-~ [N

- -
-

P~

-

:
%

2

Sl

1 — /
G 0 T I
L

Bteve Kaursman

BY

(CyY 1985

nnnnnnn

.
e Aot e,

it S U PR

DISK DOCTOR II
by Steve Kaufman

A

1 INTRODUCTION L

DISK DOCTOR II is a collection of utility programs designed
to let you directly examine and, if desired, modify data stored P
on a diskette. You can edit individual sectors, fix damaged or
mistakenly deleted files, read "locked" BASIC programs,
disassemble machine language programs with labels, search for a
series of bytes (up to six, with wildcards) on the disk,
duplicate any standard format diskette at machine 1language
speed, including those with bad sectors, modify the disk
directory and correct its table of contents, check and adjust
the speed of your 818 disk drive, and even format damaged disks.

DISK DOCTOR 1I1 has a combination of features and

conveniences unavailable on any other disk utility and should
enable any user to master the mysteries of DOS (Disk Operating
System) and the Atari disk system. An appendix to this manual
offers a tutorial on the format of Atari disks, DOS and the disk
boot process, as well as a brief introduction to assembly
language for the beginning programmer. Note: an understanding
of assembly language is not required in order to use DISK DOCTOR
effectively.

Printer options are supported for all relevant functions.

The disk includes a file of system labels to be used with
the disassembler as well as a program that allous the user to
create and edit his/her own label files. .

DISK DOCTOR II is totally compatible with all current single
density, double density, and double sided drives, and includes a
program for recovering 0OSA+ version 4 double density files.

Minimum RAM and accessories

REQUIRED:
32K RAM
Atari BASIC Cartrxdge
819 disk drive or equivalent

OPTIONAL:
Atari printer or equivalent
859 interface or equivalent

Warning

Attempting to modify data on a disk can be hazardous to the
health of your disk if you don’t know what you are doing. Be
sure you have mastered the material in the appendix before

e

Z

:

R e

£3

) Rodiie g 738, 2

i o

.offer reasonably priced backup disks. By all

DISK DOCTOR

attempting to use DISK DOCTOR, and, whenever possible, always
"operate” on copies, not originals.

At the end of this manual is a form to be returned to BJ

Smar tware. Please register your purchase of this software so
that we can keep you informed of revisions and new products that
may be of interest to you. Please note: Approximately 39%

of all software brought to market after Oct., 1982 (and as much
as 3587 of that issued after Feb. 83) is protected by advanced
formatting schemes that no software product alone can break.
Fortunately and wisely, the vendors of such software generally
means avail
yourself of those offers. DISK DOCTOR II, of course, will copy
itself. Registered purchasers are authorized to use DISK DOCTOR
I1 to make one backup copy of the original disk. Do not try to
copy the individual files of DISK DOCTOR II onto another disk.
They will behave very strangely!

STARTING UPRP

To use DISK DOCTOR, insert the BASIC cartridge into vyour
computer, turn on your disk drive and wait for the motor to
stop; then, as usual, insert the disk into the drive before
turning on the computer. If you are planning to use a printer
to print some of the data generated by DISK DOCTOR, turn it and
your interface on now to avoid noisy error messages later.

Turn on your computer. The drive will whir for a few
moments, the screen will flash, and the DISK DOCTOR logo will
emerge '

‘.. The following "menu” will then appear:

Disk Doctor, main module

THE ULTIMATE DUPLICATOR

DOS file recovery/directory-edit
and format bad disks

0SA+ 4 recovery/directory-edit

RPM check/adjust —-— make bad
sectors

Read a BASIC program from disk

List Object file blocks/locations

Create/edit a Label file

ONOe s UWN~

WHICH?

That’s it, type the number of the module of your
choice, hit the RETURN key, and off we go.

DISK DOCTOR

1 DISK DOCTOR, MAIN MODULE

This is the program that you will be using most. It is the
longest of the programs on the disk, so it takes a bit longer to
load than the others. (Be patient, really fast drives for the
Atari are right around the corner!) The screen will darken to a
comfortable hue (a good compromise, I think, for both TV and
monitor users), and after the drive stops, you will see this:

DISK DOCTOR II
by Steve Kdufman

SECTOR EDITOR :
DISASSEMBLER

SEARCH FOR A CHAIN OF BYTES

DISK DIRECTORY

UTILITIES

FIND AN ADDRESS ON DISK

SYSTEM MENU

IMMoOWD

All it takes to activate any of the above commands is a
keystroke.

At this point, the disk that you wish to examine or madify
must be inserted in the default drive. If you (like most of us)
have only one drive, remove the system disk and insert the
target disk. If you have a second drive (set up as drive #2)
and it was on line when the program started running it will be
the default drive for all disk analysis and modification
functions. You may leave the system disk in drive #1 (but
please don’t take the write-protect tab off, just in case!)

In order to change the default drive, or to configure your
drive for double density operation, use the “Drive Configuration
option ("B") from the "Utilities" submenu. See below. All of
the options of this program will run in single density, double
density or double density/double sided drive configurations.

A SECTOR EDITOR : This module is the workhorse of the program,

performing the sector by sector analysis and modification of the -

disk. Let’s try it out:
Hit the "A" key and the following mini—-menu will appear at
the bottom of your screen:

R,E,P,W, or M?

These letters stand for Read (a sector of the disk), Edit a
sector, Print whatever you seen on the screen now to the
printer, Write the sector on the screen out to the disk, and go
back to the main Menu of this module. ’

Hit "R" now and you will be asked which sector of the disk
you wish to read. Let us read sector number 1 off the disk.
Type the number 1 followed by a RETURN and the following will
appear on your screen if you have a DOS formatted disk in your
default drive:

-3-

o A Rt e

N e 4

o e a2 ERR AZ X CAR S

s B

Ve g e

S ewh AN

AT

R e RPN

‘encountering certain control characters, as well as

DISK DOCTYOR

SECTOR 1 ($991) FP. 515 F#& o

98 09 93 99 97 46 15 4C 14@.L.
98 67 93 93 99 86 1C 91 64
19 906 7D CB 97 AC 9E 97 F? ..K.,..

18 36 AD 12 97 85 43 8D ¥4 6-...C..
280 O3 AD 13 87 85 44 8D 85 .-...D..
28 03 AD 19 97 AC 9F 987 18

e Teayace
eee 1.9,
38 AC 11 87 B1 43 29 83 48 ,..1C).H
49 C8 11 43 FP SE Bl 43 AB H.C.1C(

48 20 57 @7 68 4C 2F 97 A9 W.hiL/.)
S0 CP DI 91 68 A AB &9 18° @P.h. (",
S8 AS 43 6D 11 967 8D 94 93 YCme....
68 B85 43 AS 44 69 99 8D 95 .C%Di...
68 93 85 44 469 8D 9B 63 8C ..D*....
79 OA 83 A9 52 AP 44 99 94 _..)R Q..
78 A9 59 AP 80 8D 62 83 8C IP .e...

This is a "picture” of the first of the 720 sectors (1448 if
double sided) on your disk, in this case, from the boot code
(see appendix I). The information on the top row tells us that
this is sector 1 ($861 in hexadecimal) and that the last three
bytes of the sector (were they to be interpreted as DOS file
information) show that this is (or was) a part of File number 9
(F#) and that the next sector of this file is to be found at
sector 5135 (FP=file pointer; both numbers are given in decimal).
The 1left hand column of numbers gives the relative hexadecimal
address within the sector of the starting byte of each line,
while the subsequent columns show the bytes themselves in both
hexadecimal notation and (at the far right) in character
representation. Note that if a byte is not equivalent to a
normal alphanumeric character a period is printed in its place
(this is to prevent your printer from having heart failure when
making the
alphanumeric characters stand out). .

The cursor is now back at the end of the mini-menu asking
you for another command. To print what you now see on the
screen to your printer simply hit P. (The screen print routine
is in machine language, so if you have a printer buffer the
program will be ready for another command almost instantly.) To
write the sector that you now see back to the same or another
disk, hit W and you will be asked "Write to which sector?". If
you respond to this query with a carriage return the program
assumes you want to write to the same sector you took it from
(see EDIT below). If you respond with a 8 (zero) it assumes you
have changed your mind and takes you back to the mini-menu for

. another try. Otherwise give it a sector number from 1 to 729

(or $91 to $2D9 in hex) and the program will ask you to verify
that you really want to write to such and such a sector.
Respond to that prompt with Y and the sector will be written and
the word DONE appear on the screen. Any other response returns
you to the mini—-menu. You may want to try this now by copying
sector 1 to sector 729, since sector 720 is not used by DOS and
should have no data on it except zeros. OK, now try to read
sector 726. If you have done everything correctly, it should
now be an exact duplicate of sector 1.

Any time a sector is showing on the screen, you may read the
subsequent sector merely be hitting the > key. Similarly, the
previous sector may be viewed by hitting <. If you are viewing
a double density sector, you can only see half of it at one time
(128 bytes). The left and right cursor control arrows will
scroll you through the sector, 8 bytes at a time (no need to
hold down CONTROL), orr you can flip from the low 128 bytes to
the high 128 bytes instantly by hitting the SELECT button.

—4-

RS AAREIS ot int Ardetnicin

e SR s A i SR i a AT A e NSRBI R v

CoA et T e e

o

SV

DISK DOCTOR

By the way, throughout DISK DOCTOR, unless indicated otherwise,
you may answer any request for sector number or RAM address
information with either a decimal number (the default mode) or
with the hexadecimal equivalent (always preceded by a
dollar-sign, e.g. $A3BG). DISK DOCTOR itself adheres to
standard conventions and prefers to give sector numbers in
decimal, but addresses(both in RAM and within a sector) in hex.

OK. Now you have copied a sector from one place on the disk
to another, and perhaps printed out a copy. Now let’s modify
the sector before we write it back to disk. To do that simply
hit E in response to the mini-menu. If you want ¢to edit the
same sector that you already see (or just saw) on the screen,
simply hit RETURN in response to the prompt:®edit which
sector?". Otherwise give a valid sector number (or 8 to return
to the mini-menu).

