

TABLE OFCONTENTS
IntroducingYour Codeerter
ReadThis First2
That's EnoughTheory2
About Sonware Protection3

Turnan It 011
GettingStarted....................................4
CodeWriter MainMenu5
DesigningThe Screen6
The Prompt.......................................8
DataEntry9
Numbers10
Money ...11
Codewriter Concept13

Multiplying ItsPower
CodeWriter Power14
Screen Reading...................................16

CreatingYour Program
Create DataEntry System20
Which Drive For Data?20
The Grand 'IbtalFields22
ComputedFields24
CodeWriter Concept25
Self-ReferencingFields26
HowMany Records Needed?27
The Key Field28
KeepingOut Garbage...............................30
ProgramDesignCreativity52

RunningYour Program
The MaidenVoyage34
File Preparation35
Enter Data56
UpdateData36
LookUpRecord88
SearchRecords.................................88
Delete Record40
Verify Grand 'Ibtals40
Exit ...40AFinalWord.....................................40

AppendixA......................................41

DEDICATION

The OODEWRITER ProgramSeries. developedover the last two
years. owes Its existence to the following‐whowere never al'rald
to walk in the dark

FredAllen
IerryCoke
DanKritoheveld
PaulGreen
WarrenShore
Jay Stein
'IbnvThorns. EBB

Special Commodore cm 64 andAtari conversionwork
Charles andCarolButler

WANHFORTl-HSSYMBOL. Thismanualwaswmttentobeusedwith
severalmicrocomputer systems. There will bea number of places
where the Instructions in the manualwon’t beright for YOUR
computer.Whenever there‘s a chance of this. you'll see a large ‘
symbol in the margin This meansyou might needto refer to your
USER NOTES CARD (suppliedwith your GODEWRITER SYSTEM). The
card shouldclear thing up.
(By the way. your Home FileWriter is part of a family of software
called CODEWRITER. All references in this manualwill describe
“GODEWRI'I'ER” or “your CODEWRITER SYSTEM".Your Home FileWriter
is the starter system in the series.)
'l'hismanualwaswrittentobeasuniqueandusefulasthe
GODEWRITER SYSTEM itself. That is a tall order. Pleasebelieve us when
wesay that everyone at DynatechMicroscftwareworldwide has
worked to make GODEWRITER among the most valuable programsyou
can own.
There hasbeena.great dealwritten about “ProgramGeneration".both
goodandbad.pro andcon. Let's beginwith asimple statement about
why THE CODEWRITER SYSTEMwas developedover the last two years
(since 1980):
There is only one reason for computers. 'Ib allow people to control the
informationaround them But computers dad in codewhile people deal
in ideas.As personal computers become available to more andmore
people. “programming" in arcane and unforgivingcode gets in the way
more andmore.The same peoplewho understand the informationa.
computer holdsmust beable to control that informationdirectly. in
this way. ideas can dominate rather thanhardware.
THE OODEWRITER SYSTEMallows the non-programmer with an idea for
ordering information to see that idea take shape onapersonal
computer. If the idea has elementswhich canbeput on a screen or
written on paper. GODEWRI'I'ER will structure those elements so a
computer can accept them. retrieve them. reorder them andcreate a
pattern for understanding.
Of course. none of this is magic. GODEWRI‘I'ER only substitutes
“programming" with “ProgramDesign". But the difference is critical.
The programmer has two problems at all times; One is the idea at hand
and the second is thejob of reducingthat idea to a “language” vastly
moreprimitive than human thought.
While ProgramDesignisagreat deal easier, it is hardly trivial. The
simplicity of OODEWRl'I'ER ProgramDesigncomes from dealingwith a
problemdirectly in the designer’s own language.
more“ 0 0 0 3M O I !
OODEWRITER will create all the computer code neededto get a program
up and runningonyour computer. Once you’re done “designing". you’ll
see the code written out onyour computer screen asit is automatically
recordedonto your disk.
For the most part.THE COMMITTEE SYSTEM is “self documen "‑
that is most ofwhat you needto know to design aprogram is written
on the screen for you andwill re
appeareachtimeyouusethe
mm Codeiiih’ter a

But use this manualanyway! There is very little more “theory”
inside.Wehave designedan example program‐complete with
every single keystroke needed to create that programusingonly
human language.

Naturally, our example program is unlikely to doexactly the
thimyou bought CODEWRITER to do. For now. that’s not
important. The example will show a great number (but not all) of
the features of the GODEWRITER system.

More importantly. the example programwill show how these
features work together to solve a complex problem one step at a
time.

Put the manual in front of your computer where you can read it
comfortably. Turn your computer onand begin aprocess you‘ll not
soon forget.

You’re about to increase your dominion over the single most
stimulating invention of the twentieth century. Have fun. Weenvy
you andwish you well.

A WORD A300! sonwauP30130110] !

At DynatechMicrosoftwarewehave some very definite ideas
about protecting software.Wefeel that both the software
developer and the software customer have rights which must be
protected The developer must beprotected from “unauthorized
use" ofhis work. After all. if the market place does not reward
the developer for hiswork the work will not beproduced not be
supported andnot be improved

Butworkable software protection cannot exclude the customer’s
rights. The paying customer makes all new software possible.
Thus, the customer shouldbeable to use the software freely and
with confidence.A ’back‐up' copy of your Commodore 64
CODEWRITER disk is available at a small cost (See the coupon
includedwith your system). Also. a free one year guaranty is
part of your system cost. If your CODEWRITER disk fails to
operate for any reasonduring this period we’ll replace it free.
Once your purchase is registered you’ll benotifiedof our toll-free
help line for any problems youmight havewith your
CODEWRI'I'ER system.

In addition, whenever possible we'll add new features (or improve
existing features) to the CODEWRITER system at no increase in
retail price.We’ll beglad to UPGRADEyour existing system free if
you‘ll simply sendyour disks in.Watch our ads for these
changes‐or simply call to make sure your version is the latest.

Please enjoy your CODEWRITER system.We developed it to be the

CodeWriterE

*

Beforeyou beginworkingwithyour Commodore CBM64
CODEWRITER system. make sure you have the following;

A Commodore CBM64microcomputer
A 1541Commodore disk drive
(In some cases a.modified1540 drivewill do‐seeyour dealer. A
4040 dual disk drivewill alsowork. though this edition of
CODEWRI'I'ER 64 will useany drive 0.)
A blank. formatted diskette.

A Commodore compatible printer is optional

(SPECIAL NOTE: Some commodore compatible options likeSkyles’
Vidl'ree will interferewith CODEWRI'I‘ER operations. Please remove
them beforeyou begin. If your systemworks erratically. check for
these optional items before continuing)

Insertyour CODEWRI’I'ER disk (Disk 1 side up) in your disk drive.
Press the SHIFl‘ andCommodore symbol key) lower left on
keyboard) TOGEl‘I-IER. This will activate the UPPER/lower case
mode in which CODEWRITER operates. Next. type the following
EXACI'IX:

After the programloads. your cursor (flashingsquare) will
returnalongwith the 'READY' message. Type run
After a short delay, the followingscreen should appear:

Codewritar System Main Menu

d-create dale entry system
Normal3disk
s-sei dlsplay colors
x-exli tobasic

Ifyouhavenot alrealw formatted adisk dosonew.

Press ’1’ and then RETURN

Pressing '1‘ will display awarning that formattingERASES all
information ona.disk. REMOVE the CODEWRITER disk and insert
your own disk. 'Iype ’y’ andpressREI'URN.You’ll beaskedto
“name" your work disk usingup to 16characters andpress
RETURN.Formattingusualhr takes between90seconds and2
minutes.You'll then beasked if you needanother disk 'formatted’.
Answer ’n’ andpress RETURN.You shouldnow see the
CODEWRITER SystemMainMenuagain.

CodeWriter I!

connwnnn8Y8 ! ! !m I ! “

Once back at the mainmenuwith a.formatted disk, we’re ready to
create a.data entry system. Press ’d' from the menu selection and
then RETURN.

Create Data Entry System

s- Create screen layout
a‐ Create application
x- Return to Main Menu

EachCODEWRITER data entry programbegins with a SCREEN
LAYOUT. This is simply a form created on the screenwhich shows
what kindof information (data) the programoperator is to enter
and howmuchspace is allowed to do so. CODEWRITER makes this
process as easy as possible.

Press ’5’ and then RETURN

Screenwriter Generator
2‐ Edit or Create screen
[2 ‐ Change lield positions
s- Save screen layout to disk
I‐ Load screen layout lrom
disk

x‐ Exit to System Creation
Menu

We’ll look at all the options on this menubeforewe’re done, but
for now the task is to CREATE A SCREEN so:

Press ’e’ and then RETURN

You shouldbelookingat a.screen full of instructions onhow to
accomplishwriting a.screen. This is for future reference in using
WDEWRITER. For new the screen instructions might make theJob
lookmore complex than it really is. Let’s examine the instructions
to sort things out:

CodeWriter a

CODEWRITER allows you to type anywhere on the screen to create
the entry form youwant. The screen instructionswill showwhich
keys onyour computer allow you to move the cursor around the
screen.

Your CODEWRITER 64 system allows you to makeprinted copies of
your screen designs. Youmust have a.Commodore (or compatible)
printer connected to your system to dothis. You’ll see a line at
the bottomofyour work screenwhich reads:

Press 11to read screen 13hardcopy

The ’hardcopy’ refers to printed copy. Simply press the E mnction
key on your Commodore 64 to send an image of your screen design
to your printer.

