
rRH

DISK MACRO

ASSEMBLER/TEXT EDITOR (MAE)

FOR 6502 ATARI COMPUTERS

CONTENTS PAGE

1. Introduction 1

2. Files Contained on the Diskette 2

3. Machine Language Monitor (MLM) Commands 3

4. Text Editor (TED) Features 8
A. C ommand s 8

B . Entry/Deletion/Change of Text 13

5 . Assembler (ASSM) Features 14

A. Source Statement Syntax 15

B . Label File (or Symbol Table) 24
C . As sembling 24
D . Creating a Relocatable Object File 25
E . Macros 27

F . Conditional Assembly 29
G. Interactive Assembly 32
H . Default Parameters on entry to ASSM 33

6 . Error Codes 33

7 . String Search and Replace Commands 34
A. EDIT Command 34
B • FIND Command 36

8. Examples 36

A. TED 36

B . ASSM 38

9 . Getting Started with MAE 39

10 . The MAE Simplified Text Processor (STP) J&3J

11 . Special Notes 47

12 . Memory Map 48

'k'k-k'k'k'k'k-k-k'k-k'k-k'k'k'k'k'k'k-k-k'k'k'k-k'k-k’k'k'k'k

*

*

*

*

*

;k

f

WRITTEN ENTIRELY IN MACHINE LANGUAGE BY
EASTERN HOUSE SOFTWARE, SERIAL //:

*

*
*
*
*

•k-k'k'k'k'k'k’k-k'k'k'k-k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k

EASTERN HOUSE SOFTWARE

COPYRIGHT 1981

All Rights Reserved-

COPYRIGHT NOTES

This manual and the object code is serial numbered and protected

by a legitimate copyright. No part of this manual may be copied or
reproduced without the express written permission of the owner, Carl

Moser. It is a Federal crime to make a copy of the manual or
diskette for use by anyone other than the individual who purchased

this software or the individual a company purchased the software for.

Thus, you are in violation of Federal Copyright Laws if you do

one of the following:
- Make a copy of the manual.
“ If you allow someone else to use your copy of the object

media while you retain a copy or are using a copy.

- If you, your company, or others purchase one or more
copies and more individuals simultaneously use this
software than the number purchased.

~ you allow someone else to do the copying of this

material, you will be considered as a party to the

infringement•

A reward will be provided for anyone who supplies information

which leads to the prosecution of parties who violate this copyright.

We do not presume that you are or will violate copyright laws.
Most users do not. Some though do, and may not realize the

consequences for violation of this Federal Law. Penalities and fines
can be quite severe for both individuals and companies who infringe

this copyright.

Most importantly, software houses like the one which wrote this
software have incurred a tremendous investment that can not be fully

recovered if current illegal copying continues. Also, updates and
program maintenance will have to be terminated if the return on

investment is not sufficient.

If (for whatever reason) your diskette or cassette becomes

defective, EHS will exchange it for a small charge.

Finally, an expressed appreciation is given to the purchaser of

this software. We hope that you find it a valuable and worthwhile

inve s tment.

If you encounter any problems, contact us at:

Eastern House Software

Carl Moser
3239 Linda Drive
Winston-Salem, N. C. 27106

or

J. R. Hall
4145 Transou Road
Pfafftown, N. C. 27040

PAGE

1e INTRODUCTION

The MAE is a highly sophisticated software package with many

powerful commands® Most commands are easy to use and understand*

However, it is not always possible to provide an exact example due to
the complexity of the operation® It is also difficult to clearly get
across some of the most powerful assembler concepts® Therefore, we
have provided numerous examples in this manual as well as example
disk files on the supplied diskette® In order to get the most out of
this manual, read PARTS 1 to 7 and study the examples in PART 8
before going to PART 9 (Getting Started. With MAE)® Although you may
not totally understand all of the MAE commands when you get to PART

9, most commands will become straight Toward once you have a chance

to work with the MAE• Finally , in PART 10 * there is a word processor
for your use in writing letters, books, or anything® In fact, this
manual was written using the word processor® Now let^s get started

learning about the software 1 I !

The Macro Assembler (ASSM), Text Editor (TED), and Machine
Language Monitor (MLM) resides simultaneously with the disk operating
system (DOS) in less than 21K bytes of memory® The collective

assembler and text editor is referred to as MAE® MAE was designed to

work with the ATARI 400 or 800 with at least 32K of memory and at
least one ATARI 810 disk drive® The included MLM and DOS may be used
for interfacing the cassette and disk as desired by the user® In
addition, the MLM provides 25 commands useful. in debugging the
assembled object code®

Some unique features of MAE are:
• Macro, Conditional Assembly, and Interactive Assembly®
• Labels up to 31 characters in length®
• Auto line numbering for ease of text entry®
• Creates both, executable code in memory and relocatable

object code on disk®

• Word processing feature for composing letters and other text®
• Loading and storing via disk®
• Supports ATARI printer®

• String search, and replace capability, plus other powerful
editing commands®

As mentioned, the total object code occupies less than 2 IK of
memory® In addition to this, sufficient memory must be allocated for
the text file and label file (symbol table)® Approximately 5K is
sufficient memory for the text file for small programs or larger
programs if assembled from disk.® If an executable object code file

is to be stored in memory during assembly, sufficient memory must be

provided for that also® On cold start entry, MAE will set the file
boun.dries as follows:

= $6800— $ 7 C1C
= $2680-$2FFC

= $5800

Text File
Label File

Relocatable Object Buffer

PAGE 2

no memory
Therefore. we

In a 32K ATARI system, these boundaries leave practically

for object code storage (see Memory Map - PART 12).
recommend 48K of memory for more useability. Whether you use 32K
40K or 48K of memory, the BASIC cartridge should not be installed.

The label file and text file that MAE generates is position
independent and may be located practically anywhere in RAM memory
(see .SE command). The object code file location is dependent on the
beginning of assembly (.BA pseudo op) and the •MC pseudo op.

MAE was designed such that records in the label file and text
file are variable in length and directly dependent on the number of
characters to be stored. This results in more efficient utilization

of memory •

Initial entry (or cold start) to

command (see AC command)® Initial entry
default parameters:

MAE is via a special MLM
provides the following

, F ormat = set
c Manuscript = clear
. Auto line numbering = off
. Text file and Label file = clear

MAE uses a prompter character (]) to indicate that it is ready

to accept commands. Command mnemonics referenced in this document
are printed with the prompter (example]BR). When inputting a

command, you should not type "]" preceeding the mnemonic.

This software has been extensively tested and is believed to be
entirely reliable. It would be foolish to guarantee a program of

this size and complexity to be free of errors. Therefore, we assume
no responsibility for the failure of this software. We will take any

reasonable steps to fix any problems with this software. If you do
find a problem, please feel free to write us describing in detail the

problem•

MAE is protected by a Copyright® This material may not be

copiedj reproducedj stored in retrieval system, or otherwise

duplicated without the written permission of the owner, Carl Moser®
The purchaser of this software does not convey any license to
manufacture, modify and/or copy this product in any manner. If the
provided MAE diskette is ever damaged, a new diskette can be obtained

from EHS.

2. FILES CONTAINED ON THE DISKETTE

The supplied diskette contains the following files. As time goes by,
new files will be added in order for you to get the most out of the

ATARI MAE.

DOS . SYS
WORDP•EXE

WORD? .INS
MEMTSI•EXE
MEMTST•INS
MAE•NOT
EXAMP•xx

Description

BOS, MLM, and MAE Software

STP Word Processor object code
Example of raw text for word processor
Memory Test object code
Memory Test instructions

Some notes on the MAE
Example source programs for use with MAE

3. MACHINE LANGUAGE MONITOR (MLM) COMMANDS

The MLM provides 25 commands which are most useful to the

machine language programmer® It provides the user with the
capability to easily interact with the 6502 microprocessor and system

memory® Used with MAE, it provides the powerful flexibility to

assemble programs and then de-bug the machine code all within one
software package. The MLM uses the ATARI screen editing capability®
This feature makes the MLM powerful and easy to use®

The following is a list of the MLM commands® Carefully read
over the commands and examples® Then practice with the MLM to gain a

better’ insight into their use®

A period is used to indicate the MLM is ready for a command®

M XXXX YYYY — DISPLAY MEMORY

Display memory starting at hex address XXXX and ending at YYYY.

Example -

M 6531 653F
:6531 01 02 03 04 05 06 07 08
s 6539 09 0A 0B 0C 0D 0E OF 10

Note -- If only start address is entered, 24 memory locations will
be displayed®

Note -- For long memory displays, the control™! key can be use to
stop and start the listing*

Note — — To abort a long listing, press the space bar.

PAGE

I XXXX YYYY — INTERROGATE MEMORY
address XXXX and ending at YYYY *
like the ®M command except it also
the memory contents® All cursor

question mark (?) •

Interrogate, memory starting at

The interrogate command works
displays the ASCII equivalent

control codes are displayed wi

DISPLAY REGISTERS

Display 6502 registers .

Example Printout -

* PC AR XR YR PR SP

; 7013 41 11 FA 03 FA

PC 25 program counter; AR “ accumulator; XR = X register
YR = Y register; PR = status register; SP = stack pointe

ALTER MEMORY

Indicates
will be used
change bytes —

that the following hex address and line of hex data
to alter memory® Cursur up and over to location and

press RETURN®
OBSEJ OSSB9 ®EBt ®MC» *®EEB OSBE9 taffiED oassi® •K36HD M2E50 «MK*5> «ES» » «K3B OBSBB

; — ALTER 6502 REGISTERS

Used to modify 6502 registers. Cursor up and over to regi

and change bytes press RETURN•

G XXXX GOTO

GOTO address specified by
must contain a BRK instruction to
given, the GOTO address defaults

XXXX and execute program.
return to MLM. If XXXX

to the program counter.

