
10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 1/64

JACKSON LANGUAGE SYSTEM BASIC

(c) 1985, 2000 by Jeffrey Glen Jackson

First Things First

Warranty

The JLS BASIC and accompanying programs are provided "as is" without warranty of any kind, either expressed or implied, including, but not
limited to the implied warranties of merchantablility and fitness for a particular purpose. The entire risk as to the quality and performance of the
programs is with you. Should the system of programs prove defective, you (and not Jeffrey Glen Jackson) assume the entire cost of all necessary
servicing, repair or correction.

The Manual

The manual is written as a reference manual, not as a beginner's guide to programming. It presupposes that the user is familiar with ATARI DOS
and ATARI BASIC. This is not unreasonable as all owners should have those items & manuals. Before booting up the first time, I suggest that
chapters 1, 2, 3A, 4D, 4E be read to give the user an overview of the design and functioning of the software system, as well as a feel for the layout
of the manual itself. Before using BASIC, read 5, 4A, 4B, 4C, and then 3B. Again, this will give you a feel for the language and its features before
you actually use it.

The BENCHmark

The file BENCH.OBJ is the compiled screenfill benchmark used by ANALOG magazine. LOAD it and run it (after reading the manual, which
explains how). The following chart compares several languages tested by ANALOG and myself:

Language Time (jiffies)

ATARI BASIC (token) 4025
MSBASIC (token) 3348
BASIC/A+ (token) 2717
Datasoft/FP (ML) 2435
Draper Pascal (pcode) 2186
Atari Pascal (pcode) 653
Monarch ABC (pcode) 565
*** JLS BASIC (pcode) 279 ***
Datasoft/int (ML) 218

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 2/64

Action! (ML) 32
BASM (ML) 18

Licensing

JLS Basic is now freeware. You may download it from my website for free. I would prefer you didn't put it on your own web site because I would
like to see the hit count on my own page.

Correspondence

My web page is http://www.jeff-jackson.com.

My email address is mailto:jeff@jeff-jackson.com.

Trademarks, Copyrights, and References

DOSXL, OS/A+ and MAC/65 are trademarks of OSS, Inc.
 DOS 2.0 FMS is (c) copyrighted 1982 by OSS, Inc.

 ATARI DOS, ATARI BASIC, and ATARI are trademarks of ATARI, Inc.

All portions of JLS not covered above are (c) copyright 1985, 2000 by Jeffrey Glen Jackson

The following books have been used for references:

ATARI BASIC Reference Manual
 OSS BASIC A+ Reference Manual, (c) 1982, 1981, OSS, Inc.

 ATARI Personal COmputer System Operating System User's Manual, (c) 1982, ATARI, Inc., (C016555).
 ATARI Personal Computer System Hardware Manual, (c) 1980, ATARI, Inc. (C016555)

 DISK OPERATING SYSTEM II Reference Manual, (c) 1981, ATARI, Inc. (C016347 REV. 1)
 ATARI 850 Interface Module Operator's Manual, (c) 1980, ATARI, Inc. (C015953 Rev. 1).

 Inside ATARI DOS, Bill Wilkenson, (c) 1982, Small System Services, Inc.
 A Reference Manual For OS/A+, (c) 1982, OSS, Inc.

I. Overview

A. Design

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 3/64

JLS is an integrated program development system. Its major innovation for the ATARI world is the concept of modules and the manner they are
implemented. A module is simply a compiled program than can use and/or provide external references. The CP (Control Program, Consol
Processor, Monitor, Disk Utility Package, or whatever else it might be called) of JLS can maintain more than one module in memory at a time.
When CP loads a module from disk, it relocates it at LOMEM (the lowest unused address) and moves the LOMEM pointer up. Modules are deleted
(killed) from memory in LIFO (Last-In-First-Out) order. That is, they form a stack.

There are two types of modules. The first is the utility. Once it is loaded, it can be run just like it was a built-in command. A utility might use
subprograms (a subroutine with parameter passing) that are not actually contained in the module. Each of these subprograms has a name. When CP
loads a module, it resolves these external references (if possible). The subprograms can come from either of two sources. The CP itself has some, or
they can be in another type of module called a package. A package is a module whose primary function is to provide subprograms for other modules
to use. Hence several utilities that are in RAM at once can share only one copy of the subprograms. The package must be loaded before it can be
used to resolve references. More importantly, modules written in say BASIC will be able to be linked in this manner to modules written in another
language such as PASCAL (which is the next language to be supported).

The compilers output a stack oriented pcode which is interpreted by the program RTL.SYS (Run Time Library) which is loaded in at boot time. In
fact, the CP is written in BASIC and compiled. All files with the extender .SYS must be present on the boot disk for the system to bootup.
DOS.SYS is the first file to be loaded. It contains the DOS 2.0 FMS (File Management Subsystem), the memory manager, and a loader to install the
other system files. CONFIG.SYS contains a list of those files to be loaded in. Minimally this includes CP.SYS, RTL.SYS, and RELOCATE.SYS.
These are installed in the RAM shadowing the ROM on the 64K XL computers.

B. Commands

Once the system is booted up, the copyright notice is displayed and you are prompted with a $ (actually, before you are prompted, the batch file
STARTUP.BAT is ran -- but this is discussed later). The $ is your prompt to enter commands for the CP to execute. There are two classes of
commands: intrinsic (those built into CP) and extrinsic (those executed by loaded modules).

Intrinsic commands' syntax is generally more restricted than extrinsic ones'. This is because CP is limited to 4K while extrinsic commands have all
of memory to use. Chapter two describes each intrinsic command. The syntax specification of each command shows the $ prompt, the command
name and its argument. Arguments are usually file or module names and must be seperated from the command by one or more spaces. Not all
commands have an argument, and the argument of some commands is optional. If an argument is optional, its one-word description in the syntax
specification is enclosed in [brackets].

Usually extrinsic commands are far more flexible (syntax-wise) than intrinsic ones. Most of them that make extensive use of the command line use
the package COMMAND. COMMAND supports up to 4 positional arguments and 8 options. Positional arguments are things like filenames of a
copy command (COPY D2:FROM.BAS TO.*). Required positional arguments that are omitted are prompted for. Obviously, if there are say 3
arguments, you cannot omit only the second one. You may omit the 3rd, or the 2nd and the 3rd, or all three.

Often, when you are prompted, a default value is also shown with the cursor positioned on its first character. Just hit RETURN to use it. Also, be
sure to write over the entire default should you supply a different value. For example, if the default is 100 and you are supplying 10, be sure to press
the space bar to get rid of the second zero after you type in 10.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 4/64

Options on an extrinsic command can come anywhere after the command and in any order. They can be placed before, in between, or after the

arguments. Note that this is far more flexible than the intrinsic options. (In version 2, there are no options on intrinsic commands)

There are three formats of options:

/keyword=value
/keyword

/NO_keyword

Actually, the last two are equivalent to:

/keyword=1

/keyword=0

respectively. Generally, keywords ar limited to 8 characters and value is limited to 20 characters. There may be no spaces within the option, but it

must be seperated from other options, arguments and the command by one or more spaces.

Several commands may be issued on one line by seperating them with a space, semicolon, space. If an extrinsic command is not already LOADed,

it will be LOADed, executed, then KILLed. If the module name doesn't include a file spec the DEF location is searched first, then the OBJ location

(see the DEF and OBJ commands).

Chapter III describes the provided modules. The module documentation is segregated (may the ACLU forgive me) between utilities and packages.

The syntax of extrinsic commands is specified in the following manner. The first line has a $, the command name, and a short, one word description

of each positional argument (in proper order of course). Each of the following lines show the default setting of each option. (If the default setting is

what you want, you can omit that option when you type in the command). Below that is a list of any packages that the utility requires to be loaded in

before it is to resolve its references. The package documentation just shows a simple load command. Remember that the load command might need

a device specification and/or an extender. See LOAD in chapter 2. Below that are the BASIC declarations of all the subprograms. Finally, each

subprogram is described.

C. The DOS (FMS)

This system currently uses DOS 2.0. This is the exact same FMS used in ATARI DOS II and OS/A+ V2.0, and can read and write files made by

OS/A+ V2.1, DOS/XL V2.2, DOS/XL V2.3, and probably several other DOS's as well. (The FMS is copyrighted by Optimized Systems Software.

OS/A+ and DOS/XL are tradmarks of the same.) Disk filespecs consist of the letter D, followed by a digit (optional), followed by a colon, followed

by the filename (up to 8 letters/digits), and followed by an optional extender (a period followed by up to 3 letters/digits). Most commands will use

the default device if it is omitted. Some will supply a default extender. To specify no extender when there is a default extender, give the extender as

a period only (eg. FILE.). Note that this DOS is not compatibile with "medium" density disks created with DOS 2.5.

Wildcards can also be used. There are two wildcards ? and *. The ? substitutes a single letter; * substitutes the rest of either the filename or the

extender. The wildcards have two uses. The first use is to specify multiple files. The prime example of this is in the DIR command. For example,

DIR *.BAS will list all files with BAS as the extender. DIR COMMAND.* will list all files with the filename COMMAND and any extender. DIR

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 5/64

B?D*.??A will list all files such that their filename's first letter is B and third letter is D and the third letter of the extender is A, regardless of the

other letters.

The other use is epitomized by the COPY command. The COPY command has two arguments, the first is the source file and the second is the name

of the file the source is to be copied to. For example, COPY TEST.BAS TEST.BAK will create a copy of the file TEST.BAS that will be called

TEST.BAK. If you use wildcards in the second (destination) file, those wildcards are substituted with the corresponding characters from the first

(source) file name. Thus COPY TEST.BAS *.??K will do the exact same thing. COPY also permits both types of meanings in wildcards. COPY
*.BAS *.??K will make a copy of all files that have the extender BAS such that the copies will have the same filename but the extender BAK.

II. The Control Program

A. Intrinsic Commands

$ CLS

The CLS command performs a GRAPHICS 0. This is useful for restoring the screen after a stack overflow.

$ DEF [device:]

The DEF command is used to examine or change the current default device for filenames. If DEF is typed in by itself, the default

device is shown. The default device is D: by default. If you put a device: specifier after the command the default device is changed to

that device name. Note that you must include the colon after the name, but the device number is not necessary (It defaults to 1). See

also the OBJ command.

$ DIR [filespec]

The DIR command allows you to examine the DIRectory of files on a disk. If filespec is omitted, it defaults to default:*.* where

default refers to the default device (see DEF this section). If you specify just the device (with the colon) the filespec used is device:*.*.

If you omit a device, but supply a filename[.ext], that is used with the default device to construct the filespec. No default extender is

supplied if you omit just the extender. The DIR command uses the filespec to selectively list files on the disk. Only files with the

specified characters in their particular position are listed. The characters ? and * are wildcard characters (see "Wildcards" in Chapter 1).

To obtain a printed listing of files, see the CATLG and FILES extrinsic commands in Chapter 3.

$ ERASE filespec

The ERASE command erases files matching the given filespec (i.e., the same files listed with DIR filespec). No verification for

individual files is requested. For this feature, see the DELETE extrinsic command in Chapter 3.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 6/64

$ FLOAD filespec

The FLOAD command forces a LOAD of a module even if there is already a module of the same name in the module directory. See
also LOAD.

$ KILL module

The KILL command removes the specified module from memory. It also removes all modules that were loaded in after the specified
module since the modules are organized as a stack. If there is more than one module of the same name loaded, only the most recently
loaded one will be killed.

$ LOAD filespec

The LOAD command loads in a module from disk, relocates it at the bottom of memory, resolves its external references, and adds its
name and its external entry points to the module directory. If the device is omitted, the default device is used (see DEF this section). It
it isn't present on the DEFault device, then OBJect device is tried.