0N1)! ONE LlliflTATION‐Youmay NOT use column40ofyour
screen aspart ofyour screen design The cursor position indicator
(second line fi'om the bottom)will let you knowwhen you're in
this column Put N0screen information there.
That’s really all there is to writing on the CODEWRITER screen.We
will cover all of the informationonthe current screen aswe
proceedwith the example program. For now.just remember the
instruction screen is there to help you. Press RETURN.You‘ll see
another instruction screen. This, too. will becovered in our
example program.Again, remember the screens are there and
press RETURN.

DISIGIIIG'1'!!! P 3 0 6 “ 8 0 ! ! ! !

You should now be lookingat an almost blank screen. the
CODEWRI‘I'ER screen ie 40 columns across and22 rows top to
bottom.You should see the cursor at the upper left and two lines
at the bottomof the scream

C o l 1 flow: I
Pressii to read screen 13hardcopy

The 001/Row linewillTRACK the cursor position onthe screen.
Try using the cursor keyswedescribed earlier.Watch the
numbers on the Col/Row line change as the cursor moves. This
CODEWRITER feature helps in countingpositions when designing
your screen and is very valuable when you’re trying to copy an
existing form to the screen for use in a program.

Beforewebegin our example program,weneedto understanda
few terms about the way computers handle information. The
terms are FILE. RECORD, andFIELD:

P M ‐ AFILE is a collection of Informationona single subject.
thus a receivable file is a collection of information onwho owes
money to a particular company. A stamp collection file contains all
the informationabout a certain stamp collection. etc.

“CORD‐Asweget more specific. weuse the term RECORD.
Thus. within a stamp collection FILE. information about a certain
stampwould appear in 8.RECORD for that stamp.Within a
receivables FILEwewould findRECORDS of the individual
companies or peoplewho owemoney.

fi l m ‐ T h e FIELD is the most specific information.Within the
stamp collection FILE. the RECORDS for individual stamps would
containFIELDS of information like. the color of the stamp, the
country of origin. etc.

Don't bediscouraged if everythingyou read is not clear the first
time through Wehave tried to keep computer jargon to a
minimum in this manual. but a little is bound to creep in If you
work through the example program. things will begin to come
together.

Your OODEWRITER form screen is a remarkably flexible tool.
Getting information into your program. in the order youwant and
the language clearest to you should beeasy. Don't beafraid to
experiment. Youmay use asmany as 100 fields on a screen. Just
type anywhere (except col. 40)‐YOUCAN‘T HURT CODEWRITER
0R YOUR COMPUTER FROMTHE KEYBOARD.

ASALES/MON! nouns
Our example program is intendedto keep track of sales.Wechose
this program ideabecause it gives a good indication ofwhat the
CODEWRITER systemwill do. Touse our new vocabulary. wewish
to buildand keep track of 3 FILE of sales over a certain periodof
time. Eachsale will beentered to a screenRECORD known.
naturally enough, asan invoice:Each invoicewill contain FIELDS
to put the most specific information like; customer name. item
purchased date, price paid, etc.

Weshould give our invoice form some kindof headingor label to
showwhat its usewill be. The example in the shaded box below
uses an up arrow (A) as a SPECIAL MARKER on either side.
Your computer may use another character. Check the screen
instructions.

A ABC COMPANY SALES INVOICE A

What you have typed is knownas a LABEL to the CODEWRITER
system. A LABEL is somethingwrittenwhich is NOT associated
with information to beentered Things like our title (just
entered), copyright informationonthe screen, instructions for
the programoperator. dotted lines and the likeare all LABELS to
the systembecause they DON’TASK ANYONE TOREACT BY
ENTERINGINFORMATION. CodeWI‘iter‑

As you see our label example has the up arrow (4) symbol on
either side. This identifies screen information asa LABEL. The up
arrow key on your Commodore 64 is the second key from the right
onthe second row from the top. Evenif screen material is simply
a line as below:

i
be sure to use UP ARROWS on BOTH SIDES.
By the way, don't be concerned if the invoice labelyouJust typed
is not centered exactly asyou wish. We’ll take care of things like
that later.
I n m o m
Now for the part of our sales invoice screen that IS concerned
with informationhandling. Let's add some customer information
PROMPI'S to our form. A PROMPT asks for INFORMATIONTOBE
ENTERED. A PROMPT is always followed by at least one dot (.) or
adotted line (..........) toindicate HOW MUCHSPACE is
available to enter the information requestedby the PROMPT.
Thus wecould add customer information PROMPIS to our sales
invoice screen and it would look as follows: (Don‘t worry about
typing exactly.)

f ABC Company Sales Invoice +

Customer name
Street address

There are several things we should notice about PROMP'IS. As you
can see, there are no UP ARROWS. For the CODEWRITER system
to recognize your PROMPTS asthe requests for information they
are. never use UP ARROWS. Also while each PROMPT must have a.
dot (.) or dotted line (......) following it, the dots DON’T have
to come IMMEDIATEIY AFTER the letters or numbers in the
PROMPT.
Look at the PROMPT ’Customer name'. After the final 'e' in ’name’.
there are TWO SPACE BEFORE the line of dots begins. This allows
you to create screen forms which are easier to readbecause the '
PROMPT for information needn’t bump right against the
information itself.
In any of your screen designs, the number of DO‘IS which follow
the PROMPT determines HOW MANY characters of information
(letters, numbers, symbols or spaces) may beentered to answer
that prompt.

CodeWr'ter a

0 0 0 m 0 0 1 0] ? !

THE PROMPT‐A PROMPI‘ is a.request for Informationby the
programdesigner. It is always followed by a (lot or dots to indicate
length of entry. It NEVER contains up arrows. The CODEWRITER
system will search for the FIRST DOT following a PROMPT and
store the information which follows asthe response to the
PROMPT. The total number of dots following a PROMPT should
never bemore than 38when usingyour 40 column computer.

There is one more tip concerningPROMPI‘S: Never put a dot (.)
into the PROMPT itself. This can happenwhere a PROMPT involves
an abbreviation as i n ‑

Max.amount needed? (y or n)
This is simply a PROMPT asking for a yes or no(one letter)
response to the question 'Maximumamount needed?’ Can you see
what’s wrong? The CODEWRITER system will see the dot after
'Max’ andconsider ‘Max’ alone to bethe PROMPT with a.onedot
response (Max) OODEWRITER would then read further (from
’amount needed‘. etc.) and consider this to bea second PROMPT.
Abbreviation is OK Simply leave out the period as i n ‑
Max amount needed? (y or n)
This will work fine.
D A T ! l e
The CODEWRITER system handles dates as a special kind of
response to a PROMPT. You may use either the American date
format or the European and CODEWRITER will automatically write
code to check for the appropriate format and a.valid data entry,
i.e. noJuly 40or February 29(when not a leap year). Formats
are as follows: To express the 15thday of June, 1988

American European
06/15/83 15/06/83

For now simply enter the empty date format. CODEWRITER will
ask for the American/European choice later.

. . / . . / . .
Added to our current screen this would be:

+ ABC Company Sales Invoice +

Customer name
Sireei address

Add the date PROMPT to your screen.Whenever you wish date
information to beentered into your CODEWRITER created
programs, use the . ./. ./. . format. The PROMPTmay be
whatever youwish as:

OrderDate . . / . . / . .
Member since . . / . . / . .
DatetoClose . . / . . / . . etc.

Only the actual date entry format needbethe same.When the
operator of your programenters a date, it will beas02/05/81‑
(Youmay type SPACES Insteadof leadingzeros.) Later on in
programdevelopment you will be offered the choice by
OODEWRITER as whether you wish American or European format
data handling.

Up to now the information requiredby the PROMPI‘S onour sales
invoice screen has beenwhat your computer considers
ALPHANUMERICS‐jargon meaning IDEAS expressed in letters
and numbers. For example a name. an address. anda date are all
ALPHANUMERICS because of two things; They can be expressed in
letters and numbers AND they are NOT USUALIX part ofany
CALCULATION‐you don’t add, subtract, multiply or divide them
even though they MAY include numbers.
NUMERICS. to your computer. are different. In the CODEWRITER
systemNUMERICS have two meanings of their own; They involve
NUMBERSONLY, never letters, and they can beincluded in
CAICULATIONS. As we promised to avoidJargon. let us begin here
to refer to NUMERICS as simply numbers.
Asweadd a new line to our sales invoice screenyou’ll notice a
change:

+ ABC Company Sales Invoice f

Customer name . . / . . / . .
Street address

See the new symbol? After the 5 dots following 'Quantity ordered”.
we’ve added the # sign. This does two thina; The # sign takes the
place of a dot, makingthe space for information total 6, and the *
sign tells the CODEWRITER system that the information to be
enteredwill be NUMBERS andONIX NUMBERS. Thus the numbers
may bepart ofa calculation‐if the programdesigner wishes.

CodeWriter

Bynowyour programscreen should look like the one above and
include the newNUMBERS field for ’Quantity ordered’. Let's add
another field to the screen.

+ ABC Company Sales Invoice f

Customer name
Street address

Quantity ordered

As you see, we’ve addedanother ALPHANUMERIC field called
’I'I‘EM‘ and given it 16spaces for operator entry. Again. wedidn’t
needany symbol alter the row of dots. Add the new fieldyourself.
Now it’s time for a little 'housekeeping’. As we look at the latest
line onour sales invoice screen, it looks as though space is
runningout too soon. Most invoice forms allow for 'Quantity‘,
’Item‘. ’price each’. and ‘total' all ona.SINGLE LINE.The
CODEWRITER system allows ANYTHING on your form to be
retypedasoften asyou like until it‘s just asyouwish. Why not
take advantage?

+ ABC Company Sales Invoice f

Customer name
Street address

There. We’ve abbreviated 'Quantity ordered' to ’Quan‘ (no period)
and added space to the 'ITEM‘ PROMPT. allowing for a.better
description of ITEM.
a t o m
The last type of PROMPT'fieldCODEWRITER offers is for MONEY.
This field type simply stores numbers for all DECIMAL TYPE
CURRENCIES for a maximumof 2 places to the right of the
decimal point. The CODEWRITER programdesigner adds the $ sign
(themeaninghere being ‘money’ rather than the American
dollar) to the end of the dotted entry line.