Program
is not

C XXXX CHANGE MEMORY

This is a special mode to alter memory

by XXXX is the starting hex address.

Example C 6000

SCREEN DISPLAYS -
ENTER HEX DATA AT YY
AND PRESS RETURN

address specified

SCREEN DISPLAYS - 6001
ETC

To exit the change mode, press RETURN instead of entering data.
The prompter (.) will be displayed.

aaasn «as» es® «sn®5 «®skz» aisso aesse «bb «g® uxtaa ccesb i®aa trsass «nwn» ■sees aasarj unrx® kbje> acs <*x3sa cms tarsai «as» oasao aess® tessiEs <mkzs cswss zunEm •aass> oo®£B -saw esasw kkb map* oaecei in-™, oaess «scsb wm kmw «™« >ocm «cam «« nmwa ««ma. sojsfa a®® attms iobmi oaaas -m .w arrtjx.i «»«» -, , r - m

Exit the monitor and return to DOS menu.

S XXXX YYYY — SAVE MEMORY TO CASSETTE

Save memory starting at hex address XXXX to ending address YYYY®

Note The end address must be the actual address+1®

L XXXX — LOAD MEMORY FROM CASSETTE

Load memory from cassette and store starting at hex address
XXXX. Binary data saved using the S XXXX YYYY command can be loaded
into memory at any location (as defined by L XXXX).

? —— ERROR

A question mark will be printed if a bad command or bad hex data
is entered® It will also be given if any command tries to alter a
ROM or non-existent memory location,

Fill memory starting at hex address XXXX to address YYYY with
the hex character ZZ@

Example - F 1000 10F0 E3 - Fill memory from $1000 to $1GF0 with $E3.

H XXXX YYYY "ZZZZZ -- HUNT FOR ASCII STRING

Hunt memory from XXXX to YYYY for the ASCII string ZZZZZ

Example H 1700 2A80 ATARI COMPUTER — — Hunt memory from $1700 to
$ 2A8 0 for the ASCII string ATARI COMPUTER .

Mote — The ASCII string can be up to 20 characters long.

Note - If a match of the ASCII string is found f the hex address will
be listed to the screen® If no. match is found, only the command
prompt (.) will be displayed®
®ac» **** 006189 oeBXo «*>ZE» SSS*» rSGSB OW9E9 CWHB3 eaOSt wm® cStEHS aaSOJffl fflKSBO «TOBS «SSS» *833® «S5SS» «BSX» «SSM» ««7K> aasoSB —■»■— smBO «8W» KOBS mgjsait OBM OHS nnw moth# _____ ■* r-* . x ,

H XXXX YYYY ZZ

Hunt memory from XXXX to YYYY for Cs>

Example “ H 1700 2 A80
$2A80 for the hex characters

Note The hex characters can

Note - If a match of the hex
will be listed to the screen
prompt (*) will be displayed

characters is
If no match is found , on

o

©

ctsssa «ses cssbs exsas* «sa2S» mshb «sshs> aKESft <oseo «rac® e*ES

T XXXX YYYY ZZZZ

Transfer memory from
at address ZZZZ.

Example - T 5000 5100 C000
store it starting at $0000

Transfer memory

K XXXX YYYY ZZZZ COMPARE MEMORY

Compare memory from address

starting at ZZZZ®

Example K 5000 5100
the memory starting
different * the address

- Compare

$€000

will be

D XXXX - DISASSEMBLE MEMORY

Disassemble memory starting at hex address

Example - D

will clear

mnemonics.
To terminate

- Disassemble

display the hex code

control-1 key is
the listing * press the

as s a s
the listing •

9

9

9

$

A000 A5 CA . LDA $CA

A0 02 DO 04 • BNE $ A008

A004 A5 08 * LDA $08

A006
etc

DO 45 • BNE $ A04D

Note ~ When an unimplimented

field will display ???»

PAGE 7

, - ALTER DISASSEMBLE LISTING

A comma command is used to alter the hex code printed out by the

disassemble command. After the listing has been stopped with space

bar, simply cursor up and over and change hex code (up to 3 memory
locations can be modified). When the RETURN key is pressed, the
disassembly process will begin again.

B XXXX YYYY - CALCULATE BRANCH

Calculate the branch value from address XXXX to YYYY.

Example - B 4000 4013 - Calculate the value of a branch instruction
when the program counter is at $4000 and branch to instruction is at

$4013. In this case, the hex value 13 will be displayed.

XXXXX - CONVERT DECIMAL TO HEXIDECIMAL

Convert the decimal number XXXXX to a hexidecimal number. The
maximum decimal is 65535.

Examples - #65535 , #1024 , #16 , $8

$ XXXX “ CONVERT HEXIDECIMAL TO DECIMAL

Convert the hexidecimal number XXXX to a decimal number. The
maximum hexidecimal number is FFFF.

Examples - $FFFF , $E034 , $A00 , $FF , $B

PS — PRINTER SET

Set the MLM so that all characters sent to the screen are also

sent to the ATARI printer.

PC — PRINTER CLEAR

Stop sending characters to printer.

AC -- MAE COLD START

Enter MAE and set all parameters to their default values.

AW — MAE WARM START

Enter MAE and keep all parameters at their current values.

(1) Spaces

are optional

(2) Error messages
be printed to the s
is a decimal number
(see BASIC and/or D

shown in the
t required b

xamples of the comm

screen in

sk or cassette will
=XXXXX" where XXXXX

4. TEXT EDITOR (TED) FEATURES

The TED occupies approximately one—half the total memory.space
c. Tha „t,rnn?p of the TED is to setup and maintain of the MAE software., The purpose or <-ne luu v

the source file by interacting with the user via various commands.

Temporarily halt ou
the following keys.
Return to prompter
Continue processing

errors.

Continue outputting halt (c

When inputting to the TED, the user has available the full

capabilities of the built in cursor-oriented screen^ editor. w“®”-
listing to the CRT or printer, the user has control or the output v .

the following keys:

A. Commands

The TED provides 27 command functions® Each command mnemonic

must begin immediately after the prompter (])• When entered a

command is not executed until the RETURN key xs depressed. Although
a^ommand mnemonic such as]PR may be several non-space characters in

length, MAE only considers the first two. For example,]pR»]PRI,

jPRINT, and]PRETTY will be interpreted as the print command.

Some commands can be e

example,]PRINT 10 200 will pri
line numbers between 10 and 200

the parameters from one another

various

t in the

For

One must

at least one space

disk filenames

in the DOS manu

by MAE are in

is repeated as f

name

PAGE 9

where: x is the disk drive number (default = 1)

and "name' is the 8 character filename and
3 character extender.

"D1 :RABBIT.EXE"

A description of each text editor command followsi

If filename is specified, load the disk file into text file and

then begin assembly with contents of text file.

If w=LIST then generate a 1is ting. If w-NOLIST or w not entered then
an errors only output will be generated.

] AUTO x

Begin auto line numbering mode with next user entered line
number® x specifies the increment to be added to each line number.

You may exit auto line numbering by entering // immediately following
the prompted line number.

Restore the zero page and go to the Monitor (MLM)•

Clear the text file.

]COPY x y z

Copy lines y thru z in the text file to just after line number
x® The copied lines will all have line numbers equal x. At

completion, there will be two copies of this data — one at x and the
original at y® Since the copied lines are all the same line

number,the text should be renumbered using the]NUMBER command.

This command will display the contents of the disk directory to

the screen® Filename specifies the disk drive and filename to search
for® For example?

©9

]DC

MEMTST.EXEo If file is found, it will be
displayed along with the number of sectors
remaining on the disk® If it is not founds
only the number of sectors will be displayed®

play all the files on d

play all the files on d
j DC is entered without

* all of the fi1

1 etxree
ithout any

on drive

CBS© C3S» essso ware!> asm *ssa?s» eas© asssss mbb» eras© ass® «ns» «ara crass crass «ks© <rera» ®at3> seeks ®ss» tea® ®hs «ssk» ssecs cams sssa* a=sa» asra esc®. «bs®> ase5?> *2BD aEacn ®E!!ia5 '

]DELETE x y

Delete entries in the text file between line numbers x and y.

If only x is entered* only that line is deleted.

Note: Single lines can also be deleted by typing just the line number
and pressing RETURN.

JEDIT t SI t S2 t OR] EDIT

o a <3, v K cs m A T5 o t% 1 a r»

] FIND t SI t

S tring search. See Part 7.
.mm*, aasa ^gR/t crxsim, aR»3 «3KB PSS» «o£H» «SE» <U33S s«E8 «£K33 -aSHW «SE? -QffiSf affifi® aSCSO cHBSE «SBX9 <S2E» CHKS ffiJSK* «R$S «®SD £55323 «SHS» «2S29 e*SBSD WEB# «SB8 *raS» «Z359 fflSSB *838® oaSH» «CSS9 OKffEJ Q5EB3 OSSKS aSEJB «BS2> GE3S «33E»

] FORMAT w n

Format the text file (where w= SET) or clear the format feature
(where w-CLEAR). Format set tabulates the text file when outputted.
This lines up the various source statement fields.

n specifies the number of ch
used to tabulate the listing

S3332S -Sffi® SSSHS ess£2s «®203 fiS®® OJ59® CSS23 (*as3% «sx» tins* wares «na» «kk5j

Get file from disk and store in the text buffer® If y is not
entered, store at the start of the text buffer® If y is a line
number, get the disk file and store it in the text buffer following
the specified line number * If y - APPEND then get the file and store

it after the last line number in the text file (that is, append it to
the end of the current text).

filename

PAGE 11

DOS manual and is repeated as follows:

"Dx:name"

where: x is the disk drive number (default = 1)
and 'name' is the 8 character filename and
3 character extender.

