

Table of Contents

Introduction
Copyright
Warranty ..
System Configuration

Editor
Table of Editor Keys
Block Operations
Command Line ...

Compiler ...
Reserved Words
Types
Variables . . .
Typed Constants
Expressions
Statements
Procedures / Functions
File Input / Output
Including Files

Technical Information
Memory Map ...
Variable Storage
Heap Management

Run Time Errors

About CLSN Software

References

Library Procedures and Functions

1

2
3
3
3

4
4
5
5

9
9
10
13
14
16
18
19
20
21

22
23
23
25

27

28

29

30

Introduction

Congratulations for purchasing CLSN Pascal Version 1.0. With CLSN
pascal you will step into the world of higher level structured
languages and discover many of the adVRntages they have over BASIC and
ACTION!

At the same time you will not be subject to constantly swapping
disks and reloading a compiler and editor in order to get a program
running. CLSN Pascal is designed to circumvent all those difficulties
by giving you a complete, integrated programming environment.

This manual, however, is not meant to be a Pascal tutorial, but
rather a point of reference for this particular dialect of Pascal
along with the inside technical information of CLSN Pascal.

We at CLSN Software hope CLSN Pascal continues to make you realize
the power still available on the Atari line of computers.

2

Copyright

The compiler. editor, and manual are Copyright 1989 CLSN Pascal
and are protected by United states copyright law. A back-up copy of
CLSN Pascal should be made. but under no other circumstances should
this program be copied.

Programs written in CLSN Pascal require no licensing and may be
distributed or sold.

Warranty

CLSN Software warrants that the physical diskette enclosed shall
be free of defects in materials and workmanship for a period of 30
days from the date of purchase. In the event of notification within
the warranty period of defects in material or workmanship. CLSN
Software will replace the defective diskette.

CLSN Software specifically disclaims all other warranties,
expressed or implied. In no event shall CLSN Software be liable for
any loss of profit or any other commercial damage. including but not
limited to special. incidental, consequential or other damages.

System Configuration

CLSN Pascal is designed to run on an Atari 130XE computer with
128k memory along with at least one single density disk drive and
DOS 2.5.

3

The Editor

CLSN Pascal's editor is designed specifically for programming
pascal. but it may be used on its own as a rudimentary word processor.
Up to 16k of text (about 16000 characters) may be entered into the
editor at once.

If you wish. you may write your programs in another editor and
INCLUDE them during compilation. The only requirement is that each
source line is delimited by a carriage return (#155) and that the
lines themselves do not exceed 128 characters.

The editor is divided into three parts. the command line. the
status line and the text window. The command line contains various
editor and compiler commands. The status line reveals the current
file and the current column and row of the cursor. The text window is
where the source code of the program is created.

Getting around the Editor

Entering text is accomplished much like a typewriter; the text is
typed followed by a carriage return.

Many of the Atari's basic editing commands are available. The
following table summarizes the keys and their operations.

Key

ESC
CTRL -
CTRL =
CTRL +
CTRL *
TAB
BKSP
RETURN
SHIFT RETURN
SHIFT >
SHIFT BKSP
OPTION -
OPTION =
OPTION +
OPTION *
OPTION >
SELECT -
SELECT =
START 1

Special Keys

Operation

Move to command line
Move cursor up one line
Move cursor down one line
Move cursor left one column
Move cursor right one column
Move cursor right four spaces
Delete character left of the cursor
Move to beginning of next line
Split the line at the cursor
Insert a line at the cursor
Delete a line at the cursor
Move up a page
Move down a page
Move to beginning of line
Move to end of line
Insert block
Move to top of text
Move to bottom of text
Toggle screen during compilation

[SHIFT RETURN] splits the current line at the cursor position.

Pressing [BKSP] while in the first column will concatenate the
current line with the one above it.

4

Moving/CopyingjDeleting Blocks of Text

These three facilities, essential to any editor, are accomplished
by the same procedure. The method is to move above the block to be
affected, then using [SHIFT BKSP] (and staying on the same line),
delete the entire block up into the cursor. This process removes the
block from the text, but at the same time copies the data into a paste
buffer where it can be copied or moved using [OPTION >]. Successive
copies can also be made by using [OPTION >]; the paste buffer will
remain intact until the next [SHIFT BKSP] takes place. The past
buffer will even survive the NEW command.

The block operations are summarized below:

Block Operation

Delete

Move

Copy

Method

Move cursor above block and use [SHIFT BKSPl
to delete each line of the block.
Move cursor above block and use [SHIFT BKSP]
to delete each line and move it into the
paste buffer. Move cursor to new position
for block and press [OPTION >1.
Move cursor above block and use [SHIFT BKSP]
to delete each line and move it into the
paste buffer. Press [OPTION >] to reinsert
the block. Move to the new position and
press [OPTION >] to make a copy.

There are two more commands which will help you when creating
your source code, FIND and REPLACE, both of which are located on the
menu bar. These commands are detailed below.

The Command Line

The command line consists of various commands for editing and
compiling programs. To get to the command line from within the
editor, simply press [ESC]. A command may be chosen by moving the
cursor around the command line with the direction keys, and by
pressing [RETURN] when above the desired option. Pressing the first
letter of the command will also execute the command.

The commands available are summarized below. More detailed
information concerning the commands are given following the table.

5

Command Operation
---_._---------------------
Edit
Load
Save
New
Quit
Compile
Run
Find
Replace
Write

Edit

Return to editor
Load a file from disk
Save a file to disk (or device)
Clear editor
Exit to DOS
Compile program in memory
Run program in memory
Find a specified string in the text
Find and replace a specified string in the text
Write the compiled form of the program to disk

Edit simply returns you to the editor at the place you left off.
Pressing [ESC] will do the same.

Load

Load moves a file from disk to memory.

After choosing this command. you will be prompted for a filename
which to load; it should follow standard DOS convention. If no device
(D:. D2:) is specified. Dl: is assumed. If no extender is given•. PAS
is assumed. Pressing [RETURN] will load the file.

If the file to load is not known. a directory may be requested by
pressing [SHIFT 1] or [SHIFT 2] (for drive 1 or 2) when asked for a
filename. This will clear the text window and display all the files
(up to 50) in the text window. The appropriate file may then be
chosen by moving the cursor atop it with the cursor keys and pressing
[RETURN].

The specified file will then be loaded.

NOTE: This command is actually more like MERGE because it loads the
text at the position of the cursor and deletes everything else below.
This is convenient to concatenate two files. or perhaps merge a
temporary text file for viewing. If this is not desired. precede this
command by NEW. or move to the top of the text by pressing [SELECT -].

Save

Save moves the text in memory to disk.

After choosing this command you will be prompted for a filename
which to save; it should follow standard DOS convention. If no device
(D:. D2:) is specified. Dl: is assumed. If no extender is given•. PAS
is assumed. Pressing [RETURN] will save the file.

If the file to save is not known, a directory may be requested by
pressing [SHIFT 1] or [SHIFT 2] (for drive 1 or 2) when asked for a
filename. This will clear the text window and display all the files

6

(up to SO) in the text window. The appropriate file may then be
chosen by moving the cursor atop it with the cursor keys and pressing
[RETURN].

The file will then be saved under the given name.

New

New clears the editor of any text.

After choosing this command, you will be asked, "Are you sure?" in
order to verify the command. Pressillg "Y" will clear the text;
pressing any other key will abort the instruction.

Quit

Quit leaves CLSN Pascal and calls DOS.

After choosing this command, you will be asked, "Are you sure?" in
order to verify the command. Pressing "Y" will exit to DOS; pressing
any other key will abort the instruction.

Compile

Compiles the program in memory.

The compiler will attempt to translate the program in memory into
executable code. As it does so, the current line it is working on is
displayed on the status line. If the screen has been set off using
[START 1], the screen will go black during compilation.

If compilation is successful, it will simply return to the command
line. If an error does occur, a message stating the error will appear
on the status line, and the compiler will wait for a key to be
pressed. It will then reveal the location of the error.

Turning the screen off while compiling increases the speed of the
compiler 30%. This switch can be toggled by pressing [START 1] while
in the editor. A message will state whether the screen will be on or
off during the next compilation.

Run

Executes the compiled program in memory.

Run transfers control to the compiled program in memory. If the
program has not been compiled a message stating so will appear.

NOTE: Modifying the source code does not affect the previously
compiled code. This means that if the program is not recompiled. the
code from the previous compilation will be executed.

7

Find

Find locates a specified string in the source text.