The name that the module is given is the same as the filename portion of Dn:filename.ext. The extender defaults to .OBJ. Beware of
using wildcards: only one module will be loaded and it may recieve an unexpected name. The LOAD command will not load a module
that is already loaded. That is, it will not create a duplicate name in the module directory. If you must do that, use the FLOAD

command, which see.

If the specified modules has unresolved references, the module will not be LOADed. Extrinsic commands may also be ran without
LOADing them. They are LOADed, ran, then KILLed automatically when used in that manner.

$ MDIR

The MDIR command displays a list of the modules that have been loaded into memory with the most recently loaded ones at the top. It
also displays the load address, then the size of each module after its name. At the end of the listing is the number of free bytes of
memory left.

$OBJ [D[n]:]

The OBJ command specifies a default place to find object files when LOAD fails to find them in the DEFault location.

$ PROTECT filespec

The PROTECT command protects (or locks) the specified file(s with wildcards) from being deleted or altered.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 7/64

$ RENAME filespec,filename.ext

The RENAME command renames the files specified in filespec with the name specified in filename.ext. Wildcards in filename.ext are

replaced with with the corresponding characters in the filespec.

$ REPEAT

The REPEAT command is intended for use with the semicolon in defining multiple statements on a command line. It causes the

command line to be reexecuted again. For example:

$ PAUSE ; BASIC x ; PAUSE ; EDIT ; REPEAT

will let you alternate between editing and compiling.

$ UNPROTECT filespec

The UNPROTECT command undoes the protection provided by the PROTECT command (which see). It is OK to unprotect a

unprotected file just like it is OK to protect a protected file.

$ XDIR

The XDIR command displays a list of the modules that have been loaded into memory with the most recently loaded ones at the top. It

also displays the load address, then the size of each module after its name. At the end of the listing is the number of free bytes of

memory left. It also displays the external entry points and their addresses. They are indented underneath the module which they are a

part of. Note that after the last module (and maybe its external entry points) there is a blank line and then some more external entry

points. These entry points are into the Control Program itself and are always there.

B. Batching

A batch file is a file that contains a list of commands to be executed. A batch file may contain any of the above intrinsic commands, any loaded

extrinsic commands, and any of the below commands that are geared for batching. When the system is first booted up, the batch file

STARTUP.BAT is executed, if it is present on D1:. Since some modules will require several other modules to be already loaded in before it is

loaded to resolve its external references, it would be convenient to use a batch file to load all of them in. Since some of the required modules might

already be loaded in, such a batch procedure should use the LOAD command rather than FLOAD to prevent multiple copies of the same module

from being loaded. All batch files should end with the END command (which see), though everything will work OK if it is omitted. The lines of a

batch file should begin with a $.

$ BATCH filespec

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 8/64

The BATCH command initiates the exection of the specified batch file. The device of the filespec will default to the default device, and

the extender will default to .BAT.

$ END

The END command deactivates batch mode so that the next command will be requested from the keyboard.

$ NOSCREEN

The NOSCREEN command deactivates the batch command echo to screen feature. By default, each batch command is not printed on

the screen as it is read in. See SCREEN to activate this feature.

$ NOTRAP

The NOTRAP command causes the control program to remain in batch mode after errors are raised. This is the default state. Since

CAR can result in an extraneous error, you should be in this mode when CAR is executed from a batch file.

$ PAUSE [text]

The PAUSE command rings the buzzer, displays the text, and waits till the user presses RETURN before continuing. The text begins

with the character after the space after the PAUSE command. The text may contain any character except semicolon as it is not subject

to the usual command line syntax.

$ PRINT [text]

The PRINT command acts like the PAUSE command in that it displays the text, but it doesn't ring the buzzer or wait for the user to

press RETURN.

$ REM text

The REM command lets you stick remarks in your batch file. It doesn't actually do anything.

$ SCREEN

The SCREEN command causes each subsequent batch command to be displayed on the screen as it is read in. This is not the default

case. See NOSCREEN to deactivate this feature.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 9/64

$ TRAP

The TRAP command causes batch mode to be deativated should any command result in an error condition. The default is that batch

mode continues after errors. Beware of CAR in TRAP mode. See also NOTRAP.

III. Provided Modules

A. Utilities

$ APROPOS word

Searches HELP.HLP for word and displays topic name and line containing word. See also HELP.

$ BOOT

The BOOT command reboots the system. This is preferable to turning the system off and on. Remember to hold down on the OPTION

consol button all the time the screen is black so you won't get stuck with ATARI BASIC eating 8K of your RAM.

$ C0
 $ C2

The C0 and C2 commands set the left margin to column 0 and 2 respectively. The OS by default sets it to column 2 for TVs that

overscan. People whose TVs don't overscan will probably prefer column 0.

$ CAR

The CAR command runs the cartridge, if it is installed. This command is of limited usefulness as this system is more standalone and

not designed for use with ATARI BASIC or any currently existing cartridge (except perhaps MAC/65). Exiting from a cartridge will

sometimes cause a random error message (MAC/65 is bad about this). This message should be ignored (See NOTRAP in "Batching"

section of this chapter). When DOS is returned to from a cartridge, then the cartridge is reentered, your cartridge-program will probably

be erased.

$CAT filespec
 /NO_QUERY

Copy text files, one line at a time, to the screen. The /QUERY option will ask for verification for each file matching filespec.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 10/64

$ CATLG filespec1 filespec2

The CATLG command displays a catalog of your files on disk. It acts just like the intrinsic command DIR filespec1, except that the

output is routed to the filespec2 instead of the screen.

$ CONFIG [unit density]

(requires IO)

Issuing CONFIG with out any arguments will display the density (or error status returned) of each disk that DOS is configured for. It

may also be used to change the density of PERCOM compatible disk drives if you give the two positional arguments:

unit = a digit 1 to 8 specifying which disk unit.

density = which density: S for single D for double.

$ COPY filespec1 filespec2
 /NO_WAIT

 /NO_SINGLE
 /NO_QUERY
 /NO_APPEND

(requires COMMAND)

The COPY command copies the files specified by filespec1 to the files specified by filespec2. If multiple files are specified in filespec1
by using wildcards, it will act as though seperate COPY commands were issued for each source file. Wildcards in filespec2 are replaced

with the corresponding characters from filespec1 (just like RENAME). If the destination file already exists, you will be asked whether

it is OK to be replaced. Type Y for yes or N for no. There are four options that may be specified:

/WAIT causes COPY to prompt you to insert the source disk before the command begins. Press RETURN when it is mounted.

/SINGLE informs COPY that you are making the copy using a single drive. You will be prompted to insert the destination and source

disks as each is needed. Press RETURN when the proper disk is mounted.

/QUERY causes COPY to request verification before copying each file. Respond Y for yes or N for no. A "no" response will cause

COPY to just go on to the next file.

/APPEND causes COPY to append each source file to its destination file. The destination file must already exist.

Each of the above options may be abbreviated to a single letter (/W /S /Q /A). See also SDCOPY.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 11/64

$ CR2EOL filespec

Transform ASCII CR to ATASCII EOL in the specified file.

$ DISKCOPY source destination

(requires IO)

The DISKCOPY command copies an entire disk. The source and destination are specified using a single digit (1-8) which is the drive

number. You are prompted to insert the source disk regardless of anything else. Press RETURN when it is mounted. If the source and

destination are the same drive, you are prompted to insert the proper disk into the drive as needed.

$ EDIT [file]
 /LINES=512

The EDIT command runs a program text editor that can be used to edit BASIC programs, batch files, or any text files. It is similar to

ATARI BASIC and the Assembler/Editor's editors. You are prompted with EDIT and may enter EDIT's commands on any line.

If file is specified, it is automatically LOADed. Note that LOADing will check the first line to see if it has a line number. If not, an

implicit GET is done instead.

In the below descriptions, the format [from [to]] has the following defaults:

omitted = first line to last line

 from = from only

Also note that either a number of spaces or commas can be used to seperate the arguments of the subcommands.

The /LINES option will change the maximum number of lines from the default of 512 to the specified count.

line#

deletes that line.

line# text

inserts/replaces a line.

DELETE from [to]

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 12/64

deletes a range of lines (to defaults to from).

DOS

returns to the control program. Will warn if program modified and give opportunity to SAVE or PUT if file was LOADed
or GETed.

FIND text

displays all lines that contain the specified text. The text begins with the character after the space after FIND.

FREE

displays number of free bytes and of lines used, and the maximum number of lines permitted. See also MERGE and
SAVE.

GET filespec

loads in the specified file assuming it does not have line numbers. The lines are numbered starting at 1000 and
incrementing by 10. See also PUT.

LIST [from [to]]

lists the specified ranges of lines onto the screen.

LOAD filespec

loads the specified file into memory. It replaces any program already in memory. The lines are checked to see if they are
numbered. If not, a GET is done instead..

MERGE filespec

loads the specified filespec into memory without erasing the one already there. The lines of the file must be numbered. See
also LOAD and SAVE.

NEW [max_lines]

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 13/64

erases the program in memory. By default 512 lines are the maximum the editor will handle. New can also be used to

change this number if you specify a number after the command. Typing NEW without a number after it will leave the

maximum number of lines alone. When you exit to the CP and return to EDIT, the maximum number of lines will be

remembered. KILLing and reLOADing EDIT will cause it to revert to the default.

PUT filespec [from [to]]

saves the file in memory, but does not output the line numbers with the lines. See also GET.

REN [start [increment]]

renumbers the lines of the program in memory starting with the number start and incrementing by increment. Increment
defaults to start and start defaults to 10. Generally you should not renumber BASIC programs because REN does not

check TRAPs, GOTOs, THENs or any other line number references.

SAVE filespec [from [to]]

saves the program in memory to a file. It saves only the specified line range and includes the line numbers with the lines.

See also LOAD, MERGE. Like most other provided commands you may omit the device from filespecs and let it default

to the default device.

$ command

You may execute intrinsic CP commands by typing in a '$ ' followed by CP command line. This is useful for getting a

directory, protecting and unprotecting files, erasing files, ending batch mode (with an END), etc. Note, you should not

LOAD or KILL modules or run modules.

$ EOL2CR filespec

Transform ATASCII EOL characters to ASCII CR characters in the specified file.

$FILES [filespec]

$FILES [filespec1]
 /OUTPUT=E:

 /LABEL=
 /DATE=

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 14/64

 /INIT=
 /NUMBER=

FILES is much like CATLG except that it sorts the list of files and if the output device is E:, it will pause and wait for you to press a

key before proceeding every 20 lines of output.

$ FORMAT drive

The FORMAT command formats a disk. You are prompted to mount the disk to be formatted. Press RETURN when you have done so.

The drive is specified using a single digit (1-8).

$ HELP topic

Display a help screen for a topic. If multiple help screens exist for a given topic, the user is prompted to press a key between screens.

HELP works by finding a HELP.IDX file at LOAD time, searching first the DEFault path, and then the OBJect path. It loads this

index into memory just the one time. When the command itself is executed, it reads the help screens from a file called HELP.HLP
found on the same device as HELP.IDX.

If HELP.HLP is copied to another location, it is necessary to rebuild HELP.IDX with the HELPIDX command. See also the

APROPOS command.

$ HELPIDX [filespec]

Rebuild HELP.IDX file from HELP.HLP file. Alternative help file may be specified. This is necessary if HELP.HLP is copied or

moved since the index contains absolute sector addresses of help screens. See also HELP.

$ MENU

????????????????????????

Experimental menu driven interface that provides special versions of the routines in COMMAND. Not quite ready for prime time.