Examples are: GET "D1:MAE.NOT"

GET "D2:RELOC.REL”

GET "D1:SUPPORT" APPEND
GET "D2:TEMP.INS" 1200

Format for hard copy listing. This feature is designed to work
with 66 line pages and 1'eaves margin at top and bottom along with

page number.]HA SET turns this feature on,]HA CLEAR turns this

feature off. x is the starting page number.]HA PAGE advances to
top of next page.

Each time]HA SET is entered, MAE resets its internal line
counter to 0. Thus, you must manually adjust the paper in the

printer (if you're using fan folded paper) so MAE and the printer are

synced .

Note: This command only formats the page. It does not send it to the

printer. To send this and other data to the printer, see the]T0
command.

]LABELS w

Print out the entire contents of the label file if w=ALL or w

not entered. Print only fixed (external) labels if w=FIXED. Print

only internal or program labels if w=PR0GRAM.

] MANUSCRIPT w

If w= SET, line numbers are not outputted when executing the]PR

command. If w=CLEAR, line numbers are outputted when the]PR command

is executed. Assembly output ignores the]MA command. If manuscript

is to be generated using MAE, manuscript should be set and format

clear (]MA SET,]F0 CLEAR). Since the TED considers a blank line a

deletion, you may insert a blank line by entering a line with a
single period. When printed, a blank line will be output.

] MOVE x y z

Move lines y thru z in the text file to just after line number

x. The moved lines will all have line numbers equal to

original lines y thru z are deleted© Since the moved lines

the same line number,the text should be renumbered using the

command•

x • The
are all

j NUMBER

CO®1) <*3123* eSEffiS BUSS® <053,® 13*22*) E2B5D «3SffiS »WB GSZ2KS «CE3» «»SS» CTESO CWSSO «nK» C5TES3 <5252) <*JE© «2E3 «S2E fflESI asTgUS aSSEES 6CSB)

] NUMBER x y

Renumber th.e text fxle stsirtxxig si t. xxne x xn ths text f x 1 ©
expanding by constant y. For example, to renumber the entire text

file by 10, enter]NU 0 10.

] OUTPUT filename

Create a relocatable object file on disk. This command uses the

256 byte relocatable buffer that can be reallocated via the JSET

command. Filename specifies the disk drive and filename to write to.
__ ___ ___ ~ arvTM rmvn ,™>-o ssv*m tsxm «3C5» «X3W« C5*S» CK2SS CtSSJJ E3SS) «OE> 03586) «ESS2> 633520 0312*

___ e^e, ess® «bk® <s«e» <03® ena®> «aa» ® «sko csse® «t3S» «sk© ussra caaso «®s» «m» «ss© rasro <uaG3 *«*» tc=5® <raKB
aass ^ <*u» fflaa* «»» oa *ex» mm «kb ««£** «st» cnE® moss aam -sos, «*®> ®s® e*® «sb® *bsib *am>

]PASS filename

Execute second pass of assembly. First pass must be previously
performed. If filename is entered then the text: file is loaded from
disk before executing the second pass f else]PASS will assume the

file is in the text file *

] PRINT x y

Print the text file

If only x is entered, only that
entire file is printed.

e number x and y
printed® If no

Note: Use the control 3, control Q, and control Z keys to control the
output, listing (see PART 4)®

] PUT filename x y

Put text file between lines x and y to disk® If x and y are not

entered, the entire text file will be put to disk®

A disk "filename" is specified in same format as shown in the DOS

manual (see GET command)•

] RUN label

Run (execute) a previously assembled program. If a symbolic
label is entered, the label file is searched for the starting

address. The called program should contain an RTS instruction as the

last executable instruction.

PAGE 13

] SET t s t e 1s le bs

If no parameters are given, the text file, label file, and
relocatable buffer boundaries (addresses indicating text file start,
end, label file start, end, and relocatable buffer start) will be
output on the first line. On the second line the output consists of
the present end of data in the text and label file. This command is

commonly used to determine how much memory is remaining in the text

file. If you are inputting hex digits for these addresses, preceed
each with a character.

If parameters are entered, the first two are text file start

(ts) and end (te) addresses, then the label file start (Is) and end

(le) addresses, and finally the relocatable buffer start address

(bs) .

Example :]SE $6800 $87FC $8800 $93FF $5800

Note : The relocating buffer is normally set at $5800 which is

contained within MAE. Thus, unless desired, there is no reason to

move the buffer.

] TO w

Assign terminal output to screen or printer. If w=PRINTER (or

P), then output will be directed to both the screen and the printer.
If w=ATARI (or A), t e rmina1 output is sent to only the screen.

Examples: TO PRINTER or TO P

TO ATARI or TO A

] USER

Restore zero page and go to location $0000.
entered a JMP instruction at that address.

You must have

source line of text is entered in the text file
11ne number (0-9999) followed by the text to be entered. The

number string can be one to n digits in length.. If the^ string
greater than 4 digits in length, only the right-most 4
considered. Text may be entered in any oraer but will b
the text file in numerical order. This provides for as^
printing. and recording in numerical order. Any entry consisting
Ti^e number with no text or just spares results in a deletion
any entry in the text file with the same number. if text is
and a corresponding line number already exists in the text e

text with the corresponding number is deleted and

3

1 S
are

®

xn

o f

To delete the entire

To delete a range of
line or lines having

To alter an existing

file, use the]CL command.

lines, use the]DE command® To edit an existing
similar characteristics, use the]ED command®

line, use the] E D c o in mi a. n d form 2@

To find a string, use
]CO commands®

the]FI command move

enter a

Text may be entered more easily by use oi
numbering feature (]AU command). Any]AU x not equal
nuts the TED in the auto line number mode on the next entry of a n

er. Thus the next line number will be automatically printed

screen after the RETURN key is depressed. To exit from
automatic line numbering mode, type // following the current

number (Example-]3421//) and depress RETURN.

Note: While in the automatic line numbering mode do not attempt to
go back and change or correct a previously entered line. This
cause the current line number to have the wrong text associated with
it. Corrections can be made after leaving the automatic mode.

the assembler, one need not space over

line up the various fields. Labels are entered immediately after

the line number. Separate each source field with one °ymor®
If the format feature is set (see]F0 command;, the TLD will
automatically line up the fields. Note: If a space is entered before

the label, the TED will line up the label m the next field. T
should result in an assembler error when assembled® Commands,
mnemonics, and pseudo ops may be entered as upper case or lower case
characters. Labels in the program may be entered as upper or lower
case characters but a label entered as upper case will be unique to

the same label entered as lower cast;®

PAGE 15

5. ASSEMBLER (ASSM) FEATURES

The ASSM scans the source program in the text file. This
requires at least 2 passes (or scans). On the first pass, the ASSM

generates a label file (or symbol table) and outputs any errors that

may occur. On the second pass, the ASSM creates an optional listing.

A third pass (via]0U), may be performed in order to generate a
relocatable object file of the program in the text file. This file
is recorded on disk and may be relocated at the users descretion

practically anywhere in memory.

A. Source Statement Syntax

Each source statement consists of 5 fields as described below:

]line number label mnemonic operand comment

Label:
The first character of a label may be formed from

the following characters:

@ A thru Z [\]

While the remaining characters which form the label
may be constructed from the above characters and the

following characters:

. / 0 thru 9 : ; < > ?

The label is always entered immediately after the line

number.

Mnemonic (or Pseudo Op):
The mnemonic or pseudo op is separated from the label
by one or more spaces and consists of a standard

6502 mnemonic of table A, pseudo op of table B, or macro name.

Operand:

The operand is separated from the mnemonic or pseudo op

by one or more spaces and may consist of a label

expression from table C and symbols which indicate
the desired addressing mode from table D.

Comment:
The comment is separated from the operand field by one

or more spaces and is free format. A comment field

number

begins

if the

A free
Semico

one or

nature

format
on (;)

more spaces past the mnemonic

of such does not require an o
comment field may be entered
immediately follows the line

NOTE s It is permissable to have a line with only a label®
This is commonly done to assign two or more labels to
the same address* If the line has only a label or
label with comment, then the label may be any length
up to 79 characters regardless of the label length
set with the]FORMAT command®

TABLE A - 6502 Mnemonics

(For a description of

«3S®» sHK3B> «EStS3 OSES cm3C «SSS® 0&E39 J3K2® ffiJSB ffSSHD* <2EScBSfffl «2>3H0

each ntnemoni c , consult the 6502

ADC

S of tw are Manual)

GLD LDA SBC
AND CLX I BY JLfi U SEC
ASL CMP LDY SED
BCC CPX LSR SEI

BCS CP Y CLV STA

BEQ DEC ORA STX

BIT DEX PH A STY

BMI DEY PHP MOP

BNE EOR P L A TAX
BPL INC PLP TAY

BRK INX ROL TSX
BVC INY ROR TXA

B VS JMP RTI TXS
CLC J SR RTS TYA

Pseudo Ops are commands used internally by the assembler to
cause it to perform certain functions or to tell it information to be
used during the assembly process®

Begin assembly at the address calculated from the label
expression® This address must be defined on the first pass or an
err-or will result and the assembly will halt®

“a'KW* acsos **5sot «D3G3S "CHS® •WOtO ■££1SD raKSKSl <s*H» tuKBTJ *«B255 4IC3S9 «saSB» ««HEB tfMCQSt *3333 »*83» ‘'TXTSi a*SBB w«EE» cqSJgi #Ha «33TB C.CWK «*2MO -uamm lOOK® £0839 **!»» oeasSS »*6SSI oBJSS MKS© *OSSSt uetSK •asses OT3SSSB UMSXS nSESEfS ««£ijns «S5®» MBSJS 'ttSEH* eWSBB «S®B» «*e®9 M4EJ oeffcrae -a5t «353» uUSStfflS caSESO oaS«» sMSS® WSKSS3 «a"J3 *8®J© <dlO •MSSJS® ffTJtO GZSS

