FOR ATARI HOME COMPUTERS

OWNER’S MANUAL
AND TUTORIAL

[D®I\’T AS K]

COMPUTER SOFTWARE

2265 Westwood Bivd., Suite B-150, Los Angeles, CA 90064
. (213) 477-4514

pm ANIMATOR
OWNER’S GUIDE/TUTORIAL

by
Roger Bush
and

Don’t Ask Computer Software

Program © 1983 - Roger Bush

Documentation © 1983 - Don’t Ask Computer Software, Inc.

ATARI is a trademark of Atari Inc.

1

DISCLAIMER AND LIMITED WARRANTY

This software product and the attached instructional materials are sold “AS 1S”
without warranty as to their eprformance. The entire risk as to the quality and
performance of the computer software program is assumed by the user. The user,
and not the manufacturer, distributor or retailer assumes the entire cost of all
necessary service or repair to the computer software program. DO'TASK COMPUTER
SOFTWARE, Inc. shall have no liability or responsibility to the purchaser or any other
person or entity with respect to any liability, loss or damage caused or alleged to be
caused directly or indirectly by this product, including but not limited to any
interruption in service, loss of service, loss of business and anticipatory profits or
consequential damages resulting from the use or operation of the software,
hardware, or documentation portions of this product.

However, to the original purchaser only, DON'T ASK COMPUTER SOFTWARE, Inc.
warrants that the medium on which the program is recorded will be free from defects
in materials and faulty workmanship under normal use and service for a period of
ninety (90) days from the date of purchase. If a defect in the medium should occur
during this period, the medium should be returned for repair or replacementto DON'T
ASK or to its authorized dealer. After this ninety day period, mediainoperable forany
reason may be returned to DON'T ASK only along with $5.00 for prompt replacement.

The above warranties for goods are in lieu of all other express warranties and no
implied warranties of merchantability and fitness for a particular purpose or any other
warranty obligation on the part of DON'T ASK shall last longer than ninety (90) days.
Some states do not allow limitations on how long an implied warranty lasts, so the
above limitation may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights which vary from state to state.

NOTICE

This software and accompanying instructional materials are copyrighted. You are
prohibited from reproducing, translating, or distributing the software or instructional
materials in any unauthorized manner other than specified by the “Notice of Non-
Exclusive License,” page 4. Unauthorized copying of these products is a violation of
federal law. (Title 17, U.S.-Code, Section 506.) Violation may carry a fine of up to
$50,000, or imprisonment, or both.

Don’t Ask Computer Software, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice. DON'T ASK can
have no responsibility for errors, whether factual or typographical, in this documentation.

TABLE OF CONTENTS

INTRODUGCTION. . .. ttittit e tie ettt teeeeeaeenereeraaesnseeasenesnsenesnsennns 5

SECTION | - Player-Missile Tutorial
Chapter 1 — What's So Great About Player-Missile Graphics Anyway? 8
Chapter 2 - Bits, Bytes, and their Arithmetic...................oooiiiiiiinnin, 10
Chapter 3= Bit-Map GraphiCs......c.couiiiiiiiiiieiiiieiiierirareacnsanens 14
Chapter 4 - Principles of Player-Missile Graphics...............cooeiiiiiian, 18
Chapter 5 - Memory Maps andthe Shadowcocovviiiiiiininene, 24
Chapter 6 — A Real Example (No Machine Language)...............cccovenen 29

SECTION Il - Owner's Guide to pm ANIMATOR

Chapter 7 - Introduction to Using the Grafix Editor and File Editor........... 31
Chapter 8 - Using the Grafix EQitorccoviiiiiiiiiiiiiiiiiiiiinenn. 33
Chapter 9-Using the File Editor............ooiiiiiiiiiiiiii i 38
Chapter 10 - Incorporating pm ANIMATOR Animation into
Your BASIC Programs.c.veuiereetneeneesneteenasenerasenasenseneenes 40
Chapter 11 - Description and Format of Machine Language
Routines in TOTAL.LLST ...ttt ittt it te e e e enreaneeanns 48
Chapter 12 -~ About the Various Demonstration Programs on the Disk 54
SECTION Il - Advanced Animation Techniques
Chapter 13- Creating Animation.ccoiiiiiiiiiiiiieriieiiennieneenns 57
Chapter 14 - Creating a Realistic Motion Routinecoeune 60
Chapter 15 - Multiple Players and Multicolored Players 65
Chapter 16 = Final NOteS.coviiiiiieiiiiiiiiiiiierentnteeeneneensanens 68
APPENDICES
Appendix | - The Hardware Registers.............coooviiiiiiiiiiiiiiniiienenn, 71
Appendix Il —References.coviiiiiiiiiiiiiiiiiitiriiisiiiisrienenennes 78

NOTICE OF NON-EXCLUSIVE LICENSE

Purchase of pm ANIMATOR grants to the purchaser a non-exclusive license to in-
corporate the TOTAL.LST package into his own programs without paying a licensing
fee. Further, if the purchaser desires to include all or some of the TOTAL.LST
subroutines into commercially marketed software, he may do so if he includes the
following insertion on all packaging materials and manuals: “This product was
produced using pm ANIMATOR, copyright 1983 by Don’t Ask Computer Software,
Inc., 2265 Westwood Bivd., L.A., CA 90064.” No other compensation is required.

INTRODUCTION

What is pm ANIMATOR?

pm ANIMATOR is a powerful set of tools for the Atari computer that allows the straight-
forward incorporation of Player-Missile Graphics (PMG) into BASIC programs.

The Atari computer has the built-in ability to manipulate a series of up to eight
complicated graphic objects (four “players” and four “missiles”) as simply as most
other computers can deal with a single line in a graphic display. The location of these
players and missiles, their movement, and their ability to collide or pass in front of one
another are all controlled by Atari hardware. PMG is a prime reason why the Atari
computer has achieved such preeminence in computer-games and graphics of all
kinds.

There are four major components to the pm ANIMATOR package:

1) THE GRAFIX EDITOR AND FILE EDITOR

These two programs allow you to create the images you want to use in your
programs.

The Grafix Editor is a multi-featured tool kit for the creation of player-missile
graphic images. For sophisticated animated graphics, you use the editor to create a
sequence of graphics frames—each one slightly different from the previous one just as
in the successive frames of a movie —and to view the animation you have created. You
can then easily store these animation frames as player-missile data files to be called
up in your own programs.

The File Editor is a graphics spreadsheet that will allow you to manipulate your
Grafix Editor files visually in order to create the sequences you want. You can combine
smaller files into larger ones, or select individual frames from several different files to
create a new file. The File Editor makes it easy to get the results you want.

2) TOTAL.LST
The highest quality graphics are seldom implemented from BASIC because BASIC is

too slow to rapidly manipulate the large amounts of data that make up elaborate
graphic images, and therefore it produces slow, uneven motion, or even worse, long
delays between different graphics displays. It you are an assembly language
programmer, you can easily get around these problems. But if you are not, pm
ANIMATOR gives you another way out.

Included in the package are some powerful machine-language subroutines that
speed up the “slow spots” in implementing PMG such as loading in ASCIl data,
clearing out areas of memory, and vertical motion. Most of the necessary routines are
built into a BASIC subroutine called TOTAL.LST. Even a special routine for multiplayer
animation is included.

TOTAL.LSTis a“LIST-format” BASIC file that you “ENTER"” into your own program.
You don't have to know any machine language to use the TOTAL.LST program; you
access the routines through the USR statement of BASIC.

All the subroutines in the package are in the “LIST” format so that you can enter
them directly into your own programs. All the subroutines are described in detail in this
manual. The better you come to understand them, the more you will be able to make
use of them.

3) DEMONSTRATION PROGRAMS

There are numerous Atari BASIC demonstration programs on the pm ANIMATOR
disk. There is the main demo which uses everything the package hasto offer, but there
are also seven simpler demonstrations of various features and subroutines. Each of
these is fully documented with REM statements in BASIC code, and you are
encouraged to borrow as many techniques as you can from these demonstrations.

4) THE TUTORIAL

This manual serves as an instruction manual for the features and use of pm
ANIMATOR, as an introduction to PMG itself, and as an introduction to some of the
basic concepts underlying computer graphics. You do not have to learn all the
technical information and terminology in order to use this package, but becoming
familiar with it can only help you become a better programmer.

Therefore, the first six chapters in the manual deal with some of the basics of
computer graphics and the main features of player-missile graphics. If bits and bytes,
bit maps, memory maps, and players are unfamiliar concepts to you, take the time to
go through these chapters.

If you are comfortable with these ideas, go on to the second section of the manual
which deals with how to use the pm ANIMATOR package. Chapters 7, 8 and 9 explain
how to use the Grafix Editor and the File Editor. Chapters 10 and 11 explain how to
implement pm ANIMATOR animation in your own programs; the use of machine
language subroutines via the USR function is explained at this point, as well as the
function of each of the utilities and subroutines provided. Chapter 12 discusses the
demonstration programs provided in this package.

The third section of the manual deals with techniques of player-missile animation
as well as advanced programming topics. The techniques discussed in Chapter 13-16
will be extremely helpful to you when you have mastered the earlier material.

6

The manual concludes with two appendices. One summarizes all the hardware
registers in the Atari that deal with PMG, and contains important information to be used
when programming with PMG. The second appendix is a list of suggested references
on programming and the Atari computer.

Some friendly advice: pm ANIMATOR is a programming tool, not a game that is
ready to play. Despite its power and useful features, it still requires you to come up with
all the clever programming ideas. If you had the finest woodworking tools available,
you would still need to do a lot of carpentry before you could design and build fancy
furniture. Similarly, while pm ANIMATOR puts some powerful tools in your hands, you
will have to work with it awhile before you'll be ready to write the next STAR RAIDERS.
Have fun! It'll be worth it!

SECTION |
Player-Missile Tutorial

Chapter 1

What’'s So Great About Player-Missile Graphics Anyway?

Since you decided to get the pm ANIMATOR package, one of two things must be
true: you know all about PMG and are anxious to find a more convenient way to use it,
oryou've heard that PMG is hot stuff and you want to get in on it. If you fall into the first
category, you can probably skip this chapter as well as the next five. Otherwise, we will
try to point out just what is so great about PMG.

Players and missiles get their names from a highly successful application of Atari’s
advanced graphics system: arcade games. But players and missiles aren’t necessarily
part of games at all. They are simply special graphic images, designed for rapid
movement on the Atari graphics screen, that are independent of any other graphics or
textinformation on the screen. There are four players available for use at any one time
as well as four missiles. Players and missiles are limited in width but extend over the
fultheight of the screen. As you will see, missiles are essentially just narrow versions of
players.

There are several advantages to using players and missiles for Atari graphics. First,
they are independent of everything else on the screen. The usual graphics modes on
the Atari (and on most other computers as well) deal with the screen as a grid of
individual boxes called pixels. Pixels are the “atoms” of the television picture. To put
an image on the screen we have to map out a pattern of pixels, and to move that
image we have to map out a whole new pattern. This kind of graphics is called bit-
mapped graphics; some PMG programmers call it “playfield graphics”. (We will learn
more about bits and bit-mapping in the next two chapters.) In player-missile graphics,
on the other hand, the graphics image is treated as a single entity that we can move
around the screen at will regardless of what else is there. We will also find that each
player and its associated missile (missile 1 has the same color as player 1 and so on) has
its own color that is independent of any other color(s) on the screen. Thus, the four
players give us four additional colors that can be on the screen at any one time

(actually, the four missiles can be combined to form a fifth player with its own fifth
color). Chapter four discusses the fine points of defining players and missiles. For now,
it suffices to say that players and missiles give us independent graphics images to
incorporate into our programs.

Besides this useful independence of screen location and color, PMG has the
important advantage that its graphics images can move quickly. In bit-map graphics or
character graphics, when we want things to move on the screen, a lot of microproces-
sor time is spent erasing the previous graphics images and redrawing the new
graphics images. All this work for the 6502 leaves little time for other tasks, which
limits the complexity and/or execution speed of programs containing elaborate
graphics. PMG comes to the rescue because it is built into the hardware of the Atariin
such away that most of the work is done by the dedicated video chips ANTIC and CTIA
(or GTIA) instead of the 6502 using a neat trick called Direct Memory Access (DMA).
This leaves much more time to execute complicated programs.

So now we know that PMG gives us a graphics system of up to 8 objects that can
move around (or even under!) whatever background we create. It gives us many more
colors on the screen at once, faster motion, and time for much more complicated
programs. Fantastic! So where’s the catch?

Well, PMG is an intrinsic part of the Atari hardware and, compared to the
PLOT/DRAWTO graphics of BASIC, is much more on the nuts-and-bolts (actually bits-
and-bytes) level of the machine. So, to do it right, we need to have a more
sophisticated understanding of the inner workings of the computer than we need to
execute bit-map or character graphics from BASIC. pm ANIMATOR will allow you to
take advantage of the power of PMG without a thorough grounding in the computer's
inner workings. The information contained in this manual will give you enough
knowledge to easily incorporate the pm ANIMATOR routines into your BASIC
programs, and to put sophisticated animated graphics into your own software without
knowing all the ins and outs of the hardware. The following five chapters will give you
enough background information so that you won’t be lost in the language of player-
missile graphics.

Chapter 2

Bits, Bytes, and their Arithmetic

It is not necessary to read the following five chapters to use pm ANIMATOR to
generate amazing arcade-style graphics with Atari BASIC. However, an understanding
of how player-missile graphics works will allow you to make the fullest use of the
“graphics power” that your Atari computer can muster. The following chapters will
start out with a few general programming concepts, and will build upon these
concepts to explain player-missile graphics and its use.

On to the topic at hand; bits and bytes. When information is stored ina computer’s
memory, it is broken down into small pieces which are represented by numbers. Bits
are the smallest units of comuter memory, and they are used to represent the smallest
pieces of information that can be stored in a computer. A bit can take one of two
values, 1 or 0, and these values are used to represent the pieces of information. For
example, suppose we want to represent the information that something is either true
or false. We can represent true with “1” and false with “0”. A single bit can represent
any two pieces of information. Thus, for a screen display, “1” can represent the color
red and “O” can represent the color blue. However, a single bit cannot represent red,
blue, and green. To represent more than two things, we need to use more than one bit.

Bits are the building blocks for storing information in a computer. By using more
than a single bit we can represent more than 2 things. A collection of 8 bits turns out to
be a very convenient object to consider and has a name of its own: a byte. Bytes are
important to us because the Atari home computer uses a 6502 microprocessor, which
is an 8 bit (1 byte) machine. That means that each memory location in the Atari holds 1
byte (remember that a byte is 8 bits). A byte can be written as an eight-digit number
composed of only 1’s and 0's, each of which is a bit. We will write down abyte and learn
some useful terminology.

10

10001000

Each bit in a byte is numbered, so the rightmost bit (also called the least significant
bit) is BIT 0. The leftmost bit is BIT 7. Notice that although there are 8 bits to each byte,
the bit numbers range from 0 to 7. So in the above byte, bits 3 and 7 are true (or have a
value of one). You can also say that bits 3and 7 are turned on. A nibble is 4 bits. BITS O-
3 are the low nibble of a byte and BITS 4-7 are the high nibble.

This (or any) byte can be expressed as a normal decimal number. The trick is to
realize that bytes are actually base 2 or binary numbers. The number 1234 decimal
(base 10) actually means

(1X10x10x10)+(2x10x10)+(3x10)+(4x1)=1234
Similarly, the number 10001000 in base 2 means
(1x2 x2x2x2x2x2x2)+H{0x2x2x2x2x 2x2)+(0x2x2x2x2x 2)+(0x2x2x2x2)+(1 x2x2x2) HO0x2x2)+(0x2)+(0x 1)=10001000
or to simplify things

(1x128)+(0x64)+{0x32)+(0x 1 6H{1x8)+(0x4)+(0x2)+(0x1)

If we do the addition, we find that the binary number 10001000 means 136 in decimal.

We have just converted the binary number to a decimal number. We will do more
conversions shortly.

Base 10 means that each numeral represents some number times a power of ten.
The rightmost number is the number of ones, next to it on the left is the number of tens,
thenthe number of hundreds, and so on. Each columnis a power of ten. Binary (base 2)
works the same way except that the digits represent powers of two instead of powers
of ten.

The largest byte that can be written is 11111111, which translates to 255 in base
ten. Since the smallest byte, 00000000, simply means 0, a given byte can have 256
different values. Just as one bit can be used to represent two different things, one
byte can be used to represent 256 different things.

How can we tell if a numberis base 10, base 2, or even hexadecimal (base 16)? The
following standard rules will apply throughout this manual. If the number is preceded
by a percent sign (e.g. %1000100), then that number will be in base 2. Hexadecimal
(base 16) numbers — hex for short - will be preceded by a dollar sign (e.g. $77). (Base-
16 numbers will be very useful later on.) If there is nothing in front of the number it is
decimal (base 10).

