 1024. 1If, for example, a diskette of 90K byte capacity is used
entirely for storing text, it will appear to the user as 180 screens numbered
0 to 179. Screen 0 should not be used for program code. Each screen is
organized as 16 lines with 32 characters per line.

Selecting a Screen and Input of Text

To start an editing session the user types EDITOR to invoke the appropriate
vocabulary.

The screen to be edited is then selected, using either:

n LIST (Tist screen n and select it for editing) OR
n CLEAR (clear screen n and select for editing)

To input new text to screen n after LIST or CLEAR the P (put) command is used.
Example:

0 HIS IS HOW

PT
P TO INPUT TEXT
PT

1
2 O LINES 0, 1, AND 2 OF THE SELECTED SCREEN.

Based on material provided through the courtesy of the FORTH INTEREST GROUP,
P.0. Box 1105, San Carlos, CA 94070.

IT-1

Line Editing

During this description of the editor, reference is made to PAD. This is a
text buffer which may hold a line of text used by or saved with a Tine editing
command, or a text string to be found or deleted by a string editing command.

PAD can be used to transfer a line from one screen to another, as well as to
perform edit operations within a single screen.

Line Editor Commands

n H Hold Tine n at PAD (used by system more often than by user).

ND Delete line n but hold it in PAD. Line 15 becomes blank as lines
n+tl to 15 move up 1 line.

nT Type 1line n and save it in PAD.

n R Replace 1ine n with the text in PAD.

nl Insert the text from PAD at line n, moving the old 1line n
and following 1ines down. Line 15 is lost.

nE Erase 1ine n with blanks.

nsS Spread at line n. n and subsequent 1ines move down 1 line.

Line n becomes blank. Line 15 is lost.

[1-2

Cursor Control and String Editing

The screen of text being edited resides in a buffer area of storage. The
editing cursor is a variable holding an offset into this buffer area. Commands
are provided for the user to position the cursor, either directly or by search-

ing for a string of buffer text, and to insert or delete text at the cursor
position.

Commands to Position the Cursor

TOP Position the cursor at the start of the screen.

N M Move the cursor by a signed amount n and print the cursor line.
The position of the cursor on its 1ine is shown by a ® (solid circle).

String Editing Commands

F text Search forward from the current cursor position until string
"text" is found. The cursor is left at the end of the text
string, and the cursor line is printed. If the string is not
found an error message is given and the cursor is repositioned
at the top of screen.

B Used after F to back up the cursor by the length of the most
recent text.

N Find the next occurrence of the string found by an F command.

X text Find and delete the string "text."

C text Copy in text to the cursor line at the cursor position.

TILL text Delete on the cursor line from the cursor till the end of the
text string "text."

NOTE: Typing C with no text will copy a null (represented by a heart)
into the text at the cursor position. This will abruptly stop
later compiling! To delete this error type TOP X 'return'.

Screen Editing Commands

n LIST List screen n and select it for editing
n CLEAR Clear screen n with blanks and select it for editing
nl n2 COPY Copy screen nl to screen n2.

L List the current screen. The cursor line is relisted after
the screen 1isting, to show the cursor position.

FLUSH Used at the end of an editing session to ensure that all entries
and updates of text have been transferred to disc.

I1-3

Editor Glossary

TEXT c ---
Accept following text to pad. c¢ is text delimiter.

LINE n --- addr

Leave address of T1ine n of current screen. This address will be in the
disc buffer area.

WHERE nl n2 ---
n2 is the block no., nl is offset into block. If an error is found in
the source when loading from disc, the recovery routine ERROR 1leaves
these values on the stack to help the user locate the error. WHERE

uses these to print the screen and line nos. and a picture of where
the error occurred.

R# --- addr

A user variable which contains the offset of the editing cursor from
the start of the screen.

#LOCATE --- nl1l n2

From the cursor position determine the line-no n2 and the offset into
the 1ine nl.

#LEAD --- line-address offset-to-cursor
#LAG --=- cursor-address count-after-cursor-til1-EOL

-MOVE addr 1ine-no ---
Move a 1ine of text from addr to line of current screen.

H n ---
Hold numbered Tine at PAD.

E n ---
Erase 1line n with blanks.

S n ---
Spread. Lines n and following move down. n becomes blank.

D n ---
Delete Tine n, but hold in pad.

M n ---
Move cursor by a signed amount and print its line.

T n ---
Type 1line n and save in PAD.

L _—
List the current screen.

R n---
Replace line n with the text in PAD.

n [epp——
Put the following text on line n.

I n ---
Spread at line n and insert text from PAD.

TOP ---
Position editing cursor at top of screen.

CLEAR n ---
Clear screen n, can be used to select screen n for editing.

FLUSH -—-
Write all updated buffers to disc.

COPY nl n2 ---
Copy screen nl to screen n2.

-TEXT Addr 1 count Addr 2 -- boolean
True if strings exactly match.

MATCH cursor-addr bytes-left-til1-EOL str-addr str-count
-—-- tf cursor-advance-till-end-of-matching-text
- ff bytes-left-till1-EOL
Match the string at str-addr with all strings on the cursor Tline
forward from the cursor. The arguments Teft allow the cursor R# to

be updated either to the end of the matching text or to the start of the
next Tine.

1LINE --- f
Scan the cursor line for a match to PAD text. Return flag and update
the cursor R# to the end of matching text, or to the start of the
next Tine if no match is found.

FIND ---
Search for a match to the string at PAD, from the cursor position
ti1l the end of screen. If no match found issue an error message
and reposition the cursor at the top of screen.

DELETE n ---
Delete n characters prior to the cursor.

N _—
Find next occurrence of PAD text.

F _—
Input following text to PAD and search for match from cursor position
till end of screen.

B _—
Backup cursor by text in PAD.

X _—

Delete next occurrence of following text.
TILL -

Delete on cursor line from cursor to end of the following text.
C _—

Spread at cursor and copy the following text into the cursor line.

CREATING DISKS FOR PRODUCTION

RELOCATING BUFFERS

The purpose of this section is to show you how to avoid incorporating buffer
space into an auto-booting program, thereby saving more than 2K in memory
requirement for the machine on which the program will eventually run.

Fig-FORTH (and so valFORTH) uses a virtual memory arrangement which allows

disk areas to be accessed in a manner similar to that used to access semiconductor
memory. We won't go into detail here; those wishing to find out more about this
can contact FIG for documentation at:

FORTH INTEREST GROUP
P.0. Box 1105
San Carlos, CA 94070

or they can puzzle out the process by starting at the word BLOCK. For our present
purposes, however, we simply note that the virtual memory scheme requires that
some continuous area of memory be allotted as buffer space for disk operation.
valFORTH as delivered has buffer space for four 512 byte "screens" at a time.
Each screen is composed of four blocks of 132 bytes each: 128 bytes of actual
data, corresponding to a sector, and four bytes of identification and deTimiting
data. This produces a total of 4 x 4 x 132 = 2112 bytes that are needed for
programming and compilation* but are generally not required when software is
actually run. In order to get the full use of your computer, particularly for
the purposes of producing auto-booting software 1ike games, you'll need to know
how memory is mapped and what changes you can make in the mapping. During the
following discussion refer to the memory map provided with your documentation.

You will note from the memory map that the buffers are placed just above the
kernel (boot-up) valFORTH dictionary. The dictionary pointer is set just past
the buffers, so new word definitions will be compiled in above the end of the
buffers. Why such an odd location? Read on...

* Those used to seeing the buffers at the top of memory will quickly realize
that this is impractical on the Atari, since that area is used for display
lists. Although it is possible to an extent to fool the operating system into
thinking that it has less memory than it actually has, and thus "reserve" an
area at the top of memory, this is a troublesome proposition.

* Another approach is to put the buffers just below the kernel dictionary,
which has been done in at least one FORTH-for-Atari release. While this is
safe, it sacrifices 2K bytes during run time unless rather clever programming
techniques are used on each program to put code into the dormant buffer area.

* Clearly, the buffers should be put somewhere above the dictionary but below
the display-Tist area, and a simple means to relocate them should be supported.
This is precisely what you have in valFORTH.

* In a pinch, you can compile using only 264 bytes of buffer memory.

ITI-1

When you have a program that will compile and run, preferably without errors,
and you'd Tike to create a smaller auto-booting version, follow this procedure:

* Boot the valFORTH disk.

* Decide on the area to which to relocate the buffers: If the program can be
Toaded without Teaving the O Graphics mode or doing anything else to high memory
while loading, then the result printed by the sequence

0 GR. DCX 741 @ 2113 - U (See note below.)

will be a safe place to put the buffers; 741 @ is the Atari 0S pointer to just
below the current display 1ist. (If you will be using Transients, a capability
of the Utilities/Editor package, their default location is

DCX 741 @ 4000 -
so you would be better off to put the buffers at, say,
DCX 741 @ 6113 -

to avoid conflict).