Wecan now complete our sales invoice form:

CodeWriter

f ABC Company Sales Invoice +

Customer name
Street address

Look at the four new PROMPT fields beforeyou type them onto
your screen. The PROMPIS ‘Price’, 'Total‘. and ’Tax’ are simple
MONEY fields. 'Price' calls for an entry of 7 characters (6 dots
and the $ elm). ’Total’ allows for a 7 character entry (6 dots and
the Selm), and sodoes "I‘sx’. The PROMPT for ’InvoiceTotal'
may beconfusing Here the PROMPT ITSELF ends in the $ sim.
This is perfectly O.K. aslongasyou’re careful.

For ’Invoice 'lbtal $’ the trailing $ slm in the PROMPT simply
allows the final form of the MONEY entry to read:

InvoiceTotal $ 125.75 instead of
InvoiceTotal 125.75

This is a purely cosmetic option for the programdesigner. As a
trailing aim. of course. the $ symbol could beANY symbol
appropriate to the currency you are using. Only the $ simat the
END of the dotted line MUST bethe $ elm asthis is what tells
CODEWRITER it’s handlingMONEY.

As you can imagine. you need to beespecially wary of accidental
dots in your PROMPI‘Swhere MONEY is involved

OODIWIHIR CORGI?!

n o u nn u nr m s
ALPHANUMERIC (letters. numbers. symbols)‐needN0special
sign atthe endofthe dotted line. Ex.Name They
CANNOT beapart of a calculation.

l u l l ‐m a y useANY PROMPT but MUST use the input form
. . / . . / . . asinMember since . . / . . / . . TheyCANNO'l‘bspartof
a.calculation.

A s smu .CAUTION‐Donot use the comma (.) colon (z) or
semicolon (;) as part of your screen designs. These symbols
confuse the file handlingoperations of both your GODEWRITER
system andyour CBM64. Toprevent problem. these keys are
DISABLEDwhen CODEWRI'I'ER is in use.

m u s (numbers Ohm‐may useANY PROMPT but MUST
use the # sign at the end of the dotted line. Ex.Amount...........# They CANbepart of a.calculation.
H a m (numbers only)‐may useANY PROMPT but MUST use
the 3 sign at the end of the dotted line. Ex.Price$ They
CANbepart of a calculation.

30 ! ! ! A m a nA l l) A n e w field needat least two
characters to define their length. For example, the fields CASH
PAID .$ or NUMBERUSED .# bothhave two characters (the dot
and the sign) following the prompt.Use at LEAST two.

8 0 “ m 1 .GODIWIH'II p o m

Our sales file can bemuchmore than an electronic
invoice system. Let's get down to some realPROGRAM
DESIGN. By adding six additional fields to our screen.
the CODEWRITER sales programcan become a.very
efficient CREDIT JOURNAL while givingup to date
reports on bothTOTAL ACCOUNTS RECENABLE and
TOTAL SALTS. (Not bad for a first effort!)

Here is our screenwith the six new fields:

A ABC Company Sales Invoice A
Customer name Acct Ii Date . ./ . ./ . .
Street address

,:

3 Total
Tax

InvoiceTotal
PAID ONACCOUNT INVOICE BALANCE

TOTAL ACCOUNTS RECEIVABLE 8 TOTAL SALES

The six new fields each have a specific job. Here‘s a look at them
one by one.

This allows eachABC Company customer to have his own
identity‐even if names are alike.Wehave allowed for 5 places.
Notice there is no# sign after the dotted line.There are two
reasons for this; First the # signwould limit us to NUMBERS
ONIX. Some account numbers use both letters and numbers
(as T1450 etc.) to give greater variety using the fewest places.
Seoondhr, using the # sign requires a bit more computer memory.
Whenever CODEWRITER sees this sign (or the $). it holds extra
computer memory space aside in case the information in the field
would be needed for use in a CALCULATION. Sincewe aren’t likely .
to use account numbers in any calculation, why not save
computer memory?

CodeWriter

Invoice#

This five-place field identifies a PARTICULAR SALE to our ABC
Company Customer. ByusingBOTH the Acct # AND this Invoice #.
we allow our CODEWRITER program to group together. in its
memory. ALL the sales to the SAMEAccount number.We’ll show
later why this helps. Again, we left off the # sign (for the same
reasons as the Acct # example above).

PAID ON ACCOUNT

This seven-place $ field will be used to recordcustomer payments
against the particular invoice which is onthe screen. Weused the
$ sign because money is involvedAND because this fieldWILL be
used in a.calculation. We’ll explain the calculation function later.

INVOICE BALANCE

This fieldwill hold the DIFFERENCEbetween the amount shown
on screen as ‘Invoice 'Ibtal’ and ’PAID 0N ACCOUNT’. Again, the 3
sign is usedbecause this fieldwill always involvemoney. Also
we’ll use 'INVOICEBALANCE’ aspart of a calculation. Our
CODEWRITERprogramwill be designed to calculate this amount
automatically.

TOTAL ACCOUNTS RECEIVABLE

This 3 field is intendedto give aRUNNINGGRAND TOTAL of all
the balances carried in the field ’lNVOICEBALANCE’.Wehave
placed this field on the screen below the ===== header line to
help show that the amount is a total of ALL the invoices in the file
rather than the particular invoice onthe screen

TOTAL SALES

Again. this $ field is aFILEWIDE GRAND TOTAL ofALL sales
rather than relatingto the invoice onthe screen.We’ll show later
how to design CODEWRITER programs to perform the grand total
function. ‘

Our sales invoice is now complete. or course a real sales invoice
would havemore lines to enter sales items andprices, but for our
example this is enough. You are perfectly free to adjust the screen
untilyour invoice form looks as close to our example asyouwish
to follow the manual.

CodeIIh‘iteP

Now the realmagic of CODEWRITER will come clear. You may have
been askingyourself “What does drawing a screen form have to do
with writing a program?" The answer in the CODEWRITER system
is ”almost everything”. CODEWRITER will “read" the screenwe
havejust created and develop AUTOMATICALIY the entire file
structure needed to make our program run. All the PROMPISwill
besaved in the right places. The ’dates’ will besaved as ’dates’,
’money’ as ’money‘. etc. Most of the program designer‘s work in
creating this program is over!

8 033 ! ! READING

Once you’re satisfiedwith the screen onyour computer, press ESC
to begin the “reading” wejust spoke about. The screenwill go
blank for a moment and our sales invoice formwill be replacedby
the words “READINGSCREEN”. In amoment our screenwill
return.

CertainPROMPI' fields on the screenwill be HIGHLIGHTED in
REVERSE and a question will appear at the bottom of the screen.
CODEWRITERwill skip over any LABELS,date andALPHANUMERIC
fields we’ve createdandask questions only about fields which
contain NUMERIC andMONEY information.

The programdesigner is asked here whether a particular
PROMPTfield is to be“keyboardentered” or “program calculated".
This simply means: “Do youwish to have the programoperator
enter the information the PROMPT requests or doyou wish to
have CODEWRITER itself calculate the response?"

NOTE: The third choice, g for GLOBAL. allows your CODEWRITER
program to accumulate TOTALS fromALL the records in the file.
More about this later.

In our sales invoice example answer the following as the fields are
HIGHUGHTED in REVERSE:

Quan -mnflThe operator must enter this
from the (k)eyboard

'Ibtal The CODEWRITER (p)rogramcan
calculate this amount by
multiplying “Quan” times
“Price". Why make extra work
for the operator.

'lax As longas the sales tax rate is
constant for all items,your
CODEWRITER createdprogram
will recall the rate asa
percentage andmultiply this by
the “’Ibtal"

Code-Writer‑

InvoiceTotal $ oooswnnse willwrite program
lines to direct the addingof
[TotaIYY to Km "

PAIDONACWUNT The programoperator will enter
this amount.

INVOICEBALANCE Your oonswnnne (p)rogram
will calculate this

TOTAL ACCOUNTS
RECEIVABLE for this (g)randtotal.

TOTAL SALES m conswnrmn will ACCUMULATE
the InvoiceTotal amounts and
show the TOTAL whenever the
operator looks in the SALE FILE

Once all the appropriate fields havebeendesignated either “"1:
“p". or “g" by the programdesigner. CODEWRITER will return to
the ScreenFormatGenerator menuwhere the following choices
are offered:

[eldii screen iormai
lelhange screen iormat
[slave screen
[Iload screen
[x] Exit to System Creation Menu

For now. doNOTHING. Here is what the menu options mean‑

EDIT SCREEN FORMAT‐If the programdesigner wished to make
ENTRY CHANGES in the screen. he would use this option By
ENTRYCHANGESwemean changes in the KINDof information to
beentered suchasaddingor subtractinga.PROMPT. or in the
SPACE allowed to respondto aPROMPT.

Once the ’e’ for edit is selected the current screen in memorywill
reappear. CODEWRITER will then allow ANY changes to be made
to the screen asthough' it badjust been typed in.All ‘11” or ‘p‘
choice informationneeds to beREENTEREDbefore leaving the
Edit Screen option.

CHANGE SCREEN FORMAT‐This option is strictly for MOVING
existingscreen informationaround Nonew fields may beaddedor
existing fields or labels removedMoreabout “Change Screen"
later.

SAVE SCREEN‐This option allows the CURRENT screen in
memory (the one wejust created) to besaved to the disk in the
drive. Moreabout “Save Screen" later.