After choosing the command, the editor will request a string to
find. If this command was used before the string entered then will be
present. Pressing [RETURN] will choose the old search string,
otherwise, typing a new string will remove the old one. Pressing
[ESC] will abort the command.

Pressing [RETURN] will initiate the search starting at the current
cursor position and moving downward.

Find only finds exact matches (i.e. "VAR" will not match "var")

If the string is found, it will be highlighted within the text,
and you will be asked, "Search Again?" A "Y" will search again, any
other key will abort the search.

If the string is not found, a message stating so will be displayed
on the status line.

Replace

Replaces a specified string in the text with another.

This command will first ask for the string to find in the same
manner as FIND above. Next, the replacement string will be requested.
[ESC] will abort this command.

Once [RETURN] is pressed, the editor will search for the string.
If it is found, you will be asked, "Replace?" A "Y" will replace the
string, any other key will not. The editor will then ask, "Search
Again?" A "Y" will repeat the search, any other key will stop the
find/replace.

If the search string is not found, a message stating so will
appear on the status line.

Write

Stores the compiled form of the program in memory on disk.

Write uses the name of the current file, but adds the extender
".OBJ", then writes the compiled code to the disk. The resulting file
can then be run from DOS using the binary load command, or may be
renamed AUTORUN.SYS so it may be automatically executed when the disk
with the file is booted.

A compiled program generated with CLSN Pascal can be run
completely on its own.

If the program has not been compiled, a message stating so will
appear on the status line.

8

The Compiler

Syntax

CLSN Pascal is slightly more stringent on syntax than Standard
Pascal. The result is that wherever a semicolon is optional in
Standard Pascal, it is required in CLSN Pascal (i.e. a semicolon must
follow the statement before an END). This does not apply to the IF
and CASE statements where an optional semicolon determines if there is
an ELSE clause.

Identifiers

Identifiers can be 127 characters long, all of which are
significant. The first character of an identifier must be a letter or
an underscore but the following characters can be letters, digits, or
underscores.

CLSN Pascal is not case sensitive, so the identifiers "SCORE",
"score" and "ScOrE" are all equivalent.

Labels

Labels (for use with the GOTO statement) can be a sequence of
digits (with the leading zeros significant) or an identifier.

Reserved Words

What follows is a list of words that are reserved by CLSN Pascal
and may not be used as identifiers:

absolute
and
array
begin
case
const
div
do
downto
else

end
file
for
forward
function
goto
if
in
inline
label

mod
nil
not
of
or
packed
procedure
program
record
repeat

Comments

set
shl
shr
string
then
to
type
until
var
while
xor

Comments may be embedded anywhere within the text in order to
better describe the code; they are ignored completely by the compiler.
l\ comment must begin with "(*" and end with "*}". Standard Pascal
allows comments to be enclosed between two braces but since the Atari
character set does not have braces the previously mentioned format
must be used.

9

Program Heading

The program heading, although it must follow the correct syntax,
does absolutely nothing. The program name and its parameters do not
even need to be unique.

Types

There are six different types in CLSN Pascal, ordinal, real,
string, pointer, structured. These are discussed below.

Ordinal

Ordinal types may be of a subrange type or an enumerated type.
There are seven predefined ordinal types in CLSN Pascal. The basic
ordinal types are CHAR and LONGINT. Except for CHAR and BOOLEAN, all
other predefined ordinal types are a subrange of LONGINT. The types
and their definition follow.

Identifier

char
boolean
byte
shortint
word
integer
longint

Examples

Type

Ordinal
Enumerated
Subrange
Subrange
Subrange
Subrange
Ordinal

Definition

Set of all ASCII characters
(FALSE, TRUE)

O.. 255
-128 .. 127

O.. 65535
-32768 .. 32767

-8388608 .. 8388607

type
upper = 'A' .. '2';
numbers = (one, two, three);

Real

The REAL type is a subrange of the mathematical set of real
numbers. It has a range of approximately -9.99999999E-98 to
9.99999999E+98 with 9 or 10 significant figures.

String

The STRING type is a structured type that refers to a group of
characters that have a variable length. The length of the string is
contained in the zeroeth element of the string. The memory size and
maximum length of a string is set with its type declaration. If no
size is specified the largest string available, 255 characters long,
is assumed.

10

Example

type
short_str = string[16J;
long_str = string; (* 255 Characters *)

Pointer

The pointer type contains a index to a dynamic variable. The
procedures NEW, GETMEM, DISPOSE, and FREEMEM are used in conjunction
with pointers to create dynamic variables. A pointer may forward
reference its type, but only within the current block.

Nil is a pointer value compatible with any pointer type and has
the physical value of zero. It is an error to dereference a pointer
variable with the value Nil.

CLSN Pascal has a predefined pointer type, namely POINTER, which
is compatible with any pointer type.

Examples

type
bptr
sptr =

Structured

Abyte;
Astring;

CLSN Pascal has four different structured types, array, set,
record, and file.

Array

Arrays are linear structures that allow a variable to take on
more than one value by having the different values accessed by an
index. Except for memory, there is no limit on the dimension of
array structures.

CLSN Pascal has restrictions on how a multidimensional array
is declared. Consider the following type declaration:

type
maze = array [1 .. 10, 1 .. 10J of char;

Although legal in Standard Pascal, it is not legal in CLSN
Pascal. The above example should be declared as:

type
maze = array [1 .. 10J of array [1 .. 10J of char;

Although it is a bit more wordy, it is still completely
compatible with Standard Pascal.

11

An ARRAY of CHAR can be considered to be a a string of a fixed
length and is compatible with the STRING type with the exceptions
that a STRING type cannot be assigned to an ARRAY of CHAR.

Example

type
list_type = array [1 .. 10] of real;
scr_type = array [1 .. 24] of array [1 .. 40];
initial = array [1 .. 3] of char;

Set

A set is a structure that can hold up to 256 values of an
ordinal type. An empty set is defined as an open-close bracket
sequence, [], and is compatible with any set type.

Example

type
ascii = set of char;
dir_type = (up,down,left,right)
dir_list = set of dir_type;

Record

The record structure defines a group of variables of different
types under one large structure. CLSN Pascal does not support a
record with a variant part.

Example

type
id_rec = record

name: string[20];
code: longint;

end;

time_rec = record
second: O.. 59;
minute: o.. 59;
hour: 1 .. 12;
when: (am, pm);

end;

File

Files may be of any type except FILE. CLSN Pascal does not
support untyped files.

12

Example

type
id_file = file of id_rec;
score_file = file of integer;

var
scores: score_file;
id_list: id_file;
words: text;

(* File of Integers *)
(* File of ID Records *)
(* Text File *)

Type Matching

CLSN Pascal is also stringent on type matching. Consider the
following constructs:

var
a: array [1 .. 10] of byte;
b: array [1 .. 10] of byte;

These two variables, although their declaration is equivalent, are
completely incompatible. In order to make them compatible, the
variables should be declared in the same statement, as in the
following example:

var
a,b: array [1 .. 10] of byte;

The variables are now compatible, but not much else is. The
proper way to declare these variables follows:

type
list = array [1 .. 10] of byte;

var
a, b: list;

These variables are now compatible, their type is explicitly
known, and it is overall much nicer to read.

Variables

Variables may be defined to reside at a specific location in
memory, (i.e. a player missile register) or atop another variable by
use of the ABSOLUTE clause.

Example

var

hpospO: byte absolute 53248; (* Column of Player 0 *)

str: string;
strlen: byte absolute str; (* Length of Str *)

13

standard Pascal references elements of an array by separating the
indices by commas or brackets. CLSN Pascal does not support the
former syntax. If, for example, MAZE is a two dimensional array, in
order to access an element of the array, the syntax must be MAZE[y][x]
not MAZE[y, x].

NOTE: Because of speed considerations, CLSN Pascal does not
perform range checking on array indices, variable assignments, or
string lengths.

Typed Constants

Typed constants are variable declarations with initialized values.
The values are initialized once at the start of the program. CLSN
Pascal allows any structure to be filled with values except for the
FILE type.

The length of an initialized string does not have to match its
declared maximum length.

To initialize an array, specify the values of the initial values
between parenthesis and separated by commas. There must be a value
for each array element.

When initializing a record, all fields must be initialized in the
order of the fields in the record. A field is initialized by citing
its name followed by a colon and its initial value. All the fields
should be enclosed between parenthesis and separated by semicolons.

The only value a pointer may be initialized to is Nil.