* Find the buffer relocation utility lTisted in the table of contents starting
on screen 170 of the valFORTH disk, and Toad it. This is a self-prompting
utility that directs you to relocate the buffers and then forget the utility.
Follow the directions. You'll receive a verification message after the buffers
have been moved.

* Type
' TASK DP !

to move the dictionary pointer below the old buffer area. (Advanced programmers:
This is not a typo. The cfa of TASK points to NEXT.)

* Now load your program as usual. You should probably create an auto-booting
program at this point, rather than doing anything else, since if you run the
program now it may write into your relocated buffers and conceivably even attempt
a write to your disk. So, create an auto-booting version as directed in the
Auto-booting section above. Remember that if the program is for distribution,
you MUST protect your software and ours by using the AUTO command.

*****CAUTI ON*****

The buffers start out just above the kernel dictionary, as indicated, and for
normal programming they should be LEFT THERE: Several routines on the valFORTH
disk and other disks in this product 1ine use the area between pad and the
bottom of the display 1ist as a scratch area for extensive disk transfers.
DISKCOPY1 and DISKCOPY2 on the valFORTH disk are examples.

Note: The buffers should generally be relocated to aneven address because of
an Atari 0S bug. See also Note 1 at end of valFORTH 1.1 Glossary.

COMPILING AUTO-BOOTING SOFTWARE

Your purchase of valFORTH and its associated packages also grants you a single-
user license for the software. You may not copy valFORTH or its associated
Valpar International products for any purpose other than for your own use as
back-up copies. However, a word called AUTO has been provided to allow you

to create a copy of your software that is suitable for distribution. The word
AUTO does several things.

* AUTO provides extensive protection both for your software and the valFORTH

and auxiliary programs on which it is based. Your product may still be copied
by normal methods, but the programming concepts on which it is based will be
very difficult to analyze. The valFORTH and auxiliary programs will be rendered
useless except to run your program. Since AUTO scrambles all headers in the
code before saving to disk or cassette, even direct examination of the code on

the medium is not very revealing. This provides essentially all the protection
of headerless code.

* AUTO will create a disk that autoboots to the FORTH word of your choice.
This usually will be the last word defined in your program. In addition, a
disk created using AUTO will not have exit points: That is, even if your
program terminates, or makes an error because of an undiscovered bug, it will
not exit to valFORTH and the "ok" prompt. Instead, it will automatically
attempt to start again at the original auto-boot word, and will do so unless
an error has disabled the system.

* AUTO allows repetitive saving of your protected software to disk and cassette
in one sitting, with extensive prompting. This provides a short-run production
environment. (Remember that if you want to save to cassette, the cassette
recorder should be attached to the system at boot time; if it is attached

after booting, the computer may not know that the recorder is there and may
fail when trying to AUTO to cassette).

To run AUTO and create your bootable software:

Load valFORTH.

Relocate buffers to save 2K+, if desired (see below).

Load your program.

DISPOSE transients, if you use them. (The Transient utilities come with

the Utilities/Editor package, and allow use of "disposable assemblers"

and the like).

(5) Find the Auto-Boot Utility section on the valFORTH disk by referring to
the directory starting on screen 170, and load as indicated.

(6) Type AUTO cccc where "cccc" is the word which you wish to execute on

auto-booting the software. You will now be prompted through the rest

of the procedure. On exiting from AUTO you will fall through to the

auto-booting program that you have just protected.

A~~~
SN
~——— — ~—

I11-3

DISTRIBUTING YOUR PROGRAMS

If you have a program you wish to distribute, there are two ways in which to
proceed:

(1) Make a PROTECTED auto-booting copy of your software by using the

word AUTO as detailed in the "Compiling Auto-Booting Software" section
of this manual.

(2) Make a TARGET-COMPILED version of your software, using the valFORTH
Target Compiler, scheduled for release approximately 9/82. Target
Compilers allow production of much smaller final FORTH products by

allowing elimination of unnecessary code, e.g., headers, compiler,
buffers, etc.

In addition to the above procedures, Valpar International also
requires that the message:

Created in whole or part using valFORTH products of
Valpar International, Tucson, AZ 85713, USA
Based on fig-FORTH, provided through the courtesy of
Forth Interest Group, P.0. Box 1105, San Carlos, CA 94070

be included either on the outside of the media (diskette, cassette,
or other) as distributed, or in the documentation provided with the
product. Please note that failure to include this message with
products that include valFORTH code may be regarded as a copyright
violation.

[11-4

valFORTH 1.1 SYSTEM EXTENSIONS

GRAPHICS, COLORS, AND SOUNDS

Graphics

The Graphics package follows the Atari BASIC graphics set as closely as
possible, and is identical in most respects. As in BASIC, the most complex
parts of Graphics are DRAWTO (abbreviated "DR.") and FIL, and even these are
not too obscure. Find the Graphics Demo by looking at the directory start-
ing on screen 170, and load it. Try the word FBOX. Now look at the code

that produced this effect, if you like. The general explanation is as
follows:

Display positions are denoted by two coordinates, a horizontal and a vertical.
The 0,0 point is in the upper Teft hand corner, and the vertical coordinate

increases as you go down the display, while the horizontal coordinate increases
as you go to the right. This is all familiar from BASIC.

In graphics modes, a single point at position X Y can be plotted by X Y PLOT.
The color of the point will be that in the color register declared by the
Tast COLOR command. A line, again of the color in the register declared by
the last color command, may then be drawn to point X1 Y1 by X1 Y1 DR. . The
word FIL may be used to fill in an area as described in the Atari manual,

and as illustrated in the FBOX example. The color register for the fill is
the one whose number is on the stack when FIL is executed. Essentially, to
set up FIL you draw in boundaries and pick two points you wish to FIL between.
The first of these points is set up either by a DR. or PLOT command, or by
valFORTH's POSIT command. POSIT has the advantage of not requiring that you
put anything into the place where you are positioning yourself. The second
point for the FIL command is then set up by using POS. . The fill is then
performed by putting a number on stack (the color register for the fill) and
then doing FIL.

If you are in a text mode, a single character, ¢ , can be sent to the display
by ASCII ¢ CPUT. Text strings can be sent to the display with G" cccc " and
in addition will have the color in the register specified by the last COLOR
command before the string is output. This is a significant enhancement to
BASIC.

Iv-1

Graphics and Color Glossary:

SETCOLOR nl n2 n3 --

Color register nl (0...3 and 4 for background) is set to hue n2 (0 to 15)
and luminance n3 (0-14, evens).

SE. nl n2 n3 --
Alias for SETCOLOR.

GR. n --
Identical to GR. in BASIC. Adding 16 will suppress split display.

Adding 32 will suppress display preclear. In addition, this GR. will
not disturb player/missiles.

POS. X y --

Same as BASIC POSITION or POS. Positions the invisible cursor if in
a split display mode, and the text cursor if in 0 GR.

POSIT x vy --

Positions and updates the cursor, similar to PLOT, but without changing
display data.

PLOT x y --

Same as BASIC PLOT. PLOTs point of color in register specified by last
COLOR command, at point x y.

DRAWTO x y --
Same as BASIC DRAWTO. Draws line from last PLOT'ted, DRAWTO'ed or

POSIT'ed point to x y, using color in register specified by last COLOR
command.

DR. xy --
Alias for DRAWTO.

FIL b --
Fills area between last PLOT'ed, DRAWTO'ed or POSIT'ed point to last
position set by POS., using the color in register b.

GII _—
Used in the form G" ccccc". Sends text cccc to text area in non-0
Graphics mode, starting at current cursor position, in color of
register specified by last COLOR command prior to cccc being output.
G" may be used within a colon definition, similar to .".

GTYPE addr count --
Starting at addr, output count characters to text area in non-0 Graphics
mode, starting at current cursor position, in color of register speci-
fied by last COLOR command.

LOC. Xy--b

Positions the cursor at x y and fetches the data from display at that
position. Like BASIC LOCATE and LOC. . Note that since the word LOCATE
has a different meaning in valFORTH (it is part of the advanced editor
in the Utilities/Editor package), the name is not used in this package.
(Advanced users: We could put Graphics in its own vocabulary, but this
would add some inconvenience.)

Iv-2

(G") --
Run-time code compiled in by G".

POSE@ -- XYy
Leaves the x and y coordinates of the cursor on the stack.

CPUT b --
Outputs the data b to the current cursor position.

CGET -- b
Fetches the data b from the current cursor position.

>SCD ¢l -- c2
Converts cl from ATASCII to its display screen code, c2.
Example: ASCII A >SCD 88 @ C!
will put an "A" into the upper left corner of the display.

SCD> cl -- c2

Converts c1 from display screen code to ATASCII c2.
See >SCD.