We will now do some more number conversions. We start with the decimal number
254 and convert it to binary. Remember that since 254 is between 0 and 255 the
binary number will be 1 byte long (8 bits). Each bit stands for a power of 2:

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
128 64 32 16 8 4 2 1

11

So, we do the conversion:
254 is larger than 128 so the binary number is now

1xxxxxxx + 126 remainder

(we put x’s in the places we don’t know yet)
126 is larger than 64 so we now have

1100xxx + 62 remainder
62 is larger than 32 so we get

111x0xxxx + 30 remainder
30 is larger than 16 so

1111xxx + 14 remainder
14 is larger than 8 so

11111xxx + 6 remainder
6 is larger than 4 so

111111xx + 2 remainder
2 is equal to 2 so

1111111x + O remainder

since 0=0 the last bit is 0, s0 254=%11111110

The same type of routine will convert any number from one base to another. The

powers of 16 are

16x1=16
16x16=256
16x16x16=4096

So the number $8765 would convert to decimal as follows:

(8x4096)+(7x256)+(6x16)+(5x1)=34661 decimal

Next, we consider how the number 255 converts into hex. 255 is less than 4096 and is
less than 256, so we canimmediately write the first two digits as zeros ($00xx) or simply

12

write $xx. There are 15 sixteens in 255 with aremainder of 15. We now have a problem.
We have to somehow write a fifteen in each digit of our hex number. How do we
represent 15 in hex? We use the normal decimal numbers 0 through 9 for the numbers
below ten and we use the beginning letters of the alphabet to represent the numbers
10-15 as follows:

10=8A
11=$8B
12=$C
13=$D
14=$E
15=$F

So the number 255 is equal to $FF, a fifteen in each place. We can now write any
number in hex. For example, $ED is equal to (14x16)+13, or 237 decimal.

Now we know how to use base-16 numbers. Why bother? Itis very convenient to use
hexadecimal numbers to represent binary numbers because there is a shortcut for
converting from one to the other, and itis certainly easier to write or talk about numbers
like $FF instead of %11111111. If you want to convert from binary to hex, here is the
easy way to do it. Remember that a nibble is four bits long and there is a high nibble and
a low nibble in each byte. The number %10100101 has a high nibble of %1010 and a
low nibble of %0101. To convert %10100101 to hex, convert each nibble to hex
separately. Thus, in our example, %1010=10=8%A and %0101=5=8$5. (We treat the
high nibble as if it were a low nibble for the conversion; i.e., think of its columns as ones,
twos, fours, and eights.) Now just as the twonibbles side-by-side make up the byte, the
two hex numbers side-by-side give the hexadecimal conversion of the whole byte.
Thus, %10100101=8$A5. It's that easy to convert from binary to hex. (If you doubt this,
try it the long way to convince yourself that you get the same results.)

All of this strange arithmetic becomes important when we wish to draw a player
missile image because it is in binary form that information is stored by the computer.
Therefore, it is important that you become familiar with binary and hex if you want to
really understand how PMG works, although you do not need to know this information
to use pm ANIMATOR.

13

Chapter 3

Bit Map Graphics

This chapter will cover bit-map graphics and describe how several of the different
Atari graphics modes work.

Bit-map graphics is very similar to a technique sometimes taught in high school art
classes. In this technique, you place a grid pattern over a picture to break it upinto many
little boxes, each containing a piece of the overall picture. Each little box contains a far
simpler image than the picture it comes from. By copying the little boxes one by one,
any student could do a fair job of copying even the most complicated picture. Bit-map
graphics is the computer’s way of storing pictures in a simplified form by breaking up
the picture into little boxes - pixels on the TV screen — and representing the boxes with
bits and bytes. Some examples will show how this works.

We start out with a field that has 16 boxes on it arranged like this:

14

Now we will fill some of these boxes with an X as shown:

X X 1 0 1 O
X X O 1 0 1
X X 1 0 0 1
X X 0O 1 1 0

On the right side of this diagram we have represented each box with an Xin it witha
“1” and each empty box with a “0”. If we look at each of the rows we see that a binary
numer is formed and we can assign an equivalent decimal number to each row.

Row Binary Decimal
1 1010 10
2 0101 5
3 1001 9
4 0110 6

If this isn’t clear to you, you might try rereading the previous chapter about bits and
bytes, or look into some of the further readings suggested in Appendix |l.

In the above example, each box is represented by 1 bit, eithera“1” ifithasa Xinitor
a“0” if it is empty. Each row is made up of 4 boxes, so we can represent where the full
and empty boxes are located in each row with 1 nibble (rememberthat a nibble is 4 bits).
If you think about it, you'll see that the single nibble (it represents one number) uniquely
defines the pattern of full and empty boxes in its row. You might try drawing your own
pattern in the grid and evaluating the four numbers from the picture. The four numbers
(nibbles) that describe the bits in this little picture are exactly like a map of the grid. You
have “bit-mapped” the picture.

In our example, each box can have only 2 different values, 1 or O. If 1 stands for red
and O stands for black, then the boxes that have 1’s in them will be red and the boxes
with zeros will be black. What we have just described is roughly the way Graphics 8
works on your Atari.

We will alter our example to better describe Graphics 8. Imagine afield that is made
up of 192 rows and 320 columns. Again we’ll let 1 bit represent each box. We can easily
see that we can have 2 colors on the screen, a color represented by a 1 (for example,
red) and a color represented by a O, which we will call the background color. All boxes
that are red will be considered to make up “playfield” 1. On the Atari computer a

15

playfield is defined as all of the boxes that have the same value (determined, for
example, by the COLOR statement in BASIC). All the boxes in a playfield necessarily
have the same color, but two boxes might have the same color and not be part of the
same playfield. If the background color was the same as playfield 1, then you would not
be able to see which boxes were playfield 1 and which boxes were background.

In graphics mode 8, each row is made up of 320 boxes, as we said. Since there are
only two colors allowed, each box can be represented by only a single bit. Since there
are 8 bits in a byte, there are 320/8 bits or 40 bytes required to represent each row. The
totalamount of RAM required to display the entire Graphics 8 screenis 192x40 or 7680
bytes. Your Atari BASIC manual states that Graphics 8 uses 7900 bytes. This
discrepancy is because of the display list, which is a program that tells the Antic chip
exactly how to display the screen. (A full explanation of display lists is beyond the scope
of this manual. Please consult some of the other sources in the reference list for further
information.)

Now, suppose that we are designing a hypothetical computer, and we want it to
have a graphics mode that will display 320 boxes by 192 boxes in 4 different colors.
We therefore need to figure out the minimum number of bits that we must use to
represent each box. We need 2 bits for each box. Remember that 2 bits can represent 4
different objects:

%00 =0
%01 = 1
%10=2
%11=3

If we represent each box with 2 bits, then there are (320/8)x2 bytes needed to
represent each row, or 80 bytes perrow. Overa full screen this will require 15360 bytes,
not including the display list! So this graphics mode will be very expensive as far as
RAM usage is concerned.

Sofarwe have assumed that a box can only be in one of two states (“on” or “off”). We
also know that the number of different colors that a box can assume is dependent on
the number of bits that represent each box. This sort of graphic display is called a bit-
map display mode. In bit-map display modes, an area on the screen (a box or pixel) is
entirely lit up. The size of the boxes is dependent on the resolution. If the screen is
divided into 16 (4x4) boxes, the area of each box will be very large. In our Graphics 8
example above, the boxes will be very small; they will look like dots on the television
screen. However, this technique of lighting up little squares on the screen (bit-map
display) is not the only way to do computer graphics.

Another method is called character graphics. We can use Atari graphics mode O as
an example. In this mode we can display 24 rows of characters with each row being
made up of 40 characters. Each character that appears can be any one of 256
different characters. How many bits must we use to display 256 different characters?
The answer is 8 bits or one byte (remember there are 256 possible values for a byte).
Each box on the screen that can contain a graphics character is called a graphics cell,
and it can have values between 0 and 255, represented internally by 8 bits. How much
memory is used by a graphics mode O screen? We have 40 columns per row, 24 rows
per screen, and 1 byte per cell: 40x24x1, or 960 bytes, not counting the display list.

16

In character graphics, we no longer merely turn on or off a little box (pixel). Now we
can place one of 256 characters in the box. How are the characters themselves stored
in the machine? As bit-maps. Each character has a unique set of numbers that
describes how to form the character from individual pixels. The ATASCII code 0-255
for a character tells the computer which bit-map to look up in its table in memory. We
will see how to bit-map characters shortly.

All of the Atari graphics modes work along the principles outlined in this chapter.
See the Technical Users Notes for technical information about the 14 other Atari
graphics modes.

In this chapter, we have seen how a pattern of full and empty boxes in a grid can be
represented by simple binary numbers. The set of numbers corresponding to a given
pattern is called (for obvious reasons) a bit-map. It is important that you have a firm
understanding of the concept of bit-mapped graphics to understand how player-
missile graphics is implemented on the Atari. The following chapter will show how
such a bit-map is used in PMG. If you have trouble with the first example in the next
chapter, come back to this chapter and try to clear up your confusion before going on.

17

Chapter 4

Principles of Player-Missile Graphics

In this chapter we will begin the discussion of player-missile graphics itself. For the
moment, we will ignore the actual commands used to initiate it and concentrate on the
underlying operating principles of PMG.

As in the previous chapter, we will use a grid — on a computer screen, a colored
background - divided into 64 squares: 8 columns and 8 rows:

X[X
X|X]|X
X|X|X]|X
XX X|X
X|X[X]|X]|X][X
XX

X[X

18

We have filled some of the squares with X's to create a “4”, which in a more compact
mode looks like this:

XX
XXX
XXX X
XX XX
XX XXX
XX

X X

Fromthe previous chapter, we know that each box can be represented by a bit, witha 1
representing an X and an O representing an empty box. In this case, each row is made up
of 8 boxes which will be represented by 8 bits or 1 byte. If we write the numerical
representation to the right of our grid, we produce the following bit-map:

%00000000 = 000

XX %00001100 = 012
X|X]|X %00011100 = 028
X[X]|X]|X %00111100 = 060
X XX %01101100 = 108
XIX|X|[X %01111110 =126
XX %00001100 = 012
XX %00001100 = 012

19

So if we were given the decimal numbers:

we could convert them into binary, bit map them out, and see that these numbers,
when bit-mapped, would look like a “4”. This is how the characters of character
graphics are produced. This is also the idea behind drawing a player-missile image.

The PMG images we can store as bit-maps and move around on the television
screen are either players or missiles. Each player is 8 bits wide (missiles are narrower).
This means that the horizontal width of a player is represented by 1 byte, or 1 memory
location. We will now consider how to determine where each player will appear on the
field (or television screen). First consider the vertical position of the player.

Imagine that your television set has a grid on it that has 8 columns and 128 rows.
Each row can therefore be represented by 8 bits or 1 byte. We can number each row
starting from O at the top down to 127 at the bottom (memory locations usually start
from O rather than 1). If we wanted our“4” from the example above to be near the top of
the screen, we would place the bytes that represent the “4” in rows 0-7. If we wanted
the “4” near the bottom, we would place the numbers that make up the “4” inrows 120-
127. This is exactly how the vertical location of the player is controlled. We set aside
some memory in the Atari which will hold the player-missile data. 128 bytes of this
memory controls the vertical location of one player (this is double line resolution which
will be explained later).

We now want to move our “4” up the screen. Suppose that the “4” extends from row
100 to row 107 (this places the “4” about three quarters of the way down the screen).
To move the “4” up one row, the data that was in row 100 must be put in row 99, row
101’sdatain row 100, 102’sin 101, and so forth, and a O must be put into 107 (we now
want nothing there instead of the old data). This could be accomplished in BASIC by
the following program. We will assume that memory reserved for our player missile
data starts at memory location 1000

10 FOR X=1000 TO 1007
20 POKE X-1, PEEK(X)
30 NEXT X

40 POKE 1007,0

Likewise, if you wanted to move the player down by 1 row you could use the following
program:

10 FOR X=1007 TO 1000 STEP-1

20 POKE X+1, PEEK(X)
30 NEXT X
40 POKE 1000,0

The higher in memory that you move a playerimage the lower on the television screen
that player will appear. '

You should think of each player as extending from the top of the screen to the
bottom of the screen. We could make the player take up the full height of the screen if
we so desired by putting data in all 128 rows. Contrastingly, if there is no data in the
player area, the player would not be seen at all. Inagame using player-missile graphics,
although we see a figure that looks small, the player actually extends from the top of
the screen to the bottom. We just can’t see these other areas because there is no
player data there.

What has been described above is called double line resolution, because each row
that makes up the player is 2 lines thick. Itis also possible to have single line resolution
where the screen will be divided into 256 rows; however, this mode uses up twice as
much memory.

The horizontal position of each player is controlled by a single memory location, set
aside for that purpose, called the horizontal position register. Each player has its own.
To control a player's horizontal placement on the screen you POKE a number
between 41 and 200 into the horizontal position register belonging to that player. If
you want a certain player in the middle of the screen, for example, you POKE 120 into
its horizontal position register.

Aside from the players, we also have four missiles to work with. Like players,
missiles should be thought of as extending from the top of the screen to the bottom,
although, of course, a given missile might not have datain all 128 (or 256) rows. Recall
that players are 8 bits wide, which means that the data in one row of a player is
represented by one byte. Missiles, unlike players, are only 2 bits wide-the datainone
row of a player is represented by 2 bits. For a given row on the screen, the data for all
four missiles are represented together in a single byte. This byte is divided up as
follows:

Bit Assignments
:7:6 :5:4 :3:2:1:0:
: Missile 3 : Missile 2 : Missile 1 : Missile 0 :

So bits six and seven contain data for missile 3, and so on. For example, if the byte in
row 63 of the missile data is 204=%11001100, then missile 3 and missile 1 each have
their complete width turned on at the vertical middle of the screen. Just as for players,
each missile has its own horizontal position register. However, unlike the players,
each missile does not have its own color register. In fact, a missile assumes the color of
its associated player, i.e., missile 2 has the same color as piayer 2 and so on.

21

Collisions, playfields, priority, and other considerations

Now that we know (in principle) how to place a player or missile on the screen, we
can even think about what happens when players and missiles collide, as they often
doin games. Before we deal with the way collisions are recorded, we need to return to
the concept of a playfield.

In graphics modes 1 and 2, the Atari computer can have up to 4 playfields and 1
background on the screen at any one time (this is different in other modes).
Remember the question from the last chapter: how many colors can be displayed ona
screen at one time? The answer is dependent on how many bits we use to represent a
pixel. Pixels are the atoms of the video screen. A video image is divided into no finer
parts than the pixels that make it up. All of the boxes that we have been using as
diagrams in this tutorial could also be called pixels.

If we use 2 bits to represent each pixel then we can only display 4 different colors
on the screen, as follows:

%00 = Color 1 (background)
%01 = Color 2 (Playfield 0)
%10 = Color 3 (Playfield 1)
%11 = Color 4 (Playfield 2)

This is how Graphics mode 7 is set up on the Atari. Each playfield is made up of
boxes that have the same value (color), e.g. %10 is playfield 1 in Graphics 7. All pixels in
any one playfield have the same color which can be controlled by a single memory
location. However, two different playfields can have the same color. Each playfield has
its own color register so that its color can be varied independently of the others.

With this in mind, we can consider collisions. Collisions occur when two graphics
objects — a missile, player, or playfield —want to occupy the same spot on the screen.
Imagine a missile “hitting” an airplane. Both the missile and the airplane will occupy
the same spot on the screen at the same time, and a collision is said to have occurred.
The Atari automatically records each collision that occurs and stores this information
in memory. By looking (PEEKIing) at a specific memory location, we can determine, for
example, if player 2 collided with missile 3. The following collisions are monitored by
the Atari:

Missile-to-Playfield : did one of the four missiles collide with any of the playfields,
and exactly which missile and which playfield.

Player-to-Playfield : did one of the four players collide with any of the playfields,and
exactly which player and which playfield.

Missile-to-Player : did any of the 4 missiles collide with any of the 4 players, and
exactly which player and which missile.

Player-to-Player: did any of the 4 players collide with each other, and which players
actually did collide.

22

The following collisions are not monitored: playfield-to-playfield collisions, and
missile-to-missile collisions. All of the collision bits can be cleared by writing to a
specific location, and then new collisions can be monitored.

The Atari was designed to display 4 players and 4 missiles. Each missile assumes
the color of its player, so that missile 1 will have the same coloras player 1 and soon. It
is possible to combine the 4 missiles into afifth player which can have its own separate
color.