$ PUTDOS

The PUTDOS command writes a DOS.SYS file to a disk. You are prompted for the drive allocation bits, the number of buffers the

DOS is to support, and the disk unit number (1-8) DOS is to be written to. The values for drive allocation bits are:

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 15/64

1 1 drive 31 5 drives

3 2 drives 63 6 drives

7 3 drives 127 7 drives

15 4 drives 255 8 drives

Each single density drive requires one buffer; each double density drive requires one buffer. Each open single density file requires one

buffer; each open double density file requires two buffers. The system, as shipped supports two drives and eight buffers. On a double

density system, this is enough for two disk files to be open at the same time.

$ SDCOPY filespec1 filespec2
 /NO_DS

 /NO_WAIT
 /NO_QUERY

 /NO_APPEND

(requires COMMAND, IO)

The SDCOPY command is used to transfer files from a single density disk to a double density disk (or vice versa) using only a single

PERCOM compatible disk drive. The device of both filespecs must be D1:. If you have two drives, use COPY. See COPY for use of

wildcards, /WAIT, /QUERY, and /APPEND.

/DS specifies that the transfer is to be from double to single density rather than the default which is the other way around. /SINGLE
may not be specified, but is always implied since SDCOPY uses disk drive one. See COPY.

$ SET
 /LEFT=2

 /RIGHT=39
 /CHAR=202
 /BACKGND=148

 /BORDER=0
 /FINE=0

 /DELAY=48
 /REPEAT=6
 /CLICK=0

(requires COMMAND)

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 16/64

SET allows the user to change certain system variables. Up to eight may be changed in one command. The default values shown above
are not the actual defaults. All defaults are the current values. The values show above are the values after a reset.

/LEFT=n /RIGHT=n set the left and right margins.

/CHAR=n /BACKGND=n /BORDER=n set the character, background, and border colors. The next GRAPHICS 0 undoes these
settings.

/FINE=1 will enable fine scrolling the next GRAPHICS 0 (use CLS). Fine scrolling may not work well because of a bug in ATARI's
OS.

/DELAY=n sets the delay (in 1/60ths seconds) before autorepeat on the keyboard begins.

/REPEAT=n sets the delay between repeats for keyboard autorepeat.

/CLICK=1 inhibits the keyboard click.

See also SHOW.

$ SETTIME [hh:mm:ss]

The SETTIME command sets the system clock. Hours, minutes, and seconds must all three be specified, separated by colons, and
exactly two digits each. See also TIME.

$SETUP

Scans D1: for batch files with single letter extensions and presents them in a menu. Usefull as the last command of a STARTUP.BAT
to select one of multiple startup scripts.

$ SHOW [LEFT] [RIGHT] [CHAR] [BACKGND] [BORDER] [FINE]
 [REPEAT] [DELAY] [CLICK] [DEV] [VERSION] [DOS]

The SHOW command shows the values of several system variables. The variables may be specified in any order after SHOW and their
is no limit to the number that may be specified (as long as everything stays on one logical line).

LEFT, RIGHT, CHAR, BACKGND, BORDER, FINE, REPEAT, DELAY, and CLICK are the same variables that may be set with
the SET command.

DEV is a list of device drivers installed.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 17/64

VERSION is the current JLS version number.

DOS shows the current drive allocation bits and buffer allocation.

$ SURROUND

A simple one or two player game. Requires joysticks.

$ TIME

The TIME command shows the current time. See also SETTIME.

$ TYPE filespec
 /HEADING=

 /NO_QUERY
 /OUTPUT=E:
 /LINESIZE=80

 /FORMSIZE=66
 /TOP=6

 /LEFT=5
 /INDENT=2

 /INIT=

(requires COMMAND)

The TYPE command makes nice printouts of source code. Its options let you set the line and form size and the top (and bottom) and

left (and right) margins as well as output escape codes to configure the printer. filespec specifies which files are to be printed out.

Wildcards may be used to specify several files. Each file will start on a seperate page.

/NO_HEADING causes the heading to be suppressed. Otherwise, the filespec of the file being typed and the current page number are

put on the first line which is then followed by a blank line.

/QUERY causes TYPE to prompt you whether you want to type each file or not. Respond Y to type it and N to go on to the next file.

/OUTPUT=filespec specifies the output file. The filespec may not contain wildcards. It is opened only once. The initialization

characters are sent only once (see /INIT=). If you specify a disk file, then want to print that out later, use COPY to make that printout

(weird things might happen if you use TYPE).

/LINESIZE=# specifies the number of characters there are per line. 80 is the usual for pica, 96 for elite.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 18/64

/FORMSIZE=# specifies the number of lines per page (or per form). 66 is the usual (6 lines/inch).

/LEFT=# specifies the number of characters in the left and right margin. (These are subtracted from the linesize above - resulting in 70
characters per line actually printed in the default).

/TOP=# specifies the number lines in the top and bottom margins. 6 usually creates a one inch margin.

/INDENT=# specifies the number of characters to indent when a logical line exceeds one physical line. Indention occurs on the second
and subsequent physical lines.

/INIT=characters specifies characters to be output to the printer to configure it when it is opened for output. This can be used to change
it to elite, bold characters, 88 lines/page, etc. The characters may not include spaces.

$ VERIFY [ON|OFF]

The VERIFY ON command causes all disk writes to be verified. This is slower than VERIFY OFF, but is much safer. This is the
default. VERIFY by itself reports the current VERIFY status.

B. Packages

$ LOAD COMMAND

BASIC declarations:

RECPROC P$DIR0(STRING(24))
RECFNC(STRING) F$DIR1,F$MATCH(STRING(*),STRING(24))
RECPROC P$SCAN0
RECFNC(STRING) F$SCAN1(STRIG(*),STRING(*))
RECFNC(STRING) F$POS(BYTE,STRING(*),STRIG(*))
RECPROC P$SCAN2

P$DIR0(filespec)
 F$DIR1-->filespec

The procedure P$DIR0 sets up the package for reading the directory from channel 5. You should not use OPEN under
certain circumstances to do this because if you open another channel to disk while a directory channel is open, the directory
channel becomes confused. The use of P$DIR0 and F$DIR1 bypasses this problem. In addition, the string returned by
F$DIR1 is converted to the usual Dn:filename.ext form where Dn: is the default device. F$DIR1 returns null string when
there are no more filenames.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 19/64

F$MATCH(filespec1,filespec2)-->filespec3

The F$MATCH function is used to implement the second type of wildcards (see Chapter I section C). Filespec1 should

not have any wildcards in it. The value returned (filespec3) is the same as filespec2 except that the wildcards in filespec2
are substituted with the corresponding characters from filespec1. Filespec3 will have the same device as filespec2, or the

default if filespec2 didn't have one.

P$SCAN0

The procedure P$SCAN0 must be called before the following functions and procedures. It collects information on up to

four positional parameters and up to twelve options. The following functions and procedures use that information.

F$SCAN1(keyword,default)-->value

The function F$SCAN1 returns the value of the specified option. Keyword signifies which option (it does not include the /
(slash) or the = (equal sign) or the NO_ portions of an option. If the option was omitted from the command line, the

default value specified as the second parameter is returned. Otherwise the characters after the equal sign in option are

returned. There are two special cases. /keyword by itself is seen as the same as /keyword=1, and /NO_keyword is seen as

/keyword=0. The default value should be set to "0" or "1" accordingly.

F$POS(position,prompt,default)-->value

The function F$POS fetches the value of positional arguments. The first argument of this function specifies which

positional argument is being fetched. They are numbered 0,1,2, and 3. If that positional argument is omitted, the prompt
and default is displayed, and the cursor is placed over the first character of the default so that the user need only press

RETURN to accept the default value. Be careful that the prompt and default can both be displayed on only one line. If the

prompt is an empty string, then the default is returned without prompting the user.

P$SCAN2

The procedure P$SCAN2 should be called after the values of all positional arguments and options have been determined. It

generates error 63 and messages for any argument or option on the command line that was not accessed; that is, that was

extraneous.

CP's external entry points

BASIC declarations:

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 20/64

RECFNC(STRING) F$DEF(STRING(*))

RECFNC(STRING) F$WORD

PROC P$CMD(STRING(*))

RECFNC(BINARY) F$ALLOC(BINARY)

These functions are part of the code of CP, and here therefore always available. They are the entry points listed after the blank line by
the XDIR command.

F$DEF(string1)-->string2

The F$DEF function adds the default device to the file specification string1 (if string1 does not already have one). Nothing
is done to the string of there is already a device specified.

F$WORD-->string

The F$WORD function returns the next word from the command line. A word is any combination of characters delimited
by spaces, or a space and a carriage return. The word is limited to 32 characters. Normally, when you use the command
line, you will use the COMMAND package. COMMAND uses this function to access the command line.

P$CMD(string)

The P$CMD procedure executes a CP command. The string may optionally begin with a $. Extreme caution should be
used in calling this to maintain system integrety. Whether it returns to your program or not depends on what you ask it t do:

PROTECT, UNPROTECT, ERASE, RENAME, DEF, END, SCREEN, NOSCREEN, MDIR, BATCH, TRAP,
NOTRAP, PAUSE, PRINT, CLS, REM, DIR will let P$CMD return to your program.

Extrinsic commands will never return to your program.

LOAD, KILL may not be done. System integrity will be violated if they are attempted.

DIR results in TRAP 0 being active.

BATCH will not actually execute a batch file. It will enable batch mode. When your program ends, that batch file will be
activated. This is the only way for a program to LOAD and RUN a program. It must create a batch file, call P$CMD("$
BATCH filename"), then END.

END will deactivate batch mode. If your program was run with a batch file, this command will deactivate that batch mode.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 21/64

All calls to P$CMD that are not expected to return should have a STOP statement immediately after it. This is because
Version 3.0 of the CP might let some of these return. If you don't, you will run into problems if you forget when you
recompile under Version 3.0 of the JLS Language System.

Calling P$CMD to do an extrinsic command is a convenient way to tranfer control to another module. That module must
already be LOADed in. See BATCH notes above for how to transfer control to a module not already LOADed in. (This
might not be true anymore now that trying to run a module that isn't LOADed will result in the module being LOADed,
ran, then KILLed).

F$ALLOC(binary1)-->binary2

The F$ALLOC function should be called from within the ATTACH subprogram only. Doing otherwise would violate
system integrety. This function allocates binary1 more bytes to the module calling it (which module is now being LOADed
in since ATTACH only should call it) and returns the address of that block of memory. An example of a module that uses it
is RS232. RS232's ATTACH downloads the device driver to the address that will be returned as binary2, computes how
big the driver is, and requests that storage be allocated to the module.

$ LOAD GAME

BASIC declarations:

FNC(BYTE) PADDLE(BYTE),STICK(BYTE)
FNC(BYTE) PTRIG(BYTE),STRIG(BYTE)
FNC(BYTE) VPEN,HPEN,VSTICK(BYTE),HSTICK(BYTE)
FNC(BYTE) OPTION,SELECT,START,HELP
FNC(FLOAT) RND,RAND(FLOAT,FLOAT)
FNC(BINARY) RND2,RAND2(BINARY,BINARY)
FNC(BYTE) RND1,RAND1(BYTE,BYTE)
PROC SETPOLY17(BYTE)
PROC SETFIN15(BYTE),SETFIN(BYTE,BYTE)
PROC SETFILTER(BYTE,BYTE)
PROC SOUND(BYTE,BYTE,BYTE,BYTE)
PROC SOUND8(BYTE,BYTE,BYTE,BYTE)
PROC SOUND16(BYTE,BINARY,BYTE,BYTE),SOUNDOFF

The GAME package consists of three classes of subprograms: (1) Game controller support, (2) Random numbers, and (3) Sound
support. The Random number class is exact same set of routines provided in the MATH package. The user should refer to that package
for their documentation. The user may need to refer to the hardware manual for some of the technical sound generation documentation,
or experiment a lot.