>BSCD addrl addr2 count --
Moves count bytes from addrl to addr2, translating from ATASCII
to display screen code on the way.

BSCD> addrl addr2 count --
Moves count bytes from addrl to addr2, translating from display
screen code to ATASCII on the way.

COLOR b --
Saves the value b in the variable COLDAT.

COLDAT -- addr
Variable that holds data from last COLOR command.

GREY -- 0
GOLD -- 1
ORNG -- 2
RDORNG -- 3
PINK -- 4
LVNDR -- 5
BLPRPL -- 6 (CONSTANTS)
PRPLBL -- 7
BLUE -- 8
LTBLUE -- 9
TURQ -- 10
GRNBL -- 11
GREEN -- 12
YLWGRN -- 13
ORNGRN -- 14
LTORNG -- 15

BOOTCOLOR hue Tum --
Sets up hue for playfield 2 (text background) and lum for playfield 1
(letter intensity) in O Graphics mode. Lum of playfield 2 is set at 4.
After using BOOTCOLOR, doing SAVE will create a system disk with the
selected color.

Iv-3

Sounds

The

actual production of sound by the Atari machines is rather complex and

the reader is referred to the many recent (first half 1982) articles on this
subject in various magazines. Here we will restrict comments to the function
of the Atari audio control register. This is an eight bit register which
valFORTH shadows by the variable AUDCTL. The bits have the following

functions:

bit 7: Change 17 bit polycounter to 9 bit polycounter.
Affects distortions 0 and 8.

bit 6: Clock channel 0 with 1.79 Mhz instead of 64 Khz.

bit 5: Clock channel 2 with 1.79 Mhz instead of 64 Khz.

bit 4: Clock channel 1 with channel 0 instead of 64 Khz.

bit 3: Clock channel 3 with channel 2 instead of 64 Khz.

bit 2: Use channel 2 as crude high-pass on channel 0.

bit 1: Use channel 3 as crude high-pass on channel 1.

bit 0: Change normal 64 Khz to 15 Khz.

The value n may be sent to the audio control register by doing n FILTER!.

SOUND chan freq dist vol --

Sets up the sound channel "chan" as indicated.
Channel: 0-3.

Frequency: 0-255, 0 is highest pitch.
Distortion: 0-14, evens only.

Volume: 0-15.

Suggested mnemonic: CatFish Don't Vote

SO. chan freq dist vol --
Alias of SOUND.

FILTER! n --
Stores n in the audio control register and into the valFORTH shadow
register, AUDCTL. Use AUDCTL when doing bit manipulation, then do
FILTER!. (FILTER! does a number of housekeeping chores, so use it
instead of a direct store into the hardware register.)

AUDCTL -- addr
A variable containing the last value sent to the audio control register
by FILTER!. Used for bit manipulation since the audio control register
is write-only.

XSND n --
Silences channel n.

XSND4 --

Silences all channels.

Iv-4

TEXT OUTPUT AND DISK PREPARATION GLOSSARY

S: flag --
If flag is true, enables handler that sends text to text screen. If
false, disables the handler. (See PFLAG in main glossary.) ON S: etc.

P: flag --
If flag is true, enables handler that sends text to printer. If false,
disables the handler. (See PFLAG in main glossary.) OFF P: etc.

BEEP --

Makes a raucous noise from the keyboard. Is put in this package for
lack of a better place.

ASCIT ¢, -- n (executing)
c, =-- (compiling)
Converts next character in input stream to ATASCII code. If executing,
leaves on stack. If compiling, compiles as literal.

EJECT --
Causes a form feed on smart printers if the printer handler has been
enabled by ON P:. May need adjustment for dumb or nonstandard printers.

LISTS start count --

From start, 1ists count screens. May be aborted by CONSOLE button at
the end of a screen.

PLIST scr --

Lists screen scr to the printer, then restores former printer handler
status.

PLISTS start cnt --
From start, 1ists cnt screens to printer three to a page, then restores

former printer handler status. May be aborted by CONSOLE button at the
end of a screen.

FORMAT --
With prompts, will format a disk in drive of your choice.

(FMT) nl -- n2
Formats disk in drive nl. Leaves 1 for good format, otherwise error number.

Note: Because of what appears to be an 0S peculiarity, this operation must
not be the first disk access after a boot.

DISKCOPY1 --
With prompts, copies a source to a destination disk on single drive,
with swapping. Smart routine uses all memory from PAD to bottom of
Display List, producing minimum number of swaps.

DISKCOPY2 --

With prompts, copies disk in drive 1 to disk in drive 2 using memory
Tike DISKCOPY1.

IV-5

DEBUGGING UTILITIES

DECOMP cccc
Does a decompilation of the word cccc if it can be found in the active
vocabularies.

MUH\ H[MH IL itk ﬁmawL HL s mDTU Jeconplers 1t it}

become confused by certain constructs, and will begin to print trash,
with pauses in between while it looks for more trash to print. When
this happens, simply hold down a CONSOLE button until DECOMP exits.
This sometimes takes as much as 10 seconds, depending on luck.

CDUMP addr n --
A character dump from addr for at least n characters. (Wi11 always
do a multiple of 16.)

#DUMP addr n --
A numerical dump in the current base for at least n characters.
(Wi11 always do a multiple of 8.)

(FREE) --n
Leaves number of bytes between bottom of display 1ist and PAD. This is
essentially the amount of free dictionary space, if additional memory
is not being used for player/missiles, extra character sets, and so on.

FREE --
Does (FREE) and then prints the stack and "bytes".

H. n --
Prints n in HEX, leaves BASE unchanged.

STACK flag --
If flag is true, turns on visible stack. If flag is false, turns off
visible stack.

.S R
Does a signed, nondestructive stack printout, TOS at right. Also
sets visible stack to do signed printout.
u.s R
Does unsigned, nondestructive stack printout, TOS at right. Also
sets visible stack to do unsigned printout.
B? --
Prints the current base, in decimal. Leaves BASE undisturbed.
CFALIT ccec, -- cfa (executing)

ccee, -- (compiling)
Gets the cfa (code field address) of cccc. If executing, leaves it on
the stack; if compiling, compiles it as a literal. Not precisely a
debugging tool, but finds use in DECOMP.

IV-6

FLOATING POINT WORDS

The floating-point package uses the Atari floating point routines in the

operating system ROM in the same way that Atari Basic does. The routines

are rather slow, and there are no trigonometric functions internal to the

Atari. (SIN, COS, TAN, ATN, and ATN2 have been programmed and are available

in the Advanced Graphics/Floating Point Package.) LOG and EXP are included in the
operating system ROM and are supported in the present package, in base 10

and base e. Note that in the directory on screen 170 it is indicated that

the ASSEMBLER must be loaded before loading the floating-point package.

Floating point words have a six byte representation in the Atari 0S, and since
the stack has a 60 byte maximum, a maximum of 10 floating point numbers can be
on the stack at a time. In practice, this maximum often becomes 9 since some

fp routines use the stack as a scratch area.

Operations involving floating-point numbers generally leave floating-point
results. Exceptions are the words FIX, which takes a positive floating
pointer number less than 32767.5 and leaves a rounded integer; and the
floating-point comparison operators, F=, F<, etc., which leave flags. To
get a floating-point number on the stack, use the word FLOATING or its alias,
FP, followed by a number in Fortran "E" format. For example,

FP 12345
FP 12345.6
FP -12345.8

FP +5432E-16
and FP -8E18

will all lTeave floating-point numbers on the stack. Floating-point variables
and constants are also supported.

It has been our experience that mistakes are common when first using this
package. One must remember to use F* and not *, F+ and not +, and so on,
when doing fp operations. Remember also that integers and fp numbers can't
be mixed by operations: Either convert the fp number by FIX, or the integer
by FLOAT, and then use the appropriate operation.

Create new words as usual. For instance, to define a floating-point square
root function, write

: FSQRT (fp -- fp)
LOG FP 2 F/ EXP ;

Overflow and underflow, and illegal operations such as dividing by 0, taking
logarithms of negative numbers, or FIXing a negative number cause undefined
and rather unpredictable results, though they do not harm the system.
(Additional words in the Utilities/Editor Package cause all but one of these

operations to give correct or useable results; logarithms of negatives cannot
be approximated with Real numbers.)

The maximum and minimum numbers are generous, about 1E97 and 1E-97, and it is
sometimes possible to exceed these 1imits during computation. Atari's internal
representation of floating point numbers is awkward. Refer to the Atari 0S
manual, available from Atari, for details if needed.

Iv-7

FLOATING-POINT GLOSSARY

In the following, "fp" is used to indicate a floating-point number (six bytes)
on the stack. The terms "top-of-stack," "2nd-on-stack" etc., have been used
with the obvious meanings even though, because fp numbers are six bytes, their
physical positions on the stack will not match the usual ones.