Now you see a display very similar to the former one, except
that now there is a cursor at the upper left hand corner of the
sector image and the message "HIT ESCAPE TO EXIT". Simply move
the cursor with the usual cursor arrow keys to the byte or bytes
you want to modify, type in the proper HEX value, and when you
are finished with your modifications hit the ESC key. DISK
DOCTOR will not let you type in the wrong places, nor enter
illegal values while editing. When you exit the edit mode you
are automatically put into the Write mode so that you can write
out your edited sector to the disk. Follow the directions given
abave. After you have written the modified sector to somewhere
on the disk, you may find it reassuring (I do!) to Read that
same new sector to make sure that your corrections have "taken”.
By the way, when modifying valuable disks, do yourself a favor
and always keep a careful record of what the modified bytes
looked like before you modified them! That way if you manage to
make things even worse than they were before you can always go
back to where you started.

If you are editing a double density sector, the SELECT
button will flip the screen as usual, but to use it you must
first position the cursor in one of the blank columns. Once
used, SELECT can not be used again (nor can you see the cursor!)
until the cursor is moved with one of the arrow keys.

When you are done with all of your sector reading, editing
and copying, hit M in response to the mini-menu prompt in order
to return to the main menu.

B DISASSEMBLER:

If you hit B in response to the menu, you will enter the
disassembly mode. A disassembler turns machine language code
back into easier to remember and interpret mnemonic “opcodes"
and “operands” (see Appendix),i.e assembly language. Even if
you cannot yet program in assembler, you should be able to use
these disassemblies to some advantage if you learn the material
in the appendix on 6582 assembly language.

The first question this module asks is if you want your
printout to go to the Screen or Printer. Answer appropriately.
If the output goes to the printer it will not appear on the
screen. Next you must determine if you want to disassemble
Sequential files or DOS files. "“Sequential” is just another way
of saying sector after sector, all 128 bytes of information. If

you are examining a “"boot" disk this will probably be the option

that you will choose. If you choose the DOS option, only- 125
bytes (253 for double density sectors) will be displayed for
each sector, and disassembly will proceed through the file using
DOS file pointers. For now let us choose Sequential.

v

NN p T N

5 i L

4
4
4

d

T R

-we are going to look at. If you have answered all the prompts

DISK DOCTOR

1f everything has gone smoothly up to this point, you will
now be asked what sector to start with. Any time this prompt
appears on the screen, answering it with 8 will return you to
the menu. For now let us type 2 (RETURN) to disassemble
starting with sector 2 (almost always a part of the boot code of
the disk). Then you must specify what byte of that sector you
wish to start with. Let us enter 8 for now. Finally, you must
indicate what starting memory address should be assigned to that
byte. Since most disks have the DOS boot code on them, let wus
respond to this one with $788, the proper address for the code

correctly and are examining either the DISK DOCTOR disk or

another disk with DOS on it, you should see the following to
start with. °

SECTOR 2 ADDRESS=%0780

99 9789 23 ?27?

g1 @781 23 ?27?

92 9782 A9 31 LDA #s$31

a4 9784 AG OF LDY #$9F

96 9786 8D 99 93 STA $9399
. 99 8789 8C 96 23 STY $a306
e oC 978C A9 83 LDA #$93

2E @78E 8D FF 12 STA $12FF

11 9791 A9 09 LDA #$90

13 8793 A B8O LDY #$890

15 87935 CA DEX

16 9796 Fo 94 BEQ $979C

18 9798 A9 21 LDA #3091

1A 979A A9 00 LDY #$99

1C o#79C 8D 99 &3 STA $9399
iF 979F 8C 28 23 STY $4398
22 97A2 29 59 E4 JSR $E439
25 ©O7AS 19 1D BPL $97C4

Of course as you now know, the disassembly process will go on
forever if vyou 1let it. TO STOP THE DISASSEMBLY AT ANY TIME
SIMPLY HIT ANY KEY. There. Let’s try it again. Simply answer
the “which sector?" prompt by 2, repeat the other same answers
as above and this time hit a key when you see about 3I/4 of a
page of stuff. As with any ATARI program, to temporarily stop
a scrolling listing on the screen, you may also hit CONTROL and
"1* at the same time. Repeat it to start it up again. (Note
that once you have started the disassembly module you cannot
change the major parameters——sequential/D0OS, printer/screen. To
do sao simply answer the "which sector?” prompt with 8 to return
to the main menu and hit B to return to disassembly from the
beginning.) Here’s what all that you see means:

At the beginning of each sector to be disassembled the
sector number is displayed along with the memory address in hex
that you assigned to it (either directly or, by implication,
when you specified a starting address several sectors earlier).
The display itself is divided into four sections: The leftmost
column displays the hexadecimal number of the first byte of the
assembly language command relative to the start of its sector.
The second area gives the equivalent memory address that you
have assigned to that byte. The third area consists of from one
to three columns, depending on the Assembly language instruction
encountered, the first byte being the machine language
instruction itself, the second and third, if present, the data
on which that instruction operates. The rightmost column, of

vy

¥ v-,r.?‘}N\t

o

s
T

R N (2 TE

DISK DOCTOR

course, is the disassembled version of the third column.

At this point you might well want tao experiment to see that
the bytes depicted by the disassembly process are indeed the
same bytes discovered in that sector by the SECTOR EDITOR
(option A from the menu). Go ahead.

Some notes: If the disassembler can’t figure out what the
machine language instruction is it will indicate that fact by
returning "???" instead of an assembler opcode in the righthand
column. This will usually happen in only one of two cases: You
have asked it to start disassembly in the middle of an
instruction, or you are trying to disassemble data instead of a
machine language program. If the former is the case, simply
back up a few bytes and try again. In the latter instance, read
the data with the SECTOR EDITOR rather than with the
disassembler. Most good programs have lpts and lots of data
tables of various kinds. It is possible, however, for data
bytes to have values deciperable into opcodes by the
disassembler. This situation is usually obvious, however, for
it typically produces strings of inordinately rare opcodes
interspersed with a multitude of question marks.

If the disassembler comes upon the end of a sector in the
middle of instruction, the operand of that instruction will be
indicated by question marks (e.g. JSR $?2???), and the actual
bytes to be assigned to that instruction will be found at the
beginning of the next sector marked with <<< (e.g. <<< $xxxx 09
80, all of which simply means JSR $8669). This should produce
no problems in most cases. Just remember that the LSB comes
first (see appendix!). In the rare instance of a branch
instruction occurring at the very last byte of a sector, refer
to the relative branch table included in the appendix to
determine the branch location. (Remember, the relative offset is
from the byte following the operand of the branch instruction.)

There will be many times, of course when you cannot
determine in advance what address to assign to the startim byte
of the disassembly. Just give it the starting address of @.
(It would be wise to note on your printout that the addresses of
this disassembly are not correct in such cases.

NOTE: If you use a starting address of &, you may encounter
a negative branch instruction that points to a minus address. If
so, the disassembler will display the illegal address as “##x",

MORE ON ADDRESSES: If you see a disassembled program with
a lot of good code with a few question marks, it probably
indicates that you are trying to -disassemble across a block
boundary (see the appendix and the instructions to module 7 of
DISK DOCTOR). The proper procedure here is to run “7 Object
file blocks 7/ locations" from the main DISK DOCTOR menu fist and

disassemble the blocks of memory separately. Obviously, the .

indicated address aof any byte that is across a block boundary
vis—a-vis the beginning of the disassembly will be either 4 or
six bytes too high per block boundary depending on the number of
header bytes of each block. The same caution applies when using
option F FIND AN ADDRESS ON DISK. Searching for an address
across a block boundary will provide erroneous results.

EVEN MORE ON ADDRESSES: On rare occasions you may - encounter a
DOS file created by an append process and never recopied. In
such cases, the last sector of the original (pre—append) file

may have 1less than 125 bytes aof data even though it is not the o
last sector of the new file. This can be fixed by recopying the .-

entire file into a new one. If you try to disassemble or find
an address in such a file, however, you will end up analyzing a
lot of extraneous information since the algorithms used by DISK

DOCTOR do not examine the last byte of each sector to see how .

many bytes are in use. (See Appendix I.) Again, the proper

method in such cases is to use Option 7 from the main DISK

DOCTOR menu first.

praEyIys o e

VA AR A,

AT Ty ooy

(0 0p

LS

I RICTTE,

Db

T R P AP T

RS B

\

“‘L(L

DISK DOCTOR

Now for the good stuff. 1 have designed the disassembler to
allow you to disassemble with labels, either system labels
(recognizable, by and large to experienced Atari programmers) or
labels that you wish to assign. Any two-byte address (not
zero—page) can be assigned a label, up to a total of 96
different labels. To create or edit a label file to be used by
the disassembler you will have to use the special prograam that
must be called from the main DISK DOCTOR menu, but for now let
us just use the file of system labels that comes on the disk.
To do so, answer the "which sector?” request with 8 to return to
the menu; then choose option E, UTILITIES, and choose option D
from the Utilities sub-menu.

TO LOAD THE SYSTEM LABEL FILE just hit the carriage return
when vyou are asked for a file name. To load another label file
just give the file name proper without extender (all label files
are automatically assigned the extender .LDT). The file will
take a few moments to load. (If the program can’t find your
label file on the disk it will provide a directory of all .LDT
files for you.) Now you can go back and try disassembly just as
before, only this time whenever the disassembler encounters an
address for which a label has been assigned, it will substitute
the 1label for the address: Here’s an example of disassembly
with labels (from the same sector we viewed before):

18 9798 A9 21 LDA #sa1
1A 979A AD 90 LDY #$090
1C @a79C 8D 99 &3 STA $9399
i1F @79F 8C 98 93 STY $9398

22 97A2 29 59 E4 JSR $EA459
25 97AS 18 1D BPL $97C4
27 @7A7 CE FF 12 DEC $12FF
2A O7AA 30 18 BMI $97C4
2C @97AC A2 49 LDX #s49
2E @7AE A9 52 LDA #8352
30 ©7BA CD 982 23 CMP DCOMND
33 97B3 Fo 99 BEQ $97BE
35 @7BS A9 21 LDA #s21
37 9787 CD 92 93 CMP DCOMND
3A 97BA Fo 92 BEQ $97BE
3C 97BC A2 89 LDX #$89
3E @7BE 8E @3 93 STX DSTATS
41 @7C1 4C A2 97 JMP $97A2

44 97CAa AE 81 13 LDX $1301
47 ©7C7 AD 93 23 LDA DSTATS
4a P7CA &a RTS

Now you don’t have to constantly refer to your memory map
literature to determine what on earth a program is doing. Just
remember a few mnemonics, or assign your own meaningful labels.