LOADSCREEN‐This option allows apreviously saved screen to
be loadedfrom the disk in the drive. Thus ALREADY CREATED
programsmadewith CODEWRITER could be modified later by
loadingjust the screenwith this option and then goingback to the
Edit Screen Format option to continue creatinga NEWprogram.To
simply VERIFY proper screen save. Change Screen canwork
better. More later.

EXIT TOSYSTEM CREATION‐This option starts things over from
the beginning BECAREFUL HERE! If you choose the exit option
BEFORE savingyour screen. the screenwill beLOST.

Even though our current sales invoice screen shouldn't needany
changes, let's choose the CHANGE SCREEN option anyway‐ just
to watch howwell it works.

You should see an instruction screen to explain the working of
“Change Screen". This is for future reference. Readover the
screen and then press RETURN.

Once again the sales invoice form should appear. The LABEL
4 ABC COMPANY SALES INVOICE A should have the cursor at the
FIRST POSITION. Let’s say you weren’t satisfiedwith the way the
LABELwas centered on the screen. Press the RETURNkey and
the LABEL should change to REVERSE screen image.

A field SHOWNREVERSE this way is ready to be MOVED.Simply
use the cursor keys andmove the LABEL anywhere onthe screen
you wish! Shouldyour moving label bump into another field on its
journey around the screen, CODEWRITER will automatically JUMP
the label to the next empty area in the direction it was being
moved Once you’re satisfiedwith the position of the movingfield
simply stop andpress the RETURNkey.The fieldwill revert to the
normalprint mode fromREVERSE.ALL screen fields can be moved
in the sameway.

PressANY key (except RETURN) andyou’ll skip to the next field
where the process can be repeatedas omen asyou like.With each
pressingof a key the cursor will move to the beginningof the next
field The cursor will move over the fields in the SAME ORDER in
which the fields were FIRSTENTERED. Check your screen
instructions for the correct methodto BACKUPthrough
proceedingfields.

CodeWriter EB

Making “Changes" can leadto some confusion. Remember the
ChangeScreen routine does NOT alter any of the logo of the
screenOODEWRITER has already readThus. if youmove the
fields all over the screen. your CODEWRITER programwill
continue to prompt for the operator information in the SAME
ORDER in whichyou FIRST typed the fields in If you'd like the
NEW screen positions to dictate the NEW order of operator entry
of data, you'll need to “read the screen" AGAIN with the Edit
Screen option.

Tbmakepermanent changes with Change Screen. one should;
1. Move the fields around any way you wish from Change Screen
2. Once changes are complete, press BC to return to Screen
Format Generator.

3. Choose Edit Screen andyour NEWIYAL'I'ERED screenwill
appear.

4. Make any ENTRY CHANGI'B (seeEdit Screen) you wish to
further alter the screen if needed.

5. Step through the ’k’, ’p’, or ’g' choices again Once complete.
you’ll beback to the ScreenFormatGenerator menu.

6. Choose “SaveScreen" to save your new formpermanently to
the CODEWRITER disk work space. NOTE: If you havealready
saveda screen in an OLD order andnowwish to save the
screenwith NEW fieldpositions. give the NEW screen a NEW file
name.

Aswe don’t require any permanent changes to our example
program,press fl to leave the Change Screen option. Here
CODEWRITER warns us to be sure to save the screen Once back
at ScreenFormatGenerator.weare ready to save our sales
invoice screen.

Press ’s’ here

CODEWRITER will ask the programdesigner to give a NAME to the
screen Amaximumof 10characters is allowedand. asusual,
simple. appropriate names are best. In this case, the name of the
screen becomes the name of the PROGRAM'tobe createdby
OODEWRITER. DoNO'l‘ useaslashU) or adot (.) aspart ofa
screen name.Also. a screen 1119 namemust belower case.

enter ’invoice’ and press RETURN

It would be nice to VERIFY that our screen has beensaved
correctly. Sinceweare now back to the familiar ScreenFormat
generator menu,we canVERIFY quite simply.

press ’I’ for load and RETURN

The “load” optionwill ask for the ’screen file name'.Wechose
’invoice' so:

type ’invoice’ and press RETURN

The disk in the drive should spin and stop. Next the screen format
Generator menu appears.Wecould choose Edit screen to see our
newly loadedscreen, but this would force the ’k’ and ’p‘ choices
again. insteadwechoose Change Screen:

press ’c’ and RETURN

FromChange Screenwe are shown our sales invoice form again
which proves it has been saved correctly. 'Ilo exit Change Screen
wepress the fl key.
Screen creation is complete andwemay now continue with
CODEWRITER programdesign.

press ’x’ and RETURN

Weget one last warning to save our screen. Quite a worrier, that
CODEWRI'I'ERI
GREAT! DAMENTRYSYSTEM
From the current menuwe have the choices:

5 create screen layout
a create application
x return toMain Menu

press ’a’ and RETURN

CODEWRITER now announces that it will "produce the basic code
for a programyou design". You may now enter a name (maximum
25characters) andpress RETURN. (The namewill follow the
credit: PROGRAMDesignby

You are next asked for the name of the screen flle. BeEXACT here
sothe system can find our muchmaneuveredscreen:

enter 'invoice’ and press RETURN

CodeWr'ter en

After a bit ofwhirring from the drive, the sales invoice
screen should re-appear with a few changes; The arrows around
the LABEL ABC COMPANY SALES INVOICEshould be gone. Also,
any fields we designated (p)rogramcalculated shouldhave only a
single dot following the PROMPT.You'll beasked

is this your screen iormai [y/n]?

If the screenyou see is correct

Press ’y’ and RETURN

If you press ’n’, you'll bereturned to the request for “screen file
name" for another try at finding the screen file.

Onyour system. the prompt ”Which drive for data.DOENOT
appear.You'll behearingsoon how to upgradeyour system to use
more than one drive‐for considerably more file space andpower.
Wehave the reference in the manual for the fixture. Youmay
continue here if you like or SKIP to page 22.

The choice is important. Remember,you are now creating a data
entry program to control information. The information itself (the
data) needNOT beonthe same disk asthe programwhich
controls it. Keepingthe control programonone disk and the data
on another MAXIMIZES the amount of data you can control. On
the other hand, where disk capacity is enough and the
convenience of bothprogramanddata on a single disk is
important, a one-disk systemworks fine.

Remember. the question means “which drive for data" when your
PROGRAM IS COMPLETE AND RUNNING. (Userswith twodrive
CODEWRITER systems will NOWhave their programdisk in the
second drive. but it willRUN in the first drive when it’s finished.
The “data." can beoneither the first or second drive.)

For our example program. enter the appropriate number for the
FIRSTDRIVE.

CodeWriter‑

In s u mroux.mm

The next OODEWRI‘I'ER request will be to define what kindof
GRANDTOTAIS wewant intheprogrambeingdesigned In our
example, the prompt screenwill say:

Please spsclly which field is to be
accumulated in this Grand Total lield.
[kel‐kelfl. pcl‐pc4. or'llst']

Total Accounts Receivable:

What does all that mean?Whenwe first designed the screen for
our sales invoice.weincludeda total of 14different FIELDS.We
then specifiedwhich of the information inputs would be
(k)eyboardenteredwhichwould becalculatedby the (p)rogrem.
andwhichwould bea.(g)randtotal ofsome other field

The CODEWRITER system is now ream! to learnhow the program
designer wishes to CALCULATE the information onthe screen To
make thing easier, GODEWRI'I'ER has ABBREVIATED the names of
the screen fields. Thus the FIRST field on the screen to be
designated (k)eyboard (e)nteredbecomes kel. the second becomes
ksz. and soon. Naturally enough. the first fieldwechose to
designate (p)rogram (c)alcula.tedbecomes pol to CODEWRITER.

Now. back to Grand'Ilotals. GODEWRI'I'ER is askingwhich screen
field is to beaccumulatedand displayed asaGrandTotal after the
prompt “TotalAccounts Receivable". Inside the parentheses are
the choices: kel to 1:910. pcl to p04. or ’list'.

Since it’s difi‘ieult to rememberWHICH fieldwe designated as the
FIRST programcalculated(pol). etc. CODEWRITER offers the ’list’
option to display all our choices.

- e e

You should now see the following on the scream

Keyboard Entered Fields:
kel= Customer Name ke2= Acctli
ke3= [late ke4= Street Address
ke5= City ke6= INVOICEII
ke7= Ouan ke8= Item
ke9= Price kelO=PAID ONINVOICE

program calculated Iields:
pcl= Total ch= Tax
pc3= Invoice Total pc4= INVOICE BALANCE

grand total lields:

g i t : TOTAL ACCOUNTS RECEIVABLE th= TOTAL SALES

Again, back to the CODEWRI'I'ER prompt we’re trying to answer.
Wewant our program to make it easier to get useful information.
Which of the screen prompts we designedwill ADD UPTOa.
GRAND TOTAL we can call “TOTAL ACCOUNTS RECEIVABLE"?
Study the list. “Invoice Total"? Maybe. but what if we receive a
payment from a.customer? The “Invoice Total" would, of course,
remain the same after apayment. but the amount the company is
owed (its receivables) would godown.

The correct answer is INVOICEBALANCE. Obviously. if we hada.
GrandTotal of the INVOICEBALANCE amounts fromALL invoices
we could call this figure our TOTAL ACCOUNTS RECEIVABLE.

The ’list’ should still be onyour screen.Wecan see that INVOICE
BALANCE is abbreviated by CODEWRITER to p04.

press RETURN

Againwe see prompt:

Please specity which lield is to be
accumulated in this grand total Iield.
[kel‐kelO. pcl‐pc4. or“"31“!

TOTAL ACCOUNTS RECEIVABLE:

type ’pc4’ and press RETURN

This tells our CODEWRI‘I'ER program to accumulateALL the
INVOICEBALANCE amounts from the entire file of Invoices and
show the total in TOTAL ACCOUNTS RECEIVABIE on the screen.
Whenever the operator of our program looks at ANY invoice in the
ABC Sales file. heor shewill always see this grand total on
display.