PADDLE(number)-->position

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 22/64

The argument and value returned by this function is the equivalent to the PADDLE function of ATARI BASIC. The
paddles are numbered 0-7 (or 0-3 and the XLs). The position ranges from 1 to 228 as you turn the knob counterclockwise.

STICK(number)-->position

Again, this STICK function is the same as ATARI BASIC's. The sticks are numbered 0-3 (0-1 on the XLs). The value
indicates direction as per below:

 10 14 6
 \ ! /
 \!/
11--15-- 7
 /!\
 / ! \
 9 13 5

PTRIG(number)-->trigger
 STRIG(number)-->trigger

The functions PTRIG and STRIG return TRUE (&255) if the paddle and joystick triggers are pressed respectively and
FALSE (&0) if not.

VPEN

 HPEN

The VPEN and HPEN return the vertical and horizontal lightpen positions respectively,

VSTICK(number)-->direction

The VSTICK function returns the vertical direction of the joystick. +1 means the joy stick is pushed up. 0 means it is
vertically centered. 65535 means it is pushed down. Note that the number 65535 acts like -1 when used in addition or
subtraction. If you need the equivelent in BYTE type, AND the VSTICK value by 255 before applying the BYT function
to avoid a conversion error. &255 in BYTE will act like -&1 in addition and subtraction.

HSTICK(number)-->direction

The HSTICK complements VSTICK. It returns +1 when the joystick is pushed right, 0 when centred, 65535 (-1) when
pushed left.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 23/64

OPTION-->flag
 SELECT-->flag
 START-->flag

These functions return true (&255) when the OPTION, SELECT, and START buttons are pushed respectively and false
(&0) otherwise.

HELP-->helpkey

The HELP function returns 17 if HELP has been pressed, 81 when SHIFT HELP has been pressed, and 145 if CTRL has
been pressed since the last time the HELP function was issued. That is, the computer remembers if the HELP key has been
pressed from one issuence of the HELP function to the next.

SETPOLY17(value)

0 specifies 17-bit polynomial in sound generation. 1 specifies 9-bit polynomial.

SETFIN15(value)

0 species 63.9210 Khz for the input frequency (Fin). 1 specifies 15.6999 Khz. 15.6999 will result in any given sound being
2 octaves lower in frequency.

SETFIN(voice,value)

Voice may be 1 or 3. Value 0 indicates 63.9210/15.6999 Khz. 1 indicates 1.78979 Mhz. The higher input frequency is
useful only for 16 bit frequency resolution.

SETFILTER(voice,value)

Voice may be 1 or 2. A high pass filter can be inserted on either clocked by channels 3 and 4 respectively. A value of 0
specifies no filter, 1 specifies a filter.

SOUND(voice,pitch,distortion,volume)

The SOUND procedure acts just like ATARI BASIC's. It clears all settings made with the previous or subsequent
procedures. The valid ranges are: voice 1-4, pitch 0-255, distortion 0-14 (even), volume 0-15.

SOUND8(voice,pitch,distortion,volume)

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 24/64

SOUND8 is similar to SOUND. The difference is that it does not reset any other settings. However, if voice 1 and 2, or 3
and 4 are combined together for 16 bit resolution and you specify, for example, voice 1. Voice 1 and 2 would be split, and
voice 2 turned off. That is, it will revert the specified voice back to 8 bit resolution.

SOUND16(voice,pitch,distortion,volume)

SOUND16 is similar to SOUND8 except it combines either voices 1 and 2, or 3 and 4 for 16 bit resolution on the
frequency. You may specify only voice 1 or 3. Voices 2 and 4 will cause an error 63. Generally, you should use Fin of
1.78979 Mhz on 16 bit resolution, else sounds will be too low pitched.

SOUNDOFF

SOUNDOFF turns off all sounds and returns all parameters to their default (0) value.

The below gives the formulas from the Hardware Manual for computing the resulting frequency of any given setting.

Fout=output frequency
 Fin=input frequency (either 1.78979 Mhz, 63.9210 Khz, or 15.6999 Khz)

 Pitch=the pitch specified in a SOUNDxx procedure.

For 64 and 16 Khz:

 Fin
Fout=-----------
 2*(pitch+1)

For 1.79 Mhz and 8 bits resolution:

 Fin
Fout=-----------
 2*(pitch+4)

For 1.79 Mhz and 16 bits resolution:

 Fin
Fout=-----------
 2*(pitch+7)

$ LOAD HEAP

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 25/64

?????????????????????????????

$ LOAD IO

BASIC declarations:

FNC(BYTE) DOS$STATUS(BYTE,BYTE(3))

FNC(BYTE) DOS$READ(BYTE,BINARY,BINARY,BYTE)

FNC(BYTE) DOS$WRITE(BYTE,BINARY,BINARY,BYTE)

FNC(BYTE) DOS$CONFIGIN(BYTE,BYTE(11))

FND(BYTE) DOS$CONFIGD(BYTE),DOS$CONIGS(BYTE)

DOS$STATUS(unit,status)-->error

The DOS$STATUS function performs a disk status request directly through the SIO bus (not the same as the STATUS

request of ATARI BASIC) for the specified unit (1-8). The four status bytes returned from the device are put in the array

passed as the second parameter. The value returned is the error status of the comand. An error value of 1 indicates the

operation went OK. Other values are the usual error codes one might get in the 128 to 255 range. This and the subsequent

functions in the package are usually called using the BASIC ERROR statement, which see.

DOS$READ(unit,address,sector,density)-->error

The DOS$READ function does a sector read. The unit is the disk number (1-8), the address is the address of the buffer or

holding the sector, the sector is the sector number (1-720), and the density is the density of the drive (1 for single, 2 for

double).

DOS$WRITE(unit,address,sector,density)--> error

The DOS$WRITE does a sector write. Its parameters are the same as DOS$READ. It is effected by the VERIFY and

NOVERIFY extrinsic commands.

DOS$CONFIGIN(unit,table)-->error

The DOS$CONFIGIN reads a config block from a percom compatible disk drive. 'unit' specifies which drive unit. 'table'
is a table of twelve bytes showing the configuration. They have the following meanings:

byte # description

0 Number of tracks

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 26/64

1 Step rate

2,3 # sectors per track

4 # sides -1

5 density (0=single, 4=double)

6,7 # bytes per sector

8 drive selected?

9 serial rate value

10,11 reserved

(two byte values are high-order-byte-first)

DOS$CONFIGD(unit)-->error

DOS$CONFIGD configures the specified disk unit to be Double density.

DOS$CONFIGS(unit)-->error

DOS$CONFIGS configures the specified disk unit to be Single density.

$ LOAD MATH

BASIC declarations:

FNC(FLOAT) MODFLT(FLOAT,FLOAT)
FNC(FLOAT) SIN(FLOAT),COS(FLOAT),TAN(FLOAT)
FNC(FLOAT) SQR(FLOAT)
FNC(FLOAT) ATN(FLOAT),ATN2(FLOAT,FLOAT)
FNC(FLOAT) ASN(FLOAT),ACS(FLOAT)
FNC(FLOAT) SINH(FLOAT),COSH(FLOAT),TANH(FLOAT)
FNC(FLOAT) ASNH(FLOAT),ACSH(FLOAT),ATN(FLOAT)
PROC RAD,DEG
FNC(FLOAT) RND,RAND(FLOAT,FLOAT)
FNC(BINARY) RND2,RAND2(BINARY,BINARY)
FNC(BYTE) RND1,RND2(BYTE,BYTE)
FNC(FLOAT) ROUND(FLOAT,BYTE)

The MATH package provides several of the usual floating point functions not provided directly in the OS. The random functions are

also provided in the GAME package. Since most of these functions are obvious and familiar, most will be given only short, even one-

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 27/64

word, descriptions

MODFLT(float1,float2)-->float3

The MODFLT divides float1 by float2 and returns the remainder.

SIN(float)-->float

Sine.

COS(float)-->float

Cosine

TAN(float)-->float

Tangent

SQR(float)-->float

Square root

ASN(float)-->float

Arc sine

ACS(float)-->float

Arc cosine

ATN(float)-->float

Arc tangent

ATN2(float1,float2)-->float3

ATN2 returns the following values for the following signs of float1 and float2:

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 28/64

float1 float2 ATN2

all >0 ATN(float1/float2)

>0 =0 pi/2

<0 =0 -pi/2

>=0 <0 pi+ATN(float1/float2)

<0 <0 -pi+ATN(float1/float2)

=0 =0 ERROR 5

In essence, this function, given (x,y) coordinates, returns the angle of polar coordinates.

RAD
 DEG

These procedures cause the trig functions to use degrees or radians and return the same. The default is radians.

SINH(float)-->float
 COSH(float)-->float
 TANH(float)-->float
 ASNH(float)-->float
 ACSH(float)-->float
 ATNH(float)-->float

These are the hyperbolic functions

RND1-->byte

RND1 returns a random byte (0-255)

RAND1(byte1,byte2)-->byte3

RAND1 returns a random byte in the range byte1 to byte2 inclusive.

RND2-->binary

RND2 returns a random binary value (0-65535)

RAND2(binary1,binary2)-->binary3

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 29/64

RAND2 returns a random binary value in the range binary1 to binary2.

RND-->float

RND returns a random floating point number in the range 0 to 1.

RAND(float1,float2)-->float3

RAND returns a random floating point number in the range float1 to float2.

ROUND(float1,byte)-->float2

ROUND returns float1 rounded to byte places after the decimal point. 255, 254,... will be considered -1, -2, That is, it
will be rounded off on the left of the decimal point.

$ LOAD RS232

BASIC declarations:

PROC OS$CIOV(BYTE,BYTE,BYTE,BYTE,STRING(*))

PROC R$STARTCON(BYTE,BINARY,BINARY)

FNC(BINARY) R$BUFFIN(BYTE)

PROC R$CONTROL(BYTE,BYTE,STRING(*))

PROC R$BAUD(BYTE,BYTE,BYTE,STRING(*))

PROC R$TRANSLATE(BYTE,BYTE,BYTE,STRING(*))

PROC R$FORCE

When the RS232 module is loaded, the RS232 (ATARI 850) interface module must be on. It downloads the actual dre summarized
below, but are not a replacement for the ATARI 850 Reference Manual. This module may be KILLed. When it is KILLed, the hooks
RS232 makes into the device table and the reset vector are undone. All operations set the ERR function value to one.

OS$CIOV(channel,command,aux1,aux2,device)

The OS$CIOV procedure is the equivelant of ATARI BASIC's XIO statement. Its primary use is by the following
subprograms.

R$BUFFIN(channel)-->input_buffer_size

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 30/64

The R$BUFFIN function performs a OS status request. It returns the current size of the input circular buffer. See Appendix

4 of the ATARI 850 manual.

R$STARTCON(channel,buffer address,buffer size)

The R$STARTCON procedure activates concurrent i/o on an open RS232 port. This is discussed in Appendix 8 of the

ATARI 850 manual. If buffer address is 0, the internal 32-byte buffer is used. Otherwise, you may provide your own buffer

of larger size (which is a good idea for faster transfer rates).