NOTE: Once a label file has been 1loaded it remains in
memory and will be used for all subsequent disassemblies until
either another label file has been loaded in its place or the

“MAIN MODULE"™ has been abandoned to return to the main DISK
DOCTOR menu.

A listing of the system label file included on DISK DOCTOR can

be found on page 12.

£ 1SRRI R R,

L P e

v

o i s i A A BRSNS 0N A o M s T SR AR

22 L RN

DISK DOCTOR

C SEARCH FOR A CHAIN OF BYTES

Sometimes you will want to find a specific sequence of bytes
or several similar sequences of bytes that you know or suspect
are on a disk, but you don’t know precisely where. This section
of the main module lets you search the disk, either sector by
sector (“"sequentially®) or to search through a single DOS file,
for any sequence of up to six bytes. If you want any given byte
or bytes in the sequence to be ignored (a “wildcard”), just
enter an asterisk ("#") in that position. Other bytes may be
entered in either decimal or hexadecimal notation (you needn’t
even be concistent), although the program will transform all of
them into hex when it displays the string of bytes that it is
searching for. If you wish to specify- less than six bytes,
simply enter a carriage RETURN alone in response to the prompt.
For example:

SERQUENTIAL SECTORS OR DOS FILES? Here 1let us enter S in
order to search the entire disk.

ENTER SEARCH BYTE 1 7$A9
ENTER SEARCH BYTE 2 79
ENTER SEARCH BYTE 3 7$8D
ENTER SEARCH BYTE 4 ?%
ENTER SEARCH BYTE 35 73

)

ENTER SEARCH BYTE ?<RETURN>

In this case We have told the program that we want to search for
every occurrence of the following five bytes of machine language
code: LDA #9; STA $3xx = load the accumulator with zero; store
the accumulator anywhere on page three of memory. Of course you
needn’t search for machine code; it could be ATASCII characters,
a display list (look for 112,112,112!), etc.

Next the program will ask where you want to start the
search; then it will display the string you are looking for and
begin to read the disk and display (sector/byte) locations
wherein it finds your searched-for sequence. YOU CAN ABORT THE
SEARCH AT ANY TIME BY HITTING ANY KEY. If you are searching
sequential sectors, the program will only abort at the end of
the disk. 1If reading a DOS file, it will stop its search at the
end of the file or if it encounters a bad file pointer. When
the search is over you will be in the mini-menu of option A so
that you can print out the results of the search or read a
relevant sector to the screen. 1If you want to search for more,
simply hit M for the Menu and C for the search option once more.

—-9—

R

R ST R

[P TE R PN RV

i

DISK DOCTOR

D DISK DIRECTORY

This option allows you to examine the directory sectors of a
DOS disk (sectors 361-368) in directory format rather than in

sector format. This is primarily designed to allow you to
locate the beginning of files quickly for tracing or search
purposes. Of course you can modify directory entries by using

the Sector Editor of thjs main module. Unless you are very sure
of yourself, however, you’d be better off to use the separate
Directory Fixer module called from the main DISK DOCTOR menu.
(For the meaning of the heading lipe in the directory table, see
the instructions to that module)

After .each sectrr of the directory is displayed, you have
the option of seeing the next sector (RETURN), returning to the
menu (M), or tracing a file (T).

Tracing a file is particulary useful for quickly locating
the place where a file link has gone bad, for example when you
try to load a program from the disk and you get an ERROR 164,
The +file trace will display each sector of the file, starting
with the sector you indicate, and will continue until it reaches
the end of the file, finds a file number mismatch, or can’t read
a disk sector; then you will be in the mini-menu, where you can
print the trace to your printer or read the offending sector to
determine exactly what is wrong.

If you are examing a disk that runs in BASIC but seems to
have no directory on it, don’t worry. It is there. It is just
been moved to a non-standard location. Examine the sectors from
about 349 to 380 or so with the sector editor until you find it.
Then recopy those sectors onto sectors 361-368 of that or
another disk, and you will be able to read and edit the
directory as usual.

E UTILITIES

The following sub—menu will appear when you select this
option: .

A. Numeric Conversion

B. Drive Configuration
C. Establish XOR mask

D. Load Label File

E. Erase Disk

F. Fill Sectors

G. Calculate DOS pointer
H. Hi to Lo

M. Main Menu

A. Thics option simply converts from decimal to hexadecimal
numbers and vice versa. Simply enter the number (in the range
@-$FFFF) and the equivalent will appear (minus values are not
supported).

B. Use this option either to change the configuraton of a
drive or simply to change the default drive. If you have a
single density drive, the program will be unable to read its
configuration and will tell you so, but that drive will now be
the default drive and single density operation will be assumed.
(If you have two or more drives, and a drive other than number
one is double density by default or has previously been
configured as double density before running this program, you
will still have to go through the configuration routine, just so
the program will know what its density/sidedness is). Moreover,
if you have a PERCOM, be careful. They will accept
configuration commands for functions they are incapable of and
the program will behave accordingly. A drive with only one head
will accept a command to become double sided. But there is no
way that you are going to be able to read sector 721 on that
drive, even though the program will let you try.

-106- ’

Y

a4 it

FERTV Y

"8 Bt A BT e 4 g e

ESNT X0 VX PIT R

DISK DOCTOR

C. This important option lets you read or write a sector
using an "exclusive or" byte. (I¥ you don’t know what that
means, you probably couldn’t use it to advantage anyways). Both
the A and B options of the main menu will use the XOR byte here
established. If an XOR value 1is in effect, that fact will
appear on the upper right of the sector display. Morevoer, when
you write a sector, the program will first ask you if you want
to recode using the XOR value. It is possible to read a sector,
change the XOR value using this option, then return to the
sector (using the EDIT option of the sector editor, followed by
a carriage return). The sector will appear as before, only
changing when you answer Y to the appropriate prompt after vyou
leave the EDIT mode. To eliminate the current XOR mask value
quickly, simply ask the main menu for the directory of the disk.

D. This has been covered above, under the Disassembler.

E. and F. These options allow you to fill a series of
sectors with a chosen byte (F) or the entire disk with zeros (E)
without reformatting the disk. Note: If you just want to wipe
the old filesoff a disk but don’t care what data remains in the
sectors themselves, use the relevant option of the DOS file
recovery program (main DDII menu option 3).

G. Enter the sector number to be pointed to, and the file
number and this option will display the proper bytes to enter
into the second and third last bytes of the preceding sector in
the file chain. See Appendix I.

IMPORTANT: Here, and in all functions involving DOS file
structure, the reference is to files created and linked using
standard Atari DOS, either in single density or double density
mode. (See Appendix I, and note that 0SA+ versions 2 and 3 use
the same file structure). Standard Atari DOS cannot handle
disks with more than $3FF (1823) sectors however (Indeed, the
rumor is that that’s how many DOS 3.9 will use). Thus any call
to the program for a DOS file structure function involving the
second side of double sided disks (sectors 721-1449) asumes that
the modified Atari DOS available from BJ Smartware has been (or
will be) used to create thaose files. This is a fair assumption,
given that BJ DOS is the only known Atari-DOS-compatible DOSs
available for full double sided operation. Any file that runs
in normal DOS, will run in BJ DOS. Of course, BJ DOS may also
be configured to run on single sided double density drives.

;
i
¢
L
K
.

H. -Choose this option and the data currently in the sector
buffer in bytes 129-256 will be moved to positions 1-128. 1
really can’t imagine why you might want to do that, however!

SHUSEAR AP

DOUBLE DENSITY USERS PLEASE NOTE: Due to a quirk in the Atari
operating system, the first 3 sectors on any disk must be single
density. Don’t try to find the second half of those sectors!
It’s not there. Due to a bug in early Percom double sided a
drives, sectors 1436-1439 are also single density and sector
1449 cannot be accessed. If you have a recently manufactured
dual head Percom, try answering the "Is it a Percom” question
you will be asked upon configuration with “N". Then try reading
those sectors. If you are successful, the bug has been fixed!

—-11-

e S ——-

g

S e

ey

P P

LN\‘;

DISK DOCTOR

33279 ($DLF) CONSOL

The System Label File S3277 ($0810) GRACTL
(LABELS.LDT) S3248 (S0046) HPOSPS

—_ SIT74 (SD26E) IRGEN
54276 ($DA#4) HSCROL

m ($6362) DCOAND m ($9306) DTIMLO 53789 ($D299) KBCODE
m ($8383) DSTATS 789 {$6381) DUNIT 537786 ($D28A) RANDOM
m ($63d4) DBUFLO 768 ($0368) DDEVIC S4286 (SDAJE) NMIEN
m ($8385) DBUFHI 3 ($42ET) MEMLD 53275 ($081B) PRIOR
78 ($439A) DSECLO 783 ($82FB) ATACHR 53264 (sDW1G) TRIGO
m ($6388) DSECHI S4618 ($0342) PACTL T bk ($4284) STRIGS
794 ($831A) HATABS 54279 ($DA#7) PMBASE 54282 (SDA9A) WSYNC
832 ($6340) 10CB 632 ($8278) STICKS 5325 (s$0#11) TRIGL
834 ($4342) 1CCON 633 ($8279) STICKI 845 ($9285) STRIGI
835 ($0343) ICSTAT 24 (s0270) PADDLY 53274 (S081A) COLBK
836 ($0344) ICBAL 625 ($4271) PADDLY 53278 (s0816) COLPF#
837 ($9345) 1CBAH 53268 (SDAC) SIZEM s3271 ($D#17) COLPF1
840 ($9348) ICBLL 53256 ($0898) SIIEPS 53272 ($0918) COLPF2
841 ($8349) 1CBLH 53775 (SD26F) SKCTL 53273 (s0819) COLPFS
559 ($622F) SDMCTL 54283 (SDASB) VCOUNT $3278 (SD8IE) HITCLR
548 ($6238) SDLSTL 54277 ($DAS) VSCROL 53249 ($0841) HPOSPI
561 ($6231) SDLSTH 512 ($6209) VOSLST 53256 ($0882) HPOSP2
823 ($826F) GPRIOR 522 ($829A) VSERIN 53251 (S$D#G3) HPOSP3
S3768 ($D296) AUDFL 546 ($6222) WVBLKI 53252 (SD864) HPOSME
S4273 ($DA#1) CHACTL 548 ($6224) WVBLKD S3253 (S0845) HPOSMI
54083 (SD2F3) CHART m ($0ZBE) SHFLOK S3254 (S0866) HPOSN2
54281 ($0489) CHBASE S3761 (s0281) AUDCI 53255 ($D847) HPOSA3
756 ($82F4) CHBAS 53768 ($D298) AUDCTL S64 ($8234) LPENH
n ($62¢8) COLORA 53762 ($0202) AUDF2 565 ($6235) LPENY
768 ($92C4) COLORS 53763 ($D263) AUDC2 S4916 ($D3#M) PORTA
749 ($62C5) COLORI 53764 ($0204) AUDF3 SA17 ($D391) PORTB
18 (482C6) COLOR2 53765 ($D295) AUDC3 53257 (sD689) SIZEPY
m ($62C7) COLORS S3766 (S0264) AUDFA 53258 (S08A) SIZEP2
™ ($6208) PCOLRY 53767 (SD2T) AUDCA 53259 (s08#B) SIZEP3