The last thing that we have to consider is priority. When 2 objects, either players
or playfields, want to occupy the same spot, the Atari needs to be told what it
should display. Imagine a card passing in front of a curtain: you will see the card and
you cannot see the curtain thatis behind the card. You could then say that the card has
a higher priority than the curtain. On the Atari we have 4 players and 4 playfields to
consider, and by writing to the appropriate address we can control which objects will
“pass in front” and which objects will “pass behind” each other. The possible priorities
that can be set are listed in Appendix |.

This chapter has served as a brief introduction to some of the fundamentals of
player-missile graphics. Before we can embark upon the implementation of PMG into
real programs, there is a final general topic to be discussed: the placement of PMG
data in the memory of the Atari computer. This is the topic of the next chapter.

23

Chapter 5

Memory Maps and The Shadow

In this chapter two further concepts will be covered: memory maps and shadow
registers. A memory map is exactly what it sounds like. It shows how the memory
locations in the computer are being used. It can be very specific and display each byte
(or bit), or it can be general and show large areas of memory. In this case we will look at
a general memory map of double line resolution player-missile graphics.

PMBASE
384 UNUSED
BYTES
< 8 bits wide >
- ~ PMBASE + 384

M3 M2 M1 MO
PMBASE + 512

PLAYER O

PMBASE + 640
PLAYER 1

PMBASE + 768
PLAYER 2

PMBASE + 896
PLAYER 3

PMBASE + 1024

24

How can we understand all this? We first define PMBASE. PMBASE is a variable
that defines where in memory the player-missile memory begins. Player-missile
memory is an area in memory containing data that will be placed on the screen in the
manner described in chapter 4. Although PMBASE could theoretically be anywhere in
memory, it turns out that PMBASE must be on a 1k boundary for double-resolution
PMG or on a 2K boundary for single resolution PMG. A 2k boundary means that
PMBASE must be a number that is divisible by 2048 (2 kilobytes means 2048 bytes,
not 2000 as you might expect); a 1k boundary must be divisible by 1024.

Fordemonstration purposes only, we'll assume that PMBASE=20000. The top line
that is opposite PMBASE now represents memory location 20000. Notice that in that
top box it says that 384 bytes are unused. Therefore, memory locations 20000 thru
20383 are not used by PM graphics and can be used by you forany other purpose (like
storing your PM images). The next area contains 4 boxes that start at PMBASE + 384
(20384) and go to PMBASE + 512 (2051 2). This area of memory is where the missile
data is mapped onto the screen. This area is 128 bytes long and is mapped out as
explained in Ch. 4 (i.e. bits 6 and 7=missile 3, bits 4 and 5=missile 2, bits 2 and
3=missile 1, bits 0 and 1=missile 0). If missile data is located at 20400 then the
missile will be located near the top of the screen. If the data is at 20500 then the
missile will appear at the bottom of the screen.

Player O vertically maps into 128 locations from 20512 (PMBASE + 512) thru
20639 (PMBASE + 639). Player 1 vertically maps into locations 20640 (PMBASE +
640) thru 20767 (PMBASE + 767). Player 2 vertically maps into locations 20768
(PMBASE + 768) thru 20895 (PMBASE + 895). Player 3 vertically maps into locations
20896 (PMBASE + 896) thru 21023 (PMBASE + 1023). Notice that each player area
and the missile area are 128 bytes in length. The screen is then divided vertically into
128 rows. Remember, where the missiles and players are located in memory will
determine the vertical placement of the missiles (or players) on the screen. By
checking the memory map, you can tell exactly where in memory each player is
located.

If you are following all this, you should be able to answer these questions. We will
tell you where the data is located using the above memory map and you should be able
to tellwhich player or missile is involved and where on the screen it willappear. Answer
with the player or missile number and whether it appears on the top, middle, or bottom
of the screen.

question memory data
1 20390 48
2 20890 255
3 20200 255
4 20520 100
5 20704 200
6 20448 192
7 21000 52
8 20510 195
9 20832 255
10 20770 200

25

The correct answers are:

1) missile 2, top of screen

2) player 2, bottom of screen

3) in unused area, so nothing on screen (this was a trick question)
4) player 0, top of screen

5) player 1, middle of screen

6) missile 3, middle of screen

7) player 3, bottom of screen

8) missile 3 and missile 1, bottom of screen (195=%11000011)

9) player 2, middle of screen

10) player 2, top of screen

The memory map presented above was for double line resolution player-missile
graphics. This means that the screen is divided vertically into 128 rows. There is also
single line resolution on the ATARI computer. Single line resolution means that the
screen is divided vertically into 256 rows. Here is the memory map:

PMBASE
768 UNUSED
BYTES
& 8 bits wide >
PMBASE + 768

M3 M2 M1 MO
PMBASE + 1024

PLAYER O

PMBASE + 1280
PLAYER 1

PMBASE + 1536
PLAYER 2

PMBASE + 1792
PLAYER 3

PMBASE + 2048

In single line resolution the television screen is divided vertically into 256 rows, so
each of the above boxes represent 256 memory locations (bytes). The entire amount
of memory the player-missile data base takes up is 1024 bytes in double line
resolution and 2048 bytes in single line resolution. Since the data must be storedona
1K or 2K boundary, we see that it exactly “fits” into a 1K or 2K section of memory.

26

Before we can start working with PMG and before we can make use of the PMG
registers listed in the first appendix, we have to discuss one more principle:
shadowing.

The Atari computer has more than a 6502 microprocessor in it. It has a video
microprocesor called ANTIC, a video interface chip called CTIA (or GTIA in later
machines), and a sound chip called POKEY. Each of these chips has registers that
allow us to issue instructions directly to the chip. These registers are mapped directly
into the 65536 bytes of memory that are addressed by the 6502.

However, there is one small problem. Some of these registers are “read only” and
some are “write only”. This can lead to the following situation: we might write (POKE) a
certain value into register x, and then read (PEEK) the same register x and get a
completely different value. Using a real example, we can tell GTIA (or CTIA) that player
0 should be color x by POKEing x into GTIA register COLPMO ($D012). This GTIA
register is located at memory location $D012 or 53266 decimal. However, if we PEEK
into 53266 we don’t find the color of player O at all. Instead, it turns out that we are
reading the register which tells if the trigger has been pressed on joystick 2. How do
we find out the value of register COLPMO, a write-only register? The answer lies in a
shadow register.

The people who designed the Atari use a system called shadowing, so that we can
find out what color player O is. In shadowing, a different memory location contains the
value in the hardware register. It works like this. The shadow of COMPMO ($D012) is
location 704 ($2C0). Sixty times every second the value that is in location 704 is
POKEd into location 53266. This is done for most of the Atari hardware “write only”
registers. Not all the registers have shadows; two write-only registers that do not
have shadows are the player and missile horizontal position registers. Itis uptoyouto
keep track of the horizontal positions of the players and missiles; there is no shadow
register to PEEK into. In case you are wondering, the updating of the register from its
shadow occurs during the Vertical Blank Interrupt (VBI), the time during which the
electron beam in the television is shut off while it goes from the bottom right of the
screen back up to the upper left to start a new frame of the picture. This is “free time”
for the ANTIC chip. (A full description of VBI's is beyond the scope of this manual.
Please consult the Technical Users Notes for more information about interrupts). In
any case, this updating of the hardware registers is transparent to the user, meaning
that we are not aware that it occurs, and do not have to do anything to insure that it
occeurs.

If we want to write anything to a hardware register, we first check to see if that
register has a shadow, and if it does, we write to the shadow instead of the hardware
register directly. If we wrote to the hardware register directly, we would effect no
change because the vlaue that was stored in the shadow would be POKEd back into
the hardware register as soon as the next VBI occurred. Therefore, the only way to
change the value in a “shadowed” register is poke the new value into the shadow first,
and then into the hardware register.

This sums up most of the technical background needed for the use of player-
missile graphics. The next chapter demonstrates the cumbersome steps to be taken
to implement PMG into a BASIC program. Fortunately, you have a sophisticated set of

27

tools in the pm ANIMATOR package that removes much of the burden in using PMG
effectively. Now that you know what a bit-map is, you can let the Grafix Editor create
one for you. Now that you know about setting up the PMG memory area and the
hardware registers involved, you can let the TOTAL.LST subroutine do all the dirty
work for you. In Chapter 7, we will move on to the use of the pm ANIMATOR package.

28

Chapter 6

A Real Example (No Machine Language)

This example will show you how to use player-missile graphics strictly from BASIC.
Although this example is slow and rough it accomplishes its purpose. This is the way
you would set up and use player-missile graphics if you didn’t own a powerful graphics
system like pm ANIMATOR.

First we must clarify that there are only six steps required by the computer itself to
putavisible player on the screen. However, to make player-missile graphics fasterand
easier, and to add animation requires additional set-up steps.

Set-Up Steps For Player-Missile Graphics
These are the steps necessary for the computer to set up player-missile graphics.
(1) Enable player-missile ‘Direct Memory Access’ (DMA) by POKEing location 53277
with a 3. (This allows for a section of memory to represent the player areas; anything
poked into these areas will be seen in the player area on the screen.)

(2) Enable player-missile DMA control by POKEing 559 with a 62 for single line
resoiution.

(3) Store the PMG images (pm ANIMATOR fi ies or other bit-mapped data) somewhere
in ‘protected’ RAM (strings, page six, etc.).

Note: The next steps can occur in any order.

29

(4) POKE the bit image into the desired locations in player-missile memory from
protected memory.

(5) POKE the appropriate player horizontal position register (53248 to 53251) with a
position on the screen (usually from 30 to 225, varying with the television or monitor).

(6) Give the appropriate player a color by POKEing its color register with the desired
color value (see Atari BASIC manual).

These set-up procedures are those that are absolutely required by the computer.
However, these steps alone do not provide high speed animation or vertical
movement; in fact, they make player-missile graphics tedious and slow to use.

The example below will blank the screen out, draw the playfield and then put a
green flying saucer (player zero) on the screen. The horizontal and vertical motion is
controlled by the joystick.

10 REM SAUCER DEMO, TOTALLY IN BASIC.

20 REM THIS IN NO WAY REFLECTS THE QUALITY OF pm ANIMATOR!!

80 GRAPHICS 8:POKE 710,0:POKE 559,0:COLOR 1:REM SET UP COLORS AND SHUT OFF
SCREEN.

85 FOR I=1 TO 100:X1=INT(RND(0)*280)+1:Y1==INT(RND(0)*180)-+1 :PLOT X1,Y1:NEXT I:REM
DRAW STARS.

90 PM=PEEK(106)-40:PMB=256*PM:REM FIND WHERE TOP OF RAM IS AND PUT PMBASE
JUST BELOW IT.

100 POKE 53277,3:POKE 54279,PM:REM LINES 100 TO 110 ARE THE SET-UP STEPS TALKED
ABOUT EARLIER.

110 HP=53248:POKE 559,62:POKE 623,1

120 POKE 704,200:POKE HP,100

130 DATA 24,126,255,255,126,60,36,66,129:REM DATA FOR FLYING SAUCER SHAPE

140 X = 100:Y = PMB + 1024 + 100: REM X IS THE HORIZONTAL POSITION, Y IS THE EXACT
LOCATION OF THE SAUCER IN MEMORY (VERTICAL POSITION)

150 FOR I=1 TO 9:READ A:REM DRAW SAUCER IN MIDDLE OF SCREEN

160 POKE PMB-+1024+100+1A:NEXT |

500 T=STICK (0). IF T=15 THEN GOTO 500:REM CHECK TO SEE IF JOYSTICK IS BEING MOVED
510 ON T GOTO 500,500,500,500,500,500,520,500,500,500,530,500,540,550: REM IF JOYSTICK
IS MOVED IN THE RIGHT DIRECTION GO BELOW, IF IT ISN'T THEN GOTO 500

520 X=X-+1:POKE HPX: GOTO 500:REM MOVE ONE SPACE TO THE RIGHT

530 X=X-1:POKE HPX:GOTO 500:REM MOVE ONE SPACE TO THE LEFT

540 RESTORE 130.Y=Y+2.:POKE Y-1,0:POKE Y,0:FOR I=1 TO 9:READ A:POKE Y + LA:NEXT
1:GOTO 500:REM MOVE TWO SPACES DOWN (HIGHER IN MEMORY)

550 RESTORE 130:Y=Y-2:FOR I=1 TO 9:READ A:POKE Y+|A:NEXT I:POKE Y+11,0:POKE
Y+10,0.G0TO 500:REM MOVE TWO SPACES UP (LOWER IN MEMORY)

Now that you have seen player-missile graphics work from BASIC, you are ready to
see what pm ANIMATOR can do.

30

SECTION Il
Owner’s Guide to pm ANIMATOR

Chapter 7

Introduction To Using
The Grafix Editor And File Editor

The Grafix Editor is an all-purpose editing tool that enables you to build and edit
pictures for animation. It allows you to animate them as they progress, in any
sequence you wish, and to see and perfect your animation before it is put into a
program, so there is almost no need to ‘hand-map’ these figures. The Grafix Editor aiso
bas many special commands for manipulating the pictures you are creating to achieve
the best possible results in the least time. And it includes many convenient DOS-like
commands, such as DELETE, FORMAT, LOCK, etc.

To understand the concept of animation and how the Grafix Editor works, visualize
afilm projector. If you were to look at the actualfilm it would appear to be a sequence of
small transparent pictures or ‘frames’, each a little different from the one before. When
we view the film, the motion our eye sees is created by the individual pictures flipping
by so quickly that we perceive them as one picture that is moving instead of separate
still frames. The same sort of thing happens in computer animation. From here on we
will refer to the separate pictures which create the animation as animation frames.

Before we go on, it is worthwhile to discuss the difference between motion and
animation. Since animation and motion seem almost synonymous, this difference
may seem subtle at first but it is an important one.

Animation is atype of motion which is created by altering a frame. Take the example
of a bird in flight. If we were able to stop the bird’s forward progress, we would still see
the motion created by the bird flapping its wings. This type of motion is called
animation because it is created by changing the shape of the animal; that is, the bird
changes its body position as it moves. In computer graphics, animation is the motion
made by changing frames only; other types of movement will simply be called
“motion”.

Motion denotes direction, progress and a change of position relative to surround-

31

ings. Consider aball tossed into the air. Itis constantly changing position and direction
and it is making progress by moving from one place to another. If we did not see the
ball's surroundings, we would not be able to notice any motion. In PMG, this type of
player motion is controlied by changing the horizontal and vertical position registers,
not by changing frames.

The Grafix Editor works on one file of sixteen frames at a time, each frame being 16
blocks tall by eight wide. We can think of the file as a strip of film that will be used forthe
purpose of animation. We can view these files as they are animated, save files, and
later edit them. An important difference between these pictures and a strip of film is
that with the Grafix Editor we can show the frames in any order we like, as many times
aswe like in that order. This means that identical frames do not need to be repeated by
drawing them over; we only need to tell the program that they will be used overagainin
our sequence.

Three-colored frames can also be made by using an overlay technique supported
by the Grafix Editor. This is particularly easy with figures that are only one frame tall.
Although they are not directly supported by the Grafix Editor, larger frames for larger
animated figures are possible.

Using The File Editor

Once you have created a series of files, you may want to append onefile to another,
cut out parts of a file, or reorder the frame sequence in a file. This helps with the
organization of a program and it also helps to conserve program memory. These are
exactly the functions of the File Editor. The File Editor will also display and create files
of up to fifty frames, which comes in handy when trying to find exactly which frames are
in some large file.

You might think of the File Editor as the cutting room for a film. After the film has
been shot (i.e. the frames designed), it must be put together, certain parts must be cut
out, and other parts repositioned. In addition to all of the various DOS commands, the
File Editor has the ability to simultaneously display three 16-frame files plus part of a
fourth.

Itis agood idea to design each piece of animation separately with the Grafix Editor,
rather than cramming each sixteen-frame file with as many figures as will fit. Keep
these original animation designs on a separate disk from which you can take
whichever figures suit your needs, and then design a custom file for your specific
application. In this way you can build an organized animation library that you can refer
to for animation segments.

Generally, this system almost totally does away with the need for graph paper, and
bit-mapping by hand. However, there are times when graph paper is helpful, particularly
when very large animated figures are required. Despite this small limitation, the pm
ANIMATOR will improve the quality of your animation and reduce the time spent on
designing animation by up to 95%. (For those of you who haven’t done any sort of
animation it will improve the quality of your animation by 100%!)

The next chapter discusses the features of the Grafix Editor in detail.

32

Chapter 8

Using The Grafix Editor

Touse the pm ANIMATOR graphics system you must have at least 32K, adisk drive
and a BASIC language cartridge. To boot the disk, insert the BASIC language
cartridge into the (left) cartridge slot of your Atari computer. Next turn on the disk drive
and insert the pm ANIMATOR master diskette. Turn on the computer and wait for the
menu to boot in.