Store bytes of data. Each hex, decima1, or binary byte must be
separated by at least one space. An ascii string may be entered by

beginning and ending with apostrophes ('). Example: .BY 00 "ABCD" 47
69 'Z' $FC %1101

— ~ —

s G E

Continue assembly if errors other than !07, !04, and !17 occur
All error messages will be printed.
«.•««» owes) «nzw ««2» *cczaa «aa mesas «nxm -asm aesm «*wseo «aa3» *®8»a own® *whm **»s» wksd mks» «tasi» «w «mcbi •*«» «®sa» »«4sn <ora tum ~Mirr» «r*a> .»<« ___ _ __

eassa *vasa» msassa "Wkb «osn® xjesss **na» •**» «*»5» «i*bd «*b® <“*ks »«sfa3D wbsb» «a*as -med *»ssBa •*sbss> «sejb «mko> «as® ucessi mows awsra •>*£?> •»«ssibb «wkb» <■*»» «hs® «as» *»ss3» «bwi .use® mws® mejjb *nas>

. CT

Designate current contents of text buffer as a control file.
Only one control file may exist during each assembly® Designation as

a control file allows the use of .FI pseudo ops to link other files
for the assembly process.

Note: Only one ®EN pseudo op is allowed in each assembly and if •CT
is used5 the @EN must be at the end of that file® Thus f files
referenced via .FI must not have a .EN pseudo op.

<eaas* '*xs& 05SB* <as5aa ‘‘wfMB *®a3s M*saa *woa» ness/i «us3b «aa» »a»aa «shb> «*kb *®«» *tm» «s«b» *xma masBt «seas “W® ®>iumb> «K2B «««3 wws» ***s» «h*r ««s® «asa *s«o «*s«» *«zf» ■mh* «s3R» *eass «*aa» m«b@ was® aaaa» masas ■♦aw® •raws* «acra> mnjsb uarase •eras. ”«bi m«e® «*sss® wt&o ««se» csheb «sss® *sne» a awa biksl®

label ®DE label exp®

Assign the address calculated from the label expression to the
label. Designate as external and put in the label file® An error
will result if the label is omitted.

label •
will r

s
a s

calculated from the label expression to the
internal and put in the label file® An error
is omitted®

PAGE 18

.DS label exp.

Define a block of storage. For example, if label exp. equated

to 4, then ASSM will skip over 4 bytes.

Note: The initial contents of the block of storage is undefined.
OOgQ , ^ ^ _jffl- ~ _eaj,® Mwacc dZSK> rtSH&S ««K» «OKE> «E3» 4JBC3

.EC

Suppress output of macro generated object code on source

listing. This is the default state. See part 5E•
^ ____ ®«a» «ea»

•E J

Eject to top of next page if]HA SET was previously entered.

.EN

Indicates the end of the source program.
_ __ ___ agsBM Jtfsgs, versa, VEBSS ,OSS» «ESD fflHSB «SSB5S> 'ES® OSES® ©2K© ®S*S» «5E=3C

sgam ^ _jjwlmri ^ .-c^m cmsia MffiSIB fSMBB «3S» <*SS» «*3EH «C5© «®®0 «*»»

.ES

Output macro generated object code on source listing® See part.

5E .
^ ^ ^ asm- *sxxr- asmo «•-■*«» e«M® ««sb» «s*» waaa essao •sens ataass «ns» «sss» <*8® «ca» <«a»

*FI filename

Assemble the specified file before continuing with statement

following .FI.

Note: The .FI pseudo op is allowed only in the control file (that

designated with .CT).

Note: The filename is in the same format as specified in the DOS

manual (see GET command). For example -

.FI ”D1:COUNT.TMP"
^ ^ ^ _ _ _ _. ^ ««», _ «. -a. «. —- «■ —» -*■* — —» —» *“

.IN label

Output ? followed with space and then accept exactly 4 hex
digits. These hex digits will be assigned to label and stored m the

label file•

Input will only occur on the first pass of assembly. The label
must be symbolic and should be defined similar to the following

example:

H30 .PR "ENTER ASSEMBLY START”

1140BEGIN.ADDR .IN BEGIN.ADDR

One should avoid using .DE, .DI, or SET to define the label as these

constructs reassign their specified value on each pass.

PAGE 19

• LC

Clear the list option so that the assembly terminates printing

the source listing after the .LC on pass 2.

Set the list option so that the assembly begins printing out the

source listing after the .LS on pass 2.

. MC label exp•

When storing object code, move code to the address calculated

from the label expression but assemble in relation to that specified

by the .BA pseudo op. An undefined address results in an immediate

as s embly ha11.

.MD

Macro definition. See part 5E.

.ME

Macro end of definition. See part 5E.

. MG

.MG declares the entire contents of the text file as Macro

Global. When assembling from disk, all following files will be

loaded into the text file area following the file with the .MG.

Thus, even though there can be many modules loaded and assembled, the
macro global file is "locked” into the text file area providing its
macro definitions for use by all subsequent files.

.GC

Clear the object store option so that object code after .OC is
not stored in memory. This is the default option.

Set the object store option so that object code after the .OS is

stored in memory on pass 2.

.PR "text"

Output the text that is enclosed in quotes when the .PR is

encountered. MAE automatically issues a carriage return immediately

before outputting the text. The text will be output only during the

first pass of the assembly.

PAGE 20

Provide directive to the relocating loader to stop resolving
address information in the object code per relocation requirements
and store code at the pre-relocated address. This condition remains
in effect until a .RS pseudo op is encountered.

.RS

Provide directive to the relocating loader to resolve address
information in the object code per relocation, and store the code at

the proper relocated address. This is the default condition.

•SE label exp.

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
external address. Note: If a label is assigned to the .SE, it will
be considered as internal.

.SI label exp.

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
internal address.

PAGE 21

TABLE C - Label Expressions

A label expression must not consist of embedded spaces and is

constructed from the following:

Symbolic Labels:

One to 31 characters consisting of the ASCII characters as previously
defined. The maximum number of characters is set by the]FORMAT SET
n command where n = the maximum number allowed. The default maximum

is 10 characters per label.

Non-Symbolic Labels:

Decimal, hex, or binary values may be entered. If no special symbol
preceeds the numerals then the ASSM assumes decimal (example: 147).
If $ preceeds, then hex is assumed (example: $F3). If /« preceeds,
then binary is assumed (example: %11001). Leading zeros need not be
entered. If the decimal or hex string is greater than 4 digits, only
the rightmost 4 are considered. If the binary string is greater than

8, only the rightmost 8 are considered.

Program Counter:

To indicate the current location of the program counter, use the

symbol =.

Arithmetic Operators:

These are used to separate the above label expression elements. Two

operators are reconized:
+ addition
- subtraction

Examples of some valid label expressions follow:

LDA # % 1101
STA *T EMP+$ 01
LDA $471E36
JMP L00P+C-$ 4 61

BNE =+8

; LOAD IMMEDIATE $0D
;STORE AT BYTE FOLLOWING TEMP
; LOAD FROM LOCATION $1E36

; JMP TO CALCULATED ADDRESS
;BRANCH TO CURRENT PC PLUS 8 BYTES

One special label expression is A, as in ASL A. The letter A
followed with a space in the operand field indicates accumulator
addressing mode. Thus LDA A is an error condition since this
addressing mode is not valid for the LDA mnemonic.

ASL A+0 does not result in accumulator addressing but instead

references a memory location.

PAGE 22

TABLE D - Addressing Mode Formats

Immediate:
LDA #% 1101 ;BINARY

LDA #$F3 ; HEX

LDA #MASK ;SYMBOLIC

LDA # ' A ;ASCII

LDA # H , 1 a b e 1 exp. ;HI PART OF THE ADDRESS OF THE LABEL

LDA # L , 1 a b e 1 exp. ;LO PART OF THE ADDRESS OF THE LABEL

Absolute :
LDA label exp.

Zero Page:
LDA *labe1 exp. ;THE ASTERISK (*) INDICATES ZERO PAGE

Absolute indexed:
LDA label exp.,X
LDA label exp. , Y

Zero Page Indexed:
LDA *label exp.,X
LDA *label exp.,Y

Indexed Indirect:
LDA (label exp.,X)

Indirect Indexed:
LDA (label exp.),Y

Indirect:
JMP (label exp.)

Ac cumula t o r:
ASL A ;LETTER A FOLLOWED WITH A SPACE INDICATES

;ACCUMULATOR ADDRESSING MODE

Implied:
TAX ;OPERAND FIELD IGNORED

CLC

Relative:
BEQ label exp.

PAGE 23

B. Label File (or Symbol Table)

A label file is constructed by the assembler and may be
outputted at the end of assembly (if a .LC pseudo op was not
encountered) or via the]LA command. The output consists of the
symbolic label and its hex address. Via the]LA command, the user
may select which type of labels to be output.]LA FIXED outputs all
program and internal labels, and]LA ALL outputs all labels. When a

relocatable object file is generated (via]OU command), any
instruction which referenced an internal label or a label expression
which consisted of at least one internal label will be tagged with
special information within the relocatable object file. The
relocating loader uses this information to determine if an address
needs to be resolved when the program is moved to another part of
memory.

Conversely, instructions which referenced an external label or a
label expression consisting of all external references will not be
altered by the relocating loader.