Lo F FIND AN ADDRESS ON DISK

This option enables you to specify the equivalent memory
address of a byte on the disk and to let the computer find for
you any subsequent memory address relative to that starting
byte. (Once you have defined a starting address, it remains the
default starting address until you define a new one or leave
this module for the DISK DOCTOR system menu. Simply hit RETURN
in response to the prompt in order to use the same address.) As
usual, you may choose to have the computer assume sequential
sectors (in which case the calculation is immediate) or use the
DOS file pointers (in which case the computer must read every
sector of the file in order to follow the pointers). When the
proper byte is located, the sector will be displayed with a
pointer to the correct byte and a confirmatory message at the
bottom of the screen.

NOTE: Please refer to the caution expressed with regard to
relative addresses in the DISASSEMBLER instructions. If you are
examining a DOS file, use the Object file analyzer from the main
DISK DOCTOR menu first. :

This concludes our introduction to . the main module, to
return to the DISK DOCTOR system menu, simply choose option M.

-12-

g
X
%
¥
%
i
*
&
L
H
<
3

st Neher 3 AL v s

DISK DOCTOR

2 THE ULTIMATE DUPLICATOR

This machine language program allows you to duplicate a
complete single density disk; indeed to make up to 255 copies of
a single disk on one read of the original. If you have two
drives, you may run it from the main menu, but if you only have
one, you may save yourself some disk swapping by removing the

BASIC cartridge and rebooting DISK DOCTOR II. When so booted,

THE ULTIMATE DUPLICATOR comes up immediately.

All destination disks must be formatted before using the
DUPLICATOR. Preferably, use the format option from the DOS file
recovery module in order to verify the integrity of the disk.

When the DUPLICATOR first comes up you will see the
following display: . ’

DISK DOCTOR II
ULTIMATE DUPLICATOR

280
SOURCE 1<
DESTINATION 1
VERIFY -
START 291
FINISH 720
COPIES 891

<>,START,SELECT (map)

These values represent the default parameters for making 1
copy of all the sectors (1-729) from a source disk on drive 1 to
a destination disk on drive 1 and writing the destination
without verify. To change any of these values, simply move the
arrow cursor with the > and < keys and hit the return key when
the cursor is positioned next to the parameter you wish to
change. As you hit the return key, the drive numbers will
toggle through the 4 possible values and the verify parameter
will toggle from plus (with verify) to minus (without verify).
Writing without verify is more than twice as fast as writing
with verify, but is slightly less reliable.

When you hit return when the cursor is resting on one of the
lower three values, the bottom most 1line (the “prompt® line)
will change to "enter value“. Enter a decimal number from 1 to
728 for the sector numbers, or from 1 to 255 for the number of
copies you want the program to make. Hit return, and that
number will be transfered to the proper parameter.

Once the parameters are properly established (make sure. the
starting sector is lower than the finish!) and your disks are
inserted in the proper drives, hit the START button to begin.
(The START button is the proper response to all general prompts
on the prompt line, but any time the computer is waiting for you
to push START, you may abort the entire procedure by hitting the
ESC key.) -

You can abort the copy while the program is reading vyour
source by holding the OPTION button, whereupon the computer will
write out whatever has been read up to that point to the
destination disk(s).

The DUPLICATOR uses a compaction scheme that allows it to
copy almost any disk in only two passes on a 48K machine. Many
will copy in only one pass. :

As each sector is read or written, its number appears on the
top of the display. If the computer encounters any bad sectors,
that sector number will be displayed to the right of the current

sector number. (Such sectors will not be written to the

destination disks.) When the entire process is completed, you

may request a listing of all the bad sectors on the source disk:
by hitting the SELECT button (sector "map”) To copy another

disk, simply hit START to return to the original display.

-13-
Q

D oo R A o

AT T i At N

v

S

DISK DOCTOR

I1f the duplicate you make with the ULTIMATE DUPLICATOR does
not run properly, and the drive "squawks" when the original
loads, you will have to use the bad sector create module of
option S from the DISK DOCTOR II main menu.

3 DOS fFile rncovery/directcry
edit and Format bad dimsks

This module allows you to edit directories with ease, to
recover mistakenly deleted or 1lost files, to repair the
allocation map (Volume Table of Contents) of the disk and to
format disks that you cannot or don’t want to format using DOS.
Double density Atari DOS and double density/double sided BJ DOS
are fully supported.

As in the main module, use the configuration option ("C")
both to change default drives and to reconfigure or establish
double density default parameters.

fo edit the directory, enter option A. You will see a
display like the following:

F#% NAME EXT START LEN FLAG
2 DOS SYS 4 39 L
1 TEST DAT 43 198 D

The first column is the file number assigned by DOS to this
file. The file name proper and extension (note no period
between them) follow. In column 4 you will see the starting
sector of the +file. Column 5 has the length of the file (the
same number you see when you do a directory from DOS.) The last
column will usually be of most interest. L means the +file is
locked (as far as DOS is concerned). If there is nothing in
that column it means the file is unlocked but in use. If there
is a D there it means the file is deleted (as far as DOS is
concerned). That means that next time DOS tries to write a new
file to this disk it will use that file # for the new file since
the user doesn’t want the old file anymore. But until DOS
actually writes a new file into the sectors where the old file
was, the old file is still on the disk. If you have
accidentally deleted a file and want to recover it, and you have
not written any other new information to the disk since then,
your file should be totally recoverable.

TO RECOVER AN ACCIDENTALLY DELETED FILE or to edit any other
information in the directory (you may want to put some special
characters in the file name. Warning: if you do, you won’t be
able to read that file from DOS), simply type in the appropriate
file number in response to the prompt line

ENTER F# TO EDIT,W TO WRITE SECTOR OR <CR> TO SEE MORE

Follow the prompts from that point on. Each time you make a
change, that sector of the directory will be re-displayed on the

screen as changed. If you want to make more changes, enter
another file #. When you are satisfied with your editorial
work, enter W in order to write the modified sector to the

disk. If you don’t write it to the disk, it won’t be there!

(If you want to add a file, or any other information, to the
end of the currently active directory area, you will bhave to
write out some dummy file names to the disk first, be it from
DOS, BASIC or the DISK DOCTOR main module, then go back to this

module.)

After you have changeﬂ the flagrof a Deleted file " back to

locked or in use, you still are not home free; for when DOS
deleted the file it also marked all of the sectors in the file
as free to be used again for other purposes. Were you to try to

-14-

5 AN e/ A R 3l e o ok 24 MK 9O 3 M ANl

ALY b gt ST N A A

(73 Pt L L RO AP TR S

&

DISK DOCTOR

|
i
a new file to the disk now, you would almost certainly. }'

save
losse much of the old file as the sectors were reused. You must { K
fix it so those sectors are marked "in use" again. To do so, :

simply choose B FIX THE ALLOCATION MAP.This part of the program :5
reads through every file that is currently marked as active on
the directory, rebuilds the alldcation map accordingly, and
corrects the free sector count. ‘

If you should make a mistake and run the allocation map L E
repair module before the directory was properly prepared, simply
make your directory changes and rerun the module.

An alternative to fixing the allocation map after mistakenly
deleting a file is simply to mark .it in use, copy it to another
disk (using DUP.SYS) and then write it back to the original.

ey

E. Erase all files: Use this option to create a clean DOS

‘B disk without reformatting. The reformatting process is a rather

'} drastic one to subject your disks to every time you want to

clean off old data or programs, and frequently you may find that

:“} an old disk when reformatted will result in bad sectors. Avoid
1

this problem by using this option.

F. Recover lost files: This option should be used if a
directory sector (361-368) has gone bad. (Since these sectors
of the disk are modified frequently, they tend to become bad
more easily than others. You will know you have this problem
if you get a 144 error when you ask for a directory.) The
proper procedure is to copy the defective disk to a new disk
with THE ULTIMATE DUPLICATOR. Note which directory sectors are
bad on the original. Then run this option on the new disk.

This procedure takes a while, so be prepared to wait. As
each file that belongs to the missing directory sector is
discovered, its sectors will be printed to the screen. When the
process is over, the recovered files will now be listed in the
directory as FILEA, FILEB, etc. (Note: the recovered files may
well include some you have earlier intentionally deleted but not
vet overwritten.) You will now have to go in with the main DDII
module (or DOS, or BASIC, etc.) to try to determine just what
each of those anonymous files is. Once you have made that
determination, give the files meaningful names with option “A"
and delete those files that have to be deleted. Just for
safety’s sake, you should now probably run the allocation map
repair module, too.

FORMAT

The last option from this sub-menu allows you to format
defective disks. If you have some disks that DOS refuses to
format for you, run them through this program. Of course vyou

) can also use this option to format healthy disks as well.
If there are indeed damaged areas on the disk, the drive
. will try to format the disk twice. Then the program will write
'} out the boot code, the VTOC and the directory sectors on the
disk. The first entry in the directory will not be a file, but
will be a statement of how many bad sectors are on that disk.
Those sectors will have been marked as in use in the VTOC, so

from now on DOS will avoid them entirely.