Be careful of the following:

const
e = 2.718281828;
e: real = 2.718281828;

Although both statements are perfectly legal, they are not
equivalent. The first assignment creates a real CONSTANT whose value
may not be modified and which can be assigned in a constant
declaration. The second assignment creates a real VARIABLE and
generates six bytes of code for the real value.

The following examples should serve to show how to correctly
initialize any typed constant.

type
person_rec record

name: string[20];
code: longint;

end;

14

(* Simple Constants *)

const
five = 5;
bell = #253;
note = ' C' ;
half = 0.5;
page6 = $0600;

(* Byte *)
(* Character *)
(* Character *)
(* Real *)
(* Integer (Hex is acceptable!) *)

(* Typed Constants *)

const
yes: string[3] = 'Yes';

title: string[20] = 'CLSN Pascal';

fib: array [1 .. 8] of integer = (0, 1, 1, 2, 3, 5, 8, 13);
identity: array [1 .. 3] of array [1 .. 3] of real =

«1.0, 0.0, 0.0),
(0.0, La, 0.0),
(0.0, 0.0, 1.0»;

person: person_rec = (name: 'Fred'; code: 28162);

alpha: set of char = ['A' .. '2', 'a' .. 'z'];
vowels: array [1 .. 5] of char =

(* or equivalent *)
vowels: array [1 .. 5] of char =
root: pointer = nil;

15

(' A ' 'E' 'I' '0' 'U')-, , , ,
, AEIOU' ;

Expressions

The precedence of the operators in CLSN Pascal is as follows.
Operators with equivalent precedence are evaluated from left to right.

Operators

@ (NOT
* / DIV MOD AND SHL SHR
+ XOR OR
< > = <> <= >= IN

Precedence

First
Second
Third
Fourth

Operators

The following table shows the legal operand types for the
arithmetic operators and the resulting type of their conjunction. For
operations between an INTEGER and a REAL, the INTEGER is first
converted to a REAL before the operation takes place.

Operator

+

*

/
DIV
MOD
SHL
SHR
NOT

AND

OR

XOR

=

Operation Operand Type Result Type
--------- ------------ -----------
Addition Integer Integer

Real Real
Set Union Set Set
Concatenation String String
Negation Integer Integer

Real Real
Subtraction Integer Integer

Real Real
Set Difference Set Set
Multiplication Integer Integer

Real Real
Set Intersection Set Set
Division Integer Real

Real
Integer Division Integer Integer
Remainder Integer Integer
Multiplication Integer Integer
Multiplication Integer Integer
Negation Boolean Boolean

In-teger Integer
And Boolean Boolean

Integer Integer
Or Boolean Boolean

Integer Integer
Exclusive Or Boolean Boolean

Integer Integer
Equality Simple Boolean

Real Boolean
String Boolean
Set Boolean
Pointer Boolean

16

< Less than

> Greater than

<= Less or Equal

>= Greater or Equal

>= Supersp.t
<= Subset
IN Membership

<>

@ Operator

Inequality Simple
Real
String
Set
Pointer
Simple
Real
String
Simple
Real
String
Simple
Real
String
Simple
Real
String
Set
Set
A simple type
and a set of
the same type

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

The @ operator may precede a variable identifier in order to
retrieve its address in memory. For a global variable the address
returned is the absolute location of the variable. For a local
variable the value returned is the offset of the variable on the
stack.

Standard Pascal allows the @ to be used in the same way the
A operator is used. CLSN Pascal sees the two operators in completely
different ways, and one may never be used for the other.

The value returned by the @ operator is a longint with the highest
byte representing the bank (0 = Main; 1 .. 4 = Banks) and the low word
representing the absolute memory location.

Value Typecasts

Value typecasts facilitate the changing of an expression of one
type to another type. Any simple type identifier can be used to alter
a type in addition to the two provided by CLSN Pascal, CHR and ORD.
Some examples of value typecasting follow:

chr(65)
ord('0')
boolean(l)

(* 'A' *)
(* 48 *)
(* TRUE *)

17

Evaluation of Expressions

Expressions in CLSN Pascal are always completely evaluated; there
is no short circuit boolean evaluation. For example, the following
statement, although syntactically correct, will generate a run-time
error when X is zero.

if (x <> 0) and «y / x) > 10.0) then

The reason is that if even if X is zero the second term of the
expression is still evaluated and, since division by zero is an error,
the program will halt. The above statement should be coded as:

if (x <> 0) then
if «y / x) > 10.0) then

This removes the danger of division by zero. The same caution
should be applied to pointers. Do not try to dereference a NIL
pointer.

Statements

The FOR, GOTO, CASE, IF, REPEAT, and WHILE statements are all
supported by CLSN Pascal. The WITH statement is not available. In
order to allow machine language subroutines to be accessed, the INLINE
statement is present.

FOR Statement

The FOR statement works the same as in Standard Pascal. Although
it is technically an error to modify the control variable, the
compiler will not signal an error if this is done. Doing so will not
affect the FOR loop; it will still iterate as many times as was set by
the initial statement.

GOTO Statement

The GOTO statement can only reference a declared label. GOTO can
not be used to jump between and it should not be used to
jump within another block (i.e. do not GOTO a label within a FOR
loop).

CASE Statement

The CASE statement may only be used with simple types. If the
CASE statement does not find any matches among the case constants,
nothing is executed, unless an ELSE statement follows the last
statement in which case its block is executed.

The CASE statement is the fastest form of comparison in CLSN
Pascal.

18

Example

case ch of
,E': edi t_text;
'C': clear_text;
'L': load_text;
'S': save_text;
'Q': quit_flg:=true

else
writeln('Invalid Key');

end;

WITH Statement

The WITH statement is not supported by this version of CLSN
Pascal. This means that any record references must be spelled out
completely.

INLINE Statement

With the INLINE statement, procedures and functions can
incorporate machine language routines to help quicken the speed of a
program. The format of the INLINE statement is:

INLINE(bIjb2jb3j ...)

Where bl, b2 and b3 represent the machine language code. These
values can be either byte constants or identifiers. An identifier
will generate two bytes of of code representing its absolute address.
If an identifier is preceded by a or a ">" then only one byte of
code is generated. Using a "<" will generate the low byte of the
address while using ">" will generate the high byte of the address.

In the sample file UPSTR.PAS, the INLINE statement is used to
convert a string to uppercase at machine language speed.

Procedures and Functions

CLSN Pascal has no real limit (other than memory and stack
considerations) on the number of parameters or the type of the
parameters that may be passed to a procedure or function. The only
type that cannot be passed as a parameter is a procedure or a
function. File types must be variable parameters.

Functions can only return a simple, real, string, or pointer type.
An ARRAY, for example, cannot be returned.

Procedures and functions can be declared FORWARD so it may be
called by a procedure that physically comes before it. The complete
procedural heading is required, followed by the FORWARD clause. The
procedure is later resolved by giving the procedure heading (without
the parameter list) followed by the block. See the file SALPI.PAS for
an example of a forward declaration.

19

File Input / Output

CLSN Pascal does not support a file buffer variable that can be
accessed using the operator. Also. the standard procedures GET and
PUT are not available. The only facility for storing and retrieving
records are the READ and WRITE procedures.

The procedures BLOCKREAD and BLOCKWRITE can be used to quickly
transfer a block of data.

Any device available can be used as a file. For example the
printer could be used as an output file. or the keyboard could be used
as an input file by using 'K:' or 'P:' with the ASSIGN statement.

function key: char;
var
ch: char;

begin
assign(f, 'K: '); reset(f);

read(f. ch); key := ch;

close(f);
end;

(* Get input from keyboard *)

(* Get the key. return it *)

(* Close the file *)

NOTE: The function READKEY accomplishes all of this.

If an error occurs during an I/O routine a runtime error normally
occurs, and the program halts. A program can perform its own error
checking by using the [I] switch and investigating the function
IORESULT. The following example determines if a file exists.

function exist(s: string): boolean;
var

f: file of char;

begin
assign(f. s);

[I-] ;

reset(f);

[I+] ;

(* Turn error checking off *)

(* Try to open file *)

(* Turn checking back on *)

exist := (ioresult < 128); (* Less than 128 is success *)

c1ose(f);
end;

NOTE: The [I] switch is a statement and can only be used within a
statement block.

20

Including Files

The INCLUDE statement can only appear outside a procedure or
function block. An INCLUDE file may not INCLUDE another file. The
filename must follow standard DOS convention and must include the
extender; the extender ".PAS" is not assumed with the INCLUDE
statement. An example of the INCLUDE statement follows:

const
cx = 160;
cy = 80;

include 'D:GRAPH.PAS';

var
x , y: integer;

(* The .PAS is required *)

INCLUDE files can be used to create libraries of commonly used
procedures and functions. For example. a series of procedures
creating and maintaining windows could be stored in a file called
'D:WINDOW.PAS'. Then. if a new program needed windows. this file only
needs to be INCLUDEd to access the routines.