FCONSTANT cccc, fp --
cccc: --fp
The character string is assigned the constant value fp. When cccc is executed,
fp will be put on the stack.
Example: FP 3.1415926 FCONSTANT PI

FVARIABLE cccc, fp --
ccce: addr --
The character string cccc is assigned the initial value fp. When cccc is
executed, the addr (two bytes) of the value of cccc will be put on the stack.
Example: FP 0 FVARIABLE X
FP 18.4 X F!

FDUP fpl -- fpl fpl
Copies the fp number at top-of-stack.

FDROP fp --
Discards the fp number at top-of-stack.

FOVER fp2 fpl -- fp2 fpl fp2
Copies the fp number at 2nd-on-stack to top-of-stack.

FLOATING CCCCo -- fp

Attempts to convert the following string, cccc, to a fp number. Stops on
reaching first unconvertible character and skips the rest of the string. If
no characters convertible, leaves unpredictable fp number on stack.

FP cccce, --fp
Alias for FLOATING.

F@ addr -- fp
Fetches the fp number whose address is at top-of-stack.

F! fp addr --
Stores fp into addr. Remember that the operation will take six bytes in
memory.

F fp --

T&pe out the fp number at top-of-stack. Ignores the current value in BASE
and uses base 10.

F? addr --
Fetches a fp number from addr and types it out.

Iv-8

F+ fp2 fpl -- fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their fp sum, fp3.

F- fp2 fpl -- fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their difference,
fp3=fp2-fpl.

F* fp2 fpl -- fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their product, fp3.

F/ fp2 fpl -- fp3
Replaces the two top-of-stack fp items, fp2 and fpl, with their quotient,
fp3=fp2/fpl.

FLOAT n-- fp
Replaces number at top-of-stack with its fp equivalent.

FIX fp (non-neg, less than 32767.5) -- n
Replaces fp number at top-of-stack, constrained as indicated, with its
integer equivalent.

LOG fpl -- fp2
Replaces fpl with its base e logarithm, fp2. Not defined for fpl negative.

LOG10 fpl - fp2
Replaces fpl with its base 10 decimal logarithm, fp2. Not defined for fpl
negative.

EXP fpl -- fp2
Replaces fpl with fp2, which equals e to the power fpl.

EXP10 fpl--fp?2
Replaces fpl with fp2, which equals 10 to the power fpl.

FO= fp -- flag
If fp is equal to floating-point 0, a true flag is left. Otherwise, a false
flag is left.

F= fp2 fpl -- flag
If fp2 is equal to fpl, a true flag is left. Otherwise, a false flag is left.

F> fp2 fpl -- flag
If fp2 is greater than fpl, a true flag is left. Otherwise, a false flag is
left.

F< fp2 fpl -- flag
If fp2 is less than fpl, a true flag is left. Otherwise, a false flag is left.

FLITERAL fp --
If compiling, then compile the fp stack value as a fp literal. This definition
is immediate so that it will execute during a colon definition. The intended
use is:

: xxx [calculate] FLITERAL ;
Compilation is suspended for the compile time calculation of a value.
Compilation is resumed and FLITERAL compiles the value on stack.

IvV-9

FLIT -- fp

Within a colon definition, FLIT is automatically compiled before each fp
number encountered as input text. Later execution by the system of FLIT as

it is encountered in the dictionary cause the context of the next 6 dictionary
addresses to be pushed to the stack as a fp number. FLIT is also compiled

in explicitly by FLITERAL.

ASCF addr -- fp
An ASCII-to-floating-point conversion routine. Uses Atari 0S routine. The
routine reads string starting at addr and attempts to create a floating point

number. If string is not a valid ASCII floating-point representation, leaves
undefined result on stack. Used by FLOATING.

FS fp --

System routine. Sends fp argument on stack to Atari register FRO. Experts
only.

>F -- fp
System routine. Fetches fp argument from Atari register FRO. Experts only.

<F fpl fp2 --
System routine. Sends fpl and fp2 to Atari registers FR1 and FRO respectively.
Experts only.

F.TY --
System routine. Types out last fp number converted by FASC.

CIX addr --
System variable. One byte offset pointer in buffer pointed to by INBUF.
Experts only.

INBUF addr --
System variable. Used by ASCF to know where ASCII string to be converted is
lTocated. ~

FR1 --n
System constant. Atari internal register address.

FRO --n
System constant. Atari internal register address.

FPOLY addr count --
A system routine for advanced users doing polynomial evaluation.
The polynomial P(Z) = SUM(i=0 to n) (A(i)*Z**i) is computed by the following
standard method:

P(Z) = (...(A(n)*Z + A(n-1))*Z + ... + A(1))*Z + A(0)
The address addr points to the coefficients A(i) stored sequentially in memory,
with the highest order coefficient first. The count is the number of coeffi-
cients in the 1ist. The independent variable Z, in floating-point, should be
sent to FRO using FS. FPOLY is then executed. The result put on the stack
using >F. Note that FPOLY is intended to be used in a Forth word.
Trigonometric functions and general polynomial expansions, for example, may
be defined more simply with the help of this routine.

IV-10

FLG10 --
System routine used by LOG10.

FLG --
System routine used by LOG.

FEX --
System routine used by EXP.

FEX10 --
System routine used by EXP10.

FDIV --
System routine used by F/.

FMUL --
System routine used by F*,

FSUB --
System routine used by F-.

FADD --
System routine used by F+.

FPI --
System routine used by FIX.

IFP -
System routine used by FLOAT.

FASC --

System routine, Does floating-point-to-ASCII conversion on the fp number

in FRO and leaves string at address pointed to by INBUF. Last byte of string
has most significant bit set. Used by F.TY.

AFP -
System routine used by ASCF.

Iv-11

(intentionally left blank)

IvV-12

OPERATING SYSTEM

This package implements the computer's Operating System I/0 routines. The
850 (RS-232C) driver package may be loaded into the dictionary by using the
word RS232, which will then support references to devices "R1" through "R4."

The code for this section was originally written by Patrick Mu]]arky, and
published through the Atari Program Exchange. It is used here by permission
of the author.

0S GLOSSARY

OPEN addr n0 nl n2 -- n3
This word opens the device whose name is at addr. The device is opened
on channel n0 with AUX1 and AUX2 as nl and n2 respectively. The device
status byte is returned as n3. The name of a device may be produced in

various ways: For a single character name, say "S" for the screen
handler,

ASCIT S PAD C!
will Teave the ASCII value of S at PAD. Then

PAD 3 8 0 OPEN
will open the screen handler on channel 3 with AUX1 = 8 (write only)
and AUX2 = 0. If you have the UTILITIES/EDITOR Package, longer names
may be setup simply by using the word "

CLOSE n --
Closes channel n.

PUT bl n -- b2
Qutputs byte bl on channel n, returns status byte b2.

GET n -- bl b2
Gets byte bl from channel n, returns status byte b2.

GETREC addr nl n2 -- n3
Inputs record from channel n2 up to length nl. Returns status byte n3.

PUTREC addr nl1 n2 -- n3

Outputs nl characters starting at addr through channel n2. Returns
status byte n3.

STATUS n--b>b
Returns status byte b from channel n.

DEVSTAT n -- bl b2 b3
From channel nl gets device status bytes bl and b2, and normal status
byte b3.

SPECIAL bl b2 b3 b4 b6 b6 b7 b8 -- b9
Implements the Operating System "Special" command. AUX1 through AUX6
are bl through b6 respectively, command byte is b7, channel number is
b8. Returns status byte b9.

RS232 --
Loads the Atari 850 drivers into the dictionary (approx 1.8K) through
a three-step bootstrap process. Executing this command more than once
without turning the 850 off and on again will crash the system.

Iv-13

valFORTH

Advanced 6502 Macro Assembler

Version 2.0
April 1982

Although the FORTH language is many times faster than BASIC or PASCAL,
there are still times when speed is so critical that one must turn to assembly
language programming as a matter of necessity. Not wanting to give up the
advantages of the FORTH language, FORTH programmers typically use an assembler
designed specifically for the FORTH system. valFORTH incorporates a very power-
ful FORTH style 6502 assembler for these special programming jobs.

© Copyright Valpar International 1982

valFORTH 6502 Assembler

Overview

Most programming applications can be undertaken completely in high
Tevel FORTH. There are times, due to speed constraints, when assembly language
must be used. Typically, "number crunching" and high speed graphic routines
must be machine coded. valFORTH provides a powerful 6502 FORTH assembler
for these special occasions.

FORTH assemblers differ from standard assemblers by making the best use
of the stack and the FORTH system as a whole. The FORTH assembler is smaller
than a standard assembler. In the case of the valFORTH assembler, this is
particularly true.

The valFORTH assembler offers the programmer the following improvements
over a standard assembler:

1) IF...THEN...ELSE structures which use positive logic
rather than negative logic.