PERCOM OWNERS: Unlike Atari drives, Percom drives do not
send back an error message to the disk operating system telling
it that it could ncot format successfully. Therefore, if you
format normally you may well be using disks that are actually
faulty. Use DISK DOCTOR instead. There is one drawback. Some
Percom drives (especially slave drives) seem to have great
difficulty reading the inside sectors of a disk. Thus, although
successfully formatted, the drive may .erroneocusly inform the
computer that some of the higher number sectors are bad. The
program will mark them as bad sectors. In order to determine if
your drive is in this category, run SuperDuper Duplicator on
disks known to be sound. I1f your drive struggles to read the

innermost tracks, I would suggest you see if you can get the
- drive replaced.

'
i
"\
K
i
'

‘'you originally deleted that file.)

DR N S P < L ATV

4 O0OSA+ 4 recovery directory
edi t .

N g

NOTE: DO NOT _TRY TO RUN THIS MODULE UNLESS YOU HAVE A DOUBLE
DENSITY DRIVE'!

Since unmodified Atari DOS 2.9 cannot access more than 1623
sectors, a need was felt to provide an alternative DOS to handle
double sided drives and other non-Atari manufactured drives.
Optimized Systems Software, Inc., the creators of Atari DOS
filled this need with the introduction of their 0SA+ version 4
Disk Operating System. As of this writing, 0SA+ 4 is the only
DOS being provided with PERCOM drives. (This is lamentable.
Originally PERCOM provided a very usable maodification of DOS 2.8
for their single sided double density drives that, unlike OSA+
4, was compatible with all Atari software. Such a DOS is still ¥
available with MicroMainframe drives and from BJ Smartware. 3 =
Single density drive owners may ignore all that follows. As
delivered, OSA+ 4 will not run single density.)

By the way, if you have 0SA+ version 4.9 only, insist on
getting an update to version 4.1. The former is bug-ridden and
practically unusable.

The file structure of OSA+ 4 is totally different from that 3
of Atari DOS, therefore totally different procedures are :
required to recover lost files or to trace the sectors of a 3
file. This module is intended to provide those procedures.

i b RIRPNARL Y e R 44 aae bt n]

BIRT T T VL v

As the program comes up, you will first be asked what drive
to configure for double density operation.

A. Edit the Directory: This option functions similarly to the
equivalent option in the DOS directory edit program. The
information contained in an OSA+ 4 directory sector is somewhat
different, however. In addition to the file name and length, a
file is marked as locked or unlocked and a sector number, the
number of the first sector “map" of the file, is given. That
"map" sector is simply a list of all the data sectors in the

file. (If the file is a long one, there may be more than one
map sector; the pointer to each map sector being found in the
previous map sector.) When you delete a file, as with Atari

DOS, the file name remains in the directory until overwritten
with another file, but the starting map sector number is simply
changed to 8. So, once deleted, there is no simple way to find
out out where that mistakenly deleted file used to begin. Thus
the need for option B, RECOVER LOST FILES. Run this option and
the program will search the disk for all possible file maps not
currently found in the directory. (Wait, this takes time!)

Once you have a list of possible file maps, you should run
option D, DISFLAY FILE MAP to determine the actual sectors
included in the lost file(s) and check them out with the main
module if there is some doubt as to which file is which. Note
that if a file has more than one map, the second map will
automatically be displayed when the first is finished. Once you
are sure which maps go with what file names, put that
information in the directory with option A. Lastly, recopy that
recaovered file onto a new 0OSA+ 4 disk (else next time you write
a file to the old disk the recovered data will be overwritten
since the relevant sectors were marked as free in the VTOC when

L T TN IR R RPN

Larr otk RS G LW g e Y PSR

This same procedure should be followed in order to recover
files should a directory sector go bad; though of course in this
case you will have many more file maps to deal with.
Unfortunately, there is 1little alternative. 0SA+ 4 offers
several distinct advantages over DOS 2.9 when everything works
right, but when it doesn’t, it can be a real mess.

DISK DOCTOR

==

PR M O R
A

e

= RFM tewmt annd CcCreate bad
mectors i

e e b

¥

Ralzieg

This option of the main menu allows you to test the speed of
your 810 drive and to adjust it. It also enables you to create
sectors on the disk that the drive cannot read when operating at
normal speed and to check the error status of any sector on the
disk. b

You will see the following menu:l :

o

A CHECK RPM

B WRITE BAD SECTORS

C READ SECTORS FOR ERROR CODE :
7 D SYSTEM MENU i
! ‘
i

To check the RPM (revolutions per minute) of your drive,
simply hit the A key in response to this menu. (It’s wise to

Theta ¢

<

5

- % ‘ have a rather unimportant [but formatted!]l disk in the drive .
4 during this process since the disk will be read many times i
¥ during the check.) After the RPM begins to display, simply hold :
i§ down the OPTION key in order to abort the speed check and return :
;; to the menu. The normal speed of the 819 drive is 288 RPM, but i
- if you are within a range of 284-292 I wouldn’t mess with it. &
_é If you have to adjust it (and if you’ve been having trouble with

it, that may be the only maintenance it needs) refer to appendix
111 for the location of the adjustment controls. You may adjust
the speed while the RPM tester is spinning the disk.

The proper speed of PERCOM and MicroMainframe drives is
295-399 RPM.

Bad Sectors:

¥

%

% There are several ways to create "bad" sectors on a disk,
,T i.e. sectors that the drive is unable to read. The easiest is
g simply not to format them in the first place. To do this,
3

=

follow vyour normal process for formatting disks, but as the
drive starts to whir, count the clunks as the drive head moves
from sector to sector. (The drive formats a disk by laying down
sector map information and data (all zeros on an 818, all 1A’s
on a Percom), starting at sector one on the outside of the disk
and proceeding to sector 7206 on the inside. After it has
written data to each sector it reads the sectors in reverse
order to determine that the data has been properly written.
Only the writing process is formatting proper. The verification
read does not have to occur for the disk to be formatted.) Each
clunk is one track (eighteen sectors). I1f you want to format,

"I say, only the first 499 sectors or so, when you hear the
= twenty—-third clunk (4@4/18=22.22), quickly pop open the drive
ﬁ%‘ door and remove the disk. This will not damage the disk, since
s the read/write head is 1lifted off of the disk as soon as the
5 door is opened. (Do it too often ,though, and it could loosen
'g. things up in your drive!)

:% If you have a disk that is already formatted, however, or
‘ﬁ want .to create bad sectors only at precise points on the disk,
g you will have to use another method. This is where our program
3 @odule comes in. What we want to do is write data to the sector
24 in gquestion so that under normal circumstances it cannot be
3 read. We can do this either by writing the data at a speed
53 substantially different from the normal one, or by locating the
5 data somewhere that it is not supposed to be.

b -17-

Lt . .

BT NI

e e e e i e i i A, 83

|
|

A T
e e ED AN

DISK DOCTOR

The former method is the most reliable when writing large
blocks of bad sectors. To use it, choose option A and adjust

your drive speed to about 228 RPM. (The speed is not as
important as how the drive sounds. It should be reading the
sectors evenly -——beep - beep - beep -- but clearly struggling

to do so.) When you have set the speed properly, hit the OPTION
key to go to the menu. Be sure the proper disk is inserted in
the drive. Hit B for the bad sector option. The program will
ask you to indicate the starting and ending sectors of the block
of bad sectors you wish to create. (Enter them in decimal.)
When you are finished creating bad sector blocks, enter @ to the

next prompt and you will be returned to the menu. (To adjust
RPM, see Appendix III.)

Now you will probably want to adjust your drive speed back
to normal and test the results of your labors with option C.
When the drive is set to normal speed again, that option will
let you see if the sectors you have worked on are indeed bad.
If the error number returned is 1, then the sector is good. An
error number greater than 128 indicates a bad sector.

Owners of Percom drives (whose speed apparently is not user
adjustable) and those who want to create only a few bad sectors
at a time, can use another method. Attach a 1looped piece of
cellophane tape to the top edge of the disk, about a third of
the way from the right hand side when 1looking at the labeled
side, creating a "tab" that allows you to pull on the disk while
it is inserted in the drive and the door is closed. Pull gently
but firmly on this "tab" as the drive is writing to a sector,
and, with some practice, you should socon be able to create bad
sectors more often than not - without having to undergo the
rather nerve-wracking experience of fiddling with the innards of
your drive.

Yet another method for those with access to a computer that
can format selected tracks of a diskette, is to format the disk
on your Atari and then to reformat the selected track on the
other computer.

& Read a BASIC program from disk

Many times authors selling easily deciphered (i.e.
well-written) BASIC programs wish to protect their efforts from
such decipherment; but under normal circumstances, when you are
running a BASIC program and hit the SYSTEM RESET button, you
will be able to LIST the program that you have been running.

There are two ways to circumvent this possibility. One is
t0 put garbage into the variable name table. This is the table
of variable names that is stored by BASIC along with the program
when it is saved to disk and read back into memory when the
program is loaded. But BASIC does not use this table when
running the program; within the program itself each variable is
represented by a number, not by a name. The variable name table
is used only when you ask BASIC to LIST the program, or when you
add or edit program lines. 1If you try, then, to list a program
whose name table has been destroyed, you will get something
rather unhelpful.

% -

N2

R e R e %)

DISK DOCTOR

A further element of protection is to destroy the last
statement pointer of the program. After the line number of each
statement in a BASIC program, BASIC puts a pointer consisting of
the offset <from the beginning of the current line to the next
line. That way BASIC can find the beginning of any program line
without reading through every byte of the program. It only has
to read the pointers. Due to a peculiarity in BASIC, you can
use this system to your advantage. BASIC automatically assigns
the 1line number 32768 (i.e. 32K) to the immediate command line
(e.g. when you type LIST). If the pointer to that 1line number
is missing, BASIC is unable to find the command line, and will
not respond to commands.

Many of the programs of DISK DOCTOR are protected precisely
in these two ways. Try to load them in from BASIC and see what
happens. Up until now the only way you could read such programs
was to physically trace through the file on the disk with a
sector editor, restore the line poinfer at the end of the
program, and put in some dummy variable names into the name
table. This module lets you avoid all these steps. Moreover it

lets you create a working, modifiable copy of such programs with
very little effort.

What DISK DOCTOR does is to read the program directly off of
the disk and to translate the BASIC "tokens®” back into normal
BASIC words. Instead of the original variable names used by the
author (whether or not they are still on the disk), it will
assign the new variable “names" V4 thru Vi127. (Hardly very
meaningful, are they, but certainly much better than a string of
control characters.)