R$CONTROL(channel,aux1,device)

The R$CONTROL procedure does the XIO 34 operation documented in Appendix 7 of the ATARI 850 manual. Briefly,

the following values may be added to aux1:

0 No change to DTR 0 No change to RTS 0 No change to XMIT

128 Turn DTR off 32 Turn RTS off 2 Set XMT to space(0)

192 Turn DTR on 48 Turn RTS on 3 Set XMT to mark(1)

R$BAUD(channel,aux1,aux2,device)

The R$BAUD procedure does the XIO 36 operation documented in Appendix 5 of the ATARI 850 manual. The following

values may be added to aux1:

BAUD

0 300 8 300

1 45.5 9 600

2 50 10 1200

3 56.875 11 1800

4 75 12 2400

5 110 13 4800

6 134.5 14 9600

7 150 15 9600

WORD SIZE

0 8 bits 16 7 bits

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 31/64

3 6 bits 48 5 bits
STOP BITS

0 1 bit 128 2 bits

The following values may be added to aux2 to enable monitoring of DSR,CTS, CRX:

1 monitor CRX
2 monitor CTS
4 monitor DSR

R$TRANSLATE(channel,aux1,aux2,device)

The R$TRANSLATE procedure does the XIO 38 operation documented in Appendix 6 of the ATARI 850 manual. The
following values may be added to aux1:

0 Light ATASCII/ASCII translation
16 Heavy translation
32 No translation
0 Ignore input parity
4 ODD input parity
8 Even input parity

12 SPACE input parity
0 Do not modify parity bit
1 ODD output parity
2 EVEN output parity
3 MARK output parity
0 Do not append LF to CR

64 Append LF to CR

Aux2 is the heavy translation character.

R$FORCE(channel)

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 32/64

The R$FORCE procedure does the XIO 32 operation documented in pp. 27ff of the ATARI 850 manual. It forces early

transmission of the output buffer if you are using block output.

$ LOAD SOUND

????????????????????????????????

IV. Miscellaneous

A. GRAPHICS modes

The following table of modes is common to all languages as they are implemented directly in the Operation System.

Pixels

mode type across down pixels

0 text 40 24 1(2)

1 text 20 24(20) 5

2 text 20 12(10) 5

3 graph 40 24(20) 4

4 graph 80 48(40) 2

5 graph 80 48(40) 4

6 graph 160 96(80) 2

7 graph 160 96(80) 4

8 graph 320 192(160) 1(2)

9 graph 80 192 1(16)

10 graph 80 192 9

11 graph 80 192 16(1)

12 text* 40 24(20) 5

13 text* 40 12(10) 5

14 graph 160 192(160) 2

15 graph 160 192(160) 4

* resolution 4x8 multicolor pixes

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 33/64

The above mode numbers specify modes (with the four line text window in parenthesis, if applicable). Add 16 to suppress the text window. Add 32
to suppress the screen clear. Add 48 to do both.

Hues Color
0 Gray
1 Light Orange(Gold)
2 Orange
3 Red-Orange
4 Pink
5 Purple
6 Purple-Blue
7 Blue 1
8 Blue 2
9 Light Blue
10 Turquoise
11 Green-Blue
12 Green
13 Yellow-Green
14 Orange-Green
15 Light Orange

Defaults
Register Hue Luminance Description
PF0 2 8 Orange
PF1 12 10 Green
PF2 9 4 Dark Blue
PF3 4 6 Pink/Red
PF4 0 0 Black

Use of Registers

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 34/64

Modes Register Color
0,8 PF1 character,color 1
 PF2 background
 PF4 border
1,2,12,13 PF0 character
 PF1 character
 PF2 character
 PF3 character
 PF4 background,border
4,6,14 PF0 color 1
 PF4 color 0,border
3,5,7,15 PF0 color 1
 PF1 color 2
 PF2 color 3
 PF4 color 4,border
9 PF1 colors=luminance
10 PM0 color 0
 PM1 color 1
 PM2 color 2
 PM3 color 3
 PF0 color 4
 PF1 color 5
 PF2 color 6
 PF3 color 7
 PF4 color 8
11 PF2 color=hue
PMn refers to Player-Missile registers;

 PFn refers to playfield registers.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 35/64

B. Devices

C: cassette

D1: D5: disk drives

D2: D6:

D3: D7:

D4: D8:

P1: P5: printers

P2: P6:

P3: P7:

P4: P8:

R1: R3: RS-232 ports

R2: R4:

S: graphics screen

K: keyboard

E: screen editor

C. Error Codes

0,1 all's well that ends well

The following error codes are unique to the pcode of the RTL:

2 floating point add overflow

3 floating point subtract overflow

4 floating point multiply overflow

5 floating point division overflow

6 too high dimension number in BOUND function

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 36/64

7 conversion error: floating point to integer
8 conversion error: string to floating point
9 conversion error: integer to byte
10 e to a power overflow
11 10 to a power overflow
12 base e log of negative number
13 base 10 log of negative number
14 negative exponent in raise to a power
15 multiply overflow in raise to a power
16 e to a power overflow in raise to a power
63 this error is returned by many provided modules
64-127 You should use these when creating your own error conditions.
128-255 are the usual systems errors
128 break abort
129 channel already open
130 nonexistant device
131 channel write only
132 illegal handler command
133 device/file not open
134 bad channel number
135 channel read only
136 end of file
137 truncated record
138 device timeout
139 device NAK
140 serial frame error
141 cursor out of range
142 serial bus overrun
143 checksum error
144 device done error

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 37/64

145 illegal screen mode

146 function not implemented

147 insufficient RAM

150 port already open (RS-232)

151 concurrent mode not enabled

152 illegal user supplied buffer

153 active concurrent mode I/O error

154 concurrent mode I/O not active

160 drive number error

161 too many files open

162 disk full

163 unrecoverable system I/O error

164 file number mismatch

165 file name error

166 POINT data length error

167 file locked

168 device command invalid

169 directory full

170 file no found

171 POINT invalid

172 illegal append

173 bad sectors at format time

176 incompatable format

D. Converting to double density

You will need to LOAD:

COMMAND, IO, COPY, CONFIG, SDCOPY, PUTDOS

first. You should also read their documentation first.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 38/64

One disk drive

1. insert blank disk in drive one
2. $ CONFIG 1 D

3. $ FORMAT 1

4. $ PUTDOS

5. insert system disk in drive one
6. $ SDCOPY *.* *.* /QUERY

7. on the SDCOPY, answer N (no) to DOS.SYS. Never SDCOPY DOS.SYS!

Two or more disk drives

1. insert system disk in drive one
2. insert a blank disk in drive two
3. $ CONFIG 1 S

4. $ CONFIG 2 D

5. the above two commands insure that the disks have the proper densities
6. $ FORMAT 2

7. $ PUTDOS (specify disk unit 2 when prompted)
8. $ COPY *.* *.* /QUERY

9. on the COPY, answer N (no) to DOS.SYS. Never COPY DOS.SYS!

D. Vocabulary

argument (for CP commands)
a piece of information provided to a command the meaning of which is dependent on its order with respect to the other arguments.
Arguments are usually (but not always) prompted for when omitted.

argument (of functions)
see parameter

batch

a set of CP commands in a file that CP can interpret.
channel

the same as an IOCB. It is, to the programmer, an integer between zero and seven inclusive used to refer to a file.
compiler

a program that converts a high level language into a lower level one (such as a pcode or machine language).
Control Program

the program that controls the computer for the user.
CP

same as Control Program.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 39/64

default device

the device used in a file specification (which see) when a device is not expicitly specified.

extender

see file specification.

external entry point

a subprogram in a module that may be called by other modules.

external reference

a reference by a module to a subprogram contained in some other module.

extrinsic command

a module that may be ran. It must be LOADed into RAM first. Same as Utility.

filename

see file specification

file specification (filespec)

the specification of a file or device. It consists of three fields: device_letter[digit]:filename [up to eight letters][.extender [up to three letters]]

format

to prepare a disk for storing files.

function

a subprogram (which see) that can return a value for use in an expression.

intrinsic command

a command that is done by code in CP itself.

IOCB

properly, a sixteen byte block that controls I/O. To the programmer it is a number from zero to seven used to refer to a file. Same as channel.

link

to resolve an external reference by pointing it to an external entry point.

machine language

the series of bits (ones and zeros) directly understood by the hardware of a computer.

option

syntactical unit in CP like /keyword=value, /keyword, and /NO_keyword. They are optional, have default values, and are not prompted for

when omitted.

package

a module whose entire contents (or nearly so) are subprograms used as external entry points. They allow several other modules to share the

same copy of subprograms as well as allow the subprograms in the package use information hidden (protected) from those other modules. See

module, utility.

parameters & arguments

in the following segment:

CALL XYS(A,B+5)
DEF XYZ(M,N)

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 40/64

A and B+5 are arguments being passed to XYZ. M and N are the parameters used by XYZ. See the language manuals.

pcode
a low level language that is interpreted by machine language. It is more primative and faster than the tokens used by BASIC interpreters.

positional argument
see argument (for CP).

procedure
a subprogram that does not return a value for use in an expression.

prompt
a message to the user on the screen telling him to type something in. As a verb, to give a user such a message.

RTL (Run Time Library)

Library of machine language subroutines that interpret the JLS pcode.

stack
a structure for storing data into which data may be added and removed from only one end, called the top of the stack. It is analogous to a stack

of dishes.

subprogram
a programming unit that can be called by another programming unit and will return to that unit. It has a name, as opposed to a subroutine

which is called with its line number in BASIC. Subprograms can also have parameters, local variables, and local subprograms. There are two

types of subprograms. FUNCTIONs can be used in expressions since they return a value. PROCEDUREs are used like program statements:

they perform an operation, but return no value.

syntax
the rules of grammar of a language. Syntax specifies valid arrangements of characters and words, as opposed to semantics which specify what

those combinations mean.

terminal
see virtual terminal

utility
a module whose primary purpose is to ba run as an extrinsic command.

virtual terminal (VT)

there is a maxim: "if its there and you can see it, its real; if its there and you can't see it, its transparent; if its not there but you can see it, its

virtual; if its not there and you can't see it, its been deleted." A terminal is a device that transmits over a communications line what is typed on

its keyboard, and displays on its screen what it receives over that line. A virtual terminal probram makes your ATARI look like a real

terminal.

wildcard
a character in a filespec (filename or extender) that can substitute for any other valid character(s).

V. BASIC

A. The Command Line

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 41/64

$ BASIC sourcefile
 /OBJECT=*.OBJ

 /LIST=E:
 /ERROR=E:

 /BASE=0

(requires COMMAND)

Wildcards used in /OBJECT's filename are replaced with the corresponding characters from the source filename.

/OBJECT=the file the object module is sent to
 /LIST=the file the listing is sent to

 /ERROR=the file error messages are sent to
 /BASE=the base address of the object module. 0 is for relocatable modules. 49152 is for the CP.

B. Writing a program

As is common in most BASICs, every line of the program must have a unique number that is in ascending order (that is, the line numbers determine
the order of the lines). The maximum line number permitted is 32767. The EDIT module should be used to edit a BASIC program. As in ATARI
BASIC, the maximum linesize is 120 characters, and more than one statement may be put on one line by seperating them with colons (:). In
examples given below, line numbers are entirely arbitrary. The form of a typical, simple program is given below.

10 REM this is an example

20 DEF MAIN

30 DECLARE

40 <variable declarations>

50 ENDDECLARE

60 <program statements>

70 END

80 this is ignored

All variables must be declared. Declaring a variable is necessary because of the number of types, scope considerations (see C. Writing
Subprogams), and the fact that this is a one pass compiler. Lowercase letters are not permitted in keywords or identifiers. The first character of a
variable must be a capital letter. The subsequent letters, if any, may be any of the capital letters, digits (0-9), #, !, %, $, and _. Variables are limited
to 15 characters. There are four types of variables: BYTE, BINARY, FLOAT, and STRING. BYTE can hold integers of the range 0 to 255.
BINARY handles the integer range 0 to 65535. FLOAT is the same as ATARI BASIC: -9.99999999E-98 to 9.99999999E+98. STRING can be up
to 253 characters. Variables may have up to three dimensions. The following is an example declaration:

30 DECLARE:BYTE A,B(5)

40 BINARY C,D(5,6,7)

50 FLOAT E

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 42/64

60 STRING(31) F:STRING(15) G(99)
70 ENDDECLARE

A is a simple BYTE variable. B is an array of six BYTEs. Note that the lowest subscript is zero. C is a simple BINARY variable, and D is a three-

dimensional array of BINARY values. E is a floating point variable. F is a STRING variable whose maximum length is 31 characters. G is an array

of 100 STRINGs whose maximum length is 15 characters each. The memory requirements of G are (15 characters+ 1 length byte) times 100

elements = 1600 bytes. BYTE, BINARY, and FLOAT elements take one, two, and six bytes each respectively.