2) BEGIN...UNTIL structures for post-testing indefinite
Toops.

3) WHILE...REPEAT structures for pre-testing indefinite
loops.

4) BEGIN...AGAIN structures for unconditional looping.

5) Full access to the FORTH operating system and its
capabilities such as changing bases.

6) Complex assembly time calculations.
7) Mixed high level FORTH with assembly code to take
full advantage of each.

8) Full macro capability.

The following is a complete description of the valFORTH assembler. This
description assumes a working knowledge of 6502 assembly language programming
and related terms.

The purpose of the FORTH assembler is to allow machine language programming
without the need to abandon the FORTH system. Words coded in assembly language
must follow the standard FORTH dictionary format and must adhere to certain
guidelines regarding their coding.

Assembly Tanguage programmers typically have two methods of storing
programs into RAM. The machine code can be poked directly into memory, or an
assembler can be used to accomplish this. The former method is brutal, but it
has the advantage that precious memory is not taken up by the assembler. The
drawback, of course, is loss of readability and ease of modification. FORTH
allows both of these methods to be employed.

VI-1

ValFORTH 6502 Assembler

The words "," and "C," can be used to poke any machine language program
into the dictionary. This is used only when memory restrictions prohibit the
use of an assembler or if it is assumed that no assembler is available.

In high level FORTH, words are compiled into the dictionary using the
following form:

name high-Tevel-FORTH... ;
When compiling a machine coded word, this becomes:
CODE name machine-code... C;

In this example, the word "CODE" creates a header for the next word in
much the same way ":" creates a header. The difference 1ies in the fact that
":" informs the system that the following definition is high level FORTH, while
"CODE" indicates that the definition is a machine or assembly language
definition. In the same manner, ";" terminates a high level FORTH definition
while "C;" terminates a code definition.

To clarify this, a code definition will be programmed that will clear the
top line of the current video display on an Atari 800 microcomputer. Note that
video memory is pointed to by the address stored in locations 88 and 89 (decimal).
The 6502 code is shown in 1isting 1.

CLR TYA ; Y comes in with 0; 0 means a blank
LDY #39 ; 40 characters/line (0 thru 39)
LOOP STA (88), Y 3 Fill from end to beginning
DEY 3 Done?
BPL LOOP ; Keep going if not
JMP NEXT ; Re-enter the FORTH operating system

Listing 1
The CODE definition equivalent to listing 1 would be:

HEX (put in hex mode)
CODE CLR (define code word)
98 C, (poke in code)
AO C, 27 C,
91 C, 58 C, +—
88 C,
10 C, FB C, —
Cs; DECIMAL (end assembly)

~First, the FORTH system is put into the hexadecimal mode so that opcode
values need not be converted to decimal. Next, the word CODE puts the system
into an assembly mode and enters the new word CLR into the dictionary as a
machine Tanguage word. The opcodes are then byte compiled ("C,") into the
dictionary. Note that for the final jump to re-enter FORTH, the predefined
word NEXT was word compiled (",") into the dictionary. The word C; terminates
the assembly process. The system is then restored to the decimal mode.

VI-2

This method can always be used, but it is very tedious. FEach opcode must
be looked up, and all relative branches calculated. Besides introducing a
great source for error, if a single opcode is added or deleted, it is possible
that many jumps must be re-calculated. For this reason, using the assembler
is the prescribed method for entering machine language routines.

Unlike the standard assembler which has four fields (the label field,
the operation field, the operand field, and the comment field), the FORTH
assembler has only three fields. 1In a FORTH assembler, there is no explicit
label field, but there is an implied label field through the use of the assembler
constructs IF, and BEGIN, described later. In addition, the remaining three
fields in the FORTH assembler are in reversed order (as is standard for the
FORTH language). In other words, the operand precedes the operation, and
remarks can be embedded anywhere.

In compiling an assembly word, the FORTH assembler ultimately uses either
"," or "C," and for this reason assembly mnemonics traditionally end with a
comma. valFORTH equivalents are shown in chart 1.

Standard Assembler ValFORTH Assembler
LDX COUNT COUNT LDX,
JMP COUNT+1 COUNT 1+ JMP,
LDA #3 # 3 LDA,
ADC N N ADC,
STY TOP,X TOP ,X STY,
INC BOT,Y BOT ,Y INC,
STA (TOP,X) TOP X) STA,
AND (BOT),Y BOT)Y AND,
JMP (POINT) POINT)JMP,
DEC N+4 N4+ DEC,
DEX DEX,
ROL A A ROL,

or ROL.A,
Note: # 9 LDA, = 9 # LDA,
TOP ,X ROL, = ,X TOP ROL, etc.

Chart 1

Converting the program given in listing 1 to FORTH assembly mnemonics

valFORTH 6502 Assembler
we have:

DECIMAL
CODE CLR
TYA, (TYA)
39 LDY, (LDY #39)
BEGIN, (LOOP)
88)Y STA, (STA (88),Y)
DEY, (DEY)
MI UNTIL, (BPL LOOP)
NEXT JMP, (JMP NEXT)
Cs

VI-3

valFORTH 6502 Assembler

In the above example, a BEGIN ... UNTIL, clause (described in the next
section) is used. By using this structure, no labels are necessary and positive
logic is used rather than negative logic (i.e., "repeat until minus" instead
of "if NOT minus, then repeat"). Note that the FORTH assembler compiles

exactly the same machine code as the standard assembler, it simply makes the
assembly coding easier.

Control Structures

Allowing labels within assembly language programming would make the FORTH
assembler needlessly Tong and slow. To get around the problem of test branching,
the ValFORTH assembler has a very powerful set of control structures similar to
those found in high Tevel FORTH.

The IF,...ENDIF, and IF,...ELSE,...ENDIF, clauses

The IF, construct which handles conditional downward branches has the
following two forms:

...code... ...code...
flag IF, flag IF,
...true code... ...true code...
ENDIF, ELSE,
...code... ...false code...
ENDIF,
...code...

where "flag" 1is one of the 6502 statuses: NE , EQ , CC , CS , VC , VS ,
MI , or PL. The following are a few examples of how these are used.

Note: When the FORTH inner interpreter passes control to an assembly language
routine, the Y register always contains a zero value and the X register must
be preserved as it is used by the FORTH system to maintain the parameter stack.
See the section on parameter passing for more information. ‘

; Code routine for 1+

ONEPL INC 0,X ; increment Tow byte of 16 bit value
BNE THERE ; carry out of Tow?
INC 1.,X ; increment high byte if so

THERE JMP NEXT ; re-enter FORTH system

Now in ValFORTH assembly language:

CODE ONEPL (define word)
0 ,X INC, (increment Tow byte)
EQ IF, (if result was zero,)
1 ,X INC, (then bump the high byte)
ENDIF,
NEXT JMP, (exit to FORTH)

ValFORTH 6502 Assembler

Note: In the following example, CONIN is assumed to be predefined.

5 Input routine
INPUT JSR CONIN ; Go get character, comes back in A

CMP #$0D Is it a carriage return?

BNE INP1 If not, do something else
...codel... execute code for carriage return
JMP INP2 do not execute "normal" code

INP1 ...code2...
INP2 ...code3...
JMP NEXT

execute code for normal keys
execute code more common code
re-enter FORTH system

Ve We UL Ve Ue W L

The equivalent valFORTH version would be:

HEX
CODE INPUT
CONIN JSR (Get character)
0D CMP, (carriage return?)
EQ IF, (If so, then)
...codel... (execute c¢/r code)
ELSE, (otherwise)
...code2... (execute normal code)
ENDIF,
...code3...
NEXT JMP, (re-enter FORTH system)
C; DECIMAL

The BEGIN,...UNTIL, clause

Another useful structure is the BEGIN,...UNTIL, construct which allows
for post-testing indefinite looping. The BEGIN,...UNTIL, construct has the
following form:

...codel...

BEGIN, codeZ is repeatedly
...codezZ... executed until "flag"

flag UNTIL, is true.

...code3...

The following 6502 routine waits until a carriage return has been typed.

5 WAIT until c/r

WAIT JSR CONIN ; Go get a character, comes back in A
CMP #$0D ; Is it a carriage return?
BNE WAIT ; Ask again if not
JMP NEXT ; Return to FORTH

Using the BEGIN, clause, this becomes

NEXT
CODE WAIT (Code name WAIT)
BEGIN, (Begin waiting)
CONIN JSR, (Get a character)
0D CMP, (Carriage return?)
EQ UNTIL, (Toop up until so)
NEXT JMP,
C; DECIMAL

VI-5

valFORTH 6502 Assembler

The BEGIN,...WHILE,...REPEAT, clause

In the valFORTH assembler, there is another valuable control structure.
It is the BEGIN,...WHILE,...REPEAT, structure. The WHILE, clause allows pre-
testing indefinite Toops to be easily programmed. It takes the form:

...codel...