At the end of the label file the number of errors which occurred
and program break in the assembly will be outputted in the following
format: //xxxx,yyyy,zzzz

Where xxxx is the number of errors found in decimal
representation, yyyy is last address in relation to .BA, and zzzz is
last address in relation to .MC.

C. As sembling

Source for a large program may be divided into modules, entered
into the text file one at a time and recorded (]PUT) on disk.

These modules can be linked together during assembly via a
'control file^. If used, the control file must be the first file to
be assembled. This file must be in the text buffer when the]AS
command is issued, or its name must be specified in the]AS command
(example:] AS " D1 : MEM .CTL") . Files are linked together via the .FI
pseudo op. For example, to assemble 3 files named X.M01, Y.M02, and

Z.M03, we need to generate a control file say M.CTL (note for
convenience we use the convention of tagging CTL on the end of any

name which references a control file while its modules are tagged
Mxx). The file M.CTL may contain the following:

. CT

.FI "D1:X.MO1” ;FIRST DISK FILE TO BE ASSEMBLED

.FI "D1 : Y .MO2" ;SECOND DISK FILE

.FI "D1:Z.M03" ;THIRD DISK FILE
• EN

PAGE 2 4

Now, when the control file is assembled, MAE is told to go assemble

the files in the order specified.

At assembly, the assembler can load and assemble each module
until the entire program has been assembled. This will require two
pass for a complete assembly. When the end of a pass is encountered,
MAE will output the message END MAE PASS!. If for some reason you
terminate the assembly on the second pass, you may restart at the
beginning of the second pass using the]PASS command®

D. Creating a relocatable object file (]0U)

In order to create a relocatable object file, the programmer
should identify those labels whose addresses are fixed and should not
be altered by the relocating loader. This is done via the •DE pseudo
op. Non-symbolic labels (example: $0169) are also considered as
I301ng external (or fixed). All other labels (including those defined
via the .DI pseudo op) are considered as internal. Addresses
associated with internal labels can be altered by an offset when the
program is loaded via the relocating loader.

Also, the .SE stores a two byte external address and the •SI
stores a two byte internal address. Similarily the relocating loader
will alter the internal address and not the external address.

An example of an external address would be the calls to ATARI
ROM routines or any location whose address remains the same no matter
where the program is located. Expressions consisting of internal and
external labels will be combined and considered an internal address.
A label expression consisting entirely of external labels will be

combined and considered as external.

The relocating loader can relocate your program in 3 segments:
Zero page variables (internal addresses in range $00-$FF), absolute

variables (internal addresses in range $0400-$1FFF), and program body

(references in range $2000-$FFFF). To generate a relocatable object
file, first partition your program into internal and external
references. Remember, external references are those locations that

are fixed while internal references are those locations which can be

altered by the relocating loader.

Start assigning zero page references at location $0000, absolute
variable locations at $0400, and begin assembly of the program at
$2000. Next assemble the program via]AS, and then issue the]0UT

command to generate a relocatable object file.

Now, we have the relocatable object code on disk. To load this
object code back into memory, first load the relocating loader. The

PAGE 25

relocating loader is contained on the diskette with the name

REL0C.EXE • To load the relocating loader* exit the MAE and the MLM
and return to the ATARI DOS menu. Use the ^load" (L) command to load

in the RELOC•EXE. Execution begins at $2683 if in the MLM or with

RUN $2683 if in the MAE. The relocating loader will request the
f o flowing:

1) FILENAME? Name of the file containing the relocatable object

--------- code®

2) Z-PG OFFSET? Address to begin assignment of zero page internal
references.

3) ABS OFFSET? Address to begin assignment of absolute internal
----------- references.

4) PGM EXE OFFSET? Address the program is to execute.

5) PGM STORE OFFSET? Address to store the program object code.
sazaa* kctim ugoeb ossxd assaa non. tuaio sqm. taw» cess* <bxbbb <oo9b mb aw uuszm mwi raassaj

When the file has been relocated in memory, it can be saved on

disk (using the DO S) as an executable file, which may be reloaded

without using the relocating loader.

When the relocating loader has finished its work, it will come

back and print FILENAME?. To exit the program, simply depress RETURN
and the relocating loader will break to the MLM.

As an example, lets assume we want to relocate a program named

UART to execute at location $3000, but store the object code at

$8000, and start the zero page variables at $0080, and the absolute

variables at $7000® We would respond to the relocating loader as
f oHows :

File name

Assign start of zero page var

Assign start of absolute var.

Program body start

Store of code start

FILENAME? "D1:UART.REL

Z-PG OFFSET? 80

ABS OFFSET? 7000

PGM EXE OFFSET? 3000

PGM STORE OFFSET? 8000

PAGE 26

LOAD MAP

: _ Relocating loader
: _ outputs a load map

FILENAME? _ Enter just RETURN to exit the
- Relocating Loader

E • Macros

MAE provides a macro capability. A macro is essentially a
facility in which one line of source code can represent a function
consisting of many instruction sequences. For example, the 6502
instruction set does not have an instruction to increment a double
byte memory location. A macro could be written to perform this
operation and represented as INCD (VALUE.1). This macro would appear
in your assembly language listing in the mnemonic field similar to
the following:

1000 BNE SKIP
1010 NOP

1060 INCD (VALUE.1) ;MACRO -INCREMENT DOUBLE
1070 LDA' TEMP

Before a macro can be used, it must be defined in order for ASSM
to process it. A macro is defined via the .MD (macro definition)
pseudo op. Its form is :

!!!label .MD (Ll L2 ... Ln)

Where label is the name of the macro (!!! must proceed the label),
and Ll, L2,, Ln are dummy variables used for replacement with
the expansion variables. These variables should be separated using
spaces, do not use commas.

To terminate the definition of a macro, use the .ME (macro end pseudo
op) .

For example, the definition of the INCD (increment double byte)
macro could be as follows:

PAGE 2 7

5430!!!INCD • MD (L0C)

5440 INC LOG

5450 BNE SKIP

5460 INC L0C+1

5 4 7 0 SKIP .ME

; INCREMENT DOUBLE

This is a possible definition for the macro INCD® The assembler will

not produce object code for the MACRO until there is a call for

expansion (see . E S pesudo op).

Note* A call for expansion occurs when you enter the macro
name along with its parameters in the mnemonic field as
XNCD (TEMP) or INCD (COUNT) or INCD (COUNT+2)

or any other labels or expressions you may choose.

Note: In the expansion of INCD ? code is not being generated

which increments the variable LOG but instead code for the
associated variable its. the call for expansion*

If you tried to expand INCD as described above more than once , you

will get a !06 error message. This is a duplicate label error and it
would result because of the label SKIP occurring in the first

expans ion and again in the second expans ion.

There is a way to get arround this and it has to do with making the

label SKIP appear unique with each expansion. This is accomplished

by rewriting the INCD macro as fo1lows:

5430!!!INCD .MD (LOG)
5440 INC LOG
5450 BNE ...SKIP

5460 INC L0C+1

5470...SKIP .ME

; INCREMENT DOUBLE

The only difference is . . .SKIP is subs tituted for SKIP * What

the ASSM does is to assign each macro expans ion a unique macr o

sequence number (2**16 maximum macros in each file). If the label
begins with . • • then AS SM will assign the macro sequence number to
the label. Thus, since each expansion of this macro gets a unique
sequence number, the labels will be unique and the !0 6 error will no t

occur •

If the label ...SKIP also occurred in another macro definition,
no !0 6 error will occur in its expans ion if they are not nested. If

you nest macros (i.e. one macro expands another), you may get a !06

error if each definition uses the ...SKIP label• The reason this may

occur is that as one macro expands another in a nest, they each get
sequentially assigned macro sequence numbers. As the macros work out

of the nest, the macro sequence numbers are decremented unti1 the top
of the nest. Then a s futher macros are expanded, the sequence

numbers are again incremented. The end result is that it is possible

for a nested macro to have the same sequence number as one not nested

PAGE 28

or one at a different level in another nest. Therefore, if yOU nest

macros, it is suggested that you use different labels in eLh macro
definition.

Some futher notes on macros arej

1)

2)

The macro definition must occur before the expansion.

The macro definition must occur in each file that
references it. Each file is assigned a unique file
sequence number (2**16 maximum files in each assembly)
which is assigned to each macro name. Thus the same
macro can appear in more than one file without

causing a !06 error. If a macro with the same name

is defined twice in the same file, then the !06 error
will occur. tul

3)

4)

5)

6)

/

Macros may be nested up to 32 levels. This is a
limitation because there is only so much memory left
for use in the stack.

Tl an !Tur0 haS m°re than °ne Parameter» the parameters
should be separated using spaces - do not use commas.

The number of dummy parameters in the macro definition
must match exactly the number of parameters in the call
for expansion.

The dummy parameters in the macro definition must be
symbolic labels. The parameters in the expansion may
be symbolic or non-symbolic label expressions. 7

If the .ES pseudo op is entered, object code generated
y the macro expansion will be output in the source

listing. Also, comment lines within the macro
definition will be output as blank lines during
expansion. Conversely, if .EC was entered, only the
me which contained the macro call will be output

m the source listing. y
8) A macro name may not be the same as a 6502 mnemonic

pseudo op, or conditional assembly operator.