Also. when the source becomes too large to fit all at once in the
editor. it can be broken up into smaller segments which a main file
could then INCLUDE together. By doing this, CLSN Pascal can compile
source code much longer than the 16k editor might imply.

21

Technical Information about CLSN Pascal

The Atari 130XE can access 128k of memory by breaking up half of
it into four small 16k banks that can be accessed only one at a time.
CLSN Pascal makes use of this memory scheme in order to allow an
editor, a compiler, the source code, and the compiled code to all
exist simultaneously in memory.

Main memory is always allocated in the same manner but the
configuration of the banks will be in one of two states depending on
whether or not the compiler and editor are in memory_ Memory maps of
both situations, along with main memory, follow.

Bank Configuration #1: Editor and Compiler in Memory

$8000

$6000

$5000

$4000

Bank #1
+-----------+
I Editor 1
1-----------1
I Stack I
1=-=-=-=-=-=1
1 Free List I
1-----------1
I Heap I
+-----------+

Bank #2
+-----------+
I I
I I
I I
I I
I Compiler I
I I
I I
I I
I I
I I
I I
I I
I I
+-----------+

Bank #3
+-----------+
I
I
I
I
I Text
I
I
I
I
I
I
I
I
+-----------+

Bank #4
+-----------+
Variable
Table

=-=-=-=-=-=

Variable
Names

+-----------+

Bank Configuration #2: A Compiled Program run from DOS

Heap

$8000

$4000

Bank #1
+-----------+

Stack

=-=-=-=-=-=

Free List

+-----------+

Bank #2
+-----------+
I I
I I
I I
I I
I Heap J
I I
I I
I I
I I
I I
t I
I ,
I I
+-----------+

22

Bank #3
+-----------+
I
I
I
I
I
I
I
I
I,
I
I
I I
I I
+-----------+

Bank #4
+-----------+

Heap

+-----------+

--------- ----- __._-----

Main Memory

$0000

$0080

$OOCA

$00D4

$0100

$0200

$0500

$0600

$0700

$lCOO

$lDOO

$4000

$COOO

$FFFF

+--------------------------------+
I os Reserved
1--------------------------------
1 CLSN Pascal System Variables
1--------------------------------
1 Unused
1--------------------------------
I Floating Point Registers
1 --------------------------1I 6502 Stack
1-------------------------------- 1
I OS Variables / Tables
1--------------------------------
I String Register 0
1--------------------------------
I Unused
1--------------------------------
I DOS
1 --------------------------1I String Register 1
1--------------------------------
1 CLSN Pascal Library
1 -------------------- 1I I1 Compiled Code 1
1=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-1
I Screen Memory 1
1--------------------------------1
lOS ROM I+-- -- - ------ -- - - - -- - - - - - - - - _.. _. - - - +

Variable Storage

Global variables, (variables not defined within a procedure or
function) are stored in main memory intermixed with the compiled code.
Local variables are allocated upon the stack during entry to the
procedure or function. The stack size is initially 16384 bytes but is
also dependent on the the number of dynamic variables allocated. See
Heap Management for more information.

Integers

INTEGERs are stored differently depending on their range.

Range

O.. 255
-128 .. 127

o.. 65535
-32768 .. 32767

Otherwise

Stored as

Byte
Shortint
Word
Integer
Longint

23

Size (in bytes)

1
1
2
2
3

Real

A REAL value is stored in binary coded decimal and occupies six
bytes. The first byte contains the sign of the number, the sign of
the exponent, and the exponent (base 100) itself. The following five
bytes are the mantissa.

Char

A CHAR value occupies one byte.

Boolean

A BOOLEAN value occupies one byte with a representing FALSE, and 1
representing TRUE.

Enumerated

Enumerated types occupy one byte if there are less than 256
elements and occupy two bytes otherwise.

String

STRINGs occupy as much memory as set in their declaration plus one
byte for the length. The zeroeth element of the string is the length.

Set

SETs always occupy 32 bytes and do not depend on the size of the
set type.

Records

The fields of the record are stored contiguously in memory. The
size of a record is simply the sum of the size of the fields.

Arrays

ARRAYs are stored contiguously in memory with the rightmost
dimension increasing first through memory.

Files

Files occupy one byte and are simply an index to an IOCB block, so
its value ranges from a to 7.

Parameters and Results

Parameters to a procedure or function can be of any type, as
opposed to function results which can only return a limited range of
types.

24

Parameters

If the parameter is a value parameter. a copy of the value is
placed on the stack. This is true for all values including ARRAYs.
STRINGs. RECORDs, and SETs.

When a variable parameter is passed, only the address of the
variable is placed on the stack.

Functions

Functions can only return a STRING, a REAL, a POINTER, or a simple
type value. The following table shows where a return value is placed.

Return Type

Simple
Pointer
Real
String

Location

$D4 .. $D6
$D4 .. $D6
$D4 .. $DA
$500 .. $5FF

Name

IRO (Integer Register 0)
IRO (Integer Register 0)
FRO (Floating Point Register 0)
SRO (String Register 0)

Heap Management

An intricate part of Pascal is its ability to allocate variables
dynamically. The heap routines are the heart of this system.

The heap management scheme employed in CLSN Pascal is divided into
two parts, the free list and the heap. The heap, displayed in the
diagram above, is the memory that is allocated for a program's use.
The size of the heap when compiler and editor are in memory is about
4000 bytes. When the program is running on its own, the heap is about
48k.

The free list is a table of pointers into the heap stating which
memory is in use and which memory 1s free. Located in bank I at
$4000, the free list grows upward in memory toward the stack.

type
free_record record

bank: byte; (*
(*
(*

mptr: word; (*
size: word; (*

end;

Bank block is in
$00: End of Free
+$80: Block is in

Location of block
Size of block

*)
List *)
use *)

*)
*)

var
free_list: array [0 .. 3275J of free_record absolute $14000;

When a block of memory is requested by the procedures GETMEM or
NEW, the free list is searched for a free block large enough to
fulfill the demand. If a block is found, the record is marked "in
use" and stored back into the free list. In most cases, the size of
the block will not exactly match the size of the request. When this

25

happens a new record is added to the free list pointing to the unused
portion of the block.

When a block of memory is released by the procedures FREEMEM or
DISPOSE, the heap routines unmark the specified block and search for
any memory in the heap contiguous to this block. If any are found,
the two blocks combine and become one large block.

An error will occur if there are no blocks large enough to fulfill
the request, or if the free list collides with the stack.

The function MEMAVAIL, which tells how much free memory remains in
the heap, returns the sum of the size of the free blocks. MAXAVAIL
returns the size of the largest free block in the heap.

26

Run Time Errors

If a runtime error occurs, the program will display the error code
and halt. If the compiler and editor are in memory, then, once a key
is pressed, CLSN Pascal will recompile the code and locate the error
in the source text. The following table lists the possible runtime
errors generated by CLSN Pascal.

Error Meaning

1 Too many open files
A maximum of five files may be open simultaneously.
This refers to any file (i.e. "K:", "S:"), as opposed
to DOS which normally can only have three DISK files
open at once.

2 Mathematical Overflow
A mathematical operation resulted in a number too large
or small, LN was passed a zero or negative number, or
SQRT was passed a negative number.

3 Division by Zero
The second argument of /, DIV or MOD was evaluated as
zero.

4 Invalid Number
A READ or VAL statement unsuccessfully converted a
string into a number.

5 String Overflow
A string function tried to create a string longer than
255 characters.

6 Stack Overflow
The runtime stack cpllided with the free list. In
other words, the stack can maintain no more local
variables, or sustain any more procedure calls.

7 Out of Heap
The request for dynamic memory cannot be satisfied.
There are no free blocks of memory large enough for the
demand.

8 Nil Pointer
A pointer whose value was NIL was dereferenced, or a
NIL value was passed to the procedures FREEMEM or
DISPOSE.

9 Free List Overflow
The free list collided with the stack; there are too
many dynamic variables allocated.

128 .. 255 I/O Error Codes
See the DOS manual for complete explanation

27

About CLSN Software

CLSN Software is a very small company. The costs and
considerations of creating a project as large as CLSN Pascal have
prevented this manual from being any larger.