BEGIN, Code2 and code3 are repeatedly
...code?... executed until "flag" become

flag WHILE, false, at which time program
...code3... control proceeds to coded.

REPEAT,

...coded...

A common example of the WHILE, clause is getting a line of input text terminated
by a carriage return.

; Get line of text (note: Y=0 on entry always)
GETLN JSR CONIN Get one character

CMP #$0D ; C/R terminates input
BEQ GETL1 ; If not a C/R then
STA BFFR,Y ; store the character
INY ; Bump buffer pointer
JMP GETLN ; Go back for more

GETL1 JMP NEXT Exit to FORTH

Using the WHILE, clause in valFORTH, we have:

HE X
CODE GETLN
BEGIN,
CONIN JSR, (Get a character)
0D CMP, (Carriage return?)
NE WHILE, (If not,)
BFFR ,Y STA, (then store the character)
INY, (and bump the pointer)
REPEAT, (Repeat all of the above)
NEXT JMP,
C; DECIMAL

valFORTH 6502 Assembler

The BEGIN,...AGAIN, clause

The final control structure is the BEGIN,...AGAIN, structure. This
structure allows the use of unconditional looping in assembly language routines.

Although its use is rare, it can reduce code size considerably. It takes the
following form:

...codel...

BEGIN, Repeatedly execute code2
...code?... and coded4 until "flag"
flag IF, becomes true, in which

...code3... case, program execution
re-entry-point JMP, continues with code3 and
ENDIF, a system re-entry made.
...coded. ..
AGAIN, C;

The best example of the AGAIN, clause is in the coding of the CMOVE routine:

; Byte at a time front end memory move
CMOVE LDA #3 Get top three stack items

JSR SETUP ; Move them to N scratch area
CMOV1 CPY N ; Time to decrement COUNT high?
BNE CMOV?2 5 Nope
DEC N+1 ; Yes, so do it
BPL CMOV2 ; Bypass exit if not done
JMP NEXT ; Exit to FORTH system
CMOV2 LDA (N+4),Y ; Get byte to move
STA (N+2),Y ; Move it!
INY ; Bump byte pointer
BNE CMOV1 ; Keep going until ready to
INC N+5 ; bump high bytes of both
INC N+3 H "to" and "from" addresses
JMP CMOV1 ; Do it all again

Using the AGAIN, clause, this becomes:

CODE CMOVE
3 LDA, (Prepare for memory move)
SETUP JSR,
BEGIN,
BEGIN, (Start the process)
N CPY, (done?)
EQ IF,
N 1+ DEC, (Maybe, keep checking)
MI IF,
NEXT JMP, (Re-enter FORTH system)
ENDIF,
ENDIF,
N 4 +)Y LDA, (Get byte to copy)
N 2+)Y STA, (Store in new location)
INY, (Bump pointer)
EQ UNTIL,
N 5 + INC, (Bump addresses)
N 3 + INC,
AGAIN, (Do it all again)
C; DECIMAL

VI-7

valFORTH 6502 Assembler

Parameter Passing

One of the most useful features of the FORTH language is its ability to
use a parameter stack for passing values from one word to another. For
assembly language routines to really be useful in the FORTH system, there must
be some facility for these routines to access this stack. Likewise, there
should be some way in which to access the return stack as well. This section
details exactly how to make the best use of both stacks.

Since the FORTH system maintains dual stacks and the 6502 supports only
one, it is necessary to simulate one of the stacks. For ease of stack manipu-

lation, the parameter is simulated; the return stack uses the hardware stack
of the microprocessor. :

The simulated stack uses the 0-page,X addressing mode of the 6502.
For example, the following statements show how the parameter stack is organized.

LDA 0,X Low byte of item on top of stack

INC 1,X High byte of top item

ADC 2,X Low byte of item second on stack

EOR 3,X High byte of 20S

RNL 4,X Low byte of item third on stack
5,X

etc.

In high level FORTH, the word DROP drops (or pops) the top value from
the stack. The code definition for DROP is:

CODE DROP INX, INX, NEXT JMP, C;

In the same way, values can be "pushed" to the stack. Note that the X register
must be preserved between FORTH words or the parameter stack is lost! Thus if
the X register is needed in a code definition, it must be saved upon entry to
the routine and restored before returning to the FORTH system. The special

location XSAVE is reserved for this: (The word XSAVE has been defined as a
FORTH constant.)

STX XSAVE Save the X register
LDX XSAVE Restore the X register

In all the examples given so far, the code definitions have re-entered
the FORTH system through the normal re-entry point called NEXT. The following
is a complete description of all possible re-entry points: (In all of the
following code examples, standard 6502 assembler format has been used for ease

of comprehension. ATl valFORTH assembler equivalents can be found in appendix A.)

The NEXT re-entry point

The NEXT routine transfers control to the next FORTH word to be
executed. A1l FORTH words eventually come through the NEXT routine.
Likewise, all other re-entry points come through NEXT once they have com-
pleted their special tasks. The next routine is typically used by words

valFORTH 6502 Assembler

The NEXT re-entry point (cont'd)

such as 1- which do not modify the number of arguments on the

stack. The word NEXT is defined as a FORTH constant. NXT, is an
abbreviation for NEXT JMP, .

Example: ;5 1- routine
ONEM LDA 0,X ; Borrow from low byte?
BNE ONE1 ; If not, ignore correction
DEC 1,X ; Decrement high byte
ONE1 DEC 0,X ; Now do the Tow
JMP NEXT ; Re-enter FORTH
Listing 2

The PUSH re-entry point:

The PUSH routine pushes a 16 bit value to the parameter stack whose
low byte is found on the 6502 return stack and whose high byte is found
in the accummulator. The X register is automatically decremented twice
for the two bytes. This routine is typically used for words such as
OVER or DUP which leave one more argument than they expect. The word
PUSH has been defined as a FORTH constant. PSH, is an abbreviation
for PUSH JMP,

Example: 5 DUP routine
DUP LDA 0,X ; Get Tow byte of TOS
PHA ; Push it
LDA 1,X ; Put high byte in A
JMP PUSH ; Put it on the P-stack

Listing 3
The PUT re-entry point:

The PUT routine replaces the value currently on top of the parameter
stack with the 16 bit value whose Tow byte is found on the 6502 stack and
whose high byte is in the accumulator. This is used by words such as ROT
or SWAP which do not change the number of values on the stack. The word
PUT has been defined as a FORTH constant. PUT, is an abbreviation for

PUT JMP, .
Example: ; SWAP routine
SWAP LDA 2,X ; Low byte of 2nd value

PHA ; Save it
LDA 0,X ; Put Tow byte of TOS
STA 2,X ; into Tow byte of 20S
LDA 3.X ; Hold high byte of 20S
LDY 1,X ; Put high byte of TOS
STY 3,X ; into high byte of 20S
JMP PUT ; Replace TOS no

Listing 4

valFORTH 6502 Assembler

The PUSHOA re-entry point

The PUSHOA re-entry point pushes the 8 bit unsigned value in the
accumulator as a 16 bit value with the upper 8 bits zeroed. This word is
very commonly used by words which Teave a boolean flag on the parameter
stack such as ?TERMINAL. The word PUSHOA has been defined as a FORTH
constant. PSHA, is an abbreviation for PUSHOA JMP, .

Example: ;° ?TERMINAL routine

QTERM LDA $DO1F Read Atari CONSOLE keys

EOR #7 ; Anything pressed?
BEQ QT1 ; If not, go push false
INY ; Else push a true

QT1 TYA s Put Y (O or 1) in A

JMP PUSHOA ; Go push the result
Listing 5

The PUTOA re-entry point:

The PUTOA routine replaces the value currently on top of the parameter
stack with the 16 bit value whose low byte is in the accumulator and whose
high byte is set to zero. This is used by words such as C@ which simply

"~ replace their arguments on the stack. The word PUTOA is defined as a FORTH
constant. PUTA, is an abbreviation for PUTOA JMP, .

Example: ; Byte fetch
CFCH LDA (0,X) ; Load byte indirectly

JMP PUTOA ; Replace the address
; with the contents

Listing 6
The BINARY re-entry point

The BINARY re-entry point drops the value on top of the parameter
stack and then performs the PUT operation described above. This word is
commonly used by words such as XOR which use one more argument than they
leave. The word BINARY has been defined as a FORTH constant.

Example: 3 Exclusive or TOS with 20S

XOR LDA 0,X ; Get Tow byte of top value
EOR 2,X ; XOR it with Tow of 20S
PHA ; Save it
LDA 1,X ; Now do same for high bytes
EOR 3,X ; Result in A
JMP BINARY ; Go DROP , PUT

Listing 7

VI-10

valFORTH 6502 Assembler

POP and POPTWO re-entry points

The POP and POPTWO re-entry points are used when values must be
dropped from the parameter stack. POP performs a DROP, while POPTWO
performs a 2DROP. Most words which can use BINARY can use POP. The words
POP and POPTWO have been defined as FORTH constants. POP, is an
abbreviation for POP JMP, and POP2, is an abbreviation for POPTWO JMP, .