The next CODEWRITER prompt asks for the field to accumulate as;

roux.SALES
This should now beeasy. Type ‘list' again This time. of course.
’InvoiceTotal‘ is correct asthe amount to beaccumulatedas
TOTAL SALES. Press RETURN to goback to the prompt.

type ’pc3’ and press RETURN

COMPUTED mm

The CODEWRITER screen now requests the computations for 4
computed fields. You’ll be given an entire second screen of
informationastowhat this means andanentire screen asto
what is meant by ’eeif referencing fields.

As before. these screens are reminders for later.We‘ll explain the
procedures here in detail. Readthe two screens andpress
RETURN.

The screen new shows:

Computed field #1
calculation ior ‘Toial'
Type 'Iisi' lor Held numbers

po1=

This is where you learn to bea.ProgramDesigner.Designingthe
screenwas the most creative aspect of the job. Now comes the
real power.

CodeWr'teP E3

Type ’list’ to see your choices. As you look at the list of prompt
fields and their CODEWRITER abbreviations, think.What is the
DEFINITIONof "Total"? In our invoice design. ‘Tbtal' (pol) means
‘Quan' (ke’?) multipliedby ‘Price' (ke9).

We“design" this definitionwith CODEWRITER by saying

pc1=ke7*ke9

Aswith most computers. the four basic arithmetic functions are

+ means add
‐ means subtract
' means multiply
/ means divide

CODEW'RITER also allows the use of() to isolate formula.
components.

Parentheses are usedto ISOLATE the calculations inside them for
SEPARATE COMPUTATIONwithin a formula An easy example
would be: pcl‘pc2+(keS-kefi)whichmeans‐First multiply pcl
by pc2 and then add to this result the difference between1:93 and
keB.

While CODEWRI'I'ER will detect SOMEmathematical errors (such
as forgetting a.closedparentheses after usingan open
parentheses). it CANNOI' prevent all instances of incorrect math
from getting into aprogram.You’ll beofferedachance toVERIFY
aformula after you type it in Once verified. however,
CODEWRI'I'ER will try to audit what it can and thenACCEPT what
you wrote. Pleasebecareful.

Here are the remainingprogramcalculations for our Sales Invoice
design andan explanation of each Follow the screen commands to
enter these.

programcalculation meaning

pc2=pc1*.06 Tax (pc2) is6%oftheTotal
(pcl) to the invoice. Thus, we
multiply pcl by .06 to findTax.

pc3=pc1+pc2 InvoiceTotal (p03) is simply
Total (pol) PLUSTax (pc2)

pc4=pc3-ke10 InvoiceBalance (p04) is the
result of InvoiceTotal (p03)
MINUSPAID0N INVOICE(kelO).

CodeWriter (23

Asusual there are a few rules to keep in mind.We‘ll try to be
concise:

1. Calculation definitionsmust deal in KNOWNIDEAS.Thus. you
cannot enter pc2=pcO‐ke3. Canyou see why? Calculations are
defined in the SAME ORDER in which they appear on the
screen (top to bottom, lefi to right). Thus, if you are defining
p02you CANNOT have definedalready pc6‐mak1ngpc6 an
UNKNOWNIDEA.This quandry is easier to avoid than youmay
think. Simply designyour screen sothat your input prompts
PROGRESS in logical order (price before total, payment before
balance, etc.). CODEWRITERwill handle things from there.

2. Programcalculations are the HEART of a good design. Use them
well. They may containANY combination of pcfields. ke fields
and even gt fields (subject to rule 1).They shouldbelimitedto
25 characters in overall length.

B I L ! “ H M N O I I Gm m

There is abit more power in CODEWRITER calculations. The Self
Referencingfieldmay seem abstract and confusingat first. but
it’s JUST PERFECT for some jobs. Where the programdesigner
wishes to HOLD8 PREVIOUSvalue while calculatinga newone, he
needs a Self Referencingfield.

An example is in order. In an inventory program. a field named
BALANCEONHANDwill usually be designed to depend on two
others like QUANTITY IN andQUANTITY OUT.

lets assume that QUANTITY IN is kelandQUANTITY OUT ls 1:02.
while BALANCE 0N HAND Is pc].

If weuseda formula like pc1=kel-ke2 (whichmight seem
logical), our inventorywould bea disaster. Can you see why? The
field of BALANCEONHANDwould always contain ONLY the
LATEST results of the CURRENT difference betweenQUANTITY IN
andQUANTITY OUT. ‘

What’s needed for a field like BALANCEONHAND is away to
REMEMBER the current value, hold it, and then COMBINE it with
anewvalue. Thoughmanymethods for doingan inventory exist,
one a p p r t hmight be:

pc1=pc1+(ke1‐ke2)

CODEWRITER sees this asSelfReferencingsince the pol appears
on BOTHsides of the = sign.

Another use for self referencing is in a pure “counting' field.
Since all 'pc’ fields are automatically calculated EACHTIME a
record is lookedup by the operator, a field named “RecordAccess
Times" (as pc5 for instance) couldbedesigned to count the
number of times a recordswas lockedup by defining it as:

CodeWriter E

CODEWRITER will automatically create a special file for self
referencingfields whenever it sees a.calculationwith the SAME pc
on BOTH sides of the = sign. The programdesigner needn't do
anythingbut write the formula.

Because the self referencingfile will take extra space on the
programdisk. CODEWRITER will ask the designer to “confirm"
that this unique field is what the designer truly wishes. Simply
type ’c’ to confirm asdirected.

REMEMBER‐Theself-referencing field is for ProgramCalculated
(pc) fields only. The CODEWRITER system contains special
features for AUTOMATIC UPDATINGof KeyboardEntered (ke)
fields. These features are explained later, under “UPDATE DATA".
in the instructions for usingANY CODEWRITER designed data
entryprogram.Don’t worry if “self-referencing” is not quite clear
yet. Just keep in mind the following:

1. “self-referencing" means holdingan existingvalue while
combining it with a new one.

2. A self referencingfield is ALWAYS programcalculated

3. A keyboardentered field can doALMOST the same thing
another way.

One last thing. Once defined a self referencingfield MUST have
some opening value (even zero) to function. This needn't bedone
by the designer. but must bedone the FIRST time the program
operator encounters the field onthe screen. CODEWRITER
anticipates this. Should a programoperator pass a self referencing
field the first time WITHOUT enteringa value. the prompt “You
must enter something” will appear at the bottomof the screen.
Again, a zero entry is fine.

I ! ! !m a x 0! RECORDSM I D I !)

Once field calculations are completed GODEWRITER will aslc

“What is the maximumnumber of recordsyouwant in the data
file (50 t0- - - -)? "

This calculation is made automatically by CODEWRI'l‘ER and
depends onthe amount of information in a screen design

CodeWriter

OODEWRITER calculates the maximum for you andasks howmany
you're likely to needin your file. OODEWRITER will then reserve
the correct amount of space on your programdisk. Remember
that specifiying the maximumherewill FILL the programdisk.
Where youwould likeMORE than one programonthe same disk,
ask for the FEWFBT records practicable for your use.

For our Sales Invoice example. a small recordfile will do.

enter ’50’ and press RETURN

Next.weare directed to "lype in the program title" andare
allowed30characters to doso. The program 'title’ is NOTTHE
SAME asthe ‘Screen file name’ wechose earlier. This ’title' is
cosmetic only andwill merely beprintedabove the menu
OODEWRl'I'ER will automatically create for your programs.The
’title’ should simply describewhat your programDOES.

Enter something like

’ABCSALES RECORDS’

andpress RETURN

I ! ! ! H ! man
You should now see on the screen the following questions:

“Whichfield is the key field (type 1to -- or ’liet' to list fields)”

The “key field" is more computer jargon for a not too difficult idea.
The programwhich CODEWRITER is creating from our designwill
store records in a file and then get them back asweneed them. '11)
find a particular record (screen). the programconducts an
electronic ’eearch’. The programcan simply look at every record
in file until it finds what weneed. or it can goMUCHMORE
DIRECPIY to the record in question.

The difference is havinga “key" field to search for.Where one field
on our screen record is designated the “key". the CODEWRITER
createdprogramcan goto a SPECIAL INDEXof ”keys" it had
previously set up. In a flash the neededscreen appears.

There is no needfor special computer knowledge to choose the
”key" field. The “key" is simply the one piece of information
(field) MOST LIKELYTOBELOOKEDUPwhen searchinga file.

As an example, in a sales invoice file it is very likely that records
will besearchedby ‘Customer name' most often. Perhaps, in
another case, the screen form for the invoice containeda
’cuetomer number' or ’account number’. Certainly either of these
wouldmake a good “key” field aswell.

CodeWI'iteI’ E3

For the moment, type 'l..i’ andpress RETURN

You should see a.screen like this:

Keyboard entered Holds:

1. Customer name 2. Acct it
3. [late 4. Street Address
5. City 6. Involee
7. (Juan 8. Item
9. Price ill. Paid onInvoice

Our choice is limitedto the 10fields desimsted 'keyboardentered’.
A programcaioulated’ field can NEVER bea “ ey".The
GODEWRITER system has numberedour fields tom 1 to 10 and
has kept track of the numbers.Thus wecan choose the “key" by
entering the number only. Let's make 'Invoice #’ the key.

enter ’6' and press RETURN

YoumsyseuchbyANYfield onareoord screen. Thekey fieldb
simplythetasteetandmostdirectwaytosearchTodesignthe
BESTPOSSIBLEkeyfield.keeponeruleinmind;'lhebestkeyina
recordis the most unique key.