We hope, however, that the ease of use of this compiler will
rejuvenate Atari programmers so articles on Pascal will become
commonplace in Atari magazines.

Once again, thank you for purchasing this product.

CLSN Software
10 Arlington Place
Kearny, NJ 07032

Special thanks to Mom. Dad, Matt. and Pat - The special people in
my life with three letter names, except for Matt who always likes to
be difficult.

28

References

Chris Hawksley, "PASCAL: A Programming Guide to Computers and
Programming," Cambridge University Press, 1986.

Seymour C. Hirsch, "PASCAL Programming," Prentice-Hall, Inc. 1987.

Elliot B. Koffman, "PASCAL," Addison-Wesley, 1989.

John Konvalina and Stanley Wileman, "Programming with PASCAL," McGraw-
Hill, 1987.

Lisanti, Mann, and Zlotnick, "Algorithms, Progtamming, Pascal,"
Wadsworth, 1987.

Walter J. Savitch, "PASCAL: An Introduction to the Art and Science of
Programming," Benjamin/Cummings Publishing Co., 1987.

29

CLSN Pascal Library

The following pages contain an alphabetical listing of the library
routines available in CLSN Pascal. Each entry contains a brief
description of the procedure, function, or variable, its Pascal
declaration, any special remarks about the procedure, an example of
its use, and a reference to other related library routines.

ABS Function

Description
Returns the absolute value of the argument.

Declaration
function abs(x: real): real;
function abs(x: longint): longint;

Example
var
x: integer;

begin
x:=abs(-S);

end.

See also
hi,lo,ord

APPEND Procedure

Description
Opens an existing file and it so data may be appended to

the end of the file.

Declaration
procedure append(var f: file);

Remarks
The file to be appended must already exist on the disk otherwise a

FILE NOT FOUND error will result.

Example
var
f: text;
ch: char;

begin
assign(f, 'D:OUTPUT'); rewrite(f);

for ch:='A' to 'L' do
wri te (f, ch) ;

(* Create a file *)

30

close(f);

append (f) ;

for ch:='M' to 'z' do
wri te (f, ch) ;

close(f);
end.

See also
assign, reset, rewrite

ARCTAN Function

(* Append to it *)

(* More data *)

Description
Returns the arctangent of the argument.

Declaration
function arctan(x: real): real;

Remarks
The resulting angle will be in radians unless a DEGREES statement

was executed.

Example
begin
writeln('PI=' ,4.0*arctan(1.0»;

end;

See also
sin,cos,degrees,radians

ASSIGN Procedure

Description
Associates a file variable with a specified external file.

Declaration
procedure assign(var f: file; s: string);

Remarks
Any standard device may be considered a file. For example, the

keyboard 'K:' could be used an an input file, and the printer, 'P:'
could be used as and output file.

The file name must include the device prefix.

File name validity is not checked until a reset, rewrite, or append
statement is executed.

31

Example
var
f: text;

begin
assign(f, 'D:OUTPUT'); rewrite(f);

writeln(f, 'This is a text file. ');

c1ose(f) ;
end.

See also
append, reset, rewrite

BLOCKREAD Procedure

Description
Reads a block of data from an open file into a buffer.

Declaration
procedure blockread(var f: file; var buffer; size: longint);

Remarks
The file may be of any type and the size specified is always in

bytes.

The number of bytes actually transferred can be found by the
predefined global variable BLOCKSIZE.

If the operation is successful IORESULT will equal 1.

Example
See COPY.PAS

See also
blocksize,blockwrite

BLOCKWRITE Procedure

Description
Writes a block of data from a buffer to an open file.

Declaration
procedure blockwrite(var f: file; var buffer; size: longint);

Remarks
The file may be of any type and the size specified is always in

bytes.

If the operation is successful IORESULT will be equal to 1.

32

Example
See COPY.PAS

See also
blockread.blocksize

CHOUT Variable

Description
Provides a method for adding an offset to character output.

Declaration
var
chout: byte;

Remarks
The value in CHOUT. which defaults to zero. is added to each

character before it is output. The main purpose of CHOUT is to make
inverted output simpler. although it can be used to encrypt or
unencrypt output.

Example
begin
writeln('Normal');
chout:=$80; writeln('Inverse'); chout:=$OO;
writeln('Normal');

end.

CHR Function

Description
Returns the character with the specified ordinal value.

Declaration
function chr(x): char;

(x may be of any ordinal type)

See also
ord

CLOSE Procedure

Description
Closes an open file.

Declaration
procedure close(var f: file);

33

Remarks
All remaining data is sent to the file, and the file is then closed.
Always close a file when finished with it.

CLRSCR Procedure

Description
Clears the screen.

Declaration
procedure clrscr;

Remarks
The screen is cleared and the cursor is sent home, but the current

screen colors are not reset.

See also
gotoxy

COPY Function

Description
Returns a substring of a string.

Declaration
function copy(s: string; p,n: longint): string;

Remarks
The series of characters in the string s, starting at p and

extending through p+n is returned as the result.

It is an error to specify p as larger than the length of the string.

If p+n is larger than the length of the string, then the section of
the string from p to the end is returned.

Example
var
s: string;

begin
s:='CLSN Pascal';
writeln(copy(s,6,6»; (* Pascal *)

end.

See also
delete,insert,pos

34

- ------._------_..

COS Function

Description
Returns the cosine of the specified angle.

Declaration
function cos(x: real): real;

Remarks
The angle must be in radians, unless a DEGREES statement was

executed in which case the angle must be in degrees.

DEC Procedure

Description
Decrements an ordinal variable by 1.

Declaration
procedure dec(x);

(x may be variable of any ordinal type)

Remarks
DEC(x) is mathematically equivalent to x:=x-1. However, the

compiler generates different code for the two statements with DEC
being more optimal.

Example
var
x: integer;

begin
x:=10;
dec (x) ;

end.

See also
inc,pred,succ

DEGREES Procedure

(* 9 *)

Description
Sets trigonometric angle measurement to degrees.

Declaration
procedure degrees;

Remarks
After executing this statement, the function SIN and COS will expect

an angle measured in degrees. ARCTAN will return an angle in degrees.

35

r
See also
radians

DELETE Function

Description
Returns a given string with specified characters removed.

Declaration
function delete(s: string; p,n: longint): string;

Remarks
The characters in the string s, from p to p+n are deleted and the

resulting string is returned.

It is an error to pass p a value larger than the length of s.

If p+n is larger than the length of s, only the characters up to p
are returned.

Example
var
s: string;

begin
s:='D:FILE.TXT';
s:=delete(s,1,2); (* FILE.TXT *)

end.

See also
copy,insert,pos

DISPOSE Procedure

Description
Releases to the heap a dynamic variable that was allocated using

NEW.

Declaration
procedure dispose(var p: pointer);

Remarks
The memory allocated by the dynamic variable is returned to the

heap.

An error occurs if p is NIL.

It is an error to reference pA after it has been disposed.

36

Example
var
temp: real;
x,y: real;

begin
x:=l; y:=10;

new (temp) ; (* Get a temporary variable *)

x:=y; (* Swap *)

di spose (temp) ;
end.

DPEEK Function

(* Release *)

Description
Returns the word value in a specified memory location.

Declaration
function dpeek(memloc: longint): word;

Remarks
The byte at the memory location is returned. See POKE for memory

organization. It is suggested that DPEEK be avoided in favor of
pointers and absolute variable declarations.

Example
var
scmem: word;

begin
scmem:=dpeek(88); (* Get screen memory *)

end.

(or even better)

var
scmem: word absolute 88;

begin (* No assignment, value is already there *)
end.

See also
dpoke,peek,poke

DPOKE Procedure

Description
Stores a word in a specified memory location.

37

r
Declaration
procedure poke(memloc,value: longint);

Remarks
The low word of value is stored in the memory location memloc. See

POKE for memory organization. It is suggested that DPOKE be avoided
and in its place use pointers or absolute variable declarations.

See also
poke,peek,dpeek

DRAWTO Procedure

Description
Used in conjunction with plot to create a line between two points on

the graphics screen.

Declaration
procedure drawto(x,y: longint);

Remarks
A line in the color set by the procedure SETCOLOR is drawn from the

current cursor position to the specified coordinates. The current
cursor position is set from the most recent plot or drawto. If no
PLOT or DRAWTO was executed since entering the graphics mode, the line
will originate from the upper left corner of the screen.

An error occurs if x or y is out of range the screen.

See also
graphics,plot,setcolor

EOF Function

Description
States whether or not the end of file has been reached.