If you need a directory of the disk to remind yourself of
the name of the program you wish to read, the program will
provide it. Then simply enter the name of the BASIC program you
wish to examine. If you choose to have the output sent to the
printer or to the screen, any control characters in the program
will appear as an inverse C in the listing. If you send the
listing to a disk file, the correct control characters will be
incorporated into the file. When the listing is done, you may
request to see the equivalent variable names in the variable
name table itself, but don’t be surprised to see garbage.

The listing will also include sector/byte information when
it discovers a faulty 1line pointer or other erroneous

information.This should enable you to go back and repair certain’

troubles in your own BASIC programs as well.)
In order to create a working copy of the file, simply send
the listing to a disk file. When you ENTER that file from BASIC

(be sure to ENTER not LOAD it) you will undoubtedly see a few

ERROR messages, due to the fact that it is not - always readily
determinable whether or not a variable is a string variable. If
you have any programming experience at all, however, you ought
to be able to fix those easily. Some examples: ’

A%$(1,4)=B% will appear as V1%$(1,4)$=V2
BS—A&(I 4) will appear correctly as V2¢=V1s$(i, 4)
ADR(AS$) will appear as ADR(V1)

In any case, there will be far fewer errors to correct if you

use this method then if you ¢try to go in and restore the .

variable name table. In that case nearly every string and array
statement will need correction. You will also have to eliminate
any extraneous staiements such as "end of program detected at".
If you see that the variable name table is intact, however,
the best way to get a useful listing of the program is to use
this module to find the location of the broken line pointer and
to restore it. But this is best 1left to advanced users.
Novices may experiment a bit on their own programs to see how
this works: Write short programs; save them to disk; then go in

with the main DISK DOCTOR madule and examine what the saveql

program actually looks like on disk.

‘

TP

DISK DOCTOR

7 List Object file blocks/locations

Machine language programs (binary load DOS +files, loaded
thru DOS option L) are frequently stored on disk in blocks of
memory rather than as a single long piece of code to be loaded
into one 1location. (This is due to several factors; the style
of the programmer, the peculiarities of the assembler or linker
used, and whether or not several files have been appended to
another.) The first two bytes of ‘any such file are always $FF

. $FF, followed by the two bytes of the starting address where the

following code is to be loaded and the two bytes of the last
address of the load block. 1If there are additional blocks, they
may be introduced by a similar six byte header or only have the
four bytes of address information.)

This module 1lets you quickly analyze this information.
Simply type the file name (use wildcards i{f you wish) as you
would with DOS, and the memory blocks in the file, as well as
their locations on the disk, will be listed to the screen or
printer. The locations given refer to the start of the blocks
of code themselves, not to the headers.

If ;ou wish the information to be sent to your pringer,
answer the "hardcopy?" prompt with Y.

The program will also indicate the initialization addresses
and run address of the target program, as well as its length,

zg Create or Edit a Label file

The last option from the main system
create and edit files to be used with the disassembler of the
DISK DOCTOR main module. The program is self prompting and vyou
should have no trouble with it. It includes an option for
printing out a label file of equivalents to the screen or a
printer.

You can create a file of up to 96 addresses and labels.
Addresses can be given in decimal or hex notation, but must be
non zero—page addresses. (I.e. $990A is a legitimate address
for the file, but will not be recognized by the dxsassembler)
Labels can be from one to six characters long.

Label file names are automatically given the extension ..LDT

As usual, it is not advisable to use file names only one
character long. :

menu allows you to

Now you know all there is to know about DISK DOCTOR. Be
careful, enjoy, and happy DISK DOCTORing.

-20-

tal

Ry

?

1 v

H. £

i

i 3 2

iR %
& T3
A
sE “;‘
é? <
E]

3

H

S

1B
P
-
2

i AN v By
2

oA b

APPENDIX I

THE ATARI DISK SYSTEM

Atari compatible disk drives store data on the S5 1/4 inch
floppy disk in a series of 48 concentric circles or "tracks".
These tracks are numbered by convention from outside in, so that
the highest numbered track 1is the smallest circle near the
center of the disk.

When you format a disk, each track is divided up into 18
divisions or "sectors"”™ of data. Each sector is able to store
128 bytes of information in a single density environment and 2356
bytes in a double density environment. The 819 disk drive can
only read and write 128 bytes to a sector. Even if you are
using "double density™ disks, you will only get 128 bytes to a
sector on the 819. You must have a double density capable drive
in order to pack those additional 128 bytes into a sector.

Now since there are 49 tracks, and 18 sectors per track,
there are obviously a total of 18#49=729 sectors on one side of
a disk. Since each sector can store 128 bytes of information, a
single-sided, single density Atari drive can provide "on-line®
access to 128%#729=92,168 bytes of data on one disk.

The operating system of ATARI computers allows the
experienced programmer immediate access to any one of those 729
sectors. Indeed many games and other machine language programs
are stored directly on the disk, sector by sector.

THE BOOT PROCESS

When the computer is cold-started (that is to say, turned
on) it checks to see if disk drive #1 is on. If so, it tries to
read the data on the first sector of the disk. If successful in
doing so, the computer looks at the first six bytes of the data
in that sector in order to determine what to do next. The
computer is primarily concerned to know how many sectors of data
it should read off of the disk and where it should put that
data. A typical (and well known) series of such bytes is:

99 93 99 97 49 15

This is a very meaningful statement to an Atari computer. It
means: read in three sectors of data (including 5ector_1) and
put them at sequential locations of RAM memory starting at
address $799; start executing the machine language code at
location $7863 and when that is finished jump (=GOTO) to
location $1546 to run the program. But three sectors of 128
bytes each beginning at $700 will only reach to $87F. How @aes
the program that is to be executed at location $15490 ggt into
the computer? It gets there because the program starting at
location $796 reads it in to RAM sector by sector.

This is what as known as the boot (<bootstrap) process. The
computer automatically loads some of the program, and that part
of the program loads the rest. This is the way thAtthi g:e:t
majority of machine language programs are loaded from dis nto
the computer. : .

RS 3

p gy

[0 2

o o A0 S

=%

aamenssz s

APPENDIX I

DOS

For most users, however, the normal way to access the disk
drive in order to store or retrieve data is through DOS, the
Disk Operating System, be it ATARI DOS or any of the various
third-party DOS equivalents that use the same format. DOS is
nothing more than a “"booted” machine 1language program that
allows the user to access the disk using filenames rather than
worrying about where precisely on the disk each byte of
information is going to be placed. DOS does all of those
calculations automatically. DOS keeps track of what sectors are
in use, how many sectors are available to be used, and which
files are locked, in use, or deleted.

In order to do all of this, however, DOS has to sacrifice
some of the room available for data. Only 125 bytes of each
sector on a DOS disk are available for data storage; the last
three bytes are used by DOS for housekeeping. Moreover, due to
a bug in DOS, it cannot use sector 720 of the disk. Thus, since
DOS reserves the three first sectors of the disk for its “boot”
code, uses 8 sectors (361-8) to keep a directory of the files on
the disk, and uses 1 sector (368 the VTOC or Volume Table of
Contents) to keep a "map™ of all the other sectors on the disk
and their status, only 797 (720-1-3-8-1) sectors are available
for data storage on a DOS disk, and only 797#125=883735 bytes of
data may be stored.

When DOS starts putting files onto a newly formatted disk,
it writes the files all out in sequential sectors, one after the
other. But after a few files have been deleted, DOS soon finds
that it can no longer store information in a single file in
sequential sectors but must jump around the disk looking for
free space to put the data. In order to do this, DOS uses a
system of pointers. Each sector of a file has a pointer to the
next sector of the file. At the end of the file, the pointer is
@. The location of the first sector of a file is kept as part
of the directory.

The file pointer is a part of the last three bytes of each
sector. These three bytes (bytes 125,126,127; remember the
first byte of a sector is 9, but the first sector of a disk is
1!) mean the following:

byte 127 how many bytes of the sector are used. If the
sector is full it will contain the value $7D=125

byte 126 the low eight bits of the file pointer

byte 125 the file number to which this sector belongs {bits
2-7) and the high two bits of the file pointer (bits 9-1) -

Examine, for example, the last three bytes of sector 4 on most
disks and you will probably see the following:

99 85 7D

This means that this is a part of file number &, the next sector
of the file is sector S5, and this sector has 125 bytes of data.

When a new file is written to the disk, before writing out
each sector DOS determines where it is going to put the next
sector and inserts the appropriate file pointer into the end of
the sector. When DOS reads a file, whether it is providing data
for a GET command in BASIC, loading or entering a BASIC program,
or loading a machine language program, it retrieves sector after
sector according to the pointers until the end-of-file marker is
reached. But DOS also checks to make sure the file numbers in
each sector are consistent, and if they are not, you will get an
ERROR 164 message.

-22—

D i

ST

i B AR A A

e et i ian AR IR

RPN RPN ISR 1L Y- PRI Sepin FECHC R LIRS U AUt BRERLE S S S SR

xRk 6o

b

Pt e

PO

A elad T L

APPENDIX I

Why should the file number be wrong? Although ATARI drives
are relatively reliable, a bad byte can always occur now and
then. And if one should occur in the VTOC, which is rewritten
to the disk every time a file is added or deleted, the next time
DOS needs file space it could appropriate a sector in the middle
of another file.

DOS also seems to have a particlarly hard time of it when it
tries to write a new file on the disk and runs out of space in
the middle of the write. This will frequently result in a "free
sectors” statement that is incorrect.

DISK DOCTOR allows you to recover all or most of a file
wherein something has gone amiss, be it a single byte, a file
pointer, or a mistakenly deleted file. To fix a file where you
receive an ERROR 164, for example, trace the file, examine the
erroneous sector in the file chain (probably part of a totally
different file), and fix the file pointer in the sector that
points to the bad one to point to the next sector in the file.
You ought to be able to recover the entire file except for the
bad sector.

SOME DOS FILE POINTER EXAMPLES (bytes 125,126 of each sector):

125 126 125 in binary file # next sector
iC 12 990111/99 97 (=9060111) 612
32 A9 2991199/19 AC(=991108) 22AA

S1 F9 9190106/91 14(=916109) 1F9

PROTECTING PROGRAMS

Since a program such as DISK DOCTOR can give you access to
every sector and byte of data on the disk, how can programs be
protected against indiscriminate copying?