For instance, in our invoice example the ’Aoct #’ key may be
REPEATED in many records (where the same customer buys
many different times. for instance). Since the 'Acct #’ entered is
the SAME for many records. each time a ’search’ onthe key field
is done many recordswill 'qualify’ in the search. This willwork.
but is not the MOST EFFICIENT way.

TrytcdeviseakeywhichwillbeuniquetoasmGLEreoord. In
our example. the Invoice# is best. This number wil be DIFFERENT
for each recordentered

Again, anykeyboerdenteredfieldmsybethe 'key' andskey
which can refer to multiple records is 0.11, but unique is best.

Since many CODEWRITER applications will involve money.wecan
use a bit more advice on the subject. Here are a.few tips:

1. CODEWRITER will allow an operator to enter simply 25. and
this will print as23.00

CodeWritmEi

2. An amount with N0 numbers to the left of the decimal place as
in .10will beprinted later as0.10

3. Where the programdesigner wishes to make sure that money
amounts line up top to bottomwith the decimal points EVEN.
care shouldbe taken to see that the DOTI'ED LINES for money
justify TOTHE LEFT.For example:

left

will result in a column of money amounts with the decimals in
line TOP TOBOTTOM even though the $ signs vary. The fact
that the dotted entry lines arejustified LEFI‘ will accomplish
this.

. l P I I G0 0 ! G M !

Weare almost finishedwith programdesign. This last section is
really optional, but it can bequite important.

Any collection of information can bemademost valuable to the
extent it can bekept PURE.That is a file onstamps should not
contain an occasional recipe anda.PROMPT field for price should
not allow letters to betyped in. etc.

Without some attempt at keepingout ‘garbage’ entry. 8.file can
become an awfulmess and lose a lot of its value.

You should nowbe lookingat the first of two screens which show
how the GODEWRITER system allows the programdesigner TRAP
OUT ERRORS in operator entry.

Like the other instruction screens onthe CODEWRITER disk. these
are for future reference. Let's gothrough them now for more
detailed understanding.
Once past the two screens. CODEWRITER will bringour sales
invoice screenback into view andbegin to HIGHLIGHT each of the
KEYBOARDENTERED fields. At the bottom of the screen there is a
prompt line saying: Reject if: at the same time as ONE FIELD is
HIGHIJGH'I'ED above.

The programdesigner is beingasked. “What will not be accepted?"

GODEWRITER offers a complete arsenal of weapons to keep out
nonsense anda very good system for lettinga programoperator
knowwhen something is wrong.

In order to best use your Reject if: weapons. we'll gothrough the
entry process together. Remember.you can always type 'help' to
see all the types of data traps again on the 2 screens. You
SHOULD study the screens aswego.

You'll see I-lIGHIJGl-l'I'EDon the screen ’Customer name
etc.‘ and 'Reject if:’ below.

enter ’no entry’ and RETURN

This means that wehave DEMAND-SOME ENTRYby the
operator of our program. Since ’Customer name’ is quite
important, the operator musn't leave it blank or the sales record
couldbeconfusing.

Once ’no entry' is typed and REI‘URNpressed. you’ll see:

Error Message?
[cr= "" you must enter something " ’1

CODEWRITER is asking the programdesigner to write a message
to the programoperator EXPLAININGthat the mistake ’no entry’
was made.The “cr= ‘" youmust enter something “ ‘ " means
that if the programdesigner wishes. the message “youmust enter
something" will beenteredAU'IOMATICALIY by CODEWRITER as a
response to the ‘no entry' error. (the or means (c)arriage
(r)eturn orjust REPURN)

Let’swrite our own error message:

CodeWr'ter

enter ‘You must enter customer’s name.’ and RETURN

As you'll see the SAME fieldwill remain I-IIGHHGH'I'EDand the
Reject if: messagewill appear again.Why? Because MORE than
one error couldbemade in the same field entry.
Let’s say wewant to prevent an entry which is TOO LONG.The
’name’ field is 30 spaces.Wecan use the edit feature of
CODEWRlTER to automatically reject an entry longer than 29 (in
this case). The rule is;Where youwish to restrict length, allow
the space involved to beat least ONE SPACE MORE than the entry
youwish to reject.

enter ’Iength)29’ and RETURN

Your CODEWRITER programwill then reject all entries MORE
THAN 29 spaces in length (The symbol after ’length’ above means
’greater than’.) This prevents an operator from typingmore
information than your screen form can accept. Regardless of any
edits you provide. your CODEWRITER programwill automatically
sounda BELLwhen an operator tries to type PAST THE BOUNDS
ofyour screen format size for a given field (is.more than 10
spaces in a 10space field).

enter ’customer name cannot be over 29 spaces’
and RETURN

M A I N ! ! ! I NnoeunDESIGN
The choosing of edits and operator messages to trap out errors is
where the personality of the programdesigner really comes
through. The “attitude” of the createdprogram toward its user,
and the general needfor accuracy. is built at this point.

Rather than gothrough all of the fields in our example program.
we‘ll offer. instead. some suggested “edits" andmessages. Once
you feel comfortable with the process of edit control. by allmeans
devise your own.

Field Name Reiect it: [syntax] Meaning Message

Acct # contains an" Invoice #CAIINOT "ab accounts only
contain 'ah' in tile 5."

Acct It |ength<5 Acct #‘s MUST have “The Acct it entered
5 digits is too short"

INVOICE # no entry As KEY FIELD. It “Please include
MUST beentered the invoice ii."

0uan not numeric Aquantity MUST be “Please express
entered asanumber quantity asanumber"

Price) 10000 Nonumber OVER “Items costing over
10.000will be 810000 use Iorm 3"
accepted

CodeWr'ter Es)

(Note: Though the following aren‘t in our example program. they
help to Illustrate the edit process.)

Lasl Name > ‘0' Noname beginnlng "This lorm lor AtoC
with Dor later will name:only"
beaccepleli

Perl# =30!) Don‘t accept 300 “Item 300 has been
dropped-see note 10"

SEX () ‘male' MUST bemale “Use male only lor this
survey"

WARNING: While edits canbe COMBINED to test the SAME field for
different kinds of operator errors. some combinations are
LEATHAL‐as they allow noentry at all (or eliminate a.range of
entries bymistake). For instance,)“a” rules out EVERY lower
case letter entry. (Canyou see why?) And >100. when combined
with (50. allows ONIY 50to 100 to beentered

Bystudying these examples aswell as the two edit screens. you
shouldbegettinga good idea of the editingprocess.Remember.
GODEWRITER will process asmany or asfew informationedits as
you wish. Don't leave edits out entirely. though. asthey can be
the “soul” of a good information tlle.

massnon: If the “reject 11:” syntax is still not clear, see
Appendix A at the end of the data entry section in this
manual.

Once the edit section is complete. CODEWRlTER asks if you would
like a special “endof data entry" message to beused in your
program. This message allows the programoperator to either get a
new blank screen form to fill in or return to the programmenu.

The ProgramDesigner is free to choose his own language here. but
ONE bit of programLOGIC is automatic- If the operator presses the
RETURNkey at the end of filling in ascreen. a.NEWSCREENwill
appear. And if “y" or ‘yes’ is entered. the programSTOPS DATA
ENTRY and returns to the menu. Examples of “legal” messages
are:

“Are you ready to stop data entry y or n (RETURN = n)"
or

“To return to theMainMenupress "y“. to continue press
REITJRN"

If you’d rather not bother to compose any special message. simply
press the RETURNkey andGODEWRITER will write its own
message as shown on the screen.

This final OODEWRITER design choice is for date format.

Enter an ’a’ for American or ’e’ for European date
m - format in your program.

CodeWriter EB

>l<

Any fieldyou designated ‘date’ (by entering . . / . . / . . to the
screen) will automatically beevaluatedby GODEWRI'I'ER for legal
date entries.

Once the correct date format is selected, your system is ready to
create a separate programdisk to contain your new appllction.
The procedures to dothis will vary dependingonwhich computer
you’re using.
Check your USER NOTES CARD andbesure to follow the SCREEN
MESSAGE that are offeredby your CodeWriter system.
To runyour program immediately simply type run and
press RETURN.Later.you run the program like any other piece of
software‐there is nofurther needfor CODEWRITER untilyour
next programdesign. Simply place your disk in the drive (after
proper power up).The 'programname‘ is the name ofyour
SCREEN FILEplus a /t . For example. if your screen file is named
joe your programnamewill bejoe/t . Both the screen file name
and the t MUST belower case.
The correct sequence for runningyour new software (onceyou
have turnedyour computer off) is the following (We’ll assume the
screen file in namedjoe):

Ioad“ioe/t”,8
run

NOI'E:Where you hsveelreadyareetedeprogrsmwith
Codeerteryoucan load it intoyour computer’s memory easily.
First,findwhat’s onthe disk (load “8", 8 then 'list’).You'll see a.
series offiles with the same screenfile name (but different
sufilxee). The '/'I" file is the one to loadFor example. our ‘invoice‘
programwouldbeloaded‑

type load “lnvoice/t",8

(Naturally. if you usedadifferent “screen file name“. substitute
that name in front of the ’/t‘ in the directory file name.)

Once the flashing cursor returns to the screen:

type ’run’ and press RETURN

After a bit of disk activity, the MainMenu ofyour first
CODEWRITER programshould appear. Except for your name being
used insteadof ours, it should look like this:

ProgramDesign byDynatech Microsoitware

ABC SALES RECORDS

File Preparation [First time onlyll. i

Enter data
Update data
Look up record
Search records

Let’s gothrough the menu options one at a time.

r i le Preparation‐This is the OODEWRITER utility which
prepares the disk designated to hold the date for the program. The
FilePreparationutilitywill create enough disk space on the data
disk to hold the file the designer hadrequested REMEMBER! This
utility is usedONIX the FIRST TIME a.program is run.Once there
is data. ona disk. the FilePreparationutilitywill ERASE it to
’Prepere’ s new file. Beware!