Declaration
function eof(var f: file): boolean;

Remarks
Returns true when the last component of the file is reached.
Returns false otherwise.

38

Example
var
f: file of char;
ch: char;
s: string;

begin
write{'File to view: '); readln{s);

assign{f.s); reset{f);

while not eof{f) do
begin
read{f.ch); write{ch);

end;

close{f);
end.

See also
eoln

EOLN Function

Description
States whether or not the end of a line in a text file has been

reached.

Declaration
function eoln{var f: text): boolean;

Remarks
Returns true if the file pointer is at the end of the line.
Returns false otherwise.

Eoln may only be used on text files.

See also
eof

ERASE Procedure

Description
Deletes an external file.

Declaration
procedure erase{f: string);

Remarks
The specified file is removed from the disk.

The file with the name f must not be open.

39

IORESULT will be equal to 1 if the operation is successful.

Example
begin
erase('D:GARBAGE.DAT'); (* Erases file *)

end.

EXIT Procedure

Description
Leaves the current procedure.

Declaration
procedure exit;

Example
var
x: integer;

begin
while true do
begin
if keypressed then
exit;

writeln(x); inc(x);
end;

end.

See also
halt

EXP Function

Description
Returns e raised to the power of the argument.

Declaration
function exp(x: real): real;

Example
begin
writeln('e=' .exp(l.O»;

end.

see also
In

40

FILLCHAR Procedure

Description
Fills a block of memory with a value.

Declaration
procedure fillchar(var p; size,num: longint);

(p may be a variable of any type)

Remarks
Fills a block of memory starting at p with the value specified by

num.

Example
type
maze_type=array [1 .. 24] of array [1 .. 40] of char;

procedure clear_maze(var maze: maze_type);
begin
fillchar(maze,sizeof(maze),O); (* Set it all to zero *)

end;

See also
move

FREEMEM Procedure

Description
Releases a dynamic variable to the heap that was allocated using

GETMEM.

Declaration
procedure freemem(var p: size: longint);

Remarks
The memory allocated by the dynamic variable is returned to the

heap.

The size must be the same as when allocated using GETMEM.

An error occurs if p is NIL.

It is an error to reference pA after it has been disposed.

See also
getmem

41

GETDOT Function

Description
Returns the color of a point on the graphics screen.

Declaration
function getdot(x,y: longint): byte;

Remarks
The color at the specified coordinate is returned. This function

must be preceded by the use of a GRAPHICS statement. An error occurs
if the specified coordinate is out of range of the screen.

See also
plot

GETMEM Procedure

Description
Creates a dynamic variable on the heap.

Declaration
procedure getmem(var p: pointer; size: longint);

Remarks
GETMEM returns a pointer to a block of memory of the specified size.

A runtime error occurs if the heap routines cannot allocate the
memory requested.

See also
freemem

GOTOXY Procedure

Description
Position the cursor at the specifip.d screen coordinates.

Declaration
procedure gotoxy(x,y: longint);

Remarks
The upper left corner of the screen represents (0,0).

The maximum row and column depends on the current screen
configuration.

The cursor will not move until the next output to the screen takes
place.

42

Example
procedure show_time;
var
jlow: byte absolute 20;
jhi: byte absolute 19;

begin
gotoxy (2 , 0) ;
writeln{j1ow+256*jhi, ,

end;

See also
c1rscr

GRAPHICS Procedure

(* Top of screen *)
jiffies');{* Show time passed *)

Description
Initializes the Atari's graphics capabilities.

Declaration
procedure graphics{m: longint);

Remarks
The screen is cleared and a text or bit mapped screen will be

generated according to the parameter m. If a bit mapped graphics
screen is chosen, the procedures PLOT and DRAWTO may be used to create
images. The following table summarizes the different modes available
on the 130XE.

Graphics
Mode Type Columns Rows Colors
--

0 Text 40 24 2
1 Text 20 24 5
2 Text 20 12 5
3 Graphics 40 24 4
4 Graphics 80 48 2
5 Graphics 80 48 4
6 Graphics 160 96 2
7 Graphics 160 96 4
8 Graphics 320 192 1/2
9 Graphics 80 192 16
10 Graphics 80 192 8
11 Graphics 80 192 16
12 Text 40 24 5
13 Text 40 12 5
14 Graphics 160 192 2
15 Graphics 160 192 4

The following values may be added to the parameter m:
+16: Inhibit the text window
+32: Prevent clearing of the screen

43

Example
var
x: integer;

begin
graphics(7);

for x:=O to 159 do
begin
setcolor(x * 4 div 160);
plot(x,O); drawto(x,95);

end;
end.

See also
plot,drawto,setcolor,grx

GRX File

Description
Provides a channel for output to the graphics screen.

Declaration
var
grx: text;

Remarks
This device was provided so text may be printed on the screen while

in graphics mode 1 or 2. A GRAPHICS statement must be executed before
any reference to this file.

Example
begin
graphics(2);
writeln(grx, 'LARGE TEXT');
writeln('SMALL TEXT');

end.

See also
graphics

HALT Procedure

Description
Stops program execution immediately.

Declaration
procedure halt;

Remarks
The program ends immediately. Open files are not closed.

44

Example
var
s: string;

begin
write('File: '); readln(s);

if (s=") then
begin
writeln('ERROR: Invalid File Name');
halt;

end;

end.

See also
exit

HI Function

Description
Reveals the hi order byte of the argument.

Declaration
function hi(x: longint): byte;

Example
begin
writeln(hi($1234»; (* $12 *)

end.

See also
10

INC Procedure

Description
Increments an ordinal variable by 1.

Declaration
procedure inc(x);

(x may be variable of any ordinal type)

Remarks
INC(x) is mathematically equivalent to x:=x+l. However, the

compiler generates different code for the two statements with INC
being more optimal.

45

Example
var
x: integer;

begin
x:=10;
inc(x);

end.

See also
dec,succ,pred

INSERT Function

(* 11 *)

Description
Returns a string with characters inserted at a specified point.

Declaration
function insert(sub,s: string; p: longint): string;

Remarks
The string sub is inserted into the string s at point p. All

characters from p to the end of the string are moved to make room for
the new string.

It is an error to assign p a value larger than the length of s.

A runtime error occurs if the resulting string is longer than 255
characters.

Example
var
s: string;

begin
s: =' ABEF' ;

s:=insert(s, 'CD' ,3); (* 'ABCDEF' *)
end.

See also
copy,delete,pos

INT Function

Description
Returns the integer portion of a real value.

Declaration
function int(x: real): real;

46

Remarks
Rounding is always downward.

Example
begin
writeln(int(pi»;

end.

See also
round,trunc

IORESULT Function

(* 3.0000000 *)

Description
Returns the status of the last I/O operation.

Declaration
function ioresult: byte;

Remarks
A value less than 128 is considered a successful operation.

For errors greater than 127, see the DOS manual for a more complete
explanation.

Program termination by an I/O error can be avoided by using the [I]
switch.

Example
function exist(s: string): boolean;
var
f: file of char;

begin
assign(f,s);

[I-]; reset(f); [I+]; (* Try to open file *)

exist:=(ioresult<$80); (* Inspect ioresult *)

close(f);
end;

KEYPRESSED Function

Description
Tells whether or not a key has been pressed.

Declaration
function keypressed: boolean;

47

Example
procedure wait;
var
ch: char;

begin
while not keypressed do
writeln('Waiting... ');

ch:=readkey;
end;

See also
readkey

LENGTH Function

Description
Returns the length of a given string.

Declaration
function length(s: string): byte;

Remarks
A null string has a length of zero.

Example
var
s: string;
i: integer;

begin
write('Enter a word: '); readln(s);

for i:=length(s) downto 1 do
write(s[i); (* Reverse word *)

writeln;
end.

See also
copy,delete,insert,pos

LN Function

Description
Returns the natural logarithm of the argument.

Declaration
function In(x: real): real;

48

Remarks
A runtime error occurs if x is less than or equal to zero.

Example
begin
writeln(ln(exp(pi»); (* pi *)

end.

See also
exp

LO Function

Description
Reveals the low order byte of the argument.

Declaration
function lo(x: longint): byte;

Example
begin
writeln(lo($1234»;

end.

See also
hi

MAXAVAIL Function

(* $34 *)

Description
Returns the largest contiguous block of memory available in the

heap.

Declaration
function maxavail: longint;

Remarks
Since a runtime error will occur if a call is made to GETMEM or NEW

with a request for more memory than available, this function can be
used to prevent an unexpected program termination.