After several seconds, a menu with the pm ANIMATOR logo should appear. Under
the logo are three selections: (1) Grafix Editor (2) File Editor and (3) Demonstration.
Make a selection by pressing the number corresponding to your desired choice. To
run the Grafix Editor press the ‘1’ key on your keyboard. The screen will go blank
momentarily and then come on again with the Grafix Editor's screen layout: a large
square window in the upper left corner, a smaller window in the middle left, two
greenish bars near the top middle, and a section on the right listing the editor's special
commands. The large square window is the magnified editing window. It displays the
figure currently being edited. To edit a ‘frame’ (an individual player shape) you move
the cursor displayed in this window, using either the joystick or the keyboard. (This will
be explained in detail later).

To the immediate right of the editing window is the actual frame area. It is here that
the frame you are currently editing is displayed exactly as it will look when put into your
program. The green bars border the frame that is currently being edited to remind you
of which one it is. Each of the three windows that display the frames are independent
of each other; they can each display a different frame or all can display the same frame.
In this manner, several frames may be viewed simultaneously for comparison. The
frame’s number in the file (1 to 16) is displayed to the right of each window, along with
the current player color value. The smaller window just below the large editing window
is the animation window. Player animation is displayed here.

33

Editing Mode:

When the Grafix Editor loads in, it will be in the editing mode. Think of this as the
drawing mode of the editor. Each frame you draw will be made up of large blocks, as
seen in the large editing window. These look like dots in the actual frame, which is
what they will look like when implemented in a program.

To draw and edit a frame, use the joystick to position the cursor inside the large
editing window. The joystick will move the cursor in any of the standard eight direc-
tions within the border of the editing window. If the space the cursor occupies in the
large editing window is black, pressing the joystick button will light up a block in that
position. If the space the cursor occupies is already lit, then pressing the joystick
button will erase it. If you wish to use the keyboard to edit your figures, then press the
‘K’ key. When using the keyboard to edit, use the four arrow keys (located near the
{RETURN} key on the keyboard) to position the cursor, and use the space barto light or
erase the blocks. To jump back and forth between the joystick and the keyboard, hit
the ‘K’ key again.

Command Mode:

To use the special functions of the Grafix Editor, press the letter keys that
correspond to the first letter of the command you want. These special functions are
provided to save time and expand the versatility of the Grafix Editor. When you selecta
command, one of three things will happen. Either:

(1) The function will be immediately carried out.

(2) A message will appear asking for additional required input (when appropriate, the
range of acceptable values will also be displayed). Answer these prompts with a
number value, a filename, or whatever input is requested. Single key input, such as a
single number from O to 9, will not require that you press {RETURN}, whjle most other
entries will.

(3) An error message will appear, and you will exit from the command mode back tothe
editing mode.

Commands:

ANIMATE: This function allows you to view animation in any sequence using the
frames that are currently in memory. The first prompt will ask for the number of frames
your sequence requires. The next prompt will ask you how many times you wish this
sequence to be repeated. Do not confuse the number of frames needed with the
number of steps in the animation. Notice that a sequence like: 1,2,3,4,3,2,3,4,4,4
takes 10 steps but requires only 4 separate frames. After the first two prompts have

34

been correctly answered with number input, a prompt will appear asking for the actual
sequence. You will see:

SEQUENCE (KRETURN> FOR DEFAULT) HIT ANY OTHER KEY TO CONTINUE.
Defaulting will cause the program to automatically follow a sequence in numerical
order (i.e. 1,2,3,4,5,6...) for as many frames as you indicated, and always starting from
one. Pressing any other key will tell the program that you wish to enter your own
sequence. It will then ask you for the number of the first frame in the sequence, then
the second, then the third, and so on. After entering your sequence the program will
ask you to choose a speed of animation. A zero will allow the fastest animation with
only a very small pause between frames, while a speed of nine will be slow enough for
you to examine the animation critically and see if it needs correction. The program will
display the message “PROCESSING...” and then, after a few seconds, the animation
will occur in the animation window.

COLOR: This command will allow you to change the color of any of the frames. This
is useful when you wish to see if another color would be more suitable for your figure,
or when using the MULTI function for three- colored players (see MULTI function and
Multicolor animation section in Chapter 16). Note that the figure in the animation
window will be the same color as the frame in window one. After you select this option
the program will ask for the number of the window whose color you wish to change.
After selecting this, every frame displayed in this window will be the color selected for
the window. Next you must designate which method of color change you want. The
cycle method lets you use the right and left arrow keys to change the color, and you
see the colors as they change. When you are satisfied with the color, press
<RETURN> to exit this command. With the normal method you merely designate the
color and luminance for that window.

DATA: This command allows you to see the actual decimal or hexadecimal values
for each row that make up the frame currently being edited. (See Chapters 3 and 4 for
examples of such bit-map data.)

INVERSE: This function will light all of the unlit blocks and erase all of the lit blocks
in the figure currently being edited, much like the Atari inverse video key does for text.

KEY/STICK: This command jumps between joystick and keyboard control of
editing. With the keyboard the four arrow keys control the cursor and the space baris
used to draw and erase. The joystick uses all eight directions to move the cursor and
the trigger button to light and erase blocks.

LOAD FILE: Use this function to load an already existing data file from a disk. After
you select this command the program will request the file’s name. Give the complete
file name and hit <RETURN>. The file will load in and you will see the first three
frames, one in each successive window. Editing will default to the first frame, in
window one.

35

MULTI: This function is used to obtain a three-colored player by overlaying an
existing frame of a different color on top of the frame in either window one or window
two. To get three different colors, windows one and two must have different colors. A
particular block in the frame will have the third color if the same block in both frames
coincides (see the appendix on Multicolor animation and GPRIOR register).

The program will first ask for the number of the frame you wish to overlay, and then
the window you wish to overlay it on. The overlaid frame will remain there unchanged
until the MULTI function is again selected.

NEXT: This function allows you to choose the window whose contents you wish to
edit. You may select from the three small windows to the immediate right of the large
editing window. For example, if you were editing a figure in window 1, you could use
the NEXT command to begin editing a figure in window 2 and leave your previous work
behind in window 1. This is useful for jumping back and forth between frames for
comparison.

PHOTOCOPY: This function will copy the picture from the frame you are currently
editing to any otherframe in thefile. Notice that this will erase an old frame and replace
it with the new one if an old frame occupies that space.

ROTATE TO: This function is used to start editing a new frame. It will not erase the
old frame or change the window. For instance, if you were editing frame one in window
1, you could rotate to frame two, edit it (still in window 1), and then rotate back to frame
one and resume work on it.

SAVE FILE: This function will save the file currently in memory as itis. The program
will ask for a name for the new file and then save it to disk. Caution: using the same
filename as another unlocked file on the disk will erase the old file and replace it with
the new one.

UNDO: This function erases the current frame being edited and clears the editing
window.

VOLUME: This function changes (or turns off) the volume of the various noises that
this system makes, such as the noise the cursor makes when it moves.

WIDTH: This function displays all the frames as they would look in a different width
by changing the player size registers. All frames will be the same width, including the
ones displayed in the animation window. Size one is normal, size two is twice as large,
and size three is quadruple size (see player width register). Note that although a size
two player is 16 pixels wide, there are still only 8 bits of data defining the row of the
player.

Z:OPTIONS: This function displays the submenu and allows you to use its DOS-like
commands.

36

QUIT: This command exists the Grafix Editor and returns to the pm ANIMATOR
selection menu.

Commands From Submenu:
These commands mostly deal with file manipulation and are like those you would
use from the DOS MENU. Select these the same way you make selections from the

main menu.

CATALOG: This command will display the filenames of the files currently on the
disk. It is equivalent to the directory command in DOS.

DELETE: This command will delete a file, provided the file is not locked. The
program will ask for the name of the file to be deleted. If you change your mind, do not
enter a filename and just hit <RETURN>.

FORMAT: This command will format a disk (and wipe out any information you have
stored on it). The program will ask if you really want to go through with the format
process; if so, type ‘Y’ followed by a <RETURN>.

LOCK: This command locks a file so that it will not be accidentally erased. Caution:
This command will not protect a disk from being FORMATTED, which will wipe out all
of the data on the disk.

UNLOCK: This command unlocks a file that was previously locked so that it can be
deleted or changed.

QUIT: This command exits the Grafix Editor and returns to the pm ANIMATOR
selection menu.

RENAME: This command gives the designated file a new name you provide.

Z:OPTIONS: Returns you to the main Grafix Editor menu.

37

Chapter 9
Using The File Editor

To use the File Editor, select number 2 from the pm ANIMATOR menu. The screen
will blank out momentarily while the program initializes. When the screen reappears it
will be divided into a grid of five columns and ten rows. To the left is a list of the File
Editor commands. Unlike the Grafix Editor, the File Editor only has one mode.

The columns of the grid are numbered 1 to 5 and the rows are numbered O to 9.
When files are loaded into any of the five columns, any portion of the screen may be
saved as afile. Forinstance, to append one file onto another you wouldfirst load in one
file, then load in the next file where the last one left off, and finally save a file that is 32
frames long. To customize afile, parts of a new file can be substituted for parts of an old
file. The catalog also contains many DOS commands for greater convenience.

Once the program is loaded from the menu and the screen is turned back on, it is
ready for use.

COMMANDS:

CATALOG: This is the same as the catalog function on the Grafix Editor. It displays
the filenames that are on the diskette and is the equivalent of the DOS directory
command.

DELETE: See Grafix Editor “DELETE”.

FORMAT: See Grafix Editor “FORMAT".

LOAD: The format for this command is different from the load command in the
Grafix Editor. With this load, any part of a file can be loaded into any particular column

and row. First, the program will ask for the name of the file from which you wish to load.
Next, it will ask for the location on the grid where you want the first frame of the file to

38

be placed: first the column (15) then the row (0-9). Then it will ask how many frames you
wish to load and the frame number from which to start loading. The load command
should be used to edit and position files in a more desirable orientation. The results
can then be saved.

MULTI: This command will allow you to view up to ten three-colored frames. When
you design a set of three-colored frames, the MULTI function will enable you to see
these frames combined. This function operates using columns 2 and 3, or 4 and 5, but
not both at one time. To use it, position one file in column 2 (or 4) and the file that is to
be another color in column 3 (or 5). The program will then ask for the color and
luminance values for both columns and then automatically superimpose the second
column over the first. When you are done looking at them, type <RETURN> and the
columns will return to their normal places and colors.

Itis easiest to use this function when the frames which are to be a certain color are
allin one column and are separated from those that are to be the other color. (For more
see Chapter 16).

DISPLAY DATA: This command will show you the decimal data of any frame on the
screen, or of an entire column (selecting 10 will print the entire column). The prompt
will first ask which column to print from. You may then specify a single frame by
selecting a row (0-9), or ask for data from the whole column (10).

QUIT: This command will return you to the selection menu.
RENAME: See Grafix Editor “RENAME”".

SAVE: This command will allow you to designate a starting point and a file length of
up to fifty for the new file. After asking for a filename, the program will ask for the
starting frame of the new file in the column-row format. Next it will ask for the length of
the file from that point.

UNLOCK/LOCK: See Grafix Editor “UNLOCK/LOCK” functions.

Z:MOVE OR COPY: These two functions are used for moving individual frames to
different areas on the grid in order to arrange and save a custom file. The copy function
will put a duplicate of any frame onto the screen while the move function will move a
frame from its present position to a new one. The prompts will ask you for the
coordinates of the frame to move or copy and then the coordinates of its destination.

39

Chapter 10

Incorporating pm ANIMATOR
Animation Into Your Basic Programs

Part | - The USR Statement in BASIC

Aftera little practice, there is no reason that creative animation should be difficult to
implement in your BASIC program. If you have found that using pm ANIMATOR’s
editors is easy, you should find the supplied routines just as easy to use. This section
will explain the steps necessary to set up player-missile graphics and to use all the
subroutines for animation that will make PMG faster and easier to use. In addition,
there is a reference section describing the function of each subroutine, its limits, the
format of the USR statement needed to use it, and much of the source code.

Fast and clean player-missile animation cannot be produced from ‘pure’ BASIC
simply because of the slowness of the language. However, do not be alarmed if you
have had no background with machine language. All of the machine language
routines are provided as well as full instructions on how to use them. To use these
routines proficiently requires that we understand the BASIC USR command.

Although BASIC's slow speed of operation makes it unsuitable for most high speed
graphics purposes, its ease of use makes it attractive to the beginning programmer.
To overcome this problem of speed, many programmers resort to the machine
language subroutine, as opposed to actually programming in assembly language. A
machine language subroutine is a piece of machine language code designed by a
programmer to perform a specific task in machine language, thus speeding up the
execution time for this task. Machine language subroutines are accessed via the
BASIC USR command, which in effect tells the computer to jump to the desired
machine language routine, execute it and return to BASIC. A USR statement has the
following form:

40

A=USR(ADDR,A1,A2)

where ADDR is the address of the machine language routine in memory, and A1
(argument 1) and A2 (argument 2) are defined by the actual machine language routine.
In fact, you can have as many of these parameters as you want provided the machine
language subroutine allows for them.

Note: An ‘argument’ is simply a real number expressed in any form. It may be
expressed in variables, constants, operations (+,-,*,/) or specific BASIC commands.

A USR command is always used in conjunction with an existing machine language
subroutine. Suppose a USR command of the above form will be used with a routine
whose function is to clear an area of memory very quickly. This is especially useful with
PMG because ‘garbage’ (unwanted residual data) often clutters up the visible player
areas (on the screen this will look like random explosions throughout the player area!).
The machine language routine will reside at the location stored in the variable ADDR
of our USR command. The first argument in this USR command will specify the exact
starting place in memory we wish to clear out, the second argument will specify how
many memory locations after the first are to be cleared. For purposes of comparison,
here is how this would be done with a BASIC subroutine:

5 REM BASIC ‘CLEAR’ ROUTINE

10 FOR | = ADDRESS1 TO ADDRESS2
20 POKE 1,0

30 NEXT |

This routine will work well enough, but if we have to clear thousands of locations in
memory, this routine will take a few minutes to execute. However, if we were to
perform this task from machine language, the screen would be almost instantaneously
cleared. Our machine language routine will be executed when the following command
is encountered in our BASIC program:

A=USR(ADDR,PMB+4*256,4*256)

ADDR = memory location where machine language clear routine starts.

PMB = the address of our player-missile base (see Chapters 4 or Appendix I).
Therefore, PMB+4*256 will be the address of the beginning of player zero.

4*256=the number of memory locations to clear. It is expressed this way because
there are four player areas, each 256 bytes long (in single line resolution).

The Aiin this USR command acts as adummy variable (that is, it serves no function
but is required by BASIC syntax).

41

To use a machine language subroutine from BASIC we must first put it somewhere
in memory. We must choose a location the computer does not use for some other
purpose so that the routine will be safe from tampering. Usually the best way to
accomplish this is to store it in a string, because strings are stored in memory in a
location where the computer will not accidentally erase them. To store a machine
language routine as a string, first obtain the decimal values of the actual machine
language coding. Then use the CHR$ command to convert these numbers into
characters, and assemble the characters into a string. There is one problem, though:
so far we have no way of knowing where in memory the computer is storing our string,
and we need this information to access the routine. Furthermore, strings are
occasionally moved from one place to another. To determine where in memory a string
is stored, use the BASIC ADR command, which gives the numerical address of the
string’s starting place (in this case, the starting place of our machine language routine;
the computer does not distinguish between numbers stored in memory that simply
represent characters in a string and those that represent machine language coding).
Then you can access the routine. Here is a sample BASIC routine that sets up a
machine language routine like the one discussed above for clearing a large area of
memory. This BASIC program obtains the machine language code from DATA
statements, stores the routine as a string, and accesses the routine with a USR
statement. It is just like the BASIC program you would write to set up the actual
memory-clearing routine, except that, for brevity, the routine’s long machine language
coding has been replaced by a short list of numbers.

10 DIM MACH$(10):FOR I=1 TO 10:REM MACHS$ IS THE ROUTINE.

20 READ A:MACH$(l)=CHR$(A):REM CONVERT VALUES TO CHARACTERS.

30 NEXT |: Z = 256

40 DATA 104,11,23,45,44,34,56,112,152,96:REM THIS DATA IS THE MACHINE
LANGUAGE CODE (THIS IS ONLY SIMULATED DATA FOR THE PURPOSE OF
ILLUSTRATION AND IS NOT REAL MACHINE LANGUAGE CODING).

50 XX=USR(ADR(MACH$),1536,Z): REM EXECUTIVE MACHINE LANGUAGE
SUBROUTINE.

Note the first expression in the USR command (ADR(MACHS$)); this is the starting
place of MACH$ in memory.