7)

Conditional Assembly

MAE also provides

conditionally direct the
your program and not other

written a CRT controller
or 80 character per line

a conditional assembly facility to
assembler to assemble certain portions of

portions. For example, assume you have
program which can provide either a 40 64

display. Instead of having to keep 3

different copies of the program^ yon could use the AS-3M conditional
assembly feature to assemble code concerned with one of the character
densities ©

Before we continue with this example , lets describe the
Conditional Assembly operators:

IFE label exp-

If the label expression equates to a zero quantity? then
assemble to end of control block©

IFN label exp®

If the label expression equates to a quantity not equal to zero
then assemble to end of control block®

If the label expression equates t-o a positive quantity or 0000
then assemble to end of control block®

IFM label exp®

If the label expression equates to a negative (minus) quantity

then assembly to end of control block®

& & *

Three asterisks in the mnemonic field indicates the end of the
control block®

SET labeX-labeX exp®

Set the previously defined label to the quantity calculated from
the label expression®

NOTE: All label expressions are equated using 16 - bit precision

PAGE 30

Going back to the CRT controller software

arrangement of the program is as follows:
example, a possible

CHAR.LINE .DE 40

; CODE
IFE

FOLLOWS FOR
CHAR.LINE-40
40 CHARACTER PER LINE

* * #

IFE CHAR.LINE-64

;C0DE FOLLOWS FOR 64 CHARACTER PER LINE

& •k &

IFE CHAR.LINE-80
;C0DE FOLLOWS FOR 80 CHARACTER PER LINE

* * &

;COMMON CODE FOR ALL

Shown is the arrangement which would assemble code associated with 40

characters per line since CHAR.LINE is defined as equal 40. If you

equal80° *BBemble f°r 80 characters, simply define CHAR.LINE as

Conditional assembly can also be incorporated within macro

completely3 P°W*rfUl iS Wlthin 3 macro waJ? I?
pletely expanded each time it is referenced. For example assure

you wrote a macro to do a sort on some data. It could be defined a!
iollows:

EXPAND
!!!SORT

.DE
.MD

IFN
J SR
& & *

EXPAND

SORT.CALL ;CALL SORT

IFE EXPAND

JSR SORT.CALL
JMP ...ABC

; SORT CODE FOLLOWS
SORT.CALL

e

RTS

ABC SET EXPAND”1
* * *

. ME

In this example, EXPAND is initially set to 0® When the macro is
expanded for the first time, EXPAND equals 0 and the code at
SORT®CALL will be assembled along with a JSR to and a JMP around the

sort subroutine® Also, the first expansion sets EXPAND to 1® On
each suceeding expansion, only a JSR instruction will be assembled

since EXPAND equals 1® Using conditional assembly in this example

resulted in more. efficient memory utilization over an equivalent
macro expansion without conditional assembly®

G. Interactive Assembly

Interactive assembly is a new concept in which the assembler can

be instructed to print messages and/or accept keyboard input during

the first pass of the assembly®

Interactive assembly makes use of two pseudo ops;

®PR to print messages

. IN to accept keyboard input

An example of the use of interactive assembly is as follows:

«PR "INPUT START OF ASSEMBLY"

ADDR

• IN ADDR

«BA ADDR

Note that in this example, the assembler will request entry of an
address to be assigned to ADDR, and then begins assembly at that

address •

There are many applications for interactive assembly but those

possibilities are left for the users of MAE®

NOTE: Never specify a label as the operand in the •IN pseudo op that

has been defined by the ®DE, ®DX, or*SET pseudo ops® The reason is
that these pseudo ops initialize the address assigned to associated
labels on both assembly passes while all other labels are initialized

only on the first pass® Since the •IN pseudo op accepts Input on the

first pass only, usage of labels defined by

C3USe different label values on pass 1 versus

on entry

Epaf n0t S °f8 °^Ject code in memory (others
Begms assembly at $0400 (otherwise u
Halts assembly on errors (otherwise use Ice

es o ject code beginning at $0400 unless
is encountered and if .0S Is pr

Object code generated by macros

assembly listing (i . e . default is .EC)

6. ERROR CODES

error message of the
o l LKZ. J- V/ J_ JLU. l 2L2L A jj

error code and yyw i «= f u„ ,
occurs ls the bine number will
ccurs. Sometimes an error message

number. This occurs when the error is on
nn illegal command input®

The following is a list
to macros:

yyyy where xx is the
outputted if an error
output an invalid line
— existant line such as

error code

IB
1A
19
18
17
16

14
13
12

10

0E
0D
0C

0A
09

DESCRIPTION

■EN in non . CT fIle whe„ Ille ex,

*EN missing m .CT designated
Found .FI in non .CT file.

Checksum error on disk load.

Syntax error in]ED command.

Device numbers 0,1,2,3 not a

Multipie .CT assignment.

Command syntax error or out of range error
Missing parameter in]NU command.
Overflow in line # renumbering.

the^text file pr°perly ^number the

Overflow £ L^f ^^i ~ t
n .c % ’ ± e line not inserted
Overflow in label fn0 i %. i
mat? xanei tile - label not inserted
MAE expected hex characters fo„nd nn b > round none*
illegal character in label*

Unimplemented addressing mode.
Error in or no operand®

Found illegal character in

Undefined label (may be illegal lab
®EN pseudo op missing®
Duplicate label*
Label missing in ®DE or ®DI pseudo
• S'A or «MC operand undefined.
Illegal pseudo op*
Illegal mnemonic or undefined macro
Branch out of range*
Not a zero page address*
Error in command input*

t of error codes that are
condition assembly:

2E

2 C

2 5
24
23

Overflow in file sequence count (2*

Overflow in number of macros (2**16

®ME without associated •MD
Mon-symbolic label in SET ps
Illegal nested definition®

Macro definition overlaps file boundary
Duplicate macro definition.
Quantity parms mismatch or illegal char
Too many nested macros (32 max®)
Macro definition not complete at ®EN
Conditional suppress set at .EN

Macro in expand state at .EN

Attempted expansion before definition®

In addition to the MAE error codes discussed above, this software
will also gives ATARI system errors in the form SYSTEM ERROR™xxxx

-where xxxx is one of the error code messages shown in the BASIC and
DOS manuals® These error messages indicate an error was given by the
ATARI operating operating system to MAE. For example, a SYSTEM
ERROR™!70 says a disk file was not found.

PAGE 34

7. STRING SEARCH AND REPLACE COMMANDS

A. Edit Command

A powerful string search and replace, and line edit capability
is provided via the]EDIT command to easily make changes in the text

file. Use form 1 to string search and replace, and form 2 to edit a
particular line.

Form 1

] EDIT t S11 S21 Zd * x y

Where: t is a non-numeric, non-space terminator

51 is the string to search for

52 is the string to replace SI
d is don't care character. Preceed with %

character to change the don't care, else
don't care character will be % by default.

* indicates to interact with user via

subcommands before replacing SI
indicates to alter but provide no printout

Note: No * or # indicates to alter and

provide printout.

x line number start in text file

y line number end in text file

Asterisk (*) prompter subcommands:

A alter field accordingly

D 'delete entire line

M move to next field - don't alter current

S skip line - don't alter

X exit JED command

2 enter form 2

Defaults: d = %

x - 0

y = 9999

If no * or # entered then print all

lines altered.

For example, to replace all occurances of the label LOOP with the

label START between lines 100 and 600, enter:

JEDIT /LOOP/START/ 100 600

To simply delete all occurances of LOOP, enter:

JEDIT /LOOP// 100 600

PAGE 35

You may use the * and # as described above •

The slash. (89 / ”) was used in the above examples as the terminator but
any non-nuieric character may be used®

At the end of the JEDIT operation^ the number of occurances of
the string will bp output as //xxxx where xxxx is a decimal quantity®

Form 2
«S£» GGTfii® C£33> «S3H» 6SK5 5D

]EDIT n

Where: n is the line number (0-9999) of the line to
be edited®

After executing the command, cursor over to the part to be

changed^ and either type over or use the INSERT/DELETE key on the ATARI
as you would use the screen editor® Press RETURN when done^ and MAE
will insert it in the text file®

B® Find Command

If you want to just find certain occurances of a particular
stringy use the jFIND command® Its form is*

]FIND tSlt # x y

Where: t, Sl5 #, x, and y are as defined in EDIT command®

For example ? JFIND /LDA/ will output all occurances of the string LDA
in the text file®

At the end of the jFIND operation^ the number of occurances of
the string will be output: as //xxxx where xxxx is a decimal quantity®

A unique use of this command is to count the number of

characters in the text file (excluding line numbers)® The form for
this is: JFIND /%/#

PAGE 36

8. EXAMPLES

A. TED Examples

#1 Illustrate entry of text.

]AUTO 10
]1000;THIS IS A TEST

1010LOOP LDA VALUE,Y

1020 NOP
1030END.PGM .EN

1040// Note,

#2 Illustrate listing of text.

]PRINT

1000 ;THIS IS A TEST

1010 LOOP LDA VALUE,Y

1020 NOP
1030 END.PGM .EN

//

#3 Put file to disk drive number 1 with name TEST.

]PUT "D1:T E S T"

#4 Get file from disk drive number 1 named TEST.

]GET "D1:TEST”

#5 Assemble file CRTDVR from drive 1 and generate a listing.

]AS SM ”Dl:CRTDVR" LIST

#6 Find all occurrances of the text LDA.

] FIND '/LDA/

#7 Replace all occurances of LDA FA with LDA *FA

between lines 1000 and 2000.
]EDIT /LDA FA/LDA *FA/ 1000 2000

#8 Provide for 15 caracters per label.

]FORMAT SET 15

#9 Output all fixed (external) labels.

]LABELS FIXED

#10 Renumber the text file beginning at line number 100
and incrementing by 5.