The earliest disk software for ATARI was not really
protected. Since most users only had access to the "duplicate
disk®” option in DOS, all that had to be done was to put data
into sectors that were marked as unused in the VTOC, for the
"duplicate disk™ option does not really duplicate everything,
only those sectors that are marked as in use.

Soon, however, ponderous (in. speed, not in size) BASIC
programs (that take about 28 minutes to write) that could copy
all the sectors of a disk became widely available for
ridiculously high prices, and software authors perfected another
scheme, still widely used, called bad sectoring. The trick was
to format a disk in such a way that not all the sectors on it
were readable. In order for the program to run, it must try to
read one or more of those "bad" sectors and find that they are
bad. I1f they are not bad, the program will stop, reboot the
disk, or some other such thing; for the program "knows"” that it
is not on its original disk, the one with the bad sectors.

This scheme, too, was soon easily defeated. First by
skilled programmers who could examine the machine code on the
program and alter the bad-sector checking code. Indeed a

skilled programmer can turn a typical bootable disk program into
a binary DOS file and store six games in the space that used to
be taken up by one. But few (fortunately) are those able to do
things 1like that. If you wish to try to achieve such skill,
DISK DOCTOR can help you do it.

[V ey

MR g §

——

B

APPENDIX I

DISK DOCTOR enables you to use another method to back up
disks protected by bad sectoring, that is to create bad sectors
on the destination disk exactly where you found them on the

source disk. 1 do not believe that making a backup disk of
software that you own is a crime. It is certainly not immoral.
But I am not a lawyer. Check with your own, if you are

concerned. Unquestionably, however, distribution of unlawfully
duplicated opyrighted material, especially if for personal gain,
is a serious crime. Please don’t do it.

The ATARI disk drive is "intelligent”. It has its own on
board computer that does most of the serious work. It is for
this reason that protection techniques for ATARI software
‘'remained so primitive for so 1ong. When the 810 is told to
format a disk, it formats it the way it wants to, and the user
has no control over the results. On other computers, the user
can specify how the sectors are to be organized in any given
track. For the sectors are not simply arranged sequentially
within a track. Ideally one tries to arrange the sectors so
that the read/write head is positioned over the next sector as
soon as it is done processing the data from the previous one.
Thus optimum placement of the sectors of a track depends on how
long it takes to process that data and how fast the disk is
spinning. To see how this is true, find someone with a Percom
drive and listen to a disk that has been formatted on a Percom
drive. On the Percom, that spins at 368 RPM, the disk loads
substantially more quickly than does a normal 819 formatted
disk. But try writing to that disk on an 814. It takes audibly
longer than usual. That’s because the sectors are arranged
differently on the track by the Percom drive.

How, then, does the drive know where the sectors are if they
are not always in the same order? It knows because there is
actually more data in each sector of a disk than just the data
visible to the normal ATARI user. When formatting the disk the
drive lays down all sorts of additional information to enable to
find the various sectors, marking each sector with a sector
number. But when called by the computer, the chip in the drive
will only respond with the data of the sector (and the
checksum) . :

As more and more clever people became interested in ATARI,
it was inevitable that special drives and modifications would be
developed that would allow large scale software houses to format
their disks in special ways. When these disks are read
according to the code (usually itself encoded) in the boot
program of the disk, the data is read correctly and the program
runs. When copied by any straightforward software process,
however, (such as SuperDuper Duplicator), crucial code-bearing
sectors are misread. : :

An example: One sophisticated manufacturer reqularly
revises every last sector of a track (18,36,54,etc.) so that the
drive thinks it is another second—-last sector (17,35,53). The
only way to read that sector is to read the previous sector
twice very quickly in succession. The drive tries to read the
same sector it just read before,but since it hasn’t had a chance
to make a complete revolution yet, it actually is tricked into
reading the second sector with the same "name®". This is what we
have referred to as special formatting; a procedure that cannot
be defeated by software alone. Unfortunately, as more and more
software houses (and individuals) acquire the hardware to enable
them to produce this kind of protection, the percentage of them
that seem to be offering backup disks for a nominal charge seems
to be decreasing. This is as lamentable as the achievement of
relatively "unbreakable”" protection schemes is laudable.

24~

b b A bt S B

m.‘

(RPN CRNPRY

gt ur @ty K A A

APPENDIX II

EST2Z2 ASSEMBLY LANGUAGE
A brief introduction.

In order to make use of the full potential of DISK DOCTOR,
familiarity with the machine lanquage of the 6562 family of
computers is obviously necessary. But even a novice can follow
the 1logic of parts of the most complex programs, if the basics
of 6582 Assembly language are mastered.

The fact is that computers are extremely simple machines.
They can only count to 1, and they can only follow simple
instructions. It is only by combining these simple instructions
and these simple numbers into complex combinations that
computers can be made to do complex things.

The result of this fact is that essentially assembly
language, too, is relatively simple to understand, although not
necessarily simple to program in.

The following discussion assumes that the reader has some
familiarity with the hexadecimal number system, and such basic
concepts as "byte", "K" and "RAM". 1If not, please go read a
basic introductory book and come back.

Now that you are back, let’s begin.

A machine language (assembly language is the same as machine
language, except that it uses mnemonics instead of numbers as
and aid to people) program is simply a series of instructions,
just like a BASIC program, that moves bytes of data from one
place to another in the computer’s memory, performs simple
arithmetic calculations and logical comparisons on that data,
and puts the results somewhere where the user can access them.
In order to do this, the CPU (central processing unit) must be
able to keep track of where in the program it is, and where it
is supposed to GOTO when it is done doing what it is doing. It
must also have some “"registers® (byte size locations in the
6592) where it can manipulate that data, and the ability to
fetch and store data instantly from any place in RAM.

The 63562 CPU in ATARI home computers has the following
registers:

A the Accumulator, where most calculations are performed.

X an "index" register.

Y another "index" register.

S the "stack pointer™.

P the status register.

PC the (two-byte) program counter.

It must be kept in mind that these registers are not RAM
addresses. Indeed from a high level language like BASIC the
user has no direct access to these registers at all; but they
are the things that are doing all the work in the computer.

(Even assembly language provides no direct access to the program
counter.)

When a computation is performed, a byte is fetched from a
memory address, manipulated, and then returned to memory or
(what is for the CPU absolutely equivalent) sent to a memory
location that actually functions as a “port" to the outside
world.

Thus the major programming commands of assembly language
must necessarily be very similar to those in high level
lanquages like BASIC: store a certain value in a variable (LET

X=3), fetch the value of a variable (LET Y=X), fetch a value -

manipulate it — and put it in another (or the same) variable
(LET Y=Y+3). Program control commands too, are functionally
identical: GOTO, GOSUB, RETURN, IF xxx then GOTO yyy.,

.

ey

e e ey 1

ISR e Al

e e e e

APPENDIX II

Fetching and storing can be done by either the A, X, or Y
registers, as can comparisons. Addition and subtraction,
however, can only be performed on a byte in the Accumulator.

The fetch command is a "load” command, thus:

LDA load the Accumulator.

LDX load the X register.

LDY load the Y register.

The store command is just that:

STA store the value that is in the accumulator.

STX store the value that is in the X register.

STY store the value in the Y register.

The actual machine language code that corresponds to each of
these mnemonics differs, however, depending on the “address
mode®, that is to say, depending on just where it is that you
want the register to fetch from or store to. The 6582 supports
several esoteric address modes, but the most common ones are
"immediate", "absolute" and "indexed absolute”. Moreover the
6502 assigns a very special role to addresses on “page zero”
(the first 256 bytes of RAM).

The immediate mode, indicated by the use of #, e.g. LDA #J,
means load the register in question with the value of the byte
immediately following the “opcode" (the mnemonic 3 letter
instruction), in this case, load the accumulator with the value
[

The absolute mode, indicated by the presence of a full 2
byte address, e.g. LDX $A994 means load the register with the
value currently found.at that RAM address. As is the case with
BASIC when you say LET T=N, N (in our case $A999) keeps the
value that it had before, but that value is also now found in T
(in our case, the X register). Thus the BASIC statement POKE
49946,8 can be “"translated"” into assembly language as:

LDA #8 (load the Accumulator with the value 8.

STA $1909 (store the value in the Accumulator into RAM
location $19608). Indeed this simple sequence of commands is the
one the beginning Atari user will be most interested in. You
will find that most instructions to the computer involving color
and sound and player missiles, will consist primarily of such
sequences.

The indexed absolute mode, indicated by, e.g. LDA $19860,X
means load the Accumulator with the value in RAM location
$1999+whatever is in the X register. If X is 3, then 1load A
from $1893.

Zero page addressing is particularly important because it
only takes one byte to define an address on page zero of memory,
but it takes two bytes to define all other addresses. Thus the
execution of commands involving zero page addresses is much
quicker than equivalent commands using other RAM addresses.

There are some special address modes involving
addresses, but

the following:
.LDA ($9A),Y

This means: Load the Accumulator with the value found at the

address contained in RAM locations $9A and $9B offset by the

value in the Y register! Complex, but very useful in many

applications. If $9A has value of @ and $9B has the value of

$89 and Y contains the number &, this command means: Load the

zero page
the only one the beginner should worry about is

" Accumul ator with the value currently found in location $8896.

NOTE: In 6502 lanquaqe the least siqgnificant byte of a
two-byte address is stored in the lower memory location.

ADL M0 o vre oot

et
i dad

APPENDIX II

Other major opcodes to know are:

JMP $xxxx jump to location $xxxx and continue the
program there (i.e. = BASIC 60T0).

JMP ($xxxx) jump to the location contained in the two
bytes starting at $xxxx. (Note that "indirection" of addressing
is indicated here as above by parentheses.)

JSR $xxxx jump to the subroutine that begins at $xxxx.

RTS at the end of a subroutine, return to the
calling program (=BASIC RETURN).

ADC add a value to the current value of the
Accumulator.

SBC subtract a value from the current value of

the accumulator.
DEC, DEX or DEY decrease the current value of a memory
location or of the X or Y register by 1.

INC, INX or INY increase the current value of RAM s X
or Y by 1.