See also
getmem,new,memavail

MEMAVAIL Function

Description
Returns the total amount of memory left in the heap.

Declaration
function memavail: longint;

49

Remarks
The size of all free blocks of memory are summed and returned.

See also
maxavail

MEMPTR Function

Description
Creates a generic pointer given a bank and an address.

Declaration
function memptr(bank, addr: longint): pointer;

See also
getmem,freemem

MOVE Procedure

Description
Moves a block of data from one area of memory to another.

Declaration
procedure move(var source,dest; size: longint);

(source and dest are variables of any type)

Remarks
Move can move a block of memory in and between banks and main memory

but it will not handle overlaps.

Example
type
chtype=array [0 .. 127] of array [0 .. 7] byte absolute $E400;

var
chset: chtype absolute $EOOO;
chnew: chtype;

begin
move(chset,chnew,sizeof(chtype»;
(* or even better *)
chnew := chset;

end.

NEW Procedure

(* Copy the character set *)

Description
Creates a dynamic variable on the heap.

so

Declaration
procedure new(var p: pointer);

Remarks
NEW will create a dynamic variable on the heap.

A runtime error occurs if the heap routines cannot reserve enough
memory for the variable.

See also
dispose

NOSOUND Procedure

Description
Turns off all sound.

Declaration
procedure nosound;

Example
begin
while not keypressed do
sound(O,random(256),lO,lO);

nosound;
end.

See also
sound

ODD Function

(* Wait for a key *)
(* Random noise *)

(* Silence *)

Description
Determines if the argument is odd.

Declaration
function odd(x: longint): boolean

Remarks
Returns true if x is odd, otherwise it returns false.

ORD Function

Description
Returns the ordinal number of an ordinal type expression.

Declaration
function ord(x): longint;

(x is an ordinal type)

51

Example
var
ch: char;

begin
for ch:='A' to 'z' do
writeln(ch,' has an ordinal value of ',ord(ch»;

end.

See also
chr

PADDLE Array

Description
Returns the position of one of the eight paddle controllers.

Declaration
var
paddle: array [0 .. 7] of byte absolute 624;

Remarks
The position of the specified controller is returned.

from 0 to 228.

See also
ptrig,stick,strig

PALETTE Array

Description
Sets the color of the specified color register.

Declaration
var
palette: array [0 .. 4] of byte absolute 708;

It can range

Remarks
Palette is a global variable and values are assigned to it as such.

The values assigned represent the color and can range from 0 to 255;
the index represents the color register. The following table reveals
the values of different colors.

52

..

Value Color Value Color
-------------- --------------
0 Gray 128 Blue
16 Gold 144 Light Blue
32 Orange 160 Turquoise
48 Red-Orange 176 Green-Blue
64 Pink 192 Green
80 Purple 208 Yellow-Green
96 Purple-Blue 224 Orange-Green
112 Blue 240 Light Orange

A value of 0 to 15 (dark to light) representing the hue may be added
to the value of the color.

The color registers for graphics modes varies. The following table
summarizes exactly what each color register controls.

Color
Register

Graphics
Mode Controls

o

1

2

3

4

0 Nothing
1,2 Character Color

3 to 7 Color for SETCOLOR(l)
8 Nothing

0 Character Luminance
1,2 Character Color
3,5,7 Color for SETCOLOR(2)
4,6 Nothing
8 Graphics Luminance

0 Background Color
1,2 Character Color
3,5,7 Color for pETCOLOR(3)
4,6 Nothing
8 Background Color

0 Background Color
1,2 Character Color

3 to 7 Nothing
8 Background Color

0 Graphics Border
1 to 7 Graphics Border/Background SETCOLOR(O)

8 Graphics Border

Note: Colors may not exactly match the above chart depending on the
television and its current adjustments.

See also
setcolor

53

PEEK Function

Description
Returns the byte value in a specified memory location.

Declaration
function peek(memloc: longint): byte;

Remarks
The byte at the memory location is returned. See POKE for memory

organization. It is suggested that PEEK be avoided in favor of
pointers and absolute variable declarations.

See also
poke,dpeek,dpoke

PLOT Procedure

Description
Positions the cursor at a specified coordinate on the graphics

screen and lights a point in the color set by the procedure setcolor.

Declaration
procedure plot(x,Y: longint);

Remarks
Used in conjunction with DRAWTO, images can be created on the

graphics screen. This command must be preceded by a call to the
procedure GRAPHICS.

An error occurs if x or y is out of the range of the screen.

See also
graphics,drawto,setcolor,getdot

POKE Procedure

Description
Stores a single byte in a specified memory location.

Declaration
procedure poke(memloc,value: longint);

Remarks
The low byte of value is stored in the memory location memloc.

Memory is mapped as follows:

54

.._------ _.-._------- --------

Location

$OOOOO-$OFFFF
$14000-$18000
$24000-$28000
$34000-$38000
$44000-$48000

Area

Main Memory
Bank #1
Bank #2
Bank #3
Bank #4

It is suggested that poke be avoided. Instead use pointers or
absolute variable declarations.

Example
procedure cursor_off;
begin
poke(752,1);

end;

(or even better)

procedure cursor_off;
var
crsinh: byte absolute 752;

begin
crsinh:=l;

end;

See also
peek,dpoke,dpeek

POS Function

Description
Returns the position of a substring within a string.

Declaration
function pos(sub,s: string): byte;

Remarks
The position of the first occurrence of sub within s is returned.

If sub is not found within s, a zero is returned.

Example
var
s: string;

begin
s : = ' AB CD EF' ;

while pose' , ,s)<>O do
delete(s,pos(' , ,s), 1); (* ABCDEF *)

end.

55

See also
copy,insert,delete

PRED Function

Description
Returns the preceding ordinal value of the argument.

Declaration
function pred(x);

(x is an ordinal type and the function returns a value of the same
type)

See also
succ,inc,dec

PTRIG Array

Description
Reveals the state of a given paddle button.

Declaration
var
ptrig: array [0 .. 7] of byte absolute 636;

Remarks
Returns 0 if the specified paddle button is pressed, otherwise it

returns 1.

See also
paddle, stick, strig

RADIANS Procedure

Description
Sets trigonometric angle measurement to radians.

Declaration
procedure radians;

Remarks
After executing this statement, the function SIN and COS will expect

an angle measured in radians. The ARCTAN function will return an
angle in radians.

See also
degrees

56

RANDOM Function

Description
Returns a random number in a given range.

Declaration
function random(max: longint): longint;

Remarks
This function returns a random number between zero and max-I.

Example
begin
graphics(8); setcolor(l);

while not keypressed do
plot(random(320),random(192»; (* Plot points *)

end.

READ Procedure (Text Files)

Description
Inputs values for variables from either the keyboard or a file.

Declaration
procedure read([var f: text] var vl[,v2,v3 ...]);

(Where vl,v2,v3 ... represent integer, real, character, or
string variables)

Remarks
Input is obtained from the keyboard unless a file has been

specified.

When a variable of type-char is requested, READ obtains the next
character in the file and stores its value in the variable.

When a variable of any string type is requested, READ takes all the
characters up to, but not including, the end of line marker (#155) and
stores them into the string variable.

When a variable of an integer type is requested, READ first skips
leading blanks. A series of digits led by an optional sign is
expected, and if not supplied will generate a runtime error.
Hexadecimal notation (i.e $0500) is also acceptable.

When a variable of type real is requested, READ first passes over
leading blanks. A series of digits separated by an option decimal
point, led by an optional sign, and followed by an option exponent is
expected and if not supplied will generate a runtime error.

57

See also
readln,readkey,write

READ Procedure (Typed Files)

Description
Inputs records for variables from a typed file.

Declaration
procedure read(var f: file; var vl[,v2,v3 ...]);

(Where f is a file of any type except text, and vl,v2,v3 ... are all
variables of the type of the file)

Remarks
READ takes successive components from the file and stores them into

the variables requested.

See also
write

READKEY Function

Description
Waits for a key to be pressed and returns its value.

Declaration
function readkey: char;

Example
var
ch: char;

begin
repeat
ch:=readkey;
wri te(ch) ;

until (ch=#27);
end.

READLN Procedure

(* Get a key *)
(* Echo it *)

Description
Performs a READ on a text file, then moves past the end of line

marker to the next line of the file.

58

Declaration
procedure readln([var f: text] var v1[,v2,v3 ...]);

(Where v1,v2,v3 ... represent integer, real, character, or string
variables)

Remarks
READLN performs exactly the same function as READ on a text file,

except that after retrieving the requested values, READLN moves the
past the end of line marker to the next line of the file.