]NUMBER 100 5

#11 Move lines 100 thru 200 to after line 9000

]MOVE 9000 100 200

#12 Print lines 900 thru 976
]PRINT 900 976

enter // to exit
auto line numbering

#13 Reallocate the text file to $6800 thru $BC1C

]SET $6800 $BC1C

#14 Go to Machine Language Monitor®
]BREAK

#15 Run assembly program at symbolic label BOX®
j RUN BOX

#2 Begin assembly at $0700 but store object code at $8000®
• BA $0700
•MC $8000
@os

#3 Define the CRT output routine®
CRT •DE $F6A4

#4 Assign an internal work location in zero page®
WORK •DI $0

#5 Allocate 6 bytes of storage®
TABLE •D S 6

#6 Define label E01 as mask with bit 6 set and show use
in AND statement®

E01 •DE 101000000
AND # E 01

#7 Load the low address part of the label VALUES in register
and high part in register Y

LDX #L,VALUES
LDY #H,VALUES

#8 Give example of •BY pseudo op®
• BY "ALARM CONDITION ON MOTOR 1" $9B

#3 Store the address of the internal label TABLE and
the external label ATR0UT®

.SI TABLE
•SE ATROUT

#10 Define the contents of the text.file as Macro Global
so its macro definitions can be used by subsequent
files in the assembly®

PAGE 38

NOTE: This locks the macro definitions in the text

buffer. If you get a !OF error on subsequent

loads, you should know that you have overflowed

the text buffer. The solution is to allocate
more memory (via]SET command) and then

reassemble.

#11 Show example of a very long label.
MEMORY.TEST.FOR.6502

JMP MEMORY.TEST.FOR.6502

NOTE: Long labels (greater than that specified via

]F0 command) are allowed if defined on a

line with no mnemonics.

9. GETTING STARTED WITH MAE

The supplied diskette contains its own disk operating system
(DOS), MLM, and MAE files. Except for removing the BASIC cartridge,
there are no other special instructions for loading the files. Just
insert the diskette and boot the system in the normal way. All files
will be automatically loaded when the DOS is loaded.

When the DOS boot process is completed, the DOS menu is
displayed. Notice the '0' command on the menu. Simply type 0 and
press RETURN to enter the MLM. As discussed in Part 3, the MLM
provides the ability to interact with 6502 and memory. Now to leave
the MLM and enter the MAE, type AC and press RETURN. (This is the

cold start entry command which is built in to the MLM.)

MAE will respond with:

C 1981 by EHS

6 800-7 C1C 2680-2FFC 5800

6800 2680

]

This displays the default allocations of memory for the text
file (6800-7C1C) , label file (2680-2FFC), and start address of the

256 byte relocatable buffer (5800). On the next line, the current
end of the text file and label file are displayed. Since they are
initially cleared, these are the same as their respective start
addresses. You should note that the current end will change as you
insert/delete data in the text file and label file. The]SET command
can be used to display this range again or alter the file boundaries.

Motes On any entry or exit from MAE, MAE will swap the zero page area

that it uses ($80 to $FF) with a safe area at $5680, Therefore a
users program can make use of $80 to $EF without affecting the MAE
variables •

Remember , to exit MAE, issue the JBREAK commands to return to
the MLM® You may reenter MAE from the MLM by typing AW command (warm
start - everything preserved) or AC command (cold start - everything
cleared to default state)®

The first thing you should do now is to load the MAEX®N0T file
via t

The MAEl^NOT file will contain any per

pertaining to MAE that was discovered after this

Please review the information in this file®

Mow you should start playing around with MAE
commands and then proceeding to entering programs
commands in PART 4, assembler features in PART
examples in. PART 8®

In addition, we have also included several MAE source files on
the diskette for your use in understanding how MAE functions® Use
the]DC command to display the disk files® Notice all the files
listed as EXAMPxx ASM where xx is a number® All of the EXAMP files
contain examples MAE source files® For example, type]GET

”D:EXAMP01.ASM". When the file is loaded, type jAS L to assemble the
file arid display it to the screen®

d

10 • MAE Simplified Text Processor (S TP)

The MAE Simplified Text Processor (STP) is a word processor

program designed specifically to work with the MAE text editor® The
primary purpose of this word processor was to provide a simplified

means to process program documentation and for other text processing

needs® This simplicity was accomplished with a set of 21 easily
remembered word processing functions, and usage of an already
familiar text editor to enter and edit the raw text®

To instruct the word processor to perform a word processing
function, one inserts text macros in the text to be formatted® A

text macro always begins with a period (®) , always begins

PAGE

1, may be entered as upper or lower case, and may or may not have

associated parameters. The following are the macros provided by the

STP word processor:

VERTICAL SPACING (.vspace n)

This macro is used to provide single, double, triple spacing?

etc. for the entire output. Enter the macro as shown above with the

desired spacing. For example, to request a double spaced output,

enter .vspace 2 .

TEMPORARY INDENT (.sn)

To indent n spaces on the next line, use the .sn macro where n =
the number of spaces to indent. For example, •s5 will indent the

next line 5 spaces from the right.

MARGIN CONTROL (.m n p q r)

The margins default to 66 lines per page, left margin begins at

column 0, print width = 76 characters per line, and the number of

blank lines between text body and each title and footer = 3 .

The parameters in the margin macro are:

n = left margin begin position (default = 0)
p = number of characters per line (default = 76)

q = number of lines per page minus r« Example if lines per

page = 66 and the number of blank lines between

titles and footers = 3, then q = 66-3 = 63.
r = number of blank lines between text body and each header

and footer. Default = 3.

For example to specify left margin to begin in column 5, print

width of 60, 66 lines/page, and 4 spaces between text body and titles

and footers, enter .m 5 60 62 4.

If you enter just .m 5 60, the previously entered values for

parameters q and r will be assumed. The margin may be changed at any

point as desired in the text. The maximum value for n is 76®

TURN OFF JUSTIFICATION (.nofill)

The .nofill macro turns off the justification function® That

is, all lines will be outputted exactly as typed and formatted® This

means that the lines will be printed without adding spaces to make

the margins come out e?en® Also? words are not combined to fill to

the specified margins® (See ®ju command®)

The off macro may be entered when one wants

to the top of the next page®
•ess?) *35EES

Normallyj spaces are not processed like other characters® Ir
several spaces are entered consecutively , the STP word processor
reconxzes only one space and deletes the rest© Xf it is desired to
force a certain number of spaces in a line for tabular formats, etc®f
a string of caret (f^) characters may be inserted into the text® The
caret will not be printed when the text is processed but instead a

space will be printed for

It is also possible to change the literal space character by using a
* x command -where x is the new literal space character® For

example, a © // would change the literal space chamfer to a number
sign (//) • To have no character as a literal space ^ just enter ® and

return®

)

macro may e

OEETO «QK9 aasm <38*10 «WS33< «tSED «as«» <OS£K> «n£S5 <CE5B «5G» eOKS9

This macro turns off the addition of spaces in order t
margins come out even. Words are still combined ■ in

approximate the specif led number of charac t e r s per line,
margin will be straight but the right margin will be ragged

RAGGED LEFT MARGIN (.rl)

This macro is the same as the .rr macro except that the right

margin is straight and the left margin is ragged.

Use this macro to skip a number of lines before printing the
next line of text. For example, to skip 2 lines and begin printing,

enter .12. If you enter .1 by itself, one will be assumed. Thus .1
and .11 are equivalent and each will result in a movement to the next

PAGE 42

line .

CENTER LINE OF TEXT f.c text)

This macro is useful for centering a line of text. For example
to center the phrase STP Word Processor, enter .c STP Word Processor

SWAP JUSTIFICATION MODES (.swap)

This macro is used to switch from .rr mode to .rl and vice
versa.

PARAGRAPH SPECIFICATION (.p d r) and PARAGRAPH IDENTIFICATION (.p)

Use the .p d r macro to inform the word processor what a
paragraph is supposed to be: d = number of lines down, and r = number
of spaces right for paragraph indent. The default is d = 1, and r
5.

In order to identify a paragraph start in your text
macro with no parameters.

use the •p

PAGE TITLE (. t# title text)

A one line title at the top of each page may be entered using
this macro. For example, to specify the title CONFIDENTIAL, enter ®t
CONFIDENTIAL. If you want to also include a page number, enter .t#
CONFIDENTIAL. Note that the # specifies page numbering. If you want
just a page number (the default state), enter just .t#. If you want
neither title nor page number, enter just .t to turn off all titling®

PAGE FOOTERS (.foot# foot text)

A one line footer at the bottom of each page may be specified

using this macro. The parameters for .foot are the same as for the

.title. The default is no footers.

MONOSPACED PRINTING (.mono)

The ATARI 825 printer has the capability of printing different
character sets. One of these is 10-cpi monospaced. By using the

.mono command, the STP will cause the printer to select this
character set.

The ATARI 825 printer has the capability of printing different
character sets® One of these is 16^7-cpi condensed printing® By
using the ®cond command, the STP will cause the printer to select
this character set®

®EE» ffilffl sans* M3S» S3STO «KD ^5® CBStE «aaa CDSEB CKBJH et'QXI amo aassS) «S23 «OSO 6MCS9 KBE® ttOSSB cggstb <*E®S «S©Q «SS0» «EE33 ffiECES (KC8® ME® «raSD «SHE» 03EBB esm2» «3!B3 <STK3 (SEE® SCfT”> Gi.ei® «£»» «a®8 sac® «3SS» •CE® nasiua «SB» «SK» ffiEZSS «M12SS KtAOB eSHQftt sfiJSSS OESS9 CKBSB *100® SB'S* suaJSa *SEM» aoesra «wa33 eiKasi *sse» «B33» issia C3JSS9 CS33SJ <98229 MS£0

PROPORTIONAL PRINTING (.prop)

The ATARI 825 printer has the capability of printing different
character sets® One of these is proportional printing® By using the
eprop command.^ the STP will cause the printer to select this
character set*

«aa» easts ebbs cts» <shsse aemo asao atsaa «ssh® «jcsd earas aa®s uieseb «xe*9 vesa* «sso toem oos> ««keb <qm8> ««*!> «ssb <bhes crass* esa* aaoBs *cej» messs e/sss» «ass» usaw «®eo cask ccaso mh® mseb ossa mmss »ns» *Ms?ns» c«a» «*» «hs® «gs® *«5S3 oaasa <«£» mssss ®sa» «a» oeesb cisa» «H3s> «sjs3 wssa ossokj eases beksss ices* oxia «sssa «ehb eraow «e*s» msao

CREATING SHAPE TABLES (.shape n and * set nip)

The STP Word Processor has provisions for printing text in
various shape formats by using a table to control the right and left
margins® The .shape macro is used to define the shape to be used®
Shape 1 is in the form of an "*1" and entered by simply entering the
command « shape 1 at the beginning of the text file®

The .shape 2 macro may be used to create a user defined shape.