CodeWr'ter EB

In te r data‐This gives the programoperator 8.new andempty
screen form to fill in. At this point ONIY the KEYBOARDENTERED
fields are displayed (not programcalculated. grand total or
labels).Tostop the ’Enter data’ sequence mid-screen.press the
11key. Once a screen is complete. the operator will see a line
showinghowmany records have beenentered into the file and
howmany are lefiz. Next the operator is askedwhether the data
entry session is complete. If not a new screen is shown. If so. the
program returns to the MENU.
Update data‐This program routine gives the operator a chance
to change any information already entered into a screen record.
The operator is asked to give the “key" information-that is the
data entered in the field designated “key" by the program
designer. Here’s an example:

in our ABC SALES program, the “key" field is ’Acct #'. Thus. on
Update the operator first sees a prompt asking for the ’Acct #' of
the recordto be ’Updated’. Once the Acct # of the record (invoice)
is entered andRE’I'URN is pressed. the programsearches the disk
for the recordand displays it onthe screen.

At the bottomof the screen, the prompt line displays:

is this it? RETURN = yes

If the recorddisplayed is correct, press RETURN.You’ll notice
that nowALL FIELDS andLABELS are displayed The results of
programcalculations appear and grand totals are listedwhere
they were designed (NOTE: If the recorddisplayed is not correct.
type ‘n‘ and the programwill continue to search)
A new prompt now appears at the bottom of the screen. Usingour
InvoiceProgramas an example, the prompt reads:
Which field toupdate (1-10. ‘list’. £1tocancel. RETURNtosave)
The prompt choices, inside the parentheses separated by commas,
mean the following:
l- lo‐This isa choice offield numbers toUPDATE from field #1to
field #10. All are KEYBOARD ENTERED fields (theONLY ones
intendedby the programdesigier for the programoperator to be
involvedwith).

list‐Naturally, this gives the operator a list ofthe KEYBOARD
ENTERED fields showingwhich FIELDLABEIS belongwith each of
the 10numbers. Once the operator sees which field # needs to be
UPDATED,RETURN is pressed the recordscreen returns. and the
update is ready for a.choice.

CodeWI’iter EB

F l ‐A t any time duringUPDATE. the operator may press (1 and
cancel the update process. This returns the mainmenu.

RETURN‐TbCOWLEI'E andSAVE the update to disk file, press
RETURN.

This sequence illustrates the update process onour example
program:

I The operator notices that an incorrect pricewas used in a
customer invoice chew onfile.

2. The UPDATE routine is calledwith ‘ u " andRETURN.

3. The Acct #. 1005, is enteredas called for.

4. The first record displayed is the right Acct # but theWRONG
invoice. so’n' andRETURNget a semnd invoice‐which is
correct.

5. ’List' is called toget the field # for 'Price’.which is9.The 9is
enteredand the cursor appears at the ‘Price‘ field‐now erased
andwaiting for a new entry.

6. As soon as the newprice is enteredandREI'URN is pressed.
the screen action beginsl Not only is ’Price’ updated. but ALL
the programcalciuated fields andgrand total fields which in
some way depend on the price amount are also updatedand
can besavedby pressingRETURNagain once the revised
screen appears.

Beforewe leave the UPDATE routine, there is one morevaluable
feature called “(m)ore and (l)ess". Here’s anexample fi'om our
ABC SALES program:

I. A customer wishes to make apayment on one of his open
invoices.The operator goes through the update routine and
finds that the field (#10) PAID 0N INVOICEalreamcontains a
payment amount. The customer is makingasecondpayment on
the some open invoice.

2. Since in this casewedon’t want the amount NOW in PAIDON
INVOICE to beERASEDand replacedwith the current payment.
the normalupdatewon’t do. (Let‘s say the amount currently in
PAID0N INVOICE is 815.00)

8. The operator chooses field #10 whichplaces the cursor at PAID
ON INVOICEandOVERWRITES the 815.00 amount. Since the new
payment is 810.00.andwewish to ADD this amount to PAID0N
INVOICE, the payment is enteredas 10.00m for more.The ’m’
ADDS the 10.00 to the previous 1500sowhen RETURN is
pressed. the new PAID 0N INVOICEamount reads 26.00 and
once again all fields which relate to this change automaticalhr.

Obviousbr. entering '1’ (for less) as in 35.001wouldSUBTRACI'
35.00 from the amount already entered_‑

One last point; The In and l feature at first seems the same asa
self referencingprogramcalculated field. which holds an oldvalue
while calculating a new one. The two are different. The In and l
feature works ONLY on KEYBOARDENTERED fields while self
referencing is ONIY for PROGRAMCALCULATED fields.

Keep “(m)ore and (1)ess‘ in mind for your future CODEWRITER
applications. The feature is invaluable for inventory type
programs especially.

Look up record‐When the ‘l‘ is used from the mainmenu. the
user first sees the key field alone onhis screen The ENTIRE key
field entry shouldbetyped and then RETURN is pressed Once a
full screenappears. the user is offereda choice; If the screen
record is correct. simply view aslongasneededand then type x
andRETURN.This will return to the mainmenu. If the first
screen seen is NOT correct (theremay beseveralwith the same
key). press RETURNand the programwill search for another
screen recordwith the same key.

Search records‐This feature has two mainpurposes. One is to
find screen recordswhere the “key” field information is unknown.
The second is to give the programoperator a chance to view an
entire SERIES of screen recordswhich are LINKEDby search
boundaries the operator has chosen. Here's another example from
our ABC SALES program:

1. The operator wishes to find the invoice to “Abbott Jewelers”
but does not know the Acct # to find “Abbott Jewelers" with
the Look up command The Search command is chosen instead

2. After ’s’ andRETURNare pressed the operator sees the
prompt:

Scan all or selected records?[a/s]

Since the operator doesn’t want to see “all" of the invoices to find
“Abbott". the ’s’ is pressed for ’selected’ records.

8. Next the operator sees the prompt:

CodeWriter EB

What lield doyou wish to select by?
[l-l4 or 'lisl']

Here the operator types ’list‘ and sees a list of all 14fields
(except grand totals). The operator wants to search
alphabetically sofield #1. Customer Name. is selected for the
search.

4. The next prompt reads:

Smallest item to select?

Here ’Smallest’ means lowest in the alphabet. Notice that the
prompt offers 30 dots to fil l in? That’s becauseyour CODEWRI'I'ER
program “remembered" that field #1was designed to have 30
characters maximum. The operator types ‘Ab' whichmeans that
recordswith ’Customer Name’ beginning lower in the alphabet
range than “Abbott" (sayAaron. for instance)would beomitted
from the search Remember a lower case letter is 'lower’ than its
UPPERCASE counterpart (Le. ’a‘ is lower than 'A’).

5. The next prompt:

Largest item to select?

is answered; 'Abbott‘ so that nothingabove ‘Abbott‘ will be
searched. The recordswithin the rangewill bedisplayed one at a
time alongwith the prompt:

To exit type x then RETURN.
to continue RETURN

andsothe operator simply presses RETURNuntil the desired
record is displayed and then types x to halt the search

A few more Items concerning 'Search':

1. Onanalphabetiosearohof. say,AtoD remember thataiower
limit ofA is finebut Dalone asthe upper limit will leave out
everythingbeyondDbyitsellebsearohafileAthroumD.
enterAsorAandIZasthetwoiimits.

2. Remember that to a computer A is different from a If you used
capital letters in your fields. use capitals in your search limits.

3. Where a search field is a date, you'll beoffered . . / . . / . .
insteadof dotted entries. Youmay search through a range of
dates.

Delete record‐This menu option removes records from the file
disk. It works by askingthe operator for the entry to the “key"
field and then displays the screen record in question. by
answering the “is this i t ” prompt with RETURN. the record is
deleted
Verify grand totals‐Because ofoccasional instances ofcomputer
“rounding off" certain sums, the 'Verily’ option is included Simply
enter ’v’ andRETURN.No other entry is needed All of the ’grand
total’ fields on the screenwill bechecked for accurate mathematio
sums. TheVerify option appears ONLY when a file contains grand
totals.
h i t ‐Th i s i ssimple. but can beeasy t oforget. After EACH
session of data entry is complete. exit the programwith THIS ‘x’
REI'URNoption. DoNOT simply turn the computer off. The ’Exit’
routine in your programperforms a number of very important
“computer housekeeping" tasks which keep the data file ready for
reliable use.
A H I L LWORD
Wehave tried in this manual to show the major features of
CODEWRITER and how these features work interactively to allow
the Programdesigner to control information.We've shown some
things in detail and only hintedat others‐all bydesign.
GODEWRI'I‘ER is a tool, to be discovered rather than explained
This CODEWRITER product is the first of a series aimedat making
PROGRAMDESIGNmore powerful and capable a function. Wehope
never to lose sight of the fact that your growth is our growth.

CodeW'teI’ m

Appendix A ‐ lhe “Reject 11:” rules

Wethought It would behelpful to have the two “reject lfz" help
screens for your GODEWRITER program reproducedhere for
easier reference.

Test name

'no entry“
'nol numeric‘
'numeric'

Test name

'Iength)'
'length ('
'Iength='
'Iength () ‑

Test name

screen one

GENERAL TESTS

example meaning to operator

- some entry required
- use only numbers here
‐ don't use numbers here

DATA SIZE TESTS

example meaning to operator

length) 4 nomore than 4 keystrokes allowed
length< 7 noless than 7 keystrokes allowed
length=2 must NOT be2 keystrokes
length ()3 must he3 keystrokes

screen two

NUMBER TESTS

example meaning to operator

) 100 must NOT begreater than I t !)
c20 must be20or higher
=63] must NOT equal 63]
0 | ? must equal 17

CHARACTER TESTS [note slngle quotes]
example meaning to operator

'contains' contains ‘abc'

must NOT bealter “d" in the dictionary
must NOT precede “in" in the dictionary
must NOT be”hill"
must be“male"
must NOT contain 3-letter group “aim"

The various symbols used in “reject lfz” syntax may not be
familiar. Here’s a detailed explanation. We’ll take the tests in
order.