Examples: 3 Another XOR routine

XOR LDA 0,X ; Get Tow byte
EOR 2,X ; XOR with other low byte
STA 2,X 5 Put directly on stack
LDA 1,X ; Do the same for high bytes
EOR 3,X
STA 3,X
JMP PQP ; Remove unneeded TOS item

Listing 8

5 C! routine

CSTR LDA 2,X 5 Get byte to store
STA (0,X) ; Store it!

JMP POPTWO ; Drop byte and address
Listing 9
The SETUP routine

A very useful routine in the FORTH system is the code routine SETUP.
On the 6502, 0-page addressing is typically faster than absolute address-
ing. Also, some instructions, such as indirect-indexed addressing, can use
only 0-page addresses. The SETUP routine allows the assembly language
programmer to transfer up to four stack values to a scratch pad in the
0-page for these operations. The predefined name for this area is N.
The calling sequence for the SETUP routine is:

LDA #num ; Move "num" values to N, ("num" = 1-4)
JSR SETUP ; then drop "num" values from the stack

The SETUP routine moves one to four values to the N scratch area
and drops all values moved from the parameter stack. These values are
stored in the following order:

LDA N ; Low byte of value that was TOS

EOR N+1 ; High byte (N 1+ EOR,)
ADC N+2 ; Low byte of value that was 20S

STY N+3 ; High byte (N 3+ STY,)
INC Nt+4 ; Low byte of 30S (N4+ INC,)
DEC N+7 ; High byte of value that was 40S

Words such as CMOVE and FILL which use indirect-indexed addressing
typically use the SETUP routine (see the BEGIN,...AGAIN, example). The
word SETUP has been defined as a FORTH constant.

VI-11

valFORTH 6502 Assembler

Return stack manipulation

The FORTH return stack is implemented as the normal 6502 hardware -
stack. To push and pop values, the 6502 stack instructions PHA and PLA
can be used. Sometimes it is also necessary to manipulate the data on the
return stack (such as for DO looping). Using the normal stack operations
to do this can be tedious. Using indexed addressing, the return stack
can be manipulated in the same manner as the parameter stack.

Examples: 3 >R routine

TOR LDA 1,X ; Pick up high byte
PHA ; Push it to R
LDA 0,X ; Now do the Tow byte
PHA ; It's done!
JMP POP ; Now, "Tose" TOS
Listing 10
5 3rd Toop index (I , I' , J, ... K)
K STX XSAVE ; Save P-stack pointer
TSX ; Get R-stack pointer
LDA $109,X ; 101-102,...,109-10A, (L-H)
PHA ; Push Tow byte of 3rd item
LDA $10A,X ; A now has high byte
LDX XSAVE ; Restore P-stack pointer
JMP PUSH ; Push the index
Listing 11 —
Machine Language Subroutines in valFORTH
When coding in assembly Tanguage, it is often useful to be able to make
subroutine calls for often used operations. Using CODE makes it possible to
do this, but it is not recommended. The following subroutine uses CODE.
CODE S1+ (Subroutine 1+)
0 ,X INC, (INC 0,X)
EQ IF, (BNE *+4)
1 ,X INC, (INC 1,X)
ENDIF, ()
RTS, (RTS)
Cs
This subroutine could now be used in assembly language routines in the follow-
ing way:
CODE 1+ (Another 1+ routine)
' S1+ JSR, (JSR S1+
NEXT JMP, (JMP NEXT)
Cs
-

VI-12

valFORTH 6502 Assembler

This works fine, but there is one slight problem. If the user types S1l+ as a
command (i.e., it is not called, but executed) the FORTH system will "crash"
when the RTS statement is encountered. This is because FORTH does not call its
words, but jumps to them. For this reason, CODE is not used. A word which
acts 1ike CODE but protects the system is needed.

In the code for 1+ above, it was necessary to ' (tick) the subroutine to
find its address. It would be desirable if we could simply type its name and
have it return its address (just as NEXT and PUSH do). This is possible. The
word SUBROUTINE below allows this (note that this word is not automatically
loaded with the assembler, it must be typed in by the user).

: SUBROUTINE (new word ‘SUBROUTINE)
0 VARIABLE (is Tike a VARIABLE)
-2 ALLOT (discard the value of 0)
[COMPILE] ASSEMBLER (Put into assembly mode)
?EXEC ICSP (Set/check for errors)

The word SUBROUTINE can be used in the same way CODE is except that
SUBROUTINEs end with an RTS instruction while CODE routines must end with a
jump to a re-entry point. When the word defined using SUBROUTINE is executed,
the entry point to the routine is left on the stack similar to the way in which
a word defined using VARIABLE Teaves an address. The following is an example
of subroutine usage.

SUBROUTINE 2'SCOMP (Two's complement)
SEC, (routine
LDA,
,X SBC, (i.e., TOS => - TOS)
X STA,
LDA,
, X SBC,
,X STA,
TS,

V=L, OOO0O0O

Cs

It can now be used as such:

CODE ABS (Take abs. value of TOS)
1 ,X LDA, (IsT0OS <0 ?)

MI IF,
2'SCOMP JSR, (If so, TOS => -TOS)

ENDIF,
NEXT JMP, (Exit to FORTH system)

When the new word 2'SCOMP is executed directly, it leaves its address
on the stack. When it is called by a subroutine, it performs a two's comple-
ment on the top stack value. This dual type of execution allows safe access
to assembly language subroutines.

VI-13

valFORTH 6502 Assembler

Macro Assemblies in valFORTH

FORTH assemblers use a reversed form of notation so that all the benefits
of the standard FORTH system are available. In other words, anything that can
be done in FORTH can be done during assembly time in a code definition. This

is because all of the assembler opcodes are actually FORTH words which take
arguments from the parameter stack. Thus

NEXT JMP,

actually puts the address of the NEXT routine (NEXT is a FORTH constant) onto

the parameter stack. The word JMP, then compiles the address into the dictionary.

Here is a simplified definition (it does not test for indirect jumping) for the
JMP, opcode:

HEX
: JMP, (address ---)
4C C, (compile in JMP opcode)
s (compile in the address)
5 DECIMAL

A1l assembly words are designed in this fashion. Thus the necessity for
operands to precede opcodes becomes clear. This allows the use of complex
assembly time calculations that no ordinary assembler would ever support (e.g.

no standard 6502 assembler would allow the use of the SIN function for generat-
ing a data table).

Most assemblers do allow the use of the basic operations: + , - , * , / ,
and & These are easily used in the valFORTH system:

LDA #COUNT&S$FF COUNT FF AND # LDA,
LDY #NAME/$100 COUNT 100 / # LDY,
EOR N+6 N 6 + EOR,
LDX #"A"+$80 ASCIT A 80 + # LDX,
etc.

The Tooping structures IF, and BEGIN, each leave two values on the stack
during assembly time. The first is a branch address, the second is an identifi-
cation code. When ENDIF, is executed, it checks the identification code to
verify that structures have not been illegally interleaved (i.e., BEGIN, ...
ENDIF,). If everything checks out, ENDIF, then calculates the branch offset
required by the IF, clause, otherwise an error is reported. The BEGIN, clause
functions in the same manner. Thus, the words IF, and BEGIN, are predefined
macro instructions in the valFORTH assembler.

The fact that a FORTH assembler is nothing but a collection of words means
that the assembler, 1ike the FORTH language itself, is extensible. In other
words, macro assemblies can easily be performed by defining new assembler
directives. Take the following code extract which outputs a text string:

VI-14

valFORTH 6502 Assembler

...code... R

JSR CRLF ; Skip to next line
JSR PRTXT ; Call print routine
.BYTE 11,'valFORTH 1.' 3 String to output
LDA REL 5 Get release number
JSR PRTNM 3 Print the number
JSR CRLF ; Issue c/r
...code... 5

This code prints out the string "valFORTH 1.x" where "x" is the release
number. Note that the routine PRTXT does not exist, it is simply used here
for example purposes. The PRTXT routine "pops" the return address which points

to the output string, picks up the length byte and adds it to the return address.

The return address, which now points to the LDA instruction is "pushed" back
onto the stack. The PRTXT routine still has a pointer to the string which it
then prints out. Finally, it dones an RTS and returns control to the calling
program. The release number is then printed out.