Example
(* Displays a text file *)

var
s: string;
f: text;

begin
assign(f, 'D:TEXT.DOC'); reset(f);

while not eof(f)
begin
readln(f,s);
wri teln(s) ;

end;

close(f);
end.

RENAME Procedure

do

(* Get a line *)
(* Display it *)

Description
Gives a new name to a disk file.

Declaration
procedure rename(old,new: string);

Remarks
The file with the name old is given the name new.
Old must have the drive identifier (i.e. D1:), but new must not have

the drive identifier.

An error occurs if the file does not exist.

See also
erase

RESET Procedure

Description
Moves the file pointer to the beginning of the file.

59

Declaration
procedure reset(var f: file);

Remarks
The file must have been previously associated with a filename by use

of the ASSIGN procedure.

If RESET is used on an already open file. the file is closed then
reopened.

An error will occur if the file does not exist.

See also
assign, rewrite

RESETDIR Procedure

Description
Prepares the file directory to be read.

Declaration
procedure resetdir(var f: text);

Remarks
In order to read the disk directory. ASSIGN should be called with a

text file variable and the file mask. Successive READLNs can then be
used to access the directory information.

Example
procedure print_directory(mask: string);
var
f: text;

begin
assign(f,mask); resetdir(f); (* Prepare the directory *)

while not eof(f) do
begin
readln(f,s); writeln(s); (* Get file listing *)

end;

close(f); (* Close the file! *)
end;

REWRITE Procedure

Description
Deletes the contents of a file and moves the file pointer to the

beginning of the file.

60

r
Declaration
procedure rewrite(var f: file};

Remarks
The file must have been previously associated with a filename by use

of the ASSIGN procedure.

If the file exists, the contents are deleted, otherwise a new file
is created.

See also
assign, reset

ROUND Function

Description
Rounds a real value into an integer value.

Declaration
function round(x: real}: longint;

Remarks
Round converts the given real number to the nearest integer and

returns the value.

If the value is out of the range of a longint, an error will occur.

See also
int,trunc

SETCOLOR Procedure

Description
Sets the current drawing color.

Declaration
procedure setcolor(c: longint};

Remarks
This command is different from the BASIC setcolor command in that it

does not set a color for a color register, but rather chooses the
color register for successive PLOT and DRAWTO statements. To change
the color of a color register see PALETTE.

See also
graphics,plot,drawto,palette

SIN Function

Description
Returns the sine of the specified angle.

61

Declaration
function sin(x: real): real;

Remarks
The angle must be in radians, a DEGREES statement was

executed in which case the angle must be in degrees.

See also
arctan,cos

SIZEOF Function

Description
Returns the size in bytes of the specified variable or type

identifier.

Declaration
function sizeof(x): longint;

(Where x is a variable of any type or a type identifier)

Remarks
It is suggested that SIZEOF be used with function such as MOVE and

FILLCHAR.

Example
var
maze: array [1 .. 10] of array [1 .. 10] of byte;

begin
fillchar(maze,sizeof(maze),O); (* Clear the maze *)

end;

SOUND Procedure

Description
Turns on or off one of the four sound voices, and sets the pitch,

distortion and volume.

Declaration
procedure sound(n,p,d,v: longint);

Remarks
N is the
P is the
D is the
V is the

sound channel and allowed values are 0 to 3.
pitch and can range from 0 (high) to 255 (low).
distortion and can be set from 0 to 15 (10 is pure)
volume and has a maximum value of 15.

62

The following table show the values that will produce musical tones.

Note Pitch Note Pitch Note Pitch Note Pitch
----- ----- ----- -----

C 29 D# 50 F# 85 A 144
B 31 D 53 F 91 G# 153
A# 33 C# 57 E 96 G 162
A 35 C 60 D# 102 F# 173
G# 37 B 64 D 108 F 182
G 40 A# 68 C# 114 E 193
F# 42 A 72 C 121 D# 204
F 45 G# 76 B 128 D 217
E 47 G 81 A# 136 C# 230

C 243

Example
begin
while not keypressed do
sound(O,random(256),10,15); (* Random noise *)

nosound;
end.

See also
nosound;

SQR Function

Description
Returns the argument squared.

Declaration
function sqr(x: longint):
function sqr(x: real): real;

SQRT Function

Description
Returns the square root of the argument

Declaration
function sqrt(x: real): real;

Remarks
A runtime error occurs if x is less than zero.

STR Function

Description
Converts a number to a string representation.

63

Declaration
function str(x: real; d: longint): string;

Remarks
This function converts the number to a string representation.
D is the number of digits after the decimal point to show. If d is

less than zero then the number is converted to exponential form.

See also
val

STICK Array

Description
Reveals the current direction of a given joystick.

Declaration
var
stick: array [0 .. 3] of byte absolute 632;

Remarks
The direction of the specified joystick is returned as a value which

can be interpreted as follows:

14
10 I
\ I

11---15
/ I
9 I
13

6
/
---7
\
5

Example
begin
while (strig[O]=O) do
writeln(stick[O]);

end.

See also
paddle,ptrig,strig

STRIG Array

(* Wait for the trigger *)
(* Show direction *)

Description
Reveals the status of the specified trigger button.

Declaration
var
strig: array [0 .. 3] of byte absolute 644;

64

-

The status of the specified trigger button is returned. A 1 means
the button is not pressed; a 0 means it is pressed.

See also
stick,paddle,ptrig

SUCC Function

Description
Returns the next successive value of the argument.

Declaration
function succ(x);

(Where x is of any ordinal type.
The return type is the same type as the argument)

See also
pred,inc,dec

TRUNC Function

Description
Truncates a real value into an integer value.

Declaration
function trunc(x: real): longint;

Remarks
Trunc converts the given real number to the nearest integer below

the value given and returns this value.

If the value is out of the range of a longint, an error will occur.

See also
int,round

UPCASE Function

Description
Returns the uppercase representation of a lower case letter.

Declaration
function upcase(ch: char): char;

Remarks
If the letter given is lowercase, the uppercase analog is returned,

otherwise the character given is returned.

65

VAL Procedure

Description
Converts a numeric string to a numeric value.

Declaration
procedure val{s: string; var v: real; var p: longint);

Remarks
Leading blanks in the string are skipped and an attempt to convert

the string into a number is made. If successful, the value is stored
in v and p is set to O. If unsuccessful, v is undefined and the
position of the error is stored in p.

See also
str

WHEREX Variable

Description
Contains the current column of the cursor.

Declaration
var
wherex: word absolute $55;

Remarks
This variable can be used to modify the position of the cursor, but

the cursor will not move until the next WRITE statement.

WHEREY Variable

Description
Contains the current row of the cursor.

Declaration
var
wherey: byte absolute $54;

Remarks
This variable can be used to modify the position of the cursor, but

the cursor will not move until the next WRITE statement.

WRITE Procedure (Text Files)

Description
Outputs formatted values to the screen or a file.

66

Declaration
procedure write([var f: file of text;] vI[.v2.v3 ...]);

(Where vI,v2,v3 ... are values of integer, character. string, real or
boolean type)

Remarks
If no file is specified the screen is assumed.

Output begins at the current cursor position and all values
specified are output one after the other. Output parameters have the
syntax:

value[:spacing[:decimal]]

Where spacing is an integer value representing a padding of blanks
that the value is to be output on. right justified. Decimal is the
number of digits following the decimal point that are to be displayed
and is valid only for real values. If the value is real, and decimal
is not specified, the result is output in exponential form.

If the value is of type BOOLEAN. the words TRUE or FALSE are output.

If the value does no fit on the padding, the entire value is output
regardless.

Write should never be called with a function that calls a WRITE or a
READ statement.

See also
writeln,read,readln

WRITE Procedure (Typed Files)

Description
Outputs a variable to a file.

Declaration
procedure write(var f: file; vI[...]);

(Where f is a file of any type except text. and vI,v2,v3 ... are a;;
variables of the type of the file)

Remarks
WRITE outputs all of the variables specified to successive file

components.

See also
read

67

WRITELN Procedure

Description
Outputs formatted values to the screen or a file.

Declaration
procedure writeln[([var f: file of text;] vl[,v2,v3 ...])];

(Where vl,v2,v3 ... are values of integer, character, string, real or
boolean type)

Remarks
This procedure works exactly like WRITE on a text file, except that

after all of the specified values are output, an end of line character
(#155) is sent to the file.

WRITELN without any parameters sends an end of line marker alone to
the file.

See also
write,read,readln

68