Numeric constants have type too. You should use the proper type in a given context to avoid conversion operations, which will slow down program

execution. The following are some examples of constants of each type:

BYTE: &5 &0 &255

BINARY: 5 0 255 743 65535

FLOAT: 5. 0. 255.0 65535. 2.3765 2.4E-5 .2 2E10

Generally, if the number has, or starts with a period, or has an E in it, it is a floating point constant. If it consists of only digits, it is a BINARY

constant. If it starts with an ampersand (&) followed by digits only, it is a BYTE constant.

Expressions are the next level of complexity up from variables and constants on the way to constructing statements and whole programs. There are

three other elementary units used in constructing an expression: functions, unary operators, and binary operators.

The following is the order of precidence table of these operations:

functions
 + - (unary)

 ^ (raise to a power)

 * /
 + -
 AND

 OR
 EOR

 ; (Concatenate strings)

Operations of equal precidence are done from left to right.

Type coercions are performed for mismatched types (eg, binary+byte). The rules are somewhat unusual so care should be taken. It is advised that

you use explicit conversion functions to avoid errors anyway. In fact, some languages permit no coercions at all.

functions

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 43/64

all arguments of functions are converted to the expected types. Some built-in functions might make exceptions.

Unary operators (+ and -)

do not covert numbers, but if used on a STRING, the string is converted to FLOAT first. The value returned is of the same numeric

type was the operation was performed on.

Binary operators

the value returned is the same as both of the values acted upon. Usually only the right hand expression is converted. The following

shows the type returned for each operator and type of its left and right hand expressions. The left and right hand expressions are coerced

to the return type.

any ^ any --> FLOAT

BYTE or BINARY * or / any --> BINARY

FLOAT * or / any --> FLOAT

STRING * or / any --> FLOAT

BYTE + or - any --> BYTE

BINARY + or - any --> BINARY

FLOAT + or - any --> FLOAT

STRING + or - any --> FLOAT

BYTE AND or OR or EOR any --> BYTE

not BYTE AND or OR or EOR any --> BINARY

any ; any --> STRING

The ^, *, /, +, and - do the same operations they do in ATARI BASIC. AND, OR, and EOR perform bitwise ands, ors, and exclusive

ors on byte and binary values. See also the NOT function for bitwise operations. The semi-colon concatenates (combines) two strings.

On the level of the statement, the main thing to beware of is delimiting between lexical units. The following illustrates this:

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 44/64

FORA=BTO7

CLOSE#5

The first would be seen as a simple assignment statement. FOR must be seperated from the A with one or more spaces. Neither A nor B need be

seperated from the equal (=) sign however. It cannot be part of a symbol name and no other lexical unit starts with equal followed by a letter. B and

7 must be seperated from TO however since BTO7, BTO, and TO7 are all valid variable names. The problem in the second one is more subtle.

Though you should avoid such a name, CLOSE#5 is a valid variable name. CLOSE# 5 would solve the problem. So would CLOSE#&5, since

& cannot be part of a variable name, the compiler can see the start of another lexical unit.

On the program level, the first non-REMark statement must be DEF MAIN (or later we will see DEF PACKAGE). The next statements after that,

if the program uses variables, are the DECLARE ... ENDDECLARE statements. After that come the program statements and, finally, the END

statement. Everything after the END statement is ignored.

C. Using Subprograms

Like all variables, subprograms must also be declared in the DECLARE block at the head of a program. Subprogram names have the same size and

character limitations as variable names. There are four types of subprograms:

FNC function

RECFNC recursive function

PROC procedure

RECPROC recursive procedure

A function is a subprogram that returns a value and can be used like any built-in function. A procedure is like a statement in that it does not return a

value. It is called using the CALL statement. A recursive subprogram is one that can call itself directly or by calling a subprogram that calls it or by

calling a subprogram that calls a subprogram that calls it

The following annotated examples will illustrate how to DECLARE and use procedures:

10 DEF MAIN
20 DECLARE
30 BINARY A,B,V
40 FLOAT D,E,F
50 STRING(16) G:STRING(128) H
60 PROC HEADER
70 PROC TITLE(STRING(128))
80 PROC CHANGE(STRING(*))
90 ENDDECLARE

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 45/64

Note that in the above declarations, all the variables are DECLAREd before the procedures. This is advised to avoid a scope problem that will be
explained later.

100 CALL HEADER
110 CALL TITLE(G)
120 CALL TITLE("JLS manual")
130 CALL CHANGE(H)
140 CALL CHANGE(G)
150 CALL CHANGE("TEST")
1000 DEF HEADER
1010 PRINT:PRINT "HELLO":PRINT
1020 RET
1030 ENDDEF

All subprograms should be DEFined after all the main program statements. If the sequence of execution ever "runs into" a DEF statement (as in line
150 to 1000 above), a END or STOP occurs. The CALL in line 100 is similar to a GOSUB, but instead of a line number, it has a procedure name
after it. Lines 1000-1030 contain a subprogram definition. Note it starts with a DEF and ends with a ENDDEF; this is necessary. Also necessary are
one or more RET statements. RET is to CALL what RETURN is to GOSUB. It signals a RETurn to the statement after the CALL that invoked
that procedure.

2000 DEF TITLE(V)
2010 IF V="":PRINT "DEFAULT":RET
2020 ELSE:PRINT V:RET
2030 ENDIF:ENDDEF

This example illustrates another valuable feature of subprograms: parameter passing. Note that line 110 passes a variable to the subprogram. Line
120 passes it a STRING constant. Line 2000, in addition to heading the definition, gives a name to the parameter whose type was all that was given
in the declaration on line 70 (the * will be discussed later). The parameter is just a regular variable, but the name may be used only between the
DEF and ENDDEF of TITLE. TITLE can use all variables declared in the main program (ie, A,B,D,E,F,G,H) because it is between DEF MAIN
and END, except one: the use of V as TITLE's parameter name hides the existence of V in the main program. Consider the following
implementation of TITLE:

2000 DEF TITLE(V)
2010 DECLARE:BINARY F,Z:ENDDECLARE
2020 ...
2030 ENDDEF

This one declares some more variables. These are also local to TITLE. The compiler will inform you that Z is not declared if you try to use it
outside of the TITLE. Note that there is an F declared in the MAIN program too. Inside TITLE, MAIN's F is hidden by TITLE's F. Generally,
one should avoid having a subprogram use variables declared outside it. By having a subprogram get all its information from parameters and using
only local variables to do its manipulations, writing subprograms that can be used by other programs that you or someone else might write is
facilitated. This modular design method also reduces the chance of making programming errors.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 46/64

3000 DEF CHANGE(V):REM note that V is used again
3010 V="(";V;")"
3015 REM remember semicolon (;) is the concatenation operator
3020 RET:ENDDEF

This example illustrates a more subtle, but extremely powerful, feature: pass-by-reference. Until now, I might have implied that parameter passing is
accomplished with an assignment statement (V=whatever). This is not so. Note the declarations of H and the parameter V. Both are of type
STRING(128). In the case of line 130, V becomes another name for H. When you change V, H also is change since they are the same. The above
procedure adds parentheses to the beginning and end of the parameter. The situation is quite different in line 140. That G is declared STRING(16).
Since this is not STRING(128), a variable of that type is allocated on the stack, G is copied to it, and that variable is passed to V. Hence when V is
changed, G is not. The same thing happens in line 150 where an expression is passed.

Now observe how CHANGE is declared. This would cause both G and H to be passed by reference. The * acts as a "wildcard" similar to its
function in filenames. Obviously, expressions are still passed by value anyway.

It is possible to pass entire arrays by reference also. Consider the following example:

110 DEF MAIN
120 DECLARE
130 FLOAT A(99),B(100)
140 STRING(8) C(99),D(200)
145 STRING(9) E(99)
150 PROC CLEARFLT(FLOAT(99))
160 PROC CLEARSTR(STRING(8)(*))
170 ENDDECLARE
250 CALL CLEARFLT(A)
260 CALL CLEARSTR(C)
270 CALL CLEARSTR(D)
275 CALL CLEARSTR(E)
280 CALL CLEARFLT(B)

The procedure CLEARFLT takes a one dimensional array of floating point numbers that has 100 elements as its parameter. Hence line 250 is valid.
Line 280 would result in an error becuase array B has 101 elements -- the wrong number. If the bound size of the array is specified as an * in the
procedure declaration, any size on that dimension can be passed. Note this in line 160. Note also the two sets of parenthesis in it: PROC
CLEARSTR((8)(*)). The (8) specifies the maximum string size. It too can be an *. Note that in line 275 an error would occur: E has maximum
element size of 9. Now, consider the following declaration:

PROC DOSOMETHING(STRING(80)(10,*,5),BINARY(5,*))

This procedure takes two parameters. The first is a three dimensional array of strings whose maximum length is 80. The first and third dimensions
have upper bounds of 10 and 5 respectively while the second dimension may be of any size. The second parameter is a two dimensional array of
BINARY numbers. The first dimension must have an upper bound of 5, but the second one might be any size.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 47/64

Functions are defined much like procedures, but they return a value and are used like built-in functions in expressions. Consider the following
program:

10 DEF MAIN
20 DECLARE
30 FLOAT TEMP
40 FNC(FLOAT) F_TO_C(FLOAT)
50 ENDDECLARE
60 PRINT "Enter temperature in Fahrenheit: ";:INPUT TEMP
70 PRINT F_TO_C(TEMP);" degrees Celcius"
80 PRINT:GOTO 60
1000 DEF F_TO_C(T)
1010 RET (T-32.0)*9.0/5.0
1020 ENDDEF
9999 END

The format FNC(FLOAT) specifies non-recursive functions that return a floating point value. The rest of the FNC statement is the same as for
PROC. There is no difference in the DEF and ENDDEF of FNC either. The difference is in the RET statement. Here it has an expression after it
containing the value to be returned. Parameters are passed to, and can be modified by, functions just like in procedures. When a function returns a
STRING value, you do not specify a maximum length in the declaration:

FNC(STRING) CHANGE(STRING)

For an example of recursion, the classical factorial example will be used. In mathematics, the notation n! (read as n factorial) is the product of all
integers from 1 to n inclusive. We can define this using recursion:

n!= if n=0, 1
 if n>0, n(n-1)!
0!=1 by definition.

Factorial of all other positive integers is given using factorial of one less than each integer. Here is the code for implementing this function:

20 RECFNC(FLOAT) FACTORIAL(BINARY)
1000 DEF FACTORIAL(N)
1010 DECLARE:FLOAT T:ENDDECLARE
1020 IF N=0:RET 1.0
1030 ELSE
1040 T=FACTORIAL(N-1)
1050 RET FLT(N)*T
1060 ENDIF
1070 ENDDEF

This could have been written to not use T, but T is needed to make a point. Each time FACTORIAL calls itself (in line 1040), a new N and T are
created. When RET is done, they are destoyed and the old N and T become visible again. One way of viewing a recursive subprogram is to imagine

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 48/64

each definition has another copy of the subprogram declared and defined in it which has another copy declared and defined in it and so on for an

infinite regression. Actually, the regression is not infinite because you will eventually run out of stack space.