TXA, TYA, TAY, TAX transfer the value in the first
register to the second: e.g. TXA = transfer X to the
Accumul ator.

CMP, CPX, CPY compare the value in the accumulator (X
or Y) to another value.

Every time one of these operations is performed, the values
in P, the *“status" register may be changed. If an operation
results in a zero value or an absolute equivalence, the
so-called "zero"” flag of P will be set. If an addition results

in a carry, the ™“carry" flag will be set. (These flags are
nothing other than single bits within the P register that are
either on or off.) Based on whether or not a flag is set or

not, a conditional branch can be accomplished (= BASIC IF - -
THEN). The conditional controls are:

BEQ branch if “equals" zero.

BNE branch if not = zero.

BMI branch on "minus*; if the last byte result was $89
or larger (in computerese, all values with the most significant
bit "on" are considered “minus®", even if they are used as
postive values by the program.

BPL branch on plusj if the highest bit was not set.

BCC branch if the carry bit is not set (clear).

BCS branch if the carry bit is set.

Let us see now how all this goes together to create a short
assembly language program. A frequent operation in such
programs is to clear a block of memory. Let us clear all the
memory on “page six":

LDA #4 (load the Accumulator with 9).

TAX (transfer the A to X, now X contains & too).
loop STA $609,X (put whatever is in A into $6909+X).
INX (increment X).

BNE loop (if X is not = zero, go back to the statement
called loop.

In the above program, each time that X is incremented, the
program will keep looping back upon itself (256 times) until X
is finally equal to zero again, at which time control will be
transfered to whatever statement follows the BNE instruction.
Each time that the program loops, the value in the Accumulator
is put into successively higher memory locations on page six.
Of course all of this happens in a small fraction of a second.

EA

/ -27-

EE——

F) :

in il Stz

)

APPENDIX II

An important thing to remember about branch instructions is
that they only take a one byte operand, that is to say you can
only branch to a total of 256 different locations from any one
starting point. These instructions use the idea of "minus"
arithmetic mentioned before, so that the byte sequence FJ s$19
means branch (if equal to zerog

i F? is the machine language
equivalent of BER) hex 14 (decimal 164)

bytes ahead in the
program. F@ $FF means branch one byte back, for $FF is one
"less" than &, $FE = -2 and so on down to $88= - 128. The
branch is calculated starting at the byte following the operand
of the branch instruction itsel+f.
BACKWARD RELATIVE BRANCH TABLE
SD .
SO 0 1 2 3 4 S) 7 8 9 A) <] 13 F
8 128 127 126 125 i24 123 122 120 119 118 117 116 '1S 114 013
9 112 111 110 109 08 107 06 05 04 '03__1C2 'Ol 100 99 o§ o7
A 96 95 94 93 92 91 20 39 &8 5 86 35 84 83 a2 5i
, 8 {80 79 78 77 76 7 43 72 0n 7069 68 A7 b6 65
. C |64 63 62 61 60 9 38 57 36 55 34 53 = i 50 av)
} D | 48 47 46 45 aa 43 42 a1 0 39 38 37 35 35 24 33
E 32 31 30 29 28 27 26 25 23 23 22 21 20 19 8 7
F 6 15 14 13 12

" '0 4 8 7

[} S 4 2

e e

Additional 6592 opcodes
AND logical and the Accumulator.

it ASL arithmetic shift left (shift all bits one to the left,
| highest bit goes into the carry flag.

=
3
3
%
%
=
e
&
R
2
4
5
A

N
3

BIT logical and the accumulator in memory, but change neither;
zero,negative and "overflow"” flags are affected.

BRK break (stop program execution).

BVS, BVC rarely
"overflow" flag

4—.}\,,1‘6)‘:'»',&«‘\#.:. S

is set or clear. Overflow is set if an
operation has resulted in a carry from bit six to bit seven of a
byte.

CLD, SED

clear and set decimal mode: Unlike most small CPU’s,
the 6592 can actually do decimal arithmetic directly. When this
mode is in force, 89 + 91 = 19 not 9A as usual.
CLI, SEI clear and set the interrupt flag bit of the status
registers. If this bit is set on, so—called "non—-maskable"
interrupts cannot occur. An interrupt is a summons to the CPU

to put aside what it is doing for some more urgent task.

4
i
i
used branch instructions: branch if the %' L
E
3
i

WO P el

4
CLV clear the overflow flag. I have never seen this one in a &
program. i
EOR

logical exclusive—-or the Accumulator.

LSR 1logical shift right. Shift all bi{s one to the right, the
former lowest bit going into the carry bit of P. Egquivalent to
dividing by two. - :

NOP 'no cperation. This is a place holder, like REM in BASIC.

PHA, PHP "push™ A or P to the stack for safekeeping.

PLA, PLP "pull” (retrieve) the first (lowest) value on the
stack and place it in A or P.

e *ﬁa,a‘n.r‘,.“w.f‘{!« PR YU

a

vy

Tl e

a

e e e e

— e ———— B ey

S _ ~)

APPENDIX II

ROL, ROR "roll”™ left or right. Shifts all bits of a memory
location or A one bit left or right, putting the value in the

carry flag into the vacated location, and the lost bit into the
carry flag.

ik

RTI return from interrupt. After interrupting the CPU to do an
interrupt, the offending routine must do an RTI to send the CPU
back to what it was doing before.

SBC subtract with carry. To get the correct results, the carry
flag must be set before all subtractions.

Py

TXS transfer X to the stack poin£er.

A TYPICAL BOOT CODE SEGMENT -

Since many users of DISK DOCTOR will want to try to examine
booted software, let us have a loock at a typical piece of code
that you might encounter in a boot code, the first sectors on a
disk that actually do the loading of the rest of the program:

1. LDA #$52
STA- $392
2. LDA %9 5
STA $394
STA $39B
3. LDA #$75
STA $99
4. LDA #$19
STA €395
S. LDA #s4
STA $39A
b. JSR $EAS3
7. INC $39A
BNE 92
INC $39B
8. cLC
LDA $394
ADC #$89
STA $394
LDA $385
ADC #9
STA $395
9. DEC $99 .
BNE EF4 (= decimal -32, go back to step 6.
19. cLCc
RTS

This routine or something equivalent to it must be performed
by any program that wants to access the disk drive directly.
What it does is poke certain values into an area of memory
called the Device Control Block and then jump to a subroutine in
the Operating System ($E4AS3) that takes over <from there and
performs the disk access as specified by the values it finds in
the DCB. 1In fact, the procedure is so easy that it can be done
without difficulty from BASIC (have a look at the DISK DOCTOR
progams) by POKEing the appropriate values into the proper areas
of memory and then doing a USR call to a string consisting of
nothing more than the 4 bytes $468 $4C $53 $E4 (i.e. PLA, JMP
$EAS3 refer to the BASIC manual for the USR function and the
PLA) .

1. This command puts the value $52 (=’R’ for ’read’) into
the 1location $392 that specifies the disk command, in this case
a read of the disk. (Other possible command bytes are 557 =write
with verify, $53=status check. and $21=format.)

2. Here we put zero into the high byte (MSB) of the sector

numoer we want to read from the disk andthe low byte of thn RAM
address into which that sector will be read.

-29- /

e

S JNNPIEUPEE,

-l

read.

‘bad sectors. If you have an 814, you can replace the

APPENDIX II

3. Now we must set up a counter to keep track of

sectgrs we are going to read. Because of the speed factor
mentioned earlier, most programs use zero page addresses like
$98 for this kind of a variable.

4. $305 is the MSB of the buffer. Here we are saying that

we want the information on the disk to be stored starting at RAM
location $1993 (remember we put a 9 into the LSB in 2.

5. $36A is the LSB of the sector number to be
want to start reading from the disk at sector 4.
6. Let the Operating System take over from here and do the

how many

read. We

7. Increment the sector number.

8. Add 128 (hex $898, the size of one sector) to the

buff
address. CLC urter

means “clear carry" and must be done before all
additions. Note that one can add a sindle byte value to a
multiple byte amount simply by adding & to all the higher bytes
without doing a CLC before those additions.

9. Decrement our counter. 1If it hasn’t reached zero yet,
go back and read the next sector into the next buffer area.

19. When finished, return to the Operating System routine

that calls up the boot code. CLC is done first to show the 0S
that the initialization performed by the boot code has been
successful.

APPENDIX III
Adjusting drive RPM

NOTE: It is strongly suggested not to open up your disk
while it is still under warranty.
it. Under no circumstances open_ up
environment or

drive

your drive in a dirty
when loaded with static electricity! Moreover,
any damage you may do to your drive when trying to follow any of
the following instructions is entirely your own responsibility!

The cover of the 8143 drive is easily removed. Simply pry off
the four little round plastic covers on the top of the drive,

loosen the screw beneath with a phillips screwdriver and gently
lift the top up and off.

The speed control is located on the printed circuit board 1lying
flat at the back of your drive.

If your drive (the older ones) has only two boards, the
control 1is a dime—-sized wheel
R142 at the left rear corner.
produce large changes in RPM.

speed
(probably blue or white) labeled
Small movements of this control

1f your drive has three boards, the adjuster is a tiny screw
protruding from the top of a tiny “box"™ (green or tan, usually)
labled R194, just to the left of the only IC on that back board.
You will find that you will need a very tiny screwdriver or
knife to adjust this screw, and that it will take many
revolutions of the screw to change RPM substantially.

While doing all of this, please try not to displace or sever any

of the wires in the drive. My local repairman has a $48 dollar
minimum charge to work on 819’s! :

If you have a new 819 (made later than Jan. 83, or some PERCOMS)
you may be unable to adjust your drive speed substantially.
There are several solutions if you are unsuccessful at writing
resistor
in question; the part. is cheap, but installation is quite
complex. A better solution (indeed one good for all 8196 drives)
is simply to replace the ROM chip in your drive with one that
will enable you to duplicate practically anything. Check with
BJ Smartware for information on both of these products.

I# 90u have a troublesome PERCOM, one approach (so we are told

but have never tried) is to put your finger on the drive pulley
as you write out the bad sectors!

You are liable to invalidate '

Ay

! . . , . y' oy " " " . e TS gk
AT a e S T 0%y PURLSE "2-‘.*“"!l"*W’msa’mm"‘“&“ﬁ*{“’&'“"’

IR AT S PN L A TR
SERIR S R)