To use the pm ANIMATOR routines you only need to memorize the format of the
USR statement, and the various customized formats for each subroutine (these are
fully described in chapter 11). With these statements we can, in a sense, add
commands to ATARI BASIC to make it a more powerful language.

Part Il - Using The TOTAL.LST Subroutine

Note: This section gives a brief overview and a listing of the entire package of machine
language subroutines. Part 3 of this chapter covers the details of how to produce
various types of motion and animation. The complete description of each machine
language subroutine, its format, and how to use it may be found in Chapter 11.

42

TOTAL.LST is a self-supportive subroutine; all you need to do is to put your code in
between lines 10 and 31000 and TOTAL.LST does the rest. In about 7 seconds it sets
up a vertical motion register, an animation routine, a fast clearing routine, a routine to
load files from disk (pm Animator data files as well as other ATASCII stored informa-
tion), and also the things that the computer itself needs to run player missile graphics.
After this routine executes, all you need to do to have a fully-prepared PMG system is
to load a pm Animator data file from the disk, read one into memory from DATA state-
ments, or get the data into the program in some other way.

There are a few things you must keep in mind after TOTAL.LST has initialized:

(1) Any GRAPHICS command given after TOTAL.LST has initialized will cause the
player areas to go haywire. If you need to switch graphics modes, do it before
TOTAL.LST initializes. If this isn’t possible, remove the players from the visible portion
of the screen (by way of horizontal position registers) and reinitialize TOTAL.LST. (The
only things that need to be redone are the steps required by the computer itself and
the steps that put the player data into the player area (See Chapter 5).)

(2) Alarge part of ‘page six’ (locations 1536 to 1791 in memory) is used for the vertical
blank routine. Therefore only the upper part of this page of memory may be used for
your own purposes. (See Chapter 11 for exact used and unused locations). It is
important that the vertical blank routine in page six remain undisturbed. If the vertical
blank routine is disturbed in any way, the computer will probably lock up and will have
to be turned off and restarted.

Here is a complete listing of the TOTAL.LST file. Important: this listing is different
fromthe actual version on the disk. Although both will perform the same tasks, the disk
version sets up faster and uses less memory. The major difference is that the machine
language routines are read from data statements instead of from their character string
form. This printed version was designed for clarity and ease of printing.

TOTAL.LST Listing

10 GOSUB 32025

20 STOP : REM REMOVE THIS LINE

30999 REM VERTICAL BLANK DATA

31000 DATA 162,3,189,244,6,240,89,56,221,240,6,240,83,141,254,6,106,141,255,6,142,253,6,24,169,0,109
31005 DATA
253,6,24,109,252,6,133,204,133,206,189,240,6,133,203,173,254,6,133,205,189,248,6,170,232,46
31010 DATA
255,6,144,16,168,177,203,145,205,169,0,145,203,136,202,208,244,76,216,6,160,0,177,203,145,205
31015 DATA 169,0,145,203,200,202,208,244,174,253,6,173,254,6,157,240,6,202,48,3,76,131,6,76,98,228
31020 DATA 104,169,7,162,6,160,129,32,92,228,96

31030 REM DATA FOR CLEAR ROUTINE (NONE OF THE FOLLOWING LINES THAT CONTAIN DATA STATE-
MENTS ARE IN THE ACTUAL VERSION OF TOTALLST)

43

31040 DATA 104,104,133,209,104,133,208,104,133,211,104,133,210,24,
165,210,101,208,133,210,165,211,101,209,133,211

31050 DATA 169,0,168,145,208,166,208,228,210,208,7,166,209,228,211,208,1,96,230,208,208,2,
230,209,162,1,208,231,65

31060 REM DATA FOR ANIMATION (ROTS)

31070 DATA
104,104,133,204,104,133,203,104,133,207,104,133,206,160,0,177,206,145,203,200,192,16,208,247,96
31080 REM DATA FOR MACHINE LANGUAGE LOAD ROUTINE (LD$)

31090 DATA 104,104,104,170,104,157,69,3,104,157,68,3,104,157,73,3

31095 DATA 104, 157, 72,3,32,86,228,192,0,48,1,96,132,203,96

32025 DIM CLER$(54),ROT$(25),LD$(31),SET$(11),NAMES(15:REM DIMENSION STRINGS FOR
MACHINE LANGUAGE ROUTINES

32026 REM LINES 32030 — 32040 APPEAR DIFFERENTLY HERE THAN IN THE ACTUAL TOTAL LST.
32030 RESTORE 31040:A=ADR(CLER$) :FOR I=A TO A+53:READ 12: POKE 1]2:NEXT |

32035 A=ADR(ROT$) :FOR I=A TO A+24: READ I12:POKE |, I2:NEXT |

32040 A=ADR(LD$):FOR I=A TO A+30:READ I2:POKE II2:NEXT |

32045 PM=PEEK(106) — 16:PMB=256xPM:REM THIS FINDS A PLACE FOR TOTAL.LST.THESE TWO
VARIABLES (PM,PMB) ARE VERY IMPORTANT. PM= PAGE NUMBER (HI BYTE) OF PLAYER-MISSILE
BASE WHILE PMB= EXACT LOCATION IN MEMORY OF THE PLAYER-MISSILE BASE.

32050 HP=53248:VP=1780:LE=1784:POKE 559,62:POKE 623,1:POKE 1788PM-+4:POKE 53277,
3:POKE 54279,PM:POKE 704,110

32051 REM LINE 32050 SETS UP THE VARIOUS PARAMETERS NEEDED FOR PLAYER-MISSILE
GRAPHICS (DISCUSSED IN CH. 6 OF TUTORIAL).

32055 FOR I=0 TO 3:POKE LE+I,16:NEXTI:REM SET UP OUR LENGTH REGISTERS (CREATED BY
VERTICAL BLANK ROUTINE, SEE CH. 5).

32060 RESTORE 31000

32061 REM LINE 32065 SETS UP THE VERTICAL BLANK IN THE UPPER HALF OF PAGE SIX SET$ IS ONLY
USED ONCE, IT GETS THE VERTICAL BLANK ROUTINE STARTED.

32065 FOR 1=1665 TO 1769:READ A:POKE I, A:NEXT I:FOR I=1 TO 11:READ A:SET$(I)=CHR$(A): NEXT |: RESTORE
32070 ZZ=USR(ADR(SET$)): REM FIRE UP THE VERTICAL BLANK ROUTINE.

32075 12=0:DIM PNT(16):FOR I=PMB TO PMB+-254 STEP 16:12=12+1:PNT(12)=I:NEXT .REM THIS
LINE SETS UP A CRUDE POINTER SYSTEM (16 FRAMES 16 LINES HIGH). IT MAY BE REMOVED AND
REPLACED WITH ANOTHER POINTER SYSTEM(S).

32076 REM THIS IS THE MACHINE LANGUAGE LOAD ROUTINE (LINES 32080 AND 32085 ARE ONLY
USED ONCE, THE ROUTINE STARTS AT 32090))

32080 START=PM*256:L0D=32090:NUM=256

32085 RETURN

32090 OPEN #1,4,0,NAME$S:REM YOUR FILENAME (L.E. NAME$="D:RUNNPUSH).

32095 GET #1,A

32100 POKE START, A:START=START+1:NUM=NUM-1

32105 XX=USR(ADR(LD$),16,START,NUM):REM LOAD THE FILE INTO RAM.

32110 CLOSE #1:RETURN

44

Part 11l - Producing Motion and Animation With the TOTAL.LST Subroutine

Note: Particulars such as the size, color, and priority of players are not discussed
here as they are discussed in Appendix .

HORIZONTAL AND VERTICAL MOTION:

Horizontal motion of any of the players is achieved by poking the horizontal
positioning shadow register with the value corresponding to the position on the
screen where you wish to place the player. To simplify matters, TOTAL.LST has
assigned the horizontal position register a variable name: HP. To move player O to
position 100, you would POKE HP, 100. To move player 1 to position 100, you would
POKE HP+1,100. Since the horizontal register is a write-only register (you can’t find
its value by PEEKIing into its location), you should use a variable in your own program
to update the position of your player; this way you will know where it is on the screen.

Vertical motion of players, which is fairly complicated to do without pm ANIMATOR,
is made easy by TOTAL.LST's vertical blank routine. This routine creates a simulated
vertical position register for each player comparable to the horizontal position
registers built into the Atari. It gives you a single location into which to POKE new
values, making vertical motion as simple as horizontal motion. The important thing to
remember about the vertical blank routine is that you need only one USR statement to
set it up; you don’t need a separate USR statement every time a vertical move must be
performed. This is made possible by the use of the vertical blank interrupt (VBI), a
function of the Atari operating system that can run a small machine language program
automatically every 60th of a second. In this case the machine language program
being run every 60th of a second is the VBLANK routine, which moves the player data
up and down in memory to produce vertical motion of the player. Each time itis run, the
routine moves the player to the vertical position whose value is stored in the memory
location VP (actually VP+P, where P is the number of the player, as will be seen below).
If you POKE a value into location VP, the next time the VBLANK routine is executed it
will move the player to that location on the screen. Thus a software ‘register’ has been
created whose memory location is represented by the variable VP.

To use this vertical position register, first set up the vertical blank routine by loading
it and doing a USR command. Then specify the height, in scan lines, of each of the
players you will use, and POKE this value into the memory location represented by the
variable LE. Each player can have a height of up to 256 scan lines. For player n, POKE
the height into location LE+n. To assign player O a length of sixteen scan lines, for
example, POKE LE,16. To give player 3 a length of 20 scan lines, POKE LE+3,20.
Next, choose the vertical position where you want the top of the player to first appear
and POKE that value into the vertical position register. The vertical position value can
be any number from 0 to 255, although not all these positions are visible on the screen
because of overscan. For player p, POKE the position value into memory location
VP+p. Soto start the top of player O at 100, POKE VP, 10, and to start the top of player 3
at 219, POKE VP+3,219. Now load the actual player data (the player image) into the
player area of memory, making sure that the first byte of data is POKEd into the player's
current vertical position, as stored in VP. (Recall that the value in VP is the current

45

location of the top of the player, and the value in LE determines how far down the
player extends. Thus, if the player data starts above or below the VP location, some of it
will be outside the boundaries defined by VP and LE, and that part of the playerimage
will not be moved by the vertical blank routine.) The best way to make sure your first
byte of data is going into the VP location is to POKE a O into VP and then load the image
into the top of memory for the player you want (player 0 memory, for example) starting
at the top. However, you can also insure that your first byte goes into the right place by
POKEing the player data into the player memory location plus a vertical offset. For
instance, if the player’s vertical position on the screen is to be 100 (approximately the
middle), you could start loading your data into player 0 by POKEing the first byte into
PMB+1025+100. Your routine to load in your data might look something like this:

10 POKE VP,100 : FOR I=PMB+1025+100 TO PMB+1025+116: REM PMB IS
THE PLAYER-MISSILE BASE. THIS LINE ALONG WITH LINE 20 WILL PLACE THE
PLAYER DATA INTO PLAYER ZERO, IN THE MIDDLE OF THE SCREEN.

20 READ A : POKE |,A:REM THIS ROUTINE USES DATA STATEMENTS ONLY
FOR ILLUSTRATION. NORMALLY THESE VALUES WOULD BE STORED IN
MEMORY OR IN STRINGS AND THE IMAGE WOULD BE PLACED BY USING ROT$
(See Chapter 11 on ROTS$).

30 NEXT I: DATA 1,2,3,4,3,2,1,2,2,22

Now the vertical position register for your player is working, and you can move the
player image vertically by simply POKEing a new value into VP+n. For example, to
move player 2 to position 56 on the screen, POKE VP+2,56.

ANIMATION:

To incorporate animation into a program we must use a USR statement and have a
basic understanding on how the routine works.

The type of animation routine in TOTAL.LST is called a ‘MOVE' routine and it does
what its name says: it moves data from one place to another. Actually, it duplicates it
fromone place to another, as the data that is moved s still in its original place aswell as
its desired destination. In the case of player-missile animation, the routine moves
frame data from their protected area in memory to the exact position of the desired
player in memory. The routine is set up to move only sixteen separate data items - a
Grafix Editor frame of standard height. By moving this data from the protected area to
a player area that is visible on the screen we can produce animation. All that is
necessary is a FOR-NEXT loop with a USR statement that uses ROT$ sandwiched
between the FOR and the NEXT. Although this routine is set up to move only sixteen
bytes of data, it can be modified to move more. (This and the format of ROT$ are
explained in Chapter 11.)

CLEARING OUT AN AREA FAST

Many times it is necessary to clear out a player-missile area because it is littered
with ‘garbage’ (residual data that still occupies an area in memory). This can be

46

accomplished with CLER$ which will clear out any number of memory places. So be
careful: it will even clear itself out if told to do so.

LOADING A FILE FAST WITH LD$

After the subroutine TOTAL.LST has initialized, it will have set up a machine
language load that will load ATASCII files directly into memory. This is very convenient
since pm Animator files are in ATASCIl. For more information on this, run the
demonstration programs and see Chapter 11.

LARGE PLAYERS USING SUMOVE$

Although each player has a set horizontal resolution of eight bits, players can be
combined to give increased resolution. To do this you simply place the players side
by side to form one large ‘player’. This works nicely until movement or animation of any
type is required. Even a move with our existing machine language routines is jerky.
This is because of the interval between each successive BASIC command. To create
smooth multiplayer motion and animation we must use the routine in SUMOVES. (This
is a file on the disk that should be ENTERed into TOTAL.LST on a separate disk.)

The new routine is nice in that it uses the already existing machine language
routines to perform its own functions. First it loads the horizontal registers with new
values, then the simulated vertical registers, and then it does the animation. The
reason that the motion is smooth is that all of these changes are done almost
simultaneously (in contrast with BASIC).

Before using SUMOVE$ you must specify the height of each playerto be animated
(similar to changing the number of scan lines in ROTS$).

Another important thing to remember is that SUMOVES$ always moves all of the
players and animates all of them. With this in mind, you must sometimes use dummy
values and constants in the USR function when you only want two or three players
(see DRAGON.DEM).

47

Chapter 11

Description and Format of Machine Language
Routines in TOTAL.LST

This chapter is designed to teach the uses of the machine language routines in
TOTAL.LST as well as to be a quick reference section for the format of each routine.
The routines in the subroutine “D:TOTAL.LST” are installed by including TOTAL.LSTin
your BASIC program. To use TOTAL.LST, simply use the command:
ENTER“D:TOTAL.LST". The last (and hardest) step is to write your program between
lines 10 and 31000 (where TOTAL.LST begins).

We can best understand how and why these routines are used by thinking of each
of them as an ‘additional’ BASIC command. For example, if ATARI BASIC had no For-
Next statement, we could simulate the statement by using other BASIC commands to
build a subroutine. Consider the next few lines of code:

10 FOR I=ADDR1 TO ADDR2

20 POKE I,INT(RND(0)*254+1)

30 NEXT |

40 REM THIS PROGRAM POKES RANDOM NUMBERS INTO ALL MEMORY
LOCATIONS BETWEEN ADDR1 AND ADDR2.

50 REM FEEL FREE TO USE THIS ABSOLUTELY USELESS SUBROUTINE IN
YOUR OWN BASIC PROGRAMS!

The above program would load a random value from 1 to 255 into all of the memory
locations between ADDR1 and ADDR2. If we had no For-Next statement in ATARI
BASIC we could duplicate this program in this fashion.

48

10 | = ADDR1

20 I=1+1

30 POKE |,INT(RND(0)*254+1)
40 IF ADDR1=ADDR2 THEN END
50 GOTO 20

This program accomplishes the exact same thing as the previous one only without
the use of the For-Next statement.

It would be a real advantage if ATARI BASIC included commands like ANIMATE,
ROTATE, and MOVEFIGURE. However, since ATARI BASIC has no such commands,
we have augmented it with the next best thing: machine language subroutines.

The following is a detailed description of each routine, its function and format, and
special notes on each routine.

Name of routine: VBLANK - Vertical Blank Routine

Function: Moves any of the four players vertically via a single fixed register (VP). This is
similar in effect to the horizontal position register but is for vertical motion.

Format: POKE VP+P,Y1

POKE = a BASIC command used to change the value of a memory location.

VP =the memory location of the first vertical position register. This is created by the
Vblankroutine in TOTAL.LST andis not afeature inehrent tothe ATARIcomputerl VP’s
actual decimal value is 1780; it is represented by this variable so you will not have to
remember the number.

+P =the variable P is the player number (0-3). The vertical position registers are at
locations 1780 to 1783, so we could use the actual location instead of its variable
representation (VP+P), but it is easier to remember VP+2 (player two’s vertical
register) than location 1782.

Y1 = the intended vertical position of the player.

Example: POKE VP+1,102

As indicated above, VP+1 islocation 1781 in memory, player one’s vertical position
register. This example would instantly move player one to the vertical position of 102
on the screen. It is important to remember that vertical position is measured from the
top of the player.