Very often the most conmsingaspect of the “reject if:" design is
the backwardor opposite nature of the prompt: the designer is
asked to state what hedoes NOTwant rather thanwhat hedoes.
Help is on the way.

no ENTRY‐Since the purpose of “reject ifz" tests is to let the
programoperator knowwhat is NOT accepted entry. “no entry”
as a test is vital. When the programdesigner answers a “reject
ifz" with “no entry" the meaning is: “Don’t skip over this field‐ i t
will berejected if there is no entry.”

Use the 'no entry‘ test when the field in question is the KEY
FIELD.Without the ’no entry’ test. the operator could leave the
key field blank.With nothing in the key field. the ENTIRESCREEN
RECORDwould be lost to the CODEWRITER system.

Anytime youwish to DEMANDSOME ENTRY to a field use this
test.

H0 !W H O ‐ A g a i nwe must think in opposites.Where a field
is designed for number type informationonly (is. quantity.
number of days. part number. etc.) the desigier should “reject" a
“not numeric” entry by the operator.

This is critically important where a.number will bepart ofa
calculation. Obviously, if an operator answers a.quantity question
with “two" insteadof “2", the calculation functionwill not work.

MEMO ‐Whe r e adesigner wishes ONIX TEXT t ob eentered
to a.field. the syntax is; reject if:numeric - The CODEWRITER
programwill not accept keystrokes 0 through9 under this test.

L ING! ! ! > ‐Themeaninghere is“ 1 t hgreater than".The “) "
sign the computer symbol for “greater than". Literally.what is to
the LEFI‘ or LARGE side of the “ i " is greater or larger.

In the case of “length". the “reject if:" meaning is the number of
keystrokes (both spaces and characters) allowed for entry. Thus.
where NOMORETHAN a 5 digit number is acceptable entry. use
“length) 5" meaning “length greater than 5” as the correct test.

LINGIH< -‐No surprise here. The “ (" symbolmeans “less
than". Thus. where a particular part number MUST HAVE at
LEAST 6 digits, for example. the test “length (6 " will prevent an
operator from enteringa number whose length is too short.

“ I M F ‐ A g a i n . this i sfairly clear. The meaning i s“length
equ ”. The test will screen out a SINGLE PARTICULAR LENGTH
as “reject if: length=3”. This test is not usedvery omen. but
COMBINEDwith some other test. may be useful.

L ING! ! ! () ‐The “ () ” symbol is oomputerese for “does not
equ ". Where a designer wishes ONIX A SPECIFIC LENGTH of
entry andnothingmoreORless. this test is used An entry of 6
keystrokes andNOTHINGELSEwould betestedwith. “reject if:
length () 6"

CodeWr'teI’ m'

commend I ! ! !
Where the four symmls‘u) "v u (n, “:11, and u () n are used
WITHOUT “length" andWITH numbers. they evaluate the
QUANTITY INVOLVED rather than the number of keystrokes.

) ‐This still means “greater than”. Where you wish to prevent
an entry of ANY HIGHERQUANTITY than 100, for example. the
test is “reject if: >100".

(‐ A s you'd expect, the “less than" symbolworks to prevent
ANY LOWERQUANTITY than the designer wishes from being
entered. Toreject any lower entry than 50. for instance. the test
is “reject if: (50".

= ‐As before “equals" seeks out a SINGLE QUANTTI'Y ONLY to
reject.Where, as an example, the UNIXwrongamount is 200. the
designer tests for this with “reject if: =200".

() ‐The symbol means “does not equal" asbefore. Used
without “length”, the test is to SEEK OUT A SINGLE CORRECT
QUANTITY.Where the designer wants. say. only part 400 as a field
entry, the test is “reject if: <> 400".

Becarefulwith “does not equal" asa test. Since it accepts ONIY
ONE quantity ascorrect. it cannot becombinedwith other
quantity tests.

When usedwith quotationmarks and letters, the “) “ (“=".
and “ () " test for POSITION IN THE ALPHABET ORDICTIONARY.

) ‘ ‘ ‐ I n the example) ‘p‘ , the meaning is “greater than
p" or “past p" in the alphabet. Usinga SINGLE LETTER aswe did
limits the test to the FIRST LETTER in anentry. Thus the test
’reject if.) ‘p’ ’ would TRAP OUT all words beginningwith r or
any other FIRST letter LATERTHAN p in the alphabet.

Where MORE than one letter is used, dictionary position
determines the “greater than” or “later than" test. The test
’reject if:) ‘mac’ ’ would eliminate ALLWORDS later in the
dictionary than awordbeginningwith ‘mac’ .

(‘ ' ‐Here the meaningbecomes “lower than" 8.FIRST
letter or group ofFIRST letters in the alphabet or dictionary. Tb
trap out ALL “d" words or lower in the alphabet. the test is
‘reject if: (“9‘”. Thus. only “0" words or higher could beentered

= ‘ ’ ‐ A s before “equals" looks for ONE THING only.Where.
for some reason, the designer does not wish “frog" as an answer.
the correct test wouldbe“reject if: = ‘frog' . Several of these tests
can becombinedon a single field to trap out a LIST of words or
letters not wanted

Codth‘iter EB

<) ‘ ’ ‐ A s before. the “does not equal” symbol is usedto
trap out ONE SINGLE ITEM.Therefore if “tractor" is the only
response the designer wishes to allow. it is demandedwith “reject
if: () ‘tractor' . Also asbefore the “dose not equal" test
CANNOT be combinedwith others on the same field It is seekinga
single acceptable response.
c o m m ‘ ’ ‐The “contains" test is usedONIX with
words and letterswithin the OODEWRI‘I‘ER system. If. for
instance, a part icqu letter or group of letters is to be tested for.
“contains” will dothe job.
Let‘s assume that a part number entry in some inventory
analysis is “B1200" and the designer wishes to allowNOTHING
from the “C" series (01200, etc.) to get into the data by mistake.
The correct test for the ‘Part Number’ fieldwould be 'reject if:
contains“c". All numbers and other letterswould beignored, but
any entry containing “0" would be refused.
The “contains" test can also trap a CONTINUOUS GROUP of letters
ANYWHERE in aword or sentence. Thus the test 'reject if:
contains ‘me’ ’wouldtrap out ‘me‘ aswell as ‘men’ BUT Also
“some" and “stammer” (because they contain the 2-letter group
‘me‘ i. ’Contains’ is a powerful test. Becareful.
Keep in mindthat with all the letter andword tests. anUPPER
CASE letter is not the same as its lower case counterpart. You
may have to test for BOTHkinds of entry to really besure you
keep out what youwant out.
Wehope this appendix makes the “reject i f ” ideamore clear.
Remember,while your programdesigns will bemademore
powerfulby using these tests, they are optional. Use them asyou
are comfortablewith them.

conswnnnINDEX
Alphanumeric PromptFields10. 13.16
American DataFormat10
Arrows‐Up/Down/Left/Right6
Cassette Port3
CodeWriter
BackupDisks3
Concepts9,13,25
Loading..4
Manual..3
Safekeeping.......................................3
Support ...3

Column/Row Line6
Cursor (CRSR)6.18
Data.Disk ...21
DataDrive ..21
DataHandling‐One6’Two Drive.......................21
DateFormat9.10,33.34
Dates (DataEntry)9
DeleteRecord40
DirectoryofYour Program34
Disk Formatting4
Disk Name ...4
DiskSpace ..36
Dollar Fields29.30
DynatechMicrosoftware...............................2
Edits ..3233
Error Messages31
Error Messages‐UserWritten.........................32
Error Tapes30.32
EuropeanDateFormat10
FieldLengthLimit...................................26
File‐Definition67
FilePreparation35.36
FileWideGrandTotal16
Formatting‐Caution4
Garbage ..30
GrandTotal Display24
GrandTotals............................141723263640
HELP (CommandOption)31
Key Fields2629.36.38
Keyboard-EnteredFields 16.17.22.2638
Labels ..76,21
Largest Item‐Defined39
Letter Tests43
List (CommandOption)........................2224.26.39
MainMenu (CodeWriter)4
Messages‐Error/Operator32
Module ..3
Money Fields11.12.14.162!)
Number Fields1011
NumericPrompt Field................................l3

(S O D I UM ! ! ! I N D] ! (con't.)
Operator Messages32
ProgramCalculatedFields.orPCField1516.2226. 29450. 8637
ProgramDesign2
ProgramGeneration2
ProgramGenerationTime34
ProgramName19.38
ProgramTitle28
Prompts8-10.2123
Prompt Fields 1213,16
RecordAsScreen.......................................27
Defined..6.7

Records
Search/Delete..................................3840
Maximum/FewestNumberof......................27-28

Reject-IfStatements3253
RejectlfStatementsRules41.42.44
ScreenAsRecord.....................................7.27
Creation ...5
Design ..56
Editing ...1'?
Fields ..14
FileName19.34
Format ...17
FormatGenerator1720
label ...7
Layout ..5
Load...1718
Options ..6
Save ..17.19
Space ...6

Self-ReferencingFields2627,38
Single FilePrograms7
Smallest Item‐Defined39
SoftwareProtection3
Space-Screen5
Space -MaximuminPrompts8
SupportManufacturer3
UpdateDataOption36,37‘ Your GeneratedProgramMenu.........................36
Your NewProgram34