Now obviously, it would be much easier to implement factorial without recursion that would run much faster as well. There are algorithms,

however, that are much easier to implement using recursion: for example, the Towers of Hanoi problem, the BASIC compiler, and Quicksort. There

is also another reason why one might declare procedures as recursive, even if they are not used so. When a subprogram is non-recursive, the space

for local variables is statically (permanently) allocated. That is, allocation is done at LOAD time. If subprograms have large variable space

requirements, memory is short, and a subprogram's variable's values need not be kept from one call to another, then you maybe should declare the

subprogram as recursive. This causes it to allocate memory for its variables when CALLed and deallocate it when it RETurns so that other

subprograms can used the same memory. However, this efficiency of space is not without a price-tag. Access to dynamically allocated variables and

recursive CALLs and RETurns take more time (about 10% longer, more or less).

For these reasons, several of the subroutines provided in packages are recursive even though they are not used recursively.

D. Using and Making External Subroutines (Packages)

The text of a subprogram that is used by a program (or even another subprogram) does not have to actually be included with the program or

subprogram during compilation. It could have been compiled separately. To use a subprogram that has been compiled in a separate module

(package), all you need do is DECLARE it, but never DEFine it. When your program is LOADed, all such unresolved references are resolved

using packages that are already LOADed in. The proper DECLAREations to use are documented in Chapter 3-B.

Any program can let the CP use some or all of its subprograms to resolve unresolved references of other programs. This is done by using DEF

PACKAGE instead of DEF MAIN. The PRIVATE statement is used in the DECLARE block to restrict which are used. The following is the

suggested order of declarations:

10 DEF PACKAGE
20 DECLARE
30 <variables>
40 <references to external routines>
50 <subprograms that may be used by other modules>
60 PRIVATE
70 <subprograms used internally only>
80 ENDDECLARE

All subprograms declared within other subprograms are always private. All subprograms declared before PRIVATE can be used by other programs.

Those declared after it are kept private to the program. Declarations of subprograms that are not DEFined in the program may actually come either

before or after the PRIVATE statement, but they should be grouped together for program readability purposes.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 49/64

One thing to remember is that subprograms that are contained in other modules cannot access variables in the module that is calling them. They

might access variables declared globally in the module that defines them. They may then share data and subprograms that are not visible to your

program.

Commonly, modules that provide subroutines have no code of their own. For example, if you issue COMMAND as a command, nothing will

happen. There is also another use of DEF PACKAGE that does not have to provide entry points that can be used for other modules. Consider the

following segment:

10 DEF PACKAGE
20 DECLARE
30 <variables>
40 RECPROC ATTACH,DETACH
50 <external references>
60 <external entry points>
70 PRIVATE
80 <private subprograms>
90 ENDDECLARE

The CP will CALL ATTACH when the module is LOADED, and will CALL DETACH when the module is KILLed. An example of how this has

been used is the RS232 module. When the RS232 is LOADED, ATTACH downloads the RS-232C driver from the ATARI 850 interface module

and adds the driver to the system device tables and sets the reinitialization vector for RESETs. DETACH removes the R entry from the device table

and removes the RS-232 initialization vector from the RESET vector, restoring the old value.

(The following sections summarize all of the statements of JLS BASIC. The syntax notations specify the types of each argument in lower case letters. The

notations byt, bin, flt, and str mean BYTE, BINARY, FLOAT, and STRING operands respectively. When varbyt, varbin, varstr, varflt appear, a variable of the

specified type is required (that variable will probably have its value changed). Each argument is also numbered, starting with zero, for reference. Anything in

[brackets] is optional).

E. Control Statement Summary

ELSE -- see IF

ELSEIF -- see IF

ENDIF -- see IF

ENDWHILE -- see WHILE

ERROR byt0

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 50/64

The ERROR statement simulates error number byt0. There is a special case: ERROR &1 just clears the ERR function without
generating an error. See ERR function.

EXEC bin0

The EXEC statement does a JSR to a machine language subroutine. The average user will probably never use this directly. Some of the
provided packages use this. Most things you might want to use this statement for are already provided in those packages.

FOR var0=num1 TO num2 [STEP num3]
 statements

 NEXT var0

The FOR...NEXT statements provide looping control. Var0 may be BYTE, BINARY, or FLOAT. Num1, num2, and num3 should be
the same type as var0. The statement is very similar to ATARI BASIC's. Num3 will default to one (&1, 1, or 1.0) if the STEP clause is
omitted. The body of statements will always be executed at least once. Num3 may be negative to count down from num1 to num2.
There are some differences.

There may be only one NEXT statement for each FOR statement. The FOR...NEXTs must be both physically and logically nested.
You may freely GOTO out of the block of statements, even back to a previous FOR statement. For byte and binary types, num1 and
num2 are always considered positive. When var0 is byte the following obtains: &128 to &255 are considered -128 to -1 respectively
for num3 only; num2 should never be &255 when you are counting up, nor &0 when counting down.

Similarly, when var0 is binary: 32768 to 65535 are considered -32768 to -1 for num3 only; num2 should never by 65535 when
counting up, nor 0 when counting down. The reason for the restriction on num2 is this. If var0 is BYTE, num2 is &255, num3 is &1,
var0 has reached &255, and NEXT var0 is being executed, then &1 is added to var0 (&255+&1) which results in &0. Since
&0<&255, NEXT loops back to FOR. An infinite loop obtains!

GOSUB line_no

RETURN

GOSUB transfers control to the specified line_no (line_no is specified using a BINARY constant). After GOSUB, when RETURN is
encountered, control returns to the statement after the GOSUB. GOSUBs may be freely nested. The levels of nesting however should
be confined to about 60 or so. GOSUB uses the hardware stack to store the return address.

GOTO line_no

The GOTO statement transfers control to the specified line number.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 51/64

IF condition THEN line_no

The IF statement is a conditional GOTO. The condition is a BYTE expression. If the condition is &255, a GOTO line_no is

executed. If condition is &0, execution continues with the next statement. Other values of condition should be avoided. Remember, the

relational operators return &255 for true and &0 for false.

IF condition0
 statements0
 [ELSEIF condition1

 statements1
 [ELSEIF condition2

 statements2...]]
 [ELSE

 statements3]
 ENDIF

This is another syntax of the IF statement. Only one of of the groups of statements will be executed. If condition0 is true (&255) then

only statements0 will be done. If false, condition1 is evaluated. If condition1 is true, only statements1 will be executed. If false,

condition2 is evaluated. If condition2 is true, only statements2 will be executed. There may be any number, even zero, of such

ELSEIF statements. They may span may lines. In fact, the statements in three such complexes of IF...ELSEIF...ELSE...ENDIFs

make up most of the JLS BASIC compiler. If all of the conditions evaluate to false, statements3 after the ELSE statement are done.

The ELSE statement is also optional. When there is no ELSE, it is possible that none of the statements between the IF and ENDIF will

be done. The ENDIF is required. Some examples are given below:

10 IF A=B:PRINT "EQUAL":ENDIF
20 IF X<>Y:PRINT "<>":ELSE:PRINT "=":ENDIF
30 IF M<N:PRINT "<":ELSEIF M=N:PRINT "="
40 ELSE:PRINT ">":ENDIF
50 IF P=&1:PRINT "RED"
60 ELSEIF P=&2:PRINT "BLUE"
70 ELSEIF P=&3:PRINT "GREEN"
80 ELSE:PRINT "UNDEFINED"
90 ENDIF

NEXT -- see FOR

REPEAT
 statements0

 UNTIL condition0

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 52/64

The REPEAT...UNTIL statements are another set of looping control statements. When REPEAT is encountered, nothing is done.
Statements0 are then executed. Then condition0 is evaluated. If condition0 is false (&0), statements0 are done again. If true, execution
goes to the next statement. Thus, statements0 are executed again and again until condition0 becomes true. Nesting with other
REPEAT...UNTILs and other looping control statement pairs should be both physical and logical. You may GOTO out of a
REPEAT...UNTIL block.

RETURN -- see GOSUB

STOP

The STOP statement halts execution of a program, returning the user to the CP without generating an error condition.

TRAP line_no

The TRAP statement stores the specified line number and the current stack pointer away. When an error condition is subsequently
raised, that line number is GOTOed, and the stored stack pointer value is restored to the stack pointer. Thus unfinished expressons and
subprogram calls are removed from the stack when the error occurs. There is a special case. TRAP 0 causes error conditions to return
the user to the CP with an error condition. The line number should be in the same subprogram in which TRAP is issued, or both should
be in the main program. This is because of the effect of error trapping on the stackpointer.

UNTIL -- see REPEAT

WHILE condition0
 statements0

 ENDWHILE

When the WHILE statement is encountered, condition0 is evaluated. If it is true, statements0 are done, else a GOTO is done to the
statement after the ENDWHILE statement. When ENDWHILE is encountered after statements0 are done, a GOTO back to the
WHILE statement is done. Thus statements0 are done while condition0 is true. They may be done zero times. You may GOTO out of
a WHILE...ENDWHILE block. Nesting with other WHILE...ENDWHILEs and other looping control statement pairs should be both
physical and logical.

F. Defining and Declaration Statements

The below are just syntax specifications. See Sections A-D of this chapter for details on use.

DEF MAIN or DEF PACKAGE
 DECLARE

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 53/64

 BYTE variable_list
 BINARY variable_list

 FLOAT variable_list
 STRING(maxlen) variable_list

 PROC procedure_list
 RECPROC procedure_list

 FNC(return_type) function_list
 RECFNC(return_type) function_list

 ENDDECLARE

variable_list :== variable[(bound1[,bound2[,bound3]])],variable_list

procedure_list,function_list :==subpgmname[(parameter_list)],function_list

return_type :== {BYTE,BINARY,FLOAT,STRING}

parameter_list :== type[(bound1[,bound2[,bound3]])],parameter_list

type :== {BYTE,BINARY,FLOAT,STRING(maxlen)}

Note: in parameter lists, maxlen and bound may be *.

CALL procedure_name[(argument_list)]

DEF subpgmnames[(parameter_names)]
 RET [expression]

 ENDDEF

END -- matches DEF MAIN/PACKAGE

G. Graphics Statements

COLOR byt0

The COLOR statement specifies which color number is to be used in subsequent PLOTs, DRAWTOs, and FILLs.

DRAWTO bin0,byt0

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 54/64

The DRAWTO statement draws a straight line from the last POSITION, PLOT, FILL, or DRAWTO to the specified (x,y) location.

FILL bin0,byt0

The FILL command does a DRAWTO, but as it plots each point of the line, it also plots all points to the right of that point until it
reaches a point that isn't already set to a non-zero color.

GRAPHICS byt0

The GRAPHICS command chooses a graphics mode for the screen. See Chapter 4 GRAPHICS MODES for various permissible
values. Channel 6 is used.

PLOT bin0,byt0

The PLOT statement plots a point at the specified (x,y) coordinates ((bin0,byt0)) using the color specified in the last COLOR
statement. See Chapter 4 GRAPHICS MODES for the valid ranges of values.

POSITION bin0,byt0

The POSITION statement positions the graphics curser at the specified (x,y) coordinates, but doesn't change the color of that point.