Special notes: This routine is set up automatically by including TOTAL.LST in your
program. The machine language routine is set up so that it automatically runs once
every 60th of a second. This explains why ouf command to move a player vertically has
no USR statement in it (i.e. POKE VP+1,102).

When animating a player, make sure that the data (no matter how it is being put into
the player area) is being placed starting from VP+P. That is, the vertical blank routine
cannot tell the difference between a blank player area and one with important data in

49

it, so it will move the data from the old vertical position (in-memory location VP+P) to
the new position whether it is blank or not. To make sure that the frame datais in the
right place, you can use this statement in conjunction with ROT$ (explained later):

A=USR(ADR(ROTS$),PMB+1025+PEEK(VP),20000)

Notice that the first argument contains the BASIC PEEK command to find out the
vertical position of the player (for more on this see the explanation of ROT$ and the
demonstration programs).

It should also be noted that the height of a player can be adjusted. If you wish to
have a player of a different height, it can be accomplished by POKEing to another
location. These locations are 1784-1787 and correspond to each of the four players.
Currently they are set up for sixteen scan lines (16 memory locations, 16 biocks high),
but they can be changed like this:

CHANGING A PLAYER'S HEIGHT

POKE LE+P,HI

LE = location 1784, the height register used by Vblank.

P = the player number whose height you desire to change. Again, these variables
may be replaced with the appropriate constants.

HI = the desired height in scan lines (blocks) of the player.

A real example of this might be POKE LE+2,20. This would change player two’s
height to 20.

This command to change a player’s height is only half of the job. You must also design
a player twenty lines high instead of sixteen.

The vertical blank routine uses memory locations 1665 to 1791. In addition to
these ‘page six’ locations, it also uses ‘zero page’ locations 203 to 207 (locations $CB
to $CE). Do not use these locations as it may cause the routine to malfunction.

Name: ROT$

Function: This machine language string is the basis for all animation in this package. It
is a simple ‘move’ routine, and it does exactly that. It moves data from one place to
another. More precisely, this routine will copy data (it will not disturb this data, but
merely duplicate it somewhere else) from a protected area into an area where it will be
visible. In this way we can store an entire file in memory somewhere and ‘copy’ each
frame into the desired player area. By continually copying one new frame after
another into the player area we achieve animation.

Format: A=USR(ADR(ROT$),PADR,DAT)

ADR(ROTS$) = the beginning of the string ROT$ which is a machine language routine.

PADR = the exact address in memory to which you wish the data to be copied. This
will be a visible player area (explained in the example below).

DAT = the exact address in memory from which you are copying data. To better
organize these addresses, a pointer system is required (see Appendix VI).

50

Example: A=USR(ADR(ROTS$),PMB+1024+Y,PNT(1))

PMB+1024+4Y = the area we are copying the data to. In this case we are copying
the data to player zero. PMB is a variable used in TOTAL.LST that holds the memory
location of PMBASE (see Chapter 5 or Appendix I). The 1024 is added to get past the
unused RAM area immediately below PMBASE; you may remember this from the
single line resolution memory map. The added Y variable is the vertical position at
which to draw the player on the screen. These variables could just as well be replaced
with constants; however, it is easier to remember the variables instead of numbers.

PNT(1) = the item in the array PNT that is the memory location of the data to be
copied. PNT has been dimensioned ahead of time; you will notice that TOTAL.LST
sets up an array by this name and holds the memory location for the data to be copied.
Arrays are convenient for holding memory locations because you don't have to
remember the memory location, just whether it is the first item in the array, or the
second, and so on. (See Chapter 16 on pointer systems).

The above statement, provided the variables were given legitimate values, would
copy sixteen memory locations (the data for one frame) into player zero’s area starting
from the location given by the value of PNT(1). The value of the variable Y determines
exactly how high or low on the screen the frame is positioned. It will only do this once;
in order to produce animation, you must repeatedly use this machine language
routine and change the data to be copied. To do this, change the second argument in
the USR statement (PNT(1)) to the memory location of the next frame to be displayed.
(For more on this, see the animation demos on the disk.)

Notes: Since this USR routine allows you to give it any memory locations you wish, itis
highly flexible. With this in mind, there are several things you must remember when
using it. First, remember to use variables and arrays wherever possible. This way you
will not be confused by numerous and nearly meaningless constants and you will be
free to concentrate on your program. This also helps when debugging as you do not
need to check every single constant. Also remember that if your player moves
vertically you must take this into account in your USR statement, when you indicate
where in memory ROT$ should copy the data. For instance, if a player moves towards
the top of the screen it is moving down in memory. This change in memory locations
must be accounted for (see demos on disk).

As it stands now, this routine is set up to copy the contents of sixteen consecutive
memory locations. If you wish to change this number to something else, include the
following somewhere in your program:

ROT$(22,22)=CHR$(X)

X = number of data items to be copied (height of a single frame).

This command will change the ROT$ machine language routine so that it will copy
more or less data, allowing for animation with players larger than sixteen frames. The
variable X can be any number between 1 and 255. For instance, if you wanted to use
frames that were 32 blocks high (height of two normal frames), you would include this
statement in your program:

ROT$(22,22)=CHR$(32)

51

however, SUMOVES$ does it much more smoothly. It not only does the animation for
each player at the same time, but it also moves the players horizontally and vertically
at the same time.

Format: A=USR(ADR(SUMOVES),P0,D0,P1,01,P2,D2,P3,03 X0,X1,X2,X3,Y0,Y1,Y2,Y3)
ADR(SUMOVES$) = starting address for machine language subroutine SUMOVES.
PO-P3 = the exact locations to copy the frame data to.

DO0-D3 = the exact memory locations from which to copy data.
X0-X3 = new horizontal positions.
YO0-Y3 = new vertical positions.

Since the USR statement is so long, it is necessary to use several one letter
variables to fit the statement on one line. (See KNIGHT.DEM and DRAGON.DEM.)

Each player’s frame height may be changed independently. Frame height here is
changed for the same reason that it was in ROT$: to produce animation with larger
size frames. To do this, use the same type of command you used to achieve this in
ROTS$. To change the routine so it would animate frames of 32 lines high you would do
this:

SUMOVE$(22,22)=CHR$(32):REM changes height of frames for animation for
player zero.

SUMOVES$(45,45)=CHR$(32):REM changes height of frames for animation for
player one.

SUMOVES$(68,68)=CHR$(32):REM changes height of frames for animation for
player two.

SUMOVE$(91,91)=CHR$(32):REM changes height of frames for animation for
player three.

This would set up the routine so that each of the four player's frames used in
animation would be 32 blocks tall (the height of two normal frames). Also, be aware
that this routine uses the vertical position register. This means that whatever was
necessary to set up for the vertical blank routine (player height, etc.) is also necessary
here if you wish to use vertical motion.

Note: This routine is on a separate file on the pm ANIMATOR disk. The file
“D:SUMOVE.LST” contains the entire routine as well as the means to set it up. To use
this file, merely install it in TOTAL.LST by using the ENTER command. First
ENTER“D:TOTAL.LST"then ENTER “D:SUMOVE.LST”. SUMOVE.LST is already set
up to be merged with TOTAL.LST.

This routine is undoubtedly the most complicated to use. With this in mind, you
should not attempt to use it until you have a full understanding of the other routines
and how player-missile graphics works.

563

For more information on this, you are encouraged to examine the various
demonstration programs on this disk.

Name: High-speed clearing routine - CLER$

Function: This routine clears out an area of memory extremely fast. It is most useful for
clearing garbage (residual data) from a player area. If the animation quickly changes,
such as in the main demo for this program, it is necessary to clear the previous data
from the player area.

Format: A=USR(ADR(CLER$),ADDR1,BYTE)
ADR(CLERS) = The address of CLERS$, the machine language subroutine.
ADDR1 = the memory location at which clearing starts.
BYTE = the number of memory locations to be cleared.

Example: A=USR(ADR(CLER$),PMB+1025,256)

PMB+1025 = the memory location to start clearing from; in this case it is the
address of player zero, since PMB = the memory location of PMBASE.

This routine will clear 256 memory locations starting at the beginning of player
zero's area. It will clear out any data that was previously in player zero.

Name: Fast File Loader - LD$.

Function: To load any ATASCII file, such as a pm ANIMATOR data file, from the disk
into memory.

Format: NAME$="D:FILENAME”:NUM=number of bytes:START=starting address:
GOSuUB LOD

“D:FILENAME” = the name of your file along with the device and colon (“D:").

NUM = the numebr of bytes of data in the file to be loaded. For a normal file this
would be the number of frames times sixteen. This can be thought of as the number of
memory locations the file will occupy in memory.

START = the exact starting location in memory to load the file into.

GOSUB LOD = this command runs the loading subroutine with the values and
filename you provide it with.

Example: NAME$="D:RUNNER"”:NUM=96:START=PMB:GOSUB LOD

This example will load the file “D:RUNNER”, which is 96 bytes long, into the area
just below PMB (PMBASE). In this case, the loaded file will occupy memory locations
PMB to PMB+95.

Name: SUPERMOVE ROUTINE - SUMOVE$

Function: To produce any type of multiplayer animation in which several players must
be combined to form a large one. This can be accomplished using the other routines;

52

Chapter 12

About The Various Demonstration
Programs on the Disk

Although this utility is entirely menu driven, there are several demos and various
subroutines that are not accessible via the menu. These routines are transferable and
should be copied to another disk. All of the demonstration programs are in the ‘SAVE’
format, while the utilities are in the ‘LIST format. To use the demonstration programs,
make sure the BASIC cartridge is in, insert a diskette with DOS on it into the drive, and
turn on the computer. Then put in the pm ANIMATOR master diskette. (Booting the pm
ANIMATOR master diskette will load in the main menu.) Next, run the demonstration
by typing:

RUN “D-filename”
where “filename” is the name of the demonstration. These demonstration programs will
give practical- examples of animation and motion from the very basic to the very
complex (e.g. multiplayer, multicolor animation) using the routines supplied with this
system. The demonstration programs are listed below with a short description of what
each one demonstrates.

The utilities in the package are in the ‘LIST format to allow you to enter them into
your programs directly. All of these routines are integrated into a system in
“TOTAL.LST” which will set itself up first and can be easily integrated into your own
programs (for more on this see chapters 10 and 11). This small subroutine takes less
than ten seconds to set up the player area, initialize the machine language subroutines,
completely clear the player area, set up a pointer system, and so forth.

DEMONSTRATION PROGRAMS:

All of these demonstration programs have REMark statements to improve read-
ability. However, lines 50,55,56, and 60 are repeated in each demonstration and are

54

not REMarked. Instead, they are explained here. Line 50 determines the place the
player-missile base will be located, lines 55 and 56 set up a clearing routine and clear
the ‘garbage’ (previous data) from the player-missile area, and line 60 sets up the
various player-missile parameters necessary for operation. For more information see
the section on implementation.

IMPORTANT: Most of these demonstrations require some additional data files from
the disk containing the animation frames themselves.

(1)MOTION.DEM: This demonstrates motion routines and should be runwhile reading
the section on motion routines.

(2HELICOPT.DEM: This demonstrates the helicopter example discussed in Chapter
13.

(3)RUN1.DEM: This demonstrates how to use the routine ROT$ to do quick animation,
and how to load a file into memory very quickly with the LD$ routine.

(4)VERT.DEM: This demonstrates how to set up and use the vertical blank routine in
TOTAL.LST that makes vertical motion quick and easy.

(5)RUN2.DEM: This demonstrates simultaneous horizontal and vertical motion as
well as animation.

(6)DRAGON.DEM: This demgnstrates the use of SUMOVES to create a large moving
animated figure.

(7)KNIGHT.DEM: This demonstrates the use of SUMOVES$ for multicolor player
animation.

ABOUT THE MAIN DEMO AND AWESOME

Creating flashy animation scenes like those in the main demonstration is really not
that difficult after you are familiar with the various routines and the formats for using
them. First you should practice doing small things - just to become familiar with the
included routines - then work up to the bigger animation, and eventually up to a full-
sized program, like a game.

The most importat step is to have a plan. Decide exactly what you want to do and
sketch it out on paper. If what you are doing requires a complicated playfield, suchasa
modified display list, it is a good idea to draw the playfield on a piece of graph paper.
After making up this plan you can start designing the actual players.

Sometimes players will be so large that you will need to sketch them out on graph
paper and cut them up into 16X8 blocks to be designed with the editor. Even though
this takes longer than designing a small player, it is still easier than bit-mapping the
player by hand.

55

Remember that an ounce of ingenuity is worth a pound of programming knowledge
(ancient Silicon Valley proverb). The pm ANIMATOR programmer thought of at least
five ways to make the earth turn in the demonstration, all of which would have taken
well over 48 hours of programming time! But, with a little ingenuity, he thought of away
to make a rotating earth that took only about three hours, from the design time to the
actual implementation! In fact, the earth was probably one of the simplest pieces of
animation in the whole demonstration. We won't give away the secret of the rotating
earth, but you are free to examine the program. The earth demonstration bears the
filename “AWESOME?”, but you may no longer agree after you figure out how easilyit's
done (hint: it has something to do with priority). The machine language code in P$ is &
simple horizontal move that uses all of the players and all of the missiles and its format
is: AA=USR(ADR(P$),MISSILES,P0,P1,P2,P3), where the arguments represent the
intended horizontal position.

56

SECTION 11l
Advanced Animation Techniques

Chapter 13

Creating Animation
Section I: An Overview

Whether a program achieves the right effect will be determined in large part by the
quality of its graphic presentation. With this in mind, the design of the animation is
often just as important as the ability to implement animation into a program. Once you
understand the various routines included with pm ANIMATOR and how player-missile
animation works in general, you are ready to concentrate on the quality of the
animation you produce. This section provides many guidelines and hints for creating
the best possible animation.

The first step is to decide what the figure will be - not necessarily how it will look but
what subject it will represent. This may seem to be obvious, butitisimportant to start at
the beginning.

Once you have chosen the subject, you must decide upon the ‘tone’ your figure
should have. For instance, if a comical figure is desired such as the wild dancer in the
demonstration, then the movements can be jerky and somewhat random. The jerky
motions of the dancer are not realistic; however, the tone of the dancer was not
intended to be realistic. On the other hand, the small runner was designed to set a
‘realistic tone’, so its movements are quite realistic. Animation that is realistic takes
considerably more effort to produce than other types of animation. When trying to
create realistic animation, you should have pictures of the object that you are trying to
create.

After you decide upon the tone of the animation, you must decide the size, color
andresolution of the figure (does it use more than one player?). If the figure isto be two
or more players wide or in three colors, you must allow for this initially or it will cause
problems later on.

After all of these steps have been completed, you are ready to create the actual
animation.

57

Simple Animation

The simplest form of animation is ‘two-step’ animation —animation composed of only
two different pictures. Two-step animation is often used to give the illusion of blinding
speed and also to simplify the program it is in. Some examples of this type of animation
might be: a “Pac-Man” figure, a bird beating its wings, a crab opening and closing its
claws, etc. Usually, small objects that require fast open-close, up-down, or side-to-
side types of motion should have this form of animation.

When designing a figure of this type, one frame should be in strong contrast with
the other frame, or else the animation may not be noticeable. For instance, a jumping
frog should be very compact in the first frame with its legs tucked in, and in the next
frame its legs should be fully extended. This would make the frog appear to jump very
quickly. It is important to note that two-step animation can be very impressive if it is
combined with agood motion routine. For instance, a spring that compressed when it
hit the ground and then stretched out as it left (in two steps) would be impressive if the
motion routine simulated a realistic bouncing spring, subject to gravity, loss of
momentum, etc. (See routine to make ball bounce in DEMOTION and also in Chapter
14).

Although this type of animation is the easiest to perform, if done well it can give
outstanding results.

Advanced One-Player Animation

Advanced animation includes any type of animation with more than two separate
pictures. Usually, animation of this type involves four or five separate pictures, several
moving parts, and a special sequence that must be integrated into the code of the
program. The reason that animation involving more than two steps is so much more
difficult is that it requires many intermediate steps that are not so easily defined. For
instance, an animated Pac-Man would be incredibly simple because of the nature of its
open-close movement (directly opposite pictures). However, a piece of animation like
the runner involves frames that are not direct opposites of one another. It is these
‘transitional’ animation frames that are hard to define, and it is also these frames that
determine whether or not your animation will be smooth.

The problem of these ‘transitional’ frames can be simplified using several tech-
niques. First, it is a good idea to sketch the figure and each phase of its animation. Start
by sketching the first and last pictures of the animation. Next, fill in the middle frame
which will be the only transitional frame for the time being. Design the three frames
with the Graphix Editor. Then animate the figure to see which transitional frames, if
any, are necessary. Add the necessary frames and perfect the animation by cutting
out frames or simplifying the figure. Do this until the animation is smooth and achieves
the desired effect. The best way to learn how to edit and smooth out animationis touse
the pm ANIMATOR system often.