In order to define the desired shape** . set macros are used to make
entries in the user shape table corresponding to the desired shape®
The parameters in the * set nip are as follows:

n = line number for this margin specification
1 = column for left margin start
p ” number of characters to be printed on this line

For example, .set 14 5 40 defines line 14 as left margin starts

in column 5, and there are 40 characters to be printed on this line®

Normally one would have to enter 66 set macros to complete the
user shape table® But it should be noted that .set 0 1 p is a
special case® The 0 (which would normally represent the line number)
indicates that all lines in the file are set to a left margin of 1
and print width of p * This is useful as you can set all lines in the
user shape table to a particular margin and then use non 0 values to
change certain lines to form the desired shape®

Notes Always enter the «shape 2 macro before the ® set macros®
The reason is that as soon as the •shape 2 macro is encountered, it
fills the user shape table to default values of left margin = 0, and
print width = 40® Thus if you enter ® set macros first, they will be
overwritten by the .shape 2 defaults of 0 and 40®

If ® shape 2 is entered and no shape commands are entered^ the

PAGE 44

margins will default to .m 0 40. This is very useful when it is

desired to view the formatted output on ATARI"s which have 40 column
screens.

LINK DISK FILES (.link filename)

This macro is used to link disk file modules together so they
look like one large file. Thus, this feature allows text in multiple
disk files to be processed by the STP. Filename is in the format as
discussed in the DOS manual (see GET command).

Simply enter the .link macro at the bottom of the file

immediately before the one you want loaded and formatted® Thus the

first file will have a .LINK to the second, the second to third, etc.
There is no limit to the number of files linked.

An example is: .LINK "D 1 : PART . M02 "

DEFAULT CONDITIONS

The following are a number of assumed defaults that
initial entry to the word processor.

Justification = on
Shaping = off
Margins = 66 lines/page, 3 blank lines between text body

titles and footers, left margin = 0, and print
width = 76.

Vertical Spacing = 1 (single spaced output)
Paragraph = 1 line down and 5 space indent
Page Title = page number but no text
Page Footer = no text or page number

ATARI PRINTER CONTROL CODES

If you have an ATARI 825 printer, it is possible to to use some

of its PRINTER CONTROL CODES (see printer manual)® The following is

a list of control codes which can be entered into the word processing
text.

CTRL-0
CTRL-N
ESC ESC CTRL-N
ESC ESC CTRL-0

Start Underlining
Stop Underlining
Start Elongated Printing
Stop Elongated Printing

Note — Once the ESC ESC character has been
entered into the word processor text,
it will not be displayed when printed
to the screen. In addition, the ESC ESC
character must be reentered if any changes
are made to the line of text.

HOW TO USE THE STP WORD PROCESSOR

The STP word processor object code is stored on disk and must be
loaded into memory using the DOS® The STP will be loaded into the
memory space normally used by the label file, that is $2680 to $2FFF®
Since the label file is not used in this word processing application,
no conflict of memory space will occur * The following procedure can
be used to load and run the STP®

1) Load the word processor using the DOS menu 'binary load' command®

The file name is 9*B1 t WORD? • EXE*8 •

2) . Enter the MLM using the 0 command on the DOS menu .

3) Type AC to enter MAE©

4) Type jFORMAT CLEAR to clear format mode®

5) Type RUN $2689 to initialize the STP• The screen will clear
and display the file boundries • This initialization causes
two new commands to be added to the TED command table® The

commands are:

]WC L n and] WP L n

The]WC command tells the word processor to format the text

and output it only to the screen®

The JWP command tells the word processor to format the text

and output it to the screen and the printer®
(Be sure the printer and interface are properly turned on®)

The 'L' in the]WC and JWP commands is the optional link

indicator® 1t enables the ®link text macro® Xf L is not
entered, any ®link command is skipped (see @link text macro)®

The 'n' in the]WC and JWP commands is an optional number
which indicates page suspression® That is, if a number is
entered, the word processor wi11 format the text but suppress
outputting that number of pages to the screen or printer• If
if a number is not entered, then all pages will be outputted®

Examples - JWC
Send text to screen®

JWC L
Send text to screen and link disk files®

JWC L 5
Send text to screen,link disk files, and

PAGE 46

skip first five pages.

] WP

Send to screen and printer.

]WP L
Send text to screen and printer and link
disk files .

]WP L 5
Send text to screen and printer ,link disk
files and skip the first five pages.

5) Enter raw text using MAE for editing. Include all
necessary text processing macros.

6) When you are finished entering the raw text and
associated text macros, use the]WC or]WP commands
to output the formated text.

DISK FILE EXAMPLE

A raw text file named W0RDP1.INS and W0RDP2.INS is contained on
the diskette. Type] GET "D1 :WORDPi .INS'* to load this file* Type
]PRINT to examine the raw text with associated macros. Then type]WC
L or]WP L to output the file.

Now compare the raw text printout with its text macros to the
formatted output generated by the word processor. Examine these two
printouts until' you are familiar with the function of the STP macros .

PAGE

11® SPECIAL NOTES

* When entering source modules (without ®EN)^ you can perform
a short test on the module by assembling the module while

in the text file and watching for the 107 error® If
other error messages occurs you have errors in the
module• This short test is not a complete test but does
check to insure you have lined up the fields properly5
not entered duplicate labels within the module^ 01

entered illegal mnemonics or addressing modes •

& An 80 character/line output device should be used when
printing an assembly' listing in order to provide a nec&t

printout without foldover to the next line®

* We recommend that a naming convention for your files
be established . We use the following extensions:

name ® CTL
name•Mxx
name »ASM
name•EXE

name•REL
name•MAC
name•LIB
name•LIM
name•DOC
name•INS
name•NOT
name * BAS
name * DAT

Control File
Module referenced in Control File
Source file without «CT
Executable object file
Relocatable object file
File containing all Macros
Library of symbols

Library of Macros
Program Documentation

User instructions
Program Notes
Basic Program
Basic Data File

Be carefull when

filename is used
and lost forever

using the]PUT command® Make sure the correct
otherwise 9 the wrong file may be written over

PAGE

12. Memory Map

Shown below ia a memory map of ATARI memory and how it is used

by this software.

32K ATARI

- $8000
SCREEN MEMORY (Note 1)
-$ 7 C1C

MAE
TEXT FILE

AREA

- $6800

MAE AND MLM
OBJECT CODE

AREA

- $3000
MAE LABEL (Note 2)
FILE AREA
- $2680

ATARI
DOS

- $0700
FREE RAM (Note 3)
- $0480

--$ff

MLM VARIABLES'
-$F0

-$ EF
ZERO PAGE (Note 4)
-$80

Note 1: For 4OK system, $9C1C
is the highest usable RAM
location. For 48K system, $BCIC
is the. highest. Care must be
taken not to overwrite screen

Note 2: This area is also used
to store the object code for the

STP word processor and the
relocating loader software.

Note 3: The STP word processor
uses this area for variable

storage.

Note 4: MAE uses this zero page
area. However before doing so,
it copies the contents to a
safe area at $5680. Therefore ,
a users program can use this
zero page area without writing
over MAE variables.

620 S. Peace Haven Road

Winston-Salem, N. C. 27103

WE WILL ASSIST WITH SPECIAL DESIGNS

(919) 765-2665 JOHNNY & HAZEL WEISNER

ERROR CODE DESCRIPTION

IB

1A
19
18
17
16
15
14
13
12
11
10

OF

OE
OD

OC
OB
OA
09
08
07
06
05
04
03
02
01
00
ED

•EN in non .CT file when .CT file exists.
•EN missing in .CT designated file.
Found .FI in non .CT file.

Checksum error on disk load.

Syntax error in]ED command.
Device numbers 0,1,2,3 not allowed.
Multiple .CT assignment.
Command syntax error or out of range error.
Missing parameter in]NU command.
Overflow in line # renumbering.

CAUTION: You should properly renumber the

the text file for proper command operation.

Overflow in text file — line not inserted.
Overflow in label file — label not inserted.

MAE expected hex characters, found none.
Illegal character in label.
Unimplemented addressing mode.
Error in or no operand.
Found illegal character in decimal string.
Undefined label (may be illegal label).
.EN pseudo op missing.
Duplicate label.
Label missing in .DE or .DI pseudo op.
•BA or .MC operand undefined.
Illegal pseudo op.

Illegal mnemonic or undefined macro.
Branch out of range.
Not a zero page address.
Error in command input.

2 F
2 E
2D
2 C
2 B

2 A
29

28
2 7
26
25
24
23
22
2 1
20

Overflow in file sequence count (2**16 max.)
Overflow in number of macros (2**16 max.)

•ME without associated .MD
Non-symbolic label in SET pseudo op.
Illegal nested definition.

Macro definition overlaps file boundary.
Duplicate macro definition.

Quantity parms mismatch or illegal characters.
Too many nested macros (32 max.)
Macro definition not complete at .EN
Conditional suppress set at .EN
Macro in expand state at .EN
Attempted expansion before definition.