SETCOLOR byt0,byt1,byt2

The SETCOLOR command chooses a color for the specified color register:

byt0 color register
&0 player-missile 0
&1 player-missile 1
&2 player-missile 2
&3 player-missile 3
&4 playfield 0
&5 playfield 1
&6 playfield 2
&7 playfield 3
&8 playfield 4

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 55/64

byt1=hue (&0-&15) see Chapter 4 GRAPICS MODES

byt2=luminance (&0-&15)

H. I/O Statements

BGET# byt0,bin1,bin2

The BGET# statement gets a block of bytes from a file. It is used to input fixed length records.

byt0=channel number

 bin1=address to store record

 bin2=size of record

Consider the following declarations:

BYTE PAYROLL
STRING(32) NAME
FLOAT PAYRATE,HOURS,TOTAL
STRING(9) SSN

The storage for these variables is contiguous since their declarations are contiguous. They take up 1+(32+1)+6+6+6+(9+1)=62 bytes. If

a record exists on a file with the exact same structure (perhaps created with BPUT#, which see), it may be input with the followng

statement:

BGET# &2,ADR(PAYROLL),62

The BYTE called PAYROLL might be used for a delete flag. You are limited only by your imagination on how you might use this

feature. An entire array might be read in:

FLOAT TABLE(99)
BGET# &1,ADR(TABLE(0)),600

Just remember, BYTEs require one byte each, BINARYs two bytes, FLOATs size bytes, and STRINGs require one plus their

maximum length.

After an end-of-file error (136), DPEEK(856) reports the number of bytes actually read.

BPUT# byt0,bin1,bin2

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 56/64

BPUT# is identical to BGET# except it does an output instead of an input.

CLOSE# byt0

The CLOSE# statement closes a channel. See OPEN#.

DGET# byt0,varbin1

The DGET# statement gets two bytes from channel byt0 and stores them in varbin1.

DPUT# byt0,bin1

The DPUT# statement takes the two bytes of bin1 and outputs them to channel byt0.

ERASE str0

The ERASE statement, like ERASE in the CP, erases files. It uses channel 7. Wildcards are permitted, but the device must be specified.

FGET# byt0,varflt1

The FGET# statement gets six bytes from channel byt0 and stores them in varflt1.

FPUT# byt0,flt1

The FPUT# statement takes the six bytes of flt1 and outputs them to channel byt0

GET# byt0,varbyt1

The GET# statement gets a byte from channel byt0 and stores it in varbyt1.

INPUT var0,var1,...

The INPUT statement inputs strings, converts them to the proper type, and stores them in each variable. Each string must be seperated
by one comma or a carriage RETURN. Leading spaces are ignored.

INPUT# byt0,var1,var2,...

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 57/64

The INPUT# statement does the same thing as INPUT except that byt0 specifies which channel the INPUTing is to be done from.

LINPUT var0,var1,...
 LINPUT# byt0,var1,var2...

The LINPUT and LINPUT# statements are identical to INPUT and INPUT# respectively except for one thing. Only carriage

RETURNs are used to delimit strings. Commas will be input just like any other character.

NOTE# byt0,varbin1,varbyt2

The NOTE# statement notes the current location in a disk file. Byt0 is the channel the file is OPEN on, varbin1 will receive the current

sector number, and varbyt2 will receive the current byte number in that sector.

OPEN# byt0,byt1,byt2,str3

The OPEN# statement opens a file for input and/or output. Byt0 specifies which channel is to be used. Channel 0 is open to the screen

editor (E:) by default. Graphics statements use channel 6. Channel 7 is used by the CP and some statements (ERASE,etc). Channels 1

to 5 are fully available to the user. Byt1 and byt2 are the auxilary bytes.

Their use varies from device to device, but the following are used for the screen editor (E:), the keyboard without echo (K:), printers

(Pn:), cassette (C:), and disk drives (Dn:):

aux1

4 input

8 output

9 append (disk)

12
input and output (screen editor)

update (disk)

13 forced read (screen editor)

aux2 is usually 0 for most devices.

Forced read on the screen editor means that an input from E: will read the logical line that the cursor is on without waiting for the user

to press RETURN. Str3 is the filename. The usual formats are "C:", "E:", "S:", "Pn:", "Dn:filename.ext", "Rn:". The default device is

not automatically used. You must explicitly use the F$DEF function in the CP.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 58/64

POINT# byt0,bin1,byt2

The POINT# statement moves the internal pointer of a disk file. It is used in conjunction with the NOTE# statement. Byt0 is the
channel, bin1 is the sector, and byt2 is the byte number in the sector.

PRINT str0[;]

The PRINT statement outputs a string expression to channel 0. If no semi-colon is appended, a carriage RETURN is also output after
the string is. Unlike ATARI BASIC, multiple string expressions seperated by commas are not supported.

PRINT# byt0,str1[;]

The PRINT# statement acts just like PRINT except you also specify which channel to output to (byt0).

PROTECT str0

The PROTECT statement does the same thing the PROTECT command in CP does. It protects a file from being deleted, changed, or
erased. This statement uses channel 7. Wildcards are permitted, but the device name must be specified.

PUT# byt0,byt1

The PUT# statement outputs a single byte (byt1) to channel byt0.

RENAME str0

UNPROTECT str0

The RENAME and UNPROTECT statements do the same things that their counter parts do in the CP. They use channel 7. Wildcards
are permited, but the device name must be specified.

I. Other Statements

CHAIN str0

This statement causes the compiler to start compiling from the specified file name (str0). It is for compiling programs whose text is to
large to fit into memory at once. The BASIC compiler is one such program. It should be used only at the end of files as it is not the
same as the INCLUDE of MAC/65.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 59/64

DPOKE bin0,bin1

The DPOKE statement deposits the two byte binary value bin1 at address bin0. The lower order byte is put at bin0 and the upper order
byte is put at bin0+1.

FPOKE bin0,flt1

The FPOKE statement deposits the six byte floating point value flt1 at address bin0

[LET] var0=expression1

The LET statement assigns expression1 to var0. Expression1 should be of the same type as var0, but conversion will be coerced on
expression1 if it is not. The keyword LET is optional and is usually omitted.

MOVE bin0,bin1,bin2

The MOVE statement moves a block of bin2 bytes from address bin0 to address bin1 (MOVE from,to,size). It starts with bin0, then
bin0+1, ... then bin0+bin2-1. Some examples of its use would be to move the character set to RAM for modifying, moving bit images
into player-missile storage, or "page flipping" the graphics screen for animation. See also RMOVE

POKE bin0,byt1

The POKE statement puts the byte value byt1 at address bin0.

REM text

The REM does not do anything. No other statement may come after it on any given line because all the remainder of the line after
REM is regarded as a REMark. Remarks are for programmers to insert explanations and documentation into a program's text. This
makes it easier to modify the program in the future.

RMOVE bin0,bin1,bin2

The RMOVE statement does the exact same thing as MOVE, except it does it in the opposite order: bin0+bin2-1 is moved first, then
bin0+bin2-2, bin0+bin2-3, ... bin0+2, bin0+1, and finally bin0. Both MOVE and RMOVE are provided so you can handle
overlapping between the source and destination blocks without any problem. Consider the following segment:

BYTE A(999)

POKE ADR(A(0)),&0

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 60/64

MOVE ADR(A(0)),ADR(A(0))+1,999

It will rapidly clear the array with zeros. If instead ADR(A(0)) represented a player (also called sprite) and you were trying to move it

down one pixel, the above would erase it instead. RMOVE would do the desired operation.

SPOKE bin0,str1

The SPOKE statement deposits a string value (str1) at address bin0.

J. Functions

ABS(byt)-->byt
 ABS(bin)-->bin
 ABS(flt)-->flt

 ABS(str)-->flt

The ABS function computes the absolute value (positive value) of a number. The function considers BYTEs over 127 and BINARYs

over 32767 negative. Hence ABS(-&1)=ABS(&255)=&1. If ABS is given a STRING argument, it converts the STRING to FLOAT

first.

ADR(var)-->bin

The ADR function returns the address of the argument variable. Note, to get the address of an entire array, you must specify the first

element of that array:

ADR(A(0))

ADR(B(0,0))

ADR(C(0,0,0))

ASC(str)-->byt

The ASC function returns the ASCII collating value of the first character of the STRING argument. Eg., ASC("AB") equals &65.

BIN(any)-->bin

The BIN function converts any type to BINARY. BIN(bin) will have no effect and is perfectly permissible. Note, it will not convert

negative flt and str values.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 61/64

BOUND(var0,byt1)-->bin2

The BOUND function returns the upper bound of dimension byt1 of variable var0. This is useful in parameter passing where the
parameter is declared with an asterisk as a bound. For example, players (sprites) might be implemented as an array of either 128 or 256
BYTEs, depending on the resolution: you would use this function to determine whether the correct size has been passed for the current
resolution. Byt1 can have the value one, two, or three.

BYT(any)-->byt

The BYT function converts any type to BYTE. Note, it will not convert negative bin, flt, or str. To convert a negative bin, AND it with
255 first.

CEXP(flt0)-->flt1

The CEXP function returns 10.0 raised to the flt0 power.

CHR[$](byt)-->str

The CHR$ function is the inverse of ASC. It takes a BYTE and converts it into the corresponding ASCII (ATASCII) character. The
dollar sign is optional.

CLOG(flt)-->flt

The CLOG function computes the base ten logarithm.

DESC(var)-->bin
 DESC(subprogram)-->bin

The DESC function returns the address of the ten byte descriptor of variable or subprogram. If var is an array, do not specify any
subscripts.

DPEEK(bin)-->bin

The DPEEK function returns the two byte BINARY value at the address specified in the argument. It is the complement to DPOKE.

ERR

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 62/64

The ERR function returns the last error condition raised. It keeps its value until the statement ERROR &1 is done.

EXP(flt0)-->flt1

The EXP function returns e (2.718281828) raised to the flt0 power.

FLT(any)-->flt

The FLT function converts the argument to FLOAT type. It is identical in operation to VAL.

FPEEK(bin)-->flt

The FPEEK function returns the six byte floating point number at address bin. It is the complement of FPOKE.

INSTR(str0,str1,byt2)-->byt3

The INSTR function finds the position of str1 in str0, beginning at the byt2th character of str0, and returns which character position it
starts with. If str1 is not found, byt3, the value returned, is &0.

INT(flt)-->flt

The INT function returns the integer portion of the floating point argument. That is, it rounds towards zero.

LEN(str)-->byt

The LEN function returns the length (in bytes) of the string argument.

LOG(flt)-->flt

The LOG function returns the base e logarithm of the argument.

MID[$](str0,byt1,byt2)-->str3

The MID$ function extracts a portion of str0. That portion begins at the byt1th character and has byt2 characters. Exceding the length
of str0 is not detected. The dollar sign ($) is optional in the function's name.

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 63/64

NOT(byt)-->byt
 NOT(bin or flt or str)-->bin

The NOT function performs a bitwise inversion of the bits of a BYTE or BINARY expression. Since true is represented by &255 and
false by &0, NOT(true) is false and NOT(false) is true.

PEEK(bin)-->byt

The PEEK function returns the BYTE value located at address bin.

SGN(byt0)-->byt1
 SGN(bin0)-->bin1
 SGN(flt0 or str)-->flt1

The SGN function returns the sign of its argument. That is:

byt0 byt1
&128 to &255 &255

&0 &0
&1 to &128 &1
bin0 bin1

32678 to 65535 65535
0 0

1 to 32767 1
flt0 flt1

<0.0 -1.0
= 0.0 0
>0.0 1.0

SPEEK(bin)-->str

The SPEEK function complements SPOKE and returns the STRING at address bin.

STR[$](any)-->str

10/15/2017 JLS Manual

http://www.jeff-jackson.com/atari/JLS_Manual.html 64/64

The STR$ function converts its argument to a STRING. The dollar sign ($) is optional.

VAL(any)-->flt

The VAL function is identical to FLT and converts the argument to floating point.