Complex animation will often have several things moving at one time. The runner,
for example, is moving his legs at the same time he is swinging his arms. To simplify

58

designing a piece of animation that has several parts moving at once, design the
animation to move only one part. When the animation of that one part is satisfactory,
add the other parts of animation one by one. Sometimes the animation of one part will
require more steps than the animation of another part of the figure. For instance, it
may take five steps to move the runners legs while it takes six for him to fully swing his
arms. Adding another frame to compensate for this may make the animation look
awkward. The best thing to do is to rework the animation so that eitherthe legs move in
slower jumps from one frame to another (allowing another transitional frame), or the
arms move at a faster rate.

The eight-pixel resolution and the single color of a single player is sometimes a
problem when trying to represent an object. Many times we cannot overcome this
problem and we must resort to using two combined players. Though we can never
totally overcome this single-color limited-resolution problem, there are some partial
remedies. One is to add or leave out something for the purpose of definition. For
instance, the runner has a thin band left out to represent a belt, which would otherwise
need to be done in another color. Here is a hypothetical situation to illustrate the
importance of this leaving-something-out/putting-something-in method. Consider a
helicopter that has to be designed in the space of one player. The shape of the
helicopter's body is not important here; the main point is to have realistic rotor blade
motion. From a front view the blade should appear to get smaller as its edge rotates
toward the viewer; and then get larger again. This seems simple, but upon experimenta-
tion, we find that the rotor blade does not appear to be rotating at all. It is merely
getting larger and smaller. Where did we go wrong? In real life, depth perception and
color shading help us to perceive motion as it really is. Unfortunately, for our players
we have only one color and limited resolution to work with. The best solution is to
add a smallraised bump on the edge of one side of the rotor blade, orto leave a part out
somewhere on the moving blade (run the demo “D:HELICOPT.DEM). This additional
part, although it may not seem obvious to you, will enhance animation greatly.

Another type of animation definition is a sort of simulated three-dimensional
animation that can be performed quite easily. First design a shape that is symmetrical
- a square or circle works nicely. Keep in mind that with this type of animation, the
symmetrical shape will appear to be spherical if it is a circle, tubular if itis asquare, and
vase-like if it is any other shape. The next step is to design aface or some other design
that is to rotate across the figure. The last step is to animate the figure by shifting the
design by one space to the right on the object until the entire design has rotated ‘off
the figure; it will appear to have gone in back of the figure. Next, shift the design to the
left in the same way. Finally, arrange the frames in the order of extreme left to the
middle to extreme right. This type of animation usually takes about nine or ten
frames. The result is a rotating three-dimensional object.

These are just some of the techniques used in overcoming the limited resolution
problem. If you run into a problem making an object, keep trying a new approach and
eventually you will produce some animation that will satisfy you.

59

Chapter 14

Creating A Realistic Motion Routine

As you go through this section, you should run the demonstration program
“D:MOTION.DEM” which demonstrates all of the motion routines listed here. You
should also be familiar with the VBLANK routine included in TOTAL.LST (especially
the way the variable VP is used in the routine.)

Motion routines produce the motion of the object; this is separate from animation,
the movement created by changing the object’s form. For example, an animated bird
flaps its wings because its actual size is altered; however, it moves across the screen
in some direction because its position is altered by a motion routine. Most motion
routines are simple and require a simple incrementation or decrementation of the x
andy (horizontal and vertical) positions. However, there are some types of motion that
are harder to represent.

Consider the problem of creating a realistic ball that bounces up and down. The
worst way to do this would be to position the ball a little further up in each frame of
animation. This method is awkward because it uses up six or seven frames of
animation and the height of the bounce is limited to several spaces. A better method
would be to increase the x and y positions by increments until the ball reached the
highest desired position and then incrementally decrease the y position while
increasing the x position. However, this method moves the object up and down at a
steady rate, while a real ball would slow down as it neared the top of its bounce and
then speed up on its way down.

The correct motion routine should make the ball bounce in an arc-like path instead
of a steady line. Here is a correct motion routine for a bouncing ball.

60

Motion routine:BALL

10 B=0:REM B IS THE X POSITION THAT WILL BE PLUGGED INTO THE
HORIZONTAL POSITION FOR PLAYER ZERO.

20 FOR X=1 TO 6:REM SIX BOUNCES

30FOR X2=-10TO 10 STEP.5:REM THIS IS THE LOOP THAT CALCULATES THE
Y POSITION.

40 Y=X2*X2+40:B=B+1:REM CALCULATE THE VALUE FORY RELATIVETO X2,
ADD ONE TO THE X POSITION (B).

50 POKE HP,B:POKE VP,Y:NEXT X2:NEXT X:REM HP IS THE X HORIZONTAL
REGISTER (HP=53248), VP IS THE SIMULATED Y REGISTER (SEE SECTION ON
VBLANK ROUTINE)

60 REM THIS PROGRAM EXAMPLE ASSUMES THAT THE READER IS FAMILIAR
WITH THE VBLANK ROUTINE AND HOW TO USE IT! (SEE SECTION ON VBLANK
ROUTINE)

But a more realistic ball bouncing across the screen, unlike this one, would not
continue to bounce just as high on each consecutive bounce. A real ball would lose
height with each bounce until it finally stopped. The new routine must produce the
same arc motion and it must also change the height of the bounce. To do this, we will
use the old routine and add some changes. The most obvious change is to give the for-
next statement two variables as limits. The new lines look like this:

FOR X2= -K TO K STEP 0.5
Y = X2*X2+Z: B=B+1

Z represents a displacement we must calculate every time the ball bounces. The
displacement will be equal to the old value of the variable plus the difference between
the old bounce and the new bounce. This difference can be found by subtracting the
highest y value of the next bounce from the previous one. This must be calculated and
added to the old Z value at every bounce. The new line at 50 looks like this:

NEXT X2:Z=Z+K*K-((K-1)*(K-1)):NEXT X

For more clarification, see the listing for this motion in “D:MOTION.DEM”

Next, consider the motion of a falling object dropped from a building. The object at
first has a small speed that builds up rapidly until it hits the ground. Obviously, a simple
routine that increases the y position of the object by one will not do. However, there
are two solutions that will work. The easiest method is to gradually increase the
number of spaces at a time that the y position is incremented at a time (increment the
rate of increase in y). This will appear to make the object gain speed as it approaches
the ground. Our routine will look like this:

Motion routine: FALLING OBJECT .
10 POKE HP,100:Y=32:REM SET X POSITION AT 100 ON SCREEN, SETINITIAL
Y POSITION AT 32.

61

20 FOR X=1 TO 148:REM LOOP THROUGH 148 TIMES.

30 R=R+.02:REM R IS THE RATE THAT ISADDED TO Y AT LINE 40; HEREITIS
CHANGED TO MOVE OBJECT FASTER.

40 Y=Y+R:REM CHANGE Y POSITION BY MOVING IT R SPACES FURTHER
DOWN THE SCREEN.

50 POKE VP,Y:NEXTX:REM ACTUALLY MOVE PLAYER BY CHANGING VP
VALUE FOR NEW 'Y, LOOP BACK TO LINE 20.

The otherway to simulate arealistic falling object would be to decrease the amount
of time between each change in the y position. This method would be smoother than
the previous method; however, it would be considerably slower. To produce the
desired effect we must implement a for-next loop, used in this case as a timer, witha
variable parameter. Our routine will look like this:

Motion routine: FALLING OBJECT I

10 Y=32:K=40:POKE HP,100:REM START THE OBJECT AT 32; K IS THE
VARIABLE THAT DETERMINES HOW MUCH TIME THE LOOP AT LINE 30 TAKES;
POSITION PLAYER AT 100 HORIZONTALLY.

20 FOR X=1 TO 100: REM MOVE THE OBJECT ONE HUNDRED TIMES.

30 FOR TIME = 1 TO K:REM TIME DELAY LOOP.

40 NEXT TIME:REM LOOP BACK TO 30

50 Y=Y+2:POKE VP, Y:REM MOVE OBJECT DOWN BY TWO SPACES.

60 K=K-.5: NEXT X: DECREMENT K BY .5 SO THAT TIME LOOP AT 30 IS
CONSTANTLY DECREASING.

The computer's sine and cosine functions (SIN(X),COS(X)) can be used in a variety
of ways to produce complex motion. Consider, for instance, a spaceship that orbits a
tube shaped object in a spiral pattern. The spaceship must go steadily upward and
slow down as it reaches the top of the arc, much like the motion of the ball. Then it must
make the same arc-like motion upside down. The motion would follow a smooth
wavelike pattern in which the object slowed down as it reached the very top or bottom
of awave. This happens to be the graph of the sine function. By adding a couple of lines
that change the priority register (GPRIOR), we can make the spaceship appear to be
behind the tube and then in front of it to give a three-dimensional effect. The code to
produce this motion looks like this:

Motion routine:SPACESHIP

10 FOR I=0 TO 37 STEP.1:REM | WILL DETERMINE THE X AND Y POSITION IN
LINE 20.

20 POKE HP,I*5+30:POKE VP, 100 + SIN(l)*40:REM CHANGE X POSITION (X
POS. INCREASES AS | IN LINE 10 INCREASES), CHANGE Y BY TAKING THE SINE
OF |

30 IF PEEK (VP)>139 THEN POKE 623,4 :REM IF THE VERTICAL POSITION
BECOMES GREATER THAN 139 THEN CHANGE THE PRIORITY REGISTER SO
THAT THE OBJECT WILL BE BEHIND THE TUBE.

62

40 IF PEEK(VP)<64 THEN POKE 623,1:REM IF THE VERTICAL POSITION
BECOMES LOWER THAN 64 THEN CHANGE THE PRIORITY REGISTER (GPRIOR,
A SHADOW REGISTER AT 623) SO THAT THE OBJECT WILL BE IN FRONT OF THE
TUBE.

50 NEXT |

Using equations to give objects motion is an easy way to perform complex
animated graphics. One drawback of this method is that it could greatly reduce the
speed at which the object moves. A complex computation could take the computer
several seconds which would make the motion routine useless. To solve this problem,
we can use an equation to compute all of the moves ahead of time, store the (x,y)
positions in strings and then reference them. Strings are perfect for our purposes
because they store characters that are represented in memory as numbers O to 255,
which are the extreme positions of a player-missile object; a player's x and y positions
are never lower than zero and never higher than 255. To demonstrate this technique,
we will use the motion routine for the spaceship and calculate and store all of the
moves in a string ahead of time. The code to do this looks like this:

Motion routine: SPACESHIP I

10DIM M$(126):Z=0:REM MOVES WILL BE PRECALCUALTED AND STORED IN
CHR$ FORM TO BE RETRIEVED AS ASCII VALUES.

20 FOR I=0 TO 6.2 STEP.1:Z=Z+2:REM ADD TWO TO Z WHICH IS AN INCRE-
MENTING VALUE IN LINE 30.

30 M$(Z-1)=CHRS$(INT(I*5+30)) :M$(Z)=CHRS$(INT(100+SIN()*40):REM THIS
LINE FIGURES OUT EACH SUCCESSIVE POSITION AND STORES THEM IN (X,Y)
ORDER.

40NEXT I:A=ADR(M$):REM LOOP BACK TO CALCULATION PORTION OF ROU-
TINE.AISTHE POSITION IN MEMORY WHERE M$ IS STORED; WHEN READ FROM
MEMORY THE CHARACTERS APPEAR AS ATASCII VALUES.

50 FOR 12=0 TO 190 STEP 31:REM THIS LINE FIGURES OUT THE STARTING
PLACES FOR THE HORIZONTAL POSITION ON EACH SUCCESSIVE SINE WAVE
CYCLE.

60 FOR I=1 TO 126 STEP 2:POKE HP,PEEK(A+I-1)+I2:REM THIS IS THE
POSITION READING LOOP. THE POKE ADDS 12 TO THE NEXT HORIZONTAL
MOVE VALUE AND THEN ACTUALLY MOVES THE PLAYER.

70 POKE VP,PEEK(A+I)::REM READ Y VALUE AND POKE IT IN.

80 IF PEEK(VP)>130 THEN POKE 623,1:REM THIS LINE CHANGES THE
PRIORITY TO GIVE 3D EFFECT AS IN LAST ROUTINE.

90 IF PEEK(VP)<70 THEN POKE 623,1:REM CHANGE PRIORITY BACK TO
NORMAL

100 NEXT I: NEXT 12

110 REM NOTE THAT THE LOOP IN LINE 20 IS INCREMENTED BY A VERY
SMALL VALUE (ie .1). IN MANY FUNCTIONS, SUCH AS SINE, THIS IS DESIRABLE.

63

Designing fairly complex motion routines of your own involves just a couple of
steps. First, decide upon how the object’s motion will change over a period of time -
whether it will change its pattern of motion, speed up, etc. Next, design a simple
routine that performs the basic motion of the object. Then add in the additional
features such as the height of the next bounce, the speed, timing, etc. The only other
step involved is perfecting the routine so that it performs as you want it to.

64

Chapter 15

Multiple Players and Multicolored Players

Sometimes the 8 x 256 resolution and tiny size of a player are just too limited to
produce the kind of graphic effect that we desire. Also, a player is only one color and
we may have wanted to use several colors. The only way to overcome these limitations
is to use several players as one. This is done easily enough; simply position two
players side by side on the screen, one containing the data for the right half of the
figure and the other the data for the left half. A more challenging venture is to animate
and move this two-player figure. With pm ANIMATOR this is accomplished by the
SUMOVES routine which is discussed in Chapter 11. In this chapter, we will discuss how
to design the overall two-player shape, as well as how to design the animation.

Let's assume that we want to design a large flying dragon that would flap its wings
as it flew across the screen. Simply by the nature of this figure (large and high
resolution), we can tell that we must use two or more players; for this example we will
use three. Thefirst step is to sketch what the dragon will look like on a piece of paper. If
you can’t sketch, then find several pictures of what you wish to create in animation.
Next you must either obtain some bit-mapping paper or make your own. With this bit-
mapping paper we are going to draw, by hand, our large multi-player figure. To make
your own bit-mapping paper, design a master copy from which to make xeroxed
copies. Take graph paper and divide each row of squares into two rows by adding a
horizontal line. Each one of the newly formed rectangles (half a square) will represent
an unlit block(a bit) of a player, just as the rectangles in the Grafix Editor's large editing
window does. Now you can make a scale drawing of your large figure. If you wish to
draw multi-player figures using a different width, then use the following proportions to
make your bit-mapping paper:

65

PROPORTIONS FOR BLOCK (PIXEL) SIZE IN PLAYER-MISSILE
SHAPES: HEIGHT COMPARED TO WIDTH OF A SINGLE PIXEL.

SINGLE LINE RESOLUTION:

At normal width a pixel is 2 times as wide as it is high.

At double width a pixel is 4 times as wide as it is high.

At quadruple width a pixel is 8 times as wide as it is high.

DOUBLE LINE RESOLUTION:

At normal width a pixel is just as wide as it is high.
At double width a pixel is 2 times as wide as it is high.
At quadruple width a pixel is 4 times as wide as it is high.

Note: for more information on the above, see Appendix | under player width.

After drawing this special graph paper and making several copies of it, we must
begin designing our dragon.

We carefully sketch the dragon on one of the pieces of bit-mapping paper we have
made and then fill out the blocks to outline its shape. However, suppose we find out
that three players are too small for our figure. We can use a different player width to
increase the horizontal size of the player. Double width will be sufficient for this shape,
so we design a piece of bit-mapping paper to the right proportions (see above chart).
Although the player's horizontal size is now twice as big, there are still only 24 pixels
across. They are each just twice as wide (3 players * eight bits = 24 total blocks
across). Soon enough, after sketching the dragon on the special graph paper (bit-
mapping paper) and filling in the appropriate blocks, we find we have created an
appropriate design. We then divide the dragon into three columns, each eight blocks
wide (the width of a single player), and into rows sixteen blocks high (the height of one
frame). In this way we will design the entire figure piecemeal, like a jigsaw puzzle, by
designing each individual part of the multi-player figure as one frame. Since the data
file created is saved by the Grafix Editor as a continuous record of data, we can divide
the file into frames of any height we want in our program.

With multi-player figures we must remember that we can have several widths and
colors as opposed to only having one. With this in mind it is sometimes to your
advantage to mix player widths (i.e. to make some of the players regular width and
some double, etc.). Our dragon, for example, may need a large body and a small
detailed head. For this we could make the players that would be the body of double
width, and the players that would be the head normal width for higher resolution. It is
also advantageous to animate as little of the figure as possible. For instance, in the
dragon in the demonstration the wings and tail (upper half of the body) are the only
things that are animated. This means that we only have to have one ‘frame’ of data for
the head and lower body, because these parts do not change; they remain the same
throughout the dragon’s flight. (For more on this see “D:DRAGON.DEM” and examine
the file “D:BIG”; use the File Editor, as this is a Grafix Editor data file).