Assuming that the PRTXT routine is used quite often, it would be desirable
to make it an assembler macro. A word which automatically assembles in the
subroutine call to PRTXT and then assembles in a user specified string would be
quite handy. In valFORTH, this is easily accomplished:

ASSEMBLER DEFINITIONS This is an assembler word)

(
HEX (Put system in base 16)
: PRINT" (Command form: PRINT" text")
20 C, PRTXT , (compile in JSR PRTXT)
22 WORD (Now the string upto ")
HERE C@ 1+ ALLOT (Bump dictionary pointer)
5 DECIMAL (a1l done,)
IMMEDIATE (make word execute even at)
FORTH DEFINITIONS (compile time.)

This word could now be used in ValFORTH assemblies in the following manner:

...code...

CRLF JSR, (Skip to next line)
PRINT" ValFORTH 1." (Print out string)
REL LDA, (Get release number)
PRTNM JSR, (Go print it)

CRLF JSR, (Skip to next line)
...code...

Using the newly defined PRINT" macro, strings no longer need to be counted,
and since there is less text to enter, typing errors are reduced. Other useful
macros which could be designed are words which allow conditional assembly or
automatically set up I0CB blocks for Atari operating system calls. Experienced
assembly language programmers typically have a set of often used routines
defined as macro instructions for quicker program development.

VI-15

valFORTH 6502 Assembler

Compatability With Other Popular Assemblers

There are several other versions of FORTH out which have 6502 assemblers.
The two major versions are the Forth Interest Group's written by William
Ragsdale, and the version put out by the Atari Program Exchange written by
Patrick Mullarky. The valFORTH assembler is a superset of both of these fine
assemblers and is fully compatible with both versions.

ATthough not stated previously in the documentation, there are several
ways in which to implement the IF, , WHILE, and UNTIL, structures. The
valFORTH assembler was designed with transportability in mind. Although the
recommended method is the valFORTH version, each of the following may be used.

valFORTH Fig version APX version
EQ IF, = IF, IFEQ,
NE IF, = NOT IF, IFNE,
CS IF, CS IF, IFCS,
cC IF, CS NOT IF, IFCC,
VS IF, | meeeee- IFVS,
ve Ifr, | emeeaes IFvC,
MI IF, 0< IF, IFMI,
PL IF, 0< NOT IF, IFPL,
EQ WHILE, | eme—— el
NE WHILE, | mmeee—m ol
CC WHILE, | mmmeeem L Ll
CC WHILE, | emmme—m L Ll
VS WHILE, | = emee——m ol
VC WHILE, | emmmeem ol
MI WHILE, | emmee—m ool
PL WHILE, | mmee——m
EQ UNTIL, 0= UNTIL, 0= UNTIL,
NE UNTIL, = NOT UNTIL, 0= NOT UNTIL,
CS UNTIL, CS UNTIL, | —-e--
CC UNTIL, CS NOT UNTIL, ————
VS UNTIL, —————-- -——---
VC UNTIL, | mmeeeem L aea
MI UNTIL, 0< UNTIL, | —==--
PL UNTIL, 0< NOT UNTIL, | ====-

Chart 2

VI-16

valFORTH 6502 Assembler

In all versions, the word END, is synonymous with the word UNTIL,. Likewise,
THEN, is synonymous with ENDIF,.

In the valFORTH and Fig assemblers, compiler security is performed to give
added protection to the user against assembly errors. To accomplish this, the
word C; or its synonym END-CODE is used to terminate the assembly word and
perform the check. To remain compatible with APX FORTH, C; is not required in
this release of valFORTH. However, it is strongly recommended that C; be
used. Although C; and END-CODE are identical, C; is used in-house at Valpar
for brevity. (Note that in later releases of valFORTH, C; will become mandatory).

There are several ways in which the indirect jump in the 6502 architecture
is implemented in FORTH assemblers. The valFORTH assembler supports three
common versions. Thus,

JMP (VECTOR)
can be:
VECTOR YJMP,
VECTOR) JMP,
or VECTOR JMP(),

It is recommended that the first version be used.

It must be remembered that valFORTH's additional constructs may not be
recognized by assemblers available from other vendors. If assembly Tistings
are to be published for general 6502 FORTH users, it is suggested that valFORTH's
advanced features not be used so that novice programmers can still make use of
valuable pieces of code.

VI-17

Appendix A

valFORTH 6502 Assembler

valFORTH Code Equivalents

This appendix gives the valFORTH assembly code for all 6502 code listings
which are marked. Although 1isting 1 has already been translated to valFORTH
assembly code, it is reproduced here for completeness.

Listing 1
DECIMAL
CODE CLR
TYA,
39 LDY,
BEGIN,
88)Y STA,
DEY,
MI UNTIL,
NEXT JMP,
Cs
Listing 2
CODE 1-
0 ,X LDA,
NE IF,
1 ,X DEC,
ENDIF,
0 ,X DEC,
NEXT JMP,
Cs
Listing 3
CODE DUP
0 ,X LDA,
PHA,
1 ,X LDA,
PUSH JMP,
Cs
Listing 4
CODE SWAP
2 ,X LDA,
PHA,
0 ,X LDA,
2 ,X STA,
3 ,X LDA,
1 ,X LDY,
3 ,X STY,
PUT JMP,

(Move a blank [0] into A)
(Move count into V)
(Start Tooping)

(Move in a blank)
(decrement pointer)

(Go until count < 0)

(Do a normal re-entry)

(Decrement 16 bit value)
(Get the low byte)

(If a borrow will occur,)
(then borrow from high...)

(Decrement Tow)
(Re-enter FORTH)

(Duplicate T0S)

(Get low byte)

(Set up for PUSH)

(Put high in Accumulator)
(Push 16 bit value)

(Exchange top stack items)
(Get low byte of 20S)
(Save it)

(Put low byte of TOS)

(into low byte of 20S
(Save high byte of 20S)
(Put high byte of T0S)

(into high byte of 20S)
(Put old 20S dinto TOS)

VI-18

valFORTH 6502 Assembler

Listing 5
HEX
CODE ?TERMINAL
DO1F LDA,
7 EOR,
NE IF,
INY,
ENDIF,
TYA,
PUSHOA JMP,
C; DECIMAL
Listing 6
CODE C@
0 X) LDA,
PUTOA JMP,
Cs
Listing 7
CODE XOR
0 ,X LDA,
2 ,X EOR,
PHA,
1 ,X LDA,
3 ,X EOR,
BINARY JMP,
Cs
Listing 8
CODE XOR
0 ,X LDA,
2 ,X EOR,
2 ,X STA,
1 ,X LDA,
3 ,X EOR,
3 ,X STA,
POP JMP,
C,
Listing 9
CODE C!
2 ,X LDA,
0)X STA,
POPTWO JMP,
Cs

(Any console key pressed?)
(Load status byte)

(Any Tow bits reset?

(If so,)

(then leave a true value)

(Put true or false into A)
(Push to parameter stack)

(Byte fetch routine)
(Load from address on T0S)
(Push byte value)

(One example of XOR)

(Get Tow byte of T0S)
(Exclusive or it with 20S)
(Push low result)

(Get high byte of T0S)
(XOR it with high of 20S)
(Drop TOS and replace 20S)

(Another exclusive or)
(Get low byte of TO0S)
(XOR with low of 20S)
(Put in low of 20S)

(Get high byte of T0S)
(XOR with high of 20S)
(Put in high of 20S)
(Drop TOS)

(Byte store routine)
(Pick up byte to store)
(Indirectly store it)
(Drop address and byte)

VI-19

Listing 10
CODE >R
1 ,X LDA,
PHA,
0 ,X LDA,
PHA,
POP JMP,
Cs
Listing 11
HEX
CODE K
XSAVE STX,
TSX,
109 ,X LDA,
PHA,
10A ,X LDA
XSAVE LDX,
PUSH JMP,
C; DECIMAL

valFORTH 6502 Assembler

(Transfer TOS to R-stack)
(Pick up high of T0S)
(Put on R-stack)
(Pick up Tow of TOS)

(Put on R-stack)

(Lose top stack item)

(3rd inner DO loop index)
(Save P-stack pointer)

(Pick up R-stack pointer)
(Pick up Tow byte of value)
(Save it)

(Put high byte of value in A)
(Restore P-stack pointer)
(Push 16 bit index value)

VI-20

valFORTH 6502 Assembler

Appendix B Quick Reference Chart

valFORTH 6502 Assembly Words

ASSEMBLER (---)
Calls up the assembler vocabulary for subsequent assembly language
programming.
CODE cccc (---)

Enters the new word "cccc" into the dictionary as machine language
word and calls up the assembler vocabulary for subsequent assembly language
programming. CODE also sets the system up for security checking.

Cs (===
Terminates an assembly language definition by performing a security

check and setting the CONTEXT vocabulary to the same as the CURRENT
vocabulary.

END-CODE (---)

A commonly used synonym for the word C; above. The word C; is
recommended over END-CODE.

SUBROUTINE <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>