Muiti-color players work much the same way that large multi-player figures do. You

66

cannot get a multi-colored single player per se without using any hardware tricks such
as display list interrupts (see Chapter 16 for a note of explanation). Multicolored
players are actually two players positioned on top of each other. Using this overlay
method, four colors can be obtained: the background color, the color of player zero,
the color of player one, and a special color caused by an overlapping of sections of
player zero and one. This last special color is obtained by setting the fifth bit in the
register GPRIOR (see Appendix | for more on this). The special color occurs when one
pixel overlaps a lighted pixel of the other player, causing that particular pixel to
become a different color. This only works with certain two-player combinations:
players zero and one, and players two and three. It will not work, for instance, with
player two and player three.

To generate multicolored players using the Grafix Editor follow this procedure.
First, design the animation using one color (i.e. one player). After you have done this,
design the player in three colors using the MULTI command (see Chapter 8 under
MULTI). It is best to devote half of the file to the frames that will be in player zero, and
the other half to the frames that will be in player one. Since this requires two players, it
willrequire two frames of data for every one multi-colored frame you want to have. One
frame of data will have the parts of the figure that are in the first color, the next frame
will have the parts of the figure in the other color and both will have the parts that are to
be in the special color. The main demo makes use of these techniques.

67

Chapter 16

Final Notes

This section covers miscellaneous tips that will help advanced users to implement
player-missile graphics in their BASIC programs.

MODIFYING TOTAL.LST TO WORK WITH DIFFERENT
GRAPHICS MODES.

If you attempted to use TOTAL.LST in conjunction with a high resolution graphics
mode like 7 or 8 you would get ‘garbage’ on the screen. This is because the player-
missile area has been placed on top of the screen data area. Thus, when you were
putting player frame data into the player area it was also being put into the screen data
area, causing the ‘garbage’. To overcome this, position PMBASE a little lower in
memory (screen memory is at the very top of user RAM). This is accomplished by
changing line 32005 of TOTAL.LST to look like this:

32005 PM=PEEK(106)-40:PMB=256*PM

Remember that single line resolution player-missile graphics operate on a 2K
boundary. That is, PMBASE can only be located at a location that is a multiple of 2K.
Since RAMTOP (the Atari name for location 106) holds the page number of the highest
useable RAM location (a page is a block of 256 consecutive memory locations), we
can determine the very highest user-RAM location. It is always best to use the highest
location in memory for the player-missile base since the ATARI uses the lower
locations first. Since single line resolution operates on a 2K boundary, and 2K=8 pages
of memory (2K = 2048 bytes = 8 pages x 256), we must subtract a number that is a
multiple of 8 from the number in location 106. The highest number you will have to use
is 40, and subtracting 8 usually works on the text modes and lo-res graphics modes.

68

DATA FILE STRUCTURE

The data files that you create with the Grafix Editor are standard ATASCII files.
There are no gaps between successive frames in the file; they are merely placed top to
bottom in successive order. If you do not wish to use LD$ (the quick loading routine)
you can load a file using the OPEN and GET command. Suppose we wished to load a
file of ten frames (10 frames x 16 = 160 bytes of information, 160 memory locations
required) into the area just below the player-missile base. The BASIC coding for this
would look like this:

10 REM LOADING A GRAFIX EDITOR FILE USING BASIC GET, OPEN
COMMANDS.

20 OPEN #1,4,0,“D:RUNNER"

30 FOR I=PMB TO PMB+159:REM PMB = LOCATION OF PMBASE.

40 GET#1,A:POKE |,A

50 NEXT |: CLOSE #1

USING A POINTER SYSTEM

A pointer system is simply a systematic way of remembering certain memory
locations. For example, say we wish to animate a player in our program. The ROT$
routine requires that we remember the exact position in memory from which to get the
frame data. If we had to compute this every single time it would slow the animation
down.

Our pointer system would be used to remember the exact position in memory of
every frame. In this way we will have a sort of bookmark that tells us where the data for
each separate frame resides in memory. We store the needed memory locationsinan
array. Suppose that we wish to make a pointer system that will point to sixteen frames
that are stored just behind PMBASE. The code to do this would look like this:

10 DIM PNT(16):A=0:FOR I=PMB TO PMB+256-16 STEP 16:A=A+1:PNT(A}=I: NEXT |

Notice that our for-next loop is 16 less than 256. This is because the first pointer is
located at PMB; if we were to have 16 more that would make 17 pointers. By
employing this pointer system technique, we can use a simple for-next loop for anima-
tion. (For more information see the demos on the pm ANIMATOR disk).

MEMORY CONSERVATION TECHNIQUES

There are two memory conservation techniques that you may want to use. The first
ofthese is to use the large space just behind PMBASE for storing frame data. Thisarea
is protected unused RAM which will not be used by the computer, so you might as well
take advantage of it. This is also a nice place to store machine language routines that
must remain in a fixed position, such as a vertical blank routine or a display list
interrupt routine.

69

The other memory conservation technique is simple. Store as much data as you
can on disk and load it directly into memory by disk. Do not use DATA statements to
read frame data or other data into memory unless you have to, because it takes up a lot
of memory.

OTHER TRICKS WITH PMG

There are afew other interesting tricks that one can do with player-missile graphics
that we haven't really covered. One of them is the use of display list interrupts with
player-missile graphics. With a DL, it is possible to produce a figure with many colors
or a figure with rotating colors using only one player.

Another trick that can be done is to simulate more players on the screen. To do this
one can use avertical blank routine that moves a player from one horizontal position to
another, back and forth. Each player would move back and forth horizontally so
quickly that it would look like a separate player.

These tricks are beyond the scope of this manual and are only for advanced
programmers with a thorough knowledge of machine language and of the ATARI
computeritself. You are encouraged to experiment with pm ANIMATOR and PMG, but
you are now on your own!

70

APPENDICES

Appendix |

PM Graphics - The Hardware Registers

In this Appendix we will describe all of the hardware registers that are used when
accessing player missile graphics as well as the software registers created by the
TOTAL.LST subroutines. All of the following information on hardware registers can
also be found in the Atari Technical Users Notes.

We will give each register the name that Atari has assigned to it, e.g. DMACTL is
location $D400. Where applicable, we will also list the shadow memory location for
that hardware register. The following shorthand will be used in describing the bits that
make up each register: Bit O will be labeled BO, bit 1 will be B1 ... through bit 7 which
will be B7. The format of this Appendix is as follows:

ATARI REG. NAME Functional Description

Read or Write Only? Address in hex (decimal) - Shadow if present-bit map of register
(function of each bit)

See chapters 2-5 for explanation of terminology used here.

ATARI HARDWARE REGISTERS
DMACTL - Direct Memory Access Control

Write $D400 (54272) - shadow at $22F (559)
B6 and B7 - Not used

B5 1= Enable Instruction: Fetch DMA

B4 1 = Single line PM resolution

B4 0 = Double line PM resolution

B3 1 = Enable player DMA (turn on players)
B2 1 = Enable missile DMA (turn on missiles)

71

B1 and BO
0,0 = No playfield DMA
0,1 = Narrow playfield DMA
1,0 = Standard playfield DMA
1,1 = Wide playfield DMA
Default value = $22 (34)

GRACTL - Graphics Control

Write $D01D (53277) — No shadow

B7-B3 - Not used

B2 1 = Latch triggers (Trig0-Trig3) remember if triggers were pressed
B1 1= Enable player DMA

BO 1 = Enable missile DMA

PMBASE - Player-missile Address Base Register

Write $D407 (54279)

Single line resolution

BO-B2 - Not used

B3-B7 - The most significant byte of the address of the player-missile area

Double line resolution
BO-B1 — Not used
B2-B7 - The most significant byte of the address of the player-missile area

PRIOR - Priority
Write $D01B (563275) — shadow at $26F (624)
B7-B6 = Not used
B5 1 = Multiple player color enable
B4 1 = Fifth player enable (causes all missiles to assume the color of playfield 3)
B3-BO = Priority select (see table below)
Check the Hardware Manual for further details about PRIOR
Bit-Map for PRIOR

B3 B2 B1 BO

PFO PFO PO PO Highest Priority
PF1 PF1 P1 P1

PO PF2 PFO P2

P1 PF3+P5 PF1 P3

P2 PO PF2 PFO

P3 P1 PF3+P5 PF1

PF2 P2 P2 PF2

PF3+P5 P3 P3 PF3+P5

BAK BAK BAK BAK Lowest Priority

72

COLPFO-COLPF3 and COLBK - Playfield and background colors
Write $D016,$D017,$D018,$D019,$D01A (53270-53274)

Shadows at $2C4,$2C5,$2C6,$2C7,$2C8 (708-712)

Playfield 0 = $D016

Playfield 1 = $D017

Playfield 2 = $D018

Playfield 3 = $D019

Background = $DO1A

COLPMO-COLPMS3 - Player Missile Color

Write $D012,$D013,$D014,$D015 (53266-53269)
Shadows at $2C0-$2C3 (704-707)

Player and missile 0 = $D012

Player and missile 1 = $D013

Player and missile 2 = $D014

Player and missile 3 = $D015

All color registers have the following bit map:

B7-B4 = Color

B3-B1 = Luminance (Brightness)

BO = Not Used

Luminance can be even numbers from O (black) to 14 (brightest).
Colors are:
B7 B6 B5 B4

0 (o] 0 0

0 0 0 1 Gold

0 0 1 0 Orange

0 0 1 1 Red-Orange
0 1 0 0 Pink

0 1 0 1 Purple

0 1 1 (0] Purple-Blue
0 1 1 1 Blue

1 (o] 0 (o] Blue

1 0 0 1 Light-Blue

1 0 1 0 Turquoise

1 0 1 1 Green-Blue

1 1 0o 0 Green

1 1 (0] 1 Yellow-Green
1 1 1 0 Orange-Green
1 1 1 1 Light Orange

73

GRAFPO-GRAFP3 - Player graphics register
Write

Player O $DOOD (53261)

Player 1 $DOOE (53262)

Player 2 $DOOF (53263)

Player 3 $D010 (53264)

These addresses write data directly into the player graphics registers, independent
of DMA. If DMA is enabled, the player graphics register will load automatically from
the area defined by PMBASE.

GRAFM - Missile graphics register
Write $D011 (53265)

This address writes data directly into the missile graphics register, independent of
DMA. If DMA is enabled, the missile graphics register will load automatically from the
area defined by PMBASE.

SIZEPO-SIZEP3 - Player Size
Write

Player 0 $D008 (53256)

Player 1 $D009 (53257)

Player 2 $DO0A (53258)

Player 3 $D00B (53259)

B7-B2 Not used

B1-B0 0,0 Normal size (8 color clocks wide)
0,1 Twice normal size (16 color clocks wide)
1,0 Normal size

1,1 4 times normal size (32 color clocks wide)

SIZE - Missile size
Write $D00C (53260)
B7-B6 Missile 3
B5-B4 Missile 2
B3-B2 Missile 1
B1-BO Missile O

Each pair of bits maps the same as for player size.
HPOSPO-HPOSP3 - Player horizontal position
Write

Player 0 $D000 (53248)
Player 1 $D001 (53249)

74

Player 2 $D002 (53250)
Player 3 $D003 (53251)

Values POKEd into these locations control the horizontal position of the appropriate
player. $30(48)is the left edge of a standard width screen. $D0(208) is the right edge of
a standard width screen.

HPOSMO-HPOSMS3 - Missile horizontal position
Write

Missile 0 $D004 (53252)

Missile 1 $D005 (53253)

Missile 2 $D006 (53254)

Missile 3 $D007 (53255)

See HPOSPO for description.

MOPF,M1PF,M2PF,M3PF - Missile to playfield collision
Read

Missile 0 $D000 (53248)

Missile 1 $D001 (53249)

Missile 2 $D002 (53250)

Missile 3 $D003 (53251)

B7-B4 Not used

B3 1 = Collision with playfield 3
B2 1 = Collision with playfield 2
B1 1 = Collision with playfield 1
BO 1 = Collision with playfield O

POPF,P1PF,P2PF,P3PF - Player to playfield collision
Read

Player 0 $D004 (53252)

Player 1 $D005 (53253)

Player 2 $D006 (53254)

Player 3 $D007 (53255)

B7-B4 Not used

B3 1 = Collision with playfield 3
B2 1 =Collision with playfield 2
B1 1 = Collision with playfield 1
BO 1 = Collision with playfield O

MOPL, M1PL, M2PL, M3PL - Missile to player collision
Read

75

Missile 0 $D008 (53256)
Missile 1 $D009 (53257)
Missile 2 $DO0A (53258)
Missile 3 $D00B (53259)

B7-B4 Not used

B3 1 = Collision with player 3
B2 1 = Collision with player 2
B1 1 = Collision with player 1
BO 1 = Collision with player 0

POPL, P1PL, P2PL, P3PL - Player to player collision
Read

Player 0 $D00C (53260)

Player 1 $DOOD (53261)

Player 2 $DOOE (53262)

Player 3 $DOOF (53263)

B7-B4 Not used

B3 1 = Collision with player 3
B2 1 = Collision with player 2
B1 1 = Collision with player 1
BO 1 = Collision with player O

HITCLR - Collision clear register
Write $DO1E (53278)

POKEing any value to this register clears all of the collision registers (makes them 0).
These are all of the hardware registers that are used with player-missile graphics.
Further information can be found in the Atari Technical Users Notes.

pm ANIMATOR REGISTERS

The following are variables which are used by TOTAL.LST, the heart of the pm
ANIMATOR runtime package. They are not ATARI register names but actual variable
names that can be referenced in your programs.

HP - This variable represents the players horizontal position register. This short
notation is easier to remember than 53248 (or was it 534287?.)

VP -This is the location of the vertical position register of player zero, created by the
vertical blank routine in TOTAL.LST. The vertical position registers for the players are
as follows:

76

VP+0 - PLAYER ZERO - 1780
VP+1 - PLAYER ONE - 1781
VP+2 - PLAYER TWO - 1782
VP+3 - PLAYER THREE - 1783

For more information see chapters ten and eleven of the pm ANIMATOR MANUAL.

LE - This is the location of the player height or ‘length’ register for player zero. The
vertical blank register in TOTAL.LST requries that you first define the length of a player
by POKEing the desired length into the appropriate player's length register. These
registers are as follows:

LE+0 - PLAYER ZERO - 1784
LE+1 - PLAYER ONE - 1785
LE+2 - PLAYER TWO - 1786
LE+3 - PLAYER THREE - 1787

For more information see Chapters ten and eleven.

PM - This is the high byte or the ‘page number of PMBASE. This is often useful in
calculating exact memory locations needed for the machine language routines. For
more information see Chapters ten and eleven.

PMB -This is the exact memory location of PMBASE. This is often useful in calculating
exact memory locations needed for the machine language routines. For more
information see Chapters ten and eleven.

Memory location 1788 - The high byte of the address of player zero (PM+4) is POKEd
into this register. This register is used by the vertical blank routine in TOTAL.LST.

77

Appendix i

References

The following references contain material relevant to the discussions in this manual in
some cases at a simpler level than is presented here and in others at a more advanced
level.

DE RE ATARI
Atari, Inc.
Sunnyvale, CA 94086

ATARI 400/800 BASIC REFERENCE MANUAL
Atari, Inc.
Sunnyvale, CA 94086

TECHNICAL USER'S NOTES
Atari, Inc.
Sunnyvale, CA 94086

WHAT TO DO AFTER YOU HIT RETURN
Albrecht, Finkel, and LeBaron

Hayden Book Company

Rochelle Park, N.J.

THE ATARI ASSEMBLER
Don Inman and Kurt Inman
Reston Publishing Co., Inc.
Reston, VA

78

YOUR ATARI COMPUTER

lon Poole, Martin McNiff, and Steven Cook
OSBORNE/McGraw-Hill

Berkeley, CA

6502 ASSEMBLY LANGUAGE PROGRAMMING
Lance A. Leventhal

OSBORNE/McGraw-Hill

Berkeley, CA

6502 APPLICATIONS BOOK
Rodnay Zaks

Sybex

Berkeley, CA

The following periodicals have also contained valuable information on PMG and
general programming techniques from time to time:

AN.AL.OG.
Cherry Valley, MA 01611

ANTIC
San Francisco, CA 94107

BYTE
Peterborough, NH 03458

COMPUTE!
Greensboro, NC 27403

CREATIVE COMPUTING
Morris Plains, New Jersey 07950

MICRO
Chelmsford, MA 01824

79

e e

e
e

80